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ABSTRACT

The annual power incident on the ocean-facing coastlines of North America is over 400 GW.

Capturing a small fraction of this energy can significantly contribute to meeting energy demands.

Therefore, there is a renewed research interest in converting energy from ocean waves. Typically,

ocean wave energy capturing devices, known as wave energy converters (WECs), are placed in deep

water as the wave energy is higher in the deep water compared to shallow water. To reduce the cost of

installing and maintaining WECs in deep water, they can be integrated with existing offshore floating

platforms in the ocean. For such integration, traditional WECs, operating on the principle of linear

resonance, have a natural period in heave close to a typical wave period to generate a large heave

resonant response and hence high-efficiency wave power production, which causes large platform

motions. In other words, wave power production and hydrodynamic stability of the platform are

conflicting objectives in traditional linear WECs. Therefore, simultaneous wave energy conversion

and response suppression of the platform is necessary. To address this issue, in this work, a device

known as an inerter pendulum vibration absorber (IPVA) is proposed combining the inerter with

a parametrically excited centrifugal pendulum. Two system variations are studied: the IPVA and

IPVA-PTO, marking the absence and presence of an electromagnetic power take-off (PTO) system.

Both the IPVA and the IPVA-PTO are integrated with a single-degree-of-freedom (sdof) structure:

a primary mass, and a spar, respectively. The efficacy in suppressing vibrations is studied in the case

of the sdof IPVA system, whereas wave energy conversion and response suppression are analyzed

for the spar IPVA-PTO. For both systems, a nonlinear energy transfer phenomenon in which the

energy is transferred between the primary mass (or spar) and the pendulum vibration absorber.

For the sdof IPVA system, it is shown that the energy transfer is associated with the 1:2 internal

resonance of the pendulum induced by a period-doubling bifurcation. A perturbation analysis

shows that a pitchfork bifurcation and a period-doubling bifurcation are necessary and sufficient

conditions for this internal resonance to occur. Harmonic balance analysis, in conjunction with

Floquet theory, along with the arc-length continuation scheme, is used to predict the boundary

of internal resonance in the parameter space and verify the perturbation analysis. Furthermore,



the effects of various system parameters on the boundary are examined. Next, the sdof IPVA

is compared with a linear benchmark and an autoparametric vibration absorber and shows more

efficacious vibration suppression. For the spar IPVA-PTO system, a similar analysis shows the

nonlinear energy transfer, which is used to convert the vibrations of the spar into electricity while

reducing its hydrodynamic response. Similar to the IPVA, a period-doubling bifurcation results in

1:2 internal resonance, which is necessary and sufficient for nonlinear energy transfer to occur. The

hydrodynamic coefficients of the spar are computed using a commercial boundary element method

code. The period-doubling bifurcation is studied using the harmonic balance method. A modified

alternating frequency/time (AFT) approach is developed to compute the Jacobian matrix involving

nonlinear inertial effects of the IPVA-PTO system. The response amplitude operator (RAO) in

heave and the capture width of the spar IPVA-PTO are compared with its linear counterpart, and

the spar IPVA-PTO system outperforms the linear energy harvester with lower RAO and higher

capture width. Experiments containing integration of the IPVA and the IPVA-PTO system with an

sdof system (or “dry" spar in the case of IPVA-PTO) are performed in order to verify the analysis.

Next, both the IPVA and the IPVA-PTO systems are integrated with a spar-floater combination

and analyzed for their performance. Near the first resonance frequency, the spar-floater IPVA

system shows a period-doubling bifurcation and energy transfer similar to the sdof IPVA system

and outperforms the linear benchmark for hydrodynamic response suppression. On the other hand,

the spar-floater integrated IPVA-PTO system is analyzed for its performance near both resonance

frequencies. It is shown that near the first resonance, the spar-floater IPVA-PTO system’s response

undergoes a period-doubling bifurcation, and for small electrical damping, shows energy transfer.

However, near the second resonance, secondary Hopf bifurcation is observed. A rich set of

pendulum responses, such as primary and secondary harmonics, quasi-periodic, non-periodic, and

rotation, are observed. Rotation is shown to provide the best energy conversion among all the

identified responses. Finally, the electrical damping of the system is varied to find the optimal

values for which the largest energy conversion occurs in the system, and it is found that the optimal

electrical damping for energy transfer is associated with pendulum’s rotation.
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CHAPTER 1

INTRODUCTION

1.1 Overview of the work

This work proposes a novel system known as inerter-based vibration energy converter, called

the inerter pendulum vibration absorber (IPVA), consisting of an inerter and a pendulum vibration

absorber. The main objective of this study is to analyze the IPVA system for its effectiveness in

simultaneous vibration suppression and energy harvesting. The harmonic balance method, along

with a modified alternating-frequency time (AFT) method, is used to analyze the system. The

stability of the periodic response of the system is determined using the Floquet theory, and it

is observed that the primary harmonic response of the system can bifurcate either via a period-

doubling bifurcation or secondary Hopf bifurcation depending on the type of integration between

the IPVA (with or without generator) and linear system (single or two degree-of-freedom).

This work presents two main systems: the IPVA system and the IPVA-PTO system. The

significant difference between these two systems is that the IPVA-PTO system has a generator

integrated with the pendulum and is studied for vibration suppression and energy harvesting. In

contrast, the IPVA system does not have a generator and is primarily concerned with vibration

suppression. First, the IPVA system is integrated with a single-degree-of-freedom (sdof) system

to understand its effect on the performance of the sdof system. After this, the IPVA-PTO is

integrated with an offshore floating platform (spar) to understand the impact of added mass and

radiation damping on the system. For the IPVA system, it has been observed that it outperforms

an autoparametric system in terms of the motion suppression of the primary system and energy

harvesting potential. Furthermore, for the IPVA-PTO system, the response amplitude operator

(RAO) in the heave of the spar and the capture width (hydrodynamic energy) of the IPVA-PTO-

integrated spar are better than a benchmark linear PTO as the former has a lower RAO and higher

capture width. Experiments are performed on the sdof “dry” IPVA and “dry” IPVA-PTO systems

to observe their vibration suppression and energy conversion effect. After this, both the IPVA and

the IPVA-PTO is integrated with a two-degree-of-freedom wave energy converter consisting of a
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spar and a floater to analyze their efficacy in hydrodynamic response mitigation and wave energy

conversion compared to a linear benchmark.

1.2 Background

Since the last decade, renewable energy has received a lot of interest in generating electricity

due to the depletion of fossil fuels and the threat of climate change. Of all the most popular

renewable energy techniques, solar, wind and wave, wave energy is the most spatially concentrated,

with an average power of 2−3 kW/m2 just below the ocean surface on the area perpendicular to the

direction of the wave propagation [1]. Many researchers have worked to quantify the wave energy

resources present in the oceans [2, 3, 4] and obtained similar results. One such quantification is

shown in Fig. 1.1. As seen from this figure, ocean wave energy resources are enormous over the

coastline of North America. It is estimated that the annual average wave power incident on the

ocean-facing coastlines of North America is over 400 GW (about 80% electricity consumption

for the entire continent [4]). Despite enormous resources, the cost of using existing wave energy

converters (WECs) to generate electricity from ocean waves is higher than that of solar and wind

energy conversion technologies due to the installation, mooring/foundation costs, operation, and

maintenance costs, which account for 40%–50% of the life costs of the wave energy project [5].

A promising way to reduce these costs is to integrate WECs with offshore floating platforms

because they can share infrastructure, equipment, mooring and anchoring systems, and survey and

monitoring methods [6]. One of the ways to do this is to integrate WECs with oil rigs so that they

can generate energy and directly supply electricity to the rigs.

1.3 Motivation and literature survey

Despite efforts in reducing the cost of wave energy conversion technology, the LCOE (Levelized

Cost of Energy) of wave energy (around 570 $/MWh) is significantly larger than that of onshore

wind or solar photovoltaic energy (≈30 $/MWh) [8, 9]. To reduce the LCOE, researchers are

investigating ways to integrate wave energy converters with existing offshore structures in the

ocean [6]. Structures like floating wind turbines [10] and spar platforms used in offshore oil and

gas industry [11, 12, 13, 14] are feasible candidates for such integration. Specifically, spar platforms
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Figure 1.1 Annual mean power density and annual mean best direction (→) for waves around the
world [4]

Figure 1.2 A point absorber wave energy converter which generates energy using the heave motion
[7]
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establish the buoyancy and stability on a long and slender cylinder that goes deep below the water

surface, thereby having good hydrodynamic response/stability and large water depths (600∼2500

meters for spar platforms in the Gulf of Mexico [15]). On the other hand, heaving WECs, like the

one shown in Fig. 1.2, convert the relative heave motion between oscillating bodies into electricity

and have a high wave energy conversion efficiency when operating at resonance [16]. As wave

energy resources are more abundant in deep water than in shallow water, it is viable to integrate

WECs and spar platforms to lower the LCOE. The integration of the spar and different types of

heaving WECs [11, 12, 13, 17] has been getting attention. Specifically, the integration of spar

with an annular floater has been widely studied to assess its feasibility in reducing the cost while

converting power; see [11, 13, 18, 19], for example. Existing numerical studies [11, 17] suggest

that such integration can lead to a 7%–30% capture width ratio (hydrodynamic efficiency) of wave

energy production, which is comparable to existing heaving WECs [20]. According to the scaling

law in [20], heaving WECs of a larger diameter would have a higher capture width ratio. A typical

spar platform in the Gulf of Mexico, e.g., the Horn Mountain, has a diameter of 30 meters (BSEE

data [21]). If the spar-WEC integration in [11, 17] were scaled up to this diameter, the peak mean

wave power in operational conditions would be 2.4–10 MW (current floating wind turbines have 5

MW wind power).

Although it shows promising wave energy conversion, such integration does not ensure a good

hydrodynamic response of the platform. Past studies have shown that the integration with heaving

WECs amplifies the platform heave and pitch motion [11, 12, 13], and even causes Mathieu

instability [19], which would aggravate fatigue of the mooring and riser systems and even lead to

failure of the whole system [22, 23]. This deterioration of hydrodynamic response and stability

can be explained as follows. Generally speaking, a spar platform has a 20–30 s heave natural

period [24, 25], which is far away from typical incident wave periods (5–10 s [26]) to avoid large

heave resonant response. On the other hand, traditional heaving WECs operate based on the

basic principle of linear resonance, thereby having a natural period in heave close to a typical

wave period to generate a large heave resonant response and hence high-efficiency wave power
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production. When a heaving WEC is integrated with a platform, this significant heave resonant

response can give rise to large platform heave/pitch motions. In other words, increasing wave power

production is at the cost of deteriorating the hydrodynamic response of the platform, which is the

fundamental problem this research aims to resolve: wave power production and hydrodynamic

response reduction are conflicting objectives. Moreover, another issue with traditional WECs is

that the half-power frequency bandwidth of the WECs is low, which is an issue since the dominant

wave period typically changes with time. Therefore, researchers are looking at ways to convert

wave energy over a broadband frequency range without sacrificing the stability of the spar.

Fantai et al. [27] used active control in co-located offshore wind-wave systems. They showed

that actively altering the wave field with a WEC array with model predictive control before being

incident on a floating offshore wind turbine (FOWT) can result in both motion reduction and

reliable energy conversion. Zhang et al. [28] demonstrated that liquid column dampers can be used

to maintain the stability of FOWTs. Another direction being investigated to widen the frequency

bandwidth is the use of nonlinearity in the system. For example, nonlinear stiffness mechanisms

[29, 30, 31] have been investigated to enhance the frequency bandwidth of point absorbers. Methods

including increasing the number of degrees of freedom in the point absorber to increase wave energy

conversion efficiencies while reducing the resonance frequency for spherical submerged bodies [32]

have also been proposed. However, for two-body wave energy converters, no passive means exist

that can achieve simultaneous hydrodynamic response suppression and wave energy conversion at

the same time.

Much research has been published considering nonlinearities to broaden the bandwidth of energy

converters. For example, energy converters with intentionally introduced nonlinear stiffness have

been widely studied [33]. Although this approach is proven effective, it is hard to realize the required

nonlinear stiffness in large-scale structures. On the other hand, when rotary electromagnetic

energy converters are considered, inertia nonlinearity can be implemented via creative transmission

mechanisms. For example, Zuo et al. [34] developed the mechanical transmission concept known

as mechanical motion rectification (MMR) for energy conversion. The MMR mechanism changes
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the inertia of the energy converter in a piece-wise manner. Several studies [35, 36, 37] have

demonstrated that such piece-wise inertia can broaden the bandwidth. Because wave energy

conversion is generally designed for large-scale energy harvesting, other types of inertia nonlinearity

deserve more investigation. One of the ways for large-scale energy conversion is using inertial

nonlinearity by making the use of a device called inerter coupled with nonlinear vibration absorbers.

An inerter is a mechanical device with two terminals, each of which exerts an equal and

opposite inertial force proportional to the relative acceleration between the terminals [38]. The

inerter amplifies the inertial effects of a small mass by using motion transmission mechanisms,

fluids, and levers [38]. By virtue of its mass amplification effect, the inerter has been studied

to improve the performance of various passive vibration mitigation techniques in the last decade.

Ikago et al. [39] developed the tuned viscous mass damper (TVMD), which consisted of a tuning

spring in series with the inerter and a viscous damper in parallel. It was shown that the TVMD

outperformed the viscous damper alone when applied to a seismically excited single-degree-of-

freedom (sdof) structure. Furthermore, Lazar et al. [40] proposed the tuned inerter damper

(TID), wherein the inerter was substituted for the oscillating mass of a tuned mass damper (TMD).

The TID and TMD were compared in seismically excited multiple-degree-of-freedom (MDOF)

structures and demonstrated similar effectiveness. Later, Lazar et al. [41] considered the TID in

suppressing the midspan vibration of cables and showed that the TID outperformed the optimal

viscous damper. Moreover, Qian et al. [42] studied serial and parallel connections between the

TID and a base-isolation system and concluded that the serial TID outperformed the parallel TID

for practical structures.

The inerter has also been applied to enhance the inertial effects of dynamic vibration absorbers

(DVAs). Marian and Giaralis [43] proposed the tuned mass damper inerter (TMDI), which consisted

of a TMD and the inerter in series. In a 3DOF structure simulation, they showed that for achieving

similar vibration control performance, the weight of the TMDI was four times lighter than the

TMD. Furthermore, De Domenico and Ricciardi [44] incorporated the TMDI in a base-isolation

system and demonstrated that the displacement demand of the base-isolated structure could be

6



significantly reduced. Moreover, Joubaneh and Barry [45] studied the performance of four models

of electromagnetic resonant shunt TMDI (ERS-TMDI) on both vibration suppression and energy

harvesting and identified the best model. Their parametric studies showed that increasing the

inertance enhances the performance of the best model in terms of both vibration mitigation and

energy harvesting. On the other hand, Tai [46] proposed the tuned inerter-torsional-mass damper

(TITMD), which integrated the inerter and a torsional mass damper. Compared with the TMDI, the

TITMD achieved 20 − 70% improvement with identical weights. For the case of two-body wave

energy converters (like spar-floater systems), Asai et al. [47] found that the addition of an inerter

to the system enhances the energy conversion efficiency and broadens the frequency bandwidth.

In recent years, the inerter has been integrated with nonlinear vibration absorbers. Qian and

Zuo [48] considered the effects of adding an inerter to a nonlinear vibration absorber (NVA). The

nonlinear vibration absorber consisted of a tuned mass damper with a nonlinear spring containing

both linear and cubic stiffness. They observed that the spring-inerter-damper (SID) system added to

the beam outperformed the nonlinear vibration absorber without the inerter. Furthermore, Kakou

and Barry [49] added a nonlinear spring to the electromagnetic resonant shunt tuned mass damper-

inerters (ERS-TMDI) [45] to analyze the implications of coupling a nonlinear spring to the system.

Two configurations of the system, one with the energy harvester between the tuned mass and ground

(Configuration-1) and the other with the energy harvester between primary structure mass and the

tuned mass (Configuration-2), were compared for their efficacy in vibration suppression and energy

harvesting of the system. It was found that Configuration-1 exhibits a higher range of feasible

forcing without degrading the performance compared to Configuration-2. It was also observed

that for optimal Configuration-1, higher nonlinear stiffness, inerter magnitude and resistance, and

lower capacitance and inductance improved the energy harvesting performance. Yang et. al [50]

proposed the nonlinear inertance mechanism (NIM) created by combining oblique inerters with

one common hinged terminal and the other terminals fixed. It was shown that the addition of NIM

could enhance the vibration isolation capabilities of a system. The NIM was combined with two

different isolators: a spring-damper isolator and a nonlinear quasi-zero-stiffness (QZS) isolator.
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After adding the NIM, the linear isolator showed bending of the frequency response curve towards

the low-frequency range and reduction of the original peak values in dynamic response. For QZS

systems, the larger frequency range of small dynamic response amplitude and lower kinetic energy

of the mass was observed after the addition of NIM.

In this work, we integrate the inerter, and a centrifugal pendulum with a generator attached

such that the centrifugal pendulum is parametrically excited by the inerter. The integrated system

is referred to as the inerter pendulum vibration absorber power take-off (IPVA-PTO). Various

systems wherein a pendulum vibration absorber is parametrically excited by a primary structure

have been studied extensively. One class of such systems are the autoparametric vibration absorbers,

which give rise to interesting nonlinear responses, such as internal resonance [51, 52], amplitude-

modulated response [53], and chaos [51]. The operation principle of AVAs is briefly explained as

follows. When a primary structure is excited by force containing a frequency close to a natural

frequency 𝜔1 of the structure, the structure will undergo resonance, thereby having large vibration.

One way to mitigate the resonant response is to couple an AVA to the primary structure via

quadratic nonlinearity and have the AVA’s natural frequency 𝜔2 tuned around half the natural

frequency of the primary structure, i.e., 𝜔2 ≈ 𝜔1/2. When the force amplitude increases beyond

a critical value, the primary structure’s vibration amplitude stops increasing or becomes saturated,

and its vibration energy is transferred to the AVA. As a result, the AVA will have a resonance-

like response, and then an electromechanical transducer is used to convert the resonance-like

response into electricity. As such, structural vibration mitigation and vibration energy harvesting

are achieved simultaneously. Because the AVA is internally excited by the primary structure and

yet has a resonance-like response, the resonance is known as internal resonance. Note that when

the natural frequencies satisfy 𝜔2 ≈ 𝜔1/2, they are known to be (nearly) commensurable in the

literature [54], which is a necessary condition for internal resonances. If a heaving WEC employed

an AVA as a power take-off (PTO) unit, it would have the potential to overcome the fundamental

problem faced by integrating a floating platform and WECs. However, AVAs are not applicable to

wave energy conversion because of two major shortcomings. First, because the natural frequencies
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of AVA and heaving WEC must be commensurable (𝜔2 ≈ 𝜔1/2 ), AVA tends to be too long and

heavy. For example, the natural frequency in the heave of the spar-WEC integration in [11] is

about 0.1 Hz, so it would require an AVA of a natural frequency around 0.05 Hz to mitigate the

resonant heave response. For the pendulum-type AVAs in [55], this suggests a pendulum length

of 100 meters. Second, the saturation and energy transfer phenomenon of AVAs generally occur

within a narrow range of excitation frequencies [52]. Ocean waves typically come in a spectrum

of frequencies; that is, the dominant excitation frequency of ocean waves may change from time to

time. Therefore, if this dominant frequency changed, AVAs would become detuned and therefore

perform with low efficiency. Consequently, these two shortcomings call for a novel type of internal

resonance vibration absorber that (a) can create a similar saturation phenomenon without having

commensurable natural frequencies so that it can be lightweight and compact and (b) is responsive

to a broad range of excitation frequencies or is broadband.

Therefore, motivated by the autoparametric vibration absorbers and enormous wave energy

potential promised by the successful integration of a floating platform and WECs, this work aims

at studying the hydrodynamics and wave energy conversion capabilities of a spar-WEC integration

where the WEC incorporates the inerter pendulum vibration absorber power-take off system (IPVA-

PTO). The IPVA-PTO does not require commensurable natural frequencies and, therefore, can have

a light and compact design.

1.4 Outline of the document

The introductory chapter provides background, motivation, and the literature survey regarding

the research statement. Chapter 2 talks about the integration of the IPVA with a single-degree-

of-freedom system, including experimental analysis. Chapter 3 delves into the application of

the IPVA-PTO system in ocean wave energy conversion along with experiments on the “dry”

system and talks about the effect of the IPVA-PTO on the stability of the spar. Chapter 4 and 5

discuss the integration of IPVA and IPVA-PTO system with a spar-floater system for the purpose

of hydrodynamic response suppression and energy conversion, respectively. Chapter 6 concludes

the primary research findings, and avenues for future research are discussed.
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CHAPTER 2

ANALYSIS OF THE IPVA SYSTEM: A STUDY IN VIBRATION SUPPRESSION

2.1 Overview

To understand the behavior of the inerter pendulum vibration absorber (IPVA) system for ocean

wave energy harvesting, we first analyze and perform experiments on the dry single-degree-of-

freedom system by integrating the IPVA system into it. By dry, it means that the system is excited

in a dry state, without any ocean wave effects on it. This is done to get an idea of how the dynamics

of an oscillating system change when the IPVA is integrated with it and the energy harvesting

potential of the pendulum.

2.2 Design of the Inerter Pendulum Vibration Absorber

Both systems have two degrees of freedom, one associated with the pinion’s angular displacement

(𝜃), and the other with the pendulum’s angular displacement relative to the pinion (𝜙).

2.2.1 Equations of motion

Although different mechanisms are used, the working principle of both systems is identical.

Therefore, their equations of motion are identical. Lagrange’s equations are used to derive the

equations of motion. We derive the equations of motion for the rack-pinion system. First, the

kinetic energy of the system is derived. We have the total kinetic energy

𝑇 = 𝑇𝑀 + 𝑇𝑐 + 𝑇𝑝 (2.1)

where 𝑇𝑀 , 𝑇𝑐 and 𝑇𝑝 is the kinetic energy of the primary mass 𝑀 , carrier-pinion composite and the

pendulum respectively. The coordinate system is defined in Fig. Fig. 2.1a. Therefore, the position

vector of the pendulum r𝑝 can be obtained as

𝒓 𝒑 =
(
𝑅𝑝 sin(𝜃) + 𝑟 sin(𝜃 + 𝜙)

)
𝑰 +

(
𝑅𝑝 cos(𝜃) + 𝑟 cos(𝜃 + 𝜙)

)
𝑲̂. (2.2)

where 𝑰 is the direction of the motion of the primary mass, and 𝑲̂ is the vertical direction.

Differentiating it, we obtain

¤𝒓 𝒑 =
(
𝑅𝑝 cos(𝜃) ¤𝜃 + 𝑟 cos(𝜃 + 𝜙)

( ¤𝜃 + ¤𝜙
) )
𝑰 +

(
−𝑅𝑝 sin(𝜃) ¤𝜃 − 𝑟 sin(𝜃 + 𝜙)

( ¤𝜃 + ¤𝜙
) )
𝑲̂.(2.3)
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a SDOF system incorporating rack-
pinion IPVA

b CAD realization of rack-pinion
IPVA system

c SDOF system containing ball-
screw IPVA system

d CAD realization of the ball-screw
IPVA system

Figure 2.1 Rack-pinion and ball-screw IPVA systems: schematics and computer-aided (CAD)
realizations

Therefore, the kinetic energy of the pendulum is

𝑇𝑃 =
1
2
𝑚 ¤𝒓 𝒑 · ¤𝒓 𝒑 +

1
2
𝐽𝑝

( ¤𝜃 + ¤𝜙
)2
, (2.4)

which simplifies to

𝑇𝑃 =
1
2
𝑚

(
𝑅2
𝑝
¤𝜃2 + 𝑟2 ( ¤𝜃 + ¤𝜙

)2 + 2𝑅𝑝𝑟 cos (𝜙) ¤𝜃
( ¤𝜃 + ¤𝜙

) )
+ 1

2
𝐽𝑝

( ¤𝜃 + ¤𝜙
)2
. (2.5)

𝑇𝑀 =
1
2
𝑀

(
𝑅 ¤𝜃

)2
, 𝑇𝑐 =

1
2
𝐽 ¤𝜃2,

𝑇𝑝 =
1
2
𝐽𝑝

( ¤𝜃 + ¤𝜙
)2 + 1

2
𝑚

(
𝑅2
𝑝
¤𝜃2 + 𝑟2 ( ¤𝜃 + ¤𝜙

)2 + 2𝑅𝑝𝑟 cos (𝜙) ¤𝜃
( ¤𝜃 + ¤𝜙

) )
(2.6)
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are the kinetic energy of the structure, carrier, and pendulum. Here, 𝐽 is the moment of inertia of

the carrier-pinion composite, 𝐽𝑝 is the moment of inertia of the pendulum with respect to its center

of mass

𝑉 =
1
2
𝑘𝑥2 =

1
2
𝑘𝑅2𝜃2. (2.7)

To account for energy loss at the pivot point of the pendulum, a torsional viscous damping coefficient

𝑐𝑝 is introduced. The virtual work done by the force 𝐹 = 𝐹0 sin (Ω𝑡), the damping torque in the

pendulum, and the damping force in the primary mass can be derived as 𝐹𝛿𝑥, −𝑐𝑝 ¤𝜙𝛿 ¤𝜙 and −𝑐 ¤𝑥𝛿 ¤𝑥,

respectively, where 𝑐𝑝 and 𝑐 are the torque damping coefficient in the pendulum and damping

coefficient of the viscous damper between primary mass and ground respectively. Then the virtual

work done by the force 𝐹, the damping torque (due to 𝑐𝑝 and viscous damping 𝑐) are derived as

𝛿𝑊 = 𝐹𝑅𝛿𝜃 − 𝑐𝑝 ¤𝜙𝛿𝜙 − 𝑐𝑅2 ¤𝜃𝛿𝜃. (2.8)

Therefore, the equations of motion of the system obtained using the Euler-Lagrange formulation

are written as(
𝑀𝑅2 + 𝐽 + 𝑚𝑅2

𝑝 + 𝑚𝑟2 + 2𝑚𝑅𝑝𝑟 cos 𝜙
)
¥𝜃 +

(
𝑚𝑟2 + 𝑚𝑅𝑝𝑟 cos 𝜙 + 𝐽𝑝

)
¥𝜙 + 𝑐𝑅2 ¤𝜃

+𝑘𝑅2𝜃 − 2𝑚𝑅𝑝𝑟 ¤𝜙 ¤𝜃 sin 𝜙 − 𝑚𝑅𝑝𝑟 ¤𝜙2 sin 𝜙 = 𝐹0 sin (Ω𝑡) 𝑅,

(
𝑚𝑟2 + 𝐽𝑝

)
¥𝜙 + 𝑚

(
𝑟2 + 𝑅𝑝𝑟 cos 𝜙

)
¥𝜃 + 𝑐𝑝 ¤𝜙 + 𝑚𝑅𝑝𝑟 ¤𝜃2 sin 𝜙 = 0 (2.9)

For initial analysis, it is assumed that the pendulum is made of a point mass such that its moment

of inertia with respect to the pivot point is much larger than the pendulum’s moment of inertia with

respect to its center of mass, i.e., 𝑚𝑟2 >> 𝐽𝑝. Furthermore, 𝐽 = (𝑚𝑝 + 𝑚𝑐)𝑅2
𝑔, where 𝑚𝑝 and 𝑚𝑐

are the pinion mass and carrier mass, respectively, and 𝑅𝑔 is the radius of gyration. As the primary

mass 𝑀 is much larger than the sum of 𝑚𝑝 and 𝑚𝑐 and as the pinion radius 𝑅 and the radius of

gyration 𝑅𝑔 have the same order of magnitude, it is assumed that 𝑀𝑅2 >> 𝐽. Without loss of

generality, 𝐽 and 𝐽𝑝 are neglected. We rescale the time and convert (2.9) into a dimensionless form

for further analysis using the following parameters,
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𝜇𝑟 =
𝑚𝑅2

𝑝

𝑀𝑅2 , 𝜔0 =

√︂
𝑘

𝑀
, 𝜔 =

Ω

𝜔0
, 𝜏 = 𝜔0𝑡, 𝜂 =

𝑟

𝑅𝑝
,

𝜉 =
𝑐

2𝜔0𝑀
, 𝜉𝑝 =

𝑐𝑝

2𝜔0𝑀𝑅2 , 𝑓 =
𝐹0

𝑀𝑅𝜔2
0
, ()′ = 𝑑 ()

𝑑𝜏
. (2.10)

Denote x = [𝜃, 𝜙]𝑇 and f = [ 𝑓 sin𝜔𝜏, 0]𝑇 . The dimensionless equations of motion are obtained as

Mx′′ + Cx′ + Kx + g (x, x′, x′′) = f (2.11)

where

M =


1 + 𝜇𝑟

(
1 + 𝜂2) 𝜇𝑟𝜂

2

𝜇𝑟𝜂
2 𝜇𝑟𝜂

2

 , C =


2𝜉 0

0 2𝜉𝑝

 , K =


1 0

0 0

 ,
g (x, x′, x′′) = 𝜇𝑟𝜂


(2𝜃′′ + 𝜙′′) cos 𝜙 − 𝜙′ (2𝜃′ + 𝜙′) sin 𝜙

𝜃′′ cos 𝜙 + 𝜃′2 sin 𝜙

 . (2.12)

It is worth noting that the strength of the nonlinear inertial terms g (x, x′, x′′) is proportional to

𝜇𝑟 and 𝜂. The moment of inertia ratio 𝜇𝑟 can be readily magnified by adjusting the ratio 𝑅𝑝

𝑅
, thereby

creating strong nonlinear inertial effects with a small pendulum mass. For example, for a mass

ratio 𝑚
𝑀

= 3%, a ratio 𝑅𝑝

𝑅
=
√

10 leads to 𝜇𝑟 = 0.3, indicating that the inertia effect is magnified

by a factor of ten. Furthermore, the pendulum length ratio 𝜂 is proportional to the length of the

pendulum. Therefore, a long pendulum leads to strong nonlinear inertial effects.

2.3 Internal resonance of IPVA

According to the studies on autoparametric resonance, internal resonance plays an essential

role in transferring the kinetic energy of a primary structure to the pendulum vibration absorber

[56, 57, 58]. As will be demonstrated in Sec. 2.6, when internal resonance occurs to the IPVA, a

similar energy transfer phenomenon is observed, resulting in vibration mitigation of the primary

structure. In this section, we will determine the conditions for which internal resonance will

occur to the IPVA. To this end, we use the harmonic balance method to determine the parametric

instability of the system.

13



2.3.1 Harmonic balance method

By virtue of the harmonic balance method, periodic solutions of the system are assumed to take

the following form

𝜃𝑝 (𝜏) =

𝑃∑︁
𝑝=1

(
Θ𝑐𝑝 cos

( 𝑝𝜔𝜏
𝜈

)
+ Θ𝑠

𝑝 sin
( 𝑝𝜔𝜏
𝜈

))
,

𝜙𝑝 (𝜏) = Φ0 +
𝑃∑︁
𝑝=1

(
Φ𝑐
𝑝 cos

( 𝑝𝜔𝜏
𝜈

)
+Φ𝑠

𝑝 sin
( 𝑝𝜔𝜏
𝜈

))
(2.13)

where Θ𝑝, Φ𝑝 and Φ0 are unknown Fourier coefficients to be determined. Note that 𝜈 ∈ N accounts

for subharmonics. Furthermore, a constant Φ0 is included to consider asymmetric oscillation of

the centrifugal pendulum [59]. Denote by x𝑝 =
[
𝜃𝑝, 𝜙𝑝

]𝑇 the vector of assumed periodic solutions.

After substituting (2.13) into the equations of motion (2.11), we obtain the following residue term

R(𝜏) = Mx′′𝑝 + Cx′𝑝 + Kx𝑝 − g
(
x𝑝, x′𝑝, x′′𝑝

)
− f. (2.14)

To obtain an expression relating the Fourier coefficients, a Galerkin procedure [60] is used to project

(2.14) on the orthogonal trigonometric basis, yielding 2𝑃 + 1 nonlinear algebraic equations

ℎ0 (x̂) =

∫ 2𝜋𝜈
𝜔

0
R(𝜏)𝑑𝜏 = 0, ℎ𝑠𝑝 (x̂) =

∫ 2𝜋𝜈
𝜔

0
R(𝜏) sin

( 𝑝𝜔𝜏
𝜈

)
𝑑𝜏 = 0,

ℎ𝑐𝑝 (x̂) =

∫ 2𝜋𝜈
𝜔

0
R(𝜏) cos

( 𝑝𝜔𝜏
𝜈

)
𝑑𝜏 = 0 (2.15)

with x̂ =
[
𝚯𝑇 ,𝚽𝑇 , Φ0

]𝑇 , Θ =
[
Θ𝑐1, · · · ,Θ

𝑐
𝑃
,Θ𝑠

1, · · · ,Θ
𝑠
𝑃

]𝑇 and 𝚽 =
[
Φ𝑐

1, · · · ,Φ
𝑐
𝑃
,Φ𝑠

1, · · · ,Φ
𝑠
𝑃

]𝑇 .

Note that g
(
x𝑝, x′𝑝, x′′𝑝

)
will result in composite trigonometric terms like cos

(
Φ𝑠
𝑝 sin (𝑝𝜔𝜏/𝜈)

)
.

These terms can be expanded using the Jacobi–Anger expansion, namely, an infinite series of

products of Bessel functions and trigonometric functions [61] ( see Appendix B for the expansion

formulas). For the current study, the Jacobi-Anger expansion is truncated at Bessel functions of

order up to a third to capture the necessary nonlinear effects.

We solve (2.15) for the Fourier coefficients using Newton-Raphson method. Substitution of

the Fourier coefficients into (2.13) will lead to the periodic solutions. The stability of the periodic

solutions will be determined in the next section.
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2.3.2 Stability

To determine the stability of the periodic solutions, small perturbations are introduced to (2.13)

as follows

𝜃 (𝜏) = 𝜃𝑝 (𝜏) + 𝛿𝜃 (𝜏) and 𝜙(𝜏) = 𝜙𝑝 (𝜏) + 𝛿𝜙 (𝜏) (2.16)

where |𝛿𝜃 (𝜏) | << 1 and |𝛿𝜙 (𝜏) | << 1. Denote the vector of small perturbations by 𝜹 =
[
𝛿𝜃 , 𝛿𝜙

]𝑇 .

Substitution of (2.16) into (2.11) and linearization with respect to 𝜃𝑝 (𝜏) and 𝜙𝑝 (𝜏) yield(
M + 𝜕g

𝜕x′′

)
𝜹′′ +

(
C + 𝜕g

𝜕x′

)
𝜹′ +

(
K + 𝜕g

𝜕x

)
𝜹 = 0 (2.17)

where the Jacobian matrices 𝜕g/𝜕x′′, 𝜕g/𝜕x′, and 𝜕g/𝜕x are evaluated at x = x𝑝, x′ = x′𝑝, and

x′′ = x′′𝑝 wherever appropriate. Note that the Jacobian matrices are periodic functions of period

𝑇 = 2𝜋𝜈/𝜔, e.g., 𝜕g/𝜕x (𝜏) = 𝜕g/𝜕x (𝜏 + 𝑇). Because (2.17) have periodic coefficients, one can

use Floquet theory to determine the stability [62]. To this end, (2.17) is transformed into the state-

space form and numerically integrated using Matlab’s ode45 (based on an explicit Runge-Kutta

integration method) over one period 𝑇 to obtain the fundamental matrix.] To ensure accuracy, the

absolute and relative tolerance was taken to be 10−9. If any eigenvalue of the fundamental matrix

has a magnitude greater than unity, the periodic solutions are unstable.

Although (2.17) can be used to determine the stability of arbitrary periodic solutions, it is a

numerical approach; hence, it is hard to understand how internal resonance occurs to the IPVA. To

gain physical insights, we also use a semi-analytical approach to determine the stability. To that

end, we apply a multiple-scale approach to (2.17) as follows. Because a compact and lightweight

design of the IPVA system is preferred in practical applications, we consider 𝜇𝑟 << 1. Assuming

that the parameters 𝜇𝑟 , 𝜉, 𝜉𝑝 are small quantities, we set 𝜇𝑟 = 𝜖 𝜇̂𝑟 , 𝜉 = 𝜖𝜉, 𝜉𝑝 = 𝜖𝜉𝑝 and introduce

the following asymptotic expansions

𝛿𝜃,𝜙 (𝜏) = 𝛿
(0)
𝜃,𝜙

(𝜏0, 𝜏1, · · · ) + 𝜖𝛿(1)𝜃,𝜙 (𝜏0, 𝜏1, · · · ) + · · ·

𝜏𝑘 = 𝜖 𝑘𝜏, 𝑘 = 0, 1, · · ·
𝑑

𝑑𝜏
=

𝜕

𝜕𝜏0
+ 𝜖 𝜕

𝜕𝜏1
+ · · · (2.18)

15



where |𝜖 | << 1 is a small bookkeeping parameter.

After substituting (2.18) into (2.17) and collecting terms that will lead to parametric instabilities,

the equation obtained in order 𝑂 (𝜖0) is

𝜕2𝛿
(0)
𝜃

𝜕𝜏2
0

+ 𝛿(0)
𝜃

= 0,
𝜕2𝛿

(0)
𝜙

𝜕𝜏2
0

+
2𝜉𝑝
𝜇̂𝑟𝜂

2

𝜕𝛿
(0)
𝜙

𝜕𝜏0
+
𝐴

(
x𝑝

)
𝜂

𝛿
(0)
𝜙

= 0 (2.19)

where

𝐴
(
x𝑝

)
= cos(𝜙𝑝)

(
𝜃′𝑝

)2
− sin(𝜙𝑝)𝜃′′𝑝 (2.20)

is a periodic coefficient of period 𝑇 . It is worth noting that the first equation in (2.19) shows that

𝛿
(0)
𝜃

are stable harmonic functions. Therefore, the stability of the periodic solutions is determined

by the second equation in (2.19).

When the nonlinearity is weak, periodic solutions (2.13) are dominated by primary harmonics,

i.e., 𝑃 = 1 and 𝜈 = 1. As (2.19) is derived by the multiple-scale approach, it is accurate when the

nonlinearity is weak. Therefore, in addition to (2.17) (Floquet theory), (2.19) is used to determine

the boundary of parametric instability for periodic solutions of primary harmonics, which will

explain how internal resonance occurs to the IPVA. Thus, 𝑃 = 1 and 𝜈 = 1 are substituted in

(2.13) to obtain 𝜃𝑝 = Θ𝑐1 cos (𝜔𝜏) + Θ𝑠
1 sin (𝜔𝜏) and 𝜙𝑝 = Φ0 + Φ𝑐

1 cos (𝜔𝜏) + Φ𝑠
1 sin (𝜔𝜏). After

substituting these expressions of Θ and Φ into (2.19) and expanding in terms of Bessel functions

up to the third order, we arrive at a damped Mathieu equation as follows

𝜕2𝛿
(0)
𝜙

𝜕𝜏2
0

+
2𝜉𝑝
𝜇𝑟𝜂

2

𝜕𝛿
(0)
𝜙

𝜕𝜏0
+ 𝑢 (x̂)

𝜂
𝛿
(0)
𝜙

+ 𝑣 (x̂)
𝜂

cos(𝜔𝜏 − 𝛾)𝛿(0)
𝜙

= 0 (2.21)
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where

𝑢 (x̂) =
𝜔2Θ1c (Φ0)

2
{Θ1 [𝐽0(Φ1) + 𝐽2(Φ1)s (2𝛼)] + 2𝐽1(Φ1)s (𝛼)},

𝑣 (x̂)2 = [𝑏0𝑏1 + 2𝑏2 (𝑏1 + 𝑏3)] c (𝛼) +
(
2𝑏0𝑏2 + 2𝑏1𝑏3 − 𝑏2

1

)
c (2𝛼)

+ (2𝑏0𝑏3 − 𝑏1𝑏2) c (3𝛼) − 𝑏1𝑏3c (4𝛼) + 𝑏2
0 +

5𝑏2
1

4
+ 𝑏2

2 + 𝑏
2
3,

𝑏0 = s(Φ0)Θ1𝜔
2𝐽0(Φ1), 𝑏1 = −s(Φ0)Θ2

1𝜔
2𝐽1(Φ1), 𝑏2 = −s(Φ0)Θ1𝜔

2𝐽2(Φ1),

𝑏3 = −s(Φ0)Θ2
1𝜔

2𝐽3(Φ1),

Θ1 =

√︂(
Θ𝑐1

)2
+

(
Θ𝑠

1

)2
, Φ1 =

√︂(
Φ𝑐

1

)2
+

(
Φ𝑠

1

)2
,

𝛼 = tan−1
(
Φ𝑠

1Θ
𝑐
1 −Φ𝑐

1Θ
𝑠
1

Φ𝑐
1Θ

𝑐
1 +Φ𝑠

1Θ
𝑠
1

)
(2.22)

where c (·) = cos (·), s (·) = sin (·), and 𝐽𝑛 (·) denotes Bessel functions of the first kind of order

𝑛. Note that the detail of phase angle 𝛾 is not provided because 𝛾 is irrelevant to stability. There

are two things worth noting in (2.21) and (2.22). First, 𝑏0 = 𝑏1 = 𝑏2 = 𝑏3 = 0 or 𝑣 (x̂) = 0

when Φ0 = 0. Because 𝑣 (x̂) is the magnitude of parametric excitation, no parametric instabilities

can occur when 𝑣 (x̂) = 0. In other words, nonzero asymmetric oscillation, i.e., Φ0 ≠ 0, is a

necessary condition for parametric instabilities. Second, the linear stiffness term 𝑢 (x̂) is composed

of nonlinear inertial coupling induced by the carrier motion Θ1. As the nonlinear inertial coupling

results in linear stiffness per se, the pendulum can have internal resonance without having any

linear stiffness. Compared to the autoparametric vibration absorbers, which would need low linear

stiffness to tune their natural frequency around half the natural frequency of the primary structure

[56, 57, 58], the nonlinear inertial coupling of the IPVA enables compact designs.

To determine the boundary of parametric instability, (2.21) is transformed to the standard form

of Mathieu equation [51]

𝜕2Ψ

𝜕𝑤2 + 𝑝 (x̂) Ψ − 2𝑞 (x̂) cos(2𝑤)Ψ = 0 (2.23)
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where

Ψ = 𝛿
(0)
𝜙

exp

(
2𝜉𝑝𝑤
𝜇̂𝑟𝜂

2𝜔

)
, 2𝑤 = 𝜔𝜏 − 𝛾

𝑝 (x̂) =
4𝑢 (x̂)
𝜂𝜔2 −

4𝜉2
𝑝

𝜇̂2
𝑟𝜂

4𝜔2
, 𝑞 (x̂) = −2𝑣 (x̂)

𝜂𝜔2 (2.24)

The boundary of parametric instability for (2.23) corresponds to the transition curves in the 𝑝 − 𝑞

plane [63]. Because we seek the boundary that occurs with low force magnitudes, we compute

the transition curve with the lowest 𝑝 and 𝑞 values. Mathematically, this transition curve is

expressed as 𝑝 = A1 (𝑞), where A1 (𝑞) are the characteristic values for even Mathieu functions

with characteristic exponent 1 and parameter 𝑞 [63]. In this paper, A1 (𝑞) is computed by the

“MathieuCharacteristicA” function of Wolfram Mathematica 11.3. Note that 𝑝, 𝑞 are functions of

𝑓 and 𝜔. Therefore, 𝑝 = A1 (𝑞) is solved with (2.15) simultaneously to yield the transition curves

in the 𝑓 − 𝜔 plane.

2.3.3 Pitchfork bifurcation

As mentioned in Sec. 2.3.2, nonzero asymmetric oscillation, i.e., Φ0 ≠ 0, is necessary to

induce parametric instabilities. To determine when it occurs, 𝜃𝑝 = Θ𝑐1 cos (𝜔𝜏) + Θ𝑠
1 sin (𝜔𝜏)

and 𝜙𝑝 = Φ0 + Φ𝑐
1 cos (𝜔𝜏) + Φ𝑠

1 sin (𝜔𝜏) are substituted into (2.17) to solve for stable periodic

solutions with Φ0 ≠ 0. We use the pendulum length ratio 𝜂 as the bifurcation parameter to obtain

a bifurcation diagram that shows the parameter space wherein Φ0 ≠ 0 will occur. To track the

bifurcation points with varying 𝜂, a bifurcation tracking algorithm based on arc-length continuation

is used with (2.17); see Appendix A for the detail. Figure 2.2 shows a bifurcation diagram of Φ0

with varying 𝜂. Three bifurcation branches were obtained using three sets of initial conditions (one

corresponding to each branch, namely, the lower, middle, and upper). It can be observed that Φ0

undergoes a supercritical pitchfork bifurcation at a critical value of 𝜂. After this critical value of

𝜂, Φ0 ≠ 0 and parametric instabilities become possible. For the rest of this paper, we will only

explore parametric instabilities with the parameters that lead to Φ0 ≠ 0.
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2.3.4 Period-doubling bifurcation

Within the parameter space wherein Φ0 ≠ 0 exist, the boundary of parametric instability is

computed in the 𝑓 −𝜔 plane. To find an initial bifurcation point for the bifurcation tracking algorithm

described in Appendix A, 𝜔 = 0.8 is set, and (2.17) is repeatedly used to compute the Floquet

multipliers as 𝑓 decreases until the maximum magnitude of the Floquet multipliers becomes unity.

Afterward, the bifurcation tracking algorithm will generate the boundary as described in Appendix

A. To verify the boundary is indeed of parametric instability, the Mathieu equation (2.23) is used to

generate the transition curve as described in Sec. 2.3.2. The boundary and transition curve for a set

of parameters are shown in Fig. 2.3. Although the transition curve underestimates the boundary,

they are in qualitative agreement. Specifically, the discrepancy between the two curves increases as

the force magnitude 𝑓 increases. Because the perturbation method predicted the transition curve, it

is reasonable that it is more accurate for small force magnitudes. Thus, the comparison verifies the

claim that the boundary indicates parametric instability. To gain more insight, the Floquet exponents

corresponding to a few points on the boundary are computed and found equal to ±𝑖𝜋/𝑇 , where

𝑖 =
√
−1. According to [64], this indicates period-doubling bifurcation. Since periodic-doubling

bifurcation is a co-dimension one bifurcation, it is a curve in a parameter plane [65]. Therefore, the

parametric instability boundary is, in fact, a boundary of period-doubling bifurcation. When this

bifurcation occurs, the pendulum oscillation will have subharmonics of 𝜔/2, i.e., 𝜈 = 2 in (2.13). It

is worth noting that the autoparametric vibration absorbers also have a similar bifurcation behavior;

that is, subharmonics of half excitation frequency induced by parametric instabilities [56, 57, 58].

Within the parameter space wherein subharmonics of𝜔/2 exist, the stability of the subharmonics

can further be investigated. Preliminary investigations indicate the presence of another period-

doubling bifurcation, implying that subharmonics of quarter frequency will appear. Therefore,

it is hypothesized that there exists a cascade of period-doubling bifurcations in the 𝑓 − 𝜔 space,

which eventually leads to chaotic motions of the system. However, determining the boundary of

this additional period-doubling bifurcation is out of this paper’s scope.

Figure 2.3 is a bifurcation diagram that shows the parameter space for qualitatively different
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Figure 2.2 Pitchfork bifurcation of 𝜙0 for the following parameter values 𝑓 = 0.007, 𝜇𝑟 = 0.2, 𝜔 =

0.9, 𝜉 = 𝜉𝑝 = 0.005

(2.17)


(2.23)


Figure 2.3 Parametric instability boundary for the following parameter values 𝜂 = 0.3, 𝜇𝑟 =

0.25, 𝜉 = 0.005, 𝜉𝑝 = 0.005

solutions defined by the instability boundary. By locating the parameters in Fig. 2.3, the qualitative

behavior of the corresponding solutions can be predicted. For example, ×2 resides in the

parameter space just above the boundary. Accordingly, periodic solutions of primary harmonics and

subharmonics of excitation frequency are predicted at ×2. Next, by direct numerical integration,

we verify the predictions by Fig. 2.3.

2.4 Numerical demonstration

To verify the bifurcation analysis in Sec. 2.3.4, numerical integration (Matlab’s ode45) is used

to obtain the solutions of (2.11) at three representative points in Fig. 2.3 (denoted by markers “×”

followed by numbers, e.g., ×2). Among these three points, points ×1 and ×2 lead to periodic

solutions, whereas point ×3 leads to non-periodic solutions. The fast Fourier transform (FFT)
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of the periodic solutions is computed to reveal the frequency components, which are shown in

Fig. 2.4a, Fig. 2.5a and Fig. 2.6a. On the other hand, a time series of the solutions are presented

to show the dynamical behaviors, shown in Fig. 2.4b, Fig. 2.5b, Fig. 2.6b, Fig. 2.4c, Fig. 2.5c and

Fig. 2.6c. Note that the frequencies 𝜔̂ of the FFT are normalized with respect to the excitation

frequency. It follows that primary harmonics correspond to components at 𝜔̂ = 1, subharmonics

of half excitation frequency correspond to components at 𝜔̂ = 0.5, etc.

There are several things worth noting in Fig. 2.3, Fig. 2.4, Fig. 2.5 and Fig. 2.6. First, the

prediction at point ×1 is in good agreement with the numerical solutions. As shown in Fig. 2.3,

point ×1 is below the instability boundary. It is expected that primary harmonics dominate the

periodic solutions. This prediction is verified by Fig. 2.4, which shows that the periodic solutions at

point ×1 have the largest components at 𝜔̂ = 1, corresponding to primary harmonics. Furthermore,

in Fig. 2.3, as we increase the value of 𝑓 and reach point ×2, the primary harmonics undergo a

period-doubling bifurcation. As a result, subharmonics of half excitation frequency should arise.

As shown in Fig. 2.5, subharmonics of half excitation frequency exist, which verifies the prediction

in Fig. 2.3. Second, the parameters at ×3 lead to strong non-periodic solutions composed of both

oscillation and intermittent rotations of the pendulum, as shown in Fig. 2.6c and Fig. 2.7c. Similar

non-periodic solutions are also observed in autoparametric resonance vibration absorbers [58].
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Figure 2.4 FFT and time series of periodic solutions at point 1 in Fig. 2.3

In addition to FFT, the Poincaré sections demonstrate the period-doubling bifurcations predicted
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Figure 2.5 FFT and time series of periodic solutions at point 2 in Fig. 2.3
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Figure 2.6 FFT and time series of non-periodic solutions at point 3 in Fig. 2.3

by Fig. 2.3. The Poincaré sections are computed by the Hénon trick [66], which are defined as

𝑃𝑛 (x0) = x𝑛 (𝜏0 + 2𝑛𝜋/𝜔; x𝑛−1, 𝜏0) , 𝑛 = 1, 2, · · · (2.25)

where x𝑛−1 and x𝑛 are the solutions of the system (2.11) which pass through the Poincaré section

at time 𝜏 = 𝜏0 + 2(𝑛 − 1)𝜋/𝜔 and 𝜏 = 𝜏0 + 2𝑛𝜋/𝜔, respectively. Successively, the points x0,

x1 = 𝑃 (x0), x2 = 𝑃2 (x0) , · · · correspond to the intersection of the trajectory x (𝜏; x0, 𝜏0) with the

sections at 𝜏 = 𝜏0, 𝜏0 + 2𝜋/𝜔, 𝜏0 + 4𝜋/𝜔, · · · , respectively.

To demonstrate the period-doubling bifurcation, Poincaré sections corresponding to point ×1

and ×2 are plotted in Fig. 2.7. As shown in Fig. 2.7a, ×1 leads to a fixed point on the Poincaré

section, corresponding to period-1 solutions. Figure 2.7b, on the other hand, shows two fixed

points corresponding to period-2 solutions. Therefore, it is clear that the system has undergone a

period-doubling bifurcation when moving from ×1 to ×2.
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Figure 2.7 Poincare section at points 1, 2, and 3 as marked in Fig. 2.3. The value of 𝜙 is normalized
between 0 and 2𝜋
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Figure 2.8 Parametric instability boundary for 𝜇𝑟 = 0.4, 𝜉 = 0.005, 𝜉𝑝 = 0.01 for various values
of 𝜂
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Figure 2.9 Parametric instability boundary for 𝜂 = 0.4, 𝜉 = 0.005, 𝜉𝑝 = 0.01 for various values of
𝜇𝑟
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Figure 2.11 Parametric instability boundary for 𝜂 = 0.4, 𝜇𝑟 = 0.4, 𝜉 = 0.005 for various values of
𝜉𝑝

2.5 Parametric studies

In this section, we analyze the effect of the parameters on the instability boundary. We consider

four parameters in (2.10), namely 𝜇𝑟 , 𝜂, 𝜉, and 𝜉𝑝. It can be seen that these parameters can be varied

independently of each other. Therefore, we will observe the effect by varying one parameter while

keeping the other parameters constant. We start by increasing the value of 𝜂 while keeping the

others constant. From Fig. 2.8, it can be observed that increasing 𝜂 does not make any significant

change in the lowest 𝑓 value for parametric instability to occur, which corresponds to the vertex

of the boundaries. That means that value of 𝜂 should not influence the energy transfer capabilities

of the system by a lot. However, a minimum threshold value of 𝜂 is required for period-doubling

bifurcation, as discussed in subsection 2.3.3. We next vary 𝜇𝑟 . From Fig. 2.9, it can be observed
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that the required values of 𝑓 to attain parametric instability decrease as 𝜇𝑟 increases. This can be

attributed to the fact that the inertia supplied by the pendulum vibration absorber increases as the

mass amplification factor 𝜇𝑟 increases. The value of 𝜇𝑟 can be controlled by changing the ratio

𝑅𝑝/𝑅, which can be adjusted by changing the carrier radius (𝑅𝑝).

While keeping the other parameters constant, we vary the viscous damping ratio 𝜉 and observe

its effects. From Fig. 2.10, it can be seen that the requirement of 𝑓 to achieve nonlinear energy

transfer increases with an increase in the viscous damping. Similarly, we vary the 𝜉𝑝 while keeping

the other parameters constant. We see that the values of 𝑓 required to achieve parametric instability

increase as the viscous damping increases. The observations on the effects of both viscous damping

match well with the effect of viscous damping on parametric instability — the larger the viscous

damping, the larger force it takes to cause parametric instability [63].

Last but not least, the parameter 𝜇𝑟 significantly influences the instability boundary, as

demonstrated in Sec. 2.5. As seen in Fig. 2.9, a larger 𝜇𝑟 not only leads to lower force magnitudes

required to cause internal resonance but a wider frequency bandwidth of internal resonance, which

is beneficial in terms of vibration mitigation. The parameter 𝜇𝑟 can be readily increased by changing

the ratio of 𝑅𝑝/𝑅 without incurring considerable weight to the system, which is attributed to the

mass amplification effect of the inerter.

2.6 Discussion

At the beginning of this study, it was proposed that a nonlinear energy transfer phenomenon

similar to autoparametric resonance occurs when parametric instability occurs. To demonstrate

this, we compare the proposed system with two systems, a linear benchmark and an autoparametric

vibration absorber with a parametrically excited pendulum [57]. The linear system here is

characterized by locking the pendulum at its initial position (𝜙 = 0), effectively removing all

the nonlinearities in the system. By setting 𝜙 = 𝜙
′
= 𝜙

′′
= 0 in (2.11), the equation of motion of
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the linear system is written as[
1 + 𝜇𝑟

(
1 + 𝜂2 + 2𝜂

)]
𝜃
′′ + 2𝜉𝜃

′ + 2𝜉𝑝𝜃
′ + 𝜃 = 𝑓 sin𝜔𝜏.

(2.26)

Using 𝜃 = 1
2Θ𝑒

𝑖𝜔𝜏 + 𝑐.𝑐., the equation can be solved to obtain

Θ =

����� 𝑓

2𝑖𝜔
(
𝜉 + 𝜉𝑝

)
+ 1 − 𝜔2

[
1 + 𝜇𝑟

(
1 + 𝜂2 + 2𝜂

) ] ����� . (2.27)

We computed the root-mean-square (RMS) of the IPVA system and compared it with the linear

system. The comparison is shown in Fig. 2.12. The response from the 2401-th to 3000-th cycle was

used to compute the RMS to eliminate transient effects. The IPVA parameters used in Fig. 2.12a

and Fig. 2.12b correspond to Fig. 2.3 and Fig. 2.11, respectively.
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Figure 2.12 Comparison of IPVA with the linear system for various parameters

Several things are worth noting in Fig. 2.12. First, it is shown that the response of the primary

structure flattens for a range of excitation frequencies. In comparison with the response of the

linear system, the IPVA shows significant vibration suppression with the flattening region. For

example, as shown in Fig. 2.12b, 𝜃 for 𝑓0 = 0.025 flattens for 𝜔 ∈ [0.81, 0.87]. In comparison with

Fig. 2.3 and Fig. 2.11, it is clear that the flattening occurs when the system is within the parametric
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instability boundary. For example, as shown in Fig. 2.11, when 𝜉𝑝 = 0.015 and 𝑓0 = 0.025,

the system is within the parametric instability boundary for 𝜔 ∈ [0.81, 0.87]. This observation

agrees with Fig. 2.12b. Second, within the flattening region, the response of the primary structure

barely increases despite an increase in the force magnitude, suggesting a saturation phenomenon

similar to autoparametric vibration absorbers [67] and nonlinear vibration absorbers with quadratic

nonlinearities [68]. Note that the response of the IPVA system in Fig. 2.12b is non-periodic for

𝑓 = 0.035 within a range of𝜔; thus, different initial conditions may lead to different rms responses.

To examine the effect of initial conditions, ten RMS responses were computed and plotted at 6

discrete 𝜔 values, each corresponding to a different initial condition vector
[
𝜃, 𝜙, ¤𝜃, ¤𝜙

]𝑇 that was

randomly chosen from a standard normal distribution with zero mean and a unit standard deviation;

see the inset in Fig. 2.12b.

Figure 2.13 The autoparametric vibration absorber [57]

Next, we compare IPVA with the autoparametric vibration absorber shown in Fig. 2.13. Because

the autoparametric system oscillates in the vertical direction, the ball-screw IPVA is considered

hereinafter. The equation of motion of the autoparametric system is written as [57]

(𝑀 + 𝑚) ¥𝑥 + 𝑐 ¤𝑥 + 𝑘𝑥 + 𝑚𝑙
(
¥𝜙 sin 𝜙 + ¤𝜙2 cos 𝜙

)
= 𝐹0 sin (Ω𝑡)

𝑚𝑙2 ¥𝜙 + 𝑐𝑎 ¤𝜙 + (𝑚𝑔𝑙 + 𝑚𝑙 ¥𝑥) sin 𝜙 = 0 (2.28)

where 𝑥 and 𝜙 represent the primary structure and pendulum angular displacement. 𝑀 , 𝑘 , and 𝑐 are

the mass, stiffness, and viscous damping coefficient of the primary structure, respectively, and 𝑚

and 𝑙 are the pendulum mass and length, respectively. Furthermore, a viscous damping coefficient

𝑐𝑎 is introduced to account for energy loss at the pivot point of the pendulum.
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According to [57], when the pendulum’s natural frequency is tuned around half of the natural

frequency of the primary structure, the system shows autoparametric resonance for a certain set of

parameters when excited harmonically. This autoparametric resonance results in energy transfer

from the primary structure to the pendulum, thereby achieving vibration suppression of the primary

structure. Because the IPVA system and the autoparametric system achieve vibration suppression

in a similar way, the latter is an ideal benchmark system for comparison. For a fair comparison, the

primary structure parameters, excitation force magnitude, and pendulum mass are kept identical

in both systems. Specifically, primary mass 𝑀 = 5 kg, natural frequency of the primary structure

𝜔0 =
√︁
𝑘/𝑀 = 4𝜋rad/s, pendulum mass 𝑚 = 0.5 kg, force magnitude 𝐹0 = 0.491 N, and 𝜉 = 0.005

or 𝜉 = 0.01. Note that two values of 𝜉 are considered to examine the performance of the IPVA

when the damping ratio of the primary structure changes. The remaining parameters pertaining

to the autoparametric system are 𝑐𝑎 = 8.68 × 10−5 N·m·s and 𝑙 = 12.42cm, which were taken

from ref.[57]. Specifically, the pendulum length was chosen to achieve autoparametric resonance,

and the pendulum damping coefficient was determined from 𝜉𝑎 = 𝑐𝑎/(2𝑚𝑙2𝜔𝑝) = 0.05, where

𝜔𝑝 =
√︁
𝑔/𝑙 is the natural frequency of the pendulum. The remaining parameters pertaining to the

IPVA system are 𝑅, 𝑅𝑝, and 𝑟. Three sets of 𝑅, 𝑅𝑝, and 𝑟 were chosen: (a) 𝑅 = 2.49 cm, 𝑅𝑝 = 4.97

cm, and 𝑟 = 1.99 cm; (b) 𝑅 = 1.78 cm, 𝑅𝑝 = 3.55 cm, and 𝑟 = 1.42 cm; and (c) 𝑅 = 2.07 cm,

𝑅𝑝 = 4.14 cm, and 𝑟 = 1.66 cm. These three sets are labeled as IPVA (a), IPVA (b), and IPVA

(c), respectively, in Fig. 2.14 and Fig. 2.15. These three sets all lead to 𝜇𝑟 = 0.4 and 𝜂 = 0.4,

and lead to 𝑓 = 0.025, 𝑓 = 0.035, and 𝑓 = 0.030, respectively. This way, the dependence of

the IPVA on different values of 𝑓 will be examined. The RMS response of the IPVA system and

autoparametric system were computed using the same direct numerical integration scheme with the

same settings that were used to generate Fig. 2.12. The effects of initial conditions were examined

for both systems when their responses were observed to be non-periodic using the same method

used to obtain Fig. 2.12b.

There are several things worth noting in Fig. 2.14. First, it can be seen that the response curve

of the primary structure displacement 𝑥 for both IPVA (a) and IPVA (b) flatten for a range of 𝜔,

28



0.8 0.85 0.9 0.95 1
0

0.005

0.01

0.015

0.02

0.025

0.03
x
 (

m
)

IPVA (a)

IPVA (b)

Autopara. in [57]

0.83 0.85 0.87

7.5

8

8.5

9
10

-3

a Comparison of frequency
response of 𝜃 for IPVA and
autoparametric system with
𝜂 = 0.4, 𝜇𝑟 = 0.4, 𝜉 = 0.005,
and for IPVA 𝜉𝑝 = 0.015, whereas
𝜉𝑎 = 0.05 for autoparametric
system

0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
IPVA (a)

IPVA (b)

Autopara. in [57]

b Comparison of the frequency
response of pendulum’s velocity for
IPVA and autoparametric system
with 𝜂 = 0.4, 𝜇𝑟 = 0.4, 𝜉 = 0.005,
and for IPVA 𝜉𝑝 = 0.015, whereas
𝜉𝑎 = 0.05 for autoparametric
system

Figure 2.14 Comparison of IPVA and the autoparametric vibration absorber for a set of parameters
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Figure 2.15 Comparison of IPVA and the autoparametric vibration absorber for a set of parameters

demonstrating the energy transfer phenomenon for two different sets of parameters. Specifically,

IPVA (b) has a more compact design (smaller 𝑅, 𝑅𝑝, and 𝑟) and shows better performance.
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Although the autoparametric system shows similar vibration suppression, both IPVA (a) and IPVA

(b) outperform it. Second, let us examine the pendulum response in Fig. 2.14b. As seen, for

both IPVA (a) and IPVA (b), the pendulum response significantly increases within the 𝜔 range of

parametric instability (𝜔 ∈ [0.81, 0.87] for IPVA (a) and𝜔 ∈ [0.80, 0.89] for IPVA (b)), indicating

that the kinetic energy of the primary structure transfers to the pendulum, resulting in the response

flattening observed in Fig. 2.14a. It is noteworthy that both IPVA (a) and IPVA (b) have a larger

pendulum angular velocity than the autoparametric system. Similarly, Fig. 2.15a and Fig. 2.15b

show the comparison of IPVA (c) with the autoparametric system for 𝜉 = 0.01. As can be observed,

IPVA (c) outperforms the autoparametric system in terms of vibration suppression. Furthermore,

it also leads to a larger pendulum angular velocity.

In addition to better vibration suppression, the IPVA system has two other advantages compared

to the autoparametric system. First, it generates higher pendulum angular velocities, as shown in

Fig. 2.14b and Fig. 2.15b. Kecik and Boroweic [69] proposed an energy harvesting autoparametric

system where they installed an electromagnetic generator at the pendulum pivot point to convert the

pendulum angular motion into electricity. As the larger angular velocity, the larger electricity can

be generated, and the larger angular velocity in the IPVA system may lead to better performance in

terms of energy harvesting, which remains to be explored in the future. Second, the IPVA system

leads to a more compact design. The largest length in the IPVA system is the sum 𝑅𝑝 + 𝑟 of the

carrier radius and pendulum length. IPVA (a) has 𝑅𝑝 + 𝑟 = 6.69 cm, the maximum among the

three. On the contrary, the autoparametric system requires a long pendulum (𝑙 = 12.42 cm) as it

needs this length to tune the natural frequency. Next, the experimental setup is discussed to verify

the anaylsis performed.

2.7 Experimental analysis

To verify the analysis performed, experiments consisting of a IPVA integrated with a single-

degree-of-freedom system are conducted. As has been demonstrated in previous sections (Sec. 2.3.4

and Sec. 2.4), the system shows an internal resonance phenomenon. Thus, the aim of the

experiments is to verify the energy transfer between the primary system and the pendulum vibration
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absorber and the secondary resonance phenomenon of the IPVA (harmonics of frequency 𝜔/2).

An experimental setup is created by integrating a single-degree-of-freedom system with the IPVA

system as shown in Fig. 2.16. Table 2.1 shows the description of labels for various components of

the experimental setup. The top plate, marked by plate 𝐴, supports the primary mass. The base

plate system contains three plates, plate 𝐵, 𝐶 and 𝐷. Plate 𝐷 is directly connected to the shaker,

whereas the nut of the ball-screw system connects plate attached to the plate 𝐵. Note that the plates

𝐵, 𝐶 and 𝐷 are rigidly connected. A coupler connects the ball-screw system with the carrier which

hosts the pendulum. The eight springs are connected between the primary mass system and the

base plate system. Therefore, due to the excitation of the base plate system, the top plate system

starts moving. The relative motion between the top plate and the base plate system drives the screw

(as the nut is fixed to the base plate system), i.e.

𝜃 =
𝑥 − 𝑦
𝑅

where 𝑥 is the motion of plate 𝐴 and 𝑦 is the motion of plate 𝐷. The pendulum is free to rotate

and is connected to the carrier by a ball bearing. A shaker (APS 113) excites the base plate by

controlling the motion of the plate 𝐷 and is driven by a spectral analyzer and controller (Spider

80x) using an amplifier. There is an accelerometer connected to the base plate for closed-loop

control of the shaker, and an accelerometer is connected to the top plate to monitor the motion of

the top plate system. An encoder is mounted on the pendulum shaft to measure the motion of the

pendulum using a microcontroller (US Digital).

2.7.1 Equations of motion for the experimental setup

The equations of motion of the experimental system can be directly derived from (Sec. 2.2.1),

converting the forced excitation into base excitation. To obtain this equation of motion, we assume

perfect transmission by the ball-screw system. Thus, the resultant equation of motion is given by

M̄ ¥X + C̄ ¤X + K̄X + Ḡ(X, ¤X, ¥X) = F̄ (2.29)
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where

M̄ =


1 + 𝜇𝑟 + 𝜇𝑟𝜂2 + 2𝜂𝜇𝑟 cos(𝜙) + 𝜇𝑏𝑠𝑐 + 𝜇𝑝 𝜇𝑝 + 𝜇𝑟𝜂2 + 𝜇𝑟𝜂 cos(𝜙)

𝜇𝑝 + 𝜇𝑟𝜂2 + 𝜇𝑟𝜂 cos(𝜙) 𝜇𝑝 + 𝜇𝑟𝜂2

 ,
K̄ =


1 0

0 0

 , C̄ =


2𝜉 0

0 2𝜉𝑝

 , Ḡ = 𝜇𝑟𝜂
©­­«
−2𝜃′𝜙′ sin(𝜙) − 𝜙′2 sin(𝜙)

𝜃′2 sin(𝜙)

ª®®¬ ,
F̄ =

©­­«
−𝑦′′

−𝑡 𝑓 𝑝sign( ¤𝜙)

ª®®¬ (2.30)

with X = [𝜃, 𝜙]𝑇 and 𝑡 𝑓 𝑝 =
𝑇 𝑓

𝑀𝑅2 , where 𝑇 𝑓 is the friction between the shaft of the pendulum and

its bearing. Here, 𝑥 is the motion of the top plate, 𝑦 is the motion of the shaker, 𝜃 is the rotation

of the carrier, 𝑅𝑝 is the location of the shaft of the pendulum with respect to the center of the

ball-screw system, 𝜉𝑝 is the damping coefficient of the pendulum defined by 𝜉𝑝 =
𝑐𝑝

𝑀𝜔0𝑅2 , 𝑐𝑝 being

the damping between the pendulum’s shaft and ball bearing. 𝑀 is the mass of the top-plate (the

primary structure), 𝐽𝑏𝑠𝑐 includes the inertia of carrier, ball-screw, coupler and encoder and 𝐽𝑝 is the
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Label Description
1 Accelerometer signal conditioner
2 Spectral analyzer and controller
3 Shaker signal amplifier
A Top plate
B Ball-screw mounting plate
C Middle plate
D Lower plate
E Top added mass
F Ball-screw system
G Pendulum
H Carrier
I Encoder data acquisition box
J Shaker

Table 2.1 Labels depicting the different parts of the experimental setup

moment of inertia of the pendulum system with respect to its center of mass. We assume theoretical

values for all the inertia, masses, transmission ratio, springs, and lengths in the system. Therefore,

the values of 𝑚, 𝑅𝑝, 𝑀 , 𝑅, 𝐽𝑝, 𝐽𝑏𝑠𝑐, 𝑘 , 𝑟 and 𝜔0 are assumed to be known; see Table 2.2. This

leaves 𝑐 and 𝑐𝑝 to be experimentally identified, which is discussed next.

2.7.2 Obtaining the mechanical damping 𝑐

The mechanical damping value 𝑐 is obtained by removing the pendulum from the experimental

setup and obtaining its frequency response function (FRF). The measured FRF and theoretical FRF

are correlated with each other to obtain the mechanical damping value. The linear system without

the pendulum has the following equation of motion

𝑀̂ ¥𝑥 + 𝑘𝑥 + 𝑐 ¤𝑥 = 𝑀 ¥𝑦 + 𝑐 ¤𝑦 + 𝑘𝑦 (2.31)

where

𝑀̂ = 𝑀 (1 + 𝜇𝑏𝑠𝑐) , 𝜇𝑏𝑠𝑐 =
𝐽𝑏𝑠𝑐

𝑀𝑅2 (2.32)

Using 𝑥 = 𝑋

𝜔2 𝑒
𝑖𝜔𝑡 and 𝑦 = 𝑌

𝜔2 𝑒
𝑖𝜔𝑡 where 𝑋 and 𝑌 denote the displacement amplitude of the base

plate and the top plate respectively, and defining 𝑟 = 𝜔
𝜔0

, we obtain
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𝑋

𝑌
=

𝜇2
𝑏𝑠𝑐
𝑟4 − 2𝜇𝑏𝑠𝑐𝑟2 + 4𝜉2𝑟2 + 1

(𝜇𝑏𝑠𝑐 + 1)2 𝑟4 − 2𝑟2 (
𝜇𝑏𝑠𝑐 − 2𝜉2 + 1

)
+ 1

(2.33)

Matlab’s “fit” function is used to fit the data and obtain the value of 𝜇𝑏𝑠𝑐, 𝜔0, and 𝑐. We found

that the value of 𝜇𝑏𝑠𝑐 and 𝜔0 were close to the theoretical values, and therefore theoretical values

of 𝜇𝑏𝑠𝑐 and 𝜔0 are chosen for the analysis of experiments.

2.7.3 Obtaining the pendulum damping 𝑐𝑝

To obtain the pendulum damping, the pendulum and carrier were removed from the ball-screw

system and fixed it rigidly to the ground. The pendulum was given some initial rotational velocity

and the free rotational behavior of the pendulum was observed as it came to a stop. It was observed

that damping alone is insufficient to capture the effects of the energy dissipation in the pendulum, so

a friction term was considered in the analysis of the interaction between the shaft of the pendulum

and its bearing. The rotation of the pendulum can be modeled using the following equation of

motion (
𝐽𝑝 + 𝑚𝑟2

)
¥𝜙 + 𝑐𝑝 ¤𝜙 + 𝑇 𝑓 = 0. (2.34)

This equation (2.34) is integrated with respect to time to obtain(
𝐽𝑝 + 𝑚𝑟2

) ( ¤𝜙 𝑓 − ¤𝜙𝑖
)
+ 𝑐𝑝

(
𝜙 𝑓 − 𝜙𝑖

)
+ 𝑇 𝑓Δ𝑡 = 0. (2.35)

where Δ𝑡 is the time it took for pendulum to stop, subscripts 𝑖 and 𝑓 on 𝜙 and ¤𝜙 denote the initial

and final values of 𝜙 and ¤𝜙 respectively. Clearly, ¤𝜙 𝑓 = 0 as the pendulum comes to a full stop. The

equation can be solved to obtain 𝑐𝑝. The experimental parameters are tabulated in Table 2.2 for

ready reference.

2.7.4 Experimental verification

In this section, the simulation model is verified with the experiments. First, the stability

boundary is obtained and shown in Fig. 2.17 using the theoretical and fitted parameters shown

in Table 2.2. Since it is known that there should be vibration suppression above the stability
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Parameter Value
𝜉𝑝 0.00418
𝜉 0.242
𝜇𝑟 4.072
𝜂 0.371
𝜔0 96.98 rad/s
𝜇𝑔 0.0029
𝑇 𝑓 0.0014N
𝜇𝑝 0.388
𝜇𝑏𝑠𝑐 8.294

Table 2.2 Experimental parameters for the IPVA system
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Figure 2.17 Numerical stability boundary of energy transfer corresponding to the experimental
setup

boundary, an acceleration value of 0.2 𝑔 is used to run the experiments, which is well above

the stability boundary for a range of frequencies. Before observing the experimental results and

comparing them to the linear system, a few points need to be stated:

1. The ball-screw system is assumed to be 100% efficient, with no loss in transmission

2. The effects of accelerometer cables on the system are neglected, and the encoder cable is

assumed to only contribute to mechanical damping and moment of inertia of the ball-screw

system

3. The springs are modeled to be linear for the analytical analysis
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Figure 2.18 Time series and measured FFT of the pendulum motion

2.7.5 Verification of the internal resonance

Previously it was defined that the secondary solutions are those solutions which contain

harmonics of frequency 𝜔
2 when the excitation frequency is 𝜔. As has been reported in [70],

internal resonance is required for the energy transfer to occur between the primary system and

the pendulum vibration absorber and thus suppressing the vibrations of the primary system. To

observe the secondary resonance of the system, experiments are performed on the IPVA system

by fixing a frequency and increasing base acceleration value such that the secondary resonance

is found. For this particular case, an excitation acceleration amplitude of 0.2 𝑔 and an excitation

frequency of 4.16 Hz led to the secondary resonance, which means that the response of the system

at this excitation frequency and acceleration amplitude will have harmonics of frequency half the

excitation frequency (2.08 Hz), along with the excitation frequency (4.16 Hz). As can be seen from

Fig. 2.18a, the motion of the pendulum measured by the encoder shows harmonics of frequency
𝜔
2 (≈ 2.08Hz) as evident from the time series of the pendulum’s motion and the FFT shown in

Fig. 2.18b. Moreover, it can be observed that harmonics of frequency 3𝜔
2 and 2𝜔 also show up in

the motion of the pendulum.
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2.7.6 Comparison with the linear system

Next, the IPVA system is compared with the linear system to benchmark its vibration suppression

capabilities. For this, the base excitation acceleration is fixed at 0.2 𝑔. The linear system is chosen

by fixing the system’s pendulum at an angle such that the natural frequency of the linear system is

equal to the resonant frequency of the IPVA system. Ten frequency points are chosen for which

the experiments are run on the IPVA system to get the root-mean-squared (RMS) values of the

amplitude of ball-screw rotation (𝜃) and pendulum’s motion (𝜙), and obtain the mean and standard

deviations for both the rotations. Similar experiments are performed for the linear system by

converting the frequency response function between the acceleration of the top plate 𝐴 and the

input base acceleration from the shaker’s to RMS data for 𝜃 for the same ten frequencies as the IPVA

system. Sixteen frequency response function were experimentally calculated to obtain these RMS

𝜃 values for the linear system. These RMS values are plotted against each other for comparison in

Fig. 2.19a. The “Linear LB” and “Linear UB” labels show lower bound and the upper bound of the

RMS values of 𝜃 for the linear system as calculated from the frequency response function, and error

bars are plotted for the ball-screw motion (𝜃) for the IPVA system. Fig. 2.19b shows the motion

of the pendulum observed experimentally. It is clear that the RMS values for 𝜃 do not follow a

resonance like behavior for the range of frequencies shows, whereas the linear system does. This

verifies that there is nonlinear energy transfer between the ball-screw (the primary mass motion),

and the pendulum as cross-verified from the energy pumping in the pendulum, see Fig. 2.19b.

Next, the case when the base excitation acceleration is 0.21 𝑔 is taken. Shown in Fig. 2.20a and

Fig. 2.20b, we see results similar to that of 0.2 𝑔 base acceleration. However, the pendulum has

more energy in this case compared to 0.2 𝑔 excitation due to a saturation-like phenomenon, where

the motion of the primary system (𝜃) does not increase significantly even though the excitation

acceleration is increased. This has also been observed in a numerical study by the authors [70].

2.8 Conclusion

This study analyzes the IPVA system proposed in [71] with a focus on vibration suppression

of a linear oscillator subject to single harmonic excitation. It is shown that for a given excitation
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Figure 2.19 Frequency response of 𝜃 and 𝜙 for the IPVA and the linear system (where applicable)
at 0.2 𝑔 base excitation acceleration
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Figure 2.20 Frequency response of 𝜃 and 𝜙 for the IPVA and the linear system (where applicable)
at 0.21 𝑔 base excitation acceleration
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force magnitude, the pendulum parameters can be chosen such that internal resonance occurs to

the pendulum vibration absorber for a specific range of excitation frequencies. It is also shown that

a pitchfork bifurcation and period-doubling bifurcation of the pendulum response are necessary

and sufficient conditions for internal resonance. Furthermore, when internal resonance occurs, the

kinetic energy of the linear oscillator transfers to the pendulum, resulting in vibration suppression

of the linear oscillator. A saturation phenomenon similar to autoparametric vibration absorbers

and nonlinear vibration absorbers is observed in the IPVA system; that is, the response of the linear

oscillator saturates despite the increase in the force magnitude. Meanwhile, the increased energy due

to the increase in the force magnitude seems to transfer to the pendulum, resulting in an increased

pendulum response. Furthermore, the system is compared to the autoparametric vibration absorber.

It outperforms the autoparametric vibration absorber in vibration absorption and energy harvesting

capabilities. Finally, experiments integrating the IPVA system with a single-degree-of-freedom

spring mass system are performed. The secondary resonance which corresponds to the crossing of

1:2 internal resonance boundary is experimentally shown in the IPVA system. Furthermore, it is

observed for two different acceleration values, that above the period-doubling bifurcation boundary

(1:2 internal resonance boundary), the motion of the primary system was suppressed, and its energy

transferred to the pendulum vibration absorber.
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CHAPTER 3

OCEAN WAVE ENERGY CONVERSION USING THE IPVA-PTO SYSTEM WITH A
SPAR

3.1 Overview

The inerter pendulum vibration absorber (IPVA) system with an electromagnetic power take-off,

known as the IPVA-PTO system, is integrated with a spar to study its ocean wave energy conversion

efficacy. We analyze the system with hydrodynamic effects and perform experiments on the “dry”

single-degree-of-freedom system by integrating the IPVA system into it. By dry, it means that

the system is excited in a dry state, without any ocean wave effects on it. Both numerical and

experimental analysis is compared with a linear benchmark.

3.2 The IPVA-PTO system

Figure 3.1 shows the IPVA-PTO system mounted between a spar and a fixed frame. The spar

(primary structure) is floating in the water, with hydrodynamic stiffness 𝑘 in the direction of heaving

(𝑥). The system consists of a lead screw and nut mounted between a fixed reference and the spar

such that the heaving displacement is converted into the angular displacement 𝜃 through 𝑥 = 𝑅𝜃,

where 𝑅 = 𝐿/2𝜋, where 𝐿 is the screw lead. The carrier is fixed to the screw and has the same

angular displacement. The pendulum pivots on the point of the carrier, which is located at a distance

of 𝑅𝑝 from the carrier center. The pendulum length is 𝑟 and has the angular displacement 𝜙 with

respect to the screw. The planetary gear system combines the pendulum and screw motion into one

angular motion ¤𝜃 − ¤𝜙 input to the generator for electricity. A generalized force 𝐹𝑔 is the force on

the spar assumed to contain a single harmonic for the current analysis due to the wave-structure

interaction. Its derivation is discussed further in Sec. 3.2.2. The inductance of the generator is

neglected because typical wave frequencies are too low to be significant [72]. This means the

electrical power generated by the generator can be written as 1
2𝑐𝑒

( ¤𝜃 − ¤𝜙
)2, where 𝑐𝑒 is the electrical

damping in the system.

For this study, the 1:100 sparD model in [73] is considered. Note that the heaving plate and the

mooring lines are ignored, and the spar is assumed to have only heaving motion. The mass of the
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spar 𝑀 is given as 18.83 kg, the draft 𝑑 is taken to be 0.96 m, and the diameter of the spar 2𝑎 is

0.16m. The depth of the water is ℎ = 3 m, and the height of the spar 𝑑 + 𝑏 is 1.06 m, which makes

the freeboard 𝑏 = 0.1 m. The wave amplitude is 6 cm per [73]. The density of water is assumed to

be 𝜌 = 1025 kg/m3 and acceleration due to gravity 𝑔 = 9.81 m/s2.

3.2.1 Equations of motion

We use Lagrange’s equations to derive the equations of motion for the IPVA-PTO. The procedure

outlined below is similar to the procedure explained in [70]. First, the total kinetic energy of the

system is derived as

𝑇 = 𝑇𝑀 + 𝑇𝑐 + 𝑇𝑝 + 𝑇𝑔 (3.1)

where

𝑇𝑀 =
1
2
𝑀

(
𝑅 ¤𝜃

)2
, 𝑇𝑐 =

1
2
𝐽 ¤𝜃2,

𝑇𝑝 =
1
2
𝐽𝑝

( ¤𝜃 + ¤𝜙
)2

+ 1
2
𝑚

(
𝑅2
𝑝
¤𝜃2 + 𝑟2 ( ¤𝜃 + ¤𝜙

)2 + 2𝑅𝑝𝑟 cos (𝜙) ¤𝜃
( ¤𝜃 + ¤𝜙

) )
𝑇𝑟 =

1
2
𝐽𝑟

( ¤𝜃 − ¤𝜙
)2 (3.2)

are the kinetic energy of the spar, carrier, pendulum, and generator, respectively. Here, 𝐽 is the

moment of inertia of the screw and carrier, 𝐽𝑝 is the moment of inertia of the pendulum with respect

to its center of mass, and 𝐽𝑟 is the moment of inertia of the rotor of the generator. Furthermore, the

potential energy is written as

𝑉 =
1
2
𝑘𝑥2 =

1
2
𝑘𝑅2𝜃2. (3.3)

To account for energy loss due to the screw motion, a viscous damping coefficient 𝑐 is introduced.

The virtual work done by the force 𝐹𝑔, the electrical damping torque in the rotor, and the viscous

damping force can be derived as 𝐹𝑔𝛿𝑥, −𝑐𝑒
( ¤𝜃 − ¤𝜙

)
𝛿 (𝜃 − 𝜙) and −𝑐 ¤𝑥𝛿𝑥, respectively, where 𝑐𝑒 and

𝑐 are the torsional electrical damping coefficient of the generator [72] and damping coefficient of

the viscous damper, respectively. Then the virtual work done by the force 𝐹𝑔, the damping torque
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(due to 𝑐𝑒 and viscous damping 𝑐) are derived as

𝛿𝑊 = 𝐹𝑔𝑅𝛿𝜃 − 𝑐𝑒
( ¤𝜃 − ¤𝜙

)
𝛿 (𝜃 − 𝜙) − 𝑐𝑅2 ¤𝜃𝛿𝜃. (3.4)

The pendulum is assumed to be a point mass; thus, 𝐽𝑝 is neglected. Furthermore, the moment

of inertia of the screw and carrier is assumed to be small compared to the moment of inertia of

other objects in the system; thus, 𝐽 is neglected. Therefore, the equations of motion of the system

obtained using Lagrange’s equations are written as(
𝑀𝑅2 + 𝐽𝑟 + 𝑚𝑅2

𝑝 + 𝑚𝑟2 + 2𝑚𝑅𝑝𝑟 cos 𝜙
)
¥𝜃

+
(
𝑚𝑟2 + 𝑚𝑅𝑝𝑟 cos 𝜙

)
¥𝜙 + 𝑐𝑅2 ¤𝜃 + 𝑐𝑒

( ¤𝜃 − ¤𝜙
)

+𝑘𝑅2𝜃 − 2𝑚𝑅𝑝𝑟 ¤𝜙 ¤𝜃 sin 𝜙 − 𝑚𝑅𝑝𝑟 ¤𝜙2 sin 𝜙 = 𝐹𝑔𝑅,

𝑚𝑟2 ¥𝜙 + 𝑚
(
𝑟2 + 𝑅𝑝𝑟 cos 𝜙

)
¥𝜃 + 𝑐𝑒

( ¤𝜙 − ¤𝜃
)

+𝑚𝑅𝑝𝑟 ¤𝜃2 sin 𝜙 = 0 (3.5)

We rescale the time and convert (3.5) into a dimensionless form for further analysis using the

following parameters,

𝜇𝑟 =
𝑚𝑅2

𝑝

𝑀𝑅2 , 𝜔0 =

√︂
𝑘

𝑀
, 𝜔 =

Ω

𝜔0
, 𝜏 = 𝜔0𝑡, 𝜂 =

𝑟

𝑅𝑝
,

𝜇𝑔 =
𝐽𝑟

𝑀𝑅2 , 𝜉 =
𝑐

2𝜔0𝑀
, 𝜉𝑒 =

𝑐𝑒

2𝜔0𝑀𝑅2 , 𝑓𝑔 =
𝐹𝑔

𝑀𝑅𝜔2
0
,

()′ =
𝑑 ()
𝑑𝜏
. (3.6)

Let us define x = [𝜃, 𝜙]𝑇 and f𝑔 =
[
𝑓𝑔, 0

]𝑇 . The dimensionless equations of motion are obtained as

Mx′′ + Cx′ + Kx + g (x, x′, x′′) = f𝑔 (3.7)
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where

M =


𝜇𝑔 + 1 + 𝜇𝑟

(
1 + 𝜂2) 𝜇𝑟𝜂

2 − 𝜇𝑔

𝜇𝑟𝜂
2 − 𝜇𝑔 𝜇𝑔 + 𝜇𝑟𝜂2

 ,
C =


2 (𝜉 + 𝜉𝑒) −2𝜉𝑒

−2𝜉𝑒 2𝜉𝑒

 , K =


1 0

0 0

 ,
g (x, x′, x′′) = 𝜇𝑟𝜂


(2𝜃′′ + 𝜙′′) cos 𝜙 − 𝜙′ (2𝜃′ + 𝜙′) sin 𝜙

𝜃′′ cos 𝜙 + 𝜃′2 sin 𝜙


(3.8)

3.2.2 Hydrodynamic coefficients

We use the linear wave theory to determine the hydrodynamic coefficients of the spar subject

to regular incident waves, which assumes that the fluid is inviscid and irrotational. Based on the

theory, the hydrodynamic force on the spar consists of three components: Froude-Krylov force,

diffraction force, and radiation force. The first two correspond to the incident wave field without

and with the spar, respectively, and the last one is due to the oscillation of the spar.

The Froude-Krylov and diffraction force together give rise to the excitation force while the

radiation force gives rise to the added mass and radiation damping [74, 26], which can be represented

by the well-known Cummins’ equation [75]:

𝐹𝑔 = −𝐴∞ ¥𝑥 −
∫ ∞

𝜎=0
𝑘𝑅 (𝜎) ¤𝑥 (𝑡 − 𝜎) 𝑑𝜎 + 𝛾𝐹𝑒 (𝑡) (3.9)

where 𝛾 is the wave amplitude, 𝐹𝑒 is the excitation force per wave amplitude, and the radiation

impulse response kernel, 𝑘𝑅 (𝜎), and the radiation infinite-frequency added mas, 𝐴∞, are related to

the radiation frequency-dependent damping and added mass 𝐵𝑅 (Ω) and 𝐴𝑅 (Ω), through Ogilvie’s

relations [76]

𝐵𝑅 (Ω) =
∫ ∞

𝜎=0
𝑘𝑅 (𝜎) cos (Ω𝜎) 𝑑𝜎

𝐴𝑅 (Ω) = 𝐴∞ − 1
Ω

∫ ∞

𝜎=0
𝑘𝑅 (𝜎) sin (Ω𝜎) 𝑑𝜎 (3.10)
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and

𝐴∞ = lim
Ω→∞

𝐴𝑅 (Ω) (3.11)

After substituting (3.10) and (3.11) into (3.7) and using (3.6), the equation of motion now becomes

(M + A∞) x′′ + Cx′ +
∫ ∞

𝑠=0
K𝑅 (𝑠) x′ (𝜏 − 𝑠) 𝑑𝑠 + Kx

+g (x, x′, x′′) = f (3.12)

In (3.12),

A∞ =


𝐴∞
𝑀

0

0 0

 , K𝑅 (𝑠) =

𝜅𝑅 (𝑠) 0

0 0

 , f =

𝑓𝑒 (𝜏)

0

 (3.13)

where 𝑠 = 𝜔0𝜎 is the normalized time, 𝜅𝑅 (𝑠) = 𝑘𝑅 (𝑠/𝜔0) /
(
𝑀𝜔2

0

)
is the normalized radiation

impulse response kernel, and 𝑓𝑒 = 𝛾𝐹𝑒/(𝑀𝑅𝜔2
0) is the dimensionless excitation force.

3.2.3 Determination of hydrodynamic coefficients

The hydrodynamic coefficients, Froude-Krylov and diffraction forces are determined using

Ansys AQWA. A convergence test is conducted to match the published results in [77]. A particular

case with 𝑎 = 0.2 m, ℎ = 1 m, and 𝑑 = 0.25 m is chosen. Fig. 3.2 shows the comparison between

added mass and radiation damping between Ansys and the published results. Note that 𝑚0 is the

solution to the equation

𝑚0 tanh (𝑚0) =
Ω2ℎ

𝑔
(3.14)

From Fig. 3.2a and Fig. 3.2b, it can be seen that the Ansys solutions and the published results are

in close agreement with each other. After verifying the Ansys model, we adopt the same setting to

simulate the sparD system with the parameters provided in Sec. 3.2. Fig. 3.3 shows the mesh of

the system used for analysis and Fig. 3.4 shows the added mass, radiation damping, and excitation

force obtained using Ansys for sparD.
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3.3 Internal resonance and bifurcation boundaries

Internal resonance is essential for nonlinear vibration absorbers to absorb the vibration energy

of a primary structure they are attached to [51, 57, 58, 70]. To investigate the internal resonance of

the IPVA-PTO system, we will first determine the conditions required to have internal resonance

using the harmonic balance method in conjunction with the modified alternating frequency/time

approach discussed in Section 3.3.2. The convolution terms are handled separately, as discussed in

Section 3.3.3. Specifically, 1:2 internal resonance will be the focus of the analysis as it has been

shown to achieve energy absorption from an oscillating structure seeking vibration mitigation in

the authors’ past study [70]. This study uses the harmonic balance method to investigate internal

resonance.

3.3.1 Harmonic balance analysis

In a fashion similar to [70], we assume the periodic solutions of the system take the form

𝜃𝑝 (𝜏) = Θ0 +
𝑃∑︁
𝑝=1

[
Θ𝑐𝑝 cos

( 𝑝𝜔𝜏
𝜈

)
+ Θ𝑠

𝑝 sin
( 𝑝𝜔𝜏
𝜈

)]
,

𝜙𝑝 (𝜏) = Φ0 +
𝑃∑︁
𝑝=1

[
Φ𝑐
𝑝 cos

( 𝑝𝜔𝜏
𝜈

)
+Φ𝑠

𝑝 sin
( 𝑝𝜔𝜏
𝜈

)]
(3.15)

where Θ𝑝, Φ𝑝, Θ0 and Φ0 are unknown Fourier coefficients to be determined. As has been reported

previously [70], Φ0 is included to consider asymmetric pendulum oscillations [59], whereas Θ0 is

introduced to expedite the derivation. It is found that Θ0 = 0 as the spar oscillates symmetrically

with respect to the free surface. On the other hand, a nonzero Φ0 is necessary for 1:2 internal

resonance [70]. Next, we substitute (3.15) into (3.12) to obtain the residue term

R(𝜏) = Mx′′𝑝 + Cx′𝑝 +
∫ ∞

𝑠=0
K𝑅 (𝑠) x′ (𝜏 − 𝑠) 𝑑𝑠

+ Kx𝑝 − g
(
x𝑝, x′𝑝, x′′𝑝

)
− f. (3.16)
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where x𝑝 =
[
𝜃𝑝, 𝜙𝑝

]𝑇 is the assumed solution vector. Using Galerkin’s projection on the orthogonal

trigonometric basis, we can obtain

ℎ0 (X) =

∫ 2𝜋𝜈
𝜔

0
R(𝜏)𝑑𝜏 = 0,

ℎ𝑠𝑝 (X) =

∫ 2𝜋𝜈
𝜔

0
R(𝜏) sin

( 𝑝𝜔𝜏
𝜈

)
𝑑𝜏 = 0,

ℎ𝑐𝑝 (X) =

∫ 2𝜋𝜈
𝜔

0
R(𝜏) cos

( 𝑝𝜔𝜏
𝜈

)
𝑑𝜏 = 0 (3.17)

where X = [X0, X𝑐
1, X𝑠

1, . . . ,X
𝑐
𝑝, X𝑠

𝑝]𝑇 , where X0 = [Θ0,Φ0], X𝑐
1 =

[
Θ𝑐1,Φ

𝑐
1
]
, X𝑠

1 =
[
Θ𝑠

1,Φ
𝑠
1
]
, and

so on. Eqn. (3.17) is a set of nonlinear algebraic equations and can be solved by iterative methods

like the Newton-Raphson scheme. However, since the term g
(
x𝑝, x′𝑝, x′′𝑝

)
will result in composite

trigonometric terms such as cos
(
Φ𝑠
𝑝 sin (𝑝𝜔𝜏/𝜈)

)
, one needs to use special expansions (example,

using Bessel functions) to extract the Fourier coefficients of g (denoted by G). Moreover, for stability

analysis, one would require to compute the Jacobian matrix 𝜕G
𝜕X , which is computationally expensive

in the frequency domain. To that end, we use a modification of the alternating frequency/time

domain (AFT) method [78, 79, 64] to compute the value of G and 𝜕G
𝜕X . Furthermore, to apply the

harmonic balance method, we would require to obtain the Fourier coefficients of the convolution

term. This calculation is explained in Section 3.3.3.

3.3.2 Modified alternating frequency/time approach

We follow the AFT algorithm as implemented in [64] with a modification that takes care of

nonlinear inertia. Let us define 𝜔̄ = 𝜔
𝜈

and expand the nonlinear function by Fourier series such

that

g
(
x𝑝, x′𝑝, x′′𝑝

)
= G0 +

𝑃∑︁
𝑝=1

(
G𝑐
𝑝 cos (𝑝𝜔̄𝜏) + G𝑠

𝑝 sin (𝑝𝜔̄𝜏)
)

which can be rewritten as

g
(
x𝑝, x′𝑝, x′′𝑝

)
= (T (𝜔̄𝜏) ⊗ 𝐼𝑛) G
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where

T(𝜔̄𝜏) = [1 cos (𝜔̄𝜏) sin (𝜔̄𝜏) . . . cos (𝑃𝜔̄𝜏) sin (𝑃𝜔̄𝜏)]

G = [G𝑇
0 ,

(
G𝑐

1
)𝑇
,
(
G𝑠

1
)𝑇
, . . . ,

(
G𝑐
𝑃

)𝑇
,
(
G𝑠
𝑃

)𝑇 ]𝑇 (3.18)

where ⊗ is the Kronecker tensor product and 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix. Similarly,

x = (T (𝜔̄𝜏) ⊗ 𝐼𝑛) X

where X is the vector consisting of all retaining Fourier coefficients; see (3.17).

The AFT method finds the time domain value of the nonlinear function and transforms it back

to the frequency domain, i.e.

X 𝐷𝐹𝑇−1

−−−−−→ x𝑝 (𝑡), x𝑝 (𝑡)′, x𝑝 (𝑡)′′ −→ g
(
x𝑝, x′𝑝, x′′𝑝

)
𝐷𝐹𝑇−−−−→ G(X) (3.19)

where 𝐷𝐹𝑇 represents the discrete Fourier transform. Taking 𝑁 uniformly separated time points,

𝑡𝑖 =
2𝜋𝑖
𝜔𝑁

, and defining the vectors

x̄ =
[
x𝑇𝑝 (𝑡1), x𝑇𝑝 (𝑡2) . . . , x𝑇𝑝 (𝑡𝑁 )

]𝑇 (3.20)

ḡ =
[
g𝑇 (𝑡1), g𝑇 (𝑡2) . . . , g𝑇 (𝑡𝑁 )

]𝑇
. (3.21)

and

U =


1 cos

(
2𝜋
𝑁

)
sin

(
2𝜋
𝑁

)
. . . cos

(
2𝜋𝑃
𝑁

)
sin

(
2𝜋𝑃
𝑁

)
...

...
...

1 cos
(

2𝜋𝑁
𝑁

)
sin

(
2𝜋𝑁
𝑁

)
. . . cos

(
2𝜋𝑃𝑁
𝑁

)
sin

(
2𝜋𝑃𝑁
𝑁

)

,

the Fourier coefficients can be computed using

G =

(
U−1 ⊗ I𝑛

)
ḡ (3.22)

X =

(
U−1 ⊗ I𝑛

)
x̄ (3.23)
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where

U−1 = 1/𝑁



1 . . . 1

2 cos( 2𝜋
𝑁
) . . . 2 cos( 2𝜋𝑁

𝑁
)

2 sin( 2𝜋
𝑁
) . . . 2 sin( 2𝜋𝑁

𝑁
)

...
...

...

2 cos( 2𝜋𝑃
𝑁

) . . . 2 cos( 2𝑃𝜋𝑁
𝑁

)

2 sin( 2𝜋𝑃
𝑁

) . . . 2 sin( 2𝑃𝜋𝑁
𝑁

)



(3.24)

is the Moore-Penrose pseudo-inverse of U. Also,

x̄′ = 𝜔 (U∇ ⊗ I𝑛) 𝑋, (3.25)

x̄′′ = 𝜔2
(
U∇2 ⊗ I𝑛

)
𝑋, (3.26)

where

∇ =



0
. . .

∇𝑖
. . .

∇𝑃


, ∇𝑖 =


0 𝑖

−𝑖 0

 . (3.27)

Thus, the Jacobian matrix of G can be obtained through

𝜕G
𝜕𝑋

=

(
U−1 ⊗ I𝑛

) 𝜕ḡ
𝜕x̄

(U ⊗ I𝑛) +
(
U−1 ⊗ I𝑛

) 𝜕ḡ
𝜕x̄′

𝜔 [(U∇) ⊗ I𝑛]

+
(
U−1 ⊗ I𝑛

) 𝜕ḡ
𝜕x̄′′

𝜔2
[(

U∇2
)
⊗ I𝑛

]
,

where

𝜕ḡ
𝜕r

=



𝜕ḡ
𝜕r

����
𝑡=𝑡1

. . .

𝜕ḡ
𝜕r

����
𝑡=𝑡𝑁


(3.28)

are the Jacobian of the nonlinear function g in the time domain and r can be x̄, x̄′ and x̄′′.
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3.3.3 Fourier coefficients of the convolution term

We use the method described in [74] to obtain the Fourier coefficients of the convolution term.

After substituting (3.15) into the convolution term, one arrives at

𝐼 =

∫ ∞

0
𝜅𝑅 (𝑠)

𝑃∑︁
𝑝=1

𝑝𝜔̄

[
− Θ𝑐𝑝 sin (𝑝𝜔̄ (𝜏 − 𝑠))

+ Θ𝑠
𝑝 cos (𝑝𝜔̄ (𝜏 − 𝑠))

]
𝑑𝑠 (3.29)

where 𝐼 =
∫ ∞

0 𝜅𝑅 (𝑠) 𝜃′𝑝 (𝜏 − 𝑠) 𝑑𝑠. Expanding the trigonometric functions and using (3.10) lead to

𝐼 =

𝑃∑︁
𝑝=1

𝜔̄𝑝

[
−Θ𝑐2𝜉 (𝑝)𝐵

(
𝜔0𝜔̄𝑝

)
+ Θ𝑠𝜔̄𝑝𝜇

(𝑝)
𝐴

(
𝜔0𝜔̄𝑝

) ]
sin

(
𝜔̄𝑝𝜏

)
+ 𝜔̄𝑝

[
Θ𝑐𝜔̄𝑝𝜇

(𝑝)
𝐴

(
𝜔0𝜔̄𝑝

)
+ Θ𝑠2𝜉 (𝑝)𝐵

(
𝜔0𝜔̄𝑝

) ]
cos

(
𝜔̄𝑝𝜏

)
(3.30)

where

𝜔̄𝑝 = 𝑝𝜔̄, 𝜇
(𝑝)
𝐴

(
𝜔̄𝑝

)
=
𝐴∞ − 𝐴𝑅

(
𝜔0𝜔̄𝑝

)
𝑀

,

2𝜉 (𝑝)
𝐵

(
𝜔̄𝑝

)
=
𝐵𝑅

(
𝜔0𝜔̄𝑝

)
𝑀𝜔0

. (3.31)

Substituting (3.30) into (3.17) leads to the Fourier coefficients of the convolution term.

3.3.4 Stability of the periodic solutions

When the nonlinearity in the system is weak, the periodic solutions (3.15) are dominated by the

primary harmonics. Therefore, 𝜈 = 1, 𝑝 = 1 are chosen in this study. We determine the stability of

the periodic solutions by introducing small perturbations in (3.15) as follows:

𝜃 (𝜏) = 𝜃𝑝 (𝜏) + 𝛿𝜃 (𝜏) and 𝜙(𝜏) = 𝜙𝑝 (𝜏) + 𝛿𝜙 (𝜏) (3.32)

where |𝛿𝜃 (𝜏) | << 1 and |𝛿𝜙 (𝜏) | << 1. Let us define 𝜹 =
[
𝛿𝜃 , 𝛿𝜙

]𝑇 . Substitution of (3.32) into

(3.12) and linearization with respect to 𝜃𝑝 (𝜏) and 𝜙𝑝 (𝜏) yield(
M + A∞ + 𝜕g

𝜕x′′

)
𝜹′′ +

(
C + 𝜕g

𝜕x′

)
𝜹′

+
∫ ∞

𝜏=0
K𝑅 (𝑠) 𝜹′ (𝜏 − 𝑠) 𝑑𝑠 +

(
K + 𝜕g

𝜕x

)
𝜹 = 0 (3.33)

51



where the Jacobian matrices 𝜕g/𝜕x′′, 𝜕g/𝜕x′, and 𝜕g/𝜕x are evaluated at x = x𝑝, x′ = x′𝑝, and

x′′ = x′′𝑝 using the AFT method described in Section 3.3.2. Eqn. (3.33) is a set of linear ordinary

differential equations of periodic coefficients. One can use the Floquet theory to determine the

stability. To this end, (3.33) is transformed into the state-space form and numerically integrated

over one period 𝑇 to obtain the fundamental matrix. It is, however, difficult to numerically integrate

the convolution term. To overcome this difficulty, we use the method illustrated in [80] to obtain

a state-space representation that governs the dynamics of the convolution term, which is briefly

explained as follows.

Denote by 𝑦(𝜏) the convolution term in (3.33), i.e.

𝑦(𝜏) =
∫ ∞

0
𝜅𝑅 (𝑠) 𝛿′𝜃 (𝜏 − 𝑠) 𝑑𝑠 =

∫ 𝑡

−∞
𝜅𝑅 (𝜏 − 𝑠) 𝛿′𝜃 (𝑠) 𝑑𝑠

which, after Laplace transform, gives,

𝑦̃ (𝑠) = 𝐻̃ (𝑠) 𝛿′𝜃 (𝑠)

where 𝑦̃ and 𝜹̃′ are the Laplace transform of 𝑦(𝜏) and 𝛿′(𝜏) respectively, and 𝐻̃ (𝑠) =
∫ ∞

0 𝜅𝑅 (𝜏) 𝑒𝑠𝜏𝑑𝜏.

Using this transfer function, we find a state-space realization of order 𝑛 with state variable 𝛿𝜃 (𝜏)

and matrices A ∈ R𝑛×𝑛, B ∈ R𝑛×1, C ∈ R1×𝑛 and 𝐷 ∈ R, such that

w′ (𝜏) = Aw (𝜏) + B𝛿′𝜃 (𝜏)

𝑦 (𝜏) = Cw (𝜏) + 𝐷𝛿′𝜃 (𝜏) (3.34)

The state space conversion mentioned above can be achieved using imp2ss function in Matlab.

To use imp2ss, 𝜅𝑅 (𝜏) can be calculated using (3.10). We can further reduce the above state

space model using balmr function in Matlab. After getting a reduced state space model for the

convolution integral, the convolution term can be characterized by the state space model (3.34).

As stated previously, when the nonlinearity is weak, the solutions are dominated by the primary

harmonics. Therefore, we determine the stability of the primary harmonics. Specifically, we will

determine when the primary harmonics undergo period-doubling bifurcation. When this occurs,

the system will have 1:2 internal resonance [51, 57, 58, 70].
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Figure 3.5 Parametric instability boundary for 𝜂 = 0.4, 𝜇𝑟 = 0.4, 𝜇𝑔 = 0.03, 𝜉 = 0.05, 𝜉𝑝 = 0.01

3.3.5 Period doubling bifurcation

We use the bifurcation tracking algorithm developed in [70] to obtain the bifurcation boundary

for period-doubling bifurcation in the 𝑓𝑒−𝜔 plane. The bifurcation boundary for a set of parameters

is shown in Fig. 3.5. When this bifurcation occurs, the pendulum oscillations will have harmonics

of 𝜔/2, i.e. 1:2 internal resonance. It is worth noting that autoparametric vibration absorbers also

use 1:2 internal resonance to achieve vibration energy absorption [51, 57, 58].

3.4 Numerical demonstration

We now perform direct numerical simulation on the system (using Matlab’s ODE45) to verify

the bifurcation boundary obtained in Section 3.3.5. We solve (3.12) at three points marked in Fig.

3.5 (×1, ×2 and ×3). To solve the system numerically, we obtain the state space representation of

the convolution term in (3.12) in a way similar to one described in Section 3.3.4, thus giving

w̃′ (𝜏) = Ãw̃ (𝜏) + B̃𝜃′ (𝜏)

𝑧 (𝜏) = C̃w̃′ (𝜏) + 𝐷̃𝜃′ (𝜏) (3.35)

where 𝑧 (𝜏) ≈
∫ ∞

0 𝜅𝑅 (𝑠)𝜃′ (𝜏 − 𝑠) 𝑑𝑠.

As can be observed from Fig. 3.6a, Fig. 3.6b, Fig. 3.7a, Fig. 3.7b, Fig. 3.8a, and Fig. 3.8b,

points ×1 and ×2 lead to periodic solutions whereas point ×3 leads to non-periodic solutions. This

can be validated with the fast Fourier transform (FFT) of the solutions at these three points, which
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is shown in Fig. 3.6c, Fig. 3.7c and Fig. 3.8c, respectively. Note that the frequencies 𝜔̂ of the FFT

are normalized with respect to the excitation frequency. Thus, primary harmonics correspond to

components at 𝜔̂ = 1, harmonics of half excitation frequency correspond to components at 𝜔̂ = 0.5,

and so on.

In Fig. 3.5, it can be seen that the point ×1 is below the bifurcation boundary. We expect the

solutions to be periodic and dominated by the primary harmonic, which is verified by Fig. 3.6. Now,

as we increase the value of 𝑓𝑒 to reach point ×2, a period-doubling bifurcation occurs and we expect

harmonics of frequency 𝜔/2. This claim is readily verified from Fig. 3.7, where subharmonics

of half excitation frequency indeed exist. As such, it is found that the pendulum has 1:2 internal

resonance at point×2. Finally, the parameters at×3 lead to strong non-periodic solutions composed

of both oscillation and intermittent rotations of the pendulum, as shown in Fig. 3.8a. This is similar

to the non-periodic solutions observed in autoparametric resonance vibration absorbers [58].
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Figure 3.6 FFT and time series of periodic solutions at point 1 in Fig. 3.5

3.5 Discussion

In this study, we investigate how the 1:2 internal resonance of the IPVA-PTO can be exploited

for wave energy conversion. To show the efficacy of the system, we compare it with a linear wave

energy converter. The linear system is characterized by a linear wave energy converter that is

obtained by removing the pendulum from the IPVA, as shown in Fig. 3.1c. We tune the linear

inerter to the same natural frequency as the IPVA for a more fairer comparison. This is achieved

by increasing the inertance of the generator. Considering the other physical parameters same as the
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Figure 3.7 FFT and time series of periodic solutions at point 2 in Fig. 3.5

1 1.05 1.1 1.15 1.2 1.25 1.3

t 10
4

-20

-10

0

10

20

a Time series of 𝜙 at
point 3

1.905 1.91 1.915 1.92 1.925 1.93

t 10
4

-0.4

-0.2

0

0.2

0.4

b Time series of 𝜃 at
point 3

0 0.5 1 1.5 2 2.5 3
10

-6

10
-4

10
-2

10
0

10
2

F
F

T

FFT of 

FFT of 

c FFT at point 3

Figure 3.8 FFT and time series of periodic solutions at point 3 in Fig. 3.5

IPVA-PTO, the equation of motion of the linear system will be

𝑀𝑙𝜃
′′ + 𝐶𝑙𝜃′ +

∫ ∞

𝜏=0
𝜅𝑅 (𝑠) 𝜃′ (𝜏 − 𝑠) 𝑑𝑠 + 𝐾𝑙𝜃

= 𝑓𝑒 (3.36)

where

𝑀𝑙 = 1 + 𝜇𝑔 + 𝜇𝐴∞ +M, 𝜇𝐴∞ =
𝐴∞
𝑀
, 𝐶𝑙 = 2 (𝜉 + 𝜉𝑒) ,

𝐾𝑙 = 1. (3.37)

and M is the additional inertia used for resonant frequency matching. We solve this system with

the method described in Section 3.3.4 and compare it with the IPVA-PTO system. Note that the

excitation force is also frequency dependent. For the current study, we fix the value of 𝑅 to 28 cm.

Fig. 3.5 shows the force as a variation of the normalized angular frequency of the system. When the

excitation force magnitude is above the bifurcation boundary, we expect that the vibration energy
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of the spar transfers to the IPVA. To see that, we compare the response amplitude operator (RAO)

in heave and the normalized power of the IPVA-PTO and the linear system. The RAO is defined as

𝑅𝐴𝑂 =
𝑅𝜃

𝛾
, (3.38)

and the capture width is defined as

𝑃 = 𝑃𝐼𝑃𝑉𝐴−𝑃𝑇𝑂/𝑃𝑙𝑖𝑛𝑒𝑎𝑟 (3.39)

which is the ratio of the power that the IPVA-PTO converts over the power that the linear benchmark

converts. The instantaneous converted wave power for the IPVA and linear system are prospectively

written as

𝑃𝐼𝑃𝑉𝐴−𝑃𝑇𝑂 = 𝑐𝑒 ( ¤𝜃 − ¤𝜙)2

𝑃𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑐𝑒 ( ¤𝜃)2 (3.40)

In this work, the root-mean-square (RMS) of the converted power for 600 wave periods is computed

for both linear and nonlinear systems. As can be seen from the flattening of the oscillations in Fig.

3.9a (saturation like phenomenon as previously reported in [70]) of the spar and the increase in

the capture width within the same frequency range in Fig. 3.9b, there is an energy transfer from

the spar to the pendulum. Note that the capture width is normalized by the maximum of the linear

system for easy reference. Furthermore, it can be observed from Fig. 3.9b that the IPVA-PTO

system significantly outperforms the linear system. Note that in Fig. 3.9a, approximately between

Ω ∈ [2.3, 2.8], there is a presence of chaotic-like motions. The figures represent one such instance

of the initial conditions.

3.6 Experimental analysis

To verify the analysis performed, experiments consisting of the IPVA-PTO integrated with a

“dry” single-degree-of-freedom (sdof) system (without any hydrodynamic effects on the system)

are conducted. The “dry” system should still show the internal resonance phenomenon and it can

be explained as follows. The hydrodynamic effects on the system add a frequency-dependent mass,
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Figure 3.9 Comparison of response amplitude operator (RAO) and capture width between the
IPVA-PTO and linear system

damping and a force to the system. If we fix a frequency value - then the mass, the stiffness, and the

damping matrix can be calculated at that frequency value, and a force can be obtained corresponding

to the boundary point of the internal resonance boundary. This boundary can be obtained for all the

frequency values as explained. Now, if the mass, stiffness, and damping matrix do not change with

frequency, we can still obtain a force corresponding to internal resonance boundary at a specified

frequency, and do the procedure for all the frequencies to obtain an internal resonance boundary.

Thus, in principle, the internal resonance boundary for the dry system can be obtained. Although

it may be different than the system with hydrodynamic effects, the boundary will still exist.

The aim of the experiments is to characterize and compare the energy conversion and response

suppression capabilities of the IPVA-PTO system with a linear benchmark. The experimental

setup is shown in Fig. 3.10. The caption of Fig. 3.10 shows the description of labels for various

components of the experimental setup. The top plate, marked by plate 𝐴, supports the primary

mass. The base plate system contains three plates, plates 𝐶, 𝐸 , and 𝐹. Note that the plates 𝐶,

𝐸 and 𝐹 are rigidly connected while Plate 𝐹 is directly connected to the shaker. The nut of the

ball-screw system connects the plate 𝐴 while the screw is supported by a thrust bearing attached to
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Figure 3.10 Experimental setup. The labels denote the following — 1: Shaker, 2: Spectral analyzer
and controller, 3: Accelerometer signal conditioner, 4: Shaker signal amplifier, 𝐴: Top plate, 𝐵:
Ball-screw system, 𝐶: Ball-screw mounting plate , 𝐷: Sun and planet gear, 𝐸 : Middle plate, 𝐹:
Base plate, 𝐺: Primary mass, 𝐻: Connecting springs, 𝐼: Pendulum, 𝐽: Carrier, 𝐾: Generator, 𝐿:
Load resistance

plate 𝐶. A coupler connects the ball-screw system with the carrier (𝐽), which hosts the pendulum.

Eight springs are connected between the primary mass system and the base plate system so that the

two systems can move relative to each other. The relative motion drives the screw resulting in

𝜃 =
𝑥 − 𝑦
𝑅

,

where 𝑥 is the motion of plate 𝐴 and 𝑦 is the motion of plate 𝐶. The pendulum (𝐼) is free to rotate,

and its shaft is supported by the carrier through a ball bearing. A planetary gear system is hosted on

the pendulum and the rotor of the generator (𝐷), whose housing is fixed to plate 𝐸 . The sun gear

and planet gear are mounted to the generator shaft and the pendulum shaft, respectively. A load

resistance (𝑅𝐿) is connected to the generator terminals to measure the harvested electric power.

Finally, a shaker (APS 113) excites the base plate system by controlling the motion of the plate 𝐹

and is driven by a controller (Spider 80x) using an amplifier. There is an accelerometer connected

to the base plate for closed-loop control of the shaker, and another accelerometer is connected to

the top plate to monitor the motion of the top plate system. The generator terminals are connected

to a spectral analyzer (Spider 80x) to measure its voltage.
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3.6.1 Equation of motion for the experimental setup

The equation of motion of the experimental system can be directly derived from (3.12) by

converting the forced excitation into base excitation (of the shaker), adding friction to the pendulum

shaft and the generator shaft, and removing the hydrodynamic effects. To obtain this equation of

motion, we assume perfect transmission by the ball-screw system. The resultant equation of motion

is given by

M̄ ¥X + C̄ ¤X + K̄X + Ḡ(X, ¤X, ¥X) = F̄ (3.41)

where

M̄ =


1 + 𝜇𝑟 + 𝜇𝑟𝜂2 + 2𝜂𝜇𝑟 cos(𝜙) + 𝜇𝑏𝑠𝑐 + 𝜇𝑝 + 𝜇𝑔 𝜇𝑝 + 𝜇𝑟𝜂2 + 𝜇𝑟𝜂 cos(𝜙) − 𝜇𝑔

𝜇𝑝 + 𝜇𝑟𝜂2 + 𝜇𝑟𝜂 cos(𝜙) − 𝜇𝑔 𝜇𝑝 + 𝜇𝑟𝜂2 + 𝜇𝑔

 ,
K̄ =


1 0

0 0

 , C̄ =


2 (𝜉 + 𝜉𝑒) −𝜉𝑒

−𝜉𝑒 2
(
𝜉𝑒 + 𝜉𝑝

)  , Ḡ = 𝜇𝑟𝜂
©­­«
−2𝜃′𝜙′ sin(𝜙) − 𝜙′2 sin(𝜙)

𝜃′2 sin(𝜙)

ª®®¬ ,
F̄ =

©­­«
−𝑦′′ − 𝑡𝑔sign

( ¤𝜃 − ¤𝜙
)

−𝑡𝑝sign
( ¤𝜙) + 𝑡𝑔sign

( ¤𝜃 − ¤𝜙
) ª®®¬ (3.42)

with X = [𝜃, 𝜙]𝑇 , 𝑡𝑝 =
𝑇𝑝

𝑀𝑅2 and 𝑡𝑔 =
𝑇𝑔

𝑀𝑅2 , where 𝑇𝑝 is the frictional torque between the pendulum

shaft and its bearing and 𝑇𝑔 is that of the generator rotor. Here, 𝑥 is the motion of the top plate, 𝑦

is the motion of the shaker, 𝜃 is the rotation of the carrier, 𝑅𝑝 is the location of the pendulum shaft

with respect to the center of the ball-screw system and 𝜉𝑝 is the damping ratio of the pendulum

shaft defined by 𝜉𝑝 =
𝑐𝑝

𝑀𝜔0𝑅2 , 𝑐𝑝 being the damping coefficient between the pendulum shaft and

ball bearing. Furthermore, 𝜉𝑒 = 𝑐𝑒
𝑀𝜔0𝑅2 , where 𝑐𝑒 is the electrical damping in the generator due to

its internal resistance and well as the load resistance and can be written as 𝑐𝑒 = 𝜅2/(𝑅𝑖𝑛𝑡 + 𝑅𝐿),

where 𝜅 is the torque constant of the generator, and 𝑅𝑖𝑛𝑡 and 𝑅𝐿 are internal and load resistance

respectively. 𝑀 is the mass of the top plate and the primary mass (i.e., the primary structure),

𝐽𝑏𝑠𝑐 includes the inertia of the carrier, ball-screw, and coupler, and 𝐽𝑝 is the moment of inertia of

the pendulum system with respect to its center of mass. We assume theoretical values for all the

inertia (except 𝐽𝑏𝑠𝑐), masses, transmission ratio, springs, geometric lengths, and electrical damping
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in the system. Therefore, the values of 𝑚, 𝑅𝑝, 𝑀 , 𝑅, 𝐽𝑝, 𝑘 , 𝑟 , 𝑐𝑒 and 𝜔0 are assumed to be

known; see Table 3.1. This leaves 𝐽𝑏𝑠𝑐, 𝑐 and 𝑐𝑝 to be experimentally identified. The calculation

of pendulum damping 𝑐𝑝 has already been discussed in [81], and the same procedure was used to

obtain the pendulum damping in this study. Therefore, in the next sub-section, we will discuss the

identification of 𝑐 and 𝐽𝑏𝑠𝑐.

3.6.2 Obtaining the mechanical damping 𝑐 and ball-screw-carrier inertia 𝐽𝑏𝑠𝑐

The mechanical damping value 𝑐 is obtained by removing the pendulum head and the horizontal

shaft (attached to the pendulum). This leaves three inertias on the linear system — the primary mass

(which includes the top plate 𝐴), the ball-screw-carrier assembly, and the vertical shaft (where the

pendulum’s horizontal shaft was attached originally) with the ball-bearing supporting it. From this

experimental setup, the frequency response function (FRF) was obtained. The measured FRF and

theoretical FRF are correlated with each other to obtain the mechanical damping value as follows.

The linear system without the pendulum has the following equation of motion

𝑀̂ ¥𝑧 + 𝐶 ¤𝑧 + 𝐾𝑧 = −𝑀𝛼 ¥𝑦 (3.43)

where

𝑀̂ = 𝑀 (1 + 𝛼) , 𝛼 = 𝜇𝑏𝑠𝑐 +
𝐽𝑝𝑠

𝑀𝑅2 (3.44)

with 𝐽𝑝𝑠 being the inertia value of the vertical pendulum shaft. The FRF is obtained by substituting

𝑦 = 𝑌

𝜔2 𝑒
𝑖𝜔𝑡 and 𝑧 = 𝑍

𝜔2 𝑒
𝑖𝜔𝑡 into (3.43), where 𝑌 and 𝑍 denote the displacement amplitude of

the base plate and the amplitude of the relative displacement between the top plate and base

plate, respectively. By using the peak amplitude method [82], one can find 𝛼 (and therefore 𝐽𝑏𝑠𝑐,

assuming theoretical value for 𝐽𝑝𝑠) and 𝑐. Ten different FRF experiments were performed and 𝑐

and 𝐽𝑏𝑠𝑐 values were obtained by averaging their individual experimental values. The experimental

parameters are tabulated in Table 3.1 for ready reference.

3.6.3 Verification of the internal resonance

In this section, the 1:2 internal resonance phenomenon is verified against the experiments. First,

the PD boundary is obtained and shown in Fig. 3.11 using the theoretical and fitted parameters
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Parameter Value
𝜉𝑝 0.00418
𝜉 0.1266
𝜇𝑟 6.571
𝜂 0.55
𝜔0 85.74 rad/s
𝜇𝑔 0.442
𝑇𝑝 0.0014N-m
𝑇𝑔 4.26 × 10−5N-m
𝜇𝑝 0.756
𝜇𝑏𝑠𝑐 4.5117

Table 3.1 Parameters for the experimental IPVA-PTO system

shown in Table 3.1 for two values of load resistance — 5 ohm and 10 ohm. Since it is known

that there should be response suppression above the PD boundary, various acceleration values are

used to run the experiments, including an acceleration of 0.6 𝑔 for Fig. 3.11a and an acceleration

of 0.9 𝑔 for Fig. 3.11b, marked by horizontal line (—) on both the figures. Before observing the

experimental results and comparing them to the equivalent linear benchmark, a few points need to

be stated:

1. The ball-screw system is assumed to be 100% efficient, with no loss in transmission

2. The effects of accelerometer cables on the system are neglected

3. The springs are modeled to be linear for the analytical analysis

As reported in [70], for a sdof system, 1:2 internal resonance is accompanied by an energy transfer

between the primary system and the pendulum vibration absorber and thus suppressing the response

of the primary system. To observe the secondary harmonic solutions (defined by the response of

the system immediately after the period-doubling bifurcation, containing harmonics of half the

excitation frequency along with the excitation frequency) of the system, the PD boundary shown

in Fig. 3.11a is referred to. As shown, a marker × slightly above the boundary corresponds to

an excitation acceleration amplitude of 0.42 𝑔 and an excitation frequency of 3.6 Hz. This set

of acceleration and frequency are chosen as they are just above the boundary, where we expect

61



3 3.2 3.4 3.6 3.8 4 4.2

Frequency (Hz)

0.4

0.45

0.5

0.55

0.6

0.65
A

c
c
e
le

ra
ti
o
n
 (

g
)

a 10 ohm (𝜉𝑒 = 0.0737)

3 3.2 3.4 3.6 3.8 4 4.2

Frequency (Hz)

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

A
c
c
e
le

ra
ti
o
n
 (

g
)

b 5 ohm (𝜉𝑒 = 0.0889)

Figure 3.11 PD boundary of energy transfer corresponding to the experimental setup for two values
of load resistance

35.8 36 36.2 36.4 36.6 36.8 37 37.2 37.4 37.6

t (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

V
o
lt
a
g

e
 (

V
)

a Time series of the pendulum
motion

1 2 3 4 5 6 7 8

f (Hz)

10-2

10-1

100

F
F

T
 o

f 
V

o
lt
a

g
e

X 3.60806

Y 1.21278

X 1.79487

Y 0.123049

X 5.40293

Y 0.0597345

X 7.1978

Y 0.240968

b Measured FFT of the pendulum
motion

Figure 3.12 Measured time series and FFT of the output voltage at 0.42 𝑔, at 3.6 Hz

to observe secondary harmonic solutions. As can be seen from Fig. 3.12, the voltage measured

by the spectral analyzer shows harmonics of frequency 𝜔
2 as evident from the time series of the

pendulum’s motion shown in Fig. 3.12a and the fast Fourier transform (FFT) shown in Fig. 3.12b.

This verifies the phenomenon of internal resonance.

3.6.4 Comparison with the linear system

Next, the IPVA-PTO system is compared with a linear system to benchmark its response

suppression and energy harvesting capabilities. For this analysis, the linear system is chosen by

removing the pendulum and adding inertia to the ball-screw-carrier system such that the natural
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frequency of the linear system is equal to the resonance frequency of the IPVA-PTO system. The

internal resistance of the generator is 3.17 ohms. A few resistance values (3, 5, and 10 ohm, with

optimal resistance value for maximum energy of the linear system close to 5 ohm) were chosen to

perform experiments for the linear system for a better comparison with the IPVA-PTO system. Note

that the response of the IPVA-PTO system can be categorized into three types. First, the pendulum

can have primary harmonic oscillations where the oscillation frequency of the pendulum is equal

to the excitation frequency. Second, the pendulum can have a secondary harmonic response due to

1:2 internal resonance where the pendulum’s response contains a frequency of half the excitation

frequency in tandem with the primary harmonic response. Lastly, the pendulum can go into non-

periodic motion, consisting of a rich set of frequencies, or can go into rotation. The methodology

applied to generate the results for the IPVA-PTO system can be explained as follows: For a given

excitation and load resistance value, frequency response functions (FRFs) of the voltage and the

top plate acceleration are generated with respect to the shaker’s acceleration using sine sweep

input. Then, the frequency range within which the response consisting of only primary harmonics

is identified. For the identified frequency range, the root-mean-square (RMS) voltage and relative

displacement between the top plate and base plate response are calculated from the mean of the

RMS responses obtained for ten independent sine sweeps. For the frequency range within which

the response is secondary/non-periodic/rotating, the range is discretized into frequency points with

a step-size of 0.1 Hz, and experiments are run on the IPVA-PTO system to get the RMS values of

the amplitude of the relative displacement between the top plate and the shaker, and the generated

power using a data of approximately 120 seconds per experiment (total data of 1200 second for

a frequency, with transients removed). Ten frequency response functions were calculated for the

linear system to obtain the RMS power and relative displacement between the top plate and the

shaker. All the RMS values are plotted against each other for comparison.

First, let us look at the case when the load resistance is 10 ohms. Also, let us choose a

large acceleration to observe non-periodic solutions in the pendulum’s response. As can be seen

from Fig. 3.11a, the acceleration of 0.6 𝑔 is well above the PD boundary from 3.2 Hz to 4 Hz,
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Figure 3.13 Frequency response of relative motion between the top plate and the base plate, and
power for the IPVA-PTO and the linear system at 0.6 𝑔 base excitation acceleration with 10 ohm
resistance. 1:2 stands for secondary harmonic solutions, NP stands for non-periodic solution
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Figure 3.14 Frequency response of relative motion between the top plate and the base plate, and
power for the IPVA-PTO and the linear system at 0.9 𝑔 base excitation acceleration with 5 ohm
resistance and 3 ohm resistance for the linear system and 5 ohm for the IPVA system

and the response goes into non-periodic motion, with secondary harmonic at some instances (as

observed from the time series of the response, not shown here). The system shows excellent

response suppression compared to the linear system as evident from Fig. 3.13a. Although the
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response suppression is significant, the power generated is in question. There can be instances

where the power generated outperforms the linear system — when the pendulum goes into 1:2

internal resonance (secondary harmonic response), but there are cases when the power generated

is less than the linear system, for non-periodic motion.

For the next case, the load resistance for the IPVA-PTO system is 5 ohm, and thus the electrical

damping in the IPVA-PTO system is higher as a consequence. Two resistance values are used for

the linear system, 3 and 5 ohm, for the sake of comparison. Due to larger electrical damping, a

higher input acceleration is required to cross the PD boundary. This time, we choose 0.9 𝑔 as

the acceleration magnitude as it is close to the boundary, and therefore we can observe secondary

harmonic solutions. In Fig. 3.14, it is observed that the system shows primary harmonic response

up to around 3.4 Hz, and then the system starts showing secondary harmonic response up to

approximately 3.8 Hz (with some transient non-periodic responses). After 3.8 Hz, the primary

harmonic solution appears again and stays stable for the rest of the frequencies (as observed from

the time series of the pendulum’s response). For this set of parameters, it is clear that the IPVA

system not only outperforms the linear benchmark in terms of response suppression but also has

higher energy conversion compared with the linear system. This is due to the absence of non-

periodic response in the IPVA-PTO system. Thus it should be noted that although non-periodic

responses are good at response suppression, it is the secondary harmonic response and rotation

that can perform simultaneous response suppression and energy conversion. Next, we perform the

numerical analysis of the system near the second resonance frequency.

3.7 Conclusion

This study analyzes the modification of the IPVA system [70] with an added generator (referred

to as IPVA-PTO) for wave energy conversion. The IPVA-PTO is integrated with a spar, and the

dynamics of the system is analyzed. It is observed that a nonlinear energy transfer phenomenon

similar to that observed in [70] exists in the IPVA-PTO system too. It is also shown that because

of this energy transfer phenomenon, the IPVA-PTO system is shown to outperform its linear

counterpart in terms of wave capture width. This analysis is verified by performing experiments
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on the single-degree-of-freedom “dry” IPVA-PTO system, where the primary harmonic solution

is shown to bifurcate via a period-doubling bifurcation. A set of pendulum responses (primary

harmonic, secondary harmonic, non-periodic) is observed in the sdof “dry” IPVA-PTO system.

Two different load resistance values are used to compare the IPVA-PTO and the linear system, and

it is shown that although the non-periodic response of the IPVA-PTO system is only suitable for

response suppression, the presence of secondary harmonics can outperform the linear benchmark

both in response suppression and energy conversion.
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CHAPTER 4

INTEGRATION OF THE IPVA WITH A SPAR-FLOATER SYSTEM: A STUDY IN
VIBRATION SUPPRESSION

4.1 Overview

This chapter talks about the modeling of the spar-floater integrated IPVA system. The

system is compared with a linear benchmark for efficacy in wave energy conversion potential

and hydrodynamic response suppression.

4.2 Design of the system
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Figure 4.1 Ocean wave energy harvesting design

Figure 4.1(a) shows a spar and an annular floater floating in water. For simiplicity, the spar

and floater are constrained such that they can only move in the heaving (𝑥) direction relative to

the waterline. Figure 4.1(b) shows the IPVA system consisting of a lead screw, a carrier, and a

pendulum vibration absorber. The nut of the lead screw is fixed to the floater while the screw is

supported by a thrust bearing that is fixed to the spar through a housing. As a result, the relative

heaving displacement 𝑥1 − 𝑥2 is converted into the angular displacement 𝜃 through 𝑥1 − 𝑥2 = 𝑅𝜃,

where 𝑅 = 𝐿/2𝜋, and 𝐿 is the screw lead. The carrier is fixed to the screw such that they have the

same angular displacement (𝜃). The pendulum pivots on a point of the carrier which is located at a
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distance of 𝑅𝑝 from the carrier center. The pendulum has length 𝑟 and an angular displacement 𝜙

with respect to the screw. Figure 4.1(c) shows the mathematical model of the system where 𝑘1 and

𝑘2 denote the hydrostatic stiffness in heave of the spar and the floater, respectively, and 𝑀1 and 𝑀2

denote the mass of the spar and the floater, respectively. Furthermore, the wave motion generates

hydrodynamic forces 𝐹𝑔,1 and 𝐹𝑔,2, exciting the spar and the floater, respectively. Linear wave

theory is assumed for the current analysis, and the derivation of the hydrodynamic coefficients on

the system, along with the equation of motion is discussed in the next section.

4.3 Equations of motion

To facilitate deriving the equations of motion, the following coordinate transformation is

employed:

𝑥2 = 𝑅𝜓

𝑥1 = 𝑅 (𝜃 + 𝜓) (4.1)

Euler-Lagrange mechanics is used to derive the equations of motion. The kinetic and potential

energy of the system are determined, followed by the hydrodynamic coefficients of the system.

Finally, the virtual work due to the forces applied to the system is derived and the equations of

motion are normalized.

First, the sum of the kinetic energy of the spar, floater and the IPVA system, and the sum of the

potential energy of the spar and floater are given by

𝑇 =
1
2
𝐽𝑝

( ¤𝜃 + ¤𝜙
)2 + 1

2
𝐽𝑏𝑠𝑐 ¤𝜃2 + 1

2
𝑚

[
¤𝜃2

(
𝑟2 + 2𝑟𝑅𝑝 cos 𝜙 + 𝑅2

𝑝

)
+ 𝑟2 ¤𝜙2 + 2𝑟 ¤𝜃 ¤𝜙(𝑟 + 𝑅𝑝 cos 𝜙)

]
+ 1

2
𝑀1

(
𝑅 ¤𝜃 + 𝑅 ¤𝜓

)2 + 1
2
𝑀2𝑅

2 ¤𝜓2,

𝑉 =
1
2
𝑘1(𝑅𝜃 + 𝑅𝜓)2 + 1

2
𝑘2𝑅

2𝜓2, (4.2)

where 𝑇 and 𝑉 are kinetic and potential energy respectively. Here 𝐽𝑏𝑠𝑐 and 𝐽𝑝 are the moments

of inertia of the ball-screw-carrier assembly and of the pendulum respectively. Further, 𝑚 denotes

the mass of the pendulum. Next, the hydrodynamic coefficients of the spar and the floater subject

to incident regular waves are determined by the linear wave theory, which assumes that the fluid is
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inviscid and irrotational [74]. Based on the linear wave theory, the hydrodynamic force on the spar

and the floater consists of three components: Froude-Krylov force, diffraction force, and radiation

force. The first term corresponds to the undisturbed incident wave field without the present of

spar-floater system, whereas the diffracted force is the result of modification in the incident wave

field due to presence of the spar-floater system, and the radiation force results from the oscillations

in the spar-floater system.

The Froude-Krylov and diffraction force together give rise to the excitation force while the

radiation force gives rise to the added mass and radiation damping [74, 26], which can be represented

by the well-known Cummins’ equation [75]

𝐹𝑔,𝑖 = −𝐴∞,𝑖 ¥𝑥𝑖 −
∫ ∞

𝜎=0
𝑘𝑅,𝑖 (𝜎) ¤𝑥𝑖 (𝑡 − 𝜎) 𝑑𝜎 + 𝛾𝐹𝑖 (𝑡), 𝑖 = 1, 2, (4.3)

where 𝛾 is the wave amplitude, 𝐹𝑔,𝑖 is the incoming wave force, 𝑓𝑖 = 𝛾𝐹𝑖 is the excitation (Froude-

Krylov and diffraction) force, and 𝐹𝑖 is the excitation force per wave amplitude. Here 𝐹𝑔,𝑖, and

as a consequence 𝐹𝑖, are assumed to be sinusoidal with angular frequency Ω equal to the angular

frequency of the incoming wave. The radiation impulse response kernel, 𝑘𝑅,𝑖 (𝜎) and the radiation

infinite-frequency added mass, 𝐴∞,𝑖, are related to the radiation frequency-dependent damping and

added mass 𝐵𝑅,𝑖 (Ω) and 𝐴𝑅,𝑖 (Ω), through Ogilvie’s relations [76]

𝐵𝑅,𝑖 (Ω) =
∫ ∞

𝜎=0
𝑘𝑅,𝑖 (𝜎) cos (Ω𝜎) 𝑑𝜎, 𝑖 = 1, 2,

𝐴𝑅,𝑖 (Ω) = 𝐴∞,𝑖 −
1
Ω

∫ ∞

𝜎=0
𝑘𝑅,𝑖 (𝜎) sin (Ω𝜎) 𝑑𝜎, 𝑖 = 1, 2, (4.4)

and

𝐴∞,𝑖 = lim
Ω→∞

𝐴𝑅,𝑖 (Ω) . (4.5)

The hydrodynamic coefficients 𝐴𝑅,𝑖 (Ω) and 𝐵𝑅,𝑖 (Ω), Froude-Krylov and diffraction force 𝑓𝑖 (𝑡)

are determined using Ansys AQWA. For the calculation of the hydrodynamic coefficients, the

spar-floater system was modeled together but was not coupled physically, though they influenced

each other’s hydrodynamics. A convergence test was performed like previously illustrated in [83]
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Parameter Value
𝑀1 19.46
𝑀2 4.08
𝑘1 198.79
𝑘2 2001.04
𝑅 0.0672
𝐴∞,1 1.078
𝐴∞,2 12.418

Table 4.1 Parameters for spar-floater system (all data in SI units)

Figure 4.2 Ansys AQWA model for calculation of hydrodynamic coefficients

to match the published results in [84]. After verifying the Ansys model, the same setting is adopted

to simulate the spar-floater system for the rest of the paper. The height of the spar is taken as 1.06 m

with a draft of 0.96 m (the height of the spar below the surface of the water), and a diameter of 0.16

m, which is the 1:100 reduced sparD model with water depth of 3 m described in [85]. The floater,

on the other hand, is an annulus with a depth of 0.02 m with inner diameter of 0.317 m and outer

diameter of 0.595 m. Figure 4.2 shows the mesh of the system used for analysis and Fig. 4.3 shows

the added mass, radiation damping, and excitation force obtained using Ansys for both the spar and

the floater. Table 4.1 shows the physical properties of both the spar-floater system (obtained via

Ansys Aqwa) and the ball-screw transmission chosen for this study. All the data is in SI units.

Next, let’s look at the virtual work due to various forces on the system. The total virtual work

in the system is

𝛿𝑊 = 𝛿𝑊𝐴𝑀 + 𝛿𝑊𝑅𝐷 + 𝛿𝑊𝐹 + 𝛿𝑊𝐷 (4.6)

where 𝛿𝑊𝐴𝑀 , 𝛿𝑊𝑅𝐷 , 𝛿𝑊𝐹 and 𝛿𝑊𝐷 are the virtual works due to the added mass, radiation damping,
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Figure 4.3 Added mass, radiation damping, and diffraction and Froude-Krylov force for spar and
floater

excitation force and mechanical damping, respectively, and are calculated as follows

𝛿𝑊𝐴𝑀 = −𝐴∞,1
( ¥𝜃 + ¥𝜓

)
𝑅2 (𝛿𝜃 + 𝛿𝜓) − 𝐴∞,2𝑅2 ¥𝜓𝛿𝜓

𝛿𝑊𝑅𝐷 = −
[∫ ∞

0
𝑅2𝜅1 (𝜎)

( ¤𝜃 (𝑡 − 𝜎) + ¤𝜓 (𝑡 − 𝜎)
)
𝑑𝜎

]
(𝛿𝜃 + 𝛿𝜓)

−
[∫ ∞

0
𝑅2𝜅2 (𝜎) ¤𝜓 (𝑡 − 𝜎) 𝑑𝜎

]
𝛿𝜓

𝛿𝑊𝐹 = 𝑅 𝑓1 (𝛿𝜃 + 𝛿𝜓) + 𝑅 𝑓2𝛿𝜓

𝛿𝑊𝐷 = −𝑐𝑅2 ¤𝜃𝛿𝜃 −
(
𝑐𝑝

) ¤𝜙𝛿𝜙 (4.7)

Using these equations, the 𝜃, 𝜙 and 𝜓 contributions due to virtual work into the equations of motion

can be obtained. After substituting the kinetic and potential energy and the virtual work, and using

the following normalization parameters

𝜂𝑔 =
𝐽𝑟

𝑀1𝑅2 , 𝜇𝐹 =
𝑀1
𝑀2

, 𝜂 =
𝑟

𝑅𝑝
, 𝜔0 =

√︂
𝑘1
𝑀1

, 𝜔2 =

√︂
𝑘2
𝑀2

, 𝜇𝑟 =
𝑚𝑅2

𝑝

𝑀1𝑅2 , 𝜔 =
Ω

𝜔0
, 𝜔𝑟 =

𝜔2
𝜔0
,

𝜏 = 𝜔0𝑡, 𝜉 =
𝑐

2𝜔0𝑀1
, 𝜉𝑝 =

𝑐𝑝

2𝜔0𝑀1𝑅2 , ()
′ =

𝑑 ()
𝑑𝜏
, 𝑓𝑒,1 =

𝑓1

𝜔2
0𝑀1𝑅

, 𝑓𝑒,2 =
𝑓2

𝜔2
0𝑀1𝑅

,

𝜇𝐴∞,1 =
𝐴∞,1
𝑀1

, 𝜇𝐴∞,2 =
𝐴∞,2
𝑀1

(4.8)

the following equations of motion are obtained

𝑀𝑥′′ + 𝐶𝑥′ + 𝐾𝑥 + R(𝑥′) = 𝐹 (4.9)
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where

𝑀 =

©­­­­­«
𝑎11 1 + 𝜇𝐴∞,1 𝜇𝑝 + 𝜂2𝜇𝑟 + 𝜂𝜇𝑟 cos 𝜙

1 + 𝜇𝐴∞,1 𝜇𝐹 + 1 + 𝜇𝐴∞,1 + 𝜇𝐴∞,2 0

𝜇𝑝 + 𝜂2𝜇𝑟 + 𝜂𝜇𝑟 cos 𝜙 0 𝜇𝑝 + 𝜂2𝜇𝑟

ª®®®®®¬
𝐶 =

©­­­­­«
2𝜉 0 0

0 0 0

0 0 2𝜉𝑝

ª®®®®®¬
, 𝐾 =

©­­­­­«
1 1 0

1 1 + 𝜇𝐹𝜔2
𝑟 0

0 0 0

ª®®®®®¬
, 𝐹 =

©­­­­­«
𝑓𝑒,1 + 2𝜂𝜇𝑟𝜃′𝜙′ sin 𝜙 + 𝜂𝜇𝑟𝜙′2 sin 𝜙

𝑓𝑒,1 + 𝑓𝑒,2

−𝜂𝜇𝑟𝜃′2 sin 𝜙

ª®®®®®¬
R =

1
𝑀1𝜔

2
0

©­­­­­«
∫ ∞

0 𝜅1 (𝜏) [𝜃′ (𝑡 − 𝜏) + 𝜓′ (𝑡 − 𝜏)] 𝑑𝜏∫ ∞
0 𝜅1 (𝜏) [𝜃′ (𝑡 − 𝜏) + 𝜓′ (𝑡 − 𝜏)] 𝑑𝜏 +

∫ ∞
0 𝜅2 (𝜏) 𝜓′ (𝑡 − 𝜏) 𝑑𝜏

0

ª®®®®®¬
, 𝑥 =

©­­­­­«
𝜃

𝜓

𝜙

ª®®®®®¬
where

𝑎11 = 𝜂2𝜇𝑟 + 𝜇𝑏𝑠𝑐 + 𝜇𝑟 + 𝜇𝑝 + 2𝜂𝜇𝑟 cos 𝜙 + 1 + 𝜇𝐴∞,1

4.4 Period-doubling bifurcation in the IPVA system

Following the idea laid out in the previous work by the authors [70, 83], the boundary of

parametric instability where the primary harmonic solution of the system becomes unstable can be

obtained. To that end, the harmonic balance analysis with the modified alternating frequency time

(AFT) method and Floquet theory are used as elaborated in [83].

As has been reported previously in [83, 70], the instability in the primary solutions for the

system due to period-doubling bifurcations gives rise to additional terms in the ball-screw (𝜃) and

pendulum’s response (𝜙), referred to as secondary solutions (with harmonics of frequency 𝜔
2 where

𝜔 denotes the wave excitation frequency) in the system. This period-doubling bifurcation gives rise

to 1:2 internal resonance in the system. We use the bifurcation tracking algorithm developed in [70]

with modified AFT method proposed in [83] to obtain the period-doubling bifurcation boundary.

The boundary in Fig. 4.4 shows the wave height on the y-axis and wave frequency on the x-axis.

Like the results in [83, 70], below this boundary, the primary harmonic solution is stable and

above this boundary, the period of the solution doubles. To verify this behavior, the hydrodynamic
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response with three wave heights (×1, ×2, and ×3, ×3 not shown), corresponding to 4.5 cm, 5.4

cm and 12 cm at a frequency of 0.44 Hz, is simulated by using the explicit Runge-Kutta (4,5)

integration method. The integration kernel is evaluated using an impulse to state-space converter

function described in [80, 83]. Fig. 4.4, Fig. 4.4 and Fig. 4.4 show the response of the pendulum (𝜙)

and the fast Fourier transform (FFT) of the response of the pendulum, and the ball-screw system (𝜃).

Note that 𝜔̂ represents the frequency of oscillation normalized with respect to the wave frequency,

which means that 𝜔̂=1 corresponds to the primary component of the solution, and 𝜔̂ = 1
2 represents

oscillation of angular frequency 𝜔
2 , 𝜔 being the wave excitation frequency. As can be observed

from these figures, below the stability boundary the solution is strictly primary, whereas at point

×2, the motion of the pendulum (along with the ball-screw) contains harmonics of frequency 𝜔
2 ,

in addition to the primary harmonics. If we further increase the wave height to point ×3, the

time series of the pendulum’s motion shows intermittent rotation and oscillation, whereas the FFT

shows the motion of the pendulum (and the ball-screw) consisting of many frequencies, showing

non-periodic behavior. This observation has been recorded previously by the authors in [70], and

the response can be attributed to a cascade of period-doubling bifurcation which eventually can

lead to chaotic-like motions in the system, as evident from response at point 3. It has been noted

previously in this work that the crossing of the period-doubling bifurcation boundary results in

energy transfer between the primary (spar-floater) system and the pendulum vibration absorber. To

demonstrate this, we fix a wave height, say 5.5 cm (which is above the instability boundary for a

frequency range from approximately 0.42 Hz to 0.465 Hz, as marked by vertical dashed lines in

Fig. 4.4), and look at the frequency response of the proposed system.

4.5 Nonlinear energy transfer and energy harvesting potential

As mentioned in the previous section, for the wave height of 5.5 cm, we expect an energy

transfer between the spar-floater system and the pendulum for the specified frequency range. To

benchmark this system, we use a linear system defined as the system with the pendulum locked

such that its first natural frequency matches the resonant frequency of the IPVA system (given by

the frequency corresponding to the lowest wave height in the stability boundary; see Fig. 4.4). We
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Figure 4.5 Time series and FFT of the pendulum motion at point ×1

perform direct numerical simulation for both the IPVA and the linear system using the explicit

Runge-Kutta (4,5) integration method (implemented in Matlab’s ode45), with integration kernel

evaluated using an impulse to state-space converter [80, 83]. Fixing the wave height to 5.5 cm,

we calculate the response amplitude operator (RAO) of the spar for both the IPVA and the linear

system, defined by the response of the spar divided by the wave height. Figure 4.8a shows the

comparison of the RAO between the IPVA and the linear system. The range for the secondary

resonance is marked by vertical dash-dot lines. Figure 4.8b shows the values of motion of the
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Figure 4.7 Time series and FFT of the pendulum motion at point ×3

ball-screw ( ¤𝜃2) and the pendulum ( ¤𝜙2) of the IPVA system, and the motion of the ball-screw ( ¤𝜃2)

for the linear system. In the literature, ball-screw and pendulum angular motions are used to drive

electrical generators for wave energy production and the electrical power is proportional to the

angular velocities squared, [86, 83, 87], for example. Therefore, the angular velocities squared are

used to examine the energy conversion potential in this work.

As can be seen in Fig. 4.8a and Fig. 4.8b, the linear system sacrifices the spar’s response for the

resonant ball-screw angular motion. The IPVA system, on the other hand, has a significant smaller

RAO in comparison with the linear system. It can be readily seen that till around the frequency

0.4 Hz, the ball-screw motion of the linear system and the IPVA system closely follow each other
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Figure 4.8 The frequency responses of the linear and the IPVA system

in amplitude. However, the solution starts to deviate around 0.4 Hz due to increase in motion of

the pendulum, and soon around 0.42 Hz, in the range corresponding to the secondary solutions

(marked by dash-dot lines in the figure) in the IPVA system, the energy transfer from the primary

system to the pendulum begins. Hence, it is evident that the energy in the ball-screw transfers to

the pendulum due to internal resonance, resulting in suppression of the spar motion and pumping

of the pendulum’s kinetic energy. From Fig. 4.8b, it can be clearly seen that the motion of the linear

system is better than the IPVA system if the we consider the motion of the pendulum alone for
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the IPVA system. However, if we use the difference between the angular motion of the pendulum

and the ball-screw, the motion of the IPVA system is significantly higher than the linear system.

This is because it has been observed that the ball-screw and the pendulum motion are generally

out of phase for the IPVA system [83, 70]. A mechanism that converts the difference of angular

motions into one angular motion to drive a generator can be readily achieved using a planetary gear

setup; see [83]. This mechanism justifies the use of the angular motion difference to examine the

energy conversion potential. Note that since the pendulum is locked for the linear system, there is

effectively no pendulum damping in the linear system’s equation of motion. Therefore, it is worth

investigating how the pendulum damping can affect the angular motions in the IPVA system (while

the linear system stays the same).

To study the effect of pendulum’s damping on the performance of the IPVA system, we calculate

the 1:2 internal resonance or period-doubling bifurcation boundary for the IPVA system with a

different damping value, taken as 𝜉𝑝 = 0.01. This boundary is shown in Fig. 4.9d as a part of

parametric studies (to be discussed later). It can be seen that the stability boundary for the case of

𝜉𝑝 = 0.01 is significantly lower than 𝜉𝑝 = 0.02 shown in Fig. 4.4. Therefore, we choose a wave

height of 2.5cm to perform the numerical frequency response analysis for the case of 𝜉𝑝 = 0.01.

The frequency response is shown in Fig. 4.8c and Fig. 4.8d. We can observe a similar energy

transfer phenomenon and vibration suppression in the spar’s RAO. However in this case, motion

value of the IPVA defined in terms of
( ¤𝜃 − ¤𝜙

)2 is around 3 times higher than the linear system

compared to the case of 𝜉𝑝 = 0.02, where the same motion is around 1.5 times higher. Another

thing worth mentioning is that the RAO of the spar for 𝜉𝑝 = 0.01 is higher than that of 𝜉𝑝 = 0.02,

though it still outperforms the linear system. Next, let us look at the effects of system parameters

on the stability boundary.

4.6 Parametric studies

To analyze the effects of various system parameters on the stability boundary of internal

resonance (period-doubling bifurcation), we vary the following parameters 𝜇𝑟 , 𝜂, 𝜉, and 𝜉𝑝 while

keeping the other parameters fixed at their values mentioned in Fig. 4.4. First, we see the effect
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of 𝜇𝑟 on the stability boundary. Recall that 𝜇𝑟 is the mass amplification factor in the system given

by 𝜇𝑟 =
𝑚𝑅2

𝑝

𝑀𝑅2 . As the 𝜇𝑟 value increases, we see the wave height required to cross the internal

boundary decreases as evident from Fig. 4.9a. Therefore to control the wave height required to

cross the boundary, one can readily change the value of 𝑅𝑝

𝑅
, which is the ratio of the distance of the

pendulum pivot point with respect to the carrier over the effective radius of the ball-screw system.

Next, the effect of 𝜂, defined by 𝑟
𝑅𝑝

where 𝑟 is the length of the pendulum, on stability boundary is

analyzed. As observed from Fig. 4.9b, for larger values of 𝜂, the wave height required to cross the

boundary for a given frequency decreases. Fig. 4.9c and Fig. 4.9d show the effect of mechanical

and pendulum damping respectively on the stability boundary. It can be observed that the wave

height required to reach 1:2 internal resonance increases with increase in both the mechanical and

pendulum damping value. The next section discusses the experimental verification for the IPVA

system.

4.7 Conclusion

This study analyzes the incorporation of the IPVA system [70] into a heaving spar-floater system

to study the energy transfer between the spar-floater system and the pendulum vibration absorber.

The hydrodynamic response and wave energy conversion potential of the integrated system, when

the wave frequency is near the spar resonance frequency, are investigated using numerical frequency

response simulations. A harmonic balance method is used to determine the boundary of period-

doubling bifurcation in the parameter plane of wave height and wave frequency. According to the

boundary, one can determine a combination of the wave height and frequency such that 1:2 internal

resonance occurs to the IPVA system. It is observed that this 1:2 internal resonance is associated

with a nonlinear energy transfer phenomenon similar to that observed in [70, 83]. It is also shown

that because of this energy transfer phenomenon, the IPVA-PTO system achieves a lower maximum

RAO, and a higher energy transfer potential compared to the linear benchmark, when the relative

angular motion between the ball-screw and the pendulum is used as a measure of energy conversion

potential. The effect of the pendulum damping is also characterized in the IPVA system, since

it is the only parameter which is missing from the linear benchmark. It is found that for lower
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Figure 4.9 Effect of various system parameters on the stability boundary, all the values are from
Fig. 4.4 except for the parameter value specified in the figure

pendulum damping, a lower wave height is required to achieve the energy transfer phenomenon and

the angular motions of the IPVA system are significantly higher than the linear system, although

the RAO value also increases compared to the higher pendulum damping case. Finally, parametric

studies showing the effects of various system parameters on the 1:2 internal resonance boundary

were also shown in this study.
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CHAPTER 5

INTEGRATION OF THE IPVA-PTO WITH A SPAR-FLOATER SYSTEM: STUDY IN
OCEAN WAVE ENERGY CONVERSION

5.1 Overview

This chapter talks about the modeling of the spar-floater integrated IPVA-PTO system. The

system is compared with a linear benchmark for efficacy in wave energy conversion and hydrodynamic

response suppression near both its resonance frequencies. A discussion on optimization of electrical

damping for maximizing the wave energy conversion is discussed.

5.2 Modeling of the system

In this section, first, the operation principle of the system is discussed, and then the equations

of motion of the system are derived, taking into account the hydrodynamic effects.

5.2.1 Operation principle of the system

Figure 5.1 The IPVA-PTO system integrated in a spar-floater setup for wave energy conversion
where: a. Ocean wave energy conversion setup, b. the IPVA-PTO system, and c. equivalent
mathematical model

Figure 5.1a shows a spar and an annular floater floating in water connected by the IPVA-PTO

system. For simplicity, the spar and floater are constrained such that they can only move in the

heaving (𝑥) direction relative to the waterline. Figure 5.1b shows the IPVA system consisting of a

lead screw, a carrier, a generator, and a pendulum vibration absorber. The nut of the lead screw is

fixed to the floater while the screw is supported by a thrust bearing that is fixed to the spar through

a housing. As a result, the relative heaving displacement 𝑥1 − 𝑥2 is converted into the angular
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displacement 𝜃 through 𝑥1 − 𝑥2 = 𝑅𝜃, where 𝑅 = 𝐿/2𝜋 and 𝐿 is the screw lead. The carrier is

fixed to the screw such that they have the same angular displacement (𝜃). The pendulum pivots

at a distance of 𝑅𝑝 from the carrier center, and has a mass of 𝑚 and a moment of inertia 𝐽𝑝 with

respect to the center of mass. Furthermore, it has a length of 𝑟 and an angular displacement 𝜙 with

respect to the screw. A sun gear (mounted on the carrier via bearings) hosts the generator rotor

while the generator housing is fixed to the spar. A planet gear is mounted to the pendulum shaft

and meshes with the sun gear. It can be shown that the rotational motion of the generator rotor

with respect to its housing is given by 𝜃 − 𝜙. Therefore, the instantaneous energy converted by the

generator will be 𝑐𝑒
( ¤𝜃 − ¤𝜙

)2, where 𝑐𝑒 denotes the electrical damping of the generator. Figure 5.1c

shows the mathematical model of the system, where 𝑘1 and 𝑘2 denote the hydrostatic stiffness of

the spar and floater in the heaving direction, respectively, and 𝑀1 and 𝑀2 denote the mass of the

spar and the floater, respectively. Furthermore, the wave motion generates hydrodynamic forces 𝑓1

and 𝑓2, exciting the spar and floater, respectively. For the analysis in this study, linear wave theory

is assumed, and the derivation of the equation of motion is discussed next.

𝜓 = 𝑥2/𝑅,

𝜃 = (𝑥1 − 𝑥2) /𝑅 (5.1)

5.2.2 Equations of motion

The equations of motion for a similar system (without the generator, sun gear and planet gears)

have been previously derived in [88]. Linear wave theory is considered in the derivation of the

equation of motion, where the fluid is assumed to be inviscid and irrotational [75]. Several important

relations from [88] are provided below for reference. First, the following coordinate transformation

is employed to facilitate the derivation: Next, the hydrodynamic forces on the system consist of

three components: the radiation force, the incident (Froude-Krylov) force, and the diffraction force.

The Froude-Krylov and diffraction forces determine the excitation force [74, 26] on the spar and the

floater, and together with the radiation force, they can be represented by the well-known Cummins’
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Figure 5.2 Ansys Aqwa mesh model, added mass, radiation damping, and diffraction and Froude-
Krylov force for spar and floater

equation [75]:

𝐹𝑔,𝑖 = −𝐴∞,𝑖 ¥𝑥𝑖 −
∫ ∞

𝜎=0
𝜅𝑖 (𝜎) ¤𝑥𝑖 (𝑡 − 𝜎) 𝑑𝜎 + 𝛾𝐹𝑖 (𝑡), 𝑖 = 1, 2 (5.2)

where 𝐹𝑔,𝑖 is the incoming wave force, 𝛾𝐹𝑖 = 𝑓𝑖 is the excitation (Froude-Krylov and diffraction)

force, 𝛾 is the wave amplitude, 𝜅𝑖 (𝜎) is the radiation impulse response kernel, and 𝐴∞,𝑖 represents

the radiation infinite-frequency added mass. These hydrodynamic forces and coefficients of the

system are simulated using Ansys Aqwa. The details can be found in [88]. Fig. 5.2 shows the mesh

of the system, the simulated added mass, radiation damping, and Froude-Krylov and diffraction

force on the spar and the floater. Note that in Fig. 5.2c, the spar’s radiation damping is insignificant

compared to the floater’s, and therefore is not visible in the figure. By virtual of linear wave theory,
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𝐹𝑔,𝑖 is assumed to be sinusoidal. As a consequence, 𝐹𝑖 is also sinusoidal with angular frequency

Ω, i.e., the frequency of the incoming wave. Finally, 𝜅𝑖 (𝜎) and 𝐴∞,𝑖 are related to the radiation

frequency-dependent damping and added mass 𝐵𝑅,𝑖 (Ω) and 𝐴𝑅,𝑖 (Ω) through Ogilvie’s relations

[76, 74]. The latter are shown in Fig. 5.2b and Fig. 5.2c.

After considering the contributions of kinetic energy, potential energy, virtual work, and

hydrodynamic effects on the system, the following equation of motion is obtained

Mx′′ + Cx′ + Kx +R(x′) = F, (5.3)

with

M =

©­­­­­«
𝑎11 𝑎12 𝑎13

𝑎12 𝑎22 0

𝑎13 0 𝑎33

ª®®®®®¬
, C =

©­­­­­«
2 (𝜉 + 𝜉𝑒) 0 −2𝜉𝑒

0 0 0

−2𝜉𝑒 0 2𝜉𝑒

ª®®®®®¬
,

K =

©­­­­­«
1 1 0

1 1 + 𝜇𝐹𝜔2
𝑟 0

0 0 0

ª®®®®®¬
, R(x′) = 1

𝑀1𝜔
2
0

©­­­­­«
𝑟1

𝑟1 + 𝑟2

0

ª®®®®®¬
,

F =

©­­­­­«
𝑓𝑒,1 + 2𝜂𝜇𝑟𝜃′𝜙′ sin 𝜙 + 𝜂𝜇𝑟𝜙′2 sin 𝜙

𝑓𝑒,1 + 𝑓𝑒,2

−𝜂𝜇𝑟𝜃′2 sin 𝜙

ª®®®®®¬
, x =

©­­­­­«
𝜃

𝜓

𝜙

ª®®®®®¬
(5.4)

where

𝑎11 = 1 +
(
1 + 𝜂2

)
𝜇𝑟 + 𝜇𝑏𝑠𝑐 + 𝜇𝑝 + 2𝜂𝜇𝑟 cos 𝜙 + 𝜇𝑔 + 𝜇𝐴∞,1

𝑎12 = 1 + 𝜇𝐴∞,1, 𝑎13 = −𝜇𝑔 + 𝜇𝑝 + 𝜂2𝜇𝑟 + 𝜂𝜇𝑟 cos 𝜙,

𝑎22 = 1 + 𝜇𝐹 + 𝜇𝐴∞,1 + 𝜇𝐴∞,2, 𝑎33 = 𝜇𝑝 + 𝜂2𝜇𝑟 + 𝜇𝑔,

𝑟1 =

∫ ∞

0
𝜅1

(
𝑠

𝜔0

)
[𝜃′ (𝜏 − 𝑠) + 𝜓′ (𝜏 − 𝑠)] 𝑑𝑠,

𝑟2 =

∫ ∞

0
𝜅2

(
𝑠

𝜔0

)
𝜓′ (𝜏 − 𝑠) 𝑑𝑠, (5.5)
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and

𝜇𝑔 =
𝐽𝑟

𝑀1𝑅2 , 𝜇𝐹 =
𝑀1
𝑀2

, 𝜂 =
𝑟

𝑅𝑝
, 𝜔0 =

√︂
𝑘1
𝑀1

,

𝜔2 =

√︂
𝑘2
𝑀2

, 𝜇𝑟 =
𝑚𝑅2

𝑝

𝑀1𝑅2 , 𝜇𝑏𝑠𝑐 =
𝐽𝑏𝑠𝑐

𝑀1𝑅2 , 𝜇𝑝 =
𝐽𝑝

𝑀1𝑅2 ,

𝜔 =
Ω

𝜔0
, 𝜔𝑟 =

𝜔2
𝜔0
, 𝜏 = 𝜔0𝑡, 𝜉 =

𝑐

2𝜔0𝑀1
,

𝜉𝑒 =
𝑐𝑒

2𝜔0𝑀1𝑅2 , ()
′ =

𝑑 ()
𝑑𝜏
, 𝑓𝑒,1 =

𝑓1

𝜔2
0𝑀1𝑅

,

𝑓𝑒,2 =
𝑓2

𝜔2
0𝑀1𝑅

, 𝜇𝐴∞,1 =
𝐴∞,1
𝑀1

, 𝜇𝐴∞,2 =
𝐴∞,2
𝑀1

, (5.6)

In (5.6), 𝐽𝑟 and 𝐽𝑏𝑠𝑐 are the moment of inertia of the generator’s rotor and ball-screw-carrier

assembly, respectively. Also, 𝑐𝑒 is the electrical damping due to the generator, and 𝑐 is the

mechanical damping between the spar and the floater. The damping in the pendulum is assumed to

be significantly less than the electrical damping and is ignored in the current study.

5.3 Bifurcation analysis of the IPVA-PTO system

From our previous studies [70, 89, 83, 81], it has been shown that a period-doubling bifurcation

of the primary harmonic solution (corresponding to 1:1 resonance) results in a nonlinear energy

transfer between the primary system and the pendulum vibration absorber. Therefore, we look

for the bifurcation boundary that determines when a bifurcation occurs to the primary harmonic

solution of the current system. To that end, the harmonic balance analysis, in conjunction with

the alternating frequency time method (AFT) and Floquet theory are used to find the bifurcation

boundary as explained in [83]. Since the spar-floater system (without considering the IPVA-PTO)

has two degrees of freedom, we expect two resonance frequencies for the system (as the pendulum

does not have any natural frequency of its own), where the first and second resonance mode are

dominated by the spar and floater, respectively. Thus, we will determine the bifurcation boundary

within a frequency range that includes the two resonance frequencies.

It was observed in [83, 70, 81, 89] that when the period-doubling bifurcation occurs, the

secondary harmonic solution (with harmonics of frequency 𝜔
2 , where 𝜔 is the excitation frequency)

emerges in the response. The secondary harmonic solution is attributed to 1:2 internal resonance
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in the system and is accompanied by nonlinear energy transfer between the primary system and

the pendulum. However, for the current system, we see two types of bifurcations — period-

doubling and secondary Hopf bifurcation. Therefore, the bifurcation tracking algorithm developed

in [70, 83], with modifications for tracking the secondary Hopf bifurcation, is developed in this

work to obtain the bifurcation boundary of the current system (which contains the period-doubling

and the secondary Hopf bifurcation boundary). Fig. 5.3 shows the bifurcation boundary with wave

height on the ordinate and wave frequency on the abscissa for parameters listed in its caption.

Several things are worth noting in Fig. 5.3. First, the two resonance frequencies each correspond

to the two local minima of the wave height marked by blue bullet marker (•) in the figure. Next,

there are two types of bifurcations via which the primary solution becomes unstable: the solid line

represents the period-doubling bifurcation whereas the dashed line represents the secondary Hopf

bifurcation. This is verified by examining the real and imaginary parts of the eigenvalues of the

fundamental solution matrix along the boundary. The eigenvalues whose magnitude equals one are

plotted in Fig. 5.4. As shown, till around the frequency of 0.8 Hz, it is found that the eigenvalues

are real and equal to −1. This corresponds to the period-doubling bifurcation. Between 0.8 Hz and

1.1 Hz, the imaginary part of the eigenvalues become nonzero and the eigenvalues become complex

conjugates, corresponding to the secondary Hopf bifurcation. There is a region between 1.1 Hz and

1.35 Hz in which both the period-doubling and secondary Hopf bifurcation boundaries co-exist,

after which the secondary Hopf bifurcation boundary disappears. Furthermore, we investigate two

points ×1 and ×2 in Fig. 5.3 above the calculated secondary Hopf bifurcation boundary, which

should show a quasi-periodic response. Fig. 5.5 shows that the projection of the Poincare section

in the plane of the pendulum’s angular displacement (𝜙) and pendulum’s velocity (𝜙′) is a closed

curve for both ×1 and ×2. This means that the system response is quasi-periodic; hence the

secondary Hopf bifurcation boundary is verified (period-doubling bifurcation boundary is verified

previously in [89] and not shown for the sake of brevity).

Now from Fig. 5.3, we see different types of responses above the bifurcation boundary, such

as secondary harmonic solutions, non-periodic (chaotic-like) oscillations, rotation, quasi-periodic
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Figure 5.3 Bifurcation boundary for the primary harmonics of the system for 𝜉 = 0.01, 𝜉𝑒 =

0.015, 𝜉𝑒=0.02, 𝜇𝑟=0.4, 𝜂=0.4, 𝜇𝐴∞,1=0.0554, 𝜇𝐴∞,2=0.6381 , 𝜔𝑟=6.928, 𝜔0=3.20 rad/s, 𝜇𝑔=0.01,
𝜇𝑝=0.02, 𝜇𝑏𝑠𝑐=0.04, 𝜇𝐹=0.2097. Markers represent the following: Primary — ‘+’, Chaotic — ‘*’,
One-fifth subharmonics — ‘★’, Secondary — ‘□’, Rotation — ‘◦’, Intermittent rotation — ‘△’

response as indicated by the markers (see the caption). For the current analysis, it is our assumption

that the period-doubling bifurcation will result in energy transfer between the primary system

and the pendulum as evident from various studies on autoparametric systems [51]. On the other

hand, how the secondary Hopf bifurcation influences the system performance remains unexplored.

To verify the assumption and characterize the secondary Hopf bifurcation, we investigate the

response of the system near the first and second resonance frequencies for various wave heights,

and mechanical and electrical damping values in the following sections.

5.4 Performance analysis near first resonance frequency

Near the first resonance frequency (defined as the interval between 0.25 Hz and 0.5 Hz), we

see that the primary harmonic solution undergoes the period-doubling bifurcation (giving rise to

secondary harmonic solutions). To show the effect of different electrical damping on the energy

transfer phenomenon, we choose two electrical damping values: 𝜉𝑒 = 0.01 and 𝜉𝑒 = 0.02, and the

mechanical damping value of 𝜉 = 0.02, while keeping all other parameters the same as mentioned

in Fig. 5.3. The period-doubling bifurcation boundary (henceforth referred to as the PD boundary)
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Figure 5.4 Real and imaginary parts of eigenvalues whose magnitude equals one with respect to
frequency, other eigenvalues not shown
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Figure 5.5 Poincare sections corresponding to points 1 and 2 in Fig. 5.3 show that the secondary
Hopf bifurcation results in quasi-periodic motion

for both cases is shown in Fig. 5.6. For the frequency range within which the wave height is above

the PD boundary, nonlinear energy transfer is expected between the spar-floater system and the

pendulum as previously reported by the authors in [70, 89, 83, 81]. Thus, to benchmark the current

system, we define a linear system and compare two measures: the response amplitude operator

(RAO) of the spar and the normalized capture width with respect to frequency. The RAO of the

spar is defined as the heaving amplitude of the spar per unit wave height. On the other hand,

the normalized capture width is defined as the value of the energy converted by the IPVA-PTO

or the linear system divided by the maximum energy converted by the linear system. For a fair
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Figure 5.6 Period-doubling bifurcation boundary for two values of electrical damping with
mechanical damping 𝜉 = 0.02. All other parameters are from Fig. 5.3

comparison, we define the linear system as the system with the pendulum locked at a position

such that the frequency value corresponding to the maximum capture width of the linear system

matches the first resonance frequency of the IPVA-PTO system. Numerical integration of the

equations of motion for both the linear and the IPVA-PTO system is performed using Matlab’s

“ode45” function. The integration kernel in the equation of motion is evaluated using an impulse

to state-space converter function described in [83, 80]. Finally, optimal electrical damping in the

linear system, denoted by 𝜉𝑒,𝑙 , is calculated in order to maximize the power converted from the

linear benchmark. To calculate the optimal linear electrical damping, a constraint is enforced on

the electrical damping, which limits its maximum value to 0.07. This constraint reflects the fact

that commercially available generators whose rated power is close to our simulation results have a

similar limit on the electrical damping, as confirmed in our repeated market surveys.

Now, for the first simulation, we use the parameters used to obtain Fig. 5.6a, which gives

𝜉𝑒,𝑙 = 0.0216 for the linear system (calculated using the nonlinear optimization solver in Matlab).

We simulate the system for various wave heights of 0.5, 1.5, and 2.5 cm. As can be seen from

Fig. 5.6a, at the resonance frequency (the frequency corresponding to the minimum wave height of

the boundary), the wave height 0.5 cm is below, 1.5 cm is slightly above, and 2.5 cm is significantly

above the PD boundary. Fig. 5.7 shows the RAO and normalized capture width obtained. Several
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things can be observed in Fig. 5.7. First, for the wave height of 0.5 cm, the maximum RAO of

the IPVA-PTO system is worse than the linear system, although it outperforms the linear system

in terms of the normalized capture width. Next, at the wave height of 1.5 cm, we start to see

energy transfer between the primary system (spar-floater combination) and the IPVA-PTO system,

as evidenced by the widening of the half-power bandwidth in the normalized capture width of the

IPVA-PTO (while the maximum power is almost equal). The RAO suppression is better than the

wave height 0.5 cm but is still worse than the linear system. This can be attributed to the fact

that the optimal electrical damping of the linear system is 𝜉𝑒,𝑙 = 0.0216, which is almost twice

the electrical damping in the IPVA-PTO system (𝜉𝑒 = 0.01). Finally, at the wave height of 2.5

cm, we see the pendulum and the spar in the IPVA-PTO system have non-periodic motion for

frequencies greater than 0.37 Hz to 0.47 Hz (from time series analysis, not shown). In this case, the

IPVA-PTO system outperforms the linear system in terms of both RAO suppression and normalized

capture width. We also see the half-power bandwidth of the normalized capture width increase

for the IPVA-PTO system compared with the previous wave heights, showing the nonlinear energy

transfer phenomenon in effect.

For the second simulation, the parameters used to obtain Fig. 5.6b are used for analysis, which

again gives optimal 𝜉𝑒,𝑙 = 0.0216 for the linear system. Note that due to the increase in the

electrical damping, a larger wave height is required to cross the PD boundary. Therefore, for this

case, the system is simulated for wave heights of 3, 4.5, and 6 cm, which is below, slightly above,

and significantly above the PD boundary, respectively at the resonance frequency. Fig. 5.8 shows

the RAO and normalized capture width obtained. Here it can be observed that the IPVA-PTO

system outperforms the linear system for all three wave heights in terms of the maximum RAO and

normalized captured width. This can be contrasted with the case of 𝜉𝑒 = 0.01 as follows. First, the

electrical damping of the IPVA-PTO system (𝜉𝑒 = 0.02) is larger than the previous case (𝜉𝑒 = 0.01),

and therefore has better RAO response compared to the case for 𝜉𝑒 = 0.01. Next, the maximum

normalized capture width for the IPVA-PTO system with 𝜉𝑒 = 0.02 is smaller than the case when

𝜉𝑒 = 0.01. Furthermore, the IPVA-PTO system’s response is little influenced by crossing the PD
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bifurcation boundary, which suggests that the energy transfer phenomenon is insignificant when

the electrical damping is too large.
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Figure 5.7 Comparison between RAO and normalized capture width of the IPVA-PTO and the linear
system for different wave heights for 𝜉 = 0.02, 𝜉𝑒,𝑙 = 0.0216 and 𝜉𝑒 = 0.01, all other parameters
from caption of Fig. 5.3

0.25 0.3 0.35 0.4 0.45 0.5

/2  = Frequency (Hz)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
A

O

IPVA-PTO 6

IPVA-PTO 4.5

IPVA-PTO 3

Linear

a RAO. Readers are referred to the
web version of this article for clarity

0.25 0.3 0.35 0.4 0.45 0.5

/2  = Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 c

a
p
tu

re
 w

id
th

IPVA-PTO 6

IPVA-PTO 4.5

IPVA-PTO 3

Linear

b Normalized capture width

Figure 5.8 Comparison between RAO and normalized capture width of the IPVA-PTO and the linear
system for different wave heights for 𝜉 = 0.02, 𝜉𝑒,𝑙 = 0.0216 and 𝜉𝑒 = 0.02, all other parameters
from caption of Fig. 5.3

5.5 Performance analysis near second resonance frequency

From Fig. 5.3, it is expected that for the frequency range near the second resonance (defined as

the range from 0.8 Hz to 1.1 Hz for the referred figure), we see that the primary harmonic response

undergoes secondary-Hopf bifurcation, giving rise to quasi-periodic solutions. The quasi-periodic
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response then becomes non-periodic and eventually rotational as wave height increases, as evident

from the markers in Fig. 5.3. To benchmark the IPVA-PTO system for this case too, the linear

system is defined as the system with the pendulum locked at a position such that the frequency value

corresponding to the maximum capture width for the linear system matches the second resonance

frequency of the IPVA-PTO system. The optimal electrical damping for the linear system is

determined (denoted by 𝜉𝑒,𝑙), to maximize the power converted from the linear benchmark with the

constraint 𝜉𝑒 ≤ 0.07, similar to the analysis near the first resonance frequency. For this case, we

choose two different electrical damping values 𝜉𝑒 = 0.015 and 𝜉𝑒 = 0.02 while keeping 𝜉 = 0.01.

The corresponding bifurcation boundaries can be found in Fig. 5.3 and Fig. 5.11d.
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Figure 5.9 Comparison between RAO and normalized capture width of the IPVA-PTO and the
linear system for different wave heights for 𝜉𝑒,𝑙 = 0.07, and the boundary corresponding to Fig. 5.3.
All marked wave heights in cm

Now, for the first simulation, we take 𝜉 = 0.01, 𝜉𝑒 = 0.015 for the IPVA-PTO system, with

the rest of the parameters taken from the caption of Fig. 5.3, which gives 𝜉𝑒,𝑙 = 0.07 for the linear

system. Note that the optimal electrical damping would be 1.6583 without the constraint, which

would be unattainable by commercially available generators. We simulate the system for various

wave heights of 3, 3.5, and 5.5 cm. The results are shown in Fig. 5.9. As can be seen from

Fig. 5.3, all the chosen wave heights are above the PD boundary near the first resonance frequency.

Therefore, we can observe response suppression at the first resonance peak in Fig. 5.9a (as evident

by the RAO). Next, near the second resonance frequency, we can see three types of behavior
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Figure 5.10 Comparison between RAO and normalized capture width of the IPVA-PTO and the
linear system for different wave heights for 𝜉 = 0.01, 𝜉𝑒,𝑙 = 0.07 and 𝜉𝑒 = 0.02, all other parameters
from caption of Fig. 5.3. The corresponding bifurcation boundary can be found in Fig. 5.11d

depending on the wave height. For the wave height of 3.0 cm, which is below the bifurcation

boundary near the second resonance frequency, the pendulum’s response is dominated by primary

harmonics, which means there is no energy transfer between the primary system and the pendulum,

and the RAO closely follows the linear system for the frequency range 0.7 Hz to 1.5 Hz. If we

move to 3.5 cm, we see the primary system and the pendulum giving rise to a quasi-periodic

response (which eventually devolves into a non-periodic response for this wave height) due to the

secondary Hopf bifurcation. In this case, the RAO of the system also rises around 1.1 Hz, and the

IPVA-PTO system is worse in terms of RAO than the linear system in the neighborhood of 1.1 Hz.

Furthermore, when we increase the wave height to 5.5 cm, we start seeing pendulum rotation (as

expected from the markers in Fig. 5.3) for a large range of frequencies (0.5 Hz to 1.35 Hz). This is

in tandem with the increase in the RAO value in the frequency range of rotation of the pendulum,

and the performance is worse than the linear system for this frequency range. However, it should

be noted that the maximum RAO of the linear system for the whole frequency range is worse than

the IPVA-PTO system. In conclusion, for this set of wave heights, we can see the response of the

pendulum going from primary to non-periodic and eventually to rotation, with rotation showing

the maximum wave energy conversion.
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Next, we change the electrical damping coefficient to 𝜉𝑒 = 0.02 for the IPVA-PTO system

while keeping the other values the same as Fig. 5.9 for both the IPVA-PTO and the linear system.

Fig. 5.10 shows the RAO and normalized capture width for both the IPVA-PTO and the linear

system. Similar to the case of Fig. 5.9, we can observe that after a certain wave height (which

corresponds to crossing the bifurcation boundary), the IPVA-PTO system outperforms the linear

benchmark in terms of the normalized capture width. Furthermore, for this set of parameters, the

authors could not find a quasi-periodic or non-periodic solution; the pendulum went directly into

rotation. Further analysis will be required to determine the attractor for the rotational solution,

which is outside the scope of this study. Having established the effectiveness of the IPVA-PTO

system compared to the linear benchmark near both resonance frequencies, we now study the effects

of various system parameters on the bifurcation boundary.

5.6 Parametric studies

To analyze the effects of various system parameters on the bifurcation boundary (i.e., period-

doubling bifurcation and secondary Hopf bifurcation boundary), we vary the following parameters:

𝜇𝑟 , 𝜂, 𝜉, and 𝜉𝑒, while keeping the other parameters fixed at their values mentioned in Fig. 5.3.

First, we see the effect of 𝜇𝑟 on the bifurcation boundary. Recall that 𝜇𝑟 is the mass amplification

factor in the system given by 𝜇𝑟 =
𝑚𝑅2

𝑝

𝑀𝑅2 . As the 𝜇𝑟 value increases, we see the wave height required

to cross the bifurcation boundary decrease as evident from Fig. 5.11a. Therefore, to control the

wave height required to cross the boundary, one can readily change the value of 𝑅𝑝

𝑅
, which is the

ratio of the distance of the pendulum pivot point with respect to the carrier over the effective radius

of the ball-screw system. Next, the effect of 𝜂, defined by 𝑟
𝑅𝑝

, where 𝑟 is the pendulum’s length, on

the bifurcation boundary is analyzed. As observed from Fig. 5.11b, for larger values of 𝜂, the wave

height required to cross the boundary for a given frequency decreases. Fig. 5.11c and Fig. 5.11d

show the effect of mechanical and electrical damping respectively on the bifurcation boundary. It

can be observed that the wave height required to cross the bifurcation boundary increases with an

increase in either the mechanical or electrical damping value.

From these parametric variation figures, it can be observed that the two local minima of the
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bifurcation boundary can be positioned higher or lower relative to each other by changing the

system parameters. If we are to install the IPVA-PTO system for energy conversion, the values of

𝜇𝑟 , 𝜂, and 𝜉 cannot be changed once the system is manufactured. However, we can easily control

the electrical damping by manipulating the system’s electrical components. Therefore, if the aim

is to convert energy and suppress the response of the spar simultaneously, one has to minimize

the RAO near the first resonance frequency (RAO at the first resonance frequency is typically

larger than at the second resonance) and maximize the capture width near the second resonance

frequency (as evident from Fig. 5.9 and Fig. 5.10). The reason is as follows: the power spectral

density of wave excitation, although narrow band, is essentially random, for example, JONSWAP

[90]. Typically, spars are designed such that their natural frequency (around 0.33 Hz to 0.5 Hz)

[24, 25] is around half to one-sixth of typical incident wave frequency (around 0.1 to 0.2 Hz) [26].

Although small, there is a nonzero probability that there is an excitation near the first resonance

frequency of the system, which can compromise the stability of the spar. On the other hand, the

second resonance frequency of the system can be made close to the peak frequency of the wave’s

power spectral density by design; thus, it is better to convert energy near the second resonant peak,

while maintaining the stability of the spar near the first resonance frequency. From the observations

in Sec. 5.5, it can be said that the maximum RAO will be reduced when the wave height is above

the bifurcation boundary for the first resonance frequency, and the maximum capture width is

maximized. Looking at Fig. 5.11d, it can be observed that when the electrical damping is varied,

the wave height corresponding to the first resonance frequency of the bifurcation boundary changes

significantly, whereas the height of the second resonance frequency does not change. Let us assume

that we have an incoming wave height of less than 3 cm with frequency varying over time. It may

be possible to generate larger energy by keeping the electrical damping 𝜉𝑒 = 0.02, but to save the

spar from damage (by keeping the RAO as low as possible), the electrical damping value of 0.01 is

preferred so that the spar is stable. Therefore, one can control the electrical damping value to keep

the spar safe while generating significant energy compared to a linear benchmark.
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Figure 5.11 Effect of various system parameters on the bifurcation boundary, all the values are
from Fig. 5.3 except for the parameter value specified in the figure. Readers are referred to the web
version of this article for clarity

5.7 Optimization of electrical damping value

As can be seen from Fig. 5.11d, the electrical damping in the system can affect the wave

heights corresponding to both the resonance frequencies in the system. For example, it is clear

that the wave height corresponding to the first resonance frequency is higher than the wave height

at the second resonance frequency at 𝜉𝑒 = 0.025, whereas, for 𝜉𝑒 = 0.015, the wave height at the

first resonance frequency is lower than the second. It can also be observed that the wave height

at the second resonance frequency is not as sensitive compared to the first resonance frequency.

Therefore, it can be assumed that there is a scope to optimize the electrical damping for best energy
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conversion and response suppression. To that end, after fixing a wave height, different electrical

damping values are taken and the maximum RAO (maxRAO) and the 𝐻2-norm of non-dimensional

capture width (H2CW), obtained by normalizing the maximum value of capture width to 1, over

the frequency range [0.25, 1.5] Hz are obtained corresponding to each 𝜉𝑒 value. The reason for

choosing maxRAO and H2CW as measures of efficacy of wave energy converter is due to the fact

the ocean waves are essentially random. Therefore, one would like to avoid the worst RAO response

(hence the maxRAO), and maximize the energy capture throughout the frequency range around

both resonances (H2CW). Next, a Pareto front is obtained in the space of maxRAO and H2CW

by varying the electrical damping. A point in the maxRAO-H2CW space is said to dominate the

other when its H2CW is higher and maxRAO is lower than the other solution. For this study, two

wave heights are considered: 5 cm and 4 cm. The parameters from Fig. 5.3 are used, except the

electrical damping which is varied from the range 𝜉𝑒 ∈ [0.015, 0.035] for the wave height 5 cm and

𝜉𝑒 ∈ [0.005, 0.025] for the wave height 4 cm, with a discretization of 0.0002 used for simulations.

The electrical damping range was chosen such that the system response becomes strictly primary

harmonic at the maximum value in the range. Fig. 5.12a shows the Pareto front for the wave height

5 cm. From Fig. 5.13, the variation of maxRAO and H2CW can be observed with respect to the

electrical damping. The maximum value of H2CW occurs at 𝜉𝑒 = 0.0224, where the maxRAO

value is around 0.9621. Now from Fig. 5.3, it is known that the non-periodic response typically

occurs before rotation response of the pendulum. As electrical damping increases, the system

response should go from rotation to non-periodic as evident from the increase in the wave height

corresponding to bifurcation boundary in Fig. 5.3. In general, as the electrical damping increases,

the response of the pendulum changes like this: Intermittent Rotation → Rotation → Non-periodic

→ Secondary harmonic/Quasi-periodic (depending on the frequency value) → Primary harmonic.

Now, from Fig. 5.14b at 𝜉𝑒 = 0.0224, the H2CW value is 1 and it drops quickly to around 0.62

at 𝜉𝑒 = 0.0262. The hypothesis is that when this drop happens, the solution goes from rotation to

non-periodic (as electrical damping is increasing), and the energy conversion capability is reduced

greatly. This can be verified by the frequency response of RAO and normalized capture width
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Figure 5.12 ‘◦’ represents the Pareto frontal (non-dominated) solutions, ‘∗’ represents all the
solutions

for 𝜉𝑒 = 0.0224 and 𝜉𝑒 = 0.0262 in Fig. 5.13. As can be seen for the case of 𝜉𝑒 = 0.0224, the

normalized capture width is significantly higher and the response is rotational (as verified from

the time series, not shown here) as opposed to lower normalized capture width and non-periodic

response of the pendulum in the case of 𝜉𝑒 = 0.0262. The RAO near the first peak is worse for

𝜉𝑒 = 0.0224 compared to 𝜉𝑒 = 0.0262, however the global RAO is worse for the case of 𝜉𝑒 = 0.0262.

Now, let’s look at the wave height 4 cm. The Pareto front is shown in Fig. 5.14. Similar to the

case of wave height 5 cm, Fig. 5.14 shows the variation of maxRAO and H2CW with respect to

the electrical damping. Again, we suspect that as the solution goes from rotation to non-periodic

with increasing electrical damping, and the energy conversion capability is reduced greatly. From

the time series of the solution, it can be verified that the peak of H2CW (for electrical damping

𝜉𝑒 = 0.0162) has rotational pendulum response. Now, let us again take two electrical damping

values: 𝜉𝑒 = 0.0162 and 𝜉𝑒 = 0.0202, and simulate the frequency response of RAO and normalized

capture width. As can be seen from Fig. 5.13, from the case of 𝜉𝑒 = 0.0162, the normalized capture

width is significantly higher when the response is rotational and reduces significantly when the

pendulum’s response becomes non-periodic for 𝜉𝑒 = 0.0202. However, in this case, the RAO is

globally worse for 𝜉𝑒 = 0.0162 compared to 𝜉𝑒 = 0.0202.
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Figure 5.15 RAO and normalized capture width for two different values of 𝜉𝑒 for wave height 5 cm
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Figure 5.16 RAO and normalized capture width for two different values of 𝜉𝑒 for wave height 4 cm

5.8 Conclusion

This study analyzes the incorporation of the IPVA system [70] with a power take-off into a

heaving spar-floater system to study the integration for hydrodynamic response suppression and

wave energy conversion. The hydrodynamic response and wave energy conversion are investigated

using numerical frequency response simulations. A harmonic balance method determines the

wave height for which the primary harmonic solution bifurcates. Two types of bifurcation of the

primary harmonic solution are observed: period-doubling bifurcation near the first resonance and

secondary Hopf bifurcation near the second resonance in the parameter plane of wave height and
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wave frequency. According to the boundary, one can determine a combination of the wave height

and frequency such that the primary solution becomes unstable and either 1:2 internal resonance

or quasi-periodic response occurs to the IPVA-PTO system. Near the first resonance frequency,

above the wave height required for bifurcation, a rich set of pendulum responses are observed, like

secondary harmonics, non-periodic solutions, and rotation. Furthermore, it is observed that the

bifurcation of primary harmonic near the first resonance frequency is associated with a nonlinear

energy transfer phenomenon similar to that observed in [70, 83] when the electrical damping is

sufficiently small. It is also shown that because of this energy transfer phenomenon, the IPVA-

PTO system achieves a lower maximum RAO and a higher energy conversion than the linear

benchmark. For higher values of electrical damping, the energy transfer phenomenon is not very

clear, but the IPVA-PTO system still outperforms the linear system in terms of both maximum RAO

and normalized capture width. Near the second resonance frequency, the pendulum’s response can

involve quasi-periodic solutions, non-periodic oscillations, and rotation. It is shown that the rotation

of the pendulum is excellent for wave energy conversion compared to the linear benchmark. Even

though the linear system has a better maximum RAO near the second resonance frequency, the

IPVA-PTO system has a globally lower maximum RAO (the overall maximum RAO typically

occurs near the first resonance frequency). The effect of system parameters is studied on the

bifurcation boundary of the system, with a particular focus on electrical damping since it can be

actively controlled in practice. By controlling the electrical damping, the wave height required

for crossing the bifurcation boundary at first resonance frequency can be changed significantly,

which can be exploited to stabilize the spar. Finally, studies on electrical damping show that the

normalized capture width of the system is maximum when the pendulum’s response is rotational

and quickly worsens if the electrical damping is increased to the point that pendulum’s response

becomes non-periodic.
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CHAPTER 6

CONCLUSION AND PROPOSAL FOR THE FUTURE WORK

6.1 Concluding remarks

In this work, a new system described as an inerter pendulum vibration absorber was proposed

(IPVA). The IPVA system works on the principle of inertial nonlinearity to broaden the frequency

bandwidth of the response and thereby allowing vibration suppression and energy harvesting over

a larger range of frequencies. The IPVA system was analyzed in two forms - the first form is

the dry IPVA system integrated with a single-degree-of-freedom system to observe the vibration

suppression and energy harvesting, and the second form where the IPVA system was integrated

to the spar for the application of ocean wave energy harvesting. In both cases, the pendulum’s

parameters can be chosen such that 1:2 internal resonance happens for a range of frequencies. It has

been shown that a pitchfork bifurcation and a subsequent period-doubling bifurcation are necessary

and sufficient conditions for this 1:2 internal resonance to occur. When this internal resonance

occurs, it leads to energy transfer between the primary system and the pendulum vibration absorber.

This means the vibration of the primary system is suppressed, whereas the energy can be harvested

from the pendulum. A saturation phenomenon similar to that observed in autoparametric vibration

absorbers and other nonlinear vibration absorbers is observed in the IPVA system; that is, the

response of the linear oscillator saturates despite the increase in the force magnitude. Meanwhile,

the increased energy due to the increase in the force magnitude seems to transfer to the pendulum,

resulting in an increased pendulum response.

Furthermore, the dry system is compared to the autoparametric vibration absorber. It is shown

to outperform the autoparametric vibration absorber in terms of vibration absorption and energy

harvesting capabilities. Similarly, the wet system (consisting of IPVA integrated with spar) is shown

to outperform the linear benchmark system in terms of energy harvesting and vibration suppression.

This analysis is verified by performing experiments on the single-degree-of-freedom IPVA

and “dry” IPVA-PTO system, where the primary harmonic solution is shown to bifurcate via a

period-doubling bifurcation. The secondary resonance which corresponds to the crossing of 1:2
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internal resonance boundary is experimentally shown for both the experimental systems. For

the case of the IPVA system, that above the period-doubling bifurcation boundary (1:2 internal

resonance boundary), the motion of the primary system was suppressed, and its energy transferred

to the pendulum vibration absorber for two different acceleration values. In the case of the “dry”

IPVA-PTO system, a rich set of pendulum responses (primary harmonic, secondary harmonic,

non-periodic, rotation) is observed. Two different load resistance values are used to compare the

IPVA-PTO and the linear system, and it is shown that although the non-periodic response of the

IPVA-PTO system is only suitable for response suppression, the presence of secondary harmonics

can outperform the linear benchmark both in response suppression and energy conversion.

Finally, the IPVA and the IPVA-PTO system were integrated with a heaving spar-floater system

to study the integration for hydrodynamic response suppression and wave energy conversion. The

hydrodynamic response and wave energy conversion are investigated using numerical frequency

response simulations. A harmonic balance method determines the wave height for which the

primary harmonic solution bifurcates. For the case of the IPVA system, a period-doubling

bifurcation boundary can be determined, which is associated with a nonlinear energy transfer

phenomenon, resulting in a lower maximum RAO, and a higher energy transfer potential compared

to the linear benchmark, when the relative angular motion between the ball-screw and the pendulum

is used as a measure of energy conversion potential. For the case of the IPVA-PTO system, two

types of bifurcation of the primary harmonic solution are observed: period-doubling bifurcation

near the first resonance and secondary Hopf bifurcation near the second resonance in the parameter

plane of wave height and wave frequency. Near the first resonance frequency, above the wave

height required for bifurcation, a rich set of pendulum responses are observed, like secondary

harmonics, non-periodic solutions, and rotation. Furthermore, it is observed that the bifurcation of

primary harmonic near the first resonance frequency is associated with a nonlinear energy transfer

phenomenon similar to that observed in [70, 83] when the electrical damping is sufficiently small.

It is also shown that because of this energy transfer phenomenon, the IPVA-PTO system achieves

a lower maximum RAO and a higher energy conversion than the linear benchmark. For higher
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values of electrical damping, the energy transfer phenomenon is not very clear, but the IPVA-PTO

system still outperforms the linear system in terms of both maximum RAO and normalized capture

width. Near the second resonance frequency, the pendulum’s response can involve quasi-periodic

solutions, non-periodic oscillations, and rotation. It is shown that the rotation of the pendulum is

excellent for wave energy conversion compared to the linear benchmark. Even though the linear

system has a better maximum RAO near the second resonance frequency, the IPVA-PTO system

has a globally lower maximum RAO (the overall maximum RAO typically occurs near the first

resonance frequency). The effect of system parameters is studied on the bifurcation boundary

of both the IPVA and IPVA-PTO system, with a particular focus on pendulum damping for the

IPVA system and electrical damping for the IPVA-PTO system since it can be actively controlled

in practice. In the case of the IPVA-PTO system, by controlling the electrical damping, the wave

height required for crossing the bifurcation boundary at first resonance frequency can be changed

significantly, which can be exploited to stabilize the spar. Finally, for the IPVA-PTO system, studies

on electrical damping show that the normalized capture width of the system is maximum when the

pendulum’s response is rotational and quickly worsens if the electrical damping is increased to the

point that the pendulum’s response becomes non-periodic.

6.2 Suggested future direction

As has been concluded in this work, the spar-floater IPVA-PTO system shows the highest

capture width when the response of the pendulum is rotational. The rotations of the pendulum are

primary in nature, in the sense that if we assume 𝜙 to be the pendulum angle of rotation,

𝜙 = 𝑆𝜔𝜏 + 𝜙 (6.1)

where 𝑆 can be +1 or −1 depending on the rotation direction of the pendulum, with 𝜙 = 𝜙0 +

𝑝ℎ𝑖𝑐 cos (𝜔𝜏) + 𝜙𝑠 sin (𝜔𝜏) in this case, where 𝜔 is the normalized excitation angular frequency,

𝜏 is normalized time, see (5.6), and 𝜙𝑐 and 𝜙𝑠 are constants. We call this solution the primary

rotation. In the plane of frequency and wave height, the solution below the rotational response

is non-periodic in nature and has been shown to be unfavorable for energy conversion in this
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work. Therefore, future work can involve the prediction of rotational solutions of the pendulum.

To that end, one can substitute (6.1) in (5.3) and obtain an equation in terms of new variables

𝜃, 𝜙, and 𝜓. Then the bifurcation boundary where the primary harmonic solution of the system

becomes unstable and turns into a non-periodic solution can be obtained using the harmonic balance

approach coupled with the modified AFT method. Therefore, in practice, with the knowledge of

the bifurcation boundary above which primary rotations of the spar-floater IPVA-PTO system are

stable, the electrical damping can be controlled such that the pendulum’s response is always rotating.

Similarly, as the wave height increases, it has been observed that the primary rotations bifurcate

either into secondary harmonic rotations or quasi-periodic rotations (defined as a combination

of a secondary harmonic component with rotation or a quasi-periodic component with rotation,

respectively). If the wave height is increased further, it can be seen that the solutions further

bifurcate into non-periodic solutions characterized by intermittent rotations. One would ideally

like to avoid non-periodic intermittent rotations for electricity generation. Therefore, a bifurcation

boundary that predicts the bifurcation of primary rotation into either secondary harmonic rotation

or quasi-periodic rotation can be useful to ensure the electrical damping is not too low that the

solution is not primary rotational anymore.

6.2.1 Preliminary analysis

For the first study to analyze the primary rotations of the pendulum, we do not consider the

hydrodynamic effects on the system as a simplification. Furthermore, we make a small angle

approximation for the harmonic part of the pendulum’s motion, that is,

𝜙 = 𝜙0 +
𝑁∑︁
𝑘=1

𝜙𝑘𝑐 cos (𝑘𝜔𝜏) + 𝜙𝑘𝑠 sin (𝑘𝜔𝜏) (6.2)

with

𝜙ℎ = 𝜙 − 𝜙0,

sin (𝜙ℎ) ≈ 𝜙ℎ − 𝜙3
ℎ/6,

cos (𝜙ℎ) ≈ 1 − 𝜙2
ℎ/2 (6.3)
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Figure 6.1 Comparison 𝜃, 𝜓 and 𝜙 responses between harmonic balance method and direct
numerical simulation for wave height 3.7 cm and excitation frequency of 1.12 Hz

Similar to 𝜙, 𝜃 and 𝜓 can be written as

𝜃 = 𝜃0 +
𝑁∑︁
𝑘=1

𝜃𝑘𝑐 cos (𝑘𝜔𝜏) + 𝜃𝑘𝑠 sin (𝑘𝜔𝜏) ,

𝜓 = 𝜓0 +
𝑁∑︁
𝑘=1

𝜓𝑘𝑐 cos (𝑘𝜔𝜏) + 𝜓𝑘𝑠 sin (𝑘𝜔𝜏) .

For the preliminary study, 𝑁 = 2 is chosen to apply the harmonic balance analysis. The results of

the harmonic balance method (HBM) are compared with direct numerical simulation (DNS) using

Matlab’s ode45 and are shown in Fig. 6.1. As can be observed, the harmonic balance analysis

predicts the solution with excellent accuracy. Therefore, we can move forward with the bifurcation

analysis to identify the stability zones for the primary rotation of the pendulum.

Using harmonic balance with Floquet theory, two stability boundaries are obtained in the plane

of wave height and wave frequency, which bound the primary rotation responses of the pendulum.

In Fig. 6.2a, the region below the top boundary and above the bottom boundary corresponds to

the primary rotations of the pendulum. To verify this, we choose a wave height = 3.7 cm and plot

the frequency response of the pendulum’s motion. In Fig. 6.2b, the response of the pendulum is

primary rotations from a frequency range of 1.03 Hz to 1.22 Hz (as verified from the time series,

not shown here), whereas the stability boundaries predict a primary rotation between the range

[1.2, 1.28] Hz. The error in the prediction can be attributed to the small angle approximation of 𝜙ℎ

shown in (6.3). Therefore, more analysis needs to be performed to accurately predict the primary

rotations in the system.
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Figure 6.2 Stability boundaries for primary rotations and the response of the pendulum for wave
height = 3.7 cm

After obtaining an accurate prediction of primary rotations in the system with no added mass

and radiation damping, the next logical step would be to integrate the added mass and radiation

damping in the system and predict the occurrence of primary rotations. These predictions can

be used to tune the electrical damping of the system such that the pendulum stays in the primary

rotation region, given a wave frequency and a wave height, resulting in maximum energy conversion

of the system.
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APPENDIX A: BIFURCATION TRACKING ALGORITHM

A.1 Algorithm formulation

A bifurcation tracking algorithm based on [91] is formulated as follows. First, define a vector

function consisting of all the algebraic equations in (2.15) as follows.

f (x̂; 𝝀) =

©­­­­­­­­­­­­­­­­­­«

ℎ0 (x̂; 𝝀)

ℎ𝑐1 (x̂; 𝝀)
...

ℎ𝑐
𝑃
(x̂; 𝝀)

ℎ𝑠1 (x̂; 𝝀)
...

ℎ𝑠
𝑃
(x̂; 𝝀)

ª®®®®®®®®®®®®®®®®®®¬

(A.1.1)

where x̂ is the vector consisting of all the Fourier coefficients in (2.15) and 𝝀 are bifurcation

parameters of interest, e.g., 𝝀 = 𝜂 in Sec. 2.3.3 and 𝝀 = [ 𝑓 , 𝜔]𝑇 in Sec. 2.3.4. Second, define

a scalar function 𝑔(x̂; 𝝀) that outputs the maximum magnitude of eigenvalues of the fundamental

matrix of (2.17). A bifurcation point will satisfy the following equations

h(x̂; 𝝀) =
©­­«

f (x̂; 𝝀)

𝑔(x̂; 𝝀) − 1

ª®®¬ = 0, (A.1.2)

Now suppose a solution x̂0 to (A.1.2) is found for a bifurcation point 𝝀 = 𝝀0, e.g., by numerical

integration. To obtain a neighboring bifurcation point, we use an arc length continuation method.

Assume there exists a neighboring solution x̂1 = x̂0 + 𝜹x̂0 for a neighboring bifurcation point

𝝀1 = 𝝀0 + 𝜹𝝀0 satisfying (A.1.2) with
√︁
| |𝜹x̂0 | |2 + ||𝜹𝝀0 | |2 << 1, where | |.| | depicting the ℓ2 norm.

Imposing the constancy of arc length constraint, we obtain

| |𝜹x̂0 | |2 + ||𝜹𝝀0 | |2 = | |x̂1 − x̂0 | |2 + ||𝝀1 − 𝝀0 | |2 = 𝑠2, (A.1.3)

where 𝑠 is a sufficiently small arc length. Therefore, solving (A.1.2) and (A.1.3) together will give

a neighboring bifurcation point.
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A.2 Numerical implementation

The bifurcation tracking algorithm is implemented numerically using Newton-Raphson iterations

as follows. Suppose a solution x̂0 for a bifurcation point 𝝀0 is known. Define a new vector function

p(x̂, 𝝀; x̂0, 𝝀0) =


h(x̂; 𝝀)

| |x̂ − x̂0 | |2 + ||𝝀 − 𝝀0 | |2 − 𝑠2

 (A.2.1)

which needs to equal 0 to obtain a neighboring bifurcation point. Suppose two neighboring

solutions x̂𝑘−1 and x̂𝑘 are found for two bifurcation points 𝝀𝑘−1 and 𝝀𝑘 , respectively. Denote by

y =
[
x̂𝑇 , 𝝀𝑇

]𝑇 the solution to (A.2.1). A neighboring solution is initially guessed to be

y𝑔
𝑘+1 = y𝑘 + (y𝑘 − y𝑘−1) = 2y𝑘 − y𝑘−1. (A.2.2)

Next, (A.2.1) is solved using Newton-Raphson iterations with the initial guess. The correction to

the initial guess is given by

y(𝑛+1)
𝑘+1 = y(𝑛)

𝑘+1 − J−1p
(
y(𝑛)
𝑘+1; x̂𝑘 , 𝝀𝑘

)
, 𝑛 = 0, 1, · · ·

with y(0)
𝑘+1 = y𝑔

𝑘+1 being the initial guess and J is the Jacobian matrix. To calculate J, we use the

forward difference method, i.e., the 𝑣𝑡ℎ column of J is

J(:, 𝑣) =
p

(
y(𝑛)
𝑘+1 + 𝜖e𝑣; x̂𝑘 , 𝝀𝑘

)
− p

(
y(𝑛)
𝑘+1; x̂𝑘 , 𝝀𝑘

)
𝜖

. (A.2.3)

where e𝑣 is the 𝑣𝑡ℎ column in the 𝑁 × 𝑁 identity matrix, 𝑁 being the dimension of y and 0 <

𝜖 << 1. For the calcuations in this study, 𝜖 = 10−5 was taken and the convergence criterion

| |𝑦 (𝑛+1)
𝑘+1 − 𝑦 (𝑛)

𝑘+1 | | < 10−10 was used. Newton-Raphson iterations will give the value of y𝑘+1, this

(along with y𝑘 ) can be further used to calculate y𝑘+2, thereby tracking the bifurcation points.
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APPENDIX B: JACOBI-ANGER EXPANSION

The Jacobi-Anger formulas used for expansion are as follows [61]

cos(𝜙0 sin𝜓) = 𝐽0(𝜙0) + 2𝐽2(𝜙0) cos(2𝜓) + 2𝐽4(𝜙0) cos(4𝜓) + . . . , (B.1)

sin(𝜙0 sin𝜓) = 2𝐽1(𝜙0) sin(𝜓) + 2𝐽3(𝜙0) sin(3𝜓) + 2𝐽5(𝜙0) sin(5𝜓) + . . . (B.2)

where 𝐽𝑚 (𝜙0) is a Bessel function of the first kind of order 𝑚. For 𝜙0 = 2.0 radians (115 deg),

𝐽4 (𝜙0) = 0.034 and 𝐽5 (𝜙0) = 0.007. Therefore, only the first two terms are required in the

expansion for good accuracy over a wide range of pendulum oscillations.
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