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ABSTRACT

This dissertation addresses the problem of runtime verification of distributed cyber-physical
systems (CPS) with respect to a given formal specification. Cyber-physical systems are com-
puter systems with integrated software and physical (hardware) components that, in an ideal
environment, seamlessly interact with the real world, as well as each other. Since exhaus-
tively validating correctness of a distributed CPS is usually infeasible (if not impossible),
many modern validation methods involve runtime verification of distributed CPS based on
safety properties. Our work focuses on developing time efficient and resource efficient ver-
ification techniques that can run in parallel with the execution of these systems to ensure
reliability.

In this dissertation, we propose different methodologies to reason about the correctness
of distributed CPS in real-time, depending on the system settings and architecture. We also
provide case studies relevant to each approach in order to demonstrate real-world applica-
tions. In all our proposed techniques, we assume a partially synchronous setting, where a
clock synchronization algorithm guarantees a bound on clock drifts among all signals.

To this end, we first introduce two monitoring methods for distributed systems with
discrete events, where the specification in the linear temporal logic (LTL) [12] is evaluated
on a system using (1) a deterministic finite automaton-based technique, and (2) a progression-
based formula rewriting technique.

We then extend this work to detecting violations of predicates over distributed continuous-
time and continuous-valued signals in CPS. We introduce a novel retiming technique that
allows reasoning about the correctness of predicates among continuous-time signals that do
not share a global view of time. In addition, we show that leveraging simple knowledge of
physical dynamics allows for further reduction in run time.

Leveraging the previous two methods, we then introduce a monitoring technique for
solving the problem of runtime verification for distributed CPS using the signal temporal

logic (STL) [36]. We employ a formula progression technique utilizing a signal retiming



method, that enables reasoning about the correctness of formulas among continuous-time
and continuous-valued signals in CPS, even when only a partial signal is available.

We also extend our previous work on detecting violations of predicates over distributed
signals in CPS from a centralized monitoring setting to a decentralized monitoring setting.
We employ a technique that allows us to indentify all possible violations, not just one. Which
in turn allows for identification and elimination of bugs from distributed systems regardless
of the actual clock drift.

Finally, we introduce the notion of monitoring reliability on a network of monitors in
decentralized monitoring setting. To this end, we present a generalized model of a class of
CPS, where each monitor is represented by an Internet of Things (IoT) device (or node)
in a layered network of producers and consumers. Our model monitors the events in nodes
where resource usage occurs, and captures the tradeoffs between the reliability of the system
and resource usage. We present an efficient algorithm to determine the optimal selection of
processing quality for each node in this producer-consumer network, such that target system
reliability is achieved while respecting the given resource bounds, and resource usage is
minimized. In addition, we present a lightweight machine learning based solution to improve

our model in terms of run time.
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CHAPTER 1

INTRODUCTION

Distributed monitoring is the process of analyzing the execution of distributed systems with
a centralized or decentralized monitor in relation to a given formal specification. While
attempting to complete a collaborative job, distributed systems often consist of numerous
systems that do not share a global clock and memory. In a distributed database, for example,
data is kept in several physical locations, usually spread across a network of interlinked
computers. A monitor may want to guarantee that queries to the distributed database fulfill
some form of consistency requirements. The class of systems containing both software and
physical (hardware) components that interact with the actual world as well as each other
is a prominent class of distributed systems. These systems are referred to as cyber-physical
systems (CPS) [122].

Our reliance on CPS has grown rapidly over the past decade, as these systems are more
and more frequently deployed over networks of agents due to the emergence of the Internet
of Things (IoT) and edge applications [27]. Therefore, validating the accuracy of these sys-
tems, especially for the class of CPS that is safety-critical, is now of paramount importance.
Software applications deployed among networked nodes, referred to as agents, are with a
critical class of CPS. Examples include autonomous car fleets, sensor networks in infras-
tructure, health-monitoring wearables, and medical device networks. Because CPS are often
safety-sensitive, obtaining assurance regarding their accuracy is vital. CPS are distinguished

by three defining characteristics:

e First, because the signals are analog, they include an infinite number of events, ren-
dering traditional reasoning approaches designed for discrete systems ineffective, if not
inapplicable in most circumstances. The applications we target, such as those men-
tioned above, require continuous-time behavior. It is not enough, for example, to assert
that a voltage does not spike at sample times. As a result, increasing the signal sample

rate does nothing to alleviate the necessity for analog signal reasoning.



e Second, each agent in these CPS has a local clock that drifts from the clocks of other
agents. Hence, the concept of time, which is taken for granted in centralized sys-
tems, must be changed, as it is unclear whether events are consecutive and concurrent.
Furthermore, it is unclear how continuous events in various processes respect the hap-
pened before relation [73|, and how one may reason about the sequence of occurrence
of continuous events.

e Third, CPS signals obey physical laws and dynamics. An understanding of these
dynamics may be used to reason about distributed signals and predict their behavior,

as well as improve efficiency of reasoning.

The characteristics listed above define the concept of distributed signals, and reasoning
about them necessitates the establishment of some notion of ordering. Building such ordering
for an infinite number of events from different signals while clock drifts occur at runtime is

a difficult undertaking.

1.1 Motivating Examples

We demonstrate the crucial need of monitoring distributed CPS through a critical ap-
plication in automated air traffic control (AATC). The market for unmanned aerial vehicles
(UAVs) is expanding rapidly [61]. In the United States, the Federal Aviation Administra-
tion (FAA) envisions a federated framework in which UAVs that contribute in monitoring
global air safety parameters are rewarded with faster free-flight pathways to their destina-
tions |39, 43].

To support this federated structure, AATC tower software must monitor analog inputs
such as UAV location and velocity to determine if they violate global instantaneous safety
characteristics, also known as predicates. These predicates are Boolean expressions defined
over the concurrent states of the several CPS agents, such as mutual separation, conditional
speed limitations, and minimal energy storage. These predicates must be evaluated on the
global state, which is the combined state of all UAVs at the same time. However, in the

absence of a perfect shared clock across all UAVs, UAV,’s clock may report t = 5 and UAVy’s
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Figure 1.1 Hybrid dynamic cooling system with water tanks.

clock may report t = 5.2 at the same physical ‘real’ time. Equivalently, the same value on
two clocks may represent distinct physical moments. If the central AATC monitor relies on
these two states to determine if the predicate has been violated, then it may result in false
negatives (i.e., missing violations) or false positives (i.e., declaring a violation when none
exists).

The UAV example has two characteristics that are shared by many different distributed
CPS: First, while perfect continuous-time synchrony is often impossible to achieve, clock
synchronization algorithms such as Network Time Protocol (NTP) [88] ensure that drift
among local clocks remains within some bounds. Second, the central monitor frequently
recognizes certain restrictions on the UAV dynamics, such as velocity limits. In this case,
the AATC tower would be aware of the UAVs’ speed limitations. In developing our solution,
we make use of these two characteristics.

As another example, consider the water distribution system shown in Figure 1.1, where
several tanks deliver water to an offsite location via a common pipe. Water tank outflow rate

and pressure are monitored locally using drifting local clocks. If the compounded pressure



or flow rate on the pipe is a concern and has to be monitored, correctly measuring these
values becomes difficult since the continuous signals indicating the pressure and/or flow rate
of the tanks are not synchronized. If the flow rate and pressure must always remain below a
given threshold, clock drift among the local clocks may cause values for which the threshold

is breached to be missed.

1.2 Challenges

While there are approaches for monitoring temporal logic for distributed discrete-event
systems (e.g., [49, 58, 96, 99]), we still lack a good understanding of distributed CPS. Al-
though the literature on distributed computing is decades old, and many important problems
have been solved in the context of discrete-event systems, the main challenge with distributed
monitoring is that it is not always possible for the monitor to establish the right order of
occurrence of events across different agents in the absence of a global clock. Given the
non-deterministic nature of distributed programs, it is expected of a runtime monitor to
provide multiple results for the same distributed computation. This leads to a combinato-
rial explosion of possibilities that the monitor must examine at runtime, making the task
computationally costly.

Monitoring and detecting violations of formal specifications is a common and effective
technique to reasoning about the health of CPS. Broadly speaking, the state of the art in
runtime monitoring focuses on either (1) centralized monitoring for stand-alone applications
or multi-agent systems that share a global clock while being blind to system dynamics |1,
5, 34, 35, 33, 83|, or (2) decentralized monitoring in pure discrete-time for ordering discrete
events [10, 16, 26, 28, 31, 46, 47, 49, 55, 64, 96, 99, 58|, which is appropriate for pure software,
but not CPS. As a result, solutions for monitoring CPS where analog signals are created by
distributed agents that do not share a global clock are currently lacking (see the related
work in Chapter 8). Lack of synchronization, in particular, poses substantial issues since the
monitor must reason about signal levels at distinct agents’ local times, which may result in

conflicting monitoring verdicts. This problem is exacerbated by the fact that agents often
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Figure 1.2 A distributed CPS composed of autonomous aerial vehicles with drifting clocks.
The violation property to be monitored is, for any two aerial vehicles the distance along x
axis is within 1 and the distance along y axis is within 1.7. Asynchronous signals produced
by the vehicles must be monitored for predicate violations, while leveraging some knowledge
of system dynamics.

communicate with one another, imposing extra limits on event ordering. Furthermore, in a
distributed system, a central monitor that receives all signals is subject to a single point of
failure. That is, if the monitor fails, predicate detection fails altogether.

In decentralized monitoring, the concept of reliability of a network of monitors adds
another layer to the list of challenges. To handle trade-offs, most systems use manual con-
trols. Some network applications, for example, enable administrators to alter the quality
of malicious activity detection systems based on predicted traffic [92, 134]. This strategy
frequently focuses on a subset of resources and lacks the flexibility required by huge dynamic
systems. Another strategy is to aggressively over-provision the processing infrastructure in
terms of machine capabilities (e.g., CPU, memory, etc.), network bandwidth, and assigned
power budget to ensure that no limitations are reached [15]. This is an extremely expensive
approach that is frequently not feasible and is not future-proof.

The major problem in resource management and optimization is that monitors in a net-

work often receive data, process it, and then transmit it to succeeding monitors. This results



in a quality vs. cost trade-off across distinct monitors, where resources are determined not
simply by pairs of consecutively interacting monitors, but by the interaction of all monitors
in the network. In other words, lowering the processing quality of a monitors might have an
impact on subsequent monitors in the network that receive lower quality data. This means
that quality versus resource utilization must be optimized across the entire network, not
simply for pairs of monitors communicating with each other. On top of that, it is easy to
see that quality and resource utilization are frequently at odds; that is, greater quality and

dependability need higher resource usage, making optimization more challenging.

1.3 Thesis Statement
Now that we have provided challenges and motivation for this dissertation, in this section,

we define the statement of thesis as follows:

Thesis Statement

It is possible to develop trustworthy verification methodologies under both centralized
and decentralized monitoring settings in order to reason about the correctness of safety-

critical partially synchronous distributed cyber-physical systems in real-time.

1.4 Contributions

In this dissertation, we take steps toward rigorous, automated reasoning about distributed
CPS, the accuracy and integrity of which is critical to ensuring the safety of the environment
in which they function. Based on the proposed verification approaches, our contributions
are grouped into five primary segments. These techniques differ in terms of (1) system archi-
tecture (i.e., discrete events vs. continuous time), (2) monitor architecture (i.e., centralized

vs. decentralized), and (3) specification language (i.e., LTL vs. STL).

1.4.1 Monitoring Discrete-Event Systems using LTL
First, we present two sound and complete solutions to the problem of distributed run-

time verification (RV) with regard to LTL formulas. Both approaches employ a fault-proof
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Figure 1.4 A distributed computation.

central monitor, and to address the explosion of various interleavings, we propose a practical
assumption, namely, a bounded skew € between local clocks of each pair of processes, which
is guaranteed by a fault-proof clock synchronization mechanism (e.g., NTP [88]). This im-
plies that time instants from multiple local clocks within € are deemed concurrent, i.e., their
order of occurrence cannot be determined. This is a partial synchrony setting that does not
presume a global clock but restricts the impact of asynchrony within clock drifts.

Our first approach is based on constructing the LTLj [12] monitor automaton of an
LTL formula and constructing multiple Satisfiability Modulo Theory (SMT)|[6] queries to
determine which states of the monitor automaton are reachable for a given distributed com-
putation. For example, Figure 1.3 shows the monitor automaton for formula ¢ mentioned
earlier and one has to construct 4 different SMT queries to determine the set of all possible
reachable states at the end of the computation in Figure 1.4. We transform our monitoring
decision problem into an SMT solving problem. The SMT instance includes constraints that

encode (1) our monitoring algorithm based on the 3-valued semantics of LTL, (2) behavior of
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Figure 1.5 Progression and segmentation.

communicating processes and their local state changes in terms of a distributed computation,
and (3) the happened-before relation subject to the e clock skew assumption. Afterwards,
it attempts to concretize an uninterpreted function whose evaluation provides the possible
verdicts of the monitor with respect to the given computation. We divide a computation
into multiple segments to make the verification problem tractable, significantly reducing the
search space of each SMT query. Thus, the result of monitoring each segment (the possi-
ble LTLj states) should be carried to the next segment. Furthermore, because distributed
applications are now operated on large cloud services, we extend our method to a parallel
monitoring algorithm to take use of the available computational resources and gain greater
scalability.

The intuition behind our second monitoring technique is that since (in the first approach)
running SMT queries to test whether each state of the LTL3 monitor automaton is reachable
is excessive, it should be sufficient to test whether temporal sub-formulas of an LTL formula
hold in a distributed computation. Similar to the first approach, we utilize segmentation
to break down the problem size. In the second approach, to carry the result of monitoring
from one segment to the next, we also develop a formula progression technique. Specifically,
given a finite trace a, and an LTL formula ¢, we define a function Pr, such that Pr(a, ¢)
characterizes the progression of ¢ and a.

We create a formula progression approach to convey the results of monitoring from one

segment to the next. Specifically, given a finite trace o, and an LTL formula ¢, we define



a function Pr, such that Pr(«, ) characterizes the progression of ¢ and «. Progression is
defined as the rewritten formula for future extensions of « that yields true, false, or an
LTL formula based on what has been seen thus far. We emphasize fundamental distinction
between our approach and the standard rewriting technique [59] is that, function Praccepts
a finite trace as input, whereas the algorithm in [59] rewrites the input LTL formula in a
state-by-state manner. This suggests that rewriting based on the fixed point representation
of temporal operators is not possible in our context. Our motivation stems from the fact
that when a given distributed computation is divided into a number of segments, a state-by-
state rewriting approach will generate too many SMT queries, rendering it unscalable. For
example, in Figure 1.5 (which is the computation in Figure 1.4 chopped to two segments),
our progression-based approach needs the same 4 SMT queries for seg, (2 for each of the
sub-formulas & r and [(—p)) as compared to [49]. The evaluation yields formulas —(<r)
and &1 — (mpUr) as the possible formulas and as a result we only need to build 4 SMT
queries in seg, compared to 5 for the automata-based approach in [49].

We make a detailed comparison between the proposed approaches through not only a set
of vigorous synthetic experiments, but also monitoring the same set of consistency conditions
in Cassandra. We also put our approach to test using a real-time airspace monitoring dataset
(RACE) from NASA [85]. Our experiments show that the progression-based approach has

35% reduced overhead as compared to the automata-based approach.

1.4.2 Monitoring Predicates on CPS

We provide a sound and complete solution to the problem of predicate monitoring for
distributed systems when extended to CPS. Our system, which employs a central monitor to
receive distributed signals, may be characterized as follows: We assume a clock synchroniza-
tion mechanism guarantees limited skew e between all local clocks. That is, time instants
from separate clocks within £ are regarded concurrent, i.e., their sequence of occurrence
cannot be determined below an ¢ of resolution. The limited skew assumption is used to sup-

plement the classic happened-before relation [73]. We introduce a retiming technique that



leverages the concept of retiming functions from stochastic processes to make the monitor
align the locally timed agent signals. A retiming function aligns the supports of two sig-
nals while taking into account the order, e-skew, and arbitrary message exchanges between
agents. Our monitoring decision problem is transformed into a Satisfiability Modulo Theory
(SMT) problem that seeks a retiming function that observes a predicate violation. We show
how to simplify the general SMT problem of searching for arbitrary retiming functions to
the considerably simpler problem of looking for piece-wise linear retimings. Furthermore,
knowledge about agent dynamics constraints may be used to decrease monitoring overhead.

The following are our contributions:

1. An SMT-based algorithm for centralized monitoring of distributed analog signals for
predicate violations, supplemented with a clock synchronization algorithm that ensures

finite skew between all local clocks, employing the classic happened-before relation. [73];

2. A signal retiming approach based on the concept of retiming functions as used in

stochastic processes to address the challenges presented by time asynchrony;

3. A lightweight approach for adding system dynamics constraints in order to decrease

monitoring overhead;

4. An analysis of the relationship between monitoring overhead’s sensitivity to the skew

bound and the quantity of communication between agents, and

5. A method for parallelizing the monitoring algorithm in order to improve scalability.

We have fully implemented our methodologies and provide the results of experiments on
monitoring a network of autonomous ground vehicles (in the real world), aerial vehicles (in
simulation), and a water distribution system (in simulation). It should be noted that systems
with a central monitor are inherently vulnerable to a single point of failure. Our work is
concerned with establishing the suggested theory and does not take into consideration fault

tolerance. The following are our observations. First, while our solution is based on SMT

10



solving, it may be used for online monitoring if the monitor is run at an acceptable fre-
quency (i.e., the monitoring overhead does not exceed the system’s regular operating time).
Second, adding knowledge of system dynamics is hugely beneficial in decreasing monitoring
overhead. In some cases, the speedup (as compared to when the information is not used)
can be an order of magnitude. Third, when practical clock synchronization protocols (e.g.,
NTP and PTP) are used, monitoring overhead is independent of clock skews. Finally, we
notice that communication between agents does not always reduce monitoring overhead in
the continuous-time context; this contradicts popular perception in the discrete-time situa-
tion, where communication event orderings are thought to make automated reasoning more

efficient.

1.4.3 Monitoring CPS using STL

We expand our approach from monitoring just Boolean predicates across distributed
signals to whole signal temporal logic (STL) [36]. To this end, we start with a partially syn-
chronous scenario, in which a clock synchronization mechanism ensures a maximum bound
¢ on clock drifts across all signals. This can be ensured by off-the-shelf algorithms such as
NTP [88]. We use the signal retiming approach presented in [95] to align continuous-time
signals that do not share a global sense of time. Assuming the bound ¢, the decision problem
is to find a retiming function that violates an input STL formula. If no such function exists,
then it indicates that the distributed signals have not yet broken the formula (it may or may
not in the future).

To minimize the size of a distributed signal to more manageable smaller problems, we
break the original signal into smaller signals known as segments. The problem here is that
the outcome of monitoring one segment should be carried over to the next. For example,
consider STL formula ¢ = M5 p (which means proposition p should hold at all times in
time interval [0,5]) and the current segment of signals that end at time 3. This means if p
holds in the interval [0, 3], then the formula has to be rewritten to ' = o 2 p for the second

segment. Of course, such rewriting can become challenging when the formulas have multiple
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nested temporal operators with relative time intervals. To this end, we propose a formula
progression technique that takes as inputs an STL formula and a finite-time distributed
signal ¢ and returns an STL formula ¢ such that for any extension o', we have g0’ = ¢
if and only if ¢’ = ¢’. We encode the resulting problem as a (SMT) problem that searches
for a retiming function given the constraints of the current segment and STL formula. We
provide approaches for solving the SMT encoding efficiently. We should highlight that we
are not concerned in this dissertation with problems such as monitoring fault-tolerance (i.e.,
we assume a flawless centralized monitor with no noise or communication failures).

We have fully implemented our approach on two distributed CPS applications: moni-
toring of a (1) network of aerial vehicles for a set of properties such as mutual separation
and formation, and (2) a water distribution system for the property in which the outflow
pressure exceeds the threshold pressure. The results indicate that in some circumstances, a

distributed CPS can be monitored fast enough for online deployment.

1.4.4 Decentralized Monitoring Predicates on CPS

In order to address the issue of single point of failure in a distributed system, we also
expand our approach of centralized predicate detection for distributed CPS with drifting
clocks under partial synchrony to a decentralized monitoring approach. To this end, our

contributions are as follows:

1. A fully decentralized monitoring approach, where each agent only has access to its own

signal, and exchanges a limited amount of information with other agents;
2. A detection technique that identifies all violating predicates, not just one;

3. An online algorithm applying a class of global properties that are conjunctions of local

propositions, that can be executed in parallel to tasks carried out by agents;

4. A novel physical vector clock that orders continuous-time events in a distributed com-

putation without a shared clock, and
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5. A method to deploy our algorithm to existing infrastructure. Specifically, our algo-
rithm includes a modified version of the classical detector described in [26] that can be

deployed on top of existing infrastructure.

Our methodologies are fully implemented, and we provide the results of experiments on

two synthetically generated signal datasets.

1.4.5 Monitoring Reliability in a Multi-Layered CPS

Finally, we introduce the notion of monitoring reliability on a network of monitors in
decentralized monitoring setting. To this end, we present a generalized model of a class of
CPS, where each monitor is represented by an (IoT) device or a node in a layered network
of producers and consumers. Assuming a layered producer-consumer network with stream
processing, each node in the network faces a trade-off between processing quality and re-
source utilization. An abstract model of stream processing applications is presented. The
processing nodes, in particular, are modeled as a network of producers-consumers, which is
a directed acyclic graph in which a node can be a producer, a consumer, or both based on
its incoming/outgoing edges. Fach node in the network consumes data that flows through
its incoming edges and produces data that flows through its outgoing edges. The processing
of data consumed/produced by a node can be done at various quality levels. The quan-
tity of resources utilized by the node is determined by the processing quality level. Power,
energy, RAM, disk, or network bandwidth are all examples of resources. In addition to
these resources, we represent reliability as a nonrenewable resource that flows across the
network and is partially depleted based on the quality levels of the nodes through which it
flows. Individual and collective resource limits and bounds apply to nodes. Lower quality
leads to more error, which propagates across the network and has the potential to affect the
quality of subsequent nodes as well as overall reliability. Our goal is to provide an efficient
framework for modeling a system in such a way that resource bounds are respected and a
designer-specified goal is optimized. This goal is supplemented with optimization objectives

such as optimizing reliability and minimizing energy or other resource usage in the system.
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To answer the above-mentioned multi-objective optimization problem, we reduce it to the
satisfiability problem for the satisfiability modulo theory (SMT). SMT-solving technology
has advanced dramatically over the last two decades [77], and we use its improvements to
solve our problem. To that end, we represent (1) the elements of the producers-consumers
graph, as well as the concepts of data rates, quality, reliability, and resource consumption, as
SMT entities (e.g., variables, functions, constants, and so on), (2) the resource constraints
and bounds as a set of SMT constraints, (3) the pillars of our original optimization problem
as additional SMT constraints that will be checked and searched using a binary search
algorithm to find the optimal solution, and (4) a machine learning based model that aims
to even further optimize the problem in terms execution time at the cost of minimal loss in
accuracy.

The SMT aspects of our technique is implemented using the SMT-solver Z3 [32] and
the machine learning aspects of our technique is implemented using the machine learning
toolkit Scikit-learn [101] and Keras [65] artificial neural network interface. Our model aims
to optimize reliability and resource consumption trade-offs. We explore these trade-offs
through detailed synthetic experiments. We also apply our techniques on a real-world case
study, where we optimize a network of embedded streaming devices, so that the network
(1) delivers the best possible performance using the available resources, or it (2) uses the

minimal amount of a certain resource while meeting a given performance goal.

1.5 Organization

This chapter (Chapter 1) provided an overview of the motivation, challenges and con-
tributions of this dissertation. The remainder is organized as follows. Chapter 2 discusses
the background for our work. Chapter 3 provides details on our runtime verification of
distributed systems using automata-based and progression-based techniques. Chapter 4 ex-
tends this work to CPS and Boolean predicate detection. Chapter 5 further extends this
work from Boolean predicates to STL, whereas, Chapter 6 extends this from a centralized

monitoring setting to a decentralized monitoring setting. Chapter 7 introduces the notion of
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reliability and provides a resource optimization technique. Chapter 8 elaborates on related
work, and finally Chapter 9 summarizes the findings, discusses ongoing work and suggests

avenues for further research.
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CHAPTER 2

PRELIMINARIES
In this Chapter, we present the background concepts of our work. We start with the formal
specification languages we use in our approaches, and then introduce other crucial back-

ground components of our work.

2.1 Linear Temporal Logics (LTL)

Let AP be a set of atomic propositions and ¥ = 227 be the set of all possible states. A
trace is a sequence Sy$ . .., where s; € X for every i > 0. We denote by >* (resp., ) the
set of all finite (resp., infinite) traces. For a finite trace a = s¢s7 . .. sk, || denotes its length,

k4 1. Also, for a = sgs; ... sk, by o, we mean trace s;5;,1 ... sy of a.

2.1.1 Infinite-trace Semantics of LTL
The syntax and semantics of the linear temporal logic (LTL) [104] are defined for infinite

traces. The syntax is defined by the following grammar:

pu=plople Vel OplelUyp

where p € AP, and where O and U are the ‘next’ and ‘until’ temporal operators respectively.
Other propositional and temporal operators are considered as abbreviations, that is, true =
pV—p, false = —true, ¢ — ¥ = =V, p A = (- V), O = true U ¢ (eventually
v), and O = O (always ). We denote the set of all LTL formulas by &1y

The infinite-trace semantics of LTL is defined as follows. Let 0 = sps189--- € X, 1 > 0,

and let |= denote the satisfaction relation:

(0,i) Ep iff pes;

(0,7) =~ iff (o)) F o

(o)) FeVvy it (0,1) Fyor(oi) =

(0,i)) EQg iff (o,i+1) ¢

(o, ) EpU Y iff  Fk>i:(ok)EvandVjeik):(0,]j) E
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{a}

{}_> {a, b}, {b}
true true

Figure 2.1 LTL3s monitor for ¢ =a U b.

2.1.2 Finite-trace Semantics of LTL

In the context of RV, the 3-valued LTL (LTLj for short) [12] evaluates LTL formulas
for finite traces, but with an eye on possible future extensions, whereas the finite LTL, or
FLTL [80] solely considers the present trace with no regard for the future. In LTLj, the set of
truth values is Bg = {T, L, 7}, where T (resp., L) denotes that the formula is permanently
satisfied (resp., violated), regardless of how far the current finite trace extends, and ‘7’
denotes an unknown verdict, i.e., there exists an extension that can violate the formula, and
another extension that can satisfy the formula. Let o € ¥* be a non-empty finite trace.
The truth value of an LTL3 formula ¢ with respect to «, denoted by [« =3 ¢], is defined as

follows:

.

T if VYoeX¥:ackEy

[aEs@l=91L if VoeX¥:aolto

7?7 otherwise.
\

Definition 1. The LTL3; monitor for a formula ¢ is the unique deterministic finite state
machine M, = (3, Q, qo, 6, A), where @) is the set of states, go is the initial state, § : Q@ x ¥ —
Q is the transition function, and A : Q — Bs is a function such that A((S(qo, a)) = o =3 ¢,

for every finite trace a € ¥*. W

As an example, Figure 2.1, shows the monitor automaton for formula ¢ = a U b. FLTL

has the same syntax as LTL, and its semantics is based on the truth values By, = {T, L},
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where T (resp., L) denotes that the formula is satisfied (resp., violated) given the current
finite trace. For atomic propositions and Boolean operators, the semantics of FLTL is iden-
tical to those of LTL. Let ¢, ¢1, and @9 be LTL formulas, o = sgs; ...s, be a non-empty
finite trace, and |=p denote the satisfaction relation in FLTL. The semantics of FLTL for

the temporal operators are as follows:

@' Er gl if ot #
o br Oyl = 7 )

1 otherwise.

.

T if 3k e€[0,n]: ([of Er @o] = T)A
[a Er p1U o] = Vie[0,k): ([l Ep ] =T)

1 otherwise.

\

Consider the formula ¢ = [Op, and a finite trace a = sgs1 - - - s, to further illustrate the
difference between LTL and FLTL and LTL;. If p ¢ s; for some ¢ € [0, n], then [o =3 ] = L,
that is, the formula is permanently violated and so is the case in FLTL where, [a =F ¢] = L.
Now, consider formula ¢ = p. If p & s; for all i € [0,n], then [« =3 ¢] =7. This is because
there exist infinite extensions to o that can satisfy or violate ¢ in the infinite semantics of
LTL. But, this is not the case in FLTL where [a =r ¢| = L as it did not observe any p in

the observed finite trace.

2.2 Distributed Computation

We assume a loosely coupled asynchronous message passing system, consisting of n re-
liable processes (that do not fail), denoted by A = {4, Ay, ..., A,}, without any shared
memory or global clock. Channels are assumed to be First In, First Out (FIFO), and loss-
less. In our model, each local state change is considered an event, and every message activity
(send or receive) is also represented by a new event. Message transmission does not change
the local state of processes and the content of a message is immaterial to our purposes. We

will need to refer to some global clock that acts as a ‘real’ timekeeper. It is to be understood,
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however, that this global clock is a theoretical object used in definitions, and is not available
to the processes.

We make a practical assumption, known as partial synchrony [40]. The local clock (or
time) of a process A;, where ¢ € [1,n], can be represented as an increasing function ¢; :
R>9 — Rsg, where ¢;(x) is the value of the local clock at global time y. Therefore, for any

two processes A; and A;, we have:
Vx € Roo.lci(x) — ()] < e

with ¢ > 0 being the maximum clock skew. The value ¢ is assumed to be fixed and known
by the monitor in the rest of this dissertation. In the sequel, we make it explicit when we
refer to ‘local’ or ‘global’ time. This assumption is met by using a clock synchronization
algorithm, like NTP [88], to ensure bounded clock skew among all processes.

%
T,0

An event in process A; is of the form e’ , where o is logical time (i.e., a natural number)
and 7 is the local time at global time x, that is, 7 = ¢;(x). We assume that for every two

events e’ , and €., ,, we have (1 < 7') & (0 < o).

Definition 2. A distributed computation on N processes is a tuple (£,~), where £ is a set
of events partially ordered by Lamport’s happened-before (~) relation [73], subject to the

partial synchrony assumption:

e In every process A;, 1 <i < N, all events are totally ordered, that is,

V7,7 € R Vo,0" € Zso.(0 < 0') = (e, ~ el ).

T,0 T,

e If e is a message send event in a process, and f is the corresponding receive event by
another process, then we have e ~~ f.

e For any two processes A; and A;, and any two events e’ e/, ,e& if T+e <7, then

7,00 10

¢~ el, ., where ¢ is the maximum clock skew.

el

o Ife~s fand f ~ g, thene~g. B
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Definition 3. Given a distributed computation (£,~~), a subset of events C' C & is said
to form a consistent cut iff when C' contains an event e, then it contains all events that

happened-before e. Formally, Ve € £E(e € C) A (f~e) = feC. R

The frontier of a consistent cut C', denoted front(C') is the set of events that happen last
in the cut. front(C') is a set of €}, for each i € [1, N] and €],,, € C. We denote €}, as the

last event in P; such that Vel , € E.(el, # €),) = (€hy ~ €lag)-

2.3 Hybrid Logical Clocks
A hybrid logical clock (HLC) [71] is a tuple (7, 0, w) for detecting one-way causality, where

7 is the local time, o ensures the order of send and receive events between two processes,

)
T,0,w"

and w indicates causality between events. Thus, in the sequel, we denote an event by e

More specifically, for a set £ of events:

e 7 is the local clock value of events, where for any process A; and two events e e’

0w’ 1! ol \w!

€ &, wehave T < 7/ iff el ~ e,

T,0,Ww !0

/.
,w

e o stipulates the logical time, where:

%
T,0,W

— For any process A; and any event e € &, T never exceeds o, and their difference

is bounded by ¢ (i.e, 0 — 7 < ¢€).

7
T,0,w)

— For any two processes A; and A;, and any two events e ei,ya,,w, € &, where

event ei,a,w receiving a message sent by event ei,,0,7w,, o is updated to max{o, o', 7}.
The maximum of the three values are chosen to ensure that ¢ remains updated
with the largest 7 observed so far. Observe that ¢ has similar behavior as 7,
except the communication between processes has no impact on the value of 7 for

an event.

o w:& — Z>p is a function that maps each event in £ to the causality updates, where:

— For any process A; and a send or local event el e & if 7 < o, then w is

T,0,W

incremented. Otherwise, w is reset to 0.
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Co C1 O
Figure 2.2 HLC example.

— For any two processes A; and A; and any two events e’ e, w € &, where

T,0,w? ~7/ 0!

w(e! ) is updated based

. . ]
event em receiving a message sent by event e, oW

/ /
w , o w'?

on max{c,o’, 7}.
— For any two processes A; and A;, and any two events eTUw,ei, o €& (T
T/) A (w < w) — eTO'w ~ ei’,o’,w '
We presume that HLC is fault-proof in our implementation. Figure 2.2 depicts an HLC
with partially synchronous concurrent timelines of three processes with ¢ = 10. Note that

the local times of all events in front(C}) are bounded by . As a result, C) is a consistent

cut, but Cy and C5 are not.

2.3.1 Physical Vector Clocks

We first define Physical Vector Clocks (PVCs), which generalize vector clocks [81] from
countable to uncountable sets of events. They are used by the abstractor process (next
section) to track the happened-before relation. A PVC captures one agent’s knowledge, at

appropriate local times, of events at other agents.

Definition 4. Given a distributed signal (E,~-) on N agents, a Physical Vector Clock, or
PVC, is a set of N-dimensional timestamp vectors v! € Rf , where vector v! is defined by

the following:
1. Initialization: v2[{] =0, Vie {1,...,N}
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2. Timestamps store the local time of their agent: vf[n| =t for all ¢ > 0.

3. Timestamps keep a consistent view of time: Let V! be the set of all timestamps v,

s.t. €f, happened-before ¢! in E. Then:

vi[i] = max (v3[i]), Vie[N]\{n},t>0

" v, eVt
PVCs are partially ordered: v! < v’ iff vi # v’ and vi[i] <vi[i] Vi€ [N]. B
We say v, is assigned to e!,. The detection algorithm can now know the happened-before

relation by comparing PVCs.
Lemma 1. Let n # m and ¢, # 0. Then (¢!, ~ e) iff (v¥ [n] > t).

Proof. We split the bidirectional implication into its two directions:

L (e}~ e,) = (Viln] > 1)

m

Since vi[n] =t by Definition 4 2 and e’ ~ €’ . then by Definition 4 3, v [n] > t.
2. (e, ~ep,) <= (vi,ln] > )

a) Case (Vi [n] =t) = (e, ~eb):
Besides initialization, the only case in Definition 4 where a value is assigned which
did not come from another timestamp is Definition 4 2. Consider an event ef,.
The timestamp of this event at index n is ¢, by Definition 4 2. At the point in
time when this event is created (local time ¢ on agent A,), no other timestamp
has the value ¢ at index n. All other v¥, which have the value ¢ at index n must
be assigned by Definition 4 3. This means that they have the relation e! ~ e! |

due to the transitive property of the happened-before relation.

b) Case (Vi [n] >t) = (€', ~ €):
Consider a t” where v% [n] =t and ¢ > t. Then by the previous case, ¢! ~ el .
Since by the happened-before relation all events on an agent are totally ordered

(Definition 7 2), ¢!, ~» e''. By the transitive property of the happened-before

relation (Definition 7 2), €, ~ ef, .
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Theorem 1. Given a distributed signal (E,~-), let V be the corresponding set of PVC
timestamps. Then (V) <) and (E, ~) are order isomorphic, i.e., there is a bijective mapping

t t s t t
between V and E s.t. e;, ~ e, iff v, < v,,.

Proof. Since each PVC timestamp corresponds to exactly one event and all events have a
timestamp, there is clearly a bijective mapping. To show it preserves order, we need to

confirm that (e, ~ e!) <= (v} <v%).

Loel ~well = vl <vl
By Definition 4 3, each element of v! must be less than or equal to the corresponding
clement of v%. So then we need to show that v! # v’ . Definition 4 2 indicates that
t/

vl [m] = t'. By Theorem 1 if vi[m] = ' then e!, ~ e.; but there cannot be cycles in

the happened-before order relation, then v! [m] < #'. This implies that v < v? .

2. (e}, ~ ely) <= (v, <Vv},)
vt < v! means that v [i] < v [i], Vi € [N]. Consider index n, where vt[n] < v’ [n].
n m n m n m

By Definition 4 2, vi[n] = t, so v%,[n] > t. Then Theorem 1 states that this implies

Definition 4 is not quite a constructive definition. We need a way to actually compute

PVCs. This is enabled by the next theorem.

Theorem 2. The assignment

[0,...,0,¢,0,...,0], t<e

t—¢€...,t—€t,t—e€....,t—€, t>¢€

where the ¢ is in the n** position in both cases, satisfies the conditions of PVC in Definition 4.
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Proof. Consider Definition 7 2. This indicates that all events e/~ happened-before ¢!, Vi €
[N]\ {n}. Therefore, if these events directly happened-before €, (there is no ef, where
el™ ~s el and el ~» e!), then this vector is a correct assignment.

By looking at each point in Definition 7, we can see that the only case where one event
happened-before another on a different process is when there is at least e difference, Def-
inition 2. While an event may have happened-before ¢! by indirectly following Defini-
tion 2 by way of 2 and 2, we do not need to consider this event because there is not a

direct happened-before relation with e!, (no event in between). Therefore, the assignment

[t—¢,....,t —€t,t—¢,...,t— ¢ is suitable for timestamp v!. W

2.4 Signal Model

In this section, we introduce our signal model, i.e., our model of the output signal of an
agent. To this end, first, we set some notations. The set of reals is R, the set of non-negative
reals is R, and the set of positive reals is R* . The set of integers {1,..., N} is abbreviated
as [N]. Global time values, kept track of by a hypothetical global clock are denoted by ¥,
X', etc., while the letters ¢, t/, t1, t9, s, 5, 51, S9, etc. denote corresponding local clock values

particular to individual signals/agents, which are always clear from the context.

Definition 5. An output signal (of some agent A) is a function z : [a,b] — R? which is
right-continuous, left-limited, and is not Zeno. Here, [a,b] is an interval in R, , and will be

referred to as the timeline of the signal. W

Definition 6. A root is an event e!, where x,,(t) = 0 or a discontinuity at which the signal
changes sign: sgn(z,(t)) # sgn(lim,_,— x,(s)). A left root e, is a root preceded by negative
values: there exists a positive real 0 s.t. x,(t —«) < 0 for all 0 < o < 8. A right root €, is a

root followed by negative values: z,(t +a) <0 forall0 <a <J. B

We assume that = is one-dimensional, i.e., d = 1. Therefore, Right-continuity implies
that for each t in its support, lim,_,;, #(s) = x(t). The function is Left-limitedness if it has

a finite left-limit at every ¢ in its support: limg ,; x(s) < co. Not being Zeno means that z
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has a finite number of discontinuities in any bounded interval in its support. This prevents
the signal from jumping indefinitely many times in a finite length of time. A discontinuity
in a signal z(-) can be caused by a discrete event within agent A (such as a variable updated
by software), or to a message transmitted to or received from another agent A’.

We assume a loosely linked system with N reliable agents that never fail, denoted by
{Aq, ..., Ax}, without any shared memory or global clock. The output signal of agent A,
is denoted by x,, for 1 < n < N. We refer to some global clock which acts as a ‘real’ time-
keeper. However, this global clock is a hypothetical object used in definitions and theorems,

and is not available to the agents. We make two assumptions:

e (A1) Partial synchrony. The local clock (or time) of an agent A, can be represented
as an increasing function ¢, : Ry — R,, where ¢,(x) is the value of the local clock at

global time x. Then, for any two agents A, and A,,, where m,n € [N], we have:

Vx € RiJen(x) —em(X)| <&

where the maximum clock skew presumed fixed and known by the monitor is € > 0.
When we refer to ‘local’ or ‘global’ time in the sequel, we make it clear.

e (A2) Deadlock-freedom. The agents being analyzed do not enter a deadlock state.

Assumption (A1) is met by using a clock synchronization algorithm, like NTP [88], to
ensure bounded clock skew across all agents.

An event in the discrete-time setting is a change in value of an agent’s variables. We now
update this definition for the continuous-time setting of this work. Specifically, in an agent
A, an event is either a (i) a pair (¢, x,(t)), where ¢ is the local time (i.e., returned by function
¢n); (i) a message transmission, or (iii) a message reception. The communications that the
agents transmit to each other are free of assumptions. Messages that are sent to the monitor
are timestamped by their respective local clocks. Since the agents evolve in continuous time
and their output signals are defined for all local times ¢, a message transmission or reception

always coincides with a signal value; i.e., if A, receives a message at local time ¢, its signal
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has value z,,(¢) at that time. Thus, without loss of generality, every event will be represented
as a (local time, value) pair (¢, x,(t)), often abbreviated as e}’ (n and ¢ will be omitted when
irrelevant).

A distributed signal is modeled as a set of signals, where events in each signal are partially
ordered by a variation of the happened-before (~) relation |73, extended by our assumption
(A1) on bounded clock skew among all agents. The following defines a continuous-time/value

distributed signal under partial synchrony.

Definition 7. A distributed signal on N agents is a pair (F,~), where E = (z1,...,zx)
is a vector of signals, the set I, is a bounded nonempty interval, and the relation ~ is a

relation between events in signals such that:

1. In every signal x,, all events are totally ordered, that is, for all n € [N], for any

t,t' e l,, ift <t then (t,x,(t)) ~ (t',z,(t')). That is,
Vn € [N]. Vt,t' € In.<t < t’) = ((t,xn(t)) ~o (t’,:pn(t’))>,
where the set [, is a bounded nonempty interval.

2. If the time between any two events is more than the maximum clock skew ¢, then the
events are totally ordered, that is, for all m,n € [N], for any ¢,¢' € I, if t + £ < ¥/,

then (¢, z,(t)) ~ (t',x,(t)). That is,
Vm,n € [N]. Vt,t' € ]n.(t +e< t') = ((t,xm(t)) ~ (t',xn(t'))>.
3. If e is a message send event in an agent and f is the corresponding receive event by
another agent, then we have e ~ f.

4. For any three events e, f, and ¢, if e ~ f and f ~~ g, thene ~~¢g. R

Setting ¢ = oo yields the classic instance of total asynchrony. The constraints on I,
(bounded and non-empty) are required in the continuous-time context and will be discussed

more in the next section. Because the agents are synchronized within ¢, it is not possible to
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Figure 2.3 Two partially synchronous continuous concurrent timelines with ¢ = 0.5, and
corresponding signals x and y. (Solid dot indicates signal value at discontinuity). C'is a
consistent cut but C” is not.

analyze all signals in global time simultaneously. The following definition of consistent cut
captures plausible global states, that is, states that might be legitimate global states. Fig-
ure 2.3 shows two partially synchronous concurrent timelines generated by two agents. Every
moment in each timeline corresponds to an event (¢, x,,(t)), n € [2]. Thus, the following hold:
(Lz1(1)) ~ (2.3,21(2.3)), (2.3,21(2.3)) ~ (2.94,22(2.94)), (1,25(1)) ~~ (2.94,25(2.94)),
and (2.94,25(2.94)) ¥ (3,21(3)).

Definition 8. Let (E,~-) be a distributed signal over N agents and S be the set of all

events defined as follows:
S = {(t,xn(t)) |2, € EAt€ T, AT, C R+}.

A consistent cut C'is a subset of S if and only if when C' contains an event e, then it contains

all events that happened before e. Formally,

Ve,f€S.(e€C)A(fwe)=(feC). B

From this definition and Definition 7 it follows that if (¢, x,(¢')) is in C, then C also
contains every event (,x,,(t)) s.t. t+¢& < t’. Note that due to time asynchrony, there exists

an infinite number of consistent cuts represented by C(x) at any global time y € R,. This
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is due to the fact that there are an infinite number of time instances between any two local
time instances t; and ¢ on some signal x. As a result, an infinite number of consistent cuts
can be created.

A consistent cut C' can be represented by its frontier

front(C') = {(t1, r1(t1)), .- -, (tw, xn(tN»},

in which each (¢, x,(t,)), where 1 < n < N, is the last event of agent A, appearing in C.

Formally:
Vi € [N] . (tn, 2(tn)) € C and t, = max {t e I, | 3(t,za(t)) € c}.

Example Assuming ¢ = 0.1 in Figure 2.3, it comes that all events below (thus, before)
the solid arc form a consistent cut C' with frontier front(C') = {(3,21(3)), (2.94, 22(2.94))}.
On the other hand, all events below the dashed arc do not form a consistent cut since
(2.3,21(2.3)) ~ (3.1,22(3.1)) and (3.1, 22(3.1)) is in the set C’, but (2.3,21(2.3)) is not in
.
2.5 Signal Temporal Logic (STL)

Let AP be a set of atomic propositions. The syntax for signal temporal logic (STL) [79]

is defined for infinite traces using the following grammar:

o=plp|loANp|oUay @

where p € AP and U is the ‘until’ temporal operator. We view other propositional and
temporal operators as abbreviations, that is, T = pV -p (true), L = =T (false), Oy 9 =
TU a5 (eventually or F), Ojap @ = 7 pap) ¢ (always or G). We denote the set of all STL
formulas by $gt|.

Let a trace 0 = (x1,...,2xy) be a vector of N continuous-time and continuous-valued sig-
nals. In the context of STL, we express p as f(z1[t], ..., x,[t]) > 0, where (x,[t],..., z,[t]) €
R"™ is a vector of signal values at time ¢, and f : R”™ — R is a function that evaluates a vector

of signal values.
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Figure 2.4 A trace o generated by a system.

The infinite-trace semantics of STL is defined as follows. Let |= be the satisfaction

relation, and the satisfaction of formula ¢ by a trace o at time ¢ be:

o,t) Ep iff  f(zaft], ..., xa[t]) >0

o, t) Eeny it (0,t) Eyand (0,t) F ¢

) E e it —((o,1) =)

o) EeUpyy it I elt+at+0b]: (o) EpandVt" € [t, 1] : (0,t) = ¢

For the sake of simplification, from this point and onward, we write ¢ |= ¢ if and only
if (0,0) = ¢ holds. As an example of STL, given the trace o shown in Figure 2.4, the STL
formula ¢ = pU [46.5¢ holds at time 0, that is, o = ¢. However, ¢ does not hold after time
2, as in that case, ¢ must hold after time 2 4+ 4 and before 2 + 6.5, which does not happen.

The STL semantics are over infinite signals, however a distributed signal E is defined
to have a fixed duration ([, is bounded), which is suited for online monitoring, but the
STL semantics are over infinite signals. Given a (completely synchronous) finite duration
signal z, we say it satisfies/violates ¢ iff every extension (z.y), where y is an infinite signal,
satisfies/violates . Otherwise, Unknown is returned by the monitor. The dot ‘.” here

represents time concatenation.

2.6 Producer-Consumer Network
A producer-consumer network is a directed acyclic graph (DAG) G = (V,E), in which
each vertex v € V is a node), that may be either a producer, a consumer, or both, based

on its incoming/outgoing edges. A producer node only has outgoing edges, a consumer node
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Figure 2.5 A producer-consumer network of 10 nodes.

only has incoming edges, and a producer/consumer node has both incoming and outgoing
edges. Let Pred(v) denote the finite set of predecessor nodes from which v receives data,
and Succ(v) denote the finite set of successor nodes which receive data from v. The set E of

edges represented as ordered pairs of vertices such that:

E= {(u,v) | ve Succ(u)}.

An edge from u to v represents a stream of items flowing from u to v, in which case u
is a producer (potentially also a consumer) and v is a consumer. A node v € V, where
Pred(v) = () is called a source and a node u € V, where Succ(u) = 0 is called a sink.

Figure 2.5 depicts a producer-consumer network. The network represents a hierarchical
monitoring system, in which vy 4 are producers of events that are consumed and manipulated
by nodes vj5 5. Nodes vj5g then transmit the manipulated events into vy.

A producer (respectively, consumer) node v € V may receive (respectively, emit) data at
a set of possible input rates denoted by possible output rates IRate(v) (respectively, ORate,).
Let Out(u,v) denote the outgoing data rate from node u into node v. For example, in

Figure 2.5, the incoming data for v; is received from v, and the outgoing data is sent to vs
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and vg. For every node v € V, we define In(v) such that,

In(v) = Z Out(u, v).

u€Pred(v)
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CHAPTER 3

RUNTIME VERIFICATION OF PARTIALLY SYNCHRONOUS
DISTRIBUTED DISCRETE-EVENT SYSTEMS

In this chapter, we present two sound and complete solutions to the distributed runtime
verification (RV) problem in relation to LTL formulas. In order to address the explosion
of different interleaving, we adopt a practical assumption, namely, a finite skew between
local clocks of each pair of processes, which is ensured by a fault-proof clock synchronization
system, such as NTP [88|. Both approaches utlize a fault-proof central monitor.

To this end, we consider discrete-event systems [20], where the discrete states in the said
systems are transitioned via events. The events can be message send events, message receive
events or local processing events. As stated in Chapter 1, the agents in these systems do
not share a global clock and memory, while attempting to perform a joint task. However,
a clock synchronization algorithm (see Subsection 2.3) guarantees a mazimum clock skew
among the agents; thus, allowing partial synchrony. In other words, we make the following

assumptions:

e The systems under observation are discrete-event systems. That is, for every agent,
within any time period, there is a finite number of event executions. These events
could be internal to agents (e.g. variable updates), a message send event, or a message
receive event.

e A bounded skew ¢ between local clocks of every pair of processes, guaranteed by a fault-
proof clock synchronization algorithm (e.g., NTP). This means time instants from
different local clocks within ¢ are considered concurrent, i.e., it is not possible to
determine their order of occurrence. This setting constitutes partial synchrony, which

does not assume a global clock but limits the impact of asynchrony within clock drifts.

In the following sections, we elaborate on our runtime verification approach for partially
synchronous distributed systems using an automata-based technique and a progression-based

formula rewriting technique.
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3.1 Problem Statement

Given a distributed computation (£, ~~), as defined in Definition 2, and an LTL formula
o, we say (€,~) satisfies ¢ iff there exists a trace, «, defined by a sequence of frontiers
in (£,~-), that satisfies p. Formally, the evaluation of the LTL formula ¢ with respect to

(€,~>) in the finite semantics is the following:

Problem Statement

Monitoring of Distributed Systems. Given a distributed computation (£,~~), a
valid sequence of consistent cuts is of the form CyC (5 - - -, where for all ¢ > 0, we have
(1) C; C Ciyq, and (2) |Ci| + 1 = |Cy41]. Let C denote the set of all valid sequences of

consistent cuts. We define the set of all traces of (€, ~~) as follows:

{front(Co)front(Cl) cee | 000102 EENE C}

The evaluation of the LTL formula ¢ with respect to (£, ~) in the finite semantics is

the following:

[(E,~) s o] = {Oé =5 ¢ | a € {front(Cy)front(Ch) - -« | CoC1Cs - -+ € C}}

and,

(€, ~) £ o] = {a —r ¢ | a € {front(Co)front(Cy) -+ | CoCiCy -+ - € c}}

This means that evaluating a distributed computation against a formula yields a set
of verdicts, because a computation may contain multiple traces. It should be noted that

throughout this chapter, (£, ~) is used to denote distributed computation.

3.2 Formula Progression for LTL
Because of the existence of a total ordering of events in a synchronous system, verification

on a computation may be accomplished in a state by state method [10|. However, in a
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partially synchronous system, such event ordering is not possible. A distributed computation
(€,~) may have different event orderings governed by different event interleavings. As a
result, multiple verdicts might be obtained from the same distributed computation (&, ~).
To explore these verdicts, we present a formula progression-based monitoring approach that,
if possible, partially evaluates a formula on the current computation and, depending on the
verdict, provides a rewritten formula to be evaluated on the extensions of the computation.
As an example, let us consider the formula to be monitored as, ¢ = $(a — <Ob). Now, if in
some trace in a computation, the monitor observes a, then for the extensions of computations,
it is enough to monitor the rewritten formula, ¢’ = b, as the final verdict is no longer

dependent on the occurrence of a. We call this method of rewriting formula progression.

Definition 9. A progression function Pr: ¥* X ® 1 — ® 1 is one that for all finite traces
a € ¥* infinite traces o € X¢, and formulas ¢ € ® 1, we have: ao = ¢ iff and only if
o Pr(a,p). R

Our method and the traditional rewriting method [59] vary primarily in that our function
Pr accepts finite traces as input, whereas the algorithm in [59] rewrites the input LTL formula
in a state-by-state manner. As a result, it is not feasible to rewrite using the fixed point
representation of temporal operators. The fact that a given distributed computation is
divided into a number of segments so an SMT query is used to verify each segment serves as
the motivation for our method. A state-by-state approach would generate excessive amounts

of SMT queries, rendering the approach inefficient and unscalable.

Remark 1. It is straightforward to see that for any o € ¥* and ¢ € ®, if a progression
function returns a non-trivial formula, which we denote by Pr(a, ¢) = ¢’ for some ¢’ € &1,

then the verdict of monitoring is unknown.

Atomic propositions. Let ¢ = p for some p € AP. The verdict is provided depending
upon whether or not p € «(0). This is the only case where the output of Pr cannot be a

rewritten formula; the possible verdicts are either true or false:
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true if  pe a0)
Pr(a, ) =
false if p¢ a(0)

Negation. Let ¢ = —¢. We have Pr(«a, p) = =Pr(a, ¢).
Disjunction. Let ¢ = ¢V @q. If either sub-formula ¢ or ¢, is evaluated to false, then

the progression of ¢ becomes the other sub-formula ¢ or ¢ respectively, since that will be

the only responsible sub-formula for the verdict of all future computations:

/

true if  Pr(a,¢1) =true V Pr(a,gy) = true
false if Pr(a, 1) = false A Pr(a,p,) = false
Prio, 0) = 1 ¢, if  Pr(a, 1) =false A Pr(a, ) = ¢)

o) if  Pr(a,ps) = false A Pr(a, o)) = ¢}

©1Vy if Pr(a,e1) = @) A Pr(a,g) = ¢
\

Next operator. Let ¢ = O¢. The verdicts true, false and ¢’ can only be reached if
al # . Otherwise, or if we are at the last event in the trace, then the progression of ¢

becomes ¢; implying ¢ must hold at the beginning of the future extension:

(
true if  Pr(a',¢) =trueAal £¢

false if  Pr(al,¢) =falsena! #¢
¢’ if  Prlal,¢)=¢ Aa' #£e¢

o) if ol |=¢

\

Always and eventually operators. Progression in the temporal operator ‘always’, [

(resp. ‘eventually’, <) may yield false (resp. true) or remain unchanged:

false if laErel=1
Pr(a,¢) =
Oo¢ if otherwise
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true if [aErel=T
Pr(a, ¢) =
oo if otherwise

Note that the semantics of FLTL is not frequently used, due to LTL3 being generally more
expressive, as shown in [11]. However, LTL3 cannot be used to construct the progression
rules. To be more precise, the ‘7" (unknown) verdict in LTL3 semantics would raise additional
and unnecessary complications in the progression rules, as this verdict does not provide any
additional information as far as our progression-based approach is concerned. In fact, if
progression results in a formula, it represents the ‘7" verdict in LTL3. Therefore, we use
FLTL for specifying the progression rules without any loss of generality as shown later in

the proof of Lemma, 2.

Until operator. Let ¢ = ¢1U ¢y. Recall that o1 U s = po V (o1 A O(p1U v2)). We
divide the U formula into two parts, one with globally (Jy;) and the other eventuality
(& w2). These sub-formulas are evaluated independently, and the verdicts of each are used
to establish the progression for the U operator. However, for the case when both ¢; and
9 occur in the same computation, we cannot reach a verdict without taking the order of
occurrence of these sub-formulas into account. That is, on a given finite trace «, if ¢ holds
in a(7) (denoted ;p2) and ¢ holds throughout in all states from «(0) to a(i — 1) (denoted
[(i_1¢1), then the progression of ¢ becomes true. If this is not the case, and [Jp; does not
hold in «, the progression of ¢ becomes false, since this signifies a break from the streak of
1 required for ¢ to hold. The progression of ¢ remains unchanged if ¢; holds throughout

a, but ¢y does not hold anywhere:

36



Figure 3.1 Progression example.

true if 3i € [0, |a] — 1).[a Fr OiPr(a, ¢2)] =T
A lar OaPr(e, )] =T

false if [a ErOPr(a, 1)) = L
A not the first case

Pr(a, 1) if [a Erp OPr(a, o) =T

A not the second case

Pr(a, 1) U Priepo) if [o e OPr(a 1)) = T

A o br OPrlasgs)] = L

0
Example. Consider the formula ¢ = &r — (=pU q), which can be broken into sub-
formulas ¢, = {Or, ¢, &g, Op}, according to our progression rules. Consider the trace in
Figure 3.1 divided into three segments. In the first segment «, neither p, ¢ nor r are present,
and as far as the laws of the progression function defined above, ¢ remains unchanged for the
next segment; i.e., Pr(a, ¢) = ¢. In the second segment o/, proposition r is observed, this
satisfies sub-formula <> 7 the progressed formula becomes —pU ¢; i.e., Pr(a/, ) = -pU q. In
the next segment o, proposition ¢ occurs before p. This falls under the first case of the until
progression operator. Since g happens after a streak of —p, we arrive at the verdict true;
i.e., Pr(a”,—pU q) = true. Put it another way, Pr(ad’a”, p) = true.

Lemma 2. Given an LTL formula ¢, and a finite and infinite trace o € ¥*, 0 € X* respec-

tively, trace ao satisfies ¢ if and only if o satisfies Pr(a, ). Formally,

lao Fr ¢ = o Fr Pr(a, 9)]

Proof. We distinguish the following cases:
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Case 1: First, we consider the base case of this proof, where the formula is an atomic
proposition, that is, ¢ = p.

(=) Let us first consider that p is observed on the first state of ao. This implies,
lao EF @] yields true, and Pr(q, ) yields T. Therefore, [0 Er Pr(a, ¢)] must also yield
true.

Now, let us consider that p is not observed on the first state of ao. This implies, [ao Ep
¢] yields false, and Pr(«, ) yields L. Therefore, [0 |=r Pr(a, )] must also yield false.

(<) Let us first consider that [0 =r Pr(«, )] yields true. This implies, Pr(«, ¢) yields
T, and [ao EfF ] yields true. Therefore, p must have been observed on the first state of
ao.

Now, let us consider that [0 [=r Pr(a, ¢)] yields false. This implies, Pr(a, ¢) yields L,
and (oo =p @] yields false. Therefore, p must not have been observed on the first state of

ago.

Case 2: Assume that the proof has been established for the case when the formula is
¢ = ¢. Now, we consider the case where the formula is ¢ = —¢.

We can say [ao = —¢| is equivalent to —[ao |=p ¢] according to the finite-trace se-
mantics of LTL. We can also say [0 F=r Pr(a, —¢)] is equivalent to [0 =r —Pr(c, ¢)] since
Pr(a, —¢) = —Pr(a, ¢) is defined as a progression rule. Furthermore, [0 Er —Pr(a, ¢)] is
equivalent to [0 |=r Pr(a, ¢)] according to the finite-trace semantics of LTL.

Based on our assumption, the proof has already been established for [ao Er ¢] <=
o Er Pr(a,¢)]. Therefore, =lac Er ¢ <= =0 Er Pr(a,¢)], and by extension,
a0 Fp 9] <= [0 Fr Pr(e, —¢)]

Case 3: Assume that the proof has been established for the case when the formula is
@ = ¢. Now, we consider the case where the formula is ¢ = O ¢.
Let us first consider the case where the length of the trace a is 1, that is, | @ |= 1 and

| a* |= 0. In this particular case, [ac Ep O] is equivalent to [0 =r ¢]. Furthermore,

Pr(o, O¢) = ¢; which implies, [0 p Pr(a,O¢)| is equivalent to [0 =r ¢]. Therefore,
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lao |=r O¢) <= [0 |=r Pr(a,O9)].

Now, let us consider the case where the length of the trace o is longer than 1, that
is, | @ |> 1 and | o' |> 1. In this case, (a0 |Er Od| is equivalent to [a'c E=r @], and
[0 EF Pr(a,0¢)] is equivalent to [0 |=r Pr(al, ¢)].

Based on our assumption, the proof has already been established for [alo Fr ¢] <=

lo Er Pr(al, ¢)]. Therefore, [ao Er O¢] < [0 Er Pr(a,0¢)].

Case 4: Assume that the proof has been established for the cases when the formulas are
¢ =1 and ¢ = 9. Now, we consider the case where the formula is ¢ = 1 V @,.

Based on our assumption, the proof has already been established for [ao Er ¢1] <=
o =r Pr(a,¢1)] and [ao =r ¢o] <= [0 Er Pr(a,¢s2)]. Therefore, we can derive the

following:

lao Er (01 V @2)] <= [ao Er 1] V[ao Er e
— [U ):F Pr(aagpl)] \4 [0 ):F PI’(O{, 902)]

> [0 Fr Prie1 Vo).

Case 5: Now, we consider the case where the formula is ¢ = @1 U py. We prove this by
induction:

Base Case: | a |= 0.

lao Fr ¢ = o Fr Pr(a; ¢)]

= [0 Fry]
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Hypothesis Step: | « |= k.

oo Fr o1 U o]

oo F=p <902 V (1 A Olg Uw)))]

a0 f=r 2] Voo (91 AO(p1 U ) )]

a0 fr @al v (a0 br p1] Ala'o Fr U ga))

a0 e al v ([0 bor il Alalo b (2 v (1 A Ot 2) )

r11170

a0 r @] V (lao r i) Alala p gal) V.V (lao r oA
o br @il A Al 20 bp ] A (@0 b o] )V
([aa e o A A0 Yo p o] A Jofo g goll/{gog])

= [a0 Er 9s] V ([aa e o] Aol Er @]) V...V <[aa .

LA o =R el Ao Er 9012/{902]>

Inductive Step: | a |= k + 1 Trivially expanded from the above expansion.

a0 brertlpn] <= [ao br @il V (lao br e Ala'o Frea] ) V..V
(lao Fr i A A 050 r o] Ao Fr i) Alo Fr o1l o))
Now, in order for [ao =p @1 U ¢s] to yield true, there must be a k > 1 such that [ac =p
O1 A ... A" Lo =p o) Aako =R o], that s,
o Er o] <= [Fk>1.% Eroi A Ao Ep 1A
oo f=p o
— [Fk>1. a0 Er Oppa N ao Ep Ok_101]
Note that the above recursive definition of Until allows us to evaluate any until for-
mula, and by extension, any always (¢ = U L) and eventually (O¢ = TU ¢) formula.

Therefore, we can evaluate any sub-formula using this fixed point representation of until.

40



e

aq

ajazas

Figure 3.2 Removing non-loop cycles in an LTL3 Monitor.

3.3 SMT-based Solution
In this section, we go into further detail about our approach to distributed monitoring
utilizing the two previously discussed monitoring techniques: (1) automata-based approach,

and (2) progression-based approach.

3.3.1 Overall Idea
Automata-based approach. Recall from Figure 1.5 that monitoring a distributed com-
putation may result in multiple verdicts depending upon different ordering of events. In other
words, given a distributed computation (€, ~+) and an LTL formula ¢, different ordering of
events may reach different states in the monitor automaton M, = (3, Q, qo, 6, A) (as defined
in Definition 1). In order to ensure that all possible verdicts are explored, we generate an
SMT instance for (1) the distributed computation (€, ~-), and (2) each possible path in the
LTL3 monitor. Thus, the corresponding decision problem is the following: given (&, ~) and
a monitor path qoq; - - - ¢, in an LTL3 monitor, can (&€, ~) reach ¢,,? If the SMT instance is
satisfiable, then A(g,,) is a possible verdict. For example, for the monitor in Figure 2.1, we
consider two paths ¢jq, and ¢jgr (and, hence, two SMT instances). Thus, if both instances
turn out to be unsatisfiable, then the resulting monitor state is g, where A(go) =.

We note that LTL3 monitors may contain non-self-loop cycles. In order to simplify the

SMT instance creation process (for each possible path in the LTL3 monitor), we collapse each
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Data: M, = (%,Q, g, 0, \)
Result: M/, = (3,Q,q,d", )
Let CP be the set of all possible paths containing cycles
§ 0
foreach ¢ € ) do

foreach ¢ 2% ... 2% ¢ € CP do

| 0'(qs Sm v su) < q

end

end

foreachqmi>qn€{%‘s—k>qj |q5—m>---qis—k>qj--- i"—>q€ CP} do
if m > n then
| 0" (G, s) 0
end

end

return M.,

Algorithm 3.1 Non-Self Loop Cycle Removal Algorithm
non-self-loop cycle into one state with a self-loop labeled by the sequence of events in the
cycle using Algorithm 3.1. As an example, in Figure 3.2, Algorithm 3.1 first takes an LTL3
monitor (Figure 3.2a) and adds the necessary self-loops (Figure 3.2b). Then it eliminates all
non-self-loop cycles by removing transitions from states with higher identifiers to states with
lower identifiers in cycles (Figure 3.2c). The non-deterministic nature of the final automata

ensure that all the transitions and the accepting language of the automata are preserved.

Lemma 3. Let M, = (3,Q, 0,6, \) be the monitor automaton for LTL formula, ¢, and
M, = (2,Q,q, ", \) be the monitor automaton with no non-self loop cycles, obtained from

applying Algorithm 3.1 on M. Given a finite trace, & = ajas---a, and a initial state,

q € Q, we prove that A\(0(q, @) = A(d'(q, @)).
Proof. We distinguish the following cases:

Case 1: First we show, A(d(q,)) — A(0'(q,)), that is, Va,Vq € Q . A\(d(q,)) =
A (g, ) Let a = aqag - - - ap, where Vi € [1,n].a; € ¥. Algorithm 3.1 removes non-self loop
cycles by removing a transition such that the corresponding transition of §(q, a;), ¢'(q, a;),

where i € [1,m] does not exist. This is such that Ik € [1,4] . ¢ Ltk o.g % ¢/, This
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transition is same as 0'(¢',a;_x - - - a;) = ¢’ which was one of the added self-loops. The rest

of the transitions are maintained such that d(q, a;) = §(q, a;), where ¢ € Q and i € [1,m].

Case 2: Now, we show, A\(d'(¢q,a)) — A(d(q, «)), that is, Va,Vqg € Q . A\(§'(q,0)) =
A(0(q, @) Let @ = ayay - - - a,, where Vi € [1,n].a; € 3. A self-loop in M, can be represented
by 30 € [1,n|,3k € [1,n —1i] . 0'(q, a;ais1 - - a;+x) = ¢. In another words, there exists a path

QAR NN q in M. The rest of the non-self loop transitions are the same, such

g q
that §'(q, a;) = 0(q, a;), where ¢ € Q and ¢ € [1,m].

Progression-based approach. Due to the existence of a total ordering of events in a
synchronous system, verification on a computation may be carried out using a state-by-state
methodology [10]. A partially synchronous system, however, makes such an ordering of
events impossible. Varying interleavings of events can lead to different orderings of events
in a distributed computation (€, ~-). Therefore, it is possible to obtain multiple verdicts on
the same distributed computation (£,~+). To explore these verdicts, we provide a formula
progression monitoring approach that, if feasible, partially evaluates a formula on the current
computation and, in response to the verdict, offers a rewritten formula that is to be evaluated
on the extensions of the computation. As an example, let us consider the formula to be
monitored as, ¢ = O(a — Ob). Now, if in some trace in a computation, the monitor
observes a, then for the extensions of computations, it is enough to monitor the rewritten
formula, ¢’ = < b, as the final verdict is no longer dependent on the occurrence of a. We
call this method of rewriting formula Progression, which we discuss in length later on. In
the next two subsections, we present the SMT entities and constraints with respect to one

monitor path and a distributed computation.

3.3.2 SMT Entities
SMT entities represent the sub-formulas of an LTL formula and a distributed computa-

tion. After the verdicts from all the sub-formulas are generated, we construct our rewritten
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formula by attaching the said verdicts to their corresponding parent formulas in the parse
tree and then performing an in-order traversal starting from the root of the parse tree.
At the end of the traversal, the resulting formula is, in fact, the progression for the next
computation. We now introduce the entities that represent a path in an LTLj3 monitor
M, = (£,Q,q,0, ) for LTL formula ¢ and distributed computation (£,~+). It should be
noted that the SMT entities in this subsection are used in both the automata-based and the

progression-based approaches.

Monitor automaton. Let ¢o —> ¢ —> -+ - (g; SN q) - 2l gm be a path of monitor
M, which may or may not include a self-loop. We include a non-negative integer variable
k; for each transition g; N gi+1, where i € [0,m — 1] and s; € ¥. This is also true for the

self-loop ¢; SN g;, for which we include a non-negative interger £;.

Distributed computation. Inour SMT encoding, the set of events, £ are represented by a
bit vector, where each bit corresponds to an individual event in the distributed computation,
(€,~). We conduct a pre-processing of the distributed computation, during which we create
an £ x £ matrix, hbSet to incorporate the additional happen-before relations obtained by
the clock-synchronization algorithm. Afterwards, we populate the hbSet with 0’s and 1’s,
such that hbSet[i][j] = 1 if &[i] ~ &[j], and hbSet[i][j] = 0 otherwise. We introduce a
function p : € x AP — {true,false} in order to establish a relation between each event
and the atomic propositions in it. In the event that other variables or constants are used in
defining the predicates (e.g. x1+x2 > 2), p is constructed accordingly. Finally, we introduce
an uninterpreted function p : Zsq — 2¢ that identifies a sequence of consistent cuts from
{} to {&} for reaching a verdict, while satisfying a number of given constraints explained in

Subsection 3.3.3.

3.3.3 SMT Constraints
We next go on to the SMT constraints after defining the requisite SMT entities. The

SMT constraints for consistent cuts that are enforced on both the automata-based and the
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progression-based approaches are first defined. Afterwards we define the SMT constraints

that are more dependant on the methodology.

Consistent cut constraints over p. In order to ensure that the uninterpreted function
p identifies a sequence of consistent cuts, we enforce certain consistent cut constraints. The

first constraint enforces that each element in the range of p is in fact a consistent cut:
Vi € [0,m] Ve, ¢ € 5.((6’ —e)A(ee p(i))) = (e' e p(i))

Next, we enforce that the sequence of consistent cuts identified by p start from an empty
set of events, and each successor cut of the sequence contains one more new event than its
predecessor.

Vi€ [0,m]. [ p(i +1)| = [p(i)| +1

Finally, we ensure that each successive consistent cut is immediately reachable in (€, ~) by
enforcing a subset relation:

Vi € [0,m]. p(i) C p(i+ 1)

We determine if a series of consistent cuts conforms to the specification after it has been
created. This is done using (1) progression-based approach, where the LTL formula is rep-
resented by a SMT constrain and (2) LTL3 automata-based approach, where a path on the
automata is represented as an SMT constraint. This is repeated for all sub-formulas of the
original LTL formula and all paths in the LTL3; automata respectively as discussed below.
Let C represent for the conjunction of the aforementioned constraints. Recall that there
is only one valid path that is relevant to this conjunction C. Since there may be multiple
paths in the monitor, we replicate the above constraints for each such path. Suppose there
are n such paths and let Cy,Cy, ..., C, be the corresponding SMT constraints for these n

paths. We include the following constraint:
CivCyvOsV.---Vv O,
This means that if the SMT instance above satisfiable, then a valid path exists.
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Constraints for LTL progression over p. Given a distributed computation (&£, ~~
), the aforementioned constraints may provide a valid series of consistent cuts that may
result in multiple verdicts depending on how the concurrent events are ordered. Therefore,
while evaluating an LTL formula on (€, ~), all potential outcomes are investigated in order
to prevent false positives. To achieve this, we examine the sequence of consistent cuts
CoC1Cy - - - Cy, interpreted by the uninterpreted function p(m), looking for both satisfaction
and violation. Note that applying our progression rules to monitor any LTL formula will
cause it to eventually monitor sub-formulas that only include atomic propositions, globally,

and eventually temporal operators:

o=p front(p;) £ p, for p € AP (satisfaction, i.e.,T)
o =0¢ Ji € [0, m]. front(p;) £ ¢ (violation, i.e., L)
=3¢ i € [0,m]. front(p;) |= ¢ (satisfaction, i.e.,T)

Situations to the contrary will lead to a rewritten formula that will go on to the following
segment. In general, the verdict for any LTL formula will be derived using our progression

rules in Section 3.2.

3.4 Optimization
We employ several optimization techniques in our implementation to speed up and im-
prove the monitoring process. In this section, we discuss two crucial optimization techniques,

as well as their impact on run time.

3.4.1 Segmentation of Distributed Computation

RV is known to be an NP-complete problem in the number of processes in a distributed
setting [53]. The complexity exhibits even more exponential blowup during verifying for-
mulas with nested temporal operators. In order to cope with this complexity, we divide
our computation into smaller segments, (seg,,~)(seg,,~) -+ (seg;,,~) to create smaller,
albeit more SMT problems. Given a distributed computation (€, ~~) of length [, we divide

it into é smaller segments length g. The set of events in segment j, where j € [1, é}, is the
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following;:

seg; = {el g |0 € max{o, (j—1) x g—£},j x g] A n e [1,N]}

Note that each segment (barring seg,) has to be constructed starting at ¢ time units before
the previous segments ending point. This creates an overlap of £ time units between each
pair of adjacent segments. Doing so ensures that no pair of possible concurrent become
non-concurrent due to the splits caused by segmentation. Therefore, dividing the actual
computation into segments does not have any effect on the final verdict of the said computa-
tion. We also use parallelization to make our algorithm perform faster, while utilizing most

of the computation power modern processors are capable of handling.

Lemma 4. A distributed computation, (£, ~), of length [ satisfies an LTL formula, ¢, if and
only if the distributed computation, (&€, ~), is divided into é segments of length g satisfies
¢ using the automata-based approach. That is, Given a distributed computation (&, ~) of
length [ divided into f] segments of length g, the evaluation of the LTL formula ¢ on, by the

automata-based approach is equal, i.e.,

(&) Fs ¢l == [(segiseg,. - segi,~) =5 ¢]

Proof. Let us assume [(£,~) =3 ¢| # [(seg,.seg,. - .seg1,~) =5 @], that is, {a =3 ¢ |

a € Tr(€,~)} #{a s ¢ | a € Tr(seg, seg,. -~ .segi,~)}

(=) Let Cy, be a consistent cut such that Cy is in Tr(&E, ~~), but not in Tr(seg, .seg,,. - - - SegL, ~
) for some k € [0, |€]]. This implies that the frontier of Cy, front(Cy) Z seg, and front(Cy) &
seg, and --- and front(Cy) € segu. However, this is not possible, as according to the seg-
mentation construction, there must be a seg; where 1 < j < é such that front(Cy) C seg,;.
Therefore, such Cj cannot exist, and {a 3 ¢ | @ € Tr(E,~)} C {a 3 ¢ | a €
Tr(seg,.seqg,. - seq, ~-)}. By extension, [(£,~) =3 ¢] = [(seg,.seg,. - - seg i, ~) =5 ¢

(<) Let C) be a consistent cut such that Cy is in Tr(seg,.seg,. - - - seg i, ~~), but not in
Tr(€,~) for some k& € [0,|&]]. This implies, front(Cy) C seg; and front(Cy) € & for some

Jjell, é] However, this is not possible due to the fact that Vj € [1, é] . seg; C &. Therefore,
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such Cj cannot exist, and {a =3 ¢ | @ € Tr(seg,.seg,. -+ .segi,~)} C{a |3 ¢ | a €
g
Tr(E,~+)}. By extension, [(seg,.seg,.--- .segi,~) =5 ¢ = [(€,~) =5 ¢]. Therefore,
g9

[(E,~) B3 ¢l < [(seg,.se9,. - -8695“9) Fs 0] B

Lemma 5. A distributed computation (£, ~) of length [ satisfies an LTL formula ¢ if and
only if the distributed computation, (&€, ~), is divided into é segments of length ¢ satisfies

© using the progression-based approach. That is,

(€.+) Fr ¢] = (59,560, seg1,~) Er o]

3.4.2 Parallelized Monitoring

Clusters of computers with several processing cores and processors are used by many
cloud services. They can now create high-performance parallel /distributed applications and
handle huge data rates as a result. Utilizing the extensive infrastructure should also be
possible for monitoring such applications. In light of this, we will now talk about parallelizing
our SMT-based monitoring technique.

Let G be a sequence of g segments G = seg, seg, - - - seg,. For each computer core that
is available, a task queue will be established. The segments will then be distributed evenly
among all of the queues so that each core may independently monitor its queue. However,
merely dividing up all the segments across cores will not guarantee a reliable outcome. For
example, consider formula ¢ = alf b and two segments, seg, and seg, across two cores, Cr,
and C'r,, respectively. The monitor operating on C'r, must be aware of the outcome of the
monitor operating on Cr, in order to render the proper verdict. In a scenario, where Cr,
observes one or more —a in seg,, a violation must be reported even if C'r, does not observe b
and no —a. Generally speaking, the temporal order of events makes independent evaluation
of segments impossible for LTL formulas. Of course, some formulas such as safety (e.g., Op)
and co-safety (e.g., & q) properties are exceptions.

For our automata-based approach, we address this problem in two steps. Let M, =

(33, @, qo, 6, \) be an LTL3 monitor. Our first step is to create a 3-dimensional reachability
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matrix RM by solving the following SM'T decision problem: given a current monitor state
¢; € @ and segment seg,;, can this segment reach monitor state ¢, € @, for all ¢ € [1,¢],
and j, k € [0, |Q| — 1]. If the answer to the problem is affirmative, then we mark RM [i][j][k]
with true, otherwise with false. This is illustrated in Figure 3.3 for the monitor shown
in Figure 2.1, where the grey cells are filled arbitrarily with the answer to the SMT prob-
lem. This step can be made embarrassingly parallel, where each element of RM can be
computed independently by a different computing core. One can optimize the construc-
tion of RM by omitting redundant SMT executions. For example, if RM[i][j][T]| = true,
then RM[/][T][T] = true for all i' € [i,|Q| — 1]. Likewise, if RM[i][j][L] = true, then
RM/|[L][L] = true for all i € [i,|Q] — 1].

The second step is to generate a verdict reachability tree from RM. The goal of the
tree is to check if a monitor state ¢,, € () can be reached from the initial monitor state qq.
This is achieved by setting ¢o as the root and generating all possible paths from ¢¢ using
RM. That is, if RM][i][k][j] = true, then we create a tree node with label ¢; and add it
as a child of the node with the label ¢;. Once the tree is generated, if ¢,, is one of the
leaves, only then we can say ¢, is reachable from ¢y. In general, all leaves of the tree are
possible monitoring verdicts. Note that creation of the tree is achieved using a sequential
algorithm. For example, Figure3.4 shows the verdict reachability tree generated from the
matrix in Figure 3.3.

For our progression-based approach, we adhere to a similar technique for parallelized
monitoring as our automata-based approach. The key difference being, in the progression-
based approach subformulas are used, whereas in the automata-based approach different
states are used. As an example, the previous formula ¢ = al/ b will be broken into two
subformulas ¢; = Ja and @y = b, before creating the reachibility matrix, and then

generating the verdict for both these subformulas.

Lemma 6. A distributed computation (£, ~) of length [ satisfies an LTL formula ¢ if and
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segq, seg, seg. seg,
go | 4T | 9L | do | 4T | 9L | 9o | 4T | 9L | 90 | 9T | 4L
Ol F F|T| T|IF|T|T|T|T T|T

go | 4T | 9L | do | 4T | 9L | 9o | 4T | 9L | 90 | 4T | 4L
T p|F|F|F|T F|F|  T|F|F|T|F

go | 4T | 9L | 9o | 4T | 9L | 9o | 4T | 9L | Qo | 4T | 4L
“WIp|F|F|F|F|T|F|F|T|F|F|T

Figure 3.3 Reachability Matrix for al{ b.

qT

Figure 3.4 Reachability Tree for alf b.

q1

only if the parallelized monitoring technique satisfies ¢. That is,
Te[E, )]l <= Mg =T

and,

Lell& ) Fsv]l <= Mg =1

Where ¢ € () is some leaf node in the verdict reachability tree generated from RM during

the parallelized monitoring process and A is the labelling function in M.,,.

Base Case: Let us first consider the case where there is only one segment. That is, [ = g.

(=) UTe[(€,~) s ¢ (resp., L € [(€,~) E3 ¢]), then according to the construction
of the corresponding verdict reachability tree made from the RM, the root node gy must
have a child gt (resp., 1), such that, A(¢gt) = T (resp., A(q1) = L). This child is also a leaf

node, as the height of a verdict reachability tree is 2 when there is only one segment.
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(<) We can trivially show that if A(¢t) = T (resp., A(q.) = L), that is, if g (resp., q.)
is reachable from g, then T € [(£,~) =3 ¢] (resp., L € [(£,~) =3 ¢]).

Hypothesis: Let us assume the proof as been established for [ = g x k. Now we consider
[ =qx (k+1) as the segment length.

(=) I T e [(€E,~) 3 ¢] (resp., L € [(€,~) 3 ¢]), then according to our assumption,
there must be at least one node at height & + 1 (height of the leaf nodes where there are
k segments), such that A\(gt) = T (resp., A(q.) = L). Now for k& + 1 number of segments,
according to the construction of the corresponding verdict reachability tree made from the
RM, the node gt (resp., q; ) can only have the child gt (resp., ¢, ). Therefore, there must
be at least one node at height k+ 2 (height of the leaf nodes when there are k+ 1 segments),
such that A(gt) =T (resp., A(qr) = L1).

(<) We can trivially show that if A\(¢gt) = T (resp., A(q.) = L), that is, if ¢t (resp., q.)
is reachable from qg, then T € [(€,~) =3 ¢] (resp., L € [(€,~) E3 ¢)).

3.5 Case Studies and Evaluation

In this section, we focus on our SMT-based solution without digressing into other aspects
like instrumentation, data gathering, data transfer, monitoring, etc., as given the distributed
setting, runtime will be the dominant factor over any other kind of overhead. We evaluate our

proposed technique using synthetic experiments, Cassandra (a distributed database) [19, 72|,

and the RACE dataset from NASA [85].

3.5.1 Implementation and Experimental Setup

Three steps may be identified for each experiment: (1) data generation, (2) data collec-
tion, and (3) data verification. For the purpose of generating data, we create a synthetic
program that at random generates a distributed computation (i.e., the behaviors of a set of
programs in terms of their inter-process communication and local calculations). Generating
synthetic experimental data offer benefits that enable us to draw comparison between differ-
ent parameters and their effect on the approach. For example, generating data for different

values of ¢ is beneficial to study its effect on the runtime and the number of false warning
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verdicts of our approach.

When developing the synthetic distributed system as part of our experiment, we ensure
a partially-synchronous setting by including an HLC implementation. We use a uniform
distribution (0, 2) to define the type of event (local computation, send and receive message)
and a flip-coin distribution for computing the atomic propositions that are true at each
local computation event. Although the events in our synthetic experiments in Section 3.5.2
are uniformly distributed over the length of the trace, the event distribution as part of the
Cassandra experiments in Section 3.5.3 are affected by the network latency and other external
factors. In addition, we assume that that there is an external data collection program which
keeps track of the data/states of the system under verification. It generates the trace logs
which is used by the monitoring program to verify against the given LTL specifications
mentioned in Figure 3.5b.

For data verification, we consider the following parameters: (1) number of processes (N),
(2) computation duration (I secs), (3) segment length (g), (4) event rate (r events/pro-
cess/sec), (5) maximum clock skew (¢€), and (6) number of nested temporal operators (|¢|)
for the LTL formula under monitoring. The primary metric is to calculate the SMT solving
runtime for each parameter configuration. In all of the charts shown in this section, the time
axis is displayed in log scale. By keeping the values of all the other parameters at sensible
fixed values, we can study the impact of changing one parameter. In all the graphs, we com-
pare the runtime of our automata-based approach against the progression based approach.
We use a MacBook Pro with Intel i7-7567U(3.5Ghz) processor, 16GB RAM, 512 SSD and
g++ Apple clang version 12.0.5 (clang-1205.0.22.9) interface to the Z3 SMT-solver [97] to
generate the traces. To evaluate our parallel algorithm, we use a server with 2x Intel Xeon
Platinum 8180 (2.5GHz) processor, 768GB RAM, 112 vcores and g++(GCC) 9.3.1 interface
to the Z3 SMT-solver [97].
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3.5.2 Analysis of Results — Synthetic Experiments

In this series of experiments, we examine every parameter that is available and record how
it impacts SMT solution. To investigate how each parameter affects runtime, we test each
one separately. Since the created synthetic data is independent of any outside influences,
we include a delay to both reduce the amount of events occurring at each time unit and to
ensure that events are distributed equally across the execution of each process. We assign a
value to each local computation event in each process using a uniform distribution (0, |X]).
The findings of the following experiments only make use of one CPU core.

Overall, we notice an improvement of around 35% when the progression based technique
is compared to the other automata based approach. This improvement in performance owes
to two main reasons: (1) compared to the automata-based approach, the LTL constrains
in our progression-based approach is less demanding in terms of computational complexity.
Each sub-formula consists of mostly one atomic proposition as opposed to multiple atomic
propositions in each path of the automaton, which in turn speeds up the overall verification
process, and (2) the total number of SMT-instances needed is fewer due to the less number
of sub-formulas compared to automaton paths given the same specification. We now analyze

the results in detail.

Impact of predicate structure. In this experiment (Figure 3.5a), we consider different
predicate distribution over AP for the formula, ¢, i.e., how many processes are involved with
a particular predicate. We consider different predicate structures: O(1), O(n), O(n?) and
O(n?®) which signifies the order of the number of SMT-encodings that need to be generated
for the given distribution of predicates. As can be seen, the progression based technique
outperforms the automata-based technique overall by 35% on average.

Having said that, during our experiments when comparing the runtime of our moni-
toring approach for increasing number of sub-formulas, we observe a slight decrease in the
overall efficiency in runtime when using the progression-based approach compared to the

automata-based approach. Since the progression-based approach is based on evaluating each
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sub-formula, there exists an LTL formula where the number of sub-formulas is more than
the number of paths in the corresponding automata, and thus, the the progression-based
approach might not be as efficient as the automata-based approach in such a scenario.

For example, consider a formula, ¢ = $a vV EObV e, where the automata has two
states, which makes the number of paths to be 2. However, the progression involves 3
sub-formulas, which makes the progression based approach less efficient than its automata
counterpart. We would like to point out that the formula can be rewritten as G(a VbV c),
which makes both the approaches yield similar results. Thus we hypothesize that for all LTL
formulas, the progression-based approach will be more (if not equally) efficient to that of the

automata-based approach.

Impact of LTL formula. Given an LTL formula, the depth of nested temporal operators
plays an important role as suggested by Figure 3.5b. We experiment with the following LTL
formula and the progression based technique achieved an average improvement of 32.8%

compared to the automta-based one.

p1=0p d=2 [¢[=1
p2 =0O(¢ — Op) d=3 |¢| =2
w3 =0(g A OT) = (mpUT)) d=4  |¢|=3
s =0((g ANOT) = (=pU(rV (s A=p AO(=pU1))))) d=5 [¢]=38
ps = Or = (s ANO(-rit t) = O(=rid (t ASP))) d=6  |¢|=38

o =0((gAOT) = (sAO(-rUdt) = O(-rU (EAOP))UT)  d=T 9| =9

Impact of partial synchrony. Figure 3.5¢ depicts the anticipated outcome, wherein an
exponential rise in the number of concurrent events across processes leads to longer runtime
as clock skew € grows. When comparing with the automata-based approach , the progression-

based technique yields us an improvement of 33.36%.

Impact of event rate. Figure. 3.5d shows that our approach breaks even with the com-

putation duration for NV = 3 for an event rate of bevents/process/sec. However, increasing
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the event rate increases the search space for the SMT solver. Overall we improve by 34.4%

by using the progression-based technique compared to the automata-based technique.

Impact of segment count. The number of events to be handled grows as segment length
rises, exponentially lengthening the time our method takes to operate. Since there are
not enough occurrences to have an effect, N = 1,2 doesn’t show significant improvement
in Figure 3.5e. For a greater number of operations, we see improved performance with
shorter segments. Due to the time required to construct a greater number of SMT encodings
outweighing the performance benefit from smaller segments, it should be noted that the
runtime rises for extremely short segment lengths. Here too, we notice an improvement of

32.6% for the progression-based technique over the automata-based technique.

Impact of computation duration. In Figure 3.5f, we lengthen computation and monitor
the impact on runtime. The number of segments required to verify the lengthier computation
grows as the duration of the computation rises, leading to a linear increase in runtime. The
progression-based approach improves the runtime by 33.1% when compared to the automata-

based approach.

Impact of parallelization. The technique performs significantly better when the veri-
fication is distributed over many cores. Figure 3.6a illustrates the dramatic improvement
in performance that occurs when the number of cores is increased from 1 to 10. However,
raising it further makes little progress since the time required to generate the SM'T encodings
begins to take precedence over the time required to solve it. An improvement of 33.8% is

achieved for progression-based approach when compared to automata-based approach.

Impact of ¢ on false warnings. As discussed in Section 2.3, the monitor does not have
access to the global clock, it can report events as concurrent, when in reality, one happened
before the other in the system under observation. However, during this experiment, we
keep track of the global clock values separately, which gives us full knowledge over the total

ordering of all events. Thus, allowing us to study and report the real verdicts alongside the
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Figure 3.6 Impact of parallelization on different data.

reported verdicts. We observe that the monitor sometimes report false warnings, that is, it
reports both verdicts (satisfaction and violation), when in reality, only one has occurred.
Note that the monitor never fails to report real verdicts. However, it may report false
warnings alongside real verdicts on some occasions. Although this does not change the
correctness of the approach, it may still include false warnings as part of the set of evaluated
results.

In Figure 3.6d, we observe that with the increase of the maximum clock skew ¢, the
number of false warnings increases. The increase in false warnings is attributed to the fact

that as the value of € increases, so does the number of events considered as concurrent by
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the monitor.

Additionally, we observe that the number of false warning is greatly influenced by the
predicate structure of the LTL formula, as evident from Figure 3.6d. For O(n) conjunctive
satisfaction formula monitoring and O(n) disjunctive violation formula monitoring, false
warnings might occur if any one of the n sub-formulas are violated or satisfied, respectively.
Therefore, we see a higher number of false warnings. Similarly, for O(n) disjunctive satisfac-
tion formula monitoring and O(n) conjunctive violation formula monitoring, false warnings
might occur if all of the n sub-formulas are violated or satisfied, respectively. Therefore, we

see a lower number of false warnings.

3.5.3 Case Study 1: Cassandra

In this case study, we observe read/write irregularities of a No-SQL distributed database
management system called Cassandra [19, 72|. One node from each cluster serves as the
seed node in our simulation of a distributed database with two data centers: one cluster
with four nodes and the other with three. Each node in both clusters replicates all of the
data. Each node runs on Red Hat OpenStack Platform using 4 VCPUs, 4GB RAM, Ubuntu
18.04, Cassandra 3.11.6, and Java 1.8.0 252. Additionally, we have simulated a system with
numerous processes, each of which is in charge of the fundamental database operations (read,
write and update). These processes are also capable of inter-process communication, which
enables them to alert other processes in the event that they create a new database record.

We compared our system’s latency against that of Google Cloud, Microsoft Azure, and
Amazon Web Services in order to make our simulated database as realistic as possible. The
quickest response was timed at 41ms compared to our system’s 100ms. The sluggish band-
width and different infrastructure are to blame for the significant latency when compared to
the industry norm. In all of our experiments, we consider a delay of 100ms into account.

Each of the processes is capable of reading, writing, or updating the database entries given
the way the processes are designed. We choose the kind of operation that will be carried

out by the process using a (0,2) uniform distribution. The other processes are informed

o8



—— ©mw, |P| =2 Automata —— ¢, |P| =2 Automata
©rw. |P| =3 Automata @rw. |P| = 3 Automata
—— Ywre, |P| = 2 Automata —— Ywre, |P| = 2 Automata
—— @wre. |P| = 3 Automata Pwre, | P’ Automata
100 - —— Ddrc 73‘ Automata | | 100 |- Pdrc ’F“ Automata 1
— Pdrc: utomata @Pdre;, |P| = 3 Automata
— o, [P Togression — ¢@rw, [P| = 2 Progression
@rw, |P| = 3 Progression = X 77‘ = 3 Progression
——pwre, |P| = 2 Progression 50 —Vwre, =2 1
50 F Ywre. |P| = 3 Progression | | | =3
o @dre; |P| = 2 Progression =2
— Oare. |P| = 3 Progression =3

Run time (s)

Run time (s)

—
o
T

5,

ot
T
i

46 8 10 12 14 16 18 20 1 2 3 4 5 6 7 8 9 10
Segmentation frequency (Hz) Computation duration (s)
(a) Segment Length. (b) Computation Duration.

Figure 3.7 Cassandra experiments.

of any additions made by the write operation using the inter-process communications. No
messages are believed to have been lost during transmission, and as soon as they are received,
the receiving process reads each message.

Consistency level helps a database maintain the bare minimum number of replications
required for an activity to be deemed successfully completed. In order to eliminate any
potential of a read or write anomaly in the database, Cassandra recommends that the total
of read and write consistency should be greater than the replication factor. Using runtime
monitoring approaches, we want to keep an eye on and detect read/write irregularities in

the database. The corresponding LTL specification becomes:

n

Oy = /\ (write(i) — Oread(i))

i=0

where n is the number of read /write operations.
One of the drawbacks of utilizing a distributed database like Cassandra is the absence
of database normalization features. As a result, we intend to monitor both write and delete

reference checks. We present two tables:
STUDENT(id,name)  ENROLLMENT(id, course)

On these tables, we enforce the write and remove reference check. A write in the ENROLL-
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MENT table must always be followed by a write in the STUDENT table with the same ud.
Similarly, deleting from the STUDENT table should always be followed by deleting from the
ENROLLMENT table with the same ¢d. This ensures no insertion and deletion anomalies,

resulting in the following LTL specification:
Owre = 7 <—|w7“ite(STUDENT.id) U write(ENROLLMENT.z‘d))

Pdre = 7 (ﬁdelete(ENROLLMENT.id) U delete(STUDENT.id))

Extreme load scenario. Fig 3.7b and Fig 3.7a depict runtime versus computation dura-
tion and runtime vs segmentation frequency under our network’s maximum read/write load.
These results are slightly noisier when compared to the results of the synthetic experiments.
This is because the events in the synthetic experiments were uniformly distributed across the
whole computation length, but they are not uniform here. Database operations requiring net-
work communications (read, write, and update) require an average of 100ms, whereas sending
and receiving messages involve inter-process communication and take roughly 10ms-15ms,
resulting in a non-uniform event distribution. When comparing with the automata-based
approach, we do not see much improvement when monitoring ... or @4 using progression
based approach. However, when monitoring ¢,,,, we observe an average improvement of

55.53%.

Moderate load scenario. In Fig 3.7b, we were able to break even with as little as 2
processes. To find a real-world example with modest database activities, consider the Google
Sheets API, which enables a maximum of 500 requests per 100s per project and a maximum
of 100 requests per second per user, i.e., on average 5 events/sec per project and 1 event/sec
per user. To see how our technique operates in such a scenario, we increase the number
of processes and cores available to monitor such a system in order to investigate the time
required to verify the trace created by such a system. In Figure 3.6¢, we see that we break
even at an event rate of 3 events/sec/user when using the progression-based strategy. Our

algorithm operates effectively when the number of processes is 7, 8, or 9, which is far higher
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than Google allows. This allows us to be certain that our technique can be implemented

online in real-world scenarios.

3.5.4 Case Study 2: RACE

In this case study, we monitor a mutual separation property between multiple aircrafts.
The dataset! for this case study was generated using the Runtime for Airspace Concept
Fvaluation (RACE) [85] framework developed by NASA. RACE is a framework for creating
an event-based, reactive airspace simulation. This dataset consists of three data sets obtained
on three distinct days. Each pair was captured at around 37° N Latitude and 121° W
Longitude. The dataset contains all eight types of messages sent by the SBS unit when a
Telnet application is used to listen to port 30003, but we only use the messages with 1D
MSG — 3 which is the Airborne Position Message and includes a flight’s latitude, longitude,
and altitude and is used to verify the mutual separation of all pairs of aircraft.

We found that the time gap between the time the message was created and the time it
was recorded was generally less than a second, thus we regarded an ¢ = 1s over the time
the message was generated. Furthermore, calculating the distance between two locations is
computationally intensive since we must account for characteristics such as earth curvature.
We consider a constant latitude of 111.2km and longitude of 87.62km to speed up distance
computations at the expense of a minuscule error margin. We use these as constants and
multiply them by the difference in latitude and longitude, and factor in the altitude to get
the distance between two aircrafts. We verify mutual separation by assuming a minimum
separation of 500m between each pair of aircrafts. According to the dataset, each aircraft
generates a message at least once per 1 second. There are three distinct datasets: sbs-1 has
293 aircrafts, 168, 283 messages spread over 3 hours, 28 minutes, and 58 seconds; sbs-2 has
110 aircrafts, 64,218 messages spread over 1 hour, 1 minute, and 46 seconds; and sbs-3 has
97 aircraft, 64, 162 messages spread over 49 minutes and 42 seconds.

In Figure 3.6b, we compare our obtained runtime to the three RACE datasets (labelled

Thttps://github.com /NASARace/race-data
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sbs-1, sbs-2 and sbs-3). We monitor the data in real time, with segments of 10s and € of 1s.
We put our approach to the test by increasing the number of cores on the CPU and utilizing
all available cores, as described in 3.4.2 by using more number of cores on the processor
and utilize all available cores. Our results break even for 4 cores. This makes our approach

desirable for aircraft monitoring and similar systems such as IoT.

3.6 Conclusion

We elected to start our work with discrete-event systems (as opposed to continuous-time
systems) due to the fact that monitoring discrete-event systems are intuitively less expensive
in terms of runtime and computational complexity, compared to similar continuous-time sys-
tems. Both of our proposed techniques take an LTL formula and a distributed computation
as input and, assuming a bounded clock skew among all processes, chops the computation
into multiple segments before applying either the automata-based monitoring algorithm, or
the progression-based monitoring algorithm implemented as an SMT decision problem to ver-
ify the formula’s correctness. In Section 3.5, we carried out extensive simulated experiments,
as well as case studies on monitoring consistency conditions in Cassandra and a NASA air
traffic control dataset. Our experiments demonstrate up to 35% improvement in performance
in our progression-based algorithm over our automata-based algorithm. Furthermore, based
on these experiments, we summarize that online monitoring is indeed possible with our tech-
niques when distributed computations are properly segmented and parallelized. A natural
course of action now would be to carry and apply the relevant aspects of this approach into
monitoring continuous-valued systems; in other words, distributed CPS. We take the first

steps into monitoring distributed CPS in the next chapter.
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CHAPTER 4

PREDICATE MONITORING IN
DISTRIBUTED CYBER-PHYSICAL SYSTEMS

In this chapter, we take first steps towards rigorously monitoring distributed CPS. To this
end, we propose a monitoring technique to detect Boolean predicates over the analog (i.e.
continuous-time and continuous-valued) signals generated by the agents in a distributed
CPS. Similar to our approach described in Chapter 3, a clock synchronization algorithm
guarantees a maximum clock skew across all signals generated by the agents.

In the following sections, we first define the analog signal transmission sampling method
based on our signal model defined in Chapter 2. We then elaborate on our predicate detection

approach for partially synchronous distributed CPS using a signal retiming technique.

4.1 Signal Transmission to the Monitor

Communication between nodes requires sampling the analog signal, sending the samples,
and reconstructing the signal at the receiving node. Our goal is to monitor the reconstructed
analog signals. This is not the same as monitoring a discrete-time signal composed of sam-
ples; the applications we are addressing are concerned with the value of the signal between
samples and the possible violations revealed by it. Signal transmission methods, such as
sampling and reconstruction, are common in communication theory. Errors caused by sam-
pling and reconstruction (for example, owing to bandwidth constraints) can be addressed
for by tightening the STL formula using the methods of [45]. The reconstruction algorithm
is chosen based on the application and domain knowledge. For the sake of simplicity and
generality, we assume that every output signal z,, is rebuilt as piece-wise linear between the
samples, except in one experiment where we reconstruct a signal as both piece-wise linear and
piece-wise quadratic to study the trade-offs. Other signal constructions, such as cubic splines,
can also be employed with easy modifications to our algorithms at the cost of increased run
time, provided that the signal structure chosen is orthogonal to our methodologies and the

aims of this work. Since we assume the agents do not deadlock, this transmission happens in
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segments of length T: at the k' transmission, agent A,, transmits xn|[(k_1)T,kT], the restric-
tion of its output signal to the interval [(k — 1)T, kT] as measured by its local clock. The
remainder of the work refers solely to the signal fragments received by the monitor during a
specific transmission.

We now return to the constraint imposed on I, in Definition 7, namely that it is a
non-empty bounded interval. Non-emptiness models the absence of deadlock in comput-
ing. That is an interval I,, expresses that no events are missed, or equivalently, that signal
reconstruction is perfect at the monitor. The restriction that it be bounded models the
above monitoring setup: the monitor is only ever dealing with bounded signal fragments
Tp|((k—1)Tk7], therefore,

I, = [(k — )T, kT), (4.1)

for every agent at the k' transmission, measured in local time. By the bounded skew

assumption, we have:

Lemma 7. For any two agents A,, A,,, |min I, — min ;| < € and |max [,, — max I,,,| < €.

4.2 Problem Statement

Predicates are frequently used to encapsulate several system requirements (e.g., invari-
ants). A predicate ¢ is a global Boolean-valued function over the signal values of agents. For
instance, p(z1,x2) = (1 > 0) A (In(z2) < 3) is a predicate on two signals that evaluates to
true when x; > 0 and In(zy) < 3, otherwise false.

Because the agents are partially synchronized to within an ¢, it is not possible to actually
evaluate all signals at the same moment in global time. However, as noted above, the frontier
of a consistent cut gives us a possible global state. Therefore, the monitoring problem can be
worded as follows. Given a distributed signal (F, ~) over N agents, as defined in Definition 7,
and a Boolean predicate ¢, (F,~) satisfies ¢ iff there exists a frontier of a consistent cut
in (E,~), where @ is satisfied. It should be noted that throughout this chapter, (E,~~) is

used to denote distributed signals. We now define distributed satisfaction below.
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Definition 10. |Distributed satisfaction| Given a distributed signal (E,~) over N agents,
and a predicate ¢ over the N agents, we say that (E, ~) satisfies ¢ iff for all consistent cuts
C C E with

front(C) = ( (fr,2a(t), -, (b 2 (1) )
we have go(xl(tl), xo(ta), . .. ,xN(tN)) = true. We write this as (E,~) = ¢. R

Thus, we formally define the problem as follows.

Problem Statement

Continuous-Time Monitoring of Distributed CPS. Given a distributed signal

(E,~) and a predicate ¢ over N agents, determine whether (E,~>) = .

When a distributed signal (E, ~+) does not satisfy a predicate ¢, we say that (E, ~~) violates
¢ and write (E,~») = . In this dissertation, we want to detect whether there exists a
consistent cut C' C E, such that (E,~) £ .

The main challenge in monitoring distributed signals is that the monitor has to reason
about signals that are subject to time asynchrony. For instance, consider two signals z; and
xo and the case where z1(2) = 5, 22(3) = 1, ¢(x1,22) = (21 > 4) A (22 < 0), and € = 2 so
that time points 2 and 3 form a consistent cut. In this case, since the above signal values
are at local times within the possible clock skew, one has to (conservatively) consider that

the predicate is violated. In the next section, we present our solution to the problem.

4.3 SMT-based Monitoring Algorithm

In a nutshell, our solution has the following features:

e Central monitor. We assume that there is a central monitor that solves, at regular
intervals, the monitoring problem described in Section 4.2.

e Signal retiming. As signals are measured using their local clocks, the monitor
should somehow align them to detect possible violations of the predicate. To this

end, we propose a retiming technique that establishes the happened-before relation in
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the continuous-time setting, and stretches or compacts signals to align them with each
other within the ¢ clock skew bound.

e SMT encoding. We transform the monitoring decision problem into an SMT-solving
problem, whose components (like input signals and the happened-before relation) are

modeled as SMT entities and constraints.

4.3.1 Retiming Functions
Our signal model is continuous-time, that is, the signals are maps from R, to R, . There-
fore, to model the approximate re-synchronizing action of the monitor, we use a retiming

function.

Definition 11. [Retiming functions| A retiming function, or simply retiming, is an increasing
function p : Ry — R,. An e-retiming is a retiming such that: V¢ € Ry : |[t—p(t)| < €. Given a
distributed signal (E, ~+) over N agents and any two distinct agents A;, A;, where 7, j € [N],
a retiming p from A; to A; respects ~ if we have ((¢,z;(t)) ~ (t',z;(t"))) = (t < p(t')) for
any two events (¢, z;(t)), (t',z;(t')) € E. An e-retiming that respects ~~ is a valid retiming. W

Figure 4.1 shows examples of retimings and how they relate to predicate monitoring.
To detect predicate violation, we must first retime y to the t axis via a retiming map p.
(c) shows three different retimings, including the identity. (d)-(e) show the retimed y. For
the predicate z > y, (e)-(f) show no violations, but (d) does. The conservative monitoring
answer is that the predicate is violated. An e-retiming p maps R to itself, but it is easy to
see that the restriction of p to a bounded interval I is an increasing function from I to p(I)
that respects the constraint |t — p(t)| < e for all ¢ € I. Thus, in what follows we restrict our
attention to the action of e-retimings on bounded intervals.

We now state and prove the main technical result of this chapter, which relates the
existence of consistent cuts in distributed signals to the existence of retimings between the

agents’ local clocks.

Theorem 3. Given a predicate ¢ and distributed signals (E, ~+) over N agents, there exists

a consistent cut C' C F that violates ¢ if and only if there exists a finite A;-local clock value
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Figure 4.1 Predicate violation between two signals x and y measured using partially syn-
chronized clocks ¢ and s.

t and N — 1 e-retimings p,, : I,, — I; that respect ~», 2 < n < N, such that:

gp(ml(t), 220 pyL(t), ... Zx O p;(t)) — false (4.2)

and such that p'op, : I, — I, is an e-retiming for all n # m. Here, ‘o’ denotes the function

composition operator.
Proof. We distinguish the following cases:

Case 1: Suppose that such retimings exist. Define the local time values t; := t, t, = p,, (¢),
2 <n < N, and the set C = {e't < t,}. By the construction of C' and the fact that the
retimings respect ~, it holds that if e € C'and f ~» e then f € C. For every n,m > 2, n # m,
it holds that t,, = p.'(pn(tn)) S0 |t, — tn,] < e. Thus C is a consistent cut with frontier

(ef )DL, that witnesses the violation of ¢.
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Case 2: Suppose now that there exists a consistent cut C' with frontier:

front(C) = <(t1,x1(t1)), Cees (tN,JUN(tN))>

that witnesses violation of . We need the following facts.

Fact 1. For every two events ei and e’ in the frontier of a consistent cut, we have
|t — tm| < €. Indeed, since ef € front(C), we have e € C for all s s.t. s+ <t,. Thus,
t,, > s for all such s and so t,, > t, — . By symmetry of the argument, ¢, > t,, — ¢ holds
as well.

Fact 2. Given intervals [a,b] and [c,d] s.t. |a—c| < e and |b—d| < &, themap L : [a,b] — [c, d]
defined by L(t) = ¢ + &=£(t — a) is a linear e-retiming. This is immediate.

Suppose first that there are no message exchanges. For 2 < n < N, we define the retiming
pn : I, — I in two pieces. First, set p,(t,) = t;. By preceding lemma, |t,, — t;]| < e. Write
I, = [a,b] and I, = [c,d] for notational simplicity in this proof. Call a pair of intervals that
satisfies the hypothesis of Fact 2 an admissible pair. Then, the following pairs are clearly
admissible by Lemma 7: [a,t1] and [c, t,], and [¢1, 0] and [t,,d]. Thus, there exist two linear
retimings L, : [a,t1] — [c,t,] and L, : [t1,b] — [t,,d], and we can define a piece-wise p,:
pn(t) = Ly(t) on ¢ <t <t,and p,(t) = L (t) on t, <t <d. Itis easy to establish that p,
is an e-retiming.

It remains to show that p,' o p,, : I, = [f, g] — [c,d] is also an e-retiming. This too can
be established in parts, first over [f,t,,] then over [¢,,, ], using the same arguments as above
and exploiting the linearity of these retimings. For instance, if we write «,, for the slope of

L, then over [f,t,,]

Pt (P(s)) = Ly (Lin(s)) = Ly (a + (s — ¢))

= Oéin[a—l—ozm(s—c)]ij—a/an:f—l—il:];(s—c)

which is a linear e-retiming by Fact 2. W
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If there are message exchanges, the above argument still applies but over a more fine-
grained division of the timelines I,, obtained by partitioning each timeline at message trans-

mission times.

Proof. For the admissible pair I; = [a, b] and I, = [c, d], suppose the first message is sent from
A, to Ay at local time s < t,, and is received at local time 7 < ¢;. Define t(,) := min(s+¢,r).
Then the pair [a,?(y], [c,s] is admissible. Upon repeating this process for all messages, a
collection of admissible pairs is obtained that can be retimed to each other, as above, without

violating the ~~ relation. These are concatenated to yield the desired retiming p,,.

Thus, finding a consistent cut that violates the predicate can be achieved by finding
such retimings. The proof of Prop. 3 further shows that the retimings can always be chosen
as piece-wise linear (rather than any increasing function), which yields significant runtime

savings in the SMT encoding in the next section.

Remark 2. An interesting consequence of Fact 2 in the proof is that it is enough to use

piece-wise linear retimings. This results in the following concrete problem.

Concrete Problem Statement

Given € > 0, a distributed signal (F,~>) over N agents, and a predicate ¢ over the
N agents, find N — 1 piece-wise linear e-retiming functions ps, ..., py that satisfy the

hypotheses of Theorem 3 and s.t.

o (w1(t1), 22003 (1)), 2w (3! (1)) ) = Talse (4.3)

4.3.2 SMT Formulation

We solve the monitoring problem by transforming it into an instance of satisfiability
modulo theory (SMT) [6]. Specifically, we ask whether there exists N — 1 retimings, such
that (4.3) holds; equivalently, whether there exists a consistent cut that witnesses satisfaction

Of Q.
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Without loss of generality, we start with our encoding of two agents, A; and A, (shown in
Figure 2.3). A; outputs signal z supported over the bounded timeline I;, which is discretized
to D; C I; and sent to the monitor. Similarly, As outputs signal y supported over the
bounded timeline I, which is discretized to Dy C Iy and sent to the monitor. D; and D,
are finite. Let 6, > 0 be the sampling period of agent Aj, so two consecutive elements of Dy,
differ by o, k € {1, 2}.

Consider further that A, transmits a message at local time t; and it is received by A; at
local time t,, and that A; sends a message at local time t3 which is received by A, at local
time t4. The distributed signal violates the predicate iff the following SMT problem returns

SAT.

SMT entities. In our encoding, the entities are the retimings p,, included as uninterpreted
functions (the solver will interpret), signals = and y, intervals I; and I, real numbers t, s,
s', ty, to, t3, and t4. All these entities have been defined in the previous sections. The
following quantities are all constants in the encoding, since they are known to the monitor:
the sampling time sets Dy, and sampling periods ¢y, the sampled values {z(t;) | t; € D;} and

{y(s:) | s; € Dy}, and the message transmission and reception local times.

SMT constraints. The encoding is a conjunction of the following constraints:

e (Predicate violation) The first constraint ‘finds’ local times ¢ and s at which predicate

¢ is violated (upto e-synchrony):

d tel.ds e Is. (44&)
(315‘ eDLt-<t<t +51) A (4.4b)
(33_ €Dy. s <s<s + 52> A (4.4¢)

(p(s) :t> A (4.4d)
(=t ), y(s)) (4.4c)
Eq. (4.4b) finds the time sample ¢t~ such that x(t) = z(¢7): this is the result of

our assumption that signals are piece-wise constant. Eq.(4.4c) does the same for y.
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Eq. (4.4d) specifies that s is retimed to ¢: this is what guarantees that (x(¢),y(s)) is a

possible global state as per Theorem 3. Eq. (4.4e) checks violation of the predicate at

(@(t), y(s)) = (x(t7),y(s7)).

o (Valid retiming) Eq. (4.5) ensures that p is a valid e-retiming from I to Ii:
Vsely. Ite . (p(s) =t) A (|t —s| <e) (4.5)
and Eq. (4.6) ensures that the retiming function is increasing:
Vs € I,. Vs' € . (3 <s = p(s) < p(s’)) (4.6)

e (Happened-before) Eq. (4.7) enforces the happened-before relation for message trans-
missions:

(P(tl) < t2> N (753 < P(M)) (4.7)

e (Inverse retiming) When there are more than 2 agents, we must also encode the con-

straint that for all n # m, p,! o p, is an e-retiming. Thus, for all n # m, letting f,, be

the uninterpreted function that represents the inverse of the uninterpreted p,,, we add

Vi€ I, fm(pn(t)) =t (4.8)
in addition to the analogs of Eqs. (4.6) and (4.5) for f,, o p,.

Other signal models. If output signals were piece-wise linear, say, Eq. (4.4e) would be

modified accordingly:

0 (x(t) A s 5(153 — () (t—t7), (4.9)

y(s™) + yls” + 5(252 —y(s7) (s — s‘)) = false

Similarly, if output signals were piece-wise quadratic, Eq. (4.4e) would be modified as follows:

@ (z(t),y(s)) = false (4.10)
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(a) Piece-wise linear signals. (b) Piece-wise quadratic signals.

Figure 4.2 Piece-wise interpolations.
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X

Figure 4.3 Piece-wise linear signals vs. piece-wise quadratic signals.

In some systems, piece-wise quadratic signals may be used to represent signals more
accurately. For example, Figure 4.3 shows two piece-wise quadratic construction having the
same value at some point in time, whereas their piece-wise linear counterpart signals do not.
Our choice of signal models is limited by the SMT solver: it must be able to handle the
corresponding interpolation equations, like the piece-wise linear interpolation in Eq. (4.9).
As an example, in Figure 4.2a, let x and y be two signals, where the violating predicate ¢
to be monitored is z(t) = y(s). Let p be a retiming of y on x, such that p(s~) = ¢t~ and
p(s™+3d2) =t~ +0;. It can be observed that although the discretized signal samples do not
violate ¢, due to the signals being piece-wise linear, it is easy to identify a violation at time
t and s on signals z and y respectively, where z(t) = 3, y(s) = 3 and p(s) =

Another example is demonstrated in Figure 4.2b, where x and y are two signals expressed
by their corresponding quadratic formulas. The violating predicate ¢ to be monitored is
d(x(t),y(s)) < 2, where d is a function that yields the distance between any two points. Let

p be a retiming of y on x, such that p(s~) =t~ and p(s~ + d2) =t~ + ;. Furthermore, let
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evaluation of d(z(t7),y(s™)) be 3 and evaluation of d(x(t~ + d1),y(s™ + d2)) be 3. It can be
observed that although the discretized signal samples do not violate ¢, due to the signals
being piece-wise quadratic, it is easy to identify a violation at time ¢ and s on signals x and
y respectively, where d(x(t),y(s)) < 2 and p(s) = t.

It is worth mentioning that restricting the SMT search to piece-wise linear retimings
results in a significant decrease in run time, compared to the approach where the SMT is
tasked with determining an interpolation. For example, for two UAVs with ¢ = 1ms over
5s-long signals, at segment count 5, the search for a general retiming requires 3.42s, whereas
searching for a piece-wise linear retiming requires only 1.01s. Since, by Remark 2, there
is no loss of generality in this restriction, from this point, all the reported experiments are

obtained using the piece-wise linear retiming approach.

Remark 3. (i) p,;! op, respects ~» automatically so it is not necessary to encode that explic-
itly. (ii) Because we can restrict the SMT search to piece-wise linear retimings (see remark
following proof of Theorem 3), constraint (4.8) can be simplified, namely, the expression for

the inverse can be hard-coded. We do not show this to maintain clarity of exposition.
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Data: Distributed signal (E,~), ¢, predicate ¢, bounds |&,| < b,,n € [N]
Result: (E,~) ¢

Set t, = min I,,n € [N] while not done do
Get next violating assignment o to the atoms of ¢ if there are no more violating assign-

ments then
| done

else
for every atom a in ¢ do
if o(a) = true then
| 7, =min{7 | z(t, +7) > v,},n € [N]
else
| 7 =min{7 | x(t, + 7) < v.},n € [N]
end
Set 7 = max, 7, and m = argmax, 7, SMT-monitor the distributed signal £, made
of the restrictions {1, +r—emax1.]s 7 7Z M and Tp, |, +rmax1,,] 1 SAT, done.

end

end

Algorithm 4.1 Dynamics-aware monitoring.

4.4 Exploiting the Knowledge of System Dynamics

Physical processes in a CPS follow the laws of physics. A runtime monitor can leverage
this knowledge of the CPS dynamics to make monitoring more efficient. We explain our idea
by the following example (see Figure 4.4). From knowing the rate bound || < 1 (shown by
a dashed line), the monitor concludes that the earliest = can satisfy the atom = < 3 is 7.
Similarly for y. Given that 7 > 75, the monitor discards, roughly speaking, the fragment
[0, 75] from each signal and monitors the remaining pieces. Note that z(0) = 1 and y(0) = 2.
Consider the predicate: ¢ = =(a V b), where a ;== x > 3 and b :=y < 0.5. Let a and b be
atoms of predicate ¢. There are 3 Boolean assignments to atoms a and b that falsify the
predicate. Let us fix one such assignment, a = b = true. If the monitor knows a uniform
bound on the rate of change & of =, say V¢.|2(¢)| < 1, then it can infer that a = true cannot
hold before 7 = 2 (local time). Similarly, if the monitor knows that |j| < 3, then b = true
cannot hold before 75 = 0.5 (local time). Taking into account the e-synchrony, the monitor
can limit itself to monitoring x|p 7 (the restriction of z to [2,T]) and y|p—c, 144

Now, if this yields UNSAT in the SMT instance, we select the next Boolean assignment

(in terms of atoms a and b) that falsifies predicate ¢ (e.g., a = false and b = true), derive
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the useful portion of signals x and y, and repeat the same procedure until the answer to the
SMT instance is affirmative or all falsifying Boolean assignments are exhausted. Of course,
this requires exploring all such assignments to atoms of the predicate, but since we expect
the number of atoms in realistic predicates to be relatively small, the exhaustive nature of
falsifying Boolean assignments will not be a bottleneck. We generalize this idea to N agents
and arbitrary predicates in Algorithm 4.1. We assume without loss of generality that every
atom a that appears in ¢ is of the form z,, > v, for some n and v, € R. A Boolean assignment
is a map o from atoms to {false,true}, and a violating assignment is one that makes the
predicate false. Thus, given a violating assignment o, for every atom a, a = o(a) iff x,, > v,
(if o(a) = true) or x,, < v, (if o(a) = false). Obvious modification to Algorithm 4.1 allows
the monitor to take advantage of knowing different rate bounds at different points along the

signals.

4.5 Case Studies and Evaluation
In this section, we evaluate our technique using two case studies on networks of au-

tonomous ground and aerial vehicles.

4.5.1 Case Study 1: Network of Ground Autonomous Vehicles

We collected data from two 1/10"-scale autonomous cars competing in a race around a
closed track. Each car carries a LIDAR for perceiving the world, and uses Wi-Fi antennas
to communicate with the central monitor. Each car is running a model predictive controller
to track its racing line and RRT to adjust its path. The trajectory data is sampled at 25H z.
In this application, the useful signal length to monitor is 1 — 2s, as this is the control horizon
(i.e., the controller repeatedly plans the next 1 — 2s). Thus, in Eq. (4.1), T =1—2s. A
reasonable range for ¢ is interval [1,5]ms, guaranteed by ROS clock synchronization based

on NTP. Unless otherwise indicated, we monitor the predicate d(zy,xs) > d Ad(z1,22) < A.
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4.5.2 Case Study 2: Network of UAVs

We use Fly-by-Logic [100], a path planner software for UAVS, to simulate the operation of
two UAVs performing various reach-avoid missions. In a reach-avoid mission, each UAV must
reach a goal within a deadline, and must avoid static obstacles as well as other UAVs. The
path planner uses a temporal logic robustness optimizer to find the most robust trajectory.
The trajectories are sampled at 20H z. In this application, the useful signal length to monitor
is around 2s, as this is the UAV’s ‘reaction time’ (depending on current speed). Thus, in
Eq. (4.1), T = 2s. A reasonable range for ¢ is again 1 — 5ms, guaranteed by ROS. Unless

otherwise indicated, we monitor the predicate d(z1,x2) > 6.

4.5.3 Case Study 3: Water Distribution System

We use a model of a hybrid dynamic high pressure water distribution system consisting
of two water tanks. Each water tank has an inlet pipe connected to some external water
source, and an outlet pipe with a valve that can be used to regulate high pressure water
outflow from each tank. A controller on each water tank operates its valve, and samples
the outflow pressure at 20H z using its local clock. We model such a system in Simulink,
which is a simplified emulation of the Refueling Water Storage Tanks (RWST) module of
an Emergency Core Cooling System (ECCS) of a Pressurized Water Reactor Plant [118] as
shown in Figure 1.1. ECCS is tasked with providing core cooling to minimize fuel damage
following a ‘loss of coolant’ accident by administering high pressure water injection from
RWST. The water tanks, and by extension their controllers, operate even when the supply
of power is lost to the plant. As a failsafe, ECCS also incorporates Cold Leg Accumulators
that do not require power to operate. These tanks contain large amounts of borated water
with a pressurized nitrogen gas bubble in the top. If the pressure of the outflow pressure
drops below a certain threshold, the nitrogen will force the borated water out of the tank
and into the reactor coolant system. A reasonable range for € is 5ms —500ms [13] depending
on how often the local clocks of the water tanks are synced with global time. In this case

study, we monitor the property that the cumulative pressure of the RWSTs always remains
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Figure 4.5 Impact of signal segmentation on run time with varying signal duration (S.D.)
and fixed € = 0.001s.
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Figure 4.6 Best run time (network of cars) for different signal duration.

above a certain threshold.
Note that the SMT solver’s effort is mostly spent on finding retiming, instead of predicate

complexity. Thus, we pick simpler predicates for our experiments.

4.5.4 Experimental Setup
In our experiments, we choose the following parameters: (1) signal duration, (2) maxi-

mum clock skew ¢, and (3) distribution of communication among agents. We measure the

7



monitor run time. All experiments are replicated to exhibit %95 confidence interval to pro-
vide statistical significance. The experimental platform is a CentOS server with 112 Intel(R)
Xeon(R) Platinum 8180 CPUs @ 3.80GHz CPU and 754G of RAM. Our implementation

invokes the SMT-solver Z3 [97] to solve the problem described in Section 4.3.

4.5.5 Analysis of Results

Impact of signal segmentation Given a signal-to-be-monitored, we have a choice of
either passing the entire signal to the monitor, or chopping it into segments and monitoring
each segment separately (while accounting for e-synchrony). Monitoring a signal in one shot
is computationally more expensive than monitoring a number of shorter segments. Figure 4.5
shows the results of this claim. Note that all curves are plotted in log, scale to provide more
clarity. As can be seen, for any signal duration, chopping the signal and invoking the monitor
for the shorter segments reduces the run time significantly. For example, in the case of the
UAV network (Figure 4.5b), for a signal duration of 2s, it takes 4.5s to monitor the signal
in one shot, but only 0.55s if the monitor is invoked 20 times over the signal duration. We
observe the same behavior in Figure 4.5a. This is due to the SMT-solver having to deal with
much smaller search spaces in each invocation.

Figure 4.6 shows the best achievable run time for different signal durations by searching
over the segment count of range [1,25]. For example, segment count of 4 is obtained for 1s
signal to get minimum run time of 0.17s, while segment count of 18 is obtained for 5s signal
to get minimum run time of 0.72s. The best run time shown is achieved by distributing
the monitoring tasks across all the available cores (4) on the monitoring device. Notice that
our predicate detection algorithm can be parallelized trivially, assigning one or a pool of
segments to a different core.

An important consequence of segmentation is that it enables us to monitor signals in
real time, as for 3 or more segments, the run time of the monitor is less than the signal
duration. For this reason, in all remaining experiments, the signal-to-monitor is chopped into

20 segments and each segment is monitored separately. Cumulative run times (of monitoring
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Figure 4.7 Impact of clock skew on run time. Signal duration = 2s.

all 20 segments) are reported.

Impact of clock skew We now