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ABSTRACT 
 

Laboratory analysis of soil's chemical, physical, and biological properties has been costly and 

time-consuming. These methods require extensive sample preparation and produce toxic 

byproducts. Globally, scientists want faster, cheaper soil analysis methods. Soil spectroscopy is 

gaining popularity because it is fast, nondestructive, and environmentally friendly. This study 

developed chemometric models to assess important soil properties pertaining to soil health. The 

developed models were subsequently employed to quantitatively predict these properties for soils 

in Michigan. Prediction models were developed using partial least square regression and random 

forest from two individual libraries and a combination of the two libraries). The samples were 

scanned in the laboratory in the mid-infrared (MIR) range (6000-400 cm-1) and preprocessed 

with the first derivative to improve predictions The evaluation of these models was conducting 

using an independent test set obtained from each library. Additionally, we investigated the 

factors driving the model performance Soil properties measured were: total carbon (TC), soil 

organic matter (OM), pH, base cations (calcium [Ca2+], magnesium [Mg2+], potassium [K+]), 

cation exchange capacity (CEC), total nitrogen (TN), and extractable phosphorus (P-). OM 

predicted the highest (R2=0.93, RMSE = 2.14 %) and P and K were the lowest (R2 = 0.26 and R2 

= 0.17). Additionally, we deployed models to predict soil properties that have not yet been 

measured on a long-term ecological research site (LTER). The impact of these findings 

demonstrates the potential of soil spectroscopy to enhance global soil carbon monitoring and 

expand our understanding of soil health by establishing relationship with soil properties. 
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CHAPTER 1: 

DEVELOPMENT AND EVALUATION OF MULTIVARIATE METHODS USING MID-

INFRARED SPECTROSCOPY TO DETERMINE KEY SOIL PROPERTIES AND SOIL 

HEALTH FOR MICHIGAN SOILS 

1.1  ABSTRACT 

Traditionally, soil’s chemical, physical and biological properties have been analyzed 

using expensive and laborious laboratory techniques. These techniques require substantial 

sample preparation and often produce toxic byproducts. There is a growing global scientific 

demand for methods to analyze soils more cost-effectively and rapidly. Soil spectroscopy has 

been gaining traction because of its rapid, nondestructive, and more environmentally friendly 

way of exploring soil’s chemical, physical and biological properties. This project developed 

chemometric approaches for soil properties important for soil health, and to evaluate their 

performance for quantitative predictions for soils in Michigan and the Great Lakes region. We 

applied multivariate and machine learning modeling approaches to quantitatively relate 

traditional laboratory measurements with mid-infrared (FTIR) spectral data for total carbon (TC), 

soil organic matter (OM), pH, base cations (calcium [Ca2+], magnesium [Mg2+], potassium [K+]), 

cation exchange capacity (CEC), total nitrogen (TN), and extractable phosphorus (P-). We 

examined three libraries, the Kellogg Soil Survey Laboratory (KSSL), Soil, plant, and nutrient 

laboratory (SPNL), and a combination of SPNL and KSSL, merged. For most soil properties, we 

found that the random forest machine learning algorithm that has undergone the first derivative 

preprocessing results in the best model performance except for OM (R2=0.93, RMSE = 2.14 %) 

where partial least square regression outperformed. Total nitrogen and carbon from the KSSL 

had that were modeled with random forest had the highest performance with R2 0.98 for both. Ca 
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from the merged library had the highest performance R2 = 0.99. Models for other evaluated 

properties performed well (R2 = 0.72 to 0.86). The model for Phosphorus and Potassium had the 

lowest performance (R2 = 0.26 and R2 = 0.17), because it lacks a direct spectral response and is 

only weakly correlated with organic matter. Furthermore, we investigated what region of the 

spectra drove the performance for the properties and performed cross comparisons among three 

libraries. We found the performance of the models on an independent test set to be library 

specific and that some properties that lack spectral responses use the variations as opposed to the 

fingerprint regions on the spectra to drive the modes. The outcomes from this project contribute 

to broader efforts to help us better monitor soil carbon and additional soil health indicators, 

thereby improving the availability of data to make well-informed soil management decisions.  
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1.2  INTRODUCTION 

Human population size and the resulting demand for agricultural resources is growing at 

a concerning pace. (Tomlinson, 2013). Additionally environmental stressors such as the 

frequency of extreme weather events that cause drought, flooding, and heat stress are projected 

to rise. These factors make the future of global food security and economic stability a source of 

growing concern (Raza et al., 2019). The negative effects of past agricultural management 

practices and climate change on crop yield and water availability are already evident: for 

example, since the start of the Industrial Revolution, land use change and soil cultivation have 

released 136 ± 55 petagrams of carbon (Pg.) to the atmosphere via changes in biomass carbon, 

with the depletion of soil organic carbon (SOC) accounting for an additional 78 ± 12 Pg. 

Additionally, among other constraints, water availability, vegetation type, biomass productivity, 

and nutrients are important limiting factors that hinder soil carbon sequestration (Van Groenigen 

et al., 2017). Thus, the stability of the whole food system may be in jeopardy if current trends of 

rising atmospheric CO2 levels and land degradation continue. These issues have motivated a 

surge in interest and action in managing agricultural land to preserve and improve soil health 

over the past ten years (Hatfield et al., 2017). 

Soil health is defined as the ability of soil to continue to function as a critical living 

system within an ecosystem and land-use boundaries to sustain biological productivity, improve 

air and water quality, and preserve plant, animal, and human health (Doran & Safley, 1997). 

Protecting and improving soil health is essential for ensuring the sustainability of 

agroecosystems (Lal, 2016) but erosion, salinization, nutrient imbalance, and organic matter 

depletion contribute to soil degradation worldwide. Optimizing soil management methods (i.e., 

tillage versus no-till, crop rotations, and/or amendments) for specific soil needs can affect soil 
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health by impacting the quantity and quality of soil organic matter (SOM) (Shrestha et al., 2013), 

which is a key characteristic for soil health (Guo, 2021). However, a wide range of soil physical, 

chemical, and biological properties contribute to the soil functions that support soil health and 

agricultural and ecological productivity (Guo, 2021; Kinyangi, 2007; Lal, 2016) 

Soil organic matter plays a critical role in the function of the soil ecosystem by improving 

particle aggregation (Six & Paustian, 2014), nutrient availability capacities (Pardon et al., 2017), 

and releasing plant nutrients upon mineralization (Fageria, 2012). Sequestering carbon as soil 

organic matter has been proposed as a potential means of combating climate change. Since soil 

can store two to three times as much carbon as the atmosphere, even a slight increase in soil 

carbon stocks could have an enormous impact on reducing greenhouse gas emissions (Minasny 

et al., 2017). Given its impact on soil structure, soil nutrients, and microbial activities, SOM is 

considered the most significant indicator of soil health (Wander, 2004). Soils with lower carbon 

content are less functional, whereas soils with more carbon content have greater resilience (Koch 

et al., 2013). Most organic C is contained in SOM, whereas inorganic C primarily contains 

carbonate minerals (Nelson & Sommers, 2015). Since not all carbon is the same, accounting for 

these variations is necessary for successful soil carbon management. Therefore, a thorough 

understanding of SOM content across landscapes provides numerous advantages for a range of 

applications, including precision agriculture, monitoring land degradation, environmental 

management, and formulating a workable C sequestration program (Alidoust et al., 2018; Raeesi 

et al., 2019). 

Nitrogen, phosphorus, and potassium are critical nutrients for plant growth and strongly 

influence the productivity of agricultural systems. For example, the nitrogen cycle within the 

ecosystem is crucial to maintaining a productive and healthy ecosystem with the proper balance 
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of nitrogen (Galloway et al., 2004). In contrast, excess nutrients may also cause negative 

impacts. Excess nitrogen in the soil that plants cannot use is released into the atmosphere and 

increases nitrous oxide concentrations Excess nitrogen can also leach into water systems and 

causes water pollution (Galloway et al., 2004). Excess phosphorus (P) contributes to non-point 

source pollution in surface water, resulting in algal blooms, fish mortality, and degraded drinking 

water supplies (Del Giudice et al., 2018). Because the availability of soil nutrients changes with 

soil pH, with some nutrients being more readily accessible to plants at specific pH ranges, it is 

crucial to achieve the right balance of nutrient application and pH. Understanding how pH is 

maintained, how it impacts the supply and availability of vital plant nutrients and hazardous 

elements, how it affects higher plants and humans, and how it can be altered is crucial for soil 

conservation and management (Neina, 2019). Cation exchange capacity (CEC) contributes to 

soil fertility by influencing the release of electrically charged nutrients, thereby reflecting the 

soil's ability to buffer them. Therefore, improved soil testing capabilities combined with 

actionable management decisions will help improve ecological management practices and 

influence recommendations resulting from soil testing (O’Neill et al., 2021). 

Soil testing provides a critical tool to evaluate soil health and guide intervention so that 

soil management actions support desired outcomes. However, conventional wet chemistry 

techniques (Table 1.1) require slow and expensive extraction procedures for the soil to be 

analyzed and are labor intensive. For example, to determine the concentrations of potassium, 

calcium, and magnesium in soil samples by wet chemistry analysis, it is necessary to first make 

an extractant solution of ammonium acetate. This solution is then combined with standard 

weighed soil samples, followed by shaking and subsequent filtration. Moreover, one must 

prepare standards for each element to accurately determine the concentrations of K, Ca, and Mg 
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to be analyzed. The concentrations of samples are determined based on color changes and 

afterwards measured using a photometer. To quantify the amount of OM present, a multistep 

process is employed which involves measuring the crucible, placing the soil samples within the 

crucible, subjecting it to varying temperature and durations, and allowing sufficient time for the 

sample to cool before further measurements are taken. The difference is then calculated to report 

the percent organic matter from the initial weight to the weight after ashing. (Table 1.1). Changes 

in soil properties important for soil health – including but not limited to soil organic matter 

content and quality – can be challenging and time-consuming to monitor. Some of the challenges 

arise because changes in soil properties can take time to manifest and be difficult to identify in 

the short term, particularly because soils have a high degree of spatial variability as a result of a 

combination of physical, chemical, or biological processes that operate at various intensities and 

scales (Goovaerts, 1998). Traditional laboratory (e.g., wet chemistry) techniques used for soil 

analysis require separate methods and procedures for each soil property, with most involving 

chemical reagents and chemical waste management (Recommended Chemical Soil Test 

Procedures for the North Central Region, 2015). Thus, traditional wet chemistry techniques to 

analyze these properties can be costly both immediately in terms of time, finance and potential 

environmental impacts. In contrast, diffuse reflectance Fourier-transform infrared spectroscopy 

(DRIFTS) in the mid-infrared range has been gaining interest as an alternate method for 

analyzing soil properties cost-effectively and rapidly (Margenot et al., 2016). DRIFT is a highly 

effective technique for analyzing soil samples due to its ability to measure light scattering from 

the surface which especially is especially important for pulverized heterogeneous samples. 

Moreover, the DRIFT methodology utilizes a high throughput accessory and detector enabling 

the measurement of 23 samples within a single hour (Nguyen et al., 1991). 
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The mid-infrared (MIR) range is optimal because the fundamental functional groups 

vibrating in the MIR range are associated with organic functional groups present in soil (Soriano-

Disla et al., 2014a). Direct spectral interpretation consists of analyzing peak areas, peak heights, 

or bands associated with the fingerprints of certain functional groups (Table 1.5), but this 

approach can be problematic due to the inherent complexity of soil organic matter and 

mineralogy. For example, the peaks associated with chemical bonds in soil minerals coincide 

with those associated with organic compounds, thereby preventing direct examination of peak 

heights or peak regions in mineral soils (Ludwig et al., 2008). Furthermore, the direct and 

indirect interpretation of MIR peaks in soils can be challenging due to the potential overlap 

between organic carbon and carbonates, which possess distinct spectral profiles and may cause 

interference with organic carbon bonds so one must use caution when interpreting SOM spectra 

as they are characterized by broad and overlapping bands (Tinti et al., 2015) However, by 

applying various mathematical transformations to the spectra we can extract valuable 

information and relate it to soil properties through calibrations based on multivariate statistical 

processes called chemometrics, which is the science of extracting information from 

measurements made on chemical systems using mathematical and multivariate statistical 

procedures (Héberger, 2008).  

Chemometrics has been used to study and relate soil chemical properties such as 

electrical conductivity, total carbon, soil organic matter, and nitrogen (Soriano-Disla et al., 

2014b) (Cohen et al., 2007; T. Nguyen et al., 1991; Sanderman et al., 2020; Shepherd & Walsh, 

2002; Vohland et al., 2014). Physical properties such as texture, bulk density, hydrophobicity, 

and biological properties such as microbial biomass, decomposition, and microbial respiration 

have also been identified (Seybold et al., 2019; Soriano-Disla et al., 2014) demonstrating its 
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utility for studying a wide variety of soil properties. Many of the key physical and chemical 

properties of interest for soil health management can be predicted by infrared spectroscopy 

combined with chemometrics (Table 1.1). Each of these properties is interdependent but 

correlated with each other. Thus, the prediction of the physical, chemical, and biological 

properties is occasionally an outcome of relationships with the quality and quantity of soil 

organic matter (Janik & Skjemstad, 1995). The prediction of physical properties can also depend 

on the correlation with other properties, such as quartz, clays, and organic matter, which have a 

direct spectral response (Soriano-Disla et al., 2014). Chemometric approaches allow the soil 

properties of new, “unknown” samples to be quantitatively predicted based on these 

relationships. Furthermore, this approach also differs from the typical traditional wet chemistry 

soil analysis in that once spectra are acquired on the unknown samples, the same spectra can be 

applied to any number of predictive models to quantitatively predict many soil properties without 

the need for multiple subsamples to be processed in a laboratory to analyze each individual soil 

property.  

In order to implement a functional chemometric model, it is necessary to build a 

sufficient quantity of calibrated samples and to construct a spectral library including an adequate 

number of representative samples. The process of creating a spectral library is a labor-intensive 

task, mostly including the acquisition of wet chemistry data and subsequent scanning of the 

corresponding samples using a spectrometer. Once the spectral library has been constructed, the 

latter process involves scanning the newly acquired unknown samples and use the models 

created from the spectral library to provide predictions. The library comprises conventional wet 

chemistry data alongside the corresponding spectral observations. The additional processes 

involved in the development of these libraries, including outlier removal, preprocessing 
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techniques, and model selection, will be further elaborated upon in the following parts of this 

study.  

According to Viscarra Rossel et al., (2016), there has been an exponential increase in the 

number of articles pertaining to soil spectroscopy within the soil science literature. However, it is 

worth noting that a majority of these articles are based on small-scale experiments conducted in 

specific fields, while a smaller subset of the articles focuses on broader regional studies. To our 

knowledge, a spectral library specific to Michigan soils has not yet been established, with the 

exception of the nationally acquired spectral library maintained by the Kellogg Soil Survey 

Laboratory (KSSL), which is recognized as the most extensive library in North America. The 

World Agroforestry Center (ICRAF) has been active in the development of a soil spectral library 

in Africa (Garrity, 2004). Similarly, LUCAS has been actively involved in similar endeavors 

within Europe (Castaldi et al., 2018), while the Brazilian Soil Spectral Library (BSSL) has been 

undertaking comparable efforts in Brazil (Demattê et al., 2019). Additionally, CSIRO has 

developed similar libraries in Australia (Viscarra Rossel & Webster, 2012). Viscarra Rossel et 

al., (2016) provided a summary indicating that more than 92 countries from all seven continents 

are presently engaged in the development and stratification of mid infrared and near infrared 

spectral libraries. Dedicated efforts are being made by organizations such as the Soil 

Spectroscopy for Global Good (Home - Soil Spectroscopy for Global Good, 2023) and the 

Global Soil Spectral Library Network (GLOSOLAN | Global Soil Partnership | Food and 

Agriculture Organization of the United Nations, 2023) to actively pursue the goal of achieving 

harmonization of spectral libraries derived from various analytical procedures and various brands 

of spectrometers. There is a growing trend towards the development of soil spectral libraries in 
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order to characterize and quantify soil components through the deployment of chemometric 

models. 

Many techniques employed in chemometrics are focused on reducing the dimensionality 

of the available data in order to highlight the relationships between groups of samples or between 

the spectra and the soil property of interest. However, prior to analysis, it is necessary to 

preprocess the spectra. Spectral preprocessing approaches are mathematical changes aimed at 

accounting for noise in the spectrum or eliminating some sources of variation that disrupt the 

prediction of the variables of interest, whether they are connected to soil chemistry, physics, or 

biology of the examined samples. External factors like humidity and light conditions might 

introduce extra noise into the spectra, which affects how the model is constructed. Spectral 

preprocessing reduces instrument noise (Bobelyn et al., 2010; Martens & Stark, 1991). 

According to Balabin et al., (2007), the preprocessing method of choice is influenced by the 

spectra and the properties that need to be predicted.  

 Partial least squares regression (PLSR) is a widely utilized chemometric technique in the 

field of soil science for predicting soil properties based on DRIFTS. This method has 

demonstrated a remarkable ability to quantify a range of soil properties accurately and precisely. 

(Barra et al., 2021; Janik & Skjemstad, 1995; Soriano-Disla et al., 2013). Furthermore, there has 

been a surge in the utilization of machine learning techniques such as Random Forest (RF), 

Artificial Neural Networks, and Cubist methods due to the advancements in technology and the 

increased computational power of computers (Bachion de Santana & Daly, 2022; Deiss et al., 

2020; Demattê et al., 2019; Ng et al., 2019). Following the development of the chemometric 

models, a comprehensive evaluation is conducted utilizing the metrics of R2, RPD, RMSE, and 

the range, as outlined in Table 1.2. Initially, an internal test set, which is a 20% subset of the 
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entire dataset utilized for the model development but not incorporated into the model itself, is 

used for evaluation. Additionally, an independent test set is frequently employed to assess the 

model’s performance. The increase in computational power and the advancement of 

spectroscopy and various preprocessing methods have improved the mining of useful data and 

noise reduction. However, the quality of the reference (wet chemistry) and spectral data remains 

a significant limitation in the development of spectral libraries. These factors play a pivotal role 

in both enabling and restricting the efficacy of a functional calibration model. Guillou et al., 

(2015) and Stevens et al., (2006) have previously discussed auxiliary challenges pertaining to 

sample preparation, such as the grinding time and subsampling. These factors also have been 

shown to impact the quality of the spectra and thus affect the accuracy of models. 

The over-arching aim of this study was to improve capabilities for quantifying the soil 

properties important for soil health in Michigan. In the United States, the state of Michigan has a 

thriving, highly biodiverse agricultural sector that generates more than 300 agricultural 

commodities, of which 56% are crops (MDARD 2011; USDA NASS 2017). Agricultural 

growers and other land managers depend on quality data on soil characteristics for making 

informed agronomic decisions. One significant constraint in the implementation of MIR 

spectroscopy has been the challenge of transferring models across different geographical regions, 

libraries, and instruments, as well as the lack of consistency in the reference data utilized during 

the development of calibrations (Seybold et al., 2019). Our specific objectives were to: (1) 

develop a mid-infrared (MIR) spectral library for Michigan soils; (2) develop multivariate 

regression models for predicting soil properties most important for agricultural and soil 

management; and (3) evaluate how model performance differs between calibration models built 

on a state laboratory (Kellogg Soil Survey Laboratory; hereafter KSSL) versus a regional 
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laboratory (Soil, plant, and nutrient lab; hereafter SPNL) on state versus regional MIR libraries. 

In this paper, we employed diffuse reflection Fourier-transform infrared spectroscopy (DRIFTS) 

in the mid-infrared region with chemometric techniques to develop and evaluate predictive 

models for multiple soil properties important for soil health.



13 
 

1.3 MATERIALS & METHODS 

We assessed three approaches to developing spectral libraries for quantitative prediction 

of soil properties: (1) models calibrated using the KSSL spectral library (State); (2) models 

calibrated using the SPNL spectral library (Regional); and (3) models calibrated using a 

combination of KSSL and SPNL spectral library (Merged). 

1.3.1 Development of spectral libraries 

To build a national model for the properties listed on table 1.1, we leveraged the NRCS-

Kellogg Soil Survey Laboratory (KSSL; Lincoln, NE, USA) mid-infrared (MIR) spectral 

database, which is comprised of spectral data along with physical and chemical properties of soil 

samples collected from > 80,000 pedons across the United States. The KSSL data was stored in a 

Microsoft Access database, which was queried to extract the geographic extent of Michigan. The 

soil properties were measured according to methods in the KSSL manual (Kellogg Soil Survey 

Laboratory (KSSL) | Natural Resources Conservation Service, 2022). This data is of high quality 

due to the standardized and well-documented soil sample collection, preparation, and analytical 

methods employed by the NRCS. KSSL evaluates several physical and chemical qualities, and 

we analyzed six of the KSSL properties using the methodology outlined in Table 1.1. Spectra in 

the KSSL MIR library were obtained using Bruker Vertex 70/HTS-XT Fourier transform 

infrared spectrometer (Bruker Optics, Billerica MA, USA) equipped with HTS-XT high 

throughput diffuse reflectance accessory (Bruker Optics, Billerica MA, USA) from air-dried, 

sieved, and pulverized soil samples. The spectrometer used a mercury cadmium telluride (MCT) 

detector kept cool by liquid nitrogen at -190 °C . Most scientists and researchers measure the 

spectra of the soil sample neat (i.e., without dilution in KBr), which not only is the most time-

efficient but also avoids introducing dilution or contamination problems in the sample 
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preparation process. Scanning the samples neat will further accelerate the spectrum acquisition 

process, making it an efficient and precise technique to establish a global spectral library. The 

spectra were recorded neat, in diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) mode from 7500–600cm-1 (MIR range). For each of the four replicates, we collected 

32 scans at 4 cm-1 resolution. Before each sample, a background spectrum was acquired using an 

empty well on the 96-well aluminum plate. No purge gas was employed in the optical bench, and 

all spectra were measured as absorbance spectra. 

We also developed a new, Michigan-specific regional spectral library by collecting MIR 

spectra on soil samples submitted to the Michigan State University Soil and Plant Nutrient 

Laboratory (SPNL). These soils were collected by farmers and/or researchers from locations 

across Michigan and were analyzed for physical and chemical characteristics by SPNL (Table 

1.1). We strategically selected samples to ensure our SPNL-based spectral library represented the 

geographic distribution of the entire state of Michigan and included the complete range of values 

for each of the measured soil properties. We periodically assessed these criteria by examining the 

frequency distributions of the soil properties were examined for the subset of samples chosen for 

spectral analysis. spectral analysis.  

The SPNL samples were air-dried at 35oC in a forced-air oven, then pulverized in a flail 

grinder to pass a 10-mesh screen. The screened samples were then returned to the original 

sample container. We analyzed ten SPNL properties by the methods shown in Table 1.1. We 

pulverized additional subsamples for seven minutes in a dual canister sample ball mill (SPEX 

8000D Mill, Metuchen, NJ, USA). The samples were then transferred into labeled scintillation 

vials for storage at room temperature. We then obtained DRIFTS spectra on the samples at MSU 

on instrumentation identical to KSSL (Bruker Vertex 70 with HTS-XT measurement in 



15 
 

DRIFTS), following the KSSL protocol. Before each sample, a background was collected on a 

roughened gold surface. Using identical instrumentation, measurement protocols and similar wet 

chemistry techniques allows for spectral library sharing and use, without a calibration transfer 

function as is needed to account for differences between instrument manufacturers (Dangal & 

Sanderman, 2020).  

1.3.2 Multivariate analysis and statistics 

1.3.2.1 Spectra preprocessing and outlier identification. 

The spectral data were imported and analyzed using R statistical programming language 

V4.1.2 (R Core Team, 2022). The packages used were soilspec (Wadoux, 2020) to import the 

spectra in merge with the lab data, dplyr V 1.1.2 (Wickham et al., 2023) to manipulate data into 

various formats, prospectr V 0.2.6 (Antoine Stevens and Leornardo Ramirez-Lopez, 2022) to 

preprocess the spectra, and caret V 6.0.94 (Kuhn & Max, 2008) to build the models; ggplot 2 V 

3.4.2 (Wickham, 2016) was used to graph. The imported spectra were trimmed from 4000-600 

cm-1, resampled every 2cm-1 and merged with the corresponding lab data into one data 

frame.Because preprocessing methods are influenced by the spectra and by the soil properties of 

interest, we investigated various preprocessing methods including baseline correction, first 

derivative, and Savitzky Golay. Savitzky-Golay can effectively improve the spectral information 

and reduce the influence of random noise (Savitzky & Golay, 1964). The first derivative 

preprocessing is the most widely used and was selected for this study because it can resolve 

absorption overlapping; it also increases predictive accuracy while compensating for 

instrumental drift (Liu et al., 2022).  

Following the preprocessing methods, outliers were identified and removed from the 

library. To detect the spectral outliers, the spectra were projected to a principal component space 
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and identified the samples that were furthest from the center. By examining the probability 

distribution of the residuals, the variation was evaluated using the F-ratio (Dangal et al., 2019). 

Individual samples that differ from the set of calibration samples in a model are known as 

outliers, and they can cause problems with model accuracy. Prediction outliers could be caused 

by measurement errors, incorrect labeling, and other random or systematic errors. A sample can 

be characterized as an outlier based on its X-variable (wet chemistry), solely on its Y-variables 

(spectra), or both. To achieve a robust and accurate model, we removed outliers from our lab and 

spectral data. F-value for outliers is calculated directly from the spectral residual; the larger the F 

value, the more likely it to be an outlier. This study used an F-value cut off of 0.99 (Dangal et al., 

2019). A total of 79 outlier samples were identified and then removed from the SPNL library, 

while 65 outliers were detected and eliminated from the KSSL library. Additionally, 125 outliers 

were identified and removed from the merged library. 

!"#$%&! =
() − 1). (./&01&2!)"
∑ 4./&015.#6#$%

 
Eq. 1 

1.3.2.2  Chemometric modeling 

For the KSSL and SPNL library, 5% of the samples were initially removed from each and 

designated as an "independent test set". This independent test set was later used to assess how 

models developed from each library performed on one another. Subsequently, the Kennard Stone 

algorithm (Kennard & Stone, 1969), which is widely employed in soil spectroscopy, was utilized 

to partition each library into calibration (80%) and validation (20%) sets. Kennard Stone projects 

the samples into principal component space and sequentially selects samples with the largest 

distance in the variable space, ensuring an equal distribution of variance in the calibration and 

validation set. Due to Kennard-Stone prone to select samples with extreme values, careful outlier 

must be performed before splitting the library (Ramirez-Lopez, Schmidt, Behrens, et al., 2014a). 
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The potential concern of merging the two libraries was foreseen, leading to the decision to 

combine the calibration sets from each library for model development, instead of pooling the 

entire library and subsequently applying the Kennard Stone algorithm. The spectra were centered 

and scaled to the full dataset of each library when Kennard-Stone was deployed.,  

We then developed the PLSR model on the calibration sets of each library. In PLSR, the 

spectra are reduced to their respective eigenvectors, called factors or primary components. These 

primary components were utilized for calibration and provided essential information about the 

models. The lower components reflect large spectral structural changes, whilst the higher ones 

primarily represent spectral noises. One of the advantages of PLSR is the possibility to interpret 

the first few factors, because they show the correlations between soil property values and the 

spectral features which means it can handle co-linear data and can provide useful qualitative 

information (Yang & M., 2012). It is critical to choose the optimum factor for a PLSR model in 

order to get the best fit model. Underfitting can occur when there are too few components 

chosen, which do not include all the essential information from the spectra. The optimum value 

was chosen by graphing the R2 against the rank and choosing an infliction point where the value 

did not change significantly for a higher number of factors. The selection of optimum value of 

factors is crucial to the noise elimination and the full use of spectral information (Chen et al., 

2013). If several ranks had comparable results, we selected the model with the smallest number 

of factors.(Conzen, 2014). The development of RF was quite different from PLSR, where RF is a 

machine learning technique that combines several base models to create an optimal prediction 

model that is based on a classification or regression tree decisions. Decision trees are techniques 

that are used to address regression problems based on binary data splitting criteria (Breiman, 

2001). This tree-based method was used to build models on the spectral library. The RF model 
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was tuned with two parameters, the number of trees was set to 500 with 41 variables randomly 

sampled as candidates at each split (mtry) where mtry was set to the square root of the number of 

spectra columns of each property. The primary distinction between the PLSR and RF modeling 

techniques is that the former employs a linear multivariate methodology that seeks to optimize 

the covariance between X and Y, while also being capable of managing severe collinearity. The 

RF algorithm is an ensemble method that employs a combination of tree predictors and exhibits a 

high degree of noise resistance. However, it is subject to overfitting despite the use of random 

subsets. Ramírez et al., (2023) compared RF to simpler models such as PLS because they are less 

complex, can potentially avoid overfitting. As predictor variables with high importance are 

drivers of the results and their value has a substantial impact on the model performance, the 

significance of each predictor variable, i.e., the relevance of each wavelength was plotted and 

examined to see which region of the wavelength had the most predictive power.  

1.3.2.3  Model Performance 

The model performance was assessed in two ways. The first method used was how well it 

performed on the validation set from its respective calibration. To assess each of the model 

performances and the quality of the calibration model, we calculated R2, ratio of performance to 

deviation (RPD), root mean square error (RMSE), and bias (the average difference between 

measured and predicted value). The best models have a high R2, low RMSEP, and a high RPD. 
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Eq. 4 

The ;! is the observed value measured by wet chemistry analysis, and ;&<  is the predicted 

value, n is the number of samples and ? is the standard deviation between the observed and 

predicted value.  

The second approach involved evaluating each model derived from each library by 

applying them to the two separate test sets from the KSSL and SPNL. For each of the samples, 

we computed the extent to which the predicted value differed from its observed value and 

conducted a one-way analysis of variance (ANOVA) on the differences of observed and 

predicted to determine the statistical significance of this difference using model, library, and the 

interaction as a factor. ANOVA was performed to ascertain the relative significance of the 

choice between libraries and modeling approaches, or to determine the most appropriate 

modeling approach for a given set of samples. The analysis of model, library and the interaction 

were limited to a subset of properties that could be merged due to the limitations of not having 

all three factors. 
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1.4 RESULTS 

1.4.1 Soil sample characteristics: geographic distribution, classification, and frequency 

distributions for chemical properties 

1.4.1.2 Kellogg Soil Survey Laboratory (KSSL) samples  

The KSSL database contained 2262 samples from locations across Michigan, and these 

were distributed across six soil Orders (Figure 1.1) with 24% of these soils unclassified to Order. 

Sample collection locations were concentrated in the southern half of the Lower Peninsula and 

the western and south-central portions of the Upper Peninsula (Figure 1.1), which correspond to 

regions with the greatest agricultural activity (Agricultural Regions in Michigan, 2022) . 

Spodosols represented 31% of the samples, whereas Alfisols represented 16%, and all other soil 

Orders represented only 2% to 12% of the dataset.  

The distributions, summarized along the diagonal, and correlation between properties, in 

the upper and lower panel for properties analyzed by KSSL and SPNL can be found in figure 

1.2. Table 1.3 summarizes the descriptive statistics for KSSL, SPNL and Merged properties 

analyzed in this study. The distributions of total carbon (TC), total nitrogen (TN), cation 

exchange capacity (CEC), and pH from 0–30 cm were characterized by the standard deviation, 

mean, median, skewness, and kurtosis. TC concentration in the KSSL samples was skewed and 

suggested a bimodal distribution, with most samples containing low C concentration. The range 

of TC was from 0–59.3% with a mean of 17.2%, a standard deviation of 19.3, skewness of 0.7 

and a Kurtosis of -1.2was right skewed with sample concentration ranging from 0–4.14%. 

Similar to TC, the TN concentration was heavily skewed with a bimodal distribution. The 

distribution of pH implies a somewhat normal distribution. The kurtosis and skewness were 

much less than that of TC, TN, and CEC, which indicates the pH distribution was not skewed 
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and has thin tails. The total number of soils analyzed for pH was 1791. Their values ranged from 

2.32–8.63. with a mean of 6.05, standard deviation of 1.27, skewness of 0.4, and a kurtosis of -

0.78. The total number of soils analyzed for CEC is 1713. 

1.4.1.3 MSU Soil and Plant Nutrient Laboratory (SPNL) samples  

In 2020, the Soil and Plant Nutrient Laboratory (SPNL) analyzed approximately 11,515 

samples covering most of the geographic extent of Michigan (Figure 1.1). The sample locations 

on Figure 1.1 are the mailing address and were geocoded using google maps. To build a state 

spectral library, we subsampled 3000 samples to target all 83 counties of Michigan. The SPNL 

samples did not include depth values although the majority represent upper mineral horizons 

important for agriculture (e.g., 0–15 cm). Two thousand fifteen samples were modeled for Mg 

and K, with a range of 12.0–1263.8 cmol (+) kg-1 (mean = 196.7 cmol (+) kg-1) and 4.4–3975.4 

cmol (+) kg-1 (median = 97 cmol (+) kg-1) respectively. We analyzed 2015 samples for pH with 

samples ranging from 4.2 – 9.2, with a mean of 6.69. The distribution follows a similar pattern 

for Ca, Mg, K, CEC, and OM. The soils have a neutral pH and are high in OM content. OM 

ranged from 0.3 to 92.8%, with a mean of 5.56%, a standard deviation of 6.5, and kurtosis of 

37.7. Most soils in Michigan have OM contents between 1% and 4%. Overall, the range of 

readings for all properties was broad representing most Michigan soils. The total number of 

samples analyzed for Cu, Fe, Mn, and Zn were 160, 164, 504, and 504 respectively, which are 

lower than properties, as samples are not commonly analyzed for these properties. Properties 

such as P, K and OM have standard deviations higher than the mean implying they are not 

normally distributed and are skewed; thus, the median was used to evaluate the descriptive 

statistics (Table 1.3, Figure 1.2). For instance, pH was distributed normally, thus having a 

significantly lower standard deviation than the mean. B, Mn, Cu and Zn had significantly a 
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smaller number of samples than the remaining properties, so they were excluded from this 

section. Figure 1.2b shows the distributions for the properties examined by SPNL, summed along 

the diagonal, and the correlation between the properties in the upper and bottom panel. The 

descriptive statistics for the SPNL properties examined in this study are summarized in table 1.3. 

1.4.2 Model Results 

1.4.2.1 Models developed from Kellogg Soil Survey Laboratory (KSSL) MIR library. 

The KSSL library utilized two modeling approaches, PLSR and RF. Analysis was 

conducted on sixteen models, examining their performance across eight properties within the 

KSSL library (Table 1.4). Both the PLSR and RF models for TC and TN were classified as 

"Excellent" according to the categories defined by Soriano-Disla et al., (2014) with R2 values > 

0.95 (Table 1.2). The RF and PLSR model performed the highest for TC (R2 > 0.98 and RMSE = 

0.14 (%); R2 > 0.98 and RMSE =0.13 (%)). Following the TC model results, the RF and PLSR 

TN model performed similarly to TC models (R2 > 0.98 and RMSE=0.12 (%) for RF; R2 > 0.98 

and RMSE =0.13 (%) for PLSR), which also produced higher R2 and lower RMSE values. Ca 

and CEC had comparable results for both RF and PLSR (See Table 1.4). This implies the Ca and 

CEC model is a result of good calibration of correlation with TC. The result of pH is comparable 

to results from Ca and CEC, all three properties share the same trend and comparable results for 

the RF and PLSR models, i.e., the performance of the properties vary between the models and 

are similar within the properties. KSSLMgRF (R2 > 0.94 and RMSE = 2.15 (cmol (+) kg-1)) 

performed significantly better than KSSLMgPLSR (R2 > 0.90 and RMSE = 2.82 (cmol (+) kg-1)) for 

the KSSL library, making RF a better model to make predictions for properties in the KSSL 

library. 
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1.4.2.2 Models developed from the Soil, Plant, and Nutrient Lab (SPNL) MIR Library 

The models developed for soil properties analyzed by the SPNL showed a wide range of 

fit (R2 from 0.33 – 0.93) and had unreliable to excellent predictive ability (Table 1.2). Comparing 

all the properties from the SPNL library, SPNLOMPLSR had the highest prediction (R2 > 0.93 and 

RMSE = 2.14 (%)). The prediction of SPNLCECRF (R2 > 0.81 and RMSE = 2.23 (cmol (+) kg-1)), 

was the second highest which was calibrated with 2745 more samples than OM, followed by 

SPNLCaRF (R2 > 0.79 and RMSE = 486 (cmol (+) kg-1)). The R2 values for CEC, pH, and Mg, 

however, vary between the RF and PLSR models but not within them. The models that showed 

the weakest performance were for SPNLPPLSR, which resulted in (R2 > 0.25 and RMSE = 63.43 

(cmol (+) kg-1)) followed by SPNLKPLSR (R2 > 0.30 and RMSE = 90.18 (cmol (+) kg-1)), which are 

considered “unreliable” (Table 1.2). Due to their smaller sample size than the rest of soil 

properties analyzed, Cu (calibration (cal) = 130 and validation (val) = 30) and Fe (cal = 134 and 

val = 30) were excluded from this section. 

1.4.2.3 Models developed from a combination of SPNL and KSSL MIR Library (Merged) 

In this step, we developed and evaluated how model performance was affected by 

merging the KSSL and SPNL datasets. In order to merge two different libraries, we must 

consider the spectral capability between the two different spectrometers, the sample preparation 

capability, the method capability for each soil property, and the data quality of each method for 

each property (Dangal & Sanderman, 2020). Because of differences in the wet chemical 

procedures used to analyze soil properties between KSSL and SPNL, we were able to merge 

libraries for only four properties that followed the same wet chemistry method: Mg, Ca, pH, K 

and CEC. Furthermore, in order to merge the stated properties, we converted units for each 

property from cmol (+) kg-1 to ppm. The calibration sets from each library (i.e., 80% from KSSL 
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and SPNL) were pooled together to create the merged dataset, which was validated on the 

separately pooled 20% validation set from each library. All three libraries were resampled and 

preprocessed uniformly. The performance results are listed in (Table 1.4).  

1.4.2.4 Models assessment for the independent test set from the SPNL and KSSL MIR 

Library  

In addition to the alignment of the calibration dataset and evaluating the model results, 

the assessment of these merged models posed significant challenges due to the uncertainty of 

what the pooled validation set represents. To address this challenge, an initial step prior to 

modeling was taken to select a subset of 5% and marked as an independent test set from each 

library. The purpose of the independent test set was to assess and compare the performance of 

various models obtained from the three libraries, with a particular focus on their performance on 

merged properties. Each of the model’s performance was assessed using two separate 

independent test sets, each obtained from a the SPNL and KSSL library. The findings are 

presented as follows: 

1.4.2.4.1 Independent test set for Merged Properties 

Hereafter, the following notation will be used when presenting results: 

*LibraryPropertyModel, where * represents the independent test set, followed by the library in 

superscript, the soil property of interest in regular text, and the model in subscript.  

As seen on table 1.4, the only factor that was significant for the *KSSL Ca is the library it 

originated from. When comparing predicted and observed values for *KSSL Ca, *KSSLCaMerged had 

the highest performance, with a R2.96 and 0.99 for PLSR and RF, respectively. The SPNL 

models achieved second place with R2 values of 0.75 and 0.59 for the PLSR and RF techniques, 

respectively. Finally, the IT Ca KSSL models had R2 values of 0.3 for PLSR and 0.32 for RF. In 
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summary, the merged random forest model demonstrates outstanding performance when applied 

to Ca samples originating from the KSSL. On the other hand, when the independent test set 

originated from the SPNL library (IT Ca SPNL), we observed quite substantial interactions between 

libraries and models. Figure 1.7 shows that the SPNLCa PLSR (R2 = 0.81) and SPNLCaRF (R2 = 0.96) 

have the best predictive performance, followed by the RFMerged model (R2 = 0.93). In conclusion, 

the SPNL random forest model is best for predicting Ca samples that originate from the SPNL 

library.  

The IT CEC KSSL, poor performance on the PLSR and RF is supported by the ANOVA 

results, which show that the library itself is the only significant factor (Table 1.4). Further 

inspection of the plotted data reveals a downward trend for the SPNL model, confirming the 

significance of the library's selection (Figure 1.10). For the cases where the IT CEC KSSL set used 

the merged, we chose that library because it provided the greatest fit for the PLSR and RF (R2 = 

0.97 for the PLSR and 0.99 for the RF). While the SPNL and KSSL models underperformed 

(Figure 1.10). In the case of IT CEC SPNL, we found no statistically significant differences between 

libraries, models, or their interactions (Table 1.4). When comparing the observed and predicted 

values however, there is a clear distinction between the MergedCECPLSR and MergedCECRF, with the 

latter having an R2 value that is double that of the former (R2 = 0.5 and R2 = 0.95, respectively). 

This concludes that the MergedCECRF library would be ideal for predicting CEC for samples 

originating from SPNL and KSSL.  

The results from IT Mg KSSL examination demonstrate that the library exhibited statistical 

significance. As a result, we proceeded to analyze the observed and predicted values. Upon 

further examination, it became evident that the merged model demonstrated exceptional 

performance, as indicated by an R2 of 0.93 for PLSR and an R2 value of 0.98 for RF. This 
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characteristic establishes the merged model as the most optimal for predicting Mg in KSSL 

samples. The SPNL library was ranked second, with the KSSL library following. Upon 

reviewing the IT Mg SPNL, it becomes apparent there are similarities with the IT Mg KSSL, while not 

statistically significant, it is important to acknowledge the obvious differentiation between the 

MgPLSR and MgRF models. The RF model exhibits higher performance when using the merged 

library, yielding and R2 value of 0.89. Consequently, it can be inferred that the MergedMgRF, 

exhibits greater performance in predicting. magnesium levels in SPNL samples. 

Regarding IT pH KSSL, the ANOVA results (Table 1.4) highlight the significance of the 

library, moreover the highest R2 achieved was solely attributed to the utilization of the KSSL 

library, which yielded an R2 of 0.91 for PLSR. The merged library demonstrated a slightly lower 

R2 of 0.90. The RFMerged yielded R2 0.99, thereby establishing the RF merged as the best model 

to predict pH on KSSL samples. The ANOVA table shows IT pH SPNL that the library, model, and 

interaction was in fact significant (Table 1.4). When examining figure 1.11 it can be observed 

that there is a slight difference between the PLSRSPNL and PLSRMerged models. However, when 

considering the RF method, a significant enhancement in performance is evident in the RFMerged 

approach. An increase from 0.81 in PLSR to 0.93 in RF, indicating a substantial improvement, 

although not statistically significant. This finding suggests that RF demonstrates greater 

modeling capabilities for predicting pH in comparison to PLSR and RFMerged for predicting pH in 

SPNL sample set. 

The applicability of the models for properties such as TC, TN, and OM, which were 

obtained from a single library, could not be cross-examined. The choice of models did not have a 

significant impact on all three properties mentioned above (Table 1.4). Upon examination of 

figures 1.4 and 1.5, it is evident that the R2 values for TC and TN exhibit a high degree of 
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similarity. One interesting observation was that, in properties such as TC and TN, a strong 

correlation coefficient is typically observed. However, this was not the case for the KSSL 

independent test set under consideration. On the contrary, OM exhibited a relatively strong 

performance in the PLSR model, achieving an R2 of 0.78. Additionally, in the RF model for the 

independent test set, OM demonstrated a similarly high R-squared value of 0.81 (Figure 1.6), 

which is odd because the OMPLSR(R2=0.93) had a better performance than OMRF (R2=0.81) 

within the internal validation set. Regardless, on the independent test set we see the RF model 

with better predictions, which might suggest RF more suited for predicting OM in SPNL 

samples. 

1.4.3 Variable importance for the models 

The PLSR and RF models were further investigated to determine the exact region of the 

MIR spectra that is employed for training the models. The wave numbers are represented on the 

x-axis, while the importance is shown on a scale of 100 on the y-axis for each spectrum, as 

illustrated in figure 1.3a and 1.3b The RF algorithm used a randomly selected subset of 41 

variables for each of the 500 trees during the model development process, additionally the 

preprocessing method of choice was first derivative. Consequently, the resulting variable 

importance chart exhibited an excessive amount of annotation (Figure 1.3b). Thus, it is not 

possible to draw any meaningful conclusion without accounting for the inherent noisiness and 

fluctuations present in the graph. In addition, the discussion did not extensively address 

properties that do not exhibit a spectral signature but exhibit correlation as their outcomes merely 

reflects a correlation with the spectrally active components and variations within the spectra. To 

facilitate the discussion on variable importance, we partitioned the spectra into four distinct 
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sections: V1= 4000 – 3500 cm-1, V2= 3000 – 2300 cm-1, V3=2000 – 1350 cm-1 and V4=1200 – 

600 cm-1. 

1.5 DISCUSSION 

This study built a new state-level MIR library (SPNL), obtained a state-level MIR library 

(KSSL), and created a merged (SPNL+KSSL) MIR library to quantify soil properties and 

investigate differences between state and merged models. We estimated soil properties for total 

carbon, pH, total nitrogen, P, K, Mg and OM using the spectral data modeled with PLSR and RF 

and these models were subsequently evaluated on test sets. Furthermore, we investigated the 

factors that influenced the performance of our libraries. 

1.5.1 Models developed from Kellogg Soil Survey Laboratory (KSSL) MIR library 

The KSSL library could predict TC, TN, Ca, CEC, pH, and K using PLSR and RF by 

regressing the MIR spectra data (Y-variable) against the entire laboratory data obtained by 

laboratory methods (X-variable). Predictions for TC were excellent (R2 > 0.98, RMSE=0.13 %), 

with high R2 and low RMSE highlighting the influence of these characteristics’ direct spectral 

responses in the MIR range. The results are similar to those reported by Reeves et al., (2001) 

who showed R2 > 0.95 for PLSR and Bachion de Santana & Daly (2022) who reported R2 > 0.92 

for Support Vector Machines (SVM). It must be noted that higher predictions were attained for 

TN when comparing our results to those of other studies; for example, Reeves et al., (2001) 

reported R2 = 0.95 and Minasny et al., (2009) reported R2 = 0.76, RPD = 2.0. A similar model 

performance for TN and TC is expected, given both components are spectrally active and how 

highly they are correlated (Figure 1.2b). The high R2 values suggest that this potentially can be 

an overfit to the restricted spectral data used to build the models. However, our results 

demonstrate the use of spectroscopy for predicting TC and TN, two soil properties that can have 
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significant effects on crop residue decomposition and nutrient cycling (Soil Tech Note 23A- 

Carbon:Nitrogen Ratio (C:N) | Natural Resources Conservation Service, 2022).  

Because cation exchange capacity (CEC) and pH are also highly correlated with each 

other, we expected to see a similar result for both. Bachion de Santana & Daly (2022) reported 

R2 = 0.87 and R2 = 0.85 for pH and CEC, respectively, which is comparable to our results where 

we reported R2 = 0.9 and R2 = 0.94 for PLSR and R2 = 0.92 and R2 = 0.92 for RF. Clay and OM 

bands are typically positively correlated with CEC (Figure 1.2b), which explains their presence 

in the CEC model (Wijewardane et al., 2018). The decoupling of pH and SOC most likely 

reflects the usage of lime and inherent variability in parent materials present in the region, 

whereas the positive relationship between Ca and SOM may be linked to SOM stabilization and 

aggregation (Xia et al., 2018). We reported much higher values for Ca (R2 > 0.96 and R2 > 0.97 

for PLSR and RF) compared to Terra et al (2015), who reported R2 = 0.66 for Ca. The 

differences between the Ca values may be attributed to the sample size where Terra et al., (2015) 

used a calibration set of 881 samples and a test of 378 samples, in contrast to the sample sizes 

used in our study (1553 for calibration and 388 for validation). Usually, a large sample size can 

yield reliable models, whereas models obtained from small calibration sets have limited 

generalizability (Ramirez-Lopez, Schmidt, Behrens, et al., 2014b). Moreover, researchers 

discovered a direct association between an increase in the number of calibrations sets (i.e., a 

larger sample size) and an increase in R2 (Kuang & Mouazen, 2012; Ng et al., 2018; O’dea et al., 

2005; Ramirez-Lopez, Schmidt, Behrens, et al., 2014b; Ramirez-Lopez, Schmidt, van Wesemael, 

et al., 2014; K. Shepherd et al., 2002). This study observed that there is a direct relationship 

between the increase in the number of calibration sets (i.e., larger sample size) and a higher R2. 

Additionally, it was found that there is an inverse relationship between the increase in the 
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number of calibrations sets and the root mean square error (RMSE). The finding for PPLSR is 

consistent with previous studies for P, as Terra et al., (2015) obtained an R2 value of 0.35 for P 

and we reported 0.30 for P. We generally see the RF models performing better than PLSR on the 

internal test set but because RF techniques are more recent developments in chemometrics for 

soil science, the literature presenting results from RF models is currently much more limited 

compared to literature using PLSR approaches.  

1.5.2 Models developed from Soil, Plant and Nutrient Laboratory (SPNL) MIR library 

1.5.2.1 Organic Matter 

OM is a complex and dynamic soil component that exerts a major influence on soil 

behavior, properties, and functions in the ecosystem. MIR is well suited for SOM and total 

carbon analysis because of its sensitivity to organic matter's CH, CO, and CN functional groups 

(Reeves et al. 2006). The model that performed best used the Kennard-Stone sampling with the 

first derivative as the preprocessing option. Because there is no conventional factor to predict 

SOM from TC values or vice versa, the spectra libraries could not be merged and are presented 

separately. The most common approach employed for soil property modeling, particularly in 

relation to organic matter, is PLSR. Our results revealed that PLSR exhibited better performance 

compared to RF in predicting organic matter. The PLSR results (R2 = 0.93 and RMSE = 2.14), is 

considered moderately successful and the RF model (R2 = 0.81 and RMSE = 3.25) is moderately 

useful, Numerous studies, including McCarty & Reeves (2006) and Masserschmidt et al., (1999), 

made excellent predictions of soil organic carbon (R2 = 0.96 and R2 = 0.98, respectively). 

Additionally, Cañasveras et al., (2012) made a similar finding using PLSR and found the 

prediction accuracy of OM (R2 = 0.87 and RPD = 2.5). 
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1.5.2.2 Ca, Mg, and K 

Most properties listed do not have direct spectral responses, so the calibration of the 

models is a result of correlation with spectrally active components such as OM. Minasny et al., 

(2009) reported Ca (R2 = 0.86), Mg (R2 = 0.74 and K (R2 = 0.18). Our findings are similar to 

those of Viscarra Rossel et al., (2008), where Ca followed similar trends to CEC and clay 

content. 

1.5.2.3 pH and CEC 

For the conservation and sustainable management of soils globally, it is crucial to 

understand how pH is regulated, how it impacts the supply and availability of essential plant 

nutrients and its impact on availability of toxic elements (Brady & Weil, 2016). CEC and pH are 

a result of indirect prediction, which is made possible due to correlation with other soil properties 

such as OM, which exhibits a direct spectral response. The spectral bands related to almost all 

the spectrally active components appear to be combined in the CEC and pH models (Figure 1.3).  

In their study characterizing soil properties in eastern and southern Africa, Shepherd & 

Walsh, (2002) report a good prediction for the soil PLSR pH (R2 = 0.83; RMSEC = 0.34). 

Viscarra Rossel et al., (2016) had comparable results for PLSR CEC (R2 = 0.73). CEC of the soil 

is primarily influenced by SOM, surface area, and clay type. Due to their greater sensitivity to 

water content, MIR exhibits a band when applied to hydrated Ca, Mg, K, and Na. The layers of 

hydrated cation molecules determine this spectral band (Schnetzer et al., 2017).The high 

sensitivity for the MIR for clay type, clay content, and organic matter, which are all implicated in 

the cation exchange phenomenon, led to the excellent regression between predicted and 

measured CEC values (Janik et al., 1998). Bachion de Santana & Daly (2022) reported R2 = 0.87 

and R2 = 0.85 for pH and CEC, respectively. 
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1.5.2.4 Phosphorus 

In addition, calibration results for variables with no direct spectral responses such as P 

were low. In this study that used the KSSL, Wijewardane et al., (2018) reported (R2 = 0.14 and 

RPD =1.08) for cross-validated PPLSR models across the United States. The MIR region does not 

exhibit direct absorption features with P. However, its predictions can be correlated indirectly 

with other soil compounds or directly with presence of elements as components in a molecular 

group that absorb in the MIR range (Ng, Minasny, Jeon, et al., 2022). In our results, we found 

that both PPLSR and PRF is deemed as unreliable.(Soriano-Disla et al., 2014).  

1.5.3 Models developed from combination of SPNL and KSSL MIR Library (Merged) 

One of the major challenges of sharing a spectral library across state and national levels 

was how wet chemistry data were acquired. To assess soil properties, different laboratories 

throughout the world use different standard techniques; thus, calibration functions from one 

library may not perform well in another because of variances in soil origins and laboratory 

measurement processes. The KSSL, for example, measures total carbon concentration, whereas 

the SPNL measures organic matter concentration. Except for Ca, pH, Mg, CEC, and K, we could 

not merge the KSSL spectral library with the SPNL library for all properties. Therefore, 

establishing a standard protocol for wet chemistry and spectroscopy method across laboratories 

is crucial for being able to share spectral libraries. One of the international initiatives to ensure 

the necessity of standardized protocols is the Global Soil Laboratory Network (GLOSOLAN), 

which was founded in 2017 and has registered over 700 laboratories globally FAO 

((GLOSOLAN | Global Soil Partnership | Food and Agriculture Organization of the United 

Nations, 2023) . Furthermore, the Soil Spectroscopy for Global Good group is at the forefront of 
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efforts to address the challenges related to sharing libraries and the advancement soil 

spectroscopy (Home - Soil Spectroscopy for Global Good, 2023).  

While previous studies have indicated that the integration of a state spectral library into a 

regional/global model enhances its predictive performance (Mouazen et al., 2009; Stevens et al., 

2010), our findings in this study suggest that this improvement was observed in certain cases, 

while not all properties exhibited the same outcome. We did not observe improvements for K, or 

Mg within the model's internal validation set, but we did observe improvements for Ca, CEC, 

and pH (Table 1.4). However, since this was done within the internal model validation sets, it 

only accurately reflects the dataset that the model was built on. To understand and assess the 

performance of the merged library to determine whether it actually enhanced prediction and how 

it contrasted to the regional and state library, we evaluated it on the two independent test sets that 

came from the SPNL and KSSL library.  

1.5.4 Model assessment for the independent test set 

The ANOVA analysis yielded noteworthy findings indicating that, for the majority of 

properties examined, the differences between the PLSR and RF model were not statistically 

significant (Table 1.4). This is interesting because in most cases we observed the RF models 

outperforming the PLSR. However, the selection of a library is important for certain properties 

(Table 1.4). The statistical differences in choice of library can be attributed to the utilization of 

sampling methods and wet chemistry analysis. Specifically, the KSSL samples were collected in 

accordance with a well-documented and standardized procedure implemented by field offices. In 

contrast, the SPNL samples may have been collected by various individuals ranging from 

farmers to home gardeners, potentially employing different depths and not utilizing a soil core, 

among other variations. The observed disparities in the two distinct test sets can also be 
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attributed to the utilization of the meticulous analytical techniques employed by the NRCS, in 

conjunction with the aforementioned factor. This phenomenon under discussion has been 

examined in an article by Seybold et al (2019), referred to as location and operator bias.  

The observed trend in the independent test sets indicates that the models that exhibited 

robust performance were library specific. Additionally, the merged properties demonstrated 

superior performance for certain properties such as Ca, CEC, K, Mg, and pH in the KSSL test 

set, and CEC, K, and pH in the SPNL test set. One noteworthy observation regarding the KSSL 

independent test set is the prevalence of a majority of 0 observed values (Figure 1.7, 1.8, and 

1.10). In this case, the models exhibited a tendency to overpredict the values or predict negative 

values, resulting in a drastically lower correlation. This conclusion can be further sustained by 

examining the TC and TN metrics. Previous studies have presented higher correlation for these 

properties (Baldock et al., 2013; Deiss et al., 2020; Reeves et al., 2011; Sanderman et al., 2020). 

However, it is plausible that the KSSL independent test set containing zero values either falls 

outside the models’ scope or overtrained calibration models, resulting in under or overprediction 

and subsequently diminishing the R2 values. This phenomenon was not seen in the SPNL test set 

primarily due to the prevalence of values exceeding zero. 

In future studies of independent test set to predict “unknown” samples, it is imperative to 

first determine whether the samples adhere to the limits established by the calibration sets of the 

models. If the samples are not within the same principal component space, it is recommended 

that they should be reanalyzed for wet chemistry, as the reliability of the predictions maybe 

compromised (Sanderman et al., 2020). This highlights the importance of verifying whether the 

independent test set falls within the range of the calibration set. The effectiveness of the 

calibrated models is contingent upon the range of values in which it is trained on, thus indicating 
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that our models developed in this study were not proficient in predicting samples with observed 

values of 0.  

1.5.5 Variable importance for the models 

The chemometric models developed in this study were designed to detect specific 

wavenumbers within the spectrum that exhibit a stronger correlation with the variability of a 

particular soil property (Deiss et al., 2020). This correlation is sometimes independent of the 

functional group associated with compounds in the soil samples analyzed. In addition, certain 

properties that don’t exhibit a direct spectral response can be predicted either entirely or partially 

due to their correlation with other soil properties (Chang et al., 2001; Stenberg et al., 2010) 

Therefore, we have limited the discussion on properties that lack spectral signature and have 

instead focused on presenting those that have demonstrated a clear spectral response for PLSR 

models. The RF models have been excluded from the discussion for the reason of utilizing the 

first derivative as a preprocessing method, which has led to excessive annotations and a graph 

that is not easily interpretable (Figure 1.3b). 

Upon examination of the variable importance for TC and TN, they exhibit a striking 

similarity. Both regions are active and have dominant wavenumbers in the V3 and V4 range. 

These regions are characterized by protein amide, aromatic group, and organic compounds 

(Table 1.5). These regions also correspond to fundamental stretching frequencies of the alkyl-

CH2 and -CH3, as well as aromatic CH-, C and C=O (Hobley et al., 2014; Soriano-Disla et al., 

2013). The distinctive peak of carbonate, with wavenumbers between 2600 – 2800 cm-1, 

contributed to the high TC prediction, which was also observed by (Ng et al., 2019). The 

findings of our study demonstrate that TC and TN produced excellent predictions to determine 

because the components are highly correlated with each other and are spectrally active. We may 
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see similarities with TC and TN because most of the N is bound in the SOM, and thus, soil N is 

often tightly correlated to total carbon (Schirrmann et al., 2013). 

The variable importance plot for OM shows a wide range of active bands that were used 

in the PLSR modeling process. The main one being in the V4 range, which can be attributed to 

silica or clays (Table 1.5). Furthermore, in the V3 range, we can attribute the dominating bands 

to assigned to C-O stretching and OH deformation of COOH (Volkov et al., 2021). The influence 

of -OH and Al-OH groups has been seen at 2150 cm-1, which indicates that clay mineralogy had 

an influence on the OM models (Pinheiro et al., 2017). Furthermore, in the V1 and V2 range, the 

peak at 2930–2850 cm-1 owing to alkyl, 16730–1530 cm-1 for protein amide (OC-NH), 1720 cm-1 

for carboxylic acid, 1600–1570 cm-1 for aromatic groups, and 1600-1400 cm-1 for carboxylate 

anion can all be used to identify the soil organic matter. (Fischer, 1977). High R2 values in OM 

can be attributed to the strong spectrally active organic constituents in the V1 range, the C-O 

stretch + C-H and -CH2C-H2 stretch at 4010-3970 cm-1, which is one of the important bands used 

to calibrate the model. 

The variable importance of Ca, Mg, and K have important wavenumbers that fell 

between V3 and V4 at 1380 cm-1 and 1398 cm-1indicates that OH deformation and C-O 

stretching of phenolics are strongly present. Clay minerals, quartz, and other silicates are the 

main source of overtones and combination bands of O-Si-O bending vibrations in quartz and 

hydro silicates with their respective organic constituents in that region (C-H deformation of CH2 

and CH3 groups, COO- asymmetric stretching) (Hofmeister & Bowey, 2006; Volkov et al., 

2021). The broad band (V1) between 3600 – 3200cm-1 has been linked to the interlayer water 

molecules and OH stretching of the adsorbed water coordinated to magnesium or adsorbed on 

silanols (Shah & Scott, 2021), O–Al–OH bonds of sesquioxides (Table 1.5) and band at 3684 
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cm-1 can also be attributed to Hydrogen-bonded SiO-H and amorphous H2O stretch (Volkov et 

al., 2021). Upon analyzing the variable importance plot for the merged properties (Figure 1.3a), 

we observe there are notable similarities and overlaps, with varying degrees of intensity. One 

notable distinction is the presence of a prominent peak around 2400 cm-1, this peak was useful in 

predicting Ca, Mg, K, CEC, and pH. However, the existing literature did not attribute this region 

to a specific bond, but rather emphasized its significance in the calibration process. (Greenberg et 

al., 2022). Certain additional studies have chosen to exclude the spectral region 2400-2300 cm-1 

of the MIR spectra, which corresponds to the interference of CO2 (Dangal et al., 2019; Hati et al., 

2022). 

These findings support the notion that merging libraries can help make more accurate 

predictions, albeit within the range of the observed values. Soil spectroscopy in the mid infrared 

range exhibits direct response for the spectrally active components, which can be used for 

developing and driving models; however, it is essential to investigate sample origin, wet 

chemistry methods, pre-processing options, outlier identification, and merging/integrating 

libraries to achieve an accurate and precise prediction. The deployment of models from the three 

libraries so that each model complements the other may also be the way forward, as in some 

cases we have observed one or the other under- or over-predicting, and thus this can provide us 

with a more accurate picture. Compared to traditional wet chemistry analysis, which takes 

around 48-72 hours to analyze soil properties; MIR spectroscopy enables collection of the 

information needed to quantify a wide suite of soil properties concurrently on a processed sample 

in under five minutes. Thus, MIR is a less expensive and waste-free method of predicting soil 

properties. MIR analysis is based on calibration against well-known laboratory procedures for 
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chemical and physical properties. As a result, the data against which it is calibrated relies on the 

precision of the wet chemistry data.  

The excellent calibration performance obtained in this study could be attributed to the 

total number of samples used for calibration and the fact that all the soil samples analyzed came 

from a relatively constrained geographic area, Michigan. Previous research that used different 

soil types and covered a greater geographic extent produced models with poorer performance 

(Reeves et al., 2001). Predicting soil properties for broad and diverse geographic areas is 

particularly difficult and results in more significant prediction error than spectroscopic models 

used at a local scale (Stevens et al., 2013). The wide range and high variability of soil properties, 

variation in the relationship between soil properties and spectral features, and inconsistent 

sampling protocols, instrumentation, and analytical methods are the three main causes of MIR’s 

poor performance for a largescale spectral library (Nocita et al., 2015). However, developing 

techniques to model complicated soil spectra does not always indicate that a single library or 

modeling approach will be effective in every situation or even serve as a universal model, it may 

allow for improved prediction robustness in MIR DRIFTS of Michigan soils. As a result, 

individual researchers must strive to evaluate the worth of examining many models, 

preprocessing methods, and modeling approaches to determine the one that performs best for 

predicting soil properties. In addition, Sanderman et al. (2020) found that although machine 

learning models exhibited superior performance compared to PLSR, this did not hold true for all 

soil properties and implied that the utilization of multiple modeling approach is essential to find 

the optimal solution for each application. Furthermore, modeling a large dataset requires 

significant computational resources and can be challenging to perform on a personal computer. 
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 As a result of global warming and the introduction of the carbon pricing policy, 

monitoring total carbon concentrations in soils is gaining traction, and total carbon and SOM are 

recognized as helpful sustainability indicators (Janik et al.,1998). Determining soil macronutrient 

levels (N, P, K) is critical for enhanced crop and plant production, fertilizer input optimization, 

and application rate scheduling (Goulding et al., 2008). Easy access to such data can cut 

agricultural production costs while reducing the risk of adverse environmental consequences 

from overuse of fertilizers, leaching into groundwater, depletion of essential nutrient stocks, and 

working to develop an effective carbon sequestration strategy. Additionally, the MIR models can 

be used as a rapid screening tool for quality control methods in the lab. MIR libraries would 

appeal to commercial and noncommercial soil laboratories to cut operational costs and speed up 

analysis. 

1.6 CONCLUSIONS 

This study showed that many soil parameters can be predicted with accuracy and 

precision using infrared spectroscopy, especially when combined with multivariate analytical 

approaches. After applying appropriate data preprocessing techniques to the MIR spectra, 

advanced multivariate models can give reliable predictions for many soil attributes. The physical 

and chemical properties predicted can indicate the overall health and fertility of the soil and can 

be used to make fertilizer input recommendations. The use of spectroscopy provides a rapid, 

cost-effective, and environmentally friendly approach. Future work can focus on identifying 

other soil properties such as bulk density and microbial community, and further investigate the 

factors that drive model performance. Additionally, spectral fusion with remote sensing 

instruments and harmonizing wet chemistry methods would build on this work and further 

expand on the utility of spectroscopy to assess soil health. Standardizing working procedures 
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such as lab methods, sample preparation, spectral acquisition parameters, and creating calibration 

transfer for instruments from different manufacturers should be a priority in future studies. These 

initiatives will be important for future efforts to create, merge, and share spectral libraries among 

users and regions, ultimately contributing to improving soil management across the globe.
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FIGURES 

 

 

 

Figure 1.1 Map showing location of soil samples in Michigan collected and analyzed by NRCS-
KSSL (red circles), and SPNL (blue triangles). The SPNL sample locations are the mailing 
address of the sampler whereas the KSSL icons show the location of samples taken. 
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a)  

Figure 1.2 Correlation matrix among various properties in the library in the upper and lower panel and the distribution of these 
properties along the diagonal (a) the KSSL properties and (b) SPNL properties. 

 



43 
 

Figure 1.2 (cont’d) 

b) 
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a)  

 

Figure 1.3 Variable importance plot for all properties examined for a) Partial Least Square 
Regression (PLSR) and b) Random Forest (RF). The x-axis is the individual wavenumbers on an 
MIR spectra, the y-axis is the importance of each wavenumber that the model used on a scale of 
100. Each color represents the library (Blue = SPNL, Green = Merged, and Red = KSSL). 
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Figure 1.3 (cont’d) 

b) 
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Figure 1.4 Scatter plots showing the observed versus predicted values of total carbon (TC) for 
the independent test sets. Panel (a) is Partial Least Square Regression (PLSR), while (b) is 
Random Forest (RF). The x-axis is the individual observed value, and the y-axis is the predicted 
value. Correlation coefficients and p-value for each library are displayed on each plot.  
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Figure 1.5 Scatter plots showing the observed versus predicted values of total nitrogen (TC) for 
the independent test sets. Panel (a) is Partial Least Square Regression (PLSR), while (b) is 
Random Forest (RF). The x-axis is the individual observed value, and the y-axis is the predicted 
value. Correlation coefficients and p-value for each library is displayed on each plot.  
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Figure 1.6 Scatter plots showing the observed versus predicted values of organic matter (TC) for 
the independent test sets. Panel (a) is Partial Least Square Regression (PLSR), while (b) is 
Random Forest (RF). The x-axis is the individual observed value, and the y-axis is the predicted 
value. Correlation coefficients and p-value for each library is displayed on each plot. 
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Figure 1.7 Scatter plots showing the observed versus predicted values of Calcium (Ca) for the 
independent test sets for: (a) Partial Least Square Regression (PLSR) from KSSL, (b) Random 
Forest (RF) from KSSL, (c) Partial Least Square Regression (PLSR) from SPNL, and (d) 
Random Forest (RF) from SPNL. The x-axis is the individual observed value, and the y-axis is 
the predicted value. Correlation coefficients and p-value for each library are displayed on each 
plot. Each color represents the library specific model (Blue = SPNL, Green = Merged, and Red = 
KSSL).  
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Figure 1.8 Scatter plots showing the observed versus predicted values of Magnesium (Mg) for 
the independent test sets for: (a) Partial Least Square Regression (PLSR) from KSSL, (b) 
Random Forest (RF) from KSSL, (c) Partial Least Square Regression (PLSR) from SPNL, and 
(d) Random Forest (RF) from SPNL. The x-axis is the individual observed value, and the y-axis 
is the predicted value. Correlation coefficients and p-value for each library are displayed on each 
plot. Each color represents the library specific model (Blue = SPNL, Green = Merged, and Red = 
KSSL).  
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Figure 1.9 Scatter plots showing the observed versus predicted values of Potassium (K) for the 
independent test sets for: (a) Partial Least Square Regression (PLSR) from KSSL, (b) Random 
Forest (RF) from KSSL, (c) Partial Least Square Regression (PLSR) from SPNL, and (d) 
Random Forest (RF) from SPNL. The x-axis is the individual observed value, and the y-axis is 
the predicted value. Correlation coefficients and p-value for each library are displayed on each 
plot. Each color represents the library specific model (Blue = SPNL, Green = Merged, and Red = 
KSSL).   
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. 

 

 

Figure 1.10 Scatter plots showing the observed versus predicted values of cation exchange 
capacity (CEC) for the independent test sets for: (a) Partial Least Square Regression (PLSR) 
from KSSL, (b) Random Forest (RF) from KSSL, (c) Partial Least Square Regression (PLSR) 
from SPNL, and (d) Random Forest (RF) from SPNL. The x-axis is the individual observed 
value, and the y-axis is the predicted value. Correlation coefficients and p-value for each library 
are displayed on each plot. Each color represents the library specific model (Blue = SPNL, Green 
= Merged, and Red = KSSL).  
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Figure 1.11 Scatter plots showing the observed versus predicted values of pH for the 
independent test sets for: (a) Partial Least Square Regression (PLSR) from KSSL, (b) Random 
Forest (RF) from KSSL, (c) Partial Least Square Regression (PLSR) from SPNL, and (d) 
Random Forest (RF) from SPNL. The x-axis is the individual observed value, and the y-axis is 
the predicted value. Correlation coefficients and p-value for each library are displayed on each 
plot. Each color represents the library specific model (Blue = SPNL, Green = Merged, and Red = 
KSSL).   
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TABLES 

Table 1.1 Summary of wet chemical analysis for most frequent soil properties analyzed by the 
Michigan State University Soil, Plant, and Nutrient Lab (SPNL) and the Kellogg Soil Survey 
Laboratory (KSSL) along with the soil property function.[1] represents the references for SPNL 
methods and [2] represents the references for KSSL methods.  

Soil 

Property 

Units Functions SPNL 

Method 

KSSL 

Method 

Reference 

TC % 
 

N/A Dry 
Combustion 

[2] 
Procedure 
Code: 
4H2a1 

TN % Availability of crops, 
leaching potential, 
mineralization/ 
immobilization rates, 
process modeling 

N/A Dry 
Combustion 

 

OM % Defines soil fertility and 
soil structure, pesticide, 
and water retention, and 
use in process models 

Loss on 
ignition 

N/A [1] pp 57-
58 

pH 
 

Nutrient availability, 
pesticide absorption and 
mobility, process 
models 

1:1 soil 
suspension 

1M CaCl2 

1:2 0.01 M 
CaCl2 
suspension 

[1] pp.13-
16 | 

[2] 
Procedure 
Code: 
4C1a2a2 

CEC cmol 
(+)/kg 

Defines crop growth, 
soil structure, water 
infiltration; presently 
lacking in most process 
models. Affects the 
availability of nutrients 
and pollutants. 
 

Centrifugation 
procedure 

ammonium 
acetate with 
KCl 
displacement 

[2] 
Procedure 
Code: 
4B1a2a 
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Table 1.1 (cont’d) 

Soil 

Property 
Units Functions SPNL Method KSSL 

Method 
Reference 

P ppm 
Capacity to support 
plant growth, 
environmental quality 
indicator 

Brady P1 by 
ascorbic acid- 
Colorimeter 

Flow-
Injection, 
Automated 
Ion-Analyzer 

4D3b 

K cmol 
(+)/kg 

 
1 M NH4OAc at 
pH 7.0- Flame 
emission AAS 

AAS [1] pp 31-
34 

 

[2]4I2b1-4 

Mg cmol 
(+)/kg 

 

 

Essential plant 
nutrients involved in a 
variety of plant 
functions and 
metabolic processes 

Colorimetric  AAS [1] pp 31-
34 

 

[2]4I2b1-4 
 

Ca cmol 
(+)/kg 

Flame emission 
AAS 

AAS [1] pp 31-
34 

 

[2] 4I2b1-4 
 

Cu cmol 
(+)/kg 

 

Essential 
micronutrients in 
moderate 
concentrations 

 
ICP-AES [2] 

4H1a1a1a-
8 

Fe cmol 
(+)/kg 

 
Dithionite-
Citrate AA 

[1] pp. 41-
43 

6C2c 
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Table 1.2 Category of assessment of each model performance and quality of the calibration 
model, R2 (coefficient of determination) according to Soriano-Disla et al (2014). 

Model performance category R2 

Excellent R2 > 0.95 

Moderately successful 0.90 > R2 > 0.80 

Moderately useful 0.80 > R2 > 0.70 

Assist with understanding broad principles 0.70 > R2 > 0.50 

Unreliable R2 < 0.50 

 

 



57 
 

Table 1.3 Descriptive statistics for soil samples used to build the KSSL library and SPNL library. 

Soil property n mean SD median trimmed mad min max range skew kurtosis SE 

KSSL 
            

 
Ca 2262 26.35 45.35 5.06 14.49 7.47 0.00 224.23 224.23 2.19 3.93 0.95 

 
CEC 2262 28.10 50.89 7.31 14.75 8.46 0.00 584.59 584.59 2.67 9.93 1.07 

 
K 2262 0.21 0.37 0.09 0.14 0.14 0.00 7.27 7.27 7.17 91.13 0.01 

 
Mg 2262 4.40 7.30 1.09 2.72 1.62 0.00 116.25 116.25 3.88 34.71 0.15 

 
P 2262 13.24 38.80 3.34 5.80 4.45 0.00 313.41 313.41 6.54 46.54 0.82 

 
pH 2262 5.98 1.27 5.71 5.91 1.20 2.32 8.63 6.31 0.46 -0.72 0.03 

SPNL 
            

 
Ca 2643 7.58 5.33 6.01 6.88 4.23 0.01 45.93 45.93 1.46 3.23 0.10 

 
CEC 2585 10.03 5.12 8.91 9.49 4.73 1.69 36.75 35.06 0.96 0.73 0.10 

 
K 2643 0.31 0.43 0.24 0.25 0.14 0.01 10.19 10.18 13.96 282.96 0.01 

 
Mg 2643 1.62 1.05 1.45 1.50 0.89 0.06 10.53 10.47 1.99 8.04 0.02 

 
P 2643 62.81 72.39 43.00 49.59 37.07 2.00 824.00 822.00 4.08 25.80 1.41 

 
pH 2643 6.71 0.84 6.70 6.73 0.89 3.90 11.40 7.50 -0.01 0.07 0.02 

 
OM 1267 5.13 6.52 3.40 3.86 2.08 0.30 65.30 65.00 5.22 34.84 0.18 

 
Cu 160 7.60 7.40 5.70 6.00 2.90 0.40 42.20 41.80 2.90 9.90 0.60 
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Table 1.3 (cont’d) 

Soil Property n mean SD median trimmed mad min max range skew kurtosis SE 

SPNL             

Fe 164 43.50 24.70 37.00 40.90 17.80 4.00 140.00 136.00 1.60 3.90 1.90 

B 104 1.10 0.40 1.20 1.10 0.40 0.10 1.80 1.70 -0.60 0.10 0.00 

Zn 504 10.80 13.60 5.40 7.50 2.70 0.80 59.90 59.10 2.40 4.80 0.60 

Mn 504 24.00 13.40 21.10 22.60 11.40 3.10 67.30 64.20 0.90 0.30 0.60 

Merged 
            

Ca 4905 16.24 32.42 5.75 8.01 6.28 0.00 224.23 224.23 3.60 13.22 0.46 

CEC 4847 18.46 36.10 8.48 9.50 6.36 0.00 584.59 584.59 4.22 24.93 0.52 

K 4905 0.26 0.41 0.19 0.20 0.18 0.00 10.19 10.19 11.31 217.35 0.01 

Mg 4905 2.90 5.20 1.38 1.70 1.40 0.00 116.25 116.25 5.71 70.47 0.07 

pH 4905 6.37 1.12 6.30 6.39 1.30 2.32 11.40 9.08 -0.05 -0.57 0.02 
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Table 1.4 Validation prediction metrics of the three libraries for each soil property. Ncomp is the 
number of latent variables selected for PLSR model. 

Soil Property 
 

Model (ncomp) RMSE R2  MAE n(calib) n(valid) 

KSSL 
       

 
TC RF 0.13 0.98 0.06 1706 427 

  
PLSR (20) 0.14 0.98 0.10 

  

 
TN RF 0.12 0.98 0.06 1604 401 

  
PLSR (20) 0.13 0.98 0.10 

  

 
pH RF 0.42 0.92 0.30 1351 338 

  
PLSR (20) 0.44 0.91 0.32 

  

 
CEC RF 17.42 0.92 6.07 1295 324 

  
PLSR (17) 17.06 0.92 7.07 

  

 
Ca RF 9.96 0.97 5.71 1292 323 

  
PLSR (20) 12.16 0.96 8.32 

  

 
K RF 0.20 0.39 0.11 NA NA 

  
PLSR (18) 0.21 0.35 0.13 

  

 
Mg RF 2.15 0.94 1.22 943 236 

  
PLSR (12) 2.82 0.90 1.89 

  

SPNL 
       

 
OM RF 3.25 0.81 1.38 1034 258 

  
PLSR (9) 2.14 0.93 1.15 

  

 
pH RF 0.39 0.79 0.30 1967 492 

  
PLSR (17) 0.35 0.82 0.26 

  

 
CEC RF 2.30 0.81 1.48 1919 480 

  
PLSR (19) 2.56 0.78 1.58 

  

 
P RF 63.44 0.26 37.37 1967 492 

  
PLSR (18) 60.13 0.34 36.94 

  

 
Ca RF 486.24 0.79 272.97 1967 492 

  
PLSR (13) 498.25 0.78 284.56 
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Table 1.4 (cont’d)        

Soil Property  Model (ncomp) RMSE R2  MAE n(calib) n(valid) 

KSSL 
 

K RF 46.55 0.41 31.87 1967 492 
  

PLSR (13) 90.19 0.30 55.83 
  

 
Mg RF 83.60 0.58 53.76 1967 492 

  
PLSR (12) 84.47 0.57 55.53 

  

Merged       

 pH RF 0.41 0.92 0.30 2825 802 
  

PLSR (20) 0.41 0.71 0.29 
  

 
CEC RF 17.42 0.92 6.07 2729 706 

  
PLSR (15) 8.36 0.95 3.48 

  

 
Ca RF 4.80 0.99 1.88 2620 682 

  
PLSR (17) 7.94 0.96 4.24 

  

 
K RF 0.14 0.39 0.09 NA 655 

  
PLSR (17) 0.18 0.17 0.13 

  

 
Mg RF 49.10 0.77 26.42 2420 605 

  
PLSR (15) 62.25 0.63 43.85 
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Table 1.5 Results from ANOVA on the differences between observed and predicted for each 
property from the KSSL and SPNL independent test sets. 

 

Property Test Set Response Sum Sq Df F-value Pr(>F)  
Ca KSSL Library 172160 2 63.77 <2e-16  *** 
  Models 2079 1 1.54 0.215  
  Library: Models 3383 2 1.25 0.286  
 SPNL Library 6236 2 64.39 <2e-16 *** 
  Models 320 1 6.61 0.010 * 
  Library: Models 550 2 5.68 0.004 ** 
CEC KSSL Library 295510 2 67.81 <2e-16 *** 
  Models 248 1 0.11 0.736  
  Library: Models 528 2 0.12 0.886  
 SPNL Library 96.7 2 2.79 0.062 . 
  Models 42.4 1 2.44 0.118  
  Library: Models 15.8 2 0.46 0.633  
Mg KSSL Library 3811.9 2 63.44 <2e-16 *** 
  Models 28.1 1 0.93 0.334  
  Library: Models 64.4 2 1.07 0.343  
 SPNL Library 221.57 2 80.04 <2e-16 *** 
  Models 0.17 1 0.12 0.728  
  Library: Models 0.27 2 0.10 0.907  
K KSSL Library 370924 2 44.26 <2e-16 *** 
  Models 3252 1 0.08 0.781  
  Library: Models 3259 2 0.04 0.962  
 SPNL Library 0.055 2 0.49 0.616  
  Models 0.392 1 6.87 0.009 ** 
  Library: Models 0.997 2 8.74 0.000 *** 
pH KSSL Library 1505.1 2 168.43 <2e-16 *** 
  Models 6.1 1 1.37 0.242  
  Library: Models 11.9 2 1.33 0.264  
 SPNL Library 28.513 2 97.20 0.000 *** 
  Models 1.34 1 9.14 0.003 ** 
  Library: Models 3.539 2 12.07 0.000 *** 
TC KSSL Models 0 1 0.00 1.000  
TN KSSL Models 0.001 1 0.00 0.968  
OM SPNL Models 0.08 1 0.01 0.932  
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Table 1.6 Important spectral features of bonds present in the mid infrared range that were used 
to calibrate the models. Adapted from (Zhao et al., 2023) 

Band 
Range: 

Wavenumbers  Spectral features Source 

V1 3600–3700 cm–1 OH stretching region of clay and Fe 
oxides 

Madejová et al. (2002); 
Bornemann et al. (2010) 

 
3394, 3529 cm–1 O–Al–OH bonds of sesquioxides Terra et al. (2015) 

 
3100 cm–1 Oxyhydroxides Van der Marel and 

Beutelspacher (1976) 

V2 2237, 2843, 2900, 
2931 cm–1 

Organic compounds (Alkyl C–H) Madejová et al. (2002); 
Terra et al. (2015) 

 
2520 cm–1 Carbonates Nguyen et al. (1991) 

V3 1400 cm–1 Organic compounds (lignin, 
cellulose, humic material) 

Nguyen et al. (1991) 

 
1530 cm–1 Protein amide Soriano–Disla et al. (2014) 

 
1570–1600 cm–1 Aromatic group 

 
1670 cm–1 Protein amide 

 
1730 cm–1 Esters and carboxylic acids Sarkhot et al. (2007) 

 
1630 cm–1 Water associated Soriano–Disla et al. (2014) 

 
1430 cm–1 Carbonates Nguyen et al. (1991); Van 

der Marel and Beutelspacher 
(1976) 

V4 1018, 1111 cm–1 2:1 and/or 1:1 clay mineral and/or 
Al sesquioxides (O–Al–OH) 

Terra et al. (2015) 

 
914, 934 cm–1 Hydroxyl groups (kaolin minerals) Madejová et al. (2002) 

 
800, 900 cm–1 Oxyhydroxides, structural Fe3+ in 

the octahedra 
Soriano–Disla et al. (2014); 

 
752 cm–1 Silica of clay minerals Terra et al. (2015) 

 
600–700 cm–1 Iron oxides Van der Marel and 

Beutelspacher  
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CHAPTER 2: MIR SPECTROSCOPY AND PREDICTION OF SOIL PROPERTIES: 

APPLICATION AND LIMITATIONS 

2.1 ABSTRACT 

Effective soil management strategies are essential to meet the growing demand for food, 

but there is still a great deal of uncertainty surrounding how geographic, taxonomic, and land use 

affect the performance of MIR model calibration. Furthermore, there is a lack of knowledge 

about the mechanisms underlying these empirical prediction models, even though mid-infrared 

spectroscopy (MIR) can be a reliable and affordable method for predicting various soil health 

indicators. MIR has been proven in multiple studies to provide reliable estimates of SOM, but it 

is unclear whether it can identify significant shifts in soil properties brought on by management 

at a specific site. In this study, the application of MIR spectroscopy assesses its potential in 

predicting soil properties not previously measured on a long-term ecological research site 

(LTER). Additionally, the study identified changes in soil properties by comparing all seven 

treatments and two soil depths. The different cropping systems included annual crop treatments 

(corn, soybean, and winter wheat), conventional and no-tillage, and a reduced and biological-

based input across 0–10 cm and 10–25 cm depth. We utilized models that were considered the 

most reliable predictors from chapter 1. In the case of properties that were accompanied by 

conventional analysis, our findings exhibited R2 of 0.83 and 0.77 for TC and TN, respectively. 

For properties without conventional analysis, we observed a means separation across different 

treatments which coincided with the literature. We observed significant differences across 

treatment and depth for total carbon, total nitrogen, organic matter, pH, cation exchange 

capacity, and potassium. These findings suggest that spectroscopy can effectively capture and 

quantify statistical changes in these properties under different treatments. When predicting 
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“unknown” samples it is not possible to certainly determine the validity of our findings without 

conventional analysis, even if they align with the conclusions derived from previous literature. 

Furthermore, it is essential to acknowledge the quantification limitations of the developed 

models prior to their deployment. Regardless of the limitations, the findings of this study 

demonstrate the potential utility of mid infrared spectroscopy in quantifying or semi quantifying 

soil properties, particularly in the context of long-term ecological research sites characterized by 

frequent soil sampling.  
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2.2 INTRODUCTION  

Approximately 840 million people are projected to experience hunger by 2030 if current 

agricultural intensification trends continue (FAO, 2021). Over the past 50 years, agricultural 

intensification has drastically increased production efficiency and substantially increased 

agriculture's environmental footprint (Mitchell et al. 1997). Increased use of fertilizer, pesticides, 

irrigation, intensive cropping, and mechanization were the foundation for intensification (Matson 

et al. 1997, Cassman, 1999). Concerns about the detrimental effects of agricultural intensification 

led to the necessity for ecologically based land management (Cassman, 1999; Matson et al., 

1997). The yields from agricultural land area have steadily decreased due to decreased soil 

fertility and increased environmental sensitivity to farming due to poor soils, poor management, 

or both. Many formerly fertile lands are no longer suitable for cultivation, and many others have 

been left fallow (Mosier et al., 2021). In many regions, continuous management interventions are 

needed to support high-yield food production on degraded areas used for agricultural output. The 

loss of crucial nutrients and soil carbon (C) from the agricultural system diminishes the land’s 

capacity to produce nutrient-dense food for human consumption (FAO, 2019); these losses will 

only increase as management to compensate for lost soil fertility becomes more intensive, 

creating a positive feedback loop (Mosier et al., 2021). 

Healthy soils are the foundation of healthy ecosystems and their ability to provide 

ecosystem services. Ecosystem services are the human-beneficial functions of an ecosystem. 

Several of these are essential for the survival (climate regulation, air purification, crop 

pollination) and sustainability of ecosystems and communities (Vitousek et al., 1997). As a result 

of agricultural intensification to feed livestock and humans, the ability of agricultural soils to 

manage ecosystem services is at grave risk (Power, 2010). The productivity of soils and their 
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sensitivity to degradation will depend on their ability to sequester carbon, water, and nutrients 

(Pereira et al., 2018). Healthy soils can retain carbon, water, and nutrients, regulate greenhouse 

gas emissions, and maintain stronger resistance to pests and diseases (Balbi et al., 2015). Even 

though soil organic matter (SOM) is a property that is increasingly recognized as crucial for 

preserving soil productivity and environmental quality, historically, land use practices linked to 

intensive agriculture have decreased soil organic carbon (SOC) stocks, resulting in a worldwide 

loss of 78±12 Pg C (Zomer et al., 2017). The benefits of increased SOM, such as increased soil 

microbial diversity and biogeochemical cycling of nutrients, improved soil structure, nutrient and 

water retention, and soil resilience, are a large part of the appeal of SOC-based mitigation 

techniques (Smith et al., 2013). Without soil, it is impossible for people to meet their basic needs 

for food, fresh water, and air. Soil properties and environmental characteristics affect how many 

and what kind of ecosystem services are offered and are the basis for provisioning, regulating, 

and cultural services (Table 2.4).  

There have been calls for more ecologically based approaches to agricultural 

management due to the environmental and social implications of intensive agriculture production 

in the United States (Drinkwater& Snapp, 2007; Robertson et al., 2014; Schipanski et al., 2016). 

Ecological management strategies have been emphasized as a strategy to preserve crop yields 

while providing a variety of ecosystem services to the farm and the public (Power, 2010; 

Robertson et al.,2014); however, many alternative ecological approaches exist, and detecting 

their influence on soil properties requires long-term and/or repeated measurements. Since more 

than a century ago, Long-Term Ecological Research (LTER) sites have been used to assess how 

different agricultural management practices affect soil and crop properties that can only be seen 

over the long term (Körschens, 2006). These experimental sites also enable the ability to track 
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changes in SOC and nutrient stocks with respect to soil management, its temporal variability, and 

the balance under various treatments.  

A thorough and meticulous study of soil properties is the more efficient way of 

determining the necessary solutions for agricultural development of a region because agricultural 

research is frequently based on the study of crop yield and ecosystem services, which is directly 

influenced by the physical, chemical, and biological properties of soil. However, routine 

traditional wet chemistry analysis for these soil characteristics is time-consuming, chemically 

intensive, and costly, limiting the amount of data available for making wise management 

decisions. Natural variability resulting from pedogenic processes is related to soil properties, soil 

hydrology, field topography, and climate gradients; whereas the extrinsic (i.e., anthropogenic) 

variability is imposed through the agricultural management practices used (Cambardella et al. 

1994). Therefore, improving the ability to understand how management practices affect soil 

properties and their variability can help evaluate soil's functional capacity to provide ecosystem 

services, as well as help assess the sustainability of land use, and guide soil management 

practices in agroecosystems (Shukla et al., 2006). On LTER plots, repetitive sampling and 

traditional laboratory measurements of soil properties are labor- and cost-intensive. Soil 

spectroscopy has been gaining traction for being an alternate method to measure soil properties. 

Here, we investigated the applications and limitations of mid-infrared spectroscopy 

(MIR) on eight different agricultural management treatments at the Kellogg Biological Station 

(KBS) LTER in southwest Michigan, USA. The different cropping systems included annual crop 

treatments (corn, soybean, and winter wheat), conventional and no-tillage, and a reduced and 

biological-based input. The KBS Main Cropping System Experiment (MCSE) provides five 

major ecosystem services, including soil fertility, pest control, clean water, climate stabilization 
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through greenhouse gas mitigation, and food and fuel production (Robertson et al. 2014). 

Although the degree to which these services are provided varies, their interactive delivery can be 

greatly beneficial to overall ecosystem sustainability. Previous work at this site investigated the 

tradeoffs among how the effects of different agricultural management systems influence 

ecosystem services (Syswerda & Robertson, 2014). Additionally, Sanderman et al. (2021) 

evaluated the need for calibration transfer when applying soil organic carbon spectral models 

from secondary instruments on various LTER sites, including KBS, although they focused on 

only six of the eight treatments and a single soil depth (0-25 cm). Our study builds on the 

previous work by examining a suite of soil properties that have not been investigated yet, and by 

investigating differences among all seven treatments and between two soil depths. Thus, the 

primary objective of this study was to examine the effects of management methods and soil 

depth on several soil properties important for crop productivity, specifically total carbon (C), 

total nitrogen (N), organic matter (OM), pH, cation exchange capacity (CEC), potassium (K+), 

and magnesium (Mg2+), using MIR spectral models. Our secondary objective was to use these 

results to evaluate relationships among soil properties, cropping systems, and ecosystem 

services.  

2.3 MATERIAL & METHODS 

2.3.1 Site description 

The W.K. Kellogg Biological Station (KBS) is located in Hickory Corners, Michigan 

(85o 24' W, 42o 24' N). Kalamazoo (fine-loamy, mixed, semiactive, mesic Typic Hapludalfs) and 

Oshtemo (coarse-loamy, mixed, active, mesic Typic Hapludalfs) sandy loams are present at the 

KBS LTER site (Crum and Collins 1995). Within each replicated plot of the randomized 

complete block (RCB) experiment, there were five soil subsampling stations, with six replicated 
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plots for each treatment. The experiment employed seven treatments to promote various 

agronomic management strategies and land applications. The cropping systems consisted of four 

annual crop treatments (corn, soybeans, and winter wheat), conventional and no-till, and reduced 

and biologically based input. The climate of KBS-LTER is humid, continental, and temperate. 

The average annual temperature is 10.1oC, the average annual snowfall is 1.3m yr-1, and the 

average annual precipitation is 1027 mm y-1, with winter receiving the least amount (17%) and 

the rest of the year receiving an equal amount(Syswerda & Robertson, 2014). 

2.3.2 Soil sampling and processing 

Soil cores were collected to 1.2m depth with a hydraulic probe. Sampling occurred after 

harvest in the annual cropping system. Two intact cores were collected from each of the five 

sampling stations per plot and transported in their plastic liners to the lab, where they were kept 

at 4oC for preprocessing. Each core was separated into four fixed depth layers: 0–10,10–25,25–

50, and 50+ cm. In this study, we focused on the 0–10 cm and 10–25 cm layers because they best 

reflect changes brought on by aboveground management in agricultural systems. The soil 

samples were passed through a 4 mm sieve, homogenized, oven dried at 60oC for 48 hours, then 

pulverized (ShatterBox, SPEX SamplePrep, Metuchen, New Jersey, USA). Soil total C and N 

concentrations were analyzed by dry combustion gas chromatography on an Elemental Analyzer 

(Costech ECS 4010 CHNSO Analyzer, Valencia, California, USA) calibrated with the analytical 

standard Acetanilide, with three analytical reps per sample. We worked with seven treatments of 

KBS-LTER's Main Cropping System Experiment (MCSE): conventionally managed row crops, 

no-till row crops, reduced input row crops, biologically based (organic) row crops, and mown 

grassland (never tilled). The details of crop management treatments are seen in Table 2.1 

(Bhardwaj et al., 2011). The conventional treatment was tilled with a chisel plow, and the no-till 
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treatment was managed as the conventional treatment but was left unplowed. Fertilizers 

(nitrogen, phosphorus, and potassium) and agricultural lime are applied at rates recommended by 

Michigan State University (MSU) Extension following soil tests. The reduced input treatment 

received lower levels of nitrogen at planting and lower levels of pesticide than conventional and 

no-till and had a legume cover crop in the winter. The biologically based treatment did not 

receive any chemical inputs, compost, or manure, and it had a legume cover crop. The mown 

grassland was never tilled and was unmanaged except for annual mowing to control woody 

species.  

2.3.3 Spectral acquisition  

The KBS soil spectra were obtained at MSU from air-dried, sieved, and pulverized soil 

samples. If the samples were still coarse, a mortar and pestle ground them further. The ground 

soil samples were loaded into quadruplicate 6mm diameter wells in 96-well aluminum 

microplates and pressed with an aluminum rod to smooth the surface. A micro-vacuum was used 

to remove any remaining soil around the wells. The pulverized soil samples were analyzed using 

Bruker Vertex 70/HTS-XT Fourier transform infrared spectrometer equipped with a mercury 

cadmium telluride (MCT) detector kept cool by liquid nitrogen (Bruker Optics, Billerica, MA, 

USA). The spectra were recorded in the MIR range (7500–600 cm-1). For each replicate well, we 

collected 32 scans at 4 cm-1 resolution. Before each sample, a background spectrum was acquired 

using roughened gold to account for temperature and air humidity. No purge gas was employed 

in the optical bench, and all spectra were measured as absorbance spectra. We identified outliers 

using the F-ratio. These outliers tended to be more coarse than non-outlier samples, therefore 

they were further pulverized manually with a mortar and pestle and rescanned. The selection of 

library models for prediction was based on their performance on an independent SPNL test set 
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(Chapter 1). We conducted a comparison of the R2 values to determine the model that best fits 

the line of observed and predicted values (Figure 1.5 – Figure 1.11). Subsequently, the most 

optimal models from each library were chosen based on their performance on the SPNL 

independent test set. 

From the SPNL library the following models were selected: CaRF (y=0.711 +0.91x, 

R2=0.96), MgRF(y=0.33 +0.825x ,R2=0.90), and OMRF (y=1.09 +0.797x ,R2=0.81). From the 

Merged library CECRF (y=1.2+0.885x, R2=0.95), KRF (y=0.118 +0.62x, R2=0.86), and pHRF 

(y=1.05 +0.843x, R2=0.93). From the KSSL library TCRF (y=7.4 +0.823x, R2=0.42) and TNRF 

(y=0.279 +0.912x, R2=0.46) were selected. Although the models developed for TC and TN were 

deemed "unreliable" (Soriano-Disla et al. 2014) according to the independent test set used in 

Chapter 1 (Figure 1.4 and Figure 1.5 /Table 1.2), this was due to the presence of zero values in 

the test set. In contrast, when we applied the TC and TN models to the KBS samples for which 

observed TC and TN values existed, the R2 values were 0.83 and 0.77, indicating strong 

correlation between the observed and predicted KBS values, likely because TC and TN 

concentrations were >0.0. In the following parts of this paper, the models under discussion are 

limited to those that have been listed here. 

2.3.5 Statistical Analysis  

Statistical analysis was performed in 3 ways: (1) determining the goodness of fit between 

predicted and observed soil properties of interest across treatments and depths; (2) determining if 

the predicted soil properties and the observed soil properties exhibit the same statistical 

differences across treatments and depths; and (3) determining if the predicted soil properties 

exhibit change across treatments and depths. Principal component analysis was used to evaluate 

how each treatment affects the overall composition of the soil and soil properties.  
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The lme function from the lme4 package (Douglas Bates et al., 2023) in R version 4.1.2 

(R Core Team, 2022) was used to conduct an ANOVA with the following design: where 

treatment, depth, and the interaction between treatment and depth were fixed effects and 

interaction between replicate and treatment was a random effect. Tukey's pairwise comparison 

using the emmeans function from the multcomp (Torsten et al., 2023) package yielded the mean 

separation. A p-value of 0.05 was used to identify statistically significant deviations. Principal 

component analysis (PCA) was performed using the PCA package in R. PCA analysis was 

applied to the predicted soil properties across both depths, and separately for each depth 

increment (0-10 cm and 10-25 cm). The steps in PCA included calculating the covariance matrix, 

correlation matrix, the eigenvalues, eigenvectors, and components.  

2.4 RESULTS 

2.4.1 Soil property predictions  

The treatments were categorized into three groups. The annual row crop systems 

encompass the conventional (T1), no-till (T2), reduced input (T3), and the biologically based 

(T4) treatments. The perennial systems encompass the poplar (T5) and the perennial rotation 

(T6) treatments. The never tilled treatment (T8) functioned independently rather than as part of a 

perennial system, primarily serving as a point of reference. The total carbon (TC) concentrations 

in the observed and predicted data varied among systems and decreased with depth. Among 

treatments, the TC concentrations were lowest in the conventional systems and highest in the 

late-successional. The predictions for TC ranged from 0.41–6.83 %. TC observed was significant 

for treatment, depth, and treatment by depth, which followed the same significance for TC 

observed (Table 2.2). The only difference between the observed and predicted data was seen in 

the organic treatment, where the mean observed value was different from the conventional, but 
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the mean predicted was not significantly different from the conventional (Figure 2.2). The 

predictions for total nitrogen (TN) ranged from 0.06–0.51 % (Table 2.2). Similar to the results 

for TC, TN concentrations were the lowest in conventional tillage and highest in the mown 

grassland for both the predicted and observed values in the 0–10 cm depth.  

For the 0 –10 cm depth, there was a significant effect of treatment for predicted TC. The 

never tilled community had 67.43% more carbon than the average of the row crop treatments 

(T1-T4). The never tilled treatment also contained 60.40% more carbon than the average of the 

two perennial (T5 & T6) systems. Within the annual row crop systems, the organic was 22.52% 

higher than conventional, but the organic did not differ significantly from conventional and no 

till (Figure 2.2). For the 10 – 25cm depth, the never till contained 20.38% more carbon than the 

average annual row crops, and 17.51% more than the two perennial systems. There were no 

differences in TC among treatments in the 10– 25 cm layer, which is identical to the observed 

data (Figure 2.2). The interaction between treatment and depth was significant for both observed 

and predicted TC (Table 2.3). There was a significant effect of treatment on predicted TN for the 

0 to 10 cm layer. For predicted N, the never tilled contained 58.88 % more nitrogen than the 

average of the annual row crops (T1-T4). The never tilled was likewise greater than the mean of 

the two perennial systems (T5 and T6) by 47.52 %. Overall, the row crops had 27.63 less TN 

than the perennials in predicted TN. There were no significant differences between the row crop 

and perennial systems. I.e., (T1 = T2 = T3 = T4) & (T5 = T6) (Figure 2.3). Although there were 

no significant differences between the treatments for the predicted 10 – 25cm layer the no till 

contained 3.66 % more nitrogen higher than the average of the annual row crops. The interaction 

between treatment and depth was significant for predicted and observed TN (Table 2.3).  
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The following results pertain to the soil properties that were quantified exclusively from 

the MIR-based predictions. Soil organic matter (OM) showed a significant treatment effect, and 

a significant interaction between treatment and depth (Table 2.3). Never tilled contained 62.4% 

more OM than annual row cropping systems and contained 42.2% more than perennials. Never 

tilled contained organic matter 66.93% and 61.93% higher than the conventional and no till 

systems, respectively. Although there were no differences within the row crops, and within the 

two perennials, on average, the perennials had 19.21% more OM than the row crops (Figure 2.4). 

In the 10 –25 cm depth, there were no significant differences in this region except for the never 

tilled community, which contained 24.88% higher than the no till. For the 0 -10 cm depth, 

treatment was significant for pH. The pH of the never tilled community was less than the 

perennials and reduced by 0.35 and 0.42 units. Although there were no statistical differences 

between the row crops and perennials, on average, the row crops had a 0.07 units higher pH than 

the perennials (Figure 2.5). For the 10 –25 depth, T1-T6 were the same, and T8 was different 

from all other treatments. The pH in the 0 – 10cm was 0.51 units lower in the never tilled 

treatment than in the row crops and 0.50 units lower than the perennials. The interaction between 

treatment and depth was significant for pH (Table 2.3). In both depths, the never tilled treatment 

was different from all the perennial and the annual row crop systems. In the upper depth of 0-

10cm, T5 (Poplar) was different from all other treatments except for T2 (No Till) while in the 

lower depth of 10-25 cm all annual crops and perennials did not show statistical difference 

(Figure 2.5) The never tilled is the treatment that distinguished itself from other treatments for 

CEC in the 0 –10 cm depth. Although the difference is not statistically significant, CEC of the 

never tilled soil was found to be 25.01% higher than that of row crops and 20.59% higher than 

that of perennials. The never tilled treatment exhibited a 27.7% higher yield compared to the 
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conventional treatment, a 23.75% higher yield compared to the no till treatment, a 27.44% higher 

yield compared to the reduced input treatment, a 21.16% higher yield compared to the organic 

treatment, and an 18.18% higher yield compared to the perennial treatment. (Figure 2.6). 

Overall, the interaction between treatment and depth was significant for CEC (Table 2.3) but in 

the 10 –25 depth, there was no significant difference between the treatments. There was no 

significant effect of treatment or depth observed for Mg, although there was a significant 

interaction effect between treatment and depth for Mg (Table 2.3), and the preplanned pairwise 

comparison showed a lower Mg concentration in the never tilled treatment compared to all other 

treatments, for the 0 –25 cm soil (Figure 2.8). Treatment and depth effect was significant for K 

(Table 2.3). In the 0 –10 cm, the conventional and reduced input systems were different from 

poplar and never tilled but not the other treatments. The never tilled community was different 

from all other treatments. The never tilled was 34.99% and 28.61% higher than conventional and 

no till. The poplar contained 17.01% and 8.69% more K than conventional and reduced input. 

On average, the annual row crops had 10.38% less K than the perennials (Figure 2.7). In the 10 –

25 cm, there was no significant differences among treatments. The interaction between treatment 

and depth was significant for K (Table 2.3). There was no effect of treatment on Ca, although the 

effect of depth and the treatment by depth interaction were significant (Table 2.3). We observed 

no differences between treatments in the 0-10cm depth (Figure 2.9). For the 0-25 cm depth, the 

never tilled community exhibited differences when compared to conventional, no till, poplar, and 

perennial, but demonstrated similarities with the reduced input and organic. The never tilled was 

lower than poplar and no till by 35.24% and 36.72%, respectively. 
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2.4.2 Principal components analysis (PCA) and spectral description  

The results of the PCA analysis of all samples regardless of depth showed that the first 

component explained 58.98% of the variance, the second component explained 26.80%, and the 

third component explained 8.76% of the total variance in predicted soil properties, with the first 

three PC’s explaining 94.54% of the total variation in this dataset. Although it is difficult to 

distinguish among T1 to T6, T8 was readily distinguished from all other treatments. The PCA 

results indicated that treatments T1 through T6 corresponded with greater pH, Ca, Mg, and CEC, 

whereas the never tilled treatment corresponded with greater K, OM, TC, and TN (Figure 2.10). 

The eigenvalues of principal components were 4.72, 2.15, 0.701 0.27, 0.07, 0.05, 0.03, and 0.01. 

T6 expands to the left of the origin of PC2, indicating the influence of Mg and Ca. When 

examining the PCA results for the 0 – 10 cm soil, 66.47 % of the variance was explained by PC1 

and 22.57% was explained by PC2. For the 10–25 cm soil, 49.25 % of the variance was 

explained by PC1 and 32.73% was explained by PC2.   

2.5 DISCUSSION  

2.5.1 Comparison of observed and predicted TC and TN levels across treatments  

In this study, we applied a previously built spectral model from the spectral libraries 

developed in Chapter 1 to a new set of samples at KBS for which TC and TN data existed, but 

where other soil properties had not been quantified previously. Our results reveal significant 

differences in TC and TN among cropping systems across the two depths, which coincided with 

the observed values and existing literature (Cordova et al (in review)). For instance, T2 and T3 

had a greater TC and TN value than T1, despite statistically comparable values for all three 

systems. These changes are not negligible when considering the region's two most major 

constraints on crop productivity: nutrient losses by leaching, and inadequate water retention 
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capacity (Bhardwaj et al., 2011a). A greater separation of soil nitrogen in T1, T2, T3, and T4 is 

indicative of an increase in nitrogen usage efficiency, which has significant consequences for 

environmental quality (Robertson & Vitousek, 2009). Our results generally suggest that there 

were significant differences in some soil properties due to tillage and fertilizer management as 

well as across depth (Table 2.3). The most striking observation to emerge from comparing 

predicted and observed TC and TN values was that the predicted values, while not statistically 

significant, were higher for TC and TN compared to the observed values. The reason for this 

trend remains unclear, although it is plausible that it is influenced by the notable decrease in R2 

values observed in the calibration models when they are applied to the independent test set. This 

decrease in R2 may indicate model overfitting. On the contrary, the R2 values for the calibration 

models applied to KBS samples did not drop drastically but were overpredicting (Figure 2.1); 

this suggests that discrepancies may exist among the measured laboratory values, thereby 

offering a potential explanation. Even though the TC and TN models were slightly 

overpredicting, the same conclusion of statistical differences among treatment was reached, and 

the relative rankings across treatments matched regardless of whether modeling or wet chemistry 

was employed. Similar to our findings, Sanderman et al. (2021) discovered that the linear slopes 

of change over time utilizing the two sources of SOC% data (predicted and observed) were 

comparable, as was the relative ranking of SOC% levels between treatments.  

2.5.2 Using MIR predicted values to identify changes in tillage practices. 

Tillage is an important management practice that has various effects on soil properties 

depending on how the soil is maintained. Tillage exposes organic matter to oxidation by 

destroying soil aggregates and structure. Tillage can modify soil temperature, aeration, and 

water-holding capacity, which can lead to changes in microbial activity. In this study, the impact 
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of tillage (T1 and T2) was compared for all properties. The average 10.2 % greater OM 

concentration in the no-till treatment compared to the tilled treatment across the two depths 

indicated that spectroscopy detected differences in OM between tilled and no-till systems. This 

result is consistent with findings from Bausenwein et al., (2008), where they discussed that no 

tilled soils contained a greater amount of aromatics and/or CH2, and have been confirmed with 

IR bands from 720–680 cm-1. Accumulations of aromatic compounds under no till systems may 

be due to the preservation of lignin during decomposition of crop residues or enhanced microbial 

stabilization of organic material (Bausenwein et al., 2008; Mangalassery et al., 2015).  

Moreover, there was 8.6% more OM in the biological-based input than in the reduced input 

treatments. Fertilizer application in both conventional and switchgrass systems may have 

exacerbated soil organic matter mineralization (Russell et al., 2009). Larger C pools in the 

biologically based systems were found by (Martin & Sprunger, 2022) . Syswerda et al. (2011) 

show that  organic system (T4) had 9% more soil carbon concentration in the A/Ap horizon than 

the reduced input (T3). This result is strange considering that these soils receive neither compost 

nor manure and are both subjected to mechanical disturbances, which exposes C to microbial 

attack. Nonetheless, these results are consistent with past research conducted on this site (Grandy 

& Robertson, 2006; Robertson et al., 2000; Syswerda et al., 2011). As previously stated, the lack 

of soil disturbance adds to SOC gains. Tillage also influenced both soil pH and CEC. When 

comparing tilled and no-till systems, soil pH declined by 0.48 units, whereas CEC increased by 

9% on no-till systems. Similar findings were seen where no-till and reduced input systems 

showed a more considerable reduction in soil pH (Bhardwaj et al., 2011). The observation that 

under no-till, the surface soil becomes more acidic than under conventional tillage has also been 

reported previously by (Dick, 1983). Soil pH influences biomass yield and the return of biomass 
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to the soil (Shukla et al., 2006). As a result, it is crucial to maintain the proper pH balance in 

your systems and study how land management techniques affect pH. Furthermore, quantifying 

CEC and pH will allow assessment of ecosystem services due to enhanced nutrient cycling and 

storage (Table 2.4).  

2.5.3 Using MIR predicted values to identify changes in perennial and annual row cropping 

systems. 

Perennial crops can increase the quantity and diversity of organic inputs returned to the 

soil. Perennial crops with longer growing seasons and less biomass removals during harvest have 

more ground cover, and biomass is returned to the soil, resulting in a rise in SOC (Mosier et al., 

2021). Contrary to expectations, this study found 29.5% less OM in perennial systems than in 

poplar. This could be attributed to the removal of all aboveground biomass from all annual and 

perennial switchgrass systems, which could have resulted in smaller C pools since there was less 

OM available to be transformed into C (Martin & Sprunger, 2022). T8, for instance is rich in 

OM; the process of mowing allows weed roots to stay in the soil while the mowed aboveground 

plant material serves as mulch to cover the soil. The breakdown of roots and an increase in soil 

cover can result in an increase in soil organic matter and nutrient mineralization, hence 

improving soil quality (Teixeira et al., 2021). Treatment differences provide an estimate for 

potential pH change over depth in response to management. As soil pH declines, a decrease in 

exchangeable Ca can be expected. The soil PC1 revealed that systems with a greater pH, CEC, 

magnesium, and calcium content had less organic matter, carbon, phosphorus, and nitrogen. 

These results imply that the addition of limestone can increase pH, CEC, Mg, and calcium 

availability, but not amounts of organic matter, TN, or K. Due to increased biological activity 

and mineralization of soil organic matter, overuse of limestone to modify soil pH may potentially 
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have adverse effects on topsoil soil organic carbon stocks (Haynes and Naidu, 1998; Paradelo et 

al., 2015). Therefore, liming as a stand-alone practice may not be sustainable since organic 

matter is required to maintain soil quality over time. Through surface runoff and subsurface 

leaching losses, excessive phosphorous (P) applications to croplands can contribute to the 

eutrophication of surface waters. Phosphorus leaching from no-till corn, hybrid poplar, 

switchgrass, native grasses, and restored prairie can pose a concern for surface water quality, all 

of which were examined by (Hussain et al., 2021). However, the calibration model used for P (R2 

> 0.34) was classified as “unreliable” according to the Soriano-Disla et al. (2014) scale, 

indicating that these results were not encouraging.   

2.5.4 Spectroscopy in soil testing and agriculture: benefits and drawbacks 

Soil testing results plays a crucial role in determining the optimal utilization of fertilizer, 

lime, and other soil amendments to enhance yield (Adamchuk et al., 2004). As seen in this study, 

spectroscopy can predict soil properties with accuracy for TC and TN and can pick up 

statistically significant changes across treatments and depths for the properties examined in this 

study. With the exception of Ca and Mg, which do not exhibit statistical differences in the upper 

depth, statistical difference is observed in the lower depth between the never tilled system and all 

other treatments (Figure 2.7 and 2.8). Although there were limitations to the conclusions drawn 

from the predictions for properties without lab values, we investigated how the soil properties of 

interest varied among the seven treatments and across the two depths (0–10 and 10–25 cm) 

within treatments In the context of utilizing spectroscopy-based measurements to develop soil 

test results and make fertilizer and lime recommendations for agricultural purposes, achieving an 

excessively high level of precision may not be imperative. Our results show that MIR-based 

predictions were able to determine statistically significant differences among treatments and, 
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when extrapolated to field level outcomes, it may not be necessary to maintain such a high level 

of precision due to the large-scale implementation across extensive agricultural areas. This also 

raises the question regarding the representativeness of the collected samples in relation to the 

field. It is imperative that these samples are collected with sufficient spatial density, at the 

appropriate depth, and during the suitable time period (Vitosh et al., 1995). An effective strategy 

for assessing the applicability of spectroscopy in agricultural contexts involves the examination 

of predictions that pertain to categorized ranges, specifically encompassing low, moderate, and 

high levels for elements like Ca and Mg. This perspective highlights the importance of adopting 

a more comprehensive comprehension of soil health, wherein the focus is directed towards 

overarching classifications rather than exact quantitative measurements.  

The MIR model’s predictive capacity varied by soil property, treatment, and depth. Our 

ANOVA analysis revealed that spectroscopy can be used to identify minor changes in soil 

properties across several treatments and depths, except for Ca and Mg (Table 2.3) To develop 

and apply a regional model, additional research should be conducted with a stronger emphasis on 

strategic sampling and stratification of the spectral library for a robust calibration model. Models 

calibrated with sub-libraries demonstrated a decrease in soil property variances after 

stratification by environmental (physiographic regions and land-use/land-cover), pedological 

(soil texture), and spectral classes criteria, and had an increase in predicted values when 

compared to the entire library, as demonstrated by Moura-Bueno et al.’s., (2020) previous work. 

The taxonomic diversity and geographic coverage of calibration and validation sets strongly 

influence the performance of MIR prediction models, as taxonomic and geographic similarity 

often translates to the chemical composition and spectral signature of soils (Savvides et al., 

2010).  
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The identification and quantification of soil chemical composition can be achieved by 

deploying MIR spectroscopy. Absorption characteristics between 3600 and 3800 cm-1 are caused 

by hydroxyl stretching vibrations in clay minerals. Large absorption bands between 3400, 1600, 

and 1400 cm-1 due to aromatic structures, alkyls, carbohydrates, carboxylic acids, cellulose, 

lignin, ketones, and phenolics are provided by OM across the whole spectrum. These sets contain 

O–Si–O stretching and bending between 1500 and 1600 cm-1, often known as the fingerprint area 

for soil. The peaks between 2000 and 1500 cm-1 correspond to the region of double bonds (e.g., 

C=O, C=C, and C=N). It has been demonstrated in this study that in spectrally active properties, 

these absorption bands are what drive the chemometric models.  

Chemometrics is a useful technique, but it can be risky because it can both underestimate 

and overestimate the results. When making predictions for unknown samples, it is vital to 

exercise caution and maintain a thorough understanding of the limitations imposed by the 

chemometric models. In this study, the metrics applied to the internal validation set, independent 

test set, and KBS samples have exhibited fluctuations, where the internal validation yielding the 

highest metrics, followed by a sharp decline in the independent test set. However, the 

performance improving again when applying to the KBS samples. In the case of TC, the R2 

values obtained for the validation set, independent test set, and KBS samples were 0.98, 0.42, 

and 0.83, respectively. The decline in metrics observed for the independent set may potentially 

be attributed to the constraints imposed by prediction limits, as well as the presence of zero 

values within our independent set. In all future studies, it is necessary to conduct a thorough 

examination of these factors. Furthermore, certain challenges presented by these studies include 

the presence of overtrained and/or non-representative calibration models, insufficient replicates, 

and bias. As demonstrated by Sanderman et al. (2021) in the Beltsville site, the disparity between 
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laboratory and spectroscopy-based results can also contribute to the risk of inaccurate predictions 

deploying chemometrics models to unknown samples. Furthermore, recent publications have 

confirmed that spiking models with samples from the study site can improve the prediction 

accuracy for these properties (Barthès et al., 2020; Ng, Minasny, Jones, et al., 2022; Żelazny & 

Šimon, 2022). 

2.5.5 Spectroscopy and ecosystem services  

Agriculture is responsible for 11% of the global anthropogenic emission of greenhouse 

gases (GHGs), which is mostly attributable to the production of synthetic fertilizers, notably 

nitrogen fertilizers, and the use of fertilizers during crop cultivation. Energy consumption and 

GHG emissions (CO2 equivalent) in fertilizer manufacture, transportation, and loss in the 

environment in gaseous (N2O, NH3) or aqueous (NO3–N) forms represent a large portion of the 

total contributions to global warming by all agricultural operations. Furthermore, Syswerda et al., 

(2011) reported that soil carbon and the ecosystem service it supports may take decades to 

recover to levels that provide significant fertility and other benefits, whereas the benefits of soil 

C gain for mitigating climate change may appear right away but will eventually fade as soil C 

saturates post tillage. Therefore, fertilizer management that minimizes losses and maximizes 

nutrient use efficiency can be a viable technique for combating global climate change and 

maximizing ecosystem services. Pedological and inter-annual variability have been reported to 

be the key drivers of ecosystem services provision, especially for groundwater recharge, plant 

biomass, plant water, and carbon sequestration (Ellili-Bargaoui et al., 2021). Analyzing the 

interrelationships between ecosystem services and soil properties such as TC, OM, TN, pH, 

CEC, and Mg can help us understand the tradeoffs required for a sustainable management system 

without affecting the yield of crops. In addition, there are multiple indicators utilized for the 
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measurement of ecosystem services; consequently, future research should establish a pipeline to 

integrate MIR spectroscopy with ecosystem services indexes rather than qualitatively assessing 

them as we did in our study.  

This study examined the feasibility of employing MIR and chemometric approaches to 

quickly and affordably predict a range of soil properties. Soil properties and environmental 

factors influence the amount and kind of ecosystem services provided, and they serve as the 

foundation of provisioning, regulating and cultural services. Since many processes and attributes 

that provide ecosystem services in agricultural landscapes take decades to occur (Magnuson 

1990, Scheffer et al. 2009), future studies should focus on detecting these changes over several 

years. In addition, the underlying complexity and the resulting large uncertainties associated with 

such a task is probably the reason why such studies are scarce. Studying and understanding this 

will provide a comprehensive understanding for policymakers and farmers to make well-

informed decisions. Farmers can maximize ecosystem services without affecting crop yield, and 

policymakers can make well-informed policies. 
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2.5 CONCLUSIONS  

Soil spectroscopy has an important role to play in agricultural settings due to its rapid and 

much lower cost of monitoring soil physical and chemical properties. We investigated the 

capability of MIR to detect the effect of treatment and depth on TC and TN at the KBS LTER 

site. The spectroscopy-based results were cross-examined with the conventional lab-based results 

across seven treatments and two depths. For most, if not all, similar statistical trends were 

discovered using the predicted and observed data. The development of novel approaches to 

evaluate the geographical and temporal variability of soil properties and soil health is necessary 

for both stable crop production and the preservation and improvement of the global environment. 

When deploying chemometric models to assess soil properties, preprocessing, building a 

strongly representative model and understanding the potential limitations of its capabilities are 

crucial. In order to retrieve the necessary information on soil properties from the soil spectra, 

multiple calibrations should be used due to the interference of multiple soil components. A good 

multivariate calibration also requires a sufficient number of soil samples and variation in the 

concentrations of the properties of interest. The rapid and cost-effective measurement of soil 

properties that the spectral models provide will likely help promote sustainable agriculture by 

increasing access to information about soil properties, at relatively lower cost for the end-user. In 

turn, this may aid in the selection of spatially, and temporally optimal management 

combinations, which will be advantageous and reduce trade-offs. Such management 

combinations can offer advantages and mitigate trade-offs, as seen by (Winowiecki et al., 2016). 

This applies to both soil properties and ecosystem services than individual management 

approaches considered in isolation.  
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FIGURES 

 

Figure 2.1 Scatter plot and prediction metrics of TC (a) and TN(b) random forest models on 
samples from W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) 
chosen for this study.   

Observed TC (%) Observed TN (%) 

y= 0.16+1.21x  
R2= 0.83
Bias= 0.36

y= 0.045+0.93x  
R2= 0.77
Bias= 0.04

a) b)
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Figure 2.2 Total Carbon observed and predicted concentrations in the 0 –10 cm(a) and 10 –
25cm(b) in the W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) 
treatments in %. Error bars represent standard errors from the mean. Lowercase letters indicate 
significant differences (P < 0.05) across treatments.  
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Figure 2.3 Total Nitrogen observed and predicted concentrations in the 0-10 cm (a) and 10-
25cm (b) in the W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) 
treatments in %. Error bars represent standard errors from the mean. Lowercase letters indicate 
significant differences (P < 0.05) across treatments.  
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Figure 2.4 Organic matter (OM) predicted concentrations in the 0–10 cm (a) and 10–25cm (b) in 
the W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) treatments. 
Error bars represent standard errors from the mean. Lowercase letters indicate significant 
differences (P < 0.05) across treatments.  

a) b)
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Figure 2.5 pH predicted concentrations in the 0-10 cm (a) and 10-25cm (b) in the W.K. Kellogg 
Biological Station Long Term Ecological Research (KBS LTER) treatments. Error bars represent 
standard errors from the mean. Lowercase letters indicate significant differences (P < 0.05) 
across treatments.  

a) b)
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Figure 2.6 Cation exchange capacity (CEC) predicted concentrations in the 0-10 cm (a) and 10-
25cm (b) in the W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) 
treatments. Error bars represent standard errors from the mean. Lowercase letters indicate 
significant differences (P < 0.05) across treatments.   
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Figure 2.7 Potassium (K) predicted concentrations in the 0-10 cm (a) and 10-25cm (b) in the 
W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) treatments. Error 
bars represent standard errors from the mean. Lowercase letters indicate significant differences 
(P < 0.05) across treatments. 
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Figure 2.8 Magnesium (Mg) predicted concentrations in the 0-10 cm (a) and 10-25cm (b) in the 
W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) treatments. Error 
bars represent standard errors from the mean. Lowercase letters indicate significant differences 
(P < 0.05) across treatments.  

a) b)
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Figure 2.9 Calcium (Ca) predicted concentrations in the 0-10 cm (a) and 10-25cm (b) in the 
W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) treatments. Error 
bars represent standard errors from the mean. Lowercase letters indicate significant differences 
(P < 0.05) across treatments.  

a) b)
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Figure 2.10 Biplots of PC1 and PC2 scores for the W.K. Kellogg Biological Station Long Term 
Ecological Research (KBS LTER) predicted soil properties across two depths (0-10 cm and 10-
25 cm). The % in parentheses of each axis title represents the proportion of variance. The arrows 
indicate the loadings of each investigated properties. Treatments are grouped by color and 
confidence ellipses (confidence level 0.95).
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Figure 2.11 Biplots of PC1 and PC2 scores for the W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) 
predicted soil properties across two depths separate, (a) 0-10 cm and (b) 10-25 cm. The % in parentheses of each axis title represents 
the proportion of variance. The arrows indicate the loadings of each investigated properties. Treatments are grouped by color and 
confidence ellipses (confidence level 0.95).
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Figure 2.12 Representative mid-infrared (MIR) spectra of the two depths (a) 0-10 cm and (b) 10-25 cm and across the seven 
treatments from the W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) samples collected using Vertex 
70/HTS-XT (Bruker Optics, MA), and trimmed to 4000–600 cm−1. 
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TABLES 

 

Table 2.1 Management summary of treatments and the description for the Kellogg Biological 
Station Long Term Ecological Research Site (KBS LTER). 

Treatment 
ID 

Treatment Description Class  

T1  Conventional  Standard chemical input 
corn/soybean/wheat rotation 

conventionally tilled 

Annual Row Crop  

T2  No till  Standard chemical input 
corn/soybean/wheat rotation no tilled 

Annual Row Crop  

T3  Reduced input  Low chemical input 
corn/soybean/wheat rotation 

conventionally tilled 

Annual Row Crop  

T4  Biological based  Zero chemical input corn/soybean 
wheat rotation conventionally tilled 

Annual Row Crop  

T5  Poplar  Populus clones on short-rotation (6-7 
year) harvest cycle 

Perennial  

T6  Perennial 
rotation  

Continuous alfalfa, replanted every 6-7 
years 

Perennial  

T8  Mown Grassland  Never-tilled soil Perennial  
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Table 2.2 Descriptive statistics for soil samples in the Kellogg Biological Station Long Term Ecological Research Site (KBS LTER). 
with observed and predicted values. 

Soil Property n mean SD median trimmed mad min max range skew kurtosis SE 

Observed             

 TN 383 0.10 0.05 0.09 0.09 0.03 0.04 0.37 0.33 2.06 5.48 0.00 

 TC 383 1.05 0.64 0.86 0.93 0.36 0.36 4.57 4.21 2.43 7.16 0.03 

Predicted             

 TC 383 1.40 0.81 1.20 1.23 0.33 0.41 6.83 6.42 3.15 11.66 0.04 

 TN 383 0.14 0.05 0.13 0.13 0.03 0.06 0.51 0.46 2.76 10.82 0.00 

 OM 383 2.75 1.17 2.48 2.56 0.76 0.92 9.82 8.90 1.99 5.40 0.06 

 pH 383 6.22 0.24 6.29 6.26 0.13 5.25 6.68 1.43 -1.57 2.81 0.01 

 CEC 383 9.04 1.39 8.81 8.94 1.33 6.06 13.75 7.69 0.65 0.04 0.07 

 P 383 41.97 14.09 39.46 40.09 8.53 17.14 113.69 96.54 1.73 4.23 0.72 

 Mg 383 188.53 31.88 182.91 186.05 26.33 114.91 325.93 211.02 0.92 1.68 1.63 

 Ca 383 1123.23 172.58 1097.99 1110.89 143.92 717.66 1932.30 1214.64 0.85 1.51 8.82 

 K 383 130.02 30.84 122.17 124.84 19.57 80.68 312.54 231.86 2.11 5.95 1.58 
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Table 2.3 Results from ANOVA models for each predicted and observed property. 

Soil Properties Variance F Df Df.res Pr(>F)  
TC observed treatment 49.40 6.00 11.88 1.03e-07 *** 

 depth 1000.02 1.00 13.66 3.60e-14 *** 

 treatment: depth 136.06 6.00 13.71 2.05e-11 ** 
TC predicted treatment 65.84 6.00 11.81 2.17e-08 *** 

 depth 442.11 1.00 13.67 8.38e-12 *** 

 treatment: depth 88.83 6.00 13.72 3.50e-10 *** 
TN observed treatment 32.88 6.00 11.88 9.98e-07 *** 

 depth 1045.63 1.00 13.65 2.68e-14 *** 

 treatment: depth 120.19 6.00 13.71 4.72e-11 *** 
TN predicted treatment 46.20 6.00 11.81 1.60e-07 *** 

 depth 427.62 1.00 13.67 1.05e-11 *** 

 treatment: depth 59.75 6.00 13.72 4.79e-09 *** 
OM treatment 24.78 6.00 11.88 4.65e-06 *** 

 depth 154.97 1.00 13.71 7.40e-09 *** 

 treatment: depth 18.69 6.00 13.75 6.97e-06 *** 
pH treatment 10.52 6.00 11.95 3.54e-04 *** 

 depth 18.39 1.00 13.97 7.54e-04 *** 

 treatment: depth 3.86 6.00 13.97 1.75e-02 * 
CEC treatment 3.30 6.00 11.89 3.75e-02 * 

 depth 11.42 1.00 13.67 4.63e-03 ** 

 treatment: depth 12.56 6.00 13.73 6.96e-05 *** 
Mg treatment 1.14 6.00 11.96 3.97e-01  

 depth 0.81 1.00 13.73 3.85e-01  
 treatment: depth 11.51 6.00 13.77 1.10e-04 *** 

P treatment 15.79 6.00 11.96 4.72e-05 *** 

 depth 317.72 1.00 13.66 7.54e-11 *** 

 treatment: depth 34.76 6.00 13.71 1.58e-07 *** 
K treatment 17.93 6.00 11.85 2.60e-05 *** 

 depth 134.71 1.00 13.74 1.75e-08 *** 

 treatment: depth 14.87 6.00 13.78 2.63e-05 *** 
Ca treatment 1.13 6.00 11.95 4.02e-01  

 depth 7.99 1.00 13.69 1.37e-02 * 

 treatment: section 10.59 6.00 13.74 1.75e-04 *** 
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Table 2.4 Ecosystem services provided by soil properties and treatments in the Kellogg Biological Station Long Term Ecological 
Research Site (KBS LTER). 

 

Provisioning services Regulating services 
Cultural 
services 

Supporting 
services 

Food, fuel, &
 fiber 

R
aw

 m
aterials 

Fresh w
ater/w

ater retention  

C
lim

ate &
 gas regulation 

W
ater regulation 

E
rosion &

 flood control  

Pest &
 disease regulation 

C
arbon sequestration  

W
ater purification 

R
ecreation/ecotourism

 

E
sthetic/sense of place 

C
ultural heritage 

W
eathering/soil form

ation 

N
utrient cycling 

Provisioning of habitat 

Treatment                
 T5, T8, T3, T1 T8, T5     T8, T1, T6 T8, T5 T5     T5 T8 

Soil Properties                
SOM & SOC x x x x x x x x  x x  x x x 

pH x      x  x    x x  

CEC x        x     x  

TN x x x  x x         x 
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