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ABSTRACT 

 Artificial intelligence (AI) has evolved immensely in recent years, with AI achieving 

human levels of performance on a wide variety of tasks. However, AI has had limited adoption in 

clinical settings despite its promising prediction, classification and pathology detection 

applications. For a machine learned (ML) model to train effectively, the observed data must be a 

diverse, accurate representation of the true distribution. Therefore, to properly estimate the true 

distribution, extremely large datasets become necessary. In healthcare scenarios, datasets of 

sufficient size may be rare or absent, thus hindering the training of ML models. One of the ways 

to mitigate this problem is through data augmentation, where we supplement our datasets with 

slightly modified copies of already existing data or newly created synthetic data. Recently, 

sophisticated data augmentation methods are based on a class of neural networks (NNs) called 

Generative Adversarial Networks (GANs), which can generate new images of high perceptual 

quality. This dissertation describes the design and development of a new type of GAN, named 

near-pair patch cycleGAN (NPP-cycleGAN), which generates realistic pathology-present images. 

Here, we train and test this network using pediatric chest radiographs. We demonstrate that the 

proposed GAN can generate high quality fracture-present pediatric chest radiographs. With the 

addition of these synthetic images to an object detector’s training dataset, we are able to improve 

the fracture detection performance. These results suggest that our proposed method can be applied 

to other pathology detection tasks and could potentially enable improved object detector 

performance in multiple clinical scenarios. 
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CHAPTER 1: PREVIOUS AND RELATED WORK 

In this chapter I will describe three of my major research projects. I will review the key 

findings and methodologies of the relevant studies, highlighting their significance. For source code 

and data, please refer to Appendix A. These efforts were presented in the following outlets: Section 

2.1 [1], Section 2.2 (to be submitted to Journal of Cardiovascular Computed Tomography), Section 

2.3 [2].   

1.1 Machine Learned Approach for Estimating Myocardial Blood Flow from Dynamic CT 

and Coronary Artery Disease Risk Factors  

 Heart disease is one of the leading causes of death in the US, with about 1 in 20 adults over 

the age of 20 diagnosed with some form of coronary artery disease. The estimation of myocardial 

blood flow (MBF) is crucial for diagnosing and risk stratifying myocardial ischemia. Currently, 

the gold standard for non-invasive, quantitative MBF measurements is to use positron emission 

tomography (PET). However, we seek to use low radiation dosage dynamic contrast-enhanced 

computed tomography perfusion (dCTP) as an alternative approach due to its wide availability and 

lower cost. This work uses machine learning techniques to estimate MBF from a combination of 

dCTP derived time attenuation curves (TACs) and 9 risk factors for coronary artery disease (CAD). 

We compare our machine learned MBF estimates to PET derived estimates, and for a control, we 

used a 2-compartmental model that has been previously presented and verified with simulation 

studies. Four machine learning regression techniques were explored: 1) Binary regression tree, 2) 

Ensemble of Learners regression, 3) Support vector machine, and 4) Kernel regression. Our best 

performing model (ensemble of trees) had a root mean squared error (RMSE) of 0.47 ml/min/g. 

Comparatively, the compartmental model achieved an RMSE of 0.80 ml/min/g. In general, the 

inclusion of risk factors neither improved nor worsened estimates. Overall, our machine learning 

approach produces comparable MBF estimations to verified DCE-CT and PET estimates and can 
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provide rapid assessments for myocardial ischemia. 

1.1.1 Introduction  

The non-invasive quantitative assessment of myocardial perfusion is essential for grading 

coronary artery disease. Quantitative MBF provides valuable prognostic and diagnostic 

information and can be measured through the use of positron emission tomography (PET) [3]–[5], 

magnetic resonance imaging (MRI) [6]–[9], and computed tomography (CT) [7], [10]–[12]. 

However, PET remains the gold standard for quantitative MBF measurements. Recently, cardiac 

perfusion related PET has been focused on reducing costs and improving patient outcomes through 

the development of new radiotracers [13], determining optimal thresholds to stratify CAD [14], 

[15], or diagnostic accuracy studies [16]–[18]. Even with these studies, the use of PET for 

quantifying ischemia has remain limited due to the cost of PET perfusion tracers, methodologic 

complexity, and insurance reimbursement issues [4]. MRI, likewise, shares the same cost, 

availability. and complexity drawbacks [10]. CT, on the other hand, is low cost, rapid, widely 

available, and produces images of better spatial resolution than PET [12]. However, CT based 

estimates are generated with compartmental modeling that requires the entire time course of the 

contrast agent and that do not implicitly model noise properties in the data (requiring relatively 

high radiation dose).  

This work compares four different machine learning algorithms to derive MBF from dCTP 

and patient risk factors. Using simple machine learning methods has many potential benefits: a) 

bypassing computationally expensive compartmental models, b) inherently learning noise 

properties of the data, and c) identifying future candidate approaches for simplifying CT 

acquisitions. Other studies have tried to use machine learning (ML) techniques for cardiology tasks 

due to its ability to handle large volumes of data and its ability to model hidden patterns within 

data [19]. ML has been used to predict the likelihood of revascularization in patients with CAD 
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[20], assessment of coronary stenosis through FFR prediction [21], to predict major adverse 

cardiac events [22], and for calcium scoring [23]. We are the first, to our knowledge, to directly 

estimate MBF using a ML model trained on a fusion of DCE-CT derived time attenuation curves 

and patient risk factors. Here, we compare our ML derived estimates to CT-derived 2-

compartmental model and quantitative PET estimates.  

1.1.2 Materials and Methods 

Twenty-nine patients underwent clinical rest and stress regadenoson rubidium-82 PET 

scans. QPET software (Cedars-Sinai, Los Angeles, CA) was used to produce quantitative PET 

MBF estimations. Each patient then underwent a DCE-CT exam, using a Revolution CT scanner 

(GE Healthcare, Waukesha, WI) with a 16 cm z-axis coverage, within 30 days of the initial PET 

scan. Using a custom, previously verified 2-compartmental model written in MATLAB (ver 

2017b; MathWorks, Natick, MA) we estimated MBF from the CT images [24]. For each PET and 

CT scan, we segmented the heart into the recommended 17-region myocardial AHA model yield 

a total of 493-time attenuation curves and segments for flow estimation  [25].  

In Figure 1, representative time attenuation curves (TAC) for one segment are shown. 

Quantitative MBF was expressed as mL/min/gram of myocardial tissue. We explored 4 ways of 

summarizing the TAC data for our ML models: (1) trained on only the myocardial output response 

TAC, (2) trained on both the arterial input and myocardial output TAC, (3) trained on semantic 

feature selection of our myocardial output TAC, and (4) trained on principal component analysis 

(PCA) of the myocardial output TAC. For our semantic feature selection, we choose predictors 

that we already know are important for flow estimation. These predictors include the rising slope, 

area under the curve normalized by time, and time to maximum concentration of our myocardial 

output TAC. For dimensionality reduction through PCA, we chose to keep the first 5 coefficients. 

For each variation we also concatenated 9 different patient risk factors and trained a separate 
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model. These patient risk factors include age, gender, BMI, hypertension, and presence of diabetes. 

We applied four machine learning regression techniques: 1) Binary regression tree, 2) Ensemble 

of learners regression, 3) Support vector machine, and 4) Kernel regression to the four sets of 

summarized data in MATLAB (ver. 2020b). For all methods the data was divided into 70% 

training and 30% testing cases. Results report RMSE of the tests cases for each estimate using 

quantitative PET derived flow as our true values. 

  

Figure 1. Representative time attenuation curve of 1 region of a 17-segment model (Left). In red 

is the injected bolus and in blue is the myocardial response. Visualization of the semantic features 

for data summarization (Right). 

1.1.3 Results and Discussion 

On average, the MBF estimates for PET were 1.76±1.05 mL/min/g and for the 

conventional compartmental modeling estimates from DCE-CT were 1.58±0.84 mL/min/g. Table 

1 summarizes the model performance for each regression model trained on various TAC data 

summaries. As a measurement for performance, root mean squared error was calculated for the 

predicted flows in our test data set. On average, ensemble of learners had the lowest RMSE across 

all types of predictors, including the best performing model (RMSE = 0.47) which trained on 

semantic features + risk factors. For comparison, verified dCTP flow estimations using a two 

Rising Slope

AUC 

Normalized 

by Time

Time to Max Concentration
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compartmental model yielded an RMSE of 0.80 ml/g/min. The addition of risk factors as predictors 

had mixed effects. Of the 16 different data summary + model combinations, 8 were improved by 

the addition of risk factors and 8 worsened. It is interesting to note that semantic features + risk 

factors gave both the best and worst performing models. Overall, any variation of semantic features 

estimates outperformed PCA estimates. When only using risk factors and not accounting for any 

TAC data, all four ML methods yield poor estimates. SVM and kernel models that training on 

complete TAC curve data yielded lower RMSE than training on summarized data. The opposite is 

true for binary tree and ensemble models. In general, training on either the full myocardial TAC 

or with the addition of the input TAC performed better than summarized data. Additionally, the 

semantic features of rising slope, time to max, and area under the curve normalized by time were 

found to be a better data summary technique than PCA, having a generally lower RMSE across all 

models. 

Table 1. Root mean squared error (RMSE) of MBF estimates for each regression model and TAC 

data summary technique. Units in ml/min/g. Best and worst performing approach shown with 

highlighted cells (green for best, red for worst). For reference, our compartmental model has an 

RMSE of 0.80. 

Model Binary 

Regression Tree Ensemble 

Support Vector 

Machine 

Kernel 

Regression 

Compartmental 

Model 

Myo TAC 0.86 0.72 0.64 0.67 0.80 

Myo TAC + Risk 

Factors 
0.89 0.72 0.79 0.76 

 

Input + Myo TAC 1.23 0.71 0.75 0.72  

Input + Myo TAC 

+ Risk Factors 
1.19 0.80 0.71 0.69 

 

Semantic Features 0.94 0.54 0.78 1.48  

Semantic Features 

+ Risk Factors 
1.00 0.47 1.59 0.71 

 

PCA 0.96 0.66 0.78 0.85  

PCA + Risk 

Factors 
1.00 0.58 0.63 1.10 

 

Only Risk Factors 1.12 0.77 1.10 0.81  

Across all models, the higher MBF values tended to be underestimated compared to the 

PET derived estimates. In Figure 2A-B, a Bland-Altman plot of the 2-Compartmental model 
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derived estimates vs PET estimates is shown. The 2-comp model performs poorly in flows above 

2 mL/min/g; overestimating between 2-3 mL/min/g and underestimating at < 3 mL/min/g. Figure 

2C-D presents correlation and Bland-Altman plots of the “Semantic Features” data technique + 

Ensemble Tree, comparing our best fitting model and the PET. The semantic feature technique 

reduced each TAC to 3 features, for a total of 6 predictors as inputs the regression tree (features 

from both input function and myocardial response function). Likewise, Figure 2E-F presents 

results from the “Semantic Features + Risk Factors” approach that included 3 TAC features and 9 

risk factors as inputs to the regression tree.   

With multi-observation correction, the “Semantic Features” estimates have a mean 

estimate of 1.55±0.56 mL/min/g. We can see a general linear correlation (Fig. 2C) between PET 

and our ensemble regression tree model flow estimates, which indicates a moderate agreement 

between both methods. The Bland-Altman plots also show where the slight overestimation of our 

model occurs. In Figure 2D, the negative bias seems to increase with respect to higher flows, 

indicating our model performs poorly, and underestimates more significantly in this area. Both the 

general linear correlation (Fig. 2E) and underestimation in high flow areas (Fig. 2F) are also seen 

with the “Semantic Feature + Risk Factors” estimates. The addition of risk factors as predictors 

increased our tree depth and conversely improved the regression estimates significantly. The linear 

correlation is much stronger, and the negative bias is much smaller than the “Semantic Features” 

only estimates. 
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Figure 2. Performance on test set.  Correlation and Bland-Altman plots of 2-Compartmental model 

(row 1), Ensemble of Learners Tree regression with Semantic features (row 2) and Ensemble of 

Learners Tree regression with Semantic features and risk factors (row 3). A) Basic correlation plot 

between 2-compartment model and PET flow estimates. Best fit line, r2, sum of squared error, and 

number of samples are reported. B) Bland-Altman plot. A mean difference of -0.08 indicates no 

inherent biases. C) Basic correlation plot between ensemble regression tree estimates and PET 

flow estimates using semantic TAC features. D) Bland-Altman plot. A mean difference of 0.1 

indicates no inherent biases. E) Basic correlation plot of ensemble regression tree estimates using 

TAC features and nine risk factors. F) Bland-Altman plot. A mean difference of 0.05 indicates no 

inherent biases. 
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We assessed the performance of four different machine learning regression models using 

summarized TAC curve and coronary artery disease risk factors as predictors. In general, machine 

learning provided better MBF estimates compared to conventional compartmental modeling. The 

use of semantic features in an ensemble regression tree led to estimates with an RMSE of 0.54 

ml/min/g, compared to conventional compartmental modeling estimates with an RMSE of 0.80 

ml/min/g.  The addition of patient risk factors to the TAC data further improved machine learned 

estimates to 0.47 ml/min/g. Overall, an ensemble regression tree model trained on semantic 

features such as rising slope, area under the curve normalized by time, and time to maximum 

concentration had the lowest RMSE. The large variance in both the compartmental model and 

machine learned estimates can partially be attributed to significant noise in PET MBF estimates. 

We plan to continue to fine tune our model to allow for better identification of ischemic areas, as 

well as look into using reduced temporal sampling techniques to reduce radiation dosage. 

1.2 Diagnostic Accuracy of Combined Dynamic Myocardial Perfusion CT and Coronary 

CT Angiography Compared with PET 

Estimating myocardial blood flow (MBF) is valuable for diagnosing and risk stratifying 

myocardial ischemia. Positron emission tomography (PET) is the standard for non-invasive, 

quantitative MBF measurements. However, its high cost and limited availability have limited its 

use. Dynamic contrast-enhanced computed tomography perfusion (dCTP) offers a widely 

accessible approach for MBF measurements offering the potential for similar diagnostic 

information as PET. In this work, we compare the ischemia detection performance of dCTP and 

cardiac CT angiography (CTA) to cardiac PET. We propose a new metric (FFR-CTPA) for 

combining dCTP derived myocardial blood flow and coronary CTA stenosis information. CT 

derived myocardial flow reserve (MFR) and stress MBF detected regional PET-confirmed 

ischemia with area under the curve (AUC) of 0.84±0.04 and 0.85±0.04. Combining CTA 
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information with the MFR and stress MBF in the proposed FFR-CTPA improved the detection of 

ischemia (p<0.001), with AUC of 0.85±0.04 and 0.89±0.03 respectively. The combination of CTA 

anatomical information with stress MBF yielded the highest detection performance. This work 

demonstrates that dCTP + CTA can generate better ischemia detection performance than stenosis 

information or CT-derived flow alone. 

1.2.1 Introduction 

Assessment of the coronary arteries is often performed with invasive coronary 

angiography. However, approximately 40-50% of all invasive angiographies do not find evidence 

of stenosis [26]. Consequently, in low to moderate stenosis risk cases, CT angiography (CTA) is 

preferred since it is noninvasive [27]. While it offers high sensitivity for CAD, the quality of a CT 

angiogram can be affected by the motion of heart, presence of arterial calcification, and presence 

of a coronary stent [28], [29]. Another limitation of CTA is noisy assessment of stenosis in distal 

coronary arteries [30]. Most importantly, it lacks functional information for a given stenosis, 

leading to poor evaluation of ischemia [27]. Therefore, many efforts have sought to add functional 

information, such as myocardial blood flow (MBF) information, to non-invasive CTA exams [31].   

Cardiac positron emission tomography (PET) is considered to be the gold standard in 

quantitative MBF measurements [32]–[34]. Numerous efforts have advanced the use of different 

myocardial perfusion tracers, such as 82Rb or 13N-ammonia for PET [35], [36]. Despite the 

validation of these tracers and the clinical tools for generating estimates [37], the cost of the tracers 

and imaging technology of PET has limited the wide-spread use of cardiac PET perfusion imaging. 

Measuring MBF using dCTP offers a cheaper, faster, and more accessible alternative over PET 

[10], [38]. Numerous studies have validated the quantitative accuracy of DCE-CT for MBF 

measurements and its use in grading ischemia [10], [24], [39]–[41]. 
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In this work, we are among the first to a) evaluate CT myocardial perfusion for the 

detection of regional ischemia with PET as the reference test and b) use a quantitative scoring 

metric for the combination of perfusion and anatomical information. Recent efforts have reported 

the diagnostic accuracy of CT myocardial perfusion imaging compared to different reference 

standards. Pontone et al. presented a meta-analysis of 77 studies of leading non-invasive tests, 

including 7 studies of stress CT perfusion and CTA, for the detection of abnormal invasive 

fractional flow reserve (FFR) [42].  Similarly, Lu et al. conducted a meta-analysis of just dynamic 

myocardial perfusion CT compared to either another myocardial perfusion imaging modality 

(SPECT/PET/MRI) or invasive FFR [43]. At the time, their search revealed thirteen prior studies 

for this purpose, although none of them used PET as a reference perfusion test. Recent work by 

Nous et al. reported dynamic CT perfusion compared to invasive FFR in a study of 132 patients 

from 9 centers [44].  Expert readers combined the CT perfusion and CTA information in a non-

quantitative, although rigorous, fashion. This leads to perfusion+anatomical information that is not 

reported on a continuous scale to allow for area under the receiver operating curve assessment and 

adjustment of sensitivity/specificity performance. 

In this work, we combine the functional information of dCTP MBF measurements and 

anatomical information from CTA to grade ischemia and compare it to quantitative PET. We 

propose a new scoring method for combining the MBF and CTA information into a continuous 

variable representative of flow reduction from a stenosis. The dCTP MBF measurements were 

presented in our previous work that evaluated the quantitative (not diagnostic) accuracy of global 

MBF estimation of CT compared to PET [24]. This work uses regional MBF estimates and seeks 

to determine the diagnostic accuracy of CT assessment compared to PET for the detection of 

regional ischemia. Here, we determine the diagnostic accuracy of the dCTP values and the 
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combined CT + CTA information. 

1.2.2 Materials and Methods 

Study Design 

Anonymized data, CT-MBF estimation tools, and MBF estimates that we generated in our 

previous work are publicly available at the Dataverse and can be accessed at 

https://doi.org/10.7910/DVN/VUP5TC. Details on the study protocol, image acquisition, and 

patient demographics were previously presented [24]. Briefly, thirty-four patients received a rest 

and regadenoson stress rubidium-82 PET scan and then within 30 days a dCTP with CTA exam. 

All CT exams were performed on a Revolution CT scanner (GE Healthcare, Waukesha, WI) with 

a 16 cm z-axis coverage.  

Of the 34 total DCE-CT scans, 5 were excluded due to injection errors or mismatched 

hemodynamics. All dCTP, PET, and CTA images  were aligned along the short axis view and 

segmented according to the standard American Heart Association 17-region model (Figure 3) [25]. 

The myocardial blood flow was estimated for each region and modality to provide regional 

absolute quantitative MBF estimates in units of mL/min/gram. This led to a total of 493-time 

attenuation curves and segments for comparison between PET and CT.  
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Figure 3. Example frame from a DCE-CT image (A) and example CT-derived MBF (B) Rest, (C) 

Stress, and (D) MFR estimates for single patient performed at the 17-segment level. 

PET MBF estimation  

PET estimations were generated using the QPET software (Cedars-Sinai, Los Angeles, 

CA). Following ischemic definitions proposed by Johnson and Gould, these regional absolute 

MBF estimates were used to assign each region as either A) normal (stress flow > 1.12 mL/g/min 

or myocardial flow reserve (MFR) > 2.03) or B) at moderately to definitely ischemic (stress flow 

< 1.12 mL/g/min and a myocardial flow reserve (MFR) > 2.03) [45]. This definition for each 

region served as the reference test for evaluating the diagnostic accuracy of the CT-derived 

information. Their study suggests that the threshold for a binary definition of ischemia vs non-

ischemia is a stress flow less than 0.91 mL/g/min and a myocardial flow reserve (MFR) of less 

than 1.74.  

CT MBF estimation  

The CT MBF estimates were generated with custom processing using MATLAB (ver 

A B

mL/g/min

C D

Rest

MFRStress
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2017b; MathWorks, Natick, MA) and JSim. The left ventricular myocardium was isolated using 

semiautomated edge detection with manual interaction to account for any interframe motion, when 

necessary. The median CT number within the myocardium was extracted from each frame over 

time to generate the myocardial TAC. The median CT number in the descending aorta was 

extracted for the input function TAC. We used a 2-compartment model that has been previously 

presented and verified with simulation studies [10], [24]. Driven by the input function TAC, the 

model was optimized across 4 free parameters (MBF, volume of interstitial fluid, baseline 

correction, and delay between input and myocardial TAC) to fit the myocardial TAC to generate 

MBF estimates in units of milliliters per minute per gram. Myocardial flow reserve (MFR) was 

calculated as the ratio between MBF at stress to MBF at rest.  

CCTA stenosis evaluation  

Assessment of anatomic CTA vessel information was performed through joint 

interpretation by a cardiology fellow and cardiologist. One-beat, whole heart axial scans were 

acquired for all CTA exams with padding from 60-80% of the cardiac cycle, gantry rotation 280ms, 

tube voltage 120 kVp, and an effective tube current of approximately 500 mA. Images were 

reconstructed every 5% phase with 0.625 mm slice thickness and standard reconstruction kernel. 

The CTA interpretation involved the visual match of the coronary arteries to downstream 

myocardial segments. Each myocardial segment was assigned a percent stenosis ranging from 0 

for coronary trees with no apparent stenosis to 100% for an upstream branch with one or more 

fully occluded stenoses. For analysis purposes, any unevaluated CTA segments due to heavy 

artifacts were imputed by conservatively assuming the max percent stenosis of the patient. The 

cardiologists were blinded to the myocardial perfusion information during the CTA interpretation.  
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Combined dCTP and CCTA Diagnostic Score, FFR-CTPA 

 dCTP and CTA information were combined to yield a new diagnostic score, Fractional 

Flow Reserve from CT perfusion and anatomy (FFR-CTPA), and is calculated by summing their 

individual quantitative estimates in a weighted fashion: 

 

(1) 

Where SFFR-CTPA indicates our proposed diagnostic score, which combines the patient-

specific myocardial perfusion estimate, Sp, and percent stenosis, Ss. This score includes constants: 

τp, which is the perfusion threshold for ischemic vs. non-ischemic regions, and τs, which is the 

percent stenosis threshold for ischemic vs. non-ischemic regions. This score can be calculated for 

the three different measures of perfusion: resting state, stress state, or myocardial flow reserve.   

The new score incorporates three concepts: 1) the contribution of the perfusion and stenosis 

information is normalized (divided by) the threshold for ischemia detection for that information, 

2) perfusion information is slightly more predictive of ischemia than stenosis information and 

therefore receives more weight; 3) the score is clipped to a range of 0-2 to enable easy 

interpretation. 

A lower SFFR-CTPA suggests a higher severity of ischemia; as MBF or MFR decreases or 

percent coronary stenosis increases SFFR-CTPA will decrease. The FFR-CTPA score was calculated 

for rest, stress, and MFR perfusion states, requiring different threshold, τp, values in the 

calculation. The relative weighting of each contribution was adjusted to achieve reasonable 

performance on the data and provide round numbers for ease of implementation. Specifically, the 

weighting was changed in intervals of 10% until the highest AUC was achieved. This led to the 
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dCTP information receiving 60% weight in the new score and CTA stenosis a 40% weight.  Values 

for each variable are given in Table 2. 

Table 2. Example frame from a DCE-CT image (A) and example CT-derived MBF (B) Rest, (C) 

Stress, and (D) MFR estimates for single patient performed at the 17-segment level. 

 

Comparative and Statistical Analysis 

We used an unpaired parametric t-test to determine group differences in MBF between 

ischemic and non-ischemic regions. ROC analysis was performed using dCTP diagnoses as 

classifier predictions and PET diagnoses as true labels. Area under the ROC (AUC), accuracy at 

90% sensitivity, and specificity at 90% sensitivity were all reported. An unpaired, two sample, t-

test was used to determine the group differences between AUC, accuracy, and specificity of rest 

vs stress vs MFR. Similar analysis was performed using a 3-region model, where the original 17 

regions were regrouped into three regions based on the supply beds of the three main coronary 

arteries: left anterior descending, right coronary artery, and left circumflex. Bootstrapping methods 

were employed, with replacement, to generate error bar on all performance measures. A total of 

1000 resamples were used for each error bar. 

1.2.3 Results 

Figure 4 presents boxplots of dCTP derived MBF estimates grouped according to PET 

diagnosed non-ischemic vs ischemic. There is a significant separation between non-ischemic and 

MFRStress MBFRest MBFSymbolParameter

Constant Values

1.740.91 mL/g/min0.50 mL/g/minτp
Threshold for Ischemic vs 
Non-Ischemic, Perfusion

70%70%70%τ s
Threshold for Ischemic vs 

Non-Ischemic, Percent Stenosis

Summary of segments

2.30±1.602.04±0.89 mL/g/min0.96±0.36 mL/g/minSpMyocardial Perfusion Estimate

46±36%SsPercent Stenosis

0.52±0.391.05±0.510.87±0.41FFR-CTPACombined Diagnostic Score
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ischemic dCTP derived MBF values for resting, stressed, and MFR (top row). This separation 

increases using our combined score, SFFR-CTPA, suggesting better stratification of ischemia (bottom 

row). The bottom left graph shows the values from CTA stenosis information alone.  

 

Figure 4. Comparison of the CT derived measures grouped according to PET diagnosed non-

ischemic vs ischemia regions. The first row summarizes measures from CT flow information (rest, 

stress, MFR) and bottom row summarizes measures from CT anatomy (first column) and 

combined FFR-CTPA using rest, stress, and MFR respectively. The percent difference between 

groups and p-value are presented on these box plots.   
 

In Figure 5A a ROC curve was constructed for the prediction of ischemia using dCTP 

derived MFR, rest MBF and stress MBF measurements. Here, we see that stress MBF produces 

the high AUC (0.85), suggesting decent diagnostic accuracy. In Figure 5B, a similar ROC curve 

was constructed using SFFR-CTPA scores to predict ischemia. For all perfusion estimates, the 

combined score increased AUC. Particularly, SFFR-CTPA calculated using stress MBF is the best at 

diagnosing ischemic regions. For reference, a random predictor of ischemia would yield an AUC 

of 0.5.  
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Figure 5. Receiver Operating Characteristic (ROC) curves for CT-derived regional myocardial 

blood flow estimates (A) and for CT-derived flow estimates combined with stenosis information 

(B) for the diagnosis of ischemia. ROC was performed on 493 regions, 18 of which are labeled as 

ischemic via PET. 
 

Table 3 displays summary statistics for dCTP and SFFR-CTPA results. Rest MBF performed 

poorly as a detector, with an AUC of 0.64. The stress MBF threshold to achieve 90% sensitivity 

was 1.93 mL/g/min and is much higher than the 0.91 mL/g/min PET threshold, indicating general 

overestimation of CT MBF. Both MFR and stress MBF were better classifiers of ischemia, having 

an AUC of 0.84 and 0.85, respectively. Stress MBF achieved an accuracy at 90% sensitivity score 

of 0.54 and a specificity at 90% sensitivity of 0.53 where MFR achieved slightly higher 

performance (0.59 and 0.58, respectively). Stenosis information alone performed relatively poorly 

with an AUC of 0.69.  Combining CTA information with the CT classifiers significantly improved 

the classification performance over the CT only classifier. The MFR, rest MBF, and stress MBF 

AUC all increased to 0.85, 0.72, and 0.89, respectively. The accuracy and specificity at 90% 

sensitivity also improved (Table 3) with the addition of CTA information for both rest and stress 

MBF. Interestingly, MFR did not benefit from the addition of CTA information as much as rest or 

stress MBF, despite being a combination of the two metrics. Using bootstrapping with 

replacement, there was sufficient evidence that all reported mean AUC, accuracy, and specificity 

estimates are different from each other (p<0.0001) except for the CT Stress MBF compared to 
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FFR-CTPA MFR measures. 

Table 3. Summary statistics of detection analysis for CT derived estimates for 17-segment 

information. 

Method AUC* 
Accuracy at 

90% Sensitivity 

Specificity at 

90% Sensitivity 

Threshold to achieve 

90% Sensitivity 

CT Rest MBF 0.64 ± 0.07 0.24 ± 0.02 0.22 ± 0.02 1.19 ± 0.14 mL/g/min 

CT Stress MBF 0.85 ± 0.05 0.54 ± 0.02 0.53 ± 0.02 1.93 ± 0.29 mL/g/min 

CT MFR 0.84 ± 0.04 0.59 ± 0.02 0.58 ± 0.02 1.89 ± 0.19 r.u. 

CCTA Stenosis Only 0.69 ± 0.06 0.37 ± 0.02 0.35 ± 0.02 30.00 ± 5.59 % 

FFR-CTPA Rest 0.72 ± 0.06 0.26 ± 0.02 0.24 ± 0.02 1.13 ± 0.06 n.u. 

FFR-CTPA Stress 0.89 ± 0.03 0.66 ± 0.02 0.65 ± 0.02 0.85 ± 0.11 n.u. 

FFR-CTPA MFR 0.85 ± 0.04 0.58 ± 0.02 0.57 ± 0.02 0.42 ± 0.06 n.u. 

 

The final column of Table 3 indicates the threshold for that measure to operate at a high 

sensitivity. For example, we would classify anything below 1.93 mL/g/min as ischemic for dCTP 

derived stress MBF. Likewise, anything below 0.85 would classify as ischemic for our stress SFFR-

CTPA. With this threshold, we are expected to detect 90% of all disease and have a specificity of 

0.65.  

To see if diagnostic performance is a function of each coronary artery region, we 

summarized the stress MBF and stress SFFR-CTPA accuracies for all 17 regions and grouped them 

together according to the coronary arterial distribution proposed by the American Heart 

Association (Figure 6). Table 10 shows relevant metrics including AUC, accuracy at 90% 

sensitivity, specificity at 90% sensitivity. We see in Figure 6B that our stress SFFR-CTPA information 

produced accuracies at 90% sensitivity of 0.69, 0.66, and 0.62 for LAD, RCA, and LCX, 

respectively. This is an improvement over stress MBF alone, who had accuracies of 0.59, 0.50, 

and 0.53, respectively. AUC is slightly higher in RCA and LCX regions compared to LAD. 
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Table 4. Summary of detection analysis for Stenosis only, Stress MBF, and FFR-CPTA with 

Stress by major coronary bed. 

Method 
 

Region 

Prevalence of 

ischemia each 

segment 

AUC 
Accuracy at 

90% Sensitivity 

Specificity at 

90% 

Sensitivity 

CT Stenosis  

LAD 8/203 0.58 ± 0.10 0.51 ± 0.03 0.52 ± 0.04 

RCA 6/145 0.77 ± 0.08 0.58 ± 0.04 0.57 ± 0.04 

LCX 4/145 0.78 ± 0.09 0.57 ± 0.04 0.55 ± 0.04 

CT Stress MBF 

LAD 8/203 0.78 ± 0.07 0.59 ± 0.03 0.58 ± 0.04 

RCA 6/145 0.96 ± 0.03 0.50 ± 0.04 0.48 ± 0.04 

LCX 4/145 0.82 ± 0.11 0.53 ± 0.04 0.52 ± 0.04 

FFR-CTPA Stress 

LAD 8/203 0.82 ± 0.06 0.69 ± 0.03 0.68 ± 0.03 

RCA 6/145 0.99 ± 0.01 0.66 ± 0.04 0.64 ± 0.04 

LCX 4/145 0.89 ± 0.05 0.62 ± 0.04 0.61 ± 0.04 

 

            

Figure 6. Polar maps of area under the ROC (AUC) for stress MBF (A) and FFR-CTPA (B) using 

stress MBF information at the 3-region level. Individual segments (1-17) were grouped together 

according to their common coronary artery region. In this display, upper left segments are supplied 

by the left anterior descending artery, right by the left circumflex, and lower left by the right 

coronary artery.  

This study demonstrated that MBF estimates derived from stress dCTP combined with 

CTA information can detect regional myocardial ischemia as identified by PET with an AUC of 

0.89± 0.03. We demonstrate that by combining anatomical information about upstream stenoses 

with myocardial perfusion information will improve detection performance. The combined score 

specificity and accuracy at 90% sensitivity suggests that dCTP-derived measures of ischemia can 
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reliably detect ischemia as confirmed by cardiac PET.  The proposed new score, FFR-CTPA, offers 

the best performance when calculated with stress MBF. In high-sensitivity mode (@ 90% 

sensitivity), SFFR-CTPA using stress flow achieves a specificity of 0.65 ± 0.02, which is superior to 

specificity estimates of 0.29-0.61 presented by Meijboom et al. who evaluated the diagnostic 

accuracy of anatomical assessment with modern CCTA compared against a functional reference 

test, invasive FFR [28].  

We present preliminary evidence that the detection performance may vary slightly with 

different coronary beds. The LAD supplied myocardial bed had lower AUC, accuracy, and 

specificity compared to the RCA and LCX regions for all methods evaluated (Table 4). For 

example, for FFR-CTPA using stress flow, the AUC of the LAD was 0.82 compared to 0.99 and 

0.89 of the RCA and LCX respectively. This discrepancy may be caused by the increased difficulty 

of taking LAD CTA measurements as well as higher levels of average motion in the area, both 

contributing to higher levels of noise. This also may highlight potential errors in our reference test, 

the PET estimates of flow; previous studies have demonstrated that patient motion and, to a lesser 

extent, attenuation correction mis-alignment can lead to large regional errors in PET estimated 

flow [46].   

Study limitations 

This proof-of-concept study of a new metric for combining perfusion and stenosis 

information included only 29 patients. This small sample size, along with low disease prevalence, 

suggests that our reported performance measures have high error bars. Additional research with a 

larger set of patients is needed. Among the 493 total segments analyzed, PET only identified 18 

as definite ischemic (3.7% prevalence), distributed across 7 patients. Our best performing stress 

SFFR-CTPA method only missed one ischemic region, but overcalled many regions leading to a high 
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sensitivity (94%) but low specificity and accuracy (64% and 66%, respectively). Additionally, our 

DCE-CT derived MBF were generally overestimated, partially attributing to the high false positive 

rate. While quantitative PET is the gold standard in MBF measurements and ischemia detection, 

it remains a noisy modality which greatly affects our ground truth values. Additionally, we 

assumed that each of the 17-segments were independent, but there is likely intra-patient 

correlations of these measures that were not accounted for in the detectability analysis.     

1.3 Segmentation of Porous Implantable Polymeric Scaffolds for µCT Monitoring 

To assess the safety and efficacy of implantable biomedical devices, longitudinal 

radiological monitoring is necessary for risk evaluation. However, polymeric devices are poorly 

visualized with clinical imaging, hampering efforts to use diagnostic imaging to predict failure and 

enable intervention. Combining contrast agents with these biomedical devices, either through 

coating methods or direct mixing with the polymer, offers a potential solution to poor image 

quality. Direct mixing is more favorable for degradation studies, but the effect of the contrast 

agents may alter the device’s mechanical properties. Here, we describe nanoparticle-doped 

biomedical devices (phantoms), created from 0–40 wt% tantalum oxide (TaOx) nanoparticles in 

polycaprolactone and poly(lactide-co-glycolide) 85:15 and 50:50, representing non, slow, and fast 

degrading systems, respectively. We run a degradation study of 20 weeks in length in multiple 

simulated physiological environments: healthy tissue (pH 7.4), inflammation (pH 6.5), and 

lysosomal conditions (pH 5.5), while mass and gross volume loss are monitored. We show that an 

optimal range of 5–20 wt% TaOx nanoparticles balances radiopacity requirements with implant 

properties, facilitating next-generation biomedical devices. 

1.3.1 Introduction 

Polymers are commonly used for biomedical devices due to several advantageous 

properties. Namely, they offer high biocompatibility, tunable mechanical properties, and are 
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generally easy to manufacture [47]. This has led to proliferation of implantable biomedical devices 

in research and clinical scenarios. Despite their frequent use in the clinic, implants made from 

polymers fail for a number of reasons such as wear, tearing, migration, and infection [48]. With a 

growing concern for the complications due to device failure, there exists an increased need for a 

clinical methodology for in situ monitoring of device status following implantation [48]. However, 

most polymeric devices offer no radiological contrast mechanism for clinical diagnostic imaging, 

and therefore radiologists cannot monitor the integrity of the device prior to catastrophic failure. 

Incorporating contrast agents for radiological monitoring of biomedical devices would be a 

significant step in prevention of emergency device failures. 

The widespread use and availability of computed tomography (CT) makes it an excellent 

modality for device monitoring. While CT has difficulty distinguishing soft tissues compared to 

magnetic resonance imaging (MRI) and exposes patients to small amounts of radiation, it remains 

favorable due to its low cost and high signal-to-noise ratio [49], [50]. To tailor polymeric devices 

for CT monitoring, we must modify or incorporate polymers with contrast agents specific for CT 

[51]. In other words, we must make them radiopaque while keeping in mind the possibility of 

releasing cytotoxic elements during degradation [52], [53]. Tantalum oxide (TaOx) nanoparticles, 

in particular, are biocompatible in vivo with superior CT contrast over traditional iodinated 

compounds, and can further be incorporated into polymeric matrices for use as biomaterials [54]–

[57]. In previous studies, it was shown that TaOx integrated polymer phantoms were easier to 

identify than phantoms without TaOx [50]. However, more research needs to be done to evaluate 

the impact of TaOx on the mechanical properties of the polymer. Namely, the nanoparticle should 

not affect the mechanical stability or material properties of the device while making it radiopaque.  
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1.3.2 Materials and Methods 

The study utilized three types of biocompatible polymers: PCL, PLGA 50:50, and PLGA 

85:15. PCL (Sigma Aldrich) had a molecular weight average of 80 kDa. PLGA 50:50 

(Lactel/Evonik B6010-4) and PLGA 85:15 (Expansorb DLG 85–7E, Merck) were both ester 

terminated and had a weight average molecular weight between 80 and 90 kDa, to minimize the 

effects of polymer chain length on the degradation rate [58]. The polymers were solubilized in 

suspensions of TaOx (spherical, 3–9 nm in diameter) in dichloromethane (DCM, Sigma-Aldrich). 

A degradation study was conducted in vitro for 20 weeks and in vivo for 5 weeks. 

Phantom Manufacture 

The detailed protocol for polymer preparation and phantom manufacture can be found here: 

https://doi.org/10.1002/adhm.202203167. Briefly, PCL or PLGA were solubilized in TaOx 

nanoparticles in DCM at 8 and 12 wt%, respectively. Proportions were calculated so that the final 

scaffold will be tunable 0-40 wt% TaOx. Sucrose (Meijer) was added to the suspension, calculated 

to be 70 vol% of the polymer + nanoparticle mass in solution, followed by NaCl (Jade Scientific) 

at 60 vol% of the total polymer + nanoparticle volume. The suspension was vortexed for 10 min 

and pressed into a silicon mold that was 4.7 mm diameter, and 2 mm high. After air drying, 

phantoms were removed, trimmed of excess polymer, and then washed for 2 h in distilled water, 

changing the water every 30 min to remove sucrose and NaCl. Washed phantoms were air-dried 

overnight and stored in a desiccator prior to use. This process yielded micro-porous (<100 µm) 

scaffolds that mimics tissue properties, allowing for nutrient diffusion and cell and tissue 

infiltration.  

Micro-Computed Tomography 

All tomography images were obtained using a Perkin-Elmer Quantum GX. At every time 

point, groups of three phantoms were imaged at 90 keV, 88 µA, with a 25 mm field of view at a 

https://doi.org/10.1002/adhm.202203167
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50 µm resolution. After the acquisition, individual phantoms were sub-reconstructed using the 

Quantum GX software to 12–18 µm resolution. Phantoms used for serial monitoring were imaged 

on day 0 prior to hydration for pore size analysis (Supporting Information) and imaged again 24 h 

after hydration with buffer. Throughout the remainder of the study, all groups were imaged every 

week after changing the buffer media. 

In vivo µCT on mice was performed at 90 keV, 88 µA. At each time point, two scans were 

taken of the phantoms, 1) 72 mm field of view (14 min total scan time) at 90 µm resolution and 2) 

36 mm field of view (4 min total scan time) at 20–50 µm resolution. In the subcutaneous 

implantation, both phantoms could not be captured in a single higher-resolution scan, so two scans 

were taken, one centered on each implant. During acquisition, mice were anesthetized using an 

inhalant anesthetic of 1–3% Isoflurane in 1 L min−1 oxygen. Mice were scanned immediately post-

implantation, on day 1 post-implantation, and at day 7 and week 5 post-implantation. Total 

cumulative radiation dosage was 14–19 Gy over 5 weeks.  

Tomography Image Analysis 

From the tomography scans of phantoms, several parameters were quantified. Analysis of 

the polymer matrix component of phantoms with 20 and 40 wt% TaOx was performed using 

custom software developed with MATLAB (vR2021b, Mathworks, Natick, MA) on µCT sub-

reconstructions. Properties such as scaffold thickness, diameter, porosity, average pore diameter, 

average pore volume, and mean attenuation were analyzed. From this, the percent porosity of the 

phantoms was calculated as the percentage of the gross volume not occupied by the matrix. From 

the diameter and thickness, a “gross volume” was defined as the volume occupied by a solid 

cylinder with the corresponding thickness and diameter. Subsequently, “scaffold volume” is the 
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gross volume subtracted by the total pore volume. Phantoms with 5 wt% TaOx could not be 

radiographically distinguished from the background.  

Before segmenting the polymer from the background, the image was preprocessed by using 

an adaptive histogram equalization technique to enhance contrast [59]. After, Otsu's binary 

segmentation method was used to create a rough mask of the volume [60]. An adaptive 

thresholding method was then employed to segment the polymer within the rough mask from the 

background [61]. The resulting volume was cleaned up using erosion and dilation operations.  

Adaptive histogram equalization works by applying the normal histogram equalization 

algorithm on local, non-overlapping regions of an image. Histogram equalization can enhance the 

contrast of images by redistributing the pixel intensities more evenly. Let us first assume an 𝑖 𝑥 𝑗 

image f of pixels ranging from 0 to 𝐿 –  1. Let us denote p as the normalized histogram of f with a 

bin for each pixel value (often 28 or 216). So, 

𝑝𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
      𝑤ℎ𝑒𝑟𝑒 𝑛 = 0 … 𝐿 − 1 

(2) 

Then, the histogram equalized image g can be defined by 

𝑔𝑖,𝑗 = 𝑓𝑙𝑜𝑜𝑟((𝐿 − 1) ∑ 𝑝𝑛

𝑓𝑖,𝑗

𝑛=0

 
(3) 

 Meaning for every pixel bin the cumulative pixel intensity are multiplied by the pixel value, 

then rounded down. This intuitively makes sense; when we normalize g, bins with few pixels will 

be weighted higher and bins with many pixels will be weighted lower. To apply this in adaptive 

fashion, we first split the image into non-overlapping regions and simply apply the algorithm to 

each region individually before reconstructing the image. 
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 Similarly, adaptive thresholding works by applying a thresholding algorithm (often Otsu) 

on a local level. Otsu binary thresholding works by minimizing the intra-class variance, defined as 

a weighted sum of variances of the two classes, foreground and background. The algorithm goes 

through every possible threshold value t (0-255 for an 8-bit image), and calculates the class 

probability using: 

𝜇𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑛
∑ 𝑝𝑛

𝑡−1
𝑛=0

∑ 𝑝𝑛
𝑡−1
𝑖=0

 
(4) 

𝜇𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑛
∑ 𝑝𝑛

𝐿−1
𝑖=𝑡

∑ 𝑝𝑛
𝐿−1
𝑖=𝑡

 
(5) 

Intuitively, the threshold t that maximizes the difference of mean pixel intensity of the 

foreground and background is chosen. To make this algorithm adaptive, we apply it on local 

regions just like the adaptive histogram method. 

1.3.3 Results and Discussion 

 Shown in Figure 7 is the result of the segmentation algorithm. Top row are y and z slices 

of the µCT volume and the bottom row is the scaffold mask. Results of analyzing the masks are as 

follows: All phantoms had an interconnected porosity, with a mean pore size between 350 and 400 

µm. Pore walls show generally even dispersion of the TaOx (Figure 7, top row), and the 

homogeneous dispersion ensured that no regions of the polymer matrices had significantly 

different material properties or X-ray attenuation. As expected, the mean attenuation of the 

scaffold is dependent on the TaOx wt%. We use this mask to compute the gross volume of the 

scaffold over time.  
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Figure 7. Example of generated scaffold masks from uCT images. An increase in TaOx 

incorporation increased mean attenuation of the phantom. Scaffolds of TaOx 10-40 wt% for PLGA 

and PCL could be segmented easily. The attenuation 5 wt% was too low to be differentiated from 

the background. 
 

Plotting the gross volume alone shows a very clear trend in phantom volume changes 

(Figure 8e1-f1). We also see from the mean attenuation that radiopacity lasts for at least 20 weeks 

(Figure 8e3-f3). Due to mechanical properties of PLGA, it degrades rapidly compared to PCL, and 

even more so in acidic environments [58], [62], [63].  

Designing implantable biomedical devices to be radiopaque is an important property to 

consider. The radiopacity allows physicians and researchers to evaluate and monitor in real time 

the structural integrity of implantable devices and therefore predict device failure. Here, a novel 

radiopaque TaOx nanoparticles combined PCL or PLGA scaffold is proposed. We demonstrate 

that the addition of TaOx nanoparticles enables in situ monitoring of gross phantom features 

(overall volume, location) using µCT. Importantly, within the range of 5–20 wt% TaOx, the 
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radiopacity of phantoms was maintained over 20 weeks. Monitoring size and attenuation properties 

enabled in vivo assessment of the environmental impact on the scaffold. We show that lower pH 

environments and high nanoparticle content (>20 wt% TaOx) increased degradation rate and 

decreased structural integrity and mechanical stability.  This study represents a significant step 

toward incorporating in situ monitoring into the next generation of implantable devices. 

 

Figure 8. Phantoms with TaOx nanoparticles could be monitored for 20 weeks without loss of 

radiopacity due to particle leaching. a–c) This allowed for visual monitoring of changes to phantom 

shape and porosity, as illustrated by CT images from 1) day 1 and 2) 6 weeks: a) PCL+20 wt% 

TaOx, b) PLGA 85:15 + 20 wt% TaOx, and c) PLGA 50:50 + 20 wt% TaOx. During degradation, 

significant changes occurred within the phantoms: 1) gross phantom volume, 2) percentage 

porosity, and 3) X-ray attenuation. TaOx incorporation ranged from d) 5 wt% TaOx, e) 20 wt% 

TaOx, and f) 40 wt% TaOx. At 5 wt% TaOx, only the gross volume of the phantoms could be 

quantified, as the matrix could not be segmented from the background. Scale (a–c): 1 mm; HU 

window is consistent for all images. Data reported as mean ± SEM. Figure courtesy of [2] under 

CC BY-NC-ND 4.0.  

https://creativecommons.org/licenses/by-nc-nd/4.0/
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CHAPTER 2: INTRODUCTION 

The concept of machine learning and artificial intelligence may sound like a recent 

development, but it has its roots in the early days of computing. In 1943, neurophysiologists 

Warren McCulloch and Walter Pitts first described how neurons communicate with each other, 

laying down the foundation of neural network architecture [64]. In 1949, Donald Hebb developed 

a model based on the idea of neural plasticity, where connections between neurons can change 

depending on the feedback it receives [65]. Rosenblatt is credited with building the first perceptron 

in 1958, a machine designed for image recognition and capable of distinguishing basic patterns 

[66]. After decades of research, we now have machine learned models nearing human levels of 

performance in certain tasks. In the medical field, AI has already demonstrated capability in 

diagnosis, pathology detection, and risk assessment, and is already impacting clinical decision 

making.  

However, machine learned models are far from perfect. The limited use of AI in the 

medical field is a testament to how difficult certain tasks can be. One major limitation of AI is the 

need for large quantities of data. The volume of data has a major impact on the performance of the 

model; in general, higher volume training datasets include greater diversity, enabling better and 

more generalizable performance. For medical imaging tasks, it is difficult to curate large volumes 

of data. To partially solve this issue, data augmentation techniques have been proposed. By 

supplementing our training set with augmented data, we can synthetically add diversity and 

therefore improve performance. This chapter has four main aims: (1) a high-level overview on the 

basics of neural networks, (2) how neural networks are tailored to allow for object detection, 

classification, and segmentation tasks, (3) how we apply these models for rib fracture detection 
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tasks, (4) data augmentation techniques, and (5) data augmentation applications in the medical 

imaging field. 

2.1 Basics of Neural Networks 

A neural network (NN) is a machine learning method that is designed to mimic the human 

brain. Individual neurons in our brain collect electrochemical signals through dendrites and then 

pass on the signal through the axon. The axon splits up into thousands of branches with a structure 

called a synapse at each end. Depending on the input signal, the synapse may release 

neurotransmitters that inhibit or excite the next neuron. To learn which neuron is correctly 

inhibited or excited, synapses receive feedback and adjust its behavior accordingly. Based off this 

understanding, NNs are constructed around a basic unit called a node (Figure 9). Nodes behave 

similarly to a neuron, where it can activate, propagate a signal, and receive feedback to learn. We 

structure multiple neurons in groups called layers. An individual node in one layer is connected to 

every node in the next layer. The connections have weights attached to them that dictate the 

importance of the input information passed to that connection. The weighted inputs are then added 

with a bias and processed through an activation function to determine which downstream nodes 

should be activated. The weights and biases can be modified depending on the feedback it receives. 

The feedback is evaluated using a loss function. The final layer in our network is called the output 

layer and may contain a single or multiple nodes depending on the type of output we are expecting 

[67]–[69]. Here, we will describe more in depth how activation functions and loss functions 

operate, and how weights are updated using a process called back propagation. 
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Figure 9. Example of a simple neural network. (Top) A single input node goes through two layers 

and then an output node. Each connection between nodes has a weight assigned to it. (Bottom) 

The input, weight, and bias of a node is then used by an activation function to calculate if the next 

node will be activated. 

2.1.1 Activation Functions 

At the most basic level, an activation function calculates the output of a node given a set 

of inputs. It decides whether a downstream node is activated or not. The most commonly used 

activation functions are non-linear activation functions. If a NN uses a linear activation function, 

it is equivalent to a regular linear regression model [70]. While a simple linear regression model 

is easy to solve, it often lacks the complexity necessary to model real world data. The non-linearity 

of activation functions allows NNs to model complex relationship between nodes. Table 5 

highlights several types of non-linear activation functions, each with its own pros and cons. 
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Table 5. Common activation functions used in neural networks. 
Function Value Range Pros Cons 

Sigmoid  0,1 

• Gives you a smooth gradient 

while converging. 

• Gives a clear prediction 

(classification) with 1 & 0. 

• Prone to vanishing gradient 

problem. 

• Not a zero-centric function. 

• Computationally expensive 

function (exponential in 

nature) 

Tanh -1, 1 

• Zero-centric 

• It is a smooth gradient 

converging function. 

• Prone to Vanishing Gradient 

function.  

• Computationally expensive 

function (exponential in 

nature) 

ReLu 0, ∞ 

• Can deal with vanishing gradient 

problem. 

• Computationally inexpensive 

function (linear in nature). 

  

• Not a zero-centric function. 

• Gives zero value as inactive 

in the negative axis. 

Leaky ReLu -∞ 
• Same as ReLu, except it gives 

some small value instead of 0 in 

the negative axis. 

• Same as ReLu 

Binary Step 0,1 

• Gives a clear prediction 

(classification) with 1 & 0. 

• Zero-centric 

• Only supports binary 

classification 

Choosing the correct activation function is vital to the success of the model. Currently, the 

ReLU (Rectified Linear Unit, [71]) and leaky ReLU activation functions [72] are most commonly 

used for the hidden layers in deep learning models as it avoids the vanishing gradient problem that 

sigmoid and tanh functions have, and it converges approximately 6 times faster [73]. Choosing the 

right function for the output layer, is slightly more complicated. Generally, in a regression 

problem, we use the linear (identity) activation function with one node. In a binary classifier, we 

use the sigmoid activation function with one node. In a multiclass classification problem, we use 

the softmax activation function with one node per class. In a multilabel classification problem, we 

use the sigmoid activation function with one node per class [74]. Generative adversarial networks 

(GANs), and other image generating networks generally uses Tanh. After choosing an appropriate 

activation function for a neural network, the next important consideration is selecting an 

appropriate loss function. 
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2.1.2 Backpropagation and Loss Functions  

 

Neural networks “learn” by adjusting the weights and biases of the connections between 

nodes. To know how much we need to adjust the weights and biases by, we need some way to 

determine how well our model is doing. To do this we use a loss function. Also called a cost 

function, a loss function compares your model’s current prediction with the actual value. Our aim 

is to minimize the loss function, that is to minimize the difference between our predictions and 

ground truth values. We then use a method called backpropagation to adjust the weights and biases 

based on the results of our loss function.  

First, let us define some common loss functions. There are several types of loss functions 

used in neural networks, each with its own strengths and weaknesses. If we are trying to perform 

a regression task where the predicted output is a continuous scalar, we would use a mean squared 

error (MSE) loss. The MSE measures the average squared difference between the predicted value 

and the actual value (Equation 6). The main advantage of MSE is that it is smooth and easy to 

optimize using gradient descent. However, it can be sensitive to outliers since the squared term 

will magnify the error of a very poor prediction [69].  

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑛

𝑖=1

 (6) 

Where n is the number of data points, Yi is the true values, and Ŷi is the predicted values. 

Another commonly used loss function is the binary cross entropy loss, which is used for binary 

classification problems. For these types of problems, we only have two possible outputs: yes or no 

(i.e. 0 or 1). The binary cross-entropy can be expressed as (Equation 7) [75].  

𝐻𝑝(𝑞) = −
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

∙ log (𝑝(𝑌𝑖)) + (1 − 𝑌𝑖) ∙ log (1 − 𝑝(𝑌𝑖)) (7) 
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Where Yi is the true label of the i-th sample, and p represents the predicted probability that 

the sample belongs to the positive class. The main advantage of binary cross-entropy is that it is a 

simple and efficient measure of the uncertainty of the model's predictions and can be easily 

optimized using gradient descent [76]. The main idea behind this loss function is to penalize the 

model more heavily when it makes a wrong prediction with high confidence (i.e., when the 

predicted probability is close to 0 or 1), and less heavily when it makes a wrong prediction with 

low confidence (i.e., when the predicted probability is close to 0.5) [77].  

Categorical Cross-Entropy: When our classification task has more than 2 possible classes, 

we would use a categorical cross-entropy loss. It uses the same equation as the binary cross 

entropy, and simply calculates the cross entropy for each class label per observation. 

Huber Loss: This is a loss function used for regression problems, similar to the MSE. The 

main difference is that it is less sensitive to outliers and can handle them better (Equation 8) [78]. 

It achieves this by combining MSE with mean absolute error. That is, it uses a different function 

for large errors (absolute value) and small errors (squared value). 

 𝐿𝛿(𝑌𝑖 − 𝑌̂𝑖) = {

1

2
(𝑌𝑖 − 𝑌̂𝑖)

2             𝑓𝑜𝑟 |𝑌𝑖 − 𝑌̂𝑖| ≤ 𝛿

𝛿|𝑌𝑖 − 𝑌̂𝑖| −
1

2
𝛿 2           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (8) 

Simply put, we use MSE when loss values are less than a parameter δ and we use MAE 

when it is greater than δ. Now that we understand a few ways to measure model predictions, we 

can adjust the weights and biases of the network using a process called backpropagation. 

Backpropagation was first described by Werbos is 1974 [79], it has since been improved for more 

complex systems [80]–[82]. At its core, backpropagation is an iterative process to calculate the 

derivatives of our loss function with respect to our weights and biases [83]. The backpropagation 

algorithm consists of two phases: the forward pass and the backward pass. During the forward 
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pass, the input is fed into the network, and the output is computed using the current weights. We 

then use the loss function to calculate the error between our predicted output and the true output. 

During the backward pass, the error is propagated backwards through the network, starting from 

the output layer and moving towards the input layer. The weights of each connection are adjusted 

in the opposite direction of the gradient of the error with respect to that weight. In other words, if 

a weight is causing the error to increase, the weight is decreased, and if the weight is causing the 

error to decrease, the weight is increased. This adjustment is performed using an optimization 

algorithm such as gradient descent. This operation terminates when the error is minimized. 

Now, with a basic understanding of how neural networks are constructed and how they 

learn, we can begin to talk about how they can be tailored for different tasks such as classification, 

detection, segmentation, and prediction. 

2.2 Machine Learning and Medical Imaging Applications 

Classification, detection, and segmentation are all tasks commonly performed in machine 

learning and computer vision. Classification is the task of assigning an input to one of several 

predefined categories. For example, given an image of an animal, a classification algorithm would 

determine which animal it represents (Figure 10a). Detection is the task of identifying the presence 

and location of specific objects within an image. Object detection algorithms typically produce a 

bounding box around each detected object, along with a confidence score indicating the likelihood 

that the object is present (Figure 10b). Segmentation is the task of dividing an image into multiple 

segments, where each segment corresponds to a distinct object or region within the image. For 

example, in an image of multiple animals, segmentation might be used to identify and distinguish 

pixel-level labels for each animal (Figure 10c).  
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Figure 10. Computer vision tasks. Classification generates a label that best describes the image. 

Object detection produces labels of any found object within the image and its location. Instance 

segmentation gives a pixel-level label of objects found within the image. Image courtesy of [84] 

under CC-BY 4.0.  

Using automated computer analysis for medical imaging applications has been around 

since the 1970s [85]. Early on, hardware limitations prevented complex tasks such as pathology 

detection and patient outcome prediction. However, researchers at the time were still able to 

successfully perform low level pixel segmentation [86]–[89], image enhancement [90]–[94], and 

basic classifiers  [30]–[33]. Breakthroughs in both hardware and neural network architecture have 

led to NNs promising human levels of performance. Here, we will highlight some of the modern 

types of NNs and recent medical imaging applications. 

2.2.1 Convolutional Neural Networks 

One of the biggest breakthroughs in NNs is the use of convolution filters. Convolutional 

neural networks (CNNs) were first described by Fukushima and is designed to capture spatial 

patterns within images by using small convolutional filters [99]. The convolution layer is the first 

layer that is used to extract the various features from the input images. After this convolution layer, 

the data is then passed on to an activation and pooling layer, and then fully connected layers (Figure 

https://creativecommons.org/licenses/by/4.0/
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11). The first two, convolution and pooling layers, perform feature extraction, whereas the third, a 

fully connected layer, maps the extracted features into final output, such as classification [100]. 

The goal of this convolution operation is to obtain all the high-level features of the image and at 

the same time reduce dimensionality. By reducing the dimensionality, we decrease the require 

computational power for processing the data and increase the rate of training [101].  

 

Figure 11. A simple convolutional neural network. Feature extraction of our input is done through 

convolution layers and pooling layers. The extracted features then are fully connected to our 

desired final output. Image courtesy of [102] under CC-BY-NC-ND 4.0. 

To understand the convolution operation, first let us consider a 7x7 matrix and a 3x3 

convolution kernel (Figure 12). An element-wise product between the kernel and the matrix is 

computed starting from the top right-hand corner of the matrix. The sum of the products for each 

cell is added to a new matrix called the feature map. The kernel is then shifted one cell the right 

and the process is repeated. The operation stops when the kernel reaches the bottom left of the 

matrix.  

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 12. Visualization of the convolution operation. The 3x3 kernel (red box) will march along 

the matrix (7x7 top row), computing an element-wise product along the way. For each operation, 

the sum of the products will be added to a new matrix (5x5, bottom row). This newly generated 

matrix is called the feature map. 

The convolution operation described above does not allow the center of each kernel to 

overlap the outermost element of the input tensor and reduces the height and width of the output 

feature map compared to the input tensor. Padding, typically zero padding, is a technique to address 

this issue, where rows and columns of zeros are added on each side of the input tensor, to fit the 

center of a kernel on the outermost element and keep the same in-plane dimension through the 

convolution operation (Figure 13). Modern CNN architectures usually employ zero padding to 

retain in-plane dimensions in order to apply more layers. Without zero padding, each successive 

feature map would get smaller after the convolution operation.  

 

… 
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Figure 13. Visualization of zero padding. To retain the same 7x7 dimension of our original matrix, 

we must add a layer of zeros around it. The zero padded 9x9 matrix when convolved with a 3x3 

kernel will yield a 7x7 matrix. 

As mentioned previously, once the convolution process is complete, it is fed into an 

activation function and then a pooling layer. Generally, ReLU activation functions are used. A 

pooling layer is downsampling operation where we reduce our data, and subsequently decrease the 

number of subsequent learnable parameters [100]. This operation reduces the computational costs 

and therefore speeds up training. Pooling also allows for the extraction of features at different 

spatial scales. Two commonly used pooling operations are max pooling and average pooling 

(Figure 14). The operation creates “pools” of non-overlapping regions in the data and then 

represents each pool with a single number. For average pooling, we simply average all the data 

together in a pool. For max pooling, we take the maximum value of the pool. Max pooling is more 

commonly used as it captures the strongest activation in the feature map, which can help to retain 

information about the edges and other key features of an object [103]. 
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Figure 14. Visualization of max pooling. Here we use a 2x2 filter to run over out input 4x4 matrix. 

We'll use a stride of 2 (skipping every other index) so that regions won’t overlap. For each region 

highlighted by the filter, we take the MAX value of the region and then map it to a new matrix.  

Finally, the pooling layer is flattened (transformed into a 1-Dimensional vector) and input 

into a fully connected layer. A fully connected layer simply means that every element in the input 

vector is connected to every output node. The fully connected layer is eventually mapped to our 

final output layer. For classification tasks, it is normal to use one hot encoding, where each class 

is encoded by one output node. An output node simply returns a probability between 0-1 that the 

input data belongs to a particular class, therefore the final layer would return a vector of length 

equal to the number of possible classes. 

2.2.2 U-Net 

 The U-net architecture was first proposed by Ronneberger et al. in 2015 and is a type of 

CNN [104]. The architecture consists of two phases, a downsampling phase and an upsampling 

phase, and was originally designed for image segmentation tasks (Figure 15). The downsampling 

phase is identical to a normal CNN as described in the previous section. The upsampling phase 

consists of up-convolutions with a large number of feature channels which allow the network to 

propagate context information to higher resolution layers [105]. These layers also have 
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concatenations with features from the contracting path. These concatenations are necessary to 

recover spatial information lost during downsampling [106]. The final layer uses a 1x1 convolution 

to map the component feature vector to the desired number of classes [104]. Many object detection 

networks such as EfficientNet, DenseNet, Yolo, and RetinaNet all use elements that are common 

to the U-net architecture.  

 

Figure 15. Original U-net architecture design from [104]. The input matrix is reduced through 

convolution and max pooling operations. Then, the extracted features are upsampled using 

transpose convolution operations. Image license CC-BY-NC-ND 4.0. 

2.2.3 Residual Blocks 

 Residual blocks are a building block used in deep neural networks, particularly in the 

architecture known as ResNet (short for Residual Network). Residual blocks address the problem 

of vanishing gradients in very deep neural networks. As the network gets deeper, it becomes harder 

for the gradients to propagate backwards through the layers during training, leading to increasingly 

large errors. Residual blocks aim to address this problem by introducing a skip-connection, which 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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maps to activations earlier in the network (Figure 16). They are designed in such a way that the 

output of a layer is taken and added to another layer deeper in the block [107]. By learning these 

residual mappings rather than the underlying mappings, ResNet was able to significantly  reduce 

the difficulty of training, which resulted in great performance boosts in terms of both training and 

generalization error [108]. 

 

Figure 16. The original design of a single residual block from [107]. Here, the output from one 

layer directly feeds into the next layer and a layer 2 or 3 connections away. We can concatenate 

many of these blocks together to form deep neural networks. Image license under CC-BY-NC-ND 

4.0. 

2.2.4 Deep Learning for Rib Fracture Detection 

 Rib fractures are a common type of injury, present in approximately 4-12% of trauma 

admissions and is a major source of chronic pain [109], [110], making early detection and 

diagnosis critical. Therefore, with the rapid development of deep learning techniques in recent 

years, there has been a growing interest in the use of deep neural networks or deep learning (DNN 

and DL, respectively) for rib fracture detection. Several recent studies have shown that deep neural 

networks can outperform human radiologists in detecting rib fractures. Table 6 highlights articles 

published between 2020 and the present using state-of-the-art neural networks. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 6. Recently published studies localizing, detecting, segmenting, and classifying rib 

fractures. 
Data and Model Description Model 

Used 

(Type) 

Results Reference 

3644 chest CT images were used to train a 

single shot deep neural network based off 

DenseNet. The performances of rib 

fracture detection by the network and two 

medical interns and two radiologists were 

compared. 

DNN 

(Modified 

DenseNet) 

The model outperformed the interns, 

achieving a sensitivity, positive predictive 

value, and F1-score of 0.645, 0.793, and 

0.711, respectively, while the interns 

achieved mean scores of 0.285, 0.797, and 

0.649. However, the model did not 

perform as well as the radiologists, who 

achieved a sensitivity of 0.860.  

[111] 

865 fractures on 713 ribs from 198 CT 

images were used to train a CNN object 

detector. Total fractures detected and total 

reading time by two radiologists (R1, R2) 

either assisted or unassisted by NN was 

recorded. 

CNN 

(Faster R-

CNN) 

DL detected 687 (79.4%) of the 865 true 

fractures with 0.43 FPS. Sensitivity of 

radiologists assisted by DL significantly 

increased; 82.8% to 88.9% for R1, and 

83.9% to 88.7% for R2. 

[112] 

8529 CT images containing 861 rib 

fractures were used to train a CNN. 

Precision, recall, F1-score, and diagnostic 

time of two junior radiologists with and 

without the deep learning model were 

computed. 

CNN 

(VRB-Net) 

CNN informed radiologists’ precision, 

recall, and F1-score increased to 0.943, 

0.978, and 0.960, respectively, from 

0.812, 0.885, and 0.845. 

[113] 

1697 CT scans divided into 65:20:15 

training, validation, and testing sets (594 

fracture present cases) were used to train a 

3D DNN. Their model was compared to 

ResNet, DenseNet, R(2+1)D, and CSN 

classifiers. 

DNN 

(SGANet) 

SGANet outperformed all other 

established networks in precision, 

sensitivity, and F1-score (68.97, 90.91, 

and 0.7843, respectively), and had the 

second-best specificity (78.05 vs CSN’s 

78.66) 

[114] 

1707 chest CTs split into 1507:100:100 

training, validation, and testing were used 

to train a custom 3-step segmentation and 

detection model. First and second stage 

consisted of a U-net segmenting bone and 

then detecting ribs. The final stage used a 

3D DenseNet to propose fracture location 

and classification. Radiologists were 

evaluated on precision, recall, F1-score, 

negative predictive value with and without 

the aid of the model. 

DNN 

(Modified 

DenseNet) 

Radiologists improved F1-score, 

precision, recall, and NPV with the use of 

the model (0.842 to 0.948, 0.773 to 0.946, 

0.932 to 0.949, and 0.979 to 0.989, 

respectively). On average, the diagnosis 

time of radiologist assisted with this 

detection system was reduced by 65.3s. 

The model alone achieved F1-score, 

precision, recall, and NPV of 0.890, 0.869, 

0.913 and 0.969, respectively. 

[115] 

511 whole body CT scans (fracture absent, 

n = 159, fracture present, n = 352) were 

used to train a 2-stage deep neural 

network. The first stage was a 3D ResNet 

model used to propose a region(s) that the 

Fast-Region CNN second stage would 

then filter out poor predictions. 

DNN 

(Modified 

ResNet) 

The model’s sensitivity, specificity, 

positive predictive value, negative 

predictive value, accuracy, and F1-score 

was 87.4%, 91.5%, 82.3%, 94.1%, 90.2%, 

0.85, respectively. Their model’s 

sensitivity is approximately the same as 

others in literature, however their PPV is 

higher than average. 

[116] 
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Table 6 (cont’d) 

12208 emergency room (ER) trauma 

patients and an external dataset of 1613 ER 

trauma patients taking chest CT scans were 

used to train a cascaded deep neural 

network. The model consisted of two 

cascading U-net models that first segmented 

ribs and then detected fractures. 

DNN 

(RB-Net) 

In general, results showed that 6 

attending radiologists tended to miss 

more rib fractures than the deep 

models; however, they generally 

reported fewer false positives on their 

external dataset, the model beat 

radiologists in patient-level diagnoses, 

with a sensitivity of 86.2% compared to 

70.5%. 

[117] 

20646 annotated axial CT scans were used 

to transfer learn a variety of deep neural 

networks. The paper assessed the speed-

accuracy trade-offs by using only the first -n 

blocks of each pretrained network. 

DNN 

(InceptionV3, 

ResNet50, 

MobileNetV2, 

and VGG16) 

Generally, the reduction of a single 

block reduced accuracy 1-1.5% but 

decreased the inference time by 10-

25%. The best performance-to-speed 

model was the InceptionV3 network 

with 7 blocks, with an accuracy and 

sensitivity of 96.00% and 94.0%, 

respectively. 

[118] 

7473 annotated CT images from 900 

patients were used to train a 3-step fracture 

segmentation model. The model is based on 

a 3D U-Net structure and consists of a 

preprocessing step, a sliding window 

prediction step, and a post-processing step. 

Sensitivity and false positives of the 

detection performance were compared 

between the model and expert radiologists.  

3D U-Net 

(FracNet) 

The model achieved a sensitivity of 

92.9% with 5.27 false positives per 

scan where radiologists achieved a 

much lower false positives per scan 

(1.13), while underperforming the deep 

neural networks in terms of detection 

sensitivities (77.5%).  

[119] 

10943 CT scans were used to train an 

ensemble 3D U-Net + 2D RCNN network. 

The U-Net was used to segment the ribcage 

while the RCNN was used to detect 

fractures. Precision, sensitivity, and F1 score 

were used as metrics to assess model vs 

radiologist rib fracture detection 

performance. 

Ensemble 3D U-

Net and 2D Fast 

RCNN 

The model achieved a precision of 

82.2% and sensitivity of 84.9%; 

compared to three radiologists with a 

precision of 90.6% and sensitivity of 

79.7%. With the help of the model, 

radiologists achieved a higher 

sensitivity (89.2%) but a lower 

precision (88.4%). 

[120] 

The MICCAI 2020 RibFrac challenge 

consists of 660 CT scans with ~5000 

fractures split into 420 training, 80 

validation, and 160 testing set. This dataset 

was used to train a two-stage detector with a 

nnU-Net segmentation network and a 

DenseNet classification network. This nnU-

net model was compared to two other nnU-

net versions and assessed based on Dice 

coefficient, intersection over union (IOU), 

and average symmetric surface distance 

(ASSD). 

3D nnU-Net and 

DenseNet 

A higher score is better for both Dice 

and IOU, and a lower score is better for 

ASSD. The nnU-net model achieved a 

Dice, IOU, and ASSD score of 62.80, 

48.81, and 11.40, respectively. The 

model outperformed its 2D and 3D 

cascaded versions in all three metrics. 

[121] 
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Table 6 (cont’d) 

1080 radiographs were randomly divided into 

the training set (918 radiographs) and the 

testing set (162 radiographs) and used to train 

an off-the-shelf object detector (YOLOv3). 

Receiver operating characteristic (ROC) and 

free-response ROC (FROC) were used to 

evaluate the model’s diagnostic performance 

against radiologists. 

CNN 

(YOLOv3) 

The sensitivity and precision of the 

detection by the CNN model, senior 

radiologist, and junior radiologist were 

87.3%, 80.3%, and 80.3%, respectively, 

and 82.4%, 73.4%, and 81.7%, 

respectively. The sensitivity of detection 

was significantly higher in the CNN 

model than among the junior radiologist 

(P = 0.01), however no significant 

difference existed between the CNN and 

senior radiologist (P > 0.05) 

[122] 

4366 chest X-rays (3411 fracture absent and 

955 fracture present) were used to train a two-

stage object detector. A U-net model first took 

the image and segmented the left and right 

lungs. Then an EfficientNet model was used to 

classify the ROIs into fracture or no fracture. 

The model was evaluated using area under the 

receiver operator characteristic curve 

(AUROC) and accuracy. 

U-net and 

EfficientNet 

The model achieved an AUROC of 

0.965 and an accuracy of 0.916. This 

article did not compare the model to 

other networks or radiologists. 

[123] 

1020 CT images and patient clinical 

information was used to train two models: 

Faster RCNN and a fusion ResNet101+RCNN. 

The ResNet101 network was used as a feature 

extraction step, where then clinical information 

was concatenated to the output, and then used 

as input to the RCNN classifier. The diagnostic 

performance of both models and radiologists 

were assessed based on precision, recall 

(sensitivity), and F1-score. 

ResNet101 

and Faster 

RCNN 

The fusion model outperformed the 

regular Faster RCNN model in all 

metrics; precision 0.799 to 0.629, recall 

0.973 to 0.945, and F1-score 0.877 to 

0.755. The fusion model also had 

significantly higher sensitivity (0.95 vs 

0.77) but significantly lower precision 

(0.80 vs 0.87) compared to radiologists. 

[124] 

Overall, these papers show promising results for machine learned rib fracture detection and 

suggest that it could be used to inform medical decision making. However, there are also several 

challenges that need to be addressed before deep neural networks can be widely used in clinical 

practice. One major challenge is biases in the data. Most of the above studies are heavily biased 

for white adult males. This means that potentially, the performance of the object detectors would 

be poor when presented with an image of a child, woman, or person of color. Additionally, only 4 

of the above papers are multicenter, which means most object detectors may have limited 

generalizability. Another challenge is the interpretability of deep neural networks. We often 

describe NNs as “black boxes” since we do not know why the network is making its decision. This 
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is a problem because physicians need to be able to provide an explanation for their diagnosis and 

treatment plan. The black box issue is also why the first step in integrating NNs with clinical 

decision making is to have them inform or aid doctors, not replace them. 

The first issue of biased data and challenges with poor generalizability could potentially be 

partially solved using data augmentation. In general, when the diversity of the training set is higher, 

the performance of the model also improves. With limited availability of such expertly labeled 

medical images, researchers use data augmentation to generate synthetic medical images, either 

by simple morphological operations or through more complex techniques. We will talk more about 

data augmentation in the following section. 

2.3 Data Augmentation Techniques 

For a ML model to learn effectively, the observed data must be a diverse, accurate 

representation of the true distribution. Therefore, to properly estimate the true distribution, 

extremely large datasets become necessary [125]. However, in healthcare, datasets of sufficient 

size may be rare or absent, thus hindering direct training of ML models. Large amounts of medical 

imaging data are hard to acquire, as lack of standardization, lengthy curation process, releasing 

HIPPA compliant images, and need for expert labeling hinder the availability of training data 

[126]. Additionally, medical imaging data acquisition can be affected by the prevalence of the 

disease in question as well as the cost of the imaging modality. One of the ways of dealing with 

this problem is data augmentation, where we supplement our datasets with slightly modified copies 

of already existing data or newly created synthetic data based on existing data. Early methods of 

data augmentation included simple morphological operations such as shrinking, rotations, blurs, 

flips, and noise addition [127]. Recently, sophisticated data augmentation methods are based on a 

class of neural networks called Generative Adversarial Networks (GANs), which generate new 

images of high perceptual quality that combine the content of a base image with the appearance of 
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another one [128]. GANs have also been used widely for image-to-image translation, where we 

transform an image from one domain to another (i.e. image of a horse to image of a zebra). 

GANs, were a huge breakthrough for data augmentation. It utilized two neural networks 

which were trained simultaneously to output realistic fake images by learning the probability 

distribution of a set of images (Figure 17) [129]. More specifically, a generator network creates 

fake images, and a discriminator is fed real and fake images and determines which is real. As both 

networks learn and improve, we reach a stop condition where hopefully our generator outputs fake 

images indistinguishable from the real ones by the discriminator. GANs have been adapted for 

image-to-image translation tasks, where a neural network learns to create a mapping from images 

of one domain to another domain. This technique has been used to transform PET to CT image 

[130], create lesions on non-lesioned dermatological samples [131], create tumors on healthy brain 

MR images [132], and transform T1 to T2-weighted MR images [133]. Here, we will review GANs 

and its many variants, common evaluation metrics, and its medical imaging applications. 

 
 

Figure 17. Generative Adversarial Network architecture. We have two neural networks 

“competing” against each other. The generator’s goal is to fool the discriminator by outputting 

convincing fake samples. The discriminator’s goal is to tell whether it’s being given a real or a 

fake sample.  
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2.3.1 Generative Adversarial Nets  

The original GAN as described by Goodfellow et al. is non-conditional, meaning that it 

takes a random latent vector and maps it to the sample distribution [129]. The GAN simply needs 

to generate images like those in the dataset given a random vector. The generator architecture is 

designed similarly to the upsampling phase of the U-net architecture. It goes through a project and 

reshape operation, and then consecutive up-convolution layers until we reach the desired resolution 

(Figure 18). The discriminator is a normal CNN classifier and outputs a probability between 0-1. 

 

Figure 18. Generator architecture of a of a non-conditional GAN. A random latent vector is 

upsampled through multiple transpose convolution layers until we get to the desired resolution. 

Image courtesy of [134] under CC-BY-NC-ND 4.0. 

Let us define a generator G that is trying to learn a distribution 𝑝𝑔 from data x and produces 

a mapping 𝐺(𝑧; 𝜃𝑔) from a vector 𝑝𝑧(𝑧). Here, 𝜃𝑔 are learnable parameters. Now, let us define a 

discriminator 𝐷(𝑥; 𝜃𝑑) is trained to maximize the probability of assigning the correct label to both 

training examples and samples from the generator. Here, 𝐷(𝑥) is the probability that x is from our 

training data and not from 𝐺(𝑧). Simultaneously, the generator is trained to minimize: 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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 log (1 − 𝐷(𝐺(𝑧))) (9) 

And both networks play the following two-player minimax game with the loss function: 

  𝑚𝑖𝑛

𝐺

𝑚𝑖𝑛

𝐷
𝑉(D, G) = 𝔼x~p𝑑𝑎𝑡𝑎(𝑥)[logD(𝑥)] + 𝔼z~p𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))] 

                          

(10) 

Once trained sufficiently and assuming Equation 5 converges, it will reach a point where 

neither D or G can improve because 𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎 The discriminator is unable to differentiate 

between the two distributions, i.e. 𝐷(𝑥)  =  1/2. 

There are many challenges when training the original GAN, such as mode collapse, 

vanishing gradients, and non-convergence. Mode collapse is when the generator can only create a 

small set of convincing outputs. These outputs, while realistic, represent only a portion of the 

sample distribution. Therefore, it easily fools the discriminator and hinders learning. For example, 

Figure 19, bottom row, shows mode collapse when training on the MNIST digits dataset. This 

dataset contains handwritten digits from 0-9 and ideally the GAN must learn to produce each class. 

However, over time, it learns to only produce a 6, which fools the discriminator every time. 

 

Figure 19. Example of successful GAN training (top row) and mode collapse (bottom row). Image 

courtesy of [135] under CC-BY-NC-ND 4.0. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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The issue of non-convergence arises due to the non-convex nature of the loss function. 

When the loss function is non-convex, it is more difficult to minimize using gradient descent. 

Intuitively, D or G always counters the actions of the other in the next iteration, making large 

swings in the learning curve (Figure 20). Arjovsky and Bottou dives deeper into the nature of this 

phenomenon, showing how the norm of the gradient grows drastically as the discriminator trains 

longer [136]. In all cases, using this to update the generator leads to a notorious decrease in sample 

quality. Additionally, the large swings in the learning curve show that the variance of the gradients 

is increasing, which is known to delve into slower convergence and more unstable behavior in the 

optimization [137]. 

 

Figure 20. Example of unstable generator training. In this study, the generator network is fixed 

while only the discriminator trains. The gradient norms quickly decay with wild swings from 

iteration to iteration. This demonstrates that as the discriminator improves, the generator’s gradient 

vanishes. Image courtesy of [136] under CC-BY-NC-ND 4.0. 

2.3.2 GAN Variants 

To solve these issues, multiple papers have suggested alternative loss functions [138]–

[145].  Among these, the most popular and robust is Wasserstein distance GAN (WGAN) and 

WGAN with gradient penalty (WGAN-GP). The Wasserstein distance alone is informally defined 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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as the minimum cost of transporting mass in order to transform the distribution q into the 

distribution p (where the cost is mass times transport distance) [145] and is represented by the 

following equation: 

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷∈D 𝔼x~p𝑟
[D(𝑥)] − 𝔼𝑥̅~p𝑔

[𝐷(𝑥̃)] (11) 

Intuitively, we can explain WGAN as simply minimizing the distance between the 

distribution of the generator’s output and the true distribution (modeled by your training data). 

WGAN uses a technique called weight clipping, which enforces a 1-Lipschitz constraint on the 

discriminator. A Lipschitz constraint limits how fast a function changes by putting bounds on the 

function’s first derivative. This means that the weights of the discriminator are forced to lie within 

a compact space defined by a Lipschitz function. For example, a sin function, the absolute value 

of its derivative is always bounded by 1 and therefore it is 1-Lipschitz constrained. Intuitively, 

Lipschitz continuity bounds the gradients and is beneficial in mitigating gradient explosions in 

deep learning. Instead of weight clipping WGAN-GP enforces the 1-Lipschitz constraint by adding 

an additional loss term to the Wasserstein distance (Equation 12). 

 

 

(12) 

The penalty term is based on the norm of the gradient of the discriminator's output with 

respect to the input data. Specifically, the penalty term is defined as the difference between the 

norm of the gradient and a constant value of 1, squared and multiplied by a hyperparameter λ. 

Intuitively, the gradient penalty satisfies the Lipschitz constraint by encouraging the discriminator 

to have a gradient with a norm close to 1, and penalizes it when the norm deviates from 1. While 

demonstrably better than the alternatives, it does not guarantee convergence [146]. 
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In addition to loss function changes, there were numerous architectural improvements 

made. We highlight the most popular types in Table 7: 

Table 7. Common GAN variants. 
Variant Novelty/Description Reference 

cGAN Adds conditional information, specifically class label information to the basic GAN 

architecture. This allows the generator to selectively generate an imbalanced class 

through label input. 

[147] 

DA-GAN Introduces a “Deep Attention” mechanism that is a compound loss of instance-level and 

set-level translation task. Essentially, for each pair of images, not only is the goal to 

translate from one domain to another but translate local regions of each image to each 

other.  

[148] 

DCGAN Applied specific architectural constraints to allow for stable training in a deep network. 

These constraints include using a batchnorm layer in both the generator and the 

discriminator, using ReLU activation in generator for all layers except for the output, 

which uses Tanh, and using LeakyReLU activation in the discriminator for all layers. 

[134] 

PGGAN The key idea is to grow both the generator and discriminator progressively: starting from 

a low resolution, new layers are added so that the model produces increasingly fine 

details as training progresses. This both speeds the training up and greatly stabilizes it, 

allowing us to produce images of unprecedented quality. 

[149] 

StyleGAN Instead of starting from a random vector input, the generator starts from a learned input. 

StyleGAN’s generator, therefore, consists of two separate networks; one for mapping 

the latent space input to an intermediate space and one for synthesis. This mapped input 

is now used in the synthesis network and only added to specific layers that correspond 

to a “style”, i.e. glasses, male, facing left, etc. 

[150] 

AC-GAN Adds an auxiliary class decoder network to discriminator to reconstruct class labels. By 

forcing a model to perform additional tasks is known to improve performance on the 

original task. This was the first model to measure discriminability using the Inception 

network, which is now standard in assessing the quality of synthetic images for GANs. 

[151] 

Pix2pix Pix2pix introduced the embedding of whole images as an input to the generator instead 

of random noise allowing a paired, image-to-image translation.  

[152] 

StarGAN StarGAN is a novel and scalable approach to perform image-to-image translation among 

multiple domains using a single model. It has a unified modeling architecture that allows 

simultaneous training of multiple datasets and different domains within a single network. 

[153] 

cycleGAN CycleGANs introduced cycle consistency and identity losses allowing for unpaired 

training of pix2pix architecture. 

[154] 

2.3.3 Image-to-Image Translation GANs 

Image-to-Image translation is the transformation of one image domain to another while 

preserving content representations [155]. For example, we can convert a natural black and white 

image of Marilyn Monroe to a green one (Figure 21). Notice how the intrinsic source content 

(background, location of features, etc) are preserved while the extrinsic target style is transferred 

(grayscale to green). We can use a type of conditional GAN, namely pix2pix, UNIT, StarGAN, 

Table 7 (cont’d) 
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and cycleGAN for this task. Unlike the original GAN which is unsupervised learning (trying to 

discover the underlying distribution), conditional GANs are a type of supervised learning (we 

define the expected outcome).   

 

Figure 21. Unpaired and Paired Images. Unpaired images do not require the structural constraints 

that paired images have. In other words, the position of the apples do not have to match the position 

of the apples. However, with paired images, we can speed up training by applying this constraint.  

The chief innovation for pix2pix is the use of paired images, using a U-net architecture for 

the generator, and a patchGAN architecture for the discriminator [152]. Paired images (Figure 21) 

consist of two sets of spatially identical but texturally different images. They are paired in the 

sense that an image from set A only maps to the corresponding image in set B and are used together 

as inputs to the pix2pix discriminator. The use of paired images has shown to be more efficient in 

training and is more likely to converge as it makes the translation task more constrained [156]. The 

use of a U-net shaped generator with skip connections allows for better preservation of underlying 

structures. GANs are known to produce blurry images, since the discriminator tends to model low-

frequency content better [157]. To model high frequencies, pix2pix uses a discriminator that 

classifies localized image patches. It has been shown that by querying random samples from 

images models are better able to preserve local structure [158]. The average probability of all 

patches is then used as the final output of the discriminator. While results produce sharp, high 

PairedUnpaired
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resolution, and generally realistic images, the need for a paired dataset limits pix2pix to very 

specific image translation applications. 

CycleGAN was developed specifically to use unpaired training data and utilizes two 

generators and two discriminators in its network with a specialized cyclic loss [154]. One 

generator-discriminator pair aims to translate images from domain A to domain B while the other 

performs the opposite operation and translates images from B to A. The generator network and 

discriminator network are nearly identical to pix2pix, other than having two sets (Figure 22).  

 

Figure 22. CycleGAN architecture. Two pairs of generators and discriminators are trained 

simultaneously. One pair translates from domain A to domain B, and the other from domain B to 

domain A. A cyclic loss is computed to ensure that an image, when translated through both 

generators, remains the same. Image courtesy of [159] under BSD license.  

Images from each domain are fed into a generator to transform them to the opposing 

domain (GA : X→Y and GB : Y→X). Then, a real image and the transformed image are given to 

the respective discriminator to judge which is real and which is fake. DA is therefore trained given 

samples {𝑥𝑖}𝑖=1
𝑛  , 𝑥 ∈ 𝑋, with distributions 𝑥 ~ 𝑝𝑋(𝑥)  and DB is trained given the samples 

https://opensource.org/license/bsd-3-clause/
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{𝑦𝑗}
𝑗=1

𝑛
 , 𝑦 ∈ 𝑌, with distribution 𝑦 ~ 𝑝𝑌(𝑦), where X and Y are the domains of the unpaired 

images. Discriminator B’s loss function is therefore defined as  

 LGAN(GA, DB, X, Y) = 𝔼y~pY(y)[logDB(y)] + 𝔼x~pX(x)[log(1 − DB(GA(x))] (13) 

and discriminator A’s loss function is 

 LGAN(GB, DA, Y, X) = 𝔼y~pY(y)[log(1 − DA(GB(x))]  +  𝔼x~pX(x)[logDA(y)] (14) 

The use of the cyclic loss function is inspired by an intuitive idea in natural languages. 

When translating from one language to another (English → Spanish: Hello to Hola), we should 

expect the original input when translating back (Spanish → English: Hola to Hello). Therefore, we 

can add an additional loss term, originally called the cycle consistency loss, to the discriminator. 

To ensure cycle consistency, the transformed image is fed to the opposing generator, and then 

compared to the original input image. In other words, GA(GB(X)) = X and GB(GA(Y)) = Y. 

Therefore, the cycle consistency loss function is given by  

 LCyc(GA, GB) = 𝔼x~pX(x) [‖F(G(x)) −  x‖
1

]  + 𝔼y~pY(y) [‖G(F(y)) −  y‖
1

] (15) 

Combined, the full loss function is  

 Ltot(GA, GB, DA , DB) = LGAN(GA, DB, X, Y)  +  LGAN(GB, DA, Y, X)  + λLCyc(G, F)    (16) 

where λ controls the relative importance of the cycle consistency loss. 

CycleGAN shows similar performance as pix2pix, but again uses unpaired images. This 

allows for easier data curation, and therefore can be applied to more image translation tasks. This 

is particularly useful for medical image translation, where data is notoriously difficult to acquire 

in high quantities. However, unpaired images makes the translation more unconstrained, and 

therefore is less likely to converge and is susceptible to exploding gradients [156]. 
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2.3.4 Common quantitative evaluation metrics 

There are 4 common ways to evaluate GANs: (1) MAE/MSE, (2) Human Observer Study, 

(3) Inception Score/Frechet Inception Distance, and (4) Downstream Task Performance [160], 

[161]. If we have ground truth images, such as in pix2pix or cGAN, we can measure the mean 

squared error between the generator prediction and those images. We can also use peak signal to 

noise ratio (PSNR), Dice similarity coefficient, Jaccard similarity index (JI), and structural 

similarity index measure (SSIM) to evaluate image similarity. These metrics are often used in 

segmentation GANs. Ideally, we would have expert readers assess the quality, realism, and 

diversity of the synthetic images, but this is generally the costliest option. The inception score (IS) 

and Frechet Inception Distance (FID) both use the pretrained InceptionV3 network [162] to 

measure average conditional probability of our generated samples [163]. The main difference is 

that IS measures the difference between the predicted class probabilities of the generated images 

and the training set and FID measures the distance between the distributions of the last layer of the 

InceptionV3 network for synthetic and real images [164], [165]. The FID is sensitive to class mode 

dropping, with distances increasing with greater class discrepancies between the two distributions 

as the average set of features begins to differ [166]. Both IS and FID have been empirically shown 

to have high correlation with the quality and diversity of generated images and is consistent with 

human judgments [167]–[169]. Finally, we can indirectly measure the quality of the generated 

images by using them for a downstream task such as object detection. If the generator is able to 

produce realistic and diverse results, then the use of synthetic images in the training set should 

improve the performance of the object detector. Using downstream metrics is the most practical 

evaluation of the quality of synthetic images since it is the goal of data augmentation. 
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2.4 Review of GANs applied to Medical Imaging Applications 

This section is organized by GAN task and then image modality. Due to the sheer number 

of articles published in this field, we have limited the scope of this review to papers published after 

2019. 

2.4.1 Image Reconstruction 

Over the years, reconstruction methods for medical images have changed from analytical 

to iterative to machine learned. There are many factors that affect the quality of the reconstructed 

image for various modalities, from concentration of contrast administered, amount of radiation 

administered, level of noise and artifacts, resolution, and sampling [170]. Many articles use GANs 

described in Table 8, or close variations. For example, Waheed et al present a method that  

architecturally is identical to an ACGAN, the only changes made is the size of the input layer of 

the generator [171]. Therefore, it would be classified in the ACGAN family. However, while 

Kamran et al proposed a model whose architecture sounds similar to cycleGAN; two 

discriminators and two generators, is would not be considered in the cycleGAN family because 

each pair of networks are not performing the opposite translation task [172]. If the GAN is not 

closely related to any of the ones mentioned in Table 8, then the name used by the authors is simply 

given. Here, we highlight in Table 8 GANs that mitigate these factors and are effective in 

compromised reconstruction. We focus on the way GANs are tailored for the reconstruction task 

and the novelty of the application. 
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Table 8. Image reconstruction applications using GANs. Generally, authors choose to either 

reconstruct an image from raw data or from a low-sample rate/noisy image. For reconstruction 

tasks, PSNR, SSIM, and MSE are commonly used to evaluate the image quality, but is left out of 

this table for simplicity. 
Modality Reference GAN Variant 

or Family 

Data Description and Network Architecture Novelty 

M
R

I 

[173] cGAN A conditional GAN was trained to reconstruct fully sampled, multi-

contrast MRI using undersampled acquisitions. This deviates from a 

traditional cGAN where the input is a latent vector with a class label. The 

proposed approach can successfully recover pathologies that are either 

missing in the source contrast or are not clearly visible in the 

undersampled acquisitions of the target contrast. Additionally, this 

reconstruction method was 50x faster than traditional reconstruction 

techniques. This network was trained and tested using publicly available 

datasets: MIDAS, IXI, and BRATS and found to have reasonable peak 

signal to noise ratio (PSNR), structural similarity index (SSIM), and root 

mean squared error (RMSE) values. 

[174] cycleGAN Due to lack of fully sampled, high spatio-temporal resolution ground truth 

images for time-resolved MR angiography (tMRA), a cycleGAN was 

trained on sparsely sampled, aliased images and unpaired high-resolution 

MRI images. Unlike the traditional cycleGAN, which uses two pairs of 

generator-discriminators, the author’s “Optimal Transport-cycleGAN” 

only uses one pair and replaces one generator with a deterministic Fourier 

transform. Twelve sets of in vivo 3D DCE MRI data was acquired, which 

corresponds to 78,740 slices of data, 33,890 which were used for training. 

They demonstrated that undersampled images with reduced view sharing 

can be properly reconstructed using a cycleGAN. 

[175] DCGAN Knee MR scans were obtained from 19 patients. Each volume consists of 

320 2D slices that were divided into training, validation, and test 

examples with a 70/15/15 split. This data was used to train multiple 

variable autoencoders (generator) of varying sizes (1-4 residual blocks). 

They demonstrated that multiple recurrent blocks decrease uncertainty, 

which suggests an effective way of promoting robustness. 

[176] DA-GAN The original DA-GAN was improved by replacing a generator loss term 

with the Wasserstein distance and adding a perceptual loss term. The 

authors used the MICCAI 2013 grand challenge diencephalon dataset 

using 3 different under sampling masks. They demonstrated that their 

version of the DA-GAN was superior at reconstruction when compared 

to other GANs such as Pixel-GAN and regular DA-GAN, and a non-GAN 

neural network called ADMM-Net. 

[177] cycleGAN The general architecture presented in [174] remains the same with minor 

adjustments. Namely, the authors used a Wasserstein GAN loss in the 

generator. They validated their network with two publicly available 

datasets: Human Connectome Project and the FastMRI dataset. The 

authors show with both datasets that the addition of the Wasserstein loss 

function improves the PSNR and SSIM of the reconstruction.  
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Table 8 (cont’d) 

 [178] DCGAN A novel two-generator GAN was proposed for sparsely sampled 

reconstruction. The first generator maps the sparse data to a fully sampled 

k-space. The second generator maps the IFT of the fully sampled k-space 

to a denoised and anti-aliased image. The proposed method was applied 

to three essentially different brain MRI datasets: IXI, the 2015 

Longitudinal MS Lesion Segmentation Challenge, and a private DCE-

MRI dataset of stroke and brain-tumor patients acquired at the Soroka 

University Medical Center. This method of reconstruction was compared 

to conventional Compressed Sensing MRI (CS-MRI) and a different 

deep-learning approach called ADMM-Net and was shown to be superior 

to both. 

C
T

 

[179] RED-GAN 

[180] 

A GAN to denoise low dose CTs (LDCT) was developed. The novelty 

comes with the proposed “Noise Aware Loss” in the discriminator 

network. A patch-wise mean squared error (MSE) loss was used to 

mitigate gradient vanishing. Since CT images contains air in a significant 

region; after a few epochs of training, the MSE will be very small for all 

those image regions; subsequently, gradient update during 

backpropagation will be insignificant, as the total loss is small. So, after 

a few epochs, effective training will stop implicitly. The generator 

network was borrowed from [180].They tested this network on the 

publicly available 2016 NIH-AAPM-Mayo Clinic LDCT dataset. It was 

shown to outperform other state of the art NN reconstruction methods in 

terms of PSNR and SSIM. 

[181] RED-GAN Unlike standard GAN discriminators, the proposed DU-GAN (dual U-net 

GAN) utilizes a U-Net-based discriminator for LDCT denoising, 

therefore providing per-pixel feedback and the global structural 

difference to the denoising model. Additionally, there are two 

discriminators, one for both the image and gradient domain. The RED-

GAN generator was also used. The network was trained and tested using 

2016 NIHAAPM-Mayo Clinic LDCT dataset. 

[182] SA-GAN The proposed self-attention GAN (SA-GAN) generator is composed of 

multiple layers of self-attention blocks sandwiched in between 3D conv 

layers. Each block computes the correlation matrix that represents spatial 

dependencies between any two positions within the input feature maps. 

Each position is calculated and updated by the weighted sum of all other 

positions. This is done both depth wise (between slices) and plane wise 

(within slices). The network was trained and tested using the 2016 

NIHAAPM-Mayo Clinic LDCT dataset. 

[183] WGAN The generator is U-net structure and has 9 layers total, with 2 

downsampling blocks, 5 residual blocks, and 2 upsampling blocks. The 

generator loss has three parts: the WGAN loss, an SSIM loss, and a L2 

loss (MSE). The discriminator consists of six convolutional layers and 

three fully-connected layers. The network was trained and tested using 

the 2016 NIHAAPM-Mayo Clinic LDCT dataset. 

[184] cycleGAN, 

IdentityGAN, 

and GAN-

CIRCLE 

The authors compared three previously described GANs for the use of 

unpaired translation of LDCT to FDCT. Among CycleGAN, 

IdentityGAN, and GAN-CIRCLE, the latter achieves the best denoising 

performance (Lowest PSNR and SSIM) with the shortest computation 

time. Subsequently, GAN-CIRCLE is used to demonstrate that the 

increasing number of training patches and of training patients can 

improve denoising performance. The network was trained and tested 

using the 2016 NIHAAPM-Mayo Clinic LDCT dataset. 
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Table 8 (cont’d) 

 [185] WGAN The generator and discriminator networks are similar to previously 

described WGANs. The generator is U-net shaped and the discriminator 

is borrowed from [186]. The authors proposed an additional perceptual 

loss in addition to the WGAN and L2 losses and is simply the feature 

vector given by VGG-19. The performance of the proposed DR-WGAN  

is compared to other previously described GANs and was better in terms 

of PSNR and SSIM. All GANs were trained and tested using the publicly 

available LUNA16 dataset. 

[187] cGAN Unlike other deep residual generators with a perception loss, the proposed 

network DRL is a conditional GAN. The input is a LDCT image and uses 

a Sobel filtered LDCT image as the class label. The authors show that the 

edge detection layer improves the performance of the network, and that 

the overall network outperforms other reconstruction techniques. The 

GAN was trained and tested on a simulated dataset from The Cancer 

Imaging Archive [188], as well as curated deceased piglet and thoracic 

CT datasets. 

P
E

T
 

[189] LSGAN 

[139] 

The proposed model is an improvement of the LSGAN, which uses a least 

squares loss function for the discriminator. The novelty comes with the 

addition of a self-attention layer in the generator, as well as more residual 

blocks to better preserve structural details and edges. Whole body scans 

were used, where the ground truth images were produced after 150s 

scanning as noise-free HC data, and the input images were produced after 

scanning for 75 s as low-count input data with noise. In terms of PSNR, 

the proposed model is only slightly better than other neural networks 

(CNN3D) and traditional noise reduction reconstruction algorithms such 

as non-local means (NLM). However, it significantly outperforms all 

other techniques when measured by SSIM. 

[190] Transformer-

GAN  

The proposed generator network comprises three components: (1) a CNN-

based encoder, (2) a transformer network used to model the long-range 

dependencies between the input sequences learned, and (3) a CNN-based 

decoder. Residual blocks that are normally found in a DCGAN are 

replaced by a transformer, which is useful in capturing slice-to-slice 

information.  This was tested on a clinical dataset which includes eight 

normal control (NC) subjects and eight mild cognitive impairment (MCI) 

subjects, from which 729 large patches of size 64 × 64 × 64 are sampled. 

[191] DCGAN The proposed network is described as a 2.5D encoder-decoder since it is 

normally designed to take in a 3-channel image, but instead takes 3 single 

channel slices as inputs. A feature matching layer was also applied to 

reduce noise and to correct pathological features. This model 

outperformed [192] in terms of PSNR and SSIM, and overall image 

quality is rated decent by radiologists. The model was trained on forty 

PET datasets from 39 participants where ground truth samples were 

reconstructed as the standard-dose and 1% low-dose PET scans were 

reconstructed using randomly undersampled data. 

[193] SA-GAN The network is a modified self-attention GAN where the input consists of 

5 consecutive slices of 128x128 PET images. Similar to the non-local 

means filter, models trained with a self-attention module implicitly learn 

to suppress irrelevant regions in an input image while highlighting salient 

features. Both simulated and real patient data was used to train and test 

this model. Compared to other SA-GAN skews the proposed method 

leads to higher contrast in tumors and have sharper boundaries. 
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Table 8 (cont’d) 

 [194] cycleGAN Full count PET images and low count PET sinograms were the two target 

domains for image-to-image translation. The cycleGAN generator 

architecture remains largely the same from the original paper except for 

the input and output layer size (now larger) and the number of residual 

blocks (5 instead of 3). A total of 30 clinical PET volumes (310 slices per 

volume) were used to train and test the model. Evaluation of PSNR and 

MSE revealed that the proposed method was better than other 

reconstruction methods (expectation-maximation, NLM denoising, and a 

vanilla GAN). 

[195] Task-GAN Here, a novel task-specific network is used in addition to the generator 

and discriminator. It aims to help regularize the training of the generator 

and complement the adversarial loss to ensure the output images better 

approximate the ground truth images. The task-network learns to refine 

the output of the generator to match the label of the image. For example, 

if the reconstructed image is supposed to have pathology present, the task-

network would refine the generator output to make pathologies “clearer”. 

40 ultra-low-dose 1% PET images were reconstructed after random 

undersampling. Each PET volume consists of 89 2.78 mm-thick slices 

with 256 × 256 pixels. 

2.4.2 Image Synthesis 

 As previously mentioned, GAN’s most promising application is in data augmentation, 

where we can create diverse synthetic images to solve the problem of low volume labeled imaging 

datasets. Presented in Table 9 are GANs used for medical image synthesis for improving 

downstream segmentation, classification, and detection tasks. If the articles use privately curated 

datasets, a brief description is provided; otherwise if the articles use publicly available datasets, 

only the name is provided. For simplicity, novelty of network architecture is not described, and 

the results are focused on the promising performance of GANs. 

Table 9. Image synthesis applications using GANs.  
Modality Ref Generation and 

Downstream 

Task 

Data GAN 

Variant or 

Family 

Results 

M
R

I 

[196] Cardiac MR 

images for 

segmentation 

33 short-axis 

cardiac MR 

image sequences, 

each 20 frames 

with 8 to 15 

slices, for a total 

of 10,022 images. 

DT-GAN Proposed method achieves a mean 

Hausdorff distance (HD) of 2.98 mm ± 

0.43 mm and a Dice score of 0.79 mm ± 

0.10 mm for myocardium segmentation, 

which is superior to a previously 

described 23-layer U-net (HD = 3.04 

mm ± 0.27 mm, Dice = 0.74 ± 0.04. 
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 [197] Knee MRI for 

detection 

OAI dataset + 25 

heterogeneous 

MRIs locally 

collected through 

clinical routines 

cGAN Training a cGAN on the OAI dataset led 

to poor performance on the clinical 

dataset (Dice = 0.519, HD = 6.23). 

However, using this pretrained model 

and transfer learning to the clinical 

dataset improved the mean Dice score to 

0.819 and the mean HD to 1.46. 

[198] Brain MRI 

with tumors 

for detection 

BRATS 2013 FixedGAN The downstream ROC response of an 

object detector (ResNet 50) is evaluated 

given images synthesized by Fixed-

Point GAN, Star-GAN, and CAM. 

Fixed-Point GAN achieved an AUC of 

0.98 and a sensitivity of 84.5% at 1 false 

positive per image, outperforming 

StarGAN who had an AUC of 0.46 and 

a sensitivity levels of 13.6%. CAM, 

however, outperformed both with an 

AUC of 0.99 and a sensitivity of 60% at 

0.037 false positives per image.  

[132] Brain MRI 

with tumors 

for detection 

BRATS 2016 PGGAN, 

SIMGAN, 

and UNIT 

The Visual Turing test of the all three 

GAN generated images revealed that 

75% of images contained realistic 

texture and tumor appearance. The 

downstream ROC response of an object 

detector (ResNet 50) was also evaluated 

given augmented data. Without synthetic 

images, ResNet 50 achieved an 

accuracy, sensitivity, and specificity of 

93.14, 90.91, and 95.85, respectively. 

The addition of augmented data, whether 

it be through classical transformations or 

with GANs, all improved object detector 

performance. The addition of classical 

DA and UNIT images resulted in the 

highest accuracy and sensitivity (96.7 

and 97.48, respectively). 

[199] Brain MRI 

with tumors 

for 

classification 

BRATS 2016 PGGAN This model was an improvement on the 

PGGAN described in [132]. All 

evaluation methods remained the same. 

Without synthetic images, ResNet 50 

achieved an accuracy, sensitivity, and 

specificity of 90.06, 85.27, and 97.04, 

respectively. This improved to 91.08, 

86.60, and 97.60 with the addition of 

PGGAN synthetic data. 
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[200] 3D Brain MRI 

for detection 

ADNI and 

BRATS 2018 

3D α-GAN To quantitatively evaluate synthetic 3D 

MRI images, the maximum mean 

discrepancy (MMD) and multi-scale 

SSIM metrics were used. Compared to 

other 3D GANs such as 3D-VAE-GAN 

and 3D-WGAN-GP, the proposed model 

achieved the lowest MMD of 0.072 and 

the second closest MS-SSIM to real 

images (0.829). 

 [201] Brain MRI 

with 

Parkinson’s for 

classification 

PPMI Dataset Modified 

DC GAN 

The pre-trained Le-Net-5 network was 

used as a classifier to detect Parkinson’s 

from brain MRIs. Synthetic GAN data 

were added to the training set which 

yielded an accuracy, specificity, and 

sensitivity of 88, 87.14, and 87.92, 

respectively, compared to a baseline of 

84.67, 83.76, and 84.13 without 

synthetic data. 

[202] Diffusion MRI 

for 

classification 

Human 

Connectome 

Project 

cycleGAN Using a cycleGAN to translate between 

structural and diffusion MRI images, the 

authors were able to achieve reasonable 

MSSIM values (0.839 ± 0.014 and 0.937 

± 0.008 for synthetic fractional 

anisotropy and mean diffusivity images, 

respectively). The authors did not 

provide a baseline to compare to. 

R
et

in
al

 F
u

n
d

u
s 

[172] Vessel 

segmentation 

map of retinal 

fundus images 

DRIVE, CHASE-

DB1, and STARE 

RV-GAN RV-GAN outperforms other 

segmentation neural networks and 

GANs for all 3 datasets. RV-GAN beats 

traditional U-net, DenseNet, IterNet, and 

SUD-GAN in all metrics, with F1, 

specificity, accuracy, AUC, mean IOU, 

and SSIM of 0.869, 0.996, 0.979, 0.988, 

0.976, and 0.9237, respectively. 

Surprisingly, RV-GAN only loses to M-

GAN in terms of sensitivity (0.793 vs 

0.835). 

[203] Vessel 

segmentation 

map of retinal 

fundus images 

DRIVE, STARE DRPAN DRPAN showed to match or barely 

exceed other leading segmentation 

algorithms. All CNN performance in 

terms of accuracy, sensitivity, and 

specificity were within 0.01, and were 

not statistically significant. 

[204] Vessel 

segmentation 

map of retinal 

fundus images 

DRIVE, STARE RetinaGAN RetinaGAN achieves statistically 

significant improvement in AUROC, 

precision, and recall, surpassing the 

current state-of-the-art method by 0.2 − 

1.0% in ROC and 0.8 − 1.2% in 

precision and 0.5 − 0.7% in recall. 
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 [205] SLO images 

with fundus 

disease for 

classification 

4590 scanning 

laser 

ophthalmoscopy 

(SLO) images of 

size 2600 x 2048 

were captured 

from teenage (< 

18yo) patients. 

AMD-

GAN 

Compared to ResNet 50, the proposed 

AMD-GAN classifier resulted in higher 

accuracy, precision, recall and F1 

(ResNet 50 = 77.13, 68.90, 68.42, 68.65, 

87.10, AMD-GAN = 84.75, 79.15, 

82.15, 80.41, 97.25, respectively). 

 

[206] Vessel 

segmentation 

map of retinal 

fundus images 

for 

segmentation 

DRIVE and 

DRISHTI-GS 

Pix2pix, 

cycleGAN 

Two types of image-translation models 

were compared in generating vessel 

segmentations from retinal fundus 

images. Multiple skews for the 

generators were also explored (U-net, 

ResNet6, and ResNet9). The best 

performing method for PSNR was the 

pix2pix with ResNet9 generator (25.36) 

with the worst performing model 

cycleGAN with the ResNet9 generator 

(21.9). The best performing method for 

SSIM was pix2pix with U-Net generator 

(0.911) and the worst performing was 

the cycleGAN with ResNet9 generator 

(0.877). 

[207] Retinal fundus 

images with 

different 

grades of 

diabetic 

retinopathy for 

classification 

EyePACS DR-GAN Here, a model to generate fundus images 

with controllable diabetic retinopathy 

severity levels, which can be used to 

augment images and improve the 

performance of the DR grading models 

by mitigating class imbalance. VGG16, 

ResNet 50, and InceptionV3 were used 

to assess the classification performance 

with/without the addition of synthetic 

images. Overall, DR-GAN seems to 

solve the class imbalance problem and 

the addition of synthetic images 

significantly improves the accuracy of 

all three classifiers. 

[208] Vessel 

segmentation 

map of retinal 

fundus images 

Retinal color 

fundus dataset 

with 6,432 retinal 

images was 

collected from 

local hospitals. 

DRIVE was also 

used for 

segmentation 

tasks. 

SkrGAN SkrGAN achieves a MS-SSIM of 0.614, 

and FID of 27.59, which are all better 

than DCGAN, ACGAN, WGAN, and 

PGGAN. Additionally, a U-net 

segmentation model performed better 

with SkrGAN generated images 

(sensitivity = 0.846, accuracy = 0.951) 

than without (sensitivity = 0.778, 

accuracy = 0.948). 
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[209] Optical photos 

of skin cancer 

lesions for 

segmentation 

ISIC Skin Lesion 

Challenge Dataset  

DAGAN The authors compared the proposed 

DAGAN segmentation network with U-

net and its many variations. Overall, 

DAGAN had the highest Dice 

coefficient (0.859) where the next 

highest was a U-net with skip and dense 

connections (0.832). DAGAN also 

highest accuracy and specificity, but 

only the second highest sensitivity.  

 [210] Optical photos 

of skin cancer 

lesions for 

classification 

ISIC Skin Lesion 

Challenge Dataset 

cGAN In this paper, a CNN was trained 

with/without synthetic data to classify 

skin cancer into benign or malignant. 

Without GAN images, the CNN had an 

accuracy, sensitivity, specificity, and F1-

score of 53%, 0.51, 0.57, and 0.5, 

respectively. With GAN images, the 

CNN had an accuracy, sensitivity, 

specificity, and F1-score of 71%, 0.68, 

0.74, and 0.7, respectively. 

[131] Optical photos 

of skin cancer 

lesions for 

segmentation 

SMARTSKINS, 

Dermofit image 

library, ISIC 

Challenge dataset 

cycleGAN The cycleGAN generated segmentation 

maps was compared to simple adaptive 

thresholding, and other neural networks 

(Gossip and Reduce Mobile Deeplab). 

Both cycleGAN Dice coefficient and 

Jaccard Index (JI) were superior to other 

segmentation techniques (92.74 and 

86.7, respectively). 

X
-r

ay
 

[211] X-ray images 

with bone 

lesions for 

detection 

514 adult X-ray 

images of tibia, 

humerus, and 

femur bone 

lesions 

cycleGAN A trained CNN classifier had a baseline 

lesion detection sensitivity, specificity, 

and AUC of 0.9, 0.776, and 0.876, 

respectively. The CNN trained with real 

and cycleGAN generated data yielded 

values of 0.84, 0.842, and 0.924, 

respectively. 

[166] X-ray images 

with various 

diseases for 

classification 

ChestX-ray8 PGGAN FID score indicated generally high 

realism and quality for most disease 

classes. Overall synthetic images had an 

FID of 8.02, where closer to 0 is ideal. 

Images that are supposed to contain 

edema or pneumonia were found to be of 

less quality (FID 59.4 and 32.05, 

respectively). Real images were 

identified as such by radiologists 73% 

(95% CI 63, 82) of the time, while 

generates were identified as real 61% 

(95% CI 51, 70) of the time, with both 

groups more likely than chance to be 

identified as real. 
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 [171] Chest X-ray 

with Covid for 

detection 

IEEE Covid 

Chest X-ray 

dataset, COVID-

19 Radiography 

Database, and 

COVID-19 Chest 

X-ray Dataset 

Initiative 

CovidGAN A variant of the ACGAN developed to 

generate synthetic, Covid-19 positive 

chest x-rays. A VGG16 detector was 

transfer learned with/without 

CovidGAN images. Accuracy, 

sensitivity, and specificity of the VGG16 

classifier improved from 0.85, 0.69, and 

0.95 to 0.95, 0.90, 0.97, respectively, 

when adding the synthetic chest 

radiographs. 

 [212] Mammography 

images of 

varying levels 

of breast 

density for 

classification 

and 

segmentation 

INbreast dataset cGAN The best performing model segment the 

dense regions well with an accuracy, 

Dice coefficient, JI of 98%, 88%, and 

78%, respectively. Compared to other 

NN segmentation techniques, the cGAN 

resulted in the highest precision, 

sensitivity, and specificity of 97.85%, 

97.85%, and 99.28%, respectively, for 

breast density classification. FCN-8 and 

VGG16 yielded 0.748, 0.997, 0.69 and 

0.832, 0.996, 0.66, respectively. 

[213] Mammogram 

mass images 

for 

segmentation 

INbreast dataset, 

and a private 

dataset of 549 

mammograms 

containing 376 

mass regions. 

cGAN The U-net segmentation model 

performed the best when using a 

combination of INbreast, privately 

curated data, and cGAN generated 

images with a JI, Dice score, and 

accuracy of 79.35, 88.2, and 88.8, 

respectively. Without the additional 

synthetic images, the segmentation 

performance fell to 77.23, 86.77,and 

87.29, respectively. 

[214] Rib suppressed 

chest X-ray for 

disease 

detection 

LIDC-IDRI, 

TianChi AI 

competition 2017, 

2019 

RSGAN The important metric to note is Weber 

Contrast (WB), which provides an 

estimation of rib-suppression 

performance on the boundaries for chest 

x-ray images by calculating the contrast 

gap between the rib-suppressed region 

and the background, where a lower 

contrast gap is more valuable. RSGAN 

yielded in a WB of 1.96 while other NNs 

yielded a WB of 3.49 (U-net) and 2.36 

(ResNet). 

[215] Chest x-ray for 

disease 

classification 

CheXpert cGAN, 

DenseNet 

The DenseNet-121 pretrained network is 

used to transfer learn disease 

classification. A cGAN was developed 

to augment chest x-rays with either lung 

lesions, pleural effusion, or fractures. 

Overall, the addition of synthetic images 

only improves performance in low-

volume scenarios (<10% of real dataset). 

The authors found that training with only 

their full dataset is better than training 

with augmented data. 
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 [216] Chest X-ray 

for lung 

segmentation 

JSRT and 

Montgomery 

County Datasets 

cGAN The proposed auxiliary U-net GAN with 

multiple residual blocksresulted in a 

Dice score of 0.979 when training on the 

JSRT dataset, where a normal U-net 

yielded 0.946. 

 [217] Rib suppressed 

chest X-ray for 

disease 

detection 

JSRT dataset SFRM-

GAN 

The proposed model is a mix between 

WGAN-GP and pix2pix. The proposed 

model resulted in a mean PSNR of 

43.588, mean RMSE of 0.00025, and 

mean SSIM of 0.989. Compared to 

pix2pix which resulted in 41.37, 0.0004, 

and 0.982, respectively. 

C
T

 

[218] High 

resolution CT 

image 

reconstruction 

29 post-registered 

ankle CT scans of 

low- and high 

resolution which 

resulted in 14,000 

matching pairs of 

low- and high-

resolution patches 

of size 64×64 

GAN-

CIRCLE 

The goal of this study was to reconstruct 

high resolution CT images to assess 

trabecular bone microstructures. To 

evaluate the GAN, they chose to use 

concordance correlation coefficient 

(CCC) to measure the agreement in the 

microstructure. Evaluating real low-

resolution images, the Tb thickness and 

Tb volume CCC scores were 0.66 and 

0.83, respectively. This increased to 0.95 

and 0.88 when evaluating synthetic 

high-resolution images. 

[219] CT scans for 

organ 

segmentation  

NIH Pancreas-CT 

dataset 

cycleGAN When the kidney model was trained with 

CycleGAN augmentation techniques, 

performance increased dramatically 

(from a Dice score of 0.09 to 0.66, 

p < 0.001). Improvements for the liver 

and spleen were smaller, from 0.86 to 

0.89 and 0.65 to 0.69, respectively. 

[220] CT scans for 

nodule 

segmentation 

LIDC-IDRI AUGAN This study compared its AUGAN to 

other segmentation networks (FCN, U-

Net, and U-net GAN). For Dice 

coefficient, AUGAN yielded the highest 

score of 0.849 while the U-net GAN 

yielded a the second highest score of 

0.835. Similar performance is seen when 

evaluating JI, with AUGAN at 0.750 and 

U-net at 0.733. 

[221] CT scans for 

nodule 

segmentation 

LIDC-IDRI 3D cGAN Only qualitative approaches were used 

to assess image quality and nodule 

realism. Generally, the cGAN generated 

images do appear realistic with a diverse 

set of nodule presentations. The nodules 

also appear to be tunable in size. 

P
E

T
 

[222] Low dose to 

Standard dose 

PET for 

detection 

(LPET to 

SPET) 

Phantom Brain 

Dataset and Real 

Human Brain 

Dataset 

AR-GAN The proposed AR-GAN outperforms 

other state-of-the-art GANs in PSNR 

and SSIM (28.106 and 0.891, 

respectively). Stack-GAN, GDL-GAN, 

and Ea-GAN resulted in PSNR, 26.77, 

27.07, and 26.39, and SSIM values of 

0.884, 0.886, and 0.882, respectively. 



68 
 

Table 9 (cont’d) 
 

[223] PET images 

for 

Alzheimer’s 

classification 

ADNI1 DCGAN The authors provided no other neural 

network as a point of comparison. The 

mean PSNR of the DCGAN generated 

images was 32.83 and the SSIM was 

77.48. 

U
lt

ra
so

u
n

d
 

[224] High 

resolution US 

images for 

segmentation 

Privately curated 

set of B-mode US 

images contains 

6054 of chest, 

1231 of hip joints, 

and 3261 of 

ovaries 

PGGAN 

(named 

spGAN) 

Standard interpolation was used as the 

baseline method for generating high-

resolution US. For the chest and ovary 

datasets, SpGAN had better FID SSIM, 

and LPIPS scores (chest = 36.36, 0.751, 

0.168, ovary = 47.11, 0.497, 0.795) 

compared to standard interpolation 

(chest = 65.41, 0.7428, 0.210, ovary = 

63.15, 0.4332, 0.8901). For the hip joint 

dataset, the interpolation technique only 

surpassed spGAN in SSIM. 

[225] Breast US for 

cancer 

segmentation 

DBUI, SPDBUI, 

ADBUI 

ASS-GAN The ASS-GAN was evaluated on IoU, 

accuracy, and Dice and compared to 

other NN segmentation methods (U-net, 

DeepLabV3, AttenU-Net). The 

proposed method outperformed all other 

NNs with an IoU, acc, and Dice scores 

of 0.7683, 0.9760, 0.8690, respectively, 

for the DBUI dataset. The performance 

was approximately the same for other 

dataset, and ASS-GAN was still the best 

for each.  

[226] Breast US for 

radiomics and 

cancer 

classification 

Privately curated 

dataset includes 

1447 tumor-

present images 

from 357 female 

patients. 

TripleGAN Breast mass classification accuracy 

reached 90.41%, sensitivity 87.94%, 

specificity 85.86% with TripleGAN 

synthetic data + real data. Compared to 

other state-of-the-art methods such as 

GAN, DCGAN, and InfoGAN, the 

proposed method had significantly 

higher metrics. 

[227] Thyroid US for 

nodule 

classification 

TDID Res-GAN Thyroid nodules were classified by a 

either ResNet18 or Res-GAN into 

malignant or benign. Res-GAN had a 

classification accuracy, specificity of 

92.2, 86.5, and 95, respectively, which is 

significantly higher than ResNet18 

(82.2, 66.2, 89.8, respectively).  

[228] US images for 

bone 

segmentation 

Privately curated 

dataset containing 

1235 in vivo B-

mode US images 

containing either 

radius, femur, 

spine, or tibia. 

patchGAN Pix2pix, DCGAN, and WGAN 

segmentation performance were 

compared to the proposed patchGAN 

network. The IoU of patchGAN 

generated segmentation maps was 

0.9357 with a Dice score of 0.9640. This 

was significantly better than other 

models. WGAN performed the worst 

with an IoU of 0.8726 and a Dice of 

0.9158. 
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It is important to note that while most studies have shown that the addition of augmented 

data will improve the performance of NNs, to date, most gains are only moderate. Most commonly, 

synthetic data results in 1-4% increase in sensitivity, specificity, accuracy, or respective metric. 

Additionally, while more complex GANs correlate to better downstream performance, this also 

means that the networks become less generalizable as they are heavily tailored to a singular 

application.  

2.4.3 Cross-Modality Translation 

 Cross-modality translation refers to the generation of an image of one medical imaging 

modality from that of another, for example, CT to MR. This is beneficial for the patient as it may 

decrease their number of scans, decrease the risks from imaging (contrast reactions, radiation dose, 

etc), and decrease healthcare costs. Healthcare providers may also benefit from cross-modality 

translation as it will increase patient throughput and decrease scanning turnaround time, along with 

allowing for less radiotracer production runs [229]. Additionally, registration mismatch between 

modalities will be eliminated if translation models are used. Highlighted in Table 10 are recent 

developments in cross-modality translation. Again, for simplicity, the network architecture of the 

GANs is not included. 

Table 10. Cross-modality image translation applications using GANs. Interestingly, while MR 

and PET are the more expensive and less available modality, most studies are trying to derive CT 

images from either MR or PET. 
Modalities Ref Data GAN Variant 

or Family 

Results 

M
R

 a
n

d
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E
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[230] ADNI BiGAN Given MR brain images, BiGAN outputs the 

corresponding PET image. BiGAN outperforms 

(cycleGAN) with the highest PSNR (27.36) and 

SSIM (0.88), indicating that the quality of the 

synthetic images derived from the proposed 

method is closest to the real PET images. 

CycleGAN generated PET images resulted in a 

PSNR of 24.68 and a SSIM of 0.78.  
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 [231] ADNI GLA-GAN The GLA-GAN produces FDG PET images given 

structural MR images for the downstream 

classification of Alzheimer’s disease. A 

comparison between U-net, cycleGAN, and GLA-

GAN is made. GLA-GAN is significantly better 

than other methods in terms of SSIM, PSNR, and 

MAE (96.88, 29.32, and 0.014, respectively). U-

net performed better than CycleGAN in terms of 

SSIM and PSNR but had a higher MAE. 

 [232] ADNI E-GAN E-GAN transforms FDG-PET images to T1 

weighted MRI images. DCGAN, WGAN, and 

pix2pix were also trained to perform this task. 

PSNR, SSIM, and MAE are used to evaluate all 4 

GANs. E-GAN performs the best with scores of 

28.16, 0.75, and 105, respectively. Pix2pix 

performed the second best in all metrics, with 

PSNR, SSIM, and MAE scores of 24.76, 0.61, 

295, respectively. 

[233] ADNI TPA-GAN The goal of TPA-GAN is to use 3D MRI to 

generate corresponding FDG PET volume and 

then use both volumes to classify brain diseases. 

TPA-GAN PET generation was compared to 

vanilla GAN, AttentionGAN, cycleGAN, and PA-

GAN. TPA-GAN images results in a mean SSIM, 

PSNR, and MSE of 0.915, 29.0, and 184, 

respectively. The next best performing model 

(PAGAN) resulted in scores of 0.913, 28.5, and 

204, respectively. 

[234] ADNI GANBERT BERT was incorporated into a standard U-net 

GAN as a secondary discriminator. Two variations 

of GANBERT were trained; one with a CNN and 

BERT discriminator, and one with only BERT as 

the discriminator. Both models were compared to 

a standard pix2pix network. GANBERT + CNN 

yielded a PSNR, SSI, and RMSE of 57.58. 0.27. 

and 0.80, respectively. GANBERT-only yielded 

56.53, 0.31, and 0.91, and pix2pix resulted in 

scores of 50.41, 0.0, and 1.85, respectively. 

C
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n
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[235] Privately curated 50 

3D contrast-

enhanced thoracic-

abdominal CT and 

abdominal MRI 

images. 

cycleGAN  This two-stage organ detection method uses 

cycleGAN to translate images from MR to CT, 

which were then used to train a separate NN 

(Yolov5) to detect organs. Mean average precision 

of Yolov5 decreased from 8.66mm to 7.95mm 

when adding synthetic data. 

[236] SpineWeb library cycleGAN Another cycleGAN was used to translate 3D MR 

to 3D CT volumes. The cycleGAN generated CT 

images resulted in an average Dice coefficient of 

0.83 and a mean landmark error of 2.2mm. The 

authors provided baseline comparison for these 

scores. However, they did qualitatively compare 

another GAN [237] single-slice model provide a 

comparison  
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[238] Privately curated, 

same-day MR and 

CT images were 

acquired. 

cycleGAN The proposed modified cycleGAN generated CT 

images were compared to a normal cycleGAN, a 

cGAN, and a DCNN. For MAE and PSNR, the 

modified cycleGAN was superior with scores of 

0.0416 and 36.11, respectively. The next best 

model was the normal cycleGAN with an MAE of 

0.0465 and a PSNR of 37.10. 

 

[239] Atlas project cGAN The proposed cGAN borrows its generator 

architecture from pix2pix architecture but has 6 or 

9 residual blocks. SSIM, MAE, PSNR, and MSE 

are compared between the cGAN, pix2pix, and a 

U-net. The pix2pix model is worse than both the 6, 

and 9 block cGAN. The 9 residual block cGAN 

produces the highest quality images, with PSNR, 

SSIM, MAE, and MSE of 21.4, 0.823, .0.3, and 

0.01, respectively. 

P
E

T
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[240] Privately curated 

images from 169 

patients with 

established coronary 

artery disease 

undergoing hybrid 

coronary 18F-NaF 

PET and contrast CT 

angiography. 

cGAN A cGAN was trained to synthesize CT images 

from PET. Target-to-background (TBR) and 

standardized update values (SUV) were used to 

assess the quality of the CT image alignment given 

the ground truth CT. The correlation of TBR for 

the cGAN was 0.31 and the SUV was 0.26 to 

human registration, indicating excellent 

correlation of observer and the proposed method. 

Additionally, the generation time of the GAN was 

only 27.5 seconds on average, which is 33 times 

faster than humans. 

[241] A privately curated 

dataset contained 60 

CT and PET was 

constrained to slices 

in the region of the 

liver. 

FCN + cGAN MAE and PSNR was used to evaluate the 

performance of FCN, cGAN, and a fusion of both 

in generating PET from CT images. On average, 

the combined network achieved the lowest MAE 

(0.72) and highest PSNR (30.22), with FCN at a 

close second (MAE = 0.74 and PSNR = 30.05). 

[242] Privately curated 

dataset containing 

1935 brain PET and 

CT scans were taken. 

cycleMEDGA

N 

Here, authors expanded on their previous 

MEDGAN [130] by adding a cycle consistency 

loss as well as a cycleGAN network structure. 

Here, cycleMEDGAN aims to translate from PET 

to CT. It also outperformed normal cycleGAN and 

UNIT models in terms of SSIM and PSNR (0.911 

and 24.08, respectively). The normal cycleGAN 

achieved the second best performance with a 

SSIM of 0.896 and a PSNR of 23.35. 

In conclusion, despite being a recent innovation, GANs have been widely applied to 

numerous medical imaging applications. GANs and their variants have had great success in 

augmenting data in multiple modalities and have been used for downstream reconstruction, 

segmentation, classification, and detection tasks, among others. Consistently, studies have shown 
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that the addition of synthetically generated images to the training set of other NNs improves 

performance. However, there are still challenges that need to be addressed, such as the limited 

generalizability of models. The above mentioned GANs are highly specialized and often do not 

translate well to other image generation tasks. Also, very few studies have verified the image 

quality and realism of the generated medical images using a) human observers or b) a task-based 

assessment against human performance due to the challenge of performing these comparisons. 

Finally, only a few studies reported whether a certain ratio of synthetic to real images yielded 

optimal performance. Nonetheless, the progress made in the field of GANs in medical imaging is 

promising and holds significant potential for improving the accuracy and efficiency of medical 

diagnosis and treatment. 
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CHAPTER 3: NEAR-PAIR PATCH GENERATIVE ADVERSARIAL NETWORK  

These efforts were partially presented at the IEEE Nuclear Science Symposium, Medical 

Imaging Conference 2022, and has been submitted to the SPIE Journal of Medical Imaging.  

Data scarcity in machine learning medical imaging applications is a major issue. Deep 

learning-based methods require a large volume of training data, which may be difficult to acquire 

due to several reasons, such as lack of standardization, lengthy curation process, accessing HIPAA 

compliant images, and the need for expert labeling. Data augmentation is a common solution to 

mitigate this issue. Recently, sophisticated data augmentation methods are based on a class of NNs 

called Generative Adversarial Networks (GANs), which generate new images of high perceptual 

quality. Here, we present a method to support distant supervision of object detectors using 

generated synthetic pathology-present labeled images. Our proposed method, named near-pair 

patch cycleGAN (NPP-cycleGAN), employs the previously proposed cyclic generative adversarial 

network (cycleGAN) with two primary innovations: 1) use of “near-pair” pathology-present 

regions and similar pathology-absent regions for training and 2) the addition of a realism metric 

(Fréchet Inception Distance) to the generator loss term. The NPP-cycleGAN is then used to 

augment data by synthetically generating pathology on pathology-absent images, which can then 

be used to train object detectors. We train and test the method with 2800 fracture-present image 

patches from 1109 unique pediatric chest radiographs. In a blinded observer study, we presented 

four expert pediatric radiologists with either a real fracture absent image, a real fracture present 

image, or a synthetic fracture present image and asked them to score 1-5 the likelihood of a fracture 

(1 = Definitely not a fracture, 5 = Definitely a fracture). Results showed that real fracture absent 

images scored 1.71 ± 0.99, real fracture present images 4.14 ± 1.23, and synthetic fracture present 

a 2.51 ± 1.24. These results suggest that the proposed GAN can generate high quality fracture-
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present pediatric chest radiographs.  

3.1 Introduction 

Rib fractures in pediatric patients are a sentinel injury for non-accidental trauma, making 

accurate and timely detection of these injuries crucial in protecting the well-being of children. 

Unfortunately, between 80-100% of rib fracture cases in young children are a result of child abuse 

[243], [244]. This statistic is particularly concerning because over two-thirds of rib fractures can 

be missed during first reads by radiologists [245], and in our recently published study expert 

radiologists achieved a reader-to-reader F2 score of only 0.73 [246]. While the importance of 

detecting rib fractures is high, it is a particularly difficult task even for experienced radiologists. 

The difficulty of detection is partially due to the diverse presentation of fractures. While certain 

fractures are easy to detect, with obvious signs of bony displacement and/or healing (including 

subperiosteal new bone formation, callus bridging, and medullary sclerosis) (Figure 23), 

challenging fractures are much less conspicuous and more difficult to diagnose, showing little to 

no signs of bony displacement or healing. 

 
Figure 23. Examples of apparent and challenging fractures. Transverse fractures are readily 

apparent vs. challenging fractures that show no sign of displacement. 

 
Recent studies have shown machine learning models can match human performance in the 

detection of rib fractures in children. One study trained a deep convolutional neural network on a 

dataset of 845 CT scans from children achieved a sensitivity of 43% and a specificity of 88% in 

Figure 1: Examples of apparent and challenging fractures 

Apparent fractures Challenging fractures

Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma , R21HD097609 (PI: Alessio)

Apparent fractures Challenging fractures

Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma , R21HD097609 (PI: Alessio)

Apparent fractures Challenging fractures

Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma , R21HD097609 (PI: Alessio)
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their test set [247]. Another study used similar techniques but was trained on a dataset of 300 

radiographs and achieved a sensitivity of 91.3% and a specificity of 90% [248]. Our previous study 

proposed a method entitled “avalanche decision” was motivated by the reality that pediatric 

patients commonly present with multiple clustered fractures [246]. We improved two leading 

single stage detectors, RetinaNet and YOLOv5, with this decision scheme. The networks were 

then trained on 1109 radiographs and yielded RetinaNet and RetinaNet+Avalanche F2 scores of 

0.55 and 0.65, respectively. F2 scores of base YOLOv5 and YOLOv5+Avalanche were 0.58 and 

0.65, respectively. One underlying issue among all prior studies is that they were trained with a 

relatively small volume dataset.  

Small training datasets are commonly augmented with a variety of methods. More 

sophisticated NN based augmentation methods have recently become popular. Both cycleGAN 

and pix2pix, belonging to a class of NN called Generative Adversarial Networks, have been used 

in a variety of medical imaging applications, such as image segmentation, lesion detection, and 

retinal image analysis [127], [131], [172], [211], [235] (see tables 4-6 in chapter 1).  

We propose a novel GAN approach, where near-pair image patches are used as inputs to a 

cycleGAN, to translate image patches of rib fracture absent radiographs to rib fracture present 

radiographs. We hypothesize that the “near-pair” aspect of our training data will allow for more 

constrained training and ultimately more successful translation without the use of true 1-to-1 paired 

data. While our method is specifically tested with rib fracture radiographs, this methodology is 

potentially generalizable for data augmentation of any image dataset that seeks to detect focal 

pathology. 

3.2 Methods 

Rib Fracture Dataset  

Our dataset was collected through an IRB-approved study at Seattle Children’s Hospital. 
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The dataset contains 1109 unique patients, of which 624 are fracture present and 485 are fracture 

absent. There are 241(34.2%) female and 463(65.8%) male patients. The average age of patients 

is 268.76 ± 784.93 days (range 0 − 6935, median 84, IQR 196). After removing outliers (missing, 

age = 0, or age ≥ Q3 + 1.5IQR), the average age of patients is 128.11 ± 111.43 days (range 1 − 

476, median 84, IQR 140). The images are chest radiographs in an anterior-posterior perspective, 

provided in DICOM file format. Ground truth annotations of rib fracture locations were provided 

by eight board-certified pediatric radiologists. When grading the fracture present section of the 

dataset the radiologists were given prior knowledge that at least one fracture was present in each 

image, thus there is a slight bias towards the labeling performance of the radiologists.  

3.2.1 Near-Pair Patch cycleGAN 

Training a model on localized image patches instead of the whole image poses many 

benefits: 1) computationally cheaper, 2) faster training, and 3) multiple training pairs can be 

extracted from one radiograph. Finally, the generation of localized patches will greatly benefit the 

training of object detectors because we know the exact bounding box locations surrounding the 

pathology. 

Near-Pair Generation 

 Our dataset contains 2800 labeled fractures from 515 patients. The average bounding box 

size was 78 x 70 pixels. To give our model contextual information surrounding the fracture, we 

standardized the size of our patches to 2.5 cm x 2.5 cm (128x128 pixels), where the center of our 

patches is the same as the center of the original bounding box. The near-pair (fracture-absent) 

patch was manually selected from the same radiograph. The general rules for selecting a near pair 

was to first select a patch on the contralateral rib and horizontally flip the image; If that patch 

happened to contain a labeled fracture, then select a fracture absent patch with similar orientation, 

most commonly a couple ribs above or below the target patch. Examples of near pairs can be seen 
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in Figure 24. These near-pair patches are then normalized at the patch level using a robust standard 

scalar method using a 98% interquartile range (IQR). 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =  
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 − 𝑀𝑒𝑑𝑖𝑎𝑛 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐼𝑄𝑅
 

(17) 

Normalization of the patch allows our pixel values to be in the same range as our activation 

functions, usually between 0 and 1. This allows for less frequent non-zero gradients during 

training, and therefore the neurons in our network will learn faster.  

 

Figure 24. Examples of Near-Pair Patches. Each patch is manually selected from the same 

radiograph. If no closely resembling patch within the same radiograph is fracture absent, then we 

select from an age, sex, and chest volume matched image.  

Training Details 

The 2800 near-pair patches were then used to train a cycleGAN, with the overall and 

generator architecture presented in Figures 25 & 26. We trained the cycleGAN using all 2800 

fracture-present and 2800 fracture-absent near-pair image patches in the training set. We used a 

batch size of 4, learn rate of 0.0002, a lambda of 10, and training was optimized by Adam. The 

network converged in approximately 90 epochs using an NVIDIA V100S GPU.  

Near-PairsFracture Absent 

Patch, Domain A

Fracture Present 

Patch, Domain B
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Figure 25. NPP-GAN training flowchart. Two sets of generator/discriminator pairs are trained 

simultaneously using near pair patches. Generator 1 converts real fracture-absent patches to 

fracture-present patches. Discriminator 1 distinguishes between synthetic fracture-present and real 

fracture-present patches. Generator 2 removes pathology to create synthetic fracture-absent 

patches. Discriminator 2 distinguishes between synthetic and real fracture-absent patches. The 

novelty of this work is the use of near-pair real patches derived from similar regions of the image 

from the same base image. 

 

 

Figure 26. NPP-GAN Generator architecture. An input layer of size 128x128x1 goes through an 

initial 2D convolution layer with 64 filters and a filter size of 7x7. Then it goes through 2 

downsampling blocks, 3 residual blocks, 2 upsampling blocks, and then a final convolution layer. 

An individual residual block’s architecture is presented on the left. Each block is followed by an 

instance normalization and a ReLU layer, but these have been omitted for simplicity. 

 

3.2.2 Unpaired cycleGAN 

To assess the benefit of using near-pair patches, we trained another conventional 

cycleGAN with unpaired data to compare with our NPP cycleGAN. To create our unpaired 

fracture-absent patches, we randomly selected 128x128 regions of known fracture-absent 
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Fracture 

Present Patch,
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radiographs. Training parameters and architecture of the unpaired cycleGAN were identical to our 

NPP cycleGAN, although it converged in approximately 100 epochs. 

3.2.3 Fréchet Inception Distance Near-Pair Patch cycleGAN 

As mentioned in Section 1.3.4, a common method to evaluate realism of the synthetically 

generated radiographs is the Fréchet Inception Distance (FID) [169]. The Fréchet Inception 

Distance functions by embedding a set of real and synthetic images in the final average pooling 

layer of an Inception Net [162] pre-trained on ImageNet [249]. The two sets are assumed to be 

multivariate Gaussian distributions with the average and covariance of each utilized to calculate 

the Fréchet distance, also known as the Wasserstein-2 distance. This distance reflects the 

difference in the average features extracted from each image set based on the learned kernels of 

the Inceptionv3 Net model. The distance has been demonstrated to be consistent with human 

judgement of visual quality and more resistant to noise than prior approaches for natural images 

[168].  

We used the FID as a metric to evaluate the quality of the generated pathology and as an 

innovation in the proposed generator 1 by creating a new generator loss term using the sum of FID 

and the conventional cycleGAN loss (Equation 13). Therefore, our new loss function is now: 

Ltot(GA, GB, DA , DB) = LGAN(GA, DB, X, Y) + LGAN(GB, DA, Y, X) + λLCyc(G, F) + 𝛽L𝐹𝐼𝐷(G, F) (18) 

Where β controls the weight of the FID loss term. The intuition is that the FID loss term 

will enforce the transformed image from the first generator (fracture-present) to “look realistic” 

compared to a random real fracture-present patch. The training set images, training parameters, 

and generator architecture are identical to our NPP cycleGAN, but converged in approximately 

120 epochs. 
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3.2.4 Blinded Observer Study 

A total of 90 images (30 Real Fracture Present, 30 Real Fracture Absent, 30 Synthetic 

Fracture Present) were randomly presented to four pediatric radiologists. The synthetic fracture 

present radiographs were generated using the FID-NPP model. Each image contains a 200x200 

pixel bounding box highlighting the portion of the radiograph we want the radiologists to focus 

on. The radiologists were asked on a 1-5 scale if there is a fracture within the box (1 = Definitely 

not a fracture, 2 = Unlikely a fracture, 3 = May be a fracture, 4 = Likely a fracture, 5 = Definitely 

a fracture).  

3.2.5 Full Radiograph Generation 

Cumulative Informed Fractures 

To generate full radiographs, we first select a fracture absent radiograph and then randomly 

sample 2.5 cm x 2.5 cm patches from the rib cage. The patch sample selection was guided by a 

heatmap of common fracture locations from our dataset (Figure 27). Approximately two-thirds of 

fractures were along the oblique ribs, and our generated radiographs reflect this distribution. Each 

radiograph had between 1-6 synthetic fractures added to follow typical fracture frequency in this 

patient population. 
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Figure 27. Cumulative distribution of the common locations of fractures on a reference 

radiograph. Approximately 2/3rds of fractures appear on the oblique rib cage. Generated from 

fracture-present radiographs where each fracture was mapped to a common atlas space. The sum 

of all fractures in the common space are presented on a representative chest radiograph. 
 

Poisson Inpainting 

After patch selection, generator 1 was then used to convert the selected fracture absent 

patch to a synthetic fracture present patch. The patch was reinserted into its original radiograph 

using a method we developed based on a Poisson blending technique (Figure 28) [250]. The 

intuition behind Poisson blending, also known as inpainting, is that to color match two different 

domains, the gradient of the images is more important than the intensity. Therefore, the method 

tries to replace the gradients of the target image with the gradients of the source image, while 

overall intensity is matched to the target image [251].  
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Figure 28. We use generator 1 to synthetically add a fracture to a selected fracture absent patch. 

The patch is then reinserted back into the original location and then blended using Poisson 

Inpainting techniques. 
 

In Poisson blending, we try to fill in missing regions of an image. Therefore, we first define 

a boundary using a mask. Pixels outside of the mask are known, pixels inside the mask are missing. 

Then, we apply a Laplacian operator to measure the local variations in an image (like edges and 

texture). The operator propagates image textures into missing regions by solving a boundary 

constrained optimization problem. The inpainting process often involves an iterative optimization 

procedure. At each iteration, the estimated pixel values are refined based on the computed 

Laplacian and the boundary conditions. The process continues until all pixels within the mask are 

updated. 

Once the missing regions are filled in, post-processing techniques can be applied to smooth 

out any remaining inconsistencies or artifacts. Here, we chose to use a gradient filter that preserves 

the edge of our original patch and the center of our synthetic patch (Figure 29).  

Original Image Synthetic Fracture Present Image Blended Image
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Figure 29. Patch blending process. After a fracture absent patch is translated into a fracture present 

patch, there remains some contrast issues. The pixel values are adjusted using Poisson inpainting. 

Then, we use a gradient filter to blend the edges of our patch to match the original surroundings. 

3.3 Results and Discussion 

Figure 30 shows example synthetic fractures for all three trained models given healthy 

patches as inputs. Qualitatively, each model can generate convincing apparent fractures with signs 

of subperiosteal new bone formation, callus bridging, and medullary sclerosis. Our two proposed 

GANs, NPP and FID-NPP, generally produces sharper images compared to the normal cycleGAN. 

However, visual inspection suggests that convincing fractures are only generated approximately 

one-third of the time. Examples of failed generation of fractures are shown in Figure 31, where no 

new structure seems to have been generated and with negligible changes to visual attenuation 

properties. 

Fracture Absent Patch Synthetic Present Patch Poisson Adjusted Patch

Filtered Fracture Absent Patch Filtered Poisson Patch Final Synthetic Patch
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Figure 30. Examples of synthetically generated fractures given fracture absent image patch inputs 

(Top Row). Each variation of cycleGAN is capable of generating new structure, however, visually 

the NPP and FID-NPP versions are less blurry and appear more realistic. 

 
Figure 31. Examples of NPP-GAN synthetically generated fractures (Bottom Row) given fracture 

absent image patch inputs (Top Row) with little to no evidence of fracture formation. 

 

Table 11 shows the average FID scores for all synthetically generated and real fracture 

present patches. A lower FID is favorable and indicates that the InceptionV3 network feature 

vector of the synthetic fracture present patches are closer to the feature vectors from real fracture 

present patches. Both the proposed NPP and FID-NPP models produces images with lower FID 

scores than the normal cycleGAN, suggesting they produce more realistic fractures. Furthermore, 

Fracture Absent Input: 

Domain A

cycleGAN: Domain B

NPP cycleGAN: Domain B

FID-NPP cycleGAN:

Domain B

Image 1 Image 3 Image 4 Image 5Image 2

Synthetic Fracture 

Present Patches,
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Oblique Ribs
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the combined FID-NPP method yielded the lowest, best, score. Note that the FID score of a set of 

patches of real fractures is not zero considering it is being compared to a different set of reference 

patches of real fractures.  

Table 11. Fréchet Inception Distance (FID) score for each cycleGAN variant. A set of 100 

randomly selected patches were used to calculate this score. The mean of all FID scores were 

significantly different from each other at a p-value <0.05.  

# of Fracture 

Absent patches 
normal cycleGAN NPP GAN FID-NPP 

Real Frac Present 

patches 

100 26.3 ± 0.99 24.0 ± 1.08 23.5 ± 1.07 20.6±1.02 

 

The blinded observer study results are displayed in Table 12, which suggests that the 

synthetic fractures are indeed realistic, and the blending process produces convincing full 

radiographs. When presented with real fracture absent, real fracture present, and synthetic fracture 

present images, 4 expert pediatric radiologists scored 2.03 ± 0.84, 4.13 ± 1.23, and 2.73 ± 1.18, 

respectively. Overall, 10 of 30 synthetic fracture present images were scored at least 3 or higher 

by 3 radiologists and in 15 images at least one radiologist scored a 4 or higher. 

Table 12. Scores from the blinded observer study grading the full radiograph with no fractures, 

real fractures, with synthetic patch inserted into image. *On average across all readers and images, 

visual appearance of fracture for synthetic fracture present is significantly higher than fracture 

absent (p=0.01). 

 
Real Fracture 

Absent 

Real Fracture 

Present 

Synthetic Fracture 

Present 

(FID-NPP) 

All Images 

Number of Images x 

Number of Readers 
30 x 4 30 x 4 30 x 4 90 x 4 

Likelihood of 

Fracture 
2.03 ± 0.84 4.13 ± 1.23 2.73 ± 1.18* 2.79 ± 1.55 

Intraclass 

Correlation 

Coefficient 

0.604 0.781 0.731 0.881 

 

Overall, the evaluation of the FID scores and blinded observer study suggests that our 

proposed FID-NPP cycleGAN model can generate realistic fractures for many input patches. It 

particularly excels at creating fractures with calluses of a variety of shapes and sizes. Visually, the 

generator appears to fulfill our goal of improving the diversity of our object detector training set. 
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However, we acknowledge that visual inspection suggests that fractures are only generated 

approximately 1/3rd of the time. This could indicate a failure of our generator, or it could indicate 

that our generator is creating challenging fractures like in Figure 23C and we are unable to visually 

discern them. The former statement is more likely and is supported by our blind observer study, 

where exactly 10/30 synthetic fracture present images were rated at least a 3 by three radiologists.  
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CHAPTER 4: DATA AUGMENTED NEURAL NETWORK PEDIATRIC RIB 

FRACTURE DETECTION 

The ultimate goal of data augmentation, in general, is to increase a dataset’s size and 

diversity so that a machine learned model that trains on the augmented dataset improves 

performance. To assess the downstream performance of a rib fracture detector we adapted the 

YOLOv5 network from Ultralytics [252]. Rather than training an object detector from scratch, we 

opted to utilize the YOLOv5|6 model for transfer learning with their pretrained weights. Compared 

to the popular YOLOv3 which operated with a Darknet backbone architecture [253], the YOLOv5 

architecture uses a CSPNet backbone based on DenseNet [254]. It additionally integrated a novel 

mosaic data augmentation method that aimed to improve detection performance of small objects 

in images. 

4.1 Introduction 

YOLOv5 is an object detection algorithm from the popular You Only Look Once (YOLO) 

series of real-time object detection models. YOLOv5 follows a one-stage object detection 

architecture. It divides an input image into a grid and predicts bounding boxes and class 

probabilities for objects within each grid cell. It uses a single CNN based off CSPNet to make 

these predictions. YOLOv5 employs a detection head on top of the backbone network. The 

detection head consists of additional convolutional layers that process the extracted features and 

predict bounding box coordinates and class probabilities for each object detected. One interesting 

innovation of YOLOv5 is the use of anchor boxes. Anchor boxes are predefined bounding boxes 

of various sizes and aspect ratios, to handle objects of different shapes and sizes. These anchor 

boxes are associated with each grid cell, and YOLOv5 adjusts them to match the objects' shapes 

during training. 

The YOLO family of networks is constantly evolving, with the current model at v8. We 
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chose to use YOLOv5 because it is commonly used as a baseline detector in previous studies (See 

Section 1.4). Overall, YOLOv5 is a powerful object detection algorithm that offers state-of-the-art 

performance, real-time inference capabilities, and a user-friendly framework for training and 

deployment. 

4.2 Materials and Methods 

 The real image dataset used for training and evaluation of the YOLOv5 architecture 

contains 1,109 unique real images, of which 624 are fracture present and 485 are fracture absent. 

For full demographics, see Section 3.2.  

Evaluation Methods and Metrics: 

This study aimed to evaluate the performance gains from varying the amount of augmented 

data in our training set. Specifically, does augmented data provide higher performance gains in 

low volume scenarios. Table 13 shows the different training conditions. We evaluated and 

compared training stability, precision, recall, F2, and receiver operating characteristic for each of 

the conditions. We define these performance metrics as follows:  

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑐𝑡𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 Recall = 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 Fβ = (1 + 𝛽)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Table 13. Combinations of real images with GAN generated synthetic fracture images used for 

training the YOLOv5 object detector. 

Training Condition # Real Images # Synthetic Fracture Images 

1 0 500 

2 50 0 

3 50 500 

4 250 0 

5 250 500 

6 500 0 

7 500 500 

While an F1 score is commonly used as an evaluation metric in classification and detection 

tasks, we opt to use the F2 score for a couple of reasons. Since the goal of this detection task is to 
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aid radiologists by flagging suspicious regions, we set our β term to weight recall more heavily 

than precision. We would rather have false positives than false negatives. Therefore, we evaluate 

all models by F2 score and placing twice as much weight on recall as precision. 

Training Details 

To avoid bias, any fracture-absent radiographs that were used as the base image during our 

synthetic radiograph generation were split so that they could only appear in the training set and 

not the testing set. The remaining real fracture-absent images were then used to generate the testing 

and validation sets. The test set contains 120 images evenly split with 60 fracture present and 60 

fracture absent images.  

Each YOLOv5 model was fine-tuned on our data for a maximum of 300 epochs with a 

batch size of 8 on NVIDIA V100S GPUs. An early stopping protocol was used to end training if 

performance on the validation set did not improve within 100 epochs. Test set performance was 

evaluated using weights with the highest validation metric on each respective training set. Error 

bars for each metric were calculated using a stratified bootstrapping method. In each of the 5,000 

iterations, the subsets of 60 fracture present and fracture absent images were randomly sampled 

with replacement, maintaining 60 images in each set for a total of 120 images to match the original 

test set size. 

4.3 Results and Discussion 

Table 14. Performance of object detector trained with different volumes of real and FID-NPP 

GAN synthetic images. Bold values represent the highest score for each training set size. 

Training Dataset Precision Recall F2 Score 

0 Real 500 Synthetic 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

50 Real 0 Synthetic 0.764 ± 0.051 0.327 ± 0.048 0.369 ± 0.051 

50 Real 500 Synthetic 0.981 ± 0.019 0.201 ± 0.031 0.239 ± 0.036 

250 Real 0 Synthetic 0.883 ± 0.031 0.434 ± 0.042 0.482 ± 0.042 

250 Real 500 Synthetic 0.923 ± 0.027 0.408 ± 0.049 0.458 ± 0.050 

500 Real 0 Synthetic 0.991 ± 0.009 0.412 ± 0.041 0.466 ± 0.042 

500 Real 500 Synthetic 0.855 ± 0.034 0.488 ± 0.041 0.534 ± 0.040 
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Tables 14 show the performance of the YOLOv5 object detector trained on different sets 

of training data augmented with the FID-NPP GAN generated radiographs. Training solely with 

synthetically generated fractures led to abysmal object detector performance with the detector 

unable to identify any real fractures. The use of the augmented data with different volumes of real 

training samples resulted in varying levels of performance gains with increased precision for the 

low volume conditions (50 Real+500 Synthetic; 250 Real+500 Synthetic) and increased recall and 

F2 Score (14.6% increase from 0.466 ± 0.042 to 0.534 ± 0.040) for the relatively high-volume 

condition (500 Real+500 Synthetic). Combined, these results suggest that, in this current 

application, synthetic data alone is not sufficient for training object detectors and the relative 

performance gains will be a function of the data augmentation mix (real+synthetic data).   

Our modest object detector improvement in performance lines up with similar studies. 

Section 1.4 showed that generally downstream NN only has a 1-4% increase in performance 

metric. In best case scenarios, Hammami et al. showed an 8% increase in mean average precision 

(mAP) for multi-organ detection when adding cycleGAN augmented CT images [235]. Kanayama 

et al. showed a 6% increase in mAP for gastric cancer detection using a conditional GAN [255], 

and a 10% increase in sensitivity was seen in brain metastases detection by adding PGGAN 

generated MR images by Han et al. [256]. The addition of 500 synthetic images to 500 real images 

using our best performing GAN shows an 18.5% increase in recall and a 14.6% increase in F2 

score, which is a promising indication that our NPP-FID method is better than no data 

augmentation. 

The variable behavior in object detector performance relative to synthetic images in the 

overall training data is also seen with other studies. The three mentioned previously also saw that 

either adding too little or too many synthetic images produce worse results than only real images. 
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Additionally, an increase in synthetic image realism does not necessarily improve a detection 

performance score [256]. The reason behind this behavior is not definitively clear, however the 

leading theory is that learning from data produced by other models causes model collapse – a 

degenerative process whereby, over time, models forget the true underlying data distribution, even 

in the absence of a shift in the distribution over time [257]. Therefore, further studies need to be 

made to determine the best ratio of synthetic to real images for object detector training, as well as 

methods to minimize model collapse.  

In summary, we proposed a new technique that utilizes near-pair image patches along with 

an FID loss function to train a cycleGAN model. Our results show that this approach can generate 

realistic-looking pediatric chest radiographs containing rib fractures. The augmented fracture data 

led to a moderate improvement in the performance of a rib fracture detection model. This technique 

could potentially be generalizable to other medical imaging tasks where the goal is to synthesize 

realistic pathology. 

4.4 Perspective on the Future of Image Generation 

 The field of generative AI is a fast-evolving field. GANs are less than 10 years old and new 

improvements are still being made. It has been used for a wide range of medical imaging 

applications, indicating that the technology is versatile and adaptable. In the future, the proposed 

FID-NPP cycleGAN can potentially be generalized to any problem that seeks to localize 

pathology. The pipeline for this generalization is as simple as generating near pairs from a target 

dataset and using the images to train the FID-NPP network (available here: 

https://github.com/tuethan/Pediatric-Chest-Radiograph-Data-Augmentation). Similarly, we can 

then generate synthetic images using the same process as in section 3.2.5 and then train an object 

detector using the augmented data. There are two general improvements that can be made to the 

proposed method; improving fracture labels and changing the generator architecture. The size of 

https://github.com/tuethan/Pediatric-Chest-Radiograph-Data-Augmentation
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the patches was chosen based on the median size of our labeled bounding boxes. Large bounding 

boxes tend to contain multiple fractures, since physicians simply highlight an area if there are a 

cluster of fractures. Therefore, some fracture-present patches may contain off-centered fractures 

or partial fractures, which hinders our cycleGAN training. Additionally, the object detector 

assumes that each bounding box has one fracture present, so training with a few samples that 

contain multiple fracture bounding boxes does not benefit the model. By relabeling our images 

and standardizing the size of our bounding boxes, we may achieve better results.  

 The second major improvement is changing the design of our generator network. This 

change can be as simple as tuning hyper parameters (number of filters, filter size, convolution 

padding style, upsampling method, etc.), or as complex as changing the architecture (adding 

residual blocks, adding batch normalization layers, adding an auxiliary network, etc.). We may 

even choose to replace GANs altogether with a new type of image generation network which has 

recently dominated the field. Diffusion models such as DALL-E [258], Midjourney [259], and 

Stable Diffusion [260] have gained notable attention due to their remarkably high-resolution 

outputs from a prompt in natural language (Figure 32). These models are trained using hundreds 

of millions of images and have the flexibility of generating diverse content. The underlying 

network is fundamentally different from GANs. Rather than a generator learning based off a 

discriminator’s ability to classify real from fake, diffusion models learn to map noise to an image 

in a progressive manner. Despite numerous copyright lawsuits claiming misuse of artists’ images, 

diffusion models are still advancing (Midjourney v5.2 just released in June 2023). This all begs 

the question; if diffusion models can generate images that are as high quality as GANs and can 

generate more diverse content than GANs, do we even need GANs anymore? 
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Figure 32. Images generated using DALL-E (A), Midjourney (B), and Stable Diffusion (C) with 

the text prompt “pediatric chest radiograph with rib fractures”. 

 

I believe that GANs be obsolete, soon. Currently, there are two main constraints that limit 

the use of diffusion models for medical imaging research. The first is computational resources and 

second is data. Diffusion models are notoriously known to be computationally expensive and slow 

to train while requiring huge volumes of data [261]. GANs are still valuable in research settings 

simply because they are cheaper and more efficient. They still have immense potential in the 

medical imaging field where we have highly specialized tasks. However, this may soon change as 

a prospective study has produced a model combining diffusion models and GANs [262], and a few 

prospective studies have shown that diffusion models are superior to GANs for specialized image 

generation [263], [264], including medical imaging tasks [265], [266].  

In conclusion, GANs and Diffusion Models represent two branches of generative AI 

stemming from a large tree of neural networks. This field is ever growing and always exciting, it 

will be interesting to see what the new buds will bring.   

A B C
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4.5 Supplemental Information 

 The following Tables A1 and A2 are the object detector performance results using normal 

cycleGAN and NPP cycleGAN augmented data. These tables are not included in Section 4.3 

because they are not a fair comparison to each other. The set of real radiographs used for Table 14 

is different from Table A1 and A2, and therefore the baseline real-only evaluations do not match. 

Additionally, the base radiographs as well as selected patches used for synthetic image generation 

do not match from set to set. For future studies we would like to use matching images for both real 

and synthetic portions to offer a fair comparison between different models.  

Table 15. Performance of object detector trained with different volumes of real and normal 

cycleGAN synthetic images. Bold values represent the highest score for each training set size. 

Training Dataset Precision Recall F2 Score 

0 Real 500 Synthetic 0.125 ± 0.128 0.004 ± 0.004 0.005 ± 0.005 

50 Real 0 Synthetic 0.735 ± 0.070 0.214 ± 0.043 0.249 ± 0.048 

50 Real 500 Synthetic 0.815 ± 0.091 0.169 ± 0.044 0.200 ± 0.050 

250 Real 0 Synthetic 0.820 ± 0.035 0.452 ± 0.048 0.496 ± 0.047 

250 Real 500 Synthetic 0.816 ± 0.039 0.456 ± 0.053 0.499 ± 0.052 

500 Real 0 Synthetic 0.901 ± 0.030 0.448 ± 0.051 0.498 ± 0.051 

500 Real 500 Synthetic 0.860 ± 0.033 0.493 ± 0.048 0.539 ± 0.047 

    

Table 16. Performance of object detector trained with different volumes of real and FID-NPP 

GAN synthetic images. Bold values represent the highest score for each training set size. 

Training Dataset Precision Recall F2 Score 

0 Real 500 Synthetic 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

50 Real 0 Synthetic 0.779 ± 0.059 0.254 ± 0.035 0.294 ± 0.038 

50 Real 500 Synthetic 0.922 ± 0.046 0.179 ± 0.035 0.213 ± 0.040 

250 Real 0 Synthetic 0.894 ± 0.047 0.468 ± 0.048 0.517 ± 0.048 

250 Real 500 Synthetic 0.909 ± 0.033 0.449 ± 0.050 0.499 ± 0.050 

500 Real 0 Synthetic 0.825 ± 0.035 0.536 ± 0.044 0.576 ± 0.042 

500 Real 500 Synthetic 0.874 ± 0.036 0.524 ± 0.047 0.569 ± 0.046 
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 APPENDIX: DATA, CODE, AND SUPPLEMENTAL INFORMATION 

Data Repositories 

dCTP Myocardial Perfusion Studies 

Raw PET and CT scans, myocardial time attenuation curves, coronary CT angiography 

data, and patient demographs/risk factors can be found here: 

https://doi.org/10.7910/DVN/VUP5TC. 

Implantable TaOx Polymeric Biomedical Devices 

Raw µCT images of scaffolds are available upon request. 

Pediatric Chest Radiographs 

Due to the legal requirements, original radiographs is not available. 

Code Repositories 

dCTP Myocardial Perfusion Studies 

Matlab code to generate perfusion estimation, as well as the trained models can be found 

here: https://github.com/tuethan/Machine-Learned-CT-Perfusion-Estimation. 

 Matlab code to generate SFFR-CTPA scores and to assess diagnostic accuracy can be found 

here: https://github.com/tuethan/FFR-CTPA-Diagnostic-Accuracy. 

Implantable TaOx Polymeric Biomedical Devices 

Matlab code for segmentation and for metric calculations can be found here: 

https://github.com/tuethan/TaOx-Scaffold-Segmentation. 

Pediatric Chest Radiographs 

Matlab code to generate near-pairs, to generate full synthetic radiographs, to train 

normal/NPP/FID-NPP cycleGANs, as well as the trained models are available here: 

https://github.com/tuethan/Pediatric-Chest-Radiograph-Data-Augmentation. Python code to train 

https://doi.org/10.7910/DVN/VUP5TC
https://github.com/tuethan/Machine-Learned-CT-Perfusion-Estimation
https://github.com/tuethan/FFR-CTPA-Diagnostic-Accuracy
https://github.com/tuethan/TaOx-Scaffold-Segmentation
https://github.com/tuethan/Pediatric-Chest-Radiograph-Data-Augmentation
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the YOLOv5 object detector can be found in the same repository. 


