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ABSTRACT 

Precision Airdrop Systems (PADS) face difficulties in controlling their landing accuracy 

when flow-induced vibrations of the suspension lines occur. Recent research has identified a 

previously unknown cause of these vibrations: galloping of the suspension cables. Galloping is a 

type of vibration that can occur in cylinders with non-circular cross-sections. The suspension 

cables in PADS have a cross-section that is approximately rectangular in shape with rounded 

corners, but with the added complexity of surface topology (due to braiding of the lines). Using 

load measurements, recent experiments have shown that the presence of surface topology can alter 

the stability of rectangular cylinders to galloping; an effect that is dependent on Reynolds numbers. 

Knowledge of the corresponding topology effect on the flow around the cylinders is presently 

lacking. Therefore, this study aims to investigate the impact of surface topology on the boundary 

layer and near-wake flow around a rectangular cylinder with a side-ratio of 2.5 and fully-rounded 

corners (half-circular leading and trailing edges). The Reynolds number based on the cylinder 

thickness (𝑑) is in the range 𝑅𝑒𝑑 = 800 − 2500. The surface topology is defined using spatial 

Fourier modes with an amplitude of 5% of 𝑑, applied along the perimeter only (2D geometry) and 

along both the perimeter and the span (3D geometry) of the cylinder. While not an exact replica, 

this surface topology represents the characteristics of the actual suspension cable reasonably well. 

The study also investigates the effects of different topology amplitudes by using cylinders with 

2.5% and 10% of 𝑑. Single-component molecular tagging velocimetry is employed to measure 

the streamwise velocity and visualize the flow field at various locations above the surface and in 

the wake of the cylinder.  

Mean and root-mean-square velocity profiles are analyzed to examine the development of 

the boundary layer and separated flow on the top and bottom surfaces of the cylinder. The mean 



 
 

separation bubble and the development of the shear layer unsteadiness over the surface of the 

cylinders are discussed at 𝛼 = 0° and at different Reynolds numbers. The results demonstrate the 

Reynolds number-dependent effect of the surface topology cross-sectional geometry and its 

variation along the span. An interpretation is provided of how these results could influence the 

galloping instability of the cylinder.  

  The wake flow is investigated to help better understand the relationship between wake 

structures, surface topology, and the characteristics of the boundary layer. To achieve this, wake 

mean and rms velocity profiles are interrogated and the effect of the geometry on the Strouhal 

number of the wake vortex shedding is analyzed. An examination is also conducted to investigate 

the unsteady flow physics of the boundary layer and its relationship to the wake flow. This 

examination uses quantitative measures and flow visualization, and focuses on the smooth-surface 

cylinder. The analysis identifies and compares different Reynolds number dependent boundary-

layer flow regimes. The correlation between the wake vortex shedding structure and various 

boundary-layer regimes is examined and compared to established understanding in literature for a 

sharp-corner rectangular cylinder. 

The results reveal that the details of the topology near the leading edge of the cylinder are 

most significant in affecting the behavior of the boundary layer flow. For the particular topology 

wavelength used in the present study, the biggest effect is found when a topology peak is present 

at the leading edge for the 2D (2Dp) geometry.  In comparison to the smooth cylinder, the 2Dp 

topology substantially increases the separation zone thickness and the separated shear layer 

unsteadiness. The ensuing wake flow, exhibits an increased wake closure length, slower recovery 

of the mean centerline velocity, lower vortex shedding Strouhal number, and disrupted wake 

vortex organization.  
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Chapter 1. Introduction 

1.1 Motivation 

  Geometries with non-circular cross-sections are susceptible to large-amplitude self-

sustained vibration known as galloping, which arises from fluid forces induced by structural 

vibration in a fluid flow. Transverse, or plunge, galloping occurs when the orientation of the 

geometry to the oncoming flow changes, resulting in changes in the aerodynamic forces. Winter 

winds can induce galloping in ice-coated power lines, as can they do so in bridge decks, 

skyscrapers, etc. Marine structures are not safe from galloping in the ocean current and, 

specifically motivating the current study, suspension cables of US Army precision airdrop systems 

(PADS) are seen to suffer from this aeroelastic instability which deteriorates the controllability 

and the accuracy of the army airdrop cargo delivery [1, 2].  

  An elastically mounted round-corner rectangular cylinder allowed to have an oscillatory 

motion in 𝑦 direction due to an environmental disturbance is shown in Figure 1. The oscillatory 

motion velocity (𝑦̇) in the transverse direction will change the effective angle of attack 𝛼, or AoA, 

with time, thereby changing the lift (𝐹𝐿) and drag (𝐹𝐷) forces. The corresponding change in the 

transverse force (𝐹𝑦) coefficient with 𝛼 can be calculated from the lift and drag coefficients from 

Equation (1). 

 
Figure 1. Schematic of the cross-section of the cylinder with zero amplitude topology and forces 

acting on it upon oscillating in the transverse (y) direction. 
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𝐶𝑦 =
𝐹𝑦

0.5𝜌𝑈∞
2𝑑𝑙 

=  −
1

cos2 𝛼
(𝐶𝐿 cos 𝛼 +  𝐶𝐷 sin 𝛼),                                 (1)  

where the lift and drag coefficients (𝐶𝐿 and 𝐶𝐷, respectively) are calculated as below: 

𝐶𝐿  =
𝐹𝐿

0.5𝜌𝑈𝑟𝑒𝑙
2 𝑑𝑙

 ,                              (2) 

𝐶𝐷  =
𝐹𝐷

0.5𝜌𝑈𝑟𝑒𝑙
2 𝑑𝑙

.                                                                     (3)   

In the above equations, 𝑈∞ and 𝑈𝑟𝑒𝑙 are the steady freestream and the instantaneous oncoming 

(relative to the moving cylinder) velocities, respectively, where  

𝑈𝑟𝑒𝑙 = √𝑈∞
2 + 𝑦2̇,                               (4) 

is the magnitude of the vector difference between the freestream velocity and the cylinder velocity 

𝑦̇ = 𝑑𝑦/𝑑𝑡, 𝜌 is the fluid density, 𝑑 is the cylinder width, and 𝑙 is the cylinder span. Galloping can 

occur when 𝐹𝑦 increases with increasing the angle of attack; hence, reinforcing the oscillation and 

making the structure unstable [1]. Considering objects facing air flows, which is most pertinent to 

the PADS application, the galloping oscillation frequency is typically sufficiently smaller than that 

of vortex shedding 𝑓𝑠, in which case galloping is assumed to be quasi-steady. Accordingly, the 

relevant criterion for instability to galloping is based on the variation of 𝐹𝑦 with 𝛼 for a static 

cylinder [3]. This quasi-steady assumption is typically valid at high reduced velocities 𝑈𝑟 (i.e. 

inverse of the non-dimensional oscillation frequency, which is the same as the structure natural 

frequency 𝑓𝑛): 

𝑈𝑟 =
𝑈∞

𝑓𝑛𝑑
> 20.              (5) 

Another prominent mechanism for flow-induced vibration is vortex induced vibration, which takes 

place at a reduced velocity in the vicinity of 𝑈𝑅, which is the reduced velocity at which the natural 
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frequency of the elastic system equals the vortex shedding, or Strouhal frequency and is defined 

as: 

𝑈𝑅 =
1

𝑆𝑡
=

𝑈∞

𝑓𝑠𝑑
                                                                 (6) 

The Strouhal number, 𝑆𝑡, for the rectangular cylinders is reported by Parkinson [4] to be in the 

order of 10−1. More specifically related to the current study, 𝑆𝑡 falls within the range of (0.1-0.25) 

for the sharp and circular leading-edge cylinders based on the experimental studies of Okajima [5] 

and Parker&Welsh [6]. As a result, the reduced velocity corresponding to the vortex shedding will 

be in the range of (4-10).  

If the cylinder is modelled as a single-degree-of-freedom mass-spring-damper system, the 

equation of motion for the cylinder will be in the form  

𝑚𝑦̈ + 2𝑚𝜁𝑦𝜔𝑦𝑦̇ + 𝑘𝑦𝑦 = 𝐹𝑦 =
1

2
𝜌𝑈∞

2 𝑑𝐶𝑦,         (7) 

where 𝑚 is the mass per unit span of the cylinder, 𝜁𝑦 is the damping factor due to structural 

dissipation, 𝑘𝑦 is the spring constant, 𝜔𝑦 = (
𝑘𝑦

𝑚
)

1/2

= 2𝜋𝑓𝑦 is the circular natural frequency of 

plunging, and 𝑓𝑦 = 𝑓𝑛 is the natural frequency in Hz. For small angles of attack, 𝛼, 𝑈𝑟𝑒𝑙 and 𝐶𝑦 

can be expanded in power series as: 

𝛼 = arctan (
𝑦̇

𝑈∞
) =

𝑦̇

𝑈∞
+ 𝑂(𝛼2),          (8) 

𝑈𝑟𝑒𝑙 = 𝑈∞ +  𝑂(𝛼2),            (9) 

𝐶𝑦(𝛼) = 𝐶𝑦|𝛼=0 +
𝜕𝐶𝑦

𝜕𝛼
|𝛼=0𝛼 + 𝑂(𝛼2).       (10) 

At 𝛼 = 0, the lift direction is parallel to the galloping direction and the force coefficient in the 𝑦 

direction is equal to the negative lift coefficient, 𝐶𝑦(𝛼 = 0) = −𝐶𝐿(𝛼 = 0); see Equation (1). 

Substituting for this in Equation (10) and using the result, up to linear power in 𝛼, to replace 𝐶𝑦 in 

Equation (7), yields: 
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𝑚𝑦̈ + 2𝑚𝜔𝑦(𝜁𝑦 −
𝜌𝑈∞𝑑

4𝑚𝜔𝑦

𝜕𝐶𝑦

𝜕𝛼
|𝛼=0)𝑦̇ + 𝑘𝑦𝑦 = −

1

2
𝜌𝑈∞

2 𝑑𝐶𝐿|𝛼=0                  (11) 

Setting the term in parentheses on the left-hand side of Equation (11) to 

𝜁𝑇 = 𝜁𝑦 −
𝜌𝑈∞𝑑

4𝑚𝜔𝑦

𝜕𝐶𝑦

𝜕𝛼
|𝛼=0,                     (12) 

the net damping factor (including both structural and fluid damping), the solution to Equation (11) 

will be:  

𝑦 =
1

2
𝜌𝑈∞

2 𝑑𝐶𝐿|𝛼=0

𝑘𝑦
+ 𝐴𝑦𝑒−𝜁𝑇𝜔𝑦𝑡 sin [𝜔𝑦(1 − 𝜁𝑇

2)
1

2𝑡 + 𝜙],                (13) 

where, 𝐴𝑦 is the amplitude of oscillation and 𝜙 is the corresponding phase shift. As seen from the 

solution, the stability condition, determining whether the oscillations increase over time, depends 

on the net damping coefficient sign 𝜁𝑇. If 𝜁𝑇 > 0, vibrations would decay with time and the 

stability condition is met. Equivalently, referring to Equation (12), the model is stable if  

𝜕𝐶𝑦

𝜕𝛼
|𝛼=0 < 0,                      (14) 

and otherwise it can be unstable. Specifically, if 
𝜕𝐶𝑦

𝜕𝛼
> 0, a critical velocity can be found above 

which the net damping coefficient becomes negative, which marks the onset of plunge galloping 

instability. The critical reduced velocity is found by setting 𝜁𝑇 = 0 in Equation (12), leading to: 

𝑈𝑐𝑟𝑖𝑡

𝑓𝑦𝑑
=

4𝑚(2𝜋𝜁𝑦)

𝜌𝑑2
/

𝜕𝐶𝑦

𝜕𝛼
|𝛼=0.          (15) 

1.2 Literature Review 

Suspension lines of precision airdrop systems have been recently shown to be susceptible 

to galloping [1, 2]; with possible consequent negative effect on the performance and the 

controllability of PADS. The cross-section of these suspension lines is typically non-circular and 

resembles a rectangle with rounded corners, as given in Figure 1. Additionally, due to braiding, 

the surface of the lines is not smooth, but is rather characterized by topological surface height 
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variations [1, 2]. Thus, it is important to understand the effect of the surface topology of these 

suspension lines on their aeroelastic behavior; specifically, their static 𝐶𝑦 − 𝛼 characteristics. 

Siefers et al. [2] observed that a Dacron cable at low Reynolds numbers can show low-frequency 

vibrations, at a much lower frequency compared to that based on the vortex shedding Strouhal 

number they measured in the wake of the object. They hypothesized that galloping is the dominant 

form of instability leading to the suspension line vibration, but this hypothesis needed to be 

assessed by directly measuring the aerodynamic loads acting on the line.  

In a recent study, Feero et al. [7, 8] observed that the presence of the surface topology can 

change the galloping stability of cylinders of the same geometry, as shown in Figure 2, somewhere 

in the Reynolds numbers 𝑅𝑒𝑑 = 𝑈∞𝑑/𝜈 of 1100 to 2500 which is within the relevant range for 

PADS (1000 to 10000). These conclusions were made based on measurement of the mean 

transverse force coefficient (𝐶𝑦) variation with AoA for the cylinders. More specifically, referring 

to Figure 2-left, at 𝑅𝑒𝑑=1100, the smooth cylinder shows negative slope of 𝐶𝑦 at 𝛼=0°; meaning 

that galloping could not occur. On the other hand, the cylinder with surface topology (Figure 2-

right) shows a positive slope at the same Reynolds number; i.e., susceptibility to galloping. At 

𝑅𝑒𝑑 = 2500 and higher Reynolds numbers, both cylinders behave similarly, exhibiting stability 

to galloping. Thus, the effect of surface topology on galloping instability of the cylinders is 

Reynolds number dependent.  
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Figure 2. Galloping force coefficient characteristics of the smooth cylinder (left) and the cylinder 

with surface topology (right) reported in [7, 8] in a different test facility. Legend shows 𝑅𝑒𝑑 

values. 

It is well established in the literature that galloping instability of bluff bodies is closely 

connected to the separation and reattachment behavior of the boundary layer. Rectangular 

cylinders with sharp corners, whose galloping characteristics are one of the most studied, are 

prone to galloping when their side-ratio falls within 0.75 < 𝑐/𝑑 < 3 (where 𝑐 is the cylinder chord 

as defined in Figure 1). In a review paper, Parkinson [4] explains that the link between galloping 

instability and side-ratio for these cylinders lies in the body length downstream of the boundary 

layer separation point. Knowing that the shear layer separation occurs at the sharp corners of the 

leading edge, the afterbody of the cylinders with side-ratio less than 0.75 is too short that the 

separated shear layer and its vortices are not able to interact with the cylinder lateral surface and 

exert pressure distribution favorable for galloping. When the side-ratio is large enough 

(approximately 𝑐/𝑑 ≥ 3), the separated shear layers reattach to the lateral surfaces of the cylinder 

before finally separating at the sharp corners downstream and there is no afterbody for the 

separated shear layer vortices to interact with the cylinder sides. Therefore, these cylinders show 

stability to galloping.  

Given the generally small number of studies for the cylinders at relatively low Reynolds 

numbers (𝑅𝑒𝑑 ≤ 104), Feero et al. [9] conducted a study on the rectangular cylinders with sharp 
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corners and side-ratio 𝑐/𝑑 range of 1 − 3. They observed that when the Reynolds number is 

sufficiently low, in their case below 5000, even the cylinder with long afterbody is prone to 

galloping. From the surface pressure data, they observed that the reattachment point on the bottom 

side surface of the cylinder does not move with increasing 𝛼 from 0° to 5° where the force data 

indicates positive 𝐶𝑦 − 𝛼 slope. The opposite of this behavior is observed at higher Reynolds 

numbers where the separation bubble on the bottom side is seen to shrink in length with 𝛼. They, 

therefore, hypothesized that the separated shear layer reattachment on the bottom side of the 

cylinder is necessary but not sufficient to prevent galloping instability. For stability, the separation 

bubble length has to shrink with increasing 𝛼 as well. Interestingly, they also observed that below 

𝑅𝑒𝑑 = 5000, increasing the side ratio in the range of 1-3 results in higher instability to galloping 

which is deduced from higher 𝐶𝑦 − 𝛼 curve slope (corresponding to lower critical reduced 

velocity; see Equation 15).  

Carassale et al. [10] studied square cylinders (𝑐/𝑑 = 1) with sharp and round corners with 

𝑟/𝑑 of 0.067 and 0.133 at high Reynolds numbers 𝑅𝑒 > 104. They observed that above a critical 

Reynolds number and in a turbulent freestream, the separating shear layer behavior on the top side 

of the cylinder with the largest corner radius plays a significant role in determining the lift 

coefficient. They found that the shear layer reattaches to the top and bottom surfaces of the cylinder 

at small 𝛼 notwithstanding the very short afterbody length. In addition to this so-called 

supercritical behavior, surface pressure measurements also indicate shrinkage of the separation 

bubble on the bottom side with 𝛼, resulting in more pressure recovery and lift increase. The 

separation bubble on the top surface, on the other hand, lengthens and exerts higher suction which 

contributes to even more lift. Therefore, considering that 𝐶𝐿 ≈ −𝐶𝑦 at small 𝛼, lift increasing with 

𝛼 is opposing to the favorable conditions to galloping and the geometry is stable. When 𝛼 is large 
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enough, the separated shear layer on the top side is not able to reattach and suction drops and the 

lift coefficient decreases with 𝛼 (i.e., 𝐶𝑦 increases with 𝛼). The latter behavior is similar to that at 

sub-critical Reynolds numbers starting from 𝛼 = 0 for the case of a laminar freestream.  

1.3 Scope of the Current Study 

Understanding the flow field associated with galloping instability of the PADS’ suspension 

lines motivates the current study. The main focus of the current work is on understanding the 

boundary layer development on the cylinder surface, and how this development is affected by the 

surface topology and Reynolds number. A range of geometries is studied to systematically 

investigate and distinguish the effects of cross-sectional geometry, topology amplitude, and 

presence of topology variation along the span. This investigation is carried out in a water tunnel in 

the Reynolds number range 𝑅𝑒𝑑 = 800 − 2500, which is pertinent to the galloping problem of 

PADS. The same range has been examined, from force characteristics perspective only, in the 

wind tunnel, as discussed above [7, 8]. However, it is important to note that the flow and the force 

characteristics in two different test facilities may be different notwithstanding matching of 𝑅𝑒𝑑. 

Such differences may be caused by discrepancies in freestream turbulence intensity, cylinder 

aspect ratio, model end conditions, and test section blockage. For this reason, complementary force 

measurements were done by a collaborator on the same cylinder models and experimental setup 

employed in the present study [11]. These results, included here in Figure 3 for reference, show 

that similar to the data in Figure 2-right, the present cylinder model with topology is unstable to 

galloping at 𝑅𝑒𝑑 = 1100, but it is stable at 𝑅𝑒𝑑 = 2400. The crossover point appears to be at 

𝑅𝑒𝑑 = 1800.   
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Figure 3. Comparison of the 𝐶𝑦 − 𝛼 behavior for the cylinder with surface topology similar to 

[7, 8] for 𝑅𝑒𝑑 = 1100, 1800 and 2400 [11]. 

In addition to investigating the boundary layer, the wake of the cylinder is also examined 

at 𝛼 = 0° in the same Reynolds number range used for the boundary layer study. The main focus 

for the wake results presented here is to measure the vortex shedding frequency for the cylinders, 

with versus without topology, given the relevance of this knowledge to the possibility of 

interaction of galloping with vortex induced vibrations (in which case quasi-steady analysis is not 

accurate). The connection between the boundary layer/separated shear layer behavior with the 

wake, and the initial wake width with the shedding frequency are also investigated in this work. 

1.4 Outline 

 The discussions from here on are organized in four chapters. Flow facility and experimental 

techniques are introduced in Chapter 2, where the procedure for 3D printing the test models are 

explained, the implementation of single-component molecular tagging velocimetry (1-c MTV) and 

the characterization of uncertainties are outlined, and the image processing approaches are 

described.  

 The primary results are categorized and discussed in three chapters. Chapter 3 focuses on 

the streamwise-velocity mean and rms characteristics of the boundary layer flow over the 
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cylinders. In this chapter, the effect of the complex surface topology on the boundary layer flow 

is broken into sub-problems by separately studying the effect of topology amplitude, cross-

sectional feature, and variation along the span. Furthermore, Chapter 3 investigates how the effect 

of different surface topology features on the boundary layer flow undergoes changes with varying 

the Reynolds number. Finally, based on the current understanding in literature of the connection 

between the boundary layer flow behavior and instability of the cylinders to galloping, the effect 

of different surface topology features and Reynolds number on the stability of the cylinders will 

be analyzed. Chapter 4 focuses on the wake flow of the cylinders and how the mean and rms 

characteristics of the streamwise velocity in the wake of the cylinders are affected by the surface 

topology features. The vortex shedding frequency and how it is affected by the surface topology 

will be studied against Reynolds number in this chapter. In Chapter 5, the investigation will focus 

on unsteady flow characteristics in an effort to gain a deeper understanding of the connection 

between the boundary layer and wake flow. The study will utilize flow visualization techniques 

and conduct additional statistical analysis to characterize various flow regimes. Subsequently, the 

phase-averaged velocity in the wake will be analyzed for each flow regime. 
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Chapter 2. Experimental Techniques 

2.1 Flow Facility and Test Models 

  The experiments are conducted in a closed-return, free-surface water tunnel (Engineering 

Laboratory Design, ELD, Model 502 6") in the Turbulent Mixing and Unsteady Aerodynamics 

Laboratory (TMUAL) at Michigan State University. The contraction ratio between the settling 

chamber and the test section of this tunnel is 6:1. The impeller circulating the water in the tunnel 

is driven by an electric motor, controlled by a TOSHIBA VF-S9 inverter which facilitates accurate 

setting of the tunnel flow speed. The test section dimensions are 152 mm × 152 mm × 457 mm. 

An additional flow management in the form of a 38.1 mm (1.5") long honeycomb with 3.2 mm 

(1/8") diameter cells is implemented downstream of the contraction section with its downstream 

face located about 13 mm (0.5") upstream of the start of the plexiglass test section. This was done 

to reduce the turbulence level of the tunnel below that achievable with flow conditioning upstream 

of the contraction alone. Installation of this extra honeycomb has shown to decrease the turbulence 

(rms) level of the tunnel and improve the uniformity of the freestream mean velocity profile across 

the tunnel (Kalan’s M.S. project [12]). The tunnel was operated for several hours before the 

measurements were done to make the water temperature as uniform and steady as possible. Due 

to possible room temperature variations, water temperature in the test section was measured with 

a calibrated Omega 450 ATH thermometer equipped with a T-type thermocouple with ±0.2° C 

accuracy before each experiment. The actual tunnel speed was then set to meet the target Reynolds 

number based on the kinematic viscosity value at the measured water temperature. It is noteworthy 

that the tunnel temperature was again measured after each experiment to confirm that no 

considerable temperature difference had occurred during the measurements. In all cases, the tunnel 

temperature variation before and after the measurements was within the thermocouple accuracy. 
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  Placement of the model in the test section results in a 9.8% geometrical blockage (at 𝛼 =

0°). The measurements are performed at 𝑅𝑒𝑑 = 800, 1100, 1400, 1800 and 2500, corresponding 

to 𝑈∞ = 4.7, 6.5, 8.3, 10.7, and 14.8 cm/s respectively, at water temperature of 25°C, where 

freestream turbulence level of the tunnel is found to be below 1.7%, 1.5%, 1.4%, 1.2%, and 1% 

for the aforementioned Reynolds numbers, respectively. No effort is made to decompose the 

turbulence fluctuations into slushing and broadband components. 

  The models are 3D printed cylinders with a 11.4 mm-diameter (7/16") tight-tolerance 

multipurpose stainless-steel rod inserted along their centerline to prevent warping. This shaft 

extends beyond the cylinder’s span on one end, passing through a skimmer plate (Figure 4), and 

is clamped to a closed-loop Applied Motion Products TSM17Q-1RG stepper motor with encoder 

that controls the angular position of the cylinder, and hence the AoA of the model, with an angular 

resolution of 0.02°. The cylinder mounting setup is built on a rigid structure isolated from but 

assembled around the water tunnel to prevent the transfer of any possible vibrations from the tunnel 

to the cylinder.  

  A Plexiglass skimmer plate, spanning 76 mm (5.1d) upstream and downstream of the 

model’s center, is utilized to provide a well-defined wall boundary condition at the free surface of 

the test section. There is a 0.5 mm clearance between the ends of the cylinder and both the tunnel 

bottom surface and the skimmer plate. The streamwise position of the cylinder is such that its 

centerline is 13.3d downstream of the test section entrance. 



19 
 

 
(a) 

 
(b) 

Figure 4. (a) 3D model of the experimental setup in the test section. (b) Schematic of the top 

view of the optical system for 1c-MTV measurements and the tunnel test section. Imaging fields 

of view (FOV) utilized for MTV measurements are indicated on the schematic. 

  An idealized definition is used to prescribe the surface topology of the test cylinder, instead 

of using a replica of an actual PAD suspension line’s geometry. This is motivated by two factors: 

first, the present study aims at providing general basic understanding of the effect of surface 

topology independent of specific applications; second, the idealized topology is defined precisely 

using two-dimensional Fourier-mode synthesis. Specifically, the topology 𝜀 (see Figure 5), which 

is the deviation of the cylinder surface from the baseline smooth cylinder cross-section (depicted 

in Figure 1 and Section A-A in Figure 5), is given as follows: 

 =
0

2
[cos [2π(

𝑠

𝜆𝑠
 + 

𝑧

𝜆𝑧
)] + cos[2π(

𝑠

𝜆𝑠
 - 

𝑧

𝜆𝑧
)]],       (16) 
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where 𝑠 is the wall-tangential coordinate defined along the surface of the baseline (smooth) model 

(see Section A-A in Figure 5), 𝑧 is the coordinate along the span of the cylinder, 0 is the topology 

amplitude, and 𝜆𝑠 and 𝜆𝑧 are the topology wavelengths in 𝑠 and 𝑧 directions, respectively (see 

Figure 5). The wavelength along the 𝑠 direction is equal to 𝑃/𝑛 with 𝑃 and 𝑛 being the baseline 

model’s perimeter, and the integer number of topology wavelengths around the perimeter, 

respectively. 

  The values of the geometric parameters of the test models are selected such that they 

approximate the Dacron parachute suspension line used by Siefers [13]. This typical suspension 

line has the following geometrical parameters: 𝑐/𝑑 ≈ 2.4, 𝑟/𝑑 ≈ 0.4, 0/𝑑 ≈ 5%, and a 24-

strand braid. For the cylinder models used here, the cross-sectional dimensions of the baseline 

(smooth surface) model give a side ratio 𝑐/𝑑 = 2.5, and a fully-round LE and TE, 𝑟/𝑑 = 0.5 (see 

Figure 1 for definition of terms). 𝜆𝑧/𝜆𝑠 = 1.5 and 𝑛 = 10 are chosen based on counting the 

number of wavelengths around the perimeter of the Dacron line and measuring the peak to peak 

distance along the span. Different topology amplitudes of 0/𝑑 = 2.5%, 5% and 10% are 

investigated, with the 0/𝑑 = 5% case being the closest to the actual Dacron cable.  

  The test models are enlarged by a factor of 7.7 relative to the actual Dacron cable scale, 

where the width, chord, and corner radius are 𝑑 = 15 mm, 𝑐 = 37.5 mm, and 𝑟 = 7.5 mm, 

respectively. The span of the models is 𝑙 =  139.6 mm, which extends over the full height of the 

test section and results in an aspect ratio 𝑙/𝑑 of 9.3. 
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Figure 5. Top and cross-sectional views of the cylinder with 0/𝑑 =5%, 𝑛=10, and 𝜆𝑧/ 𝜆𝑠=1.5. 
 

   To systematically study the effect of the surface topology, several models are investigated, 

in addition to the main geometry shown in Figure 5. A model with zero topology amplitude (i.e. 

smooth cylinder) is employed as a baseline case. A second set of models is made with surface 

topology, where the cross-section is constant along the whole span (𝜆𝑧 = ∞). This set, which is 

referred to as the 2D set, includes two different cross-section shapes: one with a peak in the 

topology at the LE, and the other with a valley. These “peak-leading” and “valley-leading” shapes 

are the same as cross-sections A-A and B-B, respectively, of the 3D cylinder geometry in Figure 

5. The 2D models are used to study the effect of the topology on the flow in the absence of flow 

three-dimensionality induced by the spanwise waviness of the topology.  Comparing results from 

the 2D models to those from the 3D model is expected to provide insight into the significance of 

A-A 

A-A 

B-B 

B-B 
𝑥 

𝑦 

𝜆𝑠  
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the spanwise variation of the topology. For the 3D geometry, measurements are done at two 

spanwise planes corresponding to sections A-A and B-B in Figure 5. These cases are indicated as 

3Dp and 3Dv respectively, where the p and v in the notation signify the presence of a peak and a 

valley, respectively, at the cylinder’s leading edge. The corresponding 2D model cases are denoted 

as 2Dp and 2Dv, respectively.  

  Models following the prescribed surface topology are 3D printed by an Objet Connex350 

multi-material 3D printing system. The nominal resolution of this printer is 30 microns along 𝑦 

axis and 100 microns along 𝑥 and 𝑧 axes as defined in Figure 5. The material used to print the 

cylinders is Stratasys RGD450 Rigur which is a rigid opaque white material. Given that the 

readable input file format to this 3D printer is ‘.stl’, the cylinders should be designed in a way that 

can be further translated to this format. The process of doing so is that the surface topology is 

defined mathematically in MATLAB (see code in Appendix) and discrete points are generated to 

make a point cloud which is afterwards introduced to SolidWorks software in text ‘.txt’ format. In 

this software, this point cloud is transformed into a mesh by the ‘mesh prep wizard’ feature. It is 

possible then to save this mesh as a .stl file. However, no manipulation can be directly done on 

this mesh in SolidWorks and any change has to be done to the main point cloud. In the course of 

the study, manipulation of the mesh became necessary to generate a through hole for fitting a 

metallic shaft in the 3D printed cylinders in order to reinforce them. These sorts of alterations are 

much easier to conduct in a CAD software in comparison to defining them mathematically in the 

process of point cloud generation. To go around this issue, the ‘.stl’ file was loaded into 

SpaceClaim software which is an Autodesk product. This software provides capability of making 

a concentric through hole inside the cylinders with the desired diameter.  
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Accuracy of the 3D printed objects is investigated using a KEYENCE VR3200 3D scanner 

device. The accuracy of this device in surface height measurements is ±2𝜇𝑚. The measurements 

are done on the surface of a cylinder with a 3D surface topology that is close but not identical to 

the models used in the measurements. Specifically, some parameters such as ratio of the 

wavelengths and corner radius are slightly different, but the topology amplitude is the same. This 

cylinder is used in preliminary studies. The results shown in Figure 6 are samples of the measured 

surface profiles, on one of the sides and one of the edges of the cylinder, compared with the design 

topology profile produced by the mathematical definition. Since the resolution of the 3D printer is 

better along the 𝑦-axis, as seen in Figure 6, a better surface quality of the 3D printed cylinder is 

obtained on the side of the cylinder than along the edge. The rms deviation from the design profile 

is 2.3% and 10.5% of the design wave amplitude on the side and along the edge, respectively and 

it can be seen that, overall, the printed geometry is satisfactory and follows the intended profile.   
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Figure 6. Accuracy of the 3D printed object. Surface measured by the scanner is compared to the 

design sinusoidal wave.  

2.2 Molecular Tagging Velocimetry 

  One-component molecular tagging velocimetry (1c-MTV) is utilized to measure the flow 

velocity. MTV is a whole-field non-intrusive measurement technique that relies on using a flowing 

medium premixed with molecules that can be turned into long-lifetime tracers upon excitation by 

photons of a particular wavelength [14, 15]. Typically, a pulsed laser is used to “tag” the regions 

of interest, and those tagged regions are interrogated at two successive times within the lifetime of 

the tracer to make an image pair of so called ‘delayed’ and ‘undelayed’ images as seen in 

Figure 7. 

3D 
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3D 
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Figure 7. 1c-MTV images. 'delayed' image on the right is taken 5ms after capturing the 

'undelayed' image on the left. The lines have been colored to enhance their visibility. 

   The present implementation of MTV employs a phosphorescent supramolecule tracer [14] 

with chemical composition of 1 × 10−4 M of maltosyl-𝛽-cyclodextrin, 0.055 M of cyclohexanol, 

and ∼1 × 10−5 M of 1-bromonaphthalene, which assures its solution saturation. The tracers are 

excited by a Lambda Physik LPX 210i XeCl 308 nm UV excimer laser. The discharged rectangular 

laser beam passes through a pair of coated converging spherical lenses to form a travelling parallel 

beam, that is then steered through a set of coated mirrors toward the tunnel test section. Prior to 

entering the test section, the parallel laser beam passes through a pair of converging cylindrical 

lenses. This process creates a thin laser sheet with a thickness of less than 1 mm across the tunnel 

test section. Laser lines are formed after the laser sheet passes through a beam shaping object, as 

depicted Figure 4-b. The beam shaping object is a thin metal sheet with a custom pattern of vertical 

narrow slots to form the desired tagging pattern. For the present work, between 28 to 38 tagged 

lines are oriented to measure the streamwise velocity component with a spacing of 0.08𝑑 in the 

streamwise direction. The individual tagging lines, being as narrow as about 0.7 mm each (based 

on full width 1/𝑒2), enter the test section on the side where quartz window inserts are installed. 

Other test section walls are made out of Plexiglas, which enables imaging of the molecular 

emission while blocking the UV laser light from exiting the test section. The optical system is 

positioned on a manually movable three-degree-of-freedom traversable optics bench, which is 

mounted on the tunnel but kept separate from it to prevent the transmission of tunnel vibrations. 

𝑡 = 𝑡0 

Flow 

𝑡 = 𝑡0+5ms 

Flow 



26 
 

  One-component MTV measures the Lagrangian displacement of the fluid particles in the 

direction normal to a tagging line at every pixel along the line, providing one component of the 

flow velocity at very high spatial resolution. The technique for calculating the line displacement 

using spatial correlation is described in [16]. For the present work, the tagged lines are oriented to 

measure the streamwise velocity component with a spacing of 40 μm (0.003𝑑) along each of the 

lines. This high spatial resolution makes 1c-MTV particularly suited for boundary-layer-resolved 

measurements. Three fields of view (FOV) are adopted for data acquisition by translating the 

optical tray downstream (see Figure 4-b). The first one stretches between 𝑥/𝑑 = -1.15, near the 

leading edge (LE), to 𝑥/𝑑 = 1.15, near the trailing edge (TE) to measure the boundary layer flow. 

Its cross-stream dimension extends from 𝑦/𝑑 ≈ −0.5 to 1.9 focusing on the boundary layer flow. 

The second field of view, stretching between 𝑥/𝑑 ≈ 0.17 and 3.80 covers the downstream half 

and the immediate wake of the cylinder to allow simultaneous boundary layer and the near wake 

measurements. Finally, the third field of view covers the wake farther downstream from 𝑥/𝑑 ≈

2.97 up to 6. The implementation of overlapping fields of view enables precise alignment and 

assembly of the results. The latter two fields of view stretch between 𝑦/𝑑 ≈ −1.2 and 1.2 in the 

cross-stream direction to symmetrically capture the wake flow.  

  There are different sources of uncertainty contributing to the accuracy of the 

measurements. Among them, laser pulses inconsistency and possible vibrations of the setup, along 

with MTV settings such as signal to noise ratio SNR, correlation window size, tagging line 

thickness and spacing, line shape, etc. can affect the subpixel accuracy [16]. Furthermore, the 

delayed images can be correlated to a single undelayed image, as in the current study, which is 

usually a time-average image from a time series of instantaneous undelayed images. This 

assumption is only valid when the variations between the instantaneous and average undelayed 
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images are small. Correlating the instantaneous undelayed images with their temporal average 

gives an estimation of the total uncertainty of the measurements, or subpixel accuracy, introduced 

by the above-mentioned sources. Such analysis is conducted with the instantaneous undelayed 

images acquired at a SNR representative of the delayed images of the velocity measurements. 

Subpixel accuracy of the measurements in terms of rms are calculated to be around 0.16 pixels. 

 The undelayed image is taken 1 𝜇𝑠 after the laser pulse to avoid capturing the florescence 

emission of the tracers. The time delay Δ𝑡 between the two MTV images (undelayed and delayed) 

changes between different Reynolds numbers from 8ms for 𝑅𝑒𝑑 = 800 to 3.5ms for 𝑅𝑒𝑑 = 2500. 

The exposure time of the images is set to 10% of the time delay Δt. The time delay is customized 

for each Reynolds number to ensure proper pixel displacement of the tagged region during the 

time delay. The exposure time is adjusted accordingly to maintain the highest possible SNR, and 

simultaneously minimize the pixel displacement during the exposure. 3072 images are acquired at 

the lower Reynolds numbers 𝑅𝑒𝑑 = 800 and 1100, and for the remaining Reynolds numbers, 

2048 images are acquired at a sampling rate of 7 Hz. The duration of the time series corresponds 

to a convective time scale of 1375 𝑑/𝑈∞ for 𝑅𝑒𝑑 = 800 and 2977 𝑑/𝑈∞ for 𝑅𝑒𝑑 = 2500. Based 

on the shedding frequency measured at the far wake, by calculating power spectral density from 

velocity time series, this corresponds to about 290 and 610 shedding cycles at the lowest and 

highest Reynolds numbers, respectively. A pco.pixelfly camera equipped with a Nikon Nikkor 

58mm f/1.2 lens and an 11 mm Nikon extension ring is utilized for image acquisition.  

The camera has a 14-bit charge-coupled device (CCD) sensor with a resolution of 1392 × 1040 

pixels and a pixel size of 6.45 𝜇𝑚 × 6.45 𝜇𝑠. The maximum acquisition frequency at the maximum 

frame size without any pixel binning is about 7 frames per second.  
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 Statistical convergence uncertainty, which is another important source of uncertainty, is 

reported in Table 1, for the largest uncertainty over the entire measurement domain. The 

uncertainties are reported as % of 𝑈∞ for the mean velocity and % of the local 𝑢𝑟𝑚𝑠 for the rms 

velocity, calculated based on the work of Benedict and Gould [17]: 

𝜎𝑈̅ =
𝑢𝑟𝑚𝑠

√𝑁 
,                          (17) 

𝜎𝑢𝑟𝑚𝑠
=

𝑢𝑟𝑚𝑠

√2𝑁
,                                       (18) 

where 𝑁 is the number of the independent samples and is taken here to be the number of the vortex 

shedding cycles occurring in the duration of the time series.  

Table 1. Convergence uncertainty of mean and rms velocity measurements as percentage of 𝑈∞ 

and local 𝑢𝑟𝑚𝑠, respectively. 

 𝑅𝑒𝑑  =  800 𝑅𝑒𝑑  =  1100 𝑅𝑒𝑑  =  1400 𝑅𝑒𝑑  =  1800 𝑅𝑒𝑑  =  2,500 

Mean velocity 1.67% 1.97% 2.27% 2.28% 1.61% 

rms velocity 4.73% 4.01% 4.46% 4.13% 3.17% 

 

Convergence uncertainty of the mean displacement and velocity due to the subpixel accuracy, are 

estimated to be 0.012 pixels and 0.1% of 𝑈∞, respectively. Convergence uncertainty of the rms 

displacement due to the subpixel accuracy is calculated to be 0.009 pixels which corresponds to 

0.075% of 𝑈∞.   
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Chapter 3. Boundary Layer Statistics - Mean and rms 

Velocity 
 

The current study aims to reveal the underlying flow physics related to the complex 

geometry of the rectangular cylinders with round corners and surface topology. This should 

ultimately provide fundamental understanding of the unique behavior of these cylinders at low 

Reynolds numbers, as reported in the previous studies [7, 8]. As a step towards this goal, this 

chapter covers results related to the streamwise velocity field in the boundary layer of the cylinders. 

In the following sections, mean and rms velocity profiles and color contour maps from MTV 

measurements along the surface of the cylinders will be discussed. The focus of Sections 3.1 

through 3.3 will be on the boundary layer measurements carried out at the angle of attack 𝛼 = 0°. 

In order to distinguish the effects of the cross-sectional geometry on flow behavior from those due 

to shape variation along the span, Section 3.1 will focus on the 2D geometries, with the amplitude 

pertinent to the PADS application (𝜀/𝑑 = 5%), and how they compare with the baseline smooth 

geometry. Section 3.2 is focused on the study of the topology amplitude effects on the flow field 

by comparing cylinders with lower and higher topology amplitudes than the PADS application. In 

section 3.3, the effects of variation of the geometry along the span will be interrogated, and the 

cross-sections of the 3D geometry corresponding to the 2D cylinders will be discussed. In the final 

section of this chapter, observations pertinent to the galloping phenomenon will be presented by 

analyzing changes in the flow around the geometries with variation in the angle of attack. 

 3.1 Effect of the Cross-Sectional Geometry 

In this section, the smooth cylinder, along with the 2Dp and 2Dv cylinders with 𝜀/𝑑 = 5% 

at 𝛼 = 0° will be discussed in the Reynolds number range of 𝑅𝑒𝑑 = 800 − 2500, to analyze the 

effect of the cross-sectional geometry on the flow behavior relevant to the application of the PADS.  
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A sample set of the boundary layer mean and rms velocity profiles from MTV is depicted 

in Figure 8. The boundary layer at the three most upstream measurement locations, up to just 

downstream of the round corner, appear to be attached. While not clearly visible from Figure 8, at 

the next downstream position, the boundary layer separates. This is determined from the presence 

of reversed flow near the wall. The cylinder surface glare during MTV imaging, plus the 

geometries’ inherent curvature, does not allow accurate interrogation of a few (up to ten, depending 

on the specific location) pixels in the immediate vicinity of the wall. In addition, given the finite 

streamwise resolution of the measurements and the presence of a gap between the tagging lines, 

separation and reattachment locations can be better estimated from extrapolation of the separation 

zone boundary (to be discussed later), with an uncertainty equal to half the streamwise distance 

between the tagging lines which is about 4.5% of the baseline width (≈ 0.045𝑑).  

 In addition to the separation of the boundary layer, the velocity profile also develops an 

inflection point, where the cross-stream velocity gradient is highest along the cross-stream 

direction. Above the reversed-flow region, this profile reflects the presence of a separated shear 

layer. From Figure 8-bottom, it can be seen that the unsteadiness grows in the shear layer as the 

rms velocity becomes more prominent with the downstream. The shear layer is characterized by 

comparing the spread of the region with the high rms velocity together with the strength of the 

𝑢𝑟𝑚𝑠 peaks, and will be discussed later in this chapter. For a better visual presentation, color 

contour maps of these velocity data are plotted and compared for different cylinder geometries in 

later figures.  
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Figure 8. Boundary layer mean (top) and rms (bottom) velocity profiles on the smooth cylinder 

at 𝑅𝑒𝑑 = 2500 . Flow is from left to right. Every other profile is shown to avoid clutter. 

Figure 9 shows the normalized mean (left) and rms (right) velocity color contour maps for 

the smooth cylinder. In this figure, the separated flow is tracked by marking the region with reverse 

flow (negative velocity) in cold colors (cyan to pink spectrum).  

With the current experimental resolution, the flow seems to remain fully attached at 𝑅𝑒𝑑 =

1100, but shows a minuscule closed separation bubble at 𝑅𝑒𝑑 = 800 and 1400, with the 

separation bubble’s thickness not exceeding 2% of the baseline width 𝑑. Magnified view of these 

contour maps is depicted in Figure 10 to better show the separation bubbles near the surface. 

Increasing the Reynolds number to 𝑅𝑒𝑑 = 1800 is associated with a thin but open separation 

bubble, with the separation point located downstream of the leading-edge round corner. Further 

increase in the Reynolds number causes the flow to reattach to the surface before separating again 

farther downstream of the trailing edge round corner into the wake. Therefore, a non-monotonic 

relationship between the separation/reattachment of the boundary layer and Reynolds number is 

observed for the smooth cylinder in the Reynolds number range of interest. Specifically, increasing 

the Reynolds number first develops an open separation bubble then leads to reattached flow. 
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Overall, the flow follows the contour of the smooth geometry well and is not displaced 

significantly by the, generally thin, separation bubble from the cylinder’s surface. 
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                                 𝑅𝑒𝑑 = 1800 

 

 

 
 
 
                                 𝑅𝑒𝑑 = 2500 

 

Figure 9. Smooth cylinder. Mean (left) and rms (right) velocity color contour maps normalized 

by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from left to 

right. 
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                                                                                                                                                   𝑅𝑒𝑑 = 800 

 
 
                                                                                                                                                   𝑅𝑒𝑑 = 1100 

 
 
                                                                                                                                                   𝑅𝑒𝑑 = 1400 

 
 
                                                                                                                                                   𝑅𝑒𝑑 = 1800 

 
 
                                                                                                                                                   𝑅𝑒𝑑 = 2500 

Figure 10. Smooth cylinder. Magnified view of the mean velocity color contour maps 

normalized by the freestream velocity 𝑈∞. The vertical scale is stretched, distorting the view, to 

make the separation zone visible. Rows show different Reynolds numbers. Flow is from left to 

right. 

As seen in Figure 9 (right), the boundary layer at 𝑅𝑒𝑑 = 800 − 1400 remains largely quiet with 

relatively low unsteadiness, with the maximum fluctuations being lower than 5% of the freestream 

velocity. Better details of the fluctuating velocity development in the streamwise direction may be 

observed in Figure 11. In this figure, the maximum rms velocity value across each profile is 
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extracted and plotted versus 𝑥/𝑑 at each Reynolds number. Figure 11 shows that fluctuations grow 

downstream for all Reynolds numbers. Excluding the regrowth of the fluctuation seen downstream 

of 𝑥/𝑑 ≈ 0.6 at 𝑅𝑒𝑑 = 2500, the unsteadiness level at 𝑅𝑒𝑑 = 1800 is the highest in the shear 

layer with a faster growth rate with the downstream distance than all other cases. This coincides 

with the fact that an open separation is observed at this Reynolds number only. Figure 11 also 

shows that at 𝑅𝑒𝑑 = 800 − 1800, the 𝑟𝑟𝑚𝑠,𝑝/𝑈∞ growth is monotonic. At 𝑅𝑒𝑑 = 2500, the 

maximum 𝑢𝑟𝑚𝑠 values reach a peak (“saturate”) before a second growth stage develops 

downstream of saturation. The separated shear layer reattaches to the surface at this Reynolds 

number, and the first peak of the maximum 𝑢𝑟𝑚𝑠 values occurs slightly before the reattachment 

point. The second stage of growth is downstream of reattachment, where the shear layer from the 

reattached flow starts developing.  

 
Figure 11. Comparison between maximum 𝑢𝑟𝑚𝑠/𝑈∞ development along the surface of the 

smooth cylinder at different Reynolds numbers.   

A similar analysis to the above is done for the 2Dp cylinder with 𝜀/𝑑 = 5% using the 

results given in Figure 12. The effect of this geometry on promoting flow separation is evident. 

The flow separates downstream of the topology peak at the front corner with the separation point 
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predominantly insensitive to Reynolds number. The separation bubble remains open, and it 

probably reattaches only at the highest Reynolds number studied, 𝑅𝑒𝑑 = 2500. This trend with 

Reynolds number is expected, but given the current data resolution, the reattachment found at the 

highest Reynolds number is not certain. To be clear, Figure 13 displays a magnified view of the 

near-wall velocity profiles in the vicinity of the reattachment location. As seen from the figure, 

while a zero crossing is not observed in the velocity profile across the tagging line at x/d=0.96, the 

data point closest to the wall is about 5 pixels away from the surface, leaving a possibility of a 

zero-crossing closer to the wall. In either case, the separation zone boundary travels very close to 

the surface over the topology peak at the aft corner of the 2Dp cylinder at 𝑅𝑒𝑑 = 2500. Also 

noteworthy is that the inside of the topology valleys is filled with a “dead” cushion of fluid with 

very weak negative velocity, irrespective of the Reynolds number and separation bubble thickness. 

Considering 𝑢𝑟𝑚𝑠/𝑈∞ data, the separated shear layer at 𝑅𝑒𝑑 = 1100 shows a higher level 

of fluctuations compared to the lower and higher adjacent Reynolds numbers (Figure 12, right). 

Further increase of the Reynolds number to 𝑅𝑒𝑑 = 1800 exhibits widening over a short 

streamwise fetch of the region carrying high velocity fluctuations at around 𝑥/𝑑 = 0.4. Also, the 

highest level of fluctuations is observed at this Reynolds number. This widening of the high rms 

zone can be related to vortex formation from the shear layer roll-up, as will be seen from flow 

visualization results in Chapter 5 (Figure 65). Increasing the Reynolds number to 𝑅𝑒𝑑 = 2500 

pushes the widening of the high rms region towards the upstream direction, and also brings this 

region closer to the surface. Therefore, it seems for this geometry at 𝑅𝑒𝑑 = 1800 and 2500, the 

separated shear layer rolls up and vortical structures start developing above the model surface. 

This vortex formation, and moving closer to the surface at 𝑅𝑒𝑑 = 2500, is associated with the 

probable closure of the separation bubble noted from the mean velocity data.  
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Figure 12. 2Dp-5% cylinder. Mean (left) and rms (right) velocity color contour maps normalized 

by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from left to 

right. 

 

 
Figure 13. Magnified view of the Mean velocity profiles over the topology peak at the aft corner 

of the 2Dp cylinder at 𝑅𝑒𝑑 = 2500. Red points mark the zero-crossing of the velocity profile.  
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Figure 14. Comparison between maximum 𝑢𝑟𝑚𝑠/𝑈∞ development along the surface of the 2Dp 

cylinder at different Reynolds numbers.   

The maximum rms velocity value across each profile over the surface of the 2Dp cylinder 

is Examined in Figure 14. At 𝑅𝑒𝑑 = 800 − 1400 the maximum 𝑢𝑟𝑚𝑠 values increase 

monotonically with the downstream. This monotonic trend is disturbed at higher Reynolds 

numbers, when vortex formation from roll-up of the shear layer is observed (see Figure 65 in 

Chapter 5), and the fluctuation intensity reaches a peak. At 𝑅𝑒𝑑 = 2500, the peak in the maximum 

𝑢𝑟𝑚𝑠 values is observed at 𝑥/𝑑 = 0.9, right before the point of possible reattachment. A decaying 

trend follows afterward, reinforcing the expectation that the flow does reattach to the surface. It is 

observed in previous studies that the maximum fluctuations in the shear layer over airfoils, back-

step geometries, and bluff bodies plateau in the vicinity of the reattachment point and decay farther 

downstream; for example, see references [18-20]. 

The separation zone boundary for the 2Dp cylinder geometry at different Reynolds 

numbers is depicted in Figure 15. This boundary is obtained by identifying the zero-crossing 

location of each mean velocity profile at a given 𝑥 location to delineate the border surrounding the 

reverse-flow region. A second-order polynomial fit is applied to these locations to capture the 
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shape of the separation zone boundary. This polynomial fits the data points very well for most 

cases. However, a second-order polynomial cannot fully follow a complex boundary with, for 

example, both concave and convex curvatures, such as seen at 𝑅𝑒𝑑 = 2500 (see the transition 

between orange and light blue colors between 𝑥/𝑑 ≈ 0.25 and 1 in Figure 12 at this Reynolds 

number). Higher orders (up to sixth-order) polynomials are tested for this case, but did not show a 

considerable improvement over the second-order fit. Nonetheless, the second-order polynomial is 

sufficient to represent the separation zone boundary and therefore is used for the purpose of this 

study, unless otherwise noted.  

The separation zone boundary for the 2Dp cylinder, shown in Figure 15, supports the 

earlier observation that at 𝑅𝑒𝑑 = 2500 the flow reattaches to the surface just upstream of the 

trailing edge. It also shows that the separation zone boundary is flatter and located farther from the 

surface at 𝑅𝑒𝑑 = 1400 compared to 𝑅𝑒𝑑 = 1100 and 1800, which shows a non-monotonic 

behavior. Figure 15 also shows more clearly that the separation point (the upstream end of the 

separation zone boundary) is similar for all Reynolds numbers. 

 
Figure 15. Comparison of the mean separation zone boundary for the 2Dp cylinder at different 

Reynolds numbers. Flow is from left to right. 

Similar to the 2Dp geometry, flow over the 2Dv cylinder, shown in Figure 16, separates 

right downstream of a topology peak. However, separation occurs farther downstream compared 

to the 2Dp case, and the separated flow remains much closer to the geometry surface such that as 
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it passes over the next topology bump, it almost reattaches to the surface. At 𝑅𝑒𝑑 = 800 − 1400, 

the flow reattaches to the surface upstream of a topology bump at 𝑥/𝑑 ≈ 0.55. Interestingly, this 

geometry shows low sensitivity to Reynolds numbers in the range of 𝑅𝑒𝑑 = 800 − 1400 in terms 

of the separation/reattachment behavior of the boundary layer. Increasing the Reynolds number 

further to 𝑅𝑒𝑑 = 1800 is associated with the opening up of the separation bubble, which thickens 

even further as the Reynolds number rises to 𝑅𝑒𝑑 = 2500. This is opposite to the 2Dp geometry 

behavior, but the smooth cylinder also developed an open separation bubble at 𝑅𝑒𝑑 = 1800. It is 

speculated that further increase in the Reynolds number would cause the separated flow to reattach 

to the 2Dv cylinder surface, similar to the other geometries. This can be a point of interest in future 

studies.   
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                                 𝑅𝑒𝑑 = 2500 

 
Figure 16. 2Dv-5% cylinder. Mean (left) and rms (right) velocity color contour maps normalized 

by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from left to 

right. 

Figure 17 shows the mean separation zone boundary for the 2Dv cylinder. It can be noted 

that, similar to the 2Dp case, the separation point is similar over the studied range of Reynolds 

numbers. It is also evident how the separation zone boundary grows in lateral thickness at higher 

Reynolds numbers. However, the variation caused by the Reynolds number change is much more 

limited compared to the 2Dp geometry.  
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Figure 17. Comparison of the mean separation zone boundary for the 2Dv cylinder at different 

Reynolds numbers. Flow is from left to right. 

Analysis of the maximum 𝑢𝑟𝑚𝑠 velocity for the 2Dv cylinder in Figure 18 shows that the 

fluctuation level in the shear layer increases monotonically with the downstream at all Reynolds 

numbers. The rate of this increase (i.e. the slope of the line), however, starts growing at 𝑅𝑒𝑑 =

1800 as the separation bubble opens up and the separation zone boundary starts thickening. The 

highest fluctuation level is observed at 𝑅𝑒𝑑 = 2500 which shows the thickest separation zone 

boundary.  

 
Figure 18. Comparison between maximum 𝑢𝑟𝑚𝑠/𝑈∞ development along the surface of the 2Dv 

cylinder at different Reynolds numbers.   

Overall, for the 2Dv cylinder, it appears that the separated flow merely fills the topology 

valleys and the effective body shape becomes close to that of the smooth cylinder. Depicted in 
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Figure 19, the maximum 𝑢𝑟𝑚𝑠 values in the shear layer for the 2Dv cylinder are also very close to 

those from the smooth cylinder at 𝑅𝑒𝑑 = 800 − 1800, which suggests that the presence of a 2D 

topology with a valley at the leading edge does not alter the flow substantially from that over the 

baseline smooth geometry, especially when compared to the effect of the 2Dp geometry. It is at 

𝑅𝑒𝑑 = 2500 where the 𝑢𝑟𝑚𝑠 values deviate between the smooth and 2Dv cylinders, when the flow 

reattaches to the surface of the smooth cylinder but remains separated over the 2Dv cylinder’s 

surface. Moreover, the fluctuations are lower in the shear layer of the 2Dv cylinder than the 2Dp 

cylinder at all Reynolds numbers. This is consistent with the earlier observation that, excluding 

the 2Dp cylinder at 𝑅𝑒𝑑 = 2500, the maximum 𝑢𝑟𝑚𝑠,𝑝 level shows a direct relation with the 

thickness of the separation zone boundary. Figure 21 also shows that the fluctuations in the shear 

layer are amplified by the presence of the topology with a peak at the LE, compared to the baseline 

geometry.  

The domain of the shear layer containing the high rms fluctuations is highlighted for the 

smooth, 2Dp, and 2Dv cases in Figure 20. The loci of the maximum rms velocity are marked by 

circle markers, and the highlighted domain surrounds the rms fluctuations higher than 50% of the 

value of the 𝑢𝑟𝑚𝑠,𝑝 at each streamwise location. The color codes remain consistent with the plots 

shown so far, where the black, red, and green points and shaded regions are allotted to the smooth, 

2Dp, and 2Dv cases, respectively. 
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       𝑅𝑒𝑑 = 800 
 

       𝑅𝑒𝑑 = 1100 

 

       𝑅𝑒𝑑 = 1400 
 

       𝑅𝑒𝑑 = 1800 

 

       𝑅𝑒𝑑 = 2500 

 

Figure 19. Comparison between maximum 𝑢𝑟𝑚𝑠/𝑈∞ development along the surface of the 

smooth (black), 2Dp (red), and 2Dv (green) cylinders, at different Reynolds numbers.   
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                                      𝑅𝑒𝑑 = 2500 

Figure 20. Domain of high rms velocity fluctuations, covering the region with rms velocity 

higher than 50% of the maximum rms velocity at each 𝑥/𝑑 location. Results for the smooth, 

2Dp, and 2Dv cases shown in black, red, and green respectively. Only the cross-section of the 

baseline geometry is shown for simplicity. Flow is from left to right. 

This domain is thickest for the 2Dp geometry at all Reynolds numbers, but remains 

comparable between the smooth and the 2Dv cases. In addition, for the two cases of the 2Dp 

cylinder at 𝑅𝑒𝑑 = 1800 and 2500, vortex formation from shear layer roll-up is observed on top 
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of the cylinder surface which is associated with the rapid widening of the high rms domain (see 

Figure 65 in Chapter 5). 

3.2 Effect of the Surface Topology Amplitude 

Mean and rms velocity color contour maps for the 2Dp cylinder with lower (𝜀/𝑑 = 2.5%) 

and higher (𝜀/𝑑 = 10%) topology amplitudes compared to the cases considered so far are shown 

in Figure 21 and Figure 22, respectively, to examine the effect of the topology amplitude. From 

Figure 21 it can be seen that, similar to the 5% topology amplitude, the presence of a topology 

peak at the upstream corner of the cylinder causes an early separation of the flow, downstream of 

a topology peak at 𝑥/𝑑 ≈ −0.78, even at such small topology amplitude. In addition to this 

similarity with the 2Dp-5% results, previously shown in Figure 12, the separation bubble remains 

open up to 𝑅𝑒𝑑 = 1800, and becomes very close to reattachment at 𝑅𝑒𝑑 = 2500. However, as 

before, reattachment cannot be ascertained with the current data resolution. Non-monotonic 

behavior in the separation zone boundary with Reynolds number is also seen for this case, where 

first, increasing Reynolds number to 𝑅𝑒𝑑 = 1100 makes the separation bubble thinner, but further 

increase up to 𝑅𝑒𝑑 = 1800 is associated with thickening of the separation bubble.  
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Figure 21. 2Dp-2.5% cylinder. Mean (left) and rms (right) velocity color contour maps 

normalized by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from 

left to right. 

At the Reynolds number range 𝑅𝑒𝑑 = 800 − 1800, where open separation is observed, 

shear layer unsteadiness grows in strength downstream, similar to the case of 2Dp-5%. However, 

for the current case, the rapid expansion of the high unsteadiness region, which is found to be 

coincident with the shear layer roll-up, is not seen at 𝑅𝑒𝑑 = 1800 and is delayed to the higher 

Reynolds number of 2500. The shear layer is seen to roll up to form vortical structures at 𝑅𝑒𝑑 =
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2500, which is believed to be the reason for the separation bubble approaching the surface and the 

possibly reattaching. 

For the higher amplitude of 𝜀/𝑑 = 10%, shown in Figure 22, 𝑅𝑒 = 2500 remains the 

turning point for boundary layer separation/reattachment. As before for the same 2Dp geometry, 

below this Reynolds number, the separation bubble remains open.   
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Figure 22. 2Dp-10% cylinder. Mean (left) and rms (right) velocity color contour maps 

normalized by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from 

left to right. 
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Similar to the other amplitudes of the 2Dp geometry, for the 10% amplitude, there 𝑚𝑖𝑔ℎ𝑡 

be a late reattachment of the boundary layer at 𝑅𝑒𝑑 = 2500 that cannot be ascertained with the 

given resolution of the current data. The separation also occurs downstream of the topology peak 

at the front corner of the cylinder, with the separation point showing negligible sensitivity to 

Reynolds number. The separation bubble’s size does not vary significantly at 𝑅𝑒𝑑 = 800 − 1400, 

but starts thinning down at higher Reynolds numbers. Unsteadiness in the shear layer grows with 

downstream distance at 𝑅𝑒𝑑 = 800 − 1400 in the same manner, as other 2Dp geometries, before 

the signature of the vortex roll-up in widening the high 𝑢𝑟𝑚𝑠 zone starts emerging at 𝑅𝑒𝑑 = 1800 

and develop further at 𝑅𝑒𝑑 = 2500.  

The maximum rms velocity evolution in the streamwise direction is compared for all the 

2Dp geometries in Figure 23. In 𝑅𝑒𝑑 = 800 − 1400 range, the maximum rms velocity increases 

monotonically for all 2Dp geometries. The results for the 5% and 10% amplitude cases match 

within the error bars at 𝑅𝑒𝑑 = 800 and 1400. The 2.5% amplitude case shows the highest 𝑢𝑟𝑚𝑠 

peak values in this Reynolds number range, with the difference compared to the other 2Dp cases 

becoming more significant as the Reynolds number increases. The results for all 2Dp cases are 

very close up to the mid-chord of the cylinders at 𝑅𝑒𝑑 = 1800, but farther downstream and at 0 <

𝑥/𝑑 < 1, the 10% amplitude case shows higher values than the other two cases. Downstream of 

𝑥/𝑑 = 1, the results for all 2Dp cases plateau, which coincides with the rapid widening of the 

domain of high velocity fluctuations for the 5% and 10% amplitude cases. However, such rapid 

widening of the high velocity fluctuations domain is interestingly not seen for the 2.5% amplitude 

case at this Reynolds number. At 𝑅𝑒𝑑 = 2500, the results for all 2Dp cases plateau over the surface 

and decrease with further increase in 𝑥/𝑑, which happens earlier for the 2.5% amplitude case 

compared to the other 2Dp cylinders. Rapid widening of the high velocity fluctuations domain is 
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seen and shear layer reattachment is expected for all 2Dp cylinders at this Reynolds number. It 

should be noted that the results for the 2.5% amplitude case are truncated at 𝑥/𝑑 = 0.75, since the 

𝑢𝑟𝑚𝑠,𝑝 results are extracted at the location of the first rms velocity peak developing over the 

surface. At this streamwise location, the peaks do not exist over the trajectory of the first rms 

velocity peak anymore, and the rms velocity peak starting to develop near the surface at 𝑥/𝑑 ≈

0.2 becomes the only prominent peak in the rms velocity profiles.  
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       𝑅𝑒𝑑 = 800 
 

       𝑅𝑒𝑑 = 1100 

 

       𝑅𝑒𝑑 = 1400 
 

       𝑅𝑒𝑑 = 1800 

 

       𝑅𝑒𝑑 = 2500  

Figure 23. Comparison between maximum 𝑢𝑟𝑚𝑠/𝑈∞ values along the surface of cylinders with 

2Dp geometry and different topology amplitudes at different Reynolds numbers. 

The effect of topology amplitude on the flow over the 2Dv geometry is analyzed in Figure 

24 and Figure 26. In Figure 24, mean and rms velocity color contour maps are shown for the 2Dv-

2.5% case. This geometry shows the least sensitivity to Reynolds number among the other studied 
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geometries. There are two isolated closed separation bubbles in the valleys of the topology at 

𝑅𝑒𝑑 = 800 − 1400. At higher Reynolds numbers, these two bubbles connect to form a single 

separation bubble. These details can be better seen in Figure 25, where a magnified view of the 

mean velocity profiles over the valleys on the surface of this cylinder are shown and the points of 

zero-crossing velocity are marked. Nevertheless, the flow separation does not considerably affect 

the overall flow over the surface, and the separation bubbles act only as a “cushion” to fill the 

topology dips. The minimal effect of this geometry on the flow is further seen by monitoring the 

small unsteadiness levels in the shear layer throughout the studied range of Reynolds numbers. 

Moreover, the shear layer remains very close to the surface.  
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Figure 24. 2Dv-2.5% cylinder. Mean (left) and rms (right) velocity color contour maps 

normalized by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from 

left to right. 
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                                                                                                                                           𝑅𝑒𝑑 = 800 

 

     
                                                                                                                                           𝑅𝑒𝑑 = 1100 
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                                                                                                                                           𝑅𝑒𝑑 = 1800 

 

     
                                                                                                                                           𝑅𝑒𝑑 = 2500 

Figure 25. Magnified view of the Mean velocity profiles over the valleys on the surface of the 

2Dv cylinder at different Reynolds numbers. Red points mark the zero-crossing of the velocity 

profile. 

The case with a higher amplitude of 𝜀/𝑑 = 10% is displayed in Figure 26. This is the only 

case where changing the topology amplitude is seen to affect the separation point. Here, separation 

occurs earlier than the 2Dv cylinders with 2.5% and 5% topology amplitudes, right downstream 

of the topology peak at the front corner. Nonetheless, flow reattaches quickly, and the closed 

separation bubble remains local within the first valley before the flow separates again downstream 
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of the next topology peak. The latter separation point is comparable to that seen for the other 

amplitudes. Another effect of this higher topology amplitude is that, downstream of the second 

separation point, the flow remains separated over the remainder of the surface at all Reynolds 

numbers.  
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Figure 26. 2Dv-10% cylinder. Mean (left) and rms (right) velocity color contour maps 

normalized by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from 

left to right. 

From the rms velocity color contour maps in the right column of Figure 26, it can be seen 

that the unsteadiness grows in the shear layer with the downstream and Reynolds number. A rapid 
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widening of the high rms region is not observed for any 2Dv case at any Reynolds number, 

suggesting that the shear layer roll-up does not occur above the cylinder surface for this geometry 

in the studied range of Reynolds numbers. This observation correlates with the shear layer being 

very close to the surface.  

The maximum rms velocity at each streamwise location is extracted and compared for all 

the 2Dv geometries in addition to the smooth cylinder in Figure 27. The first streamwise location 

for this analysis is where a noticeable peak in the rms velocity profile is observed due to the shear 

layer development. In the Reynolds number range of 𝑅𝑒𝑑 = 800 − 1800, the growth in the 

maximum rms velocity is monotonic. The 2.5% amplitude at 𝑅𝑒𝑑 = 2500 is the only case where 

the rms values reach a peak at around 𝑥/𝑑 = 0.25 before increasing again farther downstream. 

Overall, the lowest and highest topology amplitudes exhibit the lowest and the highest levels of 

shear layer velocity fluctuations, respectively. The 5% topology shows a close behavior to that of 

the 2.5% geometry in the range of 𝑅𝑒𝑑 = 800 − 1400. In this Reynolds number range, both of 

these cylinders show a closed separation bubble on the cylinders’ surface. At 𝑅𝑒𝑑 = 1800, 

reattachment does not occur for the 5% geometry anymore, which is similar to the case of 10% 

but opposite to the geometry with 2.5% amplitude. This is associated with a deviation in the level 

of fluctuations in the shear layer of the 5% geometry from that of the 2.5% geometry and shifts 

the 5% amplitude results towards the level of fluctuations seen in the 10% geometry, and they 

eventually collapse at 𝑅𝑒𝑑 = 2500. At the Reynolds number range 𝑅𝑒𝑑 = 800 − 1400 the values 

seem to approach those from the smooth cylinder with decreasing the topology amplitude. The 

smooth cylinder shows comparable 𝑢𝑟𝑚𝑠,𝑝 values to those from the 2Dv cylinders with 5% and 

10% amplitude at 𝑅𝑒𝑑 = 1800, but higher compared to the 2Dv-2.5% case. It was observed that 

the former cases show an open separation, whereas the latter case shows a thin closed separation 
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bubble over the surface. At 𝑅𝑒𝑑 = 2500, the results are very close for the smooth and the 2Dv-

2.5% cylinder, especially in that both show a non-monotonic behavior. These two cases, unlike 

the 2Dv-5% and 10% cases, show a closed separation bubble over the surface.  
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Figure 27. Comparison between maximum 𝑢𝑟𝑚𝑠/𝑈∞ values along the surface of cylinders with 

2Dv geometry and different topology amplitudes at different Reynolds numbers. Results are also 

compared against the smooth cylinder.  
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3.3 Effect of Surface Topology Variation Along the Span 

The effect of adding surface topology variation along the span on the velocity field over 

the cross-sectional geometries with a peak at the leading edge is examined using Figure 28. From 

the mean velocity color contour maps in the left column of this figure, it can be seen that the 

presence of three-dimensionality of the topology significantly alters the separation/reattachment 

behavior relative to the flow over the surface of the cylinders with 2Dp cross-sectional geometry. 

Overall, the separation bubble remains very thin for the 3Dp case and predominantly fills the 

valleys of the topology over the surface; although the bubble gains lateral thickness with increasing 

the Reynolds number. 

Further information regarding the mean boundary layer behavior may be extracted by 

characterizing the separation zone, as done in Figure 29. This helps estimate the separation and 

the reattachment location and characterize the overall shape of the separation zone. Figure 29 

compares results from the 2Dp and 3Dp configurations. The separation point for the 3Dp case 

remains the same as that observed for the 2Dp cylinder. More specifically, the flow separates after 

the leading edge, downstream of a surface topology peak at the front corner of the cylinder. 
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Figure 28. 3Dp-5% cylinder. Mean (left) and rms (right) velocity color contour maps normalized 

by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from left to 

right. 

The separation bubble for the 3Dp geometry remains open over the surface at 𝑅𝑒𝑑 = 800, 

although it is located very close to the surface and becomes extremely close to reattaching at the 

topology peaks. As the Reynolds number increases to 𝑅𝑒𝑑 = 1100 and 1400, the flow reattaches 

to the surface upstream of a topology peak and ahead of the trailing edge. Further increase of 

Reynolds number to 𝑅𝑒𝑑 = 1800 is seen to again move the separation bubble towards opening, 

although it remains thin and very close to the surface. The overall behavior at this Reynolds 
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number range of 𝑅𝑒𝑑 = 800 − 1800 is more comparable to that seen from the 2Dv case and 

deviates visibly from that of the 2Dp cylinder (as seen from Figure 29). The separated flow 

reattaches to the surface at 𝑅𝑒𝑑 = 2500 slightly after the mid-chord of the cylinder, upstream of 

a topology peak. The flow does not separate again until the topology peak at the aft corner of the 

cylinder. This is a considerable alteration of the reattachment behavior of the separated flow in 

comparison to the 2Dp geometry. More specifically, the reattachment point advances towards the 

leading edge compared to the 2Dp counterpart, the separation zone of which is shown in red in 

Figure 29. Overall, the presence of topology three-dimensionality makes the separation bubble 

thinner and more likely to reattach at all Reynolds numbers.  

From the rms velocity shown in the right column of Figure 28, it can be seen that, except 

at 𝑅𝑒𝑑 = 2500, the unsteadiness levels keep growing with downstream distance. Also, the region 

with high rms velocity values remains close to the surface. The trend of fluctuations intensity does 

not show a monotonic behavior with respect to Reynolds number, where the shear layer remains 

fairly quiet at 𝑅𝑒𝑑 = 800, gains fluctuation intensity at higher Reynolds numbers up to 𝑅𝑒𝑑 =

1400, and again loses fluctuation intensity as the Reynolds number increases to 𝑅𝑒𝑑 = 2500. To 

further characterize the shear layer, the domain of high rms fluctuations is depicted in Figure 30. 

Comparing the 3Dp case with its 2D counterpart, it can be seen that the presence of three-

dimensionality in the topology pulls this domain closer to the surface and keeps it laterally more 

compact. 
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Figure 29. Comparison of the mean separation zone boundary for the 2Dp and 3Dp cylinders, 

shown in red and blue lines, respectively. Rows show different Reynolds numbers. Flow is from 

left to right.   
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Figure 30. Domain of high rms velocity fluctuations, covering the region with rms velocity 

higher than 50% of the maximum rms velocity at each 𝑥/𝑑 location. 2Dp and 3Dp cases shown 

in red and blue, respectively.  Flow is from left to right. 

The spreading behavior of the high 𝑢𝑟𝑚𝑠 zone remains close between the 2Dp and 3Dp 

cylinders at the lower Reynolds number range of 𝑅𝑒𝑑 = 800 − 1400, where both cylinders show 
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a trend consistent with the gradual growth of mixing layers. It is only at 𝑅𝑒𝑑 = 2500 where the 

3Dp geometry shows a rapid expansion of the highly unsteady domain around 𝑥/𝑑 = 0.4, where 

the fluctuations penetrate a topology valley, rather than merely sweeping above the peaks. This 

observation suggests the development of vortical structures downstream of 𝑥/𝑑 = 0.4, which is 

farther downstream compared to the 2D counterpart.  

The maximum rms velocity value across each profile is extracted and plotted versus 𝑥/𝑑 

at each Reynolds number, as seen in Figure 31. Unlike in the 2Dp case where 𝑢𝑟𝑚𝑠,𝑝 growth rate 

does not change much with 𝑥, the 3Dp case shows significant dependence with the growth rate 

generally decaying with 𝑥. The fluctuations in the shear layer increase more rapidly over the 

surface of the 3Dp case up to about the mid-chord compared to the 2Dp cylinder. However, farther 

downstream, the 2D counterpart shows a faster unsteadiness growth. At some Reynolds numbers 

(i.e. 𝑅𝑒𝑑 = 1100, 1800, 2500) the maximum 𝑢𝑟𝑚𝑠 values for the 2Dp case surpass those of the 

3Dp case after the mid-chord. At 𝑅𝑒𝑑 = 800 and 1,400, the unsteadiness level is dominantly 

higher for the 2Dp and 3Dp, respectively. One interesting case is the 3Dp at 𝑅𝑒𝑑 = 2500, where 

the fluctuations even drop after the mid-chord and reach a minimum at 𝑥/𝑑 ≈ 0.9. For this case, 

the decreasing trend starts very close to where the flow reattaches to the surface and lingers in the 

reattached flow up to the whereabouts of the next separation point at the topology peak at the aft 

corner of the cylinder.  
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       𝑅𝑒𝑑 = 800 
 

       𝑅𝑒𝑑 = 1100 

 

       𝑅𝑒𝑑 = 1400 
 

       𝑅𝑒𝑑 = 1800 

 

       𝑅𝑒𝑑 = 2500 
 

Figure 31. Comparison between maximum 𝑢𝑟𝑚𝑠/𝑈∞ values along the surface of the 2Dp (red), 

and 3Dp (blue) cylinders, at different Reynolds numbers. 

The effect of adding surface topology variation along the span on the velocity field over 

the cross-sectional geometries with a valley at the leading edge is examined using Figure 32. From 

the mean velocity color contour maps on the left of this figure, it can be seen that the presence of 
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the surface topology variation along the span has a small effect on the separation/reattachment 

behavior of the flow over the surface compared to the counterpart 2Dv cylinder.  

 

 
 
 
                                 𝑅𝑒𝑑 = 800 

 
 

 
 
 
                                 𝑅𝑒𝑑 = 1100 

 
 

 
 
 
                                 𝑅𝑒𝑑=1400 

 
 

 
 
 
                                 𝑅𝑒𝑑=1800 

 
 

 
 
 
                                 𝑅𝑒𝑑=2500 

 
Figure 32. 3Dv-5% cylinder. Mean (left) and rms (right) velocity color contour maps normalized 

by the freestream velocity 𝑈∞. Rows show different Reynolds numbers. Flow is from left to 

right. 

Overall, the separated flow remains fairly close to the surface, predominantly filling the 

topology valleys and becoming close to reattachment at the topology peaks. The reverse flow 

region seems to gain lateral thickness downstream, which is the opposite of the behavior observed 

in Figure 28 for the other cross-section of this 3D cylinder with a peak at the leading edge. 
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Furthermore, the reverse flow region seems to be quite insensitive to Reynolds number in the 

studied range. 

The separation zone boundary for the 3Dv case is characterized in Figure 33 to extract 

further information regarding the mean boundary layer behavior. The separation point remains 

close to that of the 2D counterpart, located downstream of a topology peak at 𝑥/𝑑 ≈ −0.5 and not 

affected by Reynolds number. Flow does not reattach at any Reynolds number, although the 

separation zone boundary remains close to the surface and becomes very close to the topology 

peaks. Increasing the Reynolds number increases the curvature of the mean separation boundary 

and brings it closer to the surface farther downstream. Overall, the presence of the three-

dimensionality for this cross-sectional geometry seems to make the reattachment more difficult 

and the separation bubble laterally thicker at 𝑅𝑒𝑑 = 800 − 1800. It is only at a high enough 

Reynolds number 𝑅𝑒𝑑 = 2500 that the separation zone boundary becomes more curved and 

approaches the surface sooner for the 3Dv compared to 2Dv. The second-order polynomial fit does 

not accurately represent the separation zone boundary for 3Dv at 𝑅𝑒𝑑 = 2500. Although the fit 

suggests an open separation for this case, the color map gives signs of possible reattachment to the 

surface upstream of the topology peak at the aft corner of the cylinder.  
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                                        𝑅𝑒𝑑 = 800 

 

 
 
                                        𝑅𝑒𝑑 = 1100 

 

 
 
                                        𝑅𝑒𝑑 = 1400 

 
 

 
                                        𝑅𝑒𝑑 = 1800 

 
 

 
                                        𝑅𝑒𝑑 = 2500 

Figure 33. Comparison of the mean separation zone boundary for the 2Dv and 3Dv cylinders, 

shown in green and brown lines, respectively. Rows show different Reynolds numbers. Flow is 

from left to right. 

Investigating the rms velocity shown in the right column of Figure 32, it can be seen that 

the overall unsteadiness level keeps growing with the downstream distance. Similar to most of the 

cases studied so far, the unsteadiness level does not show a monotonic behavior with Reynolds 

number. What is consistent is that the rms velocity values remain reasonably low over most of the 

surface and the high unsteadiness intensities show up only late above the downstream half of the 

surface. One peculiar and interesting observation is that at 𝑅𝑒𝑑 = 1400, the unsteadiness level for 
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the 3Dv case is very low and limited to a narrow band, while the other cross-section of this cylinder 

with a peak at the leading edge (3Dp) shows its highest fluctuation rates at this Reynolds number.  

To further characterize the shear layer for the 3Dv cylinder, the domain of high rms 

fluctuations is depicted in Figure 34, where it is compared with the 2D counterpart. At lower 

Reynolds numbers of 𝑅𝑒𝑑 = 800 − 1400, this domain remains thinner but farther from the 

surface for the 3Dv case. As the Reynolds number increases, the domain for the 3Dv case grows 

laterally to become thicker than that of the 2D counterpart at 𝑅𝑒𝑑 = 2500, where it also moves 

closer to the surface than the domain for 2Dv case. At this Reynolds number, a rapid expansion of 

the domain is seen at around 𝑥/𝑑 = 0.65, downstream of a topology peak, which is believed to be 

an indication of the spanwise vortical structures’ formation and development.  

The maximum rms velocity value across each profile is extracted and plotted versus 𝑥/𝑑 

at each Reynolds number, as seen in Figure 35. Throughout the studied Reynolds number range, 

the maximum rms velocity values are significantly higher above the 3Dv surface compared against 

the 2D counterpart. The 𝑢𝑟𝑚𝑠,𝑝 growth rate does not change much with 𝑥 for the geometries with 

a valley at the leading edge, apart from 𝑅𝑒𝑑 = 1400 and 2500 where some “saturation” is 

observed in the growth. 
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                                        𝑅𝑒𝑑 = 800 

 

 
 
 
                                        𝑅𝑒𝑑 = 1100 

 

 
 
 
                                        𝑅𝑒𝑑 = 1400 

 

 
 
 
                                        𝑅𝑒𝑑 = 1800 

 

 
 
 
                                        𝑅𝑒𝑑 = 2500 

Figure 34. Domain of high rms velocity fluctuations, covering the region with rms velocity larger 

than 50% of the maximum rms velocity at each 𝑥/𝑑 location. 2Dv and 3Dv cases shown in green 

and brown, respectively. Flow is from left to right. 
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       𝑅𝑒𝑑 = 800 
 

       𝑅𝑒𝑑 = 1100 

 

       𝑅𝑒𝑑 = 1400 
 

       𝑅𝑒𝑑 = 1800 

 

       𝑅𝑒𝑑 = 2500 
 

Figure 35. Comparison between maximum 𝑢𝑟𝑚𝑠/𝑈∞ values along the surface of the 2Dv (green) 

and 3Dv (brown) cylinders, at different Reynolds numbers. 
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3.4 On Galloping 

When studying galloping oscillations of the rectangular cylinders in the conditions valid 

for quasi-steady assumption, the classic understanding of the phenomenon is that, as the angle of 

attack increases, the separated shear layer on the bottom curves more towards the surface, hence 

generating higher suction than that from the top shear layer (see Figure 36). This increasing 

pressure difference between the top and bottom lateral surfaces produces an increasing downward 

(positive, per axis definition in Figure 1) force 𝐹𝑦 that causes the cylinder to become unstable to 

galloping.  

 
Figure 36. Classic understanding of the galloping phenomenon, connecting the boundary layer 

separation behavior to pressure generation on the side surfaces and, hence, transverse galloping 

force (sketch is done following Naudascher & Rockwell [21]). 

The bottom shear layer reattaches to the surface at a high enough angle of attack, resulting 

in increasing suction on the bottom and reduction in 𝐹𝑦 with further increase of the angle of attack, 
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flipping the instability-promoting trend of 𝐹𝑦 with 𝛼. This reversed trend is related to the upstream 

movement of the reattachment point on the bottom surface with increasing angle of attack post 

reattachment of the shear layer. In other words, the literature indicates that a rectangular cylinder 

is unstable to galloping when the shear layer on its bottom is separated and stable when it 

reattaches. Given Equation 1 (see Chapter 1) 𝐹𝐿 ≈ −𝐹𝑦 at small angles of attack and the galloping 

behavior can be predicted using the lift coefficient, when the quasi-steady assumption holds. 

Therefore, the galloping behavior of the bluff bodies can be contrasted against that of the 

streamline objects, such as a symmetric airfoil, by considering the 𝐶𝐿 − 𝛼 curve. It is well 

stablished that for such bodies, the lift coefficient increases with increasing the angle of attack up 

to the critical angle of the stall. Up to stall, the flow on top of the airfoil either follows the surface 

closely (at high Reynolds number) or a closed separation bubble is formed (at low Reynolds 

number) and an attached flow is present on the bottom surface. Therefore, there is a net suction on 

the top and positive pressure on the bottom, resulting in a positive slope of the 𝐶𝐿 − 𝛼 curve up to 

stall. Hence, the transverse galloping phenomenon is primarily a bluff, rather than a streamline 

body problem.  

New studies [7-9], however, suggest that, at sufficiently low Reynolds number, there are 

factors other than separation/reattachment on the bottom surface that contribute to galloping 

instability. Surface pressure measurements from Feero et. al [9] on a sharp-cornered cylinder with 

𝑐/𝑑 = 3 at 𝑅𝑒𝑑 = 1100 show that despite the reattachment of the shear layer to the bottom surface 

at 𝛼 = 0°, the cylinder is unstable to galloping. They relate this observation, which is contradictory 

to the classic understanding described above, to two factors. First, they find that the separation-

zone pressure on the top surface rises with increasing the angle of attack to cause a net overall 

increase in the average pressure on the surface, promoting an increase in 𝐹𝑦 with 𝛼 (which is a 
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destabilizing effect). This net pressure increase with AoA is opposite to that observed at higher 

Reynolds numbers of 𝑅𝑒𝑑 = 5000 and 10000. The second factor contributing to the unexpected 

instability to galloping of the cylinder, is the observation that unlike at 𝑅𝑒𝑑 = 5000 and 10000, 

at 𝑅𝑒𝑑 = 1100, the reattachment point on the bottom surface does not move upstream with 

increasing the angle of attack. Based on the discussion in the previous paragraph, the reattachment 

point not shifting upstream suggests that the pressure on the bottom surface does not increase with 

angle of attack, and therefore there is no mechanism for 𝐹𝑦 to decrease with 𝛼 to stabilize the 

geometry. Although surface pressure data are not available for the current cases of study, this 

chapter is focused on analyzing the galloping behavior of the cylinders based on the links 

understood in literature between the shear layer separation/reattachment change with AoA and 

galloping instability.  

The separation zone boundary of the smooth cylinder at three Reynolds numbers, 𝑅𝑒𝑑 =

800, 1400, and 2500, and five different angles of attack is shown in Figure 37. At 𝛼 = 0°, there 

is a very thin closed-separation bubble at all the Reynolds numbers. At higher angles of attack, 

separation occurs on the top side of the cylinder at all Reynolds numbers downstream of the 

leading-edge round-corner. The separated shear layer at 𝑅𝑒𝑑 = 800 stays reattached to the top 

surface as the angle of attack is increased to 𝛼 = 1°, but becomes open at higher angles of attack. 

As the Reynolds number increases to 𝑅𝑒𝑑 = 1400, the separation bubble remains closed up to a 

lower angle 𝛼 = 0.5°. Further increase in the Reynolds number shows a closed separation bubble 

on the top surface only at 𝛼 = 0°. Therefore, it is observed that increasing the Reynolds number 

in this range makes the separation bubble on the top surface of the smooth cylinder prone to 

becoming open at a lower angle of attack.  
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On the bottom side of the cylinder, the flow remains attached at 𝑅𝑒𝑑 = 800 and 1400 as 

𝛼 increases, but shows a very thin closed separation bubble at 𝑅𝑒𝑑 = 2500 which shrinks as 𝛼 

increases. This behavior of the bottom shear layer should lead to an increase of the pressure on the 

bottom side with increasing AoA. Thus, the bottom surface is expected to contribute to increasing 

lift with AoA. A similar contribution to lift is possible from the top surface prior to opening of the 

separation bubble, with the latter reversing the trend. Moreover, given the tendency of the 

separation bubble on the top side of the cylinder to become open with increasing 𝑅𝑒𝑑, the top 

surface contribution to positive lift is anticipated to decrease with 𝑅𝑒𝑑. 

 

 
Figure 37. Comparison of the mean separation zone boundary for the smooth cylinder at 

different angles of attack (different rows) and Reynolds numbers. 

𝛼 = 0° 

𝛼 = 0.5° 
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Figure 37 (cont’d) 

 
 

 

 
 

𝛼 = 1° 

 

𝛼 = 1.5° 

 

𝛼 = 2° 
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Noting that 𝐶𝐿 ≈ −𝐶𝑦 for small 𝛼, the above inferences are consistent with the 𝐶𝑦 − 𝛼 

curves of the same cylinder geometry from Feero et al. [7, 8] (see Figure 2-left). Specifically, all 

curves exhibit a decrease of 𝐶𝑦 with angle of attack for small 𝛼 values (i.e increasing 𝐶𝐿 with 𝛼), 

which indicates stability to galloping.  

The separation zone boundary for the 2Dp cylinder is depicted in Figure 38. Focusing on 

the results at 𝛼 = 0° at the lower 𝑅𝑒𝑑 = 800 and 1400, the boundary layer separates downstream 

of the first bump located along the LE corner of the baseline geometry. Reynolds number seems 

to have a very small influence on the separation location. On the other hand, while the separated 

shear layer remains open at the low Reynolds numbers, the shear layer probably reattaches 

upstream of the last lateral topology bump at 𝑅𝑒𝑑 = 2500.  

The observations in the previous paragraph were discussed earlier in Section 3.1. To 

connect the features of boundary layer separation/reattachment to galloping instability, it is 

important to examine how these features change with increasing the angle of attack. Referring to 

Figure 38, the separation remains open on the top and the bottom of the 2Dp cylinder at 

𝑅𝑒𝑑 = 800 and 1400 as 𝛼 is increased up to 1.5°. This behavior is reminiscent of that of the sharp-

corner rectangular cylinders that are unstable to galloping (Parkinson [4]), and hence one may 

expect instability to galloping for this cylinder at 𝑅𝑒𝑑 = 800 and 1400. As the angle of attack is 

increased further to 2° (Figure 38-bottom), the shear layer reattaches on the bottom side, upstream 

of the topology peak at the aft corner of the cylinder, at 𝑅𝑒𝑑 = 800, suggesting pressure recovery 

on the bottom side and a switch of the 𝐶𝑦 − 𝛼 slope sign at 𝛼 ≈ 2°.  However, no reattachment is 

observed at 𝑅𝑒𝑑 = 1400, suggesting that the cylinder remains unstable to galloping over the 

examined range of AoA at this Reynolds number.  
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Increasing Reynolds number to 2500 causes the separated shear layer to remain very close 

to reattaching to the top surface of the 2Dp cylinder up to 𝛼 = 1°, somewhere over the topology 

peak at the aft corner of the cylinder. Further increase to 𝛼 = 1.5°, leads to opening of the 

separation bubble. In contrast, on the bottom side of the 2Dp case, the flow separates downstream 

of the topology peak at the front corner, and reattaches upstream of the topology peak at the aft 

corner at all measured angles of attack. The separation bubble on the bottom side is not shrinking 

significantly with 𝛼, which as stated earlier, is found in [9] to be important for the stability to 

galloping. On the other hand, considering the shear layer on the top side being close to 

reattachment to the cylinder, a stronger suction pressure (and hence higher lift) might be 

developing with increasing AoA, which is a stabilizing effect. It is not known which of these two 

effects would be stronger, and hence is it uncertain if the 2Dp cylinder is stable or unstable at 𝑅𝑒 =

2,500. 
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Figure 38. Comparison of the mean separation zone boundary for the 2Dp-5% cylinder at 

different angles of attack (different rows) and Reynolds numbers. 

 

 

 

 

𝛼 = 0° 

 

𝛼 = 0.5° 

 

𝛼 = 1° 
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Figure 38 (cont’d) 

 

 

Results for the 2Dv are shown in Figure 39, where the separation zone boundary is not 

depicted for any localized separation bubbles within the valleys of the topology. The separation 

bubble remains closed over the top surface at 𝑅𝑒𝑑 = 800 as the angle of attack increases to 𝛼 =

0.5°. With further increasing the angle of attack, the separation bubble becomes open, but remains 

very thin. The shear layer on the bottom surface forms two isolated separation bubbles, filling the 

topology valleys, with increasing the angle of attack (not plotted). Similar trend is observed at 

𝑅𝑒𝑑 = 1400, but opening of the separation bubble on the top is promoted and is observed at 𝛼 =

0.5°. In addition, the separation bubble on the bottom is observed at higher angles of attack and 

𝛼 = 1.5° 

 

𝛼 = 2° 
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the isolated bubbles in the dips are seen as late as 𝛼 = 1°. At 𝑅𝑒𝑑 = 2500, the separated shear 

layer does not reattach to the top surface and moves farther from the surface with increasing 𝛼. 

Reattachment of the separated shear layer is observed to the bottom surface, upstream of last 

topology peak on the surface at 𝛼 = 2°.  

For the lower Reynolds numbers 𝑅𝑒𝑑 = 800 and 1400, the separation zone boundary on 

the bottom is generally very thin and the shear layer is reattached. Thus, the flow generally follows 

the baseline shape of the cylinder on the bottom side, which would likely lead to increased bottom 

surface pressure with AoA, contributing to stability to galloping. The reattachment of the top shear 

layer at 𝑅𝑒𝑑 = 800 and small angles of attack is expected to improve the stability to galloping 

(increasing 𝐶𝐿) for this geometry. It is difficult to judge the pressure variation on the top surface 

at 𝑅𝑒𝑑 = 1400, since the curvature of the top separation bubble only minimally changes at 𝛼 > 0. 

With the top shear layer failing to reattach as the Reynolds number increases to 𝑅𝑒𝑑 = 2500, the 

geometry behaves similar to a sharp corner rectangular cylinder which is prone to galloping. 

Therefore, increasing the Reynolds number in the studied range is expected to make the 2Dv 

cylinder more unstable.  
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Figure 39. Comparison of the mean separation zone boundary for the 2Dv-5% cylinder at 

different angles of attack (different rows) and Reynolds numbers. 

 

 

 

 

𝛼 = 1° 

 

𝛼 = 0.5° 

 

𝛼 = 0° 

 



81 
 

Figure 39 (cont’d) 

 

 

Proceeding to consider the 3D geometry, Figure 40 shows that for all angles of attack, the 

presence of topology variation along the span leads the separated shear layer on both sides of the 

3Dp cylinder to move closer to the surface compared to the 2Dp case (seen in Figure 38). The 

separation bubble on the top surface becomes very close to reattachment over the topology peak 

at the aft corner of the cylinder at 𝛼 = 0° and 𝑅𝑒𝑑 = 800, but reattachment cannot be ascertained. 

With a slight increase in the angle of attack to 𝛼 = 0.5°, the separation bubble becomes clearly 

open and the separation zone boundary moves farther from the surface and has lower curvature 

with further increase of the angle of attack. This is expected to contribute to lower suction pressure 

𝛼 = 1.5° 

 

𝛼 = 2° 
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on the top, hence lower lift at higher 𝛼. On the bottom surface, the bottom shear layer reattaches 

to the surface at 𝛼 = 0.5°, upstream of the topology peak at the aft corner of the cylinder. With 

further increasing the angle of attack, three isolated separation bubbles form inside the topology 

valleys on the bottom surface. The bottom shear layer generally behaves more like an attached 

flow, following the overall shape of the body, and is therefore expected to contribute to stability 

against galloping. Overall, the 3Dp case at 𝑅𝑒𝑑 = 800 behaves like a rectangular cylinder with 

sharp corners at high Reynolds numbers, where the bottom shear layer is reattached and moves 

upstream with increasing the angle of attack, but the top shear layer remains fully separated. This 

is a classic galloping problem studied in the literature [4] and is expected to be stable to galloping. 

At the higher Reynolds numbers 𝑅𝑒𝑑 = 1400 and 2500, the top shear layer remains reattached to 

the surface as the angle of attack increases to 𝛼 = 1° and 1.5°, respectively. Therefore, the top 

shear layer is expected to impose higher suction pressure on the surface and contribute to higher 

lift, up to these angles of attack. Beyond 𝛼 = 1.5° at 𝑅𝑒𝑑 = 1400, and 𝛼 = 2° at 𝑅𝑒𝑑 = 2500, 

the top separated shear layer fails to reattach, and the suction pressure on the top surface is expected 

to drop. The separation bubble on the bottom is closed at these Reynolds numbers and the flow 

generally follows the baseline shape of the cylinder on the bottom side. The contribution of the 

bottom shear layer, therefore, is likely to increase the pressure recovery with angle of attack and 

stability to galloping. Without surface pressure measurements, it is difficult to determine whether 

the stabilizing behavior of the bottom shear layer will overcome the destabilizing effect of the top 

shear layer.  

The effect of Reynolds number is noted to be enhancing the reattachment of the separated 

shear layer on the top surface, hence, improving the stability to galloping. Overall, due to the 

associated higher curvature of the shear layer on the top surface, higher suction pressure relative 
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to the 2Dp case is expected; i.e. promoting an increase in lift and stability to galloping. On the 

bottom side, the shear layer reattachment is expedited and a higher pressure recovery is expected 

for the 3Dp case. This behavior is anticipated to contribute further to the increase in lift and 

stability to galloping for the 3Dp case compared to its 2D counterpart. It should be noted, however, 

that the behavior of the 3D cylinder as a whole cannot be solely determined by looking at the single 

cross-section corresponding to the 2Dp shape, since the cylinder cross-section varies along the 

span. 

 

 
Figure 40. Comparison of the mean separation zone boundary for the 3Dp-5% cylinder at 

different angles of attack (different rows) and Reynolds numbers. 
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𝛼 = 0.5° 
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Figure 40 (cont’d) 
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𝛼 = 1.5° 

 

𝛼 = 2° 
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Results from MTV measurement on the cross section of the 3D cylinder with a valley at 

the leading edge are presented in Figure 41. The top shear layer separates downstream of a 

topology peak and does not reattach at the lower Reynolds numbers 𝑅𝑒𝑑 = 800 and 1400. The 

separation point on the bottom surface seems to be similar to that on the top, being downstream of 

a topology peak. As the angle of attack increases, the separated shear layer on the bottom moves 

closer to the surface and becomes very close to reattachment at 𝛼 = 1° at the mentioned Reynolds 

numbers, but full reattachment is not certain until 𝛼 = 1.5°, which happens over the last topology 

peak on the surface. At 𝛼 = 2°, two isolated closed separation bubbles are observed at 𝑅𝑒𝑑 = 800, 

which are not shown in Figure 41. Although the stability of this cylinder to galloping cannot be 

ascertained by only examining one cross-section, the 3Dv case at 𝑅𝑒𝑑 = 800 and 1400 seems to 

behave similar to the rectangular cylinder with sharp corner which is unstable to galloping.  

 

 
Figure 41. Comparison of the mean separation zone boundary for the 3Dv-5% cylinder at 

different angles of attack (different rows) and Reynolds numbers. 
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𝛼 = 0.5° 
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Figure 41 (cont’d) 
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 The separation zone boundary for 𝑅𝑒𝑑 = 2500 is shown using the zero-crossing data 

points in Figure 41, since the second order polynomial fit does not do an adequate job for this case. 

In fact, at 𝑅𝑒𝑑 = 2500, the separation bubble on the top surface is closed, with reattachment 

occurring upstream of the topology peak at the aft corner of the cylinder. Reattachment persists as 

the angle of attack increases to 𝛼 = 1° with the curvature of the separation zone boundary being 

higher compared to the lower Reynolds numbers. This is expected to contribute to stability to 

galloping. In addition, reattachment to the bottom surface is promoted to a lower angle of attack 

𝛼 = 1°, compared to the lower Reynolds numbers. The separation zone boundary on the bottom 

is generally very thin and the flow generally follows the baseline shape of the cylinder on the 

bottom side, which would likely lead to increased bottom surface pressure with AoA, contributing 

to stability to galloping. Therefore, it is expected that unlike the 2Dv geometry, increasing the 

Reynold number enhances the stability to galloping for the 3Dv case in the examined Reynolds 

number range.  

To summarize, it is expected from MTV measurement on the surface of the 3Dp case, i.e. 

the cross-section of the 3D cylinder with a peak at the leading edge, that this case is slightly stable 

towards galloping at the lowest Reynolds number studied, but becomes more stable as the 

Reynolds number increases. For the other cross-section with a valley at the leading edge (3Dv), a 

positive contribution to stability to galloping is expected only at the highest Reynolds number 

studied. Similar trend was observed from force measurements on this cylinder in wind [7, 8] and 

water [11] tunnels, where the cylinder was unstable at a low enough Reynolds number, but 

increasing the Reynolds number was observed to improve the stability to galloping.  

Although the Reynolds numbers studied here have some commonality with those studied 

in the wind tunnel force measurements by Feero et al. [7, 8], it is important to note that the flow 
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and the force characteristics in two different test facilities may be different notwithstanding 

matching of 𝑅𝑒𝑑. Such differences may be caused by discrepancies in freestream turbulence 

intensity, cylinder aspect ratio, model end conditions, and test section blockage. For this reason, 

complementary force measurements were done by a collaborator [11] on the same cylinder models 

and experimental setup employed in the present study, and the results are reported in Figure 3. As 

seen from the figure, these results convey similar conclusion to those discussed above from 

characterization of the separation/reattachment characteristics of the boundary layer. Namely, the 

stability to galloping of the 3D cylinder improves with increasing Reynolds number. 
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Chapter 4. Characteristics of the Wake Flow 

Whole-field 1c-MTV is carried out in the wake of the cylinders to study the effect of 

surface topology on the wake development and characteristics. Studying the wake is of interest for 

understanding the connections between the wake structures and the surface topology and, more 

importantly, finding the connection to the boundary layer characteristics. Secondly, for the 

particular application of interest for this study, the suspension cables of PADS are likely to 

experience interactions with the wakes of other lines based on their configuration. Therefore, 

studying the wake features of an isolated cylinder could help provide boundary conditions for 

future studies of the instability of the whole system. Furthermore, knowledge of the vortex 

shedding frequency in the wake of the cylinders gives insight into whether the cylinders are also 

susceptible to vortex-induced vibrations and the applicability of the quasi-steady analysis of 

galloping. 

In the current study, the discussion of measurements in the wake of the cylinders at a range 

of Reynolds numbers, 𝑅𝑒𝑑 = 800, 1100, 1400, 1800, and 2500, is limited to the angle of attack 

α = 0°.  

4.1 Mean and rms Velocity Characteristics 

4.1.1 Smooth Cylinder 

Color contour maps of the wake mean and rms streamwise velocity for the smooth cylinder 

are shown in Figure 42. The effect of Reynolds number on the recovery of the wake is evident. 

The mean velocity contour map on the left column suggests that at 𝑅𝑒𝑑 = 800, a small reverse 

flow region forms over the round corners at the cylinder aft, but does not exceed the immediate 

wake. Moreover, there is a forward mean flow in the near wake before a secondary reverse flow 

region forms farther downstream. As the Reynolds number increases, the reverse flow region at 
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the base extends farther downstream. The secondary reverse flow region moves upstream and 

extends in size, so much that at 𝑅𝑒𝑑 = 1400, the two reverse flow regions join. Further increase 

in Reynolds number shows a non-monotonic trend, where the reverse flow region in the wake 

extends both in lateral and downstream direction at 𝑅𝑒𝑑 = 1800 but shrinks distinctly at 𝑅𝑒𝑑 =

2500. 

  

  

  

  

  
Figure 42. Color contour maps of the mean (left) and rms (right) streamwise velocity normalized 

by the freestream velocity (𝑢̅/𝑈∞ and 𝑢𝑟𝑚𝑠/𝑈∞, respectively) in the wake of the smooth cylinder 

in the Reynolds number range 𝑅𝑒𝑑 = 800-2500 in different rows. The trajectory of the peak 

𝑢𝑟𝑚𝑠 in the top shear layer is marked, up to the vortex formation location (maximum 𝑢𝑟𝑚𝑠 in the 

wake). Flow direction is from left to right. 

𝑅𝑒𝑑 = 800 

𝑅𝑒𝑑 = 1100 

𝑅𝑒𝑑 = 1400 

𝑅𝑒𝑑 = 1800 

𝑅𝑒𝑑 = 2500 
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Although cross-stream component of the velocity is not available in the current 

measurements and a direct vorticity analysis cannot be accomplished, the trend observed in the 

current study bears some analogy to the wake flow regimes for a circular cylinder [22]. von 

Karman vortex street is observed at the Reynolds number range 40 < 𝑅𝑒𝑑 < 60 − 100 for 

circular cylinders, where two flow regions with reverse flow exist: one attached to the cylinder aft 

surface, and the other located farther downstream in the wake where alternate vortex formation 

and shedding take place (Figure 43-top). As the Reynolds number increases to 60 − 100 < 𝑅𝑒𝑑 < 

200, the two reverse flow regions merge into one region that is attached to the aft surface. Similar 

behavior is observed in the current study for the smooth rectangular cylinder, where two distinct 

reverse flow regions are observed at 𝑅𝑒𝑑 = 800 − 1100 which, with increasing the Reynolds 

number to 𝑅𝑒𝑑 ≥ 1400, merge into one.  

The rms color maps show that the high fluctuations are generally concentrated and 

contained inside small regions in the immediate wake of the smooth cylinder. As the Reynolds 

number increases, the shear layers become more unsteady and the fluctuations in the wake 

intensify. The region where the maximum rms is found in the wake, which is associated with the 

vortex formation[23-25], moves upstream with increasing the Reynolds number from 800 to 

1100, but remains relatively stationary at higher Reynolds numbers up to 𝑅𝑒𝑑 = 1800. Further 

increase to 𝑅𝑒𝑑 = 2500 shifts the region of highest unsteadiness farther upstream again, closer to 

the base of the cylinder. It is important to note here that the wake development is initiated from 

initial boundary layers that have steady and unsteady characteristics that could vary significantly 

between case. The steady boundary layer characteristics were discussed in Chapter 3, and the 

unsteady characteristics will be examined in Chapter 5, where it will be discussed that 𝑅𝑒𝑑 ≤

1400 exhibits wake formation from a reattached, “almost steady” boundary layer. 𝑅𝑒𝑑 = 1800 
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shows an unsteady transition between fully separated/reattached flow, although showing an open 

mean separation bubble, and reattachment of the boundary layer occurs again at 𝑅𝑒𝑑 = 2500. 

Although the unsteady behavior will be discussed in Chapter 5 in detail, these observations 

underline the complexity of the initial condition for the development of the wake and provide some 

context into why a non-monotonic trend is not surprising. 

 

 
Figure 43. von Karman vortex street (top) and alternative shedding (bottom) regimes in the wake 

of circular cylinders, following the discussion of Panton [22]. 

In the near-wake, 𝑥/𝑑 <  5, several features may be examined: the location and the 

strength of the reverse flow, the wake closure length 𝑙𝑐 (i.e., the location where 𝑢̅𝑐/𝑈∞ = 0. See 

Figure 44 (top) for definition), and the “wake recovery” (the rate of increase in 𝑢̅𝑐/𝑈∞ downstream 

of the closure length). The vortex formation length definition can be seen in Figure 44 (bottom) 

and it is the distance between the cylinder trailing edge and the location of the peak 𝑢𝑟𝑚𝑠 in the 

wake. The wake mean velocity field is first characterized by examining 𝑙𝑐. This is accomplished 

by considering the streamwise evolution of the mean centerline velocity 𝑢̅𝑐. 
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Figure 44. Definition of the closure length 𝑙𝑐 on the mean velocity color contour map (top) as 

well as vortex formation length 𝑙𝑢 and wake width 𝛥𝑟𝑚𝑠 on the rms velocity color contour map 

(bottom). 

The mean centerline velocity results for the smooth cylinder are shown in Figure 45 at 

different Reynolds numbers. From this figure it can be seen that as the Reynolds number increases 

from 𝑅𝑒𝑑 = 800 to 1100, the closure length becomes shorter as the vortex formation occurs closer 

to the aft of the body (see Table 2 for numerical values). Further increase of the Reynolds number 

to 𝑅𝑒𝑑 = 1400 does not alter the closure length, but at 𝑅𝑒𝑑 = 1800 the closure length increases 

again. As discussed before in Chapter 3, an open boundary layer separation is observed at this 

Reynolds number. Therefore, it takes longer for the shear layers from the two sides of the cylinder 

to interact and form vortices, hence the higher 𝑙𝑐. At 𝑅𝑒𝑑 = 2500 reattachment of the boundary 

layer occurs on the surface and the closure length decreases to its lowest value. The vortex 

formation length is also shortest at this Reynolds number, judged by the peak 𝑢𝑟𝑚𝑠 location shown 

in Figure 42 (right).  



94 
 

 
Figure 45. Comparison between the streamwise evolution of the mean centerline velocity in the 

wake of the smooth cylinder in the Reynolds number range 𝑅𝑒𝑑 = 800 − 2500. The error bars 

for most cases are smaller than the marker size. 

Table 2. Summary of various wake parameters. The cases with open separation are highlighted in 

red, and if reattachment occurs at a higher Reynolds number, the case is highlighted in teal.  

  

 
𝑙𝑐/𝑑 𝑙𝑢/𝑑 Δ𝑟𝑚𝑠/𝑑 Δ𝑠ℎ𝑒𝑎𝑟/𝑑 𝑆𝑡𝑑 𝑆𝑡Δrms

 𝑆𝑡Δshear
 

Smooth 

𝑅𝑒𝑑 = 800 2.20 2.45 1.27 1.24 0.23 0.29 0.29 

𝑅𝑒𝑑 = 1100 1.66 1.80 1.20 1.21 0.25 0.30 0.30 

𝑅𝑒𝑑 = 1400 1.70 1.81 1.19 1.18 0.27 0.32 0.32 

𝑅𝑒𝑑 = 1800 1.96 1.12 1.29 1.22 0.22 0.28 0.27 

𝑅𝑒𝑑 = 2500 1.00 1.11 1.09 1.18 0.22 0.24 0.26 

2Dp-

5% 

𝑅𝑒𝑑 = 800 2.23 1.58 1.65 1.63 0.18 0.29 0.29 

𝑅𝑒𝑑 = 1100 1.76 1.50 1.64 1.63 0.17 0.27 0.28 

𝑅𝑒𝑑 = 1400 2.64 2.22 1.79 1.74 0.16 0.29 0.28 

𝑅𝑒𝑑 = 1800 2.59 2.2 1.70 1.69 0.15 0.25 0.25 

𝑅𝑒𝑑 = 2500 1.26 1.50 1.28 1.45 0.18 0.23 0.26 

 𝑅𝑒𝑑 = 800 2.05 2.20 1.36 1.32 0.22 0.30 0.29 

2Dv-

5% 

𝑅𝑒𝑑 = 1100 1.57 1.68 1.31 1.29 0.23 0.30 0.30 

𝑅𝑒𝑑 = 1400 1.20 1.25 1.26 1.28 0.24 0.30 0.31 

𝑅𝑒𝑑 = 1800 1.10 1.16 1.24 1.31 0.23 0.28 0.30 

𝑅𝑒𝑑 = 2500 1.17 0.99 1.33 1.35 0.21 0.28 0.28 

3Dp-

5% 

𝑅𝑒𝑑 = 800 2.23 2.28 1.38 1.31 0.20 0.28 0.26 

𝑅𝑒𝑑 = 1100 1.37 1.43 1.35 1.32 0.22 0.29 0.29 

𝑅𝑒𝑑 = 1400 1.94 1.63 1.41 1.36 0.20 0.28 0.27 

𝑅𝑒𝑑 = 1800 1.02 0.82 1.26 1.40 0.20 0.25 0.28 

𝑅𝑒𝑑 = 2500 0.59 0.57 0.98 1.31 0.20 0.20 0.26 

3Dv-

5% 
𝑅𝑒𝑑 = 800 2.81 2.84 1.55 1.45 0.21 0.32 0.30 
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Table 2 (cont’d) 

3Dv-

5% 

𝑅𝑒𝑑 = 1100 1.15 1.38 1.34 1.37 0.22 0.29 0.30 

𝑅𝑒𝑑 = 1400 0.80 0.95 1.27 1.34 0.22 0.28 0.29 

𝑅𝑒𝑑 = 1800 0.76 0.68 1.22 1.35 0.20 0.25 0.27 

𝑅𝑒𝑑 = 2500 0.66 0.60 1.14 1.30 0.21 0.24 0.27 

Considering the reverse-flow magnitude, the maximum negative velocity slightly increases 

when the Reynolds number is increased from 𝑅𝑒𝑑 = 800 to 1100. Further increase to 𝑅𝑒𝑑 =

1400 causes a slight decrease in the maximum negative velocity value which remains the same at 

the higher Reynolds number of 𝑅𝑒𝑑 = 1800. At 𝑅𝑒𝑑 = 2500, this value slightly decreases again. 

Therefore, there is not an obvious trend of the maximum negative velocity with respect to Reynolds 

number in the examined range. The streamwise location where the maximum reverse flow velocity 

takes place however, follows a more familiar trend. It shifts more upstream when Reynolds number 

increases from 𝑅𝑒𝑑 = 800 to 1100, remains similar at 𝑅𝑒𝑑 = 1400, before moving downstream 

again at 𝑅𝑒𝑑 = 1800, where an open boundary layer separation is observed on the cylinder’s 

surface. Finally, with the reattachment of the shear layer to the surface at 𝑅𝑒𝑑 = 2500, the 

maximum reverse flow velocity occurs more upstream and closest to the cylinder trailing edge. 

This trend is similar to the trend of the closure length versus Reynolds number discussed before. 

Finally, the rate of centerline velocity recovery in the far wake at 𝑅𝑒𝑑 = 2500 indicates a 

wake closer to the asymptotic state 𝑢̅𝑐/𝑈∞ → 1 than the lower Reynolds numbers. It is unclear to 

what extent the far-field evolution might be affected by the blockage effects of the test section. 

This can be more extensively studied in future work.  

4.1.2 2Dp-5% Cylinder 

Figure 46 demonstrates the mean and rms velocity contour maps of the wake flow for the 

2Dp geometry. It is evident that the reverse flow region is considerably larger compared to the 

smooth geometry. The size of the reverse flow region does not follow a monotonic trend against 
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the Reynolds number. This region shrinks when the Reynolds number increases from 𝑅𝑒𝑑 = 800 

to 1100, but expands again at 𝑅𝑒𝑑 = 1400 and 1800. Increasing the Reynolds number further to 

𝑅𝑒𝑑 = 2500 shows a considerable reduction in the size of the reverse flow region, so much that it 

is the smallest amongst the studied range of Reynolds numbers. As it was seen in Chapter 3, the 

separated shear layer reattaches to the surface of this cylinder only at 𝑅𝑒𝑑 = 2500.  

 The rms velocity contour maps depicted in the right column of Figure 46 show that the 

region containing the high fluctuations occupies a region that is elongated more in the streamwise 

direction compared to the smooth cylinder. This elongation in the streamwise direction is more 

pronounced as the Reynolds number increases. The rms contour maps also suggest a non-

monotonic behavior of the unsteadiness intensity with respect to Reynolds number. The 

unsteadiness in the wake intensifies as the Reynolds number increases from 𝑅𝑒𝑑 = 800 before the 

trend reverses at 𝑅𝑒𝑑 = 1800. In fact, the lowest maximum normalized fluctuations are observed 

at 𝑅𝑒𝑑 = 2500. This case involves formation of vortex structures from instability of the separated 

shear layer above the cylinder side surface, which will be later discussed in Chapter 5 (see Figure 

65).  

 The mean wake flow field of the 2Dp cylinder differs from the smooth cases as it does not 

exhibit two separated reverse flow regions. It is possible that this occurs at a lower Reynolds 

number, but the current study does not provide sufficient data for a conclusive determination. 
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Figure 46. Color contour maps of the mean (left) and rms (right) streamwise velocity normalized 

by the freestream velocity (𝑢̅/𝑈∞ and 𝑢𝑟𝑚𝑠/𝑈∞, respectively) in the wake of the 2Dp-5% 

cylinder in the Reynolds number range 𝑅𝑒𝑑 = 800-2500 in different rows. The trajectory of the 

peak 𝑢𝑟𝑚𝑠 in the top shear layer is marked, up to the vortex formation length. Flow direction is 

from left to right. 

Figure 47 presents the mean centerline velocity in the wake of the 2Dp cylinder at different 

Reynolds numbers. The closure length decreases with increasing the Reynolds number from 

𝑅𝑒𝑑 = 800 to 1100, but reverts trend and increases at 𝑅𝑒𝑑 = 1400. It remains very similar at 

𝑅𝑒𝑑 = 1800, but shrinks considerably as the separated shear layer reattaches to the surface at 

𝑅𝑒𝑑 = 800 

𝑅𝑒𝑑 = 1100 

𝑅𝑒𝑑 = 1400 

𝑅𝑒𝑑 = 1800 

𝑅𝑒𝑑 = 2500 
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𝑅𝑒𝑑 = 2500. This non-monotonic trend of 𝑙𝑐 versus Reynolds number is similar to the smooth 

cylinder case (see Table 2 for numerical values).  

 
Figure 47. Comparison between the streamwise evolution of the mean centerline velocity in the 

wake of the 2Dp cylinder in the Reynolds number range 𝑅𝑒𝑑 = 800 − 2500. The error bars for 

most cases are smaller than the marker size. 

The maximum reverse flow velocity slightly increases from 𝑅𝑒𝑑 = 800 to 1100, but 

remains fairly similar with further increasing the Reynolds number, before a distinct decrease 

occurs at 𝑅𝑒𝑑 = 2500. This decrease can be associated with the reattachment of the separated 

shear layer to the surface of the cylinder at 𝑅𝑒𝑑 = 2500, unlike all the other studied Reynolds 

numbers. The location of the maximum reverse flow velocity follows a more similar trend to the 

closure length versus Reynolds number. It first moves upstream up to 𝑅𝑒𝑑 = 1100, reverts 

direction and moves away from the cylinder towards downstream at 𝑅𝑒𝑑 = 1400, and reverts 

direction for a second time to move closer to the cylinder with further increasing the Reynolds 

number.  

The rate of centerline velocity recovery in the far wake of this cylinder shows a similar 

trend at all Reynolds numbers which is considerably deviated from an asymptotic state 𝑢̅𝑐/𝑈∞ →

1. In fact, unlike the case of the smooth cylinder, reattachment of the separated shear layer to the 
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surface at 𝑅𝑒𝑑 = 2500 does not improve the wake recovery towards the asymptotic state. The 

results also show that for this cylinder the wake recovery is noticeably slower than the smooth 

cylinder. 

4.1.3 2Dv-5% Cylinder 

The mean and rms velocity color contour maps in the wake of the 2Dv cylinder are shown 

in Figure 48. Overall, this cylinder has a closer behavior to the smooth cylinder. At 𝑅𝑒𝑑 = 1100, 

the mean velocity colormap suggests that there are two separate reverse flow regions in the near 

wake, and that the vortex formation region is farther downstream and not yet merged with the 

reverse flow region over the trailing edge. At 𝑅𝑒𝑑 = 800, the same observation holds true, with 

the exception that the reverse flow region connected to the surface is not observed. This absence 

is attributed to the measurement limitations in close proximity to the aft surface and inside the 

respective topology valley. Vortex formation region keeps moving closer to the trailing edge as 

the Reynolds number increases to 𝑅𝑒𝑑 = 1800, and is merged with the near trailing edge reverse 

flow region starting at 𝑅𝑒𝑑 = 1400. At 𝑅𝑒𝑑 = 2500, the reverse flow region grows compared to 

the lower Reynolds numbers, which is the opposite trend observed at the lower Reynolds numbers. 

It is noteworthy to recall from Chapter 3 that an open separation bubble is observed over the 

surface of this cylinder only at 𝑅𝑒𝑑 = 1800 and 2500, where the separation zone boundary 

remains very close to the surface at the former Reynolds number and moves farther from the 

surface at the latter. Therefore, a systematic trend is seen in the size of the reverse flow region, 

until the full opening up of the separation bubble. 

The rms contour maps on the right column of Figure 48 reveal that the flow in the 

immediate wake is quiet at 𝑅𝑒𝑑 = 800. In other words, the rapid expansion of the region with high 

unsteadiness, which is associated with the vortex roll-up, takes place after about 1.5 diameters 
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downstream of the trailing edge. As the Reynolds number increases, the high unsteadiness region 

moves closer to the cylinder’s base, which agrees with the postulation that the vortex formation 

region merges with the reverse flow region at the trailing surface starting at 𝑅𝑒𝑑 = 1400.  

  

  

  

  

  
Figure 48. Color contour maps of the mean (left) and rms (right) streamwise velocity normalized 

by the freestream velocity (𝑢̅/𝑈∞ and 𝑢𝑟𝑚𝑠/𝑈∞, respectively) in the wake of the 2Dv-5% 

cylinder in the Reynolds number range 𝑅𝑒𝑑 = 800-2500 in different rows. The trajectory of the 

peak 𝑢𝑟𝑚𝑠 in the top shear layer is marked, up to the vortex formation length. Flow direction is 

from left to right. 

The highly unsteady region is confined in its streamwise extent, similar to the smooth cylinder, 

and the unsteadiness intensifies with the Reynolds number up to 𝑅𝑒𝑑 = 1400. Increasing the 

𝑅𝑒𝑑 = 800 

𝑅𝑒𝑑 = 1100 

𝑅𝑒𝑑 = 1400 

𝑅𝑒𝑑 = 1800 

𝑅𝑒𝑑 = 2500 
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Reynolds number further is linked with a reverse trend, where the maximum unsteadiness level 

decays in the wake.   

Mean centerline velocity in the wake of the 2Dv cylinder is plotted in Figure 49. The vortex 

closure length keeps decreasing when Reynolds number increases from 𝑅𝑒𝑑 = 800 to 1800, but 

slightly increases again at 𝑅𝑒𝑑 = 2500. From Chapter 3, the separated shear layer reattaches to 

the surface at lower Reynolds numbers and becomes fully open at 𝑅𝑒𝑑 = 2500, which explains 

the change of trend for the 𝑙𝑐 versus 𝑅𝑒𝑑 (see Table 2 for numerical values). The maximum reverse 

flow velocity keeps monotonically increasing with Reynolds number which is a different behavior 

seen from smooth and 2Dp cylinders. The location of the maximum reverse flow velocity shows 

a similar trend and monotonically moves upstream and closer to the cylinder with increasing 

Reynolds number.  

The rate of centerline velocity recovery in the far wake of this cylinder shows a good 

deviation from an asymptotic state 𝑢̅𝑐/𝑈∞ → 1, where the recovery does not exceed about 70%. 

In this case, opening of the separation bubble on the surface at 𝑅𝑒𝑑 = 2500 does not deteriorate 

the wake condition away from an asymptotic state. Although not shown here directly, the rate of 

wake recovery for this case at all Reynolds numbers except 𝑅𝑒𝑑 = 2500 is comparable to the 

smooth cylinder. At 𝑅𝑒𝑑 = 2500, the recovery of the wake is slower for the 2Dv cylinder 

compared to the smooth cylinder. 
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Figure 49. Comparison between the streamwise evolution of the mean centerline velocity in the 

wake of the 2Dv cylinder at the Reynolds number range 𝑅𝑒𝑑 = 800 − 2500. The error bars for 

most cases are smaller than the marker size. 

4.1.4 3Dp-5% Cylinder 

Mean and rms velocity color contour maps are presented in Figure 50 for the wake of the 

cylinder with the three-dimensional geometry and in the plane of the cross-section with a peak at 

the leading edge (3Dp). At the lowest Reynolds number 𝑅𝑒𝑑 = 800, the mean contour map 

suggests that there is a confined and isolated reverse flow region in the wake which is not attached 

to the trailing end of the cylinder, and that vortex formation region is separated from the reverse 

flow region at the aft of the body. Interestingly, this behavior is very different than the 2D 

counterpart, where the latter had an open separation bubble over the surface, translating into a 

large reverse flow region in the wake. As the Reynolds number increases to 𝑅𝑒𝑑 = 1100, the 

secondary reverse flow region merges with the reverse flow zone at the aft of the body to form a 

single reverse flow region. The size of this region peaks at 𝑅𝑒𝑑 = 1400, before starting to shrink 

again at higher Reynolds numbers.  

 The rms velocity contour maps for 𝑅𝑒𝑑 = 800 on the right column of Figure 50 show the 

shear layers with higher unsteadiness level start rolling up (expansion of the high rms region) at 
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about 𝑥/𝑑 ≈ 2.75, and that vortex formation takes place relatively far from the tailing base of the 

cylinder. As the Reynolds number increases, the widening of the region with high rms velocity 

progresses towards upstream and closer to the cylinder’s base. Compared to the 2D counterpart, 

this case shows the high unsteady region is more confined, especially at 𝑅𝑒𝑑 = 2500. 

  

  

  

  

  
Figure 50. Color contour maps of the mean (left) and rms (right) streamwise velocity normalized 

by the freestream velocity (𝑢̅/𝑈∞ and 𝑢𝑟𝑚𝑠/𝑈∞, respectively) in the wake of the 3Dp-5% 

cylinder in the Reynolds number range 𝑅𝑒𝑑 = 800-2500 in different rows. The trajectory of the 

peak 𝑢𝑟𝑚𝑠 in the top shear layer is marked, up to the vortex formation length. Flow direction is 

from left to right. 

𝑅𝑒𝑑 = 800 

𝑅𝑒𝑑 = 1100 

𝑅𝑒𝑑 = 1400 

𝑅𝑒𝑑 = 1800 

𝑅𝑒𝑑 = 2500 
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 Mean centerline velocity in the wake of the 3Dp cylinder shown in Figure 51 suggests that 

closure length trend with Reynolds number flip-flops twice in the range of study. Specifically, 𝑙𝑐 

first decreases when 𝑅𝑒𝑑 is increased from 800 to 1100, then increases at 𝑅𝑒𝑑 = 1400, before 

starting to decrease again at higher Reynolds numbers (see Table 2 for numerical values). This is 

similar to the 𝑙𝑐-𝑅𝑒𝑑 trend of the 2D counterpart.  

 The maximum reverse flow velocity increases with increasing the Reynolds number up to 

𝑅𝑒𝑑 = 1800 and remains similar within the errorbars at the higher Reynolds number. The location 

of the maximum reverse flow velocity, however, follows a more similar trend to closure length. It 

moves upstream with increasing the Reynolds number with an exception of 𝑅𝑒𝑑 = 1400 case, 

where it occurs farther downstream. The 2Dp cylinder also showed a similar trend.  

 The rate of centerline velocity recovery in the far wake of this cylinder shows a closer trend 

to an asymptotic state 𝑢̅𝑐/𝑈∞ → 1 at 𝑅𝑒𝑑 = 2500. The recovery at lower Reynolds numbers is 

also better compared to the 2D counterpart. Although not shown here directly, but the streamwise 

evolution of 𝑢̅𝑐 after the wake closure for this case, at all Reynolds numbers except 𝑅𝑒𝑑 = 2500, 

is lower than the smooth cylinder. At 𝑅𝑒𝑑 = 2500, this evolution is very similar to the smooth 

case.  
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Figure 51. Comparison between the streamwise evolution of the mean centerline velocity in the 

wake of the 3Dp cylinder at the Reynolds number range 𝑅𝑒𝑑 = 800 − 2500. The error bars for 

most cases are smaller than the marker size. 

4.1.5 3Dv-5% Cylinder 

Figure 52 shows the mean and rms velocity contour maps in the wake of the other cross-

section of the three-dimensional geometry, the 3Dv case. The mean velocity contour map at 𝑅𝑒𝑑 =

800 suggests the vortex formation region is separated from the reverse flow region attached to the 

trailing edge, which was also observed for the 3Dp case. However, the latter reverse flow region 

stretches farther downstream from the cylinder’s base. This is also true for the secondary reverse 

flow region associated with the vortex formation region. At higher Reynolds numbers, the two 

reverse flow regions join together and there is a single reverse flow zone. Increasing the Reynolds 

number also results in a monotonic decrease in the size of this reverse flow region. This 

monotonicity was not observed for any other case.  

The rms velocity contour maps in Figure 52 show a relatively confined region of high 

unsteadiness, after a rapid widening of the shear layer. As the Reynolds number increases, the 

widening of the shear layer monotonically shifts closer to the trailing base of the cylinder.  
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Figure 52. Color contour maps of the mean (left) and rms (right) streamwise velocity normalized 

by the freestream velocity (𝑢̅/𝑈∞ and 𝑢𝑟𝑚𝑠/𝑈∞, respectively) in the wake of the 3Dv-5% 

cylinder in the Reynolds number range 𝑅𝑒𝑑 = 800-2500 in different rows. The trajectory of the 

peak 𝑢𝑟𝑚𝑠 in the top shear layer is marked, up to the vortex formation length. Flow direction is 

from left to right. 

Mean centerline velocity in the wake of the 3Dv cylinder is presented in Figure 53 and 

shows a monotonic decrease of closure length with increasing the Reynolds number (see Table 2 

for numerical values). The maximum reverse flow velocity remains constant within the error bars 

from 𝑅𝑒𝑑 = 800 − 1400 and starts increasing as the Reynolds number further increases. The 

location of the maximum reverse flow velocity is shifted upstream in a monotonic fashion with 

𝑅𝑒𝑑 = 800 

𝑅𝑒𝑑 = 1100 

𝑅𝑒𝑑 = 1400 

𝑅𝑒𝑑 = 1800 

𝑅𝑒𝑑 = 2500 
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increasing the Reynolds number. In general, both the 2D and 3D geometries with a valley at the 

leading edge generally seem to show a more systematic trend of the reverse flow shrinkage with 

increase of the Reynolds number. 

As the Reynolds number increases, the rate of centerline velocity recovery in the far wake 

of this cylinder becomes closer to an asymptotic state. The recovery at lower Reynolds number 

range 𝑅𝑒𝑑 = 800 − 1400 is comparable to the 2D counterpart, but the variation of surface 

topology along the span improves the recovery at the higher Reynolds numbers. In addition, the 

streamwise evolution of 𝑢̅𝑐 after the wake closure is generally faster at higher Reynolds numbers. 

 
Figure 53. Comparison between the streamwise evolution of the mean centerline velocity in the 

wake of the 3Dv cylinder at the Reynolds number range 𝑅𝑒𝑑 = 800 − 2500. The error bars for 

most cases are smaller than the marker size. 

4.1.6 Discussion 

Within this subsection, a comparison and discussion will be conducted on the results that 

have been presented in sections 4.1.1 through 4.1.5. The streamwise evolution of the mean 

centerline velocity and the mean separation zone boundary for different cylinders discussed before 

are summarized here in Figure 54 and Figure 55. It can be seen that, except for 𝑅𝑒𝑑 = 800, the 

presence of a topology peak at the leading edge of the 2D geometry overall increases the closure 
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length. The effect of surface topology on the wake closure length is more appreciable at the 

intermediate Reynolds numbers 1400 and 1800. Based on the boundary layer measurements in 

Chapter 3 summarized in Figure 55, what is distinct about the 2Dp geometry is that the separation 

zone is laterally larger compared to the other geometries, with the exception of 𝑅𝑒𝑑 = 2500. This 

is consistent with the clear difference in the development of 𝑢̅𝑐/𝑈∞ for this geometry. In this case, 

the recovery of the mean centerline velocity downstream of the closure length is slower. Some 

cases of the geometries with a valley at the leading edge have also shown open separation bubbles 

over the surface in Chapter 3 (2Dv at 𝑅𝑒𝑑 = 2500 and 3Dv at all Reynolds numbers), but for these 

cases, the shear layer becomes very close to reattaching. It is believed that thanks to this, the 

development of the centerline mean velocity does not vary significantly from that of the geometries 

with attached flow and with a closed separation bubble on the surface, such as the smooth cylinder. 

Therefore, it indicates that the wake behavior is not substantially altered solely by the presence of 

open or closed separation, but rather the size of the separation zone and the proximity of the shear 

layer to the cylinder surface emerge as critical factors affecting the wake behavior. Moreover, 

when considering the 3Dv cases, it should be considered that the separation bubble is closed at the 

other spanwise cross-section corresponding to 3Dp at all Reynolds numbers, therefore the 

separation bubble is not open along the entire span of the cylinder.  
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Figure 54. Collection of the streamwise evolution of the mean centerline velocity in the wake of 

different cylinders in the Reynolds number range 𝑅𝑒𝑑 = 800 − 2500. The error bars for most 

cases are smaller than the marker size. 

Smooth 

2Dp 3Dp 

2Dv 3Dv 
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Figure 55. Comparison of the mean separation zone boundary for the cylinders with a peak (left) 

and a valley (right) at the leading edge at different Reynolds numbers. Flow is from left to right. 

Interestingly, the two cross-sections of the 3D geometry show similar trends with the 

Reynolds number to their 2D counterparts. Overall, the geometries with a peak at the leading edge 

first show a decrease in 𝑙𝑐 at 𝑅𝑒 = 1100, followed by an increase at 𝑅𝑒𝑑 = 1400, and another 

subsequent decrease with further increasing the Reynolds number. While the geometries with a 

valley at the leading edge show a consistent reduction in the closure length as the Reynolds number 

increases, indicating a faster early development of the wake. The only anomaly in this trend is the 

2Dv at the highest Reynolds number, which was seen to have an open boundary layer separation 
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in Chapter 3. The smooth cylinder follows a similar trend to 2Dp, where increasing the Reynolds 

number causes 𝑙𝑐 to decreases twice at 𝑅𝑒𝑑 = 1100 and 2500. In addition, for both peak and 

valley geometries, the presence of the topology variation along the span decreases the closure 

length at all Reynolds numbers, with the exception of the valley configurations at 𝑅𝑒𝑑 = 800. In 

this case, 𝑙𝑐 is smaller for the 2D geometry in the absence of the variation along the span.  

Considering the reverse-flow magnitude, the maximum negative velocity is nearly the 

same for the smooth cylinder and keeps increasing with the Reynolds number within the data 

scatter for the other geometries. The only exception is the 2Dp cylinder, showing a decrease in the 

maximum negative velocity at 𝑅𝑒𝑑 = 2500. For this case, flow reattaches to the surface which 

does not happen at lower Reynolds numbers.  

The vortex formation length, 𝑙𝑢, for the smooth cylinder exhibits a consistent monotonic 

decrease, considering the measurement uncertainty, as the Reynolds number increases. This trend 

is also observed in geometries with a topology valley at the leading edge. However, for geometries 

with a topology peak at the leading edge, specifically 2Dp at 𝑅𝑒𝑑 = 1400 and 1800, and 3Dp at 

𝑅𝑒𝑑 = 1400, higher 𝑙𝑢 values are evident at the intermediate Reynolds numbers. Furthermore, 

among all cases at 𝑅𝑒𝑑 ≥ 1400, 2Dp displays the highest 𝑙𝑢 value. It is worth noting that the 

presence of surface topology variation along the span appears to increase 𝑙𝑢 at the lowest Reynolds 

number, when compared to the 2D counterparts, but this trend reverses at 𝑅𝑒𝑑 ≥ 1100. 

Finally, the rate of centerline velocity recovery in the far wake for the smooth cylinder and 

that with 3D topology at 𝑅𝑒𝑑 = 2500 indicate very similar behaviors and a wake closer to the 

asymptotic state 𝑢̅𝑐/𝑈∞ → 1 than the cylinders with 2D topology. In addition, the streamwise 

evolution of 𝑢̅𝑐 for 3D case at this Reynolds number is very close to the smooth cylinder, which is 

not the case for the 2D topology. Overall, variation of the surface topology along the span improves 
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the wake recovery closer to the asymptotic state, compared to the 2D counterparts. It is unclear to 

what extent the far-field evolution might be affected by the blockage effects of the test section. 

This can be more extensively studied in future work.  

In summary, the data obtained from this study reveals that surface topology can introduce 

minor or significant variations not only in the quantitative but also in the qualitative behavior of 

the boundary layer and wake. However, the extent of these variations depends on the specific 

characteristics of the topology. For instance, when comparing 2Dv and 2Dp with the same 

amplitude and wavelength but different "phase" topology, significantly different behaviors are 

observed in the boundary layer and wake. It becomes apparent that predicting the behavior of 

intermediate phases or other wavelengths, let alone more generalized topology, is challenging 

based solely on the current data. 

4.2 Vortex Shedding Frequency 

To measure the vortex shedding frequency, power spectral density (PSD) results are 

obtained for the fluctuating velocity reported at the cross-stream location showing the highest 𝑢𝑟𝑚𝑠 

across the wake far downstream, at 𝑥/𝑑 ≈ 5.8. The results are depicted in Figure 56 plotted against 

the Strouhal number, 𝑆𝑡𝑑 = 𝑓𝑑/𝑈∞, based on the baseline width of the cylinder, where the 𝑆𝑡𝑑 

uncertainty is ±0.002. Evidence of vortex shedding can be found from the presence of spectral 

peaks in the power spectral density (additional evidence based on phase-averaged velocity results 

will be shown in Chapter 5). Specifically, a clear peak in the spectrum is found for all cases, 

although the peaks are weaker for some cases. 𝑆𝑡𝑑 shows a non-monotonic behavior for the smooth 

cylinder, where it increases with Reynolds number up to 𝑅𝑒𝑑 = 1400, before it possesses a lower 

but constant value at higher Reynolds numbers (see Table 2 for numerical values). It was 

previously observed that the boundary layer is attached in the 800 − 1400 Reynolds number 
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range. At 𝑅𝑒𝑑 = 1800, the peak is less prominent and distributed over a wider band, and this case 

showed an open boundary layer separation. At 𝑅𝑒𝑑 = 2500, which showed a reattached boundary 

layer, the peak regains prominence and becomes narrower.  

The 2Dp cylinder shows hardly prominent PSD peaks, and those observed are distributed 

over a wider band compared to the other geometries at the studied Reynolds numbers. The Strouhal 

number associated with the vortex shedding is reduced with increasing the Reynolds number up 

to 𝑅𝑒𝑑 = 1800, but recovers at 𝑅𝑒𝑑 = 2500. In Figure 56, it is challenging to distinguish a PSD 

peak for this geometry at 𝑅𝑒𝑑 = 1800, and the shedding Strouhal number is here determined at 

the location of the maximum PSD value. As discussed before, the boundary layer remains 

separated over the surface of this cylinder at the former Reynolds number range and reattaches at 

𝑅𝑒𝑑 = 2500. Overall, 𝑆𝑡𝑑  is the lowest for the 2Dp cylinder at all Reynolds numbers. It is 

noteworthy to mention that a distinctive characteristic of this case is the location of the separation 

zone boundary, which is farthest from the surface, as observed in Chapter 3. 

The 2Dv cylinder shows prominent peaks distributed over a narrow band at all Reynolds 

numbers, although this prominence starts decaying after 𝑅𝑒𝑑 = 1800. 𝑆𝑡𝑑 also increases with 

increasing the Reynolds numbers up to 𝑅𝑒𝑑 = 1400, but starts decreasing as the Reynolds number 

further increases. The boundary layer over the 2Dv cylinder, as discussed in Chapter 3, was seen 

to reattach to the surface at Reynolds numbers 𝑅𝑒𝑑 = 800 − 1400, but failed to do so at higher 

Reynolds numbers and the separation zone boundary became farther from the surface.  

𝑆𝑡𝑑 is equal for the two cross-sections of the 3D cylinder within the uncertainty, where 

both show equal strength and narrower peaks at the higher Reynolds number. 𝑅𝑒𝑑 = 1400 is an 

exception, where the PSD peak is also strong and narrow for the 3Dv case, but it becomes weak 

and distributed over a broader band for the 3Dp case. It was also seen in Figure 54 and Table 2 
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that the mean centerline velocity evolution and closure length are significantly different (over 

1.1𝑑) between the two cross-sections at this Reynolds number.  

The Strouhal number associated with the vortex shedding in the wake of the two cross-

sections of the 3D cylinder falls in between the 𝑆𝑡𝑑 values for the 2Dp and 2Dv cases at all of the 

studied Reynolds numbers. It is also always lower than the value for the smooth cylinder. In fact, 

the smooth cylinder shows the highest Strouhal number compared to all cases with surface 

topology over the studied Reynolds number range. It is only at 𝑅𝑒𝑑 = 1800, where the 𝑆𝑡𝑑  

becomes similar between the smooth and 2Dv cylinders within the uncertainty. At 𝑅𝑒𝑑 = 1400, 

the PSD peaks for the valley geometries are strong, while those for the peak geometries decay and 

become very weak. The latter geometries also have their respective maximum 𝑙𝑐 values at this 

Reynolds number. Overall, the effect of surface topology on the trend of the most wake features 

is Reynolds number dependent, which suggests there are different flow regimes each cylinder 

undergoes over the studied range of Reynolds numbers.  
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                                𝑅𝑒𝑑 = 800 
  

                              𝑅𝑒𝑑 = 1800 

 
                               𝑅𝑒𝑑 = 1100 

 

                           𝑅𝑒𝑑 = 2500 

 

                               𝑅𝑒𝑑 = 1400 
 

Figure 56. Power spectral density vs. Strouhal number based on the baseline cylinder width for 

the Reynolds number range 𝑅𝑒𝑑 = 800 − 2500, measured at 𝑥/𝑑 ≈ 5.8 and location of the 

highest fluctuations along the cross-stream direction. 

The influence of surface topology on the 𝑆𝑡𝑑 values of the PSD peak for different cases, 

reported in Table 2, is evident. The spread in 𝑆𝑡𝑑 across the geometries at different Reynolds 
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numbers can be seen in Figure 57 (top), where many of the datapoints deviate from the average 

for all geometries by more than 10%. This convergence of the 𝑆𝑡𝑑 values is also highly sensitive 

to Reynolds number, which demonstrates the strong Reynolds number dependency of the surface 

topology effect. A distinct example is the 2Dp cylinder showing the lowest value of 𝑆𝑡𝑑 = 0.15 

overall. When the boundary layer characteristics were discussed in Chapter 3, this cylinder was 

observed to develop an open separation bubble at the lower 𝑅𝑒𝑑, with the shear layer located 

farthest from the surface compared to the other geometries. With reference to the literature 

reviewed below, it is thus concluded that one way that the surface topology influences vortex 

shedding frequency is by displacing the top and bottom shear layers away from each other in the 

near wake. The presence of surface topology and whether it is 2D or 3D affects the 

separation/reattachment of the boundary layer and, as a result, alters the spacing between the shear 

layers in the immediate wake of the cylinders. It is discussed in the existing literature that the latter 

has a substantial effect on the wake and subsequent vortex shedding frequency.  
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Figure 57. Vortex shedding Strouhal number comparison for all cylinders. 𝑆𝑡𝑑 (top), 𝑆𝑡𝛥𝑟𝑚𝑠

 

(middle), and 𝑆𝑡𝛥𝑠ℎ𝑒𝑎𝑟
 (bottom). The solid line in the plot represents the average value at each 

Reynolds number, while the broken lines indicate ±10% deviation from the average. 

Okajima [5], in his study of rectangular cylinders, infers that the shedding frequency is 

roughly inversely related to the wake width. This hypothesis was presented earlier by Fage & 

Johansen [26]. They suggest calculating the Strouhal number using the distance between the shear 

layers in the near wake when they become parallel before “rolling-up” as the proper length scale 
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instead of the body dimensions, and postulate that doing so helps correlate the vortex shedding 

frequency and leads to approaching a universal Strouhal number. Roshko [27] developed an 

inviscid model based on the free-streamline theory [28] to predict the drag of the bluff bodies and 

made use of the idea that the Strouhal number becomes universally a function of Reynolds number 

if scaled based on the separation between the shear layers. 

One definition of the center of the shear layer used in the literature is at the transverse 

location where the maximum streamwise velocity fluctuations occur [23-25]. Thus, the distance 

between the 𝑦 locations of the maximum 𝑢𝑟𝑚𝑠 across each 𝑥/𝑑 can be used as a way to calculate 

the distance between the shear layers 𝛥𝑟𝑚𝑠 (see Figure 44). The studies [23-25] also consider the 

vortex formation (roll-up) region for circular cylinders to be the immediate wake, up to the 

streamwise location of the maximum 𝑢𝑟𝑚𝑠, or up to the streamwise location where the shear layers 

have the narrowest cross-stream distance from each other. Following the literature, the trajectory 

of the shear layer center is here defined as the location of the maximum 𝑢𝑟𝑚𝑠 at each streamwise 

location and is extracted from the boundary layer and wake measurements, up to the formation 

length 𝑙𝑢 (see Figure 44), and subsequently superposed on the color contour maps of the fluctuating 

velocity 𝑢𝑟𝑚𝑠 in the wake as seen in Figure 42, Figure 46, Figure 48, Figure 50, and Figure 52. 

The shear layer separation, 𝛥𝑟𝑚𝑠, is then quantified as the cross-stream distance between the 𝑢𝑟𝑚𝑠 

maxima on the top and the bottom sides of the cylinder at the most upstream measurement location 

in wake measurements, 𝑥/𝑑 ≈ 1.2 (see Figure 44). The results are listed in Table 2. This location 

is well within the formation region, since it is located upstream of the location with the highest 

velocity fluctuations. The Strouhal number values based on 𝛥𝑟𝑚𝑠 are also listed in Table 2, and 

plotted in Figure 57 in red. 



119 
 

A qualitative comparison between the black and red datapoints in Figure 57 demonstrates 

a significant decrease in the spread of the Strouhal number of the PSD peak for different cylinders 

when the Strouhal number is calculated based on 𝛥𝑟𝑚𝑠 at the lower Reynolds numbers. Such 

convergence, however, is not seen at the higher Reynolds number of 𝑅𝑒𝑑 = 2500. As will be 

further discussed in Chapter 5, the shear layer over the surface of the cylinders becomes unsteady 

at this Reynolds number and, in some cases, rolls up to form vortices upstream of the wake. 

Therefore, the vortex shedding mechanism needs to be distinguished for the cases with and without 

shear layer roll-up upstream of the trailing edge.  

In another attempt to further reduce the variability in Strouhal number among different 

geometries, the maximum separation between the centers of the top and bottom shear layers over 

the surface of the cylinders 𝛥𝑠ℎ𝑒𝑎𝑟 is used as the length scale to calculate 𝑆𝑡𝛥𝑠ℎ𝑒𝑎𝑟
. The center of 

the shear layer in this analysis is defined as the location of the maximum 
𝑑𝑢

𝑑𝑦
 from the mean velocity 

profiles. Results of this analysis are plotted in blue datapoints in Figure 57 (bottom) and compared 

against the Strouhal numbers calculated using cylinder width 𝑑 and wake width 𝛥𝑟𝑚𝑠. A qualitative 

comparison demonstrates an improved collapse of the 𝑆𝑡𝛥𝑠ℎ𝑒𝑎𝑟
 datapoints at all Reynolds numbers 

compared to 𝑆𝑡𝑑. However, calculating the Strouhal number this way results in a slightly worse 

collapse at the intermediate Reynolds numbers 𝑅𝑒𝑑 = 1400 and 1800.  

Comparison of the spread in 𝑆𝑡𝛥𝑟𝑚𝑠
 and 𝑆𝑡𝛥𝑠ℎ𝑒𝑎𝑟

 versus 𝑆𝑡𝑑 is quantitatively done for all cases, 

excluding the 3D geometry cases and is reported in Table 3. 3D cases are excluded since 𝛥𝑟𝑚𝑠 and 

𝛥𝑠ℎ𝑒𝑎𝑟 are found to be different in the two spanwise planes of measurement, i.e., 3Dp and 3Dv, 

and it is not known which of these values would be more relevant, or how to appropriately define 

a single shear layer separation distance for the cylinder in the presence of flow three dimensionality 

which is seen in the preliminary visualizations of the spanwise velocity.  
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Table 3. Comparison of the Strouhal number spread when calculated based on the baseline width 

𝑑, wake width 𝛥𝑟𝑚𝑠, and maximum separation of top and bottom shear layers 𝛥𝑠ℎ𝑒𝑎𝑟. 3D cases 

are excluded. 

 
(𝑆𝑡𝑑)𝑚𝑎𝑥 − (𝑆𝑡𝑑)𝑚𝑖𝑛

𝑆𝑡𝑑
̅̅ ̅̅

 𝑆𝑡̅𝑑 
(𝑆𝑡Δ𝑟𝑚𝑠

)𝑚𝑎𝑥 − (𝑆𝑡Δ𝑟𝑚𝑠
)𝑚𝑖𝑛

𝑆𝑡Δ𝑟𝑚𝑠
̅̅ ̅̅ ̅̅ ̅̅

 𝑆𝑡̅Δrms
 
(𝑆𝑡Δ𝑠ℎ𝑒𝑎𝑟

)𝑚𝑎𝑥 − (𝑆𝑡Δ𝑠ℎ𝑒𝑎𝑟
)𝑚𝑖𝑛

𝑆𝑡Δ𝑠ℎ𝑒𝑎𝑟
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 𝑆𝑡̅Δ𝑠ℎ𝑒𝑎𝑟
 

𝑅𝑒𝑑

= 800 
23.8% 0.21 3.4% 0.29 0.1% 0.30 

𝑅𝑒𝑑

= 1100 
36.9% 0.22 10.3% 0.29 6.8% 0.28 

𝑅𝑒𝑑

= 1400 
49.5% 0.22 9.9% 0.30 13.2% 0.30 

𝑅𝑒𝑑

= 1800 
40.0% 0.20 11.1% 0.27 18.3% 0.27 

𝑅𝑒𝑑

= 2500 
19.7% 0.20 20.0% 0.27 7.5% 0.30 

 The spread is seen to decrease significantly when using length scales representative of the wake 

width in comparison to the Strouhal number calculated based on the baseline cylinder width at all 

Reynolds numbers. The only exception is 𝑅𝑒𝑑 = 2500, where  𝑆𝑡̅Δrms
 shows a comparable spread. 

As mentioned before, the wake width results in a better convergence at the intermediate Reynolds 

numbers 𝑅𝑒𝑑 = 1400 and 1800, and the maximum shear layer separation results in the best 

convergence at other Reynolds numbers.  

The spread for each Strouhal number definition is also calculated for all the cylinders, 

excluding the 3D geometry cases, across the Reynolds number range. It is determined as the 

difference between the maximum and minimum Strouhal number values, expressed as a 

percentage of the average value, to assess the independence or sensitivity of the definition to 

Reynolds number. The results show that the spread is 11.1%, 19.0%, and 12.9% of the average 

values (0.21, 0.28, and 0.29) for 𝑆𝑡𝑑, 𝑆𝑡Δ𝑟𝑚𝑠
, and 𝑆𝑡Δshear

, respectively. Therefore, defining the 
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Strouhal number based on the wake width or the separation between the shear layers does not lead 

to a stronger independence of Reynolds number. 

Altogether, these results suggest that changing the initial wake width (shear layers 

separation in the near wake) and the maximum separation of the top and bottom shear layers are 

important influences of surface topology on the vortex shedding frequency. This is caused by the 

topology effect on the boundary layer separation/reattachment behavior on the cylinder’s surface. 

However, altering the wake width and shear layers separation are not the sole influences, and there 

are other mechanisms through which the topology alters the shedding frequency. For instance, the 

maximum 𝑢𝑟𝑚𝑠 velocity over the surface of the 2Dp cylinder at 𝑅𝑒𝑑 = 2500 (see Figure 46) is 

larger than that in the wake. As noted earlier, there is a signature of vortex formation in the shear 

layer above the side surface of the 2Dp cylinder towards its trailing edge at this Reynolds number 

which will be discussed in detail in Chapter 5. In addition, the effect of topology on each of these 

length scales becomes more significant at certain Reynolds numbers. 

Using the wake width and maximum shear layer separation as the length scales in 

calculating the Strouhal number for the 3D cases might be sufficient at lower Reynolds numbers 

when the flow is rather two dimensional. However, at higher Reynolds numbers, the flow is likely 

three-dimensional over the surface and in the wake of the 3D cylinder, and as a result, the behavior 

over separate cross-sections cannot be studied in isolation.  
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Chapter 5. On the Unsteady Behavior of the Flow  

The previous chapters covered analysis of the main statistics of the boundary layer and the 

wake flow of the rectangular cylinders without/with surface topology in a range of Reynolds 

numbers. In this chapter, an attempt is made to complement this investigation to learn more about 

the flow physics by focusing on some of the key unsteady flow features. Moreover, the connection 

between the boundary layer and wake flow unsteady characteristics is explored by utilizing a 

combination of quantitative analysis and qualitative flow visualization.  

The findings in Chapter 3 showed a Reynolds number dependent effect on the boundary 

layer unsteady characteristics (𝑢𝑟𝑚𝑠/𝑈∞). However, the question of what drives this unsteadiness 

remains unanswered. For example, it is unclear if transition of the separating shear layer, wake 

vortex shedding, some other flow feature, or combination of effects dominate the boundary layer 

unsteadiness. Chapter 4 demonstrated the effect of surface topology and Reynolds number on the 

wake flow and the vortex shedding frequency. It is yet to be determined, however, how the 

boundary layer behavior might connect to the wake vortex shedding frequency, and the wake 

vortex structure organization and phase-average signature. These points are examined in this 

chapter. In the interest of conciseness, the focus of this examination is primarily on the smooth 

cylinder geometry.  

Before presenting results, a brief summary is made of the existing understanding of the 

flow physics over the rectangular cylinder geometry in order to help draw connections between 

the boundary layer and wake flow characteristics in later discussions. Unfortunately, the existing 

literature on the rectangular geometry with round corners is very limited. With the exception of 

the work of Parker & Welsh [6], the relevant information can only be found on the sharp-corner 

rectangular cylinders. Even the study of Parker & Welsh does not provide basis for a direct 
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comparison, since it focuses on the effect of side ratio on the shedding frequency and boundary 

layer behavior at much higher Reynolds numbers compared to the present study. Moreover, the 

study does not examine Reynolds number effect. Therefore, sharp-corner rectangular cylinders 

literature will be used as a background to help discuss the key elements of boundary layer and 

wake connections. While boundary layer separation is fundamentally different between the sharp- 

and round-corner cylinders (fixed versus non-fixed separation point), subsequent behavior of the 

separating shear layer upstream of the wake has common qualitative features between the two 

geometries. This includes the formation of open or closed separation bubble, shear layer transition, 

and shear layer and wake vortex formation.  

Numerous studies have been done on the flow around rectangular cylinders with sharp 

corners. One important geometrical feature of these cylinders that can strongly affect the flow 

behavior is the side ratio and the associated length of the afterbody, which is defined as the length 

of the cylinder’s surface downstream of the separation location of the shear layers that roll up into 

the wake vortices [4]. As illustrated in Figure 58 (top), for a sharp-corner cylinder, the afterbody 

normalized by 𝑑 can be either the same as 𝑐/𝑑 for open separation, or zero for closed separation 

bubble (i.e. the shear layer reattaches then separates again at the TE to form the wake vortices). 

For the round-corner cylinder, the length of the afterbody for open separation is less than 𝑐/𝑑 and 

depends on Reynolds number. For closed separation, the afterbody length will be larger than zero 

and depends on where separation occurs after reattachment (Figure 58, bottom).  
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Figure 58. Illustration of the afterbody length 𝑙𝑎𝑓𝑡 for a sharp- (top) and round-corner (bottom) 

cylinders. The broken blue lines indicate the trajectory of separated shear layers, the black arrow 

represents the separation point of the shear layer that rolls up into the wake vortices farther 

downstream. The extent of the afterbody is marked by the red arrows. 

Okajima [5] studied the velocity spectra in the wake of sharp-corner rectangular cylinders 

with different side ratios in the Reynolds number range 𝑅𝑒𝑑 = 70 − 20,000. Measuring the 

Strouhal number associated with the dominant frequency, he found that the Strouhal number 

remains approximately in the range 0.12 − 0.14 for most of the Reynolds number range for a 

square cylinder (𝑐/𝑑 = 1). A plot of his results is reproduced in Figure 59.  

 
Figure 59. Strouhal number in the wake of rectangular cylinders with side ratio 𝑐/𝑑 = 1 

(square). Based on results from Okajima [5]. Sketch depicts the cylinder geometry with the 

separated shear layers indicated with broken lines. 

Regime 2 
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The cylinders with side ratio 𝑐/𝑑 = 2 and 3 (Figure 60 and Figure 61, respectively) show an abrupt 

drop of the dominant Strouhal number with increasing Reynolds number. No additional abrupt 

jump of the Strouhal number is demonstrated with further increase in the Reynolds number for the 

cylinder with side ratio 𝑐/𝑑 = 2, as can be seen in Figure 60. However, the Strouhal number for 

the cylinder with 𝑐/𝑑 = 3 recovers at a high enough Reynolds number to a value close to the low-

Reynolds-number value before the drop (see Figure 61). 

 
Figure 60. Strouhal number in the wake of rectangular cylinders with side ratio 𝑐/𝑑 = 2. Based 

on results from Okajima [3]. Sketches depict the cylinder geometry with the separated shear 

layers indicated with broken lines. 

 
Figure 61. Strouhal number in the wake of rectangular cylinders with side ratio 𝑐/𝑑 = 3. Based 

on results from Okajima [3]. Sketches depict the cylinder geometry with the separated shear 

layers indicated with broken lines. 

Regime 1 
Regime 2 

Regime 1 
Regime 2 

Regime 3 
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Analyzing flow visualization images, Okajima explains the connection between the 

boundary layer behavior and the Strouhal number of the wake vortex shedding. He reveals the 

existence of different flow regimes based on the geometry’s side ratio. It is well known that the 

boundary layer separation point is fixed on the sharp corners of the leading edge. For the cylinders 

with very small side ratio, there is not enough body length for the separated shear layer to reattach 

to the surface. Therefore, the open separation of the boundary layer exists over the full range of 

Reynolds numbers, and the wake is relatively wide and the Strouhal number is generally low and 

does not show an abrupt change (Figure 59).  

For the cylinder with 𝑐/𝑑 = 2, the separated shear layer reattaches to the surface at very 

low Reynolds numbers (this is labeled as Regime 1 in Figure 60), but the separation bubble 

lengthens as the Reynolds number increases up to a point that the shear layer fails to reattach. 

Opening up of the separation bubble is associated with abrupt drop in the Strouhal number and 

widening of the wake. This situation corresponds to switching from Regime 1 to Regime 2 in 

Figure 60. Power spectra of the fluctuating velocity however, reveal that in this switch there is a 

transient range of Reynolds numbers where both the high and low frequencies in the wake co-

exist. As the Reynolds number increases in Regime 2, the lower frequency gains energy and the 

higher frequency gradually fades away. Okajima explains this by pointing out that in this Reynolds 

number range, the boundary layer intermittently switches between fully open separation and 

reattachment over different cycles. In other words, although the mean velocity profile may suggest 

either reattached flow or open separation, instantaneously, the boundary layer may in fact reattach 

or fail to do so occasionally in this transient region. Further increase of the Reynolds number in 

the range studied by Okajima does not cause the separated shear layer to reattach again, hence the 

absence of a Strouhal number recovery. 
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The same observations hold for the cylinder with the higher side ratio 𝑐/𝑑 = 3, except that 

in addition to the Strouhal number associated with Regime 1, there are two PSD peaks observed 

when transitioning from Regime 1 to Regime 2. Okajima reports as many as three Strouhal 

numbers at some Reynolds numbers. For this cylinder, at a high enough Reynolds number, the 

shear layer exhibits transition and vortex formation above the cylinder’s sidewall, leading to 

reattachment of the boundary layer and narrowing of the wake, which causes a recovery of the 

Strouhal number. This is labeled as Regime 3 in Figure 61. When the afterbody is long enough, 

which is the case for the cylinder with 𝑐/𝑑 = 4 in Okajima’s study, the maximum length of the 

separation bubble over the full range of Reynolds numbers is shorter than 𝑐 and the separation 

bubble never becomes open. Therefore, no abrupt changes of the Strouhal number are observed 

with increasing Reynolds number (these results are not depicted here). Subsequent studies (e.g. 

Norberg [29] and references therein) confirmed the results of Okajima [3] and provided similar 

interpretations of the connections between the boundary layer behavior and the vortex shedding 

Strouhal number. It is notable that generally, previous studies have relied on flow visualization in 

interpreting the boundary layer behavior. The present work is unique in that it takes advantage of 

the high-resolution capability of 1c-MTV to analyze the boundary layer using velocity data. 

5.1 Nature of the Boundary Layer Unsteadiness 

Power spectral density is calculated to investigate the dominant frequencies of the velocity 

fluctuation in the boundary layer as the first step to analyze the boundary layer unsteadiness. PSD 

analysis is carried out at two streamwise locations of 𝑥/𝑑 = 0 and 0.71 above the cylinder’s 

surface, and the cross-stream location of the maximum fluctuations (𝑢𝑟𝑚𝑠). The streamwise 

locations are picked to represent the boundary layer behavior at the mid-cord and just upstream of 

the trailing edge rounded corner (ahead of the start of the wake development), respectively. The 
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results are then compared against the PSD analysis in the “far” wake at 𝑥/𝑑 = 6 to investigate the 

extent by which the boundary layer fluctuations are influenced by the wake vortex formation. The 

results are shown in Figure 62 and Figure 63 using a logarithmic and a linear ordinate, respectively. 

 

   

   

  

 

 

Figure 62. Power spectral density vs. Strouhal number of the smooth cylinder in the Reynolds 

number range 𝑅𝑒𝑑 = 800 − 2500 measured at different streamwise locations and at the location 

of the highest fluctuations along the cross-stream direction. 𝑦-axis is logarithimc to make local 

peaks visible regardless of strength.  

𝑅𝑒𝑑 = 2500 

𝑅𝑒𝑑 = 1800 𝑅𝑒𝑑 = 800 

𝑅𝑒𝑑 = 1100 

𝑅𝑒𝑑 = 1400 
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Figure 63. Power spectral density vs. Strouhal number of the smooth cylinder in the Reynolds 

number range 𝑅𝑒𝑑 = 800 − 2500 measured at different streamwise locations and at the location 

of the highest fluctuations along the cross-stream direction. 𝑦-axis is linear to better appreciate 

the relative importance of spectral peaks. 

Similar to the results from Chapter 4, Figure 62 and Figure 63 depict a clear and strong 

spectral peak at 𝑥/𝑑 = 6 corresponding to the vortex shedding frequency for all Reynolds 

numbers. At the lowest two Reynolds numbers, 𝑅𝑒𝑑 = 800 and 1,100, no peak is found at the 

𝑅𝑒𝑑 = 2500 

𝑅𝑒𝑑 = 1800 𝑅𝑒𝑑 = 800 

𝑅𝑒𝑑 = 1100 

𝑅𝑒𝑑 = 1400 
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shedding frequency in the PSD of the boundary layer (𝑥/𝑑 = 0 and 0.71). This indicates that the 

boundary layer unsteadiness at these low Reynolds numbers is unaffected by vortex shedding. At 

𝑅𝑒𝑑 = 800, the vortex formation length is 𝑙𝑢/𝑑 = 2.45 (see Table 1 in Chapter 4), which is 

significantly larger than the rest of the Reynolds numbers. It is possible that in this case, vortex 

formation is occurring too far downstream of the cylinder to practically affect the boundary layer 

flow. The same argument, however, cannot be used for 𝑅𝑒𝑑 = 1,100 since in this case 𝑙𝑢/𝑑 =

1.8, which is practically the same as 𝑙𝑢/𝑑 = 1.81 for 𝑅𝑒𝑑 = 1,400. The latter Reynolds number 

shows signs of the wake vortex formation affecting the boundary layer flow (Figure 62). Thus, the 

absence of the wake effect at 𝑅𝑒𝑑 = 1100 is likely not caused by the remoteness of vortex 

shedding from the cylinder. However, as can be seen from Figure 62 and Figure 63, the strength 

of the PSD peak of vortex shedding (at 𝑥/𝑑 = 6) is higher at 𝑅𝑒𝑑 = 1400, compared to 1100, 

and the associated higher vortex strength may be the cause that vortex shedding unsteadiness is 

felt at 𝑅𝑒𝑑 = 1400 but not 1100 despite the similar vortex formation length.  

At the higher Reynolds numbers of 𝑅𝑒𝑑 = 1800 and 2500, the wake vortex shedding 

frequency is clearly visible in the boundary layer frequency content, indicating an interaction 

between the wake vortex shedding and boundary layer behavior. In fact, at 𝑅𝑒𝑑 = 2500, the peak 

corresponding to vortex shedding is the largest in the PSD of the boundary layer. At this Reynolds 

number, vortex formation is the closest to the cylinder with 𝑙𝑢/𝑑 = 1.11. 

Irrespective of whether the vortex shedding frequency is present or absent in the PSD of 

the boundary layer, with the exception of 𝑅𝑒𝑑 = 2500, the boundary layer unsteadiness is 

dominated by low frequency fluctuation. Close inspection of Figure 62, shows that the PSD peaks 

at low Strouhal number systematically shift towards a lower 𝑆𝑡𝑑 with increasing Reynolds number. 

Since 𝑅𝑒𝑑 is increased by increasing 𝑈∞, this effect could correspond to peaks that are at a fixed 
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physical frequency in Hz. This point is checked in Figure 64, where the PSD for all Reynolds 

numbers and 𝑥/𝑑 = 0.71 are plotted versus frequency in Hz on the same graph over a frequency 

range that is focused at low frequencies. The results do indeed confirm the fixed nature of this 

frequency, which is tracked to the slushing frequency of the water tunnel (the same frequency is 

also found in the freestream). These fluctuations, however, are not significant and become smaller 

at higher Reynolds numbers (e.g. 1.9% and 1.6% of 𝑈∞ at 𝑅𝑒𝑑 = 800 and 1400, respectively at 

𝑥/𝑑 = 0.71) and we expect them to cause low-level low-frequency modulation of the flow without 

affecting the flow behavior. Thus, in an ideal facility with zero freestream fluctuation, the 

boundary layer around the cylinder at 𝑅𝑒𝑑 = 800 and 1100 should be steady. As the Reynolds 

number is increased to 𝑅𝑒𝑑 = 1400 and beyond, vortex shedding leads to boundary layer 

unsteadiness with the effect becoming stronger with increasing 𝑅𝑒𝑑, at least within the range 

investigated. 

 
Figure 64. Demonstration of the signature of the sloshing frequency of the water tunnel on the 

measured velocity spectra. Power spectral density vs frequency of the smooth cylinder in the 

Reynolds number range 𝑅𝑒𝑑 = 800 − 2500 measured at 𝑥/𝑑 = 0.71 and at the location of the 

highest fluctuations along the cross-stream direction. Focusing on low frequencies to zoom on 

the trace of the tunnel sloshing. 
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In the Reynolds number range 𝑅𝑒𝑑 = 800 − 1400, power spectral density in the wake 

shows a clear sign of vortex shedding at a Strouhal number which keeps increasing with Reynolds 

number (black lines in Figure 62 and Figure 63). The second harmonic is also seen in the spectrum 

at twice the shedding frequency for 𝑅𝑒𝑑 = 800 and 1100. In Chapter 3, the boundary layer mean 

velocity profile indicated a reattached boundary layer over the surface of this cylinder at these 

Reynolds numbers. These characteristics of a reattached boundary layer and increasing 𝑆𝑡𝑑 with 

𝑅𝑒𝑑 are consistent with Regime 1 behavior of the sharp-corner cylinder in Figure 60 and Figure 

61. 

As the Reynolds number increases further to 𝑅𝑒𝑑 = 1800, the boundary layer mean 

separation bubble becomes open (Chapter 3) and the vortex shedding 𝑆𝑡𝑑  drops from 0.27 at 

𝑅𝑒𝑑 = 1400 to 0.22 at 𝑅𝑒𝑑 = 1800. These features are analogous to Regime 1-Regime 2 

transition in Figure 60 and Figure 61. It is interesting to note that the PSD in the wake at 𝑅𝑒𝑑 =

1400 shows the emergence of the lower 𝑆𝑡𝑑 peak at 0.22. At 𝑅𝑒𝑑 = 1800, that secondary peak 

at lower frequency takes over and becomes dominant while the higher frequency disappears. 

Additional increase in 𝑅𝑒𝑑 to 2500 maintains 𝑆𝑡𝑑 at 0.22, although at this Reynolds number the 

shear layer reattaches on the cylinder sidewall (Chapter 3).  

The switch from open to closed separation bubble with 𝑅𝑒𝑑 increase from 1800 to 2500 

seems to correspond to Regime 2- Regime 3 change for the sharp-corner cylinder in Figure 61. 

However, as discussed by Okajima [5], such a regime change is associated with Kelvin-Helmholtz 

vortex formation in the separated shear layer above the cylinder sidewall. Inspection of flow 

visualization images in this study shows that such vortex formation does not occur for the smooth 

cylinder at any of the Reynolds numbers investigated. To demonstrate this point, Figure 65 shows 

a comparison between instantaneous flow visualization snapshots of the smooth cylinder at 𝑅𝑒𝑑 =
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2500 and the 2Dp-5% cylinder at the same Reynolds number. The latter geometry provides a case 

in which vortex formation occurs in the separated shear layer above the cylinder. Specifically, a 

vortex formation (highlighted by a red arrow in Figure 65-a) is observed over a surface topology 

peak, as inferred from the distortion of the MTV lines in Figure 65-a. This vortex travels 

downstream and remains close enough to the surface to impose reattachment just downstream of 

its location, as seen in Figure 65-b. Figure 65-c depicts the shedding of a single shear layer vortex 

into the wake. Similar MTV lines distortion is absent from the visualization images of the smooth 

cylinder in Figure 65. 

The absence of vortex formation above the cylinder sidewall when the shear layer is 

reattached for the smooth cylinder at 𝑅𝑒𝑑 = 2500 is consistent with the flow behavior in Regime 

1 in Figure 60 and Figure 61 for the sharp-corner cylinder. This suggests that the rectangular 

cylinder with fully-round LE does not exhibit monotonic regime transitions with increasing 𝑅𝑒𝑑 

as the sharp-corner cylinder. Specifically, in terms of the boundary layer behavior, as the Reynolds 

number increases, we observe transition from Regime 1 (𝑅𝑒𝑑 = 800, 1100 and 1400) to Regime 

2 (𝑅𝑒𝑑 = 1800) then back to Regime 1 (𝑅𝑒𝑑 = 2500). This is believed to be due to the more 

complex nature of separation/reattachment on the cylinder with round LE, where the separation 

point is not fixed. Moreover, unlike the sharp-corner cylinder where separation occurs on the front 

face, for the round-LE cylinder separation is always observed on the flat part of the sidewall for 

the cases investigated here. This generally leads to significantly thinner separation zone for the 

round-LE cylinder compared to the sharp-corner cylinder. In turn, the difference in the separated 

shear layer trajectory between open- and closed separation bubble is not as significant, and hence 

the switch between the two states may be sensitive to various factors, such as movement of the 

separation point, proximity of wake vortex formation location to the cylinder, etc. It is also 
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noteworthy that although the boundary layer behavior at 𝑅𝑒𝑑 = 2500 corresponds to Regime 1 of 

the sharp-corner cylinder, the Strouhal number remains at 0.22 similar to 𝑅𝑒𝑑 = 1400 and does 

not exhibit the increase expected from narrowing of the wake associated with reattachment.  

  
(a) 

  
(b) 

  
(c) 

Figure 65. Snapshots from visualization of the boundary layer flow over the smooth cylinder 

(left) and 2Dp-5% cylinder (right) at 𝑅𝑒𝑑 = 2500. Red line marks MTV lines distortion 

implying presence of a vortex.  

To achieve insight into the instantaneous separation/reattachment flow behavior, forward 

flow probability (FFP) is calculated. FFP, which represents the probability of a positive velocity, 

is calculated at the closest valid pixel to the surface by counting the number of times a positive 

velocity occurs in a timeseries and dividing the result by the number of points in the time series. 

The results are demonstrated in Figure 66, plotted versus the streamwise location over the flat 

 

 

 
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cylinder sidewall. A polynomial curve fit is applied to the data to help visualize the overall trend 

despite data scatter.  

FFP of 50% is sometimes used to indicate locations of separation and reattachment. This 

works well if the probability density function of the velocity is symmetric at these locations. In 

Figure 66, the mean separation/reattachment locations based on the mean velocity measurements 

(from Chapter 3) are superposed as vertical lines on the FFP. These agree well with the locations 

where the FFP plot crosses 50% level (indicated with the horizontal broken line). Inspecting Figure 

66, the FFP is lower than 50% over a certain region of the surface at 𝑅𝑒𝑑 = 800 and 1400, 

indicating the presence of separation followed by reattachment. The case of 𝑅𝑒𝑑 = 1100 shows 

higher than 50% probability over the whole surface, implying the absence of boundary layer 

separation on average. These observations are completely in line with the mean flow behavior 

discussed earlier in Chapter 3. Some deviation in the instantaneous behavior from this mean flow 

picture are however implied from the FFP. Specifically, at 𝑅𝑒𝑑 = 800, the FFP at the downstream 

end of the flat sidewall exhibits only 80% FFP, indicating 20% probability of reverse flow. 

Inspection of instantaneous velocity contour plots does show that indeed occasionally the 

boundary layer exhibits open, but very thin separation bubble. Also, at 𝑅𝑒𝑑 = 1100, the flow near 

the middle of the cylinder exhibit less than 100% FFP but is bounded by 100% FFP on the upstream 

and downstream sides. This implies a relatively rare occurrence of a closed separation bubble 

above the middle of the cylinder sidewall. 
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Figure 66. Forward flow probability over the surface of the smooth cylinder at different 

Reynolds numbers. The vertical lines represent the mean separation and reattachment locations 

from Chapter 3. 

The case of 𝑅𝑒𝑑 = 1800 had shown a fully separated flow without reattachment based on 

the mean velocity field analysis. However, it can be seen in Figure 66 that there is 45% probability 

of reattachment at the most downstream location 𝑥/𝑑 = 0.8. The implication of this observation 

is that, at this Reynolds number, the boundary layer reattaches to the surface almost half the time, 

despite of the absence of mean reattachment. Inspection of the velocity field reveals that the flow 

regime swings between fully separated and reattached states every few cycles, as demonstrated by 

the two snapshots shown in Figure 67. The top snapshot (Figure 67-a) demonstrates a time snap 

when the shear layer fails to reattach, corresponding to Regime 2. The bottom snapshot (Figure 

67-b) shows a reattached boundary layer on the surface of the cylinder. It is important to note that 

these snapshots are not taken during the same shedding cycle, but the change of the reattachment 

behavior of the boundary layer happens every once in a while. Both snapshots correspond to an 

instant where shedding of positive vorticity at the downstream end of the plot. This is based only 

on the streamwise velocity in the absence of cross-stream velocity measurements (𝜔𝑧  ≈  𝑑𝑢/𝑑𝑦).  

Therefore, the 𝑅𝑒𝑑 = 1800 case is not simply a case of an open separation bubble, but an 

intermittent reattachment of the separated boundary layer.  
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(a) 

 
(b) 

Figure 67. Instantaneous color contour snapshots of the velocity field in the wake of the smooth 

cylinder at 𝑅𝑒𝑑 = 1800. Signatures of (a) separated and (b) reattached boundary layer. 

With additional increase to 𝑅𝑒𝑑 = 2500, the separated boundary layer fully reattaches 

again to the surface, given that the FFP crosses the 50% threshold at about 𝑥/𝑑 = 0.5 and becomes 

very close to 100% before the end of the flat surface (gray line in Figure 66). This behavior may 

also be observed from the instantaneous snapshots in Figure 68, taken at two different phases of 

the shedding cycle, corresponding to shedding of positive and negative vorticity in the wake. While 

there is movement of the reattachment point between the two snapshots (the end of the separation 

zone, light blue color, is visible in the bottom but not the top snapshot), the boundary layer remains 

reattached on the flat surface. Therefore, the instantaneous behavior at 𝑅𝑒𝑑 = 2500 is consistent 

with the separation bubble remaining closed, as implied from the mean velocity field analysis. 

Although the bubble does fluctuate in size with the unsteadiness dominated by vortex shedding. 
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(a) 

 
(b) 

Figure 68. Instantaneous color contour snapshots of the velocity field in the wake of the smooth 

cylinder at 𝑅𝑒𝑑 = 2500. Signatures (a) clockwise and (b) counterclockwise vortices. 

To summarize the outcome of the above results, the smooth round-corner cylinder shows 

a behavior with increasing Reynolds number which is different from the understanding of the 

sharp-corner cylinder in the literature. The sharp-corner cylinder with a similar side ratio 

experiences Regimes 1, 2, and 3 consecutively with increasing the Reynolds number. On the other 

hand, with the range investigated of 800 ≤ 𝑅𝑒𝑑 ≤ 2500, the round-corner cylinder is seen to 

undergo Regime 1 at lower Reynolds numbers, “flip-flop” between Regimes 1 and 2 at an 

intermediate Reynolds number, and jump back to Regime 1 as the Reynolds number is further 

increased.  

There are significant differences between the flow over the smooth round-corner cylinder 

versus that of a rectangular cylinder with sharp corners. Contrary to the latter case, where the 
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boundary layer separation point is fixed at the sharp corners, the separation point can move over 

the surface of the smooth cylinder. Therefore, the flow can separate anywhere over the leading-

edge curve, or the flat surface, or in the case of 𝑅𝑒𝑑 = 1100 even remain attached over the whole 

forward body (except for possible occasional occurrence of a small separation bubble near 𝑥/𝑑 =

0 as seen from the FFP results in Figure 66).  

It is well understood that the reattachment of the boundary layer over the surface of an 

object is greatly affected by the trajectory of the shear layer. Despite of separation, closed or open, 

the separated shear layer remains very close to the cylinder sidewall for round-corner smooth 

cylinder (see Figure 9 in Chapter 3) compared to the sharp corner cylinder. The shear layer also 

does not undergo transition over the examined Reynolds number range, since flow visualization 

did not show any sign of vortical structures forming on the surface of the smooth cylinder even at 

the highest Reynolds number of 𝑅𝑒𝑑 = 2500. Furthermore, in the latter case, wake vortex 

formation occurs so close to the cylinder base such that it now largely influences the shear layer 

unsteadiness over the surface (based on the spectra at 𝑥/𝑑 = 0 and 0.71 in Figure 62 and Figure 

63). Flow visualization and velocity snapshots additionally demonstrate the alternate behavior of 

the boundary layer flow in conjugation with wake vortex formation and shedding. Therefore, the 

reattachment mechanism for this regime should be differentiated from that of a sharp-corner 

cylinder, where the shear layer transition causes reattachment.  

Comparison of the sharp- and round corner-cylinders in a nutshell shows that the smooth 

cylinder primarily undergoes Regime 1. A transition to Regime 2 is also observed at an 

intermediary Reynolds number, but it does not persist all the time. Although the Reynolds number 

range covered in this study does not capture a case where Regime 2 is fully dominant, it can well 

take place at a Reynolds number 1400 < 𝑅𝑒𝑑 < 1800 and/or 𝑅𝑒𝑑 > 2500. Similarly, Regime 3 
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could occur for sufficiently high Reynolds number. The sharp-corner cylinder, on the other hand, 

experiences monotonic transition between Regimes 1, 2, and 3 with increasing Reynolds number. 

It should be noted that for the sharp-corner cylinder the transition from Regime 2 to 3 for 𝑐/𝑑 =

2.5 takes place somewhere in the range 2000 < 𝑅𝑒𝑑 < 4000 (Norberg [29]). 

5.2 Phase-Average Analysis of the Wake 

As observed from the PSD analysis, Reynolds number affects the strength and the 

broadness of the spectral peak at the dominant frequency of the velocity fluctuations in the wake 

of the smooth cylinder. It is assumed that this frequency corresponds to vortex shedding, but this 

cannot be ascertained from spectral information alone. To extract more details regarding the flow 

structure corresponding to the spectral peak for different flow regimes discussed above, phase-

averaged streamwise velocity profiles are obtained relative to an oscillation cycle at the spectrum-

peak frequency. These profiles are used to examine the presence of velocity signatures consistent 

with the shedding of counter-rotating spanwise vortices into the wake. To obtain the phase average 

velocity < 𝑢 >, data points in the velocity time series are phase-ordered in 16 phase-bins relative 

to their location in the oscillation cycle, where each bin contains about 80 datapoints. This location 

is indicated by the normalized phase 𝜙, where 𝜙 = 0 is at the start of the cycle and 𝜙 = 1 at the 

end.  

The presence of a velocity deficit in bluff body wakes makes it difficult to distinguish the 

signature of a vortex passing in the phase-averaged velocity profile. To aid the reader in 

understanding how the vortex signature is identified in the velocity profiles, an idealized velocity 

profile resulting from the superposition of profiles due to wake deficit 𝑢𝑑(𝑦) and a vortex 𝑢𝑣(𝑦) 

is demonstrated in Figure 69 for different relative strengths of the vortex (increasing strength from 

left to right). The top plots correspond to a clockwise vortex with a core center above the wake 
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centerline, at 𝑦𝑐/𝑑 = 0.25, while the bottom plots represent a counter-clockwise vortex below the 

centerline, at 𝑦𝑐/𝑑 = −0.25. The wake deficit profile is taken as a Gaussian function 

𝑢𝑤(𝑦) =
−𝑈𝑤

𝜎𝑤√𝜋
𝑒

−
(𝑦)2

2𝜎𝑤
2

,          (19)  

where, 𝑈𝑤 is the centerline wake deficit and 𝜎𝑤 is a wake width parameter. On the other hand, the 

vortex profile is based on Gaussian vorticity distribution in the vortex core 

𝑢𝑣(𝑦) =
𝜋𝑅𝑜

2𝜔𝑜

2𝜋(𝑦−𝑦𝑐)
 [1 − 𝑒

−
(𝑦−𝑦𝑐)2

𝑅𝑜
2

],        (20) 

where, 𝑅𝑜 is the vortex core radius and 𝜔𝑜 is the maximum vorticity at the vortex core center 

(located at 𝑦𝑐). The profile parameters are chosen to provide profiles that are comparable to those 

measured with the increase of the vortex strength achieved by increasing 𝜔𝑜. 

Focusing on the velocity profiles on the top half of Figure 69, each plot contains the wake 

profile (red broken line), the vortex profile (blue broken line) and the superposed profiles (black 

line). Examining the case with the weakest vortex signature (left plot), it is clear that the overall 

signature of vortex presence distorts the wake profile very little, making it difficult to conclude 

that a vortex is present. This distortion, which can be seen more clearly for the strongest vortex 

case (right plot) is such that it produces certain asymmetries between the top and the bottom halves 

of the profile. Specifically, for the clockwise vortex with center above the wake centerline, the 

asymmetry is such that the magnitude of the maximum positive velocity gradient at the vortex 

center (above the centerline) is larger than magnitude of the minimum velocity gradient below the 

centerline. Additionally, instead of the deficit profile smoothly approaching the zero asymptote 

away from the wake centerline (red line), the overall profile (black line) exhibits an overshoot 

above the vortex core center and undershoot below (which laterally shifts the minimum profile 

velocity away from the wake centerline). Similar observations, but with the opposite sense, can be 
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seen for the presence of a counter-clockwise vortex below the centerline (bottom plots in Figure 

69). 

   

   

Figure 69. Illustration of synthetic phase-averaged velocity profile constructed from the 

superposition of wake deficit (red) and Gaussian vortex (blue) streamwise velocity profiles. The 

vortex strength increases from left to right. The top and bottom rows depict clockwise and 

counterclockwise vortices with core centers above and under the wake centerline, respectively. 

Figure 70 shows the < 𝑢′ >=< 𝑢 > −𝑈∞ profiles for every other 𝜙 value with an increment 

of Δ𝜙 = 2 × 0.0625 for the smooth cylinder at 𝑅𝑒𝑑 = 800. 𝜙=0 is assigned to the instant with 

maximum positive velocity gradient 𝑑 < 𝑢′ >/𝑑𝑦. The phase-average analysis is done at a 

streamwise location 1𝑑 distance downstream of the vortex formation location for all cases. This 

case is discussed as a representative of flow Regime 1.  
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Following the orientation of Figure 69 , inspection of Figure 70 shows that indeed a < 𝑢′ >

 signature typical of the periodic passing of a counter-rotating vortex pair is evident. Specifically, 

at 𝜙 = 0, the velocity profile is qualitatively similar to that of a vortex with clockwise rotation 

present above the wake centerline. At this phase, the positive velocity gradient is highest, 

consistent with the presence of the center of a clockwise vortex at the maximum gradient location 

(identified with a blue circle in Figure 70). Likewise, a similar profile, but with negative velocity 

gradient, is seen in the middle of the cycle at 𝜙 = 0.5, suggesting the passage of a counter-

clockwise vortex below the wake centerline. The PSD corresponding to this case, along with other 

cases considered for the phase-average analysis, is depicted in Figure 71 and exhibits a strong peak 

that is more than two orders of magnitude above other fluctuations in the spectrum. The PSD 

results are obtained at the streamwise location of the phase averaging, and the cross-stream 

location of the maximum 𝑢𝑟𝑚𝑠.  

 
Figure 70. < 𝑢′ >/𝑈∞  at different phases measured 1𝑑 downstream of the formation length at 

𝑥/𝑑 = 4.7. Smooth cylinder at 𝑅𝑒𝑑 = 800. Maximum positive and negative velcoty gradient 

locations are marked at 𝜙 = 0 and 0.5. 
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Figure 71. Power spectral density vs. Strouhal number of the smooth cylinder for selected 

Reynolds numbers at the streamwise location of the phase-average analysis and at the cross-

stream location of the highest fluctuations. 

     To examine the cycle-to-cycle repeatability of the vortex signature, the velocity fluctuations in 

the wake of the cylinder are decomposed into two components; one accounting for the energy 

associated with the phase-average velocity, and the other, with the deviation from the phase 

average. Together with the mean velocity this decomposition is known as triple decomposition, 

which was first introduced by Hussain and Reynolds [30]. Deviation from the phase average could 

be the result of variation in the vortex properties from cycle-to-cycle, random fluctuation (such as 

due to small-scale turbulence), and other possible structures. The decomposition leads to: 

𝑢𝑟𝑚𝑠
2 = 𝑢′𝑟𝑚𝑠

𝜙 2
+ 𝑢𝑟𝑚𝑠

𝑟 2                          (21)  

where 𝑢′𝑟𝑚𝑠
𝜙

 is the rms velocity calculated from the phase-average velocity variation over one 

cycle, and 𝑢𝑟𝑚𝑠
𝑟  is the rms associated with the remaining fluctuation. Figure 72 depicts this energy 

decomposition for the smooth cylinder at 𝑅𝑒𝑑 = 800. A qualitative interrogation of this figure 

shows that 𝑢′𝑟𝑚𝑠
𝜙

 accounts for most of the fluctuating energy in the wake of the smooth cylinder 

at 𝑅𝑒𝑑 = 800. Therefore, Regime 1 is associated with a well-defined and repeatable wake vortex 

formation and shedding.  
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Figure 72. Decomposition of the fluctuating streamwise velocity energy for smooth cylinder at 

𝑅𝑒𝑑=800. Measured at 𝑥/𝑑 = 4.7. 

< 𝑢′ > profiles for the smooth cylinder at 𝑅𝑒𝑑 = 1800 are shown in Figure 73 as a 

representative of the flow flip-flopping between Regimes 1 and 2. A signature of periodic counter-

rotating vortex shedding can be distinguished in the < 𝑢′ > profiles, although it is much weaker 

than the signature observed for flow Regime 1. Specifically, the profiles for 𝑅𝑒𝑑 = 800 in Figure 

70 show quite a bit of variation across the phases. In contrast, the profiles for 𝑅𝑒𝑑 = 1800 

predominantly look like wake deficit profiles that do not vary significantly over the phases and do 

not represent a flow that is dominated by regular vortex formation and shedding. However, the 

velocity profiles at 𝜙 = 0  and 0.5 show a small signature of passing of the vortices with clockwise 

and counter-clockwise rotation, respectively. The velocity profiles at these phases show the 

maximum positive and negative velocity gradients 𝑑 < 𝑢′ >/𝑑𝑦, respectively. Although these 

gradients are not considerably different from that at the neutral phase 𝜙 = 0.25, they represent a 

small contribution from the organized vortex shedding on the velocity profiles. This observation 

that phase-averaging the velocity based on the shedding frequency does not result in an obvious 

vortex signature suggests that the vortex shedding is not highly regular and well-organized. The 
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PSD for this case shown in Figure 71 supports this conclusion by showing a broader and weaker 

peak than that of the Regime 1.   

 
Figure 73.< 𝑢′ >/𝑈∞ at different phases measured 1𝑑 downstream of the formation length at 

𝑥/𝑑 = 4.1. Smooth cylinder at 𝑅𝑒𝑑 = 1800. Maximum positive and negative gradient locations 

are marked at 𝜙 = 0 and 0.5. 

Cycle-to-cycle repeatability for the case of smooth cylinder at 𝑅𝑒𝑑 = 1800 is analyzed by 

decomposition of the fluctuating streamwise velocity energy and is represented in Figure 74. These 

results convey a consistent message with the aforementioned analysis that the organized von 

Karman vortex shedding frequency is weak and does not dominate the velocity fluctuations in the 

wake of the smooth cylinder at 𝑅𝑒𝑑 = 1800. 
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Figure 74. Decomposition of the fluctuating streamwise velocity energy for smooth cylinder at 

𝑅𝑒𝑑=1800 measured at 𝑥/𝑑 = 4.1. 

As discussed earlier, the case of the smooth cylinder at 𝑅𝑒𝑑 = 2500 is believed to have 

the characteristics of the flow Regime 1. Figure 75 demonstrates the < 𝑢′ > profiles for this case 

at every other phase bin. The periodic passing of a counter-rotating vortex pair is evident in this 

figure where the velocity profiles at phases 𝜙 = 0 and 0.5 qualitatively resemble the velocity 

profiles of vortices with clockwise and counter clockwise rotation, respectively. The PSD 

corresponding to this case shown in Figure 71 shows a narrow and strong harmonic peak, which 

along with the phase average velocity profiles, suggest a recovery of the von Karman vortex 

formation and shedding organization from Regime 2 after increasing the Reynolds number from 

1800 to 2500.    
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Figure 75.< 𝑢′ >/𝑈∞ at different phases measured 1𝑑 downstream of the formation length at 

𝑥/𝑑 = 3.4. Smooth cylinder at 𝑅𝑒𝑑 = 2500. Maximum positive and negative gradient locations 

are marked at 𝜙 = 0 and 0.5. 

The fluctuating streamwise velocity energy is decomposed and shown in Figure 76 for this 

case. This figure shows that the amount of the energy carried by the coherent von Karman vortex 

shedding is roughly the same as the that carried by the remaining fluctuations. Although the 

coherent component carries higher energy compared to the case of 𝑅𝑒𝑑 = 1800, the recovery of 

the vortex shedding organization is not as good as for the 𝑅𝑒𝑑 = 800 case.   

 
Figure 76. Decomposition of the fluctuating streamwise velocity energy for smooth cylinder at 

𝑅𝑒𝑑=2500 at 𝑥/𝑑 = 3.4. 
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It is also interesting to consider Regime 3 behavior as exemplified by the 2Dp-5% cylinder 

at 𝑅𝑒𝑑 = 2500 (see Figure 65). The phase-averaged velocity profiles at every other phase for this 

case are depicted in Figure 77. Almost no variation of the velocity profiles can be distinguished 

over different phases, and there is no distinct signature of a counter-rotating vortex shedding. The 

PSD for this case in Figure 71 shows a peak that is about an order of magnitude weaker than the 

other cases and is distributed over a wider frequency band. Therefore, it is not surprising that the 

phase-averaged velocity profiles do not vary significantly from the mean velocity profile, as the 

coherent structures are very weak.  

 
Figure 77. < 𝑢′ >/𝑈∞ at different phases measured 1𝑑 downstream of the formation length at 

𝑥/𝑑 = 3.8. 2Dp cylinder at 𝑅𝑒𝑑 = 2500. 

  To ascertain this, energy decomposition of the fluctuating velocity is performed and 

portrayed in Figure 78. It can be seen that the energy carried by the coherent structures associated 

with von Karman vortex shedding is negligible. Therefore, the wake seems to be significantly 

turbulent in this regime and there is no persuasive sign of a coherent and organized wake vortex 

shedding structure.   
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Figure 78. Decomposition of the fluctuating streamwise velocity energy for 2Dp cylinder at 

𝑅𝑒𝑑=2500 at 𝑥/𝑑 = 3.8. 

The ratio of the phase-average to the total energy at the 𝑦 location of the maximum 𝑢𝑟𝑚𝑠
2  

is tabulated for the different cases in Table 4. The higher this ratio is, the more repeatable is the 

vortex shedding from cycle to cycle. 

Table 4. Comparison of the ratio of the energy of the phase-average velocity to the total energy 

of the velocity fluctuations. 

 smooth, 𝑅𝑒𝑑 = 800 smooth, 𝑅𝑒𝑑 = 1800 smooth, 𝑅𝑒𝑑 = 2500 2Dp, 𝑅𝑒𝑑 = 2500 

𝑢′𝑟𝑚𝑠
𝜙 2

/𝑢𝑟𝑚𝑠
2% 87% 18% 46% 3% 

  Inspection of Table 4 shows that Regime 1 has the highest cycle-to-cycle repeatability of 

the phase average, meaning that the attached/laminarly reattached flow has the best organized 

wake vortex shedding. Wake vortex shedding is weakly organized, but distinguishable at the 

transition regime between Regimes 1 and 2, where the separation bubble opens up without vortex 

formation above the cylinder sidewall, but closes occasionally. The worst repeatability belongs to 

Regime 3, where there is practically no sign of wake vortex formation. In this case, the shear layer 

vortex formation upstream of the wake seems to promote turbulent reattachment. However, these 

vortices seem to disrupt organized wake vortex formation. 
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Chapter 6. Conclusions  

This study experimentally investigates the effect of surface topology and Reynolds number 

on the fluid flow around a rectangular cylinder with round corners. The main motivation is the 

recent discovery of the underlying cause of flow-induced vibration that complicates the 

controllability and compromises the landing accuracy of Precision Airdrop Systems (PADS). It is 

recently found that the suspension lines of PADS, the shape of which may be approximated as a 

rectangular cylinder with complex surface geometry, undergo galloping instability: a type of flow-

induced vibration seen in non-circular cross-section cylinders. To systematically investigate the 

effect of the surface geometry, a surface topology is mathematically defined using spatial Fourier 

modes with parameters closely representing the geometry of the PADS suspension lines. The 

topology is superposed onto a baseline shape of a smooth-surface rectangular cylinder with fully-

round leading and trailing edges. 

The study examines the influence of various aspects of surface topology, including 

amplitude, variation along the span, and orientation relative to the oncoming flow, on the boundary 

layer and the near-wake flow around a rectangular cylinder. Models with surface topology include 

topology orientations with a peak or a valley at the leading edge but no variation along the span: 

these are referred to as 2Dp and 2Dv cases. Cylinders with similar topology but with variation 

along the span are also examined. In these cases, measurements are done at two planes along the 

spans, aligned with cross-sections corresponding to largest peak and valley at the leading edge 

(3Dp and 3Dv cases, respectively). The studied rage of Reynolds numbers, based on the cylinder 

thickness, is from 𝑅𝑒𝑑 = 800 − 2500. Utilizing single-component molecular tagging velocimetry 

(1c-MTV), the research is based on measurements of the streamwise velocity and visualization of 

the flow field at various locations above the surface and in the wake of the cylinder.  
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1c-MTV measurement of the mean and rms velocity profiles in the boundary layer of the 

cylinders reveal that the orientation of the surface topology to the oncoming flow plays a 

significant role in determining the behavior of the boundary layer. For the specific topology 

wavelength utilized, the most notable impact occurs when the topology is associated with a peak 

at the leading edge of the cylinder. In this scenario, a considerably thicker separation zone forms, 

and the separated shear layer becomes thicker, positioned farther away from the cylinder. 

Additionally, the shear layer displays the highest level of unsteadiness compared to the smooth 

cylinder and the cylinder section where a valley is present at the leading edge. Moreover, the effect 

of surface topology on the separated shear layer behavior is Reynolds number dependent and this 

dependency is non-monotonic. The effect of topology amplitude is also studied and is seen to 

generally magnify the deviation of the boundary layer behavior from that of the baseline. Presence 

of the surface topology variation along the span decreases the separation zone thickness for the 

cross-sections with a peak at the leading edge, but does the opposite for the cross-sections with a 

valley at the leading edge. The latter case excludes the high end of the tested Reynolds numbers 

(𝑅𝑒𝑑 = 2500). A monotonic trend does not exist when comparing the fluctuating velocity in the 

shear layer for these cases.  

 The separation zone boundaries on the top and bottom surfaces are further studied for the 

geometries with surface topology amplitude 𝜀/𝑑 = 5% at several angles of attack from 𝛼 = 0° −

2° to infer stability to galloping based on the quasi-steady assumption, and to compare the results 

against force measurements using similar geometries in other studies. In general, it is observed 

that the introduction of surface topology can lead to earlier separation of the boundary layer on the 

cylinder, occurring farther upstream compared to the smooth baseline geometry. This phenomenon 

is evident in both the 2Dp case and when measuring in a spanwise plane with a peak at the leading 



153 
 

edge in the 3D geometry. The present study draws on existing knowledge in the literature regarding 

galloping to interpret the identified boundary layer behavior and hypothesize that the promotion 

of earlier separation due to surface topology has a destabilizing effect on galloping. However, this 

destabilizing influence is counteracted by the stabilizing effect of the reattachment of the shear 

layer, which is promoted by the presence of spanwise variation in the topology (3D geometry) and 

increasing Reynolds number. The Reynolds number effect, as inferred from the separation and 

reattachment characteristics of the top-surface shear layer, is consistent with the recent force data 

studies on similar geometries.  

 Investigating the wake flow for the cylinders with smooth surface as well as surface 

topologies with 5% amplitude at 𝛼 = 0° reveals that the case of 2Dp-5% has the biggest deviation 

in the mean and fluctuating wake flow characteristics from the other geometries. In addition, non-

monotonic Reynolds number dependency of the wake behavior is also seen across the geometries. 

Overall, altering the initial wake width and the maximum transverse separation of the shear layers 

plays a crucial role in surface topology's influence on the vortex shedding frequency. It is 

specifically seen that the vortex shedding frequency scales better with the wake than with the 

cylinder width. The wake width variation among different cases stem from changes in the 

boundary layer separation/reattachment on the cylinder's surface.  

 Finally, the unsteady behavior of the boundary layer and the wake of the smooth cylinder 

at 𝛼 = 0° is studied at different Reynolds numbers. The results reveal different progression of 

boundary layer separation/reattachment flow regimes with increasing Reynolds number compared 

to the widely studied sharp-corner cylinder. Despite this different progression, the boundary layer-

wake flow relationship is generally consistent with the literature understanding of the sharp-corner 

cylinder, where Strouhal number and organization of the wake vortex shedding is affected by the 
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boundary layer separation/reattachment characteristics. An exception to this agreement is found at 

the highest Reynolds number of 2500, where reattachment of the shear layer does not produce an 

increase in Strouhal number.  

Transition in the shear layer upstream of reattachment of the boundary layer is not observed 

for the smooth cylinder in the studied Reynolds number range, but is detected for some geometries 

with surface topology. As a sample result, boundary layer and near-wake flow visualization for 

the 2Dp-5% case reveals that shear layer vortex formation occurs above the side surface of the 

cylinder, promoting reattachment. Phase-average velocity analysis of these cases demonstrate 

sensitivity of the vortex shedding organization to different flow regimes. Specifically, the best 

organized wake vortex shedding is observed for the attached/laminarly reattached boundary layer 

flow. Wake vortex shedding is weakly organized but identifiable for the regime with intermittent 

reattachment of the boundary layer, while reattachment due to transition in the shear layer (2Dp-

5% case) exhibits the least organized and barely observable wake vortex shedding. In this scenario, 

shear layer vortex formation upstream of the wake appears to facilitate turbulent reattachment. 

However, these vortices also appear to disrupt the organization of wake vortex shedding.  

For future research, investigating the impact of surface topology amplitude on the 

galloping-related boundary layer behavior of 3D surface topologies would be advantageous. 

Additionally, an analysis of the spanwise velocity can offer deeper insights into the flow behavior 

over the surfaces of the cylinders with 3D surface topology. Furthermore, building upon the 

findings of this study, it would be worthwhile to examine the flow regime over the cylinders at 

various other Reynolds numbers to explore the presence of different flow regimes. 
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APPENDIX 

The MATLAB code to generate the surface topology is enclosed here. It consists of a main script 

and a function. 

clear; 

clc; 

dx = .01;    %interval 

l =  139.6;      %span 

 

for z = 1:(l/dx)+1 

coor(z) = {topol2((z-1)*dx)}; 

end 

  

B = cell2mat (coor)'; 

  

csvwrite('rotate.txt',[B(:,1,:),B(:,2,:),B(:,3,:)]) 

 

p_mid = round(numel(B(:,1))/2); 

  

range = (B(:,2)>0); 

 

x_surface = B(:,1); 

y_surface = B(:,2); 

z_surface = B(:,3); 

  

x_s = reshape(x_surface,1900,[]); 

y_s = reshape(y_surface,1900,[]); 

z_s = reshape(z_surface,1900,[]); 

  

figure 

s=surf(x_s,z_s,y_s) 

s.EdgeColor = 'none'; 

axis on 

l = light('Position',[-50 -15 29]) 

set(gca,'CameraPosition',[208 -50 7687]) 

lighting phong 

shading interp 

colorbar EastOutside 
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function [finalcoordinates] = topol2(z) 

 

sr = 2.5; %side ratio 

d = 1.5; %chord 

c = d*sr; %diameter 

l = 139.6; % span 

r = 0.5*d; %corner radius 

es = 0.05*d; %topology amplitude 

cycle = 10; %number of wavelengths around the perimeter 

p = 2*(c+d) + r*(2*pi-8); %perimeter of the baseline 

lamx = p/cycle; %wavelength around the perimeter 

lamz = lamx*1.5;   %wavelength along the span 

gama = atan (lamz / lamx); 

phi = 2*pi*z/lamz; %phase of the topology at 0 

dx = 0.0020;    %interval 

dt = dx / r; 

  

%% 1 

  

y1 = 0:dx:d/2-r;   

x1 = zeros(size(y1)) ; 

s1 = y1; 

cosarc = es * (cos(2*pi*cycle*s1/p + phi) + cos(2*pi*cycle*s1/p 

- phi)); 

n1=[zeros(size(y1))-1;zeros(size(y1))]; 

xt1 = -cosarc + x1 - c/2; 

yt1 = y1; 

  

eptest1 = sqrt( (xt1 - x1 +c/2).^2 + (yt1 - y1).^2); 

  

%% 2 

 t2 = pi-dt:-dt:pi/2; 

 x2 = r * cos(t2) ; 

 y2 = r * sin(t2) ; 

 s2 = d/2-r + r * (pi-t2); 

 n2 = [cos(t2);sin(t2)]; 

 a = [x2 ; y2]; 

 f2 = es *(cos(2*pi*cycle*s2/p + phi) + cos(2*pi*cycle*s2/p - 

phi)); 

 cosarc = (f2 .* n2) + a; 

 xt2 = cosarc(1,:) - c/2 + r; 

 yt2 = cosarc(2,:) + d/2 - r; 

  

 eptest2 = sqrt( ((xt2+ c/2 - r - x2).^2) + ((yt2-d/2 +r - 

y2).^2)); 
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%% 3 

x3 = -c/2+r +dx : dx :c/2-r   ; 

y3 = zeros(size(x3)); 

s3 = d/2-r +r*pi/2 + x3 + c/2 - r; 

cosarc3 = es * (cos(2*pi*cycle*s3/p + phi) + cos(2*pi*cycle*s3/p 

- phi)); 

  

n3 = [zeros(size(x3));zeros(size(x3))+1]; 

  

xt3 = x3; 

yt3 = cosarc3 + d/2; 

eptest3 = sqrt( (xt3 - x3).^2 + ((yt3-d/2 - y3).^2)); 

 

%% 4 

t4 = pi/2 -dt:-dt:0; 

 x4 = r * cos(t4) ; 

 y4 = r * sin(t4) ; 

 s4 = d/2-r +r*pi/2 +c - 2*r + r * (pi/2-t4);  

 n4 = [cos(t4);sin(t4)]; 

 a = [x4 ; y4]; 

 f4 = es * (cos(2*pi*cycle*s4/p + phi) + cos(2*pi*cycle*s4/p - 

phi)); 

 cosarc = (f4 .* n4) + a; 

 xt4 = cosarc(1,:) + c/2 - r; 

 yt4 = cosarc(2,:) + d/2 - r; 

  

 eptest4 = sqrt( ((xt4-c/2+r - x4).^2) + ((yt4-d/2+r - y4).^2)); 

 

%% 5 

  

y5 = d/2-r -dx:-dx:-d/2+r;        

x5 = zeros(size(y5)) ; 

s5 = d/2-r +r*pi +c - 2*r - y5 +d/2 -r;  

cosarc = es * (cos(2*pi*cycle*s5/p + phi) + cos(2*pi*cycle*s5/p 

- phi)); 

n5=[zeros(size(y5))+1;zeros(size(y5))]; 

xt5 = cosarc + x5 + c/2; 

yt5 = y5; 

  

eptest5 = sqrt( (xt5 - x5-c/2).^2 + (yt5 - y5).^2); 

  

%% 6 

  

t6 = 0-dt:-dt:-pi/2; 

 x6 = r * cos(t6) ; 

 y6 = r * sin(t6) ; 

 s6 = d/2-r +r*pi +c - 2*r +d -2*r - r * t6;  



161 
 

 n6 = [cos(t6);sin(t6)]; 

 a = [x6 ; y6]; 

 f6 = es * (cos(2*pi*cycle*s6/p + phi) + cos(2*pi*cycle*s6/p - 

phi)); 

 cosarc = (f6 .* n6) + a; 

 xt6 = cosarc(1,:) + c/2 - r; 

 yt6 = cosarc(2,:) - d/2 + r; 

 eptest6 = sqrt( (xt6-c/2+r - x6).^2 + (yt6+d/2 -r - y6).^2); 

 

%% 7 

  

x7 = c/2-r -dx: -dx :-c/2+r   ;  

y7 = zeros(size(x7)); 

s7 = d/2-r +r*pi*3/2 +c - 2*r +d -2*r - x7 + c/2 - r; 

cosarc7 = es * (cos(2*pi*cycle*s7/p + phi) + cos(2*pi*cycle*s7/p 

- phi)); 

  

n7 = [zeros(size(x7));zeros(size(x7))-1]; 

  

xt7 = x7; 

yt7 = -cosarc7 - d/2; 

eptest7 = sqrt( (xt7 - x7).^2 + ((yt7+d/2 - y7).^2)); 

  

 

%% 8 

  

t8 = -pi/2-dt:-dt:-pi; 

 x8 = r * cos(t8) ; 

 y8 = r * sin(t8) ; 

 s8 = d/2-r +r*pi*3/2 +c - 2*r +d -2*r + c - 2*r + r * (-pi/2 - 

t8); 

 n8 = [cos(t8);sin(t8)]; 

 a = [x8 ; y8]; 

 f8 = es * (cos(2*pi*cycle*s8/p + phi) + cos(2*pi*cycle*s8/p - 

phi)); 

 cosarc = (f8 .* n8) + a; 

 xt8 = cosarc(1,:) - c/2 + r; 

 yt8 = cosarc(2,:) - d/2 + r; 

  

 eptest8 = sqrt( ((xt8+c/2 - r - x8).^2) + ((yt8+d/2 - r - 

y8).^2)); 

 

%% 9 

  

y9 = -d/2+r+dx:dx:0;        

x9 = zeros(size(y9)); 

s9 = d/2-r +r*pi*2 +c - 2*r +d -2*r + c - 2*r + y9 + d/2 -r; 
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cosarc = es * (cos(2*pi*cycle*s9/p + phi) + cos(2*pi*cycle*s9/p 

- phi)); 

n9=[zeros(size(y9))-1;zeros(size(y9))]; 

xt9 = -cosarc - c/2; 

yt9 = y9; 

  

eptest9 = sqrt( (xt9 - x9+c/2).^2 + (yt9 - y9).^2); 

  

xtot=[xt1,xt2,xt3,xt4,xt5,xt6,xt7,xt8,xt9]; 

ytot=[yt1,yt2,yt3,yt4,yt5,yt6,yt7,yt8,yt9]; 

x_n = [x1,x2,x3,x4,x5,x6,x7,x8,x9]; 

y_n = [y1,y2,y3,y4,y5,y6,y7,y8,y9]; 

stotal = [s1,s2,s3,s4,s5,s6,s7,s8,s9]; 

stotal(1) 

stotal(end) 

ntotal = [n1,n2,n3,n4,n5,n6,n7,n8,n9]; 

epstesttotal = 

[eptest1,eptest2,eptest3,eptest4,eptest5,eptest6,eptest7,eptest8

,eptest9]; 

ftotal = es * cos(2*pi*cycle*stotal/p + phi); 

sur_face = (ftotal .* ntotal) + ntotal *r;  

ztot=zeros(size(xtot)) + z; 

finalcoordinates = [xtot;ytot;ztot]; 

  

end 

  

 

  

 

 


