THE THFITECT OF LIGHT INTENSITY ON THE PHOTOSYNTHETIC

 HeTICIEMTCY OP TOMANO PLANTS
By

ALTON MULLEY PORTER

A THESIS

Submitted to the faculty of the Michigan State College of Agricultixue and Applied Science in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Horticulture Department
East Lansing, Michigan
1936

Approved:
Any. $20,1936 \ldots P$

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10008226
Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKNOVLI BDGEMEHNTS

The writer is grateful to Dr. J. W. Crist for guidance and aid in conducting this study and reViewing the manuscript; to Professor V. R.Gardner for auggestions in the preparation of the manuscript; to Professor F. C. Bradford for advice in reviewing the manuscript; to Dr. William W. Smith for assistance in collecting data; and to Professor G. Safford Torrey and Dr. H. F. Hill for help with the photographic work.

The tomato stands foremost among the several vegetable plants which are cultivated as greenhouse cropse In its culture under glass, especially in the northern states, the question of a sufficiency of light for its best development and highest productivity arises and becomes acute. The light of the natural day, during the winter months, appears to be inadequate w ith respect to its duration and also its ordinary intensity.

The possibility of using artificial light, to reinforce daylight, exists. As matter of fact, this has already been tried in not a few instances.

Certainly photosynthesis is one of the most fundamental processes which condition plant behavior and production, and light is a major factor in its dynamic complex. Neglecting the characteristics of light, other than its intensity, how is its intensity related to the rate, the so-called efficiency, of photosynthesisi More particularly, what is this relationship respecting the tomato plant, when grown under greenhouse conditions? A study of this, - induced by the desire to extend the knowledge disclosed by investigations already made and reported, - was made and is herein presented.

The effects of strong, diffused light on photosynthesis were extensively studied by Muntz (11) in 1913. He found from field observations that alfalfa produced less dry matter per square centimeter of leaf area in the summer of 1911, - a summer unusually free from clouds - than in 1910, when cloudy skles prevailed much of the time. Additional observations were made in the laboratory where it was possible to equalize the amounts of water received by the lots of plants grown under different light intensities. The results of the laboratory experiments accorded with those obtained from the work in the field. He concluded that carbon assimilation is governed and limited by the intensity of the light.

Lubimenko (9) and Popp (17) found that in heliophilous plants the rate of the accumulation of elaborated materials was increased with increase in the light intensity, up to an optimum point, and that any increase beyond this optimum resulted in a decrease in the rate. Heliophobous plants behaved in the same manner, the optimum, however, being at a much lower point than that for the heliophilous types.

Arthur, Guthrie and Newell (1) working with 30 different species of plants found the tomato to be the most sensitive to 1ight. Light intensities of $350,450,760,800,1200$ and 1400 foot-candles were used conjointly with lengths of day which ranged from five to 24 hours. This revealed the fact that
the "time factor" was of importance. The peak of increase in carbohydrate production was reached at higher light intensities with the 12-hour day. Injurious effects resulted when the day was lengthened to 17 and 19 hours. The maximum carbohydrate increase was reached with the 17 and 19-hour day when lower light intensities were used, or at the point of injury for the higher intensities.

Combes (2) working with potatoes, and other tuber-forming species, found that the higher the light intensity, the greater the accumulation of elaborated organic compounds in the storage parts of the plants. Apparently, at lower intensities the storage function caased and the entire amount of the products of photosynthesis was consumed in the growth of the aerial parts of the plant.

DeBesteriro and Durand (3) obtained very definite results experimenting with the garden pea. The plants: dry-meight increase was in direct proportion to the intensity of the light employed for its irradiation.

Folmer (5) and Yoshii (24) experimented with several of the different enviromental factors, and of these several factors, light intensity had the great est effect on the prow duction of carbohydrates in cereals and peas. Their data shof a great er production of carbohydrates under the condition of short days with bright sunlight than that of long days with reduced sunlight, although the product of the intensity and
the duration of light was higher in the latter case.
Sostytschen and KardonsysnSoiera (8) found that desert plants increased in carbon assimilation up to an optimum Iight intensity and decreased as the intensity went above this point. Jater in the day, as the light intensity fell to the optimm point, the carbon assimilation again reached a maximum causing the daily curve of photosynthesis to show two peaks in its outiine.

The IIterature which bears directly on the question of the response of the photosynthetic function to the factor of 1ight intensity is not so plentiful. The foregoing references are not all, but are representative of those of greater importance, and also, are sufficient to show the existence of a quantitative relationship between these two phenomena. Besides a direct effect of iight, with respect to its intensity, upon the behavior of the photosynthetic process, acting as a catalytic and energizing agent, it appears to affect certain other factors, which are essential in the process. Among these are the chlorophyll content of the leaf, and its anatomical structure, - the latter being important with reference to the rate of the diffusion of gases within the leaf's interior.

Willstitter and Stoll (23) observed that the rate of photosynthesis increased with the chlorophyll content, but जere unable to establish a definite quantitative relationship
between the two, - the function and the independent variable.
Palladin (14) and Lubimenko (9) state on the basis of their experiments that heliophobous plants axe relatively higher in chlorophyll content than heliophilous plants. The latter investigator was able to establish the fact that the optimum light intensity for photosynthesis is lower in correspondence with reduced ${ }_{\text {A }}^{\text {ontent }}$ of chlorophyll. Shade plants, at the lower light intensities were as efficient in photosynthetic activity as nonshade plants at these some light intensities.

A number of more recent investigators, Johnson (7). MacDougal (10), Spoehr (19) and Wiesner (21), working with long day plants, report that the amount of chlorophyll in the leaves of plants increased in direct proportion to the average quantity of light received by them.

Sprague and Shive (20) demonstrated that there was a degree of relationship between the total chlorophyll content and the dry weights of tops in corn. The total quantity of chlorophyll contained in the leaves of the various strains of maize correlated closely with their dry weights at successive harvests. Strains that showed a high chlorophyll concentration per unit of leaf area also had high average rates of increase in dry weights of tops, and vice versa. This ratio between the total chlorophyll and dry weight of tops was practically identical with all three strains of corn.tested.

Pnerson (4), working with Chlorella, observed that plant cells low in chlorophyll reached their maximun rate of photosynthesis at approximately the same light intensity as normal cells. In working with different chlorophyll concentrations in plants that were kept constant in these variations, Fith the same light intensity, he found that the rate of photosynthesis increased at the same speed regardless of the chlorophyll concentration. The conclusion was that chlorophyll is probably a chemical reactant in photosynthesis as well as being the photosensitizer which absorbs the radiant energy necessary in the process.

Hayden (6) and Poole (15) found the spongy parenchyma cells (mesopinyl) of the leaves were poorly developed in sun plants, but in shade plants these cells replaced the palisade cells.

Shibata (18) observed that light intensity had a definite effect on the anatomy of the leaves, in that the epidermal cells are smaller in short day plants. Osterhout (13), and Nightingale and Mitchell (12) observed that leaves were thicker and had more elongated, more densely packed, palisade cells, as the average light intensity was maintained at a higher point.

The literature leaves no doubt concerning the direct, and also indirect, importance of light intensity in the plant's photosynthetic behavior. The results cited from the work of Arthur, Gathrie, and Newell (1) are especially significant and
helpful, since the tomato plant itself was among those used in their experiments. However, additional contributions from controlled experimentation are desirable, and necessary, before the matter of the use of artificial light in forcing houses, devoted to t omato growing and production, can be certainly and soundiy determined.

General Procedure

The tomato plants used in the experiment were of the Grand Rapids Forcing variety. The seeds were sown in greenhouse flats on Jenuary 26, 1933. On Pebruary 3, a large number of seedlings were selected and pricked off into two-inch pots. These were transferred on February 12 into four-inch pots and Left therein until March 1, or until their development was such that they were ready for final transplantation. On that date, 36 of the plants were selected from the renaining 108, and transferred to 14 -inch pots, in which they were grown singly and to full maturity.

The soil was a fairly rich orchard loam, which had been previously screened and thoroughly mixed, by having been shoveled over, in bulk. Its uniformity was as good as could be expected and secured.

The 36 plants were divided into three lots of 12 each, and each of the lots placed, with wide spacing, on a separate greenhouse bench where the pots were surrounded by moist sand,
(afterwards kept moistened) to a depth of five inches. During the course of the experiment, the individual pots within each lot were systematically shifted, twice each week, in their positions. This insured greater uniformity in their exposure to the enviroment, particularly the factor of light. The number of clusters of fruit per plant was restricted to five.

A 14 hour day was maintained over the plants of each lot. Inxtension of the regular daylight period was accomplished by means of a 1000-watt electric lemp, with dome reflector and adjustable in height, suspended centrally above each group of plants. A wooden frame was constructed above each of two of the benches, under each light, and made to be vertically moveable. One of these frames was covered with one layer of white cheesecloth, the other with two layers. This effected three respective intensities of the light, both natural and artificial, for the plants: no shade or full intensity - one-half intensity (50.4\%) and a little less than pnofourth intensity (22.3\%). The shades were kept adjusted in their heights so as always to be approximately 24 inches above the tops of the growing plants.

It was aimed, of course, to keep the conditions of the enviroment, aside from the controlled variations in light intensity, the same for the three benches. Data were recorded for relative humidity, air temperature, and soil temperature, under each of the three light conditions, from March to July,
by the use of hygrothermographs and soil thermographs.
daditional information regarding methods - those more particularly technical - is given, where appropriate, in the following section, with its presentation of the data obtained.

HXPERIMENTAL RESULTS

Growth Response - Leaf Area:

Possible relationships between each of several different linear measurements of the tomato leaf and its total area were examined in a previous experiment (16). The length of the 1 eaf from the base of its first leaflets to the tip of the midrib proved to be the most accurate index. The type of association was clearly curvilinear, and specifically, parabolic in the second degree. The derived equation was y (area) $=3.16+0.417 x+0.307 x^{2}$ *

All of the leaves on each plant in each of the three lots were measured, in the manner indicated above, and at intervals of three to seven days during the course of the present experiment, and their areas calculated through the given equation. The data are presented in Table 1.

[^0]Table $1:$ Growth Response - In Terms of Leaf Area

Date of Measurernent	Average leaf area per plant in sq. cm_{2}			Average daily increase in leaf area per plant in sae cm_{e}		
	No Shade	1 Layer Cheesecloth	2 Layers Cheesecloth	No Shade	1 Layer Cheesecloth	2 Layers Cheesecloth
March 28	1350	1503	1652			
April 4	1649	2253	2473	42.7	107.0	116.0
April 8	1888	2687	3122	59.7	105.8	162.1
April 11	2088	2894	3594	66.6	100.4	157.1
April 15	2358	3408	4202	67.5	$107 \cdot 5$	152.0
April 18	2668	3646	4694	102.8	$77 \cdot 7$	158.5
April 22	3188	3901	5294	130.0	63.6	147.5
April 29	3754	4303	6259	80.7	$57 \cdot 3$	139.0
May 6	4164	4680	6649	58.5	56.1	55.6
May 13	4325	5033	6764	23.0	48.0	16.4
May 20	4485	5433	6868	13.3	57.0	14.8
June 5	4563	5559	7072	6.5	$7 \cdot 9$	12.7
July 3	4563	5559	7072			

As shown in Table 1, expansion in leaf area was both continuously and finally the greateat for the plants under the lowest light intensity; next greatest where medium intensity prevailed, and least in the unshaded condition. The orderliness of the change in the daily rate of the increase in the foliar surface of the unshaded plants is outstanding. This rose over gradual steps to a distinct maximum (April 22), and thereafter fell off consistently to zero at the end. Differing from this, the two other maxima were reached more quickly and much earlier in the Iffe of the plents, and were maintained over longer periods of time.

Thus, the usual result was obtained. Growth, when measured in terms of leaf area, augments under reduced light intensity. The leaves attain greater size, but commonly are thinner and may have even less total mass. The greater spread of leaf surface gives increased exposure to the light, such as it is, and tends in some degree to compensate on the whole for the lesser quantity of light received per unit of exposed surface.

Growth Response - Stem Hongation:
The measurements taken for leaf area were accompanied by determinations which gave the growth rate of the main axis of the plants, under each light treatment. The distance measured was that of the stem axis. The period of these intermittent measurements was April 4 to June 5, when the plants were pinched out at the top, and thus restricted to the production of but five fruit clusters per plant. Table 2 gives the data.
Table 2.

Date Measured	Average Height of Plant in Cm .			Daily Increase in Height per Plant in Cm.			Internodal Length		
	V7o Shade	1 Layer Cheesecloth	2 Layers Cheese cloth	No Shade	1 Ieyjer Cheese cloth	2 Layers Cheesecloth	No Shade	1 Layer Cheesecloth	2 Leayers Cheesecloth
April 4	45	61	70				4.8	$5 \cdot 5$	6.2
April 8	50	68	76	1.25	1.75	1.50	4.8	$5 \cdot 5$	6.0
April 11	54	73	87	1.33	1.66	3.66	4.8	5.6	6.2
April 15	59	82	95	1.25	2.25	2.00	4.5	5.9	$5 \cdot 7$
April 18	64	94	100	1.66	4.00	1.66	4.7	6.7	$5 \cdot 9$
April 22	70	96	105	2.00	. 50	1.25	5.1	6.5	6.2
April 29	74	98	112	.57	- 28	1.00	5.2	6.4	6.5
May 6	78	100	116	. 57	.28	. 28	5.2	5.9	6.6
May 13	81	102	117	.42	. 28	.14	5.4	6.0	6.2
May 20	81	102	117	0	0	0	5.4	6.0	6.2
June 5	81	102	117	0	0	0	5.4	6.0	6.2

The reaponses in stem elongation shown in Table 2 were akin to those shown for increases in leaf area. Growth in height, as reflected in more attenuated internodes, was more rapid as shading was heavier, and the plants taller at the time of being topped. The maxima for the rates of elongation were in the same order as those followed by the leaver, and their occurrences in time practically identical with those which obtained for the leaves.

Growth Response - Fruit Production:
The records taken on fruit production show a definite fruit set and production in direct relation with the light received by the plants. These measurements were made by tagging the fruit with the date set on each cluster and recording the number of days necessary for each fruit to ripen and its weight. This information was assembled and totaled giving comparative figures to illustrate the value of light intensity on fruit production and on the efficiency of the plant leaf area. These data are presented in Table 3.
-14

The amount of fruit set under reduced light intensity is much less than under normal light, as can be seen in Table 3. In the early part of the season when the plants were receiving a relatively mall amount of light the fruit set was in inverse proportion to all emounts of shading, but as the season progressed and light intensity became higher, the fruit set correlated best with the heaviest shading as would be expected. This may be accounted for by the fact that the light intensity received by the heaviest shaded plants was originally at or near the minimum for fruit set. Then as the season progressed and light increased beyond the minimum, other enviromental factors ontered, causing a great er proportion of fruit set under shaded conditions than was originally the case. The amount of fruit when ripened, however, correlates closely with the foot candle hours of 1ight, (Table 7), to which the plants were exposed.

Pruit production requires a greater area of leaves in proportion to the amount of shading the plants receive. The fruits attain greater weights and ripen sooner when the light intensity is not reduced. Doubtless the great assimilation of plant food by the leaves tends to speed up fruit growth and ripening.

Growth Response - Total Plant Production:
The data for total plant production determined on twelve individuals under each of the three different light intensities are shown in Tables 5, 6 and 7. A cursory glance at these data shows that individual tomato plants vary within wide limits. The weights taken for total plant production show a varlation in plant food under each light treatment that is less than the differences in light intensity.

In accordance with expectations, increases in light available for carbohydrate formation showed a greater quantity of fresh, dry, ash and plant food weights in the average case. The rate of photosynthesis was slowed up according to the amount of light reduction in each block. The differences in light intensity appeared to have less effect on the ash content of the plants, but are in a rather definite relation with the average results on the fresh, dry and plant food weights in all parts of the plants. The plant food manufactured per unit leaf area is greatest under the no shade condition and is reduced according to the amount of shade the plants receive. This efficiency in food manufacture seuns to have a definite effect on the plant material used in fruit production and is in approximately the same ratio as the average decreased plant efficiency where shaded. It would seem from this information that differences in light intensity during the seasons of the year are the direct causes for variations in plant efficiency in growth and fruit production, but Plant 10 in Table 4, Plant 11 in Table 5, and Plant il in Table 6 are practically equal in their efficiency under each respective condition. This appears to indicate that plant variation is responsible for some of the differences in photosynthetic activity under the different light intensities.

Environmental Conditions.
The experimental aim, as stated earlier, was to have the same length of day (14 hours) for the three lots of plants, while having them exposed to three different light intensities. Light measurements were made daily, at two hour intervals, throughout the period of growth, by means of a Clement $\$$ Photometer. The data for these measurements are presented in Table 7.

* Daily Average Intensity \times Number of Hours

Month	Average Daily Light Intensity per Hour, in Apparent Foot Candles			MotalHoursDay1ight	\#Total Poot Candle-Hours			Percentages No Shade $=100$		
	No Shade	$\begin{aligned} & 1 \text { layer } \\ & \text { Cheese- } \\ & \text { cloth } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \text { layers } \\ & \text { Cheese } \\ & \text { cloth } \end{aligned}$		No Shade	1 layer Cheesecloth	2 layers Cheesecloth	No Shade	1 layer Cheesecloth	2 layers Cheesecloth
Mar. 1-31 incl.	532	251	114	434	230888	108934	49476	100	47.2	21.4
Apr. 1 - 30 incl.	980	497	212	420	411600	208740	89040	100	50.7	21.5
May 1-31 incl.	1133	591	246	454	514382	268314	111684	100	51.9	21.7
June 1 - 30 incl.	1872	973	468	459	859248	446607	214812	100	52.1	25.0
July $1-3$ incl.	1774	892	355	46	81604	41032	16330	100	50.2	20.0
Daily Average During Crop Growth	1139.9	583.1	261.0							
Total for Producing Crop				1813	.097.72?	1.073,627	481,342			

$$
-23-
$$

It is clear, from examination of Table 7, that the gradations of light intensity, established in the beginning by means of shading, maintained with close approximation, as the season advanced and ended. While the general intensity of the sumlight increased gradually for all, the three experimental conditions of full intensity, one-half intensity. and onemourth intensity, continued to hold and to be offective.

General correlation of these controlled variations in light int ensity - previously shown with the differences in growth responses of the three lots of plants - is obvious. The relationship is itself negative in character for leaf area, and stem elongation, and positive for fruit production, and total plant production. In order to facilitate inspection, certain figures from the preceding tables are brought together in Table 8.
Table 8. The Relationship of Light Intensities to Growth Responses of the Plants

Light Intensity	Total Foot-CandleHours of Light (2able 7)	Average Leaf Area Per Plant in sq.em. (Table 1)	Average Height of Plant in cm (Table 2)	Total Weight Pruit in gm. (Table 3)	Total Presh Teight of Plants in gm. (Tables 4, 5, 6)
Unshaded	2097722	4385	81	22034	29578
1 Layer Oheesecloth	1073627	5559	102	14607	23157
2 Layers Cheesecloth	481342	7072	117	10819	18395

However, the association which is apparent in Table 8 can have validity only in case certain other factors which are known to condition the photosynthetic rate, and consequently, growth, remained sufficiently constant during the experimental period. Table 9 gives data respecting three such factors, - these being the principal ones which required consideration and atternpted control.

These three factors are relatively uniform for each block of plants. The variations of these factors in the three treatments is probably regulated somewhat by the light intensity. This light intensity variation has evidently accounted for the plant growth responses under each condition, and the effects of the other enviromental conditions are regulated by this light.

Daily Periods of Measurement:
The data which have been presented show, beyond doubt, a relationship between the behavior of the plants and the different light intensities under which they grem and matured. The evidence, however, is general in nature and not such as to be adequate for those mathematical processes which yield quantitative expressions of correlation.

The plant materials manufactured by the plants on 12 dates, spread over the period of growth, were determined on seven periods during each of the days. This procedure for estimating the photosynthetic activity was that termed the Modified Sach5 Method. It consisted of taking two square centimeters of foliage from each plant every two hours in sample bottles and weighing in the fresh condition. These small discs of the leaves were then heated in the oven at $70^{\circ} \mathrm{C}$. for 12 hours and then at $95^{\circ} \mathrm{C}$. for six hours, when they were reweighed. After drying they were put in crucibles and ashed,
-28-
and again reweighed. The dry weight minus the ash weight was the amount of photosynthesized product in each sample. Correction for respiration and translocation was determined by adding the average loss in weight per two hours during the night to the difference in weight of the two hour samples during the day.

Light in each block of plants was measured at two hour intervals with a Clements Photometer in which solio paper is used, and comparisons made with a standard. On days when photosynthetic activity was determined, the Macbeth illuminometer was also used in order to get readings in actual number of foot-candles. The data are presented in Tables 10, 11, and 12.
-29-
Table 10. Photosynthate and Light Intensities for Unshaded Plants

Date	Variables	Period of Day						
		$\begin{aligned} & 4-8 \\ & \text { A. } \\ & \hline \end{aligned}$	8-10	10-12	$\begin{aligned} & 12-2 \\ & \text { P.M. } \end{aligned}$	2-4	$4-6$	6-8
April 7	Photosynthate Light Intensity	1.50	1.46 400	0.16 444	2.16 387	4.20 256	$\begin{aligned} & 1.40 \\ & 139 \end{aligned}$	$\begin{aligned} & 1.64 \\ & 87 \end{aligned}$
April 24	Do Do	1.12 606	1.11 1200	1.60 1411	2.96 2408	5.34 2314	2.144 1207	$\begin{aligned} & 0.36 \\ & 117 \end{aligned}$
April 29	Do Do	1.64 732	3.06 1464	3.06 2553	4.08 2553	1.24 1.445	2.28 806	$\begin{aligned} & 1.60 \\ & 337 \end{aligned}$
May 5	Do Do	1.48 212	1.46 424	1.44 393	1.50 394	1.76 287	$\begin{aligned} & 0.56 \\ & 116 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 87 \end{aligned}$
May 13	Do Do	1.06 237	1.06 446	1.44 286	2.54 1285	0.88 2408	0.72 2408	$\begin{aligned} & 0.34 \\ & 337 \end{aligned}$
May 14	Do Do	1.28 1164	1.40 2078	2.00 2409	3.96 2503	1.68 1800	$\begin{aligned} & 1.30 \\ & 687 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 140 \end{aligned}$
May 23	Do Do	2.48 1206	1.30 2172	0.76 2588	1.34 2937	7.34 2730	1.24 1376	$\begin{aligned} & 1.58 \\ & 736 \end{aligned}$
May 24	Do Do	1.52 637	3.20 1230	4.96 2499	1.32 2435	2.92 2100	$\begin{aligned} & 1.76 \\ & 1350 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 736 \end{aligned}$
June 9	Do Do	3.76 739	3.32 1369	2.76 2533	6.04 2855	3.00 2344	$\begin{aligned} & 2.92 \\ & 964 \end{aligned}$	$\begin{aligned} & 1.96 \\ & 674 \end{aligned}$
June 15	Do Do	1.84 100	1.40 186	2.76 277	4.88 278	2.96 944	2.76 910	$\begin{aligned} & 2.16 \\ & 121 \end{aligned}$
June 16	Do Do	1.88 210	2.76 330	5.44 3480	7.20 3906	5.12 3773	1.60 3039	$\begin{aligned} & 1.40 \\ & 1674 \end{aligned}$
June 17	Do Do	4.03 940	2.64 1734	1.52 1503	9.20 3155	5.12 4235	1.60 3115	$\begin{aligned} & 1.08 \\ & 1769 \end{aligned}$
Average	$\left\lvert\, \begin{aligned} & \text { Photosynthate } \\ & \text { Iight Intensity }\end{aligned}\right.$	1.89 582	2.05	2.32 1520	3.99 2091	$\begin{aligned} & 3.54 \\ & 2053 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 1426 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 578 \end{aligned}$

-30-
Table 11. Photosynthate and Light Intensities for Plants Shaded with 1 Layer of Cheesecloth

Date	Variables	Period of Day						
		$\begin{aligned} & 4-8 \\ & \text { A.M. } \end{aligned}$	8-10	10-12	$\begin{aligned} & 12-2 \\ & \text { P. }^{2} \end{aligned}$	2-4	4-6	6-8
April 7	Photosynthate Light Intensity	1.00 100	0.76 202	0.16 246	0.28 236	3.44 128	1.44 49	$\begin{aligned} & 0.36 \\ & 24 \end{aligned}$
April 24	Do Do	1.00 337	1.06 648	1.36 768	1.28 1245	2.16 1135	2.30 544	$\begin{aligned} & 0.80 \\ & 49 \end{aligned}$
April 29	Do Do	0.92 462	1.60 739	1.72 1182	1.54 1281	1.34 813	$\begin{aligned} & 2.00 \\ & 739 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 247 \end{aligned}$
May 5	Do	1.42 104	0.88 241	1.60 187	1.04 187	$\begin{aligned} & 1.60 \\ & 136 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 83 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 64 \end{aligned}$
May 13	Do	0.80 106	0.60 207	1.80 182	1.32 677	0.52 1163	0.24 1231	$\begin{aligned} & 0.28 \\ & 187 \end{aligned}$
May 14	Do Do	1.00 737	1.54 1207	1.50 1251	1.16 1409	$\begin{aligned} & 1.72 \\ & 914 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 352 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 47 \end{aligned}$
May 23	Do Do	1.58 737	1.48 894	0.16 1191	1.28 1113	1.32 1113	$\begin{aligned} & 1.12 \\ & 689 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 306 \end{aligned}$
May 24	Do Do	1.68 331	2.24 532	1.488 1170	1.04 1180	$\begin{aligned} & 1.52 \\ & 1259 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 532 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 306 \end{aligned}$
June 9	Do Do	$\begin{aligned} & 0.76 \\ & 312 \end{aligned}$	0.12 692	1.16 1069	0.32 1424	1.20 1177	$\begin{aligned} & 2.48 \\ & 409 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 394 \end{aligned}$
June 15	Do	$\begin{aligned} & 0.40 \\ & 100 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 153 \end{aligned}$	1.40 128	$\begin{aligned} & 2.36 \\ & 157 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 476 \end{aligned}$	$\begin{aligned} & 2.24 \\ & 451 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 86 \end{aligned}$
June 16	$\begin{aligned} & \text { Do } \\ & \text { Do } \end{aligned}$	$\begin{aligned} & 1.46 \\ & 96 \end{aligned}$	2.74 823	0.12 1793	2.64 1946	$\begin{array}{r} 2.40 \\ 1891 \end{array}$	$\begin{aligned} & 1.28 \\ & 1562 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 815 \end{aligned}$
June 27	$\begin{aligned} & \text { Do } \\ & \text { Do } \end{aligned}$	$\begin{aligned} & 4 \cdot 12 \\ & 431 \end{aligned}$	$\begin{aligned} & 2.28 \\ & 586 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 796 \end{aligned}$	4.20 1025	$\begin{aligned} & 4.96 \\ & 2124 \end{aligned}$	2.08 1515	$\begin{aligned} & 0.18 \\ & 815 \end{aligned}$
Average	Fhotosynthate	1.35	1.37	1.28	1.56	1.91	1.47	0.29
	Iight Intensity	321	577	830	990	1024	679	279

-31-
Table 12. Photosynthate and Light Intensities for Plants Shaded With 2 Layers of Cheesecloth

Date	Variables	Period of Day						
		4-8 A. ${ }^{\text {S }}$.	8-10	10-12	$\begin{aligned} & 12-2 \\ & P_{0} M . \end{aligned}$	2-4	4-6	6-8
April 7	Photosynthate Light Intensity	$\left\lvert\, \begin{aligned} & 0.52 \\ & 87 \end{aligned}\right.$	$\begin{aligned} & 0.44 \\ & 92 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 104 \end{aligned}$.00 148	$\begin{aligned} & 2.08 \\ & 96 \end{aligned}$	$\frac{1.24}{45}$	$\begin{aligned} & 0.32 \\ & 16 \end{aligned}$
April 24	Do Do	$\begin{aligned} & 0.20 \\ & 92 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 341 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 354 \end{aligned}$	$\begin{aligned} & 1.24 \\ & 684 \end{aligned}$	2.60 578	$\begin{aligned} & 2.68 \\ & 257 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 26 \end{aligned}$
April 29	Do Do	$\begin{aligned} & 0.20 \\ & 141 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 371 \end{aligned}$	$\begin{aligned} & 1.68 \\ & 600 \end{aligned}$	1.32 661	1.20 407	$\begin{aligned} & 1.58 \\ & 303 \end{aligned}$	0.40 124
May 5	$\begin{aligned} & \text { Do } \\ & \text { Do } \end{aligned}$	0.16 109	$\begin{aligned} & 0.12 \\ & 116 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 101 \end{aligned}$	${ }_{75}^{1.16}$	$\begin{aligned} & 1.24 \\ & 72 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 37 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 24 \end{aligned}$
May 13	Do	$\begin{aligned} & 0.46 \\ & 83 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 123 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 99 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 384 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 561 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 647 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 90 \end{aligned}$
May 14	Do	$\begin{aligned} & 0.36 \\ & 361 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 683 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 630 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 754 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 456 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 106 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 24 \end{aligned}$
May 23	$\begin{aligned} & D_{0} \\ & D_{0} \end{aligned}$	$\begin{aligned} & 0.68 \\ & 337 \end{aligned}$	$\begin{aligned} & 1.56 \\ & 491 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 573 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 602 \end{aligned}$	$\begin{aligned} & 2.80 \\ & 520 \end{aligned}$	$\begin{aligned} & 1.44 \\ & 297 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 152 \end{aligned}$
May 24	$\begin{aligned} & D_{0} \\ & D_{0} \end{aligned}$	$\begin{aligned} & 1.12 \\ & 113 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 225 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 552 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 519 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 635 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 225 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 147 \end{aligned}$
June 9	Do	$\begin{aligned} & 0.60 \\ & 185 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 386 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 548 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 760 \end{aligned}$	0.58 680	$\begin{aligned} & 1.48 \\ & 230 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 155 \end{aligned}$
June 15	$\begin{aligned} & \mathrm{Do}_{0} \\ & \mathrm{Do}_{0} \end{aligned}$	$\begin{array}{l\|l} 0.20 \\ 40 \end{array}$	$\begin{aligned} & 0.86 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 91 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 85 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 238 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 213 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 107 \end{aligned}$
June 16	$\begin{aligned} & D_{0} \\ & \text { Do } \end{aligned}$	$\begin{aligned} & 0.60 \\ & 40 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 490 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 937 \end{aligned}$	$\begin{aligned} & 3.24 \\ & 951 \end{aligned}$	$\begin{aligned} & 1.36 \\ & 946 \end{aligned}$	$\begin{aligned} & 1.36 \\ & 744 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 521 \end{aligned}$
June 17	$\begin{aligned} & \text { Do } \\ & \text { Do } \end{aligned}$	$\begin{array}{\|l\|l} 4.20 \\ 261 \end{array}$	$\begin{aligned} & 2.52 \\ & 276 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 467 \end{aligned}$	$\begin{aligned} & 1.83 \\ & 524 \end{aligned}$	$\begin{aligned} & 4.04 \\ & 1080 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 784 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 521 \end{aligned}$
Average	Photosynthate	0.77	0.76	0.70	1.34	1.75	1.23	0.32
	Light Intensity	154	307	421	512	522	324	158

The source of energy for the plant world is sunlight and it evidently regulates the amount of plant food manufactured according to its intensity as is demonstrated in Tables 10, 11, and 12. It appears that this carbon assimilation changes gradually or violently in relation to the variation in light intensity received by the plants.

The unshaded plants show that a greater amount of light is necessary for each gram of photosynthate manufactured. Furthermore, the amounts of plant food appear to increase until 12-2 P.M. When the light intensity reaches it maximmand then decreases at a relatively similar rate with the light. Differing from this, the plants shaded show a slower increase in food manufacture relative to the light increase until the 2-4 P. 4 . period, when they reach the maximu, and then they decrease more rapidly in ratio with the light intensity. Greater reduction in light shows a more gradual increase in photosynthesis and there appears to be an accumulation of plant food over a longer period, or a lagging in photosynthate manufacture, when the light is decreased due to heavy shading. This appears to result in the plants exposed only to light of low intensities having a much lower basal metabolism than no shade plants. The simple coefficients of correlation for photosynthate and light: $r=.5454 \pm .0527 ; x=.3012 \pm .0681$ and $x=.3034 \pm .0679$ demonstrate the importance of the light to the plant food
manufacture under the no shade condition as compared with shaded plants.

While temperature and humidity are similar or relatively uniform for the three lots of plants, it varied the same for each, as the day advanced. Naturally, this would be expected to be true, due to their relationship to light intensity and its variation. Consequently, data on temperature and humidity were taken for each of the two hour periods. The simple coefficients of correlation for photosynthate and temperature: $\mathbf{r}=.2968 \pm .0681 ; \mathbf{r}=.1924 \pm .0725 ;$ and $\mathbf{r}=.1704 \pm .0727$ signify that the temperature is in close relation with the light intensity and probably is intercorrelated with it. Their being lower than those for light demonstrates their slighter importance in photosynthetic activity.

The simple correlation coefficients for photosynthate and humidity: $r=-.2099 \pm .0714 ; r=-.4955 \pm .0565 ;$ and $r=-.3377 \pm .0663$ indicates that humidity is possibly too high for proper plant food manufacture. Their negative character signifies that the high humidity might have a tendency to hinder photosynthesis and the higher the negative correlation the greater it is reduced. This appears to be one of the contributing causes of lower plant food manufacture when the plants are shaded.

Correlation Coefficients.

In order to measure the direct effect of light intensity
on photosynthesis, it is necessary to know how mach the other environmental factors affect photosynthesis and the relation between all these factors. It appears that the true value of this relationship cannot be obtained directly from the raw figures, but an analysis of the data must be completed in order to determine the numerical measurements. This enalysis will show the relative importance of the variation in each of these independent variables on the variation in the dependent variable and can best be demonstrated by the correlation coefficients given in Taile 13.
Table 13. Correlation Coefficients for Fhotosynthate and Environment

r 0 order				r 1 st order					r 2nd order				R Multiple		
	Coefficient				Coefficient				Coefficient				Coefficient		
	No Shade	1 Lajer Cheesecloth	2 Layers Cheesecloth		$\begin{aligned} & \text { No } \\ & \text { Shade } \end{aligned}$	1 Lajer Cheesecloth	2 Layers Cheesecloth		$\begin{aligned} & \text { No } \\ & \text { Shade } \end{aligned}$	1 Layer Gheesecloth	$\begin{gathered} 2 \text { Layers } \\ \text { Cheese- } \\ \text { cloth } \end{gathered}$		Shade	1 Layer Cheesecloth	2 Layers Cheerecloth
12	$\begin{array}{r} .5454 \\ \pm .0527 \end{array}$	$\pm .3012$	$\begin{array}{r} .3034 \\ \pm .0679 \end{array}$	12.3	$+.4872$	$\begin{array}{r} .2421 \\ \pm .0309 \end{array}$	$\begin{array}{r} .2600 \\ \pm .0698 \end{array}$								
				12.4	$\pm .5421$	$\begin{aligned} & -.0372 \\ & \pm .0748 \end{aligned}$	$\begin{array}{r} .1595 \\ \pm .0728 \end{array}$	12.34	$\begin{array}{r} .5266 \\ \pm .0541 \end{array}$	$\begin{array}{r} .0236 \\ \pm .0747 \end{array}$	$\begin{array}{r} .1711 \\ \pm .0727 \end{array}$				
13	$\begin{gathered} .2968 \\ \pm .0681 \end{gathered}$	$\begin{array}{r} .1924 \\ \pm .0721 \end{array}$	$\begin{array}{r} .1704 \\ \pm .0727 \end{array}$	13.2	$\begin{array}{r} 0009 \\ \pm .0749 \end{array}$	$\begin{aligned} & -.0049 \\ & \pm .0749 \end{aligned}$	$\begin{aligned} & -.0087 \\ & \pm .0749 \end{aligned}$								
				13.4	$\begin{array}{r} .2203 \\ \pm .0716 \end{array}$	$\begin{array}{r} -.1436 \\ \pm .0733 \end{array}$	$\begin{array}{r} .0173 \\ \pm .0748 \end{array}$	13.24	$\begin{array}{r} .1025 \\ \pm .0741 \end{array}$	$\begin{aligned} & -.1452 \\ & \pm .0733 \end{aligned}$	$\begin{array}{r} .0649 \\ \pm .0745 \end{array}$				
14	-.2099 -.6714	$\begin{aligned} & -.4955 \\ & \pm .0565 \end{aligned}$	$\begin{aligned} & -.3377 \\ & \pm .0663 \end{aligned}$	14.2	$\begin{aligned} & .1716 \\ & \pm .0727 \end{aligned}$	$\begin{aligned} & -.4179 \\ & \pm .0618 \end{aligned}$	$\begin{aligned} & -.2235 \\ & \pm .0717 \end{aligned}$								
				14.3	$\begin{aligned} & -.0197 \\ & \pm .0748 \end{aligned}$	$\begin{aligned} & -.4927 \\ & \pm .0567 \end{aligned}$	$\begin{aligned} & -.3002 \\ & \pm .0678 \end{aligned}$	14.23	.2021 $\pm .0718$	-. 44457	$\begin{aligned} & -.2348 \\ & \pm .0708 \end{aligned}$	1.234	$\begin{array}{r} .5695 \\ \pm .0505 \end{array}$.5108 +.0553	.3731 $\times .0644$

[^1]A. No Shade Plants.

The zero order coefficients seem to show a much greater relationship between X_{2} and X_{1} then between X_{3} and X_{1} or X_{4} and X_{1}. The relationship between X_{3} and X_{1} and X_{4} and X_{1} are questionable because of the possibility of their being obscured by the relationships between the independent variables. Because of this we have separated the effects of the independent variables in order to get the first order coefficients. This separation tends to confirm the tentative conclusions reached with the zero order coefficients. (That the major relationship is that between X_{1} and X_{2}). The conclusione appear to be still slightly questionable because only two of the independent variables have been considered at a time. Because of this we shift to the second order coefficients. This demonstrates that when we consider the effect of variation in light intensity alone (both temperature and hamidity being constant). we can explain 27.7% of the variation in photosynthate, while variation in temperature explains but 1% and variation in humidity explains but 4% of the photosynthate variation. The coefficient of multiple correlation shows that the three factors taken together explain 32.4% of the photosynthate variation. Light intensity alone, as we have seen, accounts for 27.7%, showing that temperature and humidity are neglible factors in photosynthesis except where they are correlated with light intensity.
B. One Layer of Cheesecloth Plants.

It appears that the humidity is too high for proper use of light by the plant in photosynthesis. The humidity is consistently higher in this block of plants than in the other blocks. (Table 9). This may account for the reduction in photosynthate as compared with the no shade block of plants. The correlation coefficients demonstrate this fact in every case.
C. Tro Layers of Cheesecloth Plants.

The humidity is evidentiy too high for the plants to utilize light at the best advantage. It appears that light intensity is possibly too low even at the best for proper food manufacture. The total effect of light, temperature and humidity in this block of plants explained only 13.9% of the photosynthate variation which is about one-half that of the no shade plants. This demonstrates that some other factora, that were not taken into consideration, probably have a definite effect on the photosynthetic activity.

Supplementary Consideration: Chlorophyll Content.
The relation of radiation to pigmentation is of very great importance through the necessity of light for the formation of pigments, and due to the fact that the pignents absorb radiant energy which is essential for the photosynthetic activity of the plants. The naturally occuring plant pigments. Which are found in the cell stroucture of the plant foliage are chlorophyll, carotin and xanthophy11. These pigments per unit leaf area were determined for each group of plants, at several periods during the experiment. The modified Fillstatter and Stoll method of extraction (22) was used for these determinations and the comparison with a stendard was made with the DraBosc Colorimeter.

The data are given in Table 14.

Table 14.
Poliage Pigments

-40-
It appears that light intensity is essential for proper chromogenesis in the tomato foliage. According to expectations, the no shade plants contain more chlorophyll per square centimeter in leaf area, and the shaded plants showed a variation according to the amount of light the plants received. The reduction in photosynthate manufacture due to shading is relatively proportional to the amount of chlorophyll per square centimeter of leaf area, although this reduction does not affect the chlorophyll efficiency. but it does appear to affect the total plant food manufacture.

Leaf Anatomy, - The internal leaf structure is, in general, an adaptation to the conditions necessary for photosynthesis. Consequently, the six plates demonstrate the modifications of palisade and spongy parenchyma that assist in the plant food manufacture under the existing shaded conditions.

-41-
 Encplanation of Plates

Plate I. A crogs section of one of the leaves growing with no shade. This section was made April 30. The cell development under this condition of light has elongated palisade cells, heavy epidermis and cuticle and a thick mass of spongy parenclaym cells with a rather small amount of air space.

Plate II. A cross section of one of the leaves growing with no shade. This section was made June 17. The palisade cells have become mach more elongated, chioroplasts appear to have changed, the sponey parenchyma cells are decreased and the air spaces have become more plentiful. This leaf apparently shows the effects of age.

Plate III. A cross section of one of the leaves growing under one layer of cheesecloth. This section was made April 30. The palisade cells are somewhat elongated, chloroplast are arranged full length of them, spongy parenchyma cells are rather scattered, with a large amount of air space throughout the leaf.

Plate IV. A cross section of one of the leaves growing under one layer of cheesecloth. This section was made June 17. The epidermis and cuticle has increased as the leaves become older. The palisade layer rem mains about the same, but the spongy parenchyma cells have increased in number as the plant gets older.

Plate V. A cross section of one of the leaves growing under two layers of cheesecloth. This section was made April 30. The epidermis, cuticle, and in fact. the entire leaf appears rather thin. The palisade layer of cells is somewhat poorly organized and not elongated as when the leaves receive a higher degree of light intensity. The spongy parenchyma cells are fairly well developed with a large amount of air space between them. The chloroplast are in much smaller number than as shown in the previous plates.

Plate VI. A cross section of one of the leaves growing under two layers of cheesecloth. This section was made June 17. The cuticle, and epidermis have increased somewhat in thickness, but the general thickness of the leaf remains about the same as the previous plate. The palisade cells have become somewhat more elongated as the leaf gets older and the air space seems to have increased in quantity.

Plate I. 250x

Plate III. 250x

Plate IV. 250x

Plate V. 250x

Plate VI. 250x

In general, the cell development of the leaves under the no shade condition is normal, but when shaded the cells in the spongy parenchyma lack regularity in shape and are arranged loosely, so that a large part of their surface is exposed to the intercel lular spaces. The greater the shade, the less the palisade parenchyma cells are developed. This demonstrates how the number of palisade layers and the density of the cell structure depends largely, either directly or indirectly, upon light intensity.

These supplementary factors are rather definitely regulated by the amount of light received by the plants, and this appears to be in order with the variation of photosynthetic activity. Wen the plants are exposed to the no shade condition the palisade cells are well developed and their chloroplasts seem to arrange themselves so as to decrease the surface and transpiration due to the light, but when shaded they are differently arranged so as to increase the surface for receiving light. This latter arrangement appears to increase the chloroplasts' efficiency, and the greater the light reduction the more it is increased. It appears that the reduction in photo synthetic rate did not have an effect on the chloroplast efficiency. As previously stated, the light seems to have a regulatory effect on the chloroplast content and cell structure of the leaves, and this is one of the contributing causes for a -decreased photosynthetic activity by the plants when shaded.*

* The cells of the upper part of the thick leaf in the no shade group removes enough red and violet light rays to reduce the effectiveness on the lower leaf cells, but this blocking effect is not as apparent in the thin shaded leaves.

This study has dealt primarily with the influence of light intensity on photosynthetic activity of tomato plant leaves, as measured by amount of growth, fruit production, and increases in fresh and dry weights. The results show, as would be expected, that on the whole there is a close relationship between these several factors, viz: with decreased light intensity there is: (a) greater vegetativo growth, as measured by leaf area, and both fresh and dry weight of tops and roots, (b) decreased fruit production, and (c) a decrease in the total amount of photosynthate produced by the plants. However, the increase in vegetative growth and the decreases in fruit production and total photosynthate produced are not directly proportional to the decreases in light intensity. Thus, reducing light intensity by a half resulted in only approximately a onefourth increase in amount of vegetative growth, a one-third decrease in fruit production, and a one-sixth decrease in total photosynthate production. Reducing light intensity to approximately one-fourth normal resulted in only a 40 percent increase in vegetative growth, a one-half decrease in fruit production and a one-third decrease in total photosynthate production. (Table 15). This is but another way of saying that the partially shaded leaves used their limited supply of light more efficiently than the unshaded leaves used their normal supply. That is, a given quantity of light effected a greater
-47-

photosynthate production in the case of the shaded plants than was true in the case of those unshaded.

Great, however, as were the differences between the growth rates, leaf areas, and fruit and photosynthate production of the several groups of plants exposed to the different light intensities, there were equally great differences, between different plants within the same group, in their apparent ability to utilize their light supply for fruit and photosynthate production. Indeed, some of the individuals (ag. No. 11) in the moderately shaded group produced nearly as mach photosynthate per unit of leaf area as some of those in the unshaded group and one of those in the heavily shaded group (No. 11) produced nearly as much photosynthate per unit of leaf area as the average of those in the moderately shaded group and within 30 percent as much as some of the least efficient in the unshaded group (Table 15).

This latter fact is of especial significance for it suggests the possibility of developing a strain of plants that has a high degree of photosynthetic efficiency under conditions of low light intensity. Obviously, the producer of indoor-gram tomatoes has no control over light intensity - at least he has no practicable means of increasing it. However, if he can obtain which that is especially adapted to the low light intensities and short days of the northern winter season, a substantial contribution Will have been made to the solution of the problem of profitably

> -49-
growing tomatoes in the greenhouse during the winter. Iittle or no effort has thas far been directed towerd developing auch a physiological strain of tomatoes, present stocks apparently being heterozygous in this respect. The studies here reported point clearly to same of the possibilities that lie in this direction.

SUMMARY

The effect of light intensity on the photosynthetic efficiency of tomato plants was studied by growing Grand Fapids Forcing tomato plants under three different daily average light intensities of 1139.9. 563.1, and 261.0 foot candles. The results were as follows:

1. The responses in stem elongation and leaf area expansion were both continuously and finally the greater when the light intensity was reduced, showing a negative relationship.
2. It was indicated that when the light intensity reached a definite average the fruit would set rather freely and develop.
3. The percentages of $d x y$ matter, ash material, water, freeh weight and elaborated food materials correlate rather closely with the light intensity received by the plants. Light intensity variation is the chief cause of differences in plant efficiency.
4. Basal plant metabolism and its contributing factors are regulated by the amount of light received by the plants.
5. The increase in the maltiple correlations (when the elaborated food materials are the dependent variable and light
intensity, humid ity, and temperature are the independent variables) over the simple correlations under each degree of light intensity is evidence that there is interrelation between factors regulating the plant food manufacture. The coefficients of determination demonstrate that light intensity alone accounts for 32.4% of the photosynthate variation and that tamperature and humidity are neglible factors only when correlated with Iight intensity, w humidity becoming a critical factor in photosynthesis when the light intensity is reduced.
6. The light intensity appeared to have a regulatory effect on the average amounts of chlorophyll per square meter of leaf area. The chloroplasts in the leaves arranged themselves so as to get the greatest amount of light when it was reduced.
7. The leaf anatomy shows abnormal cell development when the plants are shaded. This abnormality consists of loosely arranged, irregular spongy parenchyma cells and a reduction in size, density and number of palisade cells.
8. It is evident that light intensity averaging 1139.9 foot-candles daily during the gromth of the tomato plants had a greater effect in promoting chlorophyll formation, fruit production and photosynthetic efficiency than light of a daily average of 583.1 foot-candles and this in turn had a similar greater effect than that on the plants receiving a daily average light intensity of 261.0 foot-candles.
9. Arthur, John; J. Guthrie, and J. Newell. Some effects of artificial climates on growth and chemical composition of plants. Amer. Jour. Bot. 17:416-482. 1930.
10. Combes, R. Determination des intensités Iumineuses optima pour les végétaux aux divers stades du developpement. Ann. Sci. Nat. Bot., 9:ser.; 11. 75-254. 1910.
11. DeBesteriro, D. C. and M. Durand. Influence de la lumiere sur 1 'absorption des matieres organiques du sol par les plantes. Compt. rend. acad. sci. Paris 198. 467-70. 1919.
12. Fmerson, Robert. The chlorophyll factor in photosynthesis. Amer. Nat. 64:252-260. 1930.
13. Folmer, Swith. Researches on the influence of natural and artificial light on plants. Meldinger Fra Norges Landbruckshoiskole. 13:1-5. 1933.
14. Hayden, A. The ecologic foliage anatomy of some plants of a prairie province in central Iowa. Amer. Jour. Bot. 6:69-87. 1919.
15. Johnson, E. S. The functions of radiation in the physiology of plants. Smithsonian Misc. Coll. 87(14):1-15. 1932.
16. Kostytschew, S. und H. Kardo-Syssoiewa. Untersuchungen

Hber den tagesverlauf der photosynthise in Zentralasien. Zeitschr. Wiss. Biol. Planta 61:117-143. 1930.
9. Lubimenko, V.N. Sur la sensibilité de 1 'appareil chlorophyllien des plantes ombrophiles et ombrophobes. Rev. Gén. Eot. 17:381-415. 1915. (Cited in Palladin-Livingston Plant Physiology. Phila. P. Blakiston's Son \& Co. 1923).
10. MacDougal, D. T. Influence of Iight upon growth and development. Carnegie Institution of Washington Yearbook. 14:16. 1915.
11. Muntz, M. A. Ia luninosité et I'assimilation végétale. Compt. rend. acad. sci. (Paris). 156:(5) 368-370. 1913.
12. Nightingale, G. T. and J. W. Mitchell. Tffects of
humidity on metabolism in tomato and apple. Plant
Physiology 9:217-236. 1934.
13. Osterhout, W.J.V. Ihxperiments with plants. 3rd Fd. N. Y. 1906.
14. Palladin, V.I. Plant Physiology. (Ed. by B. Fi.

Iivingston) 2nd Amer. Bd. Phila.: P. Blakiston's Son \& Co. 1923.
15. Poole, James P. Comparative anatony of leaf of cycads with reference to Cycadofilicales. Bot. Gaz. 76:203-241. 1923.
16. Porter, A. M. The influence of defoliation and fruit thinning on the growth of t omatoes. Unpublished thesis. Mich. State College. 1932.
17. Popp, H. W. The effect of light intensity on the growth of soy beans and its relation to the autocatalyst theory of growth. Bot. Gaz. 82:306. 1926.
18. Shibata, S. The daily growth rate of bamboos. Jour. Coll. Sci. Tokyo 1900. Trans. in Am. Jour. Bot. 12:384-392. 1925.
19. Spoehr. H. A. Photosynthesis. Chem. Cat. Co. New York. 1926.
20. Sprague, H. B. and J. W. A study of the relations between chloroplast pigments and dry weights of tops in dent corn. Pl. Physio. 4:165-192. 1929.
21. Wiesner, J. Sur I'adaptation de la plante a I'intensité de la lumiere. Compt. rend. acad. sci. (Paris) 138:1346-1349. 1904.
22. WillstZtter, R. and A. Stoll. Untersuchungen tber chlorophyll. Berlin 1913.
$-54-$
23. Willst ${ }^{2} t t e r$, . and A. Stoll. Untersuchungen ther die Kohlensture Assimilation. Berlin 1918.
24. Yoshii, Y. Untersuchungen ther die Temperatur abh甘ngigkeit der Kohlensaure Assimilation bei bohnen. Zeitschr. Wiss. Biol. Planta 56:81-695. 1928.

[^0]: - This leaf area equation was tested out on about 20 leaves from each set of plants and it was found that the formula applied equally well to all three types of illumination.

[^1]: $x_{1}=$ Photosynthate $X_{2}=$ Iight intensity $x_{3}=$ Temperature $X_{4}=$ Huaidity

