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ABSTRACT

The use of artificial intelligence (AI) in healthcare has rapidly expanded in recent years. Multimodal

neural networks (MNNs) that analyze diverse data types like images, lab reports, and genomics

data often outperform unimodal approaches in healthcare applications. However, owing to their

complex architecture, the decision-making logic of these large AI models is often unknown.

This raises serious concerns surrounding model reliability, accountability, patient autonomy, and

bias. The black-box nature of these models often makes them unsuitable for high-risk healthcare

applications. Research in explainable AI (XAI) is therefore critical for the safe implementation

of these models. This dissertation develops a two-phase approach to improve explainability and

reliability assessment of MNNs in healthcare: Phase 1 - Explainability via feature importance:

we develop a unified framework that quantifies the relative importance of multimodal inputs using

post-hoc model-agnostic methods. The estimated importances are validated through importance-

known-exactly simulations and agreement between multiple attribution methods. Experiments

with multimodal breast tumor and cardiomegaly classifiers demonstrate the technique explains

model behavior across diverse data types with high agreement scores and alignment with expert

intuition. Phase 2 - Quantifying prediction reliability: we use multimodal input importance

to predict the impact of missing inputs on MNN performance. This impact is presented with

interpretable performance metrics, including accuracy reduction, providing measures closely tied

to model reliability. We also propose an extension of the average model reliability to more fine grain

patient-specific reliability estimates using reliability calibration curves. The methods developed in

this dissertation offer promising approaches to improve interpretability and quantify reliability of

complex MNNs, potentially facilitating their safe adoption in high-risk clinical settings.
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We make our world significant by the courage of our questions and the depth of our answers.
- Carl Sagan.
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CHAPTER 1

BACKGROUND

1.1 The Black Box Problem in Artificial Intelligence

Artificial intelligence (AI) systems based on machine learning and deep neural networks (DNNs)

have become increasingly popular in recent years, revolutionizing a wide range of sectors with their

ability to learn from vast data. These computational models, inspired by the human brain, are

designed to automatically learn and improve from experience. They have been utilized in various

fields like finance, marketing, self-driving cars, voice recognition systems, and healthcare.

The use of AI in healthcare has rapidly expanded in recent years, though its origins trace back

decades. Early AI systems were developed in the 1960s to replicate aspects of medical reasoning

and decision-making [5]. Expert systems that encoded rules to perform diagnostic tasks emerged

in the 1970s and 1980s [6]. Machine learning then enabled statistical pattern recognition for tasks

like imaging analysis in the 1990s [7]. With modern advanced deep learning, AI now matches or

exceeds clinicians on select diagnostic tasks, as seen across various sub-specialties like dermatology,

ophthalmology, and radiology [8, 9, 10]. Beyond diagnosis, AI has applications across healthcare,

including automated patient monitoring, personalized treatment recommendations, robotic surgery,

and drug discovery [11].

Despite their impressive capabilities and growing prevalence, deep neural networks pose signif-

icant challenges, particularly when it comes to understanding their decision-making logic. These

models are often referred to as "black boxes" because, while they can make highly accurate predic-

tions, their internal workings that lead to these predictions are not easily interpretable or transparent.

The intricacy of neural networks with millions of parameters makes them essentially opaque, even

to experts [12]. The black-box problem arises from the complex, nonlinear nature of these models.

For example, a neural network might consist of hundreds of layers, each containing numerous neu-

rons with different weights and biases. The interactions between these layers and neurons create

a highly intricate web of computations that is not human interpretable. This complexity, while

contributing to the model’s predictive power, makes it challenging to explain why the model made
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Figure 1.1: Timeline of the evolution of artificial intelligence systems with a focus on applications
in healthcare. Key: AI - Artificial Intelligence; DL - Deep Learning; FDA - U.S. Food and Drug
Administration; CAD - Computer-Aided Diagnosis. Reprinted from [1] with permission from
Elsevier.

a particular decision.

The opacity of these models poses significant challenges for trust, ethics, and accountability. If

the reasoning behind a model’s outputs and predictions cannot be understood, it becomes difficult to

verify that the model is making decisions based on fair, unbiased logic rather than using problematic

shortcuts or proxies. This poses a significant hurdle in the broader adoption of these AI systems in

healthcare, where decisions can have life-altering consequences. The use of black box models can

lead to erroneous predictions with severe consequences.

In their 2019 study, Obermeyer et al. showed that an AI algorithm used to guide healthcare

decisions was less likely to recommend additional medical care for black patients than for white

patients with the same health conditions [13]. Further investigation revealed that the algorithm

relied on healthcare costs as a proxy for health needs. Because less money is spent on healthcare for

black patients in the U.S., the algorithm incorrectly inferred that they were healthier than equally

sick white patients. A different study revealed that the classifiers used for computer-aided diagnosis

trained on medical imaging datasets performed poorly for underrepresented genders [14]. This
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problem was consistent across various network architectures and datasets, underscoring the need

for data diversity and model fairness.

Röösli et al. also noted performance disparities in the MIMIC benchmarking model. The model

demonstrated less accurate predictions for Black patients and those on Medicaid as compared to in-

dividuals with private insurance. Furthermore, the model tended to underestimate risk for Medicare

patients and those with a higher number of comorbidities, suggesting possible inequities [15]. An-

other study demonstrated that an image recognition based AI system designed for cancer treatment

recommendations was unable to replicate its performance across various healthcare settings. This

study underscores the risks and challenges associated with adapting such systems across diverse

environments. It cautions against using these models as black boxes without understanding their

limitations and recognizing the importance of region-specific data and inclusive training [16].

The risk of AI systems making errors in healthcare, such as recommending the wrong medication

or misdiagnosing a condition, is highlighted in [17]. The authors note that reactions to errors made

by AI may differ from those made by humans, and the widespread use of an erroneous AI system

could potentially lead to injuries in a large number of patients, unlike errors made by individual

healthcare providers.

Black box models in healthcare also present a threat to individual autonomy by obstructing

meaningful patient involvement in decision-making processes. In order for patients to exercise

their agency, they need to understand the processes and potential outcomes of AI recommendations

[18]. The opacity of these models impedes shared decision-making, a crucial aspect of ethical

healthcare. Without grasping the underlying logic, patients cannot ensure that algorithms are

aligned with their values. In extreme cases, this could even compromise a patient’s confidence to

refuse treatment. Hence relying on inscrutable AI compromises patients’ ability to understand the

forces influencing them.

Moreover, healthcare decisions often need to be justified to patients, their families, and in some

cases, to legal entities. If a decision made based on a black box model leads to an adverse outcome,

it could result in legal issues. The inability of these models to explain their decision making logic,
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makes it challenging to assign liability [19, 20]. Holzinger and others propose that explainability

could be the solution to this problem [21]. If healthcare professionals are provided with human

interpretable explanations of the models logic, then the model becomes similar to other diagnostic

tools already in use.

Safety challenges of machine learning systems in healthcare, particularly their black box nature,

are also discussed in [22]. The authors argue that while certain aspects of AI systems, like

design decisions and training activities, can be examined and explained, the precise workings of

an algorithm often remain inscrutable. They suggest that safety governance of AI in healthcare

will require frameworks that can explain broader sociotechnical processes, not just the underlying

mechanics of the algorithms. However, they note that the inherent inscrutability of some machine

learning approaches may make them unsuitable for safety-critical applications.

1.2 The Growing Drive for Explainable AI

In light of the aforementioned risks, there is a growing global demand for explainability in AI to

enable oversight and accountability as these transformative technologies become increasingly inte-

grated across healthcare, government, industry, and other domains. Efforts to promote explainable

AI have gained momentum across sectors in recent years.

In 2019, the Organisation for Economic Co-operation and Development (OECD) AI Principles

endorsed by over 40 countries emphasized the need for trustworthy AI systems. These principles

highlight transparency and explainability as key enablers of trust in AI systems to support their

widespread diffusion and adoption [23]. The National Institute of Standards and Technology (NIST)

in the United States is at the forefront of developing standards, metrics, benchmarks, and tools to

address explainable AI as a core component of trustworthy AI. NIST held a virtual workshop on

Explainable AI in 2021, bringing together stakeholders from industry, academia, and government

to discuss technical needs, challenges, and collaborative opportunities related to explainable AI

[24]. The National AI Initiative Act signed into law in January 2021 underscores explainability as

an important research priority, calling for coordination across the Federal government to accelerate

advances in AI [25]. The Defense Advanced Research Projects Agency’s (DARPA) Explainable
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AI (XAI) program aims to create a suite of machine learning techniques that yield more explain-

able models without sacrificing learning performance. A core goal is enabling human users to

understand, trust, and manage AI partners through model explainability [26].

On the regulatory front, there have been various initiatives to codify requirements for explain-

able AI. In the United States, the proposed federal Algorithmic Accountability Act would require

companies to conduct assessments of high-risk automated systems for biases and discrimination

potentials. It also mandates that companies take corrective actions based on the assessments. The

capacity to explain algorithmic decisions in a meaningful way to affected individuals would be

important for compliance [27]. The Federal Trade Commission (FTC) has noted that explain-

ability is critical for evaluating important AI properties like fairness, as opaque models preclude

assessing underlying biases [28]. In the United Kingdom, guidelines from the Information Com-

missioner’s Office (ICO) state that organizations must be able to explain the decisions, predictions,

or recommendations produced by AI systems to affected individuals upon request in non-technical

language [29]. The European Union’s General Data Protection Regulation (GDPR) has frequently

been referenced as establishing a broad "right to explanation" for citizens subject to algorithmic

decisions [30]. The EU is working to impose transparency requirements on high-risk AI systems

under proposed regulations like the Artificial Intelligence Act [31].

For AI in healthcare, the Food and Drug Administration (FDA) has proposed guiding principles

for good machine learning practice in medical device development [32]. The FDA principles

stress that interpretability of outputs is critical for the usability and safety of machine learning-

based devices and techniques, particularly those involving collaboration between humans and AI

algorithms. Interpretability can be promoted through using visualizations to explain the model’s

predictions, generating natural language rationales, or other strategies to make the model more

understandable for users.

Consequently, a primary focus of ongoing research in AI is to develop methods that can enhance

the interpretability of these black box models. The goal is to demystify the black box, making the

decision-making process of these powerful tools more comprehensible and accountable, thereby
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Figure 1.2: Plot of the exponential growth in published research related to ‘Explainable AI’ over
the past decade. This surge in research activity is partially fueled by various international and
national incentives and regulatory frameworks. The data for this analysis was sourced from the
Web of Science.

addressing the ethical, legal, trust, and safety issues that currently limit their broader use.

1.3 Lexicon of Explainable AI

As evident by the global push for AI regulation, the ideas of interpretability and explainability

have gained significant attention. However, the nomenclature and vocabulary used in this area of

research can often be confusing due to the interchangeable use of terms. In this section, we give a

brief overview to provide clarity on the key terms and concepts used in the scientific literature on

interpretable and explainable AI.

Interpretable AI refers to models whose predictions can be readily understood by humans [33].

The term Intrinsic or Inherent Interpretability is often associated with simpler models, such as

linear regression or decision trees, where the relationship between input and output is known and

can be easily understood. These models have clear and explicit rules that relate input features to

output predictions.

On the other hand, Explainable AI (XAI) is a broader concept that not only includes inter-

pretability but also the techniques and methods that can provide clear, understandable explanations

for the decisions made by black box AI models. Post-hoc Explanations are methods used to explain

model outputs after the model has been trained, without modifying the model itself. Local Expla-

nations focus on explaining individual predictions, allowing users to understand why a particular
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instance was classified or predicted in a certain way. On the other hand, global explanations aim

to provide a comprehensive understanding of the overall functioning and logic of the entire model.

Another term that often appears in the literature is transparency. In the context of AI, trans-

parency refers to the openness and clarity of an AI system’s operations. A transparent AI system is

one where all aspects, including the data used for training, the learning algorithm, and the decision-

making process, are open and accessible. Transparent models are also referred to as white-box

models or glass-box models. These models provide visibility into their decision-making process,

allowing humans to comprehend the factors that influence their predictions.

Lastly, fairness and trust are key concepts in AI research that are closely tied to interpretability

and explainability. Fairness refers to the ability of an AI system to make decisions without bias or

discrimination whereas trust in AI refers to the confidence users have in an AI system’s reliability

and integrity.

1.4 Illuminating the Black Box: Strategies in Explainable AI

In the early days of AI between 1980s-90s, symbolic or rule-based systems dominated, offering

transparency and interpretability in their outputs [34]. As machine learning technologies advanced

in the 2000s, popular approaches focused on intrinsic interpretability. Strategies developed in this

era included sparse linear models, rule-based, and tree-based models. The rise of deep learning

in the 2010s, however, introduced high performing opaque models, necessitating the emergence

of "Explainable AI" (XAI) to interpret these black-box systems [35]. To illustrate these concepts,

Figure 1.3 presents a currently accepted relationship that model performance is often inversely

related to interpretability.

The domain of explainable AI encompasses a variety of methodologies, each differing based on

specific functional attributes. To organize these diverse concepts, scholars have proposed various

taxonomies. Figure 1.4 illustrates a recognized categorization scheme for XAI methods [3].

Popular XAI approaches consist of post-hoc interpretation which can vary from simple visu-

alization methods like partial dependence plots [36] to feature importance or feature attribution

methods that quantify the contribution of input features to the model’s output. Gradient-based
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Figure 1.3: The trade-off between model interpretability and performance is illustrated, showing
that highly interpretable models like linear regression tend to have lower performance while high-
performing opaque models like deep neural networks have low interpretability. Explainable AI
methods and tools have promise to increase the interpretability of high-performing opaque models
without significantly sacrificing their performance. Reprinted from [2] with permission from
Elsevier.

Figure 1.4: Taxonomy of XAI methods combining the conceptual, functioning, and result ap-
proaches. The conceptual dimensions of stage, scope, and applicability form the upper levels.
The functioning and result of methods are added as dimensions on the lower level. Additional
dimensions like output format can be incorporated. Categories are not assumed to be mutually
exclusive. Used under CC 4.0 from [3].
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methods are also used to identify important input regions. Saliency maps using gradients like

Grad-CAM are typically used for interpreting image based convolutional neural networks [37].

Approaches like occlusion analysis and counterfactual explanations manipulate the inputs and

the model itself to facilitate a deeper understanding of their functioning. Occlusion analysis

methodically masks parts of the input to determine their importance [38]. On the other hand,

counterfactual explanations offer insights into model predictions by identifying the minimal change

to the input data that would lead to a change in the outcome [39, 40].

Decomposition approaches explain models in terms of their individual components. Methods

like testing with concept activation vectors (TCAV) identify concepts that are highly relevant

to a prediction [41]. Concept activation vectors link internal neural representations to human-

interpretable concepts.

Example-based techniques explain predictions by retrieving similar instances from training

data [42]. These include prototype-based methods like influence functions [43] and activation

minimization [44]. Influence functions identify the training samples that contribute the most

towards predicting a given test sample. Activation minimization identifies examples that strongly

activate the function of interest. Other prototype-based methods can learn characteristic prototypes

for different classes and are able to identify to the closest training input with those prototypes as

explanations at inference time [45, 46].

Model induction involves generating an entirely new model that approximates the behavior of

a black-box model. This new model is typically a simpler, interpretable model such as a decision

tree, rule set, or linear model. Model induction creates this new model by learning directly from

the inputs and outputs of the black-box model. Thus, the new model serves as an approximation or

surrogate of the black-box model, allowing researchers to study its decision-making process more

readily than they could with the original black-box model.

Similarly, knowledge distillation can also be used as an explainability method. It involves

transferring knowledge from a larger, more complex teacher network to a smaller, less intricate

student network [47, 48]. The primary objective is to manage the size and complexity of large-
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scale neural networks but it can also be used to impart ’distilled’ knowledge to a more interpretable

model.

Other approaches focus solely on the development of inherently interpretable rule based and

symbolic models [49]. Symbolic reasoning emphasizes explicit representation of knowledge using

symbolic rules or logical formulas. Recent development of neuro-symbolic AI offer the best

of both worlds: the performance of deep learning models and the explainability of symbolic AI.

Neuro-symbolic models use symbolic AI for high-level reasoning and neural networks for low-level

perception tasks [50].

In medicine analytical XAI approaches, such as predefined kinetic and linear models, feature

extraction via correlations and clustering, and sensitivity analysis through perturbations, are also

gaining popularity. These models can reveal patterns in genetics and neuroimaging data. Signal

inversion methods are less explored despite their potential to probe neural mechanisms [51]. Verbal

rule-based systems have also shown promise for interpretable medical predictions like pneumonia

risk models [52].

Despite the recent advances in XAI, the black-box problem in deep learning remains unsolved.

One of the reasons behind this is that model understanding is subjective and, therefore, difficult to

formalize [53]. Furthermore, the insights needed from a model to make it transparent are domain-

specific [54]. Consequently, it is challenging to design universal methods for model transparency.

Emerging directions include building standardized benchmarks and rigorously evaluating expla-

nations [55]. Improving human-centered design and explanations for non-experts are also crucial

areas [56]. Developing theories and formal grounding for interpretability remains an open chal-

lenge [57]. This thesis is contributing to XAI research through the presentation of methods offering

explanations for black-box models that input multiple modalities and output medical decisions.
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CHAPTER 2

METHODS FOR POST-HOC FEATURE IMPORTANCE

As mentioned earlier, predictions alone are not enough for medical applications. The model

must also provide some insight into the prediction generation process. In particular, it is often

necessary to understand the model in order to perform debugging, bias detection, and failure

analysis. Furthermore, insights into the model help the user assess if, when, and how much to trust

model predictions. This is a crucial requirement for deploying these models in the real world.

Feature importance or feature attribution is a widely used and well-studied explainability tech-

nique [58, 59, 60]. The term feature in explainable AI research refers to a measurable property of

the model input. Understanding the contribution of an input feature towards a particular decision

builds trust with users and can lead to novel scientific discoveries.

Based on their interaction with the predictive models, feature importance methods are classified

into filter, wrapper and embedded methods [61]. Filter methods use input data only and are mostly

applied as a preprocessing step before training the predictive model. Examples include similarity-

based methods, correlation criteria, mutual information, clustering, principal component analysis,

and linear discriminant analysis [62]. Wrapper methods such as permutation methods, local model

approximations [63], and some gradient-based methods [64] are model agnostic but use model

predictions for ranking features. Embedded methods require intricate manipulation of the model.

In some direct-objective-optimization-based methods feature ranks are learned in addition to the

model parameters [65]. Some methods propagate the feature relevance layer-wise through the DNN

[66], while others use special network structures like bĳection-layers [67] or self-attention layers

[68] to rank features. Table 2.1 provides a comprehensive overview of existing feature attribution

methods.

While filter, wrapper, and embedded-based feature importance methods each have their advan-

tages and shortcomings, wrapper methods are often preferred due to their model-agnostic nature.

Unlike other methods, they only examine model input and output, making them suitable for a

wide variety of model architectures. In this context, we focus on exploring several popular and
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Table 2.1: Overview of feature importance and attribution methods in explainable AI. The cate-
gorization of methods can vary with implementation. The data types listed are the most common
ones for each method, some of these methods can be used with other data types with modifications.

Method Data Category References
Permutation Importance Tabular, Time

Series
Filter Breiman, L. (2001) [69]

Partial Dependence Plots
(PDP)

Tabular, Time
Series

Filter Friedman, J. H. (2001) [36]

Saliency Maps Image Embedded Simonyan et al. (2013) [70]
Occlusion Text, Image Wrapper Zeiler, Fergus (2014) [38]
Layer-wise Relevance
Propagation (LRP)

Tabular, Text,
Image

Embedded Bach et al. (2015) [66]

Guided Backpropagation Image Embedded Springenberg et al. (2015)
[71]

Input Gradients Tabular, Text,
Image

Wrapper Hechtlinger (2016) [64]

LIME (Local Interpretable
Model-agnostic Explana-
tions)

Tabular, Text,
Image

Wrapper Ribeiro et al. (2016) [63]

Grad-CAM Image Embedded Selvaraju et al. (2016) [37]
Quantitative Input Influ-
ence (QII)

Tabular, Text,
Image

Wrapper Datta et al. (2016) [72]

SHAP (SHapley Additive
exPlanations)

Tabular, Text,
Image

Wrapper Lundberg, Lee (2017) [60]

Integrated Gradients Tabular, Text,
Image

Embedded Sundararajan et al. (2017)
[73]

SmoothGrad Tabular, Text,
Image

Wrapper Smilkov et al. (2017) [74]

DeepLIFT Tabular, Text,
Image

Wrapper Shrikumar et al. (2017) [58]

Influence Functions Tabular Wrapper Koh, Liang (2017) [75]
Extremal Perturbations Text, Image Wrapper Fong, Vedaldi (2017) [76]
Contextual Decomposition Text Wrapper Murdoch, Szlam (2017) [77]
Contrastive Explanations
Method (CEM)

Tabular, Image Wrapper Dhurandhar et al. (2018) [78]

Anchors Tabular Filter Ribeiro et al. (2018) [79]
Model Agnostic suPer-
vised Local Explanations
(MAPLE)

Tabular Wrapper Plumb et al. (2018) [80]

12



effective wrapper-based methods. These methods leverage slightly different definitions of feature

importance. To effectively describe these methods, we first establish a comprehensive framework.

Consider a binary classification problem:

𝐹 : 𝑋 ∈ R𝑑 −→ 𝑦 ∈ R, (2.1)

where 𝐹 represents the classifier, 𝑋 is an input sample with 𝑑 features and 𝑦 is the predicted

probability for 𝑐𝑙𝑎𝑠𝑠1 1, where 𝑋 =

[
𝑥1 · · · 𝑥𝑑

]𝑇
, and for all 𝑖 = 1, . . . , 𝑑, 𝑥𝑖 ∈ R is a feature.

Note that no assumptions are made about the structure of classifier 𝐹. All methods discussed

below are model-agnostic and 𝐹 represents an arbitrary binary classifier. These methods can also

be adopted for multi-class classification with minor modifications.

2.1 Permutation Feature Importance

The primary goal in classification problems is maximizing the performance of the classifier,

which is typically quantified by some score. Therefore, a natural way to estimate feature importance

is to study the effect a feature has on a classifier score. One such method is the permutation-based

feature importance [69]. It defines the importance of the 𝑘th feature as the average decrease in

classifier score as the 𝑘th feature is permuted 𝑚 times.

For tabular data, let 𝐷𝑋 =

[
𝑋1 · · · 𝑋𝑛

]𝑇
∈ R𝑛×𝑑 be the data matrix with 𝑛, 𝑑 dimensional

samples. Rows of 𝐷𝑋 represent a new sample and columns represent a feature. Let Score(𝐷𝑋) be

the average classification performance score of the classifier 𝐹 on data 𝐷𝑋 . The importance of 𝑘th

feature is given by

Permutation Importance PERM imp(𝑘) = Score(𝐷𝑋) −
1
𝑀

𝑀∑︁
𝑖=1

Score(𝐷𝑋 (𝑘,𝑖)), (2.2)

where Score(𝐷𝑋 (𝑘,𝑖)) is the performance score on the 𝑖th permutation of 𝐷𝑋 . In each permutation,

values in the 𝑘th column of 𝐷𝑋 are randomly shuffled. The permutation algorithm is detailed in

Algorithm 2.1.
1Probability of 𝑐𝑙𝑎𝑠𝑠2 = 1 − Probability of 𝑐𝑙𝑎𝑠𝑠1
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Algorithm 2.1 Permutation Importance
1: Input: Trained model (𝐹), Training set (𝐷𝑋), Number of permutations (𝑀).
2: Calculate the reference performance Score(𝐷𝑋) on original data.
3: for each input feature 𝑘 do
4: for 𝑖 ← 1 to 𝑀 do
5: Randomly shuffle values of the 𝑘th feature in 𝐷𝑋 .
6: Calculate model performance Score(𝐷𝑋 (𝑘,𝑖)) on shuffled data.
7: end for
8: Calculate the importance as average drop in score for permutation in 𝑘th feature (2.2).
9: end for

10: Scale importances using 𝑙1 normalization.
11: return Normalized permutation importance.

2.2 Gradient Feature Importance

Studying the impact of a change in input feature on the predicted output can provide insights

about feature importance. Hechtlinger [64] uses the gradient to quantify such an impact. The

absolute value of the gradient indicates magnitude change of the predicted output for an infinitesimal

change in the input feature. The gradient of 𝐹 with respect to input 𝑋 is

∇𝐹 (𝑥) =
[
𝜕𝐹 (𝑥)
𝜕𝑥1

· · · 𝜕𝐹 (𝑥)
𝜕𝑥𝑑

]𝑇
. (2.3)

This method restricts the choice of model 𝐹 to differentiable classifiers only. The differentiability of

deep neural networks depends on the choice of activation function. Common activation functions

like sigmoid, Relu, and Tanh are differentiable almost everywhere 2.

We use a central difference approach to numerically approximate the gradient of 𝐹 at 𝑋 and

define
𝜕𝐹 (𝑋)
𝜕𝑥𝑘

=
𝐹 (𝑋 (𝑘+)) − 𝐹 (𝑋 (𝑘−))

2𝛿𝑥
, (2.4)

where

𝑋 (𝑘+) = 𝑋 + 𝛿𝑥 · 𝑒𝑘 , 𝑋 (𝑘−) = 𝑋 − 𝛿𝑥 · 𝑒𝑘 , (2.5)

𝛿𝑥 ∈ R is the step size, and for all 𝑘 = 1, . . . , 𝑑, 𝑒𝑘 ∈ R𝑑 is the standard basis vector. The terms

𝐹 (𝑋 (𝑘+)) and 𝐹 (𝑋 (𝑘−)) are obtained from two forward passes of the model.
2differentiable everywhere except on a set of measure zero
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The importance of the 𝑘th feature is then defined as the absolute value of the partial derivative

with respect to 𝑥𝑘 . The sample feature importance for a single test sample using the gradient vector

is given by

GRAD imp𝑆 (𝑋𝑖, 𝑘) =
����𝜕𝐹 (𝑋)𝜕𝑥𝑘

����
𝑋𝑖

. (2.6)

To get the global feature importance, we average all sample feature importances over a test set

{𝑋𝑖}𝑛𝑖 . In particular, we define

GRAD imp𝐺 (𝑘) =
1
𝑛

𝑛∑︁
𝑖=1

����𝜕𝐹 (𝑋)𝜕𝑥𝑘

����
𝑋𝑖

. (2.7)

The input gradient importance algorithm is detailed in Algorithm 2.2.

Algorithm 2.2 Input Gradient Feature Importance
1: Input: Trained model (𝐹), Training set 𝐷𝑋 .
2: for each training sample 𝑋 in 𝐷𝑋 do
3: for each input feature 𝑘 do
4: Compute the gradient of 𝐹 (𝑋) w.r.t 𝑥𝑘 (2.4).
5: end for
6: Take absolute value of gradient vector to get feature importance.
7: Scale importances using 𝑙1 normalization.
8: end for
9: Average over all samples to get global gradient importance (2.7).

10: return Local and global input gradient feature importance.

2.3 Locally Interpretable Model Agnostic Explanations (LIME)

Another way to get feature importance is to use locally interpretable surrogate models. Linear

models are a good choice for surrogate models due to their interpretability and low complexity [63].

For the classifier in (2.1) we can build locally linear surrogate models 𝐺. For all 𝑋𝑖 ∈ {𝑋𝑖}𝑛𝑖=1, we

can construct

𝐺𝑖 (𝑋) : 𝑋 ∈ N (𝑋𝑖) −→ 𝑦 ∈ R, (2.8)

whereN(𝑋𝑖) is a set containing samples in the neighborhood of 𝑋𝑖. To populateN(𝑋𝑖), we sample

from a Gaussian distribution centered at 𝑋𝑖. The surrogate model has the form

𝐺𝑖 (𝑋) = 𝑊𝑇
𝑖 𝑋, (2.9)
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where𝑊𝑖 =
[
𝑤𝑖,1 · · ·𝑤𝑖,𝑑

]𝑇 . To ensure that 𝐺𝑖 approximates the actual model 𝐹 centered at 𝑋𝑖, we

learn the weights𝑊𝑖 by minimising the weighted least squares loss function

L(𝑊𝑖) =
∑︁

𝑋∈N (𝑋𝑖)
𝑒−∥𝑋−𝑋𝑖 ∥

2 ∥𝐹 (𝑋) −𝑊𝑇
𝑖 𝑋 ∥2. (2.10)

For the 𝑖th test sample, the importance of 𝑘th feature is the absolute value of its corresponding

weight defined as

LIME impS(𝑋𝑖, 𝑘) = |𝑤𝑖,𝑘 |. (2.11)

In order to estimate global feature importance using local surrogate models we propose an

extension to the LIME. The global feature importance of the 𝑘th feature is defined as the average

of the local importances estimated by each surrogate model given by

LIME impG(𝑘) =
1
𝑛

𝑛∑︁
𝑖=1
|𝑤𝑖,𝑘 |, (2.12)

where 𝑤𝑖,𝑘 is the weight corresponding to the 𝑘th feature for the 𝑖th surrogate model. The LIME

algorithm is detailed in Algorithm 2.3.

Algorithm 2.3 LIME
1: Input: Trained model (𝐹), Input sample (𝑋), size of neighborhood set (𝑀).
2: for each training sample 𝑋 do
3: Generate 𝑀 random samples around 𝑋 to get the neighborhood set N(𝑋).
4: for each sample 𝑋′ in N(𝑋) do
5: Generate model prediction 𝐹 (𝑋′).
6: Compute the distance ∥𝑋 − 𝑋′∥2.
7: end for
8: Fit a linear model 𝐺 (2.9) using the predictions and weights from the previous step (2.10).
9: Take absolute values of coefficients of 𝐺 to get feature importance (2.11).

10: Scale importances using 𝑙1 normalization.
11: end for
12: Average over all samples to get global LIME importance (2.12).
13: return Local and global LIME feature importance.

2.4 SHapley Additive exPlanations (SHAP)

The Shapley value, a concept from cooperative game theory, forms the basis of SHAP, where

the classification task is the ‘game’ and the input features are the ‘players’. The Shapley value of
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a feature is the average marginal contribution of that feature across all possible combinations of

features. The Shapley value for a feature 𝑘 can be calculated using the following equation:

𝜙𝑘 (𝑣) =
∑︁

𝐶⊆{1,··· ,𝑑}\{𝑘}

|𝐶 |!( |𝑑 | − |𝐶 | − 1)!
|𝑑 |! [𝑣(𝐶 ∪ {𝑘}) − 𝑣(𝐶)], (2.13)

where 𝑑 is the total number of features, 𝐶 is a subset of features with |𝐶 | features. 𝑣(𝐶 ∪ {𝑘}) is the

value function for the (coalition) subset 𝐶 including feature 𝑘 , 𝑣(𝐶) is the prediction for features

present in set 𝐶 marginalized over features that are not included in set 𝐶 and is given by

𝑣𝑥 (𝐶) =
∫

𝐹 (𝑋)𝑑P𝑥∉𝐶 − 𝐸𝑋 (𝐹 (𝑋)). (2.14)

The exact computation of Shapley values can be computationally expensive as it involves

summing over all possible subsets of features and computing the value function. This becomes

infeasible for a large number of features. To overcome this, a Monte Carlo estimation of Shapley

values can be used [81], which involves randomly sampling permutations of the features. The

Monte Carlo estimation of the Shapley value for a feature 𝑘 can be calculated by using

𝜙𝑘 (𝑋) =
1
𝑀

∑︁
𝑧∈𝑍 ′

𝐹 (ℎ𝑥 (𝑧+𝑘 )) − 𝐹 (ℎ𝑥 (𝑧−𝑘 )), (2.15)

where 𝑀 = |𝑍′| is the number of sampled combinations. 𝑍′ represents a subset of all possible

combinations of features, the prime symbol is used to denote that these are not the actual feature

values, but a binary vector indicating the presence or absence of a feature in a particular set.

Each element 𝑧 of 𝑍′ is an instance with a subset of its features missing, 𝑧−𝑘 is constructed from

𝑧 by setting the 𝑘th indicator off (𝑧𝑘 = 0) and 𝑧+𝑘 is constructed from 𝑧 by setting the 𝑘th indicator

on (𝑧𝑘 = 1).

The mapping function ℎ𝑥 (𝑧) is used to create a synthetic instance by replacing the values in 𝑧

with the corresponding feature values from the original instance 𝑋 , defined as

ℎ𝑥 (𝑧) =


𝑋𝑖 if 𝑧𝑖 = 1 for 𝑖 = 1, · · · , 𝑑,

0 or the mean of feature 𝑖 if 𝑧𝑖 = 0 for 𝑖 = 1, · · · , 𝑑.
(2.16)
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As outlined in algorithm 2.4, the resulting instance ℎ𝑥 (𝑧) is then fed into the machine learning

model 𝐹 to get the prediction. The difference between the feature-present predictions 𝐹 (ℎ𝑥 (𝑧+𝑘 ))

and the feature-absent predictions 𝐹 (ℎ𝑥 (𝑧−𝑘 )) is then used to compute the SHAP value for the 𝑘th

feature.

Algorithm 2.4 SHAP
1: Input: Model (𝐹), Training set 𝐷𝑋 , Instance 𝑋 , Number of Monte Carlo samples 𝑀
2: for each input feature 𝑘 do
3: Sample 𝑀 random combinations from all possible combinations of features.
4: for 𝑧 in 𝑍′ do
5: Generate synthetic instance ℎ𝑥 (𝑧) by replacing missing values with expected values from

𝐷𝑋 (2.16).
6: Original value for 𝑘th feature ℎ𝑥 (𝑧+𝑘 ).
7: Masked value for 𝑘th feature ℎ𝑥 (𝑧−𝑘 ).
8: Compute marginal contribution of 𝑘th feature in this coalition 𝐹 (ℎ𝑥 (𝑧+𝑘 )) − 𝐹 (ℎ𝑥 (𝑧−𝑘 ))
9: end for

10: Average over set 𝑍′ to get SHAP importance (2.15).
11: end for
12: Scale importances using 𝑙1 normalization.
13: return Normalized SHAP importance.
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CHAPTER 3

QUANTIFYING THE BENEFIT OF USING PATIENT-SPECIFIC BLOOD FLOW FOR
ASSESSMENT OF CORONARY ARTERY DISEASE RISK

The work in this chapter contributed towards the following:

• M. Azmat, K. Branch, and A. Alessio. ‘Virtual Clinical Trial to Evaluate the Benefit of

Patient-Specific Blood Flow in CT Assessment of Functional Significance of Coronary Artery

Stenosis’. Presented at BMES Annual Meeting 2020.

• M. Azmat, E. Tu, K. Branch, and A. Alessio. ‘Machine Learned Versus Analytical Models

for Estimation of Fractional Flow Reserve from CT-Derived Information’. Presented at SPIE

Medical Imaging Conference, 2021.

3.1 Introduction

Coronary artery disease (CAD) is a highly prevalent health condition that poses a significant

burden on global health, leading to considerable morbidity and mortality. Traditionally, stress tests

and nuclear imaging techniques, such as exercise stress tests, pharmacological stress tests, myocar-

dial perfusion imaging, and single-photon emission computed tomography (SPECT), have been

commonly used to assess ischemia, which is directly related to CAD risk. This chapter proposes

models to detect functionally significant ischemia, suggesting high-risk CAD; For simplicity, we

will use the term "CAD risk" to denote high-risk ischemic, flow-limiting, disease.

However, fractional flow reserve (FFR) is increasingly being used to assess the risk of CAD.

FFR is defined as the ratio of the pressure before and after a stenosis as measured during coronary

catheterization [82]. This invasive procedure provides a direct and reliable measure of the hemo-

dynamic impact of a coronary stenosis, and it has been shown to avoid unnecessary interventions

and improve patient outcomes when used to guide revascularization decisions [83].

Traditionally, FFR is measured invasively during coronary catheterization, which, while accu-

rate, carries inherent risks, costs and recovery time. Therefore, there has been a growing interest

in developing non-invasive methods for estimating FFR. One promising approach in this regard is
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the use of cardiac computed tomography (CT) imaging combined with data-driven or analytical

models.

FFR estimation models use CT angiography to derive patient-specific stenosis geometry, a

key determinant of the pressure drop across the stenosis and, consequently, the FFR value [84].

Typically, the FFR estimation methods then either apply computational fluid dynamics (CFD)

simulations or machine-learned models to estimate FFR for the patient-specific stenosis geometry

[85]. However, most of these models rely on estimated normal values for flow variables, which

may not accurately reflect the patient-specific hemodynamic conditions. This limitation could

potentially affect the accuracy of FFR estimation and, consequently, the assessment of CAD risk.

We hypothesize that incorporating patient-specific values for hemodynamic parameters, specif-

ically patient-specific blood flow, could improve the estimation accuracy of non-invasive FFR

models. patient-specific blood flow can be particularly valuable in patients with microvascular

dysfunction, a condition that can affect the blood flow in the coronary arteries and is not captured

by traditional FFR measurements [86]. To test this hypothesis, we perform a comparative study

where we compare the estimation accuracy of a variety of FFR estimation models against known

and true FFR values. We construct models with varying levels of patient-specific information, both

with and without patient-specific blood flow information.

However, obtaining patient-specific blood flow information requires additional imaging studies,

specifically CT perfusion imaging. CT perfusion imaging provides detailed information about the

blood flow in the coronary arteries, which can be used to estimate the patient-specific flow rate.

Since the additional imaging carries radiation and monetary costs, it is crucial to quantify the added

benefit of using patient-specific blood flow relative to other inputs. This quantification can help

justify the use of additional imaging studies and guide the development of cost-effective strategies

for non-invasive FFR estimation. To quantify the relative importance of using patient-specific blood

flow, we use a machine learning based FFR estimator and perform feature importance analysis using

a variety of feature importance estimation methods.
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3.2 Methods

To assess the benefit of using patient-specific blood flow for assessment of CAD risk, we set

up a virtual clinical trial. We simulated a section of the left anterior descending (LAD) artery

with stenosis for 60 reference patients with varying rates of arterial blood flow at stress and

different stenosis geometries. We then constructed three different FFR estimation models relying

on different levels of patient-specific information: 1) 𝐹𝐹𝑅𝐺 was the most primitive model which

relies on just the geometric data, 2) 𝐹𝐹𝑅𝑁 predicted FFR using normal values for flow parameters

in Navier-Stokes equations, and 3) 𝐹𝐹𝑅𝑃 used patient-specific values for flow parameters in Navier-

Stokes equations to estimate FFR. The ground truth values of fractional flow reserve 𝐹𝐹𝑅𝐺𝑇 were

calculated using high fidelity computational fluid dynamics simulations. For the analytical FFR

Table 3.1: Description of the FFR estimation models used in the comparative study.

Symbol Name Description
𝐹𝐹𝑅𝐺𝑇 Ground truth 3D computational fluid dynamics simulation.
𝐹𝐹𝑅𝐺 Geometric only Model relying only on the geometry of the stenosis.
𝐹𝐹𝑅𝑁 Normal flow Flow-based model using a constant normal blood flow rate.
𝐹𝐹𝑅𝑃 Patient-specific flow Flow-based model using patient-specific blood flow rates.

models, we approximated the stenosis geometry with a blunt-plug in a constant diameter artery as

shown in Figure 3.1. Table 3.2 lists the parameters that define the patient stenosed LAD model.

Figure 3.1: Model of a single blunt-plug stenosis in the artery.

3.2.1 Geometric Model (𝐹𝐹𝑅𝐺)

The geometry-only model relied solely on the stenosis geometry to get a rough estimate of the

FFR across the stenosis. 𝐹𝐹𝑅𝐺 was calculated as the ratio of maximum stenosed artery diameter
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Table 3.2: Geometric and flow parameters used in analytical FFR estimation models.

Symbol Description Units
𝑈0 Average velocity in unobstructed artery m/s
𝑃0 Upstream flow pressure in unobstructed artery Pa
𝐷0 Diameter of unobstructed artery m
𝐿0 Length of upstream unobstructed artery m
𝑃1 Flow pressure proximal to the stenosis Pa
𝐷1 Minimum stenosis diameter m
𝐿1 Length of stenosis m
𝑃2 Flow pressure distal to the stenosis Pa

to unobstructed artery diameter given by

𝐹𝐹𝑅𝐺
△
=
𝐷1
𝐷0
. (3.1)

3.2.2 Flow-Based Model (𝐹𝐹𝑅𝑁 , 𝐹𝐹𝑅𝑃)

The flow-based FFR estimation models were modeled using simplified Navier-Stokes equation

for an incompressible Newtonian blood flow in a rigid artery of constant circular cross-section as

illustrated in Figure 3.1. The flow was assumed to be fully developed and steady. The pressure

drop Δ𝑃 across a single blunt-plug stenosis calculated as the sum of viscous and expansion losses

in the flow [87] is given by

Δ𝑃

𝜌𝑈2
0
=
𝐾𝜈

𝑅𝑒0
+ 𝐾𝑡

2

(
𝐴0
𝐴1
− 1

)
, (3.2)

𝑅𝑒0 =
𝜌𝑈0𝐷0
𝜇

, (3.3)

where 𝜌 is the density of blood, 𝜇 is the dynamic viscosity of blood, 𝐾𝜈 and 𝐾𝑡 are viscous and

expansion loss coefficients, respectively, 𝑅𝑒0 is the unobstructed Reynolds number, and 𝐴0 and 𝐴1

are the unobstructed and stenosed cross-sectional areas, respectively. The loss coefficients were

computed using empirical relationships

𝐾𝜈 = 32
0.83𝐿1 + 1.64𝐷1

𝐷0

(
𝐴0
𝐴1

)2
, (3.4)

𝐾𝑡 = 1.52, (3.5)
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given in [88]. Finally, the flow-informed FFR was defined as the ratio of distal pressure to proximal

pressure

𝐹𝐹𝑅𝑁/𝑃
△
=
𝑃2
𝑃1

=
Δ𝑃 + 𝑃1
𝑃1

, (3.6)

𝐹𝐹𝑅𝑁/𝑃 =
1
𝑃1

[(
𝐾𝜈

𝑅𝑒0
+ 𝐾𝑡

2

(
𝐴0
𝐴1
− 1

))
𝜌𝑈2

0 + 𝑃1

]
. (3.7)

In the case where Δ𝑃 was computed using patient-specific blood flow rate (𝑈0𝑃), equation (3.7)

returned 𝐹𝐹𝑅𝑃, and in the case where Δ𝑃 was computed using a constant normal blood flow rate

(𝑈0𝑁 ), equation (3.7) returned 𝐹𝐹𝑅𝑁 . 𝑃1 was calculated from a reference-normal-aortic pressure

𝑃0 by using the Hagen-Poiseuille equation for fully developed flow

𝑃1 = 𝑃0 −
32𝜇𝐿0𝑈0
𝐷0

. (3.8)

3.2.3 Computational Fluid Dynamics Model (𝐹𝐹𝑅𝐺𝑇 )

To generate reference ground truth values of FFR, we relied on high-fidelity computational

fluid dynamics simulations of Newtonian blood flow in a non-rigid artery. The simulation was

conducted using Fluent software, version 20.1.0. in 3D space with a steady-state time setup.

3.2.3.1 Geometry

We restricted our analysis to stenosed sections of the LAD artery. For the sake of simplicity,

we fixed the geometric parameters of the LAD artery (𝐷0 = 4.6𝑚𝑚) and varied the geometric

parameters 𝐿1, 𝐷1 of the stenosis across different patients.

Figure 3.2: Illustration of the three-dimensional blunt-plug arterial stenosis modeled using Ansys.
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3.2.3.2 Materials

The blood flow through the artery was assumed to be laminar, and structural and thermal

considerations were not taken into account in this study. Material properties used for blood and

arterial wall were taken from [89] and are detailed in Table 3.3.

Table 3.3: Material properties for blood and arterial walls used in the CFD simulation.

Property Value Units
Blood Artery wall

Density 1050 1075 𝑘𝑔/𝑚3

Specific heat 3490 3490 𝐾/𝑘𝑔𝐾
Thermal conductivity 0.549 0.476 𝑊/𝑚𝐾
Viscosity 0.0028 - 𝑘𝑔/𝑚𝑠
Molecular weight 28.966 - 𝑘𝑔/𝑘𝑚𝑜𝑙

3.2.3.3 Solver Settings

The computational fluid dynamics simulation was conducted using Fluent version 20.1.0 to

analyze blood flow behavior within a solid environment. The process involved solving the governing

equations for fluid flow, and the absolute velocity formulation was activated in the numerical

segment. The pressure-velocity coupling utilized the SIMPLE algorithm, and a V-Cycle solver was

implemented for the pressure variable. Discretization involved a second-order scheme for pressure

and a second-order upwind scheme for momentum equations.

The simulation assumed laminar flow and did not take into account heat transfer, solidification,

melting, species transport, pollutants, and structural effects. Relaxation factors were applied to

various simulation variables.

3.2.3.4 Boundary Conditions

Boundary conditions were assigned to different zones within the computational domain. The

arterial wall was assigned a no-slip condition with the velocity and shear stresses set to zero at the

wall. For inflow we specified the inlet velocity profile, based on a fully developed flow assumption.

The inlet velocity at position (𝑥, 𝑦) on the cross-sectional inlet plane was defined as

𝑈 (𝑥, 𝑦) = 𝑈𝑚𝑎𝑥𝑃

(
1 − 4

𝑥2 + 𝑦2

𝐷2
0

)
, (3.9)
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where 𝑈𝑚𝑎𝑥𝑃 is the patient-specific maximum value of velocity in the cross section at the mid-

line, and is calculated from patient-specific flow rate inputs as detailed in Table 3.4. The outflow

boundary was a pressure outlet with a target mass flow rate. The target output mass flow rate was

set equal to inlet mass flow rate given in Table 3.4.

Table 3.4: Range of simulated patient-specific values of blood flow through LAD artery.

Aortal blood flow LAD blood flow Mass flow
𝑄𝐴𝑜𝑟𝑡𝑎 𝑄𝐿𝐴𝐷 ≈ 𝑄𝐴𝑜𝑟𝑡𝑎/3 LAD 𝑈0𝑃 𝑈𝑚𝑎𝑥𝑃
𝑚𝐿/𝑚𝑖𝑛 𝑚3/𝑠 𝑘𝑔/𝑠 𝑚/𝑠 𝑚/𝑠

At rest 120.0 6.67e-07 7.07e-04 0.040 0.080
At stress 1 240.0 1.33e-06 1.41e-03 0.080 0.161
At stress 2 360.0 2.00e-06 2.12e-03 0.120 0.241
At stress 3 480.0 2.67e-06 2.83e-03 0.161 0.321

3.2.4 Comparative Analysis

We used the CFD solutions of blood flow in stenosed LAD arteries for 60 patients to obtain the

reference 𝐹𝐹𝑅𝐺𝑇 . For assessment of CAD risk the patients were classified into high versus low

risk of CAD by thersholding 𝐹𝐹𝑅𝐺𝑇 using

CAD risk =


High risk, 𝐹𝐹𝑅 < 0.8,

Low risk, 𝐹𝐹𝑅 ≥ 0.8.
(3.10)

To conduct a comparative analysis of different analytical FFR estimation models, we generated a

simulated population of 10,000 patients based on the original group of 60 patients by incorporating

measurement noise into the patient-specific flow and geometry parameters. This was done to

introduce realistic variations. The sampling was performed with prevalence weighting, ensuring

that the resulting population reflected a realistic patient population with a prevalence of high-risk

CAD set at 63%.

Subsequently, the three models, namely 𝐹𝐹𝑅𝐺 , 𝐹𝐹𝑅𝑃, and 𝐹𝐹𝑅𝑁 , estimated the FFR values

for each sample. Next, these FFR values were used to predict risk of CAD by classifying the

samples into high and low risk of CAD using (3.10).
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Figure 3.3: Schematic of the virtual clinical trial to quantify the added benefit of using patient-
specific blood flow rate for CAD assessment.

By comparing the classification performance of these models, we aim to demonstrate the added

benefit of incorporating patient-specific blood flow information in assessing CAD risk. Figure 3.3

shows the schematic of this comparative study.

3.3 Results

The computational fluid dynamics and the analytical model were used to simulate blood flow

and estimate FFR across the stenosis in all simulated patients. Figure 3.4 shows the velocity

profiles of the blood flow in the stenosed coronary artery after the convergence of the CFD solution.

To estimate FFR, average static pressure along different axial cross-sections was plotted, which

resulted in a static pressure profile along the center line of the stenosed artery, as depicted in Figure

3.5. This figure shows a significant drop in pressure, indicative of the presence of stenosis.

Figure 3.4: Velocity profiles of the blood flow along different cross sections in an unobstructed
artery.
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Figure 3.5: Mean static pressure values along the arterial centerline, as determined by the converged
CFD solution. The term curve length refers to distance along the length of the artery.

Figure 3.6: Flow solution of the analytical model 𝐹𝐹𝑅𝑃 implemented in Matlab; (a) shows the
stenosed geometry which is the a 2D projection of the geometry used for the CFD analysis in Figure
3.5; (b) shows the static pressure along the artery, where the red dots represent the probes at which
the proximal and distal pressures were measured for calculating FFR.
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Figure 3.6 displays the pressure solution along the stenosis artery, which was obtained using

simplified Navier-Stokes equations 𝐹𝐹𝑅𝑃. For identical geometric and flow inputs, static pressure

estimates from 𝐹𝐹𝑅𝑃 align closely with the CFD results as seen in Figures 3.5 and 3.6.

The estimated FFR values from all models were used to categorize patients into high and

low risk of CAD. Next, the performance was compared with the ground truth values. Figure

3.7 showcases the results of this comparative study. We conducted the experiments at varying

levels of measurement noise, plotting the receiver operating characteristic (ROC) curves for patient

classification into high and low CAD risk categories using the three proposed models at each noise

level.

Of all three models, the patient-specific analytical model demonstrates the best performance,

while the normal flow rate FFR model holds a slight advantage over the pure geometric model,

which lacks any information on flow dynamics. The marked difference in the area-under-the-curve

(AUC) for the patient-specific model underscores the importance of using patient-specific flow data

when determining the risk of CAD.

Figure 3.7 plots the ROC curves for the FFR estimates across varying levels of noise. The

patient-specific flow-informed 𝐹𝐹𝑅𝑃 has the best classification performance, followed by normal

flow-informed 𝐹𝐹𝑅𝑁 and then geometric 𝐹𝐹𝑅𝐺 .

3.4 Limitations and Improvements

We were able to demonstrate that adding patient-specific blood flow information improves

classification accuracy. However, this analysis was limited in its ability to quantify the importance

of patient-specific blood flow in comparison to other anatomical features. With the aforementioned

feature ranking tools at our disposal we estimated the importance of each feature separately.

In order to quantify the relative contribution of patient-specific blood flow and other geometric

inputs towards assessment of CAD risk, we performed a feature importance analysis. We con-

structed and trained a multilayered perceptron (MLP) based binary classifier that classified patients

into high versus low risk of CAD.

The classifier was trained on ground truth CAD risk labels and the following features from the

28



(a) 5% noise (b) 10 % noise

(c) 20 % noise

Figure 3.7: ROC curves for classification into high risk versus low risk for CAD, for varying levels
of noise.

simulated population: 𝑈0𝑃, 𝐷1, 𝐷0, 𝐿1, and 𝐷𝑠𝑡𝑛
△
=

𝐷1
𝐷0

. Note that the constant normal flow rate

𝑈0𝑁 was not used because it gets scaled to zero during data pre-processing. The trained model had

an average test AUC of 0.98 with 0.003 standard deviation.

(a) Confusion matrix (b) Receiver operating characteristic curve

Figure 3.8: Performance summary of the trained CAD risk classifier on test set.
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We performed feature importance analysis using permutation, input gradient, LIME, and SHAP

to quantify the relative importance of the flow and geometric variables. We also computed the

average importance generated from the four estimation methods as an additional measure of im-

portance.

Figure 3.9: Relative importance of patient-specific features for classification of CAD risk.

Table 3.5: Average feature importance across all methods.

Feature Symbol Average Importance
Length of stenosis 𝐿1 0.159
Stenosed diameter 𝐷1 0.065
Patient-specific blood flow 𝑈0𝑃 0.451
Upstream unobstructed diameter 𝐷0 0.034
Percent stenosis %𝑠𝑡𝑛 0.291

To validate the estimated importances, we used ’validation by agreement’: measuring the

concordance among the importances generated by a variety of importance estimation methods.

The level of agreement between these methods was quantified using cosine similarity and root-

mean-square Error (RMSE). Figure 3.9 shows the relative importance of the patient-specific features

returned by different methods.
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Table 3.6: Pairwise cosine similarity and RMSE between normalized input importance estimated
by permutation (PERM), input gradient (GRAD), LIME, SHAP, and average of the four methods
(AVG) for the CAD risk classifier.

Cosine Similarity
GRAD PERM LIME SHAP AVG

GRAD 1.00 0.99 0.97 1.00 1.00
PERM 0.99 1.00 0.98 1.00 1.00
LIME 0.97 0.98 1.00 0.98 0.99
SHAP 1.00 1.00 0.98 1.00 1.00
AVG 1.00 1.00 0.99 1.00 1.00

RMSE
GRAD PERM LIME SHAP AVG

GRAD 0.00 0.03 0.07 0.02 0.02
PERM 0.03 0.00 0.06 0.02 0.02
LIME 0.07 0.06 0.00 0.05 0.04
SHAP 0.02 0.02 0.05 0.00 0.01
AVG 0.02 0.02 0.04 0.01 0.00

The results in Table 3.6 demonstrate a high level of agreement among the feature importances

generated by the different methods, thereby affirming the validity of our findings. Using the

feature ranking methods we were able to successfully quantify the relative importance of patient-

specific features for classification of CAD and illustrate the impact of using various patient-specific

anatomical and flow features.

3.5 Summary

This chapter presents a medically relevant classification problem, CAD detection, and also

a virtual clinical trial to evaluate different machine learned classification models. This problem

also provides a test platform for evaluating the four conventional feature importance estimation

approaches advanced in the following chapters. Results demonstrate successful identification of

CAD risk with different models and, moreover, successful ranking of input feature importance that

aligns with expert intuition.
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CHAPTER 4

UNIFIED FRAMEWORK FOR MULTIMODAL FEATURE
IMPORTANCE

The work in this chapter contributed towards the following:

• M. Azmat, A. Alessio. ’Feature Importance Estimation Using Gradient Based Method for

Multimodal Fused Neural Networks’. Presented at IEEE NSS-MIC-RTSD, 2022.

• M. Azmat, A. Alessio. ‘Adaptable Feature Importance Estimation Framework for Fusion-

based Multimodal Deep Neural Networks’. Presented at SNMMI Annual Meeting, 2023.

4.1 Introduction

Multimodal neural networks (MNNs) are machine learning models that analyze data from

multiple modalities, such as images, text, and audio. By combining multiple sources of information,

multimodal models can often achieve higher performance than models that rely on a single modality

[90, 91, 92]. In recent years, deep learning-based multimodal NNs have shown great potential as

decision support systems by generating predictions that offer a comprehensive view, enhancing

decision-making accuracy [93, 94, 95, 96].

Popular architectures of multimodal models are based on additive approaches. That is, input or

learned features from different modalities are aggregated to make a decision such as in ensemble-

based models [97], joint training models [98], and fusion-type models [99].

Fusion-type models are the most popular choice for multimodal architecture. Depending on

where the modalities are fused, these models are classified as early-fusion, late-fusion, or joint-

fusion models. Early fusion directly concatenates raw input features before passing them to a single

neural network [100, 101]. This approach is simple but lacks explicit modeling of interactions

between modalities [102]. Late fusion uses separate models for each modality and combines their

outputs. Voting, stacking, and mixture of experts are common late fusion techniques. However,

these models often do not effectively leverage cross-modal relationships during training [103]. Joint
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Figure 4.1: Model architecture for various multimodal fusion strategies. The left diagram illustrates
early fusion, where original or extracted features are merged at the input level. The middle diagram
represents hybrid or joint fusion, where original or extracted features are combined at the input
level and the model is trained end-to-end. The right diagram shows late fusion, where predictions
are consolidated at the decision level. Used under CC 4.0 from [4].

or hybrid fusion models incorporate both early and late fusion. For example, separate encoders can

extract features from each modality, followed by fusion layers and joint training [104].

In the healthcare domain, the ability of MNNs to integrate different types of data such as

electronic health records, medical images, and genetic information provides substantial advantages.

MNNs have demonstrated their efficacy in medical image analysis, where images supply visual

context and text contributes descriptive insights. The fusion of data from MRI, PET scans,

and electronic health records can enhance brain tumor diagnosis and prognosis predictions [4].

Similarly, MNNs that incorporate fundus images, OCT scans, and clinical data have proven useful

in facilitating diabetic retinopathy screening [105]. In patient monitoring scenarios, data streams

from bedside equipment, wearable devices, and medical records can be synthesized to predict

adverse events or disease trajectories [106].
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Despite the promising advancements of MNNs, their complex architectures present unique

challenges for explainability. While techniques like attention mechanisms and feature attribution

can help explain predictions generated by unimodal neural networks, they often fall short with

architectures that integrate cross-modal interactions. The complexity introduced by heterogeneous

input types, feature blending, and high-dimensional latent spaces in multimodal networks can

further obfuscate the decision-making process.

The development of explainability methods capable of addressing the specific challenges of

multimodal learning continues to be an active research area. Recent studies have investigated both

intrinsic and post-hoc explanation techniques suited to these models. Intrinsic methods aim to

construct intrinsically interpretable model architectures. For instance, using attention scores as

a proxy for feature importance in late fusion models for detecting hate speech from multimodal

textual, cultural, and social data [107]. Post-hoc techniques based on occlusion, gradients, and

perturbations have been explored for multimodal visual question answering (VQA) models. Authors

of [108] propose perceptual score: a perturbation based metric that can be used to probe multimodal

models and understand their reliance on different input data types for VQA data.

Multimodal explainability methods for medical applications are limited and often rely on fixed,

pre-trained, modality-specific models, acting as feature extractors [109]. Alternately, they employ

naive early fusion schemes [94, 110]. These approaches fail to fully leverage the capabilities of

multimodal learning as they are heavily reliant on fixed pre-trained encoders, rather than learning

cross-modal representations from scratch. As a result, the potential for explainability is limited,

leaving interactions between modalities largely unexplored. Other multimodal implementations

use medical images from different clinical modalities such as T1-weighted and T2-weighted MRIs.

However, given the homogeneous nature of the input data structure, these approaches are not truly

multimodal [111].

In summary, the development of explainable AI for multimodal learning in medical applications

continues to pose a significant challenge. Existing methods are often restricted to single modalities

or lack a comprehensive evaluation. There is a need for new techniques that can explain interactions
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Table 4.1: Overview of Nomenclature in Multimodal Neural Networks.

Term Definition Example
Modality Refers to the different types of data sources used in a

multimodal network.
Images, Tabular data,
Text.

Input Refers to raw data that characterizes different attributes
of the patient. Inputs can originate from various
sources and have different data types.

MRI image, Age, Blood
pressure.

Features Represent the measurable properties or characteristics
of the input data that are relevant to the task at hand.
These can be obtained from inputs using models or
preprocessing techniques.

Radiomic features, One-
hot encoded categorical
features.

Deep
Features

Denote the high-level learned representations obtained
after passing the feature through multiple layers of a
neural network.

Convolutional features.

Fusion
Features

Specifically refers to deep features in the fusion layer
where features from more than one modality are being
fused.

Fusion of clinical data
and MRI: Concatenated
deep feature vector.

between modalities. Adapting these solutions to meet clinical needs and applications is a crucial

direction for the future of multimodal explainable AI in healthcare.

Our proposed solution is a framework for explaining the functionality of multimodal neural

networks. Our framework adapts concepts from unimodal feature importance and modifies them

for a multimodal model. We employ a hybrid fusion architecture where the model is trained end-

to-end, enabling us to learn task-relevant features and cross-modal relationships. Our approach

uses truly multimodal and heterogeneous input data, such as images, tabular data, and categorical

features. The details of our proposed framework are described in the following section.

4.2 Proposed Framework

Our framework relies on a hybrid fusion architecture for multimodal learning as shown in Figure

4.2. Each input uses a modality-specific module that can be treated as a feature extractor. Deep

features from the feature extractors are concatenated in the fusion layer. The fusion layer is used

as an input to a fully connected network that generates model predictions. All weights are learned

through end-to-end training. Table 4.1 gives definitions and examples of nomenclature used in this

thesis and literature in general.
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Figure 4.2: Proposed method for multimodal feature importance. A hybrid fusion architecture
supporting multimodal inputs is trained in an end-to-end manner. Features in the fusion layer are
used to estimate feature importance of the upstream inputs. The post-fusion architecture typically
consists of fully connected layers. The feature importance module can be replaced with any post-hoc
attribution method.

Since the post-fusion neural network block in Figure 4.2 takes in homogeneous fusion features

from the shared representation space and returns model predictions, we can treat it as a unimodal

model. As a result, we can modify the unimodal feature importance methods, described in chapter

2, to quantify multimodal input importance. Unlike prior use, we apply these methods at the

fusion layer to estimate the importance of fusion features, then aggregate all of the fusion feature

importances from a contributing input to estimate the importance of each input.

We will now formalize the proposed framework. All methods discussed are model-agnostic

and can be adopted for multi-class classification with minor modifications. Consider a binary

multimodal classification problem:

Θ : X −→ 𝑦 ∈ R, (4.1)

where 𝐹 represents the classifier, X =

[
𝑋1 · · · 𝑋𝑚

]𝑇
is the multimodal input consisting of 𝑚 sub

inputs 𝑋𝑖 which can have different dimensions R𝑑𝑖 depending on their modality.

Using the hybrid fusion architecture in Figure 4.2, each input is passed through a modality-
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specific feature extractor 𝑓𝑖, to generate features 𝑍𝑖 corresponding to the input.

𝑍𝑖 = 𝑓𝑖 (𝑋𝑖). (4.2)

These features are then concatenated in the fusion layer to generate fusion features Z

Z △=
[
𝑍1 · · · 𝑍𝑚

]𝑇
, (4.3)

and passed as inputs to the classifier 𝐹 to generate predictions 𝑦

𝑦 = 𝐹 (Z), (4.4)

Θ(X) = 𝐹
( [
𝑓1(𝑋1) · · · 𝑓𝑚 (𝑋𝑚)

]𝑇 )
. (4.5)

4.2.1 Multimodal Permutation Importance

Let Score(·) denote a function that returns the average classification performance score of the

classifier 𝐹 on a set of inputs. Let S𝑍 = {Z : ∀X ∈ S𝑁 } be the set of fusion features generated

from S𝑁 a multimodal input set with 𝑁 samples. The permutation importance of 𝑗 th fusion feature

is given by

PERM imp( 𝑗) = Score(S𝑍 ) −
1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

Score
(
S𝑍 ( 𝑗 ,𝑖)

)
, (4.6)

where S𝑍 ( 𝑗 ,𝑖) is the 𝑖th permutation of S𝑍 ( 𝑗 ,𝑖) in the 𝑗 th fusion feature, and 𝑁𝑝 is a hyperparameter

that controls the number of permutations. In each permutation, values of the 𝑗 th feature are ran-

domly shuffled across the set. Importance of the 𝑘th multimodal input is computed by aggregating

(averaging) the PERM importances of features from input k

MM-PERM imp(𝑘) =
∑︁

𝑗 from input 𝑘
|PERM imp( 𝑗) | . (4.7)

4.2.2 Multimodal Input Gradient Importance

The importance of input 𝑘 can be approximated by aggregating the gradient-based importances

of the fusion features from input 𝑘 , and averaged over the set S𝑍 computed as

MM-GRAD imp(𝑘) = 1
𝑁

∑︁
Z∈S𝑍





𝜕𝐹 (Z)𝜕𝑍𝑘






1
, (4.8)
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where 𝑍𝑘 is the vector of deep features from input 𝑘 . Note that the 𝑙1 norm sums up the absolute

values of gradients with respect to all fusion features coming from input 𝑘 .

4.2.3 Multimodal LIME

Let 𝐺 be a surrogate model for the classifier 𝐹 in the local neighborhood of the sample Z given

by

𝐺 (V) = W𝑇V, (4.9)

where V is sampled from a multivariate Gaussian centered at Z. To ensure that 𝐺 approximates

the actual model 𝐹 locally, we learn the weights𝑊 by minimising the weighted least squares error

L(𝑊) =
∑︁
V
𝑒−∥V−Z∥2 ∥𝐹 (V) −W𝑇V∥2, (4.10)

where W =

[
𝑊1 · · · 𝑊𝑚

]𝑇
is the vector of learned coefficients, 𝑊𝑘 represents the sub vector

containing LIME coefficients for fusion features 𝑍𝑘 extracted from input 𝑋𝑘 . Importance of the

𝑘th input is computed by aggregating values of coefficients corresponding to features from input 𝑘

given by

MM-LIME imp(𝑘) △= 1
𝑁

∑︁
Z∈S𝑍

| |𝑊𝑘 | |1. (4.11)

4.2.4 Multimodal SHAP

Shapley values use the net contribution of a feature across all combinations of feature interactions

to quantify its importance. The marginal contribution of a feature for a particular combination is

calculated as the difference in model predictions when the feature is included or excluded. To

avoid exploring all possible combinations, a Monte Carlo approximation can be used to sample 𝑁𝑠

combinations. The shapely value based importance of the 𝑗 th fusion feature is given by

𝜙 𝑗 (Z) =
1
𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝐹
(
𝑚𝑎𝑠𝑘𝑖 (Z)+ 𝑗

)
− 𝐹

(
𝑚𝑎𝑠𝑘𝑖 (Z)+ 𝑗

)
, (4.12)

where𝑚𝑎𝑠𝑘𝑖 (.)+ 𝑗 generates a masked instance by replacing random feature values (generated by 𝑖th

Monte Carlo sampling) in Z with expected values from the background dataset S𝑍 while keeping

the original value for the 𝑗 th. Whereas 𝑚𝑎𝑠𝑘𝑖 (.)− 𝑗 replaces the actual value for 𝑗 with the masked
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value from the background data set. The SHAP importance of 𝑘th multimodal input is estimated

by aggregating the shapely values of fusion features extracted from the 𝑘th input.

MM-SHAP imp(𝑘) = 1
𝑁

∑︁
Z∈S𝑍

∑︁
𝑗 from input 𝑘

��𝜙 𝑗 (Z)�� . (4.13)

4.2.5 Multimodal Average Importance

We propose an additional approach, MM-AVG imp, that takes the average of the importances

returned by input gradient, permutation, LIME, and SHAP methods. The key motivation is that each

technique approximates model behavior and defines importance slightly differently. In real-world

cases without ground truth feature importance, it may be preferable to use a more comprehensive

metric that combines multiple notions of importance, rather than relying solely on one definition.

4.3 Simulation Platform

For real-world problems, true values for feature importance are often unknown. As a solution, we

used synthetic classification tasks with predefined decision functions, which allowed us to generate

ground truth for feature importances and thereby validating our multimodal input importance

methodology. We explored a variety of synthetic classification problems using controlled decision

Table 4.2: Synthetic decision functions and the corresponding normalized ground truth input
importance.

id Decision function Ground truth feature importance
X1 X2 X3 X4

1 | |𝑍1 | |1 1 0 0 0
2 | |𝑍2 | |1 0 1 0 0
3 | |𝑍3 | |1 0 0 1 0
4 | |𝑍4 | |1 0 0 0 1
5

∑
𝑖=1,2 | |𝑍𝑖 | |1 0.5 0.5 0 0

6
∑
𝑖=3,4 | |𝑍𝑖 | |1 0 0 0.5 0.5

7
∑4
𝑖=1 | |𝑍𝑖 | |1 0.25 0.25 0.25 0.25

8 𝑒𝑍7,2 𝑙𝑛
(
𝑍1,1 + 𝑍2,1

)2 4
��� 𝑒

𝑍2,7

(𝑍1,1+𝑍1,2)
��� ��𝑒𝑍2,7 𝑙𝑛

(
𝑍1,1 + 𝑍1,2

) �� 0 0

Where, 𝑍𝑖,𝑘 is the 𝑖th fusion feature from the 𝑘th input used during ground truth feature importance generation.
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functions to generate ground truth labels and feature importances for our multimodal data. The

decision functions, detailed in Table 4.2, combined encoded multimodal inputs and noise to generate

ground truth labels and ground truth input importances.

The multimodal inputs were encoded using pre-trained, modality-specific feature extractors

tailored to each input data type. It’s important to note that these pre-trained encoders were utilized

solely for ground truth generation in our analysis. To ensure fairness and prevent leakage, we used

a different architecture in our multimodal classifier.

With the analytical form of the decision functions known, ground truth input importances were

given by absolute value of gradient of the function with respect to encoded inputs, which were then

summed and normalized to get input level importances.

This simulation environment allowed us to precisely define the importance of different inputs

and thoroughly test the approach across diverse multimodal use cases. Given that true feature

importances are not known for real-world datasets, the use of real data with synthetic decision

function allowed us to quantitatively validate the proposed methodology for estimating multimodal

feature importance against known true values.

4.3.1 Multimodal Data

We simulated a variety of synthetic multimodal data sets each containing four inputs for

a binary classification task, where X1,X2 were images and X3,X4 were tabular. For image

inputs, we used 28 × 28 pixel abdominal CT scan images from OrganA and OrganC medMNIST

dataset [112]. Whereas tabular inputs were sampled from a multivariate Gaussian distribution,

with one set of inputs drawn from a cross-correlated distribution to model dependent features.

Ground truth class labels were generated by thresholding the decision function for a class-balance

classification problem. In total, 10 different decision functions simulated 10 different train/test data

sets containing 10000 samples each.

4.3.2 Model Architecture

We used the same model architecture for all classification problems and retrained the model

from scratch each time. We constructed a CNN-based encoder to process image inputs and a
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standard scaler for tabular data, as summarized in Table 4.3. The image encoder was composed of

CNN layers with 6, 16, and 64 filters of size 3×3 and each layer was followed with max pooling

using a 2×2 window. The convolutional layers were then followed by a fully connected layer that

flattened the convolution outputs to a vector of encoded features. The post-fusion architecture was

comprised of three fully connected layers that processed the encoded images and standard-scaled

tabular inputs, providing the class probabilities.

Table 4.3: Description of inputs and encoders used for training the multimodal classifiers for
synthetic data.

Input Modality Encoder
(f)

Encoded
Dimension

X1 Abdominal CT Image CNN 1 × 10
X2 Abdominal CT Image CNN 1 × 10
X3 Independent features Tabular Standard Scaler 1 × 10
X4 Correlated features Tabular Standard Scaler 1 × 10

To guarantee the models’ reliance on the input was not influenced by the scale of fusion features,

we implemented batch normalization within the fusion layer. An important implementation detail

to note is that the normalization must occur before concatenating the features, so that the gradients

are evaluated on normalized fusion features. This ensures that scale does not impact the importance

estimates returned by the gradient method.

The models used an Adam optimizer with a fixed learning rate 1 × 10−3 for approximately 20

epochs or when the validation accuracy went over 95%. The weights were initialized using default

PyTorch initialization. Training was done on a CPU with an average epoch time of approximately

70 seconds.

4.4 Results

We used classification accuracy on the test set as a metric to assess if the learned model is a

good approximation of the ground truth decision function. This is critical because performance

of feature importance methods is limited by the performance of the learned predictive model. All

trained models achieve ≥ 92% classification accuracy on independent test data. The side by side

comparison of input importances generated by the different methods in Figure 4.3 shows that the
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importance estimates are consistent across different estimation methods and our approach is able

to identify the top contributing inputs in most cases.

Figure 4.3: Plots of normalized ground truth versus average feature importance returned by four
estimation methods plus an average value across the methods. Each subplot represents a different
test case corresponding to decision functions given in Table. 4.2. The predicted feature important
values closely estimate known ground truth and display a consistent ranking of features.
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Table 4.4 shows the percent relative error of predicted and ground truth importances estimated

by the different methods averaged over the different decision functions. The percent relative error for

all inputs averaged over all decision functions lies within 9% of the ground truth importance. These

experiments repeated for multiple decision functions and data establish the validity of our approach

for estimating importance of multimodal inputs. In Chapter 5 we demonstrate performance in real

data sets where we don’t have access to ground truth importances.

Table 4.4: Percent relative error and RMSE in feature importance estimates for the proposed
methods compared to synthetic ground truth from synthetic decisions functions employing four
multimodal inputs.

Feature
Importance

Method
Percent relative error RMSE

X1 X2 X3 X4 Mean
Gradient 8.67 7.95 6.50 6.76 7.47 0.122
Permutation 4.02 4.38 1.87 1.74 3.00 0.088
LIME 10.1 8.94 8.18 8.00 8.83 0.135
Shapely value 5.07 5.29 5.46 5.10 5.23 0.100
Average 5.84 5.71 4.87 4.98 5.35 0.084

Average method averages the importances from aforementioned methods into a single unified importance metric.

Table 4.5: Pairwise cosine similarity and RMSE between normalized input importance estimated
by proposed methods for the synthetic classification problems.

Cosine Similarity
GRAD PERM LIME SHAP AVG

GRAD 1.00 0.97 0.99 0.97 0.99
PERM 0.97 1.00 0.96 0.94 0.98
LIME 0.99 0.96 1.00 0.97 0.99
SHAP 0.97 0.94 0.97 1.00 0.98
AVG 0.99 0.98 0.99 0.98 1.00

RMSE
GRAD PERM LIME SHAP AVG

GRAD 0.00 0.13 0.04 0.10 0.04
PERM 0.13 0.00 0.15 0.15 0.10
LIME 0.04 0.15 0.00 0.11 0.06
SHAP 0.10 0.15 0.11 0.00 0.08
AVG 0.04 0.10 0.06 0.08 0.00
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The input importance methods used in our analysis rely on slightly different definitions of

importance, therefore, we want to validate that the importance values returned by these methods

are consistent and agree well with each other. To quantify this agreement, we calculated the cosine

similarity and root mean squared error (RMSE) between the normalized importances from each

method. The cosine similarity results in Table 4.5 are computed across all decision functions, with

pairwise similarities between all methods. The values show strong agreement in the normalized

importances returned by the different techniques across a variety of decision functions.

Additionally, Table 4.5 reports the RMSE of normalized importances between pairs of methods,

with the values representing RMSE across all decision functions. The RMSE values indicate

consistentcy across our methods. Despite the different theoretical formulations of the methods,

they produce aligned rankings and similar normalized importances, as evidenced by the high

similarity and low error across methods.

4.5 Summary

This chapter proposes methods to apply feature importance estimation at the deep fusion layer

and then aggregate those values to estimate input importance for multimodal neural networks.

Through controlled simulation experiments, we demonstrate effective and consistent input impor-

tance estimation using four different importance estimation techniques. These methods provide

information on the relative importance of different inputs in a multimodal model decision.
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CHAPTER 5

ESTIMATING MODEL RELIABILITY WITH MISSING DATA THROUGH
MULTIMODAL IMPORTANCE

M. Azmat, H. Fessler, G. Holste, A.Alessio, ‘Predicting Impact of Missing Modalities on Classifica-

tion Performance in Multimodal Models: A Unified Framework for Multimodal Input Importance’,

Submitted to IEEE Journal of Biomedical and Health Informatics.

5.1 Introduction

In recent years, deep learning-based MNNs have shown great potential as decision support

systems in healthcare [93, 94, 95, 96]. However, despite the substantial potential of MNNs for

medical and clinical applications, the use of multiple modalities also introduces challenges. One

leading challenge is how to handle and interpret the impact of missing or incomplete data. In medical

settings, it is common to encounter scenarios where some modalities are missing or incomplete,

either from incomplete medical records, excessive costs, or potential risks to the patient. Previous

studies have demonstrated that missing data can result in varying levels of performance reduction

for multimodal models [113, 114], but there is a lack of research on methods for predicting

the impact of missing modalities in multimodal learning. In this work we develop a method to

predict the performance degradation of multimodal deep NNs in cases of one or more missing

input modalities. Since model performance reflects its reliability, predicting how performance

declines can provide indirect insights about model reliability when inputs are missing. Predicting

performance degradation resulting from missing data could have an invaluable role in increasing

the interpretablity of MNNs. Additionally, it has the potential to inform decisions about which

modalities and tests are critical for specific patients. This could ultimately lead to a reduction in

the number of unnecessary imaging and lab procedures, potentially having a significant impact on

healthcare costs and patient safety.

To demonstrate significance of this approach, consider a MNN trained and deployed to use 5

multimodal inputs (labeled A-E) to perform classification. If this model encounters a patient with

only 4 of the inputs (A-D), it would be beneficial to know a priori the potential value of obtaining
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input (E). If the performance gain of adding input (E) is insignificant, the costs and risks of getting

that input can be avoided. Conversely, if the performance gain is significant, the collection of input

(E) can be prioritized for the patient. In short, this approach has the potential to enable clinical

decision makers to better interpret the performance of machine learned models and ultimately make

better informed decisions about any additional information needed for specific patients.

Furthermore, knowing the performance of the model in the presence of noisy or missing data

is also crucial for the change control plan portion of the FDA proposed regulatory framework for

Artificial Intelligence/Machine Learning (AI/ML)-based Software as a Medical Device (SaMD)

[32]. The change control plan is intended to ensure that changes to the software do not negatively

impact its safety, efficacy, or performance [115]. A priori knowledge of the model performance in

the presence of missing data allows for a more accurate assessment of the potential risks associated

with changes to the software and enables more accurate post-market surveillance, essential for

identifying any problems or issues that may arise after the software has been released. This can

help to ensure that the software remains safe and effective for use in clinical settings.

This work is based on the hypothesis that the performance degradation of MNNs due to a

missing input is correlated with the importance of the missing input. To predict the effects of

multimodal mean imputation on classification performance, we propose a two-step method reliant

on 1) multimodal feature importance estimation and 2) performance degradation estimation for

multimodal missing data.

Step 1, multimodal input importance: We use methods developed in Chapter 4 to estimate

importance of multimodal inputs. In the absence of ground truth importance values for real data,

we employ a suite of distinct feature importance methods and establish a consensus across these

approaches.

Step 2, performance degradation estimation for multimodal missing data: During inference

with a MNN, missing inputs are generally treated with imputation methods to fill in gaps in input

data. There are several popular methods of input imputation, including mean and median imputation

[116], K-nearest neighbors imputation [117], multiple imputation, data augmentation [118], and
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machine learning based approaches [119]. These methods can be applied to medical datasets where

information comes in various forms such as medical images, patient records, and genetic data. The

choice of imputation method depends on the specific characteristics of the dataset and the goals of

the machine learning model. While there has been substantial research in developing variations

of data imputation methods to deal with missing data, there has been limited research in trying

to predict the impact of data imputation on model performance. In this work, we implement and

evaluate a method that linearly relates performance degradation to missing input importance.

To summarize, we propose an approach to enhance the interpretability of multimodal models.

The modality-level importance estimation step provides insight into the model’s dependence on

input data. The second step leverages the importance metrics generated in the first step, utilizing

them to shed light on the model’s performance limitations and behavior in the absence of certain

inputs. Our primary contributions lie in offering a deeper understanding of the model’s decision-

making process, and quantifying its reliability under unique circumstances.

5.2 Methods

To predict classification performance in the case of missing or imputed data, we propose a

linear model that relates input importance to model performance. This assumption is based on

the hypothesis that input importance is, and should be, proportional to model performance. The

predicted classification performance, ScoreX𝑘
, when input X𝑘 is imputed (missing) for the set of

missing inputs K is

ScoreX𝑘
= ScoreΦ −

∑︁
𝑘∈K

imp(X𝑘 ) (ScoreΦ − ScoreX1:X𝑚
). (5.1)

In this relationship, imp(X𝑘 ) is the normalized aggregated importance of the 𝑘th input estimated

from one of the four methods discussed in Chapter 4. The ScoreΦ is the reference score without

input imputation and ScoreX1:X𝑚
is the baseline score when all 𝑚 modalities are imputed. It should

be stressed that the imp(X𝑘 ) terms are normalized to sum to one for a given classifier model. The

relationship in (5.1) is intuitive with the difference in the later score terms providing the range of

performance degradation that is tempered by the relative importance of the missing input. In the
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extreme when all modalities are missing, the classification performance reverts to ScoreX1:X𝑚
.

A key advantage of this approach is its ability to predict model’s performance degradation

with little added cost. For a classification problem with 𝑚 inputs and 𝑁 samples, using the linear

approximation (5.1)) we can get the estimates for model performance with O(𝑚) complexity.

Alternately, if we calculate the predictions by performing imputation on data the complexity would

be

O(𝑁)︸︷︷︸
Imputation

+O(𝑁 (𝑚𝑙1 + 𝑙2𝑙3 + ...)︸               ︷︷               ︸
Forward pass

), (5.2)

where 𝑙𝑖 is the dimension of the weights in 𝑖th layer. For machine learning models 𝑁 >> 𝑚. This

added benefit becomes more significant for large data with more inputs.

5.3 Data Collection and Pre-processing

We performed our analysis for two real world problems: 1) multimodal breast tumor classifica-

tion problem, and 2) multimodal cardiomegaly classification problem.

5.3.1 Breast Tumor Data

For the breast tumor classification study, we used fully anonymized data from an IRB-approved

study of 5,248 women who had 10,185 breast cancer examinations between July 2005 and November

2015 [96]. Each patient received a dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) exam, and a subset of patients received a mammogram (76.5%) or underwent breast tissue

biopsy (26.8%). We considered each breast as a separate case and cropped the DCE-MRI images

to store them as single breast images.

We included MRI images without artifacts that had been scored using the Breast Imaging-

Reporting and Data System (BI-RADS) and had a known 12-month post-MRI cancer status. Breasts

labeled ‘Malignant’ had been diagnosed with breast cancer, confirmed by pathology, either at the

time of examination or within 12 months after MRI. All other breasts were labeled as ‘Benign’. We

also included additional features, such as patient age, clinical indication for MRI, and background

parenchymal enhancement from MRI.

To overcome potential biases from artifacts or signal changes caused by biopsy, we transformed

48



the DCE-MRI images to 2D maximum intensity projection (MIP) images, which retain only high

contrast enhancement information and effectively remove any artifacts. The MIP images were

resized to 224 × 224 pixels, and pixel intensities in the top 0.5% were removed. The remaining

intensity values were normalized, and basic information from the images and tabular clinical

features were added to the dataset.

Based on the unimodal feature importance results from an earlier study [96], we selected a subset

of four most significant tabular inputs. Incorporating additional non-imaging features beyond this

subset did not yield any notable improvements in the model performance. Consequently, we chose

(1) Age: Patient’s age at the time of the MRI study, (2) Max intensity: maximum pixel intensity

in the MIP image, (3) Breast Density: Mammographic breast density via BI-RADS assessment

(Fibroglandular, Dense, or Extremely Dense), and (4) MRI Indication: Clinical indication for MRI

study (Screening, Diagnostic, or Known Cancer).

Finally, we created a balanced subset of the dataset consisting of 6,842 breast images and

their associated non-image features. The non-image features were normalized, and the dataset was

randomly split into three balanced sets: 4,180 cases for training (61.1%), 650 cases for validation

(9.5%), and 2,012 cases for testing (29.4%). To avoid possible data leakage, samples from the

sample patient were not shared across these sets.

5.3.2 MIMIC Data for Cardiomegaly Classification

For the cardiomegaly classification problem, we leveraged the open source, multimodal MIMIC-

IV and MIMIC-CXR datasets [120, 121, 122] available through credentialed access. The MIMIC-

CXR dataset contains over 377,110 chest radiographs, each affiliated with radiology reports, corre-

sponding to 227,835 radiographic studies involving around 65,000 unique patients. MIMIC-CXR

contains pre-generated ground truth labels for around 12 diseases derived from the radiology reports

using the CheXpert labeler [123]. We include data for studies with definite labels of cardiomegaly

present or absent.

We only used the Posterior-Anterior views of the radiographs that were preprocessed using a

center crop on the longer dimension of the image, generating a square image. This was followed by a
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resizing to 224×224 pixels and normalization to range between [−1024, 1024]. This pre-processing

was chosen to generate images that are compatible for use with the pre-trained TorchXrayVision

models [124].

Additionally, tabular demographic information matching the radiographs was extracted from

MIMIC-IV. The demographic inputs include age, gender (identified as male or female), type of

insurance (grouped as Medicaid, Medicare, or others), marital status (noted as divorced, mar-

ried, single, or widowed), and ethnicity (categorized into American Indian/Alaska Native, Asian,

Black/African American, Hispanic/Latino, White, and other demographics).

The final multimodal dataset for cardiomegaly classification contained 13,786 images of 8,940

unique patients, each matched with corresponding demographic data. This dataset was then

partitioned into training, testing, and validation sets using patient identifiers to prevent data leakage.

Each set had approximately 65% prevalence of cardiomegaly.

5.4 Model Setup and Training

5.4.1 Multimodal Breast Tumor Classifier

Figure 5.1 provides an overview of the architecture for the multimodal breast cancer classifica-

tion model. For the image encoder, ResNet50 was adapted to accommodate a single-channel input.

The classification head was removed, an average pooling followed by a fully connected layer was

added after layer 4 bottleneck 2 in the PyTorch implementation of ResNet50, effectively encoding

the 2048 convolution features from the image to 10 deep features for fusion. As discussed in [96],

the choice of encoded dimension is arbitrary and has no significant impact on model performance.

For the tabular inputs we use standard scaling and one-hot-encoding. Table 5.1 shows an overview

of the input modalities and their corresponding encoding schemes.

5.4.2 Multimodal Cardiomegaly Classifier

For the cardiomegaly classifier, we modified the pre-trained Densenet121-res224-chex (DenseNet

224×224 model trained on CheXpert dataset) to generate deep features for the image modality. The

1024-dimensional vector from the final dense-layer was passed through a fully connected layer that
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Figure 5.1: Architecture of the hybrid fusion model used for classifying breast MRI’s using
multimodal data. Resnet50 is used to extract fusion features from images while tabular inputs are
pre-processed using standard scalar and one hot encoding. All weights are learnable and the model
is trained end-to-end.

Table 5.1: Description of Inputs used for training the multimodal breast tumor classifier and the
corresponding encoding schemes.

Input Modality Encoder
(f)

Encoded
Dimension

X1 MRI Image ResNet50 1 × 10
X2 Age Tabular Standard Scaler 1 × 1
X3 Max Intensity Tabular Standard Scaler 1 × 1
X4 Breast Density Tabular One-hot-encoder 1 × 3
X5 MRI Indication Tabular One-hot-encoder 1 × 3

returned a 10-dimensional encoded image vector. The choice of encoding dimension was arbitrary

and did not impact model performance significantly. Weights of the pre-trained DenseNet were

frozen, whereas weights for last fully connected layer were learned during training of the multimodal

classifier. Table 5.2 lists model inputs and their corresponding encoding methodologies.

Table 5.2: Description of Inputs used for training the multimodal cardiomegaly classifier and the
corresponding encoding schemes.

Input Modality Encoder
(f)

Encoded
Dimension

X1 Radiograph Image DenseNet 1 × 10
X2 Age Tabular Standard Scaler 1 × 1
X3 Gender Tabular One-hot-encoder 1 × 2
X4 Insurance Tabular One-hot-encoder 1 × 3
X5 Marital Status Tabular One-hot-encoder 1 × 4
X6 Ethnicity Tabular One-hot-encoder 1 × 6
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The breast tumor and cardiomegaly models were trained using the Adam optimizer [125], with

a fixed learning rate of 1×10−4 and without any learning rate scheduling. The models were trained

for a total of approximately 200 epochs or until the validation area under the curve (AUC) failed to

demonstrate any improvement in the last 20 epochs, whichever occurred first. The PyTorch [126]

default settings were utilized for model weight initialization except for where pre-trained weights

were used. The training process was executed on a single NVIDIA Tesla V100S GPU, and the

average epoch time was approximately 17 seconds for the breast tumor classifier and approximately

40 seconds for the cardiomegaly classifier. Weights from the epoch with the highest validation

AUC were selected and used in further analysis of the trained model.

5.5 Results

5.5.1 Breast Tumor Classification

The trained breast tumor classification model has an AUC of 0.868 on a hold-out test dataset.

Model sensitivity and specificity on the test dataset are 0.795 and 0.796 respectively, using the

optimal threshold of 0.52. This performance is summarized in Figure 5.2. Figure 5.3 displays

correctly and incorrectly classified samples from the test set and provides examples of a true

positive, true negative, false positive, and false negative instance.

(a) Confusion matrix (b) Receiver operating characteristic curve

Figure 5.2: Performance of the the trained breast tumor classifier on test set.

Figure 5.4 presents the input importance estimates. In the absence of ground truth feature

importance, we validated our results by assessing the agreement between the different importance
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(a) True positive (b) True Negative (c) False Positive (d) False Negative

Figure 5.3: Examples of different classification outcomes of the trained breast tumor classifier on
the test set.

methods. Table 5.3 displays the cosine similarity and RMSE between methods. The average (AVG)

calculates the mean importance across all these methods and renormalizes the features to sum to

one. The results demonstrate a high level of agreement, with cosine similarity ≥ 0.97 and RMSE

≤ 0.11, among the importance values generated by the different estimation methods.

Figure 5.4: Comparison of normalized feature importance results and associated feature ranks
using gradient, permutation, LIME, and shapely values based methods for the multimodal breast
tumor classifier. AVG reports the mean importance across the four methods.

Another approach to validate these importance estimates is via expert opinion. For breast

tumor classification, the importance estimation aligns well with expert intuition, as majority of the

tumor-related information is contained in the MRI image. Furthermore, the MRI indication, which
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Table 5.3: Pairwise cosine similarity and RMSE between normalized input importance estimated
by proposed methods for the multimodal breast tumor classifier.

Cosine Similarity
GRAD PERM LIME SHAP AVG

GRAD 1.00 0.97 0.99 0.99 1.00
PERM 0.97 1.00 0.99 0.97 0.99
LIME 0.99 0.99 1.00 0.99 1.00
SHAP 0.99 0.97 0.99 1.00 0.99
AVG 1.00 0.99 1.00 0.99 1.00

RMSE
GRAD PERM LIME SHAP AVG

GRAD 0.00 0.06 0.03 0.07 0.02
PERM 0.06 0.00 0.04 0.11 0.05
LIME 0.03 0.04 0.00 0.10 0.03
SHAP 0.07 0.11 0.10 0.00 0.07
AVG 0.02 0.05 0.03 0.07 0.00

includes a ‘known cancer’ category, can provide significant insights to aid in the classification

decision.

Table 5.4: Predicted performance of multimodal breast tumor classifier in the case of a single
missing input.

Imputed AVG True
Accuracy

Predicted
Accuracy

Input importance Mean STD Mean STD RMSE
MRI 0.368 0.708 0.010 0.685 0.007 0.025
Age 0.068 0.790 0.009 0.772 0.008 0.018
Max Intensity 0.050 0.793 0.009 0.778 0.008 0.016
Breast Density 0.069 0.792 0.009 0.772 0.008 0.020
Indication 0.446 0.724 0.010 0.662 0.007 0.063

Equation (5.1) is used to predict the performance using AVG importance of imputed inputs.

Once we had estimates for input importance of our model, we then used them to predict the

model’s performance for missing inputs. For non-categorical data, missing inputs were replaced

with their mean value, while for categorical data, the most frequent category from the training set

was used. We used accuracy as the Score(.) function in (5.1) during evaluation. For missing inputs,

the imputation was done at the fusion layer. Non-categorical inputs were imputed with the mean

value, whereas categorical inputs were replaced with the most frequent category value. To assess
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the effectiveness of our approach, we measured the predicted accuracy using (5.1) and compared

it with the computed accuracy value after imputation, referred to as true accuracy. We used 200

bootstrap realizations of the test set to obtain the mean and standard deviation of the prediction and

true accuracy.

Table 5.4 presents the mean predicted and mean experimental accuracies for cases of test data

with one missing input using the AVG estimated importances in (5.1). For the case of a single

missing input, our proposed linear relationship is able to predict the model performance within less

than 3% for most features and within 7% when Indication was missing.

The analysis was then applied to cases where more than one input was absent. We designed

experiments that encompassed all possible permutations of present and absent inputs. For each

experiment, we predicted the missing input model performance using our proposed linear relation-

ship in (5.1), and compared the predicted performance with the actual performance on a test set,

where the corresponding inputs were replaced with their mean values. Figure 5.5 illustrates these

comparisons, contrasting the predictive and experimental missing input model performance for four

distinct importance estimation methods. Each datum point on the plot represents an experiment

with a unique combination of present and absent inputs.

Figure 5.6 shows the proportionality between AVG importance of missing inputs and degrada-

tion in model performance, supporting our hypothesis. We show results from our proposed linear

relationship (5.1) and the best linear unbiased estimator (BLUE) [127] of the true drop in model

accuracy. Our proposed linear relationship predicts that for missing inputs with cumulative impor-

tance of 0.1 normalized units (n.u.) the model’s accuracy decreases from its reference value by

2.89%. This is similar to the BLUE prediction of a 3.22% drop in model accuracy. In approximately

70% of the experiments, the prediction of performance loss due to missing input falls within a 5%

error margin as detailed in Table 5.5. For all experiments the predicted drop in model performance

is highly correlated (𝜌=0.92) with the missing input importance.
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Figure 5.5: Comparison of predicted and true breast tumor classification performance reduction
as a function of missing input importance using gradient (GRAD), permutation (PERM), LIME,
and shapely values (SHAP). The Pearson correlation coefficient, 𝜌, is between the model test
performance and aggregated importance of missing inputs.

Figure 5.6: Breast tumor classification performance reduction as a function of missing input
importance. This presents predictions, "Pred", using AVG method. BLUE represents the best
linear fit of the true drop in model test accuracy. The Pearson correlation coefficient, 𝜌, between
the drop in model test performance and the sum importance of missing inputs.
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Table 5.5: Predicted and true performance of multimodal breast tumor classifier in the case of
multiple missing input. Each row corresponds to a different experiment with a unique subset of
missing inputs. The predicted accuracy is obtained using (5.1), and the experimental accuracy is
the computed accuracy on an imputed test set.

Imputed input Aggregated True
Accuracy

Predicted
Accuracy

Img. Age MIP B.Den. Ind. Importance Mean STD Mean STD RMSE
0.000 0.792 0.009 0.792 0.009 0.004

✗ 0.446 0.725 0.010 0.666 0.006 0.060
✗ 0.069 0.792 0.009 0.772 0.008 0.020
✗ ✗ 0.514 0.724 0.010 0.645 0.008 0.080

✗ 0.050 0.790 0.009 0.778 0.008 0.014
✗ ✗ 0.496 0.725 0.010 0.647 0.007 0.078
✗ ✗ 0.119 0.791 0.009 0.758 0.008 0.034
✗ ✗ ✗ 0.565 0.725 0.010 0.627 0.007 0.098

✗ 0.068 0.789 0.009 0.772 0.009 0.018
✗ ✗ 0.513 0.716 0.010 0.646 0.008 0.070
✗ ✗ 0.136 0.790 0.009 0.753 0.008 0.037
✗ ✗ ✗ 0.582 0.717 0.010 0.626 0.007 0.092
✗ ✗ 0.118 0.781 0.009 0.758 0.008 0.025
✗ ✗ ✗ 0.564 0.715 0.010 0.628 0.007 0.087
✗ ✗ ✗ 0.186 0.782 0.010 0.737 0.008 0.045
✗ ✗ ✗ ✗ 0.632 0.716 0.011 0.609 0.008 0.107

✗ 0.368 0.689 0.010 0.689 0.007 0.011
✗ ✗ 0.814 0.549 0.011 0.559 0.009 0.015
✗ ✗ 0.436 0.689 0.011 0.669 0.007 0.023
✗ ✗ ✗ 0.882 0.549 0.011 0.540 0.010 0.015
✗ ✗ 0.418 0.708 0.010 0.669 0.007 0.040
✗ ✗ ✗ 0.864 0.540 0.011 0.539 0.010 0.009
✗ ✗ ✗ 0.487 0.709 0.010 0.650 0.007 0.060
✗ ✗ ✗ ✗ 0.932 0.540 0.011 0.520 0.011 0.022
✗ ✗ 0.435 0.723 0.013 0.667 0.007 0.057
✗ ✗ ✗ 0.881 0.506 0.010 0.540 0.009 0.034
✗ ✗ ✗ 0.504 0.724 0.012 0.648 0.007 0.077
✗ ✗ ✗ ✗ 0.950 0.506 0.010 0.520 0.010 0.015
✗ ✗ ✗ 0.486 0.728 0.009 0.650 0.007 0.079
✗ ✗ ✗ ✗ 0.931 0.501 0.011 0.521 0.010 0.020
✗ ✗ ✗ ✗ 0.554 0.731 0.010 0.631 0.007 0.100
✗ ✗ ✗ ✗ ✗ 1.000 0.499 0.011 0.499 0.011 0.000

Key: Img=MRI image, MIP=MIP maximum intensity, B.Den=Breast density, Ind=Indication.
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5.5.2 Cardiomegaly Classification

The trained model for cardiomegaly classification model shows good classification performance

with an AUC of 0.896, a sensitivity of 0.84, and specificity of 0.83 on a hold-out test dataset, with

an optimal threshold of 0.32. Figure 5.7 illustrates model performance on test data and Figure 5.8

shows sample images corresponding to classification outcomes of true positive, true negative, false

positive, and false negative for the trained cardiomegaly classifier from the test set.

(a) Confusion matrix (b) Receiver operating characteristic curve

Figure 5.7: Performance of the the trained cardiomegaly classifier on test set.

For the input importance estimates in Figure 5.9, the cosine similarity and RMSE values

between the importance estimation methods are shown in Tables 5.6, demonstrating a strong

consensus among the importance values estimated by the four distinct methods.

The importance estimation, validated by agreement, also aligns well with our intuition. The

majority of the information regarding heart size is present in the radiographs, and while there

(a) True positive (b) True Negative (c) False Positive (d) False Negative

Figure 5.8: Examples of different classification outcomes of the trained cardiomegaly classifier on
the test set.
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Figure 5.9: Comparison of normalized feature importance results and associated feature ranks using
gradient, permutation, LIME, and shapely values based methods for the multimodal cardiomegaly
classifier. AVG reports the mean importance across the four methods.

Table 5.6: Pairwise Cosine similarity and RMSE between normalized input importances estimated
by different methods for the multimodal cardiomegaly classifier.

Cosine Similarity
GRAD PERM LIME SHAP AVG

GRAD 1.00 1.00 1.00 1.00 1.00
PERM 1.00 1.00 0.99 1.00 1.00
LIME 1.00 0.99 1.00 0.99 1.00
SHAP 1.00 1.00 0.99 1.00 1.00
AVG 1.00 1.00 1.00 1.00 1.00

RMSE
GRAD PERM LIME SHAP AVG

GRAD 0.00 0.06 0.01 0.06 0.03
PERM 0.06 0.00 0.07 0.01 0.03
LIME 0.01 0.07 0.00 0.08 0.04
SHAP 0.06 0.01 0.08 0.00 0.04
AVG 0.03 0.03 0.04 0.04 0.00
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is not a causal relationship, certain ethnicities have been demonstrated to have elevated risks

for cardiovascular diseases and hypertension [128, 129], which can be primary contributors to

cardiomegaly [130, 131]. Consequently, these findings not only offer us an understanding of

the inputs on which the models depend, but also help us calibrate our confidence in the model’s

prediction based on domain knowledge.

Next, we used the estimated importances to provide an additional layer of interpretability by

understanding the model limitations under missing inputs. Table 5.7 illustrates the comparison

between the actual and predicted model performance in cases with a single missing input. The

predicted missing input model performance lies within 3% of the true value.

Table 5.7: Predicted performance of multimodal cardiomegaly classifier in the case of a single
missing input.

Imputed AVG True
Accuracy

Predicted
Accuracy

Input importance Mean STD Mean STD RMSE
Radiograph 0.836 0.646 0.004 0.671 0.004 0.025
Age 0.028 0.832 0.004 0.827 0.004 0.005
Gender 0.011 0.834 0.004 0.831 0.004 0.003
Insurance 0.018 0.831 0.004 0.829 0.004 0.003
Marital st. 0.033 0.834 0.004 0.827 0.004 0.007
Ethnicity 0.078 0.829 0.004 0.818 0.003 0.011

Equation (5.1) is used to predict the performance using AVG importance of imputed inputs.

For cases with multiple missing inputs, the experiments, each of which is represented by a

point on the plots in Figure 5.10, generate model performance predictions that lie within 5% error

margin. Comparison of predicted performance drop from (5.1) with predicted performance drop

from BLUE of the true drop in model accuracy are illustrated in Figure 5.11. Equation (5.1)

predicts that for missing inputs with cumulative importance of 0.1 normalized units (n.u.) the

accuracy of cardiomegaly classifier will drop from its reference value by 1.93%. Compared to

the BLUE prediction that for missing inputs with cumulative importance of 0.1 n.u. the models

accuracy will drop from its reference value by 2.24%. In contrast to the breast tumor classification,

the cardiomegaly dataset contains a single dominant input that governs the primary trend in model
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performance, resulting in a high correlation between input importance and true missing input model

performance. However, upon further examination of the two clusters of experiments in Figure 5.11

(those with and without radiographs), we find that the importance remains highly correlated with

model performance even within the clusters. This further demonstrates that performance reduction

is correlated with input importance.

Figure 5.10: Comparison of predicted and true cardiomegaly classification performance reduction
as a function of missing input importance in the case of one or more missing inputs using proposed
methods. 𝜌 is the Pearson correlation coefficient between the model test performance and aggre-
gated importance of missing inputs.
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Figure 5.11: Cardiomegaly classification performance reduction as a function of missing input
importance. Presents predictions, "Pred", using AVG importances. BLUE represents the best
linear fit of the true drop in model test accuracy. 𝜌 is the Pearson correlation coefficient between
the drop in model test performance and sum importance of missing inputs.

5.6 Conclusion

In this study, we introduced a unified framework for estimating the importance of multimodal

inputs in fusion-based multimodal neural networks. Previous interpretability work involving mul-

timodal data had employed fixed feature extractors to obtain deep features from each modality

[94, 132]. A novelty of our approach lay in the fact that the fusion model, including the feature

extractors, was trained end-to-end for a specific task. Consequently, the features extracted were

those fine-tuned, likely most pertinent, to a particular classification task.

Our unified multimodal input importance framework was agnostic to the type of estimation

methods used, allowing us to utilize a range of importance estimation methods. Another strength

of our proposed framework was that the importance estimates did not rely on the input data

dimension, allowing us to compare, for example, the importance of a 224 × 224 image input to a

1 × 3 categorical input.

We addressed the challenge of validating the importance estimates by testing the framework

in a controlled environment with synthetic data, custom decision functions, and complete control

over the ground truth feature importance values. Our framework was then applied to provide

insights into the decision-making logic of two multimodal classifiers trained to classify breast

tumors and cardiomegaly from multimodal data. With this real data, we did not have ground truth
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Table 5.8: Predicted and true performance of multimodal cardiomegaly classifier in the case of
multiple missing input. Each row corresponds to a different experiment with a unique subset of
missing inputs. The predicted accuracy is obtained using (5.1), and the experimental accuracy is
the computed accuracy on an imputed test set.

Imputed input Agg. True
Accuracy

Predicted
Accuracy

Img. Age Gen. Ins. Mar. Eth. Imp. Mean STD Mean STD RMSE
0.000 0.833 0.004 0.833 0.004 0.001

✗ 0.078 0.829 0.004 0.817 0.003 0.011
✗ 0.033 0.834 0.004 0.827 0.004 0.008
✗ ✗ 0.111 0.830 0.004 0.811 0.003 0.019

✗ 0.018 0.831 0.004 0.829 0.004 0.003
✗ ✗ 0.096 0.828 0.004 0.814 0.004 0.013
✗ ✗ 0.051 0.833 0.004 0.823 0.004 0.010
✗ ✗ ✗ 0.129 0.829 0.003 0.808 0.003 0.021

✗ 0.011 0.833 0.004 0.831 0.004 0.003
✗ ✗ 0.089 0.829 0.004 0.816 0.003 0.014
✗ ✗ 0.044 0.834 0.004 0.824 0.004 0.010
✗ ✗ ✗ 0.122 0.830 0.004 0.809 0.003 0.021
✗ ✗ 0.029 0.832 0.004 0.827 0.004 0.005
✗ ✗ ✗ 0.107 0.828 0.004 0.812 0.003 0.016
✗ ✗ ✗ 0.062 0.833 0.004 0.821 0.003 0.013

✗ ✗ ✗ ✗ ✗ 0.140 0.829 0.004 0.806 0.004 0.023
✗ 0.028 0.832 0.004 0.827 0.004 0.005
✗ ✗ 0.106 0.829 0.004 0.813 0.003 0.016
✗ ✗ 0.061 0.833 0.004 0.821 0.003 0.012
✗ ✗ ✗ 0.139 0.830 0.004 0.806 0.003 0.024
✗ ✗ 0.046 0.832 0.004 0.824 0.004 0.008
✗ ✗ ✗ 0.124 0.827 0.004 0.809 0.003 0.019
✗ ✗ ✗ 0.079 0.833 0.003 0.818 0.003 0.015
✗ ✗ ✗ ✗ 0.157 0.828 0.004 0.803 0.003 0.026
✗ ✗ 0.039 0.833 0.004 0.825 0.004 0.008
✗ ✗ ✗ 0.117 0.829 0.004 0.810 0.004 0.019
✗ ✗ ✗ 0.072 0.834 0.004 0.819 0.004 0.015
✗ ✗ ✗ ✗ 0.150 0.830 0.003 0.804 0.003 0.026
✗ ✗ ✗ 0.057 0.832 0.004 0.821 0.004 0.010
✗ ✗ ✗ ✗ 0.135 0.827 0.004 0.806 0.003 0.021
✗ ✗ ✗ ✗ 0.090 0.832 0.004 0.815 0.004 0.017
✗ ✗ ✗ ✗ ✗ 0.168 0.830 0.004 0.801 0.003 0.029

✗ 0.836 0.646 0.004 0.671 0.004 0.025
✗ ✗ 0.913 0.646 0.004 0.657 0.005 0.011
✗ ✗ 0.869 0.642 0.005 0.665 0.004 0.023
✗ ✗ ✗ 0.947 0.642 0.004 0.649 0.005 0.007
✗ ✗ 0.854 0.647 0.004 0.668 0.004 0.021
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Table 5.8 (cont’d.).

Imputed input Agg. True
Accuracy

Predicted
Accuracy

Img. Age Gen. Ins. Mar. Eth. Imp. Mean STD Mean STD RMSE
✗ ✗ ✗ 0.932 0.646 0.004 0.652 0.005 0.007
✗ ✗ ✗ 0.887 0.642 0.004 0.661 0.004 0.019
✗ ✗ ✗ ✗ 0.965 0.643 0.005 0.646 0.005 0.004
✗ ✗ 0.846 0.645 0.004 0.669 0.004 0.024
✗ ✗ ✗ 0.924 0.645 0.004 0.654 0.005 0.009
✗ ✗ ✗ 0.880 0.642 0.004 0.663 0.004 0.021
✗ ✗ ✗ ✗ 0.957 0.642 0.004 0.648 0.005 0.006
✗ ✗ ✗ 0.864 0.645 0.004 0.665 0.004 0.020
✗ ✗ ✗ ✗ 0.942 0.645 0.004 0.650 0.005 0.005
✗ ✗ ✗ ✗ 0.898 0.642 0.004 0.660 0.004 0.018
✗ ✗ ✗ ✗ ✗ 0.975 0.642 0.004 0.644 0.005 0.003
✗ ✗ 0.864 0.639 0.005 0.665 0.004 0.026
✗ ✗ ✗ 0.942 0.640 0.005 0.651 0.005 0.011
✗ ✗ ✗ 0.897 0.640 0.005 0.660 0.004 0.020
✗ ✗ ✗ ✗ 0.975 0.640 0.005 0.645 0.005 0.005
✗ ✗ ✗ 0.882 0.639 0.005 0.662 0.004 0.023
✗ ✗ ✗ ✗ 0.960 0.640 0.005 0.648 0.005 0.008
✗ ✗ ✗ ✗ 0.915 0.640 0.005 0.656 0.004 0.016
✗ ✗ ✗ ✗ ✗ 0.993 0.640 0.005 0.641 0.005 0.001
✗ ✗ ✗ 0.875 0.640 0.005 0.664 0.004 0.024
✗ ✗ ✗ ✗ 0.953 0.639 0.005 0.649 0.004 0.009
✗ ✗ ✗ ✗ 0.908 0.639 0.005 0.657 0.004 0.018
✗ ✗ ✗ ✗ ✗ 0.986 0.639 0.005 0.642 0.005 0.003
✗ ✗ ✗ ✗ 0.893 0.640 0.004 0.660 0.004 0.021
✗ ✗ ✗ ✗ ✗ 0.971 0.639 0.005 0.645 0.005 0.006
✗ ✗ ✗ ✗ ✗ 0.926 0.640 0.005 0.654 0.005 0.014
✗ ✗ ✗ ✗ ✗ ✗ 1.000 0.639 0.005 0.638 0.005 0.001

Table continued. Key : Agg. Imp.=Aggregrated Importance, Img=Chest radiograph, Gen=Gender, Ins=Insurance, Mar=Marital
status, Eth=Ethnicity

feature importance knowledge and therefore validated our importance estimates by quantifying

the agreement across estimates returned by different methods. Furthermore, the estimated AVG

importances aligned well with expert intuition and passed the validation by agreement test.

We further enhanced the model’s interpretability by using the estimated importances to predict

the model’s performance in the special case of missing inputs. Our goal was to provide non-

technical users with an understanding of the model’s prediction reliability in terms of accuracy.
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We hypothesized that the degradation in model performance in the absence of certain inputs was

proportional to the importance of those inputs. We designed numerous experiments to test how

closely our prediction of the model performance aligned with the true model performance in the

absence of inputs. Our results across two different multimodal datasets and two different fusion-

based classifiers showed a high correlation between the importance of missing inputs and model

performance, supporting our hypothesis. A limitation of our approach was the use of a linear

relationship between input importance and missing input model performance, which might not

adequately capture the combined importance of inputs. Despite this limitation, we consistently ob-

served a high correlation between input importance and missing input model performance. Future

work could explore different non-linear relationships. This study represented a step towards pro-

viding an additional layer of understanding of the model’s limitations and operational capabilities.

It also aided in answering questions related to cost-benefit analysis, such as the value of acquiring

additional input data on a patient when the performance degradation might be minimal.
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CHAPTER 6

TOWARDS SAMPLE-LEVEL RELIABILITY ESTIMATION

6.1 Introduction

In Chapter 5, we discussed the use of model accuracy as a human-interpretable measure of model

reliability. However, this analysis was conducted on set-level, wherein these metrics were estimated

across the entire validation dataset, failing to offer individual sample-specific insights. Traditional

deep network designs yield sample-specific predictions without accompanying reliability measures.

Ideally, we would like to obtain sample-specific reliability estimates to quantify confidence in each

individual prediction.

Various approaches have been proposed to obtain sample-wise measures of prediction reliability

that align with accuracy. Bayesian neural networks induce probabilistic outputs by placing prior

distributions over network weights and propagating this uncertainty through to predictions [133].

Dropout sampling at test time enables uncertainty approximation through Monte Carlo simulation

by running predictions on multiple dropout masked versions of the model [134]. Conformal

prediction provides a distribution-free framework to derive prediction intervals guaranteed to

contain new samples at a specified confidence level based on a calibration set [135].

Existing measures of sample-level reliability often rely on specific architectural modifications

in the model or generate variance estimates that are less intuitive and interpretable, especially for

non-experts. Therefore, in this analysis, we aim to develop a sample-level reliability metric that

is straightforward and understandable. To this end, we use local accuracy as an interpretable and

tangible measure of reliability at the sample level. Local accuracy simply conveys the empirical

performance of the model in the vicinity of a given sample, providing an accessible reliability

quantification.

The methods discussed in this chapter aim to map properties of the input sample to local accuracy

through calibration techniques. The key insight is that model performance depends heavily on the

data sample and can vary greatly across different regions of the input space. While performance

metrics like accuracy, AUC, and cross-entropy provide a set-level average view, they fail to account
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for this variability. A model may produce reliable predictions in some areas of the input space

while faltering in others. Intuitively, if a model makes accurate predictions in the region around a

given sample, then it is likely to be accurate on that individual sample as well.

In this analysis we generate reliability estimates using local accuracy about a sample, that are

transparent and meaningful to all users. We analyze model performance across different sample

populations segmented based on sample properties. Calibrating these sample-specific attributes

could produce granular reliability estimates tied to local accuracy. In summary, while the set-

level performance prediction offers useful insights into model reliability, sample-specific analysis

is needed. We aim to transition from set-level reliability to sample-level reliability which could

increase model transparency, evaluation rigor, and safety for real-world deep learning systems.

6.2 Methods

We defined the reliability of a model’s prediction for a single sample as the local accuracy

of the model in a small neighborhood around that sample. The key intuition being that samples

surrounded by other samples on which the model performs accurately are likely to also be classified

correctly. To construct neighborhoods, we used samples that were similar to the target sample based

on a pre-defined property of the input for example distance in the feature space, cosine similarity,

or predicted probability. We then took samples within a radius threshold on that metric to form

the neighborhood. By averaging model accuracy on those neighborhood samples, we generated a

local reliability estimate for the target sample.

Through this process, we constructed a reliability calibration curve (RCC) that relates the pre-

defined sample property to local accuracy offering a nuanced insight into model performance by

providing fine-grained reliability estimates for individual samples based on model performance

in local neighborhoods. It is important to note that these RCCs can be constructed using any

performance metric. However, we specifically chose accuracy due to its intuitive and accessible

nature, making it easily interpretable not just for experts, but for laypeople as well.

We explored four main approaches for constructing RCCs, each depending on different proper-

ties of the input sample.

67



1. Mahalanobis distance: we calculated the Mahalanobis distance of each sample from the

distribution of the training set in fusion feature space. The Mahalanobis-based RCC maps

this distance to local accuracy.

2. Cosine similarity: we computed the cosine similarity between the fusion features for each

sample and the training set. The cosine similarity-based RCC maps this similarity metric to

local accuracy.

3. UMAP dimensionality reduction: we used the Uniform Manifold Approximation and Pro-

jection (UMAP) method, where the encoded features of the multimodal input from the fusion

layer were projected down to low dimensional space. The resultant calibration curve maps

distance of the sample from the training data in the UMAP-reduced feature space to local

accuracy.

4. Prediction probabilities: we used the model’s prediction probabilities to construct neighbor-

hoods and build a RCC that maps the prediction probability to local accuracy.

The RCCs were learned using validation data by regressing local accuracy against the chosen

sample property across varied neighborhood sizes. Their performance was evaluated using a hold

out test set. We evaluated the RCCs on the following criteria:

• Granularity: The curve should account for a wide range of local accuracy values, providing

more fine-grained reliability estimates.

• Convergence: As neighborhood size increases, the predicted local accuracy should approach

the global accuracy on the full validation set.

• Generalization: We quantified generalization via the RMSE between the predicted local

accuracy from the RCC and the true local accuracy on a holdout test set.
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6.2.1 Mahalanobis Distance-based Reliability Calibration Curve (M-RCC)

Mahalanobis distance is a multivariate generalization of measuring the number of standard

deviations a point is away from the mean of a distribution [136]. It equals zero when a point lies at

the distribution mean and grows as the point moves away along the principal component axes.

Mahalanobis distance has been used to successfully identify out-of-distribution or distribution-

shifted samples by quantifying distance in the input or feature space [137]. The key intuition is that

larger Mahalanobis distances indicate dissimilarity from the training distribution.

Continuing with the notation introduced in Chapter 4, we define the Mahalanobis distance of a

test sample Z from the set of encoded multimodal training inputs S𝑍 , in the fusion layer, as

𝐷𝑀 (Z,S𝑍 ) =
√︃
(Z − Z)𝑇Σ−1

𝑍
(Z − Z), (6.1)

where Z is the mean of samples in the set S𝑍 given by

Z =
1
𝑁

∑︁
Z∈S𝑍

Z, (6.2)

and Σ𝑍 is the covariance matrix for samples in the set S𝑍 given by

Σ𝑍 =
1

𝑁 − 1

∑︁
Z∈S𝑍

(Z − Z) (Z − Z)𝑇 . (6.3)

We computed the Mahalanobis distance between the multimodal fusion features of a test sample

and the distribution of the training set fusion features providing a sample-specific measure of how

well the model’s internal representation aligns with the training data. We used these distances to

construct neighborhoods around the test sample for estimating local model accuracy.

6.2.2 Cosine Similarity-based Reliability Calibration Curve (C-RCC)

The cosine similarity between a test sample Z and the mean Z of the encoded training set S𝑍 ,

in the fusion layer, is given by:

𝐷𝐶 (Z,S𝑍 ) =
Z · Z
∥Z∥2∥Z∥2

, (6.4)

where the numerator denotes the dot product between test sample and mean of the training set and

∥.∥2 denotes the 2-norm of a vector.
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We used the cosine similarity between the input sample at inference time and the training data

representations in the fusion layer of the neural network. The basic motivation being that test points

located in sparse regions of the input space, far from the bulk of training data, will likely yield less

reliable predictions [138]. This indicates that a functional relationship exists between the sample

similarity and local model performance. The cosine similarity was therefore used to build C-RCC.

6.2.3 UMAP-based Reliability Calibration Curve (U-RCC)

UMAP is a non-linear dimensionality reduction method [139]. Its goal is to find a low-

dimensional embedding of the data that best preserves the global topological structure of the

high-dimensional input data. We define the sets

S𝑍 : set of high-dimensional input data points,

S𝑧 : set of low-dimensional embeddings.

UMAP finds a low-dimensional representation z ∈ S𝑧 of the high-dimensional data Z ∈ S𝑍 that

preserves global data structure. This is achieved by first constructing a graph in the high-dimensional

space. For each sample, the nearest neighbors are computed and weights are assigned to the graph

edges connecting the sample and its neighbors. Weights 𝑤ℎ𝑖𝑔ℎ
𝑖 𝑗

between two samples Z𝑖 and Z 𝑗 are

calculated as

𝑤
ℎ𝑖𝑔ℎ

𝑖 𝑗
= exp

(
−
𝑑 (Z𝑖,Z 𝑗 ) − 𝜌𝑖

𝜎𝑖

)
, (6.5)

where 𝑑 (Z𝑖,Z 𝑗 ) is the distance between points, 𝜌𝑖 controls the local neighborhood size, and 𝜎𝑖

controls the fuzziness of neighborhoods.

Next, a graph in the low-dimensional space in constructed. For the low-dimensional graph, the

weights are computed as

𝑤𝑙𝑜𝑤𝑖 𝑗 =
1

1 + 𝑎 · 𝑑 (z𝑖, z 𝑗 )2𝑏
, (6.6)

where, 𝑎 and 𝑏 are hyperparameters of UMAP, 𝑑 (., .) is a distance function, and z𝑖 and z 𝑗 are

low-dimensional representations of the 𝑖th and 𝑗 th sample respectively. In order to learn the

low-dimensional representation, the cross-entropy loss between the high-dimensional and low-
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dimensional graphs, given by

L =
∑︁
𝑖, 𝑗

𝑤
ℎ𝑖𝑔ℎ

𝑖 𝑗
log ©­«

𝑤
ℎ𝑖𝑔ℎ

𝑖 𝑗

𝑤𝑙𝑜𝑤
𝑖 𝑗

ª®¬ + (1 − 𝑤ℎ𝑖𝑔ℎ𝑖 𝑗
) log ©­«

1 − 𝑤ℎ𝑖𝑔ℎ
𝑖 𝑗

1 − 𝑤𝑙𝑜𝑤
𝑖 𝑗

ª®¬ , (6.7)

is minimized using stochastic gradient descent. Rather than quantifying distances in the original

fusion feature space, we first projected the fusion features into a lower-dimensional space that

preserved the local structure of the data. We used UMAP to project the fusion features into a

lower-dimensional space and then computed distances between the input sample and training data

in this UMAP-reduced space to construct the UMAP-based reliability calibration curve (U-RCC).

The UMAP induced distance between a test sample Z and the mean Z of the encoded training set

S𝑍 , in the fusion layer, is given by

𝐷𝑈 (Z,S𝑍 ) = ∥Z − Z∥2, (6.8)

where the numerator denotes the dot product between test sample and mean of the training set and

∥.∥2 denotes the 2-norm of a vector.

6.2.4 Prediction Probability-based Reliability Calibration Curve (P-RCC)

Most neural network-based classifiers use the softmax function in the final layer to generate

probabilities of class labels. Given a vector V ∈ R𝑛 from the last layer of an 𝑛-class classifier, the

softmax function generates a vector 𝑃 ∈ R𝑛 of probability distribution over a list of model outputs,

where for all 𝑖 = 1, · · · , 𝑛 the entries of 𝑃 are given by

𝑝𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑉𝑖) =
𝑒𝑉𝑖∑𝑛
𝑗=1 𝑒

𝑉 𝑗
, (6.9)

where 𝑃 =

[
𝑝1 · · · 𝑝𝑛

]𝑇
, all elements of the resultant vector lie in the range (0, 1), and

∑𝑛
𝑖=1 𝑝𝑖 =

1.

We used the prediction probabilities generated by the model as the sample-specific attribute for

generating the P-RCC.

6.2.5 Model Setup and Data

For evaluating our RCCs, we utilized the same data, model setup, and classification problems as

described in Chapter 4 and detailed in Tables 4.2 and 4.3. This provides a controlled environment
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covering a variety of classification problems with existing trained models that can be readily used

to test our new approach.

To construct a RCC for a classifier, first we defined a sample-level property 𝑃𝑟𝑜𝑝 that we wish

to calibrate. Where 𝑃𝑟𝑜𝑝 can be Mahalanobis distance-based (𝐷𝑀) described in (6.1), cosine

similarity-based (𝐶𝑂𝑆) described in (6.4), UMAP-based (𝐷𝑈) described in (6.8), or prediction

probability-based (𝑃) described in (6.9).

Using a validation set V𝑋 , we stratified or binned the samples based on their 𝑃𝑟𝑜𝑝 values.

Within each bin, we computed the local accuracy (𝐴𝑐𝑐𝑙) and the average 𝑃𝑟𝑜𝑝 value. We also

computed the weights 𝑤 associated with each bin using the density of samples in the bin. The

ordered pairs (𝑃𝑟𝑜𝑝, 𝐴𝑐𝑐𝑙) of average property value and local accuracy in a bin were generated

for all bins. The ordered pair data along with the weights were then used to fit a calibration curve

ℎ. This process was repeated for 𝑁𝑝 bootstrap iterations of the validation set over a variety of bin

sizes 𝑁𝑏𝑖𝑛 generating 𝑁𝑝 × 𝑁𝑏𝑖𝑛 calibration curves. RCC was then generated as the mean curve

using the calibration curves (ℎ𝑖, 𝑗 ) where 𝑖 represents 𝑖th bootstrap iteration and 𝑗 represents 𝑗 th bin

size. RCC mapping can be represented as

𝑅𝐶𝐶 : X→ Accuracy
(
N𝑃𝑟𝑜𝑝 (X)

)
, (6.10)

where N𝑝𝑟𝑜𝑝 is a neighborhood in 𝑃𝑟𝑜𝑝 about 𝑃𝑟𝑜𝑝(X). The bootstrapping also provides

confidence intervals around the generated RCC. An overview of the RCC generation approach is

given in Algorithm 6.1.

6.3 Results

As described earlier, we used three main metrics for evaluating the generated RCCs: granularity,

convergence, and generalizability. All the RCCs satisfy the convergence property because for a

single bin (all neighboring samples that share similar sample property), local accuracy is equal to

the set accuracy. Therefore, we focus the following discussion on assessing the generalization and

granularity of the RCCs. Figure 6.1 illustrates the calibration curves generated for the classification

problems highlighted in Table 6.1. The red dots, representing local neighborhoods, are ordered
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Algorithm 6.1 RCC
1: Input: Validation setV𝑋 , sample property 𝑃𝑟𝑜𝑝, number of bootstrap iterations (𝑁𝑝), range

of neighborhood sizes (𝑁𝑏𝑖𝑛𝑠).
2: for 𝑖 ← 1 to 𝑁𝑝 do
3: Take a random subsetV𝑖

𝑋
of the validation set.

4: for 𝑗 ← 1 to 𝑁𝑏𝑖𝑛𝑠 do
5: Generate histogram of 𝑃𝑟𝑜𝑝 values with 𝑗 bins forV𝑖

𝑋
.

6: Calculate local accuracy (𝐴𝑐𝑐𝑙) for samples in each bin.
7: for 𝑘 ← 1 to 𝑗 do
8: Generate ordered pairs of average 𝑃𝑟𝑜𝑝 value and local accuracy in the 𝑘th bin

(𝑃𝑟𝑜𝑝, 𝐴𝑐𝑐𝑙)𝑘
9: Calculate weights (𝑤𝑘 ) corresponding to each ordered pair as the density of samples in

the bin.
10: end for
11: Use the ordered pairs (𝑃𝑟𝑜𝑝, 𝐴𝑐𝑐𝑙)𝑘 weighted by 𝑤𝑘 to fit a curve ℎ𝑖, 𝑗 for 𝑖th bootstrap

with 𝑗 bins.
12: end for
13: end for
14: Use the curves ℎ𝑖, 𝑗 to compute the mean RCC and the 95% confidence interval.
15: return RCC

Figure 6.1: Generated M-RCCs for problems 1,7, and 8 (L-R) in Table 6.1. The mean calibration
curve, depicted by the blue line, is constructed using validation data, the blue shaded region
represents a 95% confidence interval. The red dots represent pairs of average Mahalanobis distance
and local accuracy of test data, calculated over local neighborhoods, repeated for multiple bootstrap
iterations. The test data is weighted based on the density of samples in the neighborhood.
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Table 6.1: Validation results of the Mahalanobis distance based reliability calibration curve (M-
RCC).

id Classification Average test Granularity Generalization
problem accuracy min local acc. max local acc. RMSE

1 | |𝑍1 | |1 0.95 0.90 ± 0.117 1.00 ± 0.043 0.0379
7

∑4
𝑖=1 | |𝑍𝑖 | |1 0.91 0.91 ± 0.018 1.00 ± 0.167 0.0496

8 𝑒𝑍2,7 ln
(
𝑍1,1 + 𝑍1,2

)2 0.90 0.90 ± 0.008 1.00 ± 0.253 0.0532

The minimum and maximum local accuracies are reported ± standard deviation.

pairs of property value and local accuracy derived from bootstrapping the test set. These pairs are

weighted according to the sample density in each neighborhood. The solid blue line depicts the

RCC generated from the validation set using Algorithm 6.1, and the shaded area corresponds to a

95% confidence interval.

Generalization of the RCC is evaluated by calculating the RMSE between the ordered pairs de-

rived from the test data and the mean calibration curve. Table 6.1 shows results for the Mahalanobis-

based RCC. While the curve generalizes reasonably to the holdout test set, its granularity is limited.

This means it does not reveal a wide range of local accuracy values and cannot provide fine-grained

reliability measures. This suggests the Mahalanobis distance of a sample from the training set is

not highly representative of the model’s local performance trends. While Mahalanobis distance

has been successfully used to detect distribution shifts [137], it does not reveal local performance

trends well.

Similarly, the cosine similarity-based curves fail to capture informative local trends, with most

curves centered around the set-level accuracy in Figure 6.2. These similarity-based approaches are

often better suited for detecting out-of-distribution samples.

The UMAP-based RCCs demonstrate good generalization in Table 6.3 but, like other distance-

based methods, suffer from lack of granularity. The UMAP-projected fusion features in Figure 6.3

show that UMAP preserves the discriminative power of the fusion features, as the class-labeled

plots remain separated. Since we construct U-RCC using the sample distance from the center of

training distribution, we see the local accuracy increase with greater distances.
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Figure 6.2: Generated C-RCCs for problems 1,7, and 8 (L-R) in Table 6.2 The mean calibration
curve, depicted by the blue line, is constructed using validation data, the blue shaded region
represents a 95% confidence interval. The red dots represent pairs of average cosine similarity and
local accuracy of test data, calculated over local neighborhoods, repeated for multiple bootstrap
iterations. The test data is weighted based on the density of samples in the neighborhood.

Table 6.2: Validation results of the cosine similarity based calibration curve (C-RCC).

id Classification Average test Granularity Generalization
problem accuracy min local acc. max local acc. RMSE

1 | |𝑍1 | |1 0.95 0.93 ± 0.007 1.00 ± 0.013 0.0347
7

∑4
𝑖=1 | |𝑍𝑖 | |1 0.91 0.89 ± 0.051 0.95 ± 0.020 0.0542

8 𝑒𝑍2,7 ln
(
𝑍1,1 + 𝑍1,2

)2 0.90 0.87 ± 0.020 0.93 ± 0.013 0.0637

Figure 6.4 shows the generated RCCs using the model predicted probability for each sample. Our

model outputs class probabilities from the softmax layer. The results demonstrate that in addition

to reasonable generalization, the P-RCC based on softmax probabilities exhibits substantially more

granularity compared to the previously discussed distance and similarity-based methods. This can

be attributed to the fact that those approaches measured distances and similarities in the fusion

layer, while the probability-based PRCC leverages the outputs from the final layer of the model.

Therefore, it takes advantage of the full discriminative power of the end-to-end architecture trained

specifically for this task.

Since P-RCC significantly outperforms the previous metrics, we present full results for all

explored cases in Table 6.4. The probability-based RCCs is a valuable tool that can enable

fine-grained reliability quantification and interpretability compared to distance/similarity-based

approaches in the fusion layer.
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(a) Visualization of UMAP-reduced fusion features for problems 1,7, and 8 (L-R) in Table 6.3. Samples from
all four input modalities are reduced to two discriminative features 𝑧1 and 𝑧2, colored by class label. The
UMAP preserves global and local structure, maintaining class separation. The distance-based calibration
curve below uses the UMAP distance of a test sample from the training distribution center. As distance
increases towards the extremes, class separation improves and local accuracy increases.

(b) Generated U-RCCs for problems 1,7, and 8 (L-R) in Table 6.3. The mean calibration curve, depicted
by the blue line, is constructed using validation data, the blue shaded region represents a 95% confidence
interval. The red dots represent pairs of average UMAP distance and local accuracy of test data, calculated
over local neighborhoods, repeated for multiple bootstrap iterations. The test data is weighted based on the
density of samples in the neighborhood.

Figure 6.3: RCCs based on the euclidean distance of a sample from mean of training data in
UMAP-projected space.

Table 6.3: Validation results of the UMAP-based reliability calibration curve (U-RCC).

id Classification Average test Granularity Generalization
problem accuracy min local acc. max local acc. RMSE

1 | |𝑍1 | |1 0.95 0.81 ± 0.026 1.00 ± 0.003 0.0461
7

∑4
𝑖=1 | |𝑍𝑖 | |1 0.91 0.91 ± 0.008 0.99 ± 0.033 0.0496

8 𝑒𝑍2,7 ln
(
𝑍1,1 + 𝑍1,2

)2 0.90 0.76 ± 0.024 0.99 ± 0.013 0.0539
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(a) Histogram of softmax probabilities generated by models for problems 1,7, and 8 (L-R) in Table 6.4. The
bins of the histogram represent local neighborhoods in the validation set.

(b) Generated P-RCCs for for problems 1,7, and 8 (L-R) in Table 6.4. The mean calibration curve, depicted
by the blue line, is constructed using validation data, the blue shaded region represents a 95% confidence
interval. The red dots represent pairs of average softmax probability and local accuracy of test data, calculated
over local neighborhoods, repeated for multiple bootstrap iterations. The test data is weighted based on the
density of samples in the neighborhood.

Figure 6.4: RCCs based on model prediction probability.

Table 6.4: Validation results of the prediction probability based calibration curve (P-RCC).

id Classification Average test Granularity Generalization
problem accuracy min local acc. max local acc. RMSE

1 | |𝑍1 | |1 0.95 0.52 ± 0.044 1.00 ± 0.062 0.0882
2 | |𝑍2 | |1 0.93 0.59 ± 0.034 1.00 ± 0.052 0.0844
3 | |𝑍3 | |1 0.99 0.68 ± 0.065 1.00 ± 0.048 0.0667
4 | |𝑍4 | |1 0.99 0.74 ± 0.066 1.00 ± 0.042 0.0670
5

∑
𝑖=1,2 | |𝑍𝑖 | |1 0.92 0.53 ± 0.034 1.00 ± 0.057 0.1040

6
∑
𝑖=3,4 | |𝑍𝑖 | |1 0.99 0.68 ± 0.074 1.00 ± 0.056 0.0669

7
∑4
𝑖=1 | |𝑍𝑖 | |1 0.91 0.25 ± 0.052 1.00 ± 0.177 0.1163

8 𝑒𝑍2,7 ln
(
𝑍1,1 + 𝑍1,2

)2 0.90 0.46 ± 0.047 1.00 ± 0.049 0.0992
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6.4 RCCs in the Case of Missing Inputs

After constructing and evaluating the reliability curves, we used them to extend the analysis

to missing data scenarios. Specifically, we proposed a modified version of (5.1) to generate

sample-level reliability estimates in the case of missing inputs:

Local ScoreX𝑘
= Local ScoreΦ −

∑︁
𝑘∈K

imp(X𝑘 ) (Local ScoreΦ − ScoreX1:X𝑚
). (6.11)

Where the reference local score without missing data came from the RCC. In this formulation, the

local accuracy with missing input 𝑋1 is proportional to the importance of 𝑋1 scaled by the reference

local accuracy. This allowed us to estimate the impact of missing data on a sample at inference

time using the multimodal input importance and RCC.

Using the same framework as before, we estimated P-RCCs for missing input cases across the

classifiers trained on problems in Table 6.4. To estimate the P-RCC with missing inputs, we used

(6.11), relating local accuracy to the importance of the missing input. We used this to predict

how the calibration curve would change for different missing inputs. We compared the estimated

P-RCC to the true P-RCC generated on modified validation data where the missing input was mean-

imputed. We perform this analysis for each classifier, removing one input at a time and imputing it

with the mean value.

Figure 6.5 shows results for a subset of classification problems, clearly demonstrating that the

model prediction probability distribution and the calibration curve behavior change drastically when

an important input is missing, while remaining relatively unchanged for less important inputs. Our

estimated P-RCC aligns well with the true P-RCC. This supports our initial intuition that the drop in

local model performance, caused by missing inputs, is proportional to the importance of the missing

input. However, since we use a simple linear relationship, and testing is on controlled classification

tasks, further ablation experiments are needed to robustly estimate sample-level reliability under

missing data.
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(a) Average feature importances from left to right: 𝑋1 = 1.00, 𝑋2 = 0.00, 𝑋3 = 0.00, 𝑋4 = 0.00. Top row:
softmax probability distributions on the validation set for each missing input case. Bottom row: True P-RCC
generated on data with missing input (blue line) compared to predicted PRCC estimated from (6.11) (red
line). When the most important input 𝑋1 is missing, the softmax probability distribution shifts lower and the
true P-RCC drops steeply, aligned with the prediction. With less important inputs 𝑋2, · · · , 𝑋4 missing, the
probability and PRCC remain relatively unchanged, also matched by the estimate.

(b) Average feature importances from left to right: 𝑋1 = 0.25, 𝑋2 = 0.25, 𝑋3 = 0.25, 𝑋4 = 0.25. Top row:
softmax probability distributions on the validation set for each missing input case. Bottom row: True P-RCC
generated on data with missing input (blue line) compared to predicted PRCC estimated from (6.11) (red
line). Since all inputs are equally important, shifts in the softmax probability distribution and P-RCC are
consistent across missing input cases.

Figure 6.5: Comparison of estimated and true P-RCCs for holdout test data in the case of missing
multimodal inputs. (a) shows results for problem 1, (b) shows results for problem 7, and (c) shows
results for problem 8 in Table 6.4.

6.5 Conclusion and Future Work

This work explored RCCs for multimodal neural networks to provide sample-level reliability

quantification. While promising, more work needs to be done to address granularity limitations for

the distance-based methods. Representative sample properties need to be explored to construct bet-
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Figure 6.5 (cont’d.).

(c) Average feature importances from left to right: 𝑋1 = 0.97, 𝑋2 = 0.02, 𝑋3 = 0.00, 𝑋4 = 0.00. Top row:
softmax probability distributions on the validation set for each missing input case. Bottom row: True P-RCC
generated on data with missing input (blue line) compared to predicted PRCC estimated from (6.11) (red
line). shifts in the softmax probability distribution and P-RCC are aligned with estimates and are proportional
to the importance of missing inputs.

ter calibration curves. For example, this current work relies on one dimensional sample properties;

future work could look for RCC relationships between model performance and multi-dimensional

representations of a sample. As the current distance and similarity metrics lack sufficient granular-

ity, potential future work may achieve better localization by looking at class-wise distances.

Additionally, the simplicity of the importance-based RCC estimation provided reasonable but

preliminary reliability estimates for missing inputs. More extensive validation across diverse

problems is needed to fully develop a robust methodology for missing data scenarios.

In conclusion, this preliminary work highlighted several opportunities to refine the RCC ap-

proach, including improving localization, validating on more complex examples, identifying opti-

mal model layers for distance based methods, and applying to real classification problems. Address-

ing these limitations is an important next step in improving sample-level reliability quantification

in multimodal models. The methods developed here provide a foundation to build on, through

improvements in granularity, generalization, and missing data handling.
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CHAPTER 7

CONCLUSION

This dissertation explored methods to improve the human-interpretability of multimodal deep

learning models for healthcare applications. We proposed a unified framework for estimating

input feature importance in multimodal classifiers. Validation on synthetic data with ground truth

importances showed our approach could accurately recover true feature importance. Analysis of real

multimodal tumor classification and cardiomegaly detection models provided intuitive explanations

of the black-box models. Our framework was agnostic to the underlying importance estimation

technique, providing flexibility. By comparing importance across multimodal inputs, we gained

insight into how different data types like images, text, and lab tests contributed to predictions.

To further enhance interpretability, we used the estimated importances to predict how model

performance degraded with missing inputs. Across two clinical tasks, we showed input importance

was strongly correlated with a drop in accuracy when that input was removed. This will enable

understanding of model limitations and cost-benefit analysis for acquiring additional patient data.

While our results demonstrated a strong correlation between performance degradation and input

importance, future work could explore other functional relationships between the two. Additionally,

our analysis has centered on binary classification problems using accuracy as the evaluation metric.

An important next step would be extending the techniques to handle multi-class tasks, addressing

extreme class imbalance, and leveraging metrics such as balanced accuracy to improve robustness.

With these kinds of expansions, the foundations established in this dissertation can continue to

mature.

We also constructed reliability calibration curves to quantify model reliability at the sample

level. Initial results demonstrated the promise of this approach for per-sample reliability estimation.

At the same time, they revealed opportunities to enhance the granularity and expand validation

across diverse real-world tasks. Our missing data importance model provided reasonable prelimi-

nary reliability estimates, establishing a foundation to build upon through further refinement and

extensive real-world testing.
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In conclusion, this dissertation makes significant strides in advancing the interpretability of

multimodal deep learning for healthcare applications through input importance estimations and

novel reliability calibration techniques. While work remains in improving localization, expanding

validation, and clinical translation, the critical foundations have been laid. The opportunities

uncovered to refine the methodology highlight the fruitful research directions ahead. Overall,

this dissertation establishes a robust framework and springboard for increasing interpretability of

powerful multimodal AI systems poised to transform medicine.
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APPENDIX

Open Source Code

Code developed for Chapter 3 is available: https://github.com/MA/FFR.

Code developed for Chapter 4 is available: https://github.com/MA/SYN.

Code developed for Chapter 5 is available: https://github.com/MA/MII.
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