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ABSTRACT

Integral equations are used to analyze scattering from electromagnetic fields incident upon

a perfect electrically conducting (PEC) object. Some common formulations are the electric

field integral equation (EFIE), magnetic field integral equation (MFIE), and combined field

integral equation (CFIE). Each of these formulations has challenges. The operator in the

EFIE is ill-conditioned, and the formulation is non-unique. The operator in the MFIE is

well-conditioned, but the formulation is also non-unique. The CFIE (a weighted sum of the

EFIE and MFIE) is also ill-conditioned, but the formulation is unique. Due to provable

uniqueness, the CFIE is often used in scattering analysis for closed, PEC objects.

One approach to improve conditioning for the CFIE is to use well-known Calderón iden-

tities and precondition the EFIE with the EFIE. These identities prove the EFIE operator

acting on the EFIE operator is equal to a sequence of second-kind MFIE type operators. The

Calderón preconditioner is often constructed with a lossy wavenumber to preserve the unique-

ness of the CFIE formulation. The EFIE acting on the EFIE is analytically well-behaved

but fraught with difficulties once the equations are discretized using the Method-of-Moments

technique. The crux of the problem is the EFIE operator maps a div-conforming function

to a curl-conforming function. Quasi-curl-conforming-divergence-conforming basis sets such

as Buffa-Christiansen functions are needed to properly discretize the formulation, and these

functions require significant, additional computation and infrastructure compared to the

divergence-conforming RWG functions often used to discretize the CFIE.

This thesis takes a different starting point to solve the scattering problem for PEC ob-

jects. Instead of the CFIE, the decoupled field integral equation (DFIE) and decoupled po-

tential integral equation (DPIE) are used to avoid low-frequency and dense-mesh breakdown,

topology breakdown, and resonances (all of which contribute to ill-conditioning) for PECs.

Also, the operators in the DPIE and DFIE map curl-conforming functions to curl-conforming

functions and divergence-conforming functions to divergence-conforming functions. However,

these formulations are not generally well-conditioned at high frequencies.



The primary contribution of this thesis is a new set of Calderón identities which may be

used to construct O(N) preconditioners for a unique and wideband well-conditioned formula-

tion of the DPIE or DFIE constrained to PEC objects. The new formulations are accelerable

with fast methods like the multi-level fast multipole method (MLFMM) and open the door

to quick and accurate computation of scattered fields from multi-scale and electrically large

PEC objects using only RWG functions.
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CHAPTER 1

INTRODUCTION TO DECOUPLED INTEGRAL EQUATIONS

1.1 Maxwell’s Equations in Free Space

The phenomenology of the electromagnetic scattered fields is governed by Maxwell’s

equations. This set of equations is like an axiomatization of all electromagnetic formulations

in terms of free charges and currents for isotropic, homogeneous constitutive parameters

∇× E = − ∂B
∂t

(1.1a)

∇×H =
∂D
∂t

+ J (1.1b)

∇ · D = ρt (1.1c)

∇ · B = 0 (1.1d)

where B = µH and D = ϵE . Electromagnetic fields are unique, and the tangential compo-

nents of the fields over a source region are sufficient to specify all aspects of the fields interior

or exterior to the source region. This thesis denotes the traces of the field as the tangential

and normal field (or potential) quantities over the surface of the source region.

A sketch of the uniqueness proof is as follows. If arbitrary sources produce two or more

fields then the difference between these fields is non-zero. If the difference between all fields

produced by arbitrary sources is zero, then there exists a one-to-one and onto map between

fields and sources. Indeed, if the tangential components of the field are specified over the

source region of interest, then the difference between all fields produced by the arbitrary

sources is zero, and the field is unique.

The continuity of charge relation is found by taking the divergence of (1.1b) and inter-

changing the spatial divergence and time derivative

∇ · J = −∂ρt
∂t

. (1.2)
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Boundary conditions are found by computing an surface integrals which conforms to a

boundary. For example, consider the following integration of (1.1a)∮
s
∇× E · ds =−

∮
s

∂B
∂t

· ds

= 0.

(1.3)

Using Stokes Theorem and noting the line integrals contained in the interior and exterior

regions exist (while the line integrals over the two regions vanish), the following boundary

condition is the result

n̂ × (E1 − E2) = 0. (1.4)

As another example, consider the following integration of (1.1d)∮
v
∇ · B dv = 0

n̂ · (B1 − B2) = 0.

(1.5)

Applying the same procedure to (1.1b) and (1.1c), the following is the complete set of

boundary conditions for electromagnetic phenomena

n̂ × (E1 − E2) = 0 (1.6a)

n̂ × (H1 −H2) = J (1.6b)

n̂ · (B1 − B2) = 0 (1.6c)

n̂ · (D1 −D2) = ρt. (1.6d)

The above boundary conditions and uniqueness are sufficient to postulate the equivalence

principle. Consider (1.6b). First, notice the units of the H-field traces are equivalent to those

of current density. Second, imagine a closed, PEC scatterer is embedded in free-space and

a electromagnetic field is incident on the scatterer. The field interior to the PEC scatter

is zero according to experiments, and the field exterior to the PEC scatter is non-zero

due to induced sources responding to impressed sources according to boundary conditions.
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According to (1.6b), the trace of the exterior H-field is equivalent to the current density

on the PEC boundary. Therefore, the PEC scatterer may be removed and replaced with a

current density (existing on the mathematical surface of the scatter) specified to the trace of

the exterior H-field. The exterior H-field is exactly equal to the original problem according to

uniqueness. Furthermore, the interior of the mathematical surface may also be filled with a

non-zero field while the exterior field remains fixed. The current density to support the fixed,

exterior field is not identical to the current density supporting the fixed exterior field with a

zero interior field, but the exterior field is identical (through the boundary conditions). This

is the equivalence principle, different sources support the same phenomenology in a region

of interest due to boundary conditions.

This thesis assumes the fields are time-harmonic

E = E(r) E(t) = E(r) ejωt (1.7a)

H = H(r) H(t) = H(r) ejωt (1.7b)

J = J(r) J(t) = J(r) ejωt (1.7c)

ρ = ρ(r) ρ(t) = ρ(r) ejωt. (1.7d)

The utility of the time-harmonic assumption is Maxwell’s equations are solvable in the

frequency domain after a Fourier Transform

F{∇× E} = F{−∂B
∂t }

F{∇ ×H} = F{∂D∂t + J }

F{∇ · D} = F{ρt}

F{∇ · B} = 0

−→

∇× E = −jωB

∇×H = jωD+ J

∇ ·D = ρ

∇ ·B = 0.

(1.8)

The inverse Fourier Transform recovers the time-harmonic fields.

Decoupling the time-harmonic Maxwell’s equations for free-space

∇×∇× E = −jωµo∇×H = −jωµo{jωD+ J} = κ2E− jωµoJ (1.9)

where κ = κκ̂ is the wave vector, and κ = ω
√
ϵµ is the wave number. Using a vector identity

∇2E+ κ2E = − 1

jωϵo
∇∇ · J+ jωµoJ. (1.10)
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Repeating the process

∇2H+ κ2H = −∇× J. (1.11)

The Helmholtz operator ∇2 + κ2 is on the left-hand-side (LHS) is common in physics, and

the solution is discuss below.

Another approach is using potentials as an intermediary between electromagnetic sources

and fields.

The magnetic vector potential follows from (1.1d) and the solenoidal property of the curl

operator

B = ∇×A. (1.12)

Using (1.1a) and the irrational property of gradient operator

∇× E = − jω∇×A

= ∇× (−jωA−∇ϕ).
(1.13)

A mixed potential representation of the E-field is then

E = −jωA−∇ϕ. (1.14)

The curl of A is defined, but the divergence of A is not yet defined. These two components

are independent, and we are free to define ∇ · A. Consider the divergence of the mixed

potential (1.14) and Gauss’s law (1.1c)

∇ · E = −jω∇ ·A−∇ · ∇ϕ =
ρ

ϵo
. (1.15)

We choose the Lorenz gauge ∇ ·A = −jωϵoµoϕ which yields the nice result

∇2ϕ+ κ2ϕ = − ρ

ϵo
. (1.16)

Using the Lorenz gauge, the magnetic vector potential representation of the E-field is

E =− jωA+
∇∇ ·A
jωϵoµo

=

(
∇∇ ·+κ2

jωϵoµo

)
A.

(1.17)
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Using the magnetic vector potential, (1.1b), and (1.17)

∇×∇×A = (∇∇ ·+κ2)A+ µoJ (1.18)

which yields another nice result

∇2A+ κ2A = −µoJ. (1.19)

Again, the equations for the potentials have a Helmholtz operator on the LHS, but there are

no derivative operators acting on the sources on the RHS. These equations may be solved

with guess-and-check.

Consider the following equation whose solution is the Green’s function

∇2G(r, r′) + κ2G(r, r′) = −δ(r− r′). (1.20)

Convolving both sides of (1.20) yields

(∇2 + κ2)G(r, r′) ∗ ρ(r′) = −ρ(r). (1.21)

The utility of the approach is now immediately clear. The solution to the Helmholtz equation

is the convolution of the RHS with the Green’s function G. The radial symmetry of the

Green’s function is enforced by the radial symmetry of the delta function. Expanding (1.20)

into polar form

1

r2
∂

∂r
r2
∂

∂r
G(r, r′) + κ2G(r, r′) = −δ(r− r′) (1.22)

a good guess is a Green’s function of the form

G = C
e−jκ|r−r′|

|r− r′|
. (1.23)

Consider the guess as R = |r − r’| −→ 0 by taking a closed spherical volume integral of

(1.20)

lim
R→0

{
∮
v
∇ · ∇Gdv + κ2

∮
v
Gdv} = − lim

R→0

∮
v
δ(R)dv. (1.24)
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Using polar coordinates, the divergence theorem, the definition of dirac delta functions, and

n̂ = −R̂

lim
R→0

∮
S
∇G · R̂R2 sin θdθdϕ = 1. (1.25)

Substituting the guess into the above and evaluating for C

lim
r→0

C

∮
S

(
−jκe

−jkR

R
− e−jκR

R2

)
R2 sin θdθdϕ = 1 (1.26)

C

∫ 2π

0

∫ π

0
sinθdθdϕ = 1 =⇒ C =

1

4π
. (1.27)

And the free space Green’s function is

G =
e−jκ|r−r′|

4π|r− r′|
. (1.28)

To summarize this section, the solutions to the Helmholtz equations (1.10), (1.11), (1.16),

and (1.19) are

E =

(
1

jωϵo
∇∇ · J− jωµoJ

)
∗G (1.29a)

H = (∇× J) ∗G (1.29b)

A = µoJ ∗G (1.29c)

ϕ =
ρ

ϵo
∗G (1.29d)

where * denotes spacial convolution.

1.2 Derivation of Electric, Magnetic, and Combined Field Integral
Equations

Consider a PEC closed object of a simply connected region D− immersed in an isotropic,

homogeneous background D+. The object’s boundary is a two-dimensional smooth manifold

S = ∂D embedded in R3 with unique normal n̂(r) pointing from ∂Ω into D+. It is assumed

that a plane wave characterized by
{
κ,Ei(r),Hi(r)

}
is incident on the object. Our objective

is to determine scattered fields in D+.
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Three standard equations for solving the scattering problem of an incident wave upon

a PEC scatterer are the EFIE, MFIE, and CFIE. These equations are derived through the

boundary conditions discussed above.

To derive the EFIE, consider the boundary condition for E-fields (1.6a), where the interior

field is set to zero

n̂ × n̂ × E = 0. (1.30)

Note the exterior E-field is a superposition of the incident E-field and the scattered E-field

(again, the incident E-field impresses a source which induces another source according to

boundary conditions and this induced source radiates into the exterior region). Therefore,

n̂ × n̂ × Ei = −n̂ × n̂ × Es. (1.31)

Invoking equivalence, the scattered E-field is radiated by the equivalent, induced sources

suspended in free space over the mathematical surface of the scatter. Substituting (1.29a)

for Es, the EFIE is

n̂ × n̂ × Ei = −n̂ × n̂ ×
(

1

jωϵo
∇∇ · J− jωµoJ

)
∗G. (1.32)

The EFIE is ill-conditioned at low and high frequencies. At low-frequencies, the scalar

potential dominates, and the information in the vector potential is lost. At high-frequencies,

the vector potential dominates, and the information in the scalar potential is lost. However,

the E-field requires the information in both the scalar and vector potential to uniquely specify

the E-field (which is, indeed, physically unique) from the sources, and ill-conditioning is

synonymous with the physical problem verging on non-uniqueness. One way to mitigate this

problem is to replace the divergence of the current density with a charge quantity (which

cancels the jω term) in the so-called Current and Charge Integral Equation.

To derive the MFIE, consider the boundary condition for H-fields (1.29b), where the

interior field is set to zero once again

n̂ ×H = J. (1.33)
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Figure 1.1: Schematic of an ellipsoid of minor length α.

Note the exterior H-field is a superposition of the incident H-field and the scattered H-field,

and the current density on the surface is equivalent to the trace of the exterior H-field on

the mathematical surface. Therefore,

n̂ ×Hi = J− n̂ ×Hs. (1.34)

Again, the physical situation is the incident field impresses sources and the scatter responds

to the impressed sources with induced sources such that boundary conditions are satisfied.

Invoking equivalence once again and substituting (1.29b) yields the MFIE

n̂ ×Hi = J− n̂ × (∇× J) ∗G. (1.35)

Unlike the EFIE, the MFIE is well-conditioned because the operator is second-kind (a sum-

mation of a compact operator and an identity or idempotent operator).

The MFIE is invalid for open surfaces like a plate. Consider the ellipsoid in Fig. 1.1.

The MFIE equals

n̂ ×Hi = J−
∫
s
n̂ × J′ ×∇G dS′

= J−
∫
s
n̂ × R̂ × J′

(
1 + jκR

4πR

)
e−jκR

R
dS′.

(1.36)

8



The ellipsoid approximates a thin object in the limit α → 0. For thin and planar objects,

n̂ × R̂ × J′ ≈ 0 due to R̂ and J nearly occupying the same plane

lim
α→0

(
J−

∫
s
n̂ × R̂ × J′

(
1 + jκR

4πR

)
e−jκR

R
dS′
)

= 0. (1.37)

For thin and non-planar objects, first consider the singularity at R = 0. In Fig. 1.1, the

source approaches the observer. Near the singular region, R̂ is always in the plane of J′ and

the integral is zero. However, the source may approach the observer from directly above

the observer. Enclosing the singularity within a sphere of radius δ, sifting the sphere with

δ
(
θ − π

2

)
to extract the surface, and taking the limit δ → 0 equals

lim
δ→0

(
J−

∫
s
n̂ × J′ ×∇G dS′

)
= lim

δ→0

(
J−

∫
s
n̂ × R̂ × J′

(
1 + jκR

4πR

)
e−jκR

R
dS′
)

= J+
1

4π

∫
s
n̂ × n̂ × J′ dϕ′

=
J

2
.

(1.38)

In the limit α → 0 in Fig. 1.1, the surface below is added to the surface above, but the field

traces of the boundary condition are defined at an infinitesimal distance from the boundary.

They are not defined on the boundary. Therefore, the limit α → 0 cannot superimpose the

limit of the source approaching the observer from above and below at the boundary; the

MFIE is invalid for open geometries. What about the EFIE?

The EFIE is valid for open geometries. The boundary condition is defined on the bound-

ary rather than an infinitismal distance from the boundary. The field traces in two regions

separated by a boundary are identical an infinitesimal from the boundary. Therefore, the

fields at the boundary are defined and identical as well.

Neither the MFIE nor the EFIE are unique formulations. Each of these formulations

includes a null-space where the incident field matches a resonant frequency for the scatterer.

This is undesirable because the physical fields are unique (the incident field induces sources

which radiate a unique field). Maxwell’s equations completely describe the macroscopic
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phenomenology, and therefore there exists a unique formulation or a one-to-one and onto

map between induced sources and scattered fields. The CFIE is one of these formulations.

To derive the CFIE, weight the EFIE and MFIE with a constant 0 < α < 1 and 1 − α.

Adding these two weighted equations yields the CFIE

α n̂ × n̂ × Ei + (1− α)ηon̂ ×Hi = − α n̂ × n̂ ×
(

1

jωϵo
∇∇ · J− jωµoJ

)
∗G

+ (1− α)ηoJ− (1− α)ηon̂ × (∇× J) ∗G
(1.39)

where ηo is the intrinsic impedance of free space. The EFIE and MFIE are functions,

and therefore the non-uniqueness is caused by multiple distributions of sources mapping to a

single field. This is synonymous to the problem of a distribution of non-zero sources mapping

to zero. The uniqueness of the CFIE will be demonstrated by showing only zero sources map

to zero scattered fields.

The following proof is from [Harrington and Mautz, 1978]. Consider a current density

which supports zero exterior fields (E1,H1) and an unknown interior field (E2,H2)

n̂ × E2 =0

n̂ ×H2 =J.

(1.40)

This problem is equivalent to setting the incident fields in the CFIE to zero

0 = (1− α)ηo(n̂ ×H2) + α(n̂ × n̂ × E2). (1.41)

Taking the complex conjugate of the above equation and projecting onto the above equation

yields

−2Re

(∫
s
n̂ · ((n̂ × E2)× (n̂ ×H∗

2)) dS

)
=

∫
s (1− α)2 η2o |n̂ ×H2|2 + α2 |n̂ × n̂ × E2|2 dS

(1− α)αηo
.

(1.42)

The LHS of the above equation is the real power flowing inside the interior region and equal

to zero. However, the RHS is always zero or positive. Therefore, the traces of the interior

fields must be zero as well. Using boundary conditions, the only sources in the CFIE which

support zero exterior fields are zero sources in this case, and the CFIE is unique.

10



The CFIE formulation inherits the limitations of the MFIE formulation. The CFIE is

only applicable to closed surfaces.

1.3 Derivation of Frequency Domain Decoupled Potential and Field
Integral Equations

Consider the following Green’s Theorem for vectors in terms of source coordinates∫
v
∇′ · (P×∇′ ×Q) dV ′ =

∫
s
(P×∇′ ×Q) · n̂′ dS′. (1.43)

Using the vector identity within the volume integral∫
v
(∇′ ×P · ∇′ ×Q−P · ∇′ ×∇′ ×Q) dV ′ =

∫
s
(P×∇′ ×Q) · n̂′ dS′. (1.44)

Interchanging P and Q and subtracting yields Green’s second identity for vectors∫
v
(Q ·∇′×∇′×P−P ·∇′×∇′×Q) dV ′ =

∫
s
(P×∇′×Q−Q×∇′×P) · n̂′ dS′. (1.45)

Define P = A and Q = G a where a is an arbitrary unit vector called a pilot vector and

G is the unscaled free-space Green’s function e−jκR

R . Note the following identities

∇′ ×Q = ∇′G× a (1.46a)

∇′ ×∇′ ×Q = aκ2G+∇′(a · ∇′G) (1.46b)

∇′ ×∇′ ×P = ∇′∇′ ·A′ + κ2A′ + µoJ
′. (1.46c)

After substituting the above equations into the volume integral in (1.45), the volume integral

is now ∫
v
(a ·G(∇′∇′ ·A′ + κ2A′ + µoJ

′)−A′ · (aκ2G+∇′(a · ∇′G)) dV ′. (1.47)

Note the following identities

A′ · (∇′(a · ∇′G)) = ∇′ · (a · ∇′G A′)− a · ∇′G(∇′ ·A′) (1.48a)

a ·G∇′∇′ ·A′ = a · ∇′(G ∇′ ·A′)− a · ∇′G(∇′ ·A′). (1.48b)
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Substituting the above identities into the volume integral yields

a ·
∫
v
∇′(G ∇′ ·A′) + µo G J′ dV ′ − a ·

∫
s
(A′ · n̂′)(∇′G) dS′. (1.49)

Using the identity ∫
v
∇′ϕ′ dV ′ =

∫
s
n̂′ ϕ′ dS′ (1.50)

the volume integral of Green’s second identity for the magnetic vector potential equals,∫
v
µo G J′ dV ′ +

∫
s
n̂′ (G ∇′ ·A′) dS′ −

∫
s
∇′G (n̂′ ·A′) dS′ (1.51)

where the pilot vector has been removed (its only purpose was to simplify the vector opera-

tions).

To simplify the RHS of (1.45), consider the following identities

A′ × (∇′G× a) · n̂′ = a · ∇′G× (A′ × n̂′) (1.52a)

(a G×∇′ ×A′) · n̂′ = a · (∇′ ×A′)× n̂′ G. (1.52b)

Substituting the above identities into the surface integrals of Green’s second identity for

vectors and removing the pilot vector yields∫
s
∇′G× (A′ × n̂′) dS′ −

∫
s
G ((∇′ ×A′)× n̂′) dS′. (1.53)

Equating the reduced LHS and RHS of (1.45) yields∫
v
µo G J′ dV ′ =−

∫
s
G (n̂′ ∇′ ·A′) dS′ +

∫
s
∇′G (n̂′ ·A′) dS′ +

∫
s
∇′G× (A′ × n̂′) dS′

−
∫
s
G ((∇′ ×A′)× n̂′) dS′.

(1.54)

To further reduce the integral above, consider the infinite volume with incisions around

an observer and sources as depicted in Fig. 1.2. The surface integrals include surfaces S∞

extending to infinity, S1 enclosing all sources, and Sδ enclosing the observer marked by r.

The volume integral includes the volumes V1, Vδ, and V − V1 − Vδ. The singularity at the

12



Figure 1.2: Schematic of infinite volume with incisions around sources and an observer.

observer needs to be excluded. A sphere of radius δ is circumscribed about the singularity,

and its normal is directed out of the volume region and toward the singularity. Each of the

volumes and surfaces are separately evaluated as δ vanishes∫
v
µo G J′ d(V − V1 − Vδ)

′ +
∫
v
µo G J′ dV

′
1 + lim

δ→0

∫
v
µo G J′ dV

′
δ =

−
∫
s
G (n̂′ ∇′ ·A′) dS

′
∞ +

∫
s
∇′G (n̂′ ·A′) dS

′
∞ +

∫
s
∇′G× (A′ × n̂′) dS

′
∞

−
∫
s
G ((∇′ ×A′)× n̂′) dS

′
∞

−
∫
s
G (n̂′ ∇′ ·A′) dS

′
1 +

∫
s
∇′G (n̂′ ·A′) dS

′
1 +

∫
s
∇′G× (A′ × n̂′) dS

′
1

−
∫
s
G ((∇′ ×A′)× n̂′) dS

′
1

− lim
δ→0

∫
s
G (n̂′ ∇′ ·A′) dS

′
δ + lim

δ→0

∫
s
∇′G (n̂′ ·A′) dS

′
δ + lim

δ→0

∫
s
∇′G× (A′ × n̂′) dS

′
δ

− lim
δ→0

∫
s
G ((∇′ ×A′)× n̂′) dS

′
δ.

(1.55)

13



The limiting integrals evaluate as follows

lim
δ→0

∫
v
µo G J′ dV

′
δ = lim

δ→0

∫
v
µo G J′δ2 sin θ′ dΩ′

= 0

(1.56)

lim
δ→0

∫
s
G (n̂′ ∇′ ·A′) dS

′
δ = lim

δ→0

∫
s
G (n̂′ ∇′ ·A′)δ2 sin θ′ dΩ′

= 0

(1.57)

lim
δ→0

∫
s
∇′G× (A′ × n̂′) dS

′
δ = lim

δ→0

∫
s

(
∇′G · n̂′ A′) dS′δ − lim

δ→0

∫
s
∇′G

(
n̂′ ·A′) dS′δ

+ lim
δ→0

∫
s
A′ ×

(
∇′G× n̂′) dS′δ

= lim
δ→0

∫
s

(
∇′G · n̂′ A′) dS′δ − lim

δ→0

∫
s
∇′G

(
n̂′ ·A′) dS′δ

− lim
δ→0

∫
s
∇′G× (A′ × n̂′) dS

′
δ

(1.58)

lim
δ→0

∫
s

(
∇′G · n̂′ A′) dS′δ = lim

δ→0

∫
s

(
∇′G · n̂′ A′) δ2 sin θ′ dΩ′

=− lim
δ→0

∫
s

(
1

δ
+ jκ

)
e−jκδ

δ
A′δ2 sin θ′dΩ

= −As
∫ 2π

0

∫ π

0
sin θ′dθ′dϕ′

= − 4πAs.

(1.59)

Substituting the above integrals into (1.55) yields

4πAs =−
∫
v
µo G J′ d(V − V1 − Vδ)

′ −
∫
v
µo G J′ dV

′
1

−
∫
s
G (n̂′ ∇′ ·A′) dS

′
∞ +

∫
s
∇′G (n̂′ ·A′) dS

′
∞ +

∫
s
∇′G× (A′ × n̂′) dS

′
∞

−
∫
s
G ((∇′ ×A′)× n̂′) dS

′
∞

−
∫
s
G (n̂′ ∇′ ·A′) dS

′
1 +

∫
s
∇′G (n̂′ ·A′) dS

′
1 +

∫
s
∇′G× (A′ × n̂′) dS

′
1

−
∫
s
G ((∇′ ×A′)× n̂′) dS

′
1.

(1.60)
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The equivalence principle is used to replace the source terms in V1 with null fields, and

V − V1 − Vδ is without sources. The volume integrals of these regions are zero.

Evaluating S∞ is equivalent to evaluating the following limit∫
s
(. . . ) dS∞ = lim

r′→∞

∫
s
(. . . ) r′2 sin θ′ dθ′dϕ′. (1.61)

On S∞ in Fig. 1.2, R̂ = n̂ and R̂ = −r̂′ and R = r′. Evaluating the surface integrals

on S∞ in (1.64) yields∫
s
(. . . ) dS∞ = lim

r′→∞

∫
s

[
e−jκr′

r′
r̂′∇′ ·A′ +

(
1

r′
+ jκ

)
e−jκr′

r′
r̂′
(
r̂′ ·A′)

+

(
1

r′
+ jκ

)
e−jκr′

r′
r̂′ ×

(
A′ × r̂

)
+
e−jκr′

r′
((
∇′ ×A′)× r̂′

) ]
r′2 sin θ′dθ′dϕ′

= lim
r′→∞

∫
s

[[ (
r̂′ ·A′) r̂′ + r̂′ ×

(
A′ × r̂′

) ](1 + jκr′

r′

)

+
[
r̂′∇′ ·A′ +

(
∇′ ×A′)× r̂′

]]
r′e−jkr′ sin θ′dθ′dϕ′

= lim
r′→∞

∫
s

[
A′ +

[
jκA′ + r̂′∇′ ·A′ +

(
∇′ ×A′)× r̂′

]
r̂′
]
e−jkr′ sin θ′dθ′dϕ′

= 0

(1.62)

where the following radiation conditions are true due to the free-space Green’s function

lim
r′→∞

|r′A′| <∞ (1.63a)

lim
r′→∞

(
jκA′ + r̂′∇′ ·A′ +

(
∇′ ×A′)× r̂′

)
= 0. (1.63b)

Substituting these evaluations into (1.64) leads to

As =−
∫
s
G (n̂′ ∇′ ·A′) dS

′
1 +

∫
s
∇′G (n̂′ ·A′) dS

′
1 +

∫
s
∇′G× (A′ × n̂′) dS

′
1

−
∫
s
G ((∇′ ×A′)× n̂′) dS

′
1

(1.64)
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where 4π is absorbed into the Green’s function such that G
4π → G in (1.64). Using n̂×A =

−n̂ × n̂ × n̂ ×A

As = −
∫
s
G
(
n̂′ × n̂′ × n̂′ ×∇′ ×A′) dS′ − ∫

s
∇′G×

(
n̂′ ×A′) dS′ + ∫

s
∇′G

(
n̂′ ·A′)

−
∫
s
G
(
n̂′∇′ ·A′) dS′.

(1.65)

Using ∇′ = −∇, the final result is

As = −S[n̂ × n̂ × n̂ ×∇×A] +∇× S[n̂ ×A]−∇S[n̂ ·A]− S[n̂ ∇ ·A] (1.66)

where S[x] =
∫
sG x′ dS′. The following notation is used with respect to the source terms

a = n̂ × n̂ ×∇×A (1.67a)

b = n̂ ×A (1.67b)

γ = n̂ ·A (1.67c)

σ = n̂ ∇ ·A. (1.67d)

Substituting the potential form the E-field and H-field into the boundary conditions

without sources yields

n̂ × (−A1 −∇ϕ1) = n̂ × (−A2 −∇ϕ2) (1.68a)

1

µ1
n̂ × (∇×A1) =

1

µ2
n̂ × (∇×A2) (1.68b)

ϵ1n̂ · (−A1 −∇ϕ1) = ϵ2n̂ · (−A1 −∇ϕ1) (1.68c)

n̂ · (∇×A1) = n̂ · (∇×A2) . (1.68d)

Using the non-unique relation between fields and potentials, these boundary conditions are

constrained and decoupled by associating A terms with A terms and ϕ terms with ϕ terms.

Remembering the electromagnetic scattering problem is charge neutral, the new boundary

16



conditions are

1

µ1
n̂ × n̂ ×∇×A1 =

1

µ2
n̂ × n̂ ×∇×A2 (1.69a)

n̂ ×A1 = n̂ ×A2 (1.69b)

ϵ1n̂ ·A1 = ϵ2n̂ ·A2 (1.69c)

∇ ·A1 = ∇ ·A2 (1.69d)

ϕ1 = ϕ2 (1.69e)

ϵ1n̂ · ∇ϕ1 = ϵ2n̂ · ∇ϕ2 (1.69f)∫
s′
dS′ n̂ ·A = 0 (1.69g)∫

s′
dS′ n̂ · ∇ϕ = 0. (1.69h)

Note, n̂ · (∇×A) = −∇· (n̂ ×A) and this condition is already enforced. The last boundary

condition comes through the Lorenz gauge or the divergence of the E-field

∇ ·A1 = ∇ ·A2. (1.70)

The overall point is scalar and vector potentials may be decoupled and related through the

Lorenz gauge.

The traces of the scattered field are found by applying the appropriate operator to both

sides of (1.66)

as = n̂ × n̂ ×∇×As (1.71a)

bs = n̂ ×As (1.71b)

γs = n̂ ·As (1.71c)

σs = ∇ ·As (1.71d)

where
∫
γsdS = 0.

For the exterior problem, the total magnetic vector potential equals

A1 = Ai +As. (1.72)
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The scattered traces may be compactly represented by

as

bs

γs

σs


= Zvpie



a

b

γ

σ


(1.73)

where

Zvpie =

−n̂ × n̂ ×∇× S[n̂ × ∗] n̂ × n̂ ×∇×∇× S[∗] 0 −n̂ × n̂ ×∇× S[n̂∗]

−n̂ × S[n̂ × ∗] n̂ ×∇× S[∗] −n̂ ×∇S[∗] −n̂ × S[n̂∗]

−n̂ · S[n̂ × ∗] n̂ · ∇ × S[∗] −n̂ · ∇S[∗] −n̂ · S[n̂∗]

−∇ · S[n̂ × ∗] 0 −κ2S[∗] −∇ · S[n̂∗]


.

(1.74)

Substituting the above representation of the scattered field into the total field yields

a

b

γ

σ


1

=



ai

bi

γi

σi


+



as

bs

γs

σs



=



ai

bi

γi

σi


+ Zvpie



a

b

γ

σ


1

.

(1.75)

Re-arranging the above equation and dropping the subscript yields the VPIE for the exterior

region 

ai

bi

γi

σi


= (Ivpie −Zvpie)



a

b

γ

σ


(1.76)
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where Ivpie is a 4x4 diagonal matrix of idempotent operators (or the identity of an operator).

Deriving the scalar potential integral equation (SPIE) follows a process analogous to the

VPIE. Beginning with Green’s second identity for scalars and (1.16) using Fig. 1.2, where

G = e−jκR

R , the volume integrals once again evaluate to zero due to equivalence and the

absence of sources. The S∞ surface integral equals∫
s
(. . . ) dS∞ = lim

r′→∞

∫
s

(
G n̂′ · ∇′ϕ′ − ϕ′ n̂′ · ∇′G

)
dS′∞

= − lim
r′→∞

∫
s

[
e−jκr′

r′
r̂′ · ∇′ϕ′ + ϕ′r̂′ · r̂′

(
1 + jκr′

r′

)
e−jκr′

r′

]
r′2 sin θ′ dθ′dϕ′

= − lim
r′→∞

∫
s

[ (
∇′ ·

(
ϕ′r̂′

)
+ jκϕ′

)
r′ + ϕ′

]
e−jκr′ sin θ′ dθ′dϕ′

= 0

(1.77)

where the following radiation conditions are true due to the free-space Green’s function

lim
r′→∞

(
∇′ ·

(
ϕ′r̂′

)
+ jκϕ′

)
= 0 (1.78a)

lim
r′→∞

r′ϕ′ <∞. (1.78b)

The Sδ surface integral equals

lim
δ→0

∫
s
(. . . ) dSδ = − lim

δ→0

∫
s
ϕ′n̂′ · ∇′G dSδ

= − lim
δ→0

∫
s
ϕ′ (1 + jκδ) e−jκδ sin θ′ dθ′dϕ′

= 4πϕs.

(1.79)

Adding the surface integrals together and rewriting 1
4πG→ G generates the following equa-

tion for the scattered scalar potential

ϕs = −S [n̂ · ∇ϕ]−∇ · S [n̂ϕ] . (1.80)

Deriving the SPIE follows the same process as the VPIE. If ϕ1 = ϕi + ϕs, the SPIE
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formulation in the exterior region isαi
βi

 = (Ispie −Zspie)

α
β

 (1.81)

where Ispie is a 2x2 diagonal matrix of idempotent operators. The variables are defined as,

α = ϕ (1.82a)

β = n̂ · ∇ϕ (1.82b)

Zspie =

 −∇ · S[n̂∗] −S[∗]

−n̂ · ∇∇ · S[n̂∗] −n̂ · ∇S[∗]

 (1.82c)

where
∫
s β dS = 0.

The decoupled potential integral equation (DPIE) is a block diagonal matrix of the VPIE

(1.75) and SPIE (1.81) 

ai

bi

γi

σi

αi

βi


=

Zvpie 0

0 Zspie





a

b

γ

σ

α

β


. (1.83)

Finally, the decouple field integral equation (DFIE) is derived in a manner analogous to

the VPIE as well. Replacing A with E in (1.66), the scattered electric field equals

Es = −S[n̂ × n̂ × n̂ ×∇× E] +∇× S[n̂ × E]−∇S[n̂ · E]− S[n̂ ∇ · E]. (1.84)

Using the following physical relations for free-space

∇× E =− jωµoH (1.85a)

∇ · E = 0 (1.85b)

(1.84) is reducible to the Stratton-Chu formulation,

Es = −
∫
s
jωµ0 G

(
n̂′ ×H′)+ (n̂′ × E′)×∇′G+

(
n̂′ · E′)∇′G dS′. (1.86)
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If Et = Ei + Es, then the DFIE for the exterior region is

aiE

biE

γiE

σiE


= (Idfie −Zdfie)



aE

bE

γE

σE


(1.87)

where Zdfie = Zvpie and Idfie = Ivpie, and

aE = n̂ × n̂ ×∇× E (1.88a)

bE = n̂ × E (1.88b)

γE = n̂ · E (1.88c)

σE = ∇ · E (1.88d)

where
∫
s γE dS

′ = 0. The VPIE and DFIE have identical forward matrices for the exterior

problem in free-space.

1.4 Derivation of the Time Domain SPIE

The derivation of the time domain decouple integral equation is similar to the frequency

domain decoupled integral equation. The derivation is recapitulated in this section because

the new time domain Calderón identities will be derived as well in Chapter 2. This section

serves as a preliminary.

The time-domain mixed potential representation of the E-field is

E = −∂A
∂t

−∇ψ (1.89)

where

A =

∫
s′
dS′ G ∗ µ0J

(
r′, t′

)
ψ =

∫
s′
dS′ G ∗

ρ
(
r′, t′

)
ϵ0

G =
δ
(
t− R

c

)
4πR

(1.90)
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and * denotes temporal convolution.

Deriving the TD-SPIE requires Green’s Second Identity for scalars and the wave equation

∇′2ψ − 1

c2
∂2

∂t2
ψ′ = − ρ′

ϵo
(1.91a)

∇′2G− 1

c2
∂2

∂t2
G = 0 (1.91b)∫

v

(
G∇′2ψ′ − ψ′∇′2G

)
dV ′ =

∫
s

(
G n̂′ · ∇′ψ′ − ψ′ n̂′ · ∇′G

)
dS′. (1.91c)

Using G =
δ
(
t−t′−R

c

)
R , the LHS of Green’s Second Identity may be rewritten in the following

way ∫
v

(
G∇′2ψ′ − ψ′∇′2G

)
dV ′ =

∫
v
G

(
1

c2
∂2

∂t′2
ψ′ − ρ′

ϵo

)
− ψ′

(
1

c2
∂2

∂t′2
G

)
dV ′

=

∫
v

(
1

c2
∂

∂t′

(
G
∂ψ′

∂t′
− ψ′

∂G

∂t

)
−G

ρ′

ϵo

)
dV ′

∫
v

∫
t

(
G∇′2ψ′ − ψ′∇′2G

)
dt′ dV ′ =

∫
v

1

c2

(
G
∂ψ′

∂t′
− ψ′

∂G

∂t′

)∣∣∣∣∣
∞

−∞
dV ′ −

∫
t

∫
v
G
ρ′

ϵo
dt′ dV ′

=−
∫
v
G ∗ ρ

′

ϵo
dV ′

(1.92)

where G and ∂G
∂t evaluates to zero in the limit of infinity due to the properties of the delta-

function.

Like Section 1.3, all of space is enclosed in a volume integral with incisions around the

sources and an observer as depicted in Fig. 1.2. All volume integrals may be set to zero due

to the equivalence principle and the absence of sources elsewhere. The surface integral over
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S∞ is evaluated in the following way

lim
r′→∞

∫
s
(. . . ) dS∞ = lim

r′→∞

∫
s

(
G n̂′ · ∇′ϕ′ − ψ′n̂′ · ∇′G

)
dS∞

= − lim
r′→∞

∫
s

[
δ
(
t− t′ − r′

c

)
r′

r̂′ · ∇′ψ+

ψ′
(
1

r′
+

1

c

∂

∂t′

) δ
(
t− t′ − r′

c

)
r′

]
r′2 sin θ′ dθ′dϕ′

= − lim
r′→∞

∫
s

[
δ
(
t− t′ − r′

c

)
r′

r̂′ · ∇′ψ′ +
ψ′

r′2
δ

(
t− t′ − r′

c

)

+
ψ′

cr′
∂

∂t′
δ

(
t− t′ − r′

c

)]
r′2 sin θ′ dθ′dϕ′

= − lim
r′→∞

∫
s

[(
r̂′ · ∇′ψ′ +

ψ′

c

∂

∂t′

)
r′ + ψ′

]
δ

(
t− t′ − r′

c

)
sin θ′ dθ′dϕ′

= − lim
r′→∞

∫
s

[(
∇′ ·

(
ψ′r̂′

)
− 1

c

∂

∂t′
ψ′
)
r′

+ ψ′
]
δ

(
t− t′ − r′

c

)
sin θ′ dθ′dϕ′

= 0

lim
r′→∞

∫
s

∫
t
(. . . ) dt′dS∞ = 0

(1.93)

where ∇′G = R̂
(
1
R + 1

c
∂
∂t′
)
G, integration by parts, and the radiation conditions are

lim
r′→∞

r′ψ′ <∞ (1.94a)

lim
r′→∞

(
∇′ ·

(
ψ′r̂′

)
− 1

c

∂

∂t′
ψ′
)

= 0. (1.94b)

The Sδ and Vδ integrals remain to be evaluated. As δ → 0, the Vδ integral evaluates to zero

23



once again and the Sδ integral equals

− lim
δ→0

∫
s
ψ′n̂′ · ∇′G dSδ = − lim

δ→0

∫
s
ψ′n̂′ · ∇′G r′2 sin θ′ dθ′dϕ′

= lim
δ→0

∫
s
ψ′
(
1

δ
+

1

c

∂

∂t′

)
δ

(
t− t′ − δ

c

)
δ sin θ′ dθ′dϕ′

= lim
δ→0

∫
s
ψ′δ
(
t− t′

)
sin θ′ dθ′dϕ′

= 4πψsδ
(
t− t′

)
− lim

δ→0

∫
s

∫
t
ψ′n̂′ · ∇′G dt′dSδ = 4πψs.

(1.95)

Adding the Sδ, S∞, S1, and absorbing the 4π such that 1
4πG→ G, the time domain scattered

scalar potential is

ψs = −Stime [n̂ · ∇ψ]−∇ · Stime [n̂ψ] (1.96)

where Stime [x(r)] =
∫
sG ∗ x(r′) dS′ and ∗ denotes temporal convolution.

After decoupling the time-domain boundary conditions (1.6) with E = −∂A
∂t − ∇ψ and

using (1.96), the time-domain SPIE isαitime

βitime

 = (Itime
spie −Ztime

spie )

αtime

βtime

 (1.97)

where

αtime = ψ (1.98a)

βtime = n̂ · ∇ψ (1.98b)

Ztime
spie =

 −∇ · Stime[n̂∗] −Stime[∗]

−n̂ · ∇∇ · Stime[n̂∗] −n̂ · ∇Stime[∗]

 . (1.98c)

The process for deriving the time domain scattered magnetic vector potential is analogous

to the time domain scattered scalar potential, and the structure of the time domain magnetic

potential is analogous to (1.66)

As = −Stime[n̂×n̂×n̂×∇×A]+∇×Stime[n̂×A]−∇Stime[n̂ ·A]−Stime[n̂ ∇·A]. (1.99)
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The time domain VPIE is

aitime

bitime

γitime

σitime


= (Itime

vpie −Ztime
vpie )



atime

btime

γtime

σtime


(1.100)

where,

atime = n̂ × n̂ ×∇×A (1.101a)

btime = n̂ ×A (1.101b)

γtime = n̂ · A (1.101c)

σtime = ∇ · A (1.101d)

and,

Ztime
vpie =



−n̂ × n̂ ×∇× Stime[n̂ × ∗] n̂ × n̂ ×∇×∇× Stime[∗] 0 −n̂ × n̂ ×∇× Stime[n̂∗]

−n̂ × Stime[n̂ × ∗] n̂ ×∇× Stime[∗] −n̂ ×∇Stime[∗] −n̂ × Stime[n̂∗]

−n̂ · Stime[n̂ × ∗] n̂ · ∇ × Stime[∗] −n̂ · ∇Stime[∗] −n̂ · Stime[n̂∗]

−∇ · Stime[n̂ × ∗] 0 −κ2Stime[∗] −∇ · Stime[n̂∗]


.

(1.102)

1.5 Method-of-Moments

This thesis uses the Method-of-Moments (MOM) technique to analyze and discretize the

electromagnetic integral equations. The idea of MOM is to project the RHS and the LHS of

the integral equations from one basis set onto another. Consider a function such that

f (x) =
N∑
n=0

αn g(x). (1.103)

And the linear, integral operator L such that

L ◦ f (x) = h (x) . (1.104)
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and the functions {tm (x)} spanning the range of L. Defining the action of testing for scalars

and vectors as

⟨t (x) , g (x)⟩ =
∫
dx t (x) g (x)

⟨t (x) , g (x)⟩ =
∫
dx t (x) · g (x)

(1.105)

(1.104) may be tested such that
⟨t0 (x) ,Lg0 (x)⟩ ... ⟨t0 (x) ,LgN (x)⟩

...
. . .

...

⟨tN (x) ,Lg0 (x)⟩ ... ⟨tN (x) ,LgN (x)⟩



a0
...

aN

 =


⟨t0 (x) , h (x)⟩

...

⟨tN (x) , h (x)⟩

 . (1.106)

(1.106) is solved iteratively or directly with standard routines like QMR, LGMRES, LU-

factorization, etc.
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CHAPTER 2

A PROCESS FOR DERIVING CALDERÓN IDENTITIES

The standard Calderón identities are derived through the Stratton-Chu representation of

the E-field and H-field in the frequency domain. The process used to derive these identities

is generic and may be applied to any integral formulation derived through Green’s Second

Identity and boundary conditions in both time and frequency domains. For completeness,

the process is demonstrated in the original application for electromagnetics and then applied

to the SPIE and VPIE in both frequency and time domains. The results are new Calderón

identities which will be deployed later to precondition the DPIE and DFIE formulations.

2.1 T and K Calderón Identities

Consider once again the free-space Stratton-Chu representation for E-fields and H-fields

Es = −
∫
s
jωµ0 G

(
n̂′ ×H′)+ (n̂′ × E′)×∇′G+

(
n̂′ · E′)∇′G dS′

Hs =

∫
s
jωϵ0

(
n̂′ × E′)G −

(
n̂′ ×H′)×∇′G −

(
n̂′ ·H′)∇′G dS′.

(2.1)

Taking the curl of (2.1) results in the following equations

n̂ × Es = n̂ ×∇× S[n̂ × E] +
1

jωϵ0
n̂ ×∇×∇× S[n̂ ×H]

n̂ ×Hs = n̂ ×∇× S[n̂ ×H]− 1

jωµ0
n̂ ×∇×∇× S[n̂ × E].

(2.2)

The above equations are expressible in the compact form n̂ × Es

ηn̂ ×Hs

 =

 K T

−T K


 n̂ × E

ηn̂ ×H

 (2.3)

where

K = n̂ ×∇× S[∗]

T = − jκ n̂ ×∇×∇× S[∗].
(2.4)
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If we assume the total field is the following n̂ × Et

ηn̂ ×Ht

 =

 n̂ × Et

ηn̂ ×Ht

 =

 n̂ × Ei

ηn̂ ×Hi

+

 n̂ × Es

ηn̂ ×Hs.

 (2.5)

Then one possible formulation for the exterior scattering problem is n̂ × Ei

−ηn̂ ×Hi

 =

I − K T

−T I − K


 n̂ × E

−ηn̂ ×H


= (I − ZMüller)

 n̂ × E

−ηn̂ ×H.


(2.6)

The forward matrix in (2.6) is a Calderón projector [Hsiao and Kleinman, 1997].

To further explain the projection property of the forward matrix in (2.6), consider the

total electromagnetic field in the exterior region of the scatter once again(
Et,Ht

)
= (Es,Hs) +

(
Ei,Hi

)
→
(
Ei,Hi

)
=
(
Et,Ht

)
−ZMüller

(
Et,Ht

) (2.7)

where (Es,Hs) = ZMüller

(
Et,Ht

)
. Note, ZMüller is also a projector and

(
Et,Ht

)
=

(Es,Hs) in the absence of an incident field. Therefore,

(0,0)i =
(
Et,Ht

)
−ZMüller

(
Et,Ht

)
= (Es,Hs)− (Es,Hs)

= (0,0) .

(2.8)

The ZMüller projector maps arbitrary scattered traces to arbitrary scattered traces such

that the RHS is a null-field in the absence of an incident field. The complement projection

I −ZMüller maps total traces to incident traces which equal the RHS in (2.6). Furthermore,

both projectors satisfy P2 = P .
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Using these projection properties, the following is true for arbitary sources

ZMüller

 n̂ × Ei

ηn̂ ×Hi

 = ZMüller

I − K T

−T I − K


 n̂ × E

ηn̂ ×H


0

0

 = ZMüller (I − ZMüller)

 n̂ × E

ηn̂ ×H


0

0

 = (I − ZMüller)ZMüller

 n̂ × E

ηn̂ ×H


→

0 0

0 0

 =

I − K T

−T I − K


K −T

T K

 .

(2.9)

And the Calderón identities well-known to the computational electromagnetic community

follow

(I − K) + T T = 0 (2.10a)

T K − (I − K) T = 0. (2.10b)

The above equations may be in an unfamiliar form because the principal value remains within

the integral operators. Substituting K = I
2 +Kp.v. into the above immediately recovers the

relations in their more common notation [Hsiao and Kleinman, 1997]. The more common

form is unused in this thesis because the principle value clutters the equations.

2.2 SPIE Calderón Identities for Frequency and Time Domain

Calderón projectors are generated by the construction of the scattering problem using

Green’s Second Identity and boundary conditions. The process of deriving the Calderón

identities above generalizes to the SPIE, VPIE, and DFIE (or any other IE) where boundary

conditions and Green’s Second Identity are used to formulate the scattering problem. The
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operators to be used through these derivations are defined as

D = −∇ · S[n̂ ∗] (2.11a)

N = −n̂ · ∇∇ · S[n̂ ∗] (2.11b)

D′ = n̂ · ∇S[∗] (2.11c)

K′ = −∇× S[n̂ × ∗] (2.11d)

J 2 = n̂ × S[n̂ × ∗] (2.11e)

J 3 = n̂ · S[n̂ × ∗] (2.11f)

J 4 = ∇ · S[n̂ × ∗] (2.11g)

L =
1

κ2
∇×∇× S[∗] (2.11h)

K = n̂ ×∇× S[∗] (2.11i)

M3 = n̂ · ∇ × S[∗] (2.11j)

P2 = n̂ ×∇S[∗] (2.11k)

Q1 = n̂ × n̂ ×∇× S[n̂ ∗] (2.11l)

Q2 = n̂ × S[n̂ ∗] (2.11m)

Q3 = n̂ · S[n̂ ∗]. (2.11n)

Consider the frequency domain SPIE (1.81) and recall Zspie projects out incident scalar

potential traces and Ispie−Zspie projects out scattered scalar potential traces from the total

traces. Then,

Zspie

αi
βi

 = Zspie(Ispie −Zspie)

α
β


0

0

 = (Ispie −Zspie)Zspie

α
β


→

0 0

0 0

 = (Ispie −Zspie)Zspie.

(2.12)
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This results in the well-known frequency domain Calderón SPIE identities [Nédélec, 2001]

(I − D)D + SN = 0 (2.13a)

−(I − D)S − SD′ = 0 (2.13b)

−ND + (I +D′)N = 0 (2.13c)

NS − (I +D′)D′ = 0. (2.13d)

Deriving the time-domain Calderón SPIE identities requires the time-domain SPIE in

(1.97). The forward matrices in (1.97) are projectors as well. They generate the following

time-domain Calderón SPIE identities

(Itime −Dtime)Dtime + StimeNtime = 0 (2.14a)

−(Itime −Dtime)Stime − StimeD
′
time = 0 (2.14b)

−NtimeDtime + (Itime +D
′
time)Ntime = 0 (2.14c)

NtimeStime − (Itime +D
′
time)D

′
time = 0 (2.14d)

where OO′[∗] = O
(
O′[∗]

)
and O and O′ are the time domain variants of the frequency

domain operators.

To accommodate acoustic problems where the boundary condition includes a tempo-

ral derivative on the scalar potential, the following additional time-domain Calderón SPIE

identities are true as well

(
İtime − Ḋtime

)
Ḋtime + ṠtimeṄtime = 0 (2.15a)

−
(
İtime − Ḋtime

)
Ṡtime − ṠtimeḊ

′
time = 0 (2.15b)

−ṄtimeḊtime +
(
İtime + Ḋ

′
time

)
Ṅtime = 0 (2.15c)

ṄtimeṠtime −
(
İtime + Ḋ

′
time

)
Ḋ
′
time = 0 (2.15d)

where Ȯ denotes an operator O with a temporal derivative.
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2.3 Novel Calderón Identities for Frequency and Time Domain

The Calderonón identities for the VPIE are likewise derived with projection operators

Zvpie



ai

bi

γi

σi


= Zvpie(Ivpie −Zvpie)



a

b

γ

σ




0

0

0

0


= (Ivpie −Zvpie)Zvpie



a

b

γ

σ



→



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


= (Ivpie −Zvpie)Zvpie.

(2.16)
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And the following, novel Calderón identities are the result

(I − K
′t)K

′t + κ2LtJ (2) −Q(1)J (4) = 0 (2.17a)

J (2)K
′t − (I − K)J (2) − P(2)J (3) −Q(2)J (4) = 0 (2.17b)

J (3)K
′t +M(3)J (2) − (I +D′)J (3) −Q(3)J (4) = 0 (2.17c)

J (4)K
′t + κ2SJ (3) − (I − D)J (4) = 0 (2.17d)

(I − K
′t)Lt − LtK = 0 (2.17e)

J (2)κ2Lt + (I − K)K + P(2)M(3) = 0 (2.17f)

J (3)κ2Lt −M(3)K + (I +D′)M(3) = 0 (2.17g)

J (4)Lt − SM(3) = 0 (2.17h)

LtP(2) +Q(1)S = 0 (2.17i)

−(I − K)P(2) − P(2)D′ +Q(2)κ2S = 0 (2.17j)

M(3)P(2) − (I +D′)D′ +Q(3)κ2S = 0 (2.17k)

SD′ + (I − D)S = 0 (2.17l)

−(I − K
′t)Q(1) + κ2LtQ(2) +Q(1)D = 0 (2.17m)

−J (2)Q(1) − (I − K)Q(2) − P(2)Q(3) +Q(2)D = 0 (2.17n)

−J (3)Q(1) +M(3)Q(2) − (I +D′)Q(3) +Q(3)D = 0 (2.17o)

−J (4)Q(1) + κ2SQ(3) + (I − D)D = 0. (2.17p)

Likewise, deriving the time-domain Calderón VPIE identities requires the time-domain

VPIE in (1.99). The forward matrices in (1.99) are projectors, and they generate the fol-

lowing time-domain Calderón VPIE identities in the same way as the time-domain Calderón
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SPIE identities (2.14)

(Itime −K
′t
time)K

′t
time + κ2Lt

timeJ
(2)
time −Q(1)

timeJ
(4)
time = 0 (2.18a)

J (2)
timeK

′t
time − (Itime −Ktime)J

(2)
time − P(2)

timeJ
(3)
time −Q(2)

timeJ
(4)
time = 0 (2.18b)

J (3)
timeK

′t
time +M(3)

timeJ
(2)
time − (Itime +D′

time)J
(3)
time −Q(3)

timeJ
(4)
time = 0 (2.18c)

J (4)
timeK

′t
time + κ2StimeJ

(3)
time − (Itime −Dtime)J

(4)
time = 0 (2.18d)

(Itime −K
′t
time)L

t
time − Lt

timeKtime = 0 (2.18e)

J (2)
timeκ

2Lt
time + (Itime −Ktime)Ktime + P(2)

timeM
(3)
time = 0 (2.18f)

J (3)
timeκ

2Lt
time −M(3)

timeKtime + (Itime +D′
time)M

(3)
time = 0 (2.18g)

J (4)
timeL

t
time − StimeM

(3)
time = 0 (2.18h)

Lt
timeP

(2)
time +Q(1)

timeStime = 0 (2.18i)

−(Itime −Ktime)P
(2)
time − P(2)

timeD
′
time +Q(2)

timeκ
2Stime = 0 (2.18j)

M(3)
timeP

(2)
time − (Itime +D′

time)D
′
time +Q(3)

timeκ
2Stime = 0 (2.18k)

StimeD′
time + (Itime −Dtime)Stime = 0 (2.18l)

−(Itime −K
′t
time)Q

(1)
time + κ2Lt

timeQ
(2)
time +Q(1)

timeDtime = 0 (2.18m)

−J (2)
timeQ

(1)
time − (Itime −Ktime)Q

(2)
time − P(2)

timeQ
(3)
time +Q(2)

timeDtime = 0 (2.18n)

−J (3)
timeQ

(1)
time +M(3)

timeQ
(2)
time − (Itime +D′

time)Q
(3)
time +Q(3)

timeDtime = 0 (2.18o)

−J (4)
timeQ

(1)
time + κ2StimeQ

(3)
time + (Itime −Dtime)Dtime = 0. (2.18p)
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And finally, the time-derivative version is

(İtime − K̇
′t
time)K̇

′t
time + κ2L̇t

timeJ̇
(2)
time − Q̇(1)

timeJ̇
(4)
time = 0 (2.19a)

J̇ (2)
timeK̇

′t
time − (İtime − K̇time)J̇

(2)
time − Ṗ(2)

timeJ̇
(3)
time − Q̇(2)

timeJ̇
(4)
time = 0 (2.19b)

J̇ (3)
timeK̇

′t
time + Ṁ(3)

timeJ̇
(2)
time − (İtime + Ḋ′

time)J̇
(3)
time − Q̇(3)

timeJ̇
(4)
time = 0 (2.19c)

J̇ (4)
timeK̇

′t
time + κ2ṠtimeJ̇

(3)
time − (İtime − Ḋtime)J̇

(4)
time = 0 (2.19d)

(İtime − K̇
′t
time)L̇

t
time − L̇t

timeK̇time = 0 (2.19e)

J̇ (2)
timeκ

2L̇t
time + (İtime − K̇time)K̇time + Ṗ(2)

timeṀ
(3)
time = 0 (2.19f)

J̇ (3)
timeκ

2L̇t
time − Ṁ(3)

timeK̇time + (İtime + Ḋ′
time)Ṁ

(3)
time = 0 (2.19g)

J̇ (4)
timeL̇

t
time − ṠtimeṀ

(3)
time = 0 (2.19h)

L̇t
timeṖ

(2)
time + Q̇(1)

timeṠtime = 0 (2.19i)

−(İtime − K̇time)Ṗ
(2)
time − Ṗ(2)

timeḊ
′
time + Q̇(2)

timeκ
2Ṡtime = 0 (2.19j)

Ṁ(3)
timeṖ

(2)
time − (İtime + Ḋ′

time)Ḋ
′
time + Q̇(3)

timeκ
2Ṡtime = 0 (2.19k)

ṠtimeḊ′
time + (İtime − Ḋtime)Ṡtime = 0 (2.19l)

−(İtime − K̇
′t
time)Q̇

(1)
time + κ2L̇t

timeQ̇
(2)
time + Q̇(1)

timeḊtime = 0 (2.19m)

−J̇ (2)
timeQ̇

(1)
time − (İtime − K̇time)Q̇

(2)
time − Ṗ(2)

timeQ̇
(3)
time + Q̇(2)

timeḊtime = 0 (2.19n)

−J̇ (3)
timeQ̇

(1)
time + Ṁ(3)

timeQ̇
(2)
time − (İtime + Ḋ′

time)Q̇
(3)
time + Q̇(3)

timeḊtime = 0 (2.19o)

−J̇ (4)
timeQ̇

(1)
time + κ2ṠtimeQ̇

(3)
time + (İtime − Ḋtime)Ḋtime = 0. (2.19p)

This completes the derivation of various Calderón identities, some of which are new, and

the demonstration of a general, simple process to generate them. There may exist other

Calderón identities yet to be tabulated, but the above process is sufficient to recover them.
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CHAPTER 3

NOVEL FREQUENCY DOMAIN FORMULATIONS

As discussed in Chapter 1, various boundary integral equations (MFIE, EFIE, CFIE, etc.)

predict scattered magnetic and electric fields from PEC objects of arbitrary shape using

MOM. The problem is important because many real-world scatterers and communication

devices are multi-scale and include wideband antennas. This approach has fewer unknowns

than the finite element method (FEM) but may be integrated with FEM approaches to trun-

cate the inhomogenous region (modeled with FEM) interfacing with an open, homogeneous

region (modeled with BEM) [Jin, 2011].

The EFIE and MFIE components of the CFIE formulation suffer from a variety of is-

sues like low-frequency breakdown [Yan et al., 2010][Zhao and Chew, 2000][Zhang et al.,

2003][Qian and Chew, 2008], catastrophic cancellation [Kress, 1981], dense mesh breakdown

[Valdes et al., 2011], static nullspaces or topology breakdown [Cools et al., 2009a], and a poor

approximation of the identity operator in the MFIE with RWG testing and basis functions

[Yan et al., 2011]. These issues have been addressed in various ways. Buffa-Christiansen

testing sets better approximate the identity operator of the MFIE when the basis set is

composed of RWG functions [Cools et al., 2009b]. These functions have also been used in

conjunction with the Calderón identities to precondition the ill-conditioned EFIE operator

[Cools et al., 2009c]. Other suggested basis sets to alleviate breakdown are the so-called

loop-star and loop-tree functions [Wilton and Glisson, 1981][Wu et al., 1995] or the related

basis-free quasi-Helmholtz projection matrices [Andriulli et al., 2013], subdivision surfaces

[Fu et al., 2017], and manifold harmonics [Alsnayyan and Shanker, 2022]. Yet another option

is solving for current and charge densities in the current and charge integral equation (CCIE)

[Taskinen and Ylä-Oijala, 2006].

In contradistinction, the DPIE and DFIE formulations have several niceties: no low-

frequency breakdown, no dense mesh breakdown, no topological low-frequency breakdown,

and well-conditioned dielectric and PEC formulations at low to medium range frequencies
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[Vico et al., 2016][Li et al., 2019]. For PEC objects analyzed in the frequency domain, [Li

et al., 2019] suggested various combinations of the potential integral equations to construct

well-conditioned formulations at low frequency. Reference [Eris et al., 2022] suggested a

unique combined potential formulation for dense discretizations. The low frequency behavior

of the VPIE was further analyzed for PEC in [Chen et al., 2022]. For dielectric objects

analyzed in the frequency domain, [Li et al., 2019][Vico et al., 2016] have suggested well-

conditioned potential formulations at low frequency. A potential integral formulation for

solving lossy conductors is detailed in [Sharma and Triverio, 2022] as well. The time-domain

variant of these integral equations has been analyzed in [Roth and Chew, 2021]. Specifically,

the decoupled potential integral equation (DPIE) approach has several niceties: no low-

frequency breakdown, no dense mesh breakdown, no topological low-frequency breakdown,

and well-conditioned dielectric and PEC formulations at low to medium range frequencies

[Vico et al., 2016][Li et al., 2019]. Recently, the DPIE has been implemented on arbitrary

dielectric objects [Baumann et al., 2022] with pulse and RWG functions, and the results

therein demonstrate low singular value conditioning and a low iteration count to converge.

However, fast convergence with iterative solvers has yet to be demonstrated in the high

frequency region for arbitrary objects using the DPIE.

This chapter extends the DPIE and DFIE property of well-conditioned to the high fre-

quency region for arbitrary PEC objects by constructing new formulations using the Calderón

identities derived in Chapter 2. The spectral properties of these formulations are analyzed

on a unit sphere.

3.1 DPIE and DFIE for PECs

The boundary conditions force the tangential component of the total electric field to be

zero in the case of a PEC. In the DPIE, this is implies α(r) = 0, σ(r) = 0, and b(r) = 0.
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Equation (1.75) and (1.81) reduce in the PEC case toαi
βi

 =

 S

I +D′

 β (3.1a)



ai

bi

γi

σi


=



I − K′t 0

J (2) P(2)

J (3) I +D′

J (4) −κ2S


a

γ

 . (3.1b)

These equations are over-determined. Any choice of two rows of operators in (3.1b) or one

row in (3.1a) will construct a system of equations relating unknown potential quantities to

the incident field.

The DFIE is very similar because the DFIE and VPIE have an identical forward matrix of

operators. Again, the tangential component of the electric field is zero at the PEC boundary

which implies αE(r) = 0, σE(r) = 0, and bE(r) = 0. Equation (1.75) and (1.81) reduce in

the PEC case to



aiE

biE

γiE

σiE


=



I − K′t 0

J (2) P(2)

J (3) I +D′

J (4) −κ2S


aE

γE

 . (3.2)

As an aside, the Stratton-Chu formula assumes the free-space region is source free and sets

∇ · E = 0 in Green’s Second Identity. This reduction of Green’s Second Identity would

remove the fourth row of the above equation.

Again, (3.2) is over-determined. Any choice of two rows of operators will construct a

system of equations relating unknown, field quantities to the incident field.
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3.2 Local Calderón Combined DPIE and DFIE Formulations

3.2.1 Combined SPIE, VPIE, DPIE, and DFIE Formulations

Constructing a unique SPIE formulation from requires adding the two possible equations

in (3.1a). These two possible equations have null-spaces at irregular frequencies. The null-

spaces of the S operator correspond to a solution of a cavity with Dirichlet boundary con-

ditions whereas those of I + D′ correspond to those of an interior cavity with Neumann

boundary conditions. Combing these two equations with a weighting coefficient δ and 1− δ,

where 0 ≤ δ ≤ 1 yields a unique SPIE formulation. The Combined SPIE (CSPIE) is written

as

δαi + (1− δ)βi = δZSPIE
1 β + (1− δ)ZSPIE

2 β (3.3)

where

ZSPIE
1 = S

ZSPIE
2 = I +D′

(3.4)

Constructing a unique VPIE formulation follows a similar procedure. Rows 1 and 3 of

(3.1b) are spectrally akin to those of an MFIE (denoted by ZV PIE
1 ) whereas rows 2 and 4

are similar to those of an EFIE (denoted by ZV PIE
2 )

ZV PIE
1 =

I − K′t 0

J (3) I +D′


ZV PIE
2 =

J (2) P(2)

J (4) −κ2S

 .

(3.5)

However, the null-spaces of these matrices of operators are more complex than those of either

the MFIE or EFIE operators. Take ZV PIE
1 for instance. Given the lower triangular nature

of the matrix, the null-spaces fall into two categories; (a) the null-spaces of I − K′t (which

is equivalent to the MFIE) and (b) null-spaces of I +D′ for rotational a.
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A linear combination of the two systems in (3.1b) does not have a null-space. As a result,

the Combined VPIE (CVPIE) is prescribed as follows

δ

a

γ


i

+ (1− δ)

b

σ


i

= δ ZV PIE
1

a

γ


+ (1− δ) ZV PIE

2

a

γ

 .

(3.6)

Of course, a unique DPIE is simply a block diagonal concatenation of (3.5) and (3.6).

A Combined DFIE formulation is identical to the Combined VPIE formulation, RHS

aside,

δP1
l

aE

γE


i

+ (1− δ)P2
l

bE

σE


i

= δ P1
l Z

DFIE
1

aE

γE


+ (1− δ) P2

l Z
DFIE
2

aE

γE


(3.7)

ZDFIE
1 =

I − K′t 0

J (3) I +D′


ZDFIE
2 =

J (2) P(2)

J (4) −κ2S


P1
l = diag(1,−jκ)

P2
l = diag(−jκ, 1)

(3.8)

where the scaling matrices P1
l and P2

l are prematurely introduced.

To prove the uniqueness of the Combined DFIE for an arbitrary and closed object, as

is done in [Harrington and Mautz, 1978], consider the exterior and interior problems where

the equivalence theorem reconstructs the scattering problem. Select the interior problem

where the fields (E1,H1) in the exterior region is set to the null-field and the interior fields
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(E2,H2) are supported by equivalent sources. The interior problem defined over the inner

surface for the Combined DFIE is0

0

 =(1− δ)

1 0

0 −jκ


n̂ × n̂ ×∇× E2(c, µ)

n̂ · E2(c, µ)


+ δ

−jκ 0

0 1


n̂ × E2(aE , γE)

∇ · E2(aE , γE)

 .

(3.9)

Using Faraday’s law of induction for time-harmonic fields0

0

 =(1− δ)

−jκη0n̂ × n̂ ×H2(aE , γE)

−jκn̂ · E2(aE , γE)


+ δ

−jκn̂ × E2(aE , γE)

∇ · Es
2(aE , γE)

 .

(3.10)

Selecting the first row of Eq. (3.10) and operating on both sides with n̂× leads to

0 = (δ − 1) ηon̂ ×H2(aE , γE) + δn̂ × n̂ × E2(aE , γE). (3.11)

Taking the complex conjugate of the above equation and projecting onto the above equation

yields

2Re

(
(1− δ) δ ηo

∫
s
n̂ · ((n̂ × E2(aE , γE)) . . .

× (n̂ ×H∗
2(aE , γE))) dS

)
=∫

s
(δ − 1)2 η2o |n̂ ×H2(aE , γE)|2

+ δ2 |n̂ × n̂ × E2(aE , γE)|2 dS.

(3.12)

The LHS is the real power flowing in the interior. If the interior’s media is without loss,

then the LHS is zero. Therefore

n̂ ×H2(aE , γE) = 0

n̂ × n̂ × E2(aE , γE) = 0.

(3.13)
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Now consider the following calculations,

∇ · (n̂ ×H2(c, µ)) = − n̂ · (∇×H2(c, µ))

= jωϵon̂ · E2(c, µ).

(3.14)

In light of Eq. (3.13), we conclude n̂ · E2(c, µ) = 0. Further,

∇ · E2(c, µ) =∇ · (n̂ × n̂ × E2(c, µ) + (n̂ · E2(c, µ)) n̂)

= 0.

(3.15)

Recall the exterior fields are the null-field. Using the boundary condition n̂ ×H1 − n̂ ×

H2 = J, we conclude J = 0 and then (aE , γE) = (0, 0) in Eq. (3.13). In other words, the

total traces of the interior problem must be zero, and the Combined DFIE does not support

a cavity mode for any external field. The Combined DFIE is unique. Also, the Combined

VPIE forward matrix in [Hawkins et al., 2023] is identical to the Combined DFIE, and the

Combined VPIE is unique as well.

3.2.2 Left and Right Preconditioners for Scaling

Left and right preconditioners are used to scale the various operators in the DPIE and DFIE

PEC formulations such that all unknowns are of the same units [Li et al., 2019]. The left

and right scaling matrices for the PEC case are
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P1
l = diag (1,−jκ) (3.16a)

S1
l = − jκ (3.16b)

P2
l = diag (−jκ, 1) (3.16c)

S2
l = 1 (3.16d)

P1
r =

(
P1
l

)−1
(3.16e)

S1
r =

(
S1
l

)−1
(3.16f)

P2
r =

(
P2
l

)−1
(3.16g)

S2
r =

(
S2
l

)−1
. (3.16h)

After scaling (3.5) and (3.6) with (3.16), the combined formulations are

δP1
l

a

γ


i

+ (1− δ)P2
l

b

σ


i

=δP1
l Z

DFIE
1 P1

r

ã

γ̃

+ (1− δ) P2
l Z

DFIE
2 P1

r

ã

γ̃



δP1
l

a

γ


i

+ (1− δ)P2
l

b

σ


i

=δP1
l Z

V PIE
1 P1

r

ã

γ̃

+ (1− δ) P2
l Z

V PIE
2 P1

r

ã

γ̃


δS1

l α
i + (1− δ)S2

l β
i =δS1

l Z
SPIE
1 S2

r [β̃] + (1− δ) S2
l Z

SPIE
2 S2

r [β̃].

(3.17)

3.2.3 Framework for Spectral Analysis

To analyze the spectrum of the formulations, we use spherical and vector harmonic basis

and testing functions for the unit sphere to compute eigenvalues and singular values. The

spherical harmonic basis functions are denoted by Bs
n where n ∈ [0, Ns) and the vector

harmonic basis functions are denoted by Bv
n where n ∈ [0, Nv). The number of basis functions

in the SPIE for PEC is Ns, and the span is denoted by τSPIE =
∑Ns−1

n=0 Bs
ny

SPIE
n where ysn

are basis function coefficients. The number of basis functions in DFIE or VPIE for PEC is
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Ns+Nv. Likewise, the span of basis functions is denoted by τVPIE =
∑Ns+Nv−1

n=0 FV
n y

VPIE
n

where yvn is a list of basis function coefficients and FV = diag (Bs
n,Bv

n).

The sets of harmonics are denoted by

BY =

(
Y 0
0 . . . Ym

n . . . Y
Nh
Nh

)
(3.18a)

BΨ =

(
Ψ0

0 . . . Ψm
n . . . Ψ

Nh
Nh

)
(3.18b)

BΦ =

(
Φ0
0 . . . Φm

n . . . Φ
Nh
Nh

)
(3.18c)

where n ≥ 0 and |m| ≤ 0. The scalar and vector basis functions are then

Bs = BY (3.19a)

Bv =

(
BΦ BΨ

)
(3.19b)

where Ns = (Nh + 1)2 and Nv = 2 (Nh + 1)2 and Nh = κa+ 2 where a is the radius of the

sphere and equal to 1. The harmonic functions are defined by

Ym
n (r) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ) ejmϕ (3.20a)

Ψm
n (r̂) =− r̂ ×Φm

n (r̂) = cnr∇Ym
n (r̂) (3.20b)

Φm
n (r̂) =r̂ ×Ψm

n (r̂) = cnr̂ ×∇Ym
n (r̂) (3.20c)

cn =


1 n = 0

1√
n(n+1)

n ̸= 0

. (3.20d)

(3.20e)

As a demonstration, consider the following LHS

P1
l Z

DFIE
1 P1

r


amn Ψm

n

bmn Φm
n

cmn Ym
n

 . (3.21)
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Testing with (Ψm
n Φm

n Ym
n )T and using the orthonormal nature of the harmonic functions

as defined above


⟨Ψm

n , I + n̂ × n̂ ×∇× S[n̂ ×Ψm
n ]⟩ ⟨Ψm

n , I + n̂ × n̂ ×∇× S[n̂ ×Φm
n ]⟩ 0

⟨Φm
n , I + n̂ × n̂ ×∇× S[n̂ ×Ψm

n ]⟩ ⟨Φm
n , I + n̂ × n̂ ×∇× S[n̂ ×Φm

n ]⟩ 0

⟨Ym
n , jκn̂ · S[n̂ ×Ψm

n ]⟩ ⟨Ym
n , jκn̂ · S[n̂ ×Φm

n ]⟩ ⟨Ym
n , I + n̂ · ∇S[Ym

n ]⟩



amn

bmn

cmn

.

(3.22)

Each entry in the above matrix may be computed analytically. The following notation is

used for spherical Bessel functions and spherical Hankel functions

ϕ
(i)
nm (k, r) =cn b

i
n (κr)Y

m
n (3.23a)

b
(1)
n =jn (3.23b)

b
(1)
n =h

(2)
n (3.23c)

and for vector spherical harmonics

L
(i)
nm =∇ϕ(i)nm (3.24a)

M
(i)
nm =

1

κ
∇×N

(i)
nm (3.24b)

=− r×∇ϕ(i)nm (3.24c)

N
(i)
nm =

1

κ
∇×M

(i)
nm. (3.24d)

(3.24e)

and OXY or OXY is short hand for

OXY =

∫
X Y ∗ dS (3.25a)

OXY =

∫
X ·Y∗ dS. (3.25b)

(3.25c)
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As a demonstration, consider the following computation

⟨Ψnm, Ψnm + n̂ × n̂ ×∇× S[n̂ ×Ψnm]⟩ = OΨΨ +∫
Ψnm · n̂ × n̂ ×∇×

∫
G n̂ ×Ψ′

nmdS
′dS

= OΨΨ +

∫
Ψnm × r̂ × r̂ · ∇ ×

∫
G Φ′

nmdS
′dS

= OΨΨ −
∫

Ψnm · ∇ ×
∫

G Φ′
nmdS

′dS

= OΨΨ −
∫

Ψnm ·
∫

∇× G ·Φ′
nmdS

′dS.

(3.26)

Using the identity

∇× G = −jk2
∑
q,p

1

gp c2p
(M

(1)
pq (k, r) N

(4)∗
pq (k, r′) +

N
(1)
pq (k, r) M

(4)∗
pq (k, r′))

(3.27)

and orthogonality conditions for vector spherical harmonics

⟨Ψnm, Ψnm + n̂ × n̂ ×∇× S[n̂ ×Ψnm]⟩ =

OΨΨ +
jk2

gn c2n
O
N(1)Ψ

O
′∗
M(4)Φ

(3.28)

However,

⟨Φnm, Ψnm + n̂ × n̂ ×∇× S[n̂ ×Ψnm]⟩ = 0. (3.29)

Also, consider I − K′t tested with Φnm

⟨Φnm, Φnm + n̂ × n̂ ×∇× S[n̂ ×Φnm]⟩ = OΦΦ +∫
Φnm · n̂ × n̂ ×∇×

∫
G n̂ ×Φ′

nmdS
′dS

= OΦΦ +

∫
Φnm × r̂ × r̂ · ∇ ×

∫
G n̂ ×Φ′

nmdS
′dS

= OΦΦ +

∫
Φnm ·

∫
∇×G ·Φ′

nmdS
′dS

= OΦΦ − jk2

gn c2n
O
M(1)Φ

O
′∗
N(4)Ψ

.

(3.30)

46



However,

⟨Ψnm, Φnm + n̂ × n̂ ×∇× S[n̂ ×Φnm]⟩ = 0. (3.31)

Proceeding in this manner for all entries of (3.22), matrix (3.22) reduces to
OΨΨ + jk2

gn c2n
O
N(1)Ψ

O′∗
M(4)Φ

0 0

0 OΦΦ − jk2

gn c2n
O
M(1)Φ

O′∗
N(4)Ψ

0

0 (jκ)2
(

1
gn c2n

O
N(1)Y

O′∗
N(j)Ψ

+ 1
κ2 c2n

O
L(1)Y

O′∗
L(4)Ψ

)
OY Y − jκ

c2n
O
L(1)Y

O′∗
ϕ(4)Y



amn

bmn

cmn

.

(3.32)

The eigenvalues have an analytic expression through the determinant of the above matrix.

More generally, the eigenvalues of any formulation equal the concatenation of eigenvalues of

each block matrix (3.32) corresponding to harmonic (m,n).

3.2.4 Spectral Analysis of Combined DFIE and DPIE

The Combined DFIE and DPIE formulations are not wideband well-conditioned as shown

in Fig. 3.1. The eigenvalue of the lowest order harmonic for the Combined SPIE nears (but

never exactly intersects because the formulation is unique) the origin of the complex plane

which results in poor conditioning in the high frequency region. The eigenvalues associated

with the lowest order harmonics for the Combined VPIE and DFIE do not near the origin

for any frequency. However, in the case of the Combined VPIE and DFIE, eigenvalues near

the origin of the complex plane at larger frequencies like 30 GHz as shown in Fig. 3.4.

3.2.5 Analytic Preconditioners for the Combined DPIE and DFIE

To improve the wideband condition of the Combined DPIE and DFIE, the identities pre-

sented in (2.13) and (2.17) are used to construct analytic preconditioners. In the combined

formulations, eigenvalues are collecting near the origin of the complex plane at higher fre-

quencies. By preconditioning one of the matrices, the idea is to interlace the eigenmodes

such that no eigenmode nears the origin in the combined system, and the spectrum shifts to

a bounded circle off the origin.
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Figure 3.1: Condition number vs frequency.

Figure 3.2: Eigenvalues for Combined SPIE for harmonic Y 1
1 .
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Figure 3.3: Eigenvalues for Combined VPIE and DFIE for harmonics
(
Y 1
1 ,Φ

1
1,Ψ

1
1

)
.

Figure 3.4: Eigenvalues for Combined VPIE and DFIE at 30 GHz.
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Starting with the Combined SPIE, the N operator acting on S results in an operator

that is second kind. However, NS and I + D′ share resonances due to identity (2.14d).

A complexification of the wavenumber included in N interlaces the null-spaces of NS and

I +D′. Specifically, we let P̃SPIE = −Ñ such that instead of κ we use κ̃ = κ− j0.4H
2
3κα

[Antoine et al., 2006][Boubendir and Turc, 2014] where α is to-be-determined. The resulting

Local Calderón Combined SPIE (LC-CSPIE) formulation is resonance free and second-kind

δS2
l P̃

SPIES1
rS1

l α
i + (1− δ)S2

l β
i =δS2

l P̃
SPIES1

rS1
l Z

SPIE
1 S2

r [β̃] + (1− δ)S2
l Z

SPIE
2 S2

r [β̃].

(3.33)

Further, κ̃ provably enforces uniqueness on spheres for the LC-CSPIE, and the asymptotic

analysis will be published in a future paper. Note, the localization doesn’t interlace the

wavenumbers at which a null-space exists. Operators ÑS and I +D′ share wavenumbers at

which there exists a null-space. Rather, the localization interlaces the eigenmodes such that

ÑS and I +D′ do not share a vanishing eigenmode for any wavenumber.

Proceeding in a similar manner for the Combined VPIE, ZV PIE
1 is second-kind and

well-conditioned while ZV PIE
2 is ill-conditioned [Li et al., 2019]. As before, (2.17) provides

the necessary relations for developing a preconditioner. Using (2.17), consider the following

preconditioning operator and its action on ZV PIE
2κ2Lt −Q(1)

M(3) −Q(3)


J (2) P(2)

J (4) −κ2S

 . (3.34)

Using (2.19a), (2.19c), (2.19i), and (2.19k), equation (3.34) reduces to −(I − K′t)K′t 0

−J (3)K′t + (I +D′)J (3) (I +D′)D′

 . (3.35)

The above matrix includes an identity plus compact operator along the diagonal. The off-

diagonal operators are compact operators acting on compact operators or compact operators

acting on bounded operators, the result of both being compact [Rudin, 1991]. As a result,
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the entire system of operators can be partitioned into identity plus compact operators, and

the system is well-conditioned.

Operator (3.35) and ZV PIE
1 share null-spaces. The lower triangular nature of the

operators dictate that the null-spaces fall into two categories; (a) those of (I − K′t)K′t

and (b) for any rotational a(r) unknown (for this type of a, J 3(a) = 0 which implies

−J (3)K′t(a) + (I + D′)J (3)(a) = 0), those of (I + D′)D′. These null-spaces are shared

with ZV PIE
1 . Furthermore, the below factorization demonstrates ZV PIE

1 and (3.35) share

nullspaces

−(I − K′t) 0

−J (3) I +D′


 K′t 0

J (3) D′

 . (3.36)

Furthermore, an alignment of these operators’ nullspaces is numerically depicted in Fig. 4.

Uniqueness at all frequencies is enforced by complexifying the wavenumber of the pre-

conditioner (3.35). Specifically, κ̃ is once again of the form κ̃ = κ − j0.4H
2
3κα. The new

Local Calderón-Type Combined VPIE (LC-CVPIE) formulation is

δP1
l

a

γ


i

+ (1− δ)P1
l P̃

V PIEP2
rP2

l

b

σ


i

= δP1
l Z

V PIE
1 P1

r

ã

γ̃


+ (1− δ) P1

l P̃
V PIEP2

rP2
l Z

V PIE
2 P1

r

ã

γ̃


(3.37)

where

P̃V PIE =−

 κ̃2L̃t −Q̃(1)

M̃(3) −Q̃(3)


ã

γ̃

 =P1
l

a

γ

 .

(3.38)
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Likewise, the new Local Calderón Combined DFIE formulation is

δP1
l

aE

γE


i

+ (1− δ)P1
l P̃

DFIEP2
rP2

l

bE

σE


i

= δP1
l Z

DFIE
1 P1

r

ãE

γ̃E


+ (1− δ) P1

l P̃
DFIEP2

rP2
l Z

DFIE
2 P1

r

ãE

γ̃E


(3.39)

where ãE

γ̃E

 = P1
l

aE

γE

 . (3.40)

The spectral analysis framework is used to select α for the localization parameter as

well as the weighting parameter δ. Sweeping frequencies, the LC-CVPIE is wideband well-

conditioned α = 0.5 and δ = 0.5 according to Fig. 3.5 and 3.6, respectively. Of course, the

LC-CDFIE is wideband well-conditioned for the same parameters.

3.2.6 Mapping Properties of DPIE and DFIE Operators

The DPIE and DFIE operators are a map between function spaces. These formulations take

functions as an input and then output functions. On a sphere, harmonics are both the input

and the output functions, and the following table summarizes the input-output mappings

for the DPIE and DFIE
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Figure 3.5: LC-CVPIE and LC-CDFIE conditioning for different κ̃

Figure 3.6: LC-CVPIE and LC-CDFIE conditioning with different δ weights using a = 0.5
in κ̃.
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ZV PIE/DFIE :


Ψ

0

0

 −→


Ψ or 0

0

0

 (3.41a)

ZV PIE/DFIE :


0

Φ

0

 −→


0

Φ or Y

0

 (3.41b)

ZV PIE/DFIE :


0

0

Y

 −→


0

0

Φ

 (3.41c)

ZSPIE : Y −→ Y. (3.41d)

These mapping properties demonstrate that div-conforming and curl-conforming func-

tions map to div-conforming and curl-conforming functions, respectively, in the DPIE and

DFIE.

3.2.7 Spectral Properties of LC-CDPIE and LC-CDFIE

We now analyze the eigenvalues and conditioning of the LC-CDPIE and LC-CDFIE. Con-

sidering the following three operators for the VPIE and DFIE

G−1P1
l P

V PIE/DFIEP2
rG

−1P2
l Z

V PIE/DFIE
2 P1

r (3.42a)

G−1P1
l Z

V PIE/DFIE
1 P1

r (3.42b)

δG−1P1
l Z

V PIE/DFIE
1 P1

r + (1− δ)G−1P1
l P

V PIE/DFIEP2
rG

−1P2
l Z

V PIE/DFIE
2 P1

r .

(3.42c)

Figure 3.7 depicts the conditioning for frequencies between 1e9 Hz and 1.1e9 Hz for formu-

lations (3.42b) and (3.42c). The sharp increases in condition number mark a null-space, and

the alignment indicates the two formulations share the same resonances. Therefore, Fig.
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Figure 3.7: Condition numbers of (3.42a) and (3.42b).

3.7 numerically verifies the properties of new Calderón-type identities developed in Chapter

2. Also, in Fig. 3.8 the condition numbers of formulations (3.42a) and (3.42b), which are

second-kind, increase ∝ ω in the high-frequency region. The more common Calderón pre-

conditioning approach for the CFIE (without localization) and the dielectric implementation

of the DPIE show similar results [Cools et al., 2009c][Hsiao and Kleinman, 1997][Baumann

et al., 2022].

The spectra of (3.42a), (3.42b), and (3.42c) at 20 GHz are shown in Fig. 3.9, Fig.

3.10, and Fig. 3.11, respectively. All spectra have similar features: they are bounded and

eigenvalues collect near the origin.

The localization of the VPIE and DFIE Calderón operator interleaves the eigenmodes of

the (3.42a) and (3.42b) nearing zero for any frequency such that (3.42c) shifts the spectra

off the origin. The spectrum of the LC-CVPIE and LC-CDFIE is shown in Fig. 3.12. The

spectrum is now both bounded and shifted away from the origin. The conditioning of the LC-

CDFIE and LC-CVPIE is shown in Fig. 3.14 where the formulations are clearly wideband

well-conditioned. In Fig. 3.13, the eigenvalues of the lowest order harmonic do not collect

near the origin.
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Figure 3.8: Condition numbers of (3.42a) and (3.42b).

Figure 3.9: The spectrum of (3.42a) at 20 GHz. Eigenvalues are denoted by n.

The analysis for the LC-CSPIE proceeds in a similar manner. Consider the following
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Figure 3.10: The spectrum of (3.42b) at 20 GHz. Eigenvalues are denoted by n.

Figure 3.11: The spectrum of (3.42c) at 20 GHz. Eigenvalues are denoted by n.

three operators for the SPIE

G−1S2
l P

SPIES1
rG

−1S1
l Z

SPIE
1 S2

r (3.43a)

G−1S2
l Z

SPIE
2 S2

r (3.43b)

G−1δS2
l P

SPIES1
rG

−1S1
l Z

SPIE
1 S2

r + (1− δ)G−1S2
l Z

SPIE
2 S2

r . (3.43c)
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Figure 3.12: The spectrum of LC-CVPIE and LC-CDFIE at 20 GHz. Eigenvalues are
denoted by n.

Figure 3.13: Eigenvalues for LC-CVPIE and LC-CDFIE for harmonics
(
Y 1
1 ,Φ

1
1,Ψ

1
1

)
.

Figure 3.15 depicts the conditioning for frequencies between 1e9 Hz and 1.1e9 Hz for for-

mulations (3.43a) and (3.43b) and numerically verifies the properties of well-known SPIE

Calderón identities as derived in Chapter 2. Also, in Fig. 3.8 the condition numbers of

formulations (3.42a) and (3.42b), which are second-kind, increase ∝ ω in the high-frequency
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Figure 3.14: Condition numbers for LC-CVPIE and LC-CDFIE

.

Figure 3.15: Condition numbers of (3.43a) and (3.42b).

region as well.

The spectra of (3.43a), (3.43b), and (3.43c) at 20 GHz are shown in Fig. 3.17, Fig.

3.18, and Fig. 3.19, respectively. All spectra have similar features: they are bounded and

eigenvalues collect near the origin.

The localization of the SPIE Calderón operator also interleaves the eigenmodes of the
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Figure 3.16: Condition numbers of (3.42a) and (3.42b).

Figure 3.17: The spectrum of (3.43a) at 20 GHz. Eigenvalues are denoted by n.

(3.42a) and (3.42b) nearing zero for any frequency such that (3.42c) shifts the spectra off

the origin. The spectrum of the LC-CSPIE is shown in Fig. 3.20. The spectrum is now both

bounded and shifted away from the origin. The conditioning of the LC-CSPIE is shown in

Fig. 3.22 where the formulation is wideband well-conditioned. Furthermore, in Fig. 3.21,

the eigenvalues of the lowest order harmonic do not intersect the origin.
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Figure 3.18: The spectrum of (3.43b) at 20 GHz. Eigenvalues are denoted by n.

Figure 3.19: The spectrum of (3.42c) at 20 GHz. Eigenvalues are denoted by n.
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Figure 3.20: The spectrum of LC-CSPIE at 20 GHz. Eigenvalues are denoted by n.

Figure 3.21: Eigenvalues for LC-CSPIE for harmonic Y 1
1

.
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Figure 3.22: Condition numbers for LC-CSPIE

.
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CHAPTER 4

DISCRETIZATION OF LOCAL CALDERÓN COMBINED DPIE AND DFIE

4.1 Method-of-Moments for LC-CDPIE and LC-CDFIE

Analytic basis sets are useful for computing the physics of spheres, but they are not useful

for computing the electromagnetic fields scattered by non-canonical objects. The MOM pro-

cedure detailed in Chapter 1 is used to discretize the LC-CDPIE and LC-CDFIE formulations

and model the scattered electromagnetic fields of real-world objects. The following notation

is used: Bs denotes the set of scalar basis functions defined over mesh patches or nodes, Bv

denotes the set of vector basis functions defined over mesh edges, and FV = diag (Bs,Bv)

denotes the union of scalar and vector basis sets. In other words,

Bs =

(
h0 . . . hn . . . hNs

)
(4.1a)

Bv =

(
f0 . . . fn . . . fNv

)
(4.1b)

where the vector functions are f0 and the scalar functions are hn.

The LC-CDPIE is composed of the independent LC-CVPIE and LC-CSPIE formulations.

For the LC-CVPIE, the MOM system of equations is

ZVPIEỹVPIE = bVPIE (4.2)

64



where the elements are defined by

ZVPIE
kn = ⟨FV

k , δG
−1P1

l Z
V PIE
1 P1

rFV
n (4.3a)

+ (1− δ) G−1P1
l P̃

V PIEP2
rG

−1P2
l Z

V PIE
2 P1

rFV
n ⟩ (4.3b)

ỹVPIE
n = P1

l y
VPIE
n (4.3c)

bVPIE
k = ⟨FV

k , δG
−1P1

l

a

γ


i

(4.3d)

+ (1− δ)G−1P1
l P̃

V PIEP2
rG

−1P2
l

b

σ


i

⟩ (4.3e)

Gkn = ⟨FV
k ,F

V
n ⟩. (4.3f)

For the LC-CSPIE, the MOM system of equations is

ZSPIEySPIE = bSPIE (4.4)

where the elements are defined by

ZSPIE
kn = ⟨Bs

k, δG
−1S2

l P
SPIES1

rG
−1S1

l Z
SPIE
1 S2

rBs
n (4.5a)

+ (1− δ)G−1S2
l Z

SPIE
2 S2

rBs
n⟩ (4.5b)

bSPIEk = ⟨Bs
k, δG

−1S2
l P

SPIES1
rG

−1S1
l α

i (4.5c)

+ (1− δ)G−1S2
l β

i⟩ (4.5d)

Gkn = ⟨Bs
k,B

s
n⟩. (4.5e)

The LC-CDPIE MOM system of equations is

ZDFIEỹDFIE = bDFIE (4.6)
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where the elements are defined by

ZDFIE
kn = ⟨FV

k , δG
−1P1

l Z
DFIE
1 P1

rFV
n (4.7a)

+ (1− δ) G−1P1
l P̃

DFIEP2
rG

−1P2
l Z

DFIE
2 P1

rFV
n ⟩ (4.7b)

ỹDFIE
n = P1

l y
DFIE
n (4.7c)

bDFIE
k = ⟨FV

k , δG
−1P1

l

aE

γE


i

(4.7d)

+ (1− δ)G−1P1
l P̃

DFIEP2
rG

−1P2
l

bE

σE


i

⟩ (4.7e)

Gkn = ⟨FV
k ,F

V
n ⟩. (4.7f)

These three MOM systems are further specified by specific basis functions in subsequent

sections.

4.2 Fine-Grain Localization for Piece-Wise Tesselations

Localizing the Calderón preconditioners with a single complex wavenumber, where the

parameterH is determined by the geometry’s global max-mean curvature, is not necessary for

piece-wise tesselations and, in some cases, sub-optimal. A generalization of this localization

approach is computing the max-mean curvature of each edge and defining the max- mean

curvature of a patch as the maximum of the mean curvatures of the patch’s edges. Note, when

computing the discrete preconditioner, the scalar-function and vector-function interactions

are constituted by the interactions of the patches composing the scalar and vector basis

and testing functions. Then, for each source-observer patch pair, the localizing complex

wavenumber is generated from the maximum of the max-mean curvatures of the sources and

observers. This is referred to as fine-grain localization, and it will be used to localized the

Calderón preconditioners unless otherwise stated.

66



4.2.1 Zero-Mean Constraint

Both γ = n̂ ·A(r), γE = n̂ · E(r), and β = n̂ · ∇ϕ(r) have a zero-mean constraint (ZMC)

in the LC-CDPIE and LC-CDFIE [Li et al., 2019]. A Lagrange multiplier is used to enforce

the constraint [Baumann et al., 2022] in the following way. A Lagrange multiplier is added

as an unknown. An additional row and column is added to Galerkin tested forward matrix

as well. The entries in the added column and row corresponding to ZMC unknowns are filled

with the area of their respective scalar basis functions. Corresponding with the Lagrange

multiplier, an additional entry is added to the RHS and set to zero.

4.2.2 Singularity Subtraction

The singularities of the LC-CDPIE and LC-CDFIE are handled with singularity subtraction

when the test and basis function are within 0.15λ. For integrating over the source, the free-

space Green’s function is Taylor series expanded, the singular terms are subtracted with the

free-space Green’s function, analytically evaluated, and added back. The integration over

the observer is performed with a Gauss-Legendre quadrature rule.

4.2.3 Incident Potentials and Field

The RHS is always a planewave in this work. In the case of the DFIE, the incident field is

Ei (r) = Ee−jκ·r (4.8)

where E is the polarization. For the DPIE, the decomposition suggested in [Vico et al., 2016]

results in the following incident potentials which proved numerically beneficial

ϕi =− (r · E) e−jκ·r (4.9a)

Ai =− κ

ω
(r · E) e−jκ·r. (4.9b)
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4.3 LC-CDPIE using Hat and RWG Functions

The LC-CDPIE discrete scalar and vector basis functions are hat and RWG functions on

a mesh with Nf faces and Ne edges and Nn nodes. The hat functions are defined by

hnn (r) =


lnn
2Ann

ûnn ·
(
enn − ρ+nn

)
r ∈ Tnn

0 else

(4.10a)

and the RWG functions are defined by

fne (r) =


lne
2A±

ne
ρ±ne r ∈ T±

ne

0 else

(4.11a)

where

ρ± (r) =


±(r− p±n ) r ∈ T±

n

0 else

(4.12a)

and Ann is the area of a face connected to node nn; A
±
ne is the area of the faces sharing edge

ne; ûnn is the planar normal of the edge opposite of node nn on face Tnn and pointing away

from node nn; lnn is the length of the edge opposite of node nn and on face Tnn ; lne is the

length of the edge ne; ρ
±
nn originates in node nn and terminates in face Tnn ; enn are the

coordinates of either node on the edge opposite of node nn; T
±
ne are the faces sharing edge

ne; T
±
n are either nodal or edge faces; ρ±ne are the coordinates for the nodes opposite of the

selected edge on the appropriate face sharing the selected edge; and p±n are the appropriate

nodal coordinates for the RWG or hat basis. The scalar and vector basis functions are then

Bs =

(
h0 . . . hnn . . . hNn

)
(4.13a)

Bv =

(
f0 . . . fne . . . fNe

)
. (4.13b)

The RWG functions are divergence-conforming. They are selected for two reasons: one,

the LC-CDPIE and LC-CDFIE are well-tested with RWG functions according to their map-

ping properties, and the RWG-RWG Gram matrix is well-conditioned; two, these formula-

tions include divergence operators acting on vector basis functions and the free-space Green’s
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function, together. For example, using RWG functions, the following integral arises in the

novel formulations, ∫
s
∇s · (fnG) dS′ =

∫
∂S

û · (fnG) ∂S (4.14)

where û is the outward facing unit normal vector of each edge in the ± patch of the RWG

function (lying in the surface of the ± patch). The RWG functions are continuous across the

normal component of an edge, zero across the normal component of the other two edges in

the patch. Therefore, these integrals are equal to zero with RWG functions. Without RWGs

or another divergence-conforming function, the discretization will insert fake line charges

which can cause numerical anomalies [Rao et al., 1982].

The hat functions are chosen for the sake of interest and experimentation with a higher-

order, scalar interpolant.

The LC-CDPIE with hats and RWGs was benchmarked against the CFIE for several,

increasingly challenging geometries. To begin, a PEC sphere of radius 0.5 meters was excited

by a 1500 MHz frequency planewave with ẑ propogation axis and x̂ polarization. The sphere

discretization is λ/10, and the electrical length is 5λ. The MOM system was solved using

QMR with a tolerance of 1e-12. The LC-CVPIE converged in 32 iterations while the LC-

CSPIE converged in 24 iterations. The RCS predicted by the LC-CDPIE agrees with that

of the Mie solution in Fig. 4.1.

To assess low-frequency performance, Fig. 4.3 shows the RCS of a PEC sphere with

radius 1m illuminated at 10µ Hz with a planewave of ẑ propagation axis, x̂ polarization,

and the sphere is discretized with a mean edge length of λ/1e14. The LC-CVPIE and LC-

CSPIE converged in 4 and 3 iterations, respectively, using QMR with a tolerance of 1e-5.

The RCS of the LC-CDPIE agrees with the RCS of the Mie solution.

A multi-scale sphere was the next test. The sphere in Fig. 4.4 was illuminated with a 400

MHz planewave that propagates along the ẑ axis and polarized along x̂ polarization. The

electrical length of the mesh edges ranges from λ/11 to λ/406. The LC-VPIE and LC-SPIE

formulations converge more quickly than the CFIE formulation using QMR, TFQMR, and
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Figure 4.1: RCS of a PEC sphere at 750 MHz.

Figure 4.2: RCS of a PEC sphere at 10µ Hz.

GMRES. Converging to a residue of 1e-12 requires less than 100 iterations for the LC-CSPIE

(Group 1 in Fig. 4.5) and less than 210 iterations for the suggested LC-CVPIE (Group 2 in

Fig. 4.5) while the CFIE requires over 24,000 iterations for TFQMR as well as QMR and

will not converge using GMRES (Group 3 in Fig. 4.5).

The next set of benchmarking tests uses non-canonical geometries. A bumpy cube and

NASA Geographos asteroid as shown in Fig. 4.6 and a sharp pencil as shown in Fig. 4.11

are selected. The NASA Geographos asteroid is illuminated by a 240 MHz planewave that

propagates along ŷ and polarized along x̂. The electrical lengths of the mesh edges range
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Figure 4.3: Number of iterations for unit spheres of various electrical lengths to converge to
tol=1e-12 using QMR.

Figure 4.4: Plot of multi-scale sphere.
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Figure 4.5: Residue plot for multi-scale sphere.

Figure 4.6: Plot of bumpy cube and NASA Geographos asteroid geometries.

from λ/13 to λ/64, and the electrical length of the object is 4λ. The MOM systems are

solved using QMR with tolerance 1e-12, and the predicted RCS of the LC-CDPIE and CFIE

agree in Fig. 4.7. The LC-CVPIE and LC-CSPIE formulations converge in 258 and 112

iterations, respectively, while the CFIE converges in 2027 iterations. The plot of residues

and iteration counts in Fig. 4.8 shows the LC-CVPIE and LC-CSPIE formulations converge

more quickly to an arbitrary residue than the CFIE for the asteroid.

The bumpy cube is illuminated by a 400 MHz planewave propagating along ŷ and polar-

ized along x̂. The electrical lengths of the mesh edges for the bumpy cube range from λ/12

to λ/50. Furthermore, the object fits in a cube of size 1.67λ. Again, the MOM systems are

solved using QMR with a tolerance of 1e-12, and the predicted RCS of the LC-CDPIE and

CFIE agree in Fig. 4.9. The LC-CVPIE and LC-CSPIE formulations converge in 305 and
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Figure 4.7: RCS plot of the NASA Geographos asteroid.

Figure 4.8: Residue plot for the NASA Geographos asteroid.

120 iterations, respectively, while the CFIE converges in 3761 iterations. Also, the plot of

residues and iteration counts in Fig. 4.10 shows the LC-CVPIE and LC-CSPIE formulations

converge more quickly to an arbitrary residue than the CFIE for the bumpy cube as well as

the asteroid.

The last and most challenging test is a sharp pencil as shown in Fig. 4.11. This geometry’s

curvature max-mean curvature is 2585 due to the sharp, narrow tip. The sharp pencil is

illuminated by a 269 MHz planewave with ŷ propagation axis and x̂ polarization. The
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Figure 4.9: RCS plot of a bumpy cube.

Figure 4.10: Residue plot for a bumpy cube.

electrical lengths of the mesh edges range from λ/13 to λ/5648. This range is greater than

the multi-scale sphere, bumpy cube, and asteroid. Also, the pencil’s electrical length is 9λ.

The MOM systems are solved using QMR with a tolerance of 1e-12. The LC-CDPIE, CFIE,

and MFIE RCS plots agree in Fig. 4.12, but the LC-CDPIE and MFIE agree most closely

while the CFIE departs from both near ϕ = −π/2 and π/2. The LC-CVPIE and LC-CSPIE

formulations converge in 159 and 90 iterations, respectively, while the CFIE converges in

47045 iterations and the MFIE in 1761 iterations. If the fine-grain localization approach is
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Figure 4.11: Plot of sharp pencil geometry.

Figure 4.12: RCS plot for a sharp pencil.

not used but rather the global max-mean curvature localization approach is used, the LC-

CVPIE and LC-CSPIE converge in 34764 and 91 iterations, respectively. Again, the plot of

residues and iteration counts in Fig. 4.13 show the LC-CVPIE and LC-CSPIE formulations

converge more quickly to any residue than both the CFIE and MFIE.

4.4 MLFMM Accelerated LC-CDFIE using Pulse and RWG Func-
tions

The main drawback to the LC-CDPIE is the sheer number of unknowns and computa-

tional cost. For example, the number of unknowns in the CFIE is equal to the number of

mesh edges while the number of unknowns for a Combined DPIE constrained to PEC objects

is at least the number of mesh edges plus twice the number of mesh patches.

The LC-CDFIE has less unknowns than the LC-CDPIE (less by the number of patches)
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Figure 4.13: Residue plot for a sharp pencil.

while retaining the same mathematical properties as the LC-CVPIE. Furthermore, the com-

putational cost of the LC-CDFIE may be ameliorated with the multi-level fast multipole

method (MLFMM) detailed in the Appendix and pulse functions suffice for scalar basis

functions, defined as

Pnf (r) =


1 r ∈ Tnf

0 else

(4.15)

where Tnf
is the nf triangle.

To accelerate the LC-CDFIE with the MLFMM, the salient idea is only the scattered

electric field need to traverse the trees. The Combined DFIE may be recovered in the local-

to-observer (L2O) step by applying each operator in the Green’s theorem to the unknown

quantities locally expanded to the leaves. The Local Calderón preconditioner is contained

within the nearfield due to the localization κ̃, and therefore the MLFMM accelerated LC-

CDFIE amounts to an MLFMM matvec plus an additional nearfield matvec.

More specifically, consider the scattered electric field reduced to the PEC case where the

integration includes the principle value

Es(r) =

∫
S

[
−G(r, r′) n̂′ × ãE(r

′)−∇G(r, r′) γ̃E(r′)
]
dS′. (4.16)
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The source trace quantities are represented by

n̂ × ãE(r) =

Ne∑
ne

fne (r)

γ̃E(r) =

Np∑
np

Pnf (r) .

(4.17)

Using a planewave expansion, the free-space Green’s function [Rokhlin, 1993] may be written

as

G
(
r′, r

)
= − jκ

(4π)2

∫
Ss

e
−jκ·

(
rcs−r′

)
T
(
κ, rcΩo

− rsΩs

)
. . .

e
−jκ·

(
r−rcΩo

)
d2κ̂

T
(
κ, rcΩo

− rsΩs

)
=

∞∑
0

(−j)n (2n+ 1) h
(2)
n

(
κ ||rcΩo − rcΩs

||
)
. . .

Pn

(
κ̂ ·

rcΩo
− rcΩs

||rcΩo − rcΩs
||

)
(4.18)

where rcΩs is the center of a box containing Ωs, r
c
Ωo

is the center of a box containing Ωs, κ =

κκ̂, and S2 denotes a unit sphere parameterized by (θ, ϕ) ∈ [0, π]×[0, 2π]. Substituting (4.18)

into (4.16), MLFMM is now able to quickly compute the scattered electric field at a point on

the boundary of the scatter with a CPU and memory complexity of O(N log(N)). The field

is sent up and down the oct-tree according to the multipole-to-multipole (M2M), multipole-

to-local (M2L), and local-to-local (L2L) operations of MLFMM with global interpolants as

described in [Hughey et al., 2019]. However, the charge-to-multipole (C2M) and local-to-

observer (L2O) operations are formulation specific unlike M2M, M2L, and L2L.

As a demonstration, consider a closed region Ωs sufficiently spaced from another closed

region Ωo. Both contain a portion of a mesh from a tessellated geometry with Ne edges and

Np patches. Each patch and edge is associated with a unit pulse and RWG basis function,

respectively, the collection of which in Ωs is {fne : ne ∈ Ωs} and {Pnp : np ∈ Ωs}. The
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traces quantities from the emitting Ωs are

n̂ × n̂ ×∇× Es (r)

n̂ × Es (r)

n̂ · Es (r)

∇ · Es (r) .

(4.19)

Collect the emitting sources in a multipole expansion about location rcs using

Vs (κ) =

Np∑
nq=1

N
Q
p∑

i=1

γnp wnp,i jκ e
−jκ·

(
rcs−r

′
np,i

)
Pnp

(
r′np,i

)

−
Ne∑
ne

N
Q
e∑

i=1

ane wne,i e
−jκ·

(
rcs−r

′
ne,i

) (
n̂ne,i × fne

(
r′ne,i

)) (4.20)

where N
Q
p and N

Q
e are the number of quadrature samples for integrating over RWG and

pulse basis functions with a Gauss-Legendre rule. Collect the emissions from {Ωs : s =

1, 2, · · · , NΩ} (where NΩ is the number of source regions) about location rco in Ωo using a

multipole-to-local expansion,

Uo (κ) =
∑
s

T (κ,X) Vs (κ) . (4.21)

And finally use a local expansion to compute the observed radiation quantities at location

r,

EFF (r) =

∫
S2

− jκ

(4π)2
e−jκ·(r−rco)Uo (κ) d

2κ̂

∇× EFF (r) =

∫
S2

− jκ

(4π)2
e−jκ·(r−rco) jκ×Uo (κ) d

2κ̂

∇ · EFF (r) =

∫
S2

− jκ

(4π)2
e−jκ·(r−rco) jκ ·Uo (κ) d

2κ̂.

(4.22)

where EFF are the farfield emissions observed in Ωo. The local expansions are weighted

with either δ or (1− δ), as determined by the combined system, and added to the observed

trace quantities from sources emitting in the nearfield. The collection approximates the total

observed emissions from sources.
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Figure 4.14: Error convergence vs oversampling parameter of the CDFIE on a sphere.

The MLFMM accelerated LC-CDFIE is tested for a variety of geometries and bench-

marked against the CFIE with a diagonal preconditioner. All results were generated with a

shared memory, dual-socketed architecture of AMD EPYC 7H12 64-core processors with 2

threads per core for a total of 256 CPUs. The nearfield, C2M, M2M, M2L, L2L, and L20

operations were fine-grain parallelized using OpenMP.

The controllable error and convergence of the MLFMM accelerated CDFIE is verified

in Fig. 4.14 and Fig. 4.15. The first test in Fig. 4.14 uses 35,840 charges and 107,520

dipoles on a 8λ unit sphere. The tree is 7 levels with 3 buffer-boxes for the farfield. The

second test in Fig. 4.15 uses 60,928 charges and 182,784 dipoles on a 8λ× 4λ thin box. The

tree is 7 levels with 3 buffer-boxes for the farfield. Both tests demonstrate the MLFMM

CDFIE monotonically converges to the direct computation of the CDFIE (viz., sources are

in the nearfield of all observers) according to an oversampling parameter χ which controls

the number of global interpolants used in the MLFMM.

The new formulation is verified by exciting a unit PEC sphere using a 3.6 GHz planewave

with a ẑ propogation axis and x̂ polarization axis. The sphere is 24λ and 1, 966, 080 edges and

1, 310, 720 patches. The LC-CDFIE converged to tol=1e-5 in 1 outer iteration of LGMRES

using 30 inner iterations. The radar cross section (RCS) is plotted in Fig. 4.16, and there is
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Figure 4.15: Error convergence vs oversampling parameter of the CDFIE on a thin box.

Figure 4.16: RCS(dB) of a PEC unit sphere at 3.6 GHz from θ = [π,−π] with ϕ = 0.

good agreement with the Mie series solution.

The next test benchmarks the scaling of matvec timings of the MLFMM accelerated

CDFIE against the direct implementation of the CDFIE. In Fig. 4.17, the matvec times are

reported using a collection of increasingly large unit spheres discretized with a mean-edge

length of λ/19. The x-axis reports and increasing number of unknowns. The matvec cost

scales quadratically at N1.96 in the direct implementation while the FMM scales linearly at

N1.02. Beyond 8,326 unknowns, the MLFMM accelerated CDFIE is more efficient than the

direct approach for iterative solvers.
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Figure 4.17: Timings of one matvec of the CDFIE.

The asteroid and bumpy cube geometries are used to benchmark the LC-CDFIE against

a diagonally preconditioned CFIE for non-canonical geometries. The bumby cube is shown

in Fig. 4.6. The first test uses a bumby cube mesh with 122,607 edges and 81,738 patches

excited at 850 MHz (or a bumby cube contained within a 3.67λ×3.67λ×3.67λ box) using a

planewave with a propagation axis of ẑ and polarization axis x̂. The edge lengths range from

λ/15 to λ/71. The RCS agrees between the CFIE and LC-CDFIE as shown in Fig. 4.18. The

CFIE has 122,607 unknowns and converged in 45 matvecs, and the LC-CDFIE has 204,345

unknowns but converged in 23 matvecs using TFQMR with tol=1e-5. The second test uses

a bumby cube mesh with 1, 949, 904 edges and 1, 299, 936 patches excited at 3 GHz (or a
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Figure 4.18: RCS(dB) of bumby cube at 850 MHz from θ = [π,−π] with ϕ = 0.

Figure 4.19: RCS(dB) of bumby cube at 3 GHz from θ = [π,−π] with ϕ = 0.

bumby cube contained within a 13λ× 13λ× 13λ box) using a planewave with a propagation

axis of ẑ and polarization axis x̂. The lengths of the mesh edges range from λ/14 to λ/131.

There were 3, 249, 840 unknowns, and the LC-CDFIE converged in 32 iterations of TFQMR

to tol=1e-5. The RCS is shown in Fig. 4.19. The diagonally preconditioned CFIE did not

converge with TFQMR but converged with GMRES in 5 outer iterations (where one outer

iteration is equal to 30 inner iterations) to tol=1e-5.

The final benchmark uses a complicated plane geometry shown in the Appendix. The

plane mesh has 1,114,944 edges and 743,296 patches excited at 127 MHz using a planewave
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Figure 4.20: RCS(dB) of plane at 127 MHz from θ = [π,−π] with ϕ = 0.

with a propagation axis of ẑ and polarization axis x̂. The edge lengths range from λ/13

to λ/245, and the plane’s electrical length is 32λ. The LC-CDFIE converged in 10 outer

iterations of LGMRES (60 inner iterations) to a tolerance of 1e-5. The RCS plot is shown

in Fig. 4.20 and compared to the CFIE.
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SCALABILITY ANALYSIS OF MLFMM ACCELERATED CFIE

Accurately computing the currents induced by an incident field upon the surface of an elec-

trically large and PEC object using full-wave boundary element method (BEM) formulations

like the combined field integral equation (CFIE) has been an ongoing problem in the com-

putational electromagnetics (CEM) community. There are several challenges for the fast

and accurate computation of such real-world physics with the CFIE: first, when the CFIE is

discretized using the Method-of-Moments (MOM) [Harrington, 1968][Jin, 2011], the forward

matrix and number of unknowns is very large for electrically large problems; two, electri-

cally large, real-world problems often have multi-scale physics such as an antenna embedded

in a larger object; three, the CFIE is ill-conditioned for low-frequency and high-frequency

excitations.

Focusing upon the fast computation of problems with large CFIE forward matrices, direct

methods have been developed with CPU complexity O(N1.5 logN) and memory complexity

O(N log2N) [Guo et al., 2018]. Iterative methods have been developed as well because the

matvec may be accelerated with the multi-level fast multipole method (MLFMM) to a CPU

and memory complexity of O(N log(N)) [Song and Chew, 1995]. For electrically large prob-

lems where the number of unknowns is very large, iterative methods are significantly more

efficient than direct methods and therefore most publications on electrically large problems

include an iterative approach [Hughey et al., 2019][Ergul and Gurel, 2008][Michiels et al.,

][Yang et al., 2019][Vikram et al., 2009][He et al., 2022].

There are two main instances of the MLFMM accelerated CFIE. The first approach uses

local interpolants to manage the upsampling and downsampling required of the full-wave

MLFMM algorithm. Some examples of this approach are [Ergul and Gurel, 2008] and [Yang

et al., 2019]. The anterpolation step of this approach introduces error due to aliasing from

the imperfect filtering of local interpolants. Bandlimited local interpolants like approximate

spherical prolates (APS) functions can demonstrably control the anterpolation error [Lu and

Michielssen, 2004], but the downside is the significant oversampling cost [Hughey et al.,
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2019]. The second approach uses spherical harmonics or global interpolants to manage the

interpolation and anterpolation of MLFMM. An example is found in [Hughey et al., 2019].

This approach has demonstrable, analytically provable, and monotonic error-control through

a single oversampling parameter determing the number of harmonics. The filtering is exact,

and the error is due to the number of harmonics not spanning the entire function space

[Rokhlin, 1993] rather than an error propagation due to aliasing. Also, the sampling is

optimal.

This analysis proceeds with the global interpolant MLFMM to accelerate the CFIE be-

cause the method is exact, error-controlable, and the sampling is optimal. However, the

computation of electrically large geometries cannot be stored in a single node of a computer

architecture. This necessitates the use of a multi-core processor and MPI library to manage

communications between many nodes. Several difficulties then follow concerning scalabil-

ity such as parallel efficiency and memory usage. This appendix analyzes the scalability of

a hybrid parallalization of the CFIE accelerated with an error-controllable MLFMM (viz.,

global/harmonic interpolants) with tasks using Intel OpenMP and MPI libraries.

MLFMM Accelerated CFIE

Using the CFIE, the scattered fields may be obtained from the unknown surface current

density J (r) where r ∈ ∂D

αn̂ × n̂ × Ei(r) + (1− α)n̂ ×Hi(r)

= −αL{J}(r) + (1− α)K{J}(r)
(23)

where 0 < α < 1 and

L{J}(r) = n̂ × n̂ ×
∫
S
G
(
r, r′

)
· J(r′) dS′

K{J}(r) = n̂ × 1

jkη

∫
S
G
(
r, r′

)
· J(r′) dS′

G
(
r, r′

)
= −jκη

[
I+

∇∇
κ2

]
g
(
r, r′

) (24)
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and the Green’s function is

g
(
r, r′

)
=
e−jκ|r−r′|

4π|r− r′|
. (25)

These equations are discretized with MOM using RWG testing and basis functions defined

on a triangular mesh such that the surface current on ∂D is

J (r) =

Ns∑
n

Infn (r) (26)

where

fn (r) =


ln

2A±
n
ρ±n r ∈ T±

n

0 else

(27)

and

ρ± (r) =


±(r− p±n ) r ∈ T±

n

0 else

(28)

and T±
n denotes the two triangular patches associated with every edge, ln denotes the length

of every edge, and p±n denotes the coordinates of the nodes opposite each edge for each patch

sharing an edge. The resulting, discretized system is

ZI = R (29)

where

R =(R0 . . . RN )T (30a)

I =(I0 . . . IN )T (30b)

Z =


Z(0,0) . . . Z(0,N)

...
. . .

...

Z(N,0) . . . Z(N,N)

 (30c)

and

Rm = ⟨fm, αn̂ × n̂ × Ei(r) + (1− α)n̂ ×Hi(r)⟩ (31a)

Zm,n = ⟨fm,−αL{fn}(r) + (1− α)K{fn}(r)⟩. (31b)
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The above system is usually iteratively solved with LGRMES or GMRES. Furthermore,

(29) may be partitioned into nearfield and farfield matrices ZNF and ZFF matrices where

ZFF is accelerated with MLFMM.

Equation (25) may be rewritten as [Rokhlin, 1993][Coifman et al., 1993],

g(X+ d) =− jκ

(4π)2

∫
S2
e−jκ(ds+do)T (κ,X)d2κ̂ (32a)

T (κ,X) =
∞∑
n=0

(−j)n(2n+ 1)h
(2)
n (kX)Pn(κ̂ · X̂) (32b)

where (r− r′) = do+ds+X as shown in Fig. A.21. Substituting (32a) into Zm,n for α = 1

yields

κ2η

(4π2)

∫
S
dS n̂ × fm ·

∫
Sκ̂

∫
S′
d2κ̂ dS′

n̂ ×
[
I+

∇∇
κ2

]
e−jκdsT (κ,X)e−jκdo · f

′
n.

(33)

The above integration (where d2κ̂ corresponds to the unit sphere in momentum-space

called the Ewald sphere) may be computed with a Gauss-Legendre quadrature rule depending

on |ds| and |do| as discussed in [Hughey et al., 2019][Cheng et al., 2006][Epton and Dembart,

1995] provided |X| is greater than |do| + |ds|. Furthermore, different collections of sources

in the set of sources (f0 . . . fN ) may share the same X or do, and the divide-and-conqueror

algorithm exploits this fact to accelerate the computation of (33). This is effectively the

MLFMM algorithm.

As a demonstration, in Fig. A.21, the blue points denote sources corresponding to the

terminus of r′ and red points denote observers corresponding to the terminus of r. Clearly,

the spatial convolutions in (23) require every source to interact with every observer which

corresponds to 16 computations in Fig. A.21. However, considering (33), e−jκds may be

used to shift the five groups of blue points to five centers of a circumscribing sphere provided

the Ewald sphere is sampled with 2 ∗ Nh + 1 samples of ϕ and Nh + 1 samples of θ at the

Legendre polynomial zeros of order 2 ∗ Nh + 1 and Nh + 1, respectively. The number of
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Figure A.21: Diagram of the MLFMM scheme.

harmonics is determined by the planewave expansion theorem where a planewave function

on a sphere may be expanded in terms of spherical bessel functions of the first kind which

evaluates to zero for orders greater than twice the special function argument of κr where

r is radius of the sphere. Therefore, Nh = ⌈χκD⌉ + 1 where D is the diameter of the

circumscribing spheres in Fig. A.21. This step is called charge-to-multipole (C2M).

Next, four of the five groups of sources in Fig. A.21 maybe be shifted once again to the

center of a bigger circle which circumscribes the four groups of sources using e−jκds once

again. Each ds shift requires the samples of the Ewald sphere to be interpolated to the

number of ϕ and θ points determined by Nh = ⌈χκD⌉ + 1 where D is now the diameter

of the larger circle. For hybrid trees with harmonic interpolants, the bottom 4 levels are

intepolated/anterpolated using the spherical harmonic transform (SHT) [Jakob-Chien and

Alpert, 1997] and every other level is interpolated/anterpolated with the FFT [Sarvas, 2003].

The spherical region is where the SHT is used, and the uniform region is where the FFT is

used. Each shifted group is added after the interpolation. This step is called multipole-to-

multipole (M2M).

There are two segments from groups of sources to the group of observers representing

the translation operation or multipole-to-local (M2L). These two segments correspond to
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two different T (κ,X) operators where each X differs in origin but shares a terminus in the

center of the circle circumscribing the observers. The number of samples of the translation

operators also differ because the two groups of sources are circumscribed by two different

circles. The translation operators and M2M samples are multiplied element-by-element,

and this multiplication is a filtration in momentum-space due to the bandlimited nature of

planewaves on a sphere and the non-bandlimited nature of the translation operator [Hughey

et al., 2019][Coifman et al., 1993].

After M2L, the samples of the Ewald sphere corresponding to the larger group of sources

are anterpolated to the number of samples corresponding to the smaller group of sources

using the SHT or FFT using the same rules for M2M. The two sets of samples are then

added, and the sum is shifted using e−jκdo where each do is from the center of the big circle

circumscribing the two observer groups to the center of a circle circumscribing one of the

observer groups in Fig. A.21. This step is called local-to-local (L2L).

The final step is shifting the samples of each Ewald sphere associated with each group of

observers using e−jκdo where each do has an origin in the center of the circle circumscribing

each group of observers and a terminus at an observer within the group. This final step is

local-to-observer (L2O).

The implementation in this paper repeats the above process for each Cartesian component

of the magnetic vector and the scalar potential in (23). The graph in Fig. A.21 is clearly

a tree, and thus our implementation traverses the tree four times. Upon the completion of

all four traversals, the samples of the Ewald sphere shifted to each observer are summed

for each tree and the outer-most integral over the observer is numerically computed using a

Gauss-Legendre quadrature rule once again. Notice, 16 interactions have been reduced to 9

interactions in Fig. A.21.

In sum, the MLFMM algorithm for the CFIE exchanges O(N2) for O(Nlog(N)). The

filtration of the translation operator and optimal sampling of the functions on the Ewald

spheres using spherical harmonic functions guarantees controllable error throughout the tree
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Figure A.22: Four trees traversed for MLFMM accelerated CFIE and the assignment of
nodes to processes.

traversal with the χ parameter as demonstrated in [Hughey et al., 2019]. This is an important

feature for guaranteeing the convergence of an iterative solver to arbitrary tolerances. Next

we discuss parallelization of the MLFMM accelerated CFIE with Intel’s OpenMP and MPI

libraries for FORTRAN.

CFIE with Task OpenMP and MPI MLFMM

We proceed by detailing a novel implementation of OpenMP and MPI parallelism for

the CFIE with MLFMM at a high level and then discuss the implementation details of each

MLFMM operator discussed in Section 4.4.

Task+MPI CFIE with MLFMM

Our algorithm uses four trees to compute the CFIE. The parallization of the traversal of these

four trees includes dividing each tree into processes and threading the process by generating

and asynchronously executing tasks within each process. The assignment of processes to

nodes within the tree is depicted in Fig. A.22. The same node-to-process assignment is used

for each tree. The dependencies of C2M, M2M, M2L, L2L, and L2O operations for traversing

a tree are depicted in Fig. A.23. Our implementation creates separate nearfield and farfield

parent tasks. Farfield parent tasks include C2M, M2M, M2L, L2L, and L2O operations as
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Figure A.23: Dependencies of tree traversal operations in MLFMM.

child tasks. Nearfield parent tasks include the interaction of leaf nodes with neighboring leaf

nodes as child tasks after an all-to-all communication of neighboring leaf nodes on separate

processes to processes owning the observer leaf node during initialization. The algorithm

interleaves child tasks of the farfield and nearfield parent tasks over the four tree traversals.

The cores of a process waiting for communications from other processes within the farfield

parent task execute nearfield tasks during any iteration of the tree loop. We do not interleave

C2M, M2M, M2L, L2L, and L20 because the Intel OpenMP library for FORTRAN does not

allow a variable list of dependencies. For a 3-D manifold, a single node may depend on as

may as 189 other nodes and therefore the Intel OpenMP library requires every dependency to

include an explicit compiler directive. This makes the asynchronous interleaving of the tree

traversal operations in FORTRAN impractical. Furthermore, we do not interleave common

operators across the four trees. For example, even though the node-to-process assignment

is identical over all four trees, we do not generate tasks of all M2M or any other traversal

operation over all trees and asynchronously execute these tasks. Memory would become a

substantial issue because all the data from sampling Ewald spheres would be stored for all

four trees at the same time rather than one tree at time. This fourfold increase in allocations

is prohibitively expensive for modeling electrically large geometries.
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Algorithm 1 M2M traversal

1: !$OMP PARALLEL SHARED
2: !$OMP SINGLE
3: for tree = 1, 4 do
4: !$OMP TASK
5: CALL C2M traversal(tree)
6: !$OMP END TASK
7:
8: !$OMP TASK
9: CALL M2M traversal()
10: !$OMP END TASK
11:
12: !$OMP TASK
13: CALL M2L traversal
14: !$OMP END TASK

15:
16: !$OMP TASK
17: CALL L2L traversal
18: !$OMP END TASK
19:
20: !$OMP TASK
21: CALL L20 traversal(tree)
22: !$OMP END TASK
23: end for
24: !$OMP TASK
25: CALL nearfield
26: !$OMP END TASK
27: !$OMP END SINGLE
28: !$OMP END PARALLEL

Task+MPI C2M and M2M

All leaf nodes are divided among processes as depicted in Fig. A.22. The C2M operation

necessarily occurs within a single process. The algorithm makes the C2M operation for each

leaf node a task. Computatation within C2M is not parallelized due to the low cost of ex-

panding the Green’s function into the momentum-space integral in (32a) and approximating

the integral with a quadrature rule for leaf boxes as well as the need for locks to avoid

write-write errors while aggregating the C2M operations for each source.

After assigning leaf nodes to processes, parent nodes are distributed among processes

according to the following three rules: parent nodes with child nodes belonging to the same

process also belong to the same process; parent nodes with children belonging to two dif-

ferent processes are denoted as plural nodes and the (ϕ, θ) samples of the parent nodes are

partitioned between the two processes such that the union of the samples stored in each

process equals the total samples of the parent node; parent nodes whose children are plural

nodes are also plural nodes, and the samples of the parent nodes are evenly partitioned

across the union of processes in the child nodes. The partitioning of a plural parent node

whose children are also plural nodes is depicted in Fig. A.24. A process has at most two

plural nodes per level per process.

The hybridization of task OpenMP and MPI is described in the pseudocode of Algorithm

2 and expounded here. In lines 1-27 each non-plural and spherical node is interpolated,
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Figure A.24: Even partition of node samples across processes for child and parent nodes.

shifted, and aggregated to the parent node. Plural spherical nodes are duplicated across

processes and handled like non-plural nodes whether uniform or spherical. The interpolation,

shifting, and aggregation of these nodes is a task. The task has the input dependency of a

finished child node and an output dependency of all child nodes interpolated, shifted, and

aggregated in the parent node. The plural nodes within the spherical region require a reduce

and scatter to complete M2M. This is done in lines 14-18. The reduce and scatter is confined

to the partition of data owned by a process. This scheme of interpolating whole plural node

data duplicated across processes and reducing and scattering the partition is nearly-optimal

in the spherical region where the nodes are no more than 4 hops from the leaves, and the

amount of data is small. A task yield within Line 16 stops the task from proceeding with

the reduce and scatter until a process receives all communications from other processes. The

core may execute other tasks meanwhile.

In lines 28-55 of Algorithm 2, each plural node in the uniform region is interpolated,

shifted, and aggregated in a process’s partition of the node as depicted in Fig. A.24. If the

tree is composed of spherical and uniform regions, care must be taken transitioning between

these regions. Line 10 aggregates top level spherical nodes into the parent residing in the

first level of the uniform region. If there are plural nodes at this first uniform region, lines
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Algorithm 2 M2M traversal
1: for each node in process do
2: CALL get child nodes of node
3: for each child node do
4: if child node is plural then
5: cycle
6: else
7: !$OMP TASK
8: CALL serial interpolation of child node
9: CALL shift interpolated child to parent node
10: CALL aggregate shifted node to parent node
11: !$OMP END TASK
12: end if
13: end for
14: if node is plural and in spherical region then
15: !$OMP TASK
16: CALL reduce and scatter node partitions
17: !$OMP END TASK
18: end if
19: end for
20: if there are spherical and uniform tree regions then
21: for each plural node in transition level do
22: !$OMP TASK
23: CALL aggregate interpolated, shifted data from
24: remote processes.
25: !$OMP END TASK
26: end for
27: end if
28: for each uniform level above first level do
29: for each plural node do
30: for each plural child of plural node do
31: !$OMP TASK
32: CALL parallel FFT interpolation of plural child
33: CALL M2M shift of plural child to parent
34: !$OMP END TASK
35: end for
36: if no child node is plural then
37: !$OMP TASK
38: aggregate non-plural children to plural
39: CALL node
40: !$OMP END TASK
41: else
42: if one child is plural then
43: !$OMP TASK
44: CALL aggregate non-plural and single plural
45: to plural node
46: children
47: !$OMP END TASK
48: else
49: !$OMP TASK
50: CALL aggregate non-plural children and
51: both plural children
52: !$OMP END TASK
53: end if
54: end if
55: end for
56: end for
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20-27 aggregate the data from all processes sharing the node due to line 10 as a task. Lines

28-55 handle the interpolation, shifting, and aggregation of plural nodes in the uniform

region. There are three cases of aggregation which are broken into three separate tasks

where the task dependencies vary. In lines 37-39, the plural node has no plural children,

and therefore the task input dependency is the interpolation and shifting of each non-plural

child. In lines 42-45, there is one plural child, and therefore the input dependency of the

task is the interpolation and shifting of the plural child and the non-plural children. Finally,

the last case is the plural parent has two plural children, and the task input dependency is

the interpolation and shifting of all non-plural children and the two plural children.

Hybridizing task OpenMP and MPI allows the parallel interpolation and aggregation

steps to avoid communications between cores sharing memory on a multi-core processor.

Also, tasks reduce duplicated, temporary memory allocations for interpolating plural parent

nodes as well as interlace aggregations and interpolations for plural nodes in the uniform

region.

Task+MPI M2L

After M2M is completed, M2L commences according to Algorithm 3. M2L sends, receives,

and translates the intersection of observer node data and source nodes in the farfield on

local and remote processes. In M2M, the number of tasks was determined by the tree, but

the number of tasks in M2L depends on the tree and the buffer size used to send messages

between nodes on a multi-process architecture. Therefore, a parent task is created in line

1 to spawn and manage the child tasks. M2L continues to run until there are no more

messages to send, no more messages to receive, and no more source node data to translate to

the observer node. There are two options for handling the communications. The first option

is communicate each source and observer pair for M2L as a separate communication. This

is not practically feasible for modeling the scattering from electrically large objects because

there are many such pairs. The second option is communicate all source data required by
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Figure A.25: Diagram of M2L send communication using OpenMP and MPI.

observers on another process at the same time under the constraint of a message buffer size.

This is more efficient, but the communication may be very large. Our algorithm uses this

second option but divides large communications into several block communications using a

message buffer to send and receive data. The MPI communications in M2L are therefore

optimal [Lingg et al., 2022].

More specifically, lines 3-17 create the tasks for filling and then sending a message buffer

to a remote process as shown in Fig. A.25 where colors denote node data. Lines 18-39

receive and translate the source node data to the appropriate observer node as shown in

Fig. A.26 and Fig. A.27. If another task is writing to the same observer, the observer

node is locked and the thread yields the task and executes other tasks until the observer

node is unlocked. In lines 40-55 the source nodes owned by the process are translated to the

appropriate observe nodes on the process in a task. Again, the thread yields the task while

another thread is writing to the observer node and executes another task until the observer

node is unlocked.

There are several benefits to this novel hybrid parallelization of M2L. The send, re-

ceive, and local translation tasks are independent and interlaced with OpenMP. Also, the
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Figure A.26: Diagram of M2L receive communication using OpenMP and MPI.

Figure A.27: Diagram of M2L memory efficient translation using OpenMP and MPI.

pre-computed translation operators are duplicated across less processes which leads to con-

siderable memory savings. And finally, there are far less MPI communications between

processes for the send and receive operations which is a significant problem at the upper

levels of trees with many levels.

Task+MPI L2L and L2O

The L2L traversal is similar to the M2M traversal, and the pseudocode is shown in Algorithm

4. First, plural nodes are shifted and anterpolated in the uniform region in lines 1-36. The

data from a plural parent with two children on the process is copied into two temporary

memory arrays for anterpolation in lines 5-6 as a task. The data from a plural parent with
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Algorithm 3 M2L translation
1: !$OMP TASK
2: while (send messages, receive messages, and local translations incomplete) do
3: if not sending message to remote process then
4: if messages need sending then
5: for each remote process do
6: if process must send message to remote process then
7: !$OMP TASK
8: call fill send buffer with message until
9: buffer filled
10: call send buffer to remote process
11: !$OMP END TASK
12: end if
13: end for
14: else
15: send messages complete
16: end if
17: end if
18: if not receiving message from remote process then
19: if messages need receiving then
20: for each remote process do
21: if message from remote process needed then
22: !$OMP TASK
23: call create receive buffer for message
24: call fill receive buffer with message
25: call perform translation operation on
26: message
27: if observer node unlocked then
28: call add translated message
29: to observer node data
30: else
31: !$OMP TASK YIELD
32: end if
33: !$OMP END TASK
34: end if
35: end for
36: else
37: receive messages complete
38: end if
39: end if
40: if local translations remain then
41: for each observer needing translated sources do
42: for each source of observer not translated do
43: !$OMP TASK
44: call perform translation operation on source
45: node data
46: if observer node unlocked then
47: call add translated source node
48: call to observer node data
49: else
50: !$OMP TASK YIELD
51: end if
52: !$OMP END TASK
53: end for
54: end for
55: else
56: local translations complete
57: end if
58: end while
59: !$OMP END TASK
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one child on the process is copied to a single temporary array in line 10 as a task. If the

level doesn’t have all plural children, then the whole parent node is stored on the process

(rather than a partition). These nodes are shifted, anterpolated, and reduced in lines 17-20

as a task. If a level has all plural nodes, only the processes’s partition of the plural node

is stored on the process. Each plural parent is shifted and anterpolated as a task. If the

child node is at a level without all plural nodes then the anterpolation is reduced from all

processes owning the parent to the children. The task yield stops the task and allows the

task to execute other tasks until the child receives all messages from remote processes. If

the child node resides in an all plural node level, then the process sends and receives with

point-to-point communications in lines 31-32. The task yield yields the thread to execute

other tasks until all messages are sent to the children and received at the child level. Second,

whole nodes are shifted, anterpolated, and stored in lines 38-50. This is a single task, and

the anterpolation uses a FFT or SHT depending on the spherical region of the node.

The L2O operation necessarily occurs within a single process and after L2L. The algo-

rithm makes the L2O operation for each leaf node a task and computation within L2O is not

parallelized due to the low computational cost. Locks are used to avoid write-write errors to

each observer.

Like M2M, hybridizing task OpenMP and MPI for L2L reduces communications and

duplicated memory across processes and interlace anterpolations for plural nodes in the

uniform region.

Scalability Analysis on 375λ Plane

This section presents the results of the novel implementation of OpenMP and MPI in

the parallelization of the MLFMM accelerated CFIE and analyzes the scalability of the

algorithm. The implementation was verified by comparing the radar cross section (RCS) of

a 40λ PEC sphere discretized at λ/10 using GRMES and tolerance 1e-3 with the Mie series

solution. The Task+MPI CFIE agrees with analytic result as shown in Fig. A.28.
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Algorithm 4 L2L traversal
1: for each level in uniform region do
2: for each plural node do
3: if parent node has two children on process then
4: !$OMP TASK
5: CALL copy parent data into temporary memory for each child for
6: anterpolation
7: !$OMP END TASK
8: else
9: !$OMP TASK
10: CALL copy parent data into temporary memory for anterpolation
11: !$OMP END TASK
12: end if
13: end for
14: if level doesn’t have all plural nodes then
15: for each plural node do
16: !$OMP TASK
17: CALL shift parent node data to child node
18: CALL parallel anterpolation routine
19: CALL reduce anterpolation to each process residing on plural child
20: !$OMP END TASK
21: end for
22: else
23: for each plural node do
24: !$OMP TASK
25: CALL shift parent node data to child node
26: CALL parallel anterpolation routine
27: if child node is at level w/o all plural nodes then
28: CALL reduce anterpolation to each process residing on plural child
29: !$OMP TASK YIELD
30: else
31: CALL point-to-point send anterpolated partition to other processes
32: CALL point-to-point receive anterpolated partition from other processes
33: !$OMP TASK YIELD
34: end if
35: end for
36: end if
37: end for
38: for each node in tree do
39: for each child of node do
40: if node is plural then
41: cycle
42: else
43: !$OMP TASK
44: CALL shift node to child
45: CALL anterpolate node
46: CALL store anterpolated data in child
47: !$OMP END TASK
48: end if
49: end for
50: end for
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Figure A.28: RCS of unit sphere.

Figure A.29: Plane with 71 million edges.

To test the OpenMP and MPI implementation, the plane geometry with 71 million edges

shown in Fig. A.29, is excited at 1.5 GHz such that the geometry is discretized at λ/11. At

this frequency, the electrical length of the plane is 375λ.

For the MLFMM acceleration, all tree leaves are at the same level and the number of

spherical level is set to 4. For the 1.5 GHz excitation of the plane, the tree is 12 levels with

4 spherical levels and 8 uniform levels.

The computation uses NERSC’s Cori which has a dual-socket 16-core Haswell architecture
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Figure A.30: Memory usage of OpenMP and MPI CFIE and pure MPI CFIE with
MLFMM scaling MPI processes.

with 32 cores per node. More specifically, the test uses 64, 128, 256, and 512 processes with

4, 8, and 16 threads where one thread corresponds to one Haswell core. In what follows, the

results are reported in terms of the number of cores to easy the comparison between the two

implementations. The Task+MPI CFIE data is simply the best result for any combination

of threads and processes where threads×processes = cores for a fixed number of cores. Also,

the specific load balancing scheme is described in [Hughey et al., 2019][Sundar et al., 2008]

and adapted to the case of plural nodes partitioned among processes in the uniform tree

region for the Task+MPI CFIE.

The OpenMP and MPI implementation is more memory efficient than the pure MPI

implmentation of the CFIE as is shown in Fig. A.32. The difference in maximum amount

of allocated memory during the run-time is caused by OpenMP using the shared memory of

the Haswell node. OpenMP eliminates the MPI communications between these cores with

shared memory, reduces the number of communications between these cores and cores on

other nodes, reduces the duplication of translation operators between cores within a node,

and the duplication of temporary memory allocations in general.

The OpenMP and MPI CFIE is also more parallel efficient than MPI CFIE. In Fig. A.35,
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Figure A.31: Memory usage of OpenMP and MPI CFIE and pure MPI CFIE with
MLFMM scaling MPI threads.

Figure A.32: Memory usage of OpenMP and MPI CFIE and pure MPI CFIE with
MLFMM scaling cores.
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Figure A.33: Parallel efficiency of OpenMP and MPIE CFIE and pure MPI CFIE with
MLFMM scaling MPI processes.

the OpenMP implementation is more parallel efficient for all numbers of cores, but neither

implementation scales for large numbers of cores. Again, OpenMP leverages shared memory

to reduce the MPI communications and interleave computations, but the MPI communica-

tions still exist and become a bottleneck for the M2L operation, especially between nodes

at the higher tree levels, as reported for the pure MPI implementation of MLFMM for the

oscillatory free-space Green’s function (25) in [Lingg et al., 2022]. The OpenMP reduces

but does not resolve the M2L issue. Furthermore, the OpenMP task scheduler doesn’t op-

timally prioritize alternative tasks. For example, the priority of a task is documented in

the OpenMP API specification as a recommendation rather than a rule. In other words,

the error-controllable MLFMM accelerated CFIE (or any other full-wave integral equation

formulation accelerated with MLFMM) is not arbitrarily scalable, and the improvements of

a hybridization of OpenMP and MPI are limited by the OpenMP library. The scalability

limit for this instance of MLFMM is fundamental. The tree structure causes an explosion

in the number of M2L MPI communications between nodes at the upper tree levels for an

increasing number of processes [Lingg et al., 2022]. Therefore, for sufficiently large problems,

APS local interpolants are necessary at upper-most tree levels.
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Figure A.34: Parallel efficiency of OpenMP and MPIE CFIE and pure MPI CFIE with
MLFMM scaling threads.

Figure A.35: Parallel efficiency of OpenMP and MPIE CFIE and pure MPI CFIE with
MLFMM scaling cores.
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Figure A.36: Time to complete a matvec for OpenMP and MPIE CFIE and pure MPI
CFIE with MLFMM scaling MPI processes.

Figure A.37: Time to complete a matvec for OpenMP and MPIE CFIE and pure MPI
CFIE with MLFMM scaling threads.

The parallel efficiency issues manifests in matvec times for the Task+MPI CFIE and pure

MPI CFIE as shown in Fig. A.38. The OpenMP and MPI implementation is faster than

the pure MPI implementation, but both formulations converge to similar times for a large

number of cores. The cost of one process sending and receiving MPI messages to all other

processes outweighs the benefit of adding another process. We also note Task+MPI matvec

times behave more regularly than MPI matvec times on NERSC Cori HPCC.
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Figure A.38: Time to complete a matvec for OpenMP and MPIE CFIE and pure MPI
CFIE with MLFMM scaling cores.

Figure A.39: Load balancing of pure MPI implementation.

A OpenMPI and MPI implementation also improves load balancing. Comparing Fig.

A.39 and Fig. A.40, the each Task+MPI rank (or MPI process) completes at nearly the

same time while the ranks of the pure MPI do not. The better balancing is caused by a

thread completing other tasks using the shared memory while the core waits to receive MPI

communications necessary to complete a task and, again, reduce MPI communications.
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Figure A.40: Load balancing of OpenMP and MPI implementation.

Final Remarks on MLFMM Parallelization

In this paper we have analyzed the scalablity of the global interpolant MLFMM acceler-

ated CFIE using the Intel OpenMP and MPI FORTRAN libraries. The parallel hybridization

yields notable improvements over the pure MPI implementation in terms of load balancing,

matvec timings, parallel efficiency, and especially memory usage. However, the scaling of

a hybrid or pure MPI parallelization is limited at large numbers of processes due to the

bottleneck of MPI communications between nodes during M2L at upper tree levels. This

issue is fundamental to any global, error-controllable MLFMM used in a full-wave solver run

on a multi-core architecture. The hybridization of OpenMP and MPI alleviates the issue,

but the practical limitations of the Intel OpenMP library, such as the task scheduler and

sub-optimal routing of communications from threads to other nodes through a root thread,

mitigate the performance improvement of interleaving the algorithm. For sufficiently large

problems, M2L communications necessitate APS local interpolants for sampling the Ewald

spheres at the upper-most levels.
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