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ABSTRACT 

Anxiety is a leading cause of disability worldwide and is two times more prevalent in female 

than male populations. Importantly, anxiety is associated with reduced prefrontal cortex (PFC) 

function in areas critical for cognitive processes such as working memory. Attentional Control 

Theory (ACT) suggests that worry, a core cognitive feature of anxiety, places an additional load 

on working memory resources, thereby leading to cognitive impairments and enhanced effort to 

maintain performance. Ample evidence supports that worry is associated with impaired working 

memory performance. However, fewer studies have clarified the association between worry and 

working memory-related neural function. Preclinical models have proposed that anxiety may 

interact with dopamine and estradiol to influence lateral prefrontal cortex function, a region 

critical for working memory. However, no study has examined their interactive effects in 

humans. This project aims to address this gap by examining dopamine and estradiol’s effects on 

the relationship between worry and oscillatory neural activity (i.e., theta-gamma coupling; TGC) 

involved in working memory function in a female sample. The study aims are to (1) establish the 

relationship between worry and TGC; (2) examine the role of tonic dopamine (measured by the 

COMT gene) in the association between worry and TGC; and (3) examine whether estradiol 

moderated the association between worry and TGC. I hypothesized two plausible directions for 

the association between worry and TGC based on previous literature. Research suggests that 

those with chronic psychiatric conditions evidence less TGC compared to controls due to 

reduced prefrontal cortex function (i.e., hypoactivation hypothesis). Alternatively, aligned with 

the predictions of ACT, it is plausible that worry may be related to enhanced TGC indicating 

exaggerated neural activity to maintain favorable performance (i.e., processing inefficiency 

hypothesis). For the second aim, I predicted that lower dopamine levels would strengthen the 



association between worry and TGC, irrespective of the direction of the association. Lastly, I 

expected the association between worry and TGC to be enhanced when estradiol is low. The 

sample consisted of 135 female participants who completed a verbal working memory task (N-

back) up to four times in-person. Saliva samples on the day of N-back completion were used to 

assay for estradiol concentrations and extract COMT gene polymorphisms (rs4680). Worry was 

within- and between-person centered to examine the role of within-person changes in worry over 

time and between-person differences in worry averaged across a whole menstrual cycle. TGC 

was computed on correct trials of the N-back task. I found evidence for both the hypoactivation 

and processing inefficiency hypotheses on two-back lure trials – trials that were of moderate 

difficulty. Specifically, within-person increases in worry were associated with reduced TGC for 

those with high average symptoms of worry. In contrast, within-person increases in worry were 

associated with increased TGC for those with low average levels of worry. I also found that 

increases in within-person worry were associated with enhanced TGC for Val/Val carriers (those 

with less tonic dopamine), whereas there was no association for Met/Met carriers. Further, this 

association was enhanced for Val carriers when estradiol was high. The findings demonstrate 

that the association between within-person increases in worry and TGC may depend on the 

amount of worry one experiences on average and tonic dopamine levels. This study further 

highlights the utility of incorporating dopaminergic neurotransmission in our understanding of 

worry-related cognitive impairments.  
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1. INTRODUCTION 

 

Attempting to understand the relationship between anxiety and cognition  has been the 

topic of debate and inquiry for decades (Diamond, 2005; Gray, 1984; Mogg & Bradley, 1998). 

Anxiety disorders are the most prevalent class of mental health disorders, and are associated with 

substantial economic burden and reduced capacity for daily functioning (Baxter et al., 2014; 

Konnopka & König, 2019; Marciniak et al., 2004). Understanding the association between 

anxiety and cognition can improve our knowledge of anxiety’s impact on functioning more 

broadly. 

One facet of cognition that is often associated with anxiety is working memory (Moran, 

2016; Shackman et al., 2006). Working memory refers to the ability to maintain, manipulate and 

update information no longer present in the external environment (Baddeley, 2012; D’Esposito, 

2007). Working memory supports tasks such as solving a math problem, maintaining the digits 

of a new phone number for immediate use, and retaining the first two examples in this sentence. 

It is an essential process that contributes to a wide range of other cognitive functions and guides 

behavior on-line to achieve a goal. Research has offered convincing evidence that anxiety is 

related to impaired working memory performance (Eysenck et al., 2007; Eysenck & Derakshan, 

2011; Moran, 2016). What remains unclear, however, are the neural correlates involved. Neural 

correlates of working memory dysfunction in anxiety are only recently being integrated into 

anxiety frameworks (Eysenck et al., 2022). Uncovering associations between anxiety and neural 

correlates of working memory function may have important implications for elucidating how 

anxiety impairs cognition and lay the foundation for developing novel interventions targeting 

anxiety-related cognitive impairments.  
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Critically, anxiety disorders are more prevalent and have a more severe and chronic 

course in female populations (Altemus et al., 2014; Kessler et al., 2012). Cognitive models of 

anxiety generally fail to consider sex-specific factors that may uniquely contribute to the 

association between anxiety and working memory. Preclinical studies have offered insight in this 

regard and have proposed that ovarian hormones and their effects on neurotransmitter systems, 

such as dopamine, interact to influence working memory in female rats (Shansky et al., 2004; 

Shansky & Lipps, 2013). However, the translational utility of these models remains unclear. The 

current study therefore aimed to examine the translational utility of preclinical models of 

anxiety-related cognitive impairments by examining relevant neurobiological factors.  

1.1. Terminology and Study Aims 

I use the term “female” within this text to refer to individuals assigned female sex at 

birth. Sex assigned at birth is distinct from gender and is intentionally not used interchangeably 

within the text. It is important to note that sex assigned at birth is often used ubiquitously to refer 

to numerous factors, including sex chromosomes (e.g., XY or XX), gonads, and/or sex 

hormones. However, sex is not binary, and there can be variability across chromosomes, gonads, 

and hormones that do not align with the “female” and “male” differentiation. Sex can be an 

elusive term that refers to any or all of these factors. Here, I use the term “female” to refer to 

those who experience menstrual cycles and have varying levels of estradiol.  

The focus on ovarian hormones (namely 17-β estradiol) and its effect on dopamine is 

intentional as a means to focus on female health, which has been historically neglected in the 

literature (Beery & Zucker, 2011). Neuroscience research tends to omit female populations 

precisely because of varying levels of ovarian hormones across the menstrual cycle. This 

omission has caused direct harm (Correa-de-Araujo, 2006; Parekh et al., 2011) and has led to a 
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relative shortage of knowledge on estradiol’s effects on health. In recent years, there have been 

substantial strides to address this harm and improve our understanding of sex hormone milieu in 

cognitive neuroscience and anxiety (Beery & Zucker, 2011; Li & Graham, 2017; McEwen et al., 

2001; McEwen, 2010; Taylor et al., 2021). This study joins in these efforts by integrating 

literature on ovarian hormones and cognition into a framework that may improve our 

understanding of anxiety’s influence on cognition in human populations. Finally, although work 

has attempted to investigate the role of estradiol in sex differences, the aim of the current study is 

not to make a statement on “sex dimorphism,” “sex differences,” or “sex 

convergence/divergence” (McCarthy et al., 2012). Instead, the aim is to focus on how estradiol 

and dopamine may contribute to our understanding of anxiety-related cognitive impairment in a 

historically underrepresented population in the cognitive neuroscience literature.  

The current study aimed to build toward a comprehensive understanding of the 

association between worry and a neural marker of working memory function in a female sample. 

Research has provided ample evidence that worry is associated with reduced working memory 

performance. Examining whether and how worry is associated with neural mechanisms involved 

in working memory dysfunction during task completion is also useful to advance our 

understanding of worry-related cognitive dysfunction (Eysenck et al., 2022). I specifically 

focused on worry, a transdiagnostic dimension of anxiety (Heller et al., 1997; Nitschke et al., 

2001; Snyder et al., 2022), and its association with a neural marker of working memory function, 

theta-gamma coupling (TGC). I also examined how dopamine and estradiol, critical 

neuromodulators of working memory, influence the association between worry and TGC. 

Together, the approach of the current study was to identify a novel association between worry 
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and a neural marker of working memory function in a female sample while taking relevant 

neurobiological factors into account. 

1.2. The Association Between Worry and Working Memory Performance 

One of the most influential theories of working memory was proposed by Baddley and 

Hitch nearly 50 years ago (Baddeley & Hitch, 1974). Various revisions of this theory over the 

years have led to a prominent understanding of working memory as the ability to store, update, 

and manipulate mental representations that are no longer present in the physical environment. 

Baddley and colleagues proposed that working memory involves the temporary storage of 

information in “stores” based on sensory input (e.g., visual, phonological/verbal and episodic). In 

addition to maintaining information, working memory also involves utilizing stored information 

to guide behavior toward a goal (e.g., a task goal). This process was proposed to be executed by 

an overarching system called the “central executive” (Baddeley, 2000, 2012; Baddeley & Hitch, 

1974; Baddeley & Logie, 1999; Norman & Shallice, 1986). The central executive is an attention-

based, capacity-limited system that biases and coordinates lower-order stores for the purposes of 

a task goal. Miyake and colleagues specified the functions of the central executive as the ability 

to shift attention, update mental representations, and inhibit irrelevant information, the latter of 

which is seen as a core component of all executive functions (Miyake et al., 2000; Miyake & 

Friedman, 2012). Therefore, working memory is a complex, “multicomponent” construct that 

involves both the storage of information and the control processes (i.e., executive functions) for 

the maintenance and use of that information to guide and support a task goal (see Figure 1A) 

(D’Esposito, 2007; D’Esposito & Postle, 2015; RepovŠ & Baddeley, 2006). As such, when 

working memory is affected, it may broadly impact various cognitive functions.  
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Figure 1. Working Memory Model. A. Graphical depiction of components of working memory 

and executive functions integrating the models from Baddley & Loggie (1999) and Miyake et al. 

(2000). B. Neural model of working memory components, adapted from the figure presented by 

Chai et al. (2018).  
 

Drawing from cognitive models of working memory, Eysenck and colleagues put forth 

Attentional Control Theory (ACT) to propose a framework for worry’s impact on cognitive 

performance (Eysenck et al., 2007). ACT proposes that worry impacts the ability to balance top-

down control and bottom-up input (termed attentional control). Specifically, worry poses an 

internal interference that co-opts working memory resources and leads to executive function 

impairments. That is, ACT posits that worry leads to difficulties managing top-down control 

functions implemented by the central executive. ACT outlines many key assumptions; however, 

I will focus on two for the purposes of this study. First, ACT makes the distinction between trait 

and state anxiety, and posits that within-person increases in worry (e.g., state worry) are more 

likely to be experienced by those high in trait anxiety. As such, in those with high trait anxiety, 

increases in state anxiety levels are more likely to negatively impact working memory function. 

Secondly, ACT proposes that increases in worry are more likely to be associated with processing 

inefficiency (i.e., longer reaction time) rather than ineffectiveness (i.e., accuracy). ACT assumes 
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that those who experience increased worry are motivated to reduce its deleterious impacts by 

implementing more effort and adopting compensatory strategies to maintain performance.  

Empirical support for ACT has corroborated that state worry indeed affects working 

memory. Studies have found that inductions in state worry are associated with reduced working 

memory capacity for high worriers (Hayes et al., 2008; Leigh & Hirsch, 2011; Stefanopoulou et 

al., 2014) and a non-affected sample (Sari et al., 2017). These studies suggest that active worry 

indeed affects the ability to store information, and this effect may be more prominent for high 

trait worriers.  

 Evidence also supports that trait worry impacts both processing inefficiency and 

ineffectiveness across executive functions. For instance, in tasks that require inhibition, those 

with generalized anxiety disorder (GAD) and high trait worry evidenced slower reaction times 

and reduced accuracy (Hallion et al., 2017; Price & Mohlman, 2007; Rosa-Alcázar et al., 2020). 

For shifting, studies have found that worry was related to reduced performance on working 

memory tasks under a dual task condition (Crowe et al., 2007), and a self-report measure of 

switching using the Attentional Control Scale (Williams et al., 2017). Studies have also found 

that worry was associated with reduced accuracy on updating tasks (Crowe et al., 2007; 

Gustavson & Miyake, 2016a; Hallion et al., 2014; Held et al., 2020; Stefanopoulou et al., 2014). 

Together, two conclusions can be drawn from the existing data. First, evidence suggests that 

worry is associated with processing efficiency and effectiveness impairments. The context in 

which worry impacts either is likely dependent on task context (e.g., cognitive demand and task 

difficulty) (Berggren & Derakshan, 2013). Second, because worry is associated with impaired 

performance across executive functions, it is likely that worry affects the central executive, 

aligned with ACT’s predictions. 
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1.3 The N-back Task: A Promising Task for Understanding Working Memory Dysfunction 

in Worry 

 The verbal N-back task allows for measuring cognitive performance across varying levels 

of cognitive demand. The N-back is considered a “dynamic span” task. In a recent meta-analysis, 

worry was found to have robust effects on dynamic span tasks compared to simple (e.g., digit 

span) and complex span tasks (O- or R-span) (Moran, 2016). During the task, individuals must 

continuously maintain and update information to correctly identify whether a stimulus was seen 

n trials back. For instance, on 2-back conditions, participants must remember whether they have 

seen a letter two trials back to identify whether the letter is a “target” (a correct match) or a “non-

target” (an incorrect match). The task allows for the investigation of performance with varying 

levels of cognitive demand, by increasing the amount of information that must be stored for 

accurate task performance (e.g., 2-back vs 3-back conditions; see Figure 2). Some iterations of 

the task include an additional complexity called “lures.” Lures are when a stimulus matches a 

previously shown letter but is presented the incorrect n trials back (see Figure 2). These trials 

require inhibiting a prepotent response due to familiarity in addition to remembering the correct 

order of previously presented stimuli.  
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Figure 2. Graphical representation of 2- and 3-back conditions on the verbal N-back task. Each 

black box represents a trial, during which a letter is presented one at a time. Participants must 

respond to every letter. During 2-back conditions, participants must identify whether a letter 

matches the one shown two trials before (a “target”). In 3-back conditions, participants must 

determine whether the letter was seen three trials before. All other letters are “non-targets.” 

Within 2- and 3-back conditions, participants may also be presented with lure trials, a special 

kind of non-target. When this occurs, participants are shown a letter that was previously seen but 

is the incorrect number of trials back to be considered a target.   
 

 The N-back therefore relies on various processes, such as verbal storage and inhibition (a 

core executive function), to support successful task completion. Indeed, studies have shown that 

the N-back may represent a more complex measure of working memory as the task does not 

often converge with other working memory tasks, such as complex span tasks (Jaeggi et al., 

2010; Kane et al., 2007; Redick & Lindsey, 2013). This may be because the N-back represents 

multiple functions that rely on working memory (e.g., maintenance and updating) (Schmiedek et 

al., 2014). Studies using the N-back task to investigate the effects of worry have found that those 

with high levels of worry evidence lower accuracy and longer reaction times, specifically under 

high load conditions (Balderston et al., 2017; Stefanopoulou et al., 2014). Gustavon and Miyake 

(2015) suggest that updating may be a critical feature to assess in worry because it involves the 

balance between top-down control and bottom-up processing. That is, the task requires 

individuals to be attentive to new information while using control processes to maintain and use 
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that information for a specific goal. Therefore, the N-back task is useful for measuring worry’s 

association with working memory processes that involve maintenance, updating, and inhibition 

(Gustavson & Miyake, 2016).  

1.4 The Association between Worry and Neural Processing: A Focus on the Lateral 

Prefrontal Cortex 

 ACT leverages empirical data on cognitive performance to formulate predictions on 

worry’s influence on cognition. Cognitive neuroscience scholarship can also provide insight to 

elucidate the nuanced relationship between worry and cognition. The dorsal lateral prefrontal 

cortex (dlPFC), in particular, is a critical region involved in working memory and top-down 

control (Braver, 2012; Braver et al., 2007; Brozoski et al., 1979; Goldman-Rakic, 1988; Kane & 

Engle, 2002). Specifically, the dlPFC is necessary to maintain information (Smith & Jonides, 

1999) and coordinate brain function to implement top-down control (Braver et al., 2007; 

D’Esposito et al., 1995; Miller & Cohen, 2001). The neural recruitment needed to maintain goals 

is implemented by the dlPFC (Curtis & D’Esposito, 2003). In this way, the dlPFC serves as a 

critical region for maintaining task set and exerting control, which is critical for working 

memory functions (Barbey et al., 2013; D’Esposito & Postle, 2015b) (see Figure 1B).  

 Higher levels of worry are associated with altered dlPFC activity at rest and during active 

periods of worry. Studies have found that worry is linked to left-lateralized activity that includes 

the dlPFC (Heller et al., 1997), increased resting state activity in the left dlPFC (Bijsterbosch et 

al., 2014), and more dlPFC activation and associated regions during active worry (Mohlman et 

al., 2017). At rest, worry is also associated with enhanced resting state functional connectivity 

between the amygdala and the dlPFC (Feurer et al., 2021). Further, another study found 

heightened intra-network connectivity in the fronto-parietal network (which includes dlPFC) in 
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higher worriers at rest (Gerlach et al., 2021). These studies suggest that worry is associated with 

heightened dlPFC activity and connectivity with the dlPFC at rest.  

There is additional evidence that worry is associated with dlPFC activity on cognitive 

tasks, but the results are mixed. Warren and colleagues found that worry was associated with 

heightened activity in the left posterior dlPFC during conflict on the Stroop task when anxious 

arousal was also low (Warren et al., 2013), suggesting that it is specific to this cognitive 

dimension of anxiety. However, another study found no association between worry and lPFC 

activity on the Stroop task (Silton et al., 2011). In addition, Fales and colleagues (2008) found 

that anxious individuals only evidenced increased activation in the PFC during lure trials of the 

N-back, suggesting worriers may attempt to manage their effort by periodically engaging the 

PFC. Balderstron et al. (2017) found, however, that those diagnosed with anxiety disorders 

(including GAD) evidence reduced lPFC activation compared to controls on high load conditions 

of the N-back, although they did not investigate lure trials specifically (Balderston et al., 2017). 

Other studies using emotional conflict have also found increased lPFC activation (Barker et al., 

2018; Park et al., 2016). Therefore, the association between worry and lPFC is nuanced and 

partially modulated by cognitive demand. When task demands are high (such as lure trials of the 

N-back), worry may be associated with hyperactivation of the dlPFC due to increased effort (or 

processing inefficiency). However, it also plausible hypoactivation of lPFC may be present when 

working memory is excessively taxed (Silton et al., 2010). 

1.5 Theta-Gamma Coupling: A Maker of Working Memory Function 

While imaging studies have offered great insight into the role of the dlPFC in cognitive 

tasks for high worriers, advanced signal processing with electroencephalography (EEG) data can 

further augment our understanding of lPFC activity and cognitive processing. EEG offers 
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temporally precise measurements of neural oscillations. Neural oscillations reflect the 

synchronized synaptic activity of neuronal populations (Canolty & Knight, 2010), and their 

activity can provide the ability to understand complex cognitive processing.  

 Oscillatory activity is grouped into specific frequency bands that are thought to be 

important for different cognitive processes. Commonly studied frequency bands include delta (1-

3 Hz), theta (4-8 Hz), and alpha (9-12 Hz), which are considered slower rhythms that are 

important for higher-order processing, such as cognitive control and inhibition. Beta (13-30 Hz) 

and gamma (30 Hz or higher) are faster rhythms linked to motor function, sensory input, and 

attention. Further, there are three components of oscillatory activity – (1) phase, which refers to a 

particular location on a sine wave measured in radians or degrees; (2) amplitude (or power which 

is amplitude squared), which refers to the strength of the signal; and (3) frequency, typically 

measured in hertz (Hz), and measures cycles per second (i.e., 2 Hz is two cycles per second). 

Using what we know about frequency bands and oscillatory activity, we can begin to understand 

their integration for cognitive processing.  

For instance, these frequency bands often demonstrate “cross-talk,” that is, some sort of 

coordination, to perform higher-order cognitive processes and support neural integration (Fries, 

2005). One way to measure this is cross-frequency coupling (CFC; Canolty and Knight, 2010). 

While several CFC metrics exist, phase-amplitude coupling (PAC) has gained traction in recent 

years. PAC occurs when a low frequency brain rhythm modulates the amplitude of a higher brain 

rhythm. This was first discovered in the rat hippocampus (Bragin et al., 1995). Since then, it has 

been observed in the human hippocampus (Axmacher et al., 2010) and neocortex (Canolty et al., 

2006).  
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Theta-gamma coupling (TGC) is a specific type of PAC that serves as a “neural code” for 

the sequential ordering and maintenance of information (Lisman & Jensen, 2013; Roux et al., 

2012). Theta oscillations in frontal recording sites have been linked to cognitive control 

functions and the maintenance of sequential storing of information (Cavanagh & Shackman, 

2015; Sauseng et al., 2010). On the other hand, gamma activity is important for storing 

information (Honaken, 2014; Vidal, 2006). Gamma activity in the lateral frontal cortex is 

modulated by working memory load, with higher load associated with higher gamma power 

(Roux et al., 2012). Therefore, gamma is critical for storing items in working memory (Roux & 

Uhlhaas, 2014; Tallon-Baudry & Bertrand, 1999). TGC occurs when gamma amplitude is nested 

at specific phases of the theta cycle (see Figure 2). In this way, multiple items can be organized 

along a theta cycle (Axmacher et al., 2010; Lisman & Jensen, 2013; Roux et al., 2012; Roux & 

Uhlhaas, 2014; Sauseng et al., 2019). Higher TGC strength indicates that gamma amplitude is a 

strong function of theta phase, reflecting enhanced integration between neuronal assemblies 

(Lisman & Jensen, 2013). Relatively less coupling reflects reduced integration between neuronal 

assemblies (see Figure 2). 



13 
  

  

Figure 3. Graphical representation of theta-gamma coupling adapted from Turi Z, Alekseichuk I, 

Paulus W (2018). The figure shows that gamma activity holds distinct mental representations 

activated by specific neuronal assemblies nested and organized at specific phases across the theta 

cycle. The nesting of gamma along the theta frequency is reflective of theta-gamma coupling. 

The mental representation of a letter is associated with a unique activation pattern of neuronal 

assemblies (colorful diamonds), resulting in a gamma oscillation. Theta, with its own unique 

assembly, controls the synchronized pattern of gamma oscillations to maintain the letter 

presentations in sequence. Heightened TGC is therefore reflective of higher integration of 

distinct neuronal assemblies.  

There has been empirical support for TGC in the N-back task at frontal lateral sites that 

correspond to lateral PFC regions. Rajji and colleagues (2017) found that TGC at frontal-lateral 

sites was significantly higher during trials that required the ordering of information compared to 

trials that did not (i.e., higher on targets and lures in comparison to non-targets). This study 

supported the idea that TGC reflects a process initiated by the need to maintain the sequential 

ordering of information.  TGC has also been studied for those with various psychiatric 

conditions, including Schizophrenia and Alzheimer’s Disease (for review, Yakubov et al., 2022). 

These studies have found that TGC at frontal-lateral sites is decreased in those diagnosed with 

Schizophrenia, Alzheimer’s Disease, and mild cognitive impairment compared to healthy 

controls (Barr et al., 2017; Brooks et al., 2021; Goodman et al., 2018). These conditions are also 

well-known to correspond with decreases in dlPFC recruitment during working memory tasks 



14 
  

(Guo et al., 2019; Kumar et al., 2017).  Importantly, consistent with the role of the dlFPC in 

exerting top-down control to support working memory (see Figure 1), some work has supported 

that TGC is increased during high load conditions in comparison to low load (e.g., 0-back) (Barr 

et al., 2017; Rajji et al., 2017). These findings imply that TGC is sensitive to the neural process 

that needs to be performed (i.e., the need to maintain the ordering of information). Therefore, 

given the critical role of the dlPFC as necessary for the control processes involved in working 

memory, TGC at frontal lateral sites may reflect the instantiation of that process to support the 

maintenance and ordering of information in mind. Thus, TGC may serve as a promising tool to 

characterize this neural process for those with elevated levels of worry.  

1.6 Dopamine as a Modulator of the Link between Worry and Working Memory 

Critically, dopamine (DA) signaling in the PFC is needed to stabilize and maintain 

mental representations (Braver et al., 2007; Braver & Cohen, 2000; Curtis & D’Esposito, 2003; 

D’Esposito, 2007), and therefore influences working memory function. Through the mesolimbic 

and mesocortical pathways, dopamine innervates the PFC and has far-reaching actions on brain 

regions and neuronal communication involved in working memory and anxiety (Haber, 2010). 

Despite the critical role of dopamine in working memory, understanding how dopamine 

modulates anxiety’s impact on cognitive performance and brain function remains a gap in the 

current anxiety literature. Below I briefly review dopamine’s critical role in PFC-dependent 

function and its potential utility for illuminating worry-related working memory dysfunction. 

Seminal studies in primates were the first to identify a role for DA in the PFC in 

cognitive function and found that dopamine depletion in the dlPFC impairs working memory in 

rhesus monkeys (Brozoski et al., 1979; Williams & Goldman-Rakic, 1995). We have since come 

to understand that the relationship between dopamine and working memory follows an inverted-
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U curve, such that too much or too little dopamine impairs performance (Arnsten, 2009) – 

termed the “signal-to-noise” hypothesis. Specifically, DA in the PFC plays a role in sculpting 

mental representations and maintain task set. Too little dopamine makes it challenging to inhibit 

distraction, and higher dopamine levels make it difficult to maintain anything in mind (i.e., a 

suppression effect). Therefore, depending on where individuals lie on the inverted-U at a given 

time, DA may impair or support PFC-dependent cognitive function.  

Support for the inverted-U association comes from work in humans using PET studies. 

D1 class dopamine receptors are more densely populated in the PFC, in comparison to D2-class 

receptors which are more densely populated in the striatum (Arnsten & Li, 2005). PET studies 

have found that reduced D1 receptor binding supports dlPFC activity during working memory 

tasks (Bäckman et al., 2011). Another study found a U-shaped association between D1 binding 

and errors on a sorting task, supporting that too little to too much binding, which reflects 

heightened and reduced dopamine availability, respectively, impairs performance (Takahashi et 

al., 2008).  

Another common way to study dopaminergic activity in the PFC in humans is the 

catechol-o-methyltransferase (COMT) gene. The COMT gene codes for the COMT enzyme that 

is responsible for over 60% of DA degradation in the PFC. The gene has gained traction as a 

proxy for prefrontal dopaminergic tone because it is mostly expressed in the PFC, compared to 

other brain regions dense in dopaminergic neurons (Matsumoto et al., 2003). The most studied 

functional single nucleotide polymorphism (SNP) is rs4680. This SNP codes for the ancestral 

valine (Val) to methionine (Met) substitution at codon 158 (Val158Met). Met carriers have less 

enzyme activity and therefore more DA availability than Val carriers (Tunbridge et al., 2006, 

2019).  
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 It is essential to differentiate the utility of COMT as a proxy for tonic dopamine levels 

(i.e., basal levels) in the PFC instead of a candidate gene for personality traits or psychiatric 

vulnerability. Considerable caution has been advised when attempting to link genes to 

psychiatric illnesses due to concerns with publication bias and false positive rates (Duncan & 

Keller, 2011; Keller, 2014). However, the purpose of using COMT in the present study is to 

leverage our knowledge of the functional role of the COMT enzyme. It is a non-invasive way to 

approximate individuals’ putative position on the inverted-U association between dopamine and 

working memory at baseline.  

There has been traction for the utility of COMT in this regard. Homozygous Met carriers 

(more baseline DA) have demonstrated enhanced performance on working memory tasks, 

including the Wisconsin Card Sorting Test (Egan et al., 2001) and the N-back task (Goldberg et 

al., 2003) compared to Val carriers. This effect has also been replicated when dopamine levels 

are manipulated with tolcapone, a COMT inhibitor (Apud et al., 2007; Roussos et al., 2009), 

such that Val carriers perform better than Met carriers when given tolcapone during working 

memory tasks. COMT has also been shown to be related to differences in neural efficiency 

during the completion of working memory tasks. Met carriers demonstrate an advantage by 

having lower sustained activity in the dlPFC (Egan et al., 2001; Mattay et al., 2003; Meyer-

Lindenberg et al., 2006). Similarly, when participants are given amphetamine, which increases 

dopamine in the PFC, Val carriers show enhanced efficient activity in the PFC and Met carriers 

do not (Mattay et al., 2003).  

Importantly, few studies have examined the interactive effects of COMT and anxiety on 

working memory performance. Previous literature has found that stress and COMT interact to 

increase dopamine in the PFC to impact performance. Increases in stress may lead to a phasic 
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increase in dopamine in the PFC. For Val carriers, this increase might help support working 

memory, while it may be detrimental to Met carriers. For instance, studies have found that Val 

carriers evidence enhanced performance on 2-back conditions following an acute stressor 

(Buckert et al., 2012; Qin et al., 2012). These findings suggest that increases in stress-induced 

dopamine availability may have differential effects for Met and Val carriers because of their 

relative differences in dopaminergic tone at baseline.  

Our group recently showed that worry also interacts with the COMT gene to influence 

working memory performance. Preliminary evidence has shown that within-person increases in 

worry over time are related to impaired performance on 2-back lure trials for Val carriers (Louis 

et al., 2021). We did not find that having more worry on average (i.e., between people) interacted 

with COMT to predict working memory performance. These findings may seem contradictory to 

the aforementioned results with acute stress. Unlike stress, however, acute changes in worry may 

not increase DA signaling in the PFC. Instead, worry places additional demand on cognitive 

systems, such as the central executive. We concluded that Val carriers are dually impacted by 

within-person increases in worry and lower dopamine levels (Louis et al., 2021). Due to 

dopamine’s influence on the ability to gate distraction and stabilize mental representations, it 

may play a critical modulatory role in the association between worry and working memory.  

1.7 Estradiol as a Modulator of the Link between Worry and Working Memory  

Dopamine in the PFC is influenced by a variety of factors, including sex hormones. 17β-

estradiol (‘estradiol’), the major estrogen during reproductive years, influences the abundance of 

dopamine in the PFC (Xiao et al., 2011) and dopaminergic neurotransmission (Barth et al., 

2015). As such, estradiol further modulates dopaminergic action in the PFC. Parsing out the role 
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of dopamine and estradiol in anxiety is critical to understanding the neurobiology of anxiety-

related cognitive dysfunction in female populations.  

Numerous studies have found that estradiol facilitates better working memory 

performance in rats (Bimonte & Denenberg, 1999; Holmes et al., 2002), and that introducing 

estradiol in the PFC (in comparison to the hippocampus) also improves working memory in rats 

(Sinopoli et al., 2006). In humans, results follow a similar effect. In a young adult female sample 

of those not on hormonal contraceptives, one study measured estradiol concentrations via 

radioimmunoassay and grouped women into low and high estradiol groups. They found that 

working memory performance was higher for women in the high estradiol group compared to 

women in the low estradiol group (Hampson & Morley, 2013). Hampson & Morley (2013) also 

found that only estradiol, and not progesterone, was related to fewer errors. Additional evidence 

comes from work examining the benefits of hormone replacement therapy (HRT) in 

postmenopausal women. Those taking estrogen-based HRT (compared to combined 

administration of estrogen and progesterone and a control) performed better on spatial and verbal 

working memory tasks (Duff & Hampson, 2000). Another study found that exogenous estradiol 

(delivered transdermally) improved performance on a variety of PFC-dependent tasks (e.g., the 

Stroop task, and digit span task), as opposed to those that may rely more heavily on the 

hippocampus (e.g., delay recall) (Krug et al., 2006). This finding supports another study that 

found that HRT benefits working memory performance (Keenan et al., 2001). Collectively, these 

studies provide evidence that estradiol concentrations throughout the lifespan influence working 

memory performance.  

Estradiol influences working memory partially via its modulatory actions on dopamine 

(Barth et al., 2015; Shansky et al., 2004; Xiao & Becker, 1994). Pertinent to this study, estradiol 
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interacts with COMT specifically, by down-regulating COMT enzyme activity and increasing 

dopamine availability in the PFC (Xiao & Becker, 1994). Therefore, the effect of COMT could 

be modulated by varying levels of estradiol across the menstrual cycle (see Figure 4). In a direct 

test of this, Jacobs and D’Esposito (2011) examined whether the effect of dopamine (measured 

via the COMT gene and enzyme) was modulated by within-person changes in estradiol. They 

found that at low estradiol levels, Met carriers demonstrated higher accuracy on 2-back trials of 

the N-back compared to Val carriers – consistent with the inverted U hypothesis. However, when 

estradiol was high, this effect was reversed such that Val carriers performed better than Met 

carriers (see Figure 4). The same finding was replicated in a separate sample (N=74) of young 

adult females using the same task (Louis et al., unpublished data). These effects support 

estradiol’s modulatory role in dopamine levels in the PFC and how it impacts working memory 

performance. These effects were also specified to moderate levels of task difficulty, suggesting 

that stress due to task difficulty may also moderate the effect of COMT (see Figure 4). 
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Figure 4. Graphical depiction of the inverted-U association between dopamine and the PFC-

dependent function. Val/Val carriers have more COMT enzyme activity, reducing DA 

availability in the PFC. In contrast, Met carriers have relatively less enzyme activity and more 

DA availability in the PFC. As such, Met/Met carriers are hypothesized to be at the top of the 

inverted-U at baseline. However, DA availability is malleable and can be influenced by sex 

hormones and cognitive demand. Adapted from Jacobs & D’Esposito (2011).  
 

Finally, in a recent study, Gloe et al. (2021) found that worry and estradiol interacted to 

predict working memory performance on lure trials. They found that higher average levels of 

estradiol across the menstrual cycle was associated with reduced accuracy on lure trials for those 

with high average levels of worry. They found no effects of within-person worry and estradiol on 

performance. These findings provided preliminary evidence that average levels of worry and 

estradiol influence working memory performance. Given estradiol’s effect on tonic 

dopaminergic tone, examining whether within-person changes in estradiol impact the association 

between worry and working memory on a neural level will be critical. Although Gloe and 

colleagues did not within-person effects on behavior, it may be present at the neural level.   
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1.8 The Current Study 

 

Figure 5. Graphical Illustration of Main Aims. Aim 1 examines whether worry (within- and 

between- persons) is associated with TGC. Aim 2 examines whether dopamine influences the 

association. Aim 3 examines the modulatory role of estradiol.  

 The existing literature suggests that worry is associated with poor working memory 

performance and altered activity in the dlFPC. The current study therefore examined the 

association between worry and TGC at frontal-lateral sites on the N-back task. Based on 

previous literature, I hypothesized two directions for the association between worry and TGC. 

First, I hypothesized that worry would be associated with reduced TGC due to prior studies that 

have found this effect for those with psychiatric conditions. Such a finding would indicate that 

worriers experience difficulties with lPFC neuronal integration and reduced activity at lPFC 

regions (i.e., hypoactivation hypothesis). Alternatively, worry may be associated with 

hyperactivation in the dlPFC (e.g., increased TGC). Such a finding would indicate that worriers 

may enhance effort to maintain favorable performance, which would be aligned with ACT (i.e., 

processing inefficiency hypothesis). The current study will examine both within-person and 

between-person differences in worry as studies have found effects for both (Gloe et al., 2021; 

Louis et al., 2021; Zainal & Newman, 2020), and ACT predicts that trait and state worry are 

likely to impair working memory.  Similarly, as ACT proposes, I expected the association 
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between worry and TGC to be present for high average worriers who also experiences a within-

person increase in worry (ie., those high on between- and within- person worry).  

 Second, I used the COMT gene as a proxy for tonic dopamine to examine whether it 

moderated the association between worry and TGC. No studies have directly tested whether 

dopamine modulates TGC, however several lines of evidence suggest that it may be influential. 

TGC has been linked to conditions known to be affected by changes in dopaminergic pathways, 

such as Schizophrenia. Using an animal model, Lohani et al (2019) proposed that dopamine 

excitability in the ventral tegmental area (VTA; which innervates the PFC) can enhance TGC 

strength. Further, dopamine may aid in selecting relevant information that should be maintained 

(Benchenane et al., 2011). Pertinent to this study, within-person increases in worry interacted 

with COMT allele group to predict working memory performance, such that for Val carriers, 

higher levels of worry predicted worse performance on the N-back task. Therefore, I expected 

there would be an interaction between COMT and within-person changes in worry to predict 

TGC, such that association would be present for Val carriers. More basal dopamine may be 

protective by allowing for the maintenance of information in mind. Therefore, irrespective of 

whether the association between worry and TGC follows a suppression or processing 

inefficiency effect, I expect the association to be stronger for Val carriers.  

Lastly, I aim to examine whether estradiol levels across the menstrual cycle (within-

person changes) moderate the association between worry and TGC. Given that estradiol tends to 

increase neural efficiency and support working memory function, I predict that the association 

between worry and TGC will be enhanced at low estradiol states. Notably, however, Gloe et al. 

(2021), did not find that within-person changes in estradiol moderated the association between 

worry and working memory. I predicted that these effects might be evident at the neural level. It 
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is also possible that the effects will be null and consistent with Gloe and colleagues’ findings. 

Relatedly, considering basal dopamine levels may be essential for elucidating estradiol’s effects. 

To address this, exploratory analysis will examine whether worry, COMT, and estradiol interact 

to predict behavior and TGC. This exploratory analysis will attempt to bridge all three aims to 

work toward a comprehensive understanding of the interactive effects of worry, dopamine, and 

estradiol on TGC and behavioral performance.  
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2. METHODS 

2.1 Participants 

Participants were recruited from central Michigan and the surrounding area as part of a 

larger investigation reported elsewhere (Gloe et al., 2021; Guevara et al., 2023). Participants had 

to be between the ages of 18-25, could not be diagnosed with a severe mental health condition 

(e.g., schizophrenia or bipolar disorder), be on psychotropic medication, or have been diagnosed 

with conditions that could affect neuroendocrine function or be on hormonal contraception. A 

total of 139 individuals were genotyped for the COMT Val158/Met (rs4680) polymorphism. Of 

these, 136 had complete data. One participant served as a leverage point (see Data Analysis plan) 

and was therefore removed from the analyses. This resulted in a sample of 135 participants (M = 

20.66, SD = 1.60). One participant identified as non-binary, and 134 participants identified as 

women. The sample mostly consisted of individuals who identified as White (63%), followed by 

individuals who identified as Black (25%), Asian (8%) and those who identified as more than 

one race (4%). Most of the sample consisted of those who completed partial college (56%), 

however there were also many who had a college level education (31%), completed a high 

school level of education (12%), and one person who had a graduate level education (1%). For 

income levels, 48% of the sample reported an annual household income of $50,000 or less, while 

52% of the sample reported an annual household income > $50,000. Most of the sample 

consisted of students who were enrolled as full or part-time (78%) and most endorsed that they 

were financially supported by someone else in the past year (73%).  

2.2 Measures 

Penn State Worry Questionnaire (PSWQ; Meyer, 1990). The PSWQ is a 16-item 

questionnaire that measures levels of worry. The measure was anchored to the day of 
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competition and responded on a Likert scale from 1 (“Not at all Typical of Me”) to 5 (“Very 

Typical of Me”). The possible range on the questionnaire is 16-80.  Items include “My worries 

overwhelm me” and “I worry all the time.” 

N-Back. Working memory was measured with the verbal N-back task (Jacobs & 

D’Esposito, 2011; Kirchner, 1958). For each trial, letters were presented sequentially for 1000 

milliseconds (ms). Participants were tasked with responding to each letter by identifying whether 

the letter was presented n trials back. The task consisted of three conditions – 0-, 2-, and 3-back 

load. The N-back consisted of 320 trials (0-back – 160; 2-back – 80; 3-back – 80). For the 0-back 

load condition, participants were asked to identify the letter “X” as a “target” (left button press) 

when it appeared on the screen and respond to any other letters as non-targets (right button 

press). On 2- and 3-back conditions, memory load was manipulated by asking participants to 

respond to a letter based on whether the letter presented n- trials prior. For instance, on a 2-back 

load condition, a “target” (i.e., the correct response) is a letter that was presented two trials prior, 

while a “non-target” (i.e., incorrect response) would be a letter that was not presented two trials 

back. Furthermore, 2- and 3-back conditions included lure trials. Lure trials add an additional 

“load’ complexity, as they require participants to not only remember the sequence of letters that 

were presented prior, but also require them to inhibit a prepotent response to seeing a previously 

presented letter.  

Estradiol. As part of the larger investigation, participants provided daily assays of 1.8 mL 

of saliva using the passive drool method across the full length of their menstrual cycle within 30 

minutes of waking. Participants were asked to keep completed samples in their own personal 

freezer. During in-person lab visits, participants provided their saliva samples which were then 
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transferred to a -80F degree freezer. All samples were sent to Salimetrics LLC (State College, 

PA) to assay estradiol levels.  

COMT Extraction. On a separate occasion, one saliva sample for each participant was 

shipped to CD Genomics (Shirley, NY) to extract COMT Val158/Met (rs4680) polymorphisms 

using SNaPshot Multiplex System for SNP Genotyping. Of the 139, 74 participants were 

homozygous allele carriers. As stated above, one participant was removed due to being a 

leverage point in our analyses. Therefore, the final sample consisted of 33 Met/Met and 40 

Val/Val carriers The observed genotype frequencies of all the participants were in Hardy-

Weinberg equilibrium (χ2= .54, df = 1, n.s), indicating no significant difference from the 

expected frequencies. 

2.3 Psychophysiological data recording, reduction, and analysis 

Continuous electroencephalographic activity was recorded using the Active Two Biosemi 

system (BioSemi, Amsterdam, The Netherlands).  Data was collected using 64 Ag-AgCl 

electrodes placed in a stretch-lycra cap in accordance with the 10/20 system. In addition, 

electrodes were placed on the left and right mastoids. Electrooculogram (EOG) activity from eye 

movements and blinks was recorded at FP1 and three additional electrodes placed on the sides of 

the right and left eyes, as well as one additional electrode below the left eye. All signals were 

digitized at 512 Hz, using the ActiView software (BioSemi) during data collection. Offline data 

reduction was performed using BrainVision Analyzer 2 (BrainProducts, Gilching, Germany). 

Scalp recordings were re-referenced to the numeric mean of the left and right mastoids. 

Additionally, all signals were band-pass filtered with cutoffs of 0.1 and 80 Hz (12 dB/oct 

rolloff). Ocular artifacts were then corrected using the method developed by Gratton, Coles, and 

Donchin (1983). Stimulus-locked data were segmented into individual epochs beginning 200ms 
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prior to the response and 1000 ms post-response. Trials were rejected using a computer-based 

algorithm defined by the following criteria: a voltage step exceeding 50 μV between contiguous 

sampling points, a voltage difference of more than 300 μV within a trial, activity that exceeds +/-

200 μV, or activity less than 0.5 μV within a trial.  

2.4 Theta-Gamma Coupling Calculation 

Much of the research on TGC in the N-back task has focused on low gamma (30-50 Hz) 

(Barr et al., 2017; Brooks et al., 2020; Goodman et al., 2018; Rajji et al., 2017). However, other 

studies have noted that high gamma can also be phase-locked to theta across various working 

memory tasks (Alekseichuk et al., 2016; Canolty et al., 2006; Edwards et al., 2005). Functional 

differences between theta-low gamma and theta-high gamma coupling have not been well 

characterized on the N-back task (but see Papaioannou et al., 2022; Yang & Huang, 2018). High 

gamma band activity is modulated by working memory load at lateral sites (Carver et al., 2018; 

Roux et al., 2012).  Some work suggests that low and high gamma’s phase locking with theta 

may reflect a similar sequential ordering function for working memory (Alekseichuk et al., 

2016). Therefore, we examined coupling with theta across two gamma ranges (described below).  

 Computation of a time frequency based TGC was completed in MATLAB using the 

methods reported in Munia and Aviyente (2019). TGC was computed for each trial type (i.e., 

targets, non-targets, and lures) for low gamma (30-50 Hz) and high gamma (50-80 Hz). Theta 

was characterized as activity between 4-8 Hz.  Electrodes were selected a priori across 10 fronto-

lateral sites: AF3/4, F1/2, F3/4, F5/6, F7/8 as done in previous studies based on the importance 

of lateral activity for working memory (Barr et al., 2017; Rajji et al., 2017). I also computed 

TGC for two control sites, P4/5, in which I expected less TGC activity.  Time was segmented to 

capture the post-stimulus response on correct trials across two segments – the first half of the 
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time segment (0-500 ms post-stimulus) and the second half of the segment (500-100 ms). This 

was done because prior research suggests that timing may be an important feature to consider for 

TGC, as the earlier part of the segment may be when TGC is critical for performance on the N-

back task (Rajji et al., 2017). It has not been tested whether there are significant differences in 

TGC in the first and second half of the time range post-stimulus on the N-back task. Therefore, I 

computed them separately. Past research suggests that the segment length could affect the PAC 

metric's computation (i.e., smaller time segments may affect the signal-to-noise ratio). However, 

I computed TGC averaged across trials (instead of across time) and performed surrogate testing 

(described below) that ensured the validity of our TGC metric (Aru et al., 2015). Therefore, TGC 

was computed for each trial type across two gamma ranges (low, and high) and two time ranges 

(0-500 ms and 500-1000 ms).  

There are three broad steps to the computation of the TGC signal, as outlined by Aru et 

al. (2015): (1) applying a transform to extract the amplitude and phase signal; (2) quantifying the 

association between amplitude and phase across the time series; (3) significance testing to ensure 

the validity of the TGC signal.  

To extract the signal, within each trial type and electrode, the envelope of the high 

amplitude signal and the phase of the low amplitude is extracted from the average activity in 

each electrode. To do this, the Reduced Interference Rihaczek (RID-Rihaczek) time-frequency 

distribution was used to extract the components of gamma amplitude and theta phase (Aviyente 

et al., 2017). The RID- Rihaczek offers advantages over the commonly used Hilbert Transform 

because it is more robust against bandpass filtering (Munia & Aviyente, 2019a).  

A time-frequency based mean vector length (tf-MVL) was computed to quantify TGC 

(Canolty et al., 2006; Munia & Aviyente, 2019b). To do this, a complex number is calculated by 
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combining the phase and amplitude across each time point on an analytic signal. The complex 

value is a vector on a polar plane (measured in radians or degrees to represent specific phases). 

Coupling exists when the magnitude of a vector is higher at a specific phase, indicating higher 

amplitude strength at specific locations across the phase time series. Computing the mean vector 

length provides a value that corresponds to the average length of vectors across specific phases – 

which quantifies the PAC. When no coupling is present, the data points would be sporadically 

placed across the polar plane, resulting in a short mean vector length. Stronger coupling results 

in a higher value (i.e., longer vector length). Notably, the MVL can be biased by amplitude, such 

that it can result in inflated PAC values due to a higher amplitude (Hülsemann et al., 2019). A 

solution to this has been to normalize the MVL value which results in numbers from 0 to 1 

(Özkurt & Schnitzler, 2011). The normalized tf-MVL is computed as follows:  

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑓 − 𝑀𝑉𝐿 =
1

√𝑇

| ∑ 𝐴𝑓𝑎(𝑡)𝑒𝑗𝛷𝑓𝑝(𝑡)|𝑇
𝑡=1

√∑ 𝐴𝑓𝑎(𝑡)2𝑇
𝑡=1

 

Where T is the total number of data points, 𝐴𝑓𝑎(𝑡) is the amplitude component and 𝛷𝑓𝑝(𝑡) is the 

phase component at data point t.  

Finally, to further ensure the validity of the PAC signal, significance testing of the tf-

MVL was performed by generating surrogate datasets using a block-swapping approach 

following the procedures in Aru et al. (2015). To do this, a surrogate time series are creased by 

spitting the envelope of the high amplitude (i.e., gamma) at random locations across the time 

series and swapping them. This is done to disrupt the temporal synchronization of the amplitude 

and phase, while all other parts of the time series remain the same. Using the newly generated 

swapped data, an MVL value is computed with the phase of the original low frequency 

oscillation (i.e., theta). This was done 100 times. The observed tf-MVL was then compared to the 
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surrogate data and was deemed significant only if it was significantly larger than 95% of the 

surrogate values.  

After the computation of the TGC signal, I examined the coupling strength across sites in 

the full sample (N=135).  Multi-level modeling was used to examine whether TGC across frontal 

sites significantly differed from TGC at control sites (i.e., P4/5). The tf-MVL value was the 

outcome with electrode as a predictor, while controlling for load and time range as main effects. 

I then conducted a pairwise post-hoc analysis, comparing each a priori site to the control sites. 

This resulted in 20 comparisons. To be conservative, I adopted a Bonferroni correction, resulting 

in a threshold p-value of .0025. I found that AF3/4, F5/6, F7/F8 were significantly higher than P4 

and P5 (all p’s > .0001). However, F1/F2 showed significantly less coupling than P4 and P5 (p < 

.0001). Finally, F3/4 were not significantly different than P4 and P5 (p > .2). The results were 

consistent for Load 2 and 3 (see Figure 6a and 6b). Therefore, for the remaining analyses, I only 

used TGC for frontal lateral sites - AF3/4, F5/6, F7/F8 (Figure 6c).  

 

Figure 6. Site Specification for the TGC Analyses. 1a. Average TGC Across Sites and Trial 

Type for Load 2. The results show that AF3/4, F5/6, F7/8 show significantly more coupling than  
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Figure 6 (cont’d)  

sites selected as the control. 1b. Average TGC Across Sites and Trial Type for Load 3. The 

results show that AF3/4, F5/6, F7/8 show significantly more coupling than control sites. 1c. Plot 

showing the sites used for the subsequent analyses, including AF3/4, F5/6, and F7/8. Control 

sites are the averaged activity at sites P4/5. 
 

2.5 Procedure 

All interested participants completed a phone screening to determine eligibility for the 

study. After the phone screening, participants came into the lab to complete an initial intake visit. 

The intake visit gave participants their overall responsibilities during the study, including how to 

complete and store their saliva samples and instructions for completing daily questionnaires. 

Participants were asked to complete their saliva sample assays within 30 minutes after waking 

and complete daily questionnaires in the evening between 5-10 PM. Throughout the length of 

their 35-day participation, participants were also asked to complete in-person lab visits, which 

were scheduled using phase projection methods (described in Gloe et al., 2021). During in-

person lab visits, participants were asked to complete computerized cognitive tasks, including the 

N-back), and the Flanker task (not completed in the analyses, while concurrent EEG was 

recorded. Participants also completed O- and R-span tasks without EEG as part of the larger 

investigation. Participants were compensated $280 for complete data collection and prorated 

compensation amounts were dispersed based on the amount of missing data. 

2.6 Data Analysis Plan 

All analyses for the main aims of the study were conducted using the “lme4” package 

(Bates et al., 2007) in R Version 3.5.1 to estimate effects from multi-level models. A series of 

models were run for each aim. Cook’s distance was computed for each model to examine 

leverage points, and one participant was removed due to having a Cook’s distance greater than 

.5. I also graphed residuals to examine normality. The first aim was to examine whether worry 
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predicted TGC. For this model I examined worry (within- and between-centered) as predictors of 

TGC. To examine within-person effects, I computed a mean for each participant and subtracted 

the mean from in-person lab visit observations. This allowed us to examine within-person 

differences from participants’ own mean. To examine between-persons effects, a mean was 

computed for each participant. This was then used to compute an overall mean (i.e., mean of 

means). This allowed me to examine relative differences between people, on average, during 

their in-person lab visit days.  A cross-classified model was conducted to account for shared 

variance in participants and electrodes. That is, the model estimated a random intercept for both 

participants and electrodes. I examined whether worry predicted TGC low gamma and high 

gamma on load 2 and 3. This resulted in four models for the first aim. Two-way interactions 

were probed using the Johnson-Neyman approach (Preacher et al., 2006). This allowed me to 

examine effects of interest across the range of the moderator, instead of restricting it to +/- 1 SD 

of the mean.  

Aim 1 Model (N=135):  

𝑇𝐺𝐶 =  𝛾00 + 𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗) +  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗) + 𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗) ∗  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗)

+  𝛾01(𝐸𝐸𝐺 𝑉𝑖𝑠𝑖𝑡 0𝑗) +  𝑢𝑖𝑗(𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒) +  𝑢0𝑗(𝑃𝑎𝑟𝑡𝑐𝑖𝑝𝑎𝑛𝑡) +  𝑟𝑖𝑗 

 

For the second aim, I examined whether COMT moderated the association between 

worry and TGC. I maintained the within- and between- interaction effects of worry and added 

COMT as an effects coded-predictor. Significant interactions were probed using simple slopes 

analysis examining the effect of worry on lure trials at 2- and 3-back for Met and Val carriers 

separately.  
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Aim 2 Model (N=73): 

𝑇𝐺𝐶 =  𝛾00 + 𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗) +  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗) + 𝛾01(𝐶𝑂𝑀𝑇0𝑗) +  𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗)

∗  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗) + 𝛾01(𝐶𝑂𝑀𝑇0𝑗) ∗  𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗) + 𝛾01(𝐶𝑂𝑀𝑇𝑜0)

∗  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗) + 𝛾01(𝐶𝑂𝑀𝑇0𝑗) ∗   𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗) ∗  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗)

+  𝛾01(𝐸𝐸𝐺 𝑉𝑖𝑠𝑖𝑡 0𝑗) +  𝑢𝑖𝑗(𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒) +  𝑢0𝑗(𝑃𝑎𝑟𝑡𝑐𝑖𝑝𝑎𝑛𝑡) +  𝑟𝑖𝑗 

 

For the third and final aim, I examined whether estradiol moderated the association 

between worry and TGC. I maintained the within- and between- interaction effects of worry and 

within-person centered estradiol to examine as a continuous predictor. Significant interactions 

were probed using the Johnson-Neyman approach, examining the worry-TGC association across 

the range of within-person estradiol values. For ease of interpretation of the exploratory analysis 

that combines all predictors, I maintained the same sample sizes for Aim 2 and 3 (N=74). 

However, a supplementary analysis was conducted to examine whether the effects for Aim 3 

change when leveraging the full sample (N=135).  

Aim 3 Model (N=73):  

𝑇𝐺𝐶 =  𝛾00 + 𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗) + 𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗) + 𝛾10(𝐸𝑡𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑖𝑗) +  𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗)

∗  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗) + 𝛾10(𝐸𝑡𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑖𝑗) ∗  𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗) + 𝛾10(𝐸𝑡𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑖𝑗)

∗  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗) + 𝛾10(𝐸𝑡𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑖𝑗) ∗   𝛾10(𝑊𝑜𝑟𝑟𝑦𝑖𝑗) ∗  𝛾01(𝑊𝑜𝑟𝑟𝑦0𝑗)

+  𝛾01(𝐸𝐸𝐺 𝑉𝑖𝑠𝑖𝑡) +  𝑢𝑖𝑗(𝑆𝑖𝑡𝑒) +  𝑢0𝑗(𝑃𝑎𝑟𝑡𝑐𝑖𝑝𝑎𝑛𝑡) + 𝑟𝑖𝑗 

2.7 Power Analysis  

 A post-hoc sensitivity analysis was completed to examine the size of the effect I could 

detect with this sample size. Using G Power, the alpha probability level was set to .05 and a 

power probability was set to .8 to determine the expected effect size of a between-within 
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interaction at 80% power. The sample size was set to 73, number of groups was 2 (Met/Val), and 

the number of repeated measurements was set to 24 (6 electrode observations across 4 visits).  

I estimated different sets of sensitivity-based analyses based on between-within 

interactions and within-within interactions for each dependent variable. Average correlations 

across repeated measurements were as follows for 2-back TGC low and high gamma and 3-back 

TGC low and high gamma, respectively r’s = .38, .41, .33, .35.  

I used a conversion to estimate the f value provided by G Power to eta squared (η2). The 

results of the power analyses revealed that for the full sample (N=135), we were powered to 

detect small between-within interactions for 2-back TGC low gamma a (η2 = 0.0042) and TGC-

high gamma (η2 =.004), as well as 3-back TGC-low gamma (η2 =.0046) and high gamma (η2 = 

.0044). For a subset of the sample (N=73), I was also powered to detect a small between-within 

interaction for two back TGC-low gamma (η2 =.0079) and TGC high gamma (η2
p = .0076), as 

well as three back TGC low gamma (η2
p =.0086) and TGC high gamma (η2

p = .0083). Therefore, 

I proceeded with the analyses with the ability to detect small effects given the sample size.  
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3. RESULTS 

3.1 Examining TGC Across Time, Trial Types and Gamma Ranges 

Analyses for TGC across time and trial type are presented in the Appendix. Overall, there 

was more coupling on target and lure trials compared to non-targets. In addition, although there 

was less coupling in the first half compared to the second half, the first half revealed more 

distinct effects of trial type. This is likely because the second half of the trial may be influenced 

by response selection. Finally, the results were similar across TGC-low and TGC-high gamma. 

Therefore, I proceeded with the final analyses with TGC in the first half for low and high gamma 

on correct lure trials, where we saw increased TGC on 2- and 3-back trials across the selected 

electrodes (see Figure 7). Lure trials were our condition of interest as previous studies have 

found that performance on lure trials is associated with worry (Fales et al., 2008; Gloe et al., 

2021; Louis et al., 2021), as well as dopamine and estradiol (Jacobs & D’Esposito, 2011; Louis 

et al., unpublished data). The enhanced coupling on lure trials compared to non-targets supported 

that lures influence TGC strength.   
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Figure 7.  Comodulogram Plots for theta-gamma phase amplitude coupling for each electrode 

used in the final analyses. Theta phase (4-8 Hz) is on the x-axis and gamma amplitude (30-80 

Hz) is on the y-axis. A. Theta-Gamma comodulogram plots for each electrode on 2-back lure 

trials. B. Theta-Gamma comodulogram plots for each electrode on 3-back lure trials.  
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3.2. Descriptive Statistics 

Table 1 reports the descriptive statistics for predictors and dependent variables.  

Table 1. Summary of Predictor and Dependent Variables for the full sample (N=135).  

 

Variable Mean SD Observed Range 

PSWQ 41.64 15.41 16-801 

Estradiol (pg/mL) 1.47 .74 .10- 5.14 

TGC-low gamma 2-back Lures .0026 .0022 0 - .014 

TGC-low gamma 3-back Lures .0028 .0023 0-.015 

TGC-high gamma 2-back Lures .003 .002 .00064 - .016 

TGC-high gamma 3-back Lures .003 .002 .000057-.017 

Note. PSWQ = Penn State Worry Questionnaire; pg/mL = picograms per milliliter 

3.3 Aim 1 Results 

For the first aim, I hypothesized two plausible directions for the association between 

worry and TGC. First, previous literature has found that those with psychiatric conditions 

evidenced reduced TGC on correct trials. Alternatively, worry may be associated with higher 

TGC which would be consistent with ACT.  

 3.3.1 Two-back Lure trials 

There was a significant interaction between average worry and within-person worry (η2
p 

= .003) (see Table 2). The interaction was probed using a Johnson-Neyman approach (see Figure 

8). Aligned with ACT, within-person increases in worry related to less coupling for individuals 

with higher average worry scores (Average PSWQ > 50.39). On the other hand, within-person 

 
1 7% (n=10) of participants were above the clinical cutoff score for the PSWQ (Average scores greater 

than or equal to 60) 



38 
  

increases in worry related to more TGC for individuals with low average worry scores across the 

menstrual cycle (Average PSWQ < 33.17).  

Table 2. Estimates for multi-level model of PSWQ on TGC-low gamma for 2-back lure trials. 

EEG Visit was not a significant predictor in the model (p = .21).  

Fixed Effects Estimate SE  df t  p 

Intercept 2.67 x 10-3 1.11 10-4 30.02 24.07 < .0001 

PSWQ (within-centered) 1.86 x 10-6 4.72 10-6 2435 .39 .69 

PSWQ (between-

centered) 

-1.03 x 10-5 7.33 x 10-6 13.35 -1.40 .16 

PSWQ (within) x PSWQ 

between 

-1.36x 10-6 4.39 x 10-7 2436 -3.10 .001 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 1.01 x 10-6 1.0 x 10-4    

Intercept for Electrode 1.92 x 10-8 1.3 x 10-4    

Residual 3.86 x 10-6 1.9 x 10-3    

 

 

Figure 8. PSWQ Between-Within Interaction Predicting Theta-Gamma Coupling (TGC-low 

gamma). The effect demonstrates then when average levels of worry are low, within-person 

increases in worry predict more coupling. On the other hand, when average levels of worry are 

high, within-person increases in worry predict less coupling.  

The results for TGC-high gamma were nearly identical to those of TGC-low gamma (see 

Table 3). There was a significant interaction between within- and between-centered worry. 

Within-person increases in worry was associated with reduced TGC for individuals who worry 
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more on average (Average PSWQ > 50.11). Conversely, within-person increases in worry were 

associated with higher TGC for individuals who worry less on average (Average PSWQ < 

32.31).  In summary, for individuals who worry more on average, a within-person increase in 

worry is associated with reduced TGC on two-back lure trials; whereas for individuals who 

worry less on average, a within-person increase in worry is associated with higher TGC (see 

Figure 9).  

Table 3. Estimates for multi-level model of PSWQ on TGC-high gamma for 2-back lure trials.   

EEG visit was not a significant predictor in the model (p = .19).  

Fixed Effects Estimate SE  df t  p 

Intercept 3.14 x 10-3 1.25 x 10-4 27.65 25.09 < .0001 

PSWQ (within-centered) 1.51 x 10-6 4.99 x 10-6 2435 .303  .76 

PSWQ (between-centered) -1.22 x 10-5 8.05 x 10-5 13. 41 -1.52 .13 

PSWQ (within) x PSWQ 

between 

-1.41 x 10-6 4.64 x 10-7 2436 -3.05 .002 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 1.2 x 10-6 1.10 x 10-4    

Intercept for Electrode 1.80 x 10-8 1.34 x 10-5    

Residual  4.12 x 10-6 2.03 x 10-3    

 

 

Figure 9 . PSWQ Between-Within Interaction Predicting Theta-Gamma Coupling (TGC-high 

gamma). The effect demonstrates then when average levels of worry are low, more worry 

predicts more coupling. On the other hand, when average levels of worry are high, more worry 

predicts less coupling. 



40 
  

3.3.2 Three-Back Lure Trials 

Within-person increases in worry predicted more coupling on 3-back lure trials. The 

positive association was consistent across TGC-low gamma (p = .001, η2
p = .008) and TGC-high 

gamma (p = .002, η2
p = .002). Importantly, however, there was no interaction with average levels 

of worry (see Tables 4 and 5).  

Table 4. Estimates for multi-level model of PSWQ on TGC-low gamma for 3-back lure trials. 

EEG was a significant predictor in the model (p < .001).  

Fixed Effects Estimate SE  df t  p 

Intercept 2.76 x 10-3 1.15 x 10-4 2780 24.13 < .0001 

PSWQ (within-centered) 1.60 x 10-5 4.89 x 10-6 2422 3.27  .001 

PSWQ (between-centered) -1.02 x 10-5 7.49 x 10-6 137 -1.36 .17 

PSWQ (within) x PSWQ 

between 

-2.57 x 10-7 4.59 x 10-7 2423 -.56 .57 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 1.03 x 10-6 1.01 x 10-3    

Intercept for Electrode 2.16 x 10-8 1.47 x 10-4    

Residual  4.19 x 10-6 2.04 x 10-3    

 

Table 5. Estimates for multi-level model of PSWQ on TGC-high gamma for 3-back lure trials. 

EEG was a significant predictor in the model (p < .001).  

Fixed Effects Estimate SE  df t  p 

Intercept 3.27 x 10-3 1.21 x 10-4 31.24 27.02 < .0001 

PSWQ (within-centered) 1,61 x 10-5 5.28 x 10-6 2421 3.05  .002 

PSWQ (between-centered) -1.29 x 10-5 8.09 x 10-6 136.4 -1.60 .11 

PSWQ (within) x PSWQ 

between 

-3.37x 10-7 4.95 x 10-7 2422 -.68 .50 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 1.20 x 10-6 1.08 x 10-3    

Intercept for Electrode 2.12 x 10-8 1.46x 10-4    

Residual 4.88 x 10-6 2.21 x 10-3    
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3.4 Aim 2 Results  

I hypothesized that there would be a significant interaction between worry and COMT to 

predict TGC, such that the association would be present for Val carriers.  

3.4.1. Two-Back Lure Trials 

The significant interaction between within- and between-person centered worry remained 

(p = .002).  Consistent with hypotheses, there was a significant within-person worry x COMT 

interaction (p = .04, η2
p = .003) (see Table 6). Simple slope analyses revealed that within-person 

increases in worry predicted more coupling for Val carriers (p <.0001), but not for Met carriers 

(p = .34) (see Figure 10). 

Table 6. Estimates for multilevel model examining the effects of PSWQ within- and between-

centered and COMT on TGC-low gamma on 2-back lure trials.  EEG was not a significant 

predictor in the model (p = .31).  

Fixed Effects Estimate SE  df t  p 

Intercept 2.61 x 10-3 1.34 x 10-4 40.52 19.42 < .0001 

PSWQ (within-centered) 2.12 x 10-5 6.71 x 10-6 1327 3.16 .002 

PSWQ (between-centered) -5.29 x 10-6 9.87 x 10-6 68.95 .055 .59 

COMT -4.51 x 10-5 1.26 x 10-4 67.75 .36 .72 

PSWQ (within) x PSWQ 

(between) 

-1.72 x 10-6 5.81 x 10-7 1327 -2.95 .003 

PSWQ (within) x COMT -1.37 x 10-5 6.68 x 10-6 1326 -2.05 .04 

PSWQ (between) x COMT  7.31 x 10-6 9.87 x 10-6 68.89 .74 .46 

PSWQ (within) x PSWQ 

(between) x COMT 

-5.08 x 10-7 5.83 x 10-7 1328 -.87 .38 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 9.45 x 10-7 9.72 x 10-4    

Intercept for Electrode 1.28 x 10-8 1.13 x 10-5    

Residual 3.51 x 10-6 1.87 x 10-3    
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Figure 10. PSWQ (within-centered) and TGC-low gamma revealing that increases in worry for 

Val carriers predicts more TGC while there was no effect for Met carriers.  

The results were similar for 2-back TGC-high gamma (see Table 7). The within-between 

interaction remained (p = .005). The within-worry x COMT interaction was marginal (p = .08, 

η2
p = .002). Simple slope analyses revealed that within-person increases in worry predicted more 

coupling for Val carriers (p < .001) but not for Met carriers (p = .43).  

Table 7. Estimates for multilevel model examining the effects of PSWQ within- and between-

centered and COMT on TGC-high gamma on 2-back lure trials. EEG was not a significant 

predictor in the model (p = .18).  

Fixed Effects Estimate SE  df t  p 

Intercept 3.12 x 10-3 1.53 x 10-4 41.51 20.38 < 

.0001 

PSWQ (within-centered) 1.94 x 10-5 7.25 x 10-6 1327 2.67 .008 

PSWQ (between-centered) -7.32 x 10-6 1.11 x 10-5 69.35 -.66 .51 

COMT 7.12 x 10-5 1.42 x 10-4 68.19 .350 .62 

PSWQ (within) x PSWQ 

(between) 

-1.73 x 10-6 6.29 x 10-7 1327 -2.76 .005 

PSWQ (within) x COMT -1.27 x 10-5 7.22 x 10-6 1326 -1.77 .08 

PSWQ (between) x COMT  8.48 x 10-6 1.11 x 10-5 69.29 .76 .44 

PSWQ (within) x PSWQ (between) 

x COMT 

-4.61 x 10-7 6.30 x 10-7 1328 -.73 .46 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 1.23 x 10-6 1.11 x 10-4    

Intercept for Electrode 1.80 x 10-8 1.34 x 10-5    

Residual 4.11 x 10-6 2.03 x 10-3    
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3.4.2 Three-Back Lure Trials 

As seen in Tables 8 and 9, the main effect of within-person worry remained across TGC-

low and high gamma. No other effects reached significance (p’s > .13).   

Table 8. Estimates for multilevel model examining the effects of PSWQ within- and between-

centered and their effect on TGC-low gamma on lure trials on load 3.  EEG was a significant 

predictor in the model (p = .04).  

Fixed Effects Estimate SE  df t  p 

Intercept 2.70 x 10-3 1.32 x 10-4 42.71 20.43 < .0001 

PSWQ (within-centered) 2.84 x 10-5 7.22 x 10-6 1312 3.93 < .0001 

PSWQ (between-centered) -5.64 x 10-7 9.99 x 10-6 70.18 -.06 .95 

COMT -1.03 x 10-4 1.28 x 10-4 68.60 -.80 .42 

PSWQ (within) x PSWQ (between) -9.47 x 10-7 6.28 x 10-7 1312 -1.51 .13 

PSWQ (within) x COMT 6.28 x 10-6 7.18 x 10-6 1311 .88 .38 

PSWQ (between) x COMT  3.60 x 10-7 9.99 x 10-6 70.06 .04 .97 

PSWQ (within) x PSWQ (between) 

x COMT 

-3.80 x 10-7 6.30 x 10-7 1313 -.60 .55 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 9.35 x 10-7 9.67 x 10-4    

Intercept for Electrode 6.36 x 10-9 7.98 x 10-5    

Residual 4.10 x 10-5 2.03 x 10-3    

 

 

Table 9. Estimates for multilevel model examining the effects of PSWQ within- and between-

centered and COMT on TGC-low gamma on 3-back lure trials.  EEG was a significant predictor 

in the model (p < .01).  

Fixed Effects Estimate SE  df t  p 

Intercept 3.23 x 10-3 1.50 x 10-4 43.60 21.55 < .0001 

PSWQ (within-centered) 2.73 x 10-5 7.87 x 10-6 1312 3.46 .0005 

PSWQ (between-centered) -2.74 x 10-6 1.13 x 10-5 70.00 -.24 .80 

COMT -8.97 x 10-5 1.44 x 10-4 68.47 -.62 .54 

PSWQ (within) x PSWQ (between) -8.38 x 10-7 6.85 x 10-7 1312 -1.22 .22 

PSWQ (within) x COMT 1.28 x 10-5 7.83 x 10-6 1311 1.63 .10 

PSWQ (between) x COMT  1.38 x 10-6 1.13 x 10-5 69.88 .12 .90 

PSWQ (within) x PSWQ (between) 

x COMT 

-5.86 x 10-7 6.87 x 10-7 1313 -.85 .39 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 1.21 x 10-6 1.10 x 10-2    

Intercept for Electrode 9.53 x 10-9 9.76 x 10-5    
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Table 9 (cont’d)  

 

     

Residual 4.87 x 10-6 2.21 x 10-3    

 

3.5 Aim 3 Results  

I hypothesized that the association between worry and TGC may be present when estradiol 

is low.  

3.5.1 Two-Back Lure Trials 

There continued to be an interaction between within-between worry (p = .003). However, 

worry did not interact with estradiol to predict TGC across low and high gamma (see Tables 10 

and 11).  

Table 10. Estimates for multilevel model examining the effect of PSWQ within- and between-

centered and estradiol (within-centered) on TGC-low gamma on 2-back lure trials.  EEG was not 

a significant predictor in the model (p = .41).  

Fixed Effects Estimate SE  df t  p 

Intercept 2.60 x 10-3 1.33 x 10-4 40.20 19.60 < .0001 

PSWQ (within-centered) 2.27 x 10-5 6.93 x 10-6 1344 3.27 .001 

PSWQ (between-centered) -6.47 x 10-6 9.65 x 10-6 71.70 -.67 .50 

Estradiol (within-centered) -3.57 x 10-5 1.25 x 10-4 1327 -.285 .78 

PSWQ (within) x PSWQ 

(between) 

-1.96 x 10-6 5.52 x 10-7 1326 -3.55 .003 

PSWQ (within) x estradiol (within) -7.09 x 10-6 2.07 x 10-5 1368 -.34 .73 

PSWQ (between) x estradiol 

(within)  

6.60 x 10-7 1.02 x 10-5 1330 .07 .94 

PSWQ (within) x PSWQ (between) 

x estradiol (within) 

6.73 x 10-7 1.74 x 10-6 1357 .39 .70 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 9.26 x 10-7 9.6 x 10-4    

Intercept for Electrode 1.27 x 10-8 1.13 x 10-4    

Residual 3.54 x 10-6 1.88 x 10-3    
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Table 11. Estimates for multilevel model examining the effects of PSWQ within- and between-

centered and estradiol (within-centered) on TGC-high gamma on 2-back lure trials. EEG was not 

a significant predictor in the model (p = .41).  

Fixed Effects Estimate SE  df t  p 

Intercept 3.10 x 10-3 1.51 x 10-4 41.24 20.56 < .0001 

PSWQ (within-centered) 2.04 x 10-5 7.49 x 10-6 1343 2.72 .006 

PSWQ (between-centered) -8.56 x 10-6 1.09 x 10-5 72.13 -.79 .43 

Estradiol (within-centered) -1.21 x 10-5 1.35 x 10-4 1327 -.089 .93 

PSWQ (within) x PSWQ (between) -1.95 x 10-6 5.96 x 10-7 1326 -3.28 .001 

PSWQ (within) x estradiol (within) -3.29 x 10-6 2.25 x 10-5 1377 -.15 .88 

PSWQ (between) x estradiol (within)  1.85 x 10-6 1.10 x 10-5 1330 .19 .87 

PSWQ (within) x PSWQ (between) x 

estradiol (within) 

6.91 x 10-7 1.89 x 10-6 1369 .37 .71 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 1.20 x 10-6 1.10 x 103    

Intercept for Electrode 1.79 x 10-8 1.34 x 10-4    

Residual 4.13 x 10-6 2.03 x 10-3    

 

3.5.2 Three-Back Lure Trials 

 The main effect of within-person increases in worry remained across TGC-low and TGC-

high gamma. However, no other effects reached significance2.  

Table 12. Estimates for multilevel model examining the effect of PSWQ within- and between-

centered and estradiol (within-centered) on TGC-low gamma on 3-back lure trials. EEG was a 

significant predictor in the model (p = .01).  

Fixed Effects Estimate SE  df t  p 

Intercept 2.72 x 10-3 1.30 x 10-4 42.40 20.86 < .0001 

PSWQ (within-centered) 2.44 x 10-5 7.43 x 10-6 1330 3.29 .001 

PSWQ (between-centered) -3.81 x 10-7 9.73 x 10-6 73.13 -.04 .97 

Estradiol (within-centered) 1.19 x 10-4 1.35 x 10-4 1312 .88 .38 

PSWQ (within) x PSWQ (between) -1.07 x 10-6 5.94 x 10-7 1311 -1.80 .07 

PSWQ (within) x estradiol (within) 4.18 x 10-5 2.21 x 10-5 1331 1.89 .06 

PSWQ (between) x estradiol 

(within)  

7.12 x 10-7 1.10 x 10-5 1315 .65 52 

PSWQ (within) x PSWQ (between) 

x estradiol (within) 

6.43 x 10-7 1.86 x 10-6 1316 .35 .72 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

 
2 Although Table 10 and 11 reveal marginal interactions with worry and estradiol, the effects did not survive when 

we leveraged the full data set (N=135). Therefore, the marginal interaction was not discussed or probed.  
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Table 12 (cont’d) 

 

     

Intercept for Participant 9.06 x 10-7 9.52 x 10-4    

Intercept for Electrode 6.40 x 10-9 8.00 x 10-5    

Residual 4.09 x 10-6 2.02 x 10-3    

 

Table 13. Estimates for multilevel model examining the effect of PSWQ within- and between-

centered and estradiol (within-centered) on TGC-low gamma on 3-back lure trials.  EEG was a 

significant predictor in the model (p = .06).  

Fixed Effects Estimate SE  df t  p 

Intercept 3.25 x 10-3 1.47 x 10-4 43.22 22.02 < .0001 

PSWQ (within-centered) 2.25 x 10-5 8.10 x 10-6 1329 2.78 .006 

PSWQ (between-centered) -2.43 x 10-6 1.09 x 10-5 72.87 -.22 .82 

Estradiol (within-centered) 1.39 x 10-4 1.48 x 10-4 1312 .93 .35 

PSWQ (within) x PSWQ (between) -1.02 x 10-6 6.47 x 10-7 131 -1.58 .12 

PSWQ (within) x estradiol (within) 4.58 x 10-5 2.41 x 10-5 1322 1.90 .06 

PSWQ (between) x estradiol (within)  1.23 x 10-5 1.20 x 10-5 1315 1.03 .30 

PSWQ (within) x PSWQ (between) x 

estradiol (within) 

1.74 x 10-6 2.03 x 10-6 1329 .86 .39 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 1.17 x 10-6 1.08 x 103    

Intercept for Electrode 9.69 x 10-9 9.79 x 10-5    

Residual 4.86 x 10-6 2.20 x 10-3    

 

3.6 Exploratory Analyses: Full Models Examining Worry, COMT and Estradiol on Behavior 

and TGC 

Separate investigations examining the interactive effects of worry, COMT, and estradiol 

have revealed evidence for their independent and interactive influence on lure performance. These 

previous analyses have begun illuminating for whom and when worry’s association with reduced 

working memory performance is enhanced. Based on previous studies and the current study, what 

remains unclear is whether COMT and estradiol combined moderate associations between worry 

and 2-back lure performance or neural activity. Given that estradiol down-regulates COMT 

enzyme activity, it is also important to test their combined modulatory influence. Indeed, previous 
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findings have shown that estradiol is associated with improved lure performance for Val carriers 

and less favorable performance for Met carriers (Jacobs & D’Esposito, 2011; Louis et al., 

unpublished data). 

Our previous and current studies have revealed that Val carriers who experience acute 

increases in worry evidence reduced performance (Louis et al., 2021) and enhanced coupling on 

correct lure trials. We did not find an interactive effect with COMT and average worry on 

performance, nor did we examine a COMT x worry x estradiol interaction (Louis et al., 2021).  On 

the other hand, those who experience high worry and have higher estradiol concentrations on 

average, may be at higher risk for working memory impairments (Gloe et al., 2021). While Gloe 

and colleagues speculate that dopamine may be a key mechanism involved in these effects, it has 

yet to be empirically tested.  

Therefore, I conducted four exploratory models to examine a within-person worry x within-

person estradiol x COMT interaction on 2-back lure (1) accuracy and (2) TGC, and  between-

person worry x between-person estradiol x COMT interaction on 2-back lure (3) accuracy and (4) 

TGC. For the first two sets of analyses, I predicted that within-person increases in worry would be 

associated with reduced accuracy and enhanced TGC on correct trials for Val carriers when 

estradiol is low. If supported, these results would further strengthen the hypothesis that basal 

dopamine is a significant moderator in the association between state worry (within-person 

changes) and working memory. I will also test a model to examine if the three-way interaction is 

moderated by between-person worry, given the present findings with TGC. The predictions for 

models 3 and 4 were less precise. Our previous analyses did not find that COMT moderated the 

association between average estradiol and performance (Louis et al., unpublished data). Further, 

Gloe and colleagues found that high amounts of progesterone also predict worse accuracy for high 
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worriers. Therefore, it is possible that the association between average worry and estradiol is not 

moderated by basal dopamine. Such a finding would indicate that the COMT gene may not be 

sensitive to between-person differences in worry and estradiol across the menstrual cycle.   

3.7 Exploratory Models 1 and 2: Testing whether COMT and estradiol moderates within-

person effects of worry and estradiol on 2-back lure performance and TGC  

My results were partially consistent with hypotheses, as a marginal three-way interaction 

between COMT x within-person worry x estradiol emerged (p = .07) (see Figure 11). The results 

revealed that as estradiol levels decreased, the association between worry and accuracy became 

more negative for Val carriers (i.e., enhanced negative association when estradiol was low) (see 

Figure 10).  Lower-order interactions also supported what we have found in previous studies (see 

Table 12).  There was a main effect of COMT (p = .04), such that Val carriers (M = .73, SE = .03) 

were less accurate than Met carriers (M = .80, SE = .03). There was also a significant COMT x 

within-person worry interaction (p = .03), such that the association was present for Val carriers (b 

= -.004, p = .004), but not Met carriers (p = .99). A significant COMT x estradiol interaction 

emerged (p = .006), revealing a positive association between estradiol and accuracy for Val carriers 

(b = .04, p = .06), and a negative association for Met carriers (b = -.06, p = .04). Importantly, 

another analysis was conducted to test whether the results of the three-way interaction on accuracy 

were further moderated by between-person worry. In this model, all significant effects remained 

and the three-way between worry, COMT, and estradiol remained marginal (p = .08). No effects 

with between-worry reached significance (all p’s > .12).  
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Table 14. Estimates for multilevel model examining the effects of PSWQ within-centered, 

estradiol within-centered and COMT on 2-back lure accuracy.  EEG Visit was a not a significant 

predictor in the model (p = .38).  

Fixed Effects Estimate SE  df t  p 

Intercept .64 .03 121.15 23.92 < .001 

PSWQ (within-centered) -.004 .001 170.53 -2.9 .004 

COMT .07 .03 70.37 2.04 .04 

Estradiol (within-centered) .04 .02 164.08 1.916 .05 

PSWQ (within) x Estradiol (within) .005 .004 203.64 1.44 .15 

PSWQ (within) x COMT .004 .001 166.61 2.16 .03 

Estradiol (within) x COMT -.10 .04 163.81 -2.78 .006 

PSWQ (within) x Estradiol (within) 

x COMT 

-.01 .005 199.08 -1.79 .07 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant .02 .13    

Residual .01 .11    

 

 

Figure 11. Johnson-Neyman plot for the trending interaction between worry, COMT, and 

estradiol. The plot demonstrates that at lower levels of estradiol, the negative association 

between PSWQ and accuracy is enhanced for Val carriers, while there is no significant effect for 

Met carriers.  

 Next, we examined a model for TGC, hypothesizing that more worry would predict 

enhanced coupling for Val carriers during high estradiol states. Interestingly, there was a trending 

COMT x worry x estradiol interaction (p = .07). Johnson-Neyman analyses revealed that as 
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estradiol levels increased, the association between within-person worry and TGC increased in Val 

carriers. However, the findings seemed to follow a U-shape, and the region of significance was 

narrow (see Figure 10). Similarly, I also examined whether the three-way interaction was further 

moderated by between-person worry. While the within-between worry interaction remained, no 

other effects reached significance. Therefore between-person worry was entered as a covariate in 

the final model (see Table 13).  

Table 15. Estimates for multilevel model examining the effects of PSWQ within-centered, 

estradiol within-centered and COMT on 2-back TGC on correct trials.  Between-person worry 

was included as a covariate.  

Fixed Effects Estimate SE  df t  p 

Intercept 2.6 x 10-3 1.35 x 10-4 41.05 19.33 < .0001 

PSWQ (within-centered) 1.28 x 10-5 6.51 x 10-6 1354 1.97 .04 

COMT 4.09 x 10-5 1.27 x 10-4 68.48 .322 .75 

Estradiol (within-centered). 5.67 x 10-5 1.33 x 10-4 1339 .43 .67 

PSWQ (between-centered) -6.35 x 10-6 9.78 x 10-6 70.35 -.65 .52 

PSWQ (within) x Estradiol (within) -2.03 x 10-5 1.99 x 10-5 1323 -1.02 .31 

PSWQ (within) x COMT -1.50 x 10-5 6.48 x 10-6 1350 -1.52 .02 

Estradiol (within) x COMT 1.63 x 10-4 1.32 x 10-4 1327 1.24 .21 

PSWQ (within) x Estradiol (within) 

x COMT 

-3.5 x 10-5 1.97 x 10-6 1337 -1.77 .07 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 9.56 x 10-7 9.79x 10-4    

Intercept for Electrode 1.27 x 10-8 1.13 x 10-4    

Residual 3.54 x 10-6 1.88 x 10-3    
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Figure 12. Johnson-Neyman plot for the trending interaction between worry, COMT, and 

estradiol on 2-back lure TGC. The plot demonstrates that at lower levels of estradiol the positive 

association between PSWQ and TGC is enhanced for Val carriers, while there is no effect for 

Met carriers. 

3.8 Exploratory Models 3 and 4: Testing whether COMT moderates between-person effects 

of worry and estradiol on 2-back lure performance and TGC 

Results for accuracy and TGC are reported in Tables 13 and 14, respectively. Similar to 

above, the model examining TGC controlled for within-person worry. Neither model revealed 

evidence for a combined modulatory role of between-worry, between-estradiol and COMT (p’s  

> .27).  

Table 16. Estimates for multilevel model examining the effects of PSWQ within-centered, 

estradiol within-centered and COMT on 2-back lure accuracy.  EEG Visit was a significant 

predictor in the model (p < .001). 

Fixed Effects Estimate SE  df t  p 

Intercept .64 .03 111.53 25.10 .000* 

PSWQ (between-centered) -.002 .002 67.60 -.89 .44 

COMT .07 .03 78.40 -.76 .03 

Estradiol (between-centered). -.03 .04 78.40 -.76 .44 

PSWQ (between) x Estradiol 

(between) 

-.006 .002 74.38 -2.28 .03 

PSWQ (between) x COMT -.0008 .002 64.71 -.28 .77 

Estradiol (between) x COMT .07 .07 68.25 1.09 .27 
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Table 16 (cont’d) 

 

     

PSWQ (between) x Estradiol 

(between) x COMT 

.008 .007 66.08 1.10 .27 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant .02 .12    

Residual .01 .12    

 

Table 17. Estimates for multilevel model examining the effects of PSWQ between-centered, 

estradiol between-centered and COMT on 2-back lure accuracy. Within-person worry was 

included as a covariate.  

Fixed Effects Estimate SE  df t  p 

Intercept 2.67 x 10-3 1.44 x 10-4 44.17 18.47 < .0001 

PSWQ (within-centered) 1.32 x 10-5 6.19 x 10-6 1329 2.13 .03 

COMT 1.11 x 10-4 1.37 x 10-4 63.03 .81 .42 

Estradiol (between-centered). 3.71 x 10-4 2.74 x 10-4 64.92 1.36 .18 

PSWQ (between-centered) -2.34 x 10-6 1.15 x 10-6 64.11 -.02 .98 

PSWQ (between) x Estradiol 

(between) 

3.06 x 10-5 2.99 x 10-5 63.76 1.02 .31 

PSWQ (between) x COMT -1.24 x 10-5 1.15 x 10-5 64.08 1.08 .29 

Estradiol (between) x COMT 2.52 x 10-4 2.74 x 10-4 64.97 .92 .36 

PSWQ (between) x Estradiol 

(between) x COMT 

1.31 x 10-5 2.99 x 10-5 63.75 .44 .66 

Random Effects Variance  Standard 

Deviation 

-- -- -- 

Intercept for Participant 9.53 x 10-7 9.77 x 10-4    

Intercept for Electrode 1.26 x 10-8 1.12 x 10-4    

Residual 3.54 x 10-6 1.88 x 10-3    
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4. DISCUSSION 

 The current study had three aims converging on questions about how worry and working 

memory function are associated. I examined (1) the association between worry and working 

memory-related TGC; and then tested whether (2) tonic dopamine (as measured by COMT) and 

(3) estradiol levels across the menstrual cycle moderated their association.  In line with ACT, I 

found: (1) for those with high average levels of worry, within-person increases in worry 

predicted reduced TGC, while for those with low average levels of worry, within-person 

increases in worry predicted enhanced TGC on 2-back lure trials; (2) within-person changes in 

worry interacted with the COMT genotype on 2-back lure trials, revealing that for Val carriers, 

more worry predicted enhanced TGC; (3) no effects for estradiol. Our findings demonstrate that 

TGC is influenced by within- and between-person changes in worry and PFC dopaminergic tone.   

4.1 The Utility of TGC for Characterizing Working Memory Dysfunction in Worry 

 

 Our findings provide support for both the processing inefficiency and suppression 

hypotheses, with the critical moderator being average worry levels. Within-person increases in 

worry over time were associated with increased TGC strength on correct trials for those who 

worry less on average. The reverse was true for those who worry more on average, such that 

increases in worry over time were associated with reduced TGC on correct trials. Our findings 

converge on an interesting theory that TGC may be a neural correlate of how adaptation occurs 

for worriers when presented with more worry than they are used to. Increases in worry for low 

chronic worriers may motivate enhanced effort at lateral sites and therefore enhanced TGC 

strength, but there may be a particular threshold of cognitive demand that reverses this effect (see 

Figure 11). The findings for low worriers are in line with ACT’s predictions. ACT proposes that 

increases in state worry may result in individuals aiming to reduce its deleterious effects by 
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exuding more effort, perhaps reflected as enhanced neural activity (Eysenck et al., 2007, 2022). 

Low chronic worriers may attempt to compensate for the distracting effects of worry when state 

worry increases, resulting in enhanced TGC strength on correct lure trials. On the other hand, for 

those with high levels of worry on average, state worry may lead to cognitive overload and 

therefore, reduced TGC strength. Previous studies have found that those with clinical anxiety 

demonstrate reduced lPFC activity (Balderston et al., 2017), weakened activity of the PFC during 

stress (Arnsten et al., 2015), and reduced TGC at lateral sites in psychiatric conditions (Barr et 

al., 2017; Goodman et al., 2018).  

Notably, on 3-back lure trials, there was no interaction between within and between 

worry on TGC. Although within-person increases in worry predicted more coupling across 

gamma ranges, it did not interact with between-centered worry. This further suggests, aligning 

with the abovementioned theory, that when task demands are high, high average worriers may be 

less reliant on TGC and instead recruit other resources to perform well (Silton et al., 2011). For 

those with high average worry, because the lPFC is taxed, increases in worry may lead to the 

need to suppress lPFC activity to employ compensatory strategies that do not rely on the dlPFC 

(see Figure 13). Indeed, there was no between-within worry interaction to predict behavior. It 

would be fruitful for studies to assess changes in interchannel phase coupling (i.e., connectivity 

between two electrodes) to explore whether a potential compensatory strategy is reorganizing 

frontal-parietal network connectivity, which is implicated in top-down control. Finally, TGC 

may have less utility as a biomarker, and instead aid in understanding neural function in the 

context of worry. 
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Figure 13. Hypothesized model for how within-person changes in worry influence TGC on two-

back lure trials. The findings suggest that the association between worry and TGC is moderated 

by the average degree of worry one experiences. Worry may increase TGC to compensate for 

increased task demands. However, for those who experience more worry on average, within-

person changes lead to reduced TGC. Reduced TGC at lateral sites may be needed to employ 

other compensatory strategies.   
 

4.2 Examining the Interactive Role of Dopamine and Estradiol in the Association between 

Worry and TGC 

I also found that within-person increases in worry predicted enhanced coupling on 2-back 

lure trials for Val carriers. Consistent with ACT, Val carriers may attempt to compensate for 

worry, and implement enhanced effort (i.e., increased activity in the lPFC) to perform well on 

the N-back (Elton et al., 2017; Jacobs & D’Esposito, 2011). In addition, the exploratory analyses 

revealed a protective role for estradiol levels across the menstrual cycle. The negative association 

between worry and accuracy was present for Val carriers when estradiol was low.  On the other 

hand, the positive association between worry and TGC was present when estradiol was high. It 

may be surprising that heightened estradiol did not dampen this effect for Val carriers (i.e., no 

association between worry and TGC when estradiol is high). Our findings instead imply that 
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estradiol may support the process of employing enhanced effort when worry is higher than one’s 

own average.  

Lohani and colleagues (2019) suggest that dopamine neurons in the mesocortical 

pathway may influence the selection of information to be maintained in working memory. It 

could be that those with less dopamine may be in a less optimal state to efficiently select the 

information to be stored in working memory efficiently. When worry levels are relatively higher, 

it may be difficult for this to be maintained and therefore, Val carriers may overextend effort 

(evidenced by increased TGC) when faced with more worry than they are used to in to aid in the 

organization and maintenance of information. Heightened estradiol does not seem to alleviate 

this effort but may help support this process.  

Striatal dopaminergic function may be another plausible mechanism that may explain the 

interactive effects of within-person worry and dopamine on working memory. Striatal dopamine 

has been implicated in effort deployment on tasks, due to its sensitivity to motivation. Cools 

(2015) suggests that striatal dopaminergic activity is important for aiding with the cost-benefit 

analysis of effort. Higher levels of striatal dopamine may motivate the destabilization of task 

goals because it is too effortful. Based on the dual state theory of dopamine (Durstewitz & 

Seamans, 2008), Val carriers have lower tonic dopamine levels (i.e., low D1 state), and higher 

levels of striatal dopamine (i.e., high D2 state). Therefore, for Val carriers, within-person 

increases in worry may serve as a motivation to increase goal-stabilization, and estradiol may 

further support this process resulting in higher TGC.  

Importantly, although within-person changes in estradiol did not interact with worry to 

predict TGC, a clearer role for estradiol emerged when also accounting for COMT in 

hypothesized directions. Within-person worry, COMT, and estradiol also interacted to predict 
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behavior. For those with lower levels of dopamine, higher estradiol levels were associated with 

enhanced TGC and lower estradiol levels with less favorable performance. The findings reveal a 

protective role for estradiol in the context of worry– specifically for Val carriers. Perhaps, acute 

increases in estradiol aid those with lower dopamine levels when they experience worry. Our 

fundings reveal that dopamine is a critical mechanism involved in the acute effects of worry on 

TGC and working memory performance – and increased estradiol can help overcome the taxing 

effects of worry by supporting the effort employed by the dlPFC.  

My exploratory analyses for between-centered worry did not provide convincing results 

for the moderating role of COMT. Further, although Gloe and colleagues found that between-

person worry and estradiol interacted to influence lure performance, no effect was found for 

TGC in the exploratory analyses. Previous research and the present study imply that COMT is 

useful for understanding how acute changes in estrogen, stress, cognitive load, and worry may 

impact performance. However, COMT may be a less helpful proxy for understanding between-

person effects. Higher estradiol levels during the length of the menstrual cycle, may not exert 

between-person effects on dopaminergic tone. Therefore, other ways of examining dopaminergic 

action (e.g., PET) may offer insight into how average estradiol levels may be involved in the 

association between worry and working memory.   

4.3 Limitations 

 

 This study allowed me to leverage within- and between-levels of worry to assess how it 

may affect working memory function. However, future work would benefit from assessing 

whether those with clinical levels of chronic worry differ from those with less worry. Results 

from this analysis suggest that those with high average worry may have differences in TGC 

across the cycle. Notably the mean PSWQ scores this sample was low (~40), and therefore, I did 
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not have a sizable number of participants who had high levels of average worry (n=23) to be able 

to conduct meaningful between groups analyses (e.g., high vs low average worriers). It would be 

useful for studies to either collect data with more female participants across the range of worry 

scores or conduct between-groups analyses (worry < 40; worry > 50), to test between groups 

differences in TGC.  

 Second, while this study examined TGC across low and high gamma ranges, the high 

gamma range was selected based on visual inspection of the data. The literature often does not 

converge on what should be considered low or high gamma. Given this, there may not be an 

upper limit of 80 Hz for high gamma, and future research might benefit from examining higher 

gamma ranges. Further, the findings were similar across gamma ranges. Therefore, the 

distinction of TGC-low and high gamma on the N-back task requires future investigation.   

4.4 Future Directions 

 

 Future studies would benefit from pursuing several additional avenues to elucidate the 

role of TGC in worriers. It would be fruitful for studies to examine network-based analyses using 

EEG methods. Phase synchrony and inter-channel PAC are two additional methods that could 

inform how worriers adapt to increasing load. Phase synchrony occurs when the same frequency 

rhythm is phase-locked across electrodes. Previous studies have found that worry may lead to 

reductions in phase synchrony within prefrontal sites that results in worse performance on a basic 

speeded response task (Moran et al., 2015). In addition, network analyses may provide insight 

into how worriers may be compensating on tasks. For instance, Silton and colleagues have 

proposed that worriers may demonstrate enhanced activity in the anterior cingulate cortex (ACC) 

when dlPFC is taxed (Silton et al., 2010). There is substantial evidence that theta at frontal 

midline sites is impacted by anxiety (Cavanagh & Shackman, 2015). Unlike faster frequency 
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rhythms, slower rhythms, such as theta, can evidence long range synchronization (Canolty et al., 

2007), and therefore well suited as a control mechanism that may alter neural connectivity 

between regions (Sauseng et al., 2010). It may be fruitful to examine theta phase synchrony 

particularly between fontal midline theta and lateral sites to examine whether interchannel neural 

communication differs across high and low worriers. In summary, future studies should consider 

how worry affects neural networks. Dopamine and estradiol should continue to be considered as 

modulators of these effects, given their importance in working memory, and the results of the 

current study.  

 Considering these findings in a treatment context, future studies should examine how 

TGC may be altered depending on within-person changes in worry. Therefore, in addition to 

stratifying data collection between high and low worriers, studies should consider inducing 

worry within these groups to examine TGC change. Many studies have attempted to train 

working memory to improve function. One promising study found that working memory training 

using an updating task improves performance and reduces susceptibility to repetitive negative 

thinking (which includes worries) (Roberts et al., 2021). Therefore, examining whether TGC 

changes with working memory training would be a fruitful avenue to pursue. Our results also 

highlight the need to study chronic and state worry that should be pursued in future research.  

 In addition, future studies could greatly contribute to the field by measuring the COMT 

enzyme and estradiol concentrations. Assaying for COMT enzyme activity may provide a clearer 

understanding of how amounts of dopamine in the PFC and estradiol concentrations contribute to 

neural processing and may interact with worry to do so. A previous study examining the same N-

back task in a female sample indeed found that it can provide additional explanatory value in this 

regard (Jacobs & D’Esposito, 2011). Future work should seek to explore these complex 
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interactions across various female life stages (e.g., pregnancy and menopause) or for those with 

medical conditions that alter endocrine function (e.g., polycystic ovarian syndrome; PCOS), due 

to drastic differences in estradiol concentrations observed within these contexts.  

4.5 Conclusion 

 

 The advantage of using EEG-based neural methods is that they allow for a temporally 

precise understanding of neural correlates involved in cognitive processing. The findings 

outlined above highlight worry’s influence on holding mental representations in mind – a needed 

process for many daily functions, such as maintaining goals and planning (Cools, 2015). 

Stabilizing mental representations under dynamic external and internal conditions is effortful and 

demanding, and our findings highlight that worry adds an additional “load” that alters one’s 

ability to keep information in mind. Our results converge on the notion that the experience of 

worry may influence adaptations to increased mental demands. Worry may play a volitional role 

in motivating enhanced effort in high-demanding contexts (leading to inefficiency) or avoidance 

of mental demands. That is, worry plays a pivotal role in influencing whether individuals 

approach or avoid increased mental demands.  

 The findings also reveal that neurotransmission and endocrine factors influence worry’s 

impact on cognition. Mental representations in the lateral PFC are highly influenced by 

dopamine and estrogen states. For those with less baseline dopamine in the PFC, high estrogen 

states help support goal stabilization and increase tolerance to stress. Indeed, our findings 

highlight that for those who may be more susceptible to distraction (i.e., those with less basal 

dopamine), estrogen may help increase mental stabilization during times of increased cognitive 

demands. The findings point to a supportive role of estrogen, specifically for those more 

susceptible to distraction.  
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 Finally, the current results may provide clarity on how worry interrupts or facilitates 

processes conducive to goal attainment via sustained mental representations. Specifically, worry, 

as an internal interference, seems to be an important factor in the trade-off between the decision 

to overcome or avoid cognitive demand. Illuminating the contexts that influence this decision has 

implications for understanding how worry affects strategies to attain goals that require effortful 

top-down control and sustained mental representations. The promise of understanding dopamine 

and estradiol states in the association between worry and cognition is that they may offer insight 

into what can be termed the “mental demand approach-avoidance tradeoff” due to their role in 

the neural computation of motivation value and the cost of effort deployment (Ambrase et al., 

2021; Braver et al., 2014; Cools, 2015).  

 In sum, few studies have specified the neurocognitive processes that are influenced by 

worry. I aimed to address this gap by examining how worry influences a neural mechanism 

involved in the sequential ordering of information in mind in a female sample. The advantages of 

this study are twofold – (1) leveraging longitudinal data to model acute and chronic worry levels; 

and (2) incorporating known endogenous modulators of working memory, namely dopamine and 

estradiol, to clarify neural mechanisms involved in the impact of worry on cognitive function. 

The findings reveal that the effect of acute worry on working memory-linked neural processing 

is dependent on the degree of worry one experiences on average. Higher worry levels may 

motivate enhanced effort by increasing neural coordination as a compensatory strategy, but 

excessive amounts of worry may dampen the use of this mechanism. Second, this study suggests 

that menstrual cycle dependent changes in estradiol levels and dopamine influence the 

association between acute worry and working memory. Specifically, higher levels of estradiol 

help strengthen neural coordination for those with lower levels of dopamine at baseline – 
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indicating that estradiol aids in the maintenance and ordering of information in mind during 

times of acute worry. The current study highlights that the ways in which worry impacts 

cognition is nuanced and emphasizes the utility of comprehensive models that consider various 

experiences of worry over time as well as complex interactions between genetic and hormonal 

factors. Taking such an approach would not only aid in our understanding of worry and working 

memory, but also encourage more precise models for those who are most impacted by worry.   
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APPENDIX 

 

Studies that have investigated TGC on the N-back have mostly focused on low gamma 

ranges (30-50 Hz) in the early time segment under the presumption that this is when having the 

correct ordering of stimuli is critical. However, this has yet to be empirically tested. I therefore 

conducted a series of multilevel models to examine whether there were differences in theta-low 

gamma and theta-high gamma across trial type (targets, non-targets, lures) and time range (first 

half and second half) on the N-back. To test this, I tested a model with trial type (targets, non-

targets, lures) and time range (first half, second half) as effects-coded within-subjects factors. 

Session was entered as an effects-coded predictor to control for the effect of time. A conservative 

Bonferroni correction was applied to the pairwise comparisons when breaking down effects 

(.05/24 = .002). 

TGC-low gamma on 2-back trials 

For 2-back the results revelated a significant effect of trial type (p < .0001), time range (p < 

.0001), and trial type x time range (p = .006). The effect of trial type revealed that overall, there 

was significantly more coupling on targets than non-targets (p < .0001) and lures (p < .0001). In 

addition, there was more coupling in the second half than the first half (p < .0001).  

The time range x trial type interaction was probed by examining the effect of trial type in the first 

and second half. In the first half, there was significantly more coupling on target trials in 

comparison to non-targets (p < .0001), and lures (p = .03). There was also more coupling on 

lures in comparison to non-targets (p < .0001). In the second half, there was more coupling on 

targets trials than lures (p < .0001) and non-targets (p < .0001). However, non-targets were not 

significantly different from lures in the second half (p = .80).  
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Figure 14. Trial Type x Time range interaction on TGC-low gamma on 2-back TGC.  

TGC-low gamma on 3-back trials 

For 3-back, there was a main effect of trial type (p < .0001), time range (p < .0001) and a trial 

type x time range interaction (p < .0001). There was more coupling on targets and lures in 

comparison to in comparison non-targets (p’s < .0001). Targets and lures were not significantly 

different from each other (p = .8). The trial time x time range interaction was examined by 

investigating the effect of trial type in the first and second half of the time range. The results 

revealed that in the first half of the time range, there was less coupling on non-targets than 

targets and lures (p’s  < .0001). Lures and targets were not significantly different from each other 

(p = .16). In the second half, targets had significantly more coupling than non-targets (p < 

.0001), but not lures (p < .60). The difference between lures and non-targets did not survive the 

correction for multiple comparisons (p = .01).  
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Figure 15. Trial Type x Time range interaction on TGC-low gamma for 3-back TGC. 

TGC-high gamma on 2-back trials 

For 2-back, similar results of trial type, time range, and trial type x time range emerged (p’s < 

.006). In the first half, there was a significant difference between targets and non-targets (p < 

.0001), but not targets and lures (p < .64). Lures had more coupling than not-targets (p < .001). 

In the second half, targets showed significantly more coupling than lures and non-targets (p’s < 

.0001). Non-targets and lures were not significantly different from each other (p = .88).  

 

Figure 16. Trial Type x Time range interaction for TGC-high gamma for 2-back TGC. 
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TGC-high gamma on 3-back trials 

For 3-back, similarly, there was a significant effect of trial type (p < .0001), time range (p < 

.0001), and a trial type x time range interaction (p < .0001). The interaction revealed that in the 

first half of the time segment, non-targets had significantly less coupling than lures (p < .001) 

and targets (p < .001), like what was noted above. In the first half of the time range, lures and 

targets were also significantly different from each other, with lures having more coupling that 

targets (p < .001). In the second half of the time segment, non-targets did not significantly differ 

from targets (p = .02) or lures (p = .29). In addition, targets and lures were not significantly 

different from each other (p = .45) 

 

Figure 17. Trial Type x Time range interaction for TGC-high gamma for 3-back TGC. 

 

 


