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ABSTRACT

Permanent magnet synchronous machines (PMSMs) are widely used in various industries

such as transportation, manufacturing and renewable energy. The simple structure of direct

torque control (DTC) coupled with its encoderless operation and fast dynamics are of great

interest for PMSMs. Nevertheless, the occurrence of faults, such as turn-to-turn short circuit,

high resistance contact, static eccentricity and partial demagnetization, remains a concern.

Faults can prevent smooth drive operation of DTC and potentially lead to catastrophic losses

if not detected and mitigated in their early phases. Hence, fault diagnosis of DTC driven

PMSMs is paramount to ensuring reliable drive operation.

An essential aspect of developing effective fault diagnosis is to understand the impact

of faults on drive operation and its corresponding reaction. A comprehensive examination

of the nonlinear behavior of flux and torque hysteresis comparators in DTC driven PMSMs

provides insight. It is shown that DTC can tolerate low-severity faults within the controller

bandwidth while continuing to operate normally. However, when flux and torque errors

exceed the bandwidth, DTC counteracts by introducing negative sequence voltages and

torque angle variations which impacts fault diagnosis and control under faulty conditions.

Many existing fault diagnosis methods are based on field oriented control (FOC); however,

it is not well understood how these methods translate to DTC driven PMSMs. Machine

Voltage Signature Analysis (MVSA) is the most commonly used approach for fault diagnosis

in electric machines. However, the use of DTC introduces challenges for adoption MVSA

due to its nature of compensation, structure and regulation principle. A novel fault diagnosis

approach for DTC driven PMSMs is developed. This approach maintains the simple structure

of DTC, removes the need for complex signal processing tools, and relies solely on the

available signals in the drive. The occurrence of faults results in unique deviations in the



direction and magnitude of the commanded voltages in the stator flux linkage (MT) frame

enabling fault detection, classification, and severity assessment.

Ultimately, the fault diagnosis algorithm used for inverter driven PMSMs should be

effective and applicable irrespective of the control type. A comprehensive fault diagnosis

approach is developed based on active and reactive power signature analysis. This data

driven algorithm uses spectral components of the power signals as fault indicators. It is

shown that this developed algorithm is capable of fault diagnosis in both FOC and DTC

driven PMSMs.

The reliability of inverter driven PMSMs depends on the ability to monitor its state of

health during operation. It is necessary to detect that a fault occurred, identify fault type as

well as estimate its severity. Classification algorithms are used to separate fault types and

estimate fault severity. Here, the performance of three classification algorithms is evaluated

for inverter driven PMSMs. The classification algorithms are linear discriminate analysis

(LDA), k-nearest neighbor (k-NN), and support vector machines (SVM). The SVM classifier

is shown to be a highly effective method for detecting and classifying faults in PMSMs

controlled by either drive, even with limited training data and high noise levels.
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Chapter 1

Introduction

Highly reliable and efficient electric driven permanent magnet synchronous machines (PMSMs)

are required for critical applications where safety is a compulsory part of their operation.

However, due to the limitations of material lifetime, assembly defects, poor installation, or

improper operation, an unexpected malfunction may happen and can lead to production

shutdowns and catastrophic loss in human lives [1, 2]. Therefore, health monitoring and

fault identification algorithms should be integrated into the inverter driven PMSMs for im-

proved safety and enhanced reliability. It is worth noting that the compensating nature of

the electric drive system impacts fault detectability [3].

The two most common drives for PMSMs are Field oriented control (FOC) and Direct

torque control (DTC). Both control schemes have a simple structure and provide satisfactory

performance; however, FOC offers better steady-state behaviour and DTC provides faster

torque dynamics. The selection of the appropriate control scheme is based on the drive

requirements for the desired application.

Different types of health monitoring techniques for electric machines are applied in the

field:

• Electrical Monitoring through voltage, current, or power signals [3–10]

• Mechanical Monitoring through accelerometer or proximity probes [11–13]

• Thermal Monitoring through thermocouple sensors or thermography [14–16]

• Flux Monitoring through airgap, leakage, or stray magnetic flux [17,18]

• Chemical Monitoring through tagging compound [19]

1



Electrical monitoring of the machine receives increasing attention from academia and

industry due to its low implementation cost and continuous/remote monitoring capability

in comparison with the other monitoring types. Several electrical monitoring techniques

are proposed in the literature for FOC driven PMSMs considering single or multiple fault

occurrence [4–8]. However, fault diagnosis methods of PMSMs that exist in the literature

based on the FOC scheme may not be suitable for DTC driven PMSMs as they have different

compensation nature, structure, and regulation principle.

The motor voltage or current signature analysis (MVSA/MCSA) is widely adopted at

high loads for the most accurate fault diagnosis at different operating conditions. The advan-

tage of this technique is that it does not require any additional hardware for implementation

and the machine monitoring can be done remotely through the Motor control Center (MCC).

The sideband harmonics in stator current are used as features to detect turn-to-turn short

circuit (TTSC) fault in [8] and to detect eccentricity fault in [20]. However, the detection

accuracy degrades at high noise levels since the features used have low signal-to-noise ratio

(SNR). In order to use detection indicators with higher SNR, the main spectral components

in the commanded phase voltage or measured phase current are selected to detect and clas-

sify TTSC, eccentricity, and demagnetization faults using linear discriminate analysis (LDA)

classifier [4]. Although the results are promising, the present harmonics in stator current

waveform are heavily dependent on the controller bandwidth [1,3]. If the controller is able to

attenuate them due to high bandwidth, they will vanish in the stator current signal and be

imposed in the voltage signal. Therefore, the detection accuracy becomes a function of the

selected bandwidth and the selected signal for detection. Additionally, this approach could

not be implemented for DTC since the amplitude variations in the spectrum are affected by

the variable switching frequency in DTC under different faults.
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Authors in [6] use the transform coefficients based on the short time Fourier transform

and wavelet analysis of the torque producing current in dq frame to detect and classify

three faults: TTSC, high resistance contact (HRC), and missing gear tooth. However, this

approach is not applicable for DTC as signals in dq frame are not available. According

to [5], the shift in commanded dq-voltages can be used to detect and separate between

TTSC, eccentricity, and demagnetization faults. These voltage signals are readily available

in the FOC drives and their magnitude variation under different faults could be utilized in a

non-intrusive diagnosis method. Once again, this approach could not be extended to DTC

since the drive is implemented in the stationary (αβ) frame where the position signal is

not required. Therefore, the dq-voltages are not always available in DTC drives. Moreover,

the dq-voltages shift in FOC under different faults, whereas the currents are assumed to be

fixed and regulated to follow the dq-current commands. While in DTC, the currents are not

assumed to be constant and vary under different faults. Hence, fault diagnosis techniques

developed for FOC driven PMSMs are not applicable for DTC; indicating there is an immense

need for condition monitoring in the DTC driven PMSMs.

Few recent investigations explore condition monitoring for DTC driven PMSMs [1,21,22].

Authors in [21] suggest using the magnitude and initial phase of the zero-sequence voltage

component (ZSVC) to detect TTSC fault. A torque injection and improved flux observer

are then proposed to tolerate the TTSC effect on DTC performance. However, neutral point

access is needed to compute the zero sequence network by adding three-phase resistors in

parallel with the motor-inverter connections. HRC fault is identified in [22] by imposing a

constant flux offset in the flux estimation loop of a DTC driven PMSMs. Since DTC relies

on the flux estimation, additional analysis is required to guarantee stable DTC operation.

Although DTC is proposed as the next generation of universal ac motor drives, it is evident
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that the reliability of DTC driven PMSMs is not thoroughly investigated in the literature and

fault diagnosis becomes a necessity to improve the drive performance under faulty operation.

1.1 Objectives & Contributions

Faults manifest themselves in the drive signals in inverter driven PMSMs. The fault types

can result in distinct or similar trends. Proper utilization of these trends assists in fault

detection, classification, and severity estimation. However, the hysteresis comparators in

DTC pose challenges in fault detection and separation for PMSMs. The compensating nature

of DTC and variations in the switching frequency, determined by the hysteresis band, may

result in unobservable fault effects in DTC drives. Consequently, the faulty operation of

DTC driven PMSMs may turn out to be unstable control if the faults are not detected and

mitigated properly at their premature stages. Condition monitoring techniques are required

for DTC driven PMSM in order to maintain a safe and reliable drive operation.

This work addresses the research gap in reliability and robustness of DTC driven PMSM

under faulty conditions. The contributions of this work are:

• Identification and delineation of the challenges of adoption of several FOC based tech-
niques for DTC driven PMSMs.

• Comprehensive understanding of the impact of faults on the operation of DTC driven
PMSMs.

• Development of a non-intrusive fault identification and severity estimation algorithm
suitable for the scheme of DTC driven PMSMs.

• Development of a comprehensive fault identification and severity estimation algorithm
for inverter driven PMSMs irrespective of the control type.
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1.2 Organization

Chapter 2 presents the theoretical background for PMSM modeling in stationary, stator flux

linkage, and rotor flux linkage frames in healthy condition. These different PMSM models

are used to design the drive systems and analyze machine operation under healthy and

faulty conditions. The performance of PMSM driven by FOC and DTC is then studied and

compared. The stator and rotor faults in PMSM are also discussed.

Chapters 3–6 are the core chapters of this work. Chapter 3 presents a comprehensive

assessment of the impact of faults on DTC driven PMSM and the corresponding drive reac-

tion to the fault occurrence. It provides in-depth explanation of the tolerance capability of

DTC drive under fault conditions as well as its compensation response.

Chapter 4 presents the geometric model and the parameters for the tested machine. It

also provides detailed electromagnetic modeling in FEA for the tested machine under healthy

and faulty conditions. These models are then coupled with a drive circuit. The experimental

implementation of the driven PMSM system under healthy and faulty conditions is then

described.

Chapter 5 presents an analysis for the usage of the MVSA approach in fault diagnosis for

PMSM driven by FOC and DTC. The supervised classification is discussed and then utilized

in designing the diagnostic approach.

Chapter 6 discusses the faulty operation of DTC driven PMSM. Two diagnostic ap-

proaches are then proposed based on the power signature analysis and commanded voltage

shifts in the stator flux linkage frame.

Finally, Chapter 7 brings the conclusions and future work of this dissertation.

5



Chapter 2

Theoretical Background

2.1 PMSM Modeling

The usage of PMSMs has immensely increased during the last three decades. This is due

to the development of new magnets with high residual flux density, high energy product,

and considerable demagnetization resilience, such as the Neodymium-Iron-Boron (NdFeB)

magnet [23]. These magnets are used instead of windings to take over the rotor field produc-

tion in the machine. Therefore, PMSMs achieve higher torque density, lighter rotor mass,

and higher efficiency in comparison with induction machines [24,25]. According to magnets

location in the rotor design, PMSM can be categorized mainly into interior buried rotor

magnets (IPMSM) or surface mounted rotor magnets (SPMSM). Fig. 2.1 shows both PMSM

typologies.

Figure 2.1: PMSM typologies: IPMSM(Left) and SPMSM(Right).

6



PMSMs utilize the reluctance torque caused by the rotor saliency in addition to the

magnet torque. This results in obtaining a wider constant power speed range which is

an important feature for high-speed applications. Such advantages make PMSMs more

prevalent in different critical industries such as automotive, aerospace, and renewable energy

applications [26].

The mathematical model of PMSM can be expressed in three different reference frames,

namely, the stator flux linkage (MT ) frame, the rotor flux linkage (dq) frame, and the

stationary (αβ) frame [27, 28]. In the stator flux linkage frame, the M -axis is synchronized

with the stator flux linkage vector (λs ̸ θs), and the T -axis refers to the torque component.

In the rotor flux linkage frame, the d-axis is aligned with the magnet flux linkage vector

(λPM ̸ θr), which lags the M -axis by the torque angle (δ). Fig. 2.2 shows these reference

frames along with the stationary (αβ) frame where α-axis is fixed to the stator phase A-axis.

Figure 2.2: Vector diagram for rotor flux, stator flux, and stationary frames.

The PMSM models in the aforementioned frames can be generated through a transformation

from a general PMSM model in a stator reference (ABC) frame, assuming the machine has

three-phase winding connected in wye to a common neutral point. The stator winding in

PMSM is typically distributed sinusoidally over the machine stator with a (2π3 rad) phase
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shift between the three windings in order to have nearly sinusoidal back electromotive force

(back-EMF). In the stator reference frame, electrical phase quantities can be visualized as

they are fixed in space along their phase axes with time-varying magnitudes. Fig. 2.3 shows

PMSM with sinusoidal distributed winding and the generated back-EMF.

(a) Machine stator layout with sinu-
soidally distributed winding.
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(b) Generated back-EMF of the three phase winding.

Figure 2.3: PMSM with sinusoidally distributed winding.

The PMSM model in stator reference frame is represented by (2.1) where vabc, iabc, and

λabc are the three phase voltages, currents, and flux linkages in stator frame. rs is the phase

resistance which is assumed to be the same for all phases in case of a healthy PMSM.

vabc = rsiabc +
dλabc
dt

(2.1)

The voltage vector (vabc) will consist of the phase resistive drop (rsiabc) and the change in flux

linkage (
dλabc
dt ) due to the time-varying currents passing through phase winding inductance

and rotating of the permanent magnets. Assuming the mutual inductance is negligible in

concentrated winding machine which is the studied machine in this work, the flux linages

are represented by (2.2). Where Ls is the self phase inductance and λPM (θr) represents the
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permanent magnet flux linkage (λPM ) as a function of the rotor position (θr).

λabc = Lsiabc + λPM (θr) = Ls


ia

ib

ic

+


λPM cos (θr)

λPM cos
(
θr − 2π

3

)
λPM cos

(
θr +

2π
3

)

 (2.2)

Therefore, the PMSM model in the stator reference frame is represented by (2.3) where the

last term represent the induced voltages (eabc) on the machine winding due to the rotating

permanent magnets.


va

vb

vc

 = rs


ia

ib

ic

+ Ls


dia
dt

dib
dt

dic
dt

+ λPM


sin (θr)

sin
(
θr − 2π

3

)
sin

(
θr +

2π
3

)

 (2.3)

Fig. 2.4 shows the equivalent electrical circuit of PMSMs in the stator reference frame.

Figure 2.4: Equivalent electrical circuit of PMSM in stator reference frame.

Finding machine parameters as well as the machine control could be complicated if the ma-

chine is modeled in the stator reference frame using three-phase quantities. The calculations

required for parameter estimation and control could be simplified by representing the ma-
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chine model using two orthogonal quantities. In this section, a brief description is given of

PMSM modeling in the different reference frames of two orthogonal coordinate system.

2.1.1 Stationary Frame

Transformation of the machine variables (voltages, currents, and flux linkages) from the

stator (ABC) reference frame into the stationary (αβ) reference frame is accomplished by

using a constant transformation matrix called Clark transform, given in (2.4).

xαβ =

2
3 −1

3 −1
3

0 1√
3

− 1√
3

xabc (2.4)

The PMSM model can be represented in the orthogonal (αβ) frame by transforming (2.3)

using Clark transformation, shown in (2.5).

vα
vβ

 = rs

iα
iβ

+
d

dt

λα
λβ

 = rs

iα
iβ

+ Ls

diα
dt

diβ
dt

+ λPM

cos (θr)
sin (θr)

 (2.5)

Where vαβ , iαβ , and λαβ represent the voltages, currents, and flux linkages in the stationary

frame. This transformation reduces machine variables into two variables with same sinusoidal

nature, as the α-axis is aligned with the phase A axis. In control theory, it is preferred to

regulate dc reference signals in lieu of sinusoidal ones, and therefore, further simplification

is needed to ease the control task.

2.1.2 Rotor Flux Linkage Frame

Transformation of the machine variables from the stationary (αβ) reference frame into the

rotor flux linkage (dq) reference frame is accomplished by using a transformation matrix
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called Park transform given in (2.6).

xdq =

 cos (θr) sin (θr)

− sin (θr) cos (θr)

xαβ (2.6)

If the rotor position (θr) is known using position sensor or estimated, then the PMSM

model can be represented in the orthogonal (dq) frame by transforming (2.5) using Park

transformation as shown in (2.7).

vd
vq

 = rs

id
iq

+

Ld 0

0 Lq


did

dt

diq
dt

+ ωr

−λq
λd

 (2.7)

Where vdq, idq, and Ldq represent the voltages, currents, and inductances in the rotor flux

linkage frame. ωr is the electrical rotating speed of the rotor flux linkage. Flux linkages

(λdq) in this frame are described in (2.8).

λd
λq

 =

Ld 0

0 Lq


id
iq

+

λPM

0

 (2.8)

Fig. 2.5 shows the equivalent dq electrical circuit of PMSM in rotor flux linkage frame.

(a) PMSM equivalent circuit in d-axis. (b) PMSM equivalent circuit in q-axis.

Figure 2.5: Equivalent electrical circuit of PMSM in rotor flux linkage reference frame.
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This transformed model is simplified by neglecting the iron core loss and the cross-saturation

coupling, but it is useful for basic machine representation. This transformation would help in

reducing machine variables into two variables with dc nature as the (dq) coordinate system

is fixed to the rotor. The physical meaning of the d-axis is the direct flux path across the

permanent magnet while the q-axis is the quadrature magnetizing path. The permanence

path difference between the machine parts (stator and rotor) is a result of the asymmetrical

magnetic properties of PMSM. Usually, it is referred to as machine saliency and it can be

observed in the PMSM inductances in the dq frame (Ld and Lq). The PMSM saliency can

be improved through varying the rotor geometry by adding flux barriers or using cavities for

the embedded magnets. For SPMSM, the machine inductances are identical since the flux

reluctance is the same along both direct and quadrature axes. However, Lq in IPMSM is

larger than Ld since the flux path in the quadrature axis is less reluctant than the direct axis

due to the use of magnet cavities in the latter axis. Fig. 2.6 shows the rotor configuration

of SPMSM and IPMSM with the dq axes.

(a) SPMSM (Ld = Lq). (b) IPMSM (Ld < Lq).

Figure 2.6: Rotor configuration of PMSM typologies with the dq frame.
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2.1.3 Stator Flux Linkage Frame

Transformation of the machine variables from the stationary (αβ) reference frame into the

stator flux linkage (MT ) reference frame is accomplished by using a transformation matrix

similar to Park transform but with using the stator flux linkage angle as shown in (2.9).

xMT =

 cos (θs) sin (θs)

− sin (θs) cos (θs)

xαβ (2.9)

The stator flux linkage position (θs) is estimated using (2.10) .

θs = tan−1
(
λβ
λα

)
(2.10)

The PMSM model can be represented in the orthogonal (MT ) frame by transforming

(2.5) using (2.9), shown in (2.11).

vM
vT

 = rs

iM
iT

+

dλM
dt

dλT
dt

+

ωsλT
ωsλM

 (2.11)

Where vMT , iMT , and λMT represent the voltages, currents, and flux linkages in stator flux

linkage frame. The machine variables in MT frame have dc nature where ωs is the electrical

rotating speed of the stator flux linkage. Since the M -axis is aligned with the stator flux

linkage vector (λs) as shown in Fig. 2.2, the magnetizing flux linkage (λM ) equal λs and the
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flux linkage (λT ) in T -axis is null. The simplified PMSM model is given in (2.12)

vM
vT

 = rs

iM
iT

+

dλs
dt

0

+

 0

ωsλs

 (2.12)

Another transformation can be done from dq frame into MT frame by using the transfor-

mation matrix given in (2.13).

xMT =

 cos (δ) sin (δ)

− sin (δ) cos (δ)

xdq (2.13)

The torque angle required for the transformation (δ) is estimated by (2.14).

δ = tan−1
(
λq
λd

)
(2.14)

This transformation is useful in obtaining the relationship between the MT and dq flux

linkages using (2.13) to transform (2.8) as shown in(2.15).

λM
λT

 =

LMM LMT

LTM LTT


iM
iT

+ λPM

 cos (δ)

− sin (δ)

 (2.15)

Where the inductance matrix is calculated using (2.16).



LMM

LMT

LTM

LTT


=



Ld cos
2(δ) + Lq sin

2(δ)

−Ld sin(δ) cos(δ) + Lq sin(δ) cos(δ)

−Ld sin(δ) cos(δ) + Lq sin(δ) cos(δ)

Ld sin
2(δ) + Lq cos

2(δ)


(2.16)
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For SPMSM, the diagonal inductances (LMT and LTM ) are zero since (Ld = Lq = Ls).

Therefore, the resulting flux linkages are described in (2.17).

λM
λT

 =

Ls 0

0 Ls


iM
iT

+ λPM

 cos(δ)

− sin(δ)

 (2.17)

Since λT = 0, then the torque component current (iT ) would be calculated using (2.18).

iT =
1

Ls
λPMsin(δ) (2.18)

However, this is not the case in IPMSM as (Ld ̸= Lq). By solving the second row in (2.15)

where λT = 0, the magnetizing component current (iM ) is shown in (2.19).

iM =
2λPMsin(δ)−

[
(Lq + Ld)− (Lq − Ld) cos(2δ)

]
(Lq − Ld) sin(2δ)

iy (2.19)

Using (2.19) in the first row of (2.15) results in (2.20).

iT =
1

2LdLq

[
2λPMLqsin(δ) + λM (Ld − Lq)sin(2δ)

]
(2.20)

2.2 PMSM Control

PMSM can be grid-connected or driven by an inverter. For the former type, the machine

rotor should be designed with dampers to be self-starting like induction machines [29]. In

the latter type, PMSM should be driven by Variable Frequency Drives (VFDs) to operate

at different speed conditions. Two control strategies could be implemented to regulate the

PMSM speed: scalar and vector control. The scalar control is considered the simplest
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control algorithm since it is an open-loop regulation without any need for feedback on motor

position or identifying its parameters. The PMSM speed is set and the voltage magnitude

should be changed accordingly to maintain a constant voltage/frequency ratio. However,

scalar-controlled PMSMs suffer from instability when there is a loss of synchronization at

load/speed changes. This problem could be overcome by using closed feedback control or

designing the PMSM rotor with dampers to maintain the rotor synchronization with the

electrical supply frequency. Most of the PMSMs are manufactured without dampers and

this would limit the applicability of scalar control to PMSMs.

Vector control achieves high dynamic performance, in comparison with scalar control,

by controlling both the magnitude and angle of the stator flux linkage of PMSM. Field

Oriented Control (FOC) and Direct Torque Control (DTC) are the most widely applied

vector control schemes for alternating machines. FOC was introduced in the late 1960s for

alternating current machines and then firstly adopted by the Toshiba industry one decade

later. The main concept of FOC is to control the stator current vector in the rotor flux linkage

frame [30, 31]. On the other hand, DTC aims to regulate the electromagnetic torque and

stator flux linkage directly without any need for complex orientation [32]. It was proposed

in the early 1970s and then commercialized by the ABB industry two decades later [33,34].

It has not been made possible to implement vector control without integrating high-

speed processors since the torque producing and flux magnetizing components need to be

decoupled. Performance improvements of micro-controller/DSP will lead to better control

implementation as more complex control computations and adaptive machine model estima-

tion will be permitted. A brief description is given in this section of FOC and DTC drives

to identify the differences between these high-performance controllers.

16



2.2.1 Field Oriented Control

Magnetizing and torque current components in the direct and quadrature axes (id and iq) are

regulated separately using a proportional-integral (PI) controllers in Field Oriented Control

(FOC) to control the machine’s torque and flux indirectly. Hence, FOC is also called indirect

torque control. Fig. 2.7 shows the fundamental block diagram that is used for FOC where an

encoder is needed to estimate the rotor position (θr) required for current vector decoupling.

The widely applied modulation technique to control the inverter switching scheme in FOC

is the Space Vector Pulse Width Modulation (SVPWM) due to its high utilization of the

DC link and low harmonic distortion [35]. The principle behind SVPWM is to synthesize a

reference space voltage vector using timely applied active and zero voltage vectors at a fixed

switching frequency.

Figure 2.7: Inner current control loop in FOC.

The expressions of d and q currents and the corresponding machine torque as a function of

both currents are shown in (2.21) and (2.22), respectively.

iq = |is| cos(β)

id = − |is| sin(β)
(2.21)
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te =
3Pn
4
iq
[
λPM + (Ld − Lq)id

]
(2.22)

Where |is| and β are the stator current magnitude and angle measured from the q-axis,

respectively. te is the machine electromagnetic torque. Pn is the number of rotor poles

in PMSM. By controlling |is| and β, different (id,iq) combinations can be generated and

different control modes can be achieved, such as Maximum Torque Per Ampere (MTPA),

Field Weakening (FW), Maximum Torque Per Voltage (MTPV), and Unity power factor

(UPF) [36]. The control mode selection is based on the PMSM type and operating speed.

Below the based speed, the MTPA control is utilized to generate the maximum torque for

a given current in order to minimize the copper losses [37, 38]. The excitation angle (β) in

MTPA region is described in (2.23)

βTmax = sin−1


√
8(Lq − Ld)

2|is|2 + λ2PM − λPM

4|is|(Lq − Ld)

 (2.23)

For SPMSM, MTPA control can be achieved by applying the q-axis current component

while keeping the d-axis current component equal to zero since there is no magnetic saliency

(Lq − Ld = 0). However, the optimum current angle (β
Tmax

) should be found for IPMSM

theoretically, if machine parameters are known, or experimentally to implement the MTPA

control. The d-axis current component plays a significant role in torque generation for

IPMSM in order to maximize the reluctance torque utilization. IPMSM control in MTPA

region is the used method in this work where the optimum dq currents for a given torque is

stored in a lookup table.
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2.2.2 Direct Torque Control

The conventional Direct Torque Control (DTC) was first proposed in [28] for PMSMs.

Fig. 2.8 shows the fundamental block diagram that is used for DTC implementation where

δte and δλs are the outputs of hysteresis comparators.

Figure 2.8: Torque control loop in DTC.

Two hysteresis comparators are utilized to regulate the produced torque and stator flux link-

age magnitude. Therefore, the torque and flux estimation are required for use in the feedback

loop. These quantities are usually estimated in the stationary (αβ) frame, as described in

(2.24) and (2.25), to eliminate the need for the encoder.

te =
3Pn
4

(
iβλα − iαλβ

)
(2.24)

λα =

∫
(vα − rsiα)dt+ λα0

λβ =

∫
(vβ − rsiβ)dt+ λβ0

(2.25)

Where λα0 and λβ0 represent the initial values of flux linkages in stationary frame based on

the frame alignment. The voltages in (αβ) frame are estimated using the switching pulses
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(sa, sb, sc) of inverter legs and the DC link voltage (vdc) as shown in (2.26).

vα =
vdc
3
[2sa − sb − sc]

vβ =
vdc√
3
[sb − sc]

(2.26)

At steady state, λs rotates at the same synchronous speed as λPM and the phase difference

between them is the torque angle as shown in Fig. 2.2. DTC increases or decreases the speed

of λs as more or less torque is required. By neglecting the resistive drop rsiαβ in (2.25),

the flux linkages are mainly influenced by the selected voltage vector. The null voltage

vectors are removed from the selection table as they do not maintain the torque level, as

they do in induction motors, instead they reduce the torque because λPM still rotates. The

appropriate voltage vector is chosen as shown in Table 2.1, following the outputs of hysteresis

controllers and the location of the stator flux linkage vector that could be found using (2.10).

The switching states for the inverter switches are determined for each control cycle by the

selected voltage vector and therefore the switching frequency is variable in DTC.

Table 2.1: Voltage Vector Selection in DTC driven PMSM.

θs

δλs δte
[
−π

6 ,
π
6

) [π
6 ,

π
2

) [
π
2 ,

5π
6

) [
5π
6 ,−

5π
6

) [
−5π

6 ,−
π
2

) [
−π

2 ,−
π
6

)
Increase

Increase V2 V3 V4 V5 V6 V1
Decrease V6 V1 V2 V3 V4 V5

Decrease
Increase V3 V4 V5 V6 V1 V2
Decrease V5 V6 V1 V2 V3 V4

DTC driven PMSMs can operate in MTPA region by finding the optimum flux linkage that

would result in the lowest current for a given torque. It could be found theoretically [39] or

experimentally [40]. Then, the obtained stator flux linkages can be stored in a lookup table
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for online implementation. Since the stator flux linkage angle (θs) is available in DTC, the

DTC driven PMSM can be modeled in stator flux linkage (MT) frame as described earlier

in this chapter. The electromagnetic torque for PMSM in MT frame is calculated by (2.27).

te =
3Pn
4

(
−→
is ×

−→
λs) (2.27)

However, the T -axis flux linkage equals zero since the M -axis is oriented with the stator flux

linkage as shown in Fig. 2.2. Therefore, the torque is governed only by T -axis current (it)

and stator flux linkage (λs) as described in (2.28).

te =
3Pn
4
iTλM =

3Pn
4
iTλs (2.28)

Substituting (2.18) in (2.28), the torque of SPMSM in MT frame is given by (2.29).

te =
3Pn
4Ls

λsλPM sin (δ) (2.29)

By substituting (2.20) in (2.28), the torque of IPMSM in MT frame is given by (2.30).

te =
3Pn

8LdLq
λs

[
2λPMLq sin(δ) + λM (Ld − Lq) sin(2δ)

]
(2.30)

Where the first term of (2.30) represents the magnetic torque and the second part represents

the reluctance torque due to saliency in IPMSM.
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2.2.3 Performance Comparison

The control performance of FOC and DTC has been investigated within a MATLAB en-

vironment for two PMSM machines with low and high saliency. The parameters of both

PMSMs are listed in Table 2.2.

Table 2.2: Parameters of driven machines.

Machine Parameter Symbol PMSM [A] PMSM [B] Unit
Number of phases m 3 3 -
Number of pole pairs Pn 4 5 -
Phase resistance rs 0.8 1.5 Ω
Magnet flux linkage λPM 35 287 mWb
d-axis inductance Ld 5 31.3 mH
q-axis inductance Lq 10 62.4 mH
Maximum stator current Is 10 25 A
Rated torque Te 2 65 N.m
Rated speed nm 1000 800 rpm

Inverter
Dc link voltage Vdc 60 680 V

Both machines are controlled in torque regulation mode within the MTPA region while

their shafts are connected to a constant speed load. The timing profile of torque and speed

changes for both machines is shown in Table 2.3 where (T1, T2, T3, T4) time instants are at

(0, 0.1, 0.25, 0.4) seconds, respectively, out of total (0.5) seconds as a simulation time.

Table 2.3: Timing profile of torque and speed changes for driven machines.

PMSM [A] PMSM [B]
Time nm [rpm] Te [N.m] nm [rpm] Te [N.m]
T1 350 1 350 10
T2 500 1 500 10
T3 500 1.5 500 30
T4 600 0.5 600 15

The same reference torque and speed are used in FOC and DTC for the machine under

test. Based on the reference torque, the commanded dq currents are generated in FOC
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through a lookup table while the commanded stator flux linkage is generated in DTC. In

order to make a fair comparison, the switching frequency of both control schemes was kept

the same. The bandwidth for both FOC and DTC was separately adjusted to optimize their

steady-state and dynamic performance [41]. The stator flux linkage locus in αβ frame is

compared of both drives. The frequency spectrum of phase A stator current is compared in

both drives showing the switching frequency effect on the spectrum.

For PMSM [A] driven by FOC, the bandwidth of the PI controller is chosen to be 42

rad/s. Therefore, the controller integral gains (kIdq
) are 33.5 and the controller proportional

gains (kpdq) are (0.2, 0.4), respectively. The switching and sampling frequency are 10 kHz

and 20 kHz, respectively. Fig. 2.9 shows the performance of FOC driven PMSM [A] in terms

of speed, torque, flux linkage, and stator currents.

(a) Mechanical rotor speed. (b) Electromagnetic torque.

(c) Stator flux linkage. (d) Stator ABC currents.

Figure 2.9: Performance of PMSM [A] under FOC drives.

As can be noticed, the FOC controller is capable of achieving the desired torque of PMSM

[A] at different speeds with good steady state performance. A smooth torque waveform and

low distortion in the stator current can be achieved by FOC at steady state. The current
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regulation performance in rotor flux linkage frame can be seen in Fig. 2.10.

Figure 2.10: Rotor field oriented currents regulation of PMSM [A].

When PMSM [A] is driven by DTC, the sampling frequency is kept the same as in FOC

even though DTC would exhibit better performance when high sampling frequency is used.

The torque and flux hysteresis bands are 0.1 N.m and 0.025 Wb, respectively. They are

kept constant during the simulation regardless of the reference torque. Fig. 2.11 shows the

control performance in terms of speed, torque, flux linkage, and stator currents.

(a) Mechanical rotor speed. (b) Electromagnetic torque.

(c) Stator flux linkage. (d) Stator ABC currents.

Figure 2.11: Performance of PMSM [A] under DTC drives.

As can be noticed, the DTC controller is capable of achieving the desired torque of PMSM [A]

at different speeds with good transient and steady state performance. The torque response
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of FOC and DTC is compared in Fig. 2.12. It can be observed that both drives provide

adequate control performance with better steady-state behavior in the case of FOC and

quick torque dynamics in DTC. Therefore, one control scheme can be more suitable than

the other based on the industrial application requirements.

Figure 2.12: Torque response of PMSM [A] controlled by FOC and DTC.

The effect of using hysteresis bands in DTC driven PMSM, in comparison with FOC,

can be better observed in the stator flux linkage locus in αβ frame as shown in Fig. 2.13.

(a) FOC. (b) DTC.

Figure 2.13: Stator αβ flux linkage locus of PMSM [A] controlled by FOC and DTC.

Variable switching frequency is expected in DTC drives based on the operating conditions

while it is fixed in FOC drives. The frequency spectrum of stator phase A current in PMSM
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[A] controlled by FOC and DTC is shown in Fig. 2.14 at the first time interval (T1 to T2).

(a) FOC. (b) DTC.

Figure 2.14: Frequency spectrum of stator phase A current of PMSM [A] controlled by FOC
and DTC during (T1 to T2).

The frequency spectrum of stator phase A current in FOC and DTC is shown in Fig. 2.15

at the second time interval (T2 to T3).

(a) FOC. (b) DTC.

Figure 2.15: Frequency spectrum of stator phase A current of PMSM [A] controlled by FOC
and DTC during (T2 to T3).

It could be observed from the current spectrum that the switching frequency in FOC is set

at 10 kHz and has negligible effect on the low frequency components around the fundamental

component. However, the total harmonic distortion (THD) is increased in case of DTC and
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the switching frequency has significant effect on the low frequency components around the

fundamental component. This is due to the fact that the switching frequency in DTC has

lower harmonic order close to the low frequency band around the fundamental and has higher

magnitude in comparison with FOC case.

For PMSM [B] driven by FOC, the bandwidth of the PI controller is chosen to be 8 rad/s.

Therefore, the controller integral gains (kIdq
) are 11.78 and the controller proportional gains

(kpdq) are (0.25, 0.5), respectively. The switching and sampling frequency are 10 kHz and

20 kHz, respectively. Fig. 2.16 shows the performance of FOC driven PMSM [B] in terms

of speed, torque, flux linkage, and stator currents.

(a) Mechanical rotor speed. (b) Electromagnetic torque.

(c) Stator flux linkage. (d) Stator ABC currents.

Figure 2.16: Performance of PMSM [B] under FOC drives.

As can be noticed, the FOC controller is capable in achieving the desired torque of

PMSM [B] at different speeds with good steady state performance. The current regulation

performance in rotor flux linkage frame can be seen in Fig. 2.17.

When PMSM [B] is driven by DTC, the sampling frequency is kept the same as in FOC

even though DTC would exhibit better performance when high sampling frequency is used.
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Figure 2.17: Rotor field oriented currents regulation of PMSM [B].

The torque and flux hysteresis bands are 2 N.m and 0.1 Wb, respectively. They are kept

constant along the simulation time regardless of the reference torque. Fig. 2.18 shows the

performance of DTC driven PMSM [B] in terms of speed, torque, flux linkage, and stator

currents.

(a) Mechanical rotor speed. (b) Electromagnetic torque.

(c) Stator flux linkage. (d) Stator ABC currents.

Figure 2.18: Performance of PMSM [B] under DTC drives.

As can be noticed, the DTC controller is capable in achieving the desired torque of

PMSM [B] at different speeds with good transient and steady state performance. The FOC

and DTC torque response is compared in Fig. 2.19.
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Figure 2.19: Torque response of PMSM [B] controlled by FOC and DTC.

The effect of using hysteresis bands in DTC driven PMSM, in comparison with FOC,

can be better observed in the stator flux linkage locus in αβ frame as shown in Fig. 2.20.

(a) FOC. (b) DTC.

Figure 2.20: Stator αβ flux linkage locus of PMSM [B] controlled by FOC and DTC.

As expected, the switching frequency in DTC drives varies while it is fixed in FOC drives.

The frequency spectrum of stator phase A current in PMSM [B] controlled by FOC and DTC

is shown in Fig. 2.21 at the first time interval (T1 to T2).

The frequency spectrum of stator phase A current in FOC and DTC is shown in Fig. 2.22

at the second time interval (T2 to T3).

In comparison with DTC, it is noticed from the current spectrum that the switching fre-
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(a) FOC. (b) DTC.

Figure 2.21: Frequency spectrum of stator phase A current of PMSM [B] controlled by FOC
and DTC during (T1 to T2).

(a) FOC. (b) DTC.

Figure 2.22: Frequency spectrum of stator phase A current of PMSM [B] controlled by FOC
and DTC during (T2 to T3).

quency in FOC has negligible effect on the low frequency components around the fundamen-

tal one due to its lower magnitude and higher harmonic order away from the low frequency

band.
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2.3 PMSM Fault Types

As electrification advances, the safety and reliability of electrified products is a primary

concern of manufacturers, as well as users. PMSMs suffer from different types of failures

due to various conditions that affect their reliable operation. These failures can be divided

into stator and rotor faults based on the affected machine part. Stator faults are the most

commonplace in electric machines and they result in an unbalanced electrical system that

could cause catastrophic damage to the machine itself and the entire drive system if they are

not addressed at their premature stages. On the other hand, rotor faults are typical in large

machines and they result in an unbalanced magnetic system that could lead eventually to

machine damage if left unaddressed. Analyzing the behavior of a drive system under these

faults is crucial in order to design fault diagnosis and mitigation schemes to improve the

reliability and robustness of the drive system.

2.3.1 Stator Faults

Stator faults are common and generally caused by one or a combination of thermal, electrical,

mechanical, and environmental stress on the machine windings [42]. The factors that lead to

stator faults are unavoidable but preventive maintenance can be achieved when the failure

causes are known. Two main stator faults could occur: TTSC and HRC.

2.3.1.1 Turn-to-Turn Short Circuit

The most common fault in PMSMs is an abnormal short connection between phase turns

or turns from different phases. It is a result of insulation degradation due to aging or

overloading [43]. It propagates faster than the other faults, and results in further insulation

degradation and motor outage in the end [44]. The fault severity depends mainly on the
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short path resistance (Rf ) and the number of shorted turns (Nf ). As Nf increases and Rf

decreases, the short circuit current rises as shown in Fig. 2.23 and causes excess heat in the

machine. Therefore, if this anomaly is not identified at its inception, it will develop into

more severe levels that may cause damage to the stator winding.

(a) Series winding with shorted turns elec-
tric machine [45].

(b) Short circuit current at different shorted turns and
fault resistances.

Figure 2.23: Turn-to-turn short circuit: (a) series winding with shorted turns and (b) short
circuit current at different shorted turns and fault resistances.

2.3.1.2 High Resistance Contact

This progressive electrical fault occurs at the stator terminals originating from weak joints

at the inverter-motor connection. It is mainly caused by vibration or damaged contact

connections due to corrosion. If the fault is not detected accurately at its inception, it leads

to an open-phase fault at high severity levels. It will result in unbalanced stator currents

that increase the torque ripple and machine losses [22, 46]. The current imbalance can be

seen in Fig. 2.24. This fault should be detected and separated from ITSC in particular to

ensure that the proper mitigation would be applied.

2.3.2 Rotor Faults

Rotor faults in PMSMs can result in unbalanced magnetic pull toward the machine stator

and increase the machine vibration [47,48]. This would reduce the lifetime of machine parts.
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Figure 2.24: Unbalanced stator currents of PMSM under HRC fault.

Two main rotor faults can occur: static eccentricity and partial demagnetization. These

faults can lead to occurrence of additional faults and potentially an undesired shutdown if

not diagnosed and mitigated early. Therefore, rotor fault detection is crucial to avoid any

damage to the machine structure and improve the drive performance.

2.3.2.1 Static Eccentricity

Eccentricity is an example of mechanical rotor failures that may inherently exist due to

manufacturing tolerances. It increases the noise, vibration, and harshness (NVH) and can

lead to rotor rubbing with stator lamination [20]. It could be a result of a misaligned rotor

or manufacturing tolerance. It is termed static fault when the rotating axis of the rotor is

shifted from the geometric center of the stator by a fixed value in one direction. Therefore,

the air gap surrounding the rotor becomes unevenly distributed, so does the magnetic flux

distribution. An unbalanced radial magnetic pull is established subsequently toward the

stator core, and it grows as the fault becomes more severe [2]. This will cause rubbing

between rotor and stator surfaces and that could lead to damages in core, wedges, and

winding insulation. The fault severity is expressed in (2.31).

ECC =
ϵ

g
× 100% (2.31)
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where (g) is the air gap length and (ϵ) is the shift length. Fig. 2.25 shows a comparison

between healthy and eccentric rotors. The air gap length change due to static eccentricity

Figure 2.25: Comparison between healthy and eccentric machines.

fault causes a change in the reluctance. The machine reluctance is expressed in (2.32).

R =
g

µoAg
(2.32)

Higher flux concentration is expected at the area with a lower air gap (g − ϵ) since it has

lower reluctance, whereas the area with higher air gap length (g + ϵ) has higher reluctance

and, therefore, lower flux concentration. Due to the machine non-linearity, the magnetic flux

increase at the smallest airgap area will be higher than the magnetic flux decrease in the

largest airgap area. As a result, the total magnetic flux increase causes the phase inductance

to increase and yields early saturation in the machine. The magnetic phase inductance (L)

is expressed in (2.33).

L =
N2 × ϕ

F
(2.33)

Where (N) is the turns number, (ϕ) is the magnetic flux, and (F ) is the magneto-motive

force. Fig. 2.26 shows the eccentricity effect on phase B inductance where the phase windings
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are located in the direction of eccentricity.

Figure 2.26: Eccentricity effect on magnetic inductance.

2.3.2.2 Partial Demagnetization

Permanent magnets are the most critical parts in PMSMs for electromagnetic torque gen-

eration. However, their performance degrades due to aging, high temperature, or intense

opposing magnetic field from the stator current, particularly in the field weakening control

region. Therefore, demagnetization could take place within driven PMSMs if the electromag-

netic constraints are exceeded by improper operation in the field weakening region or due

to the occurrence of a severe TTSC fault. As a result, the rotor magnets get demagnetized

causing asymmetric flux distribution in the air gap. It is termed partial demagnetization

when these demagnetizing conditions occur locally in specific magnets or poles. The par-

tially demagnetized magnets will have lower residual flux densities than those in the healthy

state as shown in Fig. 2.27. Reduction in the average torque and increase in the torque

ripple are the main consequences of the demagnetization fault. The resultant fluctuation in

the produced torque can possibly lead to eccentricity or short circuit faults at high severity

levels [49]. Moreover, it degrades the performance of the drive system significantly and could

cause loss of controllability in severe faulty cases [50].
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Figure 2.27: Residual flux density comparison between healthy and demagnetized magnets.
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Chapter 3

Assessment of Fault Effects and DTC

Response

Measured currents, estimated voltages, estimated flux linkages, and estimated torque are

the required signals for the DTC drive to operate. Machine currents or voltages will include

additional harmonics as a result of the response of the comparators in DTC drive to the fault

occurrence. Therefore, thorough analysis of the reaction of the flux and torque hysteresis

comparators in DTC upon a fault occurrence is essential. However, it is known that the

nonlinear nature of the hysteresis comparators in DTC poses challenges to address this

problem analytically [51–53]. Here, the behavior of the current under faulty conditions is

described analytically to investigate the DTC reaction.

The initial consequence of the fault occurrence is generation of a negative sequence com-

ponent in addition to the positive sequence of the machine stator currents. The resulting

machine current space vector is given in (3.1).

⇀
is =

∣∣∣IfP ∣∣∣ ej(ωst+ϕiP ) +
∣∣∣IfN ∣∣∣ e−j(ωst+ϕiN ) (3.1)

The variables I
f
P and I

f
N represent the magnitudes of the positive and negative sequence

components of the machine currents, while ϕiP and ϕiN represent their phase angles, re-
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spectively. The stator flux linkages is estimated using the relationship described in (3.2).

λs =

∫
(vs − rsis) dt+ λs0 (3.2)

The resulting stator flux linkage space vector is described in (3.3).

⇀

λ
f
s =

∣∣∣λfP ∣∣∣ ej(ωst+αP ) +
∣∣∣λfN ∣∣∣ e−j(ωst+αN ) + λ0 (3.3)

Here λ
f
P and λ

f
N are the positive and negative sequence component of the stator flux linkages

while αP and αN are their phase angles, respectively. As described in (2.27), the electro-

magnetic torque is directly proportional to the cross product of the current and stator flux

linkages. The resulting electromagnetic torque is the sum of three parts, as given in (3.4).

te = tmechanical + tstatic + tdynamic (3.4)

The machine output torque, tmechanical, is produced by the interaction of the positive se-

quence components of the machine current and flux linkage, described in (3.5)

tmechanical =
3Pn
4

(∣∣∣IfP ∣∣∣ ∣∣∣λfP ∣∣∣ sin (ϕiP − αP )
)

(3.5)

The DC component of the torque tstatic, described in (3.6), is a function of the negative

sequences introduced by the fault occurrence.

tstatic =
3Pn
4

(∣∣∣IfN ∣∣∣ ∣∣∣λfN ∣∣∣ sin (αN − ϕiN )
)

(3.6)
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(a) Actual torque variation within torque hysteresis bands.

(b) Actual flux variation within flux hysteresis bands.

Figure 3.1: Time behaviour of torque and flux hysteresis comparators.

Finally, tdynamic is a torque component oscillating at double fundamental frequency (2fs), as

shown in (3.7), which is introduced in the machine output torque due to the fault occurrence.

tdynamic =
3Pn
4

(∣∣∣IfP ∣∣∣ ∣∣∣λfN ∣∣∣ sin (2ωt+ ϕiP + αN ) +
∣∣∣IfN ∣∣∣ ∣∣∣λfP ∣∣∣ sin (2ωt+ ϕiN + αP )

)
(3.7)

3.1 Response of Flux and Torque Comparators

The DTC technique employs hysteresis comparators to regulate the magnitude of stator

flux linkage and electromagnetic torque. The bandwidth in the DTC scenario is determined

by the torque and flux hysteresis bands (∆T and ∆λ), respectively. Fig. 3.1 presents the

torque and flux variation within the hysteresis bands. The bands can either have fixed values

that remain constant regardless of operating conditions [32], or they can be percentages of

a preset value based on operating conditions [54]. Alternatively, they can be variables that
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enable nearly constant switching frequency [55].

The utilization of wider hysteresis bands leads to a reduction in bandwidth and switching

frequency due to the infrequent violation of the hysteresis bands during the control cycle.

Conversely, a high controller bandwidth necessitates narrow bands, leading to increased

switching frequency due to the likelihood of torque and flux errors exceeding the hysteresis

bands during a significant portion of the control cycle. In general, DTC permits deviations in

the estimation of flux and torque, provided that they fall within the predetermined tolerance

margin established by the hysteresis band. Nonetheless, the estimated torque and flux linkage

should follow the reference ones regardless of the machine condition, whether it is healthy

or faulty.

3.1.1 Flux Comparator Response

Since a negative sequence component appears in the flux linkages due to its presence on

the current, the flux comparator should cancel it by imposing another negative sequence

component (
⇀
λc) in the flux linkage, as described in (3.8)

⇀
λc =

∣∣∣λfN ∣∣∣ e−j(ωst+αN ) (3.8)

As a result, the machine flux linkage would be:

⇀

λhs =
⇀

λ
f
s −

⇀
λc =

∣∣∣λhP ∣∣∣ ej
(
ωst+ϕλs

)
+ λ0 (3.9)

To inject
⇀
λc, the DTC drive injects the negative sequence component on the reference volt-

ages. The positive, negative, and zero sequence components of the commanded voltages
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(VP , VN , V0) are computed using (3.10).


VP

VN

V0

 =
1

3


1 a a2

1 a2 a

1 1 1




Va

Vb

Vc

 (3.10)

Here a = 1̸ 120◦. The resulting sequence components of the commanded voltages in DTC

driven PMSM in case of healthy and faulty conditions are depicted in Figs. 3.2 to 3.6.

Under normal operating conditions, the negative sequence component is absent because the

commanded voltages are balanced. However, in the event of a fault, the commanded voltages

become unbalanced, which causes the negative sequence voltage component to appear. This

component helps to mitigate the effect of the fault on the stator flux linkage magnitude. As

shown in Fig. 3.6, the negative sequence voltage is nearly zero under eccentricity fault as

found in the healthy case, Fig. 3.2. It is expected that the DTC operation will still perform

well despite the presence of an eccentricity fault.

The flux hysteresis band limits the maximum acceptable change in the stator flux linkage,

which in turn limits the negative flux linkage sequence component that can be generated by

applying a negative voltage sequence, as expressed in (3.11).

∣∣∣λfN ∣∣∣∣∣∣λfP ∣∣∣ ≈ 2∆λ

|λs|
(3.11)

The upper limit of the negative voltage sequence that the DTC flux comparator can apply in

response to the flux linkage error is directly related to the flux hysteresis band, as described
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Figure 3.2: Sequence components analysis of the commanded voltages in DTC driven PMSM
under healthy condition.

42



-500

0

500

0

100

200

300

0

25

50

0 0.02 0.04 0.06 0.08 0.1

0

0.5

1
10

-13

Figure 3.3: Sequence components analysis of the commanded voltages in DTC driven PMSM
under TTSC fault.
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Figure 3.4: Sequence components analysis of the commanded voltages in DTC driven PMSM
under HRC fault.
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Figure 3.5: Sequence components analysis of the commanded voltages in DTC driven PMSM
under demagnetization fault.
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Figure 3.6: Sequence components analysis of the commanded voltages in DTC driven PMSM
under eccentricity fault.
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by (3.12).

|VN |
|VP |

≈ 2∆λ

|λs|
(3.12)

As a result of (3.8), the static torque error in (3.6) and the first term of (3.7) are cancelled.

However, the second term of the torque dynamic error in (3.7) remains. This error is tolerated

by DTC as long as this error falls within the hysteresis band of the torque comparator.

However, if the error exceeds the maximum allowable torque error, the torque comparator

must find an alternative method to compensate for it.

Recalling the torque equation given in (2.30), the torque angle (δ) is the other vari-

able that can be adjusted to maintain the desired torque. The torque is comprised of two

components: the magnetic torque (tm) and the reluctance torque (tre), as shown in (3.13).

te = tm + tre

tm = A · sin(δ) = Im
[
Aejδ

]
tre = B · sin(2δ) = Im

[
Bej2δ

]
A =

3PnλsλPM

4Ld

B =
3Pnλ

2
s(Ld − Lq)

8LdLq

(3.13)

The torque angle (δ) represents the difference between the stator flux linkage angle (θs)

and the rotor flux linkage angle (θr). DTC has the capability to adjust the stator flux

linkage vector during the transient conditions to either accelerate it to increase the torque

angle and generate additional torque, or decelerate it to reduce the torque angle and produce

less torque. In steady state conditions, the stator flux linkage vector is rotating at the same

speed as the rotor flux linkage vector where the torque is constant. The two variables
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that DTC can change are λs and δ. However, λs is almost fixed as it is controlled by the

flux comparator. Therefore, the only option for DTC to respond to the torque error is by

manipulating the torque angle.

3.1.2 Torque Comparator Response

The regulation of output torque in DTC drive is achieved through the use of a torque

hysteresis comparator. As a result, it is expected that the output torque will conform to the

torque reference regardless of the condition of the machine.

According to [56], the PMSM torque ripple exhibits harmonic orders that are multiples

of the sixth harmonic, ftripple = 6 · k · fs, where fs is the machine electric frequency and

k = 1, 2, 3, . . .. The frequency spectrum of the torque produced by IPMSM driven by FOC

and DTC are provided in Fig. 3.7. It is evident that the FOC driven PMSM exhibits
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Figure 3.7: Frequency spectrum of the produced torque by IPMSM under FOC and DTC
drives.

significant magnitudes of the 6th and 12th harmonics in its output torque, whereas such high

magnitudes are not observable in the case of DTC. If the torque ripple caused by the 6th

and 12th harmonics falls outside the torque hysteresis bands (2∆T ), DTC will attempt to

compensate for it in order to maintain the torque error within the band. Since the DTC
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drive provides the ability to adjust the torque angle (δ), any induced harmonics are expected

to manifest in the torque angle instead of the torque signal. This can be observed in the

frequency spectrum of the torque angle depicted in Fig. 3.8.
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Figure 3.8: Frequency spectrum of the torque angle in DTC driven PMSM.

Introducing the 6th and 12th harmonics into the torque angle for both the magnetic and

reluctance torque equations results in (3.14) and (3.15).

tm1 =A · sin (δ +m) = Im
[
Aej(δ+m)

]
m =x6 cos (6δ + γ6) + x12 cos (12δ + γ12)

(3.14)

tre1 =B · sin (2δ + d) = Im
[
Bej(2δ+d)

]
d =2x6 cos (6δ + γ6) + 2x12 cos (12δ + γ12)

(3.15)

The terms x6, x12, γ6, and γ12 correspond to the amplitudes and phases of the 6th and 12th

harmonics present in the frequency spectrum of the torque angle. The trigonometric identity

described in (3.16) is used to expand the electromagnetic and reluctance torque equations

as shown in (3.17) and (3.18).

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x) (3.16)
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tm1 = tm cos(m) + A · cos(δ) sin(m) (3.17)

tre1 = tre cos(d) +B · cos(2δ) sin(d) (3.18)

By considering the presence of the 6th and 12th harmonics in the torque angle frequency

spectrum, it can be observed that the magnitudes of tm and tre are subject to multiplication

by cos(m) and cos(d), respectively. Nonetheless, their effect on tm and tre is negligible, as

their magnitude is almost unity as illustrated in Fig. 3.9.
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Figure 3.9: The magnitude of cos(m) and cos(d).

The inclusion of the 6th and 12th harmonics lead to additional terms in tm and tre.

These terms are A · cos(δ) sin(m) and B · cos(2δ) sin(d). However, it is found that these

terms mostly offset each other and hence their overall effect on the torque is negligible, as

depicted in Fig. 3.10.

In summary, the DTC drive has the capability to incorporate the 6th and 12th harmonics

in the torque angle instead of the torque signal itself. Although these additional harmonics

are present, they have a negligible impact on the torque signal. As a result, the DTC drive

can maintain the torque error within the torque hysteresis bands. This nonlinear behavior of

the torque hysteresis comparator justifies the compensation of the second term of dynamic

torque error in (3.7) due to the fault presence through the manipulation of the torque angle.
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Figure 3.10: The magnitude of the offset error in (3.17) and (3.18).

3.2 Flux and Torque Estimation

Accurate estimation of the torque and magnetic flux linkage is crucial for maintaining sta-

ble operation of DTC driven PMSM. Such estimation is based on operating the machine

in healthy conditions. However, occurrence of faults induces dynamics that are not cap-

tured by the estimation models used in DTC drive. Ignoring the unmodeled fault dynamics

causes estimation errors and leads to unstable operation during severe faults [53]. Hence,

it is imperative to evaluate the impact of the machine health condition on the accuracy

of flux estimation. It was shown in Chapter 3.1 that the negative sequence introduced by

an eccentricity fault is compensated by the flux and torque comparators. For this reason,

the following sections present the flux linkage model for TTSC, HRC, and demagnetization

faults only.

3.2.1 Case of TTSC

The PMSM model under TTSC fault is given in Fig. 3.11 and (3.19). Here rsh , Lsh , and esh

are the resistance, inductance, and back-EMF of the healthy turns. rsf , Lsf , and esf are the

resistance, inductance, and back-EMF of the shorted turns. Lhf is the mutual inductance

between healthy and faulty turns of the faulted phase. if is the fault circulating current in
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the short circuit path between the healthy and faulted turns.

Figure 3.11: Phase A electrical model of a PMSM with TTSC fault.
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(3.19)

Since DTC operates in the stationary (αβ) frame, it is then suitable to transform the faulty

PMSM model into (αβ) frame using the transformation matrix given in (3.20).

T =
2

3



1 −1
2 −1

2 0

0
√
3
2 −

√
3
2 0

1
2

1
2

1
2 0

0 0 0 3
2


(3.20)
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The resulting faulty PMSM model in αβ frame is given in (3.21).
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(3.21)

The α-axis voltage, from the first row in (3.21), is given in (3.22).

vα = rsiα + Ls
diα
dt

+ eα +
2

3
rsf if +

2

3

(
Lhf + Lsf

) dif
dt

= rsiα +
dλα
dt

+
2

3
rsf if +

2

3

(
Lhf + Lsf

) dif
dt

(3.22)

The α axis voltage is used for flux estimation under TTSC fault, as described in (3.23),

contains additional terms due to the TTSC fault.

λα =

∫ (
vα − rsiα − 2

3
rsf if

)
dt− 2

3

(
Lhf + Lsf

)
if + λα0 (3.23)

The resulting stator flux estimation error increases with the fault severity, as shown in

Figs. 3.12 and 3.13. The deviation in angle, θs, may result in the inappropriate choice of

voltage vectors to sustain the stator flux linkages within the flux hysteresis bands. The

stability of DTC heavily relies on accurate flux estimation, if the estimation error becomes
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significant it could ultimately result in unstable control [53].
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Figure 3.12: Difference in magnitude between actual and estimated α-axis stator flux linkage
under ITSC fault, where case [1] is (if = 25%Irated) and case [2] is (if = 32%Irated) at single
operating point.

(a) if = 25%Irated. (b) if = 32%Irated.

Figure 3.13: Error in magnitude and angle of the stator flux linkage under ITSC fault at
single operating point.
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3.2.2 Case of HRC

The PMSM model under HRC fault, given in (3.24), assuming the fault occurs in phase B

connection, can be derived from in abc frame from the circuit shown in Fig. 3.14

Figure 3.14: PMSM electrical model with HRC fault at Phase B terminal.
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The faulty PMSM model is then transformed into αβ frame using the following transforma-

tion matrix given in (3.25)

T =
2

3
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1 −1

2 −1
2

0
√
3
2 −

√
3
2

1
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 (3.25)
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The resulting faulty PMSM model in αβ frame is given in (3.26).
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The α axis voltage, given in (3.27), can be used for flux estimation under HRC fault, as

described in (3.28).

vα = (rs +
∆rs
2

)iα − (
∆rs

2
√
3
)iβ − (

∆rs
3

)io + Ls
diα
dt

+ eα
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(3.27)

λα =

∫
(vα − rsiα − (

∆rs
2

)iα − (
∆rs

2
√
3
)iβ − (

∆rs
3

)io)dt+ λα0 (3.28)

Similarly, the flux estimation under HRC fault in β axis is given in (3.29).

λβ =

∫
(vβ − rsiβ − (

∆rs
2

)iβ − (
∆rs

2
√
3
)iα − (

∆rs
3

)io)dt+ λβ0 (3.29)

It is clear from (3.28) and (3.29) that the flux estimation under HRC fault includes additional

terms.

The differences (∆λα) in magnitude between actual and estimated stator flux linkage in

(α) axis under HRC fault are shown in Figs. 3.15 and 3.16. It is worth noting that the αβ flux
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Figure 3.15: Difference in magnitude between actual and estimated stator flux linkage in (α)
axis under HRC fault, where case [1] is (100%rs increase) and case [2] is (150%rs increase)
at single operating point.

linkages will be equally affected, leading to no change in the angle of the stator flux linkage,

as shown in Fig. 3.16. Authors in [57,58] observe that DTC drive may experience instability

(a) 100%rs increase.) (b) 150%rs increase.

Figure 3.16: Error in magnitude and angle of the stator flux linkage under HRC fault at
single operating point.

under severe HRC conditions. Therefore, additional attention should be considered if the
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HRC fault exists in case of DTC drives.

3.2.3 Case of Partial Demagnetization

The effect of demagnetization in the flux linkage estimators is represented by the magnet

flux linkage reduction (Γ0) as shown in (3.30).

λαβ =

∫ (
vαβ − rsiαβ

)
dt+

(
λα0β0 − Γ0

)
(3.30)

As shown in Figs. 3.17 and 3.18, there is a shift in both the magnitude and angle of the

stator flux linkage resulting from the demagnetization fault.
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Figure 3.17: Difference in magnitude between actual and estimated stator flux linkage in
(α) axis under demagnetization fault, where case [1] is (6%λPM reduction) and case [2] is
(14%λPM reduction) at single operating point.

As the severity of the fault increases and the deviation between the estimated and actual

flux linkage becomes more significant and may eventually lead to unstable control. This is

due to the fact that the commanded stator flux linkage in DTC driven PMSMs should satisfy
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(a) 6%λPM reduction. (b) 14%λPM reduction.

Figure 3.18: Error in magnitude and angle of the stator flux linkage under demagnetization
fault at single operating point.

the threshold given in (3.31) to ensure stability [28].

λs <

∣∣∣∣ Lq
Lq − Ld

∣∣∣∣λPM (3.31)

As the threshold parameters vary, the region of stable drive operation will change. Authors in

[59] show that as the severity of the demagnetization fault increases, the magnet flux linkage

λPM decays faster than the inductance difference (Lq − Ld). As a result, the stable drive

area of DTC would decrease drastically under demagnetization fault due to the reduction in

the upper limit in (3.31).

3.3 Impact of Variations in Stator Flux Linkage Angle

The robustness and tolerance of DTC can also be attributed to its discrete control action,

which involves selecting a finite set of possible actions rather than continuous modulation.
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The finite set of actions, namely the voltage vectors, is chosen based on heuristics and

system dynamics, whereby an exact position of the stator flux linkage vector is not necessary.

Fig. 3.19 presents the sector partitions and voltage vectors available for selection in DTC. It

consists of six voltage vectors (V1 − V6) within six sectors (S1 − S6) that are displaced by

60◦.

Figure 3.19: Sector partitions and the available set of voltage vectors in DTC drive.

Provided that the actual and estimated stator flux linkage vectors are in the same sector,

identical voltage vectors will be applied. However, if they are situated at the boundaries

between sectors, different voltage vectors are applied, which will lead to a deviation in both

desired torque and flux. For illustration purposes, the error in estimating the flux caused by

the fault has assumed to result in the estimated stator flux linkage vector (|λ|est) being in

the second sector, while it is assumed that the actual vector (|λ|act) is in the third sector as

depicted in Fig. 3.20. It is clear that the estimated value of |λs| is higher than the reference

value, which requires the selection of a voltage vector that can reduce the estimated value of

|λs|. By assuming that the electromagnetic torque should be increased at this instant, the

voltage vector (V4) should be applied to the estimated stator flux linkage based on Table 2.1

since it lies the in second sector. Fig. 3.21 presents the trace of (|λ|est) where (V4) results

in moving the vector from second sector to the third one. Subsequently, a varying pattern
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Figure 3.20: Error between actual and estimated stator flux linkages in case of fault occur-
rence.

is introduced now between V4 and V5 to the estimated stator flux linkage vector, which is

located in the third section, in order to align it with the reference vector.

Figure 3.21: Estimated stator flux linkage trace.

Nonetheless, when dealing with the actual stator flux linkage vector, the voltage vector

(V5) must be utilized because the flux vector is situated in the third sector. This decision

is supported by the information provided in Table 2.1, where a decrease in flux linkage is

required while simultaneously increasing torque. Fig. 3.22 depicts the trace of the actual

stator flux linkage vector in case of the voltage vector (V5) is applied first.

As the feedback loop of DTC relies on the estimated stator flux linkage signal instead of

the actual one, the actual stator flux linkage vector will follow the same voltage vector pattern

illustrated in Fig. 3.21. However, this can cause inaccuracies in the control process, leading

to differences between the actual stator flux linkage magnitude and the desired reference
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Figure 3.22: Optimal trace of the actual stator flux linkage.

value as shown in Fig. 3.23, even if the estimated value is shown to be properly regulated.

The actual stator flux linkage will be adjusted to a new reference position that takes into

account the offset caused by the erroneous control action. Nonetheless, if the error is not

substantial, it may be within the hysteresis bands.

Figure 3.23: Actual trace of the actual stator flux linkage.
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Chapter 4

Numerical and Experimental Setup

4.1 Healthy Machine Modeling and Control

To develop a fault diagnosis approach, it is necessary to model the PMSM in the healthy case

and use the obtained measurement as a reference in case a fault occurs. Any deviation from

the processed healthy data could be considered as fault symptoms. In order to implement

these faults in the PMSM (2D-FE) model, geometric and electrical modifications should be

made. The main electric parameters of the studied PMSM, PMSM [B], are mentioned in

Table 2.2 and the geometrical parameters are listed in Table 4.1. The 2D model of the

Table 4.1: PMSM [B] Parameters.

Parameter Symbol Value
Number of slots Q 12
Turns per slot Ns 150
Air gap length g 1 mm
Residual flux density Br 1.2 T
Mutual inductance Ms ≈ 0 H
Rated Phase Current Irms 18 A
Rated Line Voltage Vrms 480 V

simulated PMSM in ANSYS MAXWELL software is depicted in Fig. 4.1. It can be observed

that the machine winding of each phase are wound around a single tooth. This winding

configuration is referred as concentrated winding machine where the winding are physically

isolated and, therefore, the mutual inductance is negligible.
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(a) Finite element machine model. (b) Mesh of the machine model.

Figure 4.1: The FEM model of studied PMSM machine.

Following the method in [37], the MTPA profile at different current levels, shown in

Fig. 4.2, is evaluated to identify the optimal current angle. It can be observed that the

stator current vector should be excited at β = 30◦ for FOC to get the maximum torque for

the given current. For DTC, the stator flux linkage (λs) was changed in steps of 0.25 Wb

Figure 4.2: Maximum torque per amps profile for FOC driven PMSM [B].

from the permanent magnet flux linkage to the rated one at different operating torque levels.

The corresponding stator flux linkage is stored for each torque level in a look-up table where

the minimum stator current is achieved. Fig. 4.3 shows the machine MTPA profile for the

operating torque range.
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Figure 4.3: Maximum torque per amps profile for DTC driven PMSM [B].

4.2 Fault Implementation

4.2.1 Turn-to-turn Short Circuit

The implementation of TTSC fault requires modification to the electric circuit in SIM-

PLORER to insert the short circuit path with fault resistance (Rf ) between the turns of a

faulted phase. Besides that, modification to the geometrical model in MAXWELL has to be

made by dividing the coil area into two distinct areas. One area represents the faulty turns

and the other represents the remaining healthy turns. Fig. 4.4 shows the PMSM model and

the phase A circuit with TTSC fault assuming the phase A is the faulted one. Here rsh and

rsf are the resistance of the healthy and shorted turns.

Four fault severity levels are considered by varying the short circuit resistance Rf value,

and the shorted turns number Nf as shown in Table 4.2.

Table 4.2: Severity levels of TTSC fault in PMSM [B].

Case Nf Rf

SC1 15 0.5 Ω
SC2 30 0.25 Ω
SC3 15 0.5 Ω
SC4 30 0.25 Ω
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Figure 4.4: Ansys MAXWELL and SIMPLORER model with TTSC fault circuit on phase
A winding.

4.2.2 High Resistance Contact

The implementation of HRC fault requires only a modification to the SIMPLORER circuit

where a resistance (∆rs) is connected in series with the faulted phase resistance as shown

in Fig. 4.5. The most extreme case of HRC fault is when a relatively large fault resistance

Figure 4.5: PMSM electrical model with HRC fault.

is connected with the phase resistance. This situation is considered an open phase fault.

For HRC fault study, assuming the fault occurs at phase B, three levels of fault severity are

studied as shown in Table 4.3.
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Table 4.3: Severity levels of HRC fault in PMSM [B].

Case ∆rs
rs

%

HRC1 50%
HRC2 100%
HRC3 150%

4.2.3 Static Eccentricity

The machine is considered healthy if the stator and rotor geometrical centers are concentric

with the rotational axis. If the rotor center and rotational axis are shifted from the stator

center by a constant value, the machine is considered eccentric. Fig. 4.6 shows the rotor

and the rotation axis shift in the fault direction while keeping the stator coordinate center

the same. The fault is implemented in the positive Y-axis direction by varying the shift

Figure 4.6: Shift direction of the static eccentricity fault.

value (ϵ), and three fault severity levels were considered as shown in Table 4.4. Since the

eccentricity fault is inherently available due to tolerances in the manufacturing process, the

machine is considered healthy if the severity level of static eccentricity is below than 10%.
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Table 4.4: Severity levels of static eccentricity fault in PMSM [B].

Case ϵ
g%

ECC1 40%
ECC2 60%
ECC3 80%

4.2.4 Partial Demagnetization

The demagnetization fault is applied in FEM by reducing the remnant flux density of the

affected magnets. This could be uniform demagnetization in all magnets or partially in some

magnets. The material in the upper corners (close to the air gap) of three selected magnets

is replaced by the same material with reduced remnant flux density to 1T . This is the most

common scenario for demagnetization faults in PMSM. Fig. 4.7 shows the affected magnets.

The fault severity is varied by changing the number of demagnetized magnets in the machine

Figure 4.7: Demagnetized magnets in PMSM [B].

model as listed in Table 4.5.
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Table 4.5: Severity levels of demagnetization fault in PMSM [B].

Case Severity

Demag1 One Magnet
Demag2 Two Adjacent Magnets
Demag3 Three Nonadjacent Magnets

4.3 Experimental Setup

The test setup for this study consist of the PMSM [B] connected to the electrical dynamome-

ter via a drive shaft flange. The PMSM is controlled in torque regulation mode and loaded

with a dynamometer to run at particular states of load and speed for normal and faulty

conditions. Pictures of the experimental test bench are shown in Fig. 4.8.

Figure 4.8: Experimental Test Bench.

Real Time LabVIEW is utilized to develop controllers for the studied PMSM in a host

PC. The developed controllers are then deployed to a target PC, which includes an integrated

40 MHz Field Programmable Gate Array (FPGA). The host PC is used to set the controller

commands and visualize the control performance. The target PC is dedicated only to do the

control computations and sending/receiving the control signals to/from an inverter through

69



(a) For FOC drives. (b) For DTC drives.

Figure 4.9: Experimental results of MTPA profile for driven PMSM [B].

FPGA-7852R series by National Instrument. This FPGA provides high resolution data

sampling with 16-bits.

The FOC is implemented at 10 kHz where one sample is taken every one switching

period. For DTC implementation, operating at a high sampling frequency is required to

achieve adequate performance. Therefore, the DTC algorithm is divided into two parts.

The first part is implemented at the FPGA level, since it requires fast control to keep the

torque and flux within the hysteresis bands. The other part is implemented in the CPU of

the target PC and it includes the references generation based on the stored MTPA profile as

well as their estimation. The MTPA profile for FOC and DTC driven PMSM [B] is depicted

in Fig. 4.9. As mentioned, the excitation angle (β) is found to be 30◦ to get the minimum

current for a given torque in FOC case. The drive settings are listed in Table 4.6.

Table 4.6: Settings of the DTC Drive.

Controller Settings Symbol Value
Flux hysteresis band ∆λ 0.025 · |λ∗s|
Torque hysteresis band ∆T 0.045 · t∗e
Sampling frequency fs 25 µs
Initial conditions (λα0 , λβ0) (0.287, 0)Wb
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For TTSC fault experimental implementation, the winding of Phase A is split into sep-

arate coils with a different number of turns. The leads of each coil are carried out of the

housing into the terminal box and can be shorted through a resistor. Additionally, the fault

current circulating in the short path can be measured. In this work, the fault severities

studied are: 15 turns with 0.5Ω, 15 turns with 0.25Ω, 30 turns with 0.5Ω, and 30 turns

with 0.25Ω. The winding configuration of phase A for TTSC implementation is shown in

Fig. 4.10.

Figure 4.10: Winding Configuration of Phase A for TTSC Implementation.
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Chapter 5

Comparative Fault Diagnosis Study in

Inverter Driven PMSM

Inverter drives pose challenges in fault diagnosis. Therefore, fault diagnosis is critically

important in inverter drives to assess the machine health and avoid any costly damage. In

this chapter, fault diagnosis in FOC and DTC driven PMSM will be compared.

5.1 Motor Voltage Signature Analysis (MVSA)

Authors in [60] demonstrate the successful implementation of fault diagnosis based on the

stator current spectrum in various industrial applications. This approach is considered non-

invasive as it does not require any additional hardware. The current signal is available in

the drive system using a current transducer. The commanded voltage signal could also be

used for noninvasive diagnosis instead of using voltage sensor to measure the actual ones.

For inverter driven machines, selecting the stator current or voltage signal is dependent on

the bandwidth of the controller [1]. Faults would have similar or distinct changes to the fre-

quency spectrum of the machine current or voltage signals. These changes could be utilized

as features for fault classification and severity estimation.

Several signal processing techniques are available to obtain the frequency spectrum of the

machine current or voltage signals [61]. The signal spectrum is obtained at a steady state
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using Fast Fourier Transform (FFT), or at nonstationary conditions using time-frequency

analysis methods like Short Time Fourier transform (STFT). FFT has been applied success-

fully to the machine voltage in [4] to detect and separate between faults. The first fifteen

harmonics in the voltage spectrum are used as features for the classification algorithms.

This section is to examine the accuracy of the machine voltage signature analysis (MVSA)

with FFT in fault diagnosis for both control drives. Supervised classification algorithms are

utilized to detect the fault type and severity.

5.1.1 Analysis in FOC driven PMSM

The frequency spectrum of the commanded phase A voltage is obtained using FFT for

different machine health conditions. The fundamental, 5th, and 7th harmonics are used here

to show the fault effect on the voltage spectrum at different severity levels.

The stator voltage spectrum is shown in Fig. 5.1 for healthy and faulty machine under

different severity levels of TTSC fault.

It could be observed that the magnitude of the fundamental, 5th, and 7th harmonics in

the voltage spectrum is reduced as the TTSC fault becomes more severe. The magnitude

changes in the spectrum are significant enough to distinguish between the healthy case and

TTSC fault. Besides that, one can notice the increase in the 2nd harmonic when TTSC is

present. The first ten harmonics will be used as features for diagnosis as described in the

following section.

The stator voltage spectrum is shown in Fig. 5.2 for healthy and faulty machine under

different severity levels of HRC fault.

It could be observed that the magnitude of the fundamental harmonic in the voltage spectrum

is increasing significantly with the severity HRC fault. On the other hand, the magnitude of

73



Figure 5.1: Stator voltage spectrum for healthy and faulty machine under TTSC fault in
FOC drive at 600 rpm and 10A.

the 5th, and 7th harmonics is reduced. However, these magnitude changes may be insignifi-

cant for distinguishing between the healthy case and HRC fault. It is worth noting that the

considered severity levels of HRC are relatively low and may justify the insignificant changes

in the magnitude of the 5th, and 7th harmonics.

The stator voltage spectrum is shown in Fig. 5.3 for healthy and faulty machine under

different severity levels of eccentricity fault.
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Figure 5.2: Stator voltage spectrum for healthy and faulty machine under HRC fault in FOC
drive at 600 rpm and 10A.

Figure 5.3: Stator voltage spectrum for healthy and faulty machine under eccentricity fault
in FOC drive at 600 rpm and 10A.
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It can be observed that the magnitude of the fundamental and 7th harmonics in the voltage

spectrum is increasing with the severity of the eccentricity fault, while the magnitude of the

5th harmonic is reduced significantly. These magnitude changes are significant enough to

distinguish between the healthy case and eccentricity fault. Besides that, these magnitude

changes due to eccentricity fault are different from those for TTSC and HRC faults. This

will benefit fault classification, discussed later.

The stator voltage spectrum is shown in Fig. 5.4 for healthy and faulty machine under dif-

ferent severity levels of demagnetization fault. As shown, the magnitude of the fundamental

Figure 5.4: Stator voltage spectrum for healthy and faulty machine under demagnetization
fault in FOC drive at 600 rpm and 10A.

and 5th harmonics in the voltage spectrum is increasing with severity of the demagnetization

fault, while the magnitude of the 7th harmonic is reduced. These magnitude changes can

be used to distinguish between the healthy case and demagnetization fault. It is worth to

mention that the considered severity levels of demagnetization fault is full demagnetization
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Figure 5.5: Feature Trends of the MVSA for the Lowest Considered Severity Level of Each
Fault Across Different Samples in case of FOC driven PMSM.

of one to three magnets. Besides that, the trend in magnitude change of the fundamental

harmonic due to demagnetization fault is similar to the trend due to HRC and eccentricity

faults, while it is the opposite in case of the 5th harmonic. This would help the classifier in

discriminating between these three faults.

Fig. 5.5 provides evidence of the consistent variation in feature trends observed for the

lowest considered severity level of each fault across different samples: 550, 600, and 650 rpm.

5.1.2 Analysis in DTC driven PMSM

The frequency spectrum of the commanded phase A voltage is obtained using FFT for differ-

ent machine health conditions under DTC drive. The fundamental, 5th, and 7th harmonics

are also used here to show the fault effect on the voltage spectrum at different severity levels.

The stator voltage spectrum is shown in Fig. 5.6 for healthy and faulty machine under
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different severity levels of TTSC fault when the machine is driven by DTC. It is observed

Figure 5.6: Stator voltage spectrum for healthy and faulty machine under TTSC fault in
DTC drive at 600 rpm and 20Nm.

that the magnitude of the fundamental, 5th, and 7th harmonics in the voltage spectrum is

reduced when TTSC fault is present. This observation is similar to the fault effect in the

FOC drive. However, it can be noticed that the magnitude of the 7th harmonic is increased

from SC1 to SC2 and from SC3 to SC4, where the number of shorted turns is the same but

different fault resistance is used. This is the same case for the 5th harmonic from SC1 to SC2

but not from SC3 to SC4. Additionally, the magnitude of the 7th harmonic is increased from
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SC1 to SC3 and from SC2 to SC4, where the number of shorted turns is different but with

the same fault resistance. This is the same case for the 5th harmonic from SC1 to SC3 but

it is not from SC2 to SC4. If these harmonics are used as features for diagnosis approach,

the classifier will be overwhelmed since the changes in the used harmonics due to different

TTSC severity levels are not consistent with increase in the fault severity.

The stator voltage spectrum is shown in Fig. 5.7 for healthy and faulty machine under

different severity levels of HRC fault when the machine is driven by DTC. It is observed that

Figure 5.7: Stator voltage spectrum for healthy and faulty machine under HRC fault in DTC
drive at 600 rpm and 20Nm.

the magnitude of the fundamental harmonic in the voltage spectrum is increasing significantly

with severity of the HRC fault. On the other hand, the magnitude of the 5th has inconsistent

change; it does not change significantly at HRC1 but it increases at HRC2 and then decreases

at HRC3. Similarly, the magnitude of the 7th decreases at HRC1 but then starts increasing

at HRC2 and HRC3. Once again, these inconsistent changes in the voltage spectrum due to
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different HRC severity levels will result in high false classification results.

The stator voltage spectrum is shown in Fig. 5.8 for healthy and faulty machine under

different severity levels of eccentricity fault when the machine is driven by DTC. It is observed

Figure 5.8: Stator voltage spectrum for healthy and faulty machine under eccentricity fault
in DTC drive at 600 rpm and 20Nm.

that the magnitude of the fundamental harmonic in the voltage spectrum has inconsistent

changes due to different severity levels of eccentricity fault. It is reducing at ECC1 and then

increasing at ECC2 and ECC3. Similarly, the magnitude of the 5th harmonic reduces at

all eccentricity severity levels. However, it decreases from healthy case to ECC1, increases

from ECC1 to ECC2, and then decreases from ECC2 to ECC3. An inconsistent pattern is

also noticed with the 7th harmonic. These irregular changes in the spectrum will result in

difficulty performing fault detection and separation in DTC drives.

The stator voltage spectrum is shown in Fig. 5.9 for healthy and faulty machine under

different severity levels of demagnetization fault when the machine is driven by DTC. It
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Figure 5.9: Stator voltage spectrum for healthy and faulty machine under demagnetization
fault in DTC drive at 600 rpm and 20Nm.

is noticed that the magnitude of the fundamental harmonic in the voltage spectrum has

inconsistent changes due to different severity levels of demagnetization fault. It is increasing

at Demag1 and Demag2 but then reducing at Demag3. Similarly, the magnitude of the

5th and 7th harmonics have inconsistent changes with increasing the demagnetization fault

severity.

Fig. 5.10 provides evidence of the inconsistent variation in feature trends observed for the

lowest considered severity level of each fault across different samples: 550, 600, and 650 rpm.

In comparison with applying the MVSA approach in FOC drives, the changes in the voltage

spectrum in DTC drives will not benefit the classifier in identifying fault, discriminating

between them, and estimating their severity.
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Figure 5.10: Feature Trends of the MVSA for the Lowest Considered Severity Level of Each
Fault Across Different Samples in case of DTC driven PMSM.

5.2 Supervised Classification

Supervised machine learning is a training process for the predictive model through known

input data [62]. This data-driven model is then used to predict a class for an unknown

sample. In this work, three classification approaches are used: (i) Linear Discriminant

Analysis (LDA), (ii) k-Nearest Neighbor (k-NN), and (iii) Support Vector Machine (SVM).

LDA assumes a normal distribution for the training samples with a fixed covariance

matrix that does not depend on classes. Given a two-indicator case, the decision boundary

segregating classes are linear using LDA. However, if the normality assumption of data

distribution does not hold, the discriminant routine is extremely biased [63]. Here, the sample

space is split into (K) classes, where each class contains a number of samples corresponding

to the same class. Each class is associated with weighting factors that are used to determine

the discriminant function for that class. The discriminant function (Ck) for kth class is
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calculated as following:

Ck(X) = α1kx1 + α2kx2 + ...+ αNkxN (5.1)

where X = [x1, x2, ..., xN ] is the N dimensional observation vector and [α1k, α2k, ..., αNk] is

the weighting factors matrix for the kth group. Each sample will be assigned to a particular

class if its linear discriminant function is greater than other linear discernment functions.

For example, a sample Xi belongs to a class j if,

Cj(Xi) ≥ Ck(Xi), ∀j ̸= k (5.2)

To avoid dependency on normal distribution parameters, k-NN and SVM are applied, but

their classification accuracy depends proportionally on the number of training samples [64].

The k-NN approach assigns a class for the unknown sample based on the majority voting

among the nearest neighbors. Its accuracy relies on the number of selected neighbors and

the distance metric used to find the neighbors. For this work, the nearest four neighbors and

Euclidean distance show the maximum classification accuracy using k-NN. The Euclidean

distance is given by:

DXY =

√√√√ n∑
i=1

(xmi − ypi)2 (5.3)

where X = [xm1, ..., xmn] is the tested samples vector, Y = [yp1, ..., ypn] is the training

samples vector, m = 1, ..., j is the number of tested samples and p = 1, ..., l is the number of

testing samples.

SVM is another supervised machine learning technique known for its robustness against

noise and data bias [65]. The objective of the SVM classifier is to obtain the optimum
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hyperplane that maximizes the discrimination of two different sets of data using support

vectors only. The furthest samples near the discrimination margin are called support vectors.

An unknown sample is classified by evaluating the orthogonal distance from this sample

to the optimum hyperplane generated by SVM. The training phase of SVM consists of a

minimization problem of the weighting vector ζ(X) such that each sample will meet the

following objective:

ζ(X) = wTX + ξo ≥ 0 (5.4)

where w is weighting vector and ξo is a threshold value for classifier modeling. SVM utilizes

kernel functions when the data is not linearly separable in its dimensional space. Therefore,

SVM fits the data into other dimensional spaces with higher scales where the data becomes

linearly divisible. SVM classifier could also be extended for multi-class classification problems

by considering one class against another in the classification problem or considering one class

against all other classes. In this study, the former approach is applied to study different fault

classes.

To evaluate the accuracy of the aforementioned classifiers, a leave-one-out approach is

used by excluding one sample from the training samples set and use it as unknown sample to

be classified. The process is iterated for all samples in every class. Afterward, the classifier

accuracy is evaluated using the following:

Λ = (
Nlabeled

Ntotal
)× 100% (5.5)

where Λ is the classifier accuracy, Nlabeled is the number of correctly labeled samples, and
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Ntotal is the total number of samples in the training pool.

5.3 Diagnosis Approach

Fast Fourier transformation (FFT) technique was applied in MATLAB to get the frequency

spectrum of commanded phase A voltage, and extract the magnitude of the first eight har-

monics. The inclusion of additional harmonics enables fault detection, categorization and

estimation for TTSC, HRC, static eccentricity and partial demagnetization without addi-

tional sensors. If the ultimate goal is reliable fault separation, multiple features should be

adopted. The fault detection method is evaluated for inverter-fed PMSM drives under FOC

and DTC controllers, taking the advantage of inherent availability of commanded voltage

signal in these control schemes.

Here, a comparison between supervised classification approaches: LDA, k-NN, and SVM

in terms of the ability to identify the faulty cases, distinguish between the considered faults,

and estimate their severity is provided. Fig. 5.11 shows the flowchart of the fault detection,

separation, and severity estimation algorithm. The harmonics are used as features for the

classification stage. To generate samples in FEA for healthy and faults cases, the speed is

varied from 250 rpm to 750 rpm in steps of 50 rpm at different operating points. The current

loading is set to be 10 A at β = 30◦ for FOC, while the torque loading for DTC is set at 20

Nm at 0.52 Wb to get the MTPA operation for both controllers. In this numerical setup,

140 observations are generated (10 for each health state): healthy, three severity levels of

eccentricity, three severity levels of HRC, four severity levels of TTSC, and three severity

levels of demagnetization.
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Figure 5.11: Flowchart of fault detection, separation, and severity estimation algorithm.

5.4 Comparative Results

The accuracy of the fault detection and classification is shown in Table 5.1. It is assumed

that if the classifier is able to detect the faulty operation of the machine and indicate the fault

type at its lower severity level, then it will be able to perform the diagnosis at higher severity

levels. Therefore, only samples of the faulty cases at the lowest severity are considered in

the training pool to perform fault detection and separation.

It is clear that the considered classifiers are capable of fault detection and separation using
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Table 5.1: Detection accuracy using MVSA approach for FOC and DTC driven PMSM [B].

FOC DTC
Case LDA k-NN SVM LDA k-NN SVM

Healthy 100% 100% 97.5% 10% 10% 67.5%
SC1 90% 100% 100% 80% 80% 80%
HRC1 100% 100% 90% 40% 80% 85%
Ecc1 100% 100% 100% 60% 90% 77.5%
Demag1 80% 70% 87.5% 70% 40% 80%

Overall 94% 94% 95% 52% 60% 78%

the MVSA approach in FOC driven PMSM while their overall performance is significantly

degraded in case of DTC driven PMSM. Moreover, it can be observed that all classifiers

achieve lower accuracy in capturing the healthy state for DTC drives in comparison with

case of FOC drives. This leads to high false indication rate in DTC and unnecessary system

shutdowns. Besides that, SVM classifier shows the highest detection and separation accuracy

in both drives. Therefore, it is proved that relying on the MVSA approach for fault diagnosis

in DTC drives would result in poor performance and significant amount of false alarms.

Fig. 5.12 provides the confusion matrix of LDA classifier for fault diagnosis to show the

false alarms and incorrect classification in FOC and DTC drives. The accuracy of the fault

severity estimation using the LDA and SVM classifiers is shown in Table 5.2. Once the

faulty operation is indicated and fault type is detected from the first stage of the supervised

classification, then the second classification stage will be dedicated for severity estimation

of the detected fault. Therefore, samples of the detected fault at each severity level are

considered in the training pool to perform fault severity estimation. It can be observed

from Table 5.2 the degradation in the performance of LDA and SVM classifiers for the

fault severity estimation when DTC is applied in comparison with FOC. This is related to

the earlier mentioned fact of inconsistent changes in the voltage spectrum due to different

87



(a) For FOC drives. (b) For DTC drives.

Figure 5.12: Confusion matrix of LDA classifier for fault diagnosis in FOC and DTC driven
PMSM [B].

Table 5.2: The accuracy of fault severity estimation using MVSA approach for FOC and
DTC driven PMSM [B].

FOC DTC
Fault Type LDA SVM LDA SVM

TTSC 85% 97.5% 42.5% 64.167%
SC1 100% 100% 50% 63.333%
SC2 100% 100% 40% 66.667%
SC3 80% 93.333% 30% 66.667%
SC4 60% 96.667% 50% 60%

HRC 96.667% 86.667% 30% 38.333%
HRC1 100% 100% 30% 35%
HRC2 90% 80% 20% 30%
HRC3 100% 100% 40% 50%

Eccentricity 100% 100% 46.667% 71.667%
ECC1 100% 100% 60% 75%
ECC2 100% 100% 40% 65%
ECC3 100% 100% 40% 75%

Demagnetization 86.667% 71.667% 46.667% 56.667%
Demag1 100% 100% 80% 75%
Demag2 90% 50% 20% 55%
Demag3 70% 60% 40% 40%
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severity levels of each fault in case of DTC drives. Therefore, for reliable fault diagnosis in

DTC driven PMSMS further improvement is required.

To determine if the lack of integration between the separate stages for fault detection

and severity estimation led to suboptimal performance, feasibility of a single stage classifier

is evaluated. This classifier is designed to concurrently predict both fault types and severity

levels. Table 5.3 presents the accuracy of LDA and SVM classifier in identifying the machine

health state and severity levels.

Table 5.3: Fault detection and severity estimation using MVSA approach for FOC and DTC
driven PMSM [B] in One Stage.

FOC DTC
Machine Condition LDA SVM LDA SVM

Healthy 40.0% 94.6% 0.00% 57.7%
SC1 40.0% 96.9% 10.0% 63.8%
SC2 50.0% 99.2% 50.0% 80.0%
SC3 30.0% 98.5% 20.0% 87.7%
SC4 50.0% 99.2% 40.0% 73.1%
HRC1 0.00% 91.5% 10.0% 61.5%
HRC2 0.00% 93.1% 0.00% 61.5%
HRC3 10.0% 94.6% 30.0% 71.5%
ECC1 0.00% 95.4% 0.00% 60.0%
ECC2 20.0% 99.2% 40.0% 75.4%
ECC3 80.0% 96.9% 20.0% 76.2%
Demag1 20.0% 88.5% 30.0% 68.5%
Demag2 10.0% 80.8% 40.0% 73.8%
Demag3 0.00% 84.6% 40.0% 76.2%

Overall 25.0% 93.8% 23.6% 70.5%

The degradation of LDA performance can be observed when fault detection and severity

estimation are combined in a single stage. In contrast, the SVM classifier demonstrates better

performance in both the FOC and DTC drives for fault detection and severity estimation.

Nevertheless, the accuracy of the SVM classifier experiences a noticeable decline in the

case of DTC driven PMSM in comparison with its performance in the FOC drive. Since

the performance of SVM classifier in DTC drive is not satisfactory, there is a potential to
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improve its effectiveness by means of investigating alternative kernel functions.

Kernel functions in SVM model are utilized to transform the feature vector into higher di-

mensional space where the feature vector becomes linearly separable. Radial Basis Function

(RBF) kernel and polynomial kernel are two examples of kernel functions used in SVM clas-

sifier. The RBF kernel is known as the Gaussian kernel as it uses the Gaussian distribution

function as given by (5.6) [66].

ZRBF (xi, xj) = e
−γ||xi−xj ||2 (5.6)

Here, ZRBF (xi, xj) measures the similarity between xi and xj . The parameter γ controls the

influence of each data pair on the decision boundary. As γ becomes larger, limited impact

range is expected. The initial selection of this parameter is given by (5.7) [67].

γ =
1

N · σ
(5.7)

Here, N is the number of features used for classification and σ is the variance of the data.

The initial value for γ is set to 0.125, and additional values are chosen for a grid search

to identify the optimal value that maximizes accuracy. Table 5.4 presents the classification

accuracy of SVM classifier in DTC drive using the RBF kernel function. It is observed

that the utilization of the SVM classifier with the RBF kernel function does not exhibit a

substantial enhancement in the detection accuracy.

The other kernel function used for SVM modeling is the polynomial. The mathematical
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Table 5.4: Fault detection and severity estimation using MVSA approach for DTC driven
PMSM [B] in One Stage of SVM classifier with RBF Kernel.

SVM with RBF Kernel
Machine Status γ = 0.01 γ = 0.125 γ = 0.25 γ = 1

Healthy 11.5% 31.5% 23.8% 12.3%
SC1 13.1% 36.9% 36.15% 10.0%
SC2 20.0% 75.4% 69.2% 37.7%
SC3 18.5% 67.7% 64.6% 32.3%
SC4 26.9% 74.6% 73.8% 36.9%
HRC1 16.9% 46.2% 48.5% 20.0%
HRC2 16.9% 40.0% 37.7% 12.3%
HRC3 16.9% 47.7% 42.3% 28.5%
ECC1 13.1% 32.3% 33.8% 10.8%
ECC2 15.4% 39.3% 34.6% 21.5%
ECC3 10.0% 40.0% 36.9% 6.90%
Demag1 15.4% 61.5% 58.5% 20.8%
Demag2 49.2% 66.1% 66.9% 55.4%
Demag3 46.9% 66.1% 70.0% 56.2%

Overall Accuracy 20.8% 51.8% 49.8% 25.8%

expression of the polynomial kernel is given in (5.8).

Zpoly(xi, xj) = (1 + xi · xj)q (5.8)

Here, Zpoly measures the similarity between xi and xj using a polynomial function of q

degree. Table 5.5 presents the classification accuracy of SVM classifier in DTC drive using

the polynomial kernel function with different orders. In conclusion, the detection accuracy

obtained by using the polynomial kernel function in the SVM classifier is comparable to that

achieved by the linear kernel. However, further investigation is needed to explore different

feature sets that have the potential to improve the overall performance of the SVM classifier

in DTC driven PMSM.
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Table 5.5: Fault detection and severity estimation using MVSA approach for DTC driven
PMSM [B] in One Stage of SVM classifier with Polynomial Kernel.

SVM with Polynomial Kernel
Machine Status q = 2 q = 3 q = 4 q = 5

Healthy 43.1% 32.3% 36.2% 30.0%
SC1 53.1% 56.2% 50.8% 61.5%
SC2 73.1% 65.4% 63.8% 60.0%
SC3 76.9% 84.6% 80.8% 81.5%
SC4 70.0% 73.1% 64.6% 56.9%
HRC1 58.5% 58.5% 51.5% 53.1%
HRC2 50.0% 51.5% 39.2% 46.2%
HRC3 59.2% 62.3% 58.5% 63.1%
ECC1 51.5% 43.8% 49.2% 40.0%
ECC2 56.9% 56.2% 61.5% 60.0%
ECC3 58.4% 60.0% 63.8% 62.3%
Demag1 72.3% 70.0% 69.2% 67.7%
Demag2 80.0% 63.8% 56.9% 47.7%
Demag3 71.5% 68.5% 50.8% 55.4%

Overall Accuracy 62.5% 60.4% 56.9% 56.1%
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Chapter 6

Condition Monitoring of DTC Driven

PMSM

Torque and flux ripple are considered the main effects of the faults on the drive performance.

These metrics are expected to increase under faulty conditions. However, these metrics may

have different changes in DTC under different faulty conditions since the switching frequency

is variable in this drive. DTC changes the switching frequency in order to maintain the torque

and flux waveforms within prespecified hysteresis bands. Therefore, studying the variations

in both torque and flux ripple and switching frequency is needed to understand the principle

behind these changes. The torque and flux ripple (tripple, λripple) are computed using (6.1).

Sripple =

√√√√ 1

N

N∑
n=1

(S(n)− S∗)2 (6.1)

Where (S) is the considered torque or flux signal, and (N) is the total number of samples

within the considered cycle for ripple evaluation.

The inverter switching frequency in DTC is mainly determined by the bandwidth of

the torque and flux hysteresis comparators. As less ripple is desired in the torque and

flux responses, higher switching frequency is required to maintain these signals within the

hysteresis bands and thereby achieving a nearly sinusoidal current waveform, similar to FOC.

The average switching frequency (fs), described in (6.2), is used here to predict the average
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switching frequency.

fs =
ns
τ

(6.2)

Where (ns) is number of transitions between voltage sectors in one fundamental period (τ).

Also, it could be predicted empirically as suggested in [68].

6.1 Faulty Drive Operation

As shown in Table 6.1, both the torque and flux ripple increase with fault severity. It can be

observed that the torque ripple of the machine has been significantly increased under TTSC

fault especially when the machine is highly loaded or running at higher speeds. This would

result in undesirable increase of the NVH levels of the machine. The sampling frequency is

an important consideration for controller design to ensure that the ripple remains within the

hysteresis band under both healthy and faulty conditions.

Table 6.1: The effect of TTSC fault on the torque and flux ripple of PMSM [B].

DTC Operating Point
20N.m/350rpm 20N.m/700rpm 40N.m/350rpm 40N.m/700rpm

Case tripple λripple tripple λripple tripple λripple tripple λripple
Healthy 1.33 0.0174 1.42 0.0173 2.39 0.0171 2.74 0.0250
SC1 1.60 0.0179 1.97 0.0188 2.59 0.0162 3.29 0.0201
SC2 1.78 0.0205 2.46 0.0222 2.77 0.0180 3.64 0.0184
SC3 2.49 0.0322 3.51 0.0414 3.50 0.0258 5.70 0.0292
SC4 2.97 0.0383 3.94 0.0563 4.24 0.0308 6.85 0.0379

It is also noted that DTC reacts to the presence of the TTSC effect by increasing the

switching frequency as shown in Fig. 6.1. This is a result of hitting the flux and torque

bands under TTSC fault more frequently than the healthy case due to the increase in the

torque and flux ripple [21].

As shown in Table 6.2, HRC fault has insignificant effect on the torque and flux ripple
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Figure 6.1: Switching frequency in DTC under healthy case and different TTSC fault sever-
ities.

Table 6.2: The effect of HRC fault on the torque and flux ripple of PMSM [B].

DTC Operating Point
20N.m/350rpm 20N.m/700rpm 40N.m/350rpm 40N.m/700rpm

Case tripple λripple tripple λripple tripple λripple tripple λripple
Healthy 1.33 0.0174 1.42 0.0173 2.39 0.0171 2.74 0.0250
HRC1 1.34 0.0177 1.42 0.0166 2.46 0.0189 2.74 0.0228
HRC2 1.34 0.0181 1.44 0.0166 2.49 0.0179 2.78 0.0252
HRC3 1.35 0.0185 1.43 0.0178 2.48 0.0182 2.81 0.0247

at different load and speed states. However, this is due to the low severity levels that are

considered for this fault in this study. Nevertheless, it can be concluded that the torque and

flux ripple are increasing as the fault becomes intense. Besides that, HRC fault shows the

same effect as TTSC fault on the switching frequency of DTC as shown in Fig. 6.2, [22].

Demagnetization fault has the most significant effect on the torque and flux ripple at

different speed and load conditions in comparison with the other considered faults, as shown

in Table 6.3.

It is worth noting that DTC reacts to the demagnetization effect by reducing the switching

95



Healthy HRC1 HRC2 HRC3

Machine Condition

4.5

5

5.5

6

f s (
k

H
z)

Switching Frequency in DTC

Figure 6.2: Switching frequency in DTC under healthy case and different HRC fault severi-
ties.

Table 6.3: The effect of demagnetization fault on the torque and flux ripple of PMSM [B].

DTC Operating Point
20N.m/350rpm 20N.m/700rpm 40N.m/350rpm 40N.m/700rpm

Case tripple λripple tripple λripple tripple λripple tripple λripple
Healthy 1.33 0.0174 1.42 0.0173 2.39 0.0171 2.74 0.0250
Demag1 2.04 0.0247 2.44 0.0273 3.98 0.0255 5.07 0.0333
Demag2 2.93 0.0278 3.69 0.0337 5.66 0.0281 7.37 0.0345
Demag3 3.75 0.0321 4.42 0.0341 7.11 0.0314 8.69 0.0373

frequency as shown in Fig. 6.3. This is a result of the drop in the average torque, which

is below lower hysteresis band [69]. As a result, DTC reacts to the torque error due to the

fault by commanding only voltage vectors that would increase the torque.

6.2 Faulty Machine Analysis in MT Frame

Faults could occur either on the machine side or the drive side where they have different

effects on the drive performance. These effects can be included in the equivalent circuit
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Figure 6.3: Switching frequency in DTC under healthy case and different demagnetization
fault severities.

model of the PMSM, as described in (6.3).

v̂M = vM + vMf

v̂T = vT + vTf

(6.3)

Here, vMf and vTf are the MT voltage deviations due to faults and v̂M and v̂T are the MT

voltages considering the fault effects.

The effect of TTSC fault on PMSM model can be obtained by transforming the faulty

(abc) model in (3.21) using (2.6) and then (2.13). The resultant faulty PMSM model in MT
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frame under TTSC fault is described in (6.4).

vM = rsiM +
2

3
rsf cos (θr + δ) if +

(
Lq − Ld

) dδ
dt

sin (2δ) iM

+
(
Lq − Ld

) dδ
dt

cos (2δ) iT − 2

3

(
ω +

dδ

dt

)((
Lsf + Lhf

)
sin (θ + δ) if

)
+
(
Ld cos

2 (δ) + Lq sin
2 (δ)

) diM
dt

+
(
Lq − Ld

)
cos (δ) sin (δ)

diT
dt

+
2

3

(
Lsf + Lhf

)
cos (θ + δ)

dif
dt

− dδ

dt
λPM sin (δ)

−
(
ω +

dδ

dt

)[(
Lq − Ld

)
cos (δ) sin (δ) iM +

(
Ld sin

2 (δ) + Lq cos
2 (δ)

)
iT

]
+

(
ω +

dδ

dt

)[
2

3

(
Lsf + Lhf

)
sin (θ + δ) if + λPM sin (δ)

]
vT = rsiT − 2

3
rsf sin (θr + δ) if +

(
Lq − Ld

) dδ
dt

cos (2δ) iM

−
(
Lq − Ld

) dδ
dt

sin (2δ) iT − 2

3

(
ω +

dδ

dt

)((
Lsf + Lhf

)
cos (θ + δ) if

)
+
(
Ld sin

2 (δ) + Lq cos
2 (δ)

) diT
dt

+
(
Lq − Ld

)
cos (δ) sin (δ)

diM
dt

− 2

3

(
Lsf + Lhf

)
sin (θ + δ)

dif
dt

− dδ

dt
λPM cos (δ)

+

(
ω +

dδ

dt

)[(
Lq − Ld

)
cos (δ) sin (δ) iT +

(
Ld cos

2 (δ) + Lq sin
2 (δ)

)
iM

]
+

(
ω +

dδ

dt

)[
2

3

(
Lsf + Lhf

)
cos (θ + δ) if + λPM cos (δ)

]

(6.4)

Upon comparing (2.7) to the resultant faulty PMSM model in MT frame under TTSC

fault, the additional terms, given in (6.5), are due to TTSC fault.

vMf =
2

3

(
rsf if +

(
Lhf + Lsf

) dif
dt

)
cos (θr + δ)

vTf = −2

3

(
rsf if +

(
Lhf + Lsf

) dif
dt

)
sin (θr + δ)

(6.5)

The circulating short circuit current, described in (6.6) could be assumed nearly sinusoidal
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following the sinusoidal phase back-EMF of the studied machine.

if =
∣∣If ∣∣ sin (θr + δ + ϕ) (6.6)

Here (ϕ) represents the phase angle of the fault current. As a result, the MT voltage

deviation due to TTSC at steady state, have a DC shift in the first term and oscillation in

the second term, as described in (6.7)

vMf =
1

3
rsf

∣∣If ∣∣ (sin (ϕ) + sin (2θr + 2δ + ϕ))

vTf = −1

3
rsf

∣∣If ∣∣ (cos (ϕ)− cos (2θr + 2δ + ϕ))

(6.7)

Therefore, it is expected that the M-axis voltage increases while T-axis voltage decreases

under TTSC following the DC term in (6.7).

The voltage shift due to HRC could be represented, at steady state, by (6.8) and (6.9).

vMf = ∆r · cos2
(
θr + δ − 2π

3

)
· iM

−∆r · cos
(
θr + δ − 2π

3

)
· sin

(
θr + δ − 2π

3

)
· iT

(6.8)

vTf = ∆r · sin2
(
θr + δ − 2π

3

)
· iT

−∆r · cos
(
θr + δ − 2π

3

)
· sin

(
θr + δ − 2π

3

)
· iM

(6.9)

It can be noticed that the voltage deviations in MT frame due to HRC has a DC shift in

the first term and oscillating one in the second term, similarly to the ITSC fault. However,

the DC term for both MT voltages would increase under HRC fault.
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As expected from (6.10), the stator flux linkage magnitude would decrease under the

demagnetization fault, as does the magnetizing current [70]. Here ka and ks are the approx-

imation coefficients.

iM = ksλs − kaλPM (6.10)

As a result, the M-axis voltage is decreased directly, as described in (6.11). Here, ∆λsf

and ∆λPMf are the changes in stator flux linkage and PM flux linkage magnitudes due to

demagnetization. It is worth noting that ∆λPMf ≪ ∆λsf .

vMf = −rsks∆λsf + rska∆λPMf

vTf = 0

(6.11)

6.2.1 Numerical Results

As expected from the analysis, the studied faults show a unique trend in the MT frame.

The voltages shift toward the southeast for TTSC, northeast for HRC and west for demag-

netization, as shown in Fig. 6.4 under different operating conditions. It could be observed

that the operating conditions impact the magnitude of the MT voltages. Nevertheless, the

direction of the shift in the commanded MT voltages holds under different fault conditions

regardless of the speed and load.

6.2.1.1 Detection and Classification

The SVM classifier is utilized for identifying the health state of the machine and the fault

types in the event of a fault. The feature vector contains the commanded MT voltages

for healthy and faulty conditions. Table 6.4 shows the accuracy of SVM in detecting and

classifying faults in DTC driven PMSM at different operating points. The SVM classifier can
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Figure 6.4: Simulation results for the variation in (Vm − Vt) for healthy and three different
fault conditions at different speeds and load conditions (the arrow direction is with the
increase in the fault severity).

Table 6.4: Simulation Results of Detection Accuracy in DTC driven PMSM using Com-
manded MT Voltages.

SVM: Stage I
Machine Status (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

Healthy 93.3% 100% 100%
SC1 93.3% 80.0% 96.7%
HRC1 93.3% 80.0% 96.7%
Demag1 100% 100% 100%

Overall Accuracy 95.0% 90.0% 98.3%

accurately distinguish between normal machine operation and faulty operation, and identify

the type of fault under different load conditions.
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6.2.1.2 Effect of Noise on Detection Accuracy

The detection accuracy of SVM classifier utilizing commanded MT voltages in DTC driven

PMSM is evaluated in the presence of AWGN to investigate the potential impact of mea-

surement noise and manufacturing variations on the accuracy of fault detection. To modify

the SNR ratio, the variance of the noise is adjusted. Table 6.5 shows the overall detection

accuracy using SVM at different SNR levels at both load conditions. It can be observed

Table 6.5: Simulation Results of Detection Accuracy in DTC driven PMSM using Com-
manded MT Voltages at Different SNR Levels.

SVM: Stage I
SNR(dB) (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

No Noise 95.0% 90.0% 98.3%
40 93.3% 90.0% 97.5%
30 87.5% 82.5% 85.8%
20 80.0% 75.0% 81.7%

that the introduced noise has an impact, but the performance of the SVM classifier remains

adequate.

6.2.1.3 Effectiveness of Alternative Classifiers for Fault Detection

The viability of utilizing alternative classifiers for fault diagnosis, in conjunction with the

commanded MT voltages method, is examined in DTC driven PMSMs. Specifically, the LDA

and k-NN classifiers are employed using the same training data as the SVM classifier. The

fault diagnosis accuracy of the LDA and 3-NN classifiers in DTC driven PMSMs is presented

in Tables 6.6 and 6.7, respectively. It can be concluded that the SVM and 3-NN classifiers

are more effective than the LDA classifier in detecting faults in DTC driven PMSMs using

the commanded MT voltages method.
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Table 6.6: Simulation Results of Detection Accuracy using LDA Classifier with the Com-
manded MT Voltages in DTC driven PMSM.

LDA Classifier
Machine Status (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

Healthy 70.0% 100% 100%
SC1 60.0% 30.0% 40.0%
HRC1 90.0% 30.0% 100%
Demag1 90.0% 90.0% 90.0%

Overall Accuracy 77.5% 52.5% 82.5%

Table 6.7: Simulation Results of Detection Accuracy using k-NN Classifiers with the Com-
manded MT Voltages in DTC driven PMSM.

k-NN Classifier
Machine Status (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

Healthy 100% 100% 100%
SC1 80.0% 90.0% 100%
HRC1 80.0% 80.0% 90.0%
Demag1 100% 100% 100%

Overall Accuracy 90.0% 92.5% 97.5%

6.2.1.4 Identifying the Fault Severity

Once the fault class is determined in the first stage of the SVM classifier, the second stage

of the classifier is used to assess the severity level of the identified fault. The accuracy of the

SVM, in conjunction with the commanded MT voltages method, is presented in Table 6.8

for estimating the fault severity. It is evident that the SVM model demonstrates proficiency

in predicting the severity of all faults. Nevertheless, it encounters challenges in discerning

between different severity levels in case of TTSC fault.

6.2.2 Experimental Results

The variations in MT voltages in DTC under healthy and TTSC fault cases are shown in

Fig. 6.5. As expected, in the MT frame the TTSC fault shows a unique trend toward the
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Table 6.8: Simulation Results of Severity Estimation Accuracy in DTC driven PMSM using
the Commanded MT Voltages.

SVM: Stage II
Machine Status (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

TTSC 72.5% 93.3% 95.0%

SC1 60.0% 86.7% 96.7%
SC2 83.3% 93.3% 93.3%
SC3 70.0% 96.7% 93.3%
SC4 76.7% 96.7% 96.7%

HRC 95.0% 100% 100%

HRC1 100% 100% 100%
HRC2 90.0% 100% 100%
HRC3 95.0% 100% 100%

Demagnetization 100% 100% 100%

Demag1 100% 100% 100%
Demag2 100% 100% 100%
Demag3 100% 100% 100%

southeast. This shift could be utilized in a fault detection scheme and used further for

severity estimation.
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Figure 6.5: Experimental results for the variation in (Vm − Vt) for healthy and TTSC fault.

The variations in switching frequency in DTC under healthy and TTSC fault cases are
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Table 6.9: Experimental Results of Detection Accuracy in DTC driven PMSM at different
loads using the Commanded MT Voltages.

SVM: Stage I
Machine Status (t∗e1, |ψ

∗
s1|) (t∗e2, |ψ

∗
s2|)

Healthy 90.0% 100%
SC1 100% 100%

Overall Accuracy 95.0% 100%

depicted in Fig. 6.6. It could be observed that DTC reacts to the TTSC effect by increasing

the switching frequency as found in the simulation results.
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Figure 6.6: Switching frequency in DTC under healthy case and different TTSC fault sever-
ities.

6.2.2.1 Detection and Severity Estimation

The performance of the SVM classifier, combined with the commanded MT voltage approach,

is evaluated in detecting TTSC faults and assessing their severity in various operating con-

ditions. Tables 6.9 and 6.10 present the accuracy of fault detection in the initial stage and

fault severity evaluation in the subsequent stage, respectively. The results demonstrate that

the SVM classifier with the commanded MT voltage approach is effective in detecting and

assessing the severity of TTSC faults.
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Table 6.10: Experimental Results of Severity Estimation Accuracy in DTC driven PMSM
using the Commanded MT Voltages.

SVM: Stage II
Machine Status (t∗e1, |ψ

∗
s1|) (t∗e2, |ψ

∗
s2|)

TTSC 80.8% 87.5%

SC1 70.0% 73.3%
SC2 86.7% 93.3%
SC3 83.3% 93.3%
SC4 83.3% 90.0%

6.3 Power Signature Analysis

The application of power signature analysis for the identification of faults in inverter driven

induction machines is a well-recognized strategy, and its advantageous performance has re-

cently been leveraged for inverter driven PMSMs. The power theory is used for anomaly

detection as an alternative approach for using current or voltage signals separately [3,9,10].

This is due to the fact that the power signal is less sensitive to the controller bandwidth as

it combines the spectral information from both signals at any bandwidth. The authors in [3]

suggests use of the second harmonic in the instantaneous active power for short circuit fault

detection in generating mode, whereas the instantaneous reactive power is used in motor-

ing mode. In [10], reduction of the sixth harmonic amplitude of active power is one of the

utilized methods to detect the presence of static eccentricity. However, if the ultimate aim

is reliable fault detection and separation, multi-feature analysis has to be adopted to avoid

misclassification. This section provides the utilization of the power theory for fault diagnosis

in inverter driven PMSMs.
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6.3.1 Diagnosis Approach

The developed diagnosis method uses the measured currents and commanded voltages to

calculate active and reactive power signals. Features extracted from both signals have been

shown to aid fault separation between HRC and TTSC. The new approach utilizes the SVM

classifier in two cascaded stages, shown in Fig. 6.7. In the first stage, the classifier aims

to detect the fault existence and fault class. Afterward, the second stage of the classifier

is dedicated to the fault severity estimation. The proposed approach is performed in the

following steps:

1. Compute the active and reactive power (p(t), q(t)) signals. The measured current

signals and commanded voltages transformed into the αβ frame, as indicated in (6.12).

p(t) = ℜ(s(t)) = 3

2
(vα(t)iα(t) + vβ(t)iβ(t))

q(t) = ℑ(s(t)) = 3

2
(vβ(t)iα(t)− vα(t)iβ(t))

(6.12)

where the complex power s(t) is given by the product of the stator voltage and current

space vectors (
⇀
vs,

⇀
is) as following:

s(t) =
3

2
[
⇀
vs ·

⇀
is
∗] =

3

2
[(vα + jvβ) · (iα + jiβ)

∗] (6.13)

As mentioned earlier, the DTC drive requires these current signals to calculate the

torque and flux linkages. The commanded voltages are generated by the voltage vector

selection table.

2. Use FFT to find the DC, 2nd, and 6th spectral components in active and reactive

power. The power spectrum, both active and reactive, contains valuable information
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Figure 6.7: Fault diagnosis flow chart.

pertaining to fault events in stator current and voltage signals, independent of the

reference frame or controller bandwidth [1]. The stator current and voltage space

vectors consist of fundamental component and other significant harmonics that could

be used for detection as following [4]:

⇀
vs = v1e

j(ωt+θv) + v3e
3j(ωt+θv) + v5e

−5j(ωt+θv) + v7e
7j(ωt+θv) + ... (6.14)
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⇀
is = i1e

j(ωt+θi) + i3e
3j(ωt+θi) + i5e

−5j(ωt+θi) + i7e
7j(ωt+θi) + ... (6.15)

By applying (6.13) on (6.14) and (6.15), the resultant spectrum of the stator complex

power space vector would be in:

⇀
s = v1i1e

j(θv−θi) + v3i1e
j(2ωt+3θv−θi)

+ v1i5e
j(6ωt+θv+5θi) + v7i1e

j(6ωt+7θv−θi) + ...

(6.16)

The significant spectral components with positive sequence only are shown in (6.16).

In [71], it was demonstrated that the DC and second harmonic components in the

power signals can be used to identify electrical imbalances resulting from TTSC or

HRC in induction machines. Additionally, reference [1] indicated that the first to

fifteenth harmonics in IRP can be employed to differentiate faults related to magnetic

and electrical asymmetry in the machine. However, here it is shown that the sixth

harmonic, among other harmonics, exhibit significant separation between healthy and

faulty cases, as evidenced by the active power spectrum in Fig. 6.8.

As a result, a reduced number of harmonics are used as classification features, thus

eliminating the redundancy observed in [1]. The investigation indicated that using

these three features not only yields accurate fault detection but also separation between

HRC and TTSC faults. Fig. 6.9 shows the magnitude variation of these features under

the considered faults at different severity levels.

3. Apply SVM classifier to determine the machine condition, healthy or faulty. In case of

a faulty indication, the classifier will specify the fault type. The training data for the

classifier contains samples from different load and speed conditions for healthy and the
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Figure 6.8: Active power spectrum for healthy and faulty conditions.

lowest severity cases of all faults. The faulty indication should be one of the following:

TTSC, demagnetization, or HRC.

4. Apply SVM to determine the fault severity level that is predefined in the training pool.

The second stage of SVM classification is based on the samples from the indicated fault

only.

6.3.2 Numerical Results

Three operating conditions, as shown in Fig. 6.10, are chosen from the MTPA (t∗e, |λ∗s|)

profile to run the machine in the torque regulation mode using DTC drive. These operating

points are listed in Table 6.11. To create the training samples for SVM classifier learning,

the machine runs at ten different speeds ranging from 250 rpm to 700 rpm in steps of 50

rpm. This results in a total of 10 samples for the healthy case, 40 samples for the TTSC

fault (divided into four severity levels), 30 samples for the demagnetization fault (divided
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Table 6.11: Operating points of the DTC Drive.

Operating points Value
(t∗e1, |λ

∗
s1|) (10Nm,0.37Wb)

(t∗e2, |λ
∗
s2|) (20Nm,0.52Wb)

(t∗e3, |λ
∗
s3|) (40Nm,0.67Wb)

into three severity levels), and 30 samples for the HRC fault (divided into three severity

levels).
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Figure 6.10: Stator flux linkage versus the electromagnetic torque.

6.3.2.1 Detection and Classification

The first phase of the diagnostic approach is to indicate the condition of the machine. If

the machine is found to be faulty, the SVM classifier is used to identify the fault type.

Table 6.12 presents the accuracy of detecting and classifying faults at different operating

points. It can be observed that the SVM classifier is capable of identifying whether the

Table 6.12: Simulation Results of Detection Accuracy in DTC driven PMSM at different
loads using PQ Theory.

SVM: Stage I
Machine Status (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

Healthy 96.7% 93.3% 83.3%
SC1 100% 90.0% 90.0%
HRC1 93.3% 93.3% 76.7%
Demag1 100% 100% 93.3%

Overall Accuracy 97.5% 94.2% 85.8%

machine is operating normally or experiencing a fault under different loading conditions.

The fault with fully demagnetized magnets is highly detectable in DTC driven PMSMs due

to its significant impact on the performance of the DTC. On the other hand, the accuracy

for detecting healthy, TTSC, and HRC conditions is adequate. At lower speeds, the SVM

classifier is unable to distinguish between the healthy case and the least severe cases of TTSC
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and HRC faults due to their comparable effects on the performance of the drive. It is worth

noting that the accuracy of classification decreases under high loads, potentially as a result of

magnetic saturation of the machine. In general, the SVM classifier can successfully separate

between faults even when trained on a limited number of samples.

6.3.2.2 Effect of Noise on Detection Accuracy

To evaluate the potential impact of measurement noise and manufacturing variations within

inverter driven PMSMs, the detection accuracy of SVM classifier utilizing power signature

analysis in DTC driven PMSM is evaluated in the presence of additive white Gaussian noise

(AWGN). The variance of the noise is adjusted to alter the SNR ratio. Table 6.13 shows the

overall detection accuracy using SVM at different SNR levels at both load conditions. It can

Table 6.13: Simulation Results of Detection Accuracy in DTC driven PMSM at Different
SNR Levels using PQ Theory.

SVM: Stage I
SNR(dB) (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

No Noise 97.5% 94.2% 85.8%
40 97.5% 92.5% 84.2%
30 95.0% 91.7% 81.7%
20 86.7% 86.7% 75.8%

be noticed from Table 6.13 that the SVM classifier is immune to the included noise. This is

due to the fact the SVM classifier depends on the support vectors that gives the maximum

separation between classes. However, it is worth mentioning that the noise adds difficulty

for SVM classifier in separating between healthy and HRC fault at low severity levels. As

shown in Table 6.14, high noise levels mask the impact of low severe HRC fault. Inaccurate

classification of low severity HRC is potentially due to the minimal impact this fault has on

the stator flux linkage angle. As illustrated in Fig. 3.16, the magnitude of the stator flux

linkage reduces, but the angle does not change.
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Table 6.14: HRC Detection Accuracy in DTC Driven PMSM at Different SNR Levels Using
FEA Results using PQ Theory.

Operating Point SNR(dB) HRC1 Detection Accuracy

(t∗e1, |λ
∗
s1|)

No Noise 80.0%
40 70.0%
30 60.0%
20 50.0%

(t∗e2, |λ
∗
s2|)

No Noise 80.0%
40 70.0%
30 60.0%
20 50.0%

(t∗e3, |λ
∗
s3|)

No Noise 80.0%
40 80.0%
30 80.0%
20 70.0%

6.3.2.3 Effectiveness of Alternative Classifiers for Fault Detection

To assess the effectiveness of using alternative classifiers for fault diagnosis in DTC driven

PMSM, the LDA and k-NN classifiers are used here with the power signature analysis ap-

proach. The training pool is the same one used for the SVM classifier. Tables 6.15 and 6.16

provides the accuracy of fault detection and classification in DTC driven PMSM using the

LDA and 3-NN classifiers, respectively. The findings indicate that the SVM classifier ex-

hibits superior performance compared to the LDA and 3-NN classifiers in diagnosing faults

in a DTC driven PMSM.

Table 6.15: Simulation Results of Detection Accuracy using LDA Classifier in DTC driven
PMSM using PQ Theory.

LDA Classifier
Machine Status (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

Healthy 70.0% 90.0% 100%
SC1 100% 90.0% 60.0%
HRC1 80.0% 80.0% 50.0%
Demag1 100% 100% 100%

Overall Accuracy 87.5% 90.0% 77.5%
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Table 6.16: Simulation Results of Detection Accuracy using k-NN Classifiers in DTC driven
PMSM using PQ Theory.

k-NN Classifier
Machine Status (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

Healthy 70.0% 70.0% 40.0%
SC1 100% 80.0% 60.0%
HRC1 70.0% 30.0% 40.0%
Demag1 90.0% 90.0% 20.0%

Overall Accuracy 82.5% 67.5% 40.0%

Table 6.17: Simulation Results of Severity Estimation Accuracy in DTC driven PMSM using
PQ Theory.

SVM: Stage II
Machine Status (t∗e1, |λ

∗
s1|) (t∗e2, |λ

∗
s2|) (t∗e3, |λ

∗
s3|)

TTSC 94.1% 86.6% 80.0%

SC1 96.6% 96.6% 73.3%
SC2 96.6% 93.3% 80.0%
SC3 90.0% 83.3% 80.0%
SC4 93.3% 73.3% 86.6%

HRC 96.6% 95.0% 85.0%

HRC1 90.0% 100% 80.0%
HRC2 100% 85.0% 75.0%
HRC3 100% 100% 100%

Demagnetization 100% 96.6% 86.6%

Demag1 100% 100% 80.0%
Demag2 100% 90.0% 95.0%
Demag3 100% 100% 85.0%

6.3.2.4 Identifying the Fault Severity

This is a crucial component of fault diagnosis, as it enables the selection of an appropriate

online mitigation technique or the scheduling of preventive maintenance. The accuracy of

the SVM in estimating fault severity is presented in Table 6.17. It can be noticed that the

SVM is able to predict the severity of all faults, but it struggles to distinguish between TTSC

cases with varying fault resistance. This is likely because the short circuit current resulting
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from TTSC is dependent on the speed, number of shorted turns, and fault resistance, as

mentioned in [43]. Different classes of TTSC faults may potentially result in the same fault

current. It is shown in Fig. 6.11 that the fault current resulting from 15 shorted turns with

0.5Ω fault resistance in a machine operating at 10Nm and 500 rpm has the same amplitude

as that of a machine operating at 10Nm and 250 rpm with 30 shorted turns through a 0.25Ω

fault resistance.

Figure 6.11: The short circuit current produced by an TTSC fault.

6.3.2.5 Impact of the FOC Drive on Diagnosis

In order to evaluate the sensitivity of the proposed methodology for detecting faults in

PMSM driven by FOC, comparable MTPA loading levels to those utilized in DTC are

employed during FOC operation. The currents of 5A and 10A at an excitation angle of 120◦

are corresponding to (t∗e1, |λ
∗
s1|) and (t∗e2, |λ

∗
s2|) in DTC, respectively. This is can be seen in

Fig. 6.12.

Identical sample size, as in DTC case, is generated at each load condition in FOC for the

healthy and faulty machine conditions. According to the results presented in Table 6.18, the

use of power signature analysis in conjunction with an SVM classifier for diagnostic purposes

continues to be a feasible option for PMSMs driven by FOC, even when subjected to 40dB

of AWGN.
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Table 6.18: Simulation Results of Detection Accuracy in FOC driven PMSM at different
loads using PQ Theory.

SVM: Stage I
Without AWGN With AWGN

Machine Status 5A 10A 5A 10A
Healthy 96.7% 86.7% 96.6% 80.0%
SC1 93.3% 93.3% 93.3% 93.3%
HRC1 96.7% 80.0% 90.0% 73.3%
Demag1 100% 90.0% 93.3% 83.3%

Overall Accuracy 96.7% 87.5% 93.3% 82.5%

6.3.3 Experimental Results

In order to ensure the machine operates within a safe range, only the operating conditions

of (t∗e1, |λ
∗
s1|) and (t∗e2, |λ

∗
s2|) are used here to run the machine in the torque regulation mode

using DTC drive.

6.3.3.1 Detection and Severity Estimation

The accuracy of detecting the machine condition in the initial stage of the diagnostic method-

ology and evaluating the fault severity in the subsequent stage at various operating points is

displayed in Tables 6.19 and 6.20. It can be noted that the SVM classifier, when combined
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with power signature analysis, is capable of effectively detecting TTSC fault and assessing

their severity.

Table 6.19: Experimental Results of Detection Accuracy in DTC driven PMSM at different
loads using PQ Theory.

SVM: Stage I
Machine Status (t∗e1, |ψ

∗
s1|) (t∗e2, |ψ

∗
s2|)

Healthy 90.0% 80.0%
SC1 90.0% 90.0%

Overall Accuracy 90.0% 85.0%

Table 6.20: Experimental Results of Severity Estimation Accuracy in DTC driven PMSM
using PQ Theory.

SVM: Stage II
Machine Status (t∗e1, |ψ

∗
s1|) (t∗e2, |ψ

∗
s2|)

TTSC 86.7% 89.2%

SC1 83.3% 86.7%
SC2 86.7% 93.3%
SC3 86.7% 86.7%
SC4 90.0% 90.0%

To address the influence of speed variations on the SVM classifier in practice, a new

dataset is generated by running the machine at speeds slightly above and below the prede-

termined ones by ±5 rpm. The training phase utilizes the previously generated data, while

the testing phase involves evaluating the performance of the SVM classifier using the newly

collected dataset. The experimental outcomes of SVM classifier accuracy for detecting the

TTSC fault and estimating its severity in DTC driven using PQ Theory under the influence

of speed variations are presented in Tables 6.21 and 6.22, respectively.

6.3.3.2 Impact of the FOC Drive on Diagnosis

The effectiveness of the proposed methodology for fault detection is examined in PMSM

driven by FOC at operating conditions comparable to those in the numerical investigation
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Table 6.21: Experimental Results of Detection Accuracy in DTC driven using PQ Theory
Considering the Speed Variations.

SVM: Stage I
Machine Status (t∗e1, |ψ

∗
s1|) (t∗e2, |ψ

∗
s2|)

Healthy 80.0% 80.0%
SC1 90.0% 80.0%

Overall Accuracy 85.0% 80.0%

Table 6.22: Experimental Results of Severity Estimation Accuracy in DTC driven PMSM
using PQ Theory Considering the Speed Variations.

SVM: Stage II
Machine Status (t∗e1, |ψ

∗
s1|) (t∗e2, |ψ

∗
s2|)

TTSC 80.8% 88.8%

SC1 83.3% 83.3%
SC2 73.3% 85.0%
SC3 83.3% 93.3%
SC4 83.3% 93.3%

involving the TTSC fault. The same sample size is produced at each load condition in FOC

for both the healthy and faulty machine under ITSC fault, similar to the DTC scenario.

Tables 6.23 and 6.24 exhibit the accuracy in identifying the machine condition under TTSC

fault during the first stage of the diagnostic method and estimating the fault severity during

the second stage across different operational points. It is observed that the feasibility of uti-

lizing power signature analysis in combination with an SVM classifier for diagnostic persists

for PMSM operated by FOC.

Table 6.23: Experimental Results of Detection Accuracy in FOC driven PMSM at different
loads using PQ Theory.

SVM: Stage I
Machine Status 5A 10A

Healthy 100% 100%
SC1 100% 90.0%

Overall Accuracy 100% 95.0%
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Table 6.24: Experimental Results of Severity Estimation Accuracy in FOC driven PMSM
using PQ Theory.

SVM: Stage II
Machine Status 5A 10A

TTSC 95.8% 90.0%

SC1 90.0% 83.3%
SC2 93.3% 86.7%
SC3 100% 93.3%
SC4 100% 93.3%
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Chapter 7

Conclusion and Future Work

Condition monitoring of DTC driven PMSMs and executing the proper maintenance pro-

cedures assist in avoiding costly machine damage. However, the hysteresis comparators in

DTC pose challenges in fault diagnosis for PMSMs. The compensating capability of DTC

and switching frequency variations, determined by the hysteresis band, may result in un-

observable fault impacts in DTC drives. Accordingly, the faulty operation of DTC driven

PMSMs may lead to unstable control if the faults are not detected and mitigated properly

in their early phases. Considering the DTC behavior mentioned above, the contributions of

this work help in maintaining a safe and reliable DTC driven PMSM.

The necessity for a reliable fault diagnosis technique that suits DTC is demonstrated

through a detailed analysis of the impact of the faults on the torque and flux comparators

as well as the torque and flux estimation. It is shown that the hysteresis comparators are

capable of masking the fault presence by adjusting the voltage vector and torque angle. The

flux and torque estimation errors due to the presence of faults are not captured because the

model does not consider the fault dynamics. Inclusion of the fault dynamics in the flux and

torque estimation can improve performance.

A new technique is developed using the MT voltages to detect the presence of faults as

well as estimate fault severity. The proposed machine models are used for fault detection and

separation without the need for complex signal processing techniques. The other advantage
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of this approach is that it maintains the simple structure feature of direct torque control as it

requires only the available signals in the drive without additional sensors. The unique trend

in the voltages aids detection and fault separation; however, classification algorithms enable

severity estimation. It is shown that both k-NN and SVM are the most suited algorithms

for acceptable accuracy even in the presence of noise.

Lastly, a noninvasive algorithm is developed to identify the faulty condition of inverter

driven PMSM under FOC or DTC using the active and reactive power signature analysis.

Spectral components of the power signals are used as fault indicators. This algorithm is

capable of fault separation and severity estimation at different operating conditions without

extra hardware components.

In addition, when employing one of the suggested methods to create the feature set for

the SVM classifier, it has been demonstrated that the SVM classifier is a remarkably efficient

technique for identifying and categorizing faults in PMSMs operated under FOC or DTC,

even when there is limited training data and significant levels of noise. This performance

improvement is noted for power signature analysis and commanded MT voltages yields;

however, this is not the case for MVSA.

Future work will consider the following potential directions:

• Explore Wavelet based diagnosis to detect eccentricity faults: It was shown

that eccentricity faults have a minimal impact on DTC driven PMSM as DTC com-

pensates and tolerates the eccentricity effects by varying the switching frequency. Use

of wavelet based diagnosis may isolate the switching frequency effect to detect the fault

using the low frequency components.

• Develop a fault mitigation scheme: The control stability of the drive system may
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deteriorate when faults occur and become severe as stability limits are dependent on

machine parameters. The robustness improvement can be achieved by integrating a

fault mitigation scheme once the fault is detected. Another solution may be to monitor

the machine parameters using observers in order to keep the control system within the

stability limits.
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