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ABSTRACT

It is known that every Riemannian metric on a closed manifold is conformal to a metric

whose exponential map preserves the Euclidean volume near a point. This thesis concerns the

classification problem of such “conformal normal metrics” on a conformal manifold (X, [g]) of

dimension n ≥ 3. We first prove the uniqueness of a conformal normal metric within a fixed

1-jet class of metrics. For the proof, we mainly follow Cao’s method in [Cao91] by analyzing

a non-linear singular elliptic equation in the framework of weighted Hölder spaces. Our

second result concerns the smooth dependence of conformal normal metrics on parameters.

As applications, we first construct a smooth Riemannian metric on X ×X that is conformal

normal near the diagonal on each fiber, and then use this metric to give a simplified proof

of the regularity of Habermann’s canonical metric.
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CHAPTER 1

INTRODUCTION

A general conformal structure on dimension n ≥ 3 manifolds is locally nontrivial. Indeed, by

the Weyl-Schouten Theorem, a conformal metric on manifolds of dimension n ≥ 4 is locally

conformally flat if and only if the Weyl tensor vanishes (Cotton tensor for 3-manifolds).

In consequence, generic metrics on manifolds of dimension n ≥ 3 do not admit isothermal

coordinates. Nonetheless, within a given conformal class, one can always find a metric with

the so-called conformal normal coordinates, a special coordinate system first introduced by

Lee and Parker in [LP87]. Explicitly, we have:

Theorem 1.1 (cf.Theorem 5.1, [LP87]). Let X be a smooth manifold together with a con-

formal class C. At a point p ∈ X, there is a conformal metric g ∈ C such that for each

N 󰃍 2

det gij = 1 +O
󰀃
|x|N

󰀄

in g-normal coordinates {xi} at p.

Lee and Parker’s result has later on been improved by Cao [Cao91], and Günther [Gün93]

independently. They proved the local existence of a conformal normal metric in a neighbor-

hood Up of a given point p.

On one hand, under conformal normal coordinates, local analysis on a conformal man-

ifold can be simplified to a great extent. On the other hand, the set of conformal normal

metrics is of interest on its own. By Theorem 5.6 in [LP87], on the jet-level, the confor-

mal transformation group 󰁧CO(n) acts on the set of conformal normal coordinates free and

transitively, which indicates a relation between the conformal normal metrics and the global

conformal structure C(see Theorem 3.2.4).

Our first result concerns the germ level uniqueness of conformal normal metrics. In

Chapter 5, we prove the following result:

Theorem 1.2. Let (X, [g]) be a conformal manifold. At p ∈ X, any 1-jet class j1p(g) of

metrics in [g] contains a conformal normal metric that is unique up to the germ level.
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The proof is based on Cao’s approach to the existence theorem. In [Cao91], Cao rephrased

the local existence of a conformal normal metric as the problem of finding solutions of a non-

linear singular elliptic equation in a class of functions of weighted Hölder norms.

Briefly, fix a point p ∈ X and a background metric g0, and let r0 = dist(p, ·) be the

g0-distance from p. Then a conformal metric g = Φg0 is conformal normal at p if and only

if its distance function r from p satisfies

∆gr =
n− 1

r
. (1.1)

Let w be the function defined by r = r0e
w(x). Then the conformal factor Φ and w

determine each other by the formula

Φ = 󰀂dr󰀂2g0 =
󰀃
1 + 2xiwi + r20󰀂dw󰀂2g0

󰀄
e2w.

The Equation (1.1) can be converted into an equation for w in g0 normal coordinates of

the form

V (x, ∂w, ∂2w) = L0(w) +G(x, ∂w) +Q(x, w, ∂w) = −
∂r0 ln

󰁳
det(g0(x))

r0
, (1.2)

where V is a non-linear elliptic equation of w whose symbol is singular at the origin, and L0

is the scale-invariant linearization of V . See Chapter 4 for more details.

To understand Equation (1.2), we first study the linear operator L0. We show that

kerL0 = {0} when restricted to functions that vanish to the infinite order at the origin

(cf. Lemma 4.1.5). We use this fact to give a uniqueness theorem for the solution of Cao’s

equation (1.2) (cf. Theorem 5.2). This local analysis result is then used to prove that there

is a unique germ of a conformal normal metric in each equivalence class in the set

J1[g] =
󰀋
j1p(g)

󰀏󰀏 g ∈ [g], p ∈ X
󰀌

of 1-jets of metrics in the conformal class.

The organization of the thesis is as follows. In Chapter 2, we fix some notations and

review background materials we will use throughout the discussion. This includes reviewing

some basic facts about the relation between metric and exponential maps, jet spaces and jet

bundles, and some basic facts about local conformal geometry.

In Chapter 3, we define conformal normal metrics and review Lee and Parker’s work
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in [LP87] on the existence of conformal normal metrics up to the jet level. As an application

of Lee and Parker’s method, in Section 3.1, we give a jet level relation between conformal

normal metrics and flat metrics on the conformally flat manifolds which will be generalized

to a relation on the germ level by the uniqueness theorem.

In Chapter 4, we review Cao’s approach to the local existence of conformal normal metrics

and prove a unique continuation lemma for the L0 operator.

In Chapter 5, we state and prove the main theorem on the uniqueness of conformal

normal metrics.

Finally, in Chapter 6, we show the smooth dependence of conformal normal metrics on

the moduli space. This leads to the proof of our second main result: the existence of a metric

h = g ⊕ Φ2g on X ×X such that, in a neighborhood of the diagonal, the restriction of h to

the slice Sp = {(p, y)|y ∈ X} is a conformal normal metric. As a further application, we use

the metric h to give a simplified proof of the regularity of Habermann’s canonical metric.
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CHAPTER 2

PRELIMINARIES

2.1 Preliminaries on Exponential Maps

We will work at the level of germs.

Lemma 2.1.1. Consider two conformal metrics g and g̃ = Φ2g defined in a neighborhood

of p with Levi-Civita connections ∇ and ∇̃, distance functions r = dist(p, ·) and r̃, and

exponential maps exp g
p : TpM → M and exp g̃

p. Then, at the level of germs at p, the following

are equivalent:

(a) ∇ = ∇̃

(b) exp g
p = exp g̃

p

(c) r̃ = cr where c = Φ(p)

(d) Φ is constant.

In particular, conformal metrics g and g̃ have the same distance function if and only if g = g̃.

Proof: The exponential map is defined by exp g
p(v) = γ(1) where γ : [0, 1] → M is the

solution to the geodesic equation ∇γ̇ γ̇ = 0 with γ(0) = p and γ̇(0) = v. This solution is

unique, so (a) implies (b).

If (b) holds, then the pullback functions ρ = (exp g
p)

∗r and ρ̃ = (exp g̃
p)

∗r̃ are equal. But

ρ(v) is the norm |v|g for the inner product gp on TpM , and therefore ρ̃2(v) = g̃p(v, v) =

Φ(p)2gp(v, v) = Φ(p)2ρ2(v) for all v ∈ TpM . These exponential maps are local diffeomor-

phisms, so (c) holds.

The distance function for g satisfies |dr|g = 1, so if (c) holds then 1 = |dr̃|g̃ = |cdr|Φg =

cΦ−1 |dr|g = cΦ−1, so Φ is constant. Finally, the implication (d) =⇒ (a) is clear from the

local coordinate formula for the Christoffel symbols. □

For an alternative proof that (a) and (d) are equivalent, consider the difference

D(X, Y ) = ∇XY − ∇̃XY (2.1.1)

for vector fields X and Y . The properties of the Levi-Civita connection show that D(X, Y ) is

tensorial in both X and Y and is symmetric. Thus D is a tensor D ∈ Γ(Sym2(T ∗M)⊗TM)

that vanishes if and only if ∇ = ∇̃; by polarization this is also equivalent to the vanishing
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of D(X,X). For conformal metrics g and g̃ = e2fg, the formula for the Christoffel symbols

shows that

D(X, Y ) = Xf · Y + Y f ·X − g(X, Y ) ·∇f.

If Φ = ef is a constant, then D vanishes. Conversely, if D = 0 then, using inner products

for g, we have

0 = 〈X,D(X,X)〉 = 2Xf · |X|2 − |X|2〈X,∇f〉 = |X|2 ·Xf

for all vector fields X, so f is constant.

As an aside, we record the following variation of Lemma 2.1.1 in which the metrics are

not assumed to be conformal, but the exponential maps are assumed to be equal at all (or

nearly all) points.

Proposition 2.1.2. Suppose that g and g̃ are metrics on an open set U , that U is geodesically

convex for both g and g̃ and that S ⊂ U is a non-empty submanifold of codimension 1. Then

the following are equivalent:

(a) ∇ = ∇̃ (b) exp g
p = exp g̃

p for all p ∈ U (c) exp g
p = exp g̃

p for all p ∈ S.

Proof: The proof of Lemma 2.1.1 shows that (a) implies (b). Obviously (b) implies (c).

Now assume that (c) holds, and fix p ∈ S. Then exp g
p is a diffeomorphism from a

neighborhood V of 0 in TpU to U . Because TpS is a codimension 1 linear subspace of Tp, so

U∗ =
󰀋
exp p(v) ∈ U

󰀏󰀏 v ∈ TpU \ TpS
󰀌

is an open dense subset of U . For each q = exp p(v) ∈ U∗, the path from p to q defined by

γq(t) = exp p(tv), 0 ≤ t ≤ 1, is a geodesic for the metric g, and is transverse to S at the

point p. By assumption, γq is also a geodesic for the metric g̃.

Reversing perspective, we can write p = exp q(w), where w = −γ̇q(1) ∈ TqU . Because

γq is a geodesic for both metrics, we have D(w,w) = 0. Furthermore, for any w′ ∈ TqU

sufficiently close to w, there is a τ close to 1 such that the g-geodesic exp q(τw
′) intersects

S transversally at a point p′ = exp q(τw
′) close to p. Applying the previous argument with

p replaced by p′ shows that D(τw, τw) = τ 2D(w′, w′) = 0. Therefore |D(w′, w′)|4, which is

a quadric polynomial on TqU , vanishes on a neighborhood of w so, by analyticity, is zero.
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This is true at each point q in the dense set U∗ ⊂ U . Therefore the tensor D vanishes on U ,

so ∇ = ∇̃. Thus (c) implies (a). □

The conditions of Proposition 2.1.2 are also equivalent to g̃ = cg if we impose one

additional assumption. Recall that a Riemannian manifold (U, g) is irreducible if, for some

p ∈ U , the action of the holonomy group Hp(U, g) at p on TpU is irreducible. This property

is independent of p (cf. [KN63]).

Corollary 2.1.3. Suppose that g and g̃ are metrics on an open set U and that (U, g) is

irreducible. Then the Levi-Civita connections of g and g̃ are equal if and only if g̃ = cg for

some constant c.

Proof: As in the proof of Lemma 2.1.1, if g̃ = cg then ∇ = ∇̃. For the converse, assume

that ∇ = ∇̃. This immediately means that the holonomy group Hp(U, g), which is defined

by parallel transport with respect to ∇, is equal to the holonomy group Hp(U, g̃) defined by

∇̃.

Define a vector bundle map A : TU → TU by the condition

g(AX, Y ) = g̃(X, Y ) (2.1.2)

for all vector fields X, Y . Because g̃ is symmetric, this implies that A is self-adjoint for

the metric g, and hence is diagonalizable. Differentiating and noting that ∇g = 0 and

∇g̃ = ∇̃g̃ = 0, one sees that ∇A = 0.

Now suppose that γ(t) is a path in U starting and ending at p with velocity vector

T . If X(t) is a vector field along γ that is parallel, i.e. ∇TX = 0, then ∇TA(X) =

(∇TA)X +A(∇TX) = 0, so AX is also parallel. It follows that A commutes with the action

of Hp(U, g) on TpU . By Schur’s Lemma, A is a multiple of the identity. This is true for every

p ∈ U , so (2.1.2) shows that g̃ = Φ2g for some smooth function Φ. Applying Lemma 2.1.1,

we conclude that g̃ = cg for a constant c > 0. □
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2.2 Preliminaries on Jet Spaces and Jet Bundles

Jet Spaces

Definition 2.2.1. The set C∞
p (Rn,Rm) of germs of smooth functions f : Rn → Rm at a

point p ∈ Rn is a module over C∞(Rn). Let mp ⊆ C∞(Rn) be the ideal of functions that

vanish at p. Define the k-jet space at p by:

Jk
p (Rn,Rm) =

C∞
p (Rn,Rm)

mk+1
p · C∞

p (Rn,Rm)

The jet space of functions f such that f(p) = q is

Jk
p (Rn,Rm)q =

󰀋
jkp (f) ∈ Jk

p (Rn,Rm)|f(p) = q
󰀌

In particular, we denote Lk
n,m = Jk

0 (Rn,Rm)0, elements in Lk
n,m can be identified as the

kth order Taylor polynomials of the generating functions. Explicitly, let {xi} and {yj} be

coordinates on Rn and Rm respectively, and α be a multi-index, then every element jkp (f) in

Lk
n,m has a polynomial representative:

f(x) = (f j(x)) =

󰀳

󰁃
󰁛

1≤|α|≤k

cjαx
α

󰀴

󰁄

Define the following two natural operations on Lk
n,m:

(a) For l ≤ k, the jet projection map πk
l : Lk

n,m → Ll
n,m is defined by the natural projection

of modules:
C∞

0 (Rn,Rm)0

mk+1
0 · C∞

0 (Rn,Rm)0
→ C∞

0 (Rn,Rm)0

ml+1
0 · C∞

0 (Rn,Rm)0

󰀡
ml+1

0 · C∞
0 (Rn,Rm)0

mk+1
0 · C∞

0 (Rn,Rm)0
,

(b) The jet composition map Lk
n,m × Lk

m,d → Lk
n,d is defined by composing the polynomial

representatives and truncating to degree k.

Let Diff0(Rn,Rn)0 be the group of germs of diffeomorphisms of Rn fixing the origin. The

k-jet space of Diff0(Rn,Rn)0, denoted as GLk
n, is a Lie group concerning the jet composition

operation. In particular, for k = 1, GL1
n = GL(n), the general linear group.

For a Lie subgroup G ⊆ Diff0(Rn,Rn)0, the k-jet space of G is a Lie subgroup of GLk
n,

denoted as Gk. Denote g1 the Lie algebra of G1, then the manifold structure on Gk is

inherited from the following identity:

Gk =
󰀋
(A, τ1, . . . , τk−1) | A ∈ G1, τi ∈ Symi+1(Rn), τi(−, v1, . . . , vi) ∈ g1

󰀌
,
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where Symi+1(Rn) is the space the symmetric (i+ 1)-linear maps Rn×(i+1) → Rn.

The jet projection πk+1
k : Gk+1 → Gk is given by πk+1

k (A, τ1, . . . , τk) = (A, τ1, . . . , τk−1).

The kernel of πk+1
k is called the k-jet prolongation of g1 and is denoted as gk+1.

Define the order of G to be the smallest integer k such that πk+1
k is an isomorphism,

namely the smallest k such that gk+1 = 0. For a group G of order k, the Lie algebra g of G

decomposes as:

g = g1 ⊕ · · ·⊕ gk,

which is a graded Lie algebra. For τp ∈ gp and τq ∈ gg the Lie bracket [τp, τq] ∈ gp+q and is

given as follows (cf. [Kob12]):

[τp, τq](v0, v1, . . . , vp+q) =
1

p!(q + 1)!

󰁛
τp(τq(vj0 , . . . , vjq), vjq+1 , . . . , vjp+q)

− 1

(p+ 1)!q!

󰁛
τq(τp(vk0 , . . . , vkp), vkp+1 , . . . , vkp+q)

Definition 2.2.2. Let X be a smooth manifold of dimensions n and U ⊂ Rn be an open

neighborhood of 0. We say two local diffeomorphisms f, g : U → X define the same k-frame

at a point p ∈ X if f(0) = g(0) = p and jk0 (ϕ
−1 ◦ f) = jk0 (ϕ

−1 ◦ g) ∈ GLk
n, where ϕ is an

arbitrary local chart at p.

It is clear that a k-frame at p ∈ X is well-defined independent of the choice of the local

chart ϕ. The group GLk
n acts on the set of k-frames at p free and transitively by the jet

composition.

Definition 2.2.3. For a Lie subgroup G ⊆ GLk
n, a principal G bundle π : P → X defines

a G-structure of order k on X if for ∀p ∈ X the fiber Fp = π−1(p) consists of k-frames at p

and the principal bundle action of G on Fp is by the jet composition.

Classical examples of G-structures on a manifold X include: GL+
n structure defines an

orientation on X; SLn structure defines a volume element on X; O(n) structure defines a

Riemannian metric on X and so on. We will be focusing on the G-structure characterization

of conformal structures, see Section 2.3 and [Kob12] for more details.
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Jet Bundles

Definition 2.2.4 ([Par]). Let π : E → M be a smooth vector bundle, the set Γ(E) of

smooth sections is a module over C∞(M). Denote mp = {f ∈ C∞(M) | f(p) = 0} the ideal

of smooth functions vanishes at p ∈ M . We define the k-jets of sections of E at P by:

Jk(E)p = Γ(E)/mk+1
p · Γ(E)

Jk(E)p is a vector space with vector summation as [ξ]k + [η]k = [ξ + η]k and scalar multipli-

cation as λ · [ξ]k = [λ · ξ]k. Jk(E) = ∪p∈MJk(E)p is a vector bundle over M called the kth

jet bundle of the vector bundle E.

In particular, J0(E) ≃ E. In coordinates {xi} near p and a basis {σα} of Ep, the k-jet of a

section ξ is uniquely represented by its degree k Taylor polynomial

[ξ]k =
󰁛

α

󰀣
aα0 +

󰁛

i

aαi (x− p)i + · · ·+
󰁛

aαi1i2···ik(x− p)i1i2···ik

󰀤
σα

We have the following exact sequence of jet bundles:

0 → Sk(T ∗M)⊗ E → Jk(E) → Jk−1(E) → 0, (2.2.1)

where the map πk : Jk(E) → Jk−1(E) is the natural jet projection, and Sk(T ∗M) is the

k-fold symmetric tensor product of T ∗M , the map Sk(T ∗M) ⊗ E → Jk(E) is defined by

identifying the kernel of πk with Sk(T ∗M)⊗ E.

In particular, when E = M ×Rn being a trivial vector bundle, we have a canonical isomor-

phism

J1(E) ≃ T ∗M⊕n ⊕ Rn (2.2.2)

defined as follows: Let s ∈ Γ(E) be a representative of an element j1p(s) ∈ J1(E). Take

s2 = π2 ◦ s ∈ C∞(M,Rn), where π2 : M × Rn → Rn is the projection to the Rn compo-

nent. Define η : J1(E) → T ∗M⊕n by η(j1p(s)) = d(s2)(p). It is clear that η is well defined

independent of the choice of the representative s and gives a splitting of the short exact

sequence (2.2.1), and hence we have the isomorphism (2.2.2).

2.3 Preliminaries on Conformal Geometry

We use [Kob12] as a main reference for this section.
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Let R̂n = Rn ∪ {∞} be the extended Euclidean space. Let 󰁧CO(n) be the group of

conformal automorphism of R̂n having the origin fixed. A general element ϕ ∈ 󰁧CO(n) is of

the form:

ϕ(x) = λ
Ax− x2η

1− 2η · Ax+ x2η2
, (2.3.1)

where λ > 0, η ∈ Rn, A ∈ O(n).

Denote 󰁧CO
k
(n) the group of k-jets of 󰁧CO(n) as a Lie subgroup of Diff0(Rn,Rn)0.

For k = 1, 󰁧CO
1
(n) = CO(n), the linear conformal group on Rn. Explicitly, we have:

CO(n) = {A ∈ GL(n);AtA = λI,λ ∈ R+} ∼= O(n)× R+.

For k = 2, we have the following short exact sequence:

1 → co1
τ−→ 󰁧CO

2
(n) −→ 󰁧CO

1
(n) → 1, (2.3.2)

where co1(n) is the first prolongation of the Lie algebra co(n) of CO(n).

By definition co1(n) = {f ∈ Sym2(Rn) | ∀v ∈ Rn, f(−, v) ∈ co(n)}. co1(n) is isomorphic

to Rn by the following map:

t : Rn → co1(n)

v 󰀁→ tv(a, b) =
1

2
(〈v, a〉b+ 〈v, b〉a− 〈a, b〉v).

The map τ in (2.3.2) can be given explicitly as τ(t)(x) = x+ t(x, x).

Let ϕ ∈ 󰁧CO(n) be a general element as given in(2.3.1). By taking the 2-jet of ϕ at the

origin, we have:

j20(ϕ) = ϕk
i x

i + ϕk
ijx

ixj = λ(Ax+ tη(Ax,Ax)). (2.3.3)

The coefficient matrix C = ϕk
i of the linear terms of j20(ϕ) equals the matrix λA, hence

λ = (det(C))
1
n and A = C

(det(C))
1
n
. Let {ei} be the standard basis of Rn, then the quadratic

term of j20(ϕ) at A−1(ei) equals η/2. Hence the data {λ, A, η} is uniquely determined by

j20(ϕ). Therefore elements in 󰁧CO(n) are uniquely determined by j20(ϕ), namely 󰁧CO(n) is a

subgroup of GL2
n.

By the fact that 󰁧CO(n) is a subgroup of GL2
n, we define the 󰁧CO(n) structure of order 2

on a smooth manifold X as in definition 2.2.3, to be a principal 󰁧CO(n) bundle π : P → X

of 2-frames with 󰁧CO(n) acts on each fiber by the jet composition.
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Explicitly, in local coordinates {x} at p ∈ X, let f(x) = clix
i + clijx

ixj be the polynomial

representative of a 2-frame at p. The action of ϕ ∈ 󰁧CO(n) on f is given as

f · ϕ = j20(f ◦ ϕ) = (clkϕ
k
i )x

i + (clkϕ
k
ij + clksϕ

k
iϕ

s
j)x

ixj, (2.3.4)

where ϕk
i and ϕk

ij are the coefficients of j20(ϕ) given in (2.3.3).

In fact, a 󰁧CO(n) structure P is uniquely determined by a conformal structure [g] and

vice versa. We argue as follows (cf. [Kob12]):

On one hand, suppose P is a 󰁧CO(n) structure on X. Projecting P to the corresponding

1-jet bundle P 1 by the jet projection map, we obtain P 1 as a principal CO(n) bundle. Since

CO(n) = O(n) × R+, a section s of the orbit bundle P 1/O(n) defines a principal bundle

reduction of P 1 to a principal O(n) bundle H = H(s). At each point p ∈ X choose a frame

θ ∈ Hp, define a metric on TpX as g(p)(v, w) =
󰁓

viwi, where vi and wi are components of

v and w with respect to the frame θ. Let θ′ ∈ Hp be a different frame such that θ′ = Aθ with

A ∈ O(n). With respect to θ′, the metric g′(p)(v, w) =
󰁓

(Av)i(Atw)i =
󰁓

viwi = g(p).

Hence the metric g is well defined independent of the choice of θ ∈ Hp. Different choices of

section s will give metrics conformal to g, hence defining a conformal structure [g].

On the other hand, suppose [g] is a conformal structure on X. Denote Og(n) the or-

thonormal frame bundle with respect to g ∈ [g], define

P 1 =
󰁞

p∈X,g∈[g]

Og
p(n).

P 1 is a principal CO(n) bundle. The corresponding 󰁧CO(n) structure P on X is defined

as the first prolongation of P 1 as follows:

We first embed co1(n) as a subgroup of End(Rn ⊕ co(n)) by the following map:

ι : co1(n) → End(Rn ⊕ co(n))

t 󰀁→

󰀻
󰀿

󰀽
t̄(v) = v + t(−, v), for v ∈ Rn

t̄(A) = A, for A ∈ co(n).

Let Λ2Rn∗ ⊗ Rn be the space of skew-symmetric bilinear mappings, define a linear map

∂ : co(n)⊗ Rn∗ → Λ2Rn∗ ⊗ Rn by

(∂f)(v1, v2) = f(v1)v2 − f(v2)v1,
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where f ∈ co(n)⊗ Rn∗, v1, v2 ∈ Rn∗.

We choose once and for all a direct sum complement of ∂(co(n) ⊗ Rn∗) in Λ2Rn∗ ⊗ Rn,

denoted as C.

Let θ ∈ Ω1(P 1,Rn) be the canonical 1 form on P 1. At a point u ∈ P 1, a n-dimensional

subspace H of TuP
1 is called horizontal if θ : H → Rn is an isomorphism. A horizontal space

H is called C admissible if dθ(TH ⊕ TH) ∈ C. Every C admissible space H determines a

linear frame of TuP
1 as follows:

Let f : co(n) → TuP
1 be the map that sends A ∈ co(n) to A∗

u, where A∗ is the fundamental

vector field on P 1 with respect to A. The direct sum of f with the map θ−1 : Rn → H ⊆ TuP
1

defines a linear frame θ−1 ⊕ f : Rn ⊕ co(n) → TuP
1.

The union of all linear frames induced from C admissible horizontal spaces is a principal

ι(co1(n)) bundle of 1-frames P over P 1. As bundle over X, P is a principal 󰁧CO(n) bundle

of 2-frames defining a 󰁧CO(n) structure on X.
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CHAPTER 3

CONFORMAL NORMAL METRICS AT JET LEVELS

Let (X, g) be a Riemannian manifold (all manifolds are assumed to be smooth of dimension

n ≥ 3). We first give a coordinate-free definition of the determinant of the metric g near a

point p ∈ X.

Let U ⊆ TpX be an open neighborhood of the origin on which the Riemannian expo-

nential map is a well-defined diffeomorphism onto an open neighborhood V of p. Let dvg

be the g-Riemannian volume form which can defined in a coordinate-free way. The pullback

exp∗g,pdvg|V by the exponential map at p is a volume form on U . On the other hand, the

inner product space (TpX, g(p)) has a canonical volume form dvp. Both volume forms are

nonvanishing sections of Λtop(TpU) which is a real line bundle, and hence the division exp∗dvg
dvp

is a well-defined smooth function on U . Define det(exp ∗g) := (
exp ∗dvg

dvp
)2.

Definition 3.1. A metric g is called conformal normal at a point p, if there exists an open

neighborhood V of p such that det(exp ∗g) = 1 on U = exp −1(V ). Also, we say g is kth

order conformal normal at p if the k-jet jk0 (det(exp ∗g)) = 1.

An arbitrary Riemannian metric is not necessarily conformal normal, indeed the word

“conformal” indicates the following fact (cf. [Cao91, Corollary 0.1]):

Theorem 3.2. For any Riemannian metric g on X, and a point p ∈ X, there exists a

conformal metric g̃ = Φg which is conformal normal in a small neighborhood of p.

Given two conformal metrics g and g̃ = e2fg, assume that they are both conformal normal

and define the same exponential map at a point p, we then have:

det(exp ∗(g̃)) = det(exp ∗(e2fg)) = e2nf det(exp ∗g) = e2nf = 1. (3.1)

Thus g = g̃ within the injective radius, and conformal normal metrics at p are uniquely

determined by the exponential maps on TpX. In fact, as we will show in Theorem 5.1, a

conformal normal metric is locally uniquely determined by its 1-jet class.

In this chapter, we work on jet levels and fix the following notations:

On a conformal manifold (X, [g]) at a point p ∈ X, for k = 1, 2, . . . ,∞, define the set of
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k-jets of Riemannian metrics at p with kth order conformal normal determinant as

CN k(p) = {jkp (g)|g ∈ [g], jk0 (det(exp ∗
pg)) = 1}. (3.2)

And correspondingly, define the conformal normal k frames as:

CNCk(p) = {jk0 (ϕ) | ϕg,β = exp g,p ◦ β, β ∈ O(TpX, gp), g ∈ [g] s.t. jk0 (det(exp ∗
pg)) = 1}.

For k = 1, j10(det(exp ∗
pg)) = 1 holds for any metric g. Thus we have

CN 1(X) = J1[g] =
󰀋
j1p(g) | g ∈ [g], p ∈ X

󰀌
.

Denote C∞(Sym2 T ∗X) the space of smooth symmetric (0, 2) tensors, which is a Fréchet

space with C∞ topology. Fix a background Riemannian metric g0, by Theorem 1.5 in [FM77],

the conformal class [g0] as the orbit of the C∞(X) action on g0 is a smooth sub-manifold of

C∞(Sym2 T ∗X), i.e, the map Φ0 : C∞(X) → C∞(Sym2 T ∗X) by Φ0(f) = efg0 is a smooth

embedding. Define the descending of Φ0 to 1-jets by the following diagram:

C∞(X) C∞(Sym2 T ∗X)

J1(R) J1(Sym2 T ∗X)

j1p(f) j1p(e
fg0)

Φ0

π1 π1

J1Φ0

J1Φ0 is a bundle isomorphism onto J1[g]. Indeed, the image

j1p(e
fg0) = ef(p)(j1p(g

0) + j1p(f − f(p))g0(p))

is uniquely determined by j1p(f).

In summary, we have the following lemma:

Lemma 3.3. A metric g0 ∈ [g] induces a smooth bundle isomorphism :

η := J1Φ0 ◦ ι−1 : R⊕ T ∗X −→ J1[g] = CN 1,

where ι is the bundle isomorphism defined in (2.2.2):

ι : J1(R) −→ R⊕ T ∗X

j1p(f) 󰀁−→ (f(p), df(p)).
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3.1 A Jet Level Relation of Flat, Conformally Flat and Conformal Normal
Metrics

First, recall the following theorem on flatness and conformal flatness of Riemannian

metrics (cf. [Lee18, Theorem 7.10 & Theorem 7.37]). As usual, a Riemannian manifold

(X, g) is flat if and only if its Riemann curvature tensor vanishes identically.

Weyl-Schouten Theorem. A manifold (X, g) of dimension n ≥ 4 is locally conformally

flat if and only if its Weyl tensor is identically zero. A 3-manifold is locally conformally flat

if and only if its Cotton tensor is identically zero. The Cotton and Weyl tensors are defined

in equations (3.1.13) and (3.1.12) below.

Inspired by the Weyl-Schouten Theorem, we give the following definition of jet-level

flatness and conformal flatness:

Definition 3.1.1. We say a Riemannian metric g is flat up to order r at a point p ∈ X if

its Riemann curvature tensor vanishes to order r at p. Similarly, we say that a conformal

structure [g] on a manifold of dimension n ≥ 4 is conformally flat up to order r if the Weyl

tensor W vanishes to order r at p. A 3-manifold is conformally flat up to order r at p if its

Cotton tensor vanishes to order r − 1 at p.

To be brief, we fixed some notations. We work under a g-normal coordinate chart and use

the Einstein summation convention. Let µ = (µ1 . . . µk) be a k multi-index, with 1 ≤ µi ≤ n

and |µ| = k ≥ 2. The permutation group Sk acts on µ by permuting µi and the orbits

of this action define an equivalent relation µ ∼ µ′. Each equivalence class has a unique

representative µ̄ = (µ1 . . . µk) in ascending order 1 ≤ µ1 · · · ≤ µk ≤ n. When we have a list

of multi-indices, we use upper indices: µ1, . . . , µl.

Let Riemµ denote the matrix whose ijth entry is the covariant derivative Ri
µ1µ2j;µ3...µk

.

Then define

Riemµν := RiemµRiemt
ν +RiemνRiemt

µ, (3.1.1)

where the upper t denotes the transpose matrix. Define Riemµ1...µl by this formula and

induction, i.e. take µ to be µ1 and ν to be µ2 · · ·µl in (3.1.1).
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Denote ∂Riemµ = ∂µ3...µk
Riµ1µ2j for the partial derivatives. Since we have

Rj1j2j3j4;i = ∂iRj1j2j3j4 − Γk
j1i
Rkj2j3j4 − · · ·− Γk

j4i
Rj1j2j3k, (3.1.2)

Riemµ and ∂Riemµ differ by derivatives of order less than |µ| − 2 at the origin in normal

coordinates.

Denote the covariant derivatives and partial derivatives of the Ricci curvature tensor Ric

similarly as above.

With this notation, one can give closed formulas for the Taylor expansions of g and

det(g) under the normal coordinates. This was neatly done by Schubert and van de Ven

in [MSvdV99]. Specifically,

g = I +
∞󰁛

l=1

∞󰁛

|µi|=2

cµ1...µlRiemµ1...µl(0) xµ1+···+µl

, (3.1.3)

where the coefficients cµ1...µl are constants depend only on absolute values |µi| of µi. In

particular, for l = 1, and |µ| = k, we have ck =
2k−2
(k+1)!

.

Remark 3.1.2. The expansion (3.1.3) is obtained in [MSvdV99] by writing

g(x) = et(x)e(x),

Then, as shown in [MSvdV99], the coefficients in the Taylor series

e(x) = I +
󰁛

|µ|≥2

eµ(0)x
µ

are given, for each µ with |µ| = k, by

(k + 1)eµ(0) = (k − 1)Riemµ(0) +
k−2󰁛

n=2

(n+ 1)

󰀕
k − 1

n+ 1

󰀖
Riem(µ1...µk−n)(0)e(µk−n+1...µk)(0)

Combining the above three formulas yields (3.1.3) and also defines the coefficients cµ1...µl

recursively.

To calculate det(g), write g(x) = exp (A(x)) with A(x) = Aµ̄ x
µ̄. Then we have

Tr(A(x)) = Tr(Aµ̄)x
µ̄, det(g) = det(exp (A(x))) = exp (Tr(A(x))).

Hence

exp (Tr(A(x))) = 1 + Tr(Aµ̄)x
µ̄ + · · ·+ 1

l!

l󰁜

i=1

Tr(Aµ̄i)xµ̄i

+ · · · (3.1.4)

Since g = I + O(r2) in normal coordinates, we have Aµ̄ = 0 for |µ̄| 󰃑 1; thus the
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summation in Aµ̄x
µ̄ is taken over µ̄ with |µ̄| ≥ 2.

Denote the Taylor expansion of exp (A(x)) as:

exp (A(x)) = I + Aµ̄x
µ̄ +

1

2!
Aµ̄1Aµ̄2xµ̄1+µ̄2

+ · · ·+ 1

l!

l󰁜

i=1

Aµ̄ixµ̄i

+ · · · (3.1.5)

For each µ̄, comparing (3.1.3) and (3.1.5), we have
󰁛

µ1+···+µl∼µ̄

cµ1...µlRiemµ1...µl(0) = Aµ̄ +
1

2!

󰁛

µ̄1+µ̄2∼µ̄

Aµ̄1Aµ̄2 + · · · (3.1.6)

By induction on |µ̄| for the equalities (3.1.6), we can calculate Aµ̄(0) recursively as follows:

Aµ̄(0) = c2
󰁛

µ∼µ̄

Riemµ(0), for|µ̄| = 2;

Aµ̄(0) = c3
󰁛

µ∼µ̄

Riemµ(0), for|µ̄| = 3;

Aµ̄(0) =
󰁛

µ1+···+µl∼µ̄

cµ1...µlRiemµ1...µl(0)+

−
[
|µ|
2
]󰁛

k=2

1

k!

󰁛

µ̄1+···+µ̄k∼µ̄

k󰁜

i=1

Aµ̄i , for |µ̄| ≥ 4.

(3.1.7)

For |µ̄| = k, by (3.1.2) and (3.1.7), we have:

Aµ̄(0) = ck
󰁛

µ∼µ̄

∂Riemµ(0) + P (Riemµ′(0)), (3.1.8)

where P (Riemµ′(0)) is a polynomial of Riemµ′ with 2 ≤ |µ′| ≤ k − 2.

Take trace of the identities (3.1.8) and substitute back into (3.1.4), we obtain a closed

formula for the Taylor expansion of det(g):

det(g) = exp (Tr(A(x))) = 1 +
∞󰁛

|µ̄|=2

󰀳

󰁃Tr

󰀳

󰁃
󰁛

µ1+···+µl∼µ̄

cµ1...µlRiemµ1...µl

󰀴

󰁄− Tµ̄

󰀴

󰁄xµ̄, (3.1.9)

where Tµ̄ is a symmetric tensor defined by a polynomial of Tr(Aν̄) with 2 ≤ |ν| ≤ |µ|− 2,

in particular Tµ̄ = 0 for |µ| = 2, 3. The general Tµ̄ can be calculated recursively by the

formula (3.1.7).

Based on the above discussions, we can now give a jet-level condition for metrics being

flat, conformally flat, and conformal normal at a point p by the theorem below:

Theorem 3.1.3. Suppose that a conformal structure [g] on X is kth order conformally flat

at a point p. Then g ∈ [g] is (k + 2)th order conformal normal at p if and only if g is kth
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order flat at p.

Proof: Suppose that g is kth order flat at p. Then (3.1.8) shows that Aµ̄(p) vanishes for

2 󰃑 |µ̄| 󰃑 k+2. Hence Tr(Aµ̄(p)) vanishes to the same order, and hence det g = 1+O(rk+3)

by (3.1.4). Thus g is (k + 2)th order conformal normal at p.

On the other hand, assume that g ∈ CN k+2(p), i.e. jk+2
p det(g) = jk+2

p (exp (Tr(A))) = 1.

Hence, by induction on |µ̄| in (3.1.4), we have:

Tr(Aµ̄(p)) = 0, for |µ̄| ≤ k + 2 (3.1.10)

Take trace of (3.1.8) on both sides up to |µ̄| = k + 2, along with (3.1.10), we have:

Ricij(p) = 0, for µ̄ = (ij), (3.1.11)0

Ricij,k(p) +Ricik,j(p)+Ricjk,i(p) = 0, for µ̄ = (ijk), (3.1.11)1

. . .

ck+2

󰁛

µ∼µ̄

Ricµ(p) + P (Riemµ′(p)) = 0, (3.1.11)k

where |µ̄| = k + 2 and P (Riemµ′) is a polynomial of Riemµ′ with |µ′| ≤ k.

Let C be the Cotton tensor defined for the metric g, in local coordinates we have

Cijk = Ricij,k −Ricik,j +
1

2(n− 1)
(Sjgik − Skgij)

= Pij,k − Pik,j,

(3.1.12)

where P = Ric− 1
2(n−1)

Sg is the so-called Schouten tensor.

We claim the following lemma with the detailed proof given in Appendix A.

Lemma A.3. Equations (3.1.11)0 to (3.1.11)k, together with the assumption jk−1
p (C) = 0,

imply that jkp (Ric) = 0.

Since conformally flatness is defined by two cases: Namely, dimension n = 3 and n ≥ 4,

we discuss accordingly below:

First, recall the Ricci decomposition of the Riemannian curvature tensor:

Rijkl = Wijkl +
S

n(n− 1)

󰀃
gilgjk − gikgjl

󰀄

+
1

n− 2

󰀃
Zilgjk − Zjlgik − Zikgjl + Zjkgil

󰀄
,

(3.1.13)

where Zij = Ricij − 1
n
Sgij.
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In dimension 3, the Weyl tensor W vanishes identically, and hence by (3.1.13), the Rie-

mannian curvature tensor is determined by the Ricci curvature.

In dimension 3, conformally flatness to order k means jk−1
p (C) = 0. And hence by

Lemma A.3, we have jkp (Ric) = 0. And jkp (Riem) = 0 in turn by (3.1.13).

In dimension n ≥ 4, conformally flatness to order k means jkp (W ) = 0. The relation

between the Weyl tensor and the Cotton tensor is given below:

∇aW
a
bcd = (n− 3)Cbcd.

And thus jkp (W ) = 0 ⇒ jk−1
p (C) = 0. Again by Lemma A.3, we have jkp (Ric) = 0.

Thus, by the Ricci decomposition (3.1.13), jkp (W ) = 0 together with jkp (Ric) = 0 imply

jkp (Riem) = 0. □

3.2 Jet Level Existence of Conformal Normal Metrics

The jet level existence of conformal normal metrics is proved by Lee and Parker in [LP87]

using a Graham normalization process. In this section, we review their proof with a focus

on the conformal factors, the construction of which will be applied later.

Lemma 3.2.1. Let (X, g) be an n-dimensional Riemannian manifold, and x : Rn → X

be the g-normal coordinate chart at a point p ∈ X. For a smooth function f ∈ C∞(Rn)

such that f = O(|x|k), take the conformal metric gf := e2fx∗g and let x̃ : Rn → Rn be the

corresponding coordinate transformation to the gf -normal coordinate system, then we have:

x̃(x)− x = O(|x|k).

Proof: In the g-normal coordinates x, let Γa
bc and Γ̃a

bc be the Christoffel symbols for g and

gf respectively.

For each vector x, the radial ray γ = x · t is a g-geodesic from the point p, hence satisfies

the g-geodesic equation:

Γa
bc(x · t)xbxc = 0. (3.2.1)

We also have the conformal transformation formula for Γ̃a
bc below:

Γ̃a
bc = Γa

bc + fbδ
a
c + fcδ

a
b − fdg

dagbc. (3.2.2)

Hence f = O(|x|k) ⇒ T a
bc = Γ̃a

bc − Γa
bc = O(|x|k−1).
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Let γx(t) be the gf -geodesic satisfying the initial conditions γx(0) = 0, γ′
x(0) = x. Then

by definition we have x̃(x) = γx(1) and γx(t) satisfies the gf -geodesic equation:
d2

dt2
γa
x + Γ̃a

bc(γ)
d

dt
γb
x

d

dt
γc
x = 0 (3.2.3)

Take the Taylor expansion of γx(t) at the origin and evaluate at t = 1, we have:

x̃(x) = γx(1) = x+ · · ·+ γ
(k)
x (0)

k!
+ · · · ,

where γ
(k)
x (0)
k!

is the degree k term in the Taylor expansion of x̃(x).

Hence to prove x̃(x) − x = O(|x|k) is to prove γ
(i)
x (0) = 0 for all i = 2, . . . , k − 1, which

we prove below by induction on k.

Since γx(0) = 0, the statement is true for k = 1. Assume the statement is true for

k ≤ m+ 1.

For k = m + 2, take the (m + 1)th order derivative of γ(x), by Equation (3.2.3) at the

origin, we have:

−γa(m+1)
x (0) =

d(m−1)

dt(m−1)
(Γ̃a

bc(γ)
d

dt
γb
x

d

dt
γc
x)|t=0

=
d(m−1)

dt(m−1)
(Γa

bc(γx)γ̇
b
xγ̇

c
x)|t=0 +

d(m−1)

dt(m−1)
(T a

bc(γx)γ̇
b
xγ̇

c
x)|t=0,

where the second equality follows from (3.2.2). By the fact that T a
bc = O(|x|m+1), the second

term vanishes at the origin. By the induction assumption, we have γ(i)
x (0) = 0 for 2 ≤ i ≤ m,,

and hence the first term equals:

0 =
󰁛

α,b,c

Γ
a(m−1)
bc (0)

n󰁜

i=1

(γ̇i
x(0))

αi γ̇b
x(0)γ̇

c
x(0) =

d(m−1)

dt(m−1)
(Γa

bc(x · t)xbxc)|t=0,

where α are multi-indices of absolute value m− 1 and the last equality follows from the

euqation (3.2.1). □

Theorem 3.2.2 (Lee-Parker). Let (X, [g]) be a conformal manifold of dimension n ≥ 3.

At a point p ∈ X, for ∀g ∈ [g] and l = 1, . . . ,∞, there is a unique formal polynomial hl

in n variables and of degree ≤ l such that for any smooth function f satisfying jlp(f) = hl

with respect to the g-normal coordinates, the conformal metric g̃ = e2fg has the following

properties :

(a) j1p(g̃) = j1p(g),
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(b) det(exp ∗g̃)(p) = 1 + O(rl+1) in the g̃ normal coordinates, namely g̃ is kth order con-
formal normal at p.

Proof: The proof is by induction on the jet level l. For l = 1, it is clear that a smooth

function f preserves the 1-jet of g at p if and only if j1p(f) = 0, and hence h1(x) = 0 and is

unique. For the same reason, we see that the property (a) is true if and only if j1p(hl) = 0

for any l. We hence assume hl has quadratic leading terms and prove the unique existence

of such hl satisfying the property (b) by induction.

Assume the statement is true for l = k, namely, there’s a unique formal polynomial hk

of degree ≤ k such that for any smooth function f with jkp (f) = hk under the g-normal

coordinates, the conformal metric gk := e2fg is conformal normal to the kth order at p.

Explicitly, let gk = e2hk · g, with {xk = (xi
k)} being the gk normal coordinates at p. With

respect to {xk} we have:

det(gk) = 1 +
󰁛

|µ|=k+1

{ck+1

󰁛

µ∼µ̄

∂Ricµ(0)}xµ
k + Sµ̄x

µ̄
k +O(rk+2),

where Sµ̄ is a symmetric tensor defined by a polynomial of Riemν with 2 ≤ |ν| ≤ k − 1.

For l = k + 1, let e2fk+1 be a conformal factor such that gk+1 := e2fk+1gk is conformal

normal to (k + 1)th order at p.

On one hand, if jkp (fk+1) ∕= 0, then by assumption gk+1 = e2(fk+1+hk) · g satisfies (b) for

l = k, however jkp (fk+1 + hk) = jkp (f) + hk ∕= hk contradicts with the uniqueness of hk in the

induction assumption. Hence jkp (fk+1) = 0 and the Sµ̄ term is invariant under the conformal

change by efk+1 .

Let xk+1 be the gk+1 normal coordinates, by Lemma 3.2.1, we have xk+1−xk = O(|xk|k+1).

Hence for |µ| = k + 1, ∂(Ricgk+1
)µ(0) have the same value under both coordinates xk+1 and

xk.

On the other hand, for an arbitrary conformal metric gf = e2fgk, the conformal trans-

formation formula of the Ricci curvature is:

Ricgf = Ricgk − (n− 2)(d2f − df⊗2) + (∆f − (n− 2)|df |2)gk (3.2.4)
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By (3.2.4), we see that if jkp (f) = 0, then conformal change ∂(Ricgf )µ(0) with |µ| = k + 1

depends only on jk+1
p (f).

In summary, ∂(Ricgk+1
)µ(0) depends only on the homogeneous degree k+1 terms of fk+1

and has the same value with respect to both {xk+1} and {xk} coordinates.

The Taylor expansion of gk+1 in the {xk+1} coordinates is

det(gk+1) = 1 +
󰁛

|µ|=k+1

ck+1(∂Ricgk+1µ(0))x
µ̄
k+1 + Sµ̄x

µ̄
k+1 +O(rk+2).

Thus gk+1 is conformal normal to the order (k+1) if and only if for any µ̄ with |µ̄| = k+1,

we have:
󰁛

|µ|=k+1

ck+1(∂Ricgk+1µ(0)) + Sµ̄)x
µ̄
k+1 = 0.

Since ∂(Ricgk+1
)µ(0) have the same value with respect to both xk+1 and xk coordinates,

by a coordinate transformation to the {xk} coordinate system, we have:
󰁛

|µ|=k+1

ck+1(∂Ricgk+1µ(0))x
µ
k + S̃µ̄)x

µ̄
k = 0. (3.2.5)

We work with {xk} coordinates and let

fk+1 =
󰁛

ci1···ik+1
xi1
k · · · xik+1

k . (3.2.6)

Take the (k + 1)th order derivative of (3.2.4) in the {xk} coordinates, we have:
󰁛

|µ|=k+1

ck+1(∂Ricgk+1µ(0))x
µ
k + S̃µ̄x

µ̄
k =

󰁛

|µ|=k+1

ck+1∂(Ricgk)µ(0)x
µ
k − (n− 2)d2fk+1(xk, xk) + r2∆0fk+1 + S̃µ̄x

µ̄
k .

By Euler’s formula, d2fk+1(xk, xk) = (xkd)
2fk+1 − (xkd)f = k(k + 1)fk+1.

Thus Equation (3.2.5) is equivalent to the following equation of fk+1:

(r2∆− (n− 2)k(k + 1))fk+1 = −ck+1(
󰁛

|µ|=k+1

∂Ricµ(0) + S̃µ̄)x
µ
k . (3.2.7)

Comparing the coefficients of x
i1···ik+1

k on both sides of (3.2.7) and by Lemma 5.3 in

[LP87], we obtain a non-degenerate linear system of equations for the unknowns, i.e. the

coefficients ci1···ik+1
of fk+1. Thus gives a unique solution for ci1···ik+1

.

Let hk+1(y) = hk(y) +
󰁓

ci1···ik+1
yi1 · · · yik+1 with y being the formal variables. De-

note {x} for the g normal coordinates, then any function f̃k+1 satisfying jk+1
p (f̃k+1) =
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󰁓
ci1···ik+1

xi1 · · · xik+1 in the {x} coordinates, by changing to the {xk} coordinates, we have:

f̃k+1 =
󰁛

ci1···ik+1
xi1 · · · xik+1 +O(rk+2)

=
󰁛

ci1···ik+1
xi1
k · · · xik+1

k +O(rk+2) = fk+1 +O(rk+2)
(3.2.8)

Hence jk+1
p (f̃k+1) = jk+1

p (fk+1) and the metric g̃k+1 := e2f̃k+1 · gk = e2f̃k+1+2hk(x) · g with

jk+1
p (f̃k+1 + hk) = hk+1(x) is conformal normal to the (k + 1)th order. We thereby proved

the theorem for all k < ∞ by induction.

For k = ∞, we first recall Borel’s Lemma below (cf. [Hör15]):

Lemma 3.2.3 (Borel’s Lemma). The canonical map from the ring of germs of C∞ function

at 0 ∈ Rn to the ring of formal power series obtained by taking the Taylor series at 0 is

surjective.

Explicitly, let f =
󰁓∞

|α|=2 cαx
α be the unique formal power series obtained by the above

algorithm, where α is a multi-index with absolute value |α|. Fix ψ a smooth bump function

on R such that ψ = 1 on B1, and supp(ψ) ⊆ B2. For |α| = m, let

Hα = max
0≤l≤k<m

󰀕
22m−lm!(k + 1)!|cα|󰀂ψ(k−l)󰀂∞

(m− k)!(k − l)!l!

󰀖 1
m−k

.

Then

f :=
∞󰁛

|α|=2

cαψ(Hα|x|)xα (3.2.9)

is a smooth function in C∞(Rn) of which the Taylor series at the origin equals f .

For any finite integer k ≥ 2, let f
k

be the truncation of f up to degree k. Then e2fg =

e2f−2f
k(e2fkg), where by definition the function 2f−2f

k
= O(rk+1) and the conformal metric

(e2fkg) is of kth order conformal normal at p. Let xf and xf
k be the normal coordinates of

e2fg and e2fkg respectively, then by Lemma 3.2.1, we have xf−xf
k = O(|xf

k |k+1). Hence the

coordinate transformation to the xf coordinates preserves the kth order conformal normal

property. Hence e2fg is conformal normal at p to any finite order k and thus the statement

is true for k = ∞. □

As we have seen in Section 2.3, given a conformal structure [g], one can define the

corresponding 󰁧CO(n) structure P which is a principal 2-frame bundle over X. By applying
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the conformal normal coordinates, we can give a geometric construction of P as the principal

󰁧CO(n) bundle of conformal normal 2-frames:

Theorem 3.2.4. Let CNC2(X) = ⊔p∈XCNC2(p) be the bundle of 2-jets of the second order

conformal normal coordinates, then CNC2(X) is a principal 󰁧CO(n) bundle on X which

characterizes the conformal structure [g] as the 󰁧CO(n) structure.

Proof: CNC2(X) is a sub-bundle of the general linear 2-frame bundle P 2, and hence has

a local trivialization induced from P 2. To see CNC2(X) is a principal 󰁧CO(n) bundle, we

define the 󰁧CO(n) group action on CNC2(X) as follows:

For an element j20(ϕ) ∈ CNC2(p) defined by a metric g ∈ [g] such that j2p(g) ∈ CN 2(p),

and β ∈ O(TpX, gp), the action of 󰁧CO(n) on j20(ϕ) is defined as follows:

By (2.3.1), a general element of 󰁧CO(n) is of the form:

h(x) = λ
Ax− x2η

1− 2η · Ax+ x2η2
,

where λ > 0, η ∈ Rn, A ∈ O(n).

We now focus on Rn and denote ϕ∗g briefly as g, by a direct calculation we have:

j10(h
∗g) = λ2(1 + 4ηAx)j1(g).

Hence 󰁧CO(n) acts free and transitively on CN 1(p). By the Lemma (3.2.2), for any g̃ ∈

j10(h
∗g), there is a unique homogeneous degree 2 polynomial f such that det(e2f g̃)(p) =

1 + o(r3) and notice that h∗β is an orthonormal frame of h∗g(p) = e2f g̃(p). Hence the

normal coordinates ϕ̃ define by e2f g̃ and h∗β gives an element j20(ϕ̃) ∈ CNC2.

We define the action of 󰁧CO(n) on CNC2(p) as

h · j20(ϕ) = j20(ϕ̃). (3.2.10)

Since the action of 󰁧CO(n) on CN 1 = J1([g]) is free and transitive and O(n) ⊆ 󰁧CO(n) acts

on the orthonormal frames free and transitive, the 󰁧CO(n) action on CNC2(X) is free and

transitive.

To show CNC2(X) defines a 󰁧CO(n) structure, we need to show the 󰁧CO(n) action defined

above is the jet composition action (2.3.4). Let ι : CNC2(X) → P 2 be the natural inclusion

map, it is sufficient to show ι is 󰁧CO(n) equivariant.
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Recall near a point p ∈ P 2, we have natural local coordinates u = (ui; u
i
j; u

i
jk) and

a natural local coordinates for 󰁧CO(n): For a general element h = hλ,A,η ∈ 󰁧CO(n), the

corresponding coordinates is

h = (hi
j, h

i
jk) = (λaij,

1

2
(ηjδ

i
k + ηkδ

i
j − ηiδpq)λ2apjaqk)

Let u = (0, δij, 0), then the GL2
n action on u in local coordinates is:

h · u = (hi
j, h

i
jk) · (0, δij, 0) = (0,λaij,

1

2
(ηjδ

i
k + ηkδ

i
j − ηiδpq)λ2apjaqk). (3.2.11)

On the other hand, the action of 󰁧CO(n) on CNC2 is defined by exponential maps, and

thus to obtain a local expression of the action (3.2.10), consider the initial value problem of

the geodesic equation: 󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

γ̈i + 󰁨Γi
jkγ̇

j γ̇k = 0,

γ̇(0) = dh(X),

γ(0) = p,

(3.2.12)

where 󰁨Γi
jk is the Christoffel symbol of the conformal normal metric g̃ = e2fg, with j10(e

2f ) =

λ2(1 + 4η · Ax).

The conformal transformation formula of Christoffel symbols is given as below:

󰁨Γi
jk = Γi

jk +
∂f

∂xj
δik +

∂f

∂xj
δik −

∂f

∂xl
gligjk.

Thus 󰁨Γi
jk = −(bjδ

i
k + bkδ

i
j − biδjk) + o(r). Taking the Taylor series iteration of (3.2.12),

at step 1, we have (γ̇i)1 = λaijx
j + (bjδ

i
k + bkδ

i
j − biδjk)λ2aipx

pajqx
q(t).

By taking the integral of t on [0, 1], we have

j20(h · ϕ̃) = λaijx
j +

1

2
(bjδ

i
k + bkδ

i
j − biδjk)λ2aipx

pajqx
q (3.2.13)

The inclusion map ι is 󰁧CO(n) equivariant by comparing (3.2.11) and (3.2.13). □
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CHAPTER 4

LOCAL EXISTENCE RESULTS

In this chapter, we discuss linear PDE results which will be applied in the proof of Theorem 5.1

and review Cao’s proof of the local existence of conformal normal metrics with careful track-

ing of the background metrics and constants in estimations.

4.1 Linear PDE Results

Let Rn be the standard Euclidean n-space with coordinates {x = (xi)}.

Denote R = |x| = (
󰁓

x2
i )

1
2 , θ = x

|x| , Bρ = {|x| ≤ ρ|x ∈ Rn}. Take ∆0 =
󰁓

∂2

∂x2
i

the

standard Laplacian and ∆∗ the spherical Laplacian. Two Laplacian operators are related by:

∆0(v) =
∂2v

∂R2
+

n− 1

R

∂v

∂R
+

1

R2
∆∗v. (4.1.1)

Consider the following linear differential operator:

L0(v) = ∆0(v) + (n− 2)
∂2

∂R2
(4.1.2)

Define the following weighted Hölder norms and spaces on which the operator L0 is applied:

For 0 < α < 1, 3 ≤ k < N , define Ck,α;N,ρ to be the space of functions in the Hölder

space Ck,α(Bρ) for which the following norm is finite:

󰀂|v|󰀂k,α;N,ρ = sup
0<r≤ρ

{r−N |v|Ck,α(Br−Br/2)
}

= sup
0<r≤ρ

{r−N(
k󰁛

|β|=0

r|β| sup
r
2
󰃑|x|󰃑r

{|∂βv(x)|}+

rk+α sup{|∂βv(x)− ∂βv(y)|
|x− y|α | x ∕= y,

r

2
󰃑 x, y 󰃑 r, |β| 󰃑 k})}

(4.1.3)

Remark 4.1.1. In [Cao91], Cao generalized the operator L0 to a collection of singular

elliptic differential operators, see also [PR00] for a semi-linear generalization. In [PR00], the

weighted Hölder norm 󰀂󰀂k,α;N,ρ is generalized to define a family of Banach spaces Ck,α
ν,σ (Ω̄\Σ),

see [PR00] page 23 Lemma 2.1 for details. In particular, for σ = ρ, Ω̄ = Bρ,Σ = {0}, ν =

N 󰃍 2k, we have a Banach space

Ck,α
N,ρ(Bρ\{0}) = {v | v ∈ Ck,α

loc (Bρ\{0}), 󰀂|v|󰀂k,α;N,ρ < ∞}.

On the other hand, for an element v ∈ Ck,α
N,ρ(Bρ\{0}), by taking the term with |β| = 0

in the (k,α;N, ρ) norm, we have |x|−N sup0<|x|󰃑ρ |v(x)| < ∞. Therefore v(x) = O(|x|N) near
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the origin, and thus v(x) ∈ Ck,α
loc (Bρ) = Ck,α(Bρ) and Ck,α;N,ρ is a Banach space.

Lemma 4.1.2. Let 0 < ρ ≤ 1, and v ∈ Ck,α(B1), then

󰀂|v(ρx)|󰀂k,α;N,1 ≤ ρN−k󰀂|v(x)|󰀂k,α;N,ρ. (4.1.4)

Proof: By definition

󰀂|v(ρx)|󰀂k,α;N,1 = sup
0<r≤1

{r−N(
k󰁛

|β|=0

r|β| sup
r
2
󰃑|x|󰃑r

{|∂βv(ρx)|}+

rk+α sup{|∂βv(ρx)− ∂βv(ρx
′)|

|x− x′|α |x ∕= x′,
r

2
󰃑 x, x′ 󰃑 r, |β| 󰃑 k})}

Substituting λ = ρr and y = ρx to the above equation, we have

󰀂|v(ρx)|󰀂k,α;N,1 = sup
0<λ≤ρ

󰀻
󰀿

󰀽
ρN

λN
(

k󰁛

|β|=0

λ|β| sup
λ
2
󰃑|x|󰃑λ

{|∂βv(y)|}+

λk+α sup {ρ(|β|−k) |∂βv(y)− ∂βv(y
′)|

|y − y′|α | y ∕= y′,
λ

2
󰃑 x, x′ 󰃑 λ, |β| 󰃑 k})

󰀞

≤ ρN−k sup
0<λ≤ρ

󰀻
󰀿

󰀽λ−N(
k󰁛

|β|=0

λ|β| sup
λ
2
󰃑|x|󰃑λ

{|∂βv(y)|}+

λk+α sup{|∂βv(y)− ∂βv(y
′)|

|y − y′|α | y ∕= y′,
λ

2
󰃑 x, x′ 󰃑 λ, |β| 󰃑 k})

󰀞

= ρN−k󰀂|v(x)|󰀂k,α;N,ρ.

□

Define Zρ := {f ∈ C∞(Bρ)|j∞0 (f) = 0}, we have the following lemma:

Lemma 4.1.3.

Zρ =
∞󰁟

k,N

Ck,α;N,ρ

Proof: Without loss of generality, we prove for ρ = 1 and omit the index ρ.

For a smooth function f ∈ C∞(B1), we clearly have the following equivalence:

sup
0<r≤1

sup
r
2
≤|x|≤r

|f(x)|
rN

< ∞ ⇔ f(x) = O(|x|N). (4.1.5)

To see
󰁗∞

k,N Ck,α;N ⊆ Z1, for each v ∈ Ck,α;N , take the |β| = 0 term in its weighted norm,

we have sup0<r<1 sup r
2
≤|x|≤r

|v(x)|
rN

< ∞, thus by (4.1.5) we have v ∈ O(|x|N). Let N → ∞,

we have v ∈ Z1.
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Conversely, for v(x) ∈ Z1, for each ∂β term in the norm 󰀂󰀂k,α;N , we have:

O(|x|N−|β|) = sup
0<r<1

r−N+|β| sup
r
2
≤|x|≤r

|∂βv(x)| < ∞ ⇔ ∂βv(x).

For the α continuous terms, we have

sup
0<r<1

rk+α−N sup{|∂βv(x)− ∂βv(y)|
|x− y|α | x ∕= y,

r

2
≤ |x|, |y| < r, |β| ≤ k}

< 2 sup
0<r<1

rk+α−N sup{|∂βv(x)− ∂βv(y)|
|x− y| | x ∕= y,

r

2
≤ |x|, |y| < r, |β| ≤ k}

< 2 sup
0<r<1

rk+α−N sup
r
2
≤|x|≤r

{∂β′v(x) | |β′| ≤ k + 1} < ∞ ⇒ ∂β′v(x) = O(|x|N−k−α)

Thus v ∈
󰁗∞

k,N Ck,α;N . □

L0 maps Ck,α;N,ρ to Ck−2,α;N−2,ρ, Zρ to Zρ and has a bounded linear right inverse operator

S on Zρ defined as follows:

The eigenvalues of −∆∗ are λl = l(l + n − 2) with l = 0, 1, 2, . . . . The corresponding

eigenspace of λl is of dimension nl =
󰀃
n+l−1
n−1

󰀄
−
󰀃
n+l−3
n−1

󰀄
. Denote {ϕm} the orthonormal basis

of L2(Sn−1) such that each ϕm is an eigenvector of λl(m), with l(m) = l for 1 +
󰁓l−1

i=0 ni ≤

m ≤
󰁓l

i=0 ni.

For a function f ∈ Zρ, consider the inhomogeneous equation

L0v = f. (4.1.6)

In spherical coordinates (R, θ), take the Fourier series

f(R, θ) =
∞󰁛

m=0

fm(R)ϕm(θ),

where fm(R) =
󰁕
Sn−1 f(R, θ)ϕm(θ)dθ.

By the separation of variables method, a formal Fourier series v(R, θ) =
󰁓∞

m=0 βm(R)ϕm(θ)

solves (4.1.6) iff βm satisfies the following inhomogeneous Cauchy-Euler equation for each

m:

(n− 1)β′′
m +

n− 1

R
β′
m −

λl(m)

R2
βm = fm. (4.1.7)m

By variation of parameters, we obtain the following particular solutions of (4.1.7)m:

β0(f) =
1

n− 1

󰁝 R

0

r · ln R

r
f0(r)dr, βm(f) = Re

󰁛

i=1,2

Rγi
m

󰁝 R

0

fm(r)r
1−γi

m

2(n− 1)γi
m

dr for m ≥ 1,

where γi
m = (−1)i

󰁴
λl(m)

n−1
.
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Take a smooth cut-off function ζ ∈ C∞(R) such that :

ζ(R) =

󰀻
󰀿

󰀽
1, R 󰃑 3

4
ρ;

0, R 󰃍 4
5
ρ.

We can now define the promised operator S as:

S (f) = ζ(R)
∞󰁛

m=0

βm(f) · ϕm.

Theorem 4.1.4 (cf. Corollary 2.14, [Cao91]). S is a linear operator on Zρ such that:

a) L0(S f)(y) = f(y) for all |y| ≤ 3
4
ρ.

b) If f t(y) = f(ty), 0 < t ≤ 1 and |y| ≤ 3
4
ρ, then (S f t)(y) = t−2(S f)(ty).

c) For any k,α, N, ρ, there is a constant number K1 such that

󰀂|S ◦ f |󰀂k,α;N,ρ ≤ K1{󰀂|f |󰀂0,α;N,ρ + 󰀂|f |󰀂k−2,α;N−2,ρ}. (4.1.8)

A fact: Given (X,µ), (Y, ν) two σ-finite measure spaces. Let {fn}, {gk} be two countable

orthonormal basis for the Hilbert spaces L2(X) and L2(Y ) respectively. Then {fngk} is a

complete orthonormal basis for L2(X × Y ).

Proof of the fact: < fngk, fmgl >=< fn, fm >< gk, gl >= δnmδkl, hence {fngk} are or-

thonormal.

Let h ∈ L2(X × Y ) such that < h, fngk >= 0 for any n, k.

Namely, we have 󰁝

X

󰀕󰁝

Y

hgkdν

󰀖
fndµ = 0. (4.1.9)

Denote uk(x) :=
󰁕
Y
h(x, y)gkdν, by the Hölder inequality, we have

󰀂uk󰀂2L2 =

󰁝

X

󰀕󰁝

Y

hgkdν

󰀖2

dµ ≤
󰁝

X

󰀕󰁝

Y

h2dν

󰀖󰀕󰁝

Y

g2kdν

󰀖
dµ =

󰁝

X

󰁝

Y

h2dνdµ = 󰀂h󰀂2L2 < ∞.

And hence uk ∈ L2(X), and by (3.1) uk = 0 almost everywhere on X.

Denote Ek = {x ∈ X|uk(x) ∕= 0}, µ(Ek) = 0, thus the countable union E =
󰁖∞

0 Ek has

µ(E) = 0.

Thus uk = 0 on X\E for all k, namely
󰁕
Y
h(x, y)gk(y)dν = 0.

Thus h(x, y) = 0 almost everywhere on Y , for all x ∈ X\E.

󰀂h󰀂2L2 =

󰁝

X

󰁝

Y

h2dνdµ =

󰁝

X\E

󰁝

Y

h2dνdµ = 0.
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Thus h = 0, and {fngk} is a complete orthonormal basis for L2(X × Y ). □

Lemma 4.1.5. For k,N big enough, the kernel of L0 in Ck,α;N,ρ in polar coordinates consists

of

u =
∞󰁛

m=mN

cmR
γl(m)ϕm(θ), (4.1.10)

where γl(m) =
󰁴

λl(m)

n−1
, λl(m) and ϕm are given as above. mN is the smallest integer such that

γl(m) ≥ N . In particular, KerL0 ∩ Zρ = 0.

Proof. By Sturm-Liouville Theorem, the countable set
󰀝
ψ0 =

󰁵
1

ρ
,ψl =

󰁵
2

ρ
sin

󰀕
nπr

ρ

󰀖󰀞∞

l=1

is a complete orthonormal basis of C0[0, ρ], thus of L2[0, ρ].

By the fact proved above, {ψl ·ϕm} is a complete orthonormal basis of L2([0, ρ]× Sn−1).

For k > 3, take u ∈ Ck,α;N,ρ such that L0u = 0. Under spherical coordinates we have

u(r, θ) ∈ C0([0, ρ]× Sn−1) ⊂ L2([0, ρ]× Sn−1).

Thus

u(r, θ) =
∞󰁛

m=0

(
∞󰁛

l=0

cmlψl(r))ϕm(θ) =
M󰁛

m=0

(
L󰁛

l=0

cmlψl(r))ϕm(θ) + ξML,

where the remainder ξML satisfies:

lim
M,L→∞

󰀂ξML󰀂L2 = 0. (4.1.11)

For each index m, denote βm =
󰁓∞

l=0 cmlψl(r), then u(r, θ) =
󰁓∞

m=0 βm(r)ϕm(θ).

Since {ϕm}∞0 is a complete orthonormal basis of L2(Sn−1), we have

βm(r) =

󰁝

Sn−1
r

u(r, θ)ϕm(θ)dvolSn−1
1

.

Thus βm(r) ∈ Ck[0, ρ], with
󰁓∞

l=0 cmlψl(r) its Fourier expansion.

Let g(r) ∈ C∞
0 ([0, ρ]) be an arbitrary test function.
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For each index m0, and M > m0, consider

0 =

󰁝

Bρ

L0u · g(r)ϕm0

=

󰁝

Bρ

L0(
M󰁛

m=0

(
L󰁛

l=0

cmlψl(r))ϕm(θ) + ξML)g(r)ϕm0

=

󰁝

Bρ

L0(
M󰁛

m=0

(
L󰁛

l=0

cmlψl(r))ϕm(θ))g(r)ϕm0 +

󰁝

Bρ

L0(ξML)g(r)ϕm0

On one hand, integration by parts and using Hölder inequality, we have:
󰀏󰀏󰀏󰀏󰀏

󰁝

Bρ

L0(ξML)g(r)ϕm0

󰀏󰀏󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏

󰁝

Bρ

ξMLL0(g(r)ϕm0)

󰀏󰀏󰀏󰀏󰀏

≤
󰁝

Bρ

|ξML| · |L0(g(r)ϕm0 |

≤ 󰀂ξML󰀂L2󰀂L0(g(r)ϕm0󰀂L2 ≤ C󰀂ξML󰀂L2

Thus by(4.1.11), we have

lim
M→∞,L→∞

󰁝

Bρ

L0(ξML)g(r)ϕm0 = 0.

On the other hand,
󰁝

Bρ

L0

󰀣
M󰁛

m=0

(
L󰁛

l=0

cmlψl(r))ϕm(θ)

󰀤
g(r)ϕm0 =

󰁝

Bρ

󰀣
M󰁛

m=0

L0(βLm)ϕm(θ)

󰀤
g(r)ϕm0

=

󰁝

Bρ

((n− 1)β
′′

Lm0
+

n− 1

r
β

′

Lm0
− λm0

r2
)g(r)ϕ2

m0

=

󰁝 ρ

0

((n− 1)β
′′

Lm0
+

n− 1

r
β

′

Lm0
− λm0

r2
)rn−1gdr.

Thus in summary󰁝 ρ

0

lim
L→∞

((n− 1)β
′′

Lm0
+

n− 1

r
β

′

Lm0
− λm0

r2
)g(r)rn−1dr = 0

Since g(r) is arbitrary, we have

lim
L→∞

((n− 1)β
′′

Lm0
+

n− 1

r
β

′

Lm0
− λm0

r2
) = 0 (4.1.12)

Since βm0 ∈ Ck with k > 3, by the standard Fourier series fact, β ′′
Lm0

converges uniformly to

β
′′
m0

, thus (4.1.12) gives

(n− 1)β
′′

m0
+

n− 1

r
β

′

m0
− λm0

r2
= 0,

which is the Cauchy-Euler equation with characteristic polynomial

γ2 =
λm0

n− 1
.
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Thus ±γm0 = ±
󰁴

λm0

n−1
. and the general solution is of the form:

ugen =
∞󰁛

0

(cmr
γm + dmr

−γm)ϕm.

Since u ∈ Ck,α;N,ρ, by definition, we have
supx∈Sn−1

R
|u(x)|

RN
≤

supx∈BR\BR
2

|u(x)|

RN
≤ 󰀂 |u| 󰀂k,α;N,ρ < ∞,

hence |u(x)| ≤ cN |x|N , and

u =
∞󰁛

mN

cmR
γmϕm(θ),

where mN the smallest integer such that γm ≥ N , and the equality holds in L2 sense.

If u ∈ Zρ, we then have

U(r) =

󰁝

Sr

|u|2dvolSr ≤ CNr
2NV ol(Sn−1

r ) = Cr2N+n−1 (4.1.13)

holds for any N .

Assume, by contradiction, that there exists a smallest m0 such that the coefficient

cm0 ∕= 0, then

U(r) =

󰁝

Sr

|u|2dvolSr =

󰁝

Sr

󰁛
(c2mr

2γmϕ2
m)dvolSr

≥
󰁝

Sr

c2m0
r2γm0ϕ2

m0
dvolSr = Cr2γm0+n−1,

contradicts with (4.1.13) when N > γm0 . Thus u = 0.

Corollary 4.1.6. On the function space, Zρ, S is an inverse operator of L0 on both sides.

Proof: For v ∈ Zρ, since S is a right inverse of L0, we have:

L0(S (L0(v))− v) = (L0 ◦ S )(L0(v))− L0(v) = 0.

Thus S (L0(v))− v ∈ ker(L0) ∩ Zρ, by Lemma 4.1.5, we have S (L0(v)) = v, hence S is a

left inverse of L0 on Zρ. □

4.2 Local Existence of Conformal Normal Metrics

Theorem 4.2.1. Let (X, g0) be a C∞ Riemannian manifold and let p be a point on X. Then

there exists a conformal metric g = Φg0 such that det gij(y) = 1 for all sufficiently small

󰀂y󰀂, i.e., the exponential map of g at p, exp p, is a local volume preserving map in a small

neighborhood of p.

The above theorem is proved as Corollary 0.1 in [Cao91], we give a brief review of Cao’s
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work focusing on conformal normal metrics. We first rephrase the existence problem of a

conformal normal metric into solving a singular elliptic equation as follows:

Let (X, g0), p ∈ X be given as in the theorem above. Within a g0 normal coordinate chart

at p, multiplying g0 with a conformal factor ef defined in (3.2.9), we obtain a conformal

metric g̃ = efg0 such that j∞p (det(exp ∗g̃)) = 1. We can therefore assume in the beginning

that j∞p (det(exp ∗g0)) = 1 and also up to a constant rescaling, we assume that the injective

radius of g0 at p is greater than 1.

Let g = Φg0 be a metric conformal to g0. The fact that g is conformal normal in a

neighborhood of p is equivalent to the fact that det(g) = |g| is a solution of the initial value

problem of the following ordinary differential equation:
󰀻
󰀿

󰀽
∂r ln |g| = 0,

ln |g(p)| = 0

Namely |g| = 1 ⇔ ∂r ln
󰁳

|g| = 0.

Under the g0-normal coordinates {xi}, we take r(x) = distg(p, x) the g-distance function

from a point x to p, for which we have:

∆gr =
1󰁳
|g|

∂j(
󰁳

|g|gij∂ir)

= ∂j(g
ij∂ir) +

1󰁳
|g|

∂j(
󰁳

|g|)gij∂ir

= ∂j(dr) + ∂r ln(
󰁳

|g|) = n− 1

r
+ ∂r ln(

󰁳
|g|)

In summary, g is locally conformal normal in a neighborhood U of p if and only if g

satisfies the following equation on U :

∆gr =
n− 1

r
. (4.2.1)

Denote r0(x) the g0 distance function from a point x to p, we have

1 = 󰀂dr󰀂2g = 󰀂dr󰀂2Φg0
=

1

Φ
󰀂dr󰀂2g0 .

Hence

Φ = 󰀂dr󰀂2g0 . (4.2.2)
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Define the function w(x) by r(x) = r0(x)e
w(x) and substitute w into (4.2.2), we have

Φ = 󰀂dr󰀂2g = (1 + 2xiwi + r20󰀂dw󰀂2g0)e
2w. (4.2.3)

It is clear by definition that Φ = 1 ⇔ r = r0 ⇔ w = 0. Furthermore, by comparing

partial derivatives, we have jk0 (w) = 0 ⇔ jk0 (Φ) = 1.

Thus g and g0 have the same k-jet at p iff jk0Φ = 1 iff jk0w = 0. By (4.2.3) we can

rewrite (4.2.1) as an equation of w(x):

V (x, ∂w, ∂2w) = f, (4.2.4)

where

f = −
∂r0 ln

󰁳
det(g0(x))

r0
∈ Z1

V (x, ∂w, ∂2w) = L0(w) +G(x, ∂w) +Q(x, w, ∂w),

(4.2.5)

where L0 is the operator (4.1.2) defined above, and G and Q are smooth functions

satisfying:

G =
󰁓

xixj

|x|2 Gij(x, ∂w) and Gij(x, 0) = 0; (4.2.6)

Q =
󰁓

ij Qij(x, ∂w)wij and Qij =
󰁓

xk∂kQij (4.2.7)

Theorem 4.2.1 above is then a corollary of the following result:

Theorem 4.2.2 ([Cao91], Corollary B). Given f ∈ Z1, then for a small enough constant

0 < ρ ≤ 1, there exists a function w ∈ Zρ solving Equation (4.2.4).

Proof: Fix ∗ = (2n, 1
2
; 4n, 1), we will prove the existence of a solution w ∈ C2n, 1

2
;4n,ρ

of (4.2.4). For the regularity of w ∈ Zρ, see Corollary B in [Cao91].

Take the complete metric space DK0 = {v ∈ C∗ | 󰀂|v|󰀂∗ ≤ K0}, where K0 = 8󰀂|S (f)|󰀂∗ + 1.

For v ∈ DK0 and ρ > 0, define

Fρ(v) = S [L0(v)− V (ρx, ρ∂v, ∂2v) + f(ρx)]. (4.2.8)

By the estimate (4.1.8) in Theorem 4.1.4, we see that for two functions v1 and v2 in DK0 ,

there exists a constant K1 depends on n and K0 such that:

󰀂|Fρ(v1)− Fρ(v2)|󰀂∗ ≤ K1ρ󰀂|v1 − v2|󰀂∗ (4.2.9)
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Take ρ = ρf = 1
4(K1+K0)

, then K1ρ < 1
4

and

󰀂|Fρ(v)|󰀂∗ ≤ 󰀂|Fρ(v)− Fρ(0)|󰀂∗ + 󰀂|Fρ(0)|󰀂∗ ≤
K0

4
+ 󰀂|S (f(ρx))|󰀂∗

=
K0

4
+

󰀂|(S f)(ρx)|󰀂∗
ρ2

≤ K0

4
+ 󰀂|(S f)(x)|󰀂∗ ≤ K0,

where the equality follows from Theorem 4.1.4.(b) and the third inequality follows from

Lemma 4.1.4. Thus, Fρf is a contraction mapping on DK0 . Hence by the Banach fixed point

theorem, Fρf has a fixed point in DK0 , denoted as v.

Apply L0 on both sides of Fρf (v) = v and by Theorem 4.1.4.(a), we see that v is a

solution of V (ρx, ρ∂v, ∂2v) = f(ρx) in C∗, and hence w(x) = ρ2v(x
ρ
) is a solution of (4.2.4)

in C2n, 1
2
;4n,ρ. □
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CHAPTER 5

UNIQUENESS OF CONFORMAL NORMAL METRICS AT THE GERM
LEVEL

Let (X, [g]) be a conformal manifold. At a point p ∈ X, the germs at p of metrics g in the

conformal class [g] is a set

Gp[g] = {germ p(g) | g ∈ [g] } .

By Theorem 4.2.1, this set contains at least one conformal normal metric. Let

CN (p) =
󰀋
germ p(g) ∈ Gp[g] | det(exp ∗

pg) = 1
󰀌

denote the subset of a (germs of) conformal normal metrics in the conformal class.

Let J1
p [g] =

󰀋
j1p(g) | g ∈ [g]

󰀌
and π1 : Gp[g] → J1

p [g] with π1(germ p(g)) = j1p(g) be the

projection map to 1-jets.

The main theorem is stated as follows: Fix p ∈ X. For each metric g, the conformal class

[g], the 1-jet class j1p(g) contains a unique conformal normal metric.

Theorem 5.1 (main theorem). At p ∈ X, fix an arbitrary 1-jet class of the conformal

metrics, there is a conformal normal metric g at p within the 1-jet class and the metric g is

unique up to the germ level. Namely, the jet projection map π1 restricted to CN (p):

π1|CN (p) : CN (p) → J1
p [g]

is a bijection onto J1
p [g].

We first prove a uniqueness theorem for solutions of equations of type (4.2.4) which is a

corollary of Lemma 4.1.5.

Theorem 5.2. Given the inhomogeneous equation

V (x, ∂w, ∂2w) = L0(w) +G(w) +Q(w) = f, (5.1)

where L0 is defined as (4.1.2), G and Q satisfies (4.2.6) and (4.2.7) respectively, and f ∈ Zλ

for some λ > 0. Then there exists a positive constant 0 < τ ≤ λ small enough such that

there exists a unique solution of (5.1) in Zτ .

Proof: For ρ > 0, define the operator Fρ as in (4.2.8). Let K0 = 8󰀂|S (f)|󰀂2n, 1
2
;4n,λ + 1,

then by the same argument as Theorem 4.2.2, there exists a constant K > 0 depends on K0
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such that for ρ ≤ 1
4(K+K0)

, Fρ is a contraction mapping on

DK0 = {v ∈ C2n, 1
2
;4n,λ | 󰀂|v|󰀂2n, 1

2
;4n,λ ≤ K0}

For such a ρ > 0, on one hand, if v ∈ Zλ is a fixed point of Fρ, then by applying L0 on

both sides of Fρ(v) = v, we see that v is a solution of the equation:

V (ρy, ρ∂v, ∂2v) = f(ρy). (5.2)

On the other hand, if v ∈ Zλ solves (5.2), then Fρ(v) = S (L0(v)) = v, where the last

equality follows from Corollary 4.1.6.

Hence, by the uniqueness property of Banach’s fixed point theorem, Equation (5.2) has

a unique solution in Zλ.

We clearly have a bijection between solutions of Equation (5.2) in Zλ and solutions of

Equation (5.1) in Zρλ by letting w(x) = ρ2v(x
ρ
). Set τ = ρλ, and the conclusion follows. □

Proof of the main theorem:: We prove this by constructing a map

sp : J
1
p [g] → CN p,

and prove it is a well-defined inverse map of π1|CN (p) on both sides.

Fix a background metric g0 ∈ [g] together with an othonormal frame θ0 of (TpX, g0(p)).

By Lemma 3.3, g0 induces an isomorphism

η : R⊕ T ∗
pX → J1

p [g].

Let (ϕ0, x = (xi)) be the g0 normal coordinate chart at p specified by θ0. With respect

to which, we can write η explicitly:

For each α = (λ, v) ∈ R⊕ T ∗
pX, take α(x) = λ+

󰁓n
i=1 cixi, where ci = v(θ0i ).

Let gαij(x) = eα(x)g0ij(x), then η(α) = j1p((ϕ
−1)∗(gαijdxidxj)).

Let θλ = e−
λ
2 θ0, then θλ is an orthonormal frame of (TpX, gα(p)). Let (ϕα, x

α = (xα
i )) be

the gα normal coordinate chart at p specified by θλ.

We now work with {xα}: By Lemma 3.2.2, we see that by choosing a smooth bump

function ψ on R, one can construct a smooth function h = h(α) in the xα chart defined

as (3.2.9) such that h(xα) = O(r2) and j∞0 (det(exp ∗(ehgα))) = 1. Denote gh = ehgα, it is

clear that θλ is an orthonormal frame of (TpX, gh(p)). Again let (ϕh, x
h = (xh

i )) be the gh
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normal coordinate chart at p specified by θλ.

We now work with {xh}: Let ρ = ρ(h) be the injective radius of gh at p, then the function

f = −
∂r ln

󰁴
det(ghij(x

h))

r
∈ Zρ.

Let w ∈ Zτ be the unique solution of Equation (4.2.4) with f being the inhomogeneous

term. The existence and uniqueness of w is ensured by Theorem 4.2.2 and Theorem 5.2.

Let gw = Φ(w)gh, with Φ(w) = (1+2
󰁓

xh
i ∂iw+ |xh|2󰀂dw󰀂2

gh
)e2w, then gw is a conformal

normal metric on Bτ .

Define the map sp as follows:

sp(j
1
p(g)) = germ p(g

w) = germ p((Φ(w) ◦ ϕ−1
h ) · (eh◦ϕ

−1
α +α◦ϕ−1

0 ) · g0) (5.3)

The map sp is well-defined independent of the choice of the frame θp and the smooth bump

function ψ.

For θp independency, we check the following:

1. For α = (λ, ν) ∈ R⊕ T ∗
pX, α ◦ ϕ−1

0 (v) = λ+ ν(v), hence α is well-defined independent

of θ.

2. To show the function h is independent of the choice of θp, it is sufficient to show its

Taylor series at the origin is independent of the choice of θ. By choosing a different

orthonormal frame, we have a linear coordinate transformation y = Ax, with A ∈ O(n).

Therefore at the origin, we have
∂nh

∂xi1 · · · ∂xin

(0) =
∂nh

∂yj1 · · · ∂yjn
∂yj1
∂xi1

· · · ∂yjn
∂xin

(0).

Hence the Taylor series of h at the origin is independent of θ.

3. The function Φ(w) is a solution of the equation:

∆ghr +
n− 2

2
〈d(lnΦ), dr〉gh = −

∂r ln
󰁳

det(exp ∗gh)

r
.

By 1 and 2 above, the metric gh is independent of the choice of θ, and hence the

equation of Φ is independent of θ and so is the solution Φ.

For ψ independency: Let h̃ be a different Borel extension of the formal power series in

Lemma 3.2.2 and gh̃ the corresponding conformal metric. By solving Cao’s equation (4.2.4),
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we obtain a conformal normal metric g̃. Let g̃ = Φ(w̃)gw, with Φ the conformal factor and

w̃ defined in (4.2.3). Then under the gw normal coordinates, w̃ ∈ Zρ for some ρ > 0 small

enough and satisfies the equation

V (x, ∂w̃, ∂2w̃) = 0. (5.4)

By Theorem 5.2, the solution of (5.4) is unique in a small neighborhood of p, hence w̃ = 0

and germ (gw) = germ (g̃).

To see sp is a right inverse of π1|CN p , observe that the conformal factors Φ(w) and h both

vanish to the second order and thus do not affect the 1-jet of gw. Hence we have

π1 ◦ sp(j1p(g)) = j1p(g
w) = j1p(e

α◦ϕ−1
0 g0) = η−1(η(j1p(g))) = j1p(g).

To see sp is a left inverse of π1|CN p , take g ∈ [g] such that germ p(g) ∈ CN p, and let

gw be the corresponding conformal metric obtained as above that is also conformal normal

at p. Hence we can write g = Φ(x)gw with respect to gw-normal coordinates x at p, and

apply the same argument as ψ independency above, we see that Φ(x) = 1, hence germ p(g) =

germ p(g
w). Thus, the left inverse follows:

sp ◦ π1(germ p(g)) = sp(j
1
p(g)) = germ p(g

w) = germ p(g).

□

In summary, we have the following diagram of maps:

CN p Gp[g]

R⊕ T ∗
pX J1

p [g]

ι

η

π1
sp

η−1

And by the section map s, we see that R ⊕ T ∗X serves as a rough moduli of the set of

germs of conformal normal metric in class [g].

5.1 Conformal Normal Metrics on Locally Conformally Flat Manifolds

In section 3.1, we proved Theorem 3.1.3, a jet level relation among conformal flatness,

flatness, and conformal normal. By applying Theorem 5.1, we can obtain a similar result in

the germ level as follows:
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Corollary 5.1.1. Let (X, [g]) be a smooth manifold with a conformal structure [g]. If [g] is

locally conformally flat on an open neighborhood U of p ∈ X, then for a conformal metric

g ∈ [g], germ p(g) is flat if and only if germ p(g) is conformal normal.

Proof. It is clear by definition that a flat metric is conformal normal.

Conversely, let g ∈ [g] be a conformal normal metric on U . Since [g] is conformally flat

on U , there exists a conformal factor e2f such that gf = e2f · g is a flat metric on U . With

respect to the gf -normal coordinates {x}, gf (x) = δij is the standard Euclidean metric.

Pullback δij by the conformal mapping ϕ = ϕλ,A,η defined in (2.3.1), we have

ϕ∗δij =
λ2

(1− 2Ax · η + x2η2)2
δij.

ϕ∗δij has a pole at x = Atη
η2

. Since ϕ∗Riem = 0, ϕ∗δij is a flat metric on U∩B(0, |η|−1). Up to

pulling back by a conformal mapping ϕ, we can assume j1p(ϕ
∗gf ) = j1p(g), with both metrics

being conformal normal at p. Hence by Theorem 5.1, we have germ p(g
f ) = germ p(g).

Remark 5.1.2. By Corollary 5.1.1, we see that the germ of a flat metric is uniquely deter-

mined by its 1-jet. This fact can be proved directly without referring to Theorem 5.1:

Proof: Without loss of generality, let h ∈ [g] be a flat metric on U . Let ϕ be a smooth

function such that h̃ = e2ϕh remains flat on some open neighborhood V ⊆ U .

By the conformal transformation formula for the Riemann curvature tensor, we have

0 = 󰁨Riem = e2ϕRiem− e2ϕh ∧© (Hessϕ− dϕ⊗ dϕ+
1

2
|dϕ|2h)

= −e2ϕh ∧© (Hessϕ− dϕ⊗ dϕ+
1

2
|dϕ|2h).

Hence we have

h ∧© (Hessϕ− dϕ⊗ dϕ+
1

2
|dϕ|2h) = 0, (5.1.1)

where ∧© is the Kulkarni-Nozumi product.

Write (5.1.1) in the h normal coordinates, we have

δik(ϕjl − ϕjϕl +
1

2
|dϕ|2δjl) + δjl(ϕik − ϕ1ϕk +

1

2
|dϕ|2δik)

− δjk(ϕil − ϕiϕl +
1

2
|dϕ|2δil)− δil(ϕjk − ϕjϕk +

1

2
|dϕ|2δjk) = 0.
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This is an overdetermined system of equations of ϕ, among which we have the following

non-trivial relations for i ∕= j:
󰀻
󰀿

󰀽
ϕii + ϕjj = ϕ2

i + ϕ2
j − |dϕ|2,

ϕij = ϕiϕj,
(5.1.2)

where the first equation is for the cyclic pairs (i, j) = (1, 2), (2, 3), . . . , (n, 1). Denote A the

coefficient matrix of ϕii. It is clear by elementary row operation that A is nonsingular.

View the first order terms ϕi as constants and solve for ϕii, we get

ϕii = ϕ2
i −

1

2
|dϕ|2.

Since A is nonsingular, the above solution is unique.

Define u : Rn → Rn as u = (ϕi)
n
i=1, and

α : Rn → Mn×n(R)

z 󰀁→ (αj
i ) =

󰀻
󰀿

󰀽
(zi)2 − 1

2
z2, for i = j

zizj, for i ∕= j

As one can check, we have
󰁓n

l=1 α
l
k

∂αi
j

∂zl
=

󰁓n
l=1 α

l
j
∂αi

k

∂zl
.

Hence the functions u and α satisfy the compatible conditions in the following lemma for

an over-determined system which is the proposition 19.29 in [Lee12].

Lemma 5.1.3. Suppose W is an open subset of Rn×Rm, and α = (αl
j) : W → M(m×n,R)

is a smooth matrix-valued function satisfying
∂αi

j

∂xk
+ αl

k

∂αi
j

∂zl
=

∂αi
k

∂xj
+ αl

j

∂αi
k

∂zl
for all i, j, k,

where we denote a point in Rn×Rm by (x, z) = (x1, . . . , xn, z1, . . . , zm). For any (x0, z0) ∈ W ,

there is a neighborhood U of x0 in Rn and a unique smooth function u : U → Rm such that

u (x0) = z0 and the Jacobian of u satisfies
∂ui

∂xj

󰀃
x1, . . . , xn

󰀄
= αi

j

󰀃
x1, . . . , xn, u1(x), . . . , um(x)

󰀄

Hence for any fixed initial condition ϕ(0) = c and dϕ(0) = v, we have a unqiue conformal

factor ϕ such that e2ϕg is flat in some small open neighborhood V of p. 󰃈

41



CHAPTER 6

SMOOTH DEPENDENCE OF CONFORMAL NORMAL METRICS ON
PARAMETERS

In Chapter 5, we see that for a smooth background metric g, there exists a unique conformal

normal metric g̃ at any point p ∈ X. In this chapter, we prove the smooth dependence of

conformal normal metrics on a family of background metrics and give an application to the

regularity of the canonical metric gC in a Yamabe-positive conformal class C introduced by

Habermann and Jost in [HJ99].

6.1 Smooth Dependence of Conformal Normal Metrics

We first work over the background Euclidean space Rn and give a local smooth depen-

dence result(Lemma 6.1.7).

Suppose B1 ⊆ Rn is the unit ball centered at the origin and denote the space of smooth

metrics on B1 as Met ∞(B1) which is an open cone in the Fréchet space C∞(B1, Sym
2Rn).

Consider a l-parameter family of smooth metrics on Met ∞(B1) as follows:

γ : Rl → Met∞ (B1)

t 󰀁→ γ(t) = gt(x),
(6.1.1)

with gt(x) = (gij(t, x)) satisfies gij(t, x) ∈ C∞(Rl × B1).

Recall the following well-known result on the smooth dependence of solutions of a system

of ordinary differential equations, see Sec1.6 in [Tay96] for details:

Theorem 6.1.1. Suppose D = {(s, x, t)} ⊆ R ⊕ Rn ⊕ Rm is open and f : D → Rn is a

smooth vector valued function. Consider the initial value problem:󰀻
󰁁󰀿

󰁁󰀽

dx
ds

= f(s, x(s), t)

x(s0) = v,
(6.1.2)

with (s0, v, t) ∈ D.

Then there exists a constant δ > 0 such that on [−δ, δ]×D the initial value problem (6.1.2)

has a unique solution x = x(s; s0, v, t) ∈ C∞([−δ, δ]×D).

Lemma 6.1.2. Suppose γ is an arbitrary l-parameter family of metrics on B1 ⊆ Rn given

as (6.1.1). For any K ⊆ Rl compact, there exists δ > 0 small enough such that g̃t = exp∗gt(gt)
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satisfies g̃ij(t, x) ∈ C∞(K × Bδ). In particular, the coordinates {xi} on Bδ are normal

coordinates for g̃ij(t, x) for each t.

Proof: Apply Theorem 6.1.1 to the geodesic equations with metrics in γ(K) ⊆ Met ∞(B1).

Namely, consider the following system of equations:󰀻
󰁁󰀿

󰁁󰀽

dua

ds
= −Γa

bc(x(s), t)y
byc

u(0) = (p, v),

where u(s) = (x(s), y(s)), y(s) = dx(s)
ds

and Γa
bc(x(s), t) is the Christoffel symbol of gt(x).

Suppose (p, v, t) ∈ B1 × B1 ×K. We see that, up to restricting to a smaller ball Bδ ⊆ B1,

the Riemannian exponential map is uniformly defined on Bδ and is smooth with respect to

(p, v, t). □

We give a parameter-dependent version of Borel’s Lemma of asymptotic expansions be-

low:

Lemma 6.1.3. Suppose {ak(t) ∈ C∞(K) | K ⊆ R compact, k ∈ N} is an arbitrary collection

of smooth functions. There exists a smooth function f(t, x) ∈ C∞(K × R) such that

∂k
xf(t, 0) = ak(t) for any k ∈ N.

Proof: Let ρ(x) be a smooth bump function such that ρ = 1 on |x| 󰃑 3
4

and supp(ρ) = B1.

For each k ∈ N, take

Ak = 󰀂ak(t)󰀂Ck(K) , Bk = 󰀂ρ(x)󰀂Ck(R), Mk = sup
i≤k

󰀫
i󰁛

j=0

󰀕
i

j

󰀖
1

(k − j)!

󰀬

Define

f(t, x) =
∞󰁛

k=0

ak(t)
xk

k!
ρ (hkx) ,

with hk = (2kAkBkMk)
2
k .

We claim that the function f(t, x) defined above satisfies the requirements. Formally we

have ∂k
xf(t, 0) = ak(t). Hence it is sufficient to prove that f(t, x) ∈ C∞(K × R). We prove

by check the following fact: For each n,m ∈ N, the series

∞󰁛

k≥2(n+m)

󰀏󰀏󰀏󰀏∂
n
x∂

m
t

󰀕
ak(t)

xk

k!
ρ (hkx)

󰀖󰀏󰀏󰀏󰀏

converges on K × R. Indeed, we have:
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∞󰁛

k≥2(n+m)

󰀏󰀏󰀏󰀏∂
n
x∂

m
t

󰀕
ak(t)

xk

k!
ρ (hkx)

󰀖󰀏󰀏󰀏󰀏 =
∞󰁛

k≥2(n+m)

󰀏󰀏󰀏󰀏󰀏a
(m)
k (t)

n󰁛

j=0

󰀕
n

j

󰀖
xk−j

(k − j)!
· hn−j

k · ρ(n−j) (hkx)

󰀏󰀏󰀏󰀏󰀏

≤
∞󰁛

k≥2(n+m)

AkBkMkh
j−k
k · hn−j

k ≤
∞󰁛

k≥2(n+m)

AkMkBk

h
2/k
k

=
󰁛

k≥2(n+m)

1

2k
≤ 1,

where the first inequality follows from the definition of Ak, Bk,Mk, and the fact that

ρ(hkx) = 0 for |x| > 1
hk

, the second inequality is by −k
2
󰃍 n− k. □

Remark 6.1.4. By a completely similar argument, one can show that Lemma 6.1.3 holds

for the multivariable cases.

Theorem 6.1.5. For {g̃t ∈ Met∞(Bδ) | t ∈ K}, the smooth l-parameter family of metrics

obtained in Lemma 6.1.2, there exists a function Ψ(t, x) over K × Bδ such that:

a) Ψ(t, x) ∈ C∞(K × Bδ),

b) Ψt(x) = 1 +O(|x|2),

c) For each t ∈ K, the metric g∞t (x) := Ψ(t, x)g̃t(x) is ∞-order conformal normal at the
origin in {t}× Bδ.

Proof: Apply Lemma 3.2.1(cf. [LP87, Theorem 5.]) to each g̃t(x), we obtain a unique

formal power series:

h∞
t (x) =

∞󰁛

|α|=2

cα(t)x
α,

with cα(t) a polynomial of ∂αRicgt(0) and ∂βRiemgt(0) with |β| < |α|−2, such that for ht(x),

an arbitrary Borel’s extension of h∞
t (x), the function Ψt(x) = eht(x) satisfies requirements b)

and c).

By definition cα(t) is a smooth function of t over Rl. On ∀K ⊆ Rl compact, by

Lemma 6.1.3, we can choose h(t, x) ∈ C∞ (K × Bδ), hence Ψ(t, x) = eh(t,x) ∈ C∞ (K × Bδ).

□

In summary, we obtain a smooth l-parameter family of metrics:

{g∞t ∈ Met ∞(Bδ) | t ∈ K} (6.1.3)

such that for each t ∈ K, g∞t is ∞-order conformal normal at the origin and j10(g
∞
t ) = j10(gt).
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By applying Lemma 6.1.2 to the family {g∞t }, we can assume the coordinates {xi} on Bδ

are normal coordinates for g∞t for each t ∈ K.

For each t ∈ K, we then correct the metric g∞t to a conformal normal metric by Cao’s

PDE approach. On Bδ, write down Cao’s equation (4.2.4) with respect to g∞t :

L0(w) +
󰁛

i,j

xixj

x2
·Gij(x, ∂w, t) +

󰁛

ijk

xk · wij ·Qijk(x, ∂w, t) = f(x, t), (6.1.4)t

where the explicit formula for f(x, t), Gij(x, ζ, t), and Qijk(x, ζ, t) are given as follows:

f(x, t) =
−∂r det g

∞
t (x)

2r det g∞t (x)
(6.1.5)

Denote Φ1(x, ∂w) = 1+2
󰁓

xiwi+x2
󰁓

(g∞t )ijwiwj, we have (using Einstein’s convention

below):

Gij(x, ζ, t) = (g∞t )ab · Γc
ab(x, t)ζc · δij +

n− 2

Φ1

(2ζiζj + (g∞t )ab · ζaζbζixj)+

n− 2

Φ1

(2(g∞t )abζaζb(1 + xcζc) +
1

2
∂c(g

∞
t )abζaζb(x

c + x2(g∞t )cdζd))δij (6.1.6)

Qijk(x, ζ, t) =

󰁝 1

0

∂k((g
∞
t )ij − δij)(xs)ds+

n− 2

Φ1

(2xk(g∞t )ia(g∞t )jbζaζb + (g∞t )iaζaδ
jk) (6.1.7)

Upto choosing a smaller compact set K and δ > 0 if necessary, we can assume that

1
2
< Φ1(x, ζ, t) < 2 on Bδ × Bδ × K and 1

2
< det(g∞(x, t)) < 2 on Bδ × K. Hence by the

construction, f(x, t) is a smooth function in x, t and ft(x) ∈ Zδ with respect to x, Gij(x, ζ, t)

and Qijk(x, ζ, t) are smooth functions with respect to x, ζ, t.

Let K0 = 8󰀂|S (f)|󰀂2n, 1
2
;4n,λ + 1, then by the same argument as Theorem 4.2.2, there

exists a constant K3 > 0 depends on K0 such that for ρ ≤ 1
4(K3+K0)

, Fρ is a contraction

mapping on DK0 = {v ∈ C2n, 1
2
;4n,λ | 󰀂|v|󰀂2n, 1

2
;4n,λ ≤ K0}.

As in the proof of Theorem 5.2, fix ∗ = (2n, 1
2
; 4n, δ). With respect to each g∞t , take

K0(t) = 8󰀂|S (ft)|󰀂∗ +1, by construction K0(t) is continuous in t, hence for t ∈ K compact,

we have a maximum K̄0. Denote the convex set DK̄0
= {v ∈ C∗ | 󰀂|v|󰀂∗ ≤ K̄0}.

Denote K3(t) the contraction constant in (4.2.9) for the map Fρ,t(v). Namely, we have:

󰀂|Fρ,t(v)− Fρ,t(ṽ)|󰀂∗ ≤ K3(t)ρ󰀂|v − ṽ|󰀂∗.

The following lemma is proved in Appendix B:
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Lemma B.1. For K0 > 0, and functions in DK0 = {v | 󰀂|v|󰀂k,α;N,δ ≤ K0}, define

Tρ(v) = Gρ(v) +Qρ(v) =
󰁛

i,j

xixj

x2
·Gij(ρx, ρ∂v) +

󰁛

ijk

ρxk · vij ·Qijk(ρx, ρ∂v),

where Qijk(x, ζ) and Gij(x, ζ) are smooth functions with respect to x, ζ.

There exists a constant K2 such that for 0 < ρ < 1 and any pair of functions v1, v2 ∈ DK0,

we have

󰀂Tρ(v2)− Tρ(v1)󰀂k−2,α;N−2,δ + 󰀂Tρ(v2)− Tρ(v1)󰀂0,α;N−1,δ ≤ K2ρ󰀂ṽ − v󰀂k,α;N,δ.

In fact, K2 = C(α)P (K0)M , where C(α) is a constant depends on α, P (K0) is a poly-

nomial of K0 and

M = max
ijk

󰀋
󰀂Gij(x, ζ)󰀂Ck(D(δ,K0)), 󰀂x

kQijk(x, ζ)󰀂Ck(D(δ,K0))

󰀌
,

with D = D(δ, K0) = Bδ × BK0 ⊆ Rn ⊕ Rn.

Let K1 be the constant in (4.1.8) for ∗ = (2n, 1
2
; 4n, δ):

󰀂|S ◦ f |󰀂∗ ≤ K1{󰀂|f |󰀂0,1/2;4n,δ + 󰀂|f |󰀂2n−2,1/2;4n−2,δ}.

Apply Lemma B.1 to the functional Tρ,t defined by the metric g∞t , for a pair of functions

v1, v2 ∈ DK0 , we have:

󰀂|Fρ,t(v1)− Fρ,t(v2)|󰀂∗ = 󰀂|S ◦ (Tρ,t(v1)− Tρ,t(v2)) |󰀂∗ ≤ K1 ·K2(t)ρ󰀂|v − ṽ|󰀂∗.

We see that K3(t) = K1 · K2(t). Since Gij and Qijk depend smoothly on the metrics

g∞t , hence so do their Ck norms. We obtain an upper bound of K3(t) by take the maximum

values for C2n(D) norms of Gij and Qijk.

On one hand, let τ(t) = 1
8(K3(t)+K0)

, then by the argument above τ(t) is uniformly bounded

below by τ = τ(K) for all t ∈ K, the solution w(x, t) of Cao’s equation (6.1.4)t exists on Bτ ;

on the other hand, the map Fρ,t is a smooth family of contraction maps over DK̄0
×K with a

uniform contraction constant. Recall the following classical result of uniform contractions(cf.

[CH12, Theorem 2.2]):

Lemma 6.1.6 (Uniform Contraction Principle). Let U, V be open sets in Banach spaces

X, Y respectively. Let Ū be the closure of U , T : Ū × V → Ū a uniform contraction on

Ū and let g(y) be the unique fixed point of T (·, y) in Ū . If T is smooth over Ū × V , then

g(·) ∈ C∞(V,X).
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Apply Lemma 6.1.6 to Fρ,t, we see that the solution w(x, t) of Cao’s equation (6.1.4)t

with respect to the metric g∞t (x) depends smoothly on t. In summary, we have the following

result:

Lemma 6.1.7. Give a smooth family of metrics γ : Rl → Met∞(B󰂃), for any K ⊂ Rl

compact, there exist 0 < δ < ε small enough such that there is an unique function Φ ∈

C∞(K × Bδ,R+) such that Φt(x) = 1 + O(r2) and Φ2
t g is conformal normal on Bδ for any

t ∈ K.

Apply Lemma 6.1.7, we construct a smooth Riemannian metric on X × X which is

conformal normal near the diagonal in the following sense:

Corollary 6.1.8. Given (X, g), there exists a smooth Riemannian metric g⊕Φ2g on X×X,

where Φ is a function satisfies the following conditions:

(a) Φ = Φ(p, q) ∈ C∞(X ×X,R+).

(b) Near the diagonal ∆ ⊂ X×X, Φ = 1+O(r2), where r is the distance from the diagonal.

(c) There exists an open neighborhood U of the diagonal ∆ such that for ∀p ∈ X, Φ2
pg is

conformal normal on Up = ({p}×X) ∩ U .

Proof: Let ϕ0 : U0 → X be a chart centered at a point p0 ∈ X. Fix θ0 ∈ Op0(X), where

O(X) is the g-orthonormal frame bundle. For δ > 0 small enough, and the δ ball Bδ ⊂ Rn

at the origin, we define a smooth family of metrics

γ : U0 → Met ∞(Bδ)

as follows: For any x ∈ U0, let θx ∈ Oϕ(x)(X) be the orthonormal frame obtained by the

parallel transportation from θ0 with respect to the metric g. We identify Tϕ(x)X with Rn by

θx : Rn → Tϕ(x)X as θx(v) =
󰁓

vi(θx)i.

Let δ > 0 small enough such that θx(Bδ) is in the injectivity domain of the exponential

map on Tϕ(x)X for any x ∈ U0.

Define γ(x) = (expϕ(x) ◦ θx)∗g ∈ Met ∞(Bδ). It is clear by definition that γ is a smooth

family of metrics.
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Apply Lemma 6.1.7 to γ, we obtain a smooth family of conformal normal metric g̃ = Φ2g,

with Φ ∈ C∞(U0 × Bδ). Let ϕ̃ : U0 × Bδ → exp (TX|ϕ(U0)) ⊂ X × X be the map to an

open neighborhood of the diagonal ∆ obtained by θx and the exponential map. Then by

construction, the metric g ⊕ ϕ̃∗g̃ is a smooth metric on ϕ̃(U0 × Bδ).

For another point, p1 ∈ X together with an open neighborhood U1, by the same argu-

ment, we obtain a smooth family of conformal normal metrics parametrized over U1 and

by the uniqueness of conformal normal metrics, the two families of metrics coincide on the

overlap U0 ∩ U1 and hence we obtain a smooth family of metrics g ⊕Φ2g over X in an open

neighborhood U∆ of the diagonal.

Take K ⊂ U∆ compact and V ⊃ K open. Respectively, let µ be a bump function on

X×X such that µ = 1 on K and supp(µ) ⊆ V . Then the metric g⊕ (Φ2µ+1−µ)g satisfies

the requirements. □

6.2 An Application of Smooth Family of Conformal Normal Metrics

In this section, we apply the smooth family of conformal normal metrics in Corollary 6.1.8

to give a shorter proof of the regularity of the canonical metric gC in a Yamabe-positive

conformal class C introduced by Habermann and Jost in [HJ99]. We begin by reviewing

some background knowledge on Green’s functions for Riemannian manifolds and the mass

of asymptotically flat manifolds.

Conformal Laplacian and Green’s function.

On a Riemannian manifold (X, g) of dimension n ≥ 3, by adding a multiple of the

scalar curvature Sg to the Laplace-Beltrami operator ∆g, we obtain the so-called conformal

Laplacian operator:

Lg =
4(n− 1)

(n− 2)
∆g + Sg.

Lg is conformally covariant in the following sense. Suppose g̃ = u
4

n−2 g, then the conformal

Laplacian changes correspondingly as:

u
n+2
n−2 ◦ Lg̃ = Lg ◦ u. (6.2.1)

Remark 6.2.1. Lg is the most famous example of a general hierarchy of conformally covari-
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ant operators. Let a, b ∈ R, a linear differential operator Pg of order m on (X, g) is called

conformally covariant of bi-degree (a, b) if with respect to a conformal change g̃ = ϕ2g, we

have:

ϕb ◦ Pg̃ = Pg ◦ ϕa.

Lg can be generalized to the conformal powers P2N,g of Laplacian (also known as GJMS

operators):

P2N,g = ∆N
g + LOT,

where “LOT” indicates terms of order lower than 2N . P2N,g is of bi-degree (n−2N
2

, n+2N
2

).

In particular P2,g = Lg, P4,g is the so-called Paneitz operator which was discovered indepen-

dently by Paneitz [Pan08], Eastwood-Singer [ES85] and Riegert [Rie84]. Explicitly:

P4,g = ∆2
g + δ

󰀕
n− 2

2(n− 1)
Sg · g − 4P

󰀖
d+

n− 4

2
Q,

where δ is the formal adjoint of d, P is the Schouten tensor, which is defined by (n− 2)P =

Ricg− 1
2(n−1)

Sg ·g, and Q = n
4(n−1)

S2
g −2|P |2− 1

2(n−1)
∆gSg is the so-called Q-curvature tensor.

See [Juh09] for more details.

The Green’s function G of the operator Lg is a smooth function on X×X−∆. Following

[LP87], we will normalize it by requiring that󰁝

X

G(p, q)Lg(ϕ(q)) dvolg(q) = (n− 2)ωn−1 ϕ(p) (6.2.2)

for all ϕ ∈ C∞
0 (X). Applying Equation (6.2.1) to (6.2.2), we see that under the conformal

change g̃ = u
4

n−2 g, the Green’s function transforms as

󰁨G(p, q) =
1

u(p)u(q)
G(p, q). (6.2.3)

Next, recall that the Yamabe constant Y(C) of a conformal class C is defined by

Y(C) = inf
g∈C

󰁕
X
Sg dvolg

󰀃󰁕
X
dvolg

󰀄n−2
n

.

The proof of Lemma 6.1 in [LP87] (see also Prop 2.2.9 in [Hab00]) shows that Y(C) > 0

if and only if there exists a metric g ∈ C with positive scalar curvature. Furthermore, for

each g ∈ C, the smallest eigenvalue λ1 of Lg has the same sign as Y(C), so in the case that

Y(C) > 0, Lg is invertible and we have the following result.

Theorem 6.2.2. If Y(C) > 0, then for each g ∈ C, there is a unique Green’s function G
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for Lg. Moreover, G is symmetric and positive.

We work with Y(C) > 0 throughout this section. For convenience, we adopt the following

notations as in [LP87].

Notation. We write f = O′ 󰀃rk
󰀄

to mean f = O
󰀃
rk
󰀄

and ∇f = O
󰀃
rk−1

󰀄
. O′′ is defined

similarly.

Near the diagonal of X × X, G has the following asymptotic expansion under the con-

formal normal coordinates.

Lemma 6.2.3 ([LP87], Lemma 6.4). Let X be a smooth manifold of dimension n with a

conformal structure C such that Y(C) > 0 and either n = 3, 4, 5 or C is conformally flat. Fix

p ∈ X. Then, in conformal normal coordinates {xi} at p, the Green’s function Gp = G(p, ·)

has an asymptotic expansion of the form

Gp(x) = |x|2−n + α(p) +O′′(|x|)

for some constant α(p).

In fact, the regular part α(p) + O′′(|x|) of Gp(x) can be expressed in terms of the heat

kernel k of Lg. Recall that the heat kernel k of Lg is a smooth function k : X×X×R+ → R+

such that:

(a) kp(q, t) = k(p, q, t) as a function of q and t > 0 solves the Lg heat equation:

(∂t + Lg)kp(q, t) = 0.

(b) For ∀p ∈ X and ∀ϕ ∈ C∞(X),

lim
t→0

󰁝

M

k(p, q, t)ϕ(q) dvolg(q) = ϕ(p).

It is a well-known fact that the heat kernel k for Lg is uniquely determined by the metric

g. Furthermore, k depends smoothly on the metric in the following sense (cf. [PR87, Lemma

1.1] or [BGV03, Theorem 2.48]).

Lemma 6.2.4. Suppose γ : Rl → Met∞(X) with γ(s) = gs is a smooth family of smooth

metrics, then the corresponding family of heat kernels k(s, p, q, t) is a smooth function on

Rl ×X ×X × R+.
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We will use the following relation between Green’s function G and the heat kernel k (cf.

[BGV03, Theorem 2.38]).

Lemma 6.2.5. For each (p, q) ∈ X ×X, we have

G(p, q) = (n− 2)ωn−1

󰁝 ∞

0

k(p, q, t)dt, (6.2.4)

where ωn−1 is the volume of the unit sphere Sn−1.

In particular, the standard Euclidean heat kernel centered at the origin on Rn is k0 =

(4πt)
−n
2 exp (−|x|2

4t
), and direct integration using the Gamma function shows that

(n− 2)ω

󰁝 ∞

0

k0 dt = |x|2−n. (6.2.5)

Proposition 6.2.6. If the manifold X is of dimension n = 3, 4, 5 or C is conformally flat,

then in conformal normal coordinates {xi} on a neighborhood Up of a point p,

Gp(x) = |x|2−n + Φ0(p, x) (6.2.6)

where

Φ0(p, x) = (n− 2)ωn−1

󰁝 ∞

0

(k − k0)dt (6.2.7)

is a bounded function on Up.

Proof. By (6.2.4), (6.2.5) and (6.2.7), we have

Gp(x) = (n− 2)ωn−1

󰀕󰁝 ∞

0

k0(p, x, t) dt+

󰁝 ∞

0

(kp(x, t)− k0(p, x, t)) dt

󰀖
= |x|2−n +Φ0(p, x).

To see that Φ0 is bounded on Up, we introduce the function k1 = k0(1 + a1(x)t), where

a1(x) =

󰁝 1

0

S(xt) dt (6.2.8)

is the integral of the scalar curvature S. By Theorem 2.2 in [PR87], k1 is a parametrix for

k in dimension ≤ 5, and there are bounded functions ϕj such that

Φ0(p, x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

ϕ1 + ϕ3 − ϕ4 n = 3 or C locally conformally flat

ϕ′
1 + ϕ3 − ϕ4 + a1(x)

󰀃
ϕ2 − ln(|x|)

󰀄
, n = 4

ϕ′
1 + ϕ3 − ϕ′

4 −
a1(x)
|x| n = 5.

(6.2.9)
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Specifically, with the same labeling as in [PR87],

ϕ1 = (n− 2)ωn−1

󰁝 1
4

0

(k − k0) dt, ϕ′
1 = (n− 2)ωn−1

󰁝 1
4

0

(k − k1) dt,

ϕ2 =

󰁝 ∞

1

λ−1e−λdλ+

󰁝 1

|x|2
λ−1(e−λ − 1) dλ,

ϕ3 = (n− 2)ωn−1

󰁝 ∞

1
4

k dt,

ϕ4 = (n− 2)ωn−1

󰁝 ∞

1
4

k0 dt, ϕ′
4 = (n− 2)ωn−1

󰁝 ∞

1
4

k1 dt

The Proposition follows because, in conformal normal coordinates at p, S(x) = O(|x|2) (cf.

[LP87, Theorem 5.1]), and hence a1(x) = O(|x|2).

Remark 6.2.7. The restriction of Φ0 to the diagonal is a smooth function Φ(p, p) on X.

This can be seen from (6.2.9). By (6.2.8), a1(x) vanishes on the diagonal, and ϕ3, ϕ4 and ϕ′
4

are clearly smooth. As for ϕ1 and ϕ′
1, the arguments in Section 2.5 of [BGV03] show that

the functions κ(p, t) = k(p, p, t)− k0(p, p, t) and κ′(p, t) = k(p, p, t)− k1(p, p, t) satisfy

|∂l
pκ(p, t)| ≤

cl√
t
, for dim n = 3,

|∂l
pκ

′(p, t)| ≤ c′l√
t
, for dim n = 4, 5.

for any l ∈ N+. Because κ and κ′ are smooth for t > 0 and the function 1/
√
t is integrable,

the standard theorem on differentiating under the integral shows that ϕ1 and ϕ′
1 are smooth.

Mass of An Asymptotically Flat Manifold

Definition 6.2.8. An n-dimensional Riemannian manifold (X, h) is called asymptotically

flat of order τ > 0 if there exist a compact subset K ⊂ X and a diffeomorphism Ψ : X\K →

{z ∈ Rn : |z| > 1} such that, in the coordinates z1, . . . , zn induced on X\K,

hij(z)− δij = O′′ 󰀃ρ−τ
󰀄

as ρ := |z| → ∞. The coordinates {zi} are called asymptotic coordinates.

Given an asymptotically flat manifold (X, h), let Sr denote the sphere of radius r ≫ 0

in the asymptotic coordinate system {xi}. We can then define the following fundamental

quantity.
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Definition 6.2.9. The mass of an asymptotically flat manifold (X, h) is the number

mass(h) =
1

ωn−1

lim
r→∞

󰁝

Sr

n󰁛

i,j=1

(hij,i − hii,j) (−1)j+1dz1 ∧ · · · ∧ 󰁦dzj ∧ · · · ∧ dzn, (6.2.10)

where ωn−1 is the volume of the unit sphere Sn−1.

By this definition, the mass is a measure of how quickly the metric approaches the

Euclidean metric near infinity. The following theorem of R. Bartnik (cf. [Bar86]) shows that

the mass depends only on the metric h.

Theorem 6.2.10 (Bartnik). If (X, h) is asymptotically flat of order τ > n−2
2

> 0, then

mass(h) is independent of the choices of asymptotic coordinates, so is an invariant of the

Riemannian metric h.

We shall later apply the following version of the n-dimensional Positive Mass Theorem

of Schoen and Yau (cf. [SY79], [SY81], [LP87]).

Theorem 6.2.11. Let (X, h) be a Riemannian manifold of dimension n ≥ 3 that is asymp-

totically flat of order τ > n−2
2

. If (X, h) has non-negative scalar curvature, then mass(h) ≥ 0,

with equality if and only if (X, h) is isometric to the Euclidean Rn.

Conformal blowup

Unless specifically stated otherwise, we work with the cases n = 3, 4, 5 or C is conformally

flat, and we assume that Y(C) > 0.

In [Sch84], Schoen introduced the idea of conformally blowing up a metric g ∈ C by

the Green’s function of Lg to turn X into an asymptotically flat manifold (cf. [LP87]).

Explicitly, the conformal blowup of (X, g) at a point p ∈ X of g is the manifold X \{p} with

the Riemannian metric hp defined by

hp = h(p, q) :=
󰀃
G(p, g)

󰀄 4
n−2 g(q). (6.2.11)

Note that hp is a smooth metric by Theorem 6.2.2.

Suppose that {xi} are conformal normal coordinates centered at p defined on a neighbor-

hood U of p as in Lemma 6.2.3. On U \ {p} define “inverted conformal normal coordinates”

by zi = xi

|x|2 . By the asymptotic expansion of G in Lemma 6.2.3 (cf. [LP87, Theorem 6.5]),
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we have:

hij(z) = γ
4

n−2 (z)
󰀃
δij +O′′ 󰀃|z|−2

󰀄󰀄
, (6.2.12)

where

γ(z) = 1 + α(p)|z|2−n +O′′ 󰀃|z|1−n
󰀄
.

This shows that hp is an asymptotically flat metric of order 1 if n = 3, order 2 if n = 4, 5, and

order n− 2 if g is conformally flat near p. Hence, in each of these cases, Bartnik’s Theorem

implies that the mass m(hp) is well-defined and depends only on the metric g ∈ C.

Lemma 6.2.12. (cf. [LP87, Lemma 10.5])

mass(hp) = lim
q→p

(G(p, q)− rp(q)
2−n) = 4(n− 1)α(p). (6.2.13)

Proof. Take the spherical coordinates, ρ = |z| and ξ = z
|z| . With respect to (ρ, ξ), the

definition (6.2.10) of mass gives:

mass(hp) =
1

ωn−1

lim
λ→∞

λn−2

󰁝

Sλ

n󰁛

i,j=1

(hij,i − hii,j) z
jdξ. (6.2.14)

By the asymptotic formula (6.2.12), we have

hij(z) = (1 +
4α(p)

n− 2
ρ2−n)δij +O′′(ρ1−n).

Hence
n󰁛

i,j=1

(hij,i − hii,j)z
j = (1− n)

n󰁛

j=1

zj∂j(1 +
4α(p)

n− 2
ρ2−n +O′′(ρ1−n))

= (1− n)ρ∂ρ(1 +
4α(p)

n− 2
ρ2−n +O′′(ρ1−n))

= 4(n− 1)α(p)ρ2−n +O(ρ1−n).

The result follows by substituting the above result into (6.2.14).

Regularity of Habermann’s Canonical Metric

Definition 6.2.13. For a Riemannian metric g on X, define the corresponding mass function

as mg : X → R

mg(p) =
mass(hp)

4(n− 1)
, (6.2.15)

where hp is the asymptotically flat metric at p ∈ X with respect to g by formula (6.2.11).

Theorem 6.2.14. The mass function (6.2.15) satisfies the following properties :

(a) m = 0 if (X, g) conformal to the standard n-sphere, and m > 0 in all other cases.
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(b) mf∗g = f ∗mg for f : X → X a diffeomorphism.

(c) u2 ·m
u

4
n−2 g

= mg for u ∈ C∞(X).

(d) m ∈ C∞(X).

Proof: (a) For each point p, the Positive Mass Theorem 6.2.11 shows that m(p) ≥ 0, with

equality if and only if (X\{p}, hp) is isometric to euclidean Rn, in which case (X,C) is

conformally equivalent to the sphere Sn with its standard metric. Hence for all the other

cases, m is strictly positive on X.

(b) An isometry f preserves the distance function: rg(f(p), f(q)) = rf∗g(p, q). It also

preserves the Green’s function, as follows:
󰁝

X

G(f(p), f(q); g)Lf∗g(ϕ(q)) dvolf∗g(q)

=

󰁝

X

G(f(p), f(q); g)Lg(ϕ(f(q))) dvolg(f(q)) = (n− 2)ωn−1 (ϕ ◦ f)(p)

Hence by the uniqueness of Green’s function, we have G(f(p), f(q); g) = G(p, q; f ∗g).

By (6.2.13), we have

f ∗mg = αg(f(p)) = lim
q→p

󰀏󰀏G(f(p), f(q); g)− r2−n
g (f(p), f(q))

󰀏󰀏

= lim
q→p

󰀏󰀏G(p, q; f ∗g)− r2−n
f∗g (p, q)

󰀏󰀏 = αf∗g(p) = mf∗g.

(c) By (6.2.3)

󰁨G(p, q) =
1

u(p)u(q)
G(p, q).

Temporarily setting γ = 4
n−2

, the definition (6.2.11) shows that

h̃p(q) =
󰀓
󰁨G(p, q)

󰀔γ

g̃ =

󰀕
G(p, q)

u(p)u(q)

󰀖γ

u(q)γg(q) = u(p)−γhp(q).

It is clear that if {zi} are asymptotic coordinates of h, then {λzi} are asymptotic coordinates

for a constant rescaling λ2h, and by a coordinate changing in (6.2.10), we have m(λ2h) =

λn−2m(h). The conclusion follows by taking λ = u(p)−γ/2 = u(p)
−2
n−2 .

(d) Let Φ ∈ C∞(X × X,R+) be the conformal factor defined in Lemma 6.1.8. Notice

that proposition (c) is pointwise true, hence at a point p, let u
4

n−2 (q) = Φ2(p, q), we have

Φ1/(n−2)mΦ2g(p) = mg(p). (6.2.16)

By Lemma 6.1.8, gp = Φ2
pg is the smooth family of metrics that are conformal normal

near p.
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Let k : X×X×R+×X → R+ be the family of heat kernels parametrized by the smooth

family of metrics {gp | p ∈ X}, i.e. k(q1, q2, t; gp) = kp(q1, q2, t) is the heat kernel of Lgp . By

Lemma 6.2.4, k(q1, q2, t; gp) is smooth in all the variables. Let Gp = G(q1, q2; gp) denote the

Green’s function related to the heat kernel of gp by (6.2.4). Since gp are conformal normal

for each p, by (6.2.13) and (6.2.6), we have

mass(hp(gp)) = lim
x→0

Gp(p, x)− |x|2−n

= lim
x→0

Φ0(p, x; gp) +O(|x|) = Φ0(p, p; gp).

By equation (6.2.7),

Φ0 = (n− 2)

󰁝 ∞

0

(k(p, p, t; gp)− k0(p, p, t))dt,

where k(p, p, t; gp) by Lemma 6.2.4 is a smooth function on X × R+.

By Lemma 6.2.6 and Remark 6.2.7, Φ0 is a smooth function on X. Hence by (6.2.16)

mg is a smooth function on X. □

In [HJ99], Habermann and Jost observed that each conformal class C on X has a canon-

ically associated metric, defined as follows.

Definition 6.2.15. For a conformal class C on X, suppose ψ : X → C is a smooth map,

the canonical metric κC is the (0, 2) tensor below:

κC(p) = mg(p)
2

n−2 g(p).

By Theorem 6.2.14, κC is well defined independent of the choice of g ∈ C and is pre-

served by the pullback map by isometry, and κC vanishes identically if and only if (X,C) is

conformally equivalent to the sphere Sn with its standard metric. Otherwise, κC ∈ C is a

smooth Riemannian metric on X.

Remark 6.2.16. On a Yamabe positive manifold (X,C) of dimension n, consider P2N the

conformal N th-power of Laplacian with 2N+1 ≤ n ≤ 2N+3. Let G be the Green’s function

of P2N . By a completely similar argument as above, one can see that the (0, 2) tensor gC

defined by

gC(p) = mass

󰀕
G

4
n−2N
p g

󰀖 2
n−2N

g(p)

is smooth and depends only on the conformal class of the metric g. This was proved by
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B. Michel in [Mic10]. Again, the proof of regularity ([Mic10, Prop. 3.3]) can be simplified

using Lemma 6.1.8.
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APPENDIX A

PROOF OF LEMMA A.3

This appendix supplies the proof of Lemma A.3. The proof is completely algebraic and

begins with the following preliminary lemma.

Let (Rn, δ) be the standard n-dimensional Euclidean space with dimension n ≥ 3 and let

V = Sym2(Rn)⊗ Syml(Rn).

Consider the following linear operators on V :

Sym : V → Symk(Rn)

αµ 󰀁→ 1

k!

󰁛

σ∈Sk

ασ·µ
(A.1)

where k = 2 + l.
Tr : V → Syml(Rn)

aij ⊗ bν 󰀁→
󰁛

i,j

δijaijbν
(A.2)

The symmetrization operator Sym gives a direct sum decomposition:

V = Symk(Rn)⊕ ker(Sym).

For ε > 0 small enough, define the following operator:

Pε(α) : V → V

α 󰀁→ α− ε · δ ⊗ Tr(α)

(A.3)

We say α ∈ V is ε-symmetric if Pε(α) ∈ Symk(Rn), and denote the ε-symmetric subspace

of V as:

Symk
ε(Rn) := {α ∈ V |Pε(α) ∈ Symk(Rn)} (A.4)

Lemma A.1. For ε ≤ 1
2(n−1)

, we have following the direct sum decomposition:

V = Symk
ε(Rn)⊕ ker(Sym).

Proof. If Pε(α) = 0, then we have Tr(Pε(α)) = (1 − nε) Tr(α) = 0. By assumption, ε ≤
1

2(n−1)
< 1

n
, hence Tr(α) = 0 and 0 = Pε(α) = α − ε · δij ⊗ Tr(α) = α. Thus Pε is an

isomorphism on V and dim(Symk
ε(Rn)) = dim(Symk(Rn)).

We are left to show that Symk
ε(Rn)∩ker(Sym) = {0}. Assume α ∈ V such that Sym(α) =

0 and Pε(α) ∈ Symk(Rn). By taking Tr ◦ Sym on Pε(α), we can obtain the following equation
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on Syml(Rn):

(1− ε · n) Tr(α) = Tr(Pε(α)) = Tr(Sym(Pε(α))) = −εTr(Sym(δ ⊗ Tr(α))). (A.5)

To be brief, denote Tr(α) = Sν with ν = (i1 · · · il). Since Sν ∈ Syml(Rn), we may assume

the indices are nondecreasing: i1 ≤ · · · ≤ il. For each 1 ≤ i ≤ n, let νi be the number of i’s

in ν, then it is clear that the index ν is determined by the numbers ν1, . . . , νn, and hence in

other words by the Young diagram (ν1, . . . , νn) of n rows with νi many boxes on the ith row

such that
󰁓n

i=1 νi = l.

Let N = ε−1, multiply Equation (A.5) with (l + 2)(l + 1)N and write with indices, we

have:

[(l + 2)(l + 1)(N − n) +
n󰁛

i=1

(vi + 1)(vi + 2)]Sν +
󰁛

j ∕=i
vj>1,vi<l−1

vj(vj − 1)Sv′ij
= 0, (A.6)ν

where the index v′ij is determined by the Young diagram (ν1, . . . , νi + 2, . . . , νj − 2, . . . , νn).

We see that two elements Sν and S ′
ν are correlated by Equation ((A.6)ν) if there exist

1 ≤ i ∕= j ≤ n such that ν ′
i = νi+2, ν ′

j = νj −2 and ν ′
k = νk for k /∈ {i, j}. We thus define an

equivalence relation between the indices ν and ν ′ as follows: we say ν and ν ′ are elementary

correlated if there exist 1 ≤ i ∕= j ≤ n such that ν ′
i = νi + 2, ν ′

j = νj − 2 and ν ′
k = νk for

k /∈ {i, j}. And ν, ν ′ are equivalent if ν ′ can be obtained from ν by finitely many steps of

elementary correlations.

Denote ν̄ for an equivalent class of ν, let |ν̄| be its cardinality. For each ν ∈ ν̄, we have the

corresponding Equation (A.6)ν , and hence we have |ν̄| many homogenous linear equations

for |ν̄| many unknowns. In matrix form, we have

A · (Sν)ν∈µ̄ = 0, (A.7)

where A is a |ν̄|× |ν̄| square matrix defined as

Aνν′ =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

(l + 2)(l + 1)(N − n) +
󰁓n

i=1(νi + 1)(νi + 2), ν ′ = ν

νj(νj − 1), i ∕= j, ν ′ = ν ′
ij

0, otherwise.

(A.8)

We claim that A is a diagonally dominated matrix. Indeed, for the νth row, the difference
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between the absolute value of the diagonal and the sum of absolute values of elements of the

diagonal is:

(l + 2)(l + 1)(N − n) +
n󰁛

i=1

(νi + 1)(νi + 2)−
󰁛

i ∕=j

νj(νj − 1)

= (N − n)l2 + l2 −
󰁛

i ∕=j

(νi + νj)νj + (3(N − n) + n+ 2)l + 2(N + 1− n)

≥ (N − n)l2 + l2 − l
󰁛

i ∕=j

νj + (3(N − n) + n+ 2)l + 2(N + 1− n)

= (N − 2n+ 2)l2 + (3(N − n) + n+ 2)l + 2(N + 1− n)

≥ (3(N − n) + n+ 2)l + 2(N + 1− n) > 0,

(A.9)

where the first equality is by the fact:
n󰁛

i=1

ν2
i = (

n󰁛

i=1

νi)
2 −

󰁛

i ∕=j

νiνj = l2 −
󰁛

i ∕=j

νiνj,

the first inequality is by νi + νj ≤ l and the second inequality is by the assumption that

N = ε−1 ≥ 2n− 2. Hence the coefficient matrix A is diagonally dominated. It is a classical

fact that diagonally dominant matrices are invertible, and hence (Sν)ν∈ν̄ = A−1(A(Sν)) = 0.

Since the class ν̄ is arbitrarily taken, we have Sν = 0 for any index ν, and hence Tr(α) = 0.

Hence Pε(α) = α ∈ Symk(Rn) and Sym(α) = 0, which means α = 0.

Remark A.2. Diagonal dominance is a sufficient but not necessary condition for the matrix

A being nonsingular, and hence 1
2n−2

is not a sharp bound for transversality. Indeed, if we

formally write the unknowns Sν in the equations (A.6)ν as coefficients of a homogeneous

degree l polynomial f , we can then write the system (A.6)ν in a compact way as:

((l + 2)(l + 1)(N − n) + 4l + 2n)f + r2∆(f) = 0. (A.10)

See Lemma 5.3 in [LP87] for the following fact: The eigenvalues of r2∆ on the space of

homogeneous degree l polymonials are

{λj = −2j(n− 2 + 2l − 2j) : j = 0, . . . , [l/2]}.

Hence to ensure (Sν) = 0, it is sufficient to require the following set does not contain 0:

Λ = {((l + 2)(l + 1)(N − n) + 4l + 2n)− 2j(n− 2 + 2l − 2j)|j = 0, . . . , [l/2]}.
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Hence transversality result holds for a general ε away from a countable subset in R. In

particular, for N = n = 3, we have 0 /∈ Λ. For this case, if we take α = Ric, then P1/3(Ric)

is the traceless Ricci.

Lemma A.3. For k ≥ 0, equations (3.1.11)0, . . . ,(3.1.11)k together with jk−1
p (C) = 0

deduce jkp (Ric) = 0.

Proof. We prove by induction on k:

For k = 0, the claim is true by (3.1.11)0. Assume the claim is true for k ≤ m.

For k = m+ 1, by the induction assumption, we have jmp (Ric) = 0.

In Equation (3.1.11)k with k = m+ 1, we have:
2m+ 4

(m+ 4)!

󰁛

µ∼µ̄

Ricµ(p) + P (Rµ′(p)) = 0,

where |µ| = m + 3 and |µ′| ≤ m + 1 and the P (Rµ′(p)) term consists of derivatives of

the Riemannian curvature R of order less than m and therefore vanishes by the induction

assumption.

We thus have:
󰁛

µ∼µ̄

Ricµ(p) = 0.

On the other hand, by the condition jmp (C) = 0, for any index ν with |ν| = m, we have:

0 = Cν(p) = Pij,kν − Pik,jν , (A.11)

Where P = Ric− 1
2(n−1)

Sg is the Schouten tensor.

Since S = gijRicij, and jmp (Ric) = 0, we have jmp (S) = 0.

Hence

(Sgij)kν(p) = δij(p)Skν(p).

For l = m+ 1, and µ = (ijν) with |ν| = m+ 1, in local coordinates we have

Ricµ(p) ∈ Sym2(Rn)⊗ Syml(Rn) = V.

Let ε = 1
2n−2

in Lemma A.1, we have

P 1
2n−2

(Ricµ(p)) = Ricµ(p)−
1

2n− 2
δ(p)⊗ Sν(p) = Pν ,

which is symmetric by (A.11).
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Hence Ricµ(p) satisfies the conditions of Lemma A.1, by which we have Ricµ(p) = 0, for

|µ| = m+ 1, namely jm+1
p (Ric) = 0.
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APPENDIX B

PROOF OF LEMMA B.1

This appendix supplies the proof of Lemma B.1.

For 0 < α, δ < 1, k ≤ N , and denote Ar the annulus Br − Br/2, recall the definition of

the 󰀂 · 󰀂k,α;N,δ norm:

󰀂f󰀂k,α;N,δ = sup
0<r≤δ

r−N

󰀕 k󰁛

|β|=0

r|β| sup
Ar

{|∂βf(x)|}+ rk+α sup
x ∕=y∈Ar

|β|≤k

|∂βf(x)− ∂βf(y)|
|x− y|α

󰀖
.

For K0 > 0, let DK0 = {v | 󰀂v󰀂k,α;N,δ ≤ K0}, on which define the functional:

Tρ(x, v) = Gρ(x, v) +Qρ(x, v) =
󰁛

i,j

xixj

x2
·Gij(ρx, ρ∂v) +

󰁛

ijk

ρxkQijk(ρx, ρ∂v)∂ijv,

where Qijk(x, ζ) and Gij(x, ζ) are smooth functions with respect to x, ζ.

Lemma B.1. There exists a constant K2 such that for 0 < ρ < 1 and any pair of functions

v1, v2 ∈ DK0, we have

󰀂Tρ(v2)− Tρ(v1)󰀂k−2,α;N−2,δ + 󰀂Tρ(v2)− Tρ(v1)󰀂0,α;N−1,δ ≤ K2ρ󰀂v2 − v1󰀂k,α;N,δ. (B.1)

In fact, K2 = C(α)P (K0)M , where C(α) is a constant depends on α, P (K0) is a polyno-

mial of K0 and M = maxijk
󰀋
󰀂Gij󰀂Ck(D), 󰀂xkQijk󰀂Ck(D)

󰀌
, with D = D(δ, K0) = Bδ ×BK0 ⊆

Rn ⊕ Rn.
Proof: Write Tρ

󰀏󰀏󰀏
2

1
= T (ρx, ρ∂v2)− T (ρx, ρ∂v1) and similarly for Gρ and Qρ terms.

First, consider the case k = 2. In this case, the second term in (B.1) dominates the first

term, so it suffices to bound 󰀂Tρ

󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ. Since

󰀂Tρ(v)
󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ = 󰀂Gρ(v)

󰀏󰀏󰀏
2

1
+Qρ(v)

󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ

≤ 󰀂Gρ(v)
󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ + 󰀂Qρ(v)

󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ.

We will bound the G and Q norms separately.

For the G part, we have:

|Gρ

󰀏󰀏󰀏
2

1
| = |

󰁛

ij

xixj

x2
(Gij(ρx, ρ∂v2)−Gij(ρx, ρ∂v1))|

≤
󰁛

ij

|Gij(ρx, ρ∂v2)−Gij(ρx, ρ∂v1)| ≤ 󰀂Gij󰀂C1(D)ρ|∂v
󰀏󰀏󰀏
2

1
|,

where the last inequality is by the Mean Value Theorem.
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By induction on m, we have ∂mxixj

x2 ≤ C 1
rm

, where C depends m and the dimension n.

Hence

|∂mGρ

󰀏󰀏󰀏
2

1
| ≤ C

󰁛

ij

m󰁛

l=0

rl−m|∂lGij(ρx, ρ∂v))
󰀏󰀏󰀏
2

1
|. (B.2)

Apply the composition rule to ∂lGij(ρx, ρ∂v), we obtain a linear combination of the following

terms:

∂m1+···+mlGij(ρx, ρ∂v)
l󰁜

j=1

(∂j+1v)mj ,

where
󰁓l

j=1 jmj = l.

Evaluate each term at v1 and v2 and by the Mean Value Theorem similar to above, we

have:

|∂lGij(ρx, ρ∂v))
󰀏󰀏󰀏
2

1
| ≤ ρ󰀂Gij󰀂Cl+1(D)P1(K0)(

l+1󰁛

l′=1

|∂l′v
󰀏󰀏󰀏
2

1
|), (B.3)

Combining (B.2) and (B.3), we have

|∂mGρ

󰀏󰀏󰀏
2

1
| ≤ ρP (K0)max

ij

󰀋
󰀂Gij󰀂Cm+1(D)

󰀌 m󰁛

l=0

rl−m|∂l+1v
󰀏󰀏󰀏
2

1
| (B.4)

Hence for the Cα term we have:

|∂mGρ(x, v)
󰀏󰀏󰀏
2

1
− ∂mGρ(y, v)

󰀏󰀏󰀏
2

1
|

|x− y|α =
|∂mGρ(x, v)

󰀏󰀏󰀏
2

1
− ∂mGρ(y, v)

󰀏󰀏󰀏
2

1
|

|x− y| |x− y|1−α

≤ C(α)r1−α sup
Ar

|∂m+1Gρ

󰀏󰀏󰀏
2

1
|

≤ ρC(α)r1−αP (K0)max
ij

󰀋
󰀂Gij󰀂Cm+2(D)

󰀌
sup
Ar

m+1󰁛

l=0

|rl−m∂l+1v
󰀏󰀏󰀏
2

1
| (B.5)

For m = 0, apply (B.4) and (B.5), we have:

󰀂Gρ(v)
󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ ≤ C(α)(K0 + 1)max

ij
󰀂Gij󰀂C2(D)ρ󰀂v1 − v2󰀂2,α;N,δ. (B.6)

Similarly, for the Q part, by the Mean Value Theorem, we have:

|Qρ(v)
󰀏󰀏󰀏
2

1
| = ρ ·

󰁛

ijk

|xkQijk(ρx, ρ∂v)∂ijv
󰀏󰀏󰀏
2

1
|

≤ ρ
󰁛

ijk

|xk| · |Qijk(ρ∂v1)∂ijv2 −Qijk(ρ∂v2)∂ijv1 +Qijk(ρ∂v2)∂ijv1 −Qijk(ρ∂v2)∂ijv2|

≤ ρ
󰁛

ijk

|xkQijk(ρx, ρ∂v)
󰀏󰀏󰀏
2

1
| ·K0 + |xkQijk(ρx, ρv2)||∂2v

󰀏󰀏󰀏
2

1
|

≤ ρ
󰁛

ijk

|xkQijk|C1(D)(K0|∂v
󰀏󰀏󰀏
2

1
|+ |∂2v

󰀏󰀏󰀏
2

1
|)
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|Qρ(x, v)
󰀏󰀏󰀏
2

1
−Qρ(y, v)

󰀏󰀏󰀏
2

1
|

|x− y|α ≤ ρ ·
󰁛

ijk

|xkQijk(ρx, ρ∂v)∂ijv
󰀏󰀏󰀏
2

1
− ykQijk(ρy, ρ∂v)∂ijv

󰀏󰀏󰀏
2

1
|

|x− y|α

To be brief, in the numerator denote xkQijk(ρx, ρ∂v1)∂ijv1(x) as Q(x, v1)∂
2(x, v1), simi-

larly for y and v2. We then have:

|xkQijk(ρx, ρ∂v)∂ijv
󰀏󰀏󰀏
2

1
− ykQijk(ρy, ρ∂v)∂ijv

󰀏󰀏󰀏
2

1
)| = A+B + C +D,

where
A = Q(x, v)

󰀏󰀏󰀏
2

1
·
󰀃
∂2(x, v1)− ∂2(y, v1)

󰀄
, B = Q (x, v2)

󰀕
∂2(x, v)

󰀏󰀏󰀏
2

1
− ∂2(y, v)

󰀏󰀏󰀏
2

1

󰀖
,

C = ∂2(y, v1)

󰀕
Q(x, v)

󰀏󰀏󰀏
2

1
−Q(y, v)

󰀏󰀏󰀏
2

1

󰀖
, D = (Q(x, v2)−Q(y, v2))

󰀕
∂2(y, v)

󰀏󰀏󰀏
2

1

󰀖
.

Respectively, we have:

|A|
|x− y|α = |xkQijk(ρx, ρ∂v)

󰀏󰀏󰀏
2

1
| · |∂

2(x, v1)− ∂2(y, v1)|
|x− y|α ≤ K0󰀂xkQijk󰀂C1(D)(|∂v

󰀏󰀏󰀏
2

1
),

|B|
|x− y|α ≤ r · 󰀂xkQijk󰀂C0(D) ·

|∂2(x, v1 − v2)− ∂2(y, v2 − v2) |
|x− y|α ,

|C|
|x− y|α ≤ K0r

|Q(x, v)
󰀏󰀏󰀏
2

1
−Q(y, v)

󰀏󰀏󰀏
2

1
|

|x− y| |x− y|α ≤ C(α)K0 sup
Ar

|∂xkQijk(ρx, ρ∂v)
󰀏󰀏󰀏
2

1
|

≤ C(α)K0(1 +K0)r
N−1󰀂xkQijk󰀂C2(D)(|∂v

󰀏󰀏󰀏
2

1
|) + |∂2v

󰀏󰀏󰀏
2

1
|),

|D|
|x− y|α ≤ C(α)r1−α󰀂xkQijk󰀂C1(D)(|∂2v

󰀏󰀏󰀏
2

1
|).

In summary, for the Q term, we have:

󰀂Qρ(v)
󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ ≤ C(α)(K2

0 +K0 + 1)max
ijk

󰀂xkQijk󰀂C2(D)ρ󰀂v1 − v2󰀂2,α;N,δ. (B.7)

Combining (B.6) and (B.7), we conclude the proof for k = 2.

Assume the statement is true for k = m− 1. For k = m, we have:

󰀂Tρ

󰀏󰀏󰀏
2

1
󰀂m−2,α;N−2,δ + 󰀂Tρ

󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ

≤ 󰀂Tρ

󰀏󰀏󰀏
2

1
󰀂m−3,α;N−2,δ + 󰀂Tρ

󰀏󰀏󰀏
2

1
󰀂0,α;N−1,δ+

sup
0<r≤δ

rm−N

󰀳

󰁅󰁃sup
Ar

|∂m−2Tρ

󰀏󰀏󰀏
2

1
|+ sup

x ∕=y∈Ar

rα
|∂m−2Tρ(x, ∂v)

󰀏󰀏󰀏
2

1
|− ∂m−2Tρ(y, ∂v)

󰀏󰀏󰀏
2

1
|

|x− y|α

󰀴

󰁆󰁄
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Hence, by the induction assumption, it is sufficient to show that:

sup
0<r<δ

rm−N

󰀳

󰁅󰁃sup
Ar

|∂m−2Tρ(v)
󰀏󰀏󰀏
2

1
|+ sup

x ∕=y∈Ar

rα
|∂m−2Tρ(x, v)

󰀏󰀏󰀏
2

1
|− ∂m−2Tρ(y, v)

󰀏󰀏󰀏
2

1
|

|x− y|α

󰀴

󰁆󰁄

≤ C(α)P (K0)Mρ󰀂v2 − v1󰀂m,α;N,δ.

For the G terms, apply (B.4) to m− 2, we have:

sup
0<r<δ

rm−N

󰀕
sup
Ar

{|∂m−2Gρ(v)
󰀏󰀏󰀏
2

1
|}
󰀖

≤ ρP (K0)max
ij

󰀋
󰀂Gij󰀂Cm−1(D)

󰀌
sup
0<r<δ

r−N sup
Ar

󰀫
m−2󰁛

l=0

rl+1|∂l+1v
󰀏󰀏󰀏
2

1
|
󰀬

(B.8)

Apply (B.5) to m− 2, we have:

sup
0<r<δ

rm−N

󰀻
󰁁󰀿

󰁁󰀽
sup

x ∕=y∈Ar

rα
|∂m−2Gρ(x, v)

󰀏󰀏󰀏
2

1
− ∂m−2Gρ(y, v)

󰀏󰀏󰀏
2

1
|

|x− y|α

󰀼
󰁁󰁀

󰁁󰀾

≤ ρC(α)P (K0)max
ij

󰀋
󰀂Gij󰀂Cm(D)

󰀌
sup
0<r<δ

r−N sup
Ar

󰀫
m󰁛

l=0

|rl+1∂l+1v
󰀏󰀏󰀏
2

1
|
󰀬

(B.9)

For the Q terms, by the Leibniz rule:

∂m−2(Qρ) = ∂m−2(ρxkQijk,ρ∂ijv) = ρ
󰁛

a+b=m−2

󰀕
m− 2

a

󰀖
∂a(ρxkQijk,ρ)∂ij(∂

bv)

For each term ∂a(ρxkQijk,ρ)∂ij(∂
bv), denote Q̃ijk = ∂a(ρxkQijk,ρ) and ṽ = ∂bv, ap-

ply (B.7), we have:

sup
0<r<δ

r1−N

󰀳

󰁅󰁃sup
Ar

|∂m−2Q̃ijk

󰀏󰀏󰀏
2

1
|+ sup

x ∕=y∈Ar

rα
|∂m−2Q̃ijk(x, v)

󰀏󰀏󰀏
2

1
|− ∂m−2Q̃ijk(y, v)

󰀏󰀏󰀏
2

1
|

|x− y|α

󰀴

󰁆󰁄

≤ C(α)P (K0)max
ijk

󰀂Q̃ijk󰀂C2(D)ρ󰀂ṽ1 − ṽ2󰀂2,α;N,δ.

Multiply by rm−1 on both sides of the inequality above. By definition of the 󰀂 ·󰀂k,α;N,δ norm,

we have rm−1󰀂ṽ1 − ṽ2󰀂2,α;N,δ ≤ 󰀂v1 − v2󰀂m,α;N,δ, and hence we have:

sup
0<r<δ

rm−N

󰀳

󰁅󰁃sup
Ar

|∂m−2Qρ(v)
󰀏󰀏󰀏
2

1
|+ sup

x ∕=y∈Ar

rα
|∂m−2Qρ(x, v)

󰀏󰀏󰀏
2

1
|− ∂m−2Qρ(y, v)

󰀏󰀏󰀏
2

1
|

|x− y|α

󰀴

󰁆󰁄

≤ C(α)P (K0)max
ijk

{󰀂xkQijk󰀂Cm(D)}ρ󰀂v1 − v2󰀂m,α;N,δ. (B.10)

Combining (B.8), (B.9) and (B.10), we conclude the k = m step. □
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