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ABSTRACT
It is known that every Riemannian metric on a closed manifold is conformal to a metric
whose exponential map preserves the Euclidean volume near a point. This thesis concerns the
classification problem of such “conformal normal metrics” on a conformal manifold (X, [g]) of
dimension n > 3. We first prove the uniqueness of a conformal normal metric within a fixed
1-jet class of metrics. For the proof, we mainly follow Cao’s method in [Cao91| by analyzing
a non-linear singular elliptic equation in the framework of weighted Hoélder spaces. Our
second result concerns the smooth dependence of conformal normal metrics on parameters.
As applications, we first construct a smooth Riemannian metric on X x X that is conformal
normal near the diagonal on each fiber, and then use this metric to give a simplified proof

of the regularity of Habermann’s canonical metric.
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CHAPTER 1

INTRODUCTION

A general conformal structure on dimension n > 3 manifolds is locally nontrivial. Indeed, by
the Weyl-Schouten Theorem, a conformal metric on manifolds of dimension n > 4 is locally
conformally flat if and only if the Weyl tensor vanishes (Cotton tensor for 3-manifolds).
In consequence, generic metrics on manifolds of dimension n > 3 do not admit isothermal
coordinates. Nonetheless, within a given conformal class, one can always find a metric with
the so-called conformal normal coordinates, a special coordinate system first introduced by
Lee and Parker in |[LP87|. Explicitly, we have:
Theorem 1.1 (cf.Theorem 5.1, [LP87|). Let X be a smooth manifold together with a con-
formal class C. At a point p € X, there is a conformal metric g € C' such that for each
N >2

det g;j =14 O (|z|V)
in g-normal coordinates {z'} at p.

Lee and Parker’s result has later on been improved by Cao [Ca091|, and Giinther |Giin93|
independently. They proved the local existence of a conformal normal metric in a neighbor-
hood U, of a given point p.

On one hand, under conformal normal coordinates, local analysis on a conformal man-
ifold can be simplified to a great extent. On the other hand, the set of conformal normal
metrics is of interest on its own. By Theorem 5.6 in [LP87|, on the jet-level, the confor-
mal transformation group 65(71) acts on the set of conformal normal coordinates free and
transitively, which indicates a relation between the conformal normal metrics and the global
conformal structure C(see Theorem 3.2.4).

Our first result concerns the germ level uniqueness of conformal normal metrics. In
Chapter 5, we prove the following result:

Theorem 1.2. Let (X, [g]) be a conformal manifold. At p € X, any 1-jet class j;(g) of

metrics in [g] contains a conformal normal metric that is unique up to the germ level.



The proof is based on Cao’s approach to the existence theorem. In [Ca091]|, Cao rephrased
the local existence of a conformal normal metric as the problem of finding solutions of a non-
linear singular elliptic equation in a class of functions of weighted Holder norms.

Briefly, fix a point p € X and a background metric go, and let o = dist(p,-) be the
go-distance from p. Then a conformal metric g = ®gq is conformal normal at p if and only

if its distance function r from p satisfies

n—1

Agr = (1.1)

,
Let w be the function defined by r = r9e*®. Then the conformal factor ® and w
determine each other by the formula
® = ||dr|2, = (1 + 22"w; + r§||dw]%)) €.

The Equation (1.1) can be converted into an equation for w in gy normal coordinates of

the form

V(z, 0w, 0*w) = Lo(w) + G(z,0w) + Q(z,w, dw) = O lny det(QO(fE)), (1.2)

To

where V' is a non-linear elliptic equation of w whose symbol is singular at the origin, and L,
is the scale-invariant linearization of V. See Chapter 4 for more details.

To understand Equation (1.2), we first study the linear operator £5. We show that
ker £, = {0} when restricted to functions that vanish to the infinite order at the origin
(cf. Lemma 4.1.5). We use this fact to give a uniqueness theorem for the solution of Cao’s
equation (1.2) (cf. Theorem 5.2). This local analysis result is then used to prove that there
is a unique germ of a conformal normal metric in each equivalence class in the set

Jgl = {4,(9)| g €lgl, p€ X}
of 1-jets of metrics in the conformal class.

The organization of the thesis is as follows. In Chapter 2, we fix some notations and
review background materials we will use throughout the discussion. This includes reviewing
some basic facts about the relation between metric and exponential maps, jet spaces and jet
bundles, and some basic facts about local conformal geometry.

In Chapter 3, we define conformal normal metrics and review Lee and Parker’s work



in [LP87] on the existence of conformal normal metrics up to the jet level. As an application
of Lee and Parker’s method, in Section 3.1, we give a jet level relation between conformal
normal metrics and flat metrics on the conformally flat manifolds which will be generalized
to a relation on the germ level by the uniqueness theorem.

In Chapter 4, we review Cao’s approach to the local existence of conformal normal metrics
and prove a unique continuation lemma for the Ly operator.

In Chapter 5, we state and prove the main theorem on the uniqueness of conformal
normal metrics.

Finally, in Chapter 6, we show the smooth dependence of conformal normal metrics on
the moduli space. This leads to the proof of our second main result: the existence of a metric
h = g@® ®2¢g on X x X such that, in a neighborhood of the diagonal, the restriction of h to
the slice S, = {(p,y)|ly € X} is a conformal normal metric. As a further application, we use

the metric h to give a simplified proof of the regularity of Habermann’s canonical metric.



CHAPTER 2
PRELIMINARIES

2.1 Preliminaries on Exponential Maps

We will work at the level of germs.
Lemma 2.1.1. Consider two conformal metrics g and § = ®>g defined in a neighborhood
of p with Levi-Civita connections V and V, distance functions r = dist(p,-) and T, and
exponential maps exp§ : T,M — M and expg. Then, at the level of germs at p, the following

are equivalent:
(a) V=V (c) T = cr where ¢ = ®(p)
(b) exp$ = exp} (d) ® is constant.

In particular, conformal metrics g and g have the same distance function if and only if g = g.
Proof: The exponential map is defined by exp#(v) = (1) where v : [0,1] — M is the
solution to the geodesic equation V;3 = 0 with v(0) = p and §(0) = v. This solution is
unique, so (a) implies (b).

If (b) holds, then the pullback functions p = (exp9)*r and p = (exp9)*r are equal. But
p(v) is the norm |v], for the inner product g, on T,M, and therefore p?*(v) = g,(v,v) =
D(p)2g,(v,v) = ®(p)?p*(v) for all v € T,M. These exponential maps are local diffeomor-
phisms, so (c) holds.

The distance function for g satisfies |dr|, = 1, so if (c) holds then 1 = |dF|; = |cdr|e, =
c®t|drl, = ¢®!, so ® is constant. Finally, the implication (d) = (a) is clear from the
local coordinate formula for the Christoffel symbols. [J

For an alternative proof that (a) and (d) are equivalent, consider the difference

D(X,Y)=VxY —VxY (2.1.1)
for vector fields X and Y. The properties of the Levi-Civita connection show that D(X,Y') is
tensorial in both X and Y and is symmetric. Thus D is a tensor D € T'(Sym?*(T*M)QTM)

that vanishes if and only if V = V; by polarization this is also equivalent to the vanishing



of D(X, X). For conformal metrics g and § = e¢*/ g, the formula for the Christoffel symbols
shows that
DX)Y) = Xf-Y+Yf-X—g(X,)Y)-Vf.
If ® = ¢/ is a constant, then D vanishes. Conversely, if D = 0 then, using inner products
for g, we have
0 = (X,D(X,X)) = 2X[-|X]~ |X]AX,Vf) = |X]*- X[
for all vector fields X, so f is constant.

As an aside, we record the following variation of Lemma 2.1.1 in which the metrics are
not assumed to be conformal, but the exponential maps are assumed to be equal at all (or
nearly all) points.

Proposition 2.1.2. Suppose that g and g are metrics on an open set U, that U is geodesically
convez for both g and g and that S C U is a non-empty submanifold of codimension 1. Then
the following are equivalent:

(a) V=V (b) exp = expf, forallp e U (c) expy = expg for allp € S.
Proof:  The proof of Lemma 2.1.1 shows that (a) implies (b). Obviously (b) implies (c).

Now assume that (c) holds, and fix p € S. Then exp? is a diffeomorphism from a

neighborhood V' of 0 in T,U to U. Because 7,5 is a codimension 1 linear subspace of T}, so
U* = {exp,(v) €U |veT,U\T,S}

is an open dense subset of U. For each ¢ = exp,(v) € U*, the path from p to ¢ defined by

79(t) = exp,(tv), 0 <t < 1, is a geodesic for the metric g, and is transverse to S at the

point p. By assumption, 77 is also a geodesic for the metric g.

Reversing perspective, we can write p = exp ,(w), where w = —49(1) € T,U. Because
79 is a geodesic for both metrics, we have D(w,w) = 0. Furthermore, for any w' € T,U
sufficiently close to w, there is a 7 close to 1 such that the g-geodesic exp ,(Tw’) intersects
S transversally at a point p’ = exp ,(Tw’) close to p. Applying the previous argument with
p replaced by p’ shows that D(rw,7w) = 72D(w’,w') = 0. Therefore |D(w', w')|*, which is

a quadric polynomial on 7;U, vanishes on a neighborhood of w so, by analyticity, is zero.



This is true at each point ¢ in the dense set U* C U. Therefore the tensor D vanishes on U,
so V = V. Thus (c) implies (a). O

The conditions of Proposition 2.1.2 are also equivalent to § = cg if we impose one
additional assumption. Recall that a Riemannian manifold (U, g) is irreducible if, for some
p € U, the action of the holonomy group H,(U, g) at p on T,,U is irreducible. This property
is independent of p (cf. [KN63]).
Corollary 2.1.3. Suppose that g and § are metrics on an open set U and that (U, g) is
wrreducible. Then the Levi-Civita connections of g and g are equal if and only if § = cg for

some constant c.

Proof: As in the proof of Lemma 2.1.1, if § = cg then V = V. For the converse, assume
that V = V. This immediately means that the holonomy group H,(U, g), which is defined
by parallel transport with respect to V, is equal to the holonomy group H,(U, §) defined by
\

Define a vector bundle map A : TU — T'U by the condition

g(AX)Y) = g(X,Y) (2.1.2)

for all vector fields X,Y. Because g is symmetric, this implies that A is self-adjoint for
the metric g, and hence is diagonalizable. Differentiating and noting that Vg = 0 and
V§ = V§j=0, one sees that VA = 0.

Now suppose that (t) is a path in U starting and ending at p with velocity vector
T. If X(t) is a vector field along ~ that is parallel, i.e. VyX = 0, then V7 A(X) =
(V2 A)X + A(VrX) =0, so AX is also parallel. It follows that A commutes with the action
of H,(U, g) on T,U. By Schur’s Lemma, A is a multiple of the identity. This is true for every
p € U, so (2.1.2) shows that § = ®?¢ for some smooth function ®. Applying Lemma 2.1.1,

we conclude that g = cg for a constant ¢ > 0. [J



2.2 Preliminaries on Jet Spaces and Jet Bundles

Jet Spaces

Definition 2.2.1. The set C;°(R",R™) of germs of smooth functions f : R" — R™ at a
point p € R™ is a module over C*°(R"). Let m, C C*(R") be the ideal of functions that

vanish at p. Define the k-jet space at p by:

Ce(R™,R™)
mktl . Coo(Rm, R™)
The jet space of functions f such that f(p) = ¢ is

k n m
J, (R",R™) =

k(mon m k n m
JYR™, R™), = {jk(f) € JER™", R™)|f(p) = q}

In particular, we denote Ln’m = J§(R",R™),, elements in L} = can be identified as the
et order Taylor polynomials of the generating functions. Explicitly, let {z'} and {3’} be
coordinates on R™ and R™ respectively, and a be a multi-index, then every element j;f( f) in
L’fl,m has a polynomial representative:

f@)=(f@)=| > da°
1<|a|<k

Define the following two natural operations on L%

(a) For I <k, the jet projection map 7y : Lk — Lln’m is defined by the natural projection

of modules:
Coo(Rn Rm) Coo(Rn Rm) / l+1 Coo( n m)o
mgt - O (R, R™)y  mgt! - Co(R, R™)o/ mg*! - Co (R, R™)

(b) The jet composition map sz,m X Lfn’ 4= LfL, 4 1s defined by composing the polynomial
representatives and truncating to degree k.
Let Diffy(R™,R™)y be the group of germs of diffeomorphisms of R™ fixing the origin. The
k-jet space of Diffy(R™, R"),, denoted as GLF, is a Lie group concerning the jet composition
operation. In particular, for k = 1, GL. = GL(n), the general linear group.

For a Lie subgroup G' C Diff,(R™,R"),, the k-jet space of G is a Lie subgroup of GLF,
denoted as G*. Denote g' the Lie algebra of G, then the manifold structure on G¥ is
inherited from the following identity:

GF = {(A,Tl, o Tie1) | A€ G € Symipi (R™), (=, vy, ..., 0;) € gl},



where Sym,1(R™) is the space the symmetric (i + 1)-linear maps R"*Y — R?,

The jet projection mp ™ : GF+1 — G* is given by 7/ ™ (A, 70, . .., 7) = (A, 71, ..., Thoa)-
The kernel of 7y ! is called the k-jet prolongation of g' and is denoted as gh+?.

Define the order of G to be the smallest integer £ such that 7rl,j+1 is an isomorphism,

k+1 — (. For a group G of order k, the Lie algebra g of G

namely the smallest k& such that g
decomposes as:

g=g'@-- o,
which is a graded Lie algebra. For 7, € g? and 7, € g7 the Lie bracket [7,,7,] € g’*? and is

given as follows (cf. [Kob12]):

1
[Tpa Tq] (UO; U1y ... 7Up+q) = m Z Tp(Tq(vjov s >qu)7 /qu-H? s ?Ujp+q)
1
_ m ZTq(Tp('UkO, Ce 7Ukp)7vkp+17 ce ,’l]kp+q)

Definition 2.2.2. Let X be a smooth manifold of dimensions n and U C R" be an open
neighborhood of 0. We say two local diffeomorphisms f, g : U — X define the same k-frame

at a point p € X if f(0) = g(0) = p and j§(¢ ' o f) = ji(p ' og) € GLF

n?

where ¢ is an
arbitrary local chart at p.

It is clear that a k-frame at p € X is well-defined independent of the choice of the local
chart . The group GLF acts on the set of k-frames at p free and transitively by the jet
composition.

Definition 2.2.3. For a Lie subgroup G C GLE, a principal G bundle 7 : P — X defines
a G-structure of order k on X if for Vp € X the fiber F,, = 7~ '(p) consists of k-frames at p
and the principal bundle action of G' on F}, is by the jet composition.

Classical examples of G-structures on a manifold X include: GL; structure defines an
orientation on X; SL, structure defines a volume element on X; O(n) structure defines a
Riemannian metric on X and so on. We will be focusing on the G-structure characterization

of conformal structures, see Section 2.3 and [Kob12| for more details.



Jet Bundles

Definition 2.2.4 (|Par|). Let 7 : E — M be a smooth vector bundle, the set I'(E) of

smooth sections is a module over C*(M). Denote m, = {f € C>*(M) | f(p) = 0} the ideal

of smooth functions vanishes at p € M. We define the k-jets of sections of £ at P by:
JH(E), = T(E) [ - T(E)

J¥(E), is a vector space with vector summation as [£]; + [7]x = [€ + 7] and scalar multipli-

cation as A - [{]x = [N+ &, JH(E) = Upenr J¥(E), is a vector bundle over M called the kth

jet bundle of the vector bundle E.

In particular, J°(E) ~ E. In coordinates {z'} near p and a basis {o,} of E,, the k-jet of a

section ¢ is uniquely represented by its degree k Taylor polynomial

=" (ag + Z af(x—p)+-+ ) ad, . (x— p)im”’i’“> Oa

«

We have the following exact sequence of jet bundles:

0— SHT*M)® E — J¥E) — J*Y(E) -0, (2.2.1)
where the map 7% : J*(E) — J*"1(E) is the natural jet projection, and S*(T*M) is the
k-fold symmetric tensor product of T*M, the map S*(T*M) ® E — J*(E) is defined by
identifying the kernel of 7% with S¥(T*M) ® E.

In particular, when £ = M x R" being a trivial vector bundle, we have a canonical isomor-
phism

JYE) ~T*M*" o R (2.2.2)
defined as follows: Let s € I'(E) be a representative of an element j(s) € J'(E). Take
Sg =m0s € C®(M,R"), where m, : M x R" — R" is the projection to the R™ compo-
nent. Define 7 : J'(E) — T*M®" by n(j,(s)) = d(s2)(p). It is clear that 7 is well defined
independent of the choice of the representative s and gives a splitting of the short exact

sequence (2.2.1), and hence we have the isomorphism (2.2.2).

2.3 Preliminaries on Conformal Geometry

We use [Kob12| as a main reference for this section.



Let R = R" U {oo} be the extended Euclidean space. Let 55(71) be the group of
conformal automorphism of R™ having the origin fixed. A general element ¢ € 5(\)(71) is of

the form:
Az — 2%

pla) = 1—2n- Az + 22n?’

where A > 0,7 € R", A€ O(n).

(2.3.1)

Denote @k(n) the group of k-jets of @(n) as a Lie subgroup of Diffy(R"™, R™),.
For k =1, 6’51(71) = CO(n), the linear conformal group on R™. Explicitly, we have:
CO(n) ={A e GL(n); A"A=X[LAeR"} ~20(n) x RT.
For k = 2, we have the following short exact sequence:
15 co1 -5 CO (n) — CO (n) — 1, (2.3.2)
where co1(n) is the first prolongation of the Lie algebra co(n) of CO(n).
By definition coy(n) = {f € Syms(R"™) | Yv € R", f(—,v) € co(n)}. coq(n) is isomorphic
to R™ by the following map:
t:R" — coy(n)
v ty(a,b) = %((v,a)b+ (v,b)a — (a, byv).
The map 7 in (2.3.2) can be given explicitly as 7(t)(x) = x + t(z, z).
Let p € 65(71) be a general element as given in(2.3.1). By taking the 2-jet of ¢ at the
origin, we have:
jalp) = prat + gofja:ixj = NAz + t,(Azx, Ax)). (2.3.3)

The coefficient matrix C' = ¥ of the linear terms of j3() equals the matrix A\A, hence

A = (det(C))w and A = (det(CC))% . Let {e;} be the standard basis of R™, then the quadratic
term of j2(¢) at A'(e;) equals /2. Hence the data {\, A,n} is uniquely determined by
Jo(¢). Therefore elements in C/’a(n) are uniquely determined by j2(¢), namely 5(\)(77,) is a
subgroup of GL2.

By the fact that @(n) is a subgroup of GL?, we define the 65(71) structure of order 2
on a smooth manifold X as in definition 2.2.3, to be a principal C/’b(n) bundle 7 : P — X

of 2-frames with C/fb(n) acts on each fiber by the jet composition.

10



Explicitly, in local coordinates {x} at p € X, let f(x) = cla’ + ¢} ;2’27 be the polynomial

representative of a 2-frame at p. The action of ¢ € C/’b(n) on f is given as
fro=103(fop) = (qpd)r’ + (cupl; + i of)a'a’, (2.34)
where ¢f and ¢f; are the coefficients of j§(¢) given in (2.3.3).

In fact, a éa(n) structure P is uniquely determined by a conformal structure [g] and
vice versa. We argue as follows (cf. [Kob12|):

On one hand, suppose P is a 6’5(71) structure on X. Projecting P to the corresponding
1-jet bundle P! by the jet projection map, we obtain P! as a principal CO(n) bundle. Since
CO(n) = O(n) x R*, a section s of the orbit bundle P'/O(n) defines a principal bundle
reduction of P! to a principal O(n) bundle H = H(s). At each point p € X choose a frame
6 € H,, define a metric on T,X as g(p)(v,w) = > v'w’, where v* and w* are components of
v and w with respect to the frame 6. Let 8’ € H, be a different frame such that §' = Af with
A € O(n). With respect to @', the metric ¢'(p)(v,w) = > (Av)i(Alw)" = Y v'w' = g(p).
Hence the metric g is well defined independent of the choice of § € H,,. Different choices of
section s will give metrics conformal to g, hence defining a conformal structure [g].

On the other hand, suppose [g] is a conformal structure on X. Denote O9(n) the or-

thonormal frame bundle with respect to g € [g], define

P = | 0yn).
pEX,g€lg] -
P! is a principal CO(n) bundle. The corresponding CO(n) structure P on X is defined

as the first prolongation of P! as follows:
We first embed co1(n) as a subgroup of End(R"™ & co(n)) by the following map:
t:cop(n) — End(R" & co(n))
tv)=v+t(—,v), forveR"
t(A) = A, for A € co(n).

t—

Let A2R™ ® R™ be the space of skew-symmetric bilinear mappings, define a linear map
J:co(n) @ R™ — A’R™ @ R" by
(0f)(v1,v2) = f(v1)va = f(v2)vn,

11



where f € co(n) @ R™, vy, vo € R™.

We choose once and for all a direct sum complement of d(co(n) ® R™) in A*’R™ @ R",
denoted as C.

Let 6 € Q'(P',R™) be the canonical 1 form on P'. At a point v € P!, a n-dimensional
subspace H of T, P! is called horizontal if # : H — R" is an isomorphism. A horizontal space
H is called C' admissible if dd(TH @ TH) € C. Every C admissible space H determines a
linear frame of 7, P! as follows:

Let f : co(n) — T, P" be the map that sends A € co(n) to A%, where A* is the fundamental
vector field on P! with respect to A. The direct sum of f with the map #=!: R* — H C T, P!
defines a linear frame 6~ & f : R" & co(n) — T, P'.

The union of all linear frames induced from C' admissible horizontal spaces is a principal
t(co,(n)) bundle of 1-frames P over P'. As bundle over X, P is a principal 6’5(71) bundle

of 2-frames defining a éb(n) structure on X.

12



CHAPTER 3

CONFORMAL NORMAL METRICS AT JET LEVELS
Let (X, g) be a Riemannian manifold (all manifolds are assumed to be smooth of dimension
n > 3). We first give a coordinate-free definition of the determinant of the metric g near a
point p € X.

Let U C T,X be an open neighborhood of the origin on which the Riemannian expo-
nential map is a well-defined diffeomorphism onto an open neighborhood V' of p. Let dv,
be the g-Riemannian volume form which can defined in a coordinate-free way. The pullback
exp; ,dvy|ly by the exponential map at p is a volume form on U. On the other hand, the

inner product space (7,X,¢(p)) has a canonical volume form dv,. Both volume forms are

nonvanishing sections of A*?(7T,U) which is a real line bundle, and hence the division —exgzdvg
P
is a well-defined smooth function on U. Define det(exp *g) := (_exgv*dvg)g.
D

Definition 3.1. A metric g is called conformal normal at a point p, if there exists an open
neighborhood V' of p such that det(exp*g) = 1 on U = exp (V). Also, we say ¢ is i th
order conformal normal at p if the k-jet j&(det(exp*g)) = 1.

An arbitrary Riemannian metric is not necessarily conformal normal, indeed the word
“conformal” indicates the following fact (cf. [Cao91, Corollary 0.1]):
Theorem 3.2. For any Riemannian metric g on X, and a point p € X, there exists a
conformal metric g = ®g which is conformal normal in a small neighborhood of p.

Given two conformal metrics g and § = €2/ ¢, assume that they are both conformal normal
and define the same exponential map at a point p, we then have:

det(exp*(§)) = det(exp *(e* g)) = €*/ det(exp *g) = *"/ = 1. (3.1)

Thus g = g within the injective radius, and conformal normal metrics at p are uniquely
determined by the exponential maps on 7,X. In fact, as we will show in Theorem 5.1, a
conformal normal metric is locally uniquely determined by its 1-jet class.

In this chapter, we work on jet levels and fix the following notations:

On a conformal manifold (X, [g]) at a point p € X, for k = 1,2,..., 00, define the set of
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k-jets of Riemannian metrics at p with kB order conformal normal determinant as
CN*(p) = {55 (9)lg € [g], jo (det(exp 1g)) = 1}. (3:2)
And correspondingly, define the conformal normal £ frames as:
CNC (p) = {io(#) | ¢g5 = expgpo B, € O(T,X, 9p), 9 € [g] st Jg(det(expg)) = 1}.
For k =1, jj(det(expg)) = 1 holds for any metric g. Thus we have
CN'(X) ={i9)lgelgpeX}.

Denote C*(Sym?* T*X) the space of smooth symmetric (0,2) tensors, which is a Fréchet
space with C* topology. Fix a background Riemannian metric ¢°, by Theorem 1.5 in [FM77],
the conformal class [¢°] as the orbit of the C*°(X) action on ¢° is a smooth sub-manifold of
C>®(Sym? T*X), i.e, the map ®° : C°(X) — C®(Sym? T*X) by ®°(f) = e/¢° is a smooth

embedding. Define the descending of ®° to 1-jets by the following diagram:

C=(X) —2 0°(Sym? T*X)

C

JUR) — L2 JHSym? T+ X)

Jp(f) 1 > Jp(e’g°)
J'®Y is a bundle isomorphism onto J'[g]. Indeed, the image
Gp(e!g%) = TPy (6°) + 5, (f = F)d"(p)
is uniquely determined by jp( f)-
In summary, we have the following lemma:
Lemma 3.3. A metric ¢° € [g] induces a smooth bundle isomorphism :
ni=J®" o ROT*X — J'g] = CN',
where v is the bundle isomorphism defined in (2.2.2):

L J'R) — ROT*X

Jp(f) — (f(p), df (p)).
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3.1 A Jet Level Relation of Flat, Conformally Flat and Conformal Normal
Metrics

First, recall the following theorem on flatness and conformal flatness of Riemannian
metrics (cf. [Leel8, Theorem 7.10 & Theorem 7.37|). As usual, a Riemannian manifold
(X, g) is flat if and only if its Riemann curvature tensor vanishes identically.
Weyl-Schouten Theorem. A manifold (X, g) of dimension n > 4 is locally conformally
flat if and only if its Weyl tensor is identically zero. A 3-manifold is locally conformally flat
if and only if its Cotton tensor is identically zero. The Cotton and Weyl tensors are defined
in equations (3.1.13) and (3.1.12) below.

Inspired by the Weyl-Schouten Theorem, we give the following definition of jet-level

flatness and conformal flatness:
Definition 3.1.1. We say a Riemannian metric g is flat up to order r at a point p € X if
its Riemann curvature tensor vanishes to order r at p. Similarly, we say that a conformal
structure [g] on a manifold of dimension n > 4 is conformally flat up to order r if the Weyl
tensor W vanishes to order r at p. A 3-manifold is conformally flat up to order r at p if its
Cotton tensor vanishes to order r — 1 at p.

To be brief, we fixed some notations. We work under a g-normal coordinate chart and use
the Einstein summation convention. Let g = (1 ... ux) be a k multi-index, with 1 < p; <n
and || = k > 2. The permutation group Sy acts on u by permuting p; and the orbits
of this action define an equivalent relation p ~ p/. Each equivalence class has a unique
representative i = (1 ... py) in ascending order 1 < pg -+ < py, < n. When we have a list
of multi-indices, we use upper indices: u', ..., .

Let Riem,, denote the matrix whose z'jth entry is the covariant derivative R

:‘1#2j§#3~~#k'
Then define
Riem,,, := Riem, Riem,, + Riem, Riem,, (3.1.1)

where the upper ¢ denotes the transpose matrix. Define Riem, , by this formula and

induction, i.e. take p to be u! and v to be p?-- -yl in (3.1.1).
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Denote ORiem,, = Op,.. yu, Ripi oy for the partial derivatives. Since we have

_ k k
R jojsiaii = Oil1jogsgs — UfiBkjajsja — = — Ui By jajaks (3.1.2)

Jai

Riem,, and 0Riem,, differ by derivatives of order less than |u| — 2 at the origin in normal
coordinates.

Denote the covariant derivatives and partial derivatives of the Ricci curvature tensor Ric
similarly as above.

With this notation, one can give closed formulas for the Taylor expansions of g and
det(g) under the normal coordinates. This was neatly done by Schubert and van de Ven

in [MSvdV99]. Specifically,

[c ol o}

g=1+ Z Z e Riemi,(0) m“1+"'+“l, (3.1.3)

=1 |ui|=2

where the coefficients ¢,1_,; are constants depend only on absolute values |n'| of p'. In

o
particular, for [ = 1, and |u| = k, we have ¢ = (3611—1%!.
Remark 3.1.2. The expansion (3.1.3) is obtained in [MSvdV99| by writing

g(z) = €' (x)e(x),

Then, as shown in [MSvdV99], the coefficients in the Taylor series

e(r) =1+ Z e, (0)zt
|| >2
are given, for each p with |u| = &, by

(k + D)en(0) = (k — 1) Riem,(0) + 3 (n+ 1) (7’2 L 1) Riemu e (0)etunrsnn(0)

Combining the above three formulas yields (3.1.3) and also defines the coefficients c,1

M
recursively.
To calculate det(g), write g(z) = exp (A(z)) with A(x) = Ay 2”. Then we have
Tr(A(z)) = Tr(Ap)z",  det(g) = det(exp (A(z))) = exp (Tr(A(x))).
Hence l
exp (Tr(A(z))) = 1+ Tr(Ay)a" + - + % [T e + - (3.1.4)
i=1

Since ¢ = I + O(r?) in normal coordinates, we have A; = 0 for || < 1; thus the
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summation in Ayz” is taken over g with |a| > 2.

Denote the Taylor expansion of exp (A(z)) as:

l
1 1, oo 1 i
exp (A(z)) =1 + Apx" + EAﬁlApﬂxu T4t 7l H Agixh 4 - (3.1.5)
i=1
For each i, comparing (3.1.3) and (3.1.5), we have
. 1
Z 6#1“.#1R26m“1mu1(0) =A; + a1 Z AﬁlAﬂZ + - (3.1.6)
preppt A+~

By induction on |f| for the equalities (3.1.6), we can calculate A;(0) recursively as follows:

Az(0) = ZRiemu(O), for|p| = 2;

u~p
Az(0) = ¢3 Y Riem,,(0), for|p| = 3;
e
Au(0) = Z c. g Riem11(0)+ (3.1.7)
pltetpt e
5
— o HAﬂi, for |p| > 4.

k=2 "l fib e i=1
For |n| = k, by (3.1.2) and (3.1.7), we have:
Az(0) = ¢ Y ORiem,,(0) + P(Riem,,(0)), (3.1.8)
where P(Riem,,(0)) is a polynomiallwoﬂf Riem,, with 2 < |p/| <k —2.
Take trace of the identities (3.1.8) and substitute back into (3.1.4), we obtain a closed

formula for the Taylor expansion of det(g):

det(g) = exp (Tr(A(x))) =1+ Z Tr Z ¢ Riemy o | =Ty | 2", (3.1.9)

|iz[=2 [ S N

where T}; is a symmetric tensor defined by a polynomial of Tr(Ay) with 2 < |v| < |u| -2,
in particular 7 = 0 for |u| = 2,3. The general T, can be calculated recursively by the
formula (3.1.7).

Based on the above discussions, we can now give a jet-level condition for metrics being
flat, conformally flat, and conformal normal at a point p by the theorem below:

Theorem 3.1.3. Suppose that a conformal structure [g] on X is kM order conformally flat

at a point p. Then g € [g] is (k + 2)th order conformal normal at p if and only if g is i th
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order flat at p.
Proof: Suppose that g is Kt order flat at p. Then (3.1.8) shows that A;(p) vanishes for
< || < k+2. Hence Tr(Au(p)) vanishes to the same order, and hence det g = 1+ O(r**3)
by (3.1.4). Thus g is (k + Q)th order conformal normal at p.
On the other hand, assume that g € CN***(p), i.e. j¥"2det(g) = j5*2(exp (Tr(A))) = 1.
Hence, by induction on |z] in (3.1.4), we have:
Tr(Au(p)) =0, for |a| < k+2 (3.1.10)
Take trace of (3.1.8) on both sides up to || = k + 2, along with (3.1.10), we have:

Ric;j(p) =0, for g = (ij), (3.1.11)
Ricyjr(p) + Riciyj(p)+Ricjr(p) = 0, for o= (15k), (3.1.11),
Cht2 Z Ric,(p) + P(Riem,,(p)) = 0, (3.1.11),

pein
where || = k + 2 and P(Riem,,) is a polynomial of Riem,, with |¢/| < k.

Let C be the Cotton tensor defined for the metric g, in local coordinates we have

1
5 (Sigik — Skgis)

Ci ik — RiCi ik — RiCik,' +
’ ’ T 2(n—1) (3.1.12)

= Pijx — Pir,
where P = Ric — S g is the so-called Schouten tensor.
We claim the followmg lemma with the detailed proof given in Appendix A.
Lemma A.3. Equations (3.1.11)y to (8.1.11)y, together with the assumption ji~'(C) = 0,
imply that ji(Ric) = 0.
Since conformally flatness is defined by two cases: Namely, dimension n = 3 and n > 4,

we discuss accordingly below:

First, recall the Ricci decomposition of the Riemannian curvature tensor:
Rijrr = Wijn + 5 (9a9k — gingst)
’ ! n(n —1)
1

T (Zagik — Zjgix — Zingjt + Zinga)

(3.1.13)

where Zi]’ = RiCij — %Sgl]
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In dimension 3, the Weyl tensor W vanishes identically, and hence by (3.1.13), the Rie-
mannian curvature tensor is determined by the Ricci curvature.
In dimension 3, conformally flatness to order k means j*'(C') = 0. And hence by
Lemma A.3, we have j¥(Ric) = 0. And jF(Riem) = 0 in turn by (3.1.13).
In dimension n > 4, conformally flatness to order k means ji(W) = 0. The relation
between the Weyl tensor and the Cotton tensor is given below:
VW% = (n — 3)Chea-
And thus jE(W) = 0= j¥(C) = 0. Again by Lemma A.3, we have j¥(Ric) = 0.
Thus, by the Ricci decomposition (3.1.13), ji(W) = 0 together with j¥(Ric) = 0 imply
jx(Riem) = 0. O
3.2 Jet Level Existence of Conformal Normal Metrics
The jet level existence of conformal normal metrics is proved by Lee and Parker in [LP87]
using a Graham normalization process. In this section, we review their proof with a focus
on the conformal factors, the construction of which will be applied later.
Lemma 3.2.1. Let (X, g) be an n-dimensional Riemannian manifold, and xz : R" — X
be the g-normal coordinate chart at a point p € X. For a smooth function f € C*°(R")
such that f = O(|z|¥), take the conformal metric g/ = e*/2*g and let 7 : R™ — R™ be the
corresponding coordinate transformation to the g -normal coordinate system, then we have:
i(z) — 2 = O(|z]").
Proof: In the g-normal coordinates z, let T'¢, and I'Y. be the Christoffel symbols for ¢ and
g’ respectively.
For each vector z, the radial ray v = x - t is a g-geodesic from the point p, hence satisfies
the g-geodesic equation:
I¢ (z-t)xbz® = 0. (3.2.1)
We also have the conformal transformation formula for I', below:
5, = Th + fo02 + feb5 — fag™ Goe- (3.2.2)

Hence f = O(|z|*) = Ty = I — T, = O(|z[*).
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Let 7,(t) be the g/-geodesic satisfying the initial conditions v,(0) = 0,7.(0) = x. Then

by definition we have #(z) = ,(1) and 7,(t) satisfies the g/-geodesic equation:

d? d ,d
F =0 3.2.3
2% T 22 = (3.2.3)
Take the Taylor expansion of 7,(¢) at the origin and evaluate at ¢t = 1, we have:
(k)
7= (0)

i) =) =z+--+ Foen

k!
where % is the degree k term in the Taylor expansion of Z(z).
Hence to prove Z(z) — z = O(|z|*) is to prove A& )(0) =0forallt=2,...,k— 1, which
we prove below by induction on &.
Since 7,(0) = 0, the statement is true for £ = 1. Assume the statement is true for
kE<m+1.
For k = m + 2, take the (m + 1)th order derivative of (z), by Equation (3.2.3) at the

origin, we have:

d<m—1> d ,d

a(m+1) a

d(m 1) . d(m—l) . be
- dt(m 1) (Fbc(71)7x71)|t =0 dt(m_l) (Tbc(lyfﬂ)ﬁ)/x’)/x”t:()?

where the second equality follows from (3.2.2). By the fact that T2, = O(]z|™*!), the second
term vanishes at the origin. By the induction assumption, we have ’yéi)(()) =0for2 <i<m,,

and hence the first term equals:

a(m— - - q i . c d(m—l) a c
0= 15" 2(0) [T(3:(0)*42(0)35(0) = Ty (Uil - )2°2%) e,
=1

a,b,c

where a are multi-indices of absolute value m — 1 and the last equality follows from the
euqation (3.2.1). O
Theorem 3.2.2 (Lee-Parker). Let (X, [g]) be a conformal manifold of dimension n > 3.
At a point p € X, for Vg € [g] and | = 1,... 00, there is a unique formal polynomial h
in n variables and of degree < | such that for any smooth function [ satisfying jf,( fl=Mh
with respect to the g-normal coordinates, the conformal metric § = €*/ g has the following

properties :
(a) 5,(9) = J(9),
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kth

(b) det(exp*g)(p) = 1+ O(r'™) in the g normal coordinates, namely § is order con-

formal normal at p.
Proof: The proof is by induction on the jet level [. For [ = 1, it is clear that a smooth
function f preserves the 1-jet of g at p if and only if j}(f) = 0, and hence hy(z) = 0 and is
unique. For the same reason, we see that the property (a) is true if and only if j;(hl) =0
for any [. We hence assume h; has quadratic leading terms and prove the unique existence
of such h; satisfying the property (b) by induction.

Assume the statement is true for [ = k, namely, there’s a unique formal polynomial hy
of degree < k such that for any smooth function f with j]',f( f) = hy under the g-normal
coordinates, the conformal metric g, := €*/¢ is conformal normal to the kth order at .

Explicitly, let g, = €2 - g, with {z), = (2%)} being the g; normal coordinates at p. With
respect to {x} we have:

det(gr) =1+ > {cws1 Y ORic,(0)}a + Spf + O(r*?),

|u|=k+1 e p

where S is a symmetric tensor defined by a polynomial of Riem, with 2 < |v| <k — 1.

For | = k + 1, let €2/ be a conformal factor such that g, := e?/*+1g, is conformal
normal to (k + 1)th order at p.

On one hand, if j¥(fi41) # 0, then by assumption gy1 = st . g satisfies (b) for
| = k, however j¥(frt1+hi) = ji(f) + hi # hi contradicts with the uniqueness of hy, in the
induction assumption. Hence jg( fr+1) = 0 and the Sy term is invariant under the conformal
change by efk+1.

Let 2441 be the gi,1 normal coordinates, by Lemma 3.2.1, we have 2,1 —xp = O(|zx[FT1).
Hence for |u| =k + 1, O(Ricg, ., ),(0) have the same value under both coordinates xj,; and
Tk

On the other hand, for an arbitrary conformal metric g; = ¢*/g;, the conformal trans-

formation formula of the Ricci curvature is:

Ricy, = Ricg, — (n—2)(d*f — df**) + (Af — (n — 2)|df|*) g (3.2.4)
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By (3.2.4), we see that if ji(f) = 0, then conformal change O(Ric,,),(0) with |u| = k+1
depends only on j*'(f).

In summary, d(Ricy, ,,),(0) depends only on the homogeneous degree &k + 1 terms of fi41
and has the same value with respect to both {z;41} and {x} coordinates.

The Taylor expansion of g, in the {z),1} coordinates is

det(ges1) =1+ Y crr1(ORicy, ,,,(0)2fy + Spah,, + O(*?).
lul=k+1
Thus gj+1 is conformal normal to the order (k+1) if and only if for any g with || = k+1,

we have:

Z Ck-l—l(aRngkHH(O)) + Sﬁ)mllz+l =0.
|p|=k+1

Since O(Ricg,,,)u(0) have the same value with respect to both x4, and z; coordinates,

by a coordinate transformation to the {z;} coordinate system, we have:

> crr1(ORicy,,,u(0)xh + Sp)xh = 0. (3.2.5)
lnl=k+1
We work with {x)} coordinates and let
Jre1 = Z Ci1---ik+1x§cl U x;ckﬂ' (326)

Take the (k + 1)th order derivative of (3.2.4) in the {z;} coordinates, we have:

Z Ck+1(8Rngk+lu(O))$Z+ a
|ul=k+1

EaN]

Z ce10(Ricy, ) (0)zt — (n — 2)d* frpr (zr, wx) + 17200 frsr + Spak.
|n|=k+1
By Euler’s formula, d? fyy1 (2, 2x) = (2:d)? forr — (xpd) f = k(k + 1) foi1.

Thus Equation (3.2.5) is equivalent to the following equation of fi1:
(1*A — (n — 2)k(k + 1)) foy1 = —crpa( Z ORic,(0) + Sy)xk. (3.2.7)

lul=k+1
Comparing the coefficients of z,' "' on both sides of (3.2.7) and by Lemma 5.3 in

[LP87|, we obtain a non-degenerate linear system of equations for the unknowns, i.e. the
coefficients ¢;,...;, ., of fry1. Thus gives a unique solution for ¢;,...;, ., -
Let hipy1(y) = hi(y) + 2 Cipoip, ¥ -+ - Y™+ with y being the formal variables. De-

note {z} for the g normal coordinates, then any function fi,; satisfying IR frer1) =

22



> Ciyeigy ' -+ - 2™+ in the {x} coordinates, by changing to the {x;} coordinates, we have:

fk—i—l = Z Cil..lik“xil ekt + O(Tk+2)
- Z cil"'ik+1x§cl o 'x;ckﬂ + O(rk+2) = frr1 + O<7’k+2)

Hence j5*1(fyi1) = j¥+1(fre1) and the metric Gy = e2lin L gy = e2fint2h(@) L g with

(3.2.8)

j£+1(fk+1 + hi) = hg41(z) is conformal normal to the (k + 1)th order. We thereby proved
the theorem for all k£ < oo by induction.

For k = oo, we first recall Borel’s Lemma below (cf. [Horl5]):
Lemma 3.2.3 (Borel’s Lemma). The canonical map from the ring of germs of C* function
at 0 € R™ to the ring of formal power series obtained by taking the Taylor series at 0 is
surjective.

Explicitly, let f = Zra°|:2 cox® be the unique formal power series obtained by the above
algorithm, where a is a multi-index with absolute value |a|. Fix ¢ a smooth bump function

on R such that ©» =1 on By, and supp(¢) C By. For |a| = m, let

1

22t ml(k + 1)!cal |9 "Vl \ ™
Ho= Juox ( (m — k)(k — )i ) '
Then
f=> cath(Hola|)z" (3.2.9)
|a|=2

is a smooth function in C*°(R") of which the Taylor series at the origin equals f.

For any finite integer k > 2, let f . be the truncation of f up to degree k. Then efg =
e*I 2Lk (e*kg), where by definition the function 2f —2 S = O(r**1) and the conformal metric
(e*rg) is of kB order conformal normal at p. Let 2/ and zZx be the normal coordinates of
e*/ g and e*Lk g respectively, then by Lemma 3.2.1, we have 2/ —2fx = O(|zLx|¥+1). Hence the
coordinate transformation to the x/ coordinates preserves the kth order conformal normal
property. Hence e?f¢ is conformal normal at p to any finite order k& and thus the statement
is true for k = oco. [J

As we have seen in Section 2.3, given a conformal structure [g], one can define the

corresponding (75(71,) structure P which is a principal 2-frame bundle over X. By applying
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the conformal normal coordinates, we can give a geometric construction of P as the principal
C/'b(n) bundle of conformal normal 2-frames:
Theorem 3.2.4. Let CNC*(X) = U,exCNC*(p) be the bundle of 2-jets of the second order
conformal normal coordinates, then CNC*(X) is a principal 5(\)(71) bundle on X which
characterizes the conformal structure [g] as the @(n) structure.
Proof: CNC?*(X) is a sub-bundle of the general linear 2-frame bundle P2, and hence has
a local trivialization induced from P2. To see CNC*(X) is a principal 6’5(71) bundle, we
define the 6’5('@) group action on CN'C?*(X) as follows:

For an element j3(p) € CN'C?*(p) defined by a metric g € [g] such that j2(g) € CA*(p),
and # € O(T,X, g,), the action of 55(71) on j2(¢) is defined as follows:

By (2.3.1), a general element of 65(77,) is of the form:
Az — 2%
1—2n- Az + 22n?’

h(z) =\
where A > 0,7 € R", A€ O(n).
We now focus on R" and denote ¢*g briefly as g, by a direct calculation we have:
Jo(h"g) = N(1+ 4nAz)j'(g).

Hence 55(71) acts free and transitively on CN'(p). By the Lemma (3.2.2), for any § €
Je(h*g), there is a unique homogeneous degree 2 polynomial f such that det(e?/g)(p) =
1 + o(r®) and notice that h*A3 is an orthonormal frame of h*g(p) = €?*/g(p). Hence the
normal coordinates ¢ define by e?/§ and h*f3 gives an element j2() € CN'C%

We define the action of 65(71) on CNC?(p) as

b2 (e) = (@) (3.2.10)
Since the action of 65(71) on CN™* = J'([g]) is free and transitive and O(n) C 65(71) acts
on the orthonormal frames free and transitive, the @(n) action on CN'C*(X) is free and
transitive.

To show CA'C?(X) defines a 6’5(n) structure, we need to show the 65(77,) action defined
above is the jet composition action (2.3.4). Let « : CN'C*(X) — P? be the natural inclusion

map, it is sufficient to show ¢ is 65(71) equivariant.
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Recall near a point p € P?, we have natural local coordinates u = (u;;u};u},) and
a natural local coordinates for 6’5(71) For a general element h = hy 4, € 6’5(7»), the
corresponding coordinates is
S 1 ) ) )
h = (h}, hi) = (Aaij, 5(773‘511 + M8 — '8P N apiagr)
Let u = (0, ;4,0), then the GL? action on u in local coordinates is:
i i Lo i i
h-u=( T jk) - (0, dij, )= (0, Aaij, §(ﬁj5k + 77k5j -1 5pq))‘2apjaqk)~ (3.2.11)
On the other hand, the action of 55(71) on CNC? is defined by exponential maps, and

thus to obtain a local expression of the action (3.2.10), consider the initial value problem of

the geodesic equation:
i+ Tddyh =0,
4(0) = dh(X), (3.2.12)
7(0) = p,
where f;k is the Christoffel symbol of the conformal normal metric § = €2/ g, with j}(e?/) =
N (14 4n - Az).
The conformal transformation formula of Christoffel symbols is given as below:
= Tl 50+ 250k — 509
Thus T%, = —(;0}, 4 bxd} — b'6’*) + o(r). Taking the Taylor series iteration of (3.2.12),
at step 1, we have (7)1 = Aaga? + (b0} + bpd) — b'07% ) N2aaPa ez (t).
By taking the integral of ¢ on [0, 1], we have
je(h- @) = daga? + %(bjdg + beds — V') N2 agpaPa et (3.2.13)

The inclusion map ¢ is 6(\)(71) equivariant by comparing (3.2.11) and (3.2.13). O
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CHAPTER 4

LOCAL EXISTENCE RESULTS
In this chapter, we discuss linear PDE results which will be applied in the proof of Theorem 5.1
and review Cao’s proof of the local existence of conformal normal metrics with careful track-
ing of the background metrics and constants in estimations.
4.1 Linear PDE Results

Let R™ be the standard Euclidean n-space with coordinates {x = (z;)}.

Denote R = |z| = (N a2)2, 0 = &, B, = {|z| < plz € R"}. Take Ay = 5 & the

I 2
|| ? Ox;

standard Laplacian and A* the spherical Laplacian. Two Laplacian operators are related by:
Pv n—-10v 1

A = — — 4+ =A". 4.1.1
o =2m TR ar TR (4.1.1)
Consider the following linear differential operator:
82
=A —2)— 4.1.2
£o(0) = Bo(0) + (= D) - (112)

Define the following weighted Holder norms and spaces on which the operator £ is applied:
For 0 < a < 1,3 <k < N, define Cyo,n, to be the space of functions in the Holder

space C**(B,) for which the following norm is finite:

lolllkasne = sup {r[v]oras,-p,)}

o<r<
k
= sup {r V(Y sup {|9pv(z)[}+ (4.1.3)
0<r<p 18|=0 s<z|<r
0 -0
rite sup{| ﬂv(f) |ﬁv(y)| |z # yg <y < Bl <k})}
r—y|“

Remark 4.1.1. In [Cao91], Cao generalized the operator L, to a collection of singular
elliptic differential operators, see also [PRO0| for a semi-linear generalization. In [PR00], the
weighted Holder norm |[|||,q;n,, is generalized to define a family of Banach spaces C¢ (Q\X),
see |PRO0] page 23 Lemma 2.1 for details. In particular, for ¢ = p,Q2 = B,, ¥ = {0},v =
N > 2k, we have a Banach space
CEBAOD) = {v | v € CEBNOD. Nllkanncy < o).
On the other hand, for an element v € C’]Ii,’z(Bp\{O}), by taking the term with |5 = 0

in the (k,; N, p) norm, we have |z|™ sup;_ ,<, [v(z)| < co. Therefore v(x) = O(|z|") near
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the origin, and thus v(z) € C’k’a(Bp) = C**(B,) and Cj..n,, is a Banach space.

loc

Lemma 4.1.2. Let 0 < p < 1, and v € C*%(By), then

(o) llsava < P F (@) lain.p- (4.1.4)

Proof: By definition

k
o)l = sup {r=(Y "1 sup {|9pv(pz)|}+

0<r<1 181=0 5 <z|<r
Opv(px) — Ogv(px’ r
Tk+aSU.p{| B (p|x)_ x/fa (p )||$7EZL',,§ <.’L’,.’17/ <, |B| < I{Z})}

Substituting A = pr and y = px to the above equation, we have

N k
p
llo(pm)llkeva = sup § (3 A sup {|950(y)[}+

0<A<p 18|=0 %<|a:|§)\

— / by
)\k—i-a sup {p(|5|—k) |8B'U(|y) ?fv(y )| | y # y', 5 <, z < /\7 |B| < ]{?})}
Y-y

k
< pNF sup )\—N(Z MNB sup {19sv(y)|}+

0<A<p 18/=0 S<lzl<A
N Jv(y) — Ogv(y/ A
wsesup{ PO =Ny 4y 2 <ot <0 ol < )

= P v (@)llkcsv,p-

Define Z, := {f € C™(B,)|j5°(f) = 0}, we have the following lemma:
Lemma 4.1.3.
Zp = m Ck',oz;N,p
k,N
Proof: Without loss of generality, we prove for p = 1 and omit the index p.

For a smooth function f € C*°(B;), we clearly have the following equivalence:

|f(2)]

N

< oo & f(x) = O(jz[™). (4.1.5)

sup  sup
0<r<1 Z<|z|<r T

To see [y y Crasn C Zy, for each v € Cj 4. v, take the |5| = 0 term in its weighted norm,

we have supg,.c; SUPr <<, |”fﬁ)| < 00, thus by (4.1.5) we have v € O(|z|"). Let N — oo,

we have v € Z;.
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Conversely, for v(z) € Z;, for each 0 term in the norm ||| x,q;n, We have:

O(|z|N"P1) = sup + Ml sup |9sv(x)| < 0o & dv(x).
0<r<1 %S|x|§r

For the a continuous terms, we have

|0sv(z) — Ov(y)|

o r
sup 7N sup{ - |z #y, 5 <lzl, |yl <r|B] <k}
0<r<1 ’x y’ 2
0 0
<2 sup et N quplOBD) 2OV |y T ) <8 < B
0<r<1 | y| 2

<2 sup N gup {0s0(z) | 18] < k+1} < 00 = Dpu(z) = O(|z|V-*-2)

0<r<1 5<|z[<r

Thus v € gy Cran- O
Lo maps Cy a;n,p 10 Ch—2.a;8-2,0, £, to Z, and has a bounded linear right inverse operator
& on Z, defined as follows:

The eigenvalues of —A* are \; = I(l + n — 2) with [ = 0,1,2,.... The corresponding

(" =

eigenspace of ); is of dimension n; = ) Denote {¢,,} the orthonormal basis

of L2(S"~1) such that each ¢, is an cigenvector of Ay, with [(m) = I for 1+ 31"t n; <
m < Zi’:o n;.

For a function f € Z,, consider the inhomogeneous equation

Lov = f. (4.1.6)
In spherical coordinates (R, @), take the Fourier series
= fn(R)em(9)

whete f(R) = [or 1 (R, O)gn(@)d6.

By the separation of variables method, a formal Fourier series v(R, 0) = Y >°_, B (R)om(0)

solves (4.1.6) iff (3, satisfies the following inhomogeneous Cauchy-Euler equation for each

m:
-1 Ai(m
(= D)8, + =B = 5B = fon (4.1.7),
By variation of parameters, we obtain the following partlcular solutions of (4.1.7),,
1 R R fon(r)rt= ~Vin
Bﬂ(f): n_l/ov T'ln?fo('f')dT’7 RGZZIQR’Y"L Wdr form> 1

where ! = (—1)%/%.
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Take a smooth cut-off function ¢ € C*°(R) such that :

1, R<

X 1P
0, R>

p.

((R) =

(SIS [

We can now define the promised operator . as

Theorem 4.1.4 (cf. Corollary 2.14, [Ca091]) 5” is a linear operator on Z, such that:
a) Lo(Zf)(y) = f(y) for all |y| < Fp.

b) If fi(y) = f(ty),0 <t <1 and |y| < 3p, then (& f*)(y) =t (S f)(ty).

c) For any k,a, N, p, there is a constant number Ky such that

1 0 flllk.av., < Ki{lllf o + 11 lle-208-2,0}- (4.1.8)

A fact: Given (X, pu), (Y, v) two o-finite measure spaces. Let {f,},{gr} be two countable
orthonormal basis for the Hilbert spaces L*(X) and L?(Y)) respectively. Then {f,g.} is a
complete orthonormal basis for L?(X x Y).

Proof of the fact: < fugk, fmgi >=< fo: fm >< gk, G >= OpmOi, hence {f,gr} are or-

thonormal.

Let h € L*(X x Y) such that < h, f,gx >= 0 for any n, k.

/X ( /Y hgkdu> Fadp = 0. (4.1.9)

Denote uy(z fy x,y)grdv, by the Holder inequality, we have

||uk||%2=/ (/ hgkdy> d,ug/ (/ h2du> </ gzdu) du://h2dvd,u:||h||%z<oo.
x \Jy x \Jy Y xJy

And hence u, € L*(X), and by (3.1) u, = 0 almost everywhere on X.

Namely, we have

Denote Ey, = {z € X|ug(x) # 0}, u(Ex) = 0, thus the countable union E = J;~ Ej has
u(E) = 0.
Thus uj, = 0 on X\E for all k, namely [, h(z,y)gr(y)dv = 0.

Thus h(z,y) = 0 almost everywhere on Y, for all z € X\ E.
|h]|7: = / / h2dvdp = / / h2dvdu = 0.
xJy x\EJy
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Thus h = 0, and {f,gx} is a complete orthonormal basis for L*(X x Y'). O

Lemma 4.1.5. For k, N big enough, the kernel of Ly in Cy N, in polar coordinates consists

of

u= 3 nRM e, (0), (4.1.10)
m=mpy
where Yy(m) = An 7> Aigm) and o, are given as above. my is the smallest integer such that

Yigmy = N. In particular, KerLoN Z, = 0.

Proof. By Sturm-Liouville Theorem, the countable set

o= (9}

is a complete orthonormal basis of C°[0, p|, thus of L?[0, p].

By the fact proved above, {1 - ¢, } is a complete orthonormal basis of L?([0, p|] x S™71).
For k > 3, take u € Cj o;n,, such that Lyu = 0. Under spherical coordinates we have
u(r,0) € C°([0, p] x S™1) C L*([0, p] x S™71).

Thus

M
Z Zcml% ) (0 =Z Zcmﬂ/)l )om(6) + Enrr,
=0 [=

m=0 [=0

where the remainder &, satisfies:

A (1€ = 0. (4.1.11)

For each index m, denote f,, = > ;2 Curuthi(r), then u(r,0) = > B (r)em(8).
Since {¢,,}5° is a complete orthonormal basis of L*(S"!), we have

Bm(r) = /n_1 u(r, 9)g0m(9)dvols?71.
Thus B,,(r) € C*[0, p], with Y2, ciﬂ/u(r) its Fourier expansion.

Let g(r) € C§°([0, p]) be an arbitrary test function.
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For each index mg, and M > my, consider

0= EOU : g('r)@mo

By

= /B ‘CO(Z(Z lelﬁl(r))@m(g) + SML)Q(T)QOmo

m=0 [=0
M

= [ Lol et @)y + [ Loléarlo(r)om

m=0 1=0 By

On one hand, integration by parts and using Holder inequality, we have:

EnrLo(g(1)Pme)

/ LolEun)o)om

By

< |€air] - | Lo(9(7)@ms|
By

< a2 |1 £o(g(r)omo e < Cllénse| 2

Thus by(4.1.11), we have

M —o00,L—00

lim / Lo(Err)g(r)om, = 0.
By
On the other hand,

ML M
/B L (Z(Z cmz@bz(r))cpm(@)) 9(r)mo = /B (Z ﬁo(ﬁm)%(@) 9(r)me
p m=0 [=0 P \m=0
1" n—1, )\m
= [ (= )8y + i, — 22001
P ” n—1, Am n—
= [ (= 08+ P B, = 20 g
Thus in summary
P . " n — 1 ’ Amo n—1
o ngrolo((n - 1)/8ng + TﬁLmo - T_Q)g(r)r dr =0
Since ¢g(r) is arbitrary, we have
. ” n—1, )\m
I (1= 1), + ", — ) = 0 (4112)

Since B3,,, € C* with k > 3, by the standard Fourier series fact, Bgmo converges uniformly to

B, thus (4.1.12) gives

mo?
7 n - 1 / Am
(’I’L - 1)577'1«0 + —’r /Bmo J— TZO = O,
which is the Cauchy-Euler equation with characteristic polynomial
A
2 _ Amo
L
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Thus £v,,, = mo . and the general solution is of the form:

o0

Ugen = Z(cmr%" + dp ™) O
0
Since u € Cj q;n,p, by definition, we have

SuPzesg‘l |U(.’17)| sumeBR\Bg ’U(l’)‘

RN = RN

hence |u(z)| < cy|z|V, and
u = Z Cn R o (6)

N
where my the smallest integer such that ~,, > N, and the equality holds in L? sense.

< | ul flx.a5x,0 < 00,

If w € Z,, we then have
Ur)= [ |uldvols, < Cyr* Vol(Sp~") = Cr?N =t (4.1.13)
Sy
holds for any N.

Assume, by contradiction, that there exists a smallest my such that the coefficient

Cmy 7 0, then
/ |u|*dvols, —/ Z 2 p20m p2 Vdvols,
> / il dvolg, = Cr¥imotn=t)
contradicts with (4.1.13) when N > ,,,. Thus u = 0. O

Corollary 4.1.6. On the function space, Z,, . is an inverse operator of Ly on both sides.
Proof: For v € Z,, since . is a right inverse of £;, we have:

Lo(7(£Lo(v)) = v) = (Lo 0 ) (Lo(v)) = Lo(v) =
Thus .7 (Ly(v)) — v € ker(Ly) N Z,, by Lemma 4.1.5, we have .#(Ly(v)) = v, hence .7 is a

left inverse of £y on Z,. [J

4.2 Local Existence of Conformal Normal Metrics

Theorem 4.2.1. Let (X, go) be a C* Riemannian manifold and let p be a point on X. Then
there exists a conformal metric g = ®go such that det g;;(y) = 1 for all sufficiently small
llyll, i.e., the exponential map of g at p, exp,, is a local volume preserving map in a small

netghborhood of p.

The above theorem is proved as Corollary 0.1 in [Ca091|, we give a brief review of Cao’s
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work focusing on conformal normal metrics. We first rephrase the existence problem of a
conformal normal metric into solving a singular elliptic equation as follows:
Let (X, g0), p € X be given as in the theorem above. Within a gy normal coordinate chart
at p, multiplying go with a conformal factor e/ defined in (3.2.9), we obtain a conformal
metric § = e/g” such that jo°(det(exp*g)) = 1. We can therefore assume in the beginning
that j>°(det(exp*go)) = 1 and also up to a constant rescaling, we assume that the injective
radius of gy at p is greater than 1.

Let ¢ = ®gy be a metric conformal to go. The fact that g is conformal normal in a
neighborhood of p is equivalent to the fact that det(g) = |g| is a solution of the initial value

problem of the following ordinary differential equation:

OrIn|g| =0,
In|g(p)] =0

Namely |g| =1 < 0,1n+/|g| = 0.

Under the go-normal coordinates {x;}, we take r(z) = dist,(p, x) the g-distance function

from a point z to p, for which we have:

1 ..
Agr = —=0;(\/|glg"” dir)

VIl

— 0y(g" o) +

1 .

—8j Uai,r

N (V19l)g

= 0,(dr) + 0, In(y/]g]) = ; Lo, In(+/|gl)

In summary, g is locally conformal normal in a neighborhood U of p if and only if g

satisfies the following equation on U:
n—1

Ayr = . (4.2.1)
Denote ro(x) the go distance function from a point x to p, we have
1= [ldrl2 = ldrly, = gldrl,.
Hence
® = ||dr]f3,. (4.2.2)
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Define the function w(z) by r(z) = ro(2)e*® and substitute w into (4.2.2), we have
® = [|dr2 = (14 2z'w; + r§||dw|? )e*". (4.2.3)
It is clear by definition that ® = 1 < r = ry < w = 0. Furthermore, by comparing
partial derivatives, we have j&(w) = 0 & j5(®) = 1.
Thus g and gy have the same k-jet at p iff j¥® = 1 iff jfw = 0. By (4.2.3) we can
rewrite (4.2.1) as an equation of w(z):
V(z, 0w, 0*w) = f, (4.2.4)

where
Oro In /det(go(x)) €7,

o (4.2.5)
V(z, 0w, 0*w) = Lo(w) + G(z,0w) + Q(z,w, dw),

f:_

where L, is the operator (4.1.2) defined above, and G and ) are smooth functions
satisfying:
G=)> %Gij(x, Ow) and Gj(z,0) = 0; (4.2.6)
Q= Zij Qij(xa 8w)wij and Q;; = > ZCkainj (4.2.7)
Theorem 4.2.1 above is then a corollary of the following result:
Theorem 4.2.2 (|Cao91|, Corollary B). Given f € Z,, then for a small enough constant
0 < p <1, there exists a function w € Z, solving Equation (4.2.4).

Proof: Fix * = (2n,2:4n,1), we will prove the existence of a solution w € C,

1
59 n,5;4n,p

of (4.2.4). For the regularity of w € Z,, see Corollary B in [Ca091].
Take the complete metric space Dk, = {v € C, | |||v]||« < Ko}, where Ky = 8|||-Z(f)|||« + 1.
For v € Dk, and p > 0, define
F,(v) = L[Lo(v) — V(pz, pdv, 8*v) + f(px)]. (4.2.8)
By the estimate (4.1.8) in Theorem 4.1.4, we see that for two functions v; and vy in Dy,
there exists a constant K7 depends on n and K| such that:

[[Ep(v1) = Ep(va)ll« < Kipllfor — va]l« (4.2.9)
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Take p = py = m, then Kip < i and

IE @)l < [[[Ep(0) = EFp (01« + [I1F, (0[]« < % + 117 (f (o))«

= Do MZDeoMe < Koy )y < i
where the equality follows from Theorem 4.1.4.(b) and the third inequality follows from
Lemma 4.1.4. Thus, F),, is a contraction mapping on Dy, . Hence by the Banach fixed point
theorem, F),  has a fixed point in Dg,, denoted as v.

Apply Ly on both sides of F, (v) = v and by Theorem 4.1.4.(a), we see that v is a
solution of V(px, pdv,0*v) = f(pz) in C,, and hence w(z) = p%(%) is a solution of (4.2.4)
O

1mn 027’1«,%;47'L,p'
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CHAPTER 5

UNIQUENESS OF CONFORMAL NORMAL METRICS AT THE GERM
LEVEL

Let (X, [g]) be a conformal manifold. At a point p € X, the germs at p of metrics ¢ in the
conformal class [g] is a set
Dplg] ={germ,(9) [g €9 }-
By Theorem 4.2.1, this set contains at least one conformal normal metric. Let
CN(p) = {germ,(g) € G,[g] | det(exp,g) =1}

denote the subset of a (germs of) conformal normal metrics in the conformal class.

Let Ji[g] = {4p(9) g € [g] } and 7' : G,[g] — J}[g] with 7' (germ ,(g)) = j,(g) be the
projection map to 1-jets.

The main theorem is stated as follows: Fix p € X. For each metric g, the conformal class
[g], the 1-jet class j; (g) contains a unique conformal normal metric.
Theorem 5.1 (main theorem). At p € X, fix an arbitrary 1-jet class of the conformal
metrics, there is a conformal normal metric g at p within the 1-jet class and the metric g is
unique up to the germ level. Namely, the jet projection map w* restricted to CN (p):

mlent) : CN(p) — J2[g]

is a bijection onto J}|g].

We first prove a uniqueness theorem for solutions of equations of type (4.2.4) which is a
corollary of Lemma 4.1.5.
Theorem 5.2. Given the inhomogeneous equation

V(z, 0w, 9®w) = Lo(w) + G(w) + Q(w) = f, (5.1)

where Ly is defined as (4.1.2), G and Q satisfies (4.2.6) and (4.2.7) respectively, and f € Z)
for some X > 0. Then there exists a positive constant 0 < 7 < X small enough such that
there exists a unique solution of (5.1) in Z,.
Proof: For p > 0, define the operator F}, as in (4.2.8). Let Ko = 8[|l (f)[ll2n,1:4n1 + 1,

then by the same argument as Theorem 4.2.2, there exists a constant K > 0 depends on K
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such that for p < m, F, is a contraction mapping on
Dk, ={v € Con, Liany | |||U|||2n,%;4n,/\ < Ko}

For such a p > 0, on one hand, if v € Z, is a fixed point of F},, then by applying £, on
both sides of F),(v) = v, we see that v is a solution of the equation:

V(py, pdv,0*v) = f(py). (5.2)
On the other hand, if v € Z, solves (5.2), then F,(v) = .#(Lo(v)) = v, where the last
equality follows from Corollary 4.1.6.

Hence, by the uniqueness property of Banach’s fixed point theorem, Equation (5.2) has
a unique solution in Z,.

We clearly have a bijection between solutions of Equation (5.2) in Z, and solutions of
Equation (5.1) in Z,y by letting w(z) = p%(%). Set 7 = pA, and the conclusion follows. [
Proof of the main theorem:: We prove this by constructing a map

sp: Jplg] = CN,
and prove it is a well-defined inverse map of 7'|cp/p) on both sides.
Fix a background metric ¢° € [g] together with an othonormal frame 6° of (7, X, ¢°(p)).
By Lemma 3.3, ¢° induces an isomorphism
n:ReTyX — J)[g).

Let (g, = (z;)) be the ¢° normal coordinate chart at p specified by 6°. With respect
to which, we can write 1 explicitly:

For each o = (\,v) e R@® T} X, take ax) = A+ D7, ¢y, where ¢; = v(6)).

Let g (z) = e g (2), then n(a) = j,((¢")*(g5dwidz;)).

Let 6 = 26, then 6* is an orthonormal frame of (T,X,g%(p)). Let (pq, x* = (25)) be
the ¢® normal coordinate chart at p specified by 6*.

We now work with {z®}: By Lemma 3.2.2, we see that by choosing a smooth bump
function 1 on R, one can construct a smooth function h = h(«) in the 2% chart defined
as (3.2.9) such that h(z®) = O(r?) and j°(det(exp *(eg®))) = 1. Denote g" = ehg®, it is

clear that 6 is an orthonormal frame of (7, X, ¢"(p)). Again let (¢, 2" = () be the g"
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normal coordinate chart at p specified by 6*.

We now work with {z"}: Let p = p(h) be the injective radius of g" at p, then the function
9y In y /det(gl’ (z"))
[ == " € Z,.

Let w € Z, be the unique solution of Equation (4.2.4) with f being the inhomogeneous

term. The existence and uniqueness of w is ensured by Theorem 4.2.2 and Theorem 5.2.
Let g = ®(w)g", with ®(w) = (1423 20w + [2"?||dw]]?,)e*”, then ¢ is a conformal
normal metric on B,.
Define the map s, as follows:
sp(73(9)) = germ ,(g") = germ ,((B(w) 0 g7 ") - (¥ F2o%0 ") . g0) (5.3)
The map s, is well-defined independent of the choice of the frame 6, and the smooth bump
function .
For 0, independency, we check the following:
L. Fora=(\v) eROT X, ao ©5H(v) = A+ v(v), hence a is well-defined independent
of 6.
2. To show the function A is independent of the choice of 6,, it is sufficient to show its
Taylor series at the origin is independent of the choice of 6. By choosing a different
orthonormal frame, we have a linear coordinate transformation y = Az, with A € O(n).

Therefore at the origin, we have
J"h J"h dy;,  0Oy;,
Ox;, -+ 0x;, 0y, - - - 0y, 0z, ox;,

Hence the Taylor series of h at the origin is independent of 6.

3. The function ®(w) is a solution of the equation:

n—2 Oy In y/det(exp *g")
5 (d(In®),dr),» = — :

r

Aghr —+

By 1 and 2 above, the metric ¢" is independent of the choice of #, and hence the
equation of @ is independent of § and so is the solution .
For 1 independency: Let h be a different Borel extension of the formal power series in

Lemma 3.2.2 and g" the corresponding conformal metric. By solving Cao’s equation (4.2.4),
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we obtain a conformal normal metric g. Let § = ®(w)g", with ® the conformal factor and
@ defined in (4.2.3). Then under the g* normal coordinates, w € Z, for some p > 0 small
enough and satisfies the equation
V(z, 0w, 0*) = 0. (5.4)
By Theorem 5.2, the solution of (5.4) is unique in a small neighborhood of p, hence w = 0
and germ (¢g*) = germ (§).
To see s, is a right inverse of 7'|cyr,, observe that the conformal factors ®(w) and h both

vanish to the second order and thus do not affect the 1-jet of g*. Hence we have

7' 05,7y (9)) = G (9") = 3y (€% g°) = 07 (i3 (9))) =y (9).

To see s, is a left inverse of 7'|cy,, take g € [g] such that germ,(g) € CN,, and let
g" be the corresponding conformal metric obtained as above that is also conformal normal
at p. Hence we can write g = ®(z)g" with respect to g*-normal coordinates = at p, and

apply the same argument as 1) independency above, we see that ®(z) = 1, hence germ ,(g) =

germ ,(¢g*). Thus, the left inverse follows:

Sp © Wl(germp(g)) = Sp(j;(g)) = germ ,(g") = germ ,(g).

In summary, we have the following diagram of maps:
CN, ———— 94|

S
P
7T1

R&T;X === J}g
And by the section map s, we see that R @& T* X serves as a rough moduli of the set of
germs of conformal normal metric in class [g].
5.1 Conformal Normal Metrics on Locally Conformally Flat Manifolds
In section 3.1, we proved Theorem 3.1.3, a jet level relation among conformal flatness,

flatness, and conformal normal. By applying Theorem 5.1, we can obtain a similar result in

the germ level as follows:
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Corollary 5.1.1. Let (X, [g]) be a smooth manifold with a conformal structure [g|. If [g] is
locally conformally flat on an open neighborhood U of p € X, then for a conformal metric
g € lg], germ,(g) is flat if and only if germ,(g) is conformal normal.
Proof. 1t is clear by definition that a flat metric is conformal normal.

Conversely, let g € [g] be a conformal normal metric on U. Since [g] is conformally flat
on U, there exists a conformal factor e?/ such that g/ = €2/ - g is a flat metric on U. With
respect to the g/-normal coordinates {z}, g/(x) = d;; is the standard Euclidean metric.

Pullback d;; by the conformal mapping ¢ = ¢, 4, defined in (2.3.1), we have
)\2
i
(1 —2Ax - n+ a2n2)2""
©*0;; has a pole at = = 2—1277. Since ¢* Riem = 0, p*d;; is a flat metric on UNB(0, [n|~1). Up to

@ oij =

pulling back by a conformal mapping ¢, we can assume j(¢*g/) = j}(g), with both metrics

being conformal normal at p. Hence by Theorem 5.1, we have germ ,(¢/) = germ ,(g). O

Remark 5.1.2. By Corollary 5.1.1, we see that the germ of a flat metric is uniquely deter-
mined by its 1-jet. This fact can be proved directly without referring to Theorem 5.1:
Proof: Without loss of generality, let h € [g] be a flat metric on U. Let ¢ be a smooth
function such that i = ¢*h remains flat on some open neighborhood V C U.
By the conformal transformation formula for the Riemann curvature tensor, we have
0 = Riem = ¢*Riem — ¢2°h @ (Hess p — dyp @ d + %|d(p|2h)

= —e*h B (Hessp — dp ® dp + %|d90|2h).
Hence we have

h @® (Hessp —dp @ dp + %\dg0|2h) =0, (5.1.1)
where @ is the Kulkarni-Nozumi product.

Write (5.1.1) in the A normal coordinates, we have

1 1
dir (@1 — @i + §|d90|25jl> + d1(pir — 18 + §|d90|25ik)

1 ) 1 .
— di(Pa — w1 + §!d90!25’&l) — du(wjx — pjion + §!d90|25jk) = 0.
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This is an overdetermined system of equations of ¢, among which we have the following

non-trivial relations for i # j:

i+ Qi = ?—|— 2 — |dy|?,
i + @i = @i +¢j — ldgl (5.12)
Pij = PiPj,
where the first equation is for the cyclic pairs (7, 7) = (1,2),(2,3),...,(n,1). Denote A the
coefficient matrix of ;i. It is clear by elementary row operation that A is nonsingular.
View the first order terms ; as constants and solve for ¢;;, we get
1
2 2
i = ¢; — 5ldo|”.
i = @i = 5ldy
Since A is nonsingular, the above solution is unique.

Define v : R® — R"™ as u = (¢;);, and

a:R" — M,x,(R)

1 dal o laai
As one can check, we have Y, op 54 = > L, a5t
Hence the functions v and « satisfy the compatible conditions in the following lemma for
an over-determined system which is the proposition 19.29 in [Leel2].

Lemma 5.1.3. Suppose W is an open subset of R™ x R™, and oo = (Ozé-) : W — M(m xn,R)

18 a smooth matriz-valued function satisfying

o’ oo’ Dot oot
j 1 99 k 1 00y .
+ « = L+ or alli,7,k,
oxk ozl Qud 70zt J J
where we denote a point in R"xR™ by (x,2) = (z*,..., 2" 21, ..., 2™). For any (zo, z0) € W,

there is a neighborhood U of z¢ in R™ and a unique smooth function v : U — R™ such that

u (o) = 2o and the Jacobian of u satisfies
ou’
Oz’

Hence for any fixed initial condition ¢(0) = ¢ and dp(0) = v, we have a ungiue conformal

(:cl, . ,:v") = a§ (:L‘l, ot ut(x), . ,um(:t))

factor ¢ such that e2?¢ is flat in some small open neighborhood V' of p. [
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CHAPTER 6

SMOOTH DEPENDENCE OF CONFORMAL NORMAL METRICS ON
PARAMETERS

In Chapter 5, we see that for a smooth background metric g, there exists a unique conformal
normal metric g at any point p € X. In this chapter, we prove the smooth dependence of
conformal normal metrics on a family of background metrics and give an application to the
regularity of the canonical metric go in a Yamabe-positive conformal class C' introduced by
Habermann and Jost in [HJ99].
6.1 Smooth Dependence of Conformal Normal Metrics

We first work over the background Fuclidean space R™ and give a local smooth depen-
dence result(Lemma 6.1.7).

Suppose B; C R” is the unit ball centered at the origin and denote the space of smooth
metrics on By as Met *°(B;) which is an open cone in the Fréchet space C*°(By, Sym?R™).

Consider a [-parameter family of smooth metrics on Met *°(B;) as follows:

v : Rb — Met™ (B) (6.11)
t = (1) = gi(z),

with g;(z) = (g;;(t, ) satisfies g;;(t,z) € C°(R! x By).

Recall the following well-known result on the smooth dependence of solutions of a system
of ordinary differential equations, see Secl.6 in [Tay96] for details:
Theorem 6.1.1. Suppose D = {(s,z,t)} C RO R ®R™ is open and f : D — R" is a
smooth vector valued function. Consider the initial value problem:

== fs,2(s),1)

z(s9) = v,

(6.1.2)

with (so,v,t) € D.

Then there exists a constant § > 0 such that on [—4, 0] x D the initial value problem (6.1.2)
has a unique solution x = x(s; sg,v,t) € C*([—0,d] x D).
Lemma 6.1.2. Suppose 7 is an arbitrary l-parameter family of metrics on By C R™ given

as (6.1.1). For any K C R' compact, there exists § > 0 small enough such that g, = exp}, (g¢)
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satisfies Gij(t,xz) € C°(K x Bs). In particular, the coordinates {z'} on Bs are normal
coordinates for §;;(t,x) for each t.
Proof:  Apply Theorem 6.1.1 to the geodesic equations with metrics in v(K) C Met *°(By).
Namely, consider the following system of equations:

G = —Th(a(s), )yy°

u(0) = (p,v),
where u(s) = (x(s),y(s)), y(s) = dzgs) and I'f.(z(s),t) is the Christoffel symbol of g:(x).

Suppose (p,v,t) € By x By x K. We see that, up to restricting to a smaller ball By C By,
the Riemannian exponential map is uniformly defined on Bs and is smooth with respect to
(p,v,t). O

We give a parameter-dependent version of Borel’s Lemma of asymptotic expansions be-
low:
Lemma 6.1.3. Suppose {ax(t) € C*(K) | K C R compact, k € N} is an arbitrary collection
of smooth functions. There exists a smooth function f(t,x) € C®(K x R) such that
Ok f(t,0) = ax(t) for any k € N.
Proof:  Let p(z) be a smooth bump function such that p =1 on |z| < 2 and supp(p) = B;.
For each k£ € N, take A

A= lo®Ollogy. Be=lo@llosw. My =sup {Z () ﬁj)!}

i<k 5%
Define

[e.9]

k
X
f(t,z) = Zak(t)gl) (hix)
k=0

We claim that the function f(¢,z) defined above satisfies the requirements. Formally we
have 9% f(t,0) = ax(t). Hence it is sufficient to prove that f(¢,r) € C*(K x R). We prove

by check the following fact: For each n,m € N, the series

o0

2.

k>2(n+m)

iI?k

0207 (w50 (o) )|

converges on K x R. Indeed, we have:
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oo 2k 0o . n . ‘
> 3nam( )km(hkfv))‘ = > oM ( ) b ) ()
k>2(n+m) ’ k>2(n+m) Jj=

>2(n+ k>2(n+m) k >2(n+ )
where the first inequality follows from the definition of Ay, By, My, and the fact that
p(hxx) = 0 for |z| > ;-, the second inequality is by —5 > n — k. O
Remark 6.1.4. By a completely similar argument, one can show that Lemma 6.1.3 holds
for the multivariable cases.
Theorem 6.1.5. For {§; € Met>(B;s) |t € K}, the smooth l-parameter family of metrics

obtained in Lemma 6.1.2, there exists a function V(t,z) over K x Bs such that:
a) ¥(t,z) € C°(K x By),
b) Wy(x) =14 O(|z]),
¢) For each t € K, the metric gi°(x) := V(t,z)g(x) is co-order conformal normal at the
origin in {t} X Bs.
Proof:  Apply Lemma 3.2.1(cf. [LP87, Theorem 5.]) to each ¢(z), we obtain a unique

formal power series:
o

ho(z) =) calt)a®,
with ¢, (t) a polynomial of 0, Ricg;(0) and 855533% (0) with || < |a|—2, such that for h;(x),
an arbitrary Borel’s extension of h$°(x), the function W, (x) = e(*) satisfies requirements b)
and c).

By definition c,(t) is a smooth function of ¢+ over R.. On VK C R! compact, by
Lemma 6.1.3, we can choose h(t,x) € O (K x Bj;), hence U(t,x) = e"**) € C> (K x Bj).
U

In summary, we obtain a smooth l-parameter family of metrics:

{g2° € Met™=(B;) | t € K} (6.1.3)

such that for each ¢t € K, g5 is oo-order conformal normal at the origin and jj(¢5°) = 73 (g:)-
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By applying Lemma 6.1.2 to the family {g°}, we can assume the coordinates {z'} on Bs
are normal coordinates for g;° for each t € K.
For each t € K, we then correct the metric g;° to a conformal normal metric by Cao’s

PDE approach. On Bs, write down Cao’s equation (4.2.4) with respect to ¢7°:

xia
Eo(w) + Z ? : Gij(ﬂ?, 8w, t) + Z:Ek * W5 - Qijk(a:, Gw, t) = f((L’, t), (614)t
ij ijk
where the explicit formula for f(z,t),G;;(z,(,t), and Q;jk(z,(,t) are given as follows:
t)= ———= 1.
f@.t) 2r det g5 (x) (6.1.5)
Denote @1 (z,0w) = 1423 z;w;+2% > (g7°)w;w;, we have (using Einstein’s convention
below):
n—2
Gij(r, (1) = (97°)* - Ty, 1) - i + ?1(2@(]‘ + () - CaCpGiz )+
n—2 1
o (L) GG+ 2C) + 30 0) GG + P (GF)G)S, (6.16)
1
Q@ (w¢ut) = [ Oul(af)? - 59 (ws)dst
0
n—2 k/ oo\ia/ 00)\jb oco\ia ~ ik
o, (227 (97°)"* (9:°)" Cao + (957°)"“Cad”™) (6.1.7)

Upto choosing a smaller compact set K and 0 > 0 if necessary, we can assume that
5 < ®1(z,(,t) <2on Bs x Bs x K and § < det(¢9>(z,t)) < 2 on Bs; x K. Hence by the
construction, f(z,t) is a smooth function in z,t and f,(z) € Z5 with respect to =, Gj;(x, (. t)
and Q;;x(z, ¢, t) are smooth functions with respect to x, (, .

Let Ky = 8|||¢7(f)|||2n’%;4n’)\ + 1, then by the same argument as Theorem 4.2.2; there

exists a constant K3 > 0 depends on Kj such that for p < F, is a contraction

mapping on D, = {v € Cyp 14nx | [1V]ll2n, 1:4m0 < Ko}

As in the proof of Theorem 5.2, fix * = (2n, %;477,,5). With respect to each g;°, take
Ko(t) = 8|||-L(f)]|]« + 1, by construction Ky(t) is continuous in ¢, hence for ¢t € K compact,
we have a maximum Kj. Denote the convex set D, = {v € C, | |||v]||« < Ko}.

Denote K3(t) the contraction constant in (4.2.9) for the map F),,(v). Namely, we have:
1E,(0) = Fpe @)l < Ks(plllo — ]l

The following lemma is proved in Appendix B:
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Lemma B.1. For K, > 0, and functions in Dy, = {v | |||v|||lk.ane < Ko}, define
T,(0) = Gyle) + Qulo) = 32 5 Giglpw, pde) + 3 pia* vy Qudp, p00),
where Qijk(x, () and Gyj(x, () arel,;mooth functions with r;;];ect to x,C.

There ezists a constant Ky such that for 0 < p < 1 and any pair of functions vy, vs € Dy,

we have
175 (v2) = Ty(v1) lk-2.:v-2.5 + 1 Tp(v2) = Tp(v1)llo,asn—1,6 < Kopl|o — vk asn.s-
In fact, Ky = C(a)P(Ko)M, where C(«) is a constant depends on «, P(Ky) is a poly-
nomial of Ky and
M= max 1G5 (@, O)ller (s, o 12" Qisr (2, Ollex(ps, o § »
with D = D(6, Ko) = Bs x B, C R* @ R".
Let K be the constant in (4.1.8) for * = (2n, £;4n, §):
11 0 flll+ < Ki{l[lflllo/2an.5 + If l2n—2,/2:4n26}-
Apply Lemma B.1 to the functional 7, defined by the metric g;°, for a pair of functions
v1,v2 € Dg,, we have:
11Fpu0r) = Fpalw)lll = 17 0 (Tyu(or) = Tpe(wa)) ll. < K - Kal®)olllo — 5]l

We see that K3(t) = K - Ky(t). Since G;; and Q;jr depend smoothly on the metrics
g%°, hence so do their C* norms. We obtain an upper bound of K3(t) by take the maximum
values for C*"(D) norms of G;; and Q; ;.

On one hand, let 7(t) = m, then by the argument above 7(t) is uniformly bounded
below by 7 = 7(K) for all t € K, the solution w(z,t) of Cao’s equation (6.1.4); exists on B;;
on the other hand, the map F},; is a smooth family of contraction maps over Dy x K with a
uniform contraction constant. Recall the following classical result of uniform contractions(cf.
[CH12, Theorem 2.2]):

Lemma 6.1.6 (Uniform Contraction Principle). Let U,V be open sets in Banach spaces
X.,Y respectively. Let U be the closure of U, T : U x V. — U a uniform contraction on
U and let g(y) be the unique fized point of T(-,y) in U. If T is smooth over U x V, then

g() € COO(V,X).
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Apply Lemma 6.1.6 to F),;, we see that the solution w(z,t) of Cao’s equation (6.1.4),

with respect to the metric g;°(z) depends smoothly on ¢. In summary, we have the following
result:
Lemma 6.1.7. Give a smooth family of metrics v : RE — Met>(B,), for any K C R!
compact, there exist 0 < 6 < & small enough such that there is an unique function ® €
C>(K x Bs,R") such that ®;(z) = 1+ O(r?) and ®?g is conformal normal on Bs for any
te K.

Apply Lemma 6.1.7, we construct a smooth Riemannian metric on X x X which is
conformal normal near the diagonal in the following sense:

Corollary 6.1.8. Given (X, g), there exists a smooth Riemannian metric g®®?g on X x X,

where ® is a function satisfies the following conditions:
(a) ® = 2(p,q) € C=(X x X,RT).
(b) Near the diagonal A C X x X, ® = 1+0(r?), where r is the distance from the diagonal.

c) There exists an open neighborhood U of the diagonal /A such that for ¥p € X, ®2q is
(c) i g g pe X, P9

conformal normal on U, = ({p} x X)NU.

Proof:  Let ¢o : Uy — X be a chart centered at a point py € X. Fix 6y € O,,(X), where
O(X) is the g-orthonormal frame bundle. For 6 > 0 small enough, and the § ball B; C R"
at the origin, we define a smooth family of metrics
v : Uy — Met *°(Bs)

as follows: For any = € Uj, let 0, € Oy,(;)(X) be the orthonormal frame obtained by the
parallel transportation from ¢y with respect to the metric g. We identify 7,y X with R" by
0, : R" = Ty X as 0,(v) =Y v (6,);.

Let 6 > 0 small enough such that 6,(Bjs) is in the injectivity domain of the exponential
map on T,y X for any x € Uy.

Define v(x) = (expy(z) © 02)*g € Met *°(Bjs). It is clear by definition that + is a smooth

family of metrics.
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Apply Lemma 6.1.7 to -y, we obtain a smooth family of conformal normal metric § = ®?g,
with @ € C®(Uy x B%). Let ¢ : Uy x Bs — exp (T X|yw,)) € X x X be the map to an
open neighborhood of the diagonal A obtained by 6, and the exponential map. Then by
construction, the metric g & $*g is a smooth metric on ¢(Uy x By).

For another point, p; € X together with an open neighborhood U;, by the same argu-
ment, we obtain a smooth family of conformal normal metrics parametrized over U; and
by the uniqueness of conformal normal metrics, the two families of metrics coincide on the
overlap Uy N U; and hence we obtain a smooth family of metrics g ® ®2g over X in an open
neighborhood U, of the diagonal.

Take K C Up compact and V' O K open. Respectively, let i be a bump function on
X x X such that 4 =1 on K and supp(u) € V. Then the metric g ® (®*u+ 1 — u)g satisfies

the requirements. [

6.2 An Application of Smooth Family of Conformal Normal Metrics

In this section, we apply the smooth family of conformal normal metrics in Corollary 6.1.8
to give a shorter proof of the regularity of the canonical metric go in a Yamabe-positive
conformal class C' introduced by Habermann and Jost in [HJ99]. We begin by reviewing
some background knowledge on Green’s functions for Riemannian manifolds and the mass

of asymptotically flat manifolds.

Conformal Laplacian and Green’s function.
On a Riemannian manifold (X, g) of dimension n > 3, by adding a multiple of the
scalar curvature S, to the Laplace-Beltrami operator Ay, we obtain the so-called conformal

Laplacian operator:
4(n—1
(1),
(n—2)
4
L, is conformally covariant in the following sense. Suppose g = u#—2g, then the conformal

L, = +8,.

Laplacian changes correspondingly as:

n+2

un—=2o0Ls=L,ou. (6.2.1)

Remark 6.2.1. L, is the most famous example of a general hierarchy of conformally covari-
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ant operators. Let a,b € R, a linear differential operator P, of order m on (X, g) is called
conformally covariant of bi-degree (a,b) if with respect to a conformal change § = p?g, we
have:

gpboszpgogpa.
L, can be generalized to the conformal powers Pyy, of Laplacian (also known as GJMS

operators):

Pang =AY + LOT,

n—2N n+2N)
2 02 :

where “LOT” indicates terms of order lower than 2N. Py, is of bi-degree (
In particular P, , = L, Py, is the so-called Paneitz operator which was discovered indepen-
dently by Paneitz [Pan08|, Eastwood-Singer [ES85| and Riegert [Rie84|. Explicitly:

n—2 n—4
P47g_A§+5(mSgg—4P)d+ Q,

where 0 is the formal adjoint of d, P is the Schouten tensor, which is defined by (n —2)P =

Ricy,— #Sg.g, and ) =

=y Sz —2|P|* - Q(n—inAgSg is the so-called Q-curvature tensor.

i(n—1)
See [Juh09] for more details.
The Green’s function G of the operator L, is a smooth function on X x X —A. Following
|[LP87|, we will normalize it by requiring that
| 600L(e@) avol(a) = (- Daniolp) (6.2.2)
for all ¢ € C§°(X). Agplying Equation (6.2.1) to (6.2.2), we see that under the conformal

change g = uﬁg, the Green’s function transforms as

G(p,q) = ———— G(p,q). 6.2.3
P = Lutg) P (6:2)
Next, recall that the Yamabe constant J(C') of a conformal class C' is defined by
Sy dvol
Y(C) = ing x50 00l

oee (Jx dvolg) ™
The proof of Lemma 6.1 in [LP87| (see also Prop 2.2.9 in [Hab00]) shows that Y(C) > 0

if and only if there exists a metric g € C' with positive scalar curvature. Furthermore, for
each g € C, the smallest eigenvalue \; of L, has the same sign as J(C'), so in the case that
Y(C) >0, L, is invertible and we have the following result.

Theorem 6.2.2. If Y(C) > 0, then for each g € C, there is a unique Green’s function G
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for L,. Moreover, G is symmetric and positive.

We work with Y(C') > 0 throughout this section. For convenience, we adopt the following
notations as in [LP87].
Notation. We write f = O (r*) to mean f = O (r*) and Vf = O (r*7'). O" is defined
simalarly.

Near the diagonal of X x X, G has the following asymptotic expansion under the con-
formal normal coordinates.
Lemma 6.2.3 ([LP87], Lemma 6.4). Let X be a smooth manifold of dimension n with a
conformal structure C' such that Y(C') > 0 and eithern = 3,4,5 or C' is conformally flat. Fix
p € X. Then, in conformal normal coordinates {z'} at p, the Green’s function G, = G(p,-)
has an asymptotic expansion of the form

Gy(x) = |2~ + alp) + O"(Jz)

for some constant a(p).

In fact, the regular part a(p) + O"(|z|) of G,(x) can be expressed in terms of the heat
kernel k of L,. Recall that the heat kernel k of L, is a smooth function k : X x X xR — R*

such that:

(a) kp(q,t) = k(p,q,t) as a function of ¢ and ¢ > 0 solves the L, heat equation:
(O + Lg)kp(q, t) = 0.

(b) For Vp € X and Vp € C>(X),

lim y k(p, q,t)¢(q) dvoly(q) = ¢ (p).

It is a well-known fact that the heat kernel k for L, is uniquely determined by the metric
g. Furthermore, k& depends smoothly on the metric in the following sense (cf. [PR87, Lemma
1.1] or [BGV03, Theorem 2.48|).
Lemma 6.2.4. Suppose v : Rl — Met®(X) with v(s) = g, is a smooth family of smooth
metrics, then the corresponding family of heat kernels k(s,p,q,t) is a smooth function on

R x X x X x RT.
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We will use the following relation between Green’s function G and the heat kernel & (cf.
[BGV03, Theorem 2.38]).
Lemma 6.2.5. For each (p,q) € X x X, we have
Gp.) = (n =Dy [ Klpa.t) (62.4)
where w,_1 1s the volume of the unit sphere S™~1. ’
In particular, the standard Euclidean heat kernel centered at the origin on R" is ky =

|m|2), and direct integration using the Gamma function shows that

4t
(n— 2w / ko dt = |22, (6.2.5)
0

(4mt) = exp (

Proposition 6.2.6. If the manifold X is of dimension n = 3,4,5 or C' is conformally flat,
then in conformal normal coordinates {z'} on a neighborhood U, of a point p,
Gy(z) = [al™ + @o(p, ) (6.2.6)
where
Bo(p,7) = (n—2)wn 1 / (k= ko)t (6.2.7)
is a bounded function on U,. :
Proof. By (6.2.4), (6.2.5) and (6.2.7), we have
Gp(z) = (n—2)wp—1 (/00 ko(p, x,t) dt + /OO (kp(x,t) — ko(p, 1)) dt) = |z|*™" + ®y(p, z).
To see that @y is bound(()ad on U, we introdouce the function ky = ko(1 + a;(x)t), where
ap(x) = /1 S(xt) dt (6.2.8)
is the integral of the scalar curvature S. B; Theorem 2.2 in [PR87|, k; is a parametrix for

k in dimension < 5, and there are bounded functions ¢; such that
(

P11 ©3 — ¥4 n = 3 or C locally conformally flat
Qo(p,2) = 9 O+ @3 — pa+ai(@) (g2 —In(lz])), n=4 (6.2.9)
o+ — ol — 57 n=5.
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Specifically, with the same labeling as in [PR87],
1

1

o1 = (n— 2)wn_1/ (k — ko) dt, oy =(n— 2)wn_1/ (k — ky) dt,
0 0

oo 1
= / Al A + / AHe™ —1) d),
1 |

z|?

w3 = (n— 2)wn1/ k dt,
1

4

vy =(n— 2)wn_1/ ko dt, oy =(n— 2)wn_1/ ky dt

4 4
The Proposition follows because, in conformal normal coordinates at p, S(x) = O(|z|*) (cf.

[LP87, Theorem 5.1]), and hence a;(z) = O(|z]?). O

Remark 6.2.7. The restriction of ®y to the diagonal is a smooth function ®(p,p) on X.
This can be seen from (6.2.9). By (6.2.8), a;(z) vanishes on the diagonal, and ¢35, ¢4 and ¢
are clearly smooth. As for ¢; and ¢/, the arguments in Section 2.5 of [BGV03| show that

the functions x(p,t) = k(p,p,t) — ko(p,p,t) and '(p,t) = k(p, p,t) — ki(p, p, t) satisty
0L(p, 1)) < =

g Vi
/
|81l)/£'(p, t)] < C—lt, for dim n = 4, 5.

N

for any | € N*. Because x and «' are smooth for ¢ > 0 and the function 1/v/% is integrable,

, for dim n = 3,

the standard theorem on differentiating under the integral shows that ¢; and ¢/ are smooth.

Mass of An Asymptotically Flat Manifold
Definition 6.2.8. An n-dimensional Riemannian manifold (X, h) is called asymptotically
flat of order T > 0 if there exist a compact subset K C X and a diffeomorphism ¥ : X\ K —
{z € R": |z| > 1} such that, in the coordinates z!,..., 2" induced on X\K,
hij(z) = 0i; = O" (p™7)

as p := |z| = oo. The coordinates {2} are called asymptotic coordinates.

Given an asymptotically flat manifold (X, h), let S, denote the sphere of radius r > 0
in the asymptotic coordinate system {z'}. We can then define the following fundamental

quantity.
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Definition 6.2. 9 The mass of an asymptotically flat manifold (X, h) is the number
lim / Z iji — Piij) 1)j+1dz1/\---/\d/z\j/\---/\dz", (6.2.10)

w’l’l 1 T—00

mass(h) =
Sr 7,7=1
where wy,_, is the volume of the unit sphere S™1.

By this definition, the mass is a measure of how quickly the metric approaches the
Euclidean metric near infinity. The following theorem of R. Bartnik (cf. [Bar86]) shows that
the mass depends only on the metric A.

Theorem 6.2.10 (Bartnik). If (X, h) is asymptotically flat of order T > ”T_2 > 0, then
mass(h) is independent of the choices of asymptotic coordinates, so is an invariant of the
Riemannian metric h.

We shall later apply the following version of the n-dimensional Positive Mass Theorem
of Schoen and Yau (cf. [SY79], [SY81], [LP87]).

Theorem 6.2.11. Let (X, h) be a Riemannian manifold of dimension n > 3 that is asymp-
totically flat of order T > 252, If (X, h) has non-negative scalar curvature, then mass(h) > 0,
with equality if and only if (X, h) is isometric to the Fuclidean R™.

Conformal blowup

Unless specifically stated otherwise, we work with the cases n = 3,4, 5 or C'is conformally
flat, and we assume that Y(C) > 0.

In [Sch84], Schoen introduced the idea of conformally blowing up a metric ¢ € C' by
the Green’s function of L, to turn X into an asymptotically flat manifold (cf. [LP87]).
Explicitly, the conformal blowup of (X, ¢g) at a point p € X of g is the manifold X \ {p} with
the Riemannian metric h, defined by

hy = hip,q) == (G(p,g))™?g(q). (6.2.11)
Note that h, is a smooth metric by Theorem 6.2.2.
Suppose that {z'} are conformal normal coordinates centered at p defined on a neighbor-

hood U of p as in Lemma 6.2.3. On U \ {p} define “inverted conformal normal coordinates”

by 2 = By the asymptotic expansion of G in Lemma 6.2.3 (cf. [LP87, Theorem 6.5]),

zi
]2
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we have:

hij(2) = v72(2) (8, + 0" (12]72)) (6.2.12)
where

1(z) = 1+ a()eP " + 0" (')
This shows that h,, is an asymptotically flat metric of order 1 if n = 3, order 2 if n = 4,5, and
order n — 2 if g is conformally flat near p. Hence, in each of these cases, Bartnik’s Theorem
implies that the mass m(h,) is well-defined and depends only on the metric g € C.
Lemma 6.2.12. (¢f. [LP87, Lemma 10.5])

mass(hy) = i (G(p, q) = 1,(a)*™") = 4(n = Da(p). (6.2.13)

Proof. Take the spherical coordinates, p = |z] and § = - With respect to (p, &), the

||

definition (6.2.10) of mass gives-
mass(hy) = lim A"~ 2/ Z iji — hiij) 2 dE. (6.2.14)

Whp—1 A—o0 S/\’L] 1

By the asymptotic formula (6.2.12), we have

ta(p) .-

hij(Z) = (1 + " n)ézj + O//(plin).

-2
Hence
- ] - 1 4a(p) —n —n
D (hags = hag)? = (L=m) Y P0,(1+ 0 4 0 (p ")
2,7=1 7=1
da(p) 5, n

= (1m0, (1 + 2 o or(prom)

=4(n—1a(p)p’ ™" +0(p' ™).
The result follows by substituting the above result into (6.2.14). O

Regularity of Habermann’s Canonical Metric
Definition 6.2.13. For a Riemannian metric g on X, define the corresponding mass function

asmg: X - R
mass(hy)

TCESTR (6.2.15)

my(p) =
where h,, is the asymptotically flat metric at p € X with respect to g by formula (6.2.11).
Theorem 6.2.14. The mass function (6.2.15) satisfies the following properties :

(a) m =0 if (X,g) conformal to the standard n-sphere, and m > 0 in all other cases.
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(b) mpg = f*my for f: X — X a diffeomorphism.

(c) u?- m ot = M foru e C®(X).

(d) m e C*(X).
Proof: (a) For each point p, the Positive Mass Theorem 6.2.11 shows that m(p) > 0, with
equality if and only if (X\{p},h,) is isometric to euclidean R™, in which case (X,C) is
conformally equivalent to the sphere S™ with its standard metric. Hence for all the other
cases, m is strictly positive on X.

(b) An isometry f preserves the distance function: 7,(f(p), f(q)) = rp4(p,q). It also

preserves the Green’s function, as follows:

/X G(f(p), F(0):9)Ly-5(2(a)) dvoly-4(q)

= /X G(f(p), F(a); 9)Lg(0(f(q))) dvoly(f(q)) = (n = 2) wn_1 (¢ o f)(p)
Hence by the uniqueness of Green’s function, we have G(f(p), f(q);9) = G(p,q; f*g).

By (6.2.13), we have
J'mg = ay(f(p) = lim |G(f(p). f(a); 9) = 5" (f(p), [(0))]

= lim G, f79) =150 (0, 0)| = apg(p) = myp=.
(c) By (6.2.3)
~ 1
Gp,q) = ——7=
#.9) u(p)u(q)
Temporarily setting v = %, the definition (6.2.11) shows that

hy(q) = (é(p,q)yﬁ = (%yu(qm(fﬁ = u(p) "hy(q).

It is clear that if {2'} are asymptotic coordinates of &, then {\z'} are asymptotic coordinates

G(p,q).

for a constant rescaling A?h, and by a coordinate changing in (6.2.10), we have m(A\*h) =
A"~2m(h). The conclusion follows by taking A = u(p)™/% = u(p)n__—22
(d) Let ® € C*°(X x X,R") be the conformal factor defined in Lemma 6.1.8. Notice
that proposition (c) is pointwise true, hence at a point p, let uﬁ(q) = ®2(p, q), we have
@1/("*2)771@29(])) = my(p). (6.2.16)
By Lemma 6.1.8, g, = CDZg is the smooth family of metrics that are conformal normal

near p.
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Let k: X x X x RT x X — R* be the family of heat kernels parametrized by the smooth
family of metrics {g, | p € X}, i.e. k(q1,q2.t;9p) = kp(q1,q2,t) is the heat kernel of L, . By
Lemma 6.2.4, k(q1, g2, t; gp) is smooth in all the variables. Let G, = G(q1, ¢2; g,) denote the
Green’s function related to the heat kernel of g, by (6.2.4). Since g, are conformal normal
for each p, by (6.2.13) and (6.2.6), we have

mass(hy(gp)) = lim G, (p, ) — [a*™"

20
= lim ®o(p, z;9,) + O(|z]) = Po(p,p; gp).

By equation (6.2.7),

B = (1=2) [ (klp.p.ti) ~ halp.pr )
where k(p, p,t; g,) by Lemma 6.2.4 is ao smooth function on X x R*.

By Lemma 6.2.6 and Remark 6.2.7, ® is a smooth function on X. Hence by (6.2.16)
myg is a smooth function on X. [J

In [HJ99], Habermann and Jost observed that each conformal class C' on X has a canon-
ically associated metric, defined as follows.

Definition 6.2.15. For a conformal class C' on X, suppose ¥ : X — C' is a smooth map,
the canonical metric k¢ is the (0,2) tensor below:
re(p) = my(p)77a(p).

By Theorem 6.2.14, k¢ is well defined independent of the choice of g € C' and is pre-
served by the pullback map by isometry, and k¢ vanishes identically if and only if (X, C) is
conformally equivalent to the sphere S™ with its standard metric. Otherwise, k¢ € C' is a
smooth Riemannian metric on X.

Remark 6.2.16. On a Yamabe positive manifold (X, C) of dimension n, consider Py the
conformal N*"-power of Laplacian with 2N +1 < n < 2N +3. Let G be the Green’s function
of Poy. By a completely similar argument as above, one can see that the (0,2) tensor g¢

defined by

gc(p) = mass (GW g)  g(p)

is smooth and depends only on the conformal class of the metric g. This was proved by
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B. Michel in [Micl0]. Again, the proof of regularity ([Micl0, Prop. 3.3]) can be simplified

using Lemma 6.1.8.
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APPENDIX A

PROOF OF LEMMA A.3
This appendix supplies the proof of Lemma A.3. The proof is completely algebraic and
begins with the following preliminary lemma.
Let (R™,d) be the standard n-dimensional Euclidean space with dimension n > 3 and let
V = Sym?(R") ® Sym'(R™).

Consider the following linear operators on V:

Sym : V — Sym*(R")

1
Oé“'—> E Z Aoy

oeSk

(A.1)

where k =2 + L.
Tr: V — Sym'(R")

Q5 ® b, — Z (5ijaz~jb,,
’L'?j
The symmetrization operator Sym gives a direct sum decomposition:

V = Sym"(R") & ker(Sym).

For € > 0 small enough, define the following operator:

P(a):V =V
(A.3)
a—a—c- i@ Tr(a)

We say o € V is e-symmetric if P.(a) € Sym*(R"), and denote the e-symmetric subspace
of V as:
Sym”(R"™) := {a € V|P.(a) € Sym"(R")} (A4)
Lemma A.1. Fore < m, we have following the direct sum decomposition:

V = Sym*(R") & ker(Sym).

Proof. If P.(ar) = 0, then we have Tr(P.(a)) = (1 — ne) Tr(a) = 0. By assumption, ¢ <

Q(nl—l) < %, hence Tr(o) = 0 and 0 = P.(a) = o — e - 6;; ® Tr(a) = a. Thus P. is an
isomorphism on V' and dim(Sym*(R")) = dim(Sym”(R")).
We are left to show that Sym”(R™)Nker(Sym) = {0}. Assume o € V such that Sym(a) =

0 and P.(a) € Sym*(R"). By taking Tro Sym on P.(«a), we can obtain the following equation
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on Sym'(R"):
(1 —¢e-n)Tr(a) = Tr(P(a)) = Tr(Sym(P.(a))) = —e Tr(Sym(d @ Tr(«))). (A.5)
To be brief, denote Tr(a) = S, with v = (i1 - - -4;). Since S, € Sym'(R™), we may assume
the indices are nondecreasing: i; < --- < 7;. For each 1 < i < n, let v; be the number of i’s
in v, then it is clear that the index v is determined by the numbers vy, ..., ,, and hence in
other words by the Young diagram (v1,...,1,) of n rows with v; many boxes on the it row
such that Y, v; = 1.
Let N = ¢!, multiply Equation (A.5) with (I + 2)(I + 1)N and write with indices, we
have:
[(1+2)(1+ 1) (N —n)+ i(vi + D +2IS+ D vy — 1Sy, =0,  (A6),
i=1

’Uj>1],’l)iz<l—1
where the index v;; is determined by the Young diagram (vq,...,v; +2,...,v; —2,..., ).

j

We see that two elements S, and S/, are correlated by Equation ((A.6),) if there exist
1 <i#j <nsuchthat v, = v;+2, v, = v;— 2 and v}, = v for k ¢ {i,j}. We thus define an
equivalence relation between the indices v and v/ as follows: we say v and v/ are elementary
correlated if there exist 1 < i # j < n such that v; = v; + 2, v; = v; — 2 and v}, = v, for
k ¢ {i,j}. And v, V' are equivalent if v/ can be obtained from v by finitely many steps of
elementary correlations.

Denote v for an equivalent class of v, let || be its cardinality. For each v € v, we have the
corresponding Equation (A.6),, and hence we have |7| many homogenous linear equations
for |7| many unknowns. In matrix form, we have

A- (Su)ueﬂ = 0’ (A7)

where A is a || X || square matrix defined as
(

I+ D0+ DN —n) + X0, i+ D +2), V =v

Al/u’: I/j(l/j—l), i%jﬂ/:l/z{j (A8)
0, otherwise.
\
h

We claim that A is a diagonally dominated matrix. Indeed, for the pt row, the difference
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between the absolute value of the diagonal and the sum of absolute values of elements of the

diagonal is:

(I+2)(1+1)(N—n)+ Z(ui +D)wi+2) = > vy —1)

i#]
=(N=n)P+P=> (vi+v)vj+ BN —n)+n+2)l+2(N +1—n)
7 (A.9)
>(N=n)P+ P =1 v+ BN —n)+n+2)l+2(N+1-n)
i#j

=(N=2n+2)P+B(N—-n)+n+2)+2(N+1-n)
>B(N—-n)+n+2)+2(N+1—-n)>0,

where the first equality is by the fact:

n

i”z? = (Z Vz')2 - ZViVj =1* - Zyiyj,
i=1

i=1 i#] i#]
the first inequality is by v; 4+ v; < [ and the second inequality is by the assumption that

N = &1 > 2n — 2. Hence the coefficient matrix A is diagonally dominated. It is a classical
fact that diagonally dominant matrices are invertible, and hence (S,),c; = A~1(A(S,)) = 0.
Since the class  is arbitrarily taken, we have S, = 0 for any index v, and hence Tr(a)) = 0.

Hence P.(a) = o € Sym*(R") and Sym(a) = 0, which means o = 0. O

Remark A.2. Diagonal dominance is a sufficient but not necessary condition for the matrix
A being nonsingular, and hence 271%2 is not a sharp bound for transversality. Indeed, if we
formally write the unknowns S, in the equations (A.6), as coefficients of a homogeneous
degree [ polynomial f, we can then write the system (A.6), in a compact way as:

(I +2)(I+1)(N —n)+4l+2n)f + r*A(f) = 0. (A.10)
See Lemma 5.3 in [LP87] for the following fact: The eigenvalues of r2A on the space of
homogeneous degree [ polymonials are

{N=-2j(n—2+20-25):5=0,...,[l/2]}.

Hence to ensure (S,) = 0, it is sufficient to require the following set does not contain 0:

A={((l4+2)I+1)(N—-n)+4l+2n)—2jn—2+20—25)|j=0,...,[l/2]}.
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Hence transversality result holds for a general £ away from a countable subset in R. In
particular, for N =n = 3, we have 0 ¢ A. For this case, if we take o = Ric, then P, 3(Ric)
is the traceless Ricci.
Lemma A.3. For k > 0, equations (8.1.11)y, ... ,(3.1.11), together with ji~'(C) = 0
deduce jF(Ric) = 0.
Proof. We prove by induction on k:

For k = 0, the claim is true by (3.1.11)¢. Assume the claim is true for & < m.

For k = m + 1, by the induction assumption, we have j*(Ric) = 0.

In Equation (3.1.11); with £ = m + 1, we have:
2m +4 .
(7 01 2 i) + PR ) =0,
where || = m + 3 and || < m + 1 and the P(R,(p)) term consists of derivatives of
the Riemannian curvature R of order less than m and therefore vanishes by the induction

assumption.

We thus have:
Z Ric,(p) = 0.

On the other hand, by the conditigrwlﬂj;”(C) =0, for any index v with |v| = m, we have:
0=Cu(p) = Pyjjw — Pitjus (A.11)
Where P = Ric — ﬁS g is the Schouten tensor.
Since S = g Ric;;, and j*(Ric) = 0, we have j*(S) = 0.
Hence
(59i) kv (p) = 6ij(p) Sk (P)-
For [ =m + 1, and p = (ijv) with |v| = m + 1, in local coordinates we have

Ric,(p) € Sym*(R") ® Sym'(R") = V.

Let € = ﬁ in Lemma A.1, we have
. ) 1
P, s (Ricu(p) = Ricu(p) — 5—05(p) © 5,(0) = P,

which is symmetric by (A.11).
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Hence Ric,(p) satisfies the conditions of Lemma A.1, by which we have Ric,(p) = 0, for

|| = m + 1, namely j7"*'(Ric) = 0. O
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APPENDIX B

PROOF OF LEMMA B.1
This appendix supplies the proof of Lemma B.1.
For 0 < a,6 <1, k < N, and denote A, the annulus B, — B, 2, recall the definition of

the || - ||x.a:ns DOrmM:

I fllkans = sup 7
0<r<d

k
(Z rlBl Sup{|3gf(x)|}+rk+a sup |a,6’f($) —8§f(y)|)
B=0 g |z =yl

For Ky > 0, let D, = {v | ||v||g.a:vs < Ko}, on which define the functional:
rix

Ty(x,0) = Gy, 0) + Qylz,v) = Y —  Gilpx, pov) + > pa"Qurlp, pdv)d;sv,
where Q;;x(z, () and G;;(z, () are smolgth functions with respegtk to z, (.
Lemma B.1. There exists a constant Ko such that for 0 < p < 1 and any pair of functions
vy, v € Dg,, we have

1T (v2) = Ty(v1) k-2.aiv-2.5 + 1 Tp(v2) = Tp(vi)llo.asn—15 < Kapllvz — villkavs.  (B1)

In fact, Ky = C(a)P(Ko) M, where C(«) is a constant depends on a, P(Ky) is a polyno-
mial of Ko and M = maxj, {|Gij|lcrpy, |2 Qijkl orpy } » with D = D(6, Ko) = Bs x Bg, C

R"™ ¢ R™.

Proof:  Write T,

2
= T(px, pOvy) — T'(px, pOv,) and similarly for G, and @, terms.
1

First, consider the case k = 2. In this case, the second term in (B.1) dominates the first

2
. llo.a:N—1,6- Since

term, so it suffices to bound ||7,,
2 2 2
IT0)| loan-15 = 1Go(0)] +Qo®)| lown-1s

< [|Gy(v)

2
||0,a;N—1,6'
1

2
o1+ 1Q4(v)

We will bound the G and () norms separately.

For the G part, we have:

Gy

2 il
1| = |Z ?(Gij(pw,pé’va) — Gyj(pz, pdvr))|
i
2
<Y 1Gi(px, pdvs) — Gij(px, pdvn)| < || Gl o oyl v i
i

where the last inequality is by the Mean Value Theorem.
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By induction on m, we have 0™ %z o < oL —=, where C' depends m and the dimension n.

Hence

2
101Gy (pa, o). (B.2)

|
ij 1=0
Apply the composition rule to 8'G;;(pz, pOv), we obtain a linear combination of the following

terms:
l
gt (px, pdv) H >y
7=1
where 22:1 gm; = L.

Evaluate each term at v; and vy and by the Mean Value Theorem similar to above, we

have:
I+1
108G, (p, pdv) ‘ | < ol Gyl oy Pr (o) (3 10" (B.3)
r=1
Combining (B.2) and (B 3), we have
(Ko) max {IG3llom+r(py } Zrl ™9ty 1| (B.4)
1=0
Hence for the C'* term we have:
2 2 2 2
|amGP(m7 U) - amGP(y7 ’U) | |amGP($7 ’U) - amGP(y7 U) |
1 1 _ 1 1 |x _ y|17a
|z —y[* |z =y
< CO(a)rt™™
m+1
< pCl)r'= P(Ko) max {[|Gyjloms2(p) } sup > ot 1| (B.5)
Ao
For m = 0, apply (B.4) and (B.5), we have:
2
HGp(’U)’lHo,a;Nfl,é < C(e)(Ko + 1) max [|Gygllczpypllvr — vallzaives- (B.6)

Similarly, for the ) part, by the Mean Value Theorem, we have:

Q)| 1=+ 318 Quslpr, po) oo |

ijk

< PZ ‘37k| : ’Qijk(ﬂavl)aij’vz - Qijk(pav2)aijvl + Qijk(anQ)aijvl - Qijk(anZ)aijv2’

ijk
2 2
<p)_ |7*Qurlpx, pv) 1+ Ko+ [ Qu(px, pra)||0%0] |
ijk
k 2 2 2
< 0D 1 Qulen oy (Koldw| [ +10%0] 1)
ijk
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2 2
Qu(.v)| = Qoly.v)| |

|z —yl® >

ijk

2 2
|$injk(P$,,03U)8z’jv ) - kaijk(pya pav)aijv 1|
|z — y|*

To be brief, in the numerator denote z¥Q;;x(px, pOvy)d;v1(z) as Q(x,v1)d*(x,v1), simi-

larly for y and v,. We then have:

2
2% Qi (pz, pOV)O;jv .

2
1

where

A= Q(ﬂ?, U)

2

(@)~ Py ) B =Q w0) (82(3:,11)’? — 0%(y,v) j) ,
¢ =) (o]} = Q)] ) .0 = (Qovea) - Qo) (F0)]).

Respectively, we have:

Al k 2 |0%(z,v1) = OP(y,v1)) k 2
= " Quie(p. pov)| |- < Koll" Qugellcr oy 10w ),
o =yl : 1 oyl T
|B| <r. ||$kQ"k||CO(D) . |82($7U1 - U2) - 82(1%”2 - '02) |
|z =yl ’ |z —ylo ’
2 2
|C’| |Q(£,’U) 1 - Q(yvv) 1‘ o % 2
- < Kor 2= 4l < Cla) Ko sup |05 Qige(pa, p0)| |
|z —y [z —yl A, 1
2 2
< C(@)Ko(1 + Ko)r™ o Qugnllcaoy (19| 1) + [0%0] )
D —a 2 |2
<C Uk Qunllor o (18%0] ).
T < Ol Qi (1974 )
In summary, for the () term, we have:
2
1Qp ()] Nlo.csv—15 < C(e)(K§ + Ko+ 1) max 12 Qijrllc2pypllvr — vall2.0iv - (B.7)

Combining (B.6) and (B.7), we conclude the proof for k = 2.

Assume the statement is true for K = m — 1. For £ = m, we have:

2 2
1T, 22 + 1T loasn-1s

2
< ||Tp 1||O,a;N—1,5+

2
1 ||m—3,a;N—2,6 + ||Tp

2
1

2
07T (2, 00)| | = 0Ty, 00)

2
|+ sup ¢
1 z#yeA, |z — y|*

sup ™ N | sup \Bm’sz
0<r<é A

67



Hence, by the induction assumption, it is sufficient to show that:
2 2
|8m_2Tp(;p, v)| |- 8’”_2Tp(y, v)| |
1 1

2
|+ sup ¢

—N m—2
sup r'™ sup |0 T, (v
A | ], a#yeA, [z —yl*

0<r<d

< C(a)P(Ko)Mpllvy — v1|m,a;n.s-
For the G terms, apply (B.4) to m — 2, we have:

2
sup 1 (sup(lo" 26,0 1)

0<r<d

m—2 9
< pP(Ko) max {[|Gisllomp) } sup 1~ sup {Z 7“l+1|@l“v‘1|} (B.8)
K <r< | =0
Apply (B.5) to m — 2, we have:

0m2G (z, v)‘ — 926 (y, v ] |

sup ™ NS sup r®

0<r<d TAYEA, |ZC - y|a
< PC(Q)P(KO)IH?JX{||Gij||cm(D)}OSUP T SXP {Z oy ‘ } (B.9)
L <r<é r =0

For the @) terms, by the Leibniz rule:
_ o m— 2\ .,
8’” 2(Qp) = a 2<p$injk’paij’U) =p Z ( a 8 (p.%‘injkjp)aij (ab’U)

a+b=m—2
For each term 0°(pz*Q;j1.,)0;;(0"v), denote Qijk = 0"(pz"Qijr,) and 0 = 0%, ap-
ply (B.7), we have:
- 2 _ 2
. 2 10" 2 Qugel,v)| | = 0" 2Qun(y.v)| |
sup r'- Sup|6m Qiji |+ sup ¢ 1 1

0<r<s L a#yeA, |z —yl*

< C(a) P(Ko) max 1Qiskllc2(pypll 1 = Bal2,0:,6-
Multiply by 7! on both sides of the inequality above. By definition of the || ||4.a.nv s nOrm,

we have r™7|0; — Ooll2.0:86 < |[v1 — Vallm.a:v.s, and hence we have:

2 2

N 9 2 |am_2Qp(x7 U) | - 8m_2Qp(y7 U) |
sup 7 | sup [0"7°Q,(v)| |+ sup 7 ! 1
0<r<d A 1 TAYEA, ‘SU - y‘a

< C(a) P(Ko) Hiljé}gx{||$sz'jk||cm(D)}P||U1 = V2lm,a;vs- (B.10)
Combining (B.8), (B.9) and (B.10), we conclude the k = m step. [J
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