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ABSTRACT
In this thesis, we investigate the two-dimensional extension of a recently introduced set
of shallow water models based on a regularized moment expansion of the incompressible
Navier-Stokes equations [22, 21]. We show the rotational invariance of the proposed moment
models with two different approaches. The first proof involves the split of the coefficient
matrix into the conservative and non-conservative parts and prove the rotational invariance
for each part, while the second one relies on the special block structure of the coefficient
matrices. With the aid of rotational invariance, the analysis of the hyperbolicity for the
moment model in 2D is reduced to the real diagonalizability of the coefficient matrix in 1D.
Then we prove the real diagonalizability by deriving the analytical form of the characteristic
polynomial. Furthermore, we extend the model to include a more general class of closure
relations than the original model and establish that this set of general closure relations retain

both rotational invariance and hyperbolicity.
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CHAPTER 1

INTRODUCTION
Shallow water equations are widely used in modeling meteorological and oceanographic phe-
nomena. They are most useful in scenarios where the vertical dimension is much smaller
than horizontal dimensions of the problem domain. This is often the case with simulations
spanning thousands of kilometers horizontally but only a couple of kilometers vertically. An
introduction to shallow water equations and proof of hyperbolicity in 2 dimensions is shown
in [29]. The definition of hyperbolicity for 1st order systems of PDEs in multiple spacial
dimensions is given in [25]. The Euler equations were shown to be rotationally invariant and
therefore the system is hyperbolic if the system is hyperbolic in one direction. While the
vertical dimension is often the smallest dimension, vertical dynamics play a critical role in
many scenarios. Shallow water moment equations provide an intermediate level of resolution
between shallow water and a full 3 dimensional model. The first expansion to the shallow
water model is to replace the horizontal velocities with a polynomial expansion [22]. This
creates a system of first order ODEs. For the 0th order model the system is the shallow
water equations which form a conservative hyperbolic system. When one moment is added
the system is still globally hyperbolic but the system loses the form of a conservation law.
For two or more moments the system ceases to be hyperbolic. Subsequent work revealed
this could lead to instabilities in solutions and the 1 dimensional equations were altered to
make them hyperbolic [21]. In [26] the same process of regularization was extended to apply
to the 2 dimensional problem. While it is conjectured in that work that the 2 dimensional
regularized shallow water moment equations are globally hyperbolic it is not proven. Some
extensions to shallow water equations are presented in [3]. Various boundary conditions and
modifications are discussed. One of the most important modifications is the introduction
of multilevel shallow water models. The examples given is of water dynamics in the strait
of Gibraltar and submarine avalanches. Hyperbolicity loss is also a problem for multilevel

shallow water equation. This is associated with a shear velocity differential between the



layers that physically creates Kelvin-Helmholtz instabilities which cannot be modeled with
a piece-wise constant flow [6].

This work deals with that two-dimensional extension of shallow water models based on a
regularized moment expansion of the incompressible Navier-Stokes (NS) equations [22, 21].
Moment models have a long history of constructing computationally efficient representations
of complex dynamics arising in a higher dimensional model. Historically, this approach has
been widely used in the reduction of kinetic equations to hierarchies of moment models,
where the resulting evolution equation for the m moment equation depends on the (m-+1)*
moment [14]. At some point, one needs to restrict the expansion to m moments and introduce
a model for the (m + 1)* moment in terms of lower moments to obtain a solvable system
of equations. This leads to the well-known moment closure problem, which is the study of
what kind of model preserves the desired hyperbolic structure [23, 4, 5, 11, 8].

In this work, we are looking at a new class of models for describing systems tradition-
ally modeled with shallow water equations [28] and multi-layer shallow water equations
2, 24, 10, 9]. In [22], the new class of models, called the shallow water moment equations
(SWME), was derived by taking moments with respect to the Legendre polynomials of the
vertical direction of the three-dimensional (3D) incompressible NS equations. The first two
moments of the system yield the traditional shallow water equations. In principle, higher-
order moments offer an approach to include vertical information without introducing a mesh
in the vertical direction, as one would need for the 3D NS equations. Fundamentally, this
is seeking to address a multi-scale problem by providing a path to increased fidelity of the
flow dynamics without needing to introduce a mesh to resolve the vertical direction. The
system as originally proposed is mathematically elegant, but does not preserve hyperbolicity
for higher numbers of moments in 1D and 2D. The developers of the model realized this
and introduced a class of regularizations in 1D called the hyperbolic shallow water moment
equations (HSWME) and proceeded to show that this regularized system was provably hy-

perbolic [21]. In addition, they have extended the 1D system to a variety of settings and



compared depth averaged results of the incompressible 2D Navier Stokes to the regularized
moment based models. In their work, they demonstrated increased fidelity when adding
additional moments [22, 21]. More recently, there are some follow-up works, including the
equilibrium stability analysis [19], well-balanced schemes [20], efficient time discretizations
[1], axisymmetric model [27], multilayer-moment models [13], and extension to sediment
transport [12].

In this work, our main result is that we establish that the 2D extension to the regularized
moment expansion of the incompressible NS equations is rotational invariant and hyperbolic
for arbitrary number of moments. We present two different proofs of the rotational invari-
ance. The first proof involves the split of the coefficient matrix into the conservative and
non-conservative parts and prove the rotational invariance for each part, while the second
one relies on the special block structure of the coefficient matrix. With the aid of rotational
invariance, the hyperbolicity in 2D reduces to the real diagonalizability of the matrix in 1D.
To analyze the eigenvalues, we make use of the associated polynomial sequence and derive
the characteristic polynomial of the coefficient matrix analytically. We find that the eigen-
values are related to the Gauss-Lobatto quadrature points (i.e. the zeros of derivative of
Legendre polynomials) and Gauss-Legendre quadrature points (i.e. the zeros of Legendre
polynomials). In particular, we show that the eigenvalues of the moment system are real
and distinct for arbitrary number of moments. More importantly, we establish the general
closure relations such that the rotational invariance and hyperbolicity are guaranteed. This
opens the door to the development of data-driven closures that preserve hyperbolicity, as in
our past work for the radiation transfer equations [15, 17, 16]. Data-driven closures are the
subject of our future work.

The remaining parts of this paper are structured as follows: Section 2 introduces the
models. In Section 3, we show two proofs to the rotational invariance of the models. Section
4 analyzes the eigen structure of the models and establishes hyperbolicity of the models. In

Section 5, we give conclusions and talk about future directions.



CHAPTER 2
SHALLOW WATER MOMENT EQUATIONS

2.1 Equation Derivation

In this section, we review the main ideas and the results for the derivation of the shallow
water moment model in [22]. We also show the 1D hyperbolic shallow water moment model
proposed in [21].

We start by considering the 3D incompressible Navier-Stokes equations:

V.U =0,
1 1 (2.1.1)
oU+V.-(UU)=—--Vp+-V.-0+y.
P P

Here, U = (u,v,w)T is the velocity vector, p is the pressure and o is the stress tensor. The
density p is constant and g = (e, ey, e,)g with (e, €y, €,) a constant unit vector denotes the
gravitational acceleration. The often used shallow water coordinate system is recovered by
choosing e, = ¢, =0 and g = (0,0, -1)"g.

Under the shallowness assumption, i.e., the horizontal scales of the flow are much larger
than the vertical scale, the Navier-Stokes equations (2.1.1) can be reduced by an asymptotic
analysis to:

Ou + Oyv + O, w = 0,
1 1
1 1
v + 0y (wv) + 9, (v?) + 0, (vw) = - D+ ;Ozayz + gey,

where the hydrostatic pressure is given by

p(z,y,2,t) = (hs(x,y,1) — z)pge-, (2.1.3)

with hg(x,y,t) being the profile of the upper free surface. A summary of this reduction is

presented in the appendix of this thesis and details can be found in Appendix A of [22].



To derive the shallow water moment model from (2.1.2), the first idea in [22] is to intro-

duce a scaled vertical variable ((z,y,t) given by

2z — hy(z,y,t) 2= hy(z,y,1)
h5($,y,t) - hb(x7y7t> h(.%',y,t) ’

with h(z,y,t) := hs(x,y,t) — hy(z,y,t) is the water height from the bottom hy(z,y,t) to

((z,y,t) = (2.1.4)

the surface hs(z,y,t). This transforms the z-direction from a physical space z € [hy, hs] to
a projected space ¢ € [0,1]. For any function ¢ = ¥(x,y, 2,t), the corresponding mapped

function ¥ = ¢ (x,y, (, t) is given by

D(x,y, ¢ t) = 1(a,y, h(z, y, )¢ + hy(x, y,1)). (2.1.5)
The complete vertically resolved shallow flow system has the form [22]

Oih + 0y (huy,) + 0y (hvy,) = 0,

O (hit) + 0u(hi? + 1) + 8, (hiit) + 0, (i — %am) — gh(es — :0h),  (2.1.6)

1
0y (ht) + 0, (hav) + 9, (h* + gezh2) + ¢ (htw — ;a—yz) = gh(e, — e, 0,hy),

where u,,(x,y,t) = fo z,y,(,t)d¢ and v, (x,y,t) = fo x,y,(,t)d¢ denote the mean

velocities and w is the vertical coupling

W= %axma) 0, 0h), (2.1.7)

with the average for any function ¢» = ¢(() defined by

/(/w O)dé — (¢ )> dc. (2.1.8)

Note that, for a constant flow profile in (, the vertical coupling coefficient w vanishes. In
that case, if in addition shear stresses are negligible o,., = 0,. = 0, the system reduces to
the shallow water equations.

Before deriving the moment equation, we introduce some assumptions. First, we use the
Newtonian constitutive law:

Oz = PO U, 0y, = 10,0,



where p stands for the dynamic viscosity and v = u/p the kinematic viscosity. In order to
solve it, we need to specify dynamic boundary conditions in the form of a velocity boundary
condition both at the free-surface, and at the bottom topography. At the free-surface, the

stress-free conditions are assumed:
O.u=0,v=0, at z=hgz,y,t).

At the basal surface, the slip boundary conditions are assumed:

A A
U— —04, =0— —0,, =0, at z=h(z,y,t).
i

Here, A stands for the slip length.

By assuming a polynomial expansion of the velocity components:

N
u(ac, Y, z, t) = Um(l‘, y,t) + Z ozj(x, yvt)¢j(z)=
j=1

N

v(z,y,2,t) = vm(z,y,t) + Z/Bj(x, y,1)oi(2),

j=1

with the scaled Legendre polynomials ¢, orthogonal on the interval [0, 1] and normalized by



¢;(0) = 1, the shallow water moment equations (SWME) can be derived [22]:

Oih + 0y (huy,) + 0, (hv,,) = 0,

N 2 N
h 2 J 2o h? h iPj
Oy (huy,) + O ((um+;29+1)+26z >+8y<(umvm+22j+1))
; U, + Z a;) + hg(e, — e,0:hy),
J=1
~ a8 =8
J-7 2 J 2
Oy (hv,) + Oy (h(umvm + ; %1 1)) + 9, (h(vm + ; 2T o)+ 2ezh )
» N
=3 (n+ > B) + hyle, — e:0,hy),
j=1
N
8t(hai) + a:v < <2uma1 + Z AZ]kajak ) ( umﬁz + Uy + Z Al]ka_]/@k)>
Ji.k=1 7,k=1
al 1/ al A
_umD Z B'ijD ak_ 22 X ( Z(l—F%CU)oz]) s 1= 1,2,"' ,N,
73,k=1 j=

8t(hﬁz) + 81‘ ( (umﬁz + Uy + Z A’ij‘a]/Bk’)) ( vaﬁz + Z Azykﬁ]ﬁkz )

Ji.k=1 gk=1

N N
. v A ,
= vmD; — ; ByuD;Br — (20 +1)5 (vm + ;ﬂ + ECm)ﬁj) L i=1,2 N

(2.1.9)

Here the right-hand-side (RHS) contains non-conservative terms involving the expression
and the constants A;;,, Biji, C;; are related to the integrals of the Legendre polynomials:
1
0
1 ¢
Biji = (2i + 1)/ s (/ @-d{) oedC, 4,5, k=1,--- N, (2.1.11)
0 0

1
Co= [ oididc, ij=1ow N
0

The above system (2.1.9) can be written as

AU + A(U)d,U + B(U)3,U = S(U), (2.1.12)



with the unknown variables
U = (h, My, hvy,, hoy, b1, hao, hBs, - hay, hfy)". (2.1.13)

The coefficient matrices in (2.1.12) can be split into the conservative and non-conservative
parts:

A(U) = dyF(U) + P(U), B(U) = dyG(U) + Q(U). (2.1.14)

Here the physical fluxes F(U) and G(U) for the conservative parts are

F(U) = (hu, h(u? +Z )+ th uv—i—z Oé]ﬁ]

2) + 1 27 + 1
N
h(QUOél + Z Aljkajak), h(uﬂl + VA =+ Z Aljkajﬁk),
k=1 jk=1 (2.1.15)

T

N N
h(2ua, + Z Apjragar), h(uby + va, + Z Aninai BT,

J:k=1 j.k=1
B 51
G(U) = (hv, h(uv + Z 23]_:1 Z 2j——]|-1) + §9h2>

h(uB; + vay + Z Ao Br), (206 + Z A1k Br),
gk gk (2.1.16)

)

h’(uﬁn +vay, + Z Anjkajﬁk)a h(QUBn + Z Anjkﬁjﬂk))T
Jik 3.k

The matrices for the non-conservative part can be further decomposed into two parts:
P(U) = P(U)+ P(U), Q(U)=Q1(U)+ Q2(U). (2.1.17)
Here P;(U) and Q;(U) describe the terms u,, D; and v, D; on the RHS of (2.1.9):
Pi(U) = diag(0s5, p(U), -+ ,p(U)) € REN+*CN+ (2.1.18)

and

Q1(U) = diag(03x3, q(U), - - -, q(U)) € RENF3)x(2N+3) (2.1.19)



with

p(U) = e R¥?, q(U) = € R¥2, (2.1.20)
v 0 0 —v

The second part P»(U) and Q2(U) describe the terms Z?fk:l Bk Djoy, and Z?fk:l Bk D; B
on the RHS of (2.1.9):

Py(U) = diag(0sxs, G(U)) € REN+3)*N+3) (2.1.21)

and
Q2(U) = diag(03xs3, H(U)) € RENF3)x(2N+3) (2.1.22)

with
G(U) = (gij)1<ijen € RPNV H(U) = (hij)i<ijen € RV (2.1.23)

and
9i;(U) = 2 Bnene 0 e R¥? hy(U) = O 2 B € R¥2, (2.1.24)

>k BijiBe 0 0 > % Bijibr

This system (2.1.12) is called the shallow water moment equations (SWME).
In the one-dimensional case, the SWME (2.1.12) with NV > 2 is not globally hyperbolic.
In [21], the author proposed to linearize the system matrix around linear deviations from

equilibrium /constant velocity.
U + Ap(U)0,U + By(U)o,U = S(U), (2.1.25)
with
AH(U) = A(h, hum, h’l}m, hOél, hﬁl, O, 0, ey, O, 0),
and
By (U) := B(h, hty,, hvy, hay, hfy, 0,0, ---, 0, 0).

Keeping «; allows to capture a large part of the structure despite its simplicity. For example,
there will still be a coupling between the different higher order equations. In 1D, it is proved
to be hyperbolic in [21]. This system is called the hyperbolic shallow water moment equations

(HSWME).



CHAPTER 3

ANALYSIS OF ROTATIONAL INVARIANCE
In this section, we present two approaches to prove the rotational invariance of the SWME
(2.1.12) and the HSWME (2.1.25). The first approach is to first show that the SWME
(2.1.12) is indeed rotational invariant by decomposing the convection term into conservative
part and non-conservative part. The second approach is to exploit the systems block struc-
ture. Motivated by the second approach, we propose the general closure relation such that

the rotational invariance is satisfied.

3.1 Rotational invariance of the SWME and the HSWME
In this part, we show that the SWME (2.1.12) is invariant under the rotation of the co-
ordinate system. We first introduce the definition of rotational invariance, which guarantees

that the form of the system remains unchanged under a new rotated coordinate system.
Definition 3.1.1 (rotational invariance). Consider the first-order system
U+ AU)oU + B(U)o,U = S(U) (3.1.1)

with U = (h, hu, hv, hay, hfBi, -+, hay, hBx)T € R2V3. [t is said to satisfy the rotational

invariance property if the following relation holds:
cos A(U) +sinf B(U) = T A(TU)T, (3.1.2)

for any angle 0 < 0 < 21 and any vector U. Here T = T(0) is the rotation matriz given by

T(0) = diag(1, T5(0), To(0), - - - , To(0)) € RENT3)*(EN+3) (3.1.3)
with
cosf sinf
T5(0) = € R>2. (3.1.4)
—sinf@ cosf

Since the coefficient matrices in the SWME (2.1.12) can be split into the conservative
part and non-conservative part in (2.1.14), we will prove the rotational invariance property

in two steps. Before the proof, we prepare a set of equalities used in the proof.

10



Proposition 3.1.1. For u,v,a, 3,0 € R, we introduce the rotated variables in the new

coordinate system:
ug :=cosfu+sinfv, wvy:=—sinfu+ cosfuv, (3.1.5)

and

ag:=cosba—+sinf B, [y:=—sinfa-+cosbp. (3.1.6)

Then the following equalities hold true:

cos @ ug — sinf vy = u, (3.1.7)

sin 0 ug + cos 0 vg = v, (3.1.8)

cos 0 (ug)? — sin @ ugvy = uuy, (3.1.9)

sin 0 (ug)? + cos 0 ugvy = vuy, (3.1.10)

2 cos B ugayg — sin 0 (ugfBy + voag) = 2 cos @ ua + sin 6 (uf + va), (3.1.11)
2sin 0 ugayg + cos b (upfy + vgayg) = cos @ (uf + var) + 2sin v p. (3.1.12)

Proof. See the proof in Appendix A.2. n

We first prove the rotational invariance for the conservative part:

Lemma 3.1.1 (rotational invariance for conservative part). The conservative part in (2.1.12)

satisfies the rotational invariance:
cos F(U) +sinf G(U) = T~ F(TU). (3.1.13)

for any 60 and U.

11



Proof. We first compute TU:

1
cosf  sind
—sinf cosf
— cosf sind
—sinf cosf
cosf sind
—sinf cosf
h h
h(cos fu + sin v) huyg
h(— sin fu + cos Ov) hwvg
h(cosBay + sin 63;) h(ay)g
N h(—sinfa; + cos ) N h(51)e
h(cosay + sin65y) h(an)o
h(—sinfay + cos05y) h(Bn)o
Here, for convenience, we introduce the notation
ug ;= cosfu—+sinfv, wvy:=—sinfu—+ cosbv,

and

(v)g :=cosBa; +sinf B;, (5;)g := —sinfa; + cosb f;,

12

i=1,--

hu
hv
hOzl

hy

hO[N

hBn

,N.

(3.1.14)

(3.1.15)



Next, we compute F(TU):

F(TU) = (hug, h “9+Z2 T ) + gh2 (ugvg +Z 2j+1 ),

h(2ug(ar) + > Avjr(ay)o(en)e), hlug(Br)o +volen)e + Y Arji(ai)o(Be)o),

Jik Ji.k
)

h(2ug(an)o + Y Anjr()o(ar)o), Puo(Bn)o + volcun)o + > Anjil(a)e(Br)o))”

j’k ]7k
Then we compute T—'F(TU) for each component and prove that it is equal to the LHS
n (3.1.13). Notice that

cosf@ —sinf
sinf cos®
cosf) —sind

T ! = : (3.1.16)
sinff cosd

cosf@ —sinf

sinf cos®

We start with the first component in (3.1.13):

RHS = hug = h(cosfu + sinfv) = cos§ hu + sin § hv = LHS.

13



Next, we compute the second component in (3.1.13):

RHS = cos 6 (h(ug +3° (1) )+ lgh2> sin O (ugvp + Z (ﬁne)
J

27 +1° 2 2j+1

. 1 |
=h (cos QuZ — sin 9uevg) + cos QighQ +h zj: 2] 1 (cos 0(c;)g — sin 9(04]-)9(6]»)9)

1.9) 1 1
=" huug + cos €§gh2 +h Z m@j(&j)g
j

Sy 1aj(cos faj + sin 03;)

2
_ 2 aj 1 2 . a]ﬁ]
_c080<h(u + Ej —2j+1)+§gh>+sme< uv + E 2]-1—1

= LHS.

1 1
= hu(cos Bu + sin 6v) + cos GéghQ +h ; -

The third component in the RHS of (3.1.13) is:

RHSZSiHQ( U9+Z2 1 )+ 9h2>+0080hu9v9+z QJiBi))

=h (sin 9u§ + cos Gugvg) 4 sin (9§th +h Z (Sjn 9(04].)3 + cos H(aj)g(ﬁj)g)
J

2]+1

(3110)hvu9+81n0 gh2—|—hz ———Bj())a

2+1

= hwv(cos Qu + sin Ov) —{—hz

. 1,
T 15j(cos«9aj +sin05;) + s1n0§gh

:COSQ< UU+Z ajﬁ] >+Sin0< v +Z2 +1 2)

= LHS.

14



The fourth component in the RHS of (3.1.13) is

ak gk

RHS = cos 0h <2ue(a1)g +)° Aljk(aj)g(ak)g)> — sin Oh (m,(ﬁl)@ +oglan)g + > Aljk(aj)g(ﬁk)9)>

= h(2cos Oug(a1)s — sinO(ua(B1)s + ve(a1)s)) + hz Ayjr(o)g (cosO(ay)g — sin(Br)g)
I

h (2 cosBuaq + sinO(ufy + vaq)) + h Z Aqjr(ag)go,
jik

(3.1.11),(3.1.7)

= h(2cosbua; + sinO(uf +vai)) + h Z Aqji(cos o + sin65;) oy,
gk
= cos Oh(2uay + Z Aqjragog) +sinOh((ufy + var) + Z Ak Br)
Ik gk

= LHS.

Then we compute the fifth component:

RHS = sin0h (2u@(a1)9 + Zk: Aljk(aj)e(ak)9)> + cosOh (W)(ﬁﬂe + vg(a)g + Zk: Aljk(aj)G(/Bk)G))
Js Js
= h(2sinGug(cn)g + cos O(ug(Br)a + va(en)g)) +h Y Arjr(ag)e (sinb(ax)e + cos 6(Bk)e)
gk
h (COS H(uﬁl + UOzl) + 2sin 91151) + hz Aljk(aj)eﬂk
7.k
= h(cosO(ufi + vaq) + 2sinbvPy) + h Z Aqji(cosfoj +sin63;) By
.k

= cos Oh((ufy +van) + > AyjeaBi) + sin0h(2081 + Y A1ji3;iBe)
Jk gk

(3.1.12),(3.1.8)

= LHS.

For the remaining components, the proof is similar to the fourth and fifth ones and the

details are omitted here. O
Next, we prove the rotational invariance for the non-conservative part:

Lemma 3.1.2 (rotational invariance for non-conservative part). The non-conservative part

in (2.1.12) satisfies the rotational invariance:
cos P(U) +sin0 Q(U) = T~ 'P(TU)T, (3.1.17)

15



for any 6 and U.

Proof. The matrix for the non-conservative part in (2.1.17) consists of two parts. We start
the proof with the first part. Notice that T'(f) has the same block diagonal structure as
P (U) in (2.1.18) and @Q1(U) in (2.1.19). Therefore, it suffices to check that

cos O p(U) +sin@ q(U) = Ty 'p(TU) T3, (3.1.18)

where the matrices p(U) and ¢(U) are defined in (2.1.20) and 75 defined in (3.1.4). This
equality can be easily verified by direct calculations.
The proof of the second part P»(U) in (2.1.21) and Q2(U) in (2.1.22) follows similarly by

using the multiplication of the block matrices and the rotational invariance property of each

sub-block matrices g;;(U) and h;;(U) defined in (2.1.24). O
Combining the above two lemmas, we have the following theorem:

Theorem 3.1.1 (rotational invariance of SWME). The SWME (2.1.12) satisfies the rota-
tional invariance:

cos A(U) +sinf B(U) = T A(TU)T. (3.1.19)

Proof. Taking the derivative with respect to U on both sides of (3.1.13) in Lemma 3.1.1, we
have

cos 0 Oy F(U) +sin 0 0yG(U) = T 10y F(TU)T. (3.1.20)

Combining this with (3.1.17) in Lemma 3.1.2 , one immediately obtains
cos A(U) +sin 0B(U) = T~ A(TU)T. (3.1.21)

[]

Since the HSWME (2.1.25) is obtained by evaluating the coefficient matrices in the

SWME (2.1.12) at o; = ; = 0 for 2 < i < N, its rotational invariance follows immediately:
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Theorem 3.1.2 (rotational invariance of HSWME). The HSWME (2.1.25) satisfies the

rotational invariance:

cos Ay (U) +sinf By (U) = T~ Ay (TU)T. (3.1.22)

3.2 Other proof of rotational invariance of the SWME and the HSWME

In the previous part, we prove the rotational invariance of the HSWME (2.1.25) by first
proving the rotational invariance of the SWME (2.1.12). In this part, we will show an
alternative proof of the rotational invariance of the HSWME (2.1.25) with the aid of its
block structure.

We first show the explicit form of the coefficient matrices of the HSWME (2.1.25). This
is also given in Theorem 4.3.1 and Theorem 4.3.2 in [26] with another order of variables. For

completeness, we include the result and the proof here.

Lemma 3.2.1 (coefficient matrices of HSWME). The coefficient matrices of the HSWME

(2.1.25) are given by:

0 1 0
—uz—%%—kgh 2u 0 2% 0
a1 B B «
St I S
—2ua 20 0 w0 2o 0 0 0
—(ufy +vay) B o 0 U %51 %041 0 0
Ap = 202 0 0 fay 0 w 0 0 0
—5&151 0 0 —%51 %al 0 u 0 0
N+1
2NJ~FHO‘1 0
N
2Nl+151 N1
2%__11011 0 (% 0
_21\/1—1ﬁ1 2]\]fv—1a1 0 u
(3.2.1)

17



in the x direction and

0 0 1
a8 B
—uv—% v ?1
—112—%%—1—9]1 0 2v 0

—(up +vay) B g w

—22}61 0 251 0
By = —§Oé1ﬁ1 0 0 %51
—35 0 0 0

in the y direction.

Proof. See the proof in Appendix A.3.

3
261
3
2 1
0 551 53
3
v 0 551
1
01 U 0
1
gﬁl 0 v

N 1
sN-IPl TInI

N-—1
0 N1

INF1 N

N+1
2N+1 b

(3.2.2)

]

Now we present the alternative proof of Theorem 3.1.2 by using the coefficient matrices

of the HSWME (2.1.25) given in Lemma 3.2.1.

Alternative proof of Theorem 3.1.2. The coefficient matrix Ay in (3.2.1) can be written as

in the block form:

0 d;
dy An
d3 Ao
dy

A12
A22

Aag

Avn-o1 Ann AN N1

Aniin Angi N+t

18
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with for ¢ > 1

2
—u? — L+ gh —2uay —2q2
dy = (1,0), dy= 3 dy = dy = 5
1 — ( ) )7 2 — 5 ) 3 — ) 4 — 3
«@ 2
—uv — % —<Uﬁ1 + 'UOél) —gOélﬁl
2u 20&1 0
Ay = , Ao =
v U ﬂl aq
u 0 21;;11041 0 21';_11 o 0
Aw = ) Ai,i+1 = . ) Ai+1,i
_1 _i =1 i
0 u 2¢+151 2ip1 M 5P T

The coefficient matrix By in (3.2.2) can be written as in the block form similarly:

0 fi
fo Bu Bi
fs Ba1 By Bas
By = (3.2.4)
i
Byn-1 DByn  DBynsi
Byyiny Bniin+i
with
—u — S ~(ups + van) 2
flz(ovl)? f2: 52 5 f3: 5 f4: 5
—v* — 5 +gh —20 —2p%
vooUu v 0
By = , By=
0 2v 0 v
i 1 , 1
By = e , Biit1= et ﬁal , Bit1i= w1 2?_1051
0 25 0 5;;1151 0 2B
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Next, we compute T~' Ay (TU)T and verify that it is equal to cos 0 Ay (U) + sin 0By (U).

0 d
dy A A
ds Ay A A

TflAH(TU)T = dl&g(l, T271’ . ,T{l) 3 21 29 23 .

Avn-1 Ann  Anns

Anviin Aniint

0 d
Ty'dy Ty tAyn Ty 'Ap
Tytds Ty'Ay Ty'Ay  TytAss
T, 'dy

1 1 1
Ty " Avn—: Ty Avy Ty Annir

-1 -1
Ty " Anyin Ty Anpinn

0 d, T,
Tytdy Ty AT, Ty tAT,
Tytds Ty tAg Ty Ty tAgT, Ty tAxnT
T, 'd,
Tg_lAN,N—1T2 TQ_IAN,NTQ TQ_IAN,N—HTQ

Ty ' AnaanTy Ty ' Anana T
where the independent variable TU in d; for 1 < ¢ < 4 and A;; for 1 <i,5 < N +1is

omitted for simplicity.

Now we compute each block of the matrix:

cosf) sind '
i1y = (1 O) = (cosé’ Sm@) = cosfd; +sinf f;. (3.2.5)
—sinf cosf
Ty 'dy(TU) = cos 0 do(U) + sin @ fo(U). (3.2.6)
Ty 'd3(TU) = cos 0 d3(U) + sin @ f3(U). (3.2.7)
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Ty 'dy(TU) = cos 0 dy(U) + sin @ f4(U). (3.2.8)

cosf) —sinb 2u 0 cosf) sinf
TQ_lAiiTQ -
sinf cos® voou —sinf cos6
20 0 voou (3.2.9)
= cos 0 +sind
VU 0 2v
= cosbA;; +sinbB;;.
TQ_IAi7i+1T2 — COS eAi,i-l—l + sin QBi,i—‘rL (3210)
TQ_lAH_LZ'TQ = COS 9147;_;,_177; + sin QBH—LZ“ (3211)

Therefore, we have proved
cos Ay (U) +sinf By (U) = T~ Ay (TU)T. (3.2.12)
m

Remark 3.2.1. The rotational invariance of the SWME (2.1.12) can also be proved in the
similar line as the above proof by using the block structure of the coefficient matrices (A.3.24)

and (A.3.44) explicitly. We omit it here for space considerations.

3.3 General closure relation with the rotational invariance

From the above alternative proof, we observe that the rotational invariance of the HSWME
relies on the rotational invariance of each sub-block (of size 2 x 2) of the coefficient matrices.
Motivated by this observation, we would like to analyze the rotational invariance of matrices
of size 2 x 2 and find out some general relations which satisfy the rotational invariance.
We note that this will be key in deriving our new model, which has a more general closure

relation than that of HSWME.
Definition 3.3.1 (rotational invariance of 2 x 2 matrices). Consider two matrices A(V') and
B(V) of size 2 x 2 given by

A(V) = (V) an(V) e R??, (3.3.1)

921 (V) 929 (V)
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and

b11 (V) b1a(V)
B(V) = € R¥*2 (3.3.2)
bo1 (V) baa(V)

with V = (p, )T € R?. We say that A(V) and B(V) satisfy the rotational invariance if
Ty YA(ToV) Ty = cos§ A(V) +sinf B(V), (3.3.3)
for any 0 < 0 < 21 and any V € R? with Ty being the rotational matriz

cosf sind
T = ) (3.34)
—sinf cos6

Note that, in the definition, the dummy variables (p,q) could be (u,v) or (o, 3;) for
1 <4 < N in the shallow water moment model. In the following part, we will derive some
conditions for the rotational invariance of 2 x 2 matrices to be satisfied. We first present

several necessary conditions:
Lemma 3.3.1. If the matrices A(V) and B(V') given by

A(V) = an(V) a(V) . B(V)= (V) biz(V) (3.3.5)

agl(V) CLQQ(V) bgl(V) bgg(V)

satisfy the rotational invariance of 2 X 2 matrices, then the following relations hold:

1. All the entries in B(V') are determined by A(V') in the following way:

bll(p7 q) = a22(Q7 _p)7

b12(p7 Q) = —CL21<q, _p>7

(3.3.6)
b21(p7 Q) - —CL12(q, _p>7
baa(p, q) = a11(q, —p).
2. A(V) is an odd function in the sense that:
A(=V)=—=A(V). (3.3.7)



Proof. 1. By taking # = Z in (3.3.3), we have

2

0 1
TQZ ;
-1 0
and
q
TV =
—-p
Therefore, we have
0 -1 a1 (TV) ao(TV 0 1 ag(TV —ag (TV
S— W(TV) an(TV) | @) —an(mv)
1 0 CL21(TV) CLQQ(TV) -1 0 —CL12<TV) CLH(TV)
Then the relation (3.3.3) reduces to
bn(v> b12<V) - a22(TV) —CL21(TV>
bzl(V) bQQ(V) —CL12(TV) all(TV)

which completes the proof.
2. Taking 6 to be (0 + 7) in (3.3.3), we have
cos(0 + m)A(V) +sin(0 + m)B(V) = (=T) P A(=ToV ) (=T3)

which implies

—cos(0)A(V) —sin(9)B(V) = Ty ' A(=T,V) 1.
Comparing the above equation with (3.3.3), we have
A(TLV) = —A(-T5V).

Since T is invertible, we have that A is an odd function.

]

Next, we will restrict to the case of linear functions and find out the necessary and
sufficient conditions for the matrices to be rotational invariant. The conditions will be

presented in Thereom 3.3.1. To prove the theorem, we prepare the following lemma:
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Lemma 3.3.2. Assume that A(V) and B(V') satisfy the rotational invariance of 2 x 2

matrices and they are linear functions of V.

1. If A(V') only has two non-zero entries in the first column:

Ay =0

a921 (V) 0

then A(V') and B(V') have to be of the form:

p 0 g O
A(V):C1 —FCg 5
q 0O -p 0
and
0 p 0 ¢
B(V):Cl + Co )
0 ¢ 0 —p

where ¢y, co € R.

2. If A(V) only has two non-zero entries in the diagonal:

an(V) 0
A(V) = ,
0 CLQQ(V)

then A(V') and B(V') have to be of the form:

p 0 q 0O
A(V) =C -+ Co s
0 p 0 ¢
and
0 0
B(V) = C 1 — Co b y
0 ¢ 0 p

where cq,co € R.

3. If A(V') only has two non-zero entries in the second column:

)= ")

0 CLQQ(V)
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then A(V') and B(V') have to be of the form:

0 p 0 ¢
A(V) = C + C2 y (3315)
0 gq 0 —p
and
—p 0 —q 0
B(V)=¢ + ¢ : (3.3.16)
—q 0 p 0
where c1,co € R.
Proof. See the proof in Appendix A 4. O

Theorem 3.3.1. Assume that the matrices A(V') and B(V') satisfy the rotational invariance

of 2 x 2 matrices and they are linear functions of V.= (p,q)*. Then they must be of the form

p 0 qg O p 0 q 0 0 p 0 ¢
AlV)=a + ¢ +c3 + ¢4 + ¢5 + ¢ )

q 0 -p 0 0 p 0 ¢q 0 ¢ 0 —p
and

0 p 0 g¢ q 0 p 0 p 0 —q 0
B(V)=q¢ + e +c3 — ¢y —¢x + ¢ ,

0 ¢ 0 —p 0 ¢ 0 p q 0 p 0

where ¢; € R for1 <11 <6.

Proof. Since the matrix B(V') is determined by A(V) by Lemma 3.3.1, we only need to
consider the form of A(V).

For any matrix A(V) of the form

AV) = :
CL21(V> CLQQ(V)
we can decompose it as
A(V) _ CL21(V> O CLH(V) — dQl(V) CL12(V> ’
an(V) 0 0 az (V)
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where @91 (V) is a linear function uniquely determined by as1 (V') such that

P(V) = an(V) 0

a921 (V) 0

satisfies the form of rotational invariance given in Case 1 in Lemma 3.3.2.
Since A(V') and P(V) both satisfy the rotational invariance, we have that the remaining

part

Q(V) :: (IH(V) — dgl(V) alg(V)
0 CLQQ(V)

also satisfies the rotational invariance. Next, we decompose Q(V') into two parts:

Q(V) _ an(V) — C~L21(V) 0 N 0 CL12<V) (3319)
0 ELQQ(V) 0 CLQQ(V) — aQQ(V)

where a9 (V) is a linear function uniquely determined by (a11(V) — @91(V)) such that

R(V) := (V) =@nV) 0 (3.3.20)
0 s (V)

satisfies the rotational invariance given in Case 2 in Lemma 3.3.2.

Lastly, the second part in (3.3.19)

sy = | a12(V) (3.3.21)
0 GQQ(V) —agg(V)

must satisfy the rotational invariance and falls into Case 3 in Lemma 3.3.2. The proof is
completed.

O

Motivated by the constraint given in Theorem 3.3.1, we can modify the coefficient matri-

ces in the HSWME (2.1.25) in the following way to make it satisfy the rotational invariance

property.
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Theorem 3.3.2 (general closure relation with rotational invariance). Suppose that the ma-
trices A;j(U) € R*? and B;;(U) € R*? satisfy the rotational invariance for the 2 X 2

matrices for 1 < 1,7 < N + 1. Then the matrices A and B given by

0
Ay A o Aing
A=Apg+ Ay A o Al (3.3.22)
Anii1i Anti2 0 Anpintr
i the x direction and
0
By By -+ Bins
B =By + By By -+ Binn (3.3.23)
Bnyig Bnti2 o+ Byyins

in the y direction, satisfy the rotational invariance. Here Ay and By are the coefficient

matrices in the HSWME (2.1.25).
Proof. The proof is similar to the alternative proof of Theorem 3.1.2 in Section 3.2. m

Remark 3.3.1. From Theorem 3.3.2, to preserve the rotational invariance of the moment
model, we can modify any entries except the first row and the first column, as long as the
sub-blocks satisfy the rotational invariance for the 2 X 2 matrices. However, in practice, we
will only modify the last row blocks, i.e., Ant1,; and Byiq; for 1 < j < N +1, to guarantee

provable hyperbolicity. This will be illustrated in the next section in detail.
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CHAPTER 4

ANALYSIS OF THE HYPERBOLICITY
In this section, we analyze the hyperbolicity of the moment models. With the aid of the
rotational invariance, the hyperbolicity in 2D is equivalent to the hyperbolicity in the z
direction or y direction. Therefore, it suffices to only analyze the real diagonalizability of
the coefficient matrix in = direction. We will first prove the hyperbolicity of the HSWME
(2.1.25) in 2D. Then we generalize the S-HSMWE in 1D proposed in [21] to 2D and show its
hyperbolicity. Lastly, we propose the general framework for constructing provable hyperbolic

moment models with specified propogation speeds.

4.1 Hyperbolicity of the HSWME

In this part, we will prove the hyperbolicity of the HSWME (2.1.25) in 2D. This reduces
to check the real diagonalizability of the coefficient matrix Ay in the x direction.

Note that the characteristic polynomial of Ay was analyzed in Theorem 4.3.3 in [26].
However, the proof in [26] only shows that the eigenvalues of Ay are real but not necessarily
distinct. Therefore, the proof is incomplete since the real diagonalizability requires not only
the real eigenvalues but also a complete set of eigenvectors. In this part, we will prove the
real diagonalizability of Ay with the aid of the associated polynomial sequence and show that
the eigenvalues are related to the Gauss-Lobatto and Gauss-Legendre quadrature points.

To analyze the hyperbolicity, we use another ordering of variables:
W = (h, hu, hay, --- , hay, hv, h3y, -, hBn)’. (4.1.1)

Note that using different order of variables will not change the rotational invariance or the
hyperbolicity of the model, but it does simplify the analysis.

Using this set of variables (4.1.1), the coefficient matrix (3.2.1) in the z direction in
HSWME (2.1.25) can be written as

Ap(W) = , (4.1.2)



where the block matrices Ay (W) € ROVF2X(N+2) - 4 (W) € RNFDXN+2) and Ay, (W) €

RWVADXN+D) are given by

0 1
gh—u?—31af 2u 2o
—2uon 2000 u gal
An(W) = —20f 0 301 w 2o : (4.1.3)
N-2 N1
aN_3Y u N1
N-1
IN-_1M u
_ aifr b1
uv , v 3

A (W) = | | | o (414)
_21\717161 0 2Nl+161
2N—1 A 0
and
aq u %
2 3a1
~ 31 u -
Agy(W) = ’ ! : (4.1.5)
N-1 N
aN_31 u N1
2]\1/\[—10‘1 u

Therefore, the characteristic polynomial of Ay (W) is

. A — Ay (W) 0 - -
det(M—Ag(W)) = det i i = det(A— Ay (W) det(\[—Agy (W)).
— Ay (W) M — Ayp(W)

Next, we focus on the analysis of the characteristic polynomial of A1 (W) and Ay (W).
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Notice that both A3 (W) and Ay (W) are lower Hessenberg matrices. Before the discus-
sion, we review important properties of the Hessenberg matrix. These properties facilitate
directly relating the eigenvalues of a Hessenberg matrix to the roots of some associated poly-
nomial. We start with the definitions of the (unreduced) lower Hessenberg matrix and the

associated polynomial sequence [7]:

Definition 4.1.1 (lower Hessenberg matrix). The matric A = (a;;j)nxn s called lower Hes-

senberg matriz if a;; = 0 for 7 > 1+ 1. It is called unreduced lower Hessenberg matriz if

further a; ;41 #0 fori=1,2,--- ,n—1.

Definition 4.1.2 (associated polynomial sequence [7]). Let A = (a;j)nxn be an unreduced

lower Hessenberg matriz. The associated polynomial sequence {q; }o<i<n 5 defined as follows:

QO(x) = 17
1 i (4.1.6)
gi(x) = . vgia(w) =) ayga() |, 1<i<n,
iji+1 :
’ ]:1
with @y pv1 = 1.
Theorem 4.1.1 ([7]). Let A = (aij)nxn be an unreduced lower Hessenberg matriz and

{¢i}o<i<n is the associated polynomial sequence with A. The following conclusions hold true:

1. If X is a root of q,, then X\ is an eigenvalue of the matrix A and a corresponding

eigenvector is (qo(A), qu(N), -+, g1 (N))T.
2. If all the roots of q, are simple, then the characteristic polynomial of A is given by
det(zl — A) = pgn(z),
with p =177 441

With the aid of the associated polynomial sequence, we are able to obtain the analytical

form of the characteristic polynomials of Ay in (4.1.3) and Ayy in (4.1.5).
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Lemma 4.1.1 (characteristic polynomial of Ay, in (4.1.3)). The associated polynomial se-

quence of Ay in (4.1.3) is given by

QO<$):17
QI(x):$7

3(x —u)? — 3gh + o?
q2<l’): ( ) g 1’

20(1

2n —1 T—u
=— P N —u)?— —a? <n<N+1 4.1.
QH(:B) n(n . 1)051 n—1 ( o ) (('T ’LL) gh’ Oél) ) 3 =N + ) ( 7)

and

eal®) = 55 Phea(®) (0 = w)? = gh — o) (118)

Here P, (&) is the Legendre polynomial on [—1, 1] with the standardization condition P,(1) =
1.

Proof. For convenience, we first introduce the notations:

r—1u
£i= 1,

aq

and
pg(x) := (x — u)2 — gh — a%.

The first several associated polynomials can be obtained by direct computation:

Go(z) = 1.
0(x) = —(zan(z) - anan(a)) = 1z~ 0) = .
(2) = - (r0n(o) = (oa100(a) + a2r(2))
_ %1 (1,2 ~(gh—u— %a% + 2ux))

3
_ 3(z —u)® —3gh+ai
B 20&1 '
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1

g(r) = . (q2(x) — (az1q0(x) + asaqr(x) + assqz(x)))
_ 31 (wB(x —u)? —3gh+a? — (=2u0n + 207 + UB(.ZC — )% — 3gh + Oz%))
23 20 201
5( —u)((x — u)® — gh — af)
B 207
5
= Tipg@)
5
= o POm )
qa(x) = ai%@%(ﬁf) — (an1o(®) + a12q1 () + as3q2() + aaags(z)))
1 5 2 1 3(x—u)®>—3gh 2
= % ((IL’ — U)Tipg(l') - (_5042 +0+ 3 £~ 20, o al))
_ T —u)? = af)((x —w)? — gh — af)
- 8ar}
7(562 — 1
= ( éal )pg@)
_ T
— o PO (@)

Now we prove by induction and assume that (4.1.7) holds for 4 < n < k with k¥ < N.

We will prove it also holds for n = k + 1.

Qey1(z) = ! <$Qk($) - Z ak+1,jCIj—1($))

Qf+41,k+2

= ak+jk+2 (2q(7) — (Ghs1.000-1 (%) + Q1 p410x(2)))
1 2% -1 k—2 2%k — 3 ,
- % (@ - u)mpk—l(g)pg@) T on— 30z1 k- 1)k - 2)an Pk—2<f)pg(x))
2%k +1 [ 2k—1 1
Tkt Doy (k;(k —yefa®) - mpk2(§)> py(2)
2%k + 1 1 / , o
~ (k+ Do (k‘(k — 1>((k’ — D F(§) + kP _5(§)) — mpk_Q(f)) py()
2%k+1

“ Rt Don 1 (E)pg ().

where we use the relation (2k — 1)z P]_,(z) = (k — 1) P}(z) + kP|_,(z).
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Lastly, we compute gn2(x):

1
QN+2(1‘) = (IQN-H(I) — (a/NJ,_Q’N_;'_qu({I)) —I— aN+2,N+2QN+1(1’>))
AN+2,N+3
= 2qn+1(7) — (an+2,n+19n (T) + ant2,N+2qN+1(T)) (4.1.9)
1
The proof is completed. 0

Corollary 4.1.1. Since the roots of Py ,(§) are real and distinct, the characteristic poly-

nomial of Ayy is

~ N! , T—u
det(x] — All) = m&iVPN_,'_l ( o ) ((.I' — U)2 — gh — O[%) . (4110)

Threfore, the eigenvalues of Ay; are given by

)\l’gzuj:\/gh—l—oz%,

and

/\Z‘+2:u+7“i0{1, 12172,,]\[

where r; with i = 1,2,--- | N are the roots of Py, (), i.e. the Gauss-Lobatto quadrature

points in [—1,1].

Lemma 4.1.2 (associated polynomial sequence of 12122). For the matriz Ay given in (4.1.5),

the associated polynomial sequences satisfy:

Gn(z) = (2n +1)P, ( ) , 0<n<N. (4.1.11)

aq

and

gns1(x) = (N + 1)1 Py (”E“) (4.1.12)

Proof. We compute the associated polynomial sequence by recurrence relation:
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() = = eao(o) — ano(@)) = T = 2= e )

3
1 1 3 —u 5
) = - (an(e) = Caman(o) + amin(o) = 5 (0 =02 ) = e - ),
923 gOél 2
= 5P,(§) with § := ==
Now we prove by induction and assume that the formula (4.1.11) holds for 2 < n < k.

We will prove it also holds for n = k + 1.

Qri1(7) = ! (qu(fﬂ)—zakﬂ,jqjl(x))

Qf+1,k+2
= 1 (xqr(x) — (akt1,6Q-1(T) + Q1 k11q6(T)))
Af+1,k+2
1 k
= mm ((ac — )2k + 1) P(E) — 572k — 1)Pk_1(£)>
2k + 3
- L ((2k + 1)EPL(E) — kP (€))
2k + 3
= jl (k + 1) Py (6)
= (2k +3) Pt (6),

Lastly,

r—Uu
1) = 205(0) = e vier(o) + axenanan@) = OV + Do P ().
1

]

Corollary 4.1.2 (characteristic polynomial of 12122). The matriz Asy is real diagonalizable

and its characteristic polynomial is

~ N+1)! T —u
det(A] — Agy) — WW Pens < = ) | (4.1.13)

Moreover, the eigenvalue of Asy is given by

)\Z’:Sial, 221,2, ,N—|—1, (4114)

where s; for i = 1,2,--- N + 1 are the roots of Legendre polynomial Pyy1(§), i.e. the

Gauss-Legendre quadrature points in [—1,1].

34



Since the roots of Py1(&) are all distinct, Py, (£) and Py41(£) have no common roots,
we immediately have that all the eigenvalues of Ay are real and distinct. The result is

summarized as follows:

Theorem 4.1.2 (real diagonalizability of Ay). The matriz Ay is real diagonalizable. Its

characteristic polynomaial is given by:

NI(N + 1)! — _
det(M — Ap) = gOfﬂwlpfvu (xa “) Py <”” u) ((z —u)* = gh—ai).

(2N + 1)z 1 ay
(4.1.15)
Moreover, the eigenvalues are given by
)\1’2 =u =+ \/gh—i—a%,
)\Z‘+2:U+’T‘Z‘Q{1, i:1727"'7N7
AisNt2 =u+saq, 1=1,2,--- , N+1,
where r; for i =1,2,--- | N are the roots of the derivative of Legendre polynomial Py (§)

and s; fori=1,2,--- /N + 1 are the roots of Legendre polynomial Py1(§).

Combining the real diagonalizability of Ay in Theorem 4.1.2 with the rotational invari-

ance in Theorem 3.1.2, we have the hyperbolicity of the HSWME (2.1.25) in 2D:

Theorem 4.1.3 (hyperbolicity of the HSWME). The HSWME model (2.1.25) in 2D is

hyperbolic.

Remark 4.1.1. The analytical form of the eigenvectors can be derived by Theorem 4.1.1.

This will be useful in some Riemann solvers.

4.2 Hyperbolicity of the S-HSWME
In [21], a new version of shallow water moment model, called the S-HSWME, is proposed
by modifying the last row of the coefficient matrix, so that predefined propagation speeds

can be obtained.
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The coefficient matrix of the S-HSWME [21] reads as:

0 1
gh—u* =30 2u 2o
—2uay 200 U %al
AB,II(W): —%Ox% 0 %041 u %al . (4.2.1)
N30 u 2]1{7111 1
(N—1)(2N+1)

NTDHEN-D) M u
In Theorem 3.5 in [21], it was shown that the characteristic polynomial of 1215,11 in (4.2.1) is
related to the Legendre polynomial by numerical computation up to order N = 100. Here,

we will prove that this holds true for any N > 1:

Lemma 4.2.1 (characteristic polynomial of 1215,11). The characteristic polynomial of 1215,11

n (4.2.1) is

~ N! r—u
det()\f — Aﬁ,n) = maivpj\f ( o ) ((CE — u)2 — gh — Oz%) . (4.2.2)

Proof. Notice that the matrix Ag;; in (4.2.1) only differs from Aj; in (4.1.3) in the last
row. Thus, the associated polynomial sequences for two matrices are the same for ¢; with

0 <i < N+ 1. We only need to compute gno(z):
1 N+2
QN+2(~’B) = m SBQN+1 Z aN+2,i95— 1
= 2qn41(2) — (anso,n 4108 (T) + anto N 12N +1(2))
(N —-1)(2N +1)

= (= wava(®) ~ DN D)
— (o= Wy PR OB — e o e P O
- % (EPX(E) — Py 1(©) py(a)
- %wms)pg(m)
2N +1

= S Pu(En (o),
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Here we denote § := “=* and py(z) := (x — u)® — gh — o and use the relation {P,(§) —
P _1(§) = nPu().

Therefore, the characteristic polynomial of Ag;; is

(N+1)! 2N +1 N!

det(AT = Ag11) = eN+ I N1 Py (§)py(x) = ma{VPN(ﬁ)pg(m)- (4.2.3)

O

With the matrix Az, at hand, there is still some degree of freedom to choose the matrix
/1,3722 to make the matrix AB hyperbolic. One simple choice is to keep Ass unchanged. In

this case, the corresponding matrix in x direction is

A, — Az 0

Y

Agor Ago

where flgm is determined by the rotational invariance constraint given in Theorem 3.3.1:

—(uhr+var) B1 0 3
2 1 1
. —za1f1 0 —36 O =61
Ag (W) = ’ o ! ' L (4.2.4)
_21\/17351 0 —72]\,1“51
N2
(2N71)(N+1)B1 0
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We can also write the coefficient matrices in the original order of variables:

0 1 0
—u2—§+gh 2u 0 2% 0
_U/U_a1361 v U % %
—2uoy 20 0 w0 3o 0 0
—(up1 +var) B a0 u B 2oy 0
Ap = 203 0 0 Loy 0 0 0
—%041,81 0 0 —%51 %O&l 0 u 0
N+1
INFI X
(N—1)(2N+1)
ev-noana 0 u
N2 N
vt v 0
in the x direction and
0 0 1
S R S
2
=B ign 0 2w 0 %
—(upr +var) B a1 w 0 gﬁl %al
—2v3; 0 261 O v 0 %,81
BB: _%alﬁl 0 0 %61 —%041 v 0 0
—§ % 0 0 0 %ﬁl 0 ) 0
N
vt
0
N B N2
oN-1Pt GN-pvED MY

N—1)(2N+1
0 EQNf)l()(N+1361 0

in the y direction.

0

0

1 N
sNTiPl aviT Ol

0
0

1
IN+I M

N+1
IN+1 &3}

0

(Y

(4.2.6)

Since Py(€§) in Lemma 4.2.1 and Pyn1(§) in Corollary 4.1.2 both have real and distinct

roots and there are no common roots due to the interlacing property of zeros of orthogonal
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polynomials, we have that the coefficient matrix (4.2.5) in the x direction has real and distinct
roots and thus real diagonalizable. Combining with the rotational invariance in Theorem

3.3.2, we immediately have the hyperbolicity of the S-HSWME model in 2D:

Theorem 4.2.1 (hyperbolicity of the S-HSWME). The 5-HSWME model in 2D with the

coefficient matrices given by (4.2.5) in x direction and (4.2.6) in y direction is hyperbolic.

4.3 A framework for constructing general closure relations with rotational in-
variance and hyperbolicity

Besides the previous hyperbolic shallow water moment models, we can also modify both
Ayp and Ay in (4.1.2), as long as each of them has real and distinct eigenvalues and they have
no common eigenvalues. In this case, the real diagonalizability of the matrix A in (4.1.2) is
guaranteed. Here, we can borrow the idea from [21] to modify the entries in the last row of
the matrix such that the modified matrix has predefined propagation speeds. Since only the
last row is modified, the associated polynomial sequence remains unchanged except for the
last one. Therefore, it is easy to derive the analytical form of the characteristic polynomial
where the coefficients have a linear dependence on the entries in the last row. Next, by
matching the coefficients using Vieta’s formulas which relate the coefficients of a polynomial
to sums and products of its roots, or using the appropriate recurrence relation, the entries
in the last row can be solved analytically. Similar ideas are also applied in machine learning
moment closures for radiative transfer equation [16] where the roots are represented by the
neural networks.

After the modified /111 and /122 are obtained, the next step is to determine the form of
A by the rotational invariance constraint in Theorem 3.3.1. The coefficient matrix B in
the y direction can be derived by this constraint as well. Then we have a moment model in

2D with provable rotational invariance and hyperbolicity.

4.4 An example of constructing a general closure
To illustrate the framework in the previous part, we show an example by modifying the

entries in the last row of Ayy in (4.1.5) such that its characteristic polynomial is related to
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the derivative of the Legendre polynomial. Since only the last row is modified, the associated
polynomial sequence given in Lemma 4.1.2 will not be changed except the last one. Therefore,

we compute the last associated polynomial:

N+1
gn+1(z) = zgn (@ Z an+1,j4j—1(
= (z — aAN+1, N+1)an(z Z aAN+1,595— 1(
N
= ((z —u) = (ans1.n41 — W)2N + Py (&) = > any1,(25 — )P4 (€)
j=1

N
= £a1 (2N + 1)Px(€) = (an1,n41 — w)(2N + 1) Px(€) = Y any1,(25 — DPj1(§)
j=1

= a1(NPn-1(§) + (N +1)Pn11(§)) — (an+1,n+1 — u)(2N + 1) Pn(€)

N
= an41,(25 — 1P ()

Jj=1

= a1(N +1)Py41(8) — (an41,n+41 —u)(2N + 1) Py (§) + (aa N — an41,8 (2N — 1)) Pn-1(§)
N-1
— > ant1,;(2 = DPa(9),
j=1

where we use the recursion relation (2n + 1){P,(§) = nP-1(§) + (n + 1) Py11(§).
Next, we would like to take appropriate values of ani;; for 1 < j < N 4 1 such that

qn+1(x) is proporional to Py, ,(§). We use the relation
Prio(§) = N +3)Pyya(§) + 2N = 1)Pyoa(§) + 2N = 5)Py3(§) +--- . (4.4.1)

Matching the coefficient of Py1(§) in Py 5(&) and gny1(2), we have

N+1

YN T3 Ni2(6),

an+1(z) =
which can be expanded as

a1(N +1)Pyi1(§) = (anin+1 — w) (2N + 1) Py () + (N — anan (2N — 1)) Py-1(§)

N-—1
_ Z aN+1,j(2j — 1)%—1(5)
j=1

N+1 N +1

2@1(N+1)PN+1(5)+0412N+3(2N— 1)PN—1(5)+0412N+3

(2N —5)Pn_3(&) + - -
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Now we match the remaining coefficients in the above equation. For the coefficient of

Py (&), we have

AN+1,N+1 = U.

For the coefficient of Py_1(§), we have

N+1
N — 2N —1) = 2N —1
from which we solve for ay41 y and obtain
2N +1
7.

INFLN T ON Z1)(2N + 3)

For the remaining entries, it is easy to obtain:

N +1
— + o, if 7 = N mod 2,
a o 2N + 3
N+1,57 —
0, otherwise.
for1<j<N-—1.
Therefore, the modified f~122 is
(05] Uu %
2 3aq
~ 301 u -
AQQ(W) _ 3 7
N—1
aN—3Y
N+1 N+1 2N+1
00—y 0 —3y5, 0

N1

(2N—1)(2N+3)

(4.4.2)

(4.4.3)

Next, we keep Ap; in (4.1.3) unchanged and write down Aoy based on the rotational

invariance constraint given in Theorem 3.3.1. We can also write the coefficient matrices in
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the original order of variables:

0 1 0
2
—u?— S +gh 2u 0 201
a1 B
—uy — S v U 5
—2uon 2001 0 u
7(u51 =+ val) /31 a 0
A= —207 0 0 aL
—%alﬁl 0 0 —%
0 0
(N+1)B1 _ (N+D)ag
2N+3 2N+3
in the z direction and
0 0 1
—ufu——‘“f1 v U g%
2
e %1 +gh O 2v 0
—(upr +var) B a1 )
—2v1 0 251 0
B=| —3up 0 0 =
-2p7 0 0 0
_(N4+1D)By (N+1)ay
2N+3 2N+3
0 0

in the y direction.

0
o1
3
0 0 0
0 U 0 0
2a
=t 0 U 0
(N+1)aq
2N+1
B1
2N+1
0 0 (Sum) ) 0 u
0 @NZ-N-4)p (2N+Doy
@CN—1)(N+1) (2N—1)(2N+3)
o1
3
281
3
oo
F v 0 0
B
5 0 v 0
N
2N+161
0
(2N+1)8 (2N?—N—-4)a
0 0 @N—1K2N1$ (2N—1MN+1; B
0 0 0 EDh 0

2N -1

0
0

1
N1 M

N+1
2N+1 B

0

(4.4.5)

Since Py, (§) in Corollary 4.1.1 and Py, (£) both have real and distinct roots and there are no

common roots, we have that the coefficient matrix (4.4.4) in the x direction has real and distinct

roots and thus we have that the matrix is real diagonalizable.

Combining with the rotational

invariance in Theorem 3.3.2, we have established the hyperbolicity of the new model in 2D:

Theorem 4.4.1 (hyperbolicity of an examplore general moment closure). The model in 2D with

the coefficient matrices given by (4.4.4) in x direction and (4.4.5) in y direction is hyperbolic.
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CHAPTER 5

CONCLUDING REMARKS
In this work, we investigate the rotational invariance and hyperbolicity of the shallow water
moment equations in 2D. We establish a general closure relation such that the resulting
shallow water moment equations are hyperbolic and rotationally invariant. Moreover, we
propose a new class of shallow water moment equations, which is a generalization of the
HSWME model.

In future work, it remains to be seen whether the derived shallow water moment models
are good approximations of the original incompressible NS equations both numerically and
theoretically. Another interesting direction is to apply data-driven methods to learn the
closure relations while preserving the rotational invariance and hyperbolicity, as we have

done in [18, 15, 17, 16]. These generalizations are the subject of our ongoing work.
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APPENDIX

A.1 Discussion of Dimensional Scaling
Under the shallow water assumptions certain terms are neglected under the assumption
that the ratio of the characteristic vertical length scale H to the characteristic horizontal

length scale L is small. i.e. H/L = ¢ < 1 The starting point is the Navier Stokes equations

V.U =0,
1 1 (A-l-l)
oU+V.-(UU)=—-=-Vp+-V-0+y.
P P
We will scale the spacial variables according to the characteristic length scales
x=Lz, y=Ly, z=HZ (A.1.2)

The velocity variables are also scaled according to a characteristic horizontal velocity V.
Because of the shallow water assumption the characteristic vertical velocity is much smaller,
i.e. on the order of €V.

u=Va, v=Voi, w=eVw (A.1.3)

The time is also scaled by a factor involving the characteristic horizontal length and velocity

scales.

L.
t=—t Al4
- (A1)

A characteristic stress scale S is introduced so the pressure and stress scaling are

p=pgHpP, Obasal = SObasal;  Oother = S€0other (A.1.5)
where basal stresses are o,, and o,, which will be larger than the other stress components
due to the shallow water assumption. Substituting all this

0zt + Oy + 0 = 0
F?e(0;0 + 030% + 0y(d) + 0:(0d)) = —€0:P + €G30y + €GDybyy + GO:6,, + €,
F?e(0;0 4 0:(00) + 050° + 0:(0)) = —€0yp + €GOs6 4y + €G0y6,y + G026, + €,
F2E2 (050 + O (i) + 0y (01)) + 0:0%) = —€Dsp + €G30, + €GOy6,y. + €GO:6,, + €.

(A.1.6)
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where F' = V/\/gH is the Froude number and G = S/(pgH) is the ratio of characteristic
stress to characteristic hydrostatic pressure. For shallow water both ¢ and G will be much
smaller than 1 so terms with €2 and Ge will be ignored. This allows for pressure to be solved
for directly and leads to the equations at the start of the shallow water moment equation

derivation.

A.2 Proof of Proposition 3.1.1

Proof. We prove the equalities in Proposition 3.1.1 by direct calculations:

1.
LHS = cosf (cos@u + sinfv) —sin @ (— sin f u + cosfv) = u = RHS.
2.
LHS = sinf (cos@u + sinfv) + cos O (—sinf u + cos v) = v = RHS.
3.
LHS = cosf (cos@u + sinfv)?* — sinf (cos@u + sinfv)(—sin  u + cos 6 v)
= (cosfu + sinfv) (cosf (cos@u + sinfv) — sin@ (—sinf u + cos G v))
= u(cos @ u + sin fv) = RHS.
4.

LHS = cosf(cos §u + sin § v)* — sin#(cos @ u + sin § v)(— sin @ u + cos f v)
= (cosf@u+ sinfv) (cosB(cos @ u + sinfv) — sinf(—sinf u + cosfv))

= u(cos @ u + sinfv) = RHS.

48



LHS = 2 cos  (cos®  ua + cos 6 sin 0 (uf + va) + sin® 0 vf)
—sinf (cos®§uB + cos b sind (v — ua) — sin® 6 va)
— siné (cos® fva + cos sinf (—ua + vf3) — sin® Huf3)
= uacosf (2cos® § + sin?  + sin® 0) + vasin § (2 cos® § + sin®  — cos® §)
+uBsinf (2 cos? 6 — cos? § + sin® §) + vf3 cos H(2sin? § — sin? f — sin? 0)
= 2uacosf + (uf + va)siné

= RHS

LHS = 2sin 6 (cos f ua + cos 6 sin 0 (uf8 + va) + sin’® v f3)
+ cosf (cos®GufB + cos b sinf (v — ua) — sin* fva)
+ cosd (cos2 O va + cos® sinf (—ua + vB) — sin® 6 uﬁ)
= uasinf (2cos® § — cos? O — cos® 0) + vacos  (2sin @ — sin® @ + cos® )
+ ufB cos §(2sin” O + cos® @ — sin® §) + vf3sin 6(2sin® § + cos® § + cos? )

= (uf 4+ va) cos @ + 2vP sin § = RHS

A.3 Proof of Lemma 3.2.1

We split the proof into three parts: (1) the computation of the conservative part in
the z-direction; (2) the computation of the conservative part in the y-direction; (3) the
computation of the nonconservative part.

Since the proof relies on the properties of the coefficients A;;;, and B;j;, we summarize

in the following:

Lemma A.3.1 ([21]). For the coefficient A;j, given by
1
Aijr = (2i + 1)/ oi(x)pj(x)dr(z)dx (A.3.1)
0
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we have the following properties:
1. Aiji = Aigj for any i, 3, k.

2.
5o, if j=i—1

0, otherwise.

\

Lemma A.3.2 ([21]). For the coefficient B;j given by

1 ¢ .
Bijr = (2i + 1)/0 od (/0 @-d() ord(, (A.3.3)

it satisfies the properties:
(

— if j=i— 1
Biji=q —gts, if j=i+1. (A.3.4)
0, otherwise.

\

A.3.1 The conservative part in the z-direction
We first compute the Jacobian matrix in x-dimension g—g where the physical flux F' is

given by (2.1.15):

1. For the first component

F(U) = hu, (A.3.5)

we compute the gradient

=(0,1,0,0,---,0)T. (A.3.6)

2. For the second component

2 2 2
a2 a; 15 (b 1 (hay)* 1,
F(U) = h(u® + Ej —2j+1)+29h = +§ Gy +29h, (A.3.7)

J
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the derivatives are

OFU) _ (hu)? 1 (hay)? 2 j
= — — h = — — J
oh 72 ;2j+1 2 Y Z2;+1+9’
OF,(U) _ 2(hu) o
J(hu) h
8F2(U) o 1 Q(hOé]) o 20zj
O(hay)  2j+1 h  2j+1
orU)  0R(U) 0
O(hv) — O(hB;)
Therefore, we have
OF5(U) 5 042 2000 . 2009 200N T
= (—u” — h,2u,0, —,0,—,--- ,0 0)".
U v Zzg+1+g 0,370, == 055770 0)
3. For the third component
a3 (hu)(hv) 1 (haj)(hB;)
Py iPi N J j
u“+zzj+1 h +Zj:2j+1 h

the derivatives are

OF3(U) (hu)(hv) 1 (hay)(hB;) ;B
on B2 _;2j+1 B2 :_“”_;m
OF3(U) _ (hv)
a(hu)  h
OF3(U)  (hu)
o)  h
OF(U) 1 (hB) _ B
d(ha;)  2j+1 h 2j + 1
oF3(U) 1 (hay) q
ohB;)  2j+1 h  2j+1
We have
0F3(U) a;3; Br a1 B2 By QN
U :<_””_zj:2jj—+]1’”’“’§’§’€’? ON+1 2N+ 1

4. For the remaining component, we denote

h(2u0él + Z Aijkajozk) -

j7k

gi(U) =

51

2(hu)(hay) (haj)(hay)
Hllia) | 5y, o))

h

j7k

)

(A.3.8)

(A.3.9)

(A.3.10)

(A.3.11)

(A.3.12)

(A.3.13)



forv=1,2,---,N. Then the gradient is

0g;(U 2(hu)(hoy ha)(h

Jik Jik
9g:(U)  2(hay)
o) - b 20 (A.3.15)
9gi(U) _ 2(hu) (hay) (ha)
= 0; A (65— + Oy ——=
d(hay) 3 l+jzk k(951 3 + Ol i )
= 2ud;; + Z A + Z Aijiay
’ g (A.3.16)
= 2u(52j + Z Aﬂjaj =+ Z AileEj
J J
= 2u5zj + 2 Z Aileéj
J
where in the last step we use A;jr = Ag;.
99:(U) _ 99:U) _ (A.3.17)

d(hv) — A(hB;)

5. For the component, we denote

hi(U) := h(upf; + va; + Z Ao B) = (hu)éhﬁl) + (hv)éhai) + Z Az‘jk—(h%)h(hﬂk)
7k ]’k (A.3.18)
fort=1,2,--- ,N. Then the gradient is
Ohy (U hu)(hB) () (hay ha;)(h
agl ) % ) >h< ) _%AWW — —ufi —vay _jzk,qijkajgk
’  (A.3.19)
S =R B (A.3.20)
St = L= o (A.3.21)
Oh(U) _ (hv) D)
@(hal) = n (5,,1 -+ ZkAz]k(S]l h
) (A.3.22)

= v0;; + Z Ak B
K
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oh;(U hu hao;
l( ) _ ( >5zl+2Az]k5kl( .7)
o(nB) ~ h , h
Jik
= udy + Z Aijio (A.3.23)
J
= U(Sil + Z Ailja/j
J
Therefore, the Jacobian matrix aggU) is
0 1 0 0 0 0 0
2
—u? — 2;'14];1 +gh 2u 0 %% 0 221\?-1:1 0
—uv — 2ag7+]1 v u 5 5 SNYT SN
72’11,0[1 - AljkOéjOék 20[1 0 2u + 2A11jaj 0 s 2A1Njaj 0
—(up1 +var) — Arjra; B B o v+ A8 ut Aoy - Ain; B Ainja;
—2’LLO[2 - Aijajak 20[2 0 2A21j()éj 0 s 2A2Njaj 0
—(ufa2 +vag) — Agjra By B2 A2 85 Aoy e Aon;Bj Aanja;

—2uan 7ANjkOéjOék 2an 0 QANljaj 0 2u+2ANNjaj 0
—(upn +van) — AnjreiBe By an An158; Anija; -+ v+ AnniB;  u+ Annjoj
(A.3.24)

Here, for saving space, we use Einstein summation convention and the summation notation

is omitted.

Evaluating the above matrix at Uy = (h, hu, hv, hay, hB31,0,0,---,0,0)7, we have

0 1 0 0 0 0 0
o? 2
—u? — =5 +gh 2u 0 =t 0 0 0
—uv — 7@13/31 vooou 5 G e 0 0
—2uoy — Allla% 200 0 2u+2411101 0 241101 0
—(upr +vor) —Anaafr B o v+Anb ut+ Ao - Ain1Br Ainvion
7A21105% 0 0 2A2110&1 0 e 21421\/10[1 O
—As1100 61 0 0 As1161 Asr10n - Aan151 Aon1an
—ANH()(% 0 0 2AN11041 0 2u+2ANN1a1 0
—An1ioa B 0 0 Anu1pr Aynor - v+Anwnifr ut+Annvioa
(A.3.25)
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Next, we use the property of A;;; given in Lemma A.3.1 and further simplify it to

0 10 0 0
—uQ—%%—i—gh 2 0 20
a1f B «
S R
—2ucy 20 0 2u 0 feq 0
—(wbi+ver) B o v u 2B R
—%a% 0 0 %al 0 2u 0
—faif 0 0 36 fau w u
2N
N1
N
2N+1Bl
QJQV]LOQ 0 2u
N N
=Pl N1 v
A.3.2 The conservative part in the y direction
Then we compute the Jacobian matrix in the y direction.
1. For the first component
Gl(U) = hv
we have
0G1(U) T
=(0,0,1,0,0,---,0
o = )
2. For the second component
;8 (hu)(hv) 1 (hoy)(hB;)
G J~J _ J J
“HZQJH h +;2j+1 h

it is the same as the third component F3(U) in x direction.

3. For the third component

B2 — (hv)Q
et =1+ T 4 g = 5

1 (hB))?
+zj:2j+1 ho
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(A.3.27)

(A.3.28)

(A.3.29)

(A.3.30)



the gradient is

0G3(U) _ (w)* 3 L (h5)* +gh=—v"=>" jﬁ? +gh  (A.3.31)

oh h? - 27+1 h? 27+1
9G3(U)
= A.3.32
Jd(hu) 0 (4.3.32)
)~ h 20 (A.3.33)
0G5(U)
ahe) 0 (A.3.34)
9G3(U) 1 2(hB;) 2B
= = A.3.35
o(hB;) 25+1 h 2j+1 ( )
Therefore, we have
0G5(U) 9 33 201 | 209 26N \r
= (—v* — 2 Ity Wl S A.3.
o~ ;2j+1+gh’0’ 00,550,570 gg ) (A3:36)
4. For the component
hi(U) = h(uB; + voi + Y AjjroyBr) (A.3.37)

j7k“

it is the same as the component in x direction.

5. For the component

gi(U) = h(2vBi + > AijiBi ) = Mh(hﬁ) +) Aijkw (A.3.38)
3k gk

the gradient is

0g:(U) _ _2(hv)(hf3) (hB;)(h)
T TR DR (e e

= —20v03; — Z AijiBiBe - (A3.39)

S =" (A.3.40)
9gi(U) _ 2(hfi) _
3] =26, (A.3.41)
9g:(U)
Sha) ~ " (A.3.42)
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d(hG;) h
= 2ud;; + Z A B + Z AijiB;
k J

h

; 2
09:U) _ 20w)s 5y 0,00 s,
7.k

= 200;; + Z A By + Z Aij1 B
j J

= 21}(5” + 2 Z Ailjﬂj

J

where in the last step we use A;jr = Ag;.

Therefore, the Jacobian matrix 8%3” is

0 0 1 0
—uo— 3 vou g 2
—v2 =3, 25% + gh 0 20 0 2
—(upr +var) —Ayreifr fi a1 v+ Al u+ Anjoy
—2vB1 — A1k 5Bk 0 25 0 20 + 24415
—(ufs +vag) — Agjpeifr; P2 o A21;5; Aoy
—2vBs — A2ji3; Bk 0 26 0 245150
—(uBn +van) — Anjreifr By an AN1;5; Anijoy
—2v8Nn — AnjkBi Bk 0 28n 0 2AN1;5;

(h5))
7o)

v+ Ann;Bi

0

(A.3.43)

an
2N+1

26BN
2N+1

AleOéj
241N 55
AgNjaj

245N 55

u+ Annjo;

2’0 + 2ANNjﬁj
(A.3.44)

Here, for saving space, we use Einstein summation convention and the summation notation

is omitted.
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Evaluating the above matrix at Uy = (h, hu, hv, hay, hB31,0,0,---,0,0)T, we have

0 0 1 0 0 e 0 0
—uv — C“Tﬂl vooou % R 0 0
—v? = B4 gh 0 2 0 28 0 0
—(upr +var) = Annmeafy B o v+ Amf u+t Ao - Ain1Br Ainion
—20f — A f? 0 26 0 2v+241mp - 0 2A1n15
— Az 0 0 A21161 Az e Aan1B1 A1
— A1 B 0 0 0 2421151 EE 0 2428151
—An11a1B 0 0 An11b1 An1iaa o v+ Annif1 ut Annviag
— AN} 0 0 0 2AN1181 0 2v+2ANN151
(A.3.45)
and further simplify it to
0 0 1
—Uv — O”Tﬁl voou % =
=% 4pgh 0 20 0 %
—(ub+var) B v ou 2B 2,
—20p 0 260 0 20 0 261
—20, 0 0 25 204 w u
—-2p2 0 0 0 34 O 2v
%51 %m
0 212v11151
WN_lBl WN_IOQ v u
0 2L 0 2v
(A.3.46)
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A.3.3 The nonconservative part in z and y directions

Evaluating the nonconservative part in z direction at the state (h, hu, hv, hay, hfy, - -+ ,0,0),
we have
03x3
—Uu 0 —%Oél 0
—v 0 —%61 0
—gal 0 —u 0
—35, 0 —v 0
P(U) = 3 (A.3.47)

—Uu 0 —2]}[\[—__‘_11(11 0

—v 0 =56 0

— a0 —u 0

_2]J\<7J:1161 0 —v 0

Here, we use the property of the coefficient B, ;.

The nonconservative part in y direction is similar to the one in x direction, we have

Combining the previous results, we obtain the explicit form given in (3.2.1).

O3x3

e ) o )

e} ) o o

o8

0 —u
0 —v
0 - 211\(:11
0 - ZNN—tll

N—1
N1 M

N-1
_2N+1ﬁ1

a

A

—Uu

) ) (e} )

—v

(A.3.48)



A.4 Proof of Lemma 3.3.2

A.4.1 Proof of the first case

For the first case, A(V') only has two non-zero entries in the first column:

a1 (V) O
A(V) = . (A.41)

921 (V) O

From the necessary condition given in Lemma 3.3.1, we have that B(V') only has two non-zero

entries in the second column:

B 0 bia(V)
(V)= . (A.4.2)
0 baa(V)

Now we compute

) cosf) —sinf a1 (TeV) 0 cosf sinf
Ty ATV T, =
sin@ cos@ a1 (TLV) 0 —sinf cosf

cos B(cos Oay1 (ToV) — sinfag; (T2V))  sin@(cos fayq (ToV) — sinfag (T5V))

cos B(sin fay1(T2V) + cos Bas (T2V))  sinf(sinfaqgy (T2V) + cosBag (T5V))

which should be equal to

cosBaqi1 (V) sinfbys(V
cosGA(V) +sindB(V) = ulV) (V) . (A.4.3)

cosOagy (V') sinbbys (V)

Then we have
cos@(cosB a1 (ToV) —sinf ag (ToV)) = cos b ayr (V),

sinf(cos 0 ay (12V) — sin6 az (12V)) = sin 0 bia(V),

(A.4.4)
cos O(sin b ar1(ToV) + cos 0 az (T2V)) = cos O as (V),
sinO(sin 0 a11(ToV') + cos 0 azi (1T2V)) = sin € baa (V).
The above equations can be further simplified as
COS Qall(TQV) — sin 9(121 (TQV) = a11<V),
(A.4.5)

sinfay1 (ToV) 4 cos Bag (ToV) = ag (V),
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and

a11(V) = 612(V>’

(A.4.6)
agl(V) = bgg(V)
Since a11 (V) and ag; (V') are linear functions of V', we have
a1 (V) = eip + eaq,
(A.4.7)

asn (V) = e3p + caq,

where ¢y, ¢g, c3, ¢4 are constants. Plugging (A.4.7) into (A.4.5), we have

cos 0(cy(cos p + sin 6q) + co(—sinOp + cosOq)) — sin §(cz(cos Op + sin 0q) + c4(— sinfp + cos bq))
=c1p + coq
sin 0(cy(cos Op + sinfq) + co(—sinOp + cos 0q)) + cos 0(c3(cos Op + sin Oq) + c4(— sin Op + cos q)
= C3p + Cuq
which can be simplified as
(c1cos®§ — (cg + c3) cosOsin @ + cysin? 0)p + (ca cos® O + (¢; — c4) cos @sin§ — c3sin’ )q

=c1p + coq

(c3cos? 0+ (c; — c4) cos Osin — cysin? 0)p + (cq cos? @ — (cy + c3) cos Bsin @ + ¢, sin? O)q

= C3p + Caq
This implies
10820 — (ca 4 c3) cos @ sinf + ¢4 sin® 6 = ¢;
(A.4.8)
¢y cos? 0 + (c1 — ¢q) cosBsin® — c3 sin? 0 = ¢y
Then we derive the following relations:
Cl =C4, Cy= —C3 (A.4.9)
Therefore, we have
a1 (V) = c1p — caq
(A.4.10)

an (V) = cap + c1q
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Thus, the matrices A(V') and B(V) are

cap+cq 0 p 0 qg 0
Avy=| _ +e , (A4.11)
—cp+ciq 0 q 0O —p 0
and
0 cip+cq 0 p 0 gq
B(V) = R TP . (A.4.12)
0 —cop+ciq 0 ¢ 0 —p

A.4.2 Proof of the second case

In this case, we assume that A(V) is a diagonal matrix

A(V) _ all(V) 0

0 CLQQ(V)

From Lemma 3.3.1, we have B(V) is also a diagonal matrix

b (V 0
B(V) = u{v)
0 baa (V)
Then we compute
cos) —sinf a1 (TLV) 0 cosf sind
T2_1A(T2V)T2 =
sinf cosf 0 age(ToV) —sinf cosf

COS2 0@11 (TQV) + SiIl2 9(122 (TQV) cos 6 sin 9(@11 (TQV) — 99 (TQV))

9

cos 6 sin 9(0/11 (TQV) — 99 (TQV)) sin2 9&11 (TQV) + 0082 9&22 (TQV)

which should be equal to

cosBaq1 (V') +sin6by,(V 0
cosOA(V) + sin 0B(V) = (V) u(V)

0 cos Qage (V') + sin Obgs (V)

Then we have
a1 (1RV) = axn(12V),
cos? Oay1 (ToV) + sin? fag (ToV) = cos fai1 (V) 4 sin by, (V), (A.4.13)

sin2 9a11(TQV) + COS2 9@22 (TQV) = COS 9&22(V) + sin (%22(‘/)
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This is reduced to
a11(V) = CL22(V)=

bii(V) = ba(V), (A.4.14)
CLH(TQV) = COS Han(V) -+ sin 9[)11(‘/)

Next, we assume the linear functions

ann(V) = an(V) = cip + coq,
(A.4.15)

bi1(V') = baa(V) = c3p + cuq,

where cq, ¢, 3, ¢4 are constants. Then we have

c1(cos Op + sin6q) + co(—sin@p + cos 0q) = cos O(cip + coq) + sinB(csp + caq),  (A.4.16)

which means that

C1 = C4, Cy = —C3. <A417)
Therefore, we have
c1p + ¢aq 0 p 0 qg O
Avy=| "7 = te : (A.4.18)
0 c1p + caq 0 p 0 ¢
and
c3p + caq 0 p 0 qg 0
pvy=| """ = ¢ Yo . (A.4.19)
0 c3p + cuq 0 p 0 ¢q

A.4.3 Proof of the third case

In the last case, we assume that A(V) only has non-zero entries in the second column:

0 ap(V
avy= [0 =V (A.4.20)
0 CLQQ(V)
and from Lemma 3.3.1, we have
by (V) 0
B(V) = ulv) 04 (A.4.21)
b1 (V) 0
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We compute

cosf —sind 0 ap(ThV cosf sinf
T ATV, = 2(T2V)

sind@ cosf 0 ax(ThV) —sin@ cosf

0 cosfaiz(ToV) — sinfage(ToV) cosf sinf

0 sinfai2(T2V) + cosbaxn(T2V) —sinf cos6

—sinf(cos fai2(12V) — sinfaga(T2V)) cosb(cosBaiz(12V) — sinfag(15V))

—sin @(sin faq2(T2V') + cosBagze(T2V))  cos O(sinbai2(ToV') + cos Bagse(T2V))

which should be equal to

sin b1 (V) cosbaa(V
cosOA(V) +sinfB(V) = u(V) 12(V) : (A.4.22)

sin 8[)21 (V) COS 9@22(‘/)
Therefore, we have

—(cosBarz(ToV) — sinfags (ToV)) = b1 (V)

COS 9@12 (TQV) — sin 9@22 (TQV) = alg(V)

(A.4.23)
—(sin Halg(TQV) 4+ cos 9@22 (TQV)) = bzl(V)
sin Halg(TQV) -+ cos QGQQ(TQV) = CLQQ(V)
which is reduced to
bll(V) = —alg(V)
bgl(V) = —QQQ(V)
(A.4.24)
cos Oay2(ToV) — sinQag (ToV) = a12(V)
sin 9a12(T2V) + cos 9&22 (TQV) = Clgg(V)
Next, we assume the linear function
ap(V) = c1p + caq,
(A.4.25)

az (V) = c3p + caq,
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where ¢1, ¢9, ¢3, ¢4 are constants. Then we have

cos O(cy (cos bp + sin 0q) + co(— sinfp + cos 0q)) — sin 6(c3(cos Op + sin Hq)

+ c4(—sinfp + cosbq)) = c1p + caq,
sin 6(cy (cos Op + sin 6q) + co(—sinfp + cosOq)) + cos 0(cs(cos Op + sin Oq)

+ c4(—sinfp + cosbq)) = e3p + caq,

from which we solve out

C1 = Cy4, Cy — —C3. <A426)
Therefore, we have
0 cap+coq 0 p 0 g¢q
A(V) = SR + e , (A.4.27)
0 —cop+cig 0 ¢ 0 —p
and
—cip—coq O —p 0 —q 0
Bvy=| _ +e . (A.4.28)
cop—c1q 0 —q 0 p 0
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