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ABSTRACT

Non-destructive evaluation (NDE) assumes a crucial role in examining infrastructure across diverse

industries that require ongoing monitoring to uphold product quality, sustain aging infrastruc-

ture, and ensure operational equipment safety. Recent advancements in data acquisition (sensing

technologies) and data evaluation (data analytics) have prompted a significant shift in the NDE

community towards fully automated, data-driven inspection routines. The primary goal of this

dissertation is to develop intelligent, state-of-the-art NDE-based artificial intelligence (AI) meth-

ods. This research involves incorporating NDE theory and insights to adapt modern machine

learning (ML) and AI algorithms, enabling efficient decision-making processes with high accuracy

and reliability, while minimizing human intervention. Several cost-effective, miniaturized NDE

sensing methodologies based on techniques like Magnetic Flux Leakage (MFL), Eddy Current

(EC), Capacitive Imaging (CI), and laser profilometry are developed based on the materials being

tested. The research focuses on the following key aims: (a) Developing spatially adaptive de-

noising algorithms to address uncertainties in the data collection process, enabling accurate defect

detection and localization, (b) Dynamically updated defect tracking through mixture regression and

optimally binned hypothesis testing, (c) Establishing an integrated diagnostic framework for inline

inspection and automated defect characterization using a hybrid deep learning setup, (d) Efficient

data augmentation and fusion techniques to combine information from multiple heterogeneous

sensors, and improving defect diagnostics by twinning/registering experimental and simulated data

through transfer learning principles, (e) Implementing sophisticated data compression techniques

to achieve cost-effective and fast defect diagnostics without compromising efficiency.

This dissertation develops new-age integrated NDE frameworks for data acquisition and evaluation,

providing accurate and reliable defect diagnostics. NDE data used in practical applications often

suffers from noise contamination and errors caused by various factors. In chapter 2, a Bayesian de-

cision theory-based approach is established to understand the noise corruption in capacitive sensing

data. A solely data driven spatially adaptive denoising algorithm is modelled that does not need

any oracle information. In chapter 3, an integrated inline inspection (ILI) and automated defect



detection framework for plastic pipelines using laser profilometry data and a hybrid deep learning

approach are established. Chapter 4 proposes an under-sampling compressed scheme for fast and

cost-effective scanning, providing accurate diagnosis. Spatially adaptive methods for identifying

defect growth using dynamically updated transfer learning are introduced in subsequent chapters 5

and 6, leveraging information from less noisy baseline scan. Bivariate function estimation using

mixture regression (TLMR) and transfer learning-based binned hypothesis testing (TLBH) are

incorporated for tracking defect growth on later noisy scans. An inverse data-driven approach for

estimating electrical parameters of the substrate is proposed in chapter 7, along with registration-

aided machine learning models that adaptively utilize information from large synthetic datasets to

improve predictions on scarce experimental data. Finally, an integrated multi-modal fusion setup

is designed in chapter 8 for enhanced defect detection, incorporating optimal transport (OT) based

registration of data from different sensing modalities.
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CHAPTER 1

INTRODUCTION

1.1 Non destructive evaluation its usage contemporary applications

Non-destructive evaluation (NDE) plays a vital role in inspecting infrastructure across various

industries where continuous monitoring is necessary to ensure product quality, maintain aging

infrastructure, and guarantee the safety of operational equipment. The primary objective of non-

destructive testing is to assess the condition of the test subject in a non-invasive manner, facilitating

risk management. NDE methods effectively mitigate the risk of damaging critical infrastructure

while it remains in place, unlike destructive testing methods that render subjects unfit for further use.

Non-destructive testing proves cost-effective when the potential risk of failure outweighs the testing

expenses. It finds application in numerous industries where failures could pose threats to human

life and property. Figure 1.1 (a) shows the importance of NDE in life cycle of product assessment,

while figure 1.1 (b) showcases a wide range of industrial sectors such as aviation, naval, medicine,

advanced manufacturing, pipeline, and railway, among others, where NDE inspections are employed

on a daily basis. Various NDE-based inspection methodologies have been developed, relying on

the sensitivity of materials to electric, magnetic, electromagnetic, mechanical, chemical changes,

or a combination thereof. Examples of popular techniques include magnetic flux leakage (MFL),

eddy current (EC), radiography testing (RT), thermography testing, ultrasonic testing (UT), acoustic

testing, electromagnetic acoustic transducer (EMAT), microwave and millimeter wave testing, laser,

capacitive imaging, vibration, leak, and liquid penetrant testing (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12).

NDE methods are extensively utilized in the power and transportation industries. The nuclear

industry in France allocates approximately 1.5 billion euros per year to maintenance, which accounts

for 17% of its total costs whereas maintenance of civilian aircraft contributes to around 20% of the

ticket prices. Several thousand casualties have been reported in the past decade due to infrastructure

collapses. In the United States, the Pipeline and Hazardous Materials Safety Administration

(PHMSA) has reported numerous pipeline failures resulting in billions of dollars in losses over

the last decade (13; 14), highlighting the need for proper NDE inspections. Recent news reports
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have highlighted the implosion of the submarine "Titan" as another unfortunate incident that could

have been prevented with proper NDE inspection. Such incidents serve as a poignant reminder

of the critical importance of NDE in ensuring the safety and reliability of various structures and

equipment that are in practice. Due to the significant volume of NDE inspections necessary, there

is an imperative need to develop monitoring services that offer cost-effective, rapid, accurate, and

dependable solutions. The sheer scale of inspections demands efficient and streamlined processes

to ensure timely and comprehensive assessments while maintaining affordability. Developing such

monitoring services would not only enhance productivity and efficiency but also enable more

widespread and frequent inspections, thereby improving overall safety and reducing the risk of

failures. By combining speed, accuracy, and reliability, these services can effectively address

the demanding requirements of NDE inspections and facilitate proactive risk management in a

cost-efficient manner. To meet these contemporary demands, the field of NDE is experiencing a

rapid revolution, transitioning from traditional approaches to robust automated data-driven "smart

inspection" routines known as NDE 4.0, coined by the NDE community.

Figure 1.1 Various industrial applications of NDE.
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1.2 Machine Learning, the need of automation in NDE & Objective

The advancement in wireless sensing technologies has facilitated the collection of massive

volumes of sensing data. Industry 4.0 aims to achieve smart machines, smart production, and

smart services, and the deployment of intelligent non-destructive sensor systems has resulted in

the generation of large amounts of real-time data. Addressing this challenge, the NDE community

urgently requires automated approaches for designing high-fidelity, data-driven models to analyze

the reliability of structures with minimal human intervention. The development of new automated

detection and tracking algorithms, utilizing Artificial Intelligence (AI) and Machine Learning (ML),

is crucial to effectively process and extract insights from these extensive modern data repositories.

Manual analysis is time-consuming and costly due to the scale of the collected data. Real-world

NDE applications involve numerous uncertainties, such as lift-off, probe drift, variations in data ac-

quisition sampling rates and scanning speed, complex sample structures, limited sensor resolution

and sensitivity to the material under test (MUT). Characterizing noise in such a broad spectrum of

uncertainties becomes challenging. Consequently, robust online defect detection algorithms that

can handle noise effectively are required. In this thesis, several robust algorithms are developed to

achieve accurate defect detection under these uncertainties, featuring the key aspect of noise ag-

nosticism. The main objective of this dissertation is to design NDE-based sensing methodologies

tailored to the inspection material. Subsequently, various statistical models based on AI and ML are

developed using these modern datasets, targeting diverse deployment platforms in NDE as shown

in figure 1.2. These models exhibit high precision in identifying defect characteristics. Effective

diagnosis through NDE inspection typically involves five stages, which are elaborated upon in the

subsequent chapters of this report.

1. Detection: Detection provides a qualitative indication regrading the presence of damage in

structure.

2. Localization: This gives information regrading the probable position of the damage.

3. Classification: Classification states the probable types of damage.
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4. Assessment: Assessment bestows an estimate of the extent of the damage and perform track-

ing of the damage.

5. Prediction: Prediction offers information about the safety of the material under test . For

example, it can give an estimate of the remaining useful life (RUL).

Figure 1.2 (a) Schematic showing the advancement of NDE 4.0 and the area of interest of this
dissertation.

In this thesis we developed AI and machine learning based modern NDE methods that can conduct

cheap, fast yet accurate and reliable defect diagnostics. The methods greatly improve the efficacy

obtained by traditional methods in these new-age applications. The methods developed in this

thesis uses the following techniques:

1. Sophisticated data compression for cheap and fast defect diagnostic without any efficiency

loss due to compression;

2. Using flexible deep learning networks for automating NDE based defect localization and

classification in very complex systems where there is no established parametric NDE models;

3. Efficient data augmentation rules for combining information collected by multiple sensors as

well as improving defect diagnostics by augmenting experimental data with simulated data

via transfer learning principles.
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We briefly elaborate these attributes below.

Sparse signal processing is recognized as a powerful technique for extracting relevant data in

various modalities utilized in NDE. NDE signals exhibit a high level of structure, resulting in a

significant portion of the signal’s energy being sparsely represented. This sparse representation

enables data compression in specific domains, leading to a substantial reduction in data volume

and facilitating real-time online operations. In addition to temporal structure, spatial correlation

within the signals is also significant, making spatial sub-sampling a favorable approach. Sparse

reconstruction methods are commonly employed in the field of medical imaging to achieve efficient

and accurate non-invasive monitoring. Presently, the NDE community is rapidly adopting sparse

exploitation techniques as well (15; 16; 17). Sparse image reconstruction proves beneficial in

scenarios requiring fast and time-efficient scanning, as well as situations where complete access

to the target being scanned is limited. This dissertation investigates different sub-sampling-based

image reconstruction algorithms, exploring their applicability in NDE.

To achieve automated defect detection and localization in applications without explicit paramet-

ric setup, the integration of deep learning with NDE knowledge proves valuable. Shallow machine

learning (ML) models and deep learning (DL) models, such as Convolutional Neural Networks

(CNNs) and U-Nets, are being employed in NDE (18; 19; 20; 21; 22; 23; 24; 25) to learn from

sensor signals. However, widespread online application of DL in NDE encounters various obsta-

cles, primarily due to the limited availability of experimental training data. Obtaining a sufficient

and representative NDE dataset under realistic operational conditions is often impractical. One

solution to this challenge is to effectively learn from synthetic databases and perform intelligent

and meaningful data augmentation. However, blindly augmenting data without considering the

differences between the training and testing data sources can lead to erroneous results. Thus, the

development of AI algorithms in NDE necessitates the inclusion of expert knowledge rather than

treating ML models as black boxes. The process of understanding these models is referred to

as "Explainable AI" as depicted in figure 1.3. In Chapter 3 and 7 of this thesis, efficient NDE

inspection frameworks equipped with AI are proposed, addressing these considerations. In many
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Figure 1.3 Steps involved in explainable, interpretable AI.

cases, a single measurement technique may have limitations in effectively characterizing the health

of a component due to constraints in resolution. Different sensing modalities, on the other hand,

exhibit sensitivity to various types of degradation, thus offering complementary information that

surpasses the capabilities of a single method. The utilization of data fusion techniques holds

promise in enhancing non-destructive evaluation (NDE) by increasing the accuracy and reliability

of diagnostic outcomes. However, it is important to consider boundary conditions where individual

methods may fail, as blindly fusing data in such cases can lead to suboptimal results. Additionally,

the presence of heterogeneous data sources introduces the challenge of mis-registration, which the

NDE community must address to improve the reconstruction of anomalies.

1.3 Brief description of the chapters

This thesis aims to increase our current understanding and to provide efficient solution in the

following areas of modern NDE:

1. Flexible deep learning networks for automating NDE based defect localization and classifi-

cation in very complex systems where there no established parametric NDE models exists.

2. Developing a host of spatially adaptive denoising algorithms to weed out the various uncer-

tainty induced noises and thereby providing accurate defect detection and localization.
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3. Need of optimal binned hypothesis tests to track dynamic defect growth under uncertainties.

4. Sophisticated data compression using principles of compressed sub sampling and kriging for

cheap and fast defect diagnostics without any efficacy loss due to compression.

5. Developing heterogeneous sensor fusion and data augmentation algorithms to reduce the

uncertainty of individual sensor signal, thereby producing reliable diagnosis.

6. Establishing different registration aided regression frameworks for material characterization

that can effectively answer ’what’ to transfer and ’how’ to transfer from large synthetic

(simulated) dataset to scarce experimental data.

The thesis provides accurate diagnostic algorithms that can be classified into two broad sub-

groups, (a) spatially adaptive denoising algorithms, (b) different sub sampling and transfer learning

based defect tracking schemes. The organization of the subsequent chapters are as follows:

1. In Chapter 2, we develop a high-Q capacitive sensing based robust non-destructive evaluation

(NDE) methodology that can be widely used in varied NDE applications. We show that the

proposed method can detect defects in a host of robust regimes where uncertainties such

as lift-off, probe tilt, fluctuations in sampling rates and step sizes are inherent in the data

collection process. We explicitly characterize the corruption in the capacitive sensing data

due to various lift-off-based uncertainties. We use a Bayesian decision theoretic approach to

rigorously understand the impact of these corruptions on defect identification efficacy. Using

an optimally tuned weighted classification loss, we prove that it is theoretically feasible to

accurately detect defect location and sizes from capacitive sensing signals collected under

the aforementioned uncertainties. The Bayesian decision theoretic study needs prior infor-

mation for accurate detection that is not available in real NDE inspections. So, we develop

a solely data driven algorithm that analyzes the capacitive sensing signals without any prior

knowledge of defect or uncertainty types. The developed algorithm is non-parametric and
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uses spatially adaptive denoising to weed out uncertainty induced noises. By leveraging

the spatial association in the capacitive sensing signals, our algorithm greatly improves on

popular non-spatial approaches. Compared to popular thresholding methods and low-rank

based denoising approaches we demonstrate superior performance of the proposed method in

terms of coverage and false positive metrics for defect identification. Using spatially adaptive

denoising we design a robust capacitive sensing method that can detect defects with high

precision under various uncertainty regimes.

2. In chapter 3, an integrated inline inspection and automated defect detection using deep

learning framework has been established. Here, we develop a novel NDE methodology for

inspecting plastic pipelines used in natural gas distribution. Our proposed method is based

on optical imaging and uses laser profiling to collect inline inspection data. In our laser

profiling images, deformities due to defects lead to local perturbations in the circular rings

produced by the otherwise non-defective inner walls of cylindrical pipes. Using experimen-

tal data collected by the proposed methodology, we studied the performance of a gamut of

defect classification algorithms including conventional machine learning classifiers as well

as deep learning architectures. Special attention was paid to take into account both the spatial

and temporal features in our laser-scan image, particularly exploiting the circular shape of

non-deformed laser rings. This led to the development of a hierarchical bilinear pooling

(HBP) based deep learning framework that can precisely identify local perturbations in our

laser-scan data by assimilating information across multiple cross-layer features. Equipping

our endoscopic laser profiling system with the HBP based defect classification algorithm, we

develop an integrated diagnosis method for inline data collection and automated defect char-

acterization. Based on experimental data collected under varying profiling conditions, we

demonstrate superior performance of our proposed integrated method in damage localization

and classification.

3. Chapter 4 shows the applicability of sub sampling scheme based on kriging in the field

of Nondestructive evaluation. Magnetic flux leakage (MFL) testing is a widely used non-

8



destructive evaluation (NDE) technique for defect detections within the pipelines, particularly

those composed of ferromagnetic materials. Pipeline inspection gauge (PIG) procedure based

on line-scans can collect accurate MFL readings for defect detection. However, in real world

applications involving large pipe-sectors such extensive scanning techniques are extremely

time consuming and costly. In this chapter, we develop a fast and cheap methodology that

does not need MFL readings at all the points used in traditional PIG procedures but conducts

defect detection with similar accuracy. We consider an under-sampling based scheme that

collects MFL at uniformly chosen random scan-points over large lattices instead of extensive

PIG scans over all lattice points. Based on readings from the chosen random scan points, we

use Kriging to reconstruct MFL readings. Thereafter, we use thresholding-based segmenta-

tion on the reconstructed data for detecting defective areas. We demonstrate the applicability

of our methodology on synthetic data generated using finite element models as well as on

MFL data collected via laboratory experiments. In these experiments spanning a wide range

of defect types, our proposed novel MFL based NDE methodology is witnessed to have

operating characteristics within the acceptable threshold of PIG based traditional methods

and thus provide an extremely cost-effective, fast procedure with competing error rates.

4. Chapter 5 presents a novel spatially adaptive method for identifying defect growth using

dynamically updated transfer learning technique on data from magnetic flux leakage (MFL)

sensors. The operation of pipeline inspection gauge (PIG) within the pipeline to collect

accurate, low noise readings for defect detection is expensive and time-consuming. Running

probes within the operational pipeline produces noisy data. In this chapter we consider a

less noisy and time-consuming baseline readings within pipelines taken in the beginning.

Using the baseline data, our goal is to first automatically detect the defective areas during

inspection and thereafter monitor the growth of those defects and raise a flag of caution if

they become too large and detrimental. Based on the baseline data, a bivariate function

was estimated using a function estimation method based on mixture regression framework to

compute posterior probabilities of the defects at each scanning point. Thereafter, it is seen
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that applying direct function estimation with noisy field data on subsequent inspections is

not effective. We use transfer learning perspectives by leveraging the defect probabilities

and location from the previous inspections, and then consequently update those probabilities

based on current data by applying a dynamically updated transfer learning technique. The

defect growth is dynamically tracked and characterized with high accuracy and sensitivity.

5. In Chapter 6, a transfer learning aided optimally binned hypothesis testing framework has

been developed for dynamic defect tracking under noisy conditions. A key characteristic of

the proposed dynamic monitoring method is its noise type agnosticism in the low-cost NDE

scans. The gathering of low-noise, precise non-destructive evaluation (NDE) readings for

defect detection can be both time-consuming and costly. In practical applications, NDE data

can be highly noisy due to several unwanted. Given the broad spectrum of potential uncer-

tainties that can contribute to noise accumulation, characterizing the noise in such NDE data

presents significant difficulties. As a result, the extraction of defect signals through deconvo-

lution becomes challenging. This chapter introduces an NDE-based dynamic defect tracking

framework designed for robust conditions. It incorporates regular periodic monitoring of the

material under test (MUT) using a cost-effective, easy-to-implement magnetic flux leakage

(MFL) probe. The framework proposes a dynamic setup that includes occasional, highly ac-

curate, expensive MFL scans among regular, low-cost, noisy MFL scans. The objective here

is to detect and precisely track defect formation in metallic pipes over time, thereby enabling

the efficient alarming and localization of defects before they reach detrimental sizes. The

proposed method remains effective even when the underlying noise-producing uncertainties

fluctuate significantly over time, a feature achieved through the use of transfer learning. The

method transfers accurate information regarding the locations and sizes of existing corrosions

from the detailed MFL scan to the subsequent noisy MFL inspections. With this supportive

information from defective scan-points, it estimates the degradation of the signal-to-noise

ratio (SNR) in the noisy MFL scans. The framework suggests binned hypothesis tests in

noisy MFL scans, setting the level of aggregation based on the SNR estimate in the scan
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data. This proposed binned hypothesis test optimizes defect coverage and maintains control

over the false discovery rate (FDR). Experimental MFL data, gathered under a wide range

of uncertainties and defect types, illustrates the highly heterogeneous nature of noise dis-

tributions in low-cost MFL scans and the significant variance in SNR deteriorations. The

necessity of using binned hypothesis tests in these low-cost MFL data is highlighted by the

poor performance of pointwise multiple hypothesis tests. Finally, the high effectiveness

of the proposed transfer learning-based binned hypothesis testing method is demonstrated.

Although the method is applied to MFL data in this instance, it is also suitable for other NDE

applications. The applicability of the algorithms has also been confirmed through validation

on experimentally generated Eddy Current (EC) data.

6. Chapter 7 consists of two discrete works. In the first work, an adaptive denoising scheme

based on nearest neighbor divergence measure in wavelet transform domain is proposed

which is sensitive in detection of coincident multiple defects. It is also cost effective by

not classifying most of the harmless cavities as harmful defects. Knowledge of the electri-

cal properties, such as complex permittivity, permeability and loss tangent measurements

is rapidly becoming a necessity for Nondestructive Evaluation (NDE) based material char-

acterization. In the next work, we aim to provide a data- driven approach to estimate the

wideband dielectric permittivity for a given substrate material based on the frequency re-

sponses from microstrip transmission lines fabricated with the material. We demonstrate

registration-aided machine learning models that adaptively use information from large simu-

lated datasets to make improved predictions on experimental data where we have acute data

scarcity. Machine learning (ML) models are trained using simulation data for several unique

combinations of substrate and microstrip line dimensions and is tested on experimental data

where the microstrip line are fabricated on eleven different unknown substrates. The 𝑆 pa-

rameters associated with the reflection and transmission coefficients are treated as functional

data across the frequency sweeps. As we had very few experimental data, along with complex

non-parametric methods, we also consider low-complexity models on the frequency curves.
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In this aspect, dimensionality reduction techniques are considered to deal with situations in

the experimental data where the number of features obtained from the frequency sweeps are

much higher than the number of samples in the experimental data. We compare the efficacy

of data-hungry machine learning methods with these low-complexity models. As the source

of train and test data are different, registration strategies based on intercept correction are

implemented. We illustrate the efficacy of registration-based varied ML techniques for lab

generated experimental data and obtained encouraging results. This work is an attempt to

bypass material characterization models of electromagnetic (EM)-physics that is based on

closed form mathematical equations and have the limitations that they can only be applied in

idealized set-ups.

7. In chapter 8, single modality-based Nondestructive Evaluation (NDE) data used in practical

applications often suffers from noise contamination and errors caused by various factors like

lift-off/standoff distances, probe drift, scanning speed, variation in data acquisition rates, and

poor sensor sensitivity. The presence of agnostic noise types poses a challenge in extracting

defect signals and understanding damage characteristics using single NDE modalities alone.

To address these challenges, in this chapter we present an automated NDE theory-based data

fusion framework aimed at enhancing the detection of surface and near-surface defects in

magnetizable and conductive specimens. Both experimental and simulation data obtained

from Magnetic Flux Leakage (MFL) and Eddy Current (EC) based NDE sensing methods

demonstrate the highly heterogeneous nature of noise distributions. Given the heterogeneity

of the inspection methods, a screening rule is proposed to determine the conditions under

which fusion would be beneficial. An important aspect of the proposed fusion method is

registration, which ensures accurate alignment of multi-sensor image data. Two registration

methods are proposed in this study to address the issue of different inspection sources. Per-

forming blind fusion without registration leads to erroneous results. The first registration

method is translational, where one source image obtained from a particular sensing tech-

nique is aligned with an anchored source image from another technique. The second method
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is registration based on linear optimal transport (OT) which proves to be effective in the

boundary conditions as it provides a mathematical framework to transfer one probability

source distribution into another while minimizing the cost of transportation. Finally, the

registered source images from the EC and MFL modalities are fused using pixel-based fusion

algorithms, including transform domain and spatial domain-based methods. Sparse represen-

tation, wavelet decomposition, and bilateral filter-based fusion techniques are implemented

in this study. Qualitative and quantitative assessments demonstrate that the registered fusion

results exhibit higher accuracy and reliability compared to unregistered fused results and

source images. Although the fusion method is applied to MFL and EC data in this paper, it

is also suitable for other NDE modalities.

8. Chapter 9 concludes with the contribution of this research in the field of Non destructive

evaluation.
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CHAPTER 2

ROBUST DEFECT DETECTION UNDER UNCERTAINTIES
USING SPATIALLY ADAPTIVE METHODS

2.1 Introduction

Structural integrity of safety-critical infrastructures such as aircrafts, bridges, nuclear power

plants, oil and gas transmission pipelines and load-bearing metal structures in highways decrease

with time. Nondestructive evaluation (NDE) plays an important role in maintenance of these

infrastructures by detecting significant erosions and other defects that crop up with usage. For

providing effective diagnosis, NDE methods use several inline inspection techniques to access these

structures without causing any further damage in a non-invasive manner (26). The advancement

in sensing technology has led to the development of different NDE sensing modalities (27; 28;

29; 30; 31; 11; 32; 33; 10; 34; 9; 8; 35). However, often in practice, it is extremely difficult to

set-up new non-destructive inspection procedures abiding the ideal laboratory conditions under

which these methods were developed and tested. As a result, in these situations, NDE data are

collected under uncertainties such as lift-off, probe tilt, fluctuations in sampling rates and step sizes

(36; 37). Contemporary NDE methods based on robotic systems can conduct very fast scans but

often suffer from the aforementioned uncertainties due to anomalies in probe positioning. Lift-off

is the variation of distance between the probe and material under test (MUT) whereas probe tilt

is the angular deviation of probe from perpendicularity. NDE data are often contaminated by

the presence of unknown lift-offs due to coarseness of MUT surface, non-conducting coatings

or irregular paintings on the MUT (38; 7). While lift-offs and probe tilts are the most common

uncertainties, fluctuations in sampling rate and step sizes can also contaminate NDE data due to

operator’s movement related discrepancies such as changes in frictional force between probe and

material surfaces as well as misalignment of probe and MUT coordinates. These uncertainties in

the data collection process give rise to different kinds of corruption in the recorded signals. Defect

identification algorithms that were developed with sensor data collected under ideal laboratory

conditions, fail to provide accurate defect analysis under these uncertainties which corrupts data
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with various kinds of noise contaminations. Subsequently, there is an urgent need to develop

robust, automated, reliable defect identification methods that can operate with high precision under

uncertainties that practitioners encounter in real-world applications (6).

Here, we develop a high-Q capacitive sensing based shortwave NDE method which is low cost,

highly flexible and easily implementable as it does not require extensive hardware setup at MHz

frequencies. Unlike other popular NDE methods, it can be employed under a wide range of robust

conditions for it enjoys the following advantageous properties over the competing NDE methods:

(a) unlike capacitive sensing, ultrasonic testing (UT) normally requires a coupling medium and

physical contact with MUT (32). Air coupled UT, however, does not need coupling medium.

But, it uses long sound pulse for excitation for which accurate measurement of timing is difficult.

Moreover, it is not applicable for metal inspections due to high acoustic impedance of metal

structures (5); (b) Thermographic methods have low sensitivity unless we use very expensive

thermal camera for imaging and are non-robust to temperature variations (4; 1). X-ray imaging is

not only expensive but also needs proper screening because of the detrimental ionizing radiations

(33); (c) Microwave imaging based NDE detection do not penetrate deep in conducting materials

and use high frequency for operation in GHz ranges which require cumbersome data acquisition

circuitry (2); (d) Conventional electro-magnetic (EM) based NDE techniques such as magnetic flux

leakage (MFL) and eddy-current (EC) methods are mostly effective in inspecting highly conductive

or ferromagnetic materials (27; 28; 29; 10; 34; 9; 8; 35).

We concentrate on the highly flexible, easily applicable capacitive sensing method and undertake

a disciplined approach to understand how signals collected from defective samples get corrupted

as uncertainties such as lift-off, speed and fluctuations in sampling rates are introduced in the

data collection process. In next section, we describe the data collection methodology as well as

the different robust set-ups considered in this study. Existing NDE literature mainly focused on

the effect of lift-offs based uncertainties in EC and MFL methods. Lift-off corrections in these

traditional EM techniques have been developed based on novel hardware-based probes (3; 39), new

sensor array designs (40) and by usage of signal processing techniques (38; 41). Novel probing
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methods introduced in (38) uses reference signals to cancel lift-off induced contaminations in

pulse eddy current (PEC) signals whereas dual frequency mode of EC inspection is used in (42)

for measuring lift-off and accurate defect sizing. Signal processing techniques based on dynamic

trajectories of fast Fourier transform of PEC scans are used to reduce the lift-off effects in (43)

and features extracted based on rise time, zero crossing, differential time to peak are used in (44).

Unlike traditional EM methods, there has been very limited research on the scope of capacitive

imaging (CI) under uncertainties. Specialized capacitive sensors have been designed to tackle

lift-off effects (45; 46; 47; 48) but they have limited applications. Here, we develop a very easy-to-

implement capacitive sensing probe and provide a systematic study on the impact of uncertainties

on signals captured by it. Based on the study we develop a novel spatial adaptation based signal

processing algorithm that is exhibited to provide very high defect identification rates. The resulting

NDE method is cost effective, less time consuming and can be employed across a wide range of

applications for it does not require any domain specific modifications or usage of complex probes

or guidance of NDE experts.

In later section, using a disciplined statistical framework we compare the voltage readings

recorded by the capacitive sensors under different kinds of uncertainties. We show that the

corruption in the voltages due to uncertainties which decreases signal strength for defect defection

is not merely due to homogeneous addition of noise over all the inspection readings. We analyze

the differences in the capacitive sensing voltage readings collected under various kinds of lift-

offs by Gaussian mixtures models. In each case, we document the target-to-background voltage

comparisons where the target is the defective area amidst the background of non-defective scan

points. Based on this mixture model framework, in Section 2.4 we report the theoretically possible

lowest limit on the defect misclassification error rates across varied uncertainties by considering

the Bayes estimator. In most NDE applications, it is much more harmful to misclassify defects as

non-defects (which is termed as false negatives (FN) or ’missing’) than to misclassify non-defects

as defects (which is termed as false positives (FP) or ’false alarm’). In this context, we evaluated

the Bayes error under the weighted classification loss and reported the minimum achievable FP
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rates when the FN rates are constrained below 10% i.e., when we, at worst, underestimate 10% of

the defect sizes. Based on experimental data collected under different types of uncertainties we

found that the FP rates were quite low even when FN rates are controlled below 10%. This suggests

that it is theoretically possible to recover defect sizes under the uncertainties considered here.

Computation of the Bayes rules and errors reported in following sections needed pertinent

information on defects that is not available for real applications. Thus, those error rates mark the

best theoretically possible errors that any non-spatial decision rule can obtain. In practice, it is

very difficult to get a solely data driven procedure that achieves such error rates. In Section 2.5,

we propose a data driven classifier of defective scan points. The classifier borrows information

across geographically close scan points and is spatially adaptive. Aggregating the data from nearby

locations can increase the background-to-signal ratio and increase the defect detection rate under

certainty. The proposed approach non-parametrically recovers the structure of the defects without

prior knowledge on the uncertainties in the data collection process. We explain the benefits of

spatial adaptation and show that the proposed method yields accurate defect identification in highly

robust conditions. Figure 2.1 shows the framework of the proposed study. In order to provide a

disciplined analysis of robust defect identification using capacitive sensing we further divide the

study into the following components:

1. The first stage involves collection of experimental data using common place capacitive sens-

ing methods. In this stage as described in Section IIA, we set-up a cheap capacitive-sensing

probe with its parameters tuned to operate optimally in usual non-robust laboratory settings.

2. Thereafter, varied types of uncertainties are systematically introduced in the data collection

process through an experimental design (see Table I) that involves 36 experiments on defec-

tive samples containing a single defect of varying sizes.

3. We compute the Bayes error in defect misclassification to understand the impact of corruption

in the voltage signals recorded by capacitive sensing under uncertainties. The nature of the

corruption under different types of uncertainties were characterized.
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4. Based on the above characterization a data driven method was developed to adaptively denoise

capacitive sensing based voltage signals. The proposed non-parametric method uses spatial

filtering and is exhibited to detect defective scan points with very high accuracy.

Figure 2.1 Framework used to develop robust capacitive sensing methodology under uncertainty.

2.2 Experimental Data

2.2.1 Capacitive-sensing data collection methodology

We use a capacitive sensing-based probe that consists of a parallel plate capacitor along with

a coupled inductor coil. The capacitive probe detects the change in the dielectric constant due to

distortion in electrostatic fields in presence of defects in the sample. The voltage recorded by the

probe across a grid of scan points produces image that can lead to defect identification (11; 49; 50).

To understand the working principle of the probe, note that the resonant frequency 𝑓𝑅 of the

sensor is inversely proportional to its net capacitance (C) as 𝑓𝑅 = 1/(2𝜋
√
𝐿𝐶), where, 𝐿 is the

inductance. We know that 𝐶 = 𝜅𝐴𝑑−1, where, 𝐴 is the area of the probe, 𝑑 is the distance between

the excitation and ground, 𝜅 is the dielectric constant of the medium. In presence of defects,

𝜅 changes as the medium is altered compared to non-defective scan points. This changes the

capacitive loading 𝐶 of the fringing field which impacts 𝑓𝑅.

The sensor is designed as in (50). It is made up of Roger’s 4350 board with dielectric constant

of 3.66 and thickness of 1.5 mm. A commercial inductor coil of 100 µH is used to form the LC

tank. The experimental scanning setup consists of the following ingredients: (a) LC tank based
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capacitive probe with pick up coil (b) Scanning robot arm to move the probe along the sample (c)

Power splitter and directional Coupler (d) Data Acquisition System (DAS) and code to produce

image (e) Other associated units.

Figure 2.2 Schematic of the entire experimental setup along with the designed capacitive sensor
marked in red block.

We used Aerotech AGS1000 programmable XYZ scanner for scanning. The probe is mounted on

the scanner. A radio frequency (RF) source is used as input. It is operated at resonant frequency

of the probe which was estimated at 5 MHz when the medium was just air with no sample.

The probe is read in reflection mode. As shown in Figure 1, it is connected to a power splitter

which generates the reference and the measurement signal. The directional coupler is fed with the

measurement signal and is connected with the pickup coil of the probe. As in (51; 52), the reflected

signal captured by the probe is passed from the directional coupler to the lock-in amplifier which

generates voltage signal proportional to the difference in the reference and the measured reflected

19



signals. This voltage signal thereafter is passed into the DAS consisting of a National Instrument

Data Acquisition Card PCIe-6341. The voltage signal is sampled and digitized by a routine in the

DAS and the output is recorded. The complete experimental setup used in the laboratory is shown

in Figure 2.2.

2.2.2 Experimental design for data generation under uncertainties

To understanding how data collected by capacitive sensors is altered as uncertainties increases

in the system, we collect data across different regimes corresponding to varied defect types and

capacitive sensing sampling methods. Table 2.1 describes twelve different regimes/experiments.

For each experiment, we collect data under three scenarios: (1) capacitive sensing with no lift-off

(2) capacitive sensing with moderate lift-off of 3 mm (3) capacitive sensing with increased lift-off of

5 mm. Aside from the lift-off uncertainties, other variations were also incorporated in the capacitive

sensing methods. These variations were introduced across the twelve different experiments and

they were kept invariant across the three scenarios of the experiments. Table 3.1 shows the details

for each experimental set-up. Also, to reflect data collection uncertainties due to non-smoothness

of the inspected sample surfaces we used cheap steel samples bought from the shelves of a popular

retailer instead of perfectly lab-calibrated expensive samples for collecting our data. Steel samples

containing through wall hole (TWH) circular defects of radii 2mm, 4mm and 5mm were used.

Figure 2.3 shows one such sample.

Figure 2.3 Left subplot shows the schematic of steel samples used in the experiments. Samples
were of dimension 20𝑐𝑚 × 20𝑐𝑚 with a circular defect of radius 𝑟 mm at the center; 𝑟 equals 2mm
for small, 4mm for medium and 5mm for large defects. Right subplot shows one such sample.

Figure 2.4 shows the capacitive sensing images across the three scenarios of experiment 1.
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Table 2.1 Description of the twelve different experiments for which voltages based on capacitive
sensing was recorded from damaged cheap steel samples under three different kinds of lift-off and
the resulting voltage readings were analyzed in details to understand the impact of lift-off.
Experiment No Step Size (mm) Sampling rate (s/mm) Time taken (minutes) Data Dimension Defect Size Remarks

I 1mm 100 5.17 8000*80 Medium Medium time
II 1mm 500 5.17 40000*80 Medium Medium time
III 2mm 100 2.5 8000*40 Medium Minimum time
IV 2mm 500 2.5 40000*40 Medium Minimum time
V 1mm 100 5.17 8000*80 Small Medium time
VI 1mm 500 5.17 40000*80 Small Medium time
VII 0.5mm 500 10 40000*160 Small Maximum time
VIII 2mm 100 2.5 8000*40 Small Minimum time
IX 2mm 500 2.5 40000*40 Small Minimum time
X 1mm 100 5.17 8000*80 Large Medium time
XI 1mm 500 5.17 40000*80 Large Medium time
XII 0.5mm 500 10 40000*160 Large Maximum time

Note that, due to coarseness of the samples in use, voltage readings collected under no lift-off has

some fluctuations in the readings at the non-defective scan points. The leftmost plot of Figure 2.4

depicts this variation in the voltage readings as non-defective scan points at the bottom right corner

show higher voltage than the non-defective scan points in the top left. The defective points are

however clearly detectable under no lift-off with much lower voltage than the voltage at almost all

non-defective scan points. With increase in lift-off, the voltage across all the scan points decreases

as shown in the legends of middle and right most plots of figure 2.4. While defective scan points

still have voltages on the lower end, the difference in voltage between defective and non-defective

scan points is much more decreased particularly under increased lift-off. This make classifying

defective scan points based on the voltage readings much difficult as lift-off increases.

Figure 2.4 Image of voltage readings from the three different scenarios of Experiment 1. The Y
and X axes are normalized in [0, 1].
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The aforementioned patterns in the three scenarios of Figure 2.4 is broadly seen also across the

other experiments. Figures A.1-A.3 in the appendix shows the images of the voltages for all the other

cases. Comparing the leftmost (no lift-off scenario) images in figures A.1-A.3, we observe that the

voltage magnitudes vary across experiments as uncertainties change across regimes, but the general

pattern of diminishing voltages due to increased lift-off was consistent across the experiments.

These figures demonstrate that across all the considered regimes which encompass three different

defect sizes, as lift off increases we see significant decrease in the gap between the averages of

the voltage readings from the defective and the non-defective scan points. The reduction in this

gap decreases the signal strength in classifying defective scan points. In the following section, we

validate this phenomenon by considering a rigorous statistical framework and quantitatively study

the impact of lift off on this gap.

2.3 A framework for studying capacitive sensing signals under uncertainties

We first define a few notations. For the 𝑗 𝑡ℎ scenario of the 𝑖𝑡ℎ experiment consider observing

readings 𝑌𝑖 𝑗 = {𝑦𝑙 (𝑖, 𝑗) : 𝑙 ∈ Λ𝑖} over grid Λ𝑖.The grids vary over experiments 𝑖 when the step

sizes are different. We next check if the change in the readings due to lift-offs can be explained by

independent corruption in signal intensity across the grid. For this purpose, we consider the additive

noise model: 𝑦𝑙 (𝑖, 𝑗) = 𝑦𝑙 (𝑖, 1) + 𝜖𝑙 (𝑖, 𝑗) for 𝑗 = 2, 3. For any fixed 1 ≤ 𝑖 ≤ 12 and 𝑗 = 1, 2 we test

the null hypothesis that 𝜖𝑙 (𝑖, 𝑗) are independent across 𝑙 ∈ Λ𝑖. All the twenty-four p-values are less

than 10−5 and so, across all the scenarios, the null hypothesis that changes in the signal intensity

are independent across locations were conspicuously rejected. This suggests that the corruption in

the signals due to uncertainties in the data generation process is not homogeneous across all the

scan-points inspected in the sample. We characterize the heterogeneity in the corruptions to the

capacitive sensor signals in the following paragraph.

In Figures 2.4 and A.1-A.3, we witness that the lift-off based corruptions in the voltages

recorded at the defective scan points is different from the corruptions in the background non-

defective scan points. To explain this difference in corruption, we consider a bivariate normal

mixture model that uses different voltage distributions for the non-defective and the defective scan
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points. Noting that for any experiment i the defective scan points are invariant across scenarios

j, let Θ𝑖 = {𝜃𝑙 (𝑖) : 𝑙 ∈ Λ𝑖} denote the defective scan points in experiment i, i.e., 𝜃𝑙 (𝑖) = 1 if l

is a defective scan point and 𝜃𝑙 (𝑖) = 0 otherwise. For experiment i and scenario j, consider the

following conditional model on the capacitive sensor readings: for the non-defective background

points consider the readings to be independent and identically distributed (i.i.d.) from a normal

distribution:

[𝑦𝑙 (𝑖, 𝑗) |𝜃𝑙 (𝑖) = 0] = N (Δ0(𝑖, 𝑗), 𝜎2
0 (𝑖, 𝑗)) (2.1)

and the readings from the defective scan points also are i.i.d. from a normal distribution with

possibly different location and scale than the background:

[𝑦𝑙 (𝑖, 𝑗) |𝜃𝑙 (𝑖) = 1] = N (Δ1(𝑖, 𝑗), 𝜎2
1 (𝑖, 𝑗)) (2.2)

Figure 2.5 Contour plot of left most image is superimposed on each of the images in Figure 1. The
threshold of -2.8 is selected based on the contour plot. All scan points in the leftmost image with
voltage below -2.8 are donated as defective. The same defective points are marked in the middle
and rightmost plot corresponding to 3mm and 5 mm liftoffs based on Experiment 1. The Y and X
axes are normalized in [0, 1].

We further assume that conditioned on Θ𝑖, 𝑦𝑙 (𝑖, 𝑗) are independent. In practice, we do not observe

Θ𝑖. But, for the experiments in Table 2.1 we know the ground truth regarding the defect size and

location. Using the knowledge that defects in all the experiments in Table 2.1 were circular and

placed at the center of the grid, we used contour plot based thresholding on the capacitive sensor

readings under no lift to estimate Θ𝑖 by Θor
𝑖

. Note that, we use the suffix or in Θor
𝑖

to remind that it

is not a solely data driven estimator of the support of the defective points but uses oracle information

on defects. Figure 3.5 shows how Θor
𝑖

is estimated for experiment 1 based on the readings from
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case (1). As the readings in case (1) do not have corruptions due to lift-off Θor
𝑖

is well estimated.

All the scan points in the grid which has voltage lower than −2.8 were classified as defects and

those with voltage higher than −2.8 were classified as non-defects. As we had symmetric regular

shaped singular defects in all the experiments in Table 2.1, the simple thresholding scheme used

here to calculate Θor
𝑖

was adequate in correctly pin pointing Θ𝑖. Figures A.4- A.6 in the appendix

shows the contour plots for the rest of the experiments.

Figure 2.6 95% confidence intervals (CIs) for each of the 3 scenarios (no lift-off, 3mm lift-off
and 5mm lift-off respectively) of the 12 experiments documented in table 2.2. The CIs of the
non-defective scan-point readings are in light grey whereas the CIs of defective scan-point readings
are in dark grey. The means of each distributions are marked in red.

In Table 2.2, based on Θor
𝑖

, we report the means Δ0, Δ1 and standard deviations 𝜎0, 𝜎1 for the

defective and the background readings. Using these means and standard deviations, figure 2.6

shows the 95% confidence interval for the voltage readings at the defective and non-defective

scan points. From Table 2.2 and Figure 2.6, we see the following general pattern across the twelve

experiments: (a) the difference in means of the voltage between the defective and non-defective area

decreases with the increase in uncertainties in the data collection process. The defective scan points

always have a lower average voltage; (b) the standard deviation of the signals from the defective

areas however decreases with lift-off suggesting that though the mean difference in voltage readings
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Table 2.2 The mean and standard deviation of the voltage readings are reported.

Experiment Defect Proportion Scenario Δ0 𝜎0 Δ1 𝜎1

I 1.67% 1 -2.516 0.164 -3.046 0.165

2 -3.618 0.126 -3.845 0.052

3 -3.961 0.120 -4.106 0.029

II 1.62% 1 -2.354 0.161 -2.887 0.162

2 -3.528 0.140 -3.758 0.051

3 -3.933 0.122 -4.078 0.028

III 1.65% 1 -2.308 0.162 -2.836 0.170

2 -3.403 0.130 -3.624 0.053

3 -3.738 0.124 -3.880 0.028

IV 1.60% 1 -3.278 0.142 -3.523 0.047

2 -3.711 0.124 -3.863 0.024

3 -3.694 0.125 -3.844 0.023

V 0.51% 1 -0.643 0.150 -1.033 0.060

2 -1.959 0.133 -2.107 0.028

3 -2.377 0.099 -2.469 0.016

VI 0.51% 1 -0.899 0.140 -1.291 0.060

2 -2.051 0.124 -2.188 0.028

3 -2.393 0.105 -2.489 0.016

VII 0.51% 1 -0.634 0.148 -1.029 0.061

2 -1.761 0.137 -1.902 0.029

3 -2.052 0.116 -2.149 0.019

VIII 0.50% 1 -0.869 0.142 -1.268 0.054

2 -2.061 0.110 -2.199 0.027

3 -2.462 0.105 -2.551 0.017

IX 0.51% 1 -0.685 0.139 -1.081 0.055

2 -2.033 0.088 -2.177 0.027

3 -2.503 0.090 -2.598 0.015

X 5.14% 1 -2.886 0.142 -3.070 0.070

2 -3.171 0.104 -3.305 0.035

3 -3.110 0.106 -3.238 0.032

XI 2.50% 1 -1.834 0.116 -2.367 0.207

2 -2.832 0.095 -3.067 0.065

3 -3.107 0.084 -3.248 0.032

XII 5.08% 1 -2.919 0.096 -3.095 0.069

2 -3.347 0.108 -3.473 0.032

3 -3.498 0.086 -3.596 0.026
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between defects and non-defects decreases with lift-off, the readings at the defective point have

lower variability and thus are more concentrated with lift-off. Figure 2.7 shows the distributions of

the voltage readings at the defective and non-defective scan points for three cases of experiment 1.

Figure A.7 in the appendix shows the voltage reading of the other eleven experiments. Figures 2.7

and A.7 also illustrate the above discussed patterns for changes in voltage readings with lift-off.

Figure 2.7 Violin plots showing the distributions of voltage readings for the three cases of ex-
periment I (a) no lift-off (b) moderate lift-off of 3mm (c) high lift-off of 5mm. The distributions
of the readings from the defective scan points are shown in dark grey and the distributions of the
non-defective areas are shown in light grey.

2.4 Bayes errors for defect defection under uncertainties

In practice, we only observe 𝑌𝑖 𝑗 and not Θ𝑖 𝑗 . For scenario j of experiment i, the marginal

distribution of 𝑌𝑖 𝑗 is:
𝑦𝑙 (𝑖, 𝑗) =(1 − 𝜋𝑖) N

(
Δ0(𝑖, 𝑗), 𝜎2

0 (𝑖, 𝑗)
)
+

𝜋𝑖N
(
Δ1(𝑖, 𝑗), 𝜎2

1 (𝑖, 𝑗)) for 𝑙 ∈ Λ𝑖, (2.3)
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where, 𝜋𝑖 = P(𝜃𝑙 (𝑖) = 1) is the proportional size of the defect in the grid of inspected points. For

any i and j, if we had known 𝜋𝑖, Δ0(𝑖, 𝑗), Δ1(𝑖, 𝑗), 𝜎0(𝑖, 𝑗), 𝜎1(𝑖, 𝑗),then based on observing 𝑦𝑙 (𝑖, 𝑗)

we can estimate the support of defective scan points as a point-wise classification problem. In

Table 2.3 (last three columns), using the oracle values of the above parameters from Table 2.2 we

report the Bayes misclassification error rate (BME) for point-wise classification. We also report

the defect misdetection or false negative (FN) rate and the false positive rate (FP) of misclassifying

non-defects as defects. BME is the sum of FP and FN.

As the proportions of defective scan points were quite small in all the experiments in Table 2.1,

the FN rate (column 8 of Table 2.3) were quite high as compared to FP rate (column 7 of Table 2.3).

However, in these NDE applications FN are more harmful than FP and so, we next consider

minimizing the FP rate when the FN rate is controlled below 10%.

With the FN rate of defective scan points controlled below 10%, we can detect at least 90%

of the defective scan points which would be adequate to identify defect shapes provided the FP

rate is also low. In order to minimize FP rate keeping FN rate controlled below 10%, we consider

minimizing the weighted classification loss as in the compound decision theory set-up of (53),

where, 𝑤𝑖 𝑗 ≥ 0 is the relative weight of a false positive. For the 𝑗 𝑡ℎ case of the 𝑖𝑡ℎ experiment, the

weighted classification loss for a data driven estimator Θ̂(𝑖, 𝑗) of the support of the defective points

Θ𝑖 is:

L(Θ𝑖, Θ̂(𝑖, 𝑗)) = 1
|Λ𝑖 |

[∑︁
𝑖

I(𝜃𝑙 (𝑖) = 0)Θ̂(𝑖, 𝑗)𝑤𝑖 𝑗 + I(𝜃𝑙 (𝑖) = 1){1 − Θ̂(𝑖, 𝑗)}
]
. (2.4)

When𝑤𝑖 𝑗 = 1 we get back the usual classification loss. The Bayes estimator Θ̂𝑤 (𝑖, 𝑗) that minimizes

the weighted classification loss is: for location 𝑙 ∈ Λ𝑖 set Θ̂𝑤 (𝑖, 𝑗) [𝑙] = 1 if

𝜎2
1 (𝑦𝑙 − Δ0)2 − 𝜎2

0 (𝑦𝑙 − Δ1)2 ≥ 2𝜎2
0𝜎

2
1 log

(
𝑤𝑖 𝑗𝜎1(1 − 𝜋)

𝜎0𝜋

)
(2.5)

and 0 otherwise. Note that for presentational ease, we have dropped the suffix (𝑖, 𝑗) from the mean

and standard deviation parameters in the above expression. The detailed calculations are provided

in the appendix. We calculate the FP and FN rates of this weighted Bayes estimator Θ̂𝑤 (𝑖, 𝑗)) as

the weights 𝑤𝑖 𝑗 are varied over a wide range of values in (0, 1].
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Table 2.3 False positive and false negative rate for classifying defective scan points based on
the bivariate mixture model with parameters in Table 2.2 is reported across all the experiments.
Weighted classification loss reduces the loss of FPs by the reported weights resulting in the FN rates
to be lower than the unweighted classification loss. The Bayes misclassification error is reported
for both the losses (column 9 for unweighted and column 5 for weighted).

Experiment Scenario Weighted Classification Loss Unweighted Classification Loss

FP FN BME Weight FP FN BME

I 1 3.0% 9.0% 3.1% 0.0400 0.2% 36.5% 0.8%

2 10.0% 9.9% 10.0% 0.0400 0.0% 100.0% 1.7%

3 15.3% 8.5% 15.2% 0.0333 0.0% 100.0% 1.7%

II 1 2.4% 9.6% 2.5% 0.0500 0.2% 34.4% 0.7%

2 12.4% 8.7% 12.3% 0.0333 0.0% 100.0% 1.6%

3 15.1% 8.4% 15.0% 0.0333 0.0% 100.0% 1.6%

III 1 3.0% 9.5% 3.1% 0.0400 0.2% 36.4% 0.8%

2 12.2% 9.3% 12.2% 0.0333 0.0% 100.0% 1.7%

3 15.7% 8.7% 15.6% 0.0333 0.0% 100.0% 1.7%

IV 1 10.0% 8.1% 9.9% 0.0400 0.0% 100.0% 1.6%

2 12.3% 8.3% 12.3% 0.0400 0.0% 100.0% 1.6%

3 12.3% 8.2% 12.2% 0.0400 0.0% 100.0% 1.6%

V 1 2.1% 8.5% 2.1% 0.0400 0.0% 100.0% 0.5%

2 15.4% 8.2% 15.4% 0.0100 0.0% 100.0% 0.5%

3 15.0% 7.6% 15.0% 0.0100 0.0% 100.0% 0.5%

VI 1 1.4% 8.1% 1.5% 0.0500 0.1% 70.4% 0.5%

2 16.3% 9.0% 16.2% 0.0100 0.0% 100.0% 0.5%

3 14.6% 7.2% 14.6% 0.0100 0.0% 100.0% 0.5%

VII 1 1.7% 9.3% 1.7% 0.0500 0.0% 100.0% 0.5%

2 16.5% 9.0% 16.5% 0.0100 0.0% 100.0% 0.5%

3 15.6% 7.9% 15.6% 0.0100 0.0% 100.0% 0.5%

VIII 1 1.1% 8.1% 1.2% 0.0667 0.1% 68.2% 0.5%

2 15.2% 8.5% 15.2% 0.0100 0.0% 100.0% 0.5%

3 15.3% 7.9% 15.3% 0.0100 0.0% 100.0% 0.5%

IX 1 1.1% 8.0% 1.1% 0.0667 0.1% 61.6% 0.5%

2 10.4% 8.8% 10.4% 0.0133 0.0% 100.0% 0.5%

3 12.9% 9.8% 12.9% 0.0133 0.0% 100.0% 0.5%

X 1 27.1% 8.4% 26.2% 0.0500 0.0% 100.0% 5.1%

2 20.6% 6.8% 19.9% 0.0667 0.0% 100.0% 5.1%

3 20.6% 6.6% 19.9% 0.0667 0.0% 100.0% 5.1%

XI 1 1.4% 9.0% 1.6% 0.0667 0.1% 19.1% 0.6%

2 6.0% 8.7% 6.1% 0.0500 0.5% 54.6% 1.9%

3 12.1% 8.6% 12.0% 0.0500 0.0% 100.0% 2.5%

XII 1 20.3% 8.1% 19.7% 0.0400 0.8% 80.0% 4.8%

2 20.9% 6.7% 20.2% 0.0667 0.0% 100.0% 5.1%

3 21.8% 7.1% 21.0% 0.0667 0.0% 100.0% 5.1%
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Figure 2.8 The False Positive (FP) vs False Negative (FN) curves for the three scenarios (orange,
blue and green for cases I, II and III respectively) of experiment I as the weights are varied in
the weighted classification loss. For each curve, the right extreme point denotes the FP and FN
proportions for the unweighted loss whereas the left extreme point corresponds to weight 1/200.
The points marked in red are those corresponding to the optimal weights which minimize FP
controlling FN below 10%. They are reported in the first three rows of Table 2.3.

We consider weights in 𝑆 = {1, 1/5, 1/10, . . . , 1/50} ∪ {1/75, 1/100, 1/200}. In Table 2.3, we

report the optimal weights 𝑤𝑖 𝑗 in 𝑆 that minimizes the FP rate keeping the corresponding FN

rate below 10%. Note that, in all the cases the sum of the FP and FN rates for the optimal

weighted Bayes classifier is more than that of the BME of the unweighted case which minimizes

the unweighted misclassification error. However, the optimal weighted Bayes classifier controls the

defect misdetection rate below 10% of the defective scan points. From Table III, we witness that FP

rates of the optimal weighted Bayes classifier increases with lift-off but are usually well controlled

below 15%. In experiments X and XII, the FP rates are a little higher. However, they also have high

FP rates under no lift-off which suggest that better FP vs FN trade-offs can be obtained by slightly

increasing the FN rates in those two experiments. Note that the classified defective scan points

are clustered together at the defect location. If the wrongly classified non-defective scan points are

randomly distributed over the grid they can be easily weeded off and reclassified as long as their

29



proportion is controlled based on local density of defective scans. In Section 6.4, we undertake

such an approach that leverages the spatial connectedness of the defective scan points. The low

FN and FP error rates for the weighted Bayes estimator in Table 2.3 (columns 3 and 4) shows that

capacitive sensing-based voltage readings contains significant information to detect defect under

lift-offs considered in cases 2 and 3 of Table 2.1. In Figure 2.8, the False Positive (FP) vs False

Negative (FN) curves for the three scenarios of experiment 1 are shown as the weights are varied

in the weighted classification loss. For each curve, the right extreme point denotes the FP and FN

proportions for the unweighted loss whereas the left extreme point corresponds to weight 1/200.

The points that corresponds to optimal weights that minimize FP controlling FN below 10% are

marked in red. Across all defect sizes considered in Table I, we validate that there is a consistent

increase in Bayes misclassification error rates with increase of lift-offs. Note that, as the data

used in this chapter was solely collected by laboratory experiments, the voltage signals captured

by our capacitive sensors had very high signal strength when there were no uncertainties. All our

validation results are based on ground truth that is recovered from signals without uncertainties.

2.5 A data driven algorithm for defect detection

The errors reported in Table 2.3 mark the theoretically possible lower limit on the error rates

that any decision rule that conduct point-wise classification without borrowing spatial information

can produce. To obtain the results in Table 2.3, we have used knowledge of Θor
𝑖

which is not

available for real world NDE applications. In this section, we develop a solely data based estimator

which does not use any prior knowledge on defect size, shapes or locations. Achieving the error

rates in Table 2.3 with solely data driven estimators is not always possible as it would require highly

accurate estimates of 𝜋𝑖, Δ0(𝑖, 𝑗), Δ1(𝑖, 𝑗), 𝜎0(𝑖, 𝑗) and 𝜎1(𝑖, 𝑗). Estimating 𝜋𝑖, Δ1(𝑖, 𝑗) and 𝜎0(𝑖, 𝑗)

in presence of noise is extremely difficult and lead to significant estimation error (54; 55; 56; 57).

To mitigate these estimation problems, we develop a spatially adaptive procedure to estimate Θ𝑖.

First a naïve thresholding estimator Θ̂𝑇 [𝑙] = 1{𝑦𝑙 < 𝑐𝛼} is considered, that classifies the 𝑙𝑡ℎ

scan point as defect if its voltage is below the 𝛼𝑡ℎ quantile of voltage readings over the grid. In

Table 2.4, we report the performance of Θ̂𝑇 for a range of 𝛼 values. As 𝛼 increases Coverage rates

30



Figure 2.9 For case 3 of experiment I, we present the efficiency of the intermediate estimators
that are involved in our proposed spatially adaptive classifier Θ̂𝑇𝑆𝐴 of the defective scan points.
Each plot represent the confusion matrix of the corresponding classifier with brown showing the
true defect scan points that the classifier had correctly classified, light yellow showing the true
non-defective scan points it correctly classified, orange displaying false positives (which are non
defective scan points wrongly classified as defects by the classifier) and dark yellow showing false
negatives (which are defective scan points wrongly classified as non-defects). The axes in all the
plots display scaled normalized locations in [0, 1]. The four plots from top left to bottom right,
show the gradual filtering process that is involved in the intermediate steps of the proposed Θ̂𝑇𝑆𝐴
estimator. Here, 𝛽1 = 𝛽2 = 0.4 and 𝛼 = 0.025.

of the defect (defined as 1-FN) increase at the cost of increased FP. We observe that while Θ̂𝑇 works

very well for case 1 when there is no lift-off, its performance drastically deteriorates as signals are

corrupted due to increase in lift-off uncertainty. We next consider denoising the signals collected

under lift-off uncertainty by using the adaptive shrinkage estimator proposed in (58). For denoising

we use the denoiseR package of (59) that estimates a low-rank signal assuming Gaussian noise

by minimizing the risk estimation criterion in (60; 58). On the denoised data we again tried the

elementwise thresholding described above. We observed that under lift-off its performance is not
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much better than naïve thresholding of voltage signals (See Table 2.4). Next, we consider a spatial

adaptive estimator that is based on local variances in the capacitive imaging data. For voltage

readings collected over any grid Λ consider a symmetric neighborhood 𝑁𝑙 around the 𝑙th scan point

in the grid. 𝑁𝑙 is a set of grid points that includes the scan point and its neighbors. Consider the

variance 𝑣𝑙 associated with 𝑁𝑙 :

𝜈𝑙 =
1

|𝑁𝑙 | − 1

∑︁
𝑠∈𝑁𝑙

(𝑦𝑠 − 𝑦̄𝑙)2, where, 𝑦̄𝑙 =
1
𝑁𝑙

∑︁
𝑠∈𝑁𝑙

𝑦𝑠 . (2.6)

We compute variance over each point in the grid. For 𝑁𝑙 we consider a square window with 25 scan

points centered around the 𝑙th scan point. We use this local variance filter on the voltage readings

and estimate the support of defective grid points as:

Θ̂𝑆 [𝑙] = 1{𝑦𝑙 < 𝑐𝛽1and 𝜈𝑙 > 𝑐𝛽2}, (2.7)

where, 𝑐𝛽1 = quantile(𝑦𝑙 : 𝑙 ∈ Λ; 𝛽1) and 𝑐𝛽2 = quantile(𝜈𝑙 : 𝑙 ∈ Λ; 1 − 𝛽2) are the quantiles of the

voltage readings and local variances. We universally set the values of 𝛽1 and 𝛽2 at 40%. Note that,

as we use large values of the tuning parameters 𝛽1 and 𝛽2 the estimator is not very sensitive to minor

changes in the values. Figure 2.9 shows Θ̂𝑆 for case 3 of experiment I. Consider the decomposition

Θ̂𝑆 = Θ̂𝑆1 ∗ Θ̂𝑆2 ,

where, Θ̂𝑆1 [𝑙] = 1{𝑦𝑙 < 𝑐𝛽1} and Θ̂𝑆2 [𝑙] = 1{𝑣𝑙 > 𝑐𝛽2}. Figure 2.9 (top left plot) shows Θ̂𝑆1

contains almost all defective locations along with a large proportion of non-defective scan points.

These non-defective scan points are not uniformly distributed over the grid which would have made

our task of filtering them easier but are concentrated in the top left quadrant. This is a result of lift-

off uncertainty compounded with probe tilting. Applying the filter Θ̂𝑆2 based on the local variances

(Figure 2.9, top right plot) helps in cleaning these non-defective scan points in Θ̂𝑆1 keeping most of

the defective scan points. The resultant estimator Θ̂𝑆 (see figure 9, bottom left image) still contains

sporadic non-defective scan points. As these non-defective scan points are not concentrated unlike

in Θ̂𝑆1 we can easily weed them off by using a uniform local filter. For this purpose, we consider

the averaging filter FA which divides the grid Λ into 100 rectangles and finds the average of signals
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Figure 2.10 We plot the False Positive (FP) proportions and Coverage rates across the 36 sub-
experiments (plotted maintaining the order of rows reported in Table 2.2). We present the perfor-
mance of threshold estimators on raw voltage data (in black), on low-rank model based denoised
signals (in red) and by our proposed spatially adaptive estimator (in green) when the threshold
parameter was set at 0.05 (top panel) and 0.10 (bottom panel).
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over each of those rectangles. We apply FA on Θ̂𝑆. This smooth (figure 2.9, bottom right plot)

out the sporadic non-defective misclassified scan points keeping the concentrated mass of correctly

detected scan points intact. Finally, using these as the local weights on the original voltage readings

we consider the spatially adaptive estimator: Θ̂𝑆𝐴 = 𝐹𝐴 (Θ̂𝑆) ∗ 𝑌 , where, 𝑌 = max(𝑌 ) − 𝑌 .

We conduct a binary classification of grid points as defects by thresholding Θ̂𝑆𝐴 and considering

Θ̂𝑇𝑆𝐴 [𝑙] = 1{Θ̂𝑆𝐴 [𝑙] > 𝑡1−𝛼} where 𝑡1−𝛼 = quantile(Θ̂𝑆𝐴 [𝑙] : 𝑙 ∈ Λ; 𝛼). In Table 2.4, we report

the FP and coverage rates of the proposed estimator. As shown in recent works (57) , using spatially

adaptive local weights can tremendously help in recognizing underlying patterns from very noisy

imaging data. Here, thresholding the spatially adaptive estimator 𝐹𝐴 (Θ̂𝑆1 ∗ Θ̂𝑆2) instead of the

original signal or low rank model based denoised signal, we observe that we can reasonably filter

out the effects of probe tilt and lift-off based uncertainties.

Table 2.4 and figure 2.10 compares the efficacy of the proposed method with naïve thresholding

and low rank signal denoising. They show that using the aforementioned spatially adaptive estimator

based on local features of the imaging data, it is possible to attain appreciable coverage and low

false positive rate in detecting defective scan points under the varied uncertainties considered here.

From Table 2.4 and Figure 2.10, we observe that thresholding based on raw voltage signals is

effective under no lift-off but provides very low coverage as lift-off increases. Low rank model

based denoising also does not help. It reduces false positive rate a bit but suffers from insufficient

coverage. The proposed spatial adaptive estimator however can provide considerably high coverage

with very tight control on the false positive rates. As such with false positive rates controlled at only

2%, the spatially adaptive estimator provides sufficient coverage under lift-off in all experiments

barring VII, X, XI and XII. When the limit on the false positive proportion is raised to 10%, the

spatially adaptive estimator provides sufficient coverage across all the 36 regimes considered. It is

to be noted that there is discernable difference in the performance of the estimator (as shown in

Figure 2.10) between regimes 1 to 30 and 31 to 36. This is due to the fact that regimes 31 to 36

contain defects of considerably different characteristics than those in the previous regimes. Overall,

the results in Table 2.4 and Figure 2.10 show that the spatially adaptive estimator based on local
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features of the imaging data can attain appreciable coverage and low false positive rate in detecting

defective scan points on the grid under the different lift-off uncertainties considered in this chapter.

In equation 2.6, we considered fixed sized rectangular neighborhoods. They can be easily

replaced by Gaussian kernel filters that weighs each scan points in the lattice inversely proportional

to the exponent of its distance from the scan point under study. In this context, the proposed filters

are similar to signal processing techniques that uses Gaussian filters. However, we found that the

local variances in these data sets contain important information and so, we filtered the variances.

In this attribute, we differ from traditional filtering where filtering is done based on signal intensity

or amplitude and not variances.

2.5.1 Multiple coexisting defects

All the experiments considered in Table 2.4 contained a single defect. Next, we consider two

experiments (MI and MII) where we had multiple coexisting defects. Each experiment had three

scenarios as before pertaining to no, 3mm and 5mm lift off along with other embedded uncertainties.

Figure 2.11 shows the structure of the defects. There were four and twelve defects of varying shapes

and sizes in experiments MI and MII respectively.

Figure 2.11 Schematic shows the defects used in experiments MI (left) and MII (right). MI had
four circular defects a, b, c and d of diameters 48 mm, 20 mm, 8 mm and 1mm respectively. In
MII along with these four defects, there are four equilateral triangle defects (marked as e, f, g , h)
with sides 42, 28, 10 and 2 mm respectively and square defects (marked as i, j, k, l) whose length
of sides are 30, 20, 6 and 3 mm respectively.
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Table 2.4 False Positive proportion and Coverage rate for threshold estimators on raw voltage data,
on low-rank model based denoised signals and by our proposed spatially adaptive estimator when
the threshold parameter 𝛼 was set at 0.05 and 0.10 respectively are reported. Results for the 36
sub-experiments of Table 2.2 are presented in order across rows.

Threshold at 0.05th quantile Threshold at 0.10th quantile

Raw Voltage Low Rank Denoised Spatial Denoising Raw Voltage Low Rank Denoised Spatial Denoising

FP Coverage FP Coverage FP Coverage FP Coverage FP Coverage FP Coverage

0.039 1.000 0.034 1.000 0.008 0.996 0.083 1.000 0.083 1.000 0.081 1.000

0.041 0.990 0.034 0.987 0.008 0.993 0.089 0.997 0.084 0.996 0.077 1.000

0.045 0.582 0.044 0.582 0.008 0.879 0.092 0.663 0.092 0.663 0.083 0.996

0.035 1.000 0.034 1.000 0.009 0.998 0.090 1.000 0.084 1.000 0.081 1.000

0.043 0.952 0.035 0.936 0.008 0.994 0.088 0.983 0.084 0.979 0.083 1.000

0.047 0.552 0.044 0.549 0.009 0.799 0.104 0.639 0.093 0.616 0.083 1.000

0.038 1.000 0.034 1.000 0.008 0.995 0.087 1.000 0.084 1.000 0.082 1.000

0.036 0.956 0.035 0.956 0.008 0.992 0.088 0.986 0.084 0.986 0.082 1.000

0.048 0.485 0.044 0.472 0.009 0.968 0.095 0.562 0.094 0.556 0.082 1.000

0.043 1.000 0.034 1.000 0.011 0.949 0.085 1.000 0.084 1.000 0.085 0.972

0.051 0.662 0.040 0.624 0.011 0.842 0.088 0.772 0.088 0.772 0.082 0.884

0.049 0.601 0.041 0.548 0.010 0.843 0.092 0.740 0.089 0.712 0.085 0.898

0.046 1.000 0.045 1.000 0.019 0.999 0.095 1.000 0.095 1.000 0.095 0.999

0.049 0.423 0.048 0.418 0.019 0.989 0.102 0.540 0.097 0.529 0.094 0.999

0.052 0.250 0.049 0.221 0.021 0.709 0.120 0.386 0.098 0.362 0.080 0.999

0.047 1.000 0.045 1.000 0.019 1.000 0.100 1.000 0.095 1.000 0.093 1.000

0.054 0.406 0.048 0.380 0.020 0.997 0.103 0.523 0.097 0.509 0.094 1.000

0.053 0.196 0.050 0.196 0.021 0.732 0.107 0.329 0.099 0.324 0.090 1.000

0.046 1.000 0.045 1.000 0.019 1.000 0.095 1.000 0.095 1.000 0.094 1.000

0.051 0.155 0.049 0.135 0.022 0.187 0.100 0.449 0.098 0.449 0.094 0.999

0.065 0.011 0.052 0.009 0.022 0.517 0.109 0.038 0.102 0.037 0.091 1.000

0.045 1.000 0.045 1.000 0.018 1.000 0.097 1.000 0.095 1.000 0.095 1.000

0.049 0.547 0.047 0.530 0.017 0.993 0.100 0.694 0.097 0.693 0.092 1.000

0.055 0.022 0.050 0.013 0.020 0.609 0.100 0.139 0.099 0.132 0.093 1.000

0.045 1.000 0.045 1.000 0.020 1.000 0.098 1.000 0.095 1.000 0.095 1.000

0.049 0.989 0.045 0.989 0.018 0.999 0.107 0.995 0.097 0.995 0.094 1.000

0.055 0.515 0.049 0.515 0.018 0.771 0.109 0.627 0.101 0.591 0.094 1.000

0.000 1.000 0.000 0.987 0.000 0.925 0.062 1.000 0.058 1.000 0.043 0.956

0.020 0.682 0.016 0.660 0.001 0.458 0.086 0.842 0.058 0.817 0.059 0.792

0.024 0.560 0.023 0.549 0.000 0.470 0.083 0.726 0.066 0.685 0.057 0.752

0.000 1.000 0.000 0.956 0.000 0.948 0.054 1.000 0.048 1.000 0.060 0.987

0.016 0.650 0.016 0.649 0.000 0.472 0.071 0.655 0.066 0.655 0.063 0.639

0.021 0.611 0.018 0.606 0.001 0.460 0.089 0.648 0.066 0.645 0.066 0.639

0.000 1.000 0.000 0.985 0.000 0.942 0.054 1.000 0.049 1.000 0.053 0.984

0.024 0.548 0.022 0.546 0.003 0.390 0.078 0.711 0.064 0.700 0.063 0.723

0.027 0.629 0.020 0.592 0.004 0.356 0.077 0.726 0.065 0.695 0.052 0.710
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Figure 2.12 shows the image plots of the voltage readings collected by our capacitive sensing

probe.

Figure 2.12 Plot of voltage readings from the three different scenarios of Experiment MI (top) and
MII (bottom) respectively. The Y and X axes are normalized in [0,1].

In Table 2.5 we report the false positive proportion and defect detection coverage rate that was

achieved by applying our proposed spatial denoising algorithm on the capacitive sensing data. We

observe that our proposed method not only outperforms the aforementioned competing algorithms

but also obtains high coverage and low false positive rate in detecting the multiple, disconnected

defect clusters.

Table 2.5 False positive and coverage rates for coexisting defects. 𝛼 was set at 0.10.
Raw Voltage Low Rank Denoised Spatial Denoising

Experiment Scenario FP Coverage FP Coverage FP Coverage
1 0.034 1.000 0.033 1.000 0.036 1.000

MI 2 0.034 0.999 0.034 0.999 0.052 0.979
3 0.055 0.822 0.054 0.819 0.076 0.887
1 0.057 1.000 0.056 1.000 0.055 1.000

MII 2 0.057 0.999 0.056 0.999 0.055 1.000
3 0.073 0.870 0.069 0.866 0.080 0.930
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2.6 Conclusion

In this chapter a robust NDE based defect detection methodology is developed using short waves

based capacitive sensing. This method is cheap as it doesnot need complex expensive sensors. It

does not need any expert supervision and can produce instantaneous defect identification under

highly robust conditions by using spatially adaptive denoising. Moreover, the apparatus involved

for data collection is light and flexible and can be implemented across a wide range of NDE

applications.

We demonstrate high efficacy of the proposed NDE methodology in non-smooth samples under

varied lift-off uncertainties. We provide a Gaussian mixture model based disciplined analysis to

check when defective scan points in the sample can be detected with high accuracy and with low

false positive misclassification rates for non-defective scan points. This would lead to identification

of defect characteristics such as location, size and shape with desired accuracy. The results are

validated on experimental data on samples containing single defect of three different sizes as well

as on samples containing multiple coexisting defects. We show that the proposed spatially adaptive

denoising algorithm leverages the spatial contiguity of defective scan points and can well identify

defects based on capacitive sensing data that is convoluted with the uncertainties due to lift-off,

probe tilt and low sampling rates.

Portions of this chapter appeared in the publication (12).
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CHAPTER 3

INLINE PIPELINE INSPECTION USING HYBRID DEEP
LEARNING AIDED ENDOSCOPIC LASER PROFILING

3.1 Introduction

Structural integrity of pipelines decreases with usage and thus regular monitoring is needed

for safe operations. Leaks and breakages in pipelines left undiagnosed can cause significant loss

of property and lives (61; 62). It is very important to detect defects in a timely manner. In this

chapter we have conducted NDE inspection on non-metallic pipelines which constitute a significant

percentage of our current natural gas distribution and domestic pipeline systems. These pipelines

are mostly made of plastic materials such as high density polyethylene (HDPE), medium density

polyethylene (MDPE) and polyvinyl chloride (PVC). They are extensively used for their high

strength to weight ratios and low manufacturing and installation costs (63). Aging plays a major

role in degradation of these pipelines and can lead to catastrophic failure without proper monitoring.

Existing non-destructive evaluation (NDE) methods such as magnetic flux leakage (MFL), Eddy

current, ultrasonic testing and electro-magnetic acoustic transducer (EMAT) (28; 29; 27; 30; 64)

which are very popular for inspecting metallic pipelines can not be used in these polymer-based

pipelines due to the dielectric nature of their wall materials. While MFL, Eddy current and EMAT

need highly conductive or ferro-magnetic pipe walls, ultrasound techniques need coupling medium

which is not achievable in practice. A novel NDE method using optical imaging is deveoped

here that does not need any coupling medium or conductive pipe walls. This method uses laser

ring scanning and profiling to collect inline pipeline inspection data which is then subsequently

processed by pre-trained deep learning networks to produce accurate defect identification.

A laser ring scanning the inner pipe wall can provide a clear and accurate profile of pipeline

using triangulation methodology (65; 66). The proposed non-destructive inspection apparatus uses

a camera to capture the high-quality reflected images from the inner pipe wall. Existing NDE

works using such endoscopic profiles used manual interventions to introspect the recorded images.

Such offline mode of assessment is highly labor intensive and time consuming. Modern NDE
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methods need to routinely inspect massive pipeline systems and provide real time feedback and so,

need to incorporate automated, instantaneous defect identification routines (67). Recently, machine

learning algorithms have been successfully applied for instantaneous defect detection in pipelines

using different NDE based imaging methods (68; 69). However, these algorithms are highly

sensitive to the data collection procedures and cannot be robustly appended for post-processing in

other related NDE techniques. Also, while locating defects is the important first step, contemporary

NDE systems need to differentiate between the different defects and provide detailed diagnosis,

thereby accurately recognizing the obtrusive defects from the benign types (70; 71; 72). Classifying

defect types with high accuracy based on laser images is a significantly more challenging problem

than merely detecting aberrations in the pipe inner walls. Here, an integrated framework for probing

and analysis that uses deep learning classifiers to provide accurate diagnosis of different defect types

based on laser ring images collected from endoscopic scanning is developed.

Developing the software for defect classification in this framework is challenging as the dif-

ferences in the laser-scan images across different defect types is very subtle and localized. The

difficulty is also compounded for the following two reasons: (a) images from endoscopic scan-

ning conducted at different speeds can have varying characteristics (b) there is imbalance among

different defect types; for example, defects resulting from material losses are more frequent than

dents and holes in the pipeline. A robust identification system is developed that can learn from

experimental data and can generalize well across diverse test sets. For that purpose, I have analyzed

and compared the predictive accuracy for a host of state-of-the-art machine learning algorithms.

An extensive bag of methods which along with several deep learning architecture also included

logistic regression (LR), linear discriminant analysis (LDA), non-parametric nearest neighbor clas-

sifier (KNN), support vector machines (SVMs) with different kernel choices, random forest (RF)

and classification and regression trees (CART) are considered here. By analyzing such a wide

array of methods, we demonstrate the predictive accuracy gains that complex learning methods can

produce over simpler methods. In particular, by calibrating network complexity in deep learning

set-ups based on out-of-sample error rates, an efficient deep learning architecture using crossed
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hierarchical bilinear pooling (HBP) is developed that yield 98.33% accuracy rates. The optimally

calibrated HBP method was arrived by gradually increasing modeling flexibility from the simplest

2D convoluted neural network (CNN) to transfer learning aided CNN (CNN-TL) to hybrid network

comprising of CNN and long short-term memory (CNN-LSTM) recurrent neural networks. In

laser-ring scanned images, deformities due to defects lead to local perturbations in the circular

rings produced by the otherwise non-defective inner walls of cylindrical pipes. HBP exploits inter

layer feature interactions to identify the local features embedded within the images (73) and can

detect different types of edge deformities in laser-ring scans with high precisions.

The key contributions of this chapter are as follows:

1. An integrated framework has been developed for automatic online inspection for defect detec-

tion and defect type identification in the inner walls of plastic pipes using laser profilometry.

Distortions caused by defects in the laser rings are collected by the camera in the endoscopic

scanning and is recorded in the video format as the camera traverse through the pipe. These

videos are fragmented into images. These images are fed to a pre-trained HBP deep learning

network to detect different defect types along the pipe walls.

2. For pipelines in usage, light intensity and scanner speeds in endoscopic methods can greatly

vary across different scans in the same pipeline (65). To reflect such heterogeneous charac-

teristics in real inspection data, we vary the scan speeds in our experimental set-ups. Our

proposed HBP based NDE method can produce highly accurate diagnosis in such datasets

with varying profilometrics.

3. Fine grained visualization is achieved by extensively tuning a hybrid cross layer HBP that uses

Resnet50 (74) as the baseline model. In the process, we document predictive performance by

a gamut of machine learning classifiers clearly demonstrating the analytical perspective that

can lead to significant gains. In particular, by carefully curating a series of frames along the

laser-ring’s circular path via circular hough transformation (CHT) (66) we develop a hybrid

neural network based on CNN-LSTM that take into account both the spatial and temporal

features present within the image. We show that such CNN-LSTM outperforms basic CNNs
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but is dominated by HBP which is specifically geared for fine grained visualization and edge

detection by accounting for local variations.

The rest of the chapter is organized as follows. In section 3.2, we describe the hardware developed

for laser ring imaging and the data collected by using it in laboratory experiments. In section 3.3,

we describe the different deep learning architectures including the HBP which we prescribe for

laser-scan image data analysis in our integrated NDE framework for online inspection of plastic

pipes. In section 3.4, we provide the misclassification errors from the optimally tuned deep

learning models along with those from conventional machine learning models. We not only exhibit

superior performance of the HBP based laser profilometry method but also demonstrate its very

low out-of-sample error rates in identifying defect types.

3.2 Endoscopic Laser Profiling: Hardware and Data Generation

Laser profilometry forms an effective tool for NDE inspection of plastic pipelines. The hard-

ware consists of a laser projector which act as the source and projects defined patterns of light

inside the pipe. The light reflected on the pipe walls is captured by the camera sensor. CMOS

(Complementary Metal Oxide Semi-conductor) camera is the most popular method for visualiza-

tion in laser profilometry due to its cheap cost as compared to CCTV (closed circuit television).

A laser diode (75) is used as the light source and the reflected light forms a circular ring which is

read by the camera. The precision of the projector is important as in presence of defects there will

be distortions in the laser ring.

Our laser ring profiling methodology is based on the method of triangulation (76; 77) and

the parallax between the camera and illumination. A signal proportional to the object position is

generated by the reflected laser light. In our apparatus, we place the illumination source (laser) and

the detector (CMOS) on the same optical axis as shown in the schematics in Figure 3.1. This results

in constant illumination over the inner circumference of the pipe and thus all the points along the

circumference are measured with same intensity. Figure 3.2(a) shows the entire experimental setup

which comprises of a laser sensor, CMOS camera for data acquisition, motor to move the scanner

inside the pipes, pipes of varying diameters and materials used for scanning. Figure 3.2(b) shows
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Figure 3.1 (a) In top schematic illustrating the hardware used in laser-profiling showing laser
projector (source) and CMOS camera (detector) stationed along the same optical axis. R is the
inner diameter of the pipe wall, d is the distance between source and detector and theta is the
angle of projection from the source (b) bottom schematic shows deformation in the red laser ring
in presence of defect in gray.

Figure 3.2 (a) Entire experimental setup (on left) (b) portion of the scanner with the camera and
laser projector facing each other (right image).

the scanner arm with the laser source and the camera sensor facing each other.

The developed sensor enjoys the desirable property that it can be easily adapted to work across
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Figure 3.3 Schematic showing laser projector and camera setup.

Figure 3.4 Different defects: (a) dent,(b) material loss, (c) holes, (d) slits are presented.

pipes of highly varying diameters. The adaptation would just involve increasing the length of the

metal rod that connects the camera and projector holders with increase in the diameter of the pipe.

If the change in diameter is not large the adjustment is even simpler and can be done by merely
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Figure 3.5 Distortion of the laser ring due to various defects. From top to bottom, we respectively
have laser-ring scans as recorded by the CMOS in pipe walls with dent, material loss, hole, slit
and no deformities. For display only, the defective area is manually gated by a red box. The laser
intensity used while collecting on the left images were much lower than those on right.

adjusting the position of the nuts on the metal rod. To understand the reason behind the adjustment,

consider that the projection angle of the projector used in our sensor is 𝜃𝑝 and its camera’s field of
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view angle is 𝜃𝑐. Also, assume that the camera and projector are separated by a distance 𝐷 and

the sensor was placed along the axis of the cylindrical pipe pointing along the z-axis. Let 𝑅 be the

radius of the pipe. For a point 𝑃 on the pipe surface, we have tan 𝜃𝑝 = 𝑅/𝑃𝑧, where, 𝜃𝑝 = 𝜃𝑝/2 is

half projection angle of the laser projector, and 𝑃𝑧 represent the Z-coordinates of the point. The

angle 𝜃𝑟 of the received camera ray satisfies: tan 𝜃𝑟 = 𝑅/(𝐷 − 𝑃𝑧). This implies,

𝜃𝑟 = arctan
(

𝑅

𝐷 − 𝑅 cot(𝜃𝑝/2)

)
.

To guarantee that the projected ring is within the camera field of view as shown in Figure 3.2, we

need to satisfy the condition 𝜃𝑐 > 2𝜃𝑟 . When the projector projection angle, the camera field of

view and the radius of the inspected pipe are fixed, the above condition can be satisfied by changing

D. Thus, our sensors can be used across pipes of varying diameters by changing the length of the

metal rod that connects camera and projector holders or by simply adjusting the position of the nuts

on the metal rods if the change in diameter is not large.

Using the set-up in figure 3.2(a), experimental data is collected from pipes with three varying

inner diameters (7.5cm, 10 cm, 15 cm). Four different types of defects that usually occur in plastic

pipelines as (a) dent (b) hole (c) material loss, and (d) slit are considered here. These defect types

trigger highly different alarm levels for pipeline maintenance with holes being the most detrimental

type and need immediate maintenance. Figure 3.4 shows pipe samples containing various types of

defects.

Defect of varying types and lengths produce different kinds of distortions in the laser rings at

different positions on the circumference. Figure 3.5 shows the distortions (in red) due to different

defects. The discontinuity in the laser ring as seen also in images from non-defective pipe sectors

(see Figure 3.5 bottom images), is due to the endoscopic motor rod that hosts the laser and the

camera. In images containing defects, such discontinuity is also accompanied with perturbations

in the circular ring. Three different laser intensities are used in data collection.

3.3 Defect classification using deep learning

In this section we analyze a series of deep learning models starting from 2D CNN and thereafter

gradually increasing modeling complexity by incorporating spatial features in the data. Significant
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Figure 3.6 From top to bottom, network architectures of (a) CNN, (b)transfer learning aided CNN
and (c) Structure adaptive CNN-LSTM are presented.

47



effort was spent to optimally calibrate each of the framework and the optimal models in each

framework is presented and their predictive accuracy is compared. The laser-scan images are

resized to 300 × 300 dimensional inputs for all the models. All the models except HBP were

executed using Keras and Tensorflow and HBP was implemented using pytorch in the Google

Colab cloud based configuration. All the models are run for 100 epochs with batch size 16.

3.3.1 2D CNN and transfer learning aided CNN

2D CNN deals with data in grid formats (78; 79) learning features from lower layers to higher

layers by constructing a deep neural hierarchical architecture (80). Tuning the network over several

iterations lead to the usage of 5 convolutional layers followed by 4 fully connected dense layers.

Convolution layers are followed by max pooling layers to reduce dimension. In max pooling layers,

dropout is also used to introduce regularization. Figure 3.6 shows the detailed architecture which

is described below.

The first convolution layer on the 300 × 300 dimensional image input has 32 convolutional

3 × 3 kernels with stride 1. The output dimension 298 × 298 × 32 reduces to 296 × 296 × 32 on

application of the second convolution layer. Thereafter, a 2 × 2 maximum pooling window is used

outputting 148 × 148 × 32 array. To reduce regularization and to prevent overfitting, a dropout

layer with dropout parameter set to 0.25 is introduced before a third convolutional layer reduces

the output dimension to 146 × 146 × 32. Similarly, after the application of another maximum

pooling and dropout, the output dimension is 73× 73× 32. A fourth convolutional layer containing

64 convolutional kernels is then applied and the output dimension is 71 × 71 × 64. After the

application of another maximum pooling and dropout the output dimension becomes 35 × 35 × 64

which is further reduces to 33× 33× 64 by the fifth convolutional layer. The output is flattened and

the dimension becomes 33 × 33 × 64 = 69696, and four dense layers are then used. Categorical

cross entropy is used as the loss function and classification of defects is done using SOFTMAX

activation in the last layer. The convolutional and dense layers use the Rectified Linear units

(RELU) as the non-linear activation function. It helps with the vanishing gradient problem and

have faster convergence rates than that of Tanh and Sigmoid functionals (81; 82). Adam is used as
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the optimizer in the model.

Next, 2D CNN model with VGG-16 as the transfer learning model is developed. Transfer

learning (TL) constitute a set of extremely powerful information assimilation technique for retaining

knowledge gained from one problem and applying it to a different but related problem (83; 84; 85).

Here, information learnt by VGG-16 model (86) on ImageNet dataset which contains around 3.2

million images (87) is used for our laser-scan imaging data. Figure 3.5b shows the schematic of

the network architecture. VGG-16 contains 13 convolutional layers followed by 3 fully connected

layers. We used pretrained weights for the 13 convolutional layers of VGG-16 while retraining

the fully connected layers. The feature vector thus obtained is flattened and retrained on 4 fully

connected dense layers which use RELU activation and dropout of 0.3. RMSprop with a learning

rate of 0.0001 is used as the optimizer.

3.3.2 Laser-scan structure adaptive CNN-LSTM model

The goal here is to leverage structural information in the laser-scan images which contain

circular rings amidst the pipe background. We use CHT (66) to identify the region of interest con-

taining the laser ring neglecting the other non-significant areas in the images. Each circular ring is

segmented into 20 overlapping rectangular frames using the OpenCV (88) python package as follows:

• Image is converted to gray scale and threshold filters are applied as the laser intensity varied

over different images.

• The laser ring center (𝑐1, 𝑐2 and radius 𝑟 is estimated by using circular hough transform

(CHT) function. Then, the center of the rectangle falling on the arc is derived for 𝑖th frame

as (𝑐1 + 𝑟 cos(2𝜋𝑖), 𝑐2 + 𝑟 sin(2𝜋𝑖)) for 𝑖 = 1, . . . , 20.

Figure 3.7 shows the 20 frames thus obtained for an image. Each rectangular frame contains a part

of the circular arc arranged in the form of sequences. To maintain the spatial proximity order among

the frames, we develop a time distributed sequential architecture (see Figure 3.6c) which contains

5 time distributed convolutional layers followed by a LSTM layer. The LSTM layer is implemented

using keras (89), a deep learning library that uses Tensorflow at the backend. Figure 3.8 shows

the time distributed layer setup where each frame is subjected to a convolutional layer followed

49



Figure 3.7 Laser ring segmentation using CHT in structure adaptive CNN-LSTM.

by a maxpool layer. Each set of convolution and max pool layer is repeated 5 times. The frames

segmented on the basis of CHT are shown in block I and the time distributed CNN and maxpool

operations in block II of Figure 3.8. After the final convolution layer, the output features are flat-

tened and a dropout of 0.5 is applied. The convolved features of each frame in the sequence are then

represented as a 1 dimensional vector. The sequence of these vectors is then feed into a LSTM layer

parameterized with an output dimension of 512 and the return-sequence is set to false. The yellow

subplot of figure 3.8 shows block III which is the structure of a LSTM cell. It uses four functions

𝑓 , 𝑖, 𝑔,𝑂𝑝 to calculate 𝑐𝑡 and ℎ𝑡 which are the cell states and hidden states respectively at iteration 𝑡:

𝑐𝑡 = 𝑓 ◦ 𝑐𝑡−1 + 𝑖 ◦ 𝑔 and ℎ𝑡 = 𝑂𝑝 ◦ tanh(𝑐𝑡), where,
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and 𝑊 is the weight matrix, 𝜎 is the sigmoid function and 𝑥𝑡 is the input at the 𝑡th iteration. The
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output is finally obtained by flattening. Stochastic Gradient Descent (SGD) with initial learning rate

of 0.01 and having 10000 decay steps with 0.9 rate is used as the optimizer. The convolution and

LSTM layers use RELU as the nonlinear activation and as before, SOFTMAX is used to classify

into various classes.

Figure 3.8 Schematic of the CNN-LSTM hybrid framework with fragmented sequential frames
produced by CHT, the convolutional and the LSTM framework in blocks I, II and III respectively.

3.3.3 Hierarchical cross-layer bilinear pooling

Different categories of defects have different kinds of deviations from the circular laser-ring

corresponding to non-defects. We conduct fine grained image recognition to capture these subtle

laser-ring deviations among the different defect types. We concentrate on local features to accurately

detect the subtle differences that can distinguish different defect sub-categories. We implement

fine grained recognition using hierarchical cross layer bilinear pooling (73) which fuses inter-layer

features enabling the model to focus more on the crucial part of the object.

There exists other methods for fine grained recognition (90; 91) where at first the foreground

object is localized by bounding boxes or by annotations as done manually in figure 3.5 and

then discriminative features are extracted for further classification. These methods being time-

consuming and expensive, cannot be used for our objective. Simple bilinear pooling (92; 93) that

uses activations of the last convolutional layer as representation of the images often misses minute
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local attributes. Moreover, there is loss of information in the propagation of CNN. Integrating

multiple cross layer features is an important aspect of HBP where interaction of part features is

obtained from multiple layers instead of a single convolutional layer. Before the final classification

task is conducted, cross layer bilinear features are concatenated to make full use of the intermediate

convolutional layers.

Figure 3.9 Working principle of HBP involving feature extraction by convolutional layers (leftmost
block I), projections to higher dimensions in block II and integration by element wise crossing as
in block III (left to right in figure).

Figure 3.9 describes the working principle behind HBP. In the figure, block I shows local features

being extracted from an input image by different levels of convolutional layers. Feature map repre-

sents the output of a single channel in a convolution layer whereas the activation map denotes the

feature map output of all the channels. Let 𝐼 be an image and 𝐹 be the output feature map obtained

after being filtered by a convolution layer; 𝐹 ∈ Rℎ×𝑤×𝑐 where ℎ is the height, 𝑤 the width and 𝑐

represent the number of channels. We write a 𝑐 dimensional object at any spatial location on 𝐹 by

f = [ 𝑓1, . . . , 𝑓𝑐]𝑇 . The output 𝑌𝑖 is a bilinear model given as a quadratic form involving f and a

𝑐 × 𝑐 unknown projection matrix𝑊𝑖, i.e., for 𝑖 = 1, . . . , 𝑛:

𝑦𝑖 := f𝑇𝑊𝑖f = 𝑈𝑇𝑖 f ◦ 𝑉𝑇𝑖 f (3.1)
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By QR decomposition𝑊𝑖 can be factorized into two rank one vectors𝑈𝑖, 𝑉𝑖 ∈ R𝑐 which provides

the above identity involving Hadamard product between two rank one reorientations of f . To get

the 𝑛 dimensional output y, 𝑊 = [𝑊1, ...,𝑊𝑛]𝑇 ∈ 𝑅𝑛𝑐2 need to be learnt from the available data.

Writing in vector format for the output vector Y ∈ 𝑅𝑛 we have,

Y = 𝑈𝑇f ◦𝑉𝑇f , (3.2)

where𝑈,𝑉 are 𝑐 × 𝑛 matrices. Instead of using𝑈 and 𝑉 , we use 𝑐 × 𝑝 matrices 𝑈̃ and 𝑉̃ to project

the features into much higher dimension 𝑝 with 𝑝 ≫ 𝑛. 𝑝 is a hyper-parameter that decides the size

of projection layers; in figure 3.9, these are shown in block II. Here, by independent linear mapping,

the feature attributes from different layers are expanded into higher dimension space to capture the

detailed components of different object parts. In Figure 3.10 we present the activation maps of a

projection layer for an arbitrary defect by three different mapping methods (a) gradient weighted

class activation (camgb) (b) class activation mapping (cam) (c) gradient weight (gb) (94; 95). All

the different visualization methods show that after projection the anomalies in the laser-ring due to

the defects become more prominent in the projection layer.

Figure 3.10 Activation maps of a projection layer from the laser-ring data with an arbitrary defect;
from left to rights visuals based on gradient weighted class activation, class activation mapping
and gradient weight methods.

Unlike the above equation, the output based on the projected layer involves the 𝑝 × 𝑛 classifica-

tion matrix 𝑃 as

Y = 𝑃𝑇 (𝑈̃𝑇f ◦ 𝑉̃𝑇f ) . (3.3)

In cross layer bilinear pooling which is represented in block III of figure 3.9 the features obtained

from the projection layers are element wise multiplied to obtain the inter layer interactions. Let
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Figure 3.11 Schematic of the different layers in the developed hierarchical bilinear pooling (HBP)
network.

f [ 𝑗] denote the feature set from the 𝑗 th convolution layer. If there were 𝑏 convolution layers used,

for each 𝑖 = 1, . . . , 𝑛 consider the vectors,

𝑆𝑐,1 [𝑖] = {𝑈̃𝑇𝑖 𝑓 [ 𝑗1] ◦ 𝑉̃𝑇𝑖 𝑓 [ 𝑗2] : 1 ≤ 𝑗1, 𝑗2 ≤ 𝑏}

𝑆𝑐,2 [𝑖] = {𝑉̃𝑇𝑖 𝑓 [ 𝑗1] ◦ 𝑈̃𝑇𝑖 𝑓 [ 𝑗2] : 1 ≤ 𝑗1 ≠ 𝑗2 ≤ 𝑏} (3.4)

where 𝑓 [ 𝑗1], 𝑓 [ 𝑗2] represent local features at the same spatial location from convolutional layers 𝑗1

and 𝑗2 respectively . The column 𝑆𝑐 [𝑖] = 𝑆1𝑐 [𝑖] ∪𝑆2𝑐 [𝑖] is a concatenation of 𝑏(2𝑏−1) cross linear

features each of length 𝑝. It has been constructed in a hierarchical fashion from convolution layers.

The resultant size of 𝑆𝑐 [𝑖] is 𝑏𝑝(2𝑏 − 1) and is much larger than the projected dimension 𝑝 of each

convoluted layer. Consider the matrix 𝑆𝑐 formed by stacking the columns {𝑆𝑐 [𝑖] : 1 ≤ 𝑖 ≤ 𝑛}. For

estimating Y , HBP uses a linear model on 𝑆𝑐:

Y = 𝑃𝑇𝑐 𝑆𝑐 . (3.5)
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The size of the projection matrix 𝑃𝑐 is 𝑏𝑝(2𝑏 − 1) × 𝑛. We need to learn 𝑃𝑐 as well as {𝑈̃𝑖, 𝑉̃𝑖 : 1 ≤

𝑖 ≤ 𝑛}. For that purpose, we use Stochastic Gradient Descent (SGD) with initial learning rate as

0.01 with momentum as 0.9 and weight decay as 0.00001. The learning rate decreases by a factor

of 10 for every 32 epochs.

We use pretrained weights from the convolutional layers of Resnet50 and obtain three convo-

lution layers each of dimension 2048 from a 300×300 image. The detailed architecture is presented

in figure 3.11. Resnet50 (87) is a 50 layer deep learning network where the first layer contains a

7× 7 kernel of 64 convolutional with stride of 2 and padding 3. Block1 contains 3 layers repeating

3 times. Block 2 contains 3 × 4 = 12 layers stacked, block 3 contains 6 × 3 = 18 and block 4

contains 3 × 3 = 9 layers and the final layer is a fully connected layer in ResNet architecture. The

fully-connected layers from the original ResNet-50 architecture has been removed and several

layers of high projection, inter layer interactions, average pooling are developed. The added layers

are at first trained keeping the other layers fixed and then the entire network is fine tuned to update

parameters in all the layers. The output dimensions from each block is reported in figure 3.11.

Features obtained from the different convolutional layers are linearly mapped for higher dimen-

sional projection. Then, inter-layer interaction is implemented by element wise multiplication of

the projected layers. After integrating features of different parts, average pooling is performed to

squeeze the high dimensional features. Finally, all the features are concatenated together to obtain

the final classification scores through fully-connected layers. We use three different choices for

projecting these convolution layers to higher dimensions, viz., 𝑝 = 4096, 8192, 16384. We present

the results from all the above discussed models in the following section. The HBP saturates for

𝑝 = 8192 which is subsequently used for testing accuracy of our proposed procedure.

3.4 Results and Performance Analysis

As we consider four different defect types we have a classification problem with five different

categories with no deformities being the default fifth category. We use 2160 training images

and 539 images for testing the out-of-sample performance of the different defect identification

algorithms. There were 539 and 123 laser-ring images with no defects in the training and test data
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respectively. The data set was collected at three different laser intensities and in pipes with three

different diameter lengths. In addition to the deep learning frameworks of the previous section, we

evaluate and report classification accuracy for conventional machine learning algorithms. We used

scikit-learn package to implement these classifiers. Before applying these classifiers meaningful

features were extracted from the images.

The feature extraction was done with scale invariant feature transforms (SIFTs) and performing

vector quantization following the bag of words (BOW) model as prescribed in (96). For SVM

various kernel choices such as RBF, Sigmoid, Linear, Polynomial were used. For random forest,

the number of estimators was used as a tuning parameter; it was optimally calibrated to 85. For

K-NN, 𝐾 = 3 was the optimal calibration.

Table 3.1 Train and Test set accuracy of different classifiers.

Train Test
Classifiers Type Accuracy Accuracy

CNN 99.57% 83.85%

Deep CNN + Transfer Learning 93.77% 89.80%

Learning Structure adaptive CNN + LSTM 91.62% 85.53%

HBP 100.00% 98.33%

RBF Kernel 94.81% 72.17%

Sigmoid Kernel 75.46% 67.90%

SVM Linear Kernel 47.92% 47.68%

Polynomial Kernel 93.15% 64.38%

Random Forest 100.00% 68.65%

Decision Tree 100.00% 62.34%

LDA 61.62% 55.47%

KNN 79.44% 57.88%

Regression Linear 71.29% 0.04%

Logistic 47.82% 47.68%

Table 3.1 shows the accuracy based on different classifiers. It is evident from the table that the

conventional machine learning models perform poorly on the test data in comparison to that of the

deep learning models. Random forest and decision trees over-fitted the data. SVM with RBF kernel

has the highest test accuracy among the conventional methods. Though its prediction accuracy is
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around 25% better than logistic regression - the most popular non-linear classification tool, it is

still 10% worse than the naivest deep learning method. Figure 3.12 shows the model accuracy and

loss for the deep learning networks described in table 3.1. The plots shows good convergence of

the optimizing algorithms used for estimating the four different networks.

CNN had test accuracy of 83.85%. Incorporating structural adaptivity via CHT and LSTM

did not significantly enhance performance. However, using pretrained weights from large image

databases helped and we witnessed a 6% increase in predictive accuracy by using transfer learning.

Using HBP we obtained a test accuracy of 98.33%. The test loss was 0.0067 and the train loss

was 0.0002. The high classification accuracy of HBP shows that laser profilometry equipped

with HBP can be a powerful NDE method for defect detection and characterization in plastic

pipelines. Figure 3.12 shows that the HBP attains the highest test accuracy when projected into

higher dimension of 𝑝 = 8192.

We compare the deep learning methods based on Receiver Operating Characteristics (ROC)

and Precision Recall (PR) curves. Both ROC and PR curves are effective measures for multi-

classification problems. In ROC the true positive rate or recall is compared against false positive

rate (FPR):

Recall =
True Positive

True Positive + False Negative

FPR =
False Positive

False Positive + True Negative
.

Recall is a measure of the sensitivity as lower value of recall signifies that the algorithm is missing

the defects. In NDE problems, lower value of recall is unacceptable as missing defects can be

detrimental. Precision defined as follows:

Precision =
True Positive

True Positive + False Positive
,

provides a measure of the cost of the procedure for low precision means that the procedure is

incorrectly classifying non-defects as defects. While this is not as detrimental as missing defects,

replacing too many non-damaged pipe sectors increases maintenance costs and is not sustainable

for regular operations. Thus, for efficient NDE procedures, high precision and high recall rates
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Figure 3.12 Model accuracy (left) and model loss (right) of the different deep learning frameworks
on laser-scan data. From top to bottom we have CNN, CNN + TL, structure adaptive CNN + LTSM,
HBP.

are desirable. For an ideal model, the area under curves (AUC) should be 1. In PR curves,

precision is plotted against recall at different cut-off thresholds (18; 19). ROC curves are helpful

for objective decision making when the observations among different classes are balanced. PR

curves are popularly used in imbalanced scenarios (97; 98). Figure 3.13 provides the comparison

of the effectiveness of the CNN, CNN with Transfer learning and HBP models based on ROC and

PR curves. The AUCs for each defect types and non-defects are also reported for the three models.

In figure 3.14, we observe that HBP not only provides the best performance across all the different

defect types but also provides very high precision and recall rates.
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Figure 3.13 Bar plot showing the accuracy of HBP for higher dimension projections.

3.5 Conclusion

A laser profilometry based defect detection and classification procedure that uses crossed layered

hierarchical bilinear pooling (HBP) deep learning architecture and other hybrid deep learning

frameworks for analyzing the collected images is developed. By allowing inner layer feature

interactions, HBP allows fine grained visualization and can successfully detect and distinguish

minute deformities that are caused by different kinds of defects in circular laser ring images captured

by our proposed procedure. Due to this fine grained visualization ability, the proposed procedure

significantly out-performed a gamut of state-of-the-art conventional machine learning tools and deep

learning architectures as shown in section 3.4. The proposed endoscopic methodology provides an

automatic, cheap defect localization and classification tool that can be used for inspection of large

polymer-based pipeline systems. The above discussed laser scanning and analysis framework is

highly flexible in detecting defects across pipelines of varying radius and light intensities and can

be used in a host of online NDE methods which involve defect detection based on image analysis

of polymer materials.

Portions of this chapter appeared in the publication (99).
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Figure 3.14 ROC (left) and PR (right) curves for different deep learning frameworks on laser-scan
data. From top to bottom the plots corresponds to CNN, CNN + TL, HBP.
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CHAPTER 4

KRIGING BASED SUB-SAMPLING SCHEME FOR FAST AND EFFICIENT NDE
BASED DEFECT DETECTION

4.1 Introduction

In this chapter an under-sampling based data processing scheme via kriging (100) is proposed.

To implement the kriging algorithm both experimental and simulated data from Magnetic flux

leakage (MFL) based non-destructive evaluation (NDE) has been generated. Monitoring the

condition and performing effective diagnosis of the defects within the pipeline is a necessity as the

structural integrity of the pipeline decreases with time. Many oil and gas pipeline failures have led

to fatalities and significant loss of properties in recent past, hence developing inspection techniques

to access their conditions is of considerable importance (61; 62; 101). Since the 1960s magnetic

flux leakage (MFL) serves as one of the most widely used non-destructive evaluation (NDE)

technique for in-service inspection of pipelines as the pipeline materials are mostly ferromagnetic

(102; 103; 104). The working principle of MFL is as follows: ferromagnetic pipe wall is magnetized

close to saturation by the aid of a permanent magnet or a coil wound on a ferromagnetic yoke;

presence of defects decreases the wall thickness and so, magnetic flux density and reluctance is

increased in vicinity of defects (105). A higher fraction of the magnetic flux will thus leak from the

pipe-walls near defects into the air. Advanced MFL signal processing techniques that can detect

defects with high accuracy across different scenarios have been developed in the recent literatures

(106; 29). While these MFL based methods have been very successful to detect defects in noisy

situations as well as for dynamic tracking of defect sizes using transfer learning on sequential

scans (28), they cannot be used in monitoring large pipelines as they involve near continuous line-

scans which is extremely time-consuming. For monitoring massive pipelines, here we develop a

fast-approximate algorithm that uses a minuscule fraction of data but provides similar operational

performance as the aforementioned data intensive MFL methods.

The developed kriging based inspection procedure works without scanning the entire massive

pipelines and only used MFL readings from a very few random scan points in the pipelines, thereby
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saving humungous time and cost. The key contributions of this chapter are as follows:

1. Using kriging, we conduct spatial interpolation by using the limited set of sampled data

points to estimate the magnetic flux over the concerned continuous pipe-sector.

2. Scan points in the defective areas have very different MFL features than those from non-

defect regions. Here the method considers the spatial autocorrelation among the sampled

data points and in this process, it allows tracking and characterization of defects from much

fewer readings than those permitted in PIG based on continuous scanning.

3. The present work involves developing a 3D finite element (FEM) model in COMSOL to in-

vestigate the performance of the proposed technique in detecting the surface and sub-surface

defects of various shapes and sizes. See section 4.2 for details.

4. The efficacy of our proposed kriging based fast and approximate method is tested against a

wide range of defect categories such as single, multiple and interacting defects. Thresholding

is used to segment defective and non-defective areas in pipelines based on MFL readings from

(a) exhaustive line scans, (b) kriging interpolated predictions based on significantly smaller

sample of scan points. Encouraging results (see table 4.2 in section 4.4) are obtained which

shows the predicted defective areas by our proposed method to be in close resemblance with

ground truth.

5. The results produced on simulated data were also validated experimentally (see table 4.3

in section 4.4) by developing a set-up in the laboratory (see subsection 4.2.2) that enabled

collecting MFL readings akin to real defects.

The rest of the chapter is organized as follows. In the following section, we describe simulation

procedures and lab experimental set-ups for acquiring MFL data akin to real-life scenarios. We

consider various types of interacting defects in pipe-sectors which possess more threat than the

singular defects. In section 4.3, we describe our kriging based fast NDE procedure and its

advantages. In section 4.4 , we present the applicability of our proposed methodology. Our results

in section 4.4, show that by using only a very small fraction of MFL readings from the datasets of
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section 4.2, our proposed method can attain accuracy as good as extensive scan based traditional

PIG methods. In section 4.5, we end with a discussion on the prescribed method.

4.2 Magnetic Flux Data Generation

For both synthetic as well as experimental data in this section we generate MFL readings for all

the scan points in a metallic pipe-sector. To generate synthetic data, we design a 3D finite element

MFL model in the COMSOL Multiphysics modeling software. The synthetic data generation

procedure is described next. Thereafter, we present the experimental procedures.

4.2.1 Simulation Designs

Our simulation data generation process is constructed as a magneto-static problem governed

by the conventional Maxwell’s equation. Figure 4.1 shows the different components of a 3D MFL

model in COMSOL along with a defective sample with five interacting defects of varied volumes.

The different dimensions and the material properties needed to construct the model is shown in

Table 4.1. The benchmark as discussed in (29) is used here to construct the model with the lift-off

parameter being set at 2 mm.

Table 4.1 Dimensions (in mm) of the different components used for MFL simulations.

Term length width height Material
Yoke 400 50 40 Ferro-nickel alloy

Magnet 30 80 40 NdFeB

Brush 30 50 40 Ferro-nickel alloy

Specimen 600 400 10 X52 like iron

As shown in Figure 4.1(b) a rectangular surface consisting of multiple rectangular notch defects

have been considered. Different scenarios like varying the size of notches, interaction among the

notches, evolution of new defects is considered. Parametric sweep in x,y direction is conducted

as shown in Figure 4.2 and the magnetic flux in axial direction 𝐵𝑥 are collected in the form of

matrices. Near the defects extremely fine triangular mesh is used whereas on the rest of the surface

tetrahedral fine mesh is employed.

We use a rectangular grid of length 8𝑐𝑚 and breadth 5𝑐𝑚. We consider heterogeneous spacing
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Figure 4.1 (a) Schematic of a conventional 3D MFL model in COMSOL. (b) Schematic of the
sample containing arbitrary defects.

along the x and the y directions in the grid. The spacing between grid points is 0.5 mm along

the x axis and 0.2 mm along the y axis. Consequently, we have 160 × 250 = 40000 grid points.

We initially consider four interacting defects of equal sizes. Figure 4.2(a) shows the XY plot of

a 2D fine rectangular grid containing the location of these four defects. The design is symmetric

and balanced in defect sizes. Later we consider situations where another defect is added to a new

location on the rectangular lattice and some of the existing defects evolve to grow larger in sizes.

Figure 4.2(b) shows the schematic for this case with the upper ones increasing in size and a new

defect cropping up on later inspection.

We generate MFL readings pertaining to five different designs. With the design in Figure 4.2(a)

being the baseline, we allow the defects in the subsequent four cases to either increase in size or

remain constant. The simulations reflect the perturbation in MFL readings due to not only increase

in defect sizes but also due to interactions in flux leakages from the neighboring defects. The 2D

fluctuations of the magnetic fields along the axial direction 𝐵𝑥 due to spatial movement along x
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Figure 4.2 Schematic of the location of notch defects on the sample surface with the marked co-
ordinates as the origin.

and y axes are observed in COMSOL from these designs. Figure 4.3 plots these MFL readings.

From the figure, it is evident that in the vicinity of the defects the perturbation in magnetic field is

significantly higher than those from the non-defective points.

The five different designs considered here are:

1. All the defects are squares with length of each side being 5 mm. Their locations in the

rectangular lattice of length 2.5 cm and width 1.6 cm is given by the layout in Figure 4.2(a).

2. The upper two defects in case I have increased to squares of length 9 mm whereas the bottom

three defects are squares of length 5 mm each. A new defect has evolved in case II compared
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Figure 4.3 2D plots of magnetic flux densities for various defect types (Case I to V from top to
bottom) as generated in COMSOL based on FEM. In all the above sub-plots, the x axis ranges from
-4cm to 4cm and the Y-axis from -2.5 cm to 2.5 cm.

to case I. The layout is given in Figure 4.2(b).

3. The upper defects have increased in size to squares whose length of each side is now 14 mm.

4. The upper defects have increased to squares with 18 mm sides. The MFL reading plot in

Figure 4.3 shows increasing interaction among the upper defects.
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5. The upper defects have merged into a single defect on further increasing their dimension to

20 mm sides each. The lower defects remain constant in size.

Figure 4.3 contains the plots of the MFL data generated in COMSOL from the aforementioned

five different designs.

4.2.2 Experimental Setup

The working principle of MFL based NDE methods is based on the fact that there will be

increased magnetic flux density in the vicinity of the defects (104) which can be measured using a

hall effect sensor (static and dynamic fields) or coil (dynamic fields) (105). Following this principle,

we design our experimental setup using the following ingredients:

• a permanent magnet based MFL probe,

• a scanning robot arm to move the probe along the sample,

• a direct current (DC) power supply,

• a data acquisition system (DAS),

• other associated units.

The image of the setup and its associated MFL probe is shown in Figure 4.4(a) and 4.4(b)

respectively. As shown in the figure 4.4(b), the permanent magnet assembly includes a magnetic

circuit consisting of two permanent magnets (NdFeB) and magnetic field sensor to sense the leaked

magnetic field in presence of defects. The robotic scanning arm which holds the MFL probe is used

to control the movement of the permanent magnet assembly. We use an analog giant magnetore-

sistance (GMR) magnetometer sensor (AAH002-02E) manufactured by NVE Corporation in our

sensor setup. Figure 5 shows the schematic of the entire experimental setup, the pin configuration

of the GMR probe and the data acquisition system. The GMR sensor contains four resistors in

the form of Wheatstone bridge configuration (107; 108). We chose AAH series of sensor as it has

high sensitivity for low field sensing and excellent temperature stability. Also, the small size of the

sensor makes it very convenient for mounting in the constructed MFL probe.
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The axis of sensitivity of the sensor is parallel to the surface of test material. We record the

changes in the axial component of the magnetic flux (𝐵𝑥) based on the output voltage of the GMR

sensor. When the MFL probe is far from the ferromagnetic sample then the output voltage of the

GMR sensor is constant. In the presence of defects, the magnetization changes which subsequently

changes (𝐵𝑥) . This produces a resistance change in the GMR sensor thereby altering the output

voltage. This voltage is subsequently analyzed by our proposed algorithm. A constant DC voltage

of 1.98 V is given as input to our experiment. This low field range and high resolution of the GMR

sensor make it ideally suited to measure the residual fields. The pivotal ingredient in our DAS was

the National Instrument Data Acquisition card (PCIe-6341) which samples and digitizes the data

using an imaging routine and the output is plotted on a computer. The sensor was interfaced with

the data acquisition card via Digital Multimeter (DMM) to allow simultaneous data acquisition.

Figure 4.4 The complete experimental set up as shown in (a), the constructed MFL probe as shown
in (b) consisting of two permanent magnets and GMR sensor.

We use square steel samples with 50 cm sides. We consider two different experiments one with

a circular and the other with a rectangular defect. Both the defects were placed in the center of the

steel samples. The rectangular defect is of length 2.5 cm and breadth 1.2 cm whereas the spherical

defect has diameter 0.7 cm. Our designed MFL probe recorded flux readings at scan points 1 mm

apart producing a 50 × 50 square grid of MFL records. Their plots are shown in Figures 4.6

(rectangular defect) and 4.7 (spherical defect).
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Figure 4.5 Schematic of the experimental and data acquisition setup.

4.3 kriging Based Proposed Methodology

4.3.1 Magnetic flux leakage prediction

Kriging is a method of spatial interpolation that originated in the field of mining (100). Precision

provided by the state-of-the-art PIG techniques comes at a price of computational cost. In large-

scale NDE applications this cost become crucial and can be prohibitive for timely damage control.

Thus, it is extremely important to consider cheap surrogate methods that reduce computational cost

while maintaining the required precision.

We use Kriging which is a spatial interpolation method to develop scalable NDE techniques

for defect detection in large pipelines. Kriging uses a limited set of under sampled data points

to estimate the variable over a continuous spatial domain. The interpolation is based on the

spatial arrangement of the empirical observations, rather than on a presumed model (109). Thus,

kriging generates estimates of uncertainty surrounding each interpolation. Kriging predictor is a

combination of linear predictor and exact interpolator, thereby the value obtained by kriging for any

actually sampled location will be equal to observed value at that point and the interpolated values
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Figure 4.6 3D (in subplot a) and 2D (in subplot b) heat maps of standardized MFL readings from
a steel sample with a rectangular defect in its center. The readings were obtained from laboratory
designed probes using GMR sensors and two permanent magnets. Both the x and y axes have 50
points with a uniform 1mm gap between them. These axes are rescaled between 0 and 1 on the
plots.
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Figure 4.7 3D (in subplot a) and 2D (in subplot b) heat maps of standardized MFL readings from
a steel sample with a circular defect in its center. The readings were obtained from laboratory
designed probes using GMR sensors and two permanent magnets. Both the x and y axes have 50
points with a uniform 1mm gap between them. These axes are rescaled between 0 and 1.

will be the best linear unbiased predictor (BLUP).

Magnetic flux distribution depends on the location of the co-ordinate points. As there exists a

strong spatial correlation among the MFL from neighbor points on the lattice, kriging can provide
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a good prediction for the unobserved points by leveraging the correlations with their neighboring

observed scan-points. Kriging is basically a two-step process where in the first step the spatial

covariance structure of sampled points is determined by fitting a variogram which is a visual

depiction of the covariance of each pair of points in sampled data. Thereafter, the weights from

this variogram are used to interpolate values in the unobserved points (110).

Let G be the grid of all points used in a traditional PIG line-scan or 2D scan. Let 𝐺𝑆 be the

sub-set of points in G that are used for kriging. Let𝑀 be matrices containing standardized magnetic

flux leakages readings for points in G and 𝑀𝑆 be the set of all sampled M values at 𝐺𝑆. Let 𝑀̂ be

the predicted MFL values based on our procedure that takes 𝑀𝑆 and the location of the scan-points

𝐺𝑆 as inputs. The entries 𝑚̂ (𝑖, 𝑗) and 𝑚 (𝑖, 𝑗) in 𝑀̂ and M are the predicted and recorded MFL values

based on our proposed method and PIG line-scans respectively at the (𝑖, 𝑗)th point in the grid G.

Kriging models the MFL values by a gaussian process. The flux 𝑓𝑖 𝑗 at the (𝑖, 𝑗)th location on the

grid is modeled as:

f𝑖 𝑗 = 𝜇𝑖 𝑗 + 𝜎2Z𝑖 𝑗 (4.1)

where, the trend function 𝜎𝑖 𝑗 can be any function with domain in [0, 1]2. Let 𝑥𝑖 𝑗 represents the

corordinates of the (𝑖, 𝑗)th point in the grid. Consider the axes of the grid G to be standardized

so that 𝐺 ⊆ [0, 1]2. We expand the trend function with respect to the canonical basis of square-

integrable functions in [0, 1]2 as

𝜇𝑖 𝑗 = 𝛼
T(𝑥𝑖 𝑗 )𝛽 (4.2)

where, 𝛼T(·) denotes basis of functions in [0, 1]2 and 𝛽 is the corresponding basis coefficient.

These are the regression coefficients of the model. We assume that the constant variance of the

gaussian process is 𝜎2 and Z𝑖 𝑗 the local deviation from the trend functions follows independent

and identically distributed standard normal distribution. Then, 𝛽 corresponds to the regression

coefficients. However, the trend functions at any two random points 𝑥𝑖 𝑗 and 𝑥𝑘𝑙 are correlated.

The correlation decreases as the distance between the points increases. We model this correlation

R(𝑥𝑖 𝑗 , 𝑥𝑘𝑙) between the trends at 𝑥𝑖 𝑗 and 𝑥𝑘𝑙 by the following exponential spatial correlation function:

R(𝑥𝑖 𝑗 , 𝑥𝑘𝑙) =
1

√
2𝜋ℎ

exp
(
− 1

2ℎ
(𝑥𝑖 𝑗 − 𝑥𝑘𝑙)2

)
(4.3)
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where, h is the unknown hyperparameter that is tuned. Let A𝑆 and 𝑅𝑆 be the matrix of basis

functions and correlations for the sampled 𝐺𝑆 points, then the parameters are estimated as:

𝛽 =

(
𝐴T
𝑠 𝑅

−1
𝑠 𝐴𝑠

)−1
𝐴T
𝑠 𝑅

−1
𝑠 𝑀𝑠 (4.4)

𝜎2 =
1

|𝐺𝑠 |

(
𝑀𝑠 − 𝐴𝑠𝛽

)T
𝑅−1
𝑠

(
𝑀𝑠 − 𝐴𝑠𝛽

)
(4.5)

where, |𝐺𝑠 | is the number of sample points. The kriging prediction (111) for the set of unobserved

points𝑈 = 𝐺 \ 𝐺𝑠 is given by:

𝑀̂𝑈 = AT
𝑈𝛽 + 𝛽TR−1

𝑈𝑆

(
𝑀𝑠 − 𝐴𝑠𝛽

)
(4.6)

where, 𝑅𝑈𝑆 is the correlation matrix between the observed and unobserved points and 𝐴𝑈 is the

matrix of basis functions evaluated at locations in U. The code is implemented in the R programming

language using the library packages gstat and sp (112; 113; 114).

4.3.2 Sub sampling Rate & Defect Detection

The sub-sampling ratio adjusted for dimension is defined as: Sampling rate per dimension

= 𝜌𝑆 = ( |𝐺 | \ 𝐺𝑠) (1/𝑑) , where |G| and |G𝑆 | are respectively the number of scan points in G and

G𝑆 and d represents the dimension of the grid. For a fixed threshold h we segment points based

on the standardized MFL values. The readings in Figure 4.6 and 4.7 (experimental data) from

the defective points are troughs in lattice whereas that in COMSOL simulation (see Figure 4.3)

constitute a crest. The orientation of the crest and troughs depend on the different data collection

procedures. In our simulation experiments, the variation in magnetic flux signals is calculated

directly and plotted. However, from the lab experiments the changes in the output voltage from

the GMR sensor are plotted. As the defect detection algorithm used in this chapter only requires

the readings from the defective region to be different from that of the background, we are not

concerned with whether the readings of defective regions were uplifted or downregulated. Using

threshold h and the complete PIG scan data, we segment the points in G into defective and non-

defective or trouble-free sets D and T respectively. For most cases h chosen as 0.5 works well with

standardized MFL values. Keeping the same value of h and the same criterion we segment our

Kriging predictions M̂ into defective and trouble-free sets D̂ and T̂ respectively. Ideally, we would

like D̂ and T̂ to be very similar to sets D and T. We analyze their relations in the following section.
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4.4 Results

The larger the sub-sampling rate 𝑟ℎ𝑜𝑆 the fewer is the number of points used in our proposed

method. The greater 𝑟ℎ𝑜𝑆 is from 1, the faster the MFL data collection step in our procedure will

be. However, if |𝐺 |𝑆 is too small then we will do a shoddy job in interpolating the MFL values

at the unsampled points 𝐺 \ 𝐺𝑆 and any subsequent inference on defect location recognition will

be highly erroneous. So, we consider popular metrics that capture the operating performance of

defect detection algorithms. We report the mean square error (mse) of the MFL prediction based

on kriging. We also report the coverage of defect points based on our proposed algorithm as well

as its false positive percentages. Next, we define these measures.

The MSE of kriging is calculated as:

mse =
1
|𝐺 |

∑︁
(𝑖, 𝑗)∈G

(
𝑚̂𝑖. 𝑗 − 𝑚𝑖. 𝑗

)2
(4.7)

where, 𝑚̂𝑖, 𝑗 and 𝑚𝑖, 𝑗 are the predicted and recorded MFL values based on our proposed method

and PIG line-scans respectively at the (𝑖, 𝑗)𝑡ℎ point in the grid G . As the raw mse values of the

predicted MFLs are difficult to interpret, we present the percentage improvement in mse by using

Kriging instead of the naïve average by reporting the R-squared statistic:

R2 = 1 − mse
variance of M

(4.8)

Lower mse signifies that the predicted MFL values by the kriging model is closer to the exhaustive

scan MFL values, in which case the R-squared values will be closer to 1 signifying accurate

reconstruction of MFL values by kriging at the unsampled points.

Next, using the below mentioned coverage statistics we evaluate how much of the defective area

found in exhaustive scan can be identified by our proposed methodology:

Coverage =
𝑠𝑖𝑧𝑒(𝐷̂ ∩ 𝐷)

size(D)
(4.9)

The false positive rate of our procedure is reported via the exceedance metric as:

Exceedance =
𝑠𝑖𝑧𝑒(𝐷̂ ∩ 𝐷)

size(G)
(4.10)

High R-squared, high coverage and low exceedance values are desired. Next, we report these
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metrics as subsampling rate 𝜌𝑆 is varied. We consider uniform subsampling designs throughout

the chapter.

4.4.1 Results on Synthetic Data

Consider the synthetic datasets described in the five designs of section 4.2 . In Table 4.2, we

report the coverage, exceedance and R-squared performance measures of our proposed methodology

as the subsampling rate 𝜌𝑆 varies from 5 to 30. Note that in these COMSOL simulated datasets

|𝐺 | = 40000 and thus a sub sampling rate of 5 : 1 means 40000/52 = 1600 random locations in

G were considered in 𝐺𝑆. For 𝜌𝑆 equal to 10, 20𝑎𝑛𝑑30 we respectively have 400, 100𝑎𝑛𝑑44 MFL

samples.

From the table, we see that when 𝜌𝑆 = 5, we get considerably close defect identification with

very low false positives across all the five cases even if we consider only 4% of the MFL readings.

The R-squares of the predicted MFL values are quite good signifying that our proposed method can

be used with high confidence at 𝜌𝑆 = 5. Figure 4.8 shows the MFL predictions by our method for

Case II of Table 4.2. It shows the gradual deterioration in the kriging based MFL reconstruction

as sampling rate 𝜌𝑆 increases. The coverage rate decreases considerably when 𝜌𝑆 = 20 and as

expected there is a complete breakdown of the method as with 𝜌𝑆 = 30 for there are only 40 scan

points.

4.4.2 Results on Experimental Data

Next, we apply our proposed method on the experimental data described in subsection 4.2.2.

The different performance metrics are reported in Table 4.3, Figure 4.9 and 4.10 show that

predicted readings for the cases with rectangular and spherical defects respectively as subsampling

rates are increases from 2.5 to 10.

From Figures 4.9, 4.10 and Table 4.3, we see that in both the cases our method produces

coverages sufficiently close to exhaustive scans till the subsampling rates reach 5. Thereafter, the

coverage decreases below the 90% tolerance limit for the rectangular defect. In all these cases, the

exceedance is very low. In particular, from the 3D MFL plots in Figures 4.9, 4.10 we observe

that the troughs corresponding to the rectangular and spherical defects become greatly thin and
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Table 4.2 Compared to exhaustive scans the performance of our proposed method in the FEM
simulations designs is reported for different subsampling rates.

Defect Type Performance Measure Subsampling Rate

5/1 10/1 20/1 30/1

Case I R-squared 92.41% 65.67% 27.07% 13/75%

Coverage 83.93% 51.79% 25.00% 7.14%

Exceedance 0.00% 0.25% 0/19% 0.06%

Case II R-squared 88.67% 65.48% 47.40% 9.84%

Coverage 73.02% 69.84% 19.05% 1.59%

Exceedance 0.38% 0.50% 0.13% 0.00%

Case III R-squared 93.55% 76.41% 36.82% 9.85%

Coverage 96.67% 82.33% 73.67% 6.67%

Exceedance 0.38% 1.94% 5.38% 0.00%

Case IV R-squared 90.17% 77.80% 52.56% 20.00%

Coverage 90.91% 71/16% 68.97% 6.90%

Exceedance 0.50% 1.38% 5.38% 0.44%

Case V R-squared 96.11% 88.14% 70.16% 27.56%

Coverage 89.83% 84.88% 71.51% 8.43%

Exceedance 0.56% 1.00% 3.94% 0.50%

lose much of their shape as subsampling rates is increased from 5 to 7.5. In Figure 4.11, the

standard deviation of the estimates associated at each scan point is plotted. In Table 4.4 we report

the mean of these standard deviation (MSD) across all the scan points. Note, that as we have used

standardized reading values the range of the readings is 1. To understand the relative impact of these

standard deviations we report the relative standard deviation (RSD) by dividing MSD by the average

difference between the readings from defective and non-defective scan points. Higher RSD means

greater confidence in correctly predicting defective scan points. In Figure 4.12 the 95% prediction

surface for the two defects is also reported for different sub-sampling ratios. From Table 4.4 we

observe that for subsampling rates up to 5, the MSD and RSD are well-controlled. Figure 4.12

shows that the 95% prediction surface are thin enough to provide accurate differentiation between

the predicted readings from defective and non-defective scan points.
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Table 4.3 Compared to exhaustive scans the performance of our proposed method in laboratory
experiments is reported for different subsampling rates.

Defect Type Performance Measure Subsampling Rate

5/2 5/1 15/2 10/1

Rectangle R-squared 99.4% 94.6% 85.0% 70.95%

Coverage 99.3% 95.8% 81.2% 70.42%

Exceedance 0.3% 1.5% 0.5% 3.68%

Sphere R-squared 99.5% 98.8% 96.7% 80.47%

Coverage 100.0% 100.0% 99.7% 80.78%

Exceedance 0.4% 1.8% 3.2% 0.72%

Table 4.4 Uncertainty bounds for kriging-based prediction on experimental data. Mean Standard
Deviation (MSD) and Relative Standard Deviation (RSD) for different sub-sampling rates are
reported.

Defect Type Measure Subsampling Rate

5/2 5/1 15/2 10/1

Rectangle MSD 0.0166 0.0622% 0.0641% 0.1367

RSD 18.5940 4.9744 4.8274 2.2614

Sphere MSD 0.0041 0.0185 0.0307 0.0443

RSD 26.7102 5.9282 3.5651 2.4689

4.5 Discussion

Based on the results in section 4.4, we observe that with much fewer number of MFL readings,

using our kriging-based method we can identify defective areas as accurately as exhaustive line

scans. As such, in section 4.4 across a wide spectrum of synthetic and experimental datasets, we

found that our kriging-based method can provide more than 90% defect identification coverages

and lower than 1% false positive rates when it uses only 4% of the MFL readings used in exhaustive

traditional PIG approaches. Thus, our proposed method is fast, cost-effective and highly scalable

for inspecting defects in large pipelines. In future, it will be useful to study the improvements due

to non-uniform sampling designs and introspect the applicability of our prescribed method to other

complex NDE tasks in pipelines such as dynamic tracking of defects.
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Here, we show that our proposed kriging-based detection methodology worked well in detecting

millimeter sized defects which is popularly done by MFL based NDE inspections (115; 116; 117;

118). Further work is needed to see if aberrations in magnetic flux due to smaller defects can be

recovered from under-sampled signals. In this chapter inspection cost is reduced by under-sampling

and thereafter reconstructing the MFL signals at all scan points by using Kriging. Compared to

MFL readings from extensive scans there is always some information loss in the Kriging based

reconstructed signal. The success of our procedure rests on the fact that this information loss does

not hamper detection of the presence and location of the defects in the metallic surface. It is to

be noted that the information loss will be exacerbated if the MFL values are very noisy; this can

happen if there is lift off or gap between the probe and the inspection surface. In such situations, it

will be difficult to recover defect locations from under-sampled MFL readings as the signal-to-noise

ratio can be very low.

Here, in lab experiments we considered 50𝑐𝑚 × 50𝑐𝑚 metallic plates with defects. Continuous

scans over large pipe surfaces will have severe imbalance between defective and non-defective scan

points. In these cases, we can apply our proposed method frame-by-frame by first identifying

rectangular frames containing defects and thereafter locating the defects in frames. Most frames

will not contain any defect. As our proposed method is witnessed to provide good coverage and low

exceedance in defective scan points detection, we expect low false discovery rate and high power

in such frame-by-frame detection analysis.
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Figure 4.8 From top to bottom, as the subsampling rate (provided in boxes on left for each case)
increases, we have 3D (left) and 2D (right) plots of standardized MFL readings predicted by our
procedure based on the synthetic dataset described in subsection 4.2.1.
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Figure 4.9 From top to bottom, as the subsampling rate (provided in boxes on left for each case)
increases, we have 3D (left) and 2D (right) plots of standardized readings predicted by our procedure
based on the experimental dataset described in subsection 4.2.2. The topmost figure corresponds
to no subsampling and corresponds to the complete data for this example which had readings on
square grid with a rectangular defect in its center.
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Figure 4.10 From top to bottom, as the subsampling rate (provided in boxes on left for each case)
increases, we have 3D (left) and 2D (right) plots of standardized readings predicted by our procedure
based on the experimental dataset described in subsection 4.2.2. The topmost figure corresponds
to no subsampling and corresponds to the complete data for this example which had readings on
square grid with a spherical defect in its center.
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Figure 4.11 Plot of standard deviation of the kriging estimates at every scan point for experimental
data (rectangle up, sphere bottom) at sub-sampling rates 2.5 (left) and 5 (right) respectively.

82



Figure 4.12 95% prediction surfaces for scan points in experimental data. The upper and lower
surfaces (prediction surfaces) are in light green and their average is in dark green.
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CHAPTER 5

NDE BASED DEFECT TRACKING WITH THE AID OF
TRANSFER LEARNING BASED POSTERIOR PROPAGATION

5.1 Introduction

This chapter focuses on the development of a dynamically updated transfer learning method for

defect detection under extreme noisy conditions. Setting up non-destructive inspection procedures

abiding ideal laboratory conditions is difficult. Uncertainties due to lift-off, fluctuations in sample

rate, probe tilt, difficulties in sensor registration due to fast scans result in the generation of noisy

data (36; 37). Hence, better defect tracking and detection algorithms need to be developed. In

this chapter we have developed a mixture regression based transfer learning framework to track

defect growth on later noisy inspections. Currently, we have used our algorithm to test on the

simulated MFL data inundated with very high noise . In future we will test our algorithm on the

experimentally generated MFL data by our novel in house sensors as well as on the experimentally

generated Eddy Current (EC) data which are noisy due to high lift off and speed.

Most of the pipelines in usage are ferromagnetic, hence Magnetic flux leakage (MFL) serves

as widely accepted inspection technique for the in-service inspection of oil and gas pipelines

(102; 103; 104; 105). In MFL inspection, the pipe wall which is ferromagnetic, is magnetized

close to saturation by means of a permanent rare-earth magnet or a coil wound on a ferromagnetic

yoke. Presence of defects increases the magnetic flux density in the vicinity of the defect, thereby

increasing the reluctance and causing the flux lines to leak in to the surrounding (105). This results in

a leakage of magnetic field that can be measured using a Hall effect sensor (static and dynamic fields)

or coil (dynamic fields) (106; 119). Advanced adaptive MFL signal processing and characterization

algorithms have been developed and demonstrated that can effectively reduce the noise, enhance

the inspection data and achieve superior reconstruction performance (120; 121; 122; 123).

In the industry, inspection of pipelines is carried out during periodic maintenance cycles under

the preventive maintenance framework. However, the defect that begin at the earlier stages of

inspection may grow with the passage of time due to wear at a very non-linear rate. Since each
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inspection is time consuming and expensive, there is need for methodologies that reduce the

number of inspections. In this chapter we propose a new approach based on transfer learning

techniques for processing inspection data combined with defect growth model, and along with the

better understanding of the current state of piping materials to enable a condition-based maintenance

(CBM). Transfer learning constitute a set of extremely powerful information assimilation techniques

for retaining knowledge gained from one problem and applying it to a different but related problem

(83; 84). Simply fitting function estimation cannot recognize the defects properly in noisy condition.

Therefore, a dynamically updated transfer learning method is developed for defect detection under

noisy condition. We consider finite element model to demonstrate such capabilities. A schematic of

the MFL tool comprised of a ferromagnetic yoke and two ferromagnetic couplings [20,21] are shown

in Figure 1(A). The lift-off is set as 2 mm in our model. Accurate slow scan is performed during

a time when there is less or no usage of the pipeline, i.e. during regular preventive maintenance

period. The location of the defect can be detected with adequate accuracy by this baseline scan

which is referred as Inspection 1. The location and the size of the defect obtained from Inspection

1 (NDE signal intensity obtained by accurate scanning) are incorporated into transfer learning to

recognize the defective area from later inspections in the noisy conditions.

The data for validation is obtained using a COMSOL numerical 3D model which allows

systematic analysis of experimental parameters. The following sections describe details of model-

based signal generation, transfer learning method and implementation results.

5.2 Methods and Materials: Experiment and Dynamic Data generation

The MFL model is treated as a magneto-static problem, which is expressed by Maxwell’s equa-

tions as:

∇ × −→
𝐻 =

−→
𝐽𝑠 (5.1)

∇𝐵 = 0 (5.2)

where −→
𝐻 is the magnetic field intensity, −→𝐽𝑠 the applied source current density and −→

𝐵 the magnetic

flux density. In permanent magnetic domain, −→𝐵 is given by:

−→
𝐵 = 𝜇

−→
𝐻 + 𝜇0

−→
𝑀0 (5.3)

85



−→
𝐵 = 𝜇

−→
𝐻 (5.4)

In other domains, equation 5.4 holds; where 𝜇 is the magnetic permeability and −→
𝑀0 is the

remaining intrinsic magnetization (28).

The benchmark setting as discussed in (28) is used to construct and validate our 3D model.

Figure 5.1 shows the MFL 3D geometric model developed in COMSOL. The detailed description

of the parameters and the material properties used to construct the model is discussed in Table 5.1.

Representative 3D defects such as sphere, cuboid of various dimensions is modeled and the resulting

MFL signals at the test sample surface are recorded and processed (124). Surface plot of MFL

amplitude (in the form of matrices) is obtained from simulation, which indicates flux leakage due to

presence of the defects. These data are used as representative MFL data pertaining to Inspection 1.

As defects at later inspection times cannot decrease in size, the efficacy of the proposed algorithm

could be tested against the scenario where on later inspections the defects grow in size. Here,

for spherical defects, the size is increased on later inspection times. For the baseline inspection

i.e., during inspection 1, a spherical defect of radius 6 mm is considered. Figure 5.2 (b)&(d)

show the 3-D plots of MFL data from noiseless readings produced based on our simulation model.

The figure shows that as defect grows, the perturbation in magnetic field also become larger.

These data are represented in the form of 2-D images for subsequent processing and analysis (see

Figure 5.2(a)&(c)).

Figure 5.1 (a) shows geometry of the implemented 3D Maxwell model in COMSOL and in (b)
shows the side view of the MFL model.
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Table 5.1 Various dimensions of the MFL model(l=length, w=width, h=height, all the dimensions
reported in mm).

Term Length(l) Width(w) Height(h) Material
Yoke 320 80 30 Ferro-nickel alloy
Magnet 30 80 40 NdFeB
Brush 30 80 20 Ferro-nickel alloy
Specimen 600 400 10 X52 similar to iron

Figure 5.2 (a) and (b) respectively show the 2D-plot and 3D MFL data from noiseless inspection
1 readings for a spherical defect of radius 6 mm as locations vary in the x and y axes. (c) and (d)
show these plots for a spherical defect of radius 9 mm without noise. These data were generated
by our design using COMSOL.

In order to generate noisy MFL data for the successive inspections, a two-fold approach is taken.

Flux readings corresponding to increased defect sizes for each inspection using the previous de-

signed approach are obtained. To produce representative noisy data for the later inspection times,

these MFL readings are contaminated with Gaussian noise having a fraction of the signal standard

deviations at 𝑡1(𝑡1 ∈ [0, inf]) and at 𝑡2(𝑡2 ∈ [0, 1]) of randomly chosen scan points. If the MFL

readings were sequenced at a uniform spacing of 𝑆𝑝 mm then the signal-to-noise ratio (SNR) is

defined as:

SNR =
1

𝑡21 .𝑡2.𝑆𝑝
(5.5)
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Figure 5.3(a,b,c) shows representative data for three inspection times where the defect is spherical

in shape and has grown from 6 mm to 9 mm in size over the span of inspection times with an

increment of 1 mm on each passing inspection. The data were collected on a square grid of length

equals to 2 cm, and the MFL data readings were made on a lattice with spacing equals to 1 mm, so

we had 412 scan points at which the readings were made. This data has SNR equals to 1 and are

analyzed in Row 3 of table 5.2. Datasets gathered by cheap fast scans have low SNR. Increasing

SNR means that the wavelet-based algorithms can detect the defects accurately with ease. The SNR

was considered as 1 here, which is an interesting regime to study where wavelet fails and transfer

learning algorithm can provide immense benefits. Be noted that inspection 1 data are much less

noisy than data from the subsequent inspection times.

Figure 5.3 a, b, c shows MFL data for inspection times 1 to 3 for a spherical defect which had radius
6 mm, 7 mm and 8 mm on the successive inspections. The readings are collected on a square lattice
of length 2 cm and at uniform spacing of 1 mm. The SNR for Day 2 and 3 is fixed at 1 with 𝑡1 and
𝑡2 values given in table 5.2, row 3.

5.3 Algorithms: Tracking Defective Area

5.3.1 Algorithm 1: Defect detection on baseline inspection by mixture regression analysis of
low noise data

In this work, mixture regression method is used (125) for fitting a bivariate function to the less

noisy MFL data obtained from the baseline inspection. Mixture regression is a potent methodology

for identifying the presence of sub-populations within an overall population (126; 127). Location

of the scan points is used as explanatory variables based on which the model is trained to provide a

probabilistic classification of scan points into two segments: defects and non-defects. For setting

up the regression model, vectorization of the matrix-variate MFL data is done at first. Consider the

88



response vector Y of length 𝑁2 as:

Y𝑙 = f(𝑥𝑖, 𝑦 𝑗 ), where, 𝑖, 𝑗 = 1, · · · ,N

&𝑙 = 𝑁 (𝑖 − 1) + 𝑗 (5.6)

where, 𝑥𝑖, 𝑦 𝑗 denotes the coordinates of the point for the daily probes and N is the number of points

at which the MFL data are sampled for both axes. The unknown intensity generating function f is

modelled as:

f(𝑥𝑖, 𝑦 𝑗 ) =
2∑︁

𝑘∈𝐷,𝑆
𝑃𝑘 · N(𝜃 (𝑘)0 + 𝜃 (𝑘)1 𝑥𝑖 + 𝜃 (𝑘)2 𝑦 𝑗 , 𝜙

2
𝑘 ) (5.7)

The number of mixtures is 2; D denotes the class of defective points on the grid and S is the set

of non-defects or safe scan points. For each mixture model, the intensity is modeled by a linear

surface 𝜃 (𝑘)0 + 𝜃 (𝑘)1 𝑥𝑖 + 𝜃 (𝑘)2 𝑦 𝑗 with aberrations having variance 𝜙2
𝑘
. Here 𝜃 (𝑘)0 + 𝜃 (𝑘)1 𝑥𝑖 + 𝜃 (𝑘)2 𝑦 𝑗 are

the regression coefficients and 𝜙2
𝑘

the regression error for 𝑘 = 𝐷, 𝑆 and 𝑃𝑘 represents the mixing

weights for each of the k regression models. If 𝜙2
𝑘

is low, then there is not much variability, which

will be the case when there are no defects in the vicinity. For areas near defects, the average

intensity 𝜃 (𝑘)0 + 𝜃 (𝑘)1 𝑥𝑖 + 𝜃 (𝑘)2 𝑦 𝑗 will be different leading to the points in those areas having other

mixing density [23]. Thus, spatial relation among the points are leveraged here. Also, for point

adjoining defects the variance 𝜙2
𝑘

will be large. While computing, for each point (𝑥𝑖, 𝑦 𝑗 ), the

posterior probabilities of 𝜋𝐷 (𝑥𝑖, 𝑦 𝑗 ) are evaluated and based on their value, we can classify each

point to be either defective (D) or non-defective (S) area. Note that, if the defective area is not

very large, then the sector does not contain a harmful defect. Different kinds of defects such as

scratches, small, moderate and large defect sizes are considered. In all these cases, it is observed

that function estimation matches well with the intensity plots; the defective areas on Inspection

1 can be appropriately recognized by applying the aforementioned function estimation procedure

on data, which has zero or very low noise levels. The R package mix tools is adopted (128) for

fitting these mixture regression functions. Figures 5.4 show the application of the procedure on

Inspection 1’s data of Figure 5.3 for the spherical defects.
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Figure 5.4 (a) shows the 2D MFL data from a spherical defect of radius 6 mm on Inspection 1; (b)
shows the fitted function by the 2-mixture regression model and (c) shows the estimated defective
scan points plotted in red as based on thresholding the posterior probabilities at 0.8.

5.3.2 Algorithm 2: Defect growth tracking after later cheap scans using transfer learning

The two-mixture regression algorithm fails when the data are noisy. Figure 5.5 shows how

the mixture regression approach cannot be used even on wavelet denoised MFL readings from

Inspection 2 of Figure 5.3. Its performance on raw MFL Inspection 2 data is even worse.

Debauches wavelet of level 3 for denoising the noisy MFL data has been applied. Panel 5D

of figure 5.5 shows how the two-mixture model has failed to detect the true defect area on the

following days. As a result, the above algorithm cannot be used to analyze data from the noisy

scans after Inspection 1. However, if the algorithm is made aware of the location of defects as well

as the mixing proportions, then the algorithm can perform better [28] and the proposed method is

described in detail below.

Let 𝐼𝑠 be the intensity matrices from the daily probe scans for 𝑠 = 1, 2, · · · , 𝐼1 is the intensity

matrix from the Inspection 1 and is quite accurate with very low noise compared to 𝐼𝑠 : 𝑠 > 1. For

simplicity, consider that new defects have not cropped up in between, and the concern is to update

the sizes of the existing defects based on 𝐼1 as the beginning of the inspection. Based on Inspection

1’s data, the location and proportion of the defective points sampled in the probe can be estimated

very well. By updating the probabilities of the defects 𝜋̂(𝑠)
𝐷
(𝑥𝑖, 𝑦 𝑗 ) based on 𝐼𝑠 for every s, let 𝐷1

denote the location of defect scan points in Inspection 1 for any prefixed threshold 𝜏:

𝐷1 = (𝑥𝑖, 𝑦 𝑗 ) : 𝜋̂𝐷 (𝑥𝑖, 𝑦 𝑗 ) ≥ 𝜏 (5.8)

Consider 𝑍1 = 𝐼1(𝑥𝑖, 𝑦 𝑗 ) : (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝐷1 as the set of Inspection 1 MFL values on the defect scan
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points and 𝑍2 = 𝐼2(𝑥𝑖, 𝑦 𝑗 ) : (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝐷1 be the set of Inspection 2 MFL values on the same scan

points, which were judged in the defective area 𝐷1 of Inspection 1. Be noted that 𝑍2 is very noisy,

hence it is important to denoise 𝑍2. The denoising can be done by fitting a linear model on 𝑍2

based on 𝑍1 values as follows:

𝑍2𝑘 = 𝛼2 + 𝛽2𝑍1𝑘 + 𝜎2𝜖𝑘 ,where𝑘 = 1, · · · , |𝐷1 | (5.9)

Here 𝛼2, 𝛽2, 𝜎2 are intercept, slope and standard deviation parameters and 𝜖𝑘 : 𝑘 ≥ 1 are indepen-

dent and identically distributed (i.i.d.) Gaussian noise. After obtaining the ordinary least square

coefficients 𝛼̂2, 𝛽2, 𝜎̂2 the set of predicted value can be evaluated as:

𝑍𝑃2 = 𝛼̂2 + 𝛽2𝑍1(𝑥𝑖, 𝑦 𝑗 ) : (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝐷1 (5.10)

𝑍𝑃2 will be much less noisy than 𝑍2. In Inspection 1, 𝑍1 was well modeled by a linear model and so

𝑍𝑃2 which is the denoised version of 𝑍2, got by projecting it on 𝑍1 values, to be also well-modelled

by linear models. The neighborhood of the defect points of Inspection 1 are then considered. Let

𝑁1 denote the neighborhood of the scan points in 𝐷1, i.e.,

N1 = (𝑥𝑖, 𝑦 𝑗 ) : min(𝑥,𝑦)∈𝐷1 |𝑥𝑖 − 𝑥 | + |𝑦𝑖 − 𝑦 | < 𝜌 \ 𝐷1 (5.11)

where, 𝜌 is a tuning parameter. In these neighborhood points 𝑁1, the defect can spread on In-

spection 2, which is the uncertain area. All points outside 𝑁1 and 𝐷1 can be considered to be

safe on Day 2. Let 𝑆2 denote that set, i.e., 𝑆2 = (𝑁1 ∪ 𝐷1)𝑐. Let 𝑊1 = 𝐼1(𝑥𝑖, 𝑦 𝑗 ) : (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝑆2,

𝑊1 = 𝐼2(𝑥𝑖, 𝑦 𝑗 ) : (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝑆2 be the MFL data from Inspection 1 and 2 respectively on these safe

points. Again, as𝑊2 is noisy hence we fit a linear model𝑊2k as,

𝑊2𝑘 = 𝛿2 + 𝛾2𝑊1𝑘 + 𝜎̃2𝜖𝑘 where, 𝑘 = 1, · · · , |𝑆2 | (5.12)

and similarly, the predicted values based on the least square coefficients𝑊𝑃
2 can be evaluated as:

𝑊𝑃
2 = 𝛿2 + 𝛾2𝑊1(𝑥𝑖, 𝑦 𝑗 ) : (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝑆2 (5.13)

Similarly, as before 𝛿2, 𝛾2, 𝜎̃2 are intercept, slope and standard deviation parameters and 𝜖𝑘 : 𝑘1

are independent and identically distributed (i.i.d.) Gaussian noise. The least square coefficients
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𝛿2, 𝛾̂2 are then obtained to consider the set of predicted value 𝑊𝑃
2 . By projecting on Inspection

1 data, we have de-noised and linearized 𝑍𝑃2 and 𝑊𝑃
2 . Thus, the MFL values in Inspection 2 for

all scan points other than the neighborhood points are well regularized by this transfer learning

approach. Let 𝑈2 denote the set of Inspection 2 MFL values in the neighborhood points 𝑁1 i.e.

𝑈2 = 𝐼2(𝑥𝑖, 𝑦 𝑗 ) : (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝑁1. In the next step, a mixture regression model with two groups on

𝑍𝑃2 ,𝑊
𝑃
2 ,𝑈2 response values is developed. As the proportion of points in (𝑆2 ∪ 𝐷1) is much higher

than 𝑁1 points, there are many more denoised points in 𝑍𝑃2 ,𝑊
𝑃
2 ,𝑈2 than noisy points. So, this

mixture regression model can be fitted accurately unlike before. Using the model which is basically

trained by the points in 𝑍𝑃2 and𝑊𝑃
2 , the posterior of the points in 𝑁2 are detected and thus classified

as safe or defect. Thus, the 𝐷2 defect area is:

𝐷2 = 𝐷1 ∪ (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝑁1 : 𝜙(2)
𝐷

(𝑥𝑖, 𝑦 𝑗 ) ≥ 𝜏 (5.14)

Similarly, for Inspection 3, the neighborhood 𝑁2 of the defective area 𝐷2 of Inspection 2 is

considered. The safe points of Inspection 3 are denoted as𝑆3 = (𝑁2 ∪ 𝐷2)𝑐. Corresponding to

these 𝑆3 and 𝐷2 points, the predicted intensities 𝑊𝑃
2 and 𝑍𝑃2 are evaluated based on the above

mixture regression fit on 𝑍𝑃2 ,𝑊
𝑃
2 ,𝑈2 values of Inspection 2. These intensities are thus used to

transfer information from Inspection 2 defect area to Inspection 3.The Inspection 3 intensity 𝑍3,𝑊3

corresponding to 𝐷2 and 𝑆3 scan points are denoised by regression on 𝑍2P and 𝑊𝑃
2 respectively.

The resultant predictors are 𝑍𝑃3 and𝑊𝑃
3 . Again, mixture model is fitted on 𝑍𝑃3 ,𝑊

𝑃
3 ,𝑈3 values and

based on the posterior probability of defect in 𝑁3 the neighborhood points are updated. Thereafter

the scan points are classified as defect or non-defect by thresholding these posterior probabilities.

The process is repeated for the following days.

5.4 Results & Discussions

In this paper, the efficacy of our algorithms is tested on spherical shaped defects across a wide

range of SNRs and sampling designs. Firstly, a sampling design where MFL data are collected on

a square lattice of length 2 cm with scan points at 1 mm apart along the either axis is considered.

The defect is spherical with radius 6 mm on Inspection 1. Its radius increases by 1 mm on each

passing inspection. Three different sets of values of 𝑡1 and 𝑡2 for this defect type are considered
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Figure 5.5 (a) Inspection 2 MFL data from Figure 5.3. It is based on a lattice of spacing 1 mm on a
pipe sector of length 2 cm. It contains a spherical defect of radius 6 mm. The SNR=1 with 𝑡1 and 𝑡2
values given in the Table 5.2, row 3. (b) Wavelet based denoised version of the data. (c) shows the
2-mixture regression based predicted function and (d) shows the estimated defective scan points
plotted in red as based on thresholding the posterior probabilities at 0.8.

based on which noise-contaminated Inspection 2 and Inspection 3’s data was generated on the basis

of the design as described in Section 5.2. Row 1-3 of Table 5.2 contains the result pertaining to

this spherical defect type. The top row of Figure 5.3 demonstrates the corresponding MFL data

for a particular set of 𝑡1 and 𝑡2 values (row 3 of Table 5.2) that makes SNR equals to 1. In all the

cases, the mixture regression approach works well on Inspection 1 data as illustrated in Figure 5.4

and recovers Inspection 1’s defect location and volume precisely. However, naïve application of the

mixture regression approach on Inspection 2’s data performs terribly in recovering the defective

area. The performance of our proposed Transfer Learning (TL) based mixture regression algorithm

and that of the naïve method (Non-TL) which does not transfer information from Inspection 1 is

thoroughly compared, and a mixture regression model on later Inspections 2 and 3 in isolation is

fitted and developed. For evaluating the performance of any NDE based detection methodology

(M) on these kind of data types, it is suggested to consider the following two sets:

𝐷𝑀
𝑠 =set of defective scan points detected by method M on inspection 𝑠.

𝐷𝑇𝑠 =set of true defective scan points on inspection 𝑠.

We can define the coverage of defect by method M on inspection s as:

Coverage𝑠 =
𝑠𝑖𝑧𝑒(𝐷𝑀

𝑠 ∩ 𝐷𝑇𝑠 )
size(𝐷𝑇𝑠 )

(5.15)
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To check if method M has grossly overestimated the size of the defect, we further define:

Exceedance𝑠 =
size(𝐷𝑀

𝑠 ∩ 𝐷𝑇𝑠 )
size(G)

(5.16)

where, G is the grid of sampling points for MFL data. Methods with high coverage and low

exceedance values are desired. From Table 5.2, it is concluded that our proposed method has

near perfect coverage and very low exceedance for all the different regimes considered here. Its

performance drops as the SNR is decreased from 2 to 1, however, the drop is not by much and

its performance is still commendable. In contrast, the naïve Non-TL method that do not use the

dynamic nature of the problem has poor performance. It is found that the TL based approach has

full coverage of the defect area on all 3 inspection times across all regimes along with acceptable

exceedance (the maximum exceedance is 7%). In contrast, the naïve algorithm that models each

inspection separately without transferring previous inspections’ information cannot attain good

coverage on inspections 2 and 3. Figure 5.6 shows the defect growth tracked by our algorithm on

Inspection 3 where the SNR was used by as Design 3. In Figure 5.7, we report the root mean square

error (RMSE) for the predicted signal intensity by our proposed approach at the detected defective

scan points. We report the RMSE relative to the inherent variation of the signal intensity at the

defective points and it was witnessed to be well controlled.

Table 5.2 Performance based on mixture regression and transfer learning.
Shape Design SNR Inspection Time Evaluation Metrics Proposed TL Method Non-TL Method

Spherical defect
increasing 1mm/inspection 𝐿 = 2𝑐𝑚, 𝑡1 = 1, 𝑡2 = 0.5, 𝑆𝑝 = 1𝑚𝑚 2 2 Coverage of defect 100.00% 3.13%

Exceedance 0.91% 0.23%

3 Coverage of defect 100.00% 31.25%

Exceedance 4.76% 1.13%

Spherical defect
increasing 1mm/inspection 𝐿 = 2𝑐𝑚, 𝑡1 = 1, 𝑡2 = 1, 𝑆𝑝 = 1𝑚𝑚 1 2 Coverage of defect 97.55% 11.35%

Exceedance 2.20% 0.00%

3 Coverage of defect 96.23% 16.23%

Exceedance 2.62% 0.30%

Spherical defect
increasing 1mm/inspection 𝐿 = 2𝑐𝑚, 𝑡1 = 1.41, 𝑡2 = 0.5, 𝑆𝑝 = 1𝑚𝑚 1 2 Coverage of defect 94.79% 0.00%

Exceedance 0.59% 0.00%

3 Coverage of defect 94.67% 34.33%

Exceedance 4.16% 1.07%
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Figure 5.6 Defect tracked by the algorithm for Inspection 3 and by design 3.

5.5 Conclusion

The defect size cannot be properly estimated with limited data size and noisy measurement. A

novel framework by applying bivariate function based estimation to the noisy data obtained from

the later inspections using fast and cheap scanning has been investigated and demonstrated. In order

to properly recognize the defect under noisy condition, the algorithms can dynamically update the

grid by the auxiliary information obtained from baseline inspection i.e., Inspection 1, where the

location and the size of the defect is used as a transfer learning to update the size of the defect. As

the defect on the later inspection times can’t decrease in size, the efficacy of our algorithms are
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Figure 5.7 RMSE of predicted signal intensity at the defective scans points for the different designs
of Table 5.2.

rigorously tested and satisfactory results have been achieved.

Portions of this chapter appeared in the publication (129; 29)
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CHAPTER 6

DYNAMIC DEFECT DETECTION IN FAST, ROBUST NDE
METHODS BY TRANSFER LEARNING BASED OPTIMALLY BINNED HYPOTHESIS

TESTS

6.1 Introduction

Non-destructive evaluation (NDE) plays an important role in condition-based monitoring

(CBM) and performing effective diagnostics of the safety-critical infrastructures such as oil and

gas transmission pipelines, aircrafts, railways, bridges, nuclear power plants, battery inspection in

electrical vehicles, load bearing metal structures in highways etc. (61; 62; 130). To diagnose struc-

tures effectively, NDE techniques utilize various inline inspection (ILI) techniques to access them

without causing additional harm, in a non-invasive manner (26). With the advancement in sensing

technology, different NDE modalities (27; 28; 29; 30; 31; 12; 52; 11; 32; 33; 10; 34; 9; 35; 8) are

being rapidly used. However, in real situations, it is often very challenging and expensive to estab-

lish non-destructive inspection procedures that follow the optimal less noisy laboratory conditions

in which these methods were created and tested. For this reason, NDE data are collected under

uncertainties such as high scanning speed, lift-off, probe drift, fluctuations in material surface and

different data acquisition step sizes (12; 36; 131; 116; 132). Conducting fast inspections makes

the signal distorted and noisy. Lift-off refers to the distance between the sensor and the material

under test (MUT) while probe drift denotes the deviation of probe from perpendicularity. Thus,

NDE data are most often distorted and contaminated by noise due to various scanning speeds and

the presence of unknow lift offs due to coarseness of MUT surface, non-conducting coatings, or

irregular paintings on MUT (38; 7). Variation in data acquisition step sizes, misalignment of the

probe and uneven sample surface also contaminate NDE data. These uncertainties in data collec-

tion process result in different types of signal corruption. Defect detection algorithms developed

based on sensor data under controlled laboratory conditions do not provide accurate defect analysis

under these uncertainties. In present NDE literatures, very few adaptive algorithms are present

that perform accurate defect diagnostics under noisy regimes (6; 12; 29; 28). However, to the
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best of authors’ knowledge there is no such literature that can perform dynamic defect tracking on

inspections corrupted due to the stated uncertainties.

Here, a miniaturized in-house MFL probe which is cheap, highly flexible, and easy to implement

is designed. It does not require cumbersome hardware setup needed in conventional MFL Pipeline

inspection gauge (PIG) (51). The commonly used non-destructive evaluation approaches includes

ultrasonic testing (UT), Eddy Current (EC), pulsed eddy current (PEC), microwave testing, Elec-

tromagnetic acoustic transducer (EMAT) testing, capacitive sensing, thermography and magnetic

flux leakage-based inspection. Among all these techniques, MFL is widely used in inspection of

the conducting materials, mostly ferromagnetic oil and gas pipe wall inspections (102; 103; 104).

MFL follows a simple working principle as follows: ferromagnetic pipe wall is magnetized close

to saturation by means of permanent rare earth magnet or a coil wound on a ferromagnetic yoke.

The presence of defects decreases the pipe wall thickness, thereby increasing the reluctance and

magnetic flux density in the vicinity of defects. This phenomenon results in a higher fraction

of magnetic flux to leak into the surrounding, which can be measured using a Hall effect sensor

(static and dynamic fields) or coil (dynamic fields) (105; 106; 119). Unlike other popular NDE

methods, it can be employed over a wide range of conducting specimens as it enjoys the following

advantageous properties over the competing NDE methods: (a) Thermographic measurements

have low sensitivities while using cheap thermal cameras for imaging and are non-robust to small

temperature variations (4; 1). X-ray imaging is expensive as well as proper screening is needed to

take care of detrimental ionizing radiations (33); (b) laser profilometry and structure light based

optical inspections do not work on ferromagnetic conducting pipe walls as it results in unwanted

reflections (99); (c) Ultrasonic testing requires a coupling medium and physical contact with MUT

(32). Air coupled UT does not need coupling but requires long sound pulse for excitation where

accurate timing measurement is difficult. Moreover, because of high impedance of metal structures

it is not applicable for ferromagnetic metallic pipe wall inspection (5); (d) Microwave imaging

operates at high frequencies in GHz ranges which require extensive data acquisition circuitry and

fail to penetrate deep in conducting materials (2); (e) In eddy current inspection, the optimized
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frequency needs to be chosen to take care of skin depth (31) and capacitive sensing exhibits non

linearity as the output voltage is inversely proportional to the distance between the sensing and

driving electrodes (12).

6.1.1 Dynamic defect tracking in streaming NDE data

A set-up for periodic monitoring of MUT by NDE methods at regular intervals is considered.

Thus, the NDE data arrives in as a streaming data sequence and the goal is to carefully estimate

the changes in the state-of-health of the MUT between two successive scans. In the real-world,

in most industrial sectors, inspections are carried out during periodic maintenance cycles under

preventive maintenance framework. Corrosions and other defects in the metallic surfaces on the

MUT are dynamically tracked. The defective areas in the MUT such as corrosions in the inner

wall of pipelines often remain controlled over time but can also further aggravate by increasing in

size in which case alarms need to be raised for human intervention, particularly when the defective

areas are large enough to be immensely detrimental to the safe functioning of the MUT. Also,

new corrosions and defects can also crop up over time which need to be detected and tracked.

Since the less noisy inspections are time consuming and expensive, there is need for methodologies

that reduce the scanning times. Here, a new approach that can significantly reduce the NDE data

collection cost and inspection time for this dynamic defect monitoring problem is addressed. A

dynamic setup is considered where there is an occasional detailed, highly accurate, expensive MFL

scan in between regular low cost noisy MFL scans. The overall cost of the proposed NDE set-up

is only a small fraction of defect tracking procedures that are based on NDE data from frequent

less noisy but quite costly MFL scans. In all dynamic NDE systems huge volume of data needs

to be regularly analyzed over time which need development of automated data analysis algorithms

that can accurately detect formation of defects in metallic pipes and precisely track their growth

over time. While our proposed set-up is cheap, it is challenging to develop automated data analysis

algorithms for defect tracking based on noisy MFL scans. For this purpose, we develop an efficient

transfer learning based (133) defect tracking algorithm.
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6.1.2 Transfer learning based binned hypothesis tests (TLBH) for defect detection

In expensive, less noisy MFL scans, the signal-to-noise ratio (SNR) for defect detection is very

large and usually pointwise hypothesis testing (134; 135) method that classify each scan point as

defect or non-defect typically works well. However, with increase in noise in NDE data, pointwise

hypothesis testing fails to work (12) due to low SNR in the data. Binned or aggregated hypothesis

testing methods (136; 137; 138; 139; 140) are popularly used in low SNR cases. In a host of modern

applications (141; 142; 143) binned tests that aggregate neighbourhood information is shown to

be very successful for signal detection in very low SNR regimes. Aggregation helps in increasing

SNR of the aggregated signals and consequently defects can be defected. However, aggregation

leads to loss of resolution of the data and too much aggregation can lead to massive overestimation

of the defect size resulting in very high FDR. It is extremely important to optimally select the

aggregation level in binned test so that the test is not only powerful for defect location detection

but also does the least over estimation of defect sizes. The optimal aggregation-level for binned

test can be easily constructed if we know the true SNR of the noisy MFL signals. Since, these

are unknown we develop a transfer learning based technique for estimating the SNF in nosy MFL

signals. Transfer learning is a set of powerful information assimilation techniques for retaining

knowledge gained from one problem and applying it to a related problem (84; 133). Leveraging

the streaming MFL inspection data set-up, we transfer accurate knowledge of locations and sizes of

existing corrosions from the detailed MFL scan to the subsequent noisy MFL inspections. Using

this support information of defective scan-points we estimate the deterioration of SNR in the noisy

MFL scans. It is shown that the proposed binned hypothesis test has optimal defect coverage and

false discovery rate (FDR) control (see Section V). A fascinating property of the proposed optimal

binning hypothesis testing based defect detection method is that it is agnostic of the noise type in

the low-cost MFL scans. So, the method can be applied even if the underlying noise producing

uncertainties massively changes over time.
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6.1.3 Organization of the chapter

In Section 6.2, description of experimental MFL data generation under different types of

uncertainties for the proposed cost-effective dynamic defect tracking set-up is given. Section 6.3

illustrates the highly heterogenous nature of noise in these MFL datasets. Under different noisy

regimes, the deterioration of SNR and the subsequent problems faced by point-wise hypothesis

testing methods are shown. In Section 6.4, detailed description of the transfer learning based

binned hypothesis testing (TLBH) method is provided and its properties are discussed. In Section

6.5, it is demonstrated that the proposed TLBH method can track different types of defects with

high precision. The performance of TLBH with the following competing methods (a) point-wise

hypothesis testing methods (b) naïve binned hypothesis testing methods (c) Wavelet based spatial

denoising and thresholding (d) dynamic mixture regression models for defect detection is compared

in this section. In Section 6.6, a brief discussion about the eddy current based inhouse experimental

setup and the applicability of our TLBH algorithm on the EC data are provided. It is shown that

TLBH far out-perform the competing methods in dynamic growth tracking for our streamed MFL

tracking set-up. The chapter concludes with a discussion in Section 6.7.

6.2 MFL Experiment and Data Generation

A MFL probe based on the magneto-static problem governed by conventional Maxwell’s equa-

tion (29) is developed. The experimental setup is designed using the components as discussed in

chapter 3 of this thesis. Figure 6.1 shows the schematic of the entire experimental setup. The holder

of the MFL probe fits two cubical permanent magnets composed of NdFeB material. Two different

holders are constructed to hold magnets of two different dimensions. Figure 6.1(b) shows one

such holder of dimension 80 × 72 × 30 mm while another larger holder is shown in Figure 6.1(e).

Two cubical permanent magnets of dimension 25 mm are placed inside the holder with opposite

polarities facing the MUT. Large cuboidal permanent magnets of dimension 40𝑚𝑚×4𝑚𝑚×20𝑚𝑚

are also used. Hall sensor of dimension 25𝑚𝑚 × 14𝑚𝑚 is placed in the middle of the holder

between magnets of opposite polarities. We use Aerotech AGS1000 programmable XYZ scanner

for scanning and TLE493D-A2B6 three axis-Hall effect sensor produced by Infineon to measure
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Figure 6.1 Panel A shows the schematic of the developed MFL probe scanning MUT, (b) Dimensions
of the probe holder, (c) Permanent magnet used in sensing, (d) Infenion TLE493D-A2B6 sensor
used in sensing, (e) Entire setup with gantry, (f) Dimension of larger permanent magnets.

the axial, radial and tangential components (in X, Y, Z directions) of the magnetic field leakages.

TLE sensor consists of three main blocks (a) Power mode control system comprising of oscillators,

(b) Main sensing unit consisting of Hall probes, multiplexer and ADC controller, (c) I2C interface,

register files. The sensing unit of the sensor is connected sequentially to a multiplexer and then to

an Analog to Digital Converter (ADC) which is connected to Data acquisition system (DAS). The

DAS consists of a National Instrument Data Acquisition Card PCIe-6341 where the magnetic flux

signal is sampled and digitized by a routine and the output is recorded.
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To understand how the data collected by MFL sensors is altered as uncertainties increases in system,

we collect data across different regimes where the defect has increased in size during later scanning.

Our designed MFL probe recorded flux readings at scan points of varying step sizes of 0.5mm and

2mm respectively. A square grid of 100 × 100 mm is scanned for this purpose. With 0.5mm step

size, it results in 40,000 grid points whereas for 2mm step size, only 2500 scan points are recorded.

The scan time for 0.5mm step size is about 1 hour 30 minutes whereas the scan time for 2mm step

size is only about 18 minutes. The efficacy of our algorithms in dynamic defect tracking on later

noisy inspections are tested across following three defect cases:

• On later scans defect size can remain constant

• On later scans defect size get increased

• On later scans new defect has cropped in

In Figure 6.2 , the axial 𝐵𝑥 , tangential 𝐵𝑦, radial 𝐵𝑧 and magnitude |𝐵 | =

√︃
(𝐵2

𝑥 + 𝐵2
𝑦 + 𝐵2

𝑧 )

components of magnetic flux signal sensed by our MFL sensor on one such experimental sample

containing notch like fabricated defect is shown. The scanning is done at lift off of 1 mm and step

size of 0.5 mm. The MFL sensor is capable of detecting both the large and small defects under

less uncertainty due to small lift off. Our algorithms are tested on the axial component 𝐵𝑥 of the

flux signals in the subsequent sections. Figure 6.3 shows the axial component of the magnetic flux

readings across four Inspection cases. Here, Sample 1, 2, 3 and 4 (sample dimensions stated in later

section) are scanned at increasing lift offs of 1mm, 7 mm and 9mm respectively. With the increase

in lift off, it is observed that difference in magnetic flux readings between the defective areas and

background decreases. Hence it is impossible to track the defect growth on later scans based on

this noisy data. The scans are conducted at step size of 0.5mm. Figure 6.4 shows the increase in

uncertainty on later inspections due to the increase in step size. Scans on samples 2,3,4, are done

at step size of 2mm and at lift of 2mm. This shows that detecting defective scan points based on

flux readings become difficult as the step size increases.
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Figure 6.2 Image plot of the three axial magnetic flux readings detected by the MFL probe when
scanned at lower lift off 1mm. At low uncertainty both the large defect and small defects get
detected (as marked in black square).

Figure 6.3 Plot the axial component of magnetic flux of different samples showing the difficulty of
defect tracking at higher uncertainties due to lift off.
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Figure 6.4 Plot the axial component of magnetic flux for different defect dimensions and lift offs
showing the difficulty of defect tracking at higher uncertainties due to increase in step size.

6.3 Deterioration of SNR under different types of uncertainties

In section 6.3, the SNR of the experimental data sets that were collected based on the procedure

described in the earlier section is studied. The objective is to evaluate how noise increases as

NDE data is collected under uncertainties with increasing magnitude. For this objective MFL data

collected from surfaces with a single defect is considered. Machined defects of different sizes and

characteristics are fabricated. Collection of sequence of MFL data for each data is done as step sizes

and lift off are increased. To systematically summarize these matrix-variate MFL data a simple

bivariate normal mixture model for the MFL reading 𝑋 (𝑙)
𝑖 𝑗

from uncertainly level l at the (𝑖, 𝑗) grid

point is examined. For any fixed 𝑙, assume 𝑋 (𝑙)
𝑖 𝑗

is independent and identically distributed (i.i.d.)

from 𝑁 (Δ1 [𝑙], 𝜎2
1 [𝑙]) if (i,j) is actually a defective scan point and 𝑋 (𝑙)

𝑖 𝑗
is i.i.d. from 𝑁 (Δ0 [𝑙], 𝜎2

0 [𝑙])

if (i,j) is actually a non-defective scan point. Tables 6.1 and 6.2 (to be placed in this section) show

these parameters for the following four different defective samples as lift-off uncertainty is increased.

• Sample 1: Defect dimension (𝑙 × 𝑤 × ℎ) 8𝑚𝑚 × 8𝑚𝑚 × 5𝑚𝑚

• Sample 2: Defect dimension (𝑙 × 𝑤 × ℎ) 2𝑐𝑚 × 1𝑐𝑚 × 5𝑚𝑚

• Sample 3: Defect dimension (𝑙 × 𝑤 × ℎ) 2𝑐𝑚 × 2𝑐𝑚 × 5𝑚𝑚

• Sample 4: Defect dimension (𝑙 × 𝑤 × ℎ) 3𝑐𝑚 × 2.5𝑐𝑚 × 5𝑚𝑚

Where l, w, h represents the length, width and depth of the fabricated machined rectangular notch

defects respectively.

The step size used in the MFL data summarized in table 1 is 0.5 mm. Table 6.2 reports the

summary of the MFL data when the step size is 2mm. As the MFL data was collected in lab, we

knew the position of the defects and the parameters reported in the table were calculated using this
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Table 6.1 The mean and the standard deviations of the flux readings of the non-defective and
defective regions are reported for the samples in Table 1. Regions are detected based on readings
with no lift off. Here the flux readings are recorded at scan points 0.5mm apart. From the obtained
parameters, SNR values are reported.

Sample
No

Lift off
based
Uncer-
tainty

Δ0 𝜎0 Δ1 𝜎1 SNR

1 No Lift off -95.86 0.09 -96.41 0.07 4.78

1mm -96.11 0.09 -96.49 0.08 3.23

2mm -96.4 0.07 -96.57 0.05 1.99

5mm -96.66 0.07 -96.75 0.05 1.03

2 2mm -94.46 0.07 -94.85 0.05 4.51

5mm -94.71 0.06 -94.89 0.05 2.26

7mm -94.83 0.06 -94.94 0.05 1.43

3 No Lift off -94.44 0.11 -94.78 0.06 2.82

2mm -94.63 0.09 -94.83 0.06 1.79

5mm -94.89 0.07 -95 0.06 1.19

7mm -94.97 0.06 -95.06 0.05 1.07

4 No Lift off -94.06 0.15 -94.84 0.08 4.71

2mm -94.47 0.09 -94.91 0.08 3.7

5mm -94.69 0.07 -94.95 0.07 2.7

7mm -94.8 0.06 -95.01 0.07 2.21

9mm -94.87 0.08 -95.02 0.05 1.65

11mm -94.96 0.05 -95.07 0.06 1.38
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Table 6.2 The mean and the standard deviations of the flux readings of the non-defective and
defective regions are reported for the samples in Table 6.2 . Regions are detected based on readings
with no lift off. Here the flux readings are recorded at scan points 2mm apart.

Sample
No

Lift off
based
Uncer-
tainty

Δ0 𝜎0 Δ1 𝜎1 SNR

1 No Lift off -89.83 0.1 -90.33 0.11 3.39

2mm -90.39 0.07 -90.61 0.08 2.02

5mm -90.79 0.07 -90.86 0.1 0.53

2 No Lift off -94.48 0.06 -94.69 0.09 1.96

2mm -94.5 0.06 -94.65 0.13 1.09

5mm -94.49 0.24 -94.71 0.11 0.82

7mm -94.83 0.05 -94.87 0.05 0.53

3 No Lift off -94.67 0.09 -94.91 0.05 2.41

2mm -94.65 0.09 -94.86 0.07 1.83

5mm -94.88 0.07 -95.02 0.06 1.54

7mm -94.98 0.06 -95.08 0.07 1.05

4 No Lift off -94.2 0.17 -94.35 0.26 0.48

2mm -94.33 0.14 -94.47 0.21 0.56

5mm -94.55 0.09 -94.61 0.14 0.4

7mm -94.43 0.23 -94.31 0.34 0.29

9mm -94.89 0.07 -94.97 0.06 0.78

11mm -95 0.06 -95.05 0.06 0.66
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knowledge.

Note that the bivariate normal mixture model considered here can be further improved as the

readings at the scan points are spatially correlated. The bivariate normal mixture model with i.i.d.

readings at grid points is mainly considered here as it provides the simplest and most intuitive and

quite accurate understanding of the noise characteristics with increase in uncertainties in the data

collection process. Based on the model, the difference in readings from a random defective and a

random non-defective scan point is 𝑁 (Δ1 − Δ0, (𝜎2
1 + 𝜎2

0 )
1
2 . Thus, the SNR for defect detection in

this model is 𝑅 = |Δ1−Δ0 | (𝜎2
1 +𝜎

2
0 )

− 1
2 . In tables 6.1 and 6.2, these SNR values are reported. From

the data it is observed that Δ1 < Δ0 across all regimes. The standard deviation 𝜎1 and 𝜎0 are in the

same scale though they can differ by bit. As lift-off uncertainty increases in both tables, the gap

Δ0 − Δ1 decreases sharply. Though the standard deviations also decrease but their decrease is not

at the same rate, and this results in a massive decrease in R as lift-off-based uncertainty increases.

On comparing table 6.2 with table 6.1 it is observed that the reduction in SNR is much pronounced

when step size is doubled. Also, note that the reduction in SNR for the same level of lift off

uncertainty is different across the four samples and the smaller defects have much higher reduction

of SNR. It is to be noted that defect characteristics such as sizes and depth influence the nature of

corruption in the MFL readings due to the presence of lift off and different data acquisition rates.

In real world applications, the corruption level or noise type is unknown as there is no information

of the defect characteristics beforehand. This implies that efficient defect detection data analysis

method is a necessity that can work well across different noise regimes. Also, an efficient defect

detection algorithm in the set-up needs to work well in noisy regimes where the true noise level

cannot be known.

In tables 6.1 and 6.2 the first two moments of the noise distribution are reported. In Figure

6.5 the entire distribution of flux readings at the defective and non-defective scan points at different

lift-offs for two different defect sizes are shown. Figure 6.5 shows that the bivariate normal model

though very simple is a decent approximation model for explaining variations in MFL readings due

to lift-off based uncertainties. Both the violin plots illustrate the decrease in difference of mean
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Figure 6.5 Violin plots showing distributions of flux readings for four cases of Sample 1 (a) no
lift-off (b) 1 mm lift off (c) 2mm lift off (d) 5 mm lift off (in left) and three cases of Sample 2 a)
no lift-off (a) 1 mm lift off (b) 5mm lift off (c) 7 mm lift off (in right). The distributions of the
readings from defective scan points are shown in dark grey and distributions of non-defective areas
are shown in light grey.

flux readings between the defective and non-defective area with increase in uncertainties in data

collection procedure. As shown in Figure 6.5, the numerator of R (difference in mean) decreases

whereas denominator (noise variance) stays mostly invariant, with increase in uncertainty. This

causes a significant drop in SNR.

To understand the impact of the reduction of SNR with uncertainty on our task of locating and

characterizing defect size, consider a pointwise hypothesis test (136; 137) to detect between defects

and non-defective scan-points, i.e., to test hypotheses 𝐻0 : 𝑋 (𝑙)
𝑖 𝑗

= N
(
Δ0, 𝜎

2
0
)
vs𝐻1 : 𝑋 (𝑙)

𝑖 𝑗
=

N
(
Δ1, 𝜎

2
1
)

for the grid point at (𝑖, 𝑗)𝑡ℎ coordinate. The most powerful test based on the Neyman-

Pearson lemma classifies the grid point as defect if: (𝜎 (𝑙)
0 ) (−2) (𝑋 (𝑙)

𝑖 𝑗
−Δ(𝑙)

0 )2−(𝜎 (𝑙)
1 ) (−2) (𝑋 (𝑙)

𝑖 𝑗
−Δ(𝑙)

1 )2

is large. The test will be applied for all grid-points in the lattice and the points classified as defects

by the test will constitute towards the predictive defect size. Figure 6.6 shows the schematic for the

procedure based on a single square defect at the center of the sample. In panel (a) of Figure 6.6,

we have MFL readings for a less noisy scan where the defect is in blue, and the background is in

green; in panel (b) we have the same data collected by a much noisier inspection. The dotted points

represent the increase noise in panel (b) compared to panel (a).
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Figure 6.6 (a) Schematic showing the defective areas (marked in blue) and background (in light
green) based on low noise data, (b) Noisy defective and non-defective areas of noisy data where
pointwise testing fails shows the estimated defective scan points plotted in red as based on thresh-
olding the posterior probabilities at 0.8.

Pointwise hypothesis testing will feature better in panel (a) than panel (b). To see this, we

calculate the power and the false discovery rate (FDR) of the testing procedure. For simplicity,

assume that 𝜎 (𝑙)
0 = 𝜎

(𝑙)
1 = 𝜎 (𝑙) . Then, the test classifies the (i,j) point as a defect if 𝑋 (𝑙)

𝑖 𝑗
− (𝜎 (𝑙)

0 +𝜎 (𝑙)
1 )

2

is large. We want this test to have very high power in detecting defective scan-points for unless we

have very high probability in detecting defective scan-points we will underestimate defect size. We

consider a test with power 𝛽. The false discovery rate (FDR) is the probability with which such

a test misclassifies a non-defective point as a defective point. We prove in the appendix that the

FDR for the most-efficient pointwise hypothesis test of power 𝛽 is Φ(Φ(−1) (𝛽) − 2R(𝑙)) where, Φ

is the standard normal cumulative density function and R(𝑙) is the SNR. These mis-classified non-

defective points can lead to severe overestimation of the defect sizes. Typically, defects constitute

a small fraction p of the considered lattice in any inspection window. Thus, the overestimation

of defect size by the most-efficient power 𝛽 test is 𝑝 (−1)Φ(Φ(−1) (𝛽) − 2R(𝑙)) times of the original

defect size. Table 6.3 shows the defect size overestimation by the test with 95% power as SNR and

true size of the defect varies. Note that, the reported overestimation proportion are the theoretically

achievable best possible rate as in practice the parameters Δ(𝑙)
1 ,Δ

(𝑙)
0 , 𝜎

(𝑙)
1 , 𝜎

(𝑙)
0 are also unknown and

need to be estimated from the data. In our application, it is extremely easy to estimate the Δ(𝑙)
0 , 𝜎 (𝑙)

0

with high precision based on the background. Estimating Δ
(𝑙)
1 , 𝜎 (𝑙)

1 is the challenging part. Their

estimation error will further inflate the defect overestimation metric. Comparing tables 6.1, 6.2
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with table 6.3, we see that even with moderate uncertainty in the data collection process, defect

sizes are grossly overestimated. This creates a huge problem as it implies that based on such this

test, we will be wrongly classifying a lot of panels with benign exceedingly small defects such as

scratches as defective panels.

Table 6.3 Oracle overestimation error for detecting defects at 95% power.

SNR 1.00% 2.50% 5.00% 7.50% 10.00% 20.00%
4 0 0 0 0 0 0

3.5 0 0 0 0 0 0

3 0 0 0 0 0 0

2.5 0.04 0.02 0.01 0.01 0 0

2 0.94 0.38 0.19 0.13 0.09 0.05

1.5 8.85 3.54 1.77 1.18 0.89 0.44

1 36.32 14.53 7.26 4.84 3.63 1.82

0.5 74.22 29.69 14.84 9.9 7.42 3.71

In the following section, we found that only pointwise independent hypothesis testing method-

ologies but spatial testing methods that borrow strength from neighboring scan points are also

unable to operate well in noisy regimes. We provide a binned hypothesis testing method to in-

crease SNR. A crucial step in implementing the binned hypothesis testing method is to use transfer

learning for estimating Δ
(𝑙)
1 , 𝜎 (𝑙)

1 in the bivariate normal mixture model set-up.

6.4 Transfer learning based binned hypothesis tests (TLBH) for defect detection

In section 6.4 we develop a binning based hypothesis testing methodology [45,46] to increase

SNR and conduct hypothesis testing. Binning of the grid points can be done by several ways (a)

random binning, (b) aggregate binning by considering the average of the block of grid points, (c)

aggregate binning by observing kernel density estimate and (d) batch-based binning. In binned

hypothesis testing, we perform tests after aggregating the data into bins. Here, we consider an

equally weighted blocked binning test. The binning is done by considering K points of the grid

in the form of rectangles. The choice of the block size is dependent on the difference in mean

of the null and alternate distribution. K is a tuning parameter in our model. Increasing the value
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of K results in poor resolution whereas decreasing the value of K results in erroneous pointwise

classification. The set-up of the binned test is as follows. Considering the flux readings to be

independent and identically distributed (i.i.d.), for K points in a block in the rectangular grid, the

null distribution becomes: 𝐻0 : 𝑋1, 𝑋2, · · · , 𝑋𝐾 i.i.dN(𝜎0, 𝜎
2
0 ) whereas the alternate distribution is

𝐻1 : 𝑋1, 𝑋2, · · · , 𝑋𝐾 i.i.dN(𝜎1, 𝜎
2
1 ). Since the readings are i.i.d, for the mean of the rectangular

grid 𝑋𝐾 the variance will be reduced by K times. For testing the mean of the 𝐾 𝑡ℎ block 𝑋𝐾

the null distribution will be 𝐻0 : 𝑋𝐾 = N(Δ0,
𝜎2

0
𝐾
), whereas the alternate distribution will be

𝐻1 : 𝑋𝐾 = N(Δ1,
𝜎2

1
𝐾
). As the noise variance decreases compared to unbinned pointwise test

(𝐾 = 1), the binned hypothesis testing provides better defect tracking on noisy inspections. In

the previous section, we showed that in the presence of uncertainties, the means and standard

deviations of the noise and defect MFL distributions vary greatly. As we do not know the noise

type beforehand, we need a test that is agnostic of the type of noise but works universally well across

all noise regimes. For this purpose, we use transfer learning. We project information regarding the

location of defective areas from earlier less noisy scans. Accurate estimation of the locations of

the defective scan points can be made from the MFL data with very low noise. We transport these

locations to noisy MFL data collected in the following scans. In the noisy MFL data collected

later, the defects can stay same or grow in size. Thus, the transferred location of the defective scan

points for the earlier less noisy probe helps us in precise estimation of Δ(𝑙)
1 , 𝜎

(𝑙)
1 in the current noisy

data collected by the cheap probe. Estimating Δ
(𝑙)
𝑜 , 𝜎

(𝑙)
0 from the non-defective scan-points is easy

as there is a lot of background signals in the data. Once these parameters are correctly estimated,

we bin the data into blocks and implement a power 𝛽 test. Figure 6.7 illustrates the difference

in the framework of binned hypothesis testing and point-wise hypothesis testing. The green and

the filled blue boxes respectively denote the supports of non-defect (background) and defect scan

points from an earlier scan. The defect has grown from before and the growth area is shown in

light blue. The parameters Δ
(𝑙)
1 , 𝜎

(𝑙)
1 ,Δ

(𝑙)
𝑜 , 𝜎

(𝑙)
0 are however calculated based on the smaller blue

area and the green outlined area. Though the binning algorithm increase SNR of the signal it

does not always outperform unbinned (𝐾 = 1) tests as the block wise aggregation in binned tests
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leads to loss of resolution. Particularly, in large SNR a binned test will be sub-optimal. For this

reason, it is extremely important to optimally choose the block size K in binned test. An optimally

binned test should be adaptive to the SNR in the data [47, 49-51]. As using transfer learning, we

have accurate estimates of all the four parameters of the bivariate normal mixture model, we can

accurately estimate the SNR 𝑅(𝑙) corresponding to the current data. Binning on a block of size K

increases the SNR to 𝑅(𝑙)√𝐾 . If p was the size of the defect in previous scan, the overestimation

error of a power 𝛽 test is controlled at 𝑝 (−1)Φ(Φ−1(𝛽) − 2R(𝑙)√𝐾). We select the minimum 𝐾 ≥ 1

such that the above is controlled below 10%.

Figure 6.7 Schematic of pointwise hypothetical testing, (b) Schematic of optimal binned hypothesis
testing based on multiple adjoining points (rectangular grid is shown in yellow).

Figure 6.8 shows the results of TLBH algorithm in tracking defect size for one such case where

the defect has increased in size on later inspections. The baseline inspection is done on Sample 1 at

low lift off. On Inspection 2 conducted at higher lift off of 2 mm, the defect size remains constant.

On subsequent inspections on Inspection 3, 4 and 5 conducted at higher lift offs of 5 and 7 mm

respectively, TLBH algorithm is successful in detecting the defective areas. The coverage and FDR

are reported in comparison Table 6.5 along with the defect inspection patterns in Table 6.4.

6.5 Comparison with other competing defect tracking algorithms

6.5.1 Mixture Regression

In this sub section, we have used a mixture regression method (125) for fitting a bivariate

function to less noisy MFL data as developed in details in Chapter 5. Mixture regression is a
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Figure 6.8 Baseline Inspection 1 is done on Sample 1, (b) In Inspection 2 the defect size remains
constant and the scan is done at 2 mm lift off. TLBH algorithm is able to track the defect area in
the presence of noise, (c) Inspection 3 is done on Sample 2 at 5mm lift off where the defect has
increased, (d) Inspection 4 conducted on Sample 3 at 5 mm lift off, (e)Inspection 5 is conducted at
7 mm lift off. In all the subsequent inspections TLBH algorithm tracks the defect growth (defective
area in brown, background in light yellow).

powerful statistical technique (127; 126) for detecting sub populations within a larger population.

The location of each scan point here is treated as an explanatory variable and used to train the model,

which generates a probabilistic classification of scan points to fall in either of two categories: defect

or non-defect category. At first the matrix-variate MFL data is vectorized to set up the regression

model. The unknown intensity generating function f can be next modelled as:

f(𝑥𝑖, 𝑦 𝑗 ) =
2∑︁

𝑘∈𝐷,𝑆
𝑃𝑘 · N(𝜃 (𝑘)0 + 𝜃 (𝑘)1 𝑥𝑖 + 𝜃 (𝑘)2 𝑦 𝑗 , 𝜙

2
𝑘 ) (6.1)

where, 𝑥𝑖, 𝑦 𝑗 denotes the coordinates of the scan points in grid. The number of mixtures is 2 as a

scan point can either fall in a defect or a non-defect cluster; D denotes the class of defective points

on the grid and S is the set of non-defective scan points. For each mixture model, the intensity

is modeled by a linear surface𝜃 (𝑘)0 + 𝜃 (𝑘)1 𝑥𝑖 + 𝜃 (𝑘)2 𝑦 𝑗 with aberrations having variance 𝜙2
𝑘
. Here
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𝜃
(𝑘)
0 + 𝜃 (𝑘)1 𝑥𝑖 + 𝜃 (𝑘)2 𝑦 𝑗 are the regression coefficients and 𝜙2

𝑘
the regression error for 𝑘 = 𝐷, 𝑆 and

𝑃𝑘 represents the mixing weights for each of the k regression models. If 𝜙2
𝑘

is low, then there is

not much variability, which will be the case for defect less background scenario. For areas near

defects, the average intensity 𝜃 (𝑘)0 + 𝜃 (𝑘)1 𝑥𝑖 + 𝜃 (𝑘)2 𝑦 𝑗 will be different leading to the points in those

areas having other mixing density. Thus, spatial relation among the points are leveraged here. Also,

for point adjoining defects the variance 𝜙2
𝑘

will be large. The mixture model is trained using an

expectation-maximization (EM) algorithm, where the mean and covariance of each component are

iteratively updated until the convergence criteria are met [54]. For each point (𝑥𝑖, 𝑦 𝑗 ), the posterior

probabilities of 𝜋𝐷 (𝑥𝑖, 𝑦 𝑗 ) are evaluated and on the basis of this value, we classify each point to be

either defective (D) or non-defective (S) area. The R package mix tools [55] is adopted for fitting

these mixture regression functions. Figures 6.9 show the application of the procedure where it

succeeds on defect detection on less noisy MFL data.

Figure 6.9 Mixture regression succeeds in automatically detecting the defective areas based on less
noisy MFL scan.

However, the two-mixture regression fails when the data are noisy due to uncertainties. In

Figure 6.10, we show that, on conducting scan at lift off of 2mm on Sample 1, the mixture

regression fails to detect the defective areas. As a result, this algorithm is not fit to be used to

analyse data with noise. In Table 6.5 the comparison of the novel optimized TLBH algorithm with

that of mixture regression and thresholding based on wavelet based denoising on the MFL data

collected with various step size and lift off based uncertainties is presented.

115



Figure 6.10 Mixture regression fails to detect the defective area due to the increase in lift off of
2mm.

6.5.2 Element wise thresholding based on denoised MFL data

For comparison, denoising based on the waveslim package of R [56] is conducted next. Waveslim

denoise a raster scan image using discrete wavelet transform (DWT) method. On the denoised

version of the MFL image, then elementwise thresholding is applied. The naïve thresholding

estimator 𝜃𝑇 [𝑙] = 1𝑦̂𝑙 < 𝑐𝛼 is considered on the reconstructed image from the wavelet coefficients,

which classifies 𝑙𝑡ℎ scan point as defect if the MFL reading is below the 𝛼𝑡ℎ quantile of flux readings

in the grid. In Table 6.5 two values of 𝛼 at 25% and 5% are chosen. There is a trade-off between

coverage and overestimation. At lower values of 𝛼, both the coverage and overestimation are low.

However, at higher values of 𝛼 the coverage increases with the cost of increase in overestimation.

6.5.3 Mixture regression with aid of Transfer learning for dynamic defect tracking

The naïve (non-TL) mixture regression algorithm is improved by transfer learning [57] where

the defect locations and mixing proportions are leveraged as discussed in (29). The intensity matrix

from less noisy scan denoted as 𝐼1 is quite accurate with very low noise compared to the later noisy

ones. The objective is to update the sizes of the existing defects based on 𝐼1. Based on Inspection

𝐼1’s data, the location and proportion of the defective points sampled in the probe can be estimated.

In Figure 6.11 the schematic of the working principle of Transfer learning aided Mixture regression

(TLMR) is presented. At first the non-TL mixture regression is applied on the less noisy data. Scan

points with posterior probability greater than 0.8 which is a tuning parameter are considered as
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Figure 6.11 (a)Less noisy scan, (b)projection of the background information from less noisy to
noisy scans, (c) Regress the defect and non-defect values of noisy scans by less noisy ones.

defective area. The defective area is in deep blue (say) and the background is in light green as shown

in Figure 11 (a). The noisy scans are marked by dots to represent noise. In the later scans, the defect

can grow in size which is marked by light blue as neighboring area. As later scans are noisy, hence

the defective and non-defective areas from 𝐼1 are projected on the same locations on later scans so

as to obtain an estimate of the defect. Then as shown in step (c) of figure 6.11 , linear regression is

applied to regress the defective and non-defective areas of later scans by 𝐼1 and replace the values

of those areas in later scans by the predicted values from regression. This results in the denoise

of the defective and non-defective areas as shown in (c). Only the neighboring area is noisy. As

the amount of noisy area has diminished to a large extent, we developed mixture regression model

with two groups on the response values consisting of denoised areas by regression and the noisy

neighboring area. In Figure 6.12, mixture regression is implemented on one such noisy scenario

where non-TL mixture regression fails to detect the defective areas on scanning Sample 1 at a lift

off of 5mm (shown in Figure 6.12 (b)). On leveraging the defect location and mixing proportions

from the less noisy scans, mixture regression succeeds in detecting the defective areas as shown in

12 (c). It is to be noted in this scenario the defect size stays constant.

Another scenario where a defect (Sample 2) of dimension 2𝑐𝑚 × 1𝑐𝑚 (in blue in figure 6.13

(a)) has increased to Sample 3 of dimension (2𝑐𝑚 × 2𝑐𝑚) is shown in Figure 6.13. Sample 2 scan

is less noisy as it is scanned at lift off of 2 mm whereas Sample 3 is noisy being scanned at 7mm.

On less noisy scan, mixture regression is fitted and mixture regression is successful in tracking the

defective areas. Figure 6.13 (c) shows the sample 3 experimental data that is noisy where the defect

cannot be observed. 13(d) shows the defective area recognition on Sample 3 after fitting mixture

regression by transferring location from less noisy Sample 2. However, figure 6.13 (e) of the target
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Figure 6.12 (a) Raw flux readings of Sample 1 at lift off 5mm, (b) Estimated defective (in red) and
non-defective (in yellow) by mixture regression without TL, (c) Estimated scan points by TL aided
mixture regression. Estimation is done by thresholding the posterior probabilities at 0.8. In all the
sub figures the Y and X axes are normalized in [0,1].

flux image exhibits a bit erroneous defect estimation of 13 (d).

This happens due to the following reasons: (a) The neighboring area is a tuning parameter in our

model where the defect can grow in later scans. If in reality, the defect has grown by a significant

amount between two successive inspections then the algorithm may fail to track the defect. (b) The

neighboring area is noisy and there, while fitting the mixture model, we are performing pointwise

classification based on posterior probabilities. Since the neighboring area is noisy, there is a high

chance of misclassification. Moreover, this TL based mixture regression is an iterative algorithm

with high time consumption. In order to track defect growth all previous inspections are to be

considered. Thus, TLBH outperforms all the stated algorithms in defect tracking. In Table 6.4

we have exhibited various dynamic defect tracking test cases. Here different sample numbers

represent different growing defects across Inspections (defect dimensions discussed in Section 6.3).

Table 6.5 shows the comparison of the TLBH algorithm with wavelet based denoising and mixture

regression in terms of coverage and FDR. Our algorithm worked well uniformly across almost all

the Inspections with good coverage and moderately less FDR. Other proposed methods like Mixture

regression and wavelet-based thresholding worked well when the defect size gets large. However,

when the defect size is small with increase in uncertainties, SNR gets reduced. In these situations,

the competing algorithms either fair bad on coverage or have overestimated the defect size by a
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Figure 6.13 (a) MFL flux intensity of sample 2 at low lift off of 2mm, (b) mixture regression
succeeds in detecting the defective areas based on less noisy scan, (c) flux intensity of Sample 3 at
much higher lift off, (d) defective area tracked by TL aided MR, (e) Target flux image of Sample3.

large extent.

6.6 Application of TLBH in Eddy current based defect tracking

Eddy current (EC) testing is a popular NDE technique like MFL for inspection of metallic

conducting pipelines. In this section we have shown the applicability of our TLBH algorithm on

the experimentally generated EC data. The EC technique take into consideration electromagnetic

induction based on the inductive properties of the alternating current (AC) to detect anomaly [58,59].

On application of time varying magnetic field, eddy currents get generated in the conducting

specimen. Figure 6.15 shows the block diagram of the EC experimental setup along with the

inhouse EC sensor. The EC sensor consists of two coils (a) transmitter coil, (b) receiver coil to

sense the signal from MUT. The diameter of each coil is 6mm and each coil has 2 layers. Number
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Table 6.4 Different dynamic defect tracking test cases for comparison.

Inspection1 Inspection2 Inspection3 Inspection4 Inspection5
Case 1 Sample 1 at no lift

off
Sample 1 at lift
off of 2 mm

Sample 2 at lift off
of 5mm

Sample 3 at lift off
of 5mm

Sample 4 at lift
off of 7mm

Case 2 Sample 1 at no lift
off

Sample 2 at
5mm lift off

Sample 2 at 7mm
lift off

Sample 2 at 7mm
lift off and step
size of 2mm

-

Case 3 Sample 1 at no lift
off

Sample 1 at
1mm lift off

Sample 1 at 2mm
lift off

Sample 1 at 5mm
lift off

Sample 3 at lift
off of 5mm

case 4 Sample 1 at no lift
off

Sample 3 at
5mm lift off

Sample 3 at 7mm
lift off

Sample 4 at 2mm
lift off

Sample 4 at 5mm
lift off

Case 5 Sample 1 at no lift
off

Sample 4 at
2mm lift off

Sample 4 at 7mm
lift off

Sample 4 at
11mm lift off

-

Table 6.5 Detailed comparison of the three methods: TLBH, Mixture regression and wavelet-based
thresholding following the test cases of Table 6.4. 𝛼1, 𝛼2 are chosen as 0.05 and 0.25 quantile
respectively.

TLBH Mixture Reg Wavelet at 𝛼1 Wavelet at 𝛼2

Inspection Coverage Overestimation Coverage Overestimation Coverage Overestimation Coverage Overestimation
Case 1 1 1 0 1 0.67 1 10.7 1 56.89

2 0.88 1.12 0.007 11.55 0.84 10.8 1 57.47

3 0.99 2.5 0.635 0.69 1 5.32 1 30.21

4 0.92 0.56 0.27 1.08 0.37 0.6 0.97 3.87

5 0.93 0.39 0.3 0.004 0.85 0.4 0.99 4.71

Case 2 1 1 0 1 0.67 1 10.7 1 56.89

2 0.96 2.7 0.635 0.69 1 5.32 1 30.21

3 0.82 1.72 0.11 0.23 0.98 5.37 1 30.19

4 0.66 1.05 0.1 0.21 0.54 6.8 0.84 42.72

Case 3 1 1 0 1 0.67 1 10.7 1 56.89

2 0.99 0.02 0.01 9.77 0.87 10.9 1 56.32

3 0.87 1.12 0.007 11.55 0.844 10.8 1 57.47

4 0.53 4.25 0.0026 8.51 0.39 11.5 0.89 57.24

5 0.92 0.94 0.27 1.08 0.367 0.6 0.97 3.92

Case 4 1 1 0 1 0.67 1 10.7 1 56.89

2 0.92 0.94 0.27 1.08 0.367 0.6 0.97 3.87

3 0.64 0.35 0.25 1.7 0.325 0.664 0.97 3.92

4 0.98 0.01 0.56 0.007 0.844 0.312 1 4.71

5 0.96 0.24 0.43 0.006 0.87 0.28 1 4.73

Case 5 1 1 0 1 0.67 1 10.7 1 56.89

2 1 0.04 0.56 0.007 0.844 0.312 1 4.73

3 0.91 0.14 0.3 0.004 0.85 0.78 0.99 4.71

4 0.62 0.21 0.24 0.88 0.81 1.12 0.84 4.69
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of turns in each layer is 9, making a total of 18 turns in each coil. The spacing between each coil

is 0.2mm. A waveform generator is used to generate a low frequency (500kHz) sinusoidal signal

which gets feed to the transmitter coil. The presence of crack like defects redistributes the induced

current, which cause a change in the eddy current thereby altering the impedance of the receiver

coil. The reflected signal captured by the receiver coil is then passed to the lock in amplifier which

generates a signal proportional to difference between the reflected and a reference signal. The

signal is next passed to National Instruments data acquisition card and to computer for visualization

of the real and imaginary components of the impedance.

Figure 6.14 Schematic of the EC experimental setup.

Our algorithm is validated on various steel samples containing sub millimeter slits and rect-

angular notch defects. Uncertainty is introduced by scanning at various lift offs and step sizes as
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reported in Table 4. The defect dimensions are as follows: (a) Slit of dimension 1𝑐𝑚 × 2𝑚𝑚 ×

1𝑚𝑚(𝑙 × 𝑤 × ℎ), (b) Slit of dimension 1𝑐𝑚 × 3𝑚𝑚 × 2𝑚𝑚, (c) dimension of rectangular notch

defect 8𝑚𝑚 × 8𝑚𝑚 × 5𝑚𝑚, (d) which increases later to dimension of 2𝑐𝑚 × 1𝑐𝑚 × 5𝑚𝑚, (e) notch

becomes of dimension 2𝑐𝑚 ∗2𝑐𝑚 ∗5𝑚𝑚, (f) defect dimension 3𝑐𝑚×2.5𝑐𝑚×5𝑚𝑚 In our analysis,

we have used the amplitude of the impedance values where amplitude =
√︁
(real2 + imaginary2). In

figure 6.15, it is observed that there is signal uncertainty due to the variation in depths of the slit

like defects. In figure 6.15, slit of depth 1mm results in weak defect signal compared to a slit of

depth 2mm when scanned at a lift off of 3mm. The step size of each scan is 1mm. Due to agnostic

nature of the noise due to the various uncertainties, our algorithm needs to be robust for accurate

detection.

Figure 6.15 (a) Image plot of the amplitude of impedance readings for a slit of depth 1mm, (b)
Image plot of a slit of depth 2mm. Both the scans are done at lift of 3mm. (c) shows the image plot
of 2mm depth slit at lift off of 5mm.

Figure 6.16 shows the impedance signal images across three different lift off scenarios of sample

2 and sample 4. With the increase in lift off (10 mm) the acquired signal is corrupted with high

noise. Similar to Tables 6.1 and 6.2 , for the EC experiments we report the parameters of the

distributions in Table 6.6 using oracle information for different lift off scenarios and then have

evaluated the SNR. Table 6.6 shows there is a sharp decline in SNR with the increase in liftoffs.

In Table 6.6 we have exhibited various dynamic defect tracking test cases. Here different sample

numbers represent different growing defects across Inspections (defect dimensions discussed in

Section 6.3). Table 6.7 shows the comparison of the TLBH algorithm with wavelet based denoising

and mixture regression in terms of coverage and FDR. Our algorithm worked well uniformly across
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Table 6.6 Mean and standard deviations of the impedance readings of the non-defective and defective
regions are reported. Regions are detected based on readings with no lift off.

Sample
No

Lift off
based
Uncer-
tainty

Δ0 𝜎0 Δ1 𝜎1 SNR

Slit 1 No Lift off 0.012 0.00021 0.009 0.00023 8.92

3mm 0.016 0.00002 0.016 0.00009 0.92

Slit 2 No Lift off 0.0158 0.0002 0.0137 0.0001 10.8

3mm 0.016 0.0003 0.0154 0.0001 2.5

5mm 0.016 0 0.016 0.0001 0.51

Sample 1 No Lift off 0.01 2.00E-07 0.007 0.00154 0.17

3mm 0.02 6.00E-06 0.016 0.00005 0.34

Sample 2 No Lift off 0.021 0.001811 0.0066 0.000889 7.1

5mm 0.016 0.00004 0.0159 0.000049 1.72

10mm 0.015 0.000008 0.0152 0.000009 1.47

Sample 3 No Lift off 0.017 0.00018 0.014 -0.00256 1

2mm 0.016 0.00011 0.01645 0.00038 0.96

5mm 0.015 0.00004 0.01566 0.00022 0.98

10mm 0.015 0.00001 0.01511 0.00003 0.96

Sample 4 No Lift off 0.016 0.002233 0.00687 0.000397 4.2

2mm 0.016 0.000295 0.01642 0.000136 1.7

5mm 0.015 0.000135 0.0159 0.000073 2.75

10mm 0.015 0.000014 0.01509 0.000012 2.86
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Figure 6.16 Image plot of the impedance readings from three different lift off scenarios of Sample
2 and 4. Here the scanning step size is 2mm.

almost all the Inspections with good coverage and moderately less FDR. Other proposed methods

like Mixture regression and wavelet-based thresholding worked well when the defect size gets large.

However, when the defect size is small with increase in uncertainties, SNR gets reduced. In these

situations, the competing algorithms either fair bad on coverage or have overestimated the defect

size by a large extent.

Table 6.7 Dynamic test cases for EC showing the coverage and Overestimation by TLBH method.

Inspection1 Inspection2 Inspection3 Inspection4
Case 1 Slit 1 at no lift off Slit 1 at 3mm lift off Slit 2 at lift off 3mm Slit 2 at lift off 5mm

Coverage Over Coverage Over Coverage Over Coverage Over

1 0 0.86 0.24 0.96 0.04 0.81 0.46

Case 2 Sample 1 at no lift off Sample 2 at 5mm lift
off

Sample 3 at 5mm lift
off

Sample 4 at 10 mm
lift off

Coverage Over Coverage Over Coverage Over Coverage Over

1 0 0.92 0.14 0.86 0.42 0.9 0.56

In Table 6.7, dynamic defect tracking by TLBH method is shown on two cases. In case 1,

the baseline Inspection 1 is done for Slit 1 at no lift off. As observed in Table 6.6, the SNR of
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the baseline inspection is high. This also gets reflected in Table 6 as coverage for the baseline

inspection is 1 with no overestimation. On performing Inspection 2 on Slit 1 at 3mm lift off results

in significant drop in SNR. Hence there is a need to transfer the information from Inspection 1.

Then TLBH is applied on modified Inspection 2 data. This results in better coverage and less

overestimation. Next, for inspection 3, Slit 2 is scanned at same lift off of 3mm. The depth of Slit

is 2mm and is 1mm more than Slit 1. Performing TLBH after transferring baseline information

results in better coverage and estimation than Inspection 2 which is also justified by looking at SNR

in Table 4. The coverage and overestimation from Inspection 4 also has high resemblance with the

drop in SNR. Overall, we have achieved more than 80% coverage and less than half of exceedance

even for very thin submillimeter slit like defects under uncertainties. In case2, we have shown

dynamic defect detection in EC from notch defects. There also we have achieved satisfied coverage

and FDR rates.

6.7 Conclusion

A robust dynamic defect detection and tracking framework under various uncertainties in NDE

data is developed. This framework offers a fast, accurate analysis and can be used in periodic

inspection of metallic pipelines and other inspections. Cheap, flexible and miniaturized MFL and

EC based NDE sensors are developed for collection of the experimental data. Several dynamic

monitoring algorithms are developed that are agnostic of the noise type in the experimental scans

and can even perform detection where the underlying noise producing uncertainties vary with

time. To understand the noise corruptions and reduction in SNR across various experimental

regimes, a mathematical model based on bivariate mixture modelling is developed and hypothesis

testing is conducted based on Neyman-Pearson lemma. This mathematical framework shows the

inefficiency of pointwise hypothesis testing to operate in noisy regimes and exhibits the tradeoff

between FDR and power analysis. In order to properly recognize the defect growth during later

noisy periodic scans a novel transfer learning based binned hypothesis testing (TLBH) is developed

and validated against both MFL and EC data. The choice of optimal binning parameter is done by

transfer learning where the location and size of the defects from detailed baseline inspections are
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transferred. The degradations in SNR and the defect sizes of later noisy scans are then estimated

and are compared with other developed algorithms such as mixture regression (Non-TL), TL aided

mixture regression and wavelet based denoising. The results show that TLBH algorithm is very

effective in dynamic detection as it results in high coverage (power) and low over estimation (FDR)

across all the experimental scenarios.
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CHAPTER 7

MISCELLANEOUS WORKS: APPLICATION OF DIFFERENT
MACHINE LEARNING MODELS FOR NDE BASED MATERIAL

CHARACTERIZATION AND DEFECT CLASSIFICATION

7.1 NDE based cost-effective detection of obtrusive and coincident defects in pipelines under
uncertainties

7.1.1 Introduction

In this subsection of chapter 7, a novel defect detection algorithm based on nearest neighbor

based divergence measure in the wavelet transformed domain has been proposed. This algorithm

facilitates accurate detection and classification of harmful defects from benign minor scratches

under noisy regimes. Defects of different shapes and sizes are considered in this work, particularly

we are interested in studying the contrasts between the behaviors of nondestructive evaluation

(NDE) metrics from large defects and minor scratches. Large defects may lead to mayhem if not

detected in time. On the other hand, the minor scratches and cavities within the pipeline that

are harmless at that moment, and just increase maintenance costs when automatically detected

and subjected for further extensive scrutiny. Currently, pipeline operators use various inspection

methods and analytical programs costing huge sums of public and private funds to prevent, detect,

mitigate and inspect for threats. In this context, it will be very helpful if harmless minor defects in

the pipelines are actually diagnosed as benign in the very first step and not passed on for expensive

higher-level introspections. Another important attribute here would be studying the interaction of

multiple defects that might be in close proximity. It might happen that several minor cavities each

harmless on its own could affect NDE outcomes much severely than very large defects. Hence,

we study scenarios where two or more threats can occur coincidentally and independently of each

other. These “coincident threats” might result in a likelihood of failure greater than that due to either

threat individually (interacting) or merely the superposition of the threats (co-existing). Interactive

threats are the merge of two or more defects in a pipe segment, the result of which is more damaging

than either of the individual threat itself.

Here we have constructed defects of seven categories, (1) cuboids of varied lengths, breadth and
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height (2) cylinders of varied radii and heights (3) spheres of different radii (4) coincident cube and

cylinder as multiple defects (5) coincident cube and sphere (6) coincident sphere and cylinder (7)

coincident cube, cylinder and sphere together as multiple defects. A finite element methods (FEM)

model, which is implemented on ANSYS developed in our group is adopted to simulate the MFL

inspection and generate defects signals. 2D FEM is not sufficient here because the resulting MFL

signals are single channel data, whereas the actual signals are multi-channel. For the same MFL

geometry and materials, a 3D modelling technique was utilized for more accurate representation

of the field distributions in the magnetic circuit due to considerable contribution of the end effect,

which is neglected in 2D modelling technique(106). Accurate 3D defects are modeled and resulting

MFL signal at the test sample surface is recorded and processed as discussed in previous chapters.

In our MFL FEM simulation, existence of defects will increase the magnetic resistance and

distort the magnetic field. The bent magnetic flux, which leaks out of the material surface will

form a magnetic leakage field that are thereby measured by the magnetic sensitive sensors. Here,

we have considered the magnetic flux in z direction only and stored the magnetic field intensities

in the form of images (matrices) so that we can apply wavelet basis as a weighted sum of variations

of a much simpler signal. It is shown that the values we obtained from the basis function reveal

more features than that of the original MFL signal. Applied adaptive thresholding on the obtained

wavelet coefficients is applied in order to denoise them. It is observed that for those defects signals,

which exceed our predefined threshold, the variance for them exceeds that of the non-defects and

hence a statistical analysis distinguishing the large fissures from benign ones can be done with high

accuracy. After applying thresholding on the wavelet coefficients, we apply k-nearest neighbors

(K-NN) classifier to distinguish between the non-defects and defects. We observed that defects

have larger distance than the maximum of the distance between the non-defects, which serves as a

decision criterion for effective classification of any incoming new unknown defect data.

7.1.2 Data Generation

The data used in this section is generated by simulation means using Ansys Maxwell. A

3D MFL model has been developed similar to that used in Chapter 5. Permanent magnets are
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the excitation source of the system, as well as the load, and the characteristics of magnets are

defined in various material properties. When using ANSYS to treat with permanent magnets,

they are translated automatically into equivalent current and apply on every element and node of

the model. Corresponding boundary conditions in this model satisfy the following relationship:

(a) magnetic scalar potentials (MAG) were used to specify flux-normal (homogeneous Neumann

boundary condition), flux-parallel (Dirichlet boundary condition), and far-field zero with MAG set

to be 0. (b) The outside air model adopts INFIN47 far-field elements, so they are required to flag

the surface of an infinite element, which is pointing towards the open domain.

Here we are observing the perturbation of magnetic flux density vector in z direction, i.e. 𝐵𝑧

in the presence of multiple coincident defects at the surface of the pipeline under noisy conditions

with different uncertainties. To categorize the defects as non-defects and defects, we investigated

multiple defects of various shapes and sizing ranges as shown in Table 7.1.

Table 7.1 Range of defects in training data (units: mm).

Shape length width height radius
Cuboidal 0.05-20.0 0.05-20.0 0.05 – 8.0
Cylindrical 0.05 – 8.0 .05 to 7.0
Spherical .05 to 8.0

Figure 7.1 shows the simulation results illustrating the different nature of the perturbations of

magnetic field density in presence of non-obtrusive defects as well as large defects. From figure

7.1, it is clear that in the presence of large defects the perturbation in the magnetic field is larger.

However, it is challenging to categorize magnetic field data from unknown pipe sectors as defects

or non-defects with higher precision. We present a detection algorithm based on wavelets analysis

in the following sub section.

7.1.3 Detection algorithm: Working Principle & Details

A nearest neighbor (NN) based binary classifier (144; 145) to detect between obtrusive and

non-obtrusive defects is developed in this paper. The NN classified is constructed on coefficients

from multi-resolution wavelet basis (146; 147). Treating the magnetic field intensity from each

pipe sector as a bivariate function the corresponding wavelet representation is first computed.
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Figure 7.1 From top-left, (a) shows the 3D fluctuation of the magnetic field intensity along the z-axis
in the presence of a single obtrusive defect; (b) on its left shows the 2D fluctuation of the same
magnetic field as we move spatially along the x- and y-axis. This bivariate representation of the
magnetic field is subjected to wavelet based detection analysis; (c) and (d) respectively demonstrate
the 3D and 2D perturbation of the magnetic field when there are two large interacting defects in the
zone; whereas (e) and (f) in the bottom row illustrate the magnetic field where there are no large
defects but a few minor cavities or scratches.

Thereafter, the wavelet coefficients are adaptively estimated with high precision. Next, the distance

between the wavelet coefficients for the defects and the non-defects are computed and a cut-

off distance for detecting the defects from the non-defects is tabulated. Wavelets being both

frequency as well as spatially localized are better equipped to model discontinuities in the magnetic

fields due to emergence of spikes in zones with defects, cavities and miscellaneous irregularities

[14]. Figure 7.2 shows as the NDE recordings are in advertently affected with system noises and

measurement aberrations, wavelet analysis helps in de-noising these readings.
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Figure 7.2 Left shows the heat map of the flux distribution of the noiseless MFL data containing
a defect, middle figure shows the data infected with noise, right figure shows the denoised data by
wavelet analysis by treethresh algorithm of Evres & Heaton.

Figure 7.3 (a) Schematic showing wavelet basis of different levels, (b) The basis used here is
"DaubLeAsymm", Daubechies’ least-asymmetric wavelets.

7.1.3.1 Feature Extraction and Heuristic Working Principle.

We first compute two-dimensional Discrete Wavelet Transform (DWT) based on Mallat’s pyra-

midal algorithm (147). Let 𝐼𝑖 be the true signal intensity from the 𝑖𝑡ℎ experiment involving pipe

sectors. It can be well-approximated by wavelet coefficient up-to level L.

𝐼𝑖 ≈
𝐿∑︁
𝑙=1

𝑛𝑙∑︁
𝑗=1
𝑐𝑙𝑖 𝑗Ψ

𝑙
𝑗 (7.1)

where, Ψ𝑙
𝑗
= 1, · · · , 𝑛𝑙 is the two dimensional wavelet basis of level 𝑙 and 𝑐𝑙

𝑖 𝑗
is the correspond-

ing coefficient based on the expansion 𝐼𝑖.Let 𝑐𝑙
𝑖
= 𝑐𝑙

𝑖 𝑗
: 𝑗 = 1, · · · , 𝑛𝑙 represent the vector of the

coefficients at level l for the 𝑖𝑡ℎ experiment. Let DC be the set of all experiments where there

are only minor cavities but no harmful defects and D be the set of all experiment where there are

harmful large effects.

The heuristic working principle depends on the fact that the higher resolution wavelet coefficients
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containing lower energy will be relatively sparse and substantially different between members in D

and 𝐷𝐶 . Unlike members in 𝐷𝐶 , multiple sharp peaks are present in the magnetic intensity field

sampled in experiments with large defects and those will be captured in the finer resolution basis

coefficients. This separation in the higher resolution coefficients is the heuristic rationale for our

nearest neighbor algorithm to work successfully. For each i, define the distance for the nearest

neighbor in the non-defective population 𝐷𝐶 by:

ℎ𝑙𝑖 = min 𝑗≠𝑖, 𝑗∈𝐷𝐶distance(𝑐𝑙𝑖 , 𝑐𝑙𝑗 ) (7.2)

where, the distance operator calculates the Euclidean distance between the basis vectors. For an

intensity field sampled from an unknown experiment k, we compute ℎ𝑖 based on its coefficients and

the coefficient in 𝐷𝐶 . For any fixed level l, we select a cut-off value T. If ℎ𝑘 < 𝑇 , then we classify

that the unknown 𝑘 𝑡ℎ experiment is from a pipe sector that does not contain any harmful defects;

otherwise, we classify that the pipe sector has detrimental defects and needs to be immediately

taken care of. In the following section we will describe our choice of T.

7.1.3.2 Adaptive Estimation of the distance measures

In realistic NDE settings, we do not actually observe the true signal intensity 𝐼𝑖 but observe a

noise contaminated version of 𝐼𝑖, which we represent by 𝐼𝑖 . Thus, we do not observe the basis

coefficient 𝑐𝑙
𝑖
directly and need to estimate them by 𝑐𝑙

𝑖
. It is shown that direct usage of DWT usually

results in wrong estimate, and as such it has been established in (146) that using a truncated version

of the DWT outputs 𝑐𝑙
𝑖 𝑗

𝑏̂𝑙𝑖 𝑗 = sign(𝑐𝑙𝑖 𝑗 ) ( |𝑐𝑙𝑖 𝑗 | − 𝜎̂𝑙𝑖 ×
√︁

2 log 𝑛𝑙); 𝑗 = 1, · · · , 𝑛𝑙 (7.3)

where, 𝜎̂𝑙
𝑖

is the standard deviation of wavelet coefficients. Usually, the wavelet coefficients

of signals will be sparser at the fine resolution scales, and denser at the coarser scales. Thus,

efficient estimation methods need to moderate the truncation magnitude level by level. Also,

instead of having a fixed threshold size for truncation as shown in equation 7.1, threshold sizes

adaptively chosen based on the signal peculiarities have been witnessed to produce better estimation

performance. As such (148; 149; 150) establish that adaptive thresholds far outperform the
√︁

2 log 𝑛𝑙
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threshold size described in equation 7.1. Here, we use the adaptive estimation methodology of (148)

that can efficiently handle the cases where the underlying magnetic intensity is not homogeneous

throughout but instead has distinct regions with different strength characteristics. For estimation

of the wavelet coefficients, we first identify these different regions and perform separate estimation

in each by adaptively adjusting the threshold sizes according to the local signal strength. These

creates efficient locally adaptive estimates of 𝑐𝑙
𝑖
. We next compute nearest neighbor estimates 𝑐𝑙

𝑖

by applying a scalable and fast algorithm on the adaptive coefficient estimates (151; 152; 150) and

obtain near neighbor distance estimates within a specified error bound. Based on these distances,

we derive precise estimates ℎ̂𝑙
𝑖

of the distances in equation 7.2.Figure 7.4 shows the KNN based

clustering schematic where the red dots are the representation of coefficients of Non-defective

samples whereas the blue dots represent that of defective ones.

Figure 7.4 Schematic shows the clustering working principle where we calculate the nearest neigh-
bor distance for each point in non-defective set (red) in left & calculate the nearest non-defective
neighbor distance for each point in defective set in right.

7.1.3.3 Results & Discussions

Depending on the choice of the threshold, we get different success rates in our two-fold ob-

jectives: (a) minimize the classification of harmless defects as obstructive ones, and (b) maximize

the correct classification proportion of real obstructive defects. The latter dealing with correct

detection of defects is called sensitivity while the former leads to false alarms for detection by

wrongly classifying harmless defects and thus increasing maintenance costs. Using higher values

of the cut-off T defined above will give us more sensitivity but also increase the proportion of false

alarms.
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In this case study, we test our proposed detection methodology on the dataset of section II.

We classify any experiment with at least a defect of length greater than 5 mm as obtrusive. There

are 36 obtrusive and 69 non-obstructive defects associated magnetic intensity fields. We consider

distances based on wavelets of level 6 only, i.e., 𝑙 = 6. Based on the grid size used in the data

collection step of this case study, this was the finest resolution that was obtainable. Coarser

resolutions were substantially denser.

Figure 7.5 Wavelet coefficients at level 6 in the reduced three-dimensional space.

In Figure 7.5, in red we have obtrusive defects and in black non-obtrusive defects. Figure 7.5

shows that there is visible separation in the wavelet coefficients between the obtrusive and non-

obtrusive defects even when the high-dimensional wavelets are reduced to the perceptible three

dimensions. Figure 7.6 shows that there is also palpable variation in nearest neighbor distances

between the two sets with obtrusive having greater distances from the non-obtrusives in comparison

to the distances between non-obtrusive.

Here we simultaneously report the percentage of false alarms in incorrect classification of non-

obtrusive defects as well as the percentage of correct classification of obtrusive defects (sensitivity).
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Figure 7.6 Histogram of the Euclidean distance of the wavelet coefficients of a bivariate magnetic
flux from the nearest non-obtrusive flux field. In blue, we have distance of obtrusive fluxes and in
red we have distances among non-obtrusive fluxes.

Table 7.2 Report of the working characteristics of the detection method.

False Alarm: Train 5.8 10.1 18.8 29 34.8 39.1

False Alarm: Test 40 44.8 46.7 47.6 48.6 48.6

Sensitivity 88.9 91.7 91.7 94.4 97.2 100

Table 7.2 provides us with the percentage of correct detection of large defects when we apply

our methodology to the aforementioned dataset. We consider 174 samples with 50% of the data

used for training and the rest for testing. If we allow the false alarm rate to be around 40% then we

get near perfect detection of obtrusive defects in the training sample. However, the corresponding

testing false alarm rate needs to be slightly increased to 48% for getting perfect detection in this

study. Figure 7.6 shows the receiver operating characteristic (ROC) curve of Table 7.2. A sharp

increase in power is witnessed as the false alarm test rate is allowed to increase above 35%. As we

need to prevent the misclassification of obstructive defects, which may lead to mayhem, we suggest

having a false alarm rate of 50%, which still benefits us in saving half the costs over competing

vanilla methods that does not differentiate between minor and harmful defects.

In Figure 7.7, the ROC curve represents the increase in the proportion of detection of obtrusive
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Figure 7.7 Plot of Sensitivity vs false alarm.

defects (sensitivity) as the proportion of false alarms for incorrect classification of non-obtrusive

magnetic intensity fields are allowed to increase. These percentages are reported in Table ??. In red,

we have the test errors and the dotted black line represents the corresponding training sensitivities.

7.1.4 Conclusion

We present a wavelet based nearest neighbor algorithm that can detect large harmful defects in

pipelines with very high accuracy. Our proposed methodology can also simultaneously distinguish

minor harmless defects and cavities. Our proposed method will save expenditure over competing

NDE methods that can-not distinguish between defect types and would recommend these minor

defects for further scrutiny along with the large defects. Portions of this section appeared in the

publication (28)

7.2 Accurate Material Characterization of Wideband RF Signals via Registration based
Curve Fitting Model using Microstrip Transmission Line

7.2.1 Introduction

Solving inverse problems is commonplace in the field of Nondestructive Evaluation (NDE).Recent

advancements in machine learning (ML) have provided us with a large bag of analytical tools for
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solving inverse problems (29; 12; 51). However, most potent ML models require a lot of data for

training and estimating large number of model parameters. The problem with application of such

methods in NDE is the dearth in the volume of real experimental data as collection of experimental

data is both costly and time consuming (99). This is particularly true for the NDE problem of

radio frequency (RF) based material characterization as acquiring the data from fabricated devices

with controlled substrate properties and shape is very difficult and laborious. To mitigate these

challenges faced by ML methods in RF material characterization we consider a registration based

data augmentation framework by which data driven predictive models can leverage the informa-

tion stored in easy to generate large simulated data-sets and increase their predictive efficacy in

experimental data.

We consider the NDE problem of Radio frequency (RF) based material characterization where

the goal is to estimate the electrical parameters such as permittivity, permeability and respective

loss tangents, with an input of physical parameters of material and RF structure, and its frequency

response. Conventional applications of RF based material characterization make use of idealized

frameworks where there exist electromagnetic (EM) physics based theoretical solutions. Microstrip

line and coplanar strip lines are two examples, which have the EM physics-based mathematics de-

fined for standard geometries and we can back-calculate the electrical properties based on those

theoretical relations (153; 154). This work is an attempt to increase the scope of RF methods be-

yond such idealized set-ups that need exact mathematical solutions. The goal is to use data-driven

machine learning models to characterize a material with any complex shape (not limited to single

layer planar sheet) and complex RF structure (not limited to transmission lines). For viability,

we test the efficacy of the proposed approach against widely studied microstrip transmission line

methods. We list our contributions below:

1. We generate vast amount of simulated data through finite element methods. In this simu-

lation data, the electrical parameters are precisely defined with no noise. We use various

data-driven ML models to train on this simulated data and report their performance. Several

recent works (155; 156; 157; 158) have considered material characterization using machine
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learning in micro strip transmission lines and microwave antennas. But, in the existing liter-

ature, the sources of the generated data set are similar to the source of the simulation means.

We, on the other hand focus on applying these models trained on large simulated datasets to

noisy experimental datasets. We consider observing the frequency response across different

physical parameters of material and RF structure. The objective is to estimate the electrical

parameters of the unknown material substrates by measuring the frequency responses using

Vector Network Analyzer (VNA). For microstrip lines embedded on unknown substrate we

want to estimate the electrical parameters of the substrate from the frequency response.

2. We demonstrate that several machine learning model produces good fit on the simulated data

as these data sets are large and noiseless. However, the coefficients learned by the model from

the trained simulated data can not be directly used to explain the variation in the electrical

parameter in experimental data. As the data generation methods are different, for materials

with similar electrical characteristics there can be severe misalignment between the simu-

lated frequency responses and the observed experimental responses (see Figure 7.20). This

highly limits the usability of simulated data to predict responses in the experimental data.

To mitigate this challenge, we propose to use a small fraction of the experimental data for

calibrating ML models trained on simulated data. Using very few experimental samples as

calibration set, we employ a very simple registration technique based on intercept correction.

Compared to ML models trained on simulated data only, the proposed registration method

greatly improves the predictive efficacy of the ML algorithms on the experimental data. A

great advantage of using this simple registration scheme is that we need very few experimen-

tal samples and so the proposed approach can be employed in data scare experimental regimes.

3. The observed data are measured reflection and transmission coefficients. They are smooth

functions of frequencies. We first arranged our collected data in a structured format such

that we have scalar responses along with both scalar and functional covariates. The response

which is the permittivity is scalar, the covariates such as height of the substrate, length and

width of the microstrip line are scalars whereas the transmission and reflection coefficients
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are smooth functions of the frequencies. The simulated and experimental data can be based

on different set of frequencies. To address this issue, we first fit a curve based on local linear

regression to each of the observed functional S parameters. Based on estimates from the

fitted curves we construct a data set with S parameters from a common set of frequencies.

See Figure 7.13 and its associated text in Subsection 7.2.4.

4. As we have very few experimental samples, the experimental data has more features in

columns (which are the observed 𝑆 parameters at different frequency values) than the number

of records in rows. This happens as the number of frequencies in the parametric sweeps

is much larger than the different number of substrates that we can experiment in the lab.

For this purpose, we consider dimensionality reduction techniques on the observed feature

space of the 𝑆 parameters. We consider here dominant principal component (PC) direction

based reduction technique. Different regression models on these PCs are then applied on

the simulated and experimental data sets. Both parametric and non-parametric regression

methods such as random forest regression are implemented. For the simulated data-sets,

complex higher dimensional model are also implemented and their performance is compared

to the PCs based regression methods. For experimental data sets, due to data scarcity, only

PC based models are implemented. Two registration framework called intercept calibration

and registration by data augmentation is developed in Sec. IV to calibrate the PCs based

regression models on the experimental data. We show how knowledge of a tiny portion of

experimental data helps in transferring a significant amount of information present in the

simulation data set for predictive analysis of the experimental data. Figure 7.8 shows the

data analysis framework used in this study. We found that the RF regression based model

on the PCs produces the least test error after calibration and yields considerable benefits for

wideband RF material characterization on the experimental data.

This work is organized as follows: In section 7.2.2 we discussed the simulation and experimental

data generation framework. In Section 7.2.4, we describe the data structure after curve smoothing,

different feature selection models conducted in this study. It also contains the study of different

139



Figure 7.8 Schematic of Data Analysis framework conducted in this study.

regression methods on the simulated data set. Section 7.2.5 shows the impact of registration on

better prediction of the permeability in experimental data.

7.2.2 Micro strip Transmission line Simulation & Experimental Setup

Standard microstrip transmission lines with length 𝐿 and width𝑊 are simulated on RF substrates

having dielectric permittivity 𝜖𝑟 , magnetic permeability 𝜇𝑟 , dielectric loss tan 𝛿𝑒 and magnetic loss

tan 𝛿𝑢. Keysight’s Advanced Design System (ADS) is used to compute the frequency response

of the microstrip line from 100𝑀𝐻𝑧 to 12𝐺𝐻𝑧 and the range of all the parameters is shown in

table 7.3.

Table 7.3 Range of the parameters used to simulate different combinations for training data set.
Parameter Name (unit) Minimum Step Size Maximum

L (mm) 1 5 100
W (mm) 0.1 0.5 10
𝜖𝑟 1.1 0.5 10.1

H (mm) 1.27 - -
𝜇𝑟 1 - -

tan 𝛿𝑒 0.01 - -
tan 𝛿𝑢 0.01 - -

The setup done in ADS for microstrip line simulation is straight forward, it requires a definition
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of MSUB (microstrip substrate), MLIN (microstrip line), S parameters (S-parameter simulator)

and two 50-ohm ports as shown in figure 7.10(a). The microstrip substrate requires details on

permittivity, permeability, dielectric loss tangent, substrate and conductor thickness and metal

conductivity. The schematic of the synthetic microstrip lines with dimensions is illustrated in

figure 7.9 The microstrip line frequency response simulation gets completed in 0.45 seconds for a

single combination of parameters. Figure 7.10(b) shows the frequency response on a Roger4350

board.

Figure 7.9 (a) Schematic of synthetic micro strip line, (b) dimensionsal representation of the
microstrip lines.

For the experimental test data, 11 different Rogers boards such as Rogers 3039730, Rogers

3107150, Rogers 3039851, Rogers 3008049, Rogers 3032153, Rogers 3028557, Rogers 3068926,

Rogers 2007685, Rogers 3040756, Rogers 3029210, Rogers 3033859 are considered. On each

substrate, three different transmission lines of varying width and lengths such as 2mm width 40

mm length, 5 mm width 30 mm length, 4 mm width 50 mm length are fabricated. The dimensions

of 33 different microstrip lines fabricated on 11 different Rogers boards are shown in figure 7.11.

Reflection and transmission coefficients (S parameters) are measured for each transmission line by
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Figure 7.10 (a) ADS setup for microstrip line, (b) Simulated frequency response on RO4350 board.

connecting to E8362B PNA Series Vector Network Analyzer manufactured by Agilent Technologies

in a broad frequency range of 100 MHz to 12 GHz. The electrical properties and dimensions of

each substrate considered for experiments are reported in table 7.2.

Table 7.4 Different substrates considered in experiments DT: dielectric thickness and CT: copper
thickness, DK: dielectric constant.

Substrate Dimensions (Units DT: mm, CT:um)
1 Rogers 3039730( R03010 DK =10.2) DT=1.27mm CT=17.5um
2 Rogers 3107150 (RT/ droid 5870 DK =2.33) DT=1.57mm CT=17.5um
3 Rogers 3039851 (R03006 DK=6.15) DT=1.27mm CT=17.5um
4 Rogers 3008049 (R04 350B DK =3.33) DT= 0.1mm CT=17.5um
5 Rogers 3032153(RT/droid 6010LM(DK=10.2) DT=01.27mm CT=35um
6 Rogers 3028557 (RT/duroid 5880 DK=2.2) DT =1.57mm CT=17.5um
7 Rogers 3068926 (TMM10 DK=9.20) DT=1.27mm CT=35um
8 Rogers 2007685 (R04350B DK=3.48) DT=1.52mm CT=17.5um
9 Rogers 3040756 (RT/duroid 6006 DK=6.15) DT=1.27mm CT=35um
10 Rogers 3029210( RT/duroid 6010LM DK=10.2) DT=1.27mm CT=17.5um
11 Rogers 3033859 (R04835 DK=3.48) DT=1.52mm CT=17.5um
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Figure 7.11 (a) 33 microstrip lines fabricated on 11 different substrates for experimental test set,
(b) dimensions of the microstrip lines.

7.2.3 Material Characterization using Physics-based Model

The conventional Physics based model takes into consideration mathematical equations for

electrical parameter retrieval of substrate from the measured S parameters. This exact mathematical

formulae based parameter estimation method is discussed in the section which requires the S-

parameter, length (L), width (W) of transmission line and height (H) of substrate. Figure 7.12

shows the E and H field distribution of the microstrip line (153). The electromagnetic field in

a microstrip line are not only passing through the substrate, but it has an effective permittivity

𝜖eff and permeability 𝜇eff (154). The propagation constant for the microstrip line is as shown in
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equation 7.9.

Figure 7.12 E and H-field distribution of microstrip line.

𝛾 = 𝑗 𝛽 = 𝑗 𝑘0(𝜖eff𝜇eff)1/2, where, 𝑘0 = 2𝜋𝑐−1 𝑓 . (7.4)

The phase constant can be estimated from the measured frequency response by converting the

measured S-parameters to ABCD-parameters as done in equation 7.5:
𝑆11 𝑆12

𝑆21 𝑆22


−→

S to ABCD


cos 𝛽𝑙 𝑗 𝑍0 sin 𝛽𝑙

𝑗𝑌0 sin 𝛽𝑙 cos 𝛽𝑙

 ,
𝛽 = 𝐿−1 arccos

(
(1 + 𝑆11) (1 − 𝑆22) + (𝑆12𝑆21)

)
2𝑆21

−1 (7.5)

The characteristic impedance 𝑍0 of the microstrip transmission line is given by equation (7.3):

𝑍0 = {(1 + 𝑆11) (1 − 𝑆22) + 𝑆12𝑆21} · (2𝑆21 sin 𝛽𝑙)−1 (7.6)

The relation of characteristic impedance 𝑍0 with effective permittivity 𝜖eff and permeability

𝜇eff are shown for below two conditions: (a) when𝑊/𝐻 < 1:

𝑍0 = (𝜇0𝜖0
−1𝜇eff𝜖eff

−1)1/2(2𝜋)−1 ln(8𝐻𝑊−1 +𝑊 (4𝐻)−1)

2𝜖eff = 𝜖𝑟 + 1 + (𝜖𝑟 − 1) [(1 + 12𝐻/𝑊)1/2 + 0.04(1 −𝑊/𝐻)2]

2𝜇eff =
1
𝜇𝑟

+ 1 +
(

1
𝜇𝑟

− 1
)
[(1 + 12𝐻/𝑊)1/2 + 0.04(1 −𝑊/𝐻)2]−1 (7.7)

(b) when𝑊/𝐻 > 1, we have:

𝑍0 =

√︁
𝜇0𝜖0−1𝜇eff𝜖eff−1

1.393 +𝑊 ∗ 𝐻−1 + 2 ∗ 3−1 ln(𝑊 ∗ 𝐻−1 + 1.444)

2𝜖eff = (𝜖𝑟 + 1) + (𝜖𝑟 − 1) (1 + 12𝐻/𝑊)1/2

2𝜇eff = 𝜇𝑟−1 + 1 + (𝜇𝑟−1 − 1) (1 + 12𝐻/𝑊)−1/2. (7.8)
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Finally by rearranging the above equations (7.7), (7.8) we get the values of relative permeability

and relative permittivity of substrate as: when𝑊 ∗ 𝐻−1 < 1:

𝜖𝑟 =
(1 + 12𝐻/𝑊)−1/2 + 0.04(1 −𝑊/𝐻)2 − 1 + 2𝜖eff

(1 + 12𝐻/𝑊)−1/2 + 0.04(1 −𝑊/𝐻)2 + 1
,

𝜇𝑟 =
(1 + 12𝐻/𝑊)−1/2 + 0.04(1 −𝑊/𝐻)2 + 1

(1 + 12𝐻/𝑊)−1/2 + 0.04(1 −𝑊/𝐻)2 − 1 + 2/𝜇𝑒 𝑓 𝑓
and, when𝑊/𝐻−1 > 1, we have:

𝜖𝑟 =
(1 + 12𝐻/𝑊)−1/2 − 1 + 2𝜖eff

(1 + 12𝐻/𝑊)−1/2 + 1

𝜇𝑟 =
(1 + 12𝐻/𝑊)−1/2 + 1

(1 + 12𝐻/𝑊)−1/2 − 1 + 2/𝜇eff
.

7.2.4 Data-driven Predictive Models

The objective of this work is to predict the dielectric constants of the experimental substrates

where the covariates are (a) the 𝑆 parameters which are smooth function of frequencies (b) height

and width of the lines. The machine learning model is trained on the simulation data. Functional

data analysis (FDA) is one of the fastest growing areas in the field of data science where the

observations are functions defined on some continuous domain and the observed data are a sample

of functions taken from discrete grid of population size (159).In this work we have considered the

real (Re) of the reflection coefficients 𝑅𝑒(𝑆11), imaginary (Im) of the reflection coefficients 𝐼𝑚(𝑆11)

and the magnitude of the reflection coefficient in db scale (dB) as covariates which are a function

of frequencies. Similarly, the same components are selected from the transmission coefficients 𝑆21.

Since it is a symmetric framework hence 𝑆11 = 𝑆22 and 𝑆21 = 𝑆12. Hence we have selected the 𝑆11

and 𝑆21 parameters. The other scalar covariates serving as metadata are the height of substrate (H),

width (W), and length (L) of the transmission lines respectively. The dependent variable or the

response is the dielectric constants which are scalars and needs to be predicted. Hence this forms a

functional regression (FR) which consists of scalar responses with functional and scalar covariates

(160).

Curve Fitting using Loess. The 𝑆 parameters collected from simulations and experiments

can be different. As we are considering the parameters as a function of frequencies hence the
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frequencies in both the training and test set have to be the same. For that, the simulated components

of 𝑆 parameters are smoothed first by locally estimated scatterplot smoothing (loess) (161; 162).

Local polynomial regression is fitted locally on the covariates (real, imaginary, and magnitude

of the S parameters) against the frequencies. Then this fit is applied on the test frequency set

to make the training simulated data to be in the same granularity as the experimental test data.

Figure 7.13 shows one such covariate, the real component of the reflection coefficient of simulated

data on a Rogers 3039730 board at different sub sampling rate fitted against the experimental test

frequencies. The figure shows that the simulated curve has been successfully smoothed and can

retain the original shape even on choosing lesser number of sampling points.

Figure 7.13 Reduced data structure after converting all data in the same granularity by curve fitting.

The data are then structured in a fashion as shown in figure 7.14 with the real component of the
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𝑆11 stacked across 1601 frequencies, then the imaginary and the magnitude of the 𝑆11 are stacked.

Same we have performed for the 𝑆21 parameters. The last three columns are the H, W,L respectively

and Y is the dependent variable.

Figure 7.14 Data Structure considered in the paper.

Dimension Reduction. In the data, the number of observations (p) 1601 ∗ 6 + 3 = 9609 are

much greater than the number of samples (n) (𝑝 >> 𝑛). For test data, there are 11 ∗ 3 = 33

rows for 11 different substrates where each substrate has 3 different microstrip lines embedded

on it. Considering all the columns will make the model highly unstable. We have developed

dimensionality reduction technique and feature selection for our dataset.

While performing principal component based regression, we are reducing the columns from

𝑞 = 1601 for each feature component to first 3 principal components. These are the linear

combination of columns that maximize the variance. The choice of principal component is a tuning

parameter and first 3 principal components are chosen as it gives the least training error of 1.1

root mean square error (RMSE) where RMSE =
√︁

Average( 𝑦̂ − 𝑦)2 and 𝑦 is the dependent variable

or the response and 𝑦̂ the predicted value. Table 7.5 shows that 𝑘 = 3 gives us the minimum

training error as the training error does not decreases with increase in the value of k. We can not

increase the value of k beyond 5 as that will result in more number of columns than rows in our

reduced experimental test set. The training error is evaluated by dividing the simulated training

set in the ratio of 3:1 into train and validation and run for several iterations. 1601 columns of

each component are reduced to 3 principal components. This is done separately for all the six set

of features (a) real of reflection coefficient, (b) imaginary of reflection coefficient, (c) magnitude

(dB) of reflection coefficient, (d) real of transmission coefficient, (e) imaginary of transmission
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coefficient, (f) magnitude (db) of transmission coefficient.

𝑃𝑛∗3 =

1601∑︁
𝑗=1

𝑤 𝑗𝑐 𝑗such that
∑︁

𝑤2
𝑗 = 1

Then a linear regression model is fitted on the simulated training data as used in equation 3.5

𝑌𝑖 = 𝛼 +
3∑︁
𝑗=1

𝛽1𝑅𝑖 𝑗 +
3∑︁
𝑗=1

𝛽2𝐼𝑖 𝑗 +
3∑︁
𝑗=1

𝛽3𝑑𝐵𝑖 𝑗 + 𝛽4𝑊𝑖 + 𝛽5𝐿𝑖 (7.9)

where R, I, and dB represent the real, imaginary and magnitude of S parameters.

Figure 7.15 illustrates the data format after reduction by dominant principal component.

Figure 7.15 Schematic of data format on reduced by dominant principal component.

Table 7.5 RMSE of the training error when applying linear regression on different choices of
principal components.

Number of Principal Components (k) Training Error
1 1 2.24
2 2 1.50
3 3 1.104
4 4 1.101
5 5 1.09

Dimensionality reduction is performed in the same manner on experimental data.

𝑃𝑛∗3 =

1601∑︁
𝑗=1

𝑤 𝑗𝑏 𝑗such that
∑︁

𝑢2
𝑗 = 1

The regression coefficients obtained from fitting the training data are used to predict the reduced

test matrix. The columns are reduced from 9609 to 3 ∗ 6 + 2 = 20.

Grouping by Principal components enable better visualization as it enables lesser intra class

distance and larger inter class distance among the different response categories. Figure 7.16 shows

that when plotting the different S components against the frequencies, they can not be discriminated
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based on the response variable. Plotting the response variable against first two principal components

(mid plots in column a and b) shows the features to be easily discriminated based on 10 categories

of the response variable. For better visualization we have binned the response variable in 4 groups

of 1.1 to 3.1, 4.1 to 6.1,7.1 to 9.1 and 10.1 (bottom plots in column a and b). Figure 7.16 illustrates

that second principal component bears more weightage for magnitude of the reflection coefficient

𝑆11 and first principal component is more significant for magnitude of the transmission coefficient

𝑆21.

Plotting the response of the training data against the first two principal components for the real

and imaginary S paramaters in figure 7.17 show the imaginary components to be least significant

among magnitude, real and imaginary components of the S parameters.

The principal component takes the weightage of all the features. For this reason we implemented

lasso based shrinkage model to observe the important features. Lasso minimizes the residual sum

of squares subject to the sum of the absolute value of regression coefficients being less than a

constant. It produces a regularization path over a grid of values for the tuning penalty parameter 𝜆.

Lasso is implemented using glmnet package (163) where different penalty parameters are used to

obtain model with varying number of features. The best value of 𝜆 = 0.128 is obtained by applying

k-fold cross validation on the training set and the training error is reported for different multiples

of the best 𝜆. Table 7.6 shows the training error obtained for different values of 𝜆 and the number

of features chosen in each scenario. For 𝜆 = 0.128, the least training error is obtained when 1571

out of 9609 features are selected by lasso model. However, PCA obtained this training error only

with 20 feature combinations.

Table 7.6 RMSE of the training set and the number of features chosen by lasso model.
RMSE Number of features

1 0.964 1571
2 1.1 445
3 1.03 616
4 1.27 345
5 2.08 73
6 2.45 44
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Figure 7.16 Better discrimination of the covariates based on principal components. (a) represents
the magnitude of reflection coefficients whereas (b) represents the magnitude of the transmission
coefficients.

Figure 7.18 shows as we decrease the number of features, the lasso model is selecting random

features from the six sets. This is happening, as there is high correlation among the features across

the frequencies. This approach of using lasso to select a few principal informative frequencies
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Figure 7.17 Better discrimination of the covariates based on principal components. (a) represents
the real of reflection coefficients 𝑆11 whereas (b) represents the imaginary component 𝑆21 of the
transmission coefficients.
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leads to spurious features as lasso model is randomly choosing some features as 1 and others as 0.

Hence, we focus on principal component in our analysis.

Figure 7.18 Feature selection by lasso for different values of 𝜆.

7.2.5 Registration aided Regression

Linear regression model is fitted after applying principal component analysis on the simulated

training set. It gives the optimum training error of 1.10 RMSE. Figure 7.19 (a) shows the histogram

plot of the permittivity of the training set where the true and the estimated permittivity get super-

imposed in majority of the cases. Figure 7.19 (b) shows violin plot distribution of the estimated

permittivity against the true permittivity. The permittivities are binned into 10 groups as shown in

the 𝑋 axis. The mean of each violin plot distribution is marked by white dot. From the violin plot
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it is observed that for lower permittivity, the predictions are a bit overestimated.

Figure 7.19 Plots of the training error on simulated set: (a) Histogram plot showing the estimated
permittivity (light pink), true permittivity (light blue) and the overlap in (dark pink) , (b) Estimated
vs True permittivity on training set.

For permittivity prediction on the experimental test set, a naive linear regression is first applied

after performing the frequency or column reduction by PCA. Dimensionality reduction is applied
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separately on the training and test set as discussed above. After reduction, the dimensions of the

train and test matrix become 8379 ∗ 20 and 32 ∗ 20 respectively. A linear regression model is fitted

by equation 4.10 on the training set. The same model that we learn from the fit is used to predict on

the test set. However as the data sources in the train and test set are different, hence simply fitting

the same model on test set results in misregistration and thus results in high RMSE by the naive

model.

Figure 7.20 shows the difference in alignment of S parameters in the simulation and experimental

data using same material substrate (Rogers 3039851) and line dimensions in simulations and

experiments.

As the curves in simulation and experiments are different, there is a need to do proper reg-

istration/ alignment (164) while applying the regression coefficients learned from simulations on

experiments. Knowledge of a portion of the test data as calibration helps in the accurate transfer of

information from large simulation database to fewer test data.

Here we have considered 10 rows out of the experimental data for calibration. We have used

intercept correction based registration to transfer information. It is the simplest method to transfer

information in the linear model setup. The linear model trained on simulation data is used on

experimental data by allowing only one parameter, the intercept parameter to change in the model.

The intercept parameter is tuned on calibration data set. As we are in linear model setup, there exists

a closed form expression for the 𝛿 coefficient which is the difference in the means of the observed

and predicted permittivity in the calibration data set. With this tuned registered coefficient, we then

use the registered linear model for prediction on the experimental data. We formally present the

approach below. Let the model based on simulation data be:

Simulated Data: 𝑌𝑖 = 𝛼 +
𝐾∑︁
𝑘=1

𝛽𝑘𝑥𝑖𝑘 , (7.10)

where, 𝑖 = 1, . . . , 𝑛𝑠 and 𝑛𝑠 is the sample size of the simulated data. The model on the response for

the experimental data is:

Experimental Data: 𝑌 𝑗 = 𝛿 + 𝛼 +
𝐾∑︁
𝑘=1

𝛽𝑘 𝑧 𝑗 𝑘 ; (7.11)
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Figure 7.20 Plots of the reflection and transmission coefficients (magnitude in dB) for both simu-
lation and experiment of Rogers 3039851: (upper) Reflection and transmission coefficients when
W= 5mm and L= 30 mm, (mid) Reflection and transmission coefficients when W= 2mm and L=
40 mm, (bottom) Reflection and transmission coefficients when W= 4mm and L= 50 mm.

where, 𝑗 = 1, . . . , 𝑛𝑒 and 𝑛𝑒 is the sample size of the experimental data. Now, the registered

coefficient 𝛿 is learned from the calibration (C) data as follows. Say 𝐷 𝑗 is the observed permittivity

and 𝑤 𝑗 are different features of 𝑆 parameter curves of the calibration data. In equation (7.12) the

permittivity of the calibration set is predicted by fitting the model on the simulation data.

Calibration: 𝐷̂ 𝑗 [𝛿] = 𝛿 + 𝛼 +
𝐾∑︁
𝑘=1

𝛽𝑘𝑤 𝑗 𝑘 (7.12)

where, 𝑗 = 1, . . . , 𝑛𝐶 and 𝑛𝐶 is the sample size of the calibration data. Next, the residuals are then
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evaluated as:

𝛿 = argmin𝛿
∑︁
𝑗∈C

(𝐷 𝑗 − 𝐷̂ 𝑗 [𝛿])2

and thus,

𝛿 = argmin
∑︁
𝑗∈C

(𝐷 𝑗 − (𝛿 + 𝛼 +
𝐾∑︁
𝑘=1

𝛽𝑘𝑤 𝑗 𝑘 ))2.

Thus, 𝛿 is the difference in mean of the observed and predicted values in the calibration set as

shown in equation (7.13)

𝛿 =
1
𝑛𝐶

∑︁
𝑗∈C

(𝐷 𝑗 − 𝛼 +
𝐾∑︁
𝑘=1

𝛽𝑘𝑤 𝑗 𝑘 ) (7.13)

This registered coefficient is then used as correction factor while performing prediction on test set.

Table 7.7 Performance of the registered regression methods vs non registered ones on both test and
training sets by intercept registration.

Methods Experimental Data Simulated Data

Test Errors Training Error

With Registration Without Registration

LR on PCs 3.21 6.8 1.1

RF on PCs 2.72 3.6 1.04

LR on Energy features 6.3 15.2 1.29

In table 7.7, we report the performance of (a) linear regression (LR) (b) random forest (RF)

regression (c) linear regression method that uses energy (𝐿2 norm) of the frequency sweep for

each of 𝑆 parameters. The intercept calibration in all the models is similar to the procedure in

(7.11)–(7.13). The first two methods are based on PCs. The energy based linear regression method

only has 7 coefficients and does not involve PCs. All the three methods have very low training

RMSE on the simulated data. We found that the test RMSE on the simulated data is also similar

which is expected as the simulated data set was large. Direct application of these models on the

experimental data produced very high experimental test errors. Using registration greatly improved

the performance of the PC based linear regression model as well as that of PC based RF regression

model. Next, based on the registration both parametric (linear regression) and non parametric
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models (Random Forest) is developed. Random forests combine tree predictors that depend on

values of a random vector sampled independently and identically for all trees in the forest. This

methodology was proposed by Breiman (165) and become very popular owing to its simplicity

and high accuracy. Random Forest is mostly used with classification trees. Random Forests grow

multiple classification trees, and classify a new object from an input vector by putting it down

each of the trees in the forest. Then each tree gives a classification, and the majority of "votes"

determines a class of a prediction. More specifically, each tree in random forest grows as follows.

If a number of observations in the training set is n, it takes a sample of n observations at random

with replacement, from the original data. This creates a training set for growing the tree. Then, if

there are M input predictors, a number m < M is specified such that at each node, m variables are

selected at random out of the M and the best split on these m divides the node. The value of m is

being held constant during the forest growing. Then each tree grows to the largest extent possible

with no pruning applied.

As such PC based LR improved by 50% due to registration, abet from a really high predictive

error rate without registration. The predictive error of the PC based RF regression model on the

experimental data improved by 25% due to the registration procedure. It has the best performance

among the concerned methods. Considering that we had only very few experimental samples, its

predictive accuracy was encouraging. The energy based LR model had very high predictive error

even after registration which demonstrates that all regression models are not capable of properly

transferring information from simulated data to experimental data via registration.

Next, we have performed registration by data augmentation where we have pooled the infor-

mation from the calibration data into the training set and have created a augmented training data.

Here the the calibration data also contributes to the change in slope as illustrated in schematic of

figure 7.21.

Simulated Data: 𝑌𝑖,𝑠𝑖𝑚 = X′
𝑖,𝑠𝑖𝑚𝛽 (7.14)

Calibration Data: 𝑌 𝑗 ,𝑐𝑎𝑙 = X′
𝑗 ,𝑒𝑥𝑝𝛽 + 𝛼 (7.15)
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Figure 7.21 Schematic of the data augmentation based registration framework.

Now the pooled model constituting the training data is as follows:

Training Data:


Y𝑠𝑖𝑚

Y𝑐𝑎𝑙

 =

X𝑠𝑖𝑚

X𝑐𝑎𝑙

 𝛽 +


0

0

0
...

1


× 𝛼 (7.16)

Table 7.8 shows that performing data augmentation based registration the error on test set is

reduced by significant margins in comparison the non-calibrated regression.

Table 7.8 Performance of the registered regression methods vs non registered ones on test sets by
data augmentation.

3 Methods Experimental Data

Test Errors

Registration by Data Augmentation Without Registration

LR on PCs 2.98 6.8

RF on PCs 2.79 3.6

LR on Energy features 5.6 15.2

Portions of this chapter appeared in the publication (166).

7.2.6 Discussion

Novel registration aided curve fitting model for microstrip transmission line based material

characterization has been developed. The covariates based on reflection and transmission coeffi-
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cients are treated as functional data against the frequency sweeps. The source of training and test

data being different, there is a need to perform registration to transfer the information. The result

shows that registration based regression can be an efficient tool to transfer information and to do

estimation on scarce experimental test sets.

Portions of this section has been accepted in ICPHM 2023 and awaiting publication.
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CHAPTER 8

ENHANCED DEFECT DETECTION IN NDE USING
REGISTRATION AIDED HETEROGENOUS DATA FUSION

8.1 Introduction

Due to advancements in sensing technologies, the smart nondestructive evaluation (NDE) com-

munity is currently experiencing a significant increase in the use of multiple sensing methods. It

has become crucial to develop robust and fully automated fusion algorithms that can comprehend

various physics-based inspection technologies. The concept of "data fusion" has been actively

researched in the field of noninvasive inspection since the late 1990s (167; 37). In practical

scenarios, establishing a single NDE inspection procedure that replicates the optimal, less noisy

conditions of laboratory settings, where these methods were initially created and validated, often

poses challenges. Uncertainties such as scanning speed, lift-off, probe drift, low sensor sensitivity,

fluctuations in material surface, and other scanning noises (12; 36; 116) introduce uncertainties in

the collected NDE data. The signal variations caused by micrometer-level cracks and corrosion are

weak and easily overshadowed by background fluctuations and structural noises (28; 29; 99; 168).

Consequently, leaks and breakages in pipe structures can remain undiagnosed, resulting in catas-

trophic fatalities and significant property and life losses (61; 62). Therefore, there is a need for

accurate defect detection through inline inspection (ILI) that provides reliable information about

the shape, size, and location of structural defects.

The commonly used NDE approaches includes magnetic flux leakage (MFL), Eddy current (EC),

Ultrasonic testing (UT), thermography, electromagnetic acoustic transducer (EMAT), pulsed eddy

current (PEC) and microwave testing (26; 27; 30; 31). Among them, MFL and EC are widely

used for detection of surface and near surface defects in metallic conductive pipe walls. In this

context, miniaturized in-house MFL and EC probes have been designed, which are inexpensive,

highly flexible, and easy to implement. They eliminate the need for cumbersome hardware setups

used in conventional MFL pipeline inspection gauges (PIGs) (51). The working principle of MFL

and EC is quite straightforward. In MFL the ferromagnetic wall of the pipe is magnetized close to
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saturation either by utilizing a permanent rare earth magnet or a coil wound around a ferromagnetic

yoke. When defects are present, they cause a reduction in the thickness of the pipe wall, which in

turn increases the reluctance and magnetic flux density near the defects. Consequently, a greater

portion of the magnetic flux leaks into the surrounding area, and this leakage can be measured

using either a Hall effect sensor (for both static and dynamic fields) or a coil (for dynamic fields)

(105; 106; 119). The eddy current (EC) considers the electromagnetic (EM) induction based on the

inductive properties of the alternating current (AC) in detecting anomaly. EC gets generated in con-

ducting specimen on application of time varying magnetic field which flows in opposite direction

to that of current generating it (169). Both these NDE methods enjoy the following advantages over

competing NDE methods for inspecting conductive samples: (a) When using inexpensive thermal

cameras for imaging, thermographic measurements have limited sensitivity and are not resilient to

minor temperature variations (1). X-ray imaging is an expensive method that necessitates careful

screening to mitigate the harmful effects of ionizing radiation (33), (b) Laser profilometry and

structure light-based optical inspections are unsuitable for examining ferromagnetic conducting

pipe walls due to the occurrence of unwanted reflections (99), (c) Ultrasonic testing requires a

coupling medium and physical contact with the material under test (MUT) (32; 4). Although

air-coupled ultrasonic testing eliminates the need for coupling, it necessitates long sound pulses

for excitation, making precise timing measurements challenging. Additionally, its application is

not suitable for inspecting ferromagnetic metallic pipe walls due to the high impedance of metal

structures (5), (d) Microwave imaging operates at high frequencies in the gigahertz range, which

necessitates complex data acquisition circuitry and struggles to penetrate deeply into conducting

materials [28] whereas capacitive sensing displays non-linearity, as the output voltage is inversely

proportional to the distance between the sensing and driving electrodes (12).

In recent times, considerable effort has been dedicated to fusing the results obtained from multiple

sensor inspections, as this leads to improved defect detection, interpretation, and ultimately, better

decision-making. The fusion of sensing modalities provides two types of information: comple-

mentary and redundant, as depicted in figure 8.1. Redundant information refers to the shared
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information among multiple sensors, which increases the reliability of defect detection. Comple-

mentary information, on the other hand, is unique to each inspection method and enhances the

accuracy of the detection system. Image fusion can be performed at three levels: signal or pixel

level, object level, and decision level. Signal-level fusion involves combining information associ-

ated with each pixel obtained from multi-sensor data into a single fused image, representing fusion

at the lowest level. In object-level image fusion, features, object labels, and descriptor information

are extracted (170). Decision or symbol-level fusion combines probabilistic decision information

obtained from experts or decision makers based on the processed results from individual sources

(171). In this study, we have implemented heterogeneous image fusion at the pixel level to develop

an automated detection system.

Figure 8.1 Schematic showing the complementary and redundant fusion information.

Heterogeneous fusion involves gathering data from various sensing sources. In the case of

magnetic flux leakage (MFL), the sensor information obtained is related to magnetic flux leak-

age, while in eddy current (EC) testing, the obtained sensor information is complex impedance.

Furthermore, in heterogeneous fusion, the issue of misalignment needs to be taken into account

due to the different footprints and phenomenological properties of the sensors. On the other

hand, homogeneous fusion utilizes data obtained from the same inspection modality but at dif-

ferent frequencies, as demonstrated in (172; 173). Heterogeneous fusion is a powerful tool
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for leveraging complementary information compared to homogeneous fusion. In the field of

NDE, considerable amount of literature exists applying fusion using conventional techniques like

weighted average, Hadamard product, average, difference, Dempster-Shafer rule of combination

etc. (174; 173; 175; 176; 132; 177; 178; 179; 180; 181; 182; 183; 184; 168). In (174; 168) a

wavelet based fusion method was proposed to fuse the data obtain from EC, MFL and thermo-

graphic methods, thereby providing an improved sensitivity-based analysis for crack detection. In

(173) the authors developed a generalized additive model (GAM) based fusion model utilizing the

EC and Pulse eddy current (PEC) data to detect the hidden corrosion defects in aircraft lap joints.

Ultrasonic inspection based on pulse echo immersion technique and induction thermography were

used in (175; 176) to evaluate the adhesive bonded quality in composite-epoxy single lap joints

based on naïve data fusion algorithms such as average, difference, weighted average and Dempster-

Shafer rule. In (37; 177) homogenous fusion techniques were applied to combine the axial and

tangential components of MFL signal. There, the fusion process utilized a wavelet basis function

neural network (WBFNN), resulting in the generation of complexed value MFL signal bearing

additional information. In (178) defect profiles were extracted by fusion of 3D MFL signals using

RBFNN. Multi-frequency EC images were combined using discrete cosine transform (DCT) in

(179) whereas in (180) Bayesian analysis, Dempster-Shafer theory were used to combine EC and

infrared thermal images. Combination of Ultrasonic (UT) and Eddy Current (EC) non-destructive

evaluation (NDE) images was achieved using various approaches such as Bayesian analysis, differ-

ent morphological methods, and minimum mean square error in (181; 183; 182). Authors in (184)

fused UT images with EC images obtained from aluminum plates using the AND operation. The

defect boundary was extracted from the UT image, while depth information was obtained from the

ET image thereby resulting in improved defect characterization. In (185; 186), multi-frequency EC

images were fused using neural networks, specifically the multilayer perceptron (MLP) and radial

basis function (RBF). These networks learned the fusion weights through the backpropagation

algorithm, enhancing the fusion process. Different geometric transforms and ensemble classifier

based on the Learn++ algorithm was utilized in (187; 188) to fuse data obtained from MFL and
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UT methods thereby aiming to improve the detection of surface defects.

However, to the best of the authors’ knowledge, the existing literature on heterogeneous fusion

does not address the issue of registration. In heterogeneous fusion, since the data sources are dif-

ferent, blindly fusing them would result in misaligned fused images. This study demonstrates that

registration is a common problem in experimentally generated nondestructive evaluation (NDE)

data. Additionally, different physics-based sensing methods have different operational trade-offs.

Fusion between EC and MFL is beneficial if both techniques provide defect characteristics that

complement each other. However, when one of the methods fails, performing fusion would yield

suboptimal results (29). The current literature does not mention how fusion would be effective

under these boundary conditions. This paper aims to address this gap by automatically determining

when to perform fusion based on a data-driven screening rule. Translational registration (189; 190)

is then carried out after screening, where the MFL source images are anchored, and based on that,

the EC offset images are translated. This approach provides a simple method for registration based

on the chi-squared distance. The chi-square algorithm is applied to find the optimal translation

parameters for aligning the offset source EC image with the anchored source MFL image. Another

registration method utilizing Optimal Transport (OT) (191; 192) is developed, treating the MFL

and EC source images as probability densities. A transport plan is established to transfer densities

from the stronger (source) to weaker (target) source densities. The transport plan is subject to

a cost function that minimizes the distance between the source and target densities (193; 194).

Therefore, OT offers an efficient platform for registration in boundary NDE conditions. Pixel-level

fusion algorithms are then applied to the registered images. In transform domain-based fusion,

each registered source image is represented as base and detailed layers (195; 196). The base layers

are decomposed into basis, and the coefficients are evaluated and fused. In spatial domain-based

fusion, the spatial closeness of pixels in registered images is considered using kernel smoothing

(197; 198). The results demonstrate that this novel registered fusion algorithm is advantageous in

noisy conditions and enables better identification of defect dimensions compared to unregistered

fusion. Figure 8.2 illustrates the framework of the proposed study. In order to provide a disciplined
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analysis of the work, we further divide the study into following components:

• In section 8.2, the experimental and simulation set up of both the MFL and EC NDE tech-

niques and description of NDE data generation under various uncertainties is given. Cheap

EC and MFL probes are designed for the purpose of generating data.

• Thereafter, in section 8.3, a data driven screening rule and an improved NDE theory-based

fusion is discussed.

• We show the need of performing registration especially on the experimental data in Section

8.4. Detailed analysis of two modes of registration a> Translational registration, b> Optimal

Transport (OT) based registration and their properties are discussed in this section.

• In section 8.5, it is demonstrated that performing fusion based on the registered images

provide better fused results without artifacts in comparison to that without registration. For

fusion we have used sparse representation-based pixel level fusion. We showed our method

of registration also worked while using fusion based on bilateral filtering and wavelet decom-

position.

• This chapter concludes with a discussion in section 8.6 .

8.2 MFL and EC Data Generation

Source data for fusion is generated by both synthetical and experimental means. Synthetic data

is obtained by designing 3D finite element model using COMSOL MULTIPHYSICS 6.0 modeling

software. Experimental data is generated by developing in-house cost effective MFL and EC probes.

The simulation and experimental setups are discussed in the subsequent subsections.

8.2.1 Simulation & Experimental design of MFL based NDE sensing

The MFL simulation model based on the magneto static problem governed by conventional

Maxwell’s equation is developed. The benchmark settings as discussed in (28) is used to construct

and validate the model. The magnetic circuit consists of a ferromagnetic yoke, two ferromagnetic

couplings and two permanent magnets of opposite polarities as in [61,62]. Figure 8.3 provides the

schematic of the simulation model where the distance between two magnet poles are 145 mm. The
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Figure 8.2 Schematic of the entire fusion setup.

existence of the defects increases the magnetic resistance which in turn distorts the magnetic field.

The bent magnetic flux, which leaks out of the material surface form a magnetic leakage field that

is collected by the 3D Hall effect sensors placed at the middle of the permanent magnets as marked.

Dimension of the model parameters is stated in Table 8.1. For faster computation extremely, fine

triangular mesh is used near the defects, whereas on the rest of the surface, tetrahedral mesh is

employed.

Table 8.1 Dimensions of the different parts of MFL model (L=length, W=Width, H= Height, all
the dimensions are reported in mm).

Term Length(l) Width (w) Height (h) Material
Yoke 320 80 30 Structural Steel

Magnet 30 80 40 NdFeB

Brush 30 80 20 Structural Steel

Specimen 600 400 10 Stainless Steel 405 Annealed

Figure 8.3: (a) Schematic of the conventional 3D MFL model in COMSOL, (b) MFL inspection

on a pipe segment The experimental setup is constructed using the following components:
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Figure 8.3 (a) Schematic of the conventional 3D MFL model in COMSOL, (b) MFL inspection on
a pipe segment.

• MFL probe based on permanent magnets

• TLE493D-A2B6 3-axis Hall effect sensor

• Scanning robot arm for moving the probe along the material being tested

• Data acquisition system (DAS) and corresponding code for generating images

• Other associated units

A schematic of the complete experimental setup is depicted in Figure 8.4. The MFL probe holder

accommodates two cubical permanent magnets made of NdFeB material. Two different holders

are designed to fit magnets of different dimensions. Figure 4 (b) displays a holder measuring

80 × 72 × 30𝑚𝑚, while a larger holder is shown in Figure 8.4 (e). Inside the holder, two cubical

permanent magnets with dimensions of 25 mm are positioned with opposite polarities facing the

material under test (MUT). Additionally, larger cuboidal permanent magnets measuring 40 mm*4

mm*20 mm are utilized. The Hall sensor, with dimensions of 25𝑚𝑚 × 14𝑚𝑚, is positioned in

the middle of the holder between the magnets with opposite polarities. For scanning purposes, an

Aerotech AGS1000 programmable XYZ scanner is employed, while the TLE493D-A2B6 three-axis

Hall effect sensor manufactured by Infineon is used for measuring the axial, radial, and tangential

components (in X, Y, Z directions) of the magnetic field leakage. The TLE sensor consists of

three main blocks: (a) a power mode control system comprising oscillators, (b) the main sensing

unit consisting of Hall probes, a multiplexer, and an ADC controller, and (c) an I2C interface

with register files. The sensing unit of the sensor is connected in sequence to a multiplexer and
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then to an Analog-to-Digital Converter (ADC), which is connected to the Data Acquisition System

(DAS). The DAS incorporates a National Instrument Data Acquisition Card PCIe-6341, where the

magnetic flux signal is sampled and digitized by a routine, and the output is recorded.

Figure 8.4 (a) Schematic illustration of MFL probe scanning the MUT, (b) Dimensions of the probe
holder, (c) Permanent magnet used in sensing, (d) Infenion TLE493D-A2B6 sensor used in sensing,
(e) Entire setup with gantry, (f) Dimension of larger permanent magnet.

8.2.2 Simulation & Experimental design of EC based NDE sensing

Eddy current (EC) is extensively employed in non-destructive evaluation (NDE) inspections of

metallic components due to its reliable inspection capability, non-contact operation, and sensitivity

to defect detection. The EC technique utilizes the principles of electromagnetic induction and the

inductive properties of alternating current (AC) to identify anomalies (199; 200; 201). When a

time-varying magnetic field is applied, eddy currents are induced within the conducting specimen.

The simulated EC model in this study is based on a benchmark model (201). In this model, an air-

cored coil is excited with a 1-ampere alternating current, generating an alternating magnetic field at

a frequency of 100 Hz. By scanning a conducting specimen, opposing currents to those in the coil

are induced, resulting in the generation of eddy currents. Defects are detected by monitoring the

change in coil impedance. The schematic of the developed 3D model in COMSOL is depicted in
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Figure 8.5. A quarter model is utilized based on its symmetrical characteristics, which significantly

reduces computation time and resource usage compared to meshing the entire specimen.

Figure 8.5 (a) Schematic of the simulated EC setup, (b) Different parameters of the air cored coil,
(c): Schematic for the measurement of the impedance change due to crack like opening.

The different parameters of the air cored coil such as outer radius, inner radius, number of turns

are given in Table 8.2.

Table 8.2 Different dimensions of the EC simulation setup.

Coil Dimension

Inner Radius 0.8 mm

Outer Radius 1 mm

Coil height h 1 mm

Number of Turns N 4000

Lift-off 1 mm, 3mm, 5mm, 7mm

In the experimental setup an array probe with 18 channels are chosen for rapid inspection.

There are two rows each containing 9 coils and the area of each coil is 34𝑚𝑚 × 3.45𝑚𝑚. The

distance between each neighboring coil on a row is 4mm, and the rows are shifted by 2mm with

a gap of 3.45mm between the two rows. To obtain the output data from each coil an Ectane 2

testing instrument that allows for multiplexing each channel within the operating frequency range.

An input voltage of 6V and an operating frequency of 500 Hz is used to conduct the experiment.

Figure 8.6 (a) provides the entire schematic of the different components used in the EC setup, 8.6

(b) provides the diagram of the EC coil sensing topology. Real time data acquisition is done by the

software corresponding to Ectane 2 where the results of scan are first interpolated and then stored

in .csv format which are subjected to further processing using Matlab. Absolute (ABS) mode is
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chosen where the output per coil corresponds to the data pixel as shown in Figure 8.6(b). For post

processing the obtained data is at first interpolated along X and Y axis. The real and imaginary

components of the image scan is thus obtained. In order to avoid bias due to the “null” regions

along the edges usually caused by array configuration, the data is cropped along the edges.

Figure 8.6 (a) Experimental scanning setup based on EC, (b) Absolute sensing topology based
switching sequence for EC measurements.

Table 8.3 presents the defect dimensions, uncertainties resulting from lift-off variations, and

noise levels associated with the experimental data utilized in the subsequent sections involving

registration and fusion techniques.

8.3 Data driven screening rule

Fusion improve defect detection under noisy regimes and various lift offs when both the MFL

and EC captures the defect characteristics that are complementary to each other. Then we can

integrate these characteristics and provide better defect diagnosis. In (168; 174) it is shown that

there lies trade off between heterogenous MFL and EC methods: MFL fail to detect shallow defects

whereas EC cannot detect thin defects. In these boundary conditions when one of the methods fails,

then fusing images even by the state-of-the-art fusion algorithms lead to sub-optimal detection. In

these cases, it is better not to fuse and use the inspection method that is most appropriate for the

situation. An automated data-based screening rule is first proposed that assigns weight as 1 to the

method that is appropriate for the situation in these limiting conditions.

The data-based rule for deciding the fusion weights is as follows: For both the EC and MFL, at

first readings from cases without defects are considered and the standard deviations of the signal
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Table 8.3 Design of the defects and conditions incorporated in the experimental study where l:
length, w: width and d: depth.

Defect
No.

Dimensions (l*w*d) Conditions

Defect 1 1cm*0.5mm*0.5mm Lift off: 1mm

Defect 2 1cm*0.5mm*0.2mm Lift off: 1mm

Defect 3 2cm*1.2mm*3.8mm Lift off: 2mm

Defect 4 2cm*1.2mm*3.8mm Lift off: 5mm

Defect 5 2cm*1mm*2mm Lift off: 3mm

Defect 6 8mm*8mm*5mm Lift off: 1mm

Defect 7 8mm*8mm*5mm Lift off: 5mm

Defect 8 8mm*8mm*5mm Lift off: 3mm

Defect 9 2cm*1cm*5mm Lift off: 2mm

Defect 10 2cm*1cm*5mm Lift off: 2mm, Noise: SNR 10 dB

Defect 11 2cm*1cm*5mm Lift off: 2mm, Noise: SNR 30 dB

Defect 12 2cm*1cm*5mm Lift off: 7mm

Defect 13 2cm*1cm*5mm Lift off: 5mm

Defect 14 2cm*1cm*5mm Lift off: 9mm

Defect 15 2cm*2cm*5mm Lift off: 2mm

Defect 16 3cm*2.5cm*5mm Lift off: 1mm

Defect 17 3cm*2.5cm*5mm Lift off: 7mm

Defect 18 3cm*2.5cm*5mm Lift off: 9mm

Defect 19 3cm*2.5cm*5mm Lift off: 1mm, Noise: SNR 30 dB

Defect 20 2cm*2cm*5mm No Lift off

Defect 21 2cm*2cm*5mm Lift off: 5mm

interpreted by both the methods 𝜎̄𝐸 and 𝜎̄𝑀 are computed (202). Next, for a new reading the

significant perturbations in readings w.r.t to the non-defective cases are checked by comparing

standard deviations 𝜎𝐸 and 𝜎𝑀 with that of 𝜎̄𝐸 and 𝜎̄𝑀 respectively. The tuning parameter cho-

sen for checking the standard deviations is c=1.28. The criteria for assigning weights are as follows:

1. The screening rule chooses EC only when 𝜎𝐸 > c𝜎̄𝐸 and 𝜎𝑀 ≤ c𝜎̄𝑀 .

2. The rule will choose MFl only when 𝜎𝑀 > c𝜎̄𝑀 and 𝜎𝐸 ≤ c𝜎̄𝐸 .

3. Assign weights to both the methods if 𝜎𝐸 > c𝜎̄𝐸 and 𝜎𝑀 > c𝜎̄𝑀 .

Figure 8.7 shows the data based screening rule where in 8.7(a) the screening rule gives weight

as 1 to the EC source where the defect is of dimension width:0.5mm, height:0.05mm. In figure

8.7(b) the rule selects MFL for defect of dimension width:0.01mm, height: 0.5mm, whereas both

the MFL and EC will be selected in third condition where a defect of width: 0.1mm and height:
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0.1mm is considered. In figure 8.7, the data is generated by synthetical means at lift off of 3mm. In

the later experimental cases, the axial component of the magnetic flux leakages 𝐵𝑥 in the MFL data

are considered. However, if contemplating the tangential component 𝐵𝑧, then performing blind

fusion with EC source results in erroneous fused images as shown in Figure 8.8 (e). Figure 8.8

illustrates that NDE based phenomenological knowledge can provides better fusion. 𝐵𝑧 contains a

plateau and trough with the defect in the mid region as demonstrated in 8.8(a). The central ridge

region is extracted by contour plot based extraction as in 8.8(b) and defect localization based on 𝐵𝑧

is thereby shown in figure 8.8(c). On performing fusion of reconstructed 𝐵𝑧 with EC source results

in better fused result indicated in8.8(f). The SNR of the source MFL is 3.33, source EC is 16.32

whereas after fusion the SNR of the fused image gets increased to 22.35. The fusion algorithm is

discussed in the later sections.

Figure 8.7 Screening rule choosing EC criteria, (b) choosing MFL criteria, (c) choosing both EC
and MFL criteria respectively.

8.4 Registration

The inspection data sources being heterogeneous, there lies a need for proper alignment of the

source images especially in experimental data. In this section, we have shown that performing fusion

without proper registration results in artifacts in fused images. Offset arises while conducting raster

scans by different sensors giving rise to misregistration. Registration is a process of establishing a

common geometric frame for data coming from different modalities. Here two kinds of registration

strategies are implemented, (a) Translational registration by anchoring, (b) Registration by Optimal
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Figure 8.8 Fusion based on NDE based phenomenological knowledge.

Transport. In translational registration the MFL source images are anchored and the offset of the

EC image w.r.t to anchored MFL image is obtained in both x and y coordinates. We have adopted

a discrete Fourier transform (DFT) based up sampling method for the purpose of registration as

this is both time and memory efficient. At first, an initial estimate of the cross-correlation peak

is obtained by fast Fourier transform (FFT) method. Then the initial shift estimation is improved

by up sampling the DFT in a small neighborhood of that estimate by matrix multiplication in an

iterative fashion as in (190). Thus, all the image points of the target EC image get registered with

respect to the referenced MFL image. In Figure 8.9, we demonstrate the efficacy of translational

registration on Defect 9 case of Table 8.3. Figure 8.9(a), (b) shows the source images. Since there

is an offset in the EC image, performing blind fusion by sparse representation (discussed in next

section) results in misaligned incorrect fusion as shown in 8.9(c). Figure 8.9 (d) is the results

of translational registration of EC image with the referenced MFL image. Figure 8.9(e) and (f)

demonstrate fusion of the registered EC image with MFL image by sparse fusion. Post processed

result 8.9(f) does not show any overlapping erroneous patterns like that in 8.9 (c). SNR of the

fused image after registration is 85.56 which is significantly higher than that of source images,
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MFL:40.33, EC:6.97.

Figure 8.9 Benefits of translational registration(a) Inspection by MFL source, (b) By EC source,
(c) Fusion of (a) and (b) by SR, (d) Registered EC source by translational registration, (e) fusion
between (a) and (d), (f) post processed result of (e).

In this section, we have developed optimal transport (OT) based image registration, where we

are transporting the mass between two distributions of inspection modalities. The transformation

plan (T) between the source and the target distribution are chosen based on minimization of

Kantorovich-Wasserstein or Earth Mover’s Distance (EMD) under a mass preservation constraint

(190; 191; 192; 193; 194; 203). The objective is to choose that transport map which minimizes

the overall cost of transportation i.e to minimize the 𝑙2 distance between the source and target

distribution in embedded space. OT does not need any specific landmark for registration and thus

has advantage over other registration methods. In multi modal NDE fusion, Optimal transport is

mostly effective in performing registration in boundary conditions when one of the methods fails

in defect detection. Under these circumstances where screening rule suggest not to fuse, optimal

transport (OT) transfer mass density from the stronger inspection source (source) to the weaker

source (target). Then performing fusion, on these registered source images results in better defect

localization and SNR. The setup of OT is as follows: OT transformation (T) is defined from a

reference density function 𝜇𝑠 (𝑥) to target density 𝜇𝑡 (𝑥). Now, assuming source and target density

functions to be positive on domains Ω𝜇𝑠 ,Ω𝜇𝑡 ⊆ R𝑑 respectively and after normalization such that:∫
Ω𝜇𝑠

𝜇𝑠 (𝑥) 𝑑𝑥 =
∫
Ω𝜇𝑡

𝜇𝑡 (𝑥) 𝑑𝑥 = 1

The minimizer of the distance functional is unique, provided the source and target densities have
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finite second order moments. The minimum transport map min(T) is as follows:

min(T) =
∫

R𝑑

|𝑥 − 𝑇 (𝑥) |2𝜇𝑠 (𝑥) 𝑑𝑥

s.t.
∫
𝐵

𝜇𝑡 (𝑦) 𝑑𝑦 =
∫

T−1(𝐵)
𝜇𝑠 (𝑥) 𝑑𝑥∀𝐵 ⊆ 𝑅𝑑

when T is smooth and bĳective then the above equation can be simplified as Jacobian equation as:

𝜇𝑠 (𝑥) = | det((𝑥)) |𝜇𝑡 (𝑇 (𝑥))

The minimizer to the above problem gives us the unique optimal transport map between the

successful modality to unsuccessful one. The advantage of optimal transport is that, it uses gray

scale data from both the images and place them in same normalized scale. Moreover, no landmark is

needed for successful registration. Figure 8.10 illustrates the schematic of OT where (a) represents

the transport (T) of scenario ‘Defect 9’ from Table 8.3. Here EC is considered as source and MFL

the target. In Figure 8.10 (b) we have chosen random 1000 points from each image source for

better visualization and have plotted the uniform distribution of the samples. Figure 8.10(c) shows

the OT distance from the source (in blue marks) to target (in red marks).

Figure 8.10 Schematic of the OT framework: (a) Transfer from source (EC) to target (MFL) for
scenario ‘Defect9’, (b) 1000 random samples are chosen and uniform distribution is shown, (c) OT
distance between the source and target samples.

Figure 8.11 shows the improvement of using OT as registration for Figure 8.9 over translational

registration. Here information is transferred from MFL to EC. Panel A (d) and (e) shows the

improved fused result on fusion with OT based registration whereas by fusion with translational

registration still shows some mis registration. In Panel B the forward optimal transport map is

175



illustrated where (d) shows clear displacement in EC source image due to transport from MFL

source. Panel C demonstrates the geodesic or the optimal path connecting the two distributions

in embedded space. The steps of transferring information following the minimal path is shown

in this panel. The SNR of the fused image after OT based registration increased to 172.92. The

tuning parameters of the iterative OT algorithm is as follows: learning rate of 0.001 with a decay

of 0.01. The maximum number of iterations to run is 10,000 and the minimum tolerance of the

cost function used is 0.00001.

Similarly, for ‘Defect 16’ scenario of Table 8.3, OT based registration results in better fusion

than the unregistered fusion. Steps similar to Figure 11 are illustrated in Figure 8.12.

8.5 Pixel based fusion

8.5.1 Sparse representation-based fusion

In this section transform domain-based fusion, method in the form of sparse representation

is adopted on the registered source images. In transform domain-based methods, the information

contained in the original images are merged after converting into some other domain such as discrete

wavelet transforms (147), discrete cosine transforms (204), sparse representation (205) etc. In the

convolutional sparse representation (SR) the sparsity of the entire source image is obtained and

the source image is decomposed into base and detailed layers (195). The schematic of the fusion

framework is shown in Figure 8.13. The fusion framework consists of two segments (a) the data

fusion analysis center to perform screening judgement and registration, (b) sparse representation

based fusion by decomposing into basis and detailed coefficients.

For a set of K heterogeneous source images (𝐾 = 2) as the sensing modalities are EC and MFL

and a set of dictionary filters 𝑑𝑚, 𝑚 ∈ 1·, 𝑀 the CSR method consist of the following steps.

1. Decompose each image into two layers: Base and Detailed. Base layer obtained by solving

a Tikhonov Regularization problem.

2. Subtraction of the base layer from original image to obtain the detailed layer. Decomposing

the detailed layer into basis and calculate the coefficients under sparsity using convolutional
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Figure 8.11 Panel A: (a) Source MFL image, (b) Source EC image, (c) result on applying fusion
after performing translational registration, (d) result in applying fusion based on OT, (e ) post
processed results on (d), Panel B: (a) EC image which forms the target distribution, (b) MFL image
acting as source distribution in OT, (e ) Reconstruction of target after OT, (d) Displacement showing
transfer of mass from source to target, Panel C: Optimal trajectory stages showing transfer of mass
from source to target in five stages. Analysis is done based on ‘Defect 9’ of Table 8.3.

basis pursuit denoising (CPDN) algorithm.

3. Activity level maps of the coefficients are hereby obtained.

4. Finally, the fused image is constructed by fusion of both base and detail layers.

The base layer for a source image 𝐼𝑏
𝑘=1,2 is obtained by solving the Tikhonov regularization problem

using the fast Fourier transform of the source data 𝐼𝑘=𝐸𝐶,𝑀𝐹𝐿 . The optimization problem for
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Figure 8.12 Panel A: (a) Source MFL image, (b) Source EC image, (c) result on applying fusion
after performing translational registration, (d) result in applying fusion based on OT, (e ) post
processed results on (d), Panel B: (a) EC image which forms the target distribution, (b) MFL image
acting as source distribution in OT, (e ) Reconstruction of target after OT, (d) Displacement showing
transfer of mass from source to target, Panel C: Optimal trajectory stages showing transfer of mass
from source to target in five stages. Analysis is done based on ‘Defect 16’ of Table 8.3.
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Figure 8.13 Entire framework of the sparse representation-based fusion conducted in this paper.

obtaining the base layer is as follows:

arg min𝐼𝑏
𝑘
∥𝐼𝑘 − 𝐼𝑏𝑘 ∥

2
𝐹 + 𝛼(∥𝑔𝑖 ∗ 𝐼𝑏𝑘 ∥

2
𝐹 + ∥𝑔 𝑗 ∗ 𝐼𝑏𝑘 ∥

2
𝐹)

where the regularization parameter is 𝛼 here and 𝑔𝑖 = [−11], 𝑔 𝑗 = [−11]⊺ are the horizontal and

vertical gradient operators respectively. By solving regularization problem, base layers 𝐼𝑏
𝐸𝐶

and

𝐼𝑏
𝑀𝐹𝐿

are obtained. The base layers are simply averaged to obtain the fused based layer 𝐼𝑏
𝐹

for every

pixel (i,j)

𝐼𝑏𝐹 (𝑖, 𝑗) =
1
2

2∑︁
𝑘=1

𝐼𝑏𝑘 (𝑖, 𝑗)

Then the detailed layers are derived by subtracting the source image from base layers as 𝐼𝑑
𝑘
= 𝐼𝑘 − 𝐼𝑏𝑘

Now to fuse the detailed coefficients, its sparse coefficients 𝑥𝑘,𝑚, 𝑚 ∈ 1, ·, 𝑀 are obtained

by solving the convolutional basis pursuit denoising (CPDN) problem using alternating direction

method of multipliers (ADMM) algorithm as developed in (206).

arg min𝑥𝑘,𝑚
1
2
∥
𝑀∑︁
𝑚=1

𝑑𝑚 ∗ 𝑥𝑚 − 𝐼𝑑𝑘 ∥
2
2 + 𝜆

𝑀∑︁
𝑚=1

∥𝑥𝑘,𝑚 ∥1

The activity level detailed coefficients 𝑥 𝑓 ,𝑚 are then obtained by considering the 𝑙1 norm of the

obtained coefficients at every location (i,j). The final fused detailed layer is reconstructed as:

𝐼𝑑𝑓 =

𝑀∑︁
𝑚=1

𝑑𝑚 ∗ 𝑥 𝑓 ,𝑚

Then finally by adding the detailed and base layer coefficients the fused image is obtained as:

𝐼 𝑓 = 𝐼
𝑏
𝑓 + 𝐼

𝑑
𝑓
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Figure 8.14 shows the result of applying sparse representation-based fusion on synthetical data

where the defect is of dimension 1 cm in length, 0.3mm in width and 0.5 mm in depth at a lift off

of 3mm. The data being synthetically generated there is no need of registration prior to applying

fusion. Figure 8.14 (d) shows the post processed fused result to be better localized and of 7 times

higher SNR (83.2) than the source images (EC: 11.86, MFL:5.26).

Figure 8.14 CSR fusion applied on simulation data showing better results (a) source EC, (b) source
MFL, (c) fused result in gray scale, (d) post processed result.

Figure 8.15 illustrates a scenario described as ’Defect 1’ in Table 8.3, wherein the MFL source

image is not correctly detected and an offset is observed in the EC image. It is clear from Figure

15(d) that performing CSR fusion without registration leads to incorrect reconstruction. However,

Figure 8.15(e) demonstrates improved image reconstruction after employing optimal transport-

based reconstruction. Similarly, in Figure 8.16, we demonstrate the advantage of registration aided

fusion on ‘Defect 5’ which shows significant improvement in defect localization.

Figure 8.15 (a) Experimental MFL data based on Defect 1, (b) Experimental EC data, (c) EC
registered by MFL, (d) Fused result without registration, (e)fused after OT based registration.

Table 8.4 presents the results of registration aided fusion applied on 21 experimental scenarios

180



Figure 8.16 (a) Experimental EC data based on Defect 5, (b) Experimental MFL data, (c) EC
registered by MFL, (d) Fused result without registration, (e)fused after OT based registration.

of Table 8.3. For all the scenarios, we have witnessed significant improvement in SNR than the

SNR in fusion without registration and the SNR of source images. Here the SNR is defined as:

SNR =
𝐸 (defective area)2

𝐸 (background)2

Table 8.4 Performance of the registration aided fusion VS non-registered fusion and source images
in terms of SNR.

Defect No. MFL Source
SNR

EC Source SNR SNR of fusion with-
out registration

SNR of fusion with OT registration

Defect 1 20.01 18.2 17.23 29.33

Defect 2 1.87 64.35 58.56 129.27

Defect 3 8.44 3.76 5.62 12.02

Defect 4 1.13 1.2 1.53 2.5

Defect 5 4.7 5.06 10.12 22.23

Defect 6 23.08 8.03 25.19 85.18

Defect 7 6.514 0.017 1.24 8.82

Defect 8 15.27 0.045 7.43 35.06

Defect 9 40.33 6.97 51.57 172.94

Defect 10 7.63 0.25 4.12 8.23

Defect 11 39.97 6.02 35.87 164.72

Defect 12 9.55 0.97 3.72 15.12

Defect 13 8.75 0.05 3.8 9.01

Defect 14 6.5 0.97 2.5 3.69

Defect 15 3.25 1.63 2.12 6.37

Defect 16 21.29 3.9 49.18 59.14

Defect 17 2.33 0.38 1.56 2.82

Defect 18 1.05 0.012 0.47 1.51

Defect 19 43.01 2.6 51.23 73.59

Defect 20 5.47 3.78 6.37 9.32

Defect 21 2.01 0.637 1.18 2.4

8.5.2 Implementation of other common fusion algorithms

Wavelet decomposition-based fusion is a popular method for combining images from the EC

and MFL techniques in the transform domain. This approach involves decomposing each source
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image using an orthogonal basis, specifically employing the two-dimensional Discrete Wavelet

Transform (DWT) based on Mallat’s pyramidal algorithm (147). The decomposition is performed

at a level of 5, resulting in an approximation image (CA) and three sets of detailed coefficient

images (CV, CH, CD). To fuse the coefficients, a selection rule is applied, which can be Minimum,

Maximum, or the mean of the coefficients. This leads to nine possible combinations: Min-Mean,

Min-Max, Min-Min, Mean-Mean, Mean-Min, Mean-Max, Max-Min, Max-Mean, and Max-Max.

For demonstration purposes, the Min-Max combination is used to showcase the superior results

achieved by registration-aided fusion. After selecting the fusion combination, an Inverse Discrete

Wavelet Transform (IDWT) is applied to reconstruct the fused image using the fused coefficients

(𝐶𝐴𝐹 , 𝐶𝑉𝐹 , 𝐶𝐻𝐹 , 𝐶𝐷𝐹). Figure 8.17 provides a schematic of the fusion algorithm based on

wavelet decomposition.

Figure 8.17 Schematic of the wavelet based fusion rule where the EC, MFL images are subjected to
DWT. On the obtained coefficients, fusion based on selection rule is applied. Finally, on the fused
coefficients IDWT is applied to obtain the fused image.

Applying OT based registration on ‘Defect 16’, shows better fusion by wavelet decomposition

than on unregistered source images as evident from Figure 8.18 .

The effectiveness of the registration aided fusion is tested against a spatial domain based fusion

called cross bilateral filter (CBF) (198). CBF is a kernel smoothing method which uses spatial

closeness of pixels. In this technique, smoothing of EC source image is done by weights multiplied

by corresponding kernel weights from MFL source. Similarly, MFL is smoothed using information

from EC image. The two smoothed images are then combined to generate the fused image.

Figure 8.19 illustrates the fusion results obtained by applying CBF to ‘Defect 17’ and ‘Defect 18’.
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Figure 8.18 Schematic of the wavelet based fusion rule where the EC, MFL images are subjected to
DWT. On the obtained coefficients, fusion based on selection rule is applied. Finally, on the fused
coefficients IDWT is applied to obtain the fused image.

It is witnessed that using registered sources yields superior outcomes compared to fusion without

registration. In Panel B, it is shown that at lift off of 7mm, EC fails to detect the defect as the

SNR is very low. However, on transferring information from MFL source to EC by OT and then

performing fusion based on CBF produced better defect identification.

Figure 8.19 CBF based fusion works better in both Panel A (for defect 17) and Panel B (Defect 18)
on registered images.
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We provide some extra results of the fused images of Table 8.3 in the appendix section.

8.6 Discussion

A fully automated registration aided NDE based fusion framework has been developed that

is shown to work well for defect detection. This framework demonstrates effective fusion of

information from Eddy Current (EC) and Magnetic Flux Leakage (MFL) methods, resulting in

a significant increase in Signal-to-Noise Ratio (SNR) and improved characterization of defects

in conductive metallic surfaces. To collect experimental data, we have designed inexpensive,

flexible, and miniaturized NDE probes based on MFL and EC techniques. These probes account

for various uncertainties encountered during data collection. Our scanning experiments focus on

detecting submillimeter and millimeter-sized crack and slit-like defects. Given the heterogeneity

of the MFL and EC methods, a trade-off exists between these sensing techniques. We establish

that performing fusion in boundary conditions, where one of the inspection methods fails, leads to

sub-optimal fused images. To address this, we have developed a data-driven screening rule based

on signal strength, which determines when fusion is appropriate. We emphasize the importance of

registration when dealing with different inspection sources. Fusion without registration produces

erroneous reconstructions with artifacts. To tackle this, we propose two novel image registration

approaches: translational registration and optimal transport. Optimal transport allows information

to be transferred from the stronger source to the weaker source based on a developed transport

rule. Optimal transport exhibits promising results, particularly in boundary conditions, as it yields

improved SNR. Sparse representation-based fusion is implemented on the source data collected

from 21 scanning experiments. Our results illustrate that fusion performed on registered sources

yields better defect identification compared to unregistered fusion. Incorporating NDE knowledge

enhances the fusion framework, providing improved results. In future work, we aim to implement

this fusion framework on other NDE modalities, exploring its applicability beyond EC and MFL.

Additionally, we see potential for studying alternative fusion algorithms, expanding the scope of

research in this area.

Portions of this chapter appeared in the publication (202).
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CHAPTER 9

GENERAL CONCLUSION AND DIRECTIONS FOR FUTURE
RESEARCH

9.1 General Conclusion

This dissertation demonstrates new-age AI integrated NDE frameworks from data acquisition to

data evaluation, thereby providing accurate,reliable, fast and smart defect diagnostics. This thesis

promises to make a substantial impact, leading to the advancement of NDE 4.0 and NDE 5.0. The

key contribution are hereby enlisted:

1. In chapter 2, a robust NDE detection methodology utilizing short waves based capacitive

sensing is provided. A key aspect of the developed spatially adaptive denoising algorithm

is its noise type agnosticism. The proposed method effectively utilizes the spatial contiguity

of defective scan points, enabling accurate defect identification even in capacitive sensing

data affected by uncertainties stemming from lift-off, probe tilt, and low sampling rates. A

disciplined analysis based on Gaussian mixture models is also employed to accurately detect

defective scan points in the sample, while maintaining low false positive misclassification

rates for non-defective scan points. This enables precise identification of defect characteris-

tics such as location, size, and shape.

2. Chapter 3 introduces a defect detection and classification procedure using laser profilometry

and a crossed layered hierarchical bilinear pooling (HBP) deep learning architecture, along

with other hybrid deep learning frameworks, to analyze collected images. The HBP ar-

chitecture enables fine-grained visualization and effectively detects and distinguishes subtle

deformities caused by different defect types in circular laser ring images. The proposed

procedure outperforms conventional machine learning tools and deep learning architectures

as it captures the spatio-temporal features in an efficient manner. This endoscopic method-

ology offers an automatic and cost-effective tool for defect localization and classification,

suitable for inspecting large polymer-based pipeline systems. The laser scanning and analysis

framework exhibits high flexibility in detecting defects across pipelines with varying radii
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and light intensities and thus can be employed in various online non-destructive evaluation

(NDE) methods that rely on image analysis of polymer materials.

3. The kriging-based method in chapter 4 can accurately identify defective areas with signif-

icantly fewer MFL readings compared to exhaustive line scans. This makes the proposed

NDE method fast, cost-effective, and scalable for inspecting defects in large pipelines.

4. In chapter 5, a novel framework by applying bivariate function based estimation to the noisy

data obtained from the later inspections using fast and cheap scanning has been investi-

gated and demonstrated. In order to properly recognize the defect under noisy condition,

the developed algorithms dynamically update the grid by the auxiliary information obtained

from baseline inspection. The location and the size of the defect is used as a transfer learn-

ing to update the size of the defect, thereby establishing a dynamic defect tracking framework.

5. In chapter 6, another robust framework for dynamic defect detection and tracking in NDE data

is developed, enabling fast and accurate analysis for periodic inspection of metallic pipelines

and other inspections. The framework incorporates cheap, flexible, and miniaturized MFL

and EC sensors, along with dynamic monitoring algorithms that are resilient to various

noise types and uncertainties. Transfer learning-based binned hypothesis testing (TLBH) is

introduced for defect growth recognition in later noisy periodic scans, demonstrating high

coverage and low overestimation compared to other algorithms. The choice of optimal bin-

ning parameter is done by transfer learning where the location and size of the defects from

detailed baseline inspections are transferred.

6. Chapter 7 consists of miscellaneous works where in one work we have developed a spa-

tially adaptive framework based on nearest neighbor and wavelets to distinguish coincident

defects from the harmless benign ones. In the next section, a data driven inverse approach

is developed to perform material characterization based upon frequency responses. Several

registration strategies are proposed to transfer information from large simulated data sets to

acute experimental data sets. The results show that this novel registration aided regression
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can be a promising tool to solve inverse problems in NDE getting rid of physics based re-

quirements.

7. In Chapter 8, a fully automated fusion framework based on registration aid in NDE is de-

veloped, effectively combining information from Eddy Current (EC) and Magnetic Flux

Leakage (MFL) methods for enhanced defect detection. Miniaturized NDE probes are

designed for experimental data collection, considering uncertainties. The fusion process

is optimized through data-driven screening, image registration techniques (translational and

optimal transport), and sparse representation-based fusion, resulting in improved defect iden-

tification and increased Signal-to-Noise Ratio (SNR) in heterogeneous inspection scenarios.

The incorporation of NDE knowledge further enhances the fusion framework’s performance.

9.2 Future Work

This work has the potential to be used in future researches. Some possible directions are indi-

cated below:

1. The performance of the defect defection algorithm in chapter 2 is sensitive to the threshold

and neighborhood size parameters. Larger threshold value will increase coverage but also

result in higher false discovery rates. The threshold value needs to be set based on appli-

cations.Fixed neighborhood shapes and sizes are considered. However data driven choices

of neighborhood size can further improve this methodology. This can be incorporated by

using Gaussian kernel density based filters instead of the square grids and then to adaptively

choose the kernel bandwidth. There is plan to develop theoretical support for selecting these

hyper-parameter in future. Our method would need some manual adaptation under varying

weather conditions and humidity levels. We need the RF source to be set near the resonant

frequency of the probe which was estimated to be 5 MHz for our lab experiments. If the

medium between the sample and the probe is much different from our experimental setup,

then the RF source needs to manually reset to the corresponding resonant frequency. The

problem can be solved by using multiple probes each operating at different frequencies.

However, it would require multi-parametric estimation. We aim to study it in our future
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works. Another potentially useful direction of research would be to study the applicability

of the spatially adaptive estimator developed in this paper for analyzing NDE data collected

with uncertainties by other NDE methods.

2. In chapter 3 the prescribed method being based on 2D optical imaging of the inspected

surface can not be used for estimating the depth of the defects for which 3D profiling can

be useful. An interesting future work will involve extending our methodology to the 3D

profile sensors. Another interesting research direction would be to progressively track the

growth of erosive defects in polymer gas pipelines. This needs precise estimation of defect

sizes. Using temporal correlations based tracking procedures and deep learning networks

on laser profilometry data collected by the method developed in this chapter can be promising.

3. Compared to MFL readings from extensive scans there is always some information loss in the

Kriging based reconstructed signal as proposed in chapter 4. The success of the procedure

rests on the fact that this information loss does not hamper detection of the presence and loca-

tion of the defects in the metallic surface. One future direction is to study the improvements

due to non uniform sampling designs. Another interesting work will be the application of

kriging in dynamic defect tracking.

4. It will be interesting to see how the dynamic defect tracking algorithms will feature in study-

ing the interaction of multiple threats. Another potential useful direction of research is to

see how TLBH and Mixture regression algorithms work on other NDE modalities where the

image format is different. Role of multi modal fusion in performing defect tracking is another

great problem to attack.

5. For the material characterization work, the future work can be to develop other modes of

registration. It will be interesting to validate the registration aided regression models on other

complicated electromagnetic models.

6. It would be fascinating to apply the optimal transport and deep learning based fusion algo-

rithms on other heterogeneous NDE modalities.
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APPENDIX A

SUPPLEMENTARY MATERIALS OF CHAPTER 2

Below are the detailed derivation of (2.5) and Table 2.3 calculations.

By theorem 2 of (53) we know that for experiment 𝑖 and case 𝑗 , the weighted classification loss

is minimized by the estimator:

Θ̂𝑤 (𝑖, 𝑗) [𝑙] = 1
{
(1 − 𝜋)𝜙(𝑦𝑙 |Δ0, 𝜎0)
𝜋𝜙(𝑦𝑙 |Δ1, 𝜎1)

≤ 1
𝑤𝑖 𝑗

}
,

where, 𝜙(𝑦 |Δ, 𝜎) denotes the normal density with mean Δ and standard deviation 𝜎 evaluated at

𝑦. Taking logarithm on both sides of the inequality above, Θ̂𝑤 (𝑖, 𝑗) [𝑙] reduces to:

1
{

log((1 − 𝜋)𝑤𝑖 𝑗/𝜋) ≤ log(𝜙(𝑦𝑙 |Δ1, 𝜎1)) − log(𝜙(𝑦𝑙 |Δ0, 𝜎0))
}
.

The weighted Bayes classifier in the paper follows directly from above by noting that log 𝜙(𝑦 |Δ, 𝜎) =

−(𝑦 − 𝜎)2/2/𝜎2 − log𝜎. The FP and FN error rates of this estimator are given by:

FP𝑖 𝑗 = 𝑃𝑍∼𝑁 (Δ0 (𝑖, 𝑗),𝜎2
0 (𝑖, 𝑗))

{
𝜎2

1 (𝑍 − Δ0)2 − 𝜎2
0 (𝑍 − Δ1)2 ≥ 2𝜎2

0𝜎
2
1 log

(
𝑤𝑖 𝑗𝜎1(1 − 𝜋)

𝜎0𝜋

)}
FN𝑖 𝑗 = 𝑃𝑍 𝑁 (Δ1 (𝑖, 𝑗),𝜎2

1 (𝑖, 𝑗))
{𝜎2

1 (𝑍 − Δ0)2 − 𝜎2
0 (𝑍 − Δ1)2 < 2𝜎2

0𝜎
2
1 log

(
𝑤𝑖 𝑗𝜎1(1 − 𝜋)

𝜎0𝜋

)}
.

These equations are calculated by Monte Carlo simulations and then the weights for each (𝑖, 𝑗)

pairs is optimized. The results are reported in Table 2.3 which also contains the FP and FN rates

for unweighted classification loss when 𝑤𝑖 𝑗 = 1.

In the chapter 2, figures 2.4, 2.5, 2.7 describe the different attributes of the data from the three

cases of experiment I.

In figures A.1- A.7 the corresponding plots for the other experiments are provided. Fig-

ures A.1, A.2, A.3 supplements figure 2.4, figures A.4, A.5, A.6 supplements figure 2.5 and

figure A.7 corresponds to figure 2.7 of chapter 2. These figures display reproducible signaling

patterns that are described in chapter 2 across the concerned experiments.
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Figure A.1 Plot of voltage readings from three different scenarios (across columns from left to right,
we have no lift-off, 3 mm lift-off, 5 mm lift-off) of experiments II to V (across rows) respectively.
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Figure A.2 Plot of voltage readings from three different scenarios (across columns from left to right,
we have no lift-off, 3 mm lift-off, 5 mm lift-off) of experiments VI to IX (across rows) respectively.
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Figure A.3 Plot of voltage readings from three different scenarios (across columns from left to right,
we have no lift-off, 3 mm lift-off, 5 mm lift-off) of experiments X to XII (across rows) respectively.
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Figure A.4 The contour plot of the left most image is superimposed on each of later images for
experiments II to V. The thresholds are selected based on the contour plots of the left most images
in each experiment.
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Figure A.5 The contour plot of the left most image is superimposed on each of later images for
experiments VI to IX. The thresholds are selected based on the contour plots of the left most images
in each experiment.
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Figure A.6 The contour plot of the left most image is superimposed on each of later images for
experiments X to XII. The thresholds are selected based on the contour plots of the left most images
in each experiment.
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Figure A.7 Distribution of voltage readings in the form of violin plot for the three cases of
experiments (II to XII) under no lift-off, 3mm (medium) lift-off and 5mm (high) lift-off respectively.
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APPENDIX B

SUPPLEMENTARY MATERIALS OF CHAPTER 6

Detailed Derivation of finding FDR for most efficient pointwise hypothesis test of power 𝛽 is shown

here. For the sake of simplicity, let us assume that the variance of each distribution is equal. Then

most powerful (MP) test classifies a point to be defective if:

(𝜎0)−2(𝑥 − Δ0)2 − (𝜎1)−2(𝑥 − Δ1)2is large

⇐⇒ 2(Δ1 − Δ0)𝑥 − (Δ1 + Δ0) (Δ1 − Δ0)𝑖𝑠is large

⇐⇒ 𝑥 − (Δ1 + Δ0)
2

is small asΔ0 > Δ1

Now, let the rejection region for defect be 𝑥 − Δ1+Δ0
2 < 𝑐. Then the Power becomes:

𝑃defect

(
𝑥 − Δ1 + Δ0

2
< 𝑐

)
= 𝑃

(
Δ1 + 𝜎Z − Δ1 + Δ0

2
< 𝑐

)
= 𝑃

(
Z < 𝜎 (−1)

(
𝑐 + Δ0 − Δ1

2

))
= Φ

(
𝜎−1(𝑐 + Δ0 − Δ1

2
)
)
= Φ

(
𝑡 + R

)
where, Z is the standard normal variable. We substitute 𝑐 = 𝑡𝜎 in the above equation and R is

the SNR.

The false discovery rate (FDR) becomes:

FDR = 𝑃non defect

(
𝑥 − Δ1 + Δ0

2
< 𝑐

)
= Φ

(
𝜎−1(𝑐 − Δ0 − Δ1

2
)
)
= Φ

(
𝑡 − R

)
Now when Power = 𝛽. Then 𝛽 = Φ

(
𝑡 + R

)
⇒ 𝑡 = Φ−1𝛽 − R

Substituting the value of t to FDR,

FDR = Φ

(
𝑡 − R

)
= Φ

(
Φ−1𝛽 − 2R

)

214



APPENDIX C

SUPPLEMENTARY MATERIALS OF CHAPTER 8

Here some extra registration aided results of the defect dimensions of Table 8.3 are presented. The

fused results from the boundary conditions clearly shows the efficacy of registration aided fusion

which is proposed in chapter8 of this thesis.

Figure C.1 Panel A: (a) Source MFL image, (b) Source EC image, (c) Result on applying fusion
without registration showing misalignment, (d) Applying fusion based on OT, (e) Post processed
results on (d), Panel B: (a) EC image which forms the target distribution, (b) MFL image as source
distribution in OT, (e) Reconstruction of target after OT, (d) Displacement showing transfer of mass
from source to target. Analysis is done based on ‘Defect 8’ of Table 8.3.
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Figure C.2 Panel A: (a) Source MFL image, (b) Source EC image, (c) Result on applying fusion
without registration showing misalignment, (d) Applying fusion based on OT, (e) Post processed
results on (d), Panel B: (a) EC image which forms the target distribution, (b) MFL image as source
distribution in OT, (e) Reconstruction of target after OT, (d) Displacement showing transfer of mass
from source to target. Analysis is done based on ‘Defect 11’ of Table 8.3.
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Figure C.3 Panel A: (a) Source MFL image, (b) Source EC image, (c) Result on applying fusion
without registration showing misalignment, (d) Fusion based on OT, (e) Post processed results on
(d), Panel B: (a) EC image which forms the target distribution, (b) MFL image as source distribution
in OT, (e) Reconstruction of target after OT, (d) Displacement showing transfer of mass from source
to target. Analysis is done based on ‘Defect 21’ of Table 8.3.
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Figure C.4 Shows the efficacy of registration based fusion in boundary conditions due to lift offs,
noisy conditions and limiting dimensions of defects. Panel A represents Defect 21, Panel B 17,
Panel C as Defect 13, Panel D as Defect 8 and Panel E as Defect 3 respectively.
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