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ABSTRACT 

Blood banking, a meticulously regulated process endorsed by both the Food and Drug 

Administration (FDA) and the World Health Organization (WHO), plays a pivotal role in 

collecting and preserving red blood cells (RBCs) for transfusion medicine. Each day, the United 

States alone administers around 29,000 units of RBCs, addressing the diverse medical needs 

occurred from surgeries, diseases, traumas, and cancer treatments. However, conventional blood 

storage solutions employed, while serving as anticoagulants and preservatives, contain glucose 

levels that substantially exceed the typical "healthy" blood glucose range (4-6 mM). These 

solutions induce hyperglycemia, which is linked to significant negative alterations in RBCs. 

Vulnerable populations, such as people with diabetes, face severe consequences with chronic 

hyperglycemia. Transfusion medicine is undeniably lifesaving, but it is not without its drawbacks. 

It is theorized that adverse storage-related changes, referred to as storage lesions, are responsible 

for a multitude of post-transfusion complications. These storage lesion markers encompass 

metabolic and physical transformations that RBCs undergo during storage, with notable examples 

including advanced glycation end products (AGEs) and oxidative stress. 

High glucose concentration storage solutions adversely affect stored RBCs used for 

transfusion medicine. The Spence group proposed a potential alternative to the hyperglycemia 

issue: develop a normoglycemic blood storage solution. This novel RBC additive storage solution 

has already demonstrated improvements in key RBC function, such as adenosine triphosphate 

(ATP) levels and deformability. This dissertation reveals additional advantages through the 

evaluation of other storage lesion markers. Key components of this work include novel methods 

to detect and quantify AGEs and explore connections with oxidative stress, involving measuring 

free reduced glutathione (GSH).  



   

 

The core focus of this dissertation lies in investigating the ramifications of using a 

normoglycemic storage solution to reduce AGEs, particularly Nε-carboxymethyl-lysine (CML) 

and Nε-carboxyethyl-lysine (CEL), mitigate oxidative stress (as evidenced by GSH levels), and 

promote ongoing research involving normoglycemic storage conditions. This research is of 

paramount importance because it holds the potential to enhance the quality of RBCs for 

transfusion. Thus, directly impacting patient outcomes and quality of life, as well as offering 

insights into aging via in vivo patient samples. The methodologies employed in this study 

encompass the development of a pioneering approach utilizing ultra-performance liquid 

chromatography with tandem mass spectrometry (UPLC-MS/MS) for the detection and 

quantification of CML, CEL, and lysine on the RBC membrane. A comparative analysis was 

performed between hyperglycemic (AS-1) and normoglycemic (AS-1N) storage solutions over 43 

days. These findings played a critical role in determining AGE and GSH levels through weekly 

sample testing and involving innovative "feeding" techniques to ensure sterile normoglycemic 

glucose concentrations. In addition to comparing the two storage solutions, samples from type I 

diabetic (T1D) patients were utilized to explore the correlation between elevated blood glucose, 

glycated hemoglobin A1c (HbA1c%), and storage lesion markers. The methodologies and 

potential biomarkers presented in this study hold the promise of enhancing patient screenings and 

refining future C-peptide drug therapy clinical trials.  

In summation, this dissertation strives to pioneer novel methodologies and quantify storage 

lesion markers to advance transfusion medicine interventions. Ultimately, this research has the 

potential to improve the lives of countless individuals who depend on life-saving transfusions and 

future clinical trial drug discoveries. 
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Chapter 1: Blood Banking, Glycolysis, and Advanced Glycation End Products 

1.1 History of Blood, Blood Banking, and Transfusion 

Approximately 13.6 million units of whole blood (WB) were transfused in the United States 

in 2019.1 Recently, 5 million people in the U.S. require blood transfusions each year, equating to 

29,000 units of red blood cells (RBCs) each day.
2 Blood transfusions are often only thought of as 

the treatment for traumatic blood loss and hemorrhage; however, blood banking and storage of 

RBCs are also used during various cardiovascular procedures, surgeries, extreme cases of anemia, 

cancer, and for patients with sickle cell disease to improve hemoglobin (Hb) levels.3–5 Due to the 

traumatic nature in which a person requires a blood transfusion, it is important to ensure the 

viability, safety, and efficacy of the blood used in the transfer. Therefore, the Food and Drug 

Administration (FDA) regulates this transfusion process. Currently, a Hb count less than 7 g/dL is 

the threshold for a blood transfusion, since healthy Hb levels are approximately 12 g/dL for women 

and 14 g/dL for men.6,7  

A blood transfusion is used to transfer blood donated from one person (donor) to another 

(patient) and is typically required due to extreme circumstances or known medical conditions.8,9 

The first known mention of a blood transfusion occurred in 1615 by chemist Andreas Libavius, 

but the first major advancements in “cross-circulation experiments” did not occur until the late 

eighteenth century.10 In the late nineteenth century, knowledge of certain constituents, such as 

sodium bicarbonate, sodium phosphate, and oxalic acid, became available and could be used to 

prevent blood coagulation.10 The interest in anticoagulants for blood draw prompted the discovery 

of sodium citrate in 1915, which became the first major transfusion development.8,11 Other major 

blood related advancements included the first blood storage solution invented by Rous and Tuner 

in 1915, and the first blood bank during World War I setup by Robertson.12,13 Prior to World War 
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I, transfusions were accomplished by having a donor “hooked-up” to a patient via a venipuncture 

tube connection system utilizing gravity. The advancements in transfusion medicine were 

prompted by the war, when the issue of viable direct transfusions forced scientists to develop new 

methodology.14 The concept of storing blood and transporting it across battlefields or larger areas 

of Europe paved the way for anticoagulants and storage containers. In military settings, the donor 

is considered an emergency “walking blood bank” because blood transfusions are often needed in 

larger quantities due to traumatic blood loss and hemorrhages.4,5 Glass vacuum bottles were used 

to transport WB until 1952 when polyvinyl chloride (PVC) bags were invented, which provided a 

more sanitary and safer mode of transportation.15–17 The first recorded use of sodium citrate and 

glucose in blood storage was in 1914 when they were used as anticoagulation components added 

to blood for transfusions.10  

By the start of the twentieth century, there was greater understanding of specific blood types 

and the adverse interactions that could cause acute hemolytic transfusion reaction, which is a 

reaction from the human body fighting incompatible RBCs, a reaction which can be lethal if left 

untreated.18 The discovery of blood types and groups by Landsteiner, the 1930 Nobel Prize winner 

in Physiology or Medicine, trailblazed blood transfusion safety practices.18 The four major blood 

types (A, B, AB, and O) known today were accepted internationally by 1927.10  

It would take another 60 years before the first RBC additive solution, saline-adenine-glucose 

(SAG) was developed and used to create saline-adenine-glucose-mannitol (SAG-M) in 1981, 

which was the precursor to the FDA licensed solutions used today.19 The FDA approved additive 

solutions (AS) today are AS-1 (Adsol, Baxter Healthcare Corp., Deerfield, IL), AS-3 (Nutricel, 

System Pall Corp., Port Washington, NY), and AS-5 (Optisol, Terumo Corp., Somerset, NJ).20–22 

AS-7 (SOLX, Haemonetics Corporation, Boston, MA) was not incorporated until 2013, and was 
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developed as a more effective solution in preventing the storage lesion; however, there is limited 

research utilizing AS-7, as opposed to the three previously mentioned solutions.23 The current 

blood collection protocol and subsequent storage are governed by World Health Organization 

(WHO) and FDA protocol (Figure 1.1).24–26   

 

1.2 Current Blood Storage Anticoagulants and Additive Solution Constituents 

According to the 2019 National Blood Collection and Utilization Survey, there were almost 12 

million units of RBCs collected that year, which was a significant decrease in comparison to 2017 

at 13.6 million RBC units.27–29 However, there was a 2.5% increase in RBC units transfused in 

2019.28 This survey suggests there is a significant decline in the blood supply, but the demand is 

increasing. During the start of COVID-19, there was a 10% decrease in blood donations, which 

was deemed the worst in 10 years by the American Red Cross.30,31 Thus, it is more important than 

years prior to ensure the safety and longevity of collected and subsequently stored blood.  

Figure 1.1. FDA approved blood storage protocol. Whole blood is drawn from a healthy, 

consenting donor via venipuncture and collected into a 500 mL sterile PVC collection bag that 

contains an anticoagulant solution. The blood bag is centrifuged for 10 minutes, and the blood 

components separate into three layers (plasma, buffy coat, and packed RBCs). The packed 

RBCs are drained into a secondary collection bag which contains an additive solution. The 

blood is then stored at 4°C for up to 6 weeks. 32  
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There is no specific timeframe before 42 days that stored blood must be transfused into a 

patient, but there are numerous reports that show there are increased adverse reactions after 35 

days or more in storage, which will be discussed further.30,31As previously mentioned, the blood 

storage protocol is upheld by the FDA in the United States, and there are currently four 

anticoagulants (CPD, CPDA-1, CPD-2, ACD-A), and four additive solutions (AS-1, AS-3, AS-5, 

AS-7) approved (Table 1.1 and Table 1.2) Although SAG-M was the first additive solution, and 

most widely used today in other countries, the FDA has not approved it for official use in 

transfusion medicine.21 The solutions highlighted in this dissertation research are CPD and AS-

1.32–36  

 

 

 

 

 

 

 

 

Table 1.1. Anticoagulant Constituents 
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Each constituent of the anticoagulant and additive solution serves a specific purpose to 

ensure the longevity and safety of blood storage.32,36,37 An anticoagulant prevents the formation of 

blood clots with naturally occurring fibrinogen in plasma contained in the WB. This anticoagulant 

in blood collection tubes is to keep blood in a fluid-type state for in vitro diagnostics or clinical 

chemistry testing.38,39 The FDA has approved sodium citrate based anticoagulants.33 Sodium 

citrate inhibits calcium ions, which are naturally occurring in blood, from participating in the blood 

clotting process. Blood collection tubes contain either 3.2% or 3.8% citrate and it chelates ionized 

calcium, which creates a citrate-calcium complex.40,41 Monobasic sodium phosphate is added to 

the CPD solution to reduce the phosphate concentration gradient difference between cytosol and 

WB supernatant.19 Also, monobasic sodium phosphate inhibits phosphate leakage from stored 

RBCs.19 Citric acid, a well-known constituent in CPD, is primary used for maintaining the pH 

balance at 5.6 due to the ability to be heat-stable at this lower pH.42,43  

Another type of anticoagulant used in blood draw is potassium ethylenediaminetetraacetic 

acid (EDTA).44 Similar to sodium citrate-based anticoagulants, there is a minimum volume and 

Table 1.2. Additive Solution Constituents 
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concentration of the anticoagulant required to properly prevent clots without changing the structure 

of the RBCs. EDTA is a type of chelating agent that binds to metal ions in whole blood (calcium, 

magnesium, lead, and iron).39,45 It is used to prevent blood clotting by binding to the calcium ions 

and which prevents the activation of coagulation, which inhibits the ability of the blood from 

clotting.46,47 Heparin is the most used clinical anticoagulant, although it has been associated with 

contamination issues.48 This type of anticoagulant is a sulfated polysaccharide and inhibits 

thrombin to prevent coagulation in blood draw tubes.48,49 However, it is not used in blood storage 

due to the adverse effects to RBC morphology and osmotic fragility over time.44  

An additive solution preserves sterilely stored packed RBCs (pRBCs) by adding a sterile 

isotonic solution that contains some of the necessary constituents to extend storage life of blood 

for transfusion.37,50,51 The current additive solutions are adjusted to pH 5.6-5.8, which is well-

below the physiological pH of 7.4.21 It is frequently reported that a glucose-containing solution pH 

of 5.8 or above can be autoclaved and does not modify the sugars, although this theory will be 

evaluated in chapter 3.52–55 Once the pRBCs at physiological pH are added to the additive solution, 

the pH will significantly increase to approximately 6.5 during 42 days of storage, one of the reasons 

being lactic acid formation.56 Remaining in this acidic environment impacts the overall health and 

function of the RBCs, specifically intracellular biochemical pathways: adenosine 5’-triphosphate 

(ATP) and 2,3-diphosphoglycerate (2,3-DPG).15 Maintaining significant levels of ATP and 2,3-

DPG are crucial for the survival of RBCs, and a decrease in both molecules adversely affects stored 

blood, which will be critically evaluated in this work.21 One of the major concerns of storing 

pRBCs is the loss of important cell functions. Adenine is used to extend the storage life of pRBCs 

by promoting ATP synthesis.15,57  
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To maintain an isotonic solution, sodium chloride (NaCl) must be included in the additive 

solutions. An isotonic solution is critical to maintain a low level (<1%) of hemolysis by minimizing 

RBC membrane damage.15,23 Typically, the amount of intravenous NaCl is 0.9%, forming an 

isotonic solution to maintain proper fluid and electrolyte balance.58 Thus, this dissertation research 

will utilize 0.9% NaCl as a basis for all blood banking protocols.  

Hemolysis, the rupture or death of RBCs and subsequent release of Hb, usually occurs 

when pRBCs are added to artificial solutions, such as buffers and additive solutions, or exposed to 

high-stress environments (freezing and homogenizing).59 For FDA protocols, hemolysis must be 

below 1% of total RBCs quantity for a sample to be considered acceptable for human subjects.26  

This rigid criteria is to limit complications of free Hb, which can include injury to the endothelium, 

tissues, and kidney proximal tubule due to free Hb redox effects.59,60 

Mannitol prevents hemolysis by preventing osmotic swelling that leads to rupture.61 

Osmotic lysis has been reported to be further decreased (50%) by the addition of mannitol to 

additive solutions containing NaCl.50 Together, NaCl and mannitol prevent pRBCs from 

immediate hemolysis, maintain pH, and provide the ability to easily adjust when transfused into 

humans with an isotonic solution.  

Dextrose, or D-glucose, is considered one of the most important and controversial 

constituents of blood storage solutions. Glucose is a known energy supplier for RBCs, and 

approximately 90% of glucose is converted to pyruvate and lactate by being anaerobically 

catabolized in vivo.62 CPD contains 129 mM glucose and AS-1 contains 111 mM glucose, and 

both were initially shown to extend the life of stored RBCs and increase levels of 2,3-DPG, even 

as a hyperglycemic solution.15,63,64 After the pRBCs are added to additive solution AS-1, the final 

glucose concentration is 40 mM, which is 8-10x more concentrated than normal healthy glucose 
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levels (4-6 mM).21 However, it has been reported that stored blood requires higher glucose levels 

to survive the 42 day storage period.15,19 Recent studies have shown the adverse effects of storing 

blood in a hyperglycemic storage solution for 6 weeks and the importance of further investigation 

into blood transfusion health, which will be discussed in more detail throughout this dissertation.65 

There are several studies highlighting the decline in RBC health throughout storage, and 

the FDA has approved a “rejuvenating” solution, Rejuvesol. This solution can be prescribed by a 

physician and added to a blood bag 24 hours before transfusion.20 The purpose of Rejuvesol is to 

reduce the metabolic and physicochemical storage lesions that occur during typical blood storage 

and to eliminate possible transfusion related reactions.20 Storage lesion is a term coined to describe 

the physical and chemical adverse effects RBCs experience during blood storage.15,66 The storage 

lesion affects metabolism, physiology, and function of RBC energy production, which will be 

discussed further in this chapter.66,67 Thus, this “rejuvenation” solution can be added to stored 

blood, incubated up to 24 hours, washed to remove cell debris, and then transfused to a patient.68 

Rejuvesol is not regularly added to stored blood in current blood banking practices. The existence 

of this solution does provide insight into the damaging effects of the current FDA blood storage 

protocols and studies that could improve transfusion health.  

1.3 Normoglycemic Storage Solution Innovation  

As previously mentioned, the FDA-approved storage solution is hyperglycemic, and is still 

above the average blood glucose level of a person with diabetes of ~7-9 mM.70 The Spence group 

has compared ATP release from RBCs obtained from people with diabetes and healthy control 

donors and discovered that healthy control RBCs released twice the amount of ATP.71,72 Also, 

RBCs obtained from people with type 2 diabetes (T2D) have shown similarities to the storage 

lesion formation in stored RBCs, including changes in reduced glutathione (GSH) production and 
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sorbitol accumulation.71,73 The research does not suggest that transfusing a person with the 

hyperglycemic storage solution would result in the patient developing diabetes, but it does suggest 

that hyperglycemic environments, similar to the bloodstream of a person with diabetes, contribute 

to lesion formation. Thus, the Spence group has proposed a new anti-coagulant and additive 

solution that contains 5.5 mM glucose to mimic in vivo blood glucose levels (Table 1.3).74  

 

 

 

 

The AS-1N solution (normoglycemic version of AS-1 solution) has been used in previous 

experiments, and the Spence group has reported lower glucose levels has reduced the storage 

lesion, specifically, lowering intracellular sorbitol changes, increased RBC deformability, 

increased RBC-derived ATP release, and increased endothelium-derived NO release.71,74–76 These 

reports focused on understanding more about the 4–6-week storage time and the importance of 

Table 1.3. Proposed Normoglycemic Storage Solution Constituents Compared to 

FDA Approved Solutions 
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glucose control to reduce the total accumulation of storage lesions and other common transfusion 

related issues, which will be covered later on in chapter 1. Glucose control in AS-1N was achieved 

by various techniques to manually monitor and control glucose levels by adding a sterile glucose 

solution to maintain a 4-6 mM glucose concentration.74 Studies to determine the effect of 

normoglycemic storage were completed in vitro utilizing both static systems and dynamic systems 

involving a 3D printed transfusion device to mimic RBC circulation.74 The normoglycemic storage 

solution was reported to have a 25% increase in downstream nitric oxide  (NO) production, and 

the hyperglycemic solution had 20% decrease in deformability with pRBCs and a 50% decrease 

in ATP release from the stored RBCs.75,77 

 Most studies involving the storage lesion, including advanced glycation end products (AGEs), 

focus primarily on fresh RBCs, day 1 of storage, or the last day of storage.78,79 By examining the 

pRBCs in shorter time intervals during the entirety of the storage period, it provides greater insight 

into reversibility or recovery and the commonly cited two-week period of storage as a turning point 

for the viability of the pRBCs.74,80,81 In 2013, the mean storage time for blood transfused to 

intensive care unit (ICU) patients was 16-21 days, which has been associated with adverse effects 

such as increased infections, organ and renal failure, and patient time spent in ICU.82 It has also 

been observed at the end of 14 days in storage, there have been recorded increased levels of 

potassium and lactate, and decreased levels of sodium and glucose in RBC storage bags.83 To 

further investigate the role of glucose and storage lesion marker accumulation, the normoglycemic 

and hyperglycemic storage solutions will be utilized and studied throughout the entirety of this 

dissertation.  
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1.4 Background on Human Blood 

Blood storage cannot be fully understood without a thorough comprehension of blood and 

blood components in vivo. Blood, a major fluid in the body, is essential for human and animal 

life.84 Hematopoietic stem cells, located in the bone marrow, produce blood cells through the 

process of hematopoiesis.85 This process generates RBCs, white blood cells (WBCs), and platelets, 

which account for approximately 46% of WB volume.84 As shown in Figure 1.2, 55% of WB is 

plasma (water, ions, proteins, nutrients, and hormones), <1% are platelets and WBCs (neutrophils, 

lymphocytes, monocytes, eosinophils, and basophils), and the remaining 45% are RBCs.18,84  

 

 

There are five major functions of blood, including (1) the transportation of oxygen to lungs 

and tissues, (2) carrying other cells and antibodies, (3) preventing excess blood loss or thrombosis 

by clotting, (4) transporting waste products, and (5) regulating body temperature.18,84,86 The 

average male has about 12 pints of WB and the average female has about 9 pints. Plasma contains 

Figure 1.2. WB components after centrifugation. Blood consists of 3 main parts including 

plasma, white blood cells and platelets, and pRBCs. Most of the volume (55%) includes plasma 

and platelets and it is typically a yellow-ish color. White blood cells (<1%) are usually a white 

color and change depending on an influx of white blood cells produced due to illness. RBCs 

(45%) are a bright red color at the bottom of the tube and are usually viscous.18,51,84 
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essential clotting factors (fibrinogen) for hemostasis and has a mixture of salts, water, fat, sugar, 

and proteins. Some hormones are transported by the plasma blood cells by binding to proteins in 

the plasma, along with essential antibodies.18,87  

RBCs are a unique and abundant cell that carry oxygen to tissues following inhalation and 

carbon dioxide to the lungs for exhalation.18 These types of cells do not contain a nucleus and 

account for about 45% of the volume of WB. RBCs transport 98% of total oxygen from the lungs 

to the tissues using Hb, a metalloprotein that carries oxygen.18 Hb contains iron, which can bind 

up to four oxygen molecules, and oxygenation gives RBCs the well-known red coloring.18,88 The 

iron heme group of Hb is attached to a globin (group of heme globular proteins) polypeptide chain, 

giving it the name hemoglobin. Therefore, each oxygen molecule binds to an iron atom of the 

heme group, so it can transport a maximum of four oxygen molecules.18,88 The disc type shape of 

the RBC allows for increased oxygen saturation, deformability, and survival, allowing the cells to 

move through small blood vessels maintaining a flexible shape for the least amount of flow 

resistance.89,90 Erythropoietin is a hormone in the kidneys that controls the production of RBCs, 

which have a lifespan of ~120 days in circulation.84,91 The old or damaged RBCs are removed by 

macrophages located in the spleen and liver and are broken down into components that are later 

metabolized.18   

WBCs, also called leukocytes, protect the body from illness and infections. The major 

types of WBCs are neutrophils and lymphocytes, which both fight infections and regulate other 

immune cells to attack infected cells, such as tumors.92 WBCs account for <1% volume of WB 

and are produced in the bone marrow.84,93  

Platelets, also called thrombocytes, account for <1% of cells suspended in WB. The 

platelets are fragments of cells that assist in blood clotting (or coagulation) when fibrin is present.18 
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Understanding blood coagulation is important, as too much fibrin can form clots, which can 

increase in size to form blood clots that cause strokes and heart attacks.94,95 Alternatively, not 

enough fibrin produced can lead to “thin” blood, which does not clot easily and can increase blood 

loss.94   

Serum, or a blood fluid with the clotting components and cells removed, is commonly used 

in research to study WB.96 It contains less protein than plasma and has a higher amount of 

potassium.87 Serum is separated after blood is drawn into a blood collection tube with no 

anticoagulants present.87 There is a difference between serum and plasma, since serum is the fluid 

remaining post blood clotting, and plasma is the fluid remaining in a tube with anticoagulant and 

post centrifuging.96  

1.5 Glycolysis and Blood Flow 

RBCs do not have a nucleus, nor mitochondria18,97,98 and there are three main pathways that 

are important to RBC metabolism: glycolysis, the hexose monophosphate shunt (Luebering-

Rapoport shunt), and base salvage pathway for purine synthesis.50 The anaerobic glycolysis 

pathway main function is to generate ATP, which is the source of energy for cells.99 Glycolysis is 

the energy mechanism using glucose, and the starting point of the pathway converts glucose to 

glucose-6-phosphate by hexokinase phosphorylation, then utilizes phosphoglucomutase to 

regulate glucose-6-phosphate formation, and in later steps the Na+, K+ ATPase activation produces 

ATP.100,101 The glycolysis pathway continues until producing protons and an end product, 

pyruvate, which by anaerobic glycolysis with lactate dehydrogenase is converted to lactic acid.100 

The first half of the mechanism process requires two ATP molecules per one glucose molecule.99 

The second half of the mechanism, the generation of pyruvate, results in two ATP molecules 

produced for each one glyceraldehyde phosphate molecule, making a total of four ATP 
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molecules.99 Thus, resulting in RBCs that produce two molecules of ATP from one glucose 

molecule.99 ATP is needed to phosphorylate RBC membrane proteins, and if ATP is not 

consistently produced, cells can experience hemolysis. A lack of ATP in stored blood has been 

reported and is believed to be due to storage solution decreases in pH and changes in glycolytic 

metabolism.74,102,103 ATP is stable between 6.8-7.4 pH ranges, but otherwise it hydrolyzes to 

adenosine diphosphate (ADP) and phosphate, which can be measured in stored blood above 6.8 

pH.104,105  

The Luebering-Rapoport shunt is important to the production of 2,3-diphosphoglycerate (2,3-

DPG).106,107 This glycolytic intermediate is used to indirectly support Hb affinity for oxygen and 

RBC survival.108 Thus, enough 2,3-DPG is critical to oxygen transport, as the oxygen would bind 

too tightly to Hb and would not release from the RBCs if 2,3-DPG is too low.88,108 2,3-DPG is 

highly dependent on pH, so a decrease in pH effects the amount of 2,3-DPG bound to RBCs.109 

Specifically, if the pH decreases to <7.0, there is a significant decline in production of 2,3-DPG 

mutase.109 It is hypothesized that the cause of significant pH decrease (especially between days 14 

to 35 in stored blood) can be attributed to the increased amount of protons in solution from an 

increased amount of lactate generated.103 Studying pH for stored blood solutions is important as 

the storage environment becomes acidic (6.5-6.8) over the 6 weeks of storage, which indicates 

increased lactic acid formation.50,103,110 The adenylate pool, or the total amount of adenosine 

monophosphate phosphate (AMP), ADP, and ATP, is an important component to RBCs.111–113  

Another pathway that is important for stored blood is the well-studied polyol pathway, where 

glucose is reduced to sorbitol and then converted to fructose.115 This pathway is an important 

aspect to blood banking because it is a mechanism often increasing in hyperglycemic 

environments, such as in people with diabetes or stored blood.115 The cellular toxicity of a high 
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glucose environment for extended periods of time has shown to increase common diabetic 

complications, such as retinopathy, nephropathy, neuropathy, and cardiovascular disease.116 

Typically, glycolysis is the main pathway for converting glucose to ATP in normoglycemic 

environments.100 However, in the presence of elevated glucose, the glycolysis pathway cannot 

regulate this concentration increase, so other pathways are utilized.117 The two-step metabolic 

polyol pathway utilizes the enzyme aldose reductase to reduce glucose to sorbitol and sorbitol 

dehydrogenase to convert sorbitol to fructose (Figure 1.3).117 Sorbitol dehydrogenase, another 

enzyme, utilizes nicotinamide adenine dinucleotide (NAD+) to produce nicotinamide adenine 

dinucleotide hydrogen (NADH), and subsequently produces fructose.118,119 This process highlights 

the importance of the redox reaction in conjunction with the metabolization of glucose.119 

 

 

Figure 1.3. Two-step glucose to fructose mechanism. The aldolase reductase enzyme uses the 

donated hydrogen group from NADPH to NADP+, and this mechanism produces sorbitol for the 

second step of this process. Sorbitol dehydrogenase, another enzyme, donates hydrogen to NAD+ 

to create NADH, and subsequently produces fructose. This process highlights the importance of 

the redox reaction in conjunction with the metabolization of glucose.118,119 
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Blood storage lesions include increased cell membrane rigidity and lysis, pH changes and 

decreased levels of potassium, lactate, sorbitol, and ATP.67 Clinical studies report decreased 

deformability and aggregation of RBCs after two-weeks of storage and significantly increased 

morbidity of the cells.66,90,120  The Spence group has shown the adverse effects of hyperglycemic 

conditions and a decrease in flow-induced ATP release from RBCs stored in AS-1 when compared 

to AS-1N stored cells.74–76 ATP release stimulates the production of NO in endothelial cells, which 

relaxes smooth muscle cells and, in turn, results in vessel dilation (Figure 1.4).67 Robert Furchgott, 

Louis Ignarro, and Ferid Murad were awarded the Nobel Prize in Physiology or Medicine for their 

discoveries identifying NO as the gaseous signaling molecule that was previously known as the 

endothelium-derived relaxing factor.121 When stimulated by mechanical deformation or flow-

induced  shear stress, RBCs release ATP which stimulates production and subsequent release of 

NO from endothelial cells, known as endothelial NO synthesis.122–126 NO is synthesized 

endogenously from L-arginine and oxygen, via an enzyme, NO synthase (eNOS).127,128  

 

Figure 1.4. ATP and NO release in the bloodstream. Red blood cells release ATP that induces 

subsequent NO release from endothelial cells. The NO induces vasodilation in the smooth 

muscle cells and therefore increases blood flow.104,122,127,132  
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The endothelium derived relaxing factor, NO, diffuses into smooth muscle cells next to the 

endothelium and subsequently binds to a prosthetic heme group of guanylyl cyclase (GC).129,130  

When NO binds to GC, it increases cyclic guanosine monophosphate (cGMP) levels, which in turn 

initiates relaxation of smooth muscle cells.129,130 This mechanism results in vasodilation and 

increased blood flow that are essential to stimulate vessel dilation and prevent high blood pressure 

(hypertension).131–133 

 In the process of oxidizing L-arginine to L-citrulline to produce NO, endogenously made NO 

can undergo different reactions in which the mechanism results in the formation of free 

radicals.134,135 L-arginine contributes indirectly to the increased blood flow and necessary 

vasodilation. A vital component of this cellular messenger is the free radical signal-transducing 

agent effect.133,134 These secondary free radicals  increase oxidative stress (a common storage 

lesion) to the cells.136 The signaling process associated with free radicals, or reactive oxygen 

species (ROS), known as redox signaling, is important in regulating homeostasis for cell 

functions.137 However, large amount of ROS can result in various adverse effects to the cells, 

including protein damage, lipids, DNA, cell processes, and incurring various diseases associated 

with cancer. 137 Antioxidants are utilized to control the amount of free radicals and are used as 

important defense mechanisms against oxidative stress and subsequent damage.138  

Glutathione or γ-l-glutamyl-l-cysteinyl-glycine is an important antioxidant and is ATP-

dependent. Therefore, the production of ATP directly relates to glutathione, which is critical to 

cell signaling and overall homeostasis.139 Also, glutathione stimulates total L-arginine, and 

therefore correlates to the nitric oxide synthase (NOS) activity and subsequent vasodilation 

process.127,128,133 Cell metabolism and functionality can be altered if homeostasis is not maintained 

properly, as the role of an antioxidant is vital to decrease ROS and oxidative stress.139–142 Typical 
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mammalian tissues contain 1-10 mM glutathione, and this non-protein thiol defends against 

oxidative stress, which will be discussed further in chapter 3.143 Significantly altered levels of 

glutathione can contribute to various conditions such as neurogenerative diseases, cancers, 

increase inflammation, and other pathologies associated with premature aging.139,144–146 

Glutathione can exist in two different intracellular forms, GSH, which accounts for over 98% of 

thiol in cytosolic compartments (including intracellular fluid of RBCs), and oxidized glutathione 

(GSSH).133,143  Therefore, an important biomarker for oxidative stress and impaired vasodilation 

via ATP and NO production is measuring the GSH/GSSH ratio and the effect of the glycation 

mechanism in hyperglycemic environments as shown in Figure 1.5.147 

 

 

 

 

Figure 1.5. The glutathione pathway. Glutathione exists in the thiol-reduced (GSH) and 

disulfide-oxidized (GSSH) forms. Aerobic metabolism generates hydrogen peroxide (H2O2) 

and, therefore, free radicals. Glutathione peroxidase utilizes H2O2 to be metabolized and then 

is used by GSH/GSSH cycle. GSSH can be reduced to GSH via Glutathione Reductase utilizing 

NADPH.143,147,148 
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The GSH/GSSH ratio determines intracellular redox potential and is used to indicate extreme 

oxidative stress.143,148 In increased oxidative stress, GSSH cannot be reduced to GSH as efficiently, 

which increases disulfides and depletes intracellular GSH.143 Elevated GSH levels typically 

indicate an increase in resistance to oxidative stress and antioxidant capacity.143,148 A decrease in 

the GSH/GSSG ratio is often linked to various diseases associated with oxidative stress, such as 

cancer, Parkinson’s disease, and Alzheimer’s disease.148 There is a key relationship between NAD 

NADH formation and sorbitol, which highlights the indirect relationship between the glutathione 

ratio and sorbitol accumulation.119,149  

1.6 Advanced Glycation End Products 

Oxidative stress induces oxidative damage, which is associated with increased inflammation 

and the formation of AGEs. These AGEs are a common storage lesion and are used as a biomarker 

of the glycation mechanism and inflammatory conditions. AGEs are typically formed by two 

routes: exogenously by diet and endogenously by hyperglycemia.150 There are three common ways 

that increased glycation results in heterogenous AGEs: fluorescent cross-linking, non-fluorescent 

cross-linking, and non-fluorescent non-crosslinking.151–154  

Glycation (Figure 1.6) is the chemical reaction of a carbonyl group of a reducing sugar binding 

to an amino group of proteins, lipids, or peptides.154,155 The glucose, fructose, or trioses bind to the 

amino groups of proteins without the presence of enzymatic control.154,155 The glycolysis 

mechanism produces a Schiff base intermediate, and because these are unstable and reversible, the 

more stable and irreversible Amadori product formed via rearrangement is the precursor for the 

irreversible AGEs.155,156  

There are several pathways to produce various types of AGEs, but the most common are the 

autoxidation of glucose and lipid peroxidation (discussed further in chapter 2).150,155,156  The most 
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common AGEs are Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), which 

are formed from the glyoxal or methylglyoxal reaction (respectively) with free lysine groups of 

proteins.157,158 These AGEs are associated with common adverse effects, such as oxidative stress, 

protein cross-linking, increased free radical production, lower ATP release, and less cell 

deformability.150,157,158Also, AGEs in general are commonly associated with various conditions 

such as diabetes,159–161 kidney disease,162,163 cardiovascular disease,164 neurodegenerative 

disorders,165 and cancer.150,166  

Hyperglycemic conditions, such as the FDA approved additive solutions, promote the 

glycation process and Maillard reaction. CML and CEL can be used as indicators of RBC 

membrane glycation and increased oxidative stress, which will be discussed more in the following 

chapters.160  

Even though the in vivo formation of these two AGEs have been studied, the extent of CML 

and CEL formation during typical 42-day blood storage has not been reported. There have been 

previous reports of utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) 

and enzyme-linked immunosorbent assay (ELISA) kits for fresh RBCs and 42-day RBCs but 

examining the rate in weekly increments over 42 days using several types of biomarkers to 

determine oxidative stress has yet to be investigated.167  
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Figure 1.6. Proposed pathway for formation of CML and CEL.  Major pathways of AGE 

formation are through autoxidation of glucose and lipid peroxidation. CML formation can 

occur from a glyoxal intermediate or fructoselysine, and CEL formation occurs from 

methylglyoxal intermediate and lysine.150,154,221,222 
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1.7 Previously Reported Techniques to Study AGEs  

AGEs have been a point of research since 1985 when Dr. Mahtab Ahmed first reported CML 

in processed foods while studying the Maillard reaction.168 He also discovered the presence of 

CML in various biological samples, such as human skin collagen, lens proteins, crystalline, and 

various intracellular proteins.168,169 The pathophysiologic significance of CML was present in 

discovering the linkage between aging and increased concentrations of CML. Also, CML 

accumulation was present in people with diabetes, atherosclerosis, renal disease, and 

cardiovascular disease.158,170   

Dr. Ahmed also discovered the second most abundant AGE years later, CEL.168 There was 

evidence of increased CEL concentrations in tissues linked to increased signs of aging, and 

therefore CEL is also considered a biomarker for increased oxidative stress.168,171 A major 

measurement obstacle with past and current AGE research is the limited number of modified 

proteins, as only 1% of lysine in proteins are involved in the glycation process to form CML and 

CEL.168 Even though CML has been detected in several tissue sites in vivo (liver, muscles, RBCs, 

mitochondrial proteins, skin collagen, and fetal tissues), it has been complicated to identify these 

specific target proteins that exist in such low quantities.168,171 There have been advances in research 

further linking plasma AGE accumulation and increase severity in diabetic complications, such as 

retinopathy, neuropathy, nephropathy, and cardiomyopathy.150,158,172 Clinical studies have 

explored inhibiting AGE formation to lead to less severe diabetic complication with aging.173 

However, diabetic complication research has been mostly focused on limiting exogenous AGEs 

through food and diet rather than studying in vivo AGE prevention.150,174,175  

There have been several types of analytical techniques to measure AGEs in food, tissues, 

plasma, and RBCs. Competitive ELISA kits for CML have been utilized for cells such as skin,176 
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adipocytes,177 lipoproteins,178 blood,179 and various proteins.180,181 Semba reported that ELISA kits 

did not show cross-reactivity with other compounds to study CML in blood samples by preparing 

plasma from patients 65 years or older.162 This report correlated elevated plasma CML levels to 

increased chronic kidney disease patients, and thus, further suggesting diet intervention could 

assist in lowering serum or plasma CML.162 The researchers also suggested pharmacological 

intervention with pyridoxamine, which is an AGE inhibitor, to help reduce circulating AGEs and 

improve renal function in people with diabetes and chronic kidney disease.163 CML and CEL levels 

were also reported in multiple sclerosis (MS) patients using ELISA kits.182 This report evaluated 

the AGE accumulation and linked it to increased serum CML levels in MS disease in comparison 

to healthy controls.182 There have been reports that neurodegeneration, specifically in Alzheimer’s 

and MS, is linked to increased AGEs, and these mechanisms are another clinical route that can be 

explored further.182,183 Other techniques to study AGE formation and accumulation in clinical 

studies include immunocytochemical staining, Western Blot Analysis, and surface plasmon 

resonance (SPR).184–186  

One of the routine clinical research methods that eliminates common sample matrix and 

specificity issues that are common in ELISAs is by utilizing LC-MS/MS.167,187–189 Common areas 

of clinical research detecting and quantifying AGEs using LC-MS/MS include using human 

plasma from subjects with renal failure and T2D. Other research includes studying genetic 

polymorphisms and other pathophysiological related diseases in human plasma from healthy 

volunteers and subjects with renal failure and T2D.79,167,190,191  However, using LC-MS/MS to 

detect and quantify CML and CEL in different stored blood solutions needs further method 

development and long-term experiments. In the Spence lab, the group has focused on comparing 

different storage solutions (normoglycemic and hyperglycemic), and there is good evidence to 
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move forward studying AGE formation and develop a method to compare CML and CEL over 42 

days.74 Often hemoglobin A1c (HbA1c) is associated with a diagnosis of diabetes, as well as long-

term glucose management, but the relationship between other glycated proteins on the RBC 

membrane and HbA1c levels is unclear. Other commonly used biomarkers to detect the extent of 

hyperglycemic conditions include glutathione (GSH and GSSH) and sorbitol accumulation, but 

these are indirectly related to the AGE formation. Therefore, studying AGE formation with these 

two-storage solutions overtime using a well-developed analytical method such as LC-MS/MS is 

an important aspect of this dissertation.  

1.8 Transfusions and Clinical Outcomes 

While it is important to consider blood storage for these trauma events, there are also patients 

with pre-existing conditions that require massive transfusions.193 Another area of research yet to 

be fully explored involves multiple blood transfusion to people with anemia. Blood transfusions 

are one of the most common medical applications for trauma patients and people with anemia.3 A 

typical transfusion is 1.5 L of blood, or ¼ of total blood volume in a human.192 Anemia, affecting 

almost a quarter of the population, is a condition with an extremely low level of Hb in the body 

(due to low levels of healthy RBCs).194,195 This condition is also referred to as iron deficiency; 

with low levels of Hb (<8 g/dL), there are low levels of iron, since Hb carries the iron necessary 

for the body.3,194,196 Also, there are reports both supporting and contradicting the premise of lower 

oxygen delivery to important organs associated with anemia.197 Too low levels of oxygen can 

induce hypoxia and lead to systematic deterioration of vascular blood flow, the ability of peripheral 

tissues to adequately regulate oxygen, and lack of oxygen delivery to the heart that can cause 

coronary flow issues to the myocardium (myocardial ischemia).3,198  
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One of the clinical approaches assisting in increasing Hb count for a person with anemia is 

prescribed blood transfusions. In current practice, there is no set limit of how many blood 

transfusions a person can have. However, there are associated risks with each blood transfusion, 

which can increase morbidity and mortality. Some transfusion related risks include transmission 

of diseases, errors associated with administration of blood components, immune suppression, and 

acute respiratory distress syndrome.3 Hendrickson reported that 15% of all hospitalized patients 

require blood transfusions.199 This statistic does not include pre-existing conditions that require 

transfusions. The benefits-to-risk ratio for transfusing a patient is always considered prior to 

clinical application. Therefore, it is important to prioritize the health of the pRBCs and decrease 

the approximate 1% cell lysis associated with damaged blood due to transfusion-related-storage.199  

There are studies that consider other drawbacks of current storage solutions, such as the known 

decrease in 2,3-DPG and ATP/NO production.108,200,201 A patient who has known pre-existing 

conditions due to a trauma related event or anemia could have other associated risks of the 

treatment due to the declined metabolic, physical, and chemical properties of current pRBCs in 

storage. Some of the important physical and chemical properties are determinants of current 

reported studies that reappraise pRBC storage. The storage lesion markers are known to increase 

in the presence of compromised RBC membranes.67 These damaged membranes and proteins are 

linked to adverse clinical outcomes. A study involving cardiac patients (over 6,000 subjects) 

compared incidence of adverse outcomes for transfusions with RBCs that were stored for 14 days 

or less to RBCs stored more than 14 days, and researchers found that RBCs stored for longer 

periods of time were associated with a significant increase in number of adverse outcomes to the 

patients.202 Therefore, even though RBC transfusions can be a life-saving clinical treatment, it can 

be associated with severe post-transfusion complications.203  
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According to recent FDA claims, blood transfusions have improved dramatically with 

donor screening and automated data systems.204 According to the FDA fiscal year 2014 and 2018 

reports, in combined years, transfusion-associated circulatory overload (TACO) cases had the 

highest reported number of fatalities (32%), and second (26%) was associated with transfusion-

related acute lung injury (TRALI).204 It is imperative that studies report increased storage lesion 

markers and subsequent possible adverse post-transfusion related outcomes for future 

considerations in conducting a reappraisal of the current FDA blood storage protocols.  

1.9 Storage Lesion 

The storage lesion is often associated with the various transfusion-related complications as 

previously described.67 There are different types of storage lesion markers, each affecting various 

aspects of the RBC (Table 1.4).  
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Healthy RBCs have limited RBC-endothelial cell (RBC-EC) interactions.205,206 In 

comparison, RBCs associated with various vascular disorders or adverse effects of storage 

solutions have increased RBC-EC adherence due to biochemical changes to the outer membrane 

and plasma protein concentration (Figure 1.7).150,205,207,208 Increased adherence to endothelium is 

linked to various vascular disorders and closely associated with diabetes mellitus, polycythemia 

vera (thrombotic complications), and retinal vascular disorders.208 Sickle cell disease, with RBC 

morphology changes and deformation of the membrane, is also associated with increased 

adhesiveness to the endothelial cells.205,206,208  One of the newer avenues of adhesion research is 

focusing on the correlation between diabetes/aging and modified RBC membranes.208 An example 

Table 1.4. Types of Adverse Effects Related to the Storage of RBCs 
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of this modification that could be linked to increased adherence to endothelium is the addition of 

the receptor for advanced glycation end products (RAGE).207  

 

 

 

There are several biochemical and morphological changes to pRBCs reported in storage 

solutions. The shape of the cell changes from a biconcave disk to crenated, known as echinocytes, 

and the cells are less deformable, smaller in size, and have increased cell rigidity after 14 days of 

storage.209–211 Additionally, the increased cell lysis and decreased asymmetry of the membrane 

phospholipids lead to an overall cell membrane protein loss and modifications.56,212,213 The 

irreversible morphological changes could begin as early as day 12 in storage, and these changes 

have been reported to shorten the overall lifespan of the RBC in vivo.214  

One of the possible explanations of these adverse physiochemical changes is due to the 

metabolism, acidosis, oxidation, and overall protein modification/arrangements.214 It is well 

known that ATP and 2,3-DPG levels change during pRBC storage. ATP is essential for 

Figure 1.7. Red blood cell AGE and endothelial cell receptors. RBC membranes contain 

various proteins, some of them glycated by exposure to hyperglycemic environments and 

oxidative stress. The modified proteins can increase cross-linking and cellular dysfunction. 

These AGEs have a receptor (RAGE) located on the endothelial cells, and the adverse effects 

from AGEs can be transmitted via the RAGE. The generation of ROS production occurs mainly 

through the NADPH oxidases by RAGE stimulation. The increasing ROS has been linked to 

increased oxidative stress and diabetic complications.223–226 
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intracellular activity, and studies have shown a significant decrease in ATP activity after 5 weeks 

of storage.66 However, once stored blood is transfused, the ATP levels increase dramatically along 

with associated reversible morphological changes.214 Low levels of ATP can lead to less efficient 

activity of Na+, K+ pump mechanism, thus leading to increased potassium leakage and higher 

chances of high potassium related transfusion complications.215–217 Ideally, instead of introducing 

a rejuvenation solution or waiting until transfusion, the ATP concentration could be maintained at 

healthy levels to promote healthy pRBCs. Another concern for stored blood transfusions that is 

not well investigated in vivo is the altered metabolism from increased glycolysis in a 

hyperglycemic environment.218 In hyperglycemic environments, the inflammatory response 

switches to accommodate glycolysis to meet the demands of more energy and effects ATP 

utilization.218,219 Moreover, less stress on the cells in a normoglycemic environment that maintains 

ATP concentration would result in more viable RBCs which can help increase positive patient 

outcomes.209,214   

Blood transfusion has been utilized for over 100 years, but the solutions to store blood are 

currently the topic of discussion for improving transfusion medicine.213 The extensive research 

behind adverse effects to RBCs shows a need for storage improvement, and one avenue to explore 

is the amount of glucose concentration.9,13,59,220 By examining known biomarkers of AGEs, 

oxidative stress, and protein glycation, more information can be obtained to fully evaluate the use 

of a normoglycemic blood storage solution alternative. The clinical applications for this solution 

include transforming transfusion medicine for people with diabetes, sickle cell, anemia, and other 

at-risk patients (neonates).  

There are a few different hypotheses for this dissertation work. The first is there will be a 

difference in biomarkers between the two solution types (hyperglycemic and normoglycemic). The 
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second, there will be a need for method development to evaluate the sample preparation, 

bioanalytical guidelines, and LC-MS/MS usage for blood samples. Finally, the biomarkers 

evaluated for stored solutions can be used for additional testing utilizing screening T1D patients 

for a C-peptide related clinical drug trial.  
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Chapter 2: Method Development to Detect and Quantify Advanced Glycation End 

Products (AGEs) Using UPLC/MS-MS 

2.1 Introduction 

2.1.1 Background 

Transfusion medicine is a critical component of modern healthcare, evident by the millions 

of units of red blood cells (RBCs) transfused annually to patients.1 The collection of whole blood 

and subsequent storage of various blood components (such as the RBCs or plasma) into units ready 

for transfusion is relatively simple. Briefly, the process involves collection of ~ 450 mL of whole 

blood from donors, centrifugation to separate the RBCs from the plasma and leukocytes, followed 

by storage in separate bags at 4°C for various lengths of time depending on the component (plasma 

or RBC) and country regulations.2,3  

A key feature of current protocols for RBC storage is the collection solution into which the 

whole blood (WB) is drawn, and the solution into which the separated RBCs are stored (the latter 

also known as additive solution).4 The most popular collection solution is citrate-phosphate-

dextrose (CPD), which contains citrate, phosphate, and dextrose (glucose).5,6 Following 

centrifugation, the RBCs are then stored in one of multiple available additive solutions (e.g., AS-

1, AS-3, AS-5, or AS-7).5,7,8 While the current blood storage procedure has been in place since the 

1970s, there are many reports showing adverse effects of storage over time on the RBC’s chemical 

and physical properties.9–13 These adverse effects, collectively known as the RBC storage lesion, 

involve chemical, physical, and metabolic changes, as well as functional changes, to the RBC 

while in storage.14,15 Unfortunately, the exact origins of the storage lesion are not known, nor is 

the mechanism leading to the various changes to the stored RBC well understood.  
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An interesting feature of the collection and additive solutions used in RBC storage is the 

high level of glucose in the CPD and the AS-1. Specifically, typical blood glucose concentration 

ranges from 4-6 mM in a healthy person, while a person with diabetes often has a fasting blood 

glucose level ranging from 7-9 mM.16 Currently, approved versions of CPD and AS-1 have glucose 

concentrations that exceed 110 mM; even after the RBCs are added, and the AS-1 is diluted due 

to mixing of the RBCs with the AS-1, the concentration of the glucose in the RBC/AS-1 solution 

is still in excess of 40 mM, a value much higher than that of healthy humans and humans with 

diabetes.10,17 It is noteworthy that after transfusion of the ~ 280 mL of pRBCs into a human, the 

glucose concentration in the storage bag will not affect the glucose levels in the human transfusion 

recipient (due to dilution of the 280 mL pRBCs into a human who typically has a total blood 

volume of ~ 5 L); rather, the concerning feature of the high glucose is the effect on the RBC 

properties during storage. 

In continuance, people with high blood glucose levels, such as people with diabetes, have 

RBCs with increased levels of advanced glycation end products (AGEs), which are thought to be 

a negative determinant in overall cell health.18,19 Past work involving AGEs on the RBCs in the 

hyperglycemic bloodstream of people with diabetes provided the rationale to investigate the 

possible formation of AGEs on the RBCs in AS-1. A previous report20 suggests the formation of 

AGEs later in storage and provides motivation to (1) quantitatively determine the concentrations 

of the AGEs being formed and (2) evaluate these concentrations of RBC-bound AGEs from the 

beginning (day 1) to the end of storage duration (42 days).15,20,21 Such time-based studies of AGE 

formation on stored RBCs are without precedent. Here, we describe novel mass spectrometric 

determination of two AGEs, Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine 

(CEL).22 The glyoxal mechanism produces CML, the first AGE discovered and the most widely 
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studied AGE.23 Another important AGE, CEL, is associated with diabetes-related complications 

and derived from the methylglyoxal pathway.24  Measurement of the formation of these two AGEs 

(CML and CEL) on the stored RBC is the focus of this study. 

Current interest in studying the physiochemical effects on long term blood storage involves 

measuring CML and CEL simultaneously, while examining protein-bound lysine (not glycated) 

changes. The aims of the present study were to develop a method to quantify and compare CML, 

CEL, and lysine from blood samples stored in hyperglycemic and normoglycemic storage 

conditions, expand upon previous Spence lab storage lesion studies, and provide a well-

characterized validation method for future blood sample studies. Future studies can use CML and 

CEL as biomarkers for clinical use in transfusion medicine and to understand more about the link 

between AGEs and diabetes.  

 

Figure 2.1. RBC glycation mechanism to produce AGEs through the Maillard reaction and chronic 

hyperglycemia exposure. The RBC membrane proteins become glycated with increased glucose 

concentration in the blood stream due to chronic hyperglycemia. The reducing sugar interaction 

with the protein produces a Schiff base a few hours after exposure, which is a reversible reaction. 

The irreversible reaction occurs days after chronic hyperglycemia and results in the Amadori 

product of the Maillard reaction of glycation. Weeks/months of chronic hyperglycemia results in 

the formation of AGEs due to increased reactive dicarbonyls from oxidative stress. Through the 

lipid peroxidation or glycolytic intermediate, various AGEs are formed, including CML and CEL, 

respectively. 24  
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2.1.2 CML and CEL Mechanism 

These two AGEs are the focus of this study as a biomarker for increased oxidative stress 

and other effects of storage lesions due to hyperglycemic conditions during a 6-week storage 

period, as previously described in chapter 1. Current methods of detecting and quantifying AGEs 

include non-selective enzyme linked immunosorbent assay (ELISAs), which use antibodies and 

are often limited to reliable types of antibodies and decreased sensitivity.22 Specifically, 

commercial kits often cannot reliably distinguish between similar byproducts in the CML and CEL 

mechanism. Other types of analytical methods include time-consuming immunohistochemical 

detection, fluorescence spectroscopy and size exclusion chromatography with fluorescence 

detection.25–27 None of the current research includes comparing AGEs in hyperglycemic and 

normoglycemic blood storage solutions on a weekly basis for 6-weeks using liquid 

chromatography with tandem mass spectrometry (LC-MS/MS). Due to the major differences in 

sample conditions when RBCs are stored in blood bags as compared to freshly drawn whole blood 

in blood collection tubes, there is not a cohesive methodology for studying both CML and CEL 

for pre-clinical applications.  

As previously discussed, glycation is considered a non-enzymatic reaction between the 

reducing sugar (glucose) and proteins.29 This reversible reaction produces a Schiff base, and the 

Amadori Rearrangement produces irreversible products such as the oxidation of fructosyl-lysine 

and the subsequent product CML.30 This product is directly from the reaction of glyoxal and 

lysine.30 CML is a specific type of AGE formed through the non-enzymatic reaction between 

reducing sugars, particularly glucose, lysine, glyoxal, or methylglyoxal.31 This reaction, known as 

glycation or the Maillard reaction, leads to the modification of lysine residues in proteins, resulting 

in the formation of CML.32 CML is one of the most well-studied and commonly studied AGEs due 
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to its abundance in various tissues and its potential role in age-related and chronic diseases.33 CML 

is known to accumulate with age, particularly in tissues with slow turnover, such as the 

extracellular matrix of blood vessels, skin, and cartilage.23,34,35 The presence of CML in tissues 

and organs is associated with several adverse effects including cross-linking, inflammation and 

oxidative stress, tissue damage, and elevated CML levels have been associated with various 

chronic diseases and may be used as a potential marker of disease risk or progression.34,36 CEL is 

another specific type of AGE formed through the non-enzymatic reaction between reducing sugars, 

particularly glucose, and lysine residues in proteins.24,37 Like other AGEs, the formation of CEL 

occurs through glycation or the Maillard reaction.37,38 CEL is structurally similar to another AGE, 

CML, but they differ in the side chain structure attached to the lysine residue.30,39 Its abundance in 

tissues has been associated with age-related changes and chronic diseases.36  

Overall, CML and CEL are important markers of glycation and AGEs formation, providing 

insight into the impact of glycation reactions on protein modifications and their potential role in 

age-related and chronic diseases.31,38 Research on CML and other AGEs continues to shed light 

on their involvement in disease pathogenesis and potential therapeutic interventions to mitigate 

their adverse effects31,40,41. 

There are current hypotheses for measuring CML, CEL, and protein-bound lysine on the 

RBC membrane for the two types of storage solutions. Due to the different mechanisms of AGE 

formation, most likely there will be overall differences in concentrations of CML and CEL. 

Protein-bound lysine, even though some will become glycated into AGEs, is not expected tp 

change significantly. AS-1 is a hyperglycemic storage solution, it is anticipated that more CML 

and CEL will form over the course of 6-weeks, and more than in the AS-1N solution.  
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2.1.3 Method Development Using FDA, EMA, ICH Guidelines  

The bioanalytical method validation by the European Medicines Agency (EMA) provides 

guidance and recommendations for bioanalytical assays.43 By using the FDA approved guideline 

M10 by the International Council for Harmonization of Technical Requirements for 

Pharmaceuticals for Human Use (ICH), this study will use sample analysis recommended 

chemical, biological, and metabolite drug guidelines to explore various analytical parameters, such 

as limit of detection (LOD), limit of quantification (LOQ), matrix effects, intra- and inter-assay 

accuracy and precision, and interferences.43 

2.1.4 Limitations For Using Biological Samples and LC-MS/MS 

There are several challenges when developing a robust method for detection and 

quantification of AGEs, including the ten-thousand-fold difference between the concentrations of 

protein-lysine on RBC membranes versus modified lysine adducts (CML and CEL); only 1% of 

RBC proteins that contain lysine are glycated and form AGEs.33,44 Acid hydrolysis is a well-known 

technique that can be used to extract proteins on the RBC membrane to adequately prepare various 

biological samples (urine, pRBCs, plasma) for high throughput analysis such as ultra-performance 

liquid chromatography with tandem mass spectrometry (UPLC-MS/MS).45,46 There are many 

drawbacks with the previous methodology, such as biological interferences and matrix effects 

enhancing or suppressing chromatographic signal.47–49  

A custom-made glass pipettor was created out of a need to extract the samples from the 

acid hydrolysis tubing (Figure 2.2). The samples were at the bottom of a 6 mL vacuum tube and 

the shape of the tubing did not allow for commonly purchased laboratory equipment, such as 9” 

Pasteur pipettes, syringes, and serological pipettes. After further investigation, there was no 

straightforward way to remove the sample without contamination or loss. There are no approved 
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or suggested materials to extract the samples without “free pouring” out into sample collection 

tubes. Using the design of smaller pipettes and rubber pipette bulbs, the chemistry glass shop used 

the measurements of the vacuum tubing and collaborated to design simple, effective, and reusable 

glass pipettes that could easily reach the bottom of the tubing and extract the sample. It was 

important to include glass to limit corrosion over time with weekly 6 M HCl exposure. 

 

 

 

 

 

 

 

 

 

 

 

The HCl needed to be dried off before the samples could be separated and analyzed via UPLC-

MS/MS (Figure 2.3). It is important to note that the samples could not contain HCl because the 

acidic vapors can damage the UPLC separation column. The samples needed to be dried using a 

SpeedVac with an acid trap, which is specific to removing acid solvents to maintain sufficient 

instrument integrity. Initially, the samples were immediately taken to the SpeedVac and dried at 

75°C and 0.1 bar, for 8 hours. The samples were frozen overnight at -80°C and dried the following 

Figure 2.2. Engineering sketch of glass pipettor. The device was customized to fit inside a 6 mL 

Thermo Fisher Scientific vacuum tube to reach the hydrolyzed sample at the bottom. It is made 

from glass and is 237 mm in length, the interior diameter is 2 mm and the top diameter to attach 

a rubber pipette bulb is 10 mm.  
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day. The introduction of freezing the samples overnight before drying and using a more efficient 

instrument assisted in lowering the dry down time from 8 hours to 4 hours. The remaining sample 

consisted of dried down pRBCs and was stored at -80°C until ready for separation and analysis.  

 

 

Figure 2.3. Method development parameters and instrument setup for the Waters Agilent UPLC-

MS/MS instrument workflow. The unknown sample, mixed with internal standard, is injected via 

automated sample injector. The initial ramp begins with the mobile phases A and B, and continues 

until the sample is ready to be flowed through the C18 reverse phase column. The initial solvent 

conditions were 90 % mobile phase A and 10% mobile phase B for 5 minutes and then changed to 

35% mobile phase A and 65% mobile phase B before switching to 1% mobile phase A and 99% 

mobile phase B between 5.01 and 6 minutes. Finally, at 6.01 minutes, mobile phase A was 90% 

and mobile phase B was 10%, the sample was injected, and these conditions were held until the 8-

minute run was complete. The column was maintained at 40°C and the flow rate was 0.3 mL/min. 

Prior to sample injection, a needle wash was utilized containing 80/20 isopropyl alcohol 

(IPA)/water with 10 mM ammonium formate to maximize the sample delivery from the needle to 

the column. The sample was ionized by electrospray operating in positive ion mode (ES+), with 

capillary voltage of 1.00 kV. The source temperature was 150°C, desolvation temperature was 

350°C, desolvation gas flow was 800 L/hr, and cone gas flow was 40 L/hr. Once the collision 

energy was applied to create fragment ions, the analyte masses was detected for mass spectrometry 

analysis.  
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2.2 Methods 

2.2.1 RBC Collection and Purification  

The blood draw followed a protocol approved by the Institutional Review Board of 

Michigan State University. Blood was obtained from healthy humans and informed consent was 

obtained from all donors. All record keeping complied with Health Insurance Portability and 

Accountability Act regulations. Whole blood was collected via venipuncture (140 mL total whole 

blood) into multiple 10 mL uncoated collection tubes (Thermo Fisher Scientific, Waltham, MA) 

that were previously prepared to contain either 1 mL of CPD or 1 mL of a normoglycemic version 

(CPD-N). Each blood draw was divided into CPD or CPD-N solution tubes to maintain consistency 

between storage solution results; that is, each donor had 5 tubes of blood collected in CPD and 5 

tubes collected in CPD-N. All whole blood tubes were centrifuged at 2000g for 10 minutes, the 

plasma and buffy coat (containing the white cells or leukocytes) were removed by aspiration, and 

packed RBCs (pRBCs) were kept in the tubes.  

2.2.2 Storage Solution Preparation 

Each storage solution was prepared in total volumes of 50 mL with the concentrations in 

Table 2.1. Each constituent (except for glucose) was added to a beaker containing 40 mL of H20 

and dissolved. The pH was checked and adjusted with either 1 M HCl or 1 M NaOH. The beakers 

were covered with aluminum foil and placed in the autoclave for 30 minutes at 120°C and pressure 

of 20 bar. The solutions were allowed to cool in an ice bath before transferring to the biosafety 

cabinet to ensure continual sterile procedures. The glucose solutions were prepared separately with 

filter sterilization to limit glucose degradation (more detail is provided in chapter 3). The glucose 

solutions were prepared in 10x concentrated glucose in 20 mL H2O, and the glucose was added 

slowly, to ensure it dissolved, to a stirring solution of H2O as to not saturate the solution too 
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quickly. These solutions were added to a 250 mL, 0.22 µm PVDF filter membrane stericup filter 

system (Fisher Scientific, Hampton, NH) and moved to the biosafety cabinet before capping the 

bottles to limit contamination. To each additive solution, 5 mL of the 10x glucose solutions were 

added and diluted up to 50 mL to achieve the correct concentrations. Once the solutions were 

diluted correctly and mixed thoroughly, they were added to their respective containers until ready 

for use. 

2.2.3 Glucose Concentration and Hematocrit Percentage 

The pRBCs were added to either AS-1 or AS-1N in a 2:1 volume ratio and mixed and 

stored at 4°C for one hour before initial glucose concentration and percent hematocrit (the 

percentage of volume occupied by the RBCs) readings. The glucose concentration was determined 

with an Aimstrip Plus Blood Glucose Meter (VWR, Radnor, PA) using a 22-gauge needle and 1 

mL syringe to collect and transfer a drop of RBC sample onto an Aimstrip Plus Blood Glucose 

Test Strip (VWR). The glucose reading was repeated, and the average glucose concentration 

(mg/dL) was converted to a mM value. The glucose was adjusted to 5.5 mM after one hour for the 

AS-1N sample by adding an appropriate volume (typically between 50-400 µL) of a 100 mM 

glucose solution in 0.9% saline. The same volume of 0.9% saline was added to the AS-1 sample 

to maintain similarity in handling between the AS-1 and AS-1N. The RBC sample hematocrit was 

determined using a StatSpin MP microhematocrit centrifuge (Beckman Coulter, Brea, CA) and a 

hematocrit reader (StatSpin CritSpin). The remaining pRBCs were used for analysis either the 

same day or stored at 4°C. Periodic feeding of the RBCs stored in AS-1N was achieved using a 

closed and automated feeding system.  Stored samples were removed from bags on day 1, 8, 15, 

22, 29, 36, and 43 for LC-MS/MS analysis following sample preparation techniques described 

below. 
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2.2.4 Protein Precipitation for Free Lysine Quantification 

To promote cell lysis, packed RBCs (100 µL) were frozen at -20°C for one hour and then 

thawed for 10 minutes at room temperature before mixing with 300 µL of HPLC grade acetonitrile. 

The sample was centrifuged at 12,000g for 10 minutes at room temperature, and the supernatant 

was removed and stored at -80°C until dried using a SpeedVac (Savant SpeedVac Concentrator, 

Thermo Fisher Scientific) with an acid vapor trap (Savant Refrigerated Vapor Trap, Thermo Fisher 

Scientific). The dried sample pellet was stored at -80°C until prepared for measurement.   

2.2.5 Acid Hydrolysis Sample Preparation 

RBC samples (100 µL) for acid hydrolysis were frozen for one hour at -20°C and thawed 

for 10 minutes at room temperature before centrifugation at 10,000g for 10 minutes at 4°C. The 

supernatant was removed, and pRBCs were collected for acid hydrolysis. The pRBCs were diluted 

to make a 1% RBC solution in constant boiling sequencing grade 6 M HCl (Thermo Fisher 

Scientific) in glass tubes and transferred to 10 mm, 6 mL vacuum hydrolysis tubes (Thermo Fisher 

Scientific). The samples were hydrolyzed at 110°C for 16 hours using a 120 V Digital Dry 

Bath/Block Heater and Dry Bath Block Insert (Thermo Fisher Scientific). The samples were then 

removed using customized glassware (MSU Chemistry glass shop) designed to attach a 2 mL 

Pasteur rubber pipette bulb (Sigma Aldrich, St. Louis, MO) and extract the sample (Figure 2.1). 

Using the glassware, the sample was placed into 1.7 mL tubes and frozen overnight at -80°C. The 

following day, the samples were dried to completion using a SpeedVac at 75°C for 4-5 hours and 

then kept at -80°C until ready for measurement.  

2.2.6 Reagent Materials and Preparation 

Immediately prior to measurement, the dried RBC sample used to detect free lysine sample 

pellet was reconstituted in 300 µL of 10 mM perfluorheptanoic acid (PFHA) in water, and 
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centrifuged at 13,000g for 10 minutes. The dried, hydrolyzed additive solution RBC samples were 

reconstituted in 500 µL of 10 mM PFHA in water, and centrifuged at 13,000g for 10 minutes. All 

supernatant samples were removed and used for measurement or stored at -80°C. The free lysine 

sample was diluted 1:100 using 10 mM PFHA in water. Each additive sample supernatant was 

divided into two categories: CML/CEL detection and lysine detection. The lysine detection 

samples were diluted 1:40,000 in 10 mM PFHA, and the CML/CEL detection samples were diluted 

1:40 in 10 mM PFHA. The sample supernatants were mixed 1:1 (v/v) with an internal standard 

(IS) mixture containing: 0.1 µM Nε-(1-carboxymethyl)-L-lysine-d3 (Cayman Chemical, Ann 

Arbor, MI), 0.1 µM carboxyethyl-L-lysine-d4 (Toronto Research Chemicals, Toronto, ON), and 

0.1 µM 13C6, 
15N2 labeled L-Lysine (Sigma Aldrich). The standards include Nε-(1-

carboxymethyl)-L-lysine (Cayman Chemical), Nε-(1-carboxyethyl)-L-lysine (Cayman Chemical), 

and 13C6, 
15N2-lysine (Sigma Aldrich) and these constituents were used to prepare calibrator 

samples by dissolving the lyophilized samples in water, diluting with 10 mM PFHA for a ten-point 

calibration curve, and mixing with the same internal standard mixture as above. The ten-point 

calibration curve (0, 4, 8, 16, 64, 128, 512, 1500, 2048, 5000 nM) was used to quantify CML, 

CEL, and lysine by adjusting analyte peak area relative to associated internal standards to illicit an 

overall response. During initial sample preparation, AS-1 and AS-1N solutions were also 

hydrolyzed to determine if diluting the samples in reconstituted sample solution would decrease 

matrix effects. Quality control (QC) samples were prepared using a stock of RBCs in AS-1 or AS-

1N following the procedure above, preparing aliquots of the hydrolyzed sample stock into 1.7 mL 

vials, drying, and freezing at -80°C until they were reconstituted for measurement.  
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2.2.7 Chromatography and MRM Mass Spectrometry 

To determine if CML, CEL, and lysine were present, the reconstituted hydrolyzed RBC 

samples were analyzed by LC-MS/MS using a Waters TQ-S Micro UPLC system interfaced with 

a Waters Acquity UPLC. A 10 µL aliquot was injected onto a reverse phase column (High Strength 

Silica (HSS) T3 2.1 x 100 mm) and the compounds were separated using ion-pair chromatography. 

For multiple reaction monitoring mass spectrometry (MRM MS) of 9 channels (Table 2.1), the 

sample was ionized by electrospray operating in positive ion mode (ES+). CML, CEL, and lysine 

concentrations were calculated based on the integrated areas relative to the internal standard peak 

areas. The total protein-bound lysine helps evaluate total protein concentration over time, and thus 

the number of lysine that can be glycated. 

2.2.8 Linearity, Detection Limit, and Quantification Limit 

To assess linearity of the developed method, nine calibration standards and a zero 

standard were measured for each analyte in three experiments; specifically, each standard was 

diluted using either 10 mM PFHA in water, AS-1, or AS-1N reconstituted supernatant. To test 

the effect of acid hydrolysis on the reconstitution solution, AS-1 and AS-1N solution containing 

no sample were hydrolyzed and dried under vacuum. After initial analysis, it was determined that 

Table 2.1. Mass Spectrometry for Analyte and Internal Standard Compounds 

Analyte 

Compound 

Precursor Ion 

Mass 

Product Ion 

Mass 

Cone Voltage 

(V) 

Collision Energy 

(eV) 
13C6, 

15N2 

Lysine 
147.1 84.0 19.0 14.0 

N-CML 205.0 84.0 15.0 22.0 

N-CEL 219.0 84.0 15.0 28.0 
13C6, 15N2 

labeled L-

Lysine 

155.1 90.1 19.0 14.0 

CML-d
3
 208.0 87.0 15.0 28.0 

CEL-d
4
 223.0 134.0 15.0 15.0 
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the hydrolyzed sample solutions did not statistically alter the peak shape, retention time, or 

matrix effects. Therefore, to simplify sample processing, all standards were simply diluted in 10 

mM PFHA in water. The correlation coefficient for standard curves using 10 mM PFHA in water 

(R2) are reported in Table 2.2. The limit of detection (LOD) and limit of quantification (LOQ) 

were calculated based on the signal-to-noise ratio of the blank signal and the sample signal as 

reported in Table 2.2 for each analyte.  

2.2.9 Intra- and Inter- Assay Variation 

Intra- and inter-assay variations were assessed utilizing quality control (QC) reconstituted 

hydrolyzed RBC samples spiked with known concentrations of CML, CEL, or lysine for each 

batch analysis. The assay variation was determined by reading the plate samples (n=6) for over 20 

hours kept at 4°C in the sample manager of the autoinjector. Inter-assay variation was determined 

by measuring the analytes on 4 different samples (n=4) over a 2-day period at 4°C in the sample 

manager. Both intra- and inter- assay variations were prepared for the analytes and the results are 

reported in Table 2.4.  As seen in equation (1), the stock QC sample expected concentration (spike 

concentration) was determined and either diluted 1:40 for CML/CEL or 1:40,000 for lysine. The 

two spiked concentrations (concentration of spiking solution) relate to a low (10 times the 

exogenous concentration), and high (40 times the exogenous concentration) concentration of the 

analytes. Percent recovery (% of target) in equation (2) was used to determine the accuracy and 

subsequent percent relative standard deviation (RSD %) in equation (3) for precision. 



   

 

65 
 

2.2.10 Matrix Effects 

There are no commercially available RBC samples in AS-1/AS-1N that are free of the three 

analytes, so it is impossible to obtain analyte-free biological samples for method validation. 

However, to adhere to the bioanalytical method guidelines, the hydrolyzed RBC samples were 

prepared and analyzed to determine the overall extent of suppression or enhancement of signal.  

The matrix effects were determined using only the IS mix in either sample or blank (water). The 

matrix effects were calculated using equation (4).   

 

The matrix effects were calculated and reported in Table 2.3. According to bioanalytical method 

validation, less than 13% matrix effects are acceptable criteria. 

2.2.11 Carry-over 

For each analyte, there was significant carry-over of analyte signal (>20%), but less than 

5% of IS signal. Therefore, after each standard curve, at least 5 blanks (water only) were run before 

continuing sample analysis. After analysis, 5 blanks were sufficient to remove any remaining 

analyte eluting. Also, a minimum of two blank samples were run in between each analyte sample.  

2.2.12 Data Analysis 

Calibration plots of analyte/IS peak area ratio versus CML, CEL, and lysine concentrations 

were constructed, and a linear regression was used for all analytes. The peak area ratio of sample 

versus associated IS was used to produce a response to determine the concentrations from the 

calibration line. SigmaPlot (Systat Software Inc.) was used to plot results and R software (Rstudio 

version 4.2.2) was used to perform statistical testing in the “rstatix” package (0v.7.2; Kassambara, 

A. 2023). One-way ANOVA tests for each analyte were conducted to examine differences between 
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storage solution types. Prior to conducting the ANOVA test, the assumptions of normality and 

homogeneity of variances were assessed using Shapiro-Wilk and Levene's tests, respectively. If 

these assumptions were met, the ANOVA test was performed. In the case of a significant ANOVA 

result, post hoc Bonferroni tests were conducted to determine which specific solution types 

exhibited statistically significant differences on the 4 analytes.  

2.3 Results 

2.3.1 Free Lysine Interferences 

The free lysine samples were used to identify the amount of lysine not bound to the RBC 

membrane to ensure the lysine quantified in the samples were RBC membrane protein-bound 

lysine groups. Data analysis revealed that <1% of lysine was considered “free,” and therefore, the 

data collected for quantifying lysine can be considered lysine that was attached to the RBC 

membrane prior to acid hydrolysis.  

2.3.2 Matrix Effects 

According to bioanalytical method validation, less than 13% matrix effects are acceptable 

criteria. Due to presence of endogenous concentrations of the three analytes tested, the matrix 

effects were evaluated using IS peak areas. Matrix effects were found to be in all analytes tested 

(Table 2.2.). All matrix effects were below 13%, which shows there is no significant enhancement 

or suppression of chromatogram signal due to the blood component matrix. Therefore, the 

chromatograms can be used to quantify analytes during further analysis. 
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2.3.3 Linearity, LOD, LOQ 

The calibration curve of all three analytes using stable IS was measured and indicated good 

linearity within the concentration range selected (see Table 2.2). The relative peak area versus 

injected relative concentration to IS was found to be linear with a regression coefficient R2=0.999 

for all three analytes. The LOD and LOQ were determined using standard deviation of the blank 

response divided by the slope of the calibration curve multiplied by 3 or 10, respectively. 

2.3.4 Accuracy and Precision 

The sample accuracy and precision were evaluated at two different concentrations of 

spiked analyte (low and high) as reported in Table 2.3. Intra-assay accuracy ranged between 113% 

and 116% for CML, 93.7% and 97.4% for CEL, and 94.2% and 102% for lysine. All analyte intra-

assay accuracy results are in the 80-120% range, which is acceptable for EMA and US FDA 

bioanalytical guidelines. Each analyte precision was below the EMA and US FDA threshold of 

15%. Inter-assay accuracy ranged between 92.8% and 102% for CML, 93.5% and 94.4% for CEL, 

and 93.4% and 98.8% for lysine. These intra-assay accuracy results are also in the acceptable range 

for EMA and US FDA bioanalytical guidelines, as is the inter-assay precision. 

Table 2.2. Linearity, LOD, LOQ, and Matrix Effects Percentagea 

Analyte Linearity (R2) LOD (nM) LOQ (nM) Matrix Effects (%) 

CML 0.999 1.07 3.58 7.48 

CEL 0.999 0.494 1.65 8.99 

Lysine 0.999 0.345 1.15 6.33 
a Validated method utilized (n=6). 

CML:  Nε-carboxymethyl-lysine (CML); CEL: Nε-carboxyethyl-lysine (CEL). 

LOQ: Limit of quantification (10*Standard Deviation blank response/Slope); LOD: Limit of 

detection (3*Standard Deviation blank response/Slope). 

Matrix effects calculated from ratio of ((IS area in matrix/IS area in blank sample)-

1)*100. 

IS: Internal standard. 
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2.3.5 Selectivity 

All three analytes were successfully detectable in all blood samples from five healthy 

controls assayed in biological duplicate, (Figure 2.4). Lysine retention time eluted at 8.83 minutes 

(Figure 2.4A), CML eluted at 6.79 minutes (Figure 2.4B) and CEL eluted at 8.82 minutes (Figure 

2.4C), all with their respective IS.  

Table 2.3. Intra- and Inter-assay Method Validation 

Analyte Intra-Assay (n=6)a Inter-Assay (n=4)b 

 
Accuracy (% of 

target) 

Precision (RSD 

%) 

Accuracy (% of 

target) 
Precision (RSD %) 

  Low High  Low  High  Low  High  Low High  

CML 113 116 4.26 4.47 92.8   102  12.69 12.2 

CEL 97.4 93.7 14.3 1.87 93.5  94.4 5.25  3.58 

Lysine 94.2 102  3.36  1.27  93.4  98.8  8.14 7.06 

a Intra-assay (six repeated analyses within one experiment during 20 h with samples stored in 

sample manager). 
b Inter-assay (three independent experiments within 2 days) validation results. Concentration 

Low: ten-times endogenous levels, High: forty-times endogenous levels for all analytes.  
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Figure 2.4. Chromatograms for analyte standards and internal standards showing excellent 

selectivity of LC-MS/MS method. A) Lysine chromatogram for 515 nM calibration curve. Above 

standard lysine eluting at 6.83 minutes with good peak shape and limited tailing. Below labeled 

lysine internal standard eluting at the same time of 6.83 minutes with good peak shape and limited 

tailing. B) CML chromatogram for 515 nM calibration curve. Above standard CML eluting at 6.79 

minutes with good peak shape and limited tailing. Below labeled CML eluting at the same time of 

6.79 minutes with good peak shape and limited tailing. C) CEL chromatogram for 515 nM 

calibration curve. Above standard CEL eluting at 6.82 minutes with good peak shape and limited 

tailing. Below labeled CEL eluting at the same time of 6.82 minutes with good peak shape and 

limited tailing.  
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2.3.6 Absolute Quantification of CML, CEL, and Lysine 

CML, CEL, and lysine levels were identified and quantified in each unknown blood sample 

(Figures 2.5-2.7). Each figure represents two solutions, AS-1 (blue) on the left and AS-1N (gray) 

on the right.  

For CML, there were no significant differences found between AS-1 and AS-1N, p=0.466 

(Figure 2.5).  

 

 

 

 

 

 

 

 

 

Figure 2.5. CML (nM) quantification for both AS-1 and AS-1N storage solutions for day 1 of 

storage. There was no statistically significant difference between AS-1 (779.9 nM ± 31.2) and AS-

1N (748.8 nM ± 27.6) p= 0.466. n=5-6, error=SEM.  

 

For CEL, there were no significant differences found between AS-1 and AS-1N, p=0.369 

(Figure 2.6).  
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For lysine, there was no significant differences found between AS-1 and AS-1N, p=0.451 

(Figure 2.7).  

 

 

 

 

Figure 2.6. CEL (nM) quantification for both AS-1 and AS-1N storage solutions for day 1 of 

storage. There was no statistically significant difference between AS-1 (1212.6 nM ± 56.1) and 

AS-1N (1139.7 nM ± 54.3) p= 0.369. n=5-6, error=SEM. 
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2.4 Discussion 

This study includes a new protocol with high accuracy and precision for the quantification of 

two types of AGEs using UPLC-MS/MS. In the present study, UPLC-MS/MS with MRM was 

highly useful for the measurement of AGEs in blood samples. Specifically, this method was used 

to report the concentrations of CML, CEL, and lysine in two different blood samples on day 1 of 

storage. This study focused on CML and CEL without the addition of common byproducts because 

these are the most abundant and widely studied AGEs related to complications associated with 

diabetes.  Due to the hyperglycemic storage conditions used in RBC storage for transfusion 

medicine, it was anticipated that the stored RBCs would also exhibit AGE formation.  There is 

Figure 2.7. Lysine (nM) quantification for both AS-1 and AS-1N storage solutions for day 1 of 

storage. There was no statistically significant difference between AS-1 (1328734.8 nM ± 

136593.5) and AS-1N (1189683.9 ± 118062.7) p= 0.598. n=5-6, error=SEM. 
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limited research for detecting and quantifying both CML and CEL, and almost no present research 

involving stored blood. Current methods of detecting and quantifying AGEs include ELISAs, 

which use antibodies and are often limited to reliable types of antibodies and decreased 

sensitivity.22 Current ELISA kit assays are not selective enough for only CML or CEL without 

other glycation mechanism byproducts. Other types of analytical methods include time-consuming 

immunohistochemical detection, fluorescence spectroscopy and size exclusion chromatography 

with fluorescence detection.25–27 Thus, this work showed a reliable, sensitive, specific, and 

reproducible method to detect CML, CEL and lysine in human blood samples.  

The bioanalytical method validation by the EMA provides guidance and recommendations for 

bioanalytical assays, which can be seen as the “gold standard” in other types of method 

development.52 By using the FDA approved guideline M10 by the ICH, this study used sample 

analysis recommended chemical, biological, and metabolite drug guidelines to explore various 

analytical parameters, such as LOD, LOQ, matrix effects, intra- and inter-assay accuracy and 

precision, and matrix interferences. The EMA bioanalytical method validation guidance provides 

clear acceptance and reliability for biological assays and analytical results.  

To date, most reports reporting AGE formation have primarily focused on AGEs in food, 

biological plasma or serum, or human tissues (retina, kidney, endothelial and smooth muscle 

cells).24,27,29,31,53–58 Increased protein glycation has been reported in clinical studies involving 

people with diabetes, and it is linked to various complications associated with increased AGEs and 

oxidative stress.19,59–61 Although glycation occurs on most cell types, AGE detection of 

bloodstream components may provide insight into increased pathologic conditions.44,62 For 

example, glycated albumin (gHSA) has been shown to influence delivery of biologically active 
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peptides to healthy RBCs, while that same delivery was reduced in RBCs from people with 

diabetes.63,64  

Through this process, our results showed acceptable linearity, LOD, and LOQ. The matrix 

effects did not contribute to chromatographic signals, which is a major concern for biological 

samples. There was clear specificity, peak separation, and distinguishable IS correlation to the 

analyte detected. The intra- and inter-assay results showed EMA and US FDA bioanalytical 

guideline acceptable accuracy and precision. Overall, the results showed this methodology to 

detect and quantify CML, CEL, and lysine in stored blood solutions can be used in other analyses 

involving suspected AGE formation on blood components.  

Here, there were no statistically significant differences in the two blood storage solutions on 

day 1 of storage. Even though there were no statistically significant differences in the two blood 

storage solutions at day 1 (freshly drawn blood), the novel method confirms the potential for more 

studies involving longer storage times and diabetic patients to closely study AGE formation. AGEs 

are typically formed over longer periods of time than 4 hours of storage, but a comprehensive 

analysis can be a future project using this novel methodology. Also, it is unclear if other AGEs, 

such as CML/CEL byproducts, could increase oxidative stress and associated adverse effects to 

RBCs as seen in storage lesions. Storage lesions are a known issue in blood storage, the extent of 

AGEs causing adverse post-transfusion related complications and how longer storage time can 

change the amount of CML and CEL on RBCs is without precedent. A future direction utilizing 

this novel methodology can explore the 6-week blood storage time and the overall change in AGEs.  

AGEs are known to be related to the pathomechanism of diabetes and other degenerative 

disorders.39,42,61 This study involved utilizing blood from healthy donors to explore methodology 

that can reliably and accurately detect and measure AGEs, while maintaining sensitivity and 
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bioanalytical merits to other reports using different instruments or assays. In this chapter, the 

detection and quantification of CML, CEL, and lysine present on stored RBCs, without significant 

issues of matrix effects and with analyte recovery, was successfully confirmed. The purpose of 

this small initial study was to validate the robustness of the biomarkers and provide a pilot study 

for future blood banking AGE research. The data encourages further investigation of the 

accumulation of AGEs. Specifically, using this method to expand freshly drawn blood to stored 

blood over 42 days and evaluate the change of AGEs on a weekly basis (chapter 3). This method 

will be key in future blood banking studies in this dissertation to evaluate the difference in 

hyperglycemic and normoglycemic blood storage conditions and the overall glycation process of 

RBCs.   
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Chapter 3: Weekly Blood Storage Evaluation for 43 Days 

3.1 Introduction 

3.1.1 Background 

In times of war, natural disasters, and worldwide pandemics, there is typically a blood shortage 

because donation rates drop as much as 40%, yet the demand for transfusions remains constant or 

even increases.1,2 It is imperative that donors are screened to prevent transfusion complications 

such as disease transmissions, alloimmunization, and other possible fatal occurrences.3,4 However,  

screening donor blood for such issues was not always a priority before the early twentieth century, 

when little was known about blood typing and blood borne pathogens.5,6 The lack of knowledge 

concerning blood types, Rh factor (a protein on red blood cells to determine positive or negative 

blood type), and blood diseases lead to mismatched transfusions and transfusion-related reactions 

and transferring of significant diseases.5,6 Advancements in blood component separation 

techniques allowed for the preparation of specific blood products, such as red blood cells (RBCs), 

platelets, and plasma, allowing for safer and more personalized patient care.7 The human 

immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) epidemic in the 

1980s led to a heightened focus on blood safety and the implementation of strict screening and 

testing protocols for blood donors.8–10  

The development of blood substitutes and artificial blood has been an ongoing area of research 

to address blood shortages and increase blood availability.11–13 Today, blood donation and storage 

are crucial focal points of modern healthcare systems worldwide. Blood banks and donation 

centers play a pivotal role in ensuring a safe and sufficient blood supply for medical treatments, 

surgeries, and emergency situations.11,14,15 Research and advancements in blood collection, 



   

 

83 
 

storage, and transfusion practices continue to improve patient outcomes and reduce mortality 

rates.16–18  

The Food and Drug Administration (FDA) has approved four additive storage solutions to 

extend the shelf-life and improve stored RBCs.19,20 However, all current FDA approved additive 

solutions exhibit glucose concentrations that are at least 5 times greater than concentrations found 

in vivo (5-6 mM).21,22 Reports in the literature suggest that storage of RBCs for more than 14 days 

could be linked to incidents of adverse outcomes after cardiac related surgery, and it is common 

practice to only transfuse blood before 5-8 days of storage for neonate patients to limit the onset 

of adverse reactions.23–25  

There is also evidence that supports blood storage causes irreversible metabolic and 

physiological damages to the RBCs known as the red cell storage lesion.26,27 As previously 

discussed in chapter 1, these physical and metabolic changes that occur to blood components 

during the typical 42 day storage period compromise the health of the RBC, and can lead to adverse 

effects when transfused.14,27–31 Storage lesion markers call into question the overall safety and 

efficacy of stored RBCs transfused into a patient.32 Blood banks and healthcare facilities follow 

strict guidelines for blood storage and use blood components with optimal storage conditions to 

minimize storage lesions and preserve RBC quality.7,33,34 Monitoring the quality and functionality 

of stored RBCs, including hemolysis, and adenosine triphosphate (ATP) and 2,3-

diphosphoglycerate (DPG) concentrations, is crucial to ensure safe and effective transfusions for 

patient recipients.17,34,35  

Previously, the Spence group reported that normoglycemic storage increases stored RBC 

ATP release, reduces oxidative stress, osmotic fragility, while increasing deformability, as 

discussed in chapter 1.36,37 Normoglycemic storage has been shown to improve these adverse 
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effects, but the storage conditions were performed via manual “feeding” techniques while RBCs 

were stored in Eppendorf tubes. As shown in Figure 3.1, RBCs stored in normoglycemic 

conditions maintained initial ATP release levels throughout the storage duration, while RBCs 

stored in hyperglycemic conditions exhibited significantly decreased ATP release, typical of the 

storage lesion.37 Perhaps not surprisingly, deformability measurements displayed a similar trend, 

with normoglycemic stored RBCs maintaining their initial relative deformability throughout 

storage, while hyperglycemic stored RBCs became more rigid overtime, a known inhibition of 

ATP release.36–38 Overall, these results highlighted a key relationship between time of storage and 

damage permanence, specifically the importance of days 8, 12, and 15 for ATP release and 

deformability, indicating irreversible damages occurring to stored RBCs in hyperglycemic 

conditions during this time frame. It is expected that both time and type of storage will affect the 

results, so it will be important to examine the statistical relationship to determine the total 

interaction effects as well as individual variable effects. 

 

Figure 3.1. RBC release of ATP and relative deformability. A. Flow-induced release of ATP 

from ERYs stored in various additive solutions and transferred to various buffer systems prior 

to introduction to the fluidic device. This data suggests that the FDA-approved AS-1 storage 

solution may be damaging to the stored RBCs and that the damage is non-reversible after two 

weeks of storage. Error bars are ±SEM, n = 6 for all, *p <0.05 to AS-1N–PSSN day 1. B. AS-

1N–PSSN samples possessed the highest deformability and maintained a stable level 

throughout 36 days of storage. Deformability of RBCs in AS-1–PSSN samples were able to 

completely recover (day 8) to a normal level of deformability or were no longer able to recover 

(beyond day 12) upon transfer to PSSN. Error bars are ± SEM, n ≥ 3, *p < 0.05 to AS-1N–

PSSN day 1. Borrowed from Liu, Y. et. al.37 
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A major limitation of previous normoglycemic storage methods resides in the glucose 

utilization by the RBCs throughout storage. Without the addition of glucose throughout storage, 

normoglycemic stored RBCs become hypoglycemic after only 24 hours. This required a manual 

“feeding” of glucose to normoglycemic stored RBCs to maintain physiologically relevant glucose 

levels throughout storage. The stored RBC samples made up in 2 mL Eppendorf tubes were 

transferred to cut polyvinyl chloride (PVC) bags (ULINE, Pleasant Prairie WI) and sealed for 

storage with a heat sealer. The AS-1N samples were “fed” using 20 µL of 400 mM glucose in 

saline every 3 days. The AS-1 samples were not “fed” and were only opened to remove sample 

volumes. These conditions, however, were not equivalent and thus introduced a potentially 

confounding variable that could cause differences in the results. 

3.1.2 Innovations 

Although this initial normoglycemic storage approach was successful in alleviating storage 

lesion markers, it was not ideal for future application. The manual feeding involved opening the 

stored RBC bag, removing a small volume to measure the glucose, determining how much volume 

of a concentrated glucose solution was required to maintain physiological levels, and then injecting 

the stored RBC bag with said amount of glucose solution (Equation 5).  

 

 

 

 

 

 



   

 

86 
 

This breach of sterility did not pose an issue for the initial studies because no transfusion 

was being performed; rather, the studies were to generate preliminary data providing evidence that 

normoglycemic storage with feeding reduced storage lesion markers. However, it cannot be 

reasonably translated to current practices, as it breaches sterility and requires unreasonable labor 

efforts. Additionally, the small-scale storage (less than 5 mL) with in-house fabricated PVC bags 

may not illicit similar results in comparison to commercially available blood storage bags (380-

400 mL of RBCs and additive solution). Thus, for the importance of translational clinical practices, 

it was critical to utilize a feeding system that not only maintained sterility but one that could be 

applied to more realistic blood banking laboratory practices, which would include full autonomy 

in its feeding method. Therefore, an autonomous feeding device was designed and utilized to 

maintain normoglycemic levels in an autonomous system (Figure 3.2).  
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Figure 3.2. CAD drawing of automated glucose feeding system for hyperglycemic and 

normoglycemic stored RBCs. The pressure difference created between the saline/100 mM glucose 

bag and the stored RBC bag is driven by gravity, due to the 90 cm difference in height between 

the two. When the valve is closed, there is no fluid flow since the valve’s inability to expand exerts 

an equal pressure on the fluid. However, when it is opened, the pressure differential is realized 

since the stored RBC bag is expandable. This drives fluid flow into the stored RBCs, thus allowing 

feeding volume and frequency to be controlled by the opening and closing of the solenoid valve. 

Borrowed from Soule, L. et. al., (in review). 

 

 

Previous Spence lab members had developed the AS-1N additive solution by modification 

of the FDA approved solution AS-1, changing only the glucose concentration to 5.5 mM for 

normoglycemic conditions. However, the method used to sterilize the additive solutions was 

problematic. Previously, the d-glucose was added to the CPD/CPD-N and AS-1/AS-1N before 

autoclaving, which would turn the solutions a slight yellow color after sterilization was complete. 
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The heat to sterilize the solutions is important for practical applications regarding FDA protocols 

for in vivo infusion solutions limit bacteria and cell lysis. When the previous solutions were heated, 

the color change, even slight, indicates degradation, which led to a burnt sugar or caramel smell 

often associated with the Maillard reaction. This process is hypothesized to increase the likelihood 

of the formation of early and late AGEs, which would be problematic for the study of AGEs during 

storage.39 In one report, the authors tested different autoclaving temperatures and varying glucose 

concentrations from different manufacturers and used liquid chromatography with tandem mass 

spectrometry (LC-MS/MS) to detect and quantify different glucose degradation products 

(GPDs).40 Leitzen, S. et. al found there are significant differences associated with increased 

glucose concentration and autoclave temperature and increased GPDs, including glyoxal (GO) and 

methylglyoxal (MGO).40  

Both GO and MGO are intermediates that form AGEs.40 Based on the standard European 

Pharmacopoeia steam-sterilization method solutions, must be heated to at least 121°C for 15 

minutes.40 It is possible that increased GDP products in a glucose solution administered through 

intravenous application can increase the formation of AGEs on the blood vessel walls.41 The extent 

of increased parenteral GPD solution administration research needs to be further investigated, but 

it is important to understand the risks of autoclaving glucose solutions for transfusion practices. 

So, in the interest of studying the AGEs formed from only the ERYs stored in high and low glucose 

storage solutions overtime, it was necessary to develop a new solution preparation protocol. That 

method change was discussed in chapter 2 section 2.2.2, with the addition of glucose after the 

solutions were autoclaved. The glucose was instead filtered via stericups and added in a sterile 

environment to the solutions.  
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3.1.3 Glutathione 

Once the feeding system was developed and validated, it could be used to store 

normoglycemic RBCs for additional in vitro testing of storage lesion markers. Specifically, ones 

related to oxidation and AGE formation, which was measuring glutathione. Glutathione is a crucial 

antioxidant and plays an essential role in cellular defense against oxidative stress, as previously 

discussed in chapter 1.42 Glutathione is a tripeptide composed of three amino acids: cysteine, 

glutamic acid, and glycine (Figure 3.3).43 The cysteine amino acid contains a thiol (-SH) group, 

which is crucial for the biological activity of glutathione.44 This thiol compound is present in 

almost all cells and is involved in various physiological processes, including detoxification, 

immune function, and cellular protection against reactive oxygen species (ROS)  accumulation.43,45 

Its thiol group is particularly important because it can donate electrons to neutralize harmful free 

radicals and help maintain the cell's redox balance.44 The thiol group in cysteine is crucial for its 

ability to participate in these biochemical reactions and maintain cellular homeostasis.44 The most 

prominent thiol in blood is glutathione, with the majority of glutathione residing in the cytoplasm 

of RBCs (0.4-3 mM).46,47 Glutathione is present in relatively high concentrations in RBCs, where 

it serves as an important antioxidant and plays a vital role in protecting the cells from oxidative 

damage.47 Due to its prominent role in antioxidant defense, glutathione level is often used as a key 

indicator of oxidative stress within cell types and was chosen for this study as an indirect 

measurement of oxidation in stored RBCs in various storage conditions.  
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The glycolytic pathway, also known as glycolysis, is a central metabolic pathway that 

occurs in the cytoplasm of cells.48 It is a series of biochemical reactions that break down one 

molecule of glucose (a six-carbon sugar) into two molecules of pyruvate (a three-carbon 

compound).49,50 These reactions are anaerobic, meaning they do not require oxygen.48 Glycolysis 

is a universal pathway found in nearly all living organisms, from bacteria to humans.48 It serves as 

a fundamental mechanism for glucose utilization and energy production.48 Depending on the 

availability of oxygen, the fate of the pyruvate produced in glycolysis can vary.49 In the absence 

Figure 3.3. Glutathione molecule. Glutathione consists of a (A) cysteine, (B) glutamic acid, 

and (C) glycine. Within the cysteine, there is a thiol group, which is crucial for biological 

activity (D). A thiol is a type of organic functional group that consists of a sulfur atom bonded 

to a hydrogen atom. The sulfur atom in a thiol is also bonded to a carbon atom, making it part 

of an organic molecule. The general chemical structure of a thiol is R-SH, where R represents 

an organic group, which can vary and affect the specific functional properties of the thiol. 

Non-protein thiols are thiol-containing compounds that are not part of a protein's structure but 

are found in various biological and chemical contexts. These compounds contain a sulfur atom 

bonded to a hydrogen atom and are often involved in redox reactions, detoxification, and other 

cellular processes.44,47,52 
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of oxygen, pyruvate can be converted into lactate or ethanol (fermentation) to regenerate 

nicotinamide adenine dinucleotide (NAD+) for continued glycolytic activity.49  

The polyol pathway, also known as the sorbitol-aldose reductase pathway or polyol-

oxidative pathway, is a metabolic pathway in which glucose is converted into sorbitol and then 

into fructose through a series of enzymatic reactions.49,51–53 The polyol pathway is of interest in 

medical research and clinical medicine because it is implicated in the complications of diabetes 

mellitus.53 Elevated levels of glucose in the blood, as reported in diabetes, can lead to increased 

flux through the polyol pathway.53 Specifically, hyperglycemia causes the increase activity for the 

sorbitol production.54 The most important aspect of the polyol pathway is its association with 

reactive oxygen species (ROS) and oxidative stress.49 Increased activity through the polyol 

pathway increases production of ROS that must be removed through antioxidant pathways such as 

the glutathione pathway.49,54  

In the glutathione pathway, the conversion of glucose to sorbitol within cells can result in 

osmotic stress and damage due to the accumulation of sorbitol.52,53 The osmotic stress and cellular 

damage associated with the polyol pathway are thought to contribute to various diabetic 

complications, such as cataracts (in the lens of the eye), neuropathy (damage to peripheral nerves), 

and nephropathy (kidney damage).42,52,55–58 As a result, research efforts have focused on 

developing drugs that inhibit enzymes in the polyol pathway as a potential therapeutic approach 

to mitigate these complications in diabetic patients.51 

By means of a selenium-dependent enzyme catalyzed process, glutathione peroxidase 

(GPx) facilitates the transfer of hydrogen from GSH to extremely reactive ROS, leading to their 

transformation into less reactive substances.58,59 During these reactions, two GSH molecules come 

together through a disulfide linkage to produce oxidized glutathione (GSSG).58,59 GSH is the active 
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and antioxidant form of glutathione, while GSSG is produced as GSH neutralizes ROS.52,60 GSH 

is synthesized from cysteine and glutamate, by γ-glutamylcysteine synthase (GCS), which forms 

γ-glutamylcysteine.52 This reaction is catalyzed by glutathione synthase (GS) and the addition of 

glycine.52 This conversion of GSH to GSSG is an essential part of the antioxidant process.61,62 To 

maintain an effective antioxidant defense, GSSG must be recycled back to GSH.61 This 

regeneration process is catalyzed by glutathione reductase, which uses  nicotinamide adenine 

dinucleotide phosphate (NADPH) as a cofactor.52,53 The balance between GSH and GSSG plays a 

crucial role in maintaining cellular redox balance and protecting cells from oxidative damage.42 

Measuring the GSH/GSSG ratio in cells and tissues is of clinical importance in assessing oxidative 

stress and certain diseases, including cancer, neurodegenerative disorders, and cardiovascular 

diseases.42,55,57 The ratio of GSH to GSSG is an important indicator of the cell’s redox state.55,63 

An elevated GSH/GSSG ratio is a sign of a reducing, healthy cellular environment, while a 

decreased ratio may indicate oxidative stress.58,63,64 However, each of these components can be 

measured and evaluated separately, as seen in this chapter. There are no studies directly connecting 

normoglycemic blood storage, AGE formation, and changes in GSH levels, so these will be the 

subject of this chapter.  
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Figure 3.4. Glycolysis pathways. The favorable glycolysis pathway converts glucose to glucose-

6-phosphate (Glucose-6-P), then to glyceraldehyde-3-phosphate (Glyceraldehyde-3-P), then 1, 3-

bisphosphoglycerate (1,3 BPG), and finally pyruvate. In hyperglycemic environments, the 

glycolytic pathway will become saturated with excess glucose and the polyol pathway will increase 

to supplement the glycolysis. The initial step of the polyol pathway involves the reduction of 

glucose to sorbitol. This reaction is catalyzed by the enzyme aldose reductase. Sorbitol is then 

oxidized and converted into fructose by the enzyme sorbitol dehydrogenase. The conversion to 

fructose increases the NADP+/NADPH and thus is used for the conversion of Glyceraldehyde-3-P 

to 1,3 BPG and finally pyruvate. 48,49,52,53 

 

There are current methods for measuring free GSH, which can be used on the RBC 

membrane for the two types of storage solutions, including using commercially available 

fluorometric detection kits (Cayman Chemical, Ann Arbor, MI). AS-1 is a hyperglycemic storage 

solution, therefore it is anticipated that RBCs stored in AS-1 will exhibit low levels of free GSH 

over the course of 6-weeks and remain lower than RBCs stored in AS-1N. It is expected that both 

time and storage condition will affect the results, so it will be important to examine both variables 

to determine the interaction between the two.  
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3.1.4 Troubleshooting: Tubes Versus Bags 

Initial blood storage methods involved storing the RBCs in 50 mL conical tubes with a septum 

cap (Figure 3.5). This sample vessel was chosen due to the limited supply of commercial blood 

storage bags due to a COVID-19 supply shortage and because the septum cap allowed sample 

removal and glucose addition without opening the entire system. For experimental purposes, it was 

important to keep the samples in a closed environment to mimic clinical blood bag storage sterility 

requirements, so the idea of utilizing septa caps was implemented. The septa caps were appealing 

because a small needle and syringe could be used to both “feed” and extract the sample without 

completely opening the tube caps. After further investigation and analysis, it was determined that 

the tube caps were faulty and therefore led to many leaks, increased cell lysis and possible bacterial 

contamination. Although this design was unsuccessful, it led to necessary optimization and 

experimental knowledge that was useful for the implementation of commercial animal veterinary 

blood bags with an automated “feeding” regime. Both methods and results will be described and 

differences in methodology will be highlighted.   
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Figure 3.5. Blood banking troubleshooting using tubes and animal blood bags. A. 50 mL conical 

tubes with septa inserted screw top caps. Saline or 100 mM glucose solution could be “fed” using 

a syringe and needle by piercing the septum and depositing the solution. Samples were removed 

using the same system. B. Automated closed “feeding” system using 150 mL animal blood bags 

and tubing to distribute saline or 100 mM glucose solution directly into the bag when the valves 

were open. The bag system was kept sterile and completely closed and samples were removed via 

the septum at the bottom of the external tubing sampling port using a syringe and needle. 

 

3.2 Methods 

3.2.1 Sample Preparation 

All storage solutions and RBC collection were prepared in a manner identical to those reported in 

2.2.1. and 2.2.2. 
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3.2.2 RBC Storage for Blood Bags 

The plasma and buffy coat were removed via aspiration, and the pRBCs were placed into 

a 15 mL tube. The total volume of pRBCs was added to a 50 mL conical tube containing additive 

solution in a 1:2 ratio (e.g., 7 mL AS-1 and 14 mL RBCs). The 50 mL conical tubes were inverted 

and mixed thoroughly before being placed in either the prepared and sterilized blood storage tubes 

or bags. The samples were placed in the refrigerator at 2-6°C for 1-2 hours before analysis of the 

blood glucose concentration to ensure it was 5.5 mM concentration. If the blood glucose 

concentration was below 5.5 mM, a 1 mL syringe and 22-gauge needle were used to deliver the 

appropriate amount of 100- or 400-mM glucose (Equation 5).  

3.2.3 Glucose Concentration and Hematocrit Percentage 

All glucose concentrations and hematocrit % were collected in a manner identical to those reported 

in 2.2.3.  

3.2.4 Preparation of Stored Blood Using 50 mL Conical Tubes with Septa Caps 

The 50 mL conical tubes with septum screw caps (Syringa Lab Supplies, Boise, ID) were 

UV sterilized in the biosafety cabinet for 24 hours before use. The stored blood with additive 

solution was placed into the tube by removing the cap and pouring in the blood solution (12-23 

mL). The tubes were kept with the caps on and stored at 4°C until use. The glucose was checked 

every 3 days using a 1 mL syringe and 22-gauge needle and removing approximately 10 µL of 

sample by piercing the septum. The sample glucose was analyzed by using a glucometer and strips 

as per manufacturer instructions. The sample was placed on the glucometer strips using the 1 mL 

syringe and 22-gauge needle, instead of using the conventional lancet approach by sticking a finger 

and using the blood drop to apply to the glucometer strip. The AS-1N sample was “fed” manually 

by calculating the necessary addition of 400 mM glucose solution to bring the sample glucose 
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concentration to 5.5 mM (Equation 5). The AS-1N sample was placed into the biosafety cabinet 

and the calculated volume was dispensed using the sterilized 400 mM glucose in 0.9% saline 

solution. The same amount of 0.9% saline solution was “fed” to the AS-1 sample for volume and 

sample preparation continuity. The hematocrit % was checked each week and utilized for acid 

hydrolysis using HematoSpin. The caps of the tubes were parafilmed to help with the leaking and 

contamination issue, although it was unsuccessful. The sample was removed from the tubes on 

day 1, 5, 8, 12, 15, 18, 22, 29, and 36 for the subsequent assays and sample preparation.  

3.2.5 Acid Hydrolysis and SpeedVac Preparation 

All acid hydrolysis and speedvac sample preparation were prepared in a manner identical to those 

reported in 2.2.5.  

3.2.6 Glutathione Assay Preparation and Optimization 

The Thiol Detection Assay kit (Cayman Chemical, Ann Arbor, MI) was used as per the 

directions of the kit for cell lysate sample type. On the day of the scheduled blood experiments (as 

described above), 350 µL was allocated for the thiol assay. Aliquoted samples were stored at 4°C 

for one hour and then centrifuged at 2000g for 10 minutes. The supernatant was removed and 1 

mL of cold diluted buffer (from thiol kit) was added. To ensure pRBCs were fully lysed, the RBCs 

were homogenized using a pestle (Fisher Scientific, Hampton, NH) and disposable mortar (VWR, 

Radnor, PA) for approximately 30 seconds, and the remaining samples were centrifuged at 

10,000g for 10 minutes at 4°C. To promote maximum thiol retention from the samples, the 

supernatant was removed and placed into a 10 kDa MWCO Spin Filters device (Sigma Aldrich, 

St. Louis, MO) and centrifuged at 14,000g for 30 minutes at room temperature. The filtrate was 

collected and stored at -80°C until used. For the thiol assay kit, both types of standards 

(Glutathione and Cysteine) were assessed, and sample concentration was optimized to determine 
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the best dilutions. The Glutathione standards were used, and all results were analyzed as free 

reduced glutathione (GSH) concentration.  

3.2.7 LC-MS/MS Sample Preparation and Usage 

All LC-MS/MS preparation and instrument usage were prepared in a manner identical to those 

reported in 2.2.6. and 2.2.7.  

3.2.8 Cell Lysis 

A cell lysis assay was utilized to determine the level of hemolysis in both storage 

conditions, AS-1 and AS-1N, and in both vessels of storage (tubes and blood bags). A 400 µL 

volume of sample was removed from the tubes/bags. The sample was divided into 300 µL for cell 

lysis separation and 100 µL for hematocrit measurement and glucose determination. Hematocrit 

and glucose were determined using methods described (methods 3.2.3). The 300 µL aliquot was 

centrifuged at 500g for 10 minutes at room temperature and the supernatant was removed and 

stored at -20°C until analysis. The remaining pRBC sample was spun down at 2000g for 15 

minutes at room temperature and 80 µL of pRBCs was removed and stored at -20 °C until analysis. 

On the day of the experiment, 72 mg of human hemoglobin (Sigma Aldrich) were added to a 15 

mL tube. A 10 mL volume of Drabkin’s reagent solution (Sigma Aldrich) was added to the 

hemoglobin tube and thoroughly mixed. This solution was used to make hemoglobin standards in 

the range of 0-0.8 g/L. The sample supernatant was diluted 1:10 in Drabkin’s solution and the 

pRBCs were diluted 1:1000 in Drabkin’s solution to fall within the range of the standards. Then, 

200 µL of each standard or sample was added to a clear 96-well plate, gently mixed and then 

covered for 15 minutes. The absorbance was measured at 540 nm. Total cell lysis could then be 

determined using total hemoglobin levels in the supernatant and cell pellets. The cell lysis was 

determined using Equation 6.  
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3.2.9 Blood Agar Plate 

Blood agar plate steaking was used to determine the amount of bacterial contamination, 

specifically hemolytic bacterial contamination. The 5% sheep blood in tryptic soy agar plates 

(VWR) were removed from cold storage (4°C) and placed into an incubator (Troemner, Thorofare, 

New Jersey) to warm up. The work area was prepared by spraying with 70% ethanol/water and 

obtaining a Bunsen burner and match. Once the agar plate had equilibrated to approximately 37°C, 

it was removed from the incubator and placed in the prepared work area. The 22-gauge needle and 

1 mL syringe were sterilized by holding near the flame of the burner for a few seconds, and then 

used to extract approximately 10 µL of blood sample through the septum of the conical tube cap. 

The agar plate was uncovered near the flame and the blood was injected onto the edge of the petri 

dish. The inoculating loop was sterilized using the flame and it was cooled before carefully 

streaking the sample in a zig-zag pattern, changing the directions for 4 zones on the plate. The agar 

plate was covered and placed upside down in a 37°C incubator and monitored culture growth each 

day for a week. By visual inspection, the bacterial growth was monitored (Figure 3.7).  

3.2.10 Optimization of Valve System and Preparation of Sterilized “Feeding” Solutions 

The valves were set up (Figure 3.2) and the 100-150 mL blood collection bags were filled 

with water and attached to the “feeding” system. An Arduino Uno microcontroller was used to 

control the valves and set up for automatic dispensing by Spence group member Logan Soule. 
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Empty Eppendorf tubes were weighed, and then water was dispensed from the valve system using 

various valve opening times (25-2000 milliseconds), and then weighed again. The mass difference 

was used to determine the volume dispensed at each valve opening period and then used to create 

a standard curve (Figure 3.8).  

For proper function, the automated feeding system needed calibration to determine the 

appropriate amount of time to open the valve to deliver the necessary volumes of concentrated 

glucose to the stored RBCs. To do this, a simple mass subtraction method was utilized, dispensing 

the feeding solution into pre-massed sample tubes, and subtracting the mass before dispensing 

from the mass after dispensing to determine the volume of solution dispensed. Water was utilized 

as a surrogate to the 100 mM – 400 mM glucose solution since its density is 1 g/mL and easier to 

for calculation purposes. This calibration procedure also allowed for the determination of the lower 

limit of dispensing for the valve system, which dictated the glucose concentration. For example, 

the lower limit of dispensing for this system was determined to be 150 µL but using a 400 mM 

glucose feeding solution with a 150 µL dispensing volume would lead to significant glucose 

increases and hyperglycemia. To combat this, a lower glucose concentration feeding solution was 

required with greater dispensing volumes. However, dispensing greater volumes periodically 

throughout storage decreases the hematocrit, which would hinder the benefit of the transfusion.  

So, based on maintaining a hematocrit range between 50-60% throughout the 43 days in 

storage while remaining above the lower limit of dispensing, the 100 mM glucose “feeding” 

solution was the best choice to implement into the system. Based on predicted hematocrit decreases 

over 42 days of feeding, the 100 mM glucose solution in 0.9% saline solution was chosen to be 

implemented into the automated feeding system (Figure 3.9). To make the 100 mM glucose 

“feeding” solution”, 250 mL of a 0.9% NaCl solution (9g of NaCl diluted up to 1000 mL) was 
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added to a beaker with 4.504 g of dextrose and fully dissolved. The solution was then filter 

sterilized and placed into the biosafety cabinet. The remaining 0.9% NaCl solution was filter 

sterilized and placed into the biosafety cabinet. The solutions were added to previously prepared 

(methods 3.2.1), empty, and sterile (by UV light overnight) blood bags and closed and kept in 

sterile conditions until ready for “feeding” day. On the day of the experiment, a 10% bleach 

solution was attached to the valve system. Approximately 25 mL of 10% bleach was flowed 

through, allowed to sit in the system for 5 minutes, and another 25 mL of bleach was flowed. 

Immediately afterwards, 75 mL of sterilized water (0.22 µm stericup filtration system) was flowed 

through to ensure no bleach remained.  

Finally, either the 100 mM glucose in 0.9% saline or 0.9% saline was attached and 

approximately 10 mL was delivered by opening the valve and utilizing the height and subsequent 

pressure difference to ensure all water was purged. This setup was then closed by attaching a luer 

lock cap to the end of the sterilized valve system and kept in the cold storage room until the RBC 

bags were ready. 

3.2.11 Preparation of the Feeding Solution Regimen 

Based on the total volume of the blood storage sample, the amount of glucose/saline to be 

periodically dispensed into the stored RBCs was determined. By utilizing the calibration curve 

generated previously and average glucose utilization rates calculated in preliminary experiments, 

the Arduino Uno was programmed to dispense an average of 300 µL every 3 days (Figure 3.8). 

The Arduino and breadboard were set up in the cold storage room and plugged in for continuous 

automated feeding. The blood bags were opened via the capped luer lock adapter and quickly 

attached to the luer lock adapter at the end of the valve system. This blood sample was considered 
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“Day 1” and kept in the cold storage room (4°C) attached to the automated feeding valve for 43 

days.  

3.2.12 Preparation of stored blood using 50-150 mL veterinarian small animal blood bags 

Prior to the day of the experiment, the butterfly needle and line were removed from the PVC 

50-150 mL small animal blood storage bags (Animal Blood Resources International, Stockbridge, 

MI) and the “feeding” line was cut and a luer lock was added with vacuum grease. The prepared 

empty storage bags were sterilized by UV light for 24 hours prior to adding the RBC sample. The 

cut “feeding” line was attached to the end of the valve system and a luer lock adapter was added 

to the cut end using vacuum grease, as in the sterilized valve system in the cold storage room. 

Blood samples from consenting donors were collected and prepared as described in methods 3.2.2. 

After the AS-1/AS-1N blood samples were prepared in the 50 mL conical tube, the blood was 

poured into the appropriate empty blood storage bag using the luer lock opening created and then 

capped with a luer lock adapter. The blood was mixed using gentle movements of the hands and 

placed into 4°C storage for 1 hour. The sample was then mixed again and an aliquot was removed 

via a 22-gauge needle and 1 mL syringe to assess the blood glucose amount. If the blood was not 

between 5-5.5 mM, then the appropriate amount of 100 mM glucose in 0.9% saline was added via 

1 mL syringe and 22-gauge needle in the biosafety cabinet and thoroughly mixed. An 800 µL RBC 

solution sample was removed from the blood bags on day 1, 8, 15, 22, 29, 36, 43.  

3.2.13 Data Analysis 

Calibration plots of analyte/IS peak area ratio versus CML, CEL, and lysine concentrations 

were constructed, and a linear regression was used for all analytes. The peak area ratio of sample 

versus associated IS was used to produce a response to determine the concentrations from the 

calibration line. Free GSH results were collected from the Thiol Assay kit results and a linear 
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regression was used for standards and analyte quantification. SigmaPlot (Systat Software Inc) was 

used to plot all results and R software (version 4.2.2) was used to perform statistical testing in the 

“rstatix” package (v0.7.2; Kassambara, A. 2023). 

A repeated measures two-way ANOVA test for each analyte (CML, CEL, Total AGEs, 

Lysine, Total AGEs/Lysine, Free GSH) were conducted to examine for differences between 

storage solution types over 43 days. The storage solutions were treated as a between-subjects 

dependent variable. Prior to conducting the ANOVA test, the assumptions of normality and 

homogeneity of variances were assessed using Shapiro-Wilk and Levene's tests, respectively. If 

these assumptions were met, the ANOVA test was performed to determine which specific solution 

types in storage exhibited statistically significant differences on the analytes studied. In the case 

of a significant ANOVA result, post hoc Bonferroni tests were conducted to determine which 

specific solution types and/or days in storage exhibited statistically significant differences on the 

analytes.  

3.3 Results 

3.3.1 RBC Solution in Tubes: Cell Lysis 

According to FDA regulations, appropriate cell lysis should be below 1% to be used for 

transfusion applications. In two tube samples (AS-1 and AS-1N), the starting cell lysis was 0.56% 

and 1.14% on day 14, respectively. By day 17, the cell lysis increased to 4.53% and 5.65% for AS-

1 and AS-1N, respectively. By days 33 and 36, AS-1 had 8.48% and then 21.66%, and AS-1N had 

7.20% and then 16.8%, respectively. Overall, there was a clear increase in cell lysis in the tubes, 

well beyond the 1% threshold (Figure 3.6). Thus, the tubes were considered an unusable blood 

storage vessel for future experiments.  
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Figure 3.6. Cell Lysis from RBCs in two storage solutions, AS-1 and AS-1N, in tubes stored over 

14-36 days. There was significant cell lysis present for both solutions and the lysis increased over 

time, resulting in extreme cell lysis (2-24%), n=2. 

 

3.3.2 RBC Solution in Tubes: Blood Agar Streaking 

The blood agar streaking test was used to determine if there was bacterial contamination 

in the tubes that could explain the increase in cell lysis. The stored blood samples were removed 

and streaked on the agar plates and stored in an incubator for at least a week. The plates were 

monitored, and bacterial contamination was not present in any of the samples. There was no visible 

color change, small areas of bacteria in media, or any cultures growing in the petri dish lids (Figure 

3.7). This result does not indicate there was no bacteria at any point, but it does not lead to the 

assumption that the cell lysis was caused by the excess growth in bacteria due to the septa or caps 

leaking and an unsterile environment.  
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Figure 3.7. Agar streaking plates for bacterial growth in RBC solutions from tube storage. Several 

samples were examined for bacterial growth over various time points. None of the samples showed 

distinguishable bacterial growth, n=4. 

 

3.3.3 IV Drip Calibration Curve for Automated Feeding 

Since the septa tubes were no longer a viable option for storing blood, the next experiment 

was to utilize blood storage bags and set up a sterile, automatic feeding device. The valve IV drip 

system first needed to be calibrated to deliver the appropriate volume of solution to “feed” the 

samples, without compromising the necessary glucose range or hematocrit. The calibration curve 

for 0-2500 milliseconds was linear and showed good reproducibility, as seen in Figure 3.8. Thus, 

the calibration curve can be used to determine the amount of time needed to “feed” the RBC 

solution to achieve 4-6 mM glucose levels every 3 days without opening or invading the sterile 

environment.  
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3.3.4 Glucose and Hematocrit Changes over 43 Days 

Samples were removed on a weekly basis, which accounts for lower hematocrit % than in 

the original experiment design (Figure 3.9). The glucose concentration was manually tested each 

week during sample removal from the bags to ensure the “feeding” solution kept the AS-1 and 

AS-1N samples in appropriate ranges (Figure 3.10). The glucometer saturates above 33 mM; 

therefore, it was assumed that AS-1 was at least 33 mM for the first 7 days. After day 8, glucose 

concentrations continually lowered until day 43 with the minimum glucose concentration of 23.3 

mM. Although the AS-1 glucose concentration decreased significantly, it was consistently above 

AS-1N samples on both day 36 (6.85 mM) and 43 (8.30 mM), which for the purposes of this 

experiment, was considered sufficient and therefore not “fed” with a solution containing glucose. 

Figure 3.8. Calibration curve for dispensing volume via the opening of the solenoid valve. The 

volume dispensed from the automated feeding system with various valve opening intervals 

(50- 2000 msec) was determined by utilizing water (density = 1 g/mL) and a mass subtraction 

technique. The calibration curve is linear and can be used to determine the appropriate valve 

opening time that corresponds to the desired volume to dispense when feeding the concentrated 

glucose solution (n = 10, error = standard deviation). Borrowed from Soule, L. et. al., (in review).  
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The AS-1N samples maintained a glucose concentration between 4-6 mM, until day 36. This 

increase above 6 mM on day 36 and 8 mM on day 43 could be due to the decrease in hematocrit 

% with the same amount of solution “fed” every 3 days, and the RBCs possibly using less glucose 

to maintain metabolic function. Even though the AS-1N samples did exceed the desired glucose 

concentration range, the samples were still significantly lower than the AS-1 samples on both days 

36 and 43.  

 

Figure 3.9. Hematocrit % of RBC solution in blood storage bags. There is no statistically 

significant difference between AS-1 and AS-1N storage solutions over 43 days. There is a 

distinguishable decline in the hematocrit due to removing samples and adding “feeding” solution. 

n=4-5, error=SEM. 
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Figure 3.10. Glucose concentration [mM] of RBC solution in blood storage bags via glucometer. 

There is a statistically significant difference between AS-1 and AS-1N glucose concentration in 

storage solutions over 43 days. There is a distinguishable decline in the concentration of glucose 

in AS-1 due to removing samples and adding “feeding” solution (0.9% saline). The dashed lines 

indicate the desired range for the normoglycemic storage solution (4-6 mM) and AS-1N glucose 

concentration is within these bounds until days 36 and 43. n=4-5, error=SEM. 

 

3.3.5 CML Over 43 Days 

For CML, there were no significant differences found between samples stored in AS-1 and 

AS-1N (p=0.399). There were also no significant interaction effects between solutions and days in 

storage as seen in Figure 3.11. These results indicate that CML formation on RBC membrane was 

not affected by the lower glucose additive solution. 
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Figure 3.11. Carboxymethyl lysine (CML) concentration [nM] on RBC membranes after storage 

in AS-1 or AS-1N over 43 days. There is no statistically significant difference between AS-1 and 

AS-1N CML concentration in storage solutions over 43 days. p=0.399, n=4=5, error=SEM. 

 

There was a significant effect of time on CML for AS-1, F(6,18)=9.161, p<0.001. For AS-

1, Bonferroni tests revealed significant differences between days, visualized results are displayed 

below in Figure 3.12. There was a significant effect of time on CML level for AS-1N stored RBCs, 

F(6,18)=2.882, p<0.05. For AS-1N, Bonferroni tests revealed significant differences between 

days, visualized results are displayed below in Figure 3.12. These results indicate that CML 

formation was directly proportional with the progression of time for both AS-1 and AS-1N stored 

RBCs. 
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Figure 3.12. CML [nM] for both storage solutions over 43 days showed statically significant 

differences. A. The AS-1 solution had differences between day 1 and day 36, day 1 and day 43, 

day 8 and day 36, day 8 and day 43, day 15 and day 36, day 15 and day 43, day 22 and day 36, 

and day 22 and day 43. B. AS-1N solution had differences between day 8 and day 36, and day 8 

and day 43. *p<0.05, **p<0.01, ***p<0.001, n=4-5, error=SEM. 

 

3.3.6 CEL Over 43 Days 

CEL was successfully detectable, and there was marginal significant differences found 

between samples in AS-1 and AS-1N (p=0.052). These differences, although not below p<0.05, 

showed the possibility of significance, if more samples were tested. There were also no significant 

interaction effects between solutions and days in storage as seen in Figure 3.13. These results 

indicate that CEL formation on RBC membrane was marginally altered with variance in solution. 
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Figure 3.13. Carboxyethyl lysine (CEL) concentration [nM] of RBC solutions in blood storage 

bags over 43 days. There are marginal statistically significant differences between AS-1 and AS-

1N glucose concentration in storage solutions over 43 days. p=0.052, n=4-5, error=SEM. 

 

A repeated measures two-way ANOVA testing revealed that storage time was a significant 

factor in CEL formation for AS-1 stored RBCs, F(6,18)=3.717, p<0.05. For AS-1, Bonferroni tests 

revealed significant differences between days, visualized results are displayed below in Figure 

3.14. There was a not significant effect of time on CEL for AS-1N, F(6,18)=2.292, p=0.081. These 

results indicate that CEL formation was altered with progression of time for AS-1 on storage days 

1, 15, and 43. 
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Figure 3.14. CEL [nM] for both storage solutions over 43 days. A. AS-1 solution had differences 

between day 1 and day 15, and day 1 and day 43. B. AS-1N solution had no differences between 

any days in storage. *p<0.05, n=4-5, error=SEM. 

 

3.3.7 Lysine Over 43 Days 

The data in Figure 3.15 represented the total lysine on the RBC membranes. For membrane 

proteins that contained lysine, there were no significant differences found between samples in AS-

1 and AS-1N (p=0.250). There were also no significant interaction effects between solutions and 

days in storage as seen in Figure 3.15. These results indicate that non-glycated lysine formation 

on RBC membrane was not altered with variance in solution. 
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Figure 3.15. Total protein-bound lysine concentration [nM] of RBC solutions in blood storage 

bags over 43 days. There is no statistically significant difference between AS-1 and AS-1N glucose 

concentration in storage solutions over 43 days (p=0.250). n=4-5, error=SEM. 

 

Overall, there was limited to no change in total lysine concentration over 43 days. This result 

can be seen as there was no significant effect of time on lysine for AS-1 F(6,6)=2.625, p=0.133. 

Also, there was no significant effect of time for AS-1 F(6,12)=1.117, p=0.408. Both visualized 

results are displayed below in Figure 3.16. These results indicate that lysine formation was not 

altered with progression of time for AS-1 and AS-1N on various storage days. 
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Figure 3.16. Lysine [nM] for both storage solutions over 43 days showed no statically significant 

differences. A) AS-1 solution had no differences between any of the days. B) AS-1N solution had 

no differences between any of the days. n=4-5, error=SEM. 

 

3.3.8 Total AGEs Over 43 Days 

For total AGEs (CML and CEL combined), there were no significant differences found 

between samples in AS-1 and AS-1N (p=0.107). Furthermore, although the total AGEs clearly 

increased as a function of storage duration, there was not a large difference in AGE formation from 

day 1 to day 43. There were also no significant interaction effects between solutions and days in 

storage as seen in Figure 3.17. These results indicate that total AGEs formation on RBC membrane 

was not altered with variance in solution. However, an increase in AGEs (relative to day 1 of 

storage) were measured after 3 weeks of storage 
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Figure 3.17. Total AGEs (CML + CEL) [nM] of RBC solutions in blood storage bags over 43 

days. There is no statistically significant difference between AS-1 and AS-1N glucose 

concentration in storage solutions over 43 days. p=0.107, n=4-5, error=SEM. 

 

There was a significant effect of time on total AGEs for AS-1, F(6,12)=4.741, p<0.05. For 

AS-1, Bonferroni tests revealed significant differences between days, visualized results are 

displayed below in Figure 3.18. There was a not significant effect of time on total AGEs for AS-

1N, F(6,18)=1.475, p=0.242. These results indicate that total AGE formation was altered with 

progression of time for AS-1 days 8, 15, 29, and 43. 
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Figure 3.18. Total AGEs [nM] (CML and CEL combined) for both storage solutions over 43 days. 

A. AS-1 solution had differences between day 1 and day 43, and day 8 and day 15, day 8 and day 

36, and day 8 and day 43. B. AS-1N solution had no differences between any days in storage. 

*p<0.05, **p<0.01, n=4-5, error=SEM. 

 

3.3.9 Free Reduced Glutathione AS-1 vs AS-1N Over 43 Days 

For free reduced glutathione (GSH), there were significant differences found between 

samples in AS-1 and samples in AS-1N for both solution types and days in storage as seen in 

Figure 3.19. Solution types as a category in the two-way repeated measures ANOVA had 

significant differences as follows: F(6,18)=94.406, p<0.001. Days in storage had significant 

differences as follows: F(6,18)=14.236, p<0.001. There was no significant interaction between 

solutions and days in storage F(6,18)=2.149, p=0.133. These results indicate that free GSH 

formation was altered with variance in solution. 
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Figure 3.19. Free Glutathione (GSH) [nM] of RBC solutions in blood storage bags over 43 days. 

There is a statistically significant difference between AS-1 and AS-1N glucose concentration in 

storage solutions over 43 days. *p<0.05, **p<0.01, n=4-5, error=SEM. 

 

There was a significant effect of time on free GSH for AS-1, F(6,18)=12.681, p<0.05. For 

AS-1, Bonferroni tests revealed significant differences between days, visualized results are 

displayed below in Figure 3.20. There was a significant effect of time on GSH for AS-1N, 

F(6,18)=8.507, p<0.001. R=0.8286. For AS-1N, Bonferroni tests revealed significant differences 

between days, visualized results are displayed below in Figure 3.20. These results indicate that 

free GSH formation was altered with progression of time. 
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Figure 3.20. Free Reduced Glutathione (GSH) [nM] of RBC solutions in blood storage bags over 

43 days. There is a statistically significant difference between AS-1 and AS-1N glucose 

concentration in storage solutions over 43 days. *p<0.05, **p<0.01, ***p<0.001, n=4-5, 

error=SEM. 

 

3.4 Discussion 

In blood transfusion practices, there is limited knowledge concerning the effects of the high 

glucose storage solution on RBCs, specifically referring to RBC lesions, deformability, and other 

adverse effects. AGEs have been reported in various samples, but most reports concerning the 

glycation in food resulting in higher CML and CEL. There are limited reports of detecting and 

quantifying CML, CEL, and Lysine in human stored ERY samples. Furthermore, following the 

method development in chapter 2 in two different storage conditions (hyperglycemic and 

normoglycemic), AGEs were quantified each week. The sample preparation that enabled adequate 

separation and quantification of these AGEs over 43 days allows for a closer examination of 

glycation trends on the RBC membrane. These features, along with comparing other blood banking 

studies from previous Spence group members, such as metabolic and physical adverse effects 
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(adhesion, sorbitol, GSH, deformability) give a larger picture of the effect of a high glucose blood 

storage condition and a possible alternative in future in vivo applications. 

The automatic “feeding” application allows for customizability and glucose regulation. Even 

though the septum cap tubes were not successful due to faulty manufacturing and high cell lysis, 

the idea of continuous feeding in a normoglycemic environment was scaled up from the previous 

smaller tubes that were successful in determining ATP release and deformability. The novel use 

of utilizing smaller veterinarian blood bags for storage with an automated system to deliver a 

glucose solution was successful. Therefore, it is possible to implement this system for larger 

transfusion bags with confidence before moving to implementing it in vivo.  

Previously in chapter 2, the change in AGEs and lysine were measured for method validation 

on freshly drawn blood. Results indicated that there was no statistical difference in the types of 

storage solutions. However, it was expanded to 43 days and explored to determine how time can 

contribute to AGE and glutathione formation. There was a spike for both solutions on day 15 which 

correlates to literature reports of 2-week AGE formation importance.60,66–68 Furthermore, the data 

showed that the RBCs stored in AS-1 experience more changes than AS-1N in CML, CEL and 

total AGEs over the course of 43 days in storage. This finding is important because when 

examining the two different types of solutions, only AS-1 shows overall changes over time, which 

confirms the hypothesis mentioned in chapter 2. There was no relationship between increasing 

time and lysine concentration for both AS-1 and AS-1N. Furthermore, the data showed that the 

RBCs stored in AS-1 did not experience more changes than AS-1N in lysine concentration over 

the course of 43 days in storage. This finding is important because it signifies the overall RBC 

membrane non-glycated proteins did not change.  
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When further analyzing the CML and CEL data from day 1 to day 43, there are statistically 

significant increases in the AGEs from day 1 to day 43 (p<0.01). However, there are no differences 

between the solutions on either day (Figure 3.21). Interestingly, for CML, AS-1 had a 56.5% 

increase while AS-1N had a 21.1% increase, which is approximately half of AS-1 percent increase. 

Similarly, for CEL, AS-1 had a 68.7% increase while AS-1N had a 39.9% increase, again 

approximately half. Although the two solutions are not statistically different to each other, the 

surprising percentage differences, and statistical increase from day 1 to 43 show AGE formation 

is time-dependent and increasing.  

 

 

Additionally, to individual AGEs interpreted data, the total AGEs/lysine results show a 

clear increasing trend over the 43-day blood storage period (Figure 3.22). The results are 

Figure 3.21. CML and CEL day 1 versus 43 for AS-1 and AS-1N. A. CML Day 1 AS-1 (773.7 

nM ± 112.9) and day 43 (1210.9 nM ± 119.7) and AS-1N day 1 (869.2 nM ± 61.5) and day 43 

(1052.8 nM ± 149.0). B. CEL day 1 AS-1 (565.2 nM ± 53.2) and day 43 (953.7 nM ± 65.3) 

and AS-1N day 1 (643.9 nM ± 49.5) and day 43 (901.0 nM ± 160.8). **p<0.01, n=4-5, 

error=SEM. Image borrowed from Skrajewski-Schuler, L. et. al. 
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statistically significant between categories F(6,18)=17.591, p<0.05. Also, there were statistically 

significant results between day 43 relative to days 1, 8, 15, and 22 (p<0.05). The data specifically 

shows after day 15 a shift in total AGE/lysine formation, which is indicative of the current 

literature surround 2-week irreversible AGE formation.60,66 Again, there is a 53.7% percent 

increase in total AGE/lysine for AS-1 (day 1 1.11x10-3 ± 2.58x10-4 and day 43 1.71x10-3 ± 

6.45x10-5). In comparison, AS-1N had a 48.7% percent increase (day 1 1.02x10-3 ± 3.06x10-4 and 

day 43 1.52x10-3 ± 7.65x10-5). Finally, both AS-1 (F(6,20)=3.911, p<0.01)) and AS-1N 

(F(6,8)=7.139, p<0.001)) categories had a significant effect on days in storage. Thus, proving the 

hypothesis that storage solutions would alter total AGEs/lysine concentration over 43 days. 

 

 

Figure 3.22. Total AGEs/Lysine over 43 days for AS-1 and AS-1N. There was a 

significant effect of category on results which resulted in determining that AS-1 had a 

significant effect on specific days in storage (p<0.05). AS-1N did have a significant effect 

on specific days in storage (p<0.05) Overall, the solutions did influence the total 

AGEs/lysine concentration over time. *p<0.05 relative to day 1, #p<0.01 relative to day 

22, n=4-5, error=SEM. Image borrowed from Skrajewski-Schuler, L. et. al. (in review). 

 

 

 

 



   

 

122 
 

Few studies and reports have shown the adverse complications that exist after transfusion, 

often around the 2-week mark of blood storage.60,66–68 Specifically, from the Spence group with 

published ATP and deformability data, such as in Liu, Y. et al.37 It is hypothesized that at day 8, 

adverse effects to RBCs start to become irreversible and the damage to the cells is permanent by 

day 15.37 These findings could be due to the increased AGEs forming around this time marker and 

thus the quality of the RBCs dramatically changes with the increased glycation. It is still unknown 

whether the RBCs irreversible AGEs formed would be unable to recover after transfusion, but the 

time frame that the RBCs are in storage relative to when transfusion occurs is important to note. 

The weekly blood storage studies that involved normoglycemic conditions with lower glucose 

feeding and sample removal are novel. Thus, it will require more time, donors, samples, and studies 

to understand more about the blood storage timepoints and important timeframes for AGEs and 

RBCs.  

These results provide a platform for new  blood transfusion research, in discovering how 

normoglycemic storage solutions as well as storage time can alleviate microvascular complications 

attributed with increased AGEs and oxidative stress.69,70 While AGEs can form relatively quickly 

under certain experimental conditions or in specific tissues with short-lived proteins, it is not 

common in the literature for significant AGE formation to occur within just 2 weeks RBCs under 

normal physiological conditions. AGE accumulation is more often a gradual and chronic process 

linked to long-term exposure to high blood glucose levels. So, by examining the trend over 43 

days, it is clear there is an increase in overall AGE formation after 2 weeks up to 43 days. This 

study can be expanded on in future efforts with longer storage time, more sample types, and 

different biomarkers to determine the overall effectiveness of a normoglycemic blood storage.  
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GSH levels were measured as an indirect example of cellular toxicity due to the changing 

levels of oxidative stress. Previous reports indicate that a reduction in glutathione peroxidase 

activity and thus free GSH refers to increased levels of oxidation.42,61 In this study, there is a 

statistically significant increase in GSH in AS-1 compared to AS-1N. Also, there is a clear increase 

in free GSH levels over time for both solutions. Therefore, the amount of GSH quantified from the 

stored blood bags were affected by both time and solution time in the opposite trend that was 

hypothesized. The data shows that the RBCs stored in AS-1 at statistically increased levels of GSH 

to suggests there are an opposite correlation between increased oxidative stress and GSH 

production than expected, especially after 15 days of storage.    

It may seem counterintuitive that GSH, an antioxidant molecule, can be present at high 

levels while still being associated with oxidative stress. One theory is in response to oxidative 

stress, cells can upregulate the synthesis of GSH to counteract the increased levels of reactive 

oxygen species (ROS) and free radicals.62,71 This is a protective mechanism, and it leads to higher 

intracellular GSH concentrations.71 Even though GSH production may be elevated, the rate of 

GSH consumption due to the excessive presence of ROS can exceed its synthesis.62 In other words, 

the cellular antioxidant defense system may be overwhelmed, leading to a net decrease in the active 

reduced form of GSH.64 In cases of chronic or severe oxidative stress, GSSG levels may rise 

significantly, even as GSH is produced in response to the ongoing stress.42,55 Therefore, in the 

presence of oxidative stress, the balance between GSH and GSSG may shift toward a more 

oxidized state, despite the overall high levels of GSH (Figure 3.21.).63  
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Another hypothesis is in certain pathological conditions or environmental exposures (such 

as in vitro experiments), the rate of ROS generation can outpace the cell's ability to neutralize 

them, even with increased GSH production.55-57 This results in a situation where GSH is present 

but unable to completely counteract the oxidative stress.56,57,63 

In summary, the presence of high GSH levels in the context of oxidative stress does not 

necessarily mean that GSH is fully effective at neutralizing the stress. Instead, high GSH could 

reflect an adaptive response by the cell to the increased oxidative challenge.58,63,64 To assess the 

actual impact of oxidative stress and the effectiveness of GSH, it is important to consider the 

GSH/GSSG ratio and the balance between antioxidants and pro-oxidants within the cellular 

environment.61–63 Thus, another assay kit with the ability to measure either the ratio in its entirety 

Figure 3.21. Possible hypothesis for increased in GSH production. Hyperglycemia induces the 

glycolytic pathway to become saturated, which results in the maximum amount of NADPH 

production possible. Therefore, increasing the NADPH utilization to convert GSSG to GSH, 

increasing GSH levels. Increased glucose levels can also trigger the activation of the polyol 

pathway, leading to increased sorbitol production. The conversion of glucose to sorbitol in the 

polyol pathway consumes NADPH, resulting in its depletion. But NAD+ is also converted to 

NADH, which increases the production of this cofactor, and thus cancels out the NADPH used to 

make sorbitol.  
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or compare the results from the reduced and oxidized components would be a clear next step. Or 

an alternative theory could be as simple as this phenomenon is due to matrix effects.42 The 

biological matrix in the sample and the assay kit constituents could alter the results. If the matrix 

theory is the case, then instead of pRBCs, another blood component, such as serum or plasma or 

separating the pRBCs from the additive solution mix in the bag could be another option to examine. 

These theories of explaining high GSH levels in hypothesized increased oxidative stress 

environments (i.e., hyperglycemic blood storage) will also be used to explain T1D and control 

results in chapter 4. The study of AGEs in transfusion medicine is an evolving field with potential 

implications for the quality and safety of blood products and their impact on recipient health. These 

studies can be used to show the biomarkers in this chapter are important and can be used in future 

clinical applications to learn more about in vivo samples.  
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Chapter 4: Potential Biomarkers for T1D Patient Screening in C-peptide Therapy  

4.1 Introduction 

4.1.1 Background 

According to the 2022 Center for Disease Control and Prevention (CDC) National Diabetes 

Statistics Report, 28.7 million Americans have been diagnosed with diabetes.1 The two main forms 

of diabetes are type 1 diabetes (T1D) and type 2 diabetes (T2D).2,3 Approximately 1.4 million 

Americans are diagnosed with diabetes every year, with about 5% of these diagnoses being T1D.2,3 

T1D is a chronic autoimmune disorder characterized by the destruction of insulin-producing 

β-cells  in the pancreas, leading to an absolute deficiency of insulin.4 Insulin is a hormone that 

plays a crucial role in regulating blood glucose levels by facilitating the uptake of glucose into 

certain cells for energy production or storage.5,6 Without sufficient insulin, glucose accumulates 

in the bloodstream, leading to hyperglycemia and downstream severe health consequences.5 T1D 

is often treated with exogenous insulin taken several times a day to control blood glucose levels.7 

In T2D, the body becomes resistant to the effects of insulin, leading to a relative deficiency of 

insulin.8 Although the pancreas may still produce insulin, the body's cells are less responsive to its 

action, resulting in elevated blood glucose levels.8 T2D is often managed through lifestyle changes, 

oral medications, and, in some cases, insulin therapy.9  

Even when well controlled, and especially when not, diabetes can have major long-term 

health ramifications. Many of these complications can be attributed to poor blood flow and 

decreased oxygen delivery to various parts of the body, resulting in localized hypoxia.10 Diabetic 

retinopathy is defined as hypoxia that can contribute to the development and progression of 

complications affecting the eyes, leading to extreme vision impairment or blindness in 

approximately 11% of people with T1D.10,11 Hypoxia in the kidneys may play a role in the 
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development and progression of diabetic nephropathy, a condition characterized by kidney damage 

in diabetes.10 Another complication is neuropathy, which is nerve damage leading to sensory and 

motor deficits in individuals with diabetes.10 Cardiovascular disease (CVD) causes more deaths in 

people with diabetes than any other complication, with a 1 – 3 fold increase in men and a 2 – 5 

fold increase in women for risk of CVD morbidity and mortality compared to healthy adults.12 

4.1.2 -Cells, Insulin, and Glucose Transporters 

The exact cause of T1D is not fully understood, but it is believed to result from a complex 

interplay of certain genetic markers, autoantibodies, and environmental triggers.4 This endocrine 

disorder is an autoimmune attack that results in a significant reduction in or complete loss of insulin 

secretion.4,13 With the loss of insulin-secreting β-cells, there is a lack of insulin to facilitate glucose 

uptake by insulin-dependent cells, resulting in hyperglycemia.4 Hyperglycemia can lead to a range 

of acute and chronic complications, including diabetic ketoacidosis in the short term and 

microvascular and macrovascular complications in the long term.13,14 Blood glucose, also known 

as blood sugar, refers to the concentration of glucose present in the bloodstream.6 Glucose is the 

primary source of energy for the body's cells and is essential for various physiological processes, 

as previously discussed in chapter 1.14  

Insulin is a hormone5,6 that plays a crucial role in regulating blood glucose levels.5,6 As 

blood glucose levels rise, the entering glucose changes ratios of adenosine triphosphate to 

adenosine diphosphate (ATP/ADP). This changing ratio stimulates specific mechanisms that result 

in the vesicles docking at the cell membrane and releasing its contents, which is insulin into the 

bloodstream.8 Insulin acts as a "key" that unlocks the body's cells, allowing glucose to enter and 

be used as energy.15 Insulin binds to receptors on the cell surface, triggering a series of intracellular 
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processes that facilitate the transport of glucose from the bloodstream into the insulin-dependent 

cells via the glucose transporter (Figure 4.1).6,15,16  

 

Glucose transporter 4 (GLUT4) is a member of the glucose transporter family.16 It is a 

protein responsible for transporting glucose into cells and is predominantly found in 

insulin-sensitive tissues, such as muscle cells and adipose (fat) tissue.17–19 The main feature that 

distinguishes GLUT4 from other glucose transporters, like GLUT1, is its regulation by insulin.18 

Under normal physiological conditions, GLUT4 is mostly sequestered inside specialized vesicles 

within the cell, and only a small portion is present on the cell surface.19 However, when insulin 

levels rise in response to increased blood glucose levels after a meal, GLUT4 is translocated to the 

cell membrane, allowing more glucose to enter the cell.20,21 This insulin-mediated translocation of 

GLUT4 to the cell surface is a crucial step in glucose uptake and utilization by insulin-sensitive 

tissues.17,20,21 Impairments in GLUT4 function or insulin signaling can lead to insulin resistance, a 

Figure 4.1. The mechanism for insulin-responding glucose transporter, GLUT4. On the membrane 

surface, insulin binds to the insulin receptor and triggers an intracellular response to facilitate the 

GLUT4- containing vesicle to move to the cell surface. The GLUT4 vesicle fuses with the plasma 

membrane and allows glucose to enter the cell.16,19,21 
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condition where insulin's ability to promote glucose uptake is diminished.19,21–23 Once the excess 

glucose moves into the cell, it needs to be processed for energy and storage. Glucagon helps 

promote the conversion of glucose into glycogen, a storage form of glucose, in the liver and 

muscles.16  

Glucose transporter 1 (GLUT1) is a protein that plays a critical role in facilitating the 

transport of glucose across insulin-independent cell membranes.24,25 GLUT1 is another member of 

the glucose transporter family, which includes several other transporters responsible for glucose 

uptake in different tissues and cell types throughout the body, as previously discussed.23,25  The 

GLUT1 protein is primarily expressed in red blood cells (RBCs), the blood-brain barrier, and 

tissues with a high demand for glucose, such as the brain and placenta.22,24,26 Its primary function 

is to transport glucose molecules from the extracellular fluid into the cells, where glucose is utilized 

for energy production or other metabolic processes.25 The RBC membrane has many different 

proteins, 5-10% of which are GLUT1, making this hydrophobic protein essential for providing 

glucose for energy production and protects against insulin-resistant glucose uptake from oxidative 

stress.24  

During fasting, the liver produces glucose by synthesizing glucose from lactate and amino 

acids (gluconeogenesis).27 Post-meal, insulin is released from the pancreas and works with 

glucagon to maintain normal glucose concentration in the bloodstream.27 Glucose gets deposited 

into the liver, which becomes glycogen to be stored in the liver and muscles while blood glucose 

levels rise.27 When blood glucose levels decrease, the stored glycogen is broken down back into 

glucose (glycogenolysis) to maintain blood glucose levels within a normal range (euglycemia).27 

Insulin helps to suppress the liver's production of glucose.28 By reducing glucose production, 

insulin helps maintain stable blood glucose levels.27  
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When insulin is released from the β-cells, equimolar concentrations of C-peptide are also 

released in addition to high levels of zinc (Zn2+) (Figure 4.2).29 C-peptide is an important by-

product of insulin production, being cleaved from proinsulin before the formation of insulin 

hexamers.30 The production and function of C-peptide will be discussed later in this introduction. 

Insulin, Zn2+, and C-peptide are stored within the β-cell granule until release, which allows for 

blood glucose regulation.29,30 

 

In individuals with T1D, the immune system mistakenly attacks and destroys the 

insulin-producing β-cells in the pancreas.4,13,31 As a result, the production of insulin is significantly 

reduced or absent, leading to an absolute deficiency of insulin.4,6 Without sufficient insulin, 

glucose cannot enter the insulin-dependent cells effectively, and blood glucose levels rise.5,6 This 

Figure 4.2. Pancreatic β-cell. The islets of Langerhans are clusters of cells (β-cells) in the pancreas 

that produce and subsequently release insulin to regulate glucose levels in the bloodstream. The 

pH inside the β-cell granule is approximately 5.5, which forces insulin to remain a crystalline 

hexamer unit with two Zn2+ ions because it is insoluble below pH 7.0. The slightly acidic pH inside 

of β-cell granule maintains the packing and storage of insulin and Zn2+. Also, at 5.5 pH, C-peptide 

is protonated and therefore does not bind to Zn2+. 29,30,57  
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condition requires lifelong insulin therapy to provide the body with the necessary insulin for 

glucose regulation.4,12,13  

4.1.3 Therapeutics for Diabetes 

The mainstay of T1D management is insulin therapy, which involves the administration of 

replacement of endogenous insulin to maintain blood glucose levels within a target range.32 It has 

a half-life of 2-3 minutes, so it must be administered throughout the day.6 Insulin can be 

administered through injections or insulin pumps, mimicking the physiological insulin secretion 

pattern.33,34 Insulin pump therapy is an alternative to multiple daily injections, providing 

continuous subcutaneous insulin infusion.7,35 The pump delivers a basal rate of insulin to maintain 

steady glucose levels and allows for bolus doses to correct spikes in high blood sugar, such as 

those that may occur after a meal.35  

Various types of insulin are available, categorized based on their onset, peak, and duration 

of action. The four major types of insulin include rapid-acting, short-acting, intermediate-acting, 

and long-acting.35,36 Rapid-acting insulin starts working within 15 minutes, efficacy peaks within 

1 to 2 hours, and lasts for 3 to 4 hours.7,36 Short-acting insulin begins working within 30 minutes, 

peaks in 2 to 3 hours, and lasts for 4 to 6 hours.7,36 Intermediate-acting insulin takes effect in 2 to 

4 hours, peaks in 4 to 12 hours, and lasts for up to 18 hours.7,36 Long-acting insulin has a gradual 

onset, has no pronounced peak, and lasts for approximately 24 hours.7,36 Insulin therapy allows 

individuals to mimic the natural insulin secretion pattern to effectively regulate blood glucose 

levels.33 However, despite significant advancements in insulin formulations and delivery methods, 

achieving optimal glycemic control remains a challenge.  

Various innovative therapeutic methods are being explored to improve T1D management 

and potentially offer a cure. Some of these include β-cell replacement therapies, such as islet cell 
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transplantation and stem cell-derived β-cells, with the aim of restoring endogenous insulin 

production.37,38 Immunotherapies and immune modulation strategies are also being investigated to 

prevent or halt the autoimmune destruction of β-cells.39 

Pramlintide is an injectable medication that can be used in addition to insulin therapy to 

help control post-meal blood sugar spikes.40 It slows the movement of food through the stomach 

and can help reduce after-meal glucose fluctuations.40 Some medications, such as metformin, have 

been explored as adjunctive therapies in T2D.41 While they are not a substitute for insulin, they 

may provide additional benefits in certain cases, such as improving insulin sensitivity and reducing 

insulin requirements.5 

While not a medication, continuous glucose monitoring (CGM) systems are essential tools 

for individuals with T1D.42 CGMs uses a small sensor inserted under the skin to measure 

interstitial fluid glucose levels continuously.42 Real-time data is sent to a receiver or smartphone, 

enabling users to monitor glucose trends and make informed decisions about insulin dosing and 

lifestyle adjustments.42 It is essential for individuals with T1D to work closely with their healthcare 

team to tailor their treatment plan, which may include a combination of insulin therapy, CGM, and 

other medications to achieve optimal glycemic control and minimize the risk of complications. 

The specific treatment plan will vary based on individual needs, lifestyle, and overall health. 

4.1.4 Biomarkers: HbA1c, C-peptide, and Glutathione 

Various methods are used to monitor blood glucose levels and assess the overall glycemic 

control in individuals with T1D. Additionally, several biomarkers have been explored for the early 

diagnosis of T1D and to predict the risk of developing the condition.  

Glycated hemoglobin (HbA1c) is a valuable biomarker used to assess long-term glycemic 

control and is considered a standard of care for people with diabetes.43,44 The HbA1c test result is 

expressed as a percentage of glycated hemoglobin and reflects the average blood glucose levels 
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over the past 2-3 months.43 Higher HbA1c levels indicate poor glycemic control and an increased 

risk of developing diabetes-related complications.43 For instance, HbA1c below 5.7% is 

considered normal range, between 5.7% and 6.4% indicates prediabetes, and above 6.4% is 

considered diabetes.43,45 As RBCs have a lifespan of approximately 120 days, the HbA1c test is 

described as a better, long term representation of the glucose environment.43 However, it does not 

reflect short-term glucose variability or daily fluctuation in blood sugar;46 both aspects are also 

important for diabetes management.  

For individuals with diabetes, the HbA1c test is routinely used to monitor the effectiveness of 

diabetes management strategies, including lifestyle changes, medication, and insulin therapy.43 It 

helps healthcare providers adjust treatment plans to achieve optimal glycemic control. Maintaining 

HbA1c levels within target range is associated with a reduced risk of developing diabetes-related 

complications, especially for the onset of T2D.47 The process of glycation can occur throughout 

the body and can affect a wide range of proteins, impacting their structure and function.48 This 

process has been identified as a major cause of metabolic diseases and increases the rate of the 

aging process.48 Over time, the accumulation of advanced glycation end products (AGEs) can lead 

to tissue damage and contribute to the complications associated with chronic conditions like 

diabetes, macular degeneration, heart disease, chronic inflammation, and tissue damage.49,50 

Managing blood glucose levels effectively can help reduce the formation of AGEs and minimize 

their detrimental effects for people with T1D.48,49,51 

Another biomarker that is used in the diagnosis and treatment of diabetes is C-peptide, a 

byproduct of insulin production used to measure levels of endogenous insulin secretion.52,53 

C-peptide measurement can help evaluate pancreas function in individuals with diabetes or other 

pancreatic disorders.53 Low C-peptide levels may indicate impaired β-cell function or insulin 
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deficiency (normal fasting range 0.9-1.8 ng/mL).54,55 In T1D, fasting plasma C-peptide levels are 

greatly reduced due to the destruction of β-cells (less than 0.2 nM).53,54 Measuring C-peptide levels 

can help distinguish between T1D and T2D and assess residual β-cell function.54–56 C-peptide, also 

known as connecting peptide, is a 31 amino-acid peptide that plays a crucial role in the production 

of insulin in the body.52,55 It is formed in the β-cells of the pancreas54,58  during the process of 

insulin synthesis when proinsulin is cleaved into insulin and C-peptide.29,52,55,57 Proinsulin consists 

of three parts: an A-chain, a B-chain, and C-peptide.55,57 Proinsulin folds into mature insulin and 

C-peptide is cleaved off all during the secretory vesicle packaging stage. Upon secretion into the 

bloodstream, the insulin hexametric crystal with Zn2+ breaks apart into insulin monomers.  

C-peptide is also secreted to the bloodstream during this process (Figure 4.3).30,53,55 

 

 

Figure 4.3. Proinsulin cleaved to produce insulin and C-peptide. Proinsulin is an 86 amino acid 

molecule consisting of an A and B chain containing insulin, with 3 disulfide bridges, and C-

peptide. During cleavage and subsequent release, proinsulin is cleaved into insulin, a 51 amino 

acid hormone, and C-peptide, which is a peptide with 31 amino acids. This process is catalyzed in 

response to high levels of glucose in the bloodstream.29,55 
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These endoproteases consist of type I proprotein convertase 1 and 3 (PC1/PC3) that cleave 

the B-chain and C-peptide and type II proprotein convertase 2 (PC2) that cleaves the C-peptide 

and the A-chain.58,59 The measurement of C-peptide in the blood provides valuable information 

about the amount of insulin being produced by the pancreas. Unlike insulin, C-peptide has a longer 

half-life (30 minutes) in the bloodstream when compared to insulin (6 minutes).60 This 

characteristic makes C-peptide a useful marker for assessing endogenous insulin secretion,60 and 

thus, C-peptide levels are used to differentiate between T1D and T2D.52,55,56  

For individuals with diabetes receiving exogenous insulin therapy, measuring C-peptide 

levels facilitates the determination of the cause of hypoglycemia (low blood sugar) in certain 

situations.52,54 For instance, elevated C-peptide levels during hypoglycemia may indicate an 

insulinoma, a rare tumor of the pancreas that produces excessive insulin.61 Overall, C-peptide 

measurement is a valuable tool in diabetes management, helping to assess pancreatic function and 

differentiate between types of diabetes.52–54 It provides insight into the body's endogenous insulin 

production and enables informed decisions regarding diabetes treatment and care. 

Glutathione is a crucial antioxidant and plays an essential role in cellular defense against 

oxidative stress, as discussed in chapter 3. In the context of T1D, oxidative stress is considered a 

contributing factor in the pathogenesis and progression of the disease.62,63 Oxidative stress occurs 

when there is an imbalance between the production of reactive oxygen species (ROS) and the 

body's ability to neutralize them with antioxidants.62,64,65 This imbalance can lead to damage of 

cellular components including proteins, lipids, and deoxyribonucleic acid (DNA), ultimately 

contributing to the development of various T1D complications.63,66–69 

Several studies have explored the role of glutathione in T1D, focusing on its potential 

impact on β-cell function, immune regulation, and oxidative stress management.70–74 Glutathione 
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has been shown to modulate immune responses and regulate the activity of immune cells involved 

in the pathogenesis of T1D.75–77 As an essential antioxidant, glutathione plays a crucial role in 

neutralizing ROS and preventing oxidative damage to cells, including β-cells.78,79 Maintaining 

sufficient levels of glutathione may help reduce oxidative stress and its detrimental effects on β-

cell function and overall pancreatic health.79 Given its antioxidant and immune-modulating 

properties, glutathione has been investigated as a potential therapeutic target for T1D.78 Strategies 

to study glutathione levels or its antioxidant capacity may offer more in-depth knowledge 

concerning therapeutic benefits for T1D and its complications. However, it is essential to note that 

while glutathione shows promise as a potential biomarker for studying T1D, research in this area 

is still ongoing. The complexities of the pathogenesis of T1D and the interplay of oxidative stress 

and hyperglycemic environments warrants further investigation to fully understand the role of 

glutathione and its potential implications for T1D complication progression and management. 

4.1.5 Previous Studies, Increased Glycation, and T1D AGEs 

In diabetes, elevated blood glucose levels contribute to increased glycation reactions, 

which can be seen in studies involving increased glycated albumin (gHSA) in diabetic plasma. The 

Spence group has studied the amount of glycation through glycated albumin levels (Figure 4.4) 

as well as the associated albumin (HSA) binding to T1D RBCs, hypothesizing the increased 

glycation could be the cause of lower downstream C-peptide binding to the cells.  
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Previous T1D and T2D studies by the Spence group have primarily focused on the 

importance of RBC-derived ATP release, C-peptide binding to RBCs, and glycation percentages 

of the C-peptide carrier, albumin. These studies motivate our current and ongoing research areas 

relating to connecting increased protein glycation and various downstream vascular issues 

associated with less C-peptide/albumin/Zn2+.80,81 Also, prior work determined GLUT1 RBC 

membrane levels of control and T1D patients to examine the role of hyperglycemic conditions on 

glucose regulation.81 It is important to note that AGEs have been linked to increased diabetic 

retinopathy, diabetic nephropathy, diabetic neuropathy, and cardiovascular complications in 

diabetes.82,83 While AGEs have been measured in T1D subjects, a direct correlation between RBC, 

AGEs, HbA1c%, glycated albumin levels, and overall RBC function, including the RBCs ability 

to bind C-peptide, is without precedent. 

Figure 4.4. Differences in glycation percent for control and diabetic HSA isolated from 

plasma. Control HSA isolated from healthy control plasma had an average glycation percentage 

of 13 ± 0.5%. HSA isolated from plasma of people with diabetes had an average glycation 

percentage of 27 ± 3.0% (n=3 control, n=5 diabetic, *p<0.05, error =SEM). Borrowed from 

Jacobs, M. et al.122  
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Managing blood glucose levels and reducing the formation of AGEs may help mitigate the 

risk of diabetes-related complications.50,84 Individuals with T1D have higher levels of overall 

AGEs compared to control subjects, as previously discussed.85,86 AGEs can undergo further 

reactions, leading to the formation of more complex structures, cross-linking proteins, and causing 

tissue damage.82 These AGEs play a significant role in the development of microvascular and 

macrovascular complications in T1D.85,87 For example, AGEs contribute to endothelial 

dysfunction, oxidative stress, and inflammation.75,88–91 In the ongoing research for the 

pathogenesis of diabetes-associated complications, AGEs have been implicated through their 

interaction with cell receptors. Specifically, the receptor for AGEs (RAGE), which activates 

various pro-inflammatory and pro-fibrotic signaling pathways.65,87,89,91,92  

Given the detrimental effects of AGEs in T1D, various therapeutic strategies targeting 

AGE formation and accumulation have been explored. These include the use of anti-AGE agents, 

such as aminoguanidine and pyridoxamine, which inhibit AGE formation.93,94 Additionally, 

dietary interventions aimed at reducing sugar intake and the use of antioxidants have been 

investigated to mitigate AGE-induced oxidative stress in T1D and T2D.88,95–98 Circulating AGEs 

and their specific metabolites have emerged as potential biomarkers for assessing the risk of 

diabetes complications and disease progression in individuals with T1D and T2D.67,83,85,99 Nε-

carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL) have been lightly studied as 

potential biomarkers to predict the onset and severity of diabetic complications, but there is no 

cohesive method or in-depth understanding of how it can be related to HbA1c levels or other 

known biomarkers.67,100–105 Thus, this gap in the literature is a potential avenue to explore utilizing 

the previous method developed in chapter 2, explored with various in vitro glycation in chapter 3, 

and future study ideas that will be discussed in chapter 5.  
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Understanding the mechanisms of AGE formation and overall changes in protein glycation 

can aid in understanding C-peptide binding to RBCs in T1D. C-peptide has been known to be a 

viable link in diabetic drug therapy, and the clinical trial in 2011 with Cebix explored this 

possibility.106,107 In this trial, 250 participants were injected with mono-pegylated C-peptide 

therapy, Ersatta, or a saline-solution placebo.106,107 The study lasted 12 months to determine the 

effects of C-peptide drug therapy on people with T1D, specifically targeting neuropathy 

complications.106–108 The trial unfortunately failed in phase IIb, as the results concluded that the 

C-peptide drug therapy did not significantly improve the sensory nerve conduction in people with 

T1D when compared to the control group.106–108 Even though the clinical trial failure was never 

publicly discussed, there are several factors that can be attributed to why this drug failed.107,108  

One of the major theories involves the hyperglycemic conditions caused by excess 

glycation of RBCs and proteins. Glycation is known to alter the transport, binding, and function 

of RBCs and albumin,109,110 which can contribute to why adding C-peptide to patients was not 

successful. If the overall glycation of proteins and cells were too high due to prolonged 

hyperglycemia, the people with T1D would not have significant improvement. It is theorized that 

C-peptide binds to albumin and albumin carries the C-peptide to the RBCs and albumin binds to 

the cell.109,110 If albumin was too glycated and/or the RBCs had too many AGEs on the membrane, 

it could inhibit C-peptide, albumin, and RBC binding. Therefore, additional research involving the 

levels of protein and RBC glycation is important to understand more about C-peptide drug 

therapies.  

One avenue of furthering the C-peptide drug trial research is implementing a biomarker 

screening process. Hypothetically, if a T1D patient has high HbA1c%, gHSA, AGEs, and 

exhibiting oxidative stress (GSH), this person would not be a good candidate for a C-peptide drug 
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trial. This is because theoretically the subjects would have too much glycated proteins to fully 

benefit from adding C-peptide exogenously, and C-peptide might not be delivered to the RBCs, 

and therefore not work properly. Therefore, the Spence group proposes using the methods in 

chapter 2 to explore RBC samples from people with T1D and controls to determine if HbA1c%, 

AGEs, and GSH could be useful for future patient screenings for a C-peptide drug trial. Further 

research is warranted to identify novel therapeutic targets and validate AGEs as reliable 

biomarkers for diabetic complications, which will be explored in the methodology of this chapter. 

4.2 Methods 

4.2.1 RBC collection and purification 

Whole blood was collected via venipuncture from healthy consenting adults into 3 mL 

3.2% sodium citrate blood collection tubes (Fisher Scientific, Hampton, NH). For each blood draw, 

10 µL was removed to complete HbA1c and glucose analysis. Whole blood tubes were then 

centrifuged at 2000g for 10 minutes, the plasma and buffy coat were removed by aspiration, and 

packed RBCs (pRBCs) were kept in the tubes. The hematocrit was determined based on the pRBCs 

remaining for acid hydrolysis and thiol assay preparation. The drawing of blood followed a 

protocol approved by the Institutional Review Board of Michigan State University. Blood was 

obtained from healthy humans and informed consent was obtained from all volunteers. All record 

keeping complied with Health Insurance Portability and Accountability Act regulations.  

4.2.2 Sample Preparation 

All sample preparation and detection of the prepared RBCs was prepared in a manner 

identical to those reported in 2.2.5, 2.2.6, 2.2.7, and 3.2.6. 
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4.2.3 Data Analysis 

Calibration plots of analyte/IS (internal standard) peak area ratio versus CML, CEL, and lysine 

concentrations were constructed, and a linear regression was used for all analytes. The peak area 

ratio of sample versus associated IS was used to produce a response to determine the 

concentrations from the calibration line. Free GSH results were collected from the Thiol Assay kit 

results and a linear regression was used for standard and analyte quantification. SigmaPlot (Systat 

Software Inc) was used to plot all results, GraphPad (Dotmatics) T-test Calculator (Unpaired T-

Test) was used to perform statistical testing for free GSH, and R software (version 4.2.2) was used 

to perform statistical testing with the “rstatix” package (v0.7.2; Kassambara, A. 2023) for CML, 

CEL, total AGEs, lysine, and total AGEs/lysine.  

ANOVA tests for each analyte (CML, CEL, Total AGEs, Lysine, Total AGEs/Lysine) were 

conducted to examine for differences between sample types. The T1D and control samples were 

treated as a between-subjects dependent variable. Prior to conducting the ANOVA test, the 

assumptions of normality and homogeneity of variances were assessed using Shapiro-Wilk and 

Levene's tests, respectively. If these assumptions were met, the ANOVA test was performed to 

determine which specific samples exhibited statistically significant differences on the analytes 

studied.  

4.3 Results 

4.3.1 Blood Glucose  

There was a statistically significant difference of sample type on blood glucose 

concentration, and visualized results are displayed below in Figure 4.5. The unpaired T-test 

revealed T1D samples to have significantly higher blood glucose (mM) levels than the control 

samples (p<0.01). These results indicate that blood glucose concentration was altered with T1D 
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samples (8.03 mM ± 0.09) versus control samples (4.54 nM ± 0.23). T1D group resulted in 

approximately 28% higher blood glucose concentration than controls. 

 

4.3.2 HbA1c% 

There was no statistically significant difference of sample type on HbA1c% concentration 

(Figure 4.6). The unpaired T-test revealed T1D samples do not have significantly higher HbA1c% 

levels than the control samples (p=0.796). These results indicate that HbA1c% was not altered 

with T1D samples (6.10% ± 0.30) versus control samples (5.27% ± 0.18). There was only a 13.6% 

increase in HbA1c% for T1D compared to control samples. 

Figure 4.5. Blood Glucose (mM) quantification for both T1D and control samples. There were 

statistically significant differences between T1D (8.03 mM ± 0.09) and control (4.54 nM ± 

0.23) **p<0.01, n=2-3, error=SEM. 



   

 

149 
 

 

4.3.3 CML 

There was a statistically significant difference of sample type on CML, (Figure 4.7). The 

ANOVA revealed T1D samples to have significantly higher CML (nM) levels than the control 

samples (F(1,6)=7.729, p<0.05). These results indicate that CML formation was altered with T1D 

samples (101.8 nM ± 2.2) versus control samples (60.8 nM ± 14.6). There was an increase in CML 

concentration that resulted in a 25% higher concentration in T1D versus controls.  

Figure 4.6. HbA1c% quantification for both T1D and control samples. There were no statistically 

significant differences between T1D (6.10% ± 0.30) and control (5.27% ± 0.18) p=0.0796, n=2-3, 

error=SEM. 
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4.3.4 CEL 

There was not a statistically significant difference of sample type on CEL, (Figure 4.8) 

(F(1,6)=0.765, p=0.415). These results indicate that CEL formation was not altered with T1D 

samples versus control samples.  

 

 

Figure 4.7. CML (nM) quantification for both T1D and control samples. There were statistically 

significant differences between T1D (101.8 nM ± 2.2) and control (60.8 nM ± 14.6) *p<0.05, n=2, 

error=SEM. 
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4.3.5 Total AGEs 

There was not a statistically significant difference of sample type on total AGEs, (Figure 

4.9) (F(1,6)=0.407, p=0.547). These results indicate that total AGE formation was not altered with 

T1D samples versus control samples.  

Figure 4.8. CEL (nM) quantification for both T1D and control samples. There were no statistically 

significant differences between T1D (716.6 nM ± 147.7) and control (885.2 nM ± 123.8) p=0.415, 

n=2, error=SEM. 
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4.3.6 Lysine 

There was a statistically significant difference of sample type on lysine, showing a 17.6% 

increase in lysine concentration in T1D samples versus control samples (Figure 4.10). The 

ANOVA revealed T1D samples to have significantly higher lysine (nM) levels than the control 

samples (F(1,6)=15.025, p<0.01). These results indicate that lysine formation was altered with 

T1D samples versus control samples.  

Figure 4.9. Total AGEs (nM) quantification for both T1D and control samples. There were no 

statistically significant differences between T1D (818.4 nM ± 145.5) and control (946.0 nM ± 

137.4) p=0.415, n=2, error=SEM. 
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4.3.7 Free Glutathione Assay  

There was not a statistically significant difference of sample type on free GSH, and 

visualized results are displayed below in Figure 4.11. However, it is trending toward significance 

as there is an 18.1% increase in GSH concentration than control samples. The unpaired T-test 

revealed T1D samples do not have significantly higher free GSH (nM) levels (24211.8 nM ± 

2544.8) than the control samples (19831.3 nM ± 2698.2) (p=0.3696). These results indicate that 

free GSH was not altered with T1D samples versus control samples. 

 

Figure 4.10. Lysine (nM) quantification for both T1D and control samples. There were statistically 

significant differences between T1D (35070.6 ± 721.2) and control (28888.6 nM ± 1422.5) 

**p<0.01, n=2, error=SEM. 
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4.3.8 Relationship Between HbA1c% and Potential Biomarkers 

To further understand the relationship between HbA1c% and potential biomarkers, the results 

are visualized in Figure 4.12 and Figure 4.13 showing total AGEs and Free GSH both have a 

positive linear relationship with HbA1c%. Total AGEs have a strong positive linear relationship 

with HbA1c%, R2=0.902 and free GSH has a moderately strong linear relationship with HbA1c%, 

R2=0.6779. 

 

 

 

 

 

Figure 4.11. Free GSH (nM) quantification for both T1D and control samples. There were no 

statistically significant differences between T1D (24211.8 nM ± 2544.8) and control (19831.3 nM 

± 2698.2) p=0.3696, n=2-3, error=SEM. 
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Figure 4.12. Correlation between HbA1c% and total AGEs. HbA1c% has a strong positive 

linear relationship with total AGEs, R2=0.902, n=4. 

Figure 4.13. Correlation between HbA1c% and free GSH. HbA1c% has a moderately strong 

positive linear relationship with free GSH, R2=0.6779, n=4. 
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4.4 Discussion 

Further assessment of blood storage solutions and associated adverse effects related to 

RBCs promote questions about the effectiveness of these hyperglycemic blood storage solutions. 

The methods explored in chapters 2 and 3 were used to evaluate T1D samples to explore the 

connection between C-peptide binding and the adverse effects to RBCs from chronic 

hyperglycemia. Although there is research showing increased AGEs, decreased GSH, and changes 

in oxidative stress in T1D patients compared to people without diabetes, it is unclear how HbA1c% 

relates to these biomarkers.50,111 Specifically, how AGEs, CML and CEL, as compared to total 

protein-bound lysine concentration, has yet to be evaluated in RBCs of T1D patients versus 

controls. Also, it is unclear in the literature whether elevated HbA1c% levels can be attributed to 

increased AGEs and changes in GSH.45,112,113 Based on previous Spence group projects81,109,110,114 

and the potential to expand into C-peptide therapy applications, measuring glycation could be an 

additional biomarker screening process for future drug candidates.  

The novel methods described in chapter 2 and 3 were utilized for T1D patients and controls 

while accounting for blood glucose and HbA1c% levels. The method development in chapter 2 

provided a platform for the T1D blood sample research discussed in this chapter. Also, chapter 3 

methods and results provide more information about hyperglycemic conditions over 6-weeks, 

which is a starting point for T1D subjects that often experience hyperglycemic blood glucose for 

much longer time frames. Overall, these results promote the discovery of how normoglycemic 

storage solutions as well as reduced storage time could be attributed to research to alleviate 

microvascular complications in T1D attributed to increased AGEs and oxidative stress. 

Blood glucose quantification in Figure 4.5 shows the varying range of T1D and control 

donors. There were significant differences between the sample groups as expected, with the T1D 



   

 

157 
 

group resulting in approximately 28% higher blood glucose concentration. Unexpectedly, the 

HbA1c% (Figure 4.6) showed less variation in range which did not make the type of sample 

groups statistically significant. One reason is that the two T1D donors had well controlled blood 

glucose (lower than 7 mM blood glucose) which resulted in ranges between the prediabetes and 

diabetes for HbA1c%. Thus, the results attributing the HbA1c% hypothesis could be skewed and 

therefore will need more participants to fully investigate any relationship between HbA1c% and 

the biomarkers measured in this chapter. Since HbA1c% reflects 120 days of glycated hemoglobin 

in circulation,112 it was important to consider how a donor with elevated levels of glycation would 

compare to the noted T1D donors for the biomarkers studied. As previously discussed, studying 

glycated proteins is important to future studies, specifically for the C-peptide binding study. An 

area of interest is exploring how glycated proteins can affect the binding on C-peptide to RBCs, 

and the research involving gHSA, HbA1c%, and AGEs can be used to further drug related trials. 

Specifically, how C-peptide could be administered exogenously with insulin as an alternative 

therapeutic to help with vascular complications. If there are extensive glycated proteins, the 

binding could be inhibited due to the hyperglycemic environment and alterations to albumin and/or 

the RBCs. So, implementing a screening process utilizing the biomarkers previously discussed can 

aid in clinical trial management. 

To better understand the physiological relationship between T1D patients and AGEs, blood 

was isolated and LC-MS/MS methods were utilized to measure CML, CEL, total AGEs, and 

protein-bound lysine. There were statistically significant differences between T1D and control 

CML concentration that resulted in a 25% increase in AGEs in T1D seen in Figure 4.7. This result 

is notable, as it is well known that CML is the most prominent AGE associated with oxidative 

stress complications. As shown in Figure 4.8, there were no significant differences in CEL 



   

 

158 
 

concentration between the T1D and control samples. Additionally, in Figure 4.9, due to the 

6-10-fold increase in concentration of CEL in comparison to CML, there were no statistically 

significant differences in total AGEs between T1D and control. The results in Figure 4.10 indicate 

there was a significant difference in amount of lysine concentration, and there was approximately 

10% increase in T1D lysine than in control samples.  

To further investigate the effect of diabetic glycation and oxidative stress conditions on 

free GSH levels, glutathione levels were measured using a commercially available thiol assay kit. 

The results in Figure 4.11 did not show statistically significant differences in free GSH 

concentration between T1D and controls. This increase indicates there could be more to investigate 

for people with elevated, or close to prediabetic, HbA1c% levels.  

The HbA1c% has a similar effect on both total AGEs and free GSH, as the results show 

different levels of a positive relationship. The results show as HbA1c% increases, and there is 

strong positive correlation in increasing total AGEs in Figure 4.12. Increasing free GSH 

concentration showed moderately strong correlation with increasing HbA1c% in Figure 4.13. 

Overall, these findings showed good correlation, but the sample size was small. In the interest of 

exploring more about the relationship between HbA1c% and total AGEs and HbA1c% and GSH, 

there will need to be more patients and sample testing.  

Rising HbA1c% is a known biomarker for type II diabetes,112 but these results typically 

are not attributed to indicators of other increased adverse effects to the RBCs. Lower GSH 

concentration is normally regarded as increased oxidative stress, but as discussed in chapter 3, the 

typical glycation mechanism could be saturated and forcing the polyol pathway to increase 

activity.115,116 Thus, increasing sorbitol production and therefore increased GSH due to the increase 

in H+ ions available.116,117 It is not known through this assay if the GSSG/GSH ratio would change 
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between the sample types, and this ratio is the key to understanding more about oxidative stress 

and the effect of increased HbA1c% and hyperglycemic conditions. Hence, obtaining an assay kit 

that would either test GSSH alone or the GSSG/GSH ratio would be recommended steps to 

investigate further.  

Numerous diseases are associated with elevated blood glucose and HbA1c%, including 

Alzheimer's Disease (AD).22 AD is now commonly referred to as type 3 diabetes because of the 

similarities to increased glycation levels of various proteins, including AGEs.22 There could be a 

link to increased glycated proteins and common complications associated with diabetes that could 

also be found with people with AD.118 Thus, more experiments involving glycated proteins and 

T1D patients are necessary to learn more about these connections. Overall, these findings may 

help explain the pathophysiological role of hyperglycemic environments, oxidative stress, and the 

progression of T1D, AD, and other diseases associated with increased protein glycation. 

The current link between HbA1c% and AGEs is not well understood, but the results shown 

in this work provide a basis for future applications. It is theorized that utilizing these potential 

biomarkers to improve patient screening process for future C-peptide drug trials will aid in the 

overall success of the clinical applications. By understanding more about glycation, the adverse 

effects of hyperglycemia on proteins and RBCs, and C-peptide binding, future drug trials for 

people with T1D can be more robust in choosing the best patients.  

The research surrounding HbA1c% linking to AGEs, glutathione levels, and other 

biomarkers for autoimmune or other diseases is scarce, and the understanding medicine with 

hyperglycemic RBCs can aid in furthering the clinical drug discovery.119–121 Thus, the research 

behind understanding more about the link between current hyperglycemic stored RBCs and T1D 
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RBCs can show how detrimental chronic high glucose can be over time including increasing 

oxidative stress.119,120,121 
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Chapter 5: Conclusions and Future Directions 

5.1 Blood Banking and Transfusion Medicine Conclusions 

Blood transfusions serve as a critical medical intervention for individuals experiencing blood 

loss resulting from trauma or surgical procedures and those with inadequate red blood cells 

(RBCs), such as patients with sickle cell disease or anemia.1–4 The conventional blood storage 

procedures approved by the Food and Drug Administration (FDA) employ glucose levels 

approximately six times the healthy range (4-6 mM) to preserve the vitality of RBCs during 

storage.5,6 Despite more than six decades of usage, the Spence group has questioned the suitability 

of high glucose as a preservative due to the accumulation of storage-related abnormalities, referred 

to as storage lesions.7,8 These abnormalities have raised questions about their potential contribution 

to transfusion-related adverse effects, such as transfusion-related acute lung injury (TRALI) and 

transfusion-associated circulatory overload (TACO), which collectively accounted for a notable 

percentage of morbidity and mortality between 2014 and 2018, as reported by the FDA.9 

Furthermore, it is established that neonates and infants are typically administered RBC units 

that have been in storage for less than seven days, as reports suggest that storage exceeding ~14 

days leads to irreversible adverse effects on RBCs.10–12 These effects encompass reduced 

adenosine-triphosphate (ATP) and nitric oxide (NO) release, decreased deformability, increased 

oxidative stress, and other alterations observable after the 14-day mark.13 It is worth noting that 

these post-14-day adverse effects account for a significant proportion of transfusion-related 

complications, surpassing those attributable to RBCs stored for less than 14 days.13 

Advanced glycation end products (AGEs) have been extensively studied in the context of 

diet and nutrition but have not received enough attention in relation to RBCs and blood 

transfusion.14–16 AGEs form due to elevated glucose levels and have been linked to aging and 
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metabolic disorders, such as diabetes.17,18 These storage lesion markers, which include oxidative 

stress, are associated with increased AGEs and diminished levels of reduced glutathione (GSH).19 

Notably, research investigating blood transfusions and RBC storage in hyperglycemic solutions 

compared to normoglycemic storage is limited. In this work, the specific AGEs studied were 

Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL). 

Some former members of the Spence laboratory explored normoglycemic storage 

conditions, which revealed higher ATP levels in solutions with lower glucose content compared 

to hyperglycemic blood storage.20,21 These findings underscore the importance of the two-week 

storage time frame, a period that is theorized to mark the onset of irreversible byproduct formation, 

including AGEs.20,21 The potential implications of transitioning from current high-glucose blood 

storage practices extend to individuals already at risk for transfusion-related complications. For 

those with diabetes, sickle cell disease, and anemia, the glucose levels in transfused blood may 

exacerbate vascular complications due to elevated glucose concentrations.2,22–25 

The primary objective of this dissertation is to investigate the feasibility of utilizing 

normoglycemic blood storage conditions and assess RBCs using various biomarkers and assays to 

evaluate the overall effectiveness of a lower glucose storage solution. 

5.2 Future Studies for AGE Development and Quantification 

In chapter 2, the experiments primarily centered on method development for the detection and 

quantification of CML, CEL, and lysine on RBCs. These experiments were conducted following 

the guidelines provided by the International Council for Harmonization (ICH) and the European 

Medicines Agency (EMA).26 Initial findings demonstrated strong adherence to these guidelines, 

especially in terms of matrix effects, limits of detection and quantification (LOD/LOQ), linearity, 

carryover, and accuracy/precision for both intra- and inter-assay evaluations. 
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The ultra-high performance liquid chromatography with tandem mass spectrometry (UPLC-

MS/MS) method's selectivity exhibited effective peak separation, and clear retention time 

correlation was observed with the respective analyte internal standards (IS). However, on day 1 of 

storage, no statistically significant differences were identified in the AGE analytes between the 

two solution types. These results signify the success of the novel method, prompting the need for 

further analysis. 

Chapter 3 extended the investigation by exploring the impact of storage time and solution type 

on AGE formation. The results conclusively demonstrated that both time and solution type 

contribute to AGE formation. While the data concerning GSH and heightened oxidative stress did 

not provide absolute clarity, a noticeable trend emerged, emphasizing the importance of 

considering the potential influence of hyperglycemia on free GSH. 

To delve deeper into this phenomenon, a rigorous examination of the oxidized glutathione 

(GSSG) to reduced glutathione (GSSG:GSH) ratio will be conducted on RBCs stored. Ideally, this 

analysis will incorporate an automated feeding system to maintain glucose levels within the range 

of 4-6 mM, even on days 36 and 43, as discussed in chapter 3. Adjusting the glucose solution 

content on these days is suggested, as it is hypothesized that RBCs may alter the rate of glucose 

metabolism and uptake during storage. This interconnected relationship among increasing AGEs, 

GSH levels, and blood glucose concentrations underscores the need for additional samples to 

further enrich our understanding of this intriguing research field.  

To further this research and obtain a more comprehensive understanding of the connection 

between different levels of hyperglycemia, AGEs, and their impact on RBCs, an experiment could 

be undertaken by using a range of glucose solutions with varying, incrementally increasing 

concentrations. This experiment would mimic more closely type I diabetes (T1D) patients with 
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varying blood glucose levels, some well controlled and others with extreme fluctuations. This 

could also help with the further understanding of people with prediabetes and how quickly GSH 

and AGEs can form. The overall object of this experiment would be to assess how variations in 

glucose concentrations within the storage solution affect AGE formation and GSH in RBCs. 

A glucose concentration gradient will be set up and a set of storage solutions with varying 

glucose concentrations will be prepared. Solutions will include several glucose levels higher than 

6 mM (representing hyperglycemia) and a solution with glucose levels within the healthy range 

(4-6 mM). Sample collection will be performed by obtaining a consistent volume of RBC samples 

from the same donor source and dividing it between the different glucose gradient bags for 

automated feeding. The RBC samples will be stored in separate bags, each filled with AS-1N, and 

kept under controlled storage conditions at 4°C for 42 days. There will be sampling at pre-

determined intervals (e.g., daily, weekly, or bi-weekly), to collect RBC samples from each storage 

solution bag. To determine significance, there will be a comprehensive analysis of AGE formation 

for each RBC sample type using the previously described sample preparation technique (2.2.1-

2.2.5) and LC-MS/MS method established in the previous experiments (2.2.6-2.2.7). This analysis 

should include the quantification of CML, CEL, lysine, and other relevant AGEs. Beyond the 

AGEs determination, additional parameters would include blood glucose and glutathione (both 

reduced and oxidized) in each RBC sample. Statistical analysis will be important to identify any 

significant differences in AGE formation, glucose levels, GSH ratios, and oxidative stress markers 

among the different glucose concentration groups over time. 

This experiment will likely reveal how altering glucose concentrations within the storage 

solutions affects the formation of AGEs in RBCs. It will provide insights into the specific impact 

of hyperglycemia on AGE accumulation for T1D and fluctuations in blood glucose. It has the 



   

 

176 
 

potential to provide connections with variations in reduced and oxidized glutathione levels, as well 

as oxidative stress. The results may further elucidate the mechanisms underlying these phenomena 

and contribute to the development of more effective blood storage protocols for various medical 

conditions. 

5.3 Future Studies for SPR Binding Studies 

Previous research conducted by some members of the Spence group has explored binding 

patterns of RBCs from both "healthy" individuals and those with T1D to C-peptide, as depicted in 

Figure 5.1.27 The divergence in binding behaviors raises an intriguing question: how does 

glycation and hyperglycemia influence RBC binding? It is established that C-peptide uptake is 

influenced by two critical factors: the presence of zinc ions (Zn2+) and the presence of albumin.  

 

 

 

 

 

 

 

 

 

Figure 5.1. RBC C-peptide binding to control and T1D samples. There is a significant 

increase in C-peptide binding uptake in control RBCs than in T1D. Additionally, the samples 

in control plasma have more binding than those in T1D plasma (*p≤0.05, **p≤0.05, n≥7, 

error=SEM). Borrowed from Janes, T.27 
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Notably, the albumin employed in these binding experiments is non-glycated. However, the 

results derived from investigations involving increased levels of glycated albumin reveal distinct 

trends, specifically decreased ATP release and a higher equilibrium dissociation constant (Kd), as 

visually represented in Figure 5.2.28 

 

It is worth noting that the extent of albumin glycation in plasma has been recorded to range 

between (12-16%) for individuals without diabetes and 2-5x higher for those with T1D.29,30 While 

various binding experiments have been conducted using different quantities of glycated albumin, 

direct measurements for C-peptide and Zn2+ binding to determine overall binding strength 

differences have not been performed.28 

To delve deeper into this notion of binding strength, an instrumental approach that can be 

employed is surface plasmon resonance (SPR).31 Preliminary experiments were conducted to 

investigate the binding of C-peptide to albumin, both with and without the presence of zinc ions, 

Figure 5.2. RBC C-peptide binding to control and T1D samples. A. Glycation percentages 

ranged from 15% to 56% and there was an overall decreasing trend of ATP release. There were 

significant differences between with and without C-peptide at 15% glycation (*p<0.05) and 

18% (p**<0.05) (n=3-6, error=SEM). B. There was significantly higher Kd from gHSA sample 

than the nHSA sample which resulted in a 2.3x increase (n=5-6, error=SD, *p<0.05). Borrowed 

from Jacobs, M.28 
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and under varying degrees of glycation. These experiments measured the response units (RU) of 

biotinylated albumin (EZ-link Sulfo-NHS-LC Biotinylation Kit, Thermo Fisher Scientific, 

Waltham, MA), which was immobilized on the Octet streptavidin in dextran hydrogel (SADH) 

chip (Sartorius, Bohemia, New York). A solution containing varying concentrations of C-peptide 

was then flowed over the chip. 

In an ideal scenario, the C-peptide RU would reach a level that signifies strong binding, 

utilizing refractive index changes as an indicator of C-peptide binding to albumin and not the chip 

surface. In Figure 5.3, there was some evidence of binding to albumin, and this evidence 

intensified with increasing concentrations of C-peptide. However, the RU levels remained low, 

making it uncertain whether the binding was significant enough to determine a notable Kd. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. SPR data from biotinylated albumin and C-peptide analyte. There were increasing 

concentrations of C-peptide (10-60 µM) flowed over the biotinylated albumin on the SADH 

chip. The PBS had low RU (1-3), but the highest C-peptide also showed relatively low RY (20-

23). The overall difference between the blank and analyte should be much greater than 20 RU 

in order to determine significant specific binding.  
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The low RU values could be attributed to the substantial size disparity between albumin (a 

much larger protein) and C-peptide (a considerably smaller peptide). Considering these challenges, 

the experiment was repeated with commercially available biotinylated C-peptide and varying 

concentrations of normally glycated albumin flowed over the chip. Unfortunately, the experiment 

yielded high non-specific binding, and the RU values were remarkably similar to high 

concentrations of albumin, rendering it unsuccessful. To reduce non-specific interactions, 0.05% 

(v/v) Tween-20 was added to PBS, but this resulted in an exceedingly high blank PBS RU, 

signifying no notable binding between C-peptide and albumin, rendering the experiment once 

again unsuccessful.  

In scientific literature, experiments often employ low quantities of albumin to mitigate non-

specific binding in protein studies.31,32 However, since the analyte in this case is albumin itself, 

this approach is not viable. Additionally, altering the biotinylated peptide and flowing it over a 

larger protein did not yield an increased RU level. Consequently, these experiments demand 

further investigation and refinement to gain a more comprehensive understanding of C-peptide 

and glycated albumin binding across varying concentrations. 

Insights derived from these binding studies hold significant potential for advancing blood 

banking practices, particularly the development of a new "rejuvenation" solution by introducing 

C-peptide to current blood storage bags, as discussed in section 5.5. 

5.4 Future Studies for Glycation Binding and T1D Samples 

In Chapter 4, samples from individuals with T1D were compared to "healthy" controls in terms 

of AGEs, GSH, hemoglobin A1c (HbA1c%), and blood glucose levels. While no statistically 

significant differences were observed in HbA1c%, CEL, total AGEs, and GSH, the limited sample 

size hindered a comprehensive evaluation of the results. Consequently, further research requires 
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an expanded donor pool, with at least six donors, to draw more conclusive insights into the 

relationship between T1D and the associated AGEs and GSH levels. 

Given the established knowledge that hyperglycemia induces increased protein glycation, the 

next step involves conducting an experiment that builds upon previous binding studies while 

simultaneously measuring AGEs, GSH, HbA1c%, and blood glucose levels.33,34 Since HbA1c% 

cannot be relied on for diagnosing diabetes in patients with recent blood transfusions, it is 

important to evaluate why this is the case based on the process of transfusion.35 This initiative aims 

to ensure the accurate assessment of glycation levels for potential use in a screening process for a 

C-peptide therapy drug.  

An intriguing avenue for research lies in comparing albumin glycation data for individuals 

with T1D and assessing the rate of formation relative to AGEs, GSH, and HbA1c%. To perform 

this experiment, T1D and control donors would provide a blood sample, it would be processed 

similar to methods described in 4.2.1, and the sample will be aliquoted to study the biomarkers 

previous discussed (HbA1c%, blood glucose, AGEs, and GSH) and C-peptide binding to RBCs. 

Then, linear regression will be used to explore relationship strength of HbA1c% and C-peptide 

binding. Therefore, creating a robust screening process for T1D patients for use in the future C-

peptide clinical drug trial.  

5.5 Future Studies for Blood Storage Studies 

A novel experimental concept involves the addition of C-peptide to blood storage bags, with a 

focus on studying the binding and AGE qualities. Several questions must be addressed to inform 

the execution of this experiment. These include determining the appropriate C-peptide 

concentration (in solution, with albumin and zinc), deciding whether it will be administered at the 

beginning, continuously fed throughout the trial, or introduced at the end. Additionally, 
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understanding how RBCs change over time in comparison to control samples without C-peptide 

(AS-1 and AS-1N) is crucial. The purpose of this proposed experiment is to explore healthier ways 

to store the blood, not to prolong shelf-life, although that could be another avenue of research in 

the future.  

To systematically address these inquiries, the following approach is proposed. Firstly, it is 

advisable to conduct binding experiments involving the progressive glycation of albumin, utilizing 

SPR methods as detailed in section 5.3. The aim here is to determine the rate of albumin glycation 

over the 42-day storage period. It is already known that albumin is glycated quicker than RBCs, 

which produces about 4.5 times more gHSA than HbA1c% when blood glucose concentrations 

increase dramatically.35 In this experiment, albumin will be added to both AS-1 and AS-1N stored 

blood samples and removed weekly for the evaluation of non-glycated bovine serum albumin 

(nBSA) and glycated bovine serum albumin (gBSA) levels. The same techniques employed in 

chapter 2, specifically acid hydrolysis, and LC-MS/MS, will be utilized to analyze the samples. 

Once the average glycation level of albumin is established, the binding studies can be expanded 

upon by conducting SPR experiments to identify the optimal C-peptide concentration for 

preliminary studies. In one scenario, C-peptide, along with equal-molar concentration of Zn2+ and 

commercially available bovine serum albumin (BSA), can be introduced into a blood storage bag 

containing AS-1, with a parallel control bag devoid of the C-peptide solution. This process should 

be repeated at multiple time points: at the beginning, halfway through the storage period, and at 

the final time point.  

After the initial assessment determines the ideal timing for adding the C-peptide solution based 

on albumin glycation, a comprehensive evaluation of RBCs can be conducted. This assessment 
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will encompass the analysis of AGEs, sorbitol changes, C-peptide binding, GSH, ATP levels, 

deformability, and various other assays to investigate potential adverse effects on RBCs. 

The goal of these experiments is to not only demonstrate the benefits of normoglycemic storage 

conditions but also to underscore the advantages of introducing C-peptide/BSA/Zn2+ to rejuvenate 

stored blood for improved transfusion medicine. This multifaceted approach holds the potential to 

enhance our understanding of blood storage dynamics and its impact on RBC quality. 

5.6 Future In Vitro Experiments to Clinical Trials Advancement 

Clinical trial experiments involving blood banking hold a paramount significance for 

individuals affected by diabetes and sickle cell anemia.2,23–25,36 These medical conditions pose 

unique challenges and complications that necessitate tailored solutions for effective management 

and treatment. People with sickle cell anemia often require frequent blood transfusions to alleviate 

anemia, manage complications, and reduce the risk of stroke.22,37 Blood banking and clinical trial 

experiments are indispensable for this patient group, as the quality and compatibility of blood are 

of paramount importance. 

The availability of a safe and reliable blood supply is crucial for individuals with diabetes, as 

they may require frequent blood transfusions for various reasons, such as surgical interventions, 

acute episodes, or chronic complications.25,36 Clinical trial experiments within the realm of blood 

banking are instrumental in optimizing the transfusion process for patients with diabetes. These 

experiments can help determine the ideal storage conditions for blood, ensuring that it remains 

safe and effective for transfusion, even when it needs to be stored for extended periods. 

One of the primary concerns for individuals with diabetes or sickle cell disease is the potential 

impact of hyperglycemia and AGEs in stored blood, as previously discussed. Through clinical 

trials and experiments, it becomes possible to investigate how different storage conditions, 
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additives, and interventions affect the quality and safety of blood intended for transfusion. 

Understanding the intricate relationship between blood storage and glycation can lead to the 

development of tailored solutions that minimize the risks associated with transfusions in 

individuals with diabetes. This knowledge also paves the way for innovations like "rejuvenation" 

solutions, incorporating substances like C-peptide to enhance the therapeutic benefits of transfused 

blood. 

Furthermore, advancements in blood banking can lead to the development of novel therapies, 

offering the potential for a cure or long-term disease management.38,39 Clinical trials in this field 

are pivotal in testing these innovative treatments, which hold the promise of transforming the lives 

of individuals at-risk. 

Clinical trial experiments within the domain of blood banking are pivotal to enhancing the 

safety, efficacy, and quality of blood transfusions, addressing unique challenges, and ultimately 

improving the outcomes and quality of life for patients grappling with various medical conditions. 

As medical research continues to advance, these trials are indispensable steps toward providing 

tailored solutions and improving the overall healthcare landscape for various patient populations. 

When designing a clinical trial for testing the effectiveness of blood transfusions, there would 

need to be willing patients to be studied over several weeks to evaluate the new RBCs circulating. 

Recruiting participants to get blood transfusion and divided into two cohorts: AS-1 and AS-1N 

subjects. First, the individuals will be below 60 years old and they will be transfused with 3 units 

(equal to about 3 pints) of blood from the stored blood bags prior to 14 days in storage.40,41 The 

second set of experiments would include participants who receive blood transfusion after 14 days 

of blood being stored. Each participant would have their blood glucose levels recorded at hourly 

intervals on days 1, 2, 3, and then weekly testing post-transfusion, until 120 days. Also, samples 
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will be removed from each patient during these glucose checks for an overall panel of tests, 

including HbA1c%, ATP release, and C-peptide binding.  

In conclusion, blood banking and in vitro research is integral to the success of transfusion 

medicine clinical trials. They provide the necessary infrastructure for collecting and preserving 

blood samples, conducting preliminary safety and efficacy assessments, and developing essential 

assays for patient monitoring. These practices ultimately contribute to the safe and effective 

development of new treatments and therapies for various medical conditions. 

Blood banking has been a cornerstone of modern medicine for decades, providing a vital 

lifeline to countless patients in need of transfusions. However, it is striking how few significant 

advancements have been made in this critical field during this time. In a world that has seen 

remarkable progress in medical science, it is time to turn the attention to enhancing the methods 

of blood storage and preservation. One promising avenue for improvement lies in the monitoring 

of AGEs and other storage lesions. Detecting and managing AGEs in blood banked units could 

have a profound impact on the health of patients receiving transfusions, and a critical screening 

technique for future diabetic drug discoveries. Additionally, addressing the storage lesion markers, 

which can occur during prolonged storage and lead to decreased blood cell viability, is equally 

crucial. By developing better methods to store blood, such as utilizing automatic and sterile feeding 

techniques for innovative storage solutions, as discussed in this dissertation, it can ensure the 

preservation of blood components is optimized. These advancements would not only benefit 

patients in dire need of transfusions but would also enhance the overall quality and availability of 

blood for diverse patient populations, marking a new era in the history of blood banking. 
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