THE EFFECT OF LlfflHT INTENSITY ON THE PHOTOSYNTHETIC EFFICIENCY OF TOMATO PLANTS By ALTON MILLETT POHTEH inMii A THESIS Submitted to the fa c u lty o f the Michigan S ta te C ollege of A griculture and Applied Science in p a r t ia l f u lf illm e n t o f th e requirements fo r the degree o f Doctor of Philosophy H orticu ltu re Department East Lansing* 1936 Michigan ProQuest Number: 10008226 All rights reserved INFO RM ATIO N TO ALL USERS The quality o f this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete m anuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQ uest 10008226 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This w ork is protected against unauthorized copying under Title 17, United States Code M icroform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhow er Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ACKN0WLED05MENTS The w r ite r i s g r a te fu l to Dr* J* W* C rist fo r guidance and a id in conducting t h is study and re­ view ing th e manuscript; to P rofessor V* R*Gardner fo r su g g estio n s in th e preparation of the manuscript; to P rofessor P* C. Bradford fo r ad vice in review ing the m anuscript; to Dr* W illiam W* Smith fo r a s s is ta n c e in c o lle c t in g data; and to P ro fesso r £• Safford Torrey and Dr* H. E» H ill fo r h elp w ith the photographic work. Introduction She tomato stands forem ost among the sev era l v eg eta b le p la n ts which are c u ltiv a te d as greenhouse crops* In i t s cu ltu r e under gla ss* e s p e c ia lly in the northern sta tes* the q u estion o f a s u ffic ie n c y o f lig h t fo r i t s b est development and h i p e s t p r o d u c tiv ity a r is e s and becomes acute* The lig^ it o f the n atural day* during the w inter months* appears to be inadequate w ith resp ect to i t s duration and a ls o i t s ordinary in te n s ity * The p o s s i b i l i t y o f u sin g a r t i f i c i a l lig h t* to r e in fo r c e daylight* e x is ts * As m atter o f fact* t h is has already been t r ie d in not a few in stances* C ertain ly p h otosyn th esis i s one of the most fundamental p ro cesses which con d itio n p lan t behavior and production* and lig h t i s a major fa c to r in i t s dynamic complex* N eg lectin g the c h a r a c te r is tic s of lig h t* other than i t s in ten sity * how i s i t s in te n s ity r e la te d to the rate* the s o -c a lle d e ffic ie n c y * o f p hotosynthesis? More p a r tic u la r ly , what i s th is r e la tio n s h ip r e sp ectin g the tomato plant* when grown under greenhouse conditions? A study o f th is* - induced by the d esir e to extend th e knowledge d isc lo se d by in v e s tig a tio n s already made and reported* - was made and i s h erein presented* - 2- Beview of L itera tu re The e f f e c t s of stro n g , d iffu se d lig h t on p h otosyn th esis were e x te n s iv e ly stu d ied by Muntz ( l l ) in 1913* He found from f i e l d ob servation s th a t a lf a lf a produced l e s s dry m atter per square centim eter o f le a f area in the summer o f 1911* - a summer u n u su ally fr e e from clouds - than in 1910, when cloudy s k ie s p r e v a ile d much o f th e time* A dditional observations were made in the lab oratory where i t was p o s sib le to eq u a lize th e amounts o f w ater receiv ed by th e l o t s o f p la n ts grown under d iffe r e n t lig h t in t e n s it ie s * The r e s u lt s o f the lab oratory experiments accorded w ith those obtained from the work in the f ie ld * He concluded th at carbon a ssim ila tio n i s governed and lim ite d by th e in te n s ity of the lig h t* Lubimenko (9 ) &nd ?opp (3-7) found that in h e lio p h ilo u s p la n ts the ra te of the accumulation o f elaborated m a teria ls was in creased w ith in crea se in the lig h t in t e n s it y , up to an optimum p o in t, and th a t any in crease beyond t h is optimum r e su lte d in a decrease in the rate* Heliophobous p la n ts behaved in the same manner, the optimum, however, being a t a much lower p oin t than th a t fo r the h e lio p h ilo u s types* Arthur, Guthrie and Newell ( l ) working w ith JO d iffe r e n t sp ec ies o f p la n ts found the tomato to be the most s e n s it iv e to lig h t* Light in t e n s it ie s o f 350, U50, 760, 800, 1200 and 1*400 fo o t-c a n d le s were used c o n jo in tly w ith len g th s of day which ranged from f i v e to 2*4 hours* This rev ea led the fa c t th at - 3- th e "time f a c t o r 0 was o f importance* The peak o f in crease in carbohydrate production was reached a t higher lig h t in ­ t e n s i t i e s w ith the 12-hour day* In ju rious e f f e c t s r e s u lte d when the day was lengthened to 17 and 19 hours# The maximum carbohydrate in crease was reached w ith th e 17 and 19-hour day when lower lig h t in t e n s it i e s were used* or at the p oin t of injury fo r th e higher in te n s itie s # Combes ( 2 ) working w ith potatoes* and other tuber-forraing species* found that the higher the lig h t in te n sity * the greater the accumulation o f elaborated organic compounds in th e storage p a rts o f th e p lan ts# Apparently* a t lower in ten ­ s i t i e s the sto ra g e fu n ctio n caased and th e e n tir e amount o f th e products o f p h otosyn th esis was consumed in the growth o f the a e r ia l p a rts of the plant* D eB esteriro and Durand (3 ) obtained very d e f in ite r e s u lts experim enting w ith the garden pea# The p la n t s 9 dry-weight in crea se was in d ir e c t proportion to the in te n s ity o f the lig h t employed fo r i t s irra d ia tio n # Folmer (3 ) and T o sh ii ( 2*0 experimented w ith sev eral o f the d iffe r e n t environmental factors* and of th ese se v era l factors* lig h t in te n s ity had th e g r e a te st e f f e c t on th e pro— duct ion o f carbohydrates in c e r e a ls and peas# Their data show a g rea ter production o f carbohydrates under the co n d ition o f short days w ith b righ t su n lig h t than th at o f lo n g days w ith reduced su n lig h t, although the product o f th e in te n s ity and -Uth e duration of lig h t was higher in th e l a t t e r case# Kostytschew and Kardo—Sys-Soiewa (S) found th a t d esert p la n te in crea sed in carbon a s s im ila tio n up to an optimum lig h t in t e n s it y and decreased as the in t e n s it y went above t h is point# Later in th e day* as th e lig h t in te n s ity f e l l to the optimum point* th e carbon a s s im ila tio n again reached a maximum causing the d a ily curve o f p h otosyn th esis to show two peaks in i t s ou tlin e# The lit e r a t u r e which bears d ir e c t ly on the q u estion o f the response o f th e photo sy n th e tic fu n ctio n to the fa c to r o f lig h t in te n s ity i s not so p le n tifu l# The foregoing re feren ces are not a ll* but are re p r ese n ta tiv e o f those o f greater importance, and a ls o , are s u ff ic ie n t to show the e x iste n c e o f a q u a n tita tiv e r e la tio n s h ip between th e se two phenomena# B esid es a d ir e c t e f f e c t o f l i g h t , w ith resp ect to i t s in te n s ity , upon the behavior o f the p h otosyn th etic p ro cess, a c tin g a s a c a t a ly t ic and en ergizin g agen t, i t appears to a f f e c t c e r ta in other f a c t o r s , which are e s s e n t ia l in th e process# Among th e se are the ch lo ro p h y ll content of th e le a f , and i t s anatom ical structure* - the l a t t e r being important w ith r e fe r ­ ence to the r a t e o f the d iffu s io n o f g a ses w ith in the l e a f ' s in te rio r * ^ i l l s t a t t e r and S t o ll (23) observed that th e r a te o f p h o to sy n th esis in creased w ith the ch lorop h yll con ten t, but were unable to e s ta b lis h a d e f in it e q u a n tita tiv e r e la tio n s h ip - 5- between the two, - the fu n ctio n and th e independent v a ria b le* P a lla d in (lU ) and Lubimenko (9) s t a t e on the b a s is o f th e ir experim ents that heliophobous p la n ts are r e la t iv e ly higher in ch lo ro p h y ll content than h e lio p h ilo u s p lants* The la t t e r in v e stig a to r was a b le to e s ta b lis h the fa c t th at th e optimum lig h t in te n s ity fo r p h o to sy n th esis i s lower in c o r r e sc pondence w ith red u ced ^ n ten t o f chlorophyll* Shade p la n ts , a t the lower lig h t in t e n s it i e s were aB e f f ic ie n t in photo* sy n th e tic a c t iv it y as nonshade p la n ts a t th e se same lig h t in te n s itie s * A number o f more recen t in v e s tig a to r s , Johnson ( 7 ) , UacDougal ( 10) , Spoehr (19) and Ifiesner (21) , working w ith long day p la n ts , report that the amount o f ch lorop h yll in th e le a v e s o f p la n ts in creased in d ir e c t proportion to the average quantity o f lig h t receiv ed by them* Sprague and Shive (20) demonstrated that there was a degree o f r e la tio n s h ip between the t o t a l ch lorop h yll con­ te n t and the dry w eigh ts o f tops in corn* The t o t a l q u an tity o f ch lo ro p h y ll contained in th e le a v es of the various s tr a in s o f maize co r re la te d c lo s e ly w ith th e ir dry w eigh ts a t su c c e ssiv e harvests* S tra in s that showed a high ch lorop h yll con centration per u n it o f l e a f area a lso had high average r a te s o f in crea se in dry w eights o f top s, and v ic e versa* This r a t io between th e t o t a l ch lorop h yll and dry weight of tops was p r a c t ic a lly id e n tic a l w ith a l l th ree str a in s of com * t e s t e d * - 6- finerson ( 4 ) , working w ith C h lo rella , observed th a t p lan t c e l l s low in ch lorop h yll reached th e ir maximum r a te o f photo­ sy n th esis a t approximately the same lig h t in te n s ity as normal c e lls # In working w ith d iffe r e n t ch lorop h yll con cen tration s in p la n ts th a t w ere kept constant in th e se v a r ia tio n s, w ith the same lig h t in te n s ity , he found that the r a te o f p h otosyn th esis in creased a t th e same speed reg a rd less of the ch loroph yll con­ centration# The con clusion was that ch lorop h yll i s probably a chemical reactan t in p h otosyn th esis as w e ll as b ein g th e p h o to s e n s itiz e r which absorbs th e radiant energy necessary in th e process* Hayden (6) and P oole (15) found the spongy parenchyma c e l l s (m esophyll) of th e le a v e s were poorly developed in sun p la n ts , but in shade p la n ts th e se c e l l s replaced the p a lisa d e c e lls # Shibata (lS ) observed that lig h t in te n s ity had a d e f in it e e f f e c t on th e anatomy o f the le a v e s , in th a t the epidermal c e l l s are sm aller in short day p lan ts* Osterhout (1 3 ), and N igh tin gale and H itc h e ll (12) observed th at le a v es were th ick er and had more elongated, more d en sely packed, p a lisa d e c e l l s , a s the average lig h t in t e n s it y was m aintained at a higher point# The lit e r a t u r e le a v e s no doubt concerning the d ir e c t , and a ls o in d ir e c t, importance o f lig h t in te n s ity in the p l a n t s photo sy n th etic behavior# The r e s u lts c ite d from the work o f Arthur, G uthrie, and Newell ( l ) are e s p e c ia lly s ig n if ic a n t and - 7- h elp fu l* s in c e th e tomato p la n t i t s e l f was among th ose used in th e ir experiments* However* a d d itio n a l co n trib u tio n s from co n tr o lle d experim entation are d esirable* and necessary* b efore th e m atter o f the u se o f a r t i f i c i a l l l ^ i t in fo rcin g houses* devoted to tomato growing and production* can be c e r ta in ly and soundly determined* General Procedure The tomato p la n ts used in the experiment were o f th e Grand Bapids Forcing v a riety * f l a t s on January 26, 1933* The seeds were sown in greenhouse Gn February 3, a la r g e number o f se e d lin g s were s e le c te d and pricked o f f in to two-inch pots* These were tran sferred on February 12 in to fou r-in ch p o ts and l e f t th erein u n t il March 1* or u n t il t h e ir development was such th at they were ready fo r f in a l tran sp lan tation * On th at d ate, 36 o f th e p la n ts were s e le c te d from th e remaining 108* and tran sferred to lU -inch pots* in which th ey were grown s in g ly and to f u l l maturity* The s o i l was a f a i r l y r ic h orchard loam* which had been p rev io u sly screened and thoroughly mixed* by having been shoveled over* in bulk* I t s uniform ity was as good as could be expected and secured* The 36 p la n ts were d ivid ed in to three l o t s of 12 each* and each o f th e l o t s placed* w ith wide sp acin g, on a separate greenhouse bench where the p o ts were surrounded by m oist sand. -s- (afterw ards kept m oistened) to a depth o f f i v e inches* During th e c o a r s e of th e experiment* the in d iv id u a l p o ts w ith in each l o t were s y ste m a tic a lly sh ifte d * tw ice each week* in th e ir p o sitio n s* This insured g rea ter uniform ity in t h e ir exposure to th e environment* p a r tic u la r ly the fa c to r o f lig h t* The number o f c lu s te r s o f f r u it per p lan t was r e s t r ic te d to fiv e * A lU—hour day was m aintained over th e p la n ts o f each lo t* Extension o f th e regular d a y lig h t p eriod was accomplished by means o f a 1000-watt e l e c t r ic lamp* w ith dome r e fle c t o r and ad ju sta b le in height* suspended c e n tr a lly above each group of plants* A wooden frame was con stru cted above each of two o f the benches* under each lig h t* and made to be v e r t ic a lly moveable* One of th e se frames was covered w ith one la y e r o f w hite cheese­ cloth* th e other w ith two la y ers* This e ffe c te d three r e sp e c tiv e I n t e n s it ie s o f the lig h t* both natural and a r t i f i c i a l , fo r the p la n ts: no. shade or f a l l in te n s ity - o n e-h a lf in te n s ity (*>0**1#) and a l i t t l e l e s s than one-fourth in te n s ity (2 2 * ^ ) * The daades were kept a d ju sted in th e ir h e ig h ts so a s always to be approxi­ m ately 2 k inches above the tops o f the growing p lants* Zt was aimed* o f course* to keep th e co n d itio n s o f the environment* a s id e from th e c o n tr o lle d v a r ia tio n s in lig h t In ten sity* th e same fo r the three benches* Data were recorded fo r r e la t iv e humidity* a ir temperature* and s o i l temperature, under each o f th e th ree lig h t conditions* from March to July* - 9- by the uee o f hygrothermographs and s o i l thermographs* A d d ition al inform ation regarding methods - th ose more p a r tic u la r ly te c h n ic a l - i s given* where appropriate, in the fo llo w in g s e c tio n , w ith i t s p resen ta tio n o f the d ata obtained* EXPERIMENTAL RESULTS Growth Response - Leaf Area: P o s s ib le r e la tio n s h ip s between each o f several d iffe r e n t lin e a r measurements o f the tomato le a f and i t s t o t a l area were examined in a previous experiment (l6 )* The len g th o f t h e l e a f from th e base o f i t s f i r s t l e a f l e t s to the t i p o f the midrib proved to be the most accurate index* The type o f a ss o c ia tio n was c le a r ly c u r v ilin e a r , and s p e c if i c a ll y , p arab olic in the second degree* The derived equation was y (area) - 3 .1 6 + 0.1*17 x + O.307 x2 .* A ll o f the le a v e s on each p lan t in each o f the th ree l o t s were measured, in th e manner in d ica ted above, and a t in te r v a ls o f th ree to seven days during the cou rse o f the present eaqperiment, and t h e ir areas c a lc u la te d through the given equation* The data are presented in Table 1 * * This l e a f area equation was te s te d out on about 20 le a v e s from each s e t o f p la n ts and i t was found th a t the formula ap plied eq u ally w e ll to a l l three types o f illum in ation* - Table lz Sate of Measurement 10- Growth Response - In Terms o f Leaf Area Average le a f area per p la n t _ __ in so* cm* No Shade 1 Layer 2 Layers Cheese­ Cheese­ c lo th c lo th Average d a ily in crease in le a f area per p lant in No Shade 1 Layer 2 Layers Cheese­ Cheese­ c lo th c lo th March 28 1350 1503 1652 A pril U 10*9 2253 2*173 1*2.7 107*0 116.0 A pril 8 1888 2687 3122 5 9 .7 105.S 162.1 A pril 11 2088 2891* 359*1 6 6 .6 100. 1* 157.1 A pril 15 235S 3>*0S 1*202 6 7 .5 107.5 152.0 A p ril 18 2668 361*6 1*69>* 102.8 77.7 158.5 A pril 22 3188 3901 529*1 130.0 6 3 .6 1*17.5 A pril 29 375*1 1*303 6259 80. 7 57.3 139.0 May 6 1*16^ 1*680 661*9 5 8 .5 56.1 55-6 May 13 >*325 5033 6761* 2 3 .0 1*8 .0 l6.1* May 20 1*1*85 5*133 6868 13.3 5 7 .0 ll*.8 June 5 1*563 5559 7072 6 .5 7 .9 12 .7 July 3 1*563 5559 7072 - 11- As shown in Table 1, expansion in l e a f area was both con tinu ou sly and f i n a l l y the g rea test fo r the p la n ts under the low est lig h t in te n s ity ; next g r e a te st where medium in te n s ity prevailed* and le a s t in the unshaded condition* The o r d e r lin e ss o f the change in the d a ily r a te o f th e in crease in the f o l i a r surface o f the unshaded p la n ts i s outstanding* This rose over gradual step s to a d is t in c t maximum (A p ril 2 2 ), and th e r e a fte r f e l l o f f c o n s is te n tly to zero a t the end* D iffe r in g from th is* th e two other maxima were reached more q u ick ly and much e a r lie r in th e l i f e o f the plants* and were m aintained over lon ger p eriods o f time* Thus* the u sual r e s u lt was obtained* Growth* when measured in terms o f l e a f area* augments under reduced lig h t in te n s ity * The le a v e s a t ta in grea ter size* hut commonly are thinner and may have even l e s s t o t a l mass* The g rea ter spread* o f l e a f su rface g iv e s in creased exposure to the lig h t* such as i t is* and tends in some degree to condensate on th e whole fo r the le s s e r quantity o f lig h t re ce iv ed per u n it o f eaposed surface* Growth Besponse - Stem B longationl The measurements taken fo r le a f area were accompanied by determ inations which gave the growth r a te o f th e main a x is o f the plants* under each lig h t treefcment* th at o f the stem axis* The d ista n ce measured was The p eriod of th ese in term itten t measure­ ments was A p ril 4 to June 5* when the p la n ts were pinched out at th e top* and thus r e s t r ic te d to the production of but f i v e f r u it c lu s te r s per plant* Table 2 g iv e s the data* 12- - m fe I m 4» ©o * © CM 5 <5 4 CM o cm VO VO VO ir\ LC\ vo vo vo « vo LT\ -= t o> o VO ITV VO • LT\ ITV VO <3\ I— LTV ICA LTV LT\ VO to E lo n g a t io n Stem cm irv • CVJ vo CM CM vo vo A • • to • • • to • -=t • up* VO • rH CM CM ITV IT V UTV IT\ o o to CM • • • jst • • o o vo vo -= t in LCv o o o o O s o to to to 09 i of a \ ° fM 8©S.H ,Hg •rt © « m *h to a KV I * ° © to ir> CM VO o S2 crv to crv 8 CM ° g > 9 © Pi o irv 0 u r\ © \ - 13- The responses in stem elon gation shown in Table 2 were akin to th ose shown far in crea ses in le a f area* Growth in h e ig h t, a s r e fle c t e d in more atten u ated internodes* was more rap id as shading was heavier* and th e p la n ts t a lle r a t th e time o f being topped* The maxima fo r th e r a te s o f elon­ g a tio n were in th e same order as th ose follow ed by th e leaves* and th e ir occurrences in time p r a c tic a lly id e n tic a l w ith th ose which obtained fo r the leaves* Growth fiesponse - F ruit Productions The records taken on f r u it production show a d e f in it e f r u it s e t and production in d ir e c t r e la tio n w ith the ligjht receiv ed by the plants* These measurements were made by tagging the f r u it w ith th e date s e t on each c lu s te r and recording the number o f days n ecessary fo r each f r u it to rip en and i t s weight* This inform ation was assembled and to ta le d g iv in g comparative fig u r e s to i l l u s t r a t e the valu e of lig h t in t e n s it y on f r u i t production and on the e f f ic ie n c y o f the p lan t le a f area* These data are presen ted in Table 3 * - ffc El © Pi •H P5 CQ •** H-> rf © 44 CO i © .Cj tf © O u * l**V £ >> © 4 4 jh © .3 «s CM r— LTV rH ir \ © V i o ©© flf © O CM o ©& l © .E 4* 0} © O S& ■3 EH CO O F l 4 o 60 CM 4 60 1— CTv 4 o CTV O 4 ITV CTV CTV 4 I-— 60 LTV ir v LTV rH vo O CPv r— CM P CM VO VO CTV 60 KV » CTV s OS irv CO rH o 9, CTV CM VO KV CVJ 9 VO VO 60 ITV r— r— CM IXV Is— CTV Is— 8 CM t— rH ^H J" IT v CTV LTV r rH VO ITv CM J* JITV t jrv VO CM 60 60 60 CM KV 60 4 CO ITV LTV CO LTV LT\ VO 8 +■» o P 4 P i CM CM CM © & i o 60 K\ CM ^1 * IT\ © rH 4 cu 60 S 44 KN o OV 4 CM 60 rH K\ KV 0 § 4 CVJ o P* © 44 *3 +> EoH p o £ § h~ OS © rH rH O i © S' 9 h* 4» O S r— N* CmS ° s>» A A © 4» m© © 3O £ .3 CM CTV 4 a © o 44 O * & 44 a o VD • CM irv cm S? t> << VO 4 r**\ ITV o -Sv 60 4 KV UTV 39 o 44 o t>> 14 - © CM r<-\ ITS *3 4» O EH 44 p © IP P< & ft S> © J ± . £ j_ © a 4 SP© 3 t> o* lH © © ■ fit. JL © - 15- The amount o f f r u it s e t under reduced lig h t in te n s ity i s much l e s s than under normal l i g h t , as can he seen in Table 3* ln ea rly part of the season when the p la n ts were r e c e iv in g a r e la t iv e ly sn a il amount o f lig h t the f r u it s e t was in in v erse proportion to a l l amounts of shading, hut as the season progressed and lig h t in te n s ity became h igh er, th e fr u it s e t co r re la te d b e st w ith th e h e a v ie st shading as would be expected# This may be accounted fo r by the fa c t th a t th e lig h t in te n s ity receiv ed by the h e a v ie st shaded p la n ts was o r ig in a lly a t or near the minimum fo r f r u it set* Then as th e season progressed and lig h t in creased beyond the minimum, other en v iro m en ta l fa c to r s entered, causing a greet er proportion o f f r u it s e t under shaded co n d itio n s than was o r ig in a lly the case* The amount o f f r u i t when ripened, however, c o r r e la te s c lo s e ly w ith the fo o t candle hours o f lig h t , (Table 7)* to which the p la n ts were exposed* F ru it production req u ires a g rea ter area o f le a v e s in proportion to the amount o f shading the p la n ts receive* The f r u i t s a tta in greater w eigh ts and ripen sooner when the lig h t I n te n s ity i s not reduced* D oubtless th e great a s s im ila tio n o f p lant food by the le a v e s tends to speed up f r u it growth and ripening# — 16- Growth Response - T otal P lan t Production: The data fo r t o t a l p la n t production determined on tw elve in d iv id u a ls under each o f th e th ree d iffe r e n t lig h t in t e n s it i e s are shown in Tables 5* 6 an& 7* A cursory glan ce a t th e se data shows th a t in d iv id u a l tomato p la n ts vary w ith in wide lim its * The w eigh ts taken fo r t o t a l p lan t production show a v a r ia tio n in p lant food under each lig h t treatment that i s le s s than the d iffe r e n c e s in lig h t in te n sity * •a -p I EH •H o a P«o vo t-i to 64 CVJ • CVJ 60 ro rH • rH 60 o 60 rH rH • vo o rH vo 00 IT v 60 60 C\1 LTV «=J- vo KV ir v LTV Si 8 OV ITv O CTV a C— VO VO N- *•H p© © o W * C§ .p *3 © cn • rH & £ t Bg do * -=T • VO • CM • rH CM rH VO cn in CM CM rH • • cn • ro rH CM in rH cn • ro cn in • to rH » ITV 80 rH ro • rH CM rH ^ n - 60 S' ir v *rH rH » h • 80 io io ITV VO ro 3 80 in IT v § 60 rH CVJ VO to VO o ft 60 -t • VD rH in I* — rH CM in r - CTV ir v VO rH • 60 • CM vo cn .=4 • * # vo r—vo VO • • CM • ro in rH in CM rH O • CM nrH cyj .d * • rH • 60 cn ^ cvj ft 60 • in CVJ 6 0 • • r« CO m CO vo • ft • m OJ 1 CVJ LO o 60 o CVJ rH ft CVJ 4-* CVJ Is- 6 0 r— rH rH 60 cvj VO 60 • CO o> 60 rH 60ft ro o CVJ cvj rn IO vo r» VO CM ro ro CM £ & >.m© P o cn 60 LO 60 to ro CM 60 o VO 60 EH *3 4* O © EH 1*— r~ cn CM i•H © © +> O 'S r** jd* CM CM ro CM CM CM 60 ro CM -=T rH cn i— rH CM o rH r— rH r— cn cn CM vo JO cm CM r^- 60 vo rH ro ro 60 cn rH CM VO CM CM CM VO 60 ro CM 60 ro tn W O r o 3* vo h H W 3 CM cn m vo n- 60 ^r m CM r— cn in CM O O LTV 60 CM VO rH 60 LTV 60 rH 60 O CM rH rH rH in in VO o CM ro in ro 60 r— o cn OJ CM irv I -- CVJ O r- $60 60 CM vo vo o cn r— cn -dt* CM CM CM 60 to to cn VO PI VO rH CVJ , • £in ] r— rH ir cn to ro vo r~ CM rH Kl CVJ , 60 CM VO rH CVJ CVJ vo • CM rH r— cvj ro • tO ITV ITv to to © I +o» 81 o 60 60 O cn 60 CM Q ro oS 60 o> trv oS 60 K> VO 60 60 CM CVJ LO KV 60 60 60 VD ro t- 3 CVJ *=r © E-t £ • 60 cn ro ^d- cm 80 VD Iirv *— virv o 3 CVJ • CM ID cn CVJ OJ VO v o ! in . 60 60 cn r—! M ro VO 6 0 CVJ CTv *r 4 • to O 64 i£ $ 03 P 6<=oPiOO ca P Eo4 <3 P> 03 I to o irv irv VO KV • CVJ to -T CVJ £ s O CVJ hKV CTV CVJ OV irv OV VO CVJ KV jt JT vo to CVI KV J t o CVJ irv jt * J t • KV CVJ to irv CVJ vd r— • ♦ « • irv .st­ IC\ vo O CU KV irv to to * O IT* r»v H kv kv • • to ITV to s vo vo CVI vo vo o ih irv irv Jt KV ir v irv Ov CVJ vo KV irv jt JT O* to 9 VD (0 p o a> o ca P o KV irv CVJ VO LTV VO S ' ir v qv vo VD irv KV VO in VO in ♦ irv to in i ♦ to JT jt to ov kv o JT« KV ov * in♦ ml CVJ p KV KV o CVJ ov uv ov irv & Jr j? P K* rH O CU to KV to KV JT m l KV KV vo JT ir v rH vo CM irv ir v K ov VO to irv vo CM o ov rH VO OV r— rH JT O CM r— CU KKV 1— rH to CU ov irv CM KV irv KV m O un VO j t to uv vo kv KV O* to vo in KV Jt KV VD *? ir to Jt CVJ irv to KV to cvj ir CVJ KV £ I vo o VD CVJ P ^ o KV irv OV| to VO to CVJ CVJ o Is tp JS> lh or> IT in| Jt CVJ VO 3 to oh CVJ CVI vo irv irv • irv CVJ H • ov KV rl JT ITS to K- • LTV KV KV • ir* * ITV vo vo CVI « • • uS co KV OV p o to • K> KV VD jT ov in ov £ av KV vo s VD to CM OV to K o CM frt CO -u 01 o E4 jt KV KV p CU n S3 av rH gv o O kv vo 4 cm T Ov KV r— ir v rH KV rto jt o to p CM in CU ov o I*— to o KV KV CM a> CO fcs +* o .a o ca f t <£» K— tO r-4 sT S JS' T 64 ca j VD rH «H s o .sfr rH VD av sT irv KV rH CM K-* irv vo O tO CM OV OV VO r — CM rH KV UV rH cm vd jt ^rH HCM CM p rH J T cu u v ir v u v to ir v 3- KV vo in CM o uv J t & CM k v ^ i* in vo k to ov o CM OV to KV in OV to CM CM CM CM cu ini vo <8 +» o EH s H o* CO p< rH rH VD CM « P $ 3 ov VD OV & jt £ £ irv i> 9 JH rtt P rt* » o K- VO # Dry weight minus ash weight - <0 cd OJ o VO i©i I— KV © I CO fit p Table 6« ==*>EoH ■ +o93 EH ITV ITV O rH • tO * OV S' to o o* irv OV * m OV o• irv • * irv t*— n - kv rH CTV rH kv CO • • h- tO IT" CO ir cu kv| O rH H» +> rrf O 4-> o O O P5 K • rH • VO d CO t o « vo cu • o•v & s dr h- KCU KV CU -51• CT•V • • vo -=f cu irv KV Ov • • CU I*— d KV O to d CU * cu K«V rH • • £> IT*V KV VO r— h— irv KV ov OV o cu irv cu % $ JP o> IP c r\ d to VO ro irv * CU cu o> ir v ICV CU cu cu vo VO ^ • CTv tO ov o • CU VO CU K— ■3 LT • to O $ gv d • o vo VO CU CU • kv ♦ coov KV tr v CTV o cu KV kv d cu d • cu 00 KV KV VO uni irv • UP cu vo d VO * Tu ic ul cu cu ov to o cu ml KVl vo • to CO CU CO I©4o» cu • d KV rH av av cu KV KV KV KV cu cu to • cu d • ^ cu h • rH • vo trv KV rH VO cu d CU CU cu rH rH CU KVj KV «t o O f - r H •tKVO •CI— U• KV • KV« OV CU VO ovl • KV • cu • d .=!■ irv <3 KV VO KV O ca • •Is™ • <7V • ^ITV • -3 P rH rH o CU rH rH rH rH E Q • tO rH VO rH • • • # • rH rH rH rH CTV O to KV d rH KV rH CU d vo h O CU *3 +3 KV KV d aj d KV irv cu irv irv VO ir v tr v rH CU kv CTV tO KV CU d irv to vo O vo vo irv CTv vo to K- trv o irv if* 3irv vo CTV I— rH CTV CTV m O CU d KV KV CTV VO rH O to I— CO O rH m CU OV to CTV d cu d d ai IstO rH CTV CU KV vo s cu tO ir v vo rH vo CTV KV irv C U m o EH O d ca 4> o rH CU CTV d VO rH d to d to cu JP 5 * KV n- irv vo cu CU cu rH K tO d m CTV m o irv! cu vo vo ir v KV cu K to irv o vo KV VO VO m irv KV KV irv ov irv to CTV o to cu o ov Si irv KV cu vo cu o m CTV (8 m CTV g E LTV irv CU vo r— ir v h «8 +> o EH KV rH r— kv irv d irv d CTV cu LTV VO vo irv cu to I— to to kv uv CTV d CTV 8 OV CTV CU O to CTV CU av to cu KV to r— o r- KV o K KV •s © ca <*> o trv irv cu kv A mP§ © ca cu d CTV rH o VO d EH irv S' S JP irv d KV d d irv ir v irv cu vo O O cu K VO KV ITS ca Sh © P« 3 rH p« cu kv d ir v vo to CTV O cu <& 6 4 * O CVI g SS KJ CVI * r— jt o ITV rH ® <-» Treatments 8 • OV • H irv r-4 • CM trv o 8 o CVI o J? ® CM • LTV o o o o o 08 &I ca CB 44 a>, o ® rH CVi 1 VD r— CTV 90 6 ° «-4 « fH CM jt r- KV to -=*• 3 -• S 3 4* o o Pm *KV =#• CTV to o al to to o to o % o i t rH KV 8 «cu 60 O s cu O VO KV O CM vo * K 5 5 I*"— ^r o u ^ CM 90 KV ir CU trv irv ca Jt »h KV CM ©V evi o V© H r*OV o 90 CM — s ■ a 23? ■P p H O O fs> E4 w ja p Jt Jp Intensity for Plants under the Different © ° o o o CM Jt Jt OV Jt -3“ irv CO irv 90 I w 94 o 14 © Jt rH CM vo ?3 CM to ^ J t | o trv irv KV vo CM K Light CM O >> 4» t4 as ® IN Table 7. * Jd ° p AA - g o ITV & LTV CM ov trv KV f— OV CQ CM av g 4* £ K 90 IT 1-4 © ® >* B CM KV ITV O 90 OV KV KV 1-4 CM K— 90 cr Jt I*— I*— © o K Hr •H a* • r4 M 4> B o a t> B •H r4 KV 1 r4 3 a • r-4 O B •iH o KV 1 r4 ih F 4 rH B •*4 fH KV 1 rH if • rH •H • O B •H o H O fB H KV KV t r4 1 k I o © © 9I 4 rH p i ►» a) PI 44 O O 14 P o 64 O <4 © j S 14 - 23- I t i s clear* from examination o f Table 7» that the grad ations o f lig h t in te n sity * e sta b lish e d in the beginning by means o f shading* m aintained w ith c lo s e approximation* as the season advanced and ended* While th e general in te n s ity o f the su n lig h t in creased grad u ally fo r a ll* th e three experim ental co n d ition s o f f u l l in ten sity * on e-h alf in te n sity * and one-fourth in ten sity * continued to hold and to be e ffe c tiv e * General c o r r e la tio n o f th e s e c o n tr o lle d v a ria tio n s in lig h t in t e n s it y - p rev io u sly shown w ith the d iffer en ce s In growth responses of th e th ree lo t s o f p la n ts - i s ob vious. The r e la tio n s h ip i s i t s e l f n egative in character fo r le a f area* and stem elongation* and p o s it iv e fo r f r u it production* and t o t a l p lant production* In order to f a c i l i t a t e inspection* c e r ta in fig u r e s from the preceding ta b le s are brought together in Table 8* 2 -= ±±*- •P •h a ^ - n. © CSbvx> ^« ,d © *H UN © » ft +>J=t* Gd Cl ©© rd 05 sr* H® 49 to Is— UT\ cr\ CM r— UN rH KN CM UN ON kn to H (O O Vj © & OB © 1 £ a i© dflKN cr\ H CO O O © © o o © P4 & 5fc o £ O +» © © 1* m 4* © g h SP3-3 h (k| E4 © © •H CO OJ O *>—' © 8 © • h acr* «©H«4rl *r'"-s» t © © 1©4 ■s •a •H Vi o 3© ao ^ g “ S? i l l © p < e* 5© h fe ^ l*N ON UN UN UN CM Is O 1— OJ CM IsIs- IsCM <0 CM Jt kn 8 o if Si Si .©* ® *© &* 3 +> id Is— o o «w © P4 O H «© &• r-f » © 5 6“ 5 (3 cr\ r«N to i— i Is— © £ •p to © H E4 3 o +> •H © © © 4» 6 g sTo © © +» © rl O © © © © © s © © © © s CM - 25- However* th e a s s o c ia tio n which i s apparent in Table 8 can have v a lid it y only in case c e r ta in other fa c to r s which are known to con d ition the p h otosyn th etic rate* and con­ sequently* growth* remained s u f f ic ie n t ly constant during the experim ental period* Table 9 g iv e s data resp ectin g th ree such factors* - th ese being the p rin cip a l ones which required con sid era tio n and attempted control* v - 26- E-« H •H o CO 5 £> -=i* << CM © •d © a 1 a i§ i £ A p .d- 1 © o C VI Ki © p ♦ © a # « •H P<* 1 © a © (0 CM s $ * a ♦ © n * ■a © f| 5 1 o *H © o ♦ ^ © c S Q © •H © .3 © a n y iH © 8 EH a f, *rt 5 £> 1 J Month KV irv V& £ ft CM CO CM CO irv K’V ITk VP VP VP VP VP & p* 8 I*— Vp vp vp CO vp LTV ir\ rH VP irv ITV irv irv O CO vp CO VP VP co ir\ tr\ ITv ir\ CM CO vp CO cR irv o> 8rH CM irv vp vp vp fo vp f- VP lO k ir v VP VP vp 8 ov §> H VO *H r— 10 CO VP tr\ u r\ irv KV !*— CO co ■s 1 rH LTV irv vp CO •H $ 1 ^1- crv VP oH © I * 3 CO 5 i g<3 3 J S S P & « a a 4 SiTJ • fe» < 0 « © •raH »H W O O O t3 © KV K\ n KV ©a «Ug >1 5 «#s 8 •H ) a •t •r <5 1 A i Js ® t£ a ^ © © P S3 £ H J•H « •5 1 a *a■ « S s £■* CM * a i •H Oa a 1 -s; * * 1 a •H O JPJ a Table 9* 8 8 1o 1o *§0 p £ je pi »K\ iC fU dK\’ oKV M OV OV 60* 8 8 8 -5 ? o c j:t Km V r— W oKV co OJ VO KV ^ rH r- co co co ov June July S A H* oi O a h H • © U © .9 a a s i © r-l 6 a u © a P 8 s May s a ft A pril * h C O © © •ft March * CMg VP VP 3 Month Growth Period Humidity, during Temperature, and Relative Air Temperature, Soil © © © a © 99 i «& ■ p a oa * UH © P • -2 7 These three fa c to r s are r e la t iv e ly uniform fo r each b lock o f p la n ts* The v a r ia tio n s o f th e se fa c to r s in the th ree treatm ents i s probably regu lated somewhat by th e lig h t in te n sity * This lig h t in te n s ity 'variation has e v id e n tly accounted fo r the p la n t growth responses under each c o n d itio n , and the e f f e c t s o f the oth er environmental co n d itio n s are regu lated by t h is lig h t* D a ily P eriods o f Measurement* The data which have been presented show, beyond doubt, a r e la tio n s h ip between the behavior o f the p la n ts and the d iffe r e n t lig h t in t e n s it i e s under which they grew and matured* The evid en ce, however, i s g en eral in nature and not such as to be adequate fo r th ose mathematical p ro cesses which y ie ld q u a n tita tiv e exp ression s o f co rrela tio n * The p la n t m a teria ls manufactured by the p la n ts on 12 d a tes, spread over the p eriod o f growth, were determined on seven p erio d s during each o f th e days* This procedure fo r estim a tin g the photo sy n th e tic a c t iv it y was that termed the M odified SachS Method* I t co n siste d of taking two square centim eters o f f o lia g e from each p lant every two hours in sample b o t t le s and w eighing in the fr e s h condition* These sm all d is c s o f the lea v es were then heated in the oven a t 70°C« fo r 12 hours and then a t 95°C* fo r s ix hours, when they were reweigjhed* A fter drying they were put in c r u c ib le s and ashed, -2 8and again reweighed. The dry w eight minus the ash w eight was th e amount o f phot osyn th esi zed product in each sample* C orrection fo r r e s p ir a tio n and tra n slo ca tio n was determined by adding th e average lo s s in w eight per two hours during th e night to th e d iffe r e n c e in w eigh t o f the two hour samples during the day* l i g h t in each b lock o f p la n ts was measured at two hour in te r v a ls w ith a Clement^ Photometer in which s o lio paper i s used* and comparisons made w ith a standard* On days when p h otosy n th etic a c t iv it y was determined* the Macbeth illum inom eter was a ls o used in order to g et readings in a ctu a l number of fo o t-ca n d les* 12 * She data are presented in Sables 10* 11* and -29Table 1 0 . S ate Phot osynthate and Light I n t e n s it ie s fo r Unshaded P lan ts V ariables 4-8 8-10 AM. f A p ril .7 Pho 10 synthat e 1 .6 0 Light In ten sity 200 P eriod o f Say 2 -4 10-12 12-2 P.M. 4 -6 6-8 1 .4 6 400 0 .1 6 444 2 .1 6 3S7 4 .2 0 256 1 .4 o 139 1 .6 4 87 A p ril 24 So So 1 .1 2 606 1 .1 1 1200 1.60 l4 ll 2*96 2408 5 .3 4 2314 2 .4 4 1207 0 .3 6 117 A p ril 29 So So 1 .6 4 732 3 .0 6 1464 3 .0 6 2553 4 .0 8 2553 1 .2 4 1445 2 .2 8 806 1.60 337 May 5 So So 1 .4 8 212 1 .4 6 424 1 .4 4 393 1.60 394 1 .7 6 287 O.56 116 0 .2 7 87 May 13 So So 1 .0 6 237 I .0 6 446 1 .4 4 286 2 .6 4 1285 0 .8 8 2408 0 .7 2 2408 0 .3 4 337 May l 4 So So 1 .2 8 1164 1.4o 2078 2.00 2409 3*96 2503 1.68 1800 1 .8 0 687 l4o May 23 So So 2.'4S 1206 1.80 2172 0 .7 6 2588 1 .8 4 2937 7.34 2730 1 .2 4 1376 1 .68 736 May 24 So So 1 .5 2 637 3.20 1230 4 .9 6 2499 1 .3 2 2435 2 .9 2 2100 1 .7 6 1350 1 .6 0 736 Jtme 9 So So 3*76 739 3*32 1369 2 .7 6 2533 6 .o 4 2855 3 .0 0 2344 2.92 964 1.9 6 674 June 19 So So 1 .8 4 100 l.4o 2 .7 6 186 277 4 .8 8 27s 2 .9 6 944 2*76 910 2 .1 6 121 So So 1 .8 8 210 2 .7 6 330 5 .4 4 3480 7.20 3906 5 .1 2 3773 1 .6 0 3039 1674 June 17 So So 4 .0 3 94o 2 .6 4 1734 I .52 1503 9 .2 0 3155 5 .1 2 4235 1.60 3115 1.08 1769 Average Photosynthate 1 .8 9 2.05 2 .3 2 3 .9 9 3 .5 4 1 .7 5 1 .2 0 1086 1520 2091 2053 1426 578 June 16 Light In te n sity 582 0 .3 6 i.4o -3 0 Table 11* Photosynthate and Light I n t e n s it ie s for P la n ts Shaded w ith 1 Layer o f C heesecloth Date V ariables b—s A«M* 8—10 Period o f Day 2-4 10-12 12-2 4 -6 6-8 PM. A p ril 7 Phot 0 synthat e Light In te n s ity 1#00 100 0 .7 6 202 0 .1 6 246 0 .2 8 236 3 .4 4 128 1 .4 4 49 0 .3 6 24 A p ril 2^ Do Do 1.00 237 1 .0 6 61*8 1 .3 6 768 1.28 1245 2 .1 6 1135 2 .8 0 544 0 .8 0 49 A pril 29 Do Do 0 .9 2 462 1 .6 0 739 1*72 1182 1 .8 4 1281 1 .8 4 813 2.00 739 0 .6 0 247 May 5 Do Do 1 .4 2 104 0 .8 8 2l*l 1 .6 0 187 1 .0 4 187 1 .6 0 136 0 .1 2 S3 0 .1 6 64 May 13 Do Do 0 .8 0 106 0 .6 0 207 1.80 182 1*32 677 O.5 2 U 63 0 .2 4 1231 0 .2 8 187 May l4 Do Do X.00 737 1 .6 4 1207 1 .6 0 1251 1 .1 6 1409 1 .7 2 914 0.88 352 0 .1 6 47 May 23 Do Do 1 .6 8 737 1 .4 8 894 0 .1 6 1191 1 .2 8 1113 1 .32 1113 1 .1 2 689 o .o 4 306 May 2k Do Do 1.68 331 2 .2 4 532 1 .4 8 1170 1 .0 4 1180 1 .5 2 1259 O.96 532 0 .4 0 306 June 9 Do Do O.7 6 312 0 .1 2 692 1 .1 6 IO69 O.3 2 1424 1 .2 0 1177 2 .4 8 409 0 .1 6 394 June 15 Do Do 0.1*0 100 1 .0 6 153 1.4o 128 2 .3 6 157 1 .2 8 476 2 .2 4 451 o .o 4 86 Do Do 1 .4 6 96 2 .7 4 823 0 .1 2 1793 2 .6 4 1946 2 .4 0 1891 1 .2 8 1562 o.4o Do Do 4 .1 2 1*31 2.28 586 2 .8 0 796 4 .2 0 1025 4 .9 6 2124 2.08 1515 0 .1 8 815 Pho tosyn th ate 1*35 1*37 1 .2 8 I .5 6 1*91 1 .4 7 0 .2 9 Light I n te n s ity 321 577 830 990 1024 679 279 June 16 June 17 Average 815 T&ble 12* Late A p ril 7 -3 1- Photosynthate and Light I n t e n s it ie s fo r P la n ts Shaded w ith 2 Layers o f C heesecloth V ariables Phot osynthat e Light In te n s ity 5-8 8-10 A*M* Period of Bay 10-12 12-2 2-1* P.M. 1+-6 6-8 0 .5 2 *7 0 .4 4 92 1*12 104 .00 l l *8 2 .0 8 96 1 . 2i* **5 0 .3 2 16 A pril 2*1 Lo Do 0*20 92 0 .4 4 341 0 .7 2 354 1 .2 4 68U 2 .6 0 578 2.68 257 0.1*0 26 A p ril 29 Lo Lo 0*20 i4 i 1*32 371 1.68 600 1 .3 2 661 1 .2 0 1*07 1 .6 8 303 0 . 1*0 12l* May 5 Lo Lo 0*16 109 0*12 116 0 .6 0 101 1 .1 6 75 1 .2 4 72 1.00 37 0 .3 2 2l+ May 13 Lo Lo 0*46 0*32 123 O.3 6 99 O.7 6 384 0.21* 561 0 . 21* 61*7 0 .2 8 90 May l 4 Lo Lo 0 .3 6 361 0*20 683 0 .6 4 630 O.72 754 0.1*1+ 1*56 0 .5 6 106 0 .2 6 2l* May 23 Lo Lo 0*68 337 1*56 491 0 .2 8 573 1 .0 8 602 2.80 520 1.1*1* 297 0 . 1*0 152 May 2*1* Lo Lo 1*12 113 0*96 225 1 .28 552 0 .7 2 519 2 .7 6 635 1 . 0U 225 0 .3 2 ll*7 June 9 Lo Lo 0*60 185 0*06 386 0 .1 6 548 0.81* 760 0 .8 8 680 1.1*8 230 O.5 6 155 June 13 Lo Lo 0*20 0*86 90 o.4o 3 .20 91 85 1 . 1*0 238 0 .7 2 213 0 .2 8 107 June 16 Lo Lo 0*60 4o 0*37 490 0 .2 0 937 3«2l* 951 1 .3 6 91*6 I .3 6 744 0 .1 6 521 June 17 Lo Lo 4*20 261 2.52 276 1 .0 4 1*67 I .S 3 52*4- i+.oi* 1080 1 .3 2 7Si* 0 .1 0 521 Phot 0 synthat e 0*77 0*76 0 .7 0 I . 3U 1 .7 5 1.23 0 .32 Light In te n s ity 154 307 1*21 512 522 321* 158 Average 4o -3 2 The source o f energy fo r th e p la n t world i s su n lig h t and i t e v id e n tly r e g u la te s th e amount o f p lant food manu­ factu red according to i t s in te n s ity a s i s demonstrated in Tables 10, 11, and 12* I t appears th at t h is carbon a s sim ila tio n changes grad u ally or v io le n t ly in r e la tio n to th e v a r ia tio n in lig h t in te n s ity receiv ed by th e plants* The unshaded p la n ts show that a g rea ter amount o f lig h t i s n ecessary fo r each gram o f photosynthate manufactured* Furthermore, the smounts o f p la n t food appear to in crease u n t il 12-2 P*H* when th e lig h t in te n s ity reaches i t maximum and then decreases a t a r e la t iv e ly sim ila r r a te w ith the lig h t* D iffe r ­ in g from t h is , th e p la n ts shaded show a slower in crease in food manufacture r e la t iv e to the l i ^ i t in crease u n t il th e 2-4 P*M* p eriod , when they reach the maximum, and then they decrease more rap id ly in r a t io w ith the lig h t in te n sity * Greater reduction in lig h t shows a more gradual in crease in p hotosyn th esis and th ere appears to be an accumulation o f p lant food over a longer p eriod , or a la g g in g in photosynthate manufacture, when the lig h t i s decreased due to heavy shading* This appears to r e s u lt in th e p la n ts exposed only to lig h t o f low in t e n s it i e s having a much lower b a sa l metabolism than no shade p lan ts* The simple c o e f f ic ie n t s o f c o r r e la tio n fo r photosynthate and lig h t s r = .5454 i .05275 r « .3012 ± .0681 and r ■ .3034 i. .0679 demonstrate the importance o f the lig h t to th e plant food -3 3 manufacture under the no shade con d itio n as compared w ith shaded p lan ts* While temperature and hum idity a re sim ila r or r e la t iv e ly uniform fo r th e three l o t s of p la n ts, i t v a ried the same fo r each, a s the day advanced* N atu rally, t h is would he expected to he tru e, due to th e ir r e la tio n s h ip to lig h t in te n s ity and i t s v a ria tio n * Consequently, data on temperature and humidity were taken fo r each of the two hour periods* The sim ple c o e f f ic ie n t s of c o r r e la tio n fo r photosynthate and temperature: r 3 .2968 ± .0 6 81; r . .1924 * .0725; and r * .1704 * .0727 s ig n if y th at th e temperature i s in c lo s e r e la tio n w ith the l i g h t in te n s ity and probably i s in t ere or r e la te d w ith it * Their b ein g lower than those fo r lig h t demonstrates th e ir s lig h t e r importance in photo sy n th etic a c tiv ity * The sim ple c o r r e la tio n c o e f f ic ie n t s fo r photosynthate and hum idity: r - -*2099 * *0714; r = -*4955 - *0565• an?i r s -*3377 * *0663 in d ic a te s that humidity i s p o ssib ly too high fo r proper p lant fo o d manufacture* Their n egative character s i g n i f i e s th a t th e high hum idity might have a tendency to hinder p h otosy n th esis and the higher the n egative c o r re la tio n th e greater i t i s reduced* This appears to be one of the con trib u tin g causes o f low er p lan t food manufacture when the p la n ts are shaded* C orrelation C o efficie n ts* In order to measure th e d irect e f f e c t o f lig h t in te n s ity -3 4 on p h o to sy n th esis, i t i s n ecessary to know how much the other environmental fa c to r s a f f e c t p h otosyn th esis and the r e la t io n between a l l th e se fa cto rs* I t appears that the true valu e o f t h is r e la tio n s h ip cannot be obtained d ir e c t ly from the raw fig u r e s , but an a n a ly s is o f the data must be completed in order to determine th e numerical measurements* This a n a ly sis w i l l show the r e la t iv e importance o f th e v a r ia tio n in each of th e se independent v a r ia b le s on the v a r ia tio n in the dependent v a r ia b le and can b est be demonstrated by the c o r r e la tio n c o e f f ic ie n t s given in Table 13* =55- 35---<3 i a £ © CVI 3 Pi K vdJ K -V Q nv O • • © o © rH H «§“ SO KV UV Q LTN © j) ,£] •p I ,a p tr\ o SI © Cm ■O 3 o $ © © ►21 © rH h S 0 irv irv Correlation Coefficients for Photosynthate and Environment OV O VO l O LTV O • • S tKV CM Subscript ©I p (4 •8 u o •H •g OJ © a© O •rH %4 oO P if H rH O (i I © © A iV» t» +» VO f — H V t CM K O O © l3 © © rH Ct> ovirv rH I*— _ ©© .£ *» ^ © H © © o ►H © rH ^ O CM O li O CO -=1KV CM P rH O SS *=t o * ♦ I 41 • • I -M VO t-H VO-=fr U V rH rH CO C M fH in o• * O KH O O cm1r\ 8O +* s t KV Subscript CM 50 O u © ■s»» 4l o +© » •H V« © O 3 OJ o © d> h a p cs ©o *H © rH rH h * +t S° “W r—o v KV© • • O o o • • I 41 o 44 CM tO o KVKO O * 41 • oj 5 & « _ © CM irv irvo s t • ♦ 1 4) 13 * Table © A © +* ©O fi p u o «rl © o rH O • kvvd o o • CM CM * KV rH cm r— CM O • ♦ I *+l ov to I— rH KV KV OJ rH rH CO O VO KV O » • S t »H CM CM • * 44 CM VO o v trv vo r — r— t o rH O * o • I Hi S 0 iot • • 1 41 S ti P*» KV k- vo KV VO KV O r v § O •H Vt © oO CM CO O K— O VO KV O ♦ « I HI rH VO s t o • • I 41 CM -=*■ O CM t'-r rH O 44 » I 41 8CMfOi S t CTv KVP—• O VD KV O • • O JO • irvr— 41 KV CM o +4 avcrv • 4? Subscript • VO KV €-f£ 0 a I 41 o S * Is * CM » irviso ONW it v k — rH O OV CM Q KV KV S f OJ • KV KV S t © p P% 4-> 01 a © © u p +» 2 >» R - a ©p ' - . .,.v - < . ^ k '; ' - P la te I . M B* i i i \ | ' S l l3 K f f tvV n v $ >ff! ?>,; 1 * A '& ^ a \> t * 250x y •j “ 4 S v h J ftV M v k * fe g k .£ * ^ P jS L js 3? # -& *, >* r ,& & M ” \V - ** ' “V j w I A - '! a vk > V5 1 H !\ M p , I U «K> Plate II. 250x M C M ;# " v> - i £ < * 0 \ c3fc>;-* 1 >*• VK" % ' i ’srs1 X ,. v -J y r. % v’ '-x n . 11 £ r P la te I I I . 250x '■-V.’a.. «•,.'• «*r: 4 I ■4 Plate IT. 250x Plate V. 250x Plate VI* 250x In general* the c e l l development o f the le a v es under the no shade con d ition i s normal, hut when shaded the c e l l s in th e spongy parenchyma la c k r e g u la r ity in shape and are arranged lo o sely * so th a t a la rg e part o f t h e ir surface i s exposed to th e in te r c e llu la r spaces* The g rea ter the shade* the l e s s the p a lisa d e parenchyma c e l l s are developed* This demonstrates how the number of p a lisa d e la y e r s and th e d en sity o f the c e l l stru ctu re depends largely* e ith e r d ir e c tly or in d irectly * upon lig h t in te n sity * These supplementary fa c to r s are rather d e f in it e ly regu lated by th e amount o f lig h t receiv ed by th e plants* and t h is appears to be in order w ith the v a r ia tio n o f photo sy n th etic a c tiv ity * V hen the p la n ts are exposed to the no shade con d ition the p a lisa d e c e l l s are w e ll developed and t h e ir ch lo ro p la sts seem to arrange them selves so as to decrease the su rface and tra n sp ira tio n due to t he lig h t* but when shaded they are d iff e r e n tly arranged so as to in crease the surface fo r r e ce iv in g lig h t* This la t t e r arrangement appears to in crease th e ch lo ro- p la sts* e ffic ie n c y * and the greater the lig h t reduction the more i t i s increased* I t appears th at the reduction in photo** sy n th etic r a te did not have an e f f e c t on the ch lo ro p la st e ffic ie n c y * As p rev io u sly stated* th e lig h t seems to have a regu latory e f f e c t on the ch lorop last content and c e l l stru ctu re of the leaves* and t h is i s one o f the con trib u tin g causes fo r a decreased photo sy n th e tic a c t iv it y by the p la n ts when shaded* * The c e l l s o f the upper part o f t h e th ic k le a f in the no shade group removes enough red and v io le t lig h t rays to reduce the e ffe c tiv e n e s s on th e lower le a f c e lls * but t h is blocking e f f e c t i s not as apparent in th e th in shaded leaves* -U6DISCUSSION This study has d e a lt p rim arily w ith the in flu en ce o f lig h t in t e n s it y on photo sy n th etic a c t iv it y o f tomato p lan t le a v e s, as measured by amount of growth, f r u i t production, and in crea ses in fr e sh and dry weights* The r e s u lt s show, a s would be expected, th a t on th e whole there i s a c lo s e r e la tio n s h ip between th ese sev era l fa c to r s , v iz i w ith decreased lig h t in te n s ity there i s i (a ) greater v e g e ta tiv e growth, as measured by le a f area, and both fr e s h and dry w eig h t o f tops and ro o ts, (b) decreased f r u it production, and (c ) a decrease in th e toted amount o f photosynthate produced by the plants* However, the in crea se in v e g e ta tiv e growth and the d ecreases in f r u it pro­ duction and t o t a l photosynthate produced are not d ir e c t ly pro­ p o rtio n a l to the decreases in lig h t in te n sity * Thus, reducing lig h t in te n s ity by a h a lf r e su lte d in only approximately a onefou rth in crea se in emount o f v e g e ta tiv e growth, a o n e-th ird decrease in f r u it production, and a o n e-six th decrease in t o ta l photosynthate production* Beducing lig h t in te n s ity to approximately one-fourth normal r e su lte d in only a Uo percent in crea se in v e g e ta tiv e growth, a one-half decrease in f r u it production and a on e-th ird decrease in t o t a l photosynthate pro­ duction* (Table 15)* This i s but another way o f saying that the p art le d ly shaded le a v es used th e ir lim ite d supply o f lig h t more e f f i c i e n t l y than the unshaded le a v e s used th e ir noxmal supply* That i s , a given quantity o f lig h t e ffe c te d a greater -47- cu cu s On o o « cu kO Is CO ^ *s cu Vi ® 4* efl , . a CVi IC\ cu 00 VO rH aJ -H Pi a p o tl Vi o Plant Efficiency 2 J •d u © © O p, v» 43 on 00 KN ON UN CU • * VO LCN rt O 00 • 00 LT\ H CO ♦ UN 00 CU rl VO 00 cu CU UN KN LTN f— O A © 13) Pi © 4» 4* 031 ** 3 I © h VI cu o ir\ 00 ON CU c u kn O o cu CU CU KN Pi ON 15 * p 1—l Table u o ©© rH 8 rH © rH O O rH O H U r4 ©rH & ©O © h O © © MO © © rH © rH © rH © CU O CU O cuo .P Vl © 4* ©P -Hgphotosynthate production in th e case o f th e shaded p la n ts than was tru e in the ca se o f th o se unshaded* Great, however, a s were th e d iffe r e n c e s between th e growth r a t e s , le a f a re a s, and f r u it and photosynthate pro* duct ion o f the sev era l groups of p la n ts exposed to the d iffe r e n t lig h t in t e n s i t i e s , th ere were eq u ally great d iffe r e n c e s , between d iffe r e n t p la n ts w ith in t h e same group, in th e ir apparent a b ilit y to u t i l i z e th e ir lig h t supply fo r f r u it and photosynthate pro­ duction* Indeed, some o f the in d iv id u a ls &g* No* 11) in the m oderately shaded group produced n early as iroch photosynthate per u n it o f le a f area as some o f those in th e unshaded group and one o f th ose in the h e a v ily shaded group (No* l l ) produced nearly as much photosynthate per u n it o f le a f area as the average o f th ose in the m oderately shaded group and w ith in 30 percent as much as some of the le a s t e f f ic ie n t in the unshaded group (Table 15)* This la t t e r fa c t i s of e sp e c ia l s ig n ific a n c e fo r i t su ggests the p o s s ib ili t y of developing a s tr a in o f p la n ts that has a high degree o f p h otosyn th etic e f f ic ie n c y under co n d ition s o f low lig h t in te n sity * Obviously, the producer o f indoor-grown tomatoes has no con trol over lig h t in te n s ity * a t le a s t he has no p r a c tic a b le means o f in creasin g it * However, i f he can obtain which th a t^ is e s p e c ia lly adapted to the low lig h t in t e n s it ie s and short days o f the northern w inter season, a su b sta n tia l con trib u tion w i l l have been made to thse so lu tio n o f the problem of p r o fita b ly -^9growing tomatoes in th e greenhouse during the winter* L i t t l e or no e f f o r t has thus fa r been d ire cted toward de­ v elo p in g such a p h y sio lo g ic a l s tr a in o f tomatoes, p resent stocks apparently being heterozygous in t h is respect* The stu d ie s here reported p oin t c le a r ly to some o f the p o s s i b i l i t i e s that l i e in th is d irectio n * SGMMABY The e f f e c t o f lig h t in te n s ity on the p hotosyn th etic e f f ic ie n c y o f tomato p la n ts was stu d ied by growing Grand Bapids Forcing tomato p la n ts under three d iffe r e n t d a ily average lig h t in t e n s it ie s of 1139*3 * 5S3*1* and 261*0 fo o t candles* 1* The r e s u lts were as fo llo w s: The responses in stem elo n g a tio n and le a f area expansion were both continuously and f in a l ly the g rea ter when the lig h t in te n s ity was reduced, showing a n egative rela tio n sh ip * 2# I t was in d ica ted that when the lig h t in te n s ity reached a d e f in it e average the f r u it would s e t rather fr e e ly and develop* of 3* The per cent agesAdry m atter, ash m a teria l, w ater, fresh weight and elaborated food m a teria ls c o r r e la te rather c lo s e ly w ith the lig h t in te n s ity r e ce iv ed by the plants* Light in te n s ity v a r ia tio n i s the c h ie f cause o f d iffe r e n c e s in plant e ffic ie n c y * H# B asal p lant metabolism and i t s con trib u tin g fa c to r s are reg u la ted by the amount of lig h t re ce iv ed by the p lants* 3* The increase in th e m u ltip le co r r e la tio n s (when the elaborated food m a teria ls are the dependent v a ria b le and lig h t -5 0 in te n s ity , h u m ility , and temperature are the independent v a r ia b le s) over the sim ple c o r r e la tio n s under each degree of lig h t in te n s ity i s evidence that there i s in te r r e la tio n between fa c to r s r e g u la tin g the p lant food manufacture* The c o e f f ic ie n t s o f determ ination demonstrate that lig h t in te n s ity alone accounts fo r 32**$ of the photosynthate v a r ia tio n and that temperature and humidity are n e g lib le fa c to r s only when co rrela ted w ith lig h t in te n s ity , - humidity becoming a c r i t i c a l fa c to r in p h otosyn th esis when the lig h t in te n s ity i s reduced* 6* The lig h t In te n s ity appeared to have a regu latory e f f e c t on th e average amounts o f ch lorop h yll per square meter o f l e a f area* The ch lo r o p la sts in th e le a v e s arranged them­ s e lv e s so a s to g et the g r e a te st amount o f lig h t when i t was reduced* 7* The le a f anatomy shows abnormal c e l l development when th e p la n ts are shaded* This abnormality c o n s is ts of lo o s e ly arranged, irreg u la r spongy parenchyma c e l l s and a reduction in s iz e , d en sity and number o f p a lisa d e c e lls * S* I t i s evident th a t lig h t in te n s ity averaging 1139*9 fo o t-c a n d le s d a ily during the growth o f the tomato p la n ts had a grea ter e f f e c t in promoting ch lorop h yll form ation, f r u it production and photo sy n th etic e f f ic ie n c y than lig h t o f a d a ily average o f 933*1 fo o t-ca n d les and t h is in turn had a sim ila r g rea ter e f f e c t than that on the p la n ts re c e iv in g a d a ily average lig h t in te n s ity o f 261*0 fo o t-ca n d les* -5 1 LITERATURE CITED Arthur* John; J* Guthrie* and J* Newell* Some e f f e c t s o f a r t i f i c i a l clim a tes on growth and chemical com position o f p lants* Amer* Jour* Bot* 17*^16-^82* 1930* Combes* R* Determ ination des in te n s ite s lumineuses optima pour l e s vegetaux aux d iv ers stades du developpement• 75-254. Ann* Sc I* Nat* 3ot»* 9 :ser* ; 11* 1910. DeBesteriro* D* C* and SI* Durand* Influence de la lumiere sur 1 'absorption des m atieres organiques du s o l par l e s p la n tes# P a ris 19S* U67-70* Emerson, Robert* syn th esis* Folmer, Swith* Compt* rend* acad* sc i* 1919* The ch lo ro p h y ll fa c to r in photo­ Amer* Nat* 6*4-5252-260* Researches on the in flu en ce o f natural and a r t i f i c i a l lig h t on p lants* Landbruckshoi sk o le * 13 s1 -5 • Hayden, A* 193^* Meldinger Fra Norges 1933• The e c o lo g ic f o lia g e anatomy o f some p la n ts o f a p r a ir ie province in c e n tr a l Iowa* Bot* 6s69-S7* Johnson, £• S* 1919* The fu n ction s of ra d ia tio n in the p h ysiology o f plants* 87(1*0 *1-15* Amer* Jour* 1932. Smithsonian Misc* Coll* 8* Kostytschew, S . und H* Kar&o-Syssoiewa* Untersuchungen tLber den ta g esv e rla u f der p h otosyn th ise in Z entralasien* Z e itsc h r . W iss. B iol* P lan ta 61:117-1^3* 9* Lubimenko, V*N* 1930. Sur l a s e n s ib ilite ^ d e I'a p p a r e il ch lo ro p h y llien des p la n tes ombrophiles et ombrophobes* Bev* Gen* Bot* 17*331-^15* 1915* (C ited in P alla& in-L ivingston Plant Physiology* P hila* P. B la k isto n 's Son & Co* 1923)* 10* MacDougal, D* T. In flu en ce o f lig h t upon growth and development* Carnegie I n s t itu t io n of Washington Yearbook* 11* Muntz, M* A* 1^*16* 1915* La luninosite^ et 1 'a ss im ila tio n v eg eta le* Compt* rend* acad* sc i* (P a ris)* 156: ( 5) 36S~370* 1913* 12* N ig h tin g a le, G* T* and J* W* M itch ell* E ffe c ts o f hum idity on metabolism in tomato and apple* P hysiology 9*217-236. 13* O sterhout, W.J*V. Plant 1931** Experiments w ith p lants* 3r & 3d* N. Y* 1906* l4* P a lla d ia , V*I* P lant Physiology* (Ed* by B* E* L ivin gston ) 2nd Amer* Ed* P h ila * : P* B la k is to n 's Son & Co* 1923* -5 3 15• Poole, James P. Comparative anatomy of leaf of cycads with reference to Cycadofilicales. 76:203-2^1. 16. P o rter, A. M. 1923. The in flu en ce o f d e fo lia tio n and f r u it thinning on the growth of t omatoes. thesis. Mich. State College. 17. Popp, H. W. Bot* Gaz. Unpublished 1932. The effect of light Intensity on the growth of soy beans and its relation to the auto­ catalyst theory of growth. Bot. Gaz. 8 2 :3 0 6 . 1926. IS* Shlbata, S. The daily growth rate of bamboos. Jour. Coll. Sci. Tokyo 1900. Bot. 12:38^392. 19. Spoehr, B. A. 1926 Trans, in Jour. !925. Photosynthesis. Ghem. Cat. Co. New York. . 20. Sprague, H. B. and J. W. A study of the relations between chloroplast pignents and dry weights of tops in dent corn. PI. Physio. ^ *165-192. 1929* \ 21. Wiesner, J. / Sur 1 'adaptat ion de la plante a l'intensite de la lumiere. Compt. rend. acad. sci. (Paris) 138:13^6-13^9. 190^. 22. Willstfttter, R. and A. Stoll. B e r lin 1913* Untersuchungen ttber chlorophyll. -5^2 3 . Willst&tter, R. and A. Stoll. Kohlens&ure Assimilation. 2km Yoshii, Y . Untersuchungen fiber die Berlin 1918. TJntersucfcungen fiber die Temperatur abh&ngigkeit der Kohlensaure Assimilation bei bohnen. 56:81-695. Zeitschr. Wiss. Biol. Planta 1928.