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ABSTRACT 

 Dry beans (Phaseolus vulgaris L.) are an important legume for human consumption 

worldwide, providing key dietary nutrients such as carbohydrates, protein, and fiber. Michigan is 

the second largest dry bean producer in the United States, producing over 400 million pounds of 

dry edible beans per year and contributing to a farm gate value of over $139 million. However, 

biotic stress caused by fungal disease infection is among the main constraints that limit yield and 

increase management cost of dry bean production. Two of the most devastating fungal diseases 

in Michigan are white mold and root rot, which can cause up to 80-100% yield and seed quality 

decline in susceptible cultivars under heavy disease pressure. Resistant breeding lines are the 

ideal solution to managing these diseases as chemical control is expensive, harmful to the 

environment, and doesn’t ensure complete protection against infection. Unfortunately, resistance 

to both diseases is controlled by complex quantitative inheritance methods, with a lack of large 

effect resistance genes, laborious screening protocols, and historic difficulty pyramiding genes 

into one durably resistant phenotype. Therefore this research aimed to assist dry bean breeders in 

developing resistant lines by i) evaluating genomic prediction and GP + de novo GWAS as a tool 

for white mold (Sclerotinia sclerotiorum) resistance screening, ii) evaluating a diverse set of 

lines for resistance to root rots conferred by Rhizoctonia solani and Fusarium oxysporum, iii) 

investigating correlations between Fusarium oxysporum inoculated field and greenhouse screens 

and natural infection conditions and, iiii) investigating correlations between Fusarium 

oxysporum root rot resistance and major agronomic/ aboveground traits as an alternative non-

destructive, high-throughput phenotyping method. The findings from these studies will 

ultimately assist dry bean breeders in the development of resistant lines for these important 

diseases. 
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GENERAL INTRODUCTION 

Common bean (Phaseolus vulgaris L.) is one of the most important legumes for human 

consumption worldwide, providing an important source of key dietary nutrients such as 

carbohydrates, protein, fiber, iron, and zinc (Uebersax et al., 2023).  There are two common bean 

markets, dry shelled seed (dry bean) and green pods (snap bean), often split into individual 

breeding programs (Singh & Schwartz, 2010). Dry beans are a dietary staple in Latin America and 

sub-Saharan Africa (Leterme & Carmenza Muũoz, 2002; Paparu et al., 2018) and an important 

agricultural commodity in the US (primarily North Dakota, Minnesota, and Michigan), Latin 

America, and other regions. Most dry bean breeding programs aim at improving yield, biotic 

resistance, nutritional quality, and abiotic stresses (Kelly and Cichy, 2012). However, there are 

many diseases that greatly affect dry bean production including anthracnose, common bacterial 

blight, viral mosaics, root rots, and white mold (Singh & Schwartz, 2010).  

There are two major gene pools within Phaseolus vulgaris resulting from two centers of 

domestication in the Andes and Central America (Gepts, P., and Debouck D., 1991; Mensack et 

al., 2010). Within these gene pools there are over 10 major market classes of dry bean with unique 

seed color and morphology, growth habit, disease reaction, and adaptation. Common dry bean 

market classes include black, navy, red, pink, yellow, pinto, great northern, kidney, and cranberry 

beans. The wide genetic diversity of dry bean across market classes offers an opportunity to 

incorporate many novel traits within a variety development program. However, the stringent 

requirements for seed traits within market classes along with other traits of economic importance 

have made genetic progress more challenging when compared to other crops.  

Michigan is the second largest dry bean producer in the United States, producing over 400 

million pounds of dry edible beans per year and contributing to a farm gate value of over $139 
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million (USDA Crop Production Summary 2022). It also leads the nation in the black, small red, 

and navy bean market classes in terms of acreage. Michigan's temperate climate, with warm humid 

summers, is highly conducive to fungal diseases. Among the fungal diseases present in Michigan, 

white mold and root rots are ranked by growers as the 1st and 2nd most important diseases limiting 

production respectively (MBC, 2022).  

 Agronomic management is often inefficient in controlling fungal diseases, primarily due 

to the durability of overwintering structures that persist in the soil and crop residue (Bolton et al., 

2006; Katan, 2017). Breeding for resistance is often the most sustainable, durable, and cost-

effective method to protect against infection. However, many fungal diseases (including white 

mold and root rots) have complex genetic inheritance methods and cumbersome phenotypic 

screening that limit breeding progress (Fuller et al., 1984; Hagerty et al., 2015; Miklas et al., 2004; 

Nakedde et al., 2016; Park et al., 2001; Schwartz & Singh, 2013; Singh et al., 2014; Wang et al., 

2018). Given the complexity of breeding for resistance, more research is needed to improve 

screening methods, identify, and pyramid resistance genes, and produce robustly resistant 

varieties.  

WHITE MOLD  

White mold, conferred by the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary is 

one of the most destructive fungal diseases of dry bean, resulting in poor seed quality and reduced 

yield (del Río et al., 2004; Vasconcellos et al., 2017). In temperate regions it is considered the 

most yield limiting disease of dry bean production, causing up to 100% yield loss and may also 

result in significant seed quality decline in susceptible cultivars (Schwartz, 2011; Singh & 

Schwartz, 2010). Consequently, economic losses from white mold in the United States have 

exceeded 200 million dollars yearly due to yield reduction and fungicide costs (Bolton et al., 2006). 
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Sclerotinia sclerotiorum, a necrotrophic fungal pathogen from the phylum Ascomycota, 

has a broad host range of over 400 species of plants, primarily dicotyledonous species (Boland & 

Hall, 1994). Sclerotinia sclerotiorum can be seed transmitted. However, the bulk of inoculum 

comes from melanized sclerotia that can overwinter in soil for five or more years (Schwartz & 

Singh, 2013). Around dry bean flowering time, S. sclerotiorum sclerotia germinates and forms a 

fruiting structure, a small cup shaped mushroom called an apothecia (Miklas et al., 2013). Once 

the apothecia has developed, asci can forcefully release ascospores into the plant canopy. These 

ascospores can infect the plant through wounds on the stem left by the senescent flowers and on 

other foliar parts, by penetrating the host cell walls (Bolton et al., 2006). Once colonized, infected 

plants often exhibit wilted leaves due to reduced vascular function. As disease development 

progresses, stems become brittle, and have a bleached appearance due to oxalic acid and other 

enzymes produced by the fungi, often leading to severe plant lodging (Schwartz & Singh, 2013). 

Yield and seed quality decline occurs indirectly due to plant stress that reduces seed development 

or lost pods that abort entirely and directly due to colonization of bean pods that results in moldy, 

discolored, or shriveled seed. In severe infections, white mycelium can be observed on affected 

plant parts and whole plant death can occur (Schwartz & Singh, 2013). Sclerotia form inside 

infected tissue in the stem pith or pods and provide inoculum for subsequent infection (Bolton et 

al., 2006). 

CONTROL 

Managing white mold can be challenging due to the durability and extended viability of 

sclerotia in the soil and broad host range (Bolton et al., 2006). White mold can be spread from 

field to field by infected seed, contaminated soil on farm equipment, and wind-blown ascospores 

(Steadman and Boland, 2005). Control of white mold using fungicides, biopesticides, and other 

https://www.zotero.org/google-docs/?RDkxZk
https://www.zotero.org/google-docs/?RDkxZk
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disease management strategies has been difficult. Common strategies for controlling white mold 

include crop rotation, fungicide sprays, limiting nitrogen fertilizer and irrigation to reduce 

vegetative growth, wide row spacing, low density planting, and the development of low biomass, 

upright, and open canopy cultivars (Ender & Kelly, 2005; Miorini et al., 2017; Schwartz & Singh, 

2013). Biomass reduction and upright architecture in particular focuses on reducing sclerotial 

germination and ascospore development by altering the microclimate to reduce canopy humidity 

and temperature and therefore colonization ability (Schwartz & Singh, 2013). However, these 

strategies are often not sustainable or economically feasible and reduce productivity of dry bean 

fields. Control of white mold through biomass management, wide row spacing, and reduced 

fertilizer and irrigation compromises yield per acre. Additionally, fungicide sprays are expensive 

and have adverse effects on the environment. Furthermore, these practices do not fully eliminate 

white mold infection due to its virulence and ability to overwinter in the soil.  

HOST RESISTANCE AND SCREENING  

Host resistance to white mold in dry bean can be obtained through two means: 

physiological resistance and avoidance mechanisms, although low resistance has been found to 

date. Physiological resistance (Miklas et al., 2013; Schwartz & Singh, 2013) is associated with 

pathogen recognition, including reactive oxygen species (oxidative burst) as an initial defense 

mechanism and synthesis of pathogenesis-related protein (Mamidi et al., 2016). Conversely, 

disease avoidance mechanisms are related to plant architecture traits that confer a tall, upright 

growth habit, reduced lodging, and a porous plant canopy less ideal to the pathogen. Due to the 

complex infection method of the pathogen, a combination of both traits is considered ideal to 

ensure robust white mold resistant lines.  
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Multiple screening methods have been proposed, including the greenhouse straw test, cut 

stem oxalate test (Kolkman & Kelly, 2000), and field rating systems such as the 1-9 plot wise 

visual scale (Miklas et al., 2001). Previous studies have failed to show a strong correlation 

between field and greenhouse screening methods (Terán et al., 2009). The greenhouse trial is 

preferred by many researchers due to higher heritability, ease of screening, and less 

environmental dependance but this test does not screen for resistance conferred by avoidance 

mechanisms in field conditions (Chung et al., 2008; Mkwaila et al., 2011; Soule et al., 2011). 

Many highly resistant lines in the greenhouse exhibit low expression in field conditions. Field 

testing is necessary to screen for plant avoidance traits that reduce infection, but physiological 

resistance and architectural avoidance is confounded in field conditions (Miklas et al., 2013) 

False positives for physiological resistance may result due to reduced disease severity in open 

plant canopies (Kolkman & Kelly, 2000; Miklas et al., 2013). No completely resistant lines to 

white mold in dry bean have been identified to date. A multi-faceted screening and selection 

method that incorporates both aspects of resistance would greatly improve breeding progress for 

this complex trait. 

BREEDING FOR WHITE MOLD RESISTANCE 

Developing white mold resistant cultivars in dry bean has proven difficult primarily due to 

the complex inheritance method of resistance, low levels of innate resistance in breeding 

populations (Kolkman & Kelly, 2000; Terán & Singh, 2009; Vuong et al., 2004), low heritability 

(Fuller et al., 1984; Park et al., 2001), and variable screening methods (Ender & Kelly, 2005). 

Previous studies have identified that both physiological resistance and architectural avoidance to 

white mold is quantitatively inherited (Fuller et al., 1984; Miklas et al., 2004; Park et al., 2001). 

Hundreds of germplasm accessions, cultivars, and breeding lines of common bean and related 

https://www.zotero.org/google-docs/?broken=nukNdJ
https://www.zotero.org/google-docs/?broken=xjYTCy
https://www.zotero.org/google-docs/?broken=6CmgAy
https://www.zotero.org/google-docs/?broken=c0vKiy
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Phaseolus species have been screened for their reaction to white mold. Unfortunately, completely 

resistant varieties are unavailable and most known sources of genetic resistance to white mold are 

of Andean origin, usually from unadapted landraces and wild relatives, and from secondary gene 

pools (Terán and Singh, 2009, Singh et al., 2014; Vasconcellos et al., 2017). While low levels of 

resistance have been identified in small Middle-American germplasm (Ender and Kelly, 2005; 

Mkwaila et al., 2011; Hoyos-Villegas et al., 2015), progress to develop white mold resistant 

cultivars has been hindered by difficulty in pyramiding resistance genes given the quantitative 

inheritance of disease avoidance mechanisms and physiological resistance (Singh et al., 2014).  

Over 35 quantitative trait loci (QTL) with minor effects have been identified conferring 

resistance to white mold in dry bean by either physiological resistance or architectural avoidance 

which highlights the complexity of this trait (Singh et al., 2014; Vasconcellos et al., 2017).  QTL 

conferring physiological avoidance and architectural traits have been mapped to most dry bean 

linkage groups with common traits being oxalate resistance, determinate growth habit, increased 

internode length, plant height, days to flowering, branching pattern, lodging, seed size, and yield 

(Ender & Kelly, 2005; Miklas, 2007; Miklas et al., 2001, 2003, 2013; Mkwaila et al., 2011; Soule 

et al., 2011). Miklas et al. (2007) identified two QTL located on PV2 and PV3 conditioning 

physiological resistance associated with the stay green stem characteristic and disease avoidance 

traits including late maturity and the stay-green stem characteristic, which are undesirable 

agronomic traits for dry bean production (Miklas et al., 2006). These traits are important to account 

for when screening for resistance to white mold because while they confirm a resistant genotype 

and can be used as a parent for breeding, they are deleterious traits for dry bean production. 

Recently, Vasconcellos et al. 2017 compiled 37 individual QTL across 14 recombinant inbred bi-

parental populations developed previously and condensed these QTL into 17 meta-QTL found on 

https://www.zotero.org/google-docs/?broken=HEN8x8
https://www.zotero.org/google-docs/?vzzach
https://www.zotero.org/google-docs/?vzzach
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chromosomes 1,2,3,5,6,7, and 8. These meta QTL in particular are potential targets for marker 

assisted selection (MAS) of partial resistance to white mold.   

Unlike breeding for qualitative resistance, breeding for quantitative resistance is more 

challenging because it requires multiple cycles of breeding and screening, leading to a gradual 

improvement of resistance in a breeding population over time. With the sheer number of QTL 

identified previously conferring many environmentally dependent resistance traits, it is no surprise 

that there has been difficulty pyramiding genes into one robustly resistant genotype with the 

desired agronomic traits. An integrated screening and recurrent selection method that considers all 

aspects of resistance and agronomic performance would greatly assist future cultivar 

development.  Multiple breeding tools such as recurrent selection and the use of alternative 

populations such as multiparent intercrosses are one way to assist the identification and pyramiding 

of resistance genes (Escobar et al., 2022; Osorno et al., 2018). Recently, Escobar et al. explored 

integrated multi-parent crosses and gamete selection using a Multiparent Advanced Generation 

Inter-Cross (MAGIC) population, to facilitate mapping and breeding efforts, resulting in multiple 

partially resistant lines. This method crosses together multiple founder lines and cycles through 

several additional generations of crossing, resulting in offspring with multiple recombination 

events, often leading to improved results that maximize diversity. This and other emerging 

breeding tools will assist future breeding for complex traits. 

GENOMIC PREDICTION 

Genomic prediction creates a unique opportunity to select and pyramid major and minor 

alleles conferring resistance to complex diseases (Merrick et al., 2021; Poland & Rutkoski, 2016; 

Tiede & Smith, 2018). This established tool in Marker Assisted Selection (MAS) utilizes genome 

wide markers and phenotypic data to train a linear statistical model to predict and make selections 
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based on genomic estimated breeding values (GEBVs) for a trait. In contrast to MAS, genomic 

prediction does not identify significant markers and estimate individual marker effects. Instead, all 

marker effects are estimated simultaneously and used to accurately predict overall breeding values 

for a trait (Jannink et al., 2010). When properly implemented, genomic prediction has the potential 

to improve breeding program efficiency and reduce phenotyping costs when screening for complex 

traits. Genomic prediction has assisted breeding efforts for quantitative disease and pest resistance 

traits in many crop species including wheat: (Arruda et al., 2016; Juliana et al., 2017, 2022; Larkin 

et al., 2021; Merrick et al., 2021; Odilbekov et al., 2019; Rutkoski et al., 2012; Sarinelli et al., 

2019) , dry bean (Diaz et al., 2021; Shi et al., 2021a), soybean (Bao et al., 2015; de Azevedo 

Peixoto et al., 2017; Đorđević et al., 2019; Duhnen et al., 2017; Hemingway et al., 2021; Shi et al., 

2021b; Wen et al., 2018), and other crop species. Specifically, when compared to MAS or 

phenomic selection alone, genomic prediction has shown to be more effective for pyramiding 

quantitative traits controlled by many small effect QTL (Heffner et al., 2010, 2011; Massman et 

al., 2013; Merrick et al., 2021; Zhang et al., 2016). 

Many previous studies of the genetic control of white mold in dry bean fail to account for 

the many small effect QTL unable to be detected by genome wide association studies (GWAS) 

that are likely controlling resistance to this trait. To date, there have been no major resistance genes 

identified for white mold resistance, unlike some disease traits such as Fusarium head blight in 

wheat (Larkin et al., 2021). Since genomic prediction utilizes all markers spread across the entire 

genome to make selections, it has the power to detect small effect QTL conferring resistance that 

would otherwise be overlooked by GWAS (Jannink et al. 2010; Meuwissen et al. 2013). Genomic 

selection for white mold resistance has been studied in soybean diversity panels (de Azevedo 

Peixoto et al., 2017; Wen et al., 2018) with moderate to high prediction accuracies (0.4-0.7) 

https://www.zotero.org/google-docs/?A8y5dr
https://www.zotero.org/google-docs/?TfkMGD
https://www.zotero.org/google-docs/?TfkMGD
https://www.zotero.org/google-docs/?TfkMGD
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suggesting that this warrants further research into the validity to assist breeding for resistance in 

dry bean.  

Another benefit of genomic prediction in breeding for complex traits controlled by many 

major and minor QTL is that major QTL controlling a trait of interest can be identified using a 

GWAS and implemented in genomic prediction as fixed effects, allowing for further accuracy in 

selection (Merrick et al., 2021). Fixed QTL can be selected based on previous research or identified 

through de novo GWAS of the training population. GS + de novo GWAS involves two main stages 

where in the first stage GWAS is conducted on individuals in the training set to identify fixed QTL 

to be implemented in genomic prediction of the testing set (Bian & Holland, 2017; Haile et al., 

2021; Sarinelli et al., 2019; Spindel et al., 2016). For example, Bian and Holland 2017 and Spindel 

2016 both found that GS + de novo GWAS outperformed all other models tested. A simulation 

study by (Rice & Lipka, 2019) evaluated the effect of the number of QTL implemented across 

multiple genetic architectures and trait heritability and observed increased, decreased, and mixed 

(increase then decrease or decrease then increase) effect on prediction accuracy depending on the 

trait and number of fixed QTL. This study emphasizes that a varying number of fixed effect QTL 

should be tested for each trait before implementation. 

ROOT ROTS 

Root rot is conferred by a soilborne disease complex of multiple fungal and oomycete 

pathogens including members of Fusarium sp., Rhizoctonia sp., Pythium sp., Macrophomina sp., 

and Alternaria sp. (Bilgi et al., 2011; Harveson et al., 2005; Schwartz, 2011; Sendi et al., 2020; 

Singh & Schwartz, 2010). Pathogen composition is variable by region and usually involves 

multiple species. In Michigan, the most common root rot pathogens belong to the Fusarium and 

Rhizoctonia species as well as multiple oomycetes (Jacobs et al., 2019). Root rots conferred by 

https://www.zotero.org/google-docs/?7WG2yH
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these pathogens cause up to 84% yield loss in susceptible dry bean cultivars through damage of 

root biomass, reducing vigor, and sometimes whole plant death (Jacobs et al., 2019). Root rots 

greatly affect overall plant health because a damaged root system limits nutrient and water intake, 

greatly affecting yield potential.  

The life cycle of root rot complex pathogens are similar. First, primary inoculum (resting 

spores, sclerotia, or mycelium) in the soil or crop residue germinates and infects seedling roots. 

The pathogen spreads from plant to plant using secondary spores (conidia or sporangia) or 

mycelium. Finally, it produces new primarily inoculum at the end of the season that overwinters 

until the next growing season (Gossen et al., 2016). Root rot disease symptoms vary depending on 

the pathogen(s) involved, but are primarily characterized by root lesions, root and foliar biomass 

loss, and reduced stand. Fusarium and Rhizoctonia root rots of dry bean are both primarily 

characterized by water-soaked, dark brown to rust colored lesions on the root and death of lateral 

roots (Hall et al. 1991, Hagedorn et al. 1994). Fusarium root rot develops slowly in some genotypes 

and tends to lead to an overall root biomass loss, vigor loss, and yield decline. Entire plant death 

is rarer and usually occurs later in the season in only severe infections. Aboveground symptoms 

are difficult to see, but plants may be stunted and yellowed, exhibit premature leaf drop and have 

poor pod fill (Schwartz, 2011 ). Conversely, Rhizoctonia root rot tends to affect plants early in the 

season primarily through reduced stand resulting from seed rot, seedling blight, and pre/post 

emergence damping off (Gossen et al., 2016). Rhizoctonia root rot also tends to result in the 

formation of deeper sunken lesions at the soil level (Conner et al., 2014). Root rot disease severity 

is highly variable with environmental conditions. In particular, cool wet weather, soil compaction, 

or flooding events can increase infection severity in both infection scenarios due to additional plant 

stress and increased virulence of soilborne pathogens (Kumar and Kudada, 2018, Cichy, 2007).  

https://www.zotero.org/google-docs/?rYIrEV
https://www.zotero.org/google-docs/?e1vJdX
https://www.zotero.org/google-docs/?4yKVYo
https://www.zotero.org/google-docs/?4yKVYo
https://www.zotero.org/google-docs/?pTSfMG
https://www.zotero.org/google-docs/?OxT2s2
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CONTROL 

Current agronomic management practices assist with lowering root rot disease severity but 

are not sufficient for the complete control of root rot. Fungicidal seed and soil treatments, reduced 

irrigation, crop rotation, cover crops, seedbed preparation, and other agronomic practices are 

currently used to combat yield loss from root rots (Abawi and Pastor Corrales, 1990; Gossen et 

al., 2016; Harveson et al., 2005; Rubiales et al., 2015). A 3-5 year crop rotation with a non-host 

crop (alfalfa, barley, wheat, oats, and corn) is recommended for fields with root rot disease pressure 

to reduce inoculum load (Schwartz, 2011). If possible, planting in warm moist soil is ideal for 

quick germination and emergence. High-quality treated, certified seed is also recommended to 

maximize plant vigor and stand.  

One major limitation of many root rot control methods is that they are often not sustainable 

or economically feasible and reduce productivity of dry bean fields. For example, control of root 

rots through reduced irrigation and fertilizer limits yield per acre. Fungicidal seed and soil 

treatments are expensive and have adverse effects on the environment. Furthermore, these 

practices are not complete guarantees against root rot infection due to its virulence and ability for 

thick-walled spores, hyphae, or sclerotia to overwinter in the soil for multiple years (Schwartz, 

2011). The development of resistant dry bean cultivars would ensure high levels of protection 

against this disease. Therefore, the most sustainable, durable, and cost-effective method to ensure 

protection against infection would be to develop resistant dry bean cultivars. 

HOST RESISTANCE AND SCREENING 

Resistance to root rot in dry bean appears to be a combination of physiological mechanisms 

and root system avoidance due to architecture traits such as root dry weight, root length, and root 

mass (Snapp et al., 2003; Kamfwa et al., 2013; Wang et al., 2018; Haus et al., 2020). These root 

https://www.zotero.org/google-docs/?ZR1erX
https://www.zotero.org/google-docs/?ZR1erX
https://www.zotero.org/google-docs/?WxpsqN
https://www.zotero.org/google-docs/?WxpsqN
https://www.zotero.org/google-docs/?89G3ed
https://www.zotero.org/google-docs/?89G3ed
https://www.zotero.org/google-docs/?89G3ed
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traits in particular are identified as targets for the screening and development of root rot resistant 

varieties. Previous research has established susceptibility to root rot in both dry bean gene pools, 

but susceptibility to individual fungal and oomycete pathogens differ. Large-seeded dry bean 

cultivars from the Andean gene pool are generally more susceptible to Fusarium species and small 

seeded cultivars from the Middle-American gene pool are generally more susceptible to 

Rhizoctonia species, with Andean types being more susceptible to root rots overall (Conner et al., 

2014; Schneider et al., 2001). Previous research has also established the importance of high root 

biomass cultivars with high density of lateral roots, high basal root number, and many adventitious 

roots (Haus et al., 2020; Román-Avilés et al., 2004; Snapp et al., 2003). Andean genotypes in 

particular, tend to have less robust root systems which is thought to be why they have lower levels 

of resistance to root rots (Cichy et al., 2007; Román-Avilés & Kelly, 2005; Schneider et al., 2001). 

There have been multiple phenotyping methods proposed for the greenhouse and field evaluation 

of Fusarium root rots including the liquid inoculum method (Schneider & Kelly, 2000), inoculum 

layer method (Chaudhary et al., 2006), and nutrient culture (Boomstra et al., 1977). Inoculated 

grain planted alongside the crop seed is a common method for field evaluation (Haus et al., 2020; 

Pandey et al., 2020; Wang et al., 2018). The presence of multiple resistance mechanisms through 

both physiological resistance and architectural avoidance complicates screening. Greenhouse trials 

are preferred by researchers because they provide a controlled environment free of natural root rot 

pathogens, have higher heritability, and ease of screening, but they do not screen for some 

avoidance mechanisms that can only be observed in the field. Conversely, field screens allow for 

measurement of both architectural traits and physiological resistance, but are often hampered by 

low heritability, high coefficient of variation (CV), high error variances, and natural pathogen 

presence (Guzman, 2016.; Hagerty et al., 2015; Nakedde et al., 2016; Román-Avilés et al., 2004; 

https://www.zotero.org/google-docs/?WpMqMN
https://www.zotero.org/google-docs/?WpMqMN
https://www.zotero.org/google-docs/?aUcGip
https://www.zotero.org/google-docs/?a6Pqtb
https://www.zotero.org/google-docs/?zft2lL
https://www.zotero.org/google-docs/?GBPa40
https://www.zotero.org/google-docs/?asluDx
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Román-Avilés & Kelly, 2005). Furthermore, these destructive phenotyping methods require the 

whole plant to be dug up with a shovel in the field or removed from the pot in the greenhouse to 

be evaluated for root rot symptoms, which is laborious and prevents additional measurements of 

yield and other traits throughout the season. Establishment of aboveground traits related to root rot 

disease severity would enable high-throughput methods of phenotyping such as UAS imaging to 

assist breeders in screening for root rot resistant varieties (Guo et al., 2021; Lu et al., 2019; 

Manganiello et al., 2021; Marzougui et al., 2019). 

BREEDING FOR ROOT ROT RESISTANCE 

Genetic resistance to root rots in dry bean is quantitatively inherited, primarily through root 

architecture traits such as root weight, root length and root mass (Haus et al., 2020; Kamfwa et al., 

2013; Snapp et al., 2003; Wang et al., 2018) and physiological avoidance (Kamfwa et al., 2013; 

Mukankusi et al., 2011; Román-Avilés et al., 2004; Snapp et al., 2003). The quantitative 

inheritance of these traits has been demonstrated by the low narrow-sense heritability estimates 

(26%-44%) reported and many small effect quantitative trait loci (QTL) found for root rot (Román-

Avilés et al., 2011; Nakedde et al., 2016; Kamfwa et al., 2018; Wang et al., 2018; Zitnick-Anderson 

et al., 2020). Previous research has established the importance of high root biomass cultivars with 

high density of lateral roots, high basal root number, and many adventitious roots for root rot 

avoidance (Haus et al., 2020; Román-Avilés et al., 2004; Snapp et al., 2003). These traits have 

been identified as significant targets for improving resistance. Resistance to root rot is primarily 

found in the small-seeded Middle-American bean germplasm compared to the highly susceptible 

large-seeded beans of Andean origin and has served as the only source of resistance (Cichy et al., 

2007; Mukankusi et al., 2011; Román-Avilés & Kelly, 2005; Schneider et al., 2001) 

https://www.zotero.org/google-docs/?16cDfx
https://www.zotero.org/google-docs/?16cDfx


14 
 

Although few studies to date have evaluated genetic resistance to Fusarium oxysporum or 

Rhizoctonia solani, multiple studies have established genomic regions associated with resistance 

to root rots conferred by other Fusarium sp. (Hagerty et al., 2015; Kamfwa et al., 2013; Nakedde 

et al., 2016; Román-Avilés & Kelly, 2005; Schneider et al., 2001; Wang et al., 2018; Zitnick-

Anderson et al., 2020). These studies often identify many different QTL which highlights the 

highly quantitative inheritance method of resistance. QTL studies of resistance to Fusarium sp. in 

dry bean have identified genomic regions associated with root traits, plant immune/defense 

mechanisms, and other disease resistance genes (Hagerty et al., 2015; Nakedde et al., 2016; Wang 

et al., 2018; Zitnick-Anderson et al., 2020). One study to date has evaluated genetic resistance to 

Rhizoctonia solani- Oladzad et al. 2019. In this study, researchers evaluated the Andean and 

Middle American diversity panels and observed multiple QTL associated with gene models 

encoding proteins like known disease resistance genes.  Other Rhizoctonia solani resistance studies 

have focused on screening and ranking breeding lines and establishing trait correlations 

(Adesemoye et al., 2018; Conner et al., 2014; Peña et al., 2013).  
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CHAPTER 1: POTENTIAL OF GENOMIC PREDICTION TO SCREEN FOR WHITE MOLD 

RESISTANCE IN DRY BEAN  

ABSTRACT 

Dry bean (Phaseolus vulgaris L.) production in the U.S. suffers severely from white mold 

(Sclerotinia sclerotiorum (Lib.) de Bary) infection. Dry bean cultivars lack high levels of 

resistance, and progress to breed new cultivars with durable levels of resistance has been slow due 

to the quantitative inheritance of this trait, difficulty pyramiding resistance, and screening 

dependence on the presence of the pathogen under suitable environmental conditions. Genomic 

prediction provides an alternative method to pyramid resistance genes by utilizing genome-wide 

marker coverage to predict genotypic values for quantitative traits. This study evaluated the 

efficiency of different genomic prediction models given the complex population structure of 

multiple market classes present in dry bean breeding programs. A panel of 303 Middle-American 

breeding lines were genotyped with 3,026 markers and evaluated for white mold in the field. 

Prediction accuracy across models and subsets was moderate (0.3 - 0.36) given the population size. 

Furthermore, when fixed effect QTL were identified and implemented through GP + GWAS, 1-3 

QTL increased prediction accuracy (0.36 - 0.4). These results indicate that genomic prediction is 

a promising screening tool in dry bean breeding for white mold resistance. 

INTRODUCTION 

Dry bean (Phaseolus vulgaris L.) is one of the most important grain legumes for human 

consumption worldwide, providing an important source of key dietary nutrients such as protein 

and fiber (Uebersax et al., 2023). However, biotic stress caused by fungal disease infection is 

among the main constraints that limit yield and increase management cost of dry bean production. 

White mold, conferred by the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary is one of 
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the most destructive fungal diseases of dry bean, resulting in poor seed quality and reduced yield 

(del Río et al., 2004; Vasconcellos et al., 2017). In temperate regions it is considered the most yield 

limiting disease of dry bean production, causing up to 100% yield loss and may also result in 

significant seed quality decline in susceptible cultivars (Schwartz et al., 1987; Singh & Schwartz, 

2010). Consequently, economic losses from white mold in the United States have exceeded $200 

million yearly due to yield reduction and fungicide costs (Bolton et al., 2006). 

Sclerotinia sclerotiorum is a necrotrophic fungus with a broad host range of over 400 

species of plants (Boland & Hall, 1994). Sclerotinia sclerotiorum can be seed transmitted. 

However, the bulk of inoculum comes from melanized sclerotia that can overwinter in soil for five 

or more years (Schwartz & Singh, 2013). Around dry bean flowering time, S. sclerotiorum 

sclerotia germinates and forms a fruiting structure, a small cup shaped mushroom called an 

apothecia (Miklas et al., 2013). Once the apothecia has developed, asci can forcefully release 

ascospores into the plant canopy. These ascospores can infect the plant through wounds on the 

stem left by the senescent flowers and on other foliar parts, by penetrating the host cell walls 

(Bolton et al., 2006). Once colonized, infected plants often exhibit wilted leaves due to reduced 

vascular function. As disease development progresses, stems become brittle, and have a bleached 

appearance, often leading to severe plant lodging (Schwartz & Singh, 2013). Yield and seed quality 

decline occurs indirectly due to plant stress that reduces seed development or lost pods that abort 

entirely and directly due to colonization of bean pods that results in moldy, discolored, or shriveled 

seed. In severe infections, white mycelium can be observed on affected plant parts and whole plant 

death can occur (Schwartz & Singh, 2013).  

Michigan is the second largest dry bean producer in the United States, producing over 400 

million pounds of dry edible beans per year (USDA Crop Production Summary 2022). It also leads 
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the nation in the black, small red, and navy bean market classes in terms of acreage (USDA Crop 

Production Summary 2022). Michigan's temperate climate, with warm humid summers, is highly 

conducive to fungal diseases. Among the fungal diseases present in Michigan, growers consider 

white mold the most serious disease impacting dry bean production. In the 2022 annual production 

practices survey, Michigan farmers and crop advisors regarded white mold as the number one 

disease of dry bean production that needs further research to increase yield and reduce fungicide 

costs (MBC, 2022).  

Managing white mold can be challenging due to the durability and extended viability of 

sclerotia in the soil and broad host range of the pathogen (Bolton et al., 2006). Common strategies 

include crop rotation, fungicide sprays, limiting nitrogen fertilizer and irrigation to reduce 

vegetative growth, wide row spacing, low density planting, and the development of low biomass, 

upright, and open canopy cultivars (Ender & Kelly, 2005; Miorini et al., 2017; Schwartz & Singh, 

2013). These strategies focus on reducing sclerotial germination and ascospore development by 

altering the microclimate to reduce canopy humidity and temperature and therefore colonization 

ability (Schwartz & Singh, 2013). However, they are often not sustainable or economically feasible 

and reduce productivity of dry bean fields. For example, control of white mold through biomass 

management, wide row spacing, and reduced fertilizer and irrigation compromises yield per acre. 

Additionally, fungicide sprays are expensive and have adverse effects on the environment. 

Furthermore, these practices do not fully eliminate white mold infection due to the fungal virulence 

and overwintering ability. Therefore, the development of resistant cultivars is the most cost-

effective, sustainable, and durable approach to combat white mold (Kolkman & Kelly, 2000; 

Miklas et al., 2001) along with appropriate cultural management practices as needed.  
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Breeding for white mold resistance in dry bean is challenging due to the quantitative 

inheritance method of resistance, which can be obtained through both physiological defense 

mechanisms and architectural avoidance. Disease avoidance mechanisms (Hoyos‐Villegas et al., 

2015; Miklas et al., 2001, 2013) are associated with plant architecture traits that impart a tall, 

upright growth habit, and porous plant canopy. Physiological resistance (Miklas et al., 2001; Terán 

& Singh, 2009) is associated with pathogen recognition, including utilizing reactive oxygen 

species as an initial defense mechanism and synthesis of pathogenesis-related proteins (Mamidi et 

al., 2016) Given the complex infection process of white mold, a multi-faceted quantitative 

resistance mechanism is needed for dry bean (Mamidi et al., 2016). Unfortunately, completely 

resistant varieties are unavailable and most known sources of genetic resistance to white mold are 

of Andean origin, usually from unadapted landraces and wild relatives, and from secondary gene 

pools (Schwartz & Singh, 2013; Singh et al., 2014; Vasconcellos et al., 2017). While low levels 

of resistance have been identified in Middle-American germplasm (Ender & Kelly, 2005; Hoyos‐

Villegas et al., 2015; Mkwaila et al., 2011), progress to develop white mold resistant cultivars has 

been hindered by the lack of high levels of resistance (Schwartz & Singh, 2013), difficulty in 

pyramiding resistance genes (Singh et al., 2014), low heritability for the trait (Fuller et al., 1984; 

Miklas et al., 2004; Park et al., 2001), and environmental dependency for field evaluation requiring 

highly managed disease nurseries under frequent overhead irrigation (Ender & Kelly, 2005). 

Furthermore, greenhouse studies provide an alternate method of measuring physiological 

resistance, but previous studies have failed to show strong correlation between field and 

greenhouse screening methods (Terán & Singh, 2009). 

The complex quantitative inheritance mechanism of this trait has been demonstrated by the 

identification of at least 35 quantitative trait loci (QTL) with minor effects for resistance to white 
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mold in dry bean (Singh et al., 2014). This genetic architecture has posed challenges to dry bean 

breeders aiming to deploy marker-assisted selection (MAS) for QTL conferring partial resistance 

and low accuracy of genomic intervals resulting in negative linkage drag for yield and other traits 

(Miklas, 2007; Vasconcellos et al., 2017). To provide a better resolution, Vasconcellos et al., 

(2017) conducted a meta-QTL analysis and identified a total of nine-QTL as potential targets for 

MAS for partial resistance. While this study determined 9 major gene candidates that contribute 

to white mold resistance, the integration of an adequate level of white mold resistance in adapted 

dry bean germplasm is difficult because backcrossing many genes is inefficient and takes time 

even with the assistance of molecular markers (Lee, 1995). 

Unlike breeding for qualitative resistance, breeding for quantitative resistance is more 

challenging because it requires multiple cycles of breeding and screening, leading to a gradual 

improvement of resistance in a breeding population over time. With the sheer number of QTL 

identified previously conferring many environmentally dependent resistance traits, it is no surprise 

that there has been difficulty pyramiding genes into one robustly resistant genotype with the 

desired agronomic traits. An integrated screening and recurrent selection method that considers all 

aspects of resistance and agronomic performance would greatly assist future cultivar development. 

Multiple breeding tools such as recurrent selection and the use of alternative populations such as 

multiparent intercrosses are one way to assist the identification and pyramiding of resistance genes 

(Escobar et al., 2022; Osorno et al., 2018). Recently, Escobar et al. explored integrated multi-

parent crosses and gamete selection using a Multiparent Advanced Generation Inter-Cross 

(MAGIC) population, to facilitate mapping and breeding efforts, resulting in multiple partially 

resistant lines. This method crosses together multiple founder lines and cycles through several 

additional generations of crossing, resulting in offspring with multiple recombination events, often 
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leading to improved results that maximize diversity. This and other emerging breeding tools will 

assist future breeding for complex traits. 

One such tool is genomic prediction/selection (GP/GS). Genomic prediction creates a 

unique opportunity to select and pyramid major and minor alleles conferring resistance to complex 

diseases (Merrick et al., 2021; Poland & Rutkoski, 2016; Tiede & Smith, 2018). This established 

tool in Marker Assisted Selection (MAS) utilizes genome wide markers and phenotypic data to 

train a linear statistical model to predict and make selections based on genomic estimated breeding 

values (GEBVs) for a trait. In contrast to MAS, genomic prediction does not identify significant 

markers and estimate individual marker effects. Instead, all marker effects are estimated 

simultaneously and used to accurately predict overall breeding values for a trait (Jannink et al., 

2010). When properly implemented, genomic prediction has the potential to improve breeding 

program efficiency and reduce phenotyping costs when screening for complex traits. Genomic 

prediction has assisted breeding efforts for quantitative disease and pest resistance traits in many 

crop species including wheat: (Arruda et al., 2016; Juliana et al., 2017, 2022; Larkin et al., 2021; 

Merrick et al., 2021; Odilbekov et al., 2019; Rutkoski et al., 2012; Sarinelli et al., 2019) , dry bean 

(Diaz et al., 2021; Shi et al., 2021a), soybean (Bao et al., 2015; de Azevedo Peixoto et al., 2017; 

Đorđević et al., 2019; Duhnen et al., 2017; Hemingway et al., 2021; Shi et al., 2021b; Wen et al., 

2018), and other crop species. Specifically, when compared to MAS or phenomic selection alone, 

genomic prediction has shown to be more effective for pyramiding quantitative traits controlled 

by many small effect QTL (Heffner et al., 2010, 2011; Massman et al., 2013; Merrick et al., 2021; 

Zhang et al., 2016). 

Many previous studies of the genetic control of white mold in dry bean fail to account for 

the many small effect QTL unable to be detected by genome wide association studies (GWAS) 

https://www.zotero.org/google-docs/?A8y5dr
https://www.zotero.org/google-docs/?A8y5dr
https://www.zotero.org/google-docs/?TfkMGD
https://www.zotero.org/google-docs/?TfkMGD
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that are likely controlling resistance to this trait. To date, there have been no major resistance genes 

identified for white mold resistance, unlike some disease traits such as Fusarium head blight in 

wheat (Larkin et al., 2021). Since genomic prediction utilizes all markers spread across the entire 

genome to make selections, it has the power to detect small effect QTL conferring resistance that 

would otherwise be overlooked by GWAS (Jannink et al. 2010; Meuwissen et al. 2013). Genomic 

selection for white mold resistance has been studied in soybean diversity panels (de Azevedo 

Peixoto et al., 2017; Wen et al., 2018) with moderate to high prediction accuracies (0.4-0.7) 

suggesting that this warrants further research into the validity to assist breeding for resistance in 

dry bean.  

Another benefit of genomic prediction in breeding for complex traits controlled by many 

major and minor QTL is that major QTL controlling a trait of interest can be identified using a 

GWAS and implemented in genomic prediction as fixed effects, allowing for further accuracy in 

selection (Merrick et al., 2021). Fixed QTL can be selected based on previous research or identified 

through de novo GWAS of the training population. GS + de novo GWAS involves two main stages 

where in the first stage GWAS is conducted on individuals in the training set to identify fixed QTL 

to be implemented in genomic prediction of the testing set (Bian and Holland, 2017; Haile et al., 

2021; Sarinelli et al., 2019; Spindel et al., 2016). For example, Bian and Holland 2017 and Spindel 

2016 both found that GS + de novo GWAS outperformed all other models tested. A simulation 

study by (Rice and Lipka, 2019) evaluated the effect of the number of QTL implemented across 

multiple genetic architectures and trait heritability and observed increased, decreased, and mixed 

(increase then decrease or decrease then increase) effect on prediction accuracy depending on the 

trait and number of fixed QTL. This study emphasizes that a varying number of fixed effect QTL 

should be tested for each trait before implementation. 
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Genomic prediction is more complex to implement when the crop of interest has multiple 

sub-classes. Dry beans are one such crop because their breeding programs are funneled into many 

smaller programs based on market standards for over 10 distinct seed classes. While there is some 

cross breeding between classes (ex: black by navy), this is discouraged due to the possibility to 

transmit deleterious seed traits. Due to distinct market class traits, the number and genetic 

composition of market classes added to the training population may have a significant effect on 

prediction accuracy. Since this is the first study to date evaluating genomic prediction as a tool to 

screen for white mold resistance in dry bean breeding lines, a major objective was to determine 

the ideal population composition to optimize prediction accuracy.  

Given these factors, the primary objective of this study was to evaluate the potential of 

genomic prediction as a screening tool to breed for white mold resistance and determine how it 

could be efficiently used in a dry bean breeding program. To do so, we evaluated advanced 

breeding lines from the Michigan State University (MSU) dry bean breeding program belonging 

to three distinct major market classes in Michigan. Our specific objectives were to i) evaluate 

genomic prediction across and within major market classes of dry bean, ii) identify the optimal 

training population composition to increase prediction accuracy in the presence of distinct market 

classes and population structure, and iii) compare predictive abilities between GP alone and GP + 

de novo GWAS. 

MATERIALS AND METHODS 

Plant material  

A set of 303 lines were used to evaluate the potential of using genomic prediction for white 

mold resistance. This panel consisted of advanced breeding lines from four market classes (black, 

navy, small red, and pink) developed by the MSU dry bean breeding program, 7 commercially 
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available lines grown commonly in Michigan, and the partially white mold resistant lines USPT-

WM-12 (pinto) and G122 (cranberry) (Phillip N. Miklas, USDA). Detailed line information can 

be found in (Table 1.5). 

All lines were evaluated for white mold resistance in the field. During the 2021 field season 

176 lines were evaluated and during the 2022 field season, 127 lines were evaluated. Finally, 55 

lines were added to the study that were previously evaluated in the National Sclerotinia Initiative 

multi-state national trials and 43 lines were evaluated in multiple years. The final training set 

consisted of 144 black, 117 navy, 32 red, 7 pink, 1 pinto, 1 cranberry, and 1 great northern line. 

Phenotype data collection 

All lines were grown under natural white mold infestation in a disease nursery at Montcalm 

Research and Extension Center in Montcalm County, MI. This location has consistent yearly white 

mold disease pressure and an overhead pivot irrigation system to promote disease infection. The 

lines were planted in an alpha-lattice design with three replicates using four row plots 6.1 m in 

length with 50cm row spacing. The outer two rows were planted with the white mold susceptible 

black bean line (Black Bear) to encourage white mold infection. The resistant, moderately 

resistant, and susceptible checks, G122, Bunsi, and Beryl, were added to adjust for local disease 

variation.  

Plants were evaluated for white mold multiple times per season between the R7-R9 growth 

stages, beginning when white mold disease was first observed (around pod fill) and continuing 

through dry down. The best white mold rating to be used for genomic prediction was chosen based 

on heritability and variance for disease score. A plot-wise visual disease rating system was used 

to screen for white mold resistance in the field. The visual rating consisted of incidence and 

severity on a scale of 1 to 9, where a rating of 1 indicates no diseased plants and a rating of 9 
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indicates 80 to 100% diseased plants or 60 to 100% infected tissue as described in Miklas et al., 

2001. Plots were trimmed to 4.9m prior to harvest and the center two rows were harvested with a 

Wintersteiger Classic plot combine (Wintersteiger AG, Austria). Yield data was obtained utilizing 

a Harvestmaster H2 Classic Graingage (Juniper Systems, Logan, UT) to record plot weight and 

moisture. Prior to data analysis, seed yield was standardized to 18% moisture. Standard agronomic 

traits including plant height, lodging score, days to flower, and maturity were also collected in the 

field.  

Genotypic data collection and processing 

Single-nucleotide polymorphism (SNP) data was collected for all lines in the training 

population. The tissue collection, DNA extraction, and genotyping procedures were as follows. 

Ten first trifoliate leaves from each line were collected and bulked. Leaves were desiccated using 

liquid nitrogen, placed in a -80 ○C freezer, and lyophilized. DNA was extracted using the Qiagen 

DNeasy plant mini kit following the manufacturers protocols and concentration standardized to at 

least 50 ug/ul. SNP chip sequencing using the Illumina Infinium BARCBean12k Bead chip was 

performed at the USDA-ARS, Soybean Genomics and Improvement Lab in Beltsville, Maryland. 

SNP calling for 11,929 markers was performed in the Illumina Genomestudio software 

(Genomestudio Software, 2023). Markers were filtered in the TASSEL trait analysis software, 

which removed any SNP with a minor allele frequency of less than 0.10 or more than 50% missing 

individuals (Bradbury et al., 2007). A principal component analysis (PCA) and genomic 

relationship matrix were developed utilizing the remaining markers. Imputation was performed in 

the rrBLUP package in R using the A.mat function and the impute=mean parameter to input 

missing data according to the population mean at each marker (Endelman, 2011). Realized 

https://www.zotero.org/google-docs/?1ZKCNB
https://www.zotero.org/google-docs/?x3LBEX
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relationship matrices were also calculated using the A.matrix function within rrBLUP. These steps 

resulted in a matrix of ~3,026 polymorphic markers used in this study.  

Phenotypic statistical analysis 

A linear mixed model was fit using the ASREML package in the R coding language to 

calculate Best Linear Unbiased Estimators (BLUEs) for white mold disease score (Butler et al., 

2023). The model was as follows: 

Yijk = μ + Linei + Envj + Rep(Env)kj + (Line x Env)ij + eijk  Eq. 1 

 

Where Yijk is the observed phenotype. μ is the overall mean, Linei is the fixed effect of the 

i-th line, Envj is the random effect of the jth environment, Rep(Env)kj is the random effect of the 

k-th rep nested within the j-th environment, (Line x Env)ij is the random effect of interaction 

between the i-th line and j-th environment,, and  eijklm is the random residual term.  

To estimate broad sense heritability (H2) for white mold resistance on an entry means basis, 

variance components were extracted fitting Equation 1 with all terms random. Heritability was 

estimated as follows: 

𝐻2 =
𝜎𝐺
2

𝜎𝐺
2 +

𝜎𝐺𝐸
2

𝑛 +
𝜎𝑒2

𝑟𝑛

 
Eq. 2 

 

Where σ2
G ,σ2

GxE ,and , σ2
e are the genotype, genotype by environment interaction, and 

error variances, n is the number of environments and r is the number of reps. Genomic 

heritability for white mold resistance was also calculated by first using the marker matrix to 

generate a kinship matrix using the A.mat function in rrBLUP and then inputting the kinship 

matrix and the BLUEs for white mold disease score into the function marker_h2 means in the 
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AGHmatrix package (Amadeu et al., 2023; Endelman, 2011). Genomic heritability is the 

proportion of variance of phenotypes explained by a regression on a set of markers (De Los 

Campos et al., 2015).  

Genomic predictions for white mold disease 

The accuracy of genomic prediction was evaluated using two models (rrBLUP and 

GBLUP) implemented in the rrBLUP package in the R coding language (Endelman, 2011). All 

genomic prediction models and subsets were evaluated using 5-fold cross-validation (CV) repeated 

20 times. For each round of CV, the datasets were divided into equal sets of five. Four of the sets 

were used as the training set, while the remaining set was used as a validation set. BLUEs were 

predicted for individuals in the validation set and prediction accuracy was evaluated as the 

correlation between the observed BLUEs and predicted genomic BLUEs. The rrBLUP model was 

expressed as follows: 

Y = Xb + Zu + e Eq. 4 

 

Where y is the vector of BLUEs for disease score; X is the incidence matrix for the fixed 

effects b is the vector of fixed effects; Z is the incidence matrix for the genotype effects; u is the 

vector of marker effects (BLUEs), assumed to follow multivariate normal distribution such that 

u∼N(0,Iσ2u). Finally, e is a vector of residual errors assumed to be independent and identically 

distributed according to N(0,σ2e). GBLUP utilizes the same formula with the following 

differences. In GBLUP u is the vector of additive genotype effects (breeding values), assumed to 

follow multivariate normal distribution such that u∼N(0,Kσ2a) where K is the realized kinship 

matrix and σ2
a is the additive genetic variance.  
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Population Subsets 

Dry bean breeding programs are unique because they consist of over 10 separate market 

class subsets with distinct characteristics (and therefore separate breeding populations). To 

simulate a breeding scenario of employing genomic prediction to screen for white mold disease 

resistance in a dry bean breeding program, multiple market class subsets were tested. For 

simplicity, red and pink beans are considered the same market class, both referred to as red. Four 

subsets (entire population, black, navy, and black + navy) used the respective market classes as 

the training and validation population for cross validation. The entire population subset included 

all lines in the training set (n=303) whereas the black, navy, and black + navy subsets included the 

respective market classes only. Red and pink beans were not tested as subsets as there were only 

39 lines total. Two subsets (black predict navy and navy predict black) used one market class as 

the training set and another as the validation set.  

Genome-Wide Association Analysis 

Association analysis was performed on the entire training set to evaluate the effectiveness 

of including fixed effect markers on the accuracy of the genomic prediction through GP + de novo 

GWAS. With GEBVs for white mold disease score, GWAS was conducted in the Farm CPU model 

of the Genome Association and Prediction Integrated Tool package (GAPIT) version 3 in R studio 

(Wang & Zhang, 2021). The same SNP marker dataset and phenotype dataset was used for GWAS 

as for genomic prediction. To avoid bias in the calculation of prediction accuracy, the identification 

of markers to use as fixed effects was based on 20 cycles of 5-fold cross validated GWAS using 

each training set of lines only following a similar protocol to Haile 2021 and Sarinelli 2018. The 

Fixed and Random Circulating Probability Unification (Farm CPU) model was chosen because it 

uses the bin approach to avoid selecting markers from the same location and it accounts for 
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population structure using two principal components and kinship among individuals (Liu et al., 

2016). P-value inflation was assessed using a QQ-plot. Significance was calculated using the 

Benjamini-Hochberg FDR procedure at p-value threshold of p=0.05. The average effect on white 

mold score for each significant QTL over all calls was also calculated within GAPIT. The top 1-7 

QTL for each run of GWAS were called as fixed effects in each corresponding run of genomic 

prediction implemented in the rrBLUP model and mean prediction accuracies were obtained 

resulting from CV (100 runs for each QTL threshold).  

RESULTS 

White Mold Disease  

A continuous distribution of BLUEs for white mold disease score was observed when 

evaluating all years of data combined, which ranged from 2.07 to 8.41 (Figure 1.1a). Disease 

scores ranged from 3.07 to 7.34 for the black market class, 2.07 to 8.41 for the Navy market class, 

and 2.29 to 7.95 for the Red and Pink market classes (Figure 1.1b). The two resistant, one 

moderately resistant, and two susceptible checks, USPT-WM-12, G122, Bunsi, Beryl, and Black 

Bear had scores of 4.83, 4.17, 6.16, 7.62, and 6.41, respectively (Table 1.4). Broad sense 

heritability (H2) estimates for disease severity were moderate at 0.52. A significant correlation (-

0.27) was identified between white mold resistance and yield in the combined dataset. Variance 

components for white mold and yield can be found in (Table 1.6, Table 1.7). 

Training Population Structure 

The population structure of the entire training set was evaluated with a principal component 

analysis (PCA) and a genomic relationship matrix (GRM). The first two principal components 

accounted for 15% of the phenotypic variation (Figure 1.2a). The PCA was able to separate three 

distinct clusters and showed admixture between two clusters. The black and navy market class 
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clusters overlap on the right side of the PCA, whereas the red/pink cluster is isolated to the left-

hand side. This is supported by the GRM, where three darker color clusters correspond to the three 

major market classes used in the training population (Figure 1.2b). Genomic heritability was low-

moderate at 0.31.  

Genomic Prediction Accuracy 

The accuracy of genomic prediction models was evaluated using rrBLUP and GBLUP 

across and within multiple market class subsets. Overall mean prediction accuracy ranged from 

0.12-037 for rrBLUP and 0.03 to 0.38 for GBLUP when using the entire training set and across all 

subsets (Figure 1.3, Table 1.1). In the four sets utilizing the respective market classes as the 

training and testing set (Entire Population, black, navy, black + navy) prediction accuracy ranged 

from 0.30-0.38 and prediction accuracy was similar between rrBLUP and GBLUP. The navy bean 

subset had the highest prediction accuracy overall, followed by the entire training set. In the two 

subsets where different market classes were used for the training and testing sets (black predict 

navy and navy predict black) prediction accuracy ranged from 0.03-0.25. The black predict navy 

subset had higher prediction accuracies than the navy predict black subset. The black predict navy 

subset had higher prediction accuracy using GBLUP and the navy predict black subset had a higher 

prediction accuracy using rrBLUP. Variance in prediction accuracy across individual runs of 

genomic prediction was highest when the navy subset was used to predict the black subset and 

lowest when the entire population was used as the training and testing sets.  

Genomic Prediction with Fixed Effect QTL 

Association analysis was performed on the entire training set (n=303) to evaluate the effectiveness 

of fixed effect markers on the accuracy of the genomic prediction through GP + de novo GWAS. 

To avoid bias in the calculation of prediction accuracy, the identification of markers to use as fixed 
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effects was based on 20 cycles of 5-fold cross validated GWAS using the corresponding training 

set only. The top 1-7 QTL for each run of GWAS were called as fixed effects in each corresponding 

run of genomic prediction implemented in the rrBLUP model.  

Significant QTL were identified on all chromosomes across GWAS cycles. The top 10 

most frequently called QTL were identified on chromosomes 2,4,6,7,8, and 11 (Table 1.2). The 

most frequently called QTL was on chromosome 11 

(sc00007ln1695141_1432256_A_C_13462529) with 44 calls total across cycles of CV. Prediction 

accuracy rose from 0.36 to 0.40 when 1-3 QTL were implemented as fixed effects in genomic 

prediction (Figure 1.4, Table 1.3). When 4-7 QTL were implemented, prediction accuracy 

decreased from 0.4 to 0.22. Mean effect of the top 10 most identified fixed QTL on phenotype 

over all cycles ranged from -0.81 - 0.7 with a negative sign referring to the minor allele being 

favorable. The most called SNP on chromosome 11 

(sc00007ln1695141_1432256_A_C_13462529) also had the largest mean effect (-0.81) with the 

minor allele being favorable. 

DISCUSSION 

In this study, advanced dry bean breeding lines from distinct market classes of the MSU 

dry bean breeding program were used as a training population to evaluate the potential of genomic 

prediction as a screening tool for white mold resistance. Specifically, we aimed to understand 

whether random sets of four-fifths of the lines could be used to predict white mold disease 

resistance in the remaining one-fifth. Our results indicated moderate cross-validated prediction 

accuracies (0.3-0.38) given the small sample size in the entire training population and population 

subsets when the same market class was used as both the training and testing population, implying 

that genomic prediction for white mold resistance within Middle-American breeding panels is 
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promising and can be implemented by dry bean breeding programs. Although prediction accuracy 

is lower than previous studies utilizing the same cross validation methods, these studies had a 

larger training population size, different population composition, and were focused on different 

traits and crops. As the size of the training population increases, we expect prediction accuracy to 

rise as has been confirmed by multiple studies (Edwards et al., 2019; Fernández-González et al., 

2023; Sarinelli et al., 2019). 

Diversity and Population Structure 

We observed moderate to severe white mold disease severity in the field yearly, which was 

aided by overhead irrigation and the presence of a spreader genotype. Broad sense heritability of 

white mold resistance under disease pressure in the field was moderate which suggests selections 

for white mold resistance on this population would be effective, considering the environmental 

dependance of a complex quantitative disease trait such as white mold. Our population had 

significant diversity for white mold resistance in the field, within and among market classes 

ranging from about 2-8 on a 1-9 scale. Three distinct clusters were observed via PCA which 

corresponded to the three market classes present in the population with red beans being the most 

distinct from black and navy beans. This relationship between individuals is likely due to distinct 

characteristics among the market classes and due to the crossing scheme used to develop the 

population. Red, pink, pinto and great northern beans belong to the Jalisco sub-race and black and 

navy beans belong to the Mesoamerican sub-race within the Middle-American gene pool 

(Mensack et al., 2010). Additionally, the MSU dry bean breeding and genetics program frequently 

performs black by navy crosses to develop new breeding lines, but red/pink beans are not 

commonly crossed with the two other classes, which could have contributed to the observed 

structure. 
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Genomic Predictions Across Models and Subsets 

A secondary objective of this study was to identify the optimal training population to 

increase prediction accuracy in the presence of distinct dry bean market classes. When evaluating 

genomic prediction accuracies among market class subsets, we found that sample size and 

population structure both affected prediction accuracy. This is supported by the fact that the entire 

population subset and the navy subset had the two highest prediction accuracies across both the 

rrBLUP and GBLUP models. Population size was highest in the entire population subset and 

genetic relatedness was higher in the navy subset vs the entire population which included three 

market classes. Overall, population structure affected prediction accuracy more than population 

size, as reflected by the navy subset having the highest prediction accuracy, followed by the entire 

training population. This result is like previously published manuscripts, for example (Duhnen et 

al., 2017) in soybean, observed higher prediction accuracies when early and late genotypes were 

considered separately rather than when the entire population was considered. Another future 

direction would be to utilize a training population optimization algorithm or sparse selection index 

to select the optimal genotypes to increase prediction accuracy in the presence of multiple market 

classes (Fernández-González et al., 2023; Isidro et al., 2015; Lopez-Cruz & de los Campos, 2021). 

Furthermore, across most subsets the difference in prediction accuracy between rrBLUP and 

GBLUP was minimal. These genomic prediction models are similar, with the main difference 

being the incorporation of the genomic relationship matrix in GBLUP in replacement of the 

pedigree relationship matrix. If the pedigree relationship matrix is equal to the genomic 

relationship matrix, then the two models should have the same accuracy. The findings from this 

research show that the pedigree relationship and genomic relationship are similar in this 

population. 
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To this effect, when one market class was used to predict another market class, prediction 

accuracy dropped significantly. This indicates that to obtain a high genomic prediction accuracy 

in a dry bean breeding program, the training population and validation population should consist 

of the same market classes.  Even in the case of black and navy beans, where the two market 

classes are frequently crossed, there are distinct characteristics of each market class that lead to 

insufficient predictions.  

Integration of Fixed Effect QTL 

Another secondary objective was to compare prediction accuracies between genomic 

prediction and GP + de novo GWAS. We observed increased prediction accuracy when 1-3 QTL 

were integrated as fixed effects through GP + de novo GWAS and a decrease in prediction accuracy 

when 4+ QTL were integrated. Previous studies have observed an increase in prediction accuracy 

when utilizing fixed effect QTL in GP + de novo GWAS such as in rice (Spindel et al., 2016) and 

wheat (Haile et al., 2021). Similar to results observed in the simulation study by Rice and Lipka 

2019, prediction accuracy initially increased then decreased when 4+ QTL were added. 

Interestingly, although significant QTL were identified, all had a relatively low contribution to 

overall variation in resistance (Table 1.2) highlighting the likelihood that this trait is controlled by 

many small effect QTL rather than large effect R genes.  

Limitations 

One primary limitation in our study to note is the small size of the training population. 

Many public breeding programs are limited by sample population due to the number of lines 

moving through the breeding pipeline in a generation. In the MSU dry bean breeding and genetics 

program ~100-150 lines are advanced to the preliminary and advanced trial stage yearly. This 

training population will be updated with these lines and prediction accuracies are expected to 
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increase as a result. Additionally, our training population contained the three most important 

market classes in Michigan, prediction accuracies and genetic architecture for other market classes 

require further investigation. 

The low to moderate prediction accuracy in all population subsets could have been due to 

multiple factors including sample size, marker density, and low heritability of the trait. One other 

important aspect of the fixed effect QTL identified using GWAS is the high possibility that our 

current population of breeding lines isn’t sufficient to cover the breadth of resistance sources for 

white mold in dry bean. It is also likely that rare alleles in our population were filtered out. As the 

population size increases, more QTL conferring resistance will likely be identified and prediction 

accuracy will increase. The genotyping method used was a high throughput, cost-effective whole 

genome method that would allow the program to process all individuals in each year's preliminary 

yield trial stage. Any reduction in prediction accuracy due to marker density was likely outweighed 

by the ability to develop a larger training population. 

Applications to Dry Bean Breeding 

Genomic selection is a useful tool for breeding and can outperform phenotypic selection 

and MAS when screening and pyramiding complex traits. White mold in dry bean is one such trait 

where genomic selection could be extremely beneficial to breed for resistance if implemented 

properly. Progress to develop white mold resistant cultivars has been greatly hindered by difficulty 

in pyramiding resistance genes and complexity of field evaluation. A major advantage of 

implementing genomic selection in a breeding program is the reduction of phenotyping. This is an 

important aspect for white mold resistance in dry bean especially because field screening requires 

a specialized disease nursery with overhead pivot irrigation and natural white mold infection. If 

genomic prediction accuracy in the training population is sufficient, genomic data could be 
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collected for members of the validation population and breeding values could be predicted, thus 

allowing for more lines to be screened per year. Another advantage of genomic prediction is it 

allows for earlier accurate selection of parents for the next generation of crosses therefore reducing 

breeding cycle time and increasing gain from selection. As selection for quantitative traits occurs 

in the advanced testing stages for many crops (including dry bean) this can have a large effect on 

genetic gain, effectively skipping 1-4 years of testing. 

CONCLUSION 

Complex fungal diseases such as white mold are a major constraint in dry bean production 

and the identification of QTL and development of resistant cultivars for white mold resistance in 

dry bean has been historically slow due to many factors. This study aimed to test genomic 

prediction as a novel method for the development of resistant cultivars. Implementation of 

genomic prediction in a plant breeding program relies on the development of a robust training 

population which requires consideration of multiple factors including size, marker density, and 

population structure. Results from this analysis indicate that it is possible to obtain moderate 

prediction accuracy in dry bean in the presence of population structure and multiple market classes, 

if sample size is adequate. The training population will continue to be updated, modified, and 

validated yearly to further increase prediction accuracy. The results from this research will assist 

plant breeders in the development of training populations for genomic prediction of highly 

quantitative disease resistance traits. 
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TABLES AND FIGURES 

 
Figure 1.1a: Phenotypic distribution of genomic estimated breeding values (GEBVs) for the entire 

training set. 
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Figure 1.1b: Phenotypic distribution of genomic estimated breeding values (GEBVs) for the entire 

training set by market class. 
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Figure 1.2a: Principal component analysis. The first two principal components accounted for 

15% of the phenotypic variation. The PCA was able to separate three distinct clusters and 

showed admixture between two clusters. The black and navy market class clusters overlap on the 

right side of the PCA, whereas the red/pink cluster is isolated to the left-hand side. 
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Figure 1.2b: Genomic relationship (proportion of the genome shared) among individuals in the 

training population (n=303). The Y axis represents the genotyped lines ordered by market class 

with red/pink, followed by black and navy. The darker the color, the more highly related the 

lines, with white = no relationship to dark orange (e.g. the diagonal) genomic relationship = 1. 
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Figure 1.3: Comparison of genomic prediction accuracy of 5-fold CV repeated 20 times, for two 

models rrBLUP and GBLUP, over all training population subsets (entire population, black, navy, 

black + navy, black predict navy, and navy predict black). 
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Table 1.1: Average genomic prediction accuracies for 5-fold cross validation repeated 20 times 

across models and subsets. 

Subset Model Average Accuracy 

Entire Population RrBLUP 0.35 

GBLUP 0.36 

Black RrBLUP 0.33 

GBLUP 0.32 

Navy RrBLUP 0.37 

GBLUP 0.38 

Black + Navy RrBLUP 0.30 

GBLUP 0.30 

Black predict Navy RrBLUP 0.18 

GBLUP 0.25 

Navy Predict Black RrBLUP 0.12 

GBLUP 0.03 
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Table 1.2: Top 20 most frequently called SNPs over 5-fold cross validated GWAS repeated 20 

times by chromosome and position. Mean effect is the average effect on phenotype over runs of 

cross validation. 

SNP Chromosome Position 

(Mb) 

Mean 

Effect 

# of 

Calls 

Chr02_41657167_A_G 2 41657167 0.71 13 

sc00687ln167302_103360_G_A_266954597 4 13213188 0.52 22 

Chr06_12181540_G_A 6 12181540 -0.61 6 

Chr06_16668700_G_T 6 16668700 -0.61 9 

Chr07_3905254_C_T 7 3905254 0.61 4 

sc00394ln266395_95537_T_C_204849189 7 32697386 0.38 13 

sc00093ln620690_104379_A_G_86490862 7 33306574 0.35 5 

sc00146ln499601_116735_C_T_115838631 8 1525152 0.41 14 

sc00187ln435150_54957_C_T_135207180 8 62919922 0.34 6 

sc00007ln1695141_1432256_A_C_13462529 11 4741435 -0.81 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

 
Figure 1.4: GWAS + de novo genomic prediction prediction accuracies over 20 replicates of 5-

fold cross validation for 1-7 integrated fixed QTL implemented in rrBLUP. 
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Table 1.3: Average GWAS + de novo genomic prediction prediction accuracies over 20 

replicates of 5-fold cross validation for 1-7 integrated fixed QTL implemented in rrBLUP. 

# of QTL 0 1 2 3 4 5 6 7 

Average Prediction 

Accuracy 

0.36 0.39 0.39 0.40 0.37 0.37 0.35 0.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

Table 1.4: Ranking of BLUEs for White Mold and Yield. 

Line White Mold Yield (CWT_Acre) Yield Ranking 

N22631 2.07 27.72 25 

S08418 2.29 26.32 34 

N21514 2.62 25.55 47 

N19277 2.62 25.48 49 

N21519 2.62 15.42 247 

N21521 2.95 19.13 179 

N21529 2.95 17.22 220 

B22855 3.07 23.04 82 

B22865 3.07 19.7 162 

B18201 3.17 22.52 94 

B20590 3.29 27.32 28 

B20642 3.29 26.09 38 

N20384 3.29 19.35 172 

N21520 3.29 18.41 199 

N19226 3.29 16.32 230 

N21528 3.29 15.58 244 

N21511 3.34 23.84 68 

N22622 3.4 28.85 16 

N18117 3.41 22.52 94 

B20547 3.51 23.7 72 

N17504 3.56 24.64 57 

N21503 3.62 18.79 186 

N21531 3.62 16.82 224 
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Table 1.4 (cont’d) 

N21534 3.62 16.18 235 

B22861 3.74 28.29 19 

N22605 3.74 22.08 109 

N22637 3.74 20.61 148 

B16506 3.8 20.9 137 

B19345 3.82 20.61 148 

N18103 3.9 19.16 178 

R17603 3.92 33.58 2 

B20532 3.95 28.36 18 

R18402 3.95 25.59 45 

B20602 3.95 25.41 50 

N20405 3.95 22 110 

S19307 3.95 20.12 155 

B20542 3.95 17.41 217 

N21506 3.95 16.05 237 

N20317 3.95 14.65 254 

R17604 3.96 29.63 13 

N20404 4.01 20.79 141 

B17220 4.06 17.28 219 

B22827 4.07 30.75 8 

B22831 4.07 29.15 15 

B22840 4.07 22.5 95 

N22638 4.07 15.15 250 

B17691 4.13 34.12 1 
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Table 1.4 (cont’d) 

B16507 4.13 33.49 3 

B15430 4.14 31.41 6 

B20591 4.18 21.96 111 

R16503 4.19 16.5 228 

B18204 4.22 26.25 36 

R20629 4.29 28.07 22 

N21515 4.29 24.67 55 

S20405 4.29 24.41 63 

B21707 4.29 23.79 69 

R20667 4.29 23.25 78 

B21715 4.29 22.14 106 

N19253 4.29 20.73 144 

N21522 4.29 20.61 148 

N21505 4.29 20.55 150 

N20401 4.29 19.93 158 

B20616 4.29 19.58 165 

N21524 4.29 17.78 214 

B20627 4.29 14.12 259 

N17506 4.33 24.07 66 

B20599 4.34 25.67 43 

B15451 4.34 22.63 92 

B22826 4.4 30.9 7 

B22857 4.4 21.76 117 

B22834 4.4 21.52 123 
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Table 1.4 (cont’d) 

N22632 4.4 17.15 222 

N14229 4.43 26.11 37 

I96417 4.48 13.03 269 

I09203 4.49 28.02 23 

N19285 4.49 18.67 191 

B17536 4.54 21.33 126 

I11264 4.59 23.53 74 

B21706 4.62 30.74 9 

N20352 4.62 30.49 10 

R17602 4.62 30.24 11 

R20639 4.62 25.87 40 

B21720 4.62 23.07 81 

B21709 4.62 22.68 90 

N21507 4.62 22.58 93 

N21509 4.62 22.58 93 

B20538 4.62 22.32 103 

B19339 4.62 21.71 118 

N20391 4.62 21.68 119 

B21705 4.62 21.16 131 

B21714 4.62 20.88 138 

B21724 4.62 19.33 174 

N21533 4.62 18.87 182 

N21502 4.62 18.83 184 

N18105 4.62 18.75 188 
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Table 1.4 (cont’d) 

N20335 4.62 18.7 190 

N21526 4.62 18.13 204 

N19223 4.62 17.94 209 

N19252 4.62 14.54 255 

B21716 4.62 13.79 262 

B20536 4.68 27.45 26 

N19248 4.68 22.52 94 

B22823 4.74 27.99 24 

B22825 4.74 27.4 27 

B22862 4.74 24.99 52 

N22619 4.74 24.45 62 

B22838 4.74 23.1 80 

N22616 4.74 22.65 91 

B22863 4.74 22.41 100 

B22835 4.74 22.11 108 

B22841 4.74 21.87 113 

N22630 4.74 21.64 121 

N22610 4.74 21.54 122 

B22853 4.74 21.21 130 

B22815 4.74 20.55 150 

N22621 4.74 19.91 159 

B22839 4.74 18.81 185 

N22617 4.74 16.77 225 

N17505 4.82 20.95 134 
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Table 1.4 (cont’d) 

S18904 4.82 20.77 143 

B19330 4.82 18.57 193 

USPT-WM-12 4.83 23.48 76 

B21708 4.84 22.8 88 

B04554 4.84 22.52 94 

B18231 4.91 22.52 94 

B10244 4.93 27.26 30 

B21713 4.95 32.45 4 

B20632 4.95 25.8 42 

B18504 4.95 24.09 65 

R20659 4.95 23.86 67 

R20669 4.95 23.73 71 

B21702 4.95 21.81 115 

B20597 4.95 20.95 134 

B21718 4.95 19.85 160 

N21525 4.95 19.17 177 

B19340 4.95 18.77 187 

B21703 4.95 18.7 190 

N21504 4.95 18.47 196 

N20341 4.95 17.44 215 

B21721 4.95 15.95 238 

N21518 4.95 15.9 240 

N21510 4.95 12.23 271 

N21532 4.95 11.6 273 
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Table 1.4 (cont’d) 

B16501 4.96 18.52 195 

B17922 4.97 22.52 94 

B19309 5.01 26.55 33 

B16504 5.04 31.99 5 

B22850 5.07 26.64 32 

B22860 5.07 25.83 41 

B22820 5.07 25.66 44 

B22854 5.07 25.06 51 

B22814 5.07 24.95 53 

N22624 5.07 24.56 61 

B22844 5.07 22.95 84 

B22836 5.07 22.13 107 

B22866 5.07 21.12 132 

N22607 5.07 20.01 156 

B22859 5.07 19.2 176 

R12844 5.11 22.49 96 

B15442 5.16 30.2 12 

N14218 5.17 17.97 208 

N19246 5.18 18.07 206 

BC269 5.18 18 207 

N20388 5.18 17.92 210 

R20683 5.29 26.55 33 

R20637 5.29 24.78 54 

R20632 5.29 24.61 60 
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Table 1.4 (cont’d) 

B21712 5.29 23.46 77 

R20627 5.29 22.82 86 

N21517 5.29 18.59 192 

B20527 5.29 17.88 211 

N21512 5.29 16.21 233 

B20549 5.29 14.46 256 

B20639 5.29 13.59 265 

B19332 5.32 19.55 166 

N18130 5.32 15.53 245 

N20395 5.34 19.34 173 

B22804 5.4 25.58 46 

B22876 5.4 25.5 48 

N22602 5.4 24.66 56 

B22848 5.4 23.07 81 

B22828 5.4 23 83 

N22634 5.4 22.74 89 

B22812 5.4 22.42 99 

B22830 5.4 22.39 101 

N22609 5.4 22.36 102 

B22875 5.4 20.86 139 

B22873 5.4 20.49 151 

B22813 5.4 18.88 181 

N22629 5.4 18.84 183 

N22633 5.4 16.19 234 
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Table 1.4 (cont’d) 

B19344 5.46 15.75 242 

N11283 5.48 18.17 203 

B18236 5.49 14.24 258 

N15331 5.58 26.78 31 

R20633 5.62 26.29 35 

R20614 5.62 24.3 64 

B21723 5.62 23.73 71 

B20623 5.62 23.65 73 

B21717 5.62 23.5 75 

R20636 5.62 22.43 98 

B20579 5.62 21.79 116 

B19341 5.62 21.67 120 

N19290 5.62 20.82 140 

B21722 5.62 19.22 175 

N21530 5.62 18.42 198 

N20343 5.62 15.6 243 

B20617 5.62 13.33 267 

B21719 5.62 13.16 268 

B21711 5.62 12.16 272 

B21710 5.68 15.53 245 

B22842 5.74 22.45 97 

N22623 5.74 22.26 105 

B22837 5.74 21.46 124 

B22856 5.74 21.25 128 
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Table 1.4 (cont’d) 

B22818 5.74 21.06 133 

N22608 5.74 20.92 135 

B22816 5.74 20.91 136 

B22846 5.74 20.78 142 

B22821 5.74 20.69 145 

B22868 5.74 20.67 146 

N22636 5.74 20.62 147 

N22620 5.74 20.47 152 

N22601 5.74 19.85 160 

B22867 5.74 18.83 184 

N18122 5.74 18.67 191 

N22606 5.74 18.59 192 

N22613 5.74 18.55 194 

N22603 5.74 18.46 197 

B22833 5.74 17.2 221 

B22802 5.74 16.27 232 

N19239 5.82 15.82 241 

I81010 5.92 18.23 202 

R20612 5.95 23.2 79 

R19502 5.95 22.32 103 

N21527 5.95 20.24 154 

N19284 5.95 18.38 200 

N20336 5.95 18.08 205 

B19302 5.95 17.8 213 
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Table 1.4 (cont’d) 

B20582 5.95 16.64 226 

B20629 5.95 16.3 231 

S18907 5.95 14.11 260 

B20621 5.95 13.65 264 

R17605 5.96 28.26 20 

B22807 6.07 24.78 54 

B22870 6.07 23.75 70 

B22874 6.07 22.88 85 

B22843 6.07 21.91 112 

B22822 6.07 21.39 125 

B22806 6.07 21.3 127 

B22811 6.07 20.56 149 

B22829 6.07 19.79 161 

B22801 6.07 19.45 168 

B22803 6.07 19.39 171 

B22805 6.07 18.33 201 

N22627 6.07 17.87 212 

N22615 6.07 16.52 227 

N22612 6.07 13.74 263 

N15341 6.15 13.82 261 

N16405 6.16 28.68 17 

R20625 6.29 22.81 87 

N20346 6.29 15.95 238 

N19243 6.29 15.6 243 
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Table 1.4 (cont’d) 

B20620 6.29 15.03 252 

N21523 6.29 11.07 274 

N19269 6.29 10.91 275 

I17501 6.34 19.7 162 

B19346 6.35 22.52 94 

N16401 6.37 19.4 170 

B22832 6.4 21.86 114 

B22847 6.4 19.61 164 

B22845 6.4 19.46 167 

N22618 6.4 17.32 218 

B22819 6.4 16.15 236 

B22852 6.4 15.37 248 

N22626 6.4 15.07 251 

N22614 6.4 14.95 253 

R98026 6.45 17.43 216 

R20684 6.62 28.24 21 

R20624 6.62 24.63 58 

B21704 6.62 24.62 59 

R20635 6.62 22.29 104 

B21701 6.62 19.97 157 

R20652 6.62 15.43 246 

N20376 6.62 14.43 257 

N21516 6.62 12.75 270 

B22810 6.74 29.49 14 
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Table 1.4 (cont’d) 

N22635 6.74 18.71 189 

N22639 6.74 15.94 239 

N18109 6.91 22.52 94 

R20604 6.95 21.24 129 

N21535 6.95 19.66 163 

N21508 6.95 13.37 266 

B22817 7.07 15.27 249 

R20653 7.29 27.29 29 

N21501 7.29 20.28 153 

R20642 7.29 19.41 169 

N21513 7.29 16.83 223 

BC216 7.34 19.06 180 

I13401 7.46 25.91 39 

I89011 7.62 10.64 276 

S20420 7.95 16.33 229 

N18102 8.41 22.52 94 
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Table 1.5: Line, class, origin, and trial information for the entire training set. 

Line Class Origin Trial 

B04554 Black MSU Historic/2021/2022 

B10244 Black MSU Historic/2021/2022 

B15430 Black MSU Historic 

B15442 Black MSU Historic 

B15451 Black MSU Historic 

B16501 Black MSU Historic/2021 

B16504 Black MSU Historic/2021 

B16506 Black MSU Historic 

B16507 Black MSU Historic 

B17220 Black MSU Historic 

B17536 Black MSU Historic 

B17691 Black MSU Historic 

B17922 Black MSU Historic 

B18201 Black MSU Historic 

B18204 Black MSU Historic/2021 

B18231 Black MSU Historic 

B18236 Black MSU Historic/2021 

B18504 (Adams) Black MSU Historic/2021/2022 

B19302 Black MSU 2021 

B19309 Black MSU 2021/2022 

B19330 Black MSU Historic/2021 

B19332 Black MSU Historic/2021 

B19339 Black MSU 2021 
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Table 1.5 (cont’d) 

B19340 Black MSU 2021 

B19341 Black MSU 2021 

B19344 Black MSU Historic/2021/2022 

B19345 Black MSU Historic/2021 

B19346 Black MSU Historic 

B20527 Black MSU 2021 

B20532 Black MSU 2021 

B20536 Black MSU 2021/2022 

B20538 Black MSU 2021 

B20542 Black MSU 2021 

B20547 Black MSU 2021/2022 

B20549 Black MSU 2021 

B20579 Black MSU 2021 

B20582 Black MSU 2021 

B20590 Black MSU 2021 

B20591 Black MSU 2021/2022 

B20597 Black MSU 2021 

B20599 Black MSU 2021/2022 

B20602 Black MSU 2021 

B20616 Black MSU 2021 

B20617 Black MSU 2021 

B20620 Black MSU 2021 

B20621 Black MSU 2021 

B20623 Black MSU 2021 
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Table 1.5 (cont’d) 

B20627 Black MSU 2021 

B20629 Black MSU 2021 

B20632 Black MSU 2021 

B20639 Black MSU 2021 

B20642 Black MSU 2021 

B21701 Black MSU 2021 

B21702 Black MSU 2021 

B21703 Black MSU 2021 

B21704 Black MSU 2021 

B21705 Black MSU 2021 

B21706 Black MSU 2021 

B21707 Black MSU 2021 

B21708 Black MSU 2021/2022 

B21709 Black MSU 2021 

B21710 Black MSU 2021/2022 

B21711 Black MSU 2021 

B21712 Black MSU 2021 

B21713 Black MSU 2021 

B21714 Black MSU 2021 

B21715 Black MSU 2021 

B21716 Black MSU 2021 

B21717 Black MSU 2021 

B21718 Black MSU 2021 

B21719 Black MSU 2021 
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Table 1.5 (cont’d) 

B21720 Black MSU 2021 

B21721 Black MSU 2021 

B21722 Black MSU 2021 

B21723 Black MSU 2021 

B21724 Black MSU 2021 

B22801 Black MSU 2022 

B22802 Black MSU 2022 

B22803 Black MSU 2022 

B22804 Black MSU 2022 

B22805 Black MSU 2022 

B22806 Black MSU 2022 

B22807 Black MSU 2022 

B22810 Black MSU 2022 

B22811 Black MSU 2022 

B22812 Black MSU 2022 

B22813 Black MSU 2022 

B22814 Black MSU 2022 

B22815 Black MSU 2022 

B22816 Black MSU 2022 

B22817 Black MSU 2022 

B22818 Black MSU 2022 

B22819 Black MSU 2022 

B22820 Black MSU 2022 

B22821 Black MSU 2022 
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Table 1.5 (cont’d) 

B22822 Black MSU 2022 

B22823 Black MSU 2022 

B22825 Black MSU 2022 

B22826 Black MSU 2022 

B22827 Black MSU 2022 

B22828 Black MSU 2022 

B22829 Black MSU 2022 

B22830 Black MSU 2022 

B22831 Black MSU 2022 

B22832 Black MSU 2022 

B22833 Black MSU 2022 

B22834 Black MSU 2022 

B22835 Black MSU 2022 

B22836 Black MSU 2022 

B22837 Black MSU 2022 

B22838 Black MSU 2022 

B22839 Black MSU 2022 

B22840 Black MSU 2022 

B22841 Black MSU 2022 

B22822 Black MSU 2022 

B22823 Black MSU 2022 

B22825 Black MSU 2022 

B22826 Black MSU 2022 

B22827 Black MSU 2022 
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Table 1.5 (cont’d) 

B22828 Black MSU 2022 

B22829 Black MSU 2022 

B22830 Black MSU 2022 

B22831 Black MSU 2022 

B22832 Black MSU 2022 

B22833 Black MSU 2022 

B22834 Black MSU 2022 

B22835 Black MSU 2022 

B22836 Black MSU 2022 

B22837 Black MSU 2022 

B22838 Black MSU 2022 

B22839 Black MSU 2022 

B22840 Black MSU 2022 

B22841 Black MSU 2022 

B22842 Black MSU 2022 

B22843 Black MSU 2022 

B22844 Black MSU 2022 

B22845 Black MSU 2022 

B22846 Black MSU 2022 

B22847 Black MSU 2022 

B22848 Black MSU 2022 

B22850 Black MSU 2022 

B22852 Black MSU 2022 

B22853 Black MSU 2022 
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Table 1.5 (cont’d) 

B22854 Black MSU 2022 

B22855 Black MSU 2022 

B22856 Black MSU 2022 

B22857 Black MSU 2022 

B22859 Black MSU 2022 

B22860 Black MSU 2022 

B22861 Black MSU 2022 

B22862 Black MSU 2022 

B22863 Black MSU 2022 

B22865 Black MSU 2022 

B22866 Black MSU 2022 

B22867 Black MSU 2022 

B22868 Black MSU 2022 

B22870 Black MSU 2022 

B22873 Black MSU 2022 

B22874 Black MSU 2022 

B22875 Black MSU 2022 

B22876 Black MSU 2022 

BC216 Black MSU 2021/2022 

BC269 Pink MSU 2021/2022 

USPT-WM-12 Pinto Miklas, USDA Historic/2021/2022 

SR9-5 Small Red Miklas, USDA Historic/2021/2022 

Merlin Navy Provita Historic/2021/2022 

Viper Small Red Provita Historic/2021 
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Table 1.5 (cont’d) 

Black Bear Black Provita 2021/2022 

Bunsi Navy Tu, J.C., and 

W.D. 

Beversdorf. 

1982. 

Historic/2021/2022 

Beryl Great Northern Syngenta Historic/2021/2022 

G122 Cranberry Landrace Historic/2021/2022 

N11283 Navy MSU Historic/2021/2022 

N14218 Navy MSU Historic 

N14229 Navy MSU Historic 

N15331 Navy MSU Historic 

N15341 Navy MSU Historic 

N16401 Navy MSU Historic 

N16405 Navy MSU Historic 

N17504 Navy MSU Historic 

N17505 Navy MSU Historic/2021 

N17506 Navy MSU Historic 

N18102 Navy MSU Historic 

N18103 Navy MSU Historic/2021 

N18105 Navy MSU 2021 

N18109 Navy MSU Historic 

N18117 Navy MSU Historic 

N18122 Navy MSU Historic/2021 

N18130 Navy MSU Historic/2021 

N19223 Navy MSU 2021 
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Table 1.5 (cont’d) 

N19226 Navy MSU 2021 

N19239 Navy MSU Historic/2021 

N19243 Navy MSU 2021 

N19246 Navy MSU 2021/2022 

N19248 Navy MSU Historic 

N19252 Navy MSU 2021 

N19253 Navy MSU 2021 

N19269 Navy MSU 2021 

N19277 Navy MSU 2021 

N19284 Navy MSU 2021 

N19285 Navy MSU Historic/2021 

N19290 Navy MSU 2021 

N20317 Navy MSU 2021 

N20335 Navy MSU 2021 

N20336 Navy MSU 2021 

N20341 Navy MSU 2021 

N20343 Navy MSU 2021 

N20346 Navy MSU 2021 

N20352 Navy MSU 2021 

N20376 Navy MSU 2021 

N20384 Navy MSU 2021 

N20388 Navy MSU 2021/2022 

N20391 Navy MSU 2021 

N20395 Navy MSU 2021/2022 
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Table 1.5 (cont’d) 

N20401 Navy MSU 2021 

N20404 Navy MSU 2021/2022 

N20405 Navy MSU 2021 

N21501 Navy MSU 2021 

N21502 Navy MSU 2021 

N21503 Navy MSU 2021 

N21504 Navy MSU 2021 

N21505 Navy MSU 2021 

N21506 Navy MSU 2021 

N21507 Navy MSU 2021 

N21508 Navy MSU 2021 

N21509 Navy MSU 2021 

N21510 Navy MSU 2021 

N21511 Navy MSU 2021/2022 

N21512 Navy MSU 2021 

N21513 Navy MSU 2021 

N21514 Navy MSU 2021 

N21515 Navy MSU 2021 

N21516 Navy MSU 2021 

N21517 Navy MSU 2021 

N21518 Navy MSU 2021 

N21519 Navy MSU 2021 

N21520 Navy MSU 2021 

N21521 Navy MSU 2021 
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Table 1.5 (cont’d) 

N21522 Navy MSU 2021 

N21523 Navy MSU 2021 

N21524 Navy MSU 2021 

N21525 Navy MSU 2021 

N21526 Navy MSU 2021 

N21527 Navy MSU 2021 

N21528 Navy MSU 2021 

N21529 Navy MSU 2021 

N21530 Navy MSU 2021 

N21531 Navy MSU 2021 

N21532 Navy MSU 2021 

N21533 Navy MSU 2021 

N21534 Navy MSU 2021 

N21535 Navy MSU 2021 

N22601 Navy MSU 2022 

N22602 Navy MSU 2022 

N22603 Navy MSU 2022 

N22605 Navy MSU 2022 

N22606 Navy MSU 2022 

N22607 Navy MSU 2022 

N22608 Navy MSU 2022 

N22609 Navy MSU 2022 

N22610 Navy MSU 2022 

N22612 Navy MSU 2022 
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Table 1.5 (cont’d) 

N22613 Navy MSU 2022 

N22614 Navy MSU 2022 

N22615 Navy MSU 2022 

N22616 Navy MSU 2022 

N22617 Navy MSU 2022 

N22618 Navy MSU 2022 

N22619 Navy MSU 2022 

N22620 Navy MSU 2022 

N22621 Navy MSU 2022 

N22622 Navy MSU 2022 

N22623 Navy MSU 2022 

N22624 Navy MSU 2022 

N22626 Navy MSU 2022 

N22627 Navy MSU 2022 

N22629 Navy MSU 2022 

N22630 Navy MSU 2022 

N22631 Navy MSU 2022 

N22632 Navy MSU 2022 

N22633 Navy MSU 2022 

N22634 Navy MSU 2022 

N22635 Navy MSU 2022 

N22636 Navy MSU 2022 

N22637 Navy MSU 2022 

N22638 Navy MSU 2022 



80 
 

Table 1.5 (cont’d) 

N22639 Navy MSU 2022 

R12844 Red MSU Historic/2021 

R16503 Red MSU Historic 

R17602 Red MSU 2021 

R17603 Red MSU Historic 

R17604 Red MSU Historic/2021 

R17605 Red MSU 2021 

R18402 Red MSU 2021 

R19502 Red MSU 2021 

R20604 Red MSU 2021 

R20612 Red MSU 2021 

R20614 Red MSU 2021 

R20624 Red MSU 2021 

R20625 Red MSU 2021 

R20627 Red MSU 2021 

R20629 Red MSU 2021 

R20632 Red MSU 2021 

R20633 Red MSU 2021 

R20635 Red MSU 2021 

R20636 Red MSU 2021 

R20637 Red MSU 2021 

R20639 Red MSU 2021 

R20642 Red MSU 2021 

R20652 Red MSU 2021 
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Table 1.5 (cont’d) 

R20653 Red MSU 2021 

R20659 Red MSU 2021 

R20667 Red MSU 2021 

R20669 Red MSU 2021 

R20683 Red MSU 2021 

R20684 Red MSU 2021 

R98026 Red MSU Historic/2021 

S08418 Pink MSU 2021 

S18904 Pink MSU Historic/2021 

S18907 Pink MSU 2021 

S19307 Pink MSU 2021 

S20405 Pink MSU 2021 

S20420 Pink MSU 2021 
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Table 1.6: ANOVA table for white mold resistance in the combined analysis (2021-2022) of the 

field trial. 

 Variance Standard Error 

Genotype 0.45* 0.10 

Environment:Genotype 0.24* 0.10 

Error 1.82* 0.08 

Values marked with an asterisk (*) are significant at the p=0.05 level. 
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Table 1.7: ANOVA table for yield under white mold disease pressure in the combined analysis 

(2021-2022) of the field trial. 

 Variance Standard Error 

Genotype 13.51* 3.22 

Environment:Genotype 11.47* 2.83 

Error 13.90* 0.73 

Values marked with an asterisk (*) are significant at the p=0.05 level. 
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CHAPTER TWO: SCREENING DRY BEAN BREEDING LINES FOR RESISTANCE TO 

COMMON MICHIGAN ROOT ROT PATHOGENS  

ABSTRACT 

Root rot is a major yield limiting disease of dry bean (Phaseolus vulgaris) production in the US 

and worldwide. Specifically, disease symptoms conferred by the soil borne fungal pathogens 

Fusarium oxysporum and Rhizoctonia solani cause up to 84% yield loss in susceptible dry bean 

cultivars through damage of root biomass, reduced vigor, and plant death. This study evaluated a 

diverse set of breeding lines and diversity panel lines from 2021 to 2022 for field resistance to root 

rots conferred by these pathogens. Secondary objectives were to establish correlations between 

field and greenhouse screens and non-destructive traits correlated to root rot resistance to Fusarium 

oxysporum for ease of phenotyping. All trials were successful in identifying significant variation 

for root rot resistance. Significant correlations were found between the field trial and the 

greenhouse trials (P=0.03, 0.71). Significant trait correlations were also identified between root 

rating and fresh (P=0.01, -0.67) and dry root (P=0.01, -0.64) and dry shoot (P=0.04, -0.43) weights 

in the greenhouse. Ultimately multiple lines are recommended as parents for future root rot 

resistance breeding efforts.  

INTRODUCTION 

Dry bean (Phaseolus vulgaris L.) is one of the most important grain legumes for human 

consumption worldwide, providing an important source of key dietary nutrients such as protein 

and fiber (Uebersax et al., 2023). Dry beans are a dietary staple in Latin America and sub-Saharan 

Africa (Leterme & Carmenza Muũoz, 2002; Paparu et al., 2018) and an important agricultural 

commodity in the US (primarily North Dakota, Minnesota, and Michigan), Latin America, and 

other regions. However, biotic stress via fungal disease infection is among the main constraints 
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that limit yield and increase annual management cost of dry bean production. Among the most 

yield limiting fungal borne diseases affecting dry bean production is root rot, which is conferred 

by a soilborne disease complex of multiple fungal and oomycete pathogens including members of 

Fusarium sp., Rhizoctonia sp., Pythium sp., Macrophomina sp., and Alternaria sp. (Bilgi et al., 

2011; Harveson et al., 2005; Schwartz, 2011; Sendi et al., 2020; Singh & Schwartz, 2010). Root 

rots are widespread in dry bean production regions and cause significant yield losses in the US, 

Africa, and Central and South America (Abawi and Pastor Corrales, 1990) For example, root rot 

is responsible for losses estimated at 221.000 metric tons per year in sub-Saharan Africa (Paparu 

et al., 2018). 

Dry beans have two primary gene pools resulting from two independent domestication 

events in the Andes and Middle-Americas (Gepts, and Debouck, 1991; Mensack et al., 2010). The 

Andean gene pool primarily consists of large-seeded beans from the kidney (dark red, light red, 

and white), yellow, and cranberry market classes. The Middle-American gene pool consists of 

small to medium seeded market classes from the navy, black, small red, pink, pinto and great 

northern market classes. Previous research has established susceptibility to root rot in both dry 

bean gene pools, but susceptibility to individual pathogens differs. Large-seeded dry bean cultivars 

from the Andean gene pool are generally more susceptible to Fusarium species while the small 

seeded types from the Middle-American gene pool are generally more susceptible to Rhizoctonia 

species, with Andean types being more susceptible to root rots overall (Conner et al., 2014; 

Schneider et al., 2001). Andean genotypes in particular, tend to have less robust root systems which 

is thought to be why they have lower levels of resistance to root rots (Cichy et al., 2007; Román-

Avilés & Kelly, 2005; Schneider et al., 2001).  
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Michigan is the second largest dry bean producer in the United States, producing over 400 

million pounds of dry edible beans per year and contributing to a farm gate value of over $139 

million (USDA Crop Production Summary 2022). It also leads the nation in the black, small red, 

and navy bean market classes in terms of acreage (USDA Crop Production Summary 2022). 

Michigan's temperate climate, with warm humid summers, are highly conducive to fungal 

pathogens. Over the past few years Michigan growers have rated root rot as the second most 

important disease and it is considered the first most impactful disease in large seeded Andean bean 

varieties (MBC, 2022). In Michigan, the most common root rot pathogens belong to the Fusarium 

and Rhizoctonia species as well as multiple oomycete species and species diversity varies by 

region (Jacobs et al., 2019). Root rots conferred by these fungal pathogens cause up to 84% yield 

loss in susceptible dry bean cultivars through damage of root biomass, reduced vigor, and whole 

plant death (Jacobs et al., 2019). 

Root rot disease symptoms vary depending on the pathogen(s) involved, but are primarily 

characterized by root lesions, root and foliar biomass loss, and reduced stand. Fusarium and 

Rhizoctonia infections of dry bean are both primarily characterized by water-soaked, dark brown 

to rust colored lesions on the root and death of lateral roots (Hall et al. 1991; Hagedorn et al. 1994). 

Fusarium root rot develops slowly in response to prolonged cool and wet environmental 

conditions, and generally leads to an overall vigor and yield decline. Entire plant death is rare and 

usually occurs later in the season in only the most severe infections. Conversely, Rhizoctonia root 

rot tends to affect plants early in the season primarily through reduced stand resulting from seed 

rot, seedling blight, and pre/post emergence damping off (Gossen et al., 2016). Rhizoctonia root 

rot infection is characterized by the formation of deep sunken lesions at the soil level (Conner et 

https://www.zotero.org/google-docs/?7WG2yH
https://www.zotero.org/google-docs/?rYIrEV
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al., 2014). Cool wet weather or flooding events can increase infection severity of both pathogens 

due to additional plant stress (Kumar and Kudada, 2018).  

Managing root rot can be challenging due to the durability and extended viability of 

chlamydospores in soil and plant residue and broad host range (Katan, 2017). Current agronomic 

management practices include fungicidal seed and soil treatments, reduced irrigation, crop 

rotation, cover crops, seedbed preparation, and other agronomic practices are currently used to 

combat yield loss from root rots (Abawi and Pastor Corrales, 1990; Gossen et al., 2016; Harveson 

et al., 2005; Rubiales et al., 2015). However, they are often not sustainable or economically 

feasible and reduce productivity of dry bean fields. For example, control of root rots through 

reduced irrigation limits yield per acre. Fungicidal seed and soil treatments are expensive and have 

adverse effects on the environment. Furthermore, these practices do not entirely prevent root rot 

infection due to its virulence and ability for thick-walled spores, hyphae, or sclerotia to overwinter 

in the soil for multiple years (Schwartz, 2011). Biocontrols have emerged as a significant research 

objective for control of root rot pathogens, but there are currently no commercial biocontrols 

available that significantly reduce infection (Hassan Dar et al., 1997; Sendi et al., 2020). Therefore, 

the most sustainable, durable, and cost-effective method to ensure protection against infection 

would be to develop resistant dry bean cultivars, along with appropriate management practices. 

Genetic resistance to root rots in dry bean is quantitatively inherited, primarily through root 

architecture traits such as root weight, root length and root mass (Haus et al., 2020; Kamfwa et al., 

2013; Snapp et al., 2003; Wang et al., 2018) and physiological avoidance (Kamfwa et al., 2013; 

Mukankusi et al., 2011; Román-Avilés et al., 2004; Snapp et al., 2003). The quantitative 

inheritance of these traits has been demonstrated by the low narrow-sense heritability estimates 

(26%-44%) reported and many small effect quantitative trait loci (QTL) found for root rot (Román-

https://www.zotero.org/google-docs/?16cDfx
https://www.zotero.org/google-docs/?16cDfx
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Avilés et al., 2011; Nakedde et al., 2016; Kamfwa et al., 2018; Wang et al., 2018; Zitnick-Anderson 

et al., 2020). Previous research has established the importance of high root biomass cultivars with 

high density of lateral roots, high basal root number, and many adventitious roots for root rot 

avoidance (Haus et al., 2020; Román-Avilés et al., 2004; Snapp et al., 2003). These traits have 

been identified as significant targets for improving resistance. Resistance to root rot is primarily 

found in the small-seeded Middle-American bean germplasm compared to the highly susceptible 

large-seeded beans of Andean origin and has served as the only source of resistance (Cichy et al., 

2007; Mukankusi et al., 2011; Román-Avilés & Kelly, 2005; Schneider et al., 2001) 

Although few studies to date have evaluated genetic resistance to Fusarium oxysporum or 

Rhizoctonia solani, multiple studies have established genomic regions associated with resistance 

to root rots conferred by other Fusarium sp. (Hagerty et al., 2015; Kamfwa et al., 2013; Nakedde 

et al., 2016; Román-Avilés & Kelly, 2005; Schneider et al., 2001; Wang et al., 2018; Zitnick-

Anderson et al., 2020). These studies often identify many different QTL which highlights the 

highly quantitative inheritance method of resistance. QTL studies of resistance to Fusarium sp. in 

dry bean have identified genomic regions associated with root traits, plant immune/defense 

mechanisms, and other disease resistance genes (Hagerty et al., 2015; Nakedde et al., 2016; Wang 

et al., 2018; Zitnick-Anderson et al., 2020). One study to date has evaluated genetic resistance to 

Rhizoctonia solani- (Oladzad et al. 2019). In this study, researchers evaluated the Andean and 

Middle American diversity panels and observed multiple QTL associated with gene models 

encoding proteins like known disease resistance genes.  Other Rhizoctonia solani resistance studies 

have focused on screening and ranking breeding lines and establishing trait correlations 

(Adesemoye et al., 2018; Conner et al., 2014; Peña et al., 2013).  
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Progress to introgress root rot resistance has been hindered by the difficulty of pyramiding 

resistance genes given the quantitative nature of inheritance of root rot, inconsistent screening 

methods, and screening dependence on the presence of the pathogen under suitable environmental 

conditions (Hagerty et al., 2015; Nakedde et al., 2016; Wang et al., 2018). Phenotyping for root 

rot disease in the field often requires laborious and destructive “shovelomics'' techniques (Burridge 

et al., 2016; Trachsel et al., 2011) that involve digging up the root system of individual plants to 

evaluate root rot disease severity or manually counting stands multiple times per season to evaluate 

post-emergence damping off. There have been multiple phenotyping methods proposed for the 

greenhouse and field evaluation of Fusarium root rots including the liquid inoculum method 

(Schneider & Kelly, 2000), inoculum layer method (Chaudhary et al., 2006), and nutrient culture 

(Boomstra et al., 1977). Inoculated grain planted alongside the crop seed or natural infection are 

common methods for field evaluation (Haus et al., 2020; Pandey et al., 2020; Wang et al., 2018). 

However, the presence of multiple resistance mechanisms through both physiological resistance 

and architectural avoidance complicates screening. Greenhouse trials are preferred by researchers 

because they provide a controlled environment, have higher heritability, ease of screening, and 

less environmental dependance, but they do not screen for some avoidance mechanisms that can 

only be observed in the field. Conversely, field screens allow for measurement of both architectural 

traits and physiological resistance, but are often hampered by low heritability, high coefficient of 

variation (CV), high error variances, and natural pathogen presence (Guzman, 2016.; Hagerty et 

al., 2015; Nakedde et al., 2016; Román-Avilés et al., 2004; Román-Avilés & Kelly, 2005). 

Furthermore, these destructive phenotyping methods require the whole plant to be dug up with a 

shovel in the field or removed from the pot in the greenhouse to be evaluated for root rot symptoms, 

which is laborious and prevents additional measurements of yield and other agronomic traits 
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throughout the season. Establishments of aboveground traits related to root rot disease severity 

would enable high-throughput methods of phenotyping such as UAS imaging to assist breeders in 

screening for root rot resistant varieties (Guo et al., 2021; Lu et al., 2019; Manganiello et al., 2021; 

Marzougui et al., 2019).  

     Therefore, the primary objective of this study was to screen advanced breeding lines 

and a subset of an Andean diversity panel for Fusarium oxysporum and Rhizoctonia solani under 

field and greenhouse conditions. Specific objectives were to ii) evaluate a set of panels for F. 

oxysporum and R. solani resistance across multiple years, ii) compare a subset of the Fusarium 

lines grown in the field and in the greenhouse, and iii) compare the rankings between artificial 

inoculation and natural infestation in the field, and iv) determine agronomic traits correlated to 

Fusarium oxysporum root rot resistance that could provide an alternative phenotyping method. 

MATERIALS AND METHODS 

Plant Material 

A set of three panels were used to evaluate Fusarium and Rhizoctonia resistance during the 

2021 and 2022 field season (Table 2.1, Table 2.2). Specifically, two panels were used to evaluate 

F. oxysporum root rot resistance and one for R. solani. The F. oxysporum panels included a set 

2021 and 2022 advanced kidney bean breeding lines from the Michigan State University dry bean 

breeding program (KDB) and a subset of 38 lines from the Andean Diversity Panel (ADP) (Cichy 

et al., 2015). The KDB trial consisted of 53 advanced breeding lines (AYT) from the large-seeded 

Andean gene pool (kidney and yellow market classes) of the MSU breeding program and 13 

commercial varieties. 29 lines were evaluated in 2021 and 27 lines were evaluated in 2022, with 

20 AYT lines conserved in both years. The motivation for this approach was to eliminate inferior 

breeding lines discarded from the MSU Advanced Yield Trial (AYT) after year one and replace 
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them with newer breeding lines that had performed well in the Preliminary Yield Trials (PYTs). 

The commercial varieties Coho, Clouseau, Denali, Red Cedar, Red Hawk, and Snowdon were 

added as performance checks. Clouseau was chosen as it has been widely grown in Michigan, 

while the others represent recently released MSU developed light red, dark red, or white kidney 

varieties that have shown superior yield potential despite ambient root rot disease pressure. All 

lines in the ADP trial were evaluated in both years. The check lines used in the ADP trial included 

the resistant line VAX 3 (Bilgi et al., 2011; Guzman, 2016), Cabernet (susceptible), Dynasty 

(moderately resistant), and Talon (moderately resistant). 

The third panel (MAB) consisted of 65 AYT breeding lines from the small-seeded Middle 

American gene pool (great northern, pinto, small red, pink, black, and navy market classes) was 

used to evaluate R. solani root rot resistance in the field during the 2021 and 2022 growing seasons. 

The 2021 set consisted of 24 AYT lines and 19 commercial lines while the 2022 set consisted of 

31 AYT lines and 22 commercial lines. Across the panel 16 breeding lines and 15 commercial 

lines were conserved in both years. There currently aren’t any established performance checks for 

Rhizoctonia solani resistance in dry bean. Commercial lines used for comparison are listed in 

Table 2.  

Field Experiment 

Three field trials (ADP, KDB, and MAB) field were planted in a disease nursery in East 

Lansing, MI using a randomized-complete block design (RCBD) with four replicates. Entries were 

planted in four-row plots, 160 seeds per replicate (40 per row), 10 ft in length with 30 in row 

spacing, where two rows contained non inoculated plants, and two rows contained plants 

inoculated with F. oxysporum isolate F_14-38 or R. solani AG2-2 isolate Rs_14-17 colonized 

grain. Isolates used for the inoculum were collected from dry bean plants in Michigan. Inoculum 
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consisted of millet (F. oxysporum) or barley (R. solani) kernels colonized with mycelium at a 

concentration of 4.23 x 106 per gram and air dried in a drying oven. In the F. oxysporum trials 

(ADP and KDB) the colonized millet seed was planted in the furrow with the dry bean seed at a 

rate of 34.45 ml/linear meter in 2021 and increased to 42.65 ml/linear meter in 2022 following the 

protocol described in (Haus et al., 2020; Jacobs et al., 2018) In the R. solani (AM) trial the 

colonized barley seed was planted in the furrow with the dry bean seed at a rate of 4.27 ml/linear 

meter in 2021 and 3.28 ml/linear meter in 2022.  

The KDB trial was also planted at Montcalm Research Farm in the 2021 and 2022 growing 

season near Entrican in Montcalm County, Michigan which is a location previously established to 

have substantial root rot disease pressure. Previous literature on root rot disease in Michigan and 

visual observation has established F. solani fsp. phaseoli present in this site which makes it ideal 

to compare natural infection conditions with artificial inoculation (Jacobs et al., 2019; Román-

Avilés et al., 2004). The experimental design was an alpha-lattice design with three replications 

using four row plots 6.1 m in length with 50 cm row spacing.  

Phenotypic Evaluation 

Plants were collected and rated for disease severity in the ADP and KDB F. oxysporum 

trials and the KDB natural infection trial. One month after germination (V3-V4 stage), five plants 

from each line, replicate, and treatment were uprooted with a shovel, washed to remove soil, and 

evaluated for root rot disease severity using the 1 to 7 scale, developed by Schneider and Kelly 

where 1 indicates no disease and 7 indicates a non-functional, completely rotted root system 

(Schneider & Kelly, 2000). Figure 1.1 shows an image of dry bean plants used to calibrate disease 

scores corresponding to the 1-7 rating scale. In 2022, the five plants from each replication were 

bulked and weighed (g) after root rot disease severity was recorded. Multiple vigor and stand count 
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measurements were taken throughout the growing season both years. Vigor was measured by 

visually observing overall plot wise canopy biomass and closure on a scale of 1-9 following the 

rating system in Van Schoonhoven, 1987. 

In the MAB R. solani trial, stand count per row for the inoculated and non-inoculated 

treatments was collected at multiple time points during the growing season. Post-emergence 

damping off was defined as the difference in stand count between the first and last measurement 

of the season. 

In the natural infection trial of the KDB lines, root rot disease severity was evaluated as 

outlined previously at 6-8 weeks after planting. Standard agronomic traits including plant height, 

lodging score, days to flower, and maturity were also collected in the field. Plots were trimmed to 

4.9m prior to harvest and the center two rows were harvested with a Wintersteiger Classic plot 

combine (Wintersteiger AG, Austria). Yield data was obtained utilizing a Harvestmaster H2 

Classic Graingage (Juniper Systems, Logan, UT) to record plot weight and moisture. Prior to data 

analysis, seed yield was standardized to 18% moisture.  

Greenhouse Experiment 

A trial run of 5 genotypes was used to identify optimal inoculum concentration and harvest 

date to elucidate differences in resistance to Fusarium oxysporum in the greenhouse and compare 

rankings for similar genotypes to the field trials. Inoculated grain was prepared using the same 

procedures as the field trial. The containers used were 354-mL coffee cups with three holes on the 

bottom for drainage. Different quantities of inoculum (2, 3.5, and 5 grams) were tested to 

determine the correct ratio of inoculum to best separate resistance among lines in the main trial. 

Inoculum was mixed thoroughly with vermiculite medium in a plastic bag. Bean seeds were placed 

on the top and covered with another layer of vermiculite. Non-inoculated replicates followed the 
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same methods, minus the inoculum step. Plants were arranged in a RCBD with 3 replicates. Two 

harvest dates (3 and 4 weeks) were also tested to determine the best time to evaluate differences 

in root symptoms. 

A subset of the 11 most resistant and susceptible lines (n=22) and the resistant check VAX3 

obtained from the 2021 KDB and ADP field trials were selected to evaluate root rot disease 

severity under greenhouse conditions. Based on results of the test trial, a 3 week harvest date and 

an inoculum concentration of 2 grams per cup was chosen. Production of inoculum and planting 

methods followed the same procedure as in the test greenhouse trial. For each genotype twelve 

seeds were planted, one in each coffee cup, using a randomized complete block experimental 

design with three inoculated and three non-inoculated replicates of 6 plants each. All plants were 

uprooted, washed with water, and evaluated for root rot disease severity using the 1-7 root rot 

disease severity scale mentioned previously. Fresh and dry shoot and root weights (g) for each 

plant were also taken. 

Data Analysis 

The statistical analysis for all experiments were conducted in the ASReml-R package in 

the R programming language (Butler et al., 2023). The normality of residuals was evaluated using 

quantile plots and residual plots and outliers were removed as necessary. For all experiments a 

linear mixed model was fit and LSmeans for root rot disease severity (ADP, KDB, GH, and KDB 

Natural) or post-emergence damping off (MAB) were calculated using the predict function of the 

ASReml-R package (Butler et al., 2023) utilizing the inoculated treatment only as follows:  

ADP, KDB, and MAB field trials 

     Yijk = μ + Linei + Envk + Rep(Env)jk + (Line x Env)ik + eijk  Eq. 1 
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Where Yijk is the observed phenotype. μ is the overall mean, Linei is the fixed effect of the 

i-th line, Envk is the fixed effect of the kth environment, Rep(Env)jk is the random effect of the 

interaction between the the j-th rep within the k-th environment, (Line x Env)ik is the fixed effect 

of interaction between the i-th line and k-th environment, and  eijk is the random residual term.  

ADP and KDB greenhouse trial 

Yij = μ + Linei + Repj + eij  Eq. 2 

 

Where Yij is the observed phenotype. μ is the overall mean, Linei is the fixed effect of the 

i-th line, Repj is the random effect of the jth rep, and  eij is the random residual term.  

Natural Infection Trial (KDB) 

Yijkl = μ + Linei + Envj + iBlock(Rep)kl + Rep(Env)jl + (Line x Env)ij + eijkl  Eq. 3 

 

Where Yijkl is the observed phenotype (root rot disease severity score). μ is the overall 

mean, Linei is the fixed effect of the i-th line, Envj is the fixed effect of the jth environment, 

iBlock(Rep)kl  is the random effect of the interaction between the the k-th incomplete block within 

the l-th rep, Rep(Env)jl is the random effect of the interaction between the the l-th rep within the j-

th environment, (Line x Env)ij is the fixed effect of interaction between the i-th line and j-th 

environment, and  eijkl is the random residual term.  

To estimate broad sense heritability (H2) for on an entry means basis, variance components 

were extracted fitting the previous equations with all terms random. Heritability was estimated as 

follows: 
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Eq. 4 

 

Where σ2
G ,σ2

GxE ,and , σ2
e are the genotype, genotype by environment interaction, and error 

variances, n is the number of environments and r is the number of reps. Pairwise comparisons 

between lines were calculated using Fisher’s LSD using the assigned LSD value resulting from 

the allDifferences.data.frame function in the ASRemlPlus package (Brien et al. 2023). The effect 

of inoculum was validated using a student's t-test of root rot disease severity scores or post-

emergence damping off between the inoculated and non-inoculated treatments. Population 

coefficient of variation (CV) was calculated as ((σ/μ) * 100) = CV%.  

Correlations 

Correlations between trials were evaluated to compare phenotyping in the greenhouse vs 

field as well as artificial vs natural disease pressure using the LSmeans for lines present in both 

trials. Additionally, correlations between root rot rating (or post emergence damping off) and 

various agronomic traits were calculated using trait LSmeans. Correlations between trials were 

performed using the cor.test function in R and correlations between traits were visualized using 

the corrplot function in the R package corrplot (Wei et al., 2021). 

RESULTS 

In this study we evaluated three diverse dry bean panels (ADP, KDB, MAB) in the field 

for variance in resistance to two prevalent Michigan root rot pathogens. Additionally, a subset of 

the ADP and KDB trials were evaluated in the greenhouse and the entire KDB trial was also 

evaluated in natural root rot infection conditions. Significant differences were found between 

inoculated and non-inoculated plots using a student’s t-test which indicated significant differences 
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in mean value between treatments in all trials and years tested (Table 2.3). Overall, genetic 

variation was low with the lowest being for the F. oxysporum trials compared to the R. solani trial. 

This led to a lower heritability (0.12-0.29) in the F. oxysporum trials (KDB, ADP, GH), low to 

moderate in the KDB natural infection trials (0.11-0.43) and moderate in the MAB R. solani trial 

(0.49-0.57) with the greenhouse having the lowest heritability overall (Table 2.4). Significant 

genotypic variation was found for all F. oxysporum trials across all years except the 2022 ADP 

trial and Greenhouse trial (Table 2.4). There was no significant genotype by year effect across any 

of the field trials. Coefficient of variation (CV) was low to moderate for all F. oxysporum trials 

(31.04-49.26%), low in the KDB natural infection trial (23.94-35.32%), and high for the MAB 

trials (65.11-71.06%) (Table 2.4).  

Fusarium Oxysporum Field and Greenhouse Screens 

After outlier removal and model fitting, LSmeans in the field for the ADP trial ranged from 

1.8-3.9 in 2021, 2.3-4.6 in 2022, and 2.05-4 in the combined analysis (Figure 2.2a). The five most 

resistant lines in the combined analysis were ADP99, ADP444, ADP481, Dynasty, and ADP462 

with scores ranging from 2.05-2.7 (Table 2.5, Figure 2.3). While the checks, Dynasty, Talon, 

Cabernet, and VAX3 had disease severity scores of 2.65, 2.87, 3.3, and 3.47 respectively.  In 2021, 

the five most resistant lines were ADP99, ADP444, ADP462, ADP43, and ADP612 with scores 

ranging from 1.8-2.3 (Table 2.6, Figure 2.4). While the checks, Dynasty, Talon, Cabernet, and 

VAX3 had disease severity scores of 2.6, 2.7, 3.3, and 3.7 respectively.  In 2022, the five most 

resistant lines were ADP99, ADP111, ADP481, ADP15, and ADP4 with scores ranging from 2.3-

2.65 (Table 2.7, Figure 2.5).  While the checks, Dynasty, Talon, Cabernet, and VAX3 had disease 

severity scores of 2.7, 3.05, 3.3, and 3.25, respectively.  
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The LSmeans in the field for the KDB trial ranged from 2.2-3.3 in 2021, 2.1-4.3 in 2022, 

and 2.4-4 in the combined analysis (Figure 2.2b). The five most resistant lines in the combined 

analysis were K20730, Y19817, Beluga, K19832, and Clouseau with scores ranging from 2.39-

2.73 (Table 2.8, Figure 2.6).  While the checks, Clouseau, Denali, Snowdon, Coho, and Red Cedar 

had disease severity scores of 2.7, 2.73, 2.84, 2.75, and 3.35, respectively. In 2021, the five most 

resistant lines were K19610, K20712, Y19817, K16911, and K18907 with scores ranging from 

2.3-2.5 (Table 2.9, Figure 2.7). While the checks, Clouseau, Denali, Snowdon, Coho, and Red 

Cedar had disease severity scores of 2.73, 2.85, 2.8, 2.75, and 3.35, respectively. In 2022, the five 

most resistant lines were K20730, K19832, Y19808, Beluga, and Y19817 with scores ranging 

from 2.09-2.48 (Table 2.10, Figure 2.8).  While the checks, Clouseau, Denali, Snowdon, Coho, 

and Red Cedar had disease severity scores of 2.75, 2.6, 2.89, 3.25, and 3.5, respectively. The 

LSmeans for the greenhouse trial ranged from 4-6 (Figure 2.2c). The five most resistant lines in 

the greenhouse were ADP481, K20730, VAX3, ADP462, and K20712 with scores ranging from 

4-4.78 (Table 2.11, Figure 2.9). VAX 3 had a disease score of 4.5 and Dynasty had a disease 

score of 6. 

Natural Infection 

The LSmeans in the field for the KDB natural infection trial ranged from 3.45-5.41 in 2021, 

2.47-5.58 in 2022, and 3.17-5.06 in the combined analysis (Figure 2.2b). The five most resistant 

lines in the combined analysis were K19832, K19817, K20745, K20717, and K20730 with scores 

ranging from 3.17-3.57 (Table 2.12, Figure 2.10).  While the checks, Clouseau, Denali, Snowdon, 

Coho, and Red Cedar had disease severity scores of 4.11, 4.15, 4.26, 4.23, and 5.06 respectively. 

In 2021, the five most resistant lines were K19832, K20730, K20743, K21904, K16136 with scores 

ranging from 3.45-3.9 (Table 2.13, Figure 2.11). While the checks, Clouseau, Denali, Snowdon, 
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Coho, and Red Cedar had disease severity scores of 4.44, 4.17, 4.41, 4.17, and 4.53, respectively. 

In 2022, the five most resistant lines were K19817, K19832, K20745, K20717, and K20730  with 

scores ranging from 2.47-3.44 (Table 2.14, Figure 2.12).  While the checks, Clouseau, Denali, 

Snowdon, Coho, and Red Cedar had disease severity scores of 3.8, 4.14, 4.12, 4.28, and 5.58, 

respectively. 

Rhizoctonia solani Screen 

The LSmeans in the field for the MAB trial ranged from 2.00-13.50 in 2021, 1.25-16.25 in 

2022, and 3.31-12.25 in the combined analysis (Figure 2.2d). The five most resistant lines in the 

combined analysis were B19344, N20395, N19246, Spectre, and N20404 with values ranging from 

3.31-3.69 (Table 2.15, Figure 2.13). In 2021, the five most resistant lines were N19226, N20404, 

G19611, P19103, and N20395 with values ranging from 2-3.87 (Table 2.16, Figure 2.14). In 

2022, the five most resistant lines were Spectre, G21811, Merlin, N19246, and B19344 with values 

ranging from 1.25-2.5 (Table 2.17, Figure 2.15). 

Trial and Trait Correlations 

Most correlations between Fusarium root rot disease scores among genotypes in the field, 

greenhouse, and natural infection trials were found to be statistically non-significant except for 

between the 2022 Kidney bean trial and the greenhouse trial with a significant correlation (P =0.03) 

of 0.71(Table 2.18). Additional measurements were conducted in all trials to establish possible 

traits correlated to root rot disease severity. In the KDB trials, no significant correlations were 

found between root rot rating and other traits that were measured (vigor, stand count, bulk 

weights), but significant correlations were identified among vigor, stand count, and bulk weight 

measurements (Figure 2.16, Table 2.19). In the KDB trials, significant correlations were found 

between root rot rating and the first and last vigor measurements in 2021. Significant correlations 
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were also identified between other agronomic traits that were measured (vigor, stand count, bulk 

weights) Figure 2.17, Table 2.20. In the greenhouse trial significant correlations were found 

between root rot rating and fresh/dry root and dry shoot measurements (Figure 2.18, Table 2.21). 

Significant correlations were also found among fresh/dry root and shoot measurements. In the 

KDB natural infection trial, significant correlations were observed between root rot rating and 

yield and maturity date (Figure 2.19, Table 2.22).  

DISCUSSION 

This diverse study aimed to screen MSU Andean breeding lines and diversity panel lines 

for field and greenhouse-based resistance to Fusarium oxysporum and screen MSU Middle-

American breeding lines for field resistance to Rhizoctonia solani, two pathogens that are 

particularly detrimental to dry bean production in Michigan. The levels of disease pressure in all 

experiments were sufficient to examine differences in plant response in inoculated conditions 

under root rot disease pressure, although low genetic variation limits analysis. Root rot resistance 

in dry bean is notoriously difficult to screen for due to many environmental factors that contribute 

to severity of the infection, and the ability of the plant to overcome the pathogen through avoidance 

or physiological resistance conferred by numerous small effect genetic loci. Although high 

standard error (SE) limits distinguishing between two similarly resistant genotypes in all trials 

tested, conclusions can be drawn in distinguishing between the most and least resistant lines, which 

is ultimately the most important objective when making selections in a plant breeding program.  

Fusarium oxysporum Study 

In the ADP trial the commercial checks Dynasty, Cabernet, and Talon behaved as expected 

based on results from previous literature (Oladzad et al., 2019; Zitnick-Anderson et al., 2020), but 

VAX3 consistently behaved as susceptible. In the greenhouse, VAX3 behaved as resistant as 
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expected, but Dynasty was the most susceptible line, supporting the observation that there was low 

correlation between ratings in the field vs greenhouse studies. In the ADP trial multiple lines stood 

out as possible sources of root rot resistance including ADP444, ADP481, ADP462, and ADP391. 

In the KDB inoculated and natural infection trials, multiple MSU breeding lines consistently 

outperformed the commercial lines. K19832, K20717, and K20730 stood out in particular as 

parents for future root rot resistance breeding efforts as they were top resistant lines in the KDB 

inoculated and natural infection trials. These lines have been noted previously as vigorous, robust 

plants with high yield. Their high root rot resistance may contribute to higher stands, vigor, and 

observed overall yield under ambient disease pressure in Michigan.  

Root rot rating was highest overall in the greenhouse, which was particularly interesting 

because during the evaluation we noted multiple “escapes” or inoculated plants that avoided 

disease infection. This could have also contributed to the lower heritability. In the field, the natural 

infection condition trial had the highest root rot rating. This is likely due to the effect of the root 

rot species complex in Montcalm County where these lines were tested, versus the artificial 

inoculation with one species in the KDB trial. Genetic variation in root rot disease score within 

trials was relatively small with the ADP trial having the largest variation. Identifying and 

integrating sources of unadapted resistance such as what is found in the ADP, may be a valid 

approach for integrating higher levels of resistance in breeding lines. 

Rhizoctonia solani Study 

The MAB trial was the first screen of commercial and MSU breeding lines for resistance 

to post-emergence damping off due to Rhizoctonia solani infection to date. In contrast to the 

Fusarium oxysporum trials these trials had a higher heritability, likely alluding to the objective 

phenotyping measurement used (damping off) vs the subjective 1-7 scale or the nature of genetic 
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resistance to the specific species. Significant differences were observed between genotypes. Many 

MSU breeding lines were highly resistant to post-emergence damping off including B19344, 

N20395, N19246, N20404, and N19246. B19344 stands out particularly as a promising line to use 

as a parent in future breeding efforts as it was the most resistant line identified in the combined 

analysis. Like the resistant lines present in the KDB inoculated and natural trials, this line has been 

previously identified as high yielding, which may be partially due to its ability to overcome 

ambient root rot in Michigan. The commercial small red line Viper was consistently the most 

susceptible line to post-emergence damping off.  

Field vs Greenhouse Correlations for Fusarium Root Rot 

Screening for root rots in the field is a challenge due to the potential of other root rot 

pathogens to confound the study. Furthermore, field trials require large plots of land and in many 

cases pivot irrigation for inducing root rot. Therefore, developing a greenhouse assay would 

improve the challenges with field trials and improve the throughput of phenotyping for this trait. 

The only significant correlation identified was between the KD2022 and GH (0.71) (Table 7). 

However, there was an almost significant correlation of 0.65 between the combined KDB trial and 

the greenhouse trial. Increasing inoculum and environmental conditions during the 2022 season 

could have contributed to this higher correlation. Previous studies identified varying significance 

between field and greenhouse screens depending on which isolate, and inoculation method was 

used (Bilgi et al., 2008; Chaudhary et al., 2006; Mukankusi et al., 2010; Nicoli et al., 2012; 

Schneider & Kelly, 2000) with significant correlations of 0.57-0.92 being found with spore 

suspension greenhouse methods and natural infection field conditions. Greenhouse screening 

would be ideal since it takes less time and resources and more lines could be phenotyped in a 

season, but it is ultimately important that the screening method mimics field conditions in order to 
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make accurate selections. Further exploration to establish correlations between greenhouse and 

field screening utilizing different methods including the inoculated sorghum seed method is 

warranted.  

When comparing results from the greenhouse and field Fusarium oxysporum trials, it is 

significant to note that although correlations between ratings in the greenhouse and field were not 

significant, two genotypes (ADP481 and K20730) were identified among the top five most 

resistant lines in both screening methods. K20730 was also a top five resistant line in the natural 

infection trial. It is possible that highly resistant lines are identified as resistant no matter the 

inoculation method used, but further research is needed to establish screening methods with better 

correlation. 

Evaluating secondary traits associated with Fusarium oxysporum root rot 

To score for Fusarium root rot, roots need to be harvested, washed, and scored. This process 

takes time and is labor intensive. Identifying secondary traits associated with root rot would allow 

for indirect evaluation of this trait in a non-destructive manner. Several traits were collected for 

this purpose. Root rot rating was found to be significantly negatively correlated to fresh and dry 

root weight in the greenhouse, supporting the hypothesis that this disease has significant negative 

impacts on the plant root biomass (Haus et al., 2020; Nakedde et al., 2016; Román-Avilés et al., 

2004; Wang et al., 2018). This is contrary to a previous study by Bilgi et al. 2010 where there was 

no correlation identified between F. solani f. sp. phaseoli root rot rating and root weight, root-

shoot ratio, or yield using the spore suspension method. 

This observation also supports the finding in the natural infection trial where yield was 

highly negatively correlated to root rot disease score. In the natural infection trial, standard 

agronomic traits were measured. Both yield and maturity date were identified as significantly 
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negatively correlated to root rot disease score with correlations of -0.62 and -0.43, respectively. 

This was encouraging as it suggests that routinely selecting for higher yield and reasonable 

maturity under natural root rot pressure in breeding trials can be effective at eliminating the most 

susceptible breeding lines and advancing more tolerant ones. However, there were no significant 

correlations identified between root rot disease score and stand count or vigor measurements for 

the ADP and KDB field trials indicating that these may not be reliable measurements for non-

destructively measuring root rot resistance. Another method for measuring root rot disease severity 

that would be beneficial to investigate is UAS based measurement of aboveground biomass. This 

would be a similar measurement as the ground-truth vigor that was taken in this study, but would 

be a uniform, high-throughput, unbiased plot wise aerial measurement that would eliminate any 

scorer error. There is previous research supporting this method for measuring disease traits 

indicating that it may be beneficial for accurately and non-destructively measuring root rot 

resistance score (Guo et al., 2021; Marzougui et al., 2019; Moreira et al., 2020). 

Limitations 

Effective screening for quantitatively inherited traits is challenging, and root rot disease 

traits are no exception. Field based root rot screens are preferable to the breeder because they most 

accurately reflect agronomic conditions, but they are labor and land intensive and confounded by 

natural pathogen presence, as well as large environmental and error variances. Conversely, 

greenhouse evaluations provide a controlled environment, cost, and labor effective screening 

alternative but may not accurately predict resistance in field conditions, which can lead to 

conflicting results between screening methods. 

Similar to multiple previous root rot disease studies (Guzman, 2016; Hagerty et al., 2015; 

Nakedde et al., 2016; Román-Avilés et al., 2004; Román-Avilés & Kelly, 2005), the current study 
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was also hampered by large environmental and error variances, large standard error, and low 

genetic effect, leading to a low overall heritability and difficulty distinguishing between resistant 

genotypes for root rot disease rating (Fusarium oxysporum trials) and post emergence damping off 

(Rhizoctonia solani trials). This is primarily due to low innate heritability and the complex 

inheritance mechanism of the trait which prevents the separation of genetic and environmental 

effects and low innate resistance in breeding populations. Our greenhouse trial was also limited by 

large error variance, low genetic effect, and high CVs. The greenhouse screening method we used 

was chosen because it was previously shown to reduce environmental variation, decrease CV, and 

accurately mimic field conditions compared to other inoculation methods (Haus et al., 2020; 

Nakedde et al., 2016; Sendi et al., 2020; Wang et al., 2018). A consensus has not formed for the 

best inoculation method for root rot disease studies and various studies utilize different greenhouse 

screening methods which provide varying results among studies. As stated before, unbiased 

measurements such as UAS may improve this currently unavoidable aspect of root rot resistance 

studies as well as identifying the best universal greenhouse and field measurement systems. 

VAX 3, a line previously established to have moderate resistance to Fusarium brasiliense 

and Fusarium solani in the greenhouse, behaved moderately resistant in the greenhouse and 

susceptible in the field, which raises the question of its reliability as a resistant check for Fusarium 

oxysporum screening in the field. An external factor that could have contributed to variable results 

in the field is the presence of untested natural pathogens. Natural pathogen presence is virtually 

unavoidable in the field, especially in a disease nursery, and could have contributed to the observed 

results. Previous studies have identified Fusarium, Rhizoctonia, and oomycete species as endemic 

to Michigan growing regions (Jacobs et al., 2019). Another factor that complicates analysis is the 

presence of avoidance mechanisms and variable environmental conditions in the field that could 
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contribute to resistance or susceptibility that would not be identified under controlled greenhouse 

conditions. Further research is needed to confirm the validity of this line as a resistant check to 

screen for Fusarium root rot resistance in the field. In the interim, a better approach would be to 

use the most resistant lines such as Dynasty as local disease resistant checks for future field studies 

in Michigan. 

CONCLUSION 

In the present study, 98 diverse dry bean lines from the Andean gene pool were screened 

for Fusarium oxysporum resistance in the field and (a subset) in the greenhouse and 64 lines from 

the Middle-American gene pool were screened for Rhizoctonia solani resistance in the field. The 

primary objective of this study was successful. Variance in root rot disease score/damping-off for 

a diverse set of dry bean lines was identified and the most resistant lines are recommended for 

future breeding efforts. All trials were successful in identifying significant variation for root rot 

resistance. Significant correlations were found between the field trial and the greenhouse trials 

(P=0.03, 0.71). Significant trait correlations were also identified between root rating and fresh 

(P=0.01, -0.67) and dry root (P=0.01, -0.64) and dry shoot (P=0.04, -0.43) weights in the 

greenhouse. Ultimately the lines ADP444, ADP481, ADP462, ADP391, K19832, K20717, 

K20730, B19344, N20395, N19246, N20404, and N19226 are recommended as parents for future 

root rot resistance breeding efforts. Similar to previous root rot resistance studies, high standard 

error (SE), error and environmental variance, and low heritability limited interpretation of the 

results. Ultimately, conclusions can be drawn in distinguishing between the most and least resistant 

lines, which is the most important objective when making selections in a plant breeding program.  

Moving forward, objective high-throughput methods such as UAS based phenomics may 

provide an opportunity for accurate, unbiased, and reproducible screening of root rot resistance if 
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aboveground symptoms can be accurately measured and correlated to root rot rating as was 

suggested by the correlation between root and shoot biomass in the greenhouse trial. A 

standardized inoculation method and continued establishment of consistent resistant/susceptible 

checks under field conditions will also aid future studies. Ultimately, while the current studies 

presented here will be useful in making selections between the most resistant and most susceptible 

individuals, further optimization of screening methods is warranted for this highly complex trait. 
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TABLES AND FIGURES 

 

Table 2.1: Population description, isolate information, sample number, years tested, and 

measurements collected for all populations evaluated for root rot resistance in this study. 

Population 

Description 

Isolate Sample 

Number 

Years Trait Measurements 

Andean Diversity 

Panel (ADP) 

F. oxysporum 38 2021/2022 Root Rot Disease 

Score 

Vigor 

Stand Count 

Bulk Fresh Weight 

(2022) 

Kidney Breeding 

Lines (KDB) 

F. oxysporum 66 2021/2022 

 

Root Rot Disease 

Score 

Vigor 

Stand Count 

Bulk Fresh Weight 

(2022) 

Greenhouse trial 

(GH) 

F. oxysporum 23 2022 Root Rot Disease 

Score 

Fresh Weight 

Dry Weight 

Stand Count 

Natural Infection  F. oxysporum 42 2021/2022 Root Rot Disease 

Score 

Flowering Date 

Maturity Date 

Yield (CWT Acre) 

Lodging Score 

Bulk Fresh Weight 

(2022) 

Middle American 

Breeding Lines 

(MAB) 

R. solani 65 2021/2022 Stand Count 

Vigor 
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Table 2.2: List of lines evaluated in this study including the trials present, market class 

information, origin, and years tested. 

Line Trial(s) Market Class / Seed 

Coat 

Origin Year(s) 

ADP001 ADP Red Mottled ADP 2021/2022 

ADP002 ADP Cranberry ADP 2021/2022 

ADP004 ADP Small Red ADP 2021/2022 

ADP015 ADP Dark Red Kidney ADP 2021/2022 

ADP021 ADP Small Red ADP 2021/2022 

ADP042 ADP Purple ADP 2021/2022 

ADP043 ADP/GH Yellow ADP 2021/2022 

ADP081 ADP Black ADP 2021/2022 

ADP088 ADP Light Red Kidney ADP 2021/2022 

ADP091 ADP Cranberry ADP 2021/2022 

ADP094 ADP Yellow ADP 2021/2022 

ADP099 ADP/GH Dark Red Kidney ADP 2021/2022 

ADP111 ADP Pink Cranberry ADP 2021/2022 

ADP112 ADP Dark Red Kidney ADP 2021/2022 

ADP186 ADP/GH Red Mottled ADP 2021/2022 

ADP214 ADP Yellow ADP 2021/2022 

ADP391 ADP/GH Red Mottled ADP 2021/2022 

ADP392 ADP Red Mottled ADP 2021/2022 

ADP429 ADP Yellow ADP 2021/2022 

ADP444 ADP/GH Yellow ADP 2021/2022 

ADP462 ADP/GH Yellow ADP 2021/2022 

ADP474 ADP/GH Cranberry ADP 2021/2022 
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Table 2.2 (cont’d) 

ADP481 ADP/GH Light Red Kidney ADP 2021/2022 

ADP511 ADP Dark Red Kidney ADP 2021/2022 

ADP513 ADP Yellow ADP 2021/2022 

ADP514 ADP Light Red Kidney ADP 2021/2022 

ADP519 ADP/GH White Kidney ADP 2021/2022 

ADP602 ADP Pink Mottled ADP 2021/2022 

ADP612 ADP/GH Dark Red Kidney ADP 2021/2022 

ADP621 ADP Purple Speckled ADP 2021/2022 

ADP626 ADP Purple Speckled ADP 2021/2022 

ADP640 ADP Manteca ADP 2021/2022 

ADP683 ADP Yellow ADP 2021/2022 

ADP684 ADP Dark Red Kidney ADP 2021/2022 

Cabernet ADP  Dark Red Kidney  Seminis 2021/2022 

Dynasty ADP/GH  Dark Red Kidney  Guelph 2021/2022 

Talon ADP  Dark Red Kidney  NDSU 2021/2022 

VAX3 ADP/GH Small Red  U of ID 2021/2022 

Beluga KDB/Natural (2021) White Kidney MSU 2021/2022 

Clouseau KDB/Natural Light Red Kidney  Seminis 2021/2022 

Coho KDB/Natural Light Red Kidney MSU 2021/2022 

Denali KDB/Natural White Kidney MSU 2021/2022 

SVS-0863 KDB Yellow  Seminis 2021/2022 

K16136 KDB/Natural Dark Red Kidney MSU 2021 

K16640 KDB/GH Light Red Kidney MSU 2021 

K16911 KDB White Kidney MSU 2021 
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Table 2.2 (cont’d) 

K17201 KDB Dark Red Kidney MSU 2021 

K17702 KDB/Natural Light Red Kidney MSU 2021 

K17703 KDB/Natural Light Red Kidney MSU 2021 

K17704 KDB/Natural Light Red Kidney MSU 2021 

K18312 KDB/Natural Dark Red Kidney MSU 2021 

K18907 KDB White Kidney MSU 2021 

K19111 KDB Dark Red Kidney MSU 2021 

K19120 KDB/Natural Dark Red Kidney MSU 2021 

K19608 KDB/Natural Light Red Kidney MSU 2021 

K19610 KDB/GH/Natural Light Red Kidney MSU 2021/2022 

K19817 KDB/GH/Natural White Kidney MSU 2021/2022 

K19830 KDB/Natural White Kidney MSU 2021/2022 

K19831 KDB/Natural White Kidney MSU 2021/2022 

K19832 KDB/GH/Natural White Kidney MSU 2021/2022 

K20210 KDB/Natural Dark Red Kidney MSU 2021 

K20212 KDB/Natural Dark Red Kidney MSU 2021/2022 

K20217 KDB/Natural Dark Red Kidney MSU 2021/2022 

K20221 KDB/Natural Dark Red Kidney MSU 2021/2022 

K20234 KDB/Natural Dark Red Kidney MSU 2021 

K20235 KDB/Natural Dark Red Kidney MSU 2021 

K20239 KDB/Natural Dark Red Kidney MSU 2021/2022 

K20712 KDB/GH/Natural Light Red Kidney MSU 2021 

K20715 KDB/GH/Natural Light Red Kidney MSU 2021/2022 

K20717 KDB/Natural Light Red Kidney MSU 2021/2022 
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Table 2.2 (cont’d) 

K20720 KDB/Natural Light Red Kidney MSU 2021 

K20721 KDB/GH/Natural Dark Red Kidney MSU 2021/2022 

K20728 KDB/Natural Light Red Kidney MSU 2021 

K20730 KDB/GH/Natural Light Red Kidney MSU 2021/2022 

K20732 KDB/GH/Natural Light Red Kidney MSU 2021/2022 

K20734 KDB/Natural Light Red Kidney MSU 2021/2022 

K20742 KDB/Natural Light Red Kidney MSU 2021/2022 

K20743 KDB/Natural Light Red Kidney MSU 2021/2022 

K20744 KDB/Natural Light Red Kidney MSU 2021/2022 

K20745 KDB/Natural Light Red Kidney MSU 2021/2022 

K20749 KDB/Natural Light Red Kidney MSU 2021 

Montcalm KDB/Natural (2021) Dark Red Kidney MSU 2021/2022 

ND Whitetail KDB/Natural (2021) White Kidney  NDSU 2021/2022 

Patron KDB Yellow  OSU 2021/2022 

Red Cedar KDB/Natural Dark Red Kidney MSU 2021/2022 

Red Hawk KDB/GH/Natural (2021) Dark Red Kidney MSU 2021/2022 

Rosie KDB Light Red Kidney  NDSU 2021/2022 

Snowdon KDB/Natural White Kidney MSU 2021/2022 

Y17502 KDB Yellow MSU 2022 

Y18703 KDB Yellow MSU 2022 

Y19801 KDB Yellow MSU 2022 

Y19804 KDB Yellow MSU 2022 

Y19808 KDB Yellow MSU 2022 

Y19810 KDB Yellow MSU 2022 
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Table 2.2 (cont’d) 

Y19815 KDB Yellow MSU 2022 

Y19817 KDB Yellow MSU 2021/2022 

Yellowstone KDB/GH Yellow MSU 2021/2022 

Adams MAB Black MSU 2022 

Armada MAB Navy  Provita 2021/2022 

B18504 MAB Black MSU 2022 

B19309 MAB Black MSU 2021/2022 

B19330 MAB Black MSU 2022 

B19332 MAB Black MSU 2022 

B19344 MAB Black MSU 2021/2022 

B20536 MAB Black MSU 2022 

B20547 MAB Black MSU 2021/2022 

B20549 MAB Black MSU 2022 

B20591 MAB Black MSU 2021/2022 

B20597 MAB Black MSU 2021/2022 

B20599 MAB Black MSU 2022 

B20602 MAB Black MSU 2022 

B21708 MAB Black MSU 2022 

B21710 MAB Black MSU 2022 

B21714 MAB Black MSU 2022 

Black Bear MAB Black  Provita 2021/2022 

Black Beard MAB Black  Provita 2021/2022 

Black Tails MAB Black  Provita 2021/2022 

Blizzard MAB Navy  Provita 2021/2022 
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Table 2.2 (cont’d) 

Caldera MAB Small Red  Provita 2021/2022 

Cayenne MAB Small Red  MSU 2022 

Charro MAB Pinto  MSU 2022 

Coral MAB Pink  MSU 2022 

Eiger MAB Great Northern  MSU 2022 

G19611 MAB Great Northern MSU 2021 

G19613 MAB Great Northern MSU 2021/2022 

G21811 MAB Great Northern MSU 2022 

HMS Bounty MAB Navy  Provita 2021/2022 

Liberty MAB Navy  Provita 2022 

Medalist MAB Navy  Provita 2021/2022 

Merlin MAB Navy  Provita 2021/2022 

N18103 MAB Navy MSU 2022 

N19226 MAB Navy MSU 2021/2022 

N19239 MAB Navy MSU 2021 

N19246 MAB Navy MSU 2021/2022 

N19285 MAB Navy MSU 2021 

N20388 MAB Navy MSU 2021/2022 

N20395 MAB Navy MSU 2021/2022 

N20404 MAB Navy MSU 2021/2022 

N21511 MAB Navy MSU 2022 

N21525 MAB Navy MSU 2022 

Nimbus MAB Black  Provita 2021 

P16901 MAB Pinto MSU 2021 
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Table 2.2 (cont’d) 

P19103 MAB Pinto MSU 2021/2022 

P19707 MAB Pinto MSU 2021 

P19713 MAB Pinto MSU 2021/2022 

R12844 MAB Small Red MSU 2021 

R20627 MAB Small Red MSU 2021/2022 

R20639 MAB Small Red MSU 2021 

R20652 MAB Small Red MSU 2021 

R20659 MAB Small Red MSU 2021/2022 

R20667 MAB Small Red MSU 2021/2022 

R20669 MAB Small Red MSU 2022 

R20683 MAB Small Red MSU 2021 

Rosetta MAB Pink  MSU 2022 

Ruby MAB Small Red  Provita 2021/2022 

S08418 MAB Pink MSU 2021 

S18904 MAB Pink MSU 2021 

Spectre MAB Black  Provita 2021/2022 

Valiant MAB Navy  Provita 2021/2022 

Viper MAB Small Red  Provita 2021/2022 

Zenith MAB Black MSU 2021/2022 

Zorro MAB Black MSU 2021/2022 
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Figure 2.1: Screening scale used to evaluate Fusarium oxysporum inoculated lines for root 

damage. Lines were evaluated on a 1-7 scale developed by Schneider and Kelly 2001, where 1 

indicates no disease and 7 indicates a non functional, completely rotted root system. 
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Table 2.3: T-test of the difference between Least squares means of the inoculated vs non-

inoculated treatment to validate inoculum concentration. 

Population Isolate 2021 2022 

KDB Lines- Field F. oxysporum <2.2 x 10^-16 <2.2 x 10^-16 

ADP Lines- Field F. oxysporum <2.2 x 10^-16 <2.2 x 10^-16 

ADP and KDB Lines- 

Greenhouse 

F. oxysporum - <2.2 x 10^-16 

Middle American Lines- 

Field 

R. solani <2.2 x 10^-16 <2.2 x 10^-16 
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Figure 2.2a: Histogram of Least Squares means in the Andean diversity panel (ADP) Fusarium 

oxysporum trial (inoculated treatment only) using a 1-7 root rot disease severity score. 
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Figure 2.2b: Histogram of Least Squares means in the kidney breeding line (KDB) Fusarium 

oxysporum trials and Natural infection trials (inoculated treatment only) using a 1-7 root rot 

disease severity score. 
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Figure 2.2c: Histogram of Least Squares means in the greenhouse Fusarium oxysporum trial 

(inoculated treatment only) using a 1-7 root rot disease severity score. 
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Figure 2.2d: Histogram plot of Least Squares means, for the Middle American breeding line 

trial inoculated with Rhizoctonia solani using the difference in post-emergence damping off in 

the inoculated treatment. 
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Figure 2.2e: Histograms of Least Squares means in the combined analysis of the Andean 

diversity panel and Kidney breeding line field trials and the greenhouse trial (2022 only) of the 

inoculated treatment only using a 1-7 root rot disease severity score. 
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Table 2.4: Table of variance components, heritability, and coefficient of variation for each 

population, utilizing the inoculated treatment only. Starred values are significant at a 0.05 

significance level. 

Population Year Isolate σ2
G σ2 

GxY 

σ2
Y σ2

e H2 CV % 

KDB Field 

Trial 

(KDB) 

Combined F. 

oxysporum 

0.08* 0.04 >0.001 1.47* 0.29 42.13 

 2021  0.09* - - 0.99* 0.26 34.99 

 2022  0.17* - - 2.08* 0.24 49.26 

ADP Field 

Trial (ADP) 

Combined F. 

oxysporum 

0.07* 0.01 >0.001 1.80* 0.24 45.59 

 2021  0.11* - - 1.21* 0.28 39.13 

 2022  0.08 - - 2.10* 0.14 48.19 

Greenhouse 

Trial (GH) 

2022 F. 

oxysporum 

0.10 - - 2.37* 0.12 31.04 

Natural 

Infection 

(KDB) 

Combined N/A 0.06 0.08 0.05 1.13* 0.19 27.69 

 2021  0.04 - - 0.98* 0.11 23.94 

 2022  0.38* - - 1.50* 0.43 35.32 

Middle 

American 

Field Trial 

(MAB) 

Combined R. solani 3.31* 2.42 0.00002 1.75* 0.49 67.32 

 2021  4.95* - - 16.31

* 

0.55 65.11 

 2022  6.72* - - 20.1* 0.57 71.06 

 

 



131 
 

 
Figure 2.3: Histogram of Least Squares means by genotype with standard error bars, ADP trial 

combined analysis. 
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Figure 2.4: Histogram of Least Squares means by genotype with standard error bars, ADP trial 

2021 analysis. 
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Figure 2.5: Histogram of Least Squares means by genotype with standard error bars, ADP trial 

2022 analysis. 
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Figure 2.6: Histogram of Least Squares means by genotype with standard error bars, KDB trial 

combined analysis.   
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Figure 2.7: Histogram of Least Squares means by genotype with standard error bars, KDB trial 

2021 analysis. 
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Figure 2.8: Histogram of Least Squares means by genotype with standard error bars, KDB trial 

2022 analysis. 
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Figure 2.9: Histogram of Least Squares means by genotype with standard error bars, 

Greenhouse trial. 
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Figure 2.10: Histogram of Least Squares means by genotype with standard error bars, Natural 

infection trial combined analysis. 
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Figure 2.11: Histogram of Least Squares means by genotype with standard error bars, Natural 

infection trial 2021 analysis. 



140 
 

 
Figure 2.12: Histogram of Least Squares means by genotype with standard error bars, Natural 

infection trial 2022 analysis. 
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Figure 2.13: Histogram of Least Squares means by genotype with standard error bars, Middle-

American trial combined analysis. 
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Figure 2.14: Histogram of Least Squares means by genotype with standard error bars, Middle-

American trial 2021 analysis. 
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Figure 2.15: Histogram of Least Squares means by genotype with standard error bars, Middle-

American trial 2022 analysis. 



144 
 

Table 2.5: Least squares means, least significant difference, and standard error by line for root 

rot rating of the ADP Fusarium oxysporum trial combined analysis. Asterisk (*) indicates lines 

that are not significantly different from the most resistant line. 

Line Lsmean SE 

ADP99* 2.05 0.28 

ADP444* 2.35 0.28 

ADP481* 2.45 0.28 

Dynasty* 2.65 0.28 

ADP462* 2.67 0.28 

ADP391* 2.70 0.28 

ADP626* 2.70 0.28 

ADP392* 2.77 0.28 

ADP612* 2.77 0.28 

ADP684* 2.77 0.28 

ADP214 2.80 0.28 

ADP429 2.85 0.28 

ADP4 2.87 0.28 

ADP511 2.87 0.28 

Talon 2.87 0.28 

ADP111 2.90 0.28 

ADP43 2.90 0.28 

ADP514 2.97 0.28 

ADP94 3.00 0.28 

ADP15 3.02 0.28 

ADP513 3.02 0.31 

ADP640 3.05 0.28 
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Table 2.5 (cont’d) 

ADP602 3.07 0.28 

ADP42 3.10 0.28 

ADP91 3.20 0.28 

ADP81 3.22 0.28 

ADP683 3.30 0.28 

Cabernet 3.30 0.28 

ADP1 3.32 0.28 

ADP21 3.32 0.28 

ADP88 3.35 0.28 

ADP474 3.37 0.28 

ADP2 3.40 0.28 

ADP519 3.42 0.28 

VAX3 3.47 0.28 

ADP112 3.52 0.28 

ADP186 3.60 0.28 

ADP621 4.00 0.28 

LSD 0.73 - 
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Table 2.6: Least squares means, least significant difference, and standard error by line for root 

rot rating of the ADP Fusarium oxysporum trial 2021 analysis.  Asterisk (*) indicates lines that 

are not significantly different from the most resistant line. 

Line Lsmean SE 

ADP99* 1.80 0.37 

ADP444* 1.90 0.37 

ADP462* 2.20 0.37 

ADP43* 2.30 0.37 

ADP612* 2.30 0.37 

ADP391* 2.40 0.37 

ADP481* 2.40 0.37 

ADP626* 2.60 0.37 

Dynasty* 2.60 0.37 

ADP429* 2.70 0.37 

ADP684* 2.70 0.37 

Talon* 2.70 0.37 

ADP214 2.80 0.37 

ADP392 2.80 0.37 

ADP511 2.90 0.37 

ADP514 2.90 0.37 

ADP2 3.00 0.37 

ADP91 3.00 0.37 

ADP513 3.09 0.44 

ADP21 3.10 0.37 

ADP4 3.10 0.37 

ADP42 3.10 0.37 
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Table 2.6 (cont’d) 

ADP94 3.10 0.37 

ADP1 3.20 0.37 

ADP683 3.20 0.37 

ADP81 3.20 0.37 

ADP111 3.30 0.37 

ADP112 3.30 0.37 

ADP602 3.30 0.37 

ADP640 3.30 0.37 

Cabernet 3.30 0.37 

ADP15 3.40 0.37 

ADP621 3.40 0.37 

ADP88 3.40 0.37 

ADP186 3.60 0.37 

ADP519 3.60 0.37 

VAX3 3.70 0.37 

ADP474 3.90 0.37 

LSD 0.97 - 
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Table 2.7: Least squares means, least significant difference, and standard error by line for root 

rot rating of the ADP Fusarium oxysporum trial 2022 analysis. Asterisk (*) indicates lines that 

are not significantly different from the most resistant line. 

Line Lsmean SE 

ADP99* 2.30 0.34 

ADP111* 2.50 0.34 

ADP481* 2.50 0.34 

ADP15* 2.65 0.34 

ADP4* 2.65 0.34 

Dynasty* 2.70 0.34 

ADP392* 2.75 0.34 

ADP214* 2.80 0.34 

ADP444* 2.80 0.34 

ADP626* 2.80 0.34 

ADP640* 2.80 0.34 

ADP474* 2.85 0.34 

ADP511* 2.85 0.34 

ADP602* 2.85 0.34 

ADP684* 2.85 0.34 

ADP94* 2.90 0.34 

ADP513* 2.95 0.34 

ADP391* 3.00 0.34 

ADP429* 3.00 0.34 

ADP514* 3.05 0.34 

Talon* 3.05 0.34 

ADP42* 3.10 0.34 
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Table 2.7 (cont’d) 

ADP462* 3.15 0.34 

ADP519 3.25 0.34 

ADP81 3.25 0.34 

VAX3 3.25 0.34 

ADP612 3.25 0.34 

ADP88 3.30 0.34 

Cabernet 3.30 0.34 

ADP683 3.40 0.34 

ADP91 3.40 0.34 

ADP1 3.45 0.34 

ADP43 3.50 0.34 

ADP21 3.55 0.34 

ADP186 3.60 0.34 

ADP112 3.75 0.34 

ADP2 3.80 0.34 

ADP621 4.60 0.34 

LSD 0.90 - 
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Table 2.8: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Kidney Fusarium oxysporum trial combined analysis. Asterisk (*) indicates lines 

that are not significantly different from the most resistant line. 

Line Lsmean SE 

K20730* 2.39 0.22 

Y19817* 2.47 0.23 

Beluga* 2.55 0.22 

K19832* 2.6 0.22 

Clouseau* 2.73 0.22 

Denali* 2.73 0.22 

Snowdon* 2.84 0.22 

K19610* 2.85 0.22 

K19830* 2.9 0.22 

K20717* 2.9 0.22 

Yellowstone 2.98 0.22 

Coho 3 0.22 

K20217 3.05 0.22 

K20744 3.08 0.22 

K20221 3.08 0.22 

Rosie 3.08 0.22 

K20743 3.1 0.22 

K19831 3.1 0.22 

K20732 3.15 0.22 

K20239 3.23 0.22 

K20734 3.25 0.22 

K20212 3.25 0.22 
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Table 2.8 (cont’d) 

K20745 3.3 0.22 

Red Cedar 3.35 0.22 

K20742 3.35 0.22 

Montcalm 3.4 0.22 

K19817 3.58 0.22 

Red Hawk 3.6 0.22 

K20721 3.68 0.22 

K20715 3.95 0.22 

ND Whitetail 3.98 0.22 

LSD 0.53 - 
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Table 2.9: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Kidney Fusarium oxysporum trial 2021 analysis. Asterisk (*) indicates lines that 

are not significantly different from the most resistant line. 

Line Lsmean SE 

K19610* 2.30 0.24 

K20712* 2.35 0.24 

Y19817* 2.45 0.24 

K16911* 2.50 0.24 

K18907* 2.50 0.24 

K20728* 2.55 0.24 

Rosie* 2.55 0.24 

Beluga* 2.65 0.24 

Clouseau* 2.70 0.24 

K20730* 2.70 0.24 

K17702*   2.75 0.24 

K17704* 2.75 0.24 

K19830* 2.75 0.24 

K20234* 2.75 0.24 

Coho* 2.75 0.24 

K17703* 2.80 0.24 

K19608* 2.80 0.24 

Snowdon* 2.80 0.24 

Denali* 2.85 0.24 

K20717* 2.85 0.24 

K19120* 2.85 0.24 

Montcalm* 2.90 0.24 
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Table 2.9 (cont’d) 

K19832* 2.90 0.24 

K20235* 2.90 0.24 

Yellowstone 3.00 0.24 

K20744 3.00 0.24 

K19111 3.00 0.24 

K20210 3.00 0.24 

K20720 3.05 0.24 

K20212 3.05 0.24 

K18312 3.10 0.24 

K19831 3.10 0.24 

K17201 3.15 0.24 

K20734 3.20 0.24 

K20745 3.20 0.24 

K20749 3.20 0.24 

K20217 3.20 0.24 

Red Cedar 3.20 0.24 

K20743 3.25 0.24 

K20239 3.25 0.24 

K20221 3.30 0.24 

K20742 3.35 0.24 

K16136 3.40 0.24 

ND Whitetail 3.40 0.24 

K20732 3.45 0.24 

K20721 3.50 0.24 
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Table 2.9 (cont’d) 

Red Hawk 3.60 0.24 

K16640 3.80 0.24 

K20715 3.80 0.24 

K19817 3.90 0.24 

LSD 0.62 - 
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Table 2.10: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Kidney Fusarium oxysporum trial 2022 analysis. Asterisk (*) indicates lines that 

are not significantly different from the most resistant line. 

Line Lsmean SE 

K20730* 2.09 0.37 

K19832* 2.30 0.36 

Y19808* 2.45 0.36 

Beluga* 2.45 0.36 

Y19817* 2.48 0.4 

Y17502* 2.50 0.36 

Y19810* 2.60 0.36 

Denali* 2.60 0.36 

Y19815* 2.65 0.36 

Patron* 2.75 0.36 

Clouseau* 2.75 0.36 

Y18703* 2.80 0.36 

K20221* 2.85 0.36 

K20732* 2.85 0.36 

Y19804* 2.85 0.36 

Snowdon* 2.89 0.39 

K20217* 2.90 0.36 

K20743* 2.95 0.36 

K20717* 2.95 0.36 

Yellowstone* 2.95 0.36 

K19830 3.05 0.36 

I17506 3.10 0.36 
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Table 2.10 (cont’d) 

K19831 3.10 0.36 

K20744 3.15 0.36 

K20239 3.20 0.36 

K19817 3.25 0.36 

Coho 3.25 0.36 

K20734 3.30 0.36 

K20742 3.35 0.36 

K20745 3.40 0.36 

K19610 3.40 0.36 

K20212 3.45 0.36 

Red Cedar 3.50 0.36 

Rosie 3.60 0.36 

Red Hawk 3.60 0.36 

Y19801 3.85 0.36 

K20721 3.85 0.36 

Montcalm 3.90 0.36 

K20715 4.10 0.36 

ND Whitetail 4.55 0.36 

LSD 0.90 - 
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Table 2.11: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Greenhouse Fusarium oxysporum trial analysis. Asterisk (*) indicates lines that 

are not significantly different from the most resistant line. 

Line Lsmean SE 

ADP481* 4.00 0.39 

K20730* 4.44 0.39 

VAX3* 4.50 0.39 

ADP462* 4.61 0.39 

K20712* 4.78 0.39 

K20732* 4.78 0.39 

ADP474* 4.89 0.39 

K16640* 4.89 0.39 

ADP186* 4.89 0.39 

ADP444* 4.94 0.39 

ADP391* 5.00 0.39 

ADP519 5.06 0.39 

ADP099 5.11 0.39 

K19832 5.17 0.39 

ADP612 5.28 0.39 

K19610 5.39 0.39 

Red Hawk 5.39 0.39 

K20715 5.50 0.39 

Yellowstone 5.67 0.39 

ADP043 5.67 0.39 

K19817 5.72 0.39 

K20721 5.72 0.39 



158 
 

Table 2.11 (cont’d) 

DYNASTY 6.00 0.39 

LSD 1.01 - 
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Table 2.12: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Natural infection trial combined analysis. Asterisk (*) indicates lines that are not 

significantly different from the most resistant line. 

Line Lsmean SE 

K19832* 3.17 0.21 

K19817* 3.37 0.21 

K20745* 3.52 0.21 

K20717* 3.55 0.21 

K20730* 3.57 0.21 

K20734* 3.75 0.21 

K20743 3.87 0.21 

K19830 3.91 0.21 

K19831 4.01 0.21 

K20721 4.06 0.22 

Clouseau 4.11 0.21 

K20221 4.13 0.21 

Denali 4.15 0.21 

K20715 4.18 0.21 

Coho 4.23 0.21 

K19610 4.25 0.21 

Snowdon 4.26 0.21 

K20742 4.27 0.21 

K20239 4.33 0.21 

K20217 4.39 0.21 

K20212 4.47 0.21 

K20732 4.54 0.21 
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Table 2.12 (cont’d) 

K20744 4.74 0.21 

Red Cedar 5.06 0.21 

LSD 0.59 - 
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Table 2.13: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Natural infection trial 2021 analysis. Asterisk (*) indicates lines that are not 

significantly different from the most resistant line. 

Line Lsmean SE 

K19832* 3.45 0.28 

K20730* 3.70 0.28 

K20743* 3.81 0.28 

K21904* 3.88 0.28 

K16136* 3.90 0.28 

K20720* 3.90 0.28 

K17704* 3.92 0.28 

K20728* 3.93 0.28 

K20734* 3.99 0.28 

K17703* 4.01 0.28 

K21909* 4.03 0.28 

K21902* 4.04 0.28 

 K21913* 4.05 0.28 

K19831* 4.07 0.28 

K21901* 4.08 0.28 

K20745* 4.08 0.28 

K21906* 4.09 0.28 

K20717* 4.10 0.28 

Beluga* 4.14 0.28 

K20235* 4.15 0.28 

K20239* 4.15 0.28 

I90013* 4.15 0.28 
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Table 2.13 (cont’d) 

K20721* 4.16 0.28 

Denali* 4.17 0.28 

K19830* 4.17 0.28 

Coho* 4.17 0.28 

K20217 4.21 0.28 

K17702 4.23 0.28 

K20744 4.23 0.28 

K21905 4.27 0.28 

K19817 4.27 0.28 

K19610 4.30 0.28 

K20715 4.38 0.28 

Snowdon 4.41 0.28 

Clouseau 4.44 0.28 

K20210 4.45 0.28 

K21908 4.46 0.28 

K20712 4.47 0.28 

Red Hawk 4.49 0.28 

K21912 4.50 0.28 

K21907 4.51 0.28 

Montcalm 4.51 0.28 

Red Cedar 4.53 0.28 

K20212 4.55 0.28 

K20732 4.56 0.28 

K19120 4.57 0.28 
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Table 2.13 (cont’d) 

K20749 4.57 0.28 

K19608 4.59 0.28 

K20742 4.64 0.28 

K21910 4.65 0.28 

K20221 4.65 0.28 

ND Whitetail 4.75 0.28 

K18312 4.76 0.28 

K21903 4.82 0.28 

K21911 4.90 0.28 

K20234 5.41 0.28 

LSD 0.75 - 
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Table 2.14: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Natural infection trial 2022 analysis.  Asterisk (*) indicates lines that are not 

significantly different from the most resistant line. 

Line Lsmean SE 

K19817* 2.47 0.35 

K19832* 2.89 0.35 

K20745* 2.95 0.35 

K20717* 3.02 0.36 

K20730* 3.44 0.35 

K20734 3.51 0.35 

K20221 3.62 0.35 

K19830 3.66 0.35 

Clouseau 3.80 0.35 

K20742 3.88 0.35 

K19831 3.94 0.35 

K20721 3.94 0.37 

K20743 3.94 0.36 

K20715 3.99 0.35 

Snowdon 4.12 0.35 

Denali 4.14 0.35 

K19610 4.20 0.35 

Coho 4.28 0.35 

K20212 4.39 0.35 

K20239 4.51 0.35 

K20732 4.52 0.35 

K20217 4.56 0.35 
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Table 2.14 (cont’d) 

K20744 5.25 0.35 

Red Cedar 5.58 0.35 

LSD 0.97 - 
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Table 2.15: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Middle-American Rhizoctonia solani trial combined analysis. Asterisk (*) 

indicates lines that are not significantly different from the most resistant line. 

Line Lsmean SE 

B19344* 3.31 1.47 

N20395* 3.44 1.47 

N19246* 3.50 1.47 

Spectre* 3.63 1.47 

N20404* 3.69 1.47 

N19226* 4.38 1.47 

Merlin* 4.75 1.47 

B19309* 5.12 1.47 

Ruby* 5.75 1.47 

P19103* 6.56 1.47 

Blizzard 7.13 1.47 

N20388 7.19 1.47 

B20591 7.31 1.47 

HMS Bounty 7.38 1.47 

Valiant 7.50 1.47 

Zorro 7.63 1.47 

Armada 8.19 1.47 

Nimbus 8.19 1.47 

G19613 8.25 1.47 

P19713 8.63 1.47 

R20627 8.69 1.47 

Caldera 8.75 1.47 
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Table 2.15 (cont’d) 

R20667 9.44 1.47 

R20659 9.56 1.47 

Zenith 9.69 1.47 

B20547 9.75 1.47 

Medalist 9.88 1.47 

Black Bear 10.94 1.47 

Black Beard 11.31 1.47 

Black Tails 11.38 1.47 

Viper 12.25 1.47 

LSD 3.55 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168 
 

Table 2.16: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Middle-American Rhizoctonia solani trial 2021 analysis. Asterisk (*) indicates 

lines that are not significantly different from the most resistant line. 

Line Lsmean SE 

N19226* 2.00 1.66 

N20404* 3.12 1.66 

G19611* 3.37 1.66 

P19103* 3.62 1.66 

N20395* 3.87 1.66 

B18504* 4.00 1.66 

B19344* 4.12 1.66 

N20388* 4.37 1.66 

N19246* 4.75 1.66 

G19613* 5.00 1.66 

P19707* 5.12 1.66 

Blizzard* 5.25 1.66 

N19285* 5.50 1.66 

Spectre 6.00 1.66 

S08418 6.25 1.66 

B20602 6.37 1.66 

R20627 6.37 1.66 

Armada 6.40 1.66 

B19309 6.50 1.66 

B19332 6.75 1.66 

B19330 7.12 1.66 

R20683 7.25 1.66 
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Table 2.16 (cont’d) 

B20591 7.37 1.66 

Caldera 7.50 1.66 

Merlin 7.50 1.66 

N19239 7.62 1.66 

S18904 7.75 1.66 

Valiant 7.75 1.66 

HMS Bounty 8.00 1.66 

B20597 8.12 1.66 

R20652 8.25 1.66 

Ruby 8.25 1.66 

R20659 8.37 1.66 

Nimbus 8.62 1.66 

B20547 8.75 1.66 

Zorro 8.75 1.66 

P16901 9.12 1.66 

B20549 9.25 1.66 

P19713 9.25 1.66 

R12844 9.87 1.66 

R20667 9.87 1.66 

Black Tails 10.25 1.66 

Black Bear 10.87 1.66 

Black Beard 11.87 1.66 

Zenith 11.87 1.66 

R20639 12.00 1.66 
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Table 2.16 (cont’d) 

Medalist 12.25 1.66 

Viper 13.50 1.66 

LSD 3.96 - 
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Table 2.17: Least squares means, least significant difference, and standard error by line for root 

rot rating of the Middle-American Rhizoctonia solani trial 2022 analysis. Asterisk (*) indicates 

lines that are not significantly different from the most resistant line. 

Line Lsmean SE 

Spectre* 1.25 2.54 

G21811* 1.75 2.54 

Merlin* 2.00 2.54 

N19246* 2.25 2.54 

B19344* 2.5 2.54 

N20395* 3.00 2.54 

Ruby* 3.25 2.54 

B19309* 3.75 2.54 

N18103* 4.25 2.54 

N20404* 4.25 2.54 

N21511* 5.25 2.54 

B20599* 5.50 2.54 

Liberty* 5.75 2.54 

N21525* 6.25 2.54 

Zorro* 6.50 2.54 

HMS Bounty* 6.75 2.54 

N19226* 6.75 2.54 

Charro* 7.00 2.54 

B20591* 7.25 2.54 

Valiant* 7.25 2.54 

Coral 7.50 2.54 
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Table 2.17 (cont’d) 

Medalist 7.50 2.54 

Zenith 7.50 2.54 

Nimbus 7.75 2.54 

P19713 8.00 2.54 

Eiger 8.25 2.54 

Cayenne 8.50 2.54 

Rosetta 8.75 2.54 

Blizzard 9.00 2.54 

R20667 9.00 2.54 

B21714 9.50 2.54 

P19103 9.50 2.54 

Adams 9.75 2.54 

Armada 10.00 2.54 

Caldera 10.00 2.54 

N20388 10.00 2.54 

B20547 10.75 2.54 

Black Beard 10.75 2.54 

R20659 10.75 2.54 

B21710 11.00 2.54 

Black Bear 11.00 2.54 

R20627 11.00 2.54 

Viper 11.00 2.54 

G19613 11.50 2.54 

R20669 12.25 2.54 
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Table 2.17 (cont’d) 

Black Tails 12.50 2.54 

B21708 14.75 2.54 

B20536 16.25 2.54 

LSD 6.22 - 
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Table 2.18: Correlation of least squares means for root rot rating between trials.  

Pearson’s Correlation 

(r) 

ADP and GH KDB and GH KDB and Natural 

Combined 0.20 0.65* 0.22 

2021 0.04 0.37 0.10 

2022 0.51 0.71** 0.24 

Values marked with *, **, and *** were significant at the 0.1, 0.05, and 0.01 level, respectively. 
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Figure 2.16: Correlation of root rot rating, stand count, vigor, and weight for the KDB trial. The 

scale on the right indicates correlation where the values represent the significance of correlation. 

 

Table 2.19: Correlation of root rot rating, stand count, vigor, and weight for the KDB trial.  

 Stand 

Count 

First Vigor 

Measurement 

Vigor Difference 

Measurement 

Last Vigor 

Measurement 

2022 Fresh 

Weight (g) 

Correlation 

with Root 

Rot Rating 

0.28  -0.27 -0.23 -0.17 -0.15 

Values marked with *, **, and *** were significant at the 0.1, 0.05, and 0.01 level, respectively. 
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Figure 2.17: Correlation of root rot rating, stand count, vigor, and weight for the ADP trial. The 

scale on the right indicates correlation where the values represent the significance of correlation. 

 

Table 2.20: Correlation of root rot rating, stand count, vigor, and weight for the ADP trial.  

 Stand 

Count 

First Vigor 

Measurement 

Vigor Difference 

Measurement 

Last Vigor 

Measurement 

2022 Fresh 

Weight (g) 

Correlation 

with Root 

Rot Rating 

-0.17  0.3* 0.07 0.25 -0.29* 

Values marked with *, **, and *** were significant at the 0.1, 0.05, and 0.01 level, respectively. 
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Figure 2.18: Correlation of root rot rating, root and shoot weights for the GH trial. The scale on 

the right indicates correlation where the values represent the significance of correlation. 

 

Table 2.21: Correlation of root rot rating, root and shoot weight for the GH infection trial.  

 Fresh Root 

Weight (g) 

Fresh Shoot 

Weight (g) 

Dry Root Weight 

(g) 

Dry Shoot 

Weight (g) 

Correlation with 

Root Rot Rating 

-0.67*** -0.27(P=0.22) -0.64*** -0.43** 

Values marked with *, **, and *** were significant at the 0.1, 0.05, and 0.01 level, respectively. 
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Figure 2.19: Correlation of root rot rating, yield, flowering date, lodging score, and maturity 

date for the Natural infection trial. The scale on the right indicates correlation where the values 

represent the significance of correlation. 

 

Table 2.22: Correlation of root rot rating, yield, flowering date, lodging score, and maturity date 

for the Natural infection trial.  

 Yield (CWT 

Acre) 

Flowering Date Lodging Score Maturity Date 

Correlation with 

Root Rot Rating 

-0.62*** -0.27 -0.19 -0.43*** 

Values marked with *, **, and *** were significant at the 0.1, 0.05, and 0.01 level, respectively. 
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