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ABSTRACT 
 

Global change is greatly affecting biodiversity and the vital ecosystem functions and 

services it provides. Biodiversity hotspots, areas with high levels of diversity that are under 

strong anthropogenic pressures, are especially prevalent in the tropics, making them conservation 

priorities. However, these areas often lack comprehensive data on species spatial distributions 

and functional traits, hindering our ability to perform biodiversity assessments and assess species 

and ecosystem vulnerability. Species distribution models (SDMs) can help delineate species 

ranges and inform conservation decisions. Yet, SDMs often solely focus on local environmental 

factors and overlook filtering processes occurring at broader-scales. Further, conservation efforts 

have mainly emphasized taxonomic diversity (TD), assuming equal species importance, but a 

more comprehensive approach should consider the diversity of roles species play in ecosystems 

–functional diversity (FD). To develop robust FD metrics across broad geographic regions, we 

need improved trait data that fills gaps and harmonizes existing datasets. Overcoming these 

challenges demands improved methods, data availability, and embracing multiple dimensions of 

biodiversity. 

To address the need to consider FD alongside TD, and the issue of data paucity in the 

Neotropics, I compiled an open-access functional trait dataset, containing ecological, life-history, 

morphological, and geographical traits for frugivorous birds and mammals within Neotropical 

moist forests called Frugivoria (Chapter 1). This open and accessible dataset and workflow 

enables practitioners and researchers to investigate patterns of FD for taxa performing the 

essential ecosystem function of seed dispersal.  

To enhance the capacity of SDMs to more fully capture the distributions of species and to 

better incorporate environmental filtering processes that influence species occurrence, I 
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generated scale-dependent geodiversity variables (Chapter 2) and incorporated them into SDMs 

for Colombian mammals. Models incorporating geodiversity variables generally performed 

better than those constructed without. This finding demonstrates the utility of geodiversity 

variables for generating robust geographic estimates useful for species risk assessments. 

In Chapter 3, I aimed to develop a more comprehensive perspective on diversity that 

extends beyond traditional TD and considers the roles of species in sustaining ecosystem 

function. To achieve this, I used the Frugivoria dataset to explore spatial alignments and 

mismatches between TD and FD, the extent to which protected areas (PAs) encompassed TD and 

FD, and assessed the distribution of Functionally Unique, Specialized, and Endangered (FUSE) 

species. The results identified strong spatial mismatches and few areas of alignment between 

dimensions of diversity for mammals and birds, with only ~30% protected. Further, many areas 

with high proportions of FUSE species remain unprotected. FD was also found to be higher in 

community-managed lands. This finding emphasizes the importance of including community-

managed lands in strategies aimed at achieving biodiversity targets. 

The concluding chapter discusses potential ways to use Frugivoria data to inform 

conservation practice and policy. It further discusses how to apply the framework for testing 

geodiversity variables to improve SDMs to other regions and taxa. Lastly, it highlights priorities 

for conservation when considering the spatial tradeoffs of TD, FD, and FUSE species 

distributions. By integrating these different elements, this dissertation improves our ability to 

understand the distribution of bird and mammal biodiversity and will therefore help generate 

better-informed species risk assessments and set more inclusive spatial conservation priorities 

within the Neotropics.
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INTRODUCTION 

Evaluating broad-scale biodiversity patterns is often a first step towards identifying 

priority areas for conservation efforts (Margules & Pressey, 2000). During the 2022 Convention 

on Biodiversity in Montreal, nations committed to the mission of safeguarding 30% of terrestrial 

and marine landscapes under the aegis of the United Nations' Global Biodiversity Framework, 

leading an essential question to take center stage: 'Which 30% should we protect?'. This question 

is especially important to consider for regions such as the tropics, which host a large share of 

global biodiversity while under strong anthropogenic pressures such as habitat loss and climate 

change (Myers et al., 2000; Bellard et al., 2014; IPCC, 2022). Among these tropical ecosystems, 

forests cover a mere 5% of Earth's surface yet encapsulate almost half of the world's species 

(Brandon, 2014). Despite this high species richness, knowledge of the spatial dynamics of this 

and other dimensions of biodiversity has been and remains incomplete. This is due limitations in 

the datasets and tools allowing us to quantify and measure this diversity (Collen et al., 2008), 

making it difficult to set spatial conservation priorities. 

This dearth of information on biodiversity in the tropics is especially apparent in the 

availability of species geographic ranges and knowledge of the traits that allow them to persist in 

those environments (Collen et al. 2008). These well-known gaps (sometimes termed “shortfalls”; 

Hortal et al., 2015) are essential to fill for improving fundamental understanding of species’ 

biogeography and to inform more robust conservation assessments and decisions. With emerging 

tools and methodologies, such as global repositories for biodiversity data (e.g., Global 

Biodiversity Information Facility [GBIF, 2023]; Vertnet [Guralnick & Constable, 2010] etc.), 

software to make modeling species distributions and calculation of biodiversity change metrics 

easier for conservation practitioners (Kass et al., 2018; Merow et al. 2022; Galante et al., 2023), 
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and the increasing availability of species trait datasets (e.g., through digitization of museum 

specimens and online repositories; Nelson & Ellis, 2019) – these gaps are beginning to narrow.   

The understanding of species distributions across the vast spectrum of Earth's 

species suffers from what is known as the Wallacean shortfall (Hortal et al. 2015). This shortfall 

indicates that even among formally described species, comprehension of their global, regional, or 

local geographic ranges remains incomplete (Whittaker et al., 2005; Brito, 2010). This lack of 

information on species ranges is particularly salient for species inhabiting tropical regions due to 

factors such as limited sampling stemming from true species rarity, geopolitical instability, 

challenges in accessing sampling sites, and funding constraints (Collen et al., 2008; Engemann et 

al., 2015). This challenge becomes especially important given the utility of species range 

estimates in spatial prioritization of conservation efforts. The International Union for the 

Conservation of Nature (IUCN), a preeminent global authority on species extinction risk, 

considers metrics related to species distributions as a factor in assessing species risk (e.g., extent 

of occurrence [EOO], and area of occupancy [AOO]) (IUCN, 2022). Thus, ensuring reliable 

estimates of species ranges is of paramount importance in setting spatial conservation priorities. 

Species distribution models (SDMs) employ statistical methods to relate species 

occurrence data to multiple environmental variables and generate predictions about species-

environment relationships (Peterson, 2011; Franklin, 2013). They are the most widely used 

modeling tool for understanding the effects of global change on biodiversity (Ferrier, 2002; 

Guisan et al., 2013), enabling the delineation of species' ranges in support of future sampling 

efforts, management, and conservation prioritization (Franklin, 2010). Though often used as a 

single species approach via the process of overlaying predictions from multiple species, it is 

possible to generate predictions of species richness and endemism (Zurell et al., 2020). Both of 
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these applications provide detailed spatial insights that are integral for making informed 

decisions regarding conservation prioritization and reserve design (Taylor et al., 2017). 

Nonetheless, the effectiveness of SDMs in spatial conservation prioritization hinges on 

addressing methodological challenges that influence model performance and the resulting range 

estimates. These challenges encompass issues such as biases in the data collected from species 

occurrences (Syfert et al., 2013; Boria et al., 2014), the careful delineation of appropriate study 

extent (Anderson & Raza, 2010; Vander Wall & Beck, 2012), model evaluation (Anderson & 

Gonzalez, 2011; Radosavljevic & Anderson, 2014), consideration of how models should be 

applied to new areas or time periods (Guevara et al., 2018; Charney et al., 2021; Helmstetter et 

al., 2021), and selection of relevant environmental variables for analysis (Austin & Van Niel, 

2011; Guevara et al. 2018). Neglecting these challenges could lead to less reliable estimates of 

species distributions, and ultimately misguided allocation of limited conservation resources. 

However, given its status as a burgeoning field of study, novel methods, techniques, and 

standards are continually being developed to effectively apply SDMs (Araújo et al., 2019; 

Merow et al., 2019; Zurell et al., 2020). 

Traditionally, SDMs only incorporate environmental variables at the local scale where 

occurrences are recorded and therefore only reflect local environmental conditions. However, the 

occurrence of a species is intricately linked to the species’ realized niche, which is a result of 

environmental filtering operating across multiple scales beyond the local occurrence point (e.g., 

dispersal limitations, habitat configuration, climatic variations, and biotic interactions) (Kraft et 

al., 2015; Pearson et al., 2018). A promising way to capture these broad scale filtering processes 

is through the utilization of "geodiversity", which refers to the variation of abiotic features and 

processes present on Earth's surface (Parks & Mulligan, 2010; Lawler et al., 2015; Zarnetske et 
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al., 2019). It is known that regions characterized by high geodiversity likely exhibit increased 

levels of biodiversity due to the heterogeneity and variety of habitats in these areas (Lawler et al., 

2015; Bailey et al., 2017; Tukiainen, 2019)—potentially shaping biodiversity patterns and the 

distributions of species (Dufour et al., 2006). Geodiverse regions are expected to serve as refuges 

for species as the climate changes, leading conservationists to prioritize these areas as a strategic 

approach for safeguarding biodiversity in a dynamic climate (Reynard & Brilha, 2018; Schrodt et 

al., 2019; Crofts, 2022). Existing research has predominantly concentrated on quantifying the 

relationship between geodiversity and biodiversity, particularly in terms of species richness 

(Stein et al., 2014; Bailey et al., 2017; Zarnetske et al., 2019). However, the exact relationship 

between geodiversity and the distributions of individual species remains relatively unexplored 

(Bailey et al. 2017). Geodiversity variables can capture these filtering processes and therefore 

can further explain species-environment relationships. By testing the utility of geodiversity 

variables for improving SDMs, we can close this gap in knowledge and potentially improve 

geographic estimates for species in regions of high heterogeneity. 

Focusing on species distributions offers direct practicality for spatial prioritization for 

both single species and scaling up to species richness; however, this is just one dimension of 

biodiversity. Prevailing biodiversity and conservation assessments have focused on the sheer 

number of species in a given location (Belmaker & Jetz, 2013; Engemann et al., 2015; Durán et 

al., 2016), often sidelining other facets of diversity that could yield more insightful indications of 

irreplaceability and maintenance of ecosystem health (Cadotte et al., 2011; Pollock et al., 2017), 

for example, phylogenetic diversity (i.e., evolutionary relatedness; Faith et al., 2004) and 

functional diversity (i.e., diversity of species roles with importance for maintaining ecosystem 

functioning; Petchey & Gaston, 2006). 
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Analysis of different dimensions of biodiversity adds a nuanced understanding of 

diversity in a given region, however no one dimension should be used as a proxy of another. In 

terms of functional diversity, it has been suggested by some studies that phylogenetic diversity is 

a sufficient proxy because of the relationship between shared evolutionary history and traits 

(Winter et al., 2013; Mazel et al., 2018). However, this is problematic because phylogenetic 

diversity does not explicitly reflect species' ecological strategies or their distinct ecological roles 

and captures functional diversity unreliably (Mazel et al., 2018; Cooke et al., 2020). Similarly, 

taxonomic diversity is not always a sufficient proxy of functional diversity. While the presence 

of a greater number of species often implies a wider range of traits, it's important to recognize 

that two communities with an equal number of species can still exhibit different levels of 

functional diversity (Borges et al., 2021). This variation can be attributed to a concept known as 

functional redundancy, where species within a community are more similar to each other in 

terms of their functional traits than would be expected by chance (Mouchet et al., 2010). This 

phenomenon can arise due to different environmental filters influencing the relationship between 

species and their functional traits (Mouchet et al., 2010). Because species' responses to 

environmental changes are largely influenced by their specific traits, there is a growing 

recognition of the significance of considering species' functional traits as a critical component of 

biodiversity (Petchey & Gaston, 2006; Devictor et al., 2010; Brum et al., 2017; González-Maya 

et al., 2017; Gomez et al., 2021). This perspective underscores the idea that assessing functional 

diversity, which accounts for the unique traits and roles of species within a community, provides 

a more comprehensive understanding of how ecosystems respond to environmental changes and 

maintain their functioning. It's not just the number of species that matters but also the specific 

functional traits they possess and how those traits interact with the environment. 
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The global community, represented by collaborations such as the Intergovernmental 

Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES; IPBES, 2022), is 

increasingly acknowledging the significance of alternative biodiversity metrics, including 

functional and phylogenetic diversity. Multiple studies have demonstrated that different 

dimensions of diversity can have very different spatial patterns (Brum et al. 2017; Devictor et al. 

2010; Pollock et al. 2017; Borges et al. 2021). As such, relying solely on one dimension of 

diversity to guide conservation strategies should be avoided, as this one-dimensional approach 

may not provide a comprehensive view of diversity (Brooks et al., 2006; Flynn et al., 2009; 

Devictor et al., 2010). Given the limitations in conservation resources—not least of which are 

funding and time—further research is required to explore potential trade-offs between 

prioritization approaches concerning species with important roles for ecosystem functioning 

(Devictor et al. 2010; Mazel et al. 2018). Spatial discrepancies between various dimensions of 

diversity carry significant implications for the management and design of protected areas 

(Cumming & Child, 2009). 

Despite the increased attention to multiple dimensions of diversity, there are scarce, if 

any, practical instances of functional diversity being explicitly incorporated into spatial 

conservation planning within the literature (but see Herrera, 2017). Further, IUCN 

documentation on identifying Key Biodiversity Areas (KBAs)–areas identified as sites 

contributing to global persistence of biodiversity–acknowledges the importance of taxonomic 

diversity as a criterion for identifying these areas but does not explicitly consider other 

dimensions like phylogenetic and functional diversity (IUCN, 2016). The significance of 

functional diversity within conservation is underscored by the fact that species' responses to 

environmental changes are influenced by their traits. Thus, the inclusion of functional diversity is 
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pivotal for gauging sensitivity to future changes (Newbold et al., 2014). This is particularly 

important for biodiversity hotspots, as they are often data poor and sensitive to changes (Bellard 

et al., 2014). The limited application of functional diversity in conservation stems largely from 

the demanding data prerequisites for its computation (Cadotte & Tucker, 2018). The calculation 

necessitates complete datasets of species traits and how they relate to ecosystem function. These 

data are often absent for numerous taxa, a gap known as the Raunkiæran shortfall (Hortal et al., 

2015), or are scattered across diverse sources, rendering their aggregation and quantification 

challenging (Cadotte & Tucker, 2018). These challenges necessitate increased availability of trait 

data for use in studies of functional diversity, particularly for biodiversity hotspots such as in 

Neotropical forests. 

This dissertation aims to enhance biodiversity assessments by contributing new open and 

accessible data for species traits, by improving SDMs through incorporating geodiversity 

predictors to capture environmental heterogeneity, and by evaluating the spatial mismatches and 

alignments among taxonomic and functional diversity to understand potential biodiversity trade-

offs relevant for the conservation of mammals and birds. Chapter 1 contributes an open-access 

functional trait dataset (Frugivoria) for frugivorous birds and mammals within Neotropical moist 

forests. This chapter fills major data gaps and provides an open workflow, enabling 

investigations into patterns of functional diversity for taxa performing the essential ecosystem 

service of seed dispersal. Chapter 2 provides the first comprehensive assessment of incorporating 

scale-dependent geodiversity variables into SDMs through a case study with Colombian 

mammals. Chapter 3 leverages Frugivoria to quantify spatial alignments and mismatches 

between taxonomic and functional diversity for frugivorous birds and mammals within the 

Tropical Andes and evaluates the effectiveness of current protected areas and community-
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managed areas in capturing this diversity. By integrating these different components, this 

dissertation contributes data and quantitative assessments to improve understanding of 

multidimensional biodiversity patterns, and to help foster well-informed and efficacious 

conservation strategies tailored to capturing this diversity within the Neotropics. 
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CHAPTER 1: 

FRUGIVORIA: A TRAIT DATABASE FOR BIRDS AND MAMMALS EXHIBITING 

FRUGIVORY ACROSS CONTIGUOUS NEOTROPICAL MOIST FORESTS 

Published in Global Ecology & Biogeography (2023): https://doi.org/10.1111/geb.13716 

Co-authors include: Phoebe L. Zarnetske and Patrick Bills 

1.1 Abstract 

Biodiversity in many areas is rapidly declining because of global change. As such, there 

is an urgent need for new tools and strategies to help identify, monitor, and conserve biodiversity 

hotspots. This is especially true for frugivores, species consuming fruit, because of their 

important role in seed dispersal and maintenance of forest structure and health. One way to 

identify these areas is by quantifying functional diversity, which measures the unique roles of 

species within a community and is valuable for conservation because of its relationship with 

ecosystem functioning. Unfortunately, the functional trait information required for these studies 

can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data 

sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait 

database containing ecological, life-history, morphological and geographical traits for mammals 

and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane 

forests and adjacent moist lowland forests of Central and South America—the latter specifically 

focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes 

existing trait databases, adds new traits, extends traits originally only available for mammals to 

birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross-

taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 

8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait 
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entries with only 11.37% being imputed. Frugivoria also contains an open workflow that 

harmonizes trait and taxonomic data from disparate sources and enables users to analyze traits in 

space. As such, this open-access database, which aligns with FAIR data principles, fills a major 

knowledge gap, enabling more comprehensive trait-based studies of species in this ecologically 

important region. 

1.2 Introduction 

In a time of rapid global change and significant declines in biodiversity, there is an urgent 

need to identify, monitor and conserve biodiversity hotspots—regions of high endemic 

biodiversity with significant anthropogenic pressures (Myers et al., 2000). When identifying 

biodiversity hotspots, the level of biodiversity is often defined as endemic species richness 

(Myers et al., 2000). However, focusing on the number of endemic species assumes that each 

species plays an equal role in the environment and does not represent a holistic view of 

biodiversity (Devictor et al., 2010; Pollock et al., 2017). Functional traits of species are 

increasingly being considered in conservation with a focus on conserving functional diversity 

(i.e., the unique roles and functions of species in an ecosystem; Cadotte et al., 2011; Devictor et 

al., 2010; González-Maya et al., 2017; Gómez et al., 2021). Conserving areas with higher 

functional diversity—where species exhibit many functional roles—can help maintain ecosystem 

functioning (Cadotte et al., 2011; Cadotte & Tucker, 2018). Therefore, a functional trait 

approach to conservation is promising because species' responses to environmental change 

largely depend on their traits and incorporating functional diversity can help assess sensitivity to 

future changes (Newbold et al., 2014). When combined, functional diversity, taxonomic 

diversity, and phylogenetic diversity provide an even more comprehensive assessment of an 
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area's biodiversity, which is especially important for biodiversity hotspots such as in the 

Neotropics (Devictor et al., 2010; Pollock et al., 2017). 

Neotropical forests contain numerous biodiversity hotspots yet lack sufficient data on 

species occurrences and traits (Collen et al., 2008), making it difficult to generate robust species 

habitat maps and forecasts of biodiversity change and species vulnerability. Despite tropical 

forests covering less than 5% of Earth's surface (Brandon, 2014), they contain almost half of the 

world's biodiversity (Dinerstein et al., 2017) and many of their species are considered data 

deficient (DD) by the International Union for the Conservation of Nature (IUCN; IUCN, 2022a). 

These DD species do not have enough information on population status, spatial distribution or 

threats, or combinations therein, to make an official threat status designation (IUCN, 2022a). For 

example, as of 2021, 15.6% of mammals, 0.15% of birds, 14.3% of reptiles, and 16.8% of 

amphibians are DD within the tropical forests of Central and South America; the percentages for 

this biodiversity hotspot are higher than the global forest percentages for both mammals and 

amphibians (mammal: 14.4%, bird: 0.47%, reptiles: 14.4%, amphibians: 16.5%) (IUCN, 2021). 

This data paucity is especially pressing in montane cloud forests—regions high in elevation that 

are frequented by cloud cover—because of their unique environment for many endemic species 

and vulnerability to climate change (Foster, 2001; Ponce-Reyes et al., 2012). Biodiversity in 

these regions is especially vulnerable to climate change because cloud forests exist in a narrow 

elevational band and are naturally fragmented (Foster, 2001). This pattern of fragmentation 

limits dispersal, and further, the lagging tree line shift (i.e., the upper elevational range of cloud 

forests) will make it difficult for species to shift their distributions to track changing climates 

(Fricke et al., 2022; Rehm & Feeley, 2015). Importantly, the distribution and community 
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composition of forests in the tropics are largely determined by seed dispersal processes that are 

mediated by frugivores, fauna consuming fruit (Sales et al., 2021). 

Seed dispersal is considered a key biotic interaction for maintaining biodiversity-

ecosystem function, especially in tropical regions where almost 90% of woody plants rely on 

frugivores to disperse their seeds (Howe & Smallwood, 1982; Sales et al., 2021). For example, 

there have been multiple studies on the crucial role of frugivorous mammals and birds in 

dispersing seeds and how changes in their abundance and distribution influence seed dispersal 

services and the ability of plants to track changes in climate (Fricke et al., 2022; Sales et al., 

2021). In addition to dispersing seeds for many plants, frugivores also contribute to nutrient 

cycling and are prey for carnivores such as felids and raptors (Farwig & Berens, 2012; Tóbon et 

al., 2004; Wilkie et al., 2011). Due to the strong interaction between frugivores and many 

fruiting plants, the trait composition of frugivore assemblages (e.g., gape size, body size) can 

likewise affect plant community composition (i.e., prevalence of plants with small or large 

seeds), and ecological resilience to perturbations (Sales et al., 2021). Comprehensive trait 

databases will help quantify the outsized roles that frugivorous species play in maintaining 

biodiversity and ecosystem functions for conservation and macroecological studies. 

Over the last 20 years, there has been significant growth in the use of vouchered data 

from specimens housed in museum collections (Nelson & Ellis, 2019). Large quantities of data 

have been stored in these physical repositories for much longer; however, access to these global 

institutions has not always been feasible (Nelson & Ellis, 2019). Recently, increased efforts and 

funding have made it possible to digitize these collections for scientific research purposes 

(Miralles et al., 2020; Nelson & Ellis, 2019). In particular, national and international funding 

over the last two decades has facilitated more open access data through institutional websites and 
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databases (e.g., GBIF; GBIF, 2023, VertNet; Guralnick & Constable, 2010; Nelson & Ellis, 

2019). This mobilization and digitization of once inaccessible data has opened a vast resource for 

studies in conservation, ecology, and systematics, allowing researchers to perform biodiversity 

analyses without having to conduct costly field research or work in museums. This digitization 

has increased the openness and accessibility of trait data through online repositories and 

downloadable datasets (e.g., EltonTraits; Wilman et al., 2014, PanTHERIA; Jones et al., 2009; 

VertNet; Guralnick & Constable, 2010; COMBINE; Soria et al., 2021). However, existing 

databases only provide a subset of taxa and their traits. The lack of comprehensive trait databases 

is due to multiple reasons. First, compiling detailed ecological trait data for species rich clades is 

time-consuming. Second, actively maintaining databases is costly and time-consuming; changing 

taxonomies and newly discovered species require constant updating. Third, data gaps in existing 

databases can result from bias towards regions that are more easily accessed (Engemann et al., 

2015), leading to the exclusion of more remote and rare species. As a result, tropical regions in 

particular have significant data gaps (Collen et al., 2008; Ferrier, 2002). Filling these data gaps is 

especially important in biodiversity hotspot regions which are often data poor and more sensitive 

to changes (Bellard et al., 2014). 

To help fill the aforementioned data and knowledge gaps and aid in the use of species 

traits for use in conservation analyses (Cooke et al., 2019; González-Maya et al., 2017; 

González-Suárez & Revilla, 2013), we created a trait database, ‘Frugivoria’. Frugivoria is a 

comprehensive trait database of species exhibiting frugivory in the Neotropics of Central 

America and the Andean states of South America within habitat designated ‘Forest—

Subtropical/Tropical Moist Montane’ and/or ‘Forest—Subtropical/Tropical Moist Lowland’ by 

the IUCN. These data encompass Neotropical contiguous tropical moist montane forests and 
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their adjacent lowland forests. Traits in Frugivoria encompass any morphological, phenological, 

physiological, and behavioral characteristics of a species (Kissling et al., 2018), and we further 

extend this definition to key geographical traits relevant for species extinction risk assessments. 

Frugivoria harmonizes bird and mammal trait data and scientific names from existing databases 

and online species accounts (e.g., PanTHERIA (Jones et al., 2009), EltonTraits (Wilman et al., 

2014), AnAge (Tacutu et al., 2018), Encyclopedia of Life (Parr et al., 2014), Cornell's Birds of 

the World (Billerman et al., 2022), University of Michigan's Animal Diversity Web (Myers et 

al., 2023), IUCN (IUCN, 2022a)) and adds 23,661 new records for 1732 species including 

information related to diet breadth, habitat breadth, habitat specialization, and adds new species 

and their associated traits as well as IUCN threat statuses. Furthermore, once only available to 

mammals, Frugivoria updates and expands select traits from the PanTHERIA dataset to birds. 

These traits include derived breadth traits (diet and habitat breadth) and range-based 

geographical traits (e.g., mean annual temperature, mean annual precipitation, human impacts 

across the range for multiple years), using more recent and relevant sources (e.g., CHELSA 

bioclimatic variables, WCS Human Footprint data) (Karger et al., 2017, 2018; Sanderson et al., 

2022). The inclusion of these newly derived traits expands the utility of cross-taxa trait 

comparisons for mammals and birds. 

Creating a reproducible workflow that aligns with FAIR (Findable, Accessible, 

Interoperable and Reusable) data principles (Wilkinson et al., 2016) is crucial for enabling 

transparent and efficient data sharing and reuse. I used these principles to generate Frugivoria, 

and therefore provide code for all aspects of database building, which can facilitate the creation 

of similar datasets for other taxa or different diet preferences. Furthermore, we provide code to 

explore and summarize the trait data and link associated traits with species occurrences. Many of 
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the species within Frugivoria exist in other databases, particularly for mammals (e.g., EltonTraits 

and PanTHERIA), yet existing databases are not entirely overlapping, collectively they omit 

many frugivorous Neotropical species and traits, and certain geographical traits are outdated. In 

addition, there is no existing comprehensive trait database for frugivorous birds in this region. 

Together, Frugivoria and its open workflow in R fill essential data gaps for biodiversity 

conservation. 

1.3 Methods 

1.3.1 Frugivoria overview 

Frugivoria encompasses frugivorous species of the classes ‘Mammalia’ and ‘Aves’ in 

contiguous moist montane forests and adjacent moist lowland forests of Central and South 

America—the latter specifically focusing on the Andean states (i.e., Mexico, Guatemala, Costa 

Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, 

Venezuela and Chile). 

The species list for this region was obtained through the IUCN API (IUCN, 2015) and 

subset to species with IUCN habitat designations of ‘Forest—Subtropical/Tropical Moist 

Montane’ and/or ‘Forest—Subtropical/Tropical Moist Lowland’ (Figure 1.1).  

I chose to use the IUCN as the basis for the database species list because their database 

includes the most current taxonomic information, has an open access inventory of all known 

species present per country that have been officially assessed and is the most appropriate species 

list for conservation applications. 

Figure 1.1: Inset map—Distribution of all Frugivoria data (purple) with a red box indicating the 
zoomed in region presented here. Panels show maps of occurrence records of frugivorous bird 
(panel a) and mammal (panel b) species in the greater Colombia and Ecuador region. Records were 
obtained through GBIF (GBIF, 2022a; GBIF, 2022b; GBIF, 2022c; GBIF, 2022d) and pulled for 
differing time frames for viewing purposes (birds: 2021–2022; mammals: 2016–2022). Darker 
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Figure 1.1 (cont’d) 
 
 background areas show higher probability of cloud forest presence (moist montane forest; Wilson 
& Jetz, 2016). 
 

 

1.3.2 Existing databases 

Databases composing a significant portion of Frugivoria include the IUCN (IUCN, 

2022a), EltonTraits (Wilman et al., 2014) and PanTHERIA (Jones et al., 2009; Figure 2a), with 

supplemental information coming from the AnAge database (Tacutu et al., 2018). The IUCN 

Red List of Threatened Species, which formally assesses the conservation status of species, 

provides a large online database of formal assessments for many animals, including information 

on taxonomy, habitat, life history, and threats, and serves as a powerful tool for biodiversity 

conservation and policy change (IUCN, 2022a). EltonTraits is a global database of activity 
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patterns and feeding habits of mammals and birds (Wilman et al., 2014). PanTHERIA consists of 

morphological, life-history, and geographical traits of mammals globally (Jones et al., 2009). In 

some instances, data permitting, longevity information for birds and mammals were obtained 

through the AnAge database when primary sources were unavailable (Tacutu et al., 2018). For a 

comprehensive list of all traits included in Frugivoria, their column names, definitions and 

sources, see Table 1.1. 

Since the publication of all these data sources, new studies and genetic analyses have led 

to taxonomic revisions for many genera, which were standardized to IUCN taxonomic 

classifications in Frugivoria during the harmonization process (described below in Frugivoria 

Workflow part 2: Harmonizing). 

Table 1.1: Frugivoria traits, their associated column name in the database, their definitions, units, 
and sources. Traits lacking a source are those specific to the Frugivoria dataset, or minimum and 
maximum values of the original trait definition. Some traits are only available for mammals (*), 
only available for birds (**). Traits included in cross-taxa subsets are denoted with (†).  

GROUPING FEATURE TRAIT COLUMN NAME DESCRIPTION UNIT CITATION 

 LIFE 
HISTORY 

Longevity longevity† Average lifespan; if only range is available this 
value indicates the maximum longevity. 
  

years   

min_longevity Minimum longevity found if range was available 
or differing values from multiple sources. 

years 

max_longevity Maximum longevity found if range was available 
or differing values from multiple sources. 

years 
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Table 1.1 (cont’d) 

  max_longevity_p* Maximum adult age measured. 
  

months Jones et al. 
2009  

  Generation time generation_time† The average age of parents of the current cohort 
(i.e., newborn individuals); if only a range is 
available, this value indicates the maximum 
generation time. 

years IUCN 2022 

      

  

min_generation_time The minimum age of parents of the current 
cohort (i.e., newborn individuals) if range was 
available or there were differing values from 
multiple sources. 
  
  
  

years IUCN 2022 

max_generation_time The maximum age of parents of the current 
cohort (i.e., newborn individuals). 
  

years IUCN 2022 

  Age at eye 
opening 
  

age_at_eye_opening_d_p* 
  

Age at which both eyes are fully open after 
birth; measure of central tendency. 
  

days 
  

Jones et al. 
2009 

  Age at first birth 
  

age_at_first_birth_d_p* Age at which females give birth to their first 
litter (eutherians), or their young attach to teats 
(metatherians) or hatch out (monotremes); 
measure of central tendency. 

days Jones et al. 
2009 

  Gestation length 
  

gestation_len_d_p* Length of time of non-inactive fetal growth; all 
measures of central tendency. 

days Jones et al. 
2009 

  Interbirth interval 
  

inter_birth_interval_d* The length of time between successive births of 
the same female(s) after a successful or 
unspecified litter; all measures of central 
tendency. 

days Jones et al. 
2009 

  Litter size 
  

litter_size_p* 
  

Number of offspring born per litter per female, 
either counted before birth, at birth or after 
birth; all measures of central tendency. 

  Jones et al. 
2009 
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Table 1.1 (cont’d) 

  Litters per year 
  

litters_per_year_p* Number of litters per female per year; 
all measures of central tendency. 
  

  Jones et 
al. 2009 

  Sexual 
maturity age 
  

sexual_maturity_age_d_p* Age when individuals are first 
physically capable of reproducing, 
defined as either physically sexually 
mature, age at first mating or 
unspecified (males and females), age at 
first estrus or age at first pregnancy 
(females only), age at spermatogenesis 
or age at testes descent (males only), 
using captive, wild, provisioned, or 
unspecified populations; all measures of 
central tendency. 

days Jones et 
al. 2009 

  Weaning age 
  

weaning_age_d_p* Age when primary nutritional 
dependency on the mother ends and 
independent foraging begins to make a 
major contribution to the offspring’s 
energy requirements; all measures of 
central tendency. 

days Jones et 
al. 2009 

ECOLOGY % 
Composition 
diet 
  

diet_inv_e, diet_vend_e, 
diet_vect_e, diet_vfish_e, 
diet_vunk_e, diet_scav_e 
diet_fruit_e, diet_nect_e, 
diet_seed_e, diet_plant_e 
  

% Prevalence of foraging for: 
invertebrates, endotherms, ectotherms, 
fish,vertebrates-general or unknown, 
scavenging, fruit, nectar, seeds, plants. 

% Wilman 
et al. 
2014 

  Diet category 
  

diet_cat_e†, diet_cat† Overall diet category (assigned using 
same method as in Wilman et al. 2014). 
Assigned to the dominant diet categories 
based on the percent composition of diet 
for each species: plant and seeds, fruits 
and nectar, invertebrates, and 
vertebrates, fish, and carrion; omnivore: 
score of <= 50% in each category 
(Wilman et al. 2014). 
  

  Wilman 
et al. 
2014 
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Table 1.1 (cont’d) 

  
trophic_level_p* 
 

 

 

 

 
 

Trophic level of each species; species were 
defined as (1) herbivore (not vertebrate and/or 
invertebrate), (2) omnivore (vertebrate and/or 
invertebrate plus any of the other categories) and 
(3) carnivore (vertebrate and/or invertebrate 
only); all measures of central tendency. 
 
  

 
Jones et al. 
2009 
 
 
 
  

  Diet breadth 
  
  
  
  

diet_breadth_p* Number of dietary categories eaten by each 
species; categories were defined as vertebrate, 
invertebrate, fruit, flowers/nectar/pollen, 
leaves/branches/bark, seeds, grass and 
roots/tubers; all measures of central tendency. 

  Jones et 
al. 2009 

z 
 

diet_breadth† Diet breadth was calculated using the Shannon 
Diversity index and is based on EltonTraits % 
composition of diet columns. This metric takes 
into account the number of different types of 
food consumed, as well as the relative abundance 
of each type. 

 
Wilman 
et al. 
2014 

  Forest stratum 
  

for_strat_value*† Assigned forest strata value; marine, ground 
level, including aquatic foraging, scansorial, 
arboreal, or aerial. 
  
 
Prevalence of: Foraging below on ground, 
understory, mid-height, canopy, and in flight. 

  Wilman 
et al. 
2014 
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Table 1.1 (cont’d) 

 

  

  

  

  

for_strat_ground,**† 
for_strat_understory**†, 
for_strat_midheight**†, 
for_strat_canopy**†, 
forstrait_aerial**† 

Wilman et 
al. 2014 

    terrestriality_p* Degree of terrestriality of each species; 
species were defined as fossorial and/or 
ground dwelling only and above ground 
dwelling; all measures of central tendency. 

 
Jones et al. 
2009 

t  Activity patterns 
  
  

activity_nocturnal_e† 
activity_crepuscular_e* 
activity_diurnal_e* 

Presence of foraging activity at night, at 
dawn and dusk, and during the day. 

  Wilman et 
al. 2014 

   

activity_cycle_p* Activity cycle for wild populations: nocturnal 
only, nocturnal/crepuscular, cathemeral, 
crepuscular or diurnal/crepuscular and diurnal 
only. Measures of central tendency. 
  

Jones et al. 
2009 

   

  Habitat 
specialization 
  

habitat_specialization† Descriptions of species habitat mention cloud 
forest as an important or sole component. 

    

 
Habitat category habitat† 

habitat_suitability_lowland 
habitat_suitability_montan
e 
habitat_season_lowland 
habitat_season_montane 
habitat_major_importance_
lowland 
habitat_major_importance_
montane 

Degree of suitability, seasonality, and 
importance of habitat type to species as 
designated by IUCN 

 
IUCN 2022 

  Habitat breadth 
  

habitat_breadth_p* 
  

Number of habitat layers used by each 
species. Categories were defined as above 
ground dwelling, aquatic, fossorial and 
ground dwelling; all measures of central 
tendency. 

  Jones et al. 
2009 
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Table 1.1 (cont’d) 

 

  
habitat_breadth† Number of habitat layers inhabited by each 

species according to the IUCN. The total 
number of different habitats inhabited by 
species within this dataset is 42. See the 
"habitats_all_species.csv" for the full list of 
possible habitat types for each species. 

  

  Population 
statistics 

population_density_n.km2_p* Number of individuals per square 
kilometer; all measures of central tendency. 

  Jones et 
al. 2009 

population_grp_size_p* 
  

Number of individuals, adults or definition 
unspecified in a group that spends the 
majority of their time in a 24 hour cycle 
together; all measures of central tendency. 
  

Jones et 
al. 2009 

social_grp_size_p* 
  

Number of individuals, adults or definition 
unspecified in a group that spends the 
majority of their time in a 24 hour cycle 
together where there is some indication that 
these individuals form a social cohesive 
unit; all measures of central tendency. 

Jones et 
al. 2009 

            

MORPHOLOGY Body mass body_mass_g† 
  

Average mass of animal. grams Wilman et 
al. 2014 

adult_body_mass_g_p* Mass of adult; measures of central 
tendency. 

grams Jones et 
al. 2009 

basal_met_rate_mass_g_p* 
  

Mass of individual(s) from which the basal 
metabolic rate was taken (see metabolic 
trait below). 

grams Jones et 
al. 2009 

neonate_body_mass_g_p* 
  

Mass of live or freshly killed specimens of 
infants at either a near term embryonic 
stage, birth, immediately after birth or up to 
an age of seven days after birth; all 
measures of central tendency. 

grams Jones et 
al. 2009 

weaning_body_mass_g_p* 
  

Mass of live or freshly-killed specimens of 
weanlings; all measures of central 
tendency. 

grams Jones et 
al. 2009 
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Table 1.1 (cont’d) 

  Body size body_size_mm† Length of animal (mammals: nose to base 
of tail; birds: beak to end of tail). This 
value indicates the mean body size unless 
a range of values are available. In the 
latter case, this value indicates the 
maximum body size. 

mm Ansell, 
1965 

min_body_size_mm Minimum body length (mammals: nose to 
base of tail; birds: beak to end of tail) if 
range was available or there were 
differing values from multiple sources. 
  
  

mm 

max_body_size_mm Maximum body length (mammals: nose 
to base of tail; birds: beak to end of tail) if 
range was available or there 
were  differing values from multiple 
sources. 
  

mm 

  

    adult_forearm_len_mm_p* Total length from elbow to wrist of adult; 
measures of central tendency. 

mm Jones et al. 
2009 

  

adult_head_body_len_mm_p* Total length from tip of nose to anus or 
base of tail; measures of central tendency. 
  

mm Jones et al. 
2009 

  

    weaning_head_body_len_mm_p* 
  

Total length from tip of nose to anus or 
base of tail of live or freshly-killed 
specimens of weanlings. 

mm Jones et al. 
2009 

  Sexual 
dimorphism 

sexual_dimorphism† Body pattern differs between males and 
females. 

    

  Teat number teat_number_p* Total number of teats present; all 
measures of central tendency. 

  Jones et al. 
2009 

            

METABOLIC Basal 
metabolic 
rate 
  

basal_met_rate_mLO2hr_p* 
  

Basal metabolic rate of adult; measures of 
central tendency. 

mL.O2/hr Jones et al. 
2009 
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Table 1.1 (cont’d) 

GEOGRAPHIC Home range 
size 

home_range_size† 
  

Area traversed by an individual in its 
normal activities of food gathering, 
mating, and caring for young; if only 
range is available, this value indicates 
the maximum home range size. 
  

Km2 Burt, 
1943 

min_home_range 
  

Minimum area traversed by an 
individual in its normal activities of 
food gathering, mating, and caring for 
young; if range was available or there 
were differing values from multiple 
sources. 
  

Km2   

max_home_range 
  

Maximum area traversed by an 
individual in its normal activities of 
food gathering, mating, and caring for 
young;  if range was available or there 
were  differing values from multiple 
sources. 
  

Km2   

home_range_km2_p* Size of the area within which everyday 
activities of individuals or groups (of 
any type) are typically restricted; all 
measures of central tendency. 

Km2 Jones et 
al. 2009 

    home_range_indiv_km2_p* Size of the area within which everyday 
activities of individuals are typically 
restricted; all measures of central 
tendency (see Jones et al. 2009 for 
details). 

Km2 Jones et 
al. 2009 

  Range size observed_range_size† Range size calculated from IUCN range 
maps and projected using a global 
equal-area projection; derived only from 
parts of the range with the presence code 
“Extant”. This is the range size of areas 
the species is known to occur. See 
Workflow section 4: Range Size. 

Km2 IUCN 
2022 

inferred_range_size† Range size calculated from IUCN range 
maps and projected using a global 
equal-area projection; derived from 
parts of the range using presence codes 
“Extant”, “Probably Extant” ,and 
“Possibly Extant”.  This range size 
incorporates inferred areas where the 
species may exist and represents 
potentially suitable habitat rather than 
just the known range of the species. See 
Workflow section 4: Range Size.  

Km2 IUCN 
2022 

GR_area_km2_p* Geographic range size of species based 
on digital maps from Sechrest (2003). 
Range areas were calculated using 
ArcGIS; projected using a global equal-
area projection. 

Km2 Jones et 
al. 2009 
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Table 1.1 (cont’d) 

  Range extent 
  

GR_max_lat_dd_p*, GR_min_lat_dd_p*, 
GR_mid_range_lat_dd_p*, 
GR_max_long_dd_p*, 
GR_min_long_dd_p*, 
GR_mid_range_long_dd_p* 
  
  

Extent of each species range (as 
of 2003) calculated using a 
global geographic projection 
(decimal degrees). 
  

Decimal 
degrees 

Jones et 
al. 2009 

  Human 
population 
density 
  

hu_pop_den_min_n.km2_p_OD*, 
hu_pop_den_mean_n.km2_p_OD*, 
hu_pop_den_5p_n.km2_p_OD* 
  

Minimum, mean and 5th 
percentile human population 
density (persons per km2) over 
the species range (as of 
2003)  using the Gridded 
Population of the World (GPW) 
(CIESIN and CIAT 2005). 
  

 n/km2 Jones et al. 
2009 

  
hu_pop_den_change_p_OD Mean rate of increase in human 

population density over the 
species range (as of 2003) using 
the Gridded Population of the 
World (GPW) (CIESIN and 
CIAT 2005) for 1990 and 1995 
as: (1995–1990)/1990.  

 
Jones et al. 
2009 

 
Human 
footprint 

mean_human_fp_range_2010†, 
mean_human_fp_range_2020† 

Average human footprint based 
on the WCS Human Footprint 
dataset for 2010 and 2020; 
human influence is mapped 
using the weighted sum of 
individual maps of population 
density, infrastructure such as 
roads, railways, factories, 
accessibility, use of electricity; 
https://wcshumanfootprint.org/. 

 
Sanderson 
et al. 2022 

  
percent_change_hf_2010_2020† Percent change in average 

human footprint calculated 
between the years 2010 - 2020 

    %  

  Average 
precipitation 
  

precip_mean_mm_p_OD* Mean monthly precipitation 
(mm) of species range as of 
2003. 
  

   mm Jones et al. 
2009 

 
Average 
precipitation 

mean_CHELSA_bio12_1981.2010_V.2.1† Average annual mean 
precipitation from the CHELSA 
bioclimatic dataset calculated 
over the IUCN range map for 
each species. Derived only from 
parts of the range with the 
presence code “Extant” or 
"Possibly Extant". 

mm Karger et 
al. 2017a; 
Karger et 
al. 2017b 

  Average 
temperature 

temp_mean_01degC_p_OD* Mean monthly temperature 
(0.1°C) of species range as of as 
of 2003. 
  

°C Jones et al. 
2009 
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Table 1.1 (cont’d) 

 
Average 
temperature 

mean_CHELSA_bio1_1981.2010_V.2.1† Average annual mean temperature 
from the CHELSA bioclimatic 
dataset calculated over the IUCN 
range map for each species. Derived 
only from parts of the range with the 
presence code “Extant” or "Possibly 
Extant". 

°C Karger et 
al. 
2017a; 
Karger et 
al. 2017b 

  AET mean AET_mean_mm_p_OD* Mean monthly AET (Actual 
Evapotranspiration Rate) of 
species range (as of 2003) from 
1920 to 1980 (mm). Calculated 
using the Global Resource 
Information Database of UNEP. 
  

 mm Jones et     
al. 2009 

‘  PET mean PET_mean_mm_p_OD* Mean monthly PET (Potential 
Evapotranspiration Rate) over species 
range (as of 2003), from 1920 to 
1980 (mm) calculated using the 
Global Resource Information 
Database of UNEP.  

 mm Jones et 
al. 2009 

 

1.3.3 Frugivoria Workflow 

I outlined a workflow (Figure 2) for creating and replicating the Frugivoria database and 

to help with the organization of future databases with similar aims to this one. This workflow 

delineates each step of the database building process, including trait data sources, code for 

extracting and harmonizing the data, and highlighting the end products. 

Figure 1.2: Workflow diagram of Frugivoria database generation for frugivorous birds and 
mammals in Central and South American moist forest. An IUCN based species list was first 
downloaded for regions of interest (a1: 1) along with IUCN range maps for birds and mammals 
of the world (a1: 2). The species list was then subset to mammals and birds in 
“Subtropical/Tropical Moist Montane” and/or “Subtropical/Tropical Moist Lowland” habitat (a1; 
L0: 1_IUCN_species_list_subset.R). This IUCN species list was then merged with EltonTraits 
(Wilman et al., 2014) and species names were harmonized between databases (a2 & a3; L0: 
2_external_trait_database_merge.R). Once these databases were merged, they were subset to 
only those species eating at least 10% fruit (a4; L0: 3_frugivore_subset.R). This final subset was 
then merged with the PanTHERIA dataset (Jones et al., 2009; a5; L0: 
4_mammal_merge_pantheria.R). Traits found in the literature and other credible species 
accounts (a6), PanTHERIA, and EltonTraits were combined for mammals, whereas only 
EltonTraits and traits from the literature and species accounts were combined for birds. I then 
derived traits such as diet breadth from the EltonTraits dataset, habitat breadth from the IUCN 
habitat designations, and geographic traits based on the IUCN range maps (a1:2) for the a4  
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Figure 1.2 (cont’d) 

species subset (a7). Code to obtain observations per species is also provided and allows for 
spatial trait analyses (Panel c; c1; L2: downloading_gbif_records.R). 
 

 

Each step in the data workflow to construct Frugivoria was scripted with the R language (R Core 

Team, 2022) to maximize reproducibility. The data in Frugivoria are stored as comma separated 

data tables and R scripts, to convert raw data (Level 0) to harmonized data (Levels 1, 2) (Figure 

1.2). The steps to generate Frugivoria are numbered below with reference to lettered sections 

within Figure 1.2 and specific scripts in the workflow. 

Subsetting—I downloaded static trait datasets for mammals and birds, EltonTraits 

(Wilman et al., 2014) and PanTHERIA (Jones et al., 2009). I used the R package ‘rredlist’ 

(version 0.6.0) and the function ‘rl_sp_country’, which downloads IUCN Red List information 

over an API, to obtain IUCN species lists for each country of interest as defined above (IUCN, 

2021). These lists were then subset to the classes ‘Aves’ and ‘Mammalia’ and further filtered to 

include only those that include an IUCN habitat designation of ‘Forest—Subtropical/Tropical 

Moist Montane’ and/or ‘Forest—Subtropical/Tropical Moist Montane’ (Figure 1.2a.1; L0: 
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1_IUCN_species_list_subset.R). I then merged this IUCN based species list with EltonTraits for 

mammals and birds (Figure 1.2a.2; L0: 2_external_trait_database_merge.R). After harmonizing 

and subsetting the dataset to include frugivorous species only (Figure 1.2a.3 & a4; L0: 

3_frugivore_subset.R), PanTHERIA was merged with the mammal database (Figure 1.2a.5; 

L0:4_mammal_merge_pantheria.R). I then filled in new traits using information from existing 

literature and credible online sources (Figure 1.2a.6), and provided code to obtain occurrences 

from GBIF for all species within the final database (Figure 1.2c.1; 

L2_downloading_gbif_records.R). 

Harmonizing—Disparities in naming conventions between the IUCN, EltonTraits (as 

mentioned previously) and PanTHERIA led to some species not aligning correctly between 

databases and perpetuated the need for harmonization (Figure 1.2a.2; L0_ 

2_external_trait_database_merge.R). To harmonize scientific names between databases, we first 

merged the final IUCN species list by scientific name with EltonTraits. I resolved conflicts in 

species name merges between databases using known synonyms of the IUCN species names that 

matched species names in the EltonTraits database. In general, any species name disparities were 

set aside for manual checking of synonyms using the IUCN website, existing literature and 

Avibase (for birds; Lepage et al., 2014), and later appended to the dataset. I generated a lookup 

table, hosted in the Environmental Data Initiative (EDI) repository, showing the corresponding 

species name in each database for all mismatched species (mammals: n = 390; birds: n = 873; 

lookup_table_all_mammals.csv; lookup_table_all_birds.csv), which should help facilitate the 

construction of databases for other species (not only frugivorous species) in this region. In 

Frugivoria, there were name disparities for 171 mammal and 195 bird species in the EltonTraits 

database. New species discovered since the publication of these databases (mammals: n = 42, 
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birds: n = 2) and those species that had been split (taxonomically reclassified; mammals: n = 132, 

birds: n = 182) were assigned values of sister taxa, based on known phylogenies, or at the genus 

level, which was simple in EltonTraits since in some cases entire genera had matching trait 

values. For mammals, we then merged our final database with PanTHERIA (Jones et al., 2009; 

L0: 4_mammal_merge_pantheria.R) and resolved taxonomic naming issues in the same way as 

above, resolving the same number of species names. 

I have included a ‘taxonomic_disparity’ column where a value of ‘1’ indicates 

differences in taxonomic nomenclature between databases for some species. For each database 

merged in Frugivoria, I have retained the original database species name with a suffix ‘_e’ 

(EltonTraits) and ‘_p’ (PanTHERIA) as a unique column for ease of interpretation. These 

suffixes are also used for any trait originating from those respective databases. 

Frugivore Selection—Once the IUCN species list and EltonTraits dataset were 

harmonized and successfully merged for 946 mammals and 2818 birds, I used EltonTraits 

‘diet_fruit’ to select and retain species that had a frugivorous diet at or above 10%, leaving a 

total of 160 mammal genera (586 species and 16 subspecies) and 329 bird genera (1148 species) 

(L0: 3_frugivore_subset.R). 

Trait data—I then merged our frugivorous species subset and the PanTHERIA dataset for 

mammals (L0: 4_mammal_merge_pantheria.R). New traits and missing traits values that did not 

occur in existing openly accessible trait databases were then obtained by exhaustively identifying 

missing species and traits from the IUCN database, peer-reviewed literature, online reference 

material such as species accounts Encyclopedia of Life (Parr et al., 2014); University of 

Michigan's Animal Diversity Web (Myers et al., 2023); Cornell Lab of Ornithology's Birds of 

the World (Billerman et al., 2022), and reference books (Burton & Robert, 1974; Emmons & 
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Feer, 1997; Eisenberg & Redford, 1999; Thorington et al., 2012; Fleagle, 2013 etc.; for a full list 

of materials see ‘Frugivoria: Sources …’ in the EDI hosted dataset). In total, Frugivoria contains 

45,216 trait inputs with some traits having minimum and maximum values; 24,494 trait values 

for mammals (8662 newly added), and 20,722 for birds (14,999 newly added) (Figure 1.3). 

Figure 1.3: Newly added traits in Frugivoria for birds (red) and mammals (teal). Horizontal lines 
indicate the total number of taxa for each taxonomic group within the database (birds: n = 1148, 
mammals: n = 602). Certain traits for mammals overlapped with the PanTHERIA dataset (i.e., 
home range, longevity, and range size), however the methodology used for the trait calculations 
differs between Frugivoria and PanTHERIA. I have highlighted PanTHERIA traits in gray for 
comparison. Overall, for mammals, EltonTraits contributed 14.7% of traits, PanTHERIA 49.8%, 
and 35.36% of traits are newly added traits. For birds, EltonTraits contributed 27.62% and newly 
added traits comprise 72.38% of the dataset. 

 

If multiple values were found for a given species trait, I gave preference to primary literature and 

the most recent data source. However, if I found multiple values from recent sources, I 

incorporated this information into a range of values with each source being cited in the source 
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column for that trait but separated by a ‘|’ symbol. For these traits, specific details about each 

source may be found in the trait's notes column. Relevant traits have a minimum and maximum 

column for instances where ranges of values were present or different values were available from 

alternate yet appropriate sources. Traits with no available information for a given species were 

assigned to the genus level where possible and this was noted in the ‘*_level’ column for the 

applicable trait. Including prior imputations in the original EltonTraits dataset and our further 

imputations to congenerics for reclassified and newly added species in both EltonTraits and 

PanTHERIA datasets, 5142 traits (11.37%) were imputed to either genus or family, with 9 

phylogenetically imputed traits for mammals (previously imputed from EltonTraits). For the 

newly added traits, 6.92% were assigned to the level of genus or family (birds: 2.16% genus, 

0.75% family; mammals: 9.02% genus, 4.83% family) if species-specific information was not 

available. To minimize observer error within new trait data assignments for species, all new trait 

data records in Frugivoria were independently entered by two technicians. Any discrepancies 

between the two technicians were noted and reviewed by the lead author and resolved by 

replacing the former value with that from the most accurate and reputable source. 

Due to the disparate nature of methodology of data sources used to build the Frugivoria 

dataset, there are some overlapping traits between databases. Because of this, I retain them all 

here in their original form for ease of interpretation. For example, mass is measured as averages 

in EltonTraits (Wilman et al., 2014), and in PanTHERIA they are measures of central tendency 

(often using the median; Jones et al., 2009), thus the origin of these values is not the same and 

they have non-comparable units. This is true for traits shared between EltonTraits and 

PanTHERIA such as activity patterns and mass, as well as PanTHERIA and the data I have 

collected and derived for this dataset, such as body size, diet breadth, home range size, range size 
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and longevity. For some PanTHERIA traits, I added an additional suffix ‘_OD’, for range-based 

geographical traits I suspect may be outdated (e.g., mean population size, mean annual 

precipitation and temperature), but may be useful for some cross-time analyses or comparisons. 

For these traits, I have derived more recent versions and applied them across taxa, whereas the 

original PanTHERIA traits were only available for mammals. Similarly, diet and habitat breadth, 

both traits available in the PanTHERIA dataset, were recalculated and applied across taxa. 

Range-based metrics were calculated based on species range maps (L0_spatial_traits.R; 

Figure 1.2a.7). I obtained range maps from the IUCN Spatial Dataset (Figure 1.2a.1; IUCN, 

2022a). I then computed the range sizes in km2 using the ‘st_area’ function built into the ‘sf’ 

package in R. I used the geography transformation of the ‘shape’ column within the IUCN 

Spatial Dataset (IUCN, 2022a). I calculated these range sizes in two ways: (1) using presence 

code ‘Extant’ and (2) using presence codes ‘Extant’, ‘Probably Extant’ and ‘Possibly Extant’. 

The latter incorporates inferred areas where the species may exist and therefore represents 

potentially suitable habitat rather than just the known range of the species. I chose to include all 

‘origin’ (e.g., native, re-introduced, introduced, vagrant) and ‘seasonality’ (e.g., resident, 

breeding season, non-breeding season, passage) codes as these all constitute a part of the range 

where the species would be performing the function of seed dispersal. I then appended the 

resulting range sizes to the full database for those species with range information available 

(n = 1734; missing ranges for n = 16 species). It is important to note that IUCN range maps have 

the potential to either overestimate or underestimate the true range of species (Gaston & Fuller, 

2009; Ramesh et al., 2017) and therefore these range size estimates should be interpreted with 

discretion. Also, these ranges differ from those found in the PanTHERIA dataset for mammals, 

with nearly two-thirds of species having smaller ranges in our dataset calculated using the most 
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recent data from the IUCN. These differences in range size may be due to different 

methodologies in the estimation of species ranges (IUCN, 2022a; Sechrest, 2003), differences in 

nomenclature between datasets (e.g., a species has been recently split and is species level for the 

IUCN range value and the sister species value in PanTHERIA) and the effects of ongoing habitat 

loss and changes in climate since the publication of sources used for calculating range size in the 

PanTHERIA dataset (Sechrest, 2003). 

I also used the IUCN range maps to derive average climate and human impacts over 

species ranges, which can be used to understand the species' climatic tolerances as well as 

quantify potential anthropogenic impacts across the range. Specifically, I calculated the average 

values of two CHELSA bioclimatic variables (Karger et al., 2017, 2018), mean annual air 

temperature (Bio 1) and mean annual precipitation (Bio 12) over the observed and inferred 

portions of the range (e.g., parts of the range designated ‘extant’, ‘probably extant’ and ‘possibly 

extant’). To quantify anthropogenic impacts across the range, I used the WCS human footprint 

datasets for both 2010 and 2020 (Sanderson et al., 2022). This metric quantifies human impact 

by considering population density, infrastructure such as roads, railways, factories, accessibility, 

and the use of electricity. I then calculated the percent change between years as an additional 

metric to indicate the degree to which these human impacts have escalated over time. 

In an effort to increase the number of cross-taxa traits, I recalculated diet and habitat 

breadth for mammals based on different data than that of PanTHERIA and extended these traits 

to birds (L0_7_breadth_traits.R; Figure 1.2a.7). For diet breadth, a measure of diet diversity, I 

used the Shannon Diversity Index (Shannon & Weaver, 1949). Similar to Santini et al. (2018), I 

calculated the Shannon Diversity Index using the 10 food categories from EltonTraits (Wilman 

et al., 2014) representing the proportional makeup of the species' diet. The maximum potential 
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diversity value was calculated using the natural log of the number of possible diet categories. 

Here, the maximum diet diversity value is 2.3 and indicates a strong generalist species that 

consumes each food category evenly, whereas a value of zero indicates a monotonous diet 

specializing in a single source of food. 

I also calculated habitat breadth by summing the number of suitable habitat types for each 

species based on level 2 of the IUCN Habitat Classification scheme (IUCN, 2022a). This was 

done using the ‘rredlist’ package in R and extracting the habitat types used by each species using 

the ‘rl_habitat’ function (IUCN, 2015). A full list of habitats suitable for each species is included 

in the published EDI dataset. 

1.3.4 Occurrence Data 

I provide code to extract GBIF (GBIF, 2023) records for species contained within this 

database (L2_downloading_gbif_records.R). This code is modified from that provided by the 

GBIF blog, which overcomes the issue of pulling large numbers of records through GBIF for 

multiple species at once (Waller & Grosjean, 2019). A free GBIF account is required to 

implement this code. 

1.3.5 Frugivoria datasets 

In addition to providing the full Frugivoria dataset, I also provide a simplified subset of 

the full Frugivoria dataset (e.g., Frugivoria_mammal_database_simple.csv, 

Frugivoria_bird_database_simple.csv). This subset represents shared cross-taxa traits, 

simplifying comparisons among birds and mammals (code contained in 

L0_final_database_edits.R). These traits are generally well filled; however, I also include home 

range and longevity traits despite their missing values (filled for birds—longevity: 26.7%, home 

range: 19.3%; mammals—longevity: 52.1%, home range: 44.2%; Figure 3) because of their 
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ecological relevance and their scarcity in the literature, which may make them of heightened 

interest to users. This simplified subset excludes repetitive traits (e.g., ranges of values, percent 

composition of diet, habitat suitability), and retains traits that encapsulate and synthesize this 

information (e.g., trait averages, diet category, diet breadth, habitat breadth). 

1.4 Results & Discussion 

Frugivoria and its workflow facilitate studies on frugivorous mammal and bird traits 

encompassing ecology, life-history, morphology and geographical occurrences for a region of 

great ecological importance. Although mammals and birds are among the taxonomic groups with 

higher degrees of sampling and research, there remain significant gaps in our knowledge of their 

traits in this region. The existing trait databases for birds and mammals only include a subset of 

high-level traits (EltonTraits, Wilman et al., 2014; Phylacine, Faurby et al., 2018) or are missing 

values for many species in biodiversity hotspots (PanTHERIA; Jones et al., 2009)—gaps which 

Frugivoria helps fill. 

In total, I have added 8709 new traits for mammals (35.36% of all mammal traits) and 

14,999 for birds (72.38% of all bird traits) (Figures 3 and 4) and of those, only 6.92% of traits 

were imputed. I added traits for 44 new species, and updated the taxonomy for 314 species. Of 

the new morphological, ecological and life-history traits that did not require explicit calculation 

(i.e., home range, longevity, generation time, sexual dimorphism and body size), 1285 come 

directly from the literature, which is 21.6% of new traits in those categories. The remaining 

79.4% of these traits (4653) were collated across disparate online sources and datasets including 

species accounts requiring explicit interpretation from Encyclopedia of Life (Parr et al., 2014), 

Cornell's Birds of the World (Billerman et al., 2022), University of Michigan's Animal Diversity 

Web (Myers et al., 2023), IUCN (IUCN, 2022a) and AnAge database (Tacutu et al., 2018). 
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I also derive new traits such as diet breadth and habitat breadth and calculate geographical range-

based traits such as observed and inferred range size, climate-based traits, and different aspects 

of human impact across the range, which all have the potential to be used to estimate extinction 

risk. Both the breadth traits and new geographical range-based traits update and expand the 

applicability of these traits across taxa, as these were traits once only available for mammals. 

Furthermore, I increased the completeness of traits in PanTHERIA (e.g., body mass, body size, 

range size, home range size and longevity for mammals)—in some cases more than doubling the 

traits available for mammals in PanTHERIA (Figure 1.3; home range and longevity). Not only 

does Frugivoria help fill existing data gaps and generate comparable cross-taxa traits for birds 

and mammals, but it also harmonizes existing databases into a single unified source for 

mammals and birds, making studies of these taxa much less cumbersome and time-consuming 

(Etard et al., 2020). This database (and its reproducible workflow for other taxa and regions of 

the world) is particularly beneficial for studying functional diversity in the Neotropics, where the 

sheer number of species and the complexity of their interactions can make it difficult to identify 

patterns of ecological importance. 

The increased trait resolution (i.e., low levels of imputation and greater levels of filled 

traits for species) and spatial and taxonomic coverage in Frugivoria provides vital information to 

address fundamental and applied aspects of conservation biology. Specifically, Frugivoria 

comprises a unified and comprehensive source that can be used to understand community 

assembly (species coexistence; Zamudio et al., 2016), spatial patterns of biodiversity, trait 

distributions (Figure 1.4), and can help assess the vulnerability of species to environmental 

changes (Pacifici et al., 2015) in moist montane and lowland regions of Central and South 

America. Some examples of more focused investigations that are now possible with Frugivoria 
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include understanding how frugivore traits help mediate ecological processes in moist montane 

systems (Lim et al., 2020; Sekercioğlu et al., 2004); quantifying how traits vary across montane 

regions (Dehling et al., 2014; Santillán et al., 2019; Figure 4); and understanding how certain 

traits relate to species extinction risk (Bland et al., 2015; González-del-Pliego et al., 2019; Ripple 

et al., 2017). The latter topic is particularly relevant given the high endemicity in this region 

(Gradstein et al., 2008; Myers et al., 2000), the projected rapid changes in climate (IPCC, 2022) 

and land use (Armenteras et al., 2011; González-Maya et al., 2017; Powers & Jetz, 2019) and the 

anticipated shifts in ecological communities over the next century (Williams et al., 2007). 

Montane regions and cloud forests are especially sensitive to environmental changes (Elsen & 

Tingley, 2015; Foster, 2001; Ponce-Reyes et al., 2012; Toledo-Aceves et al., 2011); thus, species 

traits can aid in understanding and predicting shifts in biodiversity and associated ecosystem 

functions and services. 

The IUCN categorizes species into risk categories to assess extinction risk and help 

prioritize species and habitat conservation (IUCN, 2022b). Despite the increase in and utility of 

trait-based approaches in assessing extinction risk and vulnerability (Foden et al., 2013; Kosman 

et al., 2019; Pacifici et al., 2015), setting spatial priorities for parks and reserves (Kukkala & 

Moilanen, 2017), and mapping diversity patterns (Cadotte & Tucker, 2018; Devictor et al., 

2010), the IUCN does not explicitly incorporate trait-based approaches into the official IUCN 

Red List assessment process (IUCN, 2022b). Instead, the IUCN uses a population trend-based 

approach (changes in abundance or current and potential changes in distributions; Etard et al., 

2020), relying on information often unavailable for many species. Of the species contained in 

Frugivoria, 12.9% are classified as threatened by the IUCN, with 10.1% of lowland species and 

16.4% of montane species having threat categories of either vulnerable, endangered, or critically 
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endangered. The higher proportion of threatened montane species is not unexpected, since 

montane ecosystems are particularly vulnerable to threats such as climate change and 

fragmentation, and species in these regions often have restricted dispersal capabilities. 

Of mammals specifically, 14.6% are classified as DD, because they lack one or both 

population and distributional (range size; EOO; IUCN, 2022a) information to make an official 

extinction risk assessment. Species such as this provide an opportunity to test trait-based 

approaches for assessing conservation statuses. 

Trait-based approaches to conservation offer an alternative approach to trend-based 

approaches because trait-based approaches rely on species' sensitivity to particular threats (Etard 

et al., 2020). If the response of species to a threat consistently aligns with certain traits (e.g., both 

narrow diet breadth, which indicates a specialized diet, and large-bodied and small-ranged 

species being potential indicators of extinction risk; Boyles & Storm, 2007; Harris & Pimm, 

2008; Ripple et al., 2017), traits can be used as part of a proactive approach to generalize patterns 

or set rules for assigning extinction risk for species that do not have the sufficient population or 

geographical data (Cardillo & Meijaard, 2012) or can be used in addition to trend-based 

approaches. For instance, Bland et al. (2015) estimated the extinction risk of DD terrestrial 

mammals using predictive models based on life history, geographical ranges, and information on 

threats, increasing the estimate of globally threatened terrestrial mammals by 5%. Frugivoria has 

the potential to be used for this purpose for frugivorous species in the montane Neotropics, as 

traits such as habitat specialization (strong reliance on cloud forest habitat), diet breadth  

Figure 1.4: Distribution of mass and generation time for birds (a & c) and mammals (b & d) 
across the Northern Andes and Isthmus of Panama. Occurrence records were obtained through 
GBIF (GBIF, 2022a; GBIF, 2022b; GBIF, 2022c; GBIF, 2022d). Lighter colors indicate lower 
values. Birds and mammals differed in their minimums and maximums for each trait (birds a: 5.1 
- 5,525.0 g, c: 1.9 - 19.8 y; mammals b: 4.8 - 140,000.6 g, d: 0.94 - 18.3 y). Natural breaks were 
used to bin these data for plotting, with a few larger values included in the uppermost bin. The
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Figure 1.4 (cont’d) 
 
 density curves in the lower right corner indicate the distribution of the mapped trait in the 
Frugivoria dataset. For mass (panels a & b), these densities were log transformed for 
visualization purposes. Red dashed lines indicate the median value for each trait (birds a: 45.3 g, 
c: 4.6 y; mammals b: 71.0 g, d: 4.2 y). 

 

  (based on the Shannon Index and demonstrating the degree of diet specialization), and range 

size can indicate levels of risk to anthropogenic pressures such as habitat degradation and climate 

change (Bland et al., 2015). For example, range size can be used to infer sensitivity to 

environmental change because narrow-ranged species, which often have very little data, are more 

sensitive to anthropogenic disturbances and tend to have higher extinction risk than those with 
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broad ranges (Collen et al., 2016; Ripple et al., 2017). Furthermore, in Frugivoria, I include a 

geographical trait—the average human footprint—explicitly quantifying anthropogenic forces 

acting across the species range. As such, it would be straightforward to use Frugivoria to 

generate lists of potentially at-risk species in this region using these traits listed above. This 

dataset can be used in applied conservation to set targets for maintaining areas of high functional 

diversity and spatially prioritizing regions containing species with unique ecosystem roles. 

The species currently in Frugivoria cover an important and highly diverse region and 

habitat type, yet it does not provide a complete picture of Central and South American frugivore 

biodiversity. Importantly, it excludes explicit incorporation of countries lacking contiguous 

mountain ranges, for example in Southeastern Brazil, the IUCN designated habitats 

‘subtropical/tropical dry forest’ (e.g., seasonally dry inter-Andean valleys) and ‘tropical high 

altitude’ (e.g., páramo; regions above the timberline). Frugivoria has been compiled in an open 

and reproducible way that facilitates its future expansion to high-altitude montane and lowland 

regions of Central and South America—an essential undertaking for gaining a more complete 

picture of trait diversity for frugivorous species in the Neotropics. Though the species contained 

in Frugivoria are only a subset of the world's vast biodiversity, I hope the data and workflow 

facilitate further study in the Neotropics and beyond, as filling in more data gaps in hotspots like 

these continues to be a research priority. 

1.5 Data Availability Statement 

The Frugivoria database and associated metadata are openly available as .csv files 

through the Environmental Data Initiative. 

(EDI; https://doi.org/10.6073/pasta/168e95f04d4726d31d868bfe22d749a5)  (Gerstner et al. 

2023). I also provide the R scripts used for the database building workflow and analysis for this 

https://doi.org/10.6073/pasta/168e95f04d4726d31d868bfe22d749a5
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manuscript on EDI and GitHub (https://github.com/bioXgeo/neotropical_frugivores.git). 

Published manuscript citation: 

Gerstner, B. E., Bills, P. & Zarnetske, P. L. (2023). Frugivoria: A trait database for birds and 

mammals exhibiting frugivory across contiguous Neotropical moist forests. Global 

Ecology and Biogeography, 32, 1466–1484. 
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CHAPTER 2: 

THE INFLUENCE OF SCALE-DEPENDENT GEODIVERSITY ON SPECIES 

DISTRIBUTION MODELS IN A BIODIVERSITY HOTSPOT 

Resubmitted to Philosophical Transactions A special issue on “Geodiversity science for society."  

Co-authors include: Phoebe L. Zarnetske, Mary E. Blair, Patrick Bills, Cristian A.C. Rodriguez 

2.1 Abstract 

Improving models of species’ distributions is essential for conservation, especially in light of 

global change. Species distribution models (SDMs) often rely on mean environmental 

conditions, yet species distributions are also a function of environmental heterogeneity and 

filtering acting at multiple spatial scales. Geodiversity, which is the variation in Earth's features 

and processes, has the potential to improve SDMs and conservation assessments, but 

geodiversity variables have not been sufficiently tested in SDMs. I tested a range of geodiversity 

variables computed at varying scales using climate and elevation data. I compared the predictive 

performance of MaxEnt SDMs generated using CHELSA bioclimatic variables to those also 

including geodiversity variables for 31 mammalian species in Columbia. Results show that the 

inclusion of scale dependent geodiversity variables in SDMs improves model performance both 

statistically and spatially, especially for species in areas of high heterogeneity. Some variables 

consistently exhibited an increasing or decreasing trend in variable importance with spatial grain, 

showing slight scale-dependence and indicating that some geodiversity variables are more 

relevant at particular scales for some species. Incorporating geodiversity variables into SDMs, 

and doing so at the appropriate spatial scales to best reflect the species-habitat relationship, 

enhances the ability to model species-environment relationships, thereby contributing to the 

conservation and management of biodiversity. 
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2.2 Introduction 

In light of the unprecedented global changes threatening biodiversity, there is an 

increasing need for effective tools and strategies to aid in the spatial prioritization of 

conservation efforts. One proposed strategy is to focus on “geodiversity”, which has a range of 

definitions (Parks & Mulligan, 2010; Lawler et al., 2015), but for which I define here as the 

diversity of abiotic features and processes of Earth’s critical zone (including the lithosphere, 

atmosphere, hydrosphere, and cryosphere) and is thereby inclusive of climate (Zarnetske et al., 

2019). Geodiverse areas are expected to harbor higher levels of biodiversity because they 

provide more niche opportunities than areas with lower geodiversity (Lawler et al., 2015; Bailey 

et al., 2017; Tukiainen, 2019). This relationship is thought to influence patterns of biodiversity 

and species distributions due to the varied landscape and associated abiotic and biotic conditions 

which can increase the size of available niche space (Dufour et al., 2006). Geodiverse areas, 

which harbor a diversity of abiotic and biotic conditions, are likely to serve as refugia for 

species, and conservationists have proposed focusing on them to protect biodiversity in a 

changing climate (Brost & Beier, 2012; Reynard & Brilha, 2018; Schrodt et al., 2019; Crofts, 

2022). Existing research has primarily focused on quantifying the relationship between 

geodiversity and biodiversity, particularly species richness (Stein et al., 2014; Bailey et al., 2017; 

Zarnetske et al., 2019), yet the relationship between geodiversity, measured as abiotic spatial 

heterogeneity within a site, and individual species distributions remains largely unexplored. 

Given that a majority of conservation decisions still focus on individual species (Brooks et al., 

2006; Brum et al., 2017) and that species distribution models are widely regarded as a useful and 

often key approach for assessing extinction risk and setting spatial conservation priorities 
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(Lawler et al., 2015; IUCN, 2022), there is a need to understand how geodiversity variables may 

influence species distributions and therefore their utility within SDMs.   

Understanding the complex interplay between measures of geodiversity and biodiversity 

as well as their spatial scaling relationships can be essential for developing effective 

conservation strategies, particularly in regions with high levels of topographic complexity 

(Zarnetske et al., 2019). Geodiversity plays a crucial role in determining the physical boundaries 

of species' ranges by influencing the physiological constraints imposed by species' tolerances 

towards environmental conditions. Distributional limits can be further influenced by structural 

barriers to dispersal that might arise from topographic complexity, and the arrangement of 

habitat patches which can either facilitate or impede biotic interactions among species, as noted 

by Urban et al. (2013). Further, the effects of environmental heterogeneity on species 

distributions will vary depending on the scale at which a species responds to the environment 

(Graham et al., 2019). Further, this scale often differs among species or their associated 

functional groups (i.e., ecological groupings of species sharing traits and life strategies; Blaum et 

al., 2011). 

The occurrence of a species is intricately linked to its realized niche, which emerges from 

environmental filtering operating across multiple scales beyond the local occurrence point (Kraft 

et al., 2015; Pearson et al., 2018). This filtering process, which broadly determines the 

occurrence of species, involves a range of factors, including dispersal limitations, habitat 

configuration, climatic variations, and biotic interactions. For example, the presence of a river, a 

local dispersal barrier, or a competitor, might deter a small primate population from moving to 

suitable habitat less than 20 meters away, while variation in climate might be more gradual and 

prevent the primate species’ range from extending across vastly different temperature or 
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precipitation zones. These combined filtering processes play a fundamental role in shaping 

species distributions and offer valuable insights into the intricate dynamics governing species 

occurrence (Guisan & Thuiller, 2005; Soberón & Nakamura, 2009). The most common approach 

to understanding and predicting species-environment relationships is species distribution 

modeling (SDM) (Guisan & Thuiller, 2005). Yet typically, SDMs only incorporate 

environmental variables such as bioclimatic variables (variables that summarize annual, 

seasonal, and monthly trends in temperature and precipitation), at the local pixel scale. In a 

typical SDM, single pixel environmental values are intersected with a species’ occurrence point. 

Reliance on this local scale relationship discounts the broader contextual environmental 

information of areas surrounding occurrence points. To better incorporate environmental filtering 

and associated broader scales of environmental conditions surrounding a species’ occurrence 

point, SDMs could also include environmental heterogeneity in areas surrounding the occurrence 

points. Without including this broader environmental heterogeneity, SDMs are limited to 

reflecting the finer-scale local species-habitat relationships and are therefore less complete 

explanations and predictions of species distributions.  

Species-environment relationships can also be highly scale-dependent, with the strength 

and direction of the interactions between biotic and abiotic factors varying across different 

spatial scales (Stein et al., 2014; Bailey et al., 2017, 2018; Zarnetske et al., 2019). There are 

numerous scale-dependent relationships between species and their environmental drivers (Elith 

& Leathwick, 2009; Fournier et al., 2017). For example, the distribution of species is determined 

by a combination of factors, including climate, which has likely influenced occurrence at broad 

spatial scales, as noted by Blach-Overgaard et al. (2010), and habitat factors, such as availability 

and fragmentation, at more local spatial scales (Virkkala et al., 2005; Luoto et al., 2007). 
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Therefore, it is essential to investigate scale-dependency in species-geodiversity relationships. 

Incorporating geodiversity in terms of spatial heterogeneity or variability into species 

distribution models and assessing scale dependency has potential to improve our understanding 

of the factors that govern species distributions and may help refine resulting distribution maps. 

This has important implications for conservation as distribution maps are often used as a tool for 

assessing extinction risk (e.g., area of occupancy [AOO] and extent of occurrence [EOO] for the 

International Union of the Conservation of Nature [IUCN]; IUCN, 2022), and for determining 

potential areas for future sampling and priority areas for conservation. 

I tested the utility of incorporating geodiversity variables computed at varying spatial 

scales across a rasterized landscape into SDMs. These geodiversity variables capture the spatial 

heterogeneity within a defined neighborhood around species occurrences and might offer 

insights into the underlying processes that either facilitate or hinder species presence. My 

approach addresses the need to incorporate environmental filtering at broader scales surrounding 

species occurrence points, and scale-dependency in species-environment relationships. As 

geodiversity variables can reflect the availability of microclimates or landscape variability, they 

hold promise for improving SDMs and provide a more comprehensive understanding of species-

environment relationships (Stein et al., 2014; Zarnetske et al., 2019; Blair et al., 2022b).   

While it has been established that environmental heterogeneity can influence species 

distributions and diversity patterns at multiple spatial scales, it is also possible that species traits 

might be mediating these patterns. For instance, each species possesses unique functional traits 

(any traits that allow species to survive and reproduce in a given environment; Violle et al., 

2007) and evolutionary histories, resulting in different sensitivities to and preferences for 

specific environmental conditions (Pollock et al., 2012). Most research aiming to understand the 
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influence of functional traits on species distributions, however, has focused on plants (Pollock et 

al., 2012; Maharjan et al., 2021; Wang & Wan, 2021; Tang et al., 2022) or aquatic animals 

(Wittmann et al., 2016; Bosch-Belmar et al., 2021), limiting our generalized understanding of 

these dynamics more broadly. Ultimately, understanding the complex relationship between 

geodiversity and species functional traits, such as body mass (e.g., relationship with trophic 

level, dispersal ability, and home range size) and diet preference (e.g., relationship with trophic 

level and habitat use) (Ruggiero & Kitzberger, 2004), can offer valuable insights into the 

underlying ecological processes that influence species distributions. While there is limited 

consensus about appropriate scales and important predictors for species belonging to specific 

functional groups (i.e., groups of species sharing similar ecological characteristics and roles in 

the environment), understanding the scaling relationships between geodiversity and species traits 

can help to identify potential predictors and scales that are relevant for specific groups of species. 

To address this need, I assessed how traits influence the species-environment relationships with 

scale-dependent geodiversity variables.  

Recent advances in satellite remote sensing and climate reanalysis products, like 

MERRAclim (Vega et al., 2017) and CHELSA bioclimatic variables (Karger et al., 2017), as 

well as methods to measure spatial heterogeneity offer opportunities to improve the performance 

of SDMs and the conservation assessments derived from their outputs. For example, gradient 

surface metrics (e.g., average roughness, root mean square height, surface kurtosis, etc.) can 

capture spatial heterogeneity at varying spatial scales for any raster dataset (e.g., through the 

‘geodiv’ R package; Smith et al., 2021) and these rasters can be incorporated into SDMs. These 

measures of geodiversity now enable us to capture factors important for species distributions at 

finer resolutions as demonstrated by some studies (Bailey et al., 2018; Blair et al., 2022b). 
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Consequently, these metrics have important implications for understanding both species 

distributions and the overall patterns of biodiversity (Parks & Mulligan, 2010; Bailey et al., 

2018). Using climate reanalysis and remotely sensed products in combination with gradient 

surface metrics may improve the performance of SDMs.  

Here I examined the influence of scale-dependent geodiversity variables on the 

performance of SDMs and evaluate the ability of these variables to explain species-environment 

relationships for mammals in the Northern Andes – a region characterized by high topographic 

and climatic heterogeneity – primarily in Colombia, one of the world’s most biodiverse 

countries. I compare the performance of MaxEnt SDMs generated using CHELSA bioclimatic 

variables only, to those additionally including geodiversity variables quantified at multiple 

scales. I aimed to determine: 1) whether scale-dependent geodiversity improves understanding of 

species-environment relationships and SDM performance, 2) if there are scales at which 

geodiversity consistently improves model performance or species in different functional groups 

(i.e., species exhibiting similar body mass and dietary preferences); and 3) whether the species-

geodiversity relationship differs by biogeographic region. 

I expected that:  

1. Incorporating geodiversity variables computed at varying spatial scales surrounding 

species occurrence points in SDMs will improve model predictions as well as our 

understanding of species-environment relationships, in line with the principles of 

environmental filtering theory (Kraft et al., 2015; Pearson et al., 2018). This theory 

suggests that species distributions are shaped by a filtering process involving multiple 

abiotic and biotic factors (e.g., dispersal barriers, habitat configuration, climatic variation, 

competitors, etc.; Guisan & Thuiller, 2005; Soberón & Nakamura, 2009). By including 
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geodiversity variables in SDMs, I aim to capture the spatial heterogeneity associated with 

many of these filtering processes and gain a deeper understanding of the complex 

dynamics that govern species occurrence. Further, the relationship between geodiversity 

and species-environment relationships is likely to exhibit scale-dependency (Stein et al., 

2014; Bailey et al., 2017; Zarnetske et al., 2019). 

2. The scales at which geodiversity best explains species distributions will differ among 

functional groups. Considering that functional traits are closely tied to how species 

perceive and interact with their environment, I anticipate that the effects of geodiversity 

will vary depending on species' specific functional characteristics, such as body mass and 

feeding type (Violle et al., 2007). Smaller mammals may show stronger associations with 

fine-scale geodiversity, while larger mammals may respond more to geodiversity at 

coarser scales, which reflects their dispersal capabilities (McNab, 1963). In terms of 

feeding habits, fruit/nectar specialists and folivores may be more sensitive to fine scale 

geodiversity variations as their home ranges are typically smaller, which for folivores is 

due to the energetic costs of a leaf-based diet (Milton & May, 1976; Tucker et al., 2014). 

In contrast, omnivorous or frugivorous mammals, which likely have to “hunt” for food, 

may exhibit a more flexible response to geodiversity at both fine and coarse scales, as 

they can adapt to a wider range of available resources and their home ranges are typically 

larger than those of folivores (McNab, 1963; Milton & May, 1976). 

3. The relationship between species and geodiversity will vary across different 

biogeographic regions given the differing levels of heterogeneity across the Northern 

Andes (Hernandez et al., 2006). The unique environmental conditions, habitat types, and 

ecological dynamics of each region are likely to shape the species-geodiversity 
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relationship differently and I expect geodiversity to be more important for species in 

ecoregions with high topographic complexity. 

2.3 Methods 

2.3.1 Study Region 

Colombia is in the northwest corner of South America. With only 0.77% of the planet's 

land cover and approximately 10% of the world's biota, Colombia is recognized as one of the 

world's megadiverse countries. This diversity stems from its unique geographical location, 

providing it with increased sunlight exposure year-round compared to the southern regions of 

South America as well as its diverse geomorphology, which leads to multiple ecosystem types 

(Hernandez et al., 2006). Additionally, it serves as a crucial bridge between South and Central 

America, facilitating the exchange and intermingling of diverse species (Hernandez et al., 2006). 

Because of all these characteristics, Colombia offers a unique opportunity to study the influence 

of geodiversity on the distribution of species. 

 Here I focus on five primary biogeographic regions which represent distinct ecological 

zones with varied topography and climatic conditions where most of the study species are 

distributed (Figure 2.1). The Andean region, located in the central and western part of the 

country, features the Andes Mountain range with elevations above 1,000 meters above sea level 

(González-Orozco, 2021; referred to as Páramo). In contrast, the Chocó-Darién region 

encompasses the Pacific hyper-humid coastal and alluvial plains, while the Sabana region in the 

east experiences seasonal flooding and includes the vast Llanos Orientales plain extending into 

Venezuela (Hamilton et al., 2004). The Amazonian region covers the southeastern part of 

Colombia, mainly comprising the Amazon rainforest (González-Orozco, 2021; referred to as 

Imerí), and the Magdalena region represents a transitional zone between the central, eastern, and 
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western Pacific Andean regions (González-Orozco, 2021). These diverse habitats support a high 

level of biodiversity and endemism (Olson & Dinerstein, 1998; Myers et al., 2000), making 

Colombia a priority for biodiversity conservation and an ideal study site for evaluating the role 

of geodiversity in shaping species distributions. 

Figure 2.1: Major biogeographic regions within Colombia based on regions defined by 
González-Orozco et al. (2021). Fine-scale details have been simplified for clarity, while still 
depicting the main biogeographic regions. Region names denoted with (*) have had their names 
modified from the original publication to ensure easier recognition and understanding. 
 

 

2.3.2 Study Species and Occurrence Records: 

Our study includes a diverse set of mammal species (encompassing 17 genera) with 

ranges spanning most of the biogeographic regions mentioned above (Table 1). I obtained 
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validated occurrence data for 29 Colombian species through BioModelos (Velásquez-Tibatá et 

al., 2019), an innovative digital tool that facilitates communication and collaboration among 

biodiversity experts in the development of species distribution models. In addition, I also 

obtained expert maps from BioModelos that were generated using the same set of occurrence 

records. These maps represent the most up-to-date version of species distribution ranges in 

Colombia. These 29 species included all primates with over 15 occurrence records (following 

post-spatial thinning, as described in the Modeling section), as well as the Andean bear 

(Tremarctos ornatus) (Akçakaya et al, 2019). To complement this dataset, I referenced recent 

publications (Gerstner et al., 2018; Medrano-Vizcaíno & Gutiérrez-Salazar, 2020; Ramírez-

Chaves et al., 2022) to obtain occurrence data for two additional species, namely the olinguito 

(Bassaricyon neblina) and the western mountain coati (Nasuella olivacea), as their expert maps 

from BioModelos were still awaiting validation. By utilizing this subset of mammal species, 

which encompasses a diverse range of environmental roles and requirements, and by 

incorporating validated occurrence data and expert-made range maps, this study offers a 

comprehensive assessment of geodiversity as a tool to enhance SDMs. 

2.3.3 Climate and topography data:  

Of the 19 bioclimatic variables from CHELSA (Karger et al., 2017), which summarize 

annual, seasonal, and monthly trends of temperature and precipitation data, I selected four: bio5 

(maximum temperature of the warmest month), bio6 (minimum temperature of the coldest 

month), bio13 (precipitation of the wettest month), and bio14 (precipitation of the driest month), 

which represent temperature and precipitation extremes that may be limiting to tropical species, 

particularly those in montane regions (Guevara et al., 2018). Additionally, I included the 

MODIS-derived mean annual cloud cover product (Wilson & Jetz, 2016), which has been 
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demonstrated to enhance species distribution models for species in the Northern Andes (Wilson 

& Jetz, 2016). I also included the Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) 

digital elevation model (SRTM30) to capture fine-scale variations in terrain known to influence 

species distributions (Coblentz & Riitters, 2004; Oke & Thompson, 2015; Leong et al., 2018). 

All variables were used at a spatial resolution of 30 arcseconds (~1 km2). 

2.3.4 Geodiversity data: 

I used the 'geodiv' package (version 1.0.5; Smith et al., 2021) in R (version 4.2.3; Olson 

& Dinerstein, 1998) to calculate the root mean square roughness (SQ) of the areas surrounding 

each pixel for the same variables defined above (variables denoted with *_sq), and those 

neighborhood calculations became the value of the focal pixel. These neighborhood calculations 

were conducted over varying distances, which I will henceforth refer to as spatial grains, 

however it is important to note that the resolution of each geodiversity variable remained 30 

arcseconds. Spatial grains of these neighborhood calculations ranged from 3 km, which 

characterizes the spatial scale at which most species in this study experience their environment, 

to 33 km, which is large enough to likely encompass (at least seasonally) the home range of the 

species with the largest dispersal capacity in this study, the Andean bear (Tremarctos ornatus; 

Castellanos, 2011). 

2.3.5 Analysis: 

Modeling – Specifically, I used MaxEnt, a machine learning approach, to generate 

species distribution models, as it is a widely used and effective approach, particularly with 

presence-only data (Urbina-Cardona et al., 2019). Following a similar methodology from Bailey 

et al. (2018), I opted for a machine learning approach, given the intricate and relatively unknown 

relationships between species distributions and geodiversity variables in this study. Compared to 
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other modeling methods, MaxEnt has numerous advantages, including its ability to handle 

complex predictor-species relationships, and its insensitivity to collinearity among variables 

(Elith et al., 2011; Dormann et al., 2013; Blair et al., 2022a) owing to a regularization parameter 

that minimizes the influence of correlated variables by shrinking regression coefficients (Elith et 

al., 2011).  

To set up and pre-process data before running species distribution models, I used the R 

package ‘wallace’ (version 2022.09.09.1; Kass et al., 2018), which is a GUI based ecological 

modeling software that allows for the building, evaluating, and visualizing of species distribution 

models in a guided and stepwise fashion. I used the base code for Wallace and their stepwise 

workflow for most of the data pre-processing pipeline. However, to increase computational 

efficiency and mitigate sampling bias, I spatially thinned occurrence records prior to using 

Wallace (usually a step within Wallace). To remove potential sampling biases and artefactual 

spatial autocorrelation, I used the 'SpThin' package (version 0.2.0; Aiello‐Lammens et al., 2015) 

to thin occurrence records at a 10 km distance. This distance was deemed to be appropriate given 

the steep elevational gradients and overall heterogeneity of the region (Anderson & Raza, 2010; 

Boria et al., 2014; Gerstner et al., 2018). Next, as part of the Wallace pipeline, I created species-

specific study regions for each species by generating 1-degree point buffers around all 

occurrence records to create a single unified polygon. These species-specific regions were used 

as the environmental background for randomly sampling 10,000 background points. Finally, I 

built and evaluated models using the R package ‘ENMeval’ (version 2.0.4; Kass et al., 2021). 

To train and test the models, I utilized two distinct methods. For species with 25 or fewer 

records, I implemented the 'jackknife' approach, which involves leaving each occurrence record 

out of the model once to use for testing, as a special case of k-1 cross-validation (Shcheglovitova 
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& Anderson, 2013). Model statistics were then averaged across all iterations. For species with 

more than 25 records, I used standard k-1 cross-validation. To ensure consistency, I 

parameterized all models with the same regularization multiplier and feature class of 'LQ1', 

which strikes a balance between capturing the complexity of the response to environmental 

conditions and avoiding excessive complexity. While I acknowledge the importance of species-

specific tuning to obtain optimal species distribution models (Anderson & Gonzalez, 2011), 

tuning would render comparisons across model sets impractical since each set could potentially 

be parameterized differently for the same species. If I had performed species-specific tuning, 

differences between models would not be attributed to the inclusion of geodiversity variables, 

but rather to differences in regularization and feature class selections. 

Model Sets – Analyses were performed for two model sets: 

1. Local pixel climate and topography predictors: This set included six variables (described 

in the Climate and Topography data section) representing local pixel climate and 

topographic conditions across the study area (30 arcseconds; ~1km). 

2. Local pixel climate and topography predictors (6) + geodiversity (SQ of neighborhood) 

versions of the same predictors (set 1): In this set, geodiversity variables were 

incorporated by calculating root mean square height (SQ) versions of the local pixel 

climate and topography predictors (same as set 1). The variability around each local pixel 

was calculated at different spatial grains, specifically at 3 km, 9 km, 15 km, 21 km, 27 

km, and 33 km and assigned to each local pixel. Importantly, the spatial resolution of 

each geodiversity variable remained 30 arcseconds. 

Each species had a total of seven model runs: one local level run, and six runs with 

geodiversity predictors additionally incorporated at each spatial grain. Like Schnase et al. (2021), 
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I performed three replicates of each run per species and averaged all modeling outputs to 

minimize any random variation in performance statistics and permutation importance values. 

Model Evaluation – The Continuous Boyce Index (CBI; Hirzel et al., 2006) and Area 

Under the Receiver Operating Characteristic Curve (AUC) are commonly used to evaluate the 

performance of species distribution models. That being said, AUC has been criticized for its 

insensitivity to rare species with low occurrence records, leading to inflated scores in such cases 

(Lobo et al., 2008; Peterson et al., 2008). CBI measures the agreement between model 

predictions and a random distribution of observed presences across prediction gradients, ranging 

from -1 (perfect disagreement) to 1 (perfect agreement), with values above 0 indicating better-

than-random performance (Hirzel et al., 2006).  It is designed specifically for presence-only data, 

is not influenced by prevalence, and does not rely on a presence/absence threshold and therefore 

I chose to use it for this study. To investigate the influence of different spatial grains on model 

performance, I averaged the performance across all species for each spatial grain. I assessed the 

significance of performance changes across spatial grains using the Mann-Whitney U test.  

Grouping analyses – Additionally, I categorized species into groups (trait-based and 

biogeographic) to assess whether the species-geodiversity relationships varied by traits and 

biogeographic region. For traits, I used quantiles of mass and feeding type (assigned based on % 

prevalence in diet; Wilman et al., 2014), aiming to identify scales at which model performance 

was higher (Table 2.1). For diet, frugivores were defined as species consuming ≥ 60 % fruit, 

while the fruit/nectar specialists were species whose diet consisted of ≥ 60% fruit and nectar 

combined. Further, I grouped species by biogeographic region. Subgroups were created for the 

Amazonian region due to its breadth and differences in species distributions in that area. 

Amazonian-1, are restricted distributions near the foothills of the Cordillera Oriental. 
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Amazonian-2 are large distributions with a significant portion of the range at the foothills of the 

Cordillera Oriental. Amazonian-mix, are large distributions combining Amazonian, Andean, 

Sabana and Magdalena, and Amazonian are distributions primarily in the Amazon. 

Table 2.1: Functional groups for study species organized by biogeographic region. Species were 
grouped by diet and quartiles of body mass (Wilman et al. 2014; Helgen et al. 2013) as well as 
biogeographic region (González-Orozco, 2021). For diet, frugivores were defined as species 
consuming ≥ 60 % fruit, while fruitnect were species whose diet consisted of ≥ 60% fruit and 
nectar combined. Subgroups were created for the Amazonian region due to its breadth and 
differences in species distributions in that area. Amazonian-1, are restricted distributions near the 
foothills of the Cordillera Oriental. Amazonian-2 are large distributions with a significant portion 
of the range at the foothills of the Cordillera Oriental. Amazonian -mix, are large distributions 
combining Amazonian, Andean, Sabana and Magdalena, and Amazonian are distributions 
primarily in the Amazon. 

Species Diet group Body mass (g) Body mass quartile 
Biogeographic 
group 

Alouatta palliata folivore 7274.95 Q4 Chocó-Darién 

Ateles fusciceps frugivore 9100 Q4 Chocó-Darién 

Cebus capucinus omnivore 2733.32 Q3 Chocó-Darién 
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Table 2.1 (cont’d) 

Aotus zonalis omnivore 889 Q2 Chocó-Darién 

Saguinus geoffroyi fruitnect 486.5 Q1 Chocó-Darién 

Cebus albifrons omnivore 2629 Q3 Amazonian 

Pithecia hirsuta frugivore 387 Q1 Amazonian 

Cacajao 
melanocephalus frugivore 3100 Q4 Amazonian 

Cheracebus lucifer omnivore 3000 Q3 Amazonian 

Leontocebus fuscus frugivore 6299.99 Q4 Amazonian 

Pithecia milleri omnivore 2240.99 Q3 Amazonian-1 

Plecturocebus 
caquetensis omnivore 1537.52 Q3 Amazonian-1 

Plecturocebus 
ornatus frugivore 1170.5 Q2 Sabana 

Cheracebus lugens omnivore 1500 Q2 Amazonian-2 

Plecturocebus 
discolor omnivore 915 Q2 Amazonian-2 

Ateles belzebuth frugivore 5000 Q4 Amazonian-2 

Cebuella pygmaea nectarivore 125 Q1 Amazonian-2 

Lagothrix 
lagotricha omnivore 1011.32 Q2 Amazonian-mix 

  



 
 

73 
 

Table 2.1 (cont’d) 

Saimiri 
cassiquiarensis omnivore 743.24 Q1 Amazonian-mix 

Sapajus apella omnivore 2500 Q3 Amazonian-mix 

Aotus brumbacki omnivore 875 Q2 Amazonian-mix 

Alouatta seniculus folivore 6145.54 Q4 Amazonian-mix 

Saguinus leucopus fruitnect 440 Q1 Magdalena 

Cebus versicolor omnivore 2629 Q3 Magdalena 

Ateles hybridus frugivore 6394.85 Q4 Magdalena 

Aotus griseimembra omnivore 872.99 Q1 Magdalena 

Saguinus oedipus fruitnect 430 Q1 Magdalena 

Tremarctos ornatus frugivore 140000.63 Q4 Andean 

Nasuella olivacea fruitnect 1339.99 Q2 Andean 

Aotus lemurinus omnivore 872.99 Q1 Andean 

Bassaricyon neblina frugivore 872 Q1 Andean 

 

Post-processing of SDMs and model comparisons – To generate binary suitability maps 

for each species I thresholded both the model without geodiversity (henceforth termed ‘non-

geodiversity models’) and the optimal geodiversity model (i.e., the model at the spatial grain 

with the highest CBI for a species) based on either the minimum training presence (MTP) or the 

10% omission rate, depending on the number of occurrences (MTP for less than or equal to 25, 
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and 10% omission for greater than 25). Next, I used known information about species ranges and 

structural barriers as provided by the International Union for Conservation of Nature (IUCN; 

IUCN 2022) as well as obvious structural boundaries within the expert maps, to create range 

boundary polygons beyond which I excluded areas where the species was unlikely to disperse. 

These post-processed models were then visually inspected, and comparisons were made between 

expert maps (available in BioModelos and based on MaxEnt models & expert opinion or land 

cover types), non-geodiversity models, and optimal geodiversity models. I evaluated gain and 

loss in predicted areas, omission rates, and Schoener's D, a measure of spatial overlap, for each 

model set to understand differences in all predictions. 

2.4 Results 

In this study, the incorporation of geodiversity variables improved the average predictive 

performance of the SDMs. On average, the CBI of the non-geodiversity models was 0.80 and the 

CBI of geodiversity models was 0.93. Specifically, I observed an average increase of 17.2% in 

the Continuous Boyce Index (CBI) across the optimal models for all species when geodiversity 

variables were included. When compared with non-geodiversity models at 1 km (reflecting local 

pixel values), all other models improved in performance across all evaluated spatial 

grains (Figure 2.2; Mann-Whitney U tests, p < 0.05). However, I identified an interesting 

exception for the western mountain coati (Nasuella olivacea), where model performance was 

found to be higher in the model without geodiversity variables compared to the "optimal" 

geodiversity model (Table 2.2). Additionally, when comparing the average model performance 

across all spatial grains, I found marginal superiority for finer grains, particularly 3 km and 9 km. 

However, there was no difference in average model performance among these spatial grains. 

Figure 2.2: The average Continuous Boyce Index (CBI), represented by a diamond, reflects the 
mean value, while the upper and lower whiskers depict the range of observations within 1.5 
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times the interquartile range above the upper hinge or below the lower hinge. This provides an 
overview of the variations in model performance across different spatial grains and highlights the 
impact of incorporating geodiversity variables on the CBI. At every spatial where geodiversity 
was tested (3-33 km), all models with geodiversity variables increased in CBI when compared 
with the local 1 km pixel non-geodiversity models (Mann-Whitney U tests, p < 0.05). 
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Figure 2.3: Permutation importance values (i.e., impact or contribution of individual 
environmental variables in a MaxEnt) across geodiversity variables calculated at different spatial 
grains. Blue bars indicate non-geodiversity variables and red indicate geodiversity variables. The 
shape of each bar represents the density distribution of the permutation importance values for 
each predictor across all species. 

 
When assessing the permutation importance of variables, clear differences were observed 

between non-geodiversity and geodiversity variables. Non-geodiversity variables had higher 

average permutation importance (11.57%) compared to geodiversity variables (5.57%) across all 

species distribution models (Figure 2.3). Among the geodiversity variables, several variables 

stood out with higher average permutation importance (> 5%), including srtm_sq (7.48%), 

bio6_sq (6.19%), bio13_sq (5.39%), and bio5_sq (5.15%) (Table 2B.1). Notably, the 

geodiversity variable srtm_sq exhibited consistently higher average permutation importance than 

the non-geodiversity variable bio14, indicating that there may be instances where geodiversity 

variables are more informative than non-geodiversity variables.  
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 I found some evidence for scale-dependency in the importance of the explanatory 

variables. Non-geodiversity variables generally showed a decreasing trend in importance as the 

spatial grain of geodiversity variables increased, except for bio14 and srtm, indicating their 

diminishing influence as geodiversity was incorporated at coarser scales (Table 2B.1). Further, 

certain geodiversity variables had a modest yet noticeable increase in importance with increasing 

spatial scale, such as bio5_sq (1.84%), bio6_sq (3.73%), bio13_sq (3.75%), and srtm_sq 

(1.55%), whereas the importance of cloud_sq decreased (3.1%) as the spatial scale increased 

(Table 2B.1). The frequency at which certain geodiversity variables were incorporated into 

models also varied with spatial scale. Bio5_sq and bio13_sq were more frequently included in 

models at coarser scales, while bio6_sq and cloud_sq were more frequently incorporated at finer 

scales. In general, the variables srtm and srtm_sq were frequently included in the top models 

across scales, indicating their robust influence in capturing species-environment relationships. 

Overall, geodiversity variables ranked within the top three variables in terms of permutation 

importance for the optimal geodiversity models of 23 species (Table 2.2), with an average 

permutation importance of 19.7%. 

The responses of individual species to geodiversity variables at different spatial scales 

were highly variable, highlighting the complexity of species-environment relationships. Notably, 

models of species such as the common woolly monkey (Lagothrix lagotricha) and the Andean 

bear (Tremarctos ornatus) had substantial increases in the importance of geodiversity variables 

with scale. For instance, in L. lagotricha models, the permutation importance of bio6_sq, 

increased from 0% at 3 km to 19.97% at 33 km—the spatial grain that resulted in the highest 

model performance for this species. Similarly, as the spatial scale increased from 3 km to 33 km 

for T. ornatus models, the permutation importance of srtm_sq increased from 3.49% to 8.4%, 
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and for bio6_sq, increased from 4.5% to 21.35%. Interestingly, for T. ornatus, the model with the 

highest performance was at 3 km spatial grain. While scale dependence was evident for certain 

variables, the magnitude and direction of the effects varied considerably by species.  

Table 2.2: Percent increase in Continuous Boyce Index (CBI) model performance with inclusion 
of geodiversity variables. Percent increase in model performance achieved by incorporating 
geodiversity variables compared to models without geodiversity variables. The optimal 
geodiversity grain where model performance was highest for each species and whether this grain 
is idiosyncratic when considering optimal grains for specific traits (Figure 2.4) is also noted. 
Species denoted with (*) indicate those for which geodiversity variables were ranked within the 
top three in terms of permutation importance. 

Species CBI: non-
geodiversity 

CBI: 
geodiversity 

CBI: % 
increase 

Optimal 
geodiversity 
grain (km2) 

Optimal grain 
idiosyncratic? 

(yes/no) 

Alouatta palliata* 0.79 0.89 13.31 3 no 

Alouatta seniculus 0.98 0.99 0.82 33 no 

Aotus brumbacki* 0.74 0.90 20.96 15 no 

Aotus griseimembra* 0.94 0.98 4.46 27 yes 

Aotus lemurinus* 0.77 0.91 18.60 15 no 

Aotus zonalis* 0.75 0.88 18.08 27 yes 

Ateles belzebuth* 0.88 0.96 8.52 15 no 

Ateles fusciceps* 0.87 0.93 7.14 15 no 

Ateles hybridus 0.96 0.97 1.67 9 no 
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Table 2.2 (cont’d) 

 
Bassaricyon neblina 0.89 0.89 0.04 15 no 

Cacajao 
melanocephalus* 0.66 0.93 39.31 33 no 

Cebuella pygmaea* 0.62 0.93 50.05 33 - 

Cebus albifrons* 0.95 0.97 2.78 3 yes 

Cebus capucinus* 0.91 0.97 7.24 15 no 

Cebus versicolor* 0.88 0.96 9.20 3 no 

Cheracebus lucifer 0.68 0.88 28.71 9 no 

Cheracebus lugens* 0.75 0.94 24.97 3 yes 

Lagothrix lagotricha* 0.85 0.97 13.43 33 yes 

Leontocebus fuscus* 0.49 0.90 84.12 3 no 

Nasuella olivacea 0.89 0.83 -7.45 9 no 

Pithecia hirsuta 0.88 0.97 9.58 15 no 

Pithecia milleri* 0.77 0.83 8.66 27 yes 

Plecturocebus 
caquetensis* 0.74 0.82 11.00 3 no 

Plecturocebus discolor* 0.70 0.89 27.43 9 no 

Plecturocebus ornatus 0.78 0.94 19.62 3 no 

Saguinus geoffroyi 0.87 0.89 2.84 33 no 

Saguinus leucopus 0.96 0.96 0.42 9 no 

Saguinus oedipus* 0.86 0.92 7.32 3 no 

Saimiri 
cassiquiarensis* 0.64 0.94 47.05 21 yes 

Sapajus apella* 0.66 0.98 48.84 3 no 

Tremarctos ornatus* 0.93 0.97 5.15 3 no 
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The responses of individual species to geodiversity variables at different spatial scales 

were highly variable, highlighting the complexity of species-environment relationships. Notably, 

models of species such as the common woolly monkey (Lagothrix lagotricha) and the Andean 

bear (Tremarctos ornatus) had substantial increases in the importance of geodiversity variables 

with scale. For instance, in L. lagotricha models, the permutation importance of bio6_sq, 

increased from 0% at 3 km to 19.97% at 33 km—the spatial grain that resulted in the highest 

model performance for this species. Similarly, as the spatial scale increased from 3 km to 33 km 

for T. ornatus models, the permutation importance of srtm_sq increased from 3.49% to 8.4%, 

and for bio6_sq, increased from 4.5% to 21.35%. Interestingly, for T. ornatus, the model with the 

highest performance was at 3 km spatial grain. While scale dependence was evident for certain 

variables, the magnitude and direction of the effects varied considerably by species.  

I conducted additional analyses to evaluate the model performance of species belonging 

to specific functional groups, providing valuable insights into their relationships with the 

environment. These functional groups were defined based on quartiles of mass and diet 

preference. The results revealed that spatial grain had varying impacts on model performance 

within these functional groups. Specifically, when grouping species by mass, I observed that 

differences in model performance across spatial grains were relatively subtle. Quantile 1 and 4 

species exhibited slight increases in average performance at both fine (3 km) and coarse (33 km) 

spatial grains, while Quantiles 2 and 3 showed higher performance at a finer scale of 9 km 

(Figure 2.4a). In contrast, when considering feeding types, I observed more pronounced 

differences in model performance across spatial grains. Folivores demonstrated the highest 

average performance at both fine (3 km) and coarse (33 km) spatial grains, while frugivores had 

highest average performance at low to intermediate scales (3 - 15 km) with another increase at 33 
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km, and fruit/nectar specialists displayed the highest performance at fine scales (3 - 9 km) 

(Figure 2.4b). Omnivores exhibited the highest average performance at low (9 km) to 

intermediate (15 km) scales (Figure 2.4b). However, similar to the analysis conducted on all 

species, it is important to emphasize that the optimal models for individual species within these 

functional groups sometimes exhibited idiosyncratic patterns (i.e., scale of optimal model 

performance for a species not aligning with highest performing grain sizes for at least one of the 

species’ associated traits; 22.6% of species; Table 2.2), highlighting the species-specific 

responses to geodiversity variables and the considerations of spatial scale.  

During the evaluation of the SDMs, I conducted a spatial assessment and compared them 

with expert-generated maps. Overall, the models incorporating geodiversity variables performed 

well and predicted distributions that aligned with species ecology. To assess model performance, 

I examined spatial gain and loss, Schoener's D, and the omission rate for expert, non-

geodiversity, and optimal geodiversity models (models with the highest CBI for each species) 

(Table 2A.1). On average, expert models exhibited a higher omission rate (20%) compared to 

both the non-geodiversity models (14.1%) and geodiversity models (13.84%). The geodiversity 

models, on average, had slightly fewer omissions compared to the non-geodiversity models. 

Both the non-geodiversity and geodiversity models demonstrated substantial gains and losses 

compared to the expert models. Specifically, the geodiversity models showed slightly fewer 

gains (7.79%) but more losses (7.45%) than the non-geodiversity models (gains: 8.35%, losses: 

5.28%). This indicates that, in general, the geodiversity models predicted less suitable areas than 

the expert and non-geodiversity models. 
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Figure 2.4: Boxplots of model performance for functional groups based on mass and diet 
preference. The functional groups were defined using quartiles of mass and diet information 
(Wilman et al. 2014, Helgen et al. 2013). The analysis reveals varying impacts of spatial grain on 
model performance within these groups. When considering mass, subtle differences in 
performance were observed across spatial grains, with Quantile 1 and 4 species showing slight 
average increases in performance at fine and coarse scales, while Quantile 2 exhibited higher 
performance at low and intermediate scales and Quantile 3 had higher performance at finer 
scales. In terms of feeding types, more pronounced differences in model performance were 
found. Folivores demonstrated the highest average performance at both fine and coarse scales, 
and frugivores had highest average performance at fine to intermediate scales. Fruit/nectar 
specialists had the highest average performance at fine scales. Omnivores exhibited the highest 
performance at low to intermediate scales. This figure excludes one nectivorous species. 

 

Furthermore, the assessment of Schoener's D values, representing the overlap between 

the geodiversity models and the expert models, revealed that, on average, the geodiversity 

models exhibited lower values (65.7%) compared to the non-geodiversity models (70.2%), 

indicating less overlap with the expert models (Table 2A.1). I also evaluated variations observed 

among species from different biogeographic regions. For instance, species in the Andean region 
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generally showed more gains in suitable habitat in the geodiversity models, resulting in slightly 

higher Schoener's D values and lower omission rates compared to the non-geodiversity models 

(Table 2A.1). Similarly, species in the Magdalena and Amazonian-1 regions, also areas of high 

topographic heterogeneity, demonstrated a closer alignment between the geodiversity models 

and expert models. In contrast, the non-geodiversity models are better aligned with the expert 

models in the Amazonian-2 and Amazonian-mix regions, and marginally better aligned in the 

Chocó-Darién region, regions of lower topographic heterogeneity.  

It is worth noting that many of the geodiversity models in these regions still produced 

ecologically reasonable predictions, despite differences from the expert-generated maps. For 

example, even though the geodiversity model for the Common woolly monkey (Lagothrix 

lagotricha) in general had a slightly higher omission rate compared to the expert model, it 

predicted increased suitable area and had lower omission in the northern part of the range when 

compared to both the non-geodiversity model and expert model (Figure 2.5a). Further, there was 

lower suitability in the Colombian Llanos (Sabana region; Figure 2.1), which are shown as not 

being suitable in the expert model. For the Gray-handed night monkey, Aotus griseimembra, 

both the non-geodiversity and geodiversity models better captured the occurrence records than 

the expert model, however the non-geodiversity model predicted suitability in high elevation 

areas whereas the geodiversity model does not, which is more closely aligned to the species’ 

ecology as a lowland primate (Figure 2.5b). In contrast, there were instances where the 

geodiversity models exhibited limitations in capturing the full distribution range of certain 

species. For six species (Cheracebus lugens, Pithecia hirsuta, Plecturocebus caquetensis, 

Saimiri cassiquiarensis, Cebus albifrons, Cebuella pygmae) in the Amazonian regions, the 

optimal geodiversity models appeared to be constrained to the distribution of rivers in the 
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Amazon. This constraint was most evident from the average difference in Schoener's D of 0.17, 

indicating challenges in fully representing the complete distribution range of these species (Table 

2A.1). 

Figure 2.5: Comparisons of expert maps and thresholded models made without and with 
geodiversity variables for two species, the Common woolly monkey (Lagothrix lagotricha) and 
Gray-handed night monkey (Aotus griseimembra). Lighter colors indicate higher suitability and 
occurrence records for each species are denoted by red circles. Panel a) represents the expert map 
and thresholded models for species L. lagotricha, where there is less suitability in northeastern 
Colombia in the geodiversity model than the model without geodiversity and aligns better with 
the expert map. Predictions in the northernmost part of the species range in the geodiversity 
model (label 1) better capture the occurrence records than both the expert map and the non-
geodiversity model. Panel b) represents the expert maps and models for A. griseimembra. Both 
the non-geodiversity and geodiversity models capture the occurrence records better than the 
expert model; however, the non-geodiversity model predicts suitability in high elevation areas 
whereas the geodiversity model does not (label 2), the latter being more closely aligned to the 
species’ ecology as a lowland primate. 
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2.5 Discussion 

This study provides valuable insights into the influence of geodiversity on species 

distribution models (SDMs) in the Northern Andes, encompassing both general patterns and 

species-specific responses. By incorporating geodiversity variables, I observed a significant 

impovement in SDM performance both statistically and spatially, which aligned with my 

expectations. While non-geodiversity variables predominantly shaped species distributions, 

certain geodiversity variables, such as topographic roughness and temperature and precipitation 

variations, exhibited notable influences. The response to geodiversity also exhibited species-

specific variation, underscoring the individualistic nature of species-environment interactions 

and the challenge of predicting optimal performance grains based on shared traits. Furthermore, 

the influence of geodiversity varied across biogeographic regions, with topographic 

heterogeneity playing a pivotal role, while the efficacy of geodiversity predictors for enhancing 

model performance diminished in regions characterized by low heterogeneity. 

2.5.1 Statistical model performance and scale-dependency (Expectation 1) 

Consistent with my expectations, incorporating geodiversity variables yielded significant 

improvements in the statistical performance of SDMs, as indicated by an average increase of 

17.2% in the Continuous Boyce Index (CBI), a measure of the predictive performance of the 

model, despite geodiversity variables having on average lower permutation importance than local 

level variables. These improvements were consistently observed across various spatial grains, 

which can be attributed to the complementary information provided by geodiversity variables, 

which capture variability of the physical environment. This suggests that geodiversity variables 

may capture crucial ecological information that goes beyond traditional predictors, providing 

valuable insights into species-environment relationships and improving the predictive power of 
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the models. These findings highlight the potential of geodiversity variables in refining SDMs and 

enhancing our understanding of species distributions.  

I observed clear differences between non-geodiversity and geodiversity variables in terms 

of permutation importance of variables. Non-geodiversity variables generally had higher average 

permutation importance (11.57%) compared to geodiversity variables (5.57%) across all species 

distribution models. This suggests that factors other than geodiversity, such as local level climate 

or topography, play a more prominent role in shaping species distributions. Among the 

geodiversity variables examined, topographic roughness (srtm_sq) exhibited the highest average 

permutation importance (7.48%), indicating its stronger influence on species-environment 

relationships. Additionally, geodiversity variables related to temperature and precipitation, 

namely min temperature of coldest month (bio6_sq), precipitation of wettest month (bio13_sq), 

and max temperature of warmest month (bio5_sq), had higher levels of permutation importance 

(> 5%), suggesting that variation in topographic roughness and certain climate extremes can also 

play a role in shaping these species’ distributions. Specifically, topographic roughness may 

indicate important dispersal limitations for species, while temperature and precipitation 

geodiversity variables reflect the spatial variation of important ecological drivers influencing 

species' physiological tolerances and resource availability.  

Incorporating geodiversity variables in SDMs provides valuable complementary 

information and captures variability of the physical environment. However, it is important to 

recognize that the responses of individual species to geodiversity variables can be idiosyncratic. 

One notable example is the western mountain coati (Nasuella olivacea), for which the model 

without geodiversity variables statistically outperformed the "optimal" geodiversity model 

(Table 2.2). This suggests that factors other than geodiversity variables may play a more 
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influential role in shaping the distribution patterns of this particular species. However, despite 

the lower CBI in the geodiversity model for this species, the spatial performance of the model 

remained ecologically reasonable and actually omitted fewer occurrence records than both the 

expert and non-geodiversity models (Table 2A.1). Therefore, although geodiversity may not be 

the dominant driver for this species (only 8% permutation importance), it still contributes 

valuable information that improves the model's ability to predict suitability.  

I found some evidence for scale dependence in the importance of the geodiversity 

variables. Non-geodiversity variables generally decreased in importance as the spatial grain 

increased. At these coarser scales, some geodiversity variables become more influential in 

shaping species distributions, possibly reflecting the importance of broader landscape patterns 

and environmental gradients. The variables with the greatest increase in permutation importance 

with spatial grain were climate variables minimum temperature of the coldest month (bio6_sq) 

and precipitation of the wettest month (bio13_sq) (Table 2B.1), which is in line with other 

research showing the role of climate increases at broader scales (Pearson & Dawson, 2003; 

Blach-Overgaard et al., 2010). However, despite the average increase in permutation importance 

for some of these explanatory variables, the frequency at which geodiversity variables were 

incorporated into models also varied with spatial scale (Table 2B.1). Maximum temperature of 

the warmest month (bio5_sq) and precipitation of the wettest month (bio13_sq) were more 

frequently included in models at coarser scales, while minimum temperature of the coldest 

month (bio6_sq) and mean annual cloud cover (cloud_sq) were more frequently incorporated at 

finer scales (Table 2B.1). These findings suggest that some geodiversity variables may be more 

informative at specific scales, reflecting the scale- and species-dependent nature of geodiversity 

in shaping species distributions. However, similar to Bailey et al. (2018), the elevation variables 
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(srtm and srtm_sq) consistently demonstrated high permutation importance and were frequently 

incorporated into models across scales (Table 2B.1). These variables, representing elevation and 

topographic roughness, respectively, likely play crucial roles in shaping species distributions 

across scales.  

2.5.2 Functional groups and the influence of geodiversity (Expectation 2) 

For certain species’ traits, the optimal spatial grains of geodiversity aligned with my 

expectations whereas for others, they differed from expectations (Figure 2.4; Table 2.2). 

Specifically, I anticipated that larger-bodied species would have optimal models at larger spatial 

grains, and folivores would exhibit higher model performance at finer spatial grains. However, 

the results indicate that both fine and coarse spatial grains contribute to better model 

performance for these groups (Figure 2.4). Further, for omnivores I expected higher performance 

at fine and coarse grains, but for most species, model performance was highest at low to 

intermediate grains. Frugivores and fruit/nectar specialists did follow expected patterns, with 

frugivores having optimal grains across fine and coarse scales and fruit/nectar specialists having 

higher performance at fine grains. 

In the case of the Andean bear (Tremarctos ornatus), characterized by its large body size 

(Figure 2.4a; Q4) and primarily frugivorous diet (Figure 2.4b; Frugivore), the optimal 

geodiversity model was at a spatial grain of 3 km, corresponding to the spatial grains associated 

with the highest average performance for these traits (Figure 2.4), which aligned with my 

original expectations for frugivorous species. Despite geodiversity variables contributing only 

12.8% to the optimal model, this model exhibited closer alignment with the expert model than 

the non-geodiversity model. The importance of fine-scale variation may be particularly relevant 

for the Andean bear due to its specific habitat requirements and ecological adaptations. Being a 
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large-bodied mammal, the Andean bear relies on extensive home ranges to meet its resource 

needs. Despite its body size, fine-scale variations in habitat conditions, including terrain 

roughness and microclimate gradients, play a crucial role in providing suitable foraging 

opportunities, shelter, and access to resources such as food and water (Figure 2.4b; Frugivore) 

(García-Rangel, 2012). The species is known to inhabit diverse montane ecosystems with rugged 

mountainous terrain, where fine-scale variations in terrain roughness and microclimate 

conditions may influence the availability of suitable den sites, access to preferred food sources, 

and the bear's ability to navigate through challenging landscapes (García-Rangel, 2012), likely 

leading to an optimal model with geodiversity variables reflecting the spatial grain of this 

variability.  

The results also suggest that even if species are closely related in terms of their shared 

traits, they respond differently to geodiversity and their response also varies by spatial scale. This 

finding highlights the unique nature of species’ interactions with their environment and suggests 

that shared traits do not necessarily determine species’ responses to geodiversity variables and 

their scales of influence. For instance, based on the trait-grouping results in Figure 2.4, I 

expected the Common woolly monkey (Lagothrix lagotricha), an omnivorous species in the Q2 

mass quartile, to have an optimal grain at low to intermediate scales. However, I found that the 

optimal spatial grain was 33 km, suggesting that omnivores like this species have a variable 

response to geodiversity across both fine and coarse scales, which supports my original 

expectation for this trait group. Geodiversity played a significant role for this species, with a 

notable permutation importance of 57.87%. The Common woolly monkey is primarily found in 

lowland primary terra firma forests, occasionally utilizing secondary and disturbed habitats, and 

they seasonally enter flooded forests to feed on fruits (Stevenson et al., 1994). Woolly monkeys 
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have a diverse diet consisting of fruits, arthropods, leaves, seeds in unripe fruits, flowers, and 

other minor items. The composition of their diet varies throughout the year, depending on fruit 

abundance, which tends to be higher in the rainy season when precipitation is higher. During 

periods of fruit scarcity, they rely more on leaves, unripe fruits, and flowers (Stevenson et al., 

1994). These dietary preferences and seasonal movements may influence the optimal spatial 

grain of the geodiversity model, where the permutation importance of spatial variation in bio13 

(precipitation of the wettest month; bio13_sq) was actually higher (6.75%) than the non-

geodiversity version of that variable (5.49%). The broader-scale patterns of fruit availability and 

distribution within the lowland forest landscape might be better captured at a spatial grain of 33 

km, allowing for more robust predictions of suitable habitats for the species (Figure 2.5a).  

2.5.3 Biogeographic regions and influence of geodiversity in SDMs (Expectation 3) 

I found support for my expectation that species-geodiversity relationships differed by 

biogeographic region, likely due to biogeographic differences in habitat heterogeneity. Diverse 

and varied landscapes provide more opportunities for geodiversity variables to capture important 

ecological patterns (Lawler et al., 2015). Regions with high topographic geodiversity, such as the 

Andean, Magdalena, and Amazonian-1 regions, likely exhibit greater heterogeneity in terms of 

topography and climate. This heterogeneity provides a range of microhabitats and ecological 

niches, allowing species to occupy diverse habitats within these regions. Conversely, regions in 

the Amazonian, and Chocó-Darién may have different characteristics, such as less pronounced 

heterogeneity or a higher proportion of homogeneous habitats. Specifically for the Amazonian, 

Amazonian-2, and Amazonian-mix habitats certain species had distributions constrained to 

rivers. It is possible that this issue stems from overfitting to noise in areas with generally low 

habitat heterogeneity (Merow et al., 2013). Rivers, being prominent features in the landscape, 
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may introduce a significant amount of variability that is unrelated to the ecological requirements 

of these species (excluding Cebuella pygmaea). This can lead to models that overly associate 

species presence with riverine habitats, incorrectly constraining their distributions along 

waterways and omitting many occurrence records (species: Cheracebus lugens, Pithecia hirsuta, 

Plecturocebus caquetensis, Saimiri cassiquiarensis, Cebus albifrons, Cebuella pygmae; Table 

2.1). This may have led to discrepancies between the geodiversity models for these species and 

the expert models, which consider a broader range of ecological factors and account for species' 

ecological requirements beyond just the presence of rivers. Due to this, caution should be 

exercised to avoid overfitting to noise or artifacts in the data, especially in areas with low habitat 

heterogeneity where there is less benefit to using these kinds of explanatory variables. 

2.5.4 Conclusions: 

The inclusion of geodiversity variables in species distribution models (SDMs) in this 

study offers valuable insights into the role of spatially-varying environmental heterogeneity on 

species distributions. Model performance across different spatial grains indicated that 

geodiversity had the strongest influence on most species at finer scales, particularly at 3 km and 

9 km. Two thirds of all species had optimal geodiversity models at spatial grains of 3 - 15 km, 

with only one third of species having optimal spatial grains of 27 km and above (Table 2.2). 

Incorporating geodiversity variables at fine to intermediate scales may be sufficient to increase 

model performance for many species and may better represent species-environment relationships 

and environmental filtering at these scales. To effectively implement this approach, careful 

selection of geodiversity variables is crucial and it may be prudent to test geodiversity variables 

at multiple scales given that a “one size fits all” approach does not work for all species. This 

study highlights the importance of incorporating topographic roughness (srtm_sq) and climate-
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related variables, such as bio6_sq and bio13_sq, which consistently demonstrated high 

importance for improving model performance (Table 2B.1). These variables capture key 

topographic and climatic factors that shape species distributions in this region. However, other 

variables may also be promising and perhaps more appropriate for certain species (e.g., species 

found in the Amazon basin) including annual averages of climate and precipitation, and variables 

related to vegetation including vertical canopy structure (i.e., from Global Ecosystem Dynamics 

Investigation; GEDI) and even soil types (Fischer et al. 2008). 

In general, geodiversity models made for species in regions with high heterogeneity had 

higher or equal levels of spatial overlap with expert models than non-geodiversity models. 

However, it is important to acknowledge that expert models often incorporate broader ecological 

knowledge beyond the specific variables considered in geodiversity models. Expert models may 

encompass historical or anecdotal evidence, species-specific nuances, and additional ecological 

factors like known species interactions that are not routinely captured in species distribution 

models (Choy et al., 2009; Velásquez-Tibatá et al., 2019; Skroblin et al., 2021) and not explicitly 

represented in geodiversity variables. This broader ecological context in expert models can lead 

to different extents of suitable area compared to our models, making interpretation of differences 

challenging.  

To ensure a comprehensive understanding of species-environment relationships and 

effectively refine species distribution models (SDMs) for conservation purposes, it is essential to 

embrace an integrated approach that incorporates geodiversity alongside expert knowledge and 

field observations (Urbina-Cardona et al., 2019; Merow et al., 2022). By combining these 

complementary methods, we can harness the strengths of both approaches, leading to more 

robust and reliable predictions (Velásquez-Tibatá et al., 2019; Merow et al., 2022) which are 
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essential given the utility of SDMs for conservation such as target species prioritization, guiding 

future sampling efforts, and as inputs into biodiversity assessments (Franklin, 2013). Hence, a 

collaborative and comprehensive strategy that integrates geodiversity with expert insights 

presents a promising avenue for advancing conservation strategies and safeguarding biodiversity 

for generations to come. 

2.6 Data Availability Statement 

All code used in this study, including data processing, analysis, and visualizations, is 

publicly available on GitHub at https://github.com/bioXgeo/neotropical_geodiv.  
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APPENDIX 2A: SPATIAL EVALUATION METRICS OF SPECIES DISTRIBUTION MODEL PERFORMANCE 

Table 2A.1: Spatial evaluation of species distribution model performance. This table provides an assessment of the performance of 
species distribution models through a spatial comparison with expert-generated maps. The evaluation aimed to identify similarities and 
variations between the models and expert maps, with a focus on the effectiveness of incorporating geodiversity variables. The models 
incorporating geodiversity variables demonstrated overall good performance, generating distributions that were consistent with species 
ecology. The evaluation of model performance included the analysis of percent spatial gain and loss, Schoener's D (noted “D”), and 
the omission rate, which indicates the percentage of records left out of the model prediction. These metrics were calculated for the 
expert models, models without geodiversity variables, and the optimal geodiversity models. 

 

SPECIES GAIN 
GEODIVERSITY 

LOSS 
GEODIVERSITY 

GAIN NON- 
GEODIVERSITY 

LOSS NON- 
GEODIVERSITY 

D 
GEODIVERSITY 

D NON- 
GEODIVERSITY 

OMISSION 
GEODIVERSITY 

OMISSION NO 
GEODIVERSITY 

OMISSION 
EXPERT 

BIOGEOGRAPHIC 
REGION 

Alouatta palliata 8.01 0.18 7.35 0.25 0.23 0.24 11.11 11.11 16.67 Choco-Darien 

Aotus zonalis 4.88 2.61 4.21 4.61 0.89 0.89 5.88 5.88 23.53 Choco-Darien 

Ateles fusciceps 4.28 11.93 4.89 7.76 0.61 0.75 9.09 9.09 9.09 Choco-Darien 

Cebus capucinus 6.16 3.10 5.91 3.82 0.79 0.80 12.33 12.33 24.66 Choco-Darien 

Saguinus geoffroyi 4.76 10.97 4.47 14.47 0.70 0.61 12.50 12.50 0.00 Choco-Darien 

Average 5.62 5.76 5.37 6.18 0.65 0.66 10.18 10.18 14.79   
Cacajao 
melanocephalus 0.67 10.76 0.85 0.86 0.71 0.98 6.67 6.67 6.67 Amazonian 

Cebus albifrons 1.73 12.50 2.30 6.98 0.64 0.80 69.49 69.49 66.95 Amazonian 

Cheracebus lucifer 0.80 20.57 0.56 18.50 0.33 0.40 0.00 0.00 6.67 Amazonian 

Leontocebus fuscus 1.69 5.37 1.73 3.87 0.82 0.87 7.41 7.41 11.11 Amazonian 

Pithecia hirsuta 1.53 23.97 1.35 22.63 0.37 0.41 16.67 16.67 4.17 Amazonian 

Average 1.28 14.63 1.36 10.57 0.58 0.69 20.05 20.05 19.11   
Pithecia milleri 2.75 1.89 2.90 1.11 0.93 0.93 5.56 5.56 11.11 Amazonian-1 

Plecturocebus 
caquetensis 16.84 13.80 23.63 11.66 0.54 0.48 50.00 50.00 50.00 Amazonian-1 

Average 7.15 7.36 9.66 6.33 0.76 0.74 21.30 21.30 20.37   
Ateles belzebuth 6.23 5.11 6.30 3.52 0.85 0.86 14.55 14.55 25.45 Amazonian-2 
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Table 2A.1 (cont’d) 

Cebuella pygmaea 1.35 8.68 1.47 1.76 0.57 0.91 22.22 22.22 27.78 Amazonian-2 

Cheracebus lugens 3.33 15.15 4.63 3.93 0.62 0.89 12.50 12.50 4.17 Amazonian-2 

Plecturocebus 
discolor 9.49 1.65 12.42 0.00 0.88 0.85 50.00 50.00 50.00 Amazonian-2 

                      

Average 6.37 8.23 7.35 2.83 0.70 0.83 19.89 19.89 19.85   
Alouatta seniculus 0.64 16.67 0.58 14.75 0.63 0.67 6.02 6.02 1.88 Amazonian-mix 

Aotus brumbacki 6.36 6.61 7.49 3.83 0.88 0.88 17.65 17.65 17.65 Amazonian-mix 

Lagothrix lagotricha 9.52 3.51 10.25 2.44 0.74 0.74 8.73 8.73 7.94 Amazonian-mix 

Saimiri 
cassiquiarensis 8.29 15.26 9.03 5.36 0.54 0.76 11.32 11.32 3.77 Amazonian-mix 

Sapajus apella 0.86 7.90 0.92 5.34 0.83 0.88 9.02 10.53 3.76 Amazonian-mix 

Average 5.14 9.99 5.66 6.34 0.72 0.78 10.55 10.85 7.00   
Ateles hybridus 22.66 1.21 22.81 0.98 0.48 0.48 12.82 12.82 35.90 Magdalena 

Cebus versicolor 13.02 12.41 14.42 5.99 0.74 0.75 0.00 0.00 18.18 Magdalena 

Saguinus leucopus 34.45 0.92 33.56 1.29 0.33 0.34 7.26 7.26 58.87 Magdalena 

Saguinus oedipus 19.85 0.01 19.93 0.00 0.56 0.56 4.62 4.62 27.69 Magdalena 

Aotus griseimembra 16.27 1.32 18.56 0.67 0.59 0.56 8.11 8.11 31.08 Magdalena  

Average 21.25 3.17 21.86 1.79 0.54 0.54 6.56 6.56 34.34   
Aotus lemurinus 20.56 3.87 20.79 3.46 0.62 0.62 0.00 0.00 12.99 Andean 

Bassaricyon neblina 1.48 5.73 1.27 6.18 0.73 0.71 0.00 0.00 18.75 Andean 

Nasuella olivacea 1.73 0.98 1.20 1.50 0.80 0.81 17.86 25.00 21.43 Andean 

Tremarctos ornatus 9.36 0.05 10.69 0.00 0.61 0.58 11.54 10.58 22.12 Andean 

Average 8.28 2.66 8.49 2.79 0.69 0.68 7.35 8.89 18.82   
Plecturocebus ornatus 1.86 6.38 2.43 6.23 0.79 0.80 8.33 8.33 0.00 Sabana 

Overall average 7.79 7.45 8.35 5.28 0.66 0.70 13.85 14.09 20.00 
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APPENDIX 2B: PERMUTATION IMPORTANCE ACROSS SPATIAL GRAIN 

Table 2B.1: Average permutation importance for each variable across spatial grains. The 
numbers in parentheses represent the frequency of each variable being among the top seven 
contributing variables in a species distribution model. 
 

   
Spatial grain (km) 

  

variable 3 9 15 21 27 33 

bio13 9.7 (27) 7.76 (23) 8.13 (22) 6.42 (22) 6.77 (23) 6.45 (22) 

bio13_sq 3.95 (15) 3.78 (14) 4.69 (19) 5.36 (22) 6.82 (23) 7.71 (22) 

bio14 5.61 (16) 6.14 (17) 7.84 (18) 7.96 (21) 7.03 (21) 7.07 (21) 

bio14_sq 3.88 (16) 4.65 (18) 4.93 (16) 4.86 (17) 4.46 (16) 4.71 (14) 

bio5 11.36 (20) 11.46 (23) 10.35 (23) 9.91 (21) 9.34 (17) 9.63 (18) 

bio5_sq 4.45 (15) 4.78 (11) 4.28 (13) 5.24 (11) 5.88 (17) 6.29 (19) 

bio6 14.19 (19) 13.94 (23) 13.42 (23) 12.8 (23) 11.93 (24) 11.8 (23) 

bio6_sq 4.38 (17) 4.95 (17) 5.61 (14) 6.68 (16) 7.39 (14) 8.13 (14) 

cloud 7.77 (22) 7.31 (21) 7.65 (20) 7.97 (22) 7.62 (21) 6.79 (18) 

cloud_sq 6.61 (21) 5.67 (19) 4.49 (18) 3.74 (13) 3.76 (12) 3.51 (14) 

srtm 21.56 (25) 20.91 (25) 20.99 (25) 22.06 (25) 22.04 (25) 19.8 (27) 

srtm_sq 6.55 (18) 8.66 (20) 7.62 (20) 6.99 (18) 6.97 (18) 8.1 (18) 
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CHAPTER 3: 

EVALUATING THE EFFECTIVENESS OF PROTECTED AREAS AND COMMUNITY-

MANAGED LANDS IN CAPTURING MULTIPLE DIMENSIONS OF FRUGIVOROUS 

BIODIVERSITY IN THE TROPICAL ANDES 

For submission to Biological Conservation 

Co-authors include: Phoebe L. Zarnetske 

3.1 Abstract 

The Tropical Andes is known for its remarkable biodiversity; however, this region faces 

significant anthropogenic pressures such as habitat loss and climate change, making it a 

conservation priority. Conservation efforts often concentrate on protecting areas with high 

taxonomic diversity (TD), overlooking the essential roles played by species that contribute to 

fotherecosystem functioning– functional diversity (FD). To ensure comprehensive conservation 

priorities, a broader perspective considering various dimensions of diversity is necessary. 

Further, there needs to be a better understanding of how community managed lands contribute to 

the protection of biodiversity as they are essential for reaching spatial conservation targets. Here, 

I utilized the Frugivoria trait database to evaluate the functional diversity of frugivorous birds 

and mammals, which perform the vital role of seed dispersal, an essential ecosystem service 

necessary to maintain forest structure and ecosystem health. Across the Tropical Andes region, I 

quantified the spatial alignment and mismatch between taxonomic and functional diversity for 

areas with the highest diversity values in the region. Our findings revealed many spatial 

misalignments between the highest levels of FD and TD, emphasizing the limitations of relying 

solely on TD for conservation and the potential biodiversity trade-offs of doing so. Nevertheless, 

some alignment between taxonomic and functional diversity emerged for mammals and birds, 

identifying potential areas for multidimensional biodiversity conservation. Further, I found that 
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some stricter protected areas (PAs) encapsulate different diversity dimensions better than less-

strict areas and this differed among taxa.  Similarly, I examined the distribution of Functionally 

Unique, Specialized, and Endangered (FUSE) species and their protection status across strict and 

less strict PAs. Some stricter protected zones had better coverage of FUSE species distributions, 

though many areas of high FUSE species richness remain unprotected. I also found that 

community managed lands had higher levels of FD higher than other protected areas within the 

same protected area category. This has strong implications for the utility of other effective 

conservation measures (OECMs) such as Indigenous Lands and community managed areas in 

protecting areas of high functional diversity. Our results highlight the need for a more holistic 

conservation approach that considers multiple dimensions of diversity in the context of varying 

degrees of protection and PA management. As global conservation goals target the protection of 

30% of the Earth's land by 2030, our study underscores the importance of considering multiple 

dimensions of diversity and emphasizes the potential of OECMs in ensuring effective and 

sustainable conservation strategies within the Tropical Andes.  

3.2 Introduction 

The Tropical Andes, despite covering less than 0.5% of the Earth's land surface, is a 

remarkable biodiversity hotspot, housing an impressive 10% of all known species and with the 

highest number of endemic plants and vertebrates in the world (Myers et al., 2000). However, 

this biodiversity is threatened by global change, primarily driven by deforestation and 

anthropogenic climate change (IPCC, 2022). In response to the pressing need for global 

biodiversity conservation, the UN Biodiversity Conference (COP15) adopted the "Kunming-

Montreal Global Biodiversity Framework" (GBF) in 2022. The GBF outlines ambitious targets, 

including effective conservation and management of at least 30% of the world's lands, inland 
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waters, coastal areas, and oceans, with a focus on areas of particular importance for biodiversity 

and ecosystem functioning and services and emphasizes the importance of indigenous and 

traditional territories for doing so. However, while the Tropical Andes boasts exceptional 

biodiversity, most studies investigating the spatial distribution of biodiversity have only focused 

on metrics such as species richness, species endemism, and vulnerability. These approaches tend 

to prioritize taxonomic diversity, the number of species present, and may overlook other vital 

dimensions of biodiversity, such as the diversity of traits exhibited by species within an 

ecosystem that help maintain ecosystem functioning (i.e., functional diversity; Petchey and 

Gaston, 2006) and evolutionary relatedness (phylogenetic diversity; Faith et al., 2004). Further, 

there is an incomplete understanding of how lands governed by Indigenous peoples and local 

communities, which cover almost 37% of all remaining natural lands across Earth, contribute the 

protection of these different dimensions of diversity, which has strong implications for the ability 

to reach biodiversity conservation targets (Garnett et al. 2018) such as the GBF. Quantifying 

multiple dimensions of diversity is essential for more comprehensive assessments of biodiversity 

(Borges et al., 2021; Brum et al., 2017; Devictor et al., 2010; Pollock et al., 2017). In particular, 

spatial analysis of multiple dimensions of diversity can determine mismatches and alignments 

among the dimensions and inform management and prioritization efforts aimed at conserving 

areas with high multidimensional diversity. Functional diversity, encompassing the variety of 

ecological functions and traits exhibited by species within an ecosystem, plays a pivotal role in 

maintaining ecosystem functioning and services (Cadotte et al., 2011; Cadotte and Tucker, 2018; 

Mouchet et al., 2010). It has been suggested by some studies that prioritizing phylogenetic 

diversity for conservation, which is easier to measure, is a sufficient proxy for conserving 

functional diversity because of the relationship between shared evolutionary history and traits 
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(Winter et al., 2013; Mazel et al., 2018). However, this is problematic because phylogenetic 

diversity does not explicitly reflect species' ecological strategies or their distinct ecological roles 

and captures functional diversity unreliably (Mazel et al., 2018; Cooke et al., 2020). Similarly, 

protecting areas solely based on taxonomic diversity can also lead to spatial mismatches, 

potentially neglecting the conservation of regions that harbor important functional groups or 

species with specialized functional roles. For example, spatial mismatches between taxonomic 

and functional diversity in French protected areas (PAs) revealed that bird taxonomic diversity 

was overrepresented, while functional diversity was underrepresented (Devictor et al. 2010). 

Similarly, Pollock et al. (2017), in a global study of multiple dimensions of biodiversity, revealed 

that approximately 12% of the functional tree of life for mammals and birds was missing from 

PAs, suggesting an incomplete representation of the diversity of ecological functions and roles in 

these regions. Overlooking functional diversity in conservation efforts can have significant 

consequences for ecosystem resilience and functioning, as functionally diverse communities are 

better equipped to adapt to changing environmental conditions, such as climate change and 

habitat disturbances (Cadotte et al. 2011).  

Understanding the spatial mismatches among dimensions of diversity is especially 

important for groups of species that perform essential ecosystem services such as seed dispersal. 

Frugivores, animals that consume fruits, represent a diverse group of species with seed dispersal 

roles. The interactions between frugivores and the fruiting species they consume create complex 

relationships that shape and sustain diversity and aid in the regeneration of tropical forest plant 

communities (Howe and Smallwood, 1982; Sales et al., 2021). Multiple studies have highlighted 

the essential contributions of frugivorous mammals and birds in seed dispersal, whose abundance 

and distribution changes can impact seed dispersal services and plants' abilities to adapt to 
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climate changes (Fricke et al., 2022; Sales et al., 2021). However, it is essential to recognize that 

not all species contribute equally to functional diversity due to their unique traits and roles within 

the ecosystem. For instance, a study focusing on the Atlantic Forest used an extensive dataset of 

frugivore-plant interactions and found that endangered specialist frugivores played an outsized 

role in maintaining tropical forest seed dispersal. Their extinction led to a rapid and 

disproportionate loss of tree species that relied nearly exclusively on those at-risk frugivores for 

seed dispersal, significantly affecting the forest's regeneration processes and plant diversity 

(Lamperty and Brosi, 2022). These findings underscore the importance of threatened frugivores 

in shaping and sustaining the diversity and regeneration of tropical forest plant communities. 

To address the challenges of overlooking functionally important species like threatened 

frugivores, the new concept of Functionally Unique, Specialized, and Endangered (FUSE) 

species has emerged as a promising strategy (Pimiento et al., 2020; Griffin et al. 2020). The 

concept of FUSE species is like that of EDGE species (Issac et al. 2007), which is a way of 

triaging conservation efforts based on phylogenetic diversity and focuses on conserving 

threatened species that are evolutionarily distinct. However, FUSE species are assigned 

conservation value by evaluating their contribution to functional diversity and are identified 

based on their position in multidimensional trait space (Griffin et al. 2020). While EDGE species 

might reflect evolutionarily distinct lineages that may often exhibit unique traits, many traits are 

not phylogenetically conserved (Mazel et al. 2018). Therefore, FUSE may be a better metric for 

prioritizing species with important roles in maintaining ecosystem functioning. Priority is given 

to species that exhibit functional specialization—meaning they occupy extreme values in trait 

space and influence the overall volume of trait space—and those that are functionally unique—

occupying isolated positions in trait space and exhibiting low functional redundancy (Pimiento et 
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al., 2020; Griffin et al., 2020)). If FUSE species are lost, their unique functional roles within the 

ecosystem cannot be easily replaced, as there is no other species with the exact suite of traits to 

compensate for their role (low functional redundancy; Mouillot et al., 2013). Prioritizing FUSE 

species is similar to prioritizing rare species, which are often threatened, whose loss negatively 

affects assemblage structure and function because of their unique trait combinations (Mouillot et 

al. 2013; Leitão et al., 2016). By focusing on the identification and protection of FUSE species, 

which can be complementary to the EDGE species approach, we can highlight and safeguard 

species that perform essential and distinct ecological functions, which are vital for the 

regeneration and health of ecosystems.  

Nonetheless, the critical need to assess the effectiveness of protected areas in preserving 

all aspects of biodiversity is tempered by the stark reality that not all of these areas offer the 

same levels of protection. The IUCN categorizes protected areas into six distinct classes, each 

characterized by its specific conservation objectives, management strategies, and permitted 

activities. These categories, labeled I-VI, present a wide range of approaches, from the strictest 

forms of protection (I-IV) to those that allow for sustainable human use and resource 

management (V-VI) (Dudley, 2008). In addition to these IUCN categories, it is also important to 

acknowledge the significance of community-based resource management areas, which often play 

a crucial role in biodiversity conservation through local stewardship and engagement (Porter-

Bolland, et al., 2012; Watson et al., 2016; Gonzalez et al., 2023). Understanding the nuances and 

varying degrees of protection provided by these categories is paramount as it directly influences 

the degree to which these areas can fulfill their roles in protecting biodiversity in the present and 

sustaining it into the future. The inclusion of community-managed areas adds another layer of 

complexity to this assessment, as they represent a collaborative and locally driven approach to 
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conservation that complements traditional protected areas (Watson et al, 2016). By 

comprehensively evaluating the protection status and management strategies across all these 

dimensions, we can gain a holistic view of how well these areas collectively contribute to the 

protection of biodiversity, including FD and conservation of FUSE species critical for ecosystem 

health and resilience. 

This study aims to assess the patterns of functional and taxonomic diversity of 

frugivorous birds and mammals in the Tropical Andes and assess their level of protection. By 

taking an integrative approach that considers multiple dimensions of biodiversity, including the 

importance of frugivores, I aim to 1) quantify the spatial distribution of taxonomic and functional 

diversity for species exhibiting frugivory; 2) evaluate how well existing PAs align with areas of 

high frugivorous species diversity (e.g., taxonomic diversity, functional diversity, and FUSE 

species); and 3) evaluate how well community managed areas capture these different aspects of 

diversity. For this analysis, I rely on a comprehensive trait database, Frugivoria, containing 

ecological, life-history, morphological, and geographical traits for frugivorous mammals and 

birds in the Central and South American moist forests (Gerstner et al., 2023). This study 

contributes valuable insights for optimizing conservation strategies and fostering the long-term 

health and resilience of the Tropical Andes ecosystem. By considering both taxonomic and 

functional diversity and integrating cutting-edge prioritization approaches utilizing functional 

diversity, such as FUSE species identification, we can help preserve the irreplaceable diversity 

and ecological integrity of this region, aligning with the objectives of the 30X30 initiative.  
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3.3 Methods 

3.3.1 Overview 

In this study, I assess the congruence of taxonomic and functional diversity of birds and 

mammals exhibiting frugivory in the Tropical Andes. I calculated both taxonomic and functional 

diversity for both taxa and generated areal estimates of regions with the highest levels of 

biodiversity. Within these areas, I assessed the alignment and mismatch between dimensions of 

biodiversity and their overlap with PAs. Furthermore, I examined the spatial distribution and 

level of protection of Functionally Unique, Specialized, and Endangered (FUSE) species and the 

degree of forest integrity within each IUCN park category. 

 3.3.2 Species subset and spatial data 

To assemble the species dataset for the Tropical Andes, I collected IUCN species lists for 

the classes "Aves" and "Mammalia" from the major countries in the region, namely Venezuela, 

Colombia, Ecuador, Peru, and Bolivia, using the R package 'rredlist' and the function 

'rl_sp_country' (IUCN, 2022). By merging these IUCN species lists with the Frugivoria trait 

dataset (Gerstner et al., 2023) – a dataset for birds and mammals exhibiting frugivory and found 

in tropical moist forests of Central and South America – I retained only the species present in 

both datasets, resulting in our final dataset. 

To characterize the spatial distribution of each species, I acquired range maps from the 

IUCN Spatial Dataset (IUCN, 2023) and BirdLife International (Bird Life International, 2023). 

Following the approach of Gerstner et al. (2023), I focused on species with presence codes of 

'Extant', 'Probably Extant', and 'Possibly Extant', which encompass inferred areas where the 

species is likely to occur. Additionally, I considered all 'origin' designations (e.g., native, re-

introduced, introduced, etc.) and 'seasonality' codes (e.g., resident, breeding season, non-
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breeding season, passage) as these represent important aspects of the species' range where seed 

dispersal services are likely to be performed. 

I refined the species range maps to reduce uncertainty in species distributions and better 

align with the actual area of occupancy, where the species likely occurs, following the method 

suggested by Brooks et al. (2019) to determine the "area of habitat" (AOH). Quantifying AOH 

involved rasterizing all species range maps to a resolution of 1 km2 to match the resolution of the 

environmental data used for species-specific subsetting based on elevational ranges and habitat 

types. Whenever available, I manually extracted elevational ranges from IUCN species accounts 

(IUCN, 2022), and the Frugivoria dataset (Gerstner et al., 2023) provided us with a 

comprehensive list of habitat types for each species. I used the Shuttle Radar Topography 

Mission (SRTM; Farr et al., 2007) digital elevation model (SRTM30) and a global map utilizing 

the IUCN habitat classification scheme (Jung et al., 2020), to refine species range maps based on 

their elevational tolerances and habitat types. This meticulous refinement process ensured a more 

precise representation of species distributions, enhancing the reliability of our diversity 

estimates.  

Subsequently, using the R package 'letsR', I created separate presence/absence matrices 

(PAM) for birds and mammals where each assemblage was delineated by a 10 km grid cell. I 

chose this spatial grain to account for residual uncertainty in the distributional limits of species 

based on range maps which can under or overestimate the range limits of species (Hurlbert and 

Jetz, 2007; Jetz et al., 2008), however, it is finer than many studies conducting similar analyses 

with range map-based data (Borges et al., 2021; Brum et al., 2017; González-Maya et al., 2017; 

Herrera, 2017). To maintain focus on the Tropical Andes, I removed any assemblages from the 

PAM that occurred outside of the region, precisely delineated using the shapefile obtained 
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through the Critical Ecosystem Partnership Fund. Our final subset, used for diversity 

calculations, included 1,052 species exhibiting frugivory (344 mammals; 708 birds). 

3.3.3 Trait data 

To quantify functional diversity, I selected six traits in the Frugivoria dataset for both 

birds and mammals (Gerstner et al., 2023). These traits were chosen based on their 

comprehensive coverage of each species' ecological niche and behavior. The selected traits 

include body mass, diet type, diet breadth, foraging strategy, habitat breadth, and generation 

time, which likely play crucial functional roles and reflect a species' biology and ecological 

significance. For example, body mass and foraging strata align with food web structure; body 

mass can indicate the amount of resources a species consumes and releases (Cooke et al., 2019) 

and is linked to dispersal capabilities (Jenkins et al., 2007); foraging strategy can influence the 

dynamics of species interactions and energy flow within ecological communities (Dell et al., 

2014). Diet type is essential for services like pollination and seed dispersal (Jordano et al., 2007; 

Ripple et al., 2017, 2015), while diet breadth indicates the degree of dietary specialization a 

species possesses. Habitat breadth reveals a species' ability to utilize and compete in multiple 

environments, serving as a measure of habitat plasticity, which can influence how well species 

adapt to environmental changes (Luck et al., 2013). Lastly, generation time, representing the 

turnover rate of breeding individuals in a population, provides insights into a species' potential 

for recovery after disturbances (Cooke et al., 2020; Newbold et al., 2013) and is a proponent for 

determining extinction risk (Bird et al., 2020; Jonasson et al., 2022; Pacifici et al., 2013). 

To address the issue of missing values for generation time (n = 29; mammals, n = 27; 

birds, n = 2), I employed multivariate imputation by chained equations using the R package 

'mice' (version 3.16.0). I applied three imputation methods, namely Predictive Mean Matching 
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(PMM), Random Forest (RF), and Categorical and Regression Trees (CART). For each method, 

I conducted 1000 iterations, randomly inserting NAs into the generation time dataset (10%) and 

calculating the differences between the real and imputed values. After assessing the performance 

of each method, I found that CART yielded values closest to the real values, exhibiting an 

average standard deviation of differences of 1.20 ± 1.87. Consequently, I selected CART as the 

most suitable method for imputing missing generation time data in our analysis and performed a 

final iteration of imputation for mammals and birds with 20 iterations each. I randomly selected 

one of the 20 possible bird datasets and one of the 20 possible mammal datasets and used those 

for all subsequent analyses. 

 3.3.4 Diversity calculations 

Taxonomic diversity (TD) was evaluated by summing the total number of species present 

within each 10 km2 grid cell. For all functional diversity (FD) analyses, I utilized the 'mFD' 

package (Magneville et al., 2022) in R to calculate functional diversity as functional dispersion 

(FDis; Laliberté and Legendre, 2010), a multidimensional measure capturing species dispersion 

in multidimensional trait space. FDis computes the average distance of species from the centroid 

of the community, which in this case, is defined as a 10 km grid cell. It offers the flexibility to be 

weighted by abundance or, in the absence of abundance data, all species can be equally 

weighted. Importantly, FDis is not influenced by species richness, unlike functional richness 

(FRic), which is sensitive to outliers (Laliberté and Legendre, 2010). This ensures that the 

number of species does not introduce bias into the calculation of functional diversity values.  

For birds and mammals, most traits shared common units. However, the treatment of 

foraging strata (Wilman et al., 2014; Gerstner et al., 2023) differed. For mammals, it was a 

categorical variable (e.g., ground, scansorial, canopy, etc.) while for birds, it was a fuzzy trait 
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with values of percentage allocation of time spent in each strata type represented in multiple 

columns. To prevent the over-weighting of the "forest strata" trait for birds, I categorized the 

main trait category as "forest strata," and the different columns for strata types were weighted 

accordingly. This ensured that the "forest strata" category carried the same weight as the other 

trait variables during the analysis. 

I used the Gower distance to compute functional distance matrices separately for birds 

and mammals because it is well-suited to handle both categorical and continuous traits (de Bello 

et al., 2021). Subsequently, a Principal Coordinates Analysis (PCoA) was conducted on each 

functional distance matrix – one for each taxa. The number of axes for each group was selected 

based on their ability to preserve the original trait dissimilarity matrix while facilitating graphical 

interpretation (Maire et al., 2015; Villéger et al., 2008). For mammals, this resulted in a 4-

dimensional PCoA space, while for birds, the lowest mean absolute deviation (MAD) value was 

obtained in a 5-dimensional space. Due to the similarity in MAD values for both 4D and 5D 

spaces, I opted to proceed with the 4D space, following the recommendation by Magneville et al. 

(2022) due to the added computation time for an additional PCoA axis. 

3.3.5 Spatial Assessments 
 

With the TD and FD rasters, I quantified the spatial overlap between TD and FD of 

frugivorous birds and mammals, frugivores more generally within the Tropical Andes region, as 

well as their overlap with PAs. I completed this analysis for mammals, birds, and all frugivores 

combined. I first identified the grid cells representing the highest 10%, 20%, and 30% of both 

TD and FD per taxa in the study area, representing areas with the highest levels of diversity. 

Having determined these diversity peaks, I calculated the total area of each thresholded extent 

for TD and FD and assessed areas of overlap between the two biodiversity dimensions. This step 
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allowed us to identify the spatial extent of these critical biodiversity peaks and evaluate areas for 

multidimensional biodiversity conservation. For an assessment across all frugivores, I assessed 

areas of overlap between diversity dimensions where the thresholds coincided for both mammals 

and birds. 

Subsequently, I evaluated the amount of high diversity areas protected by PAs. I overlaid 

the thresholded peak diversity extents (high TD and FD) with the boundaries of PAs from the 

World Database on Protected Areas (WDPA, 2023) to determine the extent of overlap. By 

quantifying the protected area for different TD and FD thresholds, I gained insights into the 

status of taxonomic and functional diversity within PAs. To explore the alignment between TD 

and FD across the study area, I ran linear regression on FD vs. TD, individually for both birds 

and mammals across the entire study area, using each grid cell value.  Further, I calculated the 

proportional frequency of diversity values in PAs versus surrounding areas to understand how 

well PAs capture different dimensions of diversity for different taxa. 

To identify FUSE species (Pimiento et al., 2020), I utilized the 'fuse' function available in 

the 'mFD' package (Magneville et al., 2022). To understand the distribution of FUSE species, I 

summed their respective AOH (area of habitat) maps, where presence was denoted as 1 and 

absence as 0. To quantify the level of FUSE species in each PA, I took the mean of the counts of 

FUSE species within each IUCN PA type (I-VI) and also computed the proportion of FUSE 

species out of all co-occurring species. This analysis allowed us to pinpoint areas with elevated 

concentrations of FUSE frugivores, thus highlighting potential FUSE hotspots. I also assessed 

whether the highest 10% of FUSE mammals and birds overlapped with the highest levels of FD 

for those taxa to understand if the distribution of FUSE species represents the overall distribution 

of high FD well.  
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To evaluate the degree of anthropogenic influence within these PAs which can reflect 

habitat quality, I extracted Forest Integrity Index (FII) values (Grantham et al., 2020) for each 

PA and subsequently computed the average FII of each IUCN PA category.   

Further, to understand the extent to which more stringent IUCN PAs serve as sanctuaries of FD, 

TD, and FUSE species, I quantified the differences in FD, TD, FUSE species count, proportional 

composition of FUSE species, and FII between strict (I-IV; do not permit sustainable use of 

resources) and less-strict (V-VI; allow recreation and sustainable use of resources) PA 

categories. This evaluation was conducted using a Kruskal-Wallis Test, followed by Dunn tests 

(Dunn, 1964) for multiple pairwise comparisons.  

 Finally, to assess the effectiveness of community-managed areas in capturing biodiversity 

across multiple dimensions, I utilized Mann-Whitney U tests. Specifically, I compared the 

average levels of FD, TD, and FUSE species in community-managed areas classified under 

IUCN PA category VI with other PAs within the same category. 

3.4 Results 

3.4.1 Spatial distribution of diversity dimensions 

Taxonomic and functional diversity –Our analysis revealed distinctive patterns between 

taxonomic and functional diversity, for birds and mammals. Specifically, I found a positive 

correlation between species richness and functional diversity among birds (β = 2.257e-04, p < 

0.001, R2 = 0.129; Figure 3.1b), and a negative correlation among mammals (β = -1.815e-04, p < 

0.001, R2 = 0.007; Figure 3.1a). 
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Figure 3.1: Correlation between functional diversity, quantified as functional dispersion (fdis), 
and species richness (total species count) within each 10 km grid cell across the study area. 

 
Despite these correlations, the strength of these relationships remained modest, as a large 

portion of the variability in functional diversity (87.1% for birds and 99.3% for mammals) 

remained unexplained by taxonomic diversity. Subsequent spatial mapping of these biodiversity 

dimensions unveiled a complex landscape of spatial alignments and mismatches. For birds and 

mammals, the regions displaying the highest levels of taxonomic diversity were predominantly 

located at the lower elevations (500 - 1200 m) of the Tropical Andes. This phenomenon occurs 

in a critical transitional zone where both lowland and montane species can coexist (Lomolino, 

2001; Rahbek, 1997) and is indicated by the prevalence of green and yellow hues in Figure 3.2a.  
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This heightened taxonomic diversity highlights these lower-elevation areas as key reservoirs of 

species richness. Conversely, areas characterized by high functional diversity were 

predominantly associated with montane regions at higher elevations (greater than 1200 m) 

(Figure 3.3a).  

Our analysis of distinct upper diversity thresholds (pixels in the highest 10%, 20%, and 

30% of diversity) uncovered large spatial mismatches among dimensions of biodiversity. For 

birds, regions with the highest 30% of diversity (encompassing both functional and taxonomic 

dimensions) had only 10.41% overlap (roughly 95,628 km2; Table 3.1; Figure 3A.3c). This 

overlap was mainly in the western portions of Venezuela and the eastern areas of the Andes in 

Ecuador, southern Peru, and Bolivia (Figure 3A.3c). Similarly, areas characterized by the upper 

10% of diversity exhibited minimal overlap of just 0.68% (6,314 km2; Table 3.1; Figure 3.4a) 

and were largely confined to the eastern Andes in Ecuador and northern Bolivia (Figure 3.4a). 

For mammals, only 0.038% (332 km2) overlap occurred within the highest 10% of both diversity 

dimensions (Table 3.1; Figure 3.4b), confined to specific locations in southern Peru and northern 

Bolivia (Figure 3.4b). Similarly, only 3.02% (26,503 km2) spatial overlap occurred between the 

upper 30% of functional and taxonomic diversity, mainly in northwestern Ecuador, southern 

Peru, and northern to mid-Bolivia (Figure 3A.2c). Between bird and mammal diversity, only 

6.19% (53,837 km2) of bird diversity overlapped with mammal diversity for the highest 30% 

threshold, primarily in southern Peru and northern Bolivia (Figure 3A.4c). However, for the 

highest 10% threshold, no overlap was found, indicating that the spatial distribution of the 

highest values of taxonomic diversity (TD) and functional diversity (FD) between mammals and 

birds does not align (Table 3.1; Figure 3.4c). 
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Figure 3.2: Overview of spatial and statistical patterns in mammalian taxonomic diversity across 
the entire study region and within designated protected areas (PA) categorized as I – VI. Panel a) 
Depicts the distribution of bird and mammal taxonomic diversity (TD) for frugivorous species, 
measured as species count per 10 km grid cell. Panel b) Illustrates the average TD within 
individual PAs (represented as the centroid of each PA). Panel c) Shows the frequency of TD 
values (normalized to 1 for comparison) throughout the study area (light blue), with dark blue 
regions indicating the relative distribution of TD within PAs. The dotted red line indicates the 
highest 10% of TD values. 
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Figure 3.3: Overview of spatial and statistical patterns in mammalian taxonomic diversity across 
the entire study region and within designated parks and reserves categorized as I - VI. Panel a) 
Depicts the distribution of bird and mammal functional diversity (FD) for frugivorous species, 
measured as species count per 10 km grid cell. Panel b) Illustrates the average FD within 
individual protected areas (PA) (represented as the centroid of each PA). Panel c) Shows the 
frequency of FD values (normalized to 1 for comparison) throughout the study area (light blue), 
with dark blue regions indicating the relative distribution of FD within PAs. The dotted red line 
indicates the highest 10% of FD values. 

 
 

FUSE species –Our FUSE analysis identified a total of 86 FUSE mammal species and 

110 FUSE bird species (Figure 3.5), 43% of which were endemic to the Tropical Andes (Figure 

3.5). For the top 10% of FUSE species richness, the areas exhibiting the greatest FUSE species 

richness did not strongly coincide with areas containing the highest levels of functional diversity 
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(FD). Specifically, among regions with the top 10% of FUSE species richness or FD, a mere 

5.8% of the area overlapped for mammals, and 7.8% overlapped for birds. These results indicate 

that if conservation measures in this area aim to protect high FD, most areas will not 

simultaneously protect high FUSE species diversity.  

3.4.2 Protected Area assessment 

I found that only 15.5% of the Tropical Andes region is protected by PAs with IUCN 

designations I-VI. Overall, in the areas with the highest levels of diversity (the highest 10, 20, 

and 30% of diversity values), taxonomic diversity had a slightly higher level of fractional area 

and protection than functional diversity (TD: 39.8%; FD: 35.4%). For birds, the highest 10% of 

areas with the greatest functional diversity had slightly greater coverage (37.7%; 89,563 km2) 

compared to the area with the highest taxonomic diversity (33.48%; 106,097 km2) (Table 3.1).  

However, this coverage dropped to 31.6% in regions where these two diversity dimensions 

overlapped. For mammals, 34.1% (23,512 km2) of the areas with the highest 10% functional 

diversity were protected, whereas 42.21% (63,891 km2) of the areas with the highest 10% 

taxonomic diversity had protection (Table 3.1). For frugivores, functional diversity had more 

protection compared to taxonomic diversity at the highest 10% threshold. However, at this 

threshold there was no protection in the areas where the two frugivore diversity dimensions 

overlapped, or where the two mammals’ diversity dimensions overlapped (Table 3.1). On 

average, areas of multidimensional diversity were only 22% protected. 
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Table 3.1: Analysis of upper diversity thresholds at the 10%, 20%, and 30% peaks. This table showcases computed spatial metrics for 
functional and taxonomic diversity regions, including their intersections within individual taxonomic groups and combined 
overlapping areas for both frugivorous species. It also indicates the degree of protection offered by IUCN categories I-VI protected 
areas. 
 

Taxon Threshol
d 
(Percent
) 

Functional 
Diversity  Ar
ea 

Taxonomic 
Diversity  Ar
ea 

Overla
p Area 

Perce
nt full 
overla
p 

Functional 
Diversity  Ar
ea Protected 

Taxonomic 
Diversity  Ar
ea Protected 

Overlap 
Area 
Protecte
d 

Percent 
Function
al 
Diversity 
Area 
Protecte
d 

Percent 
Taxonom
ic 
Diversity 
Area 
Protected 

Percent 
Overlap 
Protecte
d 

bird 10 73113.24 73694.82 6314.33 0.69 27583.63 24675.72 1994.00 37.73 33.48 31.58 
bird 20 154368.60 157525.80 39464.5

3 4.30 53505.60 62395.50 10551.5
7 34.66 39.61 26.74 

bird 30 239196.60 251326.80 95628.7
9 10.41 89563.72 106097.30 37553.6

2 37.44 42.21 39.27 
mammal 10 69042.16 68460.58 332.33 0.04 23512.55 31405.46 0.00 34.06 45.87 0.00 
mammal 20 149965.20 149217.50 4901.91 0.56 47025.11 63891.00 664.67 31.36 42.82 13.56 
mammal 30 229891.30 231802.20 26503.5

5 3.02 80673.81 94548.71 6231.24 35.09 40.79 23.51 
frugivor
es 10 70786.91 37221.28 0.00 0.00 23927.97 11216.24 0.00 33.80 30.13 0.00 
frugivor
es 20 150463.70 147638.90 15785.8

1 1.82 56247.34 59986.09 4320.33 37.38 40.63 27.37 
frugivor
es 30 229725.10 233463.90 53837.9

3 6.19 84827.97 100115.30 17032.0
6 36.93 42.88 31.64 
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Figure 3.4: Intersection of the highest 10% taxonomic and functional diversity distributions. Panel a) illustrates diversity overlap for 
birds, Panel b) displays diversity overlap for mammals, and Panel c) depicts the regions of shared above-threshold TD and FD 
between birds and mammals. Notably, no areas of TD/FD overlap are observed between birds and mammals at this threshold. 
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Figure 3.5:  Top 10 endemic Andean species with the Highest Functionally Unique, Specialized, and Endangered (FUSE) Scores. 
Colored circles indicate the IUCN threat status for each species corresponding to their respective FUSE scores. 
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Figure 3.6: Functionally Unique, Specialized, and Endangered (FUSE) Species and Forest Integrity Across IUCN PA Categories. 
Panel a) illustrates the average count of FUSE species for mammals and birds within each protected area (PA) type. Panel b) depicts 
the average forest integrity index (Grantham et al., 2020) calculated for each PA category. Whiskers on both plots represent the 
standard deviation of values within each category. 
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Table 3.2: Provides an overview of diversity metrics computed across various IUCN protected area categories. This includes the count 
and percentage composition of FUSE (Functionally Unique, Specialized, and Endangered) species, as well as the average functional 
and taxonomic diversity for each taxon. The table also incorporates the average forest integrity index (FII; Grantham et al. 2020). 
Notably, the table highlights the more stringent IUCN PA categories (I-IV) and metrics for which the values surpassed at least one of 
the less strict categories (V-VI), with significant statistical differences being indicated in bold. Values in bold accompanied by an (*) 
signify statistically significant values that are lower than those of less strict categories. 
 

PA Category # Protected 
Areas in 
category 

Average % 
composition FUSE 

frugivores 

Average 
Mammal 

FUSE species 

Average 
Bird FUSE 

species 

Average 
Bird FD 

Average 
Bird TD 

Average 
Mammal 

FD 

Average 
Mammal 

TD 

Average 
Forest 

Integrity 
Index 

Ib (strict nature 
reserve) 

7 6.93 2.79 7.06 0.36 100.59 0.65 35.90 9.22 

II (wilderness area) 116 5.61 3.27 4.81 0.35 98.96 0.64 45.52 8.88 
III (natural monument 
or feature) 

17 6.01 3.14 4.88 0.36 119.31 0.64 58.28 8.20 

IV (habitat/species 
management zone) 

11 6.13 2.93 4.27 0.38 77.17 0.66 34.23* 8.19 

V (protected landscape) 24 5.36 2.86 5.10 0.36 102.00 0.64 49.09 6.02 
VI (PA with sustainable 
use of resources) 

932 5.49 3.14 4.45 0.35 93.47 0.64 44.17 6.88 

Not Applicable 46 5.37 2.86 5.04 0.35 102.09 0.63 47.82 6.56 

Not Assigned 4 6.58 2.88 8.31 0.36 116.79 0.64 48.32 9.23 

Not Reported 85 2.47 1.00 2.37 0.33 52.20 0.64 27.75 7.98 
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Figure 3.7: Distribution of Functionally Unique, Specialized, and Endangered (FUSE) frugivore 
species. This map presents the aggregated binary Area of Habitat (AOH) maps for FUSE 
species found within the Tropical Andes. The outlined red areas correspond to all protected 
areas sourced from the World Database on Protected Areas (WDPA; protectedplanet.com). The 
zoom box highlights an Ecuadorian region with significant FUSE species numbers adjacent to 
parks lacking protection. The labeled parks, accompanied by their IUCN park category in 
parentheses, are as follows: 1: Sangay (II); 2: Llanganates (II); 3: Colonso Chalupas (Ib); 4: 
Antisana (II); 5: Sumaco Napo-Galeras (Level II); 6: Pueblo Originario Kichwa de Sarayaku 
(Not Assigned; Indigenous governance). 
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For FUSE species, the percent composition of FUSE frugivores in category “Not 

Assigned” had the second highest average values (Table 3.2; Figure 3.6a), while the highest was 

in strict nature reserves Ib. Among birds, the Ib,V, and Not Assigned categories had the highest 

average numbers of FUSE species (Figure 3.6a). In contrast, for mammals, categories II, III, and 

VI had the highest numbers of FUSE species (Figure 3.6a). Despite this, overlaying FUSE 

species distributions showed that some high diversity areas lack protection from established PAs 

(Figure 3.7). 

When evaluating whether diversity varied between strict and less strict IUCN PA 

categories, I only detected differences for some categories (Table 3.2). Category III had higher 

values of average TD than VI for birds and mammals (Kruskal-Wallace test, p < 0.05 for birds 

and mammals, respectively), while category IV had higher average FD for birds when compared 

with category VI (Kruskal-Wallace test, p < 0.05, TD mammals and FD birds, respectively). 

Interestingly, for mammals, category VI had higher average than category IV (Kruskal-Wallace 

test, p < 0.05, TD mammals). There were no differences among mammal FD, average count of 

FUSE birds, or proportions of FUSE species within strict and less-strict categories, however 

category II was higher than V and VI for FUSE mammals (Kruskal-Wallace test, p < 0.05, 

respectively). For FII, all strict PA categories were higher than less-strict categories (Kruskal-

Wallace test, p < 0.05 for all comparisons).  

When comparing the levels of diversity in community managed areas and other areas 

within the same IUCN PA category (VI), significant differences were detected for FD and TD 

(Mann-Whitney U test p < 0.05; both mammals and birds respectively). FD was significantly 

higher for mammals and birds within 32 community managed areas within PA category VI than 

other PAs within the same category, and this was more apparent for mammals (~5% increase of 
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FD within community managed areas). Interestingly, TD was significantly lower within 

community managed areas for both birds and mammals. There was no significant difference 

between levels of FUSE species in and outside community managed areas, except for FUSE 

mammals, where the number of FUSE species was lower inside community managed areas. 

3.5 Discussion 

This analysis unveiled a weak relationship between TD and FD (Figure 3.1) and large 

spatial mismatches between their geographic distributions and levels of protection, shedding 

light on the challenges associated with adopting an integrated approach to biodiversity 

conservation. Further, there were heightened levels of TD in lower-elevation areas within the 

Tropical Andes, serving as key reservoirs of species richness. Conversely, areas characterized by 

the highest levels of functional diversity were predominantly associated with montane regions 

situated at higher elevations (greater than 1200 m) (Figure 3.3a; Figure 3A.1). When assessing 

levels of protection, the results showed high biodiversity areas, both taxonomically and 

functionally, were only about 37% protected when considered independently with protection 

dropping to 0% for mammals when focusing on areas where diversity dimensions overlapped. 

Further, I found that high numbers of FUSE mammals, levels of bird FD, bird TD, and mammal 

TD were elevated in some strict protected areas when compared with less strict areas, 

highlighting the importance of certain strict protective measures in the maintenance of 

biodiversity. I also found that community managed areas within IUCN category VI harbored 

higher FD than other PAs within the same category, highlighting these areas as potential 

strongholds for this dimension of diversity.  

The weak diversity relationships and spatial mismatches align with findings from other 

studies conducted across diverse regions and taxa. For instance, similar patterns of mismatches 
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occur for birds in France (Devictor et al., 2010) and the Brazilian Cerrado (Borges et al., 2021), 

as well as for plants in China (Xu et al., 2019), global mammals (Brum et al., 2015), and rodents 

in Mexico (Martín-Regalado et al., 2019). These incongruencies between dimensions of diversity 

can occur for multiple reasons that differ based on the historic processes and ecological 

constraints of the taxa and region of study. For example, for birds, there was a weak positive 

relationship between TD and FD. Similar to Dehling et al. (2014), the highest species richness 

for birds occurred in lower elevations of the Tropical Andes, suggesting that for frugivorous 

birds, at these lower elevations there might be high interspecific competition leading to niche 

differentiation and therefore slightly higher FD (Figure 3A.1a). Conversely, for mammals, TD 

had a very weak negative association with FD, indicating that while certain lower elevation areas 

boast a greater abundance of species, frugivorous mammals in the Tropical Andes may exhibit 

slight “niche packing” at lower elevations leading to functional redundancy (Mouchet et al. 

2010), with higher FD at intermediate elevations possibly due to increased levels of spatial 

heterogeneity (Safi et al. 2011) (Figure 3A.1b). It is also important to note that these 

relationships were tenuous and therefore caution should be taken when generalizing patterns as 

they have been shown to differ among mountain ranges and even within individual mountains 

(Montaño-Centellas et al., 2020). However, despite these weak patterns, the overall highest 

values of FD occurred at intermediate elevations for both taxa (Figure 3A.1a & b), differing from 

the highest TD.  

Understanding the potential spatial trade-offs that arise when prioritizing one dimension 

of diversity over another is a crucial consideration when expanding existing protected areas 

(PAs) or designing and planning new ones (Cadotte and Tucker, 2018; Faith and Walker, 2002). 

This becomes particularly significant given that the criteria set by the IUCN for identifying Key 
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Biodiversity Areas (KBAs), which are locations contributing significantly to the global 

persistence of biodiversity, recognize the importance of taxonomic diversity (TD) and 

phylogenetic diversity. However, functional diversity (FD) is not explicitly considered in these 

criteria (IUCN, 2016). Consequently, international standards for identifying regions with the 

highest diversity for spatial conservation may not fully account for critical areas characterized by 

high FD, which has substantial implications for the maintenance of ecosystem functioning and 

the delivery of ecosystem services. The mismatches found here and in other studies further 

support this assertion and indicate that focusing solely on one diversity dimension may lead to 

conservation strategies that fail to adequately capture biodiversity (Brum et al., 2017; Devictor 

et. al., 2010; Strecker et al., 2011; Mazel et al. 2018; Borges et al. 2021). In the context of these 

disparities, our study further revealed that overall protection of high diversity areas is low 

(~30%), with the highest levels of functional diversity (FD) experiencing lower protection than 

those with high taxonomic diversity (TD), albeit by a modest margin (a difference of 4.4%) 

(Table 3.1). Despite the limited geographical extent of PAs in the Tropical Andes (15.4% of area 

with protection levels I-VI), they cover a representative proportion of the overall diversity for 

frugivores (Figures 3.2c & 3.3c). However, there was a noticeable lack of protection afforded to 

regions characterized by the highest levels of FD (Figure 3.3c). This underscores the potential for 

targeted conservation efforts aimed at protecting areas with the highest levels of FD. 

Despite the pronounced disparities in taxonomic and functional diversity distributions, 

our study uncovered instances of minimal convergence between these dimensions for mammals 

and birds. For instance, when examining the upper 10% of overlapping diversity areas for 

mammals, there was a mere 0.038% of overlap (Figure 3.4b), primarily concentrated in southern 

Peru and northern Bolivia, with no corresponding protection under IUCN designations I-VI 
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(Table 3.1). In contrast, the outlook for birds was more optimistic, with 31.6% of this 

overlapping diversity area receiving some level of protection (Table 3.1). These shared areas are 

pivotal for conservation strategies, particularly for approaches that aim to optimize biodiversity 

outcomes, especially for mammals. The co-occurrence of elevated species richness and diverse 

ecological roles in these areas underscores their heightened significance for maintaining 

ecosystem functioning. It is important to note, however, that the diversity thresholds used here 

reflect the most stringent criteria for evaluating overlapping diversity and managers may choose 

to look at a broader range of diversity thresholds to achieve their goals. Further, there was no 

overlap between the highest levels of diversity when considering frugivores (combined birds and 

mammals; Figure 3.4c), indicating that measures taken to conserve the highest levels of 

frugivore diversity should consider birds and mammals separately. For areas containing less 

strict peaks of diversity (Figure 3A.4c) it may be prudent to consider spatial prioritization of 

frugivores together. However, when prioritizing area for conservation action based on the 

overlap of functional and taxonomic diversity within taxa, or considering each dimension of 

diversity separately, critical roles of unique and specialized species that are crucial for 

maintaining ecosystem functioning could be missed (Pimiento et al., 2020; Kosman et al., 2019; 

Griffin et al. 2020). While functional dispersion gauges within-community diversity, it overlooks 

the distinctive and specialized contributions of individual species within the broader community 

(Laliberte & Legendre, 2010; Kosman et al., 2019). For example, a recent study found that while 

scarlet macaws are widespread and not of conservation concern, they are functionally singular 

and thus should be prioritized for conservation (Kosman et al., 2019). In contrast, South 

American tapirs are large-bodied and highly threatened frugivores with outsized roles as long-

distance seed dispersers. Subsequently, their loss would have cascading effects for ecosystem 
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function (O’Farrill et al., 2013). Future management might be interested in prioritizing these 

functionally singular and threatened species whose role cannot be replaced if the species is lost 

from the community (Griffin et al., 2020).  

Evaluation of the relationship between high FUSE areas and areas with high FD revealed 

that for both birds and mammals these areas were not closely aligned. There was limited spatial 

overlap between the highest 10% of FUSE richness and FD for both groups, indicating that 

conservation efforts focused on maximizing FD might not inherently encompass regions with a 

high abundance of FUSE species. This discrepancy may be attributed to the metric used to 

calculate functional dispersion in this study. Specific FUSE species, which possess extreme 

traits, can be outliers within their respective communities. Consequently, even if a community 

harbors one or two FUSE species with highly distinct traits, their greater distance from the 

centroid of trait space is averaged out when calculating FD. These findings underscore the need 

for explicit consideration of FUSE species when evaluating complementarity for establishing 

future spatial conservation priorities. In the past decade, it has been recommended that EDGE 

species be included in the standards for assigning KBAs under Criteria A (threatened 

biodiversity; Brooks et al. 2015; Faith et al. 2015), similarly, FUSE species should be explicitly 

considered in this framework, as these species directly tie to ecosystem function and can help 

maintain healthy ecosystems.  

Our assessment of both FUSE species and overall diversity yielded valuable insights into 

the efficacy of PAs in capturing diversity. The highest average FD and TD were always found in 

more strict categories (I-IV) (Table 3.2). Similarly, these categories had the highest average 

proportions and counts of FUSE species (Table 3.2; Figure 3.6a). Specifically, FUSE frugivores 

had the highest percent composition in Ib (strict nature reserves), potentially due to these areas 
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being relatively intact and undisturbed by humans. However, when evaluating stricter categories 

with statistically significant differences from less strict categories, category II (National Parks) 

was more important for capturing FUSE mammal diversity, while category III (Natural 

Monuments or Features) better captured TD across taxa (Table 3.2). Category IV (habitat/species 

management zones), however, only captured the FD of birds, possibly benefiting from species 

specific management strategies. Conversely for this same category (IV), mammals showed 

significantly less TD than in less strict PAs (specifically VI), possibly indicating that VI areas, 

which allow sustainable use of resources, can be a successful strategy when the goal is to 

conserve higher numbers of mammalian frugivores. Overall, the strict categories of PAs 

inadequately represented the functional diversity (FD) of mammals and FUSE birds when 

compared to PAs with less stringent measures. This underscores the necessity for the 

development of novel and stringent protective protocols that specifically consider areas of 

complementarity in terms of high mammal FD and FUSE birds.  

 Importantly, all the stricter PAs had higher levels of forest integrity (Figure 3.6b; Table 

3.2), implying a promising connection between robust protective measures and the quality of 

habitat, which is especially important for threatened FUSE species. Some FUSE species have 

already had measures put into place for their species-specific conservation. For example, the 

helmeted curassow (Pauxi pauxi), an endemic and endangered bird with one of the highest FUSE 

scores (2.66; Figure 3.5b), has a network of reserves relegated to its protection in the Eastern 

Cordillera of Colombia (Proaves, 2023). Being a large bodied frugivore, this species likely has 

an important role in dispersing large seeds, which contributes to maintenance of forest structure 

(Sales et al., 2021). Further, the Wildlife Conservation Society is actively partnering with 

institutions in Peru to aid in the protection of two FUSE mammals, the Andean Bear (Tremarctos 
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ornatus) (Figure 3.5a). and white-lipped pecary (Tayassu pecari) (WCS, 2023) Maintaining both 

the quality and quantity of habitat for FUSE species is especially important because of the 

known correlations between habitat loss and the decline of species with unique traits. For 

instance, previous research has highlighted that the species richness of frugivorous species may 

be related to body size, a key functional trait, where loss of larger bodied species disrupts seed 

dispersal networks and changes forest composition (Bomfim et al., 2018; Fricke et al., 2022; Lim 

et al., 2020; Sales et al., 2020, 2021). Safeguarding these unique and ecologically vital species is 

paramount to the functioning of the Tropical Andes, underscoring the need to protect and restore 

habitats that support them.  

However, certain pockets of substantial FUSE species richness remain beyond the 

protection of established PAs and are important regions to prioritize for conservation. For 

instance, three disjunct areas are situated 10 km east of a chain of national parks within Ecuador, 

including Sangay National Park and Llanganates National Park (both IUCN category II; Figure 

3.7: labels 1 & 2) in the eastern Cordillera (Figure 3.7). These areas host high levels of FUSE 

species, surpassing 8% of species in some regions. These neighboring parks may serve as 

important source populations for many FUSE species found in these areas and bolster local 

diversity (Hansen, 2011). For example, Sangay National Park is one of three areas with the 

highest concentration of Andean bears (Tremarctos ornatus) (UNESCO, 2023), an important 

seed disperser with the IUCN status near threatened (IUCN, 2023), and a species with the 

highest FUSE score for mammals endemic to the Tropical Andes (Figure 3.5). Similarly, the 

same area is home to the yellow throated toucan (Ramphastos ambiguus), another near 

threatened FUSE species. The importance of conserving areas adjacent to these parks extends 

beyond their inherent high FUSE diversity; they may serve as vital corridors (Cushman et al., 



 
 

138 
 

2009), buffer zones (Weisse and Naughton-Treves, 2016), and essential components in ensuring 

the resilience and connectivity of the broader region. 

While nearby PAs may serve as source populations, extensions of parks or the inclusion 

of complementary areas could play a pivotal role in ensuring the sustained viability and 

resilience of FUSE species. Creating entirely new parks demands substantial resources and 

presents logistical challenges. In contrast, a more pragmatic strategy may involve assessing 

complementarity and augmenting or extending existing reserves to comprehensively encompass 

various dimensions of biodiversity (i.e., high FD, high TD, or high proportions of FUSE species 

distributions), however this may benefit dimensions of biodiversity differently. The extension of 

PA boundaries can have a steep increase in protection for functional diversity, even if species 

richness does not increase markedly (Pollock et al. 2017). 

Noteworthy hotspots of FUSE frugivores emerged within the IUCN PA category labeled 

as "Not Assigned". This category exists in large part because data suppliers for the WDPA 

(WDPA, 2023) chose not to assign an official IUCN PA category (I-VI). This is likely because 

they do not officially adhere to IUCN standards and guidelines and is similar for the other PA 

category “Not Reported” (Dudley, 2008) Of the IUCN PA categories, “Not Assigned” showed 

the highest count and proportion of FUSE species (6.58%; Table 3.2). This observation can be 

attributed to three conservation zones designated in Ecuador and Peru. Two of these zones have 

been strategically established for and by indigenous peoples to maintain biodiversity and provide 

essential ecosystem services to their local communities (Figure 3.6a). One of these areas was the 

Territorio del Pueblo Shuar Arutam (6.49% FUSE; avg # FUSE mammals: 1.8; avg # FUSE 

birds: 8.55; FII: 9.5; Table 3.2), nestled in the Ecuadorian Andes (ICCA, 2023). Another notable 

example was the Pueblo Originario Kichwa de Sarayaku (5.41% FUSE; avg # FUSE mammals: 
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4.24; avg # FUSE birds: 11.34; FII - 9.9; Table 3.2), situated in the Andean foothills of Ecuador 

(see Figure 3.7, label 6). Remarkably, this area boasts an impressive 95% of untouched primary 

forest, as detailed on their official website (Sarayaku, 2022). Moreover, the Nieva River region 

(9.48% FUSE; avg # FUSE mammals: 3.49; avg # FUSE birds: 13.07; FII: 9.7) within Peru, falls 

under the stewardship of the National System of Natural Areas Protected by the State 

(SINANPE). Its mission is to ensure ecological processes continue, preserving high biodiversity 

in the Nieva River basin for the benefit of nearby communities, and to create a conservation 

corridor in the Peruvian Yungas (GOB, 2023).  

Community-managed reserves are essential for conservation of biodiversity and 

ecosystem functions (Alves-Pinto et al., 2021; Esmail et al., 2023). This study confirms the 

importance of community-managed reserves—functional diversity was higher in the 32 

community-managed reserves classified under the IUCN park designation VI compared to other 

PAs within the same category. Specifically, levels of FD for birds and mammals were higher in 

community managed areas (bird - community 0.36, other VI PAs 0.35; mammals - community 

0.67, other VI PAs 0.64), with the most pronounced difference being for mammals (average of 

increase of ~5%). Conversely, TD was significantly lower in these areas, indicating that 

community managed reserves are important for maintaining FD specifically. This is especially 

important given that strict PAs did not adequately support this dimension of diversity. The 

connection between FD and community-managed areas can be attributed to the profound impact 

of their stewardship practices that are intricately woven into the fabric of their traditions, 

perspectives, knowledge systems, and their connection to their landscapes (Kennedy et al., 

2023). These communities' stewardship often extends beyond mere protection and embraces 

traditional practices that may actively promote and enhance biodiversity (Velho et al., 2016), and 
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specifically the functional diversity of their ecosystems, however this relationship remains 

relatively unexplored. For instance, indigenous and local communities, through their intimate 

understanding of their environments, may favor traditional land management techniques that 

preserve the diverse array of species and ecological roles within their ecosystems (IPBES, 2022). 

This includes maintaining habitats for a range of plant and animal species, ensuring that key 

ecological functions, such as pollination and seed dispersal (IPBES, 2022), which have the 

potential to shape landscapes both historically and sustain them into the future (Ribeiro et al., 

2014). These practices, deeply embedded in their cultural traditions and knowledge systems, may 

contribute significantly to the richness of functional traits and roles present within the ecosystem, 

thus elevating FD. 

These examples underscore the crucial role that community-managed lands can play in 

the conservation of birds and mammals exhibiting frugivory. To protect 30% of land by 2030, it 

is unlikely this can occur through the expansion of PAs alone (Cook, et al. 2022; Dudley et al., 

2018). The designation of other effective conservation measures (OECMs; CBD, 2018) are a 

promising way to achieve this goal as much biodiversity is occurring on private, community, or 

Indigenous Lands (Alves-Pinto et al., 2021; Garnett et al., 2018; O’Bryan et al., 2021). Our 

results show the importance of including OECMs in the 30X30 target and support the need to 

foster partnerships that empower local communities to sustainably manage and protect their 

lands as a way of enhancing biodiversity, particularly for frugivorous species. Collaborative 

engagement with indigenous peoples and local communities aligns conservation efforts with 

local values, enhancing the chances of success in protecting and maintaining biodiversity. This 

alignment between indigenous and local knowledge and modern conservation objectives could 



 
 

141 
 

catalyze more inclusive and robust conservation strategies within the 30X30 initiative (Cook et 

al. 2022). 

As this study and previous findings reveal, the pursuit of comprehensive biodiversity 

conservation of frugivorous species may entail biodiversity trade-offs (Faith & Walker, 2002; 

Cadotte & Tucker et al., 2018). Striking the right balance requires open engagement with 

partners, and integrating ecological insights, societal values, and effective governance 

mechanisms. This type of prioritization has been proven to conserve phylogenetic diversity 

(Bennett et al., 2014; Carvalho et al., 2017; Forest et al., 2007; Robuchon et al., 2021; Velazco et 

al., 2021), however there are few examples for functional diversity –likely because conservation 

outcomes related to maintenance of ecosystem functioning are difficult to quantify (Cadotte et 

al., 2011). Thus, devising inclusive strategies to address these biodiversity trade-offs and 

measuring success of initiatives for species providing essential ecosystem services such as 

frugivores is an essential endeavor for policymakers and conservation practitioners alike. 

Ultimately, this holistic approach will facilitate a more balanced and inclusive approach to 

protect the future of biodiversity and ecological functions. 

3.6 Data Availability Statement 

All the code used in this study, including data processing, analysis, and visualizations, is 

publicly available on GitHub at https://github.com/bioXgeo/neotropical_frug_diversity.  
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APPENDIX 3A: SPATIAL MISMATCHES AND ALIGNMENTS 

Figure 3A.1: Correlation between functional diversity, quantified as functional dispersion (fdis), 
and SRTM elevation within each 10 km2 grid cell across the study area. 
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Figure 3A.2: Maps of Taxonomic Diversity (TD) and Functional Diversity (FD) of mammals 
across peak thresholds of diversity (10% and 30%). Panels a), b), d), and e) represent the highest 
10% and 30% of diversity values for each dimension of biodiversity. Panels c) and f) show areas 
of overlap between both TD and FD. 
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Figure 3A.3: Maps of Taxonomic Diversity (TD) and Functional Diversity (FD) of birds across 
peak thresholds of diversity (10% and 30%). Panels a), b), d), and e) represent the highest 10% 
and 30% of diversity values for each dimension of biodiversity. Panels c) and f) show areas of 
overlap between both TD and FD. 
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Figure 3A.4: Maps of overlapping Taxonomic Diversity (TD) and Functional Diversity (FD) 
between mammals and birds (frugivores) across peak thresholds of diversity (10% and 30%). 
Panels a), b), d), and e) represent the highest 10% and 30% of diversity values overlapping for 
each taxa per dimension of biodiversity. Panel c) & f) shows overlapping areas between TD and 
FD across taxa. 
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CONCLUSIONS AND RECOMMENDATIONS 

This research deepens our understanding of the geographic distributions of bird and 

mammal biodiversity across regions of the Neotropics to better inform conservation strategies. It 

encompasses the exploration of methods to enhance reliability of species distribution models for 

Colombian mammals and the assessment of spatial tradeoffs between regions of high taxonomic 

(TD) and functional diversity (FD) among frugivorous species in the Tropical Andes. To 

facilitate my analysis of FD, I also created an open-access functional trait dataset for frugivorous 

species named Frugivoria, which spans a substantial portion of moist forests in Central and 

South America. By illuminating these spatial dynamics, this research aims to enhance the field of 

tropical conservation by facilitating better-informed, holistic and inclusive assessments of 

biodiversity, thereby informing future spatial conservation priorities. 

Chapter 1 collates a trait dataset with harmonized taxonomy called Frugivoria, 

containing a total of 45,216 traits and adding 23,661 new trait values for frugivorous mammals 

and birds in contiguous moist montane forests and adjacent moist lowland forests of Central and 

South America. This is the first functional trait dataset focused specifically on frugivores within 

these forests and expands traits once only available for mammals to birds. These tropical seed 

dispersers are essential for the maintenance of ecosystem functioning and forest structure. 

Frugivoria will help facilitate study of this important functional group in a time of global 

change. I recommend that future studies utilize this dataset to study patterns of functional 

diversity for frugivores and other questions central to macroecology. For example, Frugivoria 

can be used to understand community assembly, spatial patterns of biodiversity, trait 

distributions, and can help assess the vulnerability of species to environmental changes in moist 

montane and lowland regions of Central and South America. Specifically, for conservation, 
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Frugivoria can be used to understand how species traits might relate to extinction risk. Of the 

species included in this dataset, 14.6% are classified as data deficient (DD) by the IUCN. Species 

that are DD are often not considered in biodiversity assessments (e.g., Key Biodiversity Areas 

(KBAs) or biodiversity hotspots), because they introduce uncertainty into estimates leading to 

underestimation of biodiversity for many regions. I recommend using Frugivoria to explore trait-

based approaches for assigning IUCN threat statuses for DD frugivores, an emerging area of 

research and an important step towards their consideration in biodiversity assessments. 

Protecting species that have the important functional role of seed dispersal can help maintain 

ecosystem functioning and forest structure. Furthermore, Frugivoria’s open workflow aligns 

with FAIR data principles and the code to build its framework could easily be adapted to 

different taxa and study regions. I recommend the use of this workflow to facilitate the 

development of other trait datasets and contribute to ongoing efforts to increase the availability 

of functional trait datasets to further address the Raunkiæran shortfall, which will allow for the 

easier use of trait-based tools for conservation prioritization. 

Chapter 2 demonstrates that the inclusion of geodiversity variables, reflecting spatial 

heterogeneity, into SDMs generally increased the predictive performance of the models, both 

statistically and often spatially, for mammals in Colombia. This finding highlights these 

geodiversity variables as a potential way to improve the geographic distribution estimates for 

species in areas with higher environmental heterogeneity, which can be used to prioritize areas 

for future sampling, and as a component for assessing species extinction risk and spatial 

conservation planning. Highest model performance typically occurred at spatial scales of 3-15 

km, indicating that these spatial grains may be sufficient when incorporating geodiversity 

variables into SDMs for most species, however patterns were idiosyncratic for some species with 
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highest model performance at coarser spatial grains. Due to scale-dependent and species-specific 

relationships with their environment, I recommend that multiple spatial grains be tested when 

incorporating geodiversity variables into SDMs, giving careful consideration to how a species 

may be interacting with its environment and the level of heterogeneity within the study area. This 

chapter also demonstrated that this method worked better for some biogeographic regions than 

others, with overfitting occurring in areas of low spatial heterogeneity as in the Amazon. I 

therefore recommend this approach to only be taken in the presence of moderate or high 

environmental heterogeneity to fully take advantage of information gained from these 

geodiversity variables. To ensure comparability of models within and across species, I 

intentionally refrained from implementing species-specific tuning of model parameters. 

However, it is important to note that within species distribution modeling (SDM) practices, 

species-specific tuning is considered a best practice for attaining models with an optimal level of 

complexity tailored to each species. Therefore, when applying this approach for estimating 

species distributions as part of a formal conservation assessment, I recommend applying species-

specific tuning methods to choose appropriate model parameters which balances both complexity 

and model fit. Moreover, it should be acknowledged that this research focused on a subset of 

mammal species specific to Colombia because of the high heterogeneity of the region and the 

availability of expert vetted occurrences and range maps through BioModelos. However, expert 

validated occurrences and range maps are not always available for certain regions and taxa, 

making model validation difficult in many cases. Therefore, I want to stress the importance of 

initiatives like BioModelos that aim to increase the availability of these data for both the 

academic and conservation community. This will make similar studies more tenable and allow 

for the inclusion of additional taxa in regions characterized by high environmental heterogeneity, 
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which may show different species-environment relationships with geodiversity.  Improved 

understanding of this relationship and incorporating geodiversity predictors in SDMs, can lead to 

more robust and reliable predictions. More robust predictions are essential given the reliance on 

SDMs for conservation such as targeting species prioritization, guiding future sampling efforts, 

and informing biodiversity assessments. 

Chapter 3 conducts a comparative analysis of the spatial distributions of TD and FD 

among frugivores and further evaluates their levels of protection and understand trade-offs when 

emphasizing specific dimensions of diversity. With the Frugivoria dataset from Chapter 1, the 

analysis in Chapter 3 reveals strong spatial mismatches between taxonomic and functional 

diversity in bird and mammal frugivores, with limited overlap between dimensions and taxa. 

Given that this mismatch is a common pattern seen in other studies also addressing spatial 

mismatches between facets of diversity, this seems to be the rule more than the exception. The 

existence of these mismatches necessitates the consideration of multiple dimensions of diversity 

for spatial conservation planning. Further, this chapter revealed that high biodiversity areas, both 

taxonomically and functionally, were only about 37% protected when considered independently. 

Protection plummeted to 0% for mammals when focusing on areas where diversity dimensions 

overlapped. Based on these findings, I recommend special attention to be given to mammals 

when protecting high levels of multidimensional diversity. However, due to generally low 

overlap among diversity dimensions within each taxon for the highest level of diversity, 

considering each facet separately when prioritizing conservation areas for maximum diversity 

might be prudent. This chapter also demonstrated that high numbers of FUSE mammals, levels 

of bird FD, bird TD, and mammal TD were elevated in some strict protected areas when 

compared with less strict areas. This highlights the importance of certain strict protective 
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measures in the maintenance of biodiversity, however there was no statistical difference between 

protective measures for the FD of mammals as well as for FUSE birds. This finding further 

bolsters the earlier recommendation, advocating for focused conservation efforts for mammals, 

particularly to enhance the protection of heightened FD within the stricter categories of PAs, and 

stresses that attention also be given to FUSE birds. Future conservation prioritization for these 

groups as well as high biodiversity areas in general should assess complementarity for both 

established reserves and areas earmarked for potential expansion or the introduction of new 

protective measures. This is especially important given that current IUCN guidelines for 

establishing Key Biodiversity Areas (KBAs) do not explicitly consider FD and instead focuses 

on TD. Emphasizing the evaluation of FD is particularly crucial, as prioritizing this metric, 

specifically for frugivores, holds the promise of sustaining ecosystem functionality and overall 

health in the face of a dynamically changing climate. Further, we found that PAs with 

community-based management had higher levels of FD and other PAs within the same PA 

category. This finding stresses the importance of including areas with local governance into 

biodiversity targets, as diversity in these areas may specifically benefit from traditional land-use 

practices, knowledge systems, and a deep connection to their landscapes. 

This work encountered persistent challenges, predominantly stemming from the COVID-

19 pandemic and use of big data techniques. The progress of my dissertation was significantly 

hampered by the COVID-19 pandemic. Working in isolation made it challenging to collaborate 

effectively and discuss aspects of my research like R code with colleagues. Additionally, 

undergraduate students working on the Frugivoria project had limited availability to contribute 

to the project due to the disruptions caused by the pandemic. These difficulties were 

compounded by the resource-intensive nature of the work, particularly the need for high-
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performance computing (HPC) for data storage and processing in all three chapters of my 

dissertation and the need to collaborate with a data scientist to corroborate workflows. In both 

Chapters 1 and 3, the BirdLife International spatial dataset, a geodatabase of bird range maps, 

proved indispensable. However, given its substantial size, exceeding 3 gigabytes, this dataset 

posed difficulties in terms of storage, manipulation, and interaction. Furthermore, Chapters 1 and 

2 were characterized by a substantial demand for data-intensive operations. Chapter 2 

necessitated the generation of well over a thousand models, alongside their corresponding 

outputs, during the process of streamlining the automated workflow. Chapter 3 posed its own 

challenges, involving the processing of hundreds of range maps to generate AOH maps. Notably, 

for this same chapter, the computation of FD for a community defined by 10 km= grid cells 

across the entire Tropical Andes required an extensive run time of approximately 48 hours, even 

when executed on MSU's HPC. Given these challenges and to promote transparency and 

reproducibility for all chapters, I shared the computational workflows and analyses on GitHub, 

ensuring that fellow researchers and conservation practitioners could replicate our methods and 

results. However, it is imperative to recognize that for studies wishing to compute similar metrics 

at finer scales or with an increased number of PCoA axes, the required time investment and 

demand for resources would increase exponentially. The emergence of cloud computing has 

garnered attention within the field of ecology, offering a potential solution to this issue. 

However, impediments such as cost, and the knowledge barriers associated with adopting cloud 

computing technologies can hinder their practical application for conservation practitioners in 

the field. To mitigate these barriers, the establishment and fostering of existing partnerships 

between academic institutions and conservation organizations on the ground could play a pivotal 

role. Such collaborations could work to close the divide between advanced research 
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methodologies and applied conservation, facilitating the efficient and effective application of 

research outcomes to on the ground management, thereby reducing this research implementation 

gap. These partnerships, coupled with open-access tools like R and GitHub, contribute to the 

accessibility and reproducibility of ecological research, ultimately benefiting both the scientific 

community and conservation practitioners. 

My intent for this dissertation was to enhance the understanding about the distribution of 

bird and mammal biodiversity within the Neotropics. I pursued these goals through 

comprehensive investigations spanning species distribution models, functional and taxonomic 

diversity assessments, and the creation of the Frugivoria functional diversity dataset. By 

shedding light on critical aspects of the distribution of biodiversity and offering a newly 

compiled dataset that not only enables fellow researchers to perform similar analyses, but also 

encourages the extension of these analyses, this study improves our capacity to make well-

informed decisions pertaining to the prioritization of species and the identification of high-value 

conservation areas. As we navigate a rapidly changing world, it is my hope that the insights 

garnered from this work will contribute to more effective and holistic approaches to safeguarding 

biodiversity.  


