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ABSTRACT

In this thesis, a copula model is constructed to estimate dependency and calculate the Value

at Risk for insurance coverage under the dependence of the covered losses. The dependence

model is illustrated in a three-dimensional setting to simplify the complex theoretical functions

and provide an accessible introduction to the copula model. The modeling uses the U.S. crop

insurance dataset aggregated by each county level and commodity type. The composite likelihood

approach helps to simplify the computation in high-dimensional problems by approximating the

negative log-likelihood using bivariate components. In this study, the majorization-minimization

principle is employed to estimate the parameters of the normal copula by minimizing the composite

likelihood iteratively. To avoid overfitting and result in a valid correlation matrix, the L1 penalty

is applied to induce sparsity and shrink irrelevant parameters toward zero. The optimal tuning

parameter is selected based on the BIC score to generate a positive semi-definite correlation matrix

for the result. In the Appendix of the thesis, the dependence model is extended to a high dimension.

The Value at Risk computed for the fictional insurance contract in the data analysis results in a

higher value when considering dependence between variables.
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INTRODUCTION

Dependency refers to the relationship between variables, and the analysis of dependency is crucial

since it helps building accurate models and managing risk. Suppose we are given n sample points

for a p-dimensional multivariate response, where each of the p marginal response has a different

distribution. In this case, the copula approach can be employed to model the dependence between

random variables. The classic textbook Nelsen (1999) provides an introduction to the copula

model. The literature on copula modeling has developed significantly in recent years and provides

numerous extended introduction to the copula models, such as Hofert et al. (2018) and Czado

(2019) including examples in the R programming language, or Frees and Valdez (1998) exploring

the modeling in the actuarial science context. For the use of the copula approach for count data,

the reader may see Nikoloulopoulos and Karlis (2010), or Shi and Emiliano (2014).

Sklar’s Theorem allows us to derive the multivariate distribution function of a random vector

through the use of copula functions, with its corresponding marginal distributions. If we attempt

to estimate the normal copula parameters with a p-dimensional correlation matrix, where the

number of dependence parameters exceeds the samples size n, (
(
p
2

)
> n), it will be considered a

high-dimensional problem. In this situation, using maximum likelihood to estimate the parameters

may arise several problems. One problem is the potential overfitting with spurious correlations, it

happens when all off-diagonal entries of the correlation matrix are non-zero, and the model may

be fitting the noise that is not truly meaningful. Another problem is the difficulty in ensuring the

estimated correlation matrix satisfies the positive semi-definite property.

Due to these problems, we hope to automatically set some correlation entries to zero during the

estimate process, so that we could introduce sparsity that simplifies the model, avoid overfitting,

and further result in a valid correlation matrix. There are various ways to achieve this, such as

the lasso and ridge regression approach. In this paper, the lasso penalty (L1 penalty) is used to

select and shrink some irrelevant correlation parameters toward zero. Nevertheless, while reducing

the number of non-zero entries, the process cannot ensure that the resulting matrix is positive

semi-definite; it can only increase the likelihood of obtaining a valid correlation matrix. More
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relevant details will be discussed in the following chapter.

The lasso is a variable selection method that solves the optimization problem with a constraint,

and it was initially introduced in the statistical lecture by Tibshirani (1996). In the thesis, the lasso

approach is used to add a penalty term to the negative likelihood function and adjust the tuning

parameter to control the severity of the penalty. Due to the accessibility of efficient algorithms for

solving the estimation problem, the lasso method has become increasingly popular and developed

several extensions, such as shrinking group variables in Yuan and Lin (2006), applying to non-normal

responses in Yang and Zou (2015), and the Tweedie compound distribution in Qian et al. (2016).

The Tweedie compound distribution is commonly used in actuarial science, insurance, and financial

fields to model data with both continuous and discrete characteristics. The distribution can be

applied in frequency-severity regression as a distribution for modeling insurance losses, which is

the severity component of the regression.

Frequency-severity regression is commonly used in actuarial science to analyze the insurance

claim occurrence (frequency) and claim amounts (severity). One can refer to Frees et al. (2011),

Frees (2014) to gain the introduction and applications of frequency-severity regression. In the

thesis, the approach used for indemnity modeling has a close connection with the frequency-severity

regression approach, both modeling responses consisting of continuous and discrete components.

Moreover, the gamma distribution is mainly used to model the crop insurance indemnities in the

research.

This research demonstrates the use of the lasso technique on the multivariate normal copula,

which helps to simplify the copula parameters by inducing sparsity. The approach takes advantage

of the composite likelihood approach for estimation. The composite likelihood approach, explained

in Zhao and Joe (2005), Song et al. (2005), and Joe (2014), constructs an approximation to the

log-likelihood function using bivariate components. It is used for estimating the dependence

parameters in the copula model since the log-likelihood may be hard to compute. It is a straightforward

method that may be adaptable to other copula families.

The main intent of this research is to explore the dependence model and underlying theoretical
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functions that enable the selection and estimation of the normal copula parameters in a three-dimensional

setting. By concentrating on three dimensions, we can simplify the explanation of the core concepts

and provide a more approachable introduction to the copula model. Although we restrict our focus

to three dimensions, the approach explained in this thesis can be extended to higher dimensions.

And extensions to other copula families might be possible using the methodologies and insights

gained from the research.

The rest of the thesis is organized into four parts. Chapter 1 illustrates the assumptions and

approach utilized in the dependence model in three-dimensional setting. The section also introduces

the distribution of correlation matrices that is useful while generating valid correlation matrices

and may be used in future work. Chapter 2 conducts some simulation studies using the copula

estimation routine to evaluate the performance and properties of the model. Chapter 3 shows the

results of the estimation using the copula model and the aggregated U.S. crop insurance dataset

and calculates Value at Risk for the insurance portfolio losses. Moreover, the Appendix shows the

extensions of the normal copula model in Chapter 1 to high dimensions.
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CHAPTER 1: COPULA MODEL

1.1 Assumptions

Suppose we are given 3-dimensional multivariate responses of n samples, denoted by (yi1, yi2, yi3)

for i = 1, ..., n, and the marginal distributions Fi1(yi1), Fi2(yi2), Fi3(yi3) are known. Then, the

task is to use these to derive the joint density among the variables, f(yi1, yi2, yi3). Various copula

models could fulfill the task, and an introduction to the copulas is explained in Nelsen (1999).

Here, we assume using a multivariate normal copula C that links the univariate marginals to their

joint distribution and can be written as

C(u1, u2, u3;Σ) = Pr(U1 < u1, U2 < u2, U3 < u3)

= Φ3(Φ
−1(u1),Φ

−1(u2),Φ
−1(u3);Σ),

(1.1)

where Ui is uniformly distributed on the interval [0, 1], Φ3 is the cumulative distribution function

of a 3-dimensional multivariate normal distribution with zero means and correlation matrix Σ, and

Φ−1 is the inverse cumulative distribution function of standard normal distribution. In this case,

the density of the copula C is

c(u1, u2, u3;Σ) =
∂3

∂u1∂u2∂u3
C(u1, u2, u3;Σ). (1.2)

Using the probability integral transform (u1, u2, u3) = (F1(y1), F2(y2), F3(y3)), the normal copula

C can also be written as

C(Fi1(yi1), Fi2(yi2), Fi3(yi3);Σ) = F (yi1, yi2, yi3). (1.3)

By the chain rule, the joint density of the multivariate response is

f(yi1, yi2, yi3) =
∂3

∂yi1∂yi2∂yi3
C(Fi1(yi1), Fi2(yi2), Fi3(yi3))

= c(Fi1(yi1), Fi2(yi2), Fi3(yi3);Σ) · fi1(yi1) · fi2(yi2) · fi3(yi3).
(1.4)
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1.2 Estimation of Copula Parameters

The correlation matrix Σ is symmetric and displays the dependence parameter between the i-th

and j-th variables in (i, j) entry. In the three-dimensional setting,

Σ =


1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

 . (1.5)

In the research, the pairwise composite likelihood method is used to estimate the dependence

parameters ρij . The method is well explained in a multivariate setting by Zhao and Joe (2005),

and it is helpful to lower the computational complexity by reducing the dimensionality of the

data, especially in high-dimensional problems with complex dependencies among the variables.

Assuming all of the three-dimensional multivariate responses for each sample are fully defined,

the composite negative log-likelihood function will be

ℓ(Σ) =−
n∑
i=1

1

3− 1

[
log c (Fi1(yi1), Fi2(yi2); ρ12) + log f1(yi1) + log f2(yi2)

+ log c (Fi1(yi1), Fi3(yi3); ρ13) + log f1(yi1) + log f3(yi3)

+ log c (Fi2(yi2), Fi2(yi3); ρ23) + log f2(yi2) + log f3(yi3)

]
,

(1.6)

where 1/(3 − 1) is the weight to match the log-likelihood when independent case and c is a

density of bivariate normal copula. However, in general, one or more responses for some of the

samples may be undefined, then the weight will become 1/(mi − 1) where mi is the number

of defined responses in observation i. Note that we know the marginal distributions Fi1(yi1),

Fi2(yi2), Fi3(yi3), as well as the densities fi1(yi1), fi2(yi2), fi3(yi3) for i = 1, 2, ..., n, the negative

log-likelihood ℓ(Σ) is a function in the dependence parameters only. The optimal values of the

parameters ρjk that minimize the negative log-likelihood function ℓ(Σ) would fall between −∞
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and ∞. Nonetheless, in order to ensure the dependence parameters satisfy −1 < ρjk < 1, we set

ρjk =
tan−1(ψjk)

π/2
, −∞ < ψjk <∞, (1.7)

Figure 1.1 shows that the function is a one-to-one mapping, and for any ψjk, the corresponding

dependence parameters ρjk will fall within the range of -1 and 1.

−10 −5 0 5 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Graph of ρ as a function of ψ

ψ

ρ

Figure 1.1: Graph of ρjk as a function of ψjk

Then, we use the L1 penalty method to reduce the number of non-zero parameters and avoid

overfitting, which is helpful in high-dimensional problems which have a large number of parameters

to estimate. Now, the penalized negative log-likelihood is

ℓP (Ψ) = ℓ(Σ) + λ(|ψ12|+ |ψ13|+ |ψ23|) (1.8)

where λ is tuning parameter that control the severity of the penalty and

Ψ =


1 ψ12 ψ13

ψ21 1 ψ23

ψ31 ψ32 1

 . (1.9)

Then, the problem now is to estimate the alternative parameters ψij by minimizing the penalized
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negative log-likelihood function ℓP (Ψ). Some of the estimates may end up shrunk to zero due

to the lasso penalty. The tuning parameter λ controls the number of zero entries in the estimated

matrix Ψ. When λ increases, more and more coefficients are set to zero and eliminated. There

are different ways to determine λ, such as cross-validation and minimizing AIC (or BIC). In the

thesis, the tuning parameter is optimized by minimizing the BIC score. Since we assume that c is

the density of a bivariate normal copula, the negative log-likelihood function can be written as

ℓ(Σ) =−
n∑
i=1

1

3− 1

[
log

(
1√

1− ρ212

)
+ log

(
1√

1− ρ213

)
+ log

(
1√

1− ρ223

)

− (a2i + b2i )ρ
2
12 − 2aibiρ12

2(1− ρ12)2
− (a2i + c2i )ρ

2
13 − 2aiciρ13

2(1− ρ13)2
− (b2i + c2i )ρ

2
23 − 2biciρ23

2(1− ρ23)2

+ log f1(yi1) + log f2(yi2) + log f1(yi1) + log f3(yi3) + log f2(yi2) + log f3(yi3)

]
,

(1.10)

where

ai =
√
2 erf−1(2ui1 − 1), ui1 = Fi1(yi1)

bi =
√
2 erf−1(2ui2 − 1), ui2 = Fi2(yi2)

ci =
√
2 erf−1(2ui3 − 1), ui3 = Fi3(yi3), (1.11)

with

erf(z) =
2√
π

∫ z

0

exp(−t2)dt. (1.12)
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In order to estimate the dependent parameters, let

Φi12 = − 1

3− 1

[
log

(
1√

1− ρ212

)
− (a2i + b2i )ρ

2
12 − 2aibiρ12

2(1− ρ12)2
+ log fi1(yi1) + log fi2(yi2)

]

Φi13 = − 1

3− 1

[
log

(
1√

1− ρ213

)
− (a2i + c2i )ρ

2
13 − 2aiciρ13

2(1− ρ13)2
+ log fi1(yi1) + log fi3(yi3)

]

Φi23 = − 1

3− 1

[
log

(
1√

1− ρ223

)
− (b2i + c2i )ρ

2
23 − 2biciρ23

2(1− ρ23)2
+ log fi2(yi2) + log fi3(yi3)

]
(1.13)

so that

ℓ(Σ) =
n∑
i=1

Φi12 + Φi13 + Φi23. (1.14)

Remember that we map ρjk toψjk by ρjk = 2 tan−1(ψjk)/π for ensuring the dependence parameters

satisfy the condition of between -1 and 1. To obtain the Hessian and gradient of log-likelihood

ℓ(Σ), the log-likelihood ℓ(Σ) should be differentiated in terms of the parameters ψjk using the

chain rule. Then consider

∂Φi12

∂ψ12

=
∂Φi12

∂ρ12

∂ρ12
∂ψ12

,
∂Φi13

∂ψ13

=
∂Φi13

∂ρ13

∂ρ13
∂ψ13

,
∂Φi23

∂ψ23

=
∂Φi23

∂ρ23

∂ρ23
∂ψ23

, (1.15)

where

∂Φi12

∂ρ12
= − 1

3− 1

[
ρ12

1− ρ212
+
aibiρ

2
12 − (a2i + b2i )ρ12 + aibi

(1− ρ212)
2

]
∂Φi13

∂ρ13
= − 1

3− 1

[
ρ13

1− ρ213
+
aiciρ

2
13 − (a2i + c2i )ρ13 + aici

(1− ρ213)
2

]
∂Φi23

∂ρ23
= − 1

3− 1

[
ρ23

1− ρ223
+
biciρ

2
23 − (b2i + c2i )ρ23 + bici

(1− ρ223)
2

]
, (1.16)
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and

∂ρ12
∂ψ12

=
2

π(1 + ψ2
12)
,

∂ρ13
∂ψ13

=
2

π(1 + ψ2
13)
,

∂ρ23
∂ψ23

=
2

π(1 + ψ2
23)
. (1.17)

For the Hessian, we have

∂2Φi12

∂ψ2
12

=
∂2Φi12

∂ρ212

(
∂ρ12
∂ψ12

)2

+
∂Φi12

∂ρ12

(
∂2ρ12
∂ψ2

12

)
∂2Φi13

∂ψ2
13

=
∂2Φi13

∂ρ213

(
∂ρ13
∂ψ13

)2

+
∂Φi13

∂ρ13

(
∂2ρ13
∂ψ2

13

)
∂2Φi23

∂ψ2
23

=
∂2Φi23

∂ρ223

(
∂ρ23
∂ψ23

)2

+
∂Φi23

∂ρ23

(
∂2ρ23
∂ψ2

23

)
, (1.18)

where

∂2Φi12

∂ρ212
= −1

2

[
1 + ρ212

(1− ρ212)
2
+

2aibiρ12 − (a2i + b2i )

(1− ρ212)
2

+
4 {aibiρ212 − (a2i + b2i )ρ12 + aibi} (1− ρ212)ρ12

(1− ρ212)
4

]
∂2Φi13

∂ρ213
= −1

2

[
1 + ρ213

(1− ρ213)
2
+

2aiciρ13 − (a2i + c2i )

(1− ρ213)
2

+
4 {aiciρ213 − (a2i + c2i )ρ13 + aici} (1− ρ213)ρ13

(1− ρ213)
4

]
∂2Φi23

∂ρ223
= −1

2

[
1 + ρ223

(1− ρ223)
2
+

2biciρ23 − (b2i + c2i )

(1− ρ223)
2

+
4 {biciρ223 − (b2i + c2i )ρ23 + bici} (1− ρ223)ρ23

(1− ρ223)
4

]
,

(1.19)

and

∂2ρ12
∂ψ2

12

= − 4ψ12

π(1 + ψ2
12)

2
,

∂2ρ13
∂ψ2

13

= − 4ψ13

π(1 + ψ2
13)

2
,

∂2ρ23
∂ψ2

23

= − 4ψ23

π(1 + ψ2
23)

2
. (1.20)

The
(
3
2

)
dimensional vector of parameters is

ψ = (ψ12, ψ13, ψ23)
T . (1.21)
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The
(
3
2

)
×
(
3
2

)
Hessian matrixHψ is diagonal and the off-diagonal elements are zero

Hψ =


Hψ(1, 2) 0 0

0 Hψ(1, 3) 0

0 0 Hψ(2, 3)

 . (1.22)

where

Hψ(1, 2) =
∂2

∂ψ2
12

ℓ(Σ) =
n∑
i=1

∂2

∂ψ2
12

[Φi12 + Φi13 + Φi23] =
n∑
i=1

∂2Φi12

∂ψ2
12

(1.23)

and similarly

Hψ(1, 3) =
n∑
i=1

∂2Φi13

∂ψ2
13

, Hψ(2, 3) =
n∑
i=1

∂2Φi23

∂ψ2
23

. (1.24)

And the
(
3
2

)
gradient vector Uψ is

Uψ = (Uψ(1, 2),Uψ(1, 3),Uψ(2, 3))
T

= (
n∑
i=1

∂Φi12

∂ψ12

,
n∑
i=1

∂Φi13

∂ψ13

,
n∑
i=1

∂Φi23

∂ψ23

)T (1.25)

Note ψ̃ denotes the parameters updated in the outer loop of Algorithm 1, and ψ̆ for the inner

loop. Then, the second-order (quadratic) Taylor series approximation of the unpenalized negative

log-likelihood function ℓ(Σ) around a given point ψ̃ is

ℓQ(ψ) = ℓ(ψ̃) + ŨT
ψ (ψ − ψ̃) + 1

2
(ψ − ψ̃)T H̃ψ(ψ − ψ̃), (1.26)

where Ũψ is the gradient vector and H̃ψ is the Hessian matrix obtained at the given point ψ̃ =

(ψ̃12, ψ̃13, ψ̃23)
T . Now, the problem is to minimize the following penalized objective function:

PQ(ψ) = ℓQ(ψ) + λ (|ψ12|+ |ψ13|+ |ψ23|) . (1.27)
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However, the log-likelihood ℓQ(ψ) is complicated and the penalized objective function PQ(Ψ)

may be non-smooth, so the problem cannot be directly handled by first and second-order conditions

for optimization. Thus, the majorization-minimization algorithm is used to accomplish the task,

and it is well explained in Yang and Zou (2015) and Qian et al. (2016). The key step of applying

the majorization-minimization is constructing a surrogate function that majorizes the objective

function. The algorithm estimates the parameters by iteratively minimizing a sequence of surrogate

functions. In this paper, we construct the surrogate function by second-order Taylor expansion.

First, define

UQ = ∇ℓQ(ψ) (1.28)

HQ = ∇2ℓQ(ψ), (1.29)

where the entries of UQ are given by

UQ(1, 2) = Ũψ(1, 2) + H̃ψ(1, 2)(ψ12 − ψ̃12)

=

(
n∑
i=1

∂Φ̃i12

∂ψ12

)
+

(
n∑
i=1

∂2Φ̃i12

∂ψ2
12

)
(ψ12 − ψ̃12),

UQ(1, 3) = Ũψ(1, 3) + H̃ψ(1, 3)(ψ13 − ψ̃13)

=

(
n∑
i=1

∂Φ̃i13

∂ψ13

)
+

(
n∑
i=1

∂2Φ̃i13

∂ψ2
13

)
(ψ13 − ψ̃13),

UQ(2, 3) =

(
n∑
i=1

∂Φ̃i23

∂ψ23

)
+

(
n∑
i=1

∂2Φ̃i23

∂ψ2
23

)
(ψ23 − ψ̃23), (1.30)
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and the diagonal entries ofHQ are given by

HQ(1, 2) = H̃ψ(1, 2) =
n∑
i=1

∂2Φ̃i12

∂ψ2
12

,

HQ(1, 3) = H̃ψ(1, 3) =
n∑
i=1

∂2Φ̃i13

∂ψ2
13

,

HQ(2, 3) = H̃ψ(2, 3) =
n∑
i=1

∂2Φ̃i23

∂ψ2
23

, (1.31)

whereHQ is also diagonal.

Then, to ensure the surrogate function majorizes the objective function PQ(ψ), we substitute

the Hessian matrix HQ with its largest eigenvalue in the second-order Taylor expansion of the

unpenalized negative log-likelihood function ℓQ(ψ). Given ℓQ(ψ), consider updating current

estimates ψ̆. The new parameters ψ̆(new) are given by solving

ψ̆(new) = argmin
ψ
ℓQ(ψ̆)+Ũ

T
Q(ψ−ψ̆)+(ψ−ψ̆)T γ̃ψ(ψ−ψ̆)+λ(|ψ12|+ |ψ13|+ |ψ23|). (1.32)

The solution for this problem is given by

ψ̆jk(new) =

(
γ̃ψψ̆jk − ŨQ(j, k)

)(
1− λ

|γ̃ψψ̆jk−ŨQ(j,k)|

)
+

γ̃ψ
, (1.33)

where γ̃ψ is the largest eigenvalue of H̃Q. The entire procedure is summarized in Algorithm 1.
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Algorithm 1: Algorithm for penalized estimation of the copula parameters.

1. Initialize ψ̃.

2. (Outer Loop) Update the penalized objective function in Equation (1.27).

(a) Compute ŨQ, and H̃Q.

(b) Compute γ̃ψ, the largest eigenvalue of H̃Q.

(c) (Inner Loop) Obtain the minimizer of the objective function in (1.27).

• Initialize ψ̆ = ψ̃.

• Repeat the following until ψ̆ converges.

– Compute ψ̆(new) by Equation (4.38).

– Set ψ̆ = ψ̆(new).

• Set ψ̃ = ψ̆.

3. Repeat until ψ̃ converges.

1.3 The Distribution of Correlation Matrices

The authors Pourahmadi and Wang (2015) have shown any p dimensional correlation matrix Σ

can be Cholesky decomposed into Σ = BBT , where B is a lower triangular matrix with entries

bjk, and

bjk =



1 for j = k = 1,

cos θj1 for j = 2, · · · , p,
k−1∏
h=1

sin θjh for j = k > 1,

cos θjk ·
k−1∏
h=1

sin θjh for 2 ≤ k ≤ j − 1,

(1.34)
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where θjk, j > k are some angles. For example, in a three dimensional setting,

B =


1 0 0

cos θ21 sin θ21 0

cos θ31 cos θ32 sin θ31 sin θ32 sin θ31

 . (1.35)

The matrixB is unique if its diagonal entries are positive, or equivalently if the angles are restricted

to the range (0, π). Furthermore, the transformation from Σ to a
(
p
2

)
×
(
p
2

)
matrix Θ = (θjk) is

one-to-one, where θjk = 0 for j ≤ k and θjk are angles for j > k. Thus, this helps us to generate

valid high-dimensional correlation matrices using
(
p
2

)
parameters in the matrix Θ.

Now, we may wonder if the resulting matrix from the estimating procedure shown in Section

1.2 would be a valid correlation matrix that is positive semi-definite. However, it would not be an

issue for practical application since the estimated correlations will be close to the true underlying

correlations of the data when the sample size is large enough. Practically, the resulting correlation

matrix in Section 3 is positive semi-definite since the smallest eigenvalue is positive. Figure 3.2

shows that the smallest eigenvalue decreases when the tuning parameter gets smaller, which means

too many non-zero parameters may result in an invalid correlation matrix. Future work may use

the
(
p
2

)
parameters in matrix Θ as alternatives to correlations ρjk in the copula model, to avoid any

possible theoretical problems in the algorithm. For this, the following compact expression from

Pourahmadi and Wang (2015) will be useful to transform correlations to thetas:

ρjk = cj1ck1 +

j−1∑
h=2

cjhckh

h−1∏
l=1

sjlskl + ckj

j−1∏
l=1

sjlskl, 1 ≤ j < k ≤ p, (1.36)

where cjk = cos θjk and sjk = sin θjk. However, applying the expression to the copula model may

increase the computational complexity, especially in the differentiation parts. In the thesis, we rely

on the ρij = tan−1(ψij)/(π/2) mapping instead of the alternative parameterization using Θ for its

simplicity.
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CHAPTER 2: SIMULATION

2.1 Influence of Spurious Correlations

The purpose of this simulation is to analyze the influence of spurious correlations and further

demonstrate the advantages of setting certain correlations to zero. Assume we have the following

correlation matrices with their corresponding situation:

A =


1 0.9 0.1

0.9 1 0.1

0.1 0.1 1

 , B =


1 0.9 0

0.9 1 0

0 0 1

 , C =


1 0.9 −0.1

0.9 1 −0.1

−0.1 −0.1 1

 , (2.1)

• A: Positive spurious correlations in the other off-diagonal entries

• B: True underlying correlation matrix without spurious correlations

• C: Negative spurious correlations in the other off-diagonal entries

The task is to analyze the variance and the 95th percentile of insurance portfolio losses with each

dependence matrix from the simulation. To do so, we simulate B samples from copulas with each

correlation matrix and denote the randomly generated uniform variables by uA,ij , uB,ij , uC,ij , for

i = 1, · · · , B and j = 1, 2, 3. Assume the distribution of each response is known, which is a

gamma distribution with shape 2 and scale 100. The realized losses can be simulated using inverse

transform sampling: yA,ij = F−1(uA,ij), yB,ij = F−1(uB,ij), yC,ij = F−1(uC,ij). Since we are

interested in the simulated insurance portfolio losses with the dependence structure A, B, and C,

the losses should be aggregated for analysis

TA,i = (yA,i,1 + yA,i,2 + yA,i,3), i = 1, · · · , B

TB,i = (yB,i,1 + yB,i,2 + yB,i,3), i = 1, · · · , B (2.2)

TC,i = (yC,i,1 + yC,i,2 + yC,i,3), i = 1, · · · , B,
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The variance and the 95th percentiles are plotted with increasing sample sizes B and shown in

Figure 2.1.
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Figure 2.1: Influence of spurious correlations

In Figure 2.1, it is obvious that spurious correlations may affect the estimations of portfolio

risk. Positive spurious correlations may overestimate the portfolio variance and 95th percentile,

while negative spurious correlations resulted in underestimation. This indicates the usefulness of

inducing sparsity into the resulting correlation matrix that may reduce the spurious correlations.

16



2.2 C and IC Analysis

The goal of this simulation is to know how the sample size n and the dimension p impact the

algorithm on identifying zero and non-zero correlation coefficients. In order to reach the goal, we

plan to randomly generate a p-dimensional correlation matrix with some zero entries and simulate

n observations from a copula using this matrix. Note that the distribution of correlation matrices in

Section 1.3 is useful when generating a correlation matrix with a particular dependence structure,

and the inputs of the generation approach are the
(
p
2

)
parameters in the lower triangular matrix

Θ. Here, we set 90% of the
(
p
2

)
parameters in Θ to π/2 and the rest 10% to π/4. It results in a

correlation matrix with 90% of the off-diagonal entries being zero, since bjk = 0 for k < j when

cos(θjk) = cos(π/2) = 0. Comparing the generated matrix, which is the true correlation matrix

that produces the data, and the estimated correlation matrix from the algorithm, we classify the

entries of the correlation matrix into the following cases:

• CZ (Correctly identified zero): This occurs when the true coefficient is zero, and the algorithm

correctly identifies it as zero.

• ICZ (Incorrectly identified zero): This occurs when the true underlying coefficient is zero,

but the algorithm thinks it is non-zero.

• CNZ (Correctly identified non-zero): This occurs when the true coefficient is non-zero, and

the algorithm thinks it is non-zero.

• ICNZ (Incorrectly identified non-zero): This occurs when the true coefficient is non-zero,

but the algorithm identifies it as zero.

We duplicate the simulation 100 times, and the average number of CZ, ICZ, CNZ, and ICNZ

cases with different sample size (n) and dimension (p) are listed in Table 2.1. Note that the Oracle

is the idealized situation, the HDcop is the high-dimensional algorithm of our research, and the

MLE is the maximum likelihood estimation approach.

In the first panel of Table 2.1, the number of responses is fixed to p = 10, the algorithm

has a high CZ value for all sample sizes, indicating that it was successful at identifying the zero
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coefficients. The ICZ value is higher when the sample size is small, but it decreases quickly as

the sample size increases. On the contrary, the CNZ value increases as the sample size increases.

On the other hand, MLE seems to be unsuccessful at identifying the true zero coefficients, but it

identifies the true non-zero well. In the second panel of Table 2.1, we fix the sample size to n =

400, and the number of correctly identified coefficient (CZ and CNZ) increases when dimension p

increases. However, the MLE seems poor at identifying any true zero and non-zero coefficients.

Table 2.1: C and IC analysis result

Sample size (n) 100 200 300 400 500 600 700 800 900 1,000

Oracle

CZ 40 40 40 40 40 40 40 40 40 40
ICZ 0 0 0 0 0 0 0 0 0 0
CNZ 5 5 5 5 5 5 5 5 5 5
ICNZ 0 0 0 0 0 0 0 0 0 0

HDcop

CZ 39.90 39.54 39.48 39.49 39.44 39.49 39.37 39.46 39.38 39.40
ICZ 3.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNZ 1.51 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
ICNZ 0.10 0.46 0.52 0.51 0.56 0.51 0.63 0.54 0.62 0.60

MLE

CZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ICZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNZ 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
ICNZ 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00

Dimension (p) 3 4 5 6 7 8 9 10 11 12

Oracle

CZ 2.68 5.26 8.95 13.53 18.38 24.51 31.41 39.61 47.85 57.73
ICZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNZ 0.32 0.74 1.05 1.47 2.62 3.49 4.59 5.39 7.15 8.27
ICNZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HDcop

CZ 2.61 5.25 8.82 13.05 18.41 24.29 31.27 38.70 47.61 56.68
ICZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
CNZ 0.32 0.59 1.05 1.86 2.32 3.42 4.43 5.75 6.87 8.55
ICNZ 0.07 0.16 0.13 0.09 0.27 0.29 0.30 0.56 0.52 0.75

MLE

CZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ICZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ICNZ 2.68 5.41 8.95 13.14 16.68 24.58 31.57 39.26 48.13 57.43

2.3 Model Performance

The goal of this simulation is to test the performance and precision of the dependence model

described in Section 1.2. In other words, we want to compare the underlying correlation matrix,

which produced the data, and the resulting matrix from the estimating procedure. First, according

to the generation approach in Section 1.3, we randomly generate a lower triangular matrix Θ with
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(
5
2

)
angles in range (0,π) as input. For example,

(θ21, θ31, θ41, θ51, θ32, θ42, θ52, θ43, θ53, θ54) =

(1.570, 1.568, 0.964, 1.213, 1.561, 2.108, 1.743, 2.415, 1.690, 1.201)

(2.3)

Then, by Equation 1.34, the lower triangular matrixB is as follow

B =



1 0 0 0 0

0.0008 1 0 0 0

0.0028 0.0098 0.9999 0 0

0.5702 −0.4204 −0.5275 0.4689 0

0.3502 −0.1605 −0.1097 0.3312 0.8543


(2.4)

So that, our underlying correlation matrix Σ will be

Σ = BBT =



1 0.001 0.003 0.57 0.35

0.001 1 0.01 −0.42 −0.16

0.003 0.01 1 −0.53 −0.11

0.57 −0.42 −0.53 1 0.48

0.35 −0.16 −0.11 0.48 1


(2.5)

After simulating 2000 observations from copula with dependent matrix Σ and applying the copula

estimation routine shown in Section 1.2, we obtain the estimated dependence parameters and show

them as the following correlation matrixA.

A =



1 0 0 0.5475 0.2977

0 1 0 −0.3848 −0.1583

0 0 1 −0.4822 −0.0705

0.5475 −0.3848 −0.4822 1 0.4540

0.2977 −0.1583 −0.0705 0.4540 1


(2.6)
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Comparing the resulting matrix A with the underlying correlation matrix Σ, all of the estimates

seem close to the true value, and the underlying coefficients that are close to zero, such as 0.001,

0.003, and 0.01 in Σ, end up being shrunk to exactly zero in the resulting matrix A. It indicates

that the dependent model estimates the parameters well and successfully eliminates the irrelevant

ones.
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CHAPTER 3: RESULTS

In this section, the method in Chapter 1 is applied to estimate the dependence of indemnity amounts

among the selected commodities in the U.S. federal crop insurance data. Here, the selected

commodities are the top 3 prevalent crops: corn, soybean and wheat.

3.1 Data Description

The raw dataset is the U.S. crop insurance dataset on the Risk Management Agency website

(RMA) 1which is publicly available and includes the liability amounts and indemnity amounts for

each farm. The samples are composed of 368,720 farms, located in 2356 different counties in the

United States. Each farm grows only one of the crop commodities and the commodity types are

188 in total. Crops grown in similar regions shared environmental conditions and may be exposed

to common hazards, leading to the correlation in the indemnity amounts. The dependency among

commodity types in the same region may be important for the insurance/reinsurance company

interested in the Value at Risk (VaR) of specific insurance contracts covering any subset of the

commodities.

For the analysis in this thesis, the crop indemnity amounts and liability amounts for each farm

are further aggregated by county level, resulting in 2356 observations. Each observation (county)

has the total indemnity and liability for each commodity type. In the aggregated dataset, we are

given the observed indemnity Zij and liability Lij amount. Table 3.1 shows the partial dataset

of the aggregated liabilities amount and indemnities amount by the top 3 prevalent crops (corn,

soybean, and wheat). According to the dataset, we can see that observed indemnity Zij must be

zero when liability Lij is zero, and Zij may be zero or positive number when Lij is positive.

3.2 Marginal Models

Suppose the random variable Yij represents the realization of the indemnity amount for the j-th

commodity type in county i. As the assumption of Yij is gamma distributed, we select the positive

observed indemnity amounts Zij as Yij (response) with their corresponding liability amounts Lij

1 https://www.rma.usda.gov
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Table 3.1: Dataset of liabilities and indemnities

County Liab. Indem. Liab. Indem. Liab. Indem.
(i) Corn(Li1) Corn(Zi1) Soy Bean(Li2) Soy Bean(Zi2) Wheat(Li3) Wheat(Zi3)
1 109918 0 119156 10957 60485 15482
2 1432266 79946 1564468 297804 126290 9605
3 329826 3909 118968 0 37598 33660
4 188870 0 552515 9069 25364 11957
5 351199 0 97843 51486 0 0
6 320717 4261 43851 0 0 0
7 297396 1084 556543 66829 239153 96086
8 59827 0 0 0 0 0
9 647271 17755 1563561 153198 682013 451107
10 85054 7163 72413 31204 5738 0

(exposure) from the aggregate dataset. Then, Yij > 0 for each i and j allow us to fully define the

density and distribution of Yij for the copula model.

The gamma distribution is commonly used in actuarial science since it is only defined for

positive values, and this is appropriate for modeling the variables that represent quantities in the

insurance field that cannot be negative, such as claim sizes and loss amounts. Although heavy-tail

distributions are recommended for individual loss severity modeling in the recent literature, we still

use the gamma distribution instead of heavy-tailed loss distributions in this research for simplicity

and practical purpose. Moreover, according to the central limit theorem, the skewness in the

distribution of aggregated indemnity amount will reduce while the loss amounts for more and

more farms are aggregated, thus gamma distribution may be a more suitable choice for the model.

Since the indemnity amount Yij follows gamma distribution and the expected indemnity amount

can be exposed using the corresponding liability amount Lij , the marginal model is defined by

GLM with gamma distributed dependent variable. The right panel in Figure 3.1 shows that the

liability amounts and the indemnity amounts have a positive relationship at the county level after

log transformation.

Therefore, we assume a log link, and the marginal model is defined as

log (E(Yij)) = β0 + β1 log(Lij). (3.1)
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Figure 3.1: Scatter plot of liabilities and indemnities at the county level

And the estimated coefficients of the model for each commodity type are shown in Table 3.2.

Table 3.2: Coefficient estimates for the marginal gamma model

Corn Soybean Wheat
Estimate Std. Error Estimate Std. Error Estimate Std. Error

(Intercept) 0.8038 0.3750 2.1346 0.2531 0.1038 0.2860
LogExposurePos 0.7738 0.0235 0.6753 0.0161 0.8445 0.0213

3.3 Dependence Model

Using the marginals and the dependence model described in Chapter 1, we obtain estimates for

the dependence parameters of the selected commodities shown in Table 3.3. These estimates are

obtained using the tuning parameter that minimizes the BIC score, as shown in Figure 3.2.

Table 3.3: Correlation of selected commodities

Corn Soybean Wheat
Corn 1
Soybean 0.4660 1
Wheat 0.1821 0.1923 1

In Figure 3.2, the correlation estimates are shown for different log lambda in the left penal.

Although there are only 3 correlations, we can still observe that more coefficients are shrunk to

zero when lambda increases. The BIC scores corresponding to different log lambda values are
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displayed in the upper right panel, and the vertical line indicates the value of log lambda that

minimized the BIC score. Here, log(λ) = −9.21034 leads to the minimum BIC and will be set as

the optimal tuning parameter to estimate coefficients. The smallest eigenvalue of the correlation

matrix Σ with the corresponding log lambda is shown in the bottom right panel, where the panel

indicates that the correlation matrix for the optimal tuning parameter is positive semi-definite since

all of its eigenvalues are non-negative.

Figure 3.2: Solution path and optimal tuning parameter for selected commodities

In the 3-dimensional copula case, with only three dependent parameters, there is sufficient data

to estimate the parameters accurately. Thus, the lasso penalty might not be as crucial, and the

optimal tuning parameter may not shrink any coefficient to exactly zero, as depicted in Figure 3.2.

However, in higher-dimensional copula cases, the model may heavily rely on regularization (L1

penalty) to deal with sparse data and prevent overfitting, leading to more coefficients being shrunk

toward zero, ultimately resulting in a positive semi-definite correlation matrix for the optimal

tuning parameter.

3.4 Value at Risk (VaR)

In order to demonstrate the practical application of the estimated model, let’s consider a fictional

insurance contract that covers a selection of commodities, including corn, soybean, and wheat.
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Suppose the correlations among the commodity type are shown in Table 3.3, and the marginal

models are defined as equation (3.1) with coefficients in Table 3.2. Furthermore, the log liability

amounts for each commodity are 10.

Using the marginal models and the given log liability amounts, the distribution of the indemnity

amount for each commodity may be known. And further, the indemnity amount can be randomly

sampled using the simulation from copula with correlations shown in Table 3.3 and inverse cdf

transformation. In other words, random indemnity amounts can be simulated using the copula and

marginal models based on the dependence structure for the selected commodities. The simulation

is repeated B = 100,000 times, and the indemnity amounts are aggregated each run to calculate the

Value at Risk for the insurance portfolio losses. To compare the Value at Risk for the insurance

coverage under the dependence and independence model, this simulation process may be applied

to an independence model using an identity matrix as the correlation matrix.

Once the simulations are complete, the resulting aggregate indemnity amounts from the two

models can be compared using histograms. Figure 3.3 displays the histograms for the dependence

model and the independence model, and the vertical line indicates the 95th percentile for each case.

It can be observed that the dependence model results in a more skewed distribution of aggregate

indemnity amounts and a higher 95th percentile, indicating that the dependence among commodity

types can impact the Value at Risk for insurance coverage. The 95th percentile is 42,255 for the

dependent case, which corresponds to the Value at Risk at a 95% confidence level, indicating there

is a 5% chance that the losses will exceed 42,255. In contrast, the 95th percentile is 37,683 under

independent circumstances.

To gain a more comprehensive understanding of the insurance portfolio’s risk, we calculate the

Conditional Value at Risk (CVaR), also known as Tail Value at Risk. CVaR is the expected loss

given that the loss exceeds the VaR level, it offers more information about the potential severity

of extreme events. The CVaR at a 95% confidence level is 53,220 for the dependent case, and

46,086 for the independent case. For this fictional insurance contract, both the Conditional Value

at Risk (CVaR) and Value at Risk (VaR) turn out to be larger under dependence. This observation
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reminds us that when variables are dependent, we might be especially cautious about the potential

for substantial losses.

Figure 3.3: Simulated density of indemnities for a fictional insurance coverage
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CHAPTER 4: CONCLUSION

In this thesis, the algorithm estimates the normal copula parameters of the composite pairwise

likelihood with the L1 penalty, which is used to induce sparsity into the resulting correlation

matrix and avoid overfitting. Inducing sparsity allows the dependence parameters to be estimated

even in high-dimensional problems, thus it is useful when the number of dependence parameters

among the p commodity types is larger than the sample size n. In the estimation approach, the

majorization-minimization is used to minimize the composite likelihood function iteratively since

the function with penalty has complex constraints and is difficult to optimize directly.

In practical application, the resulting dependence model can be used to calculate Value at

Risk for an insurance contract covering any subset of commodities. The Value at Risk is a

crucial measure for insurance companies to facilitate risk assessment and ensure sufficient capital

reserves for potential losses. With the estimated dependence model, the distribution of aggregated

indemnity amount for the subset of commodities can be simulated using marginal and copula

models, and Value at Risk of indemnity amount covered by contract can be further computed.

According to result in Section 3.4, insurance contract with positive dependencies among commodities

may have higher Value at Risk than one with independence model.

The thesis focuses on using 3 dimensions as an example to illustrate the dependence model and

the extension to the high-dimensional model is shown in the Appendix. With the three-dimensional

setting, the complex theoretical functions and core concepts may be simplified and easily understood.

There are some limitations that may be addressed in future work. One is the approach does not use

the true distribution of correlation matrices in Section 1.3, thus it is possible to result in an invalid

correlation matrix with non-positive semi-definiteness. Another is the approach is restricted in

normal copula cases. For future research, apply the alternative parameterization using Θ to the

algorithm. Moreover, the approach explained in this thesis may be extended to other copula

families. Last, we only set liability amounts as exposure for modeling the expected indemnity

amount in the thesis, however, if there are more explanatory variables available, including them as

exposures may help improve the marginal model.
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APPENDIX

Assumptions of General Case (p dimensions)

Consider the general problem, where we are given observations of a continuous multivariate

response Zij , and liability (exposure) amounts Lij . The observations are given in two matrices:



z11 z12 · · · z1p

z21 z22 · · · z2p
...

... . . . ...

zn1 zn2 · · · znp


and



L11 L12 · · · L1p

L21 L22 · · · L2p

...
... . . . ...

Ln1 Ln2 · · · Lnp


. (4.1)

In practice, we may observe a matrix of explanatory variables in addition to the liabilities. Yet,

for simplicity of the illustration, we assume in this paper that there are no additional explanatory

variables observed. The principle may be easily extended to the case with more covariates (explanatory

variables). We assume that Zij holds the value of zero when Lij is zero. Yet, this is not the only

case when Zij is zero. Typically, the value Zij may be either zero or a positive number with some

probability, say

Pr(Rij = 1|Lij > 0) = E[Rij|Lij > 0], (4.2)

whereRij may be thought of as an indicator of the response being positive, given a postive liability.

This is a typical situation arising in insurance claims modeling, where the data are unbalanced due

to the response being undefined when the liability amount Lij is zero, and given a positive Lij

the response is observed. In practice, the frequency of insurance claims may also be observed,

resulting in the modeling of average severities, as opposed to the total severity. An exampe of

where the frequencies are observed is the article by Frees et al. (2016). The method proposed in

this paper can be extended to this situation as well. Yet, for now let’s assume we are interested

in modeling the total severity Zij directly. We hope to understand the dependence structure of the

observations of the Zij response. For this, we decompose the response, so that

Zij = I(Lij > 0) ·Rij · Yij. (4.3)
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Here, we assume that the indemnity amount Yij satisfies Yij > 0 for each i and j. This allows the

density of Yij to be well defined. We imagine that there is a binary random variable Rij for each

indemnity amount Yij , that holds the value 1 when the observed indemnity amount is positive. We

also assume that Rij and Yij are independent. We may define the observed indemnity amount as

the product of Yij and Rij , so that Rij · Yij are the observed indemnity amounts. Notice that the

following relationship holds:

Zij =


Yij if Rij = 1 and Lij > 0

0 otherwise.
(4.4)

The liability amount Lij may also be zero or a positive number. For this reason, the observed

response Zij is positive only if the liability is positive, and zero (in fact undefined) otherwise. We

consider the general situation, where the marginal models are either given, or may be estimated

from data separately using the Inference for Margins (IFM) approach, described in books and

articles on copula modeling, such as Joe (2014). Thus, we assume that we know the parametric

form and parameters of the distributions Fi1(yi1), Fi2(yi2), · · · , Fip(yip), as well as the densities

fi1(yi1), fi2(yi2), · · · , fip(yip). In other words, we are given marginal models dependent on the

liability amounts Lij so that

Fij(y) = F (y;Lij), i = 1, · · · , n, j = 1, · · · , p. (4.5)

Using these, we hope to find a joint distribution among p variables, f(yi1, yi2, · · · , yip). This task

may be accomplished using a copula. Here, we make an assumption that there exists a multivariate

normal copula C of p-dimension, linking the marginal distributions, so that

C(u1, · · · , up) = Φp(Φ
−1(u1), · · · ,Φ−1(up);Σ), (4.6)

where Φp is the cumulative distribution function for a p-dimensional multivariate normal distribution
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with zero means and correlation matrix Σ, and Φ−1 are the inverse cumulative distribution functions

for standard normal distributions. The density for the copula is

c(u1, · · · , up;Σ) =
∂p

∂u1 · · · ∂up
C(u1, · · · , up;Σ). (4.7)

The joint density is then given by

f(yi1, yi2, · · · , yip) = c (Fi1(yi1), Fi2(yi2), · · · , Fip(yip);Σ) · fi1(yi1) · fi2(yi2) · · · fip(yip). (4.8)

Note that by separating Yij from Zij by factoring out Rij and Lij , we may assume for every

observation i, there exists such a density. Because we are assuming the marginal models are given,

we may assume the input for the copula estimation routine is a matrix of uniformly distributed

values uij , and indicators r∗ij = rij · I(Lij > 0) where

uij =


Fi(zij) Rij = 1, and Lij > 0

0 Rij = 0, or Lij = 0,

(4.9)

and

r∗ij =


1 Rij = 1, and Lij > 0

0 Rij = 0, or Lij = 0.

(4.10)

Shrinkage Estimation of Copula Parameters

In order to estimate the dependence parameters in the matrix Σ, we use the composite likelihood

approach. Specifically, we minimize the composite negative log-likelihood function

ℓ(Σ) = −
n∑
i=1

∑
j>k
r∗ij=1

r∗ik=1

1

mi − 1

[
log c (Fij(yij), Fik(yik); ρjk) + log fj(yij) + log fk(yik)

]
, (4.11)
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where c is a bivariate normal copula, and the weight for observation i, is mi and is obtained by

mi =

p∑
j=1

r∗ij, (4.12)

or in other words, the number of non-zero responses for observation i. Note that given the marginal

distributions Fij for each i = 1, · · · , n, j = 1, · · · , p, the likelihood in Equation (4.11) is a function

in the dependence parameters only. Note that Σ is symmetric.

Σ =



1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p
...

... . . . ...

ρp1 ρp2 · · · 1


. (4.13)

If p is large, then the problem is high-dimensional, since the number of dependence parameters in

the matrix Σ is exactly
(
p
2

)
. In order to automatically reduce the number of non-zero dependence

parameters, we use a shrinkage approach. For this, let

ρjk =
tan−1(ψjk)

π/2
, −∞ < ψjk <∞, (4.14)

which ensures that for any ψjk, the resulting dependence parameter satisfies −1 < ρjk < 1. We

then attempt to minimize the penalized negative log likelihood

ℓP (Ψ) = ℓ(Σ) + λ
∑
j>k
r∗ij=1

r∗ik=1

|ψjk|, (4.15)
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where

Ψ =



1 ψ12 · · · ψ1p

ψ21 1 · · · ψ2p

...
... . . . ...

ψp1 ψp2 · · · 1


. (4.16)

The problem boils down to estimating the parameters in the Ψ matrix, some of which may end up

being zero due to the L1 penalty on the likelihood. This may be done using coordinate descent. In

this thesis, the tuning parameter λ is to be determined by minimizing the BIC score after solving

the problem for a set of λ values. In order to estimate the dependence parameters, let

Φijk = − 1

mi − 1

[
log c (Fij(yij), Fik(yik); ρjk) + log fij(yij) + log fik(yik)

]
, (4.17)

so that

ℓ(Σ) =
n∑
i=1

∑
j>k
r∗ij=1

r∗ik=1

Φijk. (4.18)

Here, we assume that c is the density of a bivariate normal copula. This assumption allows us to

write the following:

Φijk = − 1

mi − 1

log
 1√

1− ρ2jk

−
(a2i + b2i )ρ

2
jk − 2aibiρ

2(1− ρjk)2
+ log fij(yij) + log fik(yik)

 ,
(4.19)

where

ai =
√
2 erf−1(2uij − 1), uij = Fij(yij)

bi =
√
2 erf−1(2uik − 1), uik = Fik(yik), (4.20)
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with

erf(z) =
2√
π

∫ z

0

exp(−t2)dt. (4.21)

Furthermore, remember that we have parametrized the dependence parameters so that we have

ρjk = 2 tan−1(ψjk)/π. In order to obtain the gradient and hessian of the likelihood in terms of the

parameters ψjk, consider
∂Φijk

∂ψjk
=
∂Φijk

∂ρjk

∂ρjk
∂ψjk

. (4.22)

The first and second terms in the product may be obtained by differentiation.

∂Φijk

∂ρjk
= − 1

mi − 1

[
ρjk

1− ρ2jk
+
aibiρ

2
jk − (a2i + b2i )ρjk + aibi

(1− ρ2jk)
2

]
(4.23)

∂ρjk
∂ψjk

=
2

π(1 + ψ2
jk)
. (4.24)

Furthermore, we have

∂2Φijk

∂ψ2
jk

=
∂2Φijk

∂ρ2jk

(
∂ρjk
∂ψjk

)2

+
∂Φijk

∂ρjk

(
∂2ρjk
∂ψ2

jk

)
, (4.25)

where

∂2Φijk

∂ρ2jk
= − 1

mi − 1

[
1 + ρ2jk

(1− ρ2jk)
2
+

{2aibiρjk − (a2i + b2i )} (1− ρ2jk)
2

(1− ρ2jk)
4

+
4
{
aibiρ

2
jk − (a2i + b2i )ρjk + aibi

}
(1− ρ2jk)ρjk

(1− ρ2jk)
4

]
, (4.26)

and

∂2ρjk
∂ψ2

jk

= − 4ψjk
π(1 + ψ2

jk)
2
. (4.27)
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Denote the flattened vector of parameters by a
(
p
2

)
dimensional vector

ψ = (ψ21, ψ31, · · · , ψp1, ψ32, ψ42, · · ·ψp2, · · · , ψp,p−1)
T . (4.28)

The Hessian matrix has dimension
(
p
2

)
×
(
p
2

)
, and is diagonal. For simplicity, we denote the entries

of the Hessian matrix using j and k, the Hessian matrixHψ has entries

Hψ(j, k) =
n∑
i=1

∂2Φijk

∂ψ2
jk

, j > k, (4.29)

where in the three dimensional example, there are only three possible values for the j and k indices:

(2, 1), (3, 1), and (3, 2). Denote the gradient vector by

Uψ(j, k) =
n∑
i=1

∂Φijk

∂ψjk
, j > k. (4.30)

Remember that j and k are indices for the dependence parameter matrix, not the Hessian matrix

itself. Also remember that the off diagonal elements of Hψ are zero. We take a second order

Taylor series approximation to the unpenalized negative log-likelihood function in Equation (4.18)

around a given point ψ̃.

ℓQ(ψ) = ℓ(ψ̃) + ŨT
ψ (ψ − ψ̃) + 1

2
(ψ − ψ̃)TH̃ψ(ψ − ψ̃), (4.31)

Then, we would like to minimize the following penalized objective function:

PQ(ψ) = ℓQ(ψ) + λ
∑
j>k
Rij=1
Rik=1

|ψjk|. (4.32)
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For this, we use the majorization minimization principle. First, define

UQ = ∇ℓQ(ψ) (4.33)

HQ = ∇2ℓQ(ψ), (4.34)

where the entries of UQ are given by

UQ(j, k) = Ũψ(j, k) + H̃ψ(j, k)(ψjk − ψ̃jk)

=

(
m∑
i=1

∂Φ̃ijk

∂ψjk

)
+

(
m∑
i=1

∂2Φ̃ijk

∂ψ2
jk

)
(ψjk − ψ̃jk), (4.35)

and

HQ(j, k) = H̃ψ(j, k) =
n∑
i=1

∂2Φ̃ijk

∂ψ2
jk

, (4.36)

where the simplicity is due to the fact that Hψ is diagonal. Notice that because of the simplicity,

HQ is also diagonal. Given ℓQ(ψ), consider updating current estimates ψ̆. The new parameters

ψ̆(new) is given by solving

ψ̆(new) = argmin
ψ
ℓQ(ψ̆) + Ũ

T
Q(ψ − ψ̆) + (ψ − ψ̆)TH̃Q(ψ − ψ̆) + λ

∑
j>k
r∗ij=1

r∗ik=1

|ψjk|. (4.37)

The solution for this problem is given by

ψ̆jk(new) =

(
γ̃ψψ̆jk − ŨQ(j, k)

)(
1− λ

|γ̃ψψ̆jk−ŨQ(j,k)|

)
+

γ̃ψ
, (4.38)

where γ̃ψ is the largest eigenvalue of H̃Q.
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