ACTIVE LEARNING IN GENETIC PROGRAMMING

By

Nathan Haut

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Computational Mathematics, Science, and Engineering—Doctor of Philosophy

2023

ABSTRACT

Active learning is an active field within machine learning that aims to minimize the amount of
training data required by focusing on selecting training points that will be maximally informative
for model development. Active learning has been successfully applied to many different types of
machine learning, but until this dissertation, active learning’s application to genetic programming
has not been thoroughly examined. Considering that genetic programming is already known to be
less data-hungry than many other methods, it seemed to be natural that we could further reduce
training data requirements for genetic programming by applying active learning methods.

In this dissertation, I developed the active learning in genetic programming (AL-GP) method
and demonstrated how it is flexible and can be applied to a diverse set of population-based machine
learning systems across several problem domains to guide training data selection. This results in
a reduction in training data required to arrive at high-quality models. The method is shown to be
effective across regression, image segmentation, and image classification problems.

For active learning in regressions tasks, I explored the impact of both model uncertainty and data
diversity individually and together. For image analysis tasks, I explored the impact that ensemble
diversity has on active learning success.

In this work, I developed two new GP systems, StackGP and DT-GP. Additionally, I modified
the existing SEE-Segment system to improve the search strategy. The AL-GP approach was shown
to work with all three systems which demonstrates that the AL-GP approach is general and easy to
adapt to any population-based machine learning system.

Although not directly linked to active learning but key to the success of StackGP for regression
tasks, correlation as a fitness function was shown to be more effective than the traditional RMSE

fitness function.

ACKNOWLEDGMENTS

Dr. Bill Punch and Dr. Wolfgang Banzhaf co-advised me while a Ph.D. student at MSU and
offered valuable insight and guidance that was critical to my success in research and the completion
of this dissertation. Dr. Mark Kotanchek first introduced me to the world of genetic programming
and taught me valuable skills that contributed significantly to the accelerated timeline of my Ph.D.
research. He inspired me to pursue research at a graduate level so that I could challenge myself and
gain valuable skills that will hopefully allow me to make a meaningful contribution to this world.
Dr. Dirk Colbry welcomed me into his research group where an ideal synergy was realized that
allowed me to learn about and apply my work to new domains while also bringing knowledge of
genetic programming and active learning to their group and new functionality to their SEE-Segment
tool.

Significant computing resources were supplied by MSU’s iCER high-performance computing
center, which allowed me to complete all of my experiments for this dissertation which required
computing hours in the range of 7-figures to be completed in a timespan of just about three years.

Most importantly, I thank Brianna Ricker, whose unconditional support helped me make it
through my graduate studies. Thank you for being patient with me through all the times I was
hopelessly trying to fix bugs in my code at 2am or I was raving excitedly about a new idea I had for
my research. As well, thank you for offering your artistic eye anytime I was struggling to design a

poster, presentation, or figure.

il

TABLE OF CONTENTS

CHAPTER 1 CONTRIBUTIONS s 1
PartI Background L 3
CHAPTER 2 ACTIVE LEARNING s s s, 6
CHAPTER 3 EVOLUTIONARY COMPUTATION 12
3.1 Symbolic Regression 15
Part II Regression. e 18
CHAPTER 4 STACKGP 20
4.1 Model Form 20
4.2 Genetic Operators i e e e e e e e e 20
4.3 Selection/FIitness e e e 21
4.4 Termination Criteria v v i i e e e 22
4.5 Ensemble Selection Method 22
4.6 Default Evolution & Active Learning Parameters 23
4.7 Baseline AL Performance using Mathematica-based StackGP 23
4.8 Baseline AL Performance using Python-based StackGP 26
CHAPTER 5 CORRELATION IS A BETTER FITNESS FUNCTION 28
5.1 Benchmarks 30
5.2 Methods e 31
5.3 Results 33
5.4 DISCUSSION e 45
5.5 ConclusionsS e e e 45
CHAPTER 6 AL-GPFOR REGRESSION oo . 47
6.1 Introduction e e 47
6.2 Related Works 48
6.3 Methods e 50
6.4 Resultsand Discussion 58
6.5 Conclusion e e 68
6.6 Acknowledgments 70
6.7 Code Availability 70
Part III Classification o i e e e e e e e e s e e e 71
CHAPTER 7 DT-GP s 73
7.1 ModelForm e 73
7.2 Genetic Operatorso e e e e 74
7.3 Selection/Fitness, 75

v

7.4 Active Learning Implementation for DT-GP 76

7.5 Code Availability 77
CHAPTER 8 SEE-SEGMENT e 78
8.1 SEE-Segment Implementation 78
8.2 AL Implementation for SEE-Segment 79
8.3 Code Availability 81
CHAPTER 9 AL-GP IN CLASSIFICATION TASKS 82
9.1 Introduction e 82
9.2 DataSets e e 84
9.3 Active Learning 87
9.4 AL-GP Applied to DecisionTree GP 87
9.5 AL-GP Applied to SEE-Segment 98
9.6 Conclusions e e e 102
CHAPTER 10 FUTUREWORK 105
CHAPTER 11 CONCLUSIONS e 107
BIBLIOGRAPHY o e 111
APPENDIX A . e 118
APPENDIX B . . . e 122
APPENDIX C . . e 125

CHAPTER 1

CONTRIBUTIONS

In this dissertation, I developed the active learning in genetic programming (AL-GP) approach
and demonstrated how it is flexible and can be applied to a diverse set of population-based machine
learning systems across several problem domains. In pursuit of developing the AL-GP method, I
explored how the approach needs to be adapted to work with regression, classification, and image
segmentation tasks.

For regression tasks, I explored the importance of data diversity and model uncertainty and
compared several metrics for computing each. This is shown in Chapter 6. I demonstrate that
differential entropy is the clear winner for computing uncertainty, while correlation and Euclidean
distance each have unique benefits when used to measure data diversity. I also developed an
approach to consider both data diversity and model uncertainty together for active learning by
using a Pareto optimization approach.

In Chapter 9, I applied AL-GP to image segmentation and classification tasks. I show that
AL-GP can reduce the number of images or pixels required for training models in image analysis
problems. I also explore how AL-GP can be applied to a research workflow to accelerate a scientific
research project that requires segmenting and classifying biological cells.

A key step in developing the AL-GP method was identifying that the model population present
in genetic programming systems can be exploited by capturing the diversity of the high-quality
individuals in the population and using their disagreement as the metric for uncertainty to select
informative training samples. For regression tasks, I developed an ensemble selection method that
considers high-quality candidate models for different training clusters, to capture the diverse models
that perform well in different regions of the training space. For classification and segmentation
tasks, I compare two approaches for generating model ensembles and demonstrate that a more strict
definition for diversity when selecting ensembles leads to better performance of active learning.

To test the validity of the AL-GP approach, I had to develop several new GP systems as part

of this dissertation. I developed two new GP systems, StackGP and DT-GP, discussed in Chapters

4 and 7. StackGP is a stack-based genetic programming system that pulls from other existing
GP systems to produce a state-of-the-art system for symbolic regression tasks. The key features
of this system are the stack-based model structures, correlation fitness function paired with an
essential alignment step, multi-objective search strategy via Pareto tournament selection, and the
data clustering ensemble generation method. DT-GP is a GP system that is specialized to produce
decision trees. It is unique in the sense that the model structure is hierarchical and typed, so
that all models produced are valid, which improves search efficiency. As well, a relative fitness
measure was used that considers models in both their raw form and their form if the Not operator
was applied, which effectively reduces the size of the search space. AL-GP was also applied to
SEE-Segment, which I did not create, but did modify to improve the performance of the search so
that active learning could be effective. SEE-Segment and the modifications I made are discussed
in Chapter 8.

One of the key features responsible for StackGP’s performance is the use of correlation as a
fitness function when it is paired with an alignment step. This implementation choice had not
been thoroughly explored or explained in the literature prior to this work, so Chapter 5 provides
a detailed analysis of the benefits of using correlation as a fitness function with a simple linear
regression alignment step compared to the traditional RMSE fitness function. This also identifies
the potential benefits of developing relative fitness measures for other problem domains when using
GP to help improve the efficiency of the evolutionary search by improving the visibility of solutions

and shrinking the search space.

Part 1

Background

Machine learning (ML) is the process of training a computer algorithm to perform a specific
task through some learning process. There are three main learning strategies that exist in machine
learning: supervised learning, unsupervised learning, and reinforcement learning. Supervised
learning is applied when you have a set of training data and each training case has a label, the
learning process is an optimization of a model so that the model most accurately maps the training
input to the training labels. Unsupervised learning also has a set of training data, except here
the data has no labels, so the goal is to build a model that discovers some pattern in the data.
A common type of unsupervised learning is clustering, where the goal is to discover groups in
the data, where within each group samples are similar in some way, and samples within different
groups differ in some meaningful way from samples in other groups. Reinforcement learning is
a bit different, where the goal instead is to learn by actually attempting to perform a task and
then the algorithm is either rewarded or penalized based on how the algorithm performs. Through
many iterations, reinforcement learning will lead to improved performance on the specific task.
A common application of reinforcement learning is in robotics. For example, you might want to
train a robot vacuum to clean a space. The robot would be rewarded as it covers more of the floor
space and it would be penalized when it repeats spaces or runs into obstacles. In this work, we are
focused on both supervised and unsupervised learning. We will use supervised learning to train
models since all models will be trained on training data with labels. Unsupervised learning will
be used to analyze unlabelled training points to determine how informative the points might be if
we gave them a label and supplied them to the model’s training set. This will be described in more
detail throughout this dissertation.

There are a plethora of model representations that are suited for different types of tasks. For
each representation, the strategy for learning has to be developed to best suit that representation.
Common representations include support vector machines (SVMs) [Vapnik, 2006], neural networks
(NNs) [Miiller et al., 1995], random forests (RFs) [Ho, 1995], decision trees (DTs) [Quinlan, 1986],
Gaussian mixture models (GMMs) [Rasmussen, 1999], regression models, etc. Support vector

machines are well suited for finding decision boundaries between multiple classes of samples, thus

it is applied to classification problems. The learning process involves finding a decision boundary
that maximizes the classification accuracy of the training samples. Regression models are a class
of models which contain mathematical equations. The goal during learning is to find an equation
or adjust parameters within an equation to best fit the training data labels when supplied with the
training data input values. In this work, we will focus on regression models, decision trees, and
also a unique representation for image segmentors.

Depending on the type of model, there are different methods of training that can be used. Often,
a single model of a specific form will be defined. To train that model, an optimizer will be used
with the model to adjust model parameters iteratively in search of a parameter set that allows the
model to perform best on the training set. For example, when using a neural network, it is common
to use backpropagation to adjust the weights of the model to improve performance on the training
set. Alternatively, instead of starting with a single model, you can use a population of models and
allow them to compete and adapt over many iterations, such that the performance of the models
in the population improves over iterations. This method is called evolutionary computation and
is inspired by biological evolution. For this work, I focus on evolutionary computation methods

where we have a population of models that are evolving to solve a specific problem.

CHAPTER 2

ACTIVE LEARNING

Active learning [Cohn et al., 1996] is an iterative machine learning strategy where the ML
method itself selects additional training data to maximally inform its own learning process. New
points are selected using some metric of informativeness or uncertainty over the potential new
training points. The method of determining which point will be maximally informative is dependent
on the type of machine learning model being used, as well as the type of data. In general, there
are three main classifications of active learning: pool-based, stream-based, and membership query
synthesis [Ren et al., 2021]. Figure 2.1 shows a simple visual representation to compare the three
methods of active learning. Pool-based active learning methods begin with a set of training data
that is mostly unlabelled. The machine learning method is trained on the labelled data and then
the uncertainty or informativeness metric is used to select one or several of the unlabelled points
that rank highest according to the predicted amount of information that will be gained by labelling
each point. Those points are then labelled and added to the training data. Stream-based methods
are similar to pool-based methods except they are computationally lighter since instead of ranking
all unlabelled data points, they consider only one point at a time and determine if it either should
or should not be labelled. Membership query synthesis methods differ from the other two methods
since they do not have a set of unlabelled points to choose from. Instead, the machine learning
model is responsible for generating a point that the model’s informativeness measure indicates will
give relatively high information gain if produced and labelled. All three methods share the same
goal. They attempt to minimize the total number of labelled data points needed to train a model of
sufficient quality.

Active learning in the field of machine learning drew its inspiration from the statistics method
of query learning. The goal of query learning is to design an experiment that will lead to maximal
information gain [Lindley, 1956], similar to active learning, except the goal is not specific to
improving a model directly, just gaining more knowledge. It views information from a statistical

viewpoint, such that information gain can be quantified. This allows the information space to be

Stream-Based Pool-Based Membership Query Synthesis

sample 1 W 4
|

sample 2 0.4

LS

sample 3 ‘ 0.8

sam£|e4 F L

3.0

! N
o u
1 1

Information
- - N

o
o

=N

=)

S

@

0.0 0.5 1.0

o
o o u
1 1

Figure 2.1 The three main types of active learning: Stream-based, pool-based, and membership
query synthesis are visually demonstrated. Stream-based approaches, shown on the left, search
through the samples one at a time and either mark them for labelling or skip them. Green indicates
a sample is found to be informative and is marked for labelling, red indicates a sample is skipped.
Pool-based approaches, shown in the middle, assign an information score to each potential training
sample, and the most informative sample is chosen to be labelled and added to the training set.
Membership query synthesis, shown on the right, searches a space of potential points not yet
collected while maximizing an information measure and selects a point to be synthesized and
labelled that maximizes the information score. The selected point is indicated by the green circle,
while the y-axis of the curve represents the informativeness measure and the x-axis is representative
of the sample space.

explored, with respect to previous knowledge, to find an experiment that would provide maximal
information gain. In that work, Lindley provides a definition for average information gained from

experiment € when having prior knowledge p(6):

g(e, p(0)) = Ex(g1(x) — go); (2.1)
80 =/p(9) *log(p(0)) * db, (2.2)
g1(x) = / p(61x) * log (p(8lx)) = d6 23)

where x is the observed value that results from the experiment € and 6 represents the experimental
parameters or the state of the system. This measure of experimental information gain is useful
when there exists prior knowledge and the goal is to directly compare the amount of information
gained by two or more experiments.

Uncertainty sampling is an approach to active learning that quantifies information gain using an

uncertainty metric [Lewis and Gale, 1994]. It relies on having some metric to compute uncertainty

given a specific model. This was first used in [Lewis and Gale, 1994] for the tasks of selecting
training samples for text classification of news headlines. It was shown that uncertainty sampling led
to improved performance when compared to random sampling and relevance sampling. Relevance
sampling is essentially the opposite of uncertainty sampling, where new samples are selected that
are most likely to belong to a class. As well, it was shown that the models developed when using
uncertainty sampling performed better when trained on a small data set than models trained on
all samples. Sampling bias, which results from sampling from an unbalanced data set was shown
to be an issue with random sampling, since few cases in under-represented samples are generally
selected, which results in biases in the trained classifiers. Uncertainty sampling has the potential to
reduce sampling bias since cases in the under-represented classes will be identified as interesting if
a proper uncertainty metric is utilized.

As mentioned previously, the method for determining which points will be maximally informa-
tive depends on the machine learning method being used. For example, active learning has been
applied to support vector machines. Support vector machines are linear discriminators, where the
goal of learning is to find a decision boundary that both maximizes the number of correctly classified
cases, while also maximizing the distance of the decision boundary to the training points in different
classes. A simple uncertainty sampling based implementation for active learning was performed
by computing the distance of all points to the separating hyperplane and selecting the point nearest
the hyperplane to be labelled [Kremer et al., 2014]. For neural networks, one method that has been
applied is to select points with the minimum difference between the predicted probabilities of the
two most probable labels [Ren et al., 2021]. This can be defined as M = P(/1|x) — P(I2|x), where
M is the margin between the two most probable labels, /1 is the most probably label for input x,
and /2 is the second most probable label for input x [Ren et al., 2021]. There are many other active
learning methods even just within neural networks and support vector machine applications, but
these are just two intuitive examples that highlight how the methods differ depending on the type
of machine learning method being used.

Uncertainty cannot be computed on all model forms directly. In such cases, it is possible to

use several models from a set and use disagreement as the metric for uncertainty. An instance of
this approach has used the version space, which is the set of models that fit all the training samples
[Mitchell, 1982]. Query-by-committee is an active learning method that has been utilized for
classification tasks, where a sample of models from the version space is selected and new training
samples are selected from the set of samples where those models disagree [Seung et al., 1992].
They demonstrated that information was gained much faster when using query-by-committee when
compared to random sampling on two toy problems.

Active learning using query-by-committee has been applied to genetic programming classifica-
tion tasks where a committee of models votes on the class of data pairs, and points are only labelled
when the committee of developing models encounters pairs that can’t be classified [De Freitas
et al., 2010]. This was found to reduce the total effort needed to label training points, since only
a subset had to be labelled before finding accurate models. Active learning has also been applied
to genetic programming where training sets are large, by selecting sub-samples of the training data
to be used [Curry et al., 2007, Lasarczyk et al., 2004]. In [Curry et al., 2007], active learning was
performed by segmenting the data into smaller blocks and training the models using one block
at a time randomly selected with uniform probability. As training continues, bias is introduced
into the probability by increasing the bias towards blocks that haven’t been seen in a while as well
as blocks where the models performed poorly during training. Active learning for sub-sampling
with genetic programming was found to decrease training times to find quality binary classification
models by an order of magnitude [Curry et al., 2007]. In [Lasarczyk et al., 2004], subsets were
selected by dynamically developing a fitness case topology that could be used to create minimally
related subsets of data. In this context, the strength of a relationship between two training cases was
indicated by the number of individuals that were able to solve both training cases. Active learning
has also been applied to the task of discovering regular expressions using genetic programming
[Bartoli et al., 2018]. In that work, they used a restricted query-by-committee (rQbC) strategy
that utilized the top 25% of models in a population to generate "extraction queries", in which the

user then indicates whether or not the character string selected by the "extraction query" should be

extracted or not by a regular expression.

Active learning methods for machine learning have shown to be very successful in applied
settings to improve the method of labelling and collecting data with various machine learning
types. Active learning has recently been demonstrated to significantly reduce the labelling efforts
required for labelling data associated with identifying heart disease [El-Hasnony et al., 2022]. They
demonstrated that they could find more accurate models using fewer data points when compared
to a random point selection strategy. In the realm of cybersecurity, active learning with support
vector machines has been applied to decrease the number of training samples needed to develop
models to identify PDF documents that have been infected with malware [Li et al., 2022]. They
demonstrated that they could reduce the required training set size to 1/30z¢h of the required size
when compared to an approach without active learning while maintaining model performance.
Active learning methods using an uncertainty measure with neural networks were utilized within
chemistry to effectively explore a space of 16 million potential catalysts to maximize the conversion
rate of methane to methanol [Nandy et al., 2022]. The researchers discussed that this active learning
strategy could be applied to other chemistry problems with large search spaces to reduce decade-
scale research projects down to timescales of years or weeks.

While active learning has been primarily applied to supervised learning since the goal is gener-
ally to generate labelled data, there has been some recent work in applying active learning methods
to unsupervised learning and reinforcement learning, the other two classes of machine learning.
Active learning approaches for unsupervised learning differ from active learning approaches for
supervised learning. For unsupervised learning, rather than selecting maximally informative points
for labelling, points are selected that are maximally representative of the sample space without
consideration for labels [Li et al., 2015]. In [Yu et al., 2006] they propose Transductive Experimen-
tal Design (TED), which is a method for choosing points that are maximally representative of the
sample space. They demonstrate the use of this approach on regression tasks and suggest it could
be extended to classification tasks. Active learning in unsupervised scenarios has also been shown

to be useful to sample maximally informative points in the early stages of an active learning process

10

prior to any points existing in the training set [Nie et al., 2013]. This can be used to collect an
initial set of representative data points before transitioning to a supervised active learning strategy.
As well, since the focus is on representative samples, outliers do not negatively impact learning.

Active learning in reinforcement learning seems to be the least explored area of active learning,
but there have been a few examples of researchers trying to apply active learning to reinforcement
learning methods. In [Doshi-Velez et al., 2012], researchers apply an active learning method
to be used with partially observable Markov decision processes (POMDPs). There they allow
a reinforcement learning agent to query an expert on the correct or best policy when the agent
encounters a scenario where the predicted costs of all known actions exceed the cost of querying
an expert for the correct policy. Active learning for reinforcement learning has also been applied
to minimize the number of samples required by querying for samples in specific states [Lopes
et al., 2009]. The specific focus of that work was inverse reinforcement learning where the goal
was to approximate a reward function using minimal data. As well, there has been work on using
reinforcement learning to train an active learning agent that decides which information should be
queried [Rudovic et al., 2019]. The focus of that work was to use reinforcement learning to develop
an active learner that chooses informative samples to approximate human engagement.

In this dissertation, the active learning methods developed primarily take inspiration from uncer-
tainty sampling, query-by-committee, and query learning while using pool-based and membership
query synthesis active learning techniques. Uncertainty sampling with query-by-committee was
used to develop model-driven active learning strategies for selecting training data and is explored
extensively throughout this dissertation across various applications. For a data-driven active learn-
ing approach explored in Chapter 6, inspiration is taken from query learning to select informative

training samples given the existing training sets for regression problems.

11

CHAPTER 3

EVOLUTIONARY COMPUTATION

Evolutionary computation is a field of machine learning that is inspired by natural evolution.
Specifically, evolutionary computation simulates natural selection by determining the survival of
individuals from a population based on a fitness function which is a metric that determines how
well each individual accomplishes an assigned task. To allow for exploration and innovation,
evolutionary computation methods utilize the genetic operators: mutation, crossover, and selection
[Back and Schwefel, 1996]. Random mutation allows for new genetic information to be considered,
making it the operator of innovation. Crossover allows genetic information to be exchanged
between individuals in a population, potentially allowing beneficial genetic information from
multiple individuals to come together to create a more fit individual. Selection determines which
individuals in the population will have the chance to survive and reproduce to generate the next
generation. The dynamics of evolution in evolutionary computation are primarily controlled by
modifying the methods and rates of selection, mutation, and crossover. A general overview of an

evolutionary computation algorithm is shown in Figure 3.1.

Initial Population

—— > Selection

S

Crossover Mutation

N

New Population

Final Population

Figure 3.1 An generalized overview of how an evolutionary computation algorithm works. It
begins with an initial population, typically randomly generated, and using a selection operator
to determine which individuals survive and get to reproduce via crossover mutation, the next
population is produced. This iterates many times until a termination condition is met.

There are many different methods for selecting which individuals from a population will survive

12

and reproduce. Random selection uses no selection pressure at all and allows any individual to
be selected and to reproduce without any bias for how the individual performs. This isn’t used in
practice, but if it were used for optimization, this would be equivalent to random search. While
random search is guaranteed to find a solution eventually, if one exists, it is not efficient so it is
necessary to apply some selection pressure. Tournament selection is currently a commonly used
method, where individuals are selected to compete in random tournaments of some set size, and
the best individual in that tournament gets the opportunity to reproduce. Selection pressure in
tournaments can be modified by adjusting the tournament size. A large tournament increases
selection pressure while smaller tournaments weaken the selection pressure. More recently, a
new variant of tournament selection has been developed, Pareto tournament selection, which can
consider multiple fitness objectives simultaneously [Kotanchek et al., 2007]. Pareto tournament
selection begins exactly as tournament selection, with a randomly selected group of individuals, but
instead of always selecting one winner, all non-dominated individuals in the tournament are returned
as winners and given the opportunity to reproduce. This idea of optimizing multiple objectives
has recently been adapted into Lexicase selection, which works by randomly ordering fitness cases
and objectives and having individuals compete on each fitness case until one individual wins
[Spector, 2012]. This approach has recently been claimed to improve the preservation of specialists
but is being actively explored to determine the benefits or drawbacks of this approach. Lexicase
selection is also unique in the sense that it avoids the use of summary statistics, such as averages,
to compare individuals. Fitness-proportional selection, where individuals are randomly selected
proportional to their fitness values, is more of a global selection strategy since it considers the
whole population together but has been found to be sensitive to the specific fitness metric being
used [Holland, 1992b]. Rank-based selection was adapted from fitness-proportional selection but
avoids the sensitivity to the specific fitness metric since only the ranking after sorting individuals
based on fitness is considered [Baker, 2014]. Elitism is a type of selection that selects just the
best individuals from the whole population and copies them directly into the next generation. This

is often paired with another selection method to ensure that high-performing individuals are not

13

lost due to random chance, which can occur for example if the best individual in a population isn’t
selected to compete in any tournament when using tournament selection.

Within the field of evolutionary computation, there exist four main sub-fields: evolutionary
strategies [Beyer and Schwefel, 2002], evolutionary programming [Fogel, 2012], genetic algorithms
[Holland, 1992a, Goldberg, 1989], and genetic programming [Koza, 1992b, Banzhaf et al., 1998].

In this dissertation, I use systems that implement genetic programming and genetic algorithms.
Genetic programming is the sub-field of evolutionary computation that utilizes the genetic operators
to develop computer programs that are optimized to perform a specific task [Koza, 1992b, Banzhaf
et al., 1998]. In genetic programming, an individual’s fitness is a measure of how well it performs
a specific task. Selection is used to help direct exploration into regions within the search space
around the high-fitness individuals, but selection pressure must remain balanced to allow the
potential discovery of new promising regions as well. Programs in genetic programming have
traditionally been represented as trees [Koza, 1992b], but other implementations such as linear
genetic programming [Brameier and Banzhaf, 2007], stack-based genetic programming [Spector],
and graph-based Cartesian genetic programming [Miller, 2011] have shown to be effective as well.
In this dissertation, I explore tree, linear, and stack-based systems. An example of a tree is shown
in Figure 3.2, which is an example of a genotype that when evaluated results in a math equation,
c/2 +x = y. An example of a stack-based model, using an operator stack and a variable/constant
stack, is shown in Figure 3.3, which when evaluated would result in the equation 1/5(2 * A + X).

Genetic algorithms are similar to genetic programming in how selection and variation operators
are used to improve performance relative to a fitness function over many generations. Genetic
algorithms differ from genetic programming in that individuals evolved in GA’s are fixed size, unlike
individuals in genetic programming which can adapt and change size over generations. As well,
genetic algorithms are typically used to evolve a solution directly, whereas genetic programming is
used to develop a program or process that can be used to solve a problem. An example structure of an
individual that could be evolved with a genetic algorithm is shown in Figure 3.4. In this example,

during evolution, the genetic operators could operate on the specific values in the individual to

14

Plus

Times Times

[

Figure 3.2 An example of a genetic programming tree is shown. When evaluated, this tree becomes
the math expression ¢/2 + x * y.

attempt to find optimal values for each position in the list. Selection would be used to select

individuals that have parameters that lead to better performance relative to a specific task.

3.1 Symbolic Regression

Symbolic regression is a typical application of genetic programming (GP) that develops mathe-
matical models to fit data sets [Koza, 1992b, Banzhaf et al., 1998]. This is a form of understandable
Al since the final model can be easily presented to the end user in the form of an equation. This
makes it an appealing tool for researchers attempting to understand a system of study since physical
laws can be extracted from the data. The equations can then be studied and used to make predictions
or generate new hypotheses to help explore a system. While many different implementations exist
for symbolic regression, such as DataModeler [Evolved_Analytics], Eureqa [Nutonian], AlFeyn-
man [Udrescu and M., 2020a], etc., symbolic regression is not a solved problem. Questions remain
such as how much data is needed, at what rates the genetic operators should be used, what rep-
resentation is most effective, what fitness function(s) should be used, and how to balance model
complexity to prevent overfitting.

Previous to this research, a set of 100 Feynman equations was used to compare the effectiveness

15

Figure 3.3 An example of a genetic programming stack-based model is shown. When evaluated,
this stack becomes the math expression 1/5(2 * A + X).

E |15 o E E 1 E 2 |

Figure 3.4 An example of an individual that could be developed by a genetic algorithm. Through
evolution, the specific values in each position in this list should be optimized.

of different symbolic regression implementations [Udrescu and M., 2020a]. This benchmark data
set was used to test the ability of a machine learning (ML) system to rediscover the equations
using the fewest data possible. This is a useful benchmark since all of the equations are physically
meaningful. Good performance on this benchmark could indicate a ML/GP system is viable for
use in scientific studies attempting to discover equations describing natural phenomena. However,
in this work, we do show that about a third of the problems in this set are trivial and should be
excluded from future benchmark sets.

Udrescu and Tegmark themselves developed an effective ML approach, AlFeynman, that is
capable of solving all 100 problems in the Feynman Symbolic Regression Database [Tegmark,

Udrescu and M., 2020a]. However, on many of the more complex equations, their approach relies

16

heavily on dimensional analysis, translation, and neural networks that take advantage of symmetries,
smoothness, and separability designed specifically to solve these types of physics problems. While
their method works extremely well in solving these problems, for cases that have to rely on neural
networks, large data sets are required to rediscover the equations. Also, the dimensional analysis,
translations, and assumptions about symmetry and separability required significant domain exper-
tise, rendering this a complex approach to solving general-purpose symbolic regression problems.
Further, dimensional analysis requires that units both be known and recorded with the data, which
may often not be the case in real-world applications. Recent work that compared many different
symbolic regression methods on a broader benchmark set called, SRBench [La Cava et al., 2021],
found that AIFeynman actually does not generalize well beyond the Feynman Symbolic Regression
Benchmark problems. This shows that this approach is overly specialized and potentially even an
example of researchers developing a system purely to perform well on a specific benchmark.

In this work, we introduce the active learning in genetic programming method (AL-GP), which
uses features of population-based ML systems to determine which samples are most informative
to be used in training. We apply AL-GP to 3 different population-based ML methods: StackGP,
decision tree GP (DT-GP), and SEE-Segment. The goal of the AL-GP method is to create a
general-purpose approach for use with population-based ML systems, such as GP, that requires no
domain expertise, uses the least number of data points possible, and can guide data collection to be
maximally informative. Beyond data collection for model training, the developed models could be
used to design experiments to further explore systems of study. As well, the models could be used
to accelerate the development process by recommending the target conditions for the system of
study. An example of this could be using the developed models to design a chemical with specific

target properties by recommending the conditions to produce such target properties.

17

Part 11

Regression

18

Regression is a common application of machine learning where the goal is to find a model
that best fits some numerical data. Symbolic regression is an application of genetic programming
where mathematical expressions are evolved to fit numerical data. A successful run of symbolic
regression leads to a math equation that describes the relationships that connect the input values of
a dataset to the response values. Symbolic regression is an appealing ML approach for regression
since the resulting model can be easily interpreted to gain insight into the relationships within the
data.

This section of my dissertation focuses on how active learning can be applied to symbolic
regression tasks. To apply active learning to symbolic regression I first needed a high-quality
GP system for symbolic regression, so I developed StackGP. In Chapter 4, I describe StackGP,
its dual implementation in Mathematica and Python, and the performance benefits realized when
converted to Python. One of the features of StackGP that makes it a high-quality system for
symbolic regression is its use of correlation as a fitness function as opposed to the standard RMSE
fitness function. In Chapter 5, I describe the benefits of using correlation as a fitness function.
From there I can move on to actually applying active learning to StackGP. In Chapter 6, I show
the results of applying the active learning methods to StackGP for symbolic regression and explore
how different uncertainty and diversity metrics impact the success of active learning. As well, I
explore how uncertainty and diversity can be combined to form an active learning strategy that is

balanced between the two.

19

CHAPTER 4

STACKGP

StackGP is a stack-based genetic programming system that I designed and initially cre-
ated in Mathematica and have since converted into Python. It primarily draws from elements
of PushGP [Spector], which is another stack-based implementation, as well as DataModeler
[Evolved_Analytics], which is a tree-based implementation also built in Mathematica. StackGP is
used to evolve models during the model development step of the active learning strategy. The key
components of this system are described below in the following sections.

The Python version was created in response to feedback on a previous paper submission that
suggested we should use open-source code instead of proprietary Mathematica functions if we
want to publish in the academic community. This version is now complete and is comparable to
the Mathematica version with the only significant differences being with the maximization and
clustering functions since the Mathematica version used proprietary Mathematica functions not

available in Python. The differences are shown in the results section.

4.1 Model Form

StackGP is the system being used for symbolic regression. Models are represented as stacks,
where data types are stored in separate stacks. For symbolic regression tasks, operators are stored
in the operator stack and the variables/constants are stored in another stack. The evaluation of each
model is driven by the operator stack, such that it grabs the next available operator and pops off the
variable/constant stack as many variables/constants as the operator needs. This continues until no
more operators are left in the operator stack. An example of a model is shown in Figure 4.1, where
the operator stack is shown on the left next to the variable/constant stack. The right of the arrow

shows the expression that the model evaluates to.

4.2 Genetic Operators
Models are evolved using three primary genetic operators: mutation, recombination, and

cloning. Two-point crossover is used as the recombination operator. Mutation has multiple choices

20

1
; > S2A+X)

Figure 4.1 An example of a stack model and the associated equation form.

for how it will modify the parent models to produce the offspring and these choices are randomly
chosen each time the operator is called. The types of mutation are as follows: variable/constant
point mutation, math operator point mutation, pushing new variables and operators to the top of the
stacks, trimming off the bottom of the stack, pushing new variables and constants to the bottom of
the stacks, and insertion of new operators at a random position in the stack. Each mutation operator
occurs with equal probability. Elitism is used to ensure that good models are not lost between
generations, therefore some of the best models from each generation are cloned into the next. All
of the genetic operators ensure that the new models are evaluatable. This is done by operating on

both the operator and variable/constant stack synchronously.

4.3 Selection/Fitness

The models compete via Pareto tournaments, where in each tournament 5 models are randomly
selected and the Pareto front of the models are returned as the winners. The Pareto front consists
of all the models that are not dominated in either accuracy or simplicity. Unlike many selection
strategies, multiple winners can be chosen per tournament. Correlation, specifically Pearson’s R,
is used as the accuracy metric, and combined stack length is used as the complexity metric. The
selected models are then added to the pool of models that are assigned to be either cloned, mutated,
or paired with another model from the pool of selected models for recombination.

Elitism is used to ensure the top models in each generation are not lost. Elitism is implemented
by selecting Pareto front layers of the whole population until the set number of models is selected.

The number of models selected via elitism is controlled by the elitism rate parameter.

21

Since correlation is used as the fitness function we require an alignment step to be performed
at the end of an evolutionary run. This is a result of correlation considering all models of the form
a * f(x) + b to be equivalent for any a and b. The alignment step simply uses linear regression
to find the best a and b values for each model returned. The reasons for using correlation as the

fitness function are described in great detail in Chapter 5.

0.8

Figure 4.2 An example Pareto tournament is shown with 8 models. In this case, 4 are on the front,
so the tournament would return 4 of the 8 models. These models represent the non-dominated
models using the two objectives, complexity and accuracy.

4.4 Termination Criteria

Models are evolved until either a set number of generations has been completed or until a time
limit has been reached. The termination criterion is set to 1000 generations with a maximum
search time of 2 minutes. In the Python version, the total number of generations is generally able
to be completed within the time constraint, whereas in the Mathematica version, the time limit is

generally reached.

4.5 Ensemble Selection Method

A model ensemble is an essential component of the uncertainty-based active learning in this
dissertation since the disagreement in an ensemble is how uncertainty is determined. To make the
disagreement meaningful, the ensemble has to capture the diversity of the model population while
also capturing high-quality individuals in the population. To generate a model ensemble with those
qualities the first step is to cluster the training data. The models in the population of the final

generation are then evaluated on each training data cluster and the best not yet selected model on

22

each data cluster is returned for inclusion in the ensemble. If a model has already been selected for
another data cluster, the next best unselected model is returned. This ensures we don’t produce a
singularity where the entire ensemble consists of copies of one model. In the event that fewer than
3 data clusters are identified, rather than selecting fewer than 3 models for the ensemble, the Pareto
front of the final model population is used as the model ensemble.

This method was chosen since diversity is achieved by selecting models that best fit different
regions of the training space, while also ensuring high-quality models are selected since each
model returned is the best or one of the best models in each region of the training space. This
ensemble method was developed in some of my previous work where 1 developed and compared
many different methods for generating ensembles for GP symbolic regression tasks [Kotanchek and

Haut, 2022].

4.6 Default Evolution & Active Learning Parameters

The parameters for evolution were selected using an active learning strategy for parameter
optimization. The optimization goal was to reduce the number of data points needed to find
correct models on a sample problem. The parameters that were optimized were the following:
mutation rate, crossover rate, spawn rate, elitism rate, tournament size, population size, selection
rate, and crossover method. The training set was initialized with results from testing 3 different
parameter settings on the sample problem. The active learning for parameter selection began by
training models to fit those 3 parameter settings to the number of points needed to solve the sample
problem. The developed models were then used to predict the best configuration and then tests
were performed using the predicted parameter settings. The results of using the recommended
parameter settings were then returned to the training set. This process was iterated until convergent
behavior was observed. Table 4.1 shows the resulting parameter settings. The mutation rate shown

in Table 4.1 refers to the rate at which a model will receive exactly one mutation.

4.7 Baseline AL Performance using Mathematica-based StackGP
An initial set of tests was run on all 100 of the Feynman Symbolic Regression problems to

determine if this system and strategy are reasonable starting points for this work. In the initial

23

Parameter Setting

Mutation Rate 79
Crossover Rate 11
Spawn Rate 10
Elitism Rate 10
Crossover Method 2 Pt.
Tournament Size 5
Population Size 300
Max Generations 1000
Max Runtime 2 Minutes
Selection Rate 20

Table 4.1 StackGP & Active learning Parameter Settings.

test, 37 of the 100 equations were able to be solved with just the initial random 3 data points. The
minimum number of points needed by AlFeynman was 10, so StackGP outperformed AlFeynman
on all of these problems. This indicates that these problems are trivially solvable and active learning
is not necessary for these problems, so they give no insight into how active learning is affecting the
search. Of the remaining problems, 16 were solved using fewer data points than what was reported
by AlFeynman. For these problems, it seems that active learning had a positive effect on the success
of the search. One of the equations needed the same number of points as AlFeynman. 18 of the
problems required more data points than what was reported by AlFeynman. The 28 remaining
problems were not solved within 100 iterations of active learning, so it is not possible to compare
the effect that active learning had on the success of those searches. The results are summarized in
Table 4.2 and full results are shown in Appendix A in Tables A.1 and A.2.

According to Udrescu and Tegmark, Eureqa is the best available commercial symbolic regres-
sion software [Udrescu and M., 2020a]. Eureqa was found to solve 71 of the 100 Feynman equations
using 300 data points and 2 hours of compute time for each equation. StackGP with active learning
was able to find 72 of the 100 Feynman equations, so performed similarly to Eureqa, although not
all the same equations were solved. This similar performance to Eureqga indicated that StackGP
was of sufficient quality to proceed with using it as the GP system for the AL experiments.

The performance of AL on each individual equation is shown in Tables A.1 and A.2 in Appendix

24

Performance Total Equations

Trivial (Only 3 Points Needed) 37
Outperformed AlFeynman 16
Underperformed AlFeynman 18

Matched AlFeynman 1
Failed to Solve 28

Table 4.2 StackGP with Active Learning Performance Summary.

A. The formulae for each equation number alongside the variable ranges and sample data can be
found in the Feynman Symbolic Regression Database [Tegmark] where they are ordered in the same
way. The table shows the number of data points needed to solve each equation by AIFeynman, the
number of data points needed to solve each equation by StackGP with active learning, the success
of StackGP with active learning, and the success of Eureqa. The number in parenthesis indicates
the number of repeated trials completed and averaged (median) to get the total number of points
needed to solve the problem. Many of the equations were able to be tested using 100 repeated
trials, although some were tested fewer times due to limited access to computing resources.

In the following, we discuss a few examples. Equation number 22 is an example of a problem

that needed just 3 points to be solved.

T =rFsin(0) (Eq 22)

Looking at the equation we can see that it is relatively simple and would require only 3 operators
(sin, *, *) and 3 variables (1, f, 8). It is likely easy to find, both due to its simplicity and since
the terms are combined as products, which makes each variable’s contribution to the response data
easily distinguishable and similar in magnitude.

Equation number 3 is an example of an equation where the active learning approach with
StackGP outperformed AlFeynman, needing just 42.5 points on average compared to the 1000

points needed by AlFeynman. As well, this specific equation was unsolvable by Eureqa.

f=— (Eq3)

25

Performance Total Equations

Python Outperformed 11
Similar Performance (+-2 Pts) 13
Mathematica Outperformed 12

Table 4.3 StackGP with Active Learning Version Comparison Summary.

Equation number 5 is an example of an equation that was unsolvable by StackGP with active

learning and by Eureqa.

_ Gmlmz
(x2=x1)2+(y2—y1) 2+ (22— 21)?

(Eq 5)

It required 1 million data points to be solved by AlFeynman. This equation is rather complicated
since it has 9 variables and the contributions of each variable to the response are vastly different

depending on where they are in the equation.

4.8 Baseline AL Performance using Python-based StackGP

Creating the Python version of StackGP was necessary so that the system could be fully
transparent. The Mathematica version, while effective, relied on the use of proprietary Mathematica
functions which were greeted negatively by reviewers early on since they could not be certain how
exactly they worked. I chose to use Python since it is fully open-source and very actively used
within the machine-learning community.

To compare the performance of active learning in the Python and Mathematica versions, all the
equations that required more than 3 data points to solve were selected from the Feynman Symbolic
Regression Benchmark. In total, there were 36 equations selected. Each problem was tested 100
times and the median number of data points needed to solve the problem are reported.

For 11 of the 36 cases, the Python version required fewer data points than the Mathematica
version. In 13 of the 36 cases, the Python version and Mathematica version needed a similar
number of points (+-2 points) to solve the problem. In the remaining 12 cases, the Python version
did not perform as well as the Mathematica version. These results are summarized in Table 4.3.
The full results are shown in the Appendix in Table A.3.

The difference between the two methods seems to lie within the different maximization functions

26

used to maximize the uncertainty function. Mathematica has a proprietary NMaximize function
and in Python we used the Scipy Optimize Maximize function, which is open-source. Since the
uncertainty function is unlikely to be convex in a typical application, a global maxima is not
guaranteed to be found, so the quality of points added depends on the method used to maximize the
uncertainty function. This indicates that it could be worthwhile to explore how the optimization
functions and uncertainty metric can impact the success of active learning with GP.

Since the Python version was confirmed to have reasonably similar performance to the Math-
ematica version, and since the Python version is open-source, significantly faster, and easier to
scale from a command-line interface on MSU’s HPCC, we choose to use the Python version for

the remainder of experiments in this dissertation.

27

CHAPTER 5

CORRELATION IS A BETTER FITNESS FUNCTION
Using correlation as the fitness function in StackGP for regression tasks is one of the key reasons
why it performs as well as it does. This is not the standard choice of fitness function in the GP
symbolic regression community though, so we explored why correlation improves performance
over the standard RMSE fitness function.

We replace the traditional loss function called root mean square error (RMSE),

| &
L= N;()’i—f’i)z 3.1

where N is the number of data points i, y; is the target output, and y; the output calculated by the
program under consideration, with the correlation function
S =9 -3)

R =
VEX i = 92 X S (5 - §)°

(5.2)

of target vs. program output.
This replacement is, however, not direct. First off, we try to maximize R? (or minimize 1 — R?),
but then, in a post-processing step, we align the resulting relationship via a simple linear regression

step, minimizing

N
argmin Z(b’i — (a1y; +ao)l) (5.3)
ap,aj i=1

The essential difference between these two fitness functions is the global consideration the
subtracted averages of equation (6.7) bring in. You can note that they are in relation to their
respective output data series (target or program). They are thus entering information about the
shape of the entire curve into the fitness function while the absolute scaling and translation are left
to the linear regression post-processing step. We could say that the correlation function looks at
the relative position of data points in the target dataset, and compares that to the relative position
of the program/model-produced dataset.

The full results from these experiments were reported in the chapter submitted to the GPTP

conference, "Correlation versus RMSE Loss Functions in Symbolic Regression Tasks" [Haut et al.,

28

2023a] and reprinted in this chapter with permission from Springer Nature. It was found that
correlation as a fitness function when compared to RMSE is more resistant to low levels of noise,
less sensitive to constants, requires fewer points to find a correct or "good-enough" solution, and is
generally more successful over all degrees of dimensionality explored.

There are several reasons we discussed as being why correlation is a better fitness function. The
key reason is that correlation is a more "global" fitness function since it is a measure of the shape of
the function and is independent of the scaling and position of the function. This allows the number
of potential candidate solutions to increase dramatically while shrinking the search space. It also
allows for a solution to be selected before the correct constants are found and then linear regression
is applied to find the constants, which is much faster and better suited to finding constants than GP.
An example of this is shown in Figure 5.1. The figure showcases how a solution that would be
considered terrible by RMSE is actually selected by the correlation fitness function and results in

a near-perfect fit post-alignment.

® Data
B Model (Pre-Alignment) 3.0
I Model (Post-Alignment)

28

Figure 5.1 Correlation as a fitness function can identify successful models that would not be
identified by RMSE. The red surface represents a model that was identified as good by the correlation
fitness function and the green surface is the same model after has been aligned. Orange points
represent the raw data, which consists of 100 points. Both the model and the aligned model have
an R? value of 0.9999. The pre-aligned model has an RMSE value of 22.24 and the aligned model
has an RMSE value of 2.076 = 1074,

In this work, we compared correlation and RMSE on a set of standard symbolic regression
benchmarks and explored how noise, dimensionality, and number of training points impact the

performance of each fitness function.

29

5.1 Benchmarks

A number of different benchmarks have been proposed for symbolic regression tasks. GP
started out with the symbolic regression problems used in Koza’s first book [Koza, 1992a]. Over
time some more complex problems were added culminating in the suggestion by White et al [White
et al., 2013] to consider these as new standard benchmarks. Korns [Korns, 2013, 2014, 2015]
has given a series of presentations at GPTP on systematically more difficult symbolic regression
problems and their solution, increasingly relying on hybrid algorithms to solve them. Finally,
Udrescu and Tegmark have proposed a collection of physical laws extracted from Feynman lectures
[Udrescu and M., 2020a] as a good benchmark suite for symbolic regression algorithms.

In the following, we shall briefly discuss the former, giving examples of each, before focusing

on the latter, the Feynman Symbolic Regression benchmark set.

5.1.1 Koza’s Benchmarks
Koza was the first to highlight the intricacies of symbolic regression with Genetic Programming.
The quartic polynomial

e +xt+x 5.4)

was the first discussed in [Koza, 1992a]. This problem later proliferated to the following problems:

-+ —x (5.5
x+2x3 +3x% + 4x (5.6)
X0 =2t 4 x? 5.7

5.1.2 New Benchmark Standards
Keijzer extended the benchmark set studied in [Keijzer, 2003] to the Keijzer instances which
were further expanded by Vladislavleva et al. [Vladislavleva et al., 2008] and Nguyen et al. [Uy

etal., 2011]. Typical examples are Keijzer-5:

30xz

T (5.8)

30

Vladislavleva-1:
e - (xl _1)2

1.2+ (x2 — 2.5)2

(5.9)

or Nguyen-5:
sin(x*)cos(x) — 1 (5.10)

just to name a few.
A 2012 community survey [McDermott et al., 2012] revealed the mainly used benchmarks and

was summarized and standardized in [White et al., 2013].

5.1.3 The GPTP Benchmarks

While the term GPTP benchmarks is actually broader, we focus here on the series of contribu-
tions and problem suggestions by Korns and his co-authors [Korns, 2007, 2008, Korns and Nunez,
2009, Korns, 2010, 2011, 2013, 2014, 2015].

Since this is a large set of problems, we are going to select only one here, Korns-8:

6.87 + 11\/7.23)60)63)64 =6.87 + 29.58\/)60)63)64 (5.11)

out of 5 dimensions xo, ..., x4, Where some variables (x1,x2) do not carry information but only

noise.

5.1.4 Feynman Symbolic Regression Benchmark
Here we shall mainly focus on the Feynman Symbolic Regression set of equations/data, lifted

out of the lectures of Richard Feynman [Feynman et al., 1963a,b,c].

5.2 Methods

Symbolic regression was performed using StackGP. The parameters chosen for the system are
shown in Table 6.1. It is important to note that the two sub-populations are evolved in parallel yet
do not interact until completion. Upon completion, the two populations are merged and the fittest
individuals in the combined population are then selected and returned as the final population of a

run.

31

Parameter Setting

Mutation Rate 79
Crossover Rate 11
Spawn Rate 10
Elitism Rate 10
Crossover Method 2-point
Tournament Size 5
Population Size 300
Independent Runs 100
Sub-populations 2

Termination Criteria 2 Minutes (wall time)

Table 5.1 Evolution Parameter Settings.

To compare the performance of using RMSE against correlation as a fitness function, we

explored how noise, number of points, and dimensionality affect the resulting fitnesses of the best

individuals found during evolution.

For each problem and set of conditions (noise and number of points), a total of 100 repeated

independent trials were conducted and the median fitness of the best models from each trial was

computed using the test data for the associated problem. To make for a simple comparison, both

models trained using RMSE and correlation as their fitness functions were evaluated using RMSE

on the test data. The test data consisted of 200 points generated without noise added to determine

how close the evolved models are to the true generating equation.

5.2.1 Noise Introduction

Uniformly distributed multiplicative random noise was introduced to the response data y = f(x)

by supplying a percentage to a noise-generating function:

y=f()+e),

where

c R R
E —_—— —
272

N1l

is a uniformly distributed random variable from the interval [—g,

32

1.

(5.12)

(5.13)

5.2.2 Varying Number of Points

For most problems, between 3 and 183 points were used to determine how changing the number
of data points affects the success of the search. This was performed by initially testing with 3
points, then adding 20 points until a total of 183 points were tested. For some of the Feynman
problems, the number of points varied from 3 to 19 points incrementing by 2 to observe how small
changes in the number of points impact method performance. In each independent repeated trial,

the points used were generated randomly anew.

5.2.3 Dimensional Sensitivity
Sensitivity to dimensionality was explored by observing the variation in success between the

different problems which vary from 1 dimension up to 9 dimensions.

5.2.4 Sensitivity to Constants
The sensitivity to identifying equations correctly when constants are introduced was explored
by introducing constants of varying magnitude and determining how the error is affected by the

magnitude of constants.
5.3 Results

5.3.1 The Keijzer-5 Benchmark

The results of comparing the correlation-based fitness function to the usual RMSE on the new
benchmark standards with 20 to 200 points and 10% noise are shown in Figure 5.2. The results
show that correlation finds more accurate models than RMSE with 10% noise for the Keijzer 5
benchmark problem.

In Figure 5.3 noise sensitivity was explored with 2,000 points with noise between 0 and 20%
on Keijzer-5. While the correlation approach is sensitive to multiplicative noise and gradually
deteriorates as the amplitude of noise is increased, the correlation approach generally finds more

accurate models even with noise as high as 20%.

33

Correlation Fvitness ‘vs.vRMSE Fitness
35f ' ‘

30}
25

20! .
: Correlation

RMSE

151]
I — RMSE
05Ff

0.0F . .) R
50 100 150 200

Points

Figure 5.2 Comparing using RMSE and correlation as the fitness function on Keijzer-5 with 10%
noise.

Correlatio_n Fitness vs. RMSE Fitness

Correlation

RMSE
w

2_ _ — RMSE

0L, ‘ L L L A
0 5 10 15 20

Noise %

Figure 5.3 Comparing using RMSE and correlation as the fitness function on Keijzer-5 with varying
noise to determine noise tolerance when using 2,000 training points.

5.3.2 The Korns-8 Benchmark

Figure 5.4 now compares the results of runs using correlation and RMSE as fitness functions
to try to solve the Korns-8 benchmark problem, ranging from 3 to 183 training data points with no
(0%) noise. The correlation-based fitness function consistently finds essentially perfect solutions
with more than 3 points, while the RMSE-based fitness function performed relatively poorly for all

numbers of data points, with only a slight improvement as the number of points increases.

34

Correlation Fitqess VS. RMSE Fitness .

20000 -] Correlation

RMSE

. — RMSE

0 50 100 150
Num. Points

Figure 5.4 Comparing using RMSE and correlation as the fitness function on Korns-8 with 0%
noise.

The noise tolerance of correlation and RMSE were also explored on Korns-8 by varying noise
from 0% to 20% using 200 and 2,000 training points. The results are shown in Figures 5.5 and 5.6,
respectively. With 200 data points (Fig. 5.5) the correlation approach stops outperforming RMSE
when 12% or more noise is included in the data. When the data has 2,000 training points, however,
as shown in Figure 5.6, we see that while the correlation approach shows sensitivity to the amount
of noise present, it still finds better models with data that has 20% noise, demonstrating that more
data can effectively counter noise with a correlation fitness function.

What is interesting to note is that when comparing the R? values between the two approaches
with using 2,000 points, it can be seen in Figure 5.7 that R? values for all models found using
correlation are 1, up to 20% noise. This indicates that the correct model form was still found in all
cases and points to the alignment step as the part that is sensitive to noise. An example solution is

shown in equation (5.14), compare to original function (eq. 5.11):

949.216 + 21.536+/xpx3x4 (5.14)

When looking at the R? values from the 200 point cases, we can see there is a very clear threshold
where the signal-to-noise ratio becomes too small and the quality of models drops off significantly

by using the correlation approach. The behaviour of the correlation fitness (green dots) in Fig. 5.8

35

Correlation Fitness vs. RMSE Fitness

60000 |

50000 [1
40000
w [.
2] t Correlation
= 30000 |
o t 1
20000 L 1 RMSE
10000 |
0 Cr " " L L 1 L L L " i *
0 5 10 15 20

Noise %

Figure 5.5 Comparing using RMSE and correlation as the fitness function on Korns-8 as noise
increases from 0 to 20% with 200 training points. With 12% noise or more the correlation
approach becomes comparable or worse than RMSE.

looks like a phase transition at around 10% noise. The functional relationship evolved before the

transition (e.g., at 2% noise) is still correct:
564.468 + 23.315+/x0x3x4 (5.15)
However, with 14% noise (after the transition) the functional relationship is no longer correct with:
1406.43 + 0.133x0x3x4 (5.16)

The correct variables are still found, but the square root function is now missing.

5.3.3 The Vladislavleva-1 Benchmark

Figure 5.9 compares the performance of using correlation and RMSE as fitness functions on
the Vladislavleva-1 benchmark problem, ranging from 20 to 200 training data points with no noise.
The correlation approach shows that it is able to consistently find models with better performance
than when using RMSE as the fitness function.

Figure 5.10 explores how the two approaches vary in their sensitivity to noise. Both methods
were given 200 training points and noise was varied from O to 20%. Correlation was observed

to outperform RMSE as a fitness function until the noise level exceeded 6%. Beyond 6% the

36

vCorreIation Fitness vs. RMSE Fitness

40000]

30000 - i
wl .
2 - Correlation
@ 20000
. — RMSE
10000
ob——m—""]
0 5 10 15 20

Noise %

Figure 5.6 Comparing using RMSE and correlation as the fitness function on Korns-8 as noise
increases from 0 to 20% with 2000 training points.

Correlation Fitness vs. RMSE Fitness
1.00 : : T

0.95} -
0.90[]

% 085 ; m: Correlation

| — RMSE

0.80[

0.75

0.70 Ly ! ! .]
0 5 10 15 20

Noise %

Figure 5.7 Comparing using RMSE and correlation as the fitness function on Korns-8 as noise
increases from 0 to 20% with 2,000 training points using R? as the metric for comparison.

distributions of both methods widened significantly and the average performance of correlation as

a fitness function became worse than RMSE at higher noise levels.

5.3.4 The Nguyen-5 Benchmark

The performance of correlation and RMSE as fitness functions was also compared using the
Nguyen-5 benchmark problem. Figure 5.11 shows how they compare when no noise is present when
training on varying numbers of points from 20 to 200. Correlation was observed to outperform

RMSE as a fitness function for all of the cases between 20 and 200 points.

37

) _ Correlation Fitness vs. RMSE Fitness B
1.0}]

V’/\ 1
osl ‘_’\/\ﬁ

06]
% |] Correlation

04r — RMSE
02l]
00b, o

Noise %

Figure 5.8 Comparing using RMSE and correlation as the fitness function on Korns-8 as noise
increases from 0 to 20% with 200 training points using R? as the metric for comparison.

Correlation Fitness vs. RMSE Fitness

24— , : — R

22/

20| vw
LU [.
2 18 Correlation
x [

16/} — RMSE

14

120]

50 100 150 200
Points

Figure 5.9 Comparing using RMSE and correlation as the fitness function on Vladislavleva-1 with
0% noise as the number of points increases from 20 to 200.

The noise tolerance of the two methods was also compared using the Nguyen-5 benchmark
problem. Noise was varied from 0 to 20% with 200 training points. The results are shown in Figure
5.12. The method using correlation as a fitness function performed best until around 6% noise was
present. Beyond 6% noise the two methods performed similarly with correlation having a slightly

wider distribution of solutions.

38

Correlation Fitness vs. RMSE Fitness

4r Correlation

RMSE

. — RMSE

0} . . \ . , :
0 5 10 15 20

Noise %

Figure 5.10 Comparing using RMSE and correlation as the fitness function on Vladislavleva-1 as
noise increases from O to 20% with 200 training points using RMSE as the metric for comparison.

Correlation Fitness vs. RMSE Fitness

05!

i \/\k’/_
w 03l] .
2 . Correlation
x [

0.2 1 — RMSE

0.1

00F , A e S T N s L G SV VS

50 100 150 200
Points

Figure 5.11 Comparing using RMSE and correlation as the fitness function on Nguyen-5 with 0%
noise as the number of points varies from 20 to 200.

5.3.5 Feynman Symbolic Regression Benchmark

The results of testing the performance of the two different fitness functions on the Feynman
Symbolic Regression Benchmark are summarized in Table 5.2.

With just 3 data points and no noise, the correlation approach found better models in 38 of the
100 cases and tied in performance with the RMSE approach in 11 cases. A total of 21 problems
were perfectly solved with just 3 data points using the correlation approach and 10 of those 21 were

not perfectly solved using the RMSE approach with just 3 data points.

39

_ Correlation Fitness vs. RMSE Fitness

200]
15
w [.
@ [Correlation
© q0f .
[1 — RMSE
05/
0 5 10 15 20

Noise %

Figure 5.12 Comparing using RMSE and correlation as the fitness function on Nguyen-5 as noise
increases from 0 to 20% with 200 training points using RMSE as the metric for comparison.

Number of Points Noise % Better Tied Perfectly Solved Perfectly Solved where RMSE failed

3 0 38 11 21 10
3 10 27 0 0 0
20 0 82 17 41 24
20 10 78 0 0 0
200 0 81 17 46 29
200 10 79 0 0 0

Table 5.2 Feynman Symbolic Regression Benchmark Summary Performance Comparison of Cor-
relation Against RMSE.

For example Figure 5.13 shows RMSE over generations on equ. (5.17) (# 8 in [Udrescu and

M., 2020b]) when using correlation fitness.
u XNy, (5.17)

RMSE converges to 0 very quickly in a sample evolutionary run, demonstrating that this equation
is trivial to solve.
As another example, we take equ. (5.18) (# 59 in [Udrescu and M., 2020b]) as one where

RMSE fitness does not converge to 0, see Figure 5.14.

ex E?
2

(5.18)

As opposed to that, using the correlation fitness function results in runs like that depicted in
Figure 5.15. As we can see from the equations, these are very simple functional relationships. We

shall examine more complicated ones later, but for now will look at noise.

40

RMSE of Best Individual over Generations
BV

RMSE

Generations
Figure 5.13 The error of best individuals over generations is shown for equ. (5.17) (# 8 in [Udrescu
and M., 2020b]) when using correlation as the fitness function. We can see that equation (5.17) is
trivial and is solved almost immediately.

RMSE of Best Individual over Generations

0 100 200 300 400 500

Figure 5.14 The error of best individuals over generations is shown for equ. (5.18) (# 59 in [Udrescu
and M., 2020b]) when using RMSE as the fitness function. We can see that progress seems to get
stuck at a local minima and stops progressing around generation 200.

With just 3 data points and 10% noise added, the correlation approach never converges to a
perfect solution, but found better models in 27 of the 100 problems. On the other hand, RMSE is
able to withstand the noise better, and is able to converge to perfect solutions 13 times.

Given that using three data points really is an absolute minimum, it isn’t too surprising reviewers
were doubtful of our results. But this seems more to be a reflection of the benchmark datasets,
rather than the approach to solve it. In many cases, RMSE also solves the problem perfectly with 3
data points (see Tables B.1 and B.2 in the Appendix).

So while in trivial cases there might not be a difference between the performance of RMSE and

41

RMSE of Best Individual over Generations
08 ———————————————————1 "+ 1

0.006

0.004

RMSE

0.002

[20 40 60 80 100

Figure 5.15 The error of best individuals over generations is shown for equ. (5.18) (# 59 in [Udrescu
and M., 2020b]) when using correlation as the fitness function. We can see that this problem now
becomes trivial and is solved by the second generation when using correlation instead of RMSE as
the fitness function.

correlation as a fitness function, in other cases there is a difference, often a substantial one. With
20 points and no noise the correlation approach found better models in 82 of the 100 cases and was
tied in another 17 cases. This means that the correlation approach beat or matched the performance
of RMSE in 99 of the 100 cases of the Feynman benchmarks. As well, the correlation approach
perfectly solved 41 of the problems. Of those 41, 24 were not solved using the RMSE approach.

With 10% noise added to the 20 data points, the correlation approach found better models in
78 of 100 cases. Here again, RMSE is better able to withstand the noise and converge to a perfect
solution in 17 cases.

Finally, with 200 points and no noise, the correlation approach found better models than the
RMSE approach in 81 of the 100 cases and was tied in 17 cases. This totals to 98 cases where the
correlation approach either beat or matched the RMSE approach. A total of 46 cases were solved
perfectly using the correlation approach. Of those 46 cases, 29 of them were not perfectly solved
using the RMSE approach.

With 200 points and 10% noise added, the correlation approach found better models in 79 of
the cases.

Figures 5.16-5.18 show three examples of noisy data and the behavior of fitness functions

depending on the number of data points. These are non-trivial cases not perfectly solved by either

42

of the methods even with 200 points. However, we can clearly see the progress by correlation as

opposed to RMSE.

Cprrelatipn Fitness Vvs. VRMSE Fitness

T T

Correlation

RMSE

— RMSE

5 10 15

Points

Figure 5.16 Comparing using RMSE and correlation as the fitness function on equ. (5.19) with
10% noise.

_ Correlation Fitness VS. 'RMSE Fitness

T

08l

061k i
2 o4l T | Correlation
m I » 4

| | — RMSE
0.2/
0.0, P 1
5 10 15
Points

Figure 5.17 Comparing using RMSE and correlation as the fitness function on equ. (5.20) with
10% noise.

The three equations used are

_o?
‘i/zz_ (5.19)
T
. -(940)2
(5.20)

Correlatipn Fitness vs. RMSE Fitness_

T T

w | .
4] Correlation
= /\/\/’\ |

05 | — RMSE

Re)

oot ., .

5 10 15
Points

Figure 5.18 Comparing using RMSE and correlation as the fitness function on equ. (5.21) with
10% noise.

and
~((6-0))])?
e 2

- - 5.21
Voro 621

5.3.6 Sensitivity to Constants

It was observed that equation (5.17) with 10% noise was able to be found with O error when
using RMSE as the fitness function compared to an RMSE value of 1.35 when using correlation as
the fitness function when trained with 20 points. The R? values from both approaches was 1, which
indicates that they both found the correct general pattern in the data, but the scaling or position was
off as a result of the alignment when using correlation as the fitness function. To see if the problem
difficulty was altered by the introduction of a constant, equation (5.17) from the Feynman symbolic
regression benchmark was modified by introducing a constant initially valued at 5 and then 50.
The results are shown in Table 5.3. With no noise the problem becomes much more difficult for
the RMSE fitness function approach the larger the constant, while the problem difficulty does not
change relative to the constant size when using correlation as the fitness function (recall Keijzer’s
observation mentioned earlier). When multiplicative noise is added, the performance when using
correlation does get worse as the size of the constant increases, yet it strongly outperforms when

compared to using RMSE as the fitness function.

44

Constant Number of Points Noise % RMSE Correlation

1 20 10 0 1.35
1 20 0 0 0
5 20 10 261.69 8.74
5 20 0 276.76 0
50 20 10 3520.43 68.07
50 20 0 2151.56 0

Table 5.3 Sensitivity to Constants in (5.17). Feynman Equation # 8.

5.4 Discussion

Symbolic regression has been studied since Genetic Programming was invented more than 30
years ago. Numerous refinements have been proposed and examined, new benchmark data sets have
been subjected to algorithmic variants, and results have been derived and considered in multiple
forms. However, no measure has proven so efficient than simply replacing the fitness function based
on absolute function values with a fitness measure that considers relative distance and leaves the
absolute alignment of a functional model to a linear regression step in post-processing. Equipped
with such a fitness function, many of the benchmark problems used (among them about half of
the AIFeynman problems) can be safely removed from consideration as too easy. If 3 data points
are sufficient to deduce the functional form of a model, then this is not a problem worthy of much
attention.

For other problems, correlation did widely outperform RMSE as a fitness function and should
be the function of first choice in all regression problems. It remains to be seen whether there
are some other factors that allow the algorithm discussed here to shine at solving the benchmark
problems considered. For example, it could be that StackGP is particularly well suited for the task

and the same might not be said of other GP systems.

5.5 Conclusions

What is clear is that the fitness function in any evolutionary algorithm has an extremely
important role to play as far as the performance of the algorithm is concerned. Lessons derived
from the success of correlation-based fitness in symbolic regression might transfer to other tasks,

like classification problems. At the very least, it could facilitate the solution of harder problems in

45

other domains, by training a researcher’s eye on the essential functions of a system that need to be

tuned to arrive at feasible solutions.

46

CHAPTER 6

AL-GP FOR REGRESSION

This chapter examines various methods of computing uncertainty and diversity for active
learning in genetic programming. We explore how a model population in genetic programming can
be exploited to select informative training data points by using a model ensemble combined with
an uncertainty metric. We develop and test several uncertainty metrics and show that differential
entropy performs best. We also compare several data diversity metrics and discuss the trade-off
between them. Finally, we combine uncertainty and diversity using a Pareto optimization approach
to allow both to be considered in a balanced way to guide the selection of informative and unique

data points for training and show how that impacts the success of active learning.

6.1 Introduction

In applications of data science, the task of collecting and labelling data is often time-consuming
and expensive. In some cases where data doesn’t yet exist, it may be very expensive to run
experiments to gather data, or possibly it could take long periods of time for experiments to
complete. Inthese cases, it would be ideal to target specific experiments where maximal information
will be gained, so fewer experiments have to be run to gain the desired insight into the system of
study. In other cases, large masses of data may already exist, but the process of labelling the
data is time-consuming. Here, it would be ideal to target a subset of samples, that when labelled,
will provide the most information. To achieve these time-savings and cost reductions we can use
machine learning (ML) not only to build models to describe these systems, but also to predict the
information gained by each training sample. The process of using machine learning to iteratively
select data to best inform machine learning model development is called active learning.

As a reminder from Chapter 2, active learning (AL) is a method used in conjunction with
machine learning to actively select new training data with the goal of selecting data points that will
maximally inform the machine learning model [Cohn et al., 1996].

Active learning methods have been developed and shown to be successful on a wide range of

problems as I had discussed in Chapter 2, yet it has not been thoroughly explored within the field

47

of genetic programming.

In this contribution, we apply active learning strategies for genetic programming used in
symbolic regression tasks. The goal is to exploit some of the features of GP, in particular its
reliance on a population of models. More specifically, we want to utilize uncertainty and diversity
measures in a model population context to accelerate the discovery of models (physics equations in
our study). The idea is to look for disagreement among high-quality individuals in the population

as a guide to locate informative data points to add to the training set.

6.2 Related Works

Active learning methods for machine learning have shown to be very successful in applied
settings to improve the method of labelling and collecting data with various machine learning
types. AL has recently been demonstrated to significantly reduce the labelling efforts required for
labelling data associated with identifying heart disease [El-Hasnony et al., 2022]. The authors
demonstrated that they could find more accurate models using fewer data points when compared to
a random point selection strategy.

AL has been applied to genetic programming classification tasks as well. Using an ensemble
of GP models, the models "vote" on the class of data pairs, and points are only labelled when the
committee of developing models encounters pairs that can’t be classified [De Freitas et al., 2010].
This was found to reduce the total effort needed to label training points, since only a subset had
to be labelled before finding accurate models. Where GP training sets are large, AL has been
successfully applied by selecting sub-samples to be used for training [Lasarczyk et al., 2004, Curry
et al., 2007]. In [Curry et al., 2007] AL is performed by segmenting the data into smaller blocks
and training the models using one randomly selected block at a time using uniform probability.
As training continues, bias is introduced into the probability by increasing the tendency to select
blocks that haven’t been seen in a while, as well as blocks where the models performed poorly
during training. AL for sub-sampling with genetic programming was found to decrease training
times to find better binary classification models by an order of magnitude [Curry et al., 2007]. In

[Lasarczyk et al., 2004] subsets were selected by dynamically developing a fitness case topology

48

that could be used to create minimally related subsets of data. In this context, the strength of a
relationship between two training cases was indicated by the number of individuals that were able
to solve both training cases.

In the discovery of biological networks AL methods have also been employed successfully
[Sverchkov and Craven, 2017]. Several different approaches were explored by the authors for
determining which new data points would be maximally informative for a wide range of machine
learning models, including Boolean networks, causal Bayesian networks, differential equation
models, etc. One approach the authors explored was the maximum difference method in which two
best-fit models are chosen and a new data point is selected where those two best-fit models have the
largest difference in predictions. They also examined entropy score maximization. In that method,
a new data point is selected that maximizes an entropy score, where entropy can be thought of
as the amount of information to be gained by gathering that data point. The entropy score H, is

computed as follows:

where M is the set of Boolean networks, x, is the number of network states for a given data point,
and e is the set of all potential data points.

In chemical engineering AL has been applied to expedite a reaction screening process by only
selecting a subset of maximally informative experiments to complete rather than by exhaustively
performing all possible experiments [Eyke et al., 2020]. This was done by training neural networks
and using them to select a subset of experiments that maximized the information gain. Maximal
information gain was determined by looking at the standard deviation of an ensemble of neural
networks.

Kotanchek et al.(2009) used genetic programming for active design of experiments, where
models developed by a GP system are used to find optimal conditions in a system of study. Active
design of experiments is an application of active learning, where it has the goal of designing
experiments that have specific properties or yield maximal information. The authors proposed to

employ ensembles of models from symbolic regression to find regions of uncertainty in order to

49

gather new data with high information content. While this method has been proposed for how an
active learning method using model ensembles could be applied to GP for symbolic regression,
there has yet to be any research showing how active learning methods affect the performance of GP
symbolic regression tasks or how the method to quantify uncertainty affects the quality of points
selected for inclusion in the training data. Also, it is yet to be shown that this idea of selecting an
ensemble from a model population and searching for points of high uncertainty or disagreement
among models is generalizable to any machine learning method where a population of models is

available.

6.3 Methods

We compare two classes of active learning: uncertainty and diversity-based. The implementa-
tions are described in detail below. We use two random sampling methods as a baseline to compare
the performance of the active learning methods. The key features of the GP system we used,

StackGP, are also discussed.

Evolve Models Generate Initial Data

Train models using the selected training set Select three random data points

V'S

Cos[y] Sin[y]

Log[—~1x +y + Logly?? Vil +y + Loglyl?
([)

Add Data

The new data point is
added to the training set

JE+§ \/W+8}',—5

Select Ensemble

Choose diverse high-quality
models from the population . .
Final Model Population

fro~__
fo—_ Maximize E bl Active learning is
faro—— aximize Ensemble complete when:

— fens Uncertainty

Search for a new point with
maximum uncertainty

a) models of sufficient
quality are generated

OR

B

b) max number of
iterations is met

v

Figure 6.1 An overview of the iterative active learning approach. It begins with an initially randomly
selected dataset. It then iteratively evolves models and selects new training points that maximize
uncertainty of an ensemble of models. By maximizing ensemble uncertainty to select new training
samples, points with relatively high information content are added to the training set each iteration.

50

6.3.1 Active Learning

Two general types of active learning were implemented to work with StackGP for the purpose of
accelerating the development of models to fit physics data from the Feynman Symbolic Regression
Dataset (Tegmark). The first type of active learning explored was uncertainty-based, a model-
driven approach to active learning, where an ensemble of diverse, high-quality models from a
population was used to search for regions in the search space where there was high uncertainty or
disagreement between the models. The second type of active learning explored was diversity-based
active learning, where new points are selected that differ maximally from the points already in
the training sample. This second type of active learning is a data-driven approach rather than a
model-driven approach. The first type of active learning is summarized in Figure 6.1.

Both types of active learning methods were implemented to determine how they each impact
the success of evolution in genetic programming symbolic regression tasks. Several different
uncertainty and diversity metrics are implemented to determine their respective impact on the
success of the task. Success of active learning by maximizing uncertainty would indicate that the
diversity of the population can be utilized to guide the collection of informative data. Success of
diversity sampling would indicate that GP symbolic regression model development benefits from

improved data sampling.

6.3.1.1 Maximizing Uncertainty

Several different uncertainty metrics were explored to determine how different measures impact
the success of active learning, and which approach would generally work best. As an overview, each
approach begins by selecting an ensemble of models using the same method, then a function that
uses the specific uncertainty metric along with the ensemble and current training set is created. This
function is then fed to an optimizer to search for regions of relatively high uncertainty. The most
uncertain point found is then returned and selected to be added to the training set. In total, there
were 6 different uncertainty maximization approaches tested which varied in how they quantified
disagreement, whether outlier predictions were considered, and which optimizer was used. The

steps and methods will be described in greater detail below and the entire process is depicted in

51

Algorithm 6.3.

Generating the ensemble is the first step in uncertainty-based active learning. The goals for
generating the ensemble were to capture diverse, high-quality individuals from the population
while keeping the size of the ensemble relatively small so that the computational cost of optimizing
uncertainty is reasonable. The diversity goal is essential to the success of active learning since
disagreement between models is a necessary requirement. The method chosen to capture both
diversity and quality from the model population works by clustering the training data using the
input space and selecting a model that best fits each cluster, ensuring no model is selected more than
once. If a model is already selected by another cluster, the next best unselected model is chosen.
The minimum number of clusters is set to 3 and the maximum is set to 10. Thus, 3-10 models are
chosen for inclusion in an ensemble. Data clustering was chosen with the intent to capture diversity
by focusing on models that have biases for different regions of the training space. Quality in the
population would be captured since only models with the best fitness were selected for each cluster.

The algorithm to generate the ensemble is described in detail in Algorithm 6.1.

procedure ENSEMBLESELECT(models,trainingData,responseData)

selectedModels « [] > Initialize ensemble
nClusters < min(len(trainingData), 10) > Determine number of clusters
clusters < KMeans(nClusters).fit_predict(trainingData)

fori =0;i ++;i < nClusters do > Loop over data clusters

modelErrors < computeError(models, clusters|[i])
sortedModels «— sortBy(models,modelErrors)

Jj=0
while sortedModels|j] in selectedModels do > Find best unselected model
j++
end while
selectedModels = join(selectedModels, sortedModels| j] > Add to ensemble
end for
return selectedModels > Return ensemble

end procedure

Algorithm 6.1 Ensemble generation process to select diverse high-quality models.

The second step of this method is to utilize the specified uncertainty function with both the
current training data and the selected ensemble. The function is then given to the optimizer with
the search space boundaries to find a point of relatively high uncertainty. In the case that an already
selected point is re-selected, a new search is initiated within a random sub-region until a unique

point is added. This ensures that new information is added in each iteration to the training set.

52

The two methods used for optimization were Scipy Optimize’s minimize and differential evo-
lution (SciPy, SciPy).

In total 5 different uncertainty metrics were used, shown by Equations 6.1 to 6.5, where Equation
6.5 is used twice, once with Scipy’s minimize function for optimization, and a second time with
Scipy’s differential evolution function for optimization. Scipy’s differential evolution using the

default "best1bin’ strategy is shown in pseudocode in Algorithm 6.2.

Std(EnsembleResponses)

- (6.1)
Mean(Abs(EnsembleResponses))
TrimmedStd (EnsembleResponses, 0.3) 62)
TrimmedMean(Abs(EnsembleResponses), 0.3) '
Std(EnsembleResponses) 6.3)
TrimmedMean(Abs(EnsembleResponses), 0.3))
A = Std(EnsembleResponses) (6.4)
A = DifferentialEntropy (EnsembleResponses) (6.5)
Pop < N RandomVectors > Generate initial random population
b0 «— BestVector(Pop,ObjectiveFunc) > Get best initial vector
while iter < maxIter do > While less than max iterations
for i =0;i < len(pop);i++do > iterate over each population member
new <« b0+ mutation (pop|randl] — pop[rand2]). > Generate new vector
for j =0;j < len(new); j ++do > [terate over each value in individual vector
if rand() < recombinationRate then > If random value less than recombination rate
poplillj] = new|[J] > Replace value in vector with value from new vector
end if
end for
if Fitness(new,ObjectiveFunc) < Fitness(b0,0bjectiveFunc) then > If new vector is the best
b0 «— new > Replace best with new vector
end if
end for
end while
Return 0 > Return best vector

Algorithm 6.2 Differential Evolution.

53

TrainingData « 3Starting Points > Generate initial random training data

Models < RandomModels > Generate initial random models
Models «— Evolve(TrainingData, Models) > Train models on starting data
while BestModelError # 0 do > While perfect model not found
Ensemble <« EnsembleSelect(Models). > Select ensemble of models
NewPoint «— MaxUncertainty(Ensemble) > Find point of max uncertainty
if NewPoint C TrainingData then > If point already selected
NewPoint «— MaxUncertainty(SubSpace(Ensemble)) > Search a subspace
end if
TrainingData «— Append(TrainingData, New Point) > Add new point
Models «— Evolve(TrainingData, Models) > Evolve new models with new data using best models to seed evolution
end while

Algorithm 6.3 Active Learning Process Using Uncertainty.

6.3.1.2 Point Diversity

A data-driven active learning approach was also explored, aiming to maximize data diversity
rather than maximize ensemble uncertainty. The goal was to determine if GP evolution for symbolic
regression tasks would benefit significantly from improved sampling of the data for training. Two
different metrics were used to quantify diversity: point distance and point correlation. Point
distance was implemented by measuring both the minimum and average Euclidean distance to all
points in the training set. Point correlation was defined as the average correlation to all points in the
training set. When selecting a new point, the goal was to either maximize the distance or minimize
the correlation to the current training set.

To minimize the correlation when selecting a new point, Pearson’s R> was computed between
each point and the potential new point. The equation for computing Pearson’s R is shown in
Equation 6.6. Here y represents the new training point, y represents a point already in the set,
and each instance i represents the value in the ith dimension of the point. The overall method for

computing the joint correlation of a new point to the training set is summarized in Algorithm 6.4.

SN Gi=9Gi-)

R = (6.6)
N 5)2 N (5 5)2
\/Z,-zl (i = 9)* x 22y (i =)

1: procedure JoINTCORRELATION(frainingSet,new Point)
2: r2Values «— [PearsonR(trainPt, newPoint)? for trainPt in trainingSet] > R2 vals
3: avgCorr «— mean(r2Values) > Compute average correlation
4. Return avgCorr
5: end procedure

Algorithm 6.4 Joint Correlation.

54

TrainingData « 3Starting Points > Generate initial random training data

Models «— RandomModels > Generate initial random models
Models «— Evolve(TrainingData, Models) > Train models on starting data
while BestModelError # 0 do > While perfect model not found
NewPoint «— MaxDiversity(Training Data) > Find point of max uncertainty
if NewPoint C TrainingData then > If point already selected
NewPoint «— MaxUncertainty(SubSpace(TrainingData)) > Search a subspace
end if
TrainingData «— Append(TrainingData, New Point) > Add new point
Models «— Evolve(TrainingData, Models) > Evolve new models with new data using best models to seed evolution
end while

Algorithm 6.5 Active Learning Process Using Diversity.

6.3.1.3 Benchmark Testing

Each active learning approach was compared on a benchmark set of 35 of the 100 equations
from the Feynman Symbolic Regression Dataset [Udrescu and M., 2020a]. As previously discussed
in Chapters 4 and 5, these particular 35 problems were selected since they were thought to be most

appropriate for a study in active learning.

6.3.2 StackGP
StackGP is a stack-based genetic programming implementation in Python [Haut et al., 2022]

and is available here: https://github.com/hoolagans/StackGP.

6.3.2.1 Model Structure

Similar to PushGP (Spector), StackGP models use multiple stacks, where the model evaluation
is driven by an operator stack while variables, constants, and other data types are stored on separate
stacks. For symbolic regression tasks, we have a total of 2 stacks, the operator stack and the

variables/constants stack.

6.3.2.2 Correlation Fitness Function

Unlike many symbolic regression implementations that use (R)MSE as the fitness function, we
employ correlation as the fitness function, together with a linear scaling post-processing step. The
reasons for using this fitness function were covered here in Chapter 5. The fitness is optimized

during search by first maximizing R?, which is computed using Equation 6.7, where N is the

55

number of data points 7, y; is the target output, and J; the output calculated by the model.
SN Gi=9Gi—)

R =
VN 0= 9 X EX, (5 - §)°

(6.7)

The search is then completed using a post-processing step, which aligns the resulting models

via a simple linear regression step (eq. 6.8), minimizing

N
argmin Z(Ui — (a1y; +ao)l) (6.8)
aop,ai i=1

6.3.2.3 Algorithm

An overview of the algorithm is shown in Algorithm 6.6. The parameters used to run the
algorithm are shown in Table 6.1. Note that crossover and mutation calls in the algorithm are
simplified and actually represent applying crossover and mutation to the correct fractions of models
as shown in the parameters.

Crossover is performed using a 2-point crossover operator where two points are selected in the
operator stack of each parent and the operators, along with the associated variables and constants
between the points, are swapped between the parents. Mutation has several different forms, each
occurring with equal probability: random replacement of a variable, random replacement of an
operator, pushing a random operator to the top of the operator stack and pushing variables/constants
to the second stack when arity is greater than 1, popping a random number of operators off the
operator stack and the correct number of variables/constants off the second stack, inserting a single
operator at a random position in the stack, 2-point crossover with a random model, and appending
a random operator to the bottom of the operator stack. There is then a repair mechanism that will
push variables and constants to the top of the second stack if - after mutation - there are not enough
items in the variable/constant stack for the operators.

The tournament selection method used was Pareto tournament selection, where correlation and

complexity were the two objectives. Complexity was measured as the combined stack lengths.

56

Parameter Setting

Mutation Rate 79
Crossover Rate 11
Spawn Rate 10
Elitism Rate 10
Crossover Method 2 Pt.
Tournament Size 5
Population Size 300
Selection Rate 20
Parallel Runs 4
Generations 1000

Table 6.1 StackGP & Active learning Parameter Settings.

1: procedure EvoLve(training Data,models)

2 for generations 1 to 100 do

3 models «— setModelQuality(models, trainingData)
4 newPop « ElitismSelection(models,20%)

5: models «— tournamentSelection(models)

6 newPop < newPop + crossover(models) + mutation(models)
7 newPop < newPop + randomNewModels

8 newPop « deleteDuplicates(newPop)

9: models < newPop
10: end for
11: alignedModels «— alignment(models, trainingData)
12: Return alignedModels
13: end procedure

Algorithm 6.6 StackGP Search Algorithm.

6.3.3 Random Sampling

As a baseline, we used random sampling of data points from uniform and normal distributions
to determine if an active learning method improves learning progress over a naive sampling of
training data. Uniform random sampling was chosen since it is a commonly used distribution and
would likely be a first choice for naively sampling data. A normal distribution was selected since
according to the central limit theorem, normal distributions tend to arise in nature, so a data set
sampled from natural processes would likely be a normal distribution.

To create a fair comparison against the active learning methods, a simple substitution was made

where instead of using active learning to maximize uncertainty or diversity, a random point was

57

added in each iteration. Beyond that substitution, the algorithm remains the same.

The normal distribution for each variable was defined using the midpoint between the sampling
bounds as the mean and 1/6 of the difference between the upper and lower bounds as the standard
deviation. This places 99.8% of the distribution between the upper and lower bounds of each
variable. If a point is sampled beyond a boundary it is adjusted to be on the boundary instead,

although this is unlikely to occur frequently.

6.4 Results and Discussion

Several different approaches for computing uncertainty and diversity were compared using the
Feynman Symbolic Regression Dataset. We then combine diversity and uncertainty using a Pareto
optimization approach and compare that multi-objective method to using both uncertainty and
diversity alone. The Pareto approach is then tested on two additional benchmark problems from

the SRBench benchmark set.

6.4.1 Active Learning Uncertainty Sampling

The results of comparing the different uncertainty-based active learning methods are shown
in Figures 6.2 and 6.3 and the full table is in Appendix C as Table ??. Figure 6.2 uses uniform
random sampling as the baseline for comparison, shown as the blue line in the figure. We also
include normally distributed random sampling for comparison as the red distribution. The results
show that the relative uncertainty measures, where we divide by the mean or trimmed mean,
do not consistently perform better than uniform random sampling. The non-relative uncertainty
measure performed well more consistently with the methods that use differential entropy performing
best. The fact that standard deviation alone as an uncertainty metric performs consistently well is
appealing since it is very cheap and easy to implement relative to some of the others. Differential
entropy when using differential evolution as the optimizer performed best. The fact that differential
evolution as the optimizer worked best with differential entropy likely indicates that the surface is
highly non-convex, so differential evolution was better able to search the uncertainty space.

Figure 6.3 compares the performance of each method against uniform random sampling for

each problem and displays the number of times each method outperforms or underperforms random

58

Comparing Relative Performance of Uncertainty Methods Using Uniform Random as Baseline
T T T T T T

100 -

50 -
. s ® N. Rand

: — Std
~ Mean
u Tr. Std
Tr. Mean
o Std

o

Performance Gain %

Tr. Mean
| Std

= DE
® DE (DE)

-50

-100
I 1 L I I I
N. Rand _Std_ Tr. Std Std Std DE DE (DE)
Mean Tr. Mean Tr. Mean

Method

Figure 6.2 Comparing Relative Performance of Uncertainty Methods Using Uniform Random
Selection as Baseline. Shown here are the performance differences of AL uncertainty methods
compared to uniform random selection as the baseline (blue line) and normally distributed random
selection (red distribution). We see that using the relative uncertainty measures where we divided
by the mean we get inconsistent performance, sometimes performing much better than random
but sometimes performing much worse. The non-relative approaches all consistently perform
better than random selection with the methods that use differential entropy performing best. Using
differential entropy with differential evolution (brown) we observe the best performance. The
distributions represent the median performances of 100 independent runs across all test problems.
For completeness, there is one point not shown for the std/tr. mean approach that is around -200.

sampling. If a method outperforms random sampling that means that the method required fewer
points to solve a problem. If a method underperforms random sampling that means that the method
required more points to solve a problem. The results show that the methods using differential
entropy work best, outperforming in the most number of cases and underperforming in the fewest
number of cases. The differential entropy method that used differential evolution as the optimizer
worked better than just using differential entropy with SciPy Optimize’s minimize function. This
indicates that differential evolution was able to search the uncertainty surface more effectively. The
results also show that the relative uncertainty methods that divided the mean or trimmed mean were
not consistent in their performance, frequently having a similar number of cases where the methods
outperformed and underperformed.

We see that the relative measures sometimes perform well and sometimes perform poorly, but

59

m DE (DE)
m DE
B Std

Std

Tr. Mean
Tr. Std

Outperformed Underperformed
Tr. Mean
Std

Mean

- - e

T LI I B B B S R R S m— — LI . B LI —

20

16 a

Figure 6.3 Comparing Performance of Uncertainty Methods Against Uniform Random Selection.
Each method is compared to uniform random sampling and the number of times that the method
outperforms and underperforms is reported. The number of times each method outperforms is
shown on the left and the number of times each method underperforms is shown on the right.
Outperforming means that a method used fewer points than uniform random sampling. Underper-
forming means that it required more points. Ties are not counted but can be easily determined by
taking the difference of 35 and the two values reported. The results show that the methods that
use differential entropy work well most consistently, outperforming more frequently and underper-
forming infrequently. We can also see that the relative uncertainty measures were very inconsistent
in their performance.

on average they are centered around the baseline performance. The original assumption was that
the relative uncertainty measures would be appealing since it was thought that they would reduce a
bias towards selecting points where the predicted response is larger and thus naturally leads to wider
distributions of the ensemble. This may have been the case occasionally where those methods did
perform much better than uniform random sampling, but they were not consistent. Looking at their
formulations there is a risk of selecting points where the mean is near 0 which results in asymptotic
behavior of the uncertainty function.

Considering the results, we also see that of the two random sampling methods, normally
distributed random sampling seems to perform a bit better than uniform sampling. This indicates
that if a researcher does not want to use active learning to guide their data collection, they would

typically be better off using a normal distribution than a uniform distribution for their samples.

60

6.4.2 Active Learning Diversity Sampling

The different metrics for determining point diversity were compared to determine if there are
clear differences in what they are measuring and also to ensure there aren’t any obvious flaws with
any of the metrics. When comparing minimum distance and average distance an initial randomly
generated training set with 3 data points in 3 dimensions was generated. Figure 6.4 shows the
comparison where new points were selected iteratively to add to the training set using the minimum
distance metric for selection. We can see that the correlation, R? is actually pretty weak between
the two, indicating they are providing different measures. As well, we recorded the Spearman Rho,
rank-correlation, since that indicates if the methods are ranking points similarly or not. If methods
rank points similarly, then they would likely not provide unique information if used as a diversity
metric. It was found that the Spearman Rho was 0.44, which means that the two methods are
ranking points differently and could provide unique information.

Min Distance Mean Distance

N
-06 . Mws&’ow ™ o

Minimum Distance to Training Set

Lo

.

Mean Distance to Training Set

.

.

“

.

H

0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration

Figure 6.4 Comparing minimum Euclidean distance against mean Euclidean distance as a diversity
metric. Here minimum distance is used to select the next point in the set and both metrics of those
points are displayed. We can see that there is little correlation between the two metrics indicating
they provide different information. The R? between these two metrics on these points is just 0.37.
The Spearman Rho, rank-correlation, is also low at 0.44.

To further compare the minimum and mean distance metrics, the analysis was flipped, such that
mean distance was used to select new points and both metrics were recorded on the selected points.
These results are shown in Figure 6.5. Here it becomes obvious that mean distance is not a good
metric since the minimum distance metric indicates that we are repeatedly selecting points already
in the set. This is shown by the consistent minimum distance value of 0 after around 10 iterations.

This result led to mean distance being thrown out as a potential choice of metric.

61

Mean Distance to Training Set
| |

Mean Distance

Min Distance

IR DY PR 000’ 0P Pen
0 .' P o.g‘oo°“\0 el
. . .

Min Distance to Training Set
|

20 40 60 80 100
Iteration

0 20 40 60
Iteration

Figure 6.5 Comparing mean Euclidean distance against minimum Euclidean distance as a diversity
metric. Here mean distance is used to select the next point in the set and both metrics of those
points are displayed. We can see that when mean distance is used to select new points, we get many
points with a minimum distance of 0. This indicates that we are very frequently reselecting points
already in the set. This shows that minimum distance is a better metric than mean distance.

Correlation Min Distance
o, D o~ 0 .
o0 . ',. ~o... ~\~\~\.\~\.\~ B - & . e . . R
- o % - & -2 o o . w ¢ ©
b o« % % N o . ® oo o ° .
o 008 £ 4 . .
c L c
3 . o . N .
g ~ [. .'.-. & ee ‘% A *
£ o008 el .« °% o . o ° e ® o °
=} L4 P . * oo . .
~ 004 2 8 *% . . % . .
P ° o
c 2 0 o ‘ ¢
s a .
2 ooz S, %
s .
.
000{ emesm 14 .
0 20 40 80 100 0 20 40 80 100
Iteration Iteration

Figure 6.6 Comparing mean point correlation against minimum Euclidean distance as a diversity
metric. Here minimizing mean correlation is used to select the next point in the set and both metrics
of those points are displayed. We can see that there appears to be a weak positive correlation between
the two, indicating that they provide some of the same information but are not the same, so may
have different advantages. It is also promising that the minimum distance shows that we are not
reselecting points already in the training set. Comparing the metrics for these points we get an R>
of 0.35 and a Spearman Rho of 0.33.

Minimum distance and correlation were also compared to determine if they provide unique
measures of diversity. The results are shown in Figure 6.6. For this analysis, lack of correlation
to the training set was used to select new points and both metrics were recorded. This analysis
was slightly different than the previous ones since for this problem the points were embedded in a
10-dimensional space instead of just 3. The results show that the two metrics do provide unique
information since an R? value of 0.35 and a Spearman Rho value of 0.33 were recorded, which are
both low. Since these metrics were determined to provide unique information without any clear
flaws both were included to be explored, with the one limitation that correlation as a diversity

metric could not be used on problems of less than 3 dimensions.

62

Comparing Relative Performance of Diversity Methods Using Uniform Random as Baseline
T T T

50 -

o
T

Performance Gain %

m N. Rand
| m Distance
I Correlation

50 L

. . .
N. Rand Min Distance Correlation
Method

Figure 6.7 Comparing Relative Performance of Diversity Methods Using Uniform Random Selec-
tion as Baseline. Shown here are the performance differences of both the AL diversity methods
compared to uniform random selection as the baseline (blue line) and normally distributed random
selection (red distribution). We see that using minimum distance (green distribution) performs
consistently better than the baseline and correlation (blue distribution) works best as a diversity
metric. The drawback with using correlation as the diversity metric though is that it requires
problems with more than two dimensions, so the problems with two dimensions are ignored when
using correlation. The distributions represent the median performances of 100 independent runs
across all test problems.

The results of comparing the different data diversity-based active learning methods are sum-
marized in Figures 6.7 and 6.8 and the full results are shown in Table C.2 in Appendix C. Figure
6.7 uses uniform random sampling as the baseline for comparison, shown as the blue line. We
again include normally distributed random sampling for comparison as the red distribution. We
can see that both diversity metrics have better performance than uniform random sampling, on
average requiring fewer training points to find a solution. We also see that correlation as a diversity
metric performs best, often requiring the least number of training data points to find a solution.
Correlation does have the disadvantage, though, of not working on the problems with just two
dimensions. Those two problems are not represented in the correlation bar in the chart since they
are not applicable.

Figure 6.8 shows the number of cases where each method either outperformed or underper-

formed when compared to uniform random sampling. We see again that correlation has the best

63

performance. This indicates that not only does correlation lead to requiring fewer training points
on average, but also indicates that it most consistently requires fewer points. We see that distance
as a metric requires fewer points than uniform and random sampling, but is not as consistent as
correlation.

Outperformed Underperformed

23 4

[l Correlation
W Distance
B N. Rand

Figure 6.8 Comparing Performance of Diversity Methods Against Uniform Random Selection.
Each method is compared to uniform random sampling and the number of times that the method
outperforms and underperforms is reported. The number of times each method outperforms
is shown on the left and the number of times each method underperforms is shown on the right.
Outperforms means that a method used fewer points than uniform random sampling. Underperforms
means it required more points. Ties are not counted but can be easily determined by taking the
difference of 35 and the two values reported. The results show that correlation performed best,
underperforming the fewest times and outperforming the most.

6.4.3 Comparing Diversity, Uncertainty, and Pareto Optimization of Both

Next, we explore how the performance compares when using uncertainty and diversity together
to see if there are benefits to considering both for selecting training data with AL compared to
just uncertainty or diversity alone. For this comparison, we selected one diversity metric and one
uncertainty metric. For the uncertainty metric, we chose differential entropy since it was shown
to be the best performing metric in Figure 6.2. For the diversity metric, we chose minimum
distance. Although it didn’t perform best, it is most versatile since it isn’t restricted to problems
with more than 2 dimensions. For the combination method, we used a Pareto optimization to

find the points with the best trade-off of both the uncertainty and diversity metrics from 10,000

64

randomly generated points each iteration. From the Pareto front of points that are non-dominated
in those two objectives, we ordered them based on their uncertainty score and selected the median
point. Note that sorting based on uncertainty is just the reverse order of a sort by diversity, so
which objective you choose to sort by shouldn’t have a significant impact. The only impact would
be on cases where an even number of points are on the front so the point you select isn’t the true
median but rather one of the points near the median. When this occurs, we round down to select
the median point, which would give a slight bias toward uncertainty. By selecting the median point
we are attempting to choose a point that has a relatively good balance between the two objectives.

The results of this comparison are shown in Figures 6.9 and 6.10 with the results from each
problem shown in Appendix C in Table C.3. Again in Figure 6.9, we use uniform random sampling
as the baseline (blue line) and include normally distributed random sampling for comparison. The
results show that all three methods work better than the baseline and normally distributed random
sampling. Using the uncertainty metric, differential entropy, works slightly better than using the
distance metric, minimum distance. We also see that there is a benefit to combining both metrics
using the Pareto optimization since we see an improvement in the upper quartile of performance. It
is also interesting to note, as can be seen in Figure 6.10, that the diversity metric alone performed
worse than uniform random sampling in 8 of the 35 cases, whereas the uncertainty approach and
the Pareto approach only performed worse in 4 of the cases, demonstrating that the uncertainty
and Pareto approaches offer more consistent improvements. This indicates that it is important to
consider the current models to help guide the AL process. This makes sense since the goal is
to select training points that will best inform the current model population, using only diversity
doesn’t consider the current state of models, so it is less likely that the training points selected will
most inform those models. Statistical significance tests were also performed and the number of
cases determined to be statistically significant are shown in the darker regions in the figure. The
Mann-Whitney test was used to test for significance and a threshold of 0.05 was used. The Pareto
approach was found to be statistically significant in 18 of the 20 cases where the Pareto approach

outperformed.

65

Comparing Relative Performance of Diversity, Uncertainty, and Pareto Optimization

100 - B

B
50| s

[| ®N. Rand
0 W Min Distance (Diversity)
[L L | ® DE (Uncertainty)

. M Pareto (Uncertainty & Diversity)

Performance Gain %

-50 F . 4

-100 - B

N. Rand Min Distance DE Pareto
Method

Figure 6.9 Comparing Relative Performance of Diversity, Uncertainty, and Pareto Optimization
Using Uniform Random Selection as Baseline. Shown here are the performance differences of AL
diversity, uncertainty, and Pareto methods compared to uniform random selection as the baseline
(blue line) and normally distributed random selection (red distribution). We see that using the
diversity metric, minimum distance (green distribution), performs consistently better than the
baseline and the uncertainty metric, DE (blue distribution), performs a bit better than the diversity
method. When using a Pareto optimization of both diversity and uncertainty we get even better
performance. The distributions represent the median performances of 100 independent runs across
all test problems. For completeness, there is a single point around -150 for the Pareto approach.

Looking at the results, there are two instances where the Pareto approach performed considerably
worse than the uncertainty and diversity approaches. Those are equations 9 and 71. Table C.3 in
Appendix C shows that the combined method performs worse than focusing alone on either diversity
or uncertainty for those two problems. This is likely a result of equations 9 and 71 being higher
dimensional problems with 6 and 5 dimensions, respectively, so the 10,000 randomly generated
points don’t sufficiently fill the search space to find points with high values for both uncertainty and
diversity.

Equation 71 was further explored to see if sampling additional points improved the performance
when using the combined diversity uncertainty approach and to verify that sparse sampling was
at least part of the issue as suspected. Equation 71 was retested using 100,000 randomly sampled
points to search for the best trade-off between diversity and uncertainty. When using 100,000
points the median number of points required to solve the problem decreased to 42 points from 50.5,

confirming that better sampling of the space improves the performance in this higher dimensional

66

Outperformed Underperformed

20 18 2 4
22 |yl 2 4 B N. Rand
B Min Distance
= DE
I Pareto

Figure 6.10 Comparing Performance of Diversity, Uncertainty, and Pareto Optimization Against
Uniform Random Selection. Each method is compared to uniform random sampling and the number
of times that the method outperforms and underperforms is reported. The number of cases where
the differences are statistically significant is shown in the darker regions. The number of times
each method outperforms is shown on the left and the number of times each method underperforms
is shown on the right. Outperforms means that a method used fewer points than uniform random
sampling. Underperforms means it required more points. Ties are not counted but can be easily
determined by taking the difference of 35 and the two values reported. The results show that DE, the
uncertainty method works best. The Pareto approach ties for the least number of underperforming
cases, matching DE, and outperforms between DE and Min. Distance. Statistical significance was
determined using the threshold of 0.05 with the Mann-Whitney test.

problem. The median performance of 42 points is still worse than either of the uncertainty or
diversity approaches, so more points could be used, but increasing the number of points beyond
100,000 begins to make that search rather expensive. Rather than randomly sampling the points
then selecting the Pareto front from those points, an alternative optimization method, such as
NSGA II [Deb et al., 2002], could be used in future studies which might be cheaper and likely more

effective.

6.4.4 Additional Benchmark Problems
To further test the Pareto AL approach, we selected two problems from a more recent benchmark
set, SRBench [La Cava et al., 2021]. One that is on the easier side for StackGP and one that is a

bit more challenging. The easier problem selected was the van der Pol oscillator problem, referred

67

to as "strogatz_vdpl" in SRBench. The equation for the van der Pol oscillator problem that we are
trying to rediscover is x’ = 10 % (y — (1)/(3) * (x> — x)). The more challenging problem was the
bar magnet problem, referred to as "strogatz_barmagl" in SRBench and the equation for the bar
magnet problem that we are trying to rediscover is x” = 0.5 * sin(x — y) — sin(x). As with the
previous problems, we performed each experiment 100 times and computed the median number
of points to find the solution. The results of those experiments are shown in Table 6.2. We can
see that the Pareto approach performs significantly better than randomly sampling from a normal
distribution and performs about 27.8% better than randomly sampling from a uniform distribution
on the bar magnet problem. The performance gains over the normal and uniform distributed
samplings are statistically significant considering a threshold of 0.05 using the Mann-Whitney test.
We computed a p-value of 3.490+10~!! when comparing to the normal distribution and 6.481x107°
when comparing to the uniform sampling. We also see better performance on the van der Pol
oscillator, although since it was an easy problem there isn’t as much opportunity for improvement,
so we only see a reduction of a few points. The performance gains over the normal and uniform
distributions are again statistically significant with a p-value of 2.51%10~7 when compared with
the results from using normally distributed sampling and a p-value of 4.008+10~'3 when compared

with the results from using uniform random sampling.

SRBench N. Ran U.Ran Pareto AL
Problem Data Pts. Data Pts. Data Pts.
Bar Magnet #1 51 18 13
Van der Pol Osc. #1 10 9 7

Table 6.2 Shown are the median numbers of points needed to solve each equation. A total of 100
independent trials were performed for each equation. We compare the active learning method that
uses both diversity and uncertainty and compare the performance against random sampling on two
problems from the SRBench.

6.5 Conclusion
Both uncertainty and diversity metrics for active learning were explored to see how each metric

impacts the success of active learning in genetic programming. As well, a Pareto approach was

68

defined that allows both diversity and uncertainty to be considered for active learning. Of the
uncertainty approaches, it was observed that differential entropy performed best. It was also
observed that relative uncertainty functions did not perform well. When using differential entropy
it was found that performance could be boosted by using differential evolution as the optimizer
over Scipy Optimize’s minimize function. This indicates that the search space is not convex and
requires a good optimizer to find solutions with high uncertainty.

When comparing the data diversity methods, it was found that correlation performed better than
minimum Euclidean distance. Although correlation worked better, it does not work on cases with
2 dimensions or less. Thus, minimum Euclidean distance was selected for the Pareto approach.
Future implementations may default to using minimum Euclidean distance for all cases with 1 or 2
dimensions and using correlation for higher dimensional problems. Mean distance was considered,
but determined to be uninformative due to its frequency of identifying repeat points.

When comparing the Pareto approach which used both differential entropy and minimum
Euclidean distance to differential entropy, minimum Euclidean distance, uniform random selection,
and normally distributed random selection, it was found that differential entropy worked best, with
the Pareto approach performing between differential entropy and minimum Euclidean distance.
Looking at individual problems, there were a few cases where the Pareto approach actually worked
better than both differential entropy and minimum Euclidean distance on their own, indicating
potential benefits of combining the two approaches. For the cases where the Pareto approach did
not work as well, it was identified that the multi-objective optimization strategy may have been at
fault since it relies on randomly generating N points and selecting the median value in the Pareto
front. Better methods such as NSGA-II could be explored in future studies to see if improved
optimization methods lead to better active learning performance.

Overall, it was found that active learning can be efficiently utilized with genetic programming
to reduce training data requirements. In practice, this would be useful to apply in scenarios where
collecting data or labelling data is expensive, and model training is relatively cheap. In these

scenarios, active learning could be used to guide data collection and labelling so that good models

69

can be arrived at using as few data points as possible. This application has the potential to accelerate

data-driven research since it could lead to finding solutions with fewer resources in less time.

6.6 Acknowledgments
Computer support by MSU’s iCER high-performance computing center is gratefully acknowl-

edged.

6.7 Code Availability

The code for StackGP with active learning can be found here: https://github.com/hoolagans/StackGP

70

Part I11

Classification

71

Classification is another common application of machine learning, where rather than finding a
mathematical function to fit data, the goal is to find a model that fits data with several discrete values
(classes) as labels. In general, for classification tasks the input data can be a mix of categorical and
numeric data, but in this work, we focus on input data that is purely numeric and is extracted from
images. Two classification methods are explored, decision tree GP (DT-GP) and SEE-Segment.
Both approaches are used for image segmentation tasks, where the classification is binary such that
each pixel is either labelled as foreground or background. Foreground is the part of the images that
is interesting and background is what we want to remove or ignore. DT-GP is then tested further
on the task of labelling cells in an image as either co-transfected or not. Co-transfected means that
a cell is expressing two different proteins of interest that were inserted by a researcher.

This section focuses on how active learning can be applied to population-based ML systems
on classification tasks. We first describe both DT-GP and SEE-Segment in detail and explore how
active learning was applied with both systems to improve model development. We then apply active

learning with both systems and discuss the results.

72

CHAPTER 7

DT-GP
Decision tree genetic programming (DT-GP) is a system I developed that can evolve decision
trees to solve binary classification tasks. In this work, the trees operate on numeric values and
vectors to produce binary true and false classifications. This allows the system to work for image
segmentation, where the goal is to take the numeric values in each pixel and classify them as
foreground or background, as well as allowing the system to take in numeric vectors, representing
whole or partial images and assign them to a class. The implementation of this system is described

in detail in this chapter and it is applied to image analysis problems with active learning in Chapter

0.

7.1 Model Form

Image segmentation and object classification were performed using an implementation of deci-
sion tree GP (DT-GP), where decision trees are evolved to consider which pixels are foreground or
background for segmentation and to identify which class an object belongs to for object classification
tasks. The decision trees can utilize 3 types of operators: boolean operators, (in)equality operators,
and numerical operators. Boolean operators can take in boolean values and return boolean values.
Inequality and equality operators take in numeric values and return boolean values. Numeric
operators can take in numeric vectors and return numeric scalars.

The boolean operators available are And, Or, Not, Nand, Nor, and Xor. The inequality oper-
ators available are >=, >, <=, <,==, and ! =. The numeric operators are average, median, max,
min, di f ference, range, standardDeviation, getRed, getGreen, and getBlue. The last three
operators listed simply grab the red, green, or blue values from pixels. The vector operations operate
on a specific color stream when given an image and they operate on a pixel vector when operating
on individual pixels. The models can also contain randomly generated constants as floating point
values from O to 1 since the RGB pixel values are stored as values from O to 1.

To make the use of these operators meaningful, a hierarchical structure is enforced in the trees

such that the boolean operators can only operate on inequality operators, and inequality operators

73

can only operate on numeric operators and constants. Numeric operators are then restricted to
the lowest levels of the decision trees where they can operate on numeric data. Trees can only
be initialized in this form and then this form is enforced throughout evolution by restricting how
mutation and crossover can be performed.

An example of a tree generated to segment the KOMATSUNA plant data Uchiyama et al. is
shown in Figure 7.1. Note that although this tree happens to be balanced, it is not enforced, so trees

generated by DT-GP can potentially be heavily skewed.

Not

|

Or

. E

Greater Equal LessEqual

Diff3| |Diff Min Med
Figure 7.1 Shown here is an example tree generated to segment the KOMATSUNA data set. Here
delta is a placeholder for the data. For this tree, we can see that the top two layers are boolean

operators, below that we have one layer of inequality operators, and the bottom layers consist of
numeric operators or numeric values.

0.400486 Max

7.2 Genetic Operators

Subtree crossover, subtree mutation, and point mutation were used as the variation operators.
Point mutation is simple, just replace an operator or value with an operator or value of the same type.
For example, if a boolean operator is selected for point mutation, then only a boolean operator can
be chosen to replace it. A visual representation of a point mutation is shown in Figure 7.2. Subtree
mutation is performed by selecting a position in a tree and producing a new randomly generated
subtree to replace that position, ensuring that the new tree is valid considering the operators above

where the subtree is being added. An example of subtree mutation is shown in Figure 7.3. For

74

subtree crossover, to ensure models created are meaningful, an operator of the same type is chosen
from each parent tree and the subtrees from those points down are swapped to produce two new
child models.

Mutation and crossover are exclusive, meaning a child model in one generation can be produced
by either mutation or crossover, but not both. The mutation and crossover rates are shown in Table

7.1 along with the rest of the parameters used to run DT-GP.

G o (el [orrs ey () [oma] [omg] i
i o B B 4 B

Figure 7.2 Shown here is an example tree and the result of applying a point mutation. The resulting
point mutation replaced the "Chng" operator with the "Med" operator.

Figure 7.3 Shown here is an example tree and the result of applying a subtree mutation. The
resulting subtree mutation replaced the left side of the tree with a new subtree.

7.3 Selection/Fitness

For classification tasks, we utilize a simple fitness function that is just the percent of correctly
classified inputs divided by the total number of inputs, with the one trick being that we do not
care which label the model assigns to each class. For example, if the true class labels are A and
B, but a model assigns the labels B and A, instead of a 0% fitness we get a 100% fitness. This is
achieved by defining the fitness function as Max(c/t, 1 — c¢/t), where c is the number of correctly

classified cases and ¢ is the number of total cases. Since we are operating on binary classification

75

Parameter Setting

Mutation Rate 30
Crossover Rate 40
Spawn Rate 10
Elitism Rate 20
Crossover Method Subtree
Mutation Method Point & Subtree
Tournament Size 5
Population Size 30
Generations 100
Max Tree Depth 6

Table 7.1 DT-GP & Active learning Parameter Settings.

problems, this fitness function leads to a guaranteed minimum fitness of 50% on the training set
and also shrinks the search space, since each model is considered in two states, the original state
and the state of the model if the Not operator were applied to it simultaneously. Post evolution,
we can then assign the correct model state to each model in the population. This is analogous to
the alignment step done at the end of evolution when using StackGP with the correlation fitness
function for regression tasks.

For selection, DT-GP utilizes standard tournament selection, where each tournament considers
5 randomly selected models and returns the single model with the best fitness. All models selected
for mutation or crossover are selected via tournament selection.

Table 7.1 shows the parameters used to run DT-GP with AL-GP.

7.4 Active Learning Implementation for DT-GP

Active learning was used with DT-GP to select training images iteratively to maximally inform
model populations. Uncertainty was quantified by measuring disagreement between the models in
an ensemble. To do this, each model in the ensemble was used to generate a predicted segmentation
pattern on each potential image to be added to the training set. For each image, every pair-wise
pixel difference was computed for each model in the ensemble’s predicted segmentation pattern.
This difference can be summarized as the total number of pixels where the two models disagree on

its classification. The pair-wise differences of all models in the ensemble are then averaged. The

76

image that returns the largest uncertainty value is then selected and added to the training set. This
approach is described in detail in Algorithm 7.1 Evolution then resumes using the now expanded
training set.

The model ensemble is selected in a way that attempts to capture the diversity of the population
while also containing primarily high-quality individuals. This is done by selecting the top 10

models from the population that have unique fitness values on the training set.

1: procedure UncertaINTY(HOF,Image)

2 Uncertainties « [] > Initialize uncertainties list
3 Pairs < GeneratePairs(ensemble) > Generates all pairs of models in HoF
4 for i 1 to len(Pairs) do

5: Predictionl « EvaluateModel(Pairs[i][0], Image) > Generate prediction of first model in pair
6 Prediction2 < EvaluateModel(Pairs[i][1], Image) > Generate prediction of second model in pair
7 UncertaintyVal < Total(Dif ference(Predictionl, Prediction2)) » Compute Pixel/Object Differences and Total
8: Uncertainties «— Uncertainties.append(UncertaintyVal) > Append to list
9: end for

10: MeanUncertainty «— Mean(Uncertainties) > Compute mean of uncertainties
11: Return MeanUncertainty

12: end procedure

Algorithm 7.1 Uncertainty Computation DT-GP.

The application of AL-GP with DT-GP to image analysis tasks is explored in Chapter 9.

7.5 Code Availability
The code for DT-GP can be found here: https://github.com/hoolagans/DTGP/tree/main

77

CHAPTER 8

SEE-SEGMENT

SEE-Segment is a tool developed by the SEE-Insight group that uses a genetic algorithm to
search a space of computer vision algorithms and parameters associated with those algorithms. The
goal is to find a model that properly segments an image or set of images. The intended use of this
system is to be part of a researcher’s image segmentation workflow whereas the user is manually
segmenting images, the tool will search for segmentation algorithms that will learn to replicate
the manual segmentation patterns and hopefully automate the segmentation of images after being
trained on a few. Active learning could benefit this workflow by suggesting which images should
be manually labelled, such that maximal information is gained from each image which could lead

to fewer images being labelled until the task can be automated.

8.1 SEE-Segment Implementation

SEE-Segment was used to evolve a population of image segmenters. Each individual model
consists of a segmentation strategy and 8 parameters. The parameters and choice of strategy are
optimized through generations. While each individual contains 8 parameters not all parameters
are used by all strategies. Mutation and crossover are used as the variation operators. Tournament
selection is utilized for selection. All models selected from tournament selection then have a 90%
chance of crossover and then from those offspring, there is a 90% chance of a mutation. Elitism
is also utilized by guaranteeing the Hall of Fame models (top 10 genotypically unique models) are
preserved across generations. The parameters used to run SEE-Segment are shown in Table 9.1.
Spawn rate refers to the number of new models introduced in a generation. The number spawned
each generation is the number required to bring the population size back up to 100 after including the
hall of fame models and the unique individuals produced from mutation and crossover. Tournament
size, population size, and generations are the only parameters modified from the default settings.
Those settings were chosen since they allowed for sufficient model development while keeping
computation time reasonable in each iteration of learning.

This instance of SEE-Segment is modified from the original SEE-Segment since I introduced

78

Parameter Setting

Mutation Rate 90
Crossover Rate 90
Spawn Rate 100-HoF-UniqueMods
Hall of Fame Size 10
Tournament Size 4
Population Size 100
Generations per AL Iteration 100

Table 8.1 SEE-Segment Parameter Settings.

tournament selection as the method for selecting which models will undergo mutation and crossover.
I also introduced a function that limits the number of duplicates that can exist in any population. I
set the limit to 1 so that no duplicate genotypes can exist in the population. Previous to these edits, |
frequently encountered populations that would converge to a single suboptimal model very quickly,
since only the Hall of Fame models were selected for reproduction which led to populations quickly

losing all diversity. These updates were recently adopted by the main branch of SEE-Segment.

8.2 AL Implementation for SEE-Segment

Two active learning methods were implemented that vary in how they select the ensemble. The
first method simply uses SEE-Segment’s Hall of Fame, which consists of the top 10 genotypically
unique models. The second method goes further to ensure models are unique by selecting the
top 10 phenotypically unique models. These ensemble selection methods differ from the original
AL-GP approach since here we start with only a single image. The original approach relies on
generating diverse data clusters and selecting models that best fit each data cluster. If that approach
was utilized here, we would initially get an ensemble of one model, which would lack any sort of
uncertainty metric.

Using the selected ensemble we compute the average pairwise disagreement of all the models in
the ensemble on each potential image. The image with the maximum average pairwise disagreement
is selected for labelling and added to the training set. In the event of a tie, the first image found with
the max value is selected. An overview of the active learning algorithm is shown in Algorithm 8.1

and the method for computing uncertainty is shown in Algorithm 8.2. The pairwise uncertainty

79

on an image between two models is computed by utilizing SEE-Segment’s fitness function where
instead of supplying the fitness function with a model’s predicted segmentation mask and a true
mask, the predicted masks from both models are supplied. This leads to a reasonable measure of
how different two model’s predicted masks are.

The type of active learning implemented to work with SEE-Segment would be classified as
pool-based active learning since it works by scanning over all un-labelled images in a data set and
selecting a single image to label and add to the training set each iteration. To select an un-labelled
image that will be informative to the current model population we select an image that generates
significant disagreement amongst the top-performing models in the population. The top performing
models are then stored in the evolver’s Hall of Fame which consists of the top 10 models discovered
so far during evolution. Each model in the Hall of Fame is guaranteed to have a unique genotype,
but this does not guarantee that the phenotype will be unique. Using the Hall of Fame models we
compute the average pairwise disagreement of all the models on each potential image. The image
with the maximum average pairwise disagreement is selected for labelling and added to the training
set. In the event of a tie, the first image found with the max value is selected. An overview of the
active learning algorithm is shown in Algorithm 8.1 and the method for computing uncertainty is
shown in Algorithm 8.2. The pairwise uncertainty on an image between two models is computed
by utilizing SEE-Segment’s fitness function where instead of supplying the fitness function with a
model’s predicted segmentation mask and a true mask, the predicted masks from both models are

supplied. This leads to a reasonable measure of how different two model’s predicted masks are.

1: TrainingData «— RandomlImage > Select 1 Random Image
2: Evolver « GeneticSearch.Evolver(TrainingData) > Initialize evolver
3: evolver.run() > Evolve models with initial data
4: while i < itrerations do > While max iterations not reached
5: HoF « Evolver.hof > Extract hall of fame
6: Selectedlmage «— MaximizeUncertainty(HoF, Data) > Find image that maximizes uncertainty
T: TrainingData <« Append(TrainingData, SelectedImage) > Add new image to training data
8: Evolver.UpdateData(Training Data) > Update training data in evolver
9: evolver.run() > Evolve models with new data
10: end while

Algorithm 8.1 Active Learning Process for SEE-Segment.

80

1: procedure UNcertaINTY(HOF ,Image)

2 Uncertainties « [] > Initialize uncertainties list
3 Pairs «— GeneratePairs(HoF) > Generates all pairs of models in HoF
4 for i 1 to len(Pairs) do

5: Predictionl <« EvaluateModel(Pairs[i][0], Image) > Generate prediction of first model in pair
6

7

8

Prediction2 « EvaluateModel(Pairs[i][1], Image) > Generate prediction of second model in pair
UncertaintyVal < FitnessFunction(Predictionl, Prediction2) > Compute uncertainty
: Uncertainties < Uncertainties.append(UncertaintyVal) > Append to list
9: end for
10: MeanUncertainty < mean(Uncertainties) > Compute mean of uncertainties
11: Return MeanUncertainty

12: end procedure

Algorithm 8.2 Uncertainty Computation SEE-Segment.
The application of AL-GP with SEE-Segment to image segmentation tasks is explored in

Chapter 9.

8.3 Code Availability

The code for SEE-Segment can be found here: https://github.com/see-insight/see-segment

81

CHAPTER 9

AL-GP IN CLASSIFICATION TASKS

Here we explore the efficacy of active learning in genetic programming (AL-GP) for image
processing tasks using two new population-based machine learning systems, decision tree genetic
programming and SEE-Segment as described in Chapters 7 and 8. We explore how active learning
can be used to improve the rate and consistency of finding good models using few data points.
The importance of diversity in ensembles for AL-GP is also explored by varying the definition
for diversity when performing active learning with SEE-Segment. Finally, we demonstrate how
AL-GP was deployed in a research setting to help automate and accelerate progress by guiding
labelling of training samples (human cells) to inform the development of classification models

which were then used to automatically classify cells in video frames.

9.1 Introduction

Image analysis is the process of extracting useful information from image data. This extracted
information can then be used to study systems captured in the image data. Image analysis is broadly
applied from medical imaging to computer vision [Shen et al., 2017] [Wildchen and Mider, 2018].
In medical imaging, the image data will often come from magnetic resonance imaging (MRI),
positron emission tomography (PET), computerized tomography (CT), x-rays, etc [Shen et al.,
2017]. For example, in [Suk and Shen, 2015] the authors are able to use MRI and PET image
data with deep learning methods to improve the success rate of identifying Alzheimer’s disease.
Image analysis involves extracting useful information from image data, which is generally rich
with information, but can also contain significant noise. Segmentation is a specific step in image
analysis where the features of interest are isolated and background information (noise) is removed.

As was introduced in Chapter 2, active learning is the field of machine learning focused on
selecting training data that will maximally inform model development and uncertainty sampling is
a type of active learning where model uncertainty is used to guide data selection.

In Chapter 2, I introduced the three main classes of active learning: pool-based, stream-based,

and membership query synthesis. In this chapter, I use pool-based methods of active learning. As

82

a reminder, pool-based methods work when you have an existing set of unlabelled data and the task
of active learning is to search over that pool of data to select the specific samples that are predicted
to be most informative. This is implemented in this chapter by searching over the pool of samples
and returning one most informative sample in each round of active learning.

Uncertainty-based active learning is used in this chapter, and while genetic programming models
individually lack statistical properties to compute uncertainty, the model populations present in GP
can be utilized to quantify uncertainty across the diverse models within a population. We have
previously applied active learning to genetic programming in symbolic regression tasks using
active learning in genetic programming (AL-GP) with a stack-based genetic programming system
(StackGP) [Haut et al., 2022] and discussed that work in Chapter 6.

This general strategy of utilizing the model populations in symbolic regression GP tasks to
select training data to maximally inform evolution seemed generalizable to GP and evolutionary
computation, so in this work, we demonstrate how AL-GP can be implemented and applied to
other evolutionary computation methods and various image analysis problems to accelerate the
development of segmentation and object classification models. These models can then be used to
aid research in various fields reliant on image data.

The SEE-Insight project is an open-source framework to accelerate the biggest bottleneck in
Scientific Image Understanding, which is manual image annotation. SEE-Segment is the first tool
developed for SEE-Insight and consists of an evolutionary machine learning approach that utilizes
a genetic algorithm to select a computer vision algorithm and optimize parameters for an image
annotation task (image segmentation). SEE-Segment will work with a Graphical User Interface
(GUI) allowing researchers to upload their image datasets and then incrementally annotate their
images. The image annotations are used to test scientific hypotheses or as a first step to feeding
into a data-driven model such as a neural network. Because annotating images can be slow and
tedious, while researchers are interfacing with the GUI the SEE-Segment system is simultaneously
searching this grammar (aka "algorithm space") to find automated methods that can reproduce their

manual workflows. This search is happening "in the background" on large-scale systems. Given the

83

complexity and size of the search space, there is no guarantee that it will converge to a reasonable
solution. However, if a good algorithm is found then suggestions are passed to the researcher to
help speed up their annotation process. In the best case, a fully automated algorithm is identified
that can reproduce their manual annotation. In the worst case, SEE-Segment will not take any
longer than manually annotating images without the discovery tools.

This application is an instance of a Combined Algorithm Search and Hyperparameter (CASH)
problem and uses a genetic algorithm to search for an algorithm (and hyperparameters). Although
the space is nondifferentiable and highly heterogeneous, preliminary results are promising. By
using a well-defined image grammar and genetic algorithms as the core search tool, results of the
machine learning are highly human interpretable. This allows the system to "generate code" that
can be used for teaching as well as copy-and-pasted to a researcher’s own program.

Decision tree GP (DT-GP) is a GP system that evolves decision trees and was developed as
part of this work specifically to solve the problem of cell classification but is generalizable to
classification tasks.

In this work, we explore the efficacy of AL-GP in two different population-based ML systems
and then demonstrate how AL-GP can be applied in a research setting to accelerate progress in

scientific studies.
9.2 Data Sets

9.2.1 KOMATSUNA

To benchmark the active learning methods in both systems, the KOMATSUNA [Uchiyama
et al.] data set was used since it is a fairly simple segmentation problem and has ground-truth labels
available. The KOMATSUNA data set contains 300 images of plants where the provided labels are
the segmentation patterns that identify the plant from background data. The KOMATSUNA data
set is ordered and tracks plants over time as they grow. Each set of 5 consecutive images is taken
within the same day so the images are substantially similar within those sets. Example images from
the KOMATSUNA data set are shown in Figure 9.1 to demonstrate how the sizes of plants vary in

the set and also how the camera angle and location can vary.

84

J .

(a) Plant 1 (b) Label 1

'

(c) Plant 2 (d) Label 2

Figure 9.1 Example image (a) from KOMATSUNA dataset with its corresponding label (b). The
label is the true segmentation mask. A second example image (c) and its label (d) are shown to
demonstrate the diversity of images in the dataset.

9.2.2 Sky Segmentation

The sky data set [Alexandre and Miranda] contains 60 images of the sky where the labels
provide the segmentation patterns that identify the sky from other objects. Of those 60 images, 4
had to be removed since the supplied segmentation patterns are not correct since they all segment
out the entire image. Those are images 0001 to 0004’ in the set.

The sky data set contains a selection of images where the feature of interest is the sky and other
objects obstructing the view of the sky are to be segmented out. Every image contains a plane
either in the sky or near the ground, in which case the ground also needs to be segmented out.
Examples from the data set are shown in 9.2 to demonstrate an example of two images and their

true segmentation patterns.

85

Nt

(a) Sky 1 (b) Label 1

il

(c) Sky 2 (d) Label 2

Figure 9.2 Example image (a) from the Sky dataset with its corresponding label (b). The label is
the true segmentation mask. A second example image (c) and its label (d) are shown to demonstrate
the range of images in the set.

9.2.3 Cell Classification

AL-GP was also applied to cell image data to show how active learning could be applied to the
problem of cell segmentation and classification. For this data set, the goal of classification is to
determine which of the cells are co-transfected (expressing two proteins of interest). The image data
[Ricker et al., 2022] consists of two streams, one that tracks the expression of green fluorescence

which indicates the presence of one protein, and another that tracks purple fluorescence, which

indicates the expression of the other protein. An example of this data is shown in Figure 9.3.

Figure 9.3 The image on the left shows cells that are expressing a protein with a purple fluorescent
piece. The image on the right shows cells that are expressing a protein with a green fluorescent
piece.

86

9.3 Active Learning

Active learning was used to iteratively select training samples to maximally inform model
populations. Each run begins with a single randomly selected training sample and one additional
training sample is selected and added by active learning after a set number of generations. Once
the new sample is added, evolution continues on the expanded dataset. Uncertainty was quantified
by measuring disagreement between the models in an ensemble. To do this, an ensemble of 10
diverse models is selected from the population. The ensemble of models is then evaluated on
every unselected training sample and the uncertainty on each sample is recorded by measuring
the average difference between the predictions of each model in the ensemble. The sample with
the highest uncertainty value is then selected and added to the training set. This method varies
slightly from the original AL-GP approach in that the ensemble sizes are constant and the models
are not selected by selecting best fitting models on different data partitions. This change was made
since we begin with a single training sample, which would result in one model selected for the first

ensemble. A single model lacks any measure for uncertainty.

9.4 AL-GP Applied to Decision Tree GP
Decision tree GP is described in detail in Chapter 7 but is reviewed in some detail here before

moving on to the application of AL-GP with DT-GP on several image analysis problems.

9.4.1 Decision Tree GP (DT-GP)

Image segmentation and object classification were performed using an implementation of de-
cision tree GP (DT-GP), where decision trees are evolved to consider which pixels are foreground
or background for segmentation and to identify which class an object belongs to for object classi-

fication tasks. The implementation of DT-GP is discussed in detail in Chapter 7.

9.4.2 KOMATSUNA Multi-Image Results
DT-GP was tested using the KOMATSUNA dataset to see how active learning impacts its ability
to perform on a fairly simple dataset. Active learning was compared to random data selection by

recording the test fitnesses after each iteration to see which method improves fitness on the test set

87

quicker and which method arrives at better fitness values. In this case, a fitness of 1 is a perfect
model and a fitness of 0 is the worst possible fitness. Each method was tested a total of 40 times
with different randomly selected training and test sets of 250 images available to be selected for the
training set and 50 images in the test set.

The results of the 40 runs comparing active learning and random sampling are shown in Figure
9.4. We can see that active learning more quickly improves its test fitness towards 1. We can see
though that this is a fairly simple problem for DT-GP since even after just one round of learning

the models from both active learning runs and random sampling runs are around 0.98.

DT-GP Fitness vs. Learning Rounds DT-GP Fitness vs. Learning Rounds

MM 2,

] B Random
 Ordered

Rounds Rounds

Figure 9.4 Active learning, random data selection, and ordered data selection using DT-GP are
compared with the distribution of test fitnesses shown after each round of learning. Each experiment
was repeated 40 times, so each bar represents the distributions from 40 repeated trials. The data
shows that active learning outperforms random data selection. The active learning method most
quickly increases fitness. The right figure focuses on just AL and random data selection for easier
visualization of the same results from the left figure.

9.4.3 KOMATSUNA Single-Image Results

DT-GP was also tested using individual images from the KOMATSUNA dataset where instead
of using active learning to select full images to add to the training set we begin with a single pixel
and add one pixel each round of learning. We compared active learning and random data selection.
As before, we record the fitness on a test set after each round of learning. In this case, the test
set is the full image and the training set is the subset of pixels selected by the learning strategy.
Both active learning and random selection were tested 40 times. The results of the 40 independent
trials for one image are shown in Figure 9.5. The results show that active learning outperforms
random selection by reducing error more quickly and more consistently, as well, we see that the

active learning approach arrives at a lower error. The random selection approach seems to have

88

gotten stuck in a local optimum since the approach plateaus after around 20 rounds of learning and
converges after 30 rounds of learning. The results of a sample run using active learning and random
sampling are shown in Figures 9.6 and 9.7. The figures show the original image, the sampled pixels,
and the segmentation pattern after 40 points are sampled. The active learning method arrives at a
near-perfect segmentation pattern while the random sampling approach results in a segmentation

pattern that picks up a lot of background and is missing the center of the plant.

AL vs. Random Selection on Pixels in Single Image

0.500
0.100
0.050 ol
T | oA
@ 0.010} {]
o cones a_cee o : Random

<ttt 1

0.001 £

5.x1074 e
0 10 20 30 40

Rounds

Figure 9.5 Active learning and random data selection using DT-GP are compared on their ability
to learn the segmentation of a single image by selecting one pixel each round of learning. Each
experiment was repeated 40 times, so the plot shows the median fitness for each method surrounded
by bands representing the upper and lower quartiles. The data shows that active learning outperforms
random data selection. The active learning method most quickly reduces error and also does not
get stuck in a local optimum as the random selection approach does.

9.4.4 Sky Single-Image Results

DT-GP with active learning was tested on single images from the sky dataset as well. We
used the same approach for active learning as we did with active learning on individual images
from the KOMATSUNA dataset. In Figure 9.8, we can see the result of active learning after 80
iterations compared to the original image and the ground truth segmentation pattern for the sky
image *0005’. We can see that the resulting segmentation pattern is close to the ground truth, but
there are some regions still being misclassified. Better models could potentially be found with more

iterations of active learning. One thing that I found interesting is that there may actually be issues

89

o/

-—

Figure 9.6 The results of using pixel-based active learning on one of the KOMATSUNA images.
The image is shown on the left. In the middle, the 40 sampled pixels are shown, as selected by
active learning. On the right, the segmentation pattern is shown, which is nearly perfect.

o/

Figure 9.7 The results of using pixel-based random selection on one of the KOMATSUNA images.
The image is shown on the left. In the middle, the 40 sampled pixels are shown, as selected using
random selection. On the right, the segmentation pattern is shown.

with the ground truth segmentation pattern as is revealed by comparing the segmentation pattern
of the ground truth and segmentation pattern of the trained model. If you look at the predicted
segmentation pattern on the right just above the roof, you will see a cross shape removed from the
sky, this does not get identified by the ground truth segmentation pattern. When looking closely at
the original image there appears to be a cross shape that could possibly be a powerline. It seems that
this likely should be segmented but isn’t in the ground truth for some reason. Having conflicting
information in the ground truth segmentation pattern could also provide confusion during training
and could lead to suboptimal models.

The training progress over active learning iterations for that same image is shown in Figure 9.9.
We can see that after one iteration the developed model does not produce a very good segmentation

pattern, but that we get gradual improvement over iterations until the 15th iteration where we find

90

Figure 9.8 The results of using pixel-based active learning on one of the sky images (image *0005”)
is shown and compared to the ground truth segmentation pattern and the original image. The
original image is shown on the left, the ground truth segmentation pattern in the middle, and the
segmentation pattern of the trained model after 80 rounds of AL on the right. We can see that the
segmentation pattern is reasonably good, but there are some noticeable problems, meaning either
we need more iterations of AL or the image is too challenging to perfectly solve using just the pixel
values.

the model that remains the best even after 80 iterations.

Figure 9.9 The results of using pixel-based active learning on one of the sky images (image *00057)
over several iterations of AL is shown. The segmentation after 1 iteration is shown on the left,
with subsequent segmentation patterns shown to the right with their iteration number indicated in
the bottom right corner. We can see that initially, the segmentation pattern is very bad and over
iterations it improves drastically.

The progress over iterations of the 40 repeated trials is compared between both random and
active learning and shown in Figure 9.10. We can see that the median error when using AL ends
up lower than when using random selection after 80 iterations. We can also see that AL arrives at
lower errors sooner than random selection, this is most notable around 40 iterations.

In Figure 9.11 we can see the learning progress when using active learning on sky image 0008’
The image after the first segmentation pattern after the first iterations is all one color, so the figure
starts with the second iteration. We can see the gradual improvement over iterations. Itis interesting
to notice that the text label in the original image does cause some confusion, as shown in the second
segmentation pattern. This is an issue of poor-quality data since labels should not be in the raw

images. The models do learn how to overcome that issue though, and no longer get confused with

91

AL vs. Random Selection on Pixels in Single Image

0.50 TS ,
0.20
0.10} \
S \ « AL
i ll -
0.05 anaom
LA
= WA AL (bl add £ 4 hadd T W N)

0o 20 ' 0 60 80
Rounds
Figure 9.10 The results of comparing AL and random selection are compared for the sky image
’0005°. We can see that the AL approach ends up at a lower median error after 80 iterations. As

well, we can see that the AL approach reaches lower errors sooner than random, although random
does eventually catch up.

the labels in later iterations.

Figure 9.11 The results of using pixel-based active learning on one of the sky images (image *0008”)
over several iterations of AL is shown. The segmentation after 2 iterations is shown on the left,
with subsequent segmentation patterns shown to the right with their iteration number indicated in
the bottom right corner. We can see how the segmentation pattern improves over iterations.

The corresponding models for each segmentation pattern in Figure 9.11 are shown in the same
order in Figure 9.12. It is interesting to note that the models do not exclusively get more complex.
They initially increase in complexity before finding the simple yet accurate model corresponding
to the 36th iteration. Once this simple yet accurate model was found, the models increased in
complexity until arriving at the final, fairly complex, model. It is interesting to note that the model
from the 36th iteration seems to be used as a branch in the final model, with one change, that

the "LessEqual" has been changed to "Greater", making it equivalent to the application of the Not

92

operator on the earlier model. Looking at the final model does seem to indicate that DT-GP could
benefit from a selection strategy that promotes simpler models since there are two branches that do
not provide any function since they always evaluate to false.

LessEqual LessEqual

GetGreen GetBlue [tesssaun Lessauat 0.786906 GetBlue

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Figure 9.12 The corresponding models to the segmentation patterns shown in Figure 9.11 are
displayed here.

Figure 9.13 shows a comparison between the distributions of errors when using random selection
and active learning over the 40 repeated trials. We can see that active learning arrives at lower
errors after 80 iterations. We can also see that around 60 iterations the active learning approach

decreases in error more quickly than random selection.

AL vs. Random Selection on Pixels in Single Image

0.50 e
0.20L |
_010p L _
o : . \\ |« AL
i » |
0.05| [\ - Random
| u—'.'o- 83382 Yo 0000008 4 "
_/—\\/ :‘."]
0.02} e Nasaey]
0.01 S S
0 20 40 60 80
Rounds

Figure 9.13 The results of comparing AL and random selection are compared for the sky image
’0008°. We can see that the AL approach ends up at a lower median error after 80 iterations. As
well, we can see that the AL approach reaches lower errors sooner than random, most noticeable
around round 60.

A segmentation pattern from one of the AL runs is compared to the original image and the

ground truth segmentation pattern in Figure 9.14. We can see that the evolved model creates a

93

reasonably good segmentation pattern, but is still not perfect. There are issues though in the ground
truth that could make it more challenging to arrive at a perfect segmentation pattern since even the
ground truth is not really "truth". At least one noticeable issue exists in the ground truth, and that
is that there is clearly some sky visible under the tail of the plane, yet the ground truth does not

consider it to be sky.

Figure 9.14 The results of using pixel-based active learning on one of the sky images (image
’0008’) is shown and compared to the ground truth segmentation pattern and the original image.
The original image is shown on the left, the ground truth segmentation pattern in the middle, and
the segmentation pattern of the trained model after 80 rounds of AL on the right. We can see that
the segmentation pattern is reasonably good, but there are some noticeable problems. There are
also issues with the ground truth since there is clearly some sky appearing under the tail of the
plane, but it is not identified in the ground truth.

9.4.5 Cell Classification

We applied DT-GP to automate the process of identifying cells in videos and determining which
cells are co-transfected to help accelerate a research project where progress is slowed by time spent
manually labelling every cell in each video frame. Co-transfected cells are those that express two
different proteins of interest that the researcher instructed the cell to produce by inserting the genetic
information into the cells. To identify co-transfected calls, the cells have to be observed under two
different light filters. This leads to two sets of images that have to be considered to identify which
cells contain both proteins. Each filter will reveal which cells contain one of the proteins. The task
of labelling cells in images is currently done manually and occupies a significant amount of time
since it requires cells to be outlined in each video frame as well as requires analysis of the second
set of images to determine which of the cells in the video stream are co-transfected. This makes it
an ideal task to be automated since automation could lead to significant time savings and enhance

research productivity.

94

The goal of this project is to utilize a GP system with an active learning strategy to develop
models that can automate the process of identifying cells and labelling them as co-transfected or
not. Two types of models are developed. The first being a model that can correctly identify all the
viable cells in the image. The second type of model identifies which of the cells are co-transfected.
The goal of applying active learning is to only require a few cells be labelled and then the developed
models would be able to correctly select and classify the rest of the cells in that frame as well
as additional frames if needed. Once all of the cells are labelled the researcher can focus on the
analysis of the data sooner.

The first stage of modeling classifies pixels as either being part of a cell or being background.
The second stage then identifies if a cell is co-transfected or not by analyzing the two different
images from different filters. Using the results from identifying which points are part of a cell or
not, a clustering algorithm is used to associate connected points and identify them as individual
cells. An active learning strategy was implemented to guide labelling of the cells. This is done by
presenting the user with points or cells that have maximal disagreement between their classifications
amongst the models in an ensemble. The user can then provide a true label for the cell or point.
That cell or point with the label is then added to the training set.

Figure 9.15 shows some results where a developed model was tasked with identifying all the
co-transfected cells in an image. The two images were overlayed so we can observe both the green
and purple colors. It seems that generally, the purple color is more intense so it dominates most of
the images. The initial segmentation is done on the green images, so despite the images appearing
purple, green is in fact present in all of the cells displayed.

Looking closely at how the points are grouped together as single cells in Figure 9.16 indicates
that improvements could be made in how the clustering is done. There are regions where it is clear
that two separate cells should be identified, yet they are grouped together as a single cell. Rather
than just connecting all adjacent pixels that are identified as cell material, it may be necessary to
fine-tune the method to look for indicators of a cell membrane to separate nearby cells.

One of the cell classification models found is shown in Figure 9.17. This model was able

95

~=gEEusEE=comRE-0
mRrEEEAOInEEan]
Bemeo=-FE-IHEEE=N
IrammEie=imilE
H=HczR . allo==| . @ m
mEA-E-=EEEIE-
g a0y 18 8.3 4 3 Gofy g |
ST 1.0 By By i
H-IimdEn =Bl ln
ErsiilreniEEE=-a0
impit@eomEBrNeleoo -5
cefmenliE-E=-—N

Figure 9.15 These are the cells identified as co-transfected by the model developed with the GP

system. Each box is supposed to fully encapsulate a co-transfected cell. Both the green and purple
images have been combined here to show how both colors are present in the images.

Figure 9.16 Shown here are the outlines of each cell that result from the model selecting points that
are either cell or non-cell material and connecting the adjacent ones. Looking near the bottom left
corner we can see an example of where two cells are incorrectly identified as a single cell.

to correctly identify all the cells in a test set. The model can be interpreted as follows: If the
max blue value minus the min blue value is greater than the average green value, then the cell is
co-transfected, otherwise, it is not co-transfected. This interpretation ignores the left half of the
tree since the left half of the tree reduces to a constant value of false.

To make the use of AL-GP with DT-GP easy to use for this project, a simple GUI was developed
that allows the user to fine-tune a pre-trained segmentation model and then supply labels for cells

identified as uncertain by the classification models. A snapshot of the GUI in use is shown in

96

Or

Greater Greater
Range Range Range

Jbdbdnds

Figure 9.17 Here is a graphical representation of a model’s genotype that was evolved and able to
correctly classify a test set. In the tree, "Range" is a function of the max value minus the min value
in a specific color stream of the data. The data is stored with three values for each pixel, the red,
green, and blue values in that order. So "Range" with the value 3, means the max minus the min
value in the cell in the blue values. "Avg" is a function of the average value in a specific color.
Looking at this tree we can see that the left side of the tree would always evaluate to false, so only
the right side of the tree contains the effective code.

Figure 9.18. The use of this GUI allowed for automation of cell classification after labelling just a

few cells, where previously it was necessary to manually label every cell in every video frame.

Segment

§ ,0.88}

Extract Cells

HEE-E I DEEEmQO
ImmDmli=n] IEmD
N LI IREL] FET |
(IR vreerencon)

(Valid Cell , Invalid Cell)

Generate Models

iFitness: , 1}

Figure 9.18 The image shows the GUI developed to make easy use of AL-GP to develop models
to classify cells. The slider allows the user to fine-tune a pre-trained segmentation model. The
segmented cells are then shown to the user and when "Uncertain Cell" is clicked it presents the
two image streams for the cell identified as most uncertain given the current classification models.
The user can then select if the cell is co-transfected or not by selecting "Valid" or "Invalid". Once
a selection is made, the user can then click "Generate Models" to continue model development on
the expanded training set. The fitness on the training set is displayed at the bottom to give the user
a sense of the model quality on the training set. Once a few cells have been labelled by the user
and a model of sufficient quality is achieved the model can then be deployed and applied to the
remaining cells in each video frame.

97

Parameter Setting

Mutation Rate 90
Crossover Rate 90
Spawn Rate 100-HoF-UniqueMods
Hall of Fame Size 10
Tournament Size 4
Population Size 100
Generations per AL Iteration 100

Table 9.1 SEE-Segment Parameter Settings.
9.5 AL-GP Applied to SEE-Segment

9.5.1 SEE-Segment

SEE-Segment was used to evolve a population of image segmenters. Each individual model
consists of a segmentation strategy and 8 parameters. The parameters and strategy are optimized
through generations. While each individual contains 8 parameters not all parameters are used by
all strategies. Mutation and crossover are used as the variation operators. Tournament selection is
utilized for selection. All models selected from tournament selection then have a 90% chance of
crossover and then from those offspring, there is a 90% chance of a mutation. Elitism is also utilized
by guaranteeing the hall of fame models (top 10 genotypically unique models) are preserved across
generations. The parameters used to run SEE-Segment are shown in Table 9.1. Spawn rate refers to
the number of new models introduced in a generation. The number spawned each generation is the
number required to bring the population size back up to 100 after including the hall of fame models
and the unique individuals produced from mutation and crossover. Tournament size, population
size, and generations are the only parameters modified from the default settings. Those settings
were chosen since they allowed for sufficient model development while keeping computation time

reasonable in each iteration of learning.

9.5.2 AL Implementation for SEE-Segment
Two active learning methods were implemented that vary in how they select the ensemble. The
first method simply uses SEE-Segment’s hall of fame, which consists of the top 10 genotypically

unique models. The second method goes further to ensure models are unique by selecting the

98

top 10 phenotypically unique models. These ensemble selection methods differ from the original
AL-GP approach since here we start with only a single image. The original approach relies on
generating diverse data clusters and selecting models that best fit each data cluster. If that approach
was utilized here, we would initially get an ensemble of one model, which would lack any sort of
uncertainty metric.

Using the selected ensemble we compute the average pairwise disagreement of all the models in
the ensemble on each potential image. The image with the maximum average pairwise disagreement
is selected for labelling and added to the training set. In the event of a tie, the first image found with
the max value is selected. An overview of the active learning algorithm is shown in Algorithm 9.1
and the method for computing uncertainty is shown in Algorithm 9.2. The pairwise uncertainty
on an image between two models is computed by utilizing SEE-Segment’s fitness function where
instead of supplying the fitness function with a model’s predicted segmentation mask and a true
mask, the predicted masks from both models are supplied. This leads to a reasonable measure of

how different two model’s predicted masks are.

1: TrainingData «— RandomlImage > Select 1 Random Image
2: Evolver « GeneticSearch.Evolver(TrainingData) > Initialize evolver
3: evolver.run() > Evolve models with initial data
4: while i < irerations do > While max iterations not reached
5: HoF « Evolver.hof > Extract hall of fame
6: SelectedImage «— MaximizeUncertainty(HoF, Data) > Find image that maximizes uncertainty
7 TrainingData < Append(TrainingData, SelectedImage) > Add new image to training data
8: Evolver.UpdateData(TrainingData) > Update training data in evolver
9: evolver.run() > Evolve models with new data
10: end while

Algorithm 9.1 Active Learning Process for SEE-Segment.

1: procedure UncerTaINTY(HOF,Image)

2: Uncertainties « [] > Initialize uncertainties list
3: Pairs < GeneratePairs(HoF) > Generates all pairs of models in HoF
4. for i 1 to len(Pairs) do

5: Predictionl <« EvaluateModel(Pairs[i][0], Image) > Generate prediction of first model in pair
6: Prediction2 <« EvaluateModel(Pairs[i][1], Image) > Generate prediction of second model in pair
7: UncertaintyVal < FitnessFunction(Predictionl, Prediction2) > Compute uncertainty
8: Uncertainties < Uncertainties.append(UncertaintyVal) > Append to list
9: end for

10: MeanUncertainty «— mean(Uncertainties) > Compute mean of uncertainties
11: Return MeanUncertainty

12: end procedure

Algorithm 9.2 Uncertainty Computation SEE-Segment.

99

9.5.3 KOMATSUNA Results

To determine the success of active learning on the KOMATSUNA data set, active learning was
compared to two naive image selection methods. The first method is ordered selection of training
data, where the images are added to the training set in their natural order in the data set. Specifically,
images in the KOMATSUNA data set are from a time series and labelled in order, so the order
would be from first to last in the time series. The second method is random order selection, where
a new image is added to the training set randomly.

The KOMATSUNA data set contains 300 images. Of the 300 images, 50 of them were reserved
as the test set and the remaining 250 were available to be selected for training. Each approach
began with a single image in the training set and could select one new image to be added to the
training set each iteration.

The results of comparing active learning, random selection, and ordered selection are shown
in Figure 9.19. The results show that ordered selection performs very poorly, having the worst
fitness values on average and also having the widest distribution of fitness values. This is not
surprising since the data set is ordered as a set of several time series. Images nearby in the
sequence will be very similar since they are of the same plant within a short period of time. This
makes it challenging for models trained only using the beginning of the time series to predict the
segmentation patterns correctly of plants that are much larger later in the time series. Random
sampling and active learning both eventually achieve similar test errors as seen in Figure 9.19, but
active learning achieves low error in fewer iterations and converges more quickly. The ability of
random sampling to achieve good fitness in relatively few iterations is likely a result of the data set
being very balanced, so a random sample that is large enough will contain data representative of
the whole set. The key difference between active learning and random sampling is the rate at which
low test error is achieved and the consistency of low error solutions in few rounds of learning.

To determine how well active learning can overcome unbalanced data, the KOMATSUNA data
set was modified to heavily oversample 3 images by duplicating 3 random images 50 times and

adding them back into the training set. The test set is still balanced since it was separated prior

100

to the duplication of the images. The results of comparing the two active learning methods and
random data selection are shown in Figure 9.20. Ordered sampling was not included here since it
already performed poorly with the balanced data. The results show that already after the second
iteration, both active learning approaches are beginning to converge to a good solution. By the third
iteration the AL (Div) approach appears to have converged, and the AL (HoF) approach appears
to converge by the 5Sth iteration. After the 6th round, random still has a fairly wide distribution

compared to the active learning approaches.

SEE-Segment Error vs. Learning Rounds

1.5 ‘ ‘ —
1.0 } }
[AL (Div)

B AL (HoF)
05 i
[|

| M Random
00 =

M Ordered

Error
b
[| —
im—
}T—\

Rounds

Figure 9.19 Two active learning methods are compared with ordered data selection and random
data selection with the distribution of errors shown after each round of learning. Each experiment
was repeated 40 times, so each bar represents the distributions from 40 repeated trials. The data
shows that active learning outperforms both random data selection and ordered data selection. The
active learning methods most quickly decrease error and then most quickly converge. On and after
round 5 we see that from the minimum to the 3rd quartile the active learning error distribution
appears essentially as a flat line. AL (Div) represents AL when using a diverse ensemble and AL
(HoF) represents AL when using the HoF as the ensemble. We see that using a diverse ensemble
improves performance.

Figures 9.21 and 9.22 compare a sample run of active learning and ordered selection by tracking
the segmentation pattern on a sample from their test sets. Figure 9.21 demonstrates how active
learning develops a good model quickly and improves over iterations. Comparing this to Figure
9.22, we see how there is risk when using suboptimal sampling strategies to overfit training data
and perform poorly on test data. We see that the ordered selection method actually gets worse by
the fifth iteration, indicating that it is overfitting a non-representative training set. Even by the 20th

iteration ordered selection arrives at a rather poor model.

101

SEE-Segment Error vs. Learning Rounds (Biased Data)

12
1.0
08 -
| m AL (Div)
{ H AL (HoF)
| ® Random

Ermor

0.6

04
0.2
!

0.0

Rounds

Figure 9.20 Two active learning methods are compared with random data selection on the biased
KOMATSUNA data. The distribution of errors is shown after each round of learning. Each
experiment was repeated 40 times, so each bar represents the distributions from 40 repeated trials.
The data shows that active learning outperforms random data selection. We also see that again the
active learning method using diverse ensembles performs better than the method using the hall of
fame.

9.6 Conclusions

AL-GP was extended to two new machine learning systems, DT-GP and SEE-Segment, for
the purpose of accelerating the development of image processing models. It was shown that
AL-GP can successfully be extended to tasks outside of symbolic regression and also to other
population-based machine learning systems. When applying AL-GP to DT-GP we verified that
active learning accelerates model development on the KOMATSUNA dataset, which is a simple
dataset to model for DT-GP. Once verifying AL-GP is applicable to DT-GP we applied it to the
task of cell classification to aid another lab at MSU in accelerating their research by partially
automating the task of classifying cells by using a human-in-the-loop method where the human
researcher supplies labels for the cells identified as most informative by the GP system. This results
in just a few samples requiring human labelling before finding models that could then be deployed
to automatically label the rest of the cells.

When applying AL-GP to SEE-Segment we explored how active learning compares to random
sampling and ordered sampling. We also explored how well it can overcome biased data and
compared two different methods for selecting ensembles to be used in the uncertainty computation.
We observed that both active learning methods outperformed random and ordered sampling by

finding better solutions more quickly and consistently across 40 repeated trials. We also observed

102

Figure 9.21 Shown here is the progress from an example run using active learning on the KOMAT-
SUNA plant data. The top left image shows the original image and the top middle shows the ground
truth segmentation pattern. The top right begins the active learning iterations and continues down
then to the right. After the initial random image, we see that the best model is terrible on an image
from the test set. We see quick improvement and convergence to a good solution. The segmentation
patterns shown are from the Oth, Ist, 2nd, and 20th iterations of active learning, where the Oth
represents training on the first randomly selected image used to seed the training set.

that biasing the data did not have a significant impact on the active learning approaches, still
outperforming random sampling in finding good solutions more quickly and consistently. The
ensemble selection method that used phenotypic diversity was found to perform better than the
method that used genotypic diversity. This shows that a diverse ensemble is an essential part of the
AL-GP approach.

Additional work is currently underway exploring how AL-GP impacts SEE-Segment’s model
development on a more challenging dataset where near-perfect solutions are not achievable. The
preliminary results indicate that AL is developing better models with fewer training samples, but
more runs are still needed to confirm these results.

This work confirms that AL-GP can be successfully applied to population-based ML systems

outside of StackGP and further that AL-GP is not restricted to regression tasks. It also shows

103

Figure 9.22 Shown here is the progress from an example run using ordered selection on the
KOMATSUNA plant data. The top left image shows the original image and the top middle shows
the ground truth (GT) segmentation pattern. The top right begins the ordered selection iterations
and continues down then to the right. After the initial random image, we see that the best model
is actually not too bad. By the 5th iteration, we actually see that the performance on this example
test image actually worsens significantly. By the 20th iteration, we see some improvement but the
model is still performing poorly.

how AL-GP can be applied to help accelerate research projects by reducing the time and cost of
collecting and labelling training samples.
Acknowledgement: Computer support by MSU’s iCER high-performance computing center

is gratefully acknowledged.

104

CHAPTER 10

FUTURE WORK

It was realized that one of the reasons that correlation is a good fitness function for symbolic
regression tasks is that correlation is a relative fitness function with the additional feature that
correlation allows for a shortcut (linear regression) to be applied to a good solution to align the
solution. This idea seemed extendable to classification tasks. For binary classification tasks,
the extension is obvious, just remap the outputs to the opposite label for any model that has a
classification error of more than 50%. To extend this to N-class problems I had the idea that a
fitness function could leverage the confusion matrix. The fitness function would choose one value
from each row of the confusion matrix, such that the position of each value in each row is unique,
and also in a way such that the total is maximized. By doing this, you are then able to use the row
positions that lead to the maximal fitness value to remap the model’s predicted labels to correct
labels. This fitness function has the potential to be expensive, so maybe this fitness function is only
used every N generations and in between a different fitness function is applied that doesn’t search
for a best mapping and just uses a mapping inherited from the parent. Future work to explore if
this fitness function leads to improved performance on GP classification tasks is planned.

The results of trying two different ensemble selection methods when using SEE-Segment
indicated that the diversity of the ensemble has a significant impact on the success of active
learning. This reveals that further work should be done to explore how an ensemble should be
selected to capture the diversity of a population in a way that leads to the best performance of active
learning. Various ensemble selection methods could be explored for each problem domain such as
regression, classification, and image segmentation.

It also seems that the methods developed for active learning could be utilized in data subsampling
methods, where in every few generations an active learning-inspired approach could be used to
subsample the training set and just use the maximally informative subset for those generations.
It could potentially improve the speed of evolution by only requiring that informative samples be

included in the fitness evaluations. Potentially it could also improve the quality of models if bias in

105

the data is minimized by sampling the diversity of the data.

In all of our active learning methods, we began with a randomly selected initial set. It could
be possible to use an unsupervised active learning strategy to select representative samples so that
even the initial set contains a relatively high amount of information. It is possible that our strategy
could be more efficient if starting off with high-quality training samples.

For the image segmentation problems, I explored two types of active learning, an image-based
approach and a pixel-based approach. The image-based approach requires relatively few samples
to be selected since each sample has a lot of information, but when training on whole images,
model development becomes expensive. Alternatively, pixel-based approaches are very fast to
evaluate since it is quick to evaluate fitness on a small set of pixels, but unfortunately, for a
complex problem, the number of iterations of active learning quickly grows to be unreasonable.
I’'m currently considering developing an image subsampling approach that just selects regions
within images to add to the training set. This could strike a better balance between having samples
that are informative, while also keeping the cost to evolve models reasonable. I’'m considering two
approaches for this now. A fixed sample size approach that partitions each image into fixed-size
sub-images and the active learning method scans over those smaller images. The second approach
I’m considering would be more flexible and would use an unsupervised method, such as clustering,
to identify different regions within images, where those regions would then be considered for
selection by active learning. The development of this approach will be essential to succeeding in
the new collaboration with the Toulouse, France research group, where we are trying to use active

learning to help develop Cartesian GP models that can identify tumors in medical imaging data.

106

CHAPTER 11

CONCLUSIONS

Active learning is a widely applied method within machine learning to focus model training on
samples that are most informative, thus minimizing costs associated with collecting and labelling
data, while accelerating model development. In this dissertation, I take inspiration from active
learning in other fields and develop approaches to apply active learning to population-based machine
learning systems on a range of problem domains. In pursuit of developing active learning strategies
for population-based machine learning systems, I developed several new genetic programming
systems and also identified benefits of using relative fitness measures, such as correlation, to
improve visibility of solutions in the search space.

In Chapter 4, I describe the implementation of my StackGP system. It is a dual-implemented
system in both Mathematica and Python. This system is unique in that it uses a stack-based model
representation similar to PushGP, as opposed to the more common tree-based GP. The system’s
performance is also attributed to the use of Pareto tournament selection, which considers both
simplicity and accuracy simultaneously when selecting models, and the use of correlation as the
accuracy metric with a final alignment step to adjust the parameters of models selected using the
correlation measure. For active learning in population-based machine learning, a model ensemble
is key for determining uncertainty, so I introduce a method for selecting a model ensemble that
captures high-quality yet diverse models by clustering the training data and selecting models from
the population that best fit each data cluster, ensuring no model is selected more than once, and
also defaulting to using the Pareto front of the population in the event that fewer than three data
clusters were created by the clustering method. Having a high-quality GP system is essential for
doing active learning since the GP system has to be capable of extracting the information from the
training samples selected by active learning.

In Chapter 5, I compare RMSE and correlation when used as fitness measures for GP sym-
bolic regression tasks. I demonstrate that correlation when used with a simple alignment step

significantly outperforms the traditionally used RMSE on a wide range of benchmark problems. It

107

was demonstrated that correlation performs better with fewer data points and also performs better
when the data is corrupted with low levels of noise. This work was presented at GPTP 2022 and
published here [Haut et al., 2023a]. This chapter serves as a discussion on why within the field of
GP we should be considering ways to use relative fitness measures that improve solution visibility
within the search space and shrink the search space. When using correlation as the fitness measure
all solutions of the form y = a = f(x) + b for any a or b become visible and the search space is
reduced since the specific values for a and b do not have to be discovered by the GP search and are
rather found by linear least squares regression, which is much better suited for that specific task.

Chapter 6 explores how various uncertainty and diversity measures can be used to guide active
learning for GP symbolic regression tasks on their own and together using a Pareto optimization
strategy. Uncertainty methods consider a model ensemble selected from the population to find new
data points where there is maximal disagreement. Diversity methods consider data points that are
most unique relative to the already selected training points. Of the uncertainty metrics explored, we
show that the differential entropy method performs best. The results of comparing the uncertainty
functions were presented at GECCO 2023 and are published in the proceedings here [Haut et al.,
2023b]. When comparing data diversity metrics, we show that lack of correlation between data
points performs best, but has the drawback that each data point must have at least 3 dimensions.
Correlation between data points is determined by evaluating the correlation between each point as
a vector of their values in each dimension. The Pareto optimization approach considers both data
diversity and uncertainty when selecting new points, with the goal of selecting new points that
have a good balance between diversity and uncertainty. This helps reduce the risk of repeatedly
selecting similar points which can occasionally happen when using just uncertainty, while also
ensuring the selected points will be informative to the current model population. It was shown that
the multi-objective approach often improves the stability of active learning and can occasionally
lead to performance gains when compared to either diversity or uncertainty on their own.

The second half of the dissertation focuses on classification and image analysis problems instead

of regression problems. To address those types of problems I developed the DT-GP system, which

108

is described in Chapter 7. DT-GP uses a unique hierarchically typed model structure that ensures
every developed model is a valid decision tree. This leads to an efficient search since no time is
wasted on invalid models. This system also benefits from the fact that it utilizes arbitrary arity
since boolean operators are not functionally restricted to operating on just two inputs. This allows
the system greater flexibility since rather complex expressions can be discovered using simple
representations that are more easily reachable in an arbitrary arity setting. This system also utilizes
arelative fitness measure with an alignment step, analogous to correlation for regression tasks. This
fitness measure considers each model as both the raw model and its exact opposite during evolution
and then assigns the correct state during the alignment when model development is terminated. For
DT-GP, a simpler method for generating ensembles was used, which is to simply select the top 10
models from the population that are phenotypically unique.

Active learning was also explored using SEE-Segment, which is a population-based ML system
that was specifically designed to evolve image segmentation algorithms. I described this system in
Chapter 8, focusing on an overview of the system and describing in detail my specific contributions
to this system. Specifically, I improved the search strategy by improving its diversity management
by weakening selection pressure by instead using tournament selection with small tournament sizes,
instead of strictly using an elitist approach that selects only the top N models in each population
globally for selection. I also introduced caps on how many duplicates can exist in any population.
I set the cap to 1 for my runs, but made it adjustable so more duplicates can be allowed. I also
developed an uncertainty-based active learning strategy with two different model ensemble options.
The first option uses the built-in Hall of Fame feature which contains the top 10 genotypically unique
models, while the second options is a bit stricter in diversity and selects the top ten phenotypically
unique models.

The active learning implementations for both DT-GP and SEE-Segment were evaluated in
Chapter 9 on several different data sets. DT-GP was first evaluated on its ability to select maximally
informative images from a set of images to reduce the number of images required to find a global

solution that can segment a class of images. This was shown to be successful compared to random

109

selection of images when using the plant KOMATSUNA dataset. DT-GP was then evaluated on its
ability to select maximally informative pixels within individual images to find a model that fits the
rest of the image using as few pixels as possible. This was shown to outperform random selection
on both the KOMATSUNA and sky datasets. It was then demonstrated how DT-GP was applied in
a real research setting to accelerate and automate the task of segmenting and classifying biological
cells in video data. Active learning with SEE-Segment was applied to the KOMATSUNA dataset
and it was shown to outperform random and ordered selection in regard to the number of images
required before finding quality segmentation algorithms. It was also shown that the stricter approach
for considering model diversity when selecting the model ensemble. This approach was the one
that selected the phenotypically unique models.

Overall, I demonstrated active learning with genetic programming to be a versatile approach
that can be applied to a wide range of population-based machine learning systems across several
diverse problem domains. The results in this dissertation show that active learning can be used to
reduce training data requirements needed to achieve high-quality models. This makes it an ideal
method to apply to any research setting where data acquisition or data annotation is expensive or
time-consuming since active learning can reduce the number of samples required. I also hope
this work will inspire future research into how we can further improve active learning methods to
better inform models through evolution and also develop new understandings into how the choice

of training samples influences the development and path of evolution.

110

BIBLIOGRAPHY

Eduardo B. Alexandre and Paulo A.V. Miranda. Sky Dataset. URL https://www.ime.usp.br/
~eduardob/datasets/sky/.

T. Back and H.-P. Schwefel. Evolutionary computation: an overview. In Proceedings of IEEE
International Conference on Evolutionary Computation, pages 20-29, 1996. doi: 10.1109/
ICEC.1996.542329.

James Edward Baker. Adaptive selection methods for genetic algorithms. In Proceedings of
the first international conference on genetic algorithms and their applications, pages 101-106.
Psychology Press, 2014.

Wolfgang Banzhaf, Peter Nordin, Robert Keller, and Frank Francone. Genetic Programming — An
Introduction. Morgan Kaufmann, San Francisco, CA., 1998.

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. Active learning of regular
expressions for entity extraction. IEEE Transactions on Cybernetics, 48(3):1067-1080, 2018.
doi: 10.1109/TCYB.2017.2680466.

Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies —a comprehensive introduction.
Natural Computing, 1(1):3-52, 2002.

Markus F. Brameier and Wolfgang Banzhaf. Linear Genetic Programming. Springer, New York,
NY., 2007.

David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with statistical models.
Journal of Artificial Intelligence Research, 4(1):129—145, mar 1996. ISSN 1076-9757.

Robert Curry, Peter Lichodzijewski, and Malcolm I Heywood. Scaling genetic programming to large
datasets using hierarchical dynamic subset selection. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 37(4):1065-1073, 2007. doi: 10.1109/TSMCB.2007.896406.

Junio De Freitas, Gisele L Pappa, Altigran S da Silva, Marcos A Goncales, Edleno Moura, Adriano
Veloso, Alberto HF Laender, and Moisés G de Carvalho. Active learning genetic programming
for record deduplication. In IEEE Congress on Evolutionary Computation, pages 1-8, 2010.
doi: 10.1109/CEC.2010.5586104.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-IL. IEEE Transactions on Evolutionary Computation, 6(2):182—197,2002. doi: 10.1109/
4235.996017.

Finale Doshi-Velez, Joelle Pineau, and Nicholas Roy. Reinforcement learning with limited rein-
forcement: Using bayes risk for active learning in pomdps. Artificial Intelligence, 187-188:
115-132, 2012. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2012.04.006. URL

111

https://www.sciencedirect.com/science/article/pii/S0004370212000458.

Ibrahim M. El-Hasnony, Omar M. Elzeki, Ali Alshehri, and Hanaa Salem. Multi-label active
learning-based machine learning model for heart disease prediction. Sensors, 22(3), 2022.

Evolved_Analytics. DataModeler. URL https://evolved-analytics.com/datamodeler-app/.

Natalie Eyke, William Green, and Klavs. Jensen. Iterative experimental design based on active
machine learning reduces the experimental burden associated with reaction screening. Reaction
Chemistry & Engineering., 5:1963-1972, 2020.

R. Feynman, R. Leighton, and M. Sands. The Feynman Lectures on Physics, volume 1. Basic
Books, New York, NY, 1963a.

R. Feynman, R. Leighton, and M. Sands. The Feynman Lectures on Physics, volume 2. Addison
Wesley, Boston, MA, 1963b.

R. Feynman, R. Leighton, and M. Sands. The Feynman Lectures on Physics, volume 3. Addison
Wesley, Boston, MA, 1963c.

Gary B. Fogel. Evolutionary Programming, pages 699-708. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc., USA, Ist edition, 1989.

Nathan Haut, Wolfgang Banzhaf, and Bill Punch. Active learning improves performance on sym-
bolic regression tasks in stackgp. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’22, page 550-553, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392686.

Nathan Haut, Wolfgang Banzhaf, and Bill Punch. Correlation Versus RMSE Loss Functions
in Symbolic Regression Tasks, pages 31-55. Springer Nature Singapore, Singapore, 2023a.
ISBN 978-981-19-8460-0. doi: 10.1007/978-981-19-8460-0_2. URL https://doi.org/10.1007/
978-981-19-8460-0_2.

Nathan Haut, Bill Punch, and Wolfgang Banzhaf. Active learning informs symbolic regression
model development in genetic programming. In Proceedings of the Companion Conference on
Genetic and Evolutionary Computation, GECCO ’23 Companion, page 587-590, New York,
NY, USA, 2023b. Association for Computing Machinery. ISBN 9798400701207. doi: 10.1145/
3583133.3590577. URL https://doi.org/10.1145/3583133.3590577.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on
Document Analysis and Recognition, volume 1, pages 278-282 vol.1, 1995. doi: 10.1109/
ICDAR.1995.598994.

112

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA,
1992a.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press, 1992b.

Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear scaling. In
European Conference on Genetic Programming, pages 70-82. Springer, 2003.

Michael F Korns. Large-scale, time-constrained symbolic regression. In Genetic Programming
Theory and Practice 1V, pages 299-314. Springer, 2007.

Michael F Korns. Large-scale, time-constrained symbolic regression-classification. In Genetic
Programming Theory and Practice V, pages 53—68. Springer, 2008.

Michael F Korns. Symbolic regression of conditional target expressions. In Genetic Programming
Theory and Practice VII, pages 211-228. Springer, 2010.

Michael F Korns. Abstract expression grammar symbolic regression. In Genetic Programming
Theory and Practice VIII, pages 109—128. Springer, 2011.

Michael F Korns. A baseline symbolic regression algorithm. In Genetic Programming Theory and
Practice X, pages 117-137. Springer, 2013.

Michael F Korns. Extreme accuracy in symbolic regression. In Genetic Programming Theory and
Practice XI, pages 1-30. Springer, 2014.

Michael F Korns. Extremely accurate symbolic regression for large feature problems. In Genetic
Programming Theory and Practice XII, pages 109—131. Springer, 2015.

Michael F Korns and Loryfel Nunez. Profiling symbolic regression-classification. In Genetic
Programming Theory and Practice VI, pages 1-14. Springer, 2009.

Mark Kotanchek and Nathan Haut. Back to the Future—Revisiting OrdinalGP and Trustable
Models After a Decade, pages 129-142. Springer Nature Singapore, Singapore, 2022.
ISBN 978-981-16-8113-4. doi: 10.1007/978-981-16-8113-4_7. URL https://doi.org/10.1007/
978-981-16-8113-4_7.

Mark Kotanchek, Guido Smits, and Ekaterina Vladislavleva. Pursuing the pareto paradigm: Tour-
naments, algorithm variations, and ordinal optimization. In Rick Riolo, Terence Soule, and Bill

Worzel, editors, Genetic Programming Theory and Practice 1V, pages 167-185. Springer, 2007.

Mark Kotanchek, Guido Smits, and Ekaterina Vladislavleva. Exploiting trustable models via pareto
gp for targeted data collection. In Rick Riolo, Terence Soule, and Bill Worzel, editors, Genetic

113

Programming Theory and Practice VI, pages 145-162. Springer, 2009.

John R Koza. Genetic Programming: On the Programming of Computers By Means Of Natural
Selection. MIT Press, Cambridge, MA, 1992a.

John R. Koza. Genetic Programming — On the Evolution of Computer Programs by Means of
Natural Selection., volume 1. MIT Press, Cambridge, MA., 1992b.

Jan Kremer, Kim Steenstrup Pedersen, and Christian Igel. Active learning with support vector
machines. WIREs Data Mining and Knowledge Discovery, 4(4):313-326, 2014.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco
Virgolin, Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression
methods and their relative performance, 2021. URL https://arxiv.org/abs/2107.14351.

Christian W. Lasarczyk, Peter Dittrich, and Wolfgang Banzhaf. Dynamic subset selection based
on a fitness case topology. Evolutionary Computation, 12(2):223 — 242, 2004.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. In Bruce W.
Croft and C. J. van Rijsbergen, editors, SIGIR "94, pages 3—12, London, 1994. Springer London.
ISBN 978-1-4471-2099-5.

Changsheng Li, Xiangfeng Wang, Weishan Dong, Junchi Yan, Qingshan Liu, and Hongyuan
Zha. Joint active learning with feature selection via cur matrix decomposition. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 41:1382-1396, 2015. URL
https://api.semanticscholar.org/CorpusID:17165137.

Yuanzhang Li, Xinxin Wang, Zhiwei Shi, Ruyun Zhang, Jingfeng Xue, and Zhi Wang. Boosting
training for pdf malware classifier via active learning. International Journal of Intelligent Systems,
37(4):2803-2821, 2022.

D. V. Lindley. On a Measure of the Information Provided by an Experiment. The Annals of
Mathematical Statistics, 27(4):986 — 1005, 1956.

Manuel Lopes, Francisco Melo, and Luis Montesano. Active learning for reward estimation in
inverse reinforcement learning. In Wray Buntine, Marko Grobelnik, Dunja Mladeni¢, and John
Shawe-Taylor, editors, Machine Learning and Knowledge Discovery in Databases, pages 31-46,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-04174-7.

James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo Van-
neschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong, et al. Genetic
programming needs better benchmarks. In Proceedings of the 14th annual conference on Genetic

and evolutionary computation, pages 791-798, 2012.

Julian F. Miller. Cartesian Genetic Programming, pages 17-34. Springer Berlin Heidelberg, Berlin,

114

Heidelberg, 2011.

Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203-226, 1982.
ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(82)90040-6. URL https://www.
sciencedirect.com/science/article/pii/0004370282900406.

Berndt Miiller, Joachim Reinhardt, and Michael T Strickland. Neural networks: an introduction.
Springer Science & Business Media, 1995.

Aditya Nandy, Chenru Duan, Conrad Goffinet, and Heather J. Kulik. New strategies for direct
methane-to-methanol conversion from active learning exploration of 16 million catalysts. Journal
of the American Chemical Society Au, 2(5):1200-1213, 2022.

Feiping Nie, Hua Wang, Heng Huang, and Chris Ding. Early active learning via robust representa-
tion and structured sparsity. In Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence, IICAI *13, page 1572—-1578. AAAI Press, 2013. ISBN 9781577356332.

Nutonian. Eureqa. URL https://www.datarobot.com/nutonian/.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986. doi: 10.1007/
BF00116251. URL https://doi.org/10.1007/BF00116251.

Carl Rasmussen. The infinite gaussian mixture model. In S. Solla, T. Leen,
and K. Miiller, editors, Advances in Neural Information Processing Systems, vol-
ume 12. MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/
file/97d98119037c5b8a9663cb21fb8ebf47-Paper.pdf.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang
Chen, and Xin Wang. A survey of deep active learning. ACM Comput. Surv., 54(9), oct 2021.

Brianna Ricker, Sunayana Mitra, E. Alejandro Castellanos, Connor J. Grady, Galit Pelled, and
Assaf A. Gilad. Proposed three-phenylalanine motif involved in magnetoreception signaling of
an actinopterygii protein expressed in mammalian cells. bioRxiv, 2022. doi: 10.1101/2022.12.
08.519643. URL https://www.biorxiv.org/content/early/2022/12/09/2022.12.08.519643.

Ognjen Rudovic, Meiru Zhang, Bjorn Schuller, and Rosalind Picard. Multi-modal active learning
from human data: A deep reinforcement learning approach. In 2019 International Conference
on Multimodal Interaction, ICMI 19, page 6-15, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450368605. doi: 10.1145/3340555.3353742. URL
https://doi.org/10.1145/3340555.3353742.

SciPy. scipy.optimize.differential_evolution - scipy v1.11.1 manual, Last Access 2023a. URL https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html.

SciPy. scipy.optimize.minimize - scipy v1.11.1 manual, Last Access 2023b. URL https://docs.

115

scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the Fifth
Annual Workshop on Computational Learning Theory, COLT *92, page 287-294, New York,
NY, USA, 1992. Association for Computing Machinery. ISBN 089791497X. doi: 10.1145/
130385.130417. URL https://doi.org/10.1145/130385.130417.

Dinggang Shen, Guorong Wu, and Heung-II Suk. Deep learning in medical image analysis. Annual
Review of Biomedical Engineering, 19(1):221-248, 2017.

Lee Spector. PushGP. URL http://faculty.hampshire.edu/lspector/push.html.

Lee Spector. Assessment of problem modality by differential performance of lexicase selection
in genetic programming: A preliminary report. In Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation, GECCO ’12, page 401-408, New York,
NY, USA, 2012. Association for Computing Machinery. ISBN 9781450311786. doi: 10.1145/
2330784.2330846. URL https://doi.org/10.1145/2330784.2330846.

Heung-Il Suk and Dinggang Shen. Deep Learning in Diagnosis of Brain Disorders, pages
203-213. Springer Netherlands, Dordrecht, 2015. ISBN 978-94-017-7239-6. doi: 10.1007/
978-94-017-7239-6_14. URL https://doi.org/10.1007/978-94-017-7239-6_14.

Yuriy Sverchkov and Mark Craven. A review of active learning approaches to experimental design
for uncovering biological networks. PLOS Computational Biology, 13:1-26, 6 2017.

Max Tegmark. Welcome to the Feynman Symbolic Regression Database! URL https://space.mit.
edu/home/tegmark/aifeynman.html.

Hideaki Uchiyama, Shunsuke Sakurai, Masashi Mishima, Daisaku Arita, Takashi Okayasu, Atsushi
Shimada, and Rin ichiro Taniguchi. KOMATSUNA Dataset. URL https://limu.ait.kyushu-u.ac.
jp/~agri/komatsuna/.

S.-M. Udrescu and Tegmark M. A physics-inspired method for symbolic regression. Science
Advances, 6:eaay2631, 2020a.

S.-M. Udrescu and Tegmark M. A physics-inspired method for symbolic regression. Science
Advances, 6:eaay2631, 2020b.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galvén-
Loépez. Semantically-based crossover in genetic programming: application to real-valued sym-
bolic regression. Genetic Programming and Evolvable Machines, 12(2):91-119, 2011.

Vladimir Vapnik. Falsifiability and Parsimony: VC Dimension and the Number of Entities (1980—

2000), pages 425-457. Springer New York, New York, NY, 2006. ISBN 978-0-387-34239-9.
doi: 10.1007/0-387-34239-7_12. URL https://doi.org/10.1007/0-387-34239-7_12.

116

Ekaterina J Vladislavleva, Guido F Smits, and Dick Den Hertog. Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic programming.
IEEE Transactions on Evolutionary Computation, 13(2):333-349, 2008.

Jana Wildchen and Patrick Méder. Plant species identification using computer vision techniques: A
systematic literature review. Archives of Computational Methods in Engineering, 25(2):507-543,
2018. doi: 10.1007/s11831-016-9206-z. URL https://doi.org/10.1007/s11831-016-9206-z.

David R White, James Mcdermott, Mauro Castelli, Luca Manzoni, Brian W Goldman, Gabriel
Kronberger, Wojciech Jaskowski, Una-May O’Reilly, and Sean Luke. Better gp benchmarks:

community survey results and proposals. Genetic Programming and Evolvable Machines, 14(1):
3-29, 2013.

Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive experimental design. In Pro-
ceedings of the 23rd International Conference on Machine Learning, ICML 06, page 1081-1088,
New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933832. doi:
10.1145/1143844.1143980. URL https://doi.org/10.1145/1143844.1143980.

117

APPENDIX A

Table A.1 and Table A.2 show the full results for all 100 of the Feynman symbolic regression
problems using the Mathematica implementation. Table A.3 shows the full results on the non-trivial

yet reasonably solvable problems using the Python version.

118

EQ AlFeynman StackGP Pts ~ StackGP Eureqa

Num Data Pts (num trials) Success Success
1 10 3 (100) Yes No
2 100 43 (100) Yes No
3 1000 42.5 (100) Yes No
4 100 25 (100) Yes No
5 1000000 - (100) No No
6 10 - (100) No No
7 100 >102 (100) No Yes
8 10 3 (100) Yes Yes
9 10 68 (1) Yes Yes

10 10 4 (100) Yes Yes
11 10 3 (100) Yes Yes
12 10 3 (100) Yes Yes
13 10 21 (1) Yes Yes
14 10 19.5 (100) Yes Yes
15 10 3 (100) Yes Yes
16 10 3 (100) Yes Yes
17 10 - No No
18 100 - No No
19 10 - No No
20 10 - No No
21 10 - No Yes
22 10 3 (100) Yes Yes
23 10 4 (100) Yes Yes
24 10 28.5 (100) Yes Yes
25 10 3 (100) Yes Yes
26 100 3 (100) Yes Yes
27 10 12 (100) Yes Yes
28 10 3 (100) Yes Yes
29 1000 - No No
30 100 - No Yes
31 100 3(1) Yes Yes
32 10 10.5 (100) Yes Yes
33 10 -(100) No No
34 10 3(1) Yes Yes
35 10 4(1) Yes No
36 10 - No No
37 10 3(1) Yes Yes
38 100 - No Yes
39 10 11 (1) Yes Yes
40 10 3(1) Yes Yes
41 10 9(1) Yes Yes
42 10 3(1) Yes Yes
43 10 102 (1) Yes No
44 10 - No No
45 10 3(1) Yes Yes
46 10 3(1) Yes Yes
47 10 28.5 (40) Yes Yes
48 10 32 (1) Yes Yes
49 10 3(1) Yes Yes
50 100 - No No

Table A.1 Number of Data Points Needed to Solve Problems 1-50. For The StackGP solution, the
number of points is the median of points used out of the indicated number of trials. For Eureqa,
300 points were used for each equation with a 2 hour time limit.

119

EQ AlFeynman StackGP Pts ~ StackGP Eureqa

Num Data Pts (num trials) Success Success
51 10 - No Yes
52 10 13 (1) Yes Yes
53 10 3(1) Yes Yes
54 10 3(1) Yes Yes
55 10 13 (1) Yes Yes
56 10000 - No No
57 10 92 (1) Yes Yes
58 10 3(1) Yes Yes
59 10 3 (1) Yes Yes
60 10 8 (100) Yes Yes
61 10 30 (100) Yes Yes
62 10 76.5 (100) Yes Yes
63 10 14 (1) Yes Yes
64 100 - No No
65 100 - No No
66 10 5 (100) Yes Yes
67 100 68 (1) Yes No
68 10 - No No
69 10 3(D) Yes Yes
70 10 3(1) Yes Yes
71 10 22 (1) Yes Yes
72 10 - No No
73 10 3 (100) Yes Yes
74 10 3 (100) Yes Yes
75 10 3 (100) Yes Yes
76 10 3 (100) Yes Yes
71 10 3 (100) Yes Yes
78 10 3 (100) Yes Yes
79 10 3(1) Yes Yes
80 10 - No No
81 10 - No Yes
82 10 - No Yes
83 10 4 (100) Yes Yes
84 10 3 (100) Yes Yes
85 10 4(1) Yes Yes
86 10 - No No
87 10 - No No
88 10 3(1) Yes Yes
89 10 6 (1) Yes No
90 1000 - No
91 100 83 (1) Yes Yes
92 10 3(1) Yes Yes
93 10 5(1) Yes Yes
94 10 - No No
95 10 10 (1) Yes Yes
96 10 3 (100) Yes Yes
97 10 3 (100) Yes Yes
98 10 7(1) Yes Yes
99 10 9(1) Yes Yes
100 10 3 (100) Yes Yes

Table A.2 Number of Data Points Needed to Solve Problems 51-100. For The StackGP solution,
the number of points is the median of points used out of the indicated number of trials. For Eureqa,
300 points were used for each equation with a 2 hour time limit.

120

EQ Mathematica ~ Python
Num Data Pts Data Pts

2 43 55
3 42.5 >102
4 25 20
7 >102 21
9 68 101
10 4 11
13 21 15
14 19.5 24
23 4 8
24 28.5 29.5
27 12 13
32 10.5 18
35 4 6
39 11 12
41 9 8
43 102 81
47 28.5 12
48 32 17
52 13 10
55 13 12
57 92 27
60 8 7
61 30 19
62 76.5 34.5
63 14 16
66 5 14
67 68 10
71 22 58
83 4 5
85 4 4
89 6 5
91 83 >102
93 5 8
95 10 11.5
98 7 9
99 9 35.5

Table A.3 Number of Data Points Needed to Solve Non-Trivial Problems for Python and Mathe-
matica Implementations.

121

APPENDIX B

This appendix lists all 100 AI Feynman problems and their solution using correlation and RMSE

as fitness functions, for 0% and 10% noise levels at 3 data points only.

122

Filename Correlation RMSE Correlation RMSE

EQ# 3Pts 0% 3 Pts 0% 3 Pts 10% 3 Pts 10%
1.6.20a 1. 0.032 0.304 0.12 0.35
1.6.20 2. 0.41 0.53 0.41 0.43
1.6.20b 3. 0.68 0.83 0.57 0.61
1.8.14 4. 21.71 21.61 11.2 15.66
1.9.18 5. 2.02 2.09 2.15 224
1.10.7 6. 2.29 1.63 2.74 1.95
L11.19 7. 155.4 137.08 145.9 142.88
L12.1 8. 0. 0. 3.74 0.
1122 9. 291.77 235.69 302.15 244.97
L12.4 10. 1.29 1.17 1.25 0.95
L12.5 11. 0.29 0.26 0.29 0.26
L12.11 12. 0. 0. 4.48 0.
L13.4 13. 311.99 382.06 380.01 378.98
L13.12 14. 123.88 123. 131.49 121.92
1.14.3 15. 0. 0. 16.67 0.
L14.4 16. 0. 29.75 9.03 29.53
1.15.3x 17. 9.06 6.44 9.83 7.16
L15.3t 18. 2.15 1.81 231 2.1
1.15.1 19. 434 3.57 491 3.54
L16.6 20. 7.26 8.16 8.41 9.61
1.18.4 21. 52 6.38 5.73 6.4
1.18.12 22. 39.64 81.53 88.04 0.
1.18.14 23. 289.04 269.43 312.51 294.09
1.24.6 24, 186.77 103.88 172.39 111.05
1.25.13 25. 0. 0. 0.61 0.
1.26.2 26. 1.44 0. 478 0.
1.27.6 27. 4.59 3.53 3.47 3.82
1.29.4 28. 0. 0. 0.88 0.
1.29.16 29. 42.96 39.75 44.78 39.01
130.3 30. 170.3 47. 56.17 45.07
1.30.5 31. 0. 0. 1.07 0.
1.32.5 32. 10.48 11.09 11.02 10.95
1.32.17 33. 58.75 62.13 74.19 63.58
1.34.8 34, 118.78 117.31 152.25 112.47
1.34.1 35. 12.5 12.39 12.833 12.611
1.34.14 36. 9.69 6.41 9.27 8.09
1.34.27 37. 0. 0. 4.64 0.
1.37.4 38. 45.37 53.82 34.71 4455
1.38.12 39. 809.61 764.83 797.34 766.62
1.39.1 40. 0. 33.53 6.12 49.26
1.39.11 41. 40.23 22.69 32.95 29.32
1.39.22 42. 57.45 109.84 136.6 116.42
1.40.1 43. 321x102 3.12x10"2 23x10"° 9.67 x 10
L41.16 44, 31.63 29.5 31.62 30.15
1.43.16 45. 93.43 123.12 140.63 113.85
1.43.31 46. 0. 0. 15.21 0.
1.43.43 47. 24.15 20.21 23.18 19.87
L44.4 48. 315.51 278.57 299.86 265.23
1.47.23 49. 5.43 6.32 7.34 4.88
1.48.2 50. 30.91 17.23 136.99 29.78

Table B.1 The resulting RMSE values on test data when using correlation or RMSE as the fitness
function during training for the first 50 Feynman equations. Three random training data points
were used with either 0 or 10% noise.

123

Filename Correlation RMSE Correlation RMSE
EQ# 3 Pts 0% 3 Pts 0% 3 Pts 10% 3 Pts 10%

1.50.26 SI. 32.39 32.81 35.81 33.07
11.2.42 52. 96.89 67.68 111.34 93.28
11.3.24 53. 0. 0.22 0.044 0.328
11.4.23 54. 0. 0.29 0.339 0.357
IL.6.11 55. 0.27 0.28 0.279 0.362
I1.6.15a 56. 5.59 4.05 5.01 4.11
I1.6.15b 57. 40.16 39.29 29.19 28.66
11.8.7 58. 1.06 1.24 1.106 1.116
11.8.31 59. 0. 35.63 9.68 23.01
11.10.9 60. 2.97 1.52 2.74 1.79
II.11.3 61. 1.135 1.155 1.25 1.08
IL.11.17 62. 27.32 24.32 20.98 22.98
1.11.20 63. 118.25 94.68 103.66 95.24
I.11.27 64. 5.24 2.61 421 2.71
I1.11.28 65. 0.012 0.2 0.77 0.52
1.13.17 66. 0.3047 0.3393 0.36 0.3
11.13.23 67. 2.12 1.59 2.68 1.93
11.13.34 68. 3.9 2.76 5.75 3.76
11.15.4 69. 67.4 88.35 95.53 83.07
II.15.5 70. 63.28 80.92 94.52 92.21
11.21.32 71. 0.714 0.656 0.67 0.66
11.24.17 72. 1.72 2.31 2.405 2.963
11.27.16 73. 0. 0. 79.1 0.
11.27.18 74. 0. 0. 17.51 0.
11.34.2a 75. 0. 5.86 4.33 5.04
11.34.2 76. 0. 47.1 94 45.
11.34.11 71. 65.5 62.45 73.52 63.65
11.34.29a 78. 0. 3.07 1.98 2.996
11.34.29b 79. 569.68 454.52 534.74 460.95
I1.35.18 80. 4.73 5.1 4.99 5.36
11.35.21 81. 65.37 49. 58.39 48.6
11.36.38 82. 18.52 16.24 18.7 15.76
11.37.1 83. 136.845 46.77 92.81 45.08
11.38.3 84. 122.17 114.56 148.47 98.47
11.38.14 85. 0.76 0.99 0.88 1.09
111.4.32 86. 11.23 7.24 9.05 8.04
111.4.33 87. 41.59 27.14 4231 33.12
111.7.38 88. 0. 50.43 55.54 54.95
111.8.54 89. 3.68 4.38 4.1 4.6
1I1.9.52 90. 45.78 38.94 46.29 39.17
111.10.19 91. 69.8 54.84 72.05 56.28
I1II.12.43 92. 0. 0. 4.08 0.
1I1.13.18 93. 1152.36 1107.82 1206.76 1089.88
III.14.14 94. 109.04 98.87 110.38 97.74
1I1.15.12 95. 105.83 105.45 107.98 109.96
I.15.14 96. 8.06 71 7.84 7.08
1I1.15.27 97. 0. 33.66 28.29 35.75
1I1.17.37 98. 88.19 72.66 90. 74.54
1I1.19.51 99. 0.61 0.72 0.59 0.86
111.21.20 100. 126.007 131.52 144.83 132.95

Table B.2 The resulting RMSE values on test data when using correlation or RMSE as the fitness
function during training for the second set of 50 Feynman equations. Three random training data
points were used with either O or 10% noise.

124

APPENDIX C

This appendix includes the full comparison of each uncertainty and diversity metric from

Chapter 6.

125

EQ U.Rand Pt. Dist Pt. Corr

Num Data Pts. Data Pts. Data Pts.
2 54.5 44 -
3 > 1000 > 1000 > 1000
4 30 19 29.5
7 88.5 35.5 60
9 120.5 210.5 102.5
10 6 6 5
13 13 12 14
14 30.5 24 22
23 8 7 8
24 49 23 26.5
27 30 13.5 11.5
32 17 15.5 14
35 19 13.5 15
39 10 11 9
41 7 8 6
43 453 533.5 136.5
47 13 14.5 16
48 15.5 13 13
52 9.5 10 9
55 10 10 10
57 30.5 28 29.5
60 7 7 7
61 18.5 17.5 17.5
62 34.5 29.5 36.5
63 14 14 12
66 11 12 10
67 10.5 11 15
71 51.5 29 30.5
83 5 5 5
85 4 4 -
89 5 5 5
93 8 7.5 7
95 11 10 8
98 8 8 7
99 30 25 20.5
Perf. Count - 27/35 29/33

Table C.2 Shown are the median number of points needed to solve each equation. A total of 100
independent trials were performed for each equation. There are 2 equations that have a dash instead
of a number and that is because they have only two dimensions, so selecting points with minimal
correlation to the rest of the training set is not possible. The approach using uniformly random
data points was included in the first column represented as a baseline. The last row indicates the
number of cases where each of the point diversity methods matched or performed better than the
random approach.

126

EQ Pt. Dist Pareto Pt. Unc.

Num Data Pts. Data Pts. Data Pts.
2 44 36.5 82.5
3 > 1000 501 > 1000
4 19 29 28
7 35.5 48.5 52.5
9 210.5 304 153
10 6 6 6
13 12 12 12
14 24 22 24
23 7 8 7.5
24 23 27 22
27 13.5 19 14
32 15.5 14 18
35 13.5 14 13.5
39 11 10 9
41 8 7 7
43 533.5 314.5 326
47 14.5 12 12
48 13 13 13
52 10 10 9
55 10 9 10
57 28 24 23
60 7 7 7
61 17.5 15 16
62 29.5 21.5 30
63 14 14 13
66 12 10 10
67 11 11 11
71 29 50.5 30
83 5 5 5
85 4 4 4
89 5 5 5
93 7.5 8 8
95 10 13 10
98 8 8 7
99 25 25.5 24

Worst Count 13 11 8
Best Count 16 19 21

Table C.3 Shown are the median number of points needed to solve each equation. A total of 100
independent trials were performed for each equation. Here the trade-off between diversity and
uncertainty is explored. The second to last row indicates the number of times each approach was
the worst of the three approaches. The last row indicates the number of cases where each approach
was the best or tied for the best of the three approaches. Minimum point distance was used for the
diversity metric and differential entropy was used as the uncertainty metric.

127

EQ p-value Significant

Num
2 9.18077x107* Yes
3 1.4012505382465074x1011 Yes
4 0.612865 No
7 9.606121209101481x10° Yes
9 1.78579x10~2 Yes
10 3.40099+107> Yes
13 2.38254%107° Yes
14 7.46075%10~* Yes
23 3.3175302779045554%107° Yes
24 8.64911%107° Yes
27 0.0354696 Yes
32 1.30021x1073 Yes
35 2.90356%107° Yes
39 7.61664x1073 Yes
41 5.87294958099626810~" Yes
43 3.38224x1073 Yes
47 1.91012x10~* Yes
48 1.78267%107> Yes
52 0.433203 No
55 1.98428x10~* Yes
57 2.51679x107° Yes
60 6.84394%1073 Yes
61 1.39827%1073 Yes
62 2.6897830944058467+10~20 Yes
63 0.0399119 Yes
66 1.55871x1073 Yes
67 0.245499 No
71 0.392183 No
83 9.35933923552931x10~1° Yes
85 1.059722812150408x10~ 12 Yes
89 0.140942 No
93 1.54882x107° Yes
95 0.0345741 Yes
98 2.98341x1073 Yes
99 5.63906%10~° Yes
Significance Count 30/35

Table C.4 Statistical significance of Pareto AL approach vs. uniform random sampling. We are
using a threshold of 0.05 to test for significance. The Mann-Whitney test was used to test for
significance.

128

