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ABSTRACT 
 
The translation of genotype into phenotype largely depends on genes being expressed in the 

appropriate cell types at the correct time. These expression patterns are largely determined by 

transcription factors (TFs) controlling specific gene sets which together result in gene regulatory 

networks (GRN). GRNs may be elucidated using TF-centered approaches, such as DNA-affinity 

purification and chromatin immunoprecipitation sequencing (DAP- & ChIP-seq, respectively). 

Alternatively, the generation of thousands of gene expression samples has allowed the 

implementation of robust methods for TF-target inference. As part of my research, I developed 

strategies that integrate several high-throughput data types to identify transcription factor 

regulators of a broad spectrum of metabolic pathways in several plant systems. Specifically, I 

established frameworks for the analysis of Camelina sativa, maize (Zea mays), and Arabidopsis 

thaliana with species-specific tailored pipelines. Data resources availability by species-guided 

pipeline differed between species. In Camelina, I combined expression and DAP-seq assays to 

identify transcriptional regulators of lipid metabolism. In maize, I integrated expression variation, 

expression quantitative loci (eQTLs), and DAP- & ChIP-seq to build a multiple-layer network 

predicting regulators of phenylpropanoid, lipids, and carbon metabolism. Lastly, for Arabidopsis, 

utilizing a vast collection of RNA-seq samples, protein-DNA interactions (PDI), and protein-

protein interactions (PPI), I tested co-regulation models that incorporate the influence of TF 

physical interactors on TF-target co-expression profiles. This comprehensive analysis also enabled 

the prediction of high-level TF complexes, providing valuable insights for refining models of TF 

regulation based on co-expression. Together, my studies contributed new knowledge to the 

regulatory hypotheses of specific metabolic pathways in plants, establishing a framework for 

elucidating GRN in other systems. 
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1.1 GENE REGULATORY NETWORKS (GRNs) 

Plants, unlike many other organisms, are sessile but account for over 80% of biomass on Earth 

(Bar-On et al., 2018). Their remarkable success can be attributed to their physiological diversity, 

which is governed by complex molecular networks. Therefore, a plant phenotype, whether it is 

morphological or physiological, can be defined as an emergent property of the molecular 

interactions that underlie it. Within these intricate molecular networks, transcription factor (TF) 

proteins play a crucial role as they are positioned at the end of signaling pathways and guide the 

transcription machinery responsible for the activation or repression of other genes (referred to as 

target genes of the corresponding TFs) (Gupta et al., 2021). The mechanistic basis of TF function 

lies in their ability to form protein-DNA interactions (PDI) by recognizing specific cis-regulatory 

elements (CREs) located near or distant from their target genes. Such interactions guide the 

recruitment of the transcriptional machinery. The collection of TFs and their corresponding target 

genes constitutes a gene regulatory network (GRN). In plants, as in other organisms, the structure 

of these GRNs determines spatiotemporal gene expression patterns (Swift and Coruzzi, 2017). 

Consequently, the wiring of a GRN has implications for phenotypic variation (Deplancke et al., 

2016), plant responses to abiotic and biotic stress (Nakashima et al., 2014; Birkenbihl et al., 2017), 

speciation (Mack and Nachman, 2017), adaptation, and diversification (Mack and Nachman, 2017; 

Bowles et al., 2020), highlighting and justifying any effort to understand its structure and 

dynamics.  

CRE sequence variation, primarily located in the non-coding regions of the genome, drives 

rewiring changes in GRNs (Sullivan et al., 2014). Single-nucleotide polymorphisms (SNPs) and 

small insertions/deletions within CREs can affect TF binding affinity, altering the interaction 

between TFs and their corresponding CRE (Marand et al., 2023). However, transposable elements 

https://paperpile.com/c/NFJ1a0/tOTc
https://paperpile.com/c/NFJ1a0/mo9l
https://paperpile.com/c/NFJ1a0/thvm
https://paperpile.com/c/NFJ1a0/rySn
https://paperpile.com/c/NFJ1a0/rySn
https://paperpile.com/c/NFJ1a0/uBtU+YXZx
https://paperpile.com/c/NFJ1a0/1vP3
https://paperpile.com/c/NFJ1a0/1vP3+heoK
https://paperpile.com/c/NFJ1a0/1vP3+heoK
https://paperpile.com/c/NFJ1a0/FQed
https://paperpile.com/c/NFJ1a0/sesg
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(TEs), which are highly abundant in non-coding sequences (Bennetzen et al., 2005) and constitute  

up to 85% of the plant genome, such as maize (Schnable et al., 2009), are among the major 

contributors of genomic variability. TEs can impact gene function through various mechanisms, 

such as gene inactivation, gene expression reprogramming, deletions, rearrangements, gene 

transposition, and protein exaptation (Lisch, 2013; Schmitz et al., 2022). In terms of expression 

variation, TEs can induce gene expression reprogramming by inserting, removing, or establishing 

new regulatory connections (Greene et al., 1994; Butelli et al., 2012). Moreover, TE insertions can 

modify the epigenetic landscape surrounding a gene, leading to changes in gene expression 

through chromatin modifications.  

1.2 GRN CHARACTERIZATION 

Wet lab approaches. Approaches to establish PDI can be categorized as gene-centered and TF-

centered methods, which correspond to strategies focused on identifying TF regulators for specific 

genes and target genes for specific TFs, respectively (Arda and Walhout, 2010; Mejia-Guerra et 

al., 2012; Yang et al., 2017). The yeast one-hybrid (Y1H) assay and the electrophoretic mobility 

shift assay (EMSA) are frequently employed gene-centered methods (Arda and Walhout, 2010; 

Yang et al., 2016). Among the diverse array of TF-centered strategies, Chromatin 

Immunoprecipitation Sequencing (ChIP-seq) is a highly utilized assay for the identification of TF 

binding sites (TFBS) in vivo. Variations of ChIP-seq include Cleavage Under Targets and Release 

Using Nuclease (CUT&RUN) (Skene and Henikoff, 2017) and Cleavage Under Targets and 

Tagmentation (CUT&Tag) (Kaya-Okur et al., 2019), which overcome challenges associated with 

crosslinking and solubilization. These methods also require minimal sample material, offering 

significant advantages in experimental applications. Within the in vitro techniques, systematic 

evolution of ligands by exponential enrichment (SELEX), protein binding microarrays (PBM), and 

https://paperpile.com/c/NFJ1a0/Jbw1
https://paperpile.com/c/NFJ1a0/osI3
https://paperpile.com/c/NFJ1a0/a2kE+cxoe
https://paperpile.com/c/NFJ1a0/LYS0+lBpo
https://paperpile.com/c/NFJ1a0/iXBO+fDoX+gXwW
https://paperpile.com/c/NFJ1a0/iXBO+fDoX+gXwW
https://paperpile.com/c/NFJ1a0/iXBO+5AKK
https://paperpile.com/c/NFJ1a0/iXBO+5AKK
https://paperpile.com/c/NFJ1a0/lN7j
https://paperpile.com/c/NFJ1a0/N4Na
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DNA affinity purification sequencing (DAP-seq) are within the most widely used methods (Yang 

et al., 2016; O’Malley et al., 2016). Limitations to consider for EMSA and ChIP-seq include 

restrictions on the number of sequences and TFs that can be tested, respectively. Additionally, 

ChIP-seq captures numerous indirect binding events, making it challenging to identify direct 

targets. Similarly, DAP-seq, SELEX, and PBM can produce a high number of non-functional 

PDIs, primarily due to the lack of a native chromatin environment (Yang et al., 2016). Therefore, 

TF-target gene associations determined by these methods always require further experimental 

validation. 

Given the inherent presence of false positives and the large number of interactions obtained 

through these experimental approaches, complementary analyses have been employed to identify 

high-confidence TF-target gene associations. The most widely used strategy is the identification 

of differentially expressed genes (DEGs) - after the perturbation of the corresponding TF - which 

identifies downstream genes affected by the perturbation of the corresponding TF. The 

perturbation itself also recovers a large number of indirect changes, such as cellular responses 

associated with the perturbation itself. However, the combination of PDI and DEG analyses allows 

for the identification and differentiation between direct target genes and indirect effects of the 

perturbation, respectively. Shockingly, this approach has shown that the overlap between DEGs 

and PDIs is overall low and may vary between 5-30% (Zeller et al., 2006; Morohashi and 

Grotewold, 2009; Morohashi et al., 2012; Eveland et al., 2014; Liu et al., 2015), indicating that a 

large fraction of the PDI may not lead to expression changes of the corresponding target genes. In 

yeast, the low fraction of overlapping DEG and PDI was associated with paralog TFs backing-up 

the function of knocked-out TFs (Gitter et al., 2009). This phenomenon has not yet been 

investigated in the context of plants. As an alternative to perturbation analysis, the identification 

https://paperpile.com/c/NFJ1a0/5AKK+Pq8g
https://paperpile.com/c/NFJ1a0/5AKK+Pq8g
https://paperpile.com/c/NFJ1a0/5AKK
https://paperpile.com/c/NFJ1a0/6uTj+jdVt+wXRS+iz27+uwDR
https://paperpile.com/c/NFJ1a0/6uTj+jdVt+wXRS+iz27+uwDR
https://paperpile.com/c/NFJ1a0/Le95
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of co-expression networks has gained significant attention for narrowing down target genes to 

those that exhibit high co-expression with the corresponding TF (Eisen et al., 1998; Allocco et al., 

2004; Vandepoele et al., 2009; Haynes et al., 2013; Wu and Ji, 2013; Angelini and Costa, 2014; 

Jiang and Mortazavi, 2018; Haque et al., 2019). Thus, the integration of DEGs under TF 

perturbations and co-expression networks provides opportunities to improve predictions obtained 

from experiments like DAP-seq. This approach is particularly valuable for systems in which ChIP-

seq presents technical challenges, such as to generate mutants or antibodies for the corresponding 

TF. Additionally, it also allows for scalability in the number of TFs that can be tested (O’Malley 

et al., 2016; Ricci et al., 2019).  

Numerous systematic and genome-wide endeavors have led to the discovery of millions of 

PDIs in various model organisms (Harbison et al., 2004; Deplancke et al., 2006; Zhu et al., 2009; 

Gerstein et al., 2010; Consortium et al., 2010; Négre et al., 2011; ENCODE Project Consortium, 

2012). In the case of plants, specifically Arabidopsis thaliana and maize (Zea maize L.), similar 

efforts have been undertaken on a smaller scale and within specific biological contexts. These 

include the regulation of the root stele (Brady et al., 2011), secondary cell wall synthesis (Taylor-

Teeples et al., 2015), phenolic metabolism (Yang et al., 2017), flower development (Chen et al., 

2018), as well as responses to ABA (Song et al., 2016) and nitrogen (Gaudinier et al., 2018) among 

others. It is also noteworthy to highlight the significant contributions made in the identification of 

TF binding motifs (TFBMs) for over 640 TFs in Arabidopsis (O’Malley et al., 2016; Weirauch et 

al., 2014; Franco-Zorrilla et al., 2014) and more than 30 TFs in maize (Ricci et al., 2019; Galli et 

al., 2018). Invaluable source of information for the construction of regulatory models based on 

multi-omic data integrations (Song et al., 2020; Pérez et al., 2023). 

https://paperpile.com/c/NFJ1a0/Bsnq+6nqL+FPv4+1ZT7+XpN0+eYqM+YEgc+IOQC
https://paperpile.com/c/NFJ1a0/Bsnq+6nqL+FPv4+1ZT7+XpN0+eYqM+YEgc+IOQC
https://paperpile.com/c/NFJ1a0/Bsnq+6nqL+FPv4+1ZT7+XpN0+eYqM+YEgc+IOQC
https://paperpile.com/c/NFJ1a0/Pq8g+yd4T
https://paperpile.com/c/NFJ1a0/Pq8g+yd4T
https://paperpile.com/c/NFJ1a0/gYUa+SJV2+CqeY+XKrr+RVrj+brC1+NATn
https://paperpile.com/c/NFJ1a0/gYUa+SJV2+CqeY+XKrr+RVrj+brC1+NATn
https://paperpile.com/c/NFJ1a0/gYUa+SJV2+CqeY+XKrr+RVrj+brC1+NATn
https://paperpile.com/c/NFJ1a0/LpCt
https://paperpile.com/c/NFJ1a0/Tjgr
https://paperpile.com/c/NFJ1a0/Tjgr
https://paperpile.com/c/NFJ1a0/gXwW
https://paperpile.com/c/NFJ1a0/PPrc
https://paperpile.com/c/NFJ1a0/PPrc
https://paperpile.com/c/NFJ1a0/H1Pq
https://paperpile.com/c/NFJ1a0/ioEV
https://paperpile.com/c/NFJ1a0/Pq8g+8Nhv+JXic
https://paperpile.com/c/NFJ1a0/Pq8g+8Nhv+JXic
https://paperpile.com/c/NFJ1a0/yd4T+G4U7
https://paperpile.com/c/NFJ1a0/yd4T+G4U7
https://paperpile.com/c/NFJ1a0/8Ck7+OJdP
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Computational approaches. Technological advances in RNA sequencing have allowed the 

generation of thousands of expression samples, enabling the implementation of methods for TF-

target inference. All these methods utilize the idea of identifying co-expressed genes as a means 

of inferring regulation without prior knowledge of the regulatory network. Among the various 

forms of co-expression, the most commonly employed approach is the inference of gene regulatory 

networks (GRNs) through the analysis of expression variations in spatial (e.g., different organs), 

temporal (e.g., developmental trajectory), perturbation, or genetic background contexts (Haque et 

al., 2019; Zhou et al., 2020). In all scenarios, the construction of a co-expression network involves 

three key steps: data processing and normalization, network reconstruction, and network 

evaluation (Haque et al., 2019; Johnson and Krishnan, 2022). While all three steps are important, 

the reconstruction method is particularly critical due to the constraints/assumptions it imposes on 

the network and the ability to differentiate between association and causation associations (Haque 

et al., 2019). The strategies for network reconstruction can be classified into four categories, 

including correlation and information-theoretic approaches, Boolean network approaches, 

Bayesian network approaches, and regression and differential equation-based models (Banf and 

Rhee, 2017). Each approach has its strengths and limitations, especially when considering the 

network's scale and the number of samples. However, common practices to enhance their strength 

and reduce limitations include restricting tested interactions, incorporating known interactions to 

improve threshold identification during the prediction process, and utilizing background models 

based on randomly assigned expression datasets (Banf and Rhee, 2017). 

1.3 COMBINATORIAL GENE REGULATION (CGR) 

A defining characteristic of GRNs is their combinatorial nature, where a single TF can regulate 

multiple sets of target genes through interactions with other proteins. These interactions can be 

https://paperpile.com/c/NFJ1a0/IOQC+ZVX5
https://paperpile.com/c/NFJ1a0/IOQC+ZVX5
https://paperpile.com/c/NFJ1a0/IOQC+p8Hx
https://paperpile.com/c/NFJ1a0/IOQC
https://paperpile.com/c/NFJ1a0/IOQC
https://paperpile.com/c/NFJ1a0/HZye
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direct or indirect, for example mediated by DNA, and involve multiple regulatory proteins. This 

phenomenon is known as combinatorial gene regulation (CGR). From a practical perspective, 

CGR presents unique challenges for the prediction or identification of transcriptional regulation of 

specific processes, as a single TF may be linked to multiple processes. Additionally, multiple TFs 

may be linked to the same process simultaneously. Consequently, CGR contributes to the 

expansion and diversification of the regulatory repertoire of TFs (Reményi et al., 2004; Brkljacic 

and Grotewold, 2017). At the molecular level, implications of CGR include that TFs may form 

different protein complexes and/or bind to DNA in modular fashion to cis-regulatory modules 

(CRMs) (Brkljacic and Grotewold, 2017). In general, TF binding to a CRM can be categorized 

into three models: independent binding, competitive binding, and cooperative binding. In 

independent binding, TFs bind to separate CREs without any physical interaction between them. 

Competitive binding occurs when different TFs compete for the binding of the same CREs, 

potentially involving physical interactions. Cooperative binding, on the other hand, requires the 

formation of a TF complex to bind a CRE (Reiter et al., 2017; Colinas and Goossens, 2018). Major 

advances has been main to understand the molecular mechanisms behind the CGR, including TFs 

spatiotemporal expression variation, TFs post-translational modification, splicing of different TFs 

isoforms, TF conformational changes trigger by the interaction of small molecules, as well as 

histone modifications and chromatin structure (Brkljacic and Grotewold, 2017; Reiter et al., 2017). 

However, there is currently no single model that comprehensively predicts the CGR landscape of 

a gene or biological process, i.e., the combination of TFs that may exert control over the 

corresponding gene or biological process. 

 

 

https://paperpile.com/c/NFJ1a0/TeG4+aIDg
https://paperpile.com/c/NFJ1a0/TeG4+aIDg
https://paperpile.com/c/NFJ1a0/aIDg
https://paperpile.com/c/NFJ1a0/2LAf+oTq1
https://paperpile.com/c/NFJ1a0/aIDg+2LAf
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1.4 UNRAVELING GENE REGULATION: THE ROLE OF MULTI-OMICS 

The incorporation of diverse genomic information has enhanced the accuracy of GRN models 

(Qian and Huang, 2020). Common sources of information include accessible chromatin regions 

(ACRs), histone marks, and DNA methylation patterns, enabling the construction of 

cell/tissue/condition-specific regulatory circuits (ENCODE Project Consortium, 2012; Neph et al., 

2012; Baur et al., 2020). The integration of additional layers of information offers several 

advantages, such as uncovering novel regulatory principles and the identification of new 

combinations of cis-regulatory elements (i.e., novel CRMs) (Neph et al., 2012; Sullivan et al., 

2014). Furthermore, the inclusion of protein-protein interactions (PPIs) between TFs and their 

corresponding PDIs associates highly connected TFs with stronger expression effects (Gerstein et 

al., 2012). Additionally, genes targeted by multiple TFs exhibit broader expression windows and 

at the same time collection of co-binding events enables the identification of TF complexes 

(Heyndrickx et al., 2014). These co-binding events have demonstrated specificity to particular 

biological processes, such as development-specific gene expression patterns (Chen et al., 2018). 

In addition to the PDI-related datasets, the construction of GRNs based on transcriptomics and 

proteomics has shown to complement each other, recovering more interactions together than 

individually when compared to GRNs built from ChIP-seq assays (Walley et al., 2016). Similarly, 

the integration of multiple layers of genomic information, ranging from chromatin to translation 

changes, enables the identification of species- and layer-specific responses to submergence, as 

well as the CRE architectures responsible for submergence-induced expression changes (Reynoso 

et al., 2019). The inclusion of marks that capture epigenetic features, along with chromatin 

accessibility (Yan et al., 2019) and chromatin interaction data (Ricci et al., 2019), enables the 

identification of development-specific enhancers and the association of distal ACR with target 
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genes through the formation of chromatin loops. Additionally, the incorporation of genetics, i.e. 

molecular trait information at population level, has demonstrated an outstanding potential to 

uncover the molecular mechanisms underlying complex traits (Li et al., 2013; Wen et al., 2014, 

2016; Mizrachi et al., 2017; Kremling et al., 2018; Zhou et al., 2019; Mazaheri et al., 2019; 

Shrestha et al., 2022). Notably, with a few exceptions (Yang et al., 2022; Schaefer et al., 2018; 

Mizrachi et al., 2017),  the integration of data through the identification of common features or 

patterns have been a common denominator in the described studies. However, significant progress 

has been made in other systems (Lee et al., 2019; Krassowski et al., 2020; Subramanian et al., 

2020; Qian and Huang, 2020; Kang et al., 2022; Vahabi and Michailidis, 2022), and approaches 

used in these studies still need to be tested in plant systems. 

1.5 WORKING SYSTEM AND CHAPTERS DISTRIBUTION 

Analyzing multi-omics data has unveiled valuable insights in gene regulation, yet also 

introduced unique challenges. My research addresses some of these challenges by implementing 

and establishing strategies to integrate multiple-omic data and predicting GRNs, uncovering the 

regulatory circuits associated with specific plant biological processes. Specifically, I focused on 

predicting GRNs involved in the regulation of lipid metabolism in Camelina Sativa (Chapter 2), 

as well as other biological processes in Maize (Zea mays) (Chapter 3), and Arabidopsis thaliana 

(Chapter 4), using computational techniques. Due to the unique characteristics and data availability 

of each species, I have developed customized strategies for their analysis.  

Camelina sativa, is a winter oilseed annual crop, member of the Brassicaceae family.  

Camelina oilseed crop that has gained attention for its potential use in biofuel production (Bansal 

and Durrett, 2016; Carlsson, 2009). However, despite its growing popularity, the available gene 

expression datasets for Camelina are limited to a few tens of samples (Gomez-Cano et al., 2020), 
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which is ~150 and ~500 times less than the data available for maize and Arabidopsis, respectively. 

Thus, I used co-expression-based prediction with hard filters to build a GRN associated with the 

control of lipid metabolism. My work represented the first lipid-related GRN described for 

Camelina.  

Maize is one of the most widely grown cereal crops in the world, its grain and maize stover is 

a source of biomass for liquid fuel and is also extensively used as a major forage component (Khan 

et al., 2015; Trivedi et al., 2015).  Unlike Camelina, maize has a wealth of genomic and genetic 

resources, which favor the generation of regulatory models based on more sophisticated strategies. 

Specifically, I used several multi-omic datasets to build multiple molecular networks, which were 

integrated using three different approaches. After a systematic evaluation of the integrations, I 

selected the best method to describe TF regulators of a diverse set of biological processes in maize. 

These resources are crucial for guiding the design of future experiments and laying the foundation 

for integrating multi-omic datasets in maize and other plant systems.  

Arabidopsis, like Camelina, belongs to the Brassicaceae family and is one of the most 

extensively studied plant species. This makes Arabidopsis an appealing system for exploring the 

co-expression relationships between TFs and their experimentally identified target genes. 

Leveraging the vast collection of expression and PDI datasets in Arabidopsis, I uncovered 

previously unknown combinations of TFs that contribute to the regulation of diverse biological 

processes. These findings carry significant implications for the empirical understanding of 

complex gene regulatory networks, the function of transcription factors, and the significance of 

co-expression in protein-protein and protein-DNA interactions. 
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CHAPTER TWO: CAMREGBASE: A GENE REGULATION DATABASE FOR 
BIOFUEL CROP, CAMELINA SATIVA1 

 

1This chapter has been published in the following manuscript: 

Gomez-Cano F., Carey L., Lucas K., García Navarrete T., Mukundi E., Lundback S., Schnell S., 

Grotewold E., (2020), CamRegBase: a gene regulation database for the biofuel crop, Camelina 

sativa, Database, baaa075, https://doi.org/10.1093/database/baaa075 

Copyright © 2020, Oxford University Press.  
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2.1 ABSTRACT 

Camelina is an annual oilseed plant from the Brassicaceae family that is gaining momentum 

as a biofuel winter cover crop. However, a significant limitation in further enhancing its utility as 

a producer of oils that can be used as biofuels, jet fuels or bio-based products is the absence of a 

repository for all the gene expression and regulatory information that is being rapidly generated 

by the community. Here, we provide CamRegBase (https://camregbase.org/) as a one-stop 

resource to access Camelina information on gene expression and co-expression, transcription 

factors, lipid associated genes and genome wide orthologs in the close-relative reference plant 

Arabidopsis. We envision this as a resource of curated information for users, as well as a repository 

of new gene regulation information. 

2.2 INTRODUCTION 

Camelina sativa is an emerging biofuel crop (Carlsson, 2009; Iskandarov et al., 2014). With a 

low economic input requirement (Iskandarov et al., 2014), early season growth habit (Allen et al., 

2014; Chaturvedi et al., 2018), genetic similarity to the model plant Arabidopsis (Liang et al., 

2013) and relatively high oil composition in the seed (Moser, 2010; Berti et al., 2016), it has gained 

traction as a potential target for jet fuel and biodiesel production. Camelina’s genome has been 

sequenced and annotated, has a hexaploid genome structure harboring 89 418 protein-coding genes 

organized in 20 chromosomes (Liang et al., 2013; Kagale et al., 2014) and is relatively easy to 

genetically transform (Liu et al., 2012). 

A challenge, albeit not unique to Camelina, is how to best utilize the burgeoning genomic 

information for predictive metabolic engineering of seed oil production (Chappell and Grotewold, 

2008; Grotewold, 2008). Clearly, knowing how much and where gene expression takes place is 

necessary, as recently demonstrated by recent studies aimed at increasing oil production in 

https://paperpile.com/c/BTPInb/0Jfz+Gypv
https://paperpile.com/c/BTPInb/Gypv
https://paperpile.com/c/BTPInb/3THO+pVv7
https://paperpile.com/c/BTPInb/3THO+pVv7
https://paperpile.com/c/BTPInb/nSsA
https://paperpile.com/c/BTPInb/nSsA
https://paperpile.com/c/BTPInb/B7fk+t8Hl
https://paperpile.com/c/BTPInb/nSsA+yCo8
https://paperpile.com/c/BTPInb/ZJ3e
https://paperpile.com/c/BTPInb/l9zr+ClrN
https://paperpile.com/c/BTPInb/l9zr+ClrN
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Camelina using the co-expression of select genes (Chhikara et al., 2018). While RNA-Seq is a 

very powerful tool to determine global levels of gene expression, each analysis yields a large 

amount of data and therefore is non-trivial to curate and analyze for potential targets. To take 

advantage of all the currently available RNA-Seq data for Camelina, a relational database is the 

most ideal resource. Currently, Camelina genomics resources are part of the Brassica database 

BRAD (http://brassicadb.org) together with 11 Brassicaceae genomes. BRAD has a comparative 

approach to make plots of syntenic genomic regions and search the orthologs genes (Wang et al., 

2015), but the most information available in BRAND is directed to Brassica rapa. In particular, 

the Camelina Genome Portal (camelinagenomics.org) allows a user to browse the whole Camelina 

genome assembly, conduct BLAST analyses to the Camelina genome, and view any of 15,946 

(current number at date of publication) contig scaffolds on the sequenced genome. The University 

of Toronto has developed an electronic fluorescent pictograph browser (http://bar.utoronto.ca/) for 

Camelina sativa, which allows quick visual representation of expression data from a large 

developmental set. The Camelina Genomic Resources (camelinagenome.org) contains transcript 

data on protein and lipids but is only restricted to the developing embryo. Many databases also 

exist that provide information on TFs for one or multiple plants (Davuluri et al., 2003; Guo et al., 

2005; Gao et al., 2006; Guo et al., 2008; Rushton et al., 2008; Wang et al., 2010; Yilmaz et al., 

2009; Kagale et al., 2016). AGRIS (https://agris-knowledgebase.org/), for example, provides a 

useful resource for the knowledgebase described here, because it provides a comprehensive 

collection of Arabidopsis TFs and other regulatory components, that can be easily translated to 

Camelina based on the close relationship between these plants. Here, we introduce the Camelina 

Gene Regulation Database (https://camregbase.org/), which is intended as a one-stop resource for 

aspects related to Camelina gene regulation. CamRegBase v1.0 harbors all RNA-Seq experiments 

https://paperpile.com/c/BTPInb/u7qC
https://paperpile.com/c/BTPInb/okIm
https://paperpile.com/c/BTPInb/okIm
https://paperpile.com/c/BTPInb/IZsx+8OZo+qkr7+z158+8OJP+BD7l+mUdd+CVq6
https://paperpile.com/c/BTPInb/IZsx+8OZo+qkr7+z158+8OJP+BD7l+mUdd+CVq6
https://paperpile.com/c/BTPInb/IZsx+8OZo+qkr7+z158+8OJP+BD7l+mUdd+CVq6
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available to-date with read abundance and the corresponding metadata, tissue-specific gene 

expression visualization and gene co-expression analyses. Additionally, CamRegBase 1.0 offers 

information on the orthologous relationships between Camelina and Arabidopsis genes along with 

the reported syntelog data (Kagale et al., 2016). Finally, as a valuable resource to researchers 

interested in studying the control of gene regulation, CamRegBase 1.0 provides a comprehensive 

catalog of transcription factors (TFs) and co-activators identified by our own analyses and those 

previously reported (Kagale et al., 2016) (http://planttfdb.cbi.pku.edu.cn/). With all the above-

mentioned information integrated as one resource, CamRegBase is poised to become a primary 

resource for Camelina gene expression analyses. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Database structure 

The utilization of the open source Tripal toolkit for the construction of the database web portal 

ensures that it can be expanded by the addition of compatible extension modules, and it ensures 

interoperability with a number of widely used biological knowledgebases (Spoor et al., 2019). The 

overall database organization is schematized in Figure 2.1, with the search functionality of the site 

relying on the underlying database tables shown in the entity relationship diagram. All the records 

in Drupal are stored in the ‘node’ table, which is queried in relation to the other tables on the search 

term provided by the end user. The lines shown in the diagram show how the tables are related 

when a search is run. For example, when a search is run using the Gene Search page, the ‘Search 

Data’ table is queried to return data matching the search term in the ‘title’, ‘name’ or ‘category’ 

fields. That table contains a consolidation of data from the ‘Node’ and ‘Taxonomy Data’ tables 

along with a ‘category’ value based on the presence of the record in any of the ‘Goslim Term’, 

‘Aralip Pathway’ and/or ‘TF Family’ tables. The consolidation was done to improve the 

https://paperpile.com/c/BTPInb/CVq6
https://paperpile.com/c/BTPInb/CVq6
https://paperpile.com/c/BTPInb/72qO
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performance of the search function. Other searches query the tables directly. In the case of the 

Syntelogs search, the ‘Homolog’ is examined, and the data are returned along with related results 

from the ‘Csa_g1’, ‘Csa_g2’, ‘Csa_g3’ and ‘Taxonomy Data’ tables using the relationships shown 

in the entity relationship diagram.  

 

Figure 2.1 Schematic diagram outlining the architecture of CamRegBase 1.0 
 
2.3.2 Expression database content 

The gene expression database was built based on 131 publicly available Camelina RNA-seq 

experiments (See ‘Materials and methods’). The data correspond to gene expression information 

from five different Camelina ‘varieties’, with DH55 and Suneson being the varieties with the 

largest number of samples (Figure 2.2a). Out of the 131 samples, 28 had no details regarding the 

variety and thus were labeled as unknown and utilized solely for the co-expression analyses (See 

below). Data were classified based on variety and further grouped on the basis of plant organs and 
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seed development stages. In total, we analyzed data from 12 different ‘organs’, including whole 

plant pools (referred as ‘Plant’), and samples without ‘organ’ specification (defined as ‘Unknown’) 

(Figure 2.2b). Notably, seeds and roots represented the majority of samples available (38.8% and 

16.8%, respectively) (Figure 2.2b). In terms of ‘seed developmental stages’, samples were 

analyzed that covered a range of 36 days post-anthesis (DPAs), with 14 different time points from 

4 to 40 days post-anthesis. Overall, approximately four billion reads were analyzed, with an 

average of 29.9 million reads per sample and with 95.7% of the reads mapping to the genome.  

To characterize the transcriptome at the sample level, the top 5% of genes with highest 

expression variation (TPMs) across all 131 samples were selected and a principal component 

analysis (PCA) was performed. The first two principal components explained 54.7% of the 

variation of the samples and allowed us to separate the 12 organs into 7 groups (Figure 2.2c). The 

‘root’ and ‘seed’ samples grouped closest together and were the most distinct from the other 

samples. As expected, some samples aligned closely with others such as ‘embryo’ with ‘seed’ 

samples, ‘cotyledons’ with ‘young leaf’, and ‘buds’ with ‘flowers’ (dashed circles, Figure 2.2c). 

The observed separation suggests that, at least for the major groups, the data collected and 

presented here capture relevant biological information. 
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Figure 2.2 Gene expression data hosted on CamRegBase 1.0 
Summary of expression data available on CamRegBase at the level of a Camelina varieties and b 
organ-specific samples. c. PCA of the Camelina transcriptome using log2TPMs. Dotted ovals 
indicate major groups of samples identified by visual inspection of the PCA results. 
 
2.3.3 Annotation of TFs 

TFs and CoRs play central roles in controlling gene expression, and they provide powerful 

tools to manipulate developmental or metabolic pathways for biotechnological purposes 

(Grotewold, 2008; Gray and Grotewold, 2011). Thus, to characterize Camelina TFs and CoRs, 
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advantage was taken of the current literature in this regard (Kagale et al., 2016) and used to expand 

the previous collection using pipelines based on protein domain characterization and family 

classifications that worked well before in other plants (Yilmaz et al., 2009, 2011) (See ‘Materials 

and methods’). In total, 4,619 TFs and 805 CoRs were identified of which 1,075 TFs and 793 CoRs 

had not been previously reported. Our analysis, however, failed to identify 971 TFs previously 

reported based on homology (Kagale et al., 2016). Currently, CamRegBase harbors information 

on 5,590 TFs classified into 81 families, and 805 CoR, classified into 25 different families (Figure 

2.3). 

 

Figure 2.3 Distribution of the (a) TF and (b) CoR genes according to families as currently 
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Figure 2.3 (cont’d) 
present in CamRegBase 1.0 
 
2.3.4 Database functionalities 

CamRegBase 1.0 consists of quick-buttons and tabs for navigation. The buttons are 

redundancies of the navigation tab. A unified search function within the ‘Gene Search’ tab was 

implemented, where a user may query Camelina genes by gene accession number, Arabidopsis 

GO Slim term or pathways from the Aralip database to find a gene of choice. Once a gene is 

selected, the resulting page provides gene information, a link to explore gene expression and a list 

of the top 50 co-regulated genes with their associated PCCs. When gene expression is explored, 

an expression analysis chart is displayed showing expression values across biosample numbers. 

Hovering over a data point will show the complete data information. Charts can also be 

downloaded in CSV format. Under the ‘Regulation’ tab a user may find a group of genes within a 

TF family, or they can go directly to the gene information page by searching with a Camelina gene 

accession number. Under the ‘Gene Expression’ tab, a user can go directly to gene expression 

information, or click on ‘Heat Map’ to view the selection of genes in a heat map, which can be 

sorted by gene name, annotation, or blast description. A drop-down selection of the samples 

permits to visualize just a few, or all the gene expression samples in the database. Alternatively, 

sample selection can also be done on the created heatmap by highlighting the desired samples; the 

heatmap will adjust accordingly. Finally, on the ‘Syntelogs’ tab, a user can query a Camelina or 

Arabidopsis gene accession number to see how they relate to one another.  

2.4 METHODS 

2.4.1 Gene expression data source 

Expression data present in CamRegBase 1.0 was retrieved from the Gene Expression Omnibus. 

All samples collected corresponded to RNA-Seq experiments generated using the Illumina 
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platform. RNA-Seq results for a total of 131 experiments (including replicates) were collected, 40 

of which corresponded to single-end libraries and 91 to paired-end libraries. These 131 

experiments corresponded to a total of 16 different projects. All samples were subject to quality 

control using FastQC (http://www.bioinformatics.babraham.ac.uk/proje cts/fastqc/, V0.11.5). 

Libraries with adapters and reads with low quality (Phred < 20) were removed using Cutadapt (-a 

and -u, respectively) (http://cutadapt.readthedocs.io/ en/stable/index.html, V1.9). Clean reads were 

mapped to the reference genome (V2.0, http://camelinadb.ca) using HISAT2 (2.0.4) (Kim et al., 

2019) with default parameters. Reads aligned to genes were counted with the R package Rsubread 

(V1.32.2), using default parameters and allowing multi-mapping reads (Liao et al., 2019), and the 

transcript abundance estimated as transcripts per kilobase million (TPM). 

2.4.2 Database and web platform construction 

The website sits on an Ubuntu 18.04 operating system, the current long-term support release, 

using a PostgreSQL database instance for backend storage and the Apache webserver for 

displaying pages. It was built on top of that base using the Drupal content management system 

with the Tripal and Tripal Analysis Expression modules along with their dependencies (Ficklin et 

al., 2011; Sanderson et al., 2013; Spoor et al., 2019). The data were loaded into the Chado and 

Drupal database schemas using importers constructed using Tripal, and custom PHP codes were 

written to provide the functionality seen on the site today. The software and versions currently in 

use are PostgreSQL (v10.12), PHP (v7.1), Apache (v2.4.41), Tripal (v3.2), Tripal Analysis 

Expression (v3.0) and Drupal (v7.69). 

2.4.3 Camelina sativa gene annotation 

All the functional annotations of C. sativa genes analyzed here, except for TFs (see below), 

were based on homology with Arabidopsis thaliana obtained by performing reciprocal BLAST 

https://paperpile.com/c/BTPInb/yE0y
https://paperpile.com/c/BTPInb/yE0y
https://paperpile.com/c/BTPInb/M2vz
https://paperpile.com/c/BTPInb/mbTF+0AZl+72qO
https://paperpile.com/c/BTPInb/mbTF+0AZl+72qO
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analyses on ‘all proteins against all’, and from literature (Kagale et al., 2014). The characterization 

and annotation of TFs and co-regulatory proteins (CoRs) assigned to the two databases harboring 

TFs and co-regulators (CsTFDB and CsCoTFDB, respectively) was carried out based on the 

identification of proteins that contain domains distinctive of these groups of proteins, as previously 

described (Yilmaz et al., 2009, 2011). 

2.4.4 Gene regulation data collection and analysis 

To identify potential TFs, we utilized already existing knowledge of known and identified TF 

protein domains from published literature sources, particularly AGRIS and GRASSIUS 

(grassius.org) (Yilmaz et al., 2009, 2011). The data obtained were used in conjunction with Pfam’s 

Hidden Markov Models (HMM) to perform a domain search using the HMMER(v3) software 

against the predicted Camelina proteins sequences (Kagale et al., 2014). Hit scores were only 

retained if they were considered significant, where the threshold used was a gathering score greater 

than the reported HMM for domains that are found in the Pfam database.  

Once potential TFs were identified, they were classified based on already established domain 

rules. The rules consist of which protein domain or domains are required for a TF to be part of a 

certain family. In some instances, it involves not having a specific domain or set of domains 

(forbidden domains) to be classified as part of the specified family. The co-regulators were 

classified based on rules previously established (Burdo et al., 2014). A modified version of the 

iTAK Perl script (Zheng et al., 2016) was utilized to assign the proteins to families based on hits 

obtained from the hmmscan application in the HMMER Program. 

2.4.5 Gene co-expression analyses 

The co-expression analyses between pairs of genes was calculated using the log2 of the TPMs as input 

data and the weighted Pearson correlation coefficient (PCC) as a metric for co-expression using the R 

https://paperpile.com/c/BTPInb/yCo8
https://paperpile.com/c/BTPInb/mUdd+LHCK
https://paperpile.com/c/BTPInb/mUdd+LHCK
https://paperpile.com/c/BTPInb/yCo8
https://paperpile.com/c/BTPInb/kHZT
https://paperpile.com/c/BTPInb/KMyp
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package wCorr (Version 1.9.1) (Emad and Bailey, 2017), with an optimal threshold of 0.4 to weight samples 

similarities. 
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CHAPTER THREE: EXPLORING CAMELINA SATIVA LIPID METABOLISM 

REGULATION BY COMBINING GENE CO-EXPRESSION AND DNA AFFINITY 

PURIFICATION ANALYSES1 

 

 

1This chapter has been published in the following manuscript: 

Gomez-Cano F., Chu Y.-H., Cruz-Gomez M., Abdullah H.M., Lee Y.S., Schnell D., Grotewold 

E. (2022), Exploring Camelina sativa lipid metabolism regulation by combining gene co-

expression and DNA affinity purification analyses. Plant J, 110: 589-606. 
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3.1 ABSTRACT 

Camelina is an annual oilseed plant that is gaining momentum as a biofuel cover crop.  

Understanding gene regulatory networks (GRNs) is essential to deciphering plant metabolic 

pathways, including lipid metabolism. Here, we take advantage of a growing collection of gene 

expression datasets to predict transcription factors (TFs) associated with the control of Camelina 

lipid metabolism. We identified ~350 TFs highly co-expressed with lipid-related genes (LRGs). 

These TFs are highly represented in the MYB, AP2/ERF, bZIP, and bHLH families, including a 

significant number of homologs of well-known Arabidopsis lipid and seed developmental 

regulators. After prioritizing the top 22 TFs for further validation, we identified DNA-binding sites 

and predicted target genes for 16 out of the 22 TFs tested using DNA affinity purification 

sequencing (DAP-seq). Enrichment analyses of targets supported the co-expression prediction for 

most TF candidates, and the comparison to Arabidopsis revealed some common themes, but also 

aspects unique to Camelina. Within the top potential lipid regulators, we identified CsaMYB1, 

CsaABI3AVP1-2, CsaHB1, CsaNAC2, CsaMYB3, and CsaNAC1 as likely involved in the control 

of seed fatty acid elongation; and CsaABI3AVP1-2 and CsabZIP1 as potential regulators of the 

synthesis and degradation of triacylglycerols (TAGs), respectively. Altogether, the integration of 

co-expression data and DNA-binding assays permitted us to generate a high-confidence and short 

list of Camelina TFs involved in the control of lipid metabolism during seed development. 

3.2 INTRODUCTION 

The Brassicaceae Camelina (Camelina sativa L. Crantz) annual plant is gaining increasing 

attention as a potential oilseed crop with characteristics that make it alluring as a renewable 

feedstock for biofuels and biobased products, among many other applications (Carlsson, 2009; 

Iskandarov et al., 2014). Camelina has a hexaploid genome that harbors ~90,000 genes organized 
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into 20 chromosomes (Liang  et al., 2013; Kagale et al., 2014). When compared with Arabidopsis 

(Arabidopsis thaliana), Camelina genes were classified into three types, including syntenic 

orthologs (syntelogs, ~70% of all genes), tandem duplicates (~12%), and non-syntenic (~18%) 

genes (Kagale et al., 2014). Within the set of syntelogs (a.k.a. paralogs), 10% of them are defined 

as fractionated because not all the three copies are conserved (Kagale et al., 2014). Remarkably, 

in addition to having a low rate of fractionation, the majority of Camelina's paralogs (in the case 

of triplicated genes) display no significant differences in expression levels (Kagale et al., 2014). 

Despite the challenges imposed by its polyploid genome, extensive gene expression analyses 

performed on developing Camelina seeds provided a transcriptome reference for this emerging 

crop, which includes 26 different datasets obtained at 13 different time points during seed 

development, and one immediately after germination, expression data that is available at 

CamRegBase (Gomez-Cano et al., 2020). Yet, despite the growing collection of mRNA 

accumulation data, expression information from early time points during seed development,  a 

critical stage for lipid biosynthesis (Rodríguez-Rodríguez et al., 2013; Pollard et al., 2015), is 

largely missing. Another important available resource in Camelina, given its biotechnological 

implications, is the growing list of genes associated with fatty acid (FA) and oil biosynthesis 

(Nguyen et al., 2013; Mudalkar et al., 2014; Abdullah et al., 2016; Gomez-Cano et al., 2020). This 

was to a large extent possible thanks to the close phylogenetic relationship of Camelina with 

Arabidopsis, reflected in the high sequence similarity of their genomes (Nikolov et al., 2019; 

Mandáková et al., 2019).  

Camelina seeds are ~50 times larger than those of Arabidopsis, they are rich in triacylglycerols 

(TAGs) containing mainly long unsaturated FAs, including linoleic acid (C18:3), which are 

excellent sources of omega-3 FAs (Gugel and Falk, 2006; Berti et al., 2016). Depending on the 
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ecotype, Camelina oil may represent up to 40% of the total seed dry weight, which also contains 

high levels of vitamin E and antioxidants responsible for extending the lifetime of Camelina oil-

containing products (Berti et al., 2016; Malik et al., 2018; Chaturvedi et al., 2019). As in other 

plants, Camelina TAG synthesis starts with the synthesis of FAs in plastids (Voelker and Kinney, 

2001). In Camelina embryos, the maximum rate of oil synthesis is at mid-maturation (“green 

cotyledon”), i.e., between 14-20 days post anthesis (DPA), while the mid-point for oil deposition 

is around 17-18 DPA. Consistently, C18:3 reaches its highest accumulation rate at 22 DPA 

(Pollard et al., 2015). In addition to C18:3, Camelina TAG also contain significant amounts of 

very long chain FAs (VLCFA) (C20-C24) with similar accumulation rates to C18:3 (maximum 

rate ~ 22-24 DPA), and detected as early as 11 DPA (Pollard et al., 2015).  

A growing number of Camelina genes involved in FA and TAG biosynthesis are being 

identified (Nguyen et al., 2013; Abdullah et al., 2016; Morineau et al., 2017; Ozseyhan et al., 2018; 

Neumann et al., 2021). However, Camelina transcription factors (TFs) that control the expression 

of the corresponding enzymatic genes remain largely unknown. In higher plants, the synthesis of 

FA and TAG in seeds is tightly coordinated with development. In Arabidopsis, there is a growing 

number of TFs involved in seed development with direct or indirect effects on FA/TAG synthesis 

(Le et al., 2010; Baud and Lepiniec, 2010; Leprince et al., 2016; Tian et al., 2020). Major regulators 

include the ABI3VP1 proteins LEAFY COTYLEDON 2 (LEC2), ABSCISIC ACID 

INSENSITIVE 3 (ABI3), and FUSCA3 (FUS3), which besides controlling seed development-

related processes, are also positive regulators of FA/TAG synthesis (Giraudat et al., 1992; 

Bäumlein et al., 1994; Stone et al., 2001). Other important regulators include LEAFY 

COTYLEDON 1 (LEC1) and LEAFY COTYLEDON1-LIKE (L1L), which are CCAAT-HAP3 

proteins (Lotan et al., 1998; Kwong et al., 2003), the basic leucine zipper 53 (bZIP53) (Alonso et 
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al., 2009), AGAMOUS-Like15 (AGL15) (Zheng et al., 2009),  the MYB proteins MYB115, 

MYB118, MYB107, and MYB9 (Wang et al., 2009; Troncoso-Ponce et al., 2016; Lashbrooke et 

al., 2016), and the homeobox GLABRA2 (Shen et al., 2006). Also, VP1/ABSCISIC ACID 

INSENSITIVE3-LIKE1, 2, and 3 (VAL1, 2, 3), all members of the ABI3VP1 family, are known 

for their roles in repressing the seed maturation program before germination (Tsukagoshi et al., 

2007; Suzuki and McCarty, 2008; Guerriero et al., 2009). Downstream of some of these 

developmental regulators are several TFs that modulate specific aspects of lipid metabolism, 

including WRINKLED1 (WRI1), which controls carbon flux from sucrose to FA biosynthesis 

(Cernac and Benning, 2004). WRI1 is regulated at the transcriptional level by LEC1 and MYB89, 

and at the post-translational level by KIN10 and TEOSINTE 

BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 4 (TCP4) (Li et al., 2017; 

Zhai et al., 2017; Kong et al., 2020; Pelletier et al., 2017). Some of these regulatory associations 

are conserved between species (Kong and Ma, 2018; Kong, et al., 2020; Devic and Roscoe, 2016). 

In Camelina, the overexpression of Arabidopsis MYB96 led to a significant increase in 

epicuticular and total wax (Lee et al., 2014), resembling the functions that MYB96 has in 

Arabidopsis under drought conditions (Seo et al., 2011). To what extent these regulatory networks 

are conserved between Arabidopsis and Camelina remains unknown.  

Despite the close phylogenetic relationship of Arabidopsis and Camelina, they accumulate 

different quantities and types of seed oils (Li et al., 2006). Thus, understanding the regulatory 

processes associated with these differences provides opportunities for further enhancing seed oil 

production. Here, we describe the use of gene co-expression analyses to identify several TF 

candidates associated with the regulation of lipid biosynthesis in Camelina. These predictions were 

confirmed using DNA affinity purification followed by sequencing (DAP-seq) analysis of the 
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corresponding TF candidates. Altogether, we identify and associate different TF candidates with 

specific aspects of the lipid-related process, including key players in regulating lipid accumulation 

during seed development in Camelina. 

3.3 RESULTS 

3.3.1 Expression analysis of genes involved in lipid accumulation during Camelina seed 

development 

To complement the sparse gene expression information available for early stages of Camelina 

seed development, we collected seeds from Suneson Camelina plants at 5, 8, and 11 days post-

anthesis (DPA). The sampling was performed for three biological replicates and RNA was 

extracted from seeds at the corresponding developmental stages and then used to perform RNA-

seq analyses (see Methods). To characterize the expression of genes involved in lipid metabolism, 

we first collated lipid-related genes (LRGs) from CamRegBase (https://camregbase.org/) (Gomez-

Cano et al., 2020) and classified them according to the information provided by AraLip 

(http://aralip.plantbiology.msu.edu/) (Li-Beisson et al., 2013). In accordance with these criteria, a 

total of 2,765 Camelina LRGs were identified, which were then classified into 25 different groups 

according to their role in different aspects of lipid metabolism, and because of their homology to 

well-described Arabidopsis lipid regulators.  

We used the publicly available developing-seed gene expression datasets and the RNA-seq 

information generated here from 5-11 DPA seeds to analyze mRNA accumulation patterns of the 

annotated LRGs. Overall, we identified four major types of genes based on their mRNA abundance 

during seed development. The smallest group (121 genes) corresponded to genes expressed at high 

levels [average transcripts per million (TPM) ~380] across all the developing-seed stages tested. 

These genes were largely associated with functions such as TAG and FA synthesis (Figure 3.1a, 
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b). The second highest-expressed group (average TPM ~20) consisted of 553 genes with 

predominant functions associated with lipid synthesis, desaturation, and export from plastids. Most 

of the genes were associated with two groups with medium-low (average TPM 4.5, ~5,847 genes) 

and low (average TPM ~0.5, 1,244 genes), primarily related to functions associated with the 

biosynthesis of membrane lipids, waxes, and suberins (Figure 3.1a, b).  

Genes highly expressed in developing seeds corresponded to functions associated with I) TAG 

synthesis, II) FA synthesis, and III) FA elongation & desaturation (Figure 3.1b), and this is why 

we analyzed the mRNA accumulation dynamics of these major groups of lipid metabolic genes 

across the various developmental stages. TAG synthesis genes peak at 18 - 29 DPA with 

expression values (TPM) several times (>10 times) higher than the other two processes (Figure 

3.1c). Partially consistent with metabolite data (Pollard et al., 2015), FA synthesis, elongation, and 

desaturation genes peak at 10-11 DPA (Figure 3.1c). The value of the newly-added RNA-seq 

datasets (indicated red in Figure 3.1a), particularly for 5 and 8 DPA is evident from the high level 

of expression of several LRGs early during seed development (a few examples indicated with 

asterisks in Figure 3.1a). Taken together, our analyses provide a comprehensive overview of the 

expression of LRGs during Camelina seed development, featuring specific gene sets with potential 

major lipid metabolism roles, providing an opportunity to uncover key regulators. 
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Figure 3.1. Expression dynamics of LRGs during seed development  
a. Heatmap representing mRNA accumulation information data highlighting four LRG clusters 
(rows). The clusters were generated based on the expression level of the corresponding genes  
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Figure 3.1 (cont’d) 
during sixteen timepoints across Camelina seed development including samples immediately after 
germination (columns). In total we analyzed 2,765 LRGs collected from CamRegBase. DAP: Days 
after pollination. GS: Germinated seed. b. Bar graph indicating the percentage of LRGs assigned 
to different lipid-related processes by each of the clusters of expression presented in (a). The lipid-
related processes were defined based on homology with Arabidopsis and following the AraLip 
classification.  c. Expression variation across seed development of three major LRG groups. d. Bar 
graph indicating the number of TF classified by families identified as potential lipid-metabolism 
regulators in Camelina. Red color indicates TF families significantly enriched (FDR < 0.05, 
Fisher’s Exact Test).  
 
3.3.2 Identification of candidate lipid transcriptional regulators by co-expression analysis 

To identify candidate genes encoding TFs potentially associated with the regulation of 

Camelina LRGs, we estimated the mutual information (MI) between each of the 5,590 TFs 

annotated in CamRegBase and each gene in the genome using all the available Camelina gene 

expression data. For each TF, we extracted the highest 200 genes (average MI ≥ 1) as 

corresponding to the co-expressed genes of the corresponding TF. We then evaluated whether 

LRGs were statistically overrepresented [False Discovery Rate (FDR) < 0.05, Fisher’s Exact Test] 

within these 200 genes. From the 5,590 TFs analyzed, we identified 350 TFs that met the criteria. 

The 350 TFs belonged to 52 different TF families and those with the highest representation 

corresponded to MYB, AP2/ERF, bZIP, and bHLH families (Figure 3.1d).  

We compared our list of TF candidates with 36 Arabidopsis TFs known to participate in the 

regulation of lipid and/or seed development. The 36 Arabidopsis TF corresponded to 105 Camelina 

homologous genes, as reported in CamRegBase (Gomez-Cano et al., 2020), consistent with the 

hexaploid nature of the Camelina genome. We excluded ten out of the 105 Camelina TFs because 

of the absence of evidence for expression in the available Camelina expression data. We found a 

significant overlap between the TFs annotated by homology as Arabidopsis lipid regulators and 

those TFs predicted by our analysis (28 TFs overlapped, P-value < 0.05, Hypergeometric test), 

providing confidence in our approach. These 28 TFs included homologs of WRI1, WRI4, ABI3, 

https://paperpile.com/c/uqsci0/Kof6
https://paperpile.com/c/uqsci0/Kof6
https://paperpile.com/c/uqsci0/Kof6
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FUS3, LEC2, MYB9, MYB41, MYB107, MYB94, AGL15, VAL2, EEL, and DEWAX (Meinke 

et al., 1994; Focks and Benning, 1998; Bensmihen et al., 2002; Cernac and Benning, 2004; 

Tsukagoshi et al., 2007; Braybrook and Harada, 2008; Zheng et al., 2009; To et al., 2012; Go et 

al., 2014; Kosma et al., 2014; Lee and Suh, 2015; Lashbrooke et al., 2016; Lee et al., 2016; Zhang 

et al., 2016; Pouvreau et al., 2020). Noteworthy, not all the Camelina paralogs were co-expressed 

with the same number of LRGs. For example, one of the three Camelina homologs of Arabidopsis 

AtMYB94, AtMYB41, AtVAL2, AtWRI4, and AtDEWAX were not co-expressed significantly 

with LRGs. Similarly, only one of the three Camelina paralogs of AtAGL15 and AtLEC2 were 

present in the list of 350 Camelina TFs (Figure 3.2a).  

To prioritize Camelina TF candidates for functional studies, we ranked the 350 identified TFs 

based on the number of co-expressed LRGs. Notably, the top candidates also showed preferential 

expression in seeds, as indicated by the seed Z-scores (Kryuchkova-Mostacci and Robinson-

Rechavi, 2017) (See Methods). From the ranked list, we selected the top 35 TFs, which included 

13 pairs of paralogs. From the paralog pairs, we selected only the TF with the largest number of 

co-expressed LRGs and the highest expression, resulting in a final list of 22 TFs that were 

subjected to further analyses. Four of these TFs were homologs of known seed development and/or 

lipid metabolism regulators in Arabidopsis, corresponding to ABI3, FUS3, MYB9, and MYB107 

(Giraudat et al., 1992; Keith et al., 1994; Lashbrooke et al., 2016).  

To further characterize the TF candidates, we evaluated the conservation of the predicted TF-

LRG associations between Camelina and Arabidopsis. For this, we re-analyzed >250 publicly 

available Arabidopsis RNA-seq experiments using identical pipeline and metrics as for Camelina, 

selecting datasets similar to the samples used for the Camelina co-expression analyses. We focused 

specifically on our list of 22 Camelina TFs. Arabidopsis homologs of CsaMYB1 and CsaMYB3 

https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
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https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
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https://paperpile.com/c/uqsci0/R8Ej+pnpZ+icHB+L5px+HUPA+KjCo+7nUp+m6oQ+U66S+lUG4+pQvx+jcsT+FwzP+hpnW+6uVQ
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https://paperpile.com/c/uqsci0/XIzw
https://paperpile.com/c/uqsci0/XIzw
https://paperpile.com/c/uqsci0/aR3N+McBM+jcsT
https://paperpile.com/c/uqsci0/aR3N+McBM+jcsT
https://paperpile.com/c/uqsci0/aR3N+McBM+jcsT
https://paperpile.com/c/uqsci0/aR3N+McBM+jcsT
https://paperpile.com/c/uqsci0/aR3N+McBM+jcsT
https://paperpile.com/c/uqsci0/aR3N+McBM+jcsT
https://paperpile.com/c/uqsci0/aR3N+McBM+jcsT
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were not expressed on the analyzed data and therefore were excluded from this analysis. In total, 

within the remaining 20 TFs, ten showed a conserved significant co-expression with LRGs (Figure 

3.2b). Substantiating our analyses, the three well-described Arabidopsis lipid regulators AtABI3 

(CsaABI3VP1-1), AtFUS3 (CsaABI3VP1-2), and AtMYB9 (CsaMYB2), were identified as part 

of the conserved co-expression associations. This co-expression analysis identified seven 

Camelina TFs (and their Arabidopsis homologs) that had not been previously associated with lipid 

metabolism, including CsaNAC1, CsaNAC2, Csazf-HD1, CsaB3-1, CsaAP2/B3-like-1, 

CsaULT1, and CsaLBD1 (Figure 3.2b). The remaining ten Camelina TFs that did not show a 

conserved co-expression with Arabidopsis LRGs are likely to correspond to Camelina-specific 

lipid regulators, or alternatively they are not involved in the control of lipid metabolism. 
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Figure 3.2 Co-expression of known lipid/seed development regulators and LRGs in Camelina 
and Arabidopsis  
The bar graphs show the total number of LRG co-expressed with (a) Camelina homologs of each 
Arabidopsis TF (note that there are three bars for each Arabidopsis regulator because of the 
hexaploid nature of the Camelina genome), or (b) Arabidopsis homologs (names in square 
brackets) for the Camelina top TFs. The color of the bar indicates the significance of the number 
LRG co-expressed (light-red, FDR ≤ 0.05; turquoise, FDR > 0.05). 
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3.3.3 Establishing the DNA-binding landscape of the candidate transcription factors 

To further characterize the 22 TFs and to identify potential target genes, we applied DAP-seq 

(O’Malley et al., 2016). We synthesized and cloned the corresponding open reading frames (ORFs) 

for the 22 TFs in a vector that permitted expression of the protein fused at the N-terminus to a 

Halo-tag (Bartlett et al., 2017). We also generated a Camelina unmethylated DAP-seq DNA library 

(ampDAP-seq) from green tissues of mature plants (see Methods). We reasoned that unmethylated 

DNA better captures the majority of the PDIs in which these TFs are likely to participate (O’Malley 

et al., 2016), and eliminates variations in methylation patterns between cell types or tissues. We 

performed DAP-seq in duplicate for each Halo-TF, and with the Halo-tag alone as the control. We 

obtained on average 25.5 million reads per sample, out of which about half mapped uniquely to 

the available Camelina genome (v2, cv. DH55) (Kagale et al., 2014). To assess the variance and 

reproducibility of the experiments, we performed a principal component analysis (PCA) using 

uniquely mapped reads. The first two PC showed all TFs well separated from the control (Halo). 

However, we also observed five TFs with strikingly different replicates, indicating low 

reproducibility between them. For each TF, we also analyzed the similarity of the uniquely mapped 

reads between each pair of replicates, which confirmed the differences observed on the PCA 

analysis for replicates of the five TFs. Based on these observations, we discarded the DAP-seq 

results obtained for CsaABI3VP1-1 and CsaB3-1 (because of its high correlation with the HALO 

control), and settled on analyzing the replicates of CsaMYB2, CsaULT1, and CsaTify1 

independently (replicates with PCC < 0.7). For the remaining 17 TFs, DNA-binding regions 

(peaks) were called using both replicates. Thus, in total, 20 TFs were tested for the presence of 

peaks. The number of identified peaks varied greatly between the TFs, with CsaC2C2-Dof1 

showing >100,000 peaks, and four TFs having less than 500 peaks (CsaTify1, CsaS1Fa-like-1, 

https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/bxXv
https://paperpile.com/c/uqsci0/bxXv
https://paperpile.com/c/uqsci0/bxXv
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/ohkx
https://paperpile.com/c/uqsci0/ohkx
https://paperpile.com/c/uqsci0/ohkx


 46 

CsaMYB2, and CsaULT1), which were not further used. In consequence, a total of 16 TFs were 

kept for further analyses.  

The analysis of the distance between the peak summit and the closest annotated transcription 

start sites (TSSs) indicated that, on average, ~63% of the total peak summits are within 3 kbs of 

the TSSs. Thus, our results are in agreement with the peak genomic distribution patterns previously 

observed in DAP-seq experiments for Arabidopsis and maize (O’Malley et al., 2016; Galli et al., 

2018). We compared, in terms of successful identification of TF binding motifs, all our DAP-seq 

results (including those which failed to pass the quality controls) with those performed in 

Arabidopsis (O’Malley et al., 2016) and determined that 17 common TFs were tested (TF 

homologs). To note, 3/17 TFs did not work in either plant, 7/17 TFs worked in Camelina but not 

in Arabidopsis, and 6/17 TFs worked in both plants. The remaining TF (AtMYB107 homolog of 

CsaMYB2) worked only in Arabidopsis, likely related to the lack of MYB domains on the 

Camelina annotated transcript. Finally, the corresponding genes for CsaMYB1, CsaNAC2, and 

CsaC3H2 were not previously tested in Arabidopsis. In summary, we provide here high-

confidence DNA-binding data for 16 TFs, of which 10 were previously unknown in Arabidopsis.  

To evaluate the quality of the predicted DAP-seq peaks of the corresponding 16 TFs, we 

determined the log2 fold change of the binding (log2FC, See Methods). We defined high-

confidence peaks for further analyses as those showing log2FC > 0.5 in both replicates, which 

represented ~32.5% of the total peaks called (Figure 3.3). One additional criteria that we applied 

to decide whether DAP-seq provided meaningful information or not was the enrichment for 

particular TF-binding motifs (TFBM) within the recovered peaks, a widely accepted characteristic 

of the DNA fragments recognized by TFs (Lambert et al., 2018). To identify the TFBMs associated 

with each TF, we ranked all the high-quality peaks based on their log2FC, selected the top 1,000 

https://paperpile.com/c/uqsci0/nTMs+je0k
https://paperpile.com/c/uqsci0/nTMs+je0k
https://paperpile.com/c/uqsci0/nTMs+je0k
https://paperpile.com/c/uqsci0/nTMs+je0k
https://paperpile.com/c/uqsci0/nTMs+je0k
https://paperpile.com/c/uqsci0/nTMs+je0k
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/nTMs
https://paperpile.com/c/uqsci0/Ip7r
https://paperpile.com/c/uqsci0/Ip7r
https://paperpile.com/c/uqsci0/Ip7r
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peaks for each TF and identified the motif consensus using MEME-ChIP (Machanick and Bailey, 

2011). To evaluate the relevance of the predicted TFBMs in the context of the identified peaks, we 

searched each TFBM across the full set of peaks for each TF, focusing on two specific aspects: (1) 

The fraction of peaks that harbored the motif, and (2) the localization of the motif within the peak 

(distance to the summit). We carried out this analysis by extending each peak 50 bps around the 

summit (Figure 3.4). The most significant motifs identified for each of the 16 TFs corresponded 

to those with the largest abundance and which displayed a clear accumulation close to the summit 

of each peak (Motif 1 in Figure 3.4). Thus, for the rest of this study, we considered high-confidence 

peaks those that harbored such a motif, corresponding to ~92% of all the peaks evaluated.  

https://paperpile.com/c/uqsci0/GAO5
https://paperpile.com/c/uqsci0/GAO5
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Figure 3.3 Reproducibility analysis between TF replicates based on DNA-binding fold 
changes 
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Figure 3.3 (cont’d) 
We calculated the log2 of the binding fold change (log2FC) for the total predicted peaks for each 
TF dividing the number of reads obtained for each peak with Halo-TF by the number of reads 
obtain for the same peak for the Halo control. Peaks with log2FC ≥ 0.5 in both replicates were 
defined as highly reproducible peaks. 
 

We compared the DNA-binding specificities provided by DAP-seq between the corresponding 

six Camelina and Arabidopsis homologs. We re-analyzed all six Arabidopsis DAP-seq using the 

same pipeline employed in the current study. Five TF pairs (AtNAC38 and CsaNAC1; AtFUS3 

and CsaABI3VP1-2; AtMYB67 and CsaMYB3; AtTGA4 and CsabZIP1; AtWRKY3 and 

CsaWRKY1) showed almost identical DNA-binding preferences, suggesting that the amino acid 

residues that distinguish the Arabidopsis and Camelina homologs are not significantly affecting in 

vitro DNA-binding specificities. The only exception was CsaAP2/B3-like-1 for which none of the 

top motifs identified matched the TTTGGCGGGAA sequence consensus predicted for AtREM1. 

This result puzzled us, hence we decided to re-check if the Arabidopsis and Camelina genes were 

properly annotated. Indeed, we determined that one of the B3 domains that characterizes the DNA-

binding domain of AtREM1 (Romanel et al., 2009) was absent in the cloned CsaAP2/B3-like-1 

ORF, because of a likely error in the current Camelina genome annotation. Taken together, we 

identified the DNA-binding patterns for 16 Camelina TFs, and determined a similar 

correspondence with the Arabidopsis homolog, when available.  
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Figure 3.4 Distribution of predicted TF binding motifs (TFBMs) in the predicted peaks 
The prediction of TFBMs resulted in up to three different motifs for some of the TFs. To identify 
the main motif, we counted the frequency and location of each of the predicted TFBMs in all the 
predicted peaks. The frequency of each TFBMs is presented as the motif Z-score in a heatmap 
indicating the start position of the TFBMs on the peak. Each TFBM was tested independently 
regardless of whether the TFs have a single (a), two (b), or three (c) TFBMs. 
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3.3.4 Predicting gene targets for the selected TFs 

To identify potential gene targets for the 16 TF candidates, we determined which genes were 

located within 3 kbps of each high-confidence peak summit, since 3 kbps capture many of the 

biologically-relevant TF-target gene interactions (Springer et al., 2019). We identified a total of 

31,898 potential targets for these 16 TFs, with CsaMYB1 and CsaHRT1 showing the largest (6,816 

genes) and lowest (9 genes) number of target genes, respectively. As a first step towards assessing 

the biological significance of the DAP-seq results and its concordance with the co-expression 

prediction, we tested if the predicted targets were enriched in LRGs and/or in TFs associated with 

the control of LRGs and seed development (TF-LRG/development). Tellingly, 4/16 and 6/16 sets 

of targets showed significant enrichment (P-value ≤ 0.05, Fisher-exact test) on LRGs and TF-

LRG/development targets, respectively (Figure 3.5a). Moreover, CsaABI3VP1-2 (Camelina 

homolog of AtFUS3) showed enrichment on both sets of genes, suggesting an important role in 

lipid metabolism. Thus, in total, 9 out of the 16 TFs tested showed a significant enrichment for 

target genes associated with lipid metabolism in Camelina.  

Previously, we showed that half of the candidate TF homologs in Arabidopsis were enriched 

in LRGs by co-expression (Figure 3.5b). Thus, we tested if they were also enriched in target genes 

annotated as LRGs, as we found for the Camelina TFs (Figure 3.5a). We performed the analysis 

with the six Arabidopsis TFs for which we previously evaluated TFBMs. The analysis of the 

Arabidopsis DAP-seq data was performed using the same pipeline and controls as we used for the 

Camelina data. Out of the six Arabidopsis TFs, five showed enrichment for target genes annotated 

as LRGs and TF-LRG/development (Figure 3.5b). This finding, along with the conservation of the 

corresponding TFBMs, suggests conservation of the corresponding regulatory functions. 

Curiously, the five Arabidopsis TFs showed target enrichment for both type of genes: LRGs and 

https://paperpile.com/c/uqsci0/P0mX
https://paperpile.com/c/uqsci0/P0mX
https://paperpile.com/c/uqsci0/P0mX
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TF-LRGs (Figure 3.5b). This contrasts with what we found for the corresponding Camelina 

homologs which showed in all cases but one either enrichment for LRGs or TF-LRGs but not in 

both (Figure 3.5a). Finally, neither CsaAP2/B3-like-1 nor AtREM16 showed targets enriched in 

LRGs or TF-LRG/development. While this is consistent with the possibility that we used a 

truncated protein for CsaAP2/B3-like-1, our results suggest that AtREM16 plays a secondary role 

as a lipid metabolism regulator.  

To characterize other functional roles of the set of predicted target genes associated with the 

corresponding TFs, we investigated enrichment for Gene Ontology (GO) terms. All the TFs tested 

have at least one GO term enriched that is lipid-related. After removing redundant and general 

terms, we clustered all the TFs based on the top 10 GOs for each (based on P values), allowing us 

to separate them into two main clusters. One cluster (indicated in green) was associated with a 

wide range of GO terms, including regulation of development and several metabolic processes, 

particularly lipid metabolism-related functions, as well as phenylpropanoid and carboxylic acid 

biosynthesis processes. Members of the other cluster (indicated in orange, Figure 3.6) have in 

common the terms signal transduction, defense responses, regulation of gene expression, and 

regulation of nitrogen compounds. When all the data is considered together, these analyses provide 

additional evidence that the DAP-seq results bore biologically meaningful targets and support the 

initial co-expression predictions, including the discovery of previously unrecognized candidate 

regulators of lipid-related genes. 
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Figure 3.5 Regulatory landscape of predicted lipid-related regulators based on DAP-seq 
The bar graph indicates the number of predicted target genes annotated as (a) Camelina or (b) 
Arabidopsis LRGs. Arabidopsis TFs correspond to homologs of the Camelina predicted 
candidates. The red color indicates the significance of the overlap of target genes annotated as 
LRG vs the total number of predicted target genes for each of the tested TF (P-value ≤ 0.05, 
Fisher’s Exact Test). c. Heatmap indicating the number of common targets between pairs of TFs. 
Color scale indicates the P-value associated with the corresponding number of common targets 
(Fisher’s Exact Test). d. Violin plot showing the distribution of distances (in bps) between summits  
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Figure 3.5 (cont’d) 
(peak centers) of CsaMYB1 and CsaWRKY1 mapped to common targets. The vertical dashed line 
indicates the most frequent distance between summits. e. IGV plots with co-binding profiles (peak) 
generated from the DAP-seq experiments of CsaMYB1 and CsaWRKY1 highlighting two shared 
targets with the respective gene models obtained from Camelina V2.0 at the bottom. Peaks heights 
correspond to the number of reads by bins (10 bp) per million mapped reads.   

 
Figure 3.6 Heatmap and hierarchical clustering of TF candidates based on the top 10 GO 
terms significantly enriched 

regulation of nitrogen compound metaboli...
regulation of primary metabolic process
aromatic compound biosynthetic process
regulation of macromolecule biosynthetic...
signal transduction
response to organic substance
response to other organism
defense response
phosphorus metabolic process
cellular protein modification process
protein modification process
cellular response to endogenous stimulus
hormone−mediated signaling pathway
lipid metabolic process
secondary metabolite biosynthetic proces...
interspecies interaction between organis...
modification of morphology or physiology...
response to jasmonic acid
S−glycoside metabolic process
glucosinolate biosynthetic process
endoplasmic reticulum tubular network or...
regulation of transcription by RNA polym...
root system development
phenylpropanoid metabolic process
organic acid biosynthetic process
carboxylic acid biosynthetic process
cellular lipid metabolic process
regulation of growth
plant−type cell wall organization or bio...
enzyme linked receptor protein signaling...
lignin metabolic process
cellular amino acid biosynthetic process
aromatic amino acid family metabolic pro...
regulation of meristem development
cinnamic acid biosynthetic process
mitochondria−nucleus signaling pathway
cytochrome complex assembly
cytochrome b6f complex assembly
mature ribosome assembly
nicotinate metabolic process
oxylipin biosynthetic process
fruit ripening
regulation of fertilization
regulation of ion transport
response to mechanical stimulus
generative cell differentiation
regulation of nitrogen utilization
starch metabolic process
ribonucleoprotein complex assembly
calcium ion transmembrane transport
nickel cation transport
negative regulation of photomorphogenesi...
glycogen metabolic process
energy reserve metabolic process
transmembrane transport
negative regulation of metabolic process

C
sa

H
RT

1
C

sa
H

B2
C

sa
C

3H
1

C
sa

C
2C

2−
D

of
1

C
sa

bZ
IP

1
C

sa
H

B1
C

sa
AB

I3
VP

1−
2

C
sa

zf
−H

D
1

C
sa

M
YB

1
C

sa
C

3H
2

C
sa

M
YB

3
C

sa
N

AC
1

C
sa

LB
D

1
C

sa
AP

2/
B3
−l

ike
−1

C
sa

N
AC

2
C

sa
W

R
KY

1

% Targets

0 5 10 15



 55 

Figure 3.6 (cont’d) 
GO terms not significantly enriched are shown in white. The color indicates the percentage of 
targets annotated within the corresponding GO term. 
 

Similarities in the functional annotation of target genes for TF pairs may indicate that the 

corresponding TFs share common targets. Alternatively, the TFs could regulate different genes in 

the same process/pathway. To distinguish between these two possibilities, we evaluated the 

overlap in targets between the 16 TFs. Almost half of the comparisons showed significant target 

overlaps (P-value < 0.05, Fisher’s Exact Test) (Figure 3.5c, darker colors indicate smaller P-

values). As anticipated, TFs from the same family (CsaMYB1 and CsaMYB3; CsaNAC1 and 

CsaNAC2) had the largest number of shared target genes, likely driven by the very similar in vitro 

DNA-binding consensus of the corresponding TFs. Noteworthy, while significant, the overlap 

comprises only a subset of all the targets for each of these TFs, suggesting that outside the shared 

core motif, each TF has specific DNA-binding preferences (Figure 3.4). Many of the TF pairs have 

overlapping targets (e.g., CsaMYB1 and CsaMYB3; CsaHB1, CsaABI3VP1-2, and CsaC2C2-

Dof1; CsaNAC1, CsaNAC2, and CsaAP2/B3-like-1), indicating that they function in the control 

of related biological processes. We explored this hypothesis by comparing two of the non-

homologous TF pairs with the highest number of common targets, corresponding to CsaMYB1-

CsaWRKY1 and CsabZIP1-CsaHB1, which had 922 and 468 common targets, respectively. For 

the CsaMYB1-CsaWRKY1 pair, we found that shared targets were enriched in multiple lipid-

related GO terms at several levels of the GO hierarchy, including carboxylic acid biosynthesis and 

very long-chain fatty acid biosynthesis. Contrary to the pattern observed for CsaMYB1-

CsaWRKY1, common targets of CsabZIP1-CsaHB1 were enriched in a more diverse list of 

biological processes not observed on the corresponding individual list of enriched GO terms, 

including flavone biosynthesis, regulation of transcription, activation of protein kinase activity, 
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root hair cell tip growth, and leaf senescence, suggesting that their role in lipid metabolism control 

is not linked to common target genes in the pathway.  

To further understand the potential participation of CsaMYB1 and CsaWRKY1 in gene co-

regulation of their common targets, we evaluated the distribution of binding sites in the 922 shared 

targets. For most of them, the binding sites were within a few hundred base pairs apart from each 

other (the average distance was 320 bps; Figure 3.5d), highlighting a possible cooperative work at 

the DNA level (post-DNA binding) (Reiter et al., 2017). The proximity and potential significance 

for transcriptional regulation is exemplified by the two shared targets Csa03g002110 and 

Csa04g040040 (Figure 3.5e), Arabidopsis homologs of 3-KETOACYL-COA SYNTHASE 

(KCS1, At1g01120) and PASTICCINO 1 (PAS1/DEI1, At3g54010), which are involved in FA 

and VLCFA synthesis (Shang et al., 2016; Roudier et al., 2010), respectively, further underscoring 

the potential regulatory role of CsaMYB1 and CsaWRKY1 on lipid metabolism. 

3.3.5 Identified TFs associate with distinct aspects of lipid metabolism  

To better understand the specific aspects of lipid metabolism that each of the identified TFs 

might be involved with, we scored how many targets of each TF corresponded to each of the lipid 

pathway categories (as presented in Figure 3.1b). In total, 11/16 TFs showed significant 

enrichment for targets annotated across several lipid-related processes (P-value < 0.05, Fisher’s 

Exact Test). As examples, CsaMYB3, CsaMYB1, CsaWRKY1, and CsaABI3VP1-2 were 

enriched in more than four different processes, with their top target processes being suberin 

synthesis (18.2%), cutin synthesis (25.3%), and transcriptional regulation (18.1% and 41.9%), 

respectively. Remarkably, several combinations of TFs showed significant enrichment for the 

same processes. Finally, we also observed that the targets for CsaABI3VP1-2 and CsaWRKY1 

https://paperpile.com/c/uqsci0/TWce
https://paperpile.com/c/uqsci0/TWce
https://paperpile.com/c/uqsci0/TWce
https://paperpile.com/c/uqsci0/7YYB+lIVm
https://paperpile.com/c/uqsci0/7YYB+lIVm
https://paperpile.com/c/uqsci0/7YYB+lIVm
https://paperpile.com/c/uqsci0/7YYB+lIVm
https://paperpile.com/c/uqsci0/7YYB+lIVm
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were significantly enriched in genes associated with TAG synthesis (22.6%) and FA-TAG 

degradation (15.7%), respectively, which are core processes in the accumulation of seed oil.  

In parallel, to evaluate the biological significance of the regulatory interactions predicted at the 

pathway co-expression level, we applied the gene set enrichment analysis (GSEA) algorithm 

(Subramanian et al., 2005) using the Pearson Correlation Coefficient (PCC) as the scoring metric. 

Thus, significant positive and negative enrichment values indicate association of the corresponding 

TF with a metabolic pathway in a positive or negative fashion, respectively. Also, under these 

conditions, GSEA permits the identification of TF-process relationships that have significant co-

expression signals at the pathway rather than as individual target gene levels (Subramanian et al., 

2005). Eight out of the sixteen TFs tested showed significant enrichment (P-value < 0.05) for at 

least one of the processes tested. CsaABI3VP1-2 showed the largest number of significant 

associations (up to ten), including FA elongation and desaturation, FA and TAG synthesis, and 

transcriptional regulation. The second and third TFs with most enriched processes were 

CsaWRYK1 and CsaMYB1, with seven each. We also observed eleven TF-process associations 

with negative enrichment scores, indicating enrichment for negative co-expression values, within 

which CsaWRKY1, CsaMYB1, CsaMYB3, and CsabZIP1 are included. The former showed 

enrichment for negative scores on its corresponding targets annotated under FA synthesis, 

transcriptional regulation, and transport, while the latter with targets annotated under cutin 

synthesis, wax synthesis, and FA elongation. These results suggest major roles of these TFs as 

negative regulators of the mentioned pathways.  

Finally, we combined both sets of results (target enrichment and GSEA results) to identify 

high-confidence TF-process associations. Six of the eleven TFs analyzed showed significant 

associations in both tests with at least six different processes, to a total of ten TF-pathway 
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associations (pink edges in Figure 3.7). Transcriptional regulation was the process with the largest 

number of connections. CsaNAC1, CsaWRKY1, and CsaABI3VP1-2 were the three TFs with the 

largest number of associations (two for each of them, Figure 3.7). Three out of the ten TF-pathway 

associations showed significant negative enrichment (Figure 3.7), indicating transcriptional 

repression roles of the corresponding TFs on the respective pathways. Also, it is worth noting that 

one of the main processes enriched for the targets of CsaMYB1 and CsaNAC2 was cutin synthesis 

(Figure 3.7). CsaABI3VP1-2 was the only TF significantly enriched in TAG synthesis- and 

transcriptional regulation-related targets (Figure 3.7), and remarkably we found that the large 

majority of the targets that we predicted for CsaABI3VP1-2 were also TF targets previously 

identified for AtFUS3 by either chromatin immunoprecipitation-DNA microarray (ChIP-chip) 

(Wang and Perry, 2013) or DAP-seq assays (O’Malley et al., 2016), uncovering potential 

Camelina-specific interactions as well as unreported Arabidopsis targets. Altogether, these 

analyses underscore CsaABI3VP1-2 as a good candidate playing a major role in lipid metabolism 

in Camelina, similar to AtFUS3 (Yamamoto et al., 2010; Wang and Perry, 2013; Zhang et al., 

2016). 
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Figure 3.7. High-confidence TF-process network 
Associations predicted based on target enrichment and GSEA using TF-target PCC as score metric 
are indicated by lines joining TFs (blue) and specific processes associated with lipid metabolism 
(black). The thickness of the edges represents the fraction of lipid-related genes in the pathway 
that is being targeted by the corresponding TF. The total number of genes annotated for each of 
the corresponding lipid-related processes are indicated inside square brackets. 
 
3.3.6 Dynamic behavior of the predicted networks during seed development 

To gain further insights on the regulatory effect of the identified TF-target interactions in 

Camelina seeds, we performed a second co-expression analysis with GENIE3 (Huynh-Thu et al., 

2010) using only expression data from seeds. GENIE3 uses a regression tree and random forest 

algorithm to make regulatory prediction implying causality (Huynh-Thu et al., 2010). Thus, we 

assumed that predictions identified by GENIE3 and supported by DAP-seq are highly confident 

FA-TAG 
Degradation 

[204] 

FA 
Synthesis 

[152] 

CsaC2C2-Dof1 

FA 
Elongation 

Desaturation 
[47] 

CsaNAC1

FA 
Elongation 

[766] 

Export 
From 

Plastid 
[47] 

CsaMYB3

Eukaryotic 
Galactolipid 

[114] 

CsaMYB1

CsabZIP1

CsaWRKY1 

CsaNAC2

Cutin 
Synthesis 

[79] 

CsaABI3VP1-2 

Wax 
Synthesis 

[766] 

Unknown 
[191] 

Transport 
[227] 

Transcriptional 
Regulation 

[105] 

TAG 
Synthesis 

[212] 

Sulfolipid 
Synthesis 

[114] 

Suberin 
Synthesis 

[170] 

CsaHB1

Sphingolipid 
Synthesis 

[108] 

CsaC3H2

Prokaryotic 
Galactolipid 

Sulfolipid 
[178] 

CsaAP2/B3-like-1 

Phospholipid 
Synthesis 

[352] 

Phospholipid 
Signaling 

[365] 

Oxylipin 
Metabolism 

[273] 

Mitochondrial 
Lipopolysaccharide 

Synthesis 
[61] 

Target 
enrichment

co-expression 
enrichment

Target & co-
expression enrichment

https://paperpile.com/c/uqsci0/LuII
https://paperpile.com/c/uqsci0/LuII
https://paperpile.com/c/uqsci0/LuII
https://paperpile.com/c/uqsci0/LuII
https://paperpile.com/c/uqsci0/LuII
https://paperpile.com/c/uqsci0/LuII
https://paperpile.com/c/uqsci0/LuII


 60 

regulatory interactions occurring specifically in seeds. The significance of the predicted score was 

assayed using a permutations test (FDR ≤ 0.001, 1,000 permutations). Overall, 35% of the targets 

identified by DAP-seq were also predicted as targets of the corresponding TFs by GENEI3 (Figure 

3.8a). The highest percentage of DAP-seq seed co-expressed targets was observed for CsaNAC2 

and CsabZIP1 (~54% each, Figure 3.8a). These results suggest that many of the predicted TF-

target associations have a regulatory effect in the context of seed development.  

To parse TFs involved in controlling FA and TAG-related genes in seeds, we combined the 

target enrichment and the GSEA results (Figure 3.7) to select TFs associated with the 

corresponding pathways. Consequently, we reduced the TF-target DAP-seq network to only 

targets co-expressed in seeds (as predicted by GENIE3) (Figure 3.8a). With this subset of TF-

target interactions, we tested the enrichment for targets on the corresponding pathways once again 

to determine if the reduced TF-target network still had a significant number of targets associated 

with FA and TAG-related processes. Seven TFs showed enrichment for seed co-expressed targets 

associated with at least three different pathways (FDR < 0.05, Fisher’s Exact Test) (Figure 3.8b). 

FA elongation was the pathway most frequently targeted, with six different TFs associated with it 

(Figure 3.8b). CsaABI3VP1-2 and CsaMYB1 were the two TFs with most seed co-expressed 

targets annotated under FA elongation. However, TAG synthesis and FA-TAG degradation were 

significantly targeted by just one TF each, CsaABI3VP1-2 and CsabZIP1, respectively (Figure 

3.8b).  
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Figure 3.8. Integration of seed co-expression and DNA-binding information  
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Figure 3.8 (cont’d) 
a. Bar graph indicating the percentage of DAP-seq targets supported by the co-expression 
associations predicted with GENEI3 using seed expression data. b. Bar graph of the seven most 
significant TF-lipid-related process interactions that passed the enrichment test after incorporation 
of seed co-expressed targets. For each TF, the total number of target genes annotated for the 
corresponding FA and TAG related processes are indicated. c. Heatmap representing the 
expression dynamics of targets of CsaMYB1 associated with FA elongation during seed 
development. d. Heatmap representing the expression dynamics of targets of CsaABI3VP1 
associated with TAG synthesis during seed development. e. Heatmap representing the expression 
dynamics of targets of CsabZIP1 associated with FA/TAG degradation during seed development. 
The right panel list the gene IDs for the Camelina genes represented in the heatmaps and the gene 
IDs for the corresponding Arabidopsis homologs. 
 

We selected three of seven TF-pathway interactions (CsaMYB1 & FA elongation, 

CsaABI3VP1 & TAG synthesis, and CsabZIP1 & FA-TAG degradation, Figure 4b) to analyze the 

expression dynamics of the corresponding TFs and targets during seed development. CsaMYB1 

showed two expression windows, one at 12 - 21 DPA and a second at 25 - 29 DPA (Figure 3.8c). 

These expression profiles are in concordance with the reported peaks of FA synthesis and TAG 

accumulation (11-24 DPA) (Pollard et al., 2015). CsaABI3VP1-2 showed a broader expression 

window, starting at 8 DPA with constant expression until 25 - 29 DPA (Figure 3.8d). Finally, 

CsabZIP1 is mainly expressed during the later stages of seed development (expression peak ~35 - 

39 DPA) (Figure 3.8e), consistent with the expected pattern for controlling TF/TAG degradation 

right before seed germination.  

As for the corresponding target genes, we observed several expression patterns consistent with 

activation or repression by the respective TFs, as exemplified for the targets of CsaMYB1 and 

CsabZIP1 (Figure 3.8c, e). Within the set of the CsabZIP1 targets, it is worth mentioning multiple 

Arabidopsis homologs involved in FA beta-oxidation during seed germination (Fulda et al., 2004; 

Footitt et al., 2006; Jiang et al., 2011; Richmond and Bleecker, 1999), and homeostasis of 

phospholipid and neutral lipids (Ghosh et al., 2009) (Figure 3.8e). Finally, most (28/30) of the 

CsaABI3VP1-2 targets showed a similar expression to the corresponding TF (Figure 3.8d). Within 
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these targets, it is worth noting the Csa16g014970/Csa07g013360 and 

Csa09g034290/Csa06g017080 gene pairs which are homologs of Arabidopsis FATTY ACID 

DESATURASE 3 (AtFAD3) (At2g29980) and AtbZIP67 (At3g44460), respectively. The former 

is involved in linolenic acid synthesis (O’Neill et al., 2011), while the latter is a known regulator 

of AtFAD3 (Mendes et al., 2013), highlighting a potential feedforward loop between 

CsaABI3VP1-2, Csa09g034290/Csa06g017080, and Csa16g014970/Csa07g013360 in Camelina.  

3.4 DISCUSSION 

Camelina is an oilseed crop that has emerged as a prominent feedstock for biofuels and 

industrial oils during the past decade. Its polyploid genome makes it challenging to identify genes 

involved in the biosynthesis or regulation of seed oils by classical loss-of-function approaches. 

The homology to Arabidopsis has permitted to translate knowledge gained in this model plant to 

Camelina, exemplified in the manipulation of epicuticular and total wax production by the 

overexpression of AtMYB96 (Lee et al., 2014), or in the increase of seed oil by the overexpression 

of Arabidopsis WRI1 (An and Suh 2015). However, homology-based approaches are unlikely to 

reveal the regulators that make Camelina such a good oil producer. Moreover, techniques such as 

ChIP-seq, classically used to discover TF targets, can be challenging to implement because of the 

difficulties associated with developing antibodies that recognize a single homolog in a polyploid, 

and the use of epitope-tagged version of the TF for ChIP experiments is questionable because the 

function of the epitope-tagged TF cannot be tested unless a mutant is available (which again is 

difficult to obtain in a polyploid).  

We present here a co-expression guided approach aimed at identifying candidate Camelina 

TFs involved in the control of seed oils, followed by the evaluation of TF target genes based on 

DAP-seq. While not perfect, this strategy overcomes many of the limitations imposed by a 
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polyploid genome, providing a small set of candidate TFs that can be used for metabolic 

engineering efforts (Grotewold 2008).  Co-expression analyses identified 22 TFs strongly co-

expressed with LRGs, which were further reduced to 16 after several quality control steps. 

Furthermore, co-expression analyses with seed expression data allowed us to identify specific 

metabolic processes targeted by our regulators, including the control of FA- and TAG-related 

genes during Camelina seed development.  

Evidence of the robustness of our co-expression analysis is provided by the inclusion in our 

list of candidate TFs homologs of well-known regulators of lipid-related metabolism in 

Arabidopsis, including the Camelina homologs of ABI3, FUS3, MYB9, and MYB107 (Giraudat 

et al., 1992; Keith et al., 1994; Lashbrooke et al., 2016). Our list of Camelina TFs also includes 

homologs of TFs indirectly associated with lipid metabolism in Arabidopsis, such as the 

Arabidopsis homolog of CsaNAC2 (AtNAC60).  AtNAC60 was shown to play a role in sugar 

sensing (Li et al., 2014), as a negative regulator of AtABI5 (Yu et al., 2020), and is a target of 

AtABI4 (Li et al., 2014). Both AtABI5 and AtABI4 are known regulators of sugar-responsive 

expression, seed germination, and lipid metabolism (Chandrasekaran et al., 2020; Skubacz et al., 

2016). While AtULT1 (homolog of CsaULT1) has been implicated in various Arabidopsis plant 

developmental processes (Fletcher, 2001; Pires et al., 2015; Ornelas-Ayala et al., 2020), a recent 

transcriptome analysis of loss of AtUTL1 function (Tyler et al., 2019) showed a significant 

enrichment (P-value < 0.05) for LRGs among the differentially expressed genes, indicating a 

participation of AtUTL1 in the control of lipids. We could not test the co-expression of AtMYB67 

(homolog of CsaMYB3) with Arabidopsis LRGs because it is expressed at very low levels. 

However, supporting a potential role of CsaMYB3 in lipid-related metabolism, AtMYB67 

physically interacts with the known negative regulator of cuticular wax biosynthesis AtDEWAX 
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(Trigg et al., 2017), which is a target of AtAGL15, a regulator of embryogenesis and gibberellic 

acid catabolism (Zheng et al., 2013). However, our analysis also identified 13 Camelina TFs 

(including CsaC3H2, CsaHB2, Csazf-HD1, CsaC3H1, CsaAP2/B3-like-1, CsaC2C2-Dof1, 

CsaB3-1, CsaS1Fa-like-1, CsaNAC1, CsaWRKY1, CsaTify1, CsaHB1, and CsaLBD1) that were 

previously not associated with the regulation of lipids. 

To further elucidate the role of these 22 Camelina TFs in lipid regulation and to identify 

potential targets of these TFs, we applied DAP-seq to them. DAP-seq has many limitations, chief 

among them is that it is performed in a chromatin-free context, resulting in the identification of 

binding sites and potential targets that might not be accessible in vivo. However, it is easy to 

implement, and it is not affected by a polyploid genome, as ChIP techniques are. DAP-seq 

permitted us to identify TFBMs and potential target genes for 16 out of the 22 TFs identified. 

When we compared our DAP-seq results with those derived from a large scale analysis conducted 

for Arabidopsis TFs (O’Malley et al., 2016), we determined that DNA-binding properties for ten 

out of the 16 TFs are not available for the corresponding Arabidopsis orthologs, either because 

were not tested (homologs of CsaMYB1, CsaNAC2, CsaC3H2), or because the corresponding 

experiments for Arabidopsis TFs did not result in meaningful results (homologs of CsaC2C2-Dof1, 

CsaC3H1, CsaHB1, CsaHB2, CsaHRT1, CsaLBD1, and Csazf-HD1).  

The analysis of TF target enrichment for LRGs and GO terms within the sets of predicted 

targets provided additional validation for the results obtained from the co-expression analyses for 

nine TFs (Figure 3.5a). Of interest, in several instances, the GO enrichment analysis also exposed 

biological processes previously reported for the corresponding Arabidopsis homologs. For 

example, the DAP-seq results for CsaMYB1 and CsaWRKY1 showed enrichment for targets 

associated with suberin biosynthesis and defense responses, which are known functions of 
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AtMYB9 and AtWRKY3, respectively (Lai et al., 2008; Lashbrooke et al., 2016; Birkenbihl et al., 

2018). The targets of CsaNAC2 were also enriched in genes associated with fruit ripening, 

hormone biosynthesis processes, exit from dormancy, inositol lipid-mediated signaling, and lipid 

homeostasis terms (Figure 3.6), which are in good agreement with the functions attributed to 

AtANAC60, the Arabidopsis homolog (Li et al., 2014; Yu et al., 2020). The targets of Csazf-HD1 

showed enrichment for several GO terms, including cell death, cell wall organization, cellular 

response to endogenous stimulus, and cellular response to hormone stimulus, matching the 

predicted functions of AtZHD13/RHD1 (Liu et al., 2021). CsaHB1’s targets were enriched in GO 

terms related to leaf development and light responses, response to auxin, response to abscisic acid, 

and post-embryonic plant organ development, among others, similar to the known functions of 

AtHB4 (Carabelli et al., 1993; Sorin et al., 2009; Bou-Torrent et al., 2012). Finally, the targets of 

CsaABI3VP1-2 showed enrichment for GO terms that cover the full spectrum of the functions 

known for its Arabidopsis homolog, AtFUS3 (Curaba et al., 2004; Kagaya et al., 2005; Tiedemann 

et al., 2008; Lumba et al., 2012; Tang et al., 2017). When considered together, these results not 

only provide evidence of the biological significance of the associations identified here, but also 

reveal the intertwined connections between lipid metabolism and other biological processes in 

Camelina. 

Regulators of plant metabolism often regulate multiple genes in a pathway, making them 

attractive for metabolic engineering (Broun 2004; Grotewold 2008). We took advantage of this 

characteristic of metabolic regulators to identify TF-process relationships with significant co-

expression signals at the pathway, rather than as individual target gene level by applying GSEA 

(Subramanian et al., 2005). This permitted us to identify previously unstated associations that 

further support several of the identified TFs as important lipid regulators (Figure 3.7). Finally, we 
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took advantage of a computational method (GENIE3) that involves causality (rather than simply 

correlation) to further support the role of several of the identified TFs in controlling particular 

aspects of lipid metabolism in seeds. When taken together with the results from the other methods 

applied in this study, our results suggest that CsabZIP1 is involved in controlling FA and TAG 

degradation just before seed germination, CsaMYB1 regulates FA elongation, and CsaABI3VP1 

controls the synthesis of TAG (Figures 3 & 4). Our results also implicate CsaMYB1 and CsaNAC2 

as participating in the regulation of cutin biosynthesis (Figure 3.7). 

Gene regulation is at the core of many important agronomic attributes and TFs have a large 

potential to modify complex traits (Century et al. 2008; Springer et al. 2019).  Identifying TFs that 

control specific metabolic or developmental processes in polyploids is challenging because the 

effect of mutations is often masked by redundancy, and traditional approaches to investigate TF 

function are limited by high sequence identity between homologs. Our strategy to identify 

Camelina candidate TFs involved in the regulation of lipid metabolism was based on a 

combination of co-expression analyses and target identification using DAP-seq. These resulted in 

the identification of a set of 16 TFs. The presence among these 16 TF of several that were 

previously shown in Arabidopsis to participate in different aspects of lipid accumulation furnished 

a validation for the approach. Incorporating into our pipeline co-expression analyses that imply 

causality and that take into consideration that TFs often control multiple genes in a metabolic 

pathway further provided a better picture of the regulatory events involving the identified TFs in 

seed oil accumulation in Camelina. Similar combination of approaches could significantly 

contribute to identify key regulators for important agronomic traits in other polyploids. 
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3.5 METHODS 

3.5.1 Plant materials and growth conditions 

Camelina sativa cultivar Suneson was grown in the plant biology greenhouse at Michigan State 

University. RNA-seq and DAP-seq experiments were performed on plants grown for one month 

at 22 °C and under 16:8 -h light/dark cycles. For seed RNA-seq, total RNA was extracted from 

seedpods harvested at 5, 8, and 11 DPAs. For DAP-seq, a pool of ten leaves from six mature (two-

month-old) plants was collected.  

3.5.2 Cloning and expression of transcription factors for DAP-seq 

A set of 22 full-length Camelina TF-ORFs were annotated using the Camelina sativa cultivar 

DH55 (reference genome, V2.0, http://camelinadb.ca). Coding regions were assembled (when 

required) using expression data available for the Camelina cultivar Suneson. TF-ORFs Gateway 

compatible were synthesized by Genewiz (https://www.genewiz.com/Public/Services/Gene-

Synthesis/Standard). Clones were recombined using LR clonase II (Life Technologies) into the 

pIX-Halo expression vector containing both T7 and SP6 promoters (pIX-Halo:ccdB) 6xHis-tag at 

C-terminus, no stop codon but has T7 terminator. 

3.5.3 RNA-seq library preparation 

Total RNA from fresh seed, after removing pod covers, was extracted using Spectrum Plant 

Total RNA Kit (Sigma-Aldrich) according to the manufacturer’s protocol. The total RNA was 

prepared with three biological replicates, each with ~100 mg seeds. The quality of total RNA was 

determined by TapeStation4200 (Agilent), and cDNA library was generated with 1 μg of total 

RNA using TruSeq stranded mRNA (Illumina). The pooled libraries were sequenced with a pair-

ended read length of 150 bp by Illumina HiSeq 4000 at the Research Technology Support Facility 

Genomics Core at Michigan State University.   

http://camelinadb.ca/
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3.5.4 DAP-seq library preparation 

Camelina sativa genomic DNA were extracted using urea buffer (7M urea, 350mM NaCl, 

50mM Tris-HCl pH8, 20mM EDTA, 1% N-lauroyl sarcosine) and mixed with 

phenol:chloroform:isoamyl alcohol 25:24:1. The supernatants containing DNA were further 

precipitated using 3M NaOAc (pH 5.2) and isopropanol followed by 70% ethanol wash. The DNA 

pellet was resuspended in UltraPure™ DNase/RNase-Free Distilled Water (Invitrogen) followed 

by RNase A (Roche) treatment and ethanol precipitation.  DAP-seq gDNA libraries were 

constructed following the protocol of Bartlett et al. (2017) with minor modifications. Extracted 

gDNA were fragmented to the size range between 200-400 bp using Diagenode’s Bioruptor® 300 

for 40 cycles with 30 seconds on/off at high energy. The fragmented DNA was further used for 

end repair and adapter ligation. To create modification-free DNA, additional 11 cycles of PCR 

amplifications were performed using the adapter ligated libraries, followed by ethanol 

precipitation. Finally, the amplified gDNA libraries (ampDAP) were used for all protein-DNA 

interaction procedures. The Halo-tagged TFs were expressed in the wheat germ in vitro 

transcription/translation SP6 promoter system (Promega). All the buffers and procedures for DNA-

protein interaction were as published (Bartlett et al., 2017), except that the input gDNA library 

amount and the final step of library size selection. About 200 ng of ampDAP gDNA library were 

added as an input to mix with each pIX-HALO-TF protein. Finally, to perform double-size 

selection targeting 300-400 bp fragments, 0.7 volume of Agencourt AMPure XP beads (35 µl) to 

1 volume of sample (50 µl) were mixed for 5 minutes and the bead was discarded to remove 

fragments with size larger than 400 bp. Next, the supernatant (85 µl) containing < 400 bp fragments 

were added to 0.2 volume of Agencourt AMPure XP beads (10 µl) and mixed for 15 minutes. The 

bound fragments were eluted from the beads by adding 18 ml UltraPure™ DNase/RNase-Free 
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Distilled Water (Invitrogen). The concentrations of eluted DNA were measured using the Qubit 

HS dsDNA assay kit, and approximate 5-20 ng/µl final concentrations were obtained. The 

fragment size and binding capacity to the flow cell were further examined on the agarose gel by 

six cycles of PCR using 2 µl of eluted ampDAP-seq library with Illumina P5 and P7 primers. 

Twelve libraries were pooled in one lane and sequenced by Illumina HiSeq 4000 SE50 at RTSF 

Genomics core at Michigan State University.  

3.5.5 Data processing, quantification, and statistical analyses 

RNA-seq.  Sample quality control was performed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, V0.11.5). Adapters and low quality 

reads were trimmed with Trimmomatic (Bolger et al., 2014) using the following parameters: 

ILLUMINACLIP:Adapter.fastq:2:40:15 SLIDINGWINDOW:4:20 MINLEN:30. Cleaned reads 

were mapped to the reference genome (V2.0, http://camelinadb.ca) using HISAT2 (2.0.4) (Kim et 

al., 2019) with default parameters. Reads aligned to genes were counted with the R package 

Rsubread v1.32.2 (Liao et al., 2019), using default parameters and counting only uniquely-mapped 

reads (Liao et al., 2019), and the transcript abundance estimated as transcripts per kilobase million 

(TPM). Arabidopsis RNA-seq samples were re-analyzed using the same pipeline. Cleaned reads 

were mapped to the TAIR10 Arabidopsis genome (https://www.arabidopsis.org/).  

Selection of TF candidates based on co-expression analyses. Camelina lipid-related genes 

(LRGs), TFs and the whole genome expression data were collected from CamRegbase 

(https://camregbase.org/, Gomez-Cano et al., 2020). Specifically, we retrieved 2,765 LRGs, 5,590 

TF, and TPMs values for 131 publicly available RNA-seq experiments. Mutual information (MI) 

was used as the co-expression metric and estimated with the R package Parmigene v1.0.2 (Sales 

and Romualdi, 2011). The top 200 genes with the highest MI (MI value ≥ 1) were assumed as the 
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co-expressed genes of the corresponding TFs. The significance of the common LRGs and co-

expressed genes by TF was tested with a Fisher-Exact Test. TF family enriched on TFs 

significantly co-expressed with LRGs were characterized using the R package GeneOverlap 

v1.26.0 (Shen and Sinai, 2020). TF-target genes co-expression analysis was performed using the 

log2 of TPMs+1 collected from CamRegBase and generated in this work from seed samples (Table 

S1). The co-expression was estimated as the Pearson coefficient of the expression of the 

corresponding TF and target expression profiles and was calculated with the cor function 

implemented in R v3.6.0 (https://www.r-project.org/). Arabidopsis homologs of the corresponding 

Camelia candidates were collected from CamRegbase (https://camregbase.org/, Gomez-Cano et 

al., 2020), and the co-expression analysis was performed with the sample pipeline and filters 

implemented in Camelina’s analyzes.   

DAP-seq read mapping, filtering, and peak calling. Sample quality control was performed 

using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, V0.11.5). Adapters 

and low quality reads were trimmed with Trimmomatic (Bolger et al., 2014) using the following 

parameters: ILLUMINACLIP:Adapter.fastq:2:40:15 SLIDINGWINDOW:4:20 MINLEN:30. 

Cleaned reads were mapped to the reference genome (V2.0, http://camelinadb.ca) with Bowtie2 

v2.3.4.1 (Langmead and Salzberg, 2012) and only using nuclear chromosomes. Multi-mapping 

reads were filtered with Samtools v1.9 (Li et al., 2009): samtools view -q 30. Peaks were called 

using GEM v3.4 (Guo et al., 2012) using the HALO vector as negative control, and the  following 

parameters: --d Read_Distribution_default.txt --k_min 6 --k_max 15 --k_seqs 2000 --outNP --sl. 

For TFs with replicates, GEM was called with the replicate mode. Only TFs with >500 predicted 

peaks were used for further analysis. Arabidopsis DAP-seq samples were re-analyzed using the 
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same pipeline. Cleaned reads were mapped to the TAIR10 Arabidopsis genome 

(https://www.arabidopsis.org/).  

Peak quality control, and motif enrichment. Summit peaks were extended 50 bps and formatted 

into SAF files to count mapped reads by peak using the R package Rsubread v1.32.2 (Liao et al., 

2019). Read abundance was estimated as counts per kilobase million (CPM) by peak, which were 

then used to estimate the log2FC (TF/Halo) of each peak. Peaks with log2FC > 0.5 were used for 

further analysis. TF binding motifs were identified with the meme-chip tool (-meme-minw 6 -

meme-maxw 20) from the MEME suite v5.1.1 (Machanick and Bailey, 2011), using top 1,000 

peaks with largest log2FC. DNA sequences of the corresponding peaks used as input on meme-

chip were extracted from the reference genome (V2.0, http://camelinadb.ca) using the getfasta 

function from bedtools v2.26.0 (Quinlan and Hall, 2010). MEME’s predicted motifs frequency 

and distribution were assayed with the FIMO tool from the MEME suite v5.1.1 (Grant et al., 2011). 

Fimo analysis was performed with default parameters using the total set of peaks selected after the 

log2FC filter as the fasta database. Motif Z-scores were estimated as follow: 𝑍!"#$%𝑠𝑐𝑜𝑟𝑒 =

(𝑋!$ − 𝑋!)/𝑠𝑑(𝑋!), such that 𝑋! and 𝑠𝑑(𝑋!) are the average and standard deviation of the total 

number of significant hits of the motif m (Fimo q-value <=0.05) for the corresponding TF X. 

And,	𝑋!$ represents the total number of significant hits (Fimo q-value <=0.05) of the TF X at the 

peak’s position i for the corresponding motif m. The position i was defined as the position at which 

the motif's first nucleotide did match within the corresponding peak sequence (i.e., position 1 to 

100, having 50 as the peak’s summit). Peaks without a motif match were filtered out from further 

analysis.  Motif logos were generated using MotifStack (Ou et al., 2018). Peaks were visualized 

with the Integrated Genome Browser (IGV) (Robinson et al., 2011), for which bam files were 

converted into bigwig files normalizing mapped reads by bins per million mapped reads (BPM) 
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using bins 10 bps long. Bigwig files were generated using the bamCoverage tool from deepTools 

v3.5.0 (Ramírez et al., 2016). 

Target genes identification, lipid-related target enrichment, and GO enrichment analysis. 

Targets genes were assigned based on the peak’s summit distance to the closest annotated 

transcription start site (TSS). We use 3 kpbs around the TSS as the maximum distance threshold. 

Summit-TSS distances were estimated using the closest function from bedtools v2.26.0 (Quinlan 

and Hall, 2010) as follows: closestBed -a Summit.file.bed -b Cs_TSS.bed -D "b". The TSSs bed 

file was generated using the current genome annotation available (V2.0, http://camelinadb.ca). 

Lipid-related target gene enrichment was carried out using the R package GeneOverlap v2.28.0 

(Shen and Sinai, 2020), with the total number of Camelina genes annotated as background. GO 

enrichment on predicted target genes was performed using the R package topGO v2.38.1 (Alexa 

and Rahnenfuhrer, 2010). The top 10 GO terms were selected based on the P-value filtering out 

general and redundant terms. Genes GO annotation was retrieved from CamRegBase, which is 

based on homolog with Arabidopsis  (Gomez-Cano et al., 2020).   

Target enrichment at pathway level and gene set enrichment analysis (GSEA) algorithm. The 

identification of TF enriched on target genes associated to specific lipid-related pathways we 

performed using the gene-pathway annotation introduced in Figure 3.1, and using the R package 

GeneOverlap v2.28.0 (Shen and Sinai, 2020), with the total number of Camelina genes annotated 

as background.  The GSEA assay was performed with the list of pathways/genes presented in 

Figure 3.1 using the R package FGSEA v1.18.0 (Korotkevich et al., 2021), and with Pearson 

Correlation Coefficients (PCCs) as scoring metric. The PCC was estimated as weighted PCC 

(wPCC) between the corresponding TFs and the current annotated genes in Camelina (V2.0, 

http://camelinadb.ca). We use in this analysis the same list of expression samples analyzed during 
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the prediction of TF candidates. Expression values (TPMs) were log2 transformed, and wPCCs 

were calculate using the R package wCorr (Version 1.9.1) (Emad and Bailey, 2017)with an optimal 

threshold of 0.4, which reduces overestimation of the PCC because of similar samples (e.g., 

biological replicates). 

Seed co-expression analysis based on GENIE3. The estimation of potential target genes based 

on expression was performed with only seed expression data using the GENIE3 algorithm, 

implemented on the R package GENEI3 v1.14.0 

(https://bioconductor.org/packages/release/bioc/html/GENIE3.html) (Huynh-Thu et al., 2010). To 

identify significant scores, we re-assigned the gene IDs randomly at the expression matrix to then 

recalculate the corresponding GENIE3 score. This process was replicated 1,000 times in order to 

generate a null distribution for each potential target gene. The significance of the observed score 

vs the null distribution was estimated calculated as the significance of the Z-score observed, which 

calculated as follows:  

𝑍&'"() =	
𝑆𝑐𝑜𝑟𝑒"*&)(+), − 	𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑐𝑜𝑟𝑒(-.,"![0,..,0333])

𝑠𝑑(𝑆𝑐𝑜𝑟𝑒(-.,"!)
√𝑡𝑜𝑡𝑎𝑙	𝑟𝑎𝑛𝑑𝑜𝑚	𝑣𝑎𝑙𝑢𝑒𝑠

 

Given the number of comparisons, estimated P-values were corrected for multiple testing by 

Benjamini-Hochberg method (Yoav Benjamini and Yosef Hochberg, 1995). 

3.5.6 Data availability and accession numbers 

The supporting the findings of this work are available on the supplementary files. Raw 

sequencing data generated can be found in the NCBI SRA databased under the accession number 

PRJNA763897. Processed data have been deposited in the NCBI GEO databased under the 

accession number GSE184283. 
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CHAPTER FOUR: MULTI-NETWORK INTEGRATION TO PRIORITIZE 

REGULATORY GENES OF METABOLISM IN MAIZE 
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4.1 ABSTRACT 

Elucidating gene regulatory networks (GRNs) is a major area of study within plant systems 

biology. Phenotypic traits are intricately linked to specific gene expression profiles. These 

expression patterns primarily arise from regulatory connections between sets of transcription 

factors (TFs) and their target genes. In this study, I integrated publicly available co-expression 

networks encompassing over 6,000 RNA-seq samples, approximately 16 million SNPs, and 

around 300 protein-DNA interaction assays, which comprised 245 ChIP-seq and 38/ DAP-seq 

assays. Overall, I constructed four distinct types of TF-target networks, including co-expression, 

protein-DNA interaction (PDI), trans-expression quantitative loci (trans-eQTL), and cis-eQTL 

combined with PDIs. In total, I analyzed ~4.6M interactions. I implemented three different 

strategies to integrate these four types of networks, and performed evaluation of the method based 

on knockouts and random networks. These results identify transcriptional regulators of different 

biological processes, including hormone-, metabolic- and development-related processes. Finally, 

using the topological properties of the full integrated network I identify potentially functional 

redundant TF paralogs. Our findings retrieve functions previously documented for numerous TFs 

and reveal novel functions that are crucial for informing the design of future experiments. 

Moreover, I am laying the foundation for the integration of multi-omic datasets in maize and other 

plant systems. 

4.2 INTRODUCTION 

Plant cells, like those of other organisms, use multiple interconnected molecular layers which 

collaboratively coordinate every cellular process, from cellular division to metabolite synthesis 

and adaptation to environment changes. Among these molecular layers, transcription factor (TF) 

proteins play a vital role in controlling the expression of other genes (known as target genes) 
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(Gupta et al., 2021). The regulation requires the direct protein-DNA interactions (PDI) between 

TFs and specific cis-regulatory elements (CREs) located in close (promoters) or distal 

(enhancers/silencers) regulatory regions of the corresponding target genes (Schmitz et al., 2022). 

Furthermore, TFs can also regulate gene expression indirectly by engaging in protein-protein 

interactions (PPI) with other proteins. Together, collections of PDIs form highly interconnected 

gene regulatory networks (GRNs). Overall, GRN are characterized by gene-centered and TF-

centered approaches (Arda and Walhout, 2010; Mejia-Guerra et al., 2012; Yang et al., 2016). 

Common gene-centered methods include yeast one-hybrid (Y1H) assay and electrophoretic 

mobility shift assay (EMSA) (Arda and Walhout, 2010; Yang et al., 2016). TF-centered strategies 

involve techniques like ChIP-seq for in vivo TF binding site discovery, and SELEX, PBM, and 

DAP-seq for in vitro analysis (Yang et al., 2016; O’Malley et al., 2016). The organization of GRNs 

has implications for phenotypic variation (Deplancke et al., 2006), plant responses to abiotic and 

biotic stress (Nakashima et al., 2014; Birkenbihl et al., 2017; Sun et al., 2022), development 

(Marand et al., 2023), speciation (Mack and Nachman, 2017), as well as adaptation and 

diversification (Mack and Nachman, 2017; Bowles et al., 2020; Marand et al., 2023), among 

others. Therefore, it is crucial to comprehend the structure and dynamics of these networks, 

emphasizing the significance and rationale behind such endeavors.  

Maize holds great agricultural significance due to its versatility and wide range of applications. 

It serves as a staple food, particularly in sub-Saharan Africa and Latin America, and is also used 

for animal feed, meat production, dairy, and poultry products (Erenstein et al., 2022). Part of maize 

versatility underlines its extraordinary maize metabolic diversity (Riedelsheimer et al., 2012; Wen 

et al., 2014, 2016; Zhou et al., 2019), which is established by its genetic diversity (Schnable et al., 

2009; Hufford et al., 2021; McMullen et al., 2009), and varies as a function of endogenous 
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variables (e.g. organs or development stages) (Zhou et al., 2019) and environment factors (Wen et 

al., 2014; Kusmec et al., 2017). Irrespective of the methodology employed and the traits analyzed, 

maize has consistently shown a complex genetic architecture, as indicated by the number of loci 

potentially linked to a single trait and their minor contribution to the variance of the corresponding 

traits (Riedelsheimer et al., 2012; Wen et al., 2014, 2016; Xiao et al., 2017; Mazaheri et al., 2019; 

Zhou et al., 2019). These challenges present two primary obstacles in comprehending the 

molecular mechanisms underlying these traits: the involvement of multiple genes in a single 

phenotypic trait and the influence of additional genetic factors that determine and modulate the 

genetic contribution to phenotypic variations. 

A distinctive characteristic of maize is its genome itself, which has undergone a recent whole 

genome duplication (WGD) event ~5-12 Mya, and is currently defined as an ancient tetraploid 

(Wei et al., 2007). It has an abundance of tandem duplicated genes (Kono et al., 2018), and is 

highly-enriched in transposable elements (~85%) (Schnable et al., 2009). Furthermore, the WGD 

event resulted in the formation of two subgenomes (maize1 and maize2), exhibiting unequal gene 

loss and expression patterns, primarily driven by the subgenome with a lower fraction rate 

(Schnable et al., 2011). The dominant subgenome (i.e., maize1) was shown to have a larger 

contribution to phenotypic variations (Renny-Byfield et al., 2017). Nevertheless, the precise 

molecular mechanisms underlying the asymmetric contributions of each subgenome remain 

largely unknown and are likely orchestrated at multiple molecular levels, including regulation, 

signaling, and interactome level, as evidenced by examining co-expression and multi-network 

comparisons of homeologs (Li et al., 2016; Han et al., 2023). Understanding these mechanisms 

holds significant implications for modeling, prioritizing, and unraveling the principal factors 
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behind agriculturally relevant traits, while also advancing our fundamental comprehension of 

maize evolution. 

The multi-omic data sets have gained attention as alternatives to address the complexity of 

genetic and phenotypic variation observed in biological systems, offering insights at various levels 

of a biological process (Tolani et al., 2021). Integrating these diverse datasets is an evolving field, 

with four main approaches: conceptual integration (overlapping observations), statistical 

integration, network-based integration, and machine learning-based integration (Depuydt et al., 

2023). In maize, like in other organisms, the advancements in technology have led to the rapid 

generation of genomic data. These data encompass various molecular layers at different scales, 

such as TF binding profiles (Galli et al., 2018; Ricci et al., 2019; Tu et al., 2020), accessible 

chromatin regions (ACRs) (Rodgers-Melnick et al., 2016; Ricci et al., 2019; Marand et al., 2021), 

expression and co-expression atlases (Sekhon et al., 2011; Stelpflug et al., 2016; Hoopes et al., 

2019; Zhou et al., 2020), and transcriptomic, proteomic, and metabolic at population-level (Li et 

al., 2013; Wen et al., 2014, 2016; Kremling et al., 2018; Zhou et al., 2019; Mazaheri et al., 2019; 

Shrestha et al., 2022). Consequently, there has been a growing focus on integrating multi-omic 

datasets (Liu et al., 2016; Walley et al., 2016; Wen et al., 2016; Jin et al., 2017; de Abreu E Lima 

et al., 2018; Lee et al., 2019; Schaefer et al., 2018; Wen et al., 2018). However, most integration 

efforts primarily involve the verification of each layer with one another (i.e., conceptual 

integration) (Depuydt et al., 2023). There are a few exceptions where the layers are leveraged to 

enhance the integration (Schaefer et al., 2018; Yang et al., 2022) or to learn from their combined 

information (Han et al., 2023). Therefore, emphasizing the need for a comprehensive assessment 

of integration strategies and its effectiveness to prioritize gene-specific processes. 

https://paperpile.com/c/4zP5CG/nhKJ
https://paperpile.com/c/4zP5CG/8YAY
https://paperpile.com/c/4zP5CG/8YAY
https://paperpile.com/c/4zP5CG/aIqLl+mMsR8+3V04u
https://paperpile.com/c/4zP5CG/n5m1+mMsR8+ohm0X
https://paperpile.com/c/4zP5CG/HXjK+G3uk+b8q0+Tn4b6
https://paperpile.com/c/4zP5CG/HXjK+G3uk+b8q0+Tn4b6
https://paperpile.com/c/4zP5CG/nidi+pMnJ+jtwW+Rlf9+Trut+8SL2+cZak
https://paperpile.com/c/4zP5CG/nidi+pMnJ+jtwW+Rlf9+Trut+8SL2+cZak
https://paperpile.com/c/4zP5CG/nidi+pMnJ+jtwW+Rlf9+Trut+8SL2+cZak
https://paperpile.com/c/4zP5CG/5eKi+nOKKg+jtwW+bivC+bXnW+HKqR+kXYF+uQNI
https://paperpile.com/c/4zP5CG/5eKi+nOKKg+jtwW+bivC+bXnW+HKqR+kXYF+uQNI
https://paperpile.com/c/4zP5CG/8YAY
https://paperpile.com/c/4zP5CG/kXYF+QG1l
https://paperpile.com/c/4zP5CG/Bviu


 90 

In this study, I analyzed genetic and gene expression variation in 304 maize inbred lines. I 

utilized data from over 300 publicly available ChIP- and DAP-seq experiments, along with 45 

previously analyzed co-expression networks (Zhou et al., 2020). Combining these datasets, I built 

four molecular networks and employed three integration methods. I sought to annotate 

transcription factors (TFs) based on their predicted target genes. I combined published knockouts 

and created random networks as strategies to evaluate the corresponding functional predictions. 

This allowed me to identify the integration strategy that made functional predictions more similar 

to those observed in knockout assays, while minimizing the chance of random predictions. In 

essence, it allowed me to recover predictions rarely predicted by a random network. I provided 

evidence that these predictions recovered TF-process associations previously linked to specific 

biological processes. The compiled predictions enabled the creation of a TF-process association 

list, which, when combined with TF-target networks, facilitates the identification of regulators for 

processes like abscisic acid (ABA), lipid, phenylpropanoid, and leaf-related processes. Finally, I 

demonstrated that employing the generated embedding post-integration of all four networks, which 

recovers pattern of connectivity within the full combined network, allows distinguishing 

homologous (aka, paralogs) with potential redundancy in maize. Collectively, these findings offer 

a remarkable amalgamation of TF-process associations and lay the foundation for prospective 

network-based functional prediction in maize. Moreover, this invaluable tool facilitates the linkage 

of previously identified genetic markers with clusters of functionally associated genes, utilizing 

their connectivity patterns within the presented networks. 
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4.3 RESULTS 

4.3.1 Construction of a maize regulatory network based on multiple layers 

To build a multi-layer TF-function association network, I collected previously published co-

expression networks, single-nucleotide polymorphisms (SNPs), and reanalyzed publicly available 

expression, DAP-seq, and ChIP-seq datasets in maize. In total, I included several co-expression 

networks, genetic variation data for 304 maize inbred lines, and 289 DNA-binding assays (DAP-

seq and ChIP-seq) associated with 144 TFs (Figure 4.1a). In total, I identified ~3.4M, ~155.1K, 

~1.18M, and 112.46K TF-gene associations derived from the co-expression networks (CENs), a 

trans-eQTL association network (GAN), a gene-regulatory network (GRN), and cis-eQTLs 

overlapped with GRN interactions (eGRN), respectively. The GRN was built based on DAP/ChIP-

seq assays (Figure 4.1b). Construction details of the corresponding networks are described below.  

Coexpression network (CEN). To build the CEN layer, I started by collecting 45 CENs 

previously published (Zhou et al., 2020), and added an additional network constructed with a 

subset of expression datasets associated with 304 inbred lines [Wisconsin Diversity (WiDiv) panel 

(Mazaheri et al., 2019)]. The 304 lines were selected based on availability of high-density whole 

genome sequencing derived SNPs (Bukowski et al., 2018), following consistent methods with 

previously reported CENs (Zhou et al., 2020) (see Methods). Thus, in total, I utilized 46 different 

co-expression networks to define the TF-target CEN layer. Each network was reduced to only 

maize genes in synteny with Sorghum bicolor (Schnable, 2019) to avoid potential bias towards 

non-functional genes when conducting gene enrichment analyses. The syntenic gene filter was 

also applied to all other network types (i.e., GRN, eGRN, and GAN). On average, the collected 

CENs showed ~1,055 TFs co-expression network (Figure S4.1a) with ~74 predicted target genes 

(a.k.a, targets) per TF (Figure S4.1b). Combining all 46 CENs, I identified ~3.4M TF-target 
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associations involving 1,852 TFs and 23,788 targets (on average, ~1,350 targets per TF; targets 

can include other TF genes). To note, some of these TFs had several times more targets than the 

average TF (Figure S4.1b). For example, the ABI3VP1-7 (ABI7) and the C2C2-CO-like-

transcription factor 8 (COL8), showed >400 targets in five and four CENs, respectively (Figure 

S3.1b); or COL13 and the bHLH-transcription factor 127 (bHLH127), which in total showed > 

6,000 targets each (Figure S4.1c).  

Gene association network based on trans-eQTLs (GAN). This layer was built based on trans-

eQTLs identified in eight distinct tissues encompassing several developmental stages. Overall, 

after quality control and data preprocessing (see Methods), I tested between 15.5M - 16.7M SNPs 

against the expression of 15.3K - 26.4K genes across the eight tissue types. Thus, after discarding 

non-significant eQTLs (See Methods) and non-syntenic genes (Schnable, 2019), I obtained a total 

of ~22.9M eQTL-gene associations including ~10M and ~26.4k different SNPs and target genes, 

respectively. These associations were classified as cis-eQTL overlapped with its target genes (cis-

eQTLt), trans/cis-eQTL, cis-eQTL, trans-eQTL, and unassigned eQTL according to the distance 

between each eQTL and its corresponding target gene and eQTL-gene co-location (Figure S4.2a). 

Under this classification schema, I identified 10.2M, 6.7M, 1.20M, 1.18M, and 3.5M unassigned 

eQTL, trans-eQTL, trans/cis-eQTL, cis-eQTLt, and cis-eQTL, respectively (Figure S4.2a). 

Within them, trans-eQTLs (eQTLs overlapped with annotated genes and located >50 kbs far away 

from their corresponding target genes) were used to define the GAN.  

After removing redundant links (e.i., multiple eQTL supporting the same gene-to-gene 

connection), the resultant GAN harbored ~155k associations, including 23.9K and 18.9K source 

and target genes, respectively. Here, “source gene” was defined as a gene overlapped with the 

corresponding eQTL. To better understand the nature of the genes captured on the predicted GAN, 

https://paperpile.com/c/4zP5CG/jyz86
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I classified source and target genes into five functional categories including transcription factors 

(TFs), co-regulatory factors (CoReg), mediators, kinases, enzymes, and others (Yilmaz et al., 

2009; Zheng et al., 2016; Mathur et al., 2011). Interestingly, “Kinase” and “Enzyme” were the top 

two classes with the highest number of target genes, even larger than the “TF” class (Figure S4.2b). 

Similarly, “Enzyme” class was the most frequent target class followed by “Mediator” and co-

regulators (“CoReg”) (Figure S4.2c). I counted the interaction frequency between the 

corresponding classes, and after “Other”, “Enzyme” was the functional class with more 

interactions (13.7K) (Figure S4.2d), highlighting “Enzymes” as one of the functional classes more 

interconnected within the predicted GAN. Finally, I also note that the GAN recovered gene-gene 

interactions that capture both typical TF-target interactions, but also physical protein-protein 

interactions. An example is provided by the the HSF-transcription factor 20 (HSF20) which 

showed 354 targets, including 27 genes previously reported as heat-response related genes (Zhou 

et al., 2021), as well as five known physical interactors (Zhu et al., 2016). This highlights a 

typically unexplored set of regulatory connections among genes at several hierarchical levels.  

Gene-regulatory network (GRN), and cis-eQTLs overlapped with GRN interactions (eGRN). 

To construct the GRN, I collected and reanalyzed 283 PDI experiments associated with 142 

different TFs. All the reanalyzed assays corresponded to TF-centered approaches, including 215 

ChIP-seqs in protoplast (pChIP-seq), 30 classic ChIP-seq, and 38 DAP-seq. A single data analysis 

pipeline was used to process all PDI assays to reduce pipeline-specific bias (See Methods).  On 

average, I obtained ~52k peaks per TF which, in total, represented ~7.6M PDIs. Most of the 

predicted peaks were contributed by pChIP-seq (Tu et al., 2020), which represented 75% of the 

data analyzed (on average, ~55k peaks by TF) (Figure S4.3a). To identify high-confidence peaks, 

I applied two filtering criteria. First, I gathered accessible chromatin regions (ACRs) from the 

https://paperpile.com/c/4zP5CG/QdK73+u1nMb+5yhaH
https://paperpile.com/c/4zP5CG/QdK73+u1nMb+5yhaH
https://paperpile.com/c/4zP5CG/5RRkR
https://paperpile.com/c/4zP5CG/5RRkR
https://paperpile.com/c/4zP5CG/PrLzY
https://paperpile.com/c/4zP5CG/3V04u
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recently published single-nuclei ATAC-seq (snATAC-seq) atlas (Marand et al., 2021), retaining 

only TF's peaks that overlapped with ACRs. Therefore, I compared all the DAP-seq and ChIP-seq 

datasets to a shared regulatory maize space. Second, I removed peaks with low counts per million 

(CPM) (as defined by a Z-score ≤ -0.5) for each PDI assay. Overall, I filtered out ~3.8M and ~1.1M 

peaks using the ACR and CPM criteria, respectively (Figure S4.3b, c). As expected, DAP-seq 

assays, in both filters, have the largest percentage of discarded peaks (Figure S4.3b, c). 

Interestingly, comparing low-coverage and ACR co-location peaks and their distance to the closest 

annotated transcription start site (TSS), I find that peaks with the highest Z-values mapped largely 

to ACRs near TSSs (~10 kbs around) (Figure S4.3d). These last patterns were observed in all data 

types (DAP-, ChIP-, and pChIP-seq), thus, supporting the biological relevance of the high-

confidence peaks retained. After filtering, I ended with a set of ~3.6M of peaks that were used for 

further analyses. 

To define target genes, I integrated the peak-TSS distance and their overlap with cis-eQTLs 

(declared when a peak summit and a cis-eQTL were at ≤ 20 bp away). Combining these metrics, I 

classify the peaks into three types of peaks close to TSSs (≤ 3 kb) and two types of peaks far away 

from TSSs (> 3 kbs and ≤ 50 kb). Specifically, peaks in close proximity (≤ 3 kb) were defined as 

follows: peaks without cis-eQTL support (Figure S4.3e, light purple peaks), with cis-eQTL support 

and similar target prediction (Figure S4.3e, light green peaks), and with cis-eQTL support and 

different target prediction (Figure S4.3e, yellow peaks). These categories represented the 54.9%, 

1.9%, and 0.1% of the total analyzed peaks, respectively. Similarly, peaks located far away were 

classified as peaks with (3.3%) and without (39.5%) cis-eQTL support (Figure S4.3e; light blue 

and gray peaks, respectively). Overall, I did not observe differences in peak categories among PDI 

data types (Figure S4.3e, bottom panel). Thus, after discarding peaks located far away and without 

https://paperpile.com/c/4zP5CG/ohm0X
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cis-eQTL support, I build a gene regulatory network (GRN) and cis-eQTL supporting GRN 

(eGRN) combined all peaks by TF irrespectively of the PDI source. In total, I captured ~1.12M 

(GRN) and ~1123.46K (eGRN) TF-target interactions, including 138 TFs and ~23.9K and 13.9K 

target genes, respectively (Figure 4.1a, b).  

 

Figure 4.1 Construction of maize gene regulatory network based on multiple data types 
a. Model indicating the different types of TF-gene associations used to define the network types 
analyzed in this work. b. Summary of the metrics of the four types of network layers.  c. Schematic  
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Figure 4.1 (cont’d) 
representation of the pipeline implemented to annotate and evaluate the corresponding functional 
predictions.  
 
4.3.2 TF Functional annotation 

A major difference between the networks constructed is the number of TFs and their 

corresponding target/associated genes (here, indistinguishably called target genes), which hinders 

comparisons between layers. For instance, all four networks have 111 TFs with at least one target 

gene (Figure S4.4a, b), however, this number is reduced to only 17 TFs when comparing TFs with 

at least ten different target genes by network (Figure S4.4a, c). This reduction is largely caused by 

the low number of predicted targets on the GAN layer (on average, ~6.5 targets by gene). In 

consequence, I implemented three different strategies (common interactions, common 

integrations, and network-based) to functionally annotate the TFs present in the corresponding 

networks. In all three approaches, the annotation was performed based on enrichment of metabolic 

pathways (PWYs) (Andorf et al., 2016) and GO terms (Wimalanathan et al., 2018) (Figure 4.1c) 

(See Methods). Briefly, the most conservative approach, common interactions, assumes that only 

common TF-target interactions between layers (i.e., GAN, GRN, eGRN, and CEN networks) 

capture true targets of the corresponding TF, and by extension its function. 

Common function, assumes that a TF function is most accurately captured by those functions 

commonly enriched across different network types. Thus, it prioritizes functions commonly 

enriched for the corresponding TF across layers. Finally, network-based combines all layers to 

then extract topological properties for each gene. It assumes that each interaction type bore equally 

valid information about the function of the corresponding TFs. Specifically, it combines all four 

layers (GAN, CEN, eGRN, and GRN) creating a denser network (combined network) to then 

extract physical parameters - embeddings - from each gene in the combined network (See 

https://paperpile.com/c/4zP5CG/tQ1t7
https://paperpile.com/c/4zP5CG/VljXH
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methods). The transformation of the networks into a matrix of genes and embeddings allows the 

grouping of genes based on the similarity of their embeddings. Here, I used the mutual rank of the 

mutual information as the metric to identify highly similar genes in the embedding matrix, to then 

test for enrichment with PWYs and GO terms between the corresponding genes. Ultimately, this 

strategy allowed me to make functional annotation of TFs independently of the number of target 

genes predicted at the individual layer types (i.e., GAN, CEN, eGRN, and GRN).  

Common interactions. To identify common interactions, I compared all layers with each other 

(Figure S4.4a) and obtained ~4.6M TF-target interactions. As expected, GRN and eGRN were the 

layers with the largest number of overlapping interactions (~112.5K), followed by GRN and CEN 

(~102.7K) (Figure S4.4d). After identifying common interactions, I keep 206.2k out of the 4.6M 

interactions, including 934 and ~20.6K different TFs and target genes (Figure S4.4d). Using target 

genes as a proxy to annotate the TFs function, I test the enrichment of common target genes with 

PWYs and GO terms by TF (See Methods). Also, given the similarities in their molecular 

functions, I included co-regulators in the analysis and treated them without distinction from TF. 

In total, I found 2,812 TF-PWY and 8,550 TF-GO significant associations [False Discovery Rate 

(FDR) ≤ 0.1, Fisher’s Exact Test] (Figure 4.2a), which on average represented ~8 and ~80 PWYs 

and GO terms by TFs (Figure 4.2b). Combining PWY and GO term results, I annotated 347 TFs, 

out of which 235 TFs showed enrichment only in the PWYs analysis. The remaining 112 TFs 

showed enrichment with both PWYs and GO terms (Figure 4.2c).  

Common function. To identify common functions, I initially tested the enrichment of target 

genes with PWYs and GO terms for each TF in each layer. I retained TFs that had at least one 

PWY/GO term enriched in the last two different layers. This allowed me to explore common 

predictions between layers for the corresponding TFs (Figure S4.5a). I observed a variable number 
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of TFs enriched with PWYs (ranging from 120 to 2,019 TFs) and GO terms (ranging from 72 to 

1,777 TFs) across the different layers. Between the layers, eGRN had the fewest annotations, while 

CEN had the largest number of annotations (Figure S4.5b). Thus, after selecting TFs with at least 

one PWY and/or GO enrichment, I ended with 966 TFs and 245 TFs, respectively. When 

considering PWY annotations, the layer pair of CEN & GAN had the highest number of TFs 

annotated (888 TFs), while the layer pair of GRN & GAN had the lowest (59 TFs). Similarly, for 

GO term annotations, CEN & GAN had the highest number (130 TFs), while GRN & GAN had 

the lowest number (59 TFs) (Figure S4.5c, d). Regarding common predictions, I identified 

overlapping PWYs by evaluating gene overlap among all PWYs enriched per TF between layers 

(P-value ≤ 0.05, Fisher’s Exact) (Figure S4.5a). A similar approach was used to identify common 

functions at the GO term level. However, due to the hierarchical and redundant nature of the GO 

terms, I employed semantic similarity rather than gene overlap to determine common GO terms 

per TF between layers (FDR ≤ 0.1) (See Methods). These two annotation analyses together yielded 

7,081 TF-function annotations (727 TF-PWY and 6,354 TF-GO) (Figure 4.2a). On average, this 

corresponds to 3.5 different PWYs and 57.7 different GO term associations per TF (Figure 4.2b). 

In terms of TFs, these associations encompass annotations for 204 TFs through PWY enrichment 

and 110 TFs through GO term enrichment (Figure 4.2c). 

Network-based. I combined all four layers, i.e., CEN, GEN, GRN, and eGRN, to then scale the 

interaction frequencies from 0.5 to 1, being 0.5 and 1 the weight for interactions observed in one 

and all four layers, respectively. With the scale version of the combined networks, I proceeded to 

identify low-dimensional representations (embeddings) for each gene/node in the combined 

network (Figure S4.6a) (See Methods). The combined network included 4.6M interactions 

associated with 36.4K genes. Unlike the previous two strategies, this method generated an equal 
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number of descriptors (embeddings) for each gene in the network, thus allowing the identification 

of genes with similar properties, including TFs present in the CEN and/or GAN layers without 

data on the GRN/eGRN layers. The distance of the embedding vector between genes was defined 

as the decay function of the mutual rank of the mutual information of the embedding (See Methods) 

(Figure S4.6a). On average, I found 235 highly similar genes per TF [Distance (D), ≤ 0.05, See 

Methods] (Figure S4.6b). As in previous approaches, I annotated the corresponding TFs by 

assaying the enrichment with PWYs and GO terms of their highly similar genes (Figure S4.6a). In 

total, I found 23,796 and 7,722 TF-PWY and TF-GO significant associations (FDR ≤ 0.1, Fisher’s 

Exact) (Figure 4.2a), which on average captured ~7 and ~8 PWYs and GO terms per TF, 

respectively (Figure 4.2b). Combining both assays, I annotated 2,910 different TFs, out of which 

1,030 TFs showed enrichment with both PWYs and GO terms (Figure S4.6c). To note, these 1,030 

TFs belong to 82 different TFs (including co-regulator) families capturing and representing - on 

average - 34% of the total proteins annotated in the corresponding families (Figure S4.6d). This 

highlights the potential of the method to annotate TFs with unobserved layers.  

Comparing all three methods, network-based allowed me to identify the largest and lowest 

total number of TF-PWYs and TF-GOs associations, respectively (Figure 4.2a). Also, it has the 

lowest average of PWYs and GO terms per TF (Figure 4.2b). Unexpectedly, network-based and 

common target methods predicted a similar number of PWYs per TFs, which contrasts with the 

significantly lower number of GOs between network-based and the other two methods (Figure 

4.2b). Importantly, the number of TF annotated by the network-based is >2.5 times larger than the 

other two methods (Figure 4.2c, left panel). Finally, combining all results, I functionally annotated 

2,917 TFs. However, 94 (Figure 4.2c, violet plus green labels) and 32 (light blue plus green labels) 
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out of the 2,243 TFs showed at least a PWY and a GO term enrichment in all three methods, 

respectively.  

4.3.3 Evaluation of functional prediction with knockouts 

TF perturbation experiments enable the understanding of the TF regulatory landscape by 

unraveling the direct and indirect effects of expression changes induced by the expression variation 

of the corresponding TFs. Here, I used 21 previously published knockouts associated with 13 

different TFs (Zhou et al., 2020; Ellison et al., 2023) to assay the accuracy of each of the three 

methods by two independent strategies. Specifically, I questioned the overlap between predicted 

and observed PWYs/GO terms within DEGs for the corresponding knockouts. In parallel, I also 

tested the gene set enrichment analysis (GSEA) of the predicted PWYs/GO terms within the 

corresponding TF knockouts (Subramanian et al., 2005) (See Methods). Unexpectedly, predicted 

PWYs - without distinction of the methods - showed poor overlapping with PWYs observed at the 

knockout’s assays, as well as low recovering of PWY significantly enriched within DEGs as 

estimated by the GSEA (Figure S4.7). Conversely, comparisons between predicted and observed 

GO analysis showed similarities [measured by the GO semantic similarity (GSS)] different than 

the expected by chance (P-value ≤ 0.05) (Figure S4.8). Overall, the GO terms from knockouts and 

the GO terms predicted by network-based and common function are significantly more similar than 

the common targets predictions (higher GSS values, P-value ≤ 0.05, Wilcoxon test) (Figure 4.2d). 

Remarkably, when a prediction is available, the network-based method recovers the GO terms 

with the highest GSS values among all the methods (Figure 4.2d, TB1 and FEA4 results). 

Additionally, I observed that seven knockouts lacked predictions from network-based methods, 

while eight others had predictions only with network-based methods (Figure 4.2d, e). This 

variability in predictions can be partly attributed to the low number of target genes (when the 

https://paperpile.com/c/4zP5CG/Tn4b6+nsrj
https://paperpile.com/c/4zP5CG/xTeXO
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prediction is absent; Figure S4.9a, TFs with Z-score ≤ 0) and the absence of data in at least one of 

the four layers (i.e., GRN, eGRN, CEN, and GAN) (when the network-based method is the only 

one making the prediction, Figure S4.9b). Consistently with the GSS analysis, the GSEA results 

indicate that GO terms recovered with the network-based and the common function are more 

consistently identified across the different knockouts (Figure 4.2e). Thus, all together, my results 

suggest that network-based predictions are resilient to the presence-absence variation of layer’s 

data, although susceptible to the number of targets by TF. By extension, they also indicate that 

common targets and function predictions are more sensitive to the absence of data in at least one 

of the layers.  

Combining all GSEA results, I find that, on average, only 25% of total GO predictions show 

significant GSEA scores (P-value ≤ 0.05), denoting a low recovering rate of GO terms (Figure 

4.2e). I argue that the characteristic indirect effects of the knockout can explain these low recovery 

rates, combined with the tissue/condition/genotype differences between the knockout assays and 

the data used in the corresponding predictions. I used the TFs expression-specificity as a proxy to 

understand the relationship between the low fraction of GO recovered by GSEA and the 

tissue/condition/genotype variation among the corresponding TFs. Including all the TFs for which 

I obtained at least PWY/GO term prediction and using the Tau index as a metric (Kryuchkova-

Mostacci and Robinson-Rechavi, 2017), I find a bi-modal expression distribution with ~55% of 

the TFs trending into a sample-specific expression fashion (Figure S4.9c, Tau ≥ 0.65). 

Interestingly, only four out of the 13 TFs tested in the knockout analysis are expressed in a sample-

specific fashion (P-value ≤ 0.05) (Figure S4.9d, labeled in green). The top four included RA1 (Tau 

0.99) and TB1 (Tau 0.96), which also are the top two TFs with the largest fraction of GO term 

supported by the GSEA (Figure 4.2e). Hence, the results support the notion that a portion of the 

https://paperpile.com/c/4zP5CG/MvFl
https://paperpile.com/c/4zP5CG/MvFl
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low fraction of GO terms recovered can be attributed to the differences in conditions used on the 

knockout and prediction analyses. Thus, I predict that perturbation analyses conducted under 

conditions that mitigate tissue/condition effects may lead to a higher overlap.  

4.3.4 Evaluation of functional prediction by comparing with random networks 

Despite recovering GO terms similar to - and enrichment with - GO terms from knockouts 

(Figure 4.2d,e), which method generates fewer false positives still needs to be determined. In 

consequence, I assayed the identification of GO terms from ~3,000 random networks to establish 

which method recovered the lower fraction of false positives (See Methods). I counted the number 

and significance of the GO terms enriched in random networks as a proxy for the precision, and 

the similarity of observed GOs (true TF-target interactions) with the GOs from random networks 

as proxy for the accuracy of the corresponding methods. Also, to compare predictions across 

methods for the same TF, I reduced our analysis to only the 32 TFs with GO predictions in all 

three methods (Figure 4.2c, green and blue intersection). I posited that methods with fewer GO 

terms, less significant P-values (FDR), and GO terms from random networks less similar to 

observed GO terms are indicative of better predictions. Remarkably, network-based identified 

significantly enriched GO terms in only ~12% of random networks tested, which contrasts with 

the ~28% and ~72% obtained with the common function and the common target methods, 

respectively (Figure 4.2f). Concordantly, Network-based predicted significantly fewer GO terms 

(Figure 4.2g), with less significant P-values (Figure 4.2h) and GO terms less similar (lowest GSS 

values) to the predicted from true interactions per TF than those observed with common function 

and common target methods (Figure 4.2i), highlighting Network-based as the method with the 

highest precision and accuracy. To be noted, the common function predicted fewer GO terms per 

TFs than the common target; although its predictions have P-values more significant and with GSS 
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values equally similar to those observed in the common target (Figure 4.2g-i), patterns that were 

consistently observed also at individual TF level (Figure S4.10), positionings the common 

functional and the common target as equally noisy methods. 

Overall, the network-based method detected a lower number of GO terms per TF (Figure 4.2b) 

and had GO terms enriched in significantly fewer random networks (Figure 4.2f). This suggests 

limitations in the method's ability to identify GO term associations, as it inherently identifies fewer 

GO terms per TF. To examine this possibility, I investigated whether the number of GO terms 

observed with true interactions could be attributed to chance. Remarkably, 30 out of 32 tested TFs 

exhibited a significantly higher total number of GO terms compared to those expected by chance 

(P-value <= 0.05) (Figure S4.11). Thus, despite the network-based approach yielding fewer GO 

terms per TF, these identified GO terms contain valuable biological information that is unlikely to 

occur randomly. In conclusion, within the given data context used in this work, I affirm the 

network-based method as the superior approach. Consequently, I exclusively relied on network-

based predictions for subsequent analyses. 
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Figure 4.2 Annotation and evaluation of TF functional annotation by contrasting predictions 
with knockout assays and random networks  
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Figure 4.2 (cont’d) 
Total PWYs and GO terms predicted per integration method after combining all TFs predictions 
(a) and per TF (b). c. Upset plot comparing total TFs annotated by each method and annotation 
system. Colors indicate the groups of TFs functionally annotated by all three methods by 
enrichment with PWYs (fuchsia), GO terms (blue), and both PWYs and GO terms (green). Black 
groups indicate TFs annotated by at least one of the methods and annotation systems. d. Boxplot 
of the GO semantic similarity for the top 10 most similar GO terms observed in knockout assays 
for each of the predicted GO terms per TF and methods. e. Stacked barplot indicating the fraction 
of the GO terms predicted and significantly enriched - by GSEA analysis - in the knockouts. f. 
Violin plot showing the fraction of random networks with at least one significant (FDR ≤ 0.1, 
Fisher exact test) GO term by TF. g, h, and i. Boxplot showing the average number of GO terms 
(g), -log10FDR (h), and GSS (i) observed in 3000 random networks by method. The GSS values 
were calculated by comparing each random network with the observed GO terms from the true 
TF-target interactions. Asterisks indicate P-value significance (*: p ≤ 0.05, **: 633 p ≤ 0.01, ***: 
p ≤ 0.001, ****: p ≤ 0.0001, two-sided t-test). “TFm” denotes multiple mutant lines for the same 
TF.  
 
4.3.5 Prioritization of regulators by biological process 

The network-based method detected approximately 7.7K TF-GO associations, encompassing 

1,036 TFs and 2,219 GO terms (Figure 4.2a, c & Figure S4.6b, c). For ease of TF comparison, I 

retained associations involving GO terms within the biological process (BP) category and having 

fewer than eight hundred associated genes (when a more specific GO term association was 

present). Additionally, to minimize GO term redundancy, I mapped GO terms with a small number 

of annotated genes (less than 50 genes) to their nearest GO term parent. After applying the filters, 

I continued with 4,337 TF-GO associations, including 902 TFs and 559 GO terms. The distribution 

TF-GO associations obtained hold a scale-free distribution (Figure 4.3a, b). Typically, highly 

interconnected GO terms and TFs suggest a greater number of annotated and targeted genes, 

respectively. Nevertheless, I did not discover any evidence linking the gene count per GO term or 

the target gene count per TF to their respective degrees (Figure 4.3c, d). Therefore, these analyses 

highlight GO terms whose regulation may depend on multiple TFs, and TFs that may contribute 

to regulating several biological processes. 
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From the perspective of gene regulation, when multiple TFs are associated with multiple GO 

terms, it suggests that the regulatory impact of a TF on a GO term is influenced by the presence of 

other TFs. To assess the contribution of individual TFs to their respective GO terms, I calculated 

a scaled enrichment score (Z-score of the enrichment) for each TF and GO term (See Methods). 

Utilizing the scores as an indicator to assess the significance of individual TF-GO associations 

relative to all other TF and GO term associated, I observed that only 3.4% (151/4,337) of the TF-

GO associations exhibit high enrichment scores (Z-score ≥ 1) (Figure 4.3e, top right corner), 

indicating that only a reduced fraction of the TFs and GOs analyzed have strong enriched scores 

for the corresponding association. Consequently, this implies that most of the analyzed TFs/GO 

terms have multiple associations of comparable significance. I combined both Z-scores (per TF 

and GO term) into a reciprocated Z-score (rZ, See Methods) to rank TFs by GO term using a single 

metric. I evaluated the ranking after grouping GO terms into specific biological processes (Figure 

4.3f, and Figure S4.12). I highlight here, 46, 62, 47, and 50 abscisic acid (ABA)-, lipid-, 

phenylpropanoid-, and leaf-related TF-GO associations that were targeted by 44, 55, 47, and 50 

different TFs, respectively (Figure 4.3f). Using the rZ score as filter (rZ ≥ 0.5), I narrowed down 

the list to 25, 27, 15, and 19 TF candidates to control the corresponding processes (Figure 4.3f, 

dots with name label included). Some examples included the top two TFs ABA-related, NAC56 

and WRINKLED2 (WRI2). Additionally, WRI2 was also on the top three of the TFs related to 

lipid-related metabolism (Figure 4.3f, second panel). Finally, five (WOX9a, OFP39, 

Zm00001d024353, EREB149, and LBD24) out of the initial 47 TFs phenylpropanoid-related were 

previously identified as maize regulators of phenolic-related genes by yeast-one hybrid assays 

(Y1H) (Yang et al., 2017). Altogether, this highlights the biological relevance of the associations 

this analysis predicted.  

https://paperpile.com/c/4zP5CG/SBpSH
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Apart from controlling specific enzymatic or signaling-related genes, TFs can also regulate 

biological processes by targeting other TFs. This leads to the formation of regulatory circuits with 

multiple hierarchical levels and network motifs. To identify TFs that play a higher-level role in 

controlling a biological process, I calculated the ratio of TFs targeted by other TFs within specific 

GO terms to the total number of TFs targeted by the corresponding TF. Given that I looked for TF 

associated with a common function, this ratio represents the weighted proportion of feed-forward 

loops associated at the level of biological process compared to the overall TF targets of each TF. 

This measure is referred to as the upstream regulator score (URS). I calculated the URS for the 

twenty different processes, including eight hormones-, seven metabolic-, and five developmental-

related processes (Figure 4.3g). Cytokinin- and shoot-related GO terms were the top two processes 

with the highest score, with C2C2-CO-like 13 (COL13) and RAMOSA1 (RA1) as their top 

regulators, respectively (Figure 4.3g). To note, COL13 was previously associated with carbon 

metabolism (Tu et al., 2020), and is also differential expressed on the indeterminate1 (1d1) loss of 

function mutant (Minow et al., 2018). ID1 is a maize regulator of autonomous floral induction 

(Colasanti et al., 1998). Thus, our results suggest a role of COL13 in the connection among 

cytokinin, carbon metabolism, and flowering; mechanistic association previously reported in other 

plant systems (Bartrina et al., 2011; Wahl et al., 2013). Similarly, RA1 was predicted as the top 

upstream regulator of shot-related processes, and RA1 itself was linked with shoot system 

development (Figure 4.3g, process number 17), both of them functions previously associated with 

RA1 (Eveland et al., 2014). To further understand the regulatory landscape of the four processes 

described previously (Figure 4.3f), I selected the top two predictions - URS score - for each process 

and traced their TF targets back into the original networks (i.e., GRN, eGRN, CEN, and GAN) 

(Figure 4.3h). Specifically, I looked for regulators directly upstream of any of the top TFs as 

https://paperpile.com/c/4zP5CG/3V04u
https://paperpile.com/c/4zP5CG/XxfQ
https://paperpile.com/c/4zP5CG/ecMd
https://paperpile.com/c/4zP5CG/GWLX+2tR3
https://paperpile.com/c/4zP5CG/NVoc
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predicted by the reciprocal Z-score (rZ) analysis (Figure 4.3f). Without exception, I found at least 

an upstream regulator directly targeting (GRN network) at least one of the top three TFs from the 

rZ analysis, i.e., a top regulator of the corresponding biological process (Figure 4.3h). To highlight 

an example within the ABA-related process network, EREB17 targeted NAC56 and WRI2 (tops 

TFs in rZ analysis), and bHLH43 (URS top one) targeted WRI2 and EREB17 (Figure 4.3f, h, first 

panel). This configuration forms a feed-forward loop with bHLH43 on top (i.e., bHLH43 targets 

EREB17 and WRI2, and EREB17 targets WRI2). Within the lipid-related network, ARF14 

targeted WRI2 and PRH65 (top two and three by rZ score) (Figure 4.3f, h, second panel), as so 

did HB33 targeting LBD23 (top in rZ) in the phenylpropanoid-related network (Figure 4.3f, h, 

third panel). Finally, WRKY25 (top USR) targeted the MYBR4 and EREB126 (top two TFs in 

rZ), as well as BZR2 (top two in URS analysis) on the leaf-related network. Thus, it highlights 

specific regulatory hypotheses to further experiment validations.  
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Figure 4.3 Prioritization of regulators by biological process using network-based prediction 
a Out degree and b in degree distributions of the TF-GO term predictions obtained from the 
network-based integration analysis. c and d, scatter plots indicating the frequency - as density - of 
the number of TFs by GO terms (in degree) and GOs per TF (out degree) as a function of the 
number gene annotated per GO term (c) and target genes per TF (d), respectively. e, Scatter plot 
indicating the frequency - as density - of the TF-GO term enrichment scores scaled, which allows 
to rank GOs highly enriched with specific TF (GOz) and TFs highly enriched with specific GO 
term (TFz). The enriched was calculated only with TF-GO term associations already predicted in  
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Figure 4.3 (cont’d) 
previous analysis. Dotted line orange indicates TF-GO term associations with enrichment score a 
standard deviation over the observed average for the corresponding TF and GO term (Z-score of 
enrichment ≥ 1 for both GO term and TF). f. Scatter plot with reciprocal Z score (rZ) of four 
different biological process mapped into the GO and TF scaled score coordinates as presented in 
e; GO terms were grouped as follow: ABA-related (GO:0009737, GO:0009738, GO:0009688, and 
GO:0009788), Lipid-related (GO:0031408, GO:0006099, GO:0006635, GO:0019915, 
GO:0006629, GO:0019375, GO:0044255, GO:0016042, GO:0051790, GO:0008610, 
GO:0009062, and GO:0045332), phenylpropanoid-related (GO:0009963, GO:0009698, 
GO:2000762, and GO:0009699), and leaf-related (GO:0009965, GO:0048366, GO:0010305, 
GO:0010150). TF name/gene id labels are included for TFs with rZ ≥ 0.5. g. Scatter plot with TF 
ranked their upstream regulator score (URS) by biological process. TF name labels are included 
for TFs with rank ≤ 2. Square brackets indicate an arbitrary biological process index which 
matches with the number in square brackets of the corresponding TF names. All URS scores are 
calculated based on the original GRN, eGRN, CEN and GAN networks. h. Heatmap with top two 
TFs (y axes) from the URS analysis (g) for the four biological processes presented in f. X axes 
indicate the corresponding TF targets. Colors indicating the network(s) source of the 
corresponding interactions. 

4.3.6 Topological properties predict TF homeologs redundancy 

Although substantial efforts have been made to comprehend and anticipate the functional 

redundancy between maize paralogs in subgenomes (Schnable et al., 2011; Li et al., 2016; Kono 

et al., 2018; Han et al., 2023), the problem remains far from complete comprehension. I anticipate 

that if a pair of paralogs exhibit functional redundancy, these differences may manifest in their 

topological properties, i.e., functional redundant paralogs would display similar properties 

indicating a comparable network arrangement. To assess the similarity between paralogs, I 

generated a distance matrix from the embeddings using the mutual rank (MR) of mutual 

information as metric (Figure 4.4a). Next, I mapped TF paralogs (Schnable, 2019) and analyzed 

their MR and the similarity of their MR profiles with all the genes in the embeddings matrix as a 

proxy for understanding the similarity of their embeddings and the similarity of their resemblance 

with other TFs examined. I also differentiated between paralogs located on the same chromosome, 

serving as a proxy for pre-speciation tandem duplicates. In total, I tested 932 TF pairs, and 

regardless of the metric used, TF paralogs situated on the same chromosome demonstrated greater 

https://paperpile.com/c/4zP5CG/iCf3+PPAz+JhAX+Bviu
https://paperpile.com/c/4zP5CG/iCf3+PPAz+JhAX+Bviu
https://paperpile.com/c/4zP5CG/jyz86
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similarity compared to TF paralogs on different chromosomes (Figure 4.4b, c). I combined both 

scaled metrics to identify highly similar TF pairs (Figure 4.4d). As expected, both metrics were 

correlated (Pearson correlation 0.68), yet they effectively served the purpose of identifying TF 

paralog pairs that were highly similar. I tallied the number of interactions after the embedding 

integrations (Figure S4.6a) for the top ten TF pairs that were most and less similar (Figure 4.4e), 

all top ten TF pairs more similar have several common interactions (Figure 4.4e, light brown TF 

pairs highlighted), contrary to those observed within the top less similar which have none (Figure 

4.4e, gray brown TF pairs highlighted). Additionally, I find seven TF pairs mapped to the same 

chromosome out of the top ten TF pairs (Figure 4.4e, TF pairs with asterisk). Thus, for additional 

assessment of tandem duplicates distribution and the shared interactions between TF homologs in 

the context of the embedding similarities, I categorize all TF pairs into nine bins using both scaled 

similarity metrics (Figure 4.4d, dashed black lines). The bins are structured to include the most 

dissimilar TF pairs in the first bin (I) and the most similar pairs in the last bin (IX) (Figure 4.4f, 

internal box). Confirming the observation from the top ten TFs (Figure 4.4e), the bin IX contained 

5-7 times more tandem duplicates than the other bins (Figure 4.4f). I quantify shared interactions 

using the Jaccard index. By considering bin I as a reference, I detect significant differences (p < 

0.05, two-sided t-test) across five distinct bins (Figure 4.4g), primarily categorized based on the 

scaled correlation between TF pairs (Figure 4.4d, x axes). Furthermore, bin IX exhibits the utmost 

values, validating the predictive capacity of embedding similarities for functional redundancy in 

TF paralogs. 

Considering variations and similarities in topological properties as indications of function 

divergence and conservation, respectively, I expect that the protein sequence or expression 

variation of the TFs in bin I will be greater. Focusing exclusively on TF pairs from bin I and IX 
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(representing a TF pair with contrasting embedding similarities), I calculated the Hamming 

distance of the amino acid sequences and co-expression as proxies to understand the observed 

differences in topological dissimilarities. Unexpectedly, I did not notice any differences in the 

Hamming distance between TF pairs highly similar or dissimilar at the topological level, as 

evidenced by TF pairs highly conserved (low Hamming distance) in both groups of TFs (Figure 

4.4h). However, TF pairs in bin I (PCC = 0.44) showed slightly lower average co-expression values 

compared to those observed for TFs in bin IX (PCC = 0.5). Interestingly, when co-expression 

values are mapped in the context of TFs' Hamming distance, it allows me to differentiate TF 

paralog pairs that may be undergoing neofunctionalization/subfunctionalization due to variations 

in their protein sequences or its regulation. A striking example of the former is observed in 

MYBR1 and MYBR81, which have significantly different sequences (Hamming distance close to 

1), distinct embedding profiles (bin I), and yet display high co-expression (PCC > 0.9) (Figure 

4.4i). In contrast, HAG1 and HAG38, as well as GRAS14 and GRAS82, which also belong to bin 

I and have high similarity in peptide sequences (Hamming distance close to 0), show variation 

only in their co-expression (PCC < 0.3) suggesting variation at the regulation level (Figure 4.4i). 

Additionally, within the groups of TFs sharing similar embedding profiles (bin IX), I identified 

TFs exhibiting high conservation (Hamming distance close to 0) and similar expression, implying 

a significant degree of redundancy (e.g., MADS73 and TU1) (Figure 4.4j). Furthermore, I 

observed TFs with limited co-expression but high conservation (Hamming distance close to 0, e.g., 

C3H53 and C3H36), as well as TFs with fairly poor conserved peptide sequences (hamming 

distance close to 1, ABI5 and ABI4), indicating differences in its regulation (Figure 4.4j). Thus, 

altogether, the combination of embedding similarity, protein amino acid similarities, and co-

expression enables the identification of TFs that are clearly variable or redundant, which is a key 
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observation for understanding function redundancy (in terms of GO enrichment) as described 

previously (Figure 4.3). 

 

Figure 4.4 Network embedding as predictor of TF paralogs with functional variation 
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Figure 4.4 (cont’d) 
a. Diagram illustrating the key stages of comparing TF paralogs through embedding similarities. 
b and c. Box plots displaying the MRMI of TF pairs (b) and the Spearman correlations (SCC) of 
the observed MRMI profiles (c) derived from the embedding. d. Combined scaled scores of the  
MRMI and SCC for TF pairs. Black dashed lines with Z-scores of -0.5 and 0.5 indicate values 
below and above the average observed standard deviation. e. Heatmap indicating the total number 
of associated genes for the top ten TFs, on the top right corner and the bottom left corner TF pair 
(d). G1 and G2 represent the number of unique genes associated with the first and second TFs in 
the corresponding pair. G1:G2 indicates the common associations between the corresponding pair. 
F. Bar plot indicating the total number of TF pairs by bin. Bins are indicated on the interval box, 
which is a map of the zones in the plot in (d). g. Box plot with Jaccard index (as an approximation 
of common associated genes) by TF pair by bin (as presented in f). h. Jitter plot displaying amino 
acid (AA) differences (Hamming distance) between TF pairs in bins I and IX. i and j, Jitter density 
of points representing AA Hamming distance and co-expression (measured as PCC) for TF pairs 
in bin I (i) and IX (j). Asterisks indicate P-value significance (*: p ≤ 0.05, **: 633 p ≤ 0.01, ***: 
p ≤ 0.001, ****: p ≤ 0.0001, two-sided t-test). “TFm” denotes multiple mutant lines for the same 
TF.  
 
4.4 DISCUSSION 

Cells utilize complex networks of proteins to integrate and synergistically regulate their 

activities. Capturing the full extent of biological complexity requires the integration of multiple-

omic disciplines that generate layers of information from the cell. From a technical perspective, 

the integration of multiple network types allows one to verify and complement one another (Tolani 

et al., 2021; Shen et al., 2023; Depuydt et al., 2023). Maize, as many other plants, accumulates a 

vast and diverse type of metabolites (Riedelsheimer et al., 2012; Wen et al., 2014; Zhou et al., 

2019). Despite major advances in the understanding of the genetic and external factors that 

influence metabolic variation and accumulation in maize, transcriptional regulators of many of 

these metabolic pathways are largely unknown. This represents a knowledge gap that could be 

bridged by integrating multiple networks, which leverages the continuously growing multi-omic 

data available in maize (Liu et al., 2016; Walley et al., 2016; Wen et al., 2016; Jin et al., 2017; de 

Abreu E Lima et al., 2018; Lee et al., 2019; Schaefer et al., 2018; Wen et al., 2018). In this study, 

I analyzed three distinct data types (PDI, expression, and natural variation) and constructed four 

https://paperpile.com/c/4zP5CG/nhKJ+m5nN+8YAY
https://paperpile.com/c/4zP5CG/nhKJ+m5nN+8YAY
https://paperpile.com/c/4zP5CG/ooz2+pMnJ+Trut
https://paperpile.com/c/4zP5CG/ooz2+pMnJ+Trut
https://paperpile.com/c/4zP5CG/5eKi+nOKKg+jtwW+bivC+bXnW+HKqR+kXYF+uQNI
https://paperpile.com/c/4zP5CG/5eKi+nOKKg+jtwW+bivC+bXnW+HKqR+kXYF+uQNI
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different molecular networks (layers). I utilized various integration methods to prioritize 

transcriptional regulators associated with specific biological processes, which allows me to gained 

valuable insights into potential regulatory mechanisms underlying maize metabolism - as well as 

developmental-related processes - paving the way for designing specific experiments aimed at crop 

improvement, metabolic engineering, and basic gene regulation understanding of the of the 

corresponding processes. 

The rapid generation of multi-omic genomic data in maize has led to growing efforts to 

implement integration strategies (Liu et al., 2016; Walley et al., 2016; Wen et al., 2016; Jin et al., 

2017; de Abreu E Lima et al., 2018; Lee et al., 2019; Schaefer et al., 2018; Wen et al., 2018). 

However, the large majority of the studies relies on the idea of verifying each layer with one 

another (i.e., conceptual integration) (Depuydt et al., 2023), with a few exceptions where layers 

are used to level up each layer with one another (Schaefer et al., 2018; Yang et al., 2022) or to 

learn from the combination of them (Han et al., 2023). Here, I implemented three different 

integration strategies to make functional annotations of the TFs (Figure 4.1). Our findings indicate 

that the integration of multiple layers based on common targets and functions, although more 

intuitive, does not effectively recover observed GO terms in knockouts (Figure 4.2d, e). Instead, 

it frequently yields results that can be readily attributed to chance, as demonstrated by the number 

of times that a GO term may be retrieved from random networks, as well as their high similarity 

with the GO terms from the true network (Figure 4.2f-i). Surprisingly, the common targets strategy 

predicts a similar number (Figure 4.2a, g) and category (Figure 4.2i) of GO terms in random 

networks as in the true/observed networks (Figure 4.2a, g). From a technical perspective, this 

suggests that the initial set of interactions contains a significant number of false positives, which 

explains why random networks can recover similar sets of GO terms. Overall, the number of GO 

https://paperpile.com/c/4zP5CG/5eKi+nOKKg+jtwW+bivC+bXnW+HKqR+kXYF+uQNI
https://paperpile.com/c/4zP5CG/5eKi+nOKKg+jtwW+bivC+bXnW+HKqR+kXYF+uQNI
https://paperpile.com/c/4zP5CG/8YAY
https://paperpile.com/c/4zP5CG/kXYF+QG1l
https://paperpile.com/c/4zP5CG/Bviu
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terms and their significance (P values) in the enrichment analysis with random networks (Figure 

4.2g, h), suggest that common target and common function are more lenient than network-based. 

This drawback is compounded by the inherent technical noise associated with corresponding layers 

(e.g., PDI without transcriptional effect). Furthermore, it indicates that even when a TF-target 

interaction is highly reliable (due to its presence in multiple layers), it alone is insufficient to 

provide an accurate representation of the biological landscape associated with the corresponding 

TF (Figure 4.2d).  Interestingly, unlike the first two methods, the network-based approach proved 

to predict GO terms that are less likely to be observed from a random network. I interpreted this 

as a sign of robustness in the identification of genes truly functionally related (Figure 4.2g-i). My 

contention is that this robustness is rooted in the inherent nature of the embedding generation 

process, as it is highly improbable to observe similar wiring patterns across layers, despite the 

expected presence of potential false positives within each respective layer. Additionally, of equal 

significance, the network-based approach facilitated predictions for a considerably larger number 

of TFs (Figure 3.4c), thereby influencing the design of future experiments aimed at uncovering 

and validating specific TF functions in maize. 

In general, TF expand their regulatory repertoire through functional or physical interactions 

with other TFs (Reményi et al., 2004; Brkljacic and Grotewold, 2017), as evidence the formation 

of regulatory cluster both at the level of TF-target genes (Tu et al., 2020) and in the organization 

cis-regulatory elements across cell types (Marand et al., 2021). Here, combining all the TF-

function predictions made by our network-based integration I find a network-like structure 

independent of the number of genes by GO term or targets by TF (Figure 4.3a-d). Using a scaled 

enrichment score for each TF and GO term, I showed that only ~3% of our predictions had a single 

TF as the primary regulator of the corresponding GO term, which indicated that most TFs 

https://paperpile.com/c/4zP5CG/WBz2+gqZA
https://paperpile.com/c/4zP5CG/3V04u
https://paperpile.com/c/4zP5CG/ohm0X
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contributes to the regulation of multiple functions, and that the regulation of a biological process 

requires the involvement of multiple TFs. These similarities between the patterns observed here 

and previously reported ones are interpreted as validation of the presented results. Additionally, I 

prioritized TFs by biological process combining scaled scores from both TF and GO terms and 

built two tier regulatory models for specific biological processes. Noteworthy, the top two TFs 

ABA-related (NAC56 and WRI2) are differentially expressed under drought and cold conditions 

(Hoopes et al., 2019),  both conditions trigger the accumulation of ABA (Cutler et al., 2010; Waadt 

et al., 2022). Interestingly, WRI2 - a homeolog of the lipid metabolism master regulator WRI1 

(Pouvreau et al., 2011) - was also in the top three of the TFs related to lipid-related metabolism 

(Figure 3.3f, second panel) highlighting molecular connections between ABA signaling/control 

and lipid metabolism (Guschina et al., 2002; Chen et al., 2020). Similarly, five out of the previously 

identified maize regulators (Yang et al., 2017) and predicted by here as regulator of phenolic-

related genes included LBD24, which has the higher enrichment score (rZ = 0.08) confirming its 

previous identification as a highly-connected TF within the phenolic metabolism Y1H network 

(Yang et al., 2017). Finally, within the leaf-related predictions, I find MYBR4 as the top prediction 

linked with leaf morphogenesis term (GO:0009965) (Figure 4.3f, four panel). The closest 

MYBR4’s protein in Arabidopsis is AtMYB46 (AT5G12870, 68% identity and 29% coverage), 

which is a direct target of SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 

(SND1) and works as regulator of secondary wall biosynthesis in fibers and vessels in Arabidopsis 

(Zhong et al., 2007). Thus, it provides a plausible mechanism for the association of MYBR4 with 

leaf morphology in maize. Altogether, this highlights the biological relevance of the associations 

this analysis predicted. I showed the presence of feed-forward motifs within my results, which are 

known as a mechanism for reinforcement of regulatory signals (Alon, 2007). Together, these 

https://paperpile.com/c/4zP5CG/b8q0
https://paperpile.com/c/4zP5CG/UpD9+TDaQ
https://paperpile.com/c/4zP5CG/UpD9+TDaQ
https://paperpile.com/c/4zP5CG/zwBa
https://paperpile.com/c/4zP5CG/faQs+Sbu1
https://paperpile.com/c/4zP5CG/SBpSH
https://paperpile.com/c/4zP5CG/SBpSH
https://paperpile.com/c/4zP5CG/7Xyr
https://paperpile.com/c/4zP5CG/VC9C
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discoveries expand the anticipation of TF regulators of metabolic pathways to encompass a wider 

array of biological processes, bearing significant implications for forthcoming biotechnological 

applications, such as precise modifications of developmental processes, for instance. 

In summary, I built four different gene networks in maize, which included the re-analysis of 

almost 300 PDI assays under the same pipeline, and the associations of ~15M with public 

expression in a population of >300 inbred lines. I integrated these datasets with co-expression 

networks from our previous work (Zhou et al., 2020). Considering the inherent challenge posed 

by the variations in each respective network, I examined three distinct integration methods and 

employed two different strategies to functionally annotate TFs. Our findings demonstrated that 

integrating all layers, followed by the identification of highly-similar genes based on their 

embeddings, enabled the identification of genes which functionally allows the annotation of 

>1,000 TFs. Notably, the embedding similarities create a network of gene-gene associations 

involving over 24K genes. This study focused exclusively on regulatory-related genes, such as TFs 

and coregulators. Nevertheless, I foresee that the resources provided here for the remaining 

unexplored ~22k genes will also offer a wider array of functionalities. 

4.5 METHODS 

4.5.1 Genetic markers  

A set of 304 diverse inbred lines with publicly available SNP and gene expression information 

were included in our eQTL analysis (Bukowski et al., 2018; Kremling et al., 2018; Mazaheri et al., 

2019). SNP marker data from whole genome sequencing along with RNA-seq were combined 

between studies based on physical positions. In the case that an overlap was observed between the 

two datasets, the RNA-seq marker was preferentially kept. The expression datasets capture 

variation both at the genotypic and tissue level. 

https://paperpile.com/c/4zP5CG/Tn4b6
https://paperpile.com/c/4zP5CG/lGr43+Rlf9+8SL2
https://paperpile.com/c/4zP5CG/lGr43+Rlf9+8SL2
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4.5.2 RNA-seq and co-expression data 

All the RNA-seq and co-expression datasets utilized here were previously published (Zhou et 

al., 2020), except for co-expression network 46, which was constructed using the 304 inbred lines 

analyzed for genetic markers (referred to as n304). Specifically, pre-mapped CPM values were 

gathered for the respective inbred lines and employed the exact strategy outlined by Zhou et al. 

(2020) to construct the corresponding co-expression network, ensuring comparability among all 

46 networks. All co-expression networks were based on RandomForestRegressor and using the 

top 100K association by TF. 

4.5.3 eQTL identification and classification 

eQTLs were identified using eight distinct tissue types encompassing different developmental 

stages from germination to plant maturity (GRoot, Gshoot, Kern, L3Base, L3Tip, LMAD, LMAN, 

and seedling) (Bukowski et al., 2018; Kremling et al., 2018; Mazaheri et al., 2019). SNPs were 

filtered by removing non-biallelic markers, and those with a minor allele frequency < 0.05. Each 

of the tissue-specific expression datasets were filtered independently by retaining genes with ≥ 6 

reads in ≥ 20% of samples and ≥ 0.1 TPM in ≥ 20% of samples. After filtering, it was tested 

between 15.5M - 16.7M SNPs against the expression of 15.3K - 26.4K genes across the eight 

tissue types. Briefly, to test SNP-gene associations, a series of eight candidate linear models were 

fitted beginning with a naive T-test then progressively controlling for different levels of kinship 

and population structure in a mixed linear model. For each model tested, the association was 

deemed significant if the observed P-value surpassed the 10K permutation threshold computed for 

each gene. Non-significant eQTLs were discarded when the association was supported by fewer 

than two of the candidate linear models and when the association involved non-syntenic genes 

(Schnable, 2019). The significant associations were classified as cis-eQTLt, trans/cis-eQTL, cis-

https://paperpile.com/c/4zP5CG/Tn4b6
https://paperpile.com/c/4zP5CG/Tn4b6
https://paperpile.com/c/4zP5CG/lGr43+Rlf9+8SL2
https://paperpile.com/c/4zP5CG/jyz86
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eQTL, trans-eQTL, and unassigned eQTL according to the distance between each eQTL and its 

corresponding target gene as well as its co-location with annotated maize genes (genome B73-V4, 

Figure S4.2a).  

4.5.4 Protein-DNA interactions data analysis 

Raw reads from classic ChIP- (Bolduc et al., 2012; Morohashi et al., 2012; Eveland et al., 

2014; Pautler et al., 2015; Li et al., 2018; Zhan et al., 2018; Dong et al., 2019), ChIP-seq from 

protoplast (pChIP-seq) (Tu et al., 2020), and DAP-seq (Ricci et al., 2019; Dong et al., 2020) were 

collected from publicly available dataset. Reads quality control and peaks identification was 

performed as reported previously (Gomez-Cano et al., 2022). Briefly, read quality control was 

performed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, V0.11.5). 

Adapters and low quality reads were trimmed with Trimmomatic (Bolger et al., 2014) using the 

following parameters: ILLUMINACLIP:Adapter.fastq:2:40:15 SLIDINGWINDOW:4:20 

MINLEN:30. Cleaned reads were mapped to the maize genome (V4) (Jiao et al., 2017) with 

Bowtie2 v2.3.4.1 (Langmead and Salzberg, 2012) and only using nuclear chromosomes. Multi-

mapping reads were filtered with Samtools v1.9 (Li et al., 2009)  (q 30). Peaks were called using 

GEM v3.4 (Guo et al., 2012). In DAP-seq assays, HALO vector was used as a control. Peaks from 

classic ChIP-seq were called including duplicates and using the corresponding mutants or tag-

protein as control. Finally, ChIP from prototals were called including replicates. All of them used 

the following parameters: --d Read_Distribution_default.txt --k_min 6 --k_max 15 --k_seqs 2000 

--outNP --sl. Only TFs with >500 predicted peaks were used for further analysis.  

Peak quality control. Peaks were filtered by testing overlapping with ACRs, and by scaling the 

number of Counts per Million (CPMs) by peaks per assay. Briefly, peaks with a Z-score larger 

than -0.5 and mapping to ACR were kept for further analysis. The CPMs were obtained after 

https://paperpile.com/c/4zP5CG/vIji+cITv+NVoc+Uvq8+1Cp5+fUNx+5QJw
https://paperpile.com/c/4zP5CG/vIji+cITv+NVoc+Uvq8+1Cp5+fUNx+5QJw
https://paperpile.com/c/4zP5CG/3V04u
https://paperpile.com/c/4zP5CG/mMsR8+gHaX
https://paperpile.com/c/4zP5CG/4vfVg
https://paperpile.com/c/4zP5CG/OuBN
https://paperpile.com/c/4zP5CG/DAGl
https://paperpile.com/c/4zP5CG/RRYB
https://paperpile.com/c/4zP5CG/Sgwht
https://paperpile.com/c/4zP5CG/tnNOG
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extending the peaks’ summit 50 bps and converted to SAF files for counting mapped reads per 

peak using Rsubread v1.32.2 (Liao et al., 2019). Available accessible chromatin regions (ACRs) 

were collected from previously published maize ATLAS (Marand et al., 2021). Peaks with a Z-

score ≤ -0.5 and mapping to ACRs were retained for further analysis.  

4.5.5 Functional annotation 

All functional annotations were performed after discarding non syntenic genes. PWYs were 

collected from CornCYC (Andorf et al., 2016), and GO terms were obtained from GAMER 

(Wimalanathan et al., 2018). Syntenic genes were defined based on Schnable et al. (2019). 

Enrichment analysis for PWYs and GO terms was conducted in R using the GeneOverlap (v1.30.0) 

and topGO (v2.46.0) packages, respectively. GO term semantic similarity was calculated using the 

GOSemSim (v2.20.0) package in R, employing the "Wang" method. For common function 

analysis, all GO comparisons were performed on the original set of enriched GO terms, and after 

the comparisons (GO semantic similarity), all GO terms were mapped to their closest parent GO 

terms using the R package Rrvgo (v1.6) (Sayols, 2023). Similarly, all GO terms significantly 

enriched from common target and network-based analyses were mapped to its closed parent before 

any description to reduce redundancy. 

4.5.6 Network integration 

Common interactions. I compared TF-target associations across all layers (i.e., GAN, GRN, 

eGRN, and CEN networks) and considered interactions as common when they are present in at 

least two different layers for the same corresponding TF. Subsequently, I assessed the enrichment 

of PWYs and GO terms using the common TF interactions. Any significant GO terms were then 

mapped to their closest parent terms. 

https://paperpile.com/c/4zP5CG/QyKbn
https://paperpile.com/c/4zP5CG/ohm0X
https://paperpile.com/c/4zP5CG/tQ1t7
https://paperpile.com/c/4zP5CG/VljXH
https://paperpile.com/c/4zP5CG/5IhS
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Common function. Common functions were identified by testing the enrichment of target genes 

with PWYs and GO terms for each TF in each layer. TFs that had at least one PWY/GO term 

enriched in at least two different layers were retained to assess common predictions across layers 

(Figure S3.5a). The similarity in PWY predictions among layers was performed by comparing all 

PWYs between layers for each TF using a Fisher exact test. Enrichment test was used because a 

single gene could be annotated in multiple PWYs. Hence, PWYS were considered overplayed only 

if they exhibited a significant number of overlapped genes (P-value < 0.05). The similarity in GO 

term predictions were performed by measuring the semantic similarity between the corresponding 

terms. Significant GO terms are then mapped to their closest parent terms.  

Network-based. All four layers were combined and then scaled the interaction frequencies from 

0.5 to 1, as follow 0.5 + (0.5/4)*N, being N the number of times that same interaction was 

observed. Embeddings of the scaled network were identified with PecanPy (Liu and Krishnan, 

2021) using the following parameters: --weighted --dimensions 50 --walk-length 80 --num-walks 

10 --directed. Gene similarity was assessed by computing the mutual rank (MR) of the mutual 

information (MI) using the following formula: MRMI = sqrt(MI_rank * tMI_rank), where MI_rank 

represents the rank of the MI matrix and tMI_rank represents the transpose matrix of MI_rank. 

The MI was calculated using the R package Parmigene (Sales and Romualdi, 2011). To select 

highly similar genes by TF based on its MRMI I used a decay function as follows: D = e-(MRMI -1)/50. 

D values ≤ 0.05 were taken as highly similar (Wisecaver et al., 2017). After identifying genes 

highly similar per TF, I proceed to test the enrichment of PWY and GO terms. Significant GO 

terms are then mapped to their closest parent terms. 

 

 

https://paperpile.com/c/4zP5CG/NWqr
https://paperpile.com/c/4zP5CG/NWqr
https://paperpile.com/c/4zP5CG/TC2E
https://paperpile.com/c/4zP5CG/P29q
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4.5.7 Knockout and random network validation 

PWY and GO term predictions for TFs were contrasted with enriched PWY and GO terms 

identified in knockout analysis using DEGs and their corresponding log2FC values. I used data 

from previous studies for KN1 (Bolduc et al., 2012), RA1 (Eveland et al., 2014), FEA4 (Pautler et 

al., 2015), O2 (Zhan et al., 2018), bZIP22 (Li et al., 2018), and TB1 (Dong et al., 2019) reanalyzed 

in (Zhou et al., 2020). Additional knockout data (MYBR32_m1, WRKY82_m1, HSF13m1m2, 

HSF18m1, HSF20m1, HSF29m1, HSF29m2, WRKY2m2, WRKY8m1, and WRKY8m2) were 

collected from (Ellison et al., 2023). The enrichment of PWY and GO terms were performed with 

DEG selected based on adjusted P-value as reported by DESeq2 (Padj ≤ 0.05) (Love et al., 2014) 

and following indication described above (Methods session 4.5.5). The similarities between PWYs 

and GO terms predicted by each integration method and those observed in the corresponding 

knockout were estimated using PWY overlapping and GO semantic similarity, as previously 

described (Methods sections 4.5.5). Gene set enrichment analyses were conducted using the R 

package FGSEA  (v1.20) (Korotkevich et al., 2021)  with the parameters: minSize = 5, maxSize = 

1000, and eps = 0. The gene sets tested were defined based on the predicted PWYs and GO terms 

for each TF, considering the available knockout data (Methods section 4.5.6). The fraction of 

recovered predictions was calculated by determining the number of significant (P-value ≤ 0.05) 

PWYs and GO terms out of the total tested. 

The comparison of each method's prediction against the random networks was conducted by 

randomizing each of the four initial networks (GRN, eGRN, CEN, and GAN) 3,000 times, 

generating 3,000 random versions of each layer. Subsequently, I annotated and integrated each set 

of random networks following the procedures described in Methods sections 4.5.5 and 4.5.6, 

similar to the original networks. All random networks were generated using the “rewire” function 

https://paperpile.com/c/4zP5CG/vIji
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https://paperpile.com/c/4zP5CG/Uvq8
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from the R package Igraph (v1.2.4.1), with the following parameters:  avoided loops and with niter 

= NodesInNetwork * 10000).  

4.5.8 Prioritization of transcriptional regulators-process associations 

All prioritization analyses were conducted using network-based results. GO terms with less 

than 800 genes were retained, and after mapping excessively specific GO terms (≤ 50 genes) to 

their corresponding GO terms parent. Mapping to parent terms was performed following the 

procedures described in Methods section 3.5.5. Then, I proceeded to calculate the enrichment score 

associated with each TF-GO association as follow:  

Eij = Log2[(c/t)/(p/u)] 

Where Eij is the enrichment score of the TFi with the GOj, c is the intersection of target genes 

of TFi and annotated genes on GOj, t is the total number of target genes of TFi, p is the total 

number of genes annotated on GOj, and u is the total number of genes in maize, which in this case 

refers to the total number of syntenic genes with sorghum (Schnable, 2019). All Eij values were 

subsequently normalized by each TFi and GOj as follows:  

Zi = (Eij - Ui)/𝜎i 

and  

Zj = (Eij - Uj)/𝜎j 

Here, Ui and Uj represent the average enrichment score value for all the GOj associated with 

TFi and all the TFi associated with GOj, respectively. Similarly, 𝜎i and 𝜎j represent the standard 

deviation of the enrichment score value for all the GOj associated with TFi and all the TFi 

associated with GOj, respectively. Finally, I calculated the reciprocal Z-score (rZ) as follow: 

rZij = sqrt (max(0, Zi)^2 + max(0, Zj)^2) 

 

https://paperpile.com/c/4zP5CG/jyz86
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4.5.9 Similarities in sequence among TF paralogs 

Sequences for all peptides associated with the corresponding pair of paralogs were collected 

from MaizeGDB (https://maizegdb.org/) using genome v4 (Jiao et al., 2017). TFs' similarities were 

calculated by averaging the Hamming distance between all amino acid sequences associated with 

the respective TFs. The Hamming distance was computed using the R package DECIPHER (v2.22) 

(Wright, 2016) and the "DistanceMatrix" function with the following parameters: 

includeTerminalGaps = TRUE, penalizeGapLetterMatches = TRUE, and correction = "none". 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

https://maizegdb.org/
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APPENDIX 
 

 

Figure S4.1 TFs and interactions used in the layer of co-expression network (CEN) 
a. Histogram showing the frequency of TFs with at least a target gene per CEN. Dotted gray line 
indicates average TFs in all 46 CEN. b. Boxplot indicating total target genes per TFs across the 
different CENs. CEN are named following Zhou et al., (2022) nomenclature. Orange labels 
highlight TFs with the largest number of target genes in several CEN. c. Histogram with the 
frequency of total target genes per TF after combined results from all 46 CENs. 
 

http://paperpile.com/b/4zP5CG/Tn4b6
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Figure S4.2 Defining a gene association network (GAN) based on trans-eQTL 
a. model indicating total eQTLs identified and the classification schema used to define trans-
eQTL, trans/cis-eQTL, cis-eQTLt, and cis-eQTL. Within them, trans-eQTLs were used to define 
the GAN. In the context of trans-eQTLs, a source gene (in blue) was defined as a gene whose 
promoter (2kb upstream from TSS) or gene baby overlapped with an eQTL. Genes whose 
expression is explained by the SNP variation were defined as gene targets (gene in yellow). b and 
c. I classify each source and target gene into five functional categories to count the number of  
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Figure S4.2 (cont’d) 
associations by category (unclassified genes defined as other). Left panel, Boxplot indicating the 
number of targets (b) and source (c) genes by each gene category. Right panel, Stacked bar plots 
indicate the fraction of each gene category over the total genes in GAN. d. Bar plot indicating total 
interactions by gene category pair.  
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Figure S4.3 Establishing the maize gene regulatory network (GRN) layer based on protein-
DNA interaction data 
a. Density plot with distribution of peaks by PDI data type. b and c. Stacked bar plot with fraction 
of peaks mapped to accessible chromatin region (ACR) (b) and with low peak coverage (c) (CPM 
scaled and filtered; Z ≤ -0.5). d. Locally weighted scatterplot smoothing (LOESS) line plot of Z-
scores by peak in 10 kb bins around 200 kb of the closest transcription start site (TSS).  
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Figure S4.3 (cont’d) 
e. Classification schema (top) and corresponding proportion of total combined peaks (bottom, first 
stacked bar plot) and peaks by method (bottom, second stacked bar plot) utilized for determining 
target genes.  
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Figure S4.4 Strategy to annotate TFs based on common targets 
a. Schema of pipeline used to annotate TFs based on common target genes amount layer (GAN, 
GRN, eGRN, and CEN). b and c. Venn diagram indicating the number of common TFs with at 
least one and ten target genes.  d. Venn diagram indicating total common interactions (TF-target 
gene) among layers.  
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Figure S4.5 Strategy to annotate TFs based on common functions 
a. Schema of pipeline used to annotate TFs based on common function amount layer (GAN, GRN, 
eGRN, and CEN). b. Bar plot indicating total TFs annotated by layer and by type of function. c 
and d. Venn diagram indicating the number of TFs with at least a PWY (c) and GO term (d) 
commonly enriched among the corresponding layers. 
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Figure S4.6 Network-based strategy to annotate TFs 
a. Schema of pipeline used on the integration of layers to identify TF with similar topological 
properties, defined here as network-based TF annotation. b. Histogram plot indicating the 
distribution of genes associated per TF. c. Stacked bar plot with total TFs annotated by enrichment  
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Figure S4.6 (cont’d) 
with PWYs and GO terms. d. Bar plot indicating the percentage of TFs annotated for the 82 TF 
families (and co-regulator) with at least a TF annotated (c). 
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Figure S4.7 Predicted PWY overlapped poorly with PWY observed in knockouts assays 
a. Heatmap shows the count of overlapped PWYs between predicted and observed PWY in 
knockouts per method. The Violet box signifies significant overlap (P-value 0.05, Fisher test). An 
empty box (white) denotes no predicted PWYs for the corresponding TF. Square braking indicates 
the number of PWYs significantly enriched in the corresponding knockout (P-value 0.05, Fisher 
test). b. Stacked bar plot indicating the fraction of predicted PWY significantly enriched on DEGs 
per knockout assay and method. 

 

0 1

0 0

0 0

0 0

25 0

0 0

01 1

12 0

00 0

0 0

3

2

0 0

1 0

0

11 0

0

0

0

0

0

04 0

0 2

0 0

0

0

0

7 0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

WRKY8m2_embryo [52]
WRKY8m1_embryo [39]

WRKY87m2_embryo [37]
WRKY87m1_embryo [43]
WRKY82m1_embryo [48]
WRKY2m2_coleoptile [8]

TB1:buds_8DAP [30]
TB1:buds_12DAP [26]
SBP20m3_embryo [40]
SBP20m2_embryo [25]

RA1 [12]
ORPHAN249m2_embryo [30]

O2 [51]
MYBR32m1_leaf [54]

MYBR21m1_embryo [38]
MYB40_m2:coleoptile_tip [6]
MYB40_m1:coleoptile_tip [6]

KN1:near [22]
KN1_tassel [58]
KN1_SAM [42]

KN1_leaf [42]
JMJ13m4_tassel [7]

HSF6m2_embryo [40]
HSF6m1_embryo [29]

HSF29m2_embryo [30]
HSF29m1_embryo [36]

HSF24m4_tassel [31]
HSF24m3_tassel [60]

HSF20m1_embryo [36]
HSF18m1_embryo [37]
HSF13m1m2_leaf [41]

GRAS75m1_embryo [38]
GRAS52m1_embryo [42]

FEA4 [27]
E2F19m2_leaf [37]
E2F19m1_leaf [25]

E2F13m1_coleoptile [10]
C3H42m1_tassel_stem [50]

BZIP76m3_leaf [40]
BZIP76m2_leaf [50]

bZIP22 [16]
BAF6021m2_ntassel [3]
BAF6021m1_tassel [26]

C
om

m
.T

ar
ge

t

C
om

m
.F

un
ct

io
n

N
et

w
or

k.
ba

se

TF
 [P

W
Y

s i
n 

D
EG

s]

BAF6021m1_tassel

BAF6021m2_tassel

bZIP22_kernel

BZIP76m2_leaf

BZIP76m3_leaf

C3H42m1_tassel_stem

E2F13m1_coleoptile

E2F19m1_leaf

E2F19m2_leaf

FEA4_ear

GRAS52m1_embryo

GRAS75m1_embryo

HSF13m1m2_leaf

HSF18m1_embryo

HSF20m1_embryo

HSF24m3_tassel

HSF24m4_tassel

HSF29m1_embryo

HSF29m2_embryo

HSF6m1_embryo

HSF6m2_embryo

JMJ13m4_tassel

KN1_ear

KN1_leaf

KN1_SAM

KN1_tassel

MYBR21m1_embryo

MYBR32m1_leaf

O2

ORPHAN249m2_embryo

RA1

SBP20m2_embryo

SBP20m3_embryo

TB1_buds_12DAP

TB1_buds_8DAP

WRKY2m2_coleoptile

WRKY82m1_embryo

WRKY87m1_embryo

WRKY87m2_embryo
WRKY8m1_embryo

WRKY8m2_embryo

0.
00

0.
25

0.
50

0.
75

1.
00

Network−based
Network−based

Comm.Target
Comm.Function
Network−based

Network−based
Network−based
Network−based
Network−based
Network−based
Network−based

Comm.Target
Network−based

Network−based

Comm.Target
Network−based

Comm.Target
Network−based
Network−based

Comm.Target
Comm.Function
Network−based

Network−based
Network−based
Network−based
Network−based
Network−based
Network−based
Network−based

Comm.Target
Network−based

Comm.Target
Network−based

Comm.Target
Network−based

Comm.Target
Network−based

Network−based

Comm.Target
Comm.Function
Network−based

Comm.Target
Comm.Function
Network−based

Comm.Target
Network−based

Comm.Target
Network−based

Comm.Target
Network−based

Comm.Target
Comm.Function
Network−based

Comm.Target
Comm.Function
Network−based

Network−based
Comm.Target

Network−based

Network−based
Network−based
Network−based
Network−based

PWYs Fraction

M
et

ho
d

P-value ≥ 0.05 ≤ 0.05

a b



 144 

 
Figure S4.8 GO semantic similarities observed between predicted GO terms and enriched 
GO terms in knockout are not occurring by chance 
 
 



 145 

Figure S4.8 (cont’d) 
Density plot displaying the distribution of random GO term semantic similarity. The observed 
value on real GO term enrichment, along with its corresponding P-value concerning the random 
distribution, is highlighted by the horizontal purple line. 

 
Figure S4.9 Target genes and expression distribution of TFs compared with knockout 
results 
a. Histogram and density plot display the scaled (Z-score) number of target genes for each layer. 
TFs utilized in the knockout analysis are indicated by dotted red lines. b. Heatmap shows the 
presence or absence of target genes in each of the four layers for every TF analyzed in the knockout  
assays. c. Histogram and density plot of Tau index distribution for TF 2,910 TFs annotated with  
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Figure S4.9 (cont’d) 
at least PWY/GO term. TFs utilized in the knockout analysis are indicated by dotted purple lines. 
d. Histogram and density plot illustrate the null distribution of Tau after randomly sampling 13 
TFs a thousand times. TFs used in the knockout analysis are represented by dotted purple lines. P-
values were calculated using the null distribution as a reference. 
 

 

Figure S4.10 GO term significance and similarity distributions from random networks per 
TF 
a and b. Density ridges plot showing the average -log10FDR (a) and GSS (b) distributions in 3,00 
random networks for each TF. The GSS values were calculated by comparing each random 
network with the observed GO terms from the true TF-target interactions. 
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Figure S4.11 Scale count of GO terms in random networks 
Density plot displaying the distribution of GO terms in random networks predicted by the network-
based method for each corresponding TF. The observed number of significantly enriched GO 
terms for the corresponding TF is indicated by a dotted orange line. The p-value was calculated 
using the random distribution as the null distribution.  
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Figure S4.12 Enrichment score for TF and GO term in several biological processes 
a, b, and c. Scatter plot with reciprocal Z score (rZ) of hormones- (a), metabolism- (b), and 
development-related (c) process. 
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CHAPTER FIVE: ARABIDOPSIS CO-EXPRESSION SIGNATURES OF 
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5.1 ABSTRACT 

Gene co-expression analyses provide a powerful tool to determine gene associations. The 

interaction of transcription factors (TFs) with their target genes is an essential step in gene 

regulation, yet to what extent TFs-target gene associations are recovered in co-expression studies 

remains unclear. Using the wealth of data available for Arabidopsis, I show here that protein-DNA 

interactions are overall poor indicators of TF-target co-expression, yet the inclusion of TF-TF 

interaction information significantly enhances co-expression signals. These results highlight the 

impact of combinatorial gene control on such gene association networks. I integrated this 

information to predict higher-order regulatory complexes, which are difficult to identify 

experimentally. I demonstrate that genes strongly co-expressed with a TF are also enriched in 

indirect targets. These results have significant implications on the empirical understanding of 

complex gene regulatory networks and transcription factor function, and the significance of co-

expression from the perspective of protein-protein and protein-DNA interactions 

5.2 INTRODUCTION 

The translation of genotype into phenotype is largely dependent on genes being expressed in 

the appropriate cell types at the correct time (Swift and Coruzzi, 2017). Such expression is mainly 

controlled by transcription factors (TFs) recognizing specific cis-regulatory regions in the genes 

that they regulate resulting in protein-DNA interaction (PDI) which together define a gene 

regulatory network (GRN) (Gupta et al., 2021). PDIs are experimentally identified using 

combinations of gene- and TF-centered approaches; gene-centered approaches result in the 

identification of TF regulators for specific genes, while TF-centered approaches permit identifying 

target genes of a particular TF (Arda and Walhout, 2010; Yang et al., 2017; Mejia-Guerra et al., 

2012). Within the most commonly used TF-centered strategies include chromatin-

https://paperpile.com/c/JJ8ZBH/xmFF
https://paperpile.com/c/JJ8ZBH/0ucmg
https://paperpile.com/c/JJ8ZBH/I62C+a2Ss+3rHe
https://paperpile.com/c/JJ8ZBH/I62C+a2Ss+3rHe
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immunoprecipitation (ChIP) and DNA-affinity purification (DAP) methods, often coupled with 

high-throughput sequencing (ChIP-Seq and DAP-Seq, respectively) (Park, 2009; O’Malley et al., 

2016).  

Identification of PDIs is particularly important in the context of the effect that a TF has on the 

expression of its target genes. Often, however, identified TF targets show no changes in expression 

when the activity of the corresponding TF is perturbed (Zeller et al., 2006; Morohashi and 

Grotewold, 2009; Morohashi et al., 2012; Eveland et al., 2014; Liu et al., 2015). While in some 

instances technical artifacts are responsible, the low overlap between TF targets and differentially 

expressed genes are more often due to redundancy in the activity of the TF (Gitter et al., 2009; Hu 

et al., 2007), the timing of the PDI interactions (Para et al., 2014; Swift and Coruzzi, 2017; Brooks 

et al., 2019), the ability of some master regulators to bind closed chromatin regions (Pajoro et al., 

2014; Sayou et al., 2016; Tao et al., 2017; Jin et al., 2021; Lai et al., 2021), and/or  regulation of 

the target gene by the TF in only a fraction of the cells sampled (Nolan et al., 2023). For these 

reasons, the tethering of a TF to the regulatory region of a gene without a clear contribution to the 

control of the gene’s expression is often considered of limited biological significance (Banks et 

al., 2016; Jiang and Mortazavi, 2018). Additionally, TF are also known by their combinatorial 

nature, where a single TF can regulate multiple sets of target genes through interactions with other 

proteins, defined as combinatorial gene regulation (CGR) (Reményi et al., 2004; Brkljacic and 

Grotewold, 2017). However, despite CGR being a well-documented phenomenon in plant systems 

(Reményi et al., 2004; Heyndrickx et al., 2014a; Brkljacic and Grotewold, 2017; Colinas and 

Goossens, 2018; Lacchini and Goossens, 2020), there is no single study that attempts to predict 

the contribution of CGR to the low overlap in expression changes observed after perturbation and 

target genes observed in PDI assays. 

https://paperpile.com/c/JJ8ZBH/vzto+cEH3
https://paperpile.com/c/JJ8ZBH/vzto+cEH3
https://paperpile.com/c/JJ8ZBH/6soZ+otxy+hcxC+PeuH+mljE
https://paperpile.com/c/JJ8ZBH/6soZ+otxy+hcxC+PeuH+mljE
https://paperpile.com/c/JJ8ZBH/mPxQ+UsC6
https://paperpile.com/c/JJ8ZBH/mPxQ+UsC6
https://paperpile.com/c/JJ8ZBH/DciV+xmFF+wzmY
https://paperpile.com/c/JJ8ZBH/DciV+xmFF+wzmY
https://paperpile.com/c/JJ8ZBH/Bbyu+7hPC+dw6L+8qRi+nSYV
https://paperpile.com/c/JJ8ZBH/Bbyu+7hPC+dw6L+8qRi+nSYV
https://paperpile.com/c/JJ8ZBH/jpjF
https://paperpile.com/c/JJ8ZBH/pyVI+Au5i
https://paperpile.com/c/JJ8ZBH/pyVI+Au5i
https://paperpile.com/c/JJ8ZBH/SVZp+9XEX
https://paperpile.com/c/JJ8ZBH/SVZp+9XEX
https://paperpile.com/c/JJ8ZBH/SVZp+OsuJ+9XEX+BuxU+CmZX
https://paperpile.com/c/JJ8ZBH/SVZp+OsuJ+9XEX+BuxU+CmZX
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In general, it is assumed that genes with very similar expression patterns are regulated by 

similar mechanisms, involving shared TFs (Eisen et al., 1998; Vandepoele et al., 2009; Haynes et 

al., 2013; Zhou et al., 2020; Geng et al., 2021; Burks et al., 2022). Similar patterns of gene 

expression can be captured by gene co-expression networks (Eisen et al., 1998; Stuart et al., 2003; 

Haynes et al., 2013; Wisecaver et al., 2017; Rao and Dixon, 2019; Zhou et al., 2020; Geng et al., 

2021; Burks et al., 2022). Multiple examples of implementation of co-expression networks or 

specific TF-target co-expression patterns have allowed the prioritization of PDIs (Wu and Ji, 2013; 

Jiang and Mortazavi, 2018; Zhou et al., 2020; Furuya et al., 2021; Geng et al., 2021; Burks et al., 

2022; Gomez-Cano et al., 2022). Here, I took advantage of data-rich Arabidopsis thaliana 

(Arabidopsis), which provides an attractive system to investigate the co-expression relationships 

between TFs and their corresponding predicted target genes, and how the co-expression patterns 

are affected by the formation of TF-TF complexes. Specifically, I obtained expression and co-

expression data from ATTED-II (http://atted.jp/), a database that provides co-expression 

information obtained from various gene expression analyses  (Obayashi et al., 2018). The co-

expression data was combined with over five million PDIs identified through ChIP-chip, ChIP-

seq, and DAP-Seq. All of these PDIs are accessible via AGRIS (http://agris-knowledgebase.org/) 

(Palaniswamy et al., 2006; Yilmaz et al., 2011). Additionally, I included 9,503 experimentally 

established PPI for Arabidopsis TFs that can be accessed through the BioGRID database (Oughtred 

et al., 2019). Combining the expression and co-expression from ATTED-II, I determined that about 

half of the TFs are globally co-expressed with their targets as a set, with this number increasing to 

85% when local co-expression patterns are considered. I show that a small fraction (in average 

~5%) of the direct targets are robustly co-expressed with the corresponding TFs. However, when 

TF complexes deduced from available PPI data are considered, the number of targets co-expressed 

https://paperpile.com/c/JJ8ZBH/jLnV+Y3vu+Z7kX+pRHY+glPg+SAEb
https://paperpile.com/c/JJ8ZBH/jLnV+Y3vu+Z7kX+pRHY+glPg+SAEb
https://paperpile.com/c/JJ8ZBH/jLnV+2Mbj+Z7kX+CqXx+NY0G+pRHY+glPg+SAEb
https://paperpile.com/c/JJ8ZBH/jLnV+2Mbj+Z7kX+CqXx+NY0G+pRHY+glPg+SAEb
https://paperpile.com/c/JJ8ZBH/jLnV+2Mbj+Z7kX+CqXx+NY0G+pRHY+glPg+SAEb
https://paperpile.com/c/JJ8ZBH/uvwh+Au5i+pRHY+24RT+glPg+SAEb+mZ9A
https://paperpile.com/c/JJ8ZBH/uvwh+Au5i+pRHY+24RT+glPg+SAEb+mZ9A
https://paperpile.com/c/JJ8ZBH/uvwh+Au5i+pRHY+24RT+glPg+SAEb+mZ9A
https://paperpile.com/c/JJ8ZBH/ZQGx
http://agris-knowledgebase.org/
https://paperpile.com/c/JJ8ZBH/4WUB+SgHW
https://paperpile.com/c/JJ8ZBH/HMdV
https://paperpile.com/c/JJ8ZBH/HMdV
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with a TF significantly increases. By integrating PDIs, PPIs, and co-expression information, I 

predicted the formation of ternary TF complexes, some with strong support from experimental 

data. Finally, I determined the TFs most highly co-expressed are largely represented by direct and 

indirect TF targets. These findings have significant implications on the empirical understanding of 

complex gene regulatory networks, and the meaning of co-expression from the standpoint of PPIs 

and PDIs. 

5.3 RESULTS 

5.3.1 Transcription factors and their targets show varying levels of co-expression 

To investigate the co-expression of Arabidopsis TFs and their corresponding target genes, I 

collected existing PDI data involving 555 TFs and 25,255 target genes (see Methods). The target 

genes were determined based on the proximity, when coordinates of peak were available, between 

the peak of the respective TF and the target genes. It is worth noting that the majority of PDIs used 

were derived from DAP-seq, which, due to the absence of chromatin context, may contain a higher 

proportion of non-functional TF-target associations (O’Malley et al., 2016). With these datasets, I 

built a PDI network that included 2,271,066 interactions that were then used to interrogate the co-

expression relationships between each TF and its targets, using the mutual rank (MR) of the PCC 

(MR-PCC), as reported by ATTED-II (Obayashi et al., 2018), and the mutual rank of the mutual 

information (MR-MI) (See Methods). I used PCC and MI capturing linear and non-linear 

relationships, respectively (Banf and Rhee, 2017), and the corresponding MR value in order to 

reduce dataset-dependent associations and to improve the predictive power of the correlation 

(Obayashi and Kinoshita, 2009; Obayashi et al., 2018).  

To assess the significance of co-expression between each TF and its corresponding set of target 

genes, I conducted two distinct analyses for each TF: (1) I compared the average MR of a TF with 

https://paperpile.com/c/JJ8ZBH/cEH3
https://paperpile.com/c/JJ8ZBH/ZQGx
https://paperpile.com/c/JJ8ZBH/2OhB
https://paperpile.com/c/JJ8ZBH/3T1u+ZQGx
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its targets to the average MR of the TF with a randomly selected gene set of similar size. TFs that 

exhibited significant differences compared to the random set were classified as 'co-expressed by 

average MR' (see Methods). (2) I examined differences in the distributions of MRs between a TF 

and its target genes versus all non-target genes. TF-target pairs that demonstrated significant 

differences (P < 0.05, Kolmogorov-Smirnov test) compared to the distribution of TF-non-target 

pairs were categorized as 'co-expressed by MR distribution' (see Methods). It should be noted that 

the analyses based on MR-PCC values were performed separately for negative and positive 

correlation values. Hence, based on the results of the statistical tests, I determined that 231/555 

TFs (using MR-PCC) and 172/555 TFs (using MR-MI) showed significant co-expression with 

their respective target genes (Figure S5.1a, b). Additionally, by comparing both co-expression 

metrics (MR-PCC and MR-MI), I identified 124 TFs that were common to both analyses (Figure 

5.1a). In total, I identified 279 (172 + 231 - 124) TFs that exhibited significant co-expression with 

their corresponding target gene sets, while the remaining 276 TFs did not show significant co-

expression. A closer look into only the MR-PCC results allowed us to establish that 186/231 TFs 

showed significant co-expression (either by MR distribution and/or MR average tests) only with 

positively co-expressed targets (potential transcriptional activators), and 23/231 only with 

negatively co-expressed targets (potential transcriptional repressors) (Figure S5.1c). Remarkably, 

22 TFs showed significant co-expression with different sets of both positively and negatively 

associated target genes, indicating that they can function both as transcriptional activators or 

repressors, depending on the target gene subset (Figure S5.1c). 

To further characterize the TF-target genes co-expression profiles observed, I classified the 

TFs into four co-expression categories: TFs co-expressed with their targets based on MR-PCC 

(107 TFs), TFs co-expressed based on both MR-PCC and MR-MI (124 TFs), TFs co-expressed 
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based on MR-MI alone (48 TFs), and TFs that did not display significant co-expression with their 

corresponding targets (276 TFs) (Figure 5.1a). Next, I grouped the MR distribution into bins, 

ranging from the smallest to the largest rank, to analyze the proportion of targeted genes in each 

bin (~250 MR values per bin) per TF. Consequently, smaller and larger MR-PCC values 

correspond to more positive and negative co-expression values, respectively. In the MR-PCC 

distribution, TFs that displayed significant co-expression with their targets were predominantly 

distributed within the first 25 bins (i.e. within around the first 6,250 genes most co-expressed per 

TF) (Figure 5.1b). Conversely, TFs that did not show significant co-expression with their 

respective targets demonstrated a distinct pattern in the MR-PCC distribution (Figure 5.1b, gray 

panel). I observed similar patterns in the MR-MI distribution as well (Figure S5.2). Notably, MI 

does not differentiate between positive and negative associations. Thus, all significant values, 

when present, are captured in the left tail of the distribution. Additionally, there was a consistent 

~1% presence of targets across all bins in the distribution (Figure 5.1b, indicated by line plot with 

target % beneath each heatmap). These findings validate earlier observations in Arabidopsis 

(Zaborowski and Walther, 2020), corroborating the absence or low co-expression relationship 

between TFs and their respective target genes. 

Given that many TF functions are often highly cell-type, tissue, or stress specific, I analyzed 

the co-expression at different scales (Zhou et al., 2020; Lee et al., 2023; Nolan et al., 2023).  

Specifically, I introduced a new category called "local co-expression," which involved analyzing 

subsets of expression datasets obtained after clustering similar samples. These subsets served as 

proxies for organ- and condition-specific co-expression (see Methods). In total, I identified twelve 

distinct sample clusters representing potential conditions (Figure S5.3). Similar to the previous 

global co-expression analysis, I employed two statistical methods (average MR and MR 

https://paperpile.com/c/JJ8ZBH/UEvU
https://paperpile.com/c/JJ8ZBH/pRHY+aI9b+jpjF
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distribution) and two metrics (MR-PCC and MR-MI). To explore the presence of local co-

expression patterns in the 276 TFs that did not exhibit significant global co-expression with their 

target genes, I kept these sets separate. Overall, I discovered that 199 out of 276 TFs displayed 

significant co-expression with their target genes in at least one of the clusters (Figure 5.1c). As 

expected, TFs with global co-expression patterns were found to exhibit co-expression with targets 

in multiple local clusters (Figure 5.1c), with the exception of seven TFs (WIP5, MYB1, PLT1, 

ERF109, HHO5, NAC4, and AT5G47660). These seven TFs showed significant global co-

expression, but no evident local co-expression in any of the clusters. The reason for this intriguing 

behavior is not yet clear. 

I explored the distinguishing characteristics of TFs that do not exhibit global or local co-

expression with their target genes. I observed a significant difference in the connectivity within 

the network between TFs showing co-expression and those that do not. TFs lacking co-expression 

with their alleged targets displayed significantly smaller in-degree (representing the number of 

TFs binding to a specific promoter region of the corresponding TF) and out-degree (representing 

the number of target genes bound by a TF) compared to co-expressed TFs (P < 0.05, Mann-

Whitney U test; Figure S5.4). These findings suggest that TFs with lower connectivity in the 

network may have distinct co-expression relationships with their targets. However, I cannot 

dismiss the possibility that the identified clusters may not be sufficiently resolved for these TFs. 
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Figure 5.1 Patterns of co-expression between TFs and their direct target genes 
a. Total number of TFs globally co-expressed with their corresponding targets across all tissues 
and conditions based on MR-PCC and MR-MI. The Venn diagrams show the overlap between the 
two metrics. b. Heatmaps displaying the distribution of MR-PCC values across 25,296 Arabidopsis 
genes. TFs are divided into four co-expression groups: TFs co-expressed with their targets based 
on MR-PCC (107 TFs), on both MR-PCC and MR-MI (124 TFs), MR-MI only (48 TFs), and TFs 
that do not show significant co-expression with their targets (276 TFs). The colors indicate the 
percentage of TF targets within each bin of 250 MRs. There are 101 bins along the PCC 
distribution, representing the co-expression values of each TF with the 25,296 Arabidopsis genes. 
Small MR values correspond to positive PCC values, while large MR values represent negative 
PCC values. The line-dot plots below each heatmap display the average percentage of targets for 
all TFs in each bin. c. Heatmap illustrates the local co-expression profiles of each TF analyzed 
across 12 different expression clusters. The color indicates whether there is co-expression (orange) 
or no co-expression (gray). The left panel shows TFs that are globally co-expressed with their 
targets, while the right panel shows those that are not. The number in brackets represents the count 
of TFs with significant co-expression in at least one of the local clusters.  
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5.3.2 Few targets are highly co-expressed with their respective TFs 

The distribution of target genes along the MR-PCC range mentioned earlier (Figure 5.1b) 

reveals a limited presence of targets among the genes exhibiting the highest co-expression with 

each TF. Specifically, the maximum proportion of targets within a bin containing 250 co-expressed 

genes is approximately 5% (Figure 5.1b). Moreover, the percentage of targets gradually decreases 

beyond the first 5,000 MRs, capturing a maximum of 25% of the total identified direct targets for 

each TF. To assess the proportion of highly co-expressed targets (HCT) for each TF, I defined the 

top and bottom 2.5% of the MR-PCC distribution as the set of highly co-expressed genes (HCGs) 

and tallied the total number of targets within these intervals. Among all TFs, ARABIDOPSIS 

PSEUDO-RESPONSE REGULATOR 9 (PRR9) exhibited the highest percentage (36%) of target 

genes identified as HCTs according to the defined criteria. However, on average, only 4.7% of the 

targets qualified as HCTs (Figure 5.2a), indicating that, on average, the remaining 95.3% of the 

targets were classified as low co-expressed targets (LCTs).  

5.3.3 PPIs condition TF co-expression with direct targets 

To gain insights into the limited co-expression between TFs and their target genes, I explored 

how the presence of multiple physically interacting TFs regulating a gene could influence the 

observed co-expression pattern. I obtained 815 experimentally determined protein-protein 

interactions (PPIs) involving 313 out of the 555 TFs analyzed in this study from BioGRID. 

Specifically, using this PPI information, I assessed the extent to which the formation of TF 

complexes (e.g., TFx-TFz) could account for the high fraction of low co-expressed targets (LCTs) 

associated with each TFx. To do this, I calculated the partial co-expression correlation of TFx with 

all LCTs, conditioned on the presence of TFz (de la Fuente et al., 2004; Kim, 2015; Uygun et al., 

2016). This analysis allowed me to examine the co-expression of TFx target genes with a TFx 

https://paperpile.com/c/JJ8ZBH/AG24+fnsW+UvBa
https://paperpile.com/c/JJ8ZBH/AG24+fnsW+UvBa
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complex (TxCC). It is important to note that these correlations are not symmetric, meaning that 

TxCC may differ from TzCC. Additionally, TCC refers specifically to correlations conditioned by 

already reported TF heterodimers. I performed the correlation analysis using all Arabidopsis genes 

and identified the top 2.5% highly co-expressed genes (at each tail of the correlation distribution 

as cut-off) for each TFx-TFz complex. I found that, on average, 5% of the LCTs of a TF are co-

expressed with the complexes in which the TF is involved (i.e., TxCC) (Figure 5.2b). Furthermore, 

I calculated the percentage of TxCC based on the number of interactions, revealing that the average 

of TxCC is not influenced by the total number of targets associated with the respective TF 

(Spearman Correlation, rs = 0.02) (Figure 5.2c, color scale distribution). However, when 

considering all interactions for each TF, it became evident that the percentage of targets co-

expressed with a complex increased proportionally with the number of known interactors that a 

TF possesses (correlation, rs = 0.69) (Figure 5.2c), indicating that a significant proportion of the 

LCTs described previously can be explained by considering complexes of interacting TFs. 

Even among TFs with a similar number of analyzed complexes, there is notable variation in 

the proportion of TxCC (Figure 5.2d). For instance, within the subset of TFs that have a single 

known partner, I observed distinct cases represented by DEHYDRATION RESPONSE 

ELEMENT-BINDING PROTEIN 26 (DREB26) and ethylene response factor (ERF) 

(AT4G18450). These TFs interact with BASIC HELIX LOOP HELIX PROTEIN 10 (BHLH010) 

and GT-1, respectively, and the corresponding complexes explain 5.5% and 1.6% of the LCTs 

(Figure 5.2d). This finding highlights the specific and unique impact of each TF complex on the 

percentage of co-expressed target genes, potentially reflecting functional aspects of combinatorial 

gene regulation. 



 160 

Thus far, I have demonstrated that incorporating regulatory complexes can enhance the co-

expression of TFs with their targets. Despite the variable number of common targets shared by 

these interacting TFs (TFx-TFz in Figure 5.2e), only a small fraction of these shared targets exhibit 

co-expression with the complex (TxCC-Tz, Figure 5.2e). Therefore, to gain a deeper 

understanding of the co-expression patterns among the shared targets of TFx and TFz, I compared 

the proportion of these targets that co-expressed with the TFx-TFz complex and also exhibited 

high co-expression with TFz (Figure 5.2f, blue box), with the TFz-TFx complex (TzCC) (Figure 

5.2f, orange box), or show low co-expression with TFz (Figure 5.2f, gray box). Overall, 91% of 

the shared targets that are also TxCC were found to have modest co-expression with TFz (LCTz, 

gray in Figure 5.2g). Only 3.9% of the shared targets exhibited high co-expression with TFz 

(Figure 5.2g, blue box), and 4.1% co-expressed with both complexes (TxCC and TzCC) (orange 

in Figure 5.2g). These findings emphasize the significance of considering TF complexes when 

interpreting the co-expression between TFs and their targets. 

To assess the biological significance of the co-expression observed between targets and TF 

complexes, I examined specific examples. HHO2 (HRS1 HOMOLOG2) and HHO3 (HRS1 

HOMOLOG3) are MYB-related TFs involved in phosphate homeostasis, lateral root development 

(Nagarajan et al., 2016), and nitrogen responses (Varala et al., 2018). Our analysis revealed that 

the HHO2-HHO3 complex co-expressed with 43 targets. Notably, HHO2, HHO3, and six of their 

targets exhibited differential expression in response to different nitrogen growth conditions (Figure 

5.2h), supporting the functional relevance of complex formation and its associated targets.  

I also examined the SVP (SHORT VEGETATIVE PHASE) - GBF2 (G-BOX BINDING 

FACTOR 2) complex. SVP acts as a flowering repressor (Chen et al., 2018) and is also involved 

in drought responses (Bechtold et al., 2015), while GBF2 is associated with abscisic acid (ABA) 

https://paperpile.com/c/JJ8ZBH/c0Ei
https://paperpile.com/c/JJ8ZBH/Qji0
https://paperpile.com/c/JJ8ZBH/wiOA
https://paperpile.com/c/JJ8ZBH/Mwgb
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responses (Song et al., 2016). My results identified 429 shared co-expressed targets for the SVP-

GBF2 complex (Figure 5.2i), of which 130 genes were differentially expressed under drought 

conditions (Harb et al., 2010; Wilkins et al., 2010; Bechtold et al., 2015). These findings support 

the notion that TF targets, which lack significant co-expression with the TFs individually, do 

exhibit co-expression when considering TF complexes. 

 

 

 

 

https://paperpile.com/c/JJ8ZBH/j0ny
https://paperpile.com/c/JJ8ZBH/oq3g+PIVb+Mwgb
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Figure 5.2 Targets are more frequently co-expressed with TF complexes than with individual 
TFs 
a. Violin plot displaying the proportion of highly co-expressed targets (HCT) for 313 TFs. b. 
Boxplot illustrating the percentage of low co-expressed targets (LCTs) that coincide with targets 
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Figure 5.2 (cont’d) 
co-expressed with a TFx complex (TxCC). c. Percentage of TxCCs in relation to the total number 
of PPIs involving each TF. d. Enlarged view of the section in (c) depicting TFs with only one 
interacting partner. DREB26-bHLH10 and ERF (At4g18450)-GT-1 represent extreme cases in the 
distribution. The color scale in (c) and (d) indicates the number of targets for each TF. e. Boxplot 
presents the number of shared targets between the 815 analyzed TF complexes (TFx-TFz) or the 
number of targets of a given TFx co-expressed with the TFx-TFz complex (TxCC) that are also 
targets of TFz. f. Schematic representation of the comparison made among target genes of TFz and 
targets of TFx categorized as HCTs, TCCs, or LCTs of TFx, denoted by blue, orange, and yellow, 
respectively. g. Distribution of targets based on the comparison in (f) for the 815 analyzed TFx-
TFz complexes. Complexes are shown on the x-axis, while the y-axis represents the frequency of 
overlap. The HHO2-HHO3 (h) and SVP-GBF2 (i) TF complexes serve as representative examples 
from the analyzed TF complexes. h. The numbers indicate the differentially expressed genes 
(DEGs) under various nitrogen growth conditions. i. The numbers indicate DEGs, also identified 
as targets of the corresponding complexes, under drought stress in three different studies. The 
sidebar plot provides a zoomed-in view of the HHO2-HHO3 and SVP-GBF2 positions on the 
shared target distribution shown in g. 
 
5.3.4 Co-expressed targets shared by binary TF complexes suggest higher-order 

arrangements  

The results presented so far indicate that the integration of co-expression and physical 

interaction information contributes to the identification of TFs that control gene expression 

working as part of complexes. There are many instances in which Arabidopsis TF pairs interact 

and control shared sets of target genes (Brkljacic and Grotewold, 2017; Bemer et al., 2017). 

However, the experimental identification of higher-order (beyond binary) TF complexes is not 

without challenges (Lambert et al., 2018). To investigate whether the combination of co-

expression, PPI, and PDI information might provide insights on higher-order TF complexes, I 

started by describing the complexes made up by TGA10 (TGACG MOTIF-BINDING PROTEIN 

10), TCP14 (TGA10 with TEOSINTE BRANCHED, cycloidea and PCF 14), and a homeodomain-

like TF (AT2G40260) (Trigg et al., 2017). The TGA10-TCP14 and TGA10-AT2G40260 

complexes share 80% of targets co-expressed with each complex (Figure 5.3a, black nodes). 

Moreover, shared targets had similar expression correlation with both heterodimers (either positive 

https://paperpile.com/c/JJ8ZBH/9XEX+Kq4s
https://paperpile.com/c/JJ8ZBH/e2wo
https://paperpile.com/c/JJ8ZBH/hmiu


 164 

or negative), indicating that both complexes potentially activate or repress the same sets of genes 

(Figure 5.3a). These results, combined with the information that TCP14 and AT2G40260 

physically interact with each other (Trigg et al., 2017), provide strong evidence that TGA10, 

TCP14, and AT2G40260 form a ternary complex that controls the expression of all targets 

indicated in Figure 5.3a. 

I proceeded to examine the presence of other triple-binary (tri-bi) TF combinations in 

Arabidopsis, similar to the TGA10-TCP14 and TGA10-AT2G40260 complexes. To do this, I 

initially identified 47 TFs that had at least two interacting partners and PDI information. I then 

determined the percentage of shared target genes between these pairs (Figure 5.3b, orange) and 

compared it to the percentage of targets unique to each pair (Figure 5.3b, gray). In certain cases, 

all targets were shared by both binary complexes (indicated by the orange columns in Figure 5.3c), 

while only around 8% were shared by binary complexes with minimal overlap (columns on the 

right in Figure 5.3c). Notably, 13 out of the 47 tri-bi combinations tested showed experimental 

evidence for all three binary interactions (indicated by black arrows in Figure 5.3c), supporting the 

existence of higher-order (ternary) complexes. However, I was unable to establish a statistically 

significant correlation between the number of shared targets and experimental evidence confirming 

the formation of ternary complexes. This lack of correlation likely stems from the limited 

availability of PPI data for many of the TF pairs involved, rather than the shared percentage of co-

expressed targets being an inadequate indicator of ternary complex formation. 

I next investigated how frequently TFs involved in tri-bi interactions share common targets. 

Unlike the previous analysis, I now considered TFs with more than two PPIs. I identified a total 

of 2,013 true tri-bi instances (i.e., with evidence of physical interaction for all pairs of the tri-bi) 

involving 140 TFs. In approximately 90% of these instances, the TFs showed a significant overlap 

https://paperpile.com/c/JJ8ZBH/hmiu
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of target genes (false discovery rate < 0.01, Fisher’s exact test). This indicates that TFs involved 

in tri-bi interactions often share a substantial number of targets, making them strong candidates 

for the formation of tertiary, or even higher-order, complexes. To assess whether the fraction of 

shared targets differs from random tri-bi complexes, I compared the co-expressed shared targets 

of TF complexes from experimentally demonstrated tri-bi instances to those from tri-bi instances 

obtained through a randomized binary interactome approach for each TF (see Methods).  

Among the 104 TFs analyzed, I identified 12 TFs involved in tri-bi instances with a 

significantly larger fraction of shared targets compared to the background model (Figure S5.5a). 

An illustrative case is ABI5 (ABA INSENSITIVE5), which participates in eight tri-bi instances 

and exhibits a median shared fraction of targets of 0.77 (Figure 5.3d). Remarkably, six out of the 

eight tri-bi instances involving ABI5 consist of a combination of four TFs from the ABF 

(ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING PROTEIN) family (Figure 5.3e). The 

number of target genes varies across the tri-bi instances, ranging from 258 for ABF2-ABI5-ABF4 

to 290 for ABF3-ABI5-ABF4 (Figure 5.3e). The 290 ABF3-ABI5-ABF4 gene targets include 46 

genes differentially expressed in abi5 mutant seeds (Bi et al., 2017). Remarkably, ABF2, ABI5, 

and ABF4 also interact with SnRK2.2 (SNF1-RELATED PROTEIN KINASE 2), PP2CA 

(PROTEIN PHOSPHATASE 2CA) (Yoshida et al., 2010; Lynch et al., 2012), and AHG1 (ABA-

HYPERSENSITIVE GERMINATION 1) (Lynch et al., 2012), which are key known post-

translational regulators of ABI5 (Skubacz et al., 2016). I found 41 TFs involved in tri-bi instances 

with a significantly reduced fraction of shared targets compared to the expected background model 

(Figure S5.5b). These findings suggest that these TFs may participate at least in dimeric complexes 

where they bind overlapping sets of target genes. 

https://paperpile.com/c/JJ8ZBH/rtl3
https://paperpile.com/c/JJ8ZBH/nVF4+gTBS
https://paperpile.com/c/JJ8ZBH/gTBS
https://paperpile.com/c/JJ8ZBH/jbLE
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Figure 5.3 Common co-expressed targets of TF complexes suggest higher-order TF 
arrangements 
a. Co-expressed targets shared by the TGA10-TCP14 and TGA10-AT2G40260 TF complexes are 
represented. Black nodes indicate common targets for both complexes, while light gray nodes 
represent targets controlled by one complex but not the other. Green arrows indicate positive co-
expression correlation (activation), and blue arrows indicate negative co-expression correlation 
(repression) with the respective TF complexes. b. The strategy used to identify shared targets by 
comparing TxCC between pairs of dimers is illustrated schematically. c. The percentage of total 
targets bound by both complexes (orange) or only by one complex (gray) is shown. Black arrows 
indicate tri-bi complexes with experimental evidence for all three binary interactions. d. ABI5 
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Figure 5.3 (cont’d) 
serves as an example of 12 TFs with significantly larger fractions of shared targets in tri-bi 
complexes compared to randomly formed tri-bi complexes (two-sided t-test P < 0.05). Similarity 
between the sets of target genes for corresponding dimers was measured using Jaccard indices. e. 
Tri-bi complexes involving ABI5 are depicted, with experimentally verified interactions shown as 
lines and the numbers in blue indicating targets of the complexes. 

5.3.5 Genes highly co-expressed with TFs are enriched in indirect TF targets 

In previous sections, I focused on the co-expression patterns between TFs and their direct 

targets. However, a question that remains unanswered is whether there is a relationship between a 

TF and the genes that are most highly co-expressed with that TF. To explore this, I examined how 

many target genes of a TF also belong to the top 5% most highly co-expressed genes (HCG) with 

that TF.  Surprisingly, for the large majority of the TFs (80%), less than 30% of the HCG are 

among the target genes. There is one exception, NF-BY2 (nuclear factor Y, subunit B2), where 

this number is as high as 82% (Figure 5a). I explored the possibility that genes that are not direct 

targets of a TFx could be targets of a TFx partner (TFz), or that they could be targets of a second 

TF (TFy) that is itself a direct target of TFx.  

To assess the impact of TF partners (TFz) on the highly co-expressed genes of TFx, I 

investigated the proportion of highly co-expressed genes that are targets of TFz but not of TFx 

itself. Our analysis revealed that out of the 313 tested TFs, 309 TFs had at least one highly co-

expressed gene that was a target of one of its TFz partners. On average, approximately 10% of the 

highly co-expressed genes of a TF belonged to this category (Figure 5.4b). Similarly, to understand 

the contribution of downstream targets to the highly co-expressed genes of a downstream TFy in 

the regulatory hierarchy, I examined the same set of 313 TFs. Among these TFs, 306 TFs bound 

to a TFy that had at least one direct target gene highly co-expressed with the upstream TFx. On 

average, around 9.8% of the genes most highly co-expressed with TFx were indirect targets of TFy 

(Figure 5.4c). I also compared the actual set of highly co-expressed genes recovered using true 
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interactions with those obtained using random networks (PPI and PDI, respectively) (See 

Methods). The random TF PPIs yielded a similar number of highly co-expressed genes compared 

to the known PPIs (P > 0.05, Mann-Whitney U test) (Figure 5.6a). It is worth noting that the PPI 

network used in this analysis had an average path length of 3.5 edges between all TF nodes, 

indicating weak independence between the true and random PPIs. In contrast, the random target 

TFy resulted in a significantly smaller number of highly co-expressed genes compared to the true 

targets (P < 0.05, Mann-Whitney U test) (Figure S5.6b), suggesting that downstream hierarchical 

regulators play a crucial role in explaining the presence of highly co-expressed genes for the 

corresponding TF. 

I computed the combined contribution of TFz interactors and downstream TFs (TFy) to the set 

of highly co-expressed genes for each of the 313 TFs. This allowed me to determine that, on 

average, 90% of the genes most highly co-expressed with a TF consist of its direct targets (~16%), 

targets of its TFz partners (~4%, after excluding partners that are also direct targets of TFx), and 

downstream targets (~70%, targets of a TF's target) (Figure 5.4d). Interestingly, I also found 

examples in which the partner for TFx is also a downstream target, participating in a feed-forward 

loop (FFL) (26% out of total TFs). FFLs are among the most highly represented regulatory motifs 

present in Arabidopsis (Chen et al., 2018) and other eukaryotes (Milo et al., 2004). 

 

https://paperpile.com/c/JJ8ZBH/wiOA
https://paperpile.com/c/JJ8ZBH/thSB
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Figure 5.4 Genes highly co-expressed with TFs are enriched in indirect TF targets 
a. Percentage of highly co-expressed genes (HCGs) of TFx that are confirmed targets of TFx. b 
and c. Model and percentage of highly co-expressed genes that are potential indirect targets of TFx 
through its TFz interactors (b) and a TFy downstream of the corresponding TFx (c). d. Percentage 
of HCGs attributed to direct or indirect targeting by TFx. 
 
5.4 DISCUSSION 

In this chapter, I examined the co-expression patterns between TFs and their targets using 

comprehensive PDI, PPI, and gene expression data for Arabidopsis. I found that approximately 

half (279) of the TFs studied exhibit global co-expression with their targets, while an additional 

35% (199) display local-specific co-expression in at least one of the twelve sample clusters 

identified. Interestingly, for 77 Arabidopsis TFs with extensive PDI information, there is no 

conclusive evidence of co-expression with their identified targets beyond what would be expected 

by chance. This suggests that certain TFs only show co-expression under specific conditions, and 

it is possible that utilizing single-cell sequencing will uncover additional co-expression 
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relationships that are not apparent in organ-level gene expression experiments due to the 

complexity of cell populations. I show that only a small fraction (on average 4.7%; Figure 5.2a) 

of the direct targets are among the genes most highly co-expressed with a given TF. Conversely, 

direct targets are a small fraction of the genes highly co-expressed with a TF (in average 14.3%; 

Figure 5.4a). Considering that high co-expression is frequently employed as an additional measure 

to establish the biological importance of a PDI, my findings suggest that these comparisons involve 

a more intricate regulatory framework. 

In the endeavor to uncover the co-expression connections between TFs and their targets, I 

observed that a significant proportion (up to 17%) of targets that are not highly co-expressed with 

a specific TF are indeed co-expressed with TF complexes. Interestingly, a substantial number of 

co-expressed targets (up to 100%, averaging around 22%) were shared by multiple members of 

the complex, even if they were not highly co-expressed with individual TFs. These findings align 

with extensive literature highlighting the concept of combinatorial gene regulation (Ravasi et al., 

2010; Brkljacic and Grotewold, 2017; Colinas and Goossens, 2018; Droge-Laser and Weiste, 

2018). To investigate the biological significance of co-expressed targets associated with two 

distinct TF complexes (HHO2-HHO3 and SVP-GBF2), I examined their expression changes under 

stress conditions. Remarkably, in both cases, I identified differentially expressed target genes and 

TF members within the complex. Our results emphasize the necessity of considering the 

combinatorial nature of gene regulation to fully harness the potential of co-expression analyses. 

Identifying ternary TF complexes experimentally presents significant challenges. To address 

this, I employed a comprehensive approach combining co-expression data, protein-protein 

interactions (PPIs), and shared targets obtained from PDI data to analyze potential TF pairs that 

may form ternary complexes (Figure 5.3c). For instance, I discovered eight potential ABI5 ternary 

https://paperpile.com/c/JJ8ZBH/AZ2Z+9XEX+BuxU+G4cN
https://paperpile.com/c/JJ8ZBH/AZ2Z+9XEX+BuxU+G4cN
https://paperpile.com/c/JJ8ZBH/AZ2Z+9XEX+BuxU+G4cN
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complexes involving four TFs from the ABF family (ABF1/2/3/4). These findings align with 

experimental evidence suggesting functional redundancy between ABF3 and ABI5 (Finkelstein et 

al., 2005), as well as the regulatory role of ABI5 and ABF2/3/4 in the degradation of chlorophyll-

related genes (Gao et al., 2016). Moreover, it is known that ABF3/4 and NF-YC (nuclear factor Y 

subunit C) form a complex that controls flowering in response to drought by regulating SOC1 

(SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) expression (Hwang et al., 2019), 

which is also targeted by ABI5 during seedling development  (O’Malley et al., 2016). These results 

strongly suggest the formation of a larger-order complex involving ABF3-ABF4-ABI5. Together, 

by integrating PPIs between TFs with co-expression studies, I predicted a number of potential 

ternary TF complexes, which could now be experimentally validated, an easier undertaking than 

carrying out do novo identification. 

Another question addressed by this study regards the nature of the association of the other 

genes that are highly co-expressed with a TF, if they are not targets of the TF itself. I showed that, 

on average for the 313 TFs investigated, almost a third of the highly co-expressed genes are either 

indirect targets of the TF (targets of a TF target), direct targets of the TF or direct targets of a TF 

partner. Is important to note that in many instances this number was much larger, which to some 

extent justifies the wide-spread use of co-expression as a proxy to carry out functional association 

of TFs and different plant traits (Haque et al., 2019; Kulkarni and Vandepoele, 2019). However, 

what these studies also show is that the use of co-expression is a poor indicator of direct 

interactions between TFs and their target genes. Establishing the co-expression relationships of 

TFs and their target genes has wide implications for elucidating the architecture of gene regulatory 

networks in all organisms and establishing the meaning of co-expression as a tool to elucidate 

molecular interactions. 

https://paperpile.com/c/JJ8ZBH/arlU
https://paperpile.com/c/JJ8ZBH/arlU
https://paperpile.com/c/JJ8ZBH/a6pU
https://paperpile.com/c/JJ8ZBH/ZliD
https://paperpile.com/c/JJ8ZBH/cEH3
https://paperpile.com/c/JJ8ZBH/4Hxx+bQiN
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5.5 METHODS 

5.5.1 Data collection  

Expression and global co-expression data were collected from the ATTED-II database 

(http://atted.jp/, versions Ath-r.v15-08 and Ath-r.c2-0, respectively) (Obayashi et al., 2018). In 

total, I used 1,416 different RNA-Seq libraries with expression data associated for 25,296 different 

genes. I collected the protein-DNA interaction information as raw peaks (bed or narrowpeak files 

from ChIP-chip, ChIP-Seq, and DAP-Seq experiments) from the Gene Expression Omnibus 

(GEO) and/or supplementary material from reference source (Yant et al., 2010; Wang et al., 2010; 

Brandt et al., 2012; Gregis et al., 2013; Jensen et al., 2013; Merelo et al., 2013; ÓMaoiléidigh et 

al., 2013; Heyndrickx et al., 2014b; Verkest et al., 2014; Liu et al., 2015; Nagel et al., 2015; Li et 

al., 2016; Liu et al., 2016; O’Malley et al., 2016; Song et al., 2016; Van Leene et al., 2016; Albihlal 

et al., 2018; Besbrugge et al., 2018; Chen et al., 2018; Shanks et al., 2018; Xu et al., 2018). The 

assignment of a peak region to a gene was carried out assuming a promoter region of 2 kb upstream 

from the transcription start site (TSS) for each Arabidopsis gene (genome annotation TAIR10). I 

used all peak region sizes as reported originally. All protein-protein interactions (PPIs) used for 

the identification of complex co-expressed targets were collected from the BioGRID database for 

Arabidopsis (V3.5.169) (Oughtred et al., 2019).  

5.5.2 Evaluation of co-expression and determination of mutual rank values 

For the evaluation of the global co-expression between TFs and their corresponding targets, I 

used the mutual ranks (MRs) of the Pearson Correlation Coefficient (PCC) and the Mutual 

Information (MI) as co-expression metrics. MR were defined for each gene as follows: Rij is the 

rank of the correlation of gene i with the gene j, and Rji is the rank of the correlation of gene j with 

the gene i, with the lowest value as the best rank (close to 1). Then, MR is equal to the square root 

http://atted.jp/
https://paperpile.com/c/JJ8ZBH/ZQGx
https://paperpile.com/c/JJ8ZBH/3jvn+UJG3+P7Yv+6sze+M35Y+DU71+2rWQ+xdXJ+X8hz+mljE+MjDD+4SuO+s9TY+cEH3+j0ny+g9hl+Dmf8+8osS+wiOA+FSQJ+e9he
https://paperpile.com/c/JJ8ZBH/3jvn+UJG3+P7Yv+6sze+M35Y+DU71+2rWQ+xdXJ+X8hz+mljE+MjDD+4SuO+s9TY+cEH3+j0ny+g9hl+Dmf8+8osS+wiOA+FSQJ+e9he
https://paperpile.com/c/JJ8ZBH/3jvn+UJG3+P7Yv+6sze+M35Y+DU71+2rWQ+xdXJ+X8hz+mljE+MjDD+4SuO+s9TY+cEH3+j0ny+g9hl+Dmf8+8osS+wiOA+FSQJ+e9he
https://paperpile.com/c/JJ8ZBH/3jvn+UJG3+P7Yv+6sze+M35Y+DU71+2rWQ+xdXJ+X8hz+mljE+MjDD+4SuO+s9TY+cEH3+j0ny+g9hl+Dmf8+8osS+wiOA+FSQJ+e9he
https://paperpile.com/c/JJ8ZBH/3jvn+UJG3+P7Yv+6sze+M35Y+DU71+2rWQ+xdXJ+X8hz+mljE+MjDD+4SuO+s9TY+cEH3+j0ny+g9hl+Dmf8+8osS+wiOA+FSQJ+e9he
https://paperpile.com/c/JJ8ZBH/HMdV
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of Rij times Rji. Global MRs from positive PCC were used as reported by ATTED-II, while global 

MRs from negative PCC values were transformed into a second MR by subtracting the original 

MR reported from the maximum possible MR (25,296) for each TF. For the calculation of local 

MRs-PCC, I used the expression normalized as reported by ATTED-II, parsing the samples into 

twelve expression conditions through a dimensional reduction of the total dataset, followed by a 

k-means analysis (see Methods 5.5.10). Grouping these samples as expression conditions, I 

proceeded to calculate the PCC between genes. I employed a weighted PCC to accurately measure 

the correlation between genes. To avoid an inflated correlation influenced by replicates, I 

incorporated a weighting parameter based on the correlation of corresponding samples. This 

approach helps prevent overestimation of the gene correlation. The weighted PCC was calculated 

using the R package wCorr (Version 1.9.1) (Emad and Bailey, 2017), using the same optimal 

threshold (0.4) as in ATTED-II. All global and local co-expression analyses using MR-MI values 

were carried out with the same samples used for the calculation of the respective MR-PCC values. 

The correlation-based on MI was estimated using the R package Parmigene (Version 1.0.2) (Sales 

and Romualdi, 2011), and with 1e-12 as noise to break ties due to limited numerical precision.  

5.5.3 Identification of TFs co-expressed with the corresponding target genes 

The significance of the MRs between TFs and their corresponding targets was assayed using 

both MR-PCC and MR-MI correlation metrics, and two independent statistics tests. First, I 

compared for each TF the average MR value of the targets vs. a null distribution of average MRs 

values from 1,000 random sets of genes, referred to as co-expression by MR average. Each random 

sample was generated by sampling with replacement N random genes to the N number of direct 

targets of each TF. For the MR-PCC values, I compared separately MR distributions of positively 

and negatively PCC values. To define if average MRs of the target genes were significantly smaller 

https://paperpile.com/c/JJ8ZBH/iMIz
https://paperpile.com/c/JJ8ZBH/kWO4
https://paperpile.com/c/JJ8ZBH/kWO4
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than the null distribution, I calculated the Z-score using the MR values of the true targets using the 

random set of genes as background (which follow a gaussian distribution). The significance (P-

value) of corresponding Z-score was corrected for multiple testing (FDR < 0.05, Benjamini-

Hochberg method) (Yoav Benjamini and Yosef Hochberg, 1995). Secondly, I evaluated the 

differences between target and non-target genes by comparing their empirical cumulative 

distributions. This was done using a one-sided Kolmogorov-Smirnov test, with the alternative 

hypothesis being that the target genes' distribution is greater than the non-target genes' distribution. 

This test determined if the MRs of the target genes deviated significantly from those of the non-

target genes (FDR < 0.05). Both positive and negative correlations were tested independently for 

both the average-based and distribution-based co-expression assessments. 

5.5.4 Identification of targets co-expressed with TF complexes  

The identification of complex-co-expressed targets was carried out for TFs present in our list 

of TFs with PDI data and at least one protein-protein interaction (PPI) between them in BioGRID. 

In total, I found 815 protein-protein interactions (PPIs) associated with 313 different TFs. Using 

these PPIs, I evaluated the effect of the formation of a TF complex (TFx-TFz) over lowly co-

expressed targets (LCTs) of TFx by: (1) Assuming TFx-TFz as a new protein, thus, I averaged 

their expression (TFx and TFz) and then re-calculated the co-expression of the complex with a 

target y. This co-expression analysis was carried out using the weighted PCC as described above. 

(2) I also calculated the partial correlation of TFx with genes y conditioned by TFz: p(TFx ~ y | 

TFz), such that TFx and TFz interact between them and y is a TFx target. The partial correlation 

was calculated using the R package PPCOR (Kim, 2015). In both cases, I calculated the co-

expression of the complex against all genes in the genome to define the significant values on the 

distribution obtained (See below).  

https://paperpile.com/c/JJ8ZBH/cHSs
https://paperpile.com/c/JJ8ZBH/fnsW
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5.5.5 Definition of highly co-expressed targets 

I defined highly co-expressed genes as those genes in the top 5% of the correlation distribution, 

assuming them as genes with correlation values significantly different from the average of 

correlation distribution (P < 0.05). For PCC values, I took the 2.5% from each tail (i.e., 5% in 

total), while for MI values I took the top 5%. This last, given that MI does not discriminate between 

positive and negative associations. The approach was also implemented to define highly targeted 

co-expressed with a complex (TCC). 

5.5.6 Degree network connectivity 

I defined the in-degree and the out-degree as the number of TFs that bound the promoter of a 

particular target gene and the number of targets of a particular TF, respectively. Differences in 

both degrees, in- & out-degree, between TF co-expressed with its corresponding targets and those 

than not were tested by a Mann-Whitney test.  

5.5.7 Protein-Protein Interactions (PPIs) and Protein-DNA interactions (PDIs) network 

randomization 

I created random PPIs and PDI networks to test the significance of the shared targets between 

dimers of the tri-bi and to test the significance of number the indirect targets within the set if genes 

highly co-expressed with a TFs, as well as significance of number the indirect targets by TFs in 

cascade. In all the cases I used the rewire function from the R package Igraph (v1.2.4.1) to generate 

the random network with similar degree by node and avoiding loops 

(niter=NodesInNetwork*1000). Random PPI network was built with the directed parameter as 

FALSE while the random PDI was set as TRUE, which allows the shuffling of edges between TF 

and target genes only. 
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5.5.8 Definition of tri-bi complexes with significant number of shared targets 

In total, I selected 104 TFs after discarding tri-bi instances with no significant target overlap, 

as well as TFs involved in less than two tri-bi instances (to avoid comparison with few samples). 

To compute the differences between the random and true PPIs, I calculated the Jaccard index (J) 

between every pair of dimers involved in each tri-bi, and then I asked if the mean of the J values 

between true tri-bi instances was different from the J values mean of tri-bi instances derived from 

the random PPI collection (see randomization network description).  

5.5.9 Counting the HCG of a TFx that are targeted by TFz partners and TFy downstream of 

the corresponding TFx 

To test the significance of the percentages of HCG of TFx explained because either they are 

targets of an interactor TFz or a target TFy; I compared the actual set of HCGs recovered based on 

true interaction versus random networks (of PPI and PDI, respectively). I measured the overlap 

(Jaccard index) of the HCGs of TFx with the corresponding set of TFz and TFy targets. 

5.5.10 Definition of local expression clusters 

Given the heterogeneity of the annotation of the expression samples used in this work, I defined 

expression clusters based on the expression similarities between the samples analyzed. First, I 

downloaded from the ATTED-II database the normalized expression data (Ath-r.v15-08) 

(Obayashi et al., 2018) used for the construction of the global co-expression database analyzed 

here. Second, I dimensionally-reduced the expression data by means of t-distributed stochastic 

neighbor embedding (t-SNE) method, to then cluster the samples using the respective t-SNE 1 and 

t-SNE 2 values. The t-SNE analysis was performed using the R package Rtsne (V0.15) 

(https://cran.r-project.org/web/packages/Rtsne/index.html), with the following parameters: pca set 

TRUE, perplexity=30, theta=0.5, dims=2. The clustering was performed using the R "kmeans” 

https://paperpile.com/c/JJ8ZBH/ZQGx
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function with scale t-SNE values and number of clusters equal to 12. I choose 12 clusters based 

on the total within sum of square (wss) value calculated using the fviz_nbclust (nboot = 300, k.max 

= 25) function of the R packages factoextra (v1.0.5) (https://cran.rproject. 

org/web/packages/factoextra/index.html). 
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APPENDIX 
 

 

Figure S5.1 Evaluation of co-expression of TFs and corresponding target genes 
a and b. Comparison of the two statistical approaches used to test differences in either average or 
distribution of MRs between targets and not targets genes by (a) PCC-MR or (b) MI-MR. c. Venn 
diagrams comparing the total number of positive and negatively co-expressed TFs with their 
targets based on PCC-MR. 
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Figure S5.2 Heatmaps displaying the distribution of MR-MI values across 25,296 
Arabidopsis genes 
Colors represent the percentage of TF targets within bins of 250 MRs. In total, there are 101 bins 
along the PCC distribution corresponding to co-expression values of each TF with 25,296 genes 
(genes expressed in the dataset used, see Methods). Small MR represent larger MI, thus, better 
association between TF and genes in bin. Dot plots under each heat map represent the average 
percentage of targets for all the TFs along each bin. Color side bars represent TFs categories as 
presented in Figure 5.1. 
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Figure S5.3 Sample expression clusters used to define local expression values 
Clusters were defined by k-means clustering (k=12 defined by Elbow method) using the t-
Distributed Stochastic Neighbor Embedding (t-SNE) 1 and 2 of the expression data.  
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Figure S5.4 In- and out-degree differences between TFs co-expressed and not-co-expressed 
with their targets 
This classification accounts for both globally and locally co-expression results. Both types of 
degree (in and out) showed statistically significant differences between TFs co-expressed or not 
co-expressed with its targets (Mann-Whitney U test, P. value < 0.05). 
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Figure S5.5 Target genes recovered for tri-bi complexes 
a and b. Comparison of target genes recovered for tri-bi of 53 TFs with a shared fraction 
significantly larger (a) or smaller (b) than by random PPIs. The similarity of the recovery set of 
targets was measured as the Jaccard index between the set of targets of each pair of dimers that 
form a tri-bi complex. Asterisks indicate P-value significance (*: p <= 0.05, **: p <= 0.01, ***: p 
<= 0.001, ****: p <= 0.0001, two-sided t-test).  
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Figure S5.6 Evaluation of HCG not targets of TFx 
a and b. Comparison of HCG which are not targets of TFx recovered because they are either (a) a 
target of a TFz interactor of TFx, or (b) a target of a TFy regulated by TFx vs random interaction. 
Jaccard index (J) calculated as the number of TFz/TFy targets shared with the HCGs non-targets 
of TFx over the total TFz/y targets plus total HCGs no-targets.    
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CHAPTER SIX: CONCLUSIONS 
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Understanding gene regulatory networks (GRNs) has significant implications at various levels 

and in every biological system. However, the unraveling of GRNs, predicting their interactions, 

and prioritizing regulatory associations with phenotypic/biological consequences remains a long-

standing and unsolved problem. I employed several strategies in this study to predict and 

comprehend the associations between transcription factors (TFs) and target genes in different plant 

systems using various data types. The results propose previously unknown regulatory associations 

specific to these plant systems and offer guidance for future research aimed at unraveling GRNs 

in a species-specific manner. It is important to note that the species-specific strategies presented 

here were primarily based on the availability and nature of the data.  

I developed a co-expression system with highly stringent thresholds in Camelina, a plant 

known for its complex genome and limited data available (compared to maize and Arabidopsis). 

This analysis did not rely on any assumptions about TF-target gene relationships using a specific 

metabolic pathway as an example, simplifying the analysis of regulatory associations. Thus, my 

combined analysis of co-expression and PDI predicted six TFs involved with lipid metabolism in 

Camelina. Five of these TFs were not previously associated with lipid metabolism in any other 

plant system. Moving on to maize, the extensive genetic data and the increasing availability of PDI 

data sets enabled me to create a framework for evaluating various approaches for the integration 

of multi-omic data to predict TF regulatory function. In addition to finding the best strategy and 

specific regulatory hypotheses for further validation, these analyses identify numerous potential 

functional connections which showed enrichment with GO terms also observed in random 

networks. Importantly, this indicates that a substantial portion of the predicted associations 

involves a significant number of interactions that are either false positives or whose related GO 

terms are just too over-represented, resulting in enrichment even from random interactions 
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(random networks). In addition, I showed that the embedding representation of the network allows 

not only to identify TF-functionally redundant but also TF paralogous potentially redundant. 

Lastly, the established method allowed me to predict transcriptional regulators of different 

biological processes as well as potential upstream regulators of the corresponding TFs. Based on 

my analysis, I predicted a comprehensive list of regulators for twenty distinct biological processes. 

These processes range from development to metabolism and include associations of transcription 

factors that were identified in the past, thus validating our predictions. 

Finally, the abundance of data available in Arabidopsis enabled me to establish a broader 

framework regarding the predictability of target genes for TFs based on co-expression models. My 

findings confirm a long-standing observation: many direct target genes do not exhibit significant 

co-expression with their corresponding TF. Additionally, many genes co-expressed with TFs are 

not direct targets of the respective TF. However, my analysis expanded on this observation by 

revealing the influence of physical TF-TF interactions and downstream TFs in explaining the 

occurrence of either low-expression targets or highly co-expressed genes that are not targets. 

Altogether, this work established tools and strategies and provided hypotheses to understand GRN 

in plants better.  

My results predicted regulatory associations that were previously unknown, it's important to 

note that some of these associations are currently under validation experimentally by other 

researchers in the Grotewold lab. Yet, it’s also worth mentioning that these findings may have a 

fraction of false positives regulatory associations for the corresponding TFs. Determining the exact 

fraction of false positives is challenging due to the nature of the data available. While it's common 

to identify examples of potential regulatory associations in the literature, it is less common to find 

experimentally validated negative examples with nonregulatory effects. This creates uncertainty 
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regarding the false positive fraction. Yet, it is important to mention, one contributing factor to false 

positives is the heterogeneity of the data. For example, there are variations in the expression 

datasets analyzed using different pipelines, as well as differences in the way peaks from PDI assays 

are called and the technologies used to generate the peaks. Thus, my implementation of filters 

based on normalized counts and discarding of peaks without consensus TFBM was largely 

complemented by the utilization of the peaks in the context of open chromatin regions. In maize, 

this normalization allowed for comparisons across different types of experiments (i.e., DAP-seq 

and ChIP-seq) and reduced the assignment of potential false positive target genes. Specifically, I 

discarded at least 50% of the called peaks because of their overlap with nearby closed chromatin 

regions. Therefore, it is highly recommended to exclude this layer of information in future 

endeavors to predict and understand GRN in plants. 

Aside from the methodological limitations, it is also important to highlight that all the analyses 

and results presented here examined TFs and genes as individual interactions. However, in several 

cases, my results keep leading back to situations where only the integration of the corresponding 

predictions makes sense. For example, this is evident in their interpretation as complexes (partial 

correlation results in Arabidopsis) and modules of TFs working together in specific biological 

processes (presence of multiple TFs with similar influence on individual GO terms, results in 

maize). Therefore, a major improvement to the models and analyses presented here would include 

the interrogation of multiple TFs in the same model or establishing predictive models that consider 

the modular and combinatorial nature of gene regulation. For instance, it is easy to envision the 

typical co-expression model for linear regression or a similar model (regardless of the model's 

assumptions) that considers the contribution of multiple TFs to the expression variation of the 

corresponding target genes. Additionally, with techniques such as DAP-seq and ATAC-seq, it is 
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undeniable that models aiming to build regulatory models in the context of open chromatin regions, 

not only for single TFs but also for co-expressed TFs, will enable the prediction of TF-target 

interactions from PDIs dataset with significantly higher accuracy.  

When I combined the results of all three systems, it's important to highlight the effectiveness 

of integrating multiple layers to handle the complexity of gene regulatory networks (GRNs). 

Moreover, considering the identification of common associations across different data types offers 

a straightforward method to analyze data and discover highly reliable interactions. Yet, looking at 

the bigger picture, incorporating information from various layers into more robust prediction 

strategies reduces the likelihood of false positives, and consequently increasing the accuracy of 

the corresponding predictions. It's also worth noting that TFs generally have multiple regulatory 

functions and are significantly redundant, which has been extensively documented. In this study, 

I demonstrated that by integrating multiple data types, it's possible to narrow down this complexity 

and formulate specific testable regulatory hypotheses. 

 

 

 

 

 


