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ABSTRACT 

Excess nitrogen and phosphorus from numerous sources delivered through complex transport 

pathways have accelerated eutrophication and increased the incidence of harmful algal blooms, 

particularly in the coastal and Great Lakes states in the United States. To address these issues, 

many watershed models have been developed to simulate nutrient inputs and their consequent 

deliveries to aid in the establishment of water quality management plans. However, these models 

typically lack spatially explicit descriptions of nutrient sources and attenuation factors, and they 

often do not take the joint of surface and subsurface transport pathways into consideration. In 

addition, spatially explicit tile drainage areas are still lacking, which limits the accuracy of 

hydrology and water quality modeling. This dissertation presents a spatially explicit model to 

simulate nutrient loading, sources, and pathways annually (Chapter 2) and during two distinct 

hydrologic seasons (chapter 3), as well as uses machine learning algorithms that translate remotely 

sensed Earth observations and environmental datasets into tile drainage maps (Chapter 4).  

In Chapter 2, I enhance and apply the Spatially Explicit Nutrient Source Estimate and Flux 

(SENSEflux) model, to simulate nitrogen and phosphorus loads from the US Great Lakes Basin 

(USGLB) on an annual basis. The results show that agricultural sources are the dominant sources 

for both total nitrogen (58%) and phosphorus (46%) deliveries to the US Great Lakes. In addition, 

this study reveals that the surface pathways (sum of overland flow and tile field drainage) dominate 

nutrient delivery, transporting 66% of total nitrogen and 76% of total phosphorus loads to the US 

Great Lakes coastline.  

Building on the annual SENSEflux simulation in Chapter 2, Chapter 3 focuses on seasonal 

variations in nutrient fluxes, sources, and pathways. Two distinct hydrologic seasons were 

examined, the first being snowmelt where high flow conditions are present in early spring and the 



second being baseflow where streamflow originates from groundwater discharge in mid-to-late 

summer. Results indicate that total nitrogen loading during snowmelt periods is four times greater 

than annual average deliveries. The contribution of agricultural sources (chemical agricultural 

fertilizer, manure, and N fixation) is substantially higher (15% for TN and 5% for TP) during melt 

than baseflow, while point sources, septic tanks, and atmospheric deposition become more 

prominent contributors to nutrient delivery during baseflow. Thus, seasonal variation of nutrient 

transport should be considered when establishing nutrient criteria and reduction targets. 

In Chapter 4, the focus is shifted to tile drainage systems by developing a random forest classifier 

to map tile drainage in the US Midwest in 2017, as spatially explicit tile drainage information are 

still lacking. Thirty-one satellite-derived and environmental variables sampled at 60,938 tile and 

non-tile ground truth points collected from a variety of sources were used to train and validate the 

classifier. The classifier achieved a good performance (Overall accuracy: 96%; F1 score: 0.9). 

Then, the classifier was used to do classifications for other regions that lack ground truth data 

within the study region. The classified tile drainage area correlated reasonably well with the 

county-level area reported by the USDA National Agricultural Statistics Service (r2 = 0.68). The 

overall importance revealed that the maximum nighttime land surface temperature in the summer 

ranked highest, followed by climate- and soil-related variables.  

This dissertation has produced many spatially explicit data products, including nitrogen and 

phosphorus loadings, sources, pathways, and hotspots. These are available not only on an annual 

basis but also for two hydrological seasons. Besides, a significant nutrient pathway, agricultural 

tile drainage, has been mapped and extended to the study region from the USGLB to the 14 states 

across the US Midwest. These products and insights could help watershed managers and decision-

makers implement nutrient reductions at the right time and place more effectively.
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CHAPTER 1: INTRODUCTION 

1.1: Significance  

Nitrogen and phosphorus pollution is one of the most widespread issues around the world, posing 

persistent threats not only to natural ecosystems but also to human health (Basu et al., 2023; 

Bowles et al., 2018; Goyette et al., 2016; Houlton et al., 2019). Elevated nutrient levels degrade 

river water quality and trigger harmful algal blooms (HABs) and they can also contaminate 

drinking water and cause illnesses in both animals and humans (Liu et al., 2022; Pennino et al., 

2017). Exposure to HABs such as eating fish and outdoor recreational activities can cause many 

negative health effects, such as liver and kidney damage, and respiratory issues (Schullehner et al., 

2018). High levels of nitrates in drinking water can lead to infant methemoglobinemia (also called 

blue baby syndrome) (Hamlin et al., 2022; Ward et al., 2018). 

Excessive nutrient pollution has also been a problem that is increasingly challenging to solve due 

to the increasing population, changing climate, various nutrient sources, and complex transport 

pathways (Basu et al., 2023; Ma et al., 2023; Sinha et al., 2017). Nutrients can originate from a 

variety of sources, including atmospheric deposition, wastewater treatment plants in cities, 

excessive use of chemical fertilizers and animal wastes in agricultural and forested areas, septic 

tanks from households in rural areas, and nutrient runoff from urban areas such as golf courses 

(Byrnes et al., 2020; Hamlin et al., 2020a; Luscz et al., 2015; Zou et al., 2022). These nutrient 

sources are commonly nonpoint source pollution and challenging to identify since they typically 

have no single source or discharge point but are transported indirectly into surface waters. In 

addition, nutrients often transport through multiple surface and subsurface pathways, such as 

overland runoff, tile drainage, and groundwater, which makes nutrient management even more 

difficult. As a result, nutrient pollution and related HABs have been a growing problem in most of 
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the coastal and Great Lakes states in the United States (Kalcic et al., 2019; Kimberly J Van Meter 

et al., 2023; D. M. Robertson & Saad, 2011a). 

The Great Lakes are the earth’s largest freshwater lake system. It supplies 21% of global and 80% 

of US fresh surface water (L. Zhang et al., 2019). The Great Lakes Basin is threatened by nutrient 

pollution due to agricultural and urban land use, and land management such as the density of tile 

drainage and wetland (Basu et al., 2023). The United States and Canada have signed the Great 

Lakes Water Quality Agreement and are obligated to protect and restore the Great Lakes. But some 

lakes, especially Lake Erie, continue to have serious nutrient issues with excessive nitrogen and 

phosphorus entering the nearshore region (L. Oldfield et al., 2020; Pennuto et al., 2014; Watson et 

al., 2016). The massive algal bloom in Lake Erie in August 2014 provoked a tap water ban in 

Toledo, Ohio, where nearly half a million people were without safe drinking water. There are many 

other nutrient pollution-related issues that have been seen in the past decades. For instance, the 

‘dead zone’ area in the Gulf of Mexico was measured as the largest in 2017 since dead zone 

mapping began there in 1985 due to nutrient pollution that is primarily from agriculture and urban 

runoff in the Mississippi River basin (Li et al., 2023). In addition, tile drainage across the US 

Midwest has been found directly related to nitrate loss in the Mississippi River basin (David et al., 

2010; Ma et al., 2023).  

Tile drainage was one of the significant advances across the US Midwest since the 19th century, 

promoting highly productive agriculture for areas where it was too wet to cultivate (King, 

Williams, Macrae, et al., 2015). With agricultural intensification and increasing extreme climate 

events, tile drainage is growing rapidly and becoming more prevalent to sustain agricultural 

production. Tile drainage area increased by 6.5 million acres from 2012 to 2017 in the US 

Midwest, and 70% of counties experienced expansion during the five years (NASS, 2012, 2017). 
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Research has found that 49% of soluble phosphorus and 48% of total phosphorus losses occurred 

via tile drainage discharge in the St. Joseph River watershed, located in the southwest portion of 

Michigan and the northern portion of Indiana, US (D. Smith et al., 2015). To quantify the impacts 

of tile drainage installation on water and nutrient flow and transport, maximize the benefits of tile 

drainage investments, such as maximizing crop yield and minimizing environmental impact, 

spatially explicit and fine resolution tile drainage information are needed.  

1.2: Research Gap 

Watershed models have been developed to understand nutrient loadings and sources across scales. 

These models include the Global Nutrient Export from WaterSheds (NEWS) model, the widely 

used Soil and Water Assessment Tool (SWAT) model, and the Spatially Referenced Regression 

on Watershed Attributes (SPARROW) model developed by USGS. Global NEWS was developed 

by an international, interdisciplinary scientific working group and includes basin-scale sub-models 

that can predict nutrient sources and estimate natural and anthropogenic sources of nutrients 

(Seitzinger et al., 2005). NEWS does not simulate detailed hydrological processes within a 

watershed but rather estimates the nutrient loading based on the statistical relationships between 

climate, land use, and river water quality. SWAT is a semi-distributed model that can simulate the 

hydrological cycle, nutrient cycling, and sediment transport at the watershed scale (Arnold et al., 

1998). The basic spatial unit used in SWAT is the Hydrologic Response Unit (HRU), which is 

determined by land use, soil type, and topography. In other words, these characteristics are to be 

uniform and do not vary spatially. SPARROW model uses multiple regression techniques and is 

used to estimate contaminant sources and transport in surface water (Preston et al., 2011; R. A. 

Smith, Schwarz, et al., 1997). Overall, these models have been applied to different watersheds 

around the world, but they lack fine-resolution and spatially- explicit information for nutrient 
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sources, pathways, and loadings.  

Existing tile drainage data consists primarily of the area reported by farmers via the USDA 

National Agricultural Statistics Service’s survey at the county level and likely tile-drained area 

based on geospatial analysis, under the assumption that agricultural areas with lower slopes and 

poorly drained soils are likely to be tile-drained (Valayamkunnath et al., 2020). In addition, few 

studies use aerial images to identify tile drainage lines at the field scale (Naz & Bowling, 2008) or 

remote sensing images to identify subsurface drainage at the watershed scale (Cho et al., 2019). In 

recent years, the availability of remote sensing with large spatial coverage and high temporal 

resolution has facilitated the mapping of agricultural practices, and the Google Earth Engine (GEE) 

provides the infrastructure for processing and analyzing large volumes of input datasets. Therefore, 

remote sensing and GEE can provide a cost-effective and expedient method for mapping large-

scale agricultural tile drainage. The spatially explicit tile drainage data would enhance the accuracy 

of the crop, hydrology, and water quality models and inform decisions regarding food security and 

environmental protection.  

1.3: Objective, Questions and Hypotheses 

Taken together, this dissertation includes three research chapters (Figure 1.1). In Chapter 2, I 

modified the previously published version of the SENSEflux model to quantify total nitrogen and 

phosphorus loadings, sources, and pathways and identify the nutrient delivery hotspots on an 

annual basis within the US Great Lakes Basin and focused on addressing the three questions below. 

Research questions are indicated with the letter “Q” followed by a number, with corresponding 

numbered hypotheses indicated with the letter “H”. 

Q2.1: How much nitrogen and phosphorus are delivered annually from drainage basins in the 

United States to the Great Lakes, and how do nitrogen and phosphorus loadings vary among lake 
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basins?  

Q2.2: What are the annual contributions of nutrient sources and pathways to nutrient transport and 

delivery to the Great Lakes?  

Q2.3: On an annual basis, where are the nutrient delivery hotspots located?  

I project that: (H2.1) a greater quantity of nitrogen and phosphorus loadings are delivered from the 

Great Lakes Basin to the Great Lakes, and these loadings vary across the basin, with the majority 

of the nutrient loadings coming from agricultural and urban areas. (H2.2) the contributions of 

different nutrient sources and pathways varied, with agricultural sources accounting for most of 

the nitrogen and phosphorus pollution transported via surface pathways. (H2.3) annual hotpots are 

in these high nutrient delivery locations and maybe in these high nutrient input areas.  

Building on the annual SENSEflux model in Chapter 2, I further improved the SENSEflux model 

in Chapter 3 to simulate the seasonal loadings, sources, and pathways, with the major update being 

the seasonal nutrient mobility that was inferred from seasonal streamflow. More specifically, two 

hydrologic seasons were considered, snowmelt in early spring with high flows and baseflow, in 

mid- to late-summer where streamflow originates from groundwater discharge. This seasonal 

information further helps the decision makers to target nutrient reduction at the right time to help 

the reduction more efficiently. This chapter mainly addresses the three questions below.  

Q3.1: How much nitrogen and phosphorus are transported from US drainage basins to the Great 

Lakes during snowmelt and baseflow seasons? Does the pattern differ from the annual transport 

(i.e., delivery from each lake basin)?  

Q3.2: Which sources and pathways are dominant during the hydrologic seasons?  

Q3.3: When would it be the most effective time to reduce nutrient pollution in the Great Lakes, 

and where should seasonal reduction efforts be focused?  
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Here are hypotheses for Chapter 3. (H3.1) more nitrogen and phosphorus are delivered to the Great 

Lakes during the snow melt season, whereas less are delivered during baseflow. The pattern is 

dependent on the regional variability of surface runoff and baseflow and is likely to differ from 

the annual patterns. (H3.2) agricultural sources are most likely the primary source during 

snowmelt, whereas urban sources become dominant during baseflow season. Surface pathways 

dominate nutrient transport and delivery during the snow melt season, but subsurface pathways 

are dominant during baseflow. (H3.3) due to increasing nutrient loadings, the snow melt season 

would be the best time to implement nutrient reduction plans. During baseflow, however, nutrient 

reduction should be prioritized to locations with higher nutrient concentrations and groundwater 

connections.  

Inspired by the previous two chapters’ findings that tile drainage is a vital nutrient transport 

pathway on an annual basis, and it delivered more nutrients during snowmelt. Also, due to the lack 

of spatially explicit and high-resolution data on tile drainage at a large scale, I shifted my focus to 

tile drainage systems in Chapter 4. Here I integrated remotely-sensed and environmental datasets 

to map agricultural tile drainage across the Midwest in 2017 using random forest machine learning 

via the Google Earth Engine cloud computing platform and identified the crucial variables that 

improve the tile drainage classification accuracy.  

Q4.1: Using remote sensing data, can a machine learning model identify tile drainage area at the 

pixel level and achieve good accuracy? Where are the tile drainage regions in the Midwestern 

United States? 

Q4.2: Which input variables are important to improve tile drainage classification accuracy across 

the US Midwest?  

I proposed the following hypothesis: (H4.1) with satellite imagery and large environmental 
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datasets available, as well as the processing resources provided by Google Earth Engine, a machine 

learning classifier can map spatially explicit tile drainage information with reasonable accuracy. 

Tile drainage areas are found in agricultural regions with inadequate drainage. (H4.2) climate-

related factors (i.e., precipitation) and soil-related variables such as soil drainage class and slopes 

are important for tile drainage identification.  

 

Figure 1.0 Overview of this dissertation, including three research chapters. The schematic diagram 

in the upper left corner is based on https://www.cityofgriffin.com/departments/storm-

water/watershed-management, and the icons in lower left corner are downloaded from Freepik.  

This dissertation has produced many spatially explicit data products for nutrient loadings, sources, 

pathways, and hotspots on an annual basis and during hydrologic seasons (snowmelt and 

baseflow). Also, a significant nutrient pathway, agricultural tile drainage, has been mapped and 

extended to the study region from the US Great Lakes Basin to the 14 states across the US 

https://www.cityofgriffin.com/departments/storm-water/watershed-management
https://www.cityofgriffin.com/departments/storm-water/watershed-management
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Midwest. These maps can be linked to community-facing tools such as the tipping point planner 

(tippingpointplanner.org) that can help nutrient managers and government agencies pinpoint areas 

with the most extensive nutrient deliveries and understand the contributions of primary sources 

and pathways at a finer resolution. It can also help watershed managers and decision-makers target 

the areas for reduction at the right time and develop water quality management plans precisely. 

The spatially explicit tile drainage locations and extent can provide a baseline for mapping 

historical tile drainage area change and predicting the potential areas for future expansion as more 

extreme rainfall events have been predicted under climate change scenarios. The findings and 

results from this dissertation are beneficial to broader interdisciplinary research efforts regarding 

food security, agricultural water management, and environmental sustainability. Finally, the 

SENSEflux annual and seasonal models and the random forest machine learning algorithms for 

tile drainage detection can be readily applied to other regions.  
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CHAPTER 2: THE IMPORTANT ROLE OF OVERLAND FLOW AND TILE FIELD 

PATHWAYS IN NUTRIENT TRANSPORT 

2.1: Abstract 

Nitrogen and phosphorus pollution are of great concern to aquatic life and human wellbeing. While 

the vast majority of these nutrients are applied to the landscape, little is known about the complex 

interplay between nutrient applications, transport attenuation processes, and coastal loads. Here, I 

enhance and apply the Spatially Explicit Nutrient Source Estimate and Flux model (SENSEflux) 

to simulate the total annual nitrogen and phosphorus loads from the US Great Lakes Basin to the 

coastline, estimate the relative contributions of different sources and pathways, and identify 

nutrient delivery hotspots. In addition to in-stream uptake, this model explicitly describes nutrient 

attenuation through four distinct pathways that are seldom described jointly in other models: runoff 

from tile-drained agricultural fields, overland runoff, groundwater flow, and septic plumes within 

groundwater. This model provides fully distributed estimates of nitrogen and phosphorus loading, 

sources, and pathways at high resolution (120 m). Our analysis shows that Lake Michigan and Erie 

have highest the nutrient loading from the US portion of the Great Lakes Basin among the Lakes, 

and the Lake Erie basin has the highest nutrient flux per unit area, in agreement with other studies. 

Agricultural sources, including chemical fertilizer, manure, and nitrogen fixation, are the dominant 

sources for both total nitrogen (58%) and total phosphorus (46%) deliveries to the US Great Lakes. 

In addition, this study reveals that the surface pathways (i.e., overland runoff and tile field 

drainage) dominate nutrient delivery, transporting 66% of total nitrogen and 76% of total 

phosphorus loads to the US Great Lakes coastline. Importantly, this study provides the first basin-

wide estimates of both groundwater and septic-plume deliveries of nutrients to the lakes. I find 

that the groundwater pathway for nitrogen has higher delivery than overland flow. This work 
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provides valuable information for environmental managers to target efforts to reduce nutrient loads 

to the Great Lakes, which could be transferred to other regions worldwide that are facing similar 

nutrient management challenges. 

 
Figure 2.0 Abstract graphic. Nitrogen budget for the US Great Lakes basin in ~2010. Total nitrogen 

and phosphorus sources are shown in colored rectangles. Orange arrows show the flow of nutrient 

processes, including harvest and root zone loss, groundwater storage, septic removal, basin 

attenuation and stream losses.  

2.2: Introduction 

Nitrogen and phosphorus loading have been linked to degraded surface water quality and the 

eutrophication of many coastal ecosystems worldwide. Research has focused on several 

ecosystems, including the Gulf of Mexico and Chesapeake Bay in the United States (R. B. 

Alexander et al., 2000; Lefcheck et al., 2018), the Laurentian Great Lakes Basin in North America 

(Chapra et al., 2016; D. M. Robertson et al., 2019), as well as Taihu Lake and the Yangtze Basin 

in China (Xuanjing Chen et al., 2022; L. Guo, 2007; Powers et al., 2016; J. Wang et al., 2020; W. 

Zhang et al., 2019, 2020). Actions have been taken to restore and protect water quality. For 

example, the US and Canada signed the Great Lakes Water Quality Agreement (GLWQA) in 1972 
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and updated it in 2012 with reduced phosphorus load targets (D. M. Robertson et al., 2019). 

Although point source loads have been curtailed under the US Clean Water Act (CWA), nutrient 

pollution is still one of the most widespread, costly, and challenging environmental problems in 

the United States (Frei et al., 2021; Sharma, 2020). This is partly due to the technical difficulties 

inherent in predicting the complex transport of pollutants from millions of “nonpoint” sources 

through heterogeneous hydrologic systems to receiving water bodies via diverse surface and 

groundwater pathways. Developing effective management and mitigation strategies requires an 

improved understanding of the relative contributions of different nutrient sources and their varied 

transport pathways. 

Nutrient loading to coastal waters is derived from both point sources (primarily wastewater 

treatment plants) and nonpoint sources (including agricultural and non-agricultural fertilizer, 

manure, nitrogen fixation, and atmospheric deposition) (Boyer et al., 2002; Hamlin et al., 2020a; 

Luscz et al., 2015; Powers et al., 2016; Swaney et al., 2018). Agricultural practices are major 

contributors to nutrient contamination because of the widespread use of fertilizers and livestock 

manure (Chaplin-Kramer et al., 2016; Motew et al., 2018). Thus, managing agricultural sources 

typically has been the focus of efforts to reduce nitrogen and phosphorus losses to the environment 

(Bowles et al., 2018; Ockenden et al., 2017; W. Zhang et al., 2019, 2020). In contrast to the large 

body of research on agricultural nutrients, pollution from intensively managed urban landscapes 

is of great concern but is understudied (Filipović et al., 2015; Lapointe et al., 2017; Rakhimbekova 

et al., 2021). For example, golf courses have been cited as significant sources of nutrient loading 

to water bodies (Bock & Easton, 2020), and human wastewater sources may contribute up to 40% 

of agricultural loads to coastlines globally (Tuholske et al., 2021). Septic sources are direct and 

concentrated inputs to the groundwater system and are substantial sources of groundwater nitrate 
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in the United States (Ouyang & Zhang, 2012). Septic tanks have been considered as the primary 

cause of nutrient leaching to groundwater because of inappropriate site conditions, poor design, 

inadequate maintenance, and infrequent inspections (Pollack et al., 2011). Unfortunately, septic 

systems are commonly only evaluated at the time of permitting or during major building additions; 

less attention and resources are typically directed to septic system upkeep and maintenance, which 

are regulated in different ways across the US (L. Oldfield et al., 2020). 

It is also important to know the relative importance of different pathways through which nutrients 

travel to receiving water bodies, as transport and uptake processes differ along those pathways. 

Most studies have focused on pathways like surface runoff, while there has been little literature 

that comprehensively quantifies the relative contribution of other nutrient transport pathways (Gill 

& Mockler, 2016). Specifically, tile drainage (Ikenberry et al., 2014; King, Williams, & Fausey, 

2015; Michaud et al., 2019) and groundwater (Brookfield et al., 2021; Holman et al., 2008; 

Robinson, 2015) have been found as important transport pathways and are major contributors to 

nutrient loads. For example, groundwater discharge likely accounts for ~50% of phosphorus 

loaded to Lake Arendsee, Germany, thus accelerating the eutrophication of the lake and 

detrimental ecological impacts (Meinikmann et al., 2015). (D. Smith et al., 2015) estimated that 

49% of soluble P and 48% of total P losses from fields occurred via tile discharge in research fields 

across the Lake Erie basin. Therefore, it is important to quantify the relative contributions of 

nutrients from these major pathways. 

It is not feasible to measure the relative contributions of different nutrient sources and pathways 

at the regional watershed scale, thus modeling approaches have been used to simulate their fate 

and transport. Three main categories of models are regression-based empirical, process-based flow 

and transport, and hybrid empirical and process-based models (R. B. Alexander et al., 2002). 
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Regression-based models are less complicated and easier to implement, although most ignore 

spatially explicit sources and lack mechanistic components, interactions between sources, and 

some nutrient loss processes (Howarth et al., 1996). Examples of process-based models include 

Nutrient Export from Watersheds (NEWS) (Mayorga et al., 2010a; Seitzinger et al., 2005) and the 

widely used Soil and Water Assessment Tool (SWAT) (Gassman et al., 2014). NEWS simulates 

hydrological processes on land and subsequently nutrient transport through surface and subsurface 

waters (Arnold et al., 1998). SWAT simulates transport using hydrologic response units (HRUs), 

which lump all similar land uses, soils, and slopes within a subbasin. Hybrid empirical and process-

based models such as the SPAtially Referenced Regression On Watershed attributes (SPARROW), 

a GIS-based watershed model developed by the United States Geological Survey (USGS), uses a 

hybrid approach to estimate nutrient sources, transport, and loadings around the world (Dai et al., 

2021; D. M. Robertson et al., 2019; D. M. Robertson & Saad, 2011b; R. A. Smith, Schwarz, et al., 

1997; Wellen et al., 2012). While SWAT, NEWS, and SPARROW consider nutrient sources and 

retention on landscape and stream networks to predict nutrient and source contribution (McCrackin 

et al., 2013), they do not characterize spatially explicit sources nor extensively model different 

nutrient attenuation pathways. 

To address these limitations, I enhanced the spatially-explicit hybrid SENSEflux (Spatially 

Explicit Nutrient Source Estimate and Flux) model to estimate the fate and transport of nitrogen 

and phosphorus that originate from point and nonpoint sources. SENSEflux models nutrient 

transport across the landscape, stream network, and connected inland lakes to the Great Lakes 

coastline via spatially explicit pathways, including overland flow, tile drains, groundwater, and 

septic plumes. An earlier version of SENSEflux was developed for the Lower Peninsula of 

Michigan (Luscz et al., 2017); here additional modeling capabilities for nutrient reduction and 
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retention processes have been incorporated. In particular, SENSEflux offers an improved 

simulation of nutrient delivery to streams via groundwater pathways (Martin et al., 2021), 

estimates the long-term storage of phosphorus in the subsurface, and improves the 

parameterization of both in-stream and lake nutrient losses. Here, I estimate total phosphorus (TP) 

and total nitrogen (TN) loads to the US Great Lakes Basin (USGLB), and compare the relative 

contributions of nutrient sources, with an emphasis on transport pathways. The results can be 

particularly useful for stakeholders to identify hotspot areas (e.g., high nutrient flux and yields) 

and major sources and pathways that contribute to nutrient inputs to the Great Lakes. This 

knowledge can help prioritize locations and strategies for nutrient reduction and provide valuable 

inputs to other hydrological and ecological studies. The SENSEflux model could be applied to 

other regions around the world that have nutrient management issues.  

2.3: Method 

2.3.1: SENSEflux Model Description   

SENSEflux uses a GIS and mass balance approach to simulate the nutrient fate and transport from 

point and nonpoint sources across the landscape through rivers to lakes and wetlands. A schematic 

diagram and a detailed conceptual framework of SENSEflux are shown in Figure 2.1. Broadly, 

SENSEflux includes four components: 1) nutrient applications, 2) in-situ losses, 3) basin 

attenuation via surface and subsurface pathways, and 4) stream and lake attenuation. Loss and 

attenuation terms are generally spatially-explicit, the product of both static landscape factors and 

an independent calibrated parameter for each process and nutrient. Prior to transport, three in-situ 

loss terms that remove nutrients: crop harvest/in-situ loss, septic system nutrient removal 

efficiency, and unsaturated zone nutrient storage. I split basin transport into four distinct pathways, 

which are not commonly represented in most hybrid and statistical nutrient transport models: 
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overland flow, tile drainage, bulk groundwater flow, and septic plumes. Transport along each 

pathway includes an attenuation factor, proportional to either distance or time, calibrated and 

validated at sampling locations. Following basin attenuation, nutrients are then subject to stream 

and lake attenuation before ultimately reaching the desired end point (e.g., a sampling location or 

the Great Lakes coastline).  

SENSEflux supports six (P) and seven (N) spatially explicit nutrient applications. There are three 

agricultural terms: manure, agricultural chemical fertilizers, and nitrogen fixation. Urban land use 

terms include chemical non-agricultural fertilizers, point sources, and septic tanks. Atmospheric 

deposition of both N and P occurs in all landscapes. Importantly, I do not use Net Anthropogenic 

Nitrogen Inputs (NANI) (Hong et al., 2013) or Net Anthropogenic Phosphorus Inputs (NAPI) (Han 

et al., 2011), though these could be computed from the SENSEflux outputs. For this study, nutrient 

inputs are described by the 2010 SENSEmap product (described in section 2.4.2). 

There are three in-situ loss terms applied before nutrients are transported: Septic removal, Harvest, 

and Storage. The Harvest (ExH in Figure 2.1) loss term includes all in-place root zone losses of 

nutrients (i.e., sorption, denitrification, P mineralization, etc.) and is assumed to occur on in cells 

with either manure or chemical agricultural fertilizers applied (see “harvested areas” in Figure 

A2.0.1).  The Storage loss term (Fstor) includes both in-place storage and loss of nutrients below 

the root zone, for phosphorus. Note that Fstor is only applied to subsurface mobile nutrients (see 

below). Both Harvest and Storage only occur for surface-applied sources (excluding septic and 

point sources). Finally, septic sources are subject to Septic loss (SepEff). The spatial distributions 

and equations for these loss terms are detailed in Appendix A (Text A2.1 and Text A2.2). 

Before transport, during the calculation of in-situ losses, surface-applied nutrients remaining after 

harvest are partitioned between surface and groundwater pathways with a spatially variable 
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partition parameter (F). This produces surface- and subsurface-mobile nutrient pools within each 

cell. The partition parameter (F) is assumed to vary directly with groundwater recharge. Nutrients 

applied to septic systems are subject to septic loss, then form the septic mobile pool. 

Nutrients from the mobile pools are then subject to basin transport and attenuation, consisting of 

movement to streams from each point on the landscape, with spatially-variable and source-specific 

attenuation occurring along the path. Surface mobile nutrients may flow to streams via either 

overland flow (BS) or agricultural tile drains (BST), in areas where tile drainage exists. While little 

overland flow occurs in most tile-drained areas (King et al., 2014), this assumption may lead to a 

somewhat elevated estimate of overall tile drainage flux versus overland flow. The subsurface 

mobile nutrients are then transported and attenuated through groundwater flow (BG). Transport 

and attenuation of septic-mobile (remaining septic removal) nutrients within septic plumes (BSE) 

is another important groundwater pathway. I separated nutrient transport along this pathway 

because attenuation within septic plumes occurs differently than in general groundwater flow due 

to the distinct chemical characteristics of septic tank effluent.  
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Figure 2.1 Schematic diagram (a) and conceptual framework (b) of the SENSEflux model. In the 

schematic diagram, seven nutrient sources are indicated in blue text. Nutrient transport across the 

landscape via surface and groundwater pathways are indicated with black dashed lines and yellow 

triangles. Basin attenuation terms: BS: Overland flow, BST: tile field, BG: groundwater flow, 

BSE: septic plume. River attenuation term: R: in-stream and lake attenuation. (Based on 

https://www.cityofgriffin.com/departments/storm-water/watershed-management). In the 

conceptual diagram, brown boxes represent nutrient sources, and green arrows pointing left are 

septic onsite removal, crop harvest, and loss in the deep unsaturated zone. Dashed yellow arrows 

are distinct nutrient transport pathways. 

 

 

a. Schematic diagram 

b. Conceptual framework 

https://www.cityofgriffin.com/departments/storm-water/watershed-management
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Nutrients remaining after basin transport are then subject to attenuation via stream and lake 

processes (R). Point sources are applied directly to streams and lakes at this step. Stream processes 

(which here include flow through connected wetland systems) include separate terms for biological 

nutrient uptake, denitrification (N), and sorption/mineralization (P). Lakes are represented with a 

linear uptake term, proportional to the length of the nutrient flow paths that intersects lacustrine-

classified wetlands (i.e., lakes). Detailed descriptions for the derivation of these terms are given in 

Appendix A (Text A2.3).  

This study builds on and renames (here, SENSEflux) the model first presented by (Luscz et al., 

2017), incorporating new loss terms and improving multiple parameterizations. These changes 

were largely necessitated by the greater spatial extent of this model (see section 2.4.1), and thus 

the greater range of landscape and climate characteristics present. First, I added a subsurface in-

situ storage term (Fstor) for phosphorus. I also tested this approach for nitrogen, but as 

parameterized it decreased model fit and led to unrealistic results for groundwater N transport. 

Second, I replaced the simplistic R term in (Luscz et al., 2017), which also relied on a basin-yield 

parameter that dominated the overall stream uptake, potentially skewing results. The new R term 

includes spatially-variable characteristics related to denitrification or sorption, biological uptake, 

and lake losses. Finally, some small adjustments were made to the overall model equation. These 

changes are described in Appendix A (Text A2.1, Text A2.2, and Text A2.3). 

2.3.2: Model Parameter Estimation 

SENSEflux is calibrated separately for N and P, using observed fluxes or concentrations (here, 

concentrations). This study uses annually-averaged fluxes (section 2.4.3) and thus represents 

average annual losses, attenuation, and nutrient delivery. There are 10 (N) and 11 (P) scalar 

parameters in the SENSEflux model; these include four loss and partition terms (SepEff, ExH, F, 
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and Fstor) as linear multipliers, with the remaining attenuation parameters (Bs, Bst, Bse, Bg, Rdn, 

Rbio, and Lacus) as multipliers within an exponent (see equations in Text A2.1). For N, Fstor is 

set to 0. Except for SepEff, all parameters are then optimized via automated parameter estimation. 

SepEff is the efficiency multiplier on septic loads and is set as 0.3 for TN (0.35 for TP) based on 

existing studies (Luscz et al., 2017; Tong et al., 2020; Valiela et al., 1997). While SENSEflux 

could be used to independently calibrate multipliers for both SepEff and Bse (septic basin 

attenuation), here I did not have sufficient data density to independently calibrate both.  

Here I used MATLAB’s constrained non-linear local-minimum optimization routine fmincon. The 

objective function for this optimization was the mean absolute difference (error) between the base-

10 log (termed MAEL) of the observed and simulated nutrient concentrations. Several different 

objective functions were tested, including root-mean-square residuals, and root-mean-square log-

10 residuals. Ultimately MAEL was selected because it more equally weighted both low and high-

concentration locations, a necessity given the wide range of nutrients across the study region 

(section 2.4.1 and Figure A2.0.2 and Figure A2.0.5). I also tested using MAEL with loads, as 

opposed to concentrations, but ultimately selected concentrations because they provided higher 

sensitivity to attenuation parameters. 

2.4: Study Area and Model Inputs 

2.4.1: Study Area: US Great Lakes Basin (USGLB) 

The Laurentian Great Lakes encompass Lakes Superior, Michigan, Huron, Erie, and Ontario, 

which make up Earth’s largest liquid freshwater system, with ~21% of the world’s and ~80% of 

the United States’ surface freshwater supply (L. Zhang et al., 2019). The USGLB includes portions 

of eight US states (Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, and 

Wisconsin). Average precipitation across USGLB varies between 500 and 1600 mm yearly (Figure 
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A2.0.2), and annual average temperatures from 3 to 10 ℃ in the 2010s (OSU, 2014). Forty million 

residents of the United States and Canada depend on this lake system for clean drinking water 

(NOAA, 2019).  

Great Lakes’ ecosystems are being threatened by climate change, invasive species, and degraded 

water quality because of pollutants from residential, agricultural, and industrial activities 

(Kovalenko et al., 2018; Paerl et al., 2016; Sterner et al., 2017). Urbanization, agricultural 

intensification, and failing septic systems are causing contamination across the GLB. Several 

major cities in the southern basin (e.g., Chicago, Detroit, and Cleveland) have significant 

impermeable surface areas that route precipitation directly to aquatic systems via overland flow. 

Most agricultural areas are in the southern portion of the basin (Figure A2.0.2) and produce 

substantial nutrient loads to the lakes (D. M. Robertson et al., 2019). Because of humid continental 

climates and broad areas with very permeable soils and high aquifer recharge, 43% of the USGLB 

coast is vulnerable to groundwater-borne nutrients (Knights et al., 2017; Kottek et al., 2006). 

Harmful Algal Blooms (HABs) in the GLB have been a critical issue for millions who live in the 

region, resulting in negative effects on industries (e.g., fishery, tourism, aquaculture), ecology 

(e.g., fish kills), and public health (e.g., drinking water contamination, toxicity to pets and 

livestock) (Carmichael & Boyer, 2016; Gobler, 2020; Michalak et al., 2013). 

2.4.2: Nutrient Source Inputs: SENSEmap  

To drive SENSEflux, I used the SENSEmap product that describes each of 7 distinct sources (total 

nitrogen, TN) or 6 sources (total phosphorus, TP) at 30 m resolution, ca. 2010. These sources 

include point sources, along with the non-point sources of chemical agricultural fertilizers, 

chemical non-agricultural fertilizers, manure, septic tanks, atmospheric deposition, and N fixation. 

SENSEmap estimates sources using GIS and statistical methods constrained by broadly available 
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data from remote sensing, government databases, and literature (Hamlin et al., 2020a, 2020b). For 

this study, all seven sources were aggregated to 120 m resolution, summing from the 30 m 

SENSEmap values (Figures A2.0.3 and A2.0.4).  

2.4.3: Calibration Data: In-Stream Nutrient Load 

TN and TP loads at sampling sites (TN: 116, TP: 119) within the USGLB, which were used by (D. 

M. Robertson & Saad, 2011b) to calibrate the SPARROW model, were extracted to calibrate and 

validate the SENSEflux model (Figure A2.0.5). Here, averages from 2008 – 2012 were used for 

calibration and validation. Load data was split randomly into two sets: 70% for model calibration 

and 30% for validation. (D. M. Robertson & Saad, 2011b) estimated these loads using the 

Fluxmaster program, which may overestimate nitrogen loads and underestimate TP due to 

uncertainties such as the lack of continuous measurements of concentration and streamflow 

(Richards et al., 2012; D. M. Robertson et al., 2019; Stenback et al., 2011). Nevertheless, they are 

the most complete dataset of annual loads available for the region. 

2.4.4: Basin Characteristics: Groundwater Recharge, Overland Flow Length, Harvested 

Areas, and Tile Drained Areas 

As discussed in section 2.3, spatially variable factors affect the fate and transport of TN and TP 

during both landscape (basin) and in-stream transport. Groundwater recharge (Figure A2.0.1), or 

the amount of water percolating from the surface to the water table, is used to characterize the 

subsurface partition (F) and the fraction of groundwater-pathway nutrients stored in soil and deep 

unsaturated zone (Fstor). Overland flow length was calculated using ArcGIS Hydrology Toolbox 

based on the Digital Elevation Model (DEM) from the National Elevation Dataset (NED) and is 

used as part of the reduction factor for basin pathways. Harvested areas for TN and TP are 

determined by where manure or chemical agricultural fertilizers are applied. A novel tile drainage 
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layer was calculated to evaluate whether nutrients were likely transported via overland flow or tile 

fields. See details for groundwater recharge and tile drainage area calculation in Text A2.4. 

2.4.5: In-Stream/Lake Characteristics: Catchments, In-Stream Travel Time, Streambed 

Exchange Rate, and Lake Travel Distance  

The hydrologic networks move water through catchments and along rivers, with their associated 

drainage basin providing a critical component to hydrologic analysis and modeling (Brakebill & 

Terziotti, 2011). The (~30 m) resolution 1 arc-second DEM from the USGS National Elevation 

Dataset (NED) was used to calculate flow direction and flow accumulation to generate stream 

networks (Gsech et al., 2002). Watersheds were delineated using these sampling sites as pour 

points in the ArcGIS 10.6 Hydrology toolbox. TN and TP watersheds are shown in Figure A2.0.5 

with corresponding loads for each watershed.  

Like the overland flow length calculation in the previous section, in-stream travel time was 

calculated using the ArcGIS Hydrology Toolbox with the NED DEM and the flowlength function. 

For this instance, a cost raster was supplied, calculated as the time/unit distance in each cell (i.e., 

1/velocity). For overland flow portions of the flow path, the cost function was set to 0, while in-

stream velocities were computed from USGS gauge site data as in (Mooney et al., 2020). In-stream 

velocities are used to calculate the biological uptake portion of stream attenuation (equation (2.5) 

in Text A2.1).  

The N denitrification/P sorption portion of the stream attenuation functions was assumed to be 

driven by the rate of exchange between streamflow and the stream bed and the hyporheic zone 

beneath. I calculated this rate of exchange as the ratio of streambed flux and in-stream flow, as 

described in Text A2.3. Ultimately, this exchange rate (Figure A2.0.6, e) is the product and ratio 

of multiple factors, including hydraulic conductivity (Figure A2.0.6, d), slope (Figure A2.0.6, a), 
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basin yield during baseflow (Figure A2.0.6 b), hydraulic radius (Figure A2.0.6, c) and velocity 

(Figure A2.0.6, d). The exchange rate is then used to calculate denitrification/sorption in (equation 

(2.6) in Text A2.1).  

Travel distance in lakes was computed by providing a 0/1 cost raster to the flowlength function in 

ArcGIS, with values of 1 indicating lakes and 0 otherwise. This layer is used to compute lake 

retention (equation (2.7) in Text A2.1). 

2.5: Results and Discussion  

SENSEflux TN and TP annual models performed well (calibration/validation R2 values 0.93/0.86 

and 0.79/0.76, respectively, Figure 2.2), providing estimates of TN and TP loads to the USGLB 

using optimized parameters (Table A2.1). These parameters indicate higher rates of attenuation in 

overland vs. groundwater pathways, and that transport through tile drainage produces the lowest 

attenuation rates of all pathways (see extended discussion in Text A2.5).  

The TN model had a slightly better fit versus TP, with a difference of 14% for calibration and 10% 

validation datasets, respectively. The best-fit line has slopes > 0.75 (TN and TP 

calibration/validation slopes are 0.90/0.76 and 0.77/0.78, respectively), indicating a slight bias 

toward high predictions at low loads, and low predictions at higher loads. Overall, the model 

predicted loads were close to observed values: the mean absolute error of log daily loads (MAEL), 

for TN calibration and validation are 0.14 and 0.17 log10 (kg/day) respectively, 0.22 and 0.28 for 

TP. Analyses of residuals indicate no significant bias for TN, but a slight (statistically non-

significant) underestimate of TP deliveries for the validation dataset (Figure A2.0.7). The residuals 

for TN and TP are not significantly different from zero with P values ranging from 0.4 to 0.65 

based on a one-sample t-test (Figure A2.0.7). The spatial residuals (Figure A2.0.8) are reasonable 

with 83% and 77% of watersheds having residuals (log10) between -0.2 and 0.2 and are 
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significantly clustered spatially with the Moran’s Index of 0.43 and 0.41 for TN and TP 

respectively.  

 

Figure 2.2 Plot of log10 simulated and observed daily loads for model calibration and validation 

datasets. The dashed black line is the 1:1 line. Solid blue and red lines indicate regression fits. n 

refers to the number of observation points in each of the calibration and validation datasets. 

2.5.1: Spatially Varied Nutrient Delivery and Loads to Lakes 

Simulated export of TN and TP varied substantially across the US Great Lakes Basin, with the 

majority of area (~60%) ranging between 128-912 kg/yr/km2 for nitrogen and 4-23 kg/yr/km2 for 

phosphorus, encompassing the ~20th to 80th percentile of nutrient deliveries (Figure 2.3a & 2.3b). 

Over the entire USGLB, mean TN and TP loads are 599 and 21.7 kg/yr/km2, respectively. Broadly, 

spatial patterns are similar for both TN and TP (Pearson correlation coefficient, r = 0.73). For 

instance, both TN and TP are high in the southern Lake Michigan, Saginaw Bay, Western Lake 

Erie, and Lake Ontario basins (Figures 2.3a and 2.3b).  

We also calculated the N:P ratio (ratio of total delivered TN to TP load) across USGLB and each 
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lake basin (Figure 2.3e & 2.3f), which can help us understand the lake trophic status. Overall, the 

USGLB is N enriched, with > 95% (5th percentile of the ratio = 17.85, median of 80.7) of cells 

delivering nutrients above the classical Redfield ratio, defined as an N:P molar ratio of ~16:1. 

Individual Lake basin averages of N:P delivery ratio is between ~58-67 (Figure 2.3f). For 

comparison, basin averages the N:P ratios of SENSEmap nutrient inputs to the landscape from 

(Hamlin et al., 2020a)  vary between ~17-21, except for Lake Superior at 51.6. It is notable that in 

our current study, the delivery N:P ratio for Lake Superior is 62.4, indicating that the watersheds 

draining to this northernmost lake are relatively efficient at routing P to the coastline. In general, 

watershed deliveries to the lakes indicate that P should be the limiting nutrient, as is largely the 

case for non-marine waters in this region.  

Lake Michigan receives the highest TN loads followed by Lake Erie, with 62.9 and 61.5 kt/yr 

nitrogen delivered from US lands to the water, respectively (Figure 2.3c). Lake Erie has the highest 

TP loads followed by Lake Michigan, with 2.4 and 2.3 kt/yr phosphorus delivery (Figure 2.3d). 

Lake Huron, Ontario, and Superior have much lower deliveries, all at or below 24 kt/yr nitrogen 

and 0.8 kt/yr phosphorus. This is consistent with the larger US drainage basins of Lakes Michigan 

and Erie among the Great Lakes. I also calculated nutrient yields, defined as nutrient fluxes divided 

by drainage basin area (Figures 2.3c & 2.3d). Not surprisingly, Lake Erie has the highest yields 

for both TN and TP, with nitrogen yields of 1148 kg/yr/km2 and phosphorus yields of 43.5 

kg/yr/km2. Lakes Huron and Michigan have similar nitrogen yields (567 and 544 kg/yr/km2, 

respectively) and phosphorus yields (18.6 and 20.1 kg/yr/km2, respectively). Lake Superior has 

the lowest nitrogen (218.3 kg/yr/km2) and phosphorus yields (7.7 kg/yr/km2).  

To evaluate the nutrient loading from SENSEflux, I compared simulated TN and TP loads with 

the GLB SPARROW model(D. M. Robertson & Saad, 2011b), which is the most comparable 
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model with the closest timeframe and is widely used as a watershed nutrient load predictor. 

Overall, the total modeled delivery of TN and TP from USGLB to the lakes using SENSEflux are 

0.37 and 0.45 times lower than simulated loads from the SPARROW model for TN and TP, 

respectively (Figure A2.0.9). More details about the reasons for these differences can be seen in 

Text A2.5.  

 
Figure 2.3 Predicted nutrient delivery as yield (kg/km2/yr) to Great Lakes shoreline and 

summarized nutrient loads by lake basin (black outlines) within the USGLB. TN (a) and TP (b) 

yields are direct outputs from SENSEflux that are resampled to 720 m resolution for display 

purposes and classified in quantiles, within which each color represents ~20% of the USGLB area. 

Bars in (c – TN) and (d – TP) represent the total basin-accumulated fluxes and yields (area 

normalized) for each nutrient. Map of N:P yield molar ratio at 720m resolution across USGLB, 

rounded to the nearest 1 (e); bar chart of mean N:P load molar ratio by lake basin within USGLB 

(f).  
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Figure 2.3 (cont’d) 

The average TP load from Lake Erie watersheds calculated by (Maccoux et al., 2016) was equal 

to 5.7 kt/yr for 2008-2012 (excluding direct Point and Municipal sources). Thus, the estimate 

presented here is roughly 42% of that from Maccoux et al. This difference is dominated by an 

underestimate of loads to Lake Erie from just one tributary, the Maumee River, which suggests 

some important pathway or source mechanism may be missing or underestimated within 

SENSEflux. Future work will continue to refine nutrient input mechanisms and specifically 

examine varying seasonal loads—given the established importance of winter and spring deliveries 

in that basin (Stow et al., 2015). 

2.5.2: Nutrient Delivery Efficiency and Hotspots 

SENSEflux provides a fully spatially-explicit estimate of nutrient deliveries, allowing a novel view 

of the landscape: nutrient delivery efficiency, defined as the ratio of deliveries to inputs (Figure 

2.4a & 2.4c). Median cell-by-cell TN delivery efficiency was 14.6%, while TP was just 3.7%. In 
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general, northern portions of the GLB have higher delivery efficiency, as do urban areas. Basin-

averaged delivery efficiencies range between 11 - 16.5% for N and 2.8 – 4.9% for P in all lakes 

except for Superior (Figure 2.4b & 2.4d). There, the basin is remarkably efficient at delivering 

nutrients, sending almost 28% of input N and 23% of input P to the coastline. Cumulatively over 

the entire region, TN delivery efficiency was 14.6% (coincidentally the same as the median cell-

by-cell delivery value), while TP was 4.3% (see Figure 2.0).  

 
Figure 2.4 The ratio between nutrient delivery and apply (defined as efficiency here) for TN (a) 

and TP (b) across the USGLB and summaries by lake basin (b & d). Nutrient hotspots are 

determined as high yield (x-axis) and efficiency (y-axis) areas in bivariate choropleth maps for TN 

(c) and TP (d).  

Deliveries are the result of both inputs and the cumulative storage and attenuation processes along 

transport pathways. Figures A2.0.10 and A2.0.11 in Appendix A are maps of the loss and 

attenuation for N and P, respectively. Harvest is the dominant loss process across most of the 

domain, providing the broad N-S gradient seen in delivery efficiencies (Figures A2.0.10a, 
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A2.0.11a). Stream and lake attenuation variability (Figures A2.0.10c, A2.0.11d) occurs at 

moderate scales, driven in large part by the travel time from the coastline. Basin transport 

attenuation (A2.0.10b, A2.0.11c) varies at the shortest scales, responding to distance from streams, 

tile vs. overland transport, and the presence of septic systems. 

Combining nutrient deliveries (Figures 2.3a & 2.3b) with delivery efficiencies (Figures 2.4a & 

2.4c) produces a novel view of landscape nutrient transport function: delivery hotspots, quantified 

by terciles and presented in a bivariate colormap (Figures 2.4e and 2.4f). Areas of the landscape 

with both high loading and delivery efficiency (highest 33%) are the most intense sources of loads 

to the coastline (shown in blue on the hotspot maps). These are predominantly urban areas, 

particularly for TP. Next, areas with high delivery (highest 33%) but low efficiency (lowest 33%, 

teal on the hotspot maps), are agricultural areas generally more distant from the coastline. Areas 

with low delivery (lowest 33%) but high efficiency (highest 33%) are highlighted in magenta and 

concentrated in the northern areas of the region. Although they do not generate substantial total 

deliveries, their high delivery efficiency (ratio of deliveries to inputs) makes them of conservation 

interest. In general, areas with high delivery efficiency would be ideal targets for conservation 

efforts, because reducing these inputs has a correspondingly high influence on marginal deliveries.  

2.5.3: Leading Sources of N And P Fluxes to The Great Lakes  

Agricultural sources, including manure, chemical agricultural fertilizer, and nitrogen fixation, 

dominate nitrogen fluxes, totaling ~58% of all fluxes from the USGLB (Figure 2.5a). Agriculture 

was the largest nitrogen source of each lake, except for Lake Superior where atmospheric 

deposition dominated (91%).  

Phosphorus fluxes were also dominated by agricultural sources (manure and chemical agricultural 

fertilizer) in USGLB (~46%, Figure 2.5b). On the lake basin scale, phosphorus fluxes in Lakes 



 

30 

 

Michigan, and Ontario are driven by agricultural sources because of large manure inputs, while 

Lakes Erie and Huron had higher inputs from chemical agricultural fertilizer. Specifically, Lakes 

Michigan and Ontario had 46% and 60% phosphorus loads from agricultural sources, with manure 

accounting for 27% and 40% of inputs, and 19% and 20% from chemical agricultural fertilizer, 

respectively. For Lakes Erie and Huron, agricultural sources appear to contribute 49% and 46%, 

where agricultural chemical fertilizer was the dominant source (35% and 30%).  

Urban sources, including chemical non-agricultural fertilizer, septic tanks, and point sources, 

account for only 12.5% of N contributions but 34% of total P in the USGLB (Figures 2.5a and 

2.5b). The contributions of these three sources for TN delivery are similar, with 4.1% of the point 

source, 3.8% of septic tanks, and 4.6% of chemical non-agricultural fertilizer. However, the point 

source accounts for 16.8% of TP delivery. The relatively lower point source contribution for TN 

demonstrates the effectiveness of the CWA and National Pollutant Discharge Elimination System 

(NPDES) permitting system. The other major urban source for TP transport is chemical non-

agricultural fertilizer (14.7%), which is largely applied to golf courses and lawns. This is supported 

by (Baris et al., 2010) who found that 86% of surface water samples had phosphorus concentrations 

above the criteria set by the US Environmental Protection Agency, after comparing nitrate and TP 

concentrations from golf courses across the United States. It’s critical to ensure the effective use 

of fertilizers in urban systems, and use best management practices to reduce nutrient transport 

(Bock & Easton, 2020), especially for TP. 
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Figure 2.5 Estimated percent of nutrients delivered to lakes by source. Donut figures represent the 

USGLB while rotated stacked bar plots show each lake basin within the USGLB. The black donut 

circle was divided into agricultural sources (brownish), urban sources (greenish), and atmospheric 

deposition sources (mint tulip) with corresponding percentages.  

Atmospheric deposition is an important contributor of N and P, consisting of 29% of TN and 20% 

of TP sources in the USGLB (donuts in Figure 2.5a and 2.5b). This is largely because of the 

dominant role (91% of TN, 81% of TP sources) that atmospheric deposition plays in Lake 

Superior, which has severe stoichiometric imbalance with high N and low P concentrations 

(Sterner, 2011). Unfortunately, atmospheric deposition can be difficult to manage, and research 

has found that current policies and technologies may not be sufficient to reduce deposition under 

critical loads (Clark et al., 2018; McCrackin et al., 2017).  

In summary, although management actions have focused on agricultural sources for decades, they 

still dominate TN and TP transport and delivery across most of the USGLB. While approximately 

71% and 88% of TN and TP sources applied to the landscape are from agriculture (Hamlin et al., 

2020a), only 58% and 46% of TN and TP are delivered to USGLB. This means that even though 

a higher percentage of agricultural phosphorus source is applied to landscapes, less percentage of 
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phosphorus is delivered to aquatic ecosystems in these lower delivery efficiency areas. These 

disproportional differences between sources and fates show the importance of nutrient transport 

and the natural differences between TN and TP attenuation.  

2.5.4: Nutrient Delivery Pathways: The Dominant and The Underappreciated 

We summed nutrient deliveries by transport pathways across the USGLB, shown ranked from 

highest to lowest proportion (surface (tile fields + overland) > subsurface (groundwater + septic 

plume) > point) for TN and TP within the USGLB (Figure 2.6). Our results agree with prior work 

that indicates surface pathways dominate transport (Baker et al., 1975; Ryden et al., 1974; Sims et 

al., 1998), contributing the largest proportion of TN and TP (66% and 76%) delivery to the lakes. 

Others have shown that overland flow was the primary export pathway for both P and N, but tile 

drainage cannot be overlooked (Kokulan et al., 2019; D. Smith et al., 2015) and contributes almost 

½ of some TP loads (D. Smith et al., 2015). I found that overland flow was the primary pathway 

(40%) for TP delivery to the US Great Lakes. TN was dominated by tile fields (46%) and 36% of 

TP was transported by tile fields, showing tile drainage delivers large quantities of nutrients, 

especially nitrogen to the Lakes and is thus critical to manage. 

Subsurface pathways (groundwater flow and septic plumes) transport an important proportion of 

nutrients to the lakes, with about 30% of TN and 6.8 % of TP (Figure 2.6). The groundwater flow 

pathway dominates the subsurface transport of nitrogen (26% of total transport), likely due to 

nitrogen’s high mobility. I found that septic plumes contributed 3.8% of total nitrogen (2% of TP) 

to lake loading. Other studies have indicated that septic systems are important nutrient sources (L. 

E. Oldfield et al., 2020; Reay, 2004), yet they are rarely accounted for and commonly overlooked. 

The pathway proportions from the point source are 4.1% for TN and 16.8% for TP, demonstrating 

more efforts are needed to reduce phosphorus loads to the Great Lakes. Note our maps do not 
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include direct discharges of point sources to the Great Lakes coastline. 

 
Figure 2.6 Estimated percentages of total nutrients delivered to lakes by pathways (surface: 

overland and tile fields; subsurface: groundwater and septic plume).  

2.5.5: Heterogeneous Pathways 

Surface pathways dominated nutrient contributions within each Lake basin (Figure 2.7a & 2.7b). 

In the Lake Superior basin, overland flow dominates nutrient transport, with 61% of TN and 86% 

of TP. In the Lake Michigan basin, tile drainage transported 45% of TN (23% by overland flow) 

and 33% of TP (46% by overland flow). Tile fields delivered more nutrients than overland flow in 

Lakes Erie and Huron basins. This supports earlier work that found tile drainage to be the primary 

pathway for nutrient delivery to streams in the western Lake Erie basin(D. Smith et al., 2015; 

Williams et al., 2018). In the Lake Ontario basin, tile fields transported 42% of nitrogen (23% for 

overland) and 37% of phosphorus (40% for overland).  

Subsurface pathway (septic plume and groundwater) contributions varied across the five lake 

basins (Figure 2.7a & 2.7b). The bulk groundwater flow pathway (excluding septic plumes) 

contributed substantially across the lake basins, ranging from 24% in the Lake Erie basin to 34% 
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in the Lake Superior basin for N. Conversely, about 4.8% (4.1% - 5.5%) of phosphorus was 

transported via the groundwater pathway. The proportion of nitrogen load from the septic pathway 

varies from 2% in the Lake Superior basin (1% for TP) to 4.4% in the Lake Huron basin (2.8% for 

TP). Controlling much of the landscape nutrient delivery to the USGLB, Michigan is one of the 

few states in the US without a statewide septic code governing septic system installation, 

maintenance, and repair (J. Alexander, 2013) although discussion and development of such a code 

is ongoing. 

To further investigate the heterogeneity of nutrient delivery, I mapped the amount of TN 

transported through our four basin transport pathways to streams (overland flow, Figure 2.7c; tile 

fields, 2.7d; groundwater, 2.7e; septic plume, 2.7f). Maps for TP transport pathways are shown in 

Figure A2.0.12 because of space limitations and overall similar spatial patterns in TN and TP 

pathways. For instance, overland transport pathways are high (> 238 kg/km2/yr TN, > 11.97 

kg/km2/yr TP,) in the southern Lake Michigan basin, eastern Lake Ontario basin, and some urban 

areas (i.e., Detroit, MI; Cleveland, OH; Buffalo, NY; Rochester, NY). The tile field pathway is a 

major contributor (> 1053 kg/km2/yr TN, > 27.71 kg/km2/yr TP) in agricultural areas (e.g., 

Southern Lake Michigan basin, Saginaw Bay, western Lake Erie, and Lake Ontario basins), likely 

due to high chemical fertilizer and manure inputs, along with higher tile drainage density. Lakes 

Erie, Ontario, and southwestern and the thumb area of Lake Michigan showed higher TN and TP 

delivery through groundwater flow, possibly due to higher groundwater withdrawal rates in these 

areas and elevated nitrate concentrations (Hamlin et al., 2022). The septic plume yields were 

highest around large cities, where dense suburban populations are not yet connected to sewer 

systems. 

These results also show substantial variability across the USGLB basins, with different dominant 
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pathways in different Lake basins (Figure 2.7). Specifically, as the installation of tile drainage 

expands or intensifies, fluxes from tile drainage will likely become more important. 

  
Figure 2.7 The estimated total yield of TN delivered to lakes by four key pathways. (a) and (b) are 

for TN and TP pathways by lake basin, (c) – (f) for TN overland, tile fields, groundwater, and 

septic plume respectively. Maps are resampled from 120 m SENSEflux outputs to 720 m resolution 

here for display purposes and classified in quantiles, with each color representing 20% of the 

dataset; the white area in c & d within the basin boundary represents areas with no data as I 

assumed overland and tile fields are alternative pathways. Corresponding maps for TP are included 

in Figure A2.0.12. 
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2.6: Implications, Limitations, and Future Work 

This study uses a spatially explicit nutrient transport model to help understand the fate and 

transport of total nitrogen and phosphorus from multiple sources along different pathways. 

Modeling distinct transport pathways provides a novel alternative to many models that do not 

include important pathways, particularly groundwater and septic plumes. Our analysis shows that 

overland flow and tile fields are major pathways of nutrient transport, but subsurface transport 

plays an important role. Specifically, tile drainage is highest in Lake Erie, transporting 44% more 

TN and 15% more TP than the overland pathway, suggesting the increasing installation of tile 

drainage may have significant effects in other regions. For subsurface pathways, groundwater and 

septic plumes provide 30% of TN delivery and 6.8% of TP. This will become even more important 

when we consider legacy nutrients that often have long groundwater travel times (Martin et al., 

2011, 2017, 2021). Thus, these subsurface pathways should not be ignored in water quality 

management and policy.  

Agricultural nutrient sources (manure, chemical fertilizer, and nitrogen fixation) have played a 

dominant role in the Great Lakes Basin’s history and will be a critical part of its future. I also found 

that atmospheric deposition is a significant source of nitrogen, and septic tanks contribute 

significant nitrogen and phosphorus loads to the environment. Groundwater also plays a substantial 

role in transporting nutrients from the landscape to streams, and eventually to the Great Lakes 

coastline. These findings can be used along with the SENSEflux and SENSEmap products (Hamlin 

et al., 2020a) for the US‐GLB to provide managers with spatially explicit loading, efficiency, 

source, and pathway estimates. For example, the Tipping Point Planner Program links watershed 

data to local decision-making processes(Weinstein et al., 2021) (tippingpointplanner.org), thereby, 

the addition of SENSEflux can help managers focus actions on specific sources and pathways. The 
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information presented here can provide important inputs to this community-facing tool.  

Future research could improve nutrient flux and pathway estimates for the Great Lakes Basin, 

which would help inform more holistic decisions to achieve nutrient reduction strategies. A more 

accurate tile drainage map would improve estimates of the contributions of this pathway to the 

waterways in the basin. In addition, the role of septic plumes in phosphorus delivery and lakes that 

don’t have a connection with streams should be further explored to seek ways that protect water 

quality by reducing N and P loads. Also, this modeling assumes that all landscape input nutrients 

have had sufficient time to reach the streams where concentrations are observed and that nutrient 

inputs aren’t changing meaningfully over decadal time scales. Future efforts could include time-

varied surface loads, along with estimates of legacy timescales and travel times.  
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CHAPTER 3: SEASONAL VARIATION OF NITROGEN AND PHOSPHORUS SOURCES, 

PATHWAYS AND LOADS: A SPATIALLY EXPLICIT MODEL SENSEFLUX 

3.1: Abstract 

Excess nitrogen and phosphorus can cause algal blooms, which limit recreational activities, 

increase costs to treat drinking water, and can be toxic to human and aquatic life. In temperate 

climates, there is a consensus that nutrient delivery to streams and rivers increases during snowmelt 

periods. However, the quantification of total nitrogen and phosphorus loading, sources, and 

pathways across hydrologic seasons is not well-known. Here I updated the Spatially Explicit 

Nutrient Source Estimate and Flux model (SENSEflux) with a seasonally dynamic approach to 

simulate nutrient loadings, sources, and pathways to the US Great Lakes. Specifically, I examined 

two distinct hydrologic conditions: snowmelt, early spring conditions with characteristically high 

flows, and baseflow, mid- to late-summer where the bulk of streamflow originates from 

groundwater discharge. Results show that total nitrogen loading during snowmelt periods is four 

times greater than annual average deliveries. The contribution of agricultural sources (chemical 

agricultural fertilizer, manure, and N fixation) is substantially higher (14% for TN and 5% for TP) 

during melt than baseflow, while point sources, septic tanks, and atmospheric deposition become 

more prominent contributors to nutrient delivery during baseflow. In addition, most nutrients are 

transported via overland flow and tile fields regardless of the period. Groundwater and septic 

plume pathways also play an essential role in transporting nutrients and become more significant 

during baseflow. Nutrient delivery hotspot analysis shows that targeting nutrient reductions during 

snowmelt is more effective than focusing on baseflow, especially for TN. The optimal location for 

nutrient reductions during baseflow would be those areas with high nutrient deliveries spatially. 

Thus, seasonal variation of nutrient transport should be considered when establishing nutrient 
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criteria and reduction targets. These results and high-resolution (120 m) SENSEflux output 

products provide decision-makers with nutrient reduction insights. In addition, the SENSEflux 

model can be readily applied to other regions with nutrient management issues.  

3.2: Introduction 

Nitrogen and phosphorus enrichment are two of the most detrimental and costly stressors in surface 

waters, degrading water quality and causing eutrophication in the world’s stream, coastal, and lake 

systems (Abell et al., 2010; R. B. Alexander & Smith, 2006; Azzari et al., 2019; Huggins et al., 

2023; K J Van Meter & Basu, 2017; Pearce & Yates, 2020; K. Yan et al., 2019). Due to irregular 

occurrences (i.e., heavy precipitation, melting snow) and seasonal agricultural activity such as 

fertilization (Rixon et al., 2020), nutrient delivery can be continuous but is frequently intermittent. 

For instance, 42–92% of the annual total phosphorus (TP) load and 41–81% of the total nitrogen 

(TN) load were delivered during snowmelt in the Red River sub-watershed (Corriveau et al., 2013). 

The seasonal nutrient delivery then alters its concentration in rivers, streams, and downstream 

waterbodies. Another example for the Upper Mississippi River Basin is that TN concentration was 

found to be lowest in September, remain steady through the winter and increase further in the 

spring season due to fertilizer application (Wine et al., 2020). In addition, excessive nitrogen and 

phosphorus pollution in aquatic systems frequently causes seasonal summertime algal blooms and 

hypoxia events (Bechard, 2020; Carmichael & Boyer, 2016; Gobler, 2020; Mchau et al., 2019; 

Pretty et al., 2003). Thus, simulating the seasonal dynamics of nutrient export and understanding 

the seasonal contributions of sources and pathways are crucial for managing nitrogen and 

phosphorus delivery and implementing nutrient reduction strategies (LaBeau et al., 2015; Mayorga 

et al., 2010b; Tong et al., 2019). 

Climate and environmental changes have been identified that affected nutrient delivery and 
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exacerbated nutrient pollution, such as heavy precipitation and increased streamflow, rising water 

and air temperatures, and agricultural activities (Hallegraeff et al., 2021; Heil & Muni-Morgan, 

2021). Precipitation and subsequent runoff mobilize and transport nutrients (dissolved and 

particulate) from upland sources to downstream water bodies. For instance, in an agricultural Lake 

Mendota watershed, Wisconsin, most phosphorus was transported in the spring during the high 

flow period (Huisman et al., 2017). However, phosphorus pollution was also found to being the 

most serious in low-water season in the Qiuxi River, China, with high risk of phosphorus release 

from sediment (Xuemei Chen et al., 2021). Air and water temperature also affect nitrogen and 

phosphorus differently, such as changing the biological activity rate, solubility, transformation, 

and biogeochemical cycling processes. The reaction rates, mineralization, and denitrification have 

been shown to increase with higher temperatures (Alam & Dutta, 2013; Hartman et al., 2014; Paerl 

et al., 2011), while excessive temperature can cause nutrient loss and ecological impacts. 

Furthermore, the variation and magnitude of nitrate loads were higher at the beginning of the 

growing season due to fertilizer applications in the northern Red River basin (Nasab et al., 2018). 

These cases have demonstrated that the importance and complexity of nutrient transport has been 

recognized by many researchers. However, because the coverage of nutrient monitoring and 

availability of natural and anthropogenic nutrient sources, particularly at large scales, are 

frequently limited, the quantification of nutrient loadings, sources, pathways, and hotspots is 

inevitably involved with watershed modeling.  

Nutrient models have been developed to quantify loads and the contribution of sources and been 

used for nonpoint source pollution management decisions (Wellen et al., 2015). As one of the most 

widely used process-based watershed models, the Soil and Water Assessment Tool (SWAT) 

simulate nutrient loadings based on the Hydrologic Response Units (HRU), which are aggregated 
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land areas using unique combinations of land use and land cover, soil type, and topography (Arnold 

et al., 1998; Bosch, 2008). SWAT predicts nutrient delivery and transport based on lumped 

parameters within each sub-watershed. The SPARROW model was developed by the United States 

Geological Survey (USGS) that estimates the quantity of contaminant delivered downstream based 

on monitoring data, location, and landscape characteristics (Preston et al., 2011; R. A. Smith, 

Schwar, et al., 1997). It has been applied to US watersheds, such as the Mississippi River basin 

and Chesapeake Bay watershed (M. P. Miller et al., 2020; D. M. Robertson & Saad, 2013), as well 

as some binational watersheds (Benoy et al., 2016; D. M. Robertson et al., 2019). Recently, a 

seasonally dynamic application of SPARROW was developed and showed that seasonally varying 

streamflow and temperature were significant drivers of nitrogen and phosphorus uptake in 

northeastern US river corridors (Schmadel et al., 2021). Another model example is the first global, 

spatially explicit model, named the Global Nutrient Export from WaterSheds (NEWS). NEWS 

was developed to estimate nutrient export at river mouths based on basin-scale nutrient budgets 

and seasonal inputs (Mayorga et al., 2010b; Seitzinger et al., 2005). For example, calendar seasons 

(i.e., spring, summer, autumn, and winter) were used to simulate dissolved inorganic nitrogen in 

the world’s largest rivers (McCrackin et al., 2014). Thus, simulating nutrient fluxes and their 

transport and delivery can benefit from modeling that relates climatic and hydrological drivers 

with landscape and in-stream processes to identify hotspots and moments and inform watershed 

management. However, the implementation of current watershed models still requires 

improvements due to the absence of spatial heterogeneities within basins and limited information 

on hydrological seasonal variations, thus existing models are generally applied to annual loadings 

and do not consider seasonal variabilities of nutrient loadings, sources, and pathways.  

To address these limitations, Luscz et al. (2017) developed a spatially explicit nutrient transport 
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model that simulate the seasonal differences in nutrient sources, pathways, and processes in the 

Lower Peninsula of Michigan. This seasonal pathway and process model was inspired by 

SPARROW but differs in different ways. For instance, this model has spatially explicit description 

of nutrient sources and basin features, thus describing spatially explicit nutrient attenuation along 

nutrient transport pathways. Also, it models temporally-variable transport and predicts seasonal 

variabilities.  

Here, I substantially improved the previously published nutrient transport modeling work (Luscz 

et al., 2017) and SENSEflux annual model (see Chapter 2) to predict seasonal nitrogen and 

phosphorus loading variations from the United States Great Lake Basin (USGLB) to the Great 

Lakes. This new SENSEflux seasonal model includes major updates on seasonal mobility of 

applied nutrients across the landscape and seasonal nutrient retention in streams and rivers. These 

SENSEflux seasonal models are then able to quantify the contributions of seven nutrient sources 

and four distinct basin pathways to in-stream nutrient concentrations. More specifically, two 

distinct hydrologic conditions were chosen, early spring snow melt with very high flows that flush 

nutrients and the late summer baseflow primarily representing groundwater transport pathways. 

This research seeks to clarify the critical times and locations for nutrient delivery, enabling 

watershed managers to implement cost-effective nutrient reduction strategies.  

3.3: Materials and Methods 

3.3.1: Study Area and Definition of Hydrological Seasons  

The Great Lakes are one of the world’s largest surface freshwater systems, consisting of Lakes 

Superior, Michigan, Huron, Erie, and Ontario (Figure 3.1). It stores approximately 84% of North 

America's surface freshwater and 21% of the world’s surface freshwater. The Great Lakes Basin 

covers significant portions of the United States and Canada. It provides drinking water and 
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annually attracts tens of millions of visitors (Cotner et al., 2017). However, harmful algal blooms 

(HABs) have been found throughout the Great Lakes Basin. These have adverse ecological and 

economic effects and threaten human health, including the contamination of drinking water 

(Michalak et al., 2013). In the summer of 2014, one of the most notable HABs led to a three-day 

tap water prohibition in Toledo, Ohio. Due to data availability, this study focuses on the United 

States side of the Great Lakes Basin (USGLB), which includes portions of eight states: Illinois, 

Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, and Wisconsin.  

The Great Lakes are expansive, spatially diverse, and dynamic. Their physical characteristics, such 

as climate, soil, and land use, vary across the basin (Sterner, 2020). For instance, the USGLB is 

temperate and sub-humid, including Koeppen-Geiger zones Dfa and Dfb, which represent hot-

summer and warm-summer humid continental climates, respectively (Rubel & Kottek, 2010). The 

climate has changed considerably over the past several decades. From 1910 to 2015, the annual 

mean temperature increased by 1.6 ℃, exceeding the average change of 1.2 ℃ for the remainder 

of the Continental United States (CONUS). Over the same time, precipitation increased by nearly 

10%, with more coming from extreme events (Wuebbles et al., 2019). Additionally, snow is 

essential to the regional energy budget, hydrological cycle, and human activities (Ford et al., 2020, 

2021). For instance, snow results in adverse effects such as snowmelt-induced flooding and 

nutrient transport (Suriano et al., 2019), although less ice and fewer freezing days are predicted for 

the Great Lakes. Overall, it is widely acknowledged that climate change is a significant driver of 

change in the Great Lakes.  

Mixtures of clays, silts, sands, gravels, and boulders were deposited as glacial drift or as glacial 

river and lake sediments in the southern USGLB. In contrast, the northern USGLB has a typically 

thin layer of acidic soil atop bedrock. The Great Lakes region is renowned for its abundant and 
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diverse agricultural production. Its fertile lands provide ideal conditions for growing maize, 

soybeans, winter wheat, and 15 percent of the nation’s dairy products. Most agricultural planting 

occurs in the southern portion of the basin, whereas the northern portion remains forested. As a 

result of increased yields and arable area from tile drainage installation, the southern basin 

continues to use and enhance its drainage systems. However, they pose nutrient pollution issues 

for the Great Lakes, particularly in wet years (S. A. Miller & Lyon, 2021b).  

Throughout this manuscript, we use the phrase “hydrologic season” to denote the times during 

which a set of hydrologic conditions (i.e., high-flow “snowmelt” and low-flow “baseflow”) occur. 

Within the USGLB, high streamflow “snowmelt” conditions occur most frequently during a 

calendar period extending from March 1 to April 15. Similarly, low-flow “baseflow” conditions 

occur most often from July 15 to September 15. Within these calendar periods, hydrologic 

conditions were determined based on streamflow. This distinction allows for stream nutrient 

samples collected during the hydrologic season to be filtered to include only those that meet the 

definition for snowmelt or baseflow conditions.  

3.3.2: Seasonal Nutrient Concentrations, Loads, and Watershed Delineation 

Comprehensive TN and TP concentrations were downloaded from the STOrage and RETrieval 

Data Warehouse (STORET) via the Water Quality Portal (WQP, www.waterqualitydata.us). WQP 

was developed by the US Environmental Protection Agency, USGS, and the National Water 

Quality Monitoring Council (Blodgett et al., 2016). It is the largest standardized water quality 

database and provides hundreds of millions of data dating back over a century for sites in 

groundwater, inland, and coastal waters (Read et al., 2017). The database from multiple sources is 

invaluable for understanding the historical and current water quality of Nation’s rivers, while some 

records lacked or contained ambiguous metadata; parameter names; sample fractions (e.g., filtered, 

http://www.waterqualitydata.us/
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unfiltered, dissolved, total, and others) and units of measurement (Sprague et al., 2017).  

In this study, I focus on total phosphorus (TP) and total nitrogen (TN). TN, unlike TP, has 

numerous related characteristic names, including inorganic and organic forms. Ammonia, 

ammonium, nitrate, and nitrite are the inorganic forms of N. Total Kjeldahl nitrogen (TKN), the 

sum of organic nitrogen, ammonia, and ammonium, is the standard laboratory method for detecting 

organic nitrogen. While definitionally true, available data from both hydrologic seasons show an 

essentially equivalent relationship between TN and the sum of total nitrate (NO3
-), nitrite (NO2

-), 

and TKN (R2 = 1, slope ~ 1, Figure A3.0.1). Thus, I imputed TN values for sites without 

measurements using the sum of NOx
- and TKN. For TP, I used sites that have total phosphorus 

measurements.  

To filter nutrient samples for hydrologic conditions, I first calculated the streamflow percentiles 

for each site using estimated streamflow (Mooney et al., 2020) from 2008 to 2012 during our study 

period (circa 2010). Then, during the snowmelt season, I only included nutrient measurements 

when streamflow exceeded the 70th percentile (for baseflow, less than the 30th percentile). 

Following the below steps, the TN and TP loads on effective seasons (baseflow and melt) for each 

site were calculated; see also Figure A3.0.2. First, I match the estimated streamflow to the site-

specific concentration. Secondly, loads are determined by multiplying the concentration by 

streamflow. Thirdly, each site's mean Load was calculated by averaging the load from the second 

step. Fourth, the median flow at each site from 2008 to 2012 is provided. Finally, the concentration 

at each site was calculated by dividing the mean load by the median flow. For this study, 

concentrations are used to calibrate and validate the models. At the same time, mean loads are 

employed as observed loads for each site and compared to the simulated loads (median flow times 

simulated concentration). Annual loads are downloaded from the Great Lakes Basin’ application 
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of the SPARROW model (D. M. Robertson et al., 2019). 

After filtering by hydrologic conditions, I compiled concentrations for 370 TN (463 TP) sites 

within the GLB during snow melt season, and 571 TN (1000 TP) sites during baseflow, see site 

concentrations and distributions in Figure A3.0.3. Watersheds were delineated using the ArcGIS 

Hydrology toolbox for all the sites with concentration (Figure A3.0.3) and streamflow data. DEM 

from USGS NED at 30 m resolution was utilized to calculate flow direction and flow accumulation 

to generate stream networks, which were then utilized to generate watershed polygons and raster 

(Gsech et al., 2002). The distribution of watershed size is shown in Figure A3.0.4.  

3.3.3: SENSEflux Model and Modifications for Seasonal Predictions 

3.3.3.1: SENSEflux Seasonal Model Overview  

Dynamic modeling of nutrient transport and fate has the potential to simulate seasonal nutrient 

loadings to streams and lakes. I updated SENSEflux from its annual model (see Chapter 2) and the 

seasonal model that was previously published version of the SENSEflux model (Luscz et al., 2017) 

to simulate seasonal nitrogen and phosphorus loadings, sources, pathways, and hotspots. Major 

updates include seasonal mobility that are derived to compare nutrient concentrations and fluxes 

across landscape processes with yearly conditions, seasonal in-stream, and lake retention, and 

SENSEflux seasonal models are calibrated and validated with nutrient concentrations and fluxes 

during hydrological seasons See more details regarding the major updates in section 3.3.4. With 

these model updates, SENSEflux seasonal models simulates nutrient loading in snowmelt and 

baseflow with three seasonally variable parameters for surface basin reduction (bs), biological 

uptake in rivers (Bio) and lake attenuation (Tsettl). Because I do not have information about when 

nutrients are applied (also, when those become mobile), I use annual average nutrient inputs, with 

seasonal mobility inferred from hydrologic flux variability, to simulate nutrient loading.  
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SENSEflux employs a mass balance approach to simulate nutrient transport, see equation 3.1. 

Specifically, SENSEflux has four major components: (1) nutrient sources; (2) in-situ losses; (3) 

seasonally variable basin attenuation; and (4) seasonally-varied river and lake attenuation. Sources 

are spatially explicit and include five surface-applied sources (agricultural chemical fertilizer, 

manure, nitrogen fixation, non-agricultural chemical fertilizer, and atmospheric deposition), noted 

as other sources in equation 3.1, septic tanks (Ssep), and points sources (Spoint) (Hamlin et al., 

2020a).  

𝐿𝑘 =  ∑ 𝑅𝑗𝑇𝑠𝑒𝑡𝑡𝑙𝑗 × {𝑆𝑝𝑜𝑖𝑛𝑡 + {𝐺𝑠𝑚𝑆𝑠𝑒𝑝(1 − 𝑆𝑒𝑝𝐸𝑓𝑓)𝐵𝑠𝑒𝑗

𝑐𝑒𝑙𝑙𝑠

𝑗

+ ∑ 𝑆𝑖𝑗

𝑜𝑡ℎ𝑒𝑟 
𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑖

× 𝐸𝑥𝐻𝑖𝑗

× [𝑆𝑠𝑚(1 − 𝐹𝑗)𝐵𝑠𝑗 + 𝐺𝑠𝑚𝐹𝑗(1 − 𝐹𝑠𝑡𝑜𝑟𝑖𝑗)𝐵𝑔𝑗] 

(3.1) 

𝑅𝑗 = 𝑒−𝛼∗𝐷𝑁𝑆𝑃𝑗 ∗  𝑒−𝛼1∗𝐵𝑖𝑜𝑗 (3.2) 

Harvesting (ExH), storage (Fstor), and septic removal (SepEff) are assumed the active processes 

during basin transport and represented as in-situ losses in SENSEflux modeling. Nutrient losses in 

the root zone, such as uptake by plants, denitrification, sorption, and P mineralization, are lumped 

as the Harvest term. Moreover, it has been assumed that these losses only occur in areas where 

manure or agricultural chemical fertilizer is applied. Specifically, surface-applied nutrients are 

harvested (ExH) first, and the remaining nutrients are partitioned between surface and groundwater 

pathways, and further formalized nutrient mobile pools. This partition is determined by a spatially 

variable parameter (F) that varies in direct proportion to the groundwater recharge fraction. 

Nutrient storage, such as in-place storage and nutrient losses below the root zone, and I assume 

the storage only applied to phosphorus because of the relatively high mobility of nitrogen in 

subsurface systems. A fixed percentage of nutrient removal is applied to septic sources.  
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After partitioning between surface and groundwater pathways, storage of P below the root zone, 

and addition of septic sources, seasonal nutrient mobility factors are introduced. Specifically, 

event-based surface mobilization (Ssm) and event-based groundwater mobilization (Gsm). Here, I 

assume that nutrient mobility is related to hydrologic fluxes, that as fluxes increase so does nutrient 

mobility. We derive Ssm and Gsm from USGS stream gauges using the groundwater-discharge 

(baseflow) and surface runoff components of streamflow determined by hydrograph separation. 

For each gauge, the ratio between seasonal surface runoff and groundwater discharge with annual 

averages of the same are computed (e.g., snowmelt groundwater discharge/ annual groundwater 

discharge). Then, spatially continuous seasonal mobility layers are created for the USGLB with a 

Random Forest model trained at the USGS gauges to just three variables, watershed size, 

hydrologic landscape region (HLR), and unconsolidated glacial drift thickness (more details in 

section 3.3.4.2). Within the model, the seasonally mobile surface and groundwater nutrients are 

computed as the product of their respective mobilization factors (i.e., Ssm, Gsm) and available 

nutrients within the surface and subsurface pool for each cell. The result is the surface- and 

subsurface-mobile nutrient pools. 

Nutrients in these mobile pools are then transported along and attenuated within transport 

pathways, namely, basin transport and attenuation. Surface-mobile nutrients are attenuated via one 

of the two basin pathways, overland flow (BS) or tile drains (BST). Here, I calibrated the model 

with a seasonally varied overland flow pathway parameter (bs) with a spatially explicit and 

constant overland flow length (section 3.3.3). The subsurface-mobile nutrients are transported 

through the groundwater flow pathway (BG). A separate groundwater pathway is septic plumes 

(BSE) that transport the mobile nutrients from septic systems. The septic plume pathway is 

separated from general groundwater because of the distinct chemical characteristics of septic tank 
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sources.  

The remaining nutrients after basin transport and attenuation then enter stream where point sources 

are then added and subjected to further attenuation through stream (including flow through 

connected wetland systems) and lake processes, such as N denitrification and P 

sorption/mineralization (DNSP), and biological update (Bio) (see equation 3.2). We assume that 

N denitrification or P sorption/mineralization can be described as a streambed exchange rate within 

each cell along the travel path. The streambed exchange rate is calculated from the hydraulic 

conductivity of the streambed sediments, the average slope of the stream channel, groundwater 

recharge, hydraulic radius, and in-stream water velocity (see Chapter 2). Within these variables, 

ksat, slope, and groundwater recharge are constant throughout the year but vary spatially, see 

details in Chapter 2. Hydraulic radius (channel area/wetted perimeter of the stream channel) and 

velocity vary across the season, see calculation in section 3.3.4.2. More detailed descriptions for 

deriving these terms are seen Text A2.3: Spatial Distribution and Derivation for Instream and Lake 

Losses.  

The other in-stream attenuation process, biological uptake, is considered to be a function of 

seasonally-variable instream travel time and is calibrated with seasonal parameters (rbio). Lake 

attenuation was modified from (Chapter 2) where I considered it a function of the intersected 

distance when nutrients are transported through the river and connected lakes. Here, I used the 

seasonally-varied settling time with a scalar parameter (tsettl) instead, see details in section 3.3.4.2.  

The seasonal model output is a map, at 120m resolution, of the total nutrient yield per cell per day, 

in this case, delivered to the GL coastline. These can then be used to compare nutrient fluxes (and 

in-stream concentrations) across these varied seasons but do not fully describe nutrient load 

variability throughout the year. In other words, this is a seasonal model of hydrologic conditions, 
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not a true daily time-varying nutrient flux estimate. However, it can still provide more precise 

information regarding when and where nutrient reduction should be targeted.  

3.3.3.2: Model Calibration and Optimization   

There are eleven parameters in total in the updated SENSEflux seasonal models. See more details 

about these parameters, function, and their types (i.e., exponential, or linear) in table A3.1. 

Generally, we assume that seven parameters (f, ExH, SepEff, fstor, bst, bg, bse, dnsp) do not exhibit 

seasonal variations, and the remaining three vary across seasons: bs, rbio, and tsettl. I assumed 

that subsurface, groundwater dependent, and harvest parameters would stay the same throughout 

the year. In preliminary calibrations, we initially allowed bst to vary seasonally, but it showed little 

sensitivity so was set to be uniform across seasons. Thus, it’s assumed that the rates of nutrient 

loss in tile drain field pathway would be relatively similar across season (depending on seasonal 

nutrient mobility). Similarly, for dnsp during the river and lake attenuation, it did not show much 

sensitivity during the preliminary model runs, so it’s assumed to be stable throughout the year 

while the biological uptake (rbio) and the settling time (tsettl) parameters varied seasonally. All 

parameters, both seasonally variable and annually fixed, are optimized except for septic removal 

efficiency (SepEff), which is set to 0.3 for N and 0.35 for P as the same with SENSEflux annual 

models in Chapter 2.  

SENSEflux models are calibrated with seasonal observed concentrations or fluxes. Here, 

concentrations were selected because it improved models’ sensitivity to the attenuation terms, and 

modeled fluxes are dominated by the estimated or measured flow term when loads were used. 

After calibration, loads were used to assess model performance and present model results so that 

the results are comparable to those from other nutrient models in the literature. Seasonal TN and 

TP concentrations are compiled from the STORET database, see data processing in section 3.3.4.1. 
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SENSEflux models for TN and TP were calibrated separately. For each season of TN or TP, we 

used a random sampling approach to select 70% of the sites (Figure A3.0.3) for calibration and the 

rest (30%) for validation.  

For model optimization, the objective function (f(c)) was to minimize the mean absolute difference 

between log 10 of the simulated concentration (Csim) and log 10 of observed (Cobs) concentrations, 

see equation 3.3. Specifically, three (annual, melt and baseflow) models for each nutrient were run 

at the same time. The parameter values for each model were fitted using the MATLAB function 

fmincon, which uses the 'interior-point' algorithm (Byrd et al., 1999, 2000). The sum of the 

objective function from each season (annual, melt and baseflow) were used to access TN and TP 

model performance (equation 3.4). 

𝑓(𝑐) = 𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑙𝑜𝑔(𝐶𝑠𝑖𝑚) − 𝑙𝑜𝑔(𝐶𝑜𝑏𝑠)))         (3.3) 

𝑓(𝑐)𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑓(𝑐)𝑎𝑛𝑛𝑢𝑎𝑙 + 𝑓(𝑐)𝑚𝑒𝑙𝑡 + 𝑓(𝑐)𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤 (3.4) 

Model residual (error) was calculated using equation 3.5 below. Thus, a residual of 1 indicates an 

order magnitude overprediction by the SENSEflux model. Positive errors indicate overprediction 

(ratio of model-simulated to observed is > 1) by the model, whereas negative errors represent 

underpredictions (ratio of model-simulated to observed is < 1).  

𝐸𝑟𝑟𝑜𝑟 = 𝑙𝑜𝑔(𝐿𝑠𝑖𝑚) −  𝑙𝑜𝑔 (𝐿𝑜𝑏𝑠)      (3.5) 

3.3.4: Seasonal and Static Model Inputs 

Based on SENSEflux model modifications from annual to seasonal introduced in previous section, 

additional seasonal inputs are needed for calibration and optimization. These include (1) the major 

update – surface and groundwater seasonal mobility; (2) seasonal hydraulic radius and velocity 

that are required to derive streambed exchange rate; (3) in-stream travel time; and (4) settling time 

in lakes. Groundwater recharge, slope and hydrologic conductivity that are used to calculate 

streambed exchange rate, overland flow length, and tile drainage remain the same as the annual 
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models in Chapter 2.  

3.3.4.1: Seasonal Mobility Derivation  

Seasonal mobility inferred from hydrologic flux variability is the primary update of SENSEflux 

seasonal models from annual models for comparing nutrient concentrations and fluxes with yearly 

conditions. I first employed the streamflow Hydrograph Separation Program (HYSEP) developed 

by USGS to split the streamflow into baseflow (groundwater discharge) and surface runoff. During 

this process, the sliding window method (Sloto & Crouse, 1996) was used for hydrography 

analysis to separate baseflow for each gauge. I separately calculated average baseflow during the 

Melt, Baseflow (here, denoting the late summer/early fall event period), and Annual periods. 

Surface runoff and baseflow for each period were then used to calculate surface water mobility 

(Ssm) and groundwater mobility (Gsm). Surface seasonal mobility (Ssm) are then calculated as the 

ratio of median surface runoff during the season (i.e., Melt, Baseflow) and Annual median surface 

runoff. Similarly, groundwater seasonal mobility (Gsm) are computed as the ratio of median 

baseflow during the season (i.e., Melt, Baseflow) and Annual median baseflow. See an example 

seasonal mobility calculation for USGS station (ID:04112500) in Figure A3.0.6. 

To calculate seasonal mobility, the following three steps are used for Gsm and Ssm separately. First, 

I applied HYSEP to separate streamflow from each USGS streamflow gauge in the Great Lakes 

Basin, including a 10km buffer, into baseflow and surface runoff components. Here, I modified 

the default HYSEP exponent parameter from 0.2 to 0.3, based on exploratory plotting to better 

estimate baseflow for this region. Next, I computed the median baseflow at each gauge and surface 

runoff for our Melt, Baseflow, and Annual periods. Gsm at each stream gauge for the Melt period 

is defined as the ratio of median baseflow during Melt to median Annual baseflow. Likewise, for 

Gsm during the Baseflow period (note the use of capitalization to indicate the Baseflow period, 
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separate from generic baseflow). Ssm was similarly calculated as the Melt/Baseflow median surface 

runoff ratio to median Annual. Finally, outliers for Gsm and Ssm were removed based on their 

distributions. For Melt, Gsm is limited to 1-5 (Ssm: 1- 20). For Baseflow, Gsm and Ssm are between 0 

and 1.  

I then developed a random forest regression model to predict Gsm and Ssm at the HUC12 scale for 

all such watersheds across the US Great Lakes Basin. I chose the HUC12 scale to represent a fine 

spatial scale within which watershed characteristics are somewhat uniform. I first trained the 

model using individual stream gauge stations and then applied this to the HUC12s in the Basin. 

This model includes three input variables: drainage basin size, hydrologic landscape region (HLR) 

(Winter, 2001), and drift thickness from the USGS (Soller et al., 2012), see Figure A3.0.5a&b. To 

train this random forest model, I used the USGS-reported basin size for the stream gauge locations 

and extracted the HLR value and drift thickness. I then used HUC12 watershed size, majority 

HLR, and mean drift thickness for prediction at HUC12 scale. The point-scale model with three 

variables provided reasonable seasonal mobility estimation, with r2 = 0.89 during Melt (r2 = 0.85 

during Baseflow) for Gsm (r2 = 0.86 and 0.87 for Ssm). Finally, the random forest regression model 

was used to predict Gsm and Ssm across the basin at Hydrologic Unit Level 12 (HUC12). Figure 

A3.0.7 depicts the maps for seasonal mobility.  

3.3.4.2: Seasonal In-Stream and Lake Attenuation: Hydraulic Radius, Velocity, In-stream Travel 

Time and Settling Time for Lakes  

Stream attenuation includes water column loss, sediment interface, and hyporheic zone losses. 

Water column loss is mainly due to biological uptake, and it is a function of in-stream travel time 

across the seasons, see instream travel time during melt and baseflow in Figure A3.0.5c&d. Like 

overland flow length, seasonal in-stream travel time was calculated using NED DEM and the 
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flowlength function within the ArcGIS Hydrology Toolbox. In this case, a weight raster (1/seasonal 

velocity) was specified. The data of seasonal velocities were computed from the USGS gauge site 

and the method in (Mooney et al., 2020).  

The sediment interface and hyporheic zone losses are determined by a streambed exchange rate 

derived from the streambed sediments' hydraulic conductivity (K), the slope of the stream channel 

(S), and hydraulic radius and in-stream average velocity. See details for this streambed exchange 

rate derivation in Chapter 2. Here for seasonal simulation, I updated the streambed exchange rate 

with seasonal, varied hydraulic radius and velocity, while K, S, and Recharge maintained the same 

throughout the year. More specifically, recharge was assumed by the basin yield of streams at their 

30th percentile, K and S are calculated from NED DEM and the gSSURGO soil dataset.  

Seasonal hydraulic radius was computed for each USGS stream gauge along the stream channel. 

First, flows and geometries for USGS gauge stations (i.e., width, basin area) are downloaded. 

Assuming the stream channels are rectangle, I calculate the river depth (D) as area (A) dividing by 

width (W). Hydraulic radius (R) is calculated as the ratio between channel area (A) and the wetted 

perimeter of the stream channel (P) where P = 2D+W.  

Seasonal SENSEflux models represent lake attenuation with a simple uptake term proportional to 

the setting time of nutrient flow paths crossing lacustrine-classified wetlands. The surface area of 

the lake was derived from the National Wetland Inventory (NWI) lacustrine-class wetlands. Then, 

seasonal hydraulic loadings were calculated by dividing seasonal streamflow by surface area. As 

settling time, the inverse of hydraulic loading is then calculated. 

3.3.4.3: Static Landscape Inputs 

Static inputs include (1) nutrient source inputs; (2) groundwater recharge; (3) hydraulic 

conductivity (ksat) of the streambed sediments and the average slope of the stream channel (slope); 
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and (4) overland flow length and tile drainage. These inputs are the same as those used in the 

annual SENSEflux models (Chapter 2), and thus the same across both hydrologic season models. 

Seven spatially explicit nutrient sources from SENSEmap (Hamlin et al., 2020a) serve as nutrient 

inputs for the SENSEflux model. These sources include three agricultural terms (chemical 

agricultural fertilizers, manure, and N fixation), three urban terms (chemical non-agricultural 

fertilizers, septic tanks, and point sources), and atmospheric deposition. See maps in Chapter 2.  

Groundwater recharge was estimated using a series of linear models derived from the Landscape 

Hydrology Model (LHM), which combines various GIS layers to predict stream discharge, 

groundwater recharge, and evapotranspiration (Hyndman et al., 2007). In SENSEflux, 

groundwater recharge determines the fraction of nutrient transport between surface and 

groundwater pathways. It also supports streambed exchange rate calculation for nutrient river 

attenuation, along with two additional factors ksat and slope.  

The overland flow length is calculated using the flowlength function and DEM. The tile drainage 

layer was derived as an alternate overland flow pathway, assuming cropland areas with moderately 

low soil permeability and low average slopes are likely tile-drained. In addition to two independent 

parameters (bs (seasonally-varied) and bst), the overland flow length and tile drainage layer are 

static landscape factors that support basin nutrient attenuation.  

3.4: Results 

3.4.1: Model Accuracy  

Six SENSEflux TN and TP models with optimized parameters (Table A3.1) provided estimates of 

TN and TP fluxes to the Great Lakes from their US drainage basins. These models performed well 

(Figure 3.1), and TN models performed better than their TP counterparts, indicated by higher R 

square values except for TN calibration dataset, with a difference of -3%, 12%, and 9% for 
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calibration (20%, 14%, and 13% for validation) in annual, melt, and baseflow. Six models 

corresponded reasonably well to the 1:1 line (black dashed line in Figure 3.1), with TN and TP 

models slightly overestimating low loads and underestimating high loads, respectively. Also, the 

slopes of the line of best fit are near 1 (0.7 to 0.96 for TN and 0.73 to 0.86 for TP), indicating a 

reasonable bias. In addition, the MAEL values for annual and baseflow are comparable for the TN 

and TP models, but the TN snowmelt model has lower MAEL values (~0.2) than the TP snowmelt 

model, making it the best-performing model of the six.  

The median of model residuals (common logarithm of simulated load minus observed load) for 

calibration and validation watersheds are shown in Figure A3.0.8. Residual analyses reveal no 

significant (P > 0.05) bias for the TN snowmelt model and TP annual model based on a one-sample 

t-test; however, the mean residuals of the TN annual model, the TP melt model, and the baseflow 

models for TN and TP are significantly different from zero (P < 0.05). The residuals (Figure 

A3.0.9) are significantly (P < 0.01) clustered with the Moran’s Index of 0.42, 0.30, and 0.43 for 

TN annual, snowmelt, and baseflow models, respectively (0.41, 0.37, and 0.50 for TP models).  

 



 

57 

 

 
Figure 3.1 Plot of log10 simulated and observed daily loads for model calibration and validation 

datasets. Solid red and red lines indicate linear regression fits, the dashed black lines are the 1:1 

line, and n refers to the number of observation points for model calibration and validation.  

3.4.2: Seasonally Variable and Spatially Explicit Nutrients Delivery to Lakes 

Simulated TN and TP flux within the USGLB varied substantially across the seasons. For TN 
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(Figure 3.2a), simulated loading across the lake basin and in USGLB are highest in the snowmelt 

season, followed by annual condition and baseflow. There is 1063 t/day of nitrogen delivered from 

US lands to the lakes during snowmelt, and this is about 2.8 times greater than the annual delivery 

(378 t/day) and 16 times greater than the TN delivery during baseflow (66 t/day). This is largely 

contributed by the Lake Erie basin where 4.5 times greater TN was delivered during snowmelt 

than annual conditions. For other lake basins, TN delivery is the highest during snowmelt, followed 

by annual and baseflow.  

TP has a unique seasonal pattern compared to TN (Figure 3.2). Simulated export of TP across the 

lake basin and in the USGLB is the greatest under annual conditions (28 t/day), followed by 

snowmelt (21 t/day) and baseflow (7 t/day). This is somewhat unexpected because of greater 

seasonal mobility during snowmelt, though the difference between snowmelt and annual 

conditions is not large. The unique pattern for TP is likely due to the dominance of particulate 

phosphorus relative to soluble reactive phosphorus (SRP) in aquatic environments such as rivers 

and lakes. And particulate phosphorus is typically associated with sediment, organic matter, and 

other particles suspended in the water column. Unlike TN, nitrate is typically the most abundant 

form in aquatic systems, and its high solubility in water makes it readily transportable in the 

environment. In addition, the SENSEflux TP annual model overpredicts and the TP snowmelt 

model underpredicts significantly (Figure A3.0.9).  

Due to its drainage falling entirely within the USGLB, Lake Michigan receives the most TN (156 

t/day) and TP loads (12 t/day) on an annual basis compared to other lake basins. Lake Michigan 

has the highest phosphorus delivery on an annual basis and across two hydrological seasons 

(baseflow and snowmelt). Lake Erie receives the highest TN delivery during snowmelt (453 t/day) 

and baseflow (25 t/day), followed by Lake Michigan (334 t/day during snowmelt and 24 t/day 
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during baseflow). This is most likely because the western basin of Lake Erie has a relatively flat 

topography with minimal relief. This region has generally shallow groundwater, making it 

susceptible to nutrient contamination during baseflow.  

 
Figure 3.2 Summarized TN and TP flux (a&b) within USGLB and flux (c&d) by lake basin within 

USGLB. 
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In addition, I calculated nutrient yields across lake basins, which are nutrient fluxes normalized by 

drainage basin area (Figure 3.3 a&b). Lake Erie has the highest TN yield, followed by Lakes 

Michigan, Ontario, Huron, and Superior, with 1.9 kg/km2/day on an annual basis, and 8.5 and 0.5 

kg/km2/day for snowmelt and baseflow. Lake Superior has the lowest yield of total nitrogen among 

the five lake basins regardless of its annual condition or hydrologic seasons. The annual TN yield 

for Lakes Michigan, Ontario, and Huron is between 1.18 and 1.39 kg/km2/day, 2.89 to 3.32 

kg/km2/day during snowmelt, and 0.14 to 0.26 kg/km2/day during baseflow. Lake Erie, like TN, 

has the greatest TP yield. Lakes Ontario, Michigan, and Huron follow with ~0.1 kg/km2/day on an 

annual basin, ~0.07 kg/km2/day for snowmelt and ~0.02 kg/km2/day for baseflow. This is 

consistent with Lake Erie’s presence of HABs and its overall low water quality (Michalak et 

al.,2013). Regardless of its annual conditions or hydrologic seasons, Lake Superior has the lowest 

TP yield among the five lake basins. 

 

Figure 3.3 Predicted (a) TN and (b) TP yields (kg/day/km2) to lakes in annual, melt, and baseflow. 

(c)&(e)&(g) are spatially TN yields for annual, melt and baseflow with a shared legend 

((d)&(f)&(h) for TP). These maps are direct outputs from SENSEflux, then resampled to 720 m 

resolution for display purposes and classified in quantiles, within which each color represents 

~20% of the USGLB area. 
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Figure 3.3 (cont’d) 

We also found that simulated export of TN and TP varied substantially across seasons within the 

USGLB, with the highest TN export in snowmelt and the lowest TN and TP delivery during 

baseflow (Figure 3.3, c-h). During snowmelt, most of Lake Ontario and Erie basin and the southern 

part of Lake Michigan and Huron basin exported higher than 641 kg/yr/km2 for nitrogen and 28.92 

kg/yr/km2 for phosphorus. While in baseflow, most of these areas exported lower than 267 

kg/yr/km2 for nitrogen and 9.93 kg/yr/km2 for phosphorus.  

Overall, snowmelt increased TN flux to the Great Lakes while fewer TN and TP were delivered 

during baseflow compared with annual conditions. The highest nutrient flux from the Lake 
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Michigan basin is because of its largest drainage basin size, while Lake Erie receives the highest 

nutrient yield (flux per area).  

3.4.3: Nutrient Sources and Pathways Across Hydrologic Seasons 

The source contribution was highly variable across seasons for TN and TP with USGLB (Figure 

3.4). Agricultural sources (chemical agricultural fertilizer, manure, and N fixation) were the 

dominant TN source annually (42%), and 66% and 52% for snowmelt and baseflow. Moreover, 

chemical agricultural fertilizer, manure, and N fixation contributed 8.2%, 2.8%, and 3% higher 

during melt than baseflow. Agricultural sources (chemical agricultural fertilizer and manure) 

accounted for 62% annually and 59% and 54% during melt and baseflow for phosphorus. The 

contribution of agricultural chemical fertilizer and manure for TP was substantially higher (3.6% 

and 1.5%) during melt than baseflow.  

Atmospheric deposition and urban sources (point source, chemical non-agricultural fertilizer, and 

septic tanks) were also crucial to TN and TP delivery. Within this, atmospheric deposition 

contributed more significantly to TN, while urban sources dominated TP. Remarkably, 

atmospheric deposition contributed the same with agricultural sources for TN delivery and 

accounted for 41% annually, but much less than agricultural sources during snowmelt (25%) and 

baseflow (14%). Urban sources accounted for 17%, 9%, and 34% of annual, melt, and baseflow, 

respectively. However, these have been found differently for TP delivery. Urban sources (point 

source, chemical non-agricultural fertilizer, and septic tanks) play a more critical role than 

atmospheric deposition for phosphorus, with 27%, 30%, and 38% for annual, melt, and baseflow, 

respectively, comparing 11%, 11%, and 8% of TP sources coming from the atmospheric 

deposition. Notably, point sources played a significant role in TN and TP delivery, particularly 

during baseflow with 23% of TN and 20% of TP coming from point sources, which is also shown 
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in the pathways (Figure 3.5) Results also show that septic tanks are a more significant source of 

TP than TN, contributing 6% (annually), 6% (snowmelt) and 3% (baseflow) higher TP than TN.  

 
Figure 3.4 Estimated percent of nutrients delivered to the USGLB by annual, melt, and baseflow 

sources. 
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Figure 3.5 Estimated percent of total nutrients in USGLB delivered to lakes by pathways. Points 

are drawn for annual, melt, and baseflow with different colors, with the difference highlighted with 

segments. Note: groundwater pathway in this diagram indicates bulk groundwater transport. 

Surface pathway (overland flow and tile fields) was the major nutrient transport pathway, totally 

contributing to 88% (66%), 94% (65%), and 63% (52%) of TN (TP) delivery during annual, melt 

and baseflow (Figure 3.5). Within this, TN was dominated by the tile drainage pathway while more 
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TP was transported through overland flow regardless of the seasons, except there are 37% more 

TN was transported by overland on an annual basis. In addition, subsurface pathways, including 

bulk groundwater and septic plumes, played a significant role, especially for TP. For instance, 

septic plumes transported 9 to 12% of TP, and bulk groundwater transported about 12 to 16% of 

TP across the seasons.  

In summary, the relative contributions of each source and pathway to the total TN and TP delivered 

to the Great Lakes were highly variable seasonally within USGLB, with a higher proportion of 

nutrients dominated by agricultural sources delivered through surface pathways (tile drainage (TN) 

and overland runoff (TP)) and more nutrients coming from urban sources delivered through 

subsurface pathways (groundwater and septic plumes) during baseflow.  

3.4.4: Seasonal Delivery Hotspots 

The spatially explicit estimates of annual and seasonal nutrient deliveries provide a novel 

landscape perspective: seasonal delivery hotpots. The hotpot incorporates seasonal delivery (x-

axis in Figure 3.6) and the delivery ratio, which is defined as the ratio of snowmelt and baseflow 

deliveries to annual deliveries (y-axis). The seasonal delivery and delivery ratio are quantified 

using terciles and presented in bivariate colormaps for melt and baseflow (Figure 3.6). Targeting 

nutrient reductions during snowmelt is more effective than focusing on baseflow, especially for 

TN.  

During the snowmelt season, locations with both high delivery (highest 33%) and delivery ratio 

(highest 33%) are the most intense delivery area to the coastline (Figure 3.6, a&b). These are 

predominantly agricultural regions, particularly for TN, and include the western Lake Erie basin, 

coastal areas in western Lake Michigan, and thumb areas in Michigan. Targeting nutrient 

reductions in these regions during the snowmelt season will reduce the summertime nutrient 
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concentration in these basins and the Great Lakes most effectively. Next, areas with low delivery 

(lowest 33%) but high delivery ratio (highest 33%, colored magenta on the hotspot maps) should 

be targeted for reductions during the snowmelt season. These areas are primarily located in the 

northern basin. 

 
Figure 3.6 Seasonal nutrient delivery hotspots are determined as high delivery (x-axis) and 

delivery ratio on hydrologic seasons compared with average annual condition (y-axis) in bivariate 

choropleth maps for TN (a&c) and TP (b&d) during snowmelt and baseflow. BF represents the 

baseflow season.  

During baseflow, the delivery ratios for TN and TP are less than one, indicating that nutrient 

reduction efforts during baseflow would have been less effective than during annual average 

conditions. Thus, the optimal location for nutrient reductions during baseflow would be those with 

high nutrient delivery (highest 33%, colored as green).  

3.5: Discussion 

SENSEflux annual model performances are comparable to the SPARROW models for the US 
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Great Lakes Basin presented by (D. M. Robertson et al., 2019) (Figure A3.0.10). Lake Michigan 

had the highest nutrient flux because of the largest drainage basin size, consistent with (D. M. 

Robertson et al., 2019). The ranking of the highest yield across lake basins varied across seasons. 

On an annual basis, the Lake Superior basin and northern Lake Huron basin had much lower TN 

and TP delivery, likely because of low agricultural activity and sparse population. In addition, TN 

and TP yields are relatively high in the southern Lake Michigan basin, Saginaw Bay, and Lake 

Ontario basins, likely due to high chemical fertilizer and manure inputs and high groundwater 

recharge.  

Lake Erie had the highest TN and TP yields, and this could be due to many reasons. There is a 

high density of agriculture with high tile drainage intensity in the Lake Erie basin, agricultural 

sources teeming with nitrogen and phosphorus, which spurs algae and bacteria growth and directly 

stimulates the hypoxia and dead zone in Lake Erie. Besides, Lake Erie is the southernmost and 

warmest of the Great Lakes (Bockheim, 2020). Earlier snowmelt in the late winter and early spring 

increased nutrient flushing rate, with high nutrient delivery during snowmelt while relatively low 

TN and TP exports during baseflow (Figure 3.3, e-h). Thus, nutrient loadings are considered the 

primary driver of HABs in Lake Erie, associated with the eutrophication of Lake Erie (Michalak 

et al., 2013; Scavia et al., 2014; Watson et al., 2016). This information provides valuable timing 

information for targeting the total flux/yields to the Great Lakes from the lake basin level.  

3.5.1: Seasonal Critical Sources and Pathways 

Point sources contributed a higher proportion of TN and TP delivery to the Great Lakes (Figure 

3.5), particularly during baseflow, this is likely due to the pollutants being concentrated more 

during a low flow condition. Thus, it’s important to monitor and regulate point source discharges 

to ensure that they are meeting established standards. Non-point source pollution is still a 
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significant concern as it stems from many different sources and locations. Agricultural sources 

(chemical agricultural fertilizer, manure, and N fixation) were the leading cause of nutrient 

pollution across the USGLB, which is consistent with other studies (Richards et al., 2012; D. M. 

Robertson et al., 2019).  

However, agricultural sources were not always the leading cause of water pollution across the 

Great Lake basins. For instance, atmospheric deposition was the primary TN and TP source 

(Figure A3.0.11) in Lake Superior. Therefore, it is crucial to regulate atmospheric deposition, 

especially for watersheds forested with little agricultural or industrial activities (Foley & Betterton, 

2019). Many nutrient sources and loading models do not specifically identify atmospheric 

deposition of TP, instead attributing to the forest and urban area sources and other terms in 

agricultural areas like in the USGS SPARROW model (Richards et al., 2012; D. M. Robertson et 

al., 2019; R. A. Smith, Schwarz, et al., 1997), thus may lead to underestimation of TP loads in 

such models. 

Besides, agricultural sources do not always remain stationary on the landscape where they are 

applied. Snowmelt increased TN delivery to the Great Lakes (Figure 3.4). Due to heavy snowfalls 

in the winter and early spring, the rapid release of water from melting snow washing manure and 

commercial fertilizer flow down the gradient through overland flow and tile fields into the streams 

and rivers (Figures 3.4 and 3.5). These are consistent with research that has found nitrogen and 

phosphorus exports are strongly associated with seasonal hydrology, such as snowmelt runoff 

being a critical period of nutrient export in a cold climate (Clement & Steinman, 2017; Corriveau 

et al., 2013; Rattan et al., 2017, 2019). Thus, it is critical to manage the timing and amount of 

fertilizer applications (T. Guo et al., 2021). 

In addition, agricultural tile drainage has been recognized as one of the dominant TN delivery 
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pathways (Figure 3.5). Nutrients can quickly move to tile drains through preferential flow paths, 

cracks, and fissures in the soil, root channels, and other macropores and escape from the field. 

Considering much of the most productive farmland and extensive use of tile drainage in the 

USGLB, and climate change with warmer temperatures and more extreme events, it is significant 

to determine the timing of nutrient application and implement cost-effective drainage water 

management. 

Lastly, septic tanks accounted for 12% of TP delivery during baseflow (Figure 3.4). Research has 

found that a significant proportion of nutrient delivery comes from septic tank systems under low 

flow conditions and thus causes eutrophication risk (P. J. A. Withers et al., 2012). Furthermore, 

current regulations and management are insufficient to effectively guarantee the septic systems' 

function (P. J. Withers et al., 2014). For instance, water pollution from septic tanks is a severe but 

under-appreciated problem across Michigan, where 10% of on-site wastewater treatment systems 

have failed and are polluting the environment. Thus, it is critical to regulate on-site septic systems 

and establish a statewide code governing how they are designed, installed, and maintained in states 

like Michigan, thus protecting public health, safety, and welfare. 

3.5.2: Implications, Limitations, and Future Work 

There is great interest in reducing nutrient loading to the surface and groundwater. Here I present 

a spatially explicit, regional analysis of seasonal nutrient export that I calibrated with 

comprehensive TN and TP concentration measurements. SENSEflux uses spatially explicit 

nutrient sources and seasonal explicit environmental factors and provides insights into seasonal 

aspects of TN and TP loading, sources, and pathways with USGLB, thus improving our 

understanding of the timing and extent of hypoxic areas and algal blooms related to coastal nutrient 

loadings, consequently, allows us to optimize nutrient reduction strategies. This work has 
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demonstrated that SENSEflux has the potential to perform well in other regions which are facing 

water pollution challenges. Moreover, it could be applied for other periods, such as the summer 

rainy season, to understand seasonal nutrient transport more accurately. The spatially explicit 

loading, source, and pathway estimates for USGLB, along with findings, can be easily 

communicated with stakeholders through a web-based support system such as the Tipping Point 

Planner program (TPP, tippingpointplanner.org) as they can access the results and explore details 

of SENSEflux outputs without the assistance of technical experts or special programming training 

(Weinstein et al., 2021). TPP links data to local decision-making processes. Thus, adding 

SENSEflux outputs will help managers prioritize their actions in a time- and location-based 

manner and move toward the desired direction.  

However, I acknowledge that there are some limitations in our study. Firstly, groundwater has 

been proven to be a vital nutrient transport pathway, although it is often ignored in most existing 

models. SENSEflux uses an overland flow length to describe groundwater attenuation and uses a 

surface watershed boundary to determine nutrient inputs to the groundwater pathway. Including 

factors such as groundwater travel time would improve load, source, and pathway predictions, 

especially for ground watersheds with significantly different boundary conditions from surface 

watersheds. Besides, as I don’t have seasonal nutrient source inputs such as allocating fertilizer 

and manure to seasons based on phenology and fertilizer practice, SENSEflux simulated seasonal 

nutrient loading to the lakes using the annual average.  

For future research, establishing robust monitoring networks such as sampling throughout the non-

growing season, particularly the winter and spring thaw periods, is critical to truly understanding 

the timing and quantity of nutrient loss. Besides, nutrient transport models could be refined by 

considering climate, cropping characteristics, and regional water quality targets. Climate change 
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has been playing an essential role in water and nutrient transport. As climate change brings 

warming temperatures and more frequent and intense storm events, there is a need to consider 

climate change as a factor when planning future nutrient pollution programs to track changes over 

a targeted time frame. In addition, human activities have been altering hydrological processes and 

transporting nutrients as well, thus explicitly considering and evaluating the effectiveness of 

constructed wetlands, stream buffers, agricultural practices (i.e., cover crop, conservation tillage), 

nutrient management, which could further help reduce nutrient losses (Lintern et al., 2020). These 

studies need to be ongoing to help practical management efforts at improving watershed health 

and sustainability.  
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CHAPTER 4: SEETILEDRAIN: SPATIALLY EXPLICIT ESTIMATE OF TILE DRAINAGE 

USING REMOTE SENSING AND MACHINE LEARNING 

4.1: Abstract 

Tile drainage has become increasingly prevalent in the US Midwest due to agricultural 

intensification and extreme climate events. This region would not be one of the most productive 

agricultural areas without its drainage systems. However, the existing tile drainage data are limited 

to survey-based statistics at the county level and likely tile-drained areas that are mapped with 

geospatial analysis. The lack of spatially explicit and fine-resolution information about tile 

drainage extent limits the accuracy of hydrologic modeling and the implementation of nutrient 

reduction strategies. To fill this gap, I developed a machine-learning model that maps agricultural 

tile drainage across the US Midwest at a 30-m resolution. The model used 20 satellite-derived and 

environmental variables and was trained with 43,165 tile and non-tile ground truth points based 

on the Google Earth Engine cloud-computing platform. The results show that our model achieved 

good accuracy, with 95.5% of points classified correctly and an F1 score of 0.904. The classified 

tile drainage area at the county scale has a reasonable agreement (r2 = 0.69) with the reported area 

from the USDA-NASS. I also used variable importance metrics and accumulated effects to 

interpret the machine learning model. Land Surface Temperature (LST) variables, and climate- 

and soil-related variables are the most important. The top-ranking variable is the median of 

nighttime LST during the summer based on the overall importance, followed by median soil 

moisture percent in the summer. The results may provide useful information for tile monitoring 

and may improve the accuracy of hydrologic and nutrient simulations to achieve cost-effective 

agricultural water and nutrient management. Furthermore, the machine learning algorithms 

developed in this study could be applied to other remote sensing mapping applications. 
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4.2: Introduction 

The use of drainage systems to remove excess water and promote crop productivity is widespread 

in poorly drained and humid regions worldwide where experience high levels of precipitation and 

have relatively high-water tables, such as Europe and North America. Denmark, for example, has 

artificially drained around 50% of its croplands, with most relying on tile drains (Møller et al., 

2018). Similarly, 14% of agricultural land in Germany is tile-drained (Hirt & Volk, 2011). Canada 

and the United States have 14% and 27%, respectively, of their farmland artificially drained, using 

either surface or subsurface drainage (ICID, 2018; Kokulan, 2019). The investment in tile drainage 

is largely driven by the growing occurrence of heavy rainfall events and the resulting benefits of 

tile drainage installation to crop yields as it provides a well-drained environment for the crops 

(King, Williams, Macrae, et al., 2015).  

Tile drainage offers several major benefits for agricultural land systems. For instance, it helps to 

maintain soil structure by preventing compaction caused by waterlogged conditions, develop 

healthier and deeper root systems, provide moisture conditions for optimal crop growth, extend 

growing season, and utimately help farmers achieve more consistent and productive harvests. 

Although tile drainage offers numerous benefits, it also serves as a significant pathway for water 

and nutrient transport. Previous research primarily focused on the hydrological effects of tile 

drainage, including evapotranspiration and hydrological flux metrics such as discharge, 

streamflow index, and stormflow. While some studies have reported minor effects on hydrology 

(Khand et al., 2017; S. A. Miller & Lyon, 2021a), such as a slight decrease in annual cumulative 

evapotranspiration (Yang et al., 2016), others identified significant alterations to hydrological 

systems resulting from agricultural tile drainage (Thomas et al., 2016). Tile drainage is an 

important contributor to watershed discharge, accounting for up to 47% of discharge in an Ohio 

https://app.readcube.com/library/3565da2a-036f-4346-bf2e-32f3e66c15ca/all?uuid=6100807448409996&item_ids=3565da2a-036f-4346-bf2e-32f3e66c15ca:c063e541-1ac4-4740-a8be-f1a3941983e5,3565da2a-036f-4346-bf2e-32f3e66c15ca:3cb03ad4-1cdf-4dc2-a471-29e09aa27586
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headwater watershed with seasonal variation (King et al., 2014). It also accounts for a substantial 

portion (46-54%) of annual discharge between March and June in the Boone River basin, Iowa 

(Schilling et al., 2019).  

Agricultural tile drainage systems also serve as an essential nutrient pathway, potentially leading 

to eutrophication concerns in receiving water bodies. The prevalence of extensive agricultural tile 

drainage in the Midwestern US has significant implications for surface water nutrient pollution, 

including the formation of "dead zones". Extensive research has been conducted on nitrogen, 

phosphorus, and their species, such as nitrate, and it has been established that tile drainage 

amplifies nutrient losses from agricultural lands (King, Williams, Macrae, et al., 2015; Ma et al., 

2023; M. P. Miller et al., 2017; S. A. Miller et al., 2022; Ren et al., 2022). For instance, Chapter 

2&3 of this dissertation found that tile drainage contributes 46% of total nitrogen and 36% of total 

phosphorus annually to the US Great Lakes Basin, with even greater nutrient transport during 

snowmelt. Other studies have highlighted the crucial role of tile drainage in water and nutrient 

transport in sub-watersheds of the Great Lakes. For instance, (D. Smith et al., 2015) demonstrated 

that tile drainage discharge was responsible for 49% of soluble phosphorus and 48% of total 

phosphorus losses in the St. Joseph River watershed located in northeast Indiana, northwest Ohio 

and south-central Michigan, US and accounted for approximately 30% of nitrogen (primarily 

nitrate-nitrogen) (Ren et al., 2022). The water quality impacts of tile drainage have raised concerns 

about drinking water safety in Toledo, Ohio, and the large anaerobic zone in the Gulf of Mexico 

due to nutrient loading from the Mississippi River (Rabalais & Turner, 2019; D. Smith et al., 2015). 

Overall, tile drainage's hydrological and water quality impacts are subject to spatial heterogeneity, 

primarily due to the unique characteristics of different watersheds, changing climate patterns, and 

human activities. However, a significant factor contributing to this issue is the need for spatially 
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explicit tile drainage maps, especially at large scales. The lack of tile drainage information and 

spatial variability makes it challenging to study the impacts of tile drainage on crop growth and 

production, hydrological cycle, and nutrient leaching, especially at large scales.  

There are multiple approaches to estimate tile drainage extent, which have typically reported the 

percentage of tile drainage area at the county level or identified probable tile drainage locations. 

The USDA Agricultural Census, for instance, estimates the tile drainage area (identified as 'drained 

by tile') by surveying farmers in the CONUS counties every five years (NASS, 2012, 2017). The 

data are gathered at the county level from questionnaires sent to farmers and the quality of collected 

information depends on a high level of participation and respondents thus might not be consistently 

accurate (Wan et al., 2017). Geospatial analysis has also been used to detect likely tile-drained 

areas, with assumptions that agricultural areas with flat and poorly drained soils are likely to have 

tile drainage installed. (Sugg, 2007) indicates that a combination of soil class and hydrological 

properties of soil and soil drainage class would produce the most accurate estimates for different 

areas, while GIS analysis based on soil and land cover information can help estimate tile drainage 

extent in highly drained areas. Several recent studies have used soil drainage information and 

topographic slope thresholds to estimate tile drainage areas (Jame et al., 2022; Valayamkunnath et 

al., 2020). However, geospatial analysis can only identify likely tile-drained areas and is dependent 

on estimates from the USDA Census of Agriculture (Ag Census). These estimates result in large 

uncertainties in estimates of the tile-drained extent without spatially explicit information as Ag 

Census data is collected by county rather than by farm (NASS, 2017). 

There are alternative methods to identify tile drainage include thermal and aerial image processing 

techniques (Naz & Bowling, 2008; Prinds et al., 2019; Tilahun & Seyoum, 2020; Woo et al., 2019). 

For example, researchers mapped individual tile drains and estimated drainage spacing using high-

https://app.readcube.com/library/3565da2a-036f-4346-bf2e-32f3e66c15ca/all?uuid=5366052649528624&item_ids=3565da2a-036f-4346-bf2e-32f3e66c15ca:e7e5a1cb-1b7f-4d69-8a9e-3932c4e9b35b,3565da2a-036f-4346-bf2e-32f3e66c15ca:2b0db711-778b-4aed-bf5e-5fd3265da47a
https://app.readcube.com/library/3565da2a-036f-4346-bf2e-32f3e66c15ca/all?uuid=5366052649528624&item_ids=3565da2a-036f-4346-bf2e-32f3e66c15ca:e7e5a1cb-1b7f-4d69-8a9e-3932c4e9b35b,3565da2a-036f-4346-bf2e-32f3e66c15ca:2b0db711-778b-4aed-bf5e-5fd3265da47a
https://app.readcube.com/library/3565da2a-036f-4346-bf2e-32f3e66c15ca/all?uuid=4720315633294989&item_ids=3565da2a-036f-4346-bf2e-32f3e66c15ca:c5f890af-1ec5-4eb2-b271-4cfb570c48cf,3565da2a-036f-4346-bf2e-32f3e66c15ca:f44075af-2f88-40c4-ba39-6bef0e6f9c5d,3565da2a-036f-4346-bf2e-32f3e66c15ca:7b52fbdb-7e5d-4005-b535-7d053d369c07,3565da2a-036f-4346-bf2e-32f3e66c15ca:994d8363-7bf1-40be-bf90-7d00f9617763
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resolution aerial imagery within the Hoagland watershed in west-central Indiana (Naz et al., 2009; 

Naz & Bowling, 2008). However, the estimates of tile drainage may not be accurate in the presence 

of crop residue and other spatial features with similar spectral response as tile drainage. Another 

study (Gökkaya et al., 2017) used an image differencing approach to delineate tile drainage area 

for the Shatto Ditch watershed in Indiana by comparing shortwave infrared reflectance (SWIR) 

before and after a ~2.5cm rainfall event, as SWIR is strongly related to soil moisture, and soil with 

tile drainage dries relatively faster, thus has higher SWIR. However, such aerial imagery 

approaches can be expensive, and the image differencing approach is limited by weather 

conditions (i.e., rainfall intensity and cloud cover). Recently, Cho et al. (2019) integrated variables 

from satellite imagery and existing data sources, such as land surface temperature, climate, soil 

moisture, and properties, to identify subsurface drainage in the Red River basin and the Bois de 

Sioux Watershed in Minnesota for multiple years (Cho et al., 2019). 

Currently, there is a lack of spatially explicit and well-validated information on tile drainage extent 

in the US Midwest, which includes ~93% of tile drainage in the United States (NASS, 2017). In 

this study, I used the Google Earth Engine computing platform to map tile drainage based on 2017 

data by combining a range of satellite-derived, climate- and soil-related variables with thorough 

ground truth points. This resulting spatially explicit tile drainage dataset can be employed in 

hydrological, water quality, and crop modeling, thus supplying environmental managers with vital 

information to enhance agricultural water and nutrient management practices. Furthermore, the 

machine learning algorithms used in our study can help monitor changes in tile drainage areas over 

time, setting a baseline for predicting future tile drainage installations in response to climate 

change and human activities. 
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4.3: Data and Methods 

4.3.1: Study Region  

Our study region includes parts of 14 states, with 12 states in the US Midwest: Illinois, Indiana, 

Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and 

Wisconsin (Bureau, 2010), and two Great Lakes states, Pennsylvania, and New York. This region 

is characterized by a humid continental climate with warm to hot summers, as noted by (Peel et 

al., 2007). Average annual rainfall in the region generally decreases from east to west, with annual 

average precipitation and evapotranspiration of 860 and 634 mm, respectively (Abatzoglou et al., 

2018).  

The Midwest region boasts deep, fertile soils with high concentrations of organic matter, creating 

excellent conditions to grow corn and soybeans. This has earned the region its reputation as the 

"agricultural heartland" of the US (Figure 4.1a) and has led to it becoming one of the most 

cultivated agricultural areas worldwide (FAO, 2017). As depicted in Figure 4.1b, approximately 

70% of the soil in the Midwest is excessively or well-drained, while the remaining 30% fall under 

other soil drainage classes such as very poorly drained, poorly drained, and somewhat poorly 

drained. The eastern Midwest primarily consists of lowlands, which gradually increase in elevation 

towards the west. The median slope across the region is 3.5%, and Figure 4.1c indicates that the 

mean slope of approximately 60% of the area is less than 3.9%. 

According to the world agricultural production report, the United States is responsible for over 

30% of the world's production of soybeans and corn (USDA, 2023); much of this is produced in 

the Midwest region (34% of the agricultural area). The Midwest provides some of the most 

prosperous farmland globally, allowing the cultivation of crops including corn, soybeans, 

sorghum, alfalfa hay, cotton, wheat, and more. As a result, agriculture plays an important role in 
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the local economies of the US Midwest. 

 
Figure 4.1 Study region (737 counties defined in (d)) maps showing (a) cropland and non-cropland 

areas based on the National Land Cover Database and the Cropland Dataset Layer; (b) the soil 

drainage class; (c) the mean slope; and (d) the tile drainage acres from the 2017 Ag Census. In (d), 

areas with no tile drains or withheld data due to privacy concerns as these counties contain few 

farms are represented as white. 

The US Midwest would not be one of the most productive agricultural areas in the world without 

its tile drainage systems (Fausey et al., 1995). It was reported that 224,190 km2 of land was tile 

drained across the continental United States (CONUS), in which 92.9% (208,358 km2) of tile 

drainage is installed in the 14 midwestern states and this accounts for 21.6% of agricultural land 

(NASS, 2017). However, 183 counties among these states (1177 counties) either lack reported data 

due to the absence of tile drains or withhold information to safeguard individual farm privacy (NA 

counties, Figure4.2d). To ensure a continuous boundary while excluding most NA counties, our 

study region is limited to 737 counties delineated by the heavy blue line in Figure 4.1d (this subset 
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is hereafter referred to as the 'US Midwest'), which accounts for 91.7% (204,842 km2) of the tile-

drained area in CONUS (Figure 4.1d). 

4.3.2: Tile and Non-tile Ground Truth Point for Classification   

4.3.2.1: Tile Drainage Ground Truth Points 

The workflow for this study is shown in Figure 4.2. I generated a regional database of tiled and 

likely non-tiled ground truth points from various sources across the US Midwest region. These 

points were collected to compare variable differences between the two-point groups, train a 

random forest machine learning model and perform an accuracy assessment at the pixel level for 

the classification. 

Observed tile drainage points (Figure 4.3) were obtained from point, polyline, and polygon 

features. To compile point tile drainage features, a proportion of tile drainage points were identified 

through visual interpretation using the aerial imagery base map from Google Earth. Initially, a 

shared cropland area was identified from the Cropland Data Layer (CDL) in 2017 and the National 

Land Cover Dataset (NLCD) in 2016 since NCLD has ~3% more cultivated land than cropland in 

the CDL (USDA-NASS, 2017; USGS, 2016). The shared cropland area then overlaps with an 

existing, most likely tile-drained layer called US-AgTile (Valayamkunnath et al., 2020), resulting 

in the identification of potential tile-drained areas. Subsequently, likely tile-drained points were 

randomly sampled from these potential tile-drained areas and visually interpreted based on tile 

drain patterns, spaces, and canal ditches around the fields. 
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Figure 4.2 Workflow diagram illustrating the random forest classification method to create 

agricultural tile drainage maps across the US Midwest. 

Another set of tile drainage points was obtained from an existing study that used a geospatial model 

to determine the likely tile-drained areas of the CONUS. This model integrated a cropland mask, 

topographic slope, and soil drainage information with county-level tile drainage census data 

(Valayamkunnath et al., 2020). These points were manually identified from the ERSI multi-

resolution aerial imagery base map between October 2, 2012, and April 23, 2017, using the ESRI 

ArcMap identification tool. 
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Figure 4.3 Map of ground truth tile drainage points sourced from literature (orange), tile drainage 

permits (green), and visual interpretation from Google Earth aerial imagery (blue). The training 

and testing tile drainage points are 500 * 500-meter apart, indicated as different point shapes. The 

study area's counties are highlighted in gray, with the ones reported by USDA-NASS to have tile 

drainage indicated in light gray and areas marked as "NA" indicate no tile drains or withheld data 

due to privacy. 

I also obtained tile drainage points from polygon and polyline features. To ensure their accuracy, 

I randomly sampled points from these features and then excluded any that were too close to the 

edge of polygons and polylines. The polygons are obtained from permits for agricultural 

subsurface drainage tile locations provided by USGS in North Dakota (Finocchiaro, 2016) and 

South Dakota (Finocchiaro, 2014) and are assumed to represent ground truth tile drainage 

measurements. The polylines consist of sources including tile lines and drainage structures in three 

sites in Michigan, US (Blissfield, Clayton, and Palmyra) that were digitized using GIS tools, tile 

line permits from the Bois de Sioux Watershed District, tile lines from the Story County Farm in 

Iowa, and a photo of a tile-drained field in the southeast research farm in Iowa. 

To avoid biased classification due to clustered tile points from available data and the spatial 
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correlation among adjacent points, a distance limit was set through 500*500-meter fishnet grids. 

(L. Yan & Roy, 2016) reported that the average and median field sizes of US farms are 400 and 

527 meters, respectively. Here, a threshold of 500 meters was selected to ensure training and 

testing point separation thus handling co-variation while still maintaining an adequate number of 

points for model training and validation.  

4.3.2.2: Non-Tile Ground Truth Points  

To identify non-tile points, I utilize the potential tile-drained layer described in the previous 

section. I created a 30-meter buffer zone and obtained the complimentary area within agricultural 

lands, which I define as a likely non-tile layer. I then extracted points at least 500 meters apart 

from this layer and defined them as likely non-tile points in the classification. While these points 

may not accurately reflect actual ground conditions, given the limited availability of non-tile data 

and the associated labor costs for manual identification, utilizing these likely non-tile points is a 

practical approach for classification. 

I employed cross-validation techniques, using different proportions of data, to train and validate 

the model. To validate the model, I randomly choose 30% of non-tile points. Based on the overall 

area ratio (roughly 1:4) of tile and non-tile in US Midwest region of Ag Census (NASS, 2017), the 

number of validation tile drainage points was determined. The remaining tile and non-tile points 

were then used to train the model. 

4.3.3: Effective Variable Selection from Satellite and Environmental Datasets  

To perform random forest classification and measure variable importance, the selection of input 

variables are important. I utilized three steps to select the final variables and determine the optimal 

number of variables for classification. First, I gathered variables from previous studies on tile 

drainage detection (Cho et al., 2019) and other agricultural practices, such as irrigation mapping 
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(Deines et al., 2017, 2019; Xie & Lark, 2021), as both tile drainage and irrigation can affect 

environmental conditions and promote crop growth, which can be reflected in vegetation and 

water-related indices.  

Then, I identified the appropriate periods for these variables by analyzing the differences between 

tile and non-tile points based on two satellite-derived indices: the normalized difference vegetation 

index (NDVI) and the normalized water index (NDWI). These two variables was chosen due to 

the relatively high spatial and temporal resolution of Landsat imagery, as well as NDVI and NDWI 

has been demonstrated to be helpful in identifying tile drains (Cho et al., 2019; C. Zhang et al., 

2014). Periods for other variables then match with these identified time ranges from NDVI and 

NDWI as needed.  

 Finally, a function was executed to successively remove highly correlated and lesser important 

variables to handle covariation and provide robust performance for variable importance 

measurements. Within this, a Pearson correlation coefficient (r) was calculated between each pair 

of all variables. If the correlation exceeded a threshold (r > 0.8), we retained only the variable with 

a higher variable importance from the initial classification. Note, there is no standard ‘strength of 

correlation’ categories, they are domain specific and vary across different studies (Schober et al., 

2018). Here, we define 0.8 as the threshold for strong correlation.  

The satellite and environmental datasets used in this study include (1) Atmospherically corrected 

surface reflectance derived from the data produced by Landsat 7 ETM+ and  Landsat 8 Operational 

Land Imager (OLI)/Thermal Infrared Sensr (TIRS) sensors (USGS, 2017); (2) MODIS Land 

Surface Temperature; (3) GridMET, which provides daily climate data, such as precipitation, and 

potential evapotranspiration ; (4) TerraClimate, which provides monthly climate and climatic 

water balance for global terrestrial surfaces; (5) SMAP, NASA-USDA Enhanced SMAP Global 
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Soil Moisture Data; (6) POLARIS, Probabilistic Remapping of SSURGO soil properties; (7) 

USGS 3DEP 10m National Map; (8) gSSURGO Database, which contains gridded soil survey 

geographic data; (9) National Hydrography Dataset (NHD) from the US Geological Survey; and 

(10) Hydrologic landscape regions (HLR) of the United States; and (11) Cropland Data Layer 

(CDL). Using these datasets, I derived variables that capture the distinguishing characteristics 

between tile and non-tile points, guided by our knowledge and prior research (Cho et al., 2019). 

For example, we anticipate that fields with tile drainage will exhibit higher normalized difference 

vegetation index (NDVI) values during the growing season, as tile drains facilitate crop growth 

and NDVI correlates strongly with green biomass (Prinds et al., 2019).  

We utilized Landsat 7 and 8 images from the USGS Level 2, Collection 2, and Tier 1 data sources 

(USGS, 2017) to derive variables such as the normalized difference vegetation index (NDVI) and 

normalized water index (NDWI). NDVI is the most used vegetation index for observing greenery 

and is calculated with the equation (4.1), where NIR is near-infrared (which vegetation strongly 

reflects) light and Red is the visible red (which vegetation absorbs) reflectance. NDWI is 

developed by (Gao, 1996) to enhance the water-related features of the landscapes. This index uses 

the near-infrared (NIR) and the Short-Wave infrared (SWIR) bands, see equation (4.2). These 

satellite imageries contain surface reflectance (SR) that is atmospherically corrected and produced 

by the Landsat 7 ETM+ sensor and Landsat 8 OLI/TIRS sensor using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) algorithm and the Land Surface Reflectance 

Code (LaSRC) respectively (Schmidt et al., 2013; Vermote et al., 2016).  

𝑁𝐷𝑊𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑)    (4.1) 

𝑁𝐷𝑊𝐼 = (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1)/(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1)   (4.2) 

𝑇𝑟_𝑆𝑊𝐼𝑅1 = (1 − 𝑆𝑊𝐼𝑅1) ∗ (1 − 𝑆𝑊𝐼𝑅1)/(2 ∗ 𝑆𝑊𝐼𝑅1)  (4.3) 

𝑇𝑟_𝑆𝑊𝐼𝑅2 = (1 − 𝑆𝑊𝐼𝑅2) ∗ (1 − 𝑆𝑊𝐼𝑅2)/(2 ∗ 𝑆𝑊𝐼𝑅2)  (4.4) 
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Although land surface temperature (LST) is available from Landsat images, I opted to use LST 

from the MODIS dataset due to Landsat collection 2 surface temperature data gaps because of 

missing Advanced Spaceborne Therma Emission and Reflection Radiometer Global Emissivity 

Dataset (ASTER GED) (USGS, 2023). MODIS provides an 8-day average LST with a 1000 m 

resolution. From this product, I obtained daytime and nighttime land surface temperature and 

computed the difference between them to derive the diurnal LST difference (Wan et al., 2017).  

The gridded meteorological datasets GridMET and TerraClimate from the University of Idaho are 

used to obtain climate-related variables, which have a spatial resolution of approximately 4 km 

(Abatzoglou, 2013; Abatzoglou et al., 2018). Daily precipitation and reflectance 

evapotranspiration (ETo) are sourced from the GridMET dataset (Abatzoglou, 2013). Aridity is 

also calculated as the ratio between cumulative precipitation and ETo and is used in the 

classification. Actual evapotranspiration (AET) variables in the spring and summer seasons are 

sourced from the monthly TerraClimate dataset (Abatzoglou et al., 2018) and derived using a one-

dimensional soil water balance model. GridMET was generated by blending the high-resolution 

spatial data from Parameter-elevation Regressions on Independent Slopes Model (PRISM) with 

the high temporal resolution data from National Land Data Assimilation System (NLDAS) to 

produce spatially- and temporally continuous variable (Abatzoglou, 2013). TerraClimate utilizes 

climatically-aided interpolation, which combines high-spatial resolution climatological normal 

from the World Climate dataset with time-varying data from CRU Ts4.0 and the Japanese 55-year 

Reanalysis (JRA55) at coarser spatial resolutions (Abatzoglou et al., 2018).  

The NASA-USDA Enhanced SMAP data at 10-km spatial resolution is used to gather surface and 

subsurface (~1 m) soil moisture (SSM, SUSM) and the percent soil moisture (SMP). This dataset 

integrates satellite-derived Soil Moisture Active Passive (SMAP) Level 3 soil moisture 
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observations with the modified two-layer Palmer model based on the 1-D Ensemble Kalman Filter 

(EnKF) data assimilation approach. SMP is estimated as the available water for the plant divided 

by the total water-holding capacity of the soil profile, which helps determine if the soil has 

sufficient water for crop growth. 

Clay percentage and saturated hydraulic conductivity estimates were derived from the Probabilistic 

Remapping of Soil Survey Geographic Database (SSURGO) soil property database called 

POLARIS (Chaney et al., 2019). I also estimated plant available water using the van Genuchten 

equation and parameters, such as saturated soil water content and residual volumetric water, also 

sourced from POLARIS.  

In addition, I incorporated topographic slope and soil drainage class information since flat, poorly 

drained fields are ideal for tile drainage installation (Jame et al., 2022; Valayamkunnath et al., 

2020). I computed the mean slope (in degrees) using elevation data from the USGS 3D Elevation 

Program 10-Meter Resolution Digital Elevation Model(USGS, 2019). Soil drainage class 

information was obtained from the Gridded SSURGO (USDA, 2013), a product similar to standard 

SSURGO but in file geodatabase format. It includes seven categories (Figure 4.2b), (0) excessively 

drained; (1) somewhat excessively drained; (2) well drained; (3) moderately well drained; (4) 

somewhat poorly drained, (5) poorly drained, and (6) very poorly drained.  

Canals and ditches from the National Hydrography Dataset (NHD) were also included. These 

waterways are man-made and serve purposes from water transportation to irrigation, drainage, and 

navigation. To identify the proximity of each cell in the study region to these canals and ditches, I 

computed the Euclidean distance. This information is particularly relevant as these waterways are 

frequently utilized for draining water from tile-drained fields. Hydrologic Landscape Regions 

(HLRs) are delineated by USGS based on land surface form, geology, and climate among 43,931 
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small watersheds across CONUS, using GIS and statistical analysis. Ultimately, 20 landscape 

hydrologic region classes were generated based on the similarities in landscape and climate 

characteristics, and hydrologic processes in different regions are assumed to be affected by the 

landscape and climate factors. To identify agricultural tile drainage, the cultivated crops category 

from the National Land Cover Database (NLCD) was selected to create a mask for classification. 

Cultivated lands refer to areas utilized for annual crop production, such as corn, soybeans, 

vegetables, tobacco, and cotton. 

Except for processing soil drainage class and distance to canals or ditches locally and uploading 

them to the Google Earth Engine (GEE), all these data sources above can be accessed through the 

GEE data archive and the publicly shared awesome-gee-community-datasets, which are sourced 

by the community and are available as Earth Engine assets (Roy et al., 2023). The native resolution 

of these data sources varies from 10 to 10,000 meters; I aggregated or disaggregated them to 30 

meters resolution to derive the variables and for the final classification with the built-in reduce 

resolution and interpolation functions in GEE.  

4.3.4: Random Forest Classification and Accuracy Assessment  

We chose Random Forest (RF) because RF is capable of handling non-monotonic relationships, 

accommodating non-linear relationship between variables effectively and most importantly, 

reducing the likelihood of overfitting which is one of the biggest problems in machine learning by 

creating random subsets of features and building multiple trees using those subsets (Breiman, 

2001). RF classification has been widely used for classification tasks such as irrigation mapping, 

flood risk assessment, and water quality predictions (Belgiu & Drăguţ, 2016a; Cho et al., 2019; 

Deines et al., 2017, 2019; Z. Wang et al., 2015; Xie & Lark, 2021).  

Random forest classifiers are tuned by varying the number of decision trees (ntree) and the number 
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of variables randomly selected and tested for the best split when growing trees (mtry). A review 

study about random forest in remote sensing found that most research set ntree to 500 (Belgiu & 

Drăguţ, 2016b) because the error rate became stable before this number of trees is achieved 

(Lawrence et al., 2006) and since the default value for ntree in the randomForest R package is 500 

(Liaw & Wiener, 2002a). The mtry can be varied between one and the maximum number of input 

variables, with the default of the square root of variable numbers. The classifier with this pair of 

ntree and mtry then makes predictions for other areas that don’t have ground truth data based on 

what was learned from the training data via the Google Earth Engine cloud computing platform.  

Accuracy assessment was conducted at both point-based and county level. For point-based 

assessment, I calculated seven commonly used metrics based on the tile and non-tile ground truth 

points, including accuracy, sensitivity, specificity, positive and negative predictive values, 

accuracy, Kappa and F1 score (Congalton & Green, 2019), using the confusionMatrix function 

from the caret package in R (Kuhn, 2008). These metrics range from 0 to 1, and the higher value 

means the classification model is more reliable. Accuracy is a statistical measure of how well a 

binary classification can correctly identify or exclude a condition, calculated as the proportion of 

correct predictions, both true positives (tile) and true negatives (non-tile), among the total number 

of points examined. Sensitivity (Recall) and specificity describe the accuracy of a classification of 

the presence or absence of a condition. Sensitivity measures how well a test can identify true 

positives, while specificity is a measure of how well a classification can identify true negatives. 

The positive predictive value (Precision) is the proportion of true positive classifications out of all 

positive classifications made by the model, so it measures the probability that a positive 

classification made by the model is correct. Similarly, the negative predictive value is the 

proportion of true negative classifications out of all negative classifications made by the model 
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and measures the probability that a negative classification made by the model is correct. The F1 

score is a common metric that many classification models use to assess the quality of their models, 

calculated as the equation (4.5) (Sasaki, 2007).  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  (4.5) 

For county-level accuracy assessment, statistical data in 2017 from the United States Department 

of Agriculture (USDA) National Agricultural Statistics Service (NASS) are used. More 

specifically, I calculate classified tile drainage areas for each county and then fit a linear regression 

model to compare them with reported ones.  

4.3.5: The ‘Black Box’ of the Machine Learning Model  

We used a collection of tools to evaluate and communicate the results of the tile drainage 

classification model by examining variable importance, such as Mean Decrease Accuracy, Mean 

Decrease Gini and Shapley values, and accumulated local effects (ALE). The combination of these 

measures provide a comprehensive understanding of how each variable contributes to the model’s 

performance.  

Variable importance helps to quantify what variables are driving model performance and more 

specifically, how much each variable improves the model’s accuracy. I ran the importance function 

from the randomForest package in R (Liaw & Wiener, 2002b). I extract variable values for training 

and validation points and develop a proxy random forest classification with the same training and 

testing data and identical parameter settings (ntree and mtry) using the randomForest packages in 

R, which means the variable importance values likely mirror their importance in GEE. The 

importance function produces two importance measures: MeanDecreaseGini and 

MeanDecreaseAccuracy. MeanDecreaseGini is an impurity-based importance, representing the 

total decrease in node impurities from splitting on the variable, averaged over all trees. 

MeanDecreaseAccuracy is permutation-based importance, measuring accuracy reduction on out-



 

90 

 

of-bag samples when the variable values are randomly permuted and are more reliable than the 

MeanDecreaseGini (Strobl et al., 2008). Both measures have been applied to different studies 

(Deines et al., 2017; Matasci et al., 2018; Schroeder et al., 2017).  

I also used the Shapley values to check how much every predictor contributed to a given prediction. 

Shapley is the average contribution of a variable value to the prediction, not the difference in 

prediction when I remove the feature from the model. I computed the overall importance by 

assigning a score of 31 to the variable with the highest ranking within each of the three importance 

measures, and a score of one to the least important variable. The total score from the three measures 

was then used to calculate the overall importance. The highest possible score is 93, which would 

correspond to a variable that ranked at the top for all three measured importance. 

However, we are still not able to know whether the high or low value of the variables yields higher 

probabilities of the targeted class (i.e., tile) via variable importance metrics. I then checked the 

ALE with the iml R package (Molnar, 2018). ALE looks at the general relationship between the 

predictors and the targeted class (i.e., tile drainage).  

4.3.6: Comparison with Existing Products 

To ensure the reliability of our tile drainage product for the US Midwest in 2017, I compared tile 

drainage areas for the US Midwest to the three other likely tile drainage maps and reported areas 

from Ag Census for the study region.  

We also performed a random forest classification using the same training and validation points. 

However, I only used slope, and soil drainage class, which are commonly used in other products 

in the comparison. I set the number of trees (ntree) to be the same as our classification (default: 

500), and the number of mtry is set as two since there are only two variables. I then compared the 

out-of-bag (OOB) error with our classification which had 20 variables for the training and 
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validation datasets. The accuracy and F1 score metrics are compared as well.  

4.4: Results 

4.4.1: Selected Variables and Their Difference between Tile and non-Tile  

Initially, I gathered 57 variables from nine satellite and environmental datasets described in section 

2.3. I then identified three time periods - spring: 4/1 - 5/31, summer: 7/1 - 8/31, and growing 

season: 5/1 - 9/31 based on the mean of maximum (max among available Landsat images) NDVI 

and NDWI for all the ground truth points across the study region (Figure A4.0.2). The objective 

was to maintain a consistent pattern for tile and non-Tile points during the same period. For 

example, tile points exhibited relatively lower NDVI but higher NDWI in April and May compared 

to non-Tile points, thus I define the spring season as April 1st to May 31st. Subsequently, I 

successively remove highly correlated (r > 0.8) and lesser important variables, which results in 26 

variables were removed and the remaining 31 variables are used for classification. The ultimately 

used 31 variables are listed in Table 1, with their short names, full names, units, number of scenes 

or images, time periods, equations, data sources, and resolutions. The remaining 26 variables were 

initially chosen but not used in the final classification and are detailed in Text A4.1.  Figure A4.0.3 

shows the correlation coefficient for the remaining variables, with r < 0.8.   

Several other variables were investigated in this research, including combinations of VV single 

co-polarization with vertical transmit/vertical receive and VH dual-band cross-polarization with 

vertical transmit/horizontal receive, extracted from the C-band Synthetic Aperture Radar Ground 

Range Detected of the Sentinel-1 mission (Sentinel-1 SAR GRD) from GEE, as well as the 

neighborhood index and combinations of selected variables. However, these variables were not 

incorporated into our final classification model as they did not significantly improve prediction 

accuracy. 
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Table 4.1 Summary information for 31 satellite-derived and environmental variables. 

Abbreviation 
Variable full 

name 
Unit Scene 

Time 

period 
Equation Data source 

Resoluti

on (m) 

NDVI_grow_max 

Max NDVI in 

growing 

season  

NA 1758 5/1-9/30 (NIR-Red)/(NIR+Red) 

Surface 

reflectance 

from USGS 

Landsat 7 Level 

2, Collection 2, 

Tier 1 and 

USGS Landsat 

8 Level 2, 

Collection 2, 

Tier 1 (Landsat) 

30 

NDWI_spr_max 
Max NDWI in 

spring  
NA 611 

4/1-5/31 (NIR-

SWIR1)/(NIR+SWIR1) 
NDWI_summ_max 

Max NDWI in 

summer 
NA 745 7/1-8/31 

Tr_swir1_spr_max 
Max Tr_swir1 

in spring  
NA 

611 4/1-5/31 (1-SWIR1) * (1-

SWIR1)/(2*SWIR1) 
Tr_swir1_summ_max 

Max Tr_swir1 

in summer 
NA 

745 
7/1-8/31 

Tr_swir2_grow_max 

Max Tr_swir2 

in growing 

season  

NA 1758 5/1-9/30 
(1-SWIR2) * (1-

SWIR2)/(2*SWIR2) 

AET_grow 

AET in 

growing 

season  

mm 5 5/1-9/30 NA 

TerraClimate: 

Monthly 

Climate and 

Climatic Water 

Balance for 

Global 

Terrestrial 

Surfaces, 

University of 

Idaho 

4638.3 

Precip_grow 

Precipitation in 

growing 

season 

mm 153 5/1-9/30 NA 

GridMET:Univ

ersity of Idaho 

Gridded 

Surface 

Meteorological 

Dataset  

4638.3 

Aridity_spr 
Aridity in 

spring  

NA  

61 4/1-5/31 Precipitation/PET 

Aridity_preGrow_3yr 

Aridity in pre-

growing 

season from 

the prior 3 

years  

93 5/1-5/31 Precipitation/PET 

DayLST_median_gro

w 

Median 

daytime land 

surface 

temperature 

(LST) in 

growing 

season  

Kelvin 

20 

5/1-9/30 

NA 

MOD11A2.061 

Terra Land 

Surface 

Temperature 

and Emissivity 

8-Day Global 

1km (MODIS) 

1000 DayLST_median_spr 

Median 

daytime LST 

in spring 

7 

4/1-5/31 

NA 

DayLST_range_spr 

Range (max - 

min) of 

Daytime LST 

in spring  

7 4/1-5/31 Range = max - min 

DayLST_median_su

mm 

Median of 

Daytime LST 

in summer 

8 7/1-8/31 NA 
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Table 4.1 (cont’d)  

DayLST_range_grow 

Range of 

daytime LST 

in growing 

season  

 

20 5/1-9/30 Range = max - min 

  

DayLST_range_sum

m 

Range of 

daytime LST 

in summer 

8 7/1-8/31 Range = max - min 

DiffLST_median_gro

w 

Median 

difference 

between 

daytime and 

nighttime LST 

in growing 

season 

20 

5/1-9/30 

NA 

DiffLST_median_spr 

Median 

difference 

between 

daytime and 

nighttime LST 

in spring 

7 

4/1-5/31 

NA 

NightLST_max_sum

m 

Maximum 

Nighttime LST 

in summer 

8 7/1-8/31 NA 

NightLST_max_spr 

Maximum 

Nighttime LST 

in spring  

20 5/1-9/30 NA 

SMP_median_summ 

Median of 

percent soil 

moisture in 

spring  

% 21 7/1-8/31 NA 

NASA-USDA 

Enhanced 

SMAP Global 

Soil Moisture 

Data (SMAP) 

10000 SUSM_max_spr 

Maximum 

subsurface soil 

moisture in 

spring  

mm 20 

4/1-5/31 

NA 

SUSM_range_spr 

Range of 

subsurface soil 

moisture in 

spring  mm 

20 

4/1-5/31 

Range = max - min 

Clay_mean_5cm 
Percent of clay 

(0-5 cm) 
% 1 

NA NA 

Probabilistic 

Remapping of 

SSURGO 

(POLARIS ) 

30 

Ksat_mean_5cm 

Saturated 

hydraulic 

conductivity 

(0-5 cm) 

log10(cm/h

r) 
1 

Paw_mean_5cm 
Plant available 

water (0-5 cm) 
mm 1 

Derived from 

POLARIS with 

the van 

Genutchten 

equation 

Slope_mean Mean slope  degree 1 

NA 

NA 

USGS 3DEP 

10m National 

Map Seamless 

(NED) 

10 

Soil_drain_class 
Soil drainage 

class 
NA  1 

NA 

NA 

Gridded Soil 

Survey 

Geographic 

Database(gSSU

RGO) 

30 
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Table 4.1 (cont’d)  

Canal_ditch_dist 

Distance to the 

nearest canal 

ditch  

meter 1 

NA 

NA 

National 

Hydrography 

Dataset (NHD) 

500 

HLR 

Hydrologic 

Landscape 

Regions  

NA  1 

NA 

NA 

Hydrologic 

landscape 

regions of the 

United States 

(HLR) 

30 

Cropland 

A crop-specific 

land cover data 

layer 

NA  1 2017 NA 

USDA NASS 

Cropland Data 

Layers (CDL) 

30 

Note: Landsat bands are used to calculate variables, where NIR is near infrared band, Red is red 

band surface reflectance, SWIR1 is the Short-wave Infrared 1 band and SWIR2 is the Short-wave 

Infrared 2 band.  

We then compared variable differences between the two groups: tile and non-tile ground truth 

(Figure 4.4). Our analysis, based on the Wilcoxon test in R, revealed that there is a significant 

difference (p < 0.0001) between the two groups for the 31 variables used in the final classification. 

For brevity, we only show the top 20 of the 31 variables, based on mean decrease accuracy.  

Four climate-related variables were chosen among the selected twenty variables, including actual 

evapotranspiration (AET) in growing season (AET_grow), aridity in spring (Aridity_spr), and 

precipitation in growing season (Precip_grow) and aridity in pre-growing season from the prior 

three years (Aridity_preGrow_3yr). The median AET across all tile points is higher than non-tile 

points across seasons, with the largest difference seen in the growing season (167 mm). More 

accumulative precipitation in growing season for the tile points compared with the non-tile points; 

the difference is about 58 mm. This is consistent with the fact that tile drainage installation occurs 

in areas with more precipitation for optimal crop growth. For aridity, the median aridity index in 

the spring season for the tile group is 0.93, and 0.88 for the non-tile group. However, during the 

pre-growing (May) season in prior three years, aridity for tile (0.75) points is lower than non-tile 

(0.79) points.  
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Seven variables derived from the MODIS product were selected. During the summer, the 

maximum nighttime LST is 0.4 degrees Kelvin higher for all tile points, with most points 

concentrated around a relatively low (292 Kelvin) value; this is probably attributed to the cooling 

effect of the green vegetation. The nighttime LST in spring for two groups have similar 

distributions, and coincidentally, the same median value (284 Kelvin). The median value of the 

maximum daytime LST in the growing season and in spring are close for the two groups. A notable 

difference (3.6 Kelvin, median) in the range (maximum-minimum) of daytime LST during the 

growing season for the tile group, as well as in the spring (3.2 Kelvin, median), while in summer, 

the difference is about 1 Kelvin.  
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Figure 4.4 Significant variable differences between tile and non-tile points (p <= 0.0001, Wilcoxon 

test) for all variables. The strips are colored by different data sources. The bottom and top of each 

box represent the first and third quartiles, respectively, and the line inside each box represents the 

median. Data beyond the end of the whiskers are "outlying" points and are not shown here. 

Median soil moisture percent (SMP) in the summer, the maximum and range of subsurface soil 

moisture in spring are the variables that the model picked from the SMAP dataset. I found that 

SMP in the summer is 21% higher for the tile points and this is likely because tile drainage maintain 

the right level of water table during the summer season for crop growth. Subsurface soil moisture 
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is higher for tile points in the spring, with 25 mm difference. The range of subsurface soil moisture 

between the two groups is little (0.5 mm) but significant.  

For soil drainage class, lower values indicate higher drain capability, with zero representing 

excessively drained soil, and six indicating very poorly drained soil. Our results indicate that most 

(56%) tile points are in poorly drained (22%, value = 5), somewhat poorly drained (34%, value = 

4) regions. In contrast, non-tiled points are mainly (52%) in well-drained (value = 2) areas. I also 

observed that the number of points decreases with increasing mean slope for both tile and non-tile 

points. The maximum slope of non-tiled points is close to ten, while for tile points, the maximum 

slope is 6. The median slopes for non-tiled and tile are 1.37 and 0.62, respectively. This is likely 

because tile drainage systems are typically installed in areas with relatively low slopes. The pattern 

for the hydrologic landscape regions is similar, with non-tile points spread into more regions, while 

tile points are concentrated in regions (5) arid plains with permeable soils and bedrock, (3) 

subhumid plains with impermeable soils and permeable bedrock and (7) humid plains with 

permeable soils and impermeable bedrock, respectively.  

Both tile and non-tile groups exhibit a similar pattern in terms of distance to canals or ditches, with 

more points located in areas with lower distances. However, I found that tiled points are generally 

closer to canals and ditches, with a median distance of 4882 meters less compared to non-tiled 

points. I also found that the patterns for soil property variables, such as saturated hydrologic 

conductivity (Ksat) and clay percentage, were similar between the two groups. Tile points had a 

slightly but significantly higher (4.5%) clay percentage and a lower Ksat value, indicating that 

areas where tile drainage was installed would have a lower capacity to transmit water without tile 

drainage systems.  
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4.4.2: Classified Map from Random Forest Classification and Accuracy Assessment  

In the random forest classification, I used 28,723 tile points and 32,215 non-tile points, along with 

selected 31 variables, listed in Table 1, to train and validate the classification model. The training 

and testing tile drainage points are 500 meters apart shown in Figure 4.3, likely non-tile points are 

distributed as 500 meters away between training and testing dataset, but not shown in the map due 

to the large number of points and limited spaces. Specifically, I used 48,982 points (26,442 tile 

points and 22,540 non-tile points) to train the model, with the remaining 11,956 points (2281 tile 

points and 9675 non-tile points) held out for validation. I use the default settings, 500 trees and 5 

variables per split for classification. The classified map is shown in Figure 4.5. Classified tile 

drainage areas are concentrated in the corn belt region, including eastern Dakotas, southern 

Minnesota, north central Iowa, northeastern Illinois and Indiana, northwestern Ohio, and 

Michigan's thumb area. In general, the machine learning model can capture the reported tile fields 

in the western Lake Erie basin and tile permits in SD. 

The point-based assessment indicates that the classification model achieved good overall accuracy, 

with a score of 0.96, which indicates that 96% of points, including tile and non-tile, are classified 

correctly (Figure 4.6). The Kappa and F1 scores are 0.876 and 0.901. Additionally, the other four 

metrics were higher than 0.85, including sensitivity (0.95), specificity (0.96), positive predictive 

value (Precision) (0.85), and negative predictive value (0.99), demonstrating the good quality of 

the classification model.  

We aggregated the tile drainage areas for each county from the classified map and compared them 

with the area from the USDA NASS, as illustrated in Figure 4.7a. The random forest classification 

model provided reasonable agreement with the reported area from Ag Census, with an R2 value of 

0.68. However, the model tended to overestimate tile drainage area, with a slope of 1.1, especially 
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in counties with larger tile drainage reported by NASS. It underestimates the counties with smaller 

reported areas such as these points with reported areas lower than 500 km2.  

  
Figure 4.5 Classified tile drainage (blue) map with the background of agricultural lands (yellow). 

Two zoom-in windows show the reported tile field (black circle) in the western Lake Erie basin 

and tile drainage permits (black rectangle) in South Dakota (red rectangle).  

At the state level (Figure A4.0.5), eight states (Illinois, Indiana, Iowa, Michigan, Minnesota, North 

Dakota, Ohio, and Pennsylvania) had R2 values greater than 0.65, and two of these states 

(Michigan and Pennsylvania) had underestimated tile drainage areas. The estimates for the 

remaining states (Kansas, Missouri, Nebraska, New York, South Dakota, and Wisconsin) are less 

accurate, likely because they are less heavily tile-drained or have fewer ground truth points. 
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Figure 4.6 Point-based accuracies of tile drainage classification for the test dataset with seven 

metrics. 

We also created a residual map at the county level, residuals are calculated as the percentage of 

area difference divided by the area reported by NASS (Figure 4.7b). The map revealed that 

overestimation occurred in counties with heavily tile-drained areas, primarily in Eastern Dakota, 

Southern Minnesota, the Des Moines Lobe in Iowa, Northeastern Illinois, Middle-northern 

Indiana, and Northwestern Ohio. This is likely due to our tile drainage points being concentrated 

in these areas and I assumed tile drainage permits in South Dakota, North Dakota, and the Bois de 

Sioux Watershed District are ground truth tile points.  

Additionally, I found that 25% of counties were not predicted to have any tile drainage installation, 

despite having reported tile drains by NASS (NA-Classified in Figure 4.7b). These counties have 
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a relatively low reported area, with a median reported area of ~26 km2 or ~5% of reported tile 

drainage in agricultural lands. This indicates that our classification model may require better 

ground truth information for regions with a low percentage of tile drains. It is important to note 

that the area reported by farmers through surveys may be somewhat inaccurate, however, it is the 

only source I have for this comparison across the region. 

 
Figure 4.7 Accuracy and spatial residuals observed at the county level. (a) Comparison between 

the classified tile drainage area (km2) and the reported area from the USDA NASS in 2017. Each 

point on the graph represents one county, with the blue solid line representing the linear regression 

line and the black dashed line indicating the 1:1 line. (b) Spatial residual at the county level, which 

was computed as the percentage of area difference divided by the NASS area. NA-NASS stands 

for no reported area from the Ag Census in 2017, NA-Classified represents the model that did not 

capture tile drainage in these counties.  
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Figure 4.7 (cont’d) 

 
4.4.3: Overall Variable Importance and Accumulated Local Effects 

The importance of 31 input variables for tile drainage classification across the US Midwest was 

assessed using the Mean Decrease Gini (Gini), Mean Decrease Accuracy (MDA), and Shapley 

values. Higher values of Gini and MDA suggest that a variable has a more significant impact on 

classifying tile and non-tile areas. AET in the growing season (AET_grow) ranked the highest in 

the MDA, and the maximum nighttime LST in the summer (NightLST_max_summ) ranked top in 

the Gini index (Figure A4.0.4), thus they were in the top right corner of the multi-way importance 

plot (Figure 4.8). Four additional variables (aridity in spring, soil moisture percent in summer, the 

range of daytime LST in growing season and soil drainage class) ranked high in both Gini and 

MDA, meaning that removing these variables will largely reduce impurity and model accuracy.  

Shapley value (Figure 4.9a) can determine whether variables positively or negatively affected the 

classification accuracy of our model for a given prediction (tile, in this case). It is important to note 
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that Shapley values are the average contribution of an input variable to the target prediction, thus 

it might be biased due to the uneven distribution of ground truth points. Our findings revealed that 

four variables, soil moisture percent in the summer, median daytime LST in summer and growing 

season and actual evapotranspiration in growing season, negatively impacted tile drainage 

identification. Specifically, soil moisture percent in the summer made the largest negative 

contribution to identifying tile drains, this is somewhat unexpected as higher soil moisture percent 

were found in tile drainage points compared to non-tile points (Figure 4.4).  

Conversely, the remaining 26 variables had positive contributions toward identifying tile drains, 

and cropland type did not show any impacts on tile drainage identification. Of these positive 

variables, soil drainage class had the largest positive contribution, followed by aridity in spring, 

the range of daytime LST in the growing season (which was the second variable based on the Gini 

index). Align with expectations, tile drains are installed in relatively poorly drained soils (higher 

class number) thus resulting in positive impacts.  
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Figure 4.8 Two measures of variable importance from the random forest classification. The 

measure on the x-axis is Mean Decrease Accuracy and Mean Decrease Gini in the y-axis. The P 

value shows the significance level of importance. The top 11 variables according to these two 

measures are labeled as circles. Variables are identified by their short names, which can be related 

to full names and other information using Table 4.1. 

Finally, I calculated the overall importance (Figure 4.9b), based on these three-importance metrics, 

Gini index, MDA, and Shapley value. It revealed that variables derived from MODIS product, 

climate- and soil-related variables are the most important. The top-ranking variable is the 

maximum of nighttime LST during summer. This is somewhat consistent with (Cho et al., 2019) 

where the mean LST in the spring strongly contributed to the random forest classification for tile 
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drainage in the Bois de Sioux Watershed District in Minnesota and in the Red River basin (overlies 

portions of Dakotas and Minnesota).  

 
Figure 4.9 (a) Shapley value and (b) overall importance (summed score from MDA, Gini, and 

Shapley). The +/- Shapley value represents the average positive/negative impacts of variables on 

the classification. Different colors in (b) represent different data sources.  
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Figure 4.10 Accumulated local effects for top 20 variables, with the locally estimated scatterplot 

smoothing (loess) method. The strips are colored by different data sources.  

Figure 4.10 displays the accumulated local effects to evaluate whether high or low values of the 

variables correspond to higher probabilities of tile drains. Our analysis demonstrates that none of 

the effects exhibit monotonic behavior. The magnitude of the effects is plotted on the y-axis. The 

soil drainage class ranked top among the positive variables based on the Shapley value and 

maximum nighttime LST in the summer ranked top based on Gini index stand out with relatively 

larger ALE values. Notably, these two variables are about one magnitude higher than the 
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remaining variables. 

The general patterns can be categorized into several groups: (1) higher values indicate lower 

probabilities of tile drains, such as the actual evapotranspiration in the growing season; (2) higher 

values indicate higher probabilities of tile drains but stabilizes at a certain point, such as aridity in 

spring (threshold: 0.75); (3) higher values yield lower probabilities of tile drains, such as soil 

drainage class (higher values mean poorly drained soils); and (4) up and down trend variables.  

4.5: Discussion and Conclusion 

4.5.1: Comparison with Existing Products 

Table 4.2 listed the tile drainage area in the US Midwest (defined in Figure 4.2d) from different 

products. Our product, SEETileDrain, estimated that 185,069 km2 were tile drained, which is 

~9.6% lower than the estimates from survey-based statistics from USDA-NASS, while the other 

three (AgTile-US, TD-MostPD, TD-AllPD) have estimated higher likely tile drainage than 

reported. AgTile-US utilizes information on soil drainage and topographic slope threshold within 

cropland areas to estimate tile drainage and constrain the geospatial model with statistical tile 

drainage area at the county level, based on data from the Census of Agriculture in 2017 

(Valayamkunnath et al., 2020). The estimate is ~2% lower than the reported areas from USDA-

NASS. Another study by (Jame et al., 2022) developed two TransformingDrainage (TD) extent 

products for the US Midwest, which are based on soil drainage class. These classes were selected 

because they are directly related to crop production and are therefore considered more suitable for 

estimating likely drained land than soil properties alone. The first product, TD-MostPD, includes 

areas with very poorly and poorly drained soils that are likely tile-drained. The second product, 

TD-AllPD, includes somewhat poorly drained soils in addition to the two categories used in TD-

MostPD. TD-MostPD and TD-AllPD estimated 2.8 and 5 times more tile drainage extent than the 
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statistics from USDA-NASS for this region, respectively.  

Table 4.2. Estimated tile drainage area among existing products. 

Product 

Name  

Estimated 

Area (km2) Resolution  Notes 

SeeTileDrain 185,069 30 m 

Derived from satellite and environmental datasets with machine 

learning  

USDA-NASS 204,842  county-level  County-level survey statistics  

AgTile-US 201,206 30 m  Geospatial analysis based on slope and soil drainage class  

TD-MostPD 576,493 30 m  Areas have very poorly and poorly drained soils 

TD-AllPD 1,025,288 30 m  

Areas have very poorly, poorly, and somewhat poorly drained 

soils 

 

Because these maps (AgTile-US, TD-MostPD, TD-AllPD) rely on soil drainage class and slope 

information, I used a random forest classification model based on these inputs and all ground truth 

points. The model used the same ntree (500) and two variables at each split (mtry = 2), with an 

out-of-bag (OOB) estimate of the error rate at 36%. This indicates that only 64% of ground truth 

points were classified correctly. The model also exhibited relatively low values for sensitivity 

(0.66), and specificity (0.61), with a positive predictive value (0.29), and negative predictive value 

(0.88), demonstrating the inferior quality of the classification model which used two variables, 

compared to our final classification model that used 31 variables. The F1 score for this model was 

0.4, compared to the F1 score of 0.9 obtained with 31 variables, indicating that the variables added 

significantly improved the binary classifications. 

4.5.2: Conclusion, Limitation and Future Work  

Spatially-explicit agricultural tile drainage across the US Midwest, at 30-m resolution, was 

mapped using a random forest machine learning classification model. This model was 
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implemented on the Google Earth Engine cloud computing platform, incorporating 31 variables 

from eleven datasets and comprehensive ground truth points. The resulting classified map 

demonstrated good accuracy in point-based assessment and reasonable agreement with the 

reported area from USDA-NASS. Land Surface Temperature, soil moisture percent, actual 

evapotranspiration, and soil drainage class were identified as strong predictors for tile drainage 

identification. The machine learning model developed here could be readily applied to other 

regions, both for historical and future years. The resulting data product may be useful for 

hydrological, water quality, and crop modeling research. This information may help watershed 

managers and stakeholders achieve cost-effective agricultural water and nutrient management and 

maintain optimal crop production.  

The accuracy of the algorithm depends on the coverage of ground truth information, which was 

not evenly distributed and may be imbalanced for tile and non-tile points. Besides, assumptions 

about tile drainage permits and potential issues during the visual interpretation can introduce model 

bias. In addition, this study successively removed relatively high correlated but less important 

features based on pre-defined threshold, while correlations between variables might still exist. 

Even though variable co-variation is not often considered in random forest classification, 

additional preprocessing could be used to reduce the effects of correlated variables on the 

performance of the classification model and improve the robustness of variable importance.  

For future work, deep learning methods and tile drainage line extraction Artificial intelligence (AI) 

models could be used to identify tile drainage areas. These approaches have the potential to provide 

more accurate and efficient classification results. Moreover, the use of high-resolution images, 

such as the Harmonization of the Landsat and Sentinel-2 data (HLS) (Claverie et al., 2018), images 

provided by the Planet Lab or Google's aerial imagery, would enable the identification of tile 
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drainage at a finer resolution. This approach could provide more detailed information on the 

distribution and patterns of tile drainage across the landscape. The incorporation of such 

techniques and data sources could enhance our understanding of the effects of tile drainage on 

agricultural landscapes and facilitate development of more effective management strategies. 
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CHAPTER 5: SUMMARY 

5.1: Conclusion 

This dissertation simulated nutrient fluxes to the Great Lakes from the US side of their drainage 

basins, quantified the contributions of seven nutrient sources and four distinct transport pathways 

and identified nutrient delivery hotspots. Modeling transport pathways in Chapter 2 offers a novel 

alternative to many models that do not include essential pathways, such as groundwater and septic 

plumes. Nutrient simulation on seasonal variations can help stakeholders implement nutrient 

reductions at the most effective time.  

Chapter 2 found that the annual average nitrogen and phosphorus loads to the Great Lakes from 

its US drainage basin are 599 and 21.7 kg/yr/km2, respectively. The spatial patterns are similar, 

with high nutrient delivery areas in southern Lake Michigan, Saginaw Bay, and the Western Lake 

Erie basin. SENSEflux modeling results demonstrate that agricultural sources are the main sources 

of nutrient pollution, and surface pathways (overland runoff and tile drainage) are dominant in the 

US Great Lakes Basin on an annual basis. Additionally, these results highlight those other sources 

(i.e., septic tanks, atmospheric deposition, sources from developed urban areas) and pathways 

(groundwater and septic plumes) cannot be overlooked. Annually, areas with high loading and 

delivery efficiency are the most intense sources of nutrient loads to the Great Lakes coastline.  

SENSEflux seasonal models in Chapter 3 found that there is 1063 t/day of nitrogen delivered from 

US lands to the lakes during snowmelt, and this is about 2.8 times greater than the annual delivery 

(378 t/day) and 16 times greater than the TN delivery during baseflow (66 t/day). And there are 

more phosphorus delivered annually and during snow melt season, compared to baseflow. Most 

nutrients are transported via overland flow and tile fields regardless of the period. Groundwater 

and septic plume pathways play an essential role in transporting nutrients and become more 
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significant during baseflow. Besides, agricultural sources contribute substantially higher (14% for 

TN and 5% for TP) during melt than baseflow, while point sources, septic tanks, and atmospheric 

deposition become more prominent contributors to nutrient delivery during baseflow. In addition, 

targeting nutrient reductions during snowmelt is more effective than focusing on baseflow, 

especially for TN, based on seasonal delivery hotspot analysis. Thus, seasonal variations of 

nutrient transport should be considered when implementing water quality management plans to 

achieve nutrient reduction targets.  

Through community-facing tools, the SENSEflux model outputs and insights from Chapter 2&3 

can be linked to the local decision-making process, assisting watershed managers in focusing 

actions on specific sources and pathways at the right time and the right place.  

This dissertation also used a machine learning model to map agricultural tile drainage across the 

US Midwest in Chapter 4. This is because tile drainage is an important nutrient transport pathway 

but the spatially explicit tile drainage data at finer resolution was lacking at large scales. The 

random forest classification model was implemented on the Google Earth Engine, with 

comprehensive tile and non-tile ground truth points and twenty satellite-derived and environmental 

variables. The classifier model achieved good accuracy (95.5%), with an F1 score of 0.904. 

Besides, aggregated areas from the classified map for each county correlated well with the area 

reported by USDA Agricultural Census. The maximum nighttime land surface temperature during 

summer ranked highest based on the assessment of variable importance, followed by climate- and 

soil-related variables.  

In summary, SENSEflux model products about nutrient loadings, sources, pathways, and hotspots, 

as well as insights from these products can help decisions makers target the areas for nutrient 

reduction at the right time and develop watershed management strategies more effectively. 
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SENSEflux model could be readily applied to other watersheds with nutrient pollution and 

management issues, with a resolution limited only by spatially explicit nutrient inputs. The 

classified tile drainage map can improve the accuracy of crop, hydrological, and water quality 

modeling work across the US Midwest. The identified tile drainage locations can provide a 

baseline for mapping tile drainage area change over time predicting for the future. Similarly, the 

random forest machine learning approach for tile drainage classification could be readily applied 

to other regions where the key variables are available.  

5.2: Limitations 

There are some limitations in this dissertation, even though it provides spatially explicit data 

products and results necessary to understand the interactions between human and natural systems. 

First, SENSEflux considers tile drainage to be an alternative nutrient pathway to overland runoff, 

which somewhat overestimates tile drainage’s contribution. Second, this dissertation assumed that 

groundwater watersheds have the same boundary as surface watersheds and that nutrient 

attenuation via the groundwater pathway was determined by the overland flow length. Third, there 

are some inherent uncertainties in the annual nutrient source due to the various sources, the coarse 

resolution of some inputs, and so on, but SENSEmap is the most suitable and useful nutrient source 

for this dissertation. SENSEflux used the annual average nutrient inputs with seasonal mobility 

inferred from streamflow variability, to simulate seasonal nutrient loading, as I do not have 

information about when nutrients are applied. Fourth, the distribution and accuracy of ground truth 

points are critical for accurate classification. Some of the tile drainage points used in this 

dissertation are clustered, tile drainage permits from three states were assumed to be real tile 

drainage points, and likely non-tile points were used for classification, because tile and non-tile 

ground truth points are not easily accessible, and labor and cost-intensive.  
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5.3: Future Work 

 Future research could improve nutrient delivery simulation by distinguishing between overland 

runoff and flow from tile drainage, as well as nutrient travel time through groundwater watersheds 

and estimates of legacy timescales, particularly in watersheds with significantly different boundary 

conditions than surface watersheds. Furthermore, time-varying nutrient source inputs such as 

allocating fertilizer and manure to seasons based on phenology and fertilizer practice, as well as a 

robust monitoring network for collecting nutrient concentration across seasons could improve the 

seasonal nutrient delivery simulation and understanding the timing and quantity of nutrient losses. 

Furthermore, considering nutrient uptake and transformation from wetland systems before flowing 

into the Great Lakes is necessary because wetlands are effective natural systems for nitrogen, 

phosphorus, and carbon, as well as reducing the effects of nutrient pollution on aquatic ecosystems. 

In addition, the SENSEflux model can simulate nutrient species such as dissolved inorganic 

nitrogen (nitrate and nitrite), and soluble reactive phosphorus, which have different chemical 

properties, bioavailability, and ecological impacts in the environment than total nitrogen and 

phosphorus. Furthermore, the SENSEflux model can be extended to the Great Lakes Basin, which 

would aid in making more holistic decisions for nutrient management and conservation in the 

United States and Canada.  

Future research could make use of high-resolution remote sensing images and refine tile drainage 

detection methods. Using images from the Planet Lab, Google's aerial imagery, or the 

Harmonization of the Landsat and Sentinel-2 data (HLS) would enhance classification accuracy 

and enable the identification of tile drainage at a higher resolution. In addition, deep learning 

techniques and tile drainage line extraction Artificial intelligence (AI) models have the potential 

to identify tile drainage areas. These high-resolution images and AI techniques can be used to 
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identify historical tile drainage and predict future tile drainage, the resulting tile drainage area will 

improve our understanding of the effects of tile drainage on agricultural landscapes.  

Lastly, future interdisciplinary research could focus on the relationship between food production, 

nutrient pollution, and climate change, as well as human activities. The influence of climate change 

on food production, water balance, nutrient transport, and the modifications of human behaviors 

to manage complex landscapes has been growing. Future agricultural and hydrological 

management research needs to account for the warming temperatures and the increased frequency 

and intensity of extreme events brought on by climate change. In addition, agricultural practices 

such as tile drainage, cover crop, conservation tillage, and nutrient management practices such as 

the edge of field practices, woodchip bioreactors, and constructed wetlands could help reduce 

nutrient losses. Future management efforts aimed at enhancing human well-being and fostering a 

sustainable planet will require the integration of these processes. 
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APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 2  

Text A2.1: SENSEflux Model Equations 

The main function of SENSEflux modeling is shown in equation (2.1) below. Where Lk is the 

simulated load (kg/day) at an in-stream location for an individual catchment. S represents the 

nutrient source, Spoint is the point source and directly flows into the rivers and streams, Ssep is the 

septic tank source, and Sij is the application of other sources i that can be harvested to watershed 

cell j. SepEff is removal efficiency on septic loads, it’s fixed as 0.3 for total nitrogen and 0.35 for 

total phosphorus(Luscz et al., 2017; W. D. Robertson et al., 2019). ExHij is an extraction factor 

that describes the in-place removal of nutrients before transport (such as harvest). For all other 

cells and sources, ExHij is equal to 1. Fj is a subsurface partition parameter, describing the fraction 

of nutrients that are transported via a subsurface pathway. It is a function of normalized 

groundwater recharge fraction (recharge fraction in a cell j divides the maximum recharge fraction 

across the SENSEflux model domain), where rechFj is the groundwater recharge fraction in cell j, 

and max(rechF) is the maximum value of groundwater recharge fraction across the SENSEflux 

model domain (equation (2.2)). The recharge fraction was defined as the average annual 

precipitation becoming recharged and is limited by 0.55 (Hyndman et al., 2007).  

𝐿𝑘 =  ∑ 𝑅𝑗𝐿𝑎𝑐𝑢𝑠𝑗 × {𝑆𝑝𝑜𝑖𝑛𝑡 + 𝑆𝑠𝑒𝑝(1 − 𝑆𝑒𝑝𝐸𝑓𝑓)𝐵𝑠𝑒𝑗 + ∑ 𝑆𝑖𝑗

𝑜𝑡ℎ𝑒𝑟 
𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑖

× 𝐸𝑥𝐻𝑖𝑗

𝑐𝑒𝑙𝑙𝑠

𝑗

× [(1 − 𝐹𝑗)𝐵𝑠𝑗 + 𝐹𝑗(1 − 𝐹𝑠𝑡𝑜𝑟𝑖𝑗)𝐵𝑔𝑗]} 

(2.1) 

𝐹𝑗 = 𝑓 × (
𝑟𝑒𝑐ℎ𝐹𝑗

𝑚𝑎𝑥 (𝑟𝑒𝑐ℎ𝐹)
) 

(2.2) 

The major updates between SENSEflux and its former version (Luscz et al., 2017) are an updated 

river retention function (equation (2.3) - (2.6)), lake retention and subsurface phosphorus storage 

with two new model parameters Lacusj and Flossj, defined in equation (2.7) and (2.8) respectively. 
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Rj describes river reduction of the remaining nutrients after landscape attenuation, and it split as 

denitrification for TN (sorption for TP) plus biological uptake & burial (equation (2.3)). For N 

denitrification or P sorption (equation (2.4)), it is an exponential function of DNSPj that was 

calculated based on the flow length tool and used streambed interaction as an input weight raster. 

The composite raster calculation is shown in equation (2.6), where 𝑘̂, 𝑠̂, and 𝑏̂ are derived from 

hydraulic conductivity, slope, and basin yield, respectively. R and V represent hydraulic radius 

and velocity, see details in Text A2.3. Biological uptake & burial is an exponential function of Tj 

that represents in-stream travel time from cell j to the downstream observation point (equation 

(2.5)). 

𝑅𝑗 = 𝑒−𝛼∗𝐷𝑁𝑆𝑃𝑗 ∗  𝑒−𝛼1∗𝐵𝑖𝑜𝑗 (2.3) 

𝐷𝑁𝑆𝑃𝑗 = 𝑓𝑙𝑜𝑤𝐿𝑒𝑛(𝑠𝑡𝑟𝑒𝑎𝑚𝑏𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑗) (2.4) 

𝐵𝑖𝑜𝑗 =  𝑓𝑙𝑜𝑤𝐿𝑒𝑛(𝑖𝑛𝑆𝑡𝑟𝑒𝑎𝑚𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑗) (2.5) 

𝑠𝑡𝑟𝑒𝑎𝑚𝑏𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑗 =
𝑘̂𝑗 ∗ 𝑠̂𝑗 ∗ (1 − 𝑏̂𝑗)

𝑅𝑗 ∗ 𝑉𝑗
 (2.6) 

We also consider nutrient attenuation via lakes or reservoirs (Lacusj) as they travel down the stream 

network as a function of travel distance in lakes (equation (2.7)), and only the loss for a lake or 

reservoir which has a connection with streams is considered due to the inherent river routing 

scheme in the SENSEflux model. Flossj is the fraction of groundwater pathway nutrients 

stored/lost in the soil and the deeper unsaturated zone where the floss is a calibrated constant 

(equation (2.8)). floss was assumed to be zero due to the high mobility of nitrogen. By adding this 

term, I can better estimate the amount of phosphorus in every grid cell delivered to the streams.  

𝐿𝑎𝑐𝑢𝑠𝑗 = 𝑒−𝛼2∗𝐷𝐿𝑗 (2.7) 

𝐹𝑠𝑡𝑜𝑟𝑗 = 𝑓𝑠𝑡𝑜𝑟 × (1 −
𝑟𝑒𝑐ℎ𝐹𝑗

𝑚𝑎𝑥 (𝑟𝑒𝑐ℎ𝐹)
) (2.8) 

All basin attenuations are exponential functions of flow length (D) from each cell to the nearest 
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downgradient stream cell. Bsj, Bgj, and Bsej are basin reduction parameters, representing the 

overland flow, general groundwater, and septic plume pathways respectively (equations (2.9), 

(2.11), (2.12). Tile field pathway Bstj is also considered in the model as an alternative overland 

pathway, representing nutrient attenuation along with tile fields if tile exists in a cell equation 

(2.10). Equations describing each of these terms are given in (Luscz et al., 2017) and (Martin et 

al., 2021).  

𝐵𝑠𝑗 = 𝑒−𝑏𝑠∗𝐷𝑗 (2.9) 

𝐵𝑠𝑡𝑗 = 𝑒−𝑏𝑠𝑡∗𝐷𝑗 (2.10) 

𝐵𝑔𝑗 = 𝑒−𝑏𝑔∗𝐷𝑗  (2.11) 

𝐵𝑠𝑒𝑗 = 𝑒−𝑏𝑠𝑒∗𝐷𝑗 (2.12) 

Text A2.2: Spatial Distribution of Loss Terms and Basin Storage 

Three in-situ loss terms are applied before nutrients are transported in SENSEflux: Septic removal 

(SepEff), Harvest (ExH), and Storage (Fstor). Septic removal efficiency is applied on septic load 

and fixed as 0.3 for N and 0.35 for P (Luscz et al., 2017; W. D. Robertson et al., 2019). Harvest 

includes all in-place root zone nutrient loss and is assumed to occur in cells with manure or 

chemical agricultural fertilizers applied. The Storage loss term includes both in-place storage and 

loss of nutrients below the root zone, which I assume to occur for phosphorus (Eq (2.8)). Fstor was 

assumed to be zero for nitrogen due to the high mobility of N. By adding this term, I can better 

estimate the amount of phosphorus in every grid cell delivered to the streams. 

Text A2.3: Spatial Distribution and Derivation for Instream and Lake Losses  

The attenuation of nutrients during stream/wetland transport is assumed to be broken into two 

components: 1) water column and sediment interface losses, and 2) hyporheic zone losses. Water 

column losses consist of biological uptake, followed by subsequent denitrification and particulate 

transport. For phosphorus, sediment burial is another active process. Hyporheic zone losses may 
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be biological uptake (N or P), denitrification (N), sorption (P), or mineralization (P). I label the 

corresponding terms “water column (WC)” and “hyporheic zone (HZ)” attenuation.  

Water column attenuation is assumed to be a function of travel time in the stream/wetland, given 

as 𝐿𝑜𝑠𝑠𝑤𝑐 = 𝛼𝑤𝑐𝑇𝑠, where 𝛼𝑤𝑐 is a calibrated constant across the domain, and 𝑇𝑠 is the travel time 

in-stream. Travel time in-stream in each model cell is given by 𝑇𝑠 =
1

𝑣
 where 𝑣 is the velocity of 

water in that stream cell. While this is the loss in a single cell, integrating across all cells along the 

flowpath results delivery of nutrients 𝑁𝑜𝑢𝑡 = 𝑁𝑖𝑛𝑅𝑤𝑐, where 𝑅𝑊𝐶 = 𝑒−𝛼𝑤𝑐𝑇𝑇𝑠 . Here, 𝑇𝑇𝑠 is the 

total travel time in streams, computed in ArcGIS as described in the main text (section 2.4.5).  

To compute losses due to streambed and hyporheic zone interactions beneath it, I define losses in 

this zone to be given by the residence time multiplied by a static constant, 𝐿𝑜𝑠𝑠ℎ𝑧 = 𝛼ℎ𝑧𝜏ℎ𝑧 where 

𝜏ℎ𝑧 is the residence time in the hyporheic zone, defined as 𝜏ℎ𝑧 = 𝐷 𝑣ℎ𝑧⁄  where 𝐷 is the hyporheic 

zone depth and 𝑣ℎ𝑧 is the velocity of water flowing into/out of the HZ.  

The streambed interaction factor (D) is given by 𝐷~𝑓(𝐾, 𝑆, 1 𝑅𝑒𝑐ℎ⁄ ), where K is the hydraulic 

conductivity of the streambed sediments, S is the slope of the stream channel, and Rech is 

groundwater recharge. Thus, I have assumed that higher streambed sediments increase the 

exchange of surface and groundwater (increasing hyporheic zone depth) and that a higher slope 

leads to greater streambed morphometric variability, and thus greater incidence of flow paths 

entering the sediments and exiting shortly thereafter, promoting hyporheic exchange. I further 

assume that greater groundwater recharge upstream leads to a stronger influx of water from below, 

which would reduce the depth of exchange through the groundwater pushing back against 

streamflow. Here, recharge is assumed to be represented by the basin yield of streams at their 30th 

percentile, thus 𝑅~𝐵𝑌30. I chose to normalize each of the terms by their maximum and minimum 

values across the model domain, and I log-transformed K. The final equation for hyporheic zone 
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depth D is: 

 𝐷 = 𝛼𝐷 ∙ [
𝑙𝑜𝑔(

𝐾

𝐾𝑚𝑖𝑛
)

𝑙𝑜𝑔(
𝐾𝑚𝑎𝑥
𝐾𝑚𝑖𝑛

)
] ∙ [

𝑆

𝑆90
] ∙ [1 −

𝐵𝑌30

𝐵𝑌30,𝑚𝑎𝑥
] = 𝛼𝐷𝐾̃ ∙ 𝑆̃ ∙ 𝐵𝑌̃                           (2.13) 

Where each of the terms with a tilde (~) represents 0-1 normalized values, corresponding to the 

similarly colored sections of the left-hand side of the equation. The units of D are [L] (here, m). 

Note for 𝑆̃ I limited the maximum value to 1. 

If I assume that the total flux of nutrients into the HZ (𝑛𝑖𝑛) is given by 𝑛𝑖𝑛 = 𝑄ℎ𝑧𝐶𝑖𝑛, where 𝑄 is 

the flux of water in/out of the HZ [L3/T] and 𝐶𝑖𝑛 is the input concentration to the HZ [M/L3], I can 

represent 𝑄ℎ𝑧 = 𝑃 ∙ 1 ∙ 𝑣ℎ𝑧, where 𝑃 is the perimeter of the stream channel [L], 1 is the unit length 

of the channel [L], and 𝑣ℎ𝑧 is the velocity of water exchange in the HZ [L/T]. Therefore, 𝑛𝑖𝑛 = 𝑃 ∙

𝑣ℎ𝑧 ∙ 𝐶𝑖𝑛 =
𝑃∙𝑣ℎ𝑧∙𝑁𝑖𝑛

𝑄
, where 𝑁𝑖𝑛 is the input nutrient flux [M/T] in the stream channel above the 

HZ, and 𝑄 is the streamflow in the channel [L3/T].  

We further assume that nutrient uptake is linearly related to the residence time in the HZ, 𝜏ℎ𝑧 

which can be expressed as 𝜏ℎ𝑧 = 𝐷/𝑣ℎ𝑧. Thus, the flux of nutrients out 𝑛𝑜𝑢𝑡 = 𝑛𝑖𝑛 ∙ 𝜏ℎ𝑧 ∙ 𝛼ℎ𝑧 , 

where 𝛼ℎ𝑧 is a parameter to be calibrated in the model. Substituting the definitions of 𝑛𝑖𝑛 and 𝜏ℎ𝑧, 

I get 𝑛𝑜𝑢𝑡 =
𝑃∙𝑣ℎ𝑧∙𝑁𝑖𝑛

𝑄
∙

𝐷

𝑣ℎ𝑧
∙ 𝛼ℎ𝑧. Canceling terms, I get 𝑛𝑜𝑢𝑡 =

𝑃

𝑄
∙ 𝑁𝑖𝑛 ∙ 𝐷 ∙ 𝛼ℎ𝑧. I can further use 

the relationship between 𝑃 (the wetted perimeter of the stream channel) and 𝑄 = 𝐴 ∙ 𝑣  [L3/T], 

determined by the hydraulic radius 𝑅 = 𝐴/𝑃 [L], where 𝐴 is the channel area, and 𝑣 is the in-

stream average water velocity. Thus 
𝑃

𝑄
=

𝐴

𝑅∙𝐴∙𝑣
=

1

𝑅∙𝑣
. Finally, if I substitute this and equation S3.1 

into our equation for 𝑛𝑜𝑢𝑡 (noting that the linear constants combine 𝛼ℎ𝑧 = 𝛼ℎ𝑧 ∙ 𝛼𝐷) I get equation 

(2.14). 

                      𝑛𝑜𝑢𝑡 = 𝑁𝑖𝑛
𝑲̃∙𝑺̃∙𝑩𝒀̃

𝑹∙𝒗
𝛼ℎ𝑧                       (2.14) 

The bold terms in equation (2.14) are independent of nutrient concentrations but vary in space. 
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Therefore, I combine these terms into a single model input layer I term the streambed exchange 

rate, 𝑆𝐸 =
𝐾̃∙𝑆̃∙𝐵𝑌̃

𝑅∙𝑣
  [T/L], shown in Figure A2.0.6 e. Other intermediate inputs to calculate 𝑆𝐸 are 

shown in Figures 2.2 and S6. While the values of 𝐾 and 𝑆 could be calculated from input static 

layers (e.g., Figure A2.0.1), 𝐵𝑌, 𝑅, and 𝑣 needed to be computed for each point along the stream 

channel.  

Text A2.4: Groundwater Recharge and Tile-Drained Area Calculation 

Groundwater recharge was estimated based on a series of linear models derived from the 

Landscape Hydrology Model (LHM), a coupled process-based hydrological model (Hyndman et 

al., 2007). LHM was originally developed for the Muskegon River Watershed, located in the 

central part of Michigan’s lower peninsula, and contains diverse land use representative of the 

broader region. This hydrological model combined several GIS layers including land use, soils, 

and station observation data to predict stream discharge, groundwater recharge, and 

evapotranspiration from 1990 to 2004. The linear regression models fit for each land use type to 

the percentage of precipitation that becomes recharges as a function of soil hydraulic conductivity. 

The annual precipitation from 2008 to 2012 was downloaded from Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) database (OSU, 2014) and average annual 

precipitation from 2008 to 2012 was used for linear models. The soil hydraulic conductivity is 

derived from the soil texture of the soil survey geographic database (SSURGO) (USDA, 2013) 

and land cover data from the national land cover database 2011(USGS, 2011). The recharge 

estimates for USGLB are shown in Figure A2.0.1.  

To derive an estimated tile drainage map, I used GIS-based mapping based on the premise that 

crops grown on land with low slopes and poorly drained soil likely have tile drains. First, cells 

classified in the 2011 NLCD (USGS, 2011) as “Cultivated Crops” were extracted. Then, I fit a 
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model to land drained by tile county-level data from land-use practice in 2012 for the 109 counties 

in the USGLB (Figure A2.0.1), published by the United States Department of Agriculture, 

National Agricultural Statistical Service (NASS, 2012). 55 counties were randomly selected as 

training datasets and the remaining 54 counties as a validation dataset. This model selects areas 

that are cultivated land-use types, moderately low soil permeability (Ksat < 14.4 mm/hr), and low 

average slopes (< 1.2%) as tile drainage (r2 =0.83). The rest of the 54 counties were used to 

calibrate the model (r2=0.85). Estimates of tile-drained areas are shown in Figure A2.0.1. The 

aggregation method (maximum) used in pre-processing data may overestimate the area of tiled 

fields in the model.  

Text A2.5: Model Parameter Extended Discussion 

Four of the model parameters (f, ExH, SepEff, and fstor) are linear coefficients on loss terms in the 

model, while the remainder (basin and river losses) are coefficients in the exponent of an 

attenuation term—thus their values are not directly comparable.  

The subsurface partition parameter f is multiplied by the normalized recharge (Eq (2.2)) and 

represents the proportion of mobile surface-applied nutrients (after Harvest) that are sent through 

the groundwater pathway. Thus, areas with the highest recharge in the basin have 49% of mobile 

surface-applied nutrients sent to groundwater for N while 78% is routed through groundwater for 

P (table A2.1). See Figure A2.0.13 for a map of the final groundwater partition fraction. It is 

somewhat surprising that phosphorus has a higher fraction than nitrogen, given the relative ease 

with which NO3 in particular leaches from soils, however, this may be an artifact of the simplistic 

relationship between recharge rates and groundwater pathway hydrologic fractionation imposed 

here. It may also be due to a non-linear relationship between soil texture (underlying recharge) and 

P mobility. P moves much more readily through sandy soils than finer textured ones. That 
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relationship is also not captured properly here. 

Our model predicts that 80% of surface-applied N is harvested, lost to the atmosphere (N only), or 

stored in the root zone in agricultural settings, while 95% of P is. Figures S10a and S11a show 

total losses due to harvest, atmosphere, and storage for N and P, respectively. The higher rate of P 

harvest may be influenced by the tendency of P to sorb to unsaturated zone soils, rather than a 

more careful accounting of N and P needs when fertilizers are applied.  

Phosphorus then experiences an additional deep unsaturated zone storage, where up to 55% of 

groundwater-mobile P (in the lowest recharge areas, Eq (2.8)) is stored (Figure A2.0.11b). Areas 

with higher recharge then experience less storage proportionately.  

Nutrient attenuation during basin transport through surface runoff, tile drain fields, general 

groundwater, and septic plumes are determined by the overland travel distance along with the 

corresponding parameters (bs, bst, bg, and bse, see Eq (2.9-2.12)). The less calibrated parameter 

value means a higher delivery rate through the pathway, but the amount of nutrients delivered 

through these pathways are not directly comparable due to the different amounts traveled prior to 

basin attenuation. But I can compare bs and bst here as they are alternative pathways, tile drainage 

delivery rate is about 20 times higher than the overland runoff pathway for both TN (20.58) and 

TP (19.51). General groundwater pathway and septic plume pathway have the delivery rate 

between overland runoff and tile drains.  

Text A2.6: Load Comparison with Sparrow 

First of all, there are some important differences to note: SPARROW does not use spatially explicit nutrient 

sources nor attenuation processes and is run at a coarser resolution. Using the same observation dataset, the 

SENSEflux TN model slightly underestimated high loads while the SPARROW model slightly 

overpredicted them (Figure A2.0.9). Both SENSEflux and SPARROW models slightly underpredicted 

higher TP loads and overpredicted lower loads. These differences are not surprising because the two models 
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have several notable differences, including nutrient attenuation processes, methods to model nutrient 

sources, spatial resolution, and timeframes. Specifically, SENSEflux includes four distinct pathways (tile 

fields, overland, septic plumes, and groundwater, see Figure 2.1) while the SPARROW model uses data on 

land-to-water delivery factors, such as soil permeability, drainage density, precipitation, air temperature, 

the fraction of the stream catchment with tile drains to describe attenuation processes broadly across the 

basin(D. M. Robertson & Saad, 2011b). Moreover, SENSEflux uses spatially explicit nutrient source 

inputs from SENSEmap while SPARROW uses land use/cover and county-level estimates of nutrient 

masses to statistically compute sources more generally (Hamlin et al., 2020a). Finally, SPARROW 

models were developed for TN and TP with a 2002 base year (D. M. Robertson & Saad, 2011b), while 

nutrient sources and watershed factor data used in SENSEflux are based on ca. 2010 data.  

 
Figure A2.0.1 Model key inputs. (a) annual groundwater recharge for USGLB; (b) overland 

flowlength; (c) harvested areas where either manure or chemical agricultural fertilizers applied for 

TN and TP; (d) estimated tile drainage (indicated in yellow) estimated from land use, soil 

permeability, and average slope. 
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Figure A2.0.2 Study region and data source showing the GLB in the inset map, along with a. the 

Land Use/Land Cover across the basin from the National Land Cover Dataset (USGS, 2011); b. 

non-point TN source from SENSEmap (Hamlin et al., 2020a, b); c. Average annual precipitation 

from 2008 to 2012 from PRISM (PRISM Climate Group 2011); d. the saturated conductivity of 

the top soil layer from SSURGO (Soil Survey Staff, 2022). 

 



 

147 

 

 
Figure A2.0.3 SENSEmap nitrogen source for USGLB resampled to 720 m resolution for display, 

derived from Hamlin et al (2020). The units are kg/ha/yr except for point sources (kg/yr). The 

color breaks are based on quantile classification and round-off methods. 
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Figure A2.0.4 SENSEmap phosphorus source for USGLB resampled to 720 m resolution for 

display. The units are kg/ha/yr except for point sources (kg/yr). The color breaks are based on 

quantile classification and round-off methods. 
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Figure A2.0.5 Spatial domain showing nitrogen and phosphorus sampling locations that are used 

for delineating watersheds and loads used for model calibration and validation. (a) TN sampling 

locations (N = 116), (b) TP sampling locations (N = 119), (c) TN watersheds with loading, and (d) 

TP watersheds with loading. Maps are classified in quantiles, with each color representing 25% of 

the study domain.  
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Figure A2.0.6 Inputs are used to derive the river retention factor in SENSEflux. (a) average slope, 

(b) basin yield during baseflow; (c) hydraulic radius; (d) average velocity; (e) streambed exchange 

rate; (f) N denitrification or P sorption factor.  
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Figure A2.0.7 Model residual (log10 model – log10 observed) distribution and density are shown 

as violin plots. The bottom and top of each box represent the first and third quartiles, respectively, 

and the line inside each box represents the median. Zero residual is indicated as a black dashed 

line. The top and bottom bars (whiskers) represent the maximum and minimum residuals, 

respectively. Data beyond the end of the whiskers are "outlying" points and are plotted 

individually. None of the means were significantly different from zero, as measured by the one-

sample t-test, with P values > 0.05.  
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Figure A2.0.8 Log model residuals (kg/day) by watersheds for both calibration and validation 

datasets. The color breaks are based on quantile classification and are rounded to the nearest 0.1. 

 
Figure A2.0.9 Comparison to the simulated loads (log10 of kg/day) in the SPARROW models. 

Blue dots and lines are for SENSEflux simulation, and red is for SPARROW. The dashed black 

line is a 1:1 line, where simulated loads are equal to observed loads.  
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Figure A2.0.10 TN model loss and attenuation outputs. (a) crop extraction of nitrogen; (b) total 

nitrogen loss during basin transport; (c) nitrogen uptake in streams and connected lakes. Maps are 

resampled from 120m SENSEflux outputs to 720m resolution here for display purposes and 

classified in quantiles with each color representing 20% of the dataset.  
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Figure A2.0.11 TP model loss and attenuation outputs. (a) crop extraction of phosphorus; (b) in-

place phosphorus storage and loss of phosphorus below the root zone; (c) TP loss during basin 

transport; (d) phosphorus uptake in streams and connected lakes. Maps are resampled from 120m 

SENSEflux outputs to 720m resolution here for display purposes and classified in quantiles with 

each color representing 20% of the dataset.  
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Figure A2.0.12 Estimated total yield of TP delivered to lakes by four key pathways (kg/km2/yr). 

Maps are resampled from 120 m SENSEflux outputs to 720 m resolution here for display purposes 

and classified in quantiles, with each color representing 20% of the dataset; the white area in a&b 

within the basin boundary represents areas with no data as I assumed overland and tile fields are 

alternative pathways. 

  
Figure A2.0.13 Spatial distribution of SENSEflux surface and subsurface partition parameter (f) 

for TN (a) and TP (b).  
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Table A2.1 Summary of optimized model parameters.  

Function 

type  
Parameter General function 

Calibrated parameter value  

TN TP  

Linear  

f Subsurface partition 0.49 0.78 

ExH Harvest extraction 0.80 0.95 

SepEff 
Efficiency multiplier on 

septic loads 
0.30 0.35 

fstor 

Fraction of groundwater-

pathway nutrients stored in 

the deep unsaturated zone 

0 0.55 

Exponential  

bs Basin attenuation (surface) 1.41E-03 1.27E-04 

bst Tile attenuation (surface) 6.85E-05 6.51E-06 

bg 
Basin attenuation 

(subsurface) 
3.76E-04 5.90E-03 

bse Basin attenuation (septic) 7.12E-04 1.91E-02 

dnsp 
N denitrification or P 

sorption in River 
1.97E-06 1.41E-07 

bio 
Biological Uptake and 

Burial in River 
1.05E-04 2.93E-04 

lacus Lake reduction 1.36E-05 1.94E-05 
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APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 3  

Figure A3.0.1 Comparison of TN versus the sum of TKN and TNN for melt (a) and baseflow (b) 

with 336 and 482 records from 2008 to 2012. (TN: total nitrogen; TKN: total Kjeldahl nitrogen; 

TNN: total nitrate and nitrite). 

 

Figure A3.0.2 Workflow to get concentration, flow, load, and watershed area. 
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Figure A3.0.3 Site concentrations used for SENSEflux model calibration and validation. 
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Figure A3.0.4 Watershed area (km2) by hydrologic seasons for TN and TP. 
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Figure A3.0.5 Model key inputs include (a) hydrologic landscape regions (HLR), (b) drift 

thickness and in-stream travel time during snowmelt, (c) and baseflow (d). For HLR, each value 

represents different regions. See region descriptions below.  

Hydrologic Landscape Region descriptions: 1. Subhumid plains with permeable soils and bedrock; 

2. Humid plains with permeable soils and bedrock; 3. Subhumid plains with impermeable soils 

and permeable bedrock; 4. Humid plains with permeable soils and bedrock; 5. Arid plains with 

permeable soils and bedrock; 6. Subhumid plains with impermeable soils and bedrock; 7. Humid 

plains with permeable soils and impermeable bedrock; 8. Semiarid plains with impermeable soils 

and bedrock; 9. Humid plateaus with impermeable soils and permeable bedrock; 11. Humid 

plateaus with impermeable soils and bedrock; 12. Semiarid plateaus with permeable soils and 

impermeable bedrock; 13. Semiarid plateaus with impermeable soils and bedrock; 16. Humid 

mountains with permeable soils and impermeable bedrock; 17. Semiarid mountains with 

impermeable soils and bedrock; 18. Semiarid mountains with permeable soils and impermeable 

bedrock. 
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Figure A3.0.6 Surface and groundwater seasonal mobility for an example USGS station 

(04112500), Red Cedar River at East Lansing, MI. Streamflow data was downloaded for the 2010 

water year, plotted as the black line. The gray shadow area represents baseflow that was separated 

using the hydrograph separation program, thus the white area between streamflow and baseflow is 

surface runoff. Two hydrological seasons are shown in rectangle area with orange (Melt) and 

baseflow (light blue). Surface and groundwater seasonal mobility are calculated for this station 

and is shown in the gray card on top left corner.  
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Figure A3.0.7 Maps for surface (S) and groundwater (G) seasonal mobility during snow melt 

(Melt) and baseflow (BF) seasons.  
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Figure A3.0.8 Model residual (log10 model – log10 observed) distribution and density are shown 

as violin plots, for annual, baseflow, and melt (different colors). The bottom and top of each box 

represent the first and third quartiles, respectively, and the line inside each box represents the 

median. Zero residual is indicated as a black dashed line. The top and bottom bars (whiskers) 

represent the maximum and minimum residuals, respectively. Data beyond the end of the whiskers 

are "outlying" points and are plotted individually. One-sample t-test is used to measure whether 

the mean residuals are significantly different from zero, indicated as ns (p > 0.05) and * (p < 0.05).  

 

 



 

164 

 

 
Figure A3.0.9 Log model residuals (kg/day) by watersheds. 

Text A3.1: Load Comparison with SPARROW model 

First, there are some critical differences: SPARROW does not use spatially explicit nutrient 

sources or attenuation processes and is run at a coarser resolution. Using the same observation 

dataset, the SENSEflux TN model slightly underestimated high loads, while the SPARROW 

model slightly overpredicted them (Figure A3.0.10). Both SENSEflux and SPARROW models 

slightly underpredicted higher TP loads and overpredicted lower loads. These differences are 
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unsurprising because the two models have notable differences, including nutrient attenuation 

processes, methods to model nutrient sources, spatial resolution, and timeframes. Specifically, 

SENSEflux includes four pathways (tile fields, overland, septic plumes, and groundwater). At the 

same time, the SPARROW model uses data on land-to-water delivery factors, such as soil 

permeability, drainage density, precipitation, air temperature, and the fraction of the stream 

catchment with tile drains to describe attenuation processes broadly across the basin(D. M. 

Robertson et al., 2019). Moreover, SENSEflux uses spatially explicit nutrient source inputs from 

SENSEmap, while SPARROW uses land use/cover and county-level estimates of nutrient masses 

to statistically compute sources more generally (Hamlin et al., 2020a). Finally, SPARROW models 

were developed for TN and TP with a 2002 base year (D. M. Robertson et al., 2019), while nutrient 

sources and watershed factor data used in SENSEflux are based on ca. 2010 data. 

 
Figure A3.0.10 Comparison to the simulated loads in the SPARROW models. Blue dots and lines 

are for SENSEflux simulation, and red is for SPARROW. The solid black line is a 1:1 line, where 

simulated loads are equal to observed loads.  

 



 

166 

 

 

Figure A3.0.11 Nutrient sources by lake basin. 
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Table A3.1 Summary of optimized model parameters (three parameters change across seasons, 

and the rest eight parameters are season shared) from optimization.  

Parameters 
Functio

n type  
General function 

Model Season  

TN TP 

Annual  Melt  
Baseflo

w  
Annual  Melt  

Baseflo

w  

Parameters 

different 

across 

season 

bs  

Exponen

tial  

Basin reduction 

(surface) 

1.88E-

04 

3.58E-

03 

1.76E-

02 

9.71E-

05 

6.59E-

06 

9.22E-

04 

rbio 
biological uptake in 

rivers 

2.38E-

05 

2.50E-

05 

3.03E-

05 

2.40E-

05 

2.30E-

05 

2.57E-

05 

tsettl Lake attenuation 
2.11E-

07 

1.13E-

06 

2.68E-

06 

6.08E-

07 

9.19E-

07 

1.52E-

05 

Season 

shared 

parameters  

f 

Linear  

Subsurface partition 0.35 0.77 

ExH Harvest extraction 0.70 0.68 

SepE

ff 

Efficiency multiplier 

on septic loads 
0.30 0.35 

fstor 

Fraction of 

groundwater-pathway 

nutrients stored in the 

deep unsat zone for P 

0.00 0.54 

bst 

Exponen

tial  

Tile reduction 1.66E-03 2.76E-03 

bg 
Basin reduction 

(subsurface) 
1.09E-02 3.70E-03 

bse 
Basin reduction 

(septic) 
6.56E-04 8.33E-04 

dnsp 

N denitrification and 

P 

sorption/mineralizatio

n in rivers 

6.79E-06 8.48E-06 
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APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER 4 

 
Figure A4.0.1 The generation flow of ground truth points to Further exclusion of the points (i.e., 

120-m apart for tile points; the equivalent number of tile and non-tile points) are not shown in this 

workflow.  

Text A4.1: Variable Selection  

26 variables were initially chosen but not used in the final classification due to relatively higher 

correlation and lesser importance. These include (1) six variables that are derived from Landsat, 

specifically the maximum value of the normalized difference vegetation index (NDVI) in summer 

and spring, the normalized water index (NDWI) in growing season, maximum Tr_swir1 in 

growing season and max Tr_swir2 in spring and summer. (2) six climate-related variables, 

precipitation in spring and summer, aridity in summer and the growing season from GridMET, 

and the actual evapotranspiration (AET) in spring and summer; (3) three soil property variables at 

0-1m, including the percentage of clay, hydraulic conductivity, and plant available water, while 
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these variables at 0-5 cm were selected for final classification; (4) nine soil moisture related 

variables, including the maximum surface soil moisture (SSM) and soil moisture percent (SMP) 

in spring, median SSM, SMP and subsurface soil moisture (SUSM) in spring, the range of SSM 

and SMP in spring, as well as median SSM and SUSM in the summer; and (4) two land surface 

temperature related variables, including maximum nighttime LST in growing season and the 

median difference of dayLST and nightLST in summer.  

 
Figure A4.0.2 The mean of monthly maximum NDVI and NDWI value across all tile and non-tile 

points. 
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Figure A4.0.3 The Person correlation coefficient (r < 0.8) between each two of the remaining 31 

variables with short names (see full names in Table 4.1).  
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Figure A4.0.4 Variable importance in random forest classification. Variables are identified by their 

short names, which can be related to full names and other information using Table 1. Left: The 

mean decrease in node impurity from splits on each variable as measured by the Gini index. Right: 

The mean decrease in accuracy. For both, a larger number means higher importance.  
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Figure A4.0.5 Classified tile drainage area (km2) versus the statistical area from the USDA NASS, 

2017. Each point stands for one county, the blue solid line is the linear regression line, and the 

black dashed line is the 1:1 line.  


