EXAMINING HOW STAPHYLOCOCCUS AUREUS ENGAGES THE SULFUR REGULON TO MEET NUTRITIONAL DEMANDS

Ву

Paige Jennifer Kies

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Microbiology and Molecular Genetics – Doctor of Philosophy

2023

ABSTRACT

The age of antimicrobial resistance has driven a sharp demand for new routes that inhibit opportunistic pathogens such as *Staphylococcus aureus*. In response to this has been a steady rise in research characterizing pathways essential to pathogen proliferation, such as those relating to essential nutrient acquisition and metabolism. *S. aureus* employs a flexible metabolism that promotes colonization throughout most mammalian tissues. This characteristic, combined with an ability to develop antibiotic resistance, incites nosocomial infections that range from skin and soft tissue infection to osteomyelitis. Regarding essential nutrients, the foundation for *S. aureus* metabolism for the critical element sulfur is still being molded. The current thesis provides a series of investigations that expand our understanding of how *S. aureus* engages sulfur metabolism to meet nutritional demands.

Expression of the machinery involved with sulfur acquisition and catabolism is under control of the transcriptional repressor, CymR. We investigate the transcriptional response of *S. aureus* to varying states of sulfur supplementation *in vitro* with a special focus on the sulfur regulon. We note that during sulfur starvation there is both a CymR-dependent and -independent response that occurs; notably, the majority of differentially expressed genes during sulfur depletion are influenced by the presence of CymR. Found within the sulfur starvation response is the upregulation of iron metabolism and oxidative stress response genes. Glutathione was used to exemplify this observed connection between sulfur, iron, and oxidative stress—the *S. aureus* sulfur source also protects against toxic levels of heme (iron source) and the oxidative stressor, H₂O₂. We further show that *S. aureus* expresses unique responses when exposed to organic (cysteine, reduced and oxidized glutathione) and inorganic (thiosulfate) sulfur sources. With this

series of transcriptomics, the **t**hio**s**ulfate **u**ptake protein **A** (TsuA) is shown as the sole importer associated with growth on thiosulfate as a sulfur source. Interestingly, each sulfur source induced upregulation of sulfur-associated transporters, suggesting that regulatory actions within the sulfur regulon are more complex than previously appreciated.

Upon examination of the sulfur regulon, we next focused on the redundancy surrounding transportation mechanisms of *S. aureus* sulfur sources. Glutathione is one example, having at least two associated transporters in this pathogen. We identify that the di-tripeptide transporter, DtpT, supports proliferation of *S. aureus* on nutritional glutathione. This line of inquiry also describes cysteinyl-glycine, the glutathione breakdown product, as a DtpT-mediated sulfur source for *S. aureus*. DtpT contributions to *S. aureus* physiology is likewise demonstrated through its impact on colonization of the murine liver.

We also initiated a new field of study that characterizes the distribution of host sulfur sources using matrix-assisted laser desorption/ionization imaging mass spectrometry. With this technique we confirm the presence of several known sulfur sources during *S. aureus* infection of the murine kidney, including reduced and oxidize glutathione as well as cysteinyl-glycine. An additional metabolite, cysteine-glutathione mixed disulfide, was found to be highly abundant in the *S. aureus*-infected kidney. We establish that this compound is a sulfur source for this organism and that growth on cysteine-glutathione disulfide is associated with three transporters: the glutathione import system (GisABCD) as well as the cysteine/cystine transporters, TcyABC and TcyP. This work is concluded with thoughts surrounding future research which, alongside the data presented here, will further enhance our understanding of the nutritional sulfur interface between the host and pathogen during *S. aureus* infection.

This thesis is dedicated to those who have supported me. Thank you for helping me make dreams a reality.

ACKNOWLEDGMENTS

I would like to begin by expressing my heartfelt gratitude to my mentor, Dr. Neal Hammer. His exceptional guidance and the nurturing environment he provided have been instrumental in fostering my confidence and honing my skills as a scientist. I am immensely thankful for his unwavering support and encouragement to challenge myself! My committee members, Drs. Sean Crosson, Robert Quinn, Gemma Reguera, and Chris Waters, have also made fundamental contributions to my development as a scientist. I am thankful for all of their invaluable insights over the years, which have nurtured my critical thinking skills and overall scientific abilities. I also want to extend my appreciation to all the members of the Hammer laboratory, both current and past. Nick, Jessica, and Gabby have not only been fantastic colleagues but have also contributed to creating a relaxed and enjoyable lab atmosphere. I'd like to offer special recognition to the undergraduates I've had the privilege of working with during my time at Michigan State University: Abigail Kuplicki, Emily Cleary, Jessica Liu, and Rosemary Northcote. Learning how to be an effective mentor is an ongoing process that demands time, patience, understanding, and open communication from all parties involved. I'm truly thankful to each undergraduate who has assisted me in my journey toward becoming a better mentor. A special mention goes to Rosemary for her dedicated benchwork assistance during the crucial period leading up to my defense. She's an exceptional individual with a bright future ahead in her own graduate career, and I wish her nothing but the best!

My fellow graduate students and post-doc in the lab provided a support and camaraderie which was indispensable throughout my graduate school journey. Joelis Lama Díaz, with boundless energy and a gift for bringing out the best in everyone, played

a crucial role in helping our lab break out of its shell. I am especially grateful to Joelis for generously allowing me to include her S-lactoylglutathione data in Figure 4.3 of this dissertation. Troy Burtchett, a true embodiment of the term "cool as a cucumber", remained unflappable under all circumstances and kept the lab entertained with his reservoir of dad jokes. Cristina Kraemer Zimpel, an amazing post-doc in the lab, has been a constant source of guidance as I wrap up my tenure at MSU. I can't express enough how much I value her assistance, from training me on RNAseg analysis for Chapter 2 to creating a phylogenetic tree for Chapter 3. Rajab Curtis, a former PhD student in the lab who joined the program alongside me, has been an incredible peer on this journey. We've faced numerous challenges together, and I couldn't have asked for a better bench buddy during the pandemic. I've always enjoyed our discussions, whether they revolved around scientific theories or the playlists on Rajab's Spotify. Lastly, Beth Ottosen...she's simply the best, or should I say the 'be(th)st'? While Beth only rotated in the lab, she became my closest friend here in Michigan and has stood by me through every obstacle, often with a pop-tart in hand.

The Department of Microbiology and Molecular Genetics at MSU is home to a remarkable group of individuals who consistently provide unwavering support for one another. I must extend my gratitude to Roseann Bills from the MMG office, who has been instrumental in guiding me through the intricacies of graduate school's technical aspects. I would have undoubtedly found myself lost on numerous occasions if it weren't for her irreplaceable help. The fifth floor of BPS holds a special place in my heart. I cannot begin to express how many times someone on this floor came to my aid, whether it was by providing a much-needed reagent, lending a friendly ear for scientific discussions, or

simply stopping for a quick chat. I consider myself incredibly fortunate to have pursued my graduate studies within this department.

I additionally want to thank my family and friends. They always say it takes a village and I firmly believe in that sentiment. My extended family members, who have checked in on me throughout the years, always brought a warm smile to my face and provided the encouragement I needed during tough times. I also want to acknowledge the incredible support I've received from two dear friends, Emily Baldwin and Akshaya Warrier, who have remained with me over many years, reaching out and forever encouraging me during our many video chats. My sister, Lily, played a crucial role in reminding me that life exists beyond graduate school, often through phone calls and conversations about topics unrelated to my work! She too is one of my oldest supporters and I cannot thank her enough for that. I would also like to recognize my brother Ben and his wife, Kami, for all their efforts in helping me set up the next chapter of my life in Minnesota.

Above all, I want to express my deepest gratitude to my parents. No words can adequately capture the depth of my love for them. They both worked tirelessly to ensure that I had the opportunity to attend college, setting me on a life path that has consistently exceeded my expectations. My parents offered unwavering support throughout my journey. I can't fathom where I would be without them.

TABLE OF CONTENTS

CHAPTER 1: A resourceful race: bacterial scavenging of host sulfur metabolism during colonization1
CHAPTER 2: Defining the transcriptional adaptation of <i>Staphylococcus aureus</i> to a rang of nutritional sulfur supplementation
CHAPTER 3: Staphylococcus aureus DtpT supports nutrient sulfur acquisition of significant sulfur acquisition acquisition of significant sulfur acquisition acquisiti
CHAPTER 4: Employing MALDI-IMS to visualize the host-pathogen nutritional sulfunctional sulfunction of the control of the cont
CHAPTER 5: Summary and Future Directions139
REFERENCES150
APPENDIX A: Chapter 2 sulfur starvation Tables172
APPENDIX B: Chapter 2 sulfur source Tables283

CHAPTER 1: A resourceful race: bacterial scavenging of host sulfur metabolism							
during colonization							
Work presented within this chapter has been published as: Kies PJ, Hammer ND. 2022.							
A Resourceful Race: Bacterial Scavenging of Host Sulfur Metabolism during Colonization.							
Infect Immun 90:e00579-21.							

ABSTRACT

Sulfur is a requirement for life. Therefore, both the host and colonizing bacteria must regulate sulfur metabolism in a coordinated fashion to meet cellular demands. The host environment is a rich source of organic and inorganic sulfur metabolites that are utilized in critical physiological processes such as redox homeostasis and cellular signaling. As such, modulating enzymes dedicated to sulfur metabolite biosynthesis plays a vital role in host fitness. This is exemplified from a molecular standpoint through layered regulation of this machinery at the transcriptional, translational, and posttranslational levels. With such a diverse metabolite pool available, pathogens and symbionts have evolved multiple mechanisms to exploit sulfur reservoirs to ensure propagation within the host. Indeed, characterization of sulfur transporters has revealed that bacteria employ multiple tactics to acquire ideal sulfur sources, such as cysteine and its derivatives. However, bacteria that employ acquisition strategies targeting multiple sulfur sources complicate in vivo studies that investigate how specific sulfur metabolites support proliferation. Furthermore, regulatory systems controlling the bacterial sulfur regulon are also multifaceted. This too creates an interesting challenge for in vivo work focused on bacterial regulation of sulfur metabolism in response to the host. This Chapter examines the importance of sulfur at the host-bacterium interface and the elegant studies conducted to define this interaction.

INTRODUCTION

Bacteria impact the health of complex, multicellular organisms such as humans. This concept is well recognized and remains an area of intense scientific study. One focal point within this domain is understanding the nutritional relationship between the host and colonizing bacteria (i.e., pathogens or symbionts). Over the past few decades, there has been exceptional progress in describing the dynamic host-bacterium interplay surrounding essential nutrients such as iron, magnesium, manganese, zinc, and carbon (1–3). Sulfur is another such essential nutrient that has started to receive more attention regarding its impact on bacteria during colonization.

Within biological systems, sulfur is largely stored as a thiol group (R-SH) within organosulfur compounds. Due to the reactive property of sulfur, thiols partake in numerous cellular reactions, a characteristic that demands cells maintain an optimal supply of this nutrient (4). At the center of sulfur metabolism and distribution within a cell is the amino acid cysteine (Cys). In fact, intracellular Cys concentrations indicate whether a cell has sufficient quantities of sulfur. When Cys levels are below the threshold, cells import exogenous sulfur-containing metabolites and assimilate them to Cys. From there, Cys contributes to cellular processes such as maintenance of protein structure or ion coordination, synthesis of critical metabolic cofactors (e.g., coenzyme A, biotin), and redox balance (5–9). Here, we will discuss the diverse nutritional sulfur reservoir generated through host sulfur metabolism and the strategies bacteria utilize to exploit this diversity to meet the sulfur requirement during colonization.

HOST SULFUR METABOLISM

Given the essential nature of sulfur, it can be hypothesized that the host modulates sulfur metabolism in response to bacterial colonization. However, to our knowledge there are no investigations that directly support this hypothesis. Thus, to address whether and how the host alters sulfur metabolism during infection, it becomes pertinent to first understand metabolism of this element from the perspective of a healthy host. As more information is presented regarding the host-pathogen nutritional sulfur interface, models then can be developed that reflect how these pathways operate during various types of infections. Furthermore, understanding how the host controls flux of sulfur during infection will require investigating alterations of enzymatic expression or activity within sulfur metabolism pathways, generating further interest for discussion of the proteins involved in sulfur distribution. Consequently, we will (i) briefly describe enzymatic pathways involved in generating sulfur-containing metabolites that are known sources of nutrient sulfur for bacteria and illustrate their diverse regulatory systems, (ii) address the contribution of pathways or enzymes to host physiology, and (iii) consider the consequences that arise from dysfunction of the major enzymes within these pathways.

Transmethylation and reverse transsulfuration pathways. As the fulcrum of sulfur metabolism, free Cys can be synthesized from methionine via the transmethylation pathway (Fig. 1.1, orange) (10). The product of transmethylation, homocysteine, is subsequently used as a substrate in the reverse transsulfuration pathway, which requires the critical enzymes cystathionine β -synthase (CBS) and cystathionine γ -synthase (CSE; Fig. 1.1, green) (11–13). In animals this pathway is irreversible, meaning neither methionine nor homocysteine is produced from Cys. As the final product, Cys can

autoxidize to cystine (CSSC) or be acetylated, forming *N*-acetylcysteine (NAC) (Fig. 1.1, asterisk). Furthermore, reverse transsulfuration may flux such that Cys undergoes CBS-or CSE-mediated desulfhydration, resulting in production of hydrogen sulfide (H₂S) and, in the case of CBS, a net loss of homocysteine (11). A common thread is that the enzymes participating in these two pathways are widely distributed, if not ubiquitous, throughout mammalian tissues (Table 1.1). In general, though, the pathways are predominantly active in the liver or kidney. In keeping with their importance to host physiology, products and substrates of the trans-methylation and reverse transsulfuration pathways are established sources of nutrient sulfur for symbiotic and pathogenic bacteria (14) (Figure 1.1, boldface, underlined).

As a consequence of their expansive tissue localization, CBS and CSE regulation is complex. These two proteins are constitutively expressed in most cell types with a layered regulation system, from gene expression to posttranslational modifications, that determines enzyme concentrations throughout the host (15–18). As a result, CBS is abundant in the liver, brain, kidney, and pancreas compared to moderate expression in the muscles, endocrine, heart, or lungs. CSE also displays higher expression in the liver and kidney. In contrast to CBS, CSE is more prevalent in the cardiovascular system as well as the lungs and in the brain (15–18). Transmethylation and reverse transsulfuration enzymes as a whole localize to the cytosol of cells under normal conditions. However, some of the enzymes may move to other organelles under specific circumstances. CBS and CSE, for instance, can both be relocated to the mitochondria under conditions such as hypoxia (CBS) or an increase of intracellular Ca²⁺ (CSE) (19).

Dysfunction within either pathway leads to serious host impairments, another overarching theme of host sulfur metabolism. For example, S-adenosylmethionine (SAM) methionine accumulation from disrupted adenosyltransferase (MAT) the transmethylation pathway contributes to an array of ailments such as methionine accumulation in the blood (i.e., hypermethioninemia), neurodegenerative diseases (e.g., Parkinson), and cancer (20). Dysfunction of CBS and CSE are also associated with disease (15–17). CBS is known to be upregulated in Down syndrome and in breast, colon, or liver cancers. Additionally, some naturally occurring mutations in CBS render the host incapable of metabolizing methionine, a disease known as homocystinuria. This leads to a buildup of homocysteine, leading to a condition known as hyperhomocysteinemia. Continuing this trend, decreased CSE activity contributes to a variety of host maladies, including those with diabetes, asthma, or chronic kidney disease. On the other hand, increased CSE activity also causes hyperhomocysteinemia.

The γ -glutamyl cycle. Cys can be stored within the stable tripeptide, glutathione (GSH). This versatile low-molecular-weight thiol consists of γ -glutamate-cysteine-glycine and can reach millimolar concentrations within a cell (12, 21). The γ -peptide bond between glutamate and Cys can only be cleaved by select enzymes such as γ -glutamyl transpeptidase (GGT) to ensure a controlled Cys repository within the host (12, 22–24). One benefit from this strategy is increased control over the generation of reactive oxygen species (ROS) that result when Cys autoxidizes to CSSC. However, if Cys must be replenished, GSH can be catabolized via the γ -glutamyl cycle (Figure 1.1, blue) (25–27). Interestingly, the dipeptide formed in this pathway, cysteinyl-glycine (Cys-Gly), is not solely dedicated to the γ -glutamyl cycle, as it is thought to impact the redox status of the

plasma (28–30). This supports the notion that thiol-containing compounds participate in multiple aspects of host physiology.

Given the impact of this cycle (discussed below), the presence of GSH catabolism enzymes in most or all host tissues is unsurprising (Table 1.1). As described above with the reverse transsulfuration enzymes CBS and CSE, the host exerts a complex regulation system for expression of proteins in this aspect of the γ-glutamyl cycle. GGT, a well-studied example, is constitutively expressed with transcriptional control exerted through the use of multiple promoters for the corresponding gene; this encourages selective expression throughout different host-tissue environments (31, 32). Furthermore, translational regulation at the mRNA 5' end acts as a second layer of management for GGT production across different tissues (31). Within mammalian hosts, this results in GGT being highly expressed in regions such as the kidney (particularly the proximal tubule), pancreas, intestine, brain capillaries, or various types of white blood cells (33, 34). As expected, GGT expression is comparably low in the liver, given that this organ is the main site for GSH production (33, 34). As is typical of any enzyme with major contributions to host physiology, dysregulation of GGT imposes health disorders. In fact, alterations to GGT concentrations have long been associated with increased cardiovascular disease (35–39). GGT levels in the liver are also used as a marker for one of the most common ailments for the organ, nonalcoholic fatty liver disease (NAFD) (40, 41). Synthesis of GSH from Cys and/or NAC precursors completes the γ -glutamyl cycle (Figure 1.1, blue) (42, 43). Continuing the concept of multifactorial expression, production of glutamate-cysteine ligase (GCL) and GSH synthase is influenced at the posttranscriptional and translational levels. As this is a well-reviewed area, information regarding GSH synthesis enzyme

expression and dysfunction is provided from the following review (42). As a select example, we consider the similar features of GCL and GSH synthase expression. Gene activity for both increases in response to a variety of compounds, such as tumor necrosis factor (TNF-alpha) or hepatocyte growth factor (HGF), in cultured rat hepatocytes. Furthermore, expression of both GCL and GSH synthase partially involves activator protein (AP-1), whose activity is induced by TNF-alpha. However, bear in mind that there are a number of other transcription factor binding sites located at the promoters of these genes, such as an ARE consensus sequence (GCL) or nuclear factor erythroid 2 motif (GSH synthase). Additionally, it is noteworthy that hydrogen peroxide (H₂O₂)-induced oxidative stress increases GCL transcription as well. Although GSH synthesis occurs in most host tissues (e.g., kidney, pancreas, lungs, plasma, or brain), its production is highest in the liver, indicating robust activity of GSH synthase, GCL, or even GSH reductase (GR), which reduces oxidized GSH (GSSG) (Figure 1.1, blue) (44-46). Dysfunction of GSH biosynthesis enzymes contributes to a number of host diseases (42). Polymorphisms in GCL can contribute to decreased cardiovascular health or asthma; decreased expression of this protein complex is known to contribute to disorders such as cystic fibrosis or alcoholic liver injury. Additionally, buildup of γ-glutamylcysteine in those with GSH synthase deficiency can have impacts on the central nervous system or result in conditions such as hemolytic anemia. Given that GSH contributes immensely to host physiology beyond the role of Cys storage, it is important to discuss some of its additional roles. Importantly, GSH is a major detoxification metabolite. GSH combats ROS stress, particularly H₂O₂, through its own oxidation via GSH peroxidase (Figure 1.1, blue, GP) (47). This is an important reaction given that H₂O₂ endogenously results from

mitochondrial respiration and can lead to hydroxy radical formation (48). Furthermore, GSH is the substrate for GSH S-transferases, which detoxify electrophilic xenobiotics by conjugating GSH to the harmful metabolite (12, 22, 48). These enzymes are also greatly expressed in the liver compared to other tissues, making the organ a critical site of GSH metabolism. Changes to protein activity can also result from the process of glutathionylation (49). In this instance, the GSH reduced-to-oxidized ratio influences S-glutathionylation of protein Cys residues. Considering this, it is easy to see how malfunction of GSH synthesis and catabolism enzymes result in a variety of host disorders, epitomizing the vital impact of the γ -glutamyl cycle on host physiology.

Taurine and sulfate biosynthesis. Aside from GSH, Cys is also a precursor for synthesis of the nonproteinogenic amino acid taurine and inorganic sulfate (Figure 1.1, pink) (18, 50–54). Note that in this pathway, glutamate oxaloacetate transaminase (GOT) is also known as cysteine aminotransferase (CAT) or aspartate aminotransferase (AST) due to its ability to bind cysteinsulfinate, cysteine, and aspartate. Typically GOT nomenclature is associated with taurine or sulfate biosynthesis, whereas CAT is linked to H₂S synthesis (see below). As such, this protein will be denoted GOT/CAT. Taurine, though it does not directly contribute to protein synthesis, is one of the most abundant amino acids throughout host organs and has a multitude of functions. For example, it is known for its participation in bile acid formation and controls intracellular Ca²⁺ levels as well as alleviating glutamate toxicity in the brain (50). Sulfate also contributes to important cellular reactions within the host. Similar to GSH, sulfate conjugation is an important step in the activation/detoxification of exogenous and endogenous compounds, such as steroids or xenobiotics (55). Maintenance of cysteine dioxygenase (CDO) is imperative,

as it contributes to the balance of Cys levels and ensures production of taurine and sulfate as the first synthetic step of these two metabolites. Unlike other enzymes discussed, CDO is unique in that the prevalence of this enzyme is more heavily influenced by diet than gene expression: when Cys from ingested protein is abundant, CDO is as well (56). This compares to increased CDO ubiquitination and degradation when Cys is scarce (i.e., in a lower protein diet). The CDO-deficient murine line underscores the impact of this protein on host physiology, as these mice have a high postnatal mortality rate, growth impairment, and connective tissue pathology (57). With this in mind, it is interesting to speculate how the scavenging of Cys by a colonizing bacterium might adversely affect CDO abundance and the resulting effects on taurine and sulfate biosynthesis.

H₂S production and oxidation. Cys also contributes to formation of H₂S (Figure 1.1, black) (58–61). It is noteworthy that CBS and CSE activity within cells are also major sources of H₂S production during Cys desulfhydration (11, 62). H₂S is an increasingly studied gaseous signaling molecule. It is a neurotransmitter with implicated roles in vasorelaxation, angiogenesis, inflammation, oxygen sensing, and cytoprotection (63–70). However, H₂S can also be toxic to mammals, perhaps being most infamously known for its inhibitory effects on mitochondrial cytochrome *c* oxidase (71). With this assorted influence on host physiology, regulation of H₂S is critical. Thus, H₂S concentrations are tightly controlled and as a result become a hub for thiosulfate and sulfate production, which are also known inorganic sulfur sources for colonizing bacteria. Both of these sulfur compounds may be generated as a result of H₂S oxidation in the mitochondria (Figure 1.1, purple) (72–74). Interestingly, the oxidation product thiosulfate can replenish this H₂S pool (Figure 1.1, red) (75–77). Therefore, thiosulfate plays an integral role in production and

break-down of H₂S within the host. Thiosulfate also detoxifies cyanide, underscoring its importance to management of volatile compounds (78). Due to this activity, thiosulfate is commonly administered to those with acute cyanide poisoning (75). H₂S toxicity necessitates that its production is strictly controlled; this is demonstrated best by the previously described layered regulation of CBS, CSE, and other enzymes involved in H₂S production. Naturally, H₂S catabolism is a notable step of regulation for sulfur metabolism. Sulfide-quinone oxidoreductase (SQR) represents the first enzymatic step in H₂S oxidation in the mitochondria, and activity of this enzyme contributes to normal function of this organelle in the model eukaryotic organism Schizosaccharomyces pombe (79). In vertebrates, SQR has been identified in the kidney, liver, heart, colon, podocytes, and even leukocytes (Table 1.1) (80). Although less is known about the regulation of SQR, it has been demonstrated that H₂S increases expression of this enzyme (80, 81). On the other hand, Cys reduces transcriptional levels of SQR, which emphasizes its involvement in host sulfur metabolism (79). As with CDO, it is interesting to consider whether scavenging of Cys by bacterial colonizers influences SQR expression in the host. It has recently been reported that deleting SQR results in mitochondrial dysfunction due to cysteine deficiency in S. pombe (79). Given the importance of SQR in yeast, it is somewhat unsurprising that studies are beginning to link defects in this enzyme to mammalian disease as well. It has been proposed that altered SQR activity contributes to reduced H₂S concentrations observed in people afflicted with Alzheimer's disease or ethylmalonic encephalopathy (80, 82, 83). Furthermore, an association between SQR overexpression and postmenopausal osteoporosis has been implicated (84, 85). Collectively, these facts illustrate the vital nature of sulfur metabolism enzymes and the diverse ways in which they

impact the host. Additionally, determining whether and how sulfur scavenging by a colonizing bacterium encourages or exacerbates host diseases associated with dysfunctional sulfur metabolism will be of immense value to the health care system.

COLONIZING BACTERIA EMPLOY MULTIPLE STRATEGIES TO ACCESS THE DIVERSEHOST SULFUR RESERVOIR.

A colonizing bacterium must acquire essential nutrients using metabolites available in a dynamic environment. This point is emphasized in a previous review that discusses the wide range of sulfur acquisition strategies employed by bacterial pathogens (14). However, different host tissues present various concentrations or types of sulfur metabolites that bacteria are capable of catabolizing (Figure 1.1, boldfaced and underlined). This poses a unique challenge that a colonizer can surmount by employing multiple acquisition strategies for various sulfur metabolites. Here, we provide an update on implicated *in vivo* mechanisms employed by colonizing bacteria to exploit physiological sulfur reservoirs.

Advances in pathogen sulfur acquisition: Staphylococcus aureus and Francisella tularensis. S. aureus is a Gram-positive bacterium and leading cause of hospital-acquired infections in the United States (86, 87). S. aureus persistently colonizes 20% of humans as a commensal on areas such as the skin or nasopharynx. However, the pathogenic potential of this organism greatly stems from an ability to propagate in most host tissues, indicating that S. aureus encounters most host sulfur metabolism compounds. Remarkably, S. aureus does not encode various enzymes required in sulfate, sulfonate, or taurine assimilation and is not capable of de novo methionine or Cys synthesis. As such, from a nutritional sulfur standpoint, import of compounds such as Cys

and its derivatives, γ-glutamyl cycle intermediates, thiosulfate, and H₂S, represent the host metabolites that this organism may capitalize on in vivo. In support of this, one critical study describes Cys, CSSC, thiosulfate, sulfide, and GSH as viable nutritional sulfur sources for S. aureus in vitro (88). A more recent study has also demonstrated GSSG as a source of nutrient sulfur for this opportunistic pathogen (89). Interestingly, a novel ABCtransporter (glutathione import system ABCD) was implicated as the major GSH and GSSG importer in S. aureus. As is typical for ABC transporters, this system hydrolyzes ATP as a source of energy for substrate import. GisABCD seems to be conserved within close relatives of the pathogen, excluding Staphylococcus epidermidis. In consideration of the individuals who mare persistently colonized with *S. aureus*, it has been proposed that GisABCD-dependent GSH acquisition is an evolutionary development to compete for sulfur resources in the presence of S. epidermidis. Employing this transporter during infection could then greatly affect the host GSH-to-GSSG thiol balance. Such a disruption could have considerable impacts both on the production of downstream host sulfur metabolites as well as other important physiological aspects, like ROS management. However, a gisBCD-deficient mutant displays no overt virulence defect during murine systemic infection. It is postulated that S. aureus expresses an alternative GSH transporter and that the activity of this theoretical protein masks overt phenotypes during infection. Should this be the case, encoding multiple GSH transporters would underscore the importance of GSH acquisition to S. aureus propagation within host tissues. It is well established that a number of colonizing bacteria encode multiple Cys/CSSC transporters. again emphasizing the importance organisms have placed on these organic compounds throughout evolution. Transportation of these metabolites in S. aureus has recently been

elucidated and investigated in a biological context (90). In this study, it was also determined that both NAC and homocystine, the oxidized form of homocysteine, are viable sulfur sources for S. aureus. The transporters implicated in their collective acquisition, TcyABC and TcyP, were further demonstrated to have biological impacts on S. aureus propagation in vivo. TcyABC is an ABC transporter, while TcyP belongs to the sodiumdicarboxylate symporter family (91). The latter family of proteins is widely distributed throughout eukaryotes and prokaryotes; members include those that import dicarboxylic acids and some amino acids, including those that are small, nonpolar, and neutral, such as Cys (92). Notably, S. aureus TcyABC and TcyP function similarly to their Bacillus subtilis homologs, which have been previously characterized (93). In S. aureus, TcyABC and TcyP are necessary for maximal fitness in colonization of the murine host for both the methicillin-sensitive strain Newman and resistant strain LAC. Specifically, the Newman tcyABC tcyP double mutant displayed significantly reduced colony forming units (CFU) numbers in the heart when in competition against the wild type (WT). However, in the liver in activation of only tcyP results in impaired Newman colonization. Additionally, TcyP of LAC was found to be required for maximal competitive fitness in the murine heart and liver. In addition to increasing foundational knowledge, this study accentuates the fact that intraspecies variance exists for how some bacteria meet the sulfur nutritional requirement in the host. Identification of NAC and homocystine as sources of nutrient sulfur for S. aureus warrants a brief discussion regarding their distribution and impact within a healthy host. Both metabolites have been detected in human plasma, a location where thiols are commonly found in their oxidized form (21, 43, 94, 95). It is noteworthy that the balance between reduced and oxidized homocysteine has long been associated with

cardiovascular disease (e.g., forms of atherothrombotic disease) (96, 97). Thus, future in vivo data implicating the use of homocysteine or homocystine by a pathogen could have interesting implications regarding how the bacterium affects the cardiovascular system of mammalian hosts. In addition to being part of the plasma redox pool, NAC is known to be a GSH precursor within mammals, either through its own deacetylation or by its role in reducing CSSC to Cys; due to this, NAC is a clinically relevant supplement used to increase GSH levels within the host (43, 98). It is clear from these studies that the flexible nature of *S. aureus* sulfur metabolism and the burden this plasticity enforces on the host is just beginning to emerge. Sulfur acquisition and metabolism of the Gram-negative, facultative intracellular pathogen F. tularensis has also seen advances in recent years. This organism is the etiological agent of tularemia, a disease with various clinical manifestations depending on the route of entry (99). As a Cys auxotroph, F. tularensis depends on GSH as a source of Cys for successful intramacrophage survival (100). However, F. tularensis Ggt periplasmic localization implies that GSH catabolism initiates in this subcellular environment, resulting in Cys-Gly being transported into the cytosol as the nutrient sulfur source. In support of this notion, a Tn-Seg screen for genes required for replication in J774A.1 murine macrophage-like cells revealed a proton-dependent oligopeptide transporter (POT) family gene, dptA, as a top hit (101). This observation was validated through monoinfection of J774 macrophages with a dptA mutant. Furthermore, in a murine model of pulmonary infection, DptA significantly impacts the ability of F. tularensis to colonize the lungs and spleen. Reduced accumulation of radiolabeled GSH was also observed with a *dptA* mutant, supporting its function as a Cys-Gly transporter. Carbonyl cyanidem-chlorophenyl hydrazone (CCCP) abolition of WT F. tularensis cell

membrane potential also reduced intracellular radiolabeled GSH abundance to that of a *dptA* mutant, exemplifying this protein as a POT family member. Overall, these findings are the first to demonstrate Cys-Gly as a viable nutrient sulfur source to bacteria within multiple host environments.

Progress regarding symbiotic sulfur acquisition: Staphylococcus hominis and Vibrio fischeri. Like S. aureus, S. hominis is a commensal of the human underarm skin (axilla) microbiome and has pathogenic potential, albeit to a lesser extent than S. aureus (102). Though little is known regarding sulfur metabolism in this species of staphylococci, one can predict capabilities similar to those of *S. aureus*. A current study clearly demonstrates the ability of S. hominis to import a sulfur-containing metabolite as well as accentuating another physiological role for Cys-Gly in the host (103). Here, the γ glutamyl cycle is highlighted for its participation in the production of an axilla malodor precursor, S-[1-(2-hydroxyethyl)-1methylbutyl]-L-cysteinylglycine (S-Cys-Gly-3M3SH). This pathway begins when glutathione S-transferase preforms a conjugation reaction, forming glutathione 3-methyl-3-sulfanylhexanol (SG-3M3SH) (104). From there, host GGT generates S-Cys-Gly-3M3SH. At this point it is postulated that S. hominis imports S-Cys-Gly-3M3SH through the POT family protein, PepT. Once in the cytoplasm, 3-methyl-3sulfanylhexan-1-ol (3M3SH) is liberated and released back into extracellular milieu, which produces malodor. Although it has not been demonstrated, it is tempting to speculate that release of Cys during this process aids in the maintenance of nutrient sulfur demands in S. hominis. In light of the fact that host-bacterium interactions are not limited to mammals, the Gram-negative marine bacterium V. fischeri serves as a growing model of sulfur metabolism for nonmammalian symbionts. V. fischeri is a bioluminescent symbiont located

in the light organ of the bobtail squid, Euprymna scolopes (105). Both organic (Cys, CSSC, and GSH) and inorganic (sulfate and thiosulfate) sulfur sources are capable of supporting V. fischeri proliferation in vitro, and pioneering efforts have defined the nutritional sulfur interface between E. scolopes and this bacterium (105). In the first study, various mutants of the sulfur regulan regulator, CysB, were utilized (105). The authors determined that symbiosis of a cysB mutant is not dependent upon the ability of V. fischeri to assimilate sulfate in the squid light organ. Furthermore, a cysB variant grows similarly to the WT when CSSC was present in vitro and in vivo. However, due to redundancy of encoded CSSC transporters, the authors could not completely determine how V. fischeri acquires this nutrient from the host. As mentioned above, this could be a strong indication of the importance CSSC has to V. fischeri colonization. To that end, when the CSSC transporter TcyP is ectopically expressed in a cysB mutant, the strain establishes WT-like symbiosis (106). Additionally, expression of tcyJ, which encodes a CSSC-specific periplasmic binding protein, is highly upregulated in a mutant defective for sulfate assimilation (106). Collectively these data indicate an association between CSSC utilization as a sulfur source and V. fischeri symbiosis. In this environment, CSSC is predicted to arise as a result of Cys oxidation upon degradation of host proteins in the light organ crypt space (105). The importance of sulfate acquisition to establishment of symbiosis was further elucidated (106). Sulfate is a dominant sulfur source in seawater. Given the prevalence of seawater in the squid light organ, it is a substantial supplier of sulfate in this environment. Therefore, bacteria that colonize this host organ likely utilize sulfate as a nutrient sulfur source. Wasilko et al. identified that a sulfate assimilation mutant displays lower numbers of CFU per milliliter than the WT, suggesting that sulfate is an impactful sulfur source during

symbiosis. To examine this concept from another angle, the authors identified that *V. fischeri* encodes a novel sulfate transporter, YfbS (106). YfbS belongs to the solute carrier 13 (SLC13) protein family, which consists of sodium-coupled anion symporters with substrates such as sulfate, thiosulfate, or dicarboxylates (107). A *yfbS* mutant exhibits lower bioluminescence and number of CFU in the light organ compared to the WT, emphasizing the importance of sulfate acquisition to *V. fischeri* symbiosis. Overall, it is predicted that in this location the abundant sulfate pool provides ample sulfur to an expanding population.

Bacterial regulation of sulfur acquisition and assimilation machinery. To meet its nutritional requirement, a colonizing bacterium must employ sulfur acquisition and assimilation systems in dynamic host environments. However, importing too much sulfur can be toxic due to the involvement of intracellular Cys in Fenton chemistry (i.e., production of hydroxyl radical formation) (108, 109). Therefore, it is critical for bacteria to regulate sulfur metabolism genes such that ideal propagation conditions are maintained within the host. For simplicity, this review will discuss two models of regulation that have been tested in vivo, recognizing that other influencing factors have also been described (110–112). Collectively, genes dedicated to achieving the nutritional sulfur requirement are largely collected within the sulfur regulon. Depending on the Gram status of a bacterium, expression of this regulon will depend on either a positive or negative transcriptional regulator (Figure 1.2). However, in both models the Cys status of the cell is indirectly communicated to a transcriptional regulator through O-acetylserine (OAS). Regulation of sulfur metabolism in Gram-negatives has been thoroughly characterized (Figure 1.2, A and B). In this system, there are two key enzymes: the positive LysR-family

transcriptional regulator CysB and serine transacetylase (CysE). CysE is the product of a gene that is constitutively expressed (113, 114). The catalytic activity of CysE is responsible for providing the critical metabolite, OAS. To do so, CysE binds to L-serine and acetyl-coenzyme A substrates, and the resulting acetyl group transfer produces OAS and CoA (115). OAS may then act either as an intermediate in sulfate or thiosulfate assimilation to Cys or as a signaling molecule. It is noteworthy that OAS spontaneously converts to N-acetylserine (NAS) (115). As such, this pool will be denoted O/NAS. Furthermore, CysE activity is directly controlled by concentrations of intracellular Cys (115, 116). Abundant Cys inhibits CysE activity, and the diminished O/NAS pool renders CysB inactive, repressing sulfur regulon genes (Figure 1.2, A) (115). Alternatively, during Cys limitation O/NAS concentration grows as a result of increased CysE activity (Figure 1.2, B). O/NAS association with CysB fosters binding to promoters, allowing expression of nutrient sulfur acquisition strategies, and Cys production ensues (114). While work regarding effects of CysB on bacterial colonization is relatively sparse, the aforementioned V. fischeri study underscores the significance of this protein during colonization of the bobtail squid light organ (105). Monitoring green fluorescent protein (GFP) production from the promoter of a CysB-responsive gene revealed that CysB activity varies throughout the colonizing population within select locations of the E. scolopes light organ. It is suggested that this reflects the preference of V. fischeri to utilize sulfate where CysB activity is greater than CSSC acquisition in regions with lower regulator action. In other words, this work exemplifies the ability of a colonizing organism to modulate its sulfur regulon in response to available host sulfur sources. Gram-positive bacteria employ negative transcriptional regulation through the cysteine metabolism repressor, CymR (Figure 1.2, C and D) (117).

Although less studied than CysB, there is a good understanding of how this regulator functions in S. aureus (118). OAS-thiol-lyase B (CysM; also known as O-acetylserine sulfhydrylase B) also plays an impactful role in addition to CysE and CymR. When CysE activity is inhibited due to replete intracellular Cys concentrations, CysM associates with CymR. In this complex, CymR is then proposed to bind DNA, repressing expression of the sulfur regulon (Figure 1.2, C). As Cys becomes limiting, O/NAS binds to CysM, destabilizing the CysM-CymR complex or reducing the complex's affinity for DNA (118, 119). The former is a more plausible outcome given that CysM also functions in thiosulfate assimilation to Cys. At this point CymR is inactive and releases from the DNA, promoting transcription of sulfur acquisition and assimilation genes (Figure 1.2, D). It should be noted that in B. subtilis, OAS-thiol-lyase A (CysK) has been shown to interact with CymR rather than CysM (119, 120). However, it is unclear why this occurs or what subgroups of Grampositive species utilize CysM or CysK for this regulatory process. CymR is also rendered inactive upon oxidation of its sole Cys residue (Cys25), suggesting that this regulator also senses the oxidation state of the cell (e.g., Cys levels) to regulate Cys metabolism (121). It would be of interest for future work to characterize how oxidation of CymR^{C25} affects binding of CysM or CysK. Interestingly, a S. aureus cymR deletion mutant is more resistant to macrophage oxidative stress and yet is less virulent in a murine intraperitoneal or bacteremia infection model (122). Further investigation deter-mined that inactivation of cymR resulted in reduced δ -hemolysin activity, which was pro-posed to be the factor contributing to the virulence defect. These investigations clearly illustrate the complex nature of CymR, from the factors that regulate its activity within the sulfur regulon to its connections with virulence. Recently another LysR-family protein, GigC, was described in

Acinetobacter baumannii (123). Through transposon sequencing, GigC was first noted as being critical for colonization of Galleria mellonella (124). lacZ reporter assays further determined that this protein acts as both an activator and repressor for several sulfur assimilation genes. Specifically, promoters for cysI and the cysDN operon showed increased expression in a gigC deletion mutant, whereas activity of cysH and cysQ promoters was decreased. The authors demonstrated that GigC binds to the cysI promoter and proposed that it binds other sulfur regulon genes, such as cysDN, cysH, and cysQ. Considering this information, one could speculate that the bifunctional nature of this regulator serves to fortify A. baumannii sulfur preference throughout the host. Consistent with this, a gigC mutant shows decreased virulence in murine models of intraperitoneal and peritoneal infection. Future work on the model of GigC function and assessments of its sulfur regulation activity in other bacterial species will undoubtedly exemplify the diverse control that can be exerted over this critical regulon. In doing so, questions such as why these distinct regulatory factors have evolved can be more aptly addressed.

OUTLOOK

It is clear from this collective body of literature that colonizing bacteria interact with the host to procure a variety of sulfur sources. However, there remains a pivotal knowledge gap regarding whether the host actively redistributes or limits sulfur as a result of bacterial colonization and whether bacterial sulfur acquisition systems are an evolutionary response to this action. To that end, the nutrient sulfur status (i.e., excess or limited) of bacteria during various stages of colonization is currently at a nascent stage. Defining *in vivo* importance of transporters to bacterial propagation within the host, however, helps clarify the relative nutrient sulfur source hierarchy for colonization. Furthermore, expanding our

view of how import and assimilation mechanisms are regulated assist in explaining bacterial responses to the host environment during colonization. Specifically relating to pathogens, expanding our knowledge regarding these sulfur acquisition and assimilation pathways serves to broaden the list of possible therapeutic targets in the age of multidrug resistance. However, a holistic under-standing of these bacterial studies is incomplete without considering the host perspective. As can be seen above, there is currently little to no characterization of how host pathways respond to bacterial colonization. This represents unexplored territory within the nutrient sulfur relationship at the host-bacterium interface.

ACKNOWLEDGMENTS

We thank members of the Hammer laboratory for their insightful input and discussions. We sincerely apologize to the colleagues we were unable to cite due to space limitations. This work was supported by National Institutes of Health no. R01Al139074 and R21Al142517.

TABLES

Table 1.1. Localization of sulfur metabolism enzymes in mammalian tissues.

Pathway	Enzyme	Host	Example tissue localization	References
γ-glutamyl cycle	γ-glutamyl transpeptidase (GGT)	human	kidney, pancreas, intestine, liver wide tissue distribution, largely	(12, 22–24, 31–34)
	dipeptidase (DP)	porcine, rat	expressed as brush boarder enzyme (kidney, small intestine) and in cytosol of liver	(22–27)
	glutamate-cysteine ligase (GCL)	mouse	liver, kidney, pancreas, lungs, plasma, brain	(44–46)
	GSH synthetase	rat	kidney, liver, heart, lungs	(46)
Transmethylation pathway	methionine- adenosyltransferase (MAT)	rat	liver, pancreas, kidney, lungs	(11)
	methyltransferase (MT)	n.d.	n.d., likely same tissues as MAT	(11)
	SAH hydrolase	human, mammals	all tissues, plasma	(11, 13)
Transsulfuration pathway	cystathionine β- synthase (CBS)	human	liver, brain, kidney, pancreas, heart, lungs, muscles, endocrine	(15, 16, 18)
	cystathionine γ- synthase (CSE)	human, mouse, rat	cytosol; liver, kidney, heart, lungs, brain	(16–18)
Taurine & sulfate production	cysteine dioxygenase (CDO)	rat, mouse	liver, adipose, kidney, brain, lung, pancreas, colon	(18, 50–52)
	cysteinesulfinate decarboxylase (CSD)	rat, mouse	liver, kidney, brain, adipose, lung, pancreas, colon	(18, 50, 51)

Table 1.1 (cont'd)

	glutamate oxaloacetate transaminase (GOT); aka cysteine aminotransferase (CAT)	rat	liver, arterioles, lymphocytes, kidney, arteriolar endothelium, anterior pituitary (cytosolic and mitochondrial); two isoforms	(50, 51, 53, 54)
	sulfite oxidase (SO)	human, mouse	intermembrane space of mitochondria, largely found in liver, kidney	(51, 74)
H₂S production from cysteine	3- mercaptopyruvate sulfurtransferase (3-MST)	mouse	widespread (high expression in liver, intestine, kidney), mostly localized in mitochondria	(50, 58, 60)
	thioredoxin	mammals	ubiquitous; depending on isoform will be found in cytosol (Trx-1) or mitochondria (Trx-2)	(61)
H ₂ S oxidation	sulfide-quinone oxidoreductase (SQR)	mammals	ubiquitous, matrix of inner mitochondrial membrane	(51, 73)
	sulfide dioxygenase (SDO)	mammals	ubiquitous, mitochondrial matrix mitochondrial	(51)
	thiosulfate sulfurtransferase (TST)	mammals	matrix, mostly found in liver, stomach/intestin es	(51)

n.d. = not discussed

FIGURES

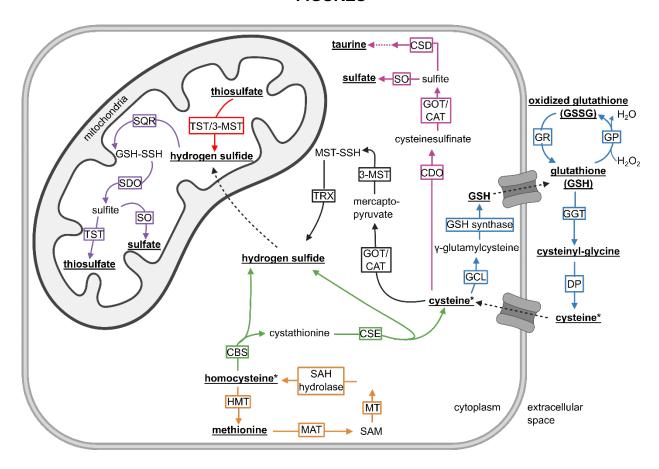


Figure 1.1. The host environment is rich with sulfur-containing metabolites. Cys and H₂S influence production of other sulfur-containing metabolites through their interconnected participation in several metabolic pathways (denoted by colored arrows) within a eukaryotic cell. Note that these pathways are simplified versions of enzymatic reactions (i.e., only the sulfur-containing enzymatic substrates and products are shown). Known sulfur sources for colonizing bacteria are boldfaced and underlined. Biosynthesis of Cys results from the transmethylation and reverse transsulfuration pathways (orange respectively) involves methionine adenosyltransferase adenosylmethionine (SAM), methyltransferase (MT), S-adenosyhomocysteine (SAH), SAH hydrolase, cystathionine β-synthase (CBS), cystathionine y-synthase (CSE), and homocysteine S-methyltransferase (HMT). An asterisk denotes the ability of (i) Cys to oxidize to CSSC or methylate to form NAC and (ii) for homocysteine to oxidize to homocystine. Free Cys can be released from GSH via the y-glutamyl cycle (blue), consisting of glutathione reductase (GR), glutathione peroxidase (GP), y-glutamyl transpeptidase (GGT), and dipeptidase (DP) enzymes. This cycle may also result in production of GSH from Cys with the use of glutamate-cysteine ligase (GCL) and glutathione synthase (GSH synthase). Factors involved in the formation of sulfate and taurine (pink) include cysteine dioxygenase (CDO), cysteinesulfinate decarboxylase (CSD), nonenzymatic oxidation (dashed arrow), glutamate oxaloacetate transaminase, also known as Cys aminotransferase (GOT/CAT), and sulfite oxidase (SO). Cys can also

Figure 1.1 (cont'd)

be directly metabolized to form H_2S (black) with the activities of GOT/CAT, 3-mercaptopyruvate sulfurtransferase (3-MST), and thioredoxin (TRX). H_2S can be oxidized to sulfate or thiosulfate (purple) using sulfide-quinone oxidoreductase (SQR), sulfur dioxygenease, also known as ETHE1 (SDO), and thiosulfate sulfurtransferase (TST). Thiosulfate is also a source of H_2S as a result of TST or 3-MST activity (red). Image created with BioRender.com.

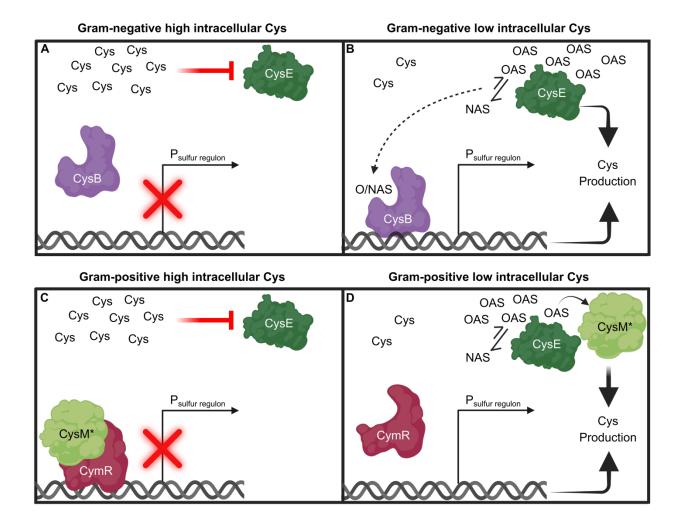


Figure 1.2. Intracellular cysteine modulates the bacterial sulfur regulon. (A to D) Regulation of the sulfur regulon in Gram-negative (A and B) and Gram-positive bacteria (C and D) under high (A and C) or low (B and D) intracellular Cys concentrations. (A) When abundant in a Gram-negative bacterium, intracellular Cys inhibits activity of serine transacetylase (CysE). O-acetylserine (OAS) production is reduced and cannot facilitate CysB binding to DNA. Consequently, CysB fails to induce expression of the sulfur regulon. (B) Upon depletion of Cys, CysE produces OAS, which spontaneously converts to Nacetylserine (NAS). Either NAS or OAS binds to CysB (denoted O/NAS), allowing the positive regulator to induce expression of the sulfur regulon. (C) Sulfur-replete conditions in Gram-positive bacteria inhibit CysE, which leads to decreased OAS levels and promotes CysM or CysK (denoted CysM*) interaction with CymR. CymR functions as a negative regulator that binds DNA and inhibits expression of the sulfur regulon. (D) Limited intracellular sulfur leads to increased CysE-mediated OAS generation, destabilizing the CysM*-CymR complex and promoting transcription of sulfur acquisition systems. Oxidation of CvmR^{C25} during oxidative stress conditions also contributes to an inactive state. In the inactive state, CymR no longer binds DNA, allowing expression of sulfur acquisition and Cys biosynthesis genes. Image created with BioRender.com.

CHAPTER 2: Defining the transcriptional adaptation of *Staphylococcus aureus* to a range of nutritional sulfur supplementation

ABSTRACT

Bacterial pathogens must adapt to dynamic environments to proliferate within host tissues. Accordingly, elegant regulatory systems evolved to combat the immune response, coordinate virulence factor production, and satisfy nutritional requirements. Sulfur is an essential macronutrient and Gram-positive bacteria such as Staphylococcus aureus balance this nutritional requirement by employing the transcriptional repressor, CymR. Previous investigations defined the S. aureus CymR regulon by comparing transcriptional changes of a cymR mutant cultured in cystine replete, rich medium to wild type cells. This study defines the S. aureus CymR-dependent and -independent sulfurstarvation response in chemically defined growth conditions. Notably, these results expand the set of genes within the sulfur starvation regulon and support previously noted connections between iron acquisition, oxidative stress, and sulfur metabolism. Validation of results is highlighted by the ability of sulfur-containing glutathione (GSH) to mitigate heme and peroxide toxicity in *S. aureus*. Since a variety of compounds fulfill the *S. aureus* sulfur requirement, we monitored transcriptional profiles in response to organic (cysteine, cystine, reduced and oxidized GSH) or inorganic (thiosulfate) metabolites. This analysis reveals sulfur source-specific mRNA alterations, with thiosulfate inducing the largest thiosulfate transcriptional shift. Consequently, the sole transporter (SAUSA300 RS10985) has been established as it is essential for S. aureus growth when thiosulfate is the nutritional sulfur source. Furthermore, we demonstrate that a hypothetical protein operonic with SAUSA300 RS10985, SAUSA300 RS10980, supports maximal growth of this bacterium on thiosulfate. Collectively, a resourceful

transcriptomics framework is provided which underscores the versatile nature of *S. aureus* sulfur metabolism.

IMPORTANCE

The opportunistic pathogen *Staphylococcus aureus* proliferates within numerous host environments and consequently is a leading cause of hospital-acquired infections. During colonization *S. aureus* must acquire essential nutrients like sulfur to survive. Regulation of machinery to procure host-derived metabolites occurs to satisfy nutritional requirements and maintain homeostasis to circumvent detrimental impacts on bacterial physiology. This report investigates the *S. aureus* regulatory response during various states of sulfur supplementation *in vitro*, enhancing our knowledge of staphylococcal sulfur metabolism and represents a repository of information that will guide future research surrounding *S. aureus* sulfur acquisition and metabolism.

INTRODUCTION

Staphylococcus aureus harbors considerable pathogenic potential given it adapts to and proliferates within most vertebrate organs (86, 125). Such capabilities demand bacteria sense and respond to the extracellular milieu to procure essential nutrients from the host. For example, regulatory mechanisms that control *S. aureus* transition metal acquisition and homeostasis are well defined (126). The transcriptional repressors Fur, Zur, and MntR modulate genes involved in acquisition and utilization of iron, zinc, and manganese, respectively. Each regulator has dedicated binding pockets for their cognate metal ion (i.e., Fe²⁺, Zn²⁺, and Mn²⁺) which senses intracellular concentrations, allowing the regulator to switch to an active, repressive conformation in replete environments (126). Activity of these metalloregulators is tightly coordinated given that transition metals, though essential, are detrimental when in excess (126–128).

Sulfur represents another essential nutrient whose coordinated acquisition by *S. aureus* involves similar regulation. Within cells sulfur is stored in the form of cysteine (Cys) which partakes in numerous cellular reactions such as protein and co-factor synthesis or redox balance (4, 5, 7, 8, 129–132). Given this amino acid is the crux of sulfur distribution within a cell, all metabolites used to meet this nutritional requirement must be catabolized (organosulfur) or assimilated (inorganic) to Cys. As with iron, in *Escherichia coli* it has been demonstrated that an overabundance of intracellular Cys contributes to Fenton chemistry (108). Thus, stringent management of this element in coordination with iron is needed to accommodate proliferation (133). The major regulatory factor influencing *S. aureus* sulfur homeostasis is the <u>cy</u>steine <u>metabolism repressor</u>, CymR (117, 118, 134). In contrast to the metalloregulators, CymR indirectly senses Cys levels to modulate DNA

binding activity via two methods (Fig. 2.1). Intracellular Cys levels are communicated through the sulfur assimilation intermediate *O*-acetylserine (OAS) whose abundance will drop under high Cys concentrations. OAS-thiol-lyase B (CysM, aka MccA) responds to this OAS depletion by complexing with CymR, activating repression (Fig. 2.1A). Alternatively, CymR is also known to respond to the oxidation state of *S. aureus* through its sole Cys residue at position 25 (Fig. 2.1B).

To maintain intracellular sulfur, metabolites—including Cys, cystine (CSSC), *N*-acetylcysteine, homocysteine, reduced and oxidized glutathione (GSH and GSSG, respectively), thiosulfate (TS), and hydrogen sulfide— are acquired by *S. aureus* and converted to Cys (88–90). These compounds participate in host sulfur metabolism across numerous tissues (134). However, even with advances in our understanding of sulfur metabolism in this pathogen, how *S. aureus* synchronizes internal demands for this element throughout the host and the mechanisms by which *S. aureus* prioritizes sulfur metabolite utilization remain outstanding questions.

This study defines how *S. aureus* responds to sulfur starvation by establishing sulfur replete and deplete transcriptional profiles that emerge in a CymR-dependent and independent manner. Using a chemically defined medium (CDM) supplemented with various sulfur sources, our findings expand upon work performed by Soutourina *et al.* who describe a CymR-dependent transcriptional response of *S. aureus* cultured in rich medium supplemented with 2 mM CSSC (118, 122). Like the previous study, we observe a CymR-independent upregulation of iron transport and oxidative stress genes when *S. aureus* is sulfur starved (122). The importance of connected regulation is established by showing that *S. aureus* scavenging exogenous nutrient sulfur in the form of glutathione

(GSH) combats heme-induced oxidative stress as well as enhancing survival in response to hydrogen peroxide (H₂O₂). Additionally, growth on inorganic TS elicited the greatest number of differentially expressed genes compared to proliferation on organic metabolites (Cys, CSSC, GSH, and GSSG). The RNAseq was substantiated by addressing the role of upregulated genes in response to TS. This investigation confirms that SAUSA300 RS10985, a YeeE/YedE family transporter, is required for *S. aureus* growth on TS along with a protein of unknown function, SAUSA300 RS10980. Together with their high degree of homology to the E. coli thiosulfate uptake proteins A and B (TsuAB), these findings suggest the reannotation of SAUSA300 RS10985 and SAUSA300 RS10980 to tsuA and tsuB, respectively (135). Overall, this work validates the importance of transcriptional links between sulfur starvation, iron homeostasis, and oxidative stress responses as well as accentuating intricacies within the S. aureus sulfur regulon.

RESULTS

Staphylococcus aureus sulfur starvation response includes altered transcription within the CymR regulon. A direct assessment of the *S. aureus* sulfur starvation response has not been established. Previous work defined the CymR regulon using a *cymR* deletion mutant (Δ*cymR*), an isogenic SH1000 wild type (WT) strain, and microarray hybridization (118). Both strains were cultured in rich medium (tryptic soy broth; TSB) supplemented with 2 mM cystine (CSSC). We sought to compare the sulfur starved transcriptome of WT *S. aureus* with a sulfur deprived *cymR* transposon mutant (*cymR*::Tn) to define the CymR-dependent and -independent response. This assessment required growth conditions distinct from those employed previously (118). WT JE2, a

derivative of the current endemic USA300 LAC strain, and an isogenic *cymR*::Tn were cultured in CDM supplemented with 25 µM CSSC to mid-exponential phase. Cells were washed, resuspended into CDM supplemented with or without 25 µM CSSC, and cultured for an additional 2 h prior to isolating RNA and performing RNAseq (Fig. 2.2). The use of WT and *cymR*::Tn provides a robust methodology to discern between the respective *S. aureus* CymR-dependent and -independent responses to sulfur starvation. Comparisons between culture conditions and the total number of differentially regulated genes (>2-fold) are outlined in Table 2.1.

Overall, the WT sulfur starvation response included 425 upregulated and 142 downregulated genes, resulting in a total of 567 differentially expressed transcripts (Table 2.1a and Table A-1). The number of genes responding to sulfur starvation (n=567) is far greater than the previously described CymR regulon (*n*=79), supporting the hypothesis that sulfur starvation induces CymR-dependent and -independent responses (118, 122). To define CymR-dependent transcripts, we compared the sulfur replete CymR regulon to the previously reported CymR regulon, which was also generated in sulfur-replete culture conditions (18,22). Specifically, genes differentially expressed in cymR::Tn when cultured in CSSC-supplemented CDM were identified and compared to WT grown in the same condition (Table A-2). This analysis revealed that cymR inactivation altered the expression of 67 genes, 45 upregulated and 22 downregulated (Table 2.1b). For comparison, 79 genes were upregulated when ΔcymR was cultured in CSSCsupplemented TSB (118, 122). With the WT sulfur starvation and CymR regulons in hand, we sought to compare upregulated sulfur metabolism genes across the three conditions (118). Notably, 15 out of the 16 published sulfur acquisition and metabolism genes are

shared between sulfur starved WT (Table A-1) and the previously reported CymR regulon (118, 122) with a total of 28 common genes between the two Tables overall (Table 2.2 and Fig. 2.3A). Adding upregulated genes from the sulfur-replete *cymR*::Tn condition (Table 2.3) transcriptome to this comparison reveals 10 total shared genes (Fig. 2.3A), eight of which are published sulfur metabolism genes (Table 2.2c) while the remaining two, SAUSA300_RS01875 and SAUSA300_RS15260, are described as cell wall associated by Soutourina *et al.* (118).

To more strictly define sulfur metabolism associated genes within our conditions, cluster of orthologous groups (COGs) were assigned to the WT sulfur starvation and *cymR*::Tn sulfur replete Tables and then reassessed against Soutourina *et al.* (118). Sulfur-metabolism associated genes within the sulfur-deplete WT (*n*=26), sulfur-replete *cymR*::Tn (*n*=14), and the Soutourina *et al.* published (*n*=16) Tables were compared, revealing eight shared genes (Fig. 2.3B, Table 2.2) (118). Soutourina *et al.* also identified cell-wall associated genes in the CymR regulon and therefore COG assigned cell-wall associated genes were also isolated and analyzed; however, cell-wall associated genes were not shared across the three Tables (Fig. 2.3C). A direct comparison of the WT sulfur starvation and *cymR*::Tn sulfur replete conditions reveals 35 shared genes (Fig. 2.3D), 16 of which are sulfur metabolism associated (Fig. 2.3D, asterisk). This suggests that CymR influences expression of these 35 genes.

The disparity between the total number of genes differentially regulated in response to sulfur starvation (n=567) and the sulfur replete CymR regulons (n=79 and n=67) underscores the importance of accounting for the sulfur status of cells. We surmise that CymR-dependent and -independent transcriptional alterations comprise the WT

sulfur starvation response. Therefore, identifying differentially expressed transcripts that are similar between sulfur starved WT and *cymR*::Tn will define transcripts regulated independently of CymR as those transcripts change in abundance regardless of whether CymR is present. Induction of sulfur starvation in *cymR*::Tn cells results in the differential expression of 344 genes, with 169 and 175 being up- and downregulated, respectively (Table 2.1c and Table A-3). Of those 344 genes, 138 are also differentially regulated in sulfur starved WT cells (Fig. 2.4A, Tables A-1 and A-3). These genes contribute to several cellular pathways with amino acid transport and metabolism, inorganic ion transport and metabolism, and genes of unknown function being most represented (Fig. 2.4B). Two transcriptional regulators are also differentially expressed in this CymR-independent sulfur starvation response (Tables A-1 and A-3). Sbnl is a heme-responsive regulator for staphyloferrin B synthesis (136) while Fur is the master iron regulator.

While these 138 genes represent the CymR-independent transcriptional response to sulfur starvation the remaining 429 genes are CymR-dependent, underscoring the importance of CymR in the sulfur starvation response. In keeping with this, a range of cellular processes were described with the COG analysis such as energy production and conversion, amino acid transport and metabolism, transcription, as well as carbohydrate transport and metabolism (Fig. 2.4C). Lastly, a subset of genes are differentially expressed solely in the *cymR*::Tn sulfur starvation response (*n*=117). Though these genes are considered CymR-independent, their differential expression is more likely a compensatory response to the loss of CymR. Within this subset of genes there are only three COG categories that have more than 10 genes represented: those with unknown function, amino acid transport and metabolism, and inorganic transport and metabolism

(Fig. 2.4D). Together, these comparisons reveal an intricate *S. aureus* starvation response that engages transcriptional alterations within and beyond the sulfur regulon.

Sulfur starvation induces changes in numerous S. aureus transcriptional regulators and the upregulation of iron acquisition and oxidative stress response **genes**. In addition to their initial report of genes differentially expressed in a $\Delta cymR$ mutant cultured in TSB + 2mM CSSC (118), Soutourina et al. observed 18 upregulated genes involved with oxidative stress and metal ion homeostasis (122). Genes associated with oxidative stress and iron metabolism are also upregulated in response to sulfur deprivation in this study (Table A-1). Of the 567 differentially expressed genes in sulfur starved WT, 34 encode transcriptional regulators, of which 28 are upregulated while 6 are downregulated (Table 2.4). Notably, cymR, fur, and perR (major peroxide sensor) were upregulated (Table 2.4). Increased fur and perR expression were also observed in Soutourina et al. (122). Interestingly, fur upregulation occurred in both of our sulfur starvation Tables despite iron supplementation (Tables A-1 and A-3). Consistent with activation of the Fur and PerR regulons, both the WT and cymR::Tn sulfur starvation responses include an upregulation of seven oxidative stress genes as well as 29 iron acquisition and Fe-S cluster assembly genes (Table 2.5). Some iron acquisition genes are upregulated in both the WT and cymR::Tn sulfur starvation conditions, indicating that their expression is CymR-independent (Table 2.5, asterisk). Within these shared genes are those found to be upregulated by Soutourina et al. such as alkyl hydroperoxide reductase subunits C and F as well as ftnA (122).

Some genes are uniquely upregulated only during WT sulfur starvation (e.g., *fhuB*, *fhuG*) which would suggest differential expression in response to the presence of CymR

(Table 2.5). Fourteen genes, largely involved in Fur-regulated siderophore biosynthesis and Fe-S cluster assembly, are unique to the *cymR*::Tn starvation condition as well as a regulator of redox-stress, HypR (137) (Table 2.5). Upregulation of *hypR* solely during *cymR*::Tn sulfur starvation led us to question whether other transcriptional regulators are altered in this condition. Two such regulatory systems were found: *sarR* (SAUSA300_RS12390), which modulates the virulence regulatory *sar* system (91, 138), is downregulated while SAUSA300_RS11905 (MerR family of metal sensing regulators) is upregulated (91, 139).

Several of the CymR-independent upregulated genes belong to the Isd system (iron-regulated surface determinant) which promotes the release of iron from heme (140). The observed interconnection between sulfur, iron, and oxidative stress should benefit S. aureus because numerous enzymes require Fe-S clusters to function and homeostasis of these two nutrients is crucial given their contributions to Fenton chemistry (108, 141, 142). Additionally, GSH (a sulfur-containing metabolite with a free thiol) protects Streptococcus species against oxidative damage upon exposure to copper or paraquat (143, 144). These facts support the hypothesis that *S. aureus* employs a similar method of GSH scavenging to manage oxidative stress (144). Given the lsd system is important for heme-mediated iron acquisition and the fact that erythrocytes contain approximately 21 μM of free heme and 1-2 mM GSH (145, 146), we explored S. aureus sensitivity to hemin (oxidized form of heme) upon supplementation with reduced or oxidized GSH. WT and a hrtA::Tn mutant—which is hypersensitive to heme due to impaired efflux (147, 148)—display identical growth profiles when cultured in CDM with 50 μM GSH (Fig. 2.5A). However, toxicity is observed as an increased lag phase upon supplementation of the WT

culture with 10 µM hemin while the hrtA::Tn mutant fails to proliferate (Fig. 2.5A). To reflect GSH levels S. aureus likely encounters during infection, GSH was increased to a more physiologically relevant concentration (42); supplementation with 750 µM GSH abolishes any impact of hemin on WT propagation (Fig. 2.5B). The hrtA deficient strain experiences a longer lag phase, but eventually reaches a WT-like OD₆₀₀ (Fig. 2.5B), indicating an alleviation of heme toxicity. To assess whether this protection is specific to the free thiol, reduced GSH was replaced with oxidized GSH (GSSG) using equimolar concentrations of sulfur. Exposing S. aureus supplemented with low (25 µM) or high (375 μM) concentrations of GSSG to hemin inhibited growth of both WT and the *hrtA* deficient strain (Fig. 2.5C, D respectively). Taken together, this indicates that S. aureus scavenging of GSH sufficiently combats hemin-mediate oxidative stress. To further demonstrate that GSH protects against ROS, we quantified the viability of S. aureus cells that were preincubated with GSH or GSSG and subsequently exposed to H₂O₂ (Fig. 2.5E). WT cultured in 750 µM GSH exhibited significantly increased viability upon H₂O₂ challenge compared to WT grown in 50 µM GSH or 375 µM GSSG. Collectively, these data indicate that sulfur starvation and iron homeostasis coordination protect S. aureus from oxidative stress (122).

Adaptation of *S. aureus* to distinct nutrient sulfur sources induces unique transcriptional responses. Given that the absence of sulfur drives transcriptional changes, we hypothesized that discrete *S. aureus* transcriptome alterations occur when cultured in the presence of organic or inorganic sulfur sources. To test this, *S. aureus* was grown in CDM supplemented with 50 μM Cys, 25 μM GSSG, 50 μM GSH, or 50 μM sodium thiosulfate (sTS) and differentially expressed genes were identified (Table B-1,

B-2, B-3, and B-4, respectively). CSSC was used as the comparator because it is typically supplemented as the sulfur source in CDM (149, 150). In total, 776 genes alter expression when *S. aureus* proliferates in the presence of Cys, GSSG, GSH, or sTS when compared to CSSC (Tables B-1 to B-4). Only six genes were differentially expressed in WT supplemented with Cys (Table B-1). One of the two downregulated genes in this condition, SAUSA300_RS04580, encodes a putative pyridine nucleotide disulfide oxidoreductase (91), suggesting a role in reducing CSSC. However, inactivation of SAUSA300_RS04580 does not impact the ability of *S. aureus* to utilize CSSC as a sulfur source (Fig. 2.6).

In stark contrast to Cys supplementation, sTS led to the greatest shift in differentially expressed genes. In this condition, a total of 231 genes were upregulated and 175 downregulated (Fig. 2.7A); compared to growth in GSH and GSSG, 135 upregulated and 83 downregulated genes are unique to growth on sTS (Fig. 2.7B, C). Supplementation with GSH or GSSG results in a total of 193 upregulated and 177 downregulated genes (Fig. 2.7A); 19 of these genes had unique differential expression when GSH was the provided sulfur source whereas 26 were specific to GSSG (Fig. 2.7B, C). An explanation for this disproportional transcript abundance across sulfur sources is variant transcriptional regulator expression. In total, 21 regulators experienced altered expression in the presence of sTS, GSH, and GSSG. Twelve of these regulators were solely altered in sTS while three were found to have differential expression in GSSG (Fig. 2.7D). Four regulators were differentially expressed in both GSH and sTS while one regulator was shared between GSSG and sTS (Fig. 2.7D). Only one regulator, *vraR*, shared differentially expression across all three sulfur sources (Fig. 2.7D). The 12

regulators uniquely expressed in sTS support the notion that altered gene expression in the presence of this sulfur source is related to transcriptional regulation. Consequently, we hypothesize that sTS supplementation leads to altered nutritional requirements which manifest through increased expression of transporters compared to GSH and GSSG. Consistent with this, 53 differentially transporters across all the sulfur conditions were found (Table B-5). Seventeen were specifically upregulated in sTS compared to the eight and four transporters uniquely upregulated in GSSG and GSH, respectively (Table B-5). Several transporters in Table B-5 are differentially expressed in just two sulfur sources— GSH and GSSG (n=1), GSH and sTS (n=5), or GSSG and sTS (n=1)—while 15 experience transcriptional alterations in all three conditions. Of these 15 genes, 12 are upregulated (Fig. 2.8 "+" symbols), six of which are were also upregulated in the previously described CymR regulon (Fig. 2.8, bold) (118). The remaining three shared SAUSA300 RS01625, transporters (i.e., SAUSA300 RS13340, and SAUSA300 RS13345) are downregulated (Table B-5). Collectively, these observations indicate that growth on inorganic sulfur sources alters S. aureus physiology to a greater extent than when this organism proliferates on organic sulfur sources.

To substantiate these Table, we further assessed the sTS condition given that supplementation with this metabolite led to the largest transcriptional shift. SAUSA300_RS10985 and SAUSA300_RS10980 encode for a YedE/YeeE family transporter and oxidoreductase, respectively (91, 118, 151). Recently, *E. coli* homologs of SAUSA300_RS10985 and SAUSA300_RS10980 were found to import TS (TsuA, SAUSA300_RS10985 homolog, referred to as 985) and support its assimilation to Cys (TsuB, SAUSA300_RS10980 homolog, referred to as 980) (135, 152). This is in

accordance with previous predictions that 985 is the S. aureus TS transporter (118). To investigate whether 985 supports S. aureus utilization of TS as a source of nutrient sulfur, a 985::Tn mutant was employed. The Tn insertion likely has polar effects on the downstream 980 gene (Fig. 2.9A). As such, complementation was performed using the pKK22 vector (153). Both genes were cloned, under native promoter control, into pKK22 individually or as an operon. The resulting strains were then cultured in CDM supplemented with either 50 µM sTS or 25 µM CSSC (Fig. 2.9B, C respectively). In comparison to WT harboring an empty vector (EV), the 985::Tn EV mutant is incapable of proliferation when TS is the sulfur source (Fig. 2.9B). Expression of 985 in trans partially restores propagation of the mutant while complementation with the entire operon completely rescues the observed growth defect. Ectopic expression of 980 does not restore proliferation of the mutant in CDM supplemented with sTS. These results demonstrate that 985 is necessary, but not sufficient for maximal growth of *S. aureus* on sTS while 980 is sufficient, but not necessary. Each phenotype is sulfur specific given that strains demonstrate WT-like growth on the control sulfur source, CSSC (Fig. 2.9C). In accordance with the nomenclature proposed by Morigasaki et. al. (135) we propose to rename 985 and 980 to thiosulfate uptake proteins A and B (TsuA, TsuB), respectively.

DISCUSSION

As knowledge regarding *S. aureus* sulfur acquisition and assimilation mechanisms grow, it is vital to understand how these strategies are regulated during infection (89, 90). Initial observations defined the *S. aureus* CymR regulon using an isogenic mutant cultured in sulfur replete media (118, 122). Here, we examine how the CymR-dependent and - independent transcriptome fluctuates under sulfur replete and deplete conditions. To do

so, RNAseq was employed due to its increased sensitivity over the microarray technology applied by Soutourina *et al.* Additionally, WT and *cymR*::Tn cells were cultured in a defined medium in the presence or absence of CSSC allowing us determine the sulfur starvation transcriptome. Our study also assessed a methicillin resistant, USA300 LAC derivative (JE2) which is reflective of the current endemic strain, whereas previous work utilized the methicillin susceptible SH1000 strain. Comparing our WT sulfur starvation and *cymR*::Tn sulfur replete transcriptomes to the $\Delta cymR$ sulfur replete transcriptome generated by Soutourina *et al.* (118), we observe a greater number of differentially regulated genes related to sulfur metabolism and fewer cell-envelope associated genes (Fig. S2B and S2C). These differences are likely due to increased sensitivity, contrasting growth conditions, and variations in cell wall composition and structure given that different *S. aureus* strains were assessed (154, 155).

Querying sulfur-starved WT (Table A-1), a CSSC-supplemented *cymR*::Tn mutant (Table A-2; Table 2.3), and the sulfur replete Δ*cymR* strain described in Soutourina *et al.* (118, 122) reveals overlap in upregulated sulfur-associated transporters. Notably, *S. aureus* encodes two Cys and CSSC transporters, TcyP and TcyABC (90). Upregulation of *tcyP* was consistent across all three Tables as was *tcyA*, the gene encoding the TcyABC substrate binding protein. However, the remaining *tcyB*-encoded permease and ATPase encoded by *tcyC* are upregulated in WT sulfur starvation and Soutourina *et al.*, but not in the CSSC replete *cymR*::Tn mutant. Heightened expression of a recently described glutathione import system (*gisABCD-ggt*; SAUSA300_RS01055-RS01075) was also observed across the three analyses (89). The ABC transporter is encoded by divergently transcribed *gisA* and *gisBCD*. The terminal gene of the *gisBCD* operon is *ggt*,

which encodes a γ-glutamyl transpeptidase. All five genes exhibit increased expression in sulfur starved WT. Both *gisA* and *gisB* are expressed in CSSC supplemented *cymR*::Tn while Soutourina *et al.* observe upregulation of *gisA* (118, 122). The genes encoding for a predicted sulfate/sulfonate transport system, *ssuABC*, were also upregulated in both the CSSC supplemented *cymR*::Tn and WT sulfur starvation conditions; however only *ssuB* was upregulated in Soutourina *et al.* Despite these subtle inconsistencies across presumably operonic genes, expression of the *gisABCD-ggt* and *ssuABC* loci further solidifies the overlap within the compared Tables. Lastly, upregulation of *tsuA*, the verified TS transporter, occurred across all three Tables.

A portion of the sulfur starvation response involves genes outside of the CymR regulon (Fig. 2.4) such as those involved in iron metabolism and oxidative stress (Table 2.5 and Table B-1). A potential link between iron and sulfur regulons seems intuitive considering the number of enzymes that require Fe-S clusters. In *Pseudomonas aeruginosa* the sulfur regulon transcriptional regulator, CysB, directly promotes expression of *pvdS*, an alternative sigma factor involved in the iron response (156), suggesting beneficial effects of balancing iron and sulfur levels. This coordination is further exemplified in *E. coli* where Fur binds an [2Fe-2S] cluster to sense intracellular free iron (133) though, whether Fur is also responsive to CysB in this organism is currently unknown. The fact that iron and sulfur potentiate Fenton chemistry also underscores a link between sulfur acquisition, iron acquisition, and oxidative stress.

Scavenging host GSH, a low molecular weight thiol antioxidant, to satisfy the nutritional sulfur requirement may also offset toxicity associated with iron or heme-iron acquisition. We demonstrate that GSH protects *S. aureus* from hemin toxicity, supporting

propagation in an otherwise inhibitory environment (Fig. 2.5). Though not fully understood, heme can induce bactericidal effects at high enough concentrations. To combat heme accumulation, S. aureus employs the heme-regulated ABC transporter, HrtAB, which effluxes heme from the cell. Therefore, genetic inactivation of hrtA or hrtB results in heme hypersensitivity (147, 148). Here we observe that GSH scavenging promotes proliferation of both WT and a hrtA::Tn mutant in the presence of hemin. The free thiol of GSH is a crucial aspect of this protection given that GSSG is not sufficient to alleviate the toxicity. Additionally, we demonstrate that toxicity of another stressor, H₂O₂, is decreased upon culturing S. aureus in the presence of physiologically relevant GSH concentrations. This supports the notion that the restored growth observed in response to heme is likely due to management of cell-associated stress induced by heme rather than a direct, extracellular GSH-heme interaction (157, 158). The relevance of these results towards S. aureus management of heme-induced stress during bacteremia stem from the facts that the pathogen is hemolytic, and erythrocytes harbor abundant concentrations of GSH and heme (159, 160). Thus, coordination of the sulfur, iron, and oxidative stress regulons should benefit S. aureus.

Due to the numerous metabolites that satisfy the *S. aureus* sulfur requirement, it is unknown whether this pathogen encounters sulfur-limited environments during infection. Nonetheless, *S. aureus* has evolved several elegant mechanisms to pillage host-derived sulfur reservoirs (134). Sulfur-containing metabolites vary in abundance or composition depending on tissue types and sub-cellular localization (134). Given this, it is accordingly plausible that *S. aureus* adapts to the local sulfur milieu by altering its sulfur acquisition and metabolism transcriptome. Growth of *S. aureus* on four different sulfur

sources (Cys, GSH, GSSG, and sTS) reflects this. In comparison to the CSSC condition, each sulfur source resulted in at least six (Cys) and a maximum of 248 (sTS) differentially expressed genes.

The function of CymR when S. aureus meets threshold intracellular Cys levels provokes the thought that providing CSSC, Cys, GSH, GSSG, or TS to S. aureus would cause CymR to repress target genes. However, we observe upregulation of sulfur regulon genes in each condition, save Cys (Tables B-2 to B-4). This finding suggests that the provided sulfur concentration is sufficient for growth in vitro but does not maintain sufficient intracellular Cys concentrations that would result in CysE inhibition (Fig. 2.1). Quantifying kinetic expression of target genes while monitoring OAS levels throughout S. aureus growth will address this. Alternatively, CymR might respond to stimuli not currently appreciated. In fact, CymR has two defined inputs that affects its DNA binding capacity, OAS-thiol-lyase B (CysM) and oxidation of the Cys residue at the position 25 (Fig. 2.1) (118, 121). Another possibility is the influence of coordinated regulation on the sulfur regulon. Indeed, our Tables demonstrate upregulation of transcriptional regulators in both sulfur-limited and -replete environments, implicating connections between sulfur metabolism and other metabolic processes (e.g., iron, oxidative stress). Finally, the Δ*cymR* mutant used in the Soutourina *et al.* study exhibited decreased hemolytic activity and virulence though differential expression of virulence factors was not reported (118, 122). Similarly, our conditions did not reveal altered expression of virulence genes. We attribute this to harvesting RNA from mid-exponential cells when Agr, the major virulence regulator, activity is low.

Collectively, our investigation into the S. aureus sulfur response reveals intricacy surrounding CymR and the sulfur regulon. This manifests when examining the molecular mechanisms of TS assimilation. Extensive characterization of TS assimilation in E. coli and Salmonella typhimurium has generated a model where an ABC transporter, CysPUWA, imports TS into the cell (161–163). S. aureus does not encode a CysPUWA homolog (91). Here we demonstrate that S. aureus employs TsuA to support growth on TS (Fig. 2.9B). Additionally, TsuB is thought to be produced from the gene operonic with tsuA and contributes to the efficient assimilation of TS (Fig. 2.9B). Given that TsuB belongs to the TusA family of proteins, we predict that it is involved in guiding TS from TsuA to the first enzyme in assimilation, CysM. These observations mirror recent work in E. coli and, together, are reshaping our understanding of how bacteria use this inorganic metabolite to meet the nutritional sulfur requirement (135, 152). Most importantly, however, is that these data support the RNAseg by demonstrating that upregulated genes with predicted sulfur metabolism function indeed contribute to meeting this nutritional requirement. Overall, this work provides compelling Tables that highlight the S. aureus response to various states of sulfur supplementation and can be utilized to probe the nuances of sulfur metabolism to better understand this persistent threat to global health.

ACKNOWLEDGEMENTS

We thank Jeffery Bose for supplying the pKK22 vector. Transposon mutants were acquired from the Network on Antimicrobial Resistance in *Staphylococcus aureus* (NARSA) for distribution by BEI Resources, NIAID, NIH, and the Nebraska Transposon Mutant Library (NTML) Screening Array NR-48501. This work is funded by the National Institutes of Health R01 Al139074 and R21 Al142517.

MATERIALS AND METHODS

Strains and Primers. A complete list of strains and plasmids as well as primers used in this study can be found in Tables 2.6, 2.7, and 2.8 respectively. JE2, a derivative of the community acquired USA300 LAC, is the WT *S. aureus* strain used in these studies (164). *Bursa aurealis* Tn inactivated strains were generated by transducing the Tn inactivated gene from the Nebraska Transposon Mutant Library into JE2 using a previously described protocol (164–166). Tn insertions and chromosomal deletions were verified using PCR. Plasmids were confirmed using Sanger sequencing (58, 59). Complementation studies were done with the pKK22 vector (153). All pKK22 vector derivatives were generated via Gibson assembly in the *E. coli* DH5α strain and then transformed into *S. aureus* RN4220, an intermediate strain, before JE2.

Media and growth conditions. All strains were cultured overnight in 5 mL tryptic soy broth (TSB; Remel) at 37°C, shaking at 225 rpm. A base chemically defined medium (CDM) was prepared using a previously described recipe with slight modifications (149, 150). Base CDM included the following salts: K₂HPO₄ (7 mg mL⁻¹), KH₂PO₄ (2 mg mL⁻¹), (NH₄)₂SO₄ (1 mg mL⁻¹); amino acids: Phe (0.04 mg mL⁻¹), Iso (0.03 mg mL⁻¹), Tyr (0.05 mg mL⁻¹), Glu (0.1 mg mL⁻¹), Lys (0.01 mg mL⁻¹), Met (0.07 mg mL⁻¹), His (0.03 mg mL⁻¹), Trp (0.01 mg mL⁻¹), Leu (0.09 mg mL⁻¹), Asp (0.09 mg mL⁻¹), Arg (0.07 mg mL⁻¹), Ser (0.03 mg mL⁻¹), Ala (0.06 mg mL⁻¹), Thr (0.03 mg mL⁻¹), Gly (0.05 mg mL⁻¹), Val (0.08 mg mL⁻¹), Pro (0.01 mg mL⁻¹); nucleotides: adenosine (0.005 mg mL⁻¹), cytosine, guanine (0.005 mg mL⁻¹), thymine (0.02 mg mL⁻¹), uracil (0.005 mg mL⁻¹); vitamins: thiamine (0.001 mg mL⁻¹), nicotinic acid (0.0012 mg mL⁻¹), biotin (5e⁻⁶ mg mL⁻¹), calcium pantothenate (2.5e⁻⁴ mg mL⁻¹); MgSO₄ (0.1024 mg mL⁻¹); and FeCl₃ (0.008 mg mL⁻¹). This

medium lacks CSSC, asparagine, and glutamine. Freshly prepared D-glucose (5 mg mL⁻¹) was supplemented into the base medium and, depending on the condition, either no sulfur source, 25 μM cystine (CSSC), 50 μM cysteine (Cys), 25 μM reduced glutathione (GSH), 50 μM oxidized glutathione (GSSG), or 50 μM sodium thiosulfate (sTS) prior to inoculation. CSSC and Cys stocks were dissolved in 1 N HCl. Stocks of GSH, GSSG, and sTS were made fresh by dissolving in ddH₂O prior to filter sterilization.

Cultures for biological duplicates for each RNAseg experiment were conducted on independent days. Sulfur starvation was induced by washing WT or cymR::Tn S. aureus overnight cultures in 1X phosphate buffered saline (PBS) to a normalized optical density at 600 nm (OD₆₀₀) of 1. Cells were then sub-cultured 1:100 (i.e., OD₆₀₀ equal to 0.01) into two 250 mL Erlenmeyer flasks containing 50 mL CDM supplemented with 25 µM CSSC. Flasks were incubated at 37°C, shaking at 225 rpm, for 4 h (Fig. 2.2). The duplicate flasks were then combined, centrifuged at 4°C, 4700 rpm for 10 min, washed with PBS, centrifuged again, and resuspended in 100 mL CDM harboring no sulfur source. The resulting resuspension was separated by pipetting 50 mL into two 250 mL Erlenmeyer flasks. One flask of WT and cymR::Tn was supplemented with 25 µM CSSC while the other remained sulfur deplete. Flasks were incubated at 37°C, shaking at 225 rpm, for 2 h prior to RNA isolation. To assess transcriptional changes between organic (Cys, CSSC, GSH, and GSSG) or inorganic (sTS) sulfur sources, WT cells were prepared identically as described above up to OD₆₀₀ normalization. Cells were then subcultured 1:100 in CDM supplemented with either 50 μM Cys, 25 μM CSSC, 25 μM GSSG, 50 μM GSH, or 50 μM sTS. Flasks were incubated at 37°C, 225 rpm, for 4 h prior to RNA isolation.

Cells were prepared for growth analyses in 96-well plates growth curves as follows: overnight cultures were washed in 5 mL PBS and normalized to an OD₆₀₀ equal to 1. Cells were diluted 1:100 into 150 μL CDM supplemented with 25 μM CSSC, 50 μM sTS, 50 μM GSH, 750 μM GSH, 25 μM GSSG, 375 μM GSSG, or without a source of sulfur. Where described, a 30 mM hemin stock (dissolved in 1.4 M NH₄OH) was diluted into the CDM at a final concentration of 10 μM. OD₆₀₀ was monitored every hour for 24 h using a 96-well round bottom plate in an Epoch2 Biotek microplate spectrophotometer (Agilent, Santa Clara, CA) at 37°C, shaking continuously. For each strain, growth curves were conducted in technical triplicate with the average of the triplicates constituting a single biological replicate. Growth curves were conducted three independent times.

RNA isolation and sequencing. 50 mL cultures from the respective growth conditions were centrifuged at 4°C for 10 min at 4700 rpm. RNA was isolated from the resulting pellet as previously described (90). The RNA was then treated with Turbo DNase following manufacturer's instructions (ThermoFisher, Waltham, MA). Total RNA was sent to Genewiz Inc. (South Plainfield, NJ) who conducted rRNA depletion with Illumina Ribo-Zero Plus (Illumina, Inc., San Diego, CA) and then generated libraries using stranded total RNA kit and sequenced using Illumina HiSeq (Illumina, Inc.) with 2x 150 bp paired-end read technology.

RNA-seq data processing and visualization. Raw reads for this project were submitted under bioproject number PRJNA989516. Gene expression was analyzed using Geneious Prime 2022.0.2 (Dotmanics, Boston, MA). Briefly, paired end fastq files were trimmed using Bbduk plugin, and mapped and annotated against the reference genome *S. aureus* USA300_FRP3757 (NC_007793.1) using Geneious mapper with default settings. The

expression levels were calculated within the software using default parameters, and DESeg2 was implemented to determine the differential expression with the comparisons listed in figure legends (167). Data was filtered using a log₂ ratio greater than or equal to 1 and less than or equal to -1 representing a 2-fold change and an adjusted P-value of less than 0.05. Differential expression analysis was conducted using transcripts per million (TPM). Low TPM values (<10) were manually removed to eliminate bias. Variance was then controlled for by either discarding replicates with TPM differences >5 and/or if the TPM values between conditions were to close (≤5). Cluster of orthologous groups (COG) categories were determined using eggNOG-mapper v2 (168, 169). Briefly, protein sequences from USA300 FPR3757 (NC 007793.1) were used as input for eggNOGmapper v2 to assign functional annotations. Protein sequences that were recognized by eggNOG-mapper but had no resulting COG assignment were denoted as "not classified". The protein sequences that were not recognized by eggNOG-mapper and were double checked for any COG assignments as follows: the USA300 FPR3757 locus tag was used to identify the corresponding homolog in S. aureus NCTC8325 using Aureowiki (91). The NCTC8325 homolog locus tag was then queried against EggNOG v6.0 (170). When this did not return any COG assignment the gene was denoted as "no homolog found". H₂O₂ peroxide killing assay. This assay was modified from a previously defined protocol (171). Overnight WT TSB cultures were washed in PBS and normalized to an OD₆₀₀ of 1. Cells were then sub-cultured 1:100 into two 250 mL Erlenmeyer flasks containing 50 mL CDM supplemented with either 50 µM GSH, 750 µM GSH, or 375 µM GSSG. Cultures were incubated at 37°C, shaking at 225 rpm, for 4 h. Cells were then transferred to a 50

mL falcon tube and spun at 4000 rpm and then resuspended in 50 mL PBS. 1 mL of the

resuspension was utilized to obtain the OD_{600} while the remaining cells were spun at 4000 rpm. After decanting the supernatant cells were gently resuspended in residual PBS. One falcon tube for each growth condition was then resuspended in PBS to a final OD_{600} of 0.7. The other tube was resuspended to the same OD_{600} with PBS containing 1 M H_2O_2 (freshly made). Tubes were then placed at 37°C, static, for 20 min. Afterwards 3x 50 μ L aliquots (i.e., 3 technical replicates) from each condition were resuspended in 950 μ L PBS containing approximately 2,000-5,000 units mg^{-1} catalase (Sigma-Aldrich Cat No: C9322-5G; resuspended at 1 mg mL⁻¹ and not filter sterilized). Samples were then incubated at 37°C, static, for 5 min. For each strain, three technical replicates were then serial diluted in PBS and 10 μ L was spot plated onto TSA to enumerate for CFU. Note that the average of these technical triplicates is considered as one biological replicate. Plates were incubated overnight at 37°C. Each assay was performed in biological triplicate.

Data visualization. Growth curves, heat maps, and bar graphs were generated using GraphPad Prism software version 10.0.0 (153). All finalized figures were generated using the open source Inkscape 1.2.2 (b0a8486, 2022-12-01). Available at: https://inkscape.org.

TABLES

Table 2.1. Transcriptional changes resulting from sulfur starvation and CymR regulation.

Culture condition	Comparator	Total DE genes	Upregulated genes	Downregulated genes
WT no sulfur supplementation ^a	WT + CSSC	567	425	142
cymR::Tn + CSSC ^b	WT + CSSC	67	45	22
cymR::Tn no sulfur supplementation ^c	<i>cymR</i> ::Tn + CSSC	255	170	85

Genes were differentially expressed (DE) with a Log_2 fold change at least equal to +/-1 with a P value <0.05 from DESeq2 output.

^aSulfur starvation response

^bCymR sulfur-replete regulon

^cStarvation-induced changes independent of CymR

Table 2.2. Previously identified sulfur metabolism genes identified within the upregulated sulfur starvation transcriptome and the CymR regulon.

Locus ^a	Gene	WT -S Log ₂ FC	WT -S Adjusted <i>P</i> -value ^b	<i>cymR</i> +S Log₂ FC	<i>cymR</i> +S Adjusted <i>P</i> -value ^b
SAUSA300_RS00910°		5.396	6.368E-33	3.430	1.335E-06
SAUSA300_RS00915d	ssuB	4.636	5.563E-24		
SAUSA300_RS00930°		5.543	1.586E-27	3.059	5.169E-07
SAUSA300_RS00935e		2.108	4.827E-07		
SAUSA300_RS00940e	fdh	1.617	1.017E-03		
SAUSA300_RS01055°	gisA	4.815	1.637E-19	2.266	3.735E-03
SAUSA300_RS02035°	tcyP	2.679	1.024E-06	2.699	1.428E-04
SAUSA300_RS02320d	тссА	3.664	6.023E-15		
SAUSA300_RS02325°	тссВ	2.907	5.072E-08	1.988	2.250E-02
SAUSA300_RS02330°	gmpA	4.815	9.671E-27	1.904	1.135E-02
SAUSA300_RS02635f	cysK			2.035	1.199E-02
SAUSA300_RS10985°		6.339	1.132E-52	3.435	5.131E-07
SAUSA300_RS12345d	ydbM	1.676	2.724E-03		
SAUSA300_RS13015d	tcyC	2.063	7.411E-06		
SAUSA300_RS13020d	tcyB	1.681	1.932E-03		
SAUSA300_RS13025°	tcyA	2.083	5.380E-06	1.693	2.663E-02

^aAll 16 sulfur metabolism genes from Table 1 of (118) represented as the respective JE2 homologs. that are shared between Soutourina *et al.*

^bAdjusted *P*-value from DESeq2 output from the WT sulfur starvation (denoted as WT - S, Table 1) and *cymR*::Tn sulfur replete (represented as *cymR* +S, Table 2) conditions.

^cShared between the published CymR regulon (118), WT -S, and cymR +S

^dGenes that are downregulated in *cymR* +S and does not meet the adjusted *P*-value cutoff of <0.05 (data not shown).

eDenotes genes that are upregulated in cymR +S but does not have a Log₂ ratio ≥1 and/or does not meet the adjusted P-value cutoff of <0.05 (data not shown).

^fRepresents the gene that is upregulated in WT -S but does not have a Log₂ ratio ≥1 and/or does not meet the adjusted P-value cutoff of <0.05 (data not shown).

Table 2.3. *cymR* mutant upregulated genes under sulfur replete conditions.

Locus	Gene	Product	Log2 FC ^a	Adjusted <i>P</i> -value ^b	COG°
SAUSA300 RS10985		YeeE/YedE family protein	3.435	5.131E- 07	S
SAUSA300 _RS00910		DUF4242 domain-containing protein	3.430	1.335E- 06	S
SAUSA300 _RS10980		sulfurtransferase TusA family protein	3.325	9.084E- 07	0
SAUSA300 RS00925	ssuC	ABC transporter permease	3.109	2.476E- 06	Р
SAUSA300 _RS00930		acyl-CoA/acyl-ACP dehydrogenase	3.059	5.169E- 07	I
SAUSA300 _RS13915	isaA	lytic transglycosylase IsaA	2.807	1.255E- 03	M
SAUSA300 _RS02035	tcyP	L-cystine transporter	2.699	1.428E- 04	U
SAUSA300 _RS05050		DoxX family protein	2.369	6.815E- 04	S
SAUSA300 RS02045		hypothetical protein	2.290	2.041E- 04	Α
SAUSA300 _RS01055	gisA	ABC transporter ATP-binding protein	2.266	3.735E- 03	Р
SAUSA300 _RS02340	gmpC	dipeptide ABC transporter glycylmethionine-binding lipoprotein	2.194	6.966E- 03	Р
SAUSA300 RS12610	sdpC	CPBP family intramembrane glutamic endopeptidase SdpC	2.104	2.280E- 03	S
		ABC transporter ATP-binding protein	2.053	1.266E- 02	Р
SAUSA300 _RS05345		YkyA family protein	2.048	1.382E- 02	L
SAUSA300 _RS02635	cysK	cysteine synthase A	2.035	1.199E- 02	E
SAUSA300 _RS09430		hypothetical protein	2.020	1.388E- 02	not classifie d
SAUSA300 _RS02325	тссВ	bifunctional cystathionine γ- lyase/homocysteine desulfhydrase	1.988	2.250E- 02	E
SAUSA300 _RS02335	gmpB	methionine ABC transporter permease	1.977	2.036E- 02	Р
SAUSA300 _RS09440	crcB2	CrcB family protein	1.976	9.513E- 03	D

Table 2.3 (cont'd)

SAUSA300 _RS01875		low temperature requirement protein A	1.933	1.404E- 02	S
SAUSA300 _RS13605		ATP-binding cassette domain- containing protein	1.906	1.654E- 02	V
SAUSA300 _RS00920	ssuA	ABC transporter substrate- binding protein	1.904	2.249E- 02	Р
SAUSA300 _RS02330	gmpA	methionine ABC transporter ATP-binding protein	1.904	1.135E- 02	Р
SAUSA300 _RS12685		alpha/beta hydrolase	1.878	3.211E- 02	I
SAUSA300 _RS01060	gisB	ABC transporter permease	1.834	3.649E- 02	EP
SAUSA300 _RS13940		DUF896 domain-containing protein	1.825	4.623E- 02	S
SAUSA300 _RS04485		DUF3055 domain-containing protein	1.822	1.364E- 02	S
SAUSA300 _RS02855		M20 family metallopeptidase	1.785	2.250E- 02	E
SAUSA300 _RS07460		hypothetical protein	1.725	2.352E- 02	no homolog found
SAUSA300 _RS13025	tcyA	transporter substrate-binding domain-containing protein	1.693	2.663E- 02	ET
SAUSA300 _RS13320	InsB	CPBP family lipoprotein N-acylation protein LnsB	1.654	3.853E- 02	S
SAUSA300 _RS10230		hypothetical protein	1.646	3.008E- 02	not classifie d
SAUSA300 _RS05540	isdA	LPXTG-anchored heme- scavenging protein IsdA	1.646	3.382E- 02	M
SAUSA300 _RS12705		TetR/AcrR family transcriptional regulator	1.620	4.532E- 02	K
SAUSA300 _RS11450		DUF2529 domain-containing protein	1.618	2.554E- 02	S
SAUSA300 _RS00605	sirA	staphyloferrin B ABC transporter substrate-binding protein SirA	1.608	2.782E- 02	Р
SAUSA300 _RS12440		CHAP domain-containing protein N-	1.588	3.896E- 02	S
SAUSA300 _RS03340	tagA	acetylglucosaminyldiphosphou ndecaprenol N-acetyl-β -D- mannosaminyltransferase TarA	1.532	3.008E- 02	M

Table 2.3 (cont'd)

SAUSA300 _RS07465	cmk	(d)CMP kinase	1.530	2.784E- 02	F
SAUSA300 _RS04060	clpP	ATP-dependent Clp endopeptidase proteolytic subunit ClpP	1.525	4.532E- 02	OU
SAUSA300 _RS00985	brnQ1	branched-chain amino acid transport system II carrier protein	1.503	4.983E- 02	E
SAUSA300 _RS04205	InsA	lipoprotein N-acylation protein LnsA	1.498	3.766E- 02	not classifie d
SAUSA300 _RS07075	brnQ3	branched-chain amino acid transport system II carrier protein	1.469	4.532E- 02	E
SAUSA300 _RS15260		hypothetical protein	1.454	4.532E- 02	no homolog found
SAUSA300 _RS09900		PTS transporter subunit IIC	1.454	4.532E- 02	S

^aFold change (FC) expression of *cymR*::Tn grown in medium containing CSSC relative to WT grown in same medium.

Genes highlighted in grey indicate overlap with Soutourina et al. (118).

^bAdjusted *P*-value from DESeq2 output.

cCOG assignments using eggNOG-mapper. A: RNA processing and modification; D: cell cycle control and mitosis; E: amino acid metabolism and transport; F: nucleotide metabolism and transport; I: lipid metabolism; K: transcription; L: replication and repair; M: cell wall/membrane/ envelope biogenesis; O: post-translational modification, protein turnover, chaperone function; P: inorganic ion transport and metabolism; S: function unknown; T: signal transduction; U: intracellular trafficking and secretion; V: defense mechanisms. Not classified: genes with an eggNOG-mapper homolog, but no associated COG. No homologs found: neither eggNOG-mapper nor Eggnog v6 could find a homolog for these proteins.

Table 2.4. *S. aureus* sulfur starvation induces differential expression of genes encoding transcriptional regulators.

Locus	Gene	Description	Log ₂ FC ^a	Adjusted <i>P</i> -value ^b
Upregulated				
SAUSA300_ RS00650	sbnl	bifunctional transcriptional regulator/O- phospho-L-serine synthase Sbnl	2.787	4.361E-11
SAUSA300_ RS04840	spxA	transcriptional regulator SpxA	2.710	2.553E-09
SAUSA300_ RS07905	fur	Fur family transcriptional regulator	2.692	9.202E-11
SAUSA300_ RS05125		MarR family transcriptional regulator	2.488	6.488E-06
SAUSA300_ RS08020	argR	transcriptional regulator ArgR	2.348	2.264E-07
SAUSA300_ RS12240	sarV	HTH-type transcriptional regulator SarV	2.319	6.725E-06
SAUSA300_ RS03710	saeR	response regulator transcription factor SaeR	2.241	2.563E-06
SAUSA300_ RS13930		TetR/AcrR family transcriptional regulator	2.009	8.284E-06
SAUSA300_ RS03330		metal-dependent transcriptional regulator	1.998	4.804E-06
SAUSA300_ RS12705		TetR/AcrR family transcriptional regulator	1.954	5.729E-05
SAUSA300_ RS10810		XRE family transcriptional regulator	1.937	5.507E-06
SAUSA300_ RS13640		MarR family transcriptional regulator	1.908	1.274E-04
SAUSA300_ RS00590	sarS	HTH-type transcriptional regulator SarS	1.798	1.302E-04
SAUSA300_ RS10675		transcriptional activator RinB	1.720	1.793E-03
SAUSA300_ RS13480	scrA	SaeRS system activator ScrA	1.647	1.974E-03
SAUSA300_ RS09835		helix-turn-helix transcriptional regulator	1.627	3.238E-03
SAUSA300_ RS12900		MerR family transcriptional regulator	1.516	3.018E-03
SAUSA300_ RS12510		MurR/RpiR family transcriptional regulator	1.506	2.981E-04
SAUSA300_ RS01375		GntR family transcriptional regulator	1.481	5.905E-04

Table 2.4 (cont'd)

RS08625	cymR	Rrf2 family transcriptional regulator	1.466	1.744E-03
SAUSA300_ RS08905	nrdR	transcriptional regulator NrdR	1.432	1.425E-03
SAUSA300_ RS06710	<i>lexA</i>	transcriptional repressor LexA	1.360	1.701E-03
SAUSA300_ RS03605	mgrA	HTH-type transcriptional regulator MgrA	1.227	9.413E-03
SAUSA300_ RS10805		transcriptional regulator	1.224	1.972E-02
SAUSA300_ RS10800		helix-turn-helix transcriptional regulator	1.179	2.229E-02
SAUSA300_ RS10060	perR	peroxide-responsive transcriptional repressor PerR	1.134	2.713E-02
SAUSA300_ RS14275		Crp/Fnr family transcriptional regulator	1.131	1.960E-02
SAUSA300_ RS12730		MarR family transcriptional regulator	1.032	2.767E-02
Downregulate	ed			
SAUSA300_ RS06210	codY	GTP-sensing pleiotropic transcriptional regulator CodY	-3.183	3.373E-12
_	codY	9 1 1	-3.183 -2.413	3.373E-12 5.295E-08
RS06210 SAUSA300_	codY agrB	regulator CodY DeoR/GlpR family DNA-binding		
RS06210 SAUSA300_ RS03665 SAUSA300_		regulator CodY DeoR/GlpR family DNA-binding transcription regulator	-2.413	5.295E-08
RS06210 SAUSA300_ RS03665 SAUSA300_ RS10935 SAUSA300_	agrB	regulator CodY DeoR/GlpR family DNA-binding transcription regulator accessory gene regulator AgrB	-2.413 -2.386	5.295E-08 4.644E-09
RS06210 SAUSA300_ RS03665 SAUSA300_ RS10935 SAUSA300_ RS03250 SAUSA300_	agrB	regulator CodY DeoR/GlpR family DNA-binding transcription regulator accessory gene regulator AgrB global transcriptional regulator SarA	-2.413 -2.386 -2.301	5.295E-08 4.644E-09 1.061E-06

^aFold change (FC) expression of WT grown in sulfur deplete conditions relative to WT grown in sulfur replete conditions.

^bAdjusted *P*-value from DESeq2 output.

Table 2.5. *S. aureus* sulfur starvation induces expression of iron acquisition and oxidative stress genes.

Locus	Gene	Product	Log ₂ FC ^a	Adjusted <i>P</i> -value ^b
Iron acquisiti	on and n	netabolism		
SAUSA300_ RS10250*	ftnA	H-type ferritin FtnA	4.859	8.351E-36
SAUSA300_ RS07500*	fer	ferredoxin	3.830	1.039E-20
SAUSA300_ RS12340*	fhuD2	ABC transporter substrate-binding protein	3.640	3.636E-14
SAUSA300_ RS05570*	isdG	staphylobilin-forming heme oxygenase IsdG	3.569	2.570E-13
SAUSA300_ RS03395*	fhuA	ABC transporter ATP-binding protein	2.842	7.910E-10
SAUSA300_ RS00650*	snbl	bifunctional transcriptional regulator/O-phospho-L-serine synthase SbnI	2.787	4.361E-11
SAUSA300_ RS00885*	isdl	staphylobilin-forming heme oxygenase Isdl	2.708	1.950E-09
SAUSA300_ RS07905*	fur	Fur family transcriptional regulator	2.692	9.202E-11
SAUSA300_ RS03880*	sstD	siderophore ABC transporter substrate- binding protein	2.494	1.217E-08
SAUSA300_ RS03400	fhuB	iron ABC transporter permease	2.401	6.004E-09
SAUSA300_ RS11755*	htsB	iron ABC transporter permease	2.288	3.617E-08
SAUSA300_ RS11750*	htsD	iron chelate uptake ABC transporter family permease subunit	1.805	1.631E-05
SAUSA300_ RS13050		cation diffusion facilitator family transporter	1.699	7.185E-05
SAUSA300_ RS11760	htsA	Fe(3+) dicitrate ABC transporter substrate-binding protein	1.683	3.142E-04
SAUSA300_ RS04430	sufB	Fe-S cluster assembly protein SufB	1.592	2.898E-04
SAUSA300_ RS03405	fhuG	iron ABC transporter permease	1.079	1.426E-02
Oxidative stre	ess			
SAUSA300_ RS02020*	ahpF	alkyl hydroperoxide reductase subunit F	2.890	6.579E-11
SAUSA300_ RS02025*	ahpC	alkyl hydroperoxide reductase subunit C	2.847	2.870E-12

Table 2.5 (cont'd)

SAUSA300_ RS06680*	katA	catalase	2.170	7.710E-08
SAUSA300_ RS14205	gpxA2	glutathione peroxidase	2.025	1.969E-05
SAUSA300_ RS13655	frp	NAD(P)H-dependent oxidoreductase	1.909	2.779E-05
SAUSA300_ RS06465	bsaA	glutathione peroxidase	1.228	7.125E-03
SAUSA300_ RS10060	perR	peroxide-responsive transcriptional repressor PerR	1.134	2.713E-02
Genes unique	to sulfu	r depleted <i>cymR</i> ::Tn		
SAUSA300_ RS03085	hypR	redox-sensitive transcriptional regulator HypR	4.455	9.670E-19
SAUSA300_ RS11770	sfnaC	staphyloferrin A biosynthesis protein SfaC	2.994	3.400E-09
SAUSA300_ RS11780	sfnaA	staphyloferrin A export MFS transporter	2.994	4.050E-06
SAUSA300_ RS00625	sbnD	staphyloferrin B export MFS transporter	2.922	2.110E-07
SAUSA300_ RS05560	isdF	hemin ABC transporter permease protein IsdF	2.816	6.940E-06
SAUSA300_ RS11775	sfnaB	staphyloferrin A synthetase SfaB	2.728	2.970E-07
SAUSA300_ RS14545		ABC transporter ATP-binding protein	2.710	1.190E-05
SAUSA300_ RS03875	sstC	ABC transporter ATP-binding protein	2.679	2.990E-06
SAUSA300_ RS05555	isdE	heme ABC transporter substrate- binding protein IsdE	2.249	2.651E-03
SAUSA300_ RS04425	sufU	SUF system NifU family Fe-S cluster assembly protein	2.109	5.562E-04
SAUSA300_ RS03865	sstA	ABC transporter permease	2.090	1.951E-04
SAUSA300_ RS04410	sufC	Fe-S cluster assembly ATPase SufC	1.661	2.513E-03
SAUSA300_ RS04420	sufS	cysteine desulfurase	1.581	1.014E-02
SAUSA300_ RS04415	sufD	Fe-S cluster assembly protein SufD	1.534	1.325E-02

^aFold change (FC) expression of WT grown in sulfur deplete condition relative to WT grown in sulfur replete condition (Table A-1). The *cymR*::Tn unique genes are the expression ratio of *cymR*::Tn grown in sulfur deplete conditions relative to *cymR*::Tn grown in sulfur replete conditions (Table A-3).

^bAdjusted *P*-value from DESeq2 output.

Table 2.5 (cont'd)

*Also upregulated in sulfur starved *cymR*::Tn.

Table 2.6. Strains used in this study.

Strain	Description	Reference
wild type	USA300 LAC derivative JE2	(164, 166)
	Erythromycin resistant (Erm ^r) Bursa Tn	
<i>cymR</i> ::Tn	insertion at JE2 chromosome position	(164, 166)
	1733227	
<i>hrtA</i> ::Tn	Erm ^r Bursa Tn insertion at JE2	(164, 166)
777 (chromosome position 2479408	(101, 100)
<i>tsuA</i> ::Tn	Erm ^r Bursa Tn insertion at JE2	(164, 166)
13UA111	chromosome position 2156268	(104, 100)
SAUSA300 RS04580::Tn	Erm ^r Bursa Tn insertion at JE2	(164, 166)
3AU3A300_R304360111	chromosome position 927895	(104, 100)

Table 2.7. Plasmids used in this study.

Plasmid	Description	Reference
pKK22	Derivative of the naturally occurring <i>S. aureus</i> plasmid LAC-p01. Maintains stability in <i>S. aureus</i> without antibiotics. Linearized for Gibson assembly using primers PK85 & PK86.	(153)
pKK22-tsuAB	pKK22 expressing <i>tsuA</i> (SAUSA300_RS10985) and <i>tsuB</i> (SAUSA300_RS10980) under native promoter expression. Insert generated with following primers: PK5 & PK8	This study
pKK22- <i>tsuA</i>	pKK22 expressing <i>tsuA</i> (SAUSA300_RS10985) under native promoter expression. Generated insert with following primers: PK5 & PK10	This study
pKK22- <i>tsuB</i>	pKK22 expressing <i>tsuB</i> (SAUSA300_RS10980) under native promoter expression. Insert generated as follows: PK5 & PK6 (promoter), PK7 & PK8 (<i>tsuB</i>); PK5 & PK8 used to sew promoter and <i>tsuB</i> fragments together before Gibson assembly.	This study

Table 2.8. Primers utilized to generate strains in Table 1.

Primer	Description	Sequence (5' → 3')
PK85	pKK22 amplification/linearization for Gibson assembly	GCGGCCGCTAGCCTAGGAGC
PK86	pKK22 amplification/linearization for Gibson assembly	ATCGCCTGTCACTTTGCTTGATATATGA
NE Martn- ermR*	Used to confirm Tn insertions on plus strand	CTCGATTCTATTAACAAGGG
NE Buster*	Used to confirm Tn insertions on minus strand	GCTTTTTCTAAATGTTTTTTAAGTAAATCA AGTAC
HL246	Confirming <i>Bursa</i> Tn insertion in <i>cymR</i>	CTAATAACAAGATAACTTGACCAGAC
PK110	Confirming <i>Bursa</i> Tn insertion in <i>hrtA</i>	AGAACTTAATGTCCCAGCC
HL267	Confirming <i>Bursa</i> Tn insertion in <i>tsuA</i>	TCCCATACATATGCCACC
PK5	Amplify <i>tsuAB</i> promoter and operon for Gibson assembly	CAAGCAAAGTGACAGGCGATTAGATGTT GTGATTCTAACTAC
PK6	Amplify <i>tsuAB</i> promoter for Gibson assembly	CGTGTATCATAATCTTAACCTCTCATTTCC
PK7	Amplify <i>tsuB</i> for Gibson assembly	GGTTAAGATTATGATACACGAATTAGGTA C
PK8	Amplify <i>tsuB</i> for Gibson assembly	GCTCCTAGGCTAGCGGCCGCTTAAACTT TTTGAATTGTAATTGTC
PK10	Amplify promoter and <i>tsuA</i> operon for Gibson assembly	GCTCCTAGGCTAGCGGCCGCCTATACTA TTTGCGTTTGC
*Reference: (164, 166)		

FIGURES

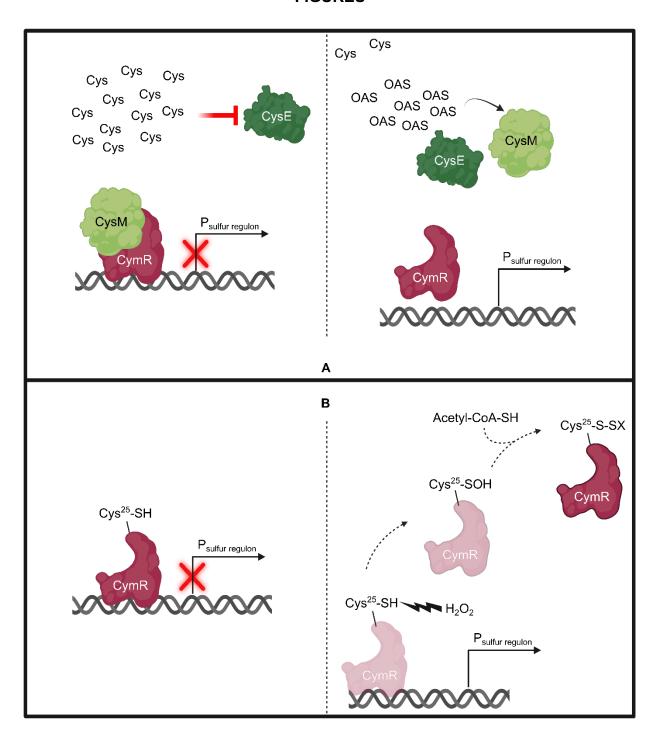


Figure 2.1. S. aureus CymR responds to at least two different stimuli. A) Model of CymR function described by Soutourina et al (118). CymR senses the intracellular Cys pool through the product of serine transacetylase (CysE), O-acetylserine (OAS), Top Left: CysE forms a complex with OAS-thiol-lyase B (CysM, aka MccA) and, under low intracellular Cys levels, produces OAS which is then consumed by CysM for use in

Figure 2.1 (cont'd)

inorganic sulfur assimilation. CymR is inactive in this condition and transcription of sulfur acquisition and metabolism systems proceed. Top Right: CysE is inhibited by Cys when the amino acid is present at threshold concentrations. In this situation, CysM is released and interacts with CymR. The CysM-CymR complex then binds target DNA and inhibits expression of the sulfur regulon (118, 134). B) Model of CymR activity as described by Ji et al. Bottom Left: CymR additionally senses the oxidation state of *S. aureus* via its sole Cys residue at position 25. When the Cys is in the reduced stated (i.e., has the -SH thiol group), CymR will bind to DNA. Bottom Right: When this residue is oxidized by H₂O₂, the thiol group will form a sulfinic acid (-SOH) intermediate. The low molecular weight thiol, Acetyl CoA, can then form a disulfide bond with CymR, decreasing the affinity of this regulator for DNA (right) (121). Made with BioRender.

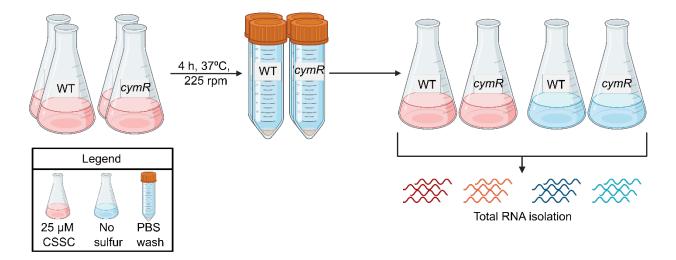


Figure 2.2. Experimental design employed to define the CymR-dependent and – independent responses to sulfur starvation in *S. aureus*. WT or *cymR*::Tn *S. aureus* were sub-cultured from normalized overnights into CDM supplemented with 25 μ M CSSC and grown to mid-exponential phase (4 h). Cultures were pelleted, washed, and resuspended to the same cell density in medium with 25 μ M CSSC or no viable sulfur source. Cells were grown for an additional 2 h prior to RNA isolation. Image generated with BioRender.com.

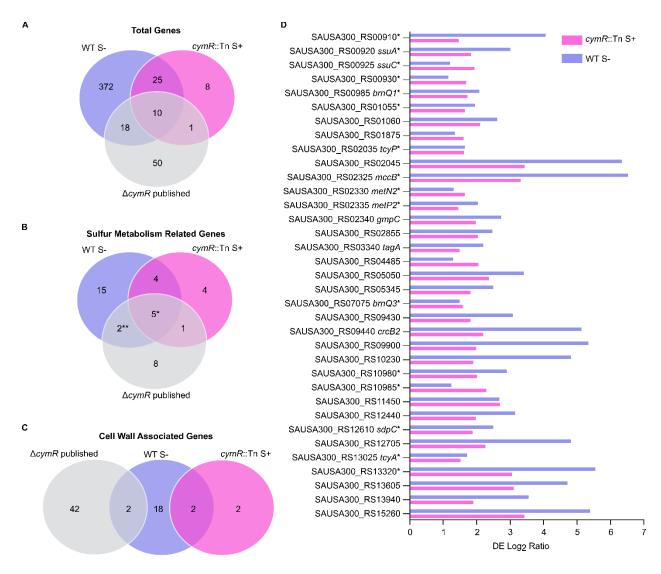


Figure 2.3. Comparison of the S. aureus sulfur starvation transcriptional response to the CymR regulon. A-C) Venn diagrams comparing genes upregulated in sulfur starved WT (WT -S; purple), cymR::Tn cultured in CSSC (cymR::Tn +S, pink), and the previously published $\triangle cvmR$ mutant sulfur Table ($\triangle cvmR$ published, grey). The previously defined \(\Delta cymR \) transcriptome was generated from using Table 2 and Table 4 from (118) as well as Table 1 from (122). A) The total number of genes upregulated in all three Tables. B) Sulfur metabolism associated genes differentially regulated between the three Tables. Table 2 from Soutourina et al. (118) was used for this assessment. Functional annotation of genes identified in the current study were defined using eggNOG-mapper (168, 169). The COG Database was then used to identify COGs associated with the terms "sulf", "methionine", "cysteine", "cystine", "glutathione", and "γ-glutamyl-transpeptidase" (172, 173); these genes were classified as sulfur metabolism related. *Note that the genes shared between \(\Delta cymR\) published, WT -S, and \(cymR::Tn +S\) should be eight. One gene, SAUSA300 RS13025 (tcyA), was assigned COG0834 (ABC-type amino acid transport/signal transduction system, periplasmic component/domain) and was thus not identified within the abovementioned parameters.

Figure 2.3 (cont'd)

However, tcyA is known to participate in cyst(e)ine transport in S. aureus (90). Of the remaining two genes, SAUSA300 RS00910 is a hypothetical protein assigned the COG unknown function under CymR regulon (S) SAUSA300 RS00930 was designated COG "I" for lipid transport and metabolism but is part of the SfnB family of sulfur acquisition oxidoreductases (91). **Additionally, genes shared between WT -S and $\Delta cymR$ published should be four: (SAUSA300 RS13015) was assigned to COG1126, and tcyB (SAUSA300 RS13020) was assigned to COG0765; neither of these COGs were found with the search parameters for sulfur metabolism genes described above. However, these genes encode subunits of the TcyABC complex (90). C) Cell wall associated genes differentially regulated between the three Tables. Table 4 from Soutourina et al. (118) was used to generate this Venn diagram. Genes for the current study were defined as cell wall associated if eggNOG-mapper assigned the gene to COG category M (cell wall/membrane/envelope biogenesis). No genes were found to be common amongst all three Tables using this method. However, upon comparing Table 4 from Soutourina et al. to the total upregulated genes for sulfur starved WT (WT -S) and CSSC supplemented cymR::Tn (cymR::Tn +S) revealed two common genes, SAUSA300 RS01875, which was assigned as COG S (unknown function), and SAUSA300 RS15260 (no homolog found). **D**) Comparison of the Log₂ ratio of genes upregulated in either *cymR*::Tn supplemented with CSSC (Table 2; pink) or sulfur depleted WT (Table 1; purple). *denotes genes that were shared with WT -S and cymR::Tn +S sulfur metabolism genes in B, including genes tcyA, SAUSA300 RS00910, and SAUSA300 RS00930.

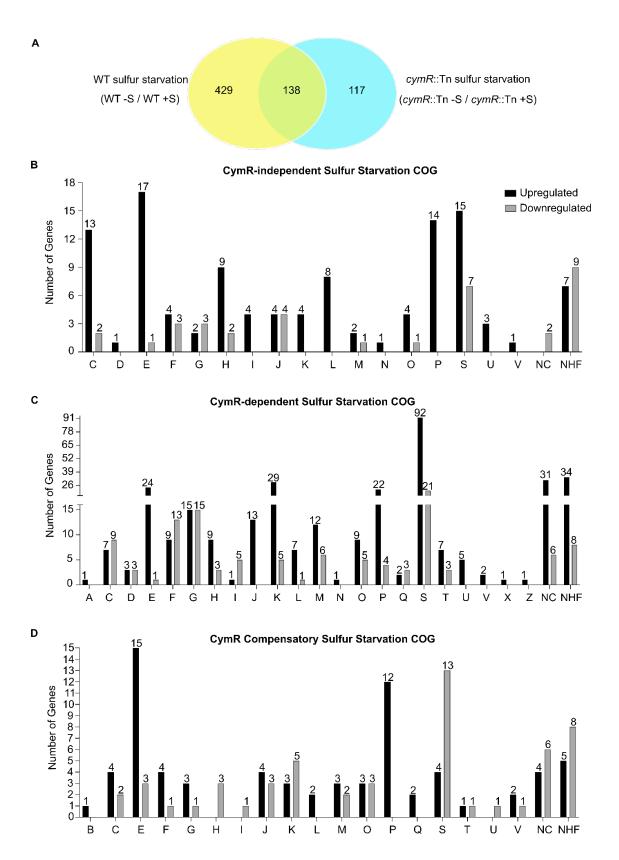
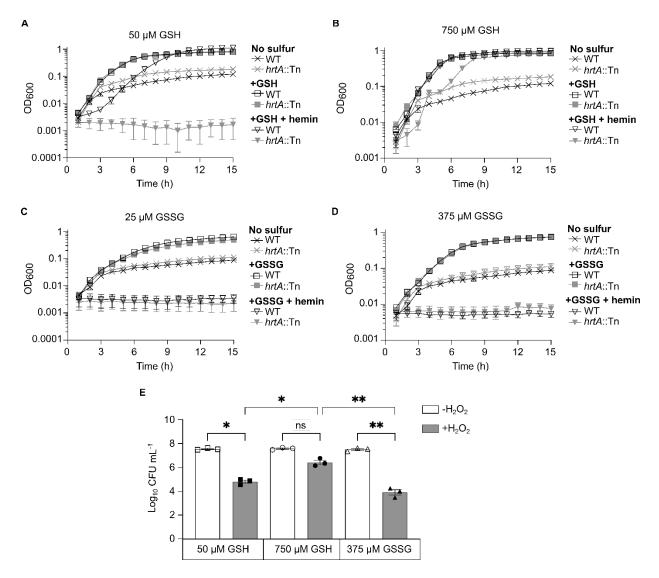



Figure 2.4. The *S. aureus* sulfur starvation response is not fully dependent on CymR. A) WT sulfur starvation response loci from Table 1a (*n*=567; yellow) were

Fgiure 2.4 (cont'd)

compared against the starvation response when CymR is absent (Table 1c; *n*=255; cyan). Genes that shared between WT and the cymR::Tn mutant are considered to CymRindependent (n=138). CymR independent genes are those genes unique to the WT sulfur starvation condition (n=429). Additionally, genes unque to the cymR::Tn condition (n=117) are likely differentially expressed to compensate for the loss of CymR during sulfur starvation. Figure created in Biorender. B-D) Genes that shared between the WT and cymR::Tn sulfur starvation (B) or are unique to WT or cymR::Tn sulfur starvation (C and **D**, respectively) conditions catagorized by COG assignment. COG assignments are as follows: A (RNA processing and modification), B (chromatin structure and dynamics), C (energy production and conversion), D (cell cycle control, cell division, chromosome partitioning), E (amino acid transport and metabolism), F (nucleotide transporter and metabolism), G (carbohydrate transport and metabolism), H (coenzyme transport and metabolism), I (lipid transport and metabolism), J (translation, ribosomal structure and biogenesis), K (transcription), L (replication, recombination and repair). M (cell wall/membrane/envelope biogenesis), N (cell motility), O (posttranslational modification, protein turnover, chaperones), P (inorgnaic ion trasnport and metabolism), Q (secondary metabolites biosynthesis, transport and catabolism), S (function unknown), T (signal trasnduction mechanisms), U (intracellular trafficking, secretion, and vesicular transport), V (defense mechanisms), Z (cytoskeleton) not classified (NC). In some instances no homologs were found (NHF). Values above each bar represents the number of genes for each COG category.

Figure 2.5. GSH alleviates oxidative stress in *S. aureus. S. aureus* WT and *hrtA*::Tn were cultured in chemically defined medium (CDM) in the absence of a sulfur source or supplemented with 50 μM or 750 μM reduced glutathione (GSH) (**A** and **B**, respectively) as well as 25 μM or 375 μM oxidized glutathione (GSSG) (**C** and **D**, respectively) in the presence or absence of 10 \square M hemin. Curves are the mean of three independent trials and the error bars represent ±1 standard error of the mean. **E**) WT preloaded with either 50 \square M GSH (squares), 750 \square M GSH (circles), or 375 \square M GSSG (triangles) were left untreated (open symbols) or exposed to 1 M H₂O₂ (closed symbols) before enumeration for CFU. Presented are the average of three independent trials ±1 standard error of the mean. Statistical significance represents Brown-Forsythe and Welch ANOVA tests. * Represents *P*-values <0.05 while ** are for *P*-values <0.005. "Not significant" indicates a *P*-value >0.05. Any comparisons not represented are not significant.

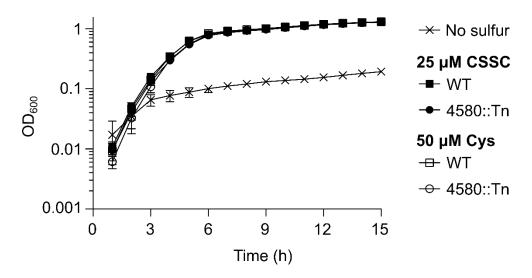


Figure 2.6. SAUSA300_RS04580 does not contribute to *S. aureus* proliferation on CSSC as a source of nutritional sulfur. WT and SAUSA300_RS04580::Tn (denoted 4580::Tn) were cultured in chemically defined medium (CDM) supplemented with either 25 μ M cystine (CSSC; closed symbols) or 50 μ M cysteine (Cys; open symbols). Curves are the mean of three independent trials and the error bars depict ±1 standard error of the mean.

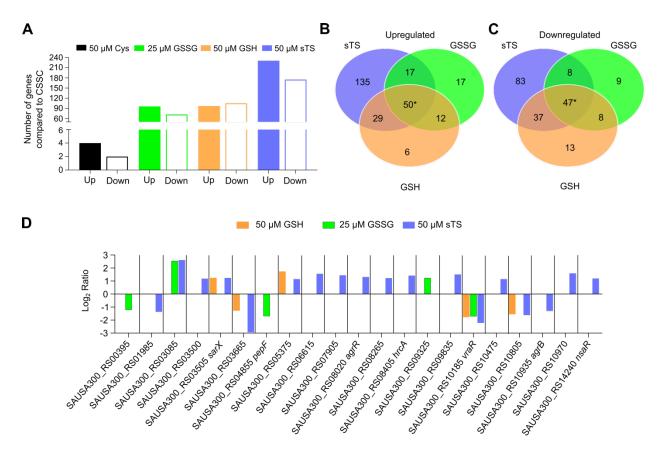


Figure 2.7. Supplementation with sodium thiosulfate induces considerable transcriptional changes in S. aureus. Differential expression in WT cells was determined by comparing cells cultured in chemically defined medium (CDM) supplemented with cysteine (Cys; black), oxidized glutathione (GSSG; green), reduced glutathione (GSH; orange), or sodium thiosulfate (sTS; purple) to the CDM supplemented with cystine (CSSC). Only a single gene is differential expressed (downregulated) in S. aureus grown in Cys compared to CSSC and is therefore not presented in these comparisons. A) Total number of genes that are differentially expressed in response to distinct sources of nutrient sulfur. B) Venn diagram comparing genes upregulated when S. aureus is cultured in GSSG-, GSH- or sTS-supplemented medium. *The four (SAUSA300 RS15735, aenes in CSSC SAUSA300 RS15740. SAUSA300 15090, SAUSA300 RS15730) were not shared with GSSG, GSH, or sTS and were thus excluded from the Venn Diagram. C) Genes that are downregulated between the GSSG, GSH, and sTS. *The two downregulated genes in CSSC (SAUSA300 04580 and SAUSA300 06690) were both shared with GSSG, GSH, or sTS and are represented within the total shared genes in the Venn Diagram. **D**) Transcriptional regulators differentially expressed when S. aureus is grown on GSH, GSSG or sTS.

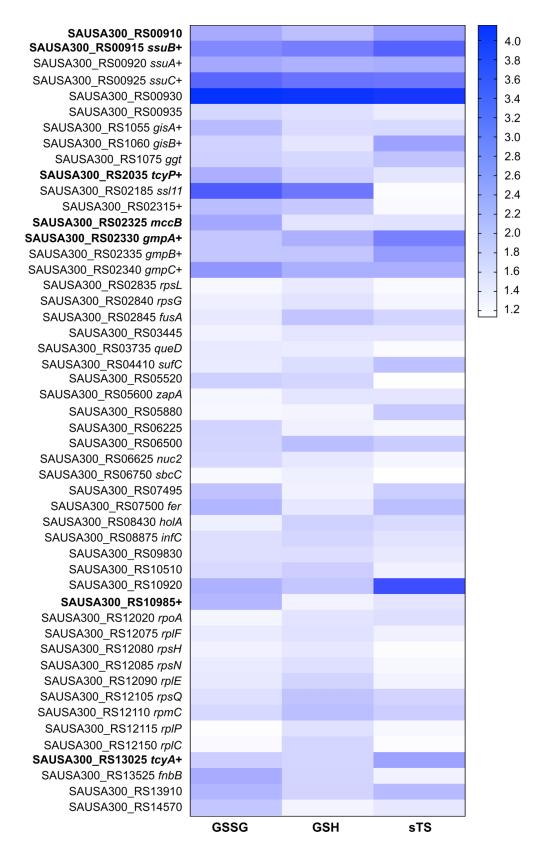


Figure 2.8. The *S. aureus* transcriptome is influenced by different metabolites utilized to meet the nutritional sulfur requirement. Heat map of the shared

Figure 2.8 (cont'd)

upregulated genes in *S. aureus* cultured in medium supplemented with 50 μ M sodium thiosulfate (sTS), 25 μ M oxidized glutathione (GSSG), and 50 μ M reduced glutathione (GSH) compared medium supplemented with cystine (CSSC). Genes included are at least 2-fold upregulated with an adjusted *P*-value <0.05. The color of the boxes indicates the log₂ expression ratio. Genes labeled in bold text were also found to be upregulated in the published CymR regulon (118). A "+" indicates the gene encodes a putative transporter or a protein with a transporter -associated function.

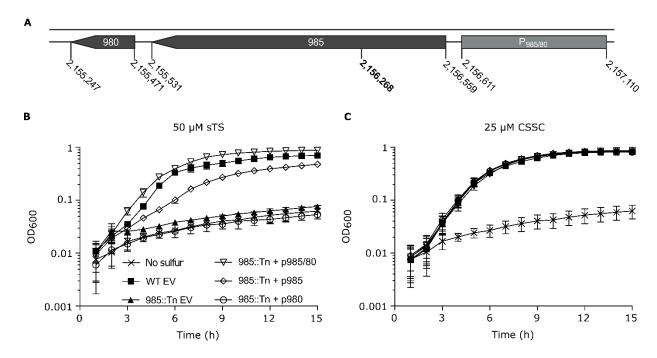


Figure 2.9. Staphylococcus aureus employs the TsuAB thiosulfate import system to utilize thiosulfate as a source of nutrient sulfur. A) An illustration of the 985 (SAUSA300_RS10985) and 980 (SAUSA300_RS10980) operon and location of the Tn insertion (position 2,156,268, bold) (164, 166). P_{985} (position 2,156,611-2,157,110) denotes the genetic region used in complementation studied that includes the native promoter region. Image generated using BioRender. B-C) Resulting growth kinetics of strains cultured in chemically defined medium (CDM) supplemented with either 50 μM sodium thiosulfate (sTS) (B) or 25 μM cystine (CSSC) (C) or as the sole sulfur source. WT *S. aureus* harboring an empty pKK22 vector (EV) cultured in medium lacking a viable sulfur source represents the no sulfur control. The mean of three independent trials is presented and the error bars represent ±1 standard error of the mean.

CHAPTER 3: Staphylococcus aureus DtpT supports nutrient sulfur acquisition of γ -glutamyl cycle intermediates

ABSTRACT

Staphylococcus aureus is an opportunistic pathogen that incites a range of infections such as osteomyelitis, pneumonia, or bacteremia. Proliferation within the host, however, demands the ability to procure local nutrients. Sulfur is one such nutrient S. aureus must acquire but the metabolites obtained, and the machinery employed to do so remain incomplete areas of study. Glutathione is the most abundant non-protein thiol in mammals and previous work has demonstrated that S. aureus engages the glutathione import system and at least one other importer to sustain growth on this nutrient as a sulfur source. The current study establishes that the di-tripeptide transporter, DtpT, supports S. aureus proliferation on glutathione. Furthermore, we identify that S. aureus utilization of cysteinyl-glycine (the glutathione breakdown product) as a sulfur source involves DtpT activity. A systemic infection study underscores the relevance of dtpT, as harboring this gene drives maximal colonization of S. aureus in the murine liver. Our investigations additionally illustrate the exploitable nature of sulfur metabolism pathways by characterizing the DtpT-dependent susceptibility of S. aureus to the peptide antibiotic, bialaphos. Bialaphos was also used to ascertain the Staphylococcus epidermidis DtpT homolog, B4U56 10070. The contributions of this gene to *S. epidermidis* propagation on both glutathione and cysteinyl-glycine is additionally highlighted. In summary, this investigation expands our knowledge regarding staphylococcal sulfur acquisition systems by accentuating the strategic redundancy engaged by S. aureus and S. epidermidis to acquire sulfur sources.

INTRODUCTION

The opportunistic pathogen *Staphylococcus aureus* represents a major cause of nosocomial infections and its burden on society is exacerbated by the rise in community-acquired methicillin-resistant *S. aureus* (MRSA) (86, 125, 174). Infections range from infective endocarditis to skin lesions and even sepsis, making *S. aureus* the most common cause of fatally acquired invasive infections (86, 175–181). As MRSA becomes increasingly treatment-recalcitrant, a better understanding of its essential pathways is needed. The host-pathogen interface for macronutrients such as iron are well defined for this pathogen (3, 182–186). In comparison, how *S. aureus* engages sulfur metabolism to acquire the equally important nutrient sulfur is not fully defined (14, 89, 90, 134).

Within all cells, sulfur is stored in carbon-containing organosulfur compounds that contain reactive sulfhydryl groups, called thiols (R-SH). This element partakes in numerous critical cellular reactions, demanding high prioritization to meet the sulfur requirement. For example, proteins harbor cysteine (Cys) residues that coordinate ions and form disulfide bonds to maintain tertiary structure (4, 5). Furthermore, Cys is the precursor to several cellular cofactors. Fe-S clusters are involved in redox reactions while coenzyme A and biotin contribute to general metabolism via the citric acid cycle or fatty acid biosynthesis; therefore, proper cofactor maintenance influences proliferation of a pathogen during infection (6–8, 129, 130). Redox balance is also managed by organosulfur compounds such as Cys and glutathione (GSH) that contain thiol groups (4, 131, 132, 187). Thus, there is potential to expand *S. aureus* therapeutic strategies by targeting its sulfur acquisition and utilization pathways.

GSH is the most abundant non-protein thiol in mammals (42). This tripeptide is composed of glutamate, Cys, and glycine. Glutamate forms a unique y-peptide bond with Cys through interaction of its y-carboxyl group and the Cys amide while Cys and glycine are linked via a typical α-carboxyl peptide bond. The y-peptide bond in GSH is considered stable as it can only be cleaved by specialized enzymes such as y-glutamyl transpeptidase (aka y-glutamyl transferase). Given its stability and reactive thiol group, GSH is vital to the maintenance of host physiology—it acts as a major antioxidant by reducing reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂), a process that results in the formation of oxidized glutathione (GSSG) (12). Additionally, GSH acts as a Cys reservoir through the γ-glutamyl cycle (12, 22, 23, 188, 189). The γ-glutamyl cycle begins when transporters export intracellular GSH from the cell. The γ-peptide bond is then cleaved by y-glutamyl transpeptidase 1 (GGT1), which is peripherally anchored to the cell membrane. GGT1 produces y-glutamate and the dipeptide cysteinyl-glycine (CysGly). From there, the CysGly peptide bond is cleaved by dipeptidases, allowing Cys to be transported into cells for incorporation into various cellular components or stored once again in GSH. Given the abundance of host GSH, it is unsurprising that pathogens have evolved mechanisms to exploit the metabolite as a source of nutrient sulfur. Indeed, Francisella tularensis. Haemophilus influenzae, Streptococcus mutans, and Streptococcus pneumonia are known to consume host GSH to meet the sulfur requirement (100, 144, 190, 191). F. tularensis, interestingly, imports GSH by first cleaving its y-peptide bond in the periplasm with Ggt and then importing CysGly through a di-tripeptide transporter, DptA (101).

Recently, we have shown that S. aureus encodes a specialized glutathione import system (GisABCD) to import GSH and GSSG into the cytoplasm where Ggt then begins catabolism of these metabolites for use as nutritional sulfur (89). However, the complexity of S. aureus GSH acquisition was discovered when deletion of the gisABCD-ggt system failed to abolish S. aureus propagation on physiologically relevant concentrations of GSH in vitro. Furthermore, a ΔgisABCD-ggt mutant does not impact the ability of S. aureus to colonize during systemic infection. In the current study, we expand upon our previous work by demonstrating that the di-tripeptide transporter, DtpT, supports S. aureus growth on GSH. Our investigations also reveal that CysGly is a source of nutritional sulfur for S. aureus in a DtpT-mediated manner. Phylogenetic studies indicate that homologs for this protein are found across a number of other Gram-positive bacteria. Assessing colonization of a MRSA strain during systemic infection, we further corroborate earlier findings that DtpT promotes maximal S. aureus proliferation in vivo. Finally, we determine that S. aureus sulfur acquisition machinery can be taken advantage of by delivering a toxic tripeptide, bialaphos, via DtpT. This proof-of-concept is extended into another clinically relevant species, Staphylococcus epidermidis. Collectively, these data expand our knowledge regarding Staphylococcus sulfur acquisition strategies and provide evidence that S. aureus sulfur metabolism pathways can yield new avenues to combat this threat to societal health.

RESULTS

Staphylococcus aureus employs redundant strategies to support utilization of GSH and CysGly as sources of nutritional sulfur. Prior investigations in our lab demonstrate the presence of at least two GSH transporters (89). Given that GisABCD was defined as

a putative nickel-peptide ABC transporter, we surmised that another oligopeptide transporter encoded by *S. aureus* would associate with this metabolite. These potential systems include the NiKA & NikBCDF importer, CntABCD, Opp3BCDFA, Opp4ADFB, and OppACME-ABCDF, and DtpT (192, 193). Within this list, the proton-dependent oligopeptide transporter (POT) family protein DtpT has been implicated in the uptake of both di- and tripeptides in *S. aureus* (91, 192). Given that GSH is a tripeptide, we hypothesized that DtpT would play a role in use of this nutrient as a sulfur source.

To test this, a clean dtpT deletion was generated in the WT and isogenic $\Delta gisABCD$ -ggt backgrounds (denoted $\Delta dtpT$ and $\Delta gis \Delta dtpT$, respectively). The growth profile of these strains on CDM supplemented with GSH was assessed (Fig. 3.1). When low a concentration (i.e., 50 μ M) of GSH is supplied as the sulfur source, the Δgis EV mutant exhibits drastically reduced optical density at 600 nm (OD₆₀₀) values compared to WT (Fig. 3.1A). This is in accordance with previous observations (89). A $\Delta dtpT$ EV propagates like WT while the $\Delta gis \Delta dtpT$ EV mutant phenocopies growth kinetics of the Δgis EV strain. Complementation of $\Delta gis \Delta dtpT$ with the WT dtpT allele in trans allows for marginally improved growth compared to the EV counterpart.

While 50 μ M GSH is sufficient for *S. aureus* to meet the sulfur requirement *in vitro*, this concentration does not reflect what the pathogen might encounter *in vivo*. Indeed, GSH is the most abundant non-protein thiol in mammals and can reach millimolar concentrations (42); thus, the strains were cultured in CDM containing 750 μ M GSH (Fig. 3.1B). As seen previously, this condition supports WT-like proliferation of the Δgis EV mutant (89). In fact, the only strain with an impairment is the Δgis $\Delta dtpT$ EV mutant whose proliferation is restored upon complementation with WT dtpT. However, the appreciable

growth of $\Delta gis \ \Delta dtpT$ EV on 750 μ M GSH suggests the presence of at least one more active transporter in this condition. Furthermore, it is important to note that these phenotypes are sulfur specific given all strains propagate like WT when provided with a control sulfur source such as cystine (CSSC) or in the rich medium, tryptic soy broth (TSB; Fig. 3.1C and 3.1D, respectively).

GisABCD is an ABC-transporter while DtpT is a POT family member (89, 192). With such a difference in protein families, we predicted that there would be subtle variations in how each transporter correlates with GSH. Thus, we sought to investigate which properties of GSH influence the ability of DtpT and GisABCD to support S. aureus proliferation on this metabolite. To do so, a GSH analog was supplemented in the CDM (Fig. 3.2). In this analog the γ-peptide bond shared between the glutamyl and cysteinyl residues of GSH was replaced with an α-peptide bond; this glutamyl-cysteinyl-glycine peptide is denoted as ECG for short. Notably, ECG is a sulfur source for WT and the Δgis mutant displays no growth defect regardless of the concentration supplied (Fig. 3.2A-C). However, deleting dtpT severely impacts growth compared to WT at 50 μM ECG (Fig. 3.2A). The severity of this phenotype is not compounded upon inactivation of both transporters. Interestingly, increasing ECG concentration in the CDM restores the ability of the $\Delta dtpT$ and Δgis $\Delta dtpT$ strains to proliferate (Fig. 3.2B and 3.2C). These observations stand in stark contrast compared to what is observed with 50 µM GSH where strains harboring a Δgis mutation struggle to propagate and the $\Delta dtpT$ has WT-like growth (Fig. 3.2D). As expected, no growth defects are observed when CSSC is the sulfur source (Fig. 3.2E). These data imply that the γ-peptide bond of GSH is important for GisABCD

and while its tripeptide nature is what DtpT relates to when assisting S. aureus proliferation on this nutrient.

Given that DtpT also imports dipeptides we postulated that this transporter would also sustain the use of CysGly (the GSH breakdown product) as a sulfur source for S. aureus. Importantly, WT EV is capable of robust proliferation in CDM supplemented with 25 μM CysGly, demonstrating the sufficiency of this dipeptide for meeting the S. aureus nutritional sulfur requirement (Fig. 3.3A). Deletion of DtpT reduces, but does not abolish, the ability of S. aureus to grow in this condition. Notably, this phenotype can be complemented. GisABCD does not contribute to propagation on CysGly as the Δgis $\Delta dtpT$ EV strain growth kinetics mimic those of $\Delta dtpT$ EV. However, these are the assessments of a laboratory strain. To evaluate whether clinical *S. aureus* isolates retain the ability to utilize CysGly for nutritional sulfur needs, six isolates from cystic fibrosis (CF) patients were cultured in the presence of CysGly. After 24 h each strain showed at least a 225% increase in OD₆₀₀ when compared to being cultured the absence of a viable sulfur source (Fig. 3.3B). Collectively, these data indirectly suggest that DtpT is both a GSH and CysGly transporter in S. aureus and that at least one additional importer is contributing to propagation on these nutrients.

DtpT is broadly conserved among Gram-positive bacteria. Phylogenetic analyses were employed to look at the conservation of DtpT across bacteria. First homologs that retained $\geq 80\%$ coverage and 40% identity were isolated. All returned strains belonged to the *Staphylococcaceae* family, with the majority being *S. aureus* isolates and the second most represented species *S. epidermidis*. Considering that some hits were only classified as *Staphylococcus*, we sought to expand the selection of bacteria

that might contain a protein with lower homology to S. aureus DtpT. Thus, a tree was generated for homologs that had a least ≥50% coverage and 40% identity (Fig. 3.4). There are 14 families containing at least 50 representatives that harbor a DtpT homolog. The top three most abundant families are Bacillaeceae, Staphylococcaceae (including S. aureus and Staphylococcus epidermidis), and Lactobacillaceae. When looking at all the families, four clades are observed (Fig. 3.4B, upper left). Clade 1 largely constitutes the Staphylococcaceae, but also contains Listeriaceae. Bacillaceae, Caryophanaceae, and Paenibacillaceae. Clade 2, in addition to those families in Clade 1, represent the homologs with the closest relation to *S. aureus* DtpT given they share the same common Found within Clade 3 are Leuconostocaceae, ancestor. Micrococcaceae. Pseudonocardiaceae, Streptomycetaceae, and bacteria that had <50 representatives (i.e., Others) while Clade 4 constitutes Enterococcaceae, Lactobacillaceae, and Streptococcaceae. This information reveals that DtpT-like proteins are selectively found within a Gram-positive bacterial group that includes pathogens, commensals, and environmental isolates.

Maximal *S. aureus* colonization of the murine liver requires functional DtpT. In addition to previously defined di-tripeptides (192), *in vitro* work above demonstrates two new, sulfur containing peptides associated with DtpT. Given this, we sought to identify the impact this transporter has on *S. aureus* proliferation during infection. Earlier studies employing signature tagged transposon (Tn) mutant pools suggested that a *dtpT*::Tn mutant negatively impacts *S. aureus* strain RN6390 in murine abscess, wound, and systemic bacteremia infection models (194). Individual assessment of a *dtpT*::Tn mutant in rabbit endocarditis and murine abscess or wound models demonstrate attenuated

mutant phenotypes (194). Furthermore, inactivating dtpT led to increased survival of mice in a median lethal dose (LD₅₀) challenge. However, RN6390 is a derivative of the methicillin sensitive S. aureus (MSSA) laboratory strain NCTC8325 and contains a deletion in the critical stress response regulator, rsbU (195). To better understand the impact of dtpT on a strain that represents the current epidemic S. aureus lineage, we utilized the methicillin resistant USA300 LAC derivative, JE2. Using a systemic model of infection, mice were inoculated with either WT or a dtpT::Tn mutant. Mice infected with dtpT::Tn tend to exhibit lower bacterial burdens in the heart or kidneys, along with having significantly reduced CFUs in the liver (Fig. 3.5). This data therefore extends the biological impact of DtpT to include both MRSA and MSSA isolates.

DtpT is a relevant model to assess exploitation of sulfur metabolism for delivery of a lethal substance into *S. aureus*. Given the demonstrated impact of DtpT on *S. aureus* proliferation *in vivo*, this transporter was employed to investigate the potential for inhibiting pathogen proliferation by exploiting sulfur transportation pathways. Bialaphos is a tripeptide produced by *Streptomyces viridochromogenes* as well as *Streptomyces hydroscopius* and is used commercially as a non-selective herbicide (196, 197). This peptide antibiotic consists of glufosinate-alanyl-alanyl residues. Glufosinate (aka phosphoinothricin) is a toxic glutamate analog harboring a phosphinate moiety that mimics the tetrahedral intermediate of glutamine synthetase (196, 197). Characterizing this peptide with *Escherichia coli* and *Bacillus subtilis* indicates that, upon import, glufosinate is cleaved from the alanyl residues before inhibiting glutamine synthetase. If the cell cannot import exogenous glutamine to compensate for the loss of glutamine synthetase then cellular death ensues. Interestingly, oligopeptide transporters in *E. coli*

(Opp; (198)), *B. subtilis* (OppABCD; (199, 200)), *Salmonella typhimurium* (Opp, Tpp, Dpp; (201)) and *Listeria monocytogenes* (OppA; (202)) are associated with bialaphos import. However, bialaphos sensitivity in staphylococcal species has not yet been explored.

We hypothesized that S. aureus would be sensitive to bialaphos in both a glutamine and transportation-dependent manner. Conducting a bialaphos Kirby Bauer on a rich medium (trypic soy agar, TSA) did not result in a zone of inhibition (Fig. 3.6A and B). However, plating cells on a CDM agar plate that lacks glutamine (Gln) resulted in WT EV sensitivity to bialaphos which could be mitigated by adding 500 µM Gln to the CDM. Most importantly, the deletion of dtpT confers complete resistance to bialaphos regardless of the presence of Gln in the medium, and sensitivity can be reintroduced through complementation (Fig. 3.6A and B). It was noted that the WT and DdtpT pdtpT strains develop bialaphos resistant colonies (RCs) in the CDM + 0 mM Gln condition (Fig. 3.6A and C). Nine of these RCs were isolated from the WT plates and were challenged with bialaphos (Fig. 3.7). Six out of nine RC strains were completely resistant to the peptide antibiotic and the remaining three displayed significantly increased resistance (Fig. 3.7A and B). These strains displaying reduced zones of inhibition also developed resistant colonies like WT (Fig. 3.7C). Whole genome sequencing of the nine RCs reveals several genes being mutated (Table 3.1). Importantly, there is only one gene, dtpT, that is uniquely mutated in all the bialaphos RC strains (Table 3.1, Fig. 3.7D). As such, it is concluded that DtpT is both sufficient and necessary for *S. aureus* import of bialaphos.

Bialaphos is a tool to identify sulfur metabolism machinery in *S. epidermidis*. While *S. aureus* is the most notorious of the Staphylococcal species, *S. epidermidis* is another clinically relevant organism known for causing skin, mucosa membrane, and

prosthetic join infections (203, 204). Thus, it is equally pertinent to understand what sulfur metabolism pathways help this organism meet the nutritional sulfur requirement. Our work has indicated that *S. epidermidis* utilizes GSH as a source of nutritional sulfur but does not encode GisB nor GisD homologs of the GisABCD-Ggt system (89). Since DtpT is associated with both GSH and bialaphos import in *S. aureus*, we hypothesized that bialaphos could serve as an effective means to discern the GSH transporter in *S. epidermidis*.

Kirby Bauer assays reveal that, like *S. aureus*, WT *S. epidermidis* 1457 is only sensitive to bialaphos when plated on CDM that does not contain Gln and develops resistant colonies (Fig. 3.8A-C). Selecting nine RCs and challenging them against bialaphos demonstrates that each strain has either complete or near complete resistance to the peptide antibiotic (Fig. 3.8A-C). Strikingly, these bialaphos RCs only share mutations in one common gene, B4U56_10070, which encodes for a peptide MFS peptide (Table 3.2, Fig. 3.8D). BlastP alignment of B4U56_10070 and DtpT from *S. aureus* results in 100% coverage and 82.83% identity. This observation is consistent with the phylogenetic studies where many *S. epidermidis* isolates were found to harbor a DtpT homolog (Fig. 3.4).

To further assess B4U56_10070 as a DtpT homolog, *S. epidermidis* 1457 bialaphos RCs were cultured in a modified CDM that does not contain Met or sulfate (CDM $_{mod}$), given they support the nutritional sulfur requirement in this species (89). In comparison to WT, each of the B4U56_10070 mutated strains display reduced growth in CDM $_{mod}$ supplemented with 750 μ M GSH (Fig. 3.8E). We next tested the ability of *S. epidermidis* 1457 to utilize CysGly as a sulfur source (Fig. 3.8F). Here the WT strain

shows robust proliferation on CDM_{mod} supplied with 75 µM CysGly while the bialaphos resistant colonies demonstrate poor propagation. These phenotypes are sulfur specific given the ability of all strains to grow to WT-like levels in the presence of CSSC (Fig. 3.8G). Collectively, these data strongly suggest that B4U56_10070 is a DtpT homolog and represents the major transporter associated with *S. epidermidis* 1457 growth on both GSH and CysGly as sources of nutrient sulfur.

DISCUSSION

This investigation increases our knowledge of GSH acquisition strategies employed by S. aureus in addition to identifying CysGly, the breakdown product of GSH, as a nutrient that satisfies the nutritional sulfur requirement for this pathogen. Data for both peptides highlight the fact that *S. aureus* employs redundant strategies to procure select nutritional sulfur sources. Previous work with S. aureus has revealed the involvement of multiple transporters (i.e., TcyABC and TcyP) in the utilization of Cys and CSSC (90). In contrast, only one transporter associates with S. aureus proliferation on thiosulfate (see Chapter 2). It would seem, then, that there is an evolutionary strategy for *S. aureus* to encode multiple acquisition systems for what might be considered preferred sulfur sources. The current study underscores this notion by demonstrating that presence of at least three importers driving S. aureus proliferation on physiologically relevant concentrations of GSH in vitro (Fig. 1B). To that end, our work is the first to associate the di-tripeptide transporter, DtpT, with GSH import. Indeed, results from Fig. 3.1A and 3.1B suggest that DtpT contributes to *S. aureus* growth on physiologically relevant concentrations of GSH. This comes as little surprise given that DtpT has been associated with the import of glutamate or glycine containing di-tripeptides as sources of nitrogen (192). However, the

contribution of DtpT toward GSH uptake is not to the same extent as the GisABCD-Ggt system given its WT-like growth at 50 µM (Fig. 3.1A). This may be because GisD harbors a solute-binding protein family 5 domain, known for its high substrate specificity; in contrast, transporters from the POT family such as DtpT identify substrates through specificity pockets that establish substrate affinity based on peptide charge (91, 205–208).

Our work additionally investigates the properties involved with GSH substrate identification for both DtpT and GisABCD using an ECG analog (Fig. 3.2). Employing ECG has indirectly implied that DtpT recognizes GSH due to its tripeptide nature given the growth defect of a *dtpT* mutant on low concentrations of this metabolite (Fig. 3.3A). This stands in contrast to the GisABCD-Ggt system which did not display any growth impairments in ECG (Fig. 3.2A-C) or the dipeptide CysGly (Fig. 3.3A); this signifies that GisABCD requires the y-peptide bond of GSH and perhaps the tripeptide aspect as well in order to support growth of S. aureus on this nutrient. However, to solidify whether GisABCD identifies with dipeptides, growth kinetics using the GSH precursor, γ-glutamylcysteine would be needed. Furthermore, binding assays with purified protein or uptake of radiolabeled GSH and/or CysGly will provide direct insight into substrate binding for these two transporters. Future investigations are also necessary to elucidate the complete set of transporters involved with growth of CDM supplemented with GSH. Given that both GisABCD and DtpT are peptide importers, we predicted that another oligopeptide transporter is responsible for the growth of the $\Delta gis \Delta dtpT$ on physiologically relevant concentrations of tripeptides such as GSH or ECG. Opp3BCDFA is associated with import of tripeptides and represents an ideal candidate for future studies (192, 193).

CysGly has also been uncovered as a sulfur source for S. aureus (Fig. 3.3). Interestingly, other groups have shown the capacity of bacteria to utilize oligopeptide transporters to bring CysGly into the cytoplasm. One study demonstrates that another opportunistic pathogen, Campylobacter jejuni, employs an oligopeptide transporter family protein (OPT), CptA, to import CysGly as a source of nutrient sulfur (209). The F. tularensis di-tripeptide transporter DptA is also known to import a CysGly into the cytosol; DtpA also strongly impacts the survival of *F. tularensis* during macrophage infection (101). Perhaps even more significant are the structural studies that confirm a *Staphylococcus* hominis POT family protein, PepT, as an importer for the malodor precursor called cysteinyl-glycine 3-methyl-3-sulfanylhexanol (S-CysGly-3M3SH) (103). PepT and other proteins denoted as S-CysGly-3M3SH transporters were found within Staphylococcaceae family when conducting phylogenetic analyses on DtpT (Fig. 3.4). This reinforces the notion that S. aureus DtpT is likely a CysGly transporter. In total, the DtpT-mediated utilization of CysGly to meet S. aureus nutritional sulfur demands adds to our knowledge surrounding the use of CysGly by microbial residents of the mammalian host.

This study not only expands our understanding of *S. aureus* sulfur metabolism but defines the biological relevance of the involved pathways. This was done by confirming the ability of several *S. aureus* CF isolates to proliferate on CysGly as a source of nutrient sulfur (Fig. 3.3B). Though some strains have a higher capacity to growth on CysGly than others, this overall suggests that the pathways needed for import of this dipeptide are actively maintained in the CF lung environment. Furthermore, we find that DtpT helps drive successful colonization of *S. aureus* JE2 to in the murine liver (Fig 3.5). Whether

the biological relevance of DtpT during infection lies within the import of GSH and/or CysGly will need to be assessed.

How *S. aureus* sulfur metabolism pathways can be exploited to inhibit proliferation of this prevalent threat to societal health is also explored. Some prior investigations in this have focused on the O-acetylserine sulfhydrylase isomers, which are involved in thiosulfate and sulfate assimilation to Cys (14). Inhibitors for O-acetylserine sulfhydrylase in Salmonella typhimurium, Haemophilus influenzae, and the protozoan Entamoeba histolytica have been identified (210–212), illustrating that inhibition of sulfur metabolism could be an effective treatment strategy across multiple phyla. Another aspect to consider for therapeutics is sulfur transportation. However, the data presented here suggest that sulfur transporters are not ideal candidates for inhibition because S. aureus can acquire multiple sulfur sources, and there is extensive transporter redundancy for some of these metabolites. While targeting the transporter may not effectively inhibit S. aureus proliferation, these proteins can still be utilized in a Trojan horse approach for delivering toxic substances through the system of interest. Here we conduct a proof-of-concept investigation, where the sensitivity of S. aureus to bialaphos is DtpT-dependent. Directed genetics by deleting the transporter and indirectly through mutations occurring within this gene in bialaphos RCs demonstrate this (Figs. 3.7 and 3.8). Together this suggests that, for S. aureus, DtpT is the route of bialaphos import. Bialaphos sensitivity of another clinically relevant Staphylococcal species, S. epidermidis, which depends on the activity of a DtpT homolog, B4U56 10070 reinforces the S. aureus data (Fig. 3.8). This protein is also involved in S. epidermidis sulfur metabolism—B4U56 10070 is established as a main factor in S. epidermidis growth on the previously characterized sulfur source, GSH.

CysGly also supports nutritional sulfur needs in *S. epidermidis*, a process that largely hinges on B4U56_10070. Because of this, we propose to rename this gene as DtpT (ditripeptide transporter). It is worth noting that the consistent correlation between DtpT and the growth of staphylococcal species on GSH and CysGly suggests that this transporter likely recognizes these metabolites as substrates. However, the absence of direct experiments is a limitation to that assertion. Collectively, this study reveals new GSH and CysGly import routes for *S. aureus* and *S. epidermidis*, highlighting an evolutionary strategy of sulfur acquisition redundancy that enables these staphylococcal species to access multiple host sulfur sources.

ACKNOWLEDGEMENTS

Transposon mutants were provided by the Network on Antimicrobial Resistance in *Staphylococcus aureus* (NARSA) for distribution by BEI Resources, NIAID, NIH, and the Nebraska Transposon Mutant Library (NTML) Screening Array NR-48501. We thank Vinai Chittezham Thomas for donating the WT *S. epidermidis* 1457 strain. Our gratitude to the Hammer laboratory members for their insights into this manuscript. This work is funded by the National Institutes of Health R01 Al139074 and R21 Al142517.

MATERIALS AND METHODS

Strains and Primers. All strains, plasmids, and primers used throughout the course of this study can be found in **Tables 3.3**, **3.4**, and **3.5**, respectively. JE2, a derivative of the community acquired USA300 LAC, is the WT *S. aureus* strain used in these studies (164). Generation of *Bursa aurealis* transposon (Tn) inactivated strains were done by transducing the inactivated gene from the Nebraska Transposon Mutant Library into JE2 (164, 165). Correct Tn location and deletions were determined using PCR. The pKK22

plasmid was generated via Gibson assembly in the *Escherichia coli* DH5 α strain before being transferred to *S. aureus* RN4220 to obtain appropriate vector methylation patterns that would permit transformation into the appropriate JE2 background strain. The pKOR1 plasmid was generated as follows using restriction digestion: first the 1kb upstream and 1kb downstream of dtpT was amplified. Then these fragments were PCR sewn before blunt end cloning into pJET1.2 (ThermoFisher). From there, the 2kb up/downstream fragment was removed from pJET1.2 using Notl and Kpnl restriction digestion enzymes for cloning into pKOR1. The resulting pKOR1-dtpT plasmid was transformed into E. coli DH5 α before being transferred into S. aureus RN4220 and then JE2. Note that all plasmids were confirmed using Plasmidsaurus whole plasmid sequencing. Complementation vectors were generated using the pKK22 expression vector (153). Deletion of the dtpT gene was performed following a well-defined allelic exchange protocol using the pKOR1-mcs plasmid donated from the laboratory of Taeok Bae (213). Media and growth conditions. Each strain was cultured overnight in 5 mL tryptic soy broth (TSB) at 37°C, shaking at 225 rpm. Strains harboring a pKOR1-based plasmid were supplemented with 10 µg/mL of chloramphenicol unless otherwise noted during the allelic exchange protocol (213). pKK22-based plasmids were supplemented with 10 µg/mL of trimethoprim except for during growth curve assays. A base chemically defined medium (CDM) was prepared using a previously described recipe with slight modifications (149, 150). Please refer to Chapter 2 Materials and Methods for the complete CDM recipe. 5 mg mL⁻¹ of freshly prepared glucose was supplemented into the base medium and, depending on the condition, either no sulfur source, 25 mM of CSSC, 50 mM of GSH, or 25 mM of CysGly was added into the CDM prior to inoculation. Note that this medium

lacks the amino acids glutamine and asparagine. *S. epidermidis* growth curves utilized a modified CDM (CDM_{mod}) where Met was removed, and sulfates were also taken out by replacing MgSO₄ with MgCl and (NH₄)₂SO₄ with NH₄Cl. The CSSC stock was dissolved in 1N HCl while all other sulfur sources (and glucose) were dissolved in deionized water before filter sterilization. CDM agar plates were made by mixing a 1:1 ratio of 2x CDM and 2x Select Agar before plating in 20 mL aliquots. All plates were supplemented with 25 mM of CSSC as the sulfur source and lacked glutamine unless otherwise noted.

96-well plate growth curves. Overnight cultures were centrifuged at 4°C, 4000 rpm, washed in 5 mL phosphate buffered saline (PBS), and then normalized to an optical density at 600 nm (OD₆₀₀) equal to 1. From there the cells were sub-cultured 1:100 into the desired growth medium (i.e., starting OD₆₀₀ is 0.01). The OD₆₀₀ was monitored every hour for 24 h in a 96-well round bottom plate in an Epoc2 Biotek microplate spectrophotometer at 37°C, with continuous linear shaking. To remove background, blank measurements were subtracted from growth measurements. For each strain the growth condition was conducted in technical triplicate, which were blanked and then averaged. Averaged triplicates were considered as one biological replicate. All growth curves were conducted three independent times.

End point OD₆₀₀ measurements of Cystic Fibrosis *S. aureus* isolates. Cells were prepared and 96-well round bottom plates containing CDM harboring no viable sulfur source or 25 mM CysGly were set up as described in the previous section. Inoculated plates were then incubated at 37°C, static, for 24 h. Wells were then gently resuspended before taking an endpoint OD₆₀₀ using an Epoc2 Biotek microplate spectrophotometer. Averages of technical triplicates were acquired after being blanked. Percent growth of the

averaged value was then achieved by applying the endpoint OD_{600} to the following equation: $\frac{(CysGly-no\ sulfur)}{no\ sulfur}$. This experiment was performed four independent times for each strain.

Identification of DtpT homologs across bacteria. The USA300_FPR3757 (NC_007793.1) *S. aureus* DtpT protein sequence (SAUSA300_RS03825) was used as the query for homolog evaluation using Blastp (214), using refseq database, an e-value of 1e-05, and allowing 10,000 hits. Proteins that demonstrated at least 50% coverage and 40% identity were selected for downstream analysis. Protein sequences were then retrieved from NCBI and aligned using ClustalW2 (215). A phylogenetic tree was constructed using IQ-TREE (216) selecting LG+F+I+G4 as the substitution model. Tree visualization was conducted using Iroki (217). The computational analyses were provided by the Institute for Cyber Enabled Research at Michigan State University.

Murine model of systemic infection. TSB overnights of WT and dtpT::Tn were subcultured 1:100 into 5 mL TSB and grown for 3 h. Cultures were centrifuged at 4°C, 4000 rpm, before being washed into 12 mL of Dulbecco's Phosphate Buffered Saline (DPBS; no CaCl₂ or MgCl₂) and normalized to an OD₆₀₀ = 0.4. Eight-week-old Balb/cJ female mice (Jackson Laboratories) were then anesthetized with avertin before being retro-orbitally infected with 10⁷ CFU of either WT or the dtpT::Tn. After 96 hpi, mice were euthanized via CO₂ inhalation and the heart, liver, and kidneys were harvested. The heart and kidneys were homogenized in 500 μL DPBS using an Air-cooling Bullet Blender Storm 24 (Next Advance, Inc.) using Navy, 1.5 mL RINO lysis beads (Next Advance, Inc.). Once homogenized, 500 μL DPBS was added to bring the total volume to 1 mL DPBS for the heart and kidneys. Livers, once harvested, were placed into a Whirl-Pak (Nasco) and

had 1 mL DBPS added before being homogenized by rolling a 1 L glass Pyrex bottle over the organ 20 times. Liver homogenate was then transferred to a 1.5 mL Eppendorf tube. Bacterial burden in each tissue was enumerated through serial dilution onto TSA plates. Infections were performed at Michigan State University under the principles and guidelines described in the *Guide for the Care and Use of Laboratory Animals* (218). Executed animal work followed the protocol approved by Michigan State University Institutional Animal Care and Use Committee (IACUC): PROTO202200474.

Bialaphos Kirby Bauer assays. Overnight Staphylococcus cultures were centrifuged at 4°C (4000 rpm), washed once with an equal volume of PBS, and normalized to an OD₆₀₀ of 1. For *S. aureus*, cells were then swabbed onto appropriate CDM agar plates or tryptic soy agar (TSA). S. epidermidis strains had 100 µL of normalized cells added to 1.5x CDM agar plates before being spread plated to ensure consistent growth on this medium. Sterilized, 6 mm Whatman disks were placed into an empty petri dish and had 10 µL of 10 mM bialaphos applied. Herbicide-soaked disks were applied to the center of the TSA or CDM agar plates. CDM agar plates had either 0 μM, 500 μM, or 2 mM Gln added with or without TMP. Only strains containing a pKK22-based plasmid were plated onto CDM agar plates harboring TMP to ensure maintenance of the pKK22-dtpT vector in the presence of bialaphos. Plates were then put at 37°C for 24 h before quantifying the zone of inhibition (ZOI) and resistant colonies (RC). For each condition, three technical replicates were averaged for ZOI and RC with the average being considered a biological replicate. Three biological replicates were conducted for each condition. Pictures were taken with an iPhone XR, using the same distance from lens and lens zoom.

Isolation of Genomic DNA and whole genome sequencing. Nine RC from the WT bialaphos Kirby Bauer assays were picked and struck for isolation onto TSA. Five mL TSB was inoculated and cultured at 37°C, 225 rpm, overnight. The cell wall was digested by resuspending the overnight in 485 µL water buffered with TSM (50 mM Tris, 500 mM sucrose, and 21 mM MgCl₂; pH 7.5) and 15 μL of 2 mg mL⁻¹ lysostaphin (ABMI; Lawrence, NY) before incubation at 37°C for 30 min. Afterwards, the protoplast was obtained by spinning at 9000 rpm for 5 min and decanting the supernatant. Genomes were isolated using a Promega kit (Madison, WI) following manufacturer's instructions. Briefly, protoplast was resuspended in 600 µL nuclei lysis buffer and heated at 80°C for 10 min. After cooling to room temp, 10 µL of RNase was added to lysate and incubated at 37°C for 45 min. Then, 200 μL protein precipitation solution was added, and tubes were incubated on ice for 10 min before being centrifuged at top speed for 10 min. The DNAcontaining fraction was then added to 600 µL isopropanol and gently rocked until the DNA precipitated. After pelleting the DNA (top speed, 5 min), the pellet was first washed with 600 μL of ice-cold 70% ethanol and then 90% ethanol. After completely drying, the pellet was resuspended in HPLC grade water. Following Qbit quantification, genomes were sent to SegCoast Genomics (Newington, New Hampshire) for Illumina short-read whole genome sequencing using 150 bp paired end reads. For whole genome sequencing analysis, reads for both strands were uploaded into Geneious Prime 2022.0.2 (Dotmanics, Boston, MA). Adaptors and low-quality reads were trimmed using BBDuk default settings. Trimmed sequences were mapped to the S. aureus USA300 FRP3757 (NC 007793.1) or S. epidermidis 1457 (CP020463.1) reference genome. Variants were then called in the mapped genomes using a 0.9 minimum variant frequency. Mutations

not found in the WT strain and located within open reading frames (ORF) were then identified. The abovementioned reference genomes were also used to extract protein sequences of DtpT (*S. aureus*) and B4U56_10070 (*S. epidermidis*) for NCBI Blastp studies.

Data visualization. Growth curves and bar graphs were generated using GraphPad Prism software version 10.0.0 (153). All finalized figures were generated using the open source Inkscape 1.2.2 (b0a8486, 2022-12-01). Available at: https://inkscape.org.

TABLES

Table 3.1. *S. aureus* bialaphos resistant colony mutations.

Genome	Locus	Gene	Product	Nucleotide change	Amino acid change
RC01				AACAAAAC C	Deletion
RC02				C -> A	G -> V
RC03				C -> T	G -> D
RC04	SAUSA300		nontido MES	TATTAG	A -> ANT
RC04	RS03825	dtpT	peptide MFS transporter	CAA -> TCT	VV -> EI
RC05	_1\303023		liansporter	A -> T	Transversion
RC06				G -> T	A -> D
RC07				G -> A	P -> L
RC08				G -> T	Q -> K
RC09				C -> T	G -> D
RC03	SAUSA300 _RS04175	emp	extracellular matrix protein-binding adhesin Emp	A -> C	Transversion
RC07 RC08 RC09	SAUSA300 _RS10835	int3	site-specific integrase	T -> A	L -> I
RC06	SAUSA300 _RS13025	tcyA	transporter substrate- binding domain- containing protein	A -> T	Transversion
RC04 RC05 RC06	SAUSA300 _RS13270	pnbA	carboxylesterase/lipa se family protein	C -> T	Transition

Table 3.2. *S. epidermidis* bialaphos resistant colony mutations.

Genome	Locus	Product	Nucleotide change	Amino acid change
RC7	B4U56_01010	ABC transporter substrate-binding protein	C -> G	A -> G
RC1	B4U56_04105	RNA polymerase sigma factor SigB	G -> T	Transversion
RC3	B4U56_09585	methionine import ATP- binding protein MetN 1	G -> A	A -> V
RC1			T -> A	Truncation
RC2		MFS transporter	C -> A	S -> R
RC3			C -> G	N -> K
RC4	B4U56_10070		G -> A	G -> D
RC5				Deletion
RC6			C -> A	T -> N
RC7			T -> A	S -> R
RC8			G -> A	D -> N
RC9			C -> G	Truncation
RC6	B4U56_11050	DNA-directed RNA polymerase subunit β	C -> G	R -> T
RC5	B4U56 11965	hypothetical protein	G -> T	L -> F
RC5	2.000_1.000	The strong of th	G -> A	M -> I

Table 3.3. Strains used in this study.

Strain	Description	Reference	
Staphylococcus aureus strains			
S. aureus WT	JE2, derivative of USA300 LAC	(164, 166)	
∆gisABCD-ggt	Clean deletion of SAUSA300_0200-0404 genetic region	(89)	
∆dtpT	Clean deletion of <i>dtpT</i> (SAUSA300_0712); <i>sae</i> sequenced & α hemolysin positive	This study	
<i>dtpT</i> ::Tn	B. aurealis Tn insertion at genome position 2156268	This study	
∆gisABCD-ggt ∆dtpT	Clean deletion of the $dtpT$ locus in the $\Delta gisABCD$ - ggt background strain; sae sequenced and α hemolysin positive	This study	
HL1427	Resistant colony 1 (RC1) isolated from a bialaphos Kirby Bauer using WT <i>S. aureus</i>	This study	
HL1419	RC2; Same as HL1427	This study	
HL1420	RC3; Same as HL1427	This study	
HL1421	RC4; Same as HL1427	This study	
HL1422	RC5; Same as HL1427	This study	
HL1423	RC6; Same as HL1427	This study	
HL1424	RC7; Same as HL1427	This study	
HL1425	RC8; Same as HL1427	This study	
HL1426	RC9; Same as HL1427	This study	
	s epidermidis strains		
S. epidermidis 1457 WT	Isolated from central venous catheter infection	(219)	
HL1406	Resistant colony 1 (RC1) isolated from a bialaphos Kirby Bauer using WT <i>S. epidermis</i> 1457	This study	
HL1407	RC2; Same as HL1406	This study	
HL1408	RC3; Same as HL1406	This study	
HL1409	RC4; Same as HL1406	This study	
HL1010	RC5; Same as HL1406	This study	
HL1411	RC6; Same as HL1406	This study	
HL1412	RC7; Same as HL1406	This study	
HL1413	RC8; Same as HL1406	This study	
HL1414	RC9; Same as HL1406	This study	

Table 3.4. Plasmids used in this study.

Plasmid	Description	Reference
pKK22	Derivative of the naturally occurring <i>S. aureus</i> plasmid LAC-p01. Maintains stability in <i>S. aureus</i> without antibiotics. Linearized for Gibson assembly using primers PK85 & PK86.	(153)
pKK22- dtpT	pKK22 expressing the WT <i>S. aureus dtpT</i> allele under native promoter conditions. Plasmid generated using primers PK27 and PK28.	This study
pKOR1	Temperature sensitive vector for generating clean deletions in <i>S. aureus</i> .	(213)
pKOR1- ∆ <i>dtpT</i>	pKOR1 harboring 1 Kb upstream & 1 Kb downstream of dtpT to generate a clean deletion.	This study

Table 3.5. Primers used in this study.

Primer	Description	Sequence (5' → 3')
NE Martn-ermR*	Used to confirm Tn insertions on plus strand	CTCGATTCTATTAACAAGGG
NE Buster*	Used to confirm Tn insertions on minus strand	GCTTTTTCTAAATGTTTTTTAAGTAA ATCAAGTAC
HL267	Used to confirm Tn insertion in <i>dtpT</i> (SAUSA300_RS03825)	CAACACTTCCGATAATAAGACC
PK126	Confirming <i>gisABCD-ggt</i> deletion	TCAAAGCTGGCGATGATGG
PK125	Confirming <i>gisABCD-ggt</i> deletion	TCAGTTGTTGGATCAGATGAGC
PK85	pKK22 amplification for Gibson assembly	GCGGCCGCTAGCCTAGGAGC
PK86	pKK22 amplification for Gibson assembly	ATCGCCTGTCACTTTGCTTGATATA TGA
PK27	Amplification of dtpT from JE2 for Gibson assembly with pKK22	CAAGCAAAGTGACAGGCGATTTTTC CTAACTTATTGGTGTG
PK28	Amplification of dtpT from JE2 for Gibson assembly with pKK22 To amplify 1kb upstream	GCTCCTAGGCTAGCGGCCGCTTAA CGTATACCTTTCATCG
PK102	of dtpT to generate pKOR1-ΔdtpT using NotI restriction cut site. Pair with PK105 to PCR sew To amplify 1kb upstream of dtpT to generate	GCGGCCGCTTTTCACAGCAATACTT GG
PK103	pJET1.2-\(\Delta\text{to generate}\) pJET1.2-\(\Delta\text{to pT}\). Has homology with PK104 for PCR sewing before putting into pJET1.2 To amplify 1kb downstream of \(dtpT\) to	GCCAACAATAGTATACATCCCATCC TTTC
PK104	generate pJET1.2-\(\Delta\dtpT\) using KpnI restriction cut site. Has homology with PK103 for PCR sewing before cloning into pJET1	GGATGTATACTATTGTTGGCCTAAT TCAAAAAAC

Table 3.5 (cont'd)

PK105	To amplify 1kb downstream of <i>dtpT</i> to generate pJET1.2-∆ <i>dtpT</i> using KpnI restriction cut site. Pair with PK102 for PCR sewing.	GGTACCTCCAATTCATGCTATCACG
PK116	To amplify the deleted dtpT region for PCR sequence confirmation	CACATTATATTGAAGTCTGG
PK117	To amplify the deleted dtpT region for PCR sequence confirmation	AACACCGTTTATAAGTTCG
TB96	saeS amplification	GCTTTACAACATATACCATCACAAC TG
TB97	saeS amplification	AGCCCTCATTAATGGGAGCTTC

FIGURES

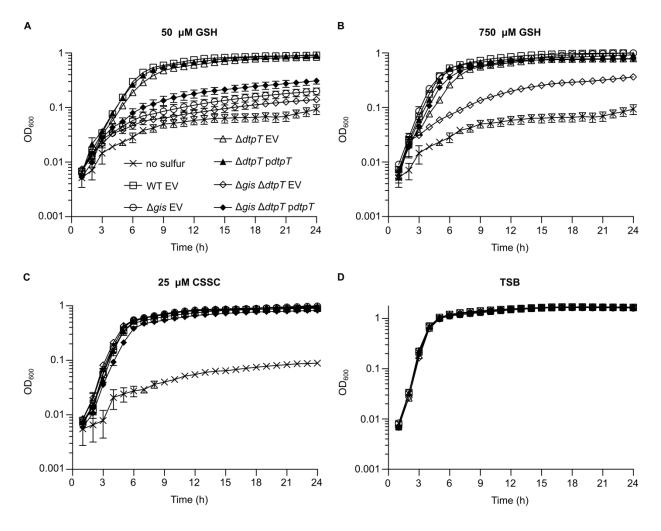
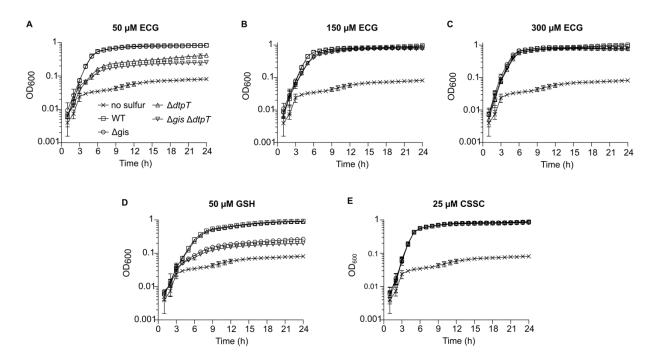



Figure 3.1. The di-tripeptide transporter, DtpT, supports Staphylococcus aureus growth on GSH as a source of nutrient sulfur. WT, $\Delta gisABCD$ -ggt (Δgis), $\Delta dtpT$, $\Delta gisABCD$ -ggt (Δgis), and their respective dtpT complements were cultured in chemically defined medium (CDM) supplemented with either 50 μ M or 750 μ M GSH (A and B, respectively), 25 μ M cystine (CSSC; C), or tryptic soy broth (TSB; D). WT *S. aureus* maintaining an empty pKK22 vector (EV) cultured in CDM lacking a viable sulfur source denotes the no sulfur control. Each complementation strains express, under native promoter conditions, the WT dtpT allele from the pKK22 vector (pdtpT). The mean and \pm 1 standard error of three biological replicates is depicted.

Figure 3.2. The γ-peptide confers specificity for GisABCD-supported growth on GSH. Growth assessments in CDM of WT, $\Delta gisABCD$ -ggt, $\Delta dtpT$ and the $\Delta gisABCD$ -ggt, $\Delta dtpT$ double transport mutant on glutamate-cysteine-glycine (ECG) tripeptide as the provided sulfur source. This GSH analog harbors and α-peptide bond between Glu and Cys rather than the γ-peptide found in GSH. Strains were cultured in a chemically defined medium supplemented with either 25 μM CSSC (**A**), 50 μM GSH (**B**), 50 μM, 150 μM, or 300 μM ECG (**C**, **D**, **E**, respectively). WT cultured in CDM lacking a sulfur source acts as the no sulfur control. Curves are the mean of three biological replicates with error bars denoting the ± 1 standard error.

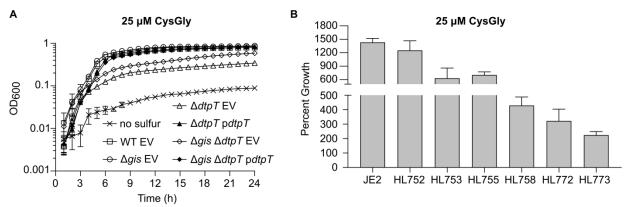


Figure 3.3. Cysteinyl-glycine (CysGly) is a viable sulfur source for Staphylococcus aureus in a DtpT-mediated fashion. A) growth kinetics of WT, $\Delta gisABCD$ -ggt (Δgis), $\Delta dtpT$, $\Delta gisABCD$ -ggt (Δfiz), and the dtpT complement strains in CDM supplemented with 25 μ M CysGly. pKK22 is the empty vector (EV) and pKK22-dtpT, expressing WT dtpT allele under native promoter conditions, is denoted as pdtpT. Each curve represents the means of three biological replicates with error bars indicating the standard error. WT EV cultured in CDM lacking a viable sulfur source designates the no sulfur control. B) Percent growth using endpoint OD₆₀₀ values of clinical CF isolates grown in CDM supplemented with 25 μ M CysGly. The average of four biological replicates are represented with error bars representing ± 1 standard error of the mean.

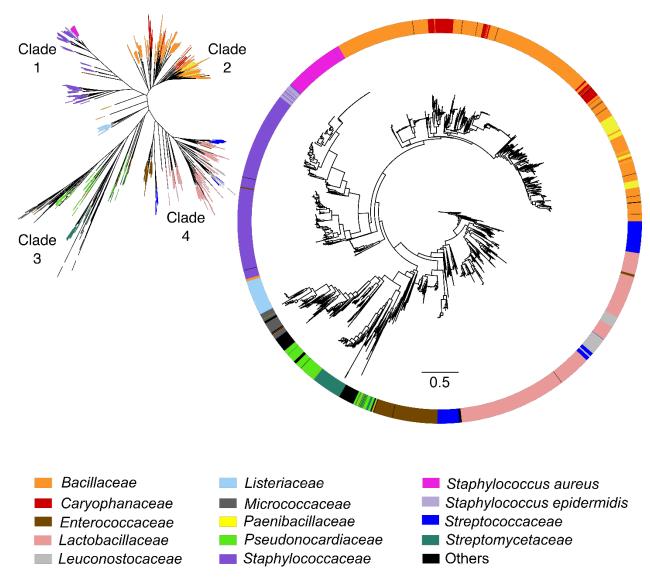
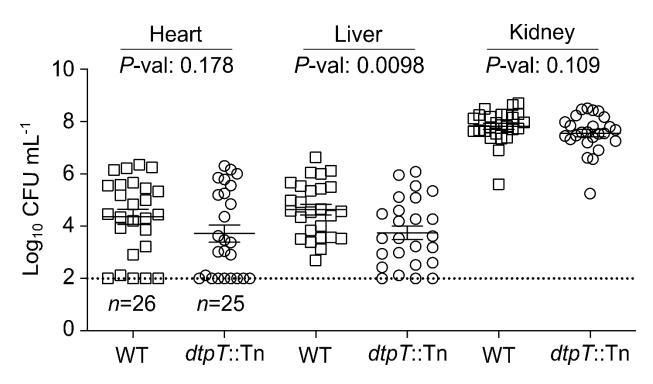



Figure 3.4. Distribution of DtpT homologs across Gram-positive bacteria. Phylogenetic reconstruction of DtpT homologs (*n*=3,649). Homologs are defined as those proteins sharing ≥50% coverage and ≥40% when aligned against *S. aureus* DtpT. Host species are grouped into families with each family containing ≥50 representatives. Each family is designated with its own unique color depicted within the circular tree as follows: Bacillaceae (orange), Caryophanaceae (red), Enterococcaceae (brown), Lactobacillaceae (salmon), Leuconostocaceae (light grey), Listeriaceae (light blue), Micrococcaceae (dark grey), Paenibacillaceae (yellow), Pseudonocardiaceae (light green), Streptococcaceae (royal blue), Streptomycetaceae (dark green). Families with <50 representatives were grouped together into one category: Others (black). The Staphylococcaceae family (purple) had Staphylococcus aureus Staphylococcus epidermidis (lavender) split out as their own sub-families for emphasis. Clades were identified by displaying the DtpT homologs (n=3,649) as a radial tree (upper left).

Figure 3.5. DtpT contributes to *Staphylococcus aureus* **fitness during murine systemic infection.** Bacterial burdens in the heart, liver, and kidneys of 8-week-old Balb/cJ female mice inoculated WT or dtpT::Tn. The limit of detection is 100 CFU and is represented with a dotted, horizontal line. Statistical significance within each organ was determined as follows: first the presence or absence of normal distribution was assessed with the Shaprio-Wilk test which returned the following P-values: WT_{heart} = 0.02415, $dtpT_{heart}$ = 0.001623, WT_{liver} = 0.6531, $dtpT_{fiver}$ = 0.1715, WT_{kidney} = 0.002334, $dtpT_{kidney}$ = 0.01517. From this it was determined that the WT and dtpT::Tn liver Tables were normally distributed and thus an unpaired t-test with Welch's correction was conducted (see figure for P-value). All other Tables were determined as not normally distributed and the Mann-Whitney t-test was employed (see figure for P-values). Solid, horizontal lines represent the mean with error bars being \pm 1 standard error of the mean.

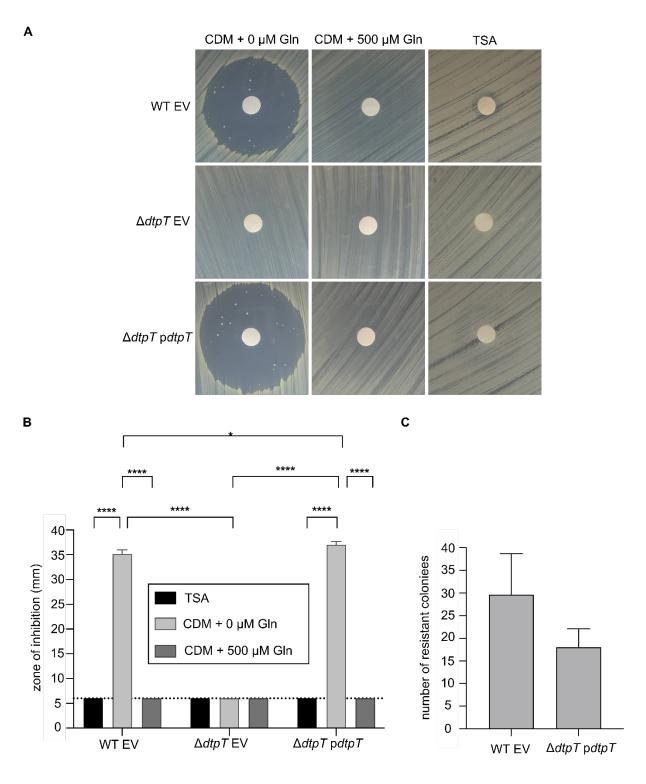


Figure 3.6. Staphylococcus aureus sensitivity to the tripeptide antibiotic, bialaphos, is glutamine- and DtpT dependent. The Kirby Bauer assay was preformed utilizing JE2 WT and the $\Delta dtpT$ mutant. WT harbors the empty pKK22 vector (EV) while $\Delta dtpT$ contains either EV or the pdtpT complement in which dtpT is expressed under native promoter conditions. A) Representative photo of each bialaphos Kirby Bauer assay

Figure 3.6 (cont'd)

using cells plated on CDM-trimethoprim agar plates (CDM-TMP) containing either 0 μ M (left) or 500 μ M Gln as well as tryptic soy agar (TSA). **B**) Quantification of the Kirby Bauer zone on inhibition. The limit of detection (6 mm) is defined by a horizontal, dashed line. Statistical analysis was conducted using a 2-way ANOVA using Tukey's multiple comparison test. *P*-values are represented as follows: * = 0.0409, **** = <0.0001. **C**) Enumeration of the Kirby Bauer resistant colonies. An unpaired t-test returned a non-significant *P*-value of 0.3061. **B** and **C** present the mean of three biological replicates ± 1 standard error of the mean.

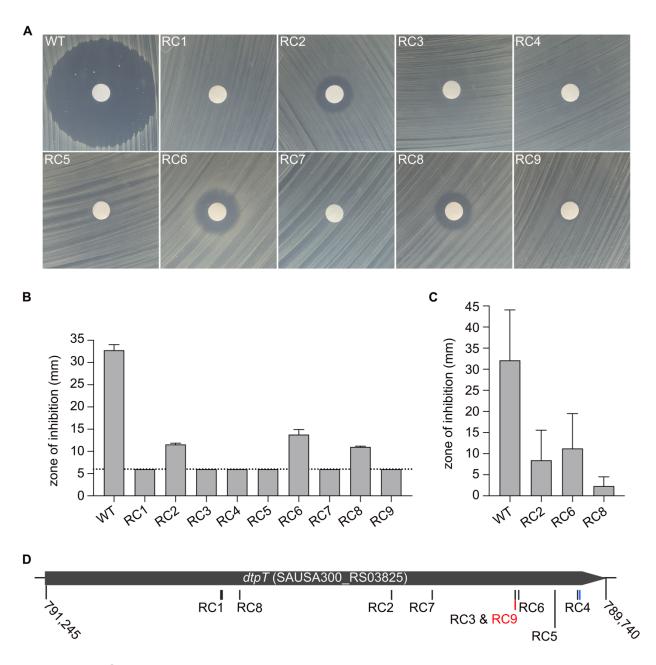


Figure 3.7. Staphylococcus aureus develops varying resistance to bialaphos due to dtpT mutation. A) Pictural representation of S. aureus WT and the nine bialaphos resistant colonies (RC1-9) when challenged against bialaphos in a Kriby Bauer assay. B) Quantification of the Kirby Bauer zone of inhibition. The limit of detection (6 mm) is denoted with a horizontal, dashed line. C) Enumeration of resistant colonies in the Kirby Bauer assays. For B and C, the mean of three biological replicates \pm 1 standard error of the mean is shown. D) To-sale depiction of dtpT mutations in the bialaphos RCs as defined by whole genome sequencing. Red is to denote that RC9 has the same mutation as RC3. The blue line indicates a second mutation in dtpT for RC4. Please see Table 3.1 for specific information regarding mutations. Image created with BioRender.com.

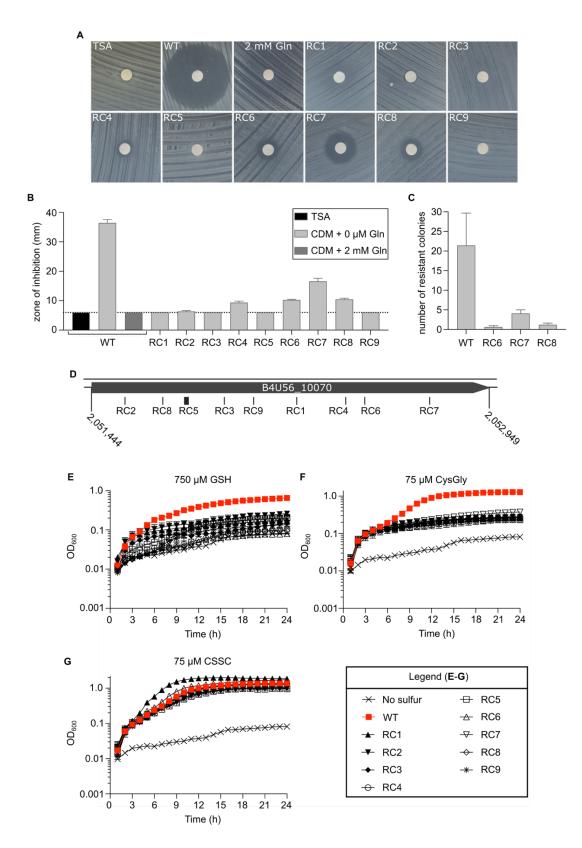


Figure 3.8. Staphylococcus epidermidis 1457 harbors a dtpT homolog, B4U56_10070, that supports growth on both GSH and the newly identified sulfur

Figure 3.8 (cont'd)

source, CysGly. A) Representative pictures of bialaphos Kirby Bauer on TSA (specified) and CDM with 2 mM Gln (specified) or no Gln (all other pictures, not specified). In the top row, the first three pictures (starting from the left) are WT *S. epidermidis* 1457. Bialaphos resistant colonies (RC) 1-9 are indicated in the appropriate picture. Bialaphos Kirby Bauer zones of inhibition (ZOI; **B**) and RCs that arose in the ZOI (**C**) were quantified. The limit of detection (6 mm) is defined by a horizontal, dashed line (**B**). **D**) Position specific location of the mutations in B4U56_10070 in each RC as defined by whole genome sequencing. Refer to Table 3.2 for mutation information. Image created with BioRender.com. **E-G**) Growth kinetics of *S. epidermidis* 1457 WT and RC1-9 on CDM_{mod} supplemented with either 75 μM CSSC (**C**), 75 μM CysGly (**D**), or 750 μM GSH (**E**). Both the Kirby Bauer and growth curve assays (**B**, **C**, **E-F**) were performed in biological triplicate with the mean and ± 1 standard error of the mean being presented.

CHAPTER 4: Employing MALDI-IMS to visualize the host-pathogen nutritional sulfur interface during *Staphylococcus aureus* systemic infection

ABSTRACT

The opportunistic pathogen Staphylococcus aureus persistently colonizes 20% of the population and is a leading cause of infections such as bacteremia and infective endocarditis. Successful proliferation of S. aureus throughout numerous host tissue depends on an ability to develop antibiotic resistance and procure essential nutrients from diverse metabolite forms within the local environment. With increasing knowledge regarding S. aureus host-sulfur acquisition, confirming the in vivo relevance of these pathways is important. This pioneering study examines the host-pathogen nutritional sulfur interface using Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) on systemically infected murine kidneys. In doing so, we have confirmed that three S. aureus sulfur sources—reduced and oxidized glutathione as well as cysteinyl-glycine—are present in this organ during infection. Additionally, the capacity of MALDI-IMS to identify biologically relevant sulfur sources is demonstrated with the mixed cysteine-glutathione disulfide, a metabolite particularly abundant within healthy or S. aureus colonized kidneys. Growth of S. aureus on cysteine-glutathione disulfide in vitro is supported by the cysteine/cystine transporters TcyABC and TcyP as well as the GisABCD-Ggt reduced/oxidized glutathione import and catabolism system. Lastly, the ability of GisABCD-Ggt to support S. aureus proliferation on GSH derivatives Snitrosoglutathione and S-lactoylglutathione is established. In total, this investigation harnesses the unique capabilities of MALDI-IMS to better comprehend how this formidable pathogen impacts host sulfur metabolism during infection.

INTRODUCTION

Methicillin Resistant *Staphylococcus aureus* (MRSA) is an opportunistic pathogen and leading cause of hospital acquired infections in the United States (86, 87). This is due to the propensity of *S. aureus* to colonize numerous host organs and rapidly develop antibiotic resistance. Successful proliferation within tissue requires *S. aureus* acquisition of essential nutrients such as sulfur that are found within host metabolites (134). Though our understanding of *S. aureus* host-sulfur procurement is increasing, we lack insight regarding the distribution and abundance of these sulfur containing compounds during infection. Targeted metabolomics using mass spectrometry (MS) is a powerful tool commonly used to detect and quantify metabolites within a sample (e.g., tissue) (220). For assessing host-pathogen interfaces, though, MS alone is limiting when both quantity and distribution of a metabolite is also desired.

With recent advances in technology, descriptive spatial localization and relative quantification of a compound is possible with matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) (221). Using this technique, spectra are obtained at discrete locations across a sample. From these spectra an image is generated using the intensity signal of a metabolite. In *S. aureus*, MALDI-IMS has provided invaluable data regarding host redistribution of nutrients such as calcium, manganese, and zinc during systemic infection (185). Additionally, MALDI-IMS can assess the abundance of either host (e.g., calprotectin) or *S. aureus* (e.g., siderophores) proteins, reinforcing the notion that this tool is well equipped for examining both sides of a host-pathogen interaction (185, 222).

Here, MALDI-IMS was utilized to gain preliminary insights on host sulfur distribution during S. aureus systemic infection of the murine kidney. We discover that several sulfur sources identified for this pathogen in vitro are present within healthy tissue and experience an increased relative abundance and/or redistribution upon infection. Furthermore, the efficacy of MALDI-IMS is exemplified by its discovery of a novel sulfur source in S. aureus, known as cysteine-glutathione mixed disulfide (CSSG). Growth of S. aureus on CSSG requires the collective presence of the GSH importer and y-glutamyl transpeptidase (GisABCD-Ggt) machinery (89) as well as the cysteine (Cys)/cystine (CSSC) transporters, TcyABC and TcyP (90). Lastly, we demonstrate that two other GSH derivatives, S-nitrosoglutathione (GSNO) and S-lactoylglutathione (SLG) support the S. aureus nutritional sulfur requirement in a GisABCD-Ggt mediated fashion. Collectively, this body of work broadens our knowledge regarding the levels of redundancy employed by S. aureus—from the acquisition of structurally similar compounds to the use of multiple transporters for a single metabolite—to ensure that the nutritional sulfur status is maintained.

RESULTS

Matrix assisted laser desorption/ionization imaging mass spectrometry reveals the presence of known and putative *S. aureus* sulfur sources in the systemically infected murine kidney. Prior studies have revealed several host-derived sulfur sources reinforcing the *S. aureus* nutritional sulfur requirement *in vitro* (88–90). Our work has additionally observed several sulfur associated importers sustaining maximal propagation of *S. aureus* JE2 in the heart and/or liver (TcyP (89) and DtpT, see Chapter 3) during murine systemic infection. Nevertheless, the distribution of sulfur metabolites associated

with S. aureus within healthy and infected host tissue remains unknown. To begin addressing this, matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) was conducted on both mock infected mice and those inoculated with the WT USA300 LAC derivative, JE2 (Fig. 4.1). Kidney samples were used for downstream analysis given that WT colonization in this environment consistently results in abscess formation, a hallmark of S. aureus infection; this allows for easy discernment between mock and infected tissues using hematoxylin and eosin (H&E) staining (Fig. 4.1A). MALDI-IMS on kidney samples assessed the distribution of three known sulfur sources: reduced and oxidized glutathione (GSH and GSSG, respectively) (88, 89) as well as its breakdown product, cysteinyl-glycine (CysGly) (see Chapter 3). In a healthy kidney, both GSH and GSSG are present—here each metabolite has the highest abundance in the medulla but shows moderate levels throughout the tissue during *S. aureus* infection (Fig. 4.1B and 4.1C, respectively). However, during systemic infection the kidney experiences an increase in abundance throughout the kidney (Fig. 4.1B and 4.1C, respectively). Interestingly, the presence of a mixed GSH disulfide species, cysteine-glutathione disulfide (CSSG), displayed high abundance in the renal cortex (Fig. 4.1D). During S. aureus infection, CSSG increased its presence by spreading throughout the tissue sample (Fig. 4.1D). Ionization of CysGly, which is a breakdown product of GSH in the γglutamyl cycle, exhibited improved results when a different matrix was used compared to the one employed for GSH, GSSG, and CSSG (details in Materials and Methods). Consequently, distinct tissue samples from both mock and infected kidneys were used for H&E staining (Fig. 4.1E) and for the MALDI-IMS visualization of this metabolite. In the mock-infected murine kidney, CysGly is observed within the renal cortex with a slight redistribution occurring towards the center during *S. aureus* infection (Fig. 4.1F). Collectively, these data indicate that sulfur sources identified *in vitro* for this pathogen can be found in at least one tissue environment during systemic infection.

S. aureus GisABCD, TcyABC, and TcyP support the use of CSSG as a source of nutritional sulfur. Given that all GSH derivates tested thus far (i.e., GSSG and CysGly) are S. aureus sulfur sources, we predicted that CSSG would also support nutritional demands for this pathogen. Indeed, supplementation of a chemically defined medium (CDM) with 12.5 µM CSSG as the only viable sulfur source promotes robust growth of WT (Fig. 4.2A); we next ascertained the S. aureus machinery supporting this phenotype. Due to the mixed disulfide nature of CSSG, we hypothesized that several transporters are involved with growth on this nutrient. We first investigated the gisABCDggt genetic region, where gisABCD encodes a GSH/GSSG ABC transporter and ggt produces a γ -glutamyl transpeptidase cleaves the γ -peptide bond of these metabolites (89). Proliferation of a gisABCD-ggt clean deletion mutant (denoted as Δgis) on CSSG is not impaired, potentially implying the presence of redundant systems that support growth on this nutrient (Fig. 4.2A). Considering the Cys residue of CSSG, the Cys/CSSC transporters TcyABC and TcyP (90) were next assessed. Transposon (Tn) inactivating mutations in either transporter (tcyA::Tn or tcyP::Tn) fails to impact S. aureus propagation on CSSG (Fig. 4.2A).

Given that the single transporter mutants all displayed WT-like growth, we investigated the growth kinetics of strains deficient for two of the three importers. A $\Delta gis\ tcyA$::Tn mutant displayed in a modest growth defect compared to WT while the $\Delta gis\ tcyP$::Tn strain did not (Fig. 4.2A). Interestingly, the tcyA::Tn tcyP::Tn mutant exhibited the growth

greatest impairment of all the double mutants tested (Fig. 4.2A). These observations indicate that all three transporters support, at different levels, *S. aureus* growth on CSSG. This is further indicated by the fact that a $\Delta gis \Delta tcyA tcyP$::Tn triple transport mutant fails to proliferate in CSSG (Fig. 4.2A). Furthermore, all phenotypes are sulfur specific as each mutant strain proliferates to WT-like levels when cultured in CDM harboring sodium thiosulfate (sTS) as the sulfur source (Fig. 4.2B).

S. aureus GisABCD drives the use of GSH-derived species to sustain the nutritional sulfur requirement in vitro. Host GSH derivatives are not limited to GSSG, CysGly, and CSSG. S-nitrosogluathione (GSNO) forms when GSH indirectly reacts with nitric oxide (NO) (223). GSNO acts as a signaling molecule by transferring the NO to target proteins, effectively altering their function, and is found in the high picomole to low nanomole range human plasma (224, 225). Consistent with other GSH related metabolites evaluated, supplementation of CDM with 75 µM GSNO promotes WT proliferation if a functional gisABCD-ggt system is present (Fig. 4.3A). Slactoylglutathione (SLG) is also found within the host environment as an intermediate in the methylglyoxyl detoxification pathway and is present at low micromolar concentrations (~12-16 μM) in human blood (226). As expected, SLG supports growth of S. aureus when provided at low micromolar concentrations (i.e., 50 µM) in CDM; use of this nutritional sulfur source largely depends on the GisABCD-Ggt system (Fig. 4.3B). Collectively, GSNO and SLG provide further evidence supporting the notion that GSH derivatives can be targeted as nutritional sulfur sources for *S. aureus* during infection.

DISCUSSION

This study of MALDI-IMS on the host-pathogen nutritional interface visualizes the distribution and relative abundance of three established sulfur sources (GSH, GSSG, and CysGly) during systemic S. aureus infection. Interestingly, both GSH and GSSG increased in relative abundance during infection (Figure 4.1B and C). This could result from the host immune response to S. aureus. Neutrophils combat S. aureus by delivering reactive oxygen species (ROS) to the site of infection and resulting have high intracellular levels of GSH to modulate internal ROS (227). As these neutrophils die, this GSH pool is likely released to the extracellular environment, becoming accessible to S. aureus. One might predict that this relative abundance of GSH and GSSG in the kidney might increase even more in mice infected with the Δgis mutant; this would suggest that S. aureus is importing and catabolizing these nutrients during infection. From the GSH and GSSG MALDI-IMS data alone, it is also tempting to speculate on the state of the host sulfur pool in environments where S. aureus sulfur associated transporters contribute to maximal proliferation (e.g., heart (90) and liver; Chapter 3). Will MALDI-IMS reveal depletion of the metabolites associated with TcyP (i.e., Cys/CSSC) or DtpT (GSH, CysGly)? As discussed previously, would inactivating these transporters replenish the respective sulfur pools during systemic infection? Overall, MALDI-IMS has provided further support for the comprehensive characterization of sulfur acquisition systems in S. aureus in order to establish a clear understanding of the host-pathogen nutritional sulfur interface.

This investigation additionally highlights the robust utility of MALDI-IMS as a tool for unveiling novel sulfur sources for pathogens. Indeed, CSSG is highly abundant in both the mock and systemically infected kidney. Very little is known about the contributions of

CSSG to mammalian physiology, but it is ubiquitous within cells and can protect mice against acetaminophen-induced hepatotoxicity (228). Here CSSG is given a new function as a potent source of nutrient sulfur for S. aureus, as particularly low micromolar concentrations of this disulfide elicits robust proliferation of the bacterium. This could be related to the fact that, once reduced, Cys—the crux of sulfur distribution within cells—is immediately accessible to donate its sulfur atom to other biological processes (e.g., Fe-S cluster assembly). Interestingly, two distinct types of sulfur transporters are associated with S. aureus proliferation on CSSG as a nutritional sulfur source: GSH/GSSG (GisABCD) and Cys/CSSC (TcyABC and TcyP). Except for CSSG, all substrates implicated in the GisABCD system (GSH/GSSG, GSNO, SLG) share common tripeptide and y-peptide bond features, as discussed in Chapter 3. CSSG deviates from this pattern as it involves an amino acid, Cys, forming a disulfide bond with GSH. This suggests that the substrate binding protein (SBP), GisA, may possess an active site primarily recognizing a single molecule of GSH, with limited or no involvement in recognizing the molecule disulfide-bonded to GSH. A similar concept could be applicable to TcyA, the substrate binding protein (SBP) of the TcyABC complex, and TcyP—here recognition of Cys in CSSG takes precedence, with GSH playing a minimal or negligible role in substrate recognition. This inference is drawn from the understanding that sulfur sources related to both TcyABC and TcyP primarily involve Cys and its close derivatives (such as CSSC, Nacetylcysteine, and homocystine) (90).

The above scenario only applies to CSSG if this metabolite is transported into the cell as a disulfide, implying that the reductase is intracellular (Fig. 4.4A). Supporting this model is the knowledge that Ggt, a cytoplasmic protein, can cleave the γ -peptide bond of

GSSG, suggesting that GSSG is reduced in this space (89). Indeed, most reductases are found within the cytoplasm, helping to drive the cytoplasmic redox status of the cell (229). However, in Gram-negative bacteria the Dsb system functions to introduce (DsbA, DsbB) and correct (DsbC, DsbD) protein disulfide bonds in the periplasm; S. aureus only encodes DsbA, a protein whose ability to regain the oxidative state is predicated to rely upon extracellular oxidants (230). One might wonder whether CSSG is involved in that process. With such a model, reduction of CSSG would occur before transportation through GisABCD, TcyABC, and TcyP (Fig. 4.4B). Promoting this model is the notion that neither TcyABC nor TcyP are associated with tripeptide import in bacteria, including S. aureus (90, 93, 231). There is one study in Streptococcus mutans where a GSH SBP (GhsT) acts in concert with the TcyBC component to import the metabolite into the cell (232). It is noteworthy to point out that, in the current study, the TcyBC components are intact in the $\Delta gis \Delta tcyA tcyP$::Tn mutant, suggesting that there is not an additional SBP that binds CSSG for import through the TcyBC complex. Future studies looking at the growth of a dsbA mutant on CSSG as the only sulfur source will shed light on whether S. aureus utilizes an extracytoplasmic protein to reduce sulfur sources before transportation into the cytoplasm.

Lastly, the implication of CSSG as a GisABCD substrate led us to hypothesize that other GSH derivatives are viable *S. aureus* sulfur sources. GSNO and SLG reinforce this notion as both can be utilized by *S. aureus* to meet the nutritional sulfur requirement. Importantly, growth is supported by the GisABCD-Ggt system when either metabolite is provided at a concentration above values reported for human blood (224–226). Determining whether GSNO and SLG are immediate Ggt substrates or if the respective

NO and D-lactate groups need to be removed before Ggt catalysis represents areas of future investigation. Overall, this pioneering work provides insight into the host's sulfur status during systemic infection and emphasizes the valuable role of MALDI-IMS in expanding our understanding of the sulfur metabolism strategies employed by this formidable pathogen.

ACKNOWLEDGMENTS

We sincerely thank Boone Prentice and Justin Ellenburg for conducting the MALDI-IMS and for their thoughtful insights on this work. Each transposon mutant was obtained from the Network on Antimicrobial Resistance in *Staphylococcus aureus* (NARSA) for distribution by BEI Resources, NIAID, NIH, and the Nebraska Transposon Mutant Library (NTML) Screening Array NR-48501. Funding for this work was provided by the National Institutes of Health R01 Al139074 and R21 Al142517.

MATERIALS AND METHODS

Strains, media, and growth conditions. All strains, plasmids, and primers used throughout the course of this study can be found in Tables 4.1, 4.2 and 4.3, respectively. JE2, a derivative of community acquired USA300 LAC, is the WT *S. aureus* strain for this body of work (164). Correct Tn location and deletions were determined using PCR. Plasmids were generated via Gibson assembly in the *Escherichia coli* DH5a strain before being transferred to *S. aureus* RN4220 to obtain appropriate vector methylation patterns that would permit transformation into the appropriate JE2 background strain. Note that all plasmids were confirmed using Plasmidsaurus whole plasmid sequencing. Deletion of the *tcyA* gene was performed following a well-defined allelic exchange protocol using the pKOR1-mcs plasmid donated from the laboratory of Taeok Bae (213). Each strain was

cultured in 5 mL tryptic soy broth (TSB) overnight at 37°C, 225 rpm. The base chemically defined medium (CDM) was prepared as previously described with slight modifications (149, 150). For the full recipe, please refer to Chapter 2 Materials and Methods. CDM harboring 5 mg mL⁻¹ of freshly prepared glucose was supplemented with either no sulfur source, 12.5 mM cysteine-glutathione disulfide (CSSG), 50 mM sodium thiosulfate (sTS), 75 mM S-nitrosoglutathione (GSNO), or 50 mM S-lactoylglutathione (SLG). For the stock sulfur sources CSSG, sTS, GSNO, SLG, and glucose were dissolved in deionized water before filter sterilization.

Murine model of systemic infection. A WT TSB overnight was sub-cultured 1:100 into 5 mL TSB and grown for an additional 3 h. The culture was pelleted at 4°C, 4000 rpm, before being washed into 12 mL of Dulbecco's Phosphate Buffered Saline (DPBS; no CaCl₂ or MgCl₂) and normalized to an OD₆₀₀ = 0.4. Eight-week-old Balb/cJ female mice (Jackson Laboratories) were then anesthetized with avertin before being retro-orbitally infected with 10⁷ CFU. After 96 hpi, mice were euthanized via CO₂ inhalation. The heart, liver, and kidneys were snap-frozen on dry ice and sent to the Prentice laboratory at University of Florida for imaging. Infections were performed at Michigan State University under the principles and guidelines described in the Guide for the Care and Use of Laboratory Animals (218). All animal work followed the protocol approved by Michigan State University Institutional Animal Care and Use Committee (IACUC): PROTO202200474.

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Frozen tissue samples were sectioned at 10 μm using a Leica CM3050S Cryostat. One section of PBS inoculated mouse kidney (control) and one section of *S. aureus* WT-

infected kidney were then thaw mounted onto an indium-tin oxide (ITO) coated slide. A matrix was then applied depending on the desired molecules to be ionized: 9-aminoacridine (9AA; prepared using 90% methanol) was used for GSH, GSSG, and CSSG tissue samples while those used for CysGly observation used dihydroxybenzoic acid (DHB). The designated matrix was applied using an M5 robotic sprayer (HTX Technologies) at 85°C with a 0.11 mL/min flow rate. Nozzle velocity was set to 700 mm/min with a 2 mm track spacing and crisscross pattern with the nitrogen pressure being set at 10 psi (2 L/min flow rate). IMS was conducted using a 7T solariX FT-ICR mass spectrometer (Bruker Daltonics) in negative ion mode. Continuous Accumulation of Selected Ions (CASI) was employed to improve ion signal over the mass window of *m/z* 280-620. All IMS experiments were performed at 150 μm spatial resolution. Mass resolution at *m/z* 400 is 67,000 measured by FWHM. Image processing was done utilizing flexImaging and SCiLS software (Buker Daltonics).

Tissue staining with Hematoxylin and eosin (H&E). After MALDI-IMS, the matrix was removed using a continuous flow of 100% ethanol (20 sec). Samples were then exposed to 95% ethanol (30 sec), 70% ethanol (30 sec), and then washed in Mili-Q water (30 sec) before hematoxylin solution was applied for 2 min. From there the tissues were washed in Milli-Q water (20 sec), 70% ethanol (30 sec), 95% ethanol (30 sec), and then eosin solution was administered (1 min). Additional applications of 95% ethanol (30 sec) and 100% ethanol (30 sec) preceded Xylene application (2-2.5 min). Once completed, a cover slip was added, and the tissue were imaged using an Azio imager M2 optical microscope (Zeiss).

96-well plate growth curves. Overnights were spun at 4°C, 4000 rpm, washed in 5 mL phosphate buffered saline (PBS), and then normalized to an optical density at 600 nm (OD₆₀₀) equal to 1. Normalized cells were sub-cultured at a 1:100 ratio into each growth condition. Using an Epoc2 Biotek microplate spectrophotometer (37°C, continuous shaking), the OD₆₀₀ was observed every hour for 18 h in a 96-well round bottom plate. For each condition, a strain was inoculated into three wells (i.e., technical triplicate). After being blanked the technical triplicates were averaged, with the average representing a single biological replicate. All growth curves were performed independently three times. **Data visualization.** Growth curves were generated using GraphPad Prism software version 10.0.0 (153). All finalized figures were generated using the open source Inkscape 1.2.2 (b0a8486, 2022-12-01). Available at: https://inkscape.org.

TABLES

Table 4.1. Strains used in this study.

Strain	Description	Reference		
Staphylococcus	Staphylococcus aureus strains			
S. aureus WT	JE2, derivative of USA300 LAC	(164, 166)		
∆gisABCD-ggt	Clean deletion of SAUSA300_0200-0404 genetic region	(89)		
<i>tcyA</i> ::Tn	B. aurealis Tn insertion at genome position	(90)		
<i>tcyP</i> ::Tn	B. aurealis Tn insertion at genome position	(90)		
<i>∆gisABCD-ggt</i> <i>tcyA</i> ::Tn	B. aurealis Tn insertion at genome position in the ΔgisABCD-ggt background strain	This study		
<i>∆gisABCD-ggt</i> <i>tcyP</i> ::Tn	B. aurealis Tn insertion at genome position in the ΔgisABCD-ggt background strain	This study		
∆ <i>gisABCD-ggt</i> ∆ <i>tcyA tcyP</i> ::Tn	Clean deletion of the <i>tcyA</i> locus in the $\Delta gisABCD$ - ggt background strain; <i>sae</i> sequenced and α hemolysin positive	This study		

Table 4.2. Plasmids used in this study.

Plasmid	Description	Reference
pKOR1	Temperature sensitive vector for generating clean deletions in <i>S. aureus</i> .	(213)
pKOR1- Δ <i>tcyA</i>	pKOR1 harboring 1 Kb upstream & 1 Kb downstream of <i>tcyA</i> to generate a clean deletion.	This study

Table 4.3. Primers used in this study.

Primer	Description	Sequence (5' → 3')
NE Martn-ermR*	Used to confirm Tn insertions on plus strand	CTCGATTCTATTAACAAGGG
NE Buster*	Used to confirm Tn insertions on minus strand	GCTTTTTCTAAATGTTTTTTAAGTAA ATCAAGTAC
PK126	Confirming <i>gisABCD-ggt</i> deletion	TCAAAGCTGGCGATGATGG
PK125	Confirming <i>gisABCD-ggt</i> deletion	TCAGTTGTTGGATCAGATGAGC
HL130	Confirming the Tn insertion in tcyA	CGTCAATAAATATAAGTTGCTAGC
HL211	Confirming the Tn insertion in <i>tcyP</i>	CGAAGCAAATATCACGACAGC
JLD15	Amplifying 1kb downstream of <i>tcyA</i> for Gibson assembly into pKOR1	CATATGATGAGTTCACAAAAAAAGA AAATTAGT
JL16	Amplifying 1kb downstream of <i>tcyA</i> for Gibson assembly into pKOR1	ATAAAAATTAGATACGATGTTGCAT GGTTATC
JLD25	Amplifying 1kb upstream of <i>tcyA</i> for Gibson assembly into pKOR1	TTCTATTTGAAGAATATATCTCCTTA TTCTTATTATTCTAATC
JLD26	Amplifying 1kb upstream of <i>tcyA</i> for Gibson assembly into pKOR1 To amplify the deleted	CGGAACCGGTACCAATGGATAACTA CAATTAAAGTACCTATTGATTTTATT TC
JLD32	tcyA region for PCR sequence confirmation	ATGACCATTGTCATGCCTTCATT
JLD33	To amplify the deleted tcyA region for PCR sequence confirmation	TCTTAGGTAATTACTCGGCGG
TB96	saeS amplification	GCTTTACAACATATACCATCACAAC TG
TB97	saeS amplification	AGCCCTCATTAATGGGAGCTTC

FIGURES

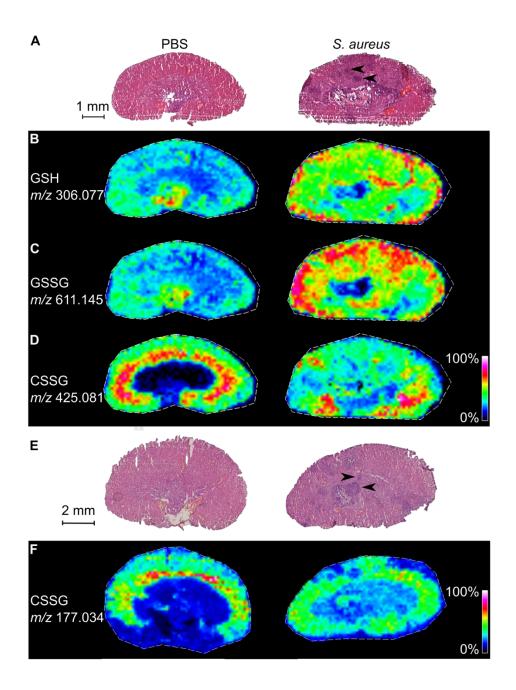


Figure 4.1. MALDI-IMS of the systemically infected kidney reveals a potential nutrient sulfur source for *Staphylococcus aureus*, cysteine-glutathione mixed disulfide (CSSG). A) Hematoxylin and eosin (H&E) stain of PBS (mock) inoculated kidney (left) and *S. aureus* WT-infected (right) murine kidney. Sections from these kidney samples were used for identification of metabolites that harbor glutathione (GSH). MALDI-IMS for GSH (B), oxidized glutathione (GSSG; C), and CSSG (D) are depicted. E) H&E stain of mock-infected (left) and WT-infected (right) kidney—sections from these kidneys were used to assess cysteinyl-glycine relative abundance and distribution (CysGly; F).

Figure 4.1 (cont'd)

For the H&E stains (A and E), representative *S. aureus* abscesses are denoted with black arrowheads. These images were produced in collaboration with the Prentice laboratory at the University of Florida.

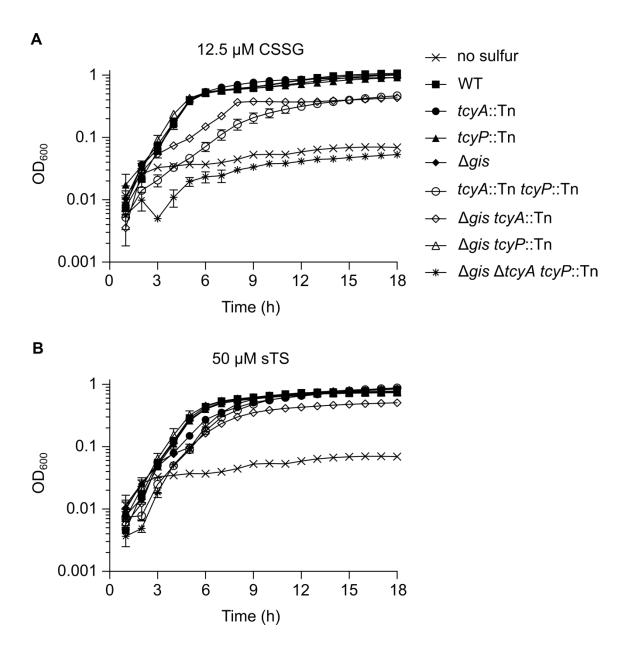


Figure 4.2. Cysteine-glutathione disulfide is a sulfur source for Staphylococcus aureus. Strains were cultured in chemically defined medium (CDM) supplemented with either 12.5 μ M cysteine-glutathione disulfide (CSSG) (A) or 50 μ M sodium thiosulfate (sTS) (B) as the sulfur source. WT S. aureus cultured in CDM lacking a viable sulfur source represents the no sulfur control. Each line represents the mean of three independent trials while the vertical bars depict ±1 standard error of the mean.

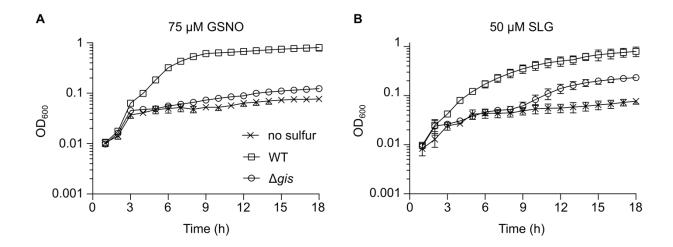
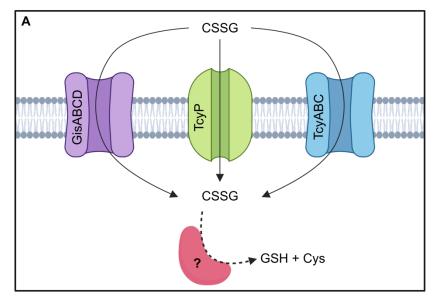



Figure 4.3. Staphylococcus aureus can meet the nutritional sulfur requirement using S-nitrosoglutathione and S-lactoylglutathione as sources of nutritional sulfur. S. aureus WT and the $\Delta gisABCD$ -ggt mutant (denoted Δgis) were propagated in CDM harboring 75 μ M S-nitrosoglutathione (GSNO) (A) or 50 μ M S-lactoylglutathione (SLG) (B). Each line depicts the mean of three biological replicates ±1 standard error of the mean. SLG data courtesy of Joelis Lama Díaz.

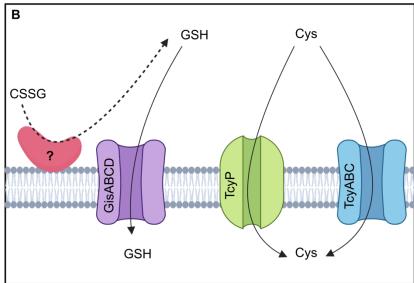


Figure 4.4. Potential mechanisms of cysteine-glutathione disulfide transportation. GisABCD is a reduced and oxidized glutathione (GSH/GSSG) importer (89) while TcyP and TcyABC have been associated with cysteine and cystine transportation (Cys/CSSC) (90). This study now implicates all three transporters with *S. aureus* growth on cysteine-glutathione disulfide (CSSG). However, it is unknown whether CSSG is imported as a disulfide and reduced in the cytoplasm (A) or if an extracytoplasmic enzyme acts on CSSG, allowing reduced GSH and free Cys to be imported through their respective transporters (B). Image created with BioRender.com.

CHAPTER 5: Summary and Future Directions

SUMMARY

In Chapter 1, we discuss the host sulfur pool, its influence on host well-being through sulfur metabolism, and the mechanisms employed by pathogens to acquire sulfurcontaining metabolites. Cysteine (Cys) plays a pivotal role in the distribution of sulfur within cells, serving as the building block for numerous organic and inorganic compounds. These compounds collectively form the mammalian sulfur reservoir (134). The machinery responsible for synthesizing and breaking down these metabolites is present across various tissue types, each subject to intricate regulatory processes that govern metabolite levels and distribution (134). Consequently, one can view each tissue type as its own distinct sulfur pool. An illustrative example of this phenomenon is the y-glutamyl cycle, characterized by its layered regulation that promotes the heightened expression of glutathione (GSH) synthesis enzymes in the liver, while GSH catabolism enzymes are less prevalent in this specific environment (134). Notably, imbalances in the y-glutamyl cycle can lead to various health issues, such as an increased risk of cardiovascular diseases (related to y-glutamyl transpeptidase and glutamate-cysteine ligase) or the development of hemolytic anemia (linked to GSH synthase) (134). Furthermore, pathogens like S. aureus have evolved mechanisms to import GSH into their cytoplasm (14, 89, 134, 232, 233). In fact, S. aureus possesses a characterized glutathione import system, GisABCD, as well as a γ-glutamyl transpeptidase (Ggt) system that transports GSH and initiates its breakdown for use as a sulfur source (89). Given the potential for altering sulfur metabolism to result in adverse outcomes within a normally healthy host, it becomes imperative to gain a comprehensive understanding of when, where, and how S. aureus impacts the host sulfur pool during infection.

As S. aureus encounters diverse sulfur environments during infection, Chapter 2 delves into how S. aureus physiology is altered when exposed to varying states of sulfur supplementation. Using RNAseq, we characterize the S. aureus transcriptional profile during sulfur starvation, a process predominantly governed by CymR-dependent genes, although a CymR-independent response is also observed. Strikingly, iron metabolism and oxidative stress genes were differentially expressed during sulfur starvation, prompting an investigation into the relationship between sulfur and these two pathways. In doing so, an additional role for GSH in S. aureus was discovered, where the free thiol of GSH provides protection against inhibitory concentrations of heme and hydrogen peroxide (H₂O₂) stress. Furthermore, we explore the S. aureus transcriptional response when comparing growth on various sulfur sources—such as organic Cys, GSH, oxidized GSH (GSSG), or inorganic thiosulfate (TS)—to cystine (CSSC). We demonstrate that two genes upregulated in the presence of TS, tsuA and tsuB, play a role in the ability of S. aureus to utilize TS as a source of nutritional sulfur, confirming that sulfur associated genes with altered expression under these conditions are indeed involved in sulfur metabolism.

Chapter 3 explores the machinery responsible for ensuring sulfur acquisition in *S. aureus*, building upon our improved understanding of how *S. aureus* responds to extracellular sulfur. DtpT is a di- and tripeptide transporter that is controlled by the stationary phase regulatory protein CodY (91). A direct mutagenesis approach unveiled the significance of the DtpT in utilizing not only physiologically relevant concentrations of GSH but also a newly identified sulfur source, cysteinyl-glycine (CysGly). Moreover, our studies demonstrate that this transporter plays a role in maximizing the fitness of *S.*

aureus within the systemically infected murine liver. These findings position DtpT as an ideal model protein for investigating how sulfur transporters can be hijacked to inhibit staphylococcal proliferation. To this end, we observed that the toxic peptide antibiotic, bialaphos, is delivered into *S. aureus* through DtpT, a mechanism also noted in another clinically relevant species, *Staphylococcus epidermidis*. Further investigations revealed the contributions of the *S. epidermidis* DtpT homolog to the proliferation of this organism when utilizing GSH and CysGly as nutrient sulfur sources, providing additional evidence that these two metabolites are substrates of DtpT. We also investigated conservation of DtpT and found broad conservation among Gram-positive bacteria, including cysteinyl-glycine 3-methyl-3-sulfanylhexanol (S-CysGly-3M3SH) transporters like PepT found in *Staphylococcus hominis* (103). These findings highlight the complexity surrounding *S. aureus* sulfur metabolism wherein broadly conserved, promiscuous proteins can reinforce the nutritional status of a cell.

Having investigated the properties surrounding acquisition of GSH and its derivative CysGly, Chapter 4 extends this narrative by delving into the host sulfur status during infection. MALDI-IMS emerged as an invaluable tool, shedding light on the presence of GSH, GSSG, and CysGly in both healthy and *S. aureus*-infected murine kidneys. Additionally, this technique unveils the substantial existence of a previously unrecognized sulfur source, cysteine-glutathione disulfide (CSSG), in the kidney. The growth of *S. aureus* on CSSG *in vitro* is intricately tied to the presence of GisABCD-Ggt, TcyABC, and TcyP. Lastly, this chapter drives home the importance of *S. aureus* GSH acquisition through the GisABCD system by identifying two other GSH derivatives that

support the *S. aureus* nutritional sulfur requirement: S-nitrosoglutathione (GSNO) and *S*-lactoylglutathione (SLG).

FUTURE DIRECTIONS

Chapters 2, 3, and 4 collectively represent significant progress in our understanding of S. aureus sulfur metabolism. These chapters also underscore the need for future experiments to comprehensively evaluate the impact of S. aureus redundancy during infection. Although the complete set of sulfur sources for S. aureus remains to be fully determined, we have gained substantial insights into the core sulfur transportation systems. This knowledge sets the stage for a more detailed examination of their roles during host colonization. Indeed, previous studies on TcyABC, TcyP, and GisABCD-Ggt (89, 90) have highlighted the challenges in elucidating the contributions of sulfur associated transporters to S. aureus colonization during systemic infection studies. In cases like TcyABC and TcyP, it required competition experiments against the wild type (WT) strain to reveal significant impairments, while the $\Delta gisABCD$ -ggt mutant exhibited no difference in bacterial burden compared to WT during mono-infection. Furthermore, even though DtpT impacts the ability of methicillin resistant S. aureus to achieve maximum proliferation within the liver during mono-infection, whether this is attributed to decreased import of GSH and/or CysGly rather than other di- and tripeptides remains to be determined.

From these infection studies one might question the actual impact sulfur transporters have on *S. aureus* proliferation *in vivo*. However, it is essential to bear in mind that the host sulfur pool is highly diverse, as discussed in Chapter 1. Additionally, *S. aureus* employs multiple transporters to acquire various metabolites, as highlighted in

previous studies (89, 90) along with Chapters 3 and 4. In some instances, this pathogen even possesses redundant systems dedicated to obtaining just one of these sulfur sources. This evolutionary strategy essentially safeguards *S. aureus* by compensating for the loss of one transporter or sulfur source with the ability to access a range of other sulfur-containing compounds. Consequently, when bacterial burdens are evaluated (i.e., at 96 hours post-infection), any defects observed in a sulfur transportation mutant might be concealed by the activity of alternative acquisition routes. Therefore, it would be valuable to conduct studies where systemic infections are terminated at earlier time points, such as 24 hpi or 48 hpi, to assess whether sulfur transporters like TycABC, TcyP, or GisABCD impact the initial colonization of the host.

Another avenue for investigation is to understand the collective impact of sulfur transporters during *S. aureus* systemic infection. Building on the findings from published work and Chapter 3, it would be intriguing to create a quadruple transport mutant (i.e., $\Delta gisABCD$ -ggt $\Delta dtpT$ $\Delta tcyA$ $\Delta tcyP$) and evaluate the colonization abilities of this strain during a mono-systemic infection. We know from previous research that a tcyP::Tn mutant shows a competitive disadvantage compared to wild type (WT) JE2 in heart colonization (90). Therefore, any increased severity in the heart defect using the $\Delta gisABCD$ -ggt $\Delta dtpT$ $\Delta tcyA$ $\Delta tcyP$ would strongly implicate the importance of the TcyABC, GisABCD-Ggt, and DtpT systems for effective propagation in this organ. Increased severity in this context would likely manifest as a colonization defect during mono-infection. Similar outcomes would be anticipated in the liver, as the deletion of dtpT alone has been shown to impair growth in this environment. However, although a dtpT mutant results in significantly decreased colonization, the distribution of bacterial burdens

within individual mice is variable. For the anticipated decreased colonization in the $\Delta gisABCD$ -ggt $\Delta dtpT$ $\Delta tcyA$ $\Delta tcyP$ mutant, a narrower range of bacterial burdens is expected. This would suggest a more pronounced colonization defect due to the contributions of GisABCD-Ggt, TcyABC, and TcyP. Furthermore, we predict significantly reduced bacterial burdens in the kidneys. This expectation arises from the loss of all known transporters contributing to the acquisition of GSH, GSSG, CSSG, and CysGly, all of which are abundant during *S. aureus* infection in this organ.

Conversely, if we observe WT-like colonization of the kidneys with the quadruple transport mutant during both mono-infection and competition against WT, it may suggest the utilization of inorganic sulfur within this environment. Indeed, thiosulfate production in the kidney can result from the actions of Cysteinesulfinate Decarboxylase (Figure 1.1 and Table 1.1). Thus, it would be of interest to investigate the impact of deleting both inorganic sulfur transporters—the known thiosulfate transporter, tsuA, and the predicted sulfonate importer ssuABC—in the $\Delta gisABCD$ -ggt $\Delta dtpT$ $\Delta tcyA$ $\Delta tcyP$ background. This particular strain is likely to exhibit unique growth profiles in vitro due to the loss of so many sulfur importers. However, it is worth noting that growth can still be supported by the unknown di- and tripeptide transporter identified in Chapter 3. Therefore, supplementing the culture medium with higher concentrations (e.g., >100 μM) of ECG, GSH, or CysGly as the nutritional sulfur source should stimulate the proliferation of the $\Delta gisABCD$ -ggt $\Delta dtpT$ $\Delta tcyA \Delta tcyP \Delta tsuA \Delta ssuABC$ strain in vitro. During systemic infection, we speculate that this sextuple transport mutant may result in bacterial burdens that are close to, if not below, the limit of detection in the heart and liver. At the very least, we expect significantly reduced colonization in the kidneys. These experiments would help confirm the key

players in *S. aureus* sulfur acquisition during systemic infection and contribute to identifying a hierarchy of contributors. In essence, by characterizing the colonization profiles of strains deficient in one to six transporters, we aim to elucidate which systems have a more substantial impact on *S. aureus* propagation in a host environment.

As described in Chapters 3 and 4, the redundancy of S. aureus sulfur transporters serves as an evolutionary strategy to ensure the acquisition of various related metabolites derived from the host. With such a nuanced system, it is vital to describe the nutritional sulfur interface from the host perspective as well. How does the host response to infection impact the sulfur composition at the infection site? Do tissues infected with a sulfur transportation mutant (e.g., a $\Delta gisABCD$ - $ggt \Delta dtpT \Delta tcyA \Delta tcyP$ strain) exhibit differences in sulfur distribution, abundance, or composition compared to tissues infected with WT S. aureus? These questions can be addressed through the continued use of MALDI-IMS, especially once we establish a baseline for how WT S. aureus influences the host sulfur pool during systemic infection. Indeed, examining the infection site from this perspective will undoubtedly yield a more comprehensive understanding of our systemic infection data. For instance, in Chapter 4, we illustrate the presence of at least four known sulfur sources (i.e., GSH, GSSG, CysGly, and CSSG) in the S. aureus-infected kidney, and we identify four transporters associated with the import of these metabolites (i.e., GisABCD-Ggt, DtpT, TcyABC, and TcyP). These insights help explain why kidney defects have never been observed in strains with single or double mutations in sulfur transporters of interest due to the presence of multiple viable sulfur sources and transporters to access them. Using the host perspective, MALDI-IMS has provided a rational basis for utilizing strains deficient in quadruple or even sextuple transporters during systemic infection.

To further expand our understanding of how the host responds to *S. aureus* infection from an elemental sulfur standpoint, MALDI-IMS can also be employed to look at the distribution of host sulfur metabolism proteins throughout infection as well. This line of investigation would be advantageous considering that there are several proteins such as GGT, CSB or CSE that inflict host disease when not abundance in regular concentrations (please see Chapter 1 for more information). Thus, a full picture of *S. aureus* infection would include an understanding of how acquisition of sulfur sources impacts the abundance and function of host enzymes whose downstream repercussions contribute to the clinical manifestations of *S. aureus* infection.

Chapter 2 also highlights the ability of *S. aureus* to utilize the tripeptide GSH, not for meeting its nutritional sulfur requirement, but as a resource to counter heme- and H₂O₂-induced oxidative stress. It is somewhat unsurprising that a metabolite with diverse functions within the host (as discussed in Chapter 1) also serves multiple roles within *S. aureus*. Consequently, future investigations into GSH in this organism are likely to unveil additional, unrecognized contributions. Akin to sulfur, the preference of compounds contributing to the nutritional nitrogen requirement in *S. aureus* remains underexplored compared to other bacteria such as *E. coli* or *Bacillus subtilis* (234, 235). In terms of nitrogen flux within a cell, imported nitrogen sources are assimilated to glutamate (Glu) and glutamine (Gln) which serve as the internal nitrogen donors for various biological processes (235). For *E. coli*, ammonium is the preferred nitrogen source although several other compounds such as Glu, Gln, and Glu precursors (e.g., proline, arginine, or glycine) can also drive proliferation when provided as nutritional nitrogen (235). Though ammonium also supports the *B. subtilis* nitrogen requirements, Gln is considered the preferred

nitrogen source. (234).

The nitrogen sources for *S. aureus* have been studied to some extent. For instance, researchers have investigated the ability of S. aureus to utilize ammonium (NH4), glutamine (Gln), or glutamate (Glu) as nutritional nitrogen sources (236). In this study, CDM devoid of Gln, Glu, and NH4 (denoted CDM-Glu/Gln,-NH4) was used. The supplementation of CDM_{-Glu/Gln,-NH4} with NH4 or Gln stimulated the growth of S. aureus strain LAC, while Glu did not have the same effect. As a result, the study concluded that NH4 and Gln are preferred nitrogen sources over Glu in S. aureus (236). However, it's important to note that only one concentration was tested for each potential nitrogen source—a crucial consideration given that Glu is the sole precursor to Gln. In the tested conditions, Glu was required both as a nitrogen source and as a source of Gln. Therefore, it remains undetermined whether Glu truly cannot meet the nitrogen requirement or if it requires higher concentrations due to the experimental design. To explore this, the experimental setup used one used by Zeden et al. (236) can be employed to assess the growth of S. aureus on CDM-Glu/Gln,-NH4 with increasing Glu concentrations. It is predicted that higher concentrations of this amino acid will fulfill the nitrogen requirement in this organism. Once an environment is established where Glu is vital for robust growth, the CDM-Glu/Gln.-NH4 can be supplemented with GSH to assess whether this tripeptide can act as a source of Glu. This is of particular interest given previous research indicating that tripeptides can serve as a source of Glu in S. aureus (192). It is predicted that S. aureus will proliferate in this medium when sufficient GSH is provided. This, in conjunction with the oxidative stress assays in Chapter 2, would underscore the necessity for researchers in this field to consider how S. aureus sulfur sources contribute to bacterial physiology

beyond meeting the nutritional sulfur requirement.

CONCLUDING REMARKS

My thesis has played a significant role in establishing the groundwork for understanding how *S. aureus* acquires sulfur sources from the host, offering both regulatory and mechanistic insights. Additionally, the application of MALDI-IMS has provided initial glimpses into the organization of host sulfur metabolism during *S. aureus* infection. It is my hope that this body of work serves as an inspiration for future experiments, guiding the next generation of researchers to delve deeper into characterizing the host-pathogen nutritional sulfur interface.

REFERENCES

- 1. Hood MI, Skaar EP. 2012. Nutritional immunity: Transition metals at the pathogenhost interface. Nat Rev Microbiol 10:525–537.
- 2. Tanaka KJ, Song S, Mason K, Pinkett HW. 2018. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. Biochim Biophys Acta Biomembr 1860:868–877.
- 3. Vitko NP, Grosser MR, Khatri D, Lance TR, Richardson AR. 2016. Expanded glucose import capability affords *Staphylococcus aureus* optimized glycolytic flux during infection. mBio 7:1–11.
- 4. Poole LB. 2015. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157.
- 5. Collet J-F, Bardwll JCA. 2002. Oxidative protein folding in bacteria. Mol Microbiol 44:1–8.
- 6. Mashruwala AA, Pang YY, Rosario-Cruz Z, Chahal HK, Benson MA, Mike LA, Skaar EP, Torres VJ, Nauseef WM, Boyd JM. 2015. Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in *Staphylococcus aureus*. Mol Microbiol 95:383–409.
- 7. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. 2015. Acetyl coenzyme A: A central metabolite and second messenger. Cell Metab 21:805–821.
- 8. Johnson DC, Dean DR, Smith AD, Johnson MK. 2005. Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281.
- 9. Begley TP, Xi J, Kinsland C, Taylor S, McLafferty F. 1999. The enzymology of sulfur activation during thiamin and biotin biosynthesis. Curr Opin Chem Biol 3:623–629.
- 10. Bindu Paul CD, Solomon Snyder TH, Sbodio JI, Snyder SH, Paul BD. 2018. Regulators of the transsulfuration pathway. Br J Pharmacol 176:583–593.
- 11. Stipanuk MH. 2020. Metabolism of sulfur-containing amino acids: How the Body copes with excess methionine, cysteine, and sulfide. J Nutr 150:2494S-2505S.
- 12. Lu SC. 2009. Regulation of glutathione synthesis. Mol Aspects Med 30:42–59.
- 13. Kloor D, Hermes M, Fink K, Schmid H, Klingel K, Mack A, Grenz A, Osswald H. 2007. Expression and localization of S-Adneosylhomocysteine-hydrolase in the rat

- kidney following carbon monoxide induced hypoxia. Cellular Physiology and Biochemistry 19:57–66.
- 14. Lensmire JM, Hammer ND. 2019. Nutrient sulfur acquisition strategies employed by bacterial pathogens. Curr Opin Microbiol 47:52–58.
- 15. Zuhra K, Augsburger F, Majtan T, Szabo C. 2020. Cystathionine-β-synthase: Molecular regulation and pharmacological inhibition. Biomolecules 10:1–82.
- 16. Kamoun P. 2004. Endogenous production of hydrogen sulfide in mammals. Amino Acids 26:243–254.
- 17. Zhao K, Li H, Li S, Yang G. 2014. Regulation of cystathionine gamma-lyase/H₂S system and its pathological implication. Frontiers in Bioscience 19:1355–1369.
- 18. Stipanuk MH, Ueki I. 2011. Dealing with methionine/homocysteine sulfur: Cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis 34:17–32.
- 19. Fu M, Zhang W, Wu L, Yang G, Li H, Wang R. 2012. Hydrogen sulfide (H₂S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci U S A 109:2943–2948.
- 20. Pajares MA, Markham GD. 2011. Methionine adenosyltransferase (*S*-adenosylmethionine synthetase), p. 449. In Advances in enzymology and related areas of molecular biology.
- 21. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. 2018. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res 46:D608–D617.
- 22. Meister Alton, Anderson Mary E. 1983. Glutathione. Ann Rev Biochem 52:711–760.
- 23. Kumar A, Tikoo S, Maity S, Sengupta S, Sengupta S, Kaur A, Bachhawat AK. 2012. Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep 13:1095–1101.
- 24. Ookhtens M, Kaplowitz N. 1998. Role of the Liver in interorgan homeostasis of glutathione and cyst(e)ine. Semin Liver Dis 18:313–329.
- 25. Turner AJ. 2013. Aminopeptidase N, p. 397–403. In Handbook of proteolytic enzymes, 3rd ed.

- 26. Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H. 2009. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8:651–661.
- 27. West MB, Segu ZM, Feasley CL, Kang P, Klouckova I, Li C, Novotny M V., West CM, Mechref Y, Hanigan MH. 2010. Analysis of site-specific glycosylation of renal and hepatic γ-glutamyl transpeptidase from normal human tissue. Journal of Biological Chemistry 285:29511–29524.
- 28. Mansoor MA, Svardal AM, Ueland PM. 1991. Determination of the in *in vivo* redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 200:218–229.
- 29. Enoiu M, Aberkane H, Salazar J-F, Leroy P, Groffen J, Siest G, Wellman M. 2000. Evidence for the pro-oxidant effect of y-glutamyltranspeptidase-related enzyme. Free Radic Biol Med 29:825–833.
- 30. Bates CJ, Mansoor MA, Gregory J, Pentieva K, Prentice A. 2002. Correlates of plasma homocysteine, cysteine and cysteinyl-glycine in respondents in the British National Diet and Nutrition Survey of Young People Aged 4–18 Years, and a comparison with the Survey of People Aged 65 Years and Over. British Journal of Nutrition 87:71–79.
- 31. Chikhi NN, Holic N, Guellaen G, Laperche Y. 1999. Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comparative Biochemistry and Physiology Part B 122:367–380.
- 32. Visvikis A, Pawlak AÂ, Accaoui MJÂ, Ichino K, Leh HÂ, Guellaen G, Wellman M. 2001. Structure of the 5' sequences of the human γ-glutamyltransferase gene. Eur J Biochem 268:317–325.
- 33. Whitfield JB. 2001. Gamma glutamyl transferase. Crit Rev Clin Lab Sci 38:263–355.
- 34. Hanigan MH, Frierson HFJ. 1996. Immunohistochemical detection of y-glutamyl transpeptidase in normal human tissue. The Journal of Histochemistry and Cytochemistry 44:1101–1108.
- 35. Lee DH, Silventoinen K, Hu G, Jacobs DR, Jousilahti P, Sundvall J, Tuomilehto J. 2006. Serum gamma-glutamyltransferase predicts non-fatal myocardial infarction and fatal coronary heart disease among 28,838 middle-aged men and women. Eur Heart J 27:2170–2176.

- 36. Strasak AM, Kelleher CC, Klenk J, Brant LJ, Ruttmann E, Rapp K, Concin H, Diem G, Pfeiffer KP, Ulmer H. 2008. Longitudinal change in serum gamma-glutamyltransferase and cardiovascular disease mortality: A prospective population-based study in 76,113 Austrian adults. Arterioscler Thromb Vasc Biol 28:1857–1865.
- 37. Lee DH, Buijsse B, Steffen L, Holtzman J, Luepker R, Jacobs DR. 2009. Association between serum gamma-glutamyltransferase and cardiovascular mortality varies by age: The Minnesota Heart Survey. Eur J Prev Cardiol 16:16–20.
- 38. Fraser A, Harris R, Sattar N, Ebrahim S, Smith GD, Lawlor DA. 2007. Gamma-glutamyltransferase is associated with incident vascular events independently of alcohol intake: Analysis of the British Women's Heart and Health study and meta-analysis. Arterioscler Thromb Vasc Biol 27:2729–2735.
- 39. Ghouri N, Preiss D, Sattar N. 2010. Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: A narrative review and clinical perspective of prospective data. Hepatology 52:1156–1161.
- 40. Whitfield JB, Pounder RE, Neale G, Moss DW. 1972. Serum γ-glytamyl transpeptidase activity in liver disease. Gut 13:702–708.
- 41. Tahan V, Canbakan B, Balci H, Dane F, Akin H, Can G, Hatemi I, Olgac V, Sonsuz A, Ozbay G, Yurdakul I, Senturk H. 2008. Serum gamma-glutamyltranspeptidase distinguishes non-alcoholic fatty liver disease at high risk. Hepatogastroenterology 55:1433—1438.
- 42. Lu SC. 2013. Glutathione synthesis. Biochim Biophys Acta Gen Subj 1830:3143–3153.
- 43. Longo A, Toro M Di, Galimberti C, Carenzi A. 1991. Determination of Nacetylcysteine in human plasma by gas chromatography-mass spectrometry. J Chromatogr 562:639–645.
- 44. Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP. 2002. Initial characterization of the glutamate-cysteine ligase modifier subunit *Gclm*(-/-) knockout mouse: Novel model system for a severely compromised oxidative stress response. Journal of Biological Chemistry 277:49446–49452.
- 45. Chen Y, Shertzer HG, Schneider SN, Nebert DW, Dalton TP. 2005. Glutamate cysteine ligase catalysis: Dependence on ATP and modifier subunit for regulation of tissue glutathione levels. Journal of Biological Chemistry 280:33766–33774.

- 46. Chao Yan C, Huxtable RJ. 1996. Effects of monocrotaline, a pyrrolizidine alkaloid, on glutathione metabolism in the rat. Biochem Pharmacol 51:375–379.
- 47. Cohen G, Hochstein P. 1963. Glutathione peroxidase: The primary agent for the elimination of hydrogen peroxide in erythrocytes*. Biochemistry 2:1420–1427.
- 48. Kaplowitz N, Aw Y, Ookhtens M. 1985. The regulation of hepatic glutathione. Ann Rev Pharmacol Toxicol 25:715–759.
- 49. Cooper AJL, Pinto JT, Callery PS. 2011. Reversible and irreversible protein glutathionylation: Biological and clinical aspects. Expert Opin Drug Metab Toxicol 7:891–910.
- 50. Ripps H, Shen W. 2012. Review: Taurine: A "very essential" amino acid. Mol Vis 18:2673–2686.
- 51. Guenter Schwarz C, Kohl JB, Mellis A-T, Schwarz G. 2019. Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. Br J Pharmacol 176:554.
- 52. Dominy JE, Hirschberger LL, Coloso RM, Stipanuk MH. 2006. Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat. Biochemical Journal 394:267–273.
- 53. Cechetto JD, Sadacharan SK, Berk PD, Gupta RS. 2002. Immunogold localization of mitochondrial aspartate aminotransferase in mitochondria and on the cell surface in normal rat tissues. Histol Histopathol 17:353–364.
- 54. Miyamoto R, Otsuguro KI, Yamaguchi S, Ito S. 2014. Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons. J Neurochem 130:29–40.
- 55. Markovich D. 2001. Physiological roles and regulation of mammalian sulfate transporters. Physiological Reviews 81:1499–1533.
- 56. Stipanuk MH, Ueki I, Dominy JE, Simmons CR, Hirschberger LL. 2009. Cysteine dioxygenase: A robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63.
- 57. Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH. 2011. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301:668–684.

- 58. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H. 2009. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714.
- 59. Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R. 2013. Structure and kinetic analysis of H₂S production by human mercaptopyruvate sulfurtransferase. Journal of Biological Chemistry 288:20002–20013.
- 60. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H. 2013. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1–7.
- 61. Cadenas E, Davies KJA, Powis G, Mustacich D, Coon A. 2000. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29:312–322.
- 62. Stipanuk MH, Witte Beck P. 1982. Characterization of the enzymic capacity for cysteine desulphydration in liver and kidney of the rat. Biochem J 206:267–277.
- 63. Abe K, Kimura H. 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. The Journal of Neuroscience 76:1066–1071.
- 64. Zhao W, Wang R, Wang R. 2002. H₂S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:474–480.
- 65. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. 2008. H₂S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine γ-lyase. Science (1979) 322:587–590.
- 66. Papapetropoulos A, Pyriochoua A, Altaanyb Z, Yangb G, Maraziotia A, Zhouc Z, Jeschked MG, Branskid LK, Herndond DN, Wangb R, Szabo C. 2009. Hydrogen sulfide is an endogenous stimulator of angiogenesis. PNAS 106:21972–21977.
- 67. Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA. 2006. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. Journal of Experimental Biology 209:4011–4023.
- 68. Zanardo RCO, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL, Zanardo RCO, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL. 2006. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. The FASEB Journal 20:2118–2120.

- 69. Kimura H. 2011. Hydrogen sulfide: Its production, release and functions. Amino Acids 41:113–121.
- 70. Kimura Y, Kimura H. 2004. Hydrogen sulfide protects neurons from oxidative stress. The FASEB Journal 18:1165–1167.
- 71. Nicholls P, Marshall DC, Cooper CE, Wilson MT. 2013. Sulfide inhibition of and metabolism by cytochrome *c* oxidase. Biochem Soc Trans 41:1312–1316.
- 72. Olson KR, Straub KD. 2016. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology 31:60–72.
- 73. Shahak Y., Hauska G. 2008. Sulfide oxidation from cyanobacteria to humans: Sulfide–quinone oxidoreductase (SQR), p. 319–335. In Hell R., Dahl C., Knaff D., Leustek T. (eds.), Sulfur metabolism in phototrophic organisms. Springer, Dordrecht.
- 74. Klein JM, Schwarz G. 2012. Cofactor-dependent maturation of mammalian sulfite oxidase links two mitochondrial import pathways. J Cell Sci 125:4876–4855.
- 75. Marutani E, Ichinose F. 2020. Emerging pharmacological tools to control hydrogen sulfide signaling in critical illness. Intensive Care Med Exp 8:1–14.
- 76. Olson KR, DeLeon ER, Gao Y, Hurley K, Sadauskas V, Batz C, Stoy GF, Olson KR. 2013. Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol 305:592–603.
- 77. Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. 2011. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochemical Journal 439:479–485.
- 78. Westley J. 1981. Thiosulfate:Cyanide Sulfertransferase (Rhodanese). Methods Enzymol 77:285–291.
- 79. Zhang X, Xin Y, Chen Z, Xia Y, Xun L, Liu H, Zhang X, Xin Y, Chen Z, Xia Y, Xun L, Liu H. 2021. Sulfide-quinone oxidoreductase is required for cysteine synthesis and indispensable to mitochondrial health. Redox Biol 47:102169.
- 80. Ackermann M, Kubitza M, Hauska G, Piña AL. 2014. The vertebrate homologue of sulfide-quinone reductase in mammalian mitochondria. Cell Tissue Res 358:779–792.
- 81. Budde MW, Roth MB. 2011. The response of *Caenorhabditis elegans* to hydrogen

- sulfide and hydrogen cyanide. Genetics 189:521–532.
- 82. Eto K, Asada T, Arima K, Makifuchi T, Kimura H. 2002. Brain hydrogen sulfide is severely decreased in Alzheimer's disease. Biochem Biophys Res Commun 293:1485–1488.
- 83. Palmfeldt J, Vang S, Stenbroen V, Pavlou E, Baycheva M, Buchal G, Monavari AA, Augoustides-Savvopoulou P, Mandel H, Gregersen N. 2011. Proteomics reveals that redox regulation is disrupted in patients with ethylmalonic encephalopathy. J Proteome Res 10:2389–2396.
- 84. Jin HS, Kim J, Park S, Park E, Kim BY, Choi VN, Yoo YH, Kim BT, Jeong SY. 2015. Association of the I264T variant in the sulfide quinone reductase-like (SQRDL) gene with osteoporosis in Korean postmenopausal women. PLoS One 10:1–17.
- 85. Cai X, Yi X, Zhang Y, Zhang D, Zhi L, Liu H. 2018. Genetic susceptibility of postmenopausal osteoporosis on sulfide quinone reductase-like gene. Osteoporosis International 29:2041–2047.
- 86. Lakhundi S, Zhang K. 2018. Methicillin-Resistant *Staphylococcus aureus*: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev 31.
- 87. 2019. Antibiotic resistance threats in the United States, 2019. Atlanta, Georgia.
- 88. Lithgow JK, Hayhurst EJ, Cohen G, Aharonowitz Y, Foster SJ. 2004. Role of a Cysteine Synthase in *Staphylococcus aureus*. J Bacteriol 186:1579–1590.
- 89. Lensmire JM, Wischer MR, Kraemer-Zimpel C, Kies PJ, Sosinski L, Ensink E, Dodson JP, Shook JC, Delekta PC, Cooper CC, Havlichek DH, Mulks MH, Lunt SY, Ravi J, Hammer ND. 2023. The glutathione import system satisfies the *Staphylococcus aureus* nutrient sulfur requirement and promotes interspecies competition. PLoS Genet 19:e1010834.
- 90. Lensmire JM, Dodson JP, Hsueh BY, Wischer MR, Delekta PC, Shook JC, Ottosen EN, Kies PJ, Ravi J, Hammer ND. 2020. The *Staphylococcus aureus* cystine transporters TcyABC and TcyP facilitate nutrient sulfur acquisition during infection. Infect Immun 88:e00690-19.
- 91. Fuchs S, Mehlan H, Bernhardt J, Hennig A, Michalik S, Surmann K, Pané-Farré J, Giese A, Weiss S, Backert L, Herbig A, Nieselt K, Hecker M, Völker U, Mäder U. 2018. AureoWiki- The repository of the *Staphylococcus aureus* research and annotation community. International Journal of Medical Microbiology 308:558–568.

- 92. Saier MH. 2000. Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology (N Y) 146:1775–1795.
- 93. Burguière P, Auger S, Hullo MF, Danchin A, Martin-Verstraete I. 2004. Three different systems participate in L-cystine uptake in *Bacillus subtilis*. J Bacteriol 186:4875–4884.
- 94. Sengupta S, Wehbe C, Majors AK, Ketterer ME, DiBello PM, Jacobsen DW. 2001. Relative roles of albumin and ceruloplasmin in the formation of homocystine, homocysteine-cysteine-mixed disulfide, and cystine in circulation. Journal of Biological Chemistry 276:46896–46904.
- 95. Turell L, Radi R, Alvarez B. 2013. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic Biol Med 65:244–253.
- 96. Refsum H, Ueland PM, Nygård O, Vollset SE. 1998. Homocysteine and cardiovascular disease. Annu Rev Medicine 49:31–62.
- 97. Kalra DK. 2004. Homocysteine and Cardiovascular Disease. Curr Atheroscler Rep 6:101–106.
- 98. Sen CK. 1997. Review Nutritional biochemistry of cellular glutathione. Nutritional Biochemistry 8:660–672.
- 99. Caitlin Pedati M, Jennifer House D, Jessica Hancock-Allen M, Leah Colton P, Katie Bryan M, Dustin Ortbahn, Lon Kightlinger P, Kiersten Kugeler P, Jeannine Petersen P, Paul Mead M, Tom Safranek MD, Bryan Buss DVM. 2015. Increase in human cases of tuleremia-Colorado, Nebraska, South Dakota, and Wyoming, January-September 2015. MMWR Morb and Mortal Wkly Rep 64:1317–1318.
- 100. Alkhuder K, Meibom KL, Dubail I, Dupuis M, Charbit A. 2009. Glutathione provides a source of cysteine essential for intracellular multiplication of *Francisella tularensis*. PLoS Pathog 5:1–11.
- 101. Ramsey KM, Ledvina HE, Tresko TM, Wandzilak JM, Tower CA, Tallo T, Schramm CE, Brook Peterson S, Skerrett SJ, Mougous JD, Dove SL. 2020. Tn-Seq reveals hidden complexity in the utilization of host-derived glutathione in *Francisella tularensis*. PLoS Pathog 16.
- 102. Szemraj M, Grazul M, Balcerczak E, Szewczyk EM. 2020. Staphylococcal species less frequently isolated from human clinical specimens Are they a threat for hospital patients? BMC Infect Dis 20.

- 103. Minhas GS, Bawdon D, Herman R, Rudden M, Stone AP, Gordon James A, Thomas GH, Newstead S. 2018. Structural basis of malodour precursor transport in the human axilla. Elife 7:1–26.
- 104. Dickinson DA, Forman HJ. 2002. Glutathione in defense and signaling: lessons from a small thiol. Ann NY Acad Sci 973:488–504.
- 105. Wasilko NP, Larios-Valencia J, Steingard CH, Nunez BM, Verma SC, Miyashiro T. 2019. Sulfur availability for *Vibrio fischeri* growth during symbiosis establishment depends on biogeography within the squid light organ. Mol Microbiol 111:621–636.
- 106. Wasilko NP, Ceron JS, Baker ER, Cecere AG, Wollenberg MS, Miyashiro TI. 2021. *Vibrio fischeri* imports and assimilates sulfate during symbiosis with *Euprymna scolopes*. Mol Microbiol 116:926–942.
- 107. Pajor AM. 2006. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Arch 451:597–605.
- 108. Park S, Imlay JA. 2003. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol 185:1942–1950.
- 109. Chonoles Imlay KR, Korshunov S, Imlay JA. 2015. Physiological roles and adverse effects of the two cystine importers of *Escherichia coli*. J Bacteriol 197:3629–3644.
- 110. Van Der Ploeg JR, Iwanicka-Nowicka R, Kertesz MA, Leisinger T, Hryniewicz MM. 1997. Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol 179:7671–7678.
- 111. Stec E, Witkowska-Zimny M, Hryniewicz MM, Neumann P, Wilkinson AJ, Brzozowski AM, Verma CS, Zaim J, Wysocki S, D. Bujacz G. 2006. Structural basis of the sulphate starvation response in *E. coli*: Crystal structure and mutational analysis of the cofactor-binding domain of the Cbl transcriptional regulator. J Mol Biol 364:309–322.
- 112. Epshtein V, Mironov AS, Nudler E. 2003. The riboswitch-mediated control of sulfur metabolism in bacteria. PNAS 29:5052–5056.
- 113. Jones-Mortimer MC, Wheldraket JF, Pasternak CA. 1968. The control of sulphate reduction in *Escherichia coli* by *O*-Acetyl-L-serine. Biochem J 107:51–53.
- 114. Kredich NM. 1971. Regulation of L-cysteine biosynthesis in *Salmonella typhimurium* I. Effects of growth on varying sulfur sources and *O*-Acetyl-L-Serine

- on gene expression*. J Biol Chem 246:3474–3484.
- 115. Kredich NM, Tomkins GM. 1966. The enzymic synthesis of L-cysteine in *Escherichia coli* and *Salmonella typhimurium*. J Biol Chem 241:4955–4966.
- 116. Kredich NM, Becker MA, Tomkins GM. 1969. Purification and characterization of cysteine synthetase, a bifunctional protein complex, from *Salmonella typhimurium*. J Biol Chem 244:2428–2439.
- 117. Even S, Burguière P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I. 2006. Global control of cysteine metabolism by CymR in *Bacillus subtilis*. J Bacteriol 188:2184–2197.
- 118. Soutourina O, Poupel O, Coppée JY, Danchin A, Msadek T, Martin-Verstraete I. 2009. CymR, the master regulator of cysteine metabolism in *Staphylococcus aureus*, controls host sulphur source utilization and plays a role in biofilm formation. Mol Microbiol 73:194–211.
- Hullo MF, Auger S, Soutourina O, Barzu O, Yvon M, Danchin A, Martin-Verstraete
 2007. Conversion of methionine to cysteine in *Bacillus subtilis* and its regulation.
 J Bacteriol 189:187–197.
- 120. Tanous C, Soutourina O, Raynal B, Hullo MF, Mervelet P, Gilles AM, Noirot P, Danchin A, England P, Martin-Verstraete I. 2008. The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in *Bacillus subtilis*. Journal of Biological Chemistry 283:35551–35560.
- 121. Ji Q, Zhang L, Sun F, Deng X, Liang H, Bae T, He C. 2012. *Staphylococcus aureus* CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response. Journal of Biological Chemistry 287:21102–21109.
- 122. Soutourina O, Dubrac S, Poupel O, Msadek T, Martin-Verstraete I. 2010. The pleiotropic CymR regulator of *Staphylococcus aureus* plays an important role in virulence and stress response. PLoS Pathog 6:1–13.
- 123. Gebhardt MJ, Czyz DM, Singh S, Zurawski D V, Becker L, Shuman HA. 2021. GigC, a LysR family transcription regulator, is required for cysteine metabolism and virulence in *Acinetobacter baumannii*. Infect Immun 89:1–13.
- 124. Gebhardt MJ, Gallagher LA, Jacobson RK, Usacheva EA, Peterson LR, Zurawski D V., Shuman HA. 2015. Joint transcriptional control of virulence and resistance to antibiotic and environmental stress in *Acinetobacter baumannii*. mBio 6:1–12.

- 125. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, Mcdougal LK, Carey RB, Fridkin SK. 2007. Invasive methicillin-resistant *Staphylococcus aureus* infections in the United States. JAMA 298:1763–1771.
- 126. Price EE, Boyd JM. 2020. Genetic Regulation of metal ion homeostasis in *Staphylococcus aureus*. Trends Microbiol 28:821–831.
- 127. Imlay JA. 2003. Pathways of Oxidative Damage. Annu Rev Microbiol 57:395–418.
- 128. Cotruvo JA, Stubbe J. 2012. Metallation and mismetallation of iron and manganese proteins *in vitro* and *in vivo*: The class I ribonucleotide reductases as a case study. Metallomics 4:1020–1036.
- 129. Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K, Barry CE, Aldrich CC, Ehrt S, Schnappinger D. 2011. Evaluating the sensitivity of *Mycobacterium tuberculosis* to biotin deprivation using regulated gene expression. PLoS Pathog 7.
- Feng Y, Napier BA, Manandhar M, Henke SK, Weiss DS, Cronan JE. 2014. A Francisella virulence factor catalyses an essential reaction of biotin synthesis. Mol Microbiol 91:300–314.
- 131. Poole LB, Nelson KJ. 2008. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12:18–24.
- 132. Nagy P, Becker JD, Mallo RC, Ashby MT. 2007. The Jekyll and Hyde roles of cysteine derivatives during oxidative stress, p. 193–212. In Zhu, PC (ed.), New Biocides Development, 967th ed. American Chemical Society.
- 133. Fontenot CR, Tasnim H, Valdes KA, Popescu C v., Ding H. 2020. Ferric uptake regulator (Fur) reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis in *Escherichia coli*. Journal of Biological Chemistry 295:15454–15463.
- 134. Kies PJ, Hammer ND. 2022. A resourceful race: bacterial scavenging of host sulfur metabolism during colonization. Infect Immun 90:e00579-21.
- 135. Morigasaki S, Umeyama A, Kawano Y, Aizawa Y, Ohtsu I. 2020. Defect of RNA pyrophosphohydrolase Rpph enhances fermentative production of L-cysteine in *Escherichia coli*. Journal of General and Applied Microbiology 66:307–314.
- 136. Verstraete MM, Daniela Morales L, Kobylarz MJ, Loutet SA, Laakso HA, Pinter TB, Stillman MJ, Heinrichs DE, Murphy MEP. 2019. The heme-sensitive regulator SbnI

- has a bifunctional role in staphyloferrin B production by *Staphylococcus aureus*. Journal of Biological Chemistry 294:11622–11636.
- 137. Loi V Van, Busche T, Tedin K, Bernhardt J, Wollenhaupt J, Huyen NTT, Weise C, Kalinowski J, Wahl MC, Fulde M, Antelmann H. 2018. Redox-sensing under hypochlorite stress and infection conditions by the Rrf2-family repressor HypR in *Staphylococcus aureus*. Antioxid Redox Signal 29:615–636.
- 138. Manna A, Cheung AL. 2001. Characterization of *sarR*, a modulator of *sar* expression in *Staphylococcus aureus*. Infect Immun 69:885–896.
- 139. Hobman JL. 2007. MerR family transcription activators: Similar designs, different specificities. Mol Microbiol 63:1275–1278.
- 140. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Scheewind O. 2003. Passage of heme-iron across the envelope of *Staphylococcus aureus*. Science (1979) 299:906–909.
- 141. Choby JE, Mike LA, Mashruwala AA, Dutter BF, Dunman PM, Sulikowski GA, Boyd JM, Skaar EP. 2016. A small-molecule inhibitor of iron-sulfur cluster assembly uncovers a link between virulence regulation and metabolism in *Staphylococcus aureus*. Cell Chem Biol 23:1351–1361.
- 142. Shepard EM, Boyd ES, Broderick JB, Peters JW. 2011. Biosynthesis of complex iron-sulfur enzymes. Curr Opin Chem Biol 15:319–327.
- 143. Stewart LJ, Ong C-LY, Zhang MM, Brouwer S, Mcintyre L, Davies MR, Walker MJ, Mcewan AG, Waldron KJ, Djoko KY. 2020. Role of glutathione in buffering excess intracellular copper in *Streptococcus pyogenes*. Molecular Biology and Physiology 11:e02804-20.
- 144. Potter AJ, Trappetti C, Paton JC. 2012. Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity. J Bacteriol 194:6248–6254.
- 145. Aich A, Freundlich M, Vekilov PG. 2015. The free heme concentration in healthy human erythrocytes. Blood Cells Mol Dis 55:402–409.
- 146. Georgiou-Siafis SK, Samiotaki MK, Demopoulos VJ, Panayotou G, Tsiftsoglou AS. 2022. Glutathione–hemin/hematin adduct formation to disintegrate cytotoxic oxidant hemin/hematin in human K562 cells and red blood cells' hemolysates: impact of glutathione on the hemolytic disorders and homeostasis. Antioxidants 11.

- 147. Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, Iturregui J, Anderson KLL, Dunman PM, Joyce S, Skaar EP. 2007. A *Staphylococcus aureus* regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 1:109–119.
- 148. Stauff DL, Bagaley D, Torres VJ, Joyce R, Anderson KL, Kuechenmeister L, Dunman PM, Skaar EP. 2008. *Staphylococcus aureus* HrtA Is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. J Bacteriol 190:3588–3596.
- 149. Pattee PA, Neveln DS. 1975. Transformation analysis of three linkage groups in *Staphylococcus aureus*. J Bacteriol 124:201–211.
- 150. Vitko NP, Richardson AR. 2013. Laboratory maintenance of methicillin-resistant *Staphylococcus aureus* (MRSA), p. 9C–2. *In* Current Protocols in Microbiology.
- 151. Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, Giedroc DP. 2014. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in *Staphylococcus aureus*. Mol Microbiol 94:1343–1360.
- 152. Tanaka Y, Yoshikaie K, Takeuchi A, Ichikawa M, Mori T, Uchino S, Sugano Y, Hakoshima T, Takagi H, Nonaka G, Tsukazaki T. 2020. Crystal structure of a YeeE/YedE family protein engaged in thiosulfate uptake. Sci Adv 6:1–10.
- 153. Krute CN, Krausz KL, Markiewicz MA, Joyner JA, Pokhrel S, Hall PR, Bose JL. 2016. Generation of a stable plasmid for *in vitro* and *in vivo* studies of Staphylococcus species. Appl Environ Microbiol 82:6859–6869.
- 154. Nikolic P, Mudgil P. 2023. The cell wall, cell membrane and virulence factors of *Staphylococcus aureus* and their role in antibiotic resistance. Microorganisms 11:1–20.
- 155. Nikolic P, Mudgil P, Harman DG, Whitehall J. 2022. Untargeted lipidomic differences between clinical strains of methicillin-sensitive and methicillin-resistant *Staphylococcus aureus*. Infect Dis 54:497–507.
- 156. Imperi F, Tiburzi F, Fimia GM, Visca P. 2010. Transcriptional control of the *pvdS* iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in *Pseudomonas aeruginosa*. Environ Microbiol 12:1630–1642.
- 157. Shviro Y, Swaklai N. 1987. Glutathione as a scavenger of free hemin. Biochem Pharmacol 36:3801–3807.

- 158. Atamna H, Ginsburg H. 1995. Heme degradation in the presence of glutathione. Journal of Biological Chemistry 270:24876–24883.
- 159. Van 'T Erve TJ, Wagner BA, Ryckman KK, Raife TJ, Buettner GR. 2013. The concentration of glutathione in human erythrocytes is a heritable trait. Free Radic Biol Med 65:742–749.
- 160. Yoshida T, Prudent M, D'Alessandro A. 2019. Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfusion 17:27–52.
- Sirko A, Hryniewicz M, Hulanicka D, Bock2 A. 1990. Sulfate and thiosulfate transport in *Escherichia coli* K-12: Nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172:3351–3357.
- 162. Sirko A, Zatyka M, Sadowy E, Hulanicka D. 1995. Sulfate and thiosulfate transport in *Escherichia coli* K-12: Evidence for a functional overlapping of sulfate-and thiosulfate-binding proteins. J Bacteriol 177:4134–4136.
- 163. Hryniewicz M, Sirko A, Palucha A, Bock A, Hulanicka D. 1990. Sulfate and thiosulfate transport in *Escherichia coli* K-12: Identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172:3358–3366.
- 164. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, Bayles KW. 2013. A genetic resource for rapid and comprehensive phenotype screening of nonessential *Staphylococcus aureus* genes. mBio 4:e00537-12.
- 165. Novick R. 1967. Properties of a cryptic high-frequency transducing phage in *Staphylococcus aureus*. Virology 33:155–166.
- 166. Bae T, Glass EM, Schneewind O, Missiakas D. 2008. Generating a collection of insertion mutations in the *Staphylococcus aureus* genome using *Bursa aurealis*, p. 103–116. In Osterman, AL, Gerdes, SY (eds.), Methods in Molecular Biology: Microbial Gene Essentiality. Humana Press.
- 167. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15.
- Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, Von Mering C, Bork P. 2019. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314.
- 169. Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021.

- eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38:5825–5829.
- 170. Hernández-Plaza A, Szklarczyk D, Botas J, Cantalapiedra CP, Giner-Lamia J, Mende DR, Kirsch R, Rattei T, Letunic I, Jensen LJ, Bork P, von Mering C, Huerta-Cepas J. 2023. eggNOG 6.0: enabling comparative genomics across 12 535 organisms. Nucleic Acids Res 51:D389–D394.
- 171. Austin CM, Garabaglu S, Krute CN, Ridder MJ, Seawell NA, Markiewicz MA, Boyd JM, Bose JL. 2019. Contribution of YjbIH to virulence factor expression and host colonization in *Staphylococcus aureus*. Infect Immun 87:1–21.
- 172. Galperin MY, Makarova KS, Wolf YI, Koonin E V. 2015. Expanded Microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269.
- 173. Tatusov RL, Koonin E V, Lipman DJ. 1997. A Genomic Perspective on Protein Families. Science (1979) 278:631–637.
- 174. Elston DM. 2007. Community-acquired methicillin-resistant *Staphylococcus aureus*. J Am Acad Dermatol 56:1–16.
- 175. Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G, Harrison LH, Lessa FC, Lynfield R, Nadle J, Petit S, Ray SM, Schaffner W, Townes J, Fridkin S. 2013. National burden of invasive methicillin-resistant *Staphylococcus aureus* infections, United States, 2011. JAMA Intern Med 173:1970–1979.
- 176. Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S, Gershman K, Ray SM, Harrison LH, Lynfield R, Dumyati G, Townes JM, Schaffner W, Patel PR, Fridkin SK. 2010. Health Care-Associated Invasive MRSA Infections, 2005-2008JAMA.
- 177. Holden MTG, Feil EJ, Lindsay JA, Peacock SJ, Day NPJ, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. 2004. Complete genomes of two clinical *Staphylococcus aureus* strains: Evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences 101:9786–9791.
- 178. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A. 2007. Tracking the *in vivo* evolution of multidrug resistance in *Staphylococcus aureus* by whole-genome sequencing.

- Proceedings of the National Academy of Sciences 104:9451–9456.
- 179. Jakob HG, Borneff-Lipp M, Bach A, Von Pu Èckler S, Èrgen Windeler J, Sonntag H-GÈ, Hagl S. 2000. The endogenous pathway is a major route for deep sternal wound infection. European Journal of Cario-thoracis Surgery 17:154–160.
- 180. Kluytmans JAJA, Mouton JW, Ijzerman EPF, Vandenbroucke-Grauls CMJE, Maat AWPM, Wagenvoort JHT, Verbrugh HA. 1995. Nasal carriage of *Staphylococcus aureus* as a major risk factor for wound infections after cardiac surgery. Journal of Infectious Diseases 171:216–219.
- 181. Han SM, Sorabella RA, Vasan S, Grbic M, Lambert D, Prasad R, Wang C, Kurlansky P, Borger MA, Gordon R, George I. 2017. Influence of *Staphylococcus aureus* on outcomes after valvular surgery for infective endocarditis. J Cardiothorac Surg 12.
- 182. Halsey CR, Lei S, Wax JK, Lehman MK, Nuxoll AS, Steinke L, Sadykov M, Powers R, Fey PD. 2017. Amino acid catabolism in *Staphylococcus aureus* and the function of carbon catabolite repression. mBio 8.
- 183. Skaar EP, Humayun M, Bae T, Debord KL, Schneewind O. 2004. Iron-source preference of *Staphylococcus aureus* infections. Science (1979) 305:1626–1628.
- 184. Hammer ND, Skaar EP. 2011. Molecular mechanisms of *Staphylococcus aureus* iron acquisition. Annu Rev Microbiol 65:129–147.
- 185. Kehl-Fie TE, Zhang Y, Moore JL, Farrand AJ, Hood MI, Rathi S, Chazin WJ, Caprioli RM, Skaar EP. 2013. MntABC and MntH contribute to systemic *Staphylococcus aureus* infection by competing with calprotectin for nutrient manganese. Infect Immun 81:3395–3405.
- 186. Murdoch CC, Skaar EP. 2022. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat Rev Microbiol https://doi.org/10.1038/s41579-022-00745-6.
- 187. Nagy P, Winterbourn CC. 2010. Redox chemistry of biological thiols. Advances in Molecular Toxicology 4:183–222.
- 188. Ganguli D, Kumar C, Bachhawat AK. 2007. The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in *Saccharomyces cerevisiae*. Genetics 175:1137–1151.
- 189. Kaur H, Ganguli D, Bachhawat AK. 2012. Glutathione degradation by the alternative

- pathway (DUG pathway) in *Saccharomyces cerevisiae* is initiated by (Dug2p-Dug3p)2 complex, a novel glutamine amidotransferase (GATase) enzyme acting on glutathione. Journal of Biological Chemistry 287:8920–8931.
- 190. Sherrill C, Fahey RC. 1998. Import and metabolism of glutathione by *Streptococcus mutans*. J Bacteriol 180:1454–1459.
- 191. Vergauwen B, Pauwels F, Vaneechoutte M, Van Beeumen JJ. 2003. Exogenous glutathione completes the defense against oxidative stress in *Haemophilus influenzae*. J Bacteriol 185:1572–1581.
- 192. Hiron A, Borezée-Durant E, Piard JC, Juillard V. 2007. Only one of four oligopeptide transport systems mediates nitrogen nutrition in *Staphylococcus aureus*. J Bacteriol 189:5119–5129.
- 193. Lehman MK, Nuxoll AS, Yamada KJ, Kielian T, Carson SD, Fey PD. 2019. Protease-mediated growth of *Staphylococcus aureus* on host proteins is *opp3* dependent. mBio 10:1–17.
- 194. Coulter SN, Schwan WR, Ng EYW, Langhorne MH, Ritchie HD, Westbrock-Wadman S, Hufnagle WO, Folger KR, Bayer AS, Stover CK. 1998. *Staphylococcus aureus* genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol 30:393–404.
- 195. Bæk KT, Frees D, Renzoni A, Barras C, Rodriguez N, Manzano C, Kelley WL. 2013. Genetic variation in the *Staphylococcus aureus* 8325 strain lineage revealed by whole-genome sequencing. PLoS One 8:1–16.
- 196. Bayer E, Gugel KH, Hagele K, Hagenmaier H, Jessipow' S, Konig WA, Zahner H. 1972. Stoffwechselprodukte von Mikroorganismen. 98. Mitteilung. Phosphinothricin und phosphinothricyl-alanyl-alanin. Helv Chim Acta 55:244–239.
- 197. Peck SC, Gao J, Van Der Donk WA. 2012. Discovery and biosynthesis of phosphonate and phosphinate natural products, p. 101–123. In Methods in Enzymology. Academic Press Inc.
- 198. Diddens H, Zähner H, Kraas E, Göhring W, Jung G. 1976. On the Transport of Tripeptide Antibiotics in Bacteria. Eur J Biochem 66:11–23.
- 199. Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA. 1991. The oligopeptide transport system of *Bacillus subtilis* plays a role in the initiation of sporulation. Mol Microbiol 5:173–185.

- 200. Solomon J, Su L, Shyn S, Grossman AD. 2003. Isolation and characterization of mutants of the *Bacillus subtilis* oligopeptide permease with altered specificity of oligopeptide transport. J Bacteriol 185:6425–6433.
- 201. Abouhamad WN, Manson M, Gibson MM, Higgins CF. 1991. Peptide transport and chemotaxis in *Escherichia coli* and *Salmonella typhimurium*: Characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol 5:1035–1047.
- 202. Borezee E, Pellegrini E, Berche P. 2000. OppA of *Listeria monocytogenes*, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun 68:7069–7077.
- 203. Nguyen TH, Park MD, Otto M. 2017. Host response to *Staphylococcus epidermidis* colonization and infections. Front Cell Infect Microbiol 7:1–7.
- 204. Götz F. 2002. Staphylococcus and biofilms. Mol Microbiol 43:1367–1378.
- 205. Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A. 2022. InterPro in 2022. Nucleic Acids Res https://doi.org/10.1093/nar/gkac993.
- 206. Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S. 2012. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO Journal 31:3411–3421.
- 207. Newstead S. 2017. Recent advances in understanding proton coupled peptide transport via the POT family. Curr Opin Struct Biol 45:17–24.
- 208. Samsudin F, Parker JL, Sansom MSP, Newstead S, Fowler PW. 2016. Accurate prediction of ligand affinities for a proton-dependent oligopeptide transporter. Cell Chem Biol 23:299–309.
- 209. Vorwerk H, Mohr J, Huber C, Wensel O, Schmidt-Hohagen K, Gripp E, Josenhans C, Schomburg D, Eisenreich W, Hofreuter D. 2014. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of *Campylobacter jejuni*. Mol Microbiol 93:1224–1245.
- 210. Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, Raboni S, Benedetti P, Cruciani G, Kellogg GE, Cook PF, Mozzarelli A. 2013. Isozyme-specific ligands for *O*-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One 8:1-13.

- 211. Salsi E, Bayden AS, Spyrakis F, Amadasi A, Campanini B, Bettati S, Dodatko T, Cozzini P, Kellogg GE, Cook PF, Roderick SL, Mozzarelli A. 2010. Design of *O*-acetylserine sulfhydrylase inhibitors by mimicking nature. J Med Chem 53:345–356.
- 212. Nagpal I, Raj I, Subbarao N, Gourinath S. 2012. Virtual screening, identification and in vitro testing of novel inhibitors of *O*-acetyl-L-serine sulfhydrylase of *Entamoeba histolytica*. PLoS One 7.
- 213. Bae T, Schneewind O. 2006. Allelic replacement in *Staphylococcus aureus* with inducible counter-selection. Plasmid 55:58–63.
- 214. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: Architecture and applications. BMC Bioinformatics 10:1–9.
- 215. Sievers F, Higgins DG. 2018. Clustal Omega for making accurate alignments of many protein sequences. Protein Science 27:135–145.
- 216. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.
- 217. Moore RM, Harrison AO, McAllister SM, Polson SW, Eric Wommack K. 2020. Iroki: Automatic customization and visualization of phylogenetic trees. PeerJ 8:1–22.
- 218. National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.). 2011. Guide for the care and use of laboratory animals. National Academies Press.
- 219. Mack D, Siemssen N, Laufs R. 1992. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent *Staphylococcus epidermidis*: Evidence for functional relation to intercellular adhesion. Infect Immun 60:2048–2057.
- 220. Anwardeen NR, Diboun I, Mokrab Y, Althani AA, Elrayess MA. 2023. Statistical methods and resources for biomarker discovery using metabolomics. BMC Bioinformatics 24.
- 221. Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM. 2016. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 16:1678–1689.

- 222. Perry WJ, Spraggins JM, Sheldon JR, Grunenwald CM, Heinrichs DE, Cassat JE, Skaar EP, Caprioli RM. 2019. *Staphylococcus aureus* exhibits heterogeneous siderophore production within the vertebrate host. PNAS 116:21980–21982.
- 223. Broniowska KA, Diers AR, Hogg N. 2013. S-Nitrosoglutathione. Biochim Biophys Acta Gen Subj 1830:3173–3181.
- 224. Jourd'heuil D, Hallén K, Feelisch M, Grisham MB. 2000. Dynamic state of *S*-Nitrosothiols in human plasma and whole blood. Free Radical Biologiy & Medicine 28:409–417.
- 225. Tsikas D, Schmidt M, Böhmer A, Zoerner AA, Gutzki FM, Jordan J. 2013. UPLC-MS/MS measurement of S-nitrosoglutathione (GSNO) in human plasma solves the S-nitrosothiol concentration enigma. J Chromatogr B Analyt Technol Biomed Life Sci 927:147–157.
- 226. Kalapos MP, Antognelli C, Bari L de. 2022. Metabolic Shades of S-D-Lactoylglutathione. Antioxidants 11.
- 227. Bilzer M, Lauterburg BH. 1991. Glutathione metabolism in activated human neutrophils: stimulation of glutathione synthesis and consumption of glutathione by reactive oxygen species. Eur J Clin Invest 21:316–322.
- 228. Berkeley LI, Cohen JF, Crankshaw DL, Shirota FN, Nagasawa HT. 2003. Hepatoprotection by L-cysteine-glutathione mixed disulfide, a sulfhydryl-modified prodrug of glutathione. J Biochem Mol Toxicol 17:95–97.
- 229. De Crouy-Chanel A, Richarme G. 2001. Amount and redox state of cytoplasmic, membrane and periplasmic proteins in *Escherichia coli* redox mutants. Res. Microbiol 152:663-669.
- 230. Heras B, Kurz M, Jarrott R, Shouldice SR, Frei P, Robin G, Čemažar M, Thöny-Meyer L, Glockshuber R, Martin JL. 2008. *Staphylococcus aureus* DsbA does not have a destabilizing disulfide: A new paradigm for bacterial oxidative folding. Journal of Biological Chemistry 283:4261–4271.
- 231. Kim J, Senadheera DB, Lévesque CM, Cvitkovitch DG. 2012. TcyR regulates L-cystine uptake via the TcyABC transporter in *Streptococcus mutans*. FEMS Microbiol Lett 328:114–121.
- 232. Vergauwen B, Verstraete K, Senadheera DB, Dansercoer A, Cvitkovitch DG, Guédon E, Savvides SN. 2013. Molecular and structural basis of glutathione import in Gram-positive bacteria via GshT and the cystine ABC importer TcyBC of

- Streptococcus mutans. Mol Microbiol 89:288–303.
- 233. Vergauwen B, Elegheert J, Dansercoer A, Devreese B, Savvides SN, Zambryski PC. 2010. Glutathione import in Haemophilus influenzae Rd is primed by the periplasmic heme-binding protein HbpA. PNAS 107(30):13270-13275.
- 234. Fisher SH. 1999. Regulation of nitrogen metabolism in *Bacillus subtilis*: Vive la diffèrence! Mol Microbiol 32:223–232.
- 235. Reitzer L. 2003. Nitrogen assimilation and global regulation in *Escherichia coli*. Annu Rev Microbiol 57:155–176.
- 236. Zeden MS, Kviatkovski I, Schuster CF, Thomas VC, Fey PD, Gründling A. 2020. Identification of the main glutamine and glutamate transporters in *Staphylococcus aureus* and their impact on c-di-AMP production. Mol Microbiol 113:1085–1100.

APPENDIX A: Chapter 2 sulfur starvation Tables

Table A-1. WT sulfur starvation.

Genes upregulated in WT sulfur starvation when compared to WT cystine (CSSC)

Share d with cymR: :Tn -S (Table 3)	COG	Locus	Old locus	Gene	Product	TPM. 1 Starv	TPM. 2 Starv	TPM. 1 CSSC	TPM. 2 CSSC	DE Log ₂ FC	DE Adj. <i>P-</i> value
Yes	0	SAUSA300 _RS10980	SAUSA3 00_1997		sulfurtransferase TusA family protein	719.6 8	710.6 9	2.67	2.08	6.524 50659 6	1.568 27E- 48
Yes	S	SAUSA300 _RS10985	SAUSA3 00_1998		YeeE/YedE family protein	170.7 7	130.2	0.74	0.43	6.339 19187 4	1.132 21E- 52
Yes	Р	SAUSA300 _RS11525	SAUSA3 00_2092		Dps family protein	24049	29749 .5	209.5 9	66.25	6.104 01684 8	4.153 46E- 38
Yes	I	SAUSA300 _RS00930	SAUSA3 00_0177		acyl-CoA/acyl- ACP dehydrogenase	547.1 5	115.0 3	2.77	1.16	5.543 08137 9	1.585 52E- 27
No	S	SAUSA300 _RS00910	SAUSA3 00_0173		DUF4242 domain- containing protein	694.9	626.5 7	4.54	4.88	5.396 13928 7	6.367 63E- 33
Yes	Р	SAUSA300 _RS02335	SAUSA3 00_0436		methionine ABC transporter permease	638.3	220.4 4	2.72	2.91	5.339 35652 2	4.850 64E- 30
Yes	S	SAUSA300 _RS04570	SAUSA3 00_0846		Na+/H+ antiporter family protein	171.0 8	76	1.42	0.65	5.237 16145 8	1.956 86E- 36

Table A-1 (cont'd)

Yes	Р	SAUSA300 _RS02340	SAUSA3 00_0437	gmpC	dipeptide ABC transporter glycylmethionine -binding lipoprotein	1906. 11	1201. 65	10.16	14.16	5.138 08140 8	1.410 43E- 27
Yes	no homol og found	SAUSA300 _RS16040		hisF	imidazole glycerol phosphate synthase subunit HisF	43.09	28.36	0.34	0.37	4.889 66808 4	7.386 96E- 27
Yes	Р	SAUSA300 _RS10250	SAUSA3 00_1874	ftnA	H-type ferritin FtnA	6482. 34	4756. 04	77.14	50.27	4.858 96820 4	8.351 49E- 36
Yes	Р	SAUSA300 _RS01055	SAUSA3 00_0200		ABC transporter ATP-binding protein	182.9 5	207.4 5	1.44	2.45	4.815 28742 7	1.636 82E- 19
Yes	Р	SAUSA300 _RS02330	SAUSA3 00_0435		methionine ABC transporter ATP- binding protein	343.6 9	145.1 8	2.36	2.49	4.815 08731 4	9.670 75E- 27
Yes	S	SAUSA300 _RS14570	SAUSA3 00_2622		rhodanese- related sulfurtransferase	371.0 8	274.7 6	5.35	2.72	4.768 75260 4	1.249 25E- 33
No	Р	SAUSA300 _RS00925	SAUSA3 00_0176		ABC transporter permease	118.6 2	84.08	1.5	0.99	4.712 41826 9	1.466 65E- 30
No	Р	SAUSA300 _RS00915	SAUSA3 00_0174		ABC transporter ATP-binding protein	125.4 9	72.45	2.15	0.58	4.636 14025	5.562 76E- 24
Yes	E	SAUSA300 _RS14090	SAUSA3 00_2539		aspartate aminotransferas e family protein	118.7 5	123	1.2	2.18	4.329 46737 9	7.908 82E- 16

Table A-1 (cont'd)

Yes	no homol og found	SAUSA300 _RS07125			hypothetical protein	2859. 37	3129. 02	89.03	22.95	4.316 47520 8	1.890 65E- 18
No	J	SAUSA300 _RS01820	SAUSA3 00_0343		GNAT family protein	160.3 9	159.3 8	3.32	2.77	4.103 08227 7	5.372 53E- 20
Yes	S	SAUSA300 _RS12540	SAUSA3 00_2268		bile acid:sodium symporter family protein	63.15	76.14	1.59	1.16	4.086 91557 2	2.217 42E- 18
Yes	F	SAUSA300 _RS00725	SAUSA3 00_0138	deoD	purine- nucleoside phosphorylase	32.2	29.05	0.56	0.58	4.061 06887 4	3.420 94E- 17
No	no homol og found	SAUSA300 _RS15260	SAUSA3 00_0937		hypothetical protein	1230. 36	1900. 55	43.62	23.66	4.060 78001 2	6.515 46E- 17
Yes	no homol og found	SAUSA300 _RS10255			hypothetical protein	139.2 4	87.37	3.88	1.33	3.834 81737 4	9.775 67E- 15
Yes	С	SAUSA300 _RS07500	SAUSA3 00_1373		ferredoxin	3199. 55	2852. 95	98.5	51.47	3.829 58655 8	1.038 68E- 20
No	E	SAUSA300 _RS09195	SAUSA3 00_1683		bifunctional 3- deoxy-7- phosphoheptulon ate synthase/choris mate mutase	1457. 39	1317. 56	52.47	23.75	3.710 63807 9	6.544 52E- 19

Table A-1 (cont'd)

Yes	E	SAUSA300 _RS02320	SAUSA3 00_0433	тссА	cysteine synthase family protein	28.3	17.42	0.52	0.56	3.663 96345 7	6.023 26E- 15
Yes	Р	SAUSA300 _RS12340	SAUSA3 00_2235		ABC transporter substrate-binding protein	289.0 3	81.16	6.61	2.65	3.639 70547 8	3.635 52E- 14
No	no homol og found	SAUSA300 _RS05130			hypothetical protein	28.16	66.88	1.65	0.97	3.601 05142 2	4.095 84E- 08
Yes	NOU	SAUSA300 _RS08765	SAUSA3 00_1609		A24 family peptidase	15.85	22.63	0.83	0.33	3.579 02953 3	2.162 9E-11
Yes	С	SAUSA300 _RS05570	SAUSA3 00_1035	isdG	staphylobilin- forming heme oxygenase IsdG	43.52	46.29	1.76	0.88	3.569 19932 1	2.570 49E- 13
No	Р	SAUSA300 _RS00920	SAUSA3 00_0175		ABC transporter substrate-binding protein	75.98	41.15	2.57	0.88	3.557 11047 9	5.033 63E- 16
Yes	S	SAUSA300 _RS03075	SAUSA3 00_0575		DUF1450 domain- containing protein	333.1 5	267.1 2	9.41	7.44	3.552 41454 2	4.479 57E- 17
No	S	SAUSA300 _RS09315	SAUSA3 00_1706		TIGR01212 family radical SAM protein	87.53	59.39	2.18	1.85	3.542 61522 8	5.942 19E- 17
Yes	K	SAUSA300 _RS14655	SAUSA3 00_2639		cold-shock protein	22322 .8	27330 .69	1319. 58	382.5 6	3.484 23540 8	2.289 16E- 12

Table A-1 (cont'd)

Yes	S	SAUSA300 _RS14550	SAUSA3 00_2618		ECF-type riboflavin transporter substrate-binding protein	41.15	45.27	1.11	1.36	3.441 47019 8	2.170 06E- 11
Yes	Н	SAUSA300 _RS03735	SAUSA3 00_0696	queD	6- carboxytetrahydr opterin synthase QueD	74.16	31.83	1.57	1.37	3.424 76944 5	1.986 47E- 13
No	S	SAUSA300 _RS05050	SAUSA3 00_0940		DoxX family protein	191.3 7	208.3 7	10.54	3.61	3.404 61594 8	6.416 37E- 13
Yes	Е	SAUSA300 _RS01075	SAUSA3 00_0204	ggt	γ- glutamyltransfera se	119.2 1	118.0 8	2.76	4.15	3.365 08471 1	7.158 16E- 11
Yes	S	SAUSA300 _RS00890	SAUSA3 00_0169		YbaN family protein	72.45	46.03	3.25	0.88	3.347 78883 3	2.289 16E- 12
Yes	С	SAUSA300 _RS04255	SAUSA3 00_0788		nitroreductase	671.4 9	488.3 1	27.67	14.18	3.278 61252 3	1.887 99E- 16
No	M	SAUSA300 _RS04310	SAUSA3 00_0798		MetQ/NIpA family ABC transporter substrate-binding protein	217.5 8	157.3 3	10.05	4.1	3.247 84510 7	5.822 3E-15
No	S	SAUSA300 _RS01875	SAUSA3 00_0354		low temperature requirement protein A	45.08	29.37	1.85	1.02	3.144 51161 3	1.971 62E- 14

Table A-1 (cont'd)

No	E	SAUSA300 _RS02855	SAUSA3 00_0534		M20 family metallopeptidase	82.32	42.25	3.57	1.5	3.079 04484 9	2.311 18E- 13
Yes	Н	SAUSA300 _RS03730	SAUSA3 00_0695	queE	7-carboxy-7- deazaguanine synthase QueE	107.1 2	33.76	1.97	2.64	3.037 59705	8.168 54E- 09
Yes	S	SAUSA300 _RS10920	SAUSA3 00_1986		nitroreductase family protein	37.79	40.11	1.78	1.44	3.035 97010 7	1.553 84E- 10
Yes	С	SAUSA300 _RS06395	SAUSA3 00_1183		2- oxoacid:ferredoxi n oxidoreductase subunit β	201.3	129.7 4	8.87	4.97	3.035 33978 7	1.973 14E- 14
No	S	SAUSA300 _RS13940	SAUSA3 00_2511		DUF896 domain- containing protein	186.1 8	230.0 1	11.9	6.79	3.009 53177 6	1.634 66E- 10
No	S	SAUSA300 _RS01485	SAUSA3 00_0277		CHAP domain- containing protein	18.43	20.75	1.18	0.62	2.969 24929 1	6.336 13E- 10
Yes	S	SAUSA300 _RS07495	SAUSA3 00_1372		helix-turn-helix domain- containing protein	96.9	111.1 5	6.3	3.4	2.963 27268 1	6.665 8E-11
Yes	K	SAUSA300 _RS14555	SAUSA3 00_2619		S-adenosyl-l- methionine hydroxide adenosyltransfer ase family protein	19.02	14.91	0.83	0.62	2.958 93782 9	1.023 43E- 10

Table A-1 (cont'd)

Yes	D	SAUSA300 _RS07900	SAUSA3 00_1447	xerD	site-specific tyrosine recombinase XerD	254.3 7	128.3 9	11.84	5.09	2.957 97855 9	9.179 36E- 13
Yes	Н	SAUSA300 _RS00040	SAUSA3 00_0007		NAD(P)H- hydrate dehydratase	148.8 9	134.1	7.95	4.96	2.941 73211 8	3.373 04E- 12
No	not classif ied	SAUSA300 _RS06580	SAUSA3 00_1213		hypothetical protein	12.05	17.92	1.29	0.14	2.923 01785	2.604 38E- 05
No	Q	SAUSA300 _RS04575	SAUSA3 00_0847		Paal family thioesterase	515.2 1	437.9 9	29.12	15.76	2.917 56117 6	1.826 18E- 12
No	E	SAUSA300 _RS02325	SAUSA3 00_0434	тссВ	bifunctional cystathionine γ- lyase/homocystei ne desulfhydrase	46.14	33.39	1.09	1.95	2.906 85451 7	5.072 23E- 08
No	E	SAUSA300 _RS05115	SAUSA3 00_0952		aminotransferas e class I/II-fold pyridoxal phosphate- dependent enzyme	208.9	179.3 8	12.99	5.91	2.902 52660 7	5.438 6E-12
Yes	0	SAUSA300 _RS02020	SAUSA3 00_0379	ahpF	alkyl hydroperoxide reductase subunit F	2994. 44	1970. 33	103.4	106.2	2.889 93674 4	6.578 98E- 11

Table A-1 (cont'd)

Yes	F	SAUSA300 _RS03850	SAUSA3 00_0717	nrdF	class 1b ribonucleoside- diphosphate reductase subunit β	1920. 34	866.8 2	94.33	35.28	2.888 01193 3	2.419 88E- 11
No	E	SAUSA300 _RS00055	SAUSA3 00_0010		AzlC family ABC transporter permease	48.26	38.96	1.96	1.87	2.882 35841 5	2.983 3E-10
Yes	0	SAUSA300 _RS02025	SAUSA3 00_0380	ahpC	alkyl hydroperoxide reductase subunit C	3967. 13	3243. 81	215.8 6	133.7 2	2.846 85053 2	2.870 44E- 12
Yes	HP	SAUSA300 _RS03395	SAUSA3 00_0633		ABC transporter ATP-binding protein	144.2	58.29	7.25	2.39	2.842 1453	7.909 95E- 10
Yes	С	SAUSA300 _RS02385	SAUSA3 00_0446		glutamate synthase subunit β	483.9 8	241.2 1	25.93	10.25	2.801 06218 5	2.903 06E- 11
Yes	K	SAUSA300 _RS00650	SAUSA3 00_0126	sbnl	bifunctional transcriptional regulator/O- phospho-L-serine synthase Sbnl	43.44	26.75	2.35	1.17	2.786 62502 6	4.360 95E- 11
No	K	SAUSA300 _RS04190	SAUSA3 00_0777		cold-shock protein	7723. 34	10264 .53	757.1 7	261.1 9	2.780 15390 8	2.159 34E- 08
Yes	E	SAUSA300 _RS13265	SAUSA3 00_2395		APC family permease	42.04	29.12	2.34	1.36	2.735 06481	2.138 42E- 11

Table A-1 (cont'd)

No	D	SAUSA300 _RS09440	SAUSA3 00_1726		CrcB family protein	30.4	32.26	1.79	1.43	2.730 50255 2	4.391 93E- 08
Yes	С	SAUSA300 _RS01085	SAUSA3 00_0206		FMN-dependent NADH- azoreductase	48.05	65.73	2.77	2.98	2.720 02560 4	2.238 04E- 07
No	K	SAUSA300 _RS04840	SAUSA3 00_0898	spxA	transcriptional regulator SpxA	55513 .94	65522 .85	4499. 83	2337. 74	2.709 96514 5	2.553 31E- 09
Yes	С	SAUSA300 _RS00885	SAUSA3 00_0168	isdl	staphylobilin- forming heme oxygenase Isdl	193.9 4	172	15.34	5.57	2.707 97401 5	1.950 23E- 09
No	С	SAUSA300 _RS01170	SAUSA3 00_0222		glycerophosphor yl diester phosphodiestera se membrane domain- containing protein	18.07	10.31	0.96	0.52	2.701 69258	1.671 74E- 10
No	Ο	SAUSA300 _RS04535	SAUSA3 00_0839		NifU family protein	4814. 96	5336. 37	417.5 8	174.0 5	2.695 71536 8	3.631 2E-09
No	F	SAUSA300 _RS03845	SAUSA3 00_0716	nrdE	class 1b ribonucleoside- diphosphate reductase subunit α	1116. 49	521.7 7	57.24	28.15	2.694 65430 6	4.450 16E- 11
Yes	Р	SAUSA300 _RS07905	SAUSA3 00_1448		Fur family transcriptional regulator	935.7 7	709.5 6	64.75	27.78	2.691 93921 9	9.201 53E- 11

Table A-1 (cont'd)

No	U	SAUSA300 _RS02035	SAUSA3 00_0382		L-cystine transporter	1423. 29	1354. 04	45.72	82.63	2.678 55695	1.023 79E- 06
No	K	SAUSA300 _RS09185	SAUSA3 00_1682	ссрА	catabolite control protein A	373.6 8	401.8 2	28.23	16.05	2.667 45616 3	1.621 38E- 09
No	G	SAUSA300 _RS01135	SAUSA3 00_0216	uhpT	hexose-6- phosphate:phosp hate antiporter	14.3	20.83	0.63	1.08	2.666 43000 7	5.568 09E- 06
No	S	SAUSA300 _RS00060	SAUSA3 00_0011		AzID domain- containing protein	94.05	74.4	5.7	3.55	2.656 31562 7	6.275 63E- 10
No	Т	SAUSA300 _RS03705	SAUSA3 00_0690	saeS	two-component system sensor histidine kinase SaeS	2407. 99	1402. 87	159.5	60.93	2.627 22530 8	3.878 29E- 10
Yes	E	SAUSA300 _RS14085	SAUSA3 00_2538		amino acid permease	358.5 7	405.9 9	17.23	22.37	2.623 20008 5	3.817 64E- 07
No	S	SAUSA300 _RS12610	SAUSA3 00_2282	sdpC	CPBP family intramembrane glutamic endopeptidaseS dpC	160.7 2	96.58	10.9	4.13	2.618 37110 3	6.336 13E- 10
Yes	E	SAUSA300 _RS11075	SAUSA3 00_2014	ilvA	threonine ammonia-lyase IIvA	131.7 7	80	7.82	4.12	2.618 18560 8	6.066 2E-11
No	S	SAUSA300 _RS01480	SAUSA3 00_0276		DUF5080 family protein	20.16	22.76	2.11	0.6	2.605 73898 9	7.737 3E-07

Table A-1 (cont'd)

Yes	F	SAUSA300 _RS03840	SAUSA3 00_0715	nrdl	class lb ribonucleoside- diphosphate reductase assembly flavoprotein Nrdl	194.3 5	97.21	10.72	5.56	2.594 78534 1	3.769 57E- 10
Yes	F	SAUSA300 _RS05655	SAUSA3 00_1050		XTP/dITP diphosphatase	174.0 7	62.9	9.64	3.72	2.565 23973 3	2.957 42E- 08
No	S	SAUSA300 _RS06575	SAUSA3 00_1212		polymorphic toxin type 50 domain- containing protein	26.85	47.17	3.59	1.33	2.540 68494	6.612 55E- 06
No	no homol og found	SAUSA300 _RS09505	SAUSA3 00_1738		DUF4909 domain- containing protein	25.49	35.7	3.5	0.82	2.497 77330 6	1.111 06E- 05
No	S	SAUSA300 _RS05145	SAUSA3 00_0957		osmotic stress response protein	511.2 1	609.6 9	56.93	20.16	2.495 28233 5	2.591 17E- 07
Yes	Р	SAUSA300 _RS03880	SAUSA3 00_0721		siderophore ABC transporter substrate-binding protein	63.71	27.31	3.76	1.68	2.494 17382 5	1.216 52E- 08
No	S	SAUSA300 _RS04485	SAUSA3 00_0831		DUF3055 domain- containing protein	123.1 7	176.1 3	17.41	4.1	2.490 08913 2	7.881 04E- 06

Table A-1 (cont'd)

No	EP	SAUSA300 _RS01060	SAUSA3 00_0201		ABC transporter permease	27.04	25.9	0.74	1.91	2.489 75256 3	4.236 08E- 05
No	K	SAUSA300 _RS05125	SAUSA3 00_0954		MarR family transcriptional regulator	28.82	51.17	3.79	1.69	2.487 85914 8	6.488 21E- 06
Yes	СН	SAUSA300 _RS13660	SAUSA3 00_2463		D-lactate dehydrogenase	184.4	176.0 7	10.9	10.55	2.480 58477 5	9.520 5E-08
No	not classif ied	SAUSA300 _RS09430			hypothetical protein	77.65	107.6 7	9.87	3.23	2.474 50835 5	2.391 13E- 06
Yes	С	SAUSA300 _RS12320	SAUSA3 00_2231	fdhD	formate dehydrogenase accessory sulfurtransferase FdhD	64.6	50.42	5.64	2.1	2.459 94465 6	2.902 29E- 08
No	no homol og found	SAUSA300 _RS10520			hypothetical protein	340.8 4	332.3 3	29.83	15.37	2.444 65067 2	2.385 78E- 08
No	no homol og found	SAUSA300 _RS15420			hypothetical protein	37.28	43.88	4.18	1.49	2.439 60961 4	4.115 83E- 06
Yes	L	SAUSA300 _RS03790	SAUSA3 00_0705	recQ	DNA helicase RecQ	86.19	30.45	4.75	2.28	2.438 99684 6	6.039 46E- 08

Table A-1 (cont'd)

No	G	SAUSA300 _RS08910	SAUSA3 00_1633	gap	type I glyceraldehyde- 3-phosphate dehydrogenase	24.26	13.46	1.4	0.92	2.431 11499 3	2.116 78E- 08
No	С	SAUSA300 _RS14025	SAUSA3 00_2528		epoxyqueuosine reductase QueH	54.83	46.16	4.7	2.2	2.415 30322 8	2.779 85E- 08
No	V	SAUSA300 _RS00290	SAUSA3 00_0056		DUF1643 domain- containing protein	11	12.13	0.82	0.65	2.410 36544 5	7.045 98E- 06
No	Р	SAUSA300 _RS05410	SAUSA3 00_1005		Nramp family divalent metal transporter	107.9 4	89.1	8.57	4.75	2.401 74594 2	7.865 21E- 09
No	Р	SAUSA300 _RS03400	SAUSA3 00_0634		iron ABC transporter permease	70.71	40.61	4.21	2.82	2.400 77713	6.004 37E- 09
No	0	SAUSA300 _RS14575	SAUSA3 00_2623	рср	pyroglutamyl- peptidase l	38.31	36.65	2.78	2.14	2.395 00032 1	2.171 87E- 07
No	Р	SAUSA300 _RS10870	SAUSA3 00_1979		TrkH family potassium uptake protein	39.46	43.09	3.98	1.93	2.377 60245 2	2.264 1E-07
Yes	S	SAUSA300 _RS10695	SAUSA3 00_1949		dUTP pyrophosphatase	68.32	40.19	2.35	3.76	2.365 17681 9	6.961 58E- 06
Yes	Е	SAUSA300 _RS11055	SAUSA3 00_2010		2- isopropylmalate synthase	58.74	40.37	3.86	2.67	2.364 63665 2	1.081 91E- 08

Table A-1 (cont'd)

No	NOT	SAUSA300 _RS04845	SAUSA3 00_0899	mecA	adaptor protein MecA	1349. 11	1117. 69	136.0 1	46.21	2.355 84619 8	1.723 18E- 07
No	EG	SAUSA300 _RS03830	SAUSA3 00_0713	queF	preQ(1) synthase	132.1 8	207.4 4	15.06	9.52	2.352 84193 2	3.899 42E- 06
No	К	SAUSA300 _RS08020	SAUSA3 00_1469	argR	transcriptional regulator ArgR	131.1	122.4 1	13.47	5.25	2.348 22851 9	2.264 1E-07
Yes	no homol og found	SAUSA300 _RS10730	SAUSA3 00_1956		hypothetical protein	43.12	18.05	1.65	1.84	2.345 33538 7	1.202 09E- 05
No	not classif ied	SAUSA300 _RS06570	SAUSA3 00_1211		hypothetical protein	84.09	108.9 6	9.19	4.88	2.344 42779	2.545 66E- 06
Yes	Е	SAUSA300 _RS01070	SAUSA3 00_0203		ABC transporter substrate-binding protein	23.3	13.38	0.75	1.32	2.337 16317	1.529 35E- 05
No	not classif ied	SAUSA300 _RS12240	SAUSA3 00_2218	sarV	HTH-type transcriptional regulator SarV	84.74	118.4 6	11.66	4.28	2.318 62304 9	6.725 02E- 06
Yes	L	SAUSA300 _RS10735	SAUSA3 00_1957		DnaD domain- containing protein	54.9	24.35	1.64	2.78	2.316 29998 2	1.928 09E- 05
No	S	SAUSA300 _RS03810	SAUSA3 00_0709		5'-3'- deoxyribonucleot idase	208.2 7	198.5 9	15	12.92	2.308 37631	4.152 28E- 07
No	Ο	SAUSA300 _RS05300	SAUSA3 00_0985	nrdH	glutaredoxin-like protein NrdH	130.8	136.8 7	12.78	7.02	2.303 84259 6	4.971 66E- 07

No	L	SAUSA300 _RS10260	SAUSA3 00_1875		3'-5' exonuclease	180.6	131.5 2	17.95	5.77	2.300 03317 1	4.381 69E- 07
Yes	U	SAUSA300 _RS11755	SAUSA3 00_2135		iron ABC transporter permease	50.33	30.96	3.9	1.93	2.287 54227 1	3.617 E-08
No	0	SAUSA300 _RS06825	SAUSA3 00_1256	msrA	peptide- methionine (S)- S-oxide reductase MsrA	292.8 8	266.3 7	27.9	14.22	2.279 86174 9	1.077 96E- 07
No	S	SAUSA300 _RS01615	SAUSA3 00_0303		DUF4467 domain- containing protein	19.94	10.29	1.79	0.43	2.276 81024 9	3.500 29E- 05
Yes	EGP	SAUSA300 _RS11720	SAUSA3 00_2128	sdrM	multidrug efflux MFS transporter SdrM	88.69	42.39	5.65	3.47	2.249 82656 1	6.372 22E- 08
No	D	SAUSA300 _RS05870	SAUSA3 00_1083		cell division protein SepF	453.7 4	262.4	35.79	17.19	2.244 90419 2	3.290 04E- 08
No	К	SAUSA300 _RS03710	SAUSA3 00_0691	saeR	response regulator transcription factor SaeR	1658. 72	546.8 4	114.6 8	41.91	2.240 78712	2.563 22E- 06
No	S	SAUSA300 _RS04480	SAUSA3 00_0830		YutD family protein	124.8 9	116.8 7	13.56	5.71	2.232 49280 2	7.327 22E- 07
Yes	E	SAUSA300 _RS11070	SAUSA3 00_2013	leuD	3- isopropylmalate dehydratase small subunit	54.54	20.11	3.65	1.65	2.220 42757	2.307 85E- 06

Table A-1 (cont'd)

Yes	L	SAUSA300 _RS08280	SAUSA3 00_1517	deoxyribonuclea se IV	132.6 4	76.96	11.13	4.85	2.216 93092 3	1.046 43E- 07
No	no homol og found	SAUSA300 _RS04145	SAUSA3 00_0769	DUF5067 domain- containing protein	14.1	11.83	1.7	0.43	2.215 25171 8	2.639 25E- 05
No	M	SAUSA300 _RS02875	SAUSA3 00_0538	NAD-dependent epimerase/dehyd ratase family protein	167.9 8	52.98	7.28	6.75	2.211 32300 6	6.541 46E- 06
No	0	SAUSA300 _RS13000	SAUSA3 00_2354	DsbA family protein	149.2 1	78.06	13.23	4.45	2.205 10484 8	9.655 63E- 07
No	S	SAUSA300 _RS10715	SAUSA3 00_1953	phi PVL orf 51- like protein	32.41	10.52	1.59	1.17	2.202 12062	7.284 84E- 05
No	Н	SAUSA300 _RS13380	SAUSA3 00_2417	AbgT family transporter	93.95	70.54	7.87	4.7	2.201 07237 3	8.472 96E- 08
No	no homol og found	SAUSA300 _RS13590		hypothetical protein	43.71	58.72	6.27	2.28	2.194 81224	0.000 13026
Yes	no homol og found	SAUSA300 _RS10765	SAUSA3 00_1963	DUF2482 family protein	98.21	49.58	5.1	4.94	2.194 14883 7	2.862 25E- 06

Table A-1 (cont'd)

No	E	SAUSA300 _RS07075	SAUSA3 00_1300	brnQ	branched-chain amino acid transport system Il carrier protein	40.33	33.11	4.13	1.79	2.194 12238 7	4.781 11E- 07
No	S	SAUSA300 _RS13585	SAUSA3 00_2450		DedA family protein	64.71	60.55	7.02	3.26	2.174 80999 7	1.157 01E- 06
Yes	Р	SAUSA300 _RS06680	SAUSA3 00_1232		catalase	539.8 5	377.2 2	43.86	27.02	2.170 19843 7	7.710 06E- 08
No	E	SAUSA300 _RS13700	SAUSA3 00_2469	sdaA A	L-serine ammonia-lyase, iron-sulfur- dependent, subunit α	43.54	41.45	3.34	3.04	2.169 32606 5	3.911 26E- 06
No	S	SAUSA300 _RS05660	SAUSA3 00_1051		metallophosphoe sterase	235.4 7	162.5 2	23.34	9.38	2.153 53223 6	4.617 05E- 07
No	S	SAUSA300 _RS10770			DUF1270 domain- containing protein	182.2 3	135.6 3	11.69	11.67	2.141 16198 2	4.427 01E- 06
No	СН	SAUSA300 _RS12455	SAUSA3 00_2255		FAD-dependent monooxygenase	65.93	43.69	5.69	3.16	2.118 40739 6	2.442 62E- 07
No	S	SAUSA300 _RS00935	SAUSA3 00_0178		DUF2294 domain- containing protein	1908. 25	1196. 98	184.7 5	75.82	2.108 40937 1	4.827 12E- 07

No	K	SAUSA300 _RS11435	SAUSA3 00_2077		helix-turn-helix domain- containing protein	667.1 2	625.4 1	66.68	41.15	2.105 10083 8	1.144 79E- 06
Yes	С	SAUSA300 _RS14195	SAUSA3 00_2554		assimilatory sulfite reductase (NADPH) flavoprotein subunit	38.99	12.76	2.52	1.35	2.103 69981 5	6.842 36E- 06
No	S	SAUSA300 _RS04235	SAUSA3 00_0784		LysE/ArgO family amino acid transporter	377.9 8	376.5 8	45.08	20.84	2.101 66557 7	2.373 72E- 06
Yes	L	SAUSA300 _RS10740	SAUSA3 00_1958	ssb	single-stranded DNA-binding protein	56.97	25.12	2.3	3.24	2.093 19813 9	6.789 53E- 05
Yes	no homol og found	SAUSA300 _RS15665	SAUSA3 00_2604		hypothetical protein	143.3 2	151.5 7	21.54	5.79	2.092 30146 7	5.315 46E- 05
No	ET	SAUSA300 _RS13025	SAUSA3 00_2359		transporter substrate-binding domain- containing protein	182.0 1	61.38	11.72	6.67	2.082 76138 5	5.379 96E- 06
No	no homol og found	SAUSA300 _RS10745	SAUSA3 00_1959		MBL fold metallo- hydrolase	41.42	27.47	1.95	2.93	2.080 39007 5	7.432 5E-05
Yes	EP	SAUSA300 _RS01065	SAUSA3 00_0202		ABC transporter permease	35.16	28.03	1.1	3.06	2.078 40883	0.000 82141

No	S	SAUSA300 _RS05875	SAUSA3 00_1084		YggT family protein	483.8 9	615.5 7	60.84	36.34	2.067 34911 2	1.463 3E-05
No	E	SAUSA300 _RS13015	SAUSA3 00_2357		amino acid ABC transporter ATP- binding protein	696.0 3	354.0 7	37.73	39.69	2.062 62947 2	7.411 13E- 06
Yes	С	SAUSA300 _RS06390	SAUSA3 00_1182		2- oxoacid:acceptor oxidoreductase subunit α	28.17	10.25	1.6	1.25	2.059 82620 4	1.120 55E- 05
No	S	SAUSA300 _RS03640	SAUSA3 00_0678		DUF1361 domain- containing protein	91.9	44.78	8.99	2.81	2.053 86324 5	1.161 33E- 05
Yes	M	SAUSA300 _RS14270	SAUSA3 00_2565	clfB	MSCRAMM family adhesin clumping factor ClfB	50.07	27.8	4.24	2.28	2.045 84785 8	5.333 69E- 07
No	S	SAUSA300 _RS09900	SAUSA3 00_1809		PTS transporter subunit IIC	60.73	49.38	6.38	3.33	2.037 41538 8	1.631 32E- 06
Yes	no homol og found	SAUSA300 _RS14185			hypothetical protein	286.0 9	209.6 5	26.66	15.83	2.031 42813	2.300 27E- 06
No	S	SAUSA300 _RS10775	SAUSA3 00_1964		DUF771 domain- containing protein	194.1	153.0 2	12.37	14.71	2.026 63681 9	3.242 39E- 05
Yes	U	SAUSA300 _RS04915	SAUSA3 00_0914		alanine/glycine:c ation symporter family protein	65.79	68.24	6.08	5.26	2.025 87756 7	1.595 05E- 05

No	С	SAUSA300 _RS14205	SAUSA3 00_2555		glutathione peroxidase	18.74	12.72	1.87	0.85	2.025 05763 1	1.969 32E- 05
No	J	SAUSA300 _RS03975	SAUSA3 00_0738	prfB	peptide chain release factor 2	159.5 4	115.5 6	14.02	9.4	2.022 67811 7	1.023 79E- 06
No	Р	SAUSA300 _RS13185	SAUSA3 00_2384		sodium:proton antiporter	52.71	25.91	4.39	2.25	2.018 28401 9	1.366 16E- 06
No	E	SAUSA300 _RS09890	SAUSA3 00_1807		amino acid ABC transporter ATP-binding protein	18.92	10.72	1.66	0.86	2.015 08411 1	9.036 49E- 06
Yes	M	SAUSA300 _RS13530	SAUSA3 00_2441	fnbA	fibronectin- binding protein FnbA	46.33	20.75	3.52	2.03	2.009 75835 7	1.994 91E- 06
No	no homol og found	SAUSA300 _RS15465			IS5/IS1182 family transposase	36.02	24.35	3.73	1.59	2.009 41557 9	4.400 03E- 05
No	К	SAUSA300 _RS13930	SAUSA3 00_2509		TetR/AcrR family transcriptional regulator	27.57	19.52	2.89	1.32	2.008 93044 7	8.284 41E- 06
No	S	SAUSA300 _RS10725	SAUSA3 00_1955		RusA family crossover junction endodeoxyribonu clease	21.45	11.32	0.84	1.47	2.008 20549 5	0.000 52331 6
No	Q	SAUSA300 _RS10395	SAUSA3 00_1899		isochorismatase family cysteine hydrolase	146.3 7	80.05	13.36	6.34	2.007 94065 1	1.525 24E- 06

Table A-1 (cont'd)

No	L	SAUSA300 _RS07325	SAUSA3 00_1343	nth	endonuclease III	44.97	19.52	4.35	1.33	2.001 79183 2	4.174 84E- 05
No	K	SAUSA300 _RS03330	SAUSA3 00_0621		metal-dependent transcriptional regulator	211.5 5	167	25.36	10.03	1.998 15442 9	4.804 13E- 06
No	S	SAUSA300 _RS01850	SAUSA3 00_0349		DUF1398 family protein	20.26	13.22	1.74	1.09	1.997 26080 4	3.391 29E- 05
No	G	SAUSA300 _RS01655	SAUSA3 00_0310		PTS sugar transporter subunit IIC	199.8	211.8 8	18.38	16.98	1.993 85926 9	2.980 69E- 05
No	F	SAUSA300 _RS08440	SAUSA3 00_1548		ComE operon protein 2	230.3 4	236.8 9	32.44	12.64	1.992 84589 6	1.841 3E-05
No	U	SAUSA300 _RS01840	SAUSA3 00_0347	tatC	twin-arginine translocase subunit TatC	61.7	80.23	7.46	5.44	1.988 03162 2	5.554 84E- 05
No	F	SAUSA300 _RS04970	SAUSA3 00_0925		bifunctional UDP-sugar hydrolase/5'- nucleotidase	70.4	56.56	7.76	3.92	1.983 04419	2.606 56E- 06
No	С	SAUSA300 _RS10400	SAUSA3 00_1900		manganese- dependent inorganic pyrophosphatase	854.1 4	452.1 1	66.92	43.79	1.981 24896 3	1.271 14E- 06
No	M	SAUSA300 _RS09320	SAUSA3 00_1707		class I SAM- dependent methyltransferas e	51.74	21.28	3.4	2.51	1.966 69127 6	1.962 23E- 05

Table A-1 (cont'd)

No	not classif ied	SAUSA300 _RS07840			hypothetical protein	72.01	53.27	8.65	3.28	1.959 39362 4	1.450 55E- 05
No	К	SAUSA300 _RS12705	SAUSA3 00_2300		TetR/AcrR family transcriptional regulator	50.55	52.78	7.6	2.72	1.953 72136 1	5.729 42E- 05
No	no homol og found	SAUSA300 _RS10510			hypothetical protein	306.8 2	241.9 4	34.91	17.01	1.945 6827	5.372 06E- 06
No	E	SAUSA300 _RS03805	SAUSA3 00_0708	hisC	histidinol- phosphate transaminase	26.35	26.04	2.54	2.17	1.937 37263 9	4.400 03E- 05
No	K	SAUSA300 _RS10810	SAUSA3 00_1969		XRE family transcriptional regulator	87.88	65.87	8.1	5.72	1.937 13986 5	5.507 02E- 06
No	S	SAUSA300 _RS10720	SAUSA3 00_1954		SA1788 family PVL leukocidin- associated protein	30.01	14.97	1.56	1.94	1.936 12980 5	0.000 23856 8
No	not classif ied	SAUSA300 _RS03655	SAUSA3 00_0681		hypothetical protein	59.26	52.14	9.23	2.23	1.933 25251	0.000 20353 1
No	not classif ied	SAUSA300 _RS10790	SAUSA3 00_1967		hypothetical protein	162.0 6	89.91	8.02	11.61	1.927 50194	0.000 19246 9
No	S	SAUSA300 _RS09830	SAUSA3 00_1796		DUF445 domain- containing protein	50.05	35.16	6.33	2.14	1.909 47471 3	2.705 34E- 05

No	С	SAUSA300 _RS13655	SAUSA3 00_2462		NAD(P)H- dependent oxidoreductase	59.66	47.8	5.09	4.51	1.908 98717 5	2.779 05E- 05
No	К	SAUSA300 _RS13640	SAUSA3 00_2459		MarR family transcriptional regulator	54.31	68.16	6.7	5	1.908 46815 6	0.000 12736 7
No	no homol og found	SAUSA300 _RS10690			hypothetical protein	27.4	11.26	1.36	1.64	1.899 76769 9	0.000 81940 4
No	no homol og found	SAUSA300 _RS04435			chorismate mutase	16.94	14.48	2.25	0.78	1.890 64755 8	0.002 38163 5
No	S	SAUSA300 _RS12415	SAUSA3 00_2249		CHAP domain- containing protein	278.5 3	305.0 2	40.58	19.23	1.886 81090 5	4.095 2E-05
No	К	SAUSA300 _RS12490	SAUSA3 00_2261		YafY family protein	183.2 6	148.1 9	22.38	10.7	1.880 31699 2	9.832 99E- 06
Yes	EH	SAUSA300 _RS11940	SAUSA3 00_2166	alsS	acetolactate synthase AlsS	15.3	12.12	1.39	1.14	1.880 18716 7	3.391 29E- 05
No	S	SAUSA300 _RS11480	SAUSA3 00_2085		DUF2750 domain- containing protein	188.8 9	109.3 1	21.61	7.96	1.875 05992 6	1.858 88E- 05
No	no homol og found	SAUSA300 _RS15825			transposase	21.6	19.82	2.97	1.22	1.874 95478 4	0.000 18818 9

No	S	SAUSA300 _RS03180	SAUSA3 00_0592		HD domain- containing protein	87.98	34.06	7.72	3.52	1.872 09844 5	3.085 19E- 05
No	Р	SAUSA300 _RS12660	SAUSA3 00_2291	gltS	sodium/glutamat e symporter	13.27	14.67	1.4	1.25	1.862 67898 9	0.000 20641 7
No	no homol og found	SAUSA300 _RS13775			hypothetical protein	241.2 8	321.8 9	39.21	19.85	1.862 51965	0.000 19993 9
No	S	SAUSA300 _RS12535	SAUSA3 00_2267		HAD family hydrolase	74.01	62.21	6.97	5.85	1.853 44532 3	4.181 14E- 05
No	S	SAUSA300 _RS02940	SAUSA3 00_0551	foIE2	GTP cyclohydrolase FolE2	188.0 3	166.4 3	26.63	10.78	1.842 28825 2	3.598 56E- 05
Yes	I	SAUSA300 _RS02535	SAUSA3 00_0472	ispE	4-(cytidine 5'- diphospho)-2-C- methyl-D- erythritol kinase	72.98	23.43	6.6	2.45	1.839 43461 2	0.000 20557 9
No	no homol og found	SAUSA300 _RS15405			transposase	11.47	10.09	1.97	0.27	1.834 80243 7	0.008 34528 1
No	М	SAUSA300 _RS03450	SAUSA3 00_0643		GNAT family N- acetyltransferase	146.8 2	184.1 6	24.03	11.53	1.834 51461 4	0.000 15266
No	no homol og found	SAUSA300 _RS05725			hypothetical protein	12.01	23.82	2.28	1.46	1.814 10521	0.006 63641 5

Table A-1 (cont'd)

Yes	S	SAUSA300 _RS02775	SAUSA3 00_0518		NYN domain- containing protein	94.09	45.85	7.92	5.27	1.811 07936 9	2.635 34E- 05
Yes	L	SAUSA300 _RS02485	SAUSA3 00_0463	yabA	DNA replication initiation control protein YabA	67.87	30.67	6.61	3.03	1.808 70223 4	7.184 61E- 05
Yes	S	SAUSA300 _RS10760	SAUSA3 00_1962		DUF1108 family protein	84.77	40.92	5	5.87	1.804 93507 7	0.000 34324 2
Yes	Р	SAUSA300 _RS11750	SAUSA3 00_2134		iron chelate uptake ABC transporter family permease subunit	70.34	52.01	7.99	4.49	1.804 70979 4	1.631 42E- 05
No	U	SAUSA300 _RS04110	SAUSA3 00_0762	secG	preprotein translocase subunit SecG	1586. 21	2144. 2	307.2 2	117.3 9	1.801 40828 5	0.000 37516
No	not classif ied	SAUSA300 _RS03445	SAUSA3 00_0642		hypothetical protein	91.32	111.6 1	14.26	7.69	1.799 94223 9	0.000 19357 9
No	S	SAUSA300 _RS09490	SAUSA3 00_1736	yidD	membrane protein insertion efficiency factor YidD	380.3 7	535.4 5	59.17	38.66	1.798 11070 4	0.000 33496 1
No	K	SAUSA300 _RS00590	SAUSA3 00_0114	sarS	HTH-type transcriptional regulator SarS	195.7 9	230.6 1	28.5	16.99	1.797 79920 5	0.000 13022 6
No	J	SAUSA300 _RS08660	SAUSA3 00_1589	dtd	D-aminoacyl- tRNA deacylase	289.0 9	115.8 6	30.19	10.56	1.794 91439 4	0.000 13212 2

Table A-1 (cont'd)

No	not classif ied	SAUSA300 _RS05730		hypothetical protein	28.78	53.13	6.28	3.01	1.784 87629 8	0.002 12483 1
No	not classif ied	SAUSA300 _RS02080	SAUSA3 00_0390	hypothetical protein	29.79	23.44	3.52	1.99	1.784 21963 7	7.183 71E- 05
No	no homol og found	SAUSA300 _RS09565		hypothetical protein	18.04	13.46	2.79	0.53	1.778 64316 1	0.011 12162 2
No	J	SAUSA300 _RS05325	SAUSA3 00_0989	ribonuclease J	663.6 4	360.3 9	72.69	33.59	1.767 03865 6	2.031 89E- 05
No	not classif ied	SAUSA300 _RS15095	SAUSA3 00_0428	hypothetical protein	14.83	29.95	3.6	1.61	1.763 58423	0.003 12662 5
No	Р	SAUSA300 _RS08160	SAUSA3 00_1495	rhodanese-like domain- containing protein	427.1 8	610.3 6	90.88	32.37	1.758 62165 4	0.000 76924 2
No	EGP	SAUSA300 _RS13160	SAUSA3 00_2379	multidrug effflux MFS transporter	156.4 4	203.5 3	24.91	14.93	1.758 02937 8	0.000 2983
No	S	SAUSA300 _RS02905	SAUSA3 00_0544	Cof-type HAD-IIB family hydrolase	48.43	31.25	5.62	2.78	1.756 43502 2	3.308 69E- 05
No	not classif ied	SAUSA300 _RS06935	SAUSA3 00_1277	hypothetical protein	67.91	81.45	10.89	5.74	1.756 15137 4	0.000 31422 8

Table A-1 (cont'd)

Yes	Н	SAUSA300 _RS14190	SAUSA3 00_2553		NAD(P)-binding protein	203.8	96.11	18.93	11	1.753 13600 4	3.256 69E- 05
No	no homol og found	SAUSA300 _RS15500			hypothetical protein	55.39	32.86	3	4.8	1.743 17271 4	0.001 58401 6
No	S	SAUSA300 _RS03715	SAUSA3 00_0692		DoxX family protein	1484. 7	458.6 7	124.7 2	63.56	1.743 07573 6	0.000 23661 5
No	S	SAUSA300 _RS10750	SAUSA3 00_1960		recombinase RecT	66.81	40.57	4.92	5.27	1.737 20398 3	0.000 22483 7
No	no homol og found	SAUSA300 _RS16000			minor capsid protein	17.86	28.08	3.59	1.78	1.727 09674 7	0.001 45406 5
No	S	SAUSA300 _RS10675	SAUSA3 00_1946		transcriptional activator RinB	62.75	25.43	3.59	4.26	1.719 52293 7	0.001 79340 4
No	not classif ied	SAUSA300 _RS10755	SAUSA3 00_1961		AAA family ATPase	48.5	27.36	3.34	3.81	1.719 37548 4	0.000 33738 4
No	E	SAUSA300 _RS00985	SAUSA3 00_0188	brnQ	branched-chain amino acid transport system Il carrier protein	97.47	106.1 1	13.61	8.9	1.719 26991 3	0.000 19993 9
No	X	SAUSA300 _RS09695	SAUSA3 00_1771		DUF1828 domain- containing protein	48.56	53.25	8.13	3.69	1.716 46918 3	0.000 29813 1

Table A-1 (cont'd)

Yes	JKL	SAUSA300 _RS08285	SAUSA3 00_1518		DEAD/DEAH box helicase	39.64	11.31	3.57	1.51	1.714 13593 6	0.000 73575 5
No	U	SAUSA300 _RS01845	SAUSA3 00_0348		twin-arginine translocase TatA/TatE family subunit	61.35	67.04	7.49	6.3	1.704 74902 5	0.000 68447 6
No	Р	SAUSA300 _RS13050	SAUSA3 00_2363		cation diffusion facilitator family transporter	43.89	25.19	4.28	2.9	1.699 30836 4	7.184 61E- 05
No	S	SAUSA300 _RS13005	SAUSA3 00_2355		DUF4467 domain- containing protein	46.01	18.06	5.14	1.73	1.696 73033 5	0.000 83523
No	no homol og found	SAUSA300 _RS15635	SAUSA3 00_2510		hypothetical protein	101.3	126.9 4	15.17	10.59	1.694 39063 6	0.000 55602 2
Yes	J	SAUSA300 _RS06190	SAUSA3 00_1144	trmFO	methylenetetrahy drofolatetRNA- (uracil(54)- C(5))- methyltransferas e (FADH(2)- oxidizing) TrmFO	172.3	69.25	15.26	9.33	1.687 27586 8	0.000 12027 9
No	not classif ied	SAUSA300 _RS06490			hypothetical protein	47.73	33.75	7.87	1.84	1.684 68911 1	0.001 93069 1
No	Р	SAUSA300 _RS11760	SAUSA3 00_2136		Fe(3+) dicitrate ABC transporter substrate-binding protein	188.9	91.93	24.06	7.65	1.683 42459 9	0.000 31422 8

No	Р	SAUSA300 _RS13020	SAUSA3 00_2358		amino acid ABC transporter permease	220.0	59.36	11.75	13.04	1.681 13863 5	0.001 93244 6
No	I	SAUSA300 _RS12345	SAUSA3 00_2236		acyl-CoA dehydrogenase family protein	97.08	73.56	5.7	10.29	1.676 21105 3	0.002 72435 4
No	S	SAUSA300 _RS11025	SAUSA3 00_2005	tsaE	tRNA (adenosine(37)- N6)- threonylcarbamo yltransferase complex ATPase subunit type 1 TsaE	20.13	12.47	2.89	0.87	1.669 73262 8	0.001 09692 4
No	not classif ied	SAUSA300 _RS11740	SAUSA3 00_2132		hypothetical protein	150.9 3	368.8 2	38.3	25.11	1.664 57851 2	0.005 55708 9
No	not classif ied	SAUSA300 _RS15975	SAUSA3 00_0768		hypothetical protein	39.53	26.78	5.21	2.27	1.662 98814 7	0.001 11993 6
No	no homol og found	SAUSA300 _RS15905			hypothetical protein	96.84	155.0 2	20.88	10.19	1.660 53691 9	0.002 27024 5
No	not classif ied	SAUSA300 _RS06930			hypothetical protein	74.61	86.51	12.43	6.67	1.657 17849 3	0.000 80940 9
No	С	SAUSA300 _RS12870	SAUSA3 00_2329		cation:dicarboxyl ase symporter family transporter	292.5	208.5 6	35.5	20.85	1.656 15384 8	5.827 62E- 05

Table A-1 (cont'd)

No	S	SAUSA300 _RS05405	SAUSA3 00_1004		DUF4064 domain- containing protein	194.9 1	240.4 9	38.37	15.77	1.655 26972 7	0.000 80690 9
No	S	SAUSA300 _RS11450	SAUSA3 00_2080		DUF2529 domain- containing protein	57.9	48.55	9.91	3.17	1.648 93889 6	0.000 64581 9
No	no homol og found	SAUSA300 _RS13480		scrA	SaeRS system activator ScrA	34.34	33.12	6.55	1.89	1.647 15243 2	0.001 97426 7
No	E	SAUSA300 _RS13195	SAUSA3 00_2385		APC family permease	67.76	60.73	10.37	5.01	1.639 35185 5	0.000 19507 8
No	not classif ied	SAUSA300 _RS10680	SAUSA3 00_1947		hypothetical protein	40.26	14.33	1.6	3.16	1.632 32548 6	0.007 85912 5
No	no homol og found	SAUSA300 _RS12995			hypothetical protein	32.75	11.74	2.79	1.63	1.632 13518 8	0.009 31050 1
No	Т	SAUSA300 _RS09390	SAUSA3 00_1719	arsC	arsenate reductase (thioredoxin)	33.91	24.06	3.97	2.54	1.631 25639 9	0.000 33561 8
No	K	SAUSA300 _RS09835	SAUSA3 00_1797		helix-turn-helix transcriptional regulator	111.0	110.6 2	24.08	5.11	1.627 42977 2	0.003 23772 2
No	S	SAUSA300 _RS03940	SAUSA3 00_0732		YigZ family protein	60.53	52.27	9.99	3.9	1.626 13142 3	0.000 40956

Table A-1 (cont'd)

Yes	1	SAUSA300 _RS08990	SAUSA3 00_1647	accD	acetyl-CoA carboxylase, carboxyltransfera se subunit β	73.89	17.53	6.93	2.7	1.623 18077 2	0.002 77458 9
No	Т	SAUSA300 _RS11395	SAUSA3 00_2069		low molecular weight protein arginine phosphatase	58.8	37.2	7.65	3.56	1.619 68459 3	0.000 22134 3
No	S	SAUSA300 _RS03185	SAUSA3 00_0593		YwhD family protein	270.6 5	186.9 2	38.43	16.36	1.619 22215 6	0.000 15636 6
Yes	С	SAUSA300 _RS00940	SAUSA3 00_0179		NAD-dependent formate dehydrogenase	25.32	13.8	1.88	2.09	1.616 89403 3	0.001 01738 8
No	EG	SAUSA300 _RS13720	SAUSA3 00_2472		DMT family transporter	28.16	27.58	3.54	2.84	1.610 33236 8	0.000 69870 3
No	L	SAUSA300 _RS11145	SAUSA3 00_2026		type II toxin- antitoxin system PemK/MazF family toxin	303.0 7	267.2 8	49.84	21.14	1.603 50724 4	0.000 34227 3
No	no homol og found	SAUSA300 _RS05670	SAUSA3 00_1052	ecb	complement convertase inhibitor Ecb	624.1 6	640.9 2	114.7 9	46.23	1.603 23562 3	0.000 62243 9
No	not classif ied	SAUSA300 _RS03725	SAUSA3 00_0694		hypothetical protein	53.58	55.47	8.89	4.56	1.601 71711 5	0.000 59348 8
No	S	SAUSA300 _RS14600	SAUSA3 00_2628	rarD	EamA family transporter RarD	14.96	16.43	2.48	1.38	1.595 71971 7	0.001 11013 6

Table A-1 (cont'd)

No	Znot classif ied	SAUSA300 _RS07320	SAUSA3 00_1342		hypothetical protein	72.6	56.24	12.22	4.04	1.593 94340 7	0.000 84922 8
No	Ο	SAUSA300 _RS04430	SAUSA3 00_0822	sufB	Fe-S cluster assembly protein SufB	488.4 4	407.9 5	58.61	44.74	1.592 29720 3	0.000 28978
No	Znot classif ied	SAUSA300 _RS06715			DNA damage- induced cell division inhibitor SosA	24.94	36.32	6.61	1.74	1.589 58277 7	0.007 85912 5
No	Znot classif ied	SAUSA300 _RS05685	SAUSA3 00_1054		hypothetical protein	61.87	109.7 9	15.22	7.48	1.579 69408 6	0.004 18745 1
No	S	SAUSA300 _RS05000	SAUSA3 00_0931		YkvS family protein	412.0 1	333.0 2	75.98	21.64	1.572 45449 6	0.001 41517 5
Yes	J	SAUSA300 _RS08600	SAUSA3 00_1578	mnm A	tRNA 2- thiouridine(34) synthase MnmA	108.1	45.93	12.87	5.2	1.571 14724 9	0.000 53436 8
No	S	SAUSA300 _RS02480	SAUSA3 00_0462		stage 0 sporulation family protein	40.16	15.18	4.94	1.62	1.561 43048 7	0.001 91110 2
No	S	SAUSA300 _RS10670	SAUSA3 00_1945		DUF1514 family protein	77.39	22.66	4.25	5.4	1.549 10709 6	0.007 55492 2
No	E	SAUSA300 _RS12515	SAUSA3 00_2265		amino acid permease	177.9 8	165.9 2	26.76	16.09	1.548 63797 9	0.000 44467 5

Table A-1 (cont'd)

No	S	SAUSA300 _RS09795	SAUSA3 00_1789		DUF3267 domain- containing protein	10.34	15.83	3	0.73	1.544 51003 6	0.011 68031 6
No	J	SAUSA300 _RS04835	SAUSA3 00_0897	trpS	tryptophan tRNA ligase	176.9 4	72.64	18.67	10.16	1.536 92679 2	0.000 47404 1
No	S	SAUSA300 _RS09125	SAUSA3 00_1671		HAD family hydrolase	181.1 8	51.06	17.44	8.69	1.522 79607 8	0.002 2461
Yes	I	SAUSA300 _RS08985	SAUSA3 00_1646		acetyl-CoA carboxylase carboxyltransfera se subunit α	161.6 4	40.81	12.76	8.77	1.520 33318 9	0.003 43958 9
No	S	SAUSA300 _RS10420	SAUSA3 00_1903		YolD-like family protein	23.55	16.87	2.47	2.22	1.517 51130 6	0.002 11311 7
No	K	SAUSA300 _RS12900	SAUSA3 00_2336		MerR family transcriptional regulator	16.05	19.11	3.28	1.46	1.515 76496 1	0.003 01818 5
Yes	E	SAUSA300 _RS11035	SAUSA3 00_2006	ilvD	dihydroxy-acid dehydratase	77.99	73.24	6.57	10.21	1.508 12546 9	0.006 30868 1
No	G	SAUSA300 _RS01790	SAUSA3 00_0337	glpT	glycerol-3- phosphate transporter	19.07	18.53	2.83	1.92	1.507 48102 1	0.001 21541

Table A-1 (cont'd)

No	K	SAUSA300 _RS12510	SAUSA3 00_2264		MurR/RpiR family transcriptional regulator	189.9 9	121.5 3	26.15	13.14	1.506 09562 3	0.000 29813 1
No	KT	SAUSA300 _RS08665	SAUSA3 00_1590		bifunctional (p)ppGpp synthetase/guan osine-3',5'- bis(diphosphate) 3'- pyrophosphohyd	78.57	29.84	8.98	4.03	1.503 34436 1	0.001 05211 9
					rolase						
Yes	S	SAUSA300 _RS03690	SAUSA3 00_0687		hemolysin family protein	264.2	76.41	25.64	13.21	1.502 65353 2	0.002 27024 5
No	Е	SAUSA300 _RS10305	SAUSA3 00_1883	putP	sodium/proline symporter PutP	94.24	79.08	13	8.77	1.498 32046 4	0.000 58324 8
No	M	SAUSA300 _RS08655	SAUSA3 00_1588		N- acetylmuramoyl- L-alanine amidase	186.4 2	93.69	26.29	9.52	1.497 89992 1	0.000 93835 7
No	no homol og found	SAUSA300 _RS05040	SAUSA3 00_0938		hypothetical protein	24.21	13.03	4.33	0.65	1.496 91738 9	0.016 16133 3

Table A-1 (cont'd)

No	M	SAUSA300 _RS03340	SAUSA3 00_0623		N- acetylglucosamin yldiphosphounde caprenol N- acetyl-β-D- mannosaminyltra nsferase TarA	51.13	36.6	8.93	2.93	1.490 17036	0.001 61519 3
No	M	SAUSA300 _RS05045	SAUSA3 00_0939		glycosyltransfera se	47.35	29.22	7.63	2.56	1.485 18234 2	0.001 28773 5
Yes	S	SAUSA300 _RS13755	SAUSA3 00_2479	cidA	holin-like murein hydrolase modulator CidA	13.21	14.08	2.19	1.36	1.483 83005 5	0.005 13774 1
No	not classif ied	SAUSA300 _RS03635			hypothetical protein	181.7 1	149.0 3	36.03	10.23	1.483 21901 8	0.002 88603 1
No	S	SAUSA300 _RS06050	SAUSA3 00_1118		Asp23/Gls24 family envelope stress response protein	161.0 2	67.71	24.19	5.77	1.481 78445 7	0.005 28626 9
No	К	SAUSA300 _RS01375	SAUSA3 00_0258		GntR family transcriptional regulator	103.7 6	66.51	15.49	6.75	1.480 53195 4	0.000 59054 7
No	S	SAUSA300 _RS10665	SAUSA3 00_1944		hypothetical protein	135.2 6	80.61	12.3	12.55	1.476 37346 9	0.001 74690 8
Yes	S	SAUSA300 _RS00020	SAUSA3 00_0003	yaaA	S4 domain- containing protein YaaA	449.7 5	303.9 1	65.56	32.56	1.472 16923	0.000 46708 8

Table A-1 (cont'd)

No	no homol og found	SAUSA300 _RS05780			hypothetical protein	23.86	11.79	3.42	1.14	1.470 86689 8	0.009 84594 2
No	К	SAUSA300 _RS08625	SAUSA3 00_1583		Rrf2 family transcriptional regulator	182.3 6	158.8 7	34.91	12.67	1.466 27102 8	0.001 74379 6
No	S	SAUSA300 _RS13610	SAUSA3 00_2454		ABC transporter permease	136.9	240.3 3	33.92	19.38	1.461 44520 6	0.007 55863 4
No	E	SAUSA300 _RS09110	SAUSA3 00_1669		alanine glyoxylate aminotransferas e family protein	61.48	47.37	8.48	5.52	1.458 37528 6	0.000 71171 6
No	DZ	SAUSA300 _RS10915	SAUSA3 00_1985		SdrH family protein	71.79	43.47	10.37	4.75	1.456 18897 2	0.000 62267 1
No	J	SAUSA300 _RS08250	SAUSA3 00_1511	rpmG	50S ribosomal protein L33	2136. 37	2911. 45	611.4 9	156.7	1.454 35994 3	0.009 63741 5
Yes	L	SAUSA300 _RS07130	SAUSA3 00_1309	tnpA	IS200/IS605 family transposase	149.1 8	117.5 5	18.98	14.74	1.450 02665 7	0.001 12153 7
No	S	SAUSA300 _RS10785	SAUSA3 00_1966		phage antirepressor KiIAC domain- containing protein	93.28	54.55	7.6	9.22	1.449 93738 1	0.003 61269 5

Table A-1 (cont'd)

Yes	Н	SAUSA300 _RS11040	SAUSA3 00_2007	ilvB	biosynthetic-type acetolactate synthase large subunit	32	28.37	3.48	3.85	1.447 32409 7	0.003 80994 1
No	no homol og found	SAUSA300 _RS16075	SAUSA3 00_1325		hypothetical protein	58.59	74.56	11.9	6.59	1.444 8954	0.006 36126 3
No	S	SAUSA300 _RS13650	SAUSA3 00_2461		VOC family protein	37.41	45.32	6.17	4.81	1.443 03479 4	0.004 14988 5
No	not classif ied	SAUSA300 _RS04200	SAUSA3 00_0779		hypothetical protein	35.52	18.55	4.6	2.3	1.440 99013 2	0.002 58444 1
No	J	SAUSA300 _RS06460	SAUSA3 00_1196	hfq	RNA chaperone Hfq	173.2	145.9 1	27.04	15.61	1.440 87066 5	0.001 10529 7
No	S	SAUSA300 _RS04405	SAUSA3 00_0817		DUF368 domain- containing protein	68.46	74	11.14	7.88	1.439 57636 7	0.002 47351 1
No	not classif ied	SAUSA300 _RS06510	SAUSA3 00_1204		hypothetical protein	13.37	15.09	2.66	1.27	1.436 94966 4	0.016 68044 5
No	no homol og found	SAUSA300 _RS13785			hypothetical protein	68.92	92.59	18.19	6	1.435 81467 6	0.008 35562 6
No	G	SAUSA300 _RS14335	SAUSA3 00_2577	manA	mannose-6- phosphate isomerase, class I	36.49	42.77	6.4	4.35	1.434 78019 5	0.003 40078 8

Table A-1 (cont'd)

No	К	SAUSA300 _RS08905	SAUSA3 00_1632	nrdR	transcriptional regulator NrdR	121.1 8	54.72	15.69	6.99	1.431 59773 7	0.001 42500 6
No	J	SAUSA300 _RS00420	SAUSA3 00_0082		tRNA- dihydrouridine synthase	36.49	14.62	3.37	2.66	1.424 55196 8	0.003 86172 9
No	Н	SAUSA300 _RS14050	SAUSA3 00_2532		aspartate 1- decarboxylase	55.14	49.81	9.29	5.09	1.423 53577	0.001 96699 3
Yes	С	SAUSA300 _RS00280	SAUSA3 00_0055		zinc-dependent alcohol dehydrogenase family protein	129.5 5	78.69	8.73	14.51	1.416 52421 7	0.010 12381 3
Yes	Е	SAUSA300 _RS02755	SAUSA3 00_0514	cysE	serine O- acetyltransferase	43.79	18.54	5.02	2.82	1.414 36425 8	0.002 03345 8
No	G	SAUSA300 _RS14330	SAUSA3 00_2576		PTS fructose transporter subunit IIABC	96.44	137.2 3	16.91	14.84	1.406 24172 8	0.007 99770 6
No	S	SAUSA300 _RS12620	SAUSA3 00_2284		MOSC domain- containing protein	28.14	19.23	4.05	2.32	1.399 18894 2	0.001 67506 2
No	S	SAUSA300 _RS11745	SAUSA3 00_2133		YjiH family protein	43.93	48.18	7.17	5.41	1.396 03756 1	0.003 84165 3
No	not classif ied	SAUSA300 _RS12530			hypothetical protein	245.3 7	316.2 2	40.84	35.72	1.388 84351 3	0.007 56597 2
No	М	SAUSA300 _RS02345	SAUSA3 00_0438	aaa	autolysin/adhesi n Aaa	171.6 7	92.28	23.93	11.67	1.387 59625 6	0.001 05315

Table A-1 (cont'd)

No	S	SAUSA300 _RS05005	SAUSA3 00_0932		CPBP family glutamic-type intramembrane protease	285.9 4	286	70.5	18.18	1.385 10091 3	0.008 77972 4
No	S	SAUSA300 _RS12650	SAUSA3 00_2289		DUF805 domain- containing protein	42.42	44.88	7.92	4.54	1.383 11275 1	0.003 62052 2
No	no homol og found	SAUSA300 _RS09120			hypothetical protein	213.7	78.28	26.86	11.41	1.375 49677	0.005 73130 2
No	Р	SAUSA300 _RS06475	SAUSA3 00_1199		aminotransferas e class I/II-fold pyridoxal phosphate- dependent enzyme	24.91	20.2	3.62	2.52	1.370 23067 8	0.002 29806 1
No	М	SAUSA300 _RS09260	SAUSA3 00_1695		phosphotransfer ase family protein	284.6	127.6 9	42.69	14.61	1.369 90349 4	0.003 65029 5
No	S	SAUSA300 _RS10150	SAUSA3 00_1858	yfkAB	radical SAM/CxCxxxxC motif protein YfkAB	35.64	15.8	4.29	2.44	1.365 22991 8	0.002 27024 5
No	S	SAUSA300 _RS12735	SAUSA3 00_2304		YdcF family protein	404.7 4	329.8 4	78.14	30.52	1.364 43482 4	0.002 54971 5
No	K	SAUSA300 _RS06710	SAUSA3 00_1237	lexA	transcriptional repressor LexA	471.5 4	387.5 1	73.52	46.5	1.359 65185	0.001 70079 1

Table A-1 (cont'd)

No	J	SAUSA300 _RS10095	SAUSA3 00_1848		DUF402 domain- containing protein	141.9 8	105.9 4	24.03	11.53	1.358 10847 5	0.001 71715 9
No	Р	SAUSA300 _RS05250	SAUSA3 00_0977		energy-coupling factor transporter transmembranep rotein EcfT	13.13	12.19	2.24	1.35	1.354 1714	0.005 16210 3
No	M	SAUSA300 _RS06755	SAUSA3 00_1244	mscL	large conductance mechanosensitiv e channel protein MscL	1290. 88	1343. 27	288.6 3	114.5 6	1.350 85586 3	0.004 80331 5
No	S	SAUSA300 _RS11535	SAUSA3 00_2094		EVE domain- containing protein	87.56	60.64	14.48	6.79	1.350 40686 4	0.001 61872 3
Yes	G	SAUSA300 _RS11545	SAUSA3 00_2096		class I mannose- 6-phosphate isomerase	49.11	21.43	6.21	3.22	1.348 11544 5	0.002 67915
No	S	SAUSA300 _RS12440	SAUSA3 00_2253		CHAP domain- containing protein	160.5	164.4 1	35.71	14.09	1.346 51571 5	0.005 13774 1
Yes	E	SAUSA300 _RS02380	SAUSA3 00_0445	gltB	glutamate synthase large subunit	78.5	37.18	8.79	6.24	1.345 66566 6	0.002 01178
No	EGP	SAUSA300 _RS13275	SAUSA3 00_2397		MFS transporter	30.51	24.01	3.1	3.82	1.342 95767 9	0.009 19007 2
No	F	SAUSA300 _RS08670	SAUSA3 00_1591		adenine phosphoribosyltr ansferase	129.7 6	56.52	17.86	7.75	1.341 17588 9	0.003 21031 3

Table A-1 (cont'd)

No	Н	SAUSA300 _RS13220	SAUSA3 00_2388		2- dehydropantoate 2-reductase	37.75	19.42	4.78	2.92	1.339 12120 4	0.002 24151 6
Yes	J	SAUSA300 _RS02770	SAUSA3 00_0517	rlmB	23S rRNA (guanosine(2251)-2'-O)- methyltransferas e RImB	35.86	12.43	3.87	2.32	1.338 19171 8	0.006 29746 5
No	M	SAUSA300 _RS11485	SAUSA3 00_2086		hypothetical protein	31.57	17.72	4.62	2.29	1.335 27242 9	0.002 13174 4
Yes	V	SAUSA300 _RS09580	SAUSA3 00_1751		restriction endonuclease subunit S	23.34	11.7	3.67	1.37	1.323 03140 8	0.004 93153 7
No	J	SAUSA300 _RS01950	SAUSA3 00_0368	rpsR	30S ribosomal protein S18	1193. 48	1377. 16	211.7	160.7 6	1.320 52840 3	0.006 93641 6
No	G	SAUSA300 _RS09395	SAUSA3 00_1720		N- acetylglucosamin idase	230.7 4	155.2 8	44.78	14.16	1.319 49404	0.005 28551 7
No	not classif ied	SAUSA300 _RS10230	SAUSA3 00_1871		hypothetical protein	11.21	17.89	3.44	1.26	1.317 95591 1	0.027 98859 9
No	not classif ied	SAUSA300 _RS04135	SAUSA3 00_0767		hypothetical protein	21.31	28.68	5.26	2.52	1.316 63674 2	0.016 10815 5
No	К	SAUSA300 _RS12325	SAUSA3 00_2232		GNAT family N- acetyltransferase	24.73	12.98	3.13	2	1.312 80371 1	0.003 77325

Table A-1 (cont'd)

No	F	SAUSA300 _RS05970	SAUSA3 00_1102	gmk	guanylate kinase	204.4	96.8	33.1	11.1	1.305 89543 2	0.005 87962 2
No	no homol og found	SAUSA300 _RS11885			hypothetical protein	26.46	27.79	5.32	2.82	1.304 40647 1	0.016 55111 3
No	Р	SAUSA300 _RS04300	SAUSA3 00_0796		methionine ABC transporter ATP- binding protein	38.65	25.81	4.9	3.94	1.300 35872 9	0.003 86172 9
No	L	SAUSA300 _RS08430	SAUSA3 00_1546	holA	DNA polymerase III subunit delta	19.83	15.23	4.28	1.24	1.298 89407 5	0.010 57318
No	L	SAUSA300 _RS05345	SAUSA3 00_0992		YkyA family protein	196.7 6	166.2 7	45.06	13.18	1.297 23529 3	0.009 34947 6
No	Р	SAUSA300 _RS04955	SAUSA3 00_0922		TerC family protein	173.3 7	172.3 5	34.48	18.67	1.284 11193 6	0.005 16210 3
No	F	SAUSA300 _RS08550	SAUSA3 00_1568	udk	uridine kinase	149.7 6	58.64	23.67	7.14	1.276 60253 4	0.011 90017
No	S	SAUSA300 _RS11735	SAUSA3 00_2131		metal-dependent hydrolase	79.04	54.84	13.23	6.8	1.273 26640 5	0.003 36443 1
No	G	SAUSA300 _RS10415	SAUSA3 00_1902		beta-propeller fold lactonase family protein	152.9 6	54.17	16.85	10.86	1.272 69841 4	0.006 86438 2

Table A-1 (cont'd)

Yes	E	SAUSA300 _RS11065	SAUSA3 00_2012	leuC	3- isopropylmalate dehydratase large subunit	20.69	10.39	2.56	1.75	1.272 00293	0.004 75079 7
No	F	SAUSA300 _RS02075	SAUSA3 00_0389	guaA	glutamine- hydrolyzing GMP synthase	683.8 5	496.3 7	131.3 4	52.41	1.271 32022 8	0.004 19132 8
No	J	SAUSA300 _RS06455	SAUSA3 00_1195	miaA	tRNA (adenosine(37)- N6)- dimethylallyltrans feraseMiaA	50.03	41.51	10.21	4.29	1.258 00725 1	0.006 03220 1
No	S	SAUSA300 _RS05865	SAUSA3 00_1082		YggS family pyridoxal phosphate-dependent enzyme	90.45	18.25	10.67	4.05	1.257 07792 8	0.032 28346
No	S	SAUSA300 _RS07195	SAUSA3 00_1321		bacilliredoxin BrxA	158.7	182.2 4	33.62	19.98	1.254 26703 5	0.009 59696 8
No	S	SAUSA300 _RS03545	SAUSA3 00_0660		DUF456 domain- containing protein	63.61	94.19	15.26	9.91	1.249 73368 8	0.018 93260 4
No	S	SAUSA300 _RS01810	SAUSA3 00_0341		YeiH family protein	21.29	24.82	4.46	2.77	1.248 74336 8	0.012 10829 1
No	Α	SAUSA300 _RS02045	SAUSA3 00_0383		hypothetical protein	158.2	100.1	29.15	11.23	1.247 77718 9	0.005 28551 7

Table A-1 (cont'd)

No	S	SAUSA300 _RS03610	SAUSA3 00_0673		GTP-binding protein	71.89	81.92	14.82	9.38	1.240 62916 9	0.010 46696 6
No	S	SAUSA300 _RS13395	SAUSA3 00_2420		DUF1433 domain- containing protein	12.45	10.01	2.93	0.79	1.233 58465 8	0.029 95832 2
No	F	SAUSA300 _RS08180	SAUSA3 00_1499		shikimate kinase	84.65	84.64	16.47	10.07	1.232 98450 8	0.008 39026 9
No	G	SAUSA300 _RS06435	SAUSA3 00_1191		MIP/aquaporin family protein	61.75	77.99	15.24	7.79	1.229 98893 4	0.014 53771 6
No	S	SAUSA300 _RS05690	SAUSA3 00_1055	efb	complement convertase inhibitor Efb	157.6 4	51.02	21.7	8.61	1.229 12856 2	0.014 77427 2
No	0	SAUSA300 _RS06465	SAUSA3 00_1197		glutathione peroxidase	257.3 7	246.9 4	51.13	28.85	1.227 60832 8	0.007 12503 6
No	K	SAUSA300 _RS03605	SAUSA3 00_0672	mgrA	HTH-type transcriptional regulator MgrA	10215 .53	6639. 23	2075. 02	663.1 2	1.226 51415 5	0.009 41309 8
No	no homol og found	SAUSA300 _RS10805			transcriptional regulator	51.87	51.53	7.93	7.37	1.224 01226 7	0.019 71775 5
No	not classif ied	SAUSA300 _RS03240	SAUSA3 00_0603		hypothetical protein	79.8	57.29	13.22	7.76	1.224 00905 5	0.004 62397 3

Table A-1 (cont'd)

Yes	L	SAUSA300 _RS08900	SAUSA3 00_1631		replication initiation and membrane attachment family protein	38.67	10.3	4.78	2.11	1.220 85193 5	0.021 88066
No	Н	SAUSA300 _RS12260	SAUSA3 00_2219	moaA	GTP 3',8-cyclase MoaA	39.26	17.5	5.65	2.78	1.215 72261 8	0.007 55863 4
No	V	SAUSA300 _RS13605	SAUSA3 00_2453		ATP-binding cassette domain-containing protein	58.55	53.07	13.06	5.48	1.204 61912	0.010 41708
No	S	SAUSA300 _RS03525	SAUSA3 00_0657		DUF402 domain- containing protein	52.73	29.16	8.59	4.1	1.198 55853	0.006 87217 4
Yes	Н	SAUSA300 _RS11050	SAUSA3 00_2009	ilvC	ketol-acid reductoisomeras e	20.65	13.93	3.04	2.17	1.196 36089 3	0.008 42999 2
No	no homol og found	SAUSA300 _RS08890			hypothetical protein	904.2	1279. 89	302.9 2	93.32	1.193 40428 6	0.032 61905 5
No	K	SAUSA300 _RS10800			helix-turn-helix transcriptional regulator	67.8	50.72	8.01	9.05	1.178 65765 4	0.022 29163 9
No	S	SAUSA300 _RS05695	SAUSA3 00_1056	scb	complement inhibitor SCIN-B	191.4 5	101.4 7	33.86	13.22	1.175 21708 1	0.009 95154 3

Table A-1 (cont'd)

No	no homol og found	SAUSA300 _RS07845			hypothetical protein	246.1 6	171.2 7	42.45	24.01	1.168 13638 2	0.007 57869
No	Н	SAUSA300 _RS09465	SAUSA3 00_1730	metK	methionine adenosyltransfer ase	222.5 5	164.9 9	40.92	21.89	1.167 11073 5	0.006 59009 3
No	not classif ied	SAUSA300 _RS04215			hypothetical protein	50.22	48.82	12.3	4.8	1.164 37255 2	0.020 89623
Yes	E	SAUSA300 _RS06640	SAUSA3 00_1225		aspartate kinase	36.67	21.13	6.66	2.77	1.159 05377 4	0.009 89382 8
No	S	SAUSA300 _RS03995			CsbA family protein	23.37	25.11	6.84	1.88	1.158 73752 3	0.046 02923 6
No	S	SAUSA300 _RS13320	SAUSA3 00_2405		CPBP family lipoprotein N-acylation protein LnsB	33.91	42.42	9.76	3.9	1.154 89972 7	0.027 67165 6
No	S	SAUSA300 _RS07045	SAUSA3 00_1296	msaA	regulatory protein MsaA	75.87	58.62	12.87	8.55	1.153 77095 3	0.011 11118 1
No	S	SAUSA300 _RS02910	SAUSA3 00_0545		NADPH- dependent FMN reductase	152.8 2	129.6 3	31.42	15.85	1.153 72675 8	0.009 95980 9
No	G	SAUSA300 _RS12460	SAUSA3 00_2256		N- acetylglucosamin idase	48.97	24.28	8.33	3.5	1.142 08471 7	0.012 78423 7

Table A-1 (cont'd)

No	J	SAUSA300 _RS10300	SAUSA3 00_1882	gatC	Asp- tRNA(Asn)/Glu- tRNA(Gln) amidotransferas e subunit GatC	31.63	21.33	7.42	1.88	1.137 43769 9	0.038 87032 6
No	К	SAUSA300 _RS10060	SAUSA3 00_1842	perR	peroxide- responsive transcriptional repressor PerR	1089. 67	1425. 44	309.6 7	142.5 2	1.133 66594 3	0.027 12680 7
No	L	SAUSA300 _RS08675	SAUSA3 00_1592	recJ	single-stranded- DNA-specific exonuclease RecJ	40.63	12.69	6.23	2.16	1.132 89977 8	0.031 54264 7
No	K	SAUSA300 _RS14275	SAUSA3 00_2566		Crp/Fnr family transcriptional regulator	18.07	16.91	3.88	2.07	1.131 04366 1	0.019 59857 7
No	S	SAUSA300 _RS00960	SAUSA3 00_0183		YagU family protein	669.0 7	851.0 3	107.1 6	130.9 2	1.126 45836 2	0.045 75790 6
No	S	SAUSA300 _RS13310	SAUSA3 00_2403		DUF1307 domain- containing protein	328.5 6	390.1 6	88.57	40.57	1.122 00643 9	0.024 43578 6
No	S	SAUSA300 _RS10795			DUF2829 domain- containing protein	125.1 6	72.27	12.11	15.99	1.118 72981 6	0.036 35245 1
No	Т	SAUSA300 _RS09085	SAUSA3 00_1665		GAF domain- containing protein	96.91	75.87	17.75	10.9	1.115 69292 3	0.012 01021 6

Table A-1 (cont'd)

No	К	SAUSA300 _RS12805	SAUSA3 00_2318		GNAT family N- acetyltransferase	29.12	13.13	4.4	2.3	1.108 93827 6	0.023 72204 2
No	S	SAUSA300 _RS03785	SAUSA3 00_0704		ABC-F family ATP-binding cassette domain- containing protein	24.76	10.19	4.31	1.49	1.103 68294	0.026 50557 7
No	not classif ied	SAUSA300 _RS04195	SAUSA3 00_0778		hypothetical protein	49.17	23.9	7.52	4.14	1.100 88045 4	0.023 49894 1
No	no homol og found	SAUSA300 _RS05705			hypothetical protein	99.57	68.67	18.39	9.88	1.100 08968 1	0.015 17820 2
No	F	SAUSA300 _RS02070	SAUSA3 00_0388	guaB	IMP dehydrogenase	170.9	95.65	29.65	14.65	1.099 77313 8	0.010 46696 6
No	S	SAUSA300 _RS13170	SAUSA3 00_2381		C39 family peptidase	53.1	56.51	11.8	7.28	1.094 42907 7	0.023 98781
No	S	SAUSA300 _RS05400	SAUSA3 00_1003		DUF4064 domain- containing protein	817.4	399.2 6	125.9 5	70.47	1.093 71469 5	0.011 34414
No	EGP	SAUSA300 _RS12235	SAUSA3 00_2217		MFS transporter	15.16	15.95	2.92	2.3	1.093 29894 5	0.030 63703
No	Н	SAUSA300 _RS14065	SAUSA3 00_2535		oxidoreductase	62.47	66.33	12.81	9.17	1.092 34415 6	0.025 00889

Table A-1 (cont'd)

No	М	SAUSA300 _RS04935	SAUSA3 00_0918		diglucosyl diacylglycerol synthase	34.8	14.53	5.05	2.79	1.090 02689 4	0.018 53083 3
No	S	SAUSA300 _RS11150		mazE	type II toxin- antitoxin system antitoxin MazE	333.3 4	355.5 1	89.76	37.35	1.084 16903 8	0.028 34720 4
No	0	SAUSA300 _RS08835	SAUSA3 00_1621	clpX	ATP-dependent Clp protease ATP-binding subunit ClpX	247.4	76.03	33.69	16.79	1.082 92858 6	0.030 63703
No	U	SAUSA300 _RS11265	SAUSA3 00_2046	yidC	membrane protein insertase YidC	346.2 5	176	61.76	26.6	1.081 71912 9	0.015 04576
No	S	SAUSA300 _RS02370	SAUSA3 00_0443		YibE/F family protein	21.74	21.15	5.18	2.52	1.079 12510 6	0.024 60168 6
No	Р	SAUSA300 _RS03405	SAUSA3 00_0635		iron ABC transporter permease	148.0 2	109.3 9	25.24	17.57	1.078 86147 4	0.014 25540 4
No	J	SAUSA300 _RS09255	SAUSA3 00_1694	trmB	tRNA (guanosine(46)- N7)- methyltransferas e TrmB	192.6 6	112.8 6	41.54	13.17	1.073 04437 5	0.026 48225 1
No	Е	SAUSA300 _RS06675	SAUSA3 00_1231		amino acid permease	92.52	65.14	14.47	11.31	1.070 53652 2	0.016 92635 5
No	Р	SAUSA300 _RS08270	SAUSA3 00_1515		metal ABC transporter permease	29.89	18.53	4.3	3.46	1.068 11384 8	0.021 34235 5

Table A-1 (cont'd)

No	Н	SAUSA300 _RS08815	SAUSA3 00_1617	hemC	hydroxymethylbil ane synthase	69.66	38.64	10.69	7	1.067 52749 1	0.014 65515 5
No	Н	SAUSA300 _RS04475	SAUSA3 00_0829	lipA	lipoyl synthase	609.9 2	403.1 7	94.8	72.1	1.055 54954 1	0.016 68044 5
No	S	SAUSA300 _RS02950	SAUSA3 00_0553		YojF family protein	69.63	55.93	15.25	7.4	1.045 38281 3	0.023 36741 5
No	S	SAUSA300 _RS10240	SAUSA3 00_1872		type 1 glutamine amidotransferas e	84.42	34.78	13.93	6.27	1.034 75426 2	0.028 23519 1
No	Е	SAUSA300 _RS07930	SAUSA3 00_1452	proC	pyrroline-5- carboxylate reductase	70.76	53.81	12.44	8.94	1.033 01388 2	0.022 28597
No	K	SAUSA300 _RS12730	SAUSA3 00_2303		MarR family transcriptional regulator	1378. 09	1057. 11	334.3 4	122.6 4	1.032 20521 4	0.027 67165 6
No	S	SAUSA300 _RS02530	SAUSA3 00_0471		Veg family protein	1717. 12	2224. 68	498	260.6 1	1.014 74517 5	0.047 95060 2
No	S	SAUSA300 _RS08290	SAUSA3 00_1519		Nif3-like dinuclear metal center hexameric protein	58.94	29.78	10.56	5.04	1.007 20848 1	0.024 43578 6
No	L	SAUSA300 _RS10815	SAUSA3 00_1970		exonuclease domain- containing protein	39.35	29.05	9.36	3.58	1.005 6324	0.033 43446 2

Table A-1 (cont'd)

Genes downregulated in WT sulfur starvation when compared to WT CSSC

Share d with cymR: :Tn -S (Table 3)	COG	Locus	Old locus	Gene	Product	TPM. 1 Starv	TPM. 2 Starv	TPM. 1 CSSC	TPM. 2 CSSC	DE Log ₂ FC	DE Adj. <i>P</i> - value
No	F	SAUSA300 _RS05215	SAUSA3 00_0970	purQ	phosphoribosylfo rmylglycinamidin e synthase I	0.86	0.22	40.41	23.03	- 7.111 86249 8	4.620 44E- 51
No	F	SAUSA300 _RS05230	SAUSA3 00_0973	purM	phosphoribosylfo rmylglycinamidin e cyclo-ligase	0.77	0.13	29.22	21.31	- 7.096 25442 8	3.325 62E- 44
No	F	SAUSA300 _RS05220	SAUSA3 00_0971	purL	phosphoribosylfo rmylglycinamidin e synthase subunit PurL	0.89	0.41	36.43	30.92	- 7.036 78370 4	1.591 7E-61
Yes	F	SAUSA300 _RS05210	SAUSA3 00_0969	purS	phosphoribosylfo rmylglycinamidin e synthase subunit PurS	1.35	0.49	72.1	33.02	- 6.951 03635	4.968 82E- 48
No	F	SAUSA300 _RS05235	SAUSA3 00_0974	purN	phosphoribosylgl ycinamide formyltransferase	0.85	0.19	31.59	19.8	- 6.891 35605 3	1.592 32E- 44

Table A-1 (cont'd)

No	F	SAUSA300 _RS05225	SAUSA3 00_0972	purF	amidophosphorib osyltransferase	1.31	0.57	38.02	34.89	- 6.655 96430 1	5.458 43E- 52
No	F	SAUSA300 _RS05200	SAUSA3 00_0967	purK	5- (carboxyamino)i midazole ribonucleotide synthase	0.74	0.25	28.8	13.9	- 6.654 59084 2	8.323 01E- 50
No	F	SAUSA300 _RS05240	SAUSA3 00_0975	purH	bifunctional phosphoribosyla minoimidazoleca rboxamide formyltransferase /IMP cyclohydrolase	1.56	0.53	46.45	29.42	- 6.515 50422 8	1.998 21E- 51
No	F	SAUSA300 _RS05205	SAUSA3 00_0968	purC	phosphoribosyla minoimidazolesu ccinocarboxamid e synthase	1	0.83	38.29	15.25	- 5.981 58317 1	1.239 56E- 41
Yes	F	SAUSA300 _RS05245	SAUSA3 00_0976	purD	phosphoribosyla mineglycine ligase	16.71	11.24	317.5 9	233.7 9	- 5.644 00475 5	3.705 64E- 47
Yes	S	SAUSA300 _RS04760	SAUSA3 00_0883		MAP domain- containing protein	41.55	17.26	414.1 4	432.3 2	- 5.302 89579 8	1.583 78E- 32

Table A-1 (cont'd)

No	no homol og found	SAUSA300 _RS11930	SAUSA3 00_2164		MAP domain- containing protein	32.26	11.96	158.3	288.1 1	- 4.847 76974 2	1.234 11E- 19
Yes	S	SAUSA300 _RS03005			C1q-binding complement inhibitor VraX	25631 .12	16475 .97	18299 6.97	23280 9.5	- 4.736 80252 5	7.233 62E- 25
No	S	SAUSA300 _RS13975	SAUSA3 00_2518		alpha/beta hydrolase	9.82	6.47	43.36	106.5 4	- 4.645 38792 6	2.060 63E- 16
Yes	not classif ied	SAUSA300 _RS03000			hypothetical protein	637.5 3	308.7 4	4243. 07	3649. 74	- 4.509 44012 9	1.585 52E- 27
No	S	SAUSA300 _RS13280	SAUSA3 00_2398		iron export ABC transporter permease subunit FetB	19.01	15.86	78.94	208.8 8	- 4.455 02968 5	1.801 83E- 14
No	no homol og found	SAUSA300 _RS15545	SAUSA3 00_2141		IS1182 family transposase	5.88	2.45	28.69	30	- 4.307 27829 3	2.895 63E- 21
No	S	SAUSA300 _RS11805	SAUSA3 00_2142	asp23	Asp23/Gls24 family envelope stress response protein	594.6 8	188.2 8	2619. 07	2540. 32	- 4.231 06999 8	2.443 86E- 19

Table A-1 (cont'd)

No	GM	SAUSA300 _RS11550	SAUSA3 00_2097		SDR family oxidoreductase	10.23	6	46.7	59.05	- 4.169 36178 3	6.346 11E- 19
No	G	SAUSA300 _RS01005	SAUSA3 00_0191	ptsG	glucose-specific PTS transporter subunit IIBC	6.6	4.59	36.3	35.28	- 4.092 07745 2	2.162 3E-21
Yes	F	SAUSA300 _RS05195	SAUSA3 00_0966	purE	5- (carboxyamino)i midazole ribonucleotide mutase	1.66	2.67	19.08	13.89	- 4.089 78647 1	7.690 67E- 16
Yes	S	SAUSA300 _RS13155	SAUSA3 00_2378		membrane protein	52.31	22.37	212.3 8	198.0 4	- 3.948 96652 1	1.910 46E- 19
Yes	0	SAUSA300 _RS09140	SAUSA3 00_1674		trypsin-like peptidase domain- containing protein	41.35	23.5	184.6 7	173.5 8	3.921 11562 2	2.103 26E- 20
Yes	no homol og found	SAUSA300 _RS09670	SAUSA3 00_1767	epiA	gallidermin/nisin family lantibiotic	5.99	11.07	61.45	44.39	- 3.774 82775 1	1.140 84E- 12
No	Q	SAUSA300 _RS00950	SAUSA3 00_0181		non-ribosomal peptide synthetase	11.5	4.61	39.43	35.55	- 3.720 75236 1	3.134 34E- 17

Table A-1 (cont'd)

Yes	no homol og found	SAUSA300 _RS15740			phenol-soluble modulin PSM- alpha-1	24086 .72	14456 .95	80513 .32	90835 .34	- 3.629 96614 1	6.553 75E- 16
Yes	no homol og found	SAUSA300 _RS15735			phenol-soluble modulin PSM- alpha-2	32964 .12	19614	10066 3.79	12803 9.36	- 3.612 45600 6	1.137 77E- 14
Yes	G	SAUSA300 _RS02960	SAUSA3 00_0555		3-hexulose-6- phosphate synthase	12.15	4.89	29.42	40.12	- 3.575 86678 2	1.019 85E- 12
No	M	SAUSA300 _RS01750	SAUSA3 00_0329		aldehyde reductase	11.47	5.05	20.74	45.12	- 3.563 95695 3	2.425 18E- 10
No	no homol og found	SAUSA300 _RS06215			hypothetical protein	30.93	27.32	128.6 6	128.8 5	- 3.524 48483 3	3.071 67E- 14
No	F	SAUSA300 _RS14175	SAUSA3 00_2551	nrdD	anaerobic ribonucleoside- triphosphate reductase	16.57	6.48	28.93	55.94	- 3.467 18251 1	2.932 64E- 10
No	G	SAUSA300 _RS13740	SAUSA3 00_2476	ptsG	glucose-specific PTS transporter subunit IIBC	4.83	2.17	11.81	14.77	- 3.457 84172 2	7.116 11E- 13

Table A-1 (cont'd)

No	1	SAUSA300 _RS13270	SAUSA3 00_2396	pnbA	carboxylesterase /lipase family protein	19.06	8.99	38.39	66.14	- 3.454 53656 3	4.360 95E- 11
No	М	SAUSA300 _RS13750	SAUSA3 00_2478	cidB	LrgB family protein	18.38	13.8	44.89	79.26	- 3.427 31880 8	8.019 27E- 11
No	F	SAUSA300 _RS09165	SAUSA3 00_1678	fhs	formate tetrahydrofolate ligase	60.98	26.29	177.7 3	153.6 3	- 3.423 73895 5	2.171 7E-15
No	Н	SAUSA300 _RS00955	SAUSA3 00_0182		4'- phosphopanteth einyl transferase superfamily protein	26.78	24.44	117.5 8	96.52	- 3.421 76003 8	3.038 73E- 15
Yes	no homol og found	SAUSA300 _RS15090			phenol-soluble modulin PSM- alpha-3	36859 .41	23267 .68	98132 .17	12580 6.27	- 3.387 87570 3	6.416 37E- 13
No	С	SAUSA300 _RS11360	SAUSA3 00_2063	atpE	F0F1 ATP synthase subunit C	32.97	17.66	90.41	96.99	- 3.379 19918 1	1.177 99E- 13
No	I	SAUSA300 _RS00355	SAUSA3 00_0070		alpha/beta hydrolase	18.61	12.36	54.45	61.27	- 3.368 05660 6	1.506 26E- 13

Table A-1 (cont'd)

No	not classif ied	SAUSA300 _RS02995	SAUSA3 00_0561		protein VraC	6.12	2.31	14.5	14.94	- 3.316 34688	1.581 93E- 11
Yes	M	SAUSA300 _RS02965	SAUSA3 00_0556		6-phospho-3- hexuloisomerase	30.97	21.99	68.49	115.7 8	- 3.293 19601 4	2.372 57E- 10
Yes	J	SAUSA300 _RS02850	SAUSA3 00_0533	tuf	elongation factor Tu	1122. 7	991.5 6	3207. 41	4132. 39	- 3.226 53168 5	3.215 03E- 11
Yes	Н	SAUSA300 _RS04995	SAUSA3 00_0930		lipoateprotein ligase	7.75	5.74	33.94	16.76	- 3.224 47977 3	2.558 79E- 15
No	S	SAUSA300 _RS12470	SAUSA3 00_2257		DUF1641 domain- containing protein	13.01	7.36	32.33	35.22	- 3.219 98161 4	2.305 72E- 12
No	S	SAUSA300 _RS11810	SAUSA3 00_2143		DUF2273 domain- containing protein	234.9	76.71	547.9 3	459.1 1	- 3.219 37747 1	3.210 76E- 12
No	M	SAUSA300 _RS07485	SAUSA3 00_1370	ebpS	elastin-binding protein EbpS	78.5	57.76	222	241.3 6	- 3.216 09147 9	1.088 08E- 12
No	0	SAUSA300 _RS04245	SAUSA3 00_0786		organic hydroperoxide resistance protein	37.67	28.21	92.19	128.0 5	- 3.212 64378 8	6.578 98E- 11

Table A-1 (cont'd)

No	I	SAUSA300 _RS03070	SAUSA3 00_0574		phosphomevalon ate kinase	5.16	2.82	10.06	15.37	- 3.202 01967 3	3.828 96E- 10
No	K	SAUSA300 _RS06210	SAUSA3 00_1148	codY	GTP-sensing pleiotropic transcriptional regulator CodY	67.53	37.35	156.1 4	178.6 8	- 3.182 82773 3	3.373 04E- 12
No	Р	SAUSA300 _RS00900	SAUSA3 00_0171		cation diffusion facilitator family transporter	8.63	4.65	17.97	23.15	- 3.151 36336 7	6.665 8E-11
No	G	SAUSA300 _RS14010	SAUSA3 00_2525		fructosamine kinase family protein	14.48	11.97	27.03	55.83	- 3.133 04462 5	2.071 98E- 08
No	S	SAUSA300 _RS10180	SAUSA3 00_1864		YihY/virulence factor BrkB family protein	20.06	12.9	37.38	57.47	- 3.042 09501 8	1.711 95E- 09
Yes	no homol og found	SAUSA300 _RS15730			phenol-soluble modulin PSM- alpha-4	28076 .72	19700 .69	67198 .08	73350 .18	- 3.023 94534 4	2.170 06E- 11
No	IQ	SAUSA300 _RS12575	SAUSA3 00_2275		SDR family oxidoreductase	32.61	21.9	52.95	99.17	- 3.007 62496 4	2.196 04E- 08

Table A-1 (cont'd)

No	G	SAUSA300 _RS04090	SAUSA3 00_0758	tpiA	triose-phosphate isomerase	15.05	5.81	21.08	34.31	- 3.005 65227 3	1.948 75E- 08
No	D	SAUSA300 _RS01705	SAUSA3 00_0320		YSIRK domain- containing triacylglycerol lipase Lip2/Geh	140.9 7	59.25	207.4 9	325.4 9	- 3.000 79235 3	6.986 97E- 09
No	0	SAUSA300 _RS14170	SAUSA3 00_2550	nrdG	anaerobic ribonucleoside- triphosphate reductase activating protein	18.17	13.98	23.29	64.75	- 2.974 52011 3	8.516 14E- 07
No	G	SAUSA300 _RS04495	SAUSA3 00_0833		TIGR01457 family HAD-type hydrolase	9.43	3.31	16.45	16.48	- 2.921 97974 6	1.450 98E- 09
No	G	SAUSA300 _RS14100	SAUSA3 00_2540		fructose bisphosphate aldolase	199.8 2	89.39	418.8 8	342.2 3	- 2.899 28851 4	1.132 91E- 11
Yes	E	SAUSA300 _RS04565	SAUSA3 00_0845	ampA	M17 family metallopeptidase	22.02	15.65	63.44	42.71	- 2.890 04652 9	7.308 74E- 13
No	F	SAUSA300 _RS04085	SAUSA3 00_0757	pgk	phosphoglycerat e kinase	35.94	20.82	53.97	89.46	- 2.887 3278	2.545 18E- 08

Table A-1 (cont'd)

No	no homol og found	SAUSA300 _RS12420			hypothetical protein	319.1 5	307.0 9	1125. 37	722.8	- 2.883 80010 5	1.401 91E- 11
No	Н	SAUSA300 _RS10075	SAUSA3 00_1845	hemL	glutamate-1- semialdehyde 2,1- aminomutase	10.28	6.22	23.73	20.27	- 2.877 79601 6	1.195 83E- 11
No	Q	SAUSA300 _RS00990	SAUSA3 00_0189	entB	isochorismatase family protein	4.71	5.33	15.04	13.73	- 2.858 09828 8	4.369 57E- 09
No	S	SAUSA300 _RS09455	SAUSA3 00_1728		aldo/keto reductase	20.21	12.56	38.57	43.51	- 2.822 57080 4	8.706 81E- 10
Yes	Н	SAUSA300 _RS01160	SAUSA3 00_0221	pflA	pyruvate formate-lyase- activating protein	9.12	6.73	10.15	27.96	- 2.803 28741 7	3.780 05E- 06
No	С	SAUSA300 _RS05170	SAUSA3 00_0962	qoxB	cytochrome aa3 quinol oxidase subunit I	69.9	32.65	87.12	148.1 5	- 2.789 08636 3	1.305 22E- 07
No	G	SAUSA300 _RS03675	SAUSA3 00_0685	fruA	fructose-specific PTS transporter subunit EIIC	16.67	15.01	19.71	57.27	- 2.787 50809 3	5.889 31E- 06

Table A-1 (cont'd)

No	F	SAUSA300 _RS05190	SAUSA3 00_0965	folD	bifunctional methylenetetrahy drofolate dehydrogenase/ methenyltetrahyd rofolate cyclohydrolase FoID	71.94	31.74	114.2 4	122.8 3	- 2.743 03919 7	3.236 24E- 09
Yes	S	SAUSA300 _RS13645	SAUSA3 00_2460		GNAT family N- acetyltransferase	24.61	28.86	99.44	51.19	- 2.731 65759 2	2.966 38E- 09
No	С	SAUSA300 _RS06765	SAUSA3 00_1246	acnA	aconitate hydratase AcnA	51.23	22.95	65.18	95.79	- 2.704 64100 5	1.046 43E- 07
No	Н	SAUSA300 _RS01405	SAUSA3 00_0262	rbsK	ribokinase	6.74	6.85	13.94	18.15	- 2.662 07194 7	2.193 34E- 07
No	not classif ied	SAUSA300 _RS09275	SAUSA3 00_1698		YtxH domain- containing protein	58.85	39.14	125.7	101.9 3	- 2.661 54169 7	2.039 9E-10
No	С	SAUSA300 _RS05355	SAUSA3 00_0994	pdhB	transketolase C- terminal domain- containing protein	28.65	13.24	52.12	40.31	- 2.638 28701 9	5.044 02E- 10

Table A-1 (cont'd)

No	S	SAUSA300 _RS05995	SAUSA3 00_1107		TM2 domain- containing protein	1035. 35	1191. 02	2439. 26	2604. 9	- 2.557 12615 6	2.264 1E-07
No	С	SAUSA300 _RS11365	SAUSA3 00_2064	atpB	F0F1 ATP synthase subunit A	28.1	13	42.65	39.51	- 2.527 32706 3	1.564 47E- 08
No	С	SAUSA300 _RS01155	SAUSA3 00_0220	pflB	formate C- acetyltransferase	39.54	24.31	38.44	84.3	- 2.523 75975 4	8.494 84E- 06
Yes	G	SAUSA300 _RS04670	SAUSA3 00_0865	pgi	glucose-6- phosphate isomerase	91.76	46.06	156.9 7	120.8 5	- 2.501 36028 7	1.950 23E- 09
No	S	SAUSA300 _RS08360	SAUSA3 00_1533		flotillin-like protein FloA	123.5 9	67.69	180.4 9	194.3 5	- 2.498 33243 2	4.016 57E- 08
No	not classif ied	SAUSA300 _RS08355	SAUSA3 00_1532		hypothetical protein	121.6 8	52.38	174.5 8	163.1 1	- 2.498 17972 3	2.779 85E- 08
No	С	SAUSA300 _RS03190	SAUSA3 00_0594	adh	alcohol dehydrogenase AdhP	159.2 5	78.73	184.0 5	250.8	- 2.445 44814 1	7.984 98E- 07

Table A-1 (cont'd)

No	not classif ied	SAUSA300 _RS04225	SAUSA3 00_0781		hypothetical protein	132.8 8	103.7 9	248.9 9	225.5 7	- 2.442 93308 9	2.898 06E- 08
No	S	SAUSA300 _RS14620	SAUSA3 00_2632		HdeD family acid-resistance protein	51.71	37.15	64.51	102.9 9	- 2.442 67942 1	2.785 67E- 06
No	I	SAUSA300 _RS13795	SAUSA3 00_2484		hydroxymethylgl utaryl-CoA synthase	84.76	62.34	164.8 9	131.1 7	- 2.440 14220 6	6.511 91E- 09
No	К	SAUSA300 _RS03665	SAUSA3 00_0683		DeoR/GlpR family DNA- binding transcription regulator	108.2 2	53.2	152.7 7	145.0 6	- 2.412 71013	5.295 21E- 08
No	KOT	SAUSA300 _RS10935	SAUSA3 00_1989	agrB	accessory gene regulator AgrB	926.3 4	501.3 5	1575. 92	1121. 46	- 2.386 48572 5	4.643 79E- 09
No	Р	SAUSA300 _RS04605	SAUSA3 00_0853	mnhC	Na+/H+ antiporter Mnh1 subunit C	34.2	17.04	54.14	41.16	- 2.383 38330 7	2.392 95E- 08
No	S	SAUSA300 _RS04220	SAUSA3 00_0782		sterile α motif- like domain- containing protein	248.0 1	192.6 1	383.7 3	439.2	- 2.378 10837 3	4.781 11E- 07

Table A-1 (cont'd)

No	С	SAUSA300 _RS05360	SAUSA3 00_0995		dihydrolipoamide acetyltransferase family protein	26.25	11.84	32.46	34.41	- 2.369 85281 6	3.817 64E- 07
Yes	J	SAUSA300 _RS03960	SAUSA3 00_0736	yfiA	ribosome- associated translation inhibitor RaiA	1334. 07	1434. 27	3386. 21	2297. 34	- 2.362 78535 7	1.387 71E- 07
No	G	SAUSA300 _RS06725	SAUSA3 00_1239	tkt	transketolase	83.27	51.86	117.5 1	123.9 8	- 2.346 32222 5	2.208 95E- 07
No	E	SAUSA300 _RS03030	SAUSA3 00_0566		amino acid permease	30.32	20.78	39.1	50.82	- 2.334 23180 4	1.685 95E- 06
Yes	not classif ied	SAUSA300 _RS13040	SAUSA3 00_2361		putative metal homeostasis protein	749.1	1675. 86	1920. 36	3051. 79	- 2.333 27593 4	0.000 18971 5
No	Р	SAUSA300 _RS00595	SAUSA3 00_0115	sirC	staphyloferrin B ABC transporter permease subunit SirC	29.97	24.63	44.59	53.55	- 2.319 75872 4	1.636 74E- 06
Yes	J	SAUSA300 _RS02575	SAUSA3 00_0479		50S ribosomal protein L25/general stress proteinCtc	698.2 1	446.9 2	1187. 14	887.4 2	- 2.308 26470 7	1.896 93E- 08

Table A-1 (cont'd)

No	S	SAUSA300 _RS11815	SAUSA3 00_2144		alkaline shock response membrane anchor protein AmaP	329	156.7 4	463.1 5	377.1 8	- 2.303 96945 4	7.388 59E- 08
No	K	SAUSA300 _RS03250	SAUSA3 00_0605	sarA	global transcriptional regulator SarA	550.5 4	628.5	1240	1037. 55	- 2.300 81455	1.061 32E- 06
No	0	SAUSA300 _RS10900	SAUSA3 00_1982	groEL	chaperonin GroEL	74.38	38.88	95.38	86.68	2.204 73838 5	4.680 7E-07
No	Т	SAUSA300 _RS09015	SAUSA3 00_1652		universal stress protein	315.7	260.7 3	601.5 9	401.9 1	- 2.184 55110 2	1.895 01E- 07
No	not classif ied	SAUSA300 _RS12160	SAUSA3 00_2206		hypothetical protein	95.1	78.95	192.5 3	113.2 4	- 2.172 23099 1	2.051 21E- 07
No	no homol og found	SAUSA300 _RS08615	SAUSA3 00_1581		SAS049 family protein	549.0 5	509.8 8	1111. 67	745.8	- 2.171 93099 9	5.079 68E- 07
Yes	no homol og found	SAUSA300 _RS08745			hypothetical protein	144.2 5	117.9 4	318.8 9	146.6 8	- 2.141 16857	5.300 06E- 07

Table A-1 (cont'd)

No	С	SAUSA300 _RS11335	SAUSA3 00_2058	atpD	F0F1 ATP synthase subunit beta	47.87	24.09	63.18	48.62	- 2.135 68903 6	4.397 88E- 07
No	G	SAUSA300 _RS04080	SAUSA3 00_0756	gap	type I glyceraldehyde- 3-phosphate dehydrogenase	1310. 2	855.8 6	881	2226. 45	- 2.124 84429 6	0.000 37335 4
Yes	S	SAUSA300 _RS09825	SAUSA3 00_1795		YlbF/YmcA family competence regulator	388.1 6	375.7 7	977.9 5	392.6 6	- 2.094 66604 1	3.342 79E- 06
No	G	SAUSA300 _RS05420	SAUSA3 00_1007		inositol monophosphatas e	198.7 4	144.3 1	276.3	247.6 9	- 2.075 75697 2	2.121 78E- 06
No	G	SAUSA300 _RS00740	SAUSA3 00_0141	deoB	phosphopentom utase	54.96	32.81	52.9	69.29	- 2.034 36517 7	3.501 49E- 05
No	no homol og found	SAUSA300 _RS10940	SAUSA3 00_1990	agrD	cyclic lactone autoinducer peptide	923.0 1	345.8 1	1059. 02	737.2 3	- 2.026 64328 3	5.166 29E- 06
Yes	S	SAUSA300 _RS07160	SAUSA3 00_1314		YozE family protein	272.8 6	134.5 5	352.3 3	236.9 4	- 2.014 72078	1.263 39E- 06
No	M	SAUSA300 _RS07315	SAUSA3 00_1341	pbp2	transglycosylase domain- containing protein	67.46	48.33	91.11	78.4	- 2.012 42643 3	3.342 79E- 06

Table A-1 (cont'd)

No	S	SAUSA300 _RS12165	SAUSA3 00_2207		NCS2 family permease	90.94	73.55	138.3 3	109.0 2	- 2.012 31831	3.115 05E- 06
Yes	no homol og found	SAUSA300 _RS15985			hypothetical protein	1448. 5	2256. 86	2477. 47	3277. 31	- 2.003 38213 9	0.000 40347 6
No	G	SAUSA300 _RS11445	SAUSA3 00_2079	fba	fructose- bisphosphate aldolase	1472. 76	839.2	1540. 16	1574. 67	- 1.962 91082 5	1.481 11E- 05
Yes	no homol og found	SAUSA300 _RS13850	SAUSA3 00_2493		cell wall inhibition responsive protein CwrA	290.1 5	271.0 8	514.4 8	325.6 3	- 1.938 12754 9	8.182 39E- 06
No	Т	SAUSA300 _RS00340	SAUSA3 00_0067		universal stress protein	291.2	304.9 7	352.7 9	478.6 4	- 1.937 70956 5	0.000 22882 5
Yes	С	SAUSA300 _RS14075	SAUSA3 00_2537		L-lactate dehydrogenase	43.61	41.66	69.96	54.33	- 1.932 80898 3	1.701 4E-05
No	M	SAUSA300 _RS09205	SAUSA3 00_1684		membrane protein	68.77	30.08	93.4	43.63	- 1.901 90508	9.180 74E- 06
Yes	S	SAUSA300 _RS13765	SAUSA3 00_2481		sterile α motif- like domain- containing protein	4957. 16	6293. 84	8840. 81	7590. 77	- 1.894 72036 4	0.000 13022 6

Table A-1 (cont'd)

No	S	SAUSA300 _RS01990	SAUSA3 00_0374	GlsB/YeaQ/Ymg E family stress response membrane protein	1269. 32	1302. 36	1739. 99	1802. 05	- 1.886 60073	0.000 10990 7
No	G	SAUSA300 _RS04230	SAUSA3 00_0783	histidine phosphatase family protein	48.94	40.27	64.72	56.33	- 1.881 09355 8	2.729 16E- 05
No	S	SAUSA300 _RS02055	SAUSA3 00_0385	general stress protein	282.4 5	309.0 5	401.3 4	416.9 8	- 1.880 19719 9	0.000 15069 2
No	K	SAUSA300 _RS13560	SAUSA3 00_2445	MerR family transcriptional regulator	44.52	36.46	55.51	52.21	- 1.866 86995 4	4.347 83E- 05
No	S	SAUSA300 _RS12400	SAUSA3 00_2246	PH domain- containing protein	81.81	60.2	106.8 1	80.57	- 1.839 01213 1	1.655 75E- 05
Yes	G	SAUSA300 _RS07165	SAUSA3 00_1315	PTS glucose transporter subunit IIA	306.2 5	144.1 1	347.8 4	219.6	- 1.817 02368 2	1.383 01E- 05
No	S	SAUSA300 _RS08620	SAUSA3 00_1582	CsbD family protein	668.9	555.4 1	868.9 6	717.1 9	- 1.806 68243	4.248 47E- 05

Table A-1 (cont'd)

No	F	SAUSA300 _RS08975	SAUSA3 00_1644	pyk	pyruvate kinase	329.3	123.8 1	273.9 8	249.2 1	- 1.788 19780 2	0.000 14408 9
No	S	SAUSA300 _RS13385	SAUSA3 00_2418		carboxymuconol actone decarboxylase family protein	75.26	62.59	97.35	75.63	- 1.750 96406 5	6.825 37E- 05
Yes	J	SAUSA300 _RS06310	SAUSA3 00_1166	rpsO	30S ribosomal protein S15	515.9 4	553.3 3	962.4 8	482.1 6	- 1.722 18715 3	0.000 16530 3
No	G	SAUSA300 _RS04100	SAUSA3 00_0760	eno	surface- displayed α- enolase	368.4 2	166.6	238.8 5	325.7 7	- 1.699 15174 7	0.000 94837 3
No	D	SAUSA300 _RS02550	SAUSA3 00_0475		septation regulator SpoVG	611.8 4	344.5 3	528.7 9	535.0 2	- 1.695 68955	0.000 21307 5
No	Р	SAUSA300 _RS07060	SAUSA3 00_1299		toxic anion resistance protein	99.85	40.68	79.45	73.06	- 1.693 09711 9	0.000 28290 8
No	S	SAUSA300 _RS05960	SAUSA3 00_1100		VOC family protein	135.4 8	94.36	158.5 8	112.6 6	- 1.682 59702 7	6.167 04E- 05
No	S	SAUSA300 _RS01545	SAUSA3 00_0289		TIGR01741 family protein	60.83	50.32	85.5	50.93	- 1.672 70061 9	8.871 08E- 05

Table A-1 (cont'd)

No	0	SAUSA300 _RS05460	SAUSA3 00_1015	ctaA	heme A synthase	52.3	38.18	43.04	51.9	- 1.595 46374 3	0.001 21776 8
No	not classif ied	SAUSA300 _RS11230	SAUSA3 00_2041		Lmo0850 family protein	564.4 4	834.1 5	615.2 7	857.4 1	- 1.488 72026 6	0.010 59881 7
Yes	С	SAUSA300 _RS03045	SAUSA3 00_0569		heme-dependent peroxidase	174.2 3	122.9 6	200.1 6	110.8 8	1.465 51025 1	0.000 42298
No	no homol og found	SAUSA300 _RS10555			hypothetical protein	315.0 9	400.4	376.6 1	351.2 2	- 1.407 06884 8	0.006 81252 5
Yes	no homol og found	SAUSA300 _RS04395	SAUSA3 00_0815	ear	DUF4888 domain- containing protein	273.4	262.3 2	451.3 3	144.3 9	- 1.385 16038 2	0.004 94624 8
No	L	SAUSA300 _RS07430	SAUSA3 00_1362	hup	HU family DNA- binding protein	27446 .33	29697 .55	33446 .33	23578 .56	- 1.362 58825 3	0.003 87335 3
No	S	SAUSA300 _RS12820	SAUSA3 00_2320		DUF2871 domain- containing protein	76.41	81.38	63.99	72.04	- 1.242 29455 4	0.018 18165 9

Table A-1 (cont'd)

No	no homol og found	SAUSA300 _RS15795		type I toxin- antitoxin system Fst family toxin PepA1	567.9 5	857.8 4	707.2 2	620.2 1	- 1.241 63196 4	0.023 28664 8
No	D	SAUSA300 _RS07290	SAUSA3 00_1337	cell division regulator GpsB	150.5 2	42	94.14	49.94	- 1.118 77976 7	0.030 34066

Table A-2. CymR regulon.

Genes upregulated in *cymR*::Tn CSSC when compared to WT CSSC

COG	Locus	Old locus	Gene	Product	TPM. 1 cymR	TPM. 2 cymR	TPM. 1 WT	TPM. 2 WT	DE Log ₂ FC	DE Adj. <i>P</i> - value
S	SAUSA300 _RS10985	SAUSA3 00_1998		YeeE/YedE family protein	14.91	45.03	0.74	0.43	3.435 17904 8	5.131 E-07
S	SAUSA300 _RS00910	SAUSA3 00_0173		DUF4242 domain- containing protein	112.9 3	431.8 1	4.54	4.88	3.430 29289 5	0.0000 01335
Ο	SAUSA300 _RS10980	SAUSA3 00_1997		sulfurtransferase TusA family protein	61.56	165.7 8	2.67	2.08	3.324 84131 4	9.084 E-07
Р	SAUSA300 _RS00925	SAUSA3 00_0176		ABC transporter permease	27.65	65.91	1.5	0.99	3.109 13158	0.0000 02476
I	SAUSA300 _RS00930	SAUSA3 00_0177		acyl-CoA/acyl-ACP dehydrogenase	50.29	74.56	2.77	1.16	3.059 22871 9	5.169 E-07
M	SAUSA300 _RS13915	SAUSA3 00_2506	isaA	lytic transglycosylase IsaA	11584 .71	594.8 1	189. 31	89.28	2.806 84014 5	0.0012 55
U	SAUSA300 _RS02035	SAUSA3 00_0382		L-cystine transporter	1520. 78	2546. 04	45.7 2	82.63	2.699 31265 8	0.0001 428
S	SAUSA300 _RS05050	SAUSA3 00_0940		DoxX family protein	89.95	169.4 7	10.5 4	3.61	2.368 99952 6	0.0006 815
Α	SAUSA300 _RS02045	SAUSA3 00_0383		hypothetical protein	404.4 9	285.2 1	29.1 5	11.23	2.290 27817 5	0.0002 041

Table A-2 (cont'd)

Р	SAUSA300 _RS01055	SAUSA3 00_0200		ABC transporter ATP- binding protein	28.76	56.72	1.44	2.45	2.265 61963 5	0.0037 35
Р	SAUSA300 _RS02340	SAUSA3 00_0437	gmpC	dipeptide ABC transporter glycylmethionine-binding lipoprotein	123.3 4	372.0 9	10.1 6	14.16	2.193 65352 5	0.0069 66
S	SAUSA300 _RS12610	SAUSA3 00_2282	sdpC	CPBP family intramembrane glutamic endopeptidaseSdpC	86.59	133.0 2	10.9	4.13	2.104 25690 8	0.0022 8
Р	SAUSA300 _RS00915	SAUSA3 00_0174		ABC transporter ATP- binding protein	8.87	33.74	2.15	0.58	2.053 18192 4	0.0126 6
L	SAUSA300 _RS05345	SAUSA3 00_0992		YkyA family protein	205.8 9	639.2 9	45.0 6	13.18	2.048 37860 8	0.0138 2
Е	SAUSA300 _RS02635	SAUSA3 00_0491	cysK	cysteine synthase A	7140. 91	3976. 77	143. 08	389.9 1	2.035 04764 1	0.0119 9
not classifi ed	SAUSA300 _RS09430			hypothetical protein	49.89	138.2 4	9.87	3.23	2.020 10295 2	0.0138 8
E	SAUSA300 _RS02325	SAUSA3 00_0434		bifunctional cystathionine γ-lyase/homocysteine desulfhydrase	44.68	14.89	1.09	1.95	1.988 23317	0.0225
Р	SAUSA300 _RS02335	SAUSA3 00_0436		methionine ABC transporter permease	18.51	76.09	2.72	2.91	1.976 59445 6	0.0203 6
D	SAUSA300 _RS09440	SAUSA3 00_1726		CrcB family protein	11.73	38.91	1.79	1.43	1.976 02321 2	0.0095 13

S	SAUSA300 _RS01875	SAUSA3 00_0354	low temperature requirement protein A	12.65	27.98	1.85	1.02	1.933 38716 3	0.0140 4
V	SAUSA300 _RS13605	SAUSA3 00_2453	ATP-binding cassette domain-containing protein	67.04	179.7 3	13.0 6	5.48	1.906 19927	0.0165 4
Р	SAUSA300 _RS00920	SAUSA3 00_0175	ABC transporter substrate-binding protein	13.13	31.1	2.57	0.88	1.904 44637 4	0.0224 9
Р	SAUSA300 _RS02330	SAUSA3 00_0435	methionine ABC transporter ATP-binding protein	18.79	54.32	2.36	2.49	1.904 14439 5	0.0113 5
I	SAUSA300 _RS12685	SAUSA3 00_2296	alpha/beta hydrolase	126.1 1	251.3 5	21.0 3	8.72	1.878 24894 3	0.0321 1
EP	SAUSA300 _RS01060	SAUSA3 00_0201	ABC transporter permease	16.22	29.78	0.74	1.91	1.834 29987 2	0.0364 9
S	SAUSA300 _RS13940	SAUSA3 00_2511	DUF896 domain- containing protein	46.83	202.1 7	11.9	6.79	1.824 78807 2	0.0462 3
S	SAUSA300 _RS04485	SAUSA3 00_0831	DUF3055 domain- containing protein	47.5	218.2 5	17.4 1	4.1	1.822 08257	0.0136 4
E	SAUSA300 _RS02855	SAUSA3 00_0534	M20 family metallopeptidase	22.75	37.22	3.57	1.5	1.784 98265	0.0225
no homolo g found	SAUSA300 _RS07460	SAUSA3 00_1366	hypothetical protein	70.61	48.87	8.01	2.2	1.724 74927 6	0.0235 2
ET	SAUSA300 _RS13025	SAUSA3 00_2359	transporter substrate- binding domain-containing protein	70.83	138.4 5	11.7 2	6.67	1.693 26231 4	0.0266 3

S	SAUSA300 _RS13320	SAUSA3 00_2405		CPBP family lipoprotein N-acylation protein LnsB	52.3	92.92	9.76	3.9	1.653 57398 7	0.0385 3
not classifi ed	SAUSA300 _RS10230	SAUSA3 00_1871		hypothetical protein	17.61	31.65	3.44	1.26	1.646 39224 1	0.0300 8
M	SAUSA300 _RS05540	SAUSA3 00_1029	isdA	LPXTG-anchored heme- scavenging protein IsdA	148.9	229.4 9	28	9.65	1.646 10995 7	0.0338 2
K	SAUSA300 _RS12705	SAUSA3 00_2300		TetR/AcrR family transcriptional regulator	39.08	65.85	7.6	2.72	1.620 36634 8	0.0453 2
S	SAUSA300 _RS11450	SAUSA3 00_2080		DUF2529 domain- containing protein	43.3	86.72	9.91	3.17	1.618 41672 3	0.0255 4
Р	SAUSA300 _RS00605	SAUSA3 00_0117	sirA	staphyloferrin B ABC transporter substrate- binding protein SirA	23.01	28.48	3.46	1.62	1.608 09829 1	0.0278 2
S	SAUSA300 _RS12440	SAUSA3 00_2253		CHAP domain-containing protein	332.0 1	177.4 1	35.7 1	14.09	1.587 54982 5	0.0389 6
M	SAUSA300 _RS03340	SAUSA3 00_0623		N- acetylglucosaminyldiphos phoundecaprenol N- acetyl-β-D- mannosaminyltransferase TarA	45.52	68.2	8.93	2.93	1.531 81557 1	0.0300
F	SAUSA300 _RS07465	SAUSA3 00_1367	cmk	(d)CMP kinase	87.02	69.66	11.2 9	5.19	1.529 86373 1	0.0278 4

OU	SAUSA300 _RS04060	SAUSA3 00_0752	clpP	ATP-dependent Clp endopeptidase proteolytic subunit ClpP	1027. 25	715.2 4	109. 04	67.12	1.524 99860 2	0.0453 2
E	SAUSA300 _RS00985	SAUSA3 00_0188	brnQ1	branched-chain amino acid transport system II carrier protein	81.89	139.0 1	13.6 1	8.9	1.502 77736 8	0.0498 3
not classifi ed	SAUSA300 _RS04205	SAUSA3 00_0780		lipoprotein N-acylation protein LnsA	16.59	12.18	2.19	0.86	1.498 23469 3	0.0376 6
E	SAUSA300 _RS07075	SAUSA3 00_1300	brnQ3	branched-chain amino acid transport system II carrier protein	31.17	23.58	4.13	1.79	1.468 59987 3	0.0453 2
no homolo g found	SAUSA300 _RS15260	SAUSA3 00_0937		hypothetical protein	262.3 3	350.4 4	43.6 2	23.66	1.454 37516 2	0.0453 2
S	SAUSA300 _RS09900	SAUSA3 00_1809		PTS transporter subunit IIC	40.1	47.08	6.38	3.33	-1.454	0.0453 2

Genes downregulated in cymR::Tn CSSC when compared to WT CSSC

COG	Locus	Old locus	Gene	Product	TPM. 1 cymR	TPM. 2 cymR	TPM. 1 WT	TPM. 2 WT	DE Log₂ FC	DE Adj. <i>P</i> - value
Q	SAUSA300 _RS00950	SAUSA3 00_0181		non-ribosomal peptide synthetase	8.18	7.12	39.4 3	35.55	- 3.459 24731 5	1.966 E-09
Н	SAUSA300 _RS00955	SAUSA3 00_0182		4'-phosphopantetheinyl transferase superfamily protein	32.46	19.17	117. 58	96.52	- 3.245 07261 2	3.242 E-08

С	SAUSA300 _RS00800	SAUSA3 00_0151	adhE	bifunctional acetaldehyde- CoA/alcohol dehydrogenase	3.63	2.35	10.0 6	12.51	- 3.132 78682 5	5.131 E-07
С	SAUSA300 _RS03190	SAUSA3 00_0594	adhP	alcohol dehydrogenase AdhP	80.52	51.88	184. 05	250.8	- 2.963 09354 1	0.0000 02476
F	SAUSA300 _RS14175	SAUSA3 00_2551	nrdD	anaerobic ribonucleoside- triphosphate reductase	17.5	10.03	28.9 3	55.94	- 2.862 05864 3	0.0000 3716
no homolo g found	SAUSA300 _RS15730			phenol-soluble modulin PSM-alpha-4	9480. 7	29491 .47	6719 8.08	7335 0.18	- 2.833 24622 2	0.0000 9013
no homolo g found	SAUSA300 _RS15735			phenol-soluble modulin PSM-alpha-2	15900 .9	49372 .47	1006 63.7 9	1280 39.36	- 2.804 71220 3	0.0001 313
no homolo g found	SAUSA300 _RS15090			phenol-soluble modulin PSM-alpha-3	15050 .63	48596 .27	9813 2.17	1258 06.27	- 2.800 29420 6	0.0001 415
no homolo g found	SAUSA300 _RS15740			phenol-soluble modulin PSM-alpha-1	12580 .61	37405 .9	8051 3.32	9083 5.34	- 2.785 89174 5	0.0001 135

no homolo g found	SAUSA300 _RS11930	SAUSA3 00_2164		MAP domain-containing protein	112.6 7	54.61	158. 3	288.1 1	- 2.688 55628 5	0.0001 321
no homolo g found	SAUSA300 _RS16065			hypothetical protein	5.51	2.81	10.9 1	10.1	- 2.507 91720 1	0.0004 496
F	SAUSA300 _RS05225	SAUSA3 00_0972	purF	amidophosphoribosyltrans ferase	28.41	4.72	38.0 2	34.89	- 2.319 54928 1	0.0041 3
no homolo g found	SAUSA300 _RS15985			hypothetical protein	1916. 24	1268. 31	2477 .47	3277. 31	- 2.224 68341 5	0.0012 55
F	SAUSA300 _RS04085	SAUSA3 00_0757		phosphoglycerate kinase	35.37	43.12	53.9 7	89.46	- 2.196 42910 9	0.0030 47
G	SAUSA300 _RS04080	SAUSA3 00_0756	gap	type I glyceraldehyde-3- phosphate dehydrogenase	1063. 41	916.2 5	881	2226. 45	- 2.032 92912 4	0.0133 7
E	SAUSA300 _RS06650	SAUSA3 00_1227	thrC	threonine synthase	14.77	13.7	26.5 5	12.51	- 1.739 92651	0.0108 3
M	SAUSA300 _RS00400	SAUSA3 00_0079		YdhK family protein	531.3 3	177.0 6	555. 41	355.0 3	- 1.710 13977	0.0257 7

Table A-2 (cont'd)

no homolo g found	SAUSA300 _RS16085	SAUSA3 00_1988	delta-lysin family phenol- soluble modulin	13968 7.59	11566 8.38	1718 45.7 1	1415 12.48	- 1.698 54326 3	0.0136 4
KOT	SAUSA300 _RS10935	SAUSA3 00_1989 agrB	accessory gene regulator AgrB	1532. 17	771.5	1575 .92	1121. 46	- 1.628 80481 3	0.0238 9
0	SAUSA300 _RS04245	SAUSA3 00_0786	organic hydroperoxide resistance protein	113.5 1	84.07	92.1 9	128.0 5	- 1.623 95907 3	0.0364 9
no homolo g found	SAUSA300 _RS09675		gallidermin/nisin family lantibiotic	14.87	9.96	13.4 6	14.32	- 1.580 81294 6	0.0453 2
K	SAUSA300 _RS10950	SAUSA3 00_1992	LytTR family DNA-binding domain-containing protein	886.0 4	496.3 1	978. 24	525.3 4	- 1.490 74049 7	0.0378 3

Table A-3. *cymR*::Tn sulfur starvation.

Genes upregulated in cymR::Tn sulfur starvation when compared to cymR::Tn CSSC

	. 5	• • • •					_				
Share d with WT -S (Table 1)	COG	Locus	Old locus	Gene	Product	TPM. 1 Starv	TPM. 2 Starv	TPM. 1 CSSC	TPM. 2 CSSC	DE Log ₂ FC	DE Adj. <i>P</i> - value
No	K	SAUSA300 _RS03085	SAUSA3 00_0577		redox-sensitive transcriptional regulator HypR	129.2 2	208.2 9	2.85	2.38	4.455 32441 1	9.67E -19
Yes	no homol og found	SAUSA300 _RS16040			imidazole glycerol phosphate synthase subunit HisF	62.91	69.67	1.25	1.08	4.335 57811 2	1.43E -19
Yes	Н	SAUSA300 _RS03730	SAUSA3 00_0695		7-carboxy-7- deazaguanine synthase QueE	158.3 8	170.6 1	5.52	3.19	3.790 84639 6	1.08E -13
Yes	E	SAUSA300 _RS11070	SAUSA3 00_2013	leuD	3-isopropylmalate dehydratase small subunit	46.54	87.07	2.11	1.25	3.758 67167 7	1.6E- 11
Yes	Н	SAUSA300 _RS03735	SAUSA3 00_0696		6- carboxytetrahydro pterin synthase QueD	123.2 2	128.8 7	4.38	2.46	3.734 84001 7	8.85E -13
Yes	no homol og found	SAUSA300 _RS07125			hypothetical protein	7557. 16	5803. 42	126.2 3	213.0 9	3.727 55005	1.15E -10
No	E	SAUSA300 _RS14510	SAUSA3 00_2610	hisC	histidinol- phosphate transaminase	12.41	21.95	0.36	0.56	3.584 75176 5	3.14E -09

No	J	SAUSA300 _RS02765	SAUSA3 00_0516		Mini-ribonuclease 3	74.72	204.0 3	3.31	4.49	3.490 20884 9	2.98E -08
Yes	E	SAUSA300 _RS11055	SAUSA3 00_2010	leuA	2-isopropylmalate synthase	74.75	96.74	3.34	2.36	3.486 00630 4	8.57E -13
Yes	Е	SAUSA300 _RS14090	SAUSA3 00_2539		aspartate aminotransferase family protein	127.3 2	101.5 3	4.15	3.82	3.415 57416 2	1.6E- 11
Yes	С	SAUSA300 _RS02385	SAUSA3 00_0446	gltD	glutamate synthase subunit β	844.6 8	835.1 1	30.82	30.48	3.362 78813 4	2.28E -12
Yes	J	SAUSA300 _RS02770	SAUSA3 00_0517		23S rRNA (guanosine(2251) -2'-O)- methyltransferase RImB	97.82	237.2 6	6.14	6.25	3.205 91305 6	3.62E -08
Yes	E	SAUSA300 _RS11075	SAUSA3 00_2014	ilvA	threonine ammonia-lyase IIvA	131.9 6	156.3 8	7.44	4.71	3.171 46442	1.47E -10
No	E	SAUSA300 _RS14505	SAUSA3 00_2609	hisB	imidazoleglycerol- phosphate dehydratase HisB	10.94	17.9	0.28	0.71	3.161 53044	0.000 00581
Yes	S	SAUSA300 _RS02775	SAUSA3 00_0518		NYN domain- containing protein	197.0 7	407.7 5	13.49	12.5	3.054 29171 2	2.56E -08
No	K	SAUSA300 _RS02780	SAUSA3 00_0519		RNA polymerase sigma factor	52.53	171.8 8	4.57	4.36	3.031 08725	0.000 00314
Yes	Н	SAUSA300 _RS11050	SAUSA3 00_2009	ilvC	ketol-acid reductoisomerase	35.82	71.09	1.99	2.61	3.006 18371 6	0.000 00020 8

No	E	SAUSA300 _RS11770	SAUSA3 00_2137		staphyloferrin A biosynthesis protein SfaC	161.8 9	189.0 7	10.54	6.29	2.993 80187 7	3.4E- 09
No	EGP	SAUSA300 _RS11780	SAUSA3 00_2139		staphyloferrin A export MFS transporter	19.37	36.64	0.73	1.54	2.993 60462 9	0.000 00405
No	E	SAUSA300 _RS11045	SAUSA3 00_2008	ilvN	ACT domain- containing protein	40.75	71.61	1.7	3	2.987 88901 6	0.000 00223
Yes	Р	SAUSA300 _RS10250	SAUSA3 00_1874		H-type ferritin FtnA	4155. 65	3220. 95	239.9 7	120.6 8	2.953 71107 3	0.000 00016 4
Yes	Р	SAUSA300 _RS11525	SAUSA3 00_2092	dps	Dps family protein	14143 .25	8173. 12	657.6 3	425.5 9	2.948 65299 4	0.000 00036 1
Yes	0	SAUSA300 _RS02020	SAUSA3 00_0379	ahpF	alkyl hydroperoxide reductase subunit F	3971. 04	3699. 54	254.3 7	126.6 5	2.939 03260 6	7.14E -08
Yes	Н	SAUSA300 _RS11040	SAUSA3 00_2007	ilvB	biosynthetic-type acetolactate synthase large subunit	53.7	75.39	3.36	3.01	2.936 86154 6	2.48E -09
Yes	K	SAUSA300 _RS00650	SAUSA3 00_0126		bifunctional transcriptional regulator/O- phospho-L-serine synthase SbnI	89.65	70.75	5.35	2.49	2.934 58969 8	0.000 00044 3
No	EGP	SAUSA300 _RS00625	SAUSA3 00_0121		staphyloferrin B export MFS transporter	11.22	11.03	0.49	0.58	2.921 52969 1	0.000 00021 1

Table A-3 (cont'd)

No	E	SAUSA300 _RS14495	SAUSA3 00_2607	hisA	1-(5- phosphoribosyl)- 5-((5- phosphoribosyla mino)methylidene amino)imidazole- 4- carboxamide isomerase	12.66	18.8	0.61	0.82	2.914 91007 8	0.000 00093 7
No	Р	SAUSA300 _RS04800	SAUSA3 00_0890	oppF	ATP-binding cassette domain-containing protein ECF-type	103.2 5	184.9	3.44	8.95	2.887 78593 4	0.000 0196
Yes	S	SAUSA300 _RS14550	SAUSA3 00_2618		riboflavin transporter substrate-binding protein	59.48	61.13	1.84	3.77	2.878 37950 6	0.000 00367
Yes	Р	SAUSA300 _RS12340	SAUSA3 00_2235		ABC transporter substrate-binding protein	539.0 1	417.5 4	22.65	26.15	2.876 61163 1	7.62E -08
Yes	0	SAUSA300 _RS02025	SAUSA3 00_0380	ahpC	alkyl hydroperoxide reductase subunit C	7815. 91	7102. 56	433.1 5	381.5 8	2.824 06232 8	8.5E- 09
No	Р	SAUSA300 _RS05560	SAUSA3 00_1033		hemin ABC transporter permease protein IsdF	35.02	25.1	1.07	1.91	2.816 18807 3	0.000 00694
Yes	S	SAUSA300 _RS04570	SAUSA3 00_0846		Na+/H+ antiporter family protein	178.1 4	170.7 7	7.69	10.87	2.792 91763 1	0.000 00026 9

Yes	E	SAUSA300 _RS01070	SAUSA3 00_0203		ABC transporter substrate-binding protein	63.79	125.8 2	4.39	5.53	2.765 49278 9	0.000 00108
Yes	E	SAUSA300 _RS11065	SAUSA3 00_2012	leuC	3-isopropylmalate dehydratase large subunit	24.04	59.93	2.65	1.78	2.747 84485 1	0.000 00601
No	Q	SAUSA300 _RS11775	SAUSA3 00_2138		staphyloferrin A synthetase SfaB	31.11	50.58	2.13	2.41	2.727 96356 7	0.000 00029 7
No	Р	SAUSA300 _RS14545	SAUSA3 00_2617		ABC transporter ATP-binding protein	23.41	40.7	1.18	2.18	2.710 45101 7	0.000 0119
Yes	F	SAUSA300 _RS00725	SAUSA3 00_0138	deoD	purine-nucleoside phosphorylase	45.01	45.75	3.84	1.42	2.679 76217 1	0.000 0144
No	Р	SAUSA300 _RS03875	SAUSA3 00_0720		ABC transporter ATP-binding protein	15.44	26.79	1.18	1.2	2.678 60090 9	0.000 00299
Yes	E	SAUSA300 _RS01075	SAUSA3 00_0204	ggt	γ- glutamyltransfera se	281.5 7	322.8 7	20.97	15.89	2.678 15357 4	2.66E -08
No	S	SAUSA300 _RS05565	SAUSA3 00_1034	srtB	class B sortase	40.4	24.82	1.21	2.41	2.638 14982 9	0.000 0906
No	F	SAUSA300 _RS03740	SAUSA3 00_0697		7-cyano-7- deazaguanine synthase QueC	29.94	31.62	2.54	1.2	2.635 10957 2	0.000 00581
Yes	С	SAUSA300 _RS07500	SAUSA3 00_1373		ferredoxin	4511. 53	4046. 46	373.4 5	160.1 7	2.619 42294	0.000 00702

No	J	SAUSA300 _RS14535	SAUSA3 00_2615		GNAT family protein	20.23	28.74	1.13	1.78	2.576 86926 4	0.000 0221
Yes	S	SAUSA300 _RS10920	SAUSA3 00_1986		nitroreductase family protein	83.95	156.7 8	6.44	8.15	2.576 74117 1	0.000 00606
No	G	SAUSA300 _RS14530	SAUSA3 00_2614		polysaccharide deacetylase family protein	20.11	28.81	1.39	1.73	2.537 72120 2	0.000 00405
Yes	no homol og found	SAUSA300 _RS10765	SAUSA3 00_1963		DUF2482 family protein	20.32	109.1 6	0.63	4.63	2.529 31563 6	0.010 58
Yes	M	SAUSA300 _RS14270	SAUSA3 00_2565	clfB	MSCRAMM family adhesin clumping factor ClfB	139.0 2	176	10.8	10.81	2.493 37701 7	0.000 00036 1
No	Е	SAUSA300 _RS14525	SAUSA3 00_2613	hisZ	ATP phosphoribosyltra nsferase regulatory subunit	14.33	17.64	0.78	1.3	2.469 30811 7	0.000 0603
No	Е	SAUSA300 _RS14515	SAUSA3 00_2611	hisD	histidinol dehydrogenase	17.69	21.44	0.47	1.77	2.467 9434	0.001 37
Yes	NOU	SAUSA300 _RS08765	SAUSA3 00_1609		A24 family peptidase	21.53	21.48	1.11	1.78	2.443 25680 5	0.000 0578
Yes	Н	SAUSA300 _RS14190	SAUSA3 00_2553		NAD(P)-binding protein	581.7 8	450.4 1	46.1	28.47	2.441 96926 5	0.000 00746

Yes	0	SAUSA300 _RS10980	SAUSA3 00_1997		sulfurtransferase TusA family protein	1885. 83	1726. 83	61.56	165.7 8	2.435 44524 7	0.000 4639
Yes	С	SAUSA300 _RS06395	SAUSA3 00_1183		2- oxoacid:ferredoxi n oxidoreductase subunit β	290.5	386.8 6	27.28	22.34	2.413 91365 4	0.000 00080 2
Yes	no homol og found	SAUSA300 _RS14185			hypothetical protein	898.3 8	767.6 2	76.27	46.76	2.410 90450 4	0.000 00751
Yes	С	SAUSA300 _RS04255	SAUSA3 00_0788		nitroreductase	1218. 82	1274. 44	88.01	94.12	2.410 06426 9	0.000 00141
Yes	EH	SAUSA300 _RS11940	SAUSA3 00_2166	alsS	acetolactate synthase AlsS	16.19	19.64	1.05	1.48	2.394 52469 7	0.000 0207
No	M	SAUSA300 _RS13525	SAUSA3 00_2440	fnbB	fibronectin- binding protein FnbB	27.16	22.5	1.99	1.75	2.376 0687	0.000 00603
Yes	S	SAUSA300 _RS10760	SAUSA3 00_1962		DUF1108 family protein	17.32	116.3 2	1.16	5.34	2.374 73191 1	0.015 38
Yes	S	SAUSA300 _RS14570	SAUSA3 00_2622		rhodanese- related sulfurtransferase	402.4 6	389.2 8	43.22	16.55	2.353 50110 8	0.000 1274
Yes	Р	SAUSA300 _RS02335	SAUSA3 00_0436		methionine ABC transporter permease	748.0 5	768.9 6	18.51	76.09	2.352 90244 7	0.002 996

Table A-3 (cont'd)

Yes	HP	SAUSA300 _RS03395	SAUSA3 00_0633	fhuA	ABC transporter ATP-binding protein	300.6	326.4 1	25.45	22.91	2.350 57439 3	0.000 00145
Yes	L	SAUSA300 _RS10740	SAUSA3 00_1958		single-stranded DNA-binding protein	10.8	61.75	0.59	3.13	2.322 23030 7	0.018 64
Yes	М	SAUSA300 _RS13530	SAUSA3 00_2441	fnbA	fibronectin- binding protein FnbA	121.6 1	104.3 2	7.1	10.32	2.290 23314 5	0.000 0635
Yes	E	SAUSA300 _RS02380	SAUSA3 00_0445	gltB	glutamate synthase large subunit	137.7 6	206.5 6	5.99	17.77	2.272 72553 8	0.001 912
Yes	I	SAUSA300 _RS08990	SAUSA3 00_1647	accD	acetyl-CoA carboxylase, carboxyltransfera se subunit β	109.6 6	144.6 7	12.09	8.74	2.263 16651 7	0.000 00694
No	Р	SAUSA300 _RS14540	SAUSA3 00_2616		energy-coupling factor transporter transmembraneco mponent T	22.09	36.34	1.43	2.86	2.251 06912 5	0.000 7266
No	Р	SAUSA300 _RS05555	SAUSA3 00_1032		heme ABC transporter substrate-binding protein IsdE	34.67	29.27	1.15	3.41	2.249 32260 1	0.002 651
No	CE	SAUSA300 _RS11060	SAUSA3 00_2011	leuB	3-isopropylmalate dehydrogenase	22.09	55.34	3.91	2.03	2.245 74867 9	0.000 6683
No	E	SAUSA300 _RS04805	SAUSA3 00_0891	оррА	peptide ABC transporter substrate-binding protein	405.9 6	587.8 4	25.82	49.53	2.241 65553 1	0.000 3603

No	С	SAUSA300 _RS03080	SAUSA3 00_0576		hypothiocyanous acid reductase MerA	71.74	127.8 6	8.91	7.22	2.241 52742 2	0.000 0298
Yes	L	SAUSA300 _RS10735	SAUSA3 00_1957		DnaD domain- containing protein	10.42	64.94	0.69	3.46	2.237 88533 2	0.024 57
Yes	С	SAUSA300 _RS05570	SAUSA3 00_1035		staphylobilin- forming heme oxygenase IsdG	233.8 9	109	5.78	18.34	2.231 62571 6	0.006 752
Yes	S	SAUSA300 _RS03690	SAUSA3 00_0687		hemolysin family protein	647.8 5	721.8	70.53	47.41	2.210 29214 5	0.000 0105
Yes	Р	SAUSA300 _RS07905	SAUSA3 00_1448		Fur family transcriptional regulator	1799. 9	1559. 7	187.2 1	105.6 6	2.191 56570 1	0.000 0697
Yes	no homol og found	SAUSA300 _RS10730	SAUSA3 00_1956		hypothetical protein	11.05	56.14	0.67	3.32	2.167 05141 5	0.031 23
No	J	SAUSA300 _RS02760	SAUSA3 00_0515	cysS	cysteinetRNA ligase	100.5 1	218.8	17.01	9.95	2.156 79562 5	0.000 384
Yes	Р	SAUSA300 _RS01055	SAUSA3 00_0200		ABC transporter ATP-binding protein	560.5 9	480.7 6	28.76	56.72	2.154 14874 6	0.000 8821
Yes	D	SAUSA300 _RS07900	SAUSA3 00_1447	xerD	site-specific tyrosine recombinase XerD	350.6 8	327.5 5	38.84	23.94	2.113 07162 2	0.000 0709

Table A-3 (cont'd)

Yes	Р	SAUSA300 _RS02340	SAUSA3 00_0437		dipeptide ABC transporter glycylmethionine- binding lipoprotein	2857. 81	3414. 82	123.3 4	372.0 9	2.112 60531 1	0.004 659
No	С	SAUSA300 _RS04425	SAUSA3 00_0821		SUF system NifU family Fe-S cluster assembly protein	73.21	154.2 8	12.48	7.44	2.109 19234 4	0.000 5562
Yes	С	SAUSA300 _RS06390	SAUSA3 00_1182		2- oxoacid:acceptor oxidoreductase subunit α	50	64.63	4.66	5.58	2.108 93281 4	0.000 0709
Yes	E	SAUSA300 _RS02755	SAUSA3 00_0514	cysE	serine O- acetyltransferase	103.8 9	143.9 4	10.54	11.66	2.107 87200 5	0.000 0635
No	no homol og found	SAUSA300 _RS05575			hypothetical protein	29.79	15.46	0.76	2.46	2.104 84400 3	0.027 46
Yes	S	SAUSA300 _RS03075	SAUSA3 00_0575		DUF1450 domain- containing protein	287.3 5	198.4 1	26.21	18.61	2.104 12693 2	0.000 2521
No	0	SAUSA300 _RS08555	SAUSA3 00_1569		U32 family peptidase	78.89	103.0 5	10.96	5.81	2.097 46648 8	0.000 1548
Yes	S	SAUSA300 _RS10985	SAUSA3 00_1998		YeeE/YedE family protein	409.6	333.5 9	14.91	45.03	2.094 93932 9	0.005 985

No	Р	SAUSA300 _RS03865	SAUSA3 00_0718		ABC transporter permease	10.81	14.08	1.2	1.04	2.089 81840 8	0.000 1951
No	Р	SAUSA300 _RS04795	SAUSA3 00_0889	oppD	ABC transporter ATP-binding protein	26.5	64.84	2.4	5.34	2.001 73570 2	0.008 266
Yes	S	SAUSA300 _RS10695	SAUSA3 00_1949	dut	dUTP pyrophosphatase	12.62	67.03	0.87	4.58	2.000 99240 4	0.049 4
No	S	SAUSA300 _RS04365	SAUSA3 00_0809		phage/plasmid primase, P4 family	38.21	23.66	3.89	2.31	1.988 16571 1	0.001 511
Yes	F	SAUSA300 _RS03850	SAUSA3 00_0717	nrdF	class 1b ribonucleoside- diphosphate reductase subunit β	3385. 68	4233. 06	315.6 1	430.5 2	1.971 42060 5	0.000 4094
Yes	Р	SAUSA300 _RS03880	SAUSA3 00_0721		siderophore ABC transporter substrate-binding protein	135.8 3	190.9 9	18.67	14.4	1.970 96601 5	0.000 1214
Yes	K	SAUSA300 _RS14555	SAUSA3 00_2619		S-adenosyl-L- methionine hydroxide adenosyltransfera se family protein	27.21	28.52	2.62	2.99	1.958 07828 3	0.000 4355
No	K	SAUSA300 _RS11905	SAUSA3 00_2160		MerR family transcriptional regulator	10.7	15.89	1.65	0.97	1.934 52935 4	0.003 95

Yes	Р	SAUSA300 _RS02330	SAUSA3 00_0435		methionine ABC transporter ATP-binding protein	381.5 2	394.4 8	18.79	54.32	1.901 02864 2	0.012 46
No	Т	SAUSA300 _RS06020	SAUSA3 00_1112		protein- serine/threonine phosphatase Stp1	52.4	86.83	7.62	6.89	1.900 20096 5	0.000 5763
Yes	E	SAUSA300 _RS11035	SAUSA3 00_2006	ilvD	dihydroxy-acid dehydratase	117.8 7	89.78	11.72	10.72	1.888 74799 2	0.000 7114
Yes	K	SAUSA300 _RS14655	SAUSA3 00_2639		cold-shock protein	31165 .95	38909 .15	2344	4676. 49	1.878 81243 2	0.004 656
No	F	SAUSA300 _RS14520	SAUSA3 00_2612	hisG	ATP phosphoribosyltra nsferase	12.44	16.58	0.44	2.09	1.878 07789 2	0.038 23
No	no homol og found	SAUSA300 _RS16065			hypothetical protein	32.67	47.74	5.51	2.81	1.859 0956	0.008 444
Yes	С	SAUSA300 _RS14195	SAUSA3 00_2554		assimilatory sulfite reductase (NADPH) flavoprotein subunit	78.46	71.39	7.45	8.83	1.858 93782 5	0.000 838
Yes	EP	SAUSA300 _RS01065	SAUSA3 00_0202		ABC transporter permease	100.2 4	118.0 3	10.39	13.38	1.838 53411 3	0.001 002
Yes	S	SAUSA300 _RS00890	SAUSA3 00_0169		YbaN family protein	132.1 7	114.6 5	9.43	16.76	1.829 43090 1	0.005 769

Table A-3 (cont'd)

No	no homol og found	SAUSA300 _RS04375	SAUSA3 00_0811		hypothetical protein	34.03	20.2	4.18	1.66	1.819 72603 6	0.021 93
Yes	F	SAUSA300 _RS03840	SAUSA3 00_0715	nrdl	class lb ribonucleoside- diphosphate reductase assembly flavoprotein Nrdl	430.2 7	617.2	17	82.06	1.789 11683 7	0.047 7
Yes	СН	SAUSA300 _RS13660	SAUSA3 00_2463	ddh	D-lactate dehydrogenase	392.3 3	291.1 2	59.74	18.72	1.786 97592 2	0.015 8
Yes	С	SAUSA300 _RS12320	SAUSA3 00_2231	fdhD	formate dehydrogenase accessory sulfurtransferase FdhD	144.1 3	150.3 5	20.34	14.5	1.778 02569 9	0.000 7485
Yes	S	SAUSA300 _RS07495	SAUSA3 00_1372		helix-turn-helix domain- containing protein	150.7 3	178.2 1	26.69	11.79	1.776 21052 2	0.004 28
No	S	SAUSA300 _RS05285	SAUSA3 00_0982		hypothetical protein	420.3 4	696.2 4	62.01	65.54	1.768 09358 1	0.001 622
No	E	SAUSA300 _RS12580	SAUSA3 00_2276		M20 peptidase aminoacylase family protein	22.11	25.47	1.99	3.31	1.767 26895	0.006 011
Yes	no homol og found	SAUSA300 _RS10255			hypothetical protein	86.18	69.13	13.79	3.7	1.754 66383 9	0.032 1

No	Р	SAUSA300 _RS13240	SAUSA3 00_2392	opuC b	ABC transporter permease	32.79	44.43	5.52	3.65	1.749 40789 2	0.002 075
No	F	SAUSA300 _RS06655	SAUSA3 00_1228	thrB	homoserine kinase	40.14	69.39	6.45	6.29	1.741 86855 1	0.002 579
No	М	SAUSA300 _RS13235	SAUSA3 00_2391	opuC c	osmoprotectant ABC transporter substrate- bindingprotein	77.03	99.33	12.26	9.11	1.732 26185 3	0.001 069
No	-	SAUSA300 _RS04355	SAUSA3 00_0807		hypothetical protein	32.42	19.37	3.7	2.51	1.724 92731 3	0.013 87
Yes	L	SAUSA300 _RS08900	SAUSA3 00_1631		replication initiation and membrane attachment family protein	85.06	154.1 2	9.57	17.22	1.715 86395 5	0.012 69
No	S	SAUSA300 _RS04360	SAUSA3 00_0808		DUF1474 family protein	44	26.88	4.5	4.02	1.706 82078 1	0.014 23
No	V	SAUSA300 _RS05030	SAUSA3 00_0936		ABC transporter ATP-binding protein	21.87	15.19	1.6	2.71	1.700 45988 2	0.019 88
Yes	U	SAUSA300 _RS11755	SAUSA3 00_2135		iron ABC transporter permease	108.5	124.4 8	15.58	13.37	1.700 18686 2	0.001 069
Yes	E	SAUSA300 _RS14085	SAUSA3 00_2538		amino acid permease	731.1 6	576.5	62.48	93.99	1.699 46733 6	0.007 759

Table A-3 (cont'd)

Yes	S	SAUSA300 _RS12540	SAUSA3 00_2268		bile acid:sodium symporter family protein	79.33	62.56	4.15	11.71	1.691 04558 5	0.035 54
No	not classif ied	SAUSA300 _RS15215			hypothetical protein	63.8	39.7	9.06	3.56	1.681 07054 8	0.030 59
No	J	SAUSA300 _RS06015	SAUSA3 00_1111		23S rRNA (adenine(2503)- C(2))- methyltransferase RImN	40.29	74.21	8.63	5.48	1.673 79614 8	0.006 054
No	0	SAUSA300 _RS04410	SAUSA3 00_0818	sufC	Fe-S cluster assembly ATPase SufC	210.9	289.5 6	30.02	32.6	1.660 95247 3	0.002 513
Yes	Е	SAUSA300 _RS02320	SAUSA3 00_0433	cysM	cysteine synthase family protein	50.07	39.27	6.04	5.48	1.648 56741 6	0.005 019
No	not classif ied	SAUSA300 _RS04345	SAUSA3 00_0805		helix-turn-helix domain- containing protein	81.86	44.92	11.97	4.21	1.633 90507 6	0.042 07
Yes	I	SAUSA300 _RS08985	SAUSA3 00_1646	accA	acetyl-CoA carboxylase carboxyltransfera se subunit α	288.9 6	304.7	51.18	27.08	1.629 91413 1	0.005 878
Yes	U	SAUSA300 _RS04915	SAUSA3 00_0914		alanine/glycine:ca tion symporter family protein	84.57	75.06	11.04	10.02	1.621 16381 4	0.003 35
Yes	С	SAUSA300 _RS01085	SAUSA3 00_0206		FMN-dependent NADH- azoreductase	169.9 8	178.9 7	25.6	21.21	1.601 82215 5	0.002 651

Table A-3 (cont'd)

Yes	Е	SAUSA300 _RS13265	SAUSA3 00_2395		APC family permease	39.16	45.52	3.75	6.86	1.599 91745 3	0.018 33
No	Е	SAUSA300 _RS06650	SAUSA3 00_1227	thrC	threonine synthase	82.97	133.3 6	14.77	13.7	1.589 69601 2	0.005 027
No	E	SAUSA300 _RS04420	SAUSA3 00_0820	sufS	cysteine desulfurase	85.92	166.6 5	19.61	13.63	1.581 47456 2	0.010 14
No	no homol og found	SAUSA300 _RS13715			hypothetical protein	180.0	305.2 5	36.61	27.93	1.577 36895 1	0.007 251
Yes	С	SAUSA300 _RS00885	SAUSA3 00_0168		staphylobilin- forming heme oxygenase Isdl	526.1 2	366.6 1	37.96	75.76	1.574 73217 1	0.034 66
Yes	1	SAUSA300 _RS00930	SAUSA3 00_0177		acyl-CoA/acyl- ACP dehydrogenase	456.2 8	496.2 1	50.29	74.56	1.574 63279 3	0.010 62
Yes	I	SAUSA300 _RS02535	SAUSA3 00_0472	ipk	4-(cytidine 5'- diphospho)-2-C- methyl-D-erythritol kinase	108	182.7 6	15.31	22.22	1.564 84735 3	0.015 49
Yes	S	SAUSA300 _RS13755	SAUSA3 00_2479	cidA	holin-like murein hydrolase modulator CidA	35.32	33.97	4.33	5.01	1.558 70114	0.012 09
Yes	Н	SAUSA300 _RS01160	SAUSA3 00_0221	pflA	pyruvate formate- lyase-activating protein	23.14	67.26	7.33	4.26	1.557 73392 7	0.039 8

No	Ο	SAUSA300 _RS04415	SAUSA3 00_0819	sufD	Fe-S cluster assembly protein SufD	84.79	163.6 6	16.42	16.94	1.533 59869 5	0.013 25
No	С	SAUSA300 _RS12475	SAUSA3 00_2258		formate dehydrogenase subunit α	30.3	67.91	7.26	5.91	1.530 48046	0.018 84
Yes	Р	SAUSA300 _RS11750	SAUSA3 00_2134		iron chelate uptake ABC transporter family permease subunit	178.1 6	175.2 9	30.27	20.31	1.522 59177 4	0.006 752
Yes	L	SAUSA300 _RS08280	SAUSA3 00_1517		deoxyribonucleas e IV	198.6 8	214.1 4	38.88	21	1.500 51121 3	0.012 54
Yes	Е	SAUSA300 _RS06640	SAUSA3 00_1225		aspartate kinase	45.43	52.12	4.69	8.7	1.477 24340 2	0.034 52
Yes	L	SAUSA300 _RS07130	SAUSA3 00_1309		IS200/IS605 family transposase	289.4 3	227.2 2	50.14	27.04	1.465 62803 3	0.023 68
Yes	no homol og found	SAUSA300 _RS15665	SAUSA3 00_2604		hypothetical protein	203.0	247.7 1	34.59	31.87	1.456 72541 8	0.009 251
No	L	SAUSA300 _RS06155	SAUSA3 00_1137	rnhB	ribonuclease HII	13.27	21.65	2.93	2.14	1.449 17036 8	0.023 42
Yes	С	SAUSA300 _RS00940	SAUSA3 00_0179		NAD-dependent formate dehydrogenase	36.3	41.91	5.91	5.82	1.431 73794 1	0.011 68

Table A-3 (cont'd)

Yes	F	SAUSA300 _RS05655	SAUSA3 00_1050		XTP/dITP diphosphatase	291.5	295.1 7	33.89	51.69	1.429 82128 7	0.027 99
No	not classif ied	SAUSA300 _RS04370	SAUSA3 00_0810		hypothetical protein	49.06	33.44	7.63	4.9	1.428 56537 8	0.038 95
No	M	SAUSA300 _RS05650	SAUSA3 00_1049	murl	glutamate racemase	137.0 5	140.3 2	14.61	25.67	1.416 22281 6	0.040 6
Yes	Н	SAUSA300 _RS00040	SAUSA3 00_0007		NAD(P)H-hydrate dehydratase	152.0 4	111.4 8	16.95	23.56	1.374 45170 1	0.044 15
No	Р	SAUSA300 _RS05255	SAUSA3 00_0978		ABC transporter ATP-binding protein	25.48	24.9	4.49	3.51	1.371 74870 6	0.018 77
Yes	Р	SAUSA300 _RS06680	SAUSA3 00_1232		catalase	606.8 2	615.4 9	93.79	98.44	1.371 29191 7	0.016 09
No	no homol og found	SAUSA300 _RS01180	SAUSA3 00_0224	coa	staphylocoagulas e	12.09	14.67	1.96	2.21	1.363 08916 7	0.024 99
No	BQ	SAUSA300 _RS09180	SAUSA3 00_1681	acuC	acetoin utilization protein AcuC	25.27	25.74	4.67	3.48	1.360 43943 1	0.020 85
Yes	J	SAUSA300 _RS06190	SAUSA3 00_1144	gid	methylenetetrahy drofolatetRNA- (uracil(54)- C(5))- methyltransferase (FADH(2)- oxidizing) TrmFO	260.2	365.2 2	61.61	38.45	1.354 26774 6	0.023

Yes	L	SAUSA300 _RS03790	SAUSA3 00_0705	recQ	DNA helicase RecQ	153.9 7	141.1 4	17.71	28.07	1.345 65723 3	0.047 75
Yes	JKL	SAUSA300 _RS08285	SAUSA3 00_1518		DEAD/DEAH box helicase	64.94	83.11	12.31	11.62	1.329 44090 3	0.019 19
Yes	S	SAUSA300 _RS00020	SAUSA3 00_0003		S4 domain- containing protein YaaA	763.5 7	867.3	102.0 4	155.9 8	1.316 66309 7	0.047 02
No	L	SAUSA300 _RS00025	SAUSA3 00_0004	recF	DNA replication/repair protein RecF	284.3 9	343.6 6	49.13	53.42	1.308 92491 7	0.024 35
Yes	L	SAUSA300 _RS02485	SAUSA3 00_0463		DNA replication initiation control protein YabA	174.1 2	216.6	38.02	27.16	1.301 56573 8	0.024 99
Yes	EGP	SAUSA300 _RS11720	SAUSA3 00_2128		multidrug efflux MFS transporter SdrM	78.96	93.2	18.13	10.78	1.299 00995 3	0.032 3
Yes	С	SAUSA300 _RS00280	SAUSA3 00_0055		zinc-dependent alcohol dehydrogenase family protein	95.33	87.76	19.62	11.34	1.298 75954 7	0.039 33
No	F	SAUSA300 _RS03815	SAUSA3 00_0711		diacylglycerol kinase family lipid kinase	163.7	260.5 5	33.34	36.19	1.282 61428 3	0.037 62
Yes	V	SAUSA300 _RS09580	SAUSA3 00_1751	hsdS	restriction endonuclease subunit S	42.79	41.67	7.33	7.15	1.257 22753 2	0.035 04
Yes	G	SAUSA300 _RS11545	SAUSA3 00_2096	manA	class I mannose- 6-phosphate isomerase	107	94.53	20.09	15.44	1.237 01318 1	0.040 6

No	V	SAUSA300 _RS01645	SAUSA3 00_0308		FtsX-like permease family protein	27.83	39.43	5.35	6.07	1.236 01849 9	0.049 4
No	E	SAUSA300 _RS07385	SAUSA3 00_1355	aroA	3- phosphoshikimate 1- carboxyvinyltransf	32.35	50.24	7.72	6.76	1.207 27057 8	0.049 36
Yes	J	SAUSA300 _RS08600	SAUSA3 00_1578	mnm A	erase tRNA 2- thiouridine(34) synthase MnmA	197.3 1	212.3 2	40.31	34.26	1.184 78652 6	0.040 32

Genes downregulated in cymR::Tn sulfur starvation when compared to cymR::Tn CSSC

Share d with WT -S (Table 1)	COG	Locus	Old locus	Gene	Product	TPM. 1 Starv	TPM. 2 Starv	TPM. 1 CSSC	TPM. 2 CSSC	DE Log ₂ FC	DE Adj. <i>P-</i> value
Yes	F	SAUSA300 _RS05210	SAUSA3 00_0969	purS	phosphoribosylfor mylglycinamidine synthase subunit PurS	2.47	3.94	71.99	13.69	- 4.149 57726 7	1.81E -08
Yes	0	SAUSA300 _RS09140	SAUSA3 00_1674		trypsin-like peptidase domain- containing protein	85.06	85.76	1357. 31	388.2 8	- 4.029 53461 8	1.47E -10
Yes	F	SAUSA300 _RS05245	SAUSA3 00_0976	purD	phosphoribosyla mineglycine ligase	19.9	25.17	550.4 6	48.93	- 3.957 56855 2	0.000 00131

No	S	SAUSA300 _RS01635	SAUSA3 00_0307	5'-nucleotidase, lipoprotein e(P4) family	18.71	13.8	108.6 9	134.9	- 3.807 58815 5	1.36E -12
No	not classif ied	SAUSA300 _RS15375		hypothetical protein	121.8	164.6	571	1344. 17	- 3.614 37204 2	0.000 00000 8
Yes	not classif ied	SAUSA300 _RS03000		hypothetical protein	791.7 7	650.7 8	5797. 02	3465. 16	- 3.589 74782 4	3.42E -12
Yes	S	SAUSA300 _RS03005		C1q-binding complement inhibitor VraX	38489 .16	31696 .59	22391 1.13	20544 5.74	- 3.571 43228 1	7.47E -13
Yes	no homol og found	SAUSA300 _RS15740		phenol-soluble modulin PSM- alpha-1	4289. 85	3326. 41	12580 .61	37405 .9	- 3.495 37831 6	0.000 00031 2
Yes	no homol og found	SAUSA300 _RS15735		phenol-soluble modulin PSM- alpha-2	5730. 32	4555. 63	15900 .9	49372 .47	- 3.446 53104 7	0.000 00058 9
Yes	no homol og found	SAUSA300 _RS15090		phenol-soluble modulin PSM- alpha-3	6345. 06	5161. 13	15050 .63	48596 .27	- 3.267 40945 4	0.000 00328

Table A-3 (cont'd)

No	M	SAUSA300 _RS09800	SAUSA3 00_1790	prsA	peptidylprolyl isomerase	421.5	472.9 5	2316. 62	1527. 7	- 3.102 76006 3	1.47E -10
Yes	F	SAUSA300 _RS05195	SAUSA3 00_0966	purE	5- (carboxyamino)im idazole ribonucleotide mutase	3.99	5.78	34.58	12.45	- 3.096 27570 1	0.000 00084 1
Yes	E	SAUSA300 _RS04565	SAUSA3 00_0845	ampA	M17 family metallopeptidase	36.03	30.19	174.0 9	110.9 7	- 3.064 39436	3.2E- 09
Yes	no homol og found	SAUSA300 _RS15730			phenol-soluble modulin PSM- alpha-4	4781. 15	3722. 92	9480. 7	29491 .47	- 3.031 54555 8	0.000 0163
Yes	S	SAUSA300 _RS04760	SAUSA3 00_0883		MAP domain- containing protein	124.6 7	114.6 6	461.4 6	414.0 3	- 2.890 12139 1	3.65E -09
Yes	no homol og found	SAUSA300 _RS08745			hypothetical protein	197.3 4	199.9 7	814	614.8 6	2.865 49480 9	3.65E -09
No	E	SAUSA300 _RS06940	SAUSA3 00_1278	pepF	oligoendopeptida se F	75.95	58.57	300.9 4	192.9 4	- 2.837 84688 4	9.86E -08

Table A-3 (cont'd)

No	GH	SAUSA300 _RS00995	SAUSA3 00_0190	ipdC	alpha-keto acid decarboxylase family protein	10.1	6.08	45.98	18.64	- 2.821 40982 1	0.000 0101
No	J	SAUSA300 _RS10275	SAUSA3 00_1878	rumA	23S rRNA (uracil(1939)- C(5))- methyltransferase RImD	32.74	30.2	110.1 3	106.3 3	- 2.807 67328	1.45E -08
Yes	no homol og found	SAUSA300 _RS09670	SAUSA3 00_1767	epiA	gallidermin/nisin family lantibiotic	14.79	14.8	62.42	43.05	- 2.802 09471 4	0.000 00019 2
Yes	no homol og found	SAUSA300 _RS13850	SAUSA3 00_2493		cell wall inhibition responsive protein CwrA	494.4 1	405.7 6	1253. 62	1809. 15	- 2.761 38450 9	0.000 00082 5
Yes	no homol og found	SAUSA300 _RS04395	SAUSA3 00_0815	ear	DUF4888 domain- containing protein	285.7 8	247.5 7	514.5 4	1337. 86	- 2.721 08987 5	0.000 056
No	S	SAUSA300 _RS04990	SAUSA3 00_0929		IDEAL domain- containing protein	546.2 2	445.0 1	1192. 94	2058. 93	- 2.694 53938 8	0.000 00617
Yes	Н	SAUSA300 _RS04995	SAUSA3 00_0930		lipoateprotein ligase	21.94	21.55	83.77	52.52	- 2.651 77849 5	0.000 00022 4

Yes	J	SAUSA300 _RS02850	SAUSA3 00_0533	tuf	elongation factor Tu	2098. 2	1576. 56	9598. 42	2950. 33	- 2.599 00773	0.000 0999
No	M	SAUSA300 _RS10340	SAUSA3 00_1890		cysteine protease staphopain A	23.86	17.48	90.7	41.01	2.580 73020 5	0.000 0165
No	S	SAUSA300 _RS08750	SAUSA3 00_1606		DUF4930 family protein	115.4 5	102.3 7	381.6 4	263.3 5	- 2.577 56366	0.000 00041 6
No	С	SAUSA300 _RS00705	SAUSA3 00_0135		superoxide dismutase	327.1 4	159.5 9	813.0 5	687.4 1	2.538 40489 9	0.000 0398
No	no homol og found	SAUSA300 _RS10505	SAUSA3 00_1918		phospholipase	231.8	358.2 4	247.8 6	1370. 52	- 2.331 74297 4	0.006 75249
No	S	SAUSA300 _RS03335	SAUSA3 00_0622		M50 family metallopeptidase	33.18	27.28	90.42	59.45	- 2.319 37854 2	0.000 0144
No	no homol og found	SAUSA300 _RS12715			hypothetical protein	29.21	27.54	62.52	74.48	- 2.308 03231 2	0.000 0341
No	K	SAUSA300 _RS12480	SAUSA3 00_2259		LCP family protein	71.48	67.66	173.8 2	151.6 2	2.284 43859 2	0.000 00482

Table A-3 (cont'd)

No	Н	SAUSA300 _RS09355	SAUSA3 00_1712	ribH	6,7-dimethyl-8- ribityllumazine synthase	125.9 4	114.0 1	276.5 1	281.8 4	- 2.276 22248 1	0.000 00889
No	not classif ied	SAUSA300 _RS10455	SAUSA3 00_1910		phenol-soluble modulin export ABC transporter permease subunit PmtD	95.33	102.7 7	117.4 3	363.0 8	- 2.253 53176 6	0.002 32582 1
Yes	J	SAUSA300 _RS06310	SAUSA3 00_1166	rpsO	30S ribosomal protein S15	1299. 07	1092. 22	5369. 18	1160	- 2.251 18427 4	0.003 27264 7
Yes	G	SAUSA300 _RS04670	SAUSA3 00_0865	pgi	glucose-6- phosphate isomerase	173.2 1	188.5 7	531.0 8	307.5 4	- 2.244 10416 2	0.000 0186
No	I	SAUSA300 _RS12685	SAUSA3 00_2296		alpha/beta hydrolase	74.21	90.01	126.1 1	251.3 5	- 2.243 17413 7	0.000 38308 8
No	V	SAUSA300 _RS03590	SAUSA3 00_0669		undecaprenyl- diphosphate phosphatase	95.13	92.82	380.4	100.7 7	2.222 61993	0.001 84399 7
No	S	SAUSA300 _RS10345			staphostatin A	59.61	55.49	168.8 2	96.37	- 2.216 19622 1	0.000 0495

No	K	SAUSA300 _RS10185	SAUSA3 00_1865	vraR	two-component system response regulator VraR	124.0 8	133.1 3	359.4 5	217.2 4	- 2.203 43570 3	0.000 0221
No	S	SAUSA300 _RS12500	SAUSA3 00_2262		CPBP family intramembrane glutamic endopeptidaseSd pB	63.68	66.42	223.4 7	84.83	- 2.196 61617	0.000 43873 6
Yes	S	SAUSA300 _RS13155	SAUSA3 00_2378		membrane protein	114.1 4	105.7 4	368.7	143.9	- 2.170 79242 5	0.000 52119
No	S	SAUSA300 _RS06705	SAUSA3 00_1236		CAP domain- containing protein	46.6	56.85	133.6 5	88.75	- 2.165 30558 6	0.000 0196
No	not classif ied	SAUSA300 _RS11565	SAUSA3 00_2100		lytic regulatory protein	211.9 5	349.9 9	728.4 9	464.1 1	- 2.145 36723 7	0.000 0709
Yes	J	SAUSA300 _RS02575	SAUSA3 00_0479		50S ribosomal protein L25/general stress proteinCtc	1009. 33	776.5 9	3437. 61	870.1 4	- 2.116 03300 3	0.004 84533 4
No	0	SAUSA300 _RS04625	SAUSA3 00_0857		peptidylprolyl isomerase	143.4 9	218.3 5	532.0 7	240.1 4	- 2.103 18800 8	0.000 43873 6

Table A-3 (cont'd)

No	S	SAUSA300 _RS12865	SAUSA3 00_2328		DUF4889 domain- containing protein	146.9 5	178.1 3	295.0 8	348.6 9	- 2.079 52448 9	0.000 0709
No	not classif ied	SAUSA300 _RS10200	SAUSA3 00_1868		hypothetical protein	33.4	42.96	69.49	79.98	- 2.062 92856 8	0.000 099
Yes	M	SAUSA300 _RS02965	SAUSA3 00_0556		6-phospho-3- hexuloisomerase	63.36	91.24	204.5 5	108.4 9	- 2.057 30151 4	0.000 26039 1
No	С	SAUSA300 _RS00155	SAUSA3 00_0030		glycerophosphory I diester phosphodiesteras e	27.56	42.18	64.24	68.28	- 2.025 99487 9	0.000 14352 8
No	S	SAUSA300 _RS04765	SAUSA3 00_0884		YjzD family protein	396.4 4	436.4 4	787.7	775.4 2	- 2.002 29876 5	0.000 0697
No	EJ	SAUSA300 _RS07470	SAUSA3 00_1368	ansA	asparaginase	27.49	29.51	68.76	41.19	- 1.997 35650 3	0.000 19452 9
No	OU	SAUSA300 _RS04060	SAUSA3 00_0752	clpP	ATP-dependent Clp endopeptidase proteolytic subunit ClpP	440.6 4	477.3 6	1027. 25	715.2 4	- 1.995 96247 1	0.000 082

No	S	SAUSA300 _RS05185	SAUSA3 00_0964	DUF5011 domain- containing protein	1334. 4	993.7 7	1790. 96	2632. 43	- 1.971 72832 8	0.001 36213 4
No	K	SAUSA300 _RS12390	SAUSA3 00_2245	HTH-type transcriptional regulator SarR	1604. 75	1808. 51	2792. 06	3279. 78	- 1.931 71892 3	0.000 26039 1
No	no homol og found	SAUSA300 _RS07815	SAUSA3 00_1432	hypothetical protein	230.1	344.1 6	486.1 6	523.1	- 1.922 80399 4	0.000 32817 8
Yes	S	SAUSA300 _RS09825	SAUSA3 00_1795	YlbF/YmcA family competence regulator	1580. 86	1536. 39	3185. 12	2401. 33	- 1.916 19496	0.000 18578 7
No	no homol og found	SAUSA300 _RS07460	SAUSA3 00_1366	hypothetical protein	36.42	28.53	70.61	48.87	- 1.903 30707 8	0.001 40393 1
No	no homol og found	SAUSA300 _RS06620	SAUSA3 00_1221	hypothetical protein	45.16	89.89	130.3 1	106.4 5	- 1.896 75278 8	0.001 23968 9
Yes	С	SAUSA300 _RS14075	SAUSA3 00_2537	L-lactate dehydrogenase	95.89	87.56	172.6 2	150.2 6	- 1.894 15454 8	0.000 26964 8
No	no homol og found	SAUSA300 _RS16085	SAUSA3 00_1988	delta-lysin family phenol-soluble modulin	77389 .75	67469 .88	13968 7.59	11566 8.38	- 1.889 06454 7	0.000 32817 8

Table A-3 (cont'd)

No	not classif ied	SAUSA300 _RS08150	SAUSA3 00_1493		SA1362 family protein	73.65	114.3 3	171.7 5	149.8 2	- 1.877 27516 3	0.000 43873 6
No	K	SAUSA300 _RS07035	SAUSA3 00_1295		cold shock protein CspA	6674. 63	7960. 83	8195. 49	17190 .01	- 1.868 59809 8	0.005 78183 8
Yes	G	SAUSA300 _RS02960	SAUSA3 00_0555		3-hexulose-6- phosphate synthase	31.5	53.55	80.68	63.24	- 1.855 73885 9	0.000 76234 2
No	S	SAUSA300 _RS10195	SAUSA3 00_1867		cell wall-active antibiotics response protein LiaF	51.05	51.63	83.33	82.76	- 1.792 03336 9	0.000 66746 9
No	0	SAUSA300 _RS09055	SAUSA3 00_1659	tpx	thiol peroxidase	541.7	543.1 7	1042. 42	725.7	- 1.782 58335 6	0.000 72659 4
No	E	SAUSA300 _RS02635	SAUSA3 00_0491	cysK	cysteine synthase A	3633. 25	2980. 47	7140. 91	3976. 77	- 1.778 97610 4	0.002 60445 3
Yes	not classif ied	SAUSA300 _RS13040	SAUSA3 00_2361		putative metal homeostasis protein	1679. 47	1321. 49	3210. 33	1826. 03	- 1.774 18544 6	0.002 87907

Yes	С	SAUSA300 _RS03045	SAUSA3 00_0569		heme-dependent peroxidase	363.7 2	351.6	698.1 3	442.7 7	- 1.740 31010 8	0.001 50938 5
Yes	S	SAUSA300 _RS13645	SAUSA3 00_2460		GNAT family N- acetyltransferase	65.19	95.56	123.2 3	120.2 2	- 1.717 48581 2	0.001 59011 4
No	Т	SAUSA300 _RS10190	SAUSA3 00_1866	vraS	sensor histidine kinase	48.93	50.75	86.62	63.01	- 1.676 41484 4	0.001 61703 9
Yes	S	SAUSA300 _RS07160	SAUSA3 00_1314		YozE family protein	436.4 1	557.2 8	824.2 7	630.1 6	- 1.658 36285 2	0.001 58791 1
No	S	SAUSA300 _RS10910	SAUSA3 00_1984		CPBP family intramembrane glutamic endopeptidaseMr oQ	111.7 1	104.0 9	126.2 1	189.5 2	- 1.645 90080 7	0.008 32515 7
No	K	SAUSA300 _RS05805	SAUSA3 00_1070		N- acetyltransferase	267.3 4	256.5 9	400.9	353.6 7	- 1.627 09675 1	0.002 38303 3
Yes	J	SAUSA300 _RS03960	SAUSA3 00_0736	yfiA	ribosome- associated translation inhibitor RaiA	5021. 99	4039. 9	5701. 51	6755. 99	- 1.553 14604 1	0.009 95202 1

No	S	SAUSA300 _RS12720	SAUSA3 00_2302	tcaA	glycopeptide resistance protein TcaA	72.33	66.7	100.7	88.6	- 1.547 15648	0.004 90233 6
Yes	G	SAUSA300 _RS07165	SAUSA3 00_1315	crr	PTS glucose transporter subunit IIA	503.1	567.8	752.0 4	659.1 3	- 1.518 42218 5	0.004 31367 4
No	Н	SAUSA300 _RS09425	SAUSA3 00_1725		transaldolase	380.7 4	299.7	509.0 3	398.7 4	- 1.495 84226 9	0.010 58877 8
Yes	no homol og found	SAUSA300 _RS15985			hypothetical protein	1270. 74	1137. 97	1916. 24	1268. 31	- 1.482 95495 6	0.010 58877 8
No	F	SAUSA300 _RS02705	SAUSA3 00_0505		pyridoxal 5'- phosphate synthase glutaminase subunit PdxT	152.5 5	146.5 9	154.7 6	231.1 7	- 1.480 55009 1	0.021 00904 7
No	not classif ied	SAUSA300 _RS06630	SAUSA3 00_1223		hypothetical protein	98.31	107.2 2	156.9 3	107.3 1	- 1.464 07273 7	0.008 44839 6
Yes	S	SAUSA300 _RS13765	SAUSA3 00_2481		sterile α motif-like domain- containing protein	5481. 61	5785. 93	6156. 04	8057. 18	- 1.460 91964 1	0.014 81135 7

Table A-3 (cont'd)

No	no homol og found	SAUSA300 _RS15910			hypothetical protein	467.2 9	484.7 8	547.1 1	613.5 7	- 1.412 59882 3	0.014 59714 5
No	J	SAUSA300 _RS08135	SAUSA3 00_1490	efp	elongation factor P	536.8 7	635.1 4	581.3 7	712.1 6	- 1.287 34146 7	0.033 7843
No	no homol og found	SAUSA300 _RS15830			hypothetical protein	95.61	104.4 4	114.8 5	103.4	- 1.248 38044 2	0.040 10672

APPENDIX B: Chapter 2 sulfur source Tables

Table B-1. Cysteine (Cys) differentially expressed genes.

Genes upregulated in C	ys when compare	ed to cystine (CSS	C)
------------------------	-----------------	--------------------	----

Locus	Old locus	Gene	Product	TPM.1 Cys	TPM.2 Cys	TPM.1 CSSC	TPM.2 CSSC	DE Log ₂ FC	DE Adj. <i>P-</i> value
SAUSA300_ RS15735			phenol-soluble modulin PSM-alpha- 2	6414.0 7	22311. 29	1675.5	4447.18	1.198345 086	7.64841E -05
SAUSA300_ RS15740			phenol-soluble modulin PSM-alpha- 1	5005.5 7	17730. 55	1294.02	3576.07	1.193139 353	8.3552E- 05
SAUSA300_ RS15090			phenol-soluble modulin PSM-alpha- 3	6602.5 9	24391. 96	1880.69	4471.81	1.190219 679	8.90957E -05
SAUSA300_ RS15730			phenol-soluble modulin PSM-alpha- 4	4712.0 8	16717. 7	1439.61	3355.4	1.130860 907	0.000192 115

Genes downregulated in Cys when compared to CSSC

Locus	Old locus	Gene	Product	TPM.1 Cys	TPM.2 Cys	TPM.1 CSSC	TPM.2 CSSC	DE Log₂ FC	DE Adj. <i>P</i> -value
SAUSA300_ RS04580	SAUSA30 0_0848		FAD/NAD(P)- binding protein	9.93	10.43	29.4	171.15	- 1.769049 937	4.77602E -09
SAUSA300_ RS06690	SAUSA30 0_1234	rpsN	30S ribosomal protein S14	554.57	552.48	991.64	2246.49	- 1.060341 408	0.000256 525

Table B-2. Oxidized glutathione (GSSG) differentially expressed genes.

Genes upregulated in GSSG when compared to CSSC

Locus	Old locus	Gene	Product	TPM.1 GSSG	TPM.2 GSSG	TPM. 1 CSSC	TPM. 2 CSSC	DE Log₂ FC	DE Adj. <i>P</i> -value
SAUSA300 _RS00930	SAUSA300 _0177		acyl-CoA/acyl-ACP dehydrogenase	115.41	240.12	2.69	9.11	4.1575 43995	3.04382E -22
SAUSA300 _RS02185	SAUSA300 _0407		superantigen-like protein SSL11	60.15	76.27	2.18	5.91	3.4390 76082	5.42187E -17
SAUSA300 _RS00925	SAUSA300 _0176		ABC transporter permease	78.28	96.38	4.22	2.74	3.3033 13167	9.01551E -10
SAUSA300 _RS00915	SAUSA300 _0174		ABC transporter ATP- binding protein	14.09	28.88	1.31	1.85	2.8307 62445	9.05749E -09
SAUSA300 _RS02340	SAUSA300 _0437	gmpC	dipeptide ABC transporter glycylmethionine-binding lipoprotein	667.4	817.5	30.16	144.4 4	2.6543 14417	9.05749E -09
SAUSA300 _RS03085	SAUSA300 _0577		redox-sensitive transcriptional regulator HypR	79.95	217.72	12.24	7.56	2.5501 01035	1.54999E -05
SAUSA300 _RS13745	SAUSA300 _2477		pyruvate oxidase	176.31	224.87	16.24	30.98	2.4597 29837	9.05749E -09
SAUSA300 _RS02325	SAUSA300 _0434		bifunctional cystathionine γ-lyase/homocysteine desulfhydrase	66.24	118.57	6.96	15.5	2.4241 27828	2.57027E -08
SAUSA300 _RS00920	SAUSA300 _0175		ABC transporter substrate-binding protein	20.65	35.29	2.69	2.58	2.4089 38291	4.67518E -06
SAUSA300 _RS00910	SAUSA300 _0173		DUF4242 domain- containing protein	174.59	290.64	14.98	49.04	2.3711 31373	6.13964E -08
SAUSA300 _RS13525	SAUSA300 _2440	fnbB	fibronectin-binding protein FnbB	60.43	59.28	5.83	8.01	2.3573 41809	7.51319E -07

SAUSA300 _RS02035	SAUSA300 _0382		L-cystine transporter	1284.5 9	1070. 76	127.0 4	125.6 2	2.3063 20567	1.28398E -05
SAUSA300 _RS02190	SAUSA300 _0408		FKLRK protein	132.34	186.8 1	14.95	26.75	2.2892 37921	1.87629E -07
SAUSA300 _RS10920			nitroreductase family protein	74.65	74.1	5.47	16.95	2.2764 37635	4.49694E -07
SAUSA300 RS13910	SAUSA300 2505		GNAT family N- acetyltransferase	18.59	30.85	0.55	7	2.2243 12445	0.000261 289
SAUSA300 RS07500	SAUSA300 1373		ferredoxin	2280.4 2	2592. 1	274.4 6	309.7 9	2.2193 60193	8.76536E -06
			YeeE/YedE family protein	45.26	77.02	4.7	14.19	2.1964 73104	7.51319E -07
SAUSA300 _RS04170	SAUSA300 _0773	vwb	von Willebrand factor binding protein Vwb	22.43	39.39	2.02	8.27	2.1398 49726	7.0435E- 06
SAUSA300 _RS01055	SAUSA300 _0200		ABC transporter ATP- binding protein	82.97	88.98	9.74	14.41	2.1368 24537	6.18049E -06
SAUSA300 _RS02315	SAUSA300 _0432		sodium-dependent transporter	160.87	163.7 3	16.69	35.07	2.1081 73714	2.0706E- 06
SAUSA300 RS01185			hypothetical protein	61.49	77.54	6.01	16.16	2.1021 02385	1.90088E -05
SAUSA300 _RS01180	SAUSA300 _0224	coa	staphylocoagulase	37.03	72.45	4.59	14	2.0561 29945	7.69607E -06
SAUSA300 _RS07495	SAUSA300 _1372		helix-turn-helix domain- containing protein	153.75	146.5 7	17.77	29.53	2.0390 23845	1.48728E -05
SAUSA300 _RS02335	SAUSA300 _0436		methionine ABC transporter permease	58.66	85.25	4.85	23.05	1.9860 24342	5.44287E -05
SAUSA300 _RS14570	SAUSA300 _2622		rhodanese-related sulfurtransferase	169.47	471.8 6	25.72	85.02	1.9830 40622	9.43471E -05
SAUSA300 _RS02330	SAUSA300 _0435		methionine ABC transporter ATP-binding protein	45.39	68.57	6.07	13.82	1.9821 14069	7.69607E -06

SAUSA300 _RS10980	SAUSA300 _1997		sulfurtransferase TusA family protein	270.7 8	321.0 8	39.77	54.14	1.9391 89828	7.77652E -05
SAUSA300 _RS13025	SAUSA300 _2359		transporter substrate- binding domain-containing protein	167.4 1	263.0 8	19.34	69.69	1.8684 32696	5.3321E- 05
SAUSA300 _RS01075	SAUSA300 _0204	ggt	γ-glutamyltransferase	28.66	33.84	4.18	7.39	1.8423 47726	7.74037E -05
SAUSA300 _RS05520	SAUSA300 _1026		DUF177 domain-containing protein	1413. 86	2722. 12	153.0 2	729.1 7	1.8393 26382	0.000295 32
SAUSA300 _RS01060	SAUSA300 _0201		ABC transporter permease	20.73	22.11	3.3	3.88	1.8153 53512	0.000587 577
SAUSA300 _RS02320	SAUSA300 _0433		cysteine synthase family protein	15.84	16.98	2.64	2.54	1.8061 0258	0.001534 208
SAUSA300 _RS16005			hypothetical protein	61.05	73.6	3.59	26.52	1.7889 17197	0.002760 437
SAUSA300 RS11935	SAUSA300 2165	budA	acetolactate decarboxylase	22.63	52.06	4.02	10.73	1.7862 63268	0.000363 127
	_		hypothetical protein	466.0 1	690.1 7	71.03	167.1 7	1.7779 37733	7.77652E -05
SAUSA300 _RS06500	SAUSA300 _1203		hypothetical protein	23.75	20.62	1.84	7.85	1.7649 8125	0.002486 839
SAUSA300 _RS00935	SAUSA300 _0178		DUF2294 domain- containing protein	598.6 1	688.1 8	92.52	169.3 3	1.7371 66884	0.000187 161
SAUSA300 RS01440	SAUSA300 0268		MFS transporter	19.46	21.64	2.57	6.44	1.7328 19023	0.000196 649
	SAUSA300 _1222		thermonuclease family protein	47.77	64.22	4.64	22.12	1.7221 56579	0.000769 904
SAUSA300 RS12110	SAUSA300 2196	rpmC	50S ribosomal protein L29	96.44	188.7 3	14.13	49.61	1.7170 32349	0.000561 759
SAUSA300 _RS10510	_		hypothetical protein	474.9 9	538.8 1	47.79	197.9 3	1.7123 90344	0.000472 33

SAUSA300 _RS05670	SAUSA300 _1052	ecb	complement convertase inhibitor Ecb	10430 .33	8507. 61	1011. 3	3581. 72	1.7004 4758	0.000630 005
SAUSA300 _RS13755	SAUSA300 _2479	cidA	holin-like murein hydrolase modulator CidA	83.68	81.85	10.97	26.05	1.6981 77302	0.000352 912
SAUSA300 _RS10255			hypothetical protein	22.66	36.96	3.61	8.17	1.6954 15345	0.005250 193
SAUSA300 _RS12415	SAUSA300 _2249		CHAP domain-containing protein	1972. 19	2369. 74	375.4 6	388.1 3	1.6951 27202	0.001996 199
SAUSA300 RS06695	SAUSA300 1235	guaC	GMP reductase	17.25	31.11	2.02	9.81	1.6588 68724	0.002041 038
SAUSA300 _RS09830	SAUSA300 _1796		DUF445 domain-containing protein	115.1 4	89.24	7.76	47.79	1.6197 63721	0.005623 452
SAUSA300 RS02805	SAUSA300 0524	rplJ	50S ribosomal protein L10	11616 .08	13656 .03	1888. 15	3950. 63	1.6172 89669	0.000415 338
SAUSA300 _RS08875	SAUSA300 _1627	infC	translation initiation factor IF-3	430.3 8	791.6 2	69.57	229.9 3	1.6112 53418	0.000796 613
SAUSA300 RS12105	SAUSA300 2195	rpsQ	30S ribosomal protein S17	113.0 3	200.2 9	20.36	53.63	1.6042 31927	0.000769 904
SAUSA300 RS06705	SAUSA300 1236		CAP domain-containing protein	132.1 9	145.2 8	12.84	63.9	1.5688 3287	0.003192 373
SAUSA300 RS13915	SAUSA300 2506	isaA	lytic transglycosylase IsaA	7884. 88	8642. 19	1471. 51	2548. 49	1.4884 56096	0.002608 647
SAUSA300 RS10250	SAUSA300 1874	ftnA	H-type ferritin FtnA	492.8	949.3 6	122.5 9	214.3 4	1.4836 56263	0.003553 971
	SAUSA300 _0532	fusA	elongation factor G	519.9 4	1145. 37	121.7 7	295.8 6	1.4768 87914	0.003553 971
SAUSA300 RS12090	SAUSA300 2192	rpIE	50S ribosomal protein L5	154.4 5	292	35.53	75.61	1.4690 91457	0.002999 274
SAUSA300 _RS03735	SAUSA300 _0696	queD	6-carboxytetrahydropterin synthase QueD	15.48	26.72	3.84	6.07	1.4440 43835	0.010359 352

SAUSA300 _RS12085 SAUSA300 _RS12075	SAUSA300 _2191 SAUSA300 2189	rplF	type Z 30S ribosomal protein S14 50S ribosomal protein L6	249.5 7 193.0 4	376.9 9 286.3 3	58.41 43.19	92.01 76.27	1.4414 64039 1.4369 41322	0.005140 203 0.003727 587
- SAUSA300 _RS03880	SAUSA300 _0721		siderophore ABC transporter substrate- binding protein	222.0 8	263.1	18	134.3	1.4354 17673	0.021157 034
SAUSA300 _RS04410	SAUSA300 _0818	sufC	Fe-S cluster assembly ATPase SufC	71.9	125.9 1	9.8	48.93	1.4314 76197	0.010359 352
SAUSA300 _RS13020	SAUSA300 _2358		amino acid ABC transporter permease	119.5 3	376.5 8	19.62	127.3 1	1.3771 26022	0.040614 674
SAUSA300 _RS02840	SAUSA300 _0531	rpsG	30S ribosomal protein S7	642.5 6	1202. 65	162.6 3	325.5	1.3732 34814	0.006761 354
SAUSA300 _RS08430	SAUSA300 _1546	holA	DNA polymerase III subunit delta	34.2	35.18	4.79	16.68	1.3663 20996	0.008896 376
SAUSA300 _RS01435	SAUSA300 _0267		IS1182 family transposase	12.61	16	2.04	6.4	1.3459 79451	0.021157 034
SAUSA300 _RS12080	SAUSA300 _2190	rpsH	30S ribosomal protein S8	240.1 5	345.3 5	62.37	82.95	1.3411 18802	0.015622 243
SAUSA300 _RS03445	SAUSA300 _0642		hypothetical protein	175.7 3	162.0 3	16.71	97.23	1.3403 10845	0.027666 854
SAUSA300 _RS02795	SAUSA300 _0522	rpIK	50S ribosomal protein L11	6887. 07	8204. 74	1597. 14	2381. 7	1.3234 76865	0.013419 835
SAUSA300 _RS11455	SAUSA300 _2081		CTP synthase	112.3 1	246.9 7	25.14	82.44	1.3228 00643	0.014780 092
SAUSA300 _RS06220	SAUSA300 _1149	rpsB	30S ribosomal protein S2	2338. 33	3407. 46	547.4 9	1071. 67	1.3155 80016	0.008059 084
SAUSA300 _RS09505	SAUSA300 _1738		DUF4909 domain- containing protein	16.8	14.12	3.24	5.12	1.3139 33411	0.031711 545
SAUSA300 _RS01470	SAUSA300 _0274		hypothetical protein	76.11	61.94	8.81	37.54	1.3122 30047	0.022468 518

SAUSA300 _RS01175	SAUSA300 _0223		complement inhibitor SCIN family protein	1078. 39	749.0 6	218.6 7	246.2	1.2866 69411	0.045188 836
SAUSA300 _RS03655	SAUSA300 _0681		hypothetical protein	194	164.0 9	35.4	71.4	1.2839 8078	0.017977 586
SAUSA300 _RS12020	SAUSA300 _2178		DNA-directed RNA polymerase subunit α	111.6 6	241.2 4	27.47	79.22	1.2826 24568	0.017455 078
SAUSA300 _RS05300	SAUSA300 _0985	nrdH	glutaredoxin-like protein NrdH	152.3 5	101.2 5	23.84	53.83	1.2822 92065	0.028431 659
SAUSA300 _RS13015	SAUSA300 _2357		amino acid ABC transporter ATP-binding protein	587.8 7	1126. 44	153.5 5	347.3	1.2793 74623	0.013517 702
SAUSA300 _RS02800	SAUSA300 _0523	rpIA	50S ribosomal protein L1	2815. 97	4907. 22	649.3 9	1722. 04	1.2737 65546	0.011596 632
SAUSA300 RS05600	SAUSA300 _1040	zapA	cell division protein ZapA	150.5 8	163.4 8	20.25	87.95	1.2659 09775	0.024410 672
SAUSA300 _RS05880	SAUSA300 _1085		RNA-binding protein	134.0 9	132.9 6	16.44	77.46	1.2612 47318	0.028738 26
SAUSA300 RS08870	SAUSA300 _1626	rpml	50S ribosomal protein L35	1426. 77	2117. 93	348.3 6	707.8 9	1.2526 20214	0.013387 071
SAUSA300 RS02345	SAUSA300 _0438	aaa	autolysin/adhesin Aaa	136.6	235.5 6	32.67	82.52	1.2501 36779	0.014232 282
SAUSA300 RS09325	SAUSA300 1708		MarR family transcriptional regulator	1856. 63	1352. 39	372.3 8	532.5 7	1.2426 53826	0.040537 541
SAUSA300 RS02835	SAUSA300 0530	rpsL	30S ribosomal protein S12	449.4 6	921.6 4	114.3 5	311.3 4	1.2421 40915	0.020375 529
SAUSA300 _RS06750	SAUSA300 _1243		exonuclease subunit SbcC	24.78	25.9	4.61	11.82	1.2385 71117	0.015981 333
SAUSA300 _RS09395			N-acetylglucosaminidase	348.4 4	399.6 3	56.98	199.5	1.2371 68972	0.018201 307
SAUSA300 _RS12150	SAUSA300 _2204	rpIC	50S ribosomal protein L3	61.97	135.6 3	18.58	39.74	1.2270 8297	0.027466 148

SAUSA300 _RS14655 SAUSA300	SAUSA300 _2639 SAUSA300		cold-shock protein class I SAM-dependent	85383. 85 23.54	73729. 38 38.19	15403 .29 6.02	36858 .2 13.94	1.2128 49751 1.1717	0.023895 526 0.027320
_RS07285 SAUSA300 _RS04180	_1336 SAUSA300 _0775		RNA methyltransferase hypothetical protein	107.1	137.98	18.31	70.73	57401 1.1674 47496	561 0.034250 049
SAUSA300 _RS05430	SAUSA300 _1009	typA	translational GTPase TypA	43.52	66.53	10.76	25.73	1.1584 696	0.025045 599
SAUSA300 _RS12115	SAUSA300 _2197	rpIP	50S ribosomal protein L16	100.6	225.21	34.63	62.4	1.1572 64551	0.049442 479
SAUSA300 RS09090	SAUSA300 1666	rpsD	30S ribosomal protein S4	8545.8	10848. 68	2335. 75	3461. 35	1.1539 68675	0.040708 41
SAUSA300 _RS11210	SAUSA300 _2037		DEAD/DEAH box helicase	461.01	801.74	96.45	354	1.1539 09403	0.037063 284
SAUSA300 _RS11405	SAUSA300 _2071	prmC	peptide chain release factor N(5)-glutamine methyltransferase	74.85	150.33	20.07	54.97	1.1535 0969	0.036318 346
SAUSA300 RS12070	SAUSA300 2188	rpIR	50S ribosomal protein L18	224.25	336.27	67.79	97.07	1.1456 81757	0.048416 068
SAUSA300 _RS11990	SAUSA300 _2172	rpIM	50S ribosomal protein L13	2485.6 4	3347.5	710.5 7	1079. 1	1.1237 28432	0.048067 748

Genes downregulated in GSSG when compared to CSSC

Locus	Old locus	Gene	Product		TPM.2 GSSG		2 CSSC		DE Adj. <i>P</i> -value
	SAUSA300 _1068			157.97	172.34	3464. 54	3534. 23	- 4.3047 27876	1.5934E- 20

SAUSA300 _RS05790	SAUSA300 _1067		beta-class phenol-soluble modulin	231.7 6	231.6 4	4820. 71	4917	- 4.2788 90597	3.97915E -20
SAUSA300 _RS04580	SAUSA300 _0848		beta-class phenol-soluble modulin	3.18	4.13	29.4	171.1 5	- 4.2079 16659	3.97915E -20
SAUSA300 _RS13360	SAUSA300 _2413	cntL	FAD/NAD(P)-binding protein	3.35	2.17	42.35	67.31	- 4.0635 14424	1.42843E -18
SAUSA300 _RS15090			D-histidine (S)-2- aminobutanoyltransferase CntL	152.5 9	251.8 2	1880. 69	4471. 81	- 3.8975 8922	3.04382E -22
SAUSA300 _RS15740			phenol-soluble modulin PSM-alpha-3	119.2 1	201.3 9	1294. 02	3576. 07	- 3.8075 26925	4.6765E- 21
SAUSA300 _RS15735			phenol-soluble modulin PSM-alpha-1	153.8 8	267.8 1	1675. 5	4447. 18	- 3.7626 71691	1.00147E -20
SAUSA300 _RS15730			phenol-soluble modulin PSM-alpha-2	128.5 5	212.5 7	1439. 61	3355. 4	- 3.7540 98002	1.00147E -20
SAUSA300 _RS03005		vraX	phenol-soluble modulin PSM-alpha-4	14226 .21	7060. 01	13009 8.29	60616 .24	- 3.0293 80781	7.51319E -07
SAUSA300 _RS13040	SAUSA300 _2361		C1q-binding complement inhibitor VraX	7009. 33	4703. 8	51134 .91	41439 .61	- 2.9819 50513	3.35575E -08
SAUSA300 _RS03000			putative metal homeostasis protein	350	157.3 4	2775. 63	1589. 92	- 2.9719 6365	7.51319E -07

Table B-2 (cont'd)

SAUSA300 _RS13355	SAUSA300 _2412	cntM	hypothetical protein	4.26	2.14	16.89	38.39	- 2.8752 51245	1.07614E -08
SAUSA300 _RS13330	SAUSA300 _2407		staphylopine dehydrogenase CntM	3.36	4.52	11.71	53.39	- 2.7921 07182	2.8376E- 09
SAUSA300 _RS13340	SAUSA300 _2409		ABC transporter ATP- binding protein	5.79	4.06	20.31	54.35	- 2.7631 2879	3.44703E -09
SAUSA300 _RS06690	SAUSA300 _1234	rpsN	ABC transporter permease	295.6 1	181.4	991.6 4	2246. 49	- 2.6425 68704	3.35575E -08
SAUSA300 _RS10275	SAUSA300 _1878	rlmD	30S ribosomal protein S14	12.68	16.55	86.77	64.72	- 2.5752 87956	2.0706E- 06
SAUSA300 _RS08880	SAUSA300 _1628		23S rRNA (uracil(1939)- C(5))-methyltransferase RImD	32.89	39.93	113.0 6	312.0 7	- 2.5423 14586	1.2333E- 09
SAUSA300 _RS07010	SAUSA300 _1290	dapD	amino acid permease	108.4 6	111.7	455.4 9	710.3 2	- 2.5206 51649	2.56794E -08
SAUSA300 _RS13325	SAUSA300 _2406		2,3,4,5-tetrahydropyridine- 2,6-dicarboxylate N- acetyltransferase	93.2	55.58	310.4 9	534.5 3	- 2.4704 29805	7.51319E -07
SAUSA300 _RS07015	SAUSA300 _1291		MFS transporter	15.12	19.69	63.58	90.07	- 2.3269 63795	6.21097E -07
SAUSA300 _RS16085	SAUSA300 _1988		amidohydrolase	7032. 08	5470. 08	18503 .83	35902 .11	- 2.1718 67176	4.12707E -06

Table B-2 (cont'd)

SAUSA300 _RS14175	SAUSA300 _2551	nrdD	delta-lysin family phenol- soluble modulin	6.42	13.29	34.12	39.52	- 2.1593 93763	2.99305E -05
SAUSA300 _RS14170	SAUSA300 _2550	nrdG	anaerobic ribonucleoside- triphosphate reductase	15.87	30.72	89.47	81	- 2.1556 09012	7.81136E -05
SAUSA300 _RS09670	SAUSA300 _1767		anaerobic ribonucleoside- triphosphate reductase activating protein	10.86	17.86	68.29	38.64	- 2.1500 37555	0.000540 373
SAUSA300 _RS12890	SAUSA300 _2333		gallidermin/nisin family lantibiotic	39.45	38.95	112.3 9	200.4 2	- 2.1224 75632	3.60293E -06
SAUSA300 _RS01625	SAUSA300 _0305		nitrate/nitrite transporter	115.3 5	157.0 4	429.3 9	544.9 9	- 2.0810 32901	1.90088E -05
SAUSA300 _RS05195	SAUSA300 _0966	purE	formate/nitrite transporter family protein	7.16	7.74	17.97	42.28	- 2.0663 62184	7.22394E -06
SAUSA300 _RS07025	SAUSA300 _1293	lysA	5-(carboxyamino)imidazole ribonucleotide mutase	67.99	119.4 9	195.4 7	534.7	- 2.0392 70385	4.12707E -06
SAUSA300 _RS01635	SAUSA300 _0307		diaminopimelate decarboxylase	49.76	43.86	160.9 7	150.1 3	- 1.9686 53763	0.000368 55
SAUSA300 _RS07000	SAUSA300 _1288	dapA	5'-nucleotidase, lipoprotein e(P4) family	10.77	19.16	33.36	64.28	- 1.8928 34032	4.93298E -05
SAUSA300 _RS10485			4-hydroxy- tetrahydrodipicolinate synthase	83.85	97.64	375.5 9	160.5 7	- 1.8925 03751	0.004619 96

Table B-2 (cont'd)

SAUSA300 _RS06990	SAUSA300 _1286		hypothetical protein	12.16	22.17	29.3	94.79	- 1.8873 25956	4.93298E -05
SAUSA300 _RS06995	SAUSA300 _1287		aspartate kinase	12.53	22.2	36.57	76.45	- 1.8728 70427	4.85665E -05
SAUSA300 _RS07020	SAUSA300 _1292		aspartate-semialdehyde dehydrogenase	7.21	12.84	19	45.97	- 1.8256 69371	7.74037E -05
SAUSA300 _RS12480	SAUSA300 _2259		alanine racemase	40.79	50.98	113.1 8	157.6 3	- 1.8103 49562	0.000223 37
SAUSA300 _RS13350	SAUSA300 _2411	cntA	LCP family protein	32.03	26.97	38.2	205.1 1	- 1.8093 68607	0.000740 24
SAUSA300 _RS13345	SAUSA300 _2410		staphylopine-dependent metal ABC transporter substrate-binding protein CntA	40.11	30.46	59.12	204.0	- 1.8060 48803	0.000295 32
SAUSA300 _RS13860	SAUSA300 _2495	copZ	ABC transporter permease	3092. 61	2654. 74	10217 .43	5935. 91	- 1.7996 06649	0.004998 035
SAUSA300 _RS05185	SAUSA300 _0964		copper chaperone CopZ	1478. 3	715.6	4004. 37	2605. 7	- 1.7803 12978	0.008012 672
SAUSA300 _RS07005	SAUSA300 _1289	dapB	DUF5011 domain- containing protein	23.2	44.89	54.26	165.9 8	- 1.7617 7941	0.000196 649
SAUSA300 _RS10195	SAUSA300 _1867	liaF	4-hydroxy- tetrahydrodipicolinate reductase	26.5	29.03	56.96	110.1 4	- 1.7508 26039	0.000169 321

Table B-2 (cont'd)

SAUSA300 _RS10185	SAUSA300 _1865	vraR	cell wall-active antibiotics response protein LiaF	96.99	137.4 7	277.5 9	350.5	- 1.7153 2027	0.000792 279
SAUSA300 _RS04855	SAUSA300 _0902	pepF	two-component system response regulator VraR	38.22	65.6	87.93	218.1 4	- 1.7024 72242	0.000195 422
SAUSA300 _RS13045	SAUSA300 _2362		oligoendopeptidase F	872.1 5	1164. 6	1514. 2	4828. 17	- 1.6841 02273	0.000212 094
SAUSA300 _RS12545	SAUSA300 _2269		2,3-diphosphoglycerate- dependent phosphoglycerate mutase	252.3 8	174.5 6	573.5 1	583.6 9	- 1.6668 65506	0.004942 313
SAUSA300 _RS15795		pepA1	hypothetical protein	786.7 3	766.4 7	2456. 95	1290. 29	- 1.6393 9493	0.015438 398
SAUSA300 _RS04985	SAUSA300 _0928		type I toxin-antitoxin system Fst family toxin PepA1	9.63	12.1	19.18	40.77	- 1.6206 72046	0.000667 423
SAUSA300 _RS06940	SAUSA300 _1278	pepF	competence protein ComK	95.77	95.44	207.7 2	271.2 2	- 1.5854 20486	0.002808 289
SAUSA300 _RS10555			oligoendopeptidase F	657.5 4	372.4 3	1740. 21	716.3 3	- 1.5619 43065	0.038624 179
SAUSA300 _RS09355	SAUSA300 _1712	ribE	hypothetical protein	111.6 2	124.0 6	240.5 9	334.7 3	- 1.5538 46145	0.002773 409
SAUSA300 _RS00995	SAUSA300 _0190		6,7-dimethyl-8- ribityllumazine synthase	13.28	10.78	25.77	34.11	- 1.5399 30896	0.005623 452

Table B-2 (cont'd)

SAUSA300 _RS01265	SAUSA300 _0237		alpha-keto acid decarboxylase family protein	21.17	25.76	50.02	59.68	- 1.5336 85135	0.005005 037
SAUSA300 _RS12970			nucleoside hydrolase	35.76	27.36	81.4	67.56	- 1.5264 47487	0.018992 461
SAUSA300 _RS03335	SAUSA300 _0622		hypothetical protein	65.9	56.11	140.3 3	140.7 3	- 1.4995 98783	0.012737 296
SAUSA300 _RS13725	SAUSA300 _2473		M50 family metallopeptidase	102.7 3	95.64	212.7 7	237.7 8	- 1.4786 66015	0.010359 352
SAUSA300 _RS04185	SAUSA300 _0776		alpha/beta hydrolase	37.61	25.45	55.04	109.1 5	- 1.4777 80793	0.006955 209
SAUSA300 _RS12780	SAUSA300 _2313		thermonuclease family protein	330.1 5	656.8 3	887.0 6	1282. 53	- 1.4553 96328	0.007016 909
SAUSA300 _RS14075	SAUSA300 _2537		L-lactate permease	130.8 1	164.8 8	241.4 9	410.5 7	- 1.3961 83733	0.005316 458
SAUSA300 _RS05245	SAUSA300 _0976	purD	L-lactate dehydrogenase	37.61	46.72	68	118.9 4	- 1.3935 1826	0.005316 458
SAUSA300 _RS00400	SAUSA300 _0079		phosphoribosylamine glycine ligase	198.6 1	283.2 2	361.2 6	716.4 3	- 1.3893 5943	0.004227 754
SAUSA300 _RS00215	SAUSA300 _0040		YdhK family protein	7.35	7.29	16.36	14.43	- 1.3849 91387	0.040708 41

Table B-2 (cont'd)

SAUSA300 _RS09140	SAUSA300 _1674		hypothetical protein	148.6 5	184.7 5	242.4 5	500.7 5	- 1.3621 42313	0.004998 035
SAUSA300 _RS12865	SAUSA300 _2328		trypsin-like peptidase domain-containing protein	511.7 1	418.1	1025. 36	853.3 6	- 1.3607 50229	0.039399 129
SAUSA300 _RS09800	SAUSA300 _1790		DUF4889 domain- containing protein	381.9 6	370.9 8	476.9 7	1357. 86	- 1.3584 39536	0.006449 607
SAUSA300 _RS01235	SAUSA300 _0233		peptidylprolyl isomerase	19.82	38.78	48.66	69.56	- 1.3275 72511	0.024225 047
SAUSA300 _RS01990	SAUSA300 _0374		hypothetical protein	3030. 82	4042. 18	6286. 49	7095. 9	- 1.2881 02453	0.028749 116
SAUSA300 _RS04565	SAUSA300 _0845		GlsB/YeaQ/YmgE family stress response membrane protein	54.52	70.8	93.39	150.8 5	- 1.2497 80323	0.019408 834
SAUSA300 _RS10935	SAUSA300 _1989	agrB	M17 family metallopeptidase	561.5 4	883.9 9	1150. 16	1544. 07	- 1.2485 30597	0.028033 267
SAUSA300 _RS00395	SAUSA300 _0078		accessory gene regulator AgrB	39.14	77.35	66.5	171.5 5	- 1.2175 30251	0.022101 684
SAUSA300 _RS10950	SAUSA300 _1992		heavy metal translocating P-type ATPase	173.3 6	289.9 8	304.6 4	592.3 2	- 1.2162 70388	0.020463 346
SAUSA300 _RS07160	SAUSA300 _1314		LytTR family DNA-binding domain-containing protein	237.9 6	273.3 5	397.0 4	556.2 1	- 1.2101 66496	0.033546 539

SAUSA300 _RS13150	SAUSA300 _2377	DUF4064 domain- containing protein	33.59	34.15	42.16	91.11	- 1.1608 98774	0.028749 116
----------------------	-------------------	---------------------------------------	-------	-------	-------	-------	----------------------	-----------------

Table B-3. Reduced glutathione (GSH) differentially expressed genes.

Genes upregulated in GSH when compared to CSSC

Locus	Old locus	Gene	Product	TPM. 1 GSH	TPM. 2 GSH	TPM. 1 CSSC	TPM. 2 CSSC	DE Log₂ FC	DE Adj. <i>P</i> -value
SAUSA300 _RS00930	SAUSA3 00_0177		acyl-CoA/acyl-ACP dehydrogenase	121.5	319.7 6	2.69	9.11	4.04672 1405	8.67351 E-15
SAUSA300 _RS00925	SAUSA3 00_0176		ABC transporter permease	66.92	130.6 7	4.22	2.74	3.12583 3599	5.35039 E-07
SAUSA300 RS02185	SAUSA3 00 0407		superantigen-like protein SSL11	34.84	122.9 5	2.18	5.91	3.08354 8435	1.13366 E-07
SAUSA300 _RS00915	SAUSA3 00_0174		ABC transporter ATP-binding protein	17.3	47.95	1.31	1.85	2.98901 4416	3.54407 E-07
SAUSA300 _RS02340	SAUSA3 00_0437	gmpC	dipeptide ABC transporter glycylmethionine-binding lipoprotein	579.8 4	889.8 9	30.16	144.4 4	2.31567 9543	4.10697 E-05
SAUSA300 _RS02330	SAUSA3 00_0435		methionine ABC transporter ATP-binding protein	68.43	117.6 8	6.07	13.82	2.29040 1543	1.35302 E-05
SAUSA300 _RS00920	SAUSA3 00_0175		ABC transporter substrate- binding protein	18.04	50.12	2.69	2.58	2.28240 9423	0.00054 7181
SAUSA300 _RS11740	SAUSA3 00_2132		hypothetical protein	757.2 5	1059. 95	76.55	120.0 9	2.17337 2354	8.53142 E-05
SAUSA300 _RS01185			hypothetical protein	90.86	88.68	6.01	16.16	2.15008 3564	0.00029 9038
SAUSA300 _RS06580	SAUSA3 00_1213		hypothetical protein	44.88	53.03	0.47	12.46	2.11181 0188	0.00684 5352
SAUSA300 _RS06505			hypothetical protein	18.79	21.99	0.61	4.2	2.10878 522	0.00447 5634
SAUSA300 _RS06500	SAUSA3 00_1203		hypothetical protein	32.66	40.54	1.84	7.85	2.10687 5855	0.00074 0514
SAUSA300 _RS12110	SAUSA3 00_2196	rpmC	50S ribosomal protein L29	87.92	495.6 3	14.13	49.61	2.10265 0383	0.00267 7665

SAUSA300 _RS01180	SAUSA3 00_0224	coa	staphylocoagulase	38.28	115.6 7	4.59	14	2.10046 3489	0.00054 9967
SAUSA300 _RS02190	SAUSA3 00_0408		FKLRK protein	141.8	206.0 4	14.95	26.75	2.08750 2758	0.00012 3001
SAUSA300 RS00910	SAUSA3 00 0173		DUF4242 domain-containing protein	217.4 7	240.9 8	14.98	49.04	2.08181 6612	0.00014 0982
SAUSA300 RS12105	SAUSA3 00 2195	rpsQ	30S ribosomal protein S17	104.2 3	549.3 6	20.36	53.63	2.01809 6815	0.00335 1341
SAUSA300 RS06575	SAUSA3 00 1212		polymorphic toxin type 50 domain-containing protein	92.16	106.2	2.68	27.94	2.01468 4719	0.00386 1321
SAUSA300 RS02845	SAUSA3 00 0532	fusA	elongation factor G	1772. 98	1197. 1	121.7 7	295.8 6	2.00858 7337	0.00077 3725
SAUSA300 RS02335	SAUSA3 00 0436		methionine ABC transporter permease	52.72	145.6 6	4.85	23.05	1.99519 5436	0.00176 9395
SAUSA300 RS04425	SAUSA3 00 0821		SUF system NifU family Fe-S cluster assembly protein	16.24	72.76	2.17	9.09	1.98977 3533	0.00414 9892
SAUSA300 RS10920	SAUSA3 00 1986		nitroreductase family protein	93.24	55.54	5.47	16.95	1.96734 647	0.00176 9395
SAUSA300 RS02315	SAUSA3 00 0432		sodium-dependent transporter	221.1 4	143.4 2	16.69	35.07	1.95067 1187	0.00141 8977
	SAUSA3 00 0695	queE	7-carboxy-7-deazaguanine synthase QueE	23.67	32.52	1.9	7.02	1.89704 6743	0.00119 1171
SAUSA300 RS10510	_		hypothetical protein	801.2 8	621.0 5	47.79	197.9 3	1.86021 0621	0.00253 0158
SAUSA300 RS02035	SAUSA3 00 0382		L-cystine transporter	1328. 76	696.7 4	127.0 4	125.6 2	1.83826 2363	0.00898 218
SAUSA300 RS08430	SAUSA3 00_1546	holA	DNA polymerase III subunit delta	48.34	81.67	4.79	16.68	1.83115 6883	0.00141 8977
_ SAUSA300 _RS16005	_		hypothetical protein	56.24	127.0 8	3.59	26.52	1.82585 9258	0.00925 3583

SAUSA300 RS06695	SAUSA3 00 1235	guaC	GMP reductase	21.38	49.87	2.02	9.81	1.81753 7523	0.00414 9892
SAUSA300 _RS04170	SAUSA3 00_0773	vwb	von Willebrand factor binding protein Vwb	19.7	41.67	2.02	8.27	1.80091 5624	0.00306 1771
SAUSA300 _RS13910	SAUSA3 00_2505		GNAT family N- acetyltransferase	12.17	33.32	0.55	7	1.79700 4954	0.01941 728
SAUSA300 _RS12090	SAUSA3 00_2192	rpIE	50S ribosomal protein L5	165.4 6	642.5 3	35.53	75.61	1.79182 7537	0.00682 9885
SAUSA300 _RS13525	SAUSA3 00_2440	fnbB	fibronectin-binding protein FnbB	41.09	55.47	5.83	8.01	1.76549 1147	0.00312 0213
SAUSA300 _RS05520	SAUSA3 00_1026		DUF177 domain-containing protein	1746. 21	3104. 06	153.0 2	729.1 7	1.75597 9103	0.00378 1697
SAUSA300 _RS13025	SAUSA3 00_2359		transporter substrate-binding domain-containing protein	174.4 7	335.8 9	19.34	69.69	1.75369 4235	0.00267 7665
SAUSA300 _RS08875	SAUSA3 00_1627	infC	translation initiation factor IF-	614.0 8	1101. 33	69.57	229.9 3	1.74829 5789	0.00224 7546
SAUSA300 _RS12150	SAUSA3 00_2204	rpIC	50S ribosomal protein L3	120.9 4	250.5 1	18.58	39.74	1.74718 4815	0.00262 9918
SAUSA300 _RS12045	SAUSA3 00_2183		adenylate kinase	64.45	331.5	17.28	36.57	1.74604 1028	0.01342 3043
SAUSA300 _RS05375	SAUSA3 00_0998		XRE family transcriptional regulator	29.92	66.4	3.57	12.93	1.74023 0711	0.00436 8127
SAUSA300 _RS06705	SAUSA3 00_1236		CAP domain-containing protein	176.9 8	225.9 4	12.84	63.9	1.73788 6173	0.00421 5597
SAUSA300 _RS01440	SAUSA3 00_0268		MFS transporter	37.36	14.92	2.57	6.44	1.72865 6723	0.01348 4163
SAUSA300 _RS01075	SAUSA3 00_0204	ggt	γ-glutamyltransferase	35.54	35.95	4.18	7.39	1.72170 7092	0.00329 95
SAUSA300 _RS01435	SAUSA3 00_0267		IS1182 family transposase	34.68	12.85	2.04	6.4	1.70786 7216	0.02103 1039

SAUSA300 RS05535	SAUSA3 00 1028	isdB	heme uptake protein IsdB	17.83	21.34	1.43	6.1	1.70209 7085	0.00447 5634
SAUSA300 RS01055	SAUSA3 00 0200		ABC transporter ATP-binding protein	93.69	55.55	9.74	14.41	1.66739 4083	0.01218 702
	SAUSA3 00_0769		DUF5067 domain-containing protein	19.39	24.04	0.43	8.37	1.65665 9585	0.03955 7101
SAUSA300 _RS06570	SAUSA3 00_1211		hypothetical protein	229.5 5	207.0 1	16.71	72.57	1.64334 9984	0.00876 62
SAUSA300 _RS15905			hypothetical protein	277.4 2	219.2 8	17.01	86.2	1.64334 9642	0.01231 2678
SAUSA300 _RS12025	SAUSA3 00_2179	rpsK	30S ribosomal protein S11	62.73	394.5 5	20.99	45.01	1.63820 6467	0.02809 6832
SAUSA300 _RS04410	SAUSA3 00_0818	sufC	Fe-S cluster assembly ATPase SufC	94.03	206.3 1	9.8	48.93	1.63445 5126	0.01102 0586
SAUSA300 _RS09470	SAUSA3 00_1731	pckA	phosphoenolpyruvate carboxykinase (ATP)	31.12	45.89	4.33	9.46	1.63095 1725	0.00394 9272
SAUSA300 _RS09830	SAUSA3 00_1796		DUF445 domain-containing protein	107.5 5	157.8 4	7.76	47.79	1.62334 6219	0.01253 3987
SAUSA300 _RS12085	SAUSA3 00_2191		type Z 30S ribosomal protein S14	236.7 6	744.2 4	58.41	92.01	1.60149 5869	0.01563 3984
SAUSA300 _RS00935	SAUSA3 00_0178		DUF2294 domain-containing protein	649.7 4	819.4 1	92.52	169.3 3	1.59783 0273	0.00544 0727
SAUSA300 _RS12115	SAUSA3 00_2197	rpIP	50S ribosomal protein L16	115.7 9	522.5 5	34.63	62.4	1.58883 3404	0.02481 9405
SAUSA300 _RS16000			minor capsid protein	58.13	70.81	5.38	21.52	1.58826 9635	0.00873 4929
SAUSA300 _RS12075	SAUSA3 00_2189	rpIF	50S ribosomal protein L6	173.3 7	567.8 1	43.19	76.27	1.57031 1496	0.01764 915
SAUSA300 _RS04390	SAUSA3 00_0814		Abi family protein	582.4	670	29.73	254.5	1.56365 6708	0.02763 3932

SAUSA300 _RS02840	SAUSA3 00_0531	rpsG	30S ribosomal protein S7	1277. 12	1284. 06	162.6 3	325.5	1.55718 4282	0.00797 5117
SAUSA300 _RS07030	SAUSA3 00_1294	msaC	sarA expression modulator MsaC	17.75	18.1	2.12	4.81	1.54271 4621	0.01545 6886
SAUSA300 _RS02325	SAUSA3 00_0434		bifunctional cystathionine γ- lyase/homocysteine desulfhydrase	46.92	69.42	6.96	15.5	1.53930 7173	0.00741 5367
SAUSA300 RS12020	SAUSA3 00 2178		DNA-directed RNA polymerase subunit α	132.5 6	445.8 6	27.47	79.22	1.53762 0634	0.01944 3584
SAUSA300 _RS05670	SAUSA3 00_1052	ecb	complement convertase inhibitor Ecb	8660. 72	12958 .51	1011. 3	3581. 72	1.53370 34	0.00876 62
SAUSA300 _RS05600	SAUSA3 00_1040	zapA	cell division protein ZapA	247.9 8	234.5 1	20.25	87.95	1.52931 0202	0.01493 5747
SAUSA300 _RS01060	SAUSA3 00_0201		ABC transporter permease	21.52	21.05	3.3	3.88	1.52400 8315	0.02015 7954
SAUSA300 _RS03445	SAUSA3 00_0642		hypothetical protein	207.4	295.4 8	16.71	97.23	1.52212 8826	0.01943 2255
SAUSA300 _RS12095	SAUSA3 00_2193	rpIX	50S ribosomal protein L24	124.7 4	558.7 4	41.81	65.15	1.50850 5601	0.03675 2967
SAUSA300 _RS08565	SAUSA3 00_1571		methyltransferase domain- containing protein	12.83	25.92	1.63	6.46	1.50193 637	0.01969 4909
SAUSA300 _RS09690	SAUSA3 00_1770		hypothetical protein	13.9	16.32	1.08	5.73	1.49500 6061	0.02763 3932
SAUSA300 _RS12080	SAUSA3 00_2190	rpsH	30S ribosomal protein S8	230.6 7	663.4 4	62.37	82.95	1.48702 4905	0.02806 6756
SAUSA300 _RS06625	SAUSA3 00_1222		thermonuclease family protein	65.51	47.86	4.64	22.12	1.47938 6077	0.02809 6832
SAUSA300 _RS07500	SAUSA3 00_1373		ferredoxin	1852. 46	1504. 25	274.4 6	309.7 9	1.47847 8639	0.02809 6832
SAUSA300 _RS06635	SAUSA3 00_1224		hypothetical protein	121.8 8	147.1 6	18.86	34.11	1.46792 3086	0.01330 2658

SAUSA300 _RS09695	SAUSA3 00_1771		DUF1828 domain-containing protein	129.9 9	153.4 3	9.95	58.37	1.46283 2805	0.02721 8672
SAUSA300 _RS02815	SAUSA3 00_0526		class I SAM-dependent methyltransferase	57.03	117.7 6	6.44	33.14	1.46021 2935	0.02721 8672
SAUSA300 _RS06390	SAUSA3 00_1182		2-oxoacid:acceptor oxidoreductase subunit α	12.95	25.82	1.98	6.27	1.45878 6422	0.01696 0367
SAUSA300 _RS02835	SAUSA3 00_0530	rpsL	30S ribosomal protein S12	850.5 4	1081. 74	114.3 5	311.3 4	1.44297 068	0.01218 702
SAUSA300 _RS08295	SAUSA3 00_1520		tRNA (adenine(22)-N(1))- methyltransferase TrmK	13.6	43.2	1.83	10.5	1.44243 5919	0.04698 6359
SAUSA300 _RS12145	SAUSA3 00_2203	rpID	50S ribosomal protein L4	274.4 6	210.0 1	36.9	61.43	1.42442 5489	0.02721 8672
SAUSA300 _RS03735	SAUSA3 00_0696	queD	6-carboxytetrahydropterin synthase QueD	24.28	26.15	3.84	6.07	1.42353 6204	0.02800 4122
SAUSA300 _RS08400	SAUSA3 00_1541	grpE	nucleotide exchange factor GrpE	34.77	97.47	4.95	24.8	1.41518 437	0.04081 6815
SAUSA300 _RS04255	SAUSA3 00_0788		nitroreductase	499.0 8	521.3 5	53.82	191.2 3	1.40664 8838	0.01969 4909
SAUSA300 _RS13775			hypothetical protein	436.5 5	370.8 2	34.13	169.6 6	1.40162 398	0.03657 7794
SAUSA300 _RS08015	SAUSA3 00_1468	recN	DNA repair protein RecN	27.49	87.77	4.41	21.76	1.38679 0721	0.04909 9554
SAUSA300 _RS00010	SAUSA3 00_0001	dnaA	chromosomal replication initiator protein DnaA	49.1	100.9 2	6.12	29.82	1.38666 2694	0.03551 508
SAUSA300 _RS04180	SAUSA3 00_0775		hypothetical protein	192.8 7	163.2 6	18.31	70.73	1.37887 6713	0.03109 4167
SAUSA300 _RS08555	SAUSA3 00_1569		U32 family peptidase	19.76	55.56	3.9	12.58	1.37597 343	0.03675 2967
SAUSA300 _RS06750	SAUSA3 00_1243		exonuclease subunit SbcC	26.76	46.2	4.61	11.82	1.36188 1461	0.02073 2042

SAUSA300 _RS06225			hypothetical protein	359.1 4	729.7 9	71.03	167.1 7	1.35017 3181	0.02721 8672
SAUSA300 _RS01470	SAUSA3 00_0274		hypothetical protein	76.55	106.0 4	8.81	37.54	1.34280 6873	0.03120 5807
SAUSA300 RS07495	SAUSA3 00_1372		helix-turn-helix domain- containing protein	114.1 7	105.2 8	17.77	29.53	1.34050 4493	0.03430 1114
SAUSA300 RS10985	SAUSA3 00 1998		YeeE/YedE family protein	33.44	42.54	4.7	14.19	1.30498 8845	0.03024 6065
SAUSA300 RS05880	SAUSA3 00 1085		RNA-binding protein	150.4 5	200.0 8	16.44	77.46	1.29383 7497	0.04397 0121
SAUSA300 RS14570	SAUSA3 00 2622		rhodanese-related sulfurtransferase	209.2 5	216.0 6	25.72	85.02	1.28821 0782	0.03605 4453
SAUSA300 RS03505	SAUSA3 00 0654	sarX	HTH-type transcriptional regulator SarX	25.49	38.97	4.17	12.09	1.24392 7166	0.04914 1271
SAUSA300 RS09570	SAUSA3 00 1749		DUF1433 domain-containing protein	48.44	59.34	7.05	21.44	1.22571 3833	0.04829 7087
SAUSA300 _RS12140	SAUSA3 00_2202	rpIW	50S ribosomal protein L23	300.7 4	391.0 1	55.07	115.7 5	1.21705 224	0.04362 6347

Genes downregulated in GSH when compared to CSSC

Locus	Old locus	Gene	Product	TPM. 1 GSH	TPM. 2 GSH	TPM. 1 CSSC	TPM. 2 CSSC	DE Log₂ FC	DE Adj. <i>P</i> -value
SAUSA300 _RS03005		vraX	C1q-binding complement inhibitor VraX	7355. 24	5156. 82	13009 8.29	60616 .24	- 3.96794 5975	1.11797 E-09
SAUSA300 _RS13040	SAUSA3 00_2361		putative metal homeostasis protein	4606. 12	5956. 22	51134 .91	41439 .61	- 3.48392 362	1.7629E -09

Table B-3 (cont'd)

SAUSA300 _RS03000			hypothetical protein	278.9 2	126	2775. 63	1589. 92	- 3.47821 0201	2.09417 E-07
SAUSA300 _RS04580	SAUSA3 00_0848		FAD/NAD(P)-binding protein	8.92	9.34	29.4	171.1 5	- 3.29698 9547	2.82912 E-09
SAUSA300 _RS12890	SAUSA3 00_2333		nitrate/nitrite transporter	20.71	16.94	112.3 9	200.4 2	- 3.27583 3554	7.74351 E-10
SAUSA300 _RS13360	SAUSA3 00_2413	cntL	D-histidine (S)-2- aminobutanoyltransferase CntL	5.63	10.01	42.35	67.31	- 3.17898 958	1.11797 E-09
SAUSA300 _RS15375			hypothetical protein	127.4 5	127.3 8	1755. 08	300.1 4	- 3.15352 3215	2.80009 E-05
SAUSA300 _RS13860	SAUSA3 00_2495	copZ	copper chaperone CopZ	1014. 44	1716. 65	10217 .43	5935. 91	- 3.01854 4811	1.92626 E-06
SAUSA300 _RS06690	SAUSA3 00_1234	rpsN	30S ribosomal protein S14	254.1 6	210.7 6	991.6 4	2246. 49	- 3.00510 6974	5.57662 E-09
SAUSA300 _RS10485			hypothetical protein	37.25	52.36	375.5 9	160.5 7	- 2.98346 4068	1.22502 E-05
SAUSA300 _RS01625	SAUSA3 00_0305		formate/nitrite transporter family protein	96.03	78.13	429.3 9	544.9 9	- 2.82685 1365	5.35039 E-07
SAUSA300 _RS13325	SAUSA3 00_2406		MFS transporter	91.76	56.32	310.4 9	534.5 3	- 2.73389 307	1.70962 E-06

SAUSA300 _RS13340	SAUSA3 00_2409		ABC transporter permease	6.94	6.37	20.31	54.35	- 2.69541 6261	3.1823E -07
SAUSA300 _RS10275	SAUSA3 00_1878	rlmD	23S rRNA (uracil(1939)-C(5))- methyltransferase RImD	10.55	25.98	86.77	64.72	- 2.59701 828	6.42746 E-05
SAUSA300 _RS07015	SAUSA3 00_1291		amidohydrolase	14.52	20.48	63.58	90.07	- 2.59251 0948	1.48713 E-06
SAUSA300 _RS07010	SAUSA3 00_1290	dapD	2,3,4,5-tetrahydropyridine- 2,6-dicarboxylate N- acetyltransferase	147.9 1	82.44	455.4 9	710.3 2	- 2.57781 0751	1.80121 E-05
SAUSA300 _RS13355	SAUSA3 00_2412	cntM	staphylopine dehydrogenase CntM	4.91	7.1	16.89	38.39	- 2.55612 3075	5.35039 E-07
SAUSA300 _RS08880	SAUSA3 00_1628		amino acid permease	44.79	44.97	113.0 6	312.0 7	- 2.49740 6008	1.33354 E-06
SAUSA300 _RS14175	SAUSA3 00_2551	nrdD	anaerobic ribonucleoside- triphosphate reductase	6.63	12.59	34.12	39.52	- 2.46304 0159	2.44652 E-05
SAUSA300 _RS01635	SAUSA3 00_0307		5'-nucleotidase, lipoprotein e(P4) family	43.27	35.25	160.9 7	150.1 3	- 2.43008 7067	0.00010 6264
SAUSA300 _RS13850	SAUSA3 00_2493	cwrA	cell wall inhibition responsive protein CwrA	620.2 8	482.2 3	3279. 08	941.3	- 2.38590 1587	0.00196 2663
SAUSA300 _RS13765	SAUSA3 00_2481		sterile α motif-like domain- containing protein	5849. 07	9772. 13	34671 .29	16151 .83	- 2.30896 2369	0.00122 9708

SAUSA300 _RS14170	SAUSA3 00_2550	nrdG	anaerobic ribonucleoside- triphosphate reductase activating protein	20.93	31.36	89.47	81	- 2.27217 4034	0.00029 5853
SAUSA300 _RS09670	SAUSA3 00_1767		gallidermin/nisin family lantibiotic	16.77	15.01	68.29	38.64	- 2.24727 971	0.00176 9395
SAUSA300 _RS12480	SAUSA3 00_2259		LCP family protein	35.78	48.58	113.1 8	157.6 3	- 2.19433 8867	0.00010 572
SAUSA300 _RS06590	SAUSA3 00_1215		hypothetical protein	48.95	74.96	241.9 3	125.4	- 2.18573 6423	0.00210 4691
SAUSA300 _RS11550	SAUSA3 00_2097		SDR family oxidoreductase	15.49	14.45	31.72	75.47	- 2.15818 5258	9.08117 E-05
SAUSA300 _RS15795		pepA 1	type I toxin-antitoxin system Fst family toxin PepA1	715.0 7	553.1 8	2456. 95	1290. 29	- 2.10272 1683	0.00366 6205
SAUSA300 _RS07025	SAUSA3 00_1293	lysA	diaminopimelate decarboxylase	74.55	150.8 9	195.4 7	534.7	- 2.07578 2801	0.00015 0994
SAUSA300 _RS13345	SAUSA3 00_2410		ABC transporter permease	34.71	39.89	59.12	204.0	- 2.06866 9945	0.00015 5603
SAUSA300 _RS00400	SAUSA3 00_0079		YdhK family protein	94.18	273.6 7	361.2 6	716.4 3	- 2.02505 2602	0.00084 7597
SAUSA300 _RS01990	SAUSA3 00_0374		GlsB/YeaQ/YmgE family stress response membrane protein	2038. 13	2912. 41	6286. 49	7095. 9	- 2.01535 6648	0.00092 0149

Table B-3 (cont'd)

SAUSA300 _RS01265	SAUSA3 00_0237		nucleoside hydrolase	21.77	15.4	50.02	59.68	- 2.00685 8994	0.00176 9395
SAUSA300 _RS13280	SAUSA3 00_2398	fetB	iron export ABC transporter permease subunit FetB	38.38	40.36	106.8 2	105.3 3	- 1.98968 3824	0.00176 9395
SAUSA300 _RS09355	SAUSA3 00_1712	ribE	6,7-dimethyl-8-ribityllumazine synthase	105.4 7	96.68	240.5 9	334.7 3	- 1.98586 7081	0.00092 3237
SAUSA300 _RS12545	SAUSA3 00_2269		hypothetical protein	243.5 7	181.8 9	573.5 1	583.6 9	- 1.94285 3336	0.00306 1771
SAUSA300 _RS05185	SAUSA3 00_0964		DUF5011 domain-containing protein	1499. 07	1054. 32	4004. 37	2605. 7	- 1.92071 4136	0.00764 851
SAUSA300 _RS13330	SAUSA3 00_2407		ABC transporter ATP-binding protein	9.03	10.4	11.71	53.39	- 1.90339 4709	0.00159 4128
SAUSA300 _RS13725	SAUSA3 00_2473		alpha/beta hydrolase	99.78	68.21	212.7 7	237.7 8	- 1.89490 8447	0.00378 1697
SAUSA300 _RS06940	SAUSA3 00_1278	pepF	oligoendopeptidase F	97.95	85.16	207.7 2	271.2 2	- 1.88249 2346	0.00226 7767
SAUSA300 _RS13855	SAUSA3 00_2494		heavy metal translocating P- type ATPase	152.5 5	175.0 7	318.0 7	537.5 5	- 1.87471 9351	0.00095 0944
SAUSA300 _RS04855	SAUSA3 00_0902	pepF	oligoendopeptidase F	35.3	79.69	87.93	218.1 4	- 1.85138 4637	0.00138 7792

SAUSA300 _RS14010	SAUSA3 00_2525		fructosamine kinase family protein	27.65	23	62.37	62.14	- 1.83725 5588	0.00521 7474
SAUSA300 _RS05795	SAUSA3 00_1068		beta-class phenol-soluble modulin	1868. 35	569.9 5	3464. 54	3534. 23	- 1.82868 7326	0.01604 228
SAUSA300 _RS15490			type I toxin-antitoxin system toxin PepG1	775.3 6	570.2 4	2420. 73	678.5 4	- 1.81450 2823	0.02721 8672
SAUSA300 _RS13645	SAUSA3 00_2460		GNAT family N- acetyltransferase	101.2 9	90.05	252.1 3	188.1 2	- 1.80240 4738	0.01003 4607
SAUSA300 _RS12865	SAUSA3 00_2328		DUF4889 domain-containing protein	434.6 9	380.4	1025. 36	853.3 6	- 1.79248 9741	0.00876 62
SAUSA300 _RS05995	SAUSA3 00_1107		TM2 domain-containing protein	1924. 53	2043. 23	5682. 01	2971. 77	- 1.79230 2309	0.01493 5747
SAUSA300 _RS04765	SAUSA3 00_0884		YjzD family protein	684.4 3	791.2 3	1986. 21	1210. 13	- 1.78446 5382	0.01253 3987
SAUSA300 _RS14670	SAUSA3 00_2642		DUF3147 family protein	8.84	5.38	16.61	19.99	- 1.78435 4321	0.01013 7322
SAUSA300 _RS02195	SAUSA3 00_0409	spn	myeloperoxidase inhibitor SPIN	1850. 15	1455. 3	4360. 22	3178. 19	- 1.77767 8341	0.01218 702
SAUSA300 _RS04565	SAUSA3 00_0845		M17 family metallopeptidase	51.4	48.49	93.39	150.8 5	- 1.76895 9834	0.00286 2569

SAUSA300 _RS10185	SAUSA3 00_1865	vraR	two-component system response regulator VraR	108.1 8	172.7 9	277.5 9	350.5	- 1.76615 5442	0.00368 2729
SAUSA300 _RS01620	SAUSA3 00_0304		DUF4064 domain-containing protein	23.16	30.35	41.54	89.51	- 1.74364 7507	0.00203 0812
SAUSA300 _RS15740			phenol-soluble modulin PSM- alpha-1	1137. 55	579.1 5	1294. 02	3576. 07	- 1.70151 4808	0.01013 7322
SAUSA300 _RS09140	SAUSA3 00_1674		trypsin-like peptidase domain- containing protein	146.6 9	172.0 7	242.4 5	500.7 5	- 1.68447 348	0.00275 7425
SAUSA300 _RS00995	SAUSA3 00_0190		alpha-keto acid decarboxylase family protein	15.79	9.96	25.77	34.11	- 1.67176 0935	0.01220 1753
SAUSA300 _RS01235	SAUSA3 00_0233		hypothetical protein	18.92	37.34	48.66	69.56	- 1.65763 1234	0.00891 7687
SAUSA300 _RS10555			hypothetical protein	778.6 1	395.6 1	1740. 21	716.3 3	- 1.64639 5888	0.04397 0121
SAUSA300 _RS13045	SAUSA3 00_2362		2,3-diphosphoglycerate- dependent phosphoglycerate mutase	1347. 72	1092. 58	1514. 2	4828. 17	- 1.64403 2898	0.00631 0057
SAUSA300 _RS06715			DNA damage-induced cell division inhibitor SosA	30.21	39.84	75.14	62.69	- 1.64139 3003	0.01709 1893
SAUSA300 _RS12715			hypothetical protein	38.89	63.88	113.6 5	82.31	- 1.63477 4724	0.02175 1487

SAUSA300 _RS14565	SAUSA3 00_2621		SMP- 30/gluconolactonase/LRE family protein	11.83	13.89	27.91	22.36	- 1.62850 8384	0.01904 8836
SAUSA300 _RS01090	SAUSA3 00_0207		M23 family metallopeptidase	48.53	29.99	80.85	88.84	- 1.61163 7437	0.02002 8183
SAUSA300 _RS03335	SAUSA3 00_0622		M50 family metallopeptidase	81.56	50.23	140.3 3	140.7 3	- 1.61162 9485	0.02175 1487
SAUSA300 _RS14075	SAUSA3 00_2537		L-lactate dehydrogenase	166.3 2	128.2 1	241.4 9	410.5 7	- 1.59655 9574	0.01052 5476
SAUSA300 _RS13385	SAUSA3 00_2418		carboxymuconolactone decarboxylase family protein	130.5 5	127.8	235.1 2	291.7 1	- 1.59625 6095	0.01218 702
SAUSA300 _RS00960	SAUSA3 00_0183		YagU family protein	655.2 9	562.2 6	1441. 83	854.0 1	- 1.58270 9357	0.03551 508
SAUSA300 _RS09425	SAUSA3 00_1725		transaldolase	260.8 8	205.7 6	368.4 6	647.2 6	- 1.57163 5626	0.01135 6589
SAUSA300 _RS12970			hypothetical protein	33.77	46.81	81.4	67.56	- 1.56715 7838	0.02481 9405
SAUSA300 _RS06685	SAUSA3 00_1233	rpmG	50S ribosomal protein L33	6062. 78	8757. 21	16477 .46	9467. 32	- 1.55780 0202	0.03657 7794
SAUSA300 _RS03960	SAUSA3 00_0736	raiA	ribosome-associated translation inhibitor RaiA	7751. 35	7263. 3	17578 .62	9706. 41	- 1.55702 8276	0.03980 0629

SAUSA300 _RS04760	SAUSA3 00_0883		MAP domain-containing protein	85.49	70.38	121.1 1	211.7 1	- 1.55429 9896	0.01218 702
SAUSA300 _RS10805			transcriptional regulator	28.08	25.44	43.65	67.39	- 1.54639 5517	0.01539 9326
SAUSA300 _RS07035	SAUSA3 00_1295	cspA	cold shock protein CspA	2573 9.07	32953 .44	65893 .82	36585 .83	- 1.54589 9549	0.03934 5525
SAUSA300 _RS04990	SAUSA3 00_0929		IDEAL domain-containing protein	1430. 09	1320. 39	2511. 05	2756. 31	- 1.53178 4305	0.02015 7954
SAUSA300 _RS11520	SAUSA3 00_2091	deoD	purine-nucleoside phosphorylase	605.7 1	750.3 9	887.3	1889. 62	- 1.51571 1571	0.00821 5915
SAUSA300 _RS06835	SAUSA3 00_1258		2-hydroxymuconate tautomerase	1261. 11	1709. 56	3231. 43	1800. 33	- 1.51485 9276	0.04397 0121
SAUSA300 _RS05195	SAUSA3 00_0966	purE	5-(carboxyamino)imidazole ribonucleotide mutase	11.98	16.99	17.97	42.28	- 1.51294 4011	0.01003 4607
SAUSA300 _RS12780	SAUSA3 00_2313		L-lactate permease	386.3 8	788.4 5	887.0 6	1282. 53	- 1.51253 439	0.01545 6886
SAUSA300 _RS01560	SAUSA3 00_0292		hypothetical protein	109.6 1	156.4 6	274.7 3	179.2 5	- 1.51070 4485	0.03930 6475
SAUSA300 _RS15735			phenol-soluble modulin PSM-alpha-2	1729. 12	776.9 1	1675. 5	4447. 18	- 1.50259 2842	0.03109 4167

Table B-3 (cont'd)

SAUSA300 _RS04210			hypothetical protein	130.4 4	109.1 6	247.6 4	182.7 9	- 1.49465 1806	0.04081 6815
SAUSA300 _RS12940	SAUSA3 00_2344	cobA	uroporphyrinogen-III C- methyltransferase	10.7	10.23	17.6	21.02	- 1.46714 2223	0.02721 8672
SAUSA300 _RS07160	SAUSA3 00_1314		YozE family protein	237.9	282.1 9	397.0 4	556.2 1	- 1.46312 0185	0.01850 5881
SAUSA300 _RS02365	SAUSA3 00_0442		YibE/F family protein	153.1 5	96.62	216.8 4	251.2 5	- 1.43273 7656	0.04081 6815
SAUSA300 _RS04030	SAUSA3 00_0747	trxB	thioredoxin-disulfide reductase	108.6	128.6 3	142.2 5	317.5 9	- 1.42582 9929	0.01366 2837
SAUSA300 _RS09030			hypothetical protein	53.77	91.22	107.4 7	144.2 5	- 1.42464 5271	0.02790 4275
SAUSA300 _RS12420			hypothetical protein	397.7 7	556.7 5	836.4 8	685.1 9	- 1.40067 8637	0.04753 3674
SAUSA300 _RS14620	SAUSA3 00_2632		HdeD family acid-resistance protein	96.03	76.17	130.2 9	182.1 6	- 1.39224 8821	0.03560 0642
SAUSA300 _RS09800	SAUSA3 00_1790		peptidylprolyl isomerase	409.0 1	527.8 6	476.9 7	1357. 86	- 1.38254 4145	0.01703 8754
SAUSA300 _RS02965	SAUSA3 00_0556	hxlB	6-phospho-3- hexuloisomerase	23.35	63	52.33	96.07	- 1.36930 5342	0.03661 048

Table B-3 (cont'd)

SAUSA300 _RS04985	SAUSA3 00_0928		competence protein ComK	17.45	13.42	19.18	40.77	- 1.36845 6829	0.03354 9663
SAUSA300 _RS04080	SAUSA3 00_0756	gap	type I glyceraldehyde-3- phosphate dehydrogenase	1232. 21	2113. 44	2006. 84	3819. 2	- 1.36505 4426	0.02177 0348
SAUSA300 _RS05095	SAUSA3 00_0948	menB	1,4-dihydroxy-2-naphthoyl- CoA synthase	293.4 7	269.2 9	423.4 7	509.8 8	- 1.33361 3795	0.04642 7827
SAUSA300 _RS11560	SAUSA3 00_2099	czrB	CDF family zinc efflux transporter CzrB	533.5 4	691.0 2	759.5 6	1273. 14	- 1.30853 1176	0.03170 1317
SAUSA300 _RS07000	SAUSA3 00_1288	dapA	4-hydroxy- tetrahydrodipicolinate synthase	16.22	43.3	33.36	64.28	- 1.29896 3468	0.04768 4211
SAUSA300 _RS04245	SAUSA3 00_0786		organic hydroperoxide resistance protein	64.77	62.98	75.88	146.1 9	- 1.29385 6257	0.03675 2967
SAUSA300 _RS08745			hypothetical protein	346.8 5	345.6 8	424.3 8	756.5	- 1.29280 0049	0.03733
SAUSA300 _RS07165	SAUSA3 00_1315		PTS glucose transporter subunit IIA	235.0	286.3 7	315.1 4	535.9 4	- 1.27587 8242	0.03733
SAUSA300 _RS01250	SAUSA3 00_0235		L-lactate dehydrogenase	2378. 38	2353. 91	2610. 86	5659. 02	- 1.27542 8749	0.03643 0885
SAUSA300 _RS03665	SAUSA3 00_0683		DeoR/GlpR family DNA- binding transcription regulator	104.0 8	141.3 3	151.4 7	239.3 9	- 1.27328 3026	0.04023 8276

SAUSA300 _RS05540	SAUSA3 00_1029	isdA	LPXTG-anchored heme- scavenging protein IsdA	247.9 6	244.8 4	297.7 9	505.1 4	- 1.24662 1213	0.04753 3674
SAUSA300 _RS11300	SAUSA3 00_2052		single-stranded DNA-binding protein	60.13	62.2	73.21	125.8 5	- 1.24535 7734	0.04768 4211
SAUSA300 _RS08320	SAUSA3 00_1525		glycinetRNA ligase	405.3 9	572.4 4	460.2	1101. 39	- 1.17621 1964	0.04843 413

Table B-4. Sodium thiosulfate (sTS) differentially expressed genes.

Genes upregulated in sTS when compared to CSSC

Locus	Old locus	Gene	Product	TPM. 1 sTS	TPM. 2 sTS	TPM. 1 CSSC	TPM. 2 CSSC	DE Log2 FC	DE Adj. <i>P</i> -value
SAUSA300 _RS00930	SAUSA3 00_0177		acyl-CoA/acyl-ACP dehydrogenase	166. 22	182. 5	2.69	9.11	3.975153 529	5.97E-23
SAUSA300 _RS10250	SAUSA3 00_1874	ftnA	H-type ferritin FtnA	4777 .36	5582 .06	122.5 9	214.3 4	3.844318 382	8.99E-22
SAUSA300 _RS10920	SAUSA3 00_1986		nitroreductase family protein	251. 11	259. 56	5.47	16.95	3.610523 144	1.63E-19
SAUSA300 _RS04665	SAUSA3 00_0864		argininosuccinate synthase	26.2 2	42.8	0.59	2.39	3.596379 992	1.94E-15
SAUSA300 _RS00915	SAUSA3 00_0174		ABC transporter ATP-binding protein	34.9 6	37.4 8	1.31	1.85	3.342311 59	1.77E-13
SAUSA300 _RS11935	SAUSA3 00_2165	budA	acetolactate decarboxylase	95.5 4	152. 69	4.02	10.73	3.126458 411	9.50E-14
SAUSA300 _RS00925	SAUSA3 00_0176		ABC transporter permease	80.1	90.4	4.22	2.74	3.098636 848	1.70E-08
SAUSA300 _RS02330	SAUSA3 00_0435		methionine ABC transporter ATP-binding protein	182. 15	117. 61	6.07	13.82	2.952964 98	1.52E-11
SAUSA300_	-		hypothetical protein	59.6 9	130. 21	3.61	8.17	2.905815 163	4.00E-08
SAUSA300 _RS13755	SAUSA3 00_2479	cidA	holin-like murein hydrolase modulator CidA	282.	243. 42	10.97	26.05	2.901618 74	1.35E-12
SAUSA300 _RS13745	SAUSA3 00_2477		pyruvate oxidase	334. 37	317. 48	16.24	30.98	2.797331 264	7.44E-12
SAUSA300 _RS11605	SAUSA3 00_2105		PTS mannitol transporter subunit IICB	42.3	265. 36	3.52	19.81	2.697969 241	2.47E-05
SAUSA300 _RS03085	SAUSA3 00_0577		redox-sensitive transcriptional regulator HypR	137. 39	205. 18	12.24	7.56	2.612761 904	5.59E-06

SAUSA300 RS02335	SAUSA3 00 0436		methionine ABC transporter permease	167. 18	115. 53	4.85	23.05	2.573132 474	1.07E-07
	SAUSA3 00_0173		DUF4242 domain-containing protein	398. 39	264. 86	14.98	49.04	2.546576 593	1.70E-08
SAUSA300 _RS13025	SAUSA3 00_2359		transporter substrate-binding domain-containing protein	402	472. 45	19.34	69.69	2.502235 403	3.10E-09
SAUSA300 _RS01060	SAUSA3 00_0201		ABC transporter permease	58.8 7	34.0 5	3.3	3.88	2.500861 509	1.50E-06
SAUSA300 _RS11940	SAUSA3 00_2166	alsS	acetolactate synthase AlsS	63.7 4	64.6 8	2.66	11.08	2.456850 704	3.47E-08
SAUSA300 _RS00920	SAUSA3 00_0175		ABC transporter substrate- binding protein	30.7 7	32.1 4	2.69	2.58	2.331970 676	7.16E-06
SAUSA300 _RS02340	SAUSA3 00_0437	gmpC	dipeptide ABC transporter glycylmethionine-binding lipoprotein	818. 78	605. 64	30.16	144.4 4	2.298614 243	2.06E-06
SAUSA300 _RS09895	SAUSA3 00_1808		ABC transporter permease subunit	30.4	59.3 6	1.67	9.24	2.268943 961	1.29E-05
SAUSA300 _RS01215	SAUSA3 00_0229		acyl CoA:acetate/3-ketoacid CoA transferase	15.2 5	34.6 3	1.58	3.76	2.258843 535	3.99E-06
SAUSA300 _RS02345	SAUSA3 00_0438	aaa	autolysin/adhesin Aaa	472. 91	464. 3	32.67	82.52	2.170454 206	1.29E-07
SAUSA300 _RS04425	SAUSA3 00_0821		SUF system NifU family Fe-S cluster assembly protein	38.6 5	47.9	2.17	9.09	2.160861 821	5.46E-06
SAUSA300 _RS11740	SAUSA3 00_2132		hypothetical protein	560. 61	1318 .04	76.55	120.0 9	2.152383 371	2.11E-05
SAUSA300 _RS13910	SAUSA3 00_2505		GNAT family N- acetyltransferase	28	26.0 6	0.55	7	2.131333 234	0.000552 202
SAUSA300 _RS07500	SAUSA3 00_1373		ferredoxin	2767 .83	2819 .97	274.4 6	309.7 9	2.096101 62	2.11E-05
SAUSA300 _RS06580	SAUSA3 00_1213		hypothetical protein	56.8 6	35.1	0.47	12.46	2.088354 863	0.003000 985

SAUSA300 _RS05865	SAUSA3 00_1082		YggS family pyridoxal phosphate-dependent enzyme	86.4	143. 38	7.63	23.43	2.053900 828	5.29E-06
SAUSA300 _RS04410	SAUSA3 00_0818	sufC	Fe-S cluster assembly ATPase SufC	209. 2	187. 03	9.8	48.93	2.049308 555	2.44E-05
SAUSA300 _RS08560	SAUSA3 00_1570		peptidase U32 family protein	20.0 5	28.3 1	1.26	5.73	2.028225 132	3.36E-05
SAUSA300 _RS03730	SAUSA3 00_0695	queE	7-carboxy-7-deazaguanine synthase QueE	26.9 8	35.9 6	1.9	7.02	2.025380 044	1.29E-05
SAUSA300_	_		hypothetical protein	22.5	14.9 7	0.61	4.2	2.016536 706	0.003526 285
SAUSA300 _RS01075	SAUSA3 00_0204	ggt	γ-glutamyltransferase	49.0 1	42.4 5	4.18	7.39	2.012821 806	6.77E-06
SAUSA300 _RS02320	SAUSA3 00_0433		cysteine synthase family protein	23.8 4	24.3	2.64	2.54	2.001501 731	0.000177 93
SAUSA300 _RS08565	SAUSA3 00_1571		methyltransferase domain- containing protein	23.2 2	32.3 8	1.63	6.46	1.991107 69	3.27E-05
SAUSA300 _RS02535	SAUSA3 00_0472	ispE	4-(cytidine 5'-diphospho)-2- c-methyl-D-erythritol kinase	115. 46	162. 67	8.1	34.39	1.968938 636	2.51E-05
SAUSA300 _RS08015	SAUSA3 00_1468	recN	DNA repair protein RecN	87.2 7	75.2 2	4.41	21.76	1.937444 192	7.31E-05
SAUSA300 _RS05880	SAUSA3 00_1085		RNA-binding protein	257.23	327. 74	16.44	77.46	1.926835 28	5.07E-05
SAUSA300 _RS05300	SAUSA3 00_0985	nrdH	glutaredoxin-like protein NrdH	257. 89	278. 21	23.84	53.83	1.907622 231	7.77E-06
SAUSA300 _RS06500	SAUSA3 00_1203		hypothetical protein	31.7 3	30.9 5	1.84	7.85	1.894343 714	0.000357 239
SAUSA300 _RS01065	SAUSA3 00_0202		ABC transporter permease	21.0 4	14.2 2	1.75	3.11	1.888041 935	0.000125 814
SAUSA300 _RS07495	SAUSA3 00_1372		helix-turn-helix domain- containing protein	167. 96	175. 45	17.77	29.53	1.875386 447	2.63E-05

SAUSA300 _RS03080	SAUSA3 00_0576		hypothiocyanous acid reductase MerA	274. 24	263. 92	32.03	32.87	1.870936 99	0.000299 457
SAUSA300 _RS12110	SAUSA3 00_2196	rpmC	50S ribosomal protein L29	202	193. 75	14.13	49.61	1.870234 088	3.36E-05
SAUSA300 _RS07420	SAUSA3 00_1361		heptaprenyl diphosphate synthase component 1	152. 81	157. 99	6.16	48.55	1.857742 232	0.000902 686
SAUSA300 _RS09470	SAUSA3 00_1731	pckA	phosphoenolpyruvate carboxykinase (ATP)	24.6	74.7 2	4.33	9.46	1.852519 043	0.000616 728
SAUSA300 _RS07030	SAUSA3 00_1294	msaC	sarA expression modulator MsaC	22.6 1	23.8 6	2.12	4.81	1.845486 059	0.000122 678
SAUSA300 _RS06575	SAUSA3 00_1212		polymorphic toxin type 50 domain-containing protein	94.6	73.2 7	2.68	27.94	1.815437 068	0.003210 931
SAUSA300 _RS09400	SAUSA3 00_1721		hypothetical protein	394. 34	368. 21	17.92	120.1	1.812727 87	0.000758 264
SAUSA300 _RS06390	SAUSA3 00_1182		2-oxoacid:acceptor oxidoreductase subunit alpha	21.8 4	28.3 6	1.98	6.27	1.812403 244	4.40E-05
SAUSA300 _RS05610	SAUSA3 00_1042	polX	DNA polymerase/3'-5' exonuclease PolX	12.7 1	19.2 7	0.96	4.52	1.807853 608	0.000310 34
SAUSA300 _RS06610	SAUSA3 00_1219		sensor histidine kinase	18.4 7	19.4 1	0.93	5.8	1.803045 824	0.000704 809
SAUSA300 _RS12105	SAUSA3 00_2195	rpsQ	30S ribosomal protein S17	244. 44	209. 29	20.36	53.63	1.792468 104	4.66E-05
SAUSA300 _RS02845	SAUSA3 00_0532	fusA	elongation factor G	1115 .28	1446 .07	121.7 7	295.8 6	1.764528 575	2.94E-05
SAUSA300_	RS11585		hypothetical protein	23.1 3	23.9 4	1.45	6.13	1.734975 149	0.007131 029
SAUSA300 _RS08285	SAUSA3 00_1518		DEAD/DEAH box helicase	70.3 5	99.9 1	3.81	28.93	1.728418 368	0.002203 13
SAUSA300 _RS06535	SAUSA3 00_1208		hypothetical protein	39.8 5	28.5 8	3.69	7.04	1.727369 268	0.000893 544

SAUSA300 _RS12045	SAUSA3 00_2183		adenylate kinase	159. 09	169. 86	17.28	36.57	1.723116 664	6.26E-05
SAUSA300 _RS09395	SAUSA3 00_1720		N-acetylglucosaminidase	713. 02	690. 23	56.98	199.5	1.712393 268	0.000113 45
SAUSA300 _RS08400	SAUSA3 00_1541	grpE	nucleotide exchange factor GrpE	66.9 4	91.3 9	4.95	24.8	1.712372 773	0.000634 316
SAUSA300 _RS04415	SAUSA3 00_0819	sufD	Fe-S cluster assembly protein SufD	62.9 8	67.7 6	5.79	17.93	1.688682 79	0.000108 67
SAUSA300 _RS01055	SAUSA3 00_0200		ABC transporter ATP-binding protein	83.0	73.9 2	9.74	14.41	1.685882 24	0.000393 937
SAUSA300 _RS08430	SAUSA3 00_1546	holA	DNA polymerase III subunit delta	47.2 9	70.2 4	4.79	16.68	1.683984 12	0.000268 858
SAUSA300 _RS11580	SAUSA3 00_2101		SAP domain-containing protein	35.6 1	32.5 2	1.47	12.29	1.678149 92	0.004011 335
SAUSA300 _RS05615	SAUSA3 00_1043		endonuclease MutS2	16.8 7	19.6 5	1.13	6.14	1.652461 587	0.001302 251
SAUSA300 _RS06000	SAUSA3 00_1108		peptide deformylase	17.6 7	21.9 8	1.1	6.63	1.652173 429	0.002996 801
SAUSA300 _RS07300	SAUSA3 00_1339		YppE family protein	103. 26	123. 55	6.7	38.94	1.645638 316	0.001749 293
SAUSA300 _RS04145	SAUSA3 00_0769		DUF5067 domain-containing protein	23.6 7	17.7 1	0.43	8.37	1.617434 315	0.021566 263
SAUSA300 _RS12020	SAUSA3 00_2178		DNA-directed RNA polymerase subunit alpha	241. 15	327. 11	27.47	79.22	1.616044 804	0.000215 03
SAUSA300 _RS04800	SAUSA3 00_0890		ATP-binding cassette domain-containing protein	33.2	26.4 5	3.17	7.76	1.606820 984	0.000538 775
SAUSA300 _RS06470	SAUSA3 00_1198	hflX	GTPase HflX	13.9 6	20.1 1	1.23	5.57	1.602081 278	0.001606 474
SAUSA300 _RS08765	SAUSA3 00_1609		A24 family peptidase	15	13.3 9	1.72	3.11	1.601724 494	0.001404 406

SAUSA300 _RS09505 SAUSA300 RS10970	SAUSA3 00_1738 SAUSA3 00_1995		DUF4909 domain-containing protein LacI family DNA-binding transcriptional regulator	29.1 7 24.2	21.1 1 54.5 7	3.24 2.24	5.12 13.74	1.600583 121 1.596151 079	0.002224 654 0.005972 472
SAUSA300 RS11965	SAUSA3 00 2169		DUF6414 family protein	23.3 5	23.9 6	0.86	9.3	1.593421 868	0.010578 232
	SAUSA3 00_1224		hypothetical protein	126. 41	182. 58	18.86	34.11	1.593057 072	0.000529 061
SAUSA300 _RS13020	SAUSA3 00_2358		amino acid ABC transporter permease	282. 36	411. 6	19.62	127.3 1	1.590410 837	0.003709 448
SAUSA300 _RS03740	SAUSA3 00_0697	queC	7-cyano-7-deazaguanine synthase QueC	11.3 4	14.6 3	1.12	3.89	1.574831 082	0.001831 038
SAUSA300 _RS03655	SAUSA3 00_0681		hypothetical protein	379. 98	213. 74	35.4	71.4	1.573087 702	0.001783 967
SAUSA300 _RS02325	SAUSA3 00_0434		bifunctional cystathionine γ- lyase/homocysteine desulfhydrase	55.4 7	65.4 1	6.96	15.5	1.562598 853	0.000357 239
SAUSA300 RS14245	SAUSA3 00 2560		hypothetical protein	38.0 3	46.9 5	2.45	15.39	1.558169 728	0.006174 18
SAUSA300 _RS07325	SAUSA3 00_1343	nth	endonuclease III	64.8	87.8 4	3.97	29.49	1.553667 971	0.006569 744
SAUSA300 _RS06615	SAUSA3 00_1220		response regulator transcription factor	32.0 9	37.3 8	2.75	11.65	1.552786 993	0.001657 565
SAUSA300 _RS08875	SAUSA3 00_1627	infC	translation initiation factor IF-	553. 3	949. 95	69.57	229.9 3	1.550780 996	0.001005 053
SAUSA300 _RS05040	SAUSA3 00_0938		hypothetical protein	43.3	39.1 3	1.59	16.71	1.541104 259	0.013906 827
SAUSA300 _RS12025	SAUSA3 00_2179	rpsK	30S ribosomal protein S11	151. 2	203. 18	20.99	45.01	1.539937 665	0.000550 683
SAUSA300 _RS02035	SAUSA3 00_0382		L-cystine transporter	862. 92	768. 97	127.0 4	125.6 2	1.528200 303	0.004872 848

SAUSA300 _RS02815	SAUSA3 00_0526		class I SAM-dependent methyltransferase	78.7 3	103. 41	6.44	33.14	1.528094 211	0.002980 786
SAUSA300 _RS14655	SAUSA3 00_2639		cold-shock protein	1279 92.8 6	1391 10.1 5	15403 .29	36858 .2	1.520163 913	0.000388 284
SAUSA300 _RS10985	SAUSA3 00_1998		YeeE/YedE family protein	50.9 9	41.3 9	4.7	14.19	1.519930 81	0.001033 925
SAUSA300 _RS03445	SAUSA3 00_0642		hypothetical protein	257. 61	251. 32	16.71	97.23	1.519712 443	0.004102 487
SAUSA300 RS05600	SAUSA3 00 1040	zapA	cell division protein ZapA	237. 88	262. 88	20.25	87.95	1.517895 145	0.001723 98
SAUSA300 _RS09835	SAUSA3 00_1797		helix-turn-helix transcriptional regulator	449. 17	597. 96	63.39	137.0 4	1.508302 565	0.000605 046
SAUSA300 RS05135	SAUSA3 00 0955		bifunctional autolysin	147. 89	156. 65	21.05	33.47	1.505201 421	0.001197 262
	SAUSA3 00_1323		NifU N-terminal domain- containing protein	46.8 6	50.7 4	3.82	17.28	1.498358 274	0.003835 402
SAUSA300 _RS08305	SAUSA3 00_1522	dnaG	DNA primase	64.8 5	99.7 3	6.34	30.02	1.488297 936	0.003419 209
SAUSA300 _RS05360	SAUSA3 00_0995		dihydrolipoamide acetyltransferase family protein	85.7 7	122. 32	14.37	23.34	1.481352 945	0.001759 275
SAUSA300 RS14570	SAUSA3 00 2622		rhodanese-related sulfurtransferase	245.63	271. 2	25.72	85.02	1.480012 125	0.000909 205
	SAUSA3 00_0863	argH	argininosuccinate lyase	31.8 5	95.9 5	7.81	15.19	1.478895 537	0.008440 785
SAUSA300 RS08955	SAUSA3 00 1641		citrate synthase	43.3	77.9 3	6.68	17.62	1.478202 694	0.001906 952
 SAUSA300 _RS11415	SAUSA3 00_2073		thymidine kinase	49.5 6	97.1 1	5.39	26.81	1.477917 301	0.006561 5

SAUSA300 _RS10440	SAUSA3 00_1907		DUF1700 domain-containing protein	58.4 9	66.1 8	3.85	25.08	1.471677 067	0.007713 829
SAUSA300 RS04640	SAUSA3 00 0860		ornithineoxo-acid transaminase	17.2 2	21.3 7	2.03	6.05	1.469146 272	0.001533 869
SAUSA300 RS09830	SAUSA3 00 1796		DUF445 domain-containing protein	117. 02	120. 44	7.76	47.79	1.467489 302	0.006595 66
 SAUSA300 _RS12845	SAUSA3 00_2324		sucrose-specific PTS transporter subunit IIBC	46.8 8	101. 45	9.24	19.02	1.456119 968	0.004064 768
SAUSA300 _RS07330	SAUSA3 00_1344		DnaD domain-containing protein	47.9 1	80.8 6	5.1	23.78	1.451306 077	0.005335 616
SAUSA300 _RS04390	SAUSA3 00_0814		Abi family protein	549. 34	623. 37	29.73	254.5	1.450299 962	0.014178 774
SAUSA300 _RS07905	SAUSA3 00_1448		Fur family transcriptional regulator	1004 .45	1049 .92	138.1 8	264.8 9	1.446574 906	0.001194 478
SAUSA300 _RS06110	SAUSA3 00_1129		putative DNA-binding protein	22.8 5	29.8 1	1.68	10.38	1.443984 846	0.011462 055
SAUSA300 _RS08030	SAUSA3 00_1471		exodeoxyribonuclease VII small subunit	45.7 6	47.1 6	2.18	19.9	1.442471 384	0.018971 358
SAUSA300 _RS02530	SAUSA3 00_0471		Veg family protein	6854 .46	5742 .38	861.0 2	1623. 4	1.437194 902	0.001770 2
SAUSA300 _RS03690	SAUSA3 00_0687		hemolysin family protein	518. 55	571. 66	39.62	218.9 2	1.436842 442	0.005868 545
SAUSA300 _RS08830	SAUSA3 00_1620	ihA	ribosome biogenesis GTP- binding protein YihA/YsxC	25.8 7	31.5 9	2.65	10.14	1.433920 608	0.003650 79
SAUSA300 _RS00935	SAUSA3 00_0178		DUF2294 domain-containing protein	699. 17	635. 15	92.52	169.3 3	1.433256 821	0.001759 275
SAUSA300 _RS01475	SAUSA3 00_0275		DUF5079 family protein	16.0 9	13.7 1	0.96	6.08	1.424540 089	0.013343 771
SAUSA300 _RS06030	SAUSA3 00_1114	sgA	ribosome small subunit- dependent GTPase A	26.9 1	41.8 9	2.17	14.22	1.420277 101	0.012219 224

SAUSA300 SAUSA3 _RS02630 00_0490 SAUSA300 SAUSA3 _RS08405 00_1542	hsIO hrcA	Hsp33 family molecular chaperone HsIO heat-inducible transcriptional repressor HrcA	26.3 6 64.4 8	51.2 1 78.3	3.45 7.29	13.85 24.75	1.419876 334 1.414974 279	0.006705 135 0.002020 778
SAUSA300_RS16000		minor capsid protein	64.7 7	51.6 7	5.38	21.52	1.414265 218	0.004559 983
SAUSA300 SAUSA3 _RS00010 00_0001	dnaA	chromosomal replication initiator protein DnaA	67.8 3	84.1 4	6.12	29.82	1.413894 401	0.005219 82
SAUSA300 SAUSA3 _RS09815 00_1793		exonuclease SbcCD subunit D	149. 25	133. 02	10.9	57.23	1.409258 628	0.006866 043
SAUSA300 SAUSA3 _RS08175 00_1498	gcvT	glycine cleavage system aminomethyltransferase GcvT	20.7 5	28.4 4	2.29	8.93	1.405429 661	0.004182 027
SAUSA300 SAUSA3 RS05640 00 1047	sdhA	succinate dehydrogenase flavoprotein subunit	80.3	159. 32	14.37	35.52	1.402206 756	0.004148 534
SAUSA300 SAUSA3 RS03170 00 0590		flavodoxin family protein	168. 71	353. 81	32.37	74.97	1.395715 06	0.005254 432
SAUSA300 SAUSA3 RS06055 00 1119	fakA	fatty acid kinase catalytic subunit FakA	300. 4	414. 08	34.03	132	1.394456 625	0.003388 922
SAUSA300 SAUSA3 _RS10245 00_1873	murT	lipid II isoglutaminyl synthase subunit MurT	47.4 7	63.4 1	5.4	20.43	1.383188 175	0.003741 699
SAUSA300 SAUSA3 _RS06015 00_1111	rlmN	23S rRNA (adenine(2503)- C(2))-methyltransferase RImN	30.9 9	24.5 8	2.2	11.44	1.374626 49	0.010331 72
SAUSA300 SAUSA3 _RS07885 00_1444	scpB	SMC-Scp complex subunit ScpB	53.9 1	96.8 7	6.52	29.18	1.369529 428	0.009255 663
SAUSA300_RS10510		hypothetical protein	570. 15	437. 9	47.79	197.9 3	1.355984 544	0.006946 407
SAUSA300 SAUSA3 _RS12075 00_2189	rpIF	50S ribosomal protein L6	278. 74	302. 35	43.19	76.27	1.353699 98	0.003358 653

SAUSA300 SAUS _RS07055 00_12		5-bromo-4-chloroindolyl phosphate hydrolysis family protein	90.7	120. 45	9.78	41.59	1.347639 201	0.006393 396
SAUSA300 SAUS _RS08555 00_15		U32 family peptidase	30.9 4	38.7 1	3.9	12.58	1.328773 323	0.004179 148
SAUSA300 SAUS _RS08475 00_15	55 aro ⊵	shikimate dehydrogenase	20.0	19.3 1	2.41	6.61	1.328408 177	0.005343 835
SAUSA300 SAUS _RS13525 00_24	tnnH	fibronectin-binding protein FnbB	33.4 2	36.9 9	5.83	8.01	1.325807 162	0.007685 236
SAUSA300 SAUS _RS03525 00_06		DUF402 domain-containing protein	131. 95	119. 81	10.61	53.72	1.324846 698	0.010740 75
SAUSA300_RS108	80	hypothetical protein	28.1 6	23.5 9	2.18	10.71	1.323400 914	0.015076 794
SAUSA300 SAUS _RS13770 00_24		CHAP domain-containing protein	327. 51	475. 05	69.74	79.07	1.321758 295	0.013171 009
SAUSA300 SAUS _RS03075 00_05		DUF1450 domain-containing protein	136. 04	155. 43	16.77	52.54	1.320392 738	0.004002 855
SAUSA300 SAUS _RS12090 00_21	rn II	50S ribosomal protein L5	241. 32	261. 54	35.53	75.61	1.316847 299	0.003248 204
SAUSA300 SAUS _RS09175 00_16		hypothetical protein	28.8 5	44.3 7	3.77	13.81	1.316413 745	0.008367 857
SAUSA300 SAUS _RS06160 00_11	SIICL	ADP-forming succinateCoA ligase subunit β	39.7 9	75.4 5	5.34	22.88	1.316067 708	0.012297 821
SAUSA300 SAUS _RS14005 00_25		TIGR04197 family type VII secretion effector	10.9 4	13.6 9	1.2	4.49	1.311195 86	0.026708 744
SAUSA300 SAUS _RS08020 00_14	arak	transcriptional regulator ArgR	254. 79	197. 21	33.1	66.06	1.310396 701	0.005868 545
SAUSA300_RS124	5	hypothetical protein	79.8 2	68.5 8	6.51	31.23	1.307818 655	0.013808 772
SAUSA300 SAUS _RS04920 00_09		esterase family protein	28.3	35.5 6	2.92	13.15	1.306127 155	0.010544 027

RS06570 00 SAUSA300 SAU	ISA3 1211 ISA3 thrB	hypothetical protein homoserine kinase	198. 09 39	152. 7 34.0	16.71	72.57 14.12	1.299124 566 1.288882	0.011886 151 0.007685
RS06655 00	1228 """		33	8	7.07	17.12	425	236
	ISA3 1349 <i>bshA</i>	N-acetyl-alpha-D- glucosaminyl L-malate synthase BshA	21.7 5	29.7 4	2.94	9.58	1.286338 38	0.007026 76
SAUSA300_RS0)405	hypothetical protein	42.0 6	41.6 8	2.57	19.13	1.285264 513	0.037556 934
	JSA3 D519	RNA polymerase sigma factor	12.8 2	11.1 8	1.2	4.68	1.284738 694	0.017956 927
SAUSA300_RS0	7 450	hypothetical protein	38.7 9	36.9 3	5.6	11.16	1.284484 71	0.013171 009
	ISA3 1631	replication initiation and membrane attachment family protein	44.2 5	49.6 4	4.2	20.37	1.280018 335	0.012297 821
	ISA3 1222	thermonuclease family protein	47.4 9	55.8 1	4.64	22.12	1.279999 427	0.013151 395
	ISA3 0531 <i>rpsG</i>	30S ribosomal protein S7	974. 86	1209 .2	162.6 3	325.5	1.277221 364	0.004752 685
	ISA3 1908	membrane protein	67.4 3	75.8 7	5.72	32.43	1.276273 141	0.018329 865
	ISA3 1520	tRNA (adenine(22)-N(1))- methyltransferase TrmK	21.4 8	25.0 9	1.83	10.5	1.267260 338	0.021818 12
	ISA3 1189 <i>mutL</i>	DNA mismatch repair endonuclease MutL	25.0 6	21.6 3	1.63	11.25	1.262983 714	0.029577 139
RS07310 00	ISA3 1340 <i>recU</i>	Holliday junction resolvase RecU	96.4 9	110. 36	12.52	38.73	1.261666 313	0.005882 961
	ISA3 2197 <i>rpIP</i>	50S ribosomal protein L16	219.55	216. 18	34.63	62.4	1.254890 186	0.007228 347

SAUSA300 SAUSA3 _RS07415 00_1360		demethylmenaquinone methyltransferase	100. 37	106. 38	7.9	48.88	1.254021 602	0.023354 301
SAUSA300 SAUSA3 _RS03560 00_0663		hypothetical protein	149. 88	205. 1	10.32	88.81	1.253841 21	0.040617 602
SAUSA300 SAUSA3 _RS12085 00_2191		type Z 30S ribosomal protein S14	354. 72	342. 18	58.41	92.01	1.252383 913	0.009994 056
SAUSA300_RS06225		hypothetical protein	364. 19	664. 67	71.03	167.1 7	1.250373 186	0.010677 443
SAUSA300 SAUSA3 _RS06205 00_1147	hslU	ATP-dependent protease ATPase subunit HsIU	61.9 8	88.1 5	8.16	30.34	1.247877 063	0.009638 217
SAUSA300 SAUSA3 _RS02720 00_0508		UvrB/UvrC motif-containing protein	20.1	22.8 7	1.86	9.58	1.244763 755	0.022624 056
SAUSA300 SAUSA3 _RS14280 00_2567	arcC	carbamate kinase	28.3 5	41.9 7	3.63	14.53	1.244717 224	0.013177 658
SAUSA300 SAUSA3 _RS03505 00_0654	sarX	HTH-type transcriptional regulator SarX	32.6 1	33.3 3	4.17	12.09	1.241607 397	0.011218 307
SAUSA300 SAUSA3 _RS08920 00_1635	mutM	bifunctional DNA- formamidopyrimidine glycosylase/DNA-(apurinic or apyrimidinic site) lyase	31.4 2	39.7	3.16	15.97	1.239891 761	0.019075 819
SAUSA300 SAUSA3 _RS04420 00_0820		cysteine desulfurase	50.9 1	53.6 7	7.1	18.45	1.238878 63	0.006064 628
SAUSA300 SAUSA3 RS08265 00 1514		Fur family transcriptional regulator	52.0 6	34.2 3	5.53	16.08	1.225087 199	0.017956 927
SAUSA300 SAUSA3 _RS12095 00_2193	rpIX	50S ribosomal protein L24	260. 5	225. 81	41.81	65.15	1.224551 786	0.013171 009
SAUSA300 SAUSA3 RS14320 00 2574		hypothetical protein	15.1 7	23.4	1.76	8.39	1.224351 82	0.029445 073
SAUSA300 SAUSA3 _RS10145 00_1857		SE1561 family protein	318. 39	292. 23	35.05	125.0 5	1.222208 253	0.010896 691

SAUSA300 _RS14680	SAUSA3 00_2644	rsmG	16S rRNA (guanine(527)- N(7))-methyltransferase RsmG	18.0 2	22.1 5	2.46	7.7	1.221177 741	0.012297 821
SAUSA300 _RS02315	SAUSA3 00_0432		sodium-dependent transporter	87.0 6	133. 5	16.69	35.07	1.213364 032	0.009638 217
SAUSA300 _RS12670	SAUSA3 00_2293	corA	magnesium/cobalt transporter CorA	29.3 6	32	2.08	15.47	1.213160 134	0.040617 602
SAUSA300 _RS02835	SAUSA3 00_0530	rpsL	30S ribosomal protein S12	735. 55	965. 43	114.3 5	311.3 4	1.212672 535	0.007131 029
SAUSA300 _RS10470	SAUSA3 00_1913	pmtA	phenol-soluble modulin export ABC transporter ATP-binding protein PmtA	41.8 8	54.3 1	5.71	19.38	1.206438 904	0.011021 615
SAUSA300 _RS14240	SAUSA3 00_2559	nsaR	nisin susceptibility- associated two-component system response regulator NsaR	22.8 9	34.3 7	3.63	10.86	1.202127 945	0.014199 959
SAUSA300 _RS06195	SAUSA3 00_1145	xerC	tyrosine recombinase XerC	84.9 9	86.9 7	7.95	40.15	1.201073 232	0.021708 573
SAUSA300 _RS00220	SAUSA3 00_0041		hypothetical protein	19.3 6	14.3	1.17	8.53	1.199774 158	0.048851 336
SAUSA300 _RS03735	SAUSA3 00_0696	queD	6-carboxytetrahydropterin synthase QueD	19.9 6	24.3 7	3.84	6.07	1.198927 896	0.022523 689
SAUSA300 _RS02830	SAUSA3 00_0529		ribosomal L7Ae/L30e/S12e/Gadd45 family protein	511. 03	693. 13	97.37	182.6 4	1.196781 397	0.010544 027
SAUSA300 _RS12475	SAUSA3 00_2258	fdhF	formate dehydrogenase subunit α	20.8	29.0 8	2.52	11.14	1.193655 17	0.019075 819
SAUSA300 _RS07410	SAUSA3 00_1359		polyprenyl synthetase family protein	80.3 6	99.8 8	13.46	30.66	1.193036 326	0.008587 112
SAUSA300 _RS12040	SAUSA3 00_2182	infA	translation initiation factor IF-	135. 03	118. 68	19.89	41.42	1.189494 372	0.012784 97

SAUSA300 _RS03500 SAUSA300	SAUSA3 00_0653 SAUSA3		AraC family transcriptional regulator superantigen-like protein	27.4 1 12.7	29.3 6 19.4	3.45 2.18	11.73 5.91	1.184023 304 1.181097	0.011714 796 0.020454
_RS02185 SAUSA300 RS12150	00_0407 SAUSA3 00_2204	rpIC	SSL11 50S ribosomal protein L3	1 100. 3	9 140. 34	18.58	39.74	954 1.180865 562	61 0.010918 646
SAUSA300 _RS02615	SAUSA3 00_0487	tilS	tRNA lysidine(34) synthetase TilS	30.3 5	41	3.81	15.72	1.180486 675	0.018507 41
SAUSA300 _RS03785	SAUSA3 00_0704		ABC-F family ATP-binding cassette domain-containing protein	44.0 3	56.4 6	4.2	24.78	1.176623 601	0.033205 504
SAUSA300 _RS12080	SAUSA3 00_2190	rpsH	30S ribosomal protein S8	341. 79	321. 9	62.37	82.95	1.174216 686	0.022233 967
SAUSA300_	RS15905		hypothetical protein	194. 38	167. 85	17.01	86.2	1.170149 598	0.031065 572
SAUSA300 _RS05430	SAUSA3 00_1009	typA	translational GTPase TypA	71.3 3	72.4 4	10.76	25.73	1.166293 484	0.009638 217
SAUSA300 _RS09695	SAUSA3 00_1771		DUF1828 domain-containing protein	119. 66	111. 16	9.95	58.37	1.152749 612	0.037717 454
SAUSA300 _RS12320	SAUSA3 00_2231	fdhD	formate dehydrogenase accessory sulfurtransferase FdhD	148. 55	252. 62	28.69	73.94	1.149986 618	0.016791 141
SAUSA300 _RS11025	SAUSA3 00_2005	tsaE	tRNA (adenosine(37)-N6)- threonylcarbamoyltransferas e complex ATPase subunit type 1 TsaE	24.9 8	35.4	2.57	14.83	1.148885 744	0.045211 561
SAUSA300 RS05375	SAUSA3 00 0998		XRE family transcriptional regulator	31.7 4	28.0 4	3.57	12.93	1.147416 438	0.023733 68
SAUSA300 _RS10475	SAUSA3 00_1914		GntR family transcriptional regulator	50.9 6	54.3 9	8.23	18.34	1.147386 94	0.015563 226

SAUSA300 _RS00135	SAUSA3 00_0026	rlmH	23S rRNA (pseudouridine(1915)-N(3))- methyltransferase RImH	81.3 9	82.5 3	10.08	35.28	1.143342 514	0.017545 434
SAUSA300 _RS05520	SAUSA3 00_1026		DUF177 domain-containing protein	1408	1628 .89	153.0 2	729.1 7	1.142321 273	0.026375 528
SAUSA300 _RS06185	SAUSA3 00_1143	topA	type I DNA topoisomerase	22.3 8	28.6 9	2.93	11.36	1.142306 307	0.020254 051
SAUSA300 _RS11135	SAUSA3 00_2025		PP2C family protein- serine/threonine phosphatase	90.6 6	96.4 3	7.51	48.79	1.140625 951	0.045722 533
SAUSA300 _RS04070	SAUSA3 00_0754		DUF4887 domain-containing protein	31.5 7	46.6 5	3.56	19.17	1.137056 414	0.040902 383
SAUSA300 _RS08465	SAUSA3 00_1553	nadD	nicotinate (nicotinamide) nucleotide adenylyltransferase	34.8	40.1	3.4	18.51	1.136999 294	0.038664 002
SAUSA300 _RS06060	SAUSA3 00_1120	recG	ATP-dependent DNA helicase RecG	22.9 4	27.3 9	2.75	11.61	1.136698 83	0.023385 793
SAUSA300 _RS06750	SAUSA3 00_1243		exonuclease subunit SbcC	35.4 7	26.6 8	4.61	11.82	1.133667 703	0.018329 227
SAUSA300 _RS10980	SAUSA3 00_1997		sulfurtransferase TusA family protein	238. 49	174. 32	39.77	54.14	1.133582 231	0.035077 68
SAUSA300 _RS06270	SAUSA3 00_1158	rimP	ribosome maturation factor RimP	44.5 5	52.1	4.81	23.17	1.131858 283	0.033082 679
SAUSA300 _RS05255	SAUSA3 00_0978		ABC transporter ATP-binding protein	25.4 8	34.9	3.08	14.38	1.128877 854	0.031545 527
SAUSA300 _RS00415	SAUSA3 00_0081		TIGR04141 family sporadically distributed protein	26.2 7	28.9	2.61	13.76	1.125988 829	0.036477 48
SAUSA300 _RS04805	SAUSA3 00_0891		peptide ABC transporter substrate-binding protein	164. 14	162. 96	17.14	79.74	1.115766 728	0.030017 983

SAUSA300 _RS12850 SAUSA300 RS12070	SAUSA3 00_2325 SAUSA3 00_2188	rpIR	YbgA family protein 50S ribosomal protein L18	1266 .06 337. 86	1099 .47 370. 31	186.4 3 67.79	436.8 6 97.07	1.113251 503 1.113241 203	0.015836 168 0.027131 822
 SAUSA300 _RS03360	SAUSA3 00_0627		glycosyltransferase family A protein	75.4 1	99.2 5	8.99	42.82	1.105268 315	0.034605 756
SAUSA300 _RS06405	SAUSA3 00_1185	miaB	tRNA (N6-isopentenyl adenosine(37)-C2)- methylthiotransferase MiaB	29.5 9	31.5 2	2.91	15.56	1.103402 63	0.041811 058
SAUSA300 _RS02095	SAUSA3 00_0392		hypothetical protein	57.4 5	71.7 6	12.74	17.62	1.089216 778	0.046819 375
SAUSA300 _RS06065	SAUSA3 00_1121	fapR	transcription factor FapR	30.2	53.7 9	6.74	14.99	1.083891 117	0.033671 936
SAUSA300 _RS01160	SAUSA3 00_0221	pflA	pyruvate formate-lyase- activating protein	122. 11	183. 25	25.7	52.94	1.082166 05	0.023291 555
SAUSA300 _RS05810	SAUSA3 00_1071	bshC	bacillithiol biosynthesis cysteine-adding enzymeBshC	44.6 8	78.3 8	9.52	23.21	1.078932 507	0.028569 35
SAUSA300 _RS09810	SAUSA3 00_1792		AAA family ATPase	74.6 9	76.4 8	7.93	38.54	1.072779 291	0.040617 602
SAUSA300 _RS02020	SAUSA3 00_0379	ahpF	alkyl hydroperoxide reductase subunit F	642. 39	954. 36	147.5 3	247.9 6	1.069844 011	0.030156 128
SAUSA300 _RS05515	SAUSA3 00_1025		nucleotidyltransferase	22.6 1	35.1 8	3.63	13.25	1.057905 641	0.037891 511
SAUSA300 _RS07350	SAUSA3 00_1348		CCA tRNA nucleotidyltransferase	18.1 4	20.5 7	3.12	7.55	1.047992 951	0.027808 317
SAUSA300 _RS09220	SAUSA3 00_1687		DNA translocase FtsK	21.2	23.8 4	3.07	10.24	1.045253 893	0.027886 142
SAUSA300 _RS09260	SAUSA3 00_1695		phosphotransferase family protein	383. 86	419. 38	42.82	209.4 9	1.043455 34	0.047336 317

SAUSA300 _RS08000	SAUSA3 00_1465		alpha-ketoacid dehydrogenase subunit beta	35.7 4	46.7 2	6.11	17.44	1.041265 361	0.028413 27
SAUSA300	SAUSA3	hemE	uroporphyrinogen	27.9	34.7	3.77	15.39	1.032689	0.043331
_RS09760	00_1783	Hellic	decarboxylase	3	7	3.11	15.59	086	707
SAUSA300	SAUSA3		ComEA family DNA-binding	11.2	13.0	1.76	5.24	1.027530	0.047629
_RS08445	00_1549		protein	6	4	1.70	J.2 4	569	476
SAUSA300	SAUSA3		DUF1433 domain-containing	54.3	42.1	7.05	21.44	1.021661	0.045862
_RS09570	00_1749		protein	4	8	7.05	21.44	185	518

Genes downregulated in sTS when compared to CSSC

Locus	Old locus	Gene	Product	TPM. 1 sTS	TPM. 2 sTS	TPM. 1 CSSC	TPM. 2 CSSC	DE Log2 FC	DE Adjusted <i>P</i> -value
SAUSA300 _RS13360	SAUSA3 00_2413	cntL	D-histidine (S)-2- aminobutanoyltransferase CntL	2.8	1.24	42.35	67.31	- 5.084086 128	5.27E-26
SAUSA300 _RS13040	SAUSA3 00_2361		putative metal homeostasis protein	2490 .1	1355 .85	51134 .91	41439 .61	- 5.024874 151	4.53E-22
SAUSA300 _RS13355	SAUSA3 00_2412	cntM	staphylopine dehydrogenase CntM	1.51	0.99	16.89	38.39	- 4.831891 364	1.58E-29
SAUSA300 _RS13325	SAUSA3 00_2406		MFS transporter	24.5 7	23.5 5	310.4 9	534.5 3	- 4.662309 168	9.76E-31
SAUSA300 _RS04580	SAUSA3 00_0848		FAD/NAD(P)-binding protein	6.41	3.17	29.4	171.1 5	- 4.368667 787	7.41E-18
SAUSA300 _RS06690	SAUSA3 00_1234	rpsN	30S ribosomal protein S14	142. 38	80.8 8	991.6 4	2246. 49	- 4.253496 035	2.38E-22

	JSA3 0307	5'-nucleotidase, lipoprotein e(P4) family	12.1	13.5 1	160.9 7	150.1 3	- 4.227392 16	1.39E-18
SAUSA300_RS03	3000	hypothetical protein	188. 34	169. 37	2775. 63	1589. 92	- 4.217603 633	1.13E-14
	JSA3 2409	ABC transporter permease	2.99	2.36	20.31	54.35	- 4.199861 087	4.75E-24
SAUSA300_RS03	3005 <i>vraX</i>	C1q-binding complement inhibitor VraX	6898 .76	9175 .19	13009 8.29	60616 .24	- 4.184492 053	1.84E-13
	JSA3 1029 <i>isdA</i>	LPXTG-anchored heme- scavenging protein IsdA	43.4	64.4 1	297.7 9	505.1 4	- 3.514307 723	4.09E-17
	JSA3 2407	ABC transporter ATP-binding protein	3.45	3.47	11.71	53.39	- 3.501991 93	1.02E-14
	JSA3 1628	amino acid permease	21.6 6	33.4 9	113.0 6	312.0 7	- 3.435439 103	1.97E-17
	JSA3 2410	ABC transporter permease	18.6 1	12.4 7	59.12	204.0	- 3.434548 452	4.00E-15
	JSA3 2411 <i>cntA</i>	staphylopine-dependent metal ABC transporter substrate-binding protein CntA	15.3 2	11.3 6	38.2	205.1 1	- 3.386083 399	7.58E-13
	JSA3 1712 <i>ribE</i>	6,7-dimethyl-8- ribityllumazine synthase	54.4 4	42.9 8	240.5 9	334.7 3	3.208032 845	7.65E-13

SAUSA300 SAUSA3 _RS03315 00_0618	metal ABC transporter substrate-binding protein	258. 97	206. 02	519.6 8	2555. 86	- 3.002466 305	7.55E-11
SAUSA300_RS15375	hypothetical protein	240. 53	184. 21	1755. 08	300.1 4	- 2.977529 774	2.63E-05
SAUSA300_RS15090	phenol-soluble modulin PSM-alpha-3	512. 32	700. 74	1880. 69	4471. 81	- 2.959942 807	1.13E-13
SAUSA300_RS15730	phenol-soluble modulin PSM-alpha-4	420. 56	500. 1	1439. 61	3355. 4	- 2.956950 307	7.48E-14
SAUSA300_RS15740	phenol-soluble modulin PSM-alpha-1	417. 86	484. 5	1294. 02	3576. 07	- 2.955553 758	7.92E-14
SAUSA300 SAUSA3 _RS12980 00_2351 <i>a</i>	zinc ABC transporter dcA substrate-binding lipoprotein AdcA	46.6 8	20.8 9	56.86	466.5 5	- 2.952860 287	3.23E-07
SAUSA300_RS15795 p	type I toxin-antitoxin system Fst family toxin PepA1	440. 19	391. 97	2456. 95	1290. 29	- 2.952268 106	4.30E-07
SAUSA300 SAUSA3 _RS03665 00_0683	DeoR/GlpR family DNA- binding transcription regulator	41.8	38.4	151.4 7	239.3 9	- 2.943524 601	5.60E-12
SAUSA300_RS15735	phenol-soluble modulin PSM-alpha-2	520. 36	645. 79	1675. 5	4447. 18	- 2.931688 49	1.13E-13
SAUSA300 SAUSA3 _RS00605 00_0117 sa	staphyloferrin B ABC rA transporter substrate-binding protein SirA	26.0 1	28.7 8	74.07	209.8	2.890004 889	2.89E-13

SAUSA300 _RS13045	SAUSA3 00_2362		2,3-diphosphoglycerate- dependent phosphoglycerate mutase	618. 45	564. 86	1514. 2	4828. 17	- 2.887349 944	1.17E-12
SAUSA300 _RS13850	SAUSA3 00_2493	cwrA	cell wall inhibition responsive protein CwrA	543. 67	434. 08	3279. 08	941.3	- 2.884622 592	1.27E-05
SAUSA300 _RS02195	SAUSA3 00_0409	spn	myeloperoxidase inhibitor SPIN	1033 .96	769. 97	4360. 22	3178. 19	- 2.826992 551	2.52E-07
SAUSA300 _RS10530	SAUSA3 00_1920		chemotaxis-inhibiting protein CHIPS	755. 37	557. 66	1791. 56	4444. 32	- 2.777613 179	3.14E-11
SAUSA300 _RS07015	SAUSA3 00_1291		amidohydrolase	19.3 8	18.2 6	63.58	90.07	- 2.727134 119	9.87E-10
SAUSA300 _RS10275	SAUSA3 00_1878	rlmD	23S rRNA (uracil(1939)- C(5))-methyltransferase RImD	17.2 3	22.9 5	86.77	64.72	- 2.720040 553	4.94E-07
SAUSA300 _RS05795	SAUSA3 00_1068		beta-class phenol-soluble modulin	736. 3	1082 .15	3464. 54	3534. 23	- 2.714539 171	4.36E-08
SAUSA300_	_RS10485		hypothetical protein	71.4 9	73.8 7	375.5 9	160.5 7	- 2.704770 409	1.29E-05
SAUSA300 _RS07010	SAUSA3 00_1290	dapD	2,3,4,5-tetrahydropyridine- 2,6-dicarboxylate N- acetyltransferase	155. 11	130. 25	455.4 9	710.3 2	- 2.702224 538	7.26E-10
SAUSA300 _RS01625	SAUSA3 00_0305		formate/nitrite transporter family protein	142. 2	110. 14	429.3 9	544.9 9	- 2.657219 054	1.82E-08

SAUSA300 SAUSA3 _RS03320 00_0619	metal ABC transporter permease	91.3	78.8	167.1 9	603.2	- 2.611758 841	1.04E-09
SAUSA300 SAUSA3 _RS01620 00_0304	DUF4064 domain-containing protein	16.7	15.9 7	41.54	89.51	- 2.604771 522	4.31E-10
SAUSA300 SAUSA3 _RS05570 00_1035 isc	staphylobilin-forming heme oxygenase lsdG	22.0	17.3 4	65.99	76.77	- 2.579655 241	1.85E-07
SAUSA300_RS15490	type I toxin-antitoxin system toxin PepG1	477. 23	455. 28	2420. 73	678.5 4	- 2.577771 179	0.000116 514
SAUSA300 SAUSA3 _RS05790 00_1067	beta-class phenol-soluble modulin	1106 .64	1728 .55	4820. 71	4917	- 2.563896 531	3.54E-07
SAUSA300_RS11570	hypothetical protein	5681 .91	4107 .36	21374 .9	10774 .7	- 2.540979 248	2.83E-05
SAUSA300 SAUSA3 _RS09670 00_1767	gallidermin/nisin family lantibiotic	15.9 8	16.3	68.29	38.64	- 2.534092 969	2.65E-05
SAUSA300 SAUSA3 _RS01970 00_0370 se	staphylococcal enterotoxin- like toxin X	23.1	18.9 5	46.85	118.5 5	- 2.522882 501	1.94E-09
SAUSA300 SAUSA3 _RS03960 00_0736 <i>ra</i>	ribosome-associated translation inhibitor RaiA	4599 .5	3956 .35	17578 .62	9706. 41	- 2.512502 454	2.11E-05
SAUSA300_RS10555	hypothetical protein	414. 3	365. 63	1740. 21	716.3 3	- 2.508266 241	6.60E-05

SAUSA300 _RS11560	SAUSA3 00_2099	czrB	CDF family zinc efflux transporter CzrB	141. 8	424. 63	759.5 6	1273. 14	- 2.481461 542	2.17E-06
SAUSA300 _RS12545	SAUSA3 00_2269		hypothetical protein	191. 99	166. 1	573.5 1	583.6 9	- 2.466327 657	9.67E-07
SAUSA300_	RS12715		hypothetical protein	33.0 8	30.0 7	113.6 5	82.31	- 2.439049 512	1.65E-05
SAUSA300 _RS04395	SAUSA3 00_0815		DUF4888 domain-containing protein	69.1 8	67.7 4	84.03	531.8 9	- 2.419905 295	1.88E-06
SAUSA300 _RS06940	SAUSA3 00_1278	pepF	oligoendopeptidase F	77.1 6	80.3 8	207.7 2	271.2 2	- 2.355707 981	3.51E-07
SAUSA300 _RS07025	SAUSA3 00_1293	lysA	diaminopimelate decarboxylase	104. 32	105. 7	195.4 7	534.7	- 2.355706 834	6.34E-09
SAUSA300 _RS04855	SAUSA3 00_0902	pepF	oligoendopeptidase F	42.9	53.2 3	87.93	218.1 4	- 2.271933 875	2.39E-08
SAUSA300 _RS14010	SAUSA3 00_2525		fructosamine kinase family protein	24.5 7	20.0 5	62.37	62.14	- 2.268664 211	1.21E-05
SAUSA300 _RS12865	SAUSA3 00_2328		DUF4889 domain-containing protein	390. 68	307. 86	1025. 36	853.3 6	- 2.247029 225	3.44E-05
SAUSA300 _RS05185	SAUSA3 00_0964		DUF5011 domain-containing protein	1344 .95	1198 .29	4004. 37	2605. 7	- 2.240557 187	9.67E-05

SAUSA300 _RS00130	SAUSA3 00_0025	adsA	LPXTG-anchored adenosine synthase AdsA	4.83	4.47	11.14	14.81	- 2.224498 518	2.82E-06
SAUSA300 _RS10185	SAUSA3 00_1865	vraR	two-component system response regulator VraR	111. 81	117. 53	277.5 9	350.5	- 2.222222 326	2.51E-06
SAUSA300 _RS02705	SAUSA3 00_0505	pdxT	pyridoxal 5'-phosphate synthase glutaminase subunit PdxT	208. 5	233. 65	367.7 4	991.6 5	- 2.197436 211	7.09E-08
SAUSA300 _RS04165	SAUSA3 00_0772	clfA	MSCRAMM family adhesin clumping factor ClfA	20.7 9	30.1 7	40.34	118.9 3	- 2.194119 213	2.33E-07
SAUSA300 _RS13765	SAUSA3 00_2481		sterile alpha motif-like domain-containing protein	1124 4.19	9876 .44	34671 .29	16151 .83	- 2.168418 284	0.000529 061
SAUSA300 _RS02365	SAUSA3 00_0442		YibE/F family protein	87.7	92.5 6	216.8 4	251.2 5	- 2.167103 753	8.38E-06
SAUSA300 _RS10525	SAUSA3 00_1919	scn	complement inhibitor SCIN-A	3693 .57	3390 .7	7817. 15	11222 .06	- 2.164778 699	2.32E-06
SAUSA300 _RS04565	SAUSA3 00_0845		M17 family metallopeptidase	44.8 2	45.3 4	93.39	150.8 5	- 2.154971 493	1.02E-06
SAUSA300 _RS12480	SAUSA3 00_2259		LCP family protein	48.3 1	58.6 8	113.1 8	157.6 3	- 2.101833 959	5.48E-06
SAUSA300 _RS03325	SAUSA3 00_0620		metal ABC transporter ATP- binding protein	378. 55	283. 98	422.2 3	1700. 83	- 2.097167 098	6.77E-06

SAUSA300 _RS06485	SAUSA3 00_1201	glnA	type I glutamateammonia ligase	341. 1	347. 9	459.6 2	1631. 59	- 2.088957 463	1.34E-06
SAUSA300 _RS12430	SAUSA3 00_2251		NAD/NADP-dependent octopine/nopaline dehydrogenase family protein	22.2	24.6 3	33.52	102.1 8	- 2.074184 097	8.89E-07
SAUSA300 _RS11550	SAUSA3 00_2097		SDR family oxidoreductase	15.3 9	23.7 4	31.72	75.47	- 2.073058 115	2.11E-06
SAUSA300 _RS04765	SAUSA3 00_0884		YjzD family protein	740. 03	669. 63	1986. 21	1210. 13	- 2.072766 933	0.000456 21
SAUSA300 _RS00215	SAUSA3 00_0040		hypothetical protein	5.84	7.06	16.36	14.43	- 2.058583 378	0.000317 197
SAUSA300 _RS13725	SAUSA3 00_2473		alpha/beta hydrolase	87.4 9	105. 79	212.7 7	237.7 8	- 2.035252 592	3.94E-05
SAUSA300 _RS13645	SAUSA3 00_2460		GNAT family N- acetyltransferase	106. 56	94.0 5	252.1 3	188.1 2	- 2.003367 465	0.000411 997
SAUSA300 _RS03025	SAUSA3 00_0565		DUF423 domain-containing protein	70.7 1	78.5 6	171.6 4	157.5 2	- 1.990628 548	0.000175 66
SAUSA300 _RS05995	SAUSA3 00_1107		TM2 domain-containing protein	2190 .76	1945 .41	5682. 01	2971. 77	- 1.984113 099	0.001351 833
SAUSA300 _RS14175	SAUSA3 00_2551	nrdD	anaerobic ribonucleoside- triphosphate reductase	17.6 7	14.6 8	34.12	39.52	- 1.976282 154	8.36E-05

SAUSA300 SAUSA3 _RS01990 00_0374		GlsB/YeaQ/YmgE family stress response membrane protein	2666 .59	3344 .13	6286. 49	7095. 9	- 1.974138 146	6.84E-05
SAUSA300 SAUSA3 _RS11520 00_2091	deoD	purine-nucleoside phosphorylase	510. 44	622. 99	887.3	1889. 62	- 1.958397 09	2.99E-06
SAUSA300 SAUSA3 _RS09015 00_1652		universal stress protein	1143 .03	989. 51	2394. 1	2210. 15	- 1.952065 351	0.000256 582
SAUSA300_RS16020		hypothetical protein	6646 .76	5039 .17	11754 .97	14607 .47	- 1.945365 73	9.04E-05
SAUSA300 SAUSA3 _RS09140 00_1674		trypsin-like peptidase domain-containing protein	137. 65	170. 54	242.4 5	500.7 5	- 1.945099 422	4.14E-06
SAUSA300 SAUSA3 _RS01265 00_0237		nucleoside hydrolase	25.1 6	24.3 4	50.02	59.68	- 1.944052 105	8.11E-05
SAUSA300 SAUSA3 _RS03335 00_0622		M50 family metallopeptidase	61.6 6	69.8 5	140.3 3	140.7 3	- 1.936603 756	0.000179 051
SAUSA300 SAUSA3 _RS14565 00_2621		SMP- 30/gluconolactonase/LRE family protein	11.0 4	13.2 5	27.91	22.36	- 1.926173 373	0.000573 173
SAUSA300 SAUSA3 _RS06685 00_1233	rpmG	50S ribosomal protein L33	7750 .21	5201 .14	16477 .46	9467. 32	- 1.900792 019	0.002186 41
SAUSA300 SAUSA3 _RS14075 00_2537		L-lactate dehydrogenase	153. 26	133. 22	241.4 9	410.5 7	- 1.898492 363	2.42E-05

SAUSA300 SAUSA3 _RS14670 00_2642		DUF3147 family protein	11.3	4.5	16.61	19.99	- 1.897774 308	0.001578 65
SAUSA300 SAUSA3 _RS09800 00_1790		peptidylprolyl isomerase	361. 94	372. 49	476.9 7	1357. 86	- 1.894978 207	6.32E-06
SAUSA300 SAUSA3 _RS13385 00_2418		carboxymuconolactone decarboxylase family protein	109. 83	138. 64	235.1 2	291.7 1	- 1.889078 501	0.000103 575
SAUSA300_RS08745		hypothetical protein	275. 34	252. 35	424.3 8	756.5	- 1.865833 571	2.68E-05
SAUSA300 SAUSA3 _RS13280 00_2398	fetB	iron export ABC transporter permease subunit FetB	44.2 1	61.6 4	106.8 2	105.3 3	- 1.859001 088	0.000434 876
SAUSA300 SAUSA3 _RS07195 00_1321		bacilliredoxin BrxA	193. 91	182. 28	436.6 6	287.7 1	- 1.856049 223	0.001666 507
SAUSA300 SAUSA3 _RS13975 00_2518		alpha/beta hydrolase	18.4 1	17.8 6	28.75	51.73	- 1.852317 746	3.15E-05
SAUSA300 SAUSA3 _RS02890 00_0541		deoxynucleoside kinase	134. 85	145. 95	239.8 2	357.1 2	- 1.849793 208	5.42E-05
SAUSA300 SAUSA3 _RS05095 00_0948	menB	1,4-dihydroxy-2-naphthoyl- CoA synthase	245. 75	209. 05	423.4 7	509.8 8	- 1.834799 054	0.000234 875
SAUSA300 SAUSA3 _RS10505 00_1918		phospholipase	79.6 7	65.4	114.4 9	203.5 9	- 1.828037 314	6.60E-05

Table B-4 (Cont'd)

SAUSA300 _RS04985	SAUSA3 00_0928	competence protein ComK	12.7	14.1 5	19.18	40.77	- 1.819591 096	3.36E-05
SAUSA300 _RS07460	SAUSA3 00_1366	hypothetical protein	51.8 9	51.3 1	99.36	105.2 2	- 1.807348 439	0.000634 316
SAUSA300 _RS08320	SAUSA3 00_1525	glycinetRNA ligase	326. 21	369. 09	460.2	1101. 39	- 1.805508 328	1.56E-05
SAUSA300 _RS04185	SAUSA3 00_0776	thermonuclease family protein	42.2 5	32.9 3	55.04	109.1 5	- 1.792396 052	7.24E-05
SAUSA300 _RS04760	SAUSA3 00_0883	MAP domain-containing protein	70.8 8	89.4 2	121.1 1	211.7 1	- 1.782988 447	6.24E-05
SAUSA300 _RS01655	SAUSA3 00_0310	PTS sugar transporter subunit IIC	215. 89	191. 53	354.3 5	455.8 2	- 1.782003 764	0.000262 324
SAUSA300 _RS00885	SAUSA3 00_0168 <i>isdl</i>	staphylobilin-forming heme oxygenase Isdl	65.3 9	59.7 4	108.8 1	139.8 6	- 1.779195 165	0.000299 457
SAUSA300 _RS14620	SAUSA3 00_2632	HdeD family acid-resistance protein	68.1 3	89.5 1	130.2 9	182.1 6	- 1.773810 679	0.000190 5
SAUSA300 _RS03030	SAUSA3 00_0566	amino acid permease	45.4 3	50.5 3	58.42	156.5 4	- 1.767434 199	2.70E-05
SAUSA300 _RS00705	SAUSA3 00_0135	superoxide dismutase	265. 49	304. 7	528.3 7	543.4 6	- 1.764391 635	0.000670 455

SAUSA300 _RS02710	SAUSA3 00_0506		NupC/NupG family nucleoside CNT transporter	217. 63	218. 71	399.7 3	417.8 6	- 1.751889 824	0.000704 809
SAUSA300 _RS05245	SAUSA3 00_0976	purD	phosphoribosylamine glycine ligase	45.1 3	49.1 3	68	118.9 4	- 1.717598 011	0.000108 67
SAUSA300 _RS03405	SAUSA3 00_0635		iron ABC transporter permease	75.5 3	67.2 1	109.0 2	170.1 9	- 1.715867 328	0.000223 999
SAUSA300 _RS07035	SAUSA3 00_1295	cspA	cold shock protein CspA	3550 5.41	2437 8.62	65893 .82	36585 .83	- 1.706968 213	0.007102 539
SAUSA300_	RS03635		hypothetical protein	118. 33	113. 91	207.1 8	212.5 2	- 1.703052 969	0.001262 424
SAUSA300 _RS07000	SAUSA3 00_1288	dapA	4-hydroxy- tetrahydrodipicolinate synthase	21.4 4	27.9	33.36	64.28	- 1.692306 711	0.000130 572
SAUSA300 _RS14170	SAUSA3 00_2550	nrdG	anaerobic ribonucleoside- triphosphate reductase activating protein	50.4 8	46.1 2	89.47	81	- 1.691215 066	0.002137 734
SAUSA300 _RS07160	SAUSA3 00_1314		YozE family protein	228. 8	284. 07	397.0 4	556.2 1	- 1.686713 441	0.000403 211
SAUSA300 _RS05340	SAUSA3 00_0991	def	peptide deformylase	239. 26	284. 4	332.9 5	694.2 9	- 1.660757 846	0.000108 67
SAUSA300 _RS14595	SAUSA3 00_2627		anion permease	120. 67	108. 5	191.1 8	213.2 3	- 1.653514 614	0.001374 985

SAUSA300 _RS04490	SAUSA3 00_0832	DUF86 domain-containing protein	44.8 8	45.7 3	67.64	97.59	- 1.644470 596	0.000573 173
SAUSA300 _RS04990	SAUSA3 00_0929	IDEAL domain-containing protein	1983 .26	903. 46	2511. 05	2756. 31	- 1.640969 217	0.004874 3
SAUSA300_	RS10805	transcriptional regulator	30.1	30.4 9	43.65	67.39	- 1.622088 691	0.000887 659
SAUSA300 _RS06775	SAUSA3 00_1248	HesB/YadR/YfhF family protein	263. 77	233. 96	470.6 9	336.4 3	- 1.620107 987	0.006175 256
SAUSA300 _RS06835	SAUSA3 00_1258	2-hydroxymuconate tautomerase	1764 .03	1415 .14	3231. 43	1800. 33	- 1.617697 923	0.010331 72
SAUSA300 _RS03035	SAUSA3 00_0567	threonine/serine exporter family protein	117. 79	120. 91	197.4 2	194.0 7	- 1.587349 791	0.003226 298
SAUSA300 _RS01090	SAUSA3 00_0207	M23 family metallopeptidase	48.2 6	53.9	80.85	88.84	- 1.584196 156	0.002339 682
SAUSA300 _RS04400	SAUSA3 00_0816	CsbD family protein	9469 .14	1265 7.73	14167 .41	25661 .71	- 1.584100 205	0.000414 747
SAUSA300 _RS13155	SAUSA3 00_2378	membrane protein	85.5 3	111. 63	91.35	306.5 6	- 1.561080 472	0.000496 699
SAUSA300 _RS10175	SAUSA3 00_1863	YtxH domain-containing protein	868. 92	894. 3	1264. 96	1649. 91	- 1.540443 059	0.001749 293

Table B-4 (Cont'd)

SAUSA300 _RS09040	SAUSA3 00_1656	universal stress protein	4000 .78	4549 .22	7380. 44	5519. 76	- 1.531998 422	0.008598 472
SAUSA300 _RS09440	SAUSA3 00_1726	CrcB family protein	20.9	21.8 9	30.37	39.66	- 1.515219 88	0.002996 801
SAUSA300 _RS03590	SAUSA3 00_0669	undecaprenyl-diphosphate phosphatase	143. 51	169. 22	193.6 7	334.2 2	- 1.506316 27	0.000902 686
SAUSA300 _RS14335	SAUSA3 00_2577 <i>man.</i>	mannose-6-phosphate isomerase, class I	35.2 9	38.3	51.85	64.49	- 1.491225 148	0.003208 24
SAUSA300 _RS04705	SAUSA3 00_0872	YisL family protein	177. 63	150. 33	234.2 2	286.4 6	- 1.488899 692	0.003891 948
SAUSA300_	RS04210	hypothetical protein	142. 88	151. 88	247.6 4	182.7 9	- 1.485921 019	0.011886 151
SAUSA300 _RS01890	SAUSA3 00_0356	cyclase family protein	35.2 6	39.7 5	52.5	62.54	- 1.460960 702	0.004533 387
SAUSA300 _RS05490	SAUSA3 00_1020	glycerophosphodiester phosphodiesterase	64.7 1	71.2 6	81.7	139	- 1.453651 462	0.001576 888
SAUSA300 _RS12820	SAUSA3 00_2320	DUF2871 domain-containing protein	300. 47	267. 74	471.9 5	326.0 5	- 1.440472 531	0.017451 703
SAUSA300 _RS07815	SAUSA3 00_1432	hypothetical protein	466. 74	369. 1	688.0 9	481.4 5	- 1.426868 523	0.019203 661

SAUSA300 SAUSA3 _RS04685 00_0868	IDNK	signal peptidase I	215. 3	244. 14	324.6 2	340.6 2	- 1.414555 238	0.008097 902
SAUSA300 SAUSA3 _RS12720 00_2302		glycopeptide resistance protein TcaA	67.2 7	73.1 5	91.37	118.4 2	- 1.408137 34	0.004874 3
SAUSA300 SAUSA3 _RS05680 00_1053		formyl peptide receptor-like 1 inhibitory protein	103. 34	135. 89	163.9 6	177.5 5	- 1.391949 937	0.009159 035
SAUSA300 SAUSA3 _RS14345 00_2579		amidase domain-containing protein	61.6 9	65.6 9	72.91	124.9 9	- 1.391829 312	0.002522 619
SAUSA300 SAUSA3 _RS12500 00_2262	CANE	CPBP family intramembrane glutamic endopeptidaseSdpB	115. 62	131. 32	138.4 6	245.3 5	- 1.386155 028	0.002424 322
SAUSA300_RS06715		DNA damage-induced cell division inhibitor SosA	54.1 7	45.0 9	75.14	62.69	- 1.382950 861	0.019075 819
SAUSA300 SAUSA3 _RS04720 00_0875		metal-sulfur cluster assembly factor	2157 .52	1858 .45	3013. 21	2486. 78	- 1.376334 008	0.017956 927
SAUSA300_RS05060		SAR1012 family small protein	117. 31	122. 81	157.5 6	189.8	- 1.374804 231	0.008367 857
SAUSA300 SAUSA3 _RS01985 00_0373		helix-turn-helix transcriptional regulator	528. 79	356. 82	674.5 7	540.8 3	- 1.368071 835	0.022823 811
SAUSA300 SAUSA3 _RS10205 00_1869	man	type I methionyl aminopeptidase	315. 99	346. 41	395.4 3	573.9 1	- 1.354493 125	0.005219 82

SAUSA300 _RS03045	SAUSA3 00_0569		heme-dependent peroxidase	408. 44	464. 95	547.4 1	699.7 1	- 1.353228 586	0.007187 2
SAUSA300 _RS00580	SAUSA3 00_0112		L-lactate permease	80.3	80.8 1	90.96	151.2 2	- 1.352592 372	0.003891 948
SAUSA300 _RS03825	SAUSA3 00_0712		peptide MFS transporter	361. 77	349. 19	446.1	552.5 9	- 1.331649 516	0.009270 639
SAUSA300 _RS04710	SAUSA3 00_0873		CoA-disulfide reductase	260. 29	284. 82	334.6 7	430.3 4	- 1.327296 927	0.008508 348
SAUSA300 _RS02430	SAUSA3 00_0454	recR	recombination mediator RecR	280. 45	259. 58	313.9 3	467.6 3	- 1.324897 022	0.006623 051
SAUSA300 _RS01560	SAUSA3 00_0292		hypothetical protein	194. 91	162. 79	274.7 3	179.2 5	- 1.313861 922	0.036533 213
SAUSA300 _RS09770	SAUSA3 00_1784	traP	signal transduction protein TRAP	1852 .02	1751 .65	2359. 68	2513. 71	- 1.313810 591	0.014563 041
SAUSA300 _RS02350	SAUSA3 00_0439		hypothetical protein	338. 47	329. 48	489.0 6	365.5 3	- 1.310934 537	0.029178 439
SAUSA300_	_RS12530		hypothetical protein	134. 68	141. 35	174.8 2	202.0 7	- 1.310168 6	0.012913 273
SAUSA300 _RS09165	SAUSA3 00_1678		formatetetrahydrofolate ligase	44.6 1	61.7 4	45.4	123.5 5	- 1.300306 08	0.003965 203

SAUSA300 _RS11360	SAUSA3 00_2063	atpE	F0F1 ATP synthase subunit C	123. 74	133. 08	148.2 8	212.2 9	- 1.298009 33	0.008599 868
SAUSA300 _RS03010	SAUSA3 00_0562	thiD	bifunctional hydroxymethylpyrimidine kinase/phosphomethylpyrimi dine kinase	261. 8	257. 99	271.9 7	490.4 9	- 1.297532 703	0.004904 817
SAUSA300 _RS10935	SAUSA3 00_1989	agrB	accessory gene regulator AgrB	857. 02	1101 .23	1150. 16	1544. 07	- 1.295519 826	0.009638 217
SAUSA300 _RS05160	SAUSA3 00_0960	qoxD	cytochrome aa3 quinol oxidase subunit IV	1183 .89	1388 .16	1833. 15	1402. 26	- 1.292802 829	0.030017 983
SAUSA300 _RS14020	SAUSA3 00_2527		hypothetical protein	195. 43	178. 91	234.5 5	255.0 4	- 1.261693 849	0.020068 907
SAUSA300 _RS11310	SAUSA3 00_2054	fabZ	3-hydroxyacyl-ACP dehydratase FabZ	266. 26	297. 19	334.1 1	388.3 7	- 1.230300 86	0.019632 788
SAUSA300 _RS06360	SAUSA3 00_1176	pgsA	CDP-diacylglycerolglycerol- 3-phosphate 3- phosphatidyltransferase	286. 65	259. 49	332.7 4	348.5 6	- 1.207979 469	0.028796 897
SAUSA300_	RS09030		hypothetical protein	97.1 9	97.1 4	107.4 7	144.2 5	- 1.196443 392	0.021841 334
SAUSA300 _RS05470	SAUSA3 00_1017		DUF420 domain-containing protein	216. 93	251. 59	290.0 1	273.8 9	- 1.193227 67	0.035325 655
SAUSA300 _RS05050	SAUSA3 00_0940		DoxX family protein	613. 49	450. 74	674.1 2	617.3 2	- 1.188234 093	0.043394 609

Table B-4 (Cont'd)

SAUSA300 _RS13290	SAUSA3 00_2400		M42 family metallopeptidase	93.5 3	102. 65	107.5 1	141.0 3	- 1.185015 768	0.020256 411
SAUSA300 _RS14105	SAUSA3 00_2541	Iqo	L-lactate dehydrogenase (quinone)	854. 76	1163 .52	1221. 75	1179. 67	- 1.178605 822	0.037556 934
SAUSA300 _RS01870	SAUSA3 00_0353		ABC-2 transporter permease	127. 18	125. 67	153.1 7	147	- 1.165101 924	0.040283 358
SAUSA300 _RS05075	SAUSA3 00_0944		1,4-dihydroxy-2-naphthoate polyprenyltransferase	144. 04	152. 14	165.2 3	195.8 8	- 1.156657 21	0.029271 275
SAUSA300 _RS04575	SAUSA3 00_0847		Paal family thioesterase	271. 11	246. 89	284.2 1	333.5 6	- 1.122290 299	0.037490 909
SAUSA300 _RS04545	SAUSA3 00_0841		NAD(P)/FAD-dependent oxidoreductase	225. 3	213. 5	235.1 2	287.7	- 1.113804 911	0.035548 336
SAUSA300 _RS11600	SAUSA3 00_2104	glmS	glutaminefructose-6- phosphate transaminase (isomerizing)	88.9	132. 72	96.78	188.6 2	- 1.111734 202	0.019413 764
SAUSA300 _RS10940	SAUSA3 00_1990		cyclic lactone autoinducer peptide	702. 34	960. 66	732.3 5	1307. 69	- 1.068465 88	0.026476 425
SAUSA300 _RS11495	SAUSA3 00_2088		S-ribosylhomocysteine lyase	522. 71	538. 77	545.3 9	657.2	- 1.054221 759	0.048463 664

Table B-5. Transporters differentially expressed in GSH, GSSG, and sTS.

Locus	Old locus	Gene	Product	DE Log ₂ FC	DE Adj. <i>P-</i> value
Differentially	expressed trar	sporters	in GSH		
SAUSA300_ RS00925	SAUSA300_ 0176		ABC transporter permease	3.125833599	5.35039E-07
SAUSA300_ RS00915	SAUSA300_ 0174		ABC transporter ATP-binding protein	2.989014416	3.54407E-07
SAUSA300_ RS02340	SAUSA300_ 0437	gmpC	dipeptide ABC transporter glycylmethionine-binding lipoprotein	2.315679543	4.10697E-05
SAUSA300_ RS02330	SAUSA300_ 0435		methionine ABC transporter ATP- binding protein	2.290401543	1.35302E-05
SAUSA300_ RS00920	SAUSA300_ 0175		ABC transporter substrate-binding protein	2.282409423	0.000547181
SAUSA300_ RS02335	SAUSA300_ 0436		methionine ABC transporter permease	1.995195436	0.001769395
SAUSA300_ RS02315	SAUSA300_ 0432		sodium-dependent transporter	1.950671187	0.001418977
SAUSA300_ RS02035	SAUSA300_ 0382		L-cystine transporter	1.838262363	0.00898218
SAUSA300_ RS13025	SAUSA300_ 2359		transporter substrate-binding domain- containing protein	1.753694235	0.002677665
SAUSA300_ RS01440	SAUSA300_ 0268		MFS transporter	1.728656723	0.013484163
SAUSA300_ RS01055	SAUSA300_ 0200		ABC transporter ATP-binding protein	1.667394083	0.01218702
SAUSA300_ RS01060	SAUSA300_ 0201		ABC transporter permease	1.524008315	0.020157954
SAUSA300_ RS10985	SAUSA300_ 1998		YeeE/YedE family protein	1.304988845	0.030246065
SAUSA300_ RS12890	SAUSA300_ 2333		nitrate/nitrite transporter	-3.275833554	7.74351E-10

SAUSA300_ RS01625	SAUSA300_ 0305		formate/nitrite transporter family protein	-2.826851365	5.35039E-07
SAUSA300_ RS13325	SAUSA300_ 2406		MFS transporter	-2.73389307	1.70962E-06
SAUSA300_ RS13340	SAUSA300_ 2409		ABC transporter permease	-2.695416261	3.1823E-07
SAUSA300_ RS08880	SAUSA300_ 1628		amino acid permease	-2.497406008	1.33354E-06
SAUSA300_ RS13345	SAUSA300_ 2410		ABC transporter permease	-2.068669945	0.000155603
SAUSA300_ RS13280	SAUSA300_ 2398	fetB	iron export ABC transporter permease subunit FetB	-1.989683824	0.001769395
SAUSA300_ RS13330	SAUSA300_ 2407		ABC transporter ATP-binding protein	-1.903394709	0.001594128
SAUSA300_ RS12780	SAUSA300_ 2313		L-lactate permease	-1.51253439	0.015456886
SAUSA300_ RS11560	SAUSA300_ 2099	czrB	CDF family zinc efflux transporter CzrB	-1.308531176	0.031701317
SAUSA300_ RS07165	SAUSA300_ 1315		PTS glucose transporter subunit IIA	-1.275878242	0.03733
Differentially		sporters	in GSSG		
SAUSA300_ RS00925	SAUSA300_ 0176	•	ABC transporter permease	3.303313167	9.01551E-10
SAUSA300_ RS00915	SAUSA300_ 0174		ABC transporter ATP-binding protein	2.830762445	9.05749E-09
SAUSA300_ RS02340	SAUSA300_ 0437	gmpC	dipeptide ABC transporter glycylmethionine-binding lipoprotein	2.654314417	9.05749E-09
SAUSA300_ RS00920	SAUSA300_ 0175		ABC transporter substrate-binding protein	2.408938291	4.67518E-06
SAUSA300_ RS02035	SAUSA300_ 0382		L-cystine transporter	2.306320567	1.28398E-05

SAUSA300_ RS10985	SAUSA300_ 1998		YeeE/YedE family protein	2.196473104	7.51319E-07
SAUSA300_ RS01055	SAUSA300_ 0200		ABC transporter ATP-binding protein	2.136824537	6.18049E-06
SAUSA300_ RS02315	SAUSA300_ 0432		sodium-dependent transporter	2.108173714	2.0706E-06
SAUSA300_ RS02335	SAUSA300_ 0436		methionine ABC transporter permease	1.986024342	5.44287E-05
SAUSA300_ RS02330	SAUSA300_ 0435		methionine ABC transporter ATP- binding protein	1.982114069	7.69607E-06
SAUSA300_ RS13025	SAUSA300_ 2359		transporter substrate-binding domain- containing protein	1.868432696	5.3321E-05
SAUSA300_ RS01060	SAUSA300_ 0201		ABC transporter permease	1.815353512	0.000587577
SAUSA300_ RS01440	SAUSA300_ 0268		MFS transporter	1.732819023	0.000196649
SAUSA300_ RS03880	SAUSA300_ 0721		siderophore ABC transporter substrate-binding protein	1.435417673	0.021157034
SAUSA300_ RS13020	SAUSA300_ 2358		amino acid ABC transporter permease	1.377126022	0.040614674
SAUSA300_ RS13015	SAUSA300_ 2357		amino acid ABC transporter ATP- binding protein	1.279374623	0.013517702
SAUSA300_ RS13340	SAUSA300_ 2409		ABC transporter ATP-binding protein	-2.76312879	3.44703E-09
SAUSA300_ RS06690	SAUSA300_ 1234	rpsN	ABC transporter permease	-2.642568704	3.35575E-08
SAUSA300_ RS07010	SAUSA300_ 1290	dapD	amino acid permease	-2.520651649	2.56794E-08
SAUSA300_ RS07015	SAUSA300_ 1291		MFS transporter	-2.326963795	6.21097E-07

SAUSA300_ SAUSA300_ nitrate/nitrite transporter	-2.081032901	1.90088E-05
SAUSA300_ SAUSA300_ <i>purE</i> formate/nitrite transporter family protein	-2.066362184	7.22394E-06
SAUSA300_ SAUSA300_ staphylopine-dependent metal ABC transporter substrate-binding protein CntA		0.00029532
SAUSA300_ SAUSA300_ copZ ABC transporter permease	-1.799606649	0.004998035
SAUSA300_ SAUSA300_ L-lactate permease	-1.396183733	0.005316458
Differentially expressed transporters in sTS		
SAUSA300_ SAUSA300_ ABC transporter ATP-binding protein	n 3.34231159	1.77E-13
SAUSA300_ SAUSA300_ ABC transporter permease	3.098636848	1.70E-08
SAUSA300_ SAUSA300_ methionine ABC transporter ATP- RS02330 0435 binding protein	2.95296498	1.52E-11
SAUSA300_ SAUSA300_ PTS mannitol transporter subunit IIC	CB 2.697969241	2.47E-05
SAUSA300_ SAUSA300_ methionine ABC transporter permea	ise 2.573132474	1.07E-07
SAUSA300_ SAUSA300_ transporter substrate-binding domain containing protein	n- 2.502235403	3.10E-09
SAUSA300_ SAUSA300_ ABC transporter permease	2.500861509	1.50E-06
SAUSA300_ SAUSA300_ ABC transporter substrate-binding protein	2.331970676	7.16E-06
SAUSA300_ SAUSA300_ gmpC dipeptide ABC transporter glycylmethionine-binding lipoprotein	2.298614243	2.06E-06

SAUSA300_ RS09895	SAUSA300_ 1808		ABC transporter permease subunit	2.268943961	1.29E-05
SAUSA300_ RS01065	SAUSA300_ 0202		ABC transporter permease	1.888041935	0.000125814
SAUSA300_ RS01055	SAUSA300_ 0200		ABC transporter ATP-binding protein	1.68588224	0.000393937
SAUSA300_ RS13020	SAUSA300_ 2358		amino acid ABC transporter permease	1.590410837	0.003709448
SAUSA300_ RS02035	SAUSA300_ 0382		L-cystine transporter	1.528200303	0.004872848
SAUSA300_ RS10985	SAUSA300_ 1998		YeeE/YedE family protein	1.51993081	0.001033925
SAUSA300_ RS12845	SAUSA300_ 2324		sucrose-specific PTS transporter subunit IIBC	1.456119968	0.004064768
SAUSA300_ RS02315	SAUSA300_ 0432		sodium-dependent transporter	1.213364032	0.009638217
SAUSA300_ RS12670	SAUSA300_ 2293	corA	magnesium/cobalt transporter CorA	1.213160134	0.040617602
SAUSA300_ RS10470	SAUSA300_ 1913	pmtA	phenol-soluble modulin export ABC transporter ATP-binding protein PmtA	1.206438904	0.011021615
SAUSA300_ RS05255	SAUSA300_ 0978		ABC transporter ATP-binding protein	1.128877854	0.031545527
SAUSA300_ RS04805	SAUSA300_ 0891		peptide ABC transporter substrate- binding protein	1.115766728	0.030017983
SAUSA300_ RS13325	SAUSA300_ 2406		MFS transporter	-4.662309168	9.76E-31
SAUSA300_ RS13340	SAUSA300_ 2409		ABC transporter permease	-4.199861087	4.75E-24
SAUSA300_ RS13330	SAUSA300_ 2407		ABC transporter ATP-binding protein	-3.50199193	1.02E-14

SAUSA300_ RS08880 SAUSA300_	SAUSA300_ 1628 SAUSA300_		amino acid permease ABC transporter permease	-3.435439103 -3.434548452	1.97E-17 4.00E-15
RS13345	2410		• •	-3.434340432	4.00L-13
SAUSA300_ RS13350	SAUSA300_ 2411	cntA	staphylopine-dependent metal ABC transporter substrate-binding protein CntA	-3.386083399	7.58E-13
SAUSA300_ RS03315	SAUSA300_ 0618		metal ABC transporter substrate- binding protein	-3.002466305	7.55E-11
SAUSA300_ RS12980	SAUSA300_ 2351	adcA	zinc ABC transporter substrate- binding lipoprotein AdcA	-2.952860287	3.23E-07
SAUSA300_ RS00605	SAUSA300_ 0117	sirA	staphyloferrin B ABC transporter substrate-binding protein SirA	-2.890004889	2.89E-13
SAUSA300_ RS01625	SAUSA300_ 0305		formate/nitrite transporter family protein	-2.657219054	1.82E-08
SAUSA300_ RS03320	SAUSA300_ 0619		metal ABC transporter permease	-2.611758841	1.04E-09
SAUSA300_ RS11560	SAUSA300_ 2099	czrB	CDF family zinc efflux transporter CzrB	-2.481461542	2.17E-06
SAUSA300_ RS03325	SAUSA300_ 0620		metal ABC transporter ATP-binding protein	-2.097167098	6.77E-06
SAUSA300_ RS13280	SAUSA300_ 2398	fetB	iron export ABC transporter permease subunit FetB	-1.859001088	0.000434876
SAUSA300_ RS01655	SAUSA300_ 0310		PTS sugar transporter subunit IIC	-1.782003764	0.000262324
SAUSA300_ RS03030	SAUSA300_ 0566		amino acid permease	-1.767434199	2.70E-05
SAUSA300_ RS02710	SAUSA300_ 0506		NupC/NupG family nucleoside CNT transporter	-1.751889824	0.000704809
SAUSA300_ RS03405	SAUSA300_ 0635		iron ABC transporter permease	-1.715867328	0.000223999

SAUSA300_ RS14595	SAUSA300_ 2627	anion permease	-1.653514614	0.001374985
SAUSA300_ RS00580	SAUSA300_ 0112	L-lactate permease	-1.352592372	0.003891948
SAUSA300_ RS03825	SAUSA300_ 0712	peptide MFS transporter	-1.331649516	0.009270639
SAUSA300_ RS01870	SAUSA300_ 0353	ABC-2 transporter permease	-1.165101924	0.040283358