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ABSTRACT

Feature selection methods for ultra-high dimensional datasets have gained significant popularity

in the field of statistical machine learning due to their wide applicability across various scientific

domains. These methods aim to uncover the true sparsity pattern by identifying a small subset

of features that are truly associated with the response variable. However, traditional feature

selection algorithms may suffer from high false discovery rates, limiting their ability to provide

meaningful insights into the underlying relationships. To address this issue, this thesis focuses

on the development and study of two novel feature selection methods that incorporate False

Discovery Rate (FDR) control. These methods are specifically applied to real-world diffusion

magnetic resonance imaging (DMRI) tractography data, demonstrating their effectiveness in

addressing several challenging issues in ultrahigh dimensional datasets.

In the first chapter, we propose a p-value-free FDR controlling method for feature selection.

Most of the state-of-the-art methods in the literature for controlling FDR rely on p-value, which

depends on specific assumptions on the data distribution and may be questionable in some

high-dimensional settings. To surpass this problem, we propose a ‘screening & cleaning’ strategy

consisting of assigning importance scores to the predictors, followed by constructing an estimate

of the FDR. We study the theoretical properties of the method and demonstrate its superior

performance compared to existing methods in an extensive simulation study. Finally, we apply

the method to a gene expression dataset and identify important genes associated with drug

sensitivity.

In the second chapter, We extend the feature selection method from a linear model to a

non-linear and non-parametric setting by utilizing the Deep Learning (DL) framework. The DL

has been at the center of analytics in recent years due to its impressive empirical success in

analyzing complex data objects. Despite this success, most existing tools behave like black-box

machines, thus the increasing interest in interpretable, reliable, and robust deep learning models

applicable to a broad class of applications. Feature-selected deep learning has emerged as a

promising tool in this realm. However, the recent developments do not accommodate ultra-high



dimensional and highly correlated features or high noise levels. In this article, we propose a

novel screening and cleaning method with the aid of deep learning for a data-adaptive multi-

resolutional discovery of highly correlated predictors with a controlled FDR. Extensive empirical

evaluations over a wide range of simulated scenarios and several real datasets demonstrate the

effectiveness of the proposed method in achieving high power while keeping the false discovery

rate at a minimum.

In the third and final chapter, we apply the proposed feature selection methods to the brain

imaging tractography dataset. Our motivation comes from the evidence from studies of dementia

which shows that some older adults continue to maintain their cognitive abilities despite signs

of ongoing neuropathological diseases. Commonly referred to as cognitive reserve, this phe-

nomenon has unclear neurobiological substrates and a current understanding of corresponding

markers is lacking. This study aims at investigating the immense system of structural connec-

tions between brain regions constituting subcortical white matter (WM) as potential markers of

cognitive reserve. Diffusion MRI tractography is an established computational neuroimaging

method to model WM fiber organization throughout the brain. Standard statistical analyses ca-

pable of leveraging the high dimensionality of tractography data face additional methodological

complications beyond those encountered in typical feature selection problems. Our proposed

methodology is specifically tailored for addressing these concerns. Extensive simulation studies

on synthetic datasets mimicking the real tractography dataset demonstrate a substantial gain

in power with minimal false discoveries, compared with state-of-the-art methods for feature

selection. Our application to predicting cognitive reserve in a clinical aging neuroimaging trac-

tography dataset produces anatomically meaningful discoveries in brain regions associated with

risk and resilience to neurodegeneration.

Overall, this thesis presents novel and effective methods for feature selection in ultrahigh

dimensional settings. Our proposed framework would benefit the researchers and professionals

who encounter the difficulty of choosing pertinent variables from correlated and vast datasets in

diverse fields, ranging from finance and social sciences to biology.
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CHAPTER 1

INTRODUCTION

High-dimensional data analysis has become increasingly popular in various fields, such as

biology, finance, social sciences, and engineering. In these fields, it is common to have datasets

with a large number of features or variables, but a relatively small sample size. The main

challenge in these situations is to identify the relevant features that are associated with the

response variable while discarding the irrelevant ones, which is called variable selection.

1.1 Mathematical formulation

Within the framework of supervised learning, we denote a continuous response variable Y

and a set of p continuous covariates X = (X1, . . . , Xp ). The cumulative distribution function (CDF)

of the response variable Y is denoted by Fy (·), while the CDF of the k th predictor Xk is denoted by

Fk (·). We consider an ultrahigh-dimensional setting with a sample size of n and p =O(exp (nτ))

where τ > 0. Now, to induce the sparsity, we assume the existence of a subset S0 ⊂ 1,2, . . . , p

where |S0| = O(1), such that conditional on features in S0, the response Y is independent of

features in Sc
0. In other words, S0 can be defined as k : f (y |X ) depends on Xk , where f (y |X ) is

the conditional density of y given X . For the rest of this thesis, we call the relevant features in S0

important or nonnull features; and the irrelevant features in Sc
0 as unimportant or null features.

Our objective is to identify the sparsity structure by estimating S0.

1.2 The basic model selection methods

Variable selection has a long history in statistics, and various methods have been proposed for

this purpose. The basic Model selection approaches aim to select the best parsimonious model

among a set of candidate models based on a criterion such as the Akaike Information Criterion

(AIC) Bozdogan (1987) or Bayesian Information Criterion (BIC) Chen and Chen (2008). These

basic model selection methods are computationally feasible and work well for low-dimensional

features. However, for ultra-high dimensional feature space, they become computationally

intractable. As a solution, one might use regularization methods, which impose a penalty on the
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model complexity to avoid overfitting. A detailed review of this literature can be found in Fan

and Lv (2010).

Under the linear model framework, suppose, the response y is associated with X through a

linear model:

yi =µ+
p∑

j=1
Xi jβ j +ϵi ,∀i = 1,2, . . . ,n

where due to the sparsity in the model, ∃ a subset S0 ⊂ {1,2, . . . , p} for which β j ̸= 0,∀ j ∈ S0 and

β j = 0,∀ j ̸∈ S0. The most popular penalized regression methods such as Lasso Tibshirani (1996)

and MCP Zhang (2010) minimize the following objective function:

β̂ ∈β∈Rp
1

2n
||Y −Xβ||22 +pλ(β)

The first part of this objective function minimizes the Mean Square Error (MSE) and the second

part imposes a penalty on the number of features in the model, thus increasing the model

parsimony. For example, for the lasso, pλ(β) = ||β||1, for the MCP pλ(β) = λ
p∑

j=1

(
|β j |− λ

a

)
+, for

SCAD, pλ(β) =λ
p∑

j=1


|β j | if |β j | ≤λ
(aλ−|β j |)1{λ<|β j |≤aλ}

(a−1) if λ< |β j | ≤ aλ

(a+1)λ2

2 if |β j | > aλ

These sparsity-inducing regularized methods typically result in a set of features for which

the estimated coefficients are non-zero; i.e. the selected set of relevant features is Ŝn = { j ∈
{1,2, . . . , p} ∋ |β̂ j | ̸= 0}. To assess the performance of a feature selection method, one would

• maximize the Power= E
( |Ŝn∩S0|

|S0|
)
, the expected proportion of relevant features that are

correctly identified and

• minimizes the FDR=E

(
|Ŝn∩Sc

0|
|Ŝn |

)
, the expected proportion of falsely identified features

among all the identified features.

Similar to the scenario in multiple testing, a trade-off exists between power and FDR in

high-dimensional variable selection. Among the various methods available, the model selection

consistent algorithms are the most desirable as they asymptotically uncover the true sparsity
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pattern, and have an asymptotic power of 1 with FDR decreasing to zero. However, these

algorithms are based on stringent assumptions on the design matrix, which are typically not

satisfied by modern high-dimensional datasets.

For instance, Lasso is model selection consistent only under irrepresentable conditions, as

described in Zhao and Yu (2006), which requires the noise variables to be weakly correlated

with signal variables. As a result, Lasso becomes inconsistent for variable selection in most

modern studies. To relax the assumptions, we can first control the associated error and then

try to maximize the power given the controlled error. For example, Lasso can attain asymptotic

power 1 under Restricted Eigenvalue (RE) and beta-min conditions. However, such an approach

does not offer any control over the associated error. Next, we discuss these two approaches: Sure

screening property and FDR control.

1.2.1 Feature screening methods with sure screening property

A feature selection method enjoys the sure screening property if its output Ŝn satisfies the

condition:

P (S0 ⊂ Ŝn) → 1 as n →∞

This implies all the relevant features are retained in the selected set of features. Hence, the

asymptotic power converges to one; however, due to the lack of error control, these methods may

result in higher FDR. The sure screening property was first introduced by Fan and Lv (2008) in the

context of variable selection for linear regression models. They proposed the sure independence

screening (SIS) method, which selects a subset of features based on marginal correlation with

the response variable. Under certain conditions, SIS is able to identify all relevant features with

high probability. Consequently, it has been shown to have good empirical performance in many

applications.

Relaxing the linearity assumption, several model-free feature screening methods have de-

veloped over the years. For example, Xue and Liang (2017) developed a screening procedure

based on a two-step procedure: (1) transforming the data (Y , X ) to a Gaussian distributed array

by norparanormal transformation Liu et al. (2009), and then (2) performing pairwise marginal
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independence test for a bivariate gaussian distribution on the transformed variables (Y , X j ),

for each j = 1,2, . . . , p. This method enjoys the sure screening property under mild regularity

conditions on the dimension of the feature space and the minimum signal strength. However,

due to the inherent structure of the testing procedure, this method only considers the continuous

response variable, which is applicable for regression tasks only. In a broader context, the feature

screening method proposed by Zhou et al. (2018), can be employed for classification tasks. We

discuss this in detail in chapters 2 and 3 later in this thesis.

1.2.2 Feature screening methods with FDR control

In addition to variable selection, controlling the False Discovery Rate (FDR) has also become

an important issue in high-dimensional data analysis. As mentioned above, the FDR is the

proportion of false positives among all the rejected null hypotheses. FDR-controlled methods

aim to restrict the FDR at a pre-specified level while allowing some false positives. FDR control

has been extensively studied in the multiple testing framework, and various methods have

been proposed for this purpose, starting from the famous Benjamini-Hochberg (BH) method

Benjamini and Hochberg (1995). Despite being widely used across scientific domains, the BH

procedure relies on stringent assumptions regarding p-values, which can be challenging to

satisfy in real-world datasets. As a solution, many other methods have been proposed along this

line, see Tansey et al. (2018); Xia et al. (2017); Li and Barber (2019); Lei and Fithian (2018) for a

more detailed overview. However, generating interpretable p-values for nonlinear models on

high-dimensional data remains an unresolved research problem.

To overcome this limitation, the knockoff framework was proposed by Candès et al. (2018).

Essentially, this is a model-free variable selection algorithm with provable FDR control, assuming

prior knowledge on the predictors’ distribution is available. In the next section, we discuss in

detail the knockoff-based approaches.

1.3 Model free methods - Knockoffs and Deep Learning based approaches

Knockoff-based methods have emerged as an alternative approach to address the challenges

of variable selection in high-dimensional data. The Knockoff framework, introduced by Candès
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et al. (2018), constructs a set of knockoff variables to mimic the correlation structure of the

original variables while setting the knockoff features unassociated with the response y . The

key idea is to use these knockoff variables as a reference to estimate the false discovery rate

(FDR) of the selected variables, allowing for a controlled selection of features. The Knockoff

approach has been extended to various regression settings and has been shown to outperform

many other popular variable selection methods, especially in settings with complex nonlinear

relationships between the response and the features. One advantage of the Knockoff framework

is that it does not rely on any specific distributional assumptions, and thus is applicable to a

wide range of data types. However, to generate the knockoff variables, one needs to know or

estimate the distribution of the features which might be a daunting task in practice, especially

for ultra-high dimensional data. In some cases, it may be possible to have prior knowledge of

the correlation pattern among the features. For example, in genetics studies, there is a common

notion of linkage disequilibrium, which helps to specify the dependency pattern among the

alleles at polymorphisms (Sesia et al., 2018). However, this information is typically unavailable

in many other domains.

Recently, Barber et al. (2020) demonstrated that the knockoff framework can yield inflation

in false discoveries, consistent with the error incurred in estimating the predictor’s distribution.

This problem is further exacerbated by highly correlated features. An empirical illustration is

provided in Figure 1.1, demonstrating how the model-X knockoff (Candès et al., 2018) typically

fails to control FDR under a simplistic setting with high multicollinearity.

In recent years, deep learning (DL) based methods have also gained popularity in high-

dimensional data analysis due to their ability to automatically extract relevant features from raw

data. As a consequence, DL-based flexible knockoff generating algorithms have been proposed

(Liu and Zheng, 2019; Jordon et al., 2019; Romano et al., 2020); however, they are trained in a

typical big-n-small-p setting, and it is unclear how they will perform when the sample size n

is significantly smaller than the dimension of the covariates p, and the predictors are highly

correlated. We discuss this issue in detail in Chapter 3.
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Figure 1.1 How multicollinearity affects Knockoffs - A demonstration using simplistic simulation
setting: We simulate n = 400 iid copies of (y ∈R, X ∈R100), where the outcome y is generated
from a linear model: y = 0.5(X20 + X40 + X60 + X80 + X100)+ ϵ,ϵ∼ N (0,20) and the features X ∼
N100(0,Σ), (Σ)i j = ρ|i− j |. We implement Model-X knockoff in two ways: (1) Model-X estimated:
method proposed in Candès et al. (2018), generating knockoffs from the estimated distribution
of the features from the data, and (2) Model-X True: generating the knockoff from the true
distribution of X . For a higher autocorrelation ρ, which is a well-known difficult setting for
traditional feature selection methods, the knockoffs-estimated loses its FDR control. This is
because of the error in estimating the distribution of the features as knockoffs-true successfully
maintains the power-FDR balance even for higher correlation.

On the other hand, Deep learning-based methods have gained significant attention in recent

years for feature selection and prediction tasks in high-dimensional data. Deep learning models

are designed to automatically learn feature representations from the data, without requiring

explicit distributional assumptions. In the context of feature selection, deep learning models can

be used to extract relevant features from high-dimensional data, which can then be used as inputs

to downstream statistical models for prediction or classification tasks. Chen et al. (2021) proposed

an L0-norm based penalized neural network, called Deep Feature Selection (DFS). It enjoys exact

model recovery under some mild assumptions on the underlying functional relationship between

the response and the features. However, one challenge with deep learning-based feature selection

is the lack of sufficient training data; which is quite common in many modern biological datasets.

Recent efforts have been made to address this challenge, by developing methods to interpret
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the learned features and to relate them to known biological or physical processes. To address

this issue, Liu et al. (2017) proposed an ensemble-based method utilizing random dropouts,

especially for high dimensional low sample size data.

In this thesis, we propose an ensemble-based feature selection method for ultrahigh dimen-

sional data with FDR control. Our method combines the strengths of regularization and model

selection methods and achieves better performance than existing methods in terms of both

variable selection and FDR control. We also provide a theoretical analysis of our method and

show that it has desirable statistical properties.
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CHAPTER 2

A P-VALUE-FREE FDR CONTROL METHOD FOR HIGH DIMENSIONAL VARIABLE SELECTION

2.1 Introduction

Variable selection is a fundamental problem in high-dimensional statistical analysis, where

the goal is to select a subset of relevant variables from a large pool of potential predictors to

build a parsimonious model. In modern applications in almost all scientific domains, such

as genomics, brain imaging, and finance, the number of potential predictors can be much

larger than the sample size, which makes traditional variable selection methods such as stepwise

regression or Akaike’s information criterion Bozdogan (1987) inefficient or impractical. Therefore,

recent years have witnessed the development of various ultrahigh-dimensional variable selection

methods that can handle a large number of variables relative to the sample size. These methods

play a crucial role in improving the statistical accuracy and model interpretability while reducing

the computational complexity at the same time. Penalized regression, which applies a penalty

term to the likelihood function or objective function, is one of the most popular methods for

variable selection in high-dimensional data analysis. Examples of these methods include Lasso

and relevant algorithms Tibshirani (1996), SCAD Xie and Huang (2009), the elastic net Zou and

Hastie (2003), adaptive Lasso Zou (2006) , and many more. Theoretical findings concerning

parameter estimation, model selection, prediction, and oracle properties have been formulated

across various model contexts. A comprehensive review of this literature is available in Fan and

Lv (2010), and therefore, it is excluded from this discussion.

One of the main challenges in ultrahigh-dimensional variable selection is controlling the

false discovery rate (FDR), which is the proportion of falsely selected variables among all selected

variables. FDR control is essential for ensuring the validity and reproducibility of the results,

especially in large-scale studies involving thousands or millions of variables. For example, in

genome-wide association studies (GWAS), researchers need to consider hundreds of thousands

of genetic markers to identify the variants associated with a particular trait or disease. Since the
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cost of false discoveries is high, as each selected variant requires a costly follow-up experiment, it

is crucial to limit the number of false discoveries. Hence, researchers are interested in developing

methods that can model the dependence structure of the data while ensuring an upper bound

on the false discovery rate (FDR).

The False Discovery Proportion (FDP) can be represented as a random variable denoted by

F DP , where

F DP = e0

N+∧1

Here, e0 denotes the number of falsely selected variables, N+ denotes the total discoveries, and

a ∧b = max(a,b) tackles the situation where there is no discovery, i.e. N+ = 0. The FDR is

defined as F DR = E(F DP ). Estimating this expectation is a challenging task for the variable

selection problem, and researchers have attempted to tackle this issue from multiple perspectives.

Traditional FDR controlling methods, such as the Benjamini-Hochberg procedure Benjamini and

Hochberg (1995), are based on p-values, which require an assumption of normality and are often

not robust to non-normality or heavy-tailed distributions. Moreover, the validity of p-values

depends on several assumptions such as independence or positive regression dependency on a

subset (PRDS), which may be difficult to justify or examine in practice. Additionally, as noted

in Candès et al. (2018), while maximum-likelihood theory can derive asymptotic p-values for

low-dimensional generalized linear models (GLMs), it is unclear how to obtain p-values for

high-dimensional models where the number of predictors exceeds the number of observations

(n < p). Given these challenges, there is a need to develop a new FDR controlling method that

does not rely on p-values and is suitable for both linear models (LMs) and GLMs.

As a p-value-free FDR controlling method, The Model-X knockoffs Candès et al. (2018)

are widely used offering guaranteed control of the FDR and the flexibility to employ arbitrary

predictive models. To create the distinction between the null and nonnull features, it generates

the ’knockoff’ features mimicking the dependence structure of the feature space while being

independent of the response. To generate these knockoffs one needs to know or estimate the

predictor’s distribution, which is a daunting task in practice, especially for ultra-high dimensional
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feature space. However, even with knowledge of the underlying feature distribution, this method

is infeasible unless the feature distribution is either a finite mixture of Gaussians Gimenez et al.

(2019) or has a known Markov structure Bates et al. (2020). To address some of these complexities,

Dai et al. (2022) proposed an FDR control method based on multiple data splitting (MDS) and

combining different test statistics from multiple splits to construct the estimate of the FDR. Due

to the name, we further call this method "MDS".MDS can theoretically control the FDR while

avoiding the limitations of traditional approaches that rely on assumptions about the distribution

of the data. It has been shown to perform well in simulations and real data analyses, and it

represents a promising avenue for future research in the field of high-dimensional statistical

inference. The method works well in general, however, is computationally intensive due to

fitting a prediction model multiple splits of an ultra-high dimensional dataset. Also, from our

experience, this method is too conservative to discover any features in many practical settings,

thus reducing the power of the method.

To address these challenges, we present a novel p-value-free FDR controlling method for ultra-

high dimensional datasets. The proposed method consists of two steps: screening and cleaning.

In the screening step, we simply reduce the dimension of the feature space by eliminating some

of the null features by utilizing a feature screening method with the sure screening property.

Then in the cleaning step, we further clean out the null features from the selected set of screened

features by constructing a p-value-free estimate of the FDR. We distinguish the null features from

the set of relevant features by effectively utilizing the adaptive penalization on the repeatedly

perturbed lasso. The idea of screening and cleaning is not new in statistics literature and was

first used in Wasserman and Roeder (2009). Our method is easy to implement and does not

require any tuning parameters, making it suitable for a wide range of applications. Under some

mild regularity assumptions, we study the theoretical properties of the proposed method. For an

empirical evaluation, we demonstrate that our method outperforms existing methods in terms

of both FDR control and variable selection accuracy. We also provide insights into the behavior

of our method under different scenarios and show that it can handle various types of data and
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noise structures. Additionally, we apply our method to a real-world dataset from gene expression

analysis for several drugs where we demonstrate its practical usefulness and interpretability.

In summary, our proposed method provides a promising solution for controlled variable

selection in ultrahigh dimensional problems. We believe that our method has significant practi-

cal applications in fields such as genomics, imaging, and natural language processing, where

the number of features can be orders of magnitude larger than the number of samples. The

remainder of this paper is organized as follows. In Section 2.2, we introduce our p-value-free FDR

controlling method and describe its implementation details. Next, in Section 2.3, we study the

asymptotic properties of the proposed method and showed its FDR control guarantee. In Section

2.4, we present simulation studies to evaluate the performance of our method and compare

it with existing methods. In Section 2.5, we apply our method to two real-world datasets and

demonstrate its practical usefulness. Finally, we conclude the paper with a discussion and future

research directions in Section 2.6.

2.2 Methodology

2.2.1 Model setup and assumptions

In the context of a supervised learning regression framework, we have n independent and

identically distributed (i.i.d.) copies of (Yi , Xi ), i = 1,2, . . . ,n, where Y is the continuous response

variable and X , is the set of p continuous covariates, denoted by X = (X (1), X (2), . . . , X (p)). We

consider here the ultrahigh dimensional setting, allowing p = pn →∞, as n →∞. For any square

matrix C , let φ(C ) and Φ(C ) denote the smallest and largest eigenvalues of C . Also, if k is an

integer, define φn(k) = min
M :|M |=k

φ( 1
n X ′

M XM ) and Φn(k) = max
M :|M |=k

Φ( 1
n X ′

M XM ). In the following

sections, we will assume the following linear model and some basic key assumptions:

A1 Yi = X
′
iβ

∗+ϵi , where ϵi are independent and following N (0,σ2).

A2 The design matrix X ∈ Rn×pn allowing pn →∞ as n →∞ with pn ≤ c1enc2 , for some c1 > 0

and 0 ≤ c2 < 1.

A3 S = { j : β∗
j ̸= 0} with s = |S| = s = O(1) and ψ = mi n{|β∗

j | : j ∈ S} = ψ > 0, {β∗
j , j ∈ S} is
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assumed to be fixed.

A4 For any weight vector w ∈ (0,1]p , there exists κ> 0 with

P (liminf
n→∞ mi n∆∈C

∆′
(

X ′X
n

)
∆

||∆||22
≥ κ> 0) = 1,

where, C = {∆ ∈Rp : ||(2WSc − Ip−s
)
∆Sc ||1 ≤ || (2WS + Is)∆S ||1}

A5 There exists positive constants c2,c3 and c4 such that

P (limsup
n→∞

Φn(n) ≤ c2) = 1,P (liminf
n→∞ φn(c3 logn) ≥ c4) = 1,

and P (φn(n) > 0) = 1,∀n.

A6 We consider standardized covariates: E(Xi j ) = 0,E(Xi j )2 = 1. Also, there exists a constant

B ∈ (0,∞) such that P (|Xi j | < B) = 1.

These assumptions can be relaxed at the expense of more intricate proofs. Our objective is to

learn the sparsity structure by estimating the true index set S through the selection of a feature

set D̂n that ensures control over the associated false discovery rate (FDR) under a predefined

threshold q . Specifically, we aim for F DR = E
( |D̂n∩Sc |

|D̂n |
)
< q . Additionally, while maintaining

FDR control, we strive to maximize the Power = E
( |D̂n∩S|

|S|
)

in order to strike a stable trade-off

between type-I and type-II errors, thereby enhancing the overall performance of the proposed

methodology. Next, we will provide a detailed description of the multiple steps involved in our

proposed methodology.

2.2.2 Screening step

Assuming that the cardinality of set S is much smaller than the dimension of the feature

space, p, the majority of features are found in the complement of S0, denoted as Sc
0. Hence,

during the screening step, our primary focus is on identifying an active set, Ŝn , with a much

smaller cardinality than p, such that the probability of S being a subset of Ŝn approaches 1 as n

approaches infinity. This is known as the sure screening property, first introduced in Fan and Lv

(2008), which guarantees that all relevant predictors are retained in Ŝn . The remaining predictors,
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denoted as X j , j ∈ Ŝc
n , are removed from further analysis. This is just a dimension reduction step.

We proceed as follows:

• First, we randomly split the data into two groups D1 and D2, each with n1 and n2 observa-

tions. In D1, we fit the lasso model with tuning parameter λ ∈Λ, whereΛ is some index set,

and get

β̂(λ) = argminβ∈Rpn

1

2n1
∥ YD1 −XD1β ∥2

2 +λ ∥β ∥1 (2.1)

We further denote the set of selected variables as a function of the tuning parameter λ:

S̃n(λ) = { j : |β̂ j (λ)| ̸= 0}.

• In D2, we minimize the squared error loss to get the optimum value of the tuning parameter

λ∗, i.e., λ∗ = argminλ∈Λ L̂(λ), where L̂(λ) = 1
n2

∑
i∈D2 (Yi −X

′
i β̂(λ))2.

• Therefore our active set Ŝn is the set of variables corresponding to the cross-validated λ,

i.e., Ŝn = S̃n(λ∗), where λ∗ = argminλ∈Λ L̂(λ)

By assumption (A1)-(A6) in 2.2.1, it can be shown as in Wasserman and Roeder (2009) that this

Ŝn enjoys sure screening property; i.e. P (Ŝn ⊃ S) → 1 as n →∞. Hence, although the dimension

is reduced in the active set, we can further clean the active features eliminating the null features

still retained in the active set Ŝn . This is our goal in the next step.

2.2.3 Cleaning step

We start from the output y and the active features X Ŝn
. In order to characterize the relevant

features, we first define an idea of importance score for the active features. It measures the

strength of the association of the predictor with the response. For a given weight vector {w j , j ∈
Ŝn} and a long sequence of asymptotically increasing tuning parameter λ1 ≤λ2 ≤ ·· · ≤λ2r we fit

weighted and unweighted lasso r times. For any tuning parameter λi , i = 1,2, . . . ,r , the weighted

lasso takes the following form:

β̃w (λi ) = argmin
β∈R|Ŝn|

1

2n
∥ Y −X Ŝn

βŜn
∥2

2 +λi ∥WβŜn
∥1 (2.2)
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On the other hand, the unweighted lasso is the standard lasso expressed as:

β̃uw (λi ) = argmin
β∈R|Ŝn|

1

2n
∥ Y −X Ŝn

βŜn
∥2

2 +λi ∥βŜn
∥1 (2.3)

where W = di ag (w1, w2, . . . , w|Ŝn |).

Then we calculate the importance score for the j-th predictor I w
j by measuring how much it has

survived through the lambda sequence before vanishing off; i.e.

I w
j = 1

r

r∑
i=1

1(β̃w
j (λi ) ≥ τ),I uw

j = 1

r

r∑
i=1

1(β̃uw
j (λi ) ≥ τ) (2.4)

for some pre-specified small threshold τ. This is analogous to the thresholded lasso approach by

Wang et al. (2017). The superscript ’w’ and ’uw’ indicates the usage of the weighted or unweighted

version of lasso respectively. Next, we carefully select a sequence of tuning parameters, which

is a crucial step in our proposed approach, to fully exploit the disparity between the weighted

and unweighted lasso across a wide range of penalty levels. In order to achieve this, we consider

the ordered sequence of tuning parameters λ1 ≤λ2 ≤ ·· · ≤λr ≤λr+1 ≤ ·· · ≤λ2r . To understand

the behavior of lasso, we set the smallest r λ-values (i.e. λ1,λ2, . . . ,λr ) in order of
√

l og (p)
n . Now

in order to understand the behavior of the weighted lasso, we set the largest r λ-values in a

much higher level o(
p

nγ) for γ > 0. Specifically, in practice, to select our sequence of tuning

parameters λ to further calculate the importance score, we proceed as follows:

1. First, a sequence of r −1 values for λ1, . . . ,λr−1 is generated in a logarithmic scale; such as

λi = 2
√

log (p)
n ∗φ r−i

r ,∀i = {1,2, . . . ,r −1}.

2. Then, we set the λr at λr = max
j∈{1,2,...,p}

|X ′
j y |/n.

3. Next, for the last and largest r values of the sequence, we start with setting

λ2r = max
j∈{1,2,...,p}

|X ′
j y |/n + c̃nγ, where c̃ is a small constant, typically set as c̃ = 0.0001 and

γ< 1
2 .

4. Finally, we generate the remaining r −1 largest λ-values (i.e. λr+1, . . . ,λ2r ) using a similar

logarithmic scale such as: λr+i =λ2r ∗φ r−i
r ,∀i = {1,2, . . . ,r −1}.
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The value of φ is typically set at 0.001, and r is set to 100. Despite its apparent complexity,

this construction of the sequence of penalty parameters directly emerges from the asymptotic

analysis of the weighted lasso along its regularization path, as we have extensively discussed in

Section 2.3. Using this λ-sequence, we bound the unweighted importance scores below 1; i.e.

I uw
j < 1,∀ j ∈ {1,2, . . . , p}. The underlying idea is that the important predictors should survive

longer even for the higher value of the tuning parameter λ. This importance score has great

potential in identifying the association strength of the covariates with the response by utilizing

adaptive penalization. Suppose, the importance score for the j-th variable obtained from the

unweighted lasso (i.e. taking w j = 1,∀ j ) is denoted by I uw
j . Then for a typical simulated dataset,

the following Figure 2.2.3 demonstrates the behavior of weighted and unweighted importance

scores. We can particularly note that the weighted importance scores for true non-null variables

are significantly greater than the whole bootstrap distribution of the unweighted importance

scores. On the other hand, the weighted importance score for the true null variable is comparable

to their unweighted counterparts. This disparity between the unweighted and weighted version

of the importance score makes it apt for replacing the p-values in the FDR estimation in this

cleaning step. we proceed as follows.

1. We want to select the variables with high-importance scores. So, for any cutoff∆, we define,

N+(∆) =number of total discovered variables =
∑

j∈Ŝn
1
(
I w

j ≥∆
)

and

e0(∆) = number of falsely discovered variables =
∑

j∈Ŝn
1
(
I w

j ≥∆, j ̸∈ S
)

2. While the random variable N+(∆) is observable, we need to estimate somehow the unob-

served e0(∆) by ê0(∆) and thus we estimate the False Positive Rate (FPR) as

ˆF PR(∆) = ê0(∆)

N+(∆)
=

∑
j∈Ŝn

1
(
I uw

j ≥∆
)

∑
j∈Ŝn

1
(
I w

j ≥∆
)

3. We calculate the optimum cutoff∆∗, for which the ˆF PR is controlled at some pre-specified

threshold q :

∆∗ = min

{
∆> 0 : 0 < ê0(∆)

N+(∆)
≤ q

}
(2.5)
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Figure 2.1 Important scores - weighted vs unweighted - A demonstration using simplistic sim-
ulation setting: We simulate n = 400 iid copies of (y ∈ R, X ∈ R100), where the outcome y is
generated from a linear model: y = 0.5(X20+X40+X60+X80+X100)+ϵ,ϵ∼ N (0,1) and the features
X ∼ N100(0,Σ), (Σ)i j = ρ|i− j |. The ten Vertical Red lines are indicating the true nonnull predictors.
The Solid Green is indicating the weighted importance scores and the dense lines are indicating
the unweighted importance scores for 1000 bootstrap versions of the data.

This minimum is taken over ∆> 0 taking values in the set
{
I w

1 ,I w
2 , . . . ,I w

p

}
4. Finally the selected set of variables:

D̂n =
{

j ∈ Ŝn : I w
j ≥∆∗

}
(2.6)

Intuitively, the weighted and unweighted importance scores behave similarly for the null

variables and the proposed method utilizes this characteristic to identify the null features. In

the next section, we further show theoretically that with mild assumption, our proposed above-

mentioned will control the FDR below the user-specified threshold q .

2.2.4 Obtaining appropriate weights

The proposed method relies on obtaining suitable weights, where smaller values are assigned

to the relevant predictors in set S to minimize their penalty, while larger values are assigned to
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null features in set Sc to increase their penalization. To address this, we introduce a perturbation

bootstrap approach in this section. Perturbation bootstrap is a resampling technique used to

estimate the sampling variability and uncertainty associated with a statistical model or estimator

by perturbing the observed data. It involves generating new datasets by introducing small

perturbations or variations to the original data, allowing for the assessment of the stability and

robustness of the statistical analysis. A more detailed review of the perturbation bootstrap can

be found elsewhere, such as Minnier et al. (2011); Das and Lahiri (2019). In our setting, we define

the perturbation bootstrap in the following way.

β̂b(λ) = argmin
β∈R|Ŝn |

1

2n

n∑
i=1

ui (Yi −X Ŝn ,iβŜn
)2 +λ ∥βŜn

∥1 (2.7)

where {u1,u2, . . . ,un} is a set of positive values iid samples generated from a bounded distribution

like Uni f or m(1,2). These random samples stochastically perturb the objective function and

repeating this a large number of times helps in recognizing patterns in the solution and assessing

the underlying uncertainty.

To generate the weights w j , j ∈ Ŝn , , we set the tuning parameter maintainingλw
n = o(

√
l og (p)

n ).

We randomly generate the iid samples U∗
b = {ub

1 ,ub
2 , . . . ,ub

n} from a non-degenerate bounded

positive-valued distribution and repeat the process B times to generate B sets of {U∗
b }B

b=1. Let

β̂b(λw
n ) be the perturbed lasso estimator 2.2.4 perturbed by U∗

b with tuning parameter λw
n .

In Section 2.3, we demonstrate this perturbed lasso enjoys asymptoticaly vanishing L2 error

||β̂w (λ)−β∗||2. Finally,we calculate the weight w j for the variable X j , j ∈ Ŝn as

w j = 1

B

B∑
b=1

1
(
|β̂b

j (λw
n )| < τ

)
+ c̃

n
1
2−γ

(2.8)

for some pre-specified small threshold c̃,τ > 0 and γ < 1
2 as mentioned in Section 2.2.3. By

selecting a suitably small value for τ, the consistency of the perturbed lasso method guarantees

that the weights w j , j ∈ Ŝn ∩S will approach zero suggesting no penalization for the true features.

On the other hand, the null weights w j , j ∈ Ŝn∩Sc would tend to 1 indicating higher penalization.

However, to maintain their rate of convergence we add the small decreasing sequence c̃

n
1
2 −γ . We

discuss and prove this in detail in Section 2.3
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2.3 Theoretical properties

In this section, we establish the asymptotic properties of the proposed method, including

the guarantee of FDR control. For ease of demonstration, we divide the theoretical study into

the following parts: Section 2.3.1 focuses on the asymptotic properties of the weights, while

Section 2.3.2 provides a detailed analysis of the weighted lasso. We examine the differences

between the weighted and unweighted lasso methods for an asymptotically increasing sequence

of tuning parameters, which leads to the attainment of FDR control. Additionally, our analysis

demonstrates that the method achieves asymptotic power approaching unity. Moreover, in

accordance with the assumptions stated in Section 2.2.1, our screening step directly utilizes the

framework proposed in Wasserman and Roeder (2009), which has been proven to satisfy the

sure screening property, denoted as P (Ŝn ⊃ S) → 1 as n →∞. Therefore, conditioned on this

screening step, our focus shifts to the analysis of the FDR and power of our proposed method

on the reduced dimensional data
(
Y , X Ŝn

)
. For the sake of notational simplicity, throughout this

section, the term "X" refers specifically to the active features X Ŝn
obtained from the screening

step unless stated otherwise. Consequently, p̃ = |Ŝn | and β=βŜn

2.3.1 Asymptotic properties of the weights

We start from the perturbed lasso estimator defined in 2.2.4.

β̂b(λ) ∈ argminβ∈Rp̃
1

2n

n∑
i=1

ui (Yi −Xiβ)2 +λ ∥β ∥1

∈ argminβ∈Rp̃
1

2n
||ŨbY −Ũb Xβ||22 +λ ∥β ∥1

where Ũb = di ag {U∗
b } = di ag {ub

1 ,ub
2 , . . . ,ub

n}.

Lemma 2.3.1 (L2 error bound of perturbed Lasso). Under the assumptions mentioned in Section

2.2.1 and with bounded perturbation variables U∗
b ∈ [cL ,cU ]n , the L2 estimation error of perturbed

lasso converges to zero; i.e.

||β̂b −β||2 ≤ o

√
log (p̃)

n

 (2.9)
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Proof. As β̂b minimizes the objective function in 2.2.4, we note that

1

2n
∥ Ũ Y −Ũ X β̂b ∥2

2 +λ ∥ β̂b ∥1≤ 1

2n
∥ Ũ Y −Ũ Xβ∗ ∥2

2 +λ ∥β∗ ∥1

=⇒ 0 ≤ 1

2
(β̂b −β∗)′(

X ′Ũ ′Ũ X

n
)(β̂b −β∗) ≤ 1

n
ϵ′Ũ ′Ũ X (β̂b −β∗)+λ||β∗||1 −λ||β̂b ||1

≤λ
[

1

2
||β̂b −β∗||1 +||β∗||1 −||β̂b ||1

] (2.10)

by taking λ≥ 2|| 1
n ϵ

′Ũ ′Ũ X ||∞. Now, we note that from equation 2.3.1,

0 ≤ ||β̂b −β∗||1 +2||β∗||1 −2||β̂||1

= ||β̂b
S −β∗

S ||1 +||β̂b
Sc ||1 +2||β∗

S ||1 −2||β̂b
S ||1 −2||β̂b

Sc ||1

≤ ∑
j∈S

|β̂b
j −β∗

j |+2
∑
j∈S

|β̂b
j −β∗

j |+
∑

j∈Sc
|β̂b

j |−2
∑

j∈Sc
|β̂b

j |

= ||3(β̂b
S −β∗

S )||1 −||β̂b
Sc ||1

(2.11)

Hence, β̂b −β∗ ∈C , where the cone C is defined in equation A4. Additionally, we note that, as

ub
i ≥ cL > 0,∀i ∈ {1,2, . . . ,n}, for any ∆ ∈C ,

∆′ X ′Ũ ′Ũ X

n
∆= 1

n
||Ũ X∆||22 ≥

1

n
mini∈{1,2,...,n}(ub

i )2||X∆||22 ≥ cLκ (2.12)

Hence the RE assumption in A4 holds for perturbed Lasso with the new lower bound cLκ. Hence,

continuing from equation 2.3.1,

cLκ

2
||β̂b −β∗||22 ≤

λ

2

[
||3(β̂b

S −β∗
S )||1 −||β̂b

Sc ||1
]

≤ λ

2

[
||3(β̂b

S −β∗
S )||1

]
≤ λ

2

[
3
p

s||β̂b
S −β∗

S )||2
]

≤ λ

2

[
3
p

s||β̂b −β∗)||2
]

(2.13)

Hence, ||β̂b −β∗||2 ≤ 3λ
p

s
cLκ

, when λ≥ 2|| 1
n ϵ

′Ũ ′Ũ X ||∞. Now we note that as by assumption A6,

P (|Xi j | < B) = 1, =⇒ 1

n
||Ũ X j ||22 ≤ c2

U B 2 (2.14)
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Now, let Z j = 1
n ϵ

′Ũ X j ∼ N
(
0, σ

2

n ||Ũ X j ||22
)

, j = 1,2, . . . , p̃, conditional on Ũ and X .

Then || 1
n ϵ

′Ũ X ||∞ = max1≤ j≤p̃ |Z j |. This implies,

P

(
2

n
||ϵ′Ũ X ||∞ ≥ t

)
≤

p̃∑
j=1

P

(
|Z j | > t

2

)
≤

p̃∑
j=1

2e
− t2n2

8||Ũ X j ||22σ2

≤ 2p̃e
− t2n2

8σ2c2
U B2n

= 2p̃e
− t2n

8σ2c2
U B2

= 2e− nδ2

8 → 0

(2.15)

by setting t = cU Bσ

(√
8log(p̃)

n +δ
)

Extending this result, we can show that with probability tending to 1,

||β̂b −β∗||2 ≤ 3λ
p

s

cLκ
if, λ≥ o

√
log (p̃)

n

 (2.16)

Lemma 2.3.1 establishes that withλ= o

(√
l og (p̃)

n

)
, the L2 error bound ||β̂b−β∗||2 ≤ oP (1).Next,

we utilize this result to show that our proposed weights mentioned in Section 2.2.4 achieve the

desired properties.

First, we observe that by the error bound in Lemma 2.3.1, for any j ∈ S, we can write, |β∗
j | =

|β∗
j − β̂b

j + β̂b
j | ≤ |β̂b

j | + |β̂b
j −β∗

j | and that implies, |β̂b
j | ≥ |β∗

j | − |β̂b
j −β∗

j | ≥ ψ+ oP (1). Conse-

quently, for any j ∈ S, |β̂b
j | ≤ oP (1). Hence, with sufficiently small τ < ψ and λw

n = o(
√

l og (p)
n ),

1
(
|β̂b

j (λw
n )| < τ

)
P→ 0. Similarly, for j ∈ Sc, 1

(
|β̂b

j (λw
n )| < τ

)
P→ 1, as n →∞.

For 0 < γ< 1
2 , we recall,

w j = 1

B

B∑
b=1

1
(
|β̂b

j (λw
n )| < τ

)
+ c̃

n
1
2−γ

(2.17)

Lets denote, w̃ j = 1
B

∑B
b=1 1

(
|β̂b

j (λw
n )| < τ

)
. by Markov inequality, we see that, for any α> 0 and
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j ∈ S,

P (w̃ j > 2e− n(δ2+α)
8 ) < E(w̃ j )

2e− n(δ2+α)
8

=
P

(
|β̂b

j (λw
n )| < τ

)
2e− n(δ2+α)

8

≤ 2e− nδ2

8

2e− n(δ2+α)
8

for δ> 0. Hence, w j = o

(
e− n(δ2+α)

8 + 1

n
1
2 −γ

)
for j ∈ S.

For j ̸∈ S, for any α> 0, similarly as above w j → 1 as n →∞

P

(
w̃ j < 1−2e− n(δ2+α)

8

)
= P

(
1− w̃ j > 2e− n(δ2+α)

8

)
≤ E(1− w̃ j )

2e− n(δ2+α)
8

≤ 2e− nδ2

8

2e− n(δ2+α)
8

as n →∞
(2.18)

Hence, |1−w j | < o

(
e− n(δ2+α)

8 + 1

n
1
2 −γ

)
for j ̸∈ S. Consequently, the proposed weights offer valuable

proxy information regarding β∗. They tend to approach zero for relevant features in S, indicating

their amplified significance, while converging towards 1 for null features in Sc . This capability

to discern between null and non-null features renders them suitable for utilization in adaptive

penalization strategies.

2.3.2 Asymptotic FDR control and power analysis

We start by expressing the FPR in the following way:

F PR =
∑p

j=1 1
(
I w

j ≥∆∗, j ̸∈ S
)

∑p
j=1 1

(
I w

j ≥∆∗
) =

∑
j ̸∈S 1

(
I w

j ≥∆∗
)

∑p
j=1 1

(
I w

j ≥∆∗
) = ∑p

j=1 1
(
I uw

j ≥∆∗
)

∑p
j=1 1

(
I w

j ≥∆∗
) ·

∑
j ̸∈S 1

(
I w

j ≥∆∗
)

∑p
j=1 1

(
I uw

j ≥∆∗
)

≤ q ·R(∆∗)

(2.19)

where R(∆) =
∑

j ̸∈S 1
(
I w

j ≥∆
)

∑p
j=1 1

(
I uw

j ≥∆
) . The last inequality holds by the construction of ∆∗ in equation 3.

Now in order to show the FDR control, we only need to show that,

lim
n→∞E

(
R(∆∗)

)≤ 1

Now, decomposing the E (R(∆∗)) we get

E
(
R(∆∗)

)= E

 ∑
j ̸∈S 1

(
I w

j ≥∆∗
)

∑
j∈S 1

(
I uw

j ≥∆∗
)
+∑

j ̸∈S 1
(
I uw

j ≥∆∗
)

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Following Theorem 2.3.2 first establishes the L2 error bound for the weighted lasso in equation

2.2.3. The proof is relegated to Appendix B.

Theorem 2.3.2 (L2 error bound of weighted Lasso). Assume that the weights corresponding to

the true features are among the first m elements of the ordered list of weights defined as wor der =
{w(1), w(2), . . . , w(p̃)} and let’s denote the set of m ordered weights as wT = {w( j ),1 ≤ j ≤ m}. Under

the basic assumptions mentioned in Section 2.2.1 and with positive constants c and c ′, the weighted

lasso maintains the following L2 error bound

||β̂w (λ)−β∗||2 ≤ λ

κ
||wT ||2 , where λ≥ cσ

 p
mp

n||wT ||2
+

√
log (p̃)

n

1

w(m+1)

 (2.20)

when ||wT ||2
w(m+1)

√
log (p̃)

n +
√

m
n = o(1). This further implies ||β̂w −β∗||∞ ≤ oP (1)

Theorem 2.3.2 demonstrates how the proper utilization of weights in adaptive penalization

improves the accuracy. We can retrieve the traditional L2 bound for unweighted lasso by setting

w j = 1,∀1 ≤ j ≤ p̃. Next, in the following lemma, we demonstrate some key characteristics for

our proposed weighting scheme in Section 2.2.4.

Lemma 2.3.3 (Key characteristics for our proposed weighting scheme in Section 2.2.4). Suppose

the weights are generated using our proposed weighting scheme in Section 2.2.4. Then, with high

probability, (1) The wS = {w j , j ∈ S} belongs to to the first s elements in the ordered list wor der ;

i.e.,P (|m − s| > ϵ) → 0, and (2) P (w̃mi n < 1− 1

n
1
2 +γ ) → 0

Proof. We prove these statements one by one.

Claim 1: The wS belongs to to the first s elements in the ordered list wor der ; i.e.,P (|m−s| > ϵ) → 0

Proof of Claim 1: This is true as by lemma 2.3.1, for any α> 0

P (sup
j∈S

w j > e− n(δ2+α)
8 + 1

n
1
2−γ

) ≤ ∑
j∈S

P (w j > e− n(δ2+α)
8 + 1

n
1
2−γ

) ≤ 2se− nα
8 and

P ( inf
j∈Sc

w j < (1−e− n(δ2+α)
8 + 1

n
1
2−γ

)) ≤ ∑
j∈Sc

P (w j < 1−e− n(δ2+α)
8 + 1

n
1
2−γ

) ≤ 2p̃e− nα
8

After the screening, the dimension of the active set |Ŝn | = p̃ = o(n3) Wasserman and Roeder

(2009) and by our assumption in Section 2.2.1, s = O(1); hence, both the probabilities tend to
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zero with a high convergence rate. The weight wS corresponds to the first s elements in the

ordered list wor der , denoted as w(1), w(2), . . . , w(p̃). Consequently, for any ϵ> 0, P (|m − s| > ϵ) ≤
P (sup

j∈S
w j > e− n(δ2+α)

8 + 1

n
1
2 −γ )+P ( inf

j∈Sc
w j < (1−e− n(δ2+α)

8 + 1

n
1
2 −γ )) ≤ 4p̃e− nα

8 → 0.

Claim 2: Define w̃mi n = min
j=m+1,...,p̃

w( j ). Then, P (w̃mi n < 1− 1

n
1
2 +γ ) → 0 and P (||w(1:m)||2 > 1

n
1
2 −γ ) →

0.

Proof of Claim 2: The proof directly follows from the proof of claim 1. First, we note that

P (w̃(m+1) < 1−e− n(δ2+α)
8 + 1

n
1
2−γ

) = P (w(s+1) < 1−e− n(δ2+α)
8 + 1

n
1
2−γ

)+P (m > s)

≤ P ( inf
j∈Sc

w j < (1−e− n(δ2+α)
8 + 1

n
1
2−γ

))+P (m > s)

≤ 6p̃e− nα
8

Therefore, these weights fulfill all the assumptions of theorem 2.3.2, making the bound

directly applicable to the proposed weighting scheme. Particularly, we note that,

||wT ||2
w(m+1)

√
log (p̃)

n
≤

e− n(δ2+α)
8 + 1

n
1
2 −γ

1−e− n(δ2+α)
8 + 1

n
1
2 −γ

√
log (p̃)

n
= o(1)

Next, in the following lemma 2.3.4, we discuss the order of the sequence of tuning parameters

λ1 <λ2, . . . ,λ2r which we specifically designed in Section 2.2.3 for the importance score. Addi-

tionally, we show the order of the penalty level λmax after which the unweighted lasso returns an

empty model with all estimated coefficients β̃uw (λmax) = 0

Lemma 2.3.4 (Order of the designed tuning parameters). Among the sequence of tuning pa-

rameters considered, which has a length of 2r , the first r smallest tuning parameters follow an

order of o

(√
lop(p̃)

n

)
, while the last r largest tuning parameters are o(nγ) for γ< 1

2 . Additionally,

λmax < o(nγ) where λmax = sup{λ : max
j∈1,2,...,p̃

|β̃uw (λ)| = 0}

Proof. By construction, the first r smallest tuning parameters follow an order of o

(√
l op(p̃)

n

)
. On

the other hand, the sequence of r largest tuning parameter is greater than the order of 1

n
1
2 −γ .
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Hence,
p

mp
n||wT ||2 ≤

p
mp

n 1

n
1
2 −γ

= o(nγ) and our chosen λ-sequence can be application for the L2

bound.

Next, in order to study λmax , we first note that it is the level of penalty where the first variable

enters the lasso model along the regularization path. Hence,

λmax = max
j∈{1,2,...,p̃}

|X ′
j y |/n ≤ 1

n
max

j∈{1,2,...,p}
||X j ||2||y ||2

≤ B
p

n

n
||y ||2 = Bp

n
||y ||2

(2.21)

Now, ||y ||22 =
n∑

i=1
y2

i , where yi ∼ N (X ′
iβ

∗,σ2) independently. Hence, ||y ||22 =
n∑

i=1
σ2u2

i , where u2
i =

y2
i
σ2 ∼χ2

1

(
(X ′

iβ
∗)2

)
; which implies

E ||y ||22 =
n∑

i=1
σ2 (

1+ (X ′
iβ

∗)2)≤ n∑
i=1

σ2

(
1+ (B

∑
j∈S

β∗
j )2

)

=⇒ E ||y ||22
n1+γ → 0 =⇒ E ||y ||2

n
1+γ

2

→ 0

(2.22)

for any 1
2 > γ> 0. Hence, by Markov inequality, P (||y ||2 > 1+γ

2 ) ≤ E ||y ||2
n

1+γ
2

→ 0. This implies λmax ≤
Bp
n
||y ||2 ≤ n

γ
2 ≤λr+1.

Lemma 2.3.4 highlights several crucial characteristics: firstly, it establishes the asymptotic

ordering of our carefully designed sequence of penalty parameters, i.e., λ1 ≤ λ2 ≤ ·· · ≤ λr ≤
λr+1 ≤ ·· · ≤λ2r ; secondly, it guarantees that the unweighted importance scores I uw

j will always

remain strictly below 1 since our chosen sequence of tuning parameters mostly exceeds λmax .

It also, demonstrates that, due to the construction, λr+1 ≤ ·· · ≤ λ2r are greater than the order

of o(
p

sp
n||wS ||2 ). The following lemma 2.3.2 demonstrates how the error bound in theorem 2.3.2

further characterizes the behavior of the null importance scores defined in 2.4. This shows

that for the null features, the weighted and unweighted importance scores become similar

asymptotically.

Lemma 2.3.5 (Asymptotic behaviour of the importance scores). For any cutoff ∆> 0, as n →∞

P

( ∑
j∈Sc

|1
(
I w

j ≥∆
)
−1

(
I uw

j ≥∆
)
| > ϵ

)
→ 0 (2.23)
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Proof. For any j ∈ Sc, |β̂w
j | ≤ oP (1) for whole sequence of tuning parameters λ1, . . . ,λ2r . Hence,

we have, for any ∆> 0,

P
(
I w

j >∆
)
= P

(
2r∑

i=1
1
(
|β̂w

j (λi )| > τ
)
>∆

)
≤

∑2r
i=1 P (|β̂w

j | > τ)

∆
≤ 2r e−c5n

∆

for c5 > 0. Similarly,

P
(
I uw

j >∆
)
= P

(
2r∑

i=1
1
(
|β̂uw

j (λi )| > τ
)
>∆

)

≤ P

(
r∑

i=1
1
(
|β̂uw

j (λi )| > τ
)
> ∆

2

)
+P

(
2r∑

i=r+1
1
(
|β̂uw

j (λi )| > τ
)
> ∆

2

)

≤ r e−c5n

∆

So, with a fixed ∆ ∈ (0,1), for j ∈ Sc, we have 1
(
I w

j ≥∆
)

P→ 0 and 1
(
I uw

j ≥∆
)

P→ 0. Hence, for

a null feature, the weighted and unweighted importance scores behave similarly. Additionally,

due to the monotonicity wrt ∆, these convergences are uniform for ∆ ∈ (0,1).

So, for any j ∈ Sc , for ∆ ∈ (0,1) and ϵ> 0,

P
(
|1

(
I w

j ≥∆
)
−1

(
I uw

j ≥∆
)
| > ϵ

)
≤ P

(
1
(
I w

j ≥∆
)
+1

(
I uw

j ≥∆
)
> ϵ

)
≤ P

(
1
(
I w

j ≥∆
)
> ϵ

2

)
+P

(
1
(
I uw

j ≥∆
)
> ϵ

2

)
≤ 6r e−c5n

ϵ∆

Furthermore, for a sequence un = o( 1
n ),

P

( ∑
j∈Sc

|1
(
I w

j ≥∆
)
−1

(
I uw

j ≥∆
)
| > un

)
= p̃ max

j∈Sc
P

(
|1

(
I w

j ≥∆
)
−1

(
I uw

j ≥∆
)
| > un

)
→ 0

as the basic convergences are in order of exponential to n and p̃ = o(n3).

Theorem 2.3.6 (Asymptotic FDR control guarantee of the proposed method). With ∆∗ as the

data-dependent optimum cutoff defined in eq. 3,

lim
n→∞F DR = E

∑p
j=1 1

(
I w

j ≥∆∗, j ̸∈ S
)

∑p
j=1 1

(
I w

j ≥∆∗
)

= 0

Also, the asymptotic power with the optimum cutoff ∆∗ approaches 1; i.e.,

lim
n→∞Power = E

∑p
j=1 1

(
I w

j ≥∆∗, j ∈ S
)

|S|

= 1

The proof is relegated to Appendix A.
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Figure 2.2 Correlation-wise comparison: the effect size and sparsity levels are fixed.

2.4 Simulation Studies

To evaluate the performance of the proposed variable selection method, we conducted a

comprehensive simulation study. We simulated data under different scenarios, including varying

correlation structures, effect sizes, sparsity, and noise levels.

Specifically, we consider the following high-dimensional linear regression setup: Y n×1 ∼
Np (X n×pβp×1,σ2In) with p=1000 and n = 600.The true index set S is randomly generated main-

taining |S| = s with βSc = 0 and the values of βS are randomly drawn from N(β0,0.1). For the

design matrix, each Xi , i = 1,2, ...,n are randomly drawn from Np (0,Σ) where Σi j = cov(Xi , X j ) =
ρ|i− j |.

1. Correlation wise comparison: we fix the effect size |β0| = 1 and correlation between Xi

and X j varied as ρ = {0.2,0.4,0.6,0.8} keeping s = 20.

2. Effect-size wise comparison: We fix ρ at 0.5, s = 20 and varied the effect size with |β0| =
{0.6,0.8,1,1.2}.

3. Sparsity-size wise comparison: We fix ρ at 0.5 and β at 1, then gradually increase s =
{10,20,30,40,50}

We compared the performance of our proposed methods with several existing methods, including

the Model-X knockoff Candès et al. (2018) and the multiple data splitting (MDS) approach Dai

et al. (2022) for FDR control. As we discussed in Section 2.1, the Model-X knockoff Candès et al.

(2018) is a variable selection method that controls the FDR by constructing a set of "knockoff"

variables that mimic the correlation structure of the original variables. On the other hand,
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Figure 2.3 Effect size-wise comparison: the autocorrelation and sparsity levels are fixed.

the MDS is a recently developed method based on the random splitting based technique that

assesses the stability of selected features by repeating the variable selection process on multiple

random subsamples of the data. These two methods represent a wide class of feature selection

models in the current literature and hence we choose these two as other competing methods for

the empirical study.

We evaluated the performance of these methods using the FDR as the primary metric,

controlling for a pre-specified FDR level at q = 0.10. We also computed the true positive rate

(TPR) to assess the power of the methods. We repeated each simulation scenario 100 times to

ensure statistical reliability and calculated the mean and standard deviation of the FDR, and

Power across replications. For the implementation of the knockoff procedure, we adopt the

two-stage approach. First, we randomly split the data into two halves. In the first part, we

apply the screening process as in Wasserman and Roeder (2009) and screen out most of the

null variables with sure screening property, while in the second part, we apply the knockoff

procedure to clean the noise variables with FDR control. For the knockoff variables, we generate

second-order Gaussian knockoffs using the estimated model parameters with full semidefinite

programming (SDP) construction. In spite of its computational complexity, the SDP knockoffs

are statistically superior by having higher power than its other alternatives for creating knockoff

variables. For the test statistic for the knockoff approach, we considered the signed maximum

statistic: W j = max(Z j , Z̃ j ) · si g n(Z j − Z̃ j ), where Z j and Z̃ j are the maximum values of λ at

which the jth variable and its knockoff, respectively, enter the generalized linear model. To

implement the MDS method, we use the R-code provided in their paper Dai et al. (2022).
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Figure 2.4, 2.4, and 2.4 illustrates the power and FDR comparisons in the correlation-wise,

effect size-wise, and sparsity-wise experiments respectively. We note that the performance of

the knockoffs is dependent on the estimation of the feature distribution in order to generate

the knockoffs. Hence to separate this out, we consider the "Model-X knockoff - true" where

the true feature’s distribution is used to generate the knockoffs. This is possible here as thein

the simulation setup, we know the true data-generating distributions. For a more realistic

application, we show "Model-X knockoff - Estimated" where the distribution of the feature

is estimated from the data assuming Gaussian distribution. Our simulation results indicate

several interesting observations. First, the proposed method quickly gains power for moderate

correlation or effect sizes, while successfully maintaining the FDR below the specified threshold

10%. Second, in Figure 2.4, we can see the estimated Model-X knockoff achieves higher power;

but it also loses its FDR control. However, the Model-X knockoff-True is not affected by the

higher correlation and maintains the FDR control at the cost of reduced power. This experiment

further substantiates the claim of Barber et al. (2020) that for high multicollinearity, the error

in estimating the feature’s distribution increases which further indices the inflated FDR. Third,

consistently, for all the cases, the MDS method is highly conservative, although in the simulation

setting its power is comparable to the proposed method.

In conclusion, our simulation study demonstrates that the proposed method performs

well in terms of controlling the FDR and achieving high power for variable selection in high-

dimensional settings. These findings suggest that the proposed method can be a valuable tool

for high-dimensional variable selection in various applications.

Figure 2.4 Sparsity-wise comparison: the autocorrelation and effect size are fixed.
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Table 2.1 Drug-sensitive genes identified by the feature selection methods

Drug
Genes selected Confirming

the proposed method Model-X knockoff MDS references

Topotecan SLFN11 (10), SF3A2 (10), RP1.199J3.5 (9), SLFN11 (9), MGST3 (8), SLFN11 (7), Barretina et al. (2012)
RPL18 (7), AC018755.1 (5), RPL18 (8), CLCN4 (8), OXCT2P1 (7), RP1.199J3.5 (5) Li et al. (2012)
THG1L (5),PSAP (5), GAREML (7), BHLHE40 (7), THG1L (7),
THRB (5) AP000974.1 (7), AC018755.1 (7), DCHS1 (7),

LRRC7 (6), SGK223 (6), MFSD5 (6),
RP11.562A8.5 (6), SUSD2 (6), CA5B (6),
FAM86EP (5), UFSP2 (5), PLIN2 (5),
PC (5), SH3BP1 (5), CDKN2C (5),
PSAP (5), SF3A2 (5), KANK3 (5)

Irinotecan SLFN11 (7), WTAPP1 (6), ADORA2A (8), SLFN11 (7), TCEANC2 (7), No genes met Li et al. (2012)
FKBP2 (5), SYT13 (5), IFITM10 (7), CUEDC1 (6), LMNB1 (5), the selection
IFITM10 (5), AC068580.5 (5) C7orf26 (5), SYT13 (5), C16orf71 (5), criteria of

RRAD (5), AC068580.5 (5), RPL7AP66 (5), MDS
THG1L (5), ARHGAP19 (5), MBNL2 (5),
GOLGA5 (5), SLC48A1 (5), FKBP2 (5),
ARL2 (5), WTAPP1 (5), CETN2 (5)

17-AAG MB21D1 (10), KCNK7 (10), KCNK7 (10), MB21D1 (10), DNAJC17 (10), No genes met Hadley and Hendricks (2014) ,
NQO1 (9), MMP24 (9), CSNK1E (10), FTSJ2 (9), ERLIN1 (9), the selection Barretina et al. (2012)
SERPINF1 (9), DNAJC17 (9), SERPINF1 (9), MMP24 (9), CTDSP1 (8), criteria of
CSNK1E (9), NAPG (8), RP11.442H21.2 (8), DHRS4.AS1 (8), GNPNAT1 (8), MDS
FTSJ2 (8), RP11.442H21.2 (7), NQO1 (8), NAPG (8), RP11.218L14.4 (8),
CTDSP1 (7), SEPW1 (6), DIMT1 (8), HOXA11 (8), CPED1 (8),
SUSD4 (6), RP4.816N1.6 (6), LINC01006 (8), OSBPL9 (7), THRB (7),
HOXA11 (6), DIMT1 (6), SLC12A7 (7), RP4.816N1.6 (7), WBP2 (7),
RP11.143J12.3 (6), ERLIN1 (5), RP11.143J12.3 (7), SEPW1 (7), LYNX1 (7),
SLC12A7 (5), RP13.15M17.1 (5), WWP2 (7), NEK6 (7), RP13.15M17.1 (6),
TBC1D4 (5), LYNX1 (5), SUSD4 (6), ATP6V0E1 (6), SEMA4G (6),
LINC01006 (5), CPED1 (5), TBC1D4 (6), ZNF571.AS1 (6), PFKFB1 (6),
THRB (5), WBP2 (5), PLA2G4A (6), BICC1 (6), DGAT2 (6),
DHRS4.AS1 (5), NEK6 (5) RNF121 (6), CLSTN2 (5), OTUD4 (5),

NARS2 (5), ZNF420 (5), RP11.661A12.12 (5),
RP11.432J22.2 (5), RP11.644F5.11 (5), C12orf73 (5),
AMN (5), UACA (5), GPRC5B (5),
ZNF506 (5)

PaclitaXel ELOVL1 (10), ABCB1 (10), ELOVL1 (9), SUCO (9), ABCB1 (9), ABCB1 (5), Dorman et al. (2016)
BCL2L1 (9), PRODH (9), SHANK2 (8), ARL6IP1 (8), STX10 (8), LRRC16B (5) Lee et al. (2016)
STX10 (9), SHANK2 (9), PRODH (8), SDHAP3 (8), RUNDC3B (7),
SDHAP3 (9), SUCO (8), C8orf46 (7), YTHDF1 (7), TYMP (7),
PCDHGA2 (7), RUNDC3B (7), LRRC16B (7), NOS1AP (6), PCDHGA2 (6),
TYMP (6), NMB (6), LSMEM1 (6), BUB1B (6), SPATA5L1 (6),
C8orf46 (6), UQCRFS1P1 (6), RP11.862L9.3 (6), PRKX (6), UQCRFS1P1 (6),
BUB1B (5), INHBA (5), BAK1 (6), RIMKLA (5), PDZK1IP1 (5),
ANKRD36BP2 (5), NOS1AP (5), ANKRD36BP2 (5), ENC1 (5), INHBA (5),
PRKX (5), SDF2 (5), RP11.644F5.11 (5), NMB (5), CSNK2A1 (5),
SH3BP1 (5), LRRC16B (5), BCL2L1 (5), EXOC5P1 (5), SDF2 (5),
RIMKLA (5) CETN2 (5), SH3BP1 (5)

AEW541 IQGAP2 (8), SOAT1 (8), TSPYL5 (8), SLC44A1 (8), LINC00324 (8), TSPYL5 (5) Liang et al. (2018)
KCNAB1 (8), DERL3 (7), DERL3 (8), SOAT1 (7), IRS2 (7),
LINC00324 (7), SLC44A1 (7), TMEM101 (7), KCNAB1 (7), IQGAP2 (6),
IRS2 (7), AC008132.12 (7), CYP1B1.AS1 (6), CASP10 (6), VILL (6),
CASP10 (7), TMEM101 (6), AC004840.9 (6), ATP11B (6), AC008132.12 (6),
TSPYL5 (5) ANO10 (5), MAF (5), UNC119 (5)

2.5 Real data analysis

In this section, we present real data analysis to illustrate the utility of our proposed statistical

method for high-dimensional data analysis. For this application, we choose the CCLE dataset

that was generated by the Cancer Cell Line Encyclopedia project ( CCLE, link available here. The
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dataset contains gene expression profiles of over 100 cancer cell lines across different cancer

types, making it a valuable resource for studying the molecular basis of cancer and identifying

potential drug targets. With the ultimate goal of improving precision medicine, the CCLE dataset

has been extensively used in previous studies to investigate various aspects of cancer biology,

such as identifying genetic and epigenetic markers associated with drug sensitivity or resistance,

characterizing molecular subtypes of different cancer types, and exploring the genetic basis of

cancer evolution and progression.

More specifically, the CCLE dataset contains dose-response curves for 24 different drugs

across over n = 400 cell lines, with the expression data of p = 18,926 genes for each cell line

considered as features. To measure drug sensitivity, we used the activity area Barretina et al.

(2012). Specifically, in this study, we aim to identify the set of genes associated with the sensitivity

of five specific anticancer drugs, namely Topotecan, 17-AAG, Irinotecan, Paclitaxel, and AEW541,

which have been used to treat various cancer types including ovarian and lung cancer. Previous

studies have already investigated these drugs and related gene expression data, more details can

be found at Barretina et al. (2012). We implemented the proposed method along with the two

other competing feature selection methods Model-X knockoffs Candès et al. (2018) and MDS Dai

et al. (2022) on the CCLE dataset, at the nominal FDr control level q = 0.2. Each method selected

some genes to indicate that they are highly associated with these five above-mentioned drugs.

However, in a real setting, assessing the performance of a feature selection method is difficult as

the underlying data-generating mechanism is completely unknown. So, We validate the results

of these methods in two ways. First, we check if the selected genes can be confirmed using

the existing domain knowledge. Second, for more empirical validation, we perform a 10-fold

cross-validation and check the out-of-sample test accuracy only using the handful of selected

genes by each of the methods. The results are summarized below.

Table 2.1 reports the genes selected in at least five validation out of the 10-fold cross-

validation for each of the three methods considered. The selected genes for these drugs exhibit a

high degree of consistency with our current knowledge and consistently appeared in multiple
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cross-validation runs. For instance, in the case of Topotecan and Irinotecan, the proposed

method identifies SLFN11 as the top drug-sensitive gene in the majority of the validation itera-

tions. This finding is consistent with prior research, as Barretina et al. (2012); Zoppoli et al. (2012)

previously reported that SLFN11 is highly predictive for both drugs. Similarly, for 17-AAG, the

proposed method identifies NQO1 as the topmost important gene, which is known to be highly

sensitive to 17-AAG Hadley and Hendricks (2014). In Table 2.1, the genes that are confirmed by

previous research are highlighted in red. One would observe that, for all the drugs, the proposed

method selects these important genes more consistently for repeated validations compared to

the other competing methods. Although the FDR control level is the same for all these three

methods, knockoff consistently selected a higher number of genes. This is justifiable as the

knockoff’s FDR inflates Barber et al. (2020) if the feature distribution is not estimated properly.

Also, similar to the simulation study, MDS is highly conservative and fails to discover any gene

under the 20% FDR control.

For a more empirical validation, Table 2.2 reports the average number of genes selected in

the 10 cross-validation runs and the average cross-validation test Mean Square Error (MSE).

Additional to the Model-X knockoff and MDS, here we also show the results for the cross-validated

lasso, which under mild regularity conditions enjoys the sure screening property. Table 2.2 shows

the proposed method consistently maintains the prediction accuracy compared to the other

methods while selecting much fewer genes. This indicates that the proposed method even after

sufficient dimension reduction, the proposed method successfully retains the important genes

with higher predictive ability.

Table 2.2 Drug-sensitive gene selection and related prediction performance

Drug
selected number of genes Test MSE

Lasso Proposed method Model-X knockoff MDS Lasso Proposed method Model-X knockoff MDS

Topotecan 96.3 36.2 50.4 3.8 1.08 1.12 1.61 1.56

17-AAG 103.6 40.1 71.7 1.02 0.87 0.94 1.07 1.14

Irinotecan 52.5 11.9 23.9 0.7 0.63 1.04 1.96 5.01

Paclitaxel 127.3 40.3 57.8 4.6 1.36 1.94 2.21 2.91

AEW541 48.6 16.2 30.4 1.3 0.33 0.35 0.37 0.36
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2.6 Conclusion

In this paper, we have proposed a novel p-value-free FDR controlling method for ultrahigh

dimensional variable selection. We effectively utilized the adaptive penalization framework and

used it to distinguish between the null and nonnull features. Due to the dimension reduction

in the screening step, our method is computationally very efficient compared to the Model-X

knockoff or the MDS method. Our empirical results show that the proposed method has an

excellent performance in terms of FDR control while maintaining high power compared to other

existing methods. Unlike the knockoff-based methods, the proposed methodology does not

need much prior knowledge of the joint distribution of features, making it conceptually simple

and easy to implement. We have provided theoretical guarantees for FDR control under mild

assumptions on the design matrix and the response variable.

There are several promising directions for future development that are worth considering.

The proposed method is applicable to both linear and generalized linear models. As the idea

of adaptive penalization can be easily formalized to more complex nonparametric models, it

would be interesting to investigate the potential use and theoretical properties of the proposed

methodology in handling neural networks and other non-linear models, particularly with regard

to more intricate data types such as natural language and computer vision. Additionally, as

the idea of L1 penalization is used in longitudinal data Barber et al. (2017), another idea of

potential future direction is to extend the methodology to incorporate longitudinal or hierarchical

structures datasets which is quite common in finance or imaging studies.
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APPENDIX A

PROOF OF THEOREM 2.3.6

We recall that in order to show the FDR control, we only need to verify limn→∞ E(R(∆∗)) ≤ 1,

where ∆∗ is the data-dependent optimum cutoff in eq. 3 and

R(∆∗) =
∑

j ̸∈S 1
(
I w

j ≥∆∗
)

∑
j∈S 1

(
I uw

j ≥∆∗
)
+∑

j ̸∈S 1
(
I uw

j ≥∆∗
)

By constructing ∆∗, the denominator of the R(∆∗) is strictly positive. So, in order to show

limn→∞ E(R(∆∗)) ≤ 1, we show the following:

1. P (∆∗ ≥ 1
2 ) → 1 as n →∞.

2.
∑

j∈S 1
(
I uw

j ≥∆∗
)
> 0, and

3. P
(
|∑ j ̸∈S 1

(
I w

j ≥∆∗
)
−∑

j ̸∈S 1
(
I uw

j ≥∆∗
)
| > un

)
→ 0, as n →∞ with un = o( 1

n ).

We will show this one by one.

Part 1:, Now, by the error bound in Lemma 2.3.2, for any j ∈ S,

1. P
(
|β̂uw

j | > τ
)
> 1−o(e−nc6 ),∀λ1, . . . ,λr , but

2. P
(
|β̂uw

j | < τ
)
> 1−o(e−nc6 ),∀λr+1, . . . ,λ2r .

3. P
(
|β̂w

j | > τ
)
> 1−o(e−nc6 ),∀λ1, . . . ,λ2r

Additionally, for any j ∈ Sc, P
(
|β̂w

j | < τ
)
> 1−o(e−nc6 ),∀λ1, . . . ,λ2r . Similar inequality holds for the

unweighted lass0 as well. Hence, with sufficiently small τ<ψ, I w
j = 1

2r

∑2r
i=1 1

(
|β̂w

j (λi )| > τ
)

P→ 1.

Similarly, for j ∈ S, I uw
j

P→ 1
2 , as n →∞.

Now, for any cutoff ∆, we observe,

ˆF PR(∆) =
∑p

j=1 1
(
I uw

j ≥∆
)

∑p
j=1 1

(
I w

j ≥∆
) =

∑
j∈S 1

(
I uw

j ≥∆
)
+∑

j ̸∈S 1
(
I uw

j ≥∆
)

∑
j∈S 1

(
I w

j ≥∆
)
+∑

j ̸∈S 1
(
I w

j ≥∆
) = Z1(∆)+Z2(∆)

Z3(∆)+Z4(∆)
(A.1)
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Now, for any ϵ> 0 and ∆≤ 1
2 , as I uw

j
P→ 1 as n →∞ for j ∈ S

P (Z1(∆) < s −ϵ) = P
(
∃ at least one j ∈ S for which I uw

j <∆
)
≤ ∑

j∈S
P

(
I uw

j <∆
)
→ 0

Hence, Z1(∆)
P→ s for fixed ∆≤ 1

2 .

Further we observe, as I uw
j

P→ 0 as n →∞ for j ̸∈ S with exponential rate,

P (Z2(∆) > ϵ) = P
(
∃ at least one j ̸∈ S for which I uw

j ≥∆
)
≤ ∑

j ̸∈S
P

(
I uw

j ≥∆
)
→ 0

Hence, Z2(∆)
P→ 0 for fixed ∆≤ 1

2 .

Similarly, Z3(∆)
P→ s and Z4(∆)

P→ 0 for fixed ∆≤ 1
2 . Hence,

Z1(∆)+Z2(∆)

Z3(∆)+Z4(∆)
P→ 1 ⇒ ˆF PR(∆)

P→ 1 for any ∆≤ 1

2

Next, the uniform convergence can be established by observing that each of the process Zi (∆)

is monotonic with respect to ∆ for i = 1,2,3,4 and hence inf∆≤ 1
2

Z1(∆)
P→ s, sup∆≤ 1

2
Z2(∆)

P→
0, inf∆≤ 1

2
Z3(∆)

P→ s, and sup∆≤ 1
2

Z4(∆)
P→ 0. These conjectures further implies P (∆∗ ≥ 1

2 ) → 1 as

n →∞.

Part 2:, We note that sup∆∈( 1
2 ,1) P (Z1(∆) ≥ Z2(∆)) → 1, as n →∞. Hence, by construction of ∆∗,∑p

j=1 1
(
I uw

j ≥∆∗
)
> 0 ⇒ P

(∑
j∈S 1

(
I uw

j ≥∆∗
)
> 0

)
→ 1.

Part 3:, Following Lemma 2.3.2, we note that,

sup∆∈( 1
2 ,1)P

(
|∑

j ̸∈S
1
(
I w

j ≥∆
)
− ∑

j ̸∈S
1
(
I uw

j ≥∆
)
| > ϵ

)

≤ sup
∆∈( 1

2 ,1)

P

( ∑
j∈Sc

|1
(
I w

j ≥∆
)
−1

(
I uw

j ≥∆
)
| > ϵ

)
→ 0

as n →∞ due to the exponential bound in Lemma 2.3.2.

These conjectures further imply that limn→∞ E (R(∆∗)) ≤ 1, guaranteeing the asymptotic FDR

control.

Next, to study the asymptotic power. we start by observing that ê0(∆∗) =∑
j∈Ŝn

1
(
I uw

j ≥∆∗
)
>

0. We define, ∆̃ = sup
∆>0

{ê0(∆) > 0} and ˜̃∆ = inf
∆>0

{I w
j , j ∈ S}. Now, by construction, P (∆̃ < 1

2 ) >
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1−o(e−nc6 ). Additionally, for any ϵ> 0, P ( ˜̃∆< 1−ϵ) ≤ ∑
j∈S

P (I w
j < 1−ϵ) ≤ ∑

j∈S

2r∑
i=1

P
(
|β̂w

j (λi )| < τ
)
<

o(e−nc6 ).

This implies, P ( ˜̃∆ > ∆̃) > P
(

˜̃∆≥ 1−ϵ,∆̃< 1
2

)
> P

(
˜̃∆≥ 1−ϵ

)
+P

(
∆̃< 1

2

)− 1 ≥ 1− o(e−nc6 )+
1 − o(e−nc6 ) − 1 = 1 − 2o(e−nc6 ). Hence, with high probability the final discovered set D̂n ={

j ∈ Ŝn : I w
j ≥∆∗

}
⊂

{
j ∈ Ŝn : I w

j ≥ ˜̃∆
}

. Hence this implies that the asymptotic power converges

to one.
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APPENDIX B

PROOF OF THEOREM 2.3.2

Here we prove the major theorem 2.3.2 on the L2 error bound on the weighted Lasso. This proof

consists of three parts. First in Lemma B.0.1, we show that for specifically designed events A

and B, we achieve the desired error bound on A ∩B. Then, in lemma B.0.2 and B.0.3, we show

that the probability of the events A and B converges to one. We define again the following

notations: m = max j∈S{the rank of w j (from smallest to largest)}, the maximum rank of weights

for the true features and T = {1 ≤ j ≤ p : rank(w j ) ≤ m}. Consequently, we define, wT = the

subspace of w = w1, w2, . . . , wp indexed by T; and wmi n = min j∈Sc w j . In Section 2.3, we show

our proposed weighting scheme satisfies all these assumptions, hence enjoying the tight error

bound for weighted lasso even for an increasing sequence of tuning parameter λn .

Lemma B.0.1. Define the probability events:

A =
{
λ≥ 2max

{ || 1
n ϵ

′XT ||2
||wT ||2

,max j∈T c | 1

n
ϵ′X j w−1

j |
}}

, (B.1)

B =
{

min
∆∈C

∆′ 1
n X ′X∆
||∆||22

≥ κn

}
, (B.2)

where C =
{
∆ ∈Rp :

∑
j∈T c

w j |∆ j | ≤ 3||wT ||22||∆T ||22
}

. Then on the event, A ∩B, it holds that

||β̂w −β∗||2 ≤ 3

2

λ

κn
||wT ||2 (B.3)

Proof. We first note that,

1

2n
∥ Y −X β̂w ∥2

2 +λ
p∑

j=1
w j |β̂w

j | ≤
1

2n
∥ Y −Xβ∗ ∥2

2 +λ
p∑

j=1
w j |β∗

j |
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=⇒ 0 ≤ 1

2n
∥ X β̂w −Xβ∗ ∥2

2 ≤
1

n
ϵ′X (β̂w −β∗)+λ

p∑
j=1

w j |β∗
j |−λ

p∑
j=1

w j |β̂w | (B.4)

≤ λ

2

[
2

∑
j∈T

w j |β∗
j |−2

∑
j∈T

w j |β̂w
j |−2

∑
j∈T c

w j |β̂w
j |

]
(B.5)

+ 1

n
ϵ′XT (β̂w −β∗)T + 1

n
ϵ′XT c (β̂w −β∗)T c (B.6)

≤ λ

2

[
||wT ||2||(β̂w −β∗)T ||2 +2

∑
j∈T

w j |β̂w
j −β∗

j |−
∑

j∈T c
w j |β̂w

j −β∗
j |

]
(B.7)

As by the construction of λ,

1. 1
n ϵ

′XT (β̂w −β∗)T ≤ || 1
n ϵ

′XT ||2||(β̂w −β∗)T ||2 ≤ λ
2 ||wT ||2||(β̂w −β∗)T ||2, and

2. 1
n ϵ

′XT c (β̂w −β∗)T c ≤ max
j∈Tc

| 1
n ϵ

′X j w−1
j | ∑

j∈Tc

w j |β̂w
j −β∗

j |.

Hence,the error vector∆= β̂w −β∗ belongs to the cone C = {∆ ∈Rp :
∑

j∈T c
w j |∆ j | ≤ 2

∑
j∈T

w j |∆ j |+
||wT ||2||∆T ||2 ≤ 3||wT ||2||∆T ||2}. Now, with the RE property in 2.2.1, we continue from eq. B.7,

∆T 1

n
X ′X∆≤ λ

2

[
||wT ||2||∆T ||2 +2

∑
j∈T

w j |∆ j |
]

(B.8)

=⇒ κn ||∆||22 ≤
3

2
λ||wT ||2||∆T ||2 (B.9)

=⇒ ||∆T ||2 ≤ 3

2

λ

κn
||wT ||2 (B.10)

Now to show that A ∩B holds with high probability, we assume each row of X is iid from

a mean zero sub-Gaussian distribution (with bounded sub-Gaussian norm) with E(Xi X ′
i ) =Σ

such that 0 ≤ ρ0 ≤λmi n(Σ) ≤λmax(Σ) ≤ ρ1 <∞. The assumptions we consider in Section 2.2.1

satisfy this sub-gaussianity condition.

Lemma B.0.2. Recall A =
{
λ≥ 2max

{
|| 1

n ϵ
′XT ||2

||wT ||2 ,max j∈T c | 1
n ϵ

′X j w−1
j |

}}
. Further, choose, λ ≥

2τσ
[√

m
n

1
||wT ||2

]
with τ= 2

p
ρ1 + 2p

ρ0
(2+ m

n ). Then, P (A ) ≥ 1−p−c −2e−c̃n −2e− ˜̃cm .

Proof. First, note that, P (A c ) ≤ P

(
|| 1

n
ϵ′XT ||2 ≥λ ||wT ||2

2

)
︸ ︷︷ ︸

I

+P

(
max
j∈T c

| 1

n
ϵ′X j w−1

j | ≥ λ

2

)
︸ ︷︷ ︸

I I

.
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Now, with ϵ̃∼ N (0, In),

I ≤ P

(
|| 1

n
ϵ̃′XT ||2 ≥ τm

n

)
≤ p

(
||| 1

n
ϵ̃′XT ||2 −|| 1

n
XT ||F | > (τ− c1)

√
m

n
, || 1

n
XT ||2| ≤ c2

1p
n

)
+P

(
|| 1

n
XT ||F > c1

√
m

n

)
+P

(√
m

n
> c2

1p
n

)
By theorem 6.3.2 in Vershynin (2018), we get,

I ≤ 2exp
[−c −3c−2

2 (τ− c1)2m
]+P

(
|| 1

n
XT ||F > c1

√
m

n

)
+P

(
|| 1

n
XT ||2 > c2

1p
n

)
≤ 2exp

[−c −3c−2
2 (τ− c1)2m

]+2exp(−c̃n)+2exp(−c̃n)

by setting c1 = c2 = 1p
ρ0

(2+ c
√

m
n ) and using theorem 5.19 in Vershynin (2010). Following similar

arguments in the standard Lasso analysis,

I I ≤ P

max
j∈T c

| 1

n
ϵ′X j w−1

j | ≥ τσ
√

l og (p)

n


≤ 2exp(−clog (p))+P (max

j∈T c
|| 1

n
X j ||22 > τ2)

≤ 2exp(−clog (p))+2exp(−cn(
τp
ρ1

−1)2)

Lemma B.0.3. Recall B =
{

min∆∈C
∆′ 1

n X ′X∆
||∆||22

≥ κn

}
, where

C =
{
∆ ∈Rp :

∑
j∈T c

w j |∆ j | ≤ 3||wT ||22||∆T ||22
}

Then, P (B) ≥ 1−exp(− ||wT ||2
wmi n

√
log (p)−p

m)
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Proof. Setiing X̃ = XΣ− 1
2 , and ∆̃=Σ 1

2∆, we start by observing,

P (Bc ) = P

(
min

∆∈C ,||∆||2=1

1p
n
|X∆||2 ≤p

κn

)
= P

(
min

∆̃∈Σ 1
2 C ,||Σ− 1

2 ∆̃||2=1

|X̃ ∆̃||2 ≤p
κn

)

≤ P

(
− max
∆̃∈Σ 1

2 C ,||Σ− 1
2 ∆̃||2=1

|||X̃ ∆̃||2 −
p

n||∆̃||2|+ min
∆∈C ,||∆||2=1

p
n||∆̃||2 ≤p

nκn

)

≤ P

(
max

∆̃∈Σ 1
2 C ,||Σ− 1

2 ∆̃||2=1

|||X̃ ∆̃||2 −
p

n||∆̃||2| ≥
p

n(
p
ρ0 −p

κn)

)

≤ 2exp(−n2)

by setting
p
κn = p

ρ0 − cp
n

 sup
∆̃∈Σ 1

2 C ,||Σ− 1
2 ∆̃||2=1

||∆̃||2 +E sup
∆̃∈Σ 1

2 C ,||Σ− 1
2 ∆̃||2=1

| < g ,∆̃> |
, where g ∼

N (0, Ip ).

Now,

1. sup
∆̃∈Σ 1

2 C ,||Σ− 1
2 ∆̃||2=1

||∆̃||2 ≤p
ρ1.

2. E sup
∆̃∈Σ 1

2 C ,||Σ− 1
2 ∆̃||2=1

| < g ,∆̃> | = E sup
∆∈C ,||∆||2=1

| <Σ 1
2 g ,∆> |

≤ E sup
∆∈C ,||∆||2=1

| ∑
j∈T c

g̃

w j
w j∆ j |+E sup

∆∈C ,||∆||2=1
| < g̃T ,∆T > |

≤ E max
j∈T c

|g̃ j | 1

wmi n
3||wT ||2 +E ||g̃T ||2

≤ ||wT ||2
wmi n

√
l og (p)+p

m

This implies as long as ||wT ||2
wmi n

√
log (p)

n +
√

m
n = oP (1), κn can be choosen to be 1

2ρ0.

Hence, combining lemmas B.0.1-B.0.3, choosing

λ≥ cσ

√
m

n

1

||wT ||2
+ 1

wmi n

√
log (p)

n


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as long as

||wT ||2
wmi n

√
log (p)

n
+

√
m

n
= oP (1),

with high probability,

||β̂w −β∗||2 ≤ 3

2

λ

κn
||wT ||2
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CHAPTER 3

SCIDNET: ERROR CONTROLLED FEATURE SELECTION FOR ULTRA HIGH DIMENSIONAL
AND HIGHLY CORRELATED FEATURE SPACE USING DEEP LEARNING

3.1 Introduction

In modern applications (e.g., genetics and imaging studies), the investigator is often inter-

ested in uncovering the true pattern between a quantitative response and a large number of

features. The key working assumption, oftentimes, is that there is an underlying sparsity pattern

buried in the high dimensional data setting. Selecting the essential features aids in further

scientific investigations by offering improved interpretability and explainability, reduced compu-

tational cost for prediction and estimation, and less memory usage due to lower dimensional

manifolds of the feature space being estimated. Under the linear model (LM) framework, this

problem has been extensively studied over the past few decades producing popular algorithms

such as Lasso, Elastic net, SCAD, and MCP. A detailed review of this literature can be found in

Fan and Lv (2010) and thus is omitted here. However, regardless of their ubiquitous applications,

the LM has limited usage, especially when the underlying mechanism is highly nonlinear, with

potential interaction effects. Relaxing the linearity assumption, the Artificial Neural Network

(ANN) models are well known for efficiently approximating complicated functions. From an

information-theoretic viewpoint, Elbrächter et al. (2021) established that deep neural networks

(DNN) provide an optimal approximation of a nonlinear function, covering a wide range of func-

tional classes used in signal processing. This property has promoted the use of Deep Learning

(DL) models for feature selection, an approach that has generated much research interest over

the past few years. A major caveat, however, is that the DL models are often used as a black

box in many applications. Following the intriguing arguments in Rudin (2019), caution must be

exercised regarding the application of DL models for decision-making in real-world problems.

Employing only the relevant predictors to construct a predictive model is the right step toward

explainable machine learning. However, as suggested in Ghorbani et al. (2019), oftentimes, the

feature importance in DL-based algorithms varied drastically under small perturbations in the
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input or in the presence of added noise.

As a solution to this problem, we focus on the reproducible nonlinear variable selection using

DL models with some error control. We adopt the False Discovery Rate (FDR) first proposed

by Benjamini and Hochberg (1995), known for being suitable for large-scale multiple testing

problems. To formally define the FDR, we consider the random variable, F DP , representing

the False Discovery Proportion: F DP = e0
N+∧1 , where e0= number of falsely selected variables,

N+= number of total discoveries. Then, FDR is defined as F DR = E(F DP ). Estimating this

expectation poses a unique challenge for the model-free variable selection problem, which

many authors have tried to solve from various perspectives. For example, a p-value approach

has been proposed as a feature importance criterion in multiple testing literature; see Tansey

et al. (2018); Xia et al. (2017); Li and Barber (2019); Lei and Fithian (2018) for a more detailed

overview. However, for DL models, generating interpretable p-values is still an unrevealed

research problem. To circumvent this limitation, the knockoff framework has been proposed by

Candès et al. (2018). Essentially, this is a model-free variable selection algorithm with provable

FDR control, assuming one has prior knowledge of the predictors’ distribution. Lu et al. (2018)

further proposed the DeepPINK algorithm by integrating the knockoff framework with the DL

architecture for improved explainability of the DL models. However, in real-world applications,

the predictor’s distribution needs to be estimated to generate the knockoff variables, which

adds another layer of uncertainty to the analysis. Recently Barber et al. (2020) showed that the

knockoff framework might yield inflation in false discoveries, consistent with the error incurred in

estimating the predictor’s distribution. This problem is exacerbated by highly correlated features.

An empirical illustration is provided in Appendix 4.2.2, showing how model-X knockoff (Candès

et al., 2018) typically fails to control FDR under a simplistic setting with high multicollinearity. In

some cases, it may be possible to have prior knowledge of the correlation pattern among the

features. For example, in genetics studies, there is a common notion of linkage disequilibrium,

which helps to specify the dependency pattern among the alleles at polymorphisms (Sesia et al.

(2018)). However, this information is typically unavailable in many other domain sciences.
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Figure 3.1 How multicollinearity affects feature selection - A demonstration using simplistic
simulation setting: We simulate n = 400 iid copies of (y ∈ R, X ∈ R100), where the outcome y
is generated from a linear model: y = 0.5(X20 + X40 + X60 + X80 + X100)+ ϵ,ϵ ∼ N (0,1) and the
features X ∼ N100(0,Σ), (Σ)i j = ρ|i− j |. We implement the Lasso algorithm for 500 Monte Carlo
replication of the data, and the y-axis shows the proportion of time each feature is selected out
of 500 replications. For a higher autocorrelation ρ, the selection probability of the true features
was significantly reduced whereas the null features associated with true features got selected
more frequently.

Hence any model-specific knockoff generation (Candès et al., 2018; Sesia et al., 2018) would be

inefficient in those contexts. Recently, DL-based flexible knockoff generating algorithms have

been proposed (Liu and Zheng, 2019; Jordon et al., 2019; Romano et al., 2020); however they

are trained in a typical big-n-small-p setting, and it is unclear how they will perform when the

sample size n is significantly smaller than the dimension of the covariates p, and the predictors

are highly correlated. We next discuss in detail the multicollinearity issue.

In many modern high-dimensional datasets arising in genetics and imaging studies, the other

challenge is extreme multicollinearity - the predictors are typically correlated among themselves

in a complex manner, often with pairwise sample correlations exceeding 0.99. In a simplistic

setting of a linear model, Figure 3.1 shows how increased autocorrelation typically reduces the

selection probability of the true non-null features. Because extremely correlated features become

almost indistinguishable, it would be unrealistic to claim that a particular feature from a cluster

is associated with the outcome in a regression setup. Hence, accounting for the uncertainty, it

would be pragmatic to aim for group-level variable selection and claim that at least one variable

from a densely correlated group is important for the outcome. This approach is not entirely new;

as beautifully argued in Brzyski et al. (2017) that in genetics, the discovery of a specific genomic
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region is treated equivalently as a particular variant-wise discovery in that location. In this

context, the term ’true discovery’ implies that the selected cluster can serve as a good proxy for at

least one element in the true index set of significant features. However, a complication of this

approach is that the notion of FDR becomes non-trivial. For this reason, following Siegmund et al.

(2011), we adopt the cluster version of the FDR as the expected value of the "proportion of clusters

that are falsely declared among all declared clusters". We denote this as cFDR henceforth. Looking

at the extreme multicollinearity problem from a slightly different angle, several algorithms

have been proposed in the hierarchical testing literature including CAVIAR (Hormozdiari et al.,

2014), SUSIE (Wang et al., 2020), KnockoffZoom (Sesia et al., 2019). While the knockoff-based

procedures have the limitation of generating knockoffs from an unknown distribution with a

very small sample size, other methods lack applicability in non-linear-nonparametric setups as

they typically depend on p-values.

Our contribution To address the complications mentioned above in variable selection and un-

explored gap while applying DL, we propose SciDNet- Screening & Cleaning Incorporated

Deep Neural Network - a novel method for the reproducible high-dimensional nonlinear-

nonparametric feature selection with highly correlated predictors. The screening step is a

dimension reduction step. We screen out most of the null features and create a set of multi-

resolution clusters that collectively contain all the proxy variables needed to cover the truly

significant features with high probability. In the cleaning step, using a properly tuned DL model

under an appropriate resampling scheme, an estimator of the FDR is proposed. Finally, we select

some clusters of highly correlated predictors by controlling the estimated FDR. To this end, ’FDR

observed for SciDNet’ would implicitly mean the value of the cFDR discussed above. Our major

contributions can be summarized below:

• The proposed method SciDNet is based on a combination of techniques from statistical

machine learning on sparse modeling. We introduce a resampling-based FDR estimation

scheme, which allows us to identify the most relevant features while discarding irrelevant
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ones in an FDR-controlled setting. Additionally, the proposed algorithm is specifically

tailored for highly correlated features, which is proved to be problematic for traditional

feature selection methods.

• The proposed approach relies on minimal modeling assumptions and is entirely free from

p-value, unlike existing state-of-the-art methods, providing a better understanding of

the sparse relationship between the outcome and the high-dimensional predictors. Our

theoretical study consolidates the empirical results by showing SciDNet’s provable FDR

control guarantee in an asymptotic setting.

• To the best of our knowledge, in a high-dimensional setting, no other method in the

literature accommodates the multicollinearity issue via data adaptive cluster formation,

followed by a nonlinear-nonparametric error-controlled feature selection integrated with

DL. The results from our extensive simulations and real data analyses demonstrate the

proposed method’s validity in general as a proof of concept by achieving higher power,

controlled FDR, and higher prediction accuracy. Additionally, we conducted an ablation

study which provides a systematic analysis of the contribution of each individual step to

the overall performance of the feature selection method.

Overall, our contributions offer a powerful tool for researchers and practitioners who face the

challenge of selecting relevant variables from highly correlated ultrahigh dimensional datasets

applicable in a variety of fields, from biology to finance to social sciences. For the rest of the

article, in Section 3.2, we describe the proposed screening and cleaning method, followed by

an extensive simulation study in Section 4.2 and an analysis of two real-world gene expression

datasets in Section 3.4. Finally, Section 4.4 concludes with a summary and future directions.

3.2 The Algorithm

3.2.1 Notation and assumptions

Under the supervised learning framework, let Y denote a continuous response variable,

and X = (X1, . . . , Xp ) denote p continuous covariates. Let Fy (·) denote the CDF of the response
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variable Y , and let Fk (·) denote the CDF of the predictor Xk . Assuming a sample size n, we

consider the ultrahigh-dimensional setting where p =O(exp (nτ)),τ> 0. We assume no specific

functional relationship between the outcome Y and the predictors X but we impose a high-level

assumption on the distribution of X. In the spirit of Liu et al. (2009), we assume that the predictors

follow the nonparanormal distribution; i.e., there exist unknown differentiable functions f (X ) =
{ f j (X j ), j ∈ {1,2, . . . , p}}, such that f (X ) ∼ N (µp×1,Σp×p ). This nonparanormal distribution covers

a wide range of parametric families of distributions and its main beauty lies in the fact that f (X )

preserves the conditional dependency structure of the original variables X . Maintaining the

sparsity condition, we may assume that there exists a subset S0 ⊂ {1,2, . . . , p}, |S0| =O(1), such

that, conditional on features in S0, the response Y is independent of features in Sc
0. In other

words, S0 = {k : f (y |X ) depends on Xk }, where f (y |X ) is the conditional density of y given X. Our

goal is to learn the sparsity structure by estimating S0.

3.2.2 Screening Step

Under the assumption that the cardinality of S0 is much smaller than the feature space

dimension p, most of the features belong to Sc
0. Hence in the screening step, we focus primarily

on finding an active set Ŝn with |Ŝn | << p such that P (S0 ⊂ Ŝn) → 1 as n →∞. This property

is called the sure screening property (Fan and Lv, 2008), which ensures that all the significant

predictors are still retained in Ŝn and the other predictors {X j , j ∈ Ŝc
n} are henceforth eliminated

from the remaining analysis. As these active variables are highly correlated among themselves,

in the second step we further cluster them by exploiting the conditional dependency structure.

3.2.2.1 Finding the active set of variables

To find the active set, we first consider the nonparanormal transformation on (Y , X ) and then

perform the Henze–Zirkler’s (HZ) test on the transformed variable. While the first transforms all

the variables to a joint Gaussian variable maintaining their conditional covariance structure; the

second test confirms, by pairwise testing, if there is significant dependence in the transformed

response and predictors. This workflow has been proposed by Liu et al. (2009),Henze and Zirkler

(1990), Xue and Liang (2017). The strategy proceeds as follows:
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1. nonparanormal transformation: We first consider the following transformation: Ty (Y ) =
Φ−1(Fy (Y )),Tk (Xk ) =Φ−1(Fk (Xk )),k = 1,2, . . . , p, where Φ(·) denotes the CDF of the stan-

dard Gaussian distribution. However, in practice, the cdf of Y and Xk are unknown, we

can estimate it by the truncated empirical cdf as suggested by Liu et al. (2009). Henceforth,

let (T̃y (Y ), T̃k (Xk )) denote the corresponding transformations.

2. HZ test: By the basic properties of CDF, it is easy to see that (Ty (Y ),Tk (Xk )) will jointly

follow a bivariate Gaussian distribution N2(0, I2) if and only if Y is independent of Xk .

This can be tested using HZ test, Henze and Zirkler (1990), where the test statistic for

the predictor Xk can be expressed as wk = ∫
R2 |ψk (t )−exp(−1

2 t ′t )|2φβ(t )d t ,k = 1,2, . . . , p;

whereψk (t ) is the characteristic function of (Ty (Y ),Tk (Xk )) and exp(−1
2 t ′t ) represents the

characteristic function of N2(0, I2). It typically measures the disparity between the joint

distribution of (Ty (Y ),Tk (Xk )) and N2(0, I2) and is expected to be typically high for the

non-null predictors X j , j ∈ S0 indicating significant evidence against the independence of

the transformed variable (Ty (Y ),Tk (Xk )).

Next, as in practice, we proceed with (T̃y (Y ), T̃k (Xk )), we calculate the the HZ test statistic

as

w̃∗
k = 1

n2

∑n
i=1

∑n
j=1 e−β2

2 di j − 2
n(1+β2)

∑n
i=1 e

− β2

2(1+β2)
di + 1

1+2β2 (3.1)

where di j = (T̃k (xki )− T̃k (xk j ))2 + (T̃Y (yi )− T̃Y (y j ))2 and di = T̃ 2
k (xki )+ T̃ 2

Y (yi ). Consistent

with the existing literature, we choose the value of the smoothing parameter β as (1.25n)1/6p
2

,

which corresponds to the optimal bandwidth for a nonparametric kernel density estimator

with Gaussian kernel (Henze and Zirkler (1990)). The observed test statistics w̃∗
k converge

to wk as shown in Xue and Liang (2017).

3. Next, we select the active set of predictors Ŝn according to the larger values of w̃∗
k , i.e.,

Ŝn = {1 ≤ k ≤ p : w̃∗
k > cn−κ} where where c and κ are predetermined threshold values.

This active set Ŝn contains all the predictors significantly correlated with the response marginally.

Under very mild regularity conditions on the signal strength of the nonnull predictors where
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mink∈S0 wk ≥ 2cn−κ with c as a constant and 0 ≤ κ≤ 1
4 , the screening process enjoys the advan-

tage of sure screening property, i.e., P (S0 ⊂ Ŝn) → 1, as n →∞. More details on the theoretical

guarantee can be found in Xue and Liang (2017). A common practice is to set the active set size

|Ŝn | at νn = [n/log (n)]. However, as we further cluster the active variables in the next step, our

proposed method is fairly robust in terms of the |Ŝn | as long as we retain most of the significant

variables. We propose to select a bigger active set with a size proportional to νn .

3.2.2.2 Clustering the active predictors using the precision matrix

Algorithm 3.1 Finding clusters and the representatives

Input :(X ∈Rn×p ,Y ∈Rn), The Active set Ŝn , |Ŝn | = p1 < p

Estimate the precision matrix: Σ̂−1 = (σ̂i j )i , j∈{1,2,...,p} using Nodewise Lasso
Define the clusters Ci = { j ∈ Ŝn : σ̂i j ̸= 0}, i ∈ Ŝn

for 1 ≤ i ≤ p1 do
for 1 ≤ j ≤ p1, j ̸= i do

DefineΩi j =
{

cor r (XCi , XC j )
}
= {ρ(Xl , Xl ′), l ∈Ci , l ′ ∈C j } ∈R|Ci ||C j |

if max{Ωi j } ≥ r then
Ci =Ci ∪C j

C j =φ
end

end
end
Retain only the non-null clusters: C = {Ci : Ci ̸=φ, i ∈ Ŝn}
Find the cluster representatives S̃n = {R j ,1 ≤ j ≤ |C | : R j = ar g max

l∈C j

{w̃∗
l }}

Output :Clusters C1,C2, ...,C|C | and corresponding cluster representatives S̃n = {R j ,1 ≤ j ≤ |C |}

As the Henze–Zirkler test focuses on the (pairwise) marginal correlation among the predictors

and response, it typically includes the null predictors with strong associations with a significant

predictor; thus they are highly correlated among themselves. Hence to reduce the high corre-

lation in the active set, our strategy is to exploit their conditional dependency structure and

divide the active variables {X j : j ∈ Ŝn} into pc (<< p) non-overlapping clusters: C1,C2, . . . ,Cpc . By

sure screening property, with asymptotically high probability, S0 ⊂⋃pc

j=1 C j . The use of a sparse

precision matrix to understand the dependence structure in a high-dimensional feature space

has been well acknowledged in statistics literature (e.g., Lauritzen (1996), Shojaie and Michailidis

52



(2010)) due to its scalability. In some contexts, it brings more insight compared to the analysis of

a simple covariance matrix. For example, in the human brain, two separate regions can be highly

correlated with no direct relation and only due to their strong interaction with a common third

region. So, understanding the conditional dependence structure and using it in clustering the

brain regions is more informative in the context of understanding the functional connectivity in

the human brain (Das et al., 2017). Otherwise, simple correlation-based clustering will result in

huge cluster sizes with less interpretable groups of brain regions.

To this end, in order to estimate the precision matrix we implement the nodewise Lasso algo-

rithm (Van de Geer et al., 2014) on the transformed variables (T̃y (Y ), T̃k (Xk )),k ∈ Ŝn . Nodewise

Lasso regression is generally entertained to estimate a sparse precision matrix in the context of

the Gaussian graphical model by performing simultaneous Lasso regression on each predictor.

The tuning parameters in each nodewise Lasso are typically selected using cross-validation.

More details on this algorithm and its theoretical guarantees can be found in (Meinshausen and

Bühlmann, 2006). Let Σ̂−1 be the estimated precision matrix by the nodewise Lasso algorithm

and ρ(Z , Z ′) denotes any correlation metric for two random variables Z and Z ′, e.g. Pearson’s

correlation. Algorithm 3.1 summarizes the clustering step.

Here not only we are clustering the active predictors, but also selecting an appropriate

representative from each cluster. First, for each active predictor Xi ∈ Ŝn , we collect all the other

active predictors conditionally dependent on Xi , and make cluster Ci . Although clustering using

conditional dependence produces smaller clusters, there might be some overlaps owing to the

complex association in the original predictor space. Hence, to reduce the excessive intercluster

correlation, we merge all those clusters having a maximum correlation greater than some pre-

specified threshold r (we typically set r=0.9). Next, each cluster is updated by adding all the other

features conditionally dependent on the existing cluster members. Finally, to find the appropriate

cluster representatives, we focus on the HZ-test statistic w̃∗
k in 3.1 which measures the extent of

resemblance between the distribution of each nonparanormally transformed variable in a cluster

and the null distribution N (0, I2). So, for cluster Ci , we select the variable Ri = ar g max j∈Ci {w̃∗
j }
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indicating its strongest association with the response variable compared to the other predictors

in the cluster.

3.2.3 Cleaning with Deep Neural Network (DNN)

We start the cleaning step by modeling the response Y and the cluster representatives X S̃n

obtained through 3.2.2.2. In order to perform the error-controlled variable selection, each

representative will be assigned an importance score followed by a resampling algorithm to finally

control the FDR.

While it is possible to adopt any other generic sparsity-inducing DNN procedure, here we

focus on the LassoNet algorithm recently proposed by Lemhadri et al. (2021) for its elegant

mathematical frameworks which naturally sets the stage for nonlinear feature selection. To

approximate the unknown functional connection, it considers the class of all fully connected

feed-forward residual neural networks; namely, F = { f ≡ fθ,W : x 7→ θT x +hW (x)}. Here, W

denotes the network parameters, K denotes the size of the first hidden layer, W (0) ∈ Rp×K

denotes the first hidden layer parameters, θ ∈Rp denotes the residual layer’s weights. In order

to minimize the reconstruction error: the LassoNet objective function can be formulated as:

min
θ,W

L(θ,W )+λ||θ||1 subject to ||W (0)
j ||∞ ≤ M |θ j |, j = 1,2, . . . , p (3.2)

With L(θ,W ) = 1
n

∑n
i=1 l ( fθ,W (xi ), yi ) as the empirical loss on the training data and xi as the vector

of cluster representatives observed for the i th individual. While the main feature sparsity is

induced by the L1 norm on residual layer parameter θ, the second constraint controls the total

amount of nonlinearity of the predictors. As mentioned in Lemhadri et al. (2021), LassoNet can

be argued as an extension of the celebrated Lasso algorithm to nonlinear variable selection.

In L1 penalization framework, the importance of a specific feature is naturally embedded

into the highest penalization level up to which it can survive in the model. So, to measure the

importance of each representative, the LassoNet algorithm is executed over a long range of tuning

parameter λ1 ≤ λ2 ≤ ·· · ≤ λr on (Y , X S̃n
). In practice, a small value is fixed for λ1 where all the

variables are present in the model. Then we gradually increase the value of the tuning parameter
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and stop at λr , where no variables are present in the model. Next, the importance score for the

j -th cluster is defined as λ̂ j = maximum value of λ up to which the j-th representative exists in the

model, and then the following rank statistic is computed: Ij =∑
j ′ ̸= j 1

(
λ̂ j ≤ λ̂ j ′

)
for j = 1,2, . . . ,C .

A lower Ij means that the j -th cluster representative stays in the model up to a higher value

λ implying its high potential as a significant cluster. In contrast, a higher Ij indicates the

corresponding cluster leaves the model even for a smaller value of λ as a consequence of being

simply a collection of null features. Hence, we should only focus on the clusters with lower ranks.

Additionally, in order to control the FDR, understanding the behavior of the predictors under

the null distribution is important. In traditional FDR controlling algorithms, this is typically

done by generating the p-values. Here, as a p-value-free algorithm, we propose the following

resampling-based approach:

1. Generate B bootstrap versions of the data
{

Y b , X b
S̃n

}B

b=1
considering only the cluster rep-

resentatives S̃n . For each bootstrap version, run the LassoNet algorithm parallelly, and

calculate the importance of each representative by measuring λ̂b
j = maximum value of λ

up to which the j-th predictor exists in the model for b-th bootstrap version, and then the

ranks I b
j =∑

j ′ ̸= j 1
(
λ̂b

j ≤ λ̂b
j ′
)
.

Therefore, the averaged rank is: Īj = 1
B

∑B
b=1 I b

j

2. For an arbitrary threshold δ, we would select the cluster representatives with averaged

rank Īj lower than δ; so we define, N+(δ) =∑
j∈S̃n

1(Īj ≤ δ) representing the number of

selected clusters with respect to the cutoff δ.

3. Next, to estimate the expected number of falsely discovered clusters, define Rb = { j :

I b
j ≤ δ}, the number of cluster representatives with higher importance score so that the

corresponding rank is lower than the cutoff δ in the b-th bootstrap version. Additionally,

define a neighbourhood N (Īj ,κ) = {l ∈ {1,2, . . . ,C } : Īj − l ≤ κ}, for some specific small

number κ.
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4. Further, we estimate the number of falsely discovered clusters and hence an estimator of

the FDR can be constructed as ˆF DR(δ) = ê0(δ)
N+(δ) where,

ê0(δ) = 2
B

∑B
b=1

{∑
j∈Rb 1(I b

j ̸∈N (Īj ,κ))
}

(3.3)

5. The ˆF DR is sequentially estimated with δ= Ī(1),Ī(2), . . . ,Ī(C ) and the optimum threshold

is ∆∗ = max{δ > 0 : ˆF DR(δ) < q} for some pre-specific FDR control level q . The final

selected set of clusters with controlled FDR is given by D̂n = {C j , j = 1,2, . . . ,C : Īj ≤∆∗}

The proposed method certainly has a close resemblance with an FDR-controlling approach.

The notion of false discovery is incorporated into the algorithm via the resampling: if a null

predictor gets a relatively higher importance score, that is most possibly due to that specific

bootstrap version which creates the spurious relation, however, that would not be consistent

for all the other bootstraps in general. On the other hand, all the bootstrap versions should

consistently produce higher importance scores for the significant predictors. As a consequence,

the variability in the ranks of the importance scores will be much higher for the null predictors

compared to their nonnull counterparts. This notion was introduced in the statistics literature in

the last twenty years as bagging methods (Breiman, 1996; Bühlmann and Yu, 2002) for reducing

the variance of a black-box prediction. The proposed method utilizes this phase transition in the

feature selection framework to effectively identify the false discoveries; an empirical illustration

of which is provided below. The theoretical investigation is relegated to Appendix A, where in the

spirit of Ng and Newton (2022), we use the idea of random-weighted Group Lasso penalization

to mimic the resampling setup.

How to choose the hyperparameter κ: Choosing an appropriate value of κ has a significant

effect on the performance of SciDNet. A higher value of κ might lead to weaker control over the

inclusion of false discoveries, whereas choosing a smallκwill create tighter error control resulting

in reduced power. However, we propose an effective way to tune the κ with the assistance of

phase transition in the ranks of the importance score Īj of the cluster representatives. For an
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Figure 3.2 Illustration of phase transition using synthetic data: Features selected by SciDNet at
q = 0.2 clearly have lower bootstrap variability compared to the other irrelevant features.

illustration, in Figure 3.2 we consider a single index model (see section 4.2 for more details of the

data-generating mechanism), and the features with top 15 importance scores are shown along

the x-axis. The first 5 representative features are the only relevant predictors (indicated by the

vertical dotted red line). Along the y-axis, the center of the ellipse for each feature represents the

rank of the importance scores Īj averaged over 50 bootstrap replications and the area of each

ellipse represents the bootstrap variability around the averaged score. One would observe a clear

phase transition in the bootstrap distribution of the ranks. For the significant features, the ranks

are lower with extremely precise estimates. On the other hand, for the rest of the null features,

the averaged ranks possess much higher values coupled with huge variability producing bigger

ellipses. Hence, for a compact neighborhood N (Īj ,κ) to capture only the small variability in the

bootstrap ranks of the significant features, we simply fix κ= K* (in figure 3.2), the phase transition

point for the averaged rank. This phase transition property is further illustrated on real data in

Appendix B.0.2.
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Figure 3.3 Illustration of the effect of multicollinearity on the feature selection methods.

3.3 Numerical Illustrations

In this section, we investigate the finite-sample performance of SciDNet using a wide spec-

trum of simulation scenarios. We compare SciDNet to several baseline methods which are

widely used in practice. We conduct this simulation study on synthetic data generated from a

high-dimensional regression problem.

Data Generation: We first consider the single index model for the data-generating mecha-

nism, which is a straightforward yet flexible example of nonlinear models. Here the response is

related to a linear combination of the features through an unknown nonlinear, monotonic link

function, i.e., y = g (x ′β)+ϵ. We choose the following link functions: g (x) = x3

10 +3 x
10 .

We set n = 400 and p = 5000. The coefficientsβ ∈Rp is sparse with the true nonzero locations

S0 = {50,150,250,350,450}, s = |S0| = 5, where βSc
0
= 0,βS0 ∼ N5(uβ0,0.1I 5×5) with u = {±1}5. The

value of β0 is set at β0 = 2,4 to incorporate varying signal strength. The random error ϵ∼ N (0,σ2),

with three increasing noise level as σ2 = 1,5,10. The high dimensional predictors are generated

from X ∼ Np (0,Σ) where the covariance matrix Σ is chosen as a Toeplitz matrix with Σi j = ρ|i− j |.
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To check the effect of multicollinearity, we consider three different settings: ρ = 0.1,0.5,0.95.

Evaluation Metrics: Let D̂n denote the selected set of features by some algorithm, then we

use the following three metrics to evaluate the performance of these feature selection algorithms:

1. Power= |D̂n∩S0|
|S0| , the proportion of relevant features that are correctly identified

2. Empirical FDR =
|D̂n∩Sc

0|
|D̂n | , the proportion of falsely identified features among all the identi-

fied features

3. n_var = |D̂n |, the number of total features selected and n_clust = |S̃n |, the number of

clusters selected by a group feature selection method like SciDnet.

The whole experiment is repeated over 100 Monte Carlo replications and We summarize the

results from the empirical evaluations in the following three subsections: (1) The effect of

multicollinearity on major existing feature selection methods, (2) the Power vs. FDR balance of

SciDNet, and (3) an ablation study showing the effectiveness of all the steps for SciDNet.

3.3.1 The effect of multicollinearity on major existing feature selection methods

we present a simulation study to evaluate the performance of our proposed algorithm in

comparison with the following five baseline feature selection methods

1. Lasso (Tibshirani, 1996): the L1 penalized linear regression to prevent overfitting and

improve model interpretability.

2. Model-X knockoff (Candès et al., 2018): A theoretically guaranteed statistical method

for FDR control used in high-dimensional variable selection. It constructs "knockoff"

variables that mimic the correlations between the original variables and their relationship

with the response variable, allowing for control of the false discovery FDR while identifying

important variables.

3. SurvNet (Song and Li, 2021): A DNN-based FDR control method for feature selection

applicable to high-dimensional large datasets.
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4. Deep Feature Selection (DFS) (Chen et al., 2021): A novel DNN method for feature se-

lection in a high-dimensional setting with complex nonlinear relationships utilizing L0

penalization.

5. LassoNet (Lemhadri et al., 2021): The nonlinear extension of Lasso. It combines the

advantages of both L1 penalization and neural network structures to identify the important

features.

Although several other existing methods exist in the literature for ultra-high dimensional feature

selection, we choose these five baseline methods because of their wide applicability and reliable

theoretical guarantees. Also, these five methods can be thought of as representative of different

classes of algorithms. For example, Model-X knockoff represents the big class of knockoff-based

algorithms; whereas SurvNet, DFS, and LassoNet show the effectiveness of the DL-based feature

selection methods. Among these five baseline methods, Model-X knockoff and SurvNet are

designed to control the FDR and we use q = 0.2 as the FDR-control threshold. Also, Lasso,

LassoNet, and DFS require proper tuning for their L1 or L0 penalty parameters, which can be

done via a grid search. For this purpose, we optimize a BIC-type criterion (Chen and Chen, 2008)

to tune these hyperparameters, as suggested by the authors of Chen et al. (2021). For the practical

implementation of these baseline methods, we used the code/hyperparameters provided by the

authors in the respective papers.

Figure 3.3 demonstrates the Power, FDR, and the n_var of all these methods under different

correlation strengths and varying noise levels, fixing β0 = 2. Also, as SciDNet selects the features

as clusters, we show the n_clust in numbers along with n_var , in the third row of Figure 3.3.

One would observe that the baseline methods perform poorly as the autocorrelation increases;

they result in reduced power and inflated false discoveries. The FDR-controlling methods such

as Model-X knockoff and SurvNet fail to control their FDR under the pre-specified threshold

q = 0.2 for higher autocorrelation. This is somehow expected, as these methods are not tailored

for handling such huge multicollinearity. This demonstration empirically motivates as well why
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we need a feature selection method designed for highly correlated feature space. The DL-based

method like LassoNet, DFS, or Survnet additionally suffers from insufficient data under the

current big-p-small-n setting. Our additional experiments, presented in the supplementary ma-

terial, demonstrate how these DL-based models gain better power-FDR balance given sufficient

training data and moderate correlation among the features. Compared to these baseline meth-

ods, SciDNet successfully maintains its power while controlling the FDR below the pre-specified

threshold q = 0.2 irrespective of the correlation strength. Also, under moderate multicollinearity,

when there is no need for clustering, most of the selected clusters by SciDNet are just singleton

sets. On the other hand, under the setting of excessive multicollinearity, the individual features

become almost indistinguishable. SciDNet addresses this added uncertainty by selecting larger

clusters for higher autocorrelation, as demonstrated in the third row of Figure 3.3.

3.3.2 The Power vs. FDR balance of SciDNet

Figure 3.4 Power vs FDR balance for SciDNet.

One major validation for an FDR controlling method is to check how it retrieves its power with

respect to gradually increasing the FDR-control threshold q . Figure 3.4 shows this power-FDR

trade-off for SciDNet. Also, Section 3.3.1 demonstrates that the baseline methods are not well

suited for highly correlated feature space. As SciDNet is specifically designed for this setting,
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Figure 3.5 Ablation study for SciDNet.

for ease of illustration, we only present the performance of SciDNet setting ρ = 0.95. Figure

3.4 illustrates how our method enjoys quick recovery in power when we gradually increase the

FDR-controlling threshold q from 0.01 to 0.20 and also maintain the number of false discoveries

below the required level. This illustration empirically validates SciDNet as an FDR-controlled

feature selection method.

3.3.3 An ablation study

The proposed method SciDNet is a multi-step process. Its screening step reduces the dimen-

sion while retaining the main important features and clustering the highly correlated features.

Following this, the cleaning step further uses a sparsity-inducing DL model and finally selects

some cluster of features by controlling the FDR via resampling. We aim to analyze the impact

of these two steps on the overall performance of the model by adding them one by one and

observing the change in the evaluation metrics. We also compare our proposed cleaning step (i.e.

resampled LassoNet with FDR estimation) with other possible alternatives like using knockoffs

for the cleaning.

Hence, for the ablation study, we compare the following four methods under varying signal

and noise strength:
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1. Screening only,

2. Screening+LassoNet: Here we consider LassoNet as the cleaning step

3. Screenning+Knockoff: Here we consider Model-X knockoff as the cleaning step, with the

FDR-controlling threshold q = 0.2

4. Screening+resampled LassoNet, i.e. SciDNet. We use two FDR-controlling thresholds

q = 0.1, and 0.2.

The power, empirical FDR, n_var are illustrated in Figure 3.5. In addition, the selected num-

ber of clusters, i.e., n_clust , are written in numbers in the third row of Figure 3.5. it empirically

consolidates several interesting characteristics: (a) Due to the sure-screening property 3.2.2.1,

the screening step selects a slightly bigger set of features resulting in high power and high FDR

which necessitates further cleaning; (b) All the alternative cleaning steps aim to further eliminate

the null features and reduce the FDR while maintaining the power of the screening step; (c)

For higher signal and low noise case, SciDNet is comparable to other alternatives. However, for

difficult scenarios like low signal and high noise case, which is common in modern genomic and

imaging datasets, SciDNet maintains its performance. One would notice that Model-X knockoff

loses its FDR control at the nominal level q = 0.2 and results in inflated FDR in the presence of

high noise. On the other hand, by effectively using the added information from the resampling,

SciDNet achieves the best performance (in terms of the power-FDR tradeoff) and continues to

preserve its FDR below the nominal level q .

Overall, our ablation study showed that the proposed cleaning following the screening step

contributes to the overall performance of SciDNet and that removing any of them leads to a

significant drop in accuracy. The screening helps in reducing the dimension of the feature

space by removing a large chunk of irrelevant features, which further makes the cleaning step

computationally very efficient. Additionally, one would notice the different tasks in the screening

and cleaning steps can be easily done in parallel. Specifically, for all the simulation studies

SciDNet takes ∼ 4.1 minutes to complete. In our experience, this is highly competitive with
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other methods like DFS, especially when an exhaustive grid search has to be done to optimize

the hyperparameters for several baseline methods. We also conducted a further simulation

study considering several nonlinear models as data-generating processes with Gaussian and

non-Gaussian features. The results are presented in Appendix B.0.3 which further substantiates

the above-mentioned results that SciDNet maintains a satisfactory power-FDR balance for

various complicated nonlinear models with and without interaction terms. The hyperparameter

selection and further implementation details of SciDNet are relegated to Appendix B.0.1 and

B.0.5, respectively.

3.4 Real Data Analysis

In addition to the simulation studies, we implemented the proposed algorithm SciDNet

in the following two publicly available gene-expression data sets - the CCLE dataset and the

riboflavin dataset. We substantiate the findings in two ways: We first provide supporting evidence

from the domain research. Additionally, as a more data-aligned validation, we demonstrate

that several generic prediction models significantly gain in test accuracy when applied only

on the few features selected by SciDNet compared to the prediction result considering the

whole feature space. For this purpose, consistent with the other genomic studies, we use the

prediction correlation Corr(YPr ed ,YTest ) in addition to the test MSE as a metric to measure

the test performance. To overcome the extra burden of the low sample size and ultrahigh

dimensionality in these data sets, we consider 50 independent replications where the data

is divided into training and testing maintaining an 8 : 2 ratio to get the metrics for the test

performance. The final estimate is obtained by averaging all the test MSEs calculated on each of

these replications. A similar approach is considered for the correlation metric as well.

3.4.1 Selection of Drug Sensitive Genes using CCLE dataset

A recent large-scale pharmacogenomics study, namely, the cancer cell line encyclopedia

(CCLE, link available here), investigated multiple anticancer drugs over hundreds of cell lines.

Its main objective is to untangle the response mechanism of anticancer drugs which is critical

to precision medicine. The data set consists of dose-response curves for 24 different drugs
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Figure 3.6 A snapshot of correlation strength for first 100 genes considered for the drug Topotecan
in CCLE dataset (left) and riboflavin dataset (right).

across over n = 400 cell lines. For each cell line, it consists of the expression data of p = 18,926

genes, which we consider as features. For the response, we used the activity area (Barretina

et al., 2012) to measure the sensitivity of a drug for each cell line. Here we seek to uncover the

set of genes associated with the following five specific anticancer drug sensitivity: Topotecan,

17-AAG, Irinotecan, Paclitaxel, and AEW541. These drugs have been used to treat ovarian cancer,

lung cancer, and other cancer types. Previous research outputs on these drugs and related gene

expression data can be found elsewhere (Barretina et al., 2012).

Table 3.1 Drug-sensitive genes identified by SciDNet and related prediction performance

Drug
# genes (clusters) selected Test MSE Corr(YPr ed ,YTest )

by SciDNet by LassoNet LassoNet SciDNet + MLP SciDNet + RT Lassonet SciDNet + MLP SciDNet + RT

Topotecan 25 (9) 18469 1.25 (0.21) 1.23 (0.14) 0.81 (0.16) 0.47 (0.11) 0.58 (0.06) 0.69 (0.07)

17-AAG 12 (8) 7152 1.04 (0.16) 1.05 (0.09) 0.83 (0.15) 0.20 (0.16) 0.33 (0.10) 0.49 (0.10)

Irinotecan 18 (7) 17727 0.93 (0.20) 1.09 (0.18) 0.61 (0.13) 0.59 (0.10) 0.63 (0.07) 0.73 (0.08)

Paclitaxel 18 (8) 16437 1.46 (0.33) 1.46 (0.23) 1.11 (0.24) 0.44 (0.14) 0.45 (0.11) 0.59 (0.09)

AEW541 12 (10) 15145 0.33 (0.06) 0.39 (0.09) 0.27 (0.05) 0.30 (0.14) 0.49 (0.10) 0.47 (0.12)

SciDNet produces multi-resolutional clusters of genes for each of the five drugs considered

which are interpretable from the domain science perspective. For example, SciDNet discovers

SLFN11 as the top drug-sensitive gene for the drugs Topotecan and Irinotecan. This is consistent

with the previous findings as Barretina et al. (2012); Zoppoli et al. (2012) reported the gene

SLFN11 to be highly predictive for both drugs. For another drug 17-AAG, SciDNet discovers the
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gene NQO1 as the topmost important gene which is known to be highly sensitive to 17-AAG

(Hadley and Hendricks, 2014). The full table containing all the genes selected by SciDNet at

q = 15% error-control level and relevant findings from previous genomic studies have been

relegated to Appendix B.0.6.

Additionally, as in a real setting, it is difficult to check the performance of a feature selection

algorithm, here we present a more data-oriented statistical evaluation for further endorsement

of SciDNet’s discoveries. From the prediction aspect, one would expect that a prediction model

implemented only on a handful of features selected by a successful feature selection algorithm

would maintain the similar performance of a model implemented on the whole feature space; in

some cases, it might enhance the accuracy. To validate this, we randomly split the whole data into

8:2 for training and testing. First, the SciDNet is implemented in the training part, and then two

separate prediction models are used only focusing on the selected features : (1) an MLP - a feed-

forward multi-layer perceptron with two hidden layers and (2) bagged regression tree (Breiman,

1996). These two experiments are henceforth called: "SciDNet+MLP" and "SciDNet+RT". Next,

the test data is used to check the out-of-sample prediction accuracy. Furthermore, similar to the

simulation study in section 4.2, we separately implement the LassoNet on the training data for its

simultaneous sparsity-induced prediction-optimal characteristics. The summary of the results

is presented in table S4 which indicates several interesting points. First, to get the prediction

optimal result, LassoNet fails to capture the sparsity and discovers a huge number of genes. This

is somehow expected as most of the prediction-optimal sparse methods tend to select a larger

set of features to maintain the prediction quality (Wasserman and Roeder, 2009). On the other

hand, SciDNet produces only ∼ 10 clusters with an average cluster size ∼ 2.5. Even with this

huge dimension reduction, the added gain in test MSE and Corr(YPr ed ,YTest ) further proves that

ScidNet successfully retains all the significant predictors. One would further notice, SciDNet+RT

achieves the best stable performance which is consistent for all the drugs and our simulation

study as well. This experiment demonstrates that a black-box predictive model produces more

accurate results when applied on the features selected by SciDNet rather than its implementation
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Table 3.2 Prediction performance of SciDNet for Riboflavin production data set

Algorithm Test MSE Corr(YPr ed ,YTest )

LassoNet 0.83 (0.18) 0.36 (0.30)
SciDNet + LassoNet 0.19 (0.15) 0.89 (0.12)
SciDNet + RT 0.42 (0.16) 0.74 (0.15)
SciDNet + MLP 2.64 (0.79) 0.28 (0.37)

on the whole feature space, indicating SciDNet’s potential use in both feature selection and

prediction.

3.4.2 Selection of associated genes in Riboflavin production data set

We further implement the SciDNet in the context of riboflavin (vitamin B2) production with

bacillus subtilis data, a publicly accessible dataset available in the ‘hdi’ package in R. Here the

continuous response is the logarithm of the riboflavin production rate, observed for n = 71

samples along with the logarithm of the expression level of p = 4088 genes which are treated

here as the predictors. Unlike the previous CCLE data, significant multicollinearity is present

in most of the Riboflavin data set, as demonstrated in Figure 3.6. Hence, to determine which

genes are important for riboflavin production, SciDNet resulted in finding 9 clusters of a total

of 160 correlated genes at the q = 15% FDR control level, making the average cluster size of

∼ 17.78, which is much bigger compared to the previous analysis. SciDNet discovered the gene

YCIC_at as one of the expressive genes related to riboflavin production which was identified

by Bühlmann et al. (2014) as a causal gene in this context. The full list of the selected cluster of

genes by SciDNet is relegated to Appendix B.0.8.

The results from the empirical validation of SciDNet’s feature selection on the riboflavin

dataset are presented in table 3.2. However, for the empirical evaluation, SciDNet+MLP is per-

forming poorly as the inflated cluster dimensions make the input layer of the MLP comparatively

large where the number of the training data point is ≈ 57. This necessitates the need for a sparse

model here, and we adopt the idea of Relaxed Lasso, first proposed by Meinshausen (2007). Here

we implement the LassoNet again on the selected features by SciDNet, which certainly improves

the prediction accuracy. Consistent with the previous experiments, SciDNet+RT effectively
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maintains its prediction performance. This further consolidates the need for applying an apt

feature selection method before fitting a predictive model for an explainable research outcome.

3.5 Discussion

While the explainable AI is the need of the hour, statistical models coupled with cutting-edge

ML techniques have to push forward because of their solid theoretical foundation clipped with

principled algorithmic advancement. The proposed method SciDNet efficiently exploits several

existing statistics and ML literature tools to circumvent some of the complexities that simple

adaptation of current DL-based models fail to address appropriately. The basic intuition and

exciting empirical results of SciDNet on simulated and real datasets open avenues for further

research. For example, one may be interested in developing a theoretical foundation for this

’screening’ and ’cleaning’ strategy for provable FDR control. It would be worth mentioning that

although we used the sure independence screening with HZ-test and LassoNet as the main

tools, SciDNet puts forward a more generic framework and can be implemented with any other

model-free feature screening method and sparsity-inducing DL algorithms like Feng and Simon

(2017). In the screening part, a further methodological extension would consider relaxing the

assumption of nonparanormally distributed features for a more flexible approach. Additionally,

as the dimensionality is reduced after the screening step, it would be interesting to implement

model-free knockoff generating algorithms like Romano et al. (2020) in the cleaning step as

further algorithmic development. One limitation is that we mainly focus on the regression setup

with the continuous outcome because of the requirements of the HZ sure Independence test

used in the screening step. For a classification task, any model-free feature screening method

like Zhou and Zhu (2018) can be applied in a more general framework.
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APPENDIX A

THEORETICAL STUDY

Although the proposed method SciDNet is demonstrated based on the LassoNet algorithm

(Lemhadri et al., 2021), any other sparsity-inducing Deep learning framework can be adopted at

the cleaning step of SciDNet. Hence, for the theoretical study, we consider a broader framework

with a general analytic DNN. Also, as the screening step is theoretically guaranteed by Xue

and Liang (2017), we start the theoretical study directly from the cleaning step, assuming the

data is {Y i ∈ R, X i ∈ X }n
i=1

i i d∼ PD , where X is a bounded open set in Rp , p < n and the input

density px is positive and continuous on its domain X . In the spirit of Dinh and Ho (2020), we

consider the following general analytic neural network model fα(x), an L-layer neural network

with parameters α= (ti n ,Ti n , tout ,Tout ,S) and defined by

• Input layer: h1(x) = ti n +Ti n x;

• Hidden layers: h j (x) =φ j−1(S,h j−1(x),h j−2(x), . . . ,h1(x)), j = 2,3, . . . ,L−1; and

• Output layers: fα(x) = hL(x) = tout +Tout hL−1(x)

with di = size of the i -th layer, d1 = p,dL = 1, Ti n ∈ Rd2×p , ti n ∈ Rd2 ,Tout ∈ R1×DL−1 , tout ∈ R and

φ1,φ2, . . . ,φL−2 are analytic functions parameterized by the hidden layers’ parameter S. This gen-

eral framework covers a wide range of models, including feed-forward networks, convolutional

networks, and a major subclass of residual networks. For the sake of theoretical study, we further

assume that (1) the set of all feasible vectors α of the model is a hypercube W = [−A, A]nα , (2)

both W and X are bounded, (3) fα is analytic in the sense that there exist C1,C2 > 0 such that

| fα(x)| ≤C1, and ||▽α fα(x)||∞ ≤C2,∀α ∈W , x ∈X and these functions are Lipschtz continuous,

and (4) Y = fα∗(X )+ϵwith ϵ∼ N (0,σ2
ϵ),α∗ ∈W = [−A, A]nα and we assume that the “true” model

fα∗(·) only depends on x through a subset of significant features S ∈ 1,2, . . . , p while being inde-

pendent of features in Sc , |S| = s =O(1). To this end, a general group Lasso estimator (Feng and
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Simon, 2017; Dinh and Ho, 2020) has been defined as

α̂n =α {
1

n

n∑
i=1

l (α, X i ,Y i )+λn

p∑
j=1

||α[:, j ]||} (A.1)

where l (α, x, y) = (y − fα(x))2 is the square-error loss, λn > 0 is the associated penalty parameter,

|| · || is the standard Euclidean norm and α[:, j ] is the vector of parameters associated with j-th

input feature.

Now, we incorporate the notion of resampling/bootstrapping by introducing the random-

weighted group lasso defined as follows

α̂w
n =α {

1

n

n∑
i=1

Wi l (α, X i ,Y i )+λn

p∑
j=1

||α[:, j ]||} (A.2)

where Wi
i i d∼ FW , independent of the data distribution PD . The random weighting scheme

effectively maintains the flavor of perturbation bootstrap (Das and Lahiri, 2019), thus can be

used for uncertainty quantification in the context of sparse models. Ng and Newton (2022)

studied this in the context of the sparse linear model. Here, we first show that under appropriate

random weights, α̂w
n converges to a set of well-behaved optimal hypotheses in the sense that

K = {α ∈W : fα = fα∗ and α[:, j ] = 0, for j ∈ Sc }.

We note that with the addition of random weights the overall probability measure changed

to P = PD ×PW where PW is the probability measure of the triangular array of random weights.

We define the following three sigma fields: F w
n =σ{W1,W2, . . . ,Wn}, F x

n =σ{X1, X2, . . . , Xn}, and

F
y

n =σ{Y1,Y2, . . . ,Yn}.

We further define, the risk function R(α) = EPD (Y − fα(X ))2, the empirical risk function

Rn(α) = 1
n

∑n
i=1

(
Y i − fα(X i )

)2
and the weighted empirical risk function adding the random

weights as Rw
n (α) = 1

n

∑n
i=1 Wi

(
Y i − fα(X i )

)2
. The equivalence class can be expressed as H ∗ =

{α ∈W : R(α) = R(α∗)}.

For simplicity, in order to obtain a bounded weight, we assume FW is such that PW (C2 <W <
C3) = 1, for some C3 > 0.

Lemma A.0.1 (Probabilistic Lipschitzness of the random-weighted empirical risk). For any δ> 0,

there exists Mδ > c0 such that Rw
n (α) is an Mδ-Lipschitz function with probability at least 1−δ.
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Proof. We note that,

|R(α)−R(β)| = |E (
(Y − fα(X ))2 − (Y − fβ(X ))2) |

≤ E |( fα(X )− fβ(X )
)(

2Y − fα(X )− fβ(X )
) |

≤C2||α−β||E |(2Y − fα(X )− fβ(X )
) |

≤C2||α−β||(2E |Y − fα∗(X )|+E |( fα(X )+ fβ(X )−2 fα∗(X )
) |)

≤C2||α−β||(2σ+4C1)

Similarly,

|Rw
n (α)−Rw

n (β)| = | 1

n

n∑
i=1

Wi

(
(Y i − fα(X i ))2 − (Y i − fβ(X i ))2

)
|

≤ 1

n

n∑
i=1

Wi |
(

fα(X i )− fβ(X i )
)(

2Y i − fα(X i )− fβ(X i )
)
|

≤C2||α−β|| 1

n

n∑
i=1

Wi

(
2|Y i − fα∗(X i )|+ |

(
fα(X i )+ fβ(X i )−2 fα∗(X i )

)
|
)

≤C2||α−β||
(
4c1 + 2

n

n∑
i=1

Wi |ϵi |
)

Thus for all Mδ > 4C1C2, the proof is completed by noting the following

P
(
|Rw

n (α)−Rw
n (β)| ≤ Mδ||α−β||,∀α,β ∈W

)
≥ P

( 1

n

n∑
i=1

Wi |ϵi | ≤ Mδ

2C2
−2C1

)
= EPW

[
P

( 1

n

n∑
i=1

Wi |ϵi | ≤ Mδ

2C2
−2C1|W1,W2, . . . ,Wn

)]
= EPW

[
1−P

( 1

n

n∑
i=1

Wi |ϵi | ≥ Mδ

2C2
−2C1|W1,W2, . . . ,Wn

)]
≥ EPW

[
1−

1
n

∑n
i=1 Wi E |ϵ1|

Mδ

2C2
−2C1

]
≥ 1− C3E |ϵ1|

Mδ

2C2
−2C1

Lemma A.0.2 (Generalization bound for the random-weighted empirical risk). For any δ> 0, ∃
C4(δ) > 0 such that P

(
|Rw

n (α)−R(α)| ≤C4
log (n)p

n

)
≥ 1−δ,∀α ∈W

Proof. Note that nRw
n (α) = ∑n

i=1 Wi

(
Y i − fα(X i )

)2 = ∑n
i=1 Wi Z 2

i , where Zi = Y i − fα(X i ) which

follows N
(

fα∗(X i )− fα(X i ),σ2
ϵ

)
, conditional on FX .
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Hence, conditional on FX ,FW ,
nRw

n (α)
σ2
ϵ

∼ a weighted non-central χ2 distribution. We will use

the following Lemma 3 to get a sharp tail bound for weighted non-central χ2 distribution. Hence,

P
(
|Rw

n (α)−R(α)| > t

2

)
≤ EFX ,FW

[
2exp

(
− C n2t 2

2n +2
∑n

i=1 Wi
(

fα∗(X i )− fα(X i )
)2 −∑n

i=1 Wi

)]
≤ EFX ,FW

[
2exp

(
− C n2t 2

2n +2
∑n

i=1 Wi
(

fα∗(X i )− fα(X i )
)2

)]
≤ EFX ,FW

[
2exp

(
− C n2t 2

2n +2nC34C 2
1

)]
≤ 2exp(−c̃nt 2)

The rest of the proof follows the direct proof of the Lemma 3.3 Dinh and Ho (2020).

Theorem A.0.3 (Convergence of random-weighted Group Lasso). For any δ > 0, there exist

Cδ,C ′ > 0 and Nδ > 0 such that for all n ≥ Nδ,

d(α̂w
n ,H ∗) ≤Cδ

(
λ

ν
ν−1
n + log np

n

) 1
ν

and ||α̂w[:,Sc ]
n || ≤ 4C4

log n

λn
p

(n)
+C ′d(α̂n ,H ∗)

where d(x, Z ) = infz∈Z ||x − z||.

The proof directly follows from the above mentioned Lemma 1,2 and the theorem 3.3 from

Dinh and Ho (2020).

Theorem A.0.3 demonstrates the convergence of the random-weighted group-Lasso esti-

mates to a set of “well-behaved” optimal hypotheses K = {α ∈W : fα = fα∗ and ||α[:,Sc ]|| = 0} ⊂
H ∗. However, this depends on the regularization parameter λn ; finding its optimum value is

generally a daunting task in practice. As a solution, the importance score considering the whole

regularization path would provide a more robust way to identify false discoveries. Following our

proposed method in Section 3.2.3, here we consider the cleaning step in view of the random-

weighted group-Lasso penalized DNN. We repeat this step over B independently generated

random-weighting scheme and recall the importance scores λ̂ j and the corresponding ranks of

the importance score Ij for the b-th scheme as follows:

λ̂b
j = max{λn ∋ ||αw,[:, j ]

n || ̸= 0} = maximum value of λ up to which the j-th feature exists in the

model for the b-th random scheme, and

I b
j = rank of the importance scores =

∑
j ′ ̸= j 1

(
λ̂ j ≤ λ̂ j ′

)
and the averaged rank Īj =∑B

b=1 I b
j
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Our basic strategy is to select the features with high-importance scores consistent in all

the bootstrap replication. Hence, for a cutoff δ, define the number of selected features as

N+(δ) =∑p
j=1 1

(
Īj ≤ δ

)
. We further propose our estimate of the FDR as

ˆF DR(δ) = ê0(δ)

N+(δ)
,

where ê0(δ) = estimated number of false discoveries = 2

B

B∑
b=1

{
p∑

j∈1
1(I b

j ≤ δ,I b
j ̸∈N (Īj ,κ))

}

We further calculate the data-dependent optimum cutoff as ∆∗ = max{δ ∈ {Ī1,Ī2, . . . ,Īp } :

ˆF DR(δ) < q} for some pre-specific FDR control level q .

Theorem A.0.4 (Convergence of the estimated FDR). Using the data-dependent cutoff ∆∗, the

actual FDR is bounded by the user-specified level q; that is E
(

ê0(∆∗)
N+(∆∗)

)
< q as n →∞.

Proof. The feature importance scores Īj evidently provide the information on the survival

of the feature X j over the whole regularization path. Now, under the setup of the random-

weighted group-lasso framework, this is uniquely monitored by the KKT condition: ||α[:, j ]|| = 0

if ||
(
∂ fα(X )
∂α[:, j ]

)T

p j×n
di ag (W1,W2, . . . ,Wn)(Y − fα(X ))n×1|| < λ

p
p j , where p j is the number of total

parameters associated with the j-th feature. Hence, this L2 norm in the KKT condition can be

treated as the importance score λ̂ j , mentioned in Section 3.2.3. Now, for the null features j ∈ Sc
0,

the derivative term is o
(
n−1/4log (n)

)
by the continuity of ▽α fα(x) and the convergence of α̂w

n

to K . Also, by Lemma A.0.2, the residual term is o
(
n−1/2log (n)

)
. Also, the random weights W ’s

are bounded in [C2,C3]. Hence, this new λ̂ j , j = 1,2, . . . , p become exchangeable asymptotically.

As a consequence of the exchangeable variables, the ranks of the importance scores λ̂ j follow

uniform distribution asymptotically. Hence, for large n, I w
j =∑

j ′ ̸= j 1
(
λ̂ j ≤ λ̂ j ′

)
∼U (p − s +1, p).

Now, we consider the following random variable names False Discovery Proportion (FDP) whose
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expectation is the FDR.

F DP =
∑p

j=1 1
(
Īj ≤∆∗, j ∈ Sc

0

)
∑p

j=1 1
(
Īj ≤∆∗)

=
2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}
∑p

j=1 1
(
Īj ≤∆∗)︸ ︷︷ ︸
≤q

.

∑p
j=1 1

(
Īj ≤∆∗, j ∈ Sc

0

)
2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}
︸ ︷︷ ︸

R(∆∗)

The first part of FPR is ≤ q by the typical choice of ∆∗ and hence, in order to show the asymptotic

FDR control, all we need to show is limn→∞ E(R(∆∗)) ≤ 1.

E(R(∆∗)) = E

 ∑p
j=1 1

(
Īj ≤∆∗, j ∈ Sc

0

)
2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}


= E

 ∑p
j=1 1

(
Īj ≤∆∗, {I b

j }B
b=1 ∼Uni f or m

)
2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}


= E

∑p
j=1 1

(
Īj ≤∆∗, {I b

j }B
b=1 ∼Uni f or m,I b

j ∈N (Īj ,κ),∀b
)

2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}
+

E

∑p
j=1 1

(
Īj ≤∆∗, {I b

j }B
b=1 ∼Uni f or m,I b

j ̸∈N (Īj ,κ),∀b
)

2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}


≤ E

2
∑p

j=1 1
(
Īj ≤∆∗, {I b

j }B
b=1 ∼Uni f or m,I b

j ̸∈N (Īj ,κ),∀b
)

2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}


≤ E

 2
∑p

j=1 1
(
Īj ≤∆∗,I b

j ̸∈N (Īj ,κ),∀b
)

2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}


≤ E

 2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}
2
B

∑B
b=1

{∑p
j∈1 1(I b

j ≤∆∗,I b
j ̸∈N (Īj ,κ))

}
= 1

The third inequality is true by the fact that the neighborhood N (Īj ,κ) is much smaller

than its complement region. The last inequality is true because of the fact that P (Z1 ≤ z, Z2 ≤
z, . . . , Zp ≤ z) ≤ 1

p

∑p
i=1 P (Zi ≤ z), for any set of random variables Z1, Z2, . . . , Zp . Hence, the actual

FDR is controlled at the user-specific bound q by selecting the features with ranks of their

importance score greater than the data-dependent threshold ∆∗.
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Lemma 3: Sharp tail bound for weighted non-central χ2 distribution

Consider a weighted non-central χ2 distributed random variable Y =∑k
i=1 ui Z 2

i , Zi ∼ N (µi ,1)

independently and
∑k

i=1µ
2
i =λ. Then for the centralized random variable X = Y −∑k

i=1 ui (1+µ2
i ),

the following sharp tail bound holds: there exists constants c,c’,C>0, such that

P (X ≥ x) ≤ c exp(− ct 2

2k +2
∑k

i=1 uiµ
2
i −

∑k
i=1 ui

),∀0 ≤ x ≤ c ′(2k +2
k∑

i=1
uiµ

2
i −

k∑
i=1

ui )

Proof:

The moment-generating function of X:

φX (t ) = exp
[ 2t 2

1−2t

k∑
i=1

uiµ
2
i −

k

2
(log (1−2t )+2t )+ t (k −

k∑
i=1

ui )
]

Note, for 0 ≤ t ≤ 1/2, 2t 2 ≤−l og (1−2t )−2t ≤ 2t 2

1−2t .

This implies, for 0 ≤ t ≤ 2/5,

t 2(2k +2
k∑

i=1
uiµ

2
i −

k∑
i=1

ui ) ≤ log (φX (t )) ≤ 5t 2(2k +2
k∑

i=1
uiµ

2
i −

k∑
i=1

ui )

Next, the exact tail bound can be obtained by applying theorem 1 from Zhang and Zhou (2020).
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APPENDIX B

ADDITIONAL TECHNICAL DETAILS

In this section, additional technical and implementation details on the proposed algorithm

SciDNet are provided.

B.0.1 Hyperparameter Selection

Recently developed Deep Learning (DL) models are generally governed by several hyperpa-

rameters and properly tuning them is necessary to get effective results. The proposed SciDNet

relies on the following hyperparameters: (1) size of the active set Ŝn , (2) the intracluster cor-

relation bound r , (3) LassoNet tuning parameters λ and M and (4) κ used in neighbourhood

selection in cleaning step. SciDNet is fairly robust to most of the associated hyperparameters.

We discuss a practical way to tune all these hyperparameters here:

1. To choose the size of the active set, we propose to select a bigger active set with size

proportional to νn = [n/log (n)]. As we further cluster the active variables in the clustering

step, a slightly bigger active set with boost up the confidence of sure screening property,

See the section B.0.5 for an example.

2. After clustering, the intra-cluster correlation bound r should be fixed at some higher value

(usually at 0.9 or 0.95) otherwise the cluster sizes will be inflated.

3. In the cleaning step, a thorough grid search has been done over λ considering λ1 ≤λ2 ≤
·· · ≤ λr ; in practice, a small value is fixed for λ1 where all the variables are present in

the model. Then the value of the tuning parameter gradually increased up to λr , where

there are no variables present in the model. The other hyperparameter for LassoNet is the

hierarchy coefficient M for which we follow the path considered in Lemhadri et al. (2021)

and set M = 10. However, a more flexible approach would be a parallel grid search for M

as well.

4. The neighborhood length κ can be chosen using the phase transition in the ranks of the
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Table S1 Empirical power and observed FDR of SciDNet with standard error in parentheses for
Gaussian features

Nonlinear Additive Nonlinear with interaction Linear

ρ snr q 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15

ρ = 0.9

snr = 9 : 1
Power 0.79 (0.19) 0.93 (0.11) 0.96 (0.09) 0.96 (0.09) 0.99 (0.06) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.00) 0.00 (0.02) 0.01 (0.03) 0.02 (0.05) 0.00 (0.00) 0.02 (0.05) 0.03 (0.06) 0.04 (0.08) 0.00 (0.00) 0.01 (0.04) 0.01 (0.05) 0.01 (0.05)

snr = 8 : 2
Power 0.59 (0.20) 0.82 (0.15) 0.86 (0.14) 0.87 (0.13) 0.84 (0.24) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.03) 0.00 (0.03) 0.03 (0.07) 0.04 (0.08) 0.00 (0.00) 0.01 (0.03) 0.02 (0.06) 0.04 (0.07) 0.01 (0.05) 0.02 (0.06) 0.02 (0.06) 0.02 (0.06)

snr = 7 : 3
Power 0.42 (0.20) 0.65 (0.12) 0.77 (0.14) 0.81 (0.14) 0.72 (0.26) 0.94 (0.12) 0.95 (0.12) 0.96 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.00) 0.00 (0.00) 0.00 (0.03) 0.01 (0.05) 0.01 (0.04) 0.03 (0.06) 0.03 (0.07) 0.05 (0.09) 0.00 (0.02) 0.02 (0.05) 0.02 (0.05) 0.02 (0.06)

ρ = 0.95

snr = 9 : 1
Power 0.83 (0.18) 0.96 (0.08) 0.98 (0.06) 0.98 (0.06) 0.99 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.03) 0.02 (0.05) 0.03 (0.07) 0.04 (0.07) 0.00 (0.00) 0.04 (0.07) 0.08 (0.09) 0.11 (0.10) 0.00 (0.02) 0.06 (0.09) 0.08 (0.10) 0.11 (0.12)

snr = 8 : 2
Power 0.60 (0.29) 0.82 (0.17) 0.87 (0.14) 0.89 (0.12) 0.98 (0.08) 0.99 (0.05) 0.99 (0.05) 0.99 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.03) 0.02 (0.05) 0.02 (0.06) 0.03 (0.07) 0.01 (0.04) 0.04 (0.07) 0.08 (0.12) 0.12 (0.12) 0.01 (0.03) 0.05 (0.09) 0.07 (0.10) 0.09 (0.11)

snr = 7 : 3
Power 0.32 (0.22) 0.61 (0.19) 0.79 (0.15) 0.82 (0.15) 0.80 (0.27) 0.96 (0.11) 0.98 (0.05) 0.98 (0.05) 0.93 (0.19) 0.96 (0.11) 0.97 (0.09) 0.97 (0.09)

FDR 0.00 (0.00) 0.01 (0.04) 0.01 (0.05) 0.03 (0.08) 0.00 (0.02) 0.04 (0.07) 0.07 (0.09) 0.12 (0.10) 0.00 (0.03) 0.04 (0.08) 0.06 (0.08) 0.07 (0.09)

importance scores, as described in Section 3.2.3.

B.0.2 Phase transition observed for the CCLE data

The main reason for the phase transition is that, for a null predictor X j , j ∈ Sc
0, different

bootstrap replicates reshuffle its feature importance each time, whereas, for a nonnull predictor

X j , j ∈ S0, the feature importance is much stable in different bootstrap replicates. SciDNet

effectively captures this characteristic to identify the null features. As a demonstration, here we

present in Figure B.1, the bootstrap distribution of rank of the importance scores for the top

25 important cluster representatives via box plots. The green and purple colors respectively

indicate if the cluster representatives are selected or rejected by the SciDNet. We can observe

the phase transition consistently for all five drugs, and SciDNet selects only those important

representatives with reduced variability over the bootstrap replicates.

B.0.3 More Simulation Results

Here we demonstrate finite sample performance of SciDNet under various linear and nonlin-

ear models with varying multicollinearity level under different signal-to-noise-ratio.

B.0.3.1 Using Gaussian Features

For the high dimensional predictors, n i.i.d. copies are first generated from X ∼ Np (0,Σ),

where n = 600, p = 5000 and the covariance matric Σ is chosen as a toeplitz matrix with Σi j =
ρ|i− j |. The value of ρ is varied to explore different correlation strengths. We set the set of truly

significant variables S = {100,200,300,400,500} with s = 5. The response y is generated from
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Figure B.1 The phase transition property illustrated for the five anticancer drugs considered: (1)
Topotecan, (2) 17-AAG, (3) Irinotecan, (4) Paclitaxel, and (5) AWE541, respectively (from top left).
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Table S2 Empirical power and observed FDR of SciDNet with standard error in parentheses for
non-gaussian features

Nonlinear Additive Nonlinear with interaction Linear

ρ snr q 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15

ρ = 0.9

snr = 9 : 1
Power 0.68 (0.12) 0.96 (0.15) 1.00 (0.09) 1.00 (0.07) 0.92 (0.05) 0.95 (0.02) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.00) 0.00 (0.01) 0.04 (0.01) 0.07 (0.05) 0.00 (0.00) 0.01 (0.06) 0.04 (0.06) 0.06 (0.07) 0.00 (0.00) 0.01 (0.04) 0.01 (0.05) 0.01 (0.05)

snr = 8 : 2
Power 0.56 (0.24) 0.86 (0.11) 0.94 (0.14) 0.95 (0.13) 0.76 (0.23) .93 (0.02) 1.00 (0.04) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.01) 0.00 (0.01) 0.06 (0.05) 0.09 (0.07) 0.00 (0.00) 0.00 (0.02) 0.04 (0.03) 0.07 (0.07) 0.01 (0.05) 0.02 (0.06) 0.02 (0.06) 0.02 (0.06)

snr = 7 : 3
Power 0.42 (0.21) 0.77 (0.13) 0.91 (0.16) 0.94 (0.12) 0.73 (0.26) 0.94 (0.12) 0.95 (0.15) 0.96 (0.14) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.00) 0.00 (0.01) 0.02 (0.03) 0.06 (0.04) 0.01 (0.05) 0.04 (0.06) 0.05 (0.07) 0.05 (0.09) 0.00 (0.02) 0.02 (0.05) 0.02 (0.05) 0.02 (0.06)

ρ = 0.95

snr = 9 : 1
Power 0.81 (0.19) 0.95 (0.07) 0.98 (0.06) 0.98 (0.07) 0.99 (0.04) 0.99 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.01) 0.03 (0.06) 0.03 (0.04) 0.05 (0.03) 0.00 (0.00) 0.04 (0.07) 0.08 (0.09) 0.09 (0.13) 0.00 (0.01) 0.03 (0.05) 0.07 (0.11) 0.10 (0.14)

snr = 8 : 2
Power 0.65 (0.29) 0.84 (0.16) 0.89 (0.17) 0.89 (0.12) 0.94 (0.07) 0.97 (0.04) 0.99 (0.07) 0.99 (0.07) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.00 (0.03) 0.01 (0.05) 0.04 (0.06) 0.05 (0.06) 0.01 (0.03) 0.04 (0.04) 0.07(0.14) 0.11 (0.11) 0.01 (0.02) 0.05 (0.09) 0.06 (0.14) 0.09 (0.11)

snr = 7 : 3
Power 0.47 (0.22) 0.64 (0.17) 0.75 (0.19) 0.87 (0.11) 0.82 (0.27) 0.95 (0.10) 0.98 (0.04) 0.98 (0.02) 0.95 (0.10) 0.96 (0.11) 0.97 (0.08) 0.97 (0.06)

FDR 0.00 (0.00) 0.02 (0.04) 0.02 (0.04) 0.04 (0.09) 0.00 (0.01) 0.04 (0.05) 0.09 (0.03) 0.13 (0.09) 0.00 (0.02) 0.04 (0.05) 0.05 (0.08) 0.08 (0.07)

y = g (x)+ϵ. Here we entertain the following three models:

1. Linear: g (x) = xSβS with βS generated from N (2,0.1) independently and βSc = 0,

2. Nonlinear additive: g (x) = 2x100+2x3
200+ex300+6sin x400+2ReLu(x3

500), where ReLu(x)=max(x,0)

3. Nonlinear with interaction: g (x) = 2x100 +2x3
200 +ex300 +6x400x500

In each case, the random noise ϵ is independently generated from N (0,σ2), where the value of

σ2 is chosen to maintain the signal-to-noise ratio at the desired level. To this end, we define

the signal-to-noise ratio as snr = var (g (x))
σ2 . Here we consider three levels of snr = 9 : 1,8 : 2, and

7 : 3. Table S1 shows that SciDNet continues to maintain satisfactory power while successfully

controlling the FDR below the threshold q = 0.01,0.05,0.1,0.15. The average cluster size is

observed at 8.3 for ρ = 0.9 and 13.4 for ρ = 0.95.

B.0.3.2 Using Non-gaussian Features

To check SciDNet’s performance under a non-gaussian setup, n iid copies of high-dimensional

feature vector X are generated from multivariate tp (5) distribution considering the same correla-

tion structure as in the previous section B.0.3.1, with n=600, p=5000. The remaining simulation

setting is consistent with the previous section 2.1. The performance of SciDNet is presented in

table S2 which is quite analogous to the results of gaussian features.
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B.0.4 Performance of existing feature selection methods in the presence of high multi-
collinearity

In this section, we present a numerical illustration of the performance of several recently

proposed nonlinear FDR-controlled feature selection algorithms. The predictors are first gen-

erated from Xi ∼ Np (0,Σ), i = 1,2, . . . ,n, for multiple combination of (n, p) and the covariance

matric Σ is chosen as a toeplitz matrix with Σi j = ρ|i− j |,ρ = 0.1,0.5, and 0.9. Under simplistic

setting, the response y is generated from y = xSβS +ϵ, S = {5,10, . . . ,50}, |S| = 10, with βS gener-

ated from N (β0,0.1) independently and βSc = 0. The random noise ϵ∼ N (0,1). We focus on the

Model-X knockoff (Candès et al., 2018), SurvNet (Song and Li, 2021), and DeepPINK (Lu et al.,

2018). For a more rigorous analysis, we consider two different versions of Model-X knockoff - (1)

Model-X-Estimated, where the knockoffs are generated using an estimated multivariate Gaus-

sian distribution and (2) Model-X-True, where the knockoffs are generated using the true data

generating multivariate gaussian distribution mentioned above. For the knockoff generation,

we consider the equicorrelated construction using the R package knockoff: The Knockoff Filter

for Controlled Variable Selection. To implement the SurvNet and DeepPINK, we use the codes

mentioned in the respective papers Song and Li (2021); Lu et al. (2018). We set q = 0.15 as the

FDR control threshold.

Table 4.1 reveals several interesting characteristics. Both Model-X-Estimated and Model-

X-True maintain the power-FDR balance under a low correlation setup. However with higher

multicollinearity, Model-X-Estimated fails to control the FDR below the specified threshold

while the Model-X-True controls the FDR efficiently. This disparity indicates Model-X procedure

induces inflation in false discoveries if the knockoffs are not generated properly under a ’difficult’

situation. As expected, the DL-based algorithms, such as SurvNet and DeepPINK work much

better in big-n-small-p and low correlation setups but typically fail in other cases, indicating

their reduced effectiveness in ultrahigh dimensional data with small sample sizes.
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Table S3 Empirical power and observed FDR of various feature selection algorithms with standard
error in parentheses

β= 2 β= 4(
n, p

)
ρ =0.1 ρ =0.5 ρ =0.9 ρ =0.1 ρ =0.5 ρ =0.9

Model-X-Estimated (400,1000)
Power 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.13 (0.17) 0.12 (0.12) 0.27 (0.18) 0.11 (0.19) 0.20 (0.18) 0.27 (0.20)

Model-X-True (400,1000)
Power 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.08 (0.13) 0.09 (0.12) 0.14 (0.17) 0.12 (0.14) 0.11 (0.13) 0.08 (0.12)

SurvNet
(400,1000)

Power 0.27 (0.20) 0.32 (0.22) 0.35 (0.24) 0.49 (0.24) 0.52 (0.28) 0.58 (0.29)
FDR 0.31 (0.36) 0.53 (0.30) 0.59 (0.23) 0.21 (0.21) 0.53 (0.18) 0.60 (0.17)

(10000,60)
Power 0.99 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.20 (0.15) 0.80 (0.02) 0.78 (0.07) 0.14 (0.11) 0.80 (0.02) 0.56 (0.32)

DeepPINK
(400,1000)

Power 0.01 (0.02) 0.03 (0.04) 0.00 (0.00) 0.03 (0.04) 0.01 (0.03) 0.02 (0.05)
FDR 0.23 (0.40) 0.35 (0.42) 0.33 (0.47) 0.45 (0.44) 0.24 (0.41) 0.24 (0.40)

(10000,60)
Power 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.18 (0.04) 0.29 (0.13) 0.25 (0.11) 0.17 (0.01) 0.24 (0.12) 0.24 (0.12)

B.0.5 Model implementation details and Sensitivity Analysis

In this section, we mention the implementation details of SciDNet that we consider for the

simulation study and real data analysis. To select the size of the active set Ŝnin the screening

step, in consistence with Xue and Liang (2017), we set |Ŝn | = [ 2n
log (n) ] by selecting the predictors

with the top |Ŝn | Henze–Zirkler test statistic w̃∗
k , where [z] denotes the integer part of z. In all

our simulation scenarios, we set r=0.9, the hyperparameter for intra-cluster correlation bound to

further integrate highly correlated conditionally dependent clusters. In the cleaning step, for

LassoNet 100 dimensional one-hidden-layer feed-forward neural network has been used; a more

detailed model architecture can be found in the appendix in Lemhadri et al. (2021). For creating

the compact neighborhood in the cleaning step, each time we choose the value of κ utilizing

the phase transition property mentioned in section 2.2 of the main manuscript. The feature

selection performance of the SciDNet is demonstrated by calculating the average power and

cFDR along with their standard error observed in 50 Monte Carlo replications. Each data set is

randomly divided into train, validation, and test with a 70-10-20 split. To assess the prediction

performance, the test Mean Square Error (MSE) before and after the variable selection has been

shown as part of the simulation study. For the prediction model, a 40-dimensional two-hidden-

layer feed-forward neural network with ReLU and linear activation function is considered with

Adam as the optimizer. For the regression tree, we used the bagging for further stabilization, as

mentioned in Breiman (1996). The number of leaves and nodes is chosen by minimizing the
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Table S4 Drug-sensitive genes identified by SciDNet and confirming references

Drug Selected clusters of genes Confirming references

Topotecan {SLFN11},{TUFT1,THRB},{CDT1,SF3A2,SNRPA},{FTH1P10,FTH1},{RPL18},{KLF5}, Barretina et al. (2012)
{RPL11,RPL5P4,RPS8,RPL5,RPL10A,AL162151.3,RPS9,RPL3}, Li et al. (2012)
{KIF15,CCNA2,LMNB1,KIF22,AC009133.14},{MATN2,HSPB8},

17-AAG {NQO1,CTD.2033A16.1},{BAX},{SLC16A3},{PHPT1,SH3BP1} Hadley and Hendricks (2014)
{SPCS3,DCTD},{CTD.2008A1.2,SORD},{NSMCE4A},{CSK} Barretina et al. (2012)

Irinotecan {SLFN11},{KIF15,LMNB1,ARHGAP19},{TCEANC2},{KIF21B},{SQSTM1},{HDAC11} Barretina et al. (2012)
{KHDRBS1,HNRNPA1P35,HMGB2,HNRNPA1,HNRNPA1L2, Li et al. (2012)

HNRNPA1P48,HNRNPA1P7,AC021224.1,HNRNPA1P10,RBMX}

PaclitaXel {PARP1,BCL2L1},{MMP24},{DIMT1},{RP11.872D17.4,SSRP1,MTA2},{DCUN1D3} Dorman et al. (2016)
{RPL10AP6,RPL10A,EEF2,RPL3},{ARHGAP11B,ARHGAP11A,BUB1B,CASC5},{HCLS1,LCP1} Lee et al. (2016)

AEW541 {TCEAL4,MID2},{E2F6},{AC096772.6},{SLC44A1},{PGM1} Liang et al. (2018)
{ATP8B2,RNF122}, {RP11.1017G21.4},{ETNK2},{NHS},{ATG13}

MSE on the validation set.

To access the error bar for the sensitivity analysis, we generate typical data using the polyno-

mial setup (section 3 in the main manuscript, with β= 2,σ2 = 1) and rerun SciDNet 50 times on

the same data and set q = 0.1 as FDR-control threshold. The mean and standard deviations from

these 50 replications are following: power = 0.99 (0.01), observed FDR = 0.03 (0.03), test error by

LassoNet = 1.048 (0.101), test error by SciDNet+RT = 0.710 (0.002). To reduce computational

complexity, after the screening, the bootstrapped LassoNet can be run in a parallel loop and

we conduct all the experiments in a high-performing computing facility with Intel(R) Xeon(R)

Platinum 8260 CPU @ 2.40GHz and 4 Tesla V100S. The codes are available at an anonymous

repository (https://anonymous.4open.science/r/SciDNet-3CA8).

B.0.6 Important clusters of gene discovered by SciDNet

B.0.7 For CCLE dataset

The following Table S4 presents all the selected clusters of genes by SciDNet for the five

anticancer drugs considered. The genes in a single cluster are mentioned in the "{}". Previous

research on this gene-expression data has revealed several genes as biologically associated with

the corresponding drugs. SciDNet successfully discovers these genes as the top-most important

gene associated with the drugs. In Table S4, the selected genes which are confirmed by previous

domain research, are highlighted and corresponding references are mentioned in column 3.
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Table S5 Selected clusters of genes by SciDNet applied in the riboflavin gene data example

Cluster No. Genes selected

1
EPR_at, IOLD_at, KAPB_at, PROJ_at, RPLQ_at, UREA_at,
YCGB_at, YCGM_at, YCGN_at, YCSN_at, YCGO_at, YCGT_at,
YDBM_at, YHXA_at, YKZC_at, YOAB_at, YPJB_at, YUSX_at, YVFH_at

2
COMX_at, CSPC_at, HAG_at, MPR_at, YBDL_at, YDBM_at,
YHCB_at, YJFB_at, YHFS_at, YOAB_at, YODF_at, YOAC_at,
YONU_at, YOTL_at, YQKI_at, YQZH_at, YTEI_at, YUSV_at

3

HIT_at, KATX_at, LICH_at, NASA_at, OPUCB_at,
PHRG_i_at, PHRK_at, ROCB_at, ROCR_at, SACB_at, SPOIIE_at,
TMRB_at, YACN_at, YBBJ_at, YBGB_at, YCBF_at, YFKJ_at,
YHCS_at, YHXA_at, YJBF_at, YLBA_at, YLOU_at, YPUI_at,
YQGY_i_at, YUKE_at, YVYD_at, YXLJ_at, YXZF_at

4

APPA_at, BGLS_at, ccpB_at, MMR_at, SIGY_at, SOJ_at,
TREA_at, YBGB_at, YDGF_at, YOPR_at, YQEB_at, YVCI_at,
YVDR_at, YWBG_at, YWDE_at, YWFM_at, YXBB_at, YXIL_at,
YXIO_at, YXIQ_at, YXJA_at, YXJN_at, YXLC_at, YXLD_at,
YXLE_at, YXLF_at, YXLG_at, YXLJ_at, YXZF_at, YYBF_at

5
LYTD_at, SQHC_at, XKDE_at, YFIG_at, YFIH_at, YFII_at,
YFNC_at, YHDV_at, YIST_at, YJGA_at, YTCP_at, YTMP_at

6
YCDH_at, YCDI_at, YCEA_at, YCIA_at, YCIB_at, YCIC_at,
YDAR_at, YHZA_at, YRPE_at, YTGA_at, YTGB_at, YTGC_at,
YTGD_at, YTIA_at, YVQH_at

7

OPUBD_at, PHRE_at, SIPS_at, YBFF_at, YDEM_at, YNAB_i_at,
YNAC_at, YNEK_at, YOBF_at, YOKG_at, YONX_at, YOPA_at,
YOPR_at, YOTL_at, YPBB_at, YQZH_at, YRDA_at, YRKK_at,
YRKL_at, YTGB_at, YUXI_at, YWCE_at, YWQK_at, YYDB_at, YYDF_i_at

8 ARGB_at, ARGC_at, ARGD_at, ARGJ_at, CARA_at, CARB_at

9 PROJ_at, RPLF_at, RPLJ_at, RPLL_at, RPSN_at, RPSP_at, YLQC_at

B.0.8 For Riboflavin dataset

The Riboflavin production dataset contains a much more complicated correlation structure

than the CCLE data, see Figure 1 in the main manuscript for a visual illustration. As a result,

SciDNet has produced a much larger cluster of genes compared to the cluster sizes from the CCLE

dataset. For example, the average cluster size for CCLR and Riboflavin datasets is respectively

2.5 and 17.78. The following Table S5 shows the 9 selected clusters of genes selected by SciDNet

while the FDR is controlled at q = 0.15. Additionally, SciDNet discovered the gene YCIC_at as

one of the expressive genes related to riboflavin production which was identified by Bühlmann

et al. (2014) as a causal gene in this context.
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CHAPTER 4

DEEP LEARNING-AIDED FEATURE SELECTION FOR COGNITIVE
RESERVE WITH HIGHLY CORRELATED TRACTOGRAPHY DATA

4.1 Introduction

4.1.1 A motivating case study and building the statistical framework

The common observation that some older adults maintain normal levels of cognitive func-

tion despite apparent brain pathology is referred to as cognitive reserve (Stern et al. (2020)).

However, the neurobiological substrates, mechanisms, and potential neuroimaging markers

of such resilience remain poorly understood. The immense system of structural connections

between brain regions, which constitutes subcortical white matter (WM) is one promising source

of neuroimaging correlates of cognitive reserve (Chang et al. (2021); Wang et al. (2020a)). Recent

studies in Alzheimer’s disease, inflammatory, and vascular pathologies report that WM pathways

are both enhanced by cognitive and environmental enrichment and are among the earliest

systems to be negatively impacted by these pathologies (McPhee et al. (2019); Uddin (2021)).

This recent evidence highlights the brain’s WM fiber pathways as a potential biological correlate

of cognitive reserve.

Diffusion magnetic resonance imaging (DMRI) methods characterize microstructural tis-

sue organization based on the differential movement of water molecules in the presence of

barriers (Beaulieu (2002)). In the brain, the hydrophobic myelin sheath that surrounds long

neuronal axons serves as such a barrier, making it useful for characterizing subcortical WM

tissue microstructure. Sampling biologically informative rates of diffusion in multiple spatial

directions permits representing diffusion using summary measures, such as a tensor. The tensor

eigenvalues can be averaged to provide a measure of mean diffusivity (MD), or used to calculate

parameters such as fractional anisotropy (FA), which reflects the uniformity of diffusion. How-

ever, diffusion tensor parameters only afford valid representations of WM microstructure in MRI

volumetric pixels (i.e., voxels) that include a single spatial orientation of WM fibers. Because

an estimated 60-90% of WM voxels include multiple orientations of fiber populations (Vos et al.
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(2011)), the standard methods for representing WM microstructure using the metrics estimated

from tensor decomposition is at best questionable.

In contrast to voxel-level scalar values like FA, DMRI tractography represents WM organiza-

tion as continuous paths between adjacent voxels, or streamlines, computed using directional

information from tensor or other diffusion models. These tractography streamlines most com-

monly serve as masks to delineate anatomically specific tracts for sampling from diffusion tensor

(e.g., FA) or other image modalities in the same image space. Most extant applications of tractog-

raphy methods collapse tract segments, having only a single mean diffusion magnetic resonance

imaging (DMRI) metric and variance estimate for each tract and each subject, potentially ig-

noring a rich anatomical variation along the tracts. Consequently, such summarization reduces

the sensitivity and specificity of this neuroimaging technique. As a solution, the along-tract

workflow which measures the DMRI metrics at several vertices spread evenly along the tract has

been proposed (Colby et al., 2012; Wasserthal et al., 2018a); however, these methods can only

model variation within individual fiber tracts as the response.

The University of Michigan Memory and Aging Project (UM-MAP) is a clinical cohort study

of aging and dementia that includes data from multi-modal MRI neuroimaging, including DMRI

scans. These afford a more detailed study of the distribution of estimable DMRI metrics along

the WM tracts in whole brain tractography data. In addition, UM-MAP participants include

cognitively unimpaired older adults as well as those diagnosed with mild cognitive impairment

(MCI) or dementias of the Alzheimer’s type and other etiologies. In our study, we are interested

in determining the most effective and representative parts of WM tracts to characterize cognitive

reserve. To achieve this goal, we combine the DMRI tractography (Wasserthal et al., 2018a)

with along tract workflow (Colby et al., 2012) to systematically quantify the WM microstructure

through specified DMRI metric (e.g. fractional anisotropy (FA), or spherical harmonic peak

amplitudes (sh-peaks)) observed at spatially equidistant vertices spread along the major WM

tracts. In this work, we mainly considered the spherical harmonic peak values (sh-peaks, Bastiani

et al. (2017)) sampled from the fiber orientation distributions which represent the diffusion

89



maxima for a specific orientation of white matter fibers within a voxel. Thus, unlike FA, which

integrates the diffusion signal from multiple directions, sh-peak values are not confounded by

crossing fibers. Focusing on pt = 50 major WM tracts in human brains, our main objective is to

determine which parts of these WM tracts are associated with some neurogenetic phenotype like

the cognitive reserve. To fix ideas, suppose, y ∈Rn is a vector of observed cognitive reserve values

for n subjects in the cohort study and X ∈Rn×p , p = pt pv is, column by column, the matrix of

DMRI metrics observed at pv vertices of each of the pt tracts. Formally, we are interested in

selecting important features to characterize cognitive reserve among the p potential features

using the nonparametric regression: y = g (x1, x2, . . . , xp )+ϵ; where g is an unknown link function

and ϵ∼ N (0,σ2In) is the random noise. The feature selection with DMRI tractography data from

UM-MAP faces additional methodological complications beyond those encountered in typical

feature selection problems. These issues are further discussed in Section 4.1.2 and empirically

evaluated in Section 4.2. Key points of our general analytic strategy are discussed in Section 4.1.3.

4.1.2 Statistical challenges and related literature

The analysis of tractography data from the UM-MAP study is complicated due to the high di-

mensionality of data sampling possible from streamlines, especially considering the more limited

sample size. Furthermore, the strong associations within and between tract-level measurements

and the potentially complicated functional relationship between these tract-measured data and

phenotype that precludes the linearity assumption create further challenges. The extant methods

in the statistical literature are either too restrictive in view of the modeling assumptions or rely

on nontrivial extensions to account for the complex association among the high-dimensional

predictors. Failure to adequately address these data complications may result in a higher rate

of false discoveries. Although Chapter 3 extensively discusses these issues, we reiterate their

significance here, focusing on the aforementioned motivating example based on tractography

data.
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Reproducible high-dimensional non-linear feature screening The feature selection problem,

under the linear model assumption, has been extensively studied over the last twenty years

under various data setups. Popular algorithms include the Lasso, Elastic net, SCAD, and MCP; a

full review of existing methods can be found elsewhere (e.,g., Fan and Lv (2010). Despite their

successes, feature selection algorithms under the linear model assumption tend to have poor

performance in settings where the underlying functional form deviates from the linearity. To

highlight this limitation, we conducted a basic implementation of the prediction optimal elastic

net (Zou and Hastie, 2005) and found that this method results in very poor performance (∼ 20%

coefficient of determination), hence necessitating the need to entertain non-linear association

approaches. As we discussed in detail in Chapter 3, the Artificial Neural Network (ANN) models,

which relax the linearity assumption, are well known for efficiently approximating complicated

functions. This key feature of ANN models has motivated the use of Deep Learning (DL) models

for feature selection in recent years. Popular examples include Deep Feature Selection (Chen

et al., 2021), DeepPink (Lu et al., 2018), and SurvNet (Song and Li, 2021). Despite their popularity,

many of the existing DL algorithms can be overly sensitive to noise. Recent works have shown

that a small amount of added noise can drastically change the importance of variables in the

model (Ghorbani et al., 2019). As a solution, reproducible variable selections with some form of

error control have been advocated. In this realm, the control of the False Discovery Rate (FDR),

first proposed by Benjamini and Hochberg (1995), has emerged as a major approach due to

being less conservative and more powerful than the Family Wise Error rate (FWER), especially in

large-scale multiple testing problems. However, estimating the expectation in the FDR poses a

unique challenge for the model-free variable selection methods, and has been investigated in

various outlets. Much of the existing approaches have focused on p-values as feature importance

in a multiple testing context; see Xia et al. (2017); Li and Barber (2018); Lei and Fithian (2018) for

more details. However, generating p-values for DL models that are interpretable is proven to be

complicated, prompting researchers to seek alternatives. One such alternative is the knockoff

method proposed by Candès et al. (2018), which is essentially a model-free variable selection
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algorithm with provable FDR control, assuming a well-specified predictor’s distribution. Hence,

to generate the knockoff, it is necessary to specify or estimate a high-dimensional predictor’s

distribution, which in many practical settings may be an overwhelming hurdle to overcome.

Unlike in genetics studies where the linkage disequilibrium assumption is often made to describe

a consistent dependence pattern between the alleles at polymorphisms (Sesia et al. (2018)), with

tractography data such a prior correlation pattern cannot be imposed. For example, figure 4.1

shows that for some tracts, the correlations among spatially distant vertices along a tract may be

much higher reflecting the spatial symmetry of the white matter representation. Hence, for the

tractography data, any model-specific knockoff generation algorithm would be highly inefficient.

Recently, DL-based flexible knockoff-generating algorithms have also been proposed (Jordon

et al., 2019; Romano et al., 2020); however, these methods are often trained with large samples in

big-n-small-p data settings. It is unclear how these methods will perform when the sample size

n is significantly smaller than the dimension of the covariates p, as in the current tractography

dataset with n = 210 subjects and p ≃ 5000 high-dimensional DMRI metrics. Additionally, in

the context of hierarchical testing, several other competing algorithms have also been proposed

including SUSIE (Wang et al., 2020b), KnockoffZoom (Sesia et al., 2019). While the knockoff-based

procedures have the limitation of generating knockoffs from an unknown complex distribution

with a comparatively small sample size, most of the non-knockoff-based methods lack their

applicability in non-linear setups as they typically depend on p-values.

Highly correlated predictors measured intermittently along the tracts Basic exploratory

analyses of UM-MAP data show that the DMRI metrics are highly correlated, with most of the

local pairwise correlations exceeding 0.95 and even 0.99 for some tracts (see Figure 4.1). This

is a well-known complication for feature selection problems in many modern data sets arising

in genetics and imaging studies. This extreme association is problematic for a typical variable

selection analysis as the highly correlated predictors become almost indistinguishable in view

of the phenotype. Ignoring this extreme association and conducting a variable selection that

92



Figure 4.1 Correlation heatmap of the sh-peaks metric observed along six major WM tracts (1)
CC-4, (2) ICP-left, (3) MCP, and (4) STR-left (showing distinguishable correlation structure.

focuses solely on individual variables is meaningless as it does not account for the uncertainty

due to highly correlated predictors. One can argue that it would be unjustifiable to specifically

claim that one of the highly correlated predictors is associated with the response. Alternatively,

an approach that accounts for high correlations is the group or cluster selection method, which

has been applied in genetics and many other applications. A complication of this approach,

however, is the ambiguity on how to define the clusters and subsequently perform the selection

for the clusters. In recent works, Candès et al. (2018) considered a heuristic approach where the

predictors are clustered according to their pairwise correlations. This method works reasonably

well in general but may generate larger clusters, rendering the choice of the representative feature

of each cluster nontrivial. And more importantly, larger clusters may not be very informative

from a substantive viewpoint. Cluster-based variable selection methods using conditional

associations which generate smaller clusters have also been proposed but their application to

tractography data is critically lacking.
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In addition to the complexities related to high correlation, although the tractography stream-

lines provide a continuous representation of WM, the DMRI metrics were measured only at a

few equidistant locations on each tract. This poses the generic problem of ‘missing values’ in

statistical research as is unclear whether the observed measurements represent the true locations.

Without a better understanding of the true DMRI metrics locations, determining the true signal

location is at best problematic. This problem is exacerbated in neuroscience research where low

sensitivity is real for many feature selection exercises.

4.1.3 The general analytic strategy

The study of WM as a potential marker of cognitive reserve using UM-MAP data is hampered

by various methodological and conceptual limitations in WM measurement and statistical

modeling. The above discussion highlights the need to develop a methodology capable of

accommodating variation across vertices while accounting for the high correlation both between

and within tract value measurements. The present study sought to address and overcome these

challenges by providing a novel quantitative neuroimaging approach for modeling WM pathways

as a neural marker for predicting cognitive reserve. Specifically, it will help determine the most

important regions of human WM tracts that are associated with cognitive reserve as well as

formulate a general workflow for high-dimensional nonlinear variable selection with highly

correlated predictors.

Our methodological contribution relies essentially on a novel screening and cleaning method

for the reproducible high-dimensional nonlinear feature selection with highly correlated predic-

tors. As the spatial positions are inherently continuous while the DMRI metrics are observed at

some discrete vertices on the tract, we consider here the cluster-level discovery of the positions by

leveraging the high association among the vertices. To be concrete, let Ccausal = {Z c
1 , Z c

2 , . . . , Z c
s }

denote the unknown true set of causal locations along the tracts that harbor the variability which

influences the phenotype of interest. We also denote by Cobser ved = {Z o
1 , Z o

2 , . . . , Z o
p } the locations

at which the DMRI metrics are observed. Although there is no guarantee that these metrics

are observed at the specific positions in Ccausal , there are two possibilities for observing some
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true causal location Z c
j ∈ Ccausal : (1) it is observed; i.e. Z c

j = Z o
k for some k; or (2) although

Z c
j is not observed, it is fair to assume that a close proxy location Z o

k is observed for some k

due to the strong local dependency along each tract. For this reason, we seek to discover some

clusters of locations that can jointly serve as a good proxy for the locations in Ccausal . With

this in mind, we set our target to uncover the subset S0 ⊂ {1,2, . . . , p} such that, conditional on

features in S0, the response Yi is independent of features in the complement set Sc
0. In other

words, S0 = {k : f (y |X ) depends on Xk }, where Xk is the realization of the DMRI metric at the

observed location Z o
k and f (y |X ) is the conditional density of y given X. The members of the

subset S0 can be interpreted as either the true causal location or the closest proxy of a causal

location. To achieve this goal, we implement our proposed method ScIDNet in Chapter 3, where

we divide our method into two parts: Screening and Cleaning. The screening step is a dimension

reduction step. We screen out most of the null variables and select an active set of variables Ŝn

which will surely contain all the proxy variables needed to cover the causal set C , implying the

sure screening property. To reduce the high amount of correlation in the active set, by exploiting

their conditional dependency structure, we divide the active variables {X j : j ∈ Ŝn} into pc (<< p)

spatially connected non-overlapping clusters: C1,C2, . . . ,Cpc and select an appropriate cluster

representative from each cluster. In the cleaning step, we develop an estimate of the number of

false discoveries using the resampling technique followed by developing a surrogate of the FDR.

Finally, by controlling the surrogate FDR, we select some clusters of highly correlated predictors.

Here true discovery implies that the selected cluster can serve as a good proxy for at least one

element in the true causal set C .

Our comprehensive empirical study utilizing DMRI metrics provides compelling evidence for

the effectiveness of the proposed method as a proof of concept, as it achieves higher power and

controls the false discovery rate (FDR). While achieving theoretically guaranteed FDR control

within a deep learning framework remains an active area of research, our study paves the way

for further theoretical investigations into the method’s generalizability and broader validity by

utilizing SciDNet’s theoretical guarantees on FDR control. The proposed approach stands out
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by not relying on strict modeling assumptions between the response and features and being

completely independent of p-values, distinguishing it from other state-of-the-art methods.

Consequently, it facilitates a deeper understanding of micro-structural relationships in the

human brain within the context of dementia and beyond.

After providing a comprehensive discussion of assumptions and algorithms in Chapter 3,

we now proceed directly to the numerical analysis section involving tractography data. The

notations used throughout this section remain consistent with those introduced in Chapter 3. We

begin by presenting an extensive simulation study that specifically focuses on the tractography

data in Section 4.2. Subsequently, we showcase the application of our methodology to the UM-

MAP Tractography dataset in Section 4.3. Finally, we conclude with a summary of our findings

and outline future research directions in Section 4.4.

4.2 Numerical Illustrations

In this section, we extensively investigate the finite sample performance of the proposed

method SciDNet, along with several other state-of-the-art FDR controlling algorithms, using

a simulation study. Firstly, Section 4.2.1 verifies the suitability of the nonparanormal transfor-

mation for the tractography data, thereby confirming our assumption that the distribution of

the features belongs to the non-paranormal family. Secondly, in Section 4.2.2, we demonstrate

how major FDR controlling approaches fail in the presence of severe multicollinearity in an

ultrahigh-dimensional setting. Additionally, Section 4.2.3 presents the performance evaluation

of the proposed method in a synthetic setting, where DMRI-metrics (e.g., sh-peaks) from the

tractography data serve as predictors, and the response is generated using a non-linear function.

We utilize two metrics to assess the feature selection performance of the algorithms: (1) Power =

|D̂n∩S0|
|S0| and (2) empirical FDR =

|D̂n∩Sc
0|

|D̂n | .

4.2.1 Checking the non-paranormal transformation on tractography data

The non-paranormal transformation Liu et al. (2009) plays a crucial role in the proposed

method SciDnet, particularly in its screening step. This step utilizes clustering to capture the

conditional dependency structure after dimensional reduction, ensuring the sure independence
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Figure 4.2 Illustration of nonparanormal transformation using simulated and the tractography
dataset.

screening property (3.2.2.1) when the features belong to a non-paranormal family. Therefore,

before applying SciDnet to the tractography data, it is essential to evaluate the effectiveness of

the nonparanormal transformation on this dataset.

To assess the efficiency of the nonparanormal transformation, we employ the following ap-

proach. We generate two sets of features: X (i )
G ∼ N (0,Σp×p ) and X (i )

t ∼ tp (5), where i = 1,2, . . . ,n,

from a multivariate Gaussian and a t5 distribution, respectively, while maintaining a correla-

tion structure defined by Σi j = 0.95|i− j |. We set n = 220 and p = 5000 to mimic the dimen-
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sions of the tractography data. Consequently, we obtain the original DMRI tractography data

X tr act ∈R220×5000. Next, we apply the nonparanormal transformation to the features in XG , X t ,

and X tr act .

To evaluate the effectiveness of the transformation, we present Figure 4.2, which displays the

QQ-plots of the transformed features compared to the Gaussian distribution. The figure indicates

a favorable alignment of the transformed features with the Gaussian distribution, demonstrating

a similar pattern to the simulated settings. For ease of demonstration, we only depict the results

for the 1st and 10th features. This experimental analysis verifies the validity of employing the

nonparanormal transformation in the context of tractography data. Additionally, it confirms that

the clusters generated by SciDNet effectively capture the conditional dependencies among the

features.

4.2.2 Performance of existing feature selection methods in the presence of high multi-
collinearity

The predictors are first generated from Xi ∼ Np (0,Σ), i = 1,2, . . . ,n, for multiple combina-

tion of (n, p) and the covariance matric Σ is chosen as a toeplitz matrix with Σi j = ρ|i− j |,ρ =
0.1,0.5, and 0.9. Under simplistic setting, the response y is generated from y = xSβS + ϵ, S =
{5,10, . . . ,50}, |S| = 10, with βS generated from N (β0,0.1) independently and βSc = 0. The random

noise ϵ∼ N (0,1). We focus on the Model-X knockoff (Candès et al., 2018), SurvNet (Song and Li,

2021), and DeepPINK (Lu et al., 2018). For a more rigorous analysis, we consider two different

versions of Model-X knockoff - (1) Model-X-Estimated, where the knockoffs are generated using

an estimated multivariate Gaussian distribution and (2) Model-X-True, where the knockoffs are

generated using the true data generating multivariate gaussian distribution mentioned above.

For the knockoff generation, we consider the equicorrelated construction using the R package

knockoff: The Knockoff Filter for Controlled Variable Selection. To implement the SurvNet and

DeepPINK, we use the codes mentioned in the respective papers Song and Li (2021); Lu et al.

(2018). We set q = 0.15 as the FDR control threshold.

Table 4.1 reveals several interesting characteristics. Both Model-X-Estimated and Model-
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X-True maintain the power-FDR balance under a low correlation setup. However, with higher

multicollinearity, Model-X-Estimated fails to control the FDR below the specified threshold

while the Model-X-True controls the FDR efficiently. This disparity indicates Model-X procedure

induces inflation in false discoveries if the knockoffs are not generated properly under a ’difficult’

situation. As expected, the DL-based algorithms, such as SurvNet and DeepPINK work much

better in big-n-small-p and low correlation setups but typically fail in other cases, indicating

their reduced effectiveness in ultrahigh dimensional data with small sample sizes.

Table 4.1 Empirical power and observed FDR of various feature selection algorithms with stan-
dard error in parentheses

β= 2 β= 4(
n, p

)
ρ =0.1 ρ =0.5 ρ =0.9 ρ =0.1 ρ =0.5 ρ =0.9

Model-X-Estimated (400,1000)
Power 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.13 (0.17) 0.12 (0.12) 0.27 (0.18) 0.11 (0.19) 0.20 (0.18) 0.27 (0.20)

Model-X-True (400,1000)
Power 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.08 (0.13) 0.09 (0.12) 0.14 (0.17) 0.12 (0.14) 0.11 (0.13) 0.08 (0.12)

SurvNet
(400,1000)

Power 0.27 (0.20) 0.32 (0.22) 0.35 (0.24) 0.49 (0.24) 0.52 (0.28) 0.58 (0.29)
FDR 0.31 (0.36) 0.53 (0.30) 0.59 (0.23) 0.21 (0.21) 0.53 (0.18) 0.60 (0.17)

(10000,60)
Power 0.99 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.20 (0.15) 0.80 (0.02) 0.78 (0.07) 0.14 (0.11) 0.80 (0.02) 0.56 (0.32)

DeepPINK
(400,1000)

Power 0.01 (0.02) 0.03 (0.04) 0.00 (0.00) 0.03 (0.04) 0.01 (0.03) 0.02 (0.05)
FDR 0.23 (0.40) 0.35 (0.42) 0.33 (0.47) 0.45 (0.44) 0.24 (0.41) 0.24 (0.40)

(10000,60)
Power 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

FDR 0.18 (0.04) 0.29 (0.13) 0.25 (0.11) 0.17 (0.01) 0.24 (0.12) 0.24 (0.12)

4.2.3 Performance of the proposed method on synthetic data

Prior to implementing the proposed method on the cognitive reserve, we conduct a synthetic

study to understand its effects on the DMRI tractography data. As mentioned in the section 4.1.1,

we consider pt = 50 major WM tracts for n = 220 subjects. We measure the DMRI-metric named

spherical harmonic peak amplitudes (sh-peaks) at spatially equidistant pv = 98 vertices on each

of the tracts. Hence the feature vector xi ∈Rp , p = pt pv = 5000, contains all the sh-peaks values

measured at each of the vertices of the tracts for the i-th subject, i = 1,2, . . . ,220.

We further simulated the response y (i ) from x(i ) using some nonlinear model. For this

purpose, single Index models are straightforward yet flexible examples of nonlinear models

where the response is related to a linear combination of the features through an unknown
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nonlinear, monotonic link function, i.e. y (i ) = g (x(i )′β)+ϵ. Here we choose the following two link

functions as our data-generating process: (1) M1: g (x) = x3

10 +3 x
10 and (2) M2: g (x) = log (10+ex ).

Similar to Section 4.2.2, the coefficients β ∈ Rp is sparse with the true nonzero locations S =
{50,100,150,200,250}, where βSc = 0,βS ∼ NS(uβ0,0.1) with u = {±1}S . The value of β0 is set as

β0 = 1.5. The random error ϵ ∼ N (0,σ2), maintaining the decreasing signal-to-noise ratio as

snr = 7 : 3 and 3 : 7. All the performance metrics are based on 50 Monte Carlo replications.

Table 4.2 Power and empirical FDR of the proposed method with standard error in parentheses
from the synthetic study

g (·) snr Screening
Screening +

LassoNet

Screening +
Model-X Knockoff

(Linear)

Screening +
Model-X Knockoff

(RF)

Screening +
proposed Cleaning

(SciDNet))

M1

7:3

Power 1.000 (0.00) 0.996 (0.03) 0.870 (0.34) 0.921 (0.39) 0.984 (0.05)
FDR 0.992 (0.00) 0.525 (0.14) 0.178 (0.19) 0.182 (0.12) 0.0.098 (0.10)

n_var 624 (0.00) 419.09 (44.56) 286.85 (121.50) 291.23 (37.41) 281.06 (60.59)
n_clust 43.22 (2.60) 11.96 (5.91) 5.80 (2.87) 6.64 (0.62) 5.50 (0.73)

3:7

Power 1.000 (0.00) 0.992 (0.04) 0.788 (0.40) 0.841 (0.37) 0.970 (0.08)
FDR 0.992 (0.00) 0.619 (0.14) 0.174 (0.24) 0.193 (0.21) 0.004 (0.02)

n_var 624.00 (0.00) 405.56 (53.33) 236.90 (131.70) 248.76 (158.57) 285.54 (53.83)
n_clust 49.44 (5.19) 14.94 (6.04) 5.78 (4.03) 6.92 (4.89) 4.87 (0.45)

M2

7:3

Power 1.000 (0.00) 1.000 (0.00) 0.776 (0.42) 0.825 (0.29) 0.996 (0.03)
FDR 0.992 (0.00) 0.656 (0.08) 0.176 (0.19) 0.183 (0.26) 0.021 (0.06)

n_var 624 (0.00) 441.32 (48.80) 247.22 (140.54) 262.50 (88.01) 274.92 (45.48)
n_clust 43.58 (4.01) 15.32 (3.89) 5.38 (3.41) 7.98 (2.75) 5.08 (0.34)

3:7

Power 0.991 (0.04) 0.960 (0.09) 0.427 (0.47) 0.436 (0.25) 0.533 (0.24)
FDR 0.992 (0.00) 0.762 (0.10) 0.106(0.21) 0.153 (0.17) 0.026 (0.09)

n_var 624.00 (0.00) 357.73 (92.57) 98.93 (113.80) 99.46 (125.77) 115.04 (62.58)
n_clust 49.18 (8.63) 24.33 (11.53) 3.16 (4.15) 3.22 (1.43) 2.71 (1.16)

Table 4.2 demonstrates an ablation study where we compare the following four methods:

(1) Screening only, (2) Screening + Cleaning with LassoNet, (3) Screening + Cleaning with

knockoff with q=20%, and (4) the proposed method Screening + Cleaning with resampled

LassoNet with q=10% and 20%, where q= the error-control cutoff. Focusing on the cluster-level

discoveries, two additional performance metrics are included here: (1) n_var , the total number

of features in the selected clusters, and (2) n_clust , the total number of selected clusters. Lower

values of n_var and n_clust indicate better support recovery for a group-level feature selection

method. In this context, Table 4.2 empirically consolidates several interesting characteristics: (a)
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The screening step maintains the sure screening property and thereby selects a slightly bigger

set of features resulting in high power and high FDR which necessitates further cleaning; (b) All

the cleaning steps aim to reduce the FDR while maintaining the power of the screening step; (c)

The proposed method achieves the best performance (in terms of the power-FDR tradeoff) by

effectively using the added information from the resampling. Although for a high noise setup, the

power is comparatively low, it still maintains the nominal rate of false discoveries. This empirical

study sets the stage for the real data analysis in section ?? where the simulated y is replaced by

the cognitive reserve values from the UM-Map study as the outcome variable.

4.3 Real Data Analysis - UM-MAP Tractography Data

As discussed in Section 4.1.1, the WM fiber tract segmentation facilitates in rigorous analysis

of WM microstructural quantities and their relation to the cognitive performance of the human

brain. In order to understand which segments of human WM tracts are associated with the

cognitive reserve, the proposed method has been implemented in Michigan Alzheimer’s Disease

Research Center (MADRC) dataset. We considered 50 major tracts that shield almost 90% of

human WM (Wasserthal et al., 2018a); a full list of these tracts is relegated to Appendix 4.4.

4.3.1 Results and Selected Tracts

We consider the cognitive reserve values calculated for n = 220 subjects as the outcome

variable. Further, for the predictors, the sh-peaks metric is observed at pv = 98 vertices spread in

a spatially equidistant fashion along each of the pt = 50 major WM tracts. Hence the feature space

becomes of dimension p = pt pv = 4900. With this setting, we implement the proposed screening

and cleaning method. In the screening step, we set the size of the active set, |Ŝn | = 7
[

n
l og (n)

]
= 657

and the other 4143 vertices are rejected by the HZ-test, thereby discarded from the remaining

analysis. The active set Ŝn is further divided into 137 disjoint clusters of spatially connected

and highly correlated vertices. From each cluster, the proper representative has been chosen by

the maximum value of the HZ-statistic among the cluster members, following which the set of

cluster representatives S̃n has been created. Next in the cleaning step, the LassoNet has been

implemented parallelly for B = 1000 bootstrap replications. Each time as described in section
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3.2.3, the L1 penalty parameter λ has been chosen in a sequential manner as λ1 ≤λ2 ≤ ·· · ≤λr ;

where for λ1 all the active predictors are present in the model. Then with the gradual increase of

λ, one after another the representatives will get eliminated from the model and finally, λr will

produce the null model with no predictors. Thus the proposed error estimate ˆF DR is constructed

by combining the variable importance measured over all the regularization paths for all the

bootstrap replications. Controlling the estimated error rate by the threshold q = 0.15, the final

set of clusters D̂n is discovered.

Figure 4.3 Illustration of down-sampled diffusion tractography for streamlines that included
significant clusters.

Demonstration of the selected tracts The proposed method discovers several spatially con-

nected parts of the following four major tracts: (1) the first (i.e., ventral genual) corpus callosum

fiber bundle that serves as the the inferior aspect of the forceps minor (CC1), (2) right cortical

spinal tract (right CST), (3) First subdivision of the right hemisphere superior longitudinal fas-

ciculus (right SLF-I), and (4) Second subdivision of the left hemisphere superior longitudinal
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fasciculus (left SLF-II). Figure 4.3 demonstrates these selected tracts by showing three differ-

ent orientations of the brain: coronal (top left) or as if facing a mirror, sagittal (top right) or

viewed from the side, and axial (bottom left) or viewed from above. In order to display the mean

trajectory of the tracts, the TractSeg tractometry algorithm (Wasserthal et al., 2018a) reduces

multiple streamlines (e.g., 100 to 1000) originally generated for a given WM fiber tract down

to a single representative streamline. Figure 4.3 shows four separate streamlines representing

anatomically specific white matter fiber bundles. Each streamline is a curvilinear 3-dimensional

object composed of thousands of linked vertices; however, we note that the illustration depicts

3-dimensional streamlines against 2-dimensional cross-sections of the brain. Data are shown in

a radiological orientation where the left side of the image corresponds to the anatomical right

and vice versa. Additionally, we conducted a sensitivity analysis by implementing the proposed

method on several subgroups of the whole data, taking both sh-peaks and FA as the DMRI metric

simultaneously. Table 4.3 shows the clusters of the vertices on the selected tracts under different

subgroup selections and DMRI metric choices (sh-peaks and FA).

These results reveal clusters of vertices in WM streamlines for the left and right superior

longitudinal fasciculus (SLF), and the right hemisphere corticospinal tract (CST) where higher

sf-peak value significantly predicted higher cognitive reserve. In contrast, lower sf-peak values

in the first (e.g., most anterior and ventral) subdivision of the corpus callosum (CC) predicted

greater reserve. The SLF is commonly associated with working memory (Koshiyama et al. (2020)),

whereas CST is believed to be more related to motor function, albeit less strongly (Min et al.

(2014)). Thus, more maintenance of white matter in SLF-I and right CST predict greater preser-

vation of memory, despite atrophy of medial temporal lobe gray matter regions. The CC1 fiber

bundle is the inferior aspect of the genu which connects the left and right ventral prefrontal

cortices via the forceps minor. In contrast with the positive effect in the other tracts, the negative

association with the reserve in CC1 shows the reduced sh-peak signal in this region predicts

better cognitive maintenance. We note that these effects are observed in regions where fibers

from the anterior cingulum bundle cross over the CC genu. How these two fiber systems may
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Table 4.3 Selected tracts and vertices

Experiment Cluster Selected tract Vertices Association sign

1 CC-1
55,56,57,58

-
With all subjects,

Metric used: sh-peaks
59,60,61,62

2
right SLF-I 98 +
left SLF-II 1,2,3,4,5 +

3 right CST 60,61,62,63 +

1 CC_1
54,55,56,57,58,59

-
Excluding AD_MD,

Metric used: sh-peaks
60,61,62,63,64

2 left SLF-I 2,3,4,5 +

3 right CST 60,61,62,63 +

1 CC-1 56,57,58,59,60 -With educ ≥ 15,
Metric used: sh-peaks

2
right SLF-I 98 +
left SLF-II 1,2,3,4,5 +

1
right SLF-I 98 +With educ ≤ 17,

metric Used: sh-peaks left SLF-II 1,2,3,4,5 +

3 left ATR 8,9,10 -

1 CC-4 39,40,41,42,58,59,60 -

2 right ST-PREM
1,2,3,4,5,6 -With all subjects,

metric Used: FA 7,8,9, 10,11 -

3 right AF 30,31,32, 33,34,35 -

4 right SLF-II 33,34,35,36,37,38 -

interact to inform cognitive reserve remains an area for future inquiry. In addition, limiting

the analysis to exclude those with dementia diagnoses resulted in a nearly identical pattern of

selected vertices, although it was more sensitive to reserve as reflected in a larger number of

significant vertices in CC1. Similarly, the original pattern of results was largely maintained in

participants with more years of formal education, although the vertices in the right CST were

no longer significant predictors of the reserve. Moreover, limiting the sample to those with

less educational attainment revealed a negative effect of sh-peak values in anterior thalamic

radiation (ATR) in the left hemisphere on reserve. This tract also crosses CC1-2, cingulum, and

inferior frontal-occipital fibers, suggesting a similar cause as for CC1 in the overall model.

The use of the sf-peak values estimated from the diffusion FODs provides a more orientation-

ally specific estimate than voxel-level scalars like tensor-based estimates of anisotropy (FA) and

104



diffusivity. We also note that reserve is a counterintuitive construct, as high levels of reserve are

apparent in those with indications of neurodegeneration (i.e., smaller brain volumes) combined

with higher levels of memory performance than would be predicted from the linear relationship

alone. Moreover, results from sampling and modeling along-tract FA values produced a markedly

different pattern of results. All identified tract segments in the FA analysis were negatively as-

sociated with reserve, and all are in areas where FA values are confounded by crossing fibers

(Douaud et al. (2011); Chad et al. (2021)). Because lower FA values in crossing fiber regions are

associated with dementia risk, modeling sh-peaks and FA separately provide complementary

insights into the WM tractography correlates of cognitive reserve.

4.4 Conclusion

In this work, we proposed a DL-based multi-resolutional feature selection algorithm tailored

for highly correlated ultra-high dimensional feature space. The contributions of our work are

twofold: (1) From the statistical perspective, the proposed method efficiently combines several

existing tools in statistics and ML literature to circumvent some of the limitations of current

DL-based models in handling complex data similar to that of the UM-MAP study. Specifically, it

achieves significant dimension reduction while maintaining type-I and type-II error trade-offs

by efficiently combining the added information from resampling. Due to the screening step,

our method is scalable and its resampling component can be easily implemented as parallel

chains for faster computation. (2) From the application perspective, the proposed method

addresses at least two critical shortcomings in the extant literature for handling tractography

data in answering important questions in cognitive reserve. First, unlike existing approaches that

treat diffusion tractography data as responses, the current analysis permits treating diffusion

tractography data as the predictor, rather than the response. As prior methods have focused

on binary or continuous predictors of differences in streamline-sampled values, the proposed

method improves the validity of modeling streamlined WM estimates as a predictor of behavior.

Second, other methods for tractometry cannot model multiple streamlines together, much

less the large number reported here. By integrating a more robust approach for controlling for
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multiple tests and variable selection, this method permits simultaneous modeling of whole

brain white matter tractography and discovers multiresolution clusters associated with some

neurogenetic disorders. Nevertheless, even this report utilized streamlines reduced to centroids

with sampling points limited to 100 per WM tract. Future work is needed to capitalize on the

considerably higher dimensionality of these data types as predictors of neurocognitive aging

outcomes.

The basic intuition, scalability, and exciting empirical results of the proposed method on

simulated and real datasets encourage further research in multiple directions. From a theoretical

aspect, we are actively working on developing a theoretical foundation of this ’screening’ and

’cleaning’ strategy for provable FDR control. It would be worth mentioning that although we used

the sure independence screening with HZ-test and LassoNet as the main tools, the proposed

method puts forward a more generic framework and can be implemented with any other model-

free feature screening method and sparsity-inducing DL algorithms like Feng and Simon (2017).

One limitation we mainly focus on here is that the proposed method is developed considering

regression setup with a continuous outcome because of the requirements of the Henze–Zirkler

sure Independence test used in the screening step. Further research should be conducted

for extending the proposed method to classification problems as well. From an application

perspective, as the specific parts of the tracts selected by the proposed method have shown

to have strong predictive ability, more interpretable nonlinear models (e.g. decision trees or

random forest) can be entertained for further analysis. This will further provide deeper insights

into the association of these selected tracts on the cognitive reserve, neurodegeneration, and

beyond.
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APPENDIX A

MADC TRACTOGRAPHY DATA - MORE INFORMATION

A.1 Study sample.

Data were drawn from the University of Michigan Memory and Aging Project (UM-MAP),

the primary clinical cohort at the MADRC. The sample included 221 participants (67% women)

from 51 to 89 years of age. A consensus diagnosis was made following neuropsychological

evaluation using the National Alzheimer’s Coordinating Center (NACC) criteria by neurologists,

neuropsychologists, nurses, social workers and other specialists during a consensus conference.

The sample was divided into three subgroups based on the last recorded diagnosis for each par-

ticipant (Table 1): cognitively unimpaired (CU; n=117; 73% women), amnestic or non-amnestic

MCI (MCI; n=62; 70% women) and multi-domain amnestic dementia (DAT; n=42; 55% women)

consistent with Alzheimer’s disease and mixed dementia.

A.1.1 MRI acquisition.

All neuroimaging data were acquired on a 3 Tesla General Electric Discovery Magnetic

Resonance System equipped with a 32-channel receiving/transmitting head coil at the University

of Michigan’s Functional MRI Laboratory. T1-weighted structural images were collected with

the following parameters: TR=3173.1 ms; TE=24.0 ms; inversion time=896 ms; flip angle=111◦;

FOV=220×220 mm; 43 axial slices with thickness=3 mm and no spacing; acquisition time=100

s. A diffusion-weighted 2D dual spin echo pulse sequence was acquired in 81 axial slices with

voxel dimensions of 1.7 mm3, repetition time (TR)=4100 ms; echo time (TE)=2.5 ms; field of view

(FOV)=240×240 mm. We acquired 96 volumes including 6 without diffusion weighting (b=0), 30

volumes with weightings of b=700 s/mm2, and 60 volumes with b=2000 s/mm2, for a total of 96

gradient encoding directions. In addition, a 2D spin echo field map image was acquired with

the same dimensions and was applied to create a reverse phase encoded b0 image for distortion

corrections.

111



A.2 MRI processing.

Image processing utilized the high-performance computing cluster at Michigan State Univer-

sity, with Intel Xeon Gold 6148 CPU cluster nodes. All dMRI data pre-processing and processing

closely followed the steps for multi-shell multi-tissue (MSMT) constrained spherical deconvo-

lution and fixel-based analysis published in the MRtrix user manual (available here). These

included algorithmic preprocessing steps for mitigation of thermal noise, Gibbs ringing artifacts,

nonlinear distortions from motion artifacts and eddy currents, as well as intensity bias (Raffelt

et al. (2017); Tournier et al. (2019, 2012)). All pre-processed data were upsampled to a voxel

dimension of 1.25 mm3. Individual MSMT response functions were estimated for each upsam-

pled volume using the Dhollander algorithm (Dhollander et al. (2021)). The individual response

functions were averaged, and the mean values were used to compute fiber orientation distribu-

tions (FODs) in each voxel. A subset of FODs from 59 cases, equally divided between diagnostic

groups, was used to compute a sample-specific FOD template and a template mask; all cases

were subsequently nonlinearly spatially transformed to the template. Next, we estimated the

spherical harmonic peak amplitudes (sh-peaks) in FODs from each template-registered case and

the FOD template. We used the dwi2tensor and tensor2metric functions in MRtrix to compute

tensors in the upsampled, preprocessed dMRI volumes and estimate individual FA images. We

used the transformation functions previously calculated for registering FODs to the template to

transform the upsampled FA data to the group FOD template. Using the TractSeg 2.3 algorithm

(Wasserthal et al. (2018b, 2019, 2020)), we estimated 72 white matter fiber bundles using the

group template sh-peaks; the TractSeg tractometry function was used to resampled each fiber

bundle to a single centroid streamline and distributed 100 equally spaced sampling points across

the length of the representative streamline. For each representative streamline, we sampled the

sh-peak and FA values under each sampling point for each participant.

Automated segmentation of hippocampal subfields (ASHS; Yushkevich et al. (2015)) is a

multi-atlas label fusion method for determining the anatomical boundaries and quantifying

volumes in specific regions of the brain’s medial temporal lobe. We used the ASHS-PMC-T1

112

https://mrtrix.readthedocs.io/en/3.0.2/fixel_based_analysis/mt_fibre_density_cross-section.html


atlas (Xie et al. (2016)) developed for segmenting bilateral volumes of the anterior and posterior

hippocampi and entorhinal cortices from conventional T1-weighted structural MRI data. All

segmentations were inspected by trained laboratory personnel for issues with segmentation

quality. The volume of the intra-cranial vault estimated by ASHS was used to statistically adjust

output volumes for differences in participants’ head sizes using the ANCOVA method (Bender

et al. (2013); Raz et al. (2005)).

A.3 Cognitive testing.

Neuropsychological tests from the Uniform Data Set 3 (UDS3) included measures of delayed

recall from the Hopkins Verbal Learning Test (HVLT) and Craft Story Test (Brandt (1991); Craft

et al. (1996)). Measures of delayed recall in these tests of episodic memory are sensitive to

amnestic MCI and preclinical Alzheimer’s disease (Dodge et al. (2020)).

A.4 Cognitive reserve.

We standardized and averaged the scores for delayed recall from the Craft Story and HVLT

tasks to create a composite of episodic memory. Similarly, we averaged z-scores for volumes of

bilateral entorhinal cortices and anterior and posterior hippocampi to generate a brain volume

composite score. The memory composite was regressed on the brain volume composite and the

residuals served as the measure of cognitive reserve.
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APPENDIX B

LIST OF MAJOR WM TRACTS

The list of 50 major WM tracts considered in this current study is given below. More pictorial

demonstration of these tracts and related information can be found that Wasserthal et al. (2018a).

AF_left, AF_right, ATR_left, ATR_right, CC_1, CC_2, CC_3, CC_4, CC_5, CC_6, CC_7, CG_left,

CG_right, CST_left, CST_right, FPT_left, FPT_right, ICP_left, ICP_right, IFO_left, IFO_right,

ILF_left, ILF_right, MCP, OR_left, OR_right, POPT_left, POPT_right, SCP_left, SCP_right, SLF_I_left,

SLF_I_right, SLF_II_left, SLF_II_right, SLF_III_left, SLF_III_right, STR_left, STR_right, UF_left,

UF_right, T_PREM_left, T_PREM_right, T_PAR_left, T_PAR_right, T_OCC_left, T_OCC_right,

ST_FO_left, ST_FO_right, ST_PREM_left, ST_PREM_right
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CHAPTER 5

CONCLUSIONS

In this thesis, we have explored advanced statistical methodologies for feature selection in

ultra-high dimensional datasets, specifically focusing on the analysis of tractography data in the

context of the UM-MAP study. Our research journey has been guided by the need to address

the challenges posed by high dimensionality, strong associations within and between tract-level

measurements, and the complex functional relationship between these measurements and

phenotype.

Through an iterative research process, we started with a linear model-based approach and

extended it to develop SciDNet, a deep learning-based method, effectively combining the power

of statistical inference and the flexibility of neural networks. We have demonstrated the effec-

tiveness of the proposed methods in achieving higher power and controlled false discovery

rate (FDR) compared to other state-of-the-art methods through extensive empirical studies

and simulations. We have also examined the assumptions and algorithms underlying SciDNet,

providing theoretical justification and practical insights into its application.

Our findings have significant implications for understanding the micro-structural relation-

ships in the human brain, particularly in the context of dementia and beyond. By providing a

method that is independent of strict modeling assumptions and p-values, SciDNet contributes

to a better understanding of the intricate connections between DMRI metrics and phenotype.

In conclusion, this thesis has addressed critical challenges in the analysis of tractography

data by proposing and validating the SciDNet method. The insights gained from this research

will pave the way for further theoretical investigations, generalizability studies, and broader

applications. We are confident that the methodologies developed in this thesis will contribute

to advancements in the field of high-dimensional statistics and enhance our understanding of

complex brain connectivity patterns.

We would like to express our gratitude to all the individuals who have supported and en-

couraged us throughout this research endeavor. Their contributions, guidance, and belief in
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our abilities have been invaluable. This thesis marks the culmination of years of hard work,

dedication, and collaboration, and we are grateful for the opportunity to contribute to the field

of statistical analysis in such a meaningful way.

As we conclude this chapter, we look forward to future research and collaborations that will

build upon the foundations laid in this thesis. The journey does not end here; it continues with

new questions, challenges, and discoveries that will shape the future of statistical analysis in the

realm of high-dimensional datasets.

Thank you for joining us on this intellectual exploration and for being a part of this remarkable

journey.
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