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ABSTRACT 

The pavement mechanistic-empirical design (PMED) is a modern approach to designing new and 

rehabilitated pavements. MDOT uses the American Association of Highway and Transportation 

Officials (AASHTO) 1993 design methodology for rehabilitation pavement designs. MDOT 

designs hot mix asphalt (HMA) overlay over rubblized plain cement concrete (PCC) pavements 

as new flexible pavement, modeling rubblized PCC layer as an unbound aggregate base with a 

modulus of 70,000 psi. The PMED offers an alternative design option [HMA overlay over 

fractured jointed plain cement concrete (JPCP)] for rubblized pavement. This study analyzes the 

most optimum design approach and HMA input level for rubblized pavements in Michigan. 

The study compared the predicted performance using global and locally calibrated models for 

new and overlay designs for rubblized pavements at all three hierarchical input levels. The global 

performance predictions at input Levels 1 and 3 showed negligible differences in new and 

overlay design options. Local calibration of new and overlay design at input Level 1 produced 

better results with minimum standard error of estimate (SEE) and bias. However, local 

calibration results at input Level 3, where Level 1 data is unavailable, are also acceptable.  

The study evaluated the impact of local calibration on the new and overlay design by designing 

11 pavement sections with variable traffic data. An overlay design resulted in 1.5-inch thinner 

pavements than AASHTO93 and 0.4-inch thinner than the new design using PMED. The 

difference between new and overlay designs is not significant based on available data. Therefore, 

a new design (MDOT’s existing practice) using input Level 1 (if data are available) is 

recommended for rubblized pavement in Michigan. Finally, the study documented the sensitivity 

of the calibration coefficients using scaled sensitivity coefficient analysis and compared SSCs-

based ranking with normalized sensitivity index (NSI) ranking.



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to my parents, beloved son, and wife, who have been my unwavering source 

of love, inspiration, and motivation. Thank you for being my constant pillars of strength and 

sharing in this journey's joys and challenge. 

 

 

 

 

 

 

  



iv 

 

ACKNOWLEDGMENTS 

First and foremost, I express my deepest gratitude to Allah, the Most Merciful and Most 

Compassionate, for His guidance, wisdom, and blessings that have sustained me throughout this 

academic journey. 

I am deeply thankful to my thesis advisor, Dr. Syed Waqar Haider, for his unwavering 

support, guidance, and invaluable mentorship throughout this journey. His expertise, patience, 

and encouragement have been instrumental in shaping the direction of this research. I am 

thankful for his time and support in writing this thesis.  

I am also indebted to the committee members, Dr. Karim Chatti and Dr. M. Emin Kutay, whose 

collective wisdom and academic insights enriched my understanding of the subject matter. I am 

thankful for the lessons they taught me during my graduate studies, who helped me in my 

research. I always found them helpful and encouraging.  

I thank my family for their enduring encouragement and love, which motivated me to 

persevere during challenging times. 

Furthermore, I am also incredibly thankful to all of my friends for their unwavering 

support and companionship throughout this academic endeavor. 

  



v 

 

TABLE OF CONTENTS 

CHAPTER 1 INTRODUCTION .............................................................................................. 1 
1.1 Background ..............................................................................................................2 
1.2 Problem Statement ...................................................................................................4 

1.3 Research Objectives .................................................................................................5 
1.4 Study Outline ...........................................................................................................6 

CHAPTER 2 LITERATURE REVIEW ................................................................................... 7 
2.1 MDOT Existing Design Practices – AASHTO93 ...................................................7 
2.2 HMA Overlays - Effective Structural Capacity of Existing Pavement ...................9 

2.3 Concrete Overlays ..................................................................................................14 
2.4 Mechanistic-Empirical (ME) Design Philosophy ..................................................16 

2.5 Rehabilitation Design Strategy ..............................................................................17 
2.6 Characterization of Existing Pavement Layers ......................................................22 
2.7 Characterization of Existing Pavement Layers by Other States ............................28 
2.8 Local Calibration Efforts And Challenges .............................................................34 

CHAPTER 3 DATA SYNTHESIS ......................................................................................... 62 
3.1 Data Acquisition and its Compatibility with PMED .............................................63 

3.2 Project Selection Criteria .......................................................................................66 
3.3 Review/Analysis of Measured Performance Data .................................................72 
3.4 PMED Input Data for Selected Projects ................................................................74 

3.5 Summary ................................................................................................................81 

CHAPTER 4 SENSITIVITY ANALYSIS ............................................................................. 83 
4.1 Scaled Sensitivity Coefficients (SSCs) ..................................................................84 
4.2 Methodology ..........................................................................................................85 

4.3 Sensitivity Results ..................................................................................................87 
4.4 Summary ................................................................................................................89 

CHAPTER 5 CALIBRATION METHODOLOGY ............................................................... 92 
5.1 Calibration Approaches .........................................................................................92 

5.2 Calibration Techniques ..........................................................................................94 
5.3 Procedure for Calibration of Performance Models ................................................99 
5.4 Rubblized Pavement Model Coefficients ..............................................................99 
5.5 Design Reliability ................................................................................................102 

5.6 Summary ..............................................................................................................105 

CHAPTER 6 LOCAL CALIBRATION ............................................................................... 107 
6.1 Fatigue Bottom-Up Cracking Model ...................................................................108 

6.2 Fatigue Top-down Cracking Model .....................................................................126 
6.3 Rutting Model ......................................................................................................128 
6.4 Transverse (Thermal) Cracking Model ................................................................130 
6.5 IRI Model .............................................................................................................132 
6.6 Reliability .............................................................................................................134 
6.7 Impact of Calibration ...........................................................................................140 



vi 
 

6.8 Summary of Findings ...........................................................................................141 

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS ......................................... 144 
7.1 Conclusions ..........................................................................................................144 
7.2 Recommendations ................................................................................................147 

7.3 Future Work .........................................................................................................147 

REFERENCES ..................................................................................................................... 149 

APPENDIX ........................................................................................................................... 154 



1 

 

CHAPTER 1 INTRODUCTION 

The American Association of State Highway and Transportation Officials (AASHTO) Guide for 

Design of Pavement Structures (AASHTO, 1993) and the related DARWin software have been 

used by most state highway agencies (SHAs) to design new and rehabilitated pavement 

structures. This design method is based on the empirical relations developed from the American 

Association of State Highway Officials (AASHO) Road Test conducted in Ottawa, Illinois, in 

the 1950s (1). Many SHAs still use the AASHTO 93 guide to design the pavement structure; this 

guide still holds the state of the practice design procedures and some material inputs; however, it 

lacks the principles of engineering mechanics. The AASHTO Joint Task Force on Pavements 

(JTFP) developed Mechanistic-Empirical Pavement Design Guide (PMED) and its associated 

software Pavement-ME under National Cooperative Highway Research Program (NHCRP) 

project 1-37A in 2004 to incorporate mechanistic design principles in pavement analysis and 

design (2).  The PMED takes a significant number of inputs compared to the AASHTO 93 

design approach, and pavement performance is assessed based on principles of engineering 

mechanics (3). The PMED uses a mechanistic approach to estimate pavement’s principle 

responses (stress, strain, and deflections) based on material inputs, i.e., traffic, climate, and 

martial inputs; it computes incremental damage over time to predict surface distress through 

transfer functions (4). The PMED performance prediction models were calibrated initially using 

relevant data inputs extracted from the National Long Term Pavement Performance (LTPP) 

database, which warrants re-calibration of these models according to local state conditions and 

inputs (5).  

Many SHAs across the United States have implemented or are in the process of 

implementing the PMED in pavement design and analysis. According to a report about 

Pavement-ME User Group meetings, 18 SHAs have implemented and are working on further 

reviews, and 24 SHAs plan to implement PMED in pavement design (6). Most of the SHAs 

implemented PMED to design new flexible and rigid pavements; however, no comprehensive 

efforts have been reported for rehabilitation pavement design; either the same coefficients of the 

new design are used for rehabilitation design, or most of the rehabilitated pavements have been 

modeled as new or reconstructed pavements in PMED. The PMED analysis and design 

procedure has been implemented in Michigan to design new pavements. Several studies were 
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performed in the recent past to characterize climate, traffic, material properties, and calibration 

of the performance models to address the local conditions, materials, and construction practices 

in the Pavement-ME procedure. Moreover, the Michigan Department of Transportation (MDOT) 

recently started a research project collaborating with the Michigan State University (MSU) 

research team to implement PMED for rehabilitation pavement design. 

1.1 Background 

The empirical-based AASHTO designed equations were improved over time with several 

updated publications of AASHTO design guides, with AASHTO 98 being the most recent 

updated design guide. All these guides have served as vital tools for pavement design. However, 

significant weaknesses observed in the plan were over-designed thicknesses or premature 

failures of the pavements. The NHCRP program by the National Academy of Science developed 

mechanistic-empirical (M-E) based design for new and rehabilitated flexible and rigid pavements 

incorporating local climate, material inputs, and real-time traffic distribution by considering axle 

load spectra (2). The first comprehensive M-E design guide was developed under project 1-40. 

Since its inception, the M-E design has undergone many improvements (versions) to address the 

challenges and difficulties faced by the agencies implementing PMED for pavement designs. 

The AASHTO recently released the latest version, 3.0 of PMED; however, version 2.6.2.2 is 

used for this study. The significant aspects of the M-E design approach are: 

a. Real-time characterization of pavement materials based on principles of mechanics. 

b. Modeling temperature, moisture, and their interaction with the pavement material. 

c. Simulated real-time traffic distribution based on axle load spectra and forecasted traffic 

growth. Mechanistic calculation of Pavement response due to traffic loading for various 

climatic conditions.  

d. Characterization of time and climate-dependent material properties. 

e. Incremental damage accumulates over time, and empirical relations are used to predict 

the development of surface distresses and their progression through transfer functions. 

f. Various new and rehabilitated pavement designs achieve the desired performance criteria 

for a specific reliability level. 
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The distress and IRI prediction models of PMED were calibrated initially using data from 

hundreds of flexible, rigid, and composite in-service pavements across the US in the LTPP 

database under the Federal Highway Administration (FHWA) and other national databases, such 

as MnRoad. The reliability of performance prediction models depends on the accuracy of the 

transfer functions, which is achieved through calibration and subsequent validation with 

observed pavement condition data. A satisfactory correlation between measured and predicted 

performance indicators increases the viability, acceptance, and usage of the PMED procedures of 

pavement analysis and design.  

The calibration is a mathematical method to minimize the difference between predicted 

performance and field-measured surface distresses and IRI. Cross-validation refers to a process 

that evaluates the performance of mathematical models to independent or global datasets (i.e., 

data that are not used for model development). As initial calibration of the performance 

prediction models was carried out based on the selected pavement sections across the US, these 

are referred to as “global” calibrated models. Since it does not reflect the local conditions of any 

specific state or location, NHCRP 1-40B provides the guidelines for local calibration of 

performance prediction models in new and rehabilitated pavements to accommodate the impacts 

due to these regional differences (7). The bias and standard error of estimates (Se) are used for 

calibrating pavement performance prediction models. The Se is a statistical measure used to 

assess the accuracy of the predictions made by a regression model. It measures the average 

deviation of the predicted values from field-measured values. The bias can be related to the 

accuracy and reliability of the estimating function or measurements. Simply put, it can be 

defined as the consistent tendency of an estimator to over-predict or under-predict the responses. 

Figure 1-1 shows the different combinations of bias and Se. 

The implementation of PMED in new and rehabilitation design poses practical challenges 

to SHAs, which include:  

a. Complexity involved in PMED software. 

b. Damage characterization of existing pavement layers. 

c. Resource constraints on data collection techniques. 

d. Identifying the most significant input variables. 
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e. Establishing data requirements and developing historical roadway conditions and 

management database for continuous calibration of the performance models 

f. Calibrating the pavement performance prediction model considering the local traffic, 

weather, and material properties. 

   

 

Figure 1-1: Se and bias for calibration (5) 

1.2 Problem Statement 

Most older roads and highways in Michigan need rehabilitation and repair. The Michigan 

Department of Transportation (MDOT) uses the AASHTO 1993 Guide for the Design of 

Pavement Structures (AASHTO 1993) to design various structural rehabilitation treatments. The 

AASHTO 1993 method has proven to be an essential tool for several decades; however, its 

empirical approach limits its effectiveness as a modern pavement design method compared to the 
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new AASHTO Mechanistic-Empirical Pavement Design Guide (PMED). The PMED uses site-

specific traffic, climate, material properties, and existing pavement surface conditions for 

analyzing the final design. While several design inputs are identical for both new and 

rehabilitation design processes, there are variations in how some inputs are selected for 

rehabilitation design. The material properties that characterize the existing pavement play a vital 

role in the PMED rehabilitation analysis and design process. MDOT is undergoing the full 

implementation of the PMED and its associated software. MDOT has implemented the PMED 

for new and reconstruction pavement designs for flexible and rigid pavements; however, the 

rehabilitation analysis and design process needs more careful evaluation for local adoption. The 

PMED rehabilitation pavement design is more complex and requires the characterization of 

existing materials and their thicknesses; however, MDOT records for older existing pavements 

may be incomplete or missing altogether. Furthermore, past projects included various types of 

hot mix asphalt (HMA) that are no longer used or have been adjusted (such as air voids or 

gradations requirements). Therefore, due to these added complexities, extensive investigations 

are needed to standardize or provide guidelines related to PMED rehabilitation design based on 

practically available records. 

In a recent study by MDOT for the implementation of PMED for new and reconstructed 

pavements, the HMA overlay over rubblized PCC is analyzed as new flexible pavement. The 

rubblized layer is modeled as an unbonded aggregate base having a resilient modulus of 70,000 

psi. This research aims to design an HMA overlay over rubblized PCC, an overlay design with a 

modeling option of HMA overlay over fractured JPCP. Figure 2 shows the disparities between 

both design approaches. 

1.3 Research Objectives 

The objectives of the study are: 

a. Using the global model, compare and evaluate the impact of three hierarchical input 

levels of HMA mechanical properties (E*, G*, and creep compliance) on the 

performance predictions of rubblized pavement design approaches, i.e., new and overlay.  

b. Recommend a suitable design approach and hierarchical input level for MDOT design 

practices after local calibration of the transfer function coefficients.  
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c. Sensitivity analysis of the transfer function coefficients over the entire range of sections 

and independent variables using scaled sensitivity coefficients (SSCs). 

d.  Compare SSCs-based ranking with NSI values from the literature. 

1.4 Study Outline 

Chapter 2 discusses and summarizes the review of several studies related to rehabilitated 

pavement design adopted by other SHAs. The national and local calibration efforts are discussed 

in this chapter, along with a comparison of calibration coefficients for different rehabilitation 

designs. It also covers the PMED performance prediction models used in the local calibration of 

HMA overlay over rubblized PCC. Chapter 3 covers the efforts to collect data and make it ready 

to be used in PMED for calibration. This chapter will briefly discuss data acquisition and 

compatibility with PMED, project selection criteria, review/ analysis of measured performance 

data, pavement cross-section information, traffic, construction materials, and climate inputs. 

Chapter 4 briefly discusses the concept of scaled sensitivity coefficients (SSCs) and its 

application to rank the transfer function coefficients based on SSCs ranking. Moreover, this 

chapter also covers the SSCs organizing comparison with literature-based normalized sensitivity 

index (NSI) values for new flexible pavement design only. Chapter 5 covers the different 

sampling techniques and their application in the local calibration of PMED performance 

prediction models. This chapter briefly explains the various sampling techniques, i.e., 

bootstrapping and maximum likelihood (MLE) for calibration of PMED models. Chapter 6 

summarizes the results and analysis of the study. The comparison is drawn between new and 

overlay designs of rubblized pavements. This chapter reports the performance prediction results 

at three hierarchical input levels for HMA mechanical properties, i.e., E*, G*, and creep 

compliance. Further, the impact of local calibration on the design of rubblized pavement has 

been studied in this Chapter.  

Finally, the conclusions and recommendations for future improvement in the modeling 

and calibration of HMA overlays over rubblized PCC are provided in Chapter 7. 
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CHAPTER 2 LITERATURE REVIEW 

The Mechanistic-Empirical Pavement Design Guide (PMED) was developed under the National 

Cooperative Highway Research Program (NCHRP) Project 1-37A to provide a state-of-the-art 

pavement design tool to the highway community (8). Many state agencies adopted or are 

implementing the PMED to design new or rehabilitated pavements, replacing entirely or partly 

the old empirical design approach from the AASHTO 1993 design guide. The PMED approach 

uses pavement mechanistic responses (stresses and strains) to compute damage accumulation 

based on various distress evolution mechanisms by considering axle load levels and climate 

variation. Subsequently, this damage is used to estimate field-observed pavement distresses 

through transfer functions for performance prediction.  

The use of PMED models in pavement engineering has increased over the past few years. 

However, performance prediction models used in PMED software are designed for the general 

conditions and calibrated nationally, necessitating the local calibration of these models per 

locally available materials, traffic, and climatic conditions for any specific state. Since its 

inception, several state highway agencies (SHA) have implemented or are implementing the 

PMED. To date, 17 SHAs have implemented PMED as a primary design method, and 20 SHAs 

use PMED with other ways to design new asphalt and concrete pavements and overlays, 

respectively. With the advancement of calibration tools and techniques, these efforts have 

become more vigorous. Haider et al. (2018) used resampling methods (bootstrapping and 

repeated sampling) to calibrate transverse cracking and the International Roughness Index (IRI) 

in Michigan (9). Tabesh and Sakhaeifar (2021) calibrated Oklahoma's bottom-up, top-down, 

rutting, transverse cracking, and IRI models using a narrow-down iterative approach to minimize 

the standard error (10). 

The MDOT has been using PMED software since 2014 in conjunction with the AASHTO 

1993 method, allowing for a thickness deviation of ± 1 inch from the software for all 

new/reconstruction projects (11). To reach this implementation stage of the PMED approach, 

MDOT has sponsored several research efforts in the past (5, 11-17).  

2.1 MDOT Existing Design Practices – AASHTO93 

The MDOT is currently using the AASHTO 1993 design methodology for rehabilitation designs. 

AASHTO93 design approach yields the overlay thickness to improve the structural deficiency of 
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the existing pavement to sustain design traffic (1). Figure 2-1 represents the decrease in 

structural capacity (SC) and serviceability of any pavement type with increased load repetitions 

(N). The SC is expressed by structural number (SN) and PCC slab thickness (D) for flexible and 

rigid pavement, respectively. At initial serviceability (P1), the pavement has a structural capacity 

of SCo and reaches SCeff at acceptable serviceability (P2) due to load repetitions (Np). Additional 

structural (SCOL) is required as an overlay to upgrade the pavement's structural capacity to the 

serviceability conditions at the time of construction. Equation 2-1 represents the general overlay 

design equation. 

(SC𝑂𝐿)𝑛 = (SC𝑓)
𝑛

+ (SC𝑒𝑓𝑓)
𝑛
 (2-1) 

where; 

SCOL = Additional structural capacity of the overlay; SCeff = Existing structural capacity of the 

pavement; SCf = Structural capacity of newly designed pavement for projected future overlay 

traffic Nf; n = constant; n=2 for unbonded rigid overlays over rigid; n=1 for all other pavement 

types. 

 

Figure 2-1: Effect of traffic on serviceability and structural capacity (4) 
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2.2 HMA Overlays - Effective Structural Capacity of Existing Pavement 

In overlay design, it is vital to accurately evaluate the pavement's effective structural capacity 

(SNeff). Three methods are used to estimate SNeff: visual survey and material testing, non-

destructive deflection testing, and remaining life from fatigue damage by traffic (1). MDOT uses 

DARWin software for overlay design, which operates based on the condition survey method to 

characterize existing layer damage and obtain the effective structural capacity of the existing 

HMA layer and the effective thickness of the existing concrete slab (4). The following 

paragraphs will explain the visual survey and materials testing method outlined by the 

AASHTO93 guide and the textbook “Pavement Analysis and Design” by Yang H. Haung (1). 

2.2.1 Visual Survey and Materials Testing 

A visual pavement survey includes a detailed review of pavement design, construction 

procedure, maintenance habits, identification of distress type, source, location, and severity of 

distress. Material testing demands a detailed testing protocol, including coring, to identify and 

verify causes of surface distress in the pavement. There are different approaches for flexible and 

rigid pavements to identify effective structural capacity and slab thickness, respectively (1). The 

following paras explain these approaches and the range of inputs MDOT uses for these design 

methodologies. 

2.2.1.1 Flexible Pavements 

The effective structural capacity of flexible pavements from the condition survey method can be 

obtained using Equation 2-2, which involves component analysis using a structural number 

equation for new pavement design (1).  

𝑆𝑁𝑒𝑓𝑓 = 𝑎1𝐷1 + 𝑎2𝑚2𝐷2 + 𝑎3𝑚3𝐷3 (2-2) 

where; 

a1, a2, a3 = Layer coefficients; depends upon type and amount of deterioration in pavement 

layers; m1, m2 = Drainage coefficients; D1, D2, D3 = Corresponding layer thicknesses.  

Over the years, MDOT developed specific standards and inputs for pavement design 

using AASHTO93. MDOT typically uses 15-20 years as the design life of the pavement overlays 

to calculate the number of equivalent single axle load (ESALs) repetitions, which is a crucial 

input for any pavement design (4). Tables 2-1 and 2-2 list the MDOT recommended values of 

layer coefficients and drainage coefficients, respectively, for flexible pavements; moreover, 

MDOT uses the following input values for all types of pavements. 
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a. Initial serviceability – 4.5 

b. Terminal serviceability – 2.5 

c. Reliability Level – 95% 

d. Subgrade resilient modulus ranges from 3000 – 5000 psi. 

Table 2-1: MDOT recommended drainage coefficients per layer 

Layer Drainage coefficient 

HMA top and levelling course 1 

HMA base course 1 

ASCRL 1 

Cement stabilized base 1.1 

Asphalt/ emulsion stabilized base 1 

Crushed & shaped HMA 1 

Rubblized concrete 1 

Aggregate base (open and dense) 1 

Sand subbase 1 

16-inches of open-graded drainage course 1.1 

< 16-inches of open-graded drainage course 1 – 1.05 

Existing HMA 1* 

Existing aggregate base 1* 

Existing sand subbase 1* 
*  Use drainage coefficient =1 for each base/subbase layer unless there is a known moisture problem.  

 

Each pavement layer behaves differently under repeated loads over its design life. Elastic 

modulus is the check of layer stiffness and its resistance to elastic deformation and is related to 

the structural layer coefficient. Table 2-3 lists the recommended values of the elastic modulus of 

different layers by MDOT. 

Table 2-2: MDOT recommended values of structural coefficients per layer 

Layer 
Structural 

coefficient 

HMA top and levelling course 0.42 

HMA base course 0.36 

ASCRL 0.30 

Cement stabilized base 0.26 

Asphalt/ emulsion stabilized base 0.22 

Crush and shaped HMA 0.20 

Rubblized concrete 0.18 

Dense-graded aggregate base 0.14 

Open-graded drainage course 0.13 

Sand subbase 0.10 
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Table 2-2 (cont’d) 

Existing HMA** 

Excellent condition – little or no alligator cracking and/ or 

low-severity transverse cracking 
0.36 

Good condition 

 < 10% low-severity alligator cracking and/or 

 < 5% medium and high-severity transverse 

cracking 

0.30 

Fair condition 

 10% low-severity alligator cracking and/or 

 < 10% medium-severity alligator cracking and/ or 

 5-10% medium and high severity transverse 

cracking 

0.24 

Poor condition 

 10% medium-severity alligator cracking and/or 

 < 10% high-severity alligator cracking and/or 

 > 10% medium and high severity transverse 

cracking 

0.17 

Very poor condition 

 10% high-severity alligator cracking and/or 

 > 10% high severity transverse cracking 

0.12 

Existing 

aggregate base 

No evidence of pumping, degradation, or contamination 

by fines 
0.13 

Evidence of pumping, degradation, or contamination by 

fines 
0.06 

Existing sand 

subbase 

No evidence of pumping, degradation, or contamination 

by fines 
0.09 

Evidence of pumping, degradation, or contamination by 

fines 
0.04 

** The existing HMA can be represented by multiple layers, but one layer is sufficient. The existing HMA structural 

coefficient should represent the material after milling or repair(s), (to be overlaid). 

2.2.1.2 Rigid Pavements 

MDOT construction practices for concrete pavements include JPCP reconstruction, HMA over 

existing concrete/ composite, HMA ASCRL over existing concrete/ composite, and standard 

concrete overlays (6 inches thick or more) over existing concrete/ composite pavements (4). 

Equation 2-3 is used to compute the effective thickness (Deff) of the existing slab in overlay 

design (1). 

𝐷𝑒𝑓𝑓 = (𝐹𝑗𝑐)(𝐹𝑑𝑢𝑟)(𝐹𝑓𝑎𝑡)(𝐷) (2-3) 
 

where: 

Fjc = Joints and crack adjustment factor. 
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Fdur = Durability adjustment factor. 

Ffat = Fatigue damage adjustment factor. 

D = Existing slab thickness. 

MDOT recommends following generic values for concrete pavement design (4). 

a. 28 – days mean PCC modulus of rupture = 670 psi. 

b. 28 – days mean elastic modulus of slab = 4,200,000 psi. 

c. Mean effective k-value typical range = 100 – 200 psi/in (use AASHTO charts). 

d. Load transfer coefficient (J) 

1) Tied shoulder or widened slab (14 ft) = 2.70. 

2) Untied shoulders = 3.20. 

e. Overall drainage coefficient  

1) Typical cross-section and subgrade = 1 – 1.05. 

2) 16 – inches of open-graded drainage course = 1.10. 

Table 2-3: MDOT recommended elastic modulus values per layer 

Layer Elastic modulus (psi) 

HMA top and leveling course 390,000 – 410,000 

HMA base course 275,000 – 320,000 

ASCRL 210,000 

Cement stabilized base 1,000,000 

Asphalt/ emulsion stabilized base 160,000 

Crush and shaped HMA 100,000 – 150,000 

Rubblized concrete 45,000 – 55,000 

Dense-graded aggregate base 30,000 

Open-graded drainage course  24,000 

Sand subbase 13,500 

Existing aggregate base 15,000** – 28,000* 

Existing sand subbase 7,500** – 12,500* 
*  No evidence of pumping, degradation, or contamination by fines. 

** Evidence of pumping, degradation, or contamination by fines. 

As per Equation 2-3, the effective thickness is a function of the existing slab thickness 

three adjustment factors: joints and crack adjustment factor, durability adjustment factor, and 

fatigue damage adjustment factor. Tables 2-4 and 2-5 present the MDOT’s recommended values 

of these adjustment factors for durability and fatigue damage. 
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Table 2-4: Concrete/ composite durability adjustment factor 

Existing pavement condition Fdur 

No evidence or history of PCC durability problem 1.0 

Durability cracking exists or is suspended, but no spalling due to “D” 

cracking or localized failures is visible 
0.98 

Substantial durability cracking and some spalling due to “D” cracking with 

visible localized failures 
0.92 

Extensive durability cracking and severe spalling due to “D” cracking with 

visible localized failures 
0.85 

The joints and crack adjustment factor is related to unrepaired deteriorated joints and 

cracks other than “D” cracking, and it is a sum of all unrepaired deteriorated joints, cracks, 

punch outs, expansion joints, wide joints (>1”), and HMA full depth patches per mile (4). Table 

2-6 shows the MDOT suggested range for overlay design; however, the number of joints and 

cracks can be obtained after a detailed condition survey and according to the project scope. After 

getting a summation of these joints and cracks, the adjustment factor can be obtained by the 

AASHTO93 chart shown in Figure 2-2 (4). 

MDOT recommends an additional factor as a quality adjustment factor for existing HMA 

layers shown in Table 2-7, compensating for any defects or deformations in the existing HMA 

pavements that surface milling cannot address (4). 

Table 2-5: Concrete fatigue damage adjustment factor 

Existing pavement condition Ffat 

Few transverse cracks/ punch outs exist (none caused by “D” cracking) 

 JPCP: < 5% of slabs cracked 

 JRCP: < 25 cracks/mi (working cracks) 

 CRCP: < 4 punch outs/mi 

1.0 

A significant number of transverse cracks/ punch outs exist 

 JPCP: 5 – 15% slabs cracked 

 JRCP: 25 – 75 cracks/mi (working cracks) 

 CRCP: 4 – 12 punch outs/mi 

0.96 

Several transverse cracks/ punch outs exist 

 JPCP: > 15% of slabs cracked 

 JRCP: > 75 cracks/mi (working cracks) 

 CRCP: > 12 punch outs/mi 

0.93 
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Table 2-6: MDOT suggested range of unrepaired joints and cracks for overlay design 

Unrepaired condition Typical number per mile 

Unrepaired deteriorated joints* 20 – 40 

Unrepaired deteriorated cracks 20 – 40 

Unrepaired punch outs** 5 – 10 

Expansion joints, wide joints (>1”), or HMA full-depth patches 5 – 10 
*  Not needed if HMA overlay of existing composite pavements. 

** Punch outs are commonly associated with CRCP, possible occurrence in JPCP/JRCP. 

 

Figure 2-2: Joints and cracks adjustment factor Fjc (4) 

2.3 Concrete Overlays 

MDOT uses the Corps of Engineers design method to design thin (< 6 inches) over any 

pavement type and unbonded concrete overlays over full-depth HMA pavements.  

Table 2-7: HMA AC quality adjustment factor, Fac 

Existing pavement condition Fac 

No HMA pavement material distress 1.0 

Minor HMA material distress (weathering or raveling) not corrected by milling 0.96 

Significant HMA material distress (rutting, stripping, and/ or shoving) 0.93 

Severe HMA material distress (rutting, stripping, and/ or shoving) 0.85 

 

2.3.1 Thin Concrete Overlays (< 6”) 

MDOT recommends using concrete equivalent single axle load (CESAL) value at a design life of 

15 years, commercial annual daily traffic (CADT), and a separator layer if overlying existing 

concrete pavement. The method uses the following empirical equation to find the overlay 

thickness (4).  
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𝐷𝑂𝐿 = √𝐷𝑁
2 − 𝐶(𝐷𝐸)2 (2-4) 

 

where: 

DOL = Required PCC overlay thickness. 

DN = Required new PCC pavement thickness to carry future traffic. 

DE = Thickness of existing pavement. 

C = Coefficient depends upon structural condition of pavement. 

Table 2-8 shows the MDOT suggested design matrix for thin concrete overlay thicknesses. 

Table 2-8: The MDOT’s recommended concrete overlay thickness matrix 

Design 

lane 

CADT 

CADT 

(2-

way) 

CESAL 

Overlay thickness on 

existing PCC (inches) 

Overlay thickness on 

existing HMA (inches) 

C Factor 

0.80 0.75 0.70 0.65 0.42 0.38 0.34 0.30 

100 ≤ 220 650,000 4 4 4 4 4 4 4 4.5 

150 330 970,000 4 4 4 4 4 4.5 4.5 5 

200 440 1,300,000 4 4 4 4 4.5 5 5 5.5 

250 550 1,630,000 4 4 4 4 5 5.5 5.5  

300 650 1,950,000 4 4 4 4 5.5 5.5   

350 760 2,270,000 4 4 4 4 5.5    

400 870 2,590,000 4 4 4 4.5     

450 980 2,900,000 4 4 4.5 5     

500 1090 3,230,000 4 4.5 4.5 5     

600 1310 3,900,000 4.5 5 5 5.5     

700 1525 4,500,000 5 5 5.5      

800 1750 5,200,000 5 5.5       

900 1950 5,800,000 5.5        

1000 2000 6,450,000 5.5        

The C factor value depends on the existing pavement conditions. Tables 2-9 and 2-10 show the 

MDOT’s recommended C factor concrete overlay values on existing concrete/ composite and 

concrete overlay of existing HMA pavements, respectively (4). 

Table 2-9: C-factor for structural condition of existing concrete/ composite pavements 

Existing pavement condition C – factor 

Fair overall condition with minimum cracking 0.75 – 0.80 

Mid–slab and D cracking, with adequate load transfer  0.65 – 0.70 
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Table 2-10: C-factor for the structural condition of existing HMA pavements 

Existing pavement condition C – factor 

Fair overall condition with uniform support 

 Alligator cracking, transverse cracking, and rutting are minimal 
0.38 – 0.42 

Has an adequate structural condition 

 Alligator cracking and high-severity transverse cracking are 

minimal 

 Rutting (after milling) is greater than 0.1 inch 

0.30 – 0.34 

 

2.3.2 Concrete Overlays (6 inches or more) 

As explained above, the Corps of Engineers approach is used to develop a catalog to estimate the 

design thickness of a concrete overlay. MDOT uses Table 2-8 for concrete overlay of existing 

concrete pavements with similar inputs as explained above; however, it developed a separate 

design matrix for concrete overlay (6 inches or more) of existing HMA pavements. Table 2-11 

shows the MDOT’s recommended values of overlay thickness of existing HMA pavement (4). 

The C-factors are shown in Table 2-10.  

2.4 Mechanistic-Empirical (ME) Design Philosophy 

In ME design, the engineering mechanics approach is used to compute the pavement responses; 

pavement distresses are predicted based on these responses and from field performance data (8). 

The iterative design and analysis procedure used by the PMED software is represented in Figure 

2-3. In rehabilitation design, the PMED software allows users to select any rehabilitation design 

strategy and other critical inputs, including traffic, climate, and layer properties. As mentioned 

above, the nationally calibrated models predict pavement distress. Locally calibrated transfer 

functions are used to predict field performances for state-specific conditions. The M-E design 

approach has the following advantages over the traditional empirical approach (4): 

a. Each state is allowed to have its design criteria. 

b. Material characterization to reflect pavement performance. 

c. Ability to assess the extent of damage resulting from specific loading configurations . 

d. Incorporating the impacts of seasonal variations. 

e. Ability to explore alternative design strategies and additional design features. 
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Table 2-11: MDOT’s recommended concrete overlay (6” or more) thickness matrix 

Design lane 

CADT 

CADT 

(2-way) 
CESAL 

Overlay thickness on existing HMA (inches) 

C Factor 

0.42 0.38 0.34 0.30 

250 550 2,210,000    6 

300 650 2,650,000   6 6 

350 760 3,090,000  6 6 6.5 

400 870 3,540,000 6 6 6.5 6.5 

450 980 3,980,000 6 6.5 6.5 7 

500 1090 4,420,000 6.5 6.5 7 7 

600 1310 5,300,000 6.5 7 7 7.5 

700 1525 6,190,000 7 7.5 7.5 7.5 

800 1750 7,070,000 7.5 7.5 7.5 8 

900 1950 7,960,000 7.5 7.5 8 8 

1000 2000 8,840,000 7.5 8 8 8.5 

1100 2400 9,720,000 8 8 8.5 8.5 

1200 2600 10,610,000 8 8.5 8.5 8.5 

1400 3050 12,380,000 8.5 8.5 8.5 9 

1600 3500 14,150,000 8.5 9 9 9 

1800 3925 15,910,000 9 9 9 9.5 

2000 4350 17,680,000 9 9 9.5 9.5 

2500 5450 22,100,000 9.5 9.5 10 10 

3000 6550 26,520,000 10 10 10 10.5 

3500 7625 30,940,000 10 10.5 10.5 10.5 

4000 8700 35,360,000 10.5 10.5 10.5 11 

4500 9800 39,780,000 10.5 11 11 11 

5000 10,900 44,200,000 11 11 11 11.5 

5500 12,000 48,620,000 11 11 11.5 11.5 

6000 13,075 53,040,000 11.5 11.5 11.5 11.5 

 

2.5 Rehabilitation Design Strategy 

Every design, no matter how well and efficiently, does not perform to the 100 percent desired 

results; similarly, in the case of pavement, the combined effect of traffic loadings, climatic 

effects, and other material-related deficiencies cause pavements to deteriorate before their design 

life. Pavement rehabilitation can be defined as restoring existing pavement to prevent further 

deterioration. Different rehabilitation strategies developed consensus among designers over time, 

which are listed in the PMED user manual as (8): 

a. Reconstruction without lane addition. 

b. Reconstruction with lane addition. 

c. Structural overlays. 
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d. Nonstructural overlays. 

e. Reconstruction without overlays. 

The selection procedure of any rehabilitation design strategy demands detailed analysis 

and thorough engineering judgment of the problem. The flow chart shown in Figure 2-4 reflects 

the steps outlined by the PMED user manual (8). Reconstruction can be applied to all types of 

payments; however, some criteria should be considered while deciding the most appropriate 

rehabilitation strategy. High severity load-related distresses in flexible pavements and a high 

percentage of cracked slabs, deteriorated joints, inadequate foundation support, and D cracking 

in rigid are candidates for reconstruction (8). Structural overlays are used when routine pavement 

maintenance does not address the cause of distress and can reoccur quickly. As per the PMED 

user guide, structural overlays are characterized into the following categories: 

a. HMAC overlay over an existing flexible pavement. 

b. HMAC overlay over an existing rigid pavement. 

c. HMAC overlay over an existing composite pavement. 

d. Bonded or un-bonded JPCP and CRCP over an existing rigid or composite pavement. 

e. PCC overlay over an existing flexible pavement. 

The most common practice across the US is placing an HMAC overlay over existing 

asphalt or PCC pavement to provide a new wearing surface and substantially use existing 

pavements' remaining fatigue life and structural capacity. MDOT’s rehabilitation work 

significantly involves placing an HMAC overlay over existing AC, JPCP, or composite 

pavements. Figure 2-5 shows the variety of overlay design options offered by PMED software. 

MDOT is currently using the AASHTO93 method for all rehabilitation designs. Although 

AASHTO93 has proved to be a simple and powerful pavement design tool for several decades, 

its empirical nature limits its applicability as a modern design method compared to PMED. The 

PMED approach is more rational as it uses site-specific inputs and the existing pavement 

conditions for pavement rehabilitation analysis and design. 

MDOT sponsored a sensitivity study to evaluate the PMED pavement design procedure 

for local construction, materials, and design practices. The PMED approach can design new and 

rehabilitated pavements; however, some differences exist in how the damage is calculated in the 

pavement layers (11). These differences include (a) location within the pavement layer where 
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damage is calculated for flexible rehabilitation options, (b) age hardening of the existing HMA 

layers, and (c) characterization of the existing pavement damage. 

 

Figure 2-3: Flowchart of the AASHTOWare Pavement-ME design process 

 

Figure 2-4: Procedure for selecting preferred rehabilitation strategy 
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The difference in the location and reduction of modulus may impact the percent alligator 

cracking, rutting, longitudinal cracking, and IRI for the rehabilitation options. Rehabilitation 

options also consider reflective cracking. While the AASHTO93 method requires limited data 

information for the structural design of pavements, the PMED requires many design inputs. 

Thus, it is crucial to know the impact of the different design inputs on the predicted pavement 

performance measures for the various rehabilitation options. Table 2-12 summarizes the 

sensitivity analyses of the multiple inputs reflecting Michigan practices on the PMED 

rehabilitation options (11, 18-20).  

Table 2-12: Impact of input variables on PMED rehabilitation options (11, 18-20) 

Fatigue 

cracking 

Longitudinal 

cracking 

Transverse 

cracking 
Rutting IRI 

HMA thickness 

HMA effective 

binder content 

HMA air voids 

Base material 

type 

Subbase 

material type 

HMA thickness 

HMA air voids 

HMA effective 

binder content 

Base material 

Subbase material 

Subgrade material 

HMA binder 

grade 

HMA thickness 

HMA effective 

binder content 

HMA air voids 

HMA aggregate 

gradation 

HMA thickness 

Subgrade 

material 

Subgrade 

modulus 

HMA effective 

binder content 

HMA air voids 

Base material 

Subbase 

material 

Base thickness 

Subbase 

thickness 

HMA thickness 

HMA aggregate 

gradation 

HMA effective 

binder content 

HMA air voids 

Base material 

type 

Subbase 

thickness 

Subbase 

material type 

Subgrade 

material type 

Interaction between the overlay HMA air voids and existing HMA thickness significantly 

impacts all performance measures among flexible rehabilitation options. The overlay thickness 

and the existing PCC layer modulus interaction significantly affect un-bonded overlay 

performance predictions. A study determined the sensitive inputs for the pavement rehabilitation 

options (11). The rankings of essential information for each rehabilitation option are summarized 

below (Tables 2-13 to 2-16): 

Table 2-13: List of significant inputs — Composite pavement 

Inputs Ranking (NSI) 

Overlay air voids 1 (9) 

Overlay thickness 2 (2) 

Existing PCC thickness 3 (1) 
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Table 2-14: List of significant inputs — HMA over HMA 

Input variables Ranking (NSI) 

Overlay air voids 1 (6) 

Existing thickness 2 (5) 

Overlay thickness 3 (4) 

Existing pavement condition rating 4 (4) 

Overlay effective binder 5 (2) 

Subgrade modulus 6 (2) 

Subbase modulus 7 (1) 
Note: NSI = Normalized sensitivity index 

Table 2-15: List of significant inputs — Rubblized PCC pavement 

Inputs Ranking (NSI) 

Overlay air voids 1 (6) 

Overlay effective binder 2 (2) 

Overlay thickness 3 (1) 

Table 2-16: List of significant inputs — Un-bonded PCC overlay 

Design inputs Ranking (NSI) 

Overlay PCC thickness 1 (23) 

Overlay PCC coefficient of thermal expansion (CTE) 2 (12) 

Overlay PCC modulus of rupture (MOR) 3 (8) 

Overlay joint spacing 4 (5) 

Existing PCC elastic modulus 6 (1) 

Climate 7 (1) 

 

 

Figure 2-5: Overlay modeling options available in the Pavement-ME 
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The following sections explain the process of damage characterization of existing 

pavement layers of flexible and rigid pavements. 

2.6 Characterization of Existing Pavement Layers 

The PMED can design new and rehabilitated pavements with some key differences. The 

characterization of the existing layer is a critical step in rehabilitation design. Damage 

accumulated in the existing layer is a crucial factor for the future deterioration rate in the 

overlaid layers, as PMED considers the distressed development of AC overlays and the 

propagation of damage in the existing pavement layers (8). First and foremost, the step in 

rehabilitation design is to assess the overall condition of the existing pavement; Levels 1, 2, or 3 

data can be used to evaluate the overall pavement condition. The following eight categories of 

data required for the assessment of existing pavement condition are recommended by the PMED 

user manual 2015 (8): 

a. Structural adequacy. 

b. Functional adequacy. 

c. Subsurface drainage accuracy. 

d. Material durability. 

e. Shoulder profile adequacy. 

f. Variability in condition or performance of existing pavement. 

g. Miscellaneous activities (maintenance activities performed in the past, etc.). 

h. Constraints (Bridge clearance, lateral clearance, etc.). 

The following sections describe the primary characterization process for flexible and 

rigid pavement. 

2.6.1 Existing HMA Layer Characterization 

Accurate damage assessment in existing pavements and in-situ material properties are the most 

challenging in the characterization process. Damage modulus (mechanical property) is one of the 

critical factors in characterizing the existing pavement condition at the time of overlay (8); 

volumetric properties, including percent air voids, effective binder content, Poisson’s ratio, and 

unit weight of AC mixture are also vital in characterizing the existing HMAC layers. Three 

different hierarchical levels of inputs in the PMED software are used to represent the existing 

HMA layer. 
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2.6.1.1 Input Level 1 

FWD deflections are used to backcalculate the layer moduli of the existing layer; these 

backcalculated moduli, along with pavement temperature, age, and FWD load frequency, are 

used to characterize the existing AC layer by developing a damaged modulus master curve. 

Equation 2-5 represents the undamaged modulus master curve |E*| (8, 21).  

|𝑙𝑜𝑔 𝐸∗| =  𝛿 +
𝛼

1 + 𝑒𝛽+𝛾 𝑙𝑜𝑔 𝑡𝑟
 (2-5) 

where; 

E* = AC modulus, psi; δ = Regression parameter (10δ = minimum modulus); α = Range; tr = 

reduced time, seconds; β & ɣ = Regression parameters. 

The undamaged modulus master curve is adjusted for pre-overlay damage. Figure 2-6 

explains the vertical shift of the undamaged modulus master curve to the amount where the 

undamaged master curve passes through the in situ backcalulated modulus from the FWD test 

value ENDT.  Equation 2-6 represents the damaged modulus master curve. 

𝐸𝑑𝑎𝑚
∗ =  10𝛿 +

𝐸∗ − 10𝛿

1 + 𝑒−0.3+5 𝑙𝑜𝑔(𝑑𝐴𝐶)
 (2-6) 

where: 

𝐸𝑑𝑎𝑚
∗ = Damaged modulus, psi; 𝛿 = Regression parameter; 𝐸∗= Undamaged modulus for a 

specific reduced time; 𝑑𝐴𝐶 = Fatigue damage in the HMA layer. 

After knowing the damaged and undamaged modulus, Equation 2-6 is used to compute 

fatigue damage dAC in the AC layer. 

 

Figure 2-6: HMAC layer damage computation for input Level 1 (8) 
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2.6.1.2 Input Level 2 

At input Level 2, the damage is predicted by the amount of fatigue cracking exhibited by the 

existing AC layer. Field investigation, including pavement condition surveys and coring, is used 

to measure the fatigue damage on AC pavement. Field cores are used to obtain the undamaged 

master curve of the AC layer. Damage is predicted by the PMED software using the empirical 

transfer function represented by Equation 2-7 (8). 

𝐹𝐶𝐴𝐶 = (
1

60
) +

𝐶4

1 + 𝑒𝐶1𝐶1
∗−𝐶2𝐶2

∗ 𝑙𝑜𝑔(𝐷𝐼𝐴𝐶)
 (2-7) 

where: 

FCAC = Fatigue cracking (in the percentage of area); DIAC = cumulative damage at the bottom of 

the AC layer; C1, C2, C4 = Transfer function coefficients where C2 is a function of HMA 

thickness between 5 and 12 inches. 

C1* and C2* can be determined using Equations 2-8 and 2-9. 

𝐶1
∗ = −2𝐶2

∗ (2-8) 

𝐶2
∗ = −2.40874 −  39.748(1 + 𝐻𝐻𝑀𝐴)−2.856 (2-9) 

2.6.1.3 Input Level 3 

Likewise input Level 1, the undamaged modulus master curve is obtained using HMA 

volumetric and binder properties; however, the general condition rating of pavement is sued to 

assess the current damage in the existing pavement. Table 2-17 represents the damage values 

corresponding to the pavement's general condition ratings (8). With undamaged modulus and 

current damage known, Equation 2-6 is used to predict damaged modulus. 

Table 2-17: HMA damage based on pavement condition rating 

Category Damage 

Excellent 0.00 – 0.20 

Good 0.20 – 0.40 

Fair 0.40 – 0.80 

Poor 0.80 – 1.20 

Very poor >  1.20 

Table 2-18 summarizes the methods for characterization of the existing HMA layer 

recommended by PMED user guide (8).  
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Table 2-18: Recommended methods for characterizing existing HMA pavement layers 

Layer 

Material 
Input 

Hierarchical Levels 

1 2 3 

Subgrade 
Modulus NDT 

Simple test 

correlations 
Soil classification 

Initial εp Trench data User input User input 

Unbound 

base or 

subbase 

Modulus NDT 
Simple test 

correlations 
Soil classification 

Initial εp Trench data User input User input 

Chemically 

stabilized 

materials 

Damaged 

modulus 
NDT 

Estimated from 

undamaged 

modulus 

Estimated from 

undamaged 

modulus 

Undamaged 

modulus 

Compressive 

strength of field 

cores 

Estimated from 

compressive 

strength of field 

cores 

Estimated from 

typical 

compressive 

strength 

Fatigue damage 
% Alligator 

cracking 

% Alligator 

cracking 
Pavement rating 

Existing 

asphalt layers 

Damaged 

modulus 
NDT 

Estimated from 

undamaged 

modulus 

Estimated from 

undamaged 

modulus 

Undamaged 

modulus 

HMA dynamic 

modulus model 

with project-

specific inputs 

HMA dynamic 

modulus model 

with project-

specific inputs 

HMA dynamic 

modulus model 

with agency 

historical inputs 

Fatigue damage 

% Alligator 

cracking from 

visual condition 

surveys 

% Alligator 

cracking from 

visual condition 

surveys 

Pavement rating 

Initial εp Trench data User input User input 

 

2.6.2 Existing PCC Layer Characterization 

The following section explains the different approaches adopted by other states to characterize the 

exisiting pavements. 

2.6.2.1 Input Levels 1 

For damage analysis of existing JPCP and CRCP pavement layers, an estimate of existing 

damage in PCC is required as the damage continues to develop but at a slower rate after the 

overlay placement. The characterization of damage in the HMA overlaid PCC pavement is done 

based on a detailed condition survey of the pavements. Tables 2-19 to 2-21 show the 

recommended initial values for damage in JPCP and the number of punch-outs in CRCP 

pavements and the values of factor C based on pavement condition (8). FWD testing of the 
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existing pavement is used to compute the elastic modulus ETEST and then adjusted for the 

pavement condition factor C to get Ec required to be used as design input (8, 21). 

𝐸𝑐 = 𝐶 ∗ 𝐸𝑇𝐸𝑆𝑇 (2-10) 

 

Table 2-19: Initial cracking damage estimates 

Distress (%slab cracked) Damage 

0 0.100 – 0.2501 

10 0.270 

20 0.438 

30 0.604 

40 0.786 

50 1.00 

Table 2-20: Recommended condition factor “C” Values 

Pavement condition Recommended C value 

Good 0.42 – 0.75 

Moderate 0.22 – 0.42 

Severe 0.042 – 0.22 

Table 2-21: Initial punchout and associated damage estimates 

Number of punchouts per mile Damage 

0 0.10 – 0.1502 

2 0.22 

4 0.34 

6 0.44 

8 0.53 

10 0.62 

> 10 > 0.62 

 

2.6.2.2 Input Levels 2 

For Level 2, compressive strength correlation is used to estimate the elastic modulus and 

modulus of rupture. In situ, compressive strength 𝑓𝑐
′ is measured from the cores, and PMED 

calculates ETEST internally using in-situ 𝑓𝑐
′ using Equation 2-11 (8, 21): 

𝐸𝑐 = 33𝜌3/2(𝑓𝑐
′)1/2 (2-11) 

Where;  

                                                 

 

1 Assumed default value. 
2 Assumed default value. 
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Ec = PCC elastic modulus, psi; ρ = unit weight of concrete lb/ft3; 𝑓𝑐
′= compressive strength of 

PCC, psi; 𝐸𝑐 can be found using equation 2-10 as explained in Input level 1 above.  

2.6.2.3 Input Level 3 

For Level 3 characterization, a general condition rating of the pavement is used to estimate 

current damage. Table 2-22 shows the recommended criteria by the PMED user guide for 

damage estimation based on general condition rating (8). Moreover, in situ, Ec is estimated as a 

function of pavement condition using Table 2-23. 𝑓𝑐
′ or 28-day MOR is computed from historical 

data or local practices in place; 𝑓𝑐
′ is converted to MOR internally by PMED using the following 

relationship (8, 21): 

𝑀𝑅 = 9.5 ∗ (𝑓𝑐
′)0.5 (2-12) 

Table 2-22: Damage for JPCP and CRCP based upon general condition rating 

Category Damage 

Excellent 0.10 – 0.250 

Good 0.50 – 0.67 

Fair 1.00 

Poor >1.00 

Very Poor >1.00 

Table 2-23: Recommended condition factor values to adjust moduli of intact slab 

Pavement condition Typical modulus range 

Adequate 3 – 4 x 106 

Marginal 1 – 3 x 106 

Inadequate 0.3 – 1 x 106 

 

Table 2-24 summarizes the methods for characterizing HMA overlays of PCC Pavements 

recommended by the PMED user guide (8).  

Table 2-24: Summary of existing layer characterization for HMA overlays of PCC pavements 

Layer Material Input 
Hierarchical Level 

1 2 3 

Subgrade Modulus NDT 
Simple test 

correlations 
Soil classification 

Existing 

unbound base 

or subbase 

Modulus NDT 
Simple test 

correlations 
Soil classification 
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Table 2-24: (cont’d) 

Existing 

asphalt base or 

subbase 

Dynamic modulus NDT 

HMA dynamic 

modulus model 

with project 

specific inputs 

HMA dynamic 

modulus model 

with agency 

historical inputs 

JPCP 

Elastic modulus for 

PCC 

Field cores (lab 

testing) or 

backcalculated 

FWD (adjusted) 

Estimated from 

compressive 

strength of field 

cores 

Estimated from 

historical 

compressive 

strength data 

Modulus of rupture 
Field beam (lab 

testing) 

Estimated from 

compressive 

strength of field 

cores 

Estimated from 

historical 

compressive 

strength data 

Past fatigue damage % Slab Cracked % Slab cracked Pavement rating 

CRCP 

Elastic modulus for 

PCC 

Field cores (lab 

testing) or 

backcalculated 

FWD (adjusted) 

Estimated from 

compressive 

strength of field 

cores 

Estimated from 

historical 

compressive 

strength data 

Modulus of rupture 
Field beam (lab 

testing) 

Estimated from 

compressive 

strength of field 

cores 

Estimated from 

historical 

compressive 

strength data 

Past fatigue damage 
Punchouts and 

repairs /mile 

Punchouts and 

repairs /mile 
Pavement rating 

JRCP 
Elastic modulus for 

PCC 

Field cores (lab 

testing) or 

backcalculated 

FWD (adjusted) 

Estimated from 

compressive 

strength of field 

cores 

Estimated from 

historical 

compressive 

strength data 

 

2.7 Characterization of Existing Pavement Layers by Other States 

The following section explains the different approaches adopted by other states to characterize 

the exisiting pavements. 

2.7.1 Kansas  

Islam et al. 2023 conducted a recent study to implement PMED to design rehabilitated 

pavements in Kansas to focus on the AC over AC and AC over JPCP sections (21). This study 

characterizes the existing layer as per the procedure explained above. The team collected data at 

the time of construction for overlay layers where possible, and in situ material properties were 

assumed after reviewing the construction management system (CMS) database of the Kansas 

Department of Transportation (KDOT). This study takes 7% as constructed air voids for all 

HMA mixes, and effective binder content (by volume) was obtained by the difference of voids in 

mineral aggregate (VMA) and target air voids. In rehabilitation design, characterizing existing 

pavement is the most critical step; efforts were made to collect the maximum data required to 
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characterize the existing pavement layers. The unit weight (128 pcf to 150 pcf) and percent air 

voids were taken from the KDOT CMS database, and the poison ratio for all mixes was assumed 

as 0.35. For level 1 rehabilitation input, FWD backcalculated moduli were used. The study used 

pre-overlay FWD data for 16 AC over AC sections; however, KDOT does not conduct pre-

overlay FWD for AC over JPCP pavements. EVERCALC version 5 was used to backcalculate 

the layer moduli for each drop at a 9000 lb load level. Any calculated value with a root mean 

square error of more than 5% was neglected. As FWD testing data were not available for 9 

projects, level 2 inputs were used for their analysis. Distress data was collected by Laser Crack 

Measurement System (LCMS) and manual condition survey of the pavements. For pre-overlay 

condition data, all load-related cracking was considered top-down because KDOT PMIS does 

not differentiate between top-down and bottom-up cracking. For JPCP mix inputs, the data for 7-

, 14-, 28-, and 90-day PCC elastic modulus and modulus of rupture (MOR) were unavailable for 

Level 1 inputs; instead, Levels 2 and 3 mix properties were used. For Level 2 inputs, PCC 

compressive strength at 7-, 14-, 28-, and 90-days and a ratio of 20-yr to 28-day compressive 

strength were predicted using the following models developed under FHWA (2012): 

𝑓𝑐𝑡 = 6358.60655 + 3.53012 ∗ 𝐶𝑀𝐶 − 34.24312 ∗
𝑤

𝑐
∗ 𝑢𝑤 + 633.3489 ∗ 𝑙𝑛(𝑡) (2-13) 

where: 

𝑓𝑐𝑡 = Compressive strength at age t years, psi; CMC = Cementitious materials content, lb/yd3; 

w/c = Water to cement ratio; uw = Unit weight, lb/yd3; and t = Short-term age up to 1 year. 

𝑓𝑐,𝐿𝑇 = −3467.3508 + 3.63452 ∗ 𝐶𝑀𝐶 + 0.42362 ∗ 𝑢𝑤2 (2-14) 

where:  

𝑓𝑐,𝐿𝑇 = Compressive strength at age t (variable up to 20 years), psi; CMC = Cementitious 

materials content, lb/yd3; and uw = Unit weight, lb/yd3. 

The 28-day MOR and elastic modulus Ec required for Level 3 input analysis, and those 

were estimated using the following equations: 

𝐸𝑐 = 57000√𝑓𝑐
′ (2-15) 

𝑀𝑂𝑅 = 9.5√𝑓𝑐
′ (2-16) 

For existing JPCP characterization, KDOT does not collect data on transverse slab 

cracking and transverse joint load transfer efficiency (LTE) for AC over JPCP. However, this 

study considered a constant value of 3% for slab cracking as a trigger value for JPCP 
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rehabilitation. LTE was estimated based on faulting values, and Table 2-25 represents LTE 

guidelines to estimate LTE used by KDOT for this study. 

Table 2-25: KDOT recommended guidelines for estimating LTE 

Functional class of the roadway Faulting criteria (in.) Recommended LTE (%) 

Interstate 

< 0.1 in. 80% 

0.1–0.15 in. 65% 

> 0.15 in. 50% 

Principal arterials 

< 0.125 in. 80% 

0.125–0.20 in. 65% 

> 0.20 in. 50% 

Local roads 

< 0.15 in. 80% 

0.15–0.30 in. 65% 

> 0.30 in. 50% 

 

2.7.2 Virginia 

Virginia (VDOT) adopted the PMED for the new/reconstruction of interstate and primary routes 

on January 1, 2018 (22). However, like MDOT, the VDOT uses AASHTO 1993 method for 

rehabilitation designs and expects to implement PMED for the most common rehabilitation 

treatments. One of the objectives of this study was to compare Levels 1 and 2 input results for 

AC rehabilitation. For characterization of the existing HMA layer, FWD testing was performed 

for the Level 1 rehabilitation option, the resilient modulus was measured in the laboratory for 

Level 2, and a pavement condition survey was done for the Level 3 rehabilitation design. 

However, it is recommended by pavement experts to use only Levels 1 and 2 input data (FHWA 

Pavement ME User Group, 2020). VDOT used performance grade and volumetric properties of 

VDOT’s base mixer and state-level average values of new AC mixtures for overlay layers. Layer 

thickness data were estimated using GPR and coring on specific locations to compare the results 

with GPR analysis. Data collected from GPR and coring was also used to estimate the crack 

damage in the existing layers. GPR images were processed to mark the AC and base layer 

interfaces; however, due to the large thickness of the AC layer (8-13 inches), the bottom of the 

base layer (depth > 20 inches) could not be seen and marked from GPR images. Table 2-26 

represents the HMA and base thickness comparisons obtained from GPR and coring for VDOT. 

The study recommended that Level 1 data is necessary for accurate and reliable estimates of 
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existing HMA layers; Level 2 data provides unrealistic estimates for the damage modulus master 

curve. 

Table 2-26: HMA and base thicknesses comparison from GPR and coring 

 

Site 

Coring average AC 

thickness (in) 

GPR average AC 

thickness (in) 

Core average base thickness 

(in) 

GPR average 

base thickness (in) 

1 12 11.3 8 7 

2 7.5 7 4 to 8 8 

3 11.6 10.8 4 to 8 7.1 

 

2.7.3 Oregon 

The Oregon Department of Transportation (ODOT) conducted a study in 2013 to implement a 

PMED design approach for new and rehabilitation pavement designs (23). The FWD data were 

unavailable to characterize the existing layer in rehabilitation design, so rehabilitation Level 3 

was selected, assuming pavement rating as fair and a total rut depth of 0 inches. Asphalt binder 

dynamic modulus data were available at Levels 1 and 2; however, for creep compliance and 

indirect tensile strength input, Level 3 was chosen in this study. The team conducted field 

distress surveys to assess the condition of existing pavements. The condition survey results are 

(1) average rut depth varies from 0.044 inches to 0.3 inches, (2) Coast and valley region showed 

zero thermal cracking; however, sites in the eastern region showed the presence of thermal 

cracking, (3) weighting function represented by Equation 2-17 was used, to sum up, the low, 

medium, and high-intensity thermal cracking (TC) by using following equation ARA-2004 (24). 

𝑇𝐶 =  
𝐿𝑜𝑤𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑇𝐶 + 3 ∗ 𝑀𝑒𝑑𝑖𝑢𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑇𝐶 + 5 ∗ 𝐻𝑖𝑔ℎ𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑇𝐶

9
 (2-17) 

2.7.4 Missouri 

Missouri Department of Transportation (MoDOT) conducted a recent study to recalibrate the 

pavement distresses and IRI prediction models for new and rehabilitated flexible and rigid 

pavements in Missouri using PMED version 2.5.5 (25). FWD testing was performed only for 

flexible pavement sections, and deflection data were used to backcalculate the resilient modulus. 

FWD was conducted as per standard procedures of LTPP FWD testing protocols. Four load 

levels (6000, 9000, 12,000, and 16,000 lb) were used as target load levels, and 16 drops were 

made at each site, having four replicates for each load level. The integral backcalculation tool 

“EVERCALTM” was used to backcalculate the resilient modulus of subgrade material; it was 

found that a deflection basin of 9000 lb and 12,000 lb yielded acceptable results. The researchers 
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also collected loose HMA material and field cores to test HMA martial inputs. Asphalt Mixture 

Performance Tester (AMPT) was used to measure the dynamic modulus E* of HMA mixtures 

and then converted Level 1 input compatible with PMED. Tests were conducted to get and 

maintain the material input library of creep compliance and tensile strength of HMA for Missouri 

as per AASHTO T322 laid down procedures. The team found that tensile strength increased with 

an increase in air voids, and the reverse is true for creep compliance. Mallela et al. 2009 

conducted a study to develop the PCC input database (26). Time series data were obtained from 

PMS and LTTP projects for distress and smoothness performance models. Table 2-27 shows the 

mix of hierarchical input levels used for this study. 

2.7.5 Louisiana 

Louisiana has conducted few studies focusing on new and full-depth rehabilitated flexible 

pavements (27). Only 33 sections of AC overlay over existing flexible pavement were 

considered. To characterize the existing layer’s damage, rehabilitation Level 3 used total rutting 

in the pavement surface and pavement condition rating as standards in the Manual of Practice(8). 

These standards assessed the pre-overlay pavement condition rating based on the quantity of 

distress measured in the existing pavement. Louisiana Department of Transportation maintains a 

database as a project management system (PMS), which was used to get the average rutting for 

each available project for missing sections the pavement condition rating was assumed poor, and 

a total rutting value of 0.25 inches was considered. 

2.7.6 Colorado 

Colorado Department of Transportation (CDOT) carried out a study in 2013 to implement 

PMED design to calibrate performance prediction models for new and rehabilitated pavements in 

Colorado using PMED version 1 (28). The study's primary objectives were to address routine 

design problems for new and rehabilitated pavements and conduct forensic analysis to obtain and 

assemble a database encompassing guidelines of the new PMED user guide. A total of 126 

pavement projects of new and rehabilitated pavements were selected for this study from LTPP 

and Colorado DOT’s PMIS database. CDOT performed FWD testing to backcalculate the layer 

moduli of existing JPCC and composite pavements; for HMA pavements, FWD was performed 

at 25 ft intervals, and for JPCP, it was performed at the center, transverse joints, and corners of 

the slab. To characterize PMED input, researchers reviewed traffic, climate, and other relevant 
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data records; laboratory testing and conducting field surveys, including destructive and non-

destructive testing, also became part of the study. 

Table 2-27: Input data levels for MoDOT 

Input Type Input Data Elements Hierarchical Level 

Traffic  

Truck volume distribution and 

vehicle class distribution  

Level 1project specific data from  

MoDOT  

Axle load distributions  

Level 1 or 2 site-specific computed using 

MoDOT WIM data or national defaults 

when data is not available  

Monthly adjustment factors  Level 1 when available, or default  

All others  Level 3 Pavement-ME defaults  

Climate  

Temperature, wind speed, 

percent sunshine, precipitation, 

and relative humidity   

AASHTOWare procedure; MERRA data 

for flexible pavements and NARR data for 

rigid pavements.  Not associated with 

hierarchical level.  

AC materials  

HMA dynamic modulus  

Level 1 Laboratory testing (for PMS 

sections)  

Level 2 computed (for LTPP sections)  

Air voids  
Level 1 field air void data from MoDOT 

and LTPP database  

Binder  
Level 1 for PMS sections; Level 3 defaults 

for LTPP sections  

HMA creep compliance &  

indirect tensile strength  

Level 1 laboratory test data for PMS 

sections; Level 2 computed data for LTPP 

sections  

Other inputs  Level 3 Pavement-ME defaults  

PCC materials  
Strength over time and mix 

design inputs  

Level 1 strength data from previous 

laboratory test results for different MoDOT 

specification gradations.  

Levels 2 and 3 for CTE and other inputs.  

Unbound base 

and subgrade 

Resilient modulus  

Atterberg limits, & gradation  

Level 1 backcalculated data and field test 

data for PMS sections, and Level 3 data 

from the LTPP database for LTPP sections.  

Performance  Distress & smoothness  Level 1: Field measured  

 

2.7.7 Utah 

Utah DOT uses Level 3 inputs for existing pavement characterization (29). A condition survey is 

required to determine the percent of alligator cracking (all severity levels) and an overall 

pavement rating to estimate the HMA dynamic modulus (|E*|). For the HMA overlays and 

concrete pavement restoration of an existing JPCP and unbonded JPCP overlays, the elastic 
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modulus of the slab is estimated using cores or 28-day modulus and multiplying by 1.2 to 

approximate long-term modulus. For constructing an HMA overlay of rubblized JPCP, a 

modulus of 60,000 psi is used while limiting the unbound base resilient modulus value to 2 to 3 

times that of the subgrade. However, falling weight deflectometer (FWD) testing and 

backcalculation are recommended to estimate subgrade modulus for unbonded JPCP overlays of 

existing JPCP. 

2.7.8 Maryland 

The Maryland Department of Transportation conducted a study to develop a significant and 

fundamental input database required by the PMED design methodology (30). Level 3 approach 

was used for characterization. A few other inputs needed for the HMA rehabilitation design, 

including thermal conductivity, heat capacity, unit weight, and poison ratio, were assumed to be 

the same as in the new pavement design.  

Summary: Table 2-28 summarizes the rehabilitation levels used to characterize damage in 

existing pavement layers by other SHAs.  

Table 2-28: Summary of existing HMA layer damage characterization 

State 
Damage characterization 

Level 1 Level 2 Level 3 

Kansas Y Y N 

Virginia Y Y N 

Oregon N N Y 

Missouri N N Y 

Louisiana N N Y 

Colorado N Y Y 

Maryland N N Y 

Utah N N Y 
Y = Yes; N = No 

2.8 Local Calibration Efforts And Challenges 

Many SHAs have been working on implementing the PMED design approach to design new and 

reconstructed pavements. However, very few states worked on rehabilitation design that too with 

a limited number of pavement sections and data input variables. Rehabilitation design poses 

almost similar challenges as new design, which is listed below: 

a. Project selection: identify the available sections with performance data. 

b. Existing layer characterization: unavailability of different data collection techniques 

(FWD, GPR, etc.) for the existing layer's characterization.  
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c. Pavement-ME inputs: the data might not be available with the required information and 

assumptions.  

d. Performance data: measured data might not be available in the database for the 

Pavement-ME compatible units. Necessary assumptions must be made for conversion. 

e. Local calibration techniques: identify mathematical tools/processes for local calibration. 

The Pavement-ME models are nationally calibrated based on pavement material 

properties, structure, climate, truck loading conditions, and data from the Long-term Pavement 

Performance (LTPP) program (31), which demands local calibration of performance prediction 

models per state-specific conditions. The local calibration process ensures precision and 

accuracy in performance prediction. Many SHAs have been working on calibrating the PMED 

models by adopting different calibration techniques while reducing the standard error of 

estimates (SEE) and bias in the predictions. The local calibration guide, 2010 (32) and 2015 (8) 

outlined the following steps for local calibration.  

a. Step 1: Selection of input levels. 

b. Step 2: Develop an experimental plan and sampling strategy. 

c. Step 3: Assess the adequate sample size for each distress. 

d. Step 4: Selection of pavement sections. 

e. Step 5: Get Pavement-ME inputs and measured distress data. 

f. Step 6: Conduct field and forensic investigation. 

g. Step 7: Validation of global model coefficients to local conditions. 

h. Step 8: Eliminate the local bias for Pavement-ME models. 

i. Step 9: Estimate the standard error of the estimate. 

j. Step 10: Eliminate the standard error of the estimate. 

k. Step 11: Assessment of the calibration process. 

The PMED was updated with time as many national and state-level studies have been 

conducted to implement the new Mechanistic-Empirical design approach for pavement design. 

Mainly, these studies centered on sensitivity analysis to determine the impact of inputs on 

distress prediction, development of a database for state DOT, calibration and validation of 

PMED performance prediction models, and implementation of these calibrated models to design 

new and rehabilitated pavements. As part of the initial implementation, most states focused on 
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new or reconstructed pavement designs; however, few states worked on selective models of 

overlay design with limited input data available. These states include: 

a. Iowa b. Colorado 

c. Kansas d. Pennsylvania 

e. Maryland f. Virginia 

g. Utah h. Oregon 

The following sections summarize the local calibration efforts of rehabilitation models 

for several SHAs.  

2.8.1 Local Calibration Efforts for Flexible Pavement Overlays 

The following section summarizes the local calibration of performance prediction models for 

flexible pavement overlays by other states.  

2.8.1.1 Kansas 

In February 2023, KDOT conducted a research study to implement the PMED design of 

rehabilitated pavements for state-managed roads in Kansas, New Jersey, and Maine (21). Local 

calibration for AC over AC and AC over JPCP pavements models was carried out using PMED 

version 2.5, and results were verified using PMED version 2.6.2.2. Standard error of estimates 

(Se) and bias were used as criteria for model verification. About 25 sections of AC over AC were 

used for calibration in this study. The hierarchical level of inputs directly impacts the 

performance prediction of PMED model. Hence, a comprehensive study was conducted to select 

the best available input level for traffic, climate, material properties, and existing pavement 

conditions. The research team tried to model AC over AC within the limitations of the maximum 

number of HMA layers over the existing pavement layers as specified by the PMED user guide 

(8). The team aimed to collect the as-constructed material properties of the new layer at the time 

of overlay construction from the KDOT construction management system (CMS) database and 

by reviewing the QC/QA spreadsheets. Permanent deformation, transverse (thermal + reflection) 

cracking, load-related cracking (bottom-up + top-down), and IRI models for AC over AC were 

calibrated in this study. The PMED did not predict thermal cracking for KDOT conditions, so 

only reflection cracking model coefficients were calibrated, and all load-related cracking was 

modeled as top-down cracking for AC over AC pavement sections. An automated calibration 

technique with three types of resampling approaches (traditional split sampling, jackknife, and 

bootstrap) was adopted to calibrate the PMED performance prediction models using Python 
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software. The limitations of the automated technique mentioned by the researcher team are that 

(a) it cannot be implemented for parameters that need multiple runs of PMED software, i.e., β2r 

and β3r coefficients of permanent deformation model, and (b) identification of bounds of model 

coefficients.  

Local calibration improved the prediction accuracy of the rutting, transverse cracking, 

load-related cracking, and IRI models for AC over AC pavement sections. However, local 

calibration of the transverse cracking model for both rehabilitation types resulted in higher Se 

because AC thermal cracking model was calibrated at global values, as KDOT does not 

distinguish between reflection and thermal cracking. Compared to globally calibrated values, the 

top-down cracking model showed high accuracy with minimum bias and Se. However, Se was 

high due to variability in data collection. Distress data on all sections overlaid before 2013 were 

collected manually, which made it responsible for high data variability; moreover, KDOT 

considers all load-related cracking as top-down, so it was considered another factor towards high 

Se. The research team also compared calibration results from PMED versions 2.5 and 2.6.2.2, 

which showed slightly higher distress prediction for AC total fatigue cracking, especially for AC 

bottom-up fatigue cracking; the rest of all predicted distress values remained unchanged. The 

study has the following important recommendations: 

a. Accurate data collection for pavement layer properties. 

b. Collection of cores to distinguish between top-down and bottom-up fatigue cracking. 

c. Creep compliance test and indirect tensile strength test for AC overlay mix to 

characterize low-temperature cracking. 

d. Efforts to reduce measurement errors in distress measurement and data collection to 

improve the accuracy of local calibration. 

e. Rutting in each layer is to be incorporated to achieve better results from local calibration 

of the rutting model.  

2.8.1.2 Iowa 

A handful of studies have been conducted by Iowa DOT for calibration of PMED models and to 

implement PMED design type in Iowa (33-35). The initial study in 2009 focused on HMA 

rutting and the IRI model’s evaluation with national calibration coefficients, and bias was 

reported for these models. In 2013, overall efforts were made to calibrate the PMED 

performance models with the local conditions of Iowa. A total of 35 sections of new HMA and 
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60 of HMA over JPCP (composite) were selected for the study. This study concluded that rutting 

and top-down cracking for new HMA and composite pavement sections yielded acceptable 

predictions locally. Bottom-up cracking for New HMA pavements provides acceptable 

predictions at nationally calibrated values. Both nationally and locally calibrated models for 

alligator cracking provide acceptable predictions for composite sections. Iowa DOT PMIS does 

not differentiate between thermal and reflection cracking for composite pavements. Iowa DOT 

conducted a recalibration study in 2015 with the same sections as used in 2013 but with 

upgraded AASHTOWare PMED version 2.1.24 to compare results of national and previous 

calibrations of PMED performance prediction models and, if deemed necessary, recalibrate the 

performance models for local conditions of Iowa. The researchers came up with the following 

conclusions: 

a. Recalibration of rutting and IRI models for HMA over JPCP at local conditions of Iowa 

significantly increased the prediction accuracy as compared to national and previous 

calibration efforts.  

b. The accuracy of longitudinal (top-down) cracking improved due to recalibration efforts 

for local conditions. 

c. Iowa DOT could calibrate the thermal cracking model with acceptable accuracy, as they 

considered measured transverse cracking data as thermal cracking only.   

2.8.1.3 Missouri 

Missouri started implementing PMED design in early 2009, making them one of the earliest 

adopters of AASHTOware pavement ME design in pavement design procedures. The MoDOT 

conducted two studies in 2009 to imply and calibrate the performance prediction models per 

Missouri's local conditions (26, 36) using PMED version 1.0. These studies focused on 

developing a database for MoDOT by collecting field/ laboratory data and calibrating the PMED 

performance prediction designs for new pavements. The findings of this study were (a) 

overprediction of rutting by PMED, (b) most of the sections exhibit alligator cracking less than 

5%, so a nationally calibrated model was used for this study, (c) predictions on locally calibrated 

models were acceptable for newly constructed sections; however, higher reliability was 

recommended for pavements older than 15 years. In continuation of the efforts mentioned above, 

MoDOT conducted a recent study to recalibrate the pavement distresses and IRI prediction 

models for new and rehabilitated flexible and rigid pavements in Missouri using PMED version 
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2.5.5. MoDOT used PMS and LTPP database to consider new AC, AC over AC, and AC over 

JPCP for flexible pavements. All five models for flexible pavement were calibrated. MoDOT 

used recycled material, and material testing capacity enhancement was done before the study to 

get maximum Level 1 input for Pavement-ME. The traffic data was obtained from weight-in-

motion (WIM) data collection sites, and a detailed analysis was carried out to decide the usage of 

hierarchal data input levels in the Pavement-ME. The goodness of fit and bias are used as part of 

the model verification methodology. Statistical parameter R2 and hypothesis testing were used to 

check the goodness of fit and bias. This study carried out the sensitivity analysis and local 

calibration of the abovementioned models, except for the top-down cracking model. The 

researchers recommended calibrating the fatigue and reflection cracking simultaneously, as it is 

difficult to differentiate between both distress types in the field. Local calibration of the rutting 

model slightly improved the R2 value from 0.26 to 0.34, which was considered reasonable due to 

noise in the rutting measurement in the field. This study concluded with the following results: 

a. Significant results were achieved by the local calibration of all flexible pavement models; 

however, a significant variation was noted in the rutting model, which was considered 

due to field measurement noise. 

b. Alligator cracking, rutting, and the transverse thermal cracking of flexible pavements 

decreased with increased AC layer thickness; however, the opposite is true for increasing 

air voids. 

c. Warmer region pavements showed more rutting and alligator cracking and colder regions 

had more low-temperature cracking. 

2.8.1.4 Michigan 

Calibration for new flexible and rehabilitated pavements for Michigan was conducted in a 

research study by Haider et al. (2014). A total of 129 reconstructed flexible sections and 40 

rehabilitated sections were selected for this project. The Pavement-ME inputs were obtained 

from the Michigan Department of Transportation (MDOT) Pavement Management System 

(PMS) database, construction records, and previous studies conducted in Michigan. Models were 

calibrated outside the Pavement-ME using no sampling and bootstrapping resampling 

techniques. For validation of these models, traditional and repeated split sampling were used, 

with 70% of the sections used for calibration and the remaining 30% for validation. 

Bootstrapping and repeated split sampling provide a distribution of calibration coefficients and 
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error terms instead of single-point estimates. Standard deviation equations for all performance 

models were calibrated to incorporate reliability using local performance and prediction data (5). 

2.8.1.5 Oregon 

The Oregon Department of Transportation (ODOT) conducted a study in 2013 to implement 

PMED for the overlay design of existing pavements (23). Forty-four pavement sections were 

selected from all over Oregon with three different climate regions (a) Coastal, (b) valley, and (c) 

eastern. Rutting, alligator (bottom-up) cracking, longitudinal (top-down) cracking, and thermal 

cracking models for HMA overlays of existing pavements were calibrated according to Oregon 

state’s local conditions. Essential traffic and climatic input values were available to be used in 

pavement ME; however, material input properties were missing due to the non-availability of 

complete data. The researcher used default values at input level 3 for indirect tensile strength and 

creep compliance of the HMA layer. Sensitivity analysis was carried out to observe the effect of 

HMA properties on the distress predictions by PMED. For sensitivity analysis, HMA material 

properties like HMA overlay thickness, unbound layers’ thickness, air voids, and effective binder 

content were varied within a limit defined by the researcher team, and distress predictions were 

evaluated for all four prediction models as described earlier. Researchers found that thermal and 

bottom-up cracking models are insensitive to overlay properties. Local calibration was 

performed using PMED software Darwin M-E (Version 1.1). Standard error of estimates (SSE) 

and bias were used as criteria for calibration, and the nonlinear approach using the Microsoft 

Excel solver function was used to minimize both criteria. The results of the study are the 

following:  

a. The Drawin M-E overpredicted rutting, whereas alligator cracking and transverse 

cracking were underestimated compared to measured cracking values, while longitudinal 

cracking showed high variability.  

b. Alligator cracking, longitudinal cracking, and rutting yielded acceptable results from 

local calibration; however, thermal cracking and longitudinal cracking showed high 

variability between measured and predicted distresses.  

c. Due to the error in measurements, the delineation between alligator and longitudinal 

cracking remained a challenge.  
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d. Researchers recommended additional sites for calibration and more input data 

availability, especially Level 1, to reduce the input error, substantially improving the 

calibration results.  

2.8.1.6 Colorado 

Colorado DOT and the Colorado Asphalt Pavement Association (CAPA) initiated a project in 

2001 to make a road map for implementing PMED in Colorado (28). CDOT carried out a study 

in 2013 to implement PMED for calibration of performance prediction models for new and 

rehabilitated pavements in Colorado using PMED version 1.0. The study's primary objectives 

were to address routine design problems for new and rehabilitated pavements and conduct 

forensic analysis to obtain and assemble a database encompassing guidelines of the new PMED 

user guide. A total of 126 pavement projects of new and rehabilitated pavements were selected 

for this study from LTPP and Colorado DOT’s PMIS database; however, all sections were 

analyzed as new or reconstructed pavements instead of rehabilitation design. This study 

calibrated all four models (alligator cracking, rutting, transverse cracking, and IRI) for new and 

rehabilitated flexible pavements. The goodness of fit and bias are used as the criteria for 

verification of local calibration. R2 and standard error of estimates (Se) were used to decide 

reasonable goodness of fit, and the absence of bias was determined based on hypothesis testing.  

A detailed sensitivity analysis was performed using the One-at-a-time (OAT) approach to 

appraise the impact of the input’s variation in the calibration/ validation process of PMED 

performance prediction models. The sensitivity analysis concluded that PMED calibration 

predicted reasonable distress and smoothness for both flexible and JPCP designs. The study also 

included comparing two design methodologies: the 1993 AASHTO Pavement Design 

Guide/1998 Rigid Pavement Supplemental Guide and the new locally calibrated PMED design. 

Seven projects with low traffic volumes were selected for the subject comparison, for which 

results showed acceptable correlations between both design methodologies with a variation of 

+1 inch; however, a significant difference was observed for high traffic volumes. 

2.8.1.7 Virginia  

VDOT recently conducted a PMED implementation study to design overlays over flexible, rigid, 

and composite pavements (22, 37). The study evaluated different input levels along with the need 

for separate local calibration factors for three types of rehabilitation options: (a) HMA over 

HMA, (b) HMA over jointed plain concrete pavement (JPCP), and (c) HMA over continuously 
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reinforced concrete pavement (CRCP) using the PMED software v2.2.6. Standard error of 

estimates (Se) and bias were used as criteria to evaluate the goodness of fit for the calibrated 

model. The conclusions of the study are the following: 

a. The study emphasized the overall condition assessment of the existing pavement for the 

rehabilitation designs. 

b. The backcalculated modulus (Level 1) predicted higher distresses than Level 2 inputs, 

mainly due to higher damage prediction of the AC layer using backcalculated damage 

modulus than damage prediction by fatigue cracking (%). 

c. Coring is recommended for assessing the damage in the existing HMA layers and a 

detailed forensic evaluation as part of the rehabilitation design for restorative 

maintenance projects. 

d. This study also recommended that the reflection cracking issue for the AC overlay of 

JPCP be addressed outside of the Pavement-ME design.  

e. Further assessment is required for bottom-up and reflection cracking models as the 

reflection cracking model predicts very high early cracking compared to measured 

cracking values. 

2.8.1.8 Louisiana 

Louisiana conducted its first research study in 2012 to implement PMED as designing software, 

which focused on only new and full-depth rehabilitated flexible pavements, followed by another 

study in 2016 (27, 38, 39). A total of 162 pavement sections were selected for this study, 

including flexible pavements with AC base, rubblized PCC base, crushed stone base, soil cement 

base, and stabilized base; rigid pavements with unbound granular base, stabilized base, and 

asphalt mixture blanket and HMA overlay on top of existing flexible pavements. Only 33 

sections of AC overlay over existing flexible pavement were considered, as in Louisiana AC 

over existing flexible layer is the most common pavement rehabilitation technique. The 

rehabilitation projects included AC over soil cement, AC over AC over unbound base, and AC 

over AC over PCC. AC over rubblized PCC pavements were designed as new pavements. Since 

limited data sites from Louisiana were included in the development of PMED by the NCHRP 

study, it was deemed necessary to develop its design criterion for distress and IRI for local 

calibration of PMED models per Louisiana conditions. Table 2-29 shows the recommended 
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criteria. Sensitivity analysis was also conducted to observe and evaluate the impact of inputs on 

predicted distress and IRI. 

Bottom-up fatigue cracking and rutting models were calibrated for new flexible 

pavements; however, only the reflective cracking model was calibrated for rehabilitation, and 

calibration coefficients of new flexible pavements were applied to overlay design in Louisiana. 

The calibration and verification process of models showed that PMED under-predicts the fatigue 

cracking and over-predicts the rutting and IRI for flexible pavements. 

Table 2-29: Recommended design criteria of ME pavement design for Louisiana 

Pavement 

Type 
Distress Interstate Primary Secondary 

New AC and 

AC overlay 

Reliability Level, %a 95 90 80 

Alligator cracking, % 15 25 35 

Total rutting, in. 0.40 0.50 0.65 

AC rutting, in.b 0.40 0.50 0.65 

Transverse cracking, ft/mi 500 700 700 

Reflective cracking, % 15 25 35 

IRI, in./mi. 160 200 200 
Note: a. Reliability level does not apply to reflective cracking; b. AC rutting uses the same criteria as total rutting. 

 

For overlay design, transverse cracking was considered reflective cracking instead of 

thermal cracking and was over-predicted. Overall calibration worked reasonably for all selected 

projects; however, it was noted that predicted rutting in overlay design was mainly due to 

overlay AC layer rutting; it was assumed that stable settlement conditions had prevailed for the 

underlying subgrade. The study concluded that PMED over-predicts the rutting and under-

predicts fatigue cracking for overlay design similar to the new flexible design. Reflective 

cracking was over-predicted. Due to a software bug, the cement soil layer in the rehabilitation 

design was modeled as a crushed stone layer with a modulus of 25,000 psi. The study also found 

that design thickness for overlay design was comparable with the 1993 AASHTO design guide 

with +0.5 inches of variability. 

2.8.1.9 Tennessee 

The Tennessee Department of Transportation validated the PMED models using their typical 

pavement designs and compared measured and predicted pavement performances (40-42). The 

validation effort included 19 pavement sections with HMA overlays of PCC and HMA 

pavements; however, all sections were analyzed as new or reconstructed pavements instead of 
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rehabilitation designs. The study observed that Level 1 inputs gave reasonable rutting predictions 

but over-predicted base and subbase rutting with Level 3 inputs. In a recent study, Tennessee 

DOT locally calibrated the distresses and roughness models using measured distresses, 

maintenance activities, and traffic data for interstate roads. Using the PMED flexible pavement 

rehabilitation analyses, reflective cracking was observed as the primary contributor to the total 

predicted cracking, irrespective of the thickness of the pavement structure and traffic level. A 

pavement with more than two overlays becomes very thick, resulting in extremely low alligator 

cracking prediction despite a large amount of cracking observed in the field. It was suggested 

that a procedure that considers the loss in thickness according to the age and structural condition 

of the pavements could help improve the alligator cracking predictions. 

The following section presents the formulation of transfer functions for flexible pavement 

models and the local calibration coefficients for different states.   

2.8.1.10 Fatigue Bottom-up cracking 

Bottom-up cracking is a load-related distress resulting from repeated axle loads. It originates at 

the bottom of the asphalt concrete (AC) layer and progresses upward to the surface. The total 

cumulative damage (DI) can be estimated by summing up the cumulative damage computed 

using Miner's law (43), as shown in Equation 2-18. 

𝐷𝐼 = ∑(Δ𝐷𝐼)𝑗,𝑚,𝑙,𝑝,𝑇 = ∑ (
𝑛

𝑁𝑓−𝐻𝑀𝐴
)

𝑗,𝑚,𝑙,𝑝,𝑇

 (2-18) 

where, 

n = number of actual axle load applications within a specific time period; j = axle load-interval; 

m = axle type (single, tandem, tridem, quad); l = truck type classified in the PMED; p = month;  

T = median temperature for five temperature quintiles used in PMED; Nf-HMA = the allowable 

number of axle load applications, can be computed using Equation 2-19. 

𝑁𝑓−𝐻𝑀𝐴 = 𝐶 × 𝑘1 × 𝐶𝐻 × 𝛽𝑓1(𝜀𝑡)−𝑘2𝛽𝑓2(𝐸𝐻𝑀𝐴)−𝑘3𝛽𝑓3 (2-19) 

where, 

εt = tensile strain at critical AC locations; EHMA = dynamic modulus (E*) of the Hot mix asphalt 

(HMA), psi; k1, k2, k3 = laboratory regression coefficients, and βf1, βf2, βf3 = local or field 

calibration constants; C = Adjustment factor (laboratory to the field) as shown in Equation 2-20 

and Equation 2-21. 
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𝐶 = 10𝑀 (2-20) 

𝑀 = 4.84 (
𝑣𝑏𝑒

𝑉𝑎 + 𝑉𝑏𝑒
− 0.69) (2-21) 

where, 

Vbe = effective binder content by volume, percent; Va = In-situ air voids in the HMA mixture 

(%); CH = thickness correction factor for bottom-up cracking as shown in Equation 2-22. 

𝐶𝐻 =
1

0.000398 +
0.003602

1 + 𝑒(11.02−3.49𝐻𝐻𝑀𝐴)

 
(2-22) 

where, 

HHMA = AC layer thickness 

Once the cumulative damage is calculated, the bottom-up fatigue cracking (%) can be 

estimated using the transfer function given in Equation 2-23. 

𝐹𝐶Bottom = (
1

60
) (

𝐶4

1 + 𝑒𝐶1𝐶1
∗+𝐶2𝐶2

∗log (𝐷𝐼Bottom ⋅100)
) (2-23) 

where, 

FCBottom = Bottom-up fatigue cracking (in the percentage of area); DIBottom = cumulative damage 

at the bottom of the AC layer; C1, C2, C4 = Transfer function coefficients where C2 is a function 

of thickness for HMA thickness between 5 and 12 inches. 

C1* and C2* can be determined using Equation 2-24 and Equation 2-25. 

𝐶1
∗ = −2𝐶2

∗ (2-24) 

𝐶2
∗ = −2.40874 − 39.748(1 + 𝐻𝐻𝑀𝐴)−2.856 (2-25) 

Table 2-30 summarizes the local calibration coefficients among several states. 

2.8.1.11 Top-down cracking 

Top-down or longitudinal cracking is a load-related distress where the crack initiates at the 

pavement surface and propagates downwards due to repeated axle loads. It appears in the form of 

cracks parallel to the wheel path and starts at the surface of the AC layer.  

Old model: The damage calculation for top-down cracking is the same as bottom-up cracking for 

the old model except for the thickness correction factor and the transfer function, as shown in 

Equations 2-26 and 2-27. 

𝐶𝐻 =
1

0.01 +
12.00

1 + 𝑒(15.676−2.8186𝐻HMA )

 
(2-26) 
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𝐹𝐶Top = 10.56 (
𝐶3

1 + 𝑒𝐶1−𝐶2𝐿𝑜𝑔(𝐷𝐼Top )
) (2-27) 

 

where, 

FCTop = Top-down fatigue cracking (in ft/mile); DITop = cumulative damage at the top of the AC 

layer; C1, C2, C3 = Transfer function coefficients.  

Table 2-30: Local calibration coefficients for bottom-up cracking 

States C1 C2 C4 

Kansas (R) - - - 

Iowa (N)* 2.44 0.18 6000 

Missouri (N)** -0.31 

hac<5: 1.367 

5<hac<12: 0.867+0.1*hac 

Hac>12: 2.067 

6000 

Michigan (R) 0.67 0.56 6000 

Oregon (R) 0.56 0.225 6000 

Colorado (N)** 0.07 2.35 6000 

Virginia (R) - - - 

Louisiana (R) 0.892 0.892 6000 

Tennessee (N)** 1.023 0.045 6000 

Pavement-ME v2.6 1.31 

hac<5: 2.1585 

5<hac<12: (0.867+0.2583*hac )*1 

Hac>12: 3.9666 

6000 

N = New; R = Rehabilitation; 

*  = HMA over JPCP designed as new; ** = HMA over HMA designed as new 

New model: The top-down cracking model is based on fracture mechanics concepts (44). It is 

expressed in percentage rather than ft./mile. The model involves crack initiation and propagation 

[based on Paris’ law (45)]. Crack initiation is a crack length of 7.5mm (0.3 inches). Equation 2-

28 shows the time to crack initiation formulated using regression over longitudinal and alligator 

cracking data from the LTPP database. 

𝑡0 =
K𝐿1

1 + 𝑒K𝐿2×100×(a0/2A0)+K𝐿3×HT+K𝐿4×𝐿𝑇+𝐾𝐿5×log10 AADTT
 (2-28) 

where, 

t0 = Time to crack initiation, days; HT = Annual number of days above 32oC; LT = Annual 

number of days below 0oC; AADTT = Annual average daily truck traffic (initial year); KL1, KL2, 

KL3, KL4, KL5= Calibration coefficients for time to crack initiation; a0/2A0 = Energy parameter 

that can be calculated by Equation 2-29. 
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𝑎0

2𝐴0

= 0.1796 + 1.5x10−5𝐸1 − 0.69𝑚 − 7.1691.5x10−4𝐻𝑎 (2-29) 

where, 

E1 and m = Relaxation modulus parameters; Ha = HMA thickness; 

The top-down cracking is expressed in percentage using the transfer function, as shown in 

Equation 2-30. 

𝐿(𝑡) = 𝐿𝑀𝐴𝑋𝑒
−(

𝐶1𝜌
𝑡−𝐶3𝑡0

)
𝐶2𝛽

 
(2-30) 

where, 

L(t) = Top-down cracking expressed as total lane area (%); LMAX = Maximum area of top-down 

cracking (%) – a value of 58% is assumed; t = Analysis month in days; ρ = Scale parameter for 

the top-down cracking curve as shown in Equation 2-31. 

𝜌 = 𝛼1 + 𝛼2 ×  Month (2-31) 

β = Shape parameter for the top-down cracking curve as shown in Equation 2-32. 

𝛽 = 0.7319 × (log10  Month )−1.2801 (2-32) 

where, 

α1 and α2 are functions of the climatic zone (wet freeze, wet non-freeze, dry freeze, dry non-

freeze). 

Table 2-31 Summarizes the local calibration coefficient of the top-down cracking model. 

Table 2-31: Local calibration coefficients for top-down cracking 

States C1 C2 C3 

Kansas (R) 1.87 0.12 1000 

Iowa (N)* 2.2 2.0 36000 

Missouri (N)** - - - 

Michigan (R) 2.97 1.2 1000 

Oregon (R) 1.435 0.097 1000 

Colorado (N)** - - - 

Virginia (R) - - - 

Tennessee (N)** 6.44 0.27 204.54 

Pavement-ME 7 3.5 1000 
N = New; R = Rehabilitation; 

*  = HMA over JPCP designed as new; ** = HMA over HMA designed as new 

2.8.1.12 Transverse (thermal) cracking model 

Thermal cracking is caused by surface temperature fluctuations leading to the contraction of Hot 

Mix Asphalt (HMA) material. This contraction causes volume changes and stresses 
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development, resulting in thermal cracks under constrained conditions. A thermal crack forms 

when the tensile stresses within the HMA layers reach or exceed the material's tensile strength. 

These initial cracks propagate through the HMA layer with each subsequent thermal cycle. The 

amount of crack propagation induced by a given thermal cooling cycle is predicted using the 

Paris law of crack propagation. Experimental results indicate that reasonable estimates of A and 

n can be obtained from the indirect tensile creep-compliance and tensile strength of the HMA per 

Equations 2-33 and 2-34.  

∆𝐶 = 𝐴(∆𝐾)𝑛 (2-33) 

where; 

C = Change in the crack depth due to a cooling cycle 

K = Change in the stress intensity factor due to a cooling cycle 

A, n = Fracture parameters for the HMA mixture 

𝐴 = 𝑘𝑡𝛽𝑡10[4.389−2.52𝐿𝑜𝑔(𝐸𝐻𝑀𝐴𝜎𝑚𝜂)] (2-34) 

where; 

  = 0.8 [1 +
1

𝑚
]  

kt  = Regression coefficient determined through field calibration 

EHMA  = HMA indirect tensile modulus, psi 

m  = Mixture tensile strength, psi 

m  = The m-value derived from the indirect tensile creep compliance curve 

measured in  the laboratory 

βt  = Local or mixture calibration factor 

The stress intensity factor, K, has been incorporated in the Pavement-ME through a 

simplified equation developed from theoretical finite element studies using the model shown in 

Equation 2-35. 

𝐾 = 𝜎𝑡𝑖𝑝(0.45 + 1.99(𝐶0)0.56) (2-35) 

where; 

tip = Far-field stress from pavement response model at a depth of crack tip, psi 

Co = Current crack length, feet 

Equation 2-36 shows the transfer function for transverse cracking in the Pavement-ME. 
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𝑇𝐶 = 𝛽𝑡1𝑁(𝑧) [
1

𝜎𝑑
log (

𝐶𝑑

𝐻𝐻𝑀𝐴
)] (2-36) 

where, 

TC = Observed amount of thermal cracking, ft/500ft 

βt1 = Regression coefficient determined through global calibration (400) 

N[z] = Standard normal distribution evaluated at [z] 

σd = The standard deviation of the log of the depth of cracks in the pavement (0.769), in 

Cd = Crack depth, in;  

HHMA = The thickness of HMA layers, inches 

Table 2-32 summarizes the modified local calibration coefficients for the various States. 

Table 2-32: Local calibration coefficients for the thermal cracking model 

Calibration 

coefficient 
Level 1 (K) Level 2 (K) Level 3 (K) 

Missouri (N)** 0.61 - - 

Oregon (R) - - 10 

Colorado (N)** 7.5 - - 

Michigan (R) 0.75 - - 

Iowa (N)* - - 2.7 

Pavement-ME 
3 × 10−7

× 𝑀𝐴𝐴𝑇4.0319 

3 × 10−7

× 𝑀𝐴𝐴𝑇4.0319 

3 × 10−7

× 𝑀𝐴𝐴𝑇4.0319 
N = New; R = Rehabilitation; 

*  = HMA over JPCP designed as new;   ** = HMA over HMA designed as new 

2.8.1.13 Rutting model 

Due to axle loads, rutting is the total accumulated plastic strain in different pavement layers (AC, 

base/sub-base, and subgrade). It is calculated by summing up the plastic strains at the mid-depth 

of individual layers accumulated for each time increment. Equation 2-37 shows the permanent 

plastic strain for the AC layer. 

Δ𝑝(𝐻𝑀𝐴) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 = 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10𝑘1𝑟𝑇𝑘2𝑟𝛽2𝑟𝑁𝑘3𝑟𝛽3𝑟 (2-37) 

where, 

Δp(HMA) = permanent plastic deformation in the AC layer; εp(HMA) = accumulated permanent or 

plastic axial strain in the AC layer/sublayer; εr(HMA) = resilient or elastic strain calculated by the 

structural response model at the mid-depth of each AC sublayer; h(HMA) = thickness of the AC 

layer/sublayer; N = number of axle load repetitions; T =Pavement temperature; kz = depth 

confinement factor; k1r, k2r, k3r = global field calibration parameters; β1r, β2r, β3r, = local or 

mixture field calibration constants. 
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The permanent plastic strain can be expressed for the unbound layers, as shown in Equation 2-

38. 

Δ𝑝(𝑠𝑜𝑖𝑙) = 𝛽𝑠1𝑘𝑠1𝜀𝑣ℎ𝑠𝑜𝑖𝑙 (
𝜀𝑜

𝜀𝑟
) 𝑒−(

𝜌
𝑛

)
𝛽

 (2-38) 

where; 

Δp(Soil) = permanent plastic deformation for the unbound layer/sublayer; εo = intercept determined 

from laboratory repeated load permanent deformation tests; n = number of axle load 

applications; εr = resilient strain imposed in laboratory tests to obtain material properties εo, β, 

and ρ; εv = average vertical resilient or elastic strain in the layer/sublayer and calculated by the 

structural response model; hsoil = unbound layer thickness; ks1 = global calibration coefficients 

(different for granular and fine-grained material); βs1 = local calibration constant for rutting in 

the unbound layers (base or subgrade). 

The total rutting is calculated based on Equation 2-39 below: 

𝑅𝑢𝑡 𝐷𝑒𝑝𝑡ℎ𝑇𝑜𝑡𝑎𝑙 = ∆𝐻𝑀𝐴 + ∆𝐵𝑎𝑠𝑒/𝑠𝑢𝑏𝑏𝑎𝑠𝑒 + ∆𝑆𝑢𝑏𝑔𝑟𝑎𝑑𝑒 (2-39) 

The summary of the local calibration coefficients for total rutting model for the different states is 

presented below. 

Table 2-33: Local calibration coefficients for the rutting model 

States β1r β2r β3r βgb βsg 

Kansas (R) 0.36 - - - - 

Iowa (N)* 1 1.01 1 0.001 - 

Missouri (N)** 0.899 - - 1.0798 0.9779 

Michigan (R) 0.9453 1.3 0.7 0.0985 0.0367 

Oregon (R) 1.48 1 0.9 0 0 

Colorado (N)** 1.34 1 1 0.4 0.84 

Lousiana (R) 0.8 - 0.85 - 0.4 

Pavement-ME v2.6 0.4 0.52 1.36 1 1 
N = New; R = Rehabilitation; 

*  = HMA over JPCP designed as new;   ** = HMA over HMA designed as new 

2.8.1.14 IRI model (flexible pavements) 

IRI is a measure of ride quality provided by a pavement surface and affects the vehicle operation 

cost, safety, and comfort of the driver. The IRI model is based on findings from multiple studies 

showing that IRI at any age is a function of the initial construction ride quality and the 

development of different distresses over time that impacts the ride quality. IRI can be formulated 
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using the initial IRI and distresses (fatigue cracking, transverse cracking, and rutting), as shown 

in Equation 2-40. 

𝐼𝑅𝐼 = 𝐼𝑅𝐼𝑜 + 𝐶1(𝑅𝐷) + 𝐶2(𝐹𝐶Total ) + 𝐶3(𝑇𝐶) + 𝐶4(𝑆𝐹) (2-40) 

where, 

IRIo = initial IRI at construction; FCTotal = percent area of alligator, longitudinal, and reflection 

cracking in the wheel path; TC = length of transverse cracking (including the reflection of 

transverse cracks in existing AC pavements); RD = average rut depth; C1, C2, C3, C4 = 

Calibration coefficients; SF = site factor, which can be expressed as shown in Equation 2-41 to 

Equation 2-43. 

𝑆𝐹 = ( Frost +  Swell ) × 𝐴𝑔𝑒1.5 (2-41) 

Frost = Ln [( Rain + 1) × (𝐹𝐼 + 1) × 𝑃4] (2-42) 

Swell = Ln [( Rain + 1) × (𝐹𝐼 + 1) × 𝑃200] (2-43) 

where, 

SF = Site factor; Age = Pavement age (years); FI = Freezing index; Rain = Mean annual rainfall; 

P4 = Percent subgrade material passing No. 4 sieve; P200 = Percent subgrade material passing No. 

200 sieve. 

Table 2-34 presents the adjusted calibration coefficients in different states. 

Table 2-34: Local calibration coefficients for the IRI model 

States C1 C2 C3 C4 

Kansas (R) 40.5 – 43.5 0.34 – 0.41 0.0074 – 0.0082 0.001 – 0.002 

Iowa (N)* 25 0.4 0.008 0.019 

Missouri (N)** 58.9 0.3 0.0072 0.0129 

Michigan (R) 50.3720 0.4102 0.0066 0.0068 

Colorado (N)** 35 0.3 0.02 0.019 

Louisiana (R) 40 0.4 0.008 0.015 

Pavement-ME v2.6 40 0.4 0.008 0.015 
N = New; R = Rehabilitation; 

*  = HMA over JPCP designed as new;  ** = HMA over HMA designed as new 

2.8.1.15 Reflective Cracking model 

Old model: The transverse reflection cracking model originally was empirical in nature. The 

percentage of the area of cracks is predicted by the empirical equation as a function of time using 

a sigmoidal function represented by Equation 2-44.  

𝑅𝐶 =
1

1 + 𝑒𝑎(𝑐)+𝑏𝑡(𝑑)
 (2-44) 
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where, 

RC = Percent of cracks reflected; t = Time (years); a,b = Regression fitting parameters defined 

through the calibration process and depend upon effective HMA thickness as shown in Equations 

2-45 and 2-46; c,d = User-defined cracking progression parameter. 

𝑎 = 3.5 + 0.75(𝐻𝑒𝑓𝑓) (2-45) 

𝑏 = −0.688684 − 3.37302(𝐻𝑒𝑓𝑓)
−0.915469

 (2-46) 

Heff = Effective HMA overlay thickness. 

New model: The new mechanistic-based transverse reflection cracking model, developed under 

the NCHRP 1-41 project, replaced the empirical reflection cracking model and has recently been 

integrated into the PMED software (46). The new mechanistic model combines finite element 

and fracture mechanics approaches based on the Paris Law (47). The newly developed reflection 

cracking model also considers incremental crack growth due to flexure, shear, and thermal stress 

in the overlaid AC layer. Equations 2-47 to 2-53 show the transverse reflective crack model. 

∆𝐶 = 𝑘1 ∗ ∆𝐵𝑒𝑛𝑑𝑖𝑛𝑔 + 𝑘2 ∗ ∆𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 + 𝑘3 ∗ ∆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 (2-47) 

∆𝐵𝑒𝑛𝑑𝑖𝑛𝑔= 𝐴(𝑆𝐼𝐹)𝐵
𝑛 (2-48) 

∆𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔= 𝐴(𝑆𝐼𝐹)𝑆
𝑛 (2-49) 

∆𝑇ℎ𝑒𝑟𝑚𝑎𝑙= 𝐴(𝑆𝐼𝐹)𝑇
𝑛 (2-50) 

∆𝐷 =
𝑐1𝑘1 ∗ 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝑐2𝑘2 ∗ 𝑠ℎ𝑒𝑎𝑟𝑖𝑛𝑔 + 𝑐3𝑘3 ∗ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙

ℎ𝑂𝐿
 (2-51) 

𝐷 = ∑ ∆𝐷
𝑁

𝑖=1
 (2-52) 

𝑅𝐶𝑅 = (
100

𝐶4 + 𝑒𝐶5 log 𝐷
) ∗ 𝐸𝑋𝐶𝑅𝐾 (2-53) 

where, 

∆C = Crack length increment, in; ∆D = Increment damage ratio; ∆Bending, ∆Shearing, ∆Thermal,   = 

Crack length increment due to bending, shearing, and thermal loading; k1,k2,k3,c1,c2,c3 = 

Calibration factors; A, n = HMA material fracture properties; N = Total number of days; (SIF)B, 

(SIF)S, (SIF)T = Stress intensity factor due to bending, shearing, and thermal loading; D = 

Damage ratio; hOL = Overlay thickness, in; RCR = Cracks in underlying layers, reflected, %; 
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EXCRK = Transverse cracks in underlying layers ft/mile (transverse cracking); Alligator cracking 

in underlying layers, % lane area (alligator cracking).  

Table 2-35 presents the adjusted calibration coefficients in different states. 

Table 2-35: Summary of design thresholds for flexible pavements 

States 
Old Model New Model 

c d C4 C5 

Missouri (N)** - - 254.4 -261.6 

Colorado (N)** 2.5489 1.2341 - - 

Arizona (N) 
2.7 if heff < 3‐in. 

4.0 if heff > 3‐in. 
1 - - 

Kansas (R) - - 251-253 (-2.45) – (-2.58) 

Louisiana (R) 0.72 0.30 - - 
N = New; R = Rehabilitation; 

*  = HMA over JPCP designed as new; ** = HMA over HMA designed as new 

2.8.2 Local Calibration Efforts for Rigid Pavement Overlays 

The following section shows the calibration efforts by other states. 

2.8.2.1 Iowa 

The local calibration effort for the Pavement-ME models in Iowa was conducted using PMED 

version 1.1. Faulting was under-predicted, and transverse cracking and IRI were over-predicted 

using the national coefficients. Multiple runs calibrated faulting and fatigue cracking in 

Pavement-ME, whereas transverse cracking and IRI were calibrated using MS Excel Solver. 

Predictions for all models were significantly improved after calibration. 

In 2013, overall efforts were made to calibrate the PMED performance models with the 

local conditions of Iowa (34). A total of 35 sections of new JPCP and 60 of HMA over JPCP 

(composite) were selected for the study. This study concluded that locally calibrated transverse 

cracking, faulting, and IRI models yielded better predictions than global models for JPCP 

pavements. Iowa DOT PMIS does not differentiate between thermal and reflection cracking for 

composite pavements. Iowa DOT conducted a recalibration study in 2015 with the same sections 

as used in 2013 but with upgraded AASHTOWare PMED version 2.1.24 to compare results of 

national and previous calibrations of PMED performance models (35). The study concluded that 

mean joint faulting, transverse cracking, and IRI models for JPCP pavements yielded improved 

predictions compared to global and previously calibrated predictions. Iowa DOT could calibrate 

the thermal cracking model with acceptable accuracy, as they considered measured transverse 

cracking data as thermal cracking only. 
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2.8.2.2 Missouri 

The MoDOT conducted two studies in 2009 to imply and calibrate the PMED designs per 

Missouri's local conditions (26, 36) using PMED version 1.0. In continuation of the efforts, 

MoDOT conducted a recent study to recalibrate the pavement distresses and IRI prediction 

models for new and rehabilitated flexible and rigid pavements in Missouri using PMED version 

2.5.5. All three models for rigid pavement were calibrated.  

The thermal cracking model for MAAT<57 ̊F and the transverse reflection cracking 

models were also calibrated simultaneously. As 80% of the projects reported have zero percent 

transverse slab cracking, a non-regression approach was used to verify the model's accuracy. The 

study recommended that comprehensive calibration and validation is only possible once 

measured damage values are in the range of 0.01 to 1.0, so the creation of a confusion matrix 

represented in Table 2-36 based upon predicted and measured cracking was used to validate the 

accuracy of models by Equation 2-54.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2-54) 

where: 

TP = true positive, that is, observation is greater than or equal to 1 percent, and the predicted is 

greater than or equal to 1 percent; FN = false negative; observation is greater than or equal to 1 

percent but is predicted as less than 1 percent; TN = true negative, observation is less than 1 

percent, and the predicted is less than 1 percent; FP = false positive, observation is less than 1 

percent but predicted is greater than or equal to 1 percent. 

Table 2-36: Comparisons matrix for new JPCP and unbonded overlays 

Predicted transverse cracking 
Measured cracking 

< 1 percent >= 1 percent 

< 1 percent 22 5 

>= 1 percent 0 0 

Predicted transverse faulting H (Faulting > 0.005) L (Faulting < 0.005) Total 

H (faulting > 0.005) 9 5 14 

L (faulting < 0.005) 13 27 40 

Total 22 32 54 

The conclusions of the study were: 

a. Due to the absence of significant distress in rigid pavements, model accuracy was 

assessed with a non-regression classification approach. 
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b. Reduction in slab cracking was noted with an increase in PCC thickness and flexural 

strength of PCC, reducing Coefficient of Thermal Expansion (CTE), and adding edge 

support.  

c. Larger dowel diameter values and lower CTE values yielded lower joint faulting. 

d. The widened slab also reduced the distresses and IRI for JPCP, an un-bonded overlay of 

JPCP.  

e. The team recommended using Level 1 input data as maximum as possible. 

2.8.2.3 Michigan 

Haider et al. conducted a study to calibrate the Pavement-ME models for new JPCP and un-

bonded overlay over JPCP pavements in Michigan (5). A total of 29 reconstructed JPCP sections 

and 16 un-bonded overlays over JPCP sections were selected for this project. For transverse 

cracking and IRI models, the calibration was performed outside the Pavement ME and for the 

joint faulting model, the Pavement-ME was run every time by changing the coefficient (Only C1 

was optimized by keeping other coefficients fixed to the global value). 

2.8.2.4 Kansas 

As mentioned earlier, KDOT published a research study for the implementation of PMED 

approach to design rehabilitated pavements (21). Eighteen sections of AC over JPCP were used 

for calibration in this study. The research team tried to model AC over JPCP within the 

limitations of the maximum number of HMA layers over the existing pavement layers as 

specified by the PMED user guide (8). AC rutting, transverse cracking (thermal + reflection), 

load-related cracking, and IRI models for AC over JPCP were calibrated in this study. PMED 

does not predict any thermal cracking for KDOT conditions, so only reflection cracking model 

coefficients were calibrated, and all load-related cracking was modeled as top-down cracking for 

AC over JPCP pavement sections.  

Local calibration improved the prediction accuracy of the rutting, transverse cracking, 

load-related cracking, and IRI models for AC over the JPCP pavement section. However, local 

calibration of the transverse cracking model for both rehabilitation types resulted in higher Se 

because AC thermal cracking model was calibrated at global values, as KDOT does not 

distinguish between reflection and thermal cracking. The top-down cracking model showed high 

accuracy with minimum bias and Se compared to globally calibrated values; however, Se was 

high due to variability in data collection. Distress data on all sections overlaid before 2013 were 
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collected manually, which made it responsible for high data variability. Moreover, KDOT 

considers all load-related cracking as top-down, so it was considered another factor toward high 

Se. The study has the following important recommendations: 

a. Accurate data collection for pavement layer properties. 

b. Collection of cores to distinguish between top-down and bottom-up fatigue cracking. 

c. Efforts to reduce measurement errors in distress measurement and data collection to 

improve the accuracy of local calibration. 

d. Rutting in each layer is to be incorporated to achieve better results from local calibration 

of the rutting model. 

2.8.2.5 Louisiana 

Louisiana state conducted its first research study in 2012 to implement PMED as designing 

software, which focused on only new and full-depth rehabilitated flexible pavements, followed 

by another study in 2016 (27, 38, 39). A total of 162 pavement sections were selected for this 

study, including flexible pavements with AC base, rubblized PCC base, crushed stone base, soil 

cement base, and stabilized base; rigid pavements with unbound granular base, stabilized base, 

and asphalt mixture blanket and HMA overlay on top of existing flexible pavements. AC over 

rubblized PCC pavements were designed as new pavements, and the resilient modulus for 

rubblized PCC was taken as 200 ksi. Since limited data sites from Louisiana were included in the 

development of PMED by the NCHRP study, it was deemed necessary to develop its design 

criterion for distress and IRI for local calibration of PMED models as per Louisiana conditions. 

Sensitivity analysis was also conducted to observe and evaluate the impact of inputs on predicted 

distress and IRI. The key findings of sensitivity analysis are: 

a. Coefficient of thermal expansion (CTE), PCC slab thickness, joint spacing, climate 

location, and PCC strength are critical factors for JPCP performance.  

b. Base thickness, base modulus, and subgrade modulus were found to be insignificant for 

rigid pavements.  

c. Total cracking is only sensitive to existing pavement conditions for overlay design.  

d. Overlay thickness, existing rutting, subgrade modulus, and overlay AC properties are 

major influencers of rutting and IRI models for overlay design. 

The transverse cracking, joint faulting, and IRI models for new rigid pavements were 

calibrated; however, only the reflective cracking model was calibrated for rehabilitation, and 
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calibration coefficients of new flexible pavements were applied to overlay design in Louisiana. 

As Louisiana state rarely uses PCC overlays, this study was carried out for only AC overlay, and 

local calibration was done for the new PCC design. The calibration and verification process of 

models showed that PMED over-predicted transverse slab cracking and IRI and under-predicted 

faulting.  

The following is a summary of transfer functions for the Pavement-ME models 

applicable to rigid pavements and a review of local calibration coefficients for various states. 

2.8.2.6 Transverse Cracking Model  

Transverse slab cracking in the Pavement-ME is calculated as the percentage of slabs cracked, 

including all severity levels. The mechanism involves independently predicting the bottom-up 

and top-down cracking and utilizing a probabilistic relationship to combine both, eliminating the 

possibility of both co-occurring. The fatigue damage for both bottom-up and top-down is defined 

using Miner’s law as given in Equation 2-55. 

𝐷𝐼𝐹 = ∑
𝑛𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜

𝑁𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜
 (2-55) 

where,  

DIF = total fatigue damage (bottom-up or top-down); ni,j,k,l,m,n,o = actual load applications applied 

at an age i, month j, axle type k, load level l, the equivalent temperature difference between top 

and bottom PCC surfaces m, traffic offset path n, and hourly truck traffic fraction o; Ni,j,k,l,m,n,o = 

allowable number of load applications applied at an age i, month j, axle type k, load level l, the 

equivalent temperature difference between top and bottom PCC surfaces m, traffic offset path n, 

and hourly truck traffic fraction o. 

The allowable number of load applications is a function of PCC strength and applied 

stress and is calculated based on Equation 2-56. 

log (𝑁𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜) = 𝐶1 ⋅ (
𝑀𝑅𝑖

𝜎𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜
)

𝐶2

 (2-56) 

where, 

 MRi = Modulus of rupture of the PCC slab at the age i; σi,j,k,l,m,n = applied stress at the age i, 

month j, axle type k, load level l, the equivalent temperature difference between top and bottom 

PCC surface m, traffic offset path n, and hourly truck traffic fraction o; C1, C2 = fatigue life 

calibration coefficients. 
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The fraction of slabs cracked is predicted using Equation 2-57 for both bottom-up and 

top-down cracking. 

𝐶𝑅𝐾 =
1

1 + 𝐶4(𝐷𝐼𝐹)𝐶5
 (2-57) 

where,  

CRK = predicted fraction of bottom-up or top-down cracking. 

Once the bottom-up and top-down cracking is estimated, the percentage of slabs cracked 

is calculated using Equation 2-58. 

𝑇𝐶𝑅𝐴𝐶𝐾 = (𝐶𝑅𝐾Bottom-up + 𝐶𝑅𝐾Top-down − 𝐶𝑅𝐾Bottom-up ⋅ 𝐶𝑅𝐾Top-down ) ⋅ 100 (2-58) 

where,  

TCRACK = total transverse cracking (percentage of slabs cracked with all severities); CRKBottom-

up = predicted fraction of bottom-up transverse cracking; CRKTop-down = predicted fraction of top-

down transverse cracking. 

Table 2-37 summarizes the transverse cracking model local calibration coefficients in 

different states. As discussed earlier, 80% of the projects showed zero percent measured 

transverse slab cracking, so a non-regression approach was used to calibrate the transverse 

cracking model using Equation 2-53. The equation resulted in 81.4% model accuracy for the 

transverse cracking model. 

Table 2-37: Local calibration coefficients for the rigid transverse cracking model 

States C1 C2 C4 C5 

Michigan (R) - - 0.23 -1.80 

Missouri (N) 2 1.22 0.52 -2.17 

Iowa (N) 2.17 1.32 1.08 -1.81 

Louisiana (N) 2.75 1.22 1.16 -1.73 

Colorado (N)# - - 1 -1.98 

Minnesota (N) - - 0.9 -2.61 

Pavement-ME v2.6 

(N,R) 
2 1.22 0.52 -2.17 

N = New; R = Rehabilitation; 

# = JPCP over JPCP or unbonded overlays over JPCP 

2.8.2.7 Joint Faulting Model 

The transverse joint faulting is calculated monthly in the Pavement-ME using the material 

properties, climatic conditions, present faulting level, pavement design properties, and axle loads 
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applied. Total faulting is the sum of faulting increments from previous months and is predicted 

using Equations 2-59 to 2-62 below. 

 Fault𝑚 = ∑  

𝑚

𝑖=1

ΔFault𝑖 (2-59) 

𝛥 Fault𝑖 = 𝐶34 × ( FAULTMAX𝑖−1 −  Fault𝑖−1)2 ×  DE𝑖 (2-60) 

𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋𝑖 = 𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 + 𝐶7 × ∑  

𝑚

𝑗=1

𝐷𝐸𝑗 × log (1 + 𝐶5 × 5.0𝐸𝑅𝑂𝐷)𝐶6 (2-61) 

FAULTMAX X0

= C12 × δcurling 

× [log (1 + C5 × 5.0EROD) × log (
P200 ×  WetDays 

Ps
)]

C6

 

(2-62) 

where,  

Faultm = mean joint faulting at the end of month m; ΔFaulti = incremental change (monthly) in 

mean transverse joint faulting during the month i; FAULTMAXi = maximum mean transverse 

joint faulting for a month i; FAULTMAX0 = initial maximum mean transverse joint faulting; 

EROD = erodibility factor for base/subbase; DEi = differential deformation energy of subgrade 

deformation accumulated during the month I; δcurling = maximum mean monthly slab corner 

upward deflection PCC due to temperature curling and moisture warping; PS = overburden 

pressure on the subgrade; P200 = percent subgrade soil material passing No. 200 sieve; WetDays 

= average annual number of wet days (greater than 0.1 in rainfall); C1,2,3,4,5,6,7,12,34 = 

calibration coefficients; C12 and C34 are defined by Equation 2-63 and Equation 2-64. 

C12 = C1 + C2 × 𝐹𝑅0.25 (2-63) 

C34 = C3 + C4 × 𝐹𝑅0.25 (2-64) 

FR = base freezing index defined as the percentage of time (in hours) the top base temperature is 

below freezing (32 °F) temperature to the total number of hours in design life. 

Damage in a dowel joint for the current month is estimated using Equation 2-65. 

Δ𝐷𝑂𝑊𝐷𝐴𝑀𝑡𝑜𝑡 = ∑  

𝑁

𝑗=1

𝐶8 × 𝐹𝑗

𝑛𝑗

106𝑑𝑓𝑐
∗
 (2-65) 
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where,  

ΔDOWDAMtot = cumulative dowel damage for the current month; nj = number of axle load 

applications for the current increment and load group j for the current month; N = number of load 

categories; fc* = estimated PCC compressive stress; d = dowel diameter; C8 = calibration 

constant; Fj = effective dowel shear force induced by axle loading of load category j. 

The faulting model local calibration results for several states are summarized in Table 2-

38. As discussed earlier, 80% of the projects showed zero percent measured transverse slab 

cracking, so a non-regression approach was used to calibrate the transverse cracking model using 

Equation 2-54. The equation resulted in 66.6% model accuracy for the transverse cracking 

model. 

Table 2-38: Local calibration coefficients for the faulting model 

States C1 C2 C3 C4 C5 C6 C7 C8 

Michigan (R) 0.4 - - - - - - - 

Missouri (N) 0.595 1.636 0.00217 0.00444 250 0.47 7.3 400 

Iowa (N) 2.0427 1.8384 0.00438 0.00177 - 0.8 - - 

Louisiana (N) 1.5276 - 0.00262 - - 0.55 - - 

Pavement-ME v2.6 (N,R) 0.595 1.636 0.00217 0.00444 250 0.47 7.3 400 
N = New; R = Rehabilitation; 

2.8.2.8 IRI Model 

IRI in the Pavement-ME is a linear relationship between the IRI at construction and change in 

other distresses (transverse cracking, joint faulting, and joint spalling) over time. IRI, as a linear 

relationship of these factors, can be expressed by Equation 2-66.  

𝐼𝑅𝐼 = 𝐼𝑅𝐼𝐼 + 𝐶1 × 𝐶𝑅𝐾 + 𝐶2 × 𝑆𝑃𝐴𝐿𝐿 + 𝐶3 × 𝑇𝐹𝐴𝑈𝐿𝑇 + 𝐶4 × 𝑆𝐹 (2-66) 

where,  

IRI = Predicted IRI; IRII = Initial IRI at the time of construction; CRK = Percent slabs with 

transverse cracking (all severities); SPALL = Percentage of joints with spalling (medium and 

high severities); TFAULT = Total joint faulting cumulated per mi; C1, C2, C3, C4 = Calibration 

coefficients; SF = Site factor, which can be calculated as shown in Equation 2-67. 

𝑆𝐹 = 𝐴𝐺𝐸(1 + 0.5556 × 𝐹𝐼)(1 + 𝑃200) × 10−6 (2-67) 

where,  

AGE = Pavement age; FI = Freezing index, °F-days; P200 = Percent subgrade material passing 

No. 200 sieve. 
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The joint faulting and transverse cracking for IRI calculation are obtained using the models 

described previously. The joint spalling is calculated as shown in Equation 2-68. 

𝑆𝑃𝐴𝐿𝐿 = [
𝐴𝐺𝐸

𝐴𝐺𝐸 + 0.01
] [

100

1 + 1.005(−12 × 𝐴𝐺𝐸 + 𝑆𝐶𝐹)
] (2-68) 

where,  

SPALL = percentage joints spalled (medium- and high-severities); AGE = pavement age since 

construction. 

SCF = scaling factor based on site-, design-, and climate-related variables, which is estimated as 

given in Equation 2-69. 

𝑆𝐶𝐹 = −1400 + 350 × 𝐴𝐶𝑃𝐶𝐶 × (0.5 + 𝑃𝑅𝐸𝐹𝑂𝑅𝑀) + 3.4𝑓𝑐
′0.4 − 0.2( FTcycles ×𝐴𝐺𝐸)

+43ℎ𝑃𝐶𝐶 − 536𝑊𝐶𝑃𝐶𝐶
 (2-69) 

where, 

ACPCC = PCC air content; AGE = time since construction; PREFORM = 1 if the preformed 

sealant is present; 0 if not; f'c = PCC compressive strength; FTcycles = average annual number of 

freeze-thaw cycles; hPCC = PCC slab thickness; WCPCC = PCC water/cement ratio. 

The IRI local calibration coefficients for various states are summarized in Table 2-39. 

Table 2-39: Local calibration coefficients for rigid IRI model 

States C1 C2 C3 C4 

Michigan (R) 1.198 3.570 1.4929 25.24 

Missouri (N) 0.8203 0.4417 1.4929 25.24 

Iowa (N) 0.04 0.04 0.07 1.17 

Louisiana (N) 0.8203 0.4417 1.4929 25.24 

Ohio (N) 0.82 3.7 1.711 - 

Colorado (N)# 0.82 0.442 1.493 - 

Pavement-ME v2.6 0.8203 0.4417 1.4929 25.24 
N = New; R = Rehabilitation; 

# = JPCP over JPCP or unbonded overlays over JPCP 
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CHAPTER 3 DATA SYNTHESIS 

The local calibration of PMED models is a challenging task that requires a minimum number of 

pavement sections to represent the pavement conditions in certain areas. The first step in this 

regard is data acquisition for selected sections, including material properties, traffic data, 

climatic data, types of fixes applied to pavement in the past, and pavement performance data. 

The reliability of predicted performance depends upon the accuracy of the data used for 

calibration. The PMED allows users to input layer properties and traffic data at three hierarchical 

levels, which provides substantial flexibility in obtaining input data based on available resources. 

Since the inception of PMED, SHAs have developed their databases for all hierarchical input 

levels based on available data acquisition resources. However, all these efforts were mainly for 

new or reconstructed pavement design. The rehabilitation design has almost similar data input 

requirements, except for the characterization of existing pavement, which is a vital step in 

rehabilitation design; PMED assumes pre-overlay damage as a starting point. The 

characterization of existing pavement requires different data input at three different rehabilitation 

levels for HMA overlay over HMA only. Since this study is about the calibration of HMA 

overlay over rubblized PCC, no rehabilitation levels can be specified in the PMED.  This chapter 

outlines the process for selecting pavement sections for local calibration of rubblized 

rehabilitated pavements and the steps in obtaining the required information for each pavement 

section. 

The previous local calibration effort used 108 flexible and 20 JPCP pavement projects 

(5). The focus was on identifying and reviewing all these projects in the MDOT database to 

determine the availability of additional distress data. In this process, the time-series trends of all 

distress types were evaluated considering any significant maintenance activities over time, which 

helped later in decision-making—i.e., whether an existing project should be regarded as a 

reconstructed or rehabilitated overlay project. The PMED inputs to these sections were also 

reviewed to obtain more current or higher levels of inputs.  

Another objective was to identify and select new potential candidate projects. For this 

task, all available sections of rubblized pavements were reviewed from the MDOT databases for 

their performance and data availability. The project selection process, getting the PMED input, 
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and performance data analysis have been summarized in this chapter. The following topics are 

discussed: 

a. Data acquisition and its compatibility with PMED. 

b. Project selection criteria. 

c. Review/ analysis of measured performance data. 

d. Pavement cross-section information. 

e. Traffic inputs. 

f. Construction materials inputs. 

g. Climate input. 

3.1 Data Acquisition and its Compatibility with PMED 

The Pavement Management System (PMS), construction records, and QA/QC sources were 

reviewed to extract pavement performance data and the PMED inputs. The following data was 

obtained after a thorough evaluation:  

a. The compatibility of the measured data was evaluated; if necessary, measured data was 

converted to the PMED-compatible units. 

b. The material properties and pavement cross-sectional details were obtained from 

construction records, plans, job-mix formula (JMF), and other data sources. Any 

unavailable data was acquired from MDOT, or MDOT provided test results for the best 

possible estimates.  

c. Traffic data was collected from the construction records and MDOT Transportation Data 

Management System (TDMS). Level 2 data was used for traffic data based on road type, 

number of lanes, and vehicle class 9 traffic percentage. 

d. For asphalt concrete (AC) mix and binder properties, DYNAMOD software, which is 

based on laboratory tests for Michigan mixes, was used. The most common construction 

materials in Michigan were used for base, subbase, and subgrade properties. 

e. For climatic data, the updated NARR files for Michigan have been used (5).   

3.1.1 Selected Distresses 

The MDOT PMS and sensor database were carefully analyzed, and relevant data were extracted 

to obtain the required distress information. The current distress Manual of MDOT PMS was 

referred to determine all the principal distress corresponding to the predicted distresses in the 
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PMED. The earlier versions of the PMS manual were also reviewed to ensure accurate data 

extraction for all the years. The necessary steps for PMS data extraction include: 

a. Identify the stresses that correspond to the PMED predicted distresses. 

b. Convert (if necessary) MDOT-measured distresses to the PMED compatible with the 

units. 

c. Extract sensor data for each project. 

d. Summarize time-series data for each project and each distress type. 

The significant distress for HMA overlay over rubblized PCC is similar to the new 

flexible pavement design. The identified and extracted pavement distresses and conditions for 

rubblized pavements are summarized in Tables 3-1. This section also discusses converting 

measured distresses to PMED-compatible units for HMA overlay over rubblized pavements. 

Table 3-1: Major pavement distresses 

Distress/ roughness MDOT units PMED units Conversion needed? 

IRI in/mile in/mile No 

Top-down cracking miles % area Yes 

Bottom-up cracking miles % area Yes 

Thermal cracking No. of occurrences ft/mile Yes 

Rutting in in No 

 

3.1.2 Distress Unit Conversion for HMA Overlay of Rubblized PCC 

It is worth mentioning that only distress types predicted by the PMED were considered for the 

local calibration. The corresponding MDOT’s measured distresses were extracted from the PMS 

database and compared with distress types predicted by the PMED to verify if any conversions 

were necessary. The subsequent paragraphs explain the conversion process (where necessary) for 

all distress types. 

IRI: The IRI measurements in the MDOT sensor database are compatible with those in the 

PMED. Therefore, no conversion or adjustments were needed, and data can be used directly. 

Top-down cracking: Top-down cracking is load-related longitudinal cracking in the wheel path. 

The distresses in the MDOT PMS database, which has not developed an alligator cracking 

pattern, were assumed to correspond to top-down cracking. These cracks could develop due to 

fatigue and are called bottom-up cracking. Therefore, it took much work to differentiate between 

bottom-up and top-down crackings based on the PMS data as it records the data in miles. The 

PMS data was converted into the percent of the total area cracked using Equation 3-1, and then, 
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based on the thickness threshold, it was grouped into bottom-up or top-down crackings. The lane 

width was assumed to be 12 ft. The typical wheel path width of 3 feet was taken as 

recommended by the LTPP distress identification manual (5). Table 3-2 presents the threshold 

thicknesses of top-down cracking for each surface type. 

% 𝐴𝐶𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 =  𝑓𝑒𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ × 100 (3-1) 

Table 3-2: Threshold thicknesses for top-down cracking 

Surface type Threshold thickness (in) 

Bituminous overlay on rubblized concrete 6 

Composite overlay 6 

Crush and shape 4 

HMA over HMA overlay 6 

Bottom-up cracking: Bottom-up cracking is defined as alligator cracking in the wheel path. The 

PMS database also records the bottom-up cracking in miles; these values were converted to 

percent of the total area using Equation 3-1. The values achieved were compared to threshold 

limits for each pavement type given in Table 3-3 to obtain bottom-up cracking.   

Thermal cracking: Thermal cracking corresponds to transverse cracking in the top HMA surface 

of the HMA overlay of rubblized JPCP. The transverse cracking is recorded as the number of 

occurrences, but the PMED predicts thermal cracking in feet/mile. The number of occurrences 

was multiplied by lane width (12 ft) to get the length of the crack. All transverse crack lengths 

were summed up and divided by the project length to get feet/mile, as shown in Equation 3-2. 

𝑇𝐶 =
∑ No.  of Occurrences × Lane Width (ft )

Project Length  (miles )
 (3-2) 

Thermal cracking predictions in the Pavement-ME are restricted to a maximum value of 

2112 ft/mile due to a minimum crack spacing limit of 30 feet. This means that PMED predictions 

at 50% reliability cannot go beyond 2112 ft/mile. Due to this limitation, any measured data 

above the 2112 ft/mile cut-off value was removed from the dataset. 

Rutting: This is the total amount of surface rutting all the pavement layers contribute. The 

average rutting (left-right wheel paths) was determined for the entire project length. No 

conversion was necessary. It is assumed that the measured rutting corresponds to the total 

surface rutting predicted by the PMED. 
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Reflective cracking: MDOT does not differentiate between thermal and reflective cracking, as it 

is difficult to segregate a thermal and a reflective crack at the surface. Therefore, the total 

transverse cracking observed is compared to the total combined thermal and reflective cracking. 

Moreover, it is worth noting that rubblization of existing PCC warrants control of reflective 

cracking in overlaid HMA layer.  

3.2 Project Selection Criteria 

The selection criteria for reliable local calibration demands a representative number of pavement 

sections based on Michigan's pavement design, construction practices, and performance. Project 

selection criteria were established to guarantee that the chosen pavement sections would adhere 

to the necessary standards and effectively depict Michigan's pavement network. The selected 

project may have more than one section, which could be due to the location of the sample within 

the chosen project, so the number of sections will be more than the selected projects. The 

selection criteria are discussed in subsequent paragraphs.  

3.2.1 Minimum Number of Required Pavement Sections 

The PMED local calibration guide provides guidelines to determine the minimum required 

sections for each distress type. The minimum number of pavement sections required for local 

calibration of each distress are summarized in Table 3-3. The following relationship is used to 

determine the minimum number of sections needed. 

𝑛 = (
𝑍𝛼/2 × 𝜎

𝑒𝑡
)

2

 (3-3) 

Where: 

/ 2
Z


 = The z-value from a standard normal distribution 

n = Minimum number of pavement sections 

 = Performance threshold 

et = Tolerable bias 
2

Z SEE

  

SEE  = Standard error of the estimate 

Table 3-3: Minimum number of sections for local calibration 

Performance Model N (required number of sections) Number of  sections used 

Bottom-up cracking (%) 16 12 

Top-down cracking (ft/mile) 12 17 

Transverse “thermal” cracking 30 22 

Rutting (in) 22 38 

IRI (in/mile) 83 32 
N= minimum number of samples required for a 90% confidence level 
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3.2.2 Initial Projects Selection 

MDOT maintains an exhaustive database encompassing all construction projects executed within 

Michigan. As the first step, a meticulous evaluation was conducted on all prior projects, 

including 140 flexible pavements and 28 JPCP projects previously utilized in calibration 

endeavors. In addition, the supplementary projects that could serve as viable candidates for our 

ongoing local calibration initiative were identified. The PMS data extraction was completed for 

all required distress types in a compatible format with the PMED software. The time series for 

each pavement section's performance measures were plotted and analyzed to finalize the 

preliminary list of new potential candidate projects. The criteria used to identify additional 

performance data and the selection of new potential pavement projects include: 

a. The pavement section must have at least three measured data points over time. There are 

some exceptions to this criterion. Bottom-up cracking has relatively fewer data points; 

some sections with even two points have been included, considering further data points 

will be collected in the future. 

b. At least one of the distresses should have an increasing trend. Any section with 

decreasing and no or flat trends over time was excluded from the list. 

c. The previous maintenance history for all pavement sections was reviewed to explain any 

decrease or flat trend observed in the time series plot. If there were any major 

rehabilitation or reconstruction activities, the measured data from the year traffic opened 

initially to the very last year until the major repair took place are considered. 

d. The last recorded point should have a Distress Index (DI) of at least 5. 

Figures 3-1 show the example distress progressions for the HMA overlay over rubblized 

JPCP. The top-down cracking for the initial project selection was evaluated in feet/mile and later 

converted to a percentage. The vertical dashed red line is the last reported construction, whereas 

the dotted blue line in the DI plot indicates reported maintenance activities. 

The performance data for these initially selected sections is the average for the entire section 

length. This data is calculated by averaging the performance for every 0.1-mile segment in the 

project length. The cutoff value of 2112 ft/mile was adopted for thermal cracking. The data 

seems reasonable for other performance measures, and no further filtering/investigation is 

required.  
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3.2.3 Summary of the Selected Projects 

The initially selected projects were further refined based on performance, availability of inputs, 

and initial IRI. Tables 3-4 summarize the HMA over rubblized PCC projects. It is worth 

mentioning that in previous calibration efforts of MDOT, HMA over rubblized PCC projects 

were analyzed as new pavements. Additionally, Tables 3-5 outline the selected projects based on 

the design matrix for HMA over rubblized PCC projects. 

Table 3-4: Number of new construction projects by pavement type & region 

Pavement type MDOT region Number of projects 

HMA over rubblized PCC 

Bay 3 

Grand 2 

North 9 

Southwest 1 

University 7 

Table 3-5: Selection matrix displaying selected projects (sections) 

Road type Traffic level* Thickness level* 
Age Level 

Total 
<10 10-15 >15 

HMA over rubblized PCC 

1 

1     

2  4 16 20 

3  2 4 6 

2 

1     

2  9 3 12 

3     

3 

1     

2   7 7 

3   4 4 

*Levels 1 2 3    
Traffic (AADTT) <1000 1000-3000 >3000    
Thickness (in) <3 3-7 >7    

These sections were selected based on performance trends to accommodate various 

inputs, including layer thicknesses, traffic, region, etc. Figures 3-2 show the geographical 

location of the finally selected projects. Tables 3-6 summarize the selected projects along with 

the year of construction and two-way AADTT. 
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(a) Freeway 

 

(b) Non-freeway 

Figure 3-1: Examples of selected sections for bituminous overlay on rubblized PCC 
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Figure 3-2: Geographical location of selected rubblize projects 

Table 3-6: Summary of selected projects 

No. 
Job 

Number 

Control 

Section 
Type Route Region AADTT 

Year of 

construction 

1 
28115 

34031 

Existing 

M-66 Grand 
490 

1989 
2 34032 340 

3 

29768 

47013 

US-23 

N 

University 3390 1992 

4 
US-23 

S 

5 

47014 

US-23 

N 

6 
US-23 

S 

7 
US-23 

N 

8 
US-23 

S 

9 
US-23 

N 

10 
US-23 

S 

11 
29670 13033  

I-194 

N Southwest 856 1993 

12 I-194 S 
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Table 3-6 (cont’d) 

13 

29581 

33084 

 

I-96 E 

University 3707 

1994 
14 I-96 W 

15 
33083 

I-96 E 
1993 

16 I-96 W 

17 29729 74012 M-53 Bay 370 1993 

18 
45053 

67021 
US-10 North 675 1999 

19 67022 

20 44109 5011 US-31 North 279 1999 

21 
38190 

41033 
M-37 Grand 575 2000 

22 61171 

23 

32388 46082 M-50 University 455 
1997 

24 

25 1998 

26 
45865 65041 

New 

I-75 N 
North 

1500 
2002 

27 I-75 S 1081 

28 

75774 

18021 
US-10 

W 
Bay 1284 2004 

29 18024 
US-10 

E 

30 
53288 16092 

 

I-75 N 
North 847 2005 

31 I-75 S 

32 60540 33031 
US-

127 S 
University 2492 2005 

33 
59468 16091 

I-75 N 
North 1398 2007 

34 I-75 S 

35 

60433 56044 

US-10 

E 

Bay 

2619 

2008 

36 
US-10 

W 
1764 

37 
US-10 

E 
2844 

38 
US-10 

W 
1917 

39 90279 16091 I-75 N North 972 2008 

40 43521 46071 

M-52 

University 715 2005 

41 57104 46071 University 318 2005 

42 45676 46074 University 675 2007 

43 
48458 51012 US-31 North 399 2002 

44 

45 48556 71072 US-23 North 173 2003 

46 

48517 10031 US-31 North 399 2003 47 

48 
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3.3 Review/Analysis of Measured Performance Data  

The comparison of predicted and measured performance for each project is vital for the 

calibration process. To have a robust local calibration, the levels of distress must fall within a 

reasonable range (i.e., above and below threshold limits for each type of distress). Therefore, the 

distress levels for all projects were compiled and analyzed to determine their respective ranges. 

A total of 48 HMA over rubblized PCC sections were considered in the local calibration. The 

selected sections' time series and age distribution are shown in Figures 3-3 to 3-7. The following 

can be inferred from the results:  

a. Bottom-up fatigue cracking: The selected sections exhibited low-value bottom-up 

cracking, while only one section reached the threshold of 20%. The age varies from 6 to 

20 years.  

b. Longitudinal/top-down fatigue cracking: Top-down is measured in the percent area 

cracked, but the MDOT has not defined its threshold. However, top-down fatigue 

cracking is observed more frequently than bottom-up cracking.  

c. Transverse (thermal) cracking: The thermal cracking for the HMA overlay over rubblized 

PCC projects was significant, with two sections exceeding the 2112 ft/mile threshold. 

The age varies from 9 to 18 years. Superpave (PG) binder sections have been used for 

thermal cracking calibration. It is worth noting that rubblization minimizes the reflection 

cracking, so only thermal cracking prediction from PMED is used for local calibration.  

d. Rutting: Rutting does not seem to be a dominating problem, as seen in Figures 3-5, where 

only one section exceeds the threshold of 0.5 inches. At the same time, most of the 

sections exhibit significantly low amount of rutting. The age distribution ranged from 3 to 

18 years. 

e. IRI: The IRI time series is usually flat, with no sections exceeding the 172 in/mile 

threshold. The age at maximum IRI ranged from 10 to 20 years. It is worth noting that 

only sections with an initial IRI less than or equal to 82 in/mile were selected to calibrate 

the IRI model. 
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(a) Time series 

 

(b) Age distribution 

Figure 3-3: Selected HMA over rubblized PCC sections — Bottom-up cracking 

 

(a) Time series 

 

(b) Age distribution 

Figure 3-4: Selected HMA over rubblized PCC sections — Top-down cracking 

 

(a) Time series 

 

 (b) Age distribution 

Figure 3-5: Selected HMA over rubblized PCC sections — Transverse (thermal) cracking 
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(a) Time series 

 

 (b) Age distribution 

Figure 3-6: Selected HMA over rubblized PCC sections — Total rutting 

 

(a) Time series 

 

 (b) Age distribution 

Figure 3-7: Selected HMA over rubblized PCC sections — IRI 

3.4 PMED Input Data for Selected Projects 

Accurate calibration of the PMED models directly relies on the pavement cross-sectional, traffic, 

climate, material inputs, and performance data. Moreover, an appropriate hierarchical level of 

inputs must be selected for most of the critical inputs to characterize the existing pavements (5). 

Data collection for each hierarchical input level is a challenging task as PMED requires many 

data inputs to characterize pavements. Many studies have been conducted to highlight the 

sensitivity of an input to the PMED performance prediction. Selecting hierarchical input is vital 

for PMED performance prediction, as any wrong selection can result in over-designed or under-

designed pavements (5). The following section explains the process of collecting as-constructed 

input data, including pavement cross-section details, traffic, layer materials, and climate input 

data. All three hierarchical input level data were used for calibration, and PMED performance 

prediction was compared at each level.  
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3.4.1 Pavement Cross-Section Inputs 

The pavement cross-sectional information is necessary to characterize the layer thicknesses of 

the various layers for modeling in PMED software. The construction records were utilized to 

obtain the cross-sectional information for new sections. The thickness, mix type, traffic, and 

unbound layer information were extracted from the construction drawings. For the sections used 

for the previous calibration effort (5), the Pavement-ME inputs data sheet was used to extract 

design inputs. The missing information was obtained from MDOT in case construction plans 

were unavailable. Typically, HMA overlays are laid in three layers, and the drawings typically 

provided the asphalt application rate of the HMA layers, which was used to determine the HMA 

lift thicknesses. A summary of the design thicknesses for selected pavement projects is shown in 

Tables 3-7. 

Table 3-7: Average HMA thicknesses 

Layer Average thickness (in.) 

HMA top course 2.9 

HMA leveling course 2.1 

HMA base course 3.1 

Fractured PCC 8.8 

Base 3.8 

Subbase 10.8 

 

3.4.2 Traffic Inputs 

The traffic input is one of the vital inputs for pavement design and analysis. The PMED requires 

traffic load spectra to represent loads from all mixed traffic types. The MDOT’s developed 

spreadsheet extracted all sections' Level 2 traffic data. This spreadsheet with traffic distribution 

tables was used to extract the following data: 

a. Vehicle class distribution. 

b. Monthly adjustment factor. 

c. Number of axles per truck. 

d. Single axle load spectra. 

e. Tandem axle load spectra. 

f. Tridem axle load spectra. 

g. Quad axle load spectra. 

The inputs (with input categories) required to obtain these tables are summarized in Table 3-8. 
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Table 3-8: Traffic inputs used to extract traffic data from MDOT spreadsheets 

Inputs Categories 

Percentage of vehicle class 9 

 Less than 45 

 45 to 70 

 Above 70 

Region type 
 Rural 

 Urban 

COHS type 

 National 

 Regional 

 Statewide 

Number of lanes 

 2 

 3 

 4+ 

The number of lanes was identified from the plans. Wherever the number of lanes was 

unavailable, they were visually estimated utilizing Google Maps coordinates. The COHS type 

was estimated using each project's PR number and beginning and ending milepost. The 

percentage of class 9 vehicles was calculated for each section using the MDOT Transportation 

Data Management System (TDMS) website from the following URL: 

https://mdot.public.ms2soft.com/tcds/tsearch.asp?loc=mdot. For sections where the traffic data 

was unavailable at the exact location, nearby locations in the same section were used. The range 

and average two-way AADTT values for all selected projects are summarized in Table 3-9. 

Table 3-9: Ranges of AADTT for all rubblized projects 

AADTT Quantity 

Min 173 

Max 3707 

Average 1160 

 

3.4.3 As-Constructed Material Inputs 

The as-constructed material inputs were obtained from the construction records, JMFs, and other 

test records. Ideally, these inputs are to be recorded at the time of construction. These inputs 

range between project-specific and statewide average values. The details of material properties 

for each pavement structural layer are discussed in this section. 

3.4.3.1 HMA Layer Inputs 

All inputs were collected at the highest hierarchy level; however, the needed data were 

unavailable for all pavement sections. In that case, the data was collected using other 

correlations/sources. Data collection for each HMA layer input is as follows: 

https://mdot.public.ms2soft.com/tcds/tsearch.asp?loc=mdot
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a. Dynamic modulus (E*): E* was obtained from the DYNAMOD software developed in a 

study at Michigan State University (17). E* for the Superpave mixes was directly 

obtained from the database. For older mixes (marshal mixes), the volumetric, binder, and 

gradation information was used to predict the E* using DYNAMOD's Artificial Neural 

Networks (ANNs). E* was obtained at Level 1 from DYNAMOD; however, E* was used 

at all hierarchical levels.  

b. Binder (G*): G* was also obtained from the DYNAMOD database using the region and 

binder information. G* was obtained at Level 1; however, all hierarchical levels were 

used for calibration. 

c. Creep compliance (D(t)): D(t) was obtained from the DYNAMOD database. D(t) was 

obtained at Level. Creep compliance at Level 2 (at mid temperature @14oF) was also 

extracted from DYNAMOD’s Level 1 creep compliance data. Default values of Level 3 

were also used to compare the results at each hierarchical level. 

d. Indirect tensile strength (IDT): IDT was obtained from the DYNAMOD database at 

Level 2. 

e. AC layer thickness: These were obtained from construction records. Usually, the 

application rate in lbs/yards2 is available, which can be utilized to obtain the layer 

thickness. 

f. Air voids and binder content: As constructed, air voids and binder content were obtained 

from construction records. Table 3-10 summarizes the average as-constructed air voids 

for the top HMA layer. Historical test records were used for unavailable data to obtain an 

average value based on mix type, as shown in Table 3-15. 

g. Aggregate gradation: Gradation was obtained from JMFs. Tables 3-11 summarize the 

average gradation for the top, leveling, and base layers for HMA overlay over rubblized 

PCC pavement. Historical test records were used for unavailable data to obtain an 

average value based on mix type, as shown in Table 3-25. 

It is important to note that Level 1 G* and Level 2 IDT data were used to calibrate the 

thermal cracking model. For the thermal cracking model, mixes with PG binder type were used. 

Since G* and IDT predictions from DYNAMOD were possible for the Superpave mixes only, 

for all other sections, G* and IDT were kept at Level 3.  
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Table 3-10: As-constructed percent air voids for HMA top course 

HMA layer Average as-constructed air voids (%) 

Top 6.8 

Leveling 6.4 

Base 5.8 

Table 3-11: HMA top course average aggregate gradation 

Item 
HMA layers 

Top Leveling Base 

Effective AC binder content 11.9 11.2 10.6 

3/4 99.4 100.0 99.3 

3/8 89.8 87.0 78.9 

#4 67.3 67.8 59.9 

#200 5.9 5.2 4.8 

 

3.4.3.2 Fractured PCC Layer Inputs 

The existing JPCP is fractured to control reflection cracks in the HMA overlaid layer. A recent 

study by MDOT is underway in which HMA over rubblized sections were designed as new 

flexible pavement in PMED; modeling fractured JPCP as an unbonded aggregate base with 

MDOT’s recommended 70,000 psi elastic modulus. This study modeled HMA over rubblized 

PCC as an overlay design with HMA over fractured JPCP option in PMED. MDOT recommends 

an elastic modulus value of 70,000 for rubblized JPCP; however, PMED doesn’t allow users to 

use elastic modulus for fractured JPCP less than 150,000 psi. FWD is used to characterize the 

existing pavement layers moduli. Due to the unavailability of FWD data for the selected sections, 

an elastic modulus of 150,000 psi was selected based on the minimum threshold value of PMED 

software. Besides, the elastic modulus of fractured JPCP, the crack spacing of fractured slab, and 

load transfer efficiency (LTE) are essential inputs in overlay design. As this data was also 

unavailable from the field, default values were selected. Table 3-12 summarizes the inputs for 

the fractured PCC layer. 

Table 3-12: Fractured PCC inputs 

Input Value 

Elastic modulus 150,000 psi 

Crack spacing 3 ft 

LTE 50% 

Poisson’s ratio 0.2 
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3.4.3.3 Aggregate Base/Subbase and Subgrade Input Values 

The aggregate base/subbase and subgrade input values were obtained from the following 

sources: 

a. Backcalculation of unbound granular layer moduli (16). 

b. Pavement subgrade MR design values for Michigan's seasonal changes (15). 

The resilient modulus (MR) values for the base and subbase material were selected based 

on the results from previous MDOT studies. The typical backcalculated values for base and 

subbase MR is 33,000 psi and 20,000 psi, respectively. For base/subbase layers, the software 

default to "Modify input values by temperature/moisture" was selected. The subgrade material 

type and resilient modulus were selected using the Subgrade MR study (15, 16). The study 

outlined the location of specific soil types and their MR values across the entire State. Annual 

representative values for subgrade MR were used in PMED. The recommended design MR value 

corresponding to the soil type is shown in Table 3-13.  

3.4.4 Climate Inputs 

The Enhanced Integrated Climatic Model (EICM) in Pavement-ME requires hourly climatic 

data. This data includes air temperature, precipitation, relative humidity, percent sunshine, and 

wind speed. The improved MDOT NARR climatic files created under a previous research study 

were used for climatic inputs (48). The files were downloaded as .hcd files, which can be read 

directly in Pavement-ME. The closest weather station to each selected project was used. For rigid 

sections, these files were directly used, and for flexible sections, custom stations were formed 

using these files. Table 3-14 summarizes the climatic files used for calibration. 

Table 3-13: Average roadbed soil MR values 

Roadbed Type Average MR 

USCS AASHTO 

Laboratory 

determined 

(psi) 

Back-

calculated 

(psi) 

Design 

value 

(psi) 

Recommended 

design MR value 

(psi) 

SM A-2-4, A-4 17,028 24,764 5,290 5,200 

SP1 A-1-a, A-3 28,942 27,739 7,100 7,000 

SP2 A-1-b, A-3 25,685 25,113 6,500 6,500 

SP-SM A-1-b,A-2-4, A-3 21,147 20,400 7,000 7,000 

SC-SM A-2-4, A-4 23,258 20,314 5,100 5,000 

SC A-2-6, A-6,A-7-6 18,756 21,647 4,430 4,400 

CL A-4, A-6, A-7-6 37,225 15,176 4,430 4,400 

ML A-4 24,578 15,976 4,430 4,400 

SC/CL/ML A-2-6, A-4, A-6, A-7-6 26,853 17,600 4,430 4,400 
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Table 3-14: Michigan climate station information 

HCD 

filename 
City/Location Climate identifier Latitude Longitude 

4847 Adrian Adrian Lenawee County Arpt 41.868 -84.079 

94849 Alpena Alpena Co Rgnl Airport 45.072 -83.581 

94889 Ann Arbor Ann Arbor Municipal Arpt 42.224 -83.74 

14815 Battle Creek W K Kellogg Airport 42.308 -85.251 

94871 Benton Harbor Sw Michigan Regional Arpt 42.129 -86.422 

14822 Detroit Detroit City Airport 42.409 -83.01 

94847 Detroit Detroit Metro Wayne Co Apt 42.215 -83.349 

14853 Detroit Willow Run Airport 42.237 -83.526 

14826 Flint Bishop International Arpt 42.967 -83.749 

4854 Gaylord Otsego County Airport 45.013 -84.701 

94860 Grand Rapids Gerald R. Ford Intl Airport 42.882 -85.523 

14858 Hancock Houghton County Memo Arpt 47.169 -88.506 

4839 Holland Tulip City Airport 42.746 -86.097 

94814 Houghton Lake Roscommon County Airport 44.368 -84.691 

94893 
Iron 

Mountain/Kingsford 
Ford Airport 45.818 -88.114 

14833 Jackson Jackson Co-RynoldsReynoldspt 42.26 -84.459 

94815 Kalamazoo Klmazo/Btl Creek Intl Arpt 42.235 -85.552 

14836 Lansing Capital City Airport 42.78 -84.579 

14840 Muskegon Muskegon County Airport 43.171 -86.237 

14841 Pellston Pton Rgl Ap Of Emmet Co Ap 45.571 -84.796 

94817 Pontiac Oakland Co. Intnl Airport 42.665 -83.418 

14845 Saginaw Mbs International Airport 43.533 -84.08 

14847 Sault Ste Marie Su Ste Mre Muni/Sasn Fl Ap 46.467 -84.367 

14850 Traverse City Cherry Capital Airport 44.741 -85.583 

AMN Alma Gratiot Community Airport 43.322 -84.688 

BAX Bad Axe Huron County Memorial Airport 43.78 -82.985 

CFS Caro Tuscola Area Airport 43.459 -83.445 

ERY Newberry Luce County Airport 46.311 -85.4572 

ESC Escanaba Delta County Airport 45.723 -87.094 

FKS Frankfort Frankfort Dow Memorial Field Airport 44.625 -86.201 

IRS Sturgis Kirsch Municipal Airport 41.813 -85.439 

ISQ Manistique Schoolcraft County Airport 45.975 -86.172 

IWD Ironwood Gogebic Iron County Airport 46.527 -90.131 

LDM Ludington Mason County Airport 43.962 -86.408 

MOP Mount Pleasant Mount Pleasant Municipal Airport 43.622 -84.737 

OSC Oscoda Oscoda Wurtsmith Airport 44.452 -83.394 

PHN Port Huron Saint Clair County Intnl Airport 42.911 -82.529 

RQB Big Rapids Robin Hood Airport 43.723 -85.504 

SAW Gwinn Sawyer International Airport 46.354 -87.39 
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Table 3-15: MDOT recommended values volumetric and gradation 

Mix type 
Air voids 

(%) 

Effective 

binder 

content (%) 

% Passing 

3/4" Sieve 

 

% Passing 

3/8" Sieve 

 

% Passing 

# 4Sieve 

 

% Passing 

#200 Sieve 

 

3E1 5.8 10.8 99.85 80.44 62.94 4.40 

4E1 6.1 11.5 100.00 87.24 70.43 5.11 

5E1 6 12.6 100.00 97.14 78.23 5.63 

2E3 4.8 9.7 92.65 68.70 53.95 4.40 

3E3 5.8 10.8 99.63 77.88 60.33 4.56 

4E3 6.1 11.5 100.00 86.91 68.66 4.92 

5E3 6 12.6 100.00 97.86 79.81 5.49 

2E10 4.8 9.7 94.55 73.50 59.70 4.50 

3E10 5.8 10.8 99.78 80.27 62.78 4.84 

4E10 6.1 11.5 100.00 87.65 70.06 5.26 

5E10 6 12.6 100.00 98.30 81.27 5.67 

2E30 4.8 9.7 99.00 71.80 60.60 4.20 

3E30 5.8 10.8 99.95 79.20 59.82 4.40 

4E30 6.1 11.5 100.00 88.63 66.90 4.33 

5E30 6 12.6 100.00 99.00 81.24 5.68 

 

3.5 Summary 

The steps for data collection, project selection, and obtaining the PMED inputs have been 

outlined in this chapter. Details about each input, source, and possible estimates in case of 

unavailable data have also been discussed. The number of projects for each performance type 

and pavement type has also been summarized. Tables 3-16 and 3-17 summarize the inputs and 

corresponding levels for traffic and material characterization data used for the local calibration. 
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Table 3-16: Summary of fixed input levels 

Input 
Input 

Level 
Input source 

Traffic 

Vehicle class distribution 2 

MDOT specified traffic level-2 

data 

Monthly adjustment factor 2 

Number of axles per truck 2 

single, tandem, tridem, quad 

axle load distribution 
2 

AADTT 1 From design drawings 

Vehicle class 9 percentage 1 MDOT TDMS website 

Cross-section 

(new and 

existing) 

HMA thickness 1 
Project-specific HMA thicknesses 

based on design drawings 

PCC thickness 1 
Project-specific PCC thicknesses 

based on design drawings 

Base thickness 1 
Project specific base thicknesses 

based on design drawings 

Subbase thickness 1 

Project-specific subbase 

thicknesses based on design 

drawings 

Construction 

materials 

Base/sub-base MR 2 
Recommendations from MDOT 

unbound material study 

Subgrade 

MR 2 
Soil-specific MR values - MDOT 

subgrade soil study 

Soil type 1 
Location-based soil type - MDOT 

subgrade soil study 

Climate 1 Closest available climate station 

Note:  

Level 1 is project-specific data, pseudo level 1 means that the inputs are not project-specific, but 

the material properties (lab measured) correspond to similar materials used in the project. 

Level 2 inputs are based on regional averages in Michigan. 

Level 3 inputs are based on statewide averages in Michigan. 

Table 3-17: Level of inputs used for HMA mechanical properties 

HMA 

Input Level 1 Level 2 Level 3 

Binder type (G*) 1 2 3 

Creep Compliance 1 2 3 

Mixture property (E*) 1 2 3 

IDT 2 2 3 

 

  



83 

 

CHAPTER 4 SENSITIVITY ANALYSIS 

The PMED approach uses pavement mechanistic responses (stresses and strains) to compute 

damage accumulation based on various distress evolution mechanisms by considering axle load 

levels and climate variation. Subsequently, this damage is used to estimate field-observed 

pavement distresses through transfer functions for performance prediction (8). The performance 

prediction models used in PMED software are designed for the general conditions and calibrated 

nationally, necessitating the local calibration of these models per locally available materials, 

traffic, and climatic conditions for any specific state. Most states started using PMED for flexible 

and rigid pavement designing purposes, making it vital to calibrate the transfer functions 

accurately for better and definite performance predictions. 

PMED requires more data inputs for comprehensive design. This challenges many state 

highway agencies (SHAs) to identify the most critical data input and the most sensitive transfer 

function coefficient affecting the local calibration authenticity. Many studies have been 

conducted to determine the sensitivity of material inputs over performance predictions of PMED 

models (20, 49-53), while very few studies have covered the sensitivity of transfer function 

coefficients. However, all these studies used a one-at-a-time (OAT) approach for sensitivity 

analysis by comparing the performance prediction with input change. Kim et al. and Dong et al. 

conducted a sensitivity study for all models of flexible and rigid pavements in Iowa and JPCP 

pavements in Ontario, respectively (54, 55). Both studies used the OAT approach for sensitivity 

analysis by varying each transfer function coefficient from 20% to 50% of its global value. The 

results ranked significant input variables based on normalized sensitivity index (NSI). 

The NSI involves scaling of sensitivity index values by a range of calibration coefficients, 

making it possible to compare the impacts of different calibration coefficient values on the 

performance prediction of PMED models. NSI can be defined as “percent variation in predicted 

distress due to percent change in calibration coefficient.” Equation 4-1 is used to calculate the NSI. 

𝑁𝑆𝐼 = 𝑆𝑖𝑗𝑘
𝐷𝐿 =  

𝛥𝑌𝑗𝑖

𝛥𝑋𝑘𝑖

𝑋𝑘𝑖

𝑌𝑗
 (4-1) 

where; 

𝑁𝑆𝐼 = normalized sensitivity index; 𝑆𝑖𝑗𝑘
𝐷𝐿  = sensitivity index for input k, distress j, and at point, i 

concerning a given global prediction; 𝛥𝑌𝑗𝑖 = change in distress j around point i (𝑌𝑗,𝑖+1 − 𝑌𝑗,𝑖−1); 
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𝑋𝑘𝑖 = value of input 𝑋𝑘 at point i; 𝛥𝑋𝑘𝑖 = change in input 𝑋𝑘 around point i (𝑋𝑘,𝑖+1 − 𝑋𝑘,𝑖−1); 𝑌𝑗 

= global prediction for distress j. 

The NSI values explain the sensitivity of any input or transfer function coefficients; 

however, they do not give any information on the accuracy of coefficient estimation. Moreover, 

the NSI is calculated based on predicted distress data, so NSI ranking is affected by the magnitude 

of the predicted data (55). 

4.1 Scaled Sensitivity Coefficients (SSCs) 

Parameter estimation is a fundamental concept in mathematics, statistics, and many other 

engineering fields. It involves finding a suitable value of parameters in the model using observed 

data to ensure that the model fits accurately to the observed and predicted data. According to Beck 

and Arnold, parameter estimation is "a discipline that provides tools for the efficient use of data in 

the estimation of constants that appear in mathematical models and for aiding in modeling 

phenomena" (56). Parameter estimation without reporting relative error in parameters is similar to 

curve fitting, but relative errors can be computed if a sensitivity matrix is formulated (57). As per 

Dolan, the sensitivity matrix or Jacobian (J) is a matrix of the first derivatives of the model for 

each parameter and has the dimensions of n-by-p, where n and p are the numbers of data points 

and parameters, respectively (58).  

SSCs are needed to determine whether parameters can be estimated and which will have 

the smallest relative error. Linear dependence can also be examined graphically by plotting 

sensitivity coefficients versus an independent variable (58). Consider a model η = (𝑥, 𝛽), where 

𝑥 is the independent variable, and β is the actual true parameter vector. The ith sensitivity 

coefficient can be computed as 𝑋𝑖 = ∂η/∂𝛽𝑖. To scale the sensitivity coefficient, it is multiplied by 

its parameter and called the scaled sensitivity coefficient, as shown by Equation 4-2. 

𝑋𝑖
′ = 𝛽𝑖

𝜕𝜂

𝜕𝛽𝑖
 (4-2) 

where; 

𝑋𝑖
′ = Scaled sensitivity coefficient of the parameter I; 𝛽𝑖 = Estimate of the ith parameter; 

𝜕𝜂

𝜕𝛽𝑖
 = ith 

sensitivity coefficient of the model w.r.t 𝛽𝑖. 

The scaled sensitivity coefficients have the same units as the model η and can be 

compared directly to η. The SSCs indicate the magnitude of change of the response due to 

perturbations in the parameters (56). Computing the derivative analytically of the non-linear 
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function is a complex problem; however, it can be derived using the numerical approach to avoid 

errors in the analytical approach. If a model η(x,β) has two parameters, 𝛽1 and 𝛽2, then 

sensitivity coefficients (𝑋𝑖) and SSC (𝑋𝑖
′) w.r.t. both the parameters are estimated using 

Equations 4-3 to 4-6. 

𝑋1 =
𝜕𝜂

𝜕𝛽1
≈

𝜂((1.001 ∗ 𝛽1), 𝛽2) − 𝜂(𝛽1, 𝛽2)

0.001 ∗ 𝛽1
 (4-3) 

𝑋1
′ = 𝛽1

𝜕𝜂

𝜕𝛽1
≈

𝜂((1.001 ∗ 𝛽1), 𝛽2) − 𝜂(𝛽1, 𝛽2)

0.001
 (4-4) 

𝑋2 =
𝜕𝜂

𝜕𝛽2
≈

𝜂(𝛽1, (1.001 ∗ 𝛽2), ) − 𝜂(𝛽1, 𝛽2)

0.001 ∗ 𝛽2
 (4-5) 

𝑋2
′ = 𝛽2

𝜕𝜂

𝜕𝛽2
≈

𝜂(𝛽1, (1.001 ∗ 𝛽2), ) − 𝜂(𝛽1, 𝛽2)

0.001 ∗ 𝛽2
 (4-6) 

As per Dolan, the sensitivity coefficients matrix (Jacobian) “J” can be obtained using a 

nonlinear regression algorithm in MATLAB to estimate the parameters 𝛽𝑖. No, the matrix of 𝛽 

and “J” can be used to get an approximation of SSCs using the following equations. 

𝑋1
′ ≈ 𝛽1 ∗ 𝐽(: ,1) (4-7) 

𝑋2
′ ≈ 𝛽2 ∗ 𝐽(: ,2) (4-8) 

Scaled sensitivity coefficients 𝑿𝒊
′ to be large enough (the maximum value of SSC should 

be at least 10% of the most significant value of the dependent variable)  with η and uncorrelated 

with each other. The larger the 𝑿𝒊
′, the greater the response and the more easily parameter 𝜷𝒊 can 

be estimated. If any 𝑿𝒊
′ are correlated, meaning one is a linear function of another 𝑿𝒋

′, those 

parameters cannot be evaluated separately because the response η to both will be identical (58).  

4.2 Methodology  

The sensitivity of the PMED transfer function coefficients is crucial in estimating the impact of 

each coefficient on the overall performance predictions. It is often not viable to calibrate all 

coefficients; therefore, only the sensitive ones can be estimated if the sensitivity of each 

coefficient is known. The sensitivity of the PMED transfer function coefficients for all 

performance prediction models was obtained using the concept of SSCs. Moreover, ranking 

based on SSCs was compared to the NSI values from the literature (54). Four performance 

prediction models similar to new flexible pavements, bottom-up cracking, top-down cracking, 

total rutting, and IRI, were used for sensitivity analysis using SSCs.  
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The SSC for a particular coefficient (say βi) is calculated by differentiating the function 

w.r.t. βi and multiplying it by βi (as shown in Equation 2). Other coefficients except βi are held 

constant. A similar approach is used to calculate SSCs for all different coefficients. The 

mathematical model (transfer function) can often be significantly complicated when 

differentiating the process. In that case, the SSCs can be approximated numerically to avoid 

errors in the analytical derivation. An example of the estimation of SSCs using the fatigue 

cracking (bottom-up) model (shown in Equation 4-9) for HMA overlay over rubblized PCC.  

𝐹𝐶Bottom = (
1

60
) (

𝐶4

1 + 𝑒𝐶1𝐶1
∗+𝐶2𝐶2

∗log (𝐷𝐼Bottom ⋅100)
) (4-9) 

where, 

FCBottom = Bottom-up fatigue cracking (in the percentage of area); DIBottom = cumulative damage 

at the bottom of the AC layer; C1, C2, C4 = Transfer function coefficients where C2 is a function 

of thickness for HMA thickness between 5 and 12 inches; C1* and C2* can be determined using 

Equation 4-10 and Equation 4-11. 

𝐶1
∗ = −2𝐶2

∗ (4-10) 

𝐶2
∗ = −2.40874 − 39.748(1 + 𝐻𝐻𝑀𝐴)−2.856 (4-11) 

Denoting fatigue bottom-up cracking as a function of 𝐷𝐼𝐵, C1, and C2 [FC(𝐷𝐼𝐵, C1, C2)], 

the sensitivity coefficient for C1 (𝑋𝐶1
) can be approximated as shown in Equation 4-12.  

∂𝐹𝐶

∂𝐶1
= 𝑋𝐶1

≈
𝐹𝐶(𝐷𝐼𝐵, 𝐶1 + 𝛿, 𝐶2) − 𝐹𝐶(𝐷𝐼𝑩, 𝐶1, 𝐶2)

𝛿 × 𝐶1
 (4-12) 

Where 𝛿 is a small quantity (a value of 0.001 is used), the SSC for C1 (𝑋′𝐶1
) can be 

approximated as shown in Equation 4-13. 

𝐶1

∂𝐹𝐶

∂𝐶1
= 𝑋′𝐶1

≈ 𝐶1

𝐹𝐶(𝐷𝐼𝐵, 𝐶1 + 𝛿, 𝐶2) − 𝐹𝐶(𝐷𝐼𝐵, 𝐶1, 𝐶2)

𝛿 × 𝐶1
 

=
𝐹𝐶(𝐷𝐼𝐵, 𝐶1 + 𝛿, 𝐶2) − 𝐹𝐶(𝐷𝐼𝐵, 𝐶1, 𝐶2)

𝛿
 

(4-13) 

The coefficient C1 is changed by δ to get the first term of the numerator. The second term 

of the numerator is the fatigue bottom-up cracking at global values. These terms are evaluated at 

a continuous range of 𝐷𝐼𝐵 from 0 to 1. This provides a continuous set of 𝑋′𝐶1
for each value of 

𝐷𝐼𝐵. SSCs for C2 (𝑋𝐶2
) are calculated as shown in Equation 4-14. SSCs for each coefficient are 

plotted with 𝐷𝐼𝐵 on the same plot. A similar process was used for all other transfer functions.  
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𝐶2

∂𝐹𝐶

∂𝐶2
= 𝑋′𝐶2

≈ 𝐶2

𝐹𝐶(𝐷𝐼𝐵, 𝐶1, 𝐶2 + 𝛿) − 𝐹𝐶(𝐷𝐼𝐵, 𝐶1, 𝐶2)

𝛿 × 𝐶2
 

=
𝐹𝐶(𝐷𝐼𝐵, 𝐶1, 𝐶2 + 𝛿) − 𝐹𝐶(𝐷𝐼𝐵, 𝐶1, 𝐶2)

𝛿
 

(4-14) 

Table 4-1 summarizes the transfer functions for HMA overlay over rubblized PCC 

pavements used in this study. The sensitivity for the coefficients in red is estimated. The details 

of these transfer functions can be found in Chapter 2. 

4.3 Sensitivity Results 

The Pavement-ME V2.6 has been used for this study. No literature is available for the 

rehabilitated pavement model coefficients' sensitivity, so a comparison is made between the new 

flexible pavement design and HMA overlay over rubblized concrete. The SSCs were calculated 

and plotted using MATLAB codes, considering one coefficient at a time and others as constant. 

A wide range of independent variables have been used since calculating SSCs is a forward 

problem without data. Subsequent paragraphs explain and summarize the results of sensitivity 

based on SSCs for transfer functions. 

Table 4-1: Summary of PMED transfer functions for rubblized pavements 

Performance 

prediction model 
Model transfer functions 

Bottom up cracking 
 * *

11 22 100

1 6000

60 1 Bottom
Bott Com C C L g DIC o

FC
e



  
   
   

g
 

Top-down cracking 
𝑡0 =

𝐾𝐿1

1 + 𝑒𝐾𝐿2×100×(𝑎0/2𝐴0)+𝐾𝐿3×𝐻𝑇+𝐾𝐿4×𝐿𝑇+𝐾𝐿5×𝑙𝑜𝑔10 𝐴𝐴𝐷𝑇𝑇
 

𝐿(𝑡) = 𝐿𝑀𝐴𝑋𝑒
−(

𝐶1𝜌
𝑡−𝐶3𝑡0

)
𝐶2𝛽

 

Rutting 

HMA 𝛥𝑝(𝐻𝑀𝐴) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 = 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10𝑘1𝑟𝑛𝑘2𝑟𝛽2𝑟𝑇𝑘3𝑟𝛽3𝑟 

Base/ 

subgrade ( ) 11

no
p soil s v soil

r

s k h e







 

 
 
 

 
   

 

 

IRI        1 2 3 4o TotalIRI IRI RD FC TC SFC C C C      

 

4.3.1 Fatigue Bottom-up Cracking 

For a wide range of damage, as shown in Figure 4 – 1 (a), C1 is more sensitive than C2, and C1 

and C2 are not correlated. Moreover, both C1 and C2 are large enough to be confidently 

estimated. However, for a narrow range of damage, the sensitivity of the calibration coefficients 

is similar, i.e., C2 is as sensitive as C1 if the damage is less than 18 %. After 18%, the sensitivity 
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of the coefficients changes, and C1 becomes more sensitive, as indicated by the Figure 4 – 1 (b). 

Coefficients with negative SSCs suggest that an increase in the coefficient will decrease 

predicted performance. Therefore, an increase in C1 or C2 will reduce bottom-up cracking. Figure 

4 – 1 shows the SSCs for the fatigue bottom-up cracking model.  

4.3.2 Top-down Cracking 

The sensitivity of coefficients changes with the independent variables, which are t (analysis time 

in days) and t0 (time to crack initiation). Overall, C3 is the most sensitive coefficient, followed by 

C2, and C1 is the least sensitive coefficient. C1 and C2 correlate, indicating that only one can be 

confidently estimated. All coefficients are estimable based on the magnitude of SSCs, and an 

increase in any of the coefficients will reduce the predicted top-down cracking. 

 

(a) Wide range damage 
 

(b) Narrow range damage 

Figure 4-1: SSCs for fatigue bottom-up cracking 

 
Figure 4-2: SSCs for top-down cracking 
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4.3.3 Total Rutting 

Total rutting is a linear model between the individual layer rutting. Subgrade rutting coefficient 

(𝛽𝑠𝑔1) is the most sensitive, followed by asphalt concrete (AC) rutting coefficient (𝛽1𝑟). The base 

rutting coefficient ( 𝛽𝑠1) is the least sensitive. SSCs for all coefficients are large enough to be 

estimable and positive. 

 
Figure 4-3: SSCs for total rutting 

4.3.4 IRI 

IRI is a linear relationship between IRI at the time of construction (initial IRI) and other distress 

(cracking, rutting, etc.). The site factor coefficient is the most sensitive, followed by the total 

rutting coefficient. The thermal cracking coefficient is the following sensitive input, while the 

fatigue cracking coefficient is the least sensitive. All coefficients have positive values for SSCs, 

which means that with an increase in coefficient value, the predicted performance for IRI will 

increase. 

4.4 Summary 

The sensitivity of the calibration coefficients of the performance prediction models has a direct 

impact on the performance prediction. The sensitivity of the model’s coefficients is also 

helpful in deciding the importance and its calibration order when all coefficients cannot be 

estimated at one time. SSCs provide a convenient visual representation of the sensitivity of 

different transfer function coefficients over a continuous range of independent variables, 

unlike NSI, which is a point estimate. SSCs for fatigue bottom-up cracking show that the 
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sensitivity changes at different ranges of the independent variable “damage.” It also indicates 

any correlations between different coefficients and confidence in estimation. 

 
Figure 4-4: SSCs for IRI 

The calculation of SSCs is a forward problem and does not require any input data. 

Therefore, a user only needs a mathematical model (the transfer functions) and can calculate 

SSCs on any range of independent variables. Table 4 -2 summarizes the sensitivity ranking for 

transfer functions of HMA overlay over rubblized PCC based on SSCs. The sensitivity order 

using SSCs is based on the overall sensitivity in the entire range of independent variables. 

Coefficients with the same NSI values have been ranked the same. For example, all rutting 

coefficients in Kim et al.'s (2014) study have been rated as one as they all have the same NSI 

values. Bottom-up cracking models have similar rankings using both methods, whereas others, 

e.g., IRI, total rutting, and top-down cracking models, have significant differences. These 

differences make it challenging to estimate the most sensitive coefficients. Therefore, SSCs can 

be helpful to obtain a continuous range of sensitivity rather than a point estimate. 
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Table 4-2: Sensitivity ranking comparison based upon SSCs and NSI values 

Performance model Coefficient SSCs 
Kim et al. 

(2014) (54) 

Bottom-up cracking 
C1 1 1 

C2 2 2 

Top-down cracking 

C1 3 NA 

C2 2 NA 

C3 1 NA 

Total rutting 

𝛽1𝑟 2 1 

𝛽𝑠1 3 1 

𝛽𝑠𝑔1 1 1 

IRI 

C1 2 2 

C2 4 3 

C3 3 3 

C4 1 1 
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CHAPTER 5  CALIBRATION METHODOLOGY 

The MEPDG was developed under the NCHRP project 1-37A  to overcome the limitations of the 

AASHTO 1993 method (2). It is an advanced pavement design tool for new and rehabilitated 

pavements. MEPDG incorporates material properties, traffic, and climate to estimate the 

incremental damage using mechanical responses of the pavement. The cumulative damage is 

empirically used to predict the field distress using transfer functions. The transfer functions used 

in PMED have been calibrated using the Long-term Pavement Performance (LTPP) pavement 

sections at the national level (3). Although the nationally calibrated models provide a fair 

performance prediction for the entire US road network, these may not represent the construction 

practices, materials, and climatic conditions of a particular state/region. Therefore, nationally 

calibrated models may under-predict or over-predict the pavement performance in specific 

states/regions. Re-calibration of these models has been recommended for local conditions in the 

local calibration guide (32). Several studies have been conducted to recalibrate the transfer 

function coefficients locally for new and rehabilitated pavement sections; this study outlines the 

local calibration HMA overlay over rubblized PCC pavements. The critical performance distress 

in the PMED includes bottom-up cracking (percentage), top-down cracking (percentage), rutting 

(inches), thermal (transverse) cracking (feet/mile), and IRI (inches/mile) for rubblized 

pavements. This chapter briefly highlights the calibration methods and approaches for each 

model. 

5.1 Calibration Approaches 

Local calibration of the PMED models aims to optimize the model coefficients to minimize bias 

and standard error. The aim is achieved by matching the predicted and measured distress. Bias in 

the predictions signifies if there is a systematic over- or under-prediction, whereas standard error 

shows the scatter and variability. Figure 1-2 shows a representation of bias and standard error. 

Genetic Algorithm (GA) has been used to optimize transfer function coefficients using 

MATLAB program. GA involves the following operations: 

a. Initialization: GA generates solutions by randomly selecting a subset inside the allowed 

search space called the population.  

b. Selection: The generated solutions are selected based on the value of the objective 

function. 
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c. Generation of offspring: New solutions are created using the selected solutions or 

populations (offspring) based on mainly two processes: mutation and crossover. 

d. Termination: This process continues till the termination criteria for the given population 

or the number of generations is reached. 

The empirical transfer functions can be of two types: (a) model that directly calculates the 

magnitude of surface distress, and (b) model that calculates the cumulative damage index rather 

than actual distress magnitude. Based on the model, two different calibration approaches have 

been followed. 

Approach 1: For specific models (e.g., fatigue cracking, rutting, transverse cracking, and IRI), 

damage is directly obtained from PMED outputs. The transfer functions predict distress from the 

damage and have been calibrated using the MATLAB program outside the PMED. Different 

resampling techniques have been used to calibrate these functions. 

Approach 2: The Calibration Assistance Tool (CAT) calibrates the thermal cracking model 

where the damage is not obtained from PMED outputs. These models predict distress by 

calculating cumulative damage over time. 

Table 5-1 summarizes the transfer functions and the coefficients calibrated during the study. 

Table 5-1: Model transfer functions and calibration coefficients for rubblized pavements 

Models 
Approach 

Model transfer functions 
I  II  

Fatigue cracking – 

bottom up. 
  𝐹𝐶Bottom = (

1

60
) (

𝐶4

1 + 𝑒𝐶1𝐶1
∗+𝐶2𝐶2

∗log (𝐷𝐼Bottom ⋅100)
) 

Fatigue cracking – top 

down. 
  

𝑡0

=
𝐾𝐿1

1 + 𝑒𝐾𝐿2×100×(𝑎0/2𝐴0)+𝐾𝐿3×𝐻𝑇+𝐾𝐿4×𝐿𝑇+𝐾𝐿5×𝑙𝑜𝑔10 𝐴𝐴𝐷𝑇𝑇
 

𝐿(𝑡) = 𝐿𝑀𝐴𝑋𝑒
−(

𝐶1𝜌
𝑡−𝐶3𝑡0

)
𝐶2𝛽

 

Rutting 

HMA   
Δ𝑝(𝐻𝑀𝐴) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴

= 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10𝑘1𝑟𝑇𝑘2𝑟𝛽2𝑟𝑁𝑘3𝑟𝛽3𝑟 

Base/subgrade   Δ𝑝(𝑠𝑜𝑖𝑙) = 𝛽𝑠1𝑘𝑠1𝜀𝑣ℎ𝑠𝑜𝑖𝑙 (
𝜀𝑜

𝜀𝑟
) 𝑒−(

𝜌
𝑛

)
𝛽

 

Thermal cracking   𝐴 = 𝑘𝑡𝛽𝑡10[4.389−2.52𝐿𝑜𝑔(𝐸𝐻𝑀𝐴𝜎𝑚𝜂)] 

IRI   
𝐼𝑅𝐼 = 𝐼𝑅𝐼𝑜 + 𝐶1(𝑅𝐷) + 𝐶2(𝐹𝐶Total ) + 𝐶3(𝑇𝐶)

+ 𝐶4(𝑆𝐹) 
*Red font indicates coefficients being calibrated in this study 
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5.2 Calibration Techniques 

This section discusses the various calibration techniques, their advantages, and limitations. These 

techniques include (a) traditional split sampling approach, (b) bootstrapping, and (c) Maximum 

likelihood estimation (MLE). These techniques are briefly discussed below. 

5.2.1 Traditional Approach 

The NCHRP Project 1-40B and local calibration guide provides recommended practices for local 

calibration of the PMED performance models. The traditional approach includes no resampling 

and is based on a random split into the calibration and validation subsets. The calibration-

validation process depends on the number of selected sections, and two different calibration 

approaches may be needed depending on the distress predicted through the transfer function. The 

first approach (Approach 1) is used for models directly calculating the magnitude of surface 

distress. In contrast, the second approach (Approach 2) is used for models that calculate 

cumulative damage over time and related damage to distress. Data collected from in-service 

pavements are used to establish calibration coefficients that minimize the overall standard error 

of the estimate between the predicted and measured distress. The validation process 

demonstrates that the calibrated model can produce accurate predictions for sections other than 

those used for calibration. An efficient validation is determined by the bias in the predicted 

values and standard error of the estimate. Statistical hypothesis tests determine if a significant 

difference exists between the calibrated model and the model validation. 

5.2.2 Bootstrapping  

Bootstrap resampling is a statistical technique widely used in many research fields, including 

statistics, economics, finance, and computer science. This method allows researchers to estimate 

a statistic's sampling distribution and construct confidence intervals for a population parameter, 

even when the underlying population distribution is unknown. The basic idea of bootstrap 

resampling is to draw many bootstrap samples from the original sample with replacement. Each 

bootstrap sample resamples the original data with the same sample size but may contain some 

duplicate observations. The bootstrapped resampling can be performed using different methods: 

(a) resampling randomly or (b) resampling based on the residuals. The type of resampling 

approach for bootstrapping depends on the data structure. The statistic of interest is calculated 

for each bootstrap sample, and the statistic distribution is estimated using the bootstrap sample 

statistics. The general steps involved in the bootstrap resampling method are as follows: 
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a. Draw a random sample of size n with a replacement from the original data set. 

b. Calculate the statistic of interest for the sample. For calibration, this can be the estimation 

of calibration coefficients. 

c. Repeat steps 1 and 2 B times to obtain B bootstrap samples.  The team used 1000 

bootstrap resamples for calibration. 

d. Calculate the statistic's standard error and confidence interval using the bootstrap 

samples. 

In practice, the number of bootstrap samples B is often large, such as 1,000 or 10,000, to 

ensure accurate estimates of the standard error and confidence interval. The standard error of a 

statistic estimated using bootstrap resampling can be calculated using Equation 5-1. 

SE = √
1

𝐵 − 1
∑(𝜃𝑏 − 𝜃∗)2  (5-1) 

where; 

SE = estimated standard error of the statistic; B = number of bootstrap samples; 𝜃𝑏 = value of the 

statistic for the bth bootstrap sample; 𝜃∗ = mean of the B bootstrap sample values. 

The confidence interval for the statistic can be calculated using the percentile method, 

which involves ranking the B bootstrap sample values and taking the 2.5th and 97.5th percentiles 

as the lower and upper bounds of the confidence interval, as shown in Equation 5-2.  

CI = (𝜃∗ − 𝜃𝛼
2

  
, 𝜃∗ + 𝜃𝛼

2
  
) (5-2) 

where; 

CI = bootstrap confidence interval; 𝜃∗ = mean of the B bootstrap sample values; 𝜃𝛼

2
   = 

𝛼

2
th 

percentile of the bootstrap sample values. 

Bootstrap resampling has several advantages over other statistical methods. First, it does 

not require population distribution or sample size assumptions. This is particularly useful when 

the sample size is small or the population distribution is unknown or not normal. Second, it 

allows researchers to estimate the variability of a statistic and construct confidence intervals 

without resorting to complex mathematical formulas or asymptotic approximations. Third, it can 

be easily implemented using standard statistical software packages like R, Python, or SAS. 

However, bootstrap resampling also has some limitations and potential pitfalls. First, it can be 

computationally intensive, especially when the number of bootstrap samples or the original 
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sample size is large. Second, the bootstrap samples may not accurately reflect the true population 

distribution, especially if the original sample is biased or contains outliers. Third, the results may 

be sensitive to the choice of the statistic and the resampling method. 

5.2.3 Maximum Likelihood Estimation (MLE) 

MLE is a powerful statistical technique for parameter estimation in various fields, including 

biology, physics, economics, and engineering. In the traditional calibration approach, the error 

term is assumed to be normally distributed. This might not be the case for all distress types. MLE 

seeks to estimate the parameters of a probability distribution that best describes the observed data 

based on the likelihood function. The likelihood function measures the probability of observing 

the data given a particular set of model parameters. MLE finds the set of model parameters that 

maximize the likelihood function, resulting in the most likely estimates of the parameters. 

Consider a dataset X = [x1, x2, ..., xn], that is assumed to be generated by a probability 

distribution with parameters θ. The likelihood function L(θ|X) is defined as the joint probability 

density function of the observed data, given the model parameters as shown in Equation 5-3. 

L(θ|X) = P(X|θ) = P(x1, x2, … . , xn|θ) (5-3) 

Where P denotes the probability density function, the likelihood function measures the 

probability of observing the data X given the model parameters 𝜃. The goal of MLE is to find the 

set of model parameters 𝜃 that maximize the likelihood function. In practice, it is often easier to 

work with the log-likelihood function, which is the natural logarithm of the likelihood function. 

The log-likelihood function is given by Equation 5-4. 

𝑙(θ|X) = log L(θ|X) = log P(X|θ) = log ∏ P(𝑥𝑖|θ) = ∑ log P(𝑥𝑖|θ) (5-4) 

where;  

П = product operator; Σ = summation operator. 

Taking the logarithm of the likelihood function simplifies the computation of the 

derivative, which is required for optimization. The optimization problem can be solved by 

finding the values of 𝜃 that maximize the log-likelihood function. This can be done using 

numerical optimization algorithms, such as gradient descent, Newton's, or quasi-Newton 

methods. These algorithms require the derivative of the log-likelihood function for the model 

parameters. 



97 

 

Numerical optimization algorithms iteratively update the values of the model parameters 

based on the score function to maximize the log-likelihood function. The optimization process 

continues until the algorithm converges to a maximum of the log-likelihood function. The MLEs 

obtained from the optimization process represent the most likely estimates of the model 

parameters that can explain the observed data. These estimates can be used for parameter 

inference, hypothesis testing, and model selection. 

One of the main advantages of MLE is that it provides a robust and rigorous approach to 

parameter estimation. The MLEs are derived from a well-defined likelihood function based on 

the data's underlying probability distribution. This ensures that the estimates are statistically 

valid and can be interpreted meaningfully.  Another advantage of MLE is that it is a 

computationally efficient optimization method. The likelihood function can often be evaluated 

using standard probability distributions, and the optimization problem can be solved using 

numerical optimization algorithms that are widely available. This makes MLE a practical and 

scalable method for parameter estimation, even in high-dimensional and complex models. MLE 

is beneficial when the complex model contains multiple parameters that are difficult to estimate 

using other methods. For example, in machine learning, MLE is used to estimate the parameters 

of probabilistic models, such as hidden Markov models and Bayesian networks. 

Three distributions were used for this analysis: gamma, log-normal, and exponential. These 

distributions' probability density function (pdf)/ probability mass function (pmf) is shown in 

Equations 5-5 to 5-7, respectively.  

a. Gamma distribution 

𝑓(𝑦) =
𝑦𝛼−1𝑒−𝑦/𝛽

𝛽𝛼Γ(𝛼)
 

(5-5) 

b. Log-normal distribution 

𝑓(𝑥) =
𝑒

−((ln ((𝑥−𝜃)(𝑚))2/(2𝜎2))

(𝑥 − 𝜃)𝜎√2𝜋
𝑥 > 𝜃; 𝑚, 𝜎 > 0 

(5-6) 

c. Exponential distribution 

𝑓(x) = 𝜆e−𝜆x 
(5-7) 

The selection of the best distribution is based on the SEE, bias, Negative Log Likelihood 

(NLL), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) 
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5.2.4 Summary of Resampling Techniques 

Traditional no-sampling or split sampling technique provides a convenient approach to selecting 

pavement sections from the calibration database. Though these techniques are easy to implement 

and can be used for any PMED model, they might impose some limitations. Resampling 

techniques have several advantages over traditional approaches. Since these are non-parametric 

techniques, the model parameters can be estimated without making assumptions about the data 

distribution. The distribution of the model coefficients and error parameters can be estimated 

instead of the point estimate. This can give a better estimation of parameters within desired 

confidence intervals. Since a new sample is created every time, the outliers or sections 

controlling the calibration process can be identified. Though these resampling techniques have 

several advantages over traditional approaches, there are also certain limitations. Bootstrapping 

cannot be used for small datasets or when the independence assumption is unmet. Resampling 

techniques also require higher computing power and time and can be used only for those 

performance models where the damage and other inputs are available from PMED. Table 5-2 

summarizes the advantages and limitations of all calibration techniques. 

Table 5-2: Summary of calibration techniques 

Technique Advantages Limitations 

No sampling  Computationally 

efficient 

 Applicable even for 

small sample size 

 Provides point estimates 

 It may not be suitable for non-

normally distributed data 

Split sampling  Computationally 

efficient 

 Provides validation 

 Provides point estimates 

 It may not be suitable for non-

normally distributed data 

Bootstrapping  Provides confidence 

intervals 

 Identifies outliers 

 Distribution assumption 

is not required 

 Computationally time-consuming 

 It cannot be used for smaller 

sample size 

 It may not be suitable for non-

normally distributed data 

MLE  Suitable for non-

normally distributed data 

 Identifies outliers 

 Can be used with 

resampling techniques and 

for validation 

 

 Distribution assumption is required 

 Computationally time-consuming 

and requires prior knowledge of the 

concept of maximum likelihood  
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5.3 Procedure for Calibration of Performance Models 

The details for input data, performance data, and project selection have already been discussed in 

Chapter 3. Once the data is extracted, it can run the PMED files (.dgpx files) and generate 

outputs (structural responses). The process for local calibration is summarized below: 

a. Run PMED (using global model coefficients) and extract critical responses and predicted 

distresses. 

b. Compare the predicted distress with measured distress.  

c. Based on the results from step 2, test the accuracy of the global models and the need for 

local calibration. 

d. If predictions using global models are satisfactory, local calibration is not required, and 

global models can be accepted. If the global model has significant bias and standard 

error, local calibration is required.  

e. Check your calibration results by validating them on an independent set of sections not 

used for calibration. 

5.3.1 Sampling Techniques Used 

The following techniques have been used to calibrate the PMED models. All these methods have 

been used for models calibrated using Approach I. For models calibrated using Approach II, only 

no sampling and traditional split sampling have been used in the CAT tool.  

a. No sampling (include all data). 

b. Traditional split sampling. 

c. Bootstrapping. 

The entire dataset (all available data points) is considered in no sampling. Bootstrapping 

has been used by considering 1000 bootstrap resamples with replacement. Both of these 

techniques have been used for calibration. For calibration validation, a split of 70%-30% has 

been used where 70% of the data goes to the calibration set, whereas 30% goes to the validation 

set.  

5.4 Rubblized Pavement Model Coefficients 

The critical performance distress in the PMED includes bottom-up cracking, top-down cracking, 

rutting, thermal (transverse) cracking, and IRI. The following section discusses the calibration of 

each model and the specific coefficients. 
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5.4.1 Bottom-up Cracking Model 

The fatigue cracking (bottom-up) model was calibrated by optimizing the C1 and C2 coefficients 

(see Table 5-1). In PMED v2.6, coefficient C1 is a single value, whereas coefficient C2 has three 

different values depending on the total HMA thickness. Table 5-3 shows the global values for C1 

and C2. 

Table 5-3: Global values for bottom-up cracking model coefficients 

Calibration coefficient Global values 

C1 1.31 

C2 

Hac < 5 in. : 2.1585 

5 in. <= Hac <=12 in.: (0.867 + 0.2583 × Hac) ×1 

Hac > 12 in.: 3.9666 
Hac: Total HMA thickness in inches 

Notably, no selected section for the bottom-up calibration had a total HMA thickness of 

more than 12 inches, so the coefficient C2 was calibrated separately for the thickness ranges less 

than 5 inches and 5 to 12 inches, respectively. For a thickness range of 5 to 12 inches, only the 

multiplying factor 1 (marked in bold here: (0.867 + 0.2583 × Hac) ×1) was calibrated while 

other values (0.867 and 0.2583) were kept at global values. 

5.4.2 Top-down Cracking Model 

The top-down cracking model has been modified in the PMED v2.6. The model consists of a 

crack initiation function that calculates the time to crack initiation and a crack propagation 

function that calculates the percent lane area cracked. This makes it a total of 8 coefficients 

combined from both functions. Since the actual crack initiation time is not known, it was not 

possible to calibrate the crack initiation model separately. So, a single function was used by 

substituting the crack initiation function with the crack propagation function. Initially, an attempt 

was made to change all eight coefficients simultaneously. This approach had some challenges. 

a. The model has some mathematical limitations. High values for C3 give mathematical 

errors when using it in PMED.  

b. There is no current literature available for the top-down cracking model calibration. 

Therefore, estimating the range for each coefficient to be used in optimization was 

difficult. 

c. The model has many coefficients with coefficient values ranging from 0.011 to 

64271618. This makes the optimization challenging to converge. 
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  Finally, four coefficients from the crack initiation function (kL2, kL3, kL4, kL5) and two 

coefficients from the crack propagation function (C1, C2) have been calibrated. 

5.4.3 Rutting Model 

Due to axle loads, rutting is the total accumulated plastic strain in different pavement layers 

(HMA, base/sub-base, and subgrade). It is calculated by summing up the plastic strains at the 

mid-depth of individual layers accumulated for each time increment. In the PMED, rutting is 

predicted separately for the different layers (AC, base, and subgrade). The total rutting is the sum 

of rutting from all layers. The AC rutting model has three coefficients (β1r, β2r, β3r). β 1r is a 

direct multiplier and can be calibrated using optimization outside the PMED. In the AC rutting 

model, β2r and β3r are powers to the pavement temperature and the number of axle load 

repetitions. Calibration of β2r and β3r cannot be done outside of the PMED and requires running 

the PMED multiple times or optimizing these in the CAT tool. So, β2r and β3r were kept at global 

values, and β1r was calibrated.  

The unbound layers (base and subgrade) rutting model have one calibration coefficient 

each (βs1). Since βs1 is a direct multiplier, it can be calibrated using optimization outside the 

PMED without running the software or CAT tool. Since both base and subgrade have the same 

model and calibration coefficient, the base calibration coefficient is referred to as βs1, and the 

subgrade coefficient is referred to as βsg1 to avoid confusion. The total measured rutting was 

calibrated against the sum of individual predicted rutting (i.e., β1r, βs1, and βsg1 were calibrated 

simultaneously). 

5.4.4 Thermal Cracking Model 

The thermal cracking model in the PMED has three different levels for the calibration 

coefficient. These levels are based on the level of HMA input, i.e., G* and IDT. Table 5-4 shows 

the input matrix used for the thermal cracking coefficient at three hierarchical levels. Both G* 

and IDT values were obtained from the DYNAMOD software database. In the DYNAMOD 

database, G* and IDT values are available only for sections with Performance grade (PG) binder 

type. Therefore, sections with PG binder type have been used to calibrate the thermal cracking 

model. In the PMED v2.6, the calibration coefficient kt is originally a mean annual air 

temperature (MAAT) function. So, the following approaches can be used for calibration. 

a. Using the CAT tool, an initial attempt was made to calibrate kt (using the original 

equation as a function of MATT).  
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b. A second attempt was made to calibrate kt by running the PMED multiple times with 

different kt values. This time, single values for kt, which were not a function of MAAT, 

were used.  

Due to the limitation of the CAT tool at the time of calibration, the kt value based on the 

second approach was adopted. It is important to note that for this calibration, the average thermal 

cracking for a section was cut at 2112 ft/mile. 

Table 5-4: HMA properties matrix used for thermal cracking coefficient 

Hierarchical Levels 
HMA properties (G*, IDT) 

Level 1 Level 2 Level 3 

1 G* IDT  

2  G*, IDT  

3   G*, IDT 

 

5.4.5 IRI Model 

IRI is a linear function of initial IRI, rut depth, total fatigue cracking, transverse cracking, and 

site factor, as shown in Equation 5-8. The initial IRI was obtained from linear back casting based 

on the time series trend for each section. The fatigue cracking, rutting, and transverse cracking 

models were calibrated before calibrating the IRI model. Since all inputs to the IRI model could 

be obtained, it was calibrated outside the PMED without rerunning it or using the CAT tool. 

IRI = IRIo + 40.0(RD) + 0.400(FCTotal) + 0.0080(TC) + 0.0150(SF) (5-8) 

where;  

IRIo = Initial IRI after construction, in/mi. 

SF = Site factor 

FCTotal = Area of fatigue cracking (combined bottom-up, top-down, and reflection 

cracking in the wheel path), percent of total lane area.  

TC = Length of transverse cracking (including the reflection of transverse cracks in 

existing HMA pavements), ft/mi. 

RD = Average rut depth, in. 

5.5 Design Reliability 

The PMED estimates the performance of a pavement using mechanistic models and transfer 

functions. Although these estimates are rational for pavement design purposes, the actual field 

measurements may show variability. This variability may come from the uncertainties in 

estimating the future traffic, material, and construction variability, measurement error, 
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uncertainties due to the use of level 2 and 3 inputs, and errors associated with the model 

predictions. To incorporate all these variabilities, PMED uses a reliability-based design. 

Reliability for any prediction can be defined as the probability of getting a prediction lower than 

the threshold prediction over the design life, as shown in Equation 5-9. 

Reliability = P[distress at the end of design life < Critical distress] (5-9) 

If 100 sections have been designed at 90% reliability, on average, ten of them may fail 

before the end of design life. Design reliability levels may vary by distress type and IRI or may 

remain constant for each. It is recommended, however, that the same reliability be used for all 

performance indicators (8). Except for IRI, reliability for all other models is estimated using a 

relationship between the standard deviation of measured distress as the dependent variable and 

mean predicted distress as the independent variable. The basic assumption implies that the error 

in predicting the distress is normally distributed on the upper side of the prediction (not on the 

lower side or near zero values). Figure 5-1 shows an example of IRI prediction at 50% reliability 

(mean prediction), prediction at any desired reliability R, and are associated with the probability 

of failure. For 90 percent design reliability, the dashed curve at reliability R should not cross the 

IRI at the threshold criteria throughout the design analysis period. Failing to do so may lead to a 

modified design.    

A step-by-step approach to estimating the reliability of bottom-up cracking for an overlay 

design at input Level 1 is shown below. A similar approach is used for the reliability of all other 

models except IRI in the PMED. 

Step 1: All predicted and measured data points are grouped by creating bins on the predicted 

cracking. The number of data points in each group should be equivalent to provide fair 

weightage to each group. 

 

Figure 5-1: Design Reliability Concept for IRI (32) 
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Step 2: The average and standard deviation of measured and predicted cracking are computed for 

each group. Table 5-5 shows the number of data points, bin ranges, and descriptive statistics. 

Table 5-5: Summary statistics for reliability analysis 

Cracking 

range (%) 

No. of 

data 

points 

Average 

Measured 

Cracking 

Average 

Predicted 

Cracking 

Standard dev. of 

Measured 

Cracking 

Standard dev. 

of Predicted 

Cracking 

0-1.5 4309 2.309 2.060 2.707 0.283 

1.5-2.5 7859 3.136 3.051 3.244 0.286 

2.5-3.5 12096 3.421 4.017 3.386 0.286 

3.5-4.5 6116 3.364 4.736 3.396 0.144 

4.5-5.0 12292 4.343 6.345 3.477 1.282 

5.0-100 1884 8.027 10.267 3.264 1.734 

Step 3: A relationship is determined between the standard deviation of the measured cracking on 

the y-axis and the average predicted cracking on the x-axis. Figures 5-2 show the fit model to the 

grouped data in steps 1 and 2. Equation 5-10 shows the relationship between the standard 

deviation of the measured cracking and the average predicted cracking. 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 1.0256 +
2.4828

1 + 𝑒0.0046−5.2091×𝑙𝑜𝑔(𝐷)
 (5-10) 

Step 4: Since the error term is assumed to be normally distributed, the predicted cracking can be 

adjusted to the desired reliability level using Equation 5-11. 

Crack𝐵𝑜𝑡𝑡𝑜𝑚−𝑢𝑝
𝑅 = Crack𝐵𝑜𝑡𝑡𝑜𝑚−𝑢𝑝 + 𝑆𝑒(𝐹𝐶) × 𝑍𝑎/2 (5-11) 

where, 

Crack𝐵𝑜𝑡𝑡𝑜𝑚−𝑢𝑝
𝑅  = Predicted cracking at reliability R (%); Crack𝐵𝑜𝑡𝑡𝑜𝑚−𝑢𝑝 = Predicted cracking 

at 50% reliability; 𝑆𝑒(𝐹𝐶) = Standard deviation of cracking, which can be estimated using 

Equation (5-10); 𝑍𝑎/2 = Standardized normal deviate (mean = 0; standard deviation = 1) at 

reliability R. 

Step 5: For the final step, the reasonableness of the model should be verified based on the actual 

measured data before using the reliability equation for design. 

The reliability model for IRI is different from that of other models. Since a closed-form 

solution and the variances of different components of IRI are known, the reliability model for IRI 

is based on the variance-covariance analysis of its components. The basic assumption implies 

that the error in predicting IRI is roughly normally distributed. The reliability of the IRI model is 
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calculated internally in PMED; details can be found elsewhere (2). Table 5-6 shows the global 

standard error equations of the PMED models.  

 

Figure 5-2: Fitting curve for the reliability of transverse cracking 

5.6 Summary 

This chapter discusses the calibration approach used for each transfer function. Transfer 

functions have been calibrated based on whether they calculate the distresses directly or calculate 

them based on cumulative damage. It also discusses the different calibration techniques, 

applications, and advantages of each. No sampling and bootstrapping have been used for 

calibration. The traditional split sampling approach is used for calibration and validation. Figure 

5-3 illustrates the summary of calibration work done in this study. 

Table 5-6: Global equations of standard errors for each distress and smoothness model 

Performance prediction models Standard error equation 

Fatigue cracking (bottom-up) 𝑠𝑒(𝐹𝐶) = 1.13 +
13

1 + 𝑒7.57−15.5×𝑙𝑜𝑔(𝐷)
 

Fatigue cracking (top-down) 𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.3657 × 𝑇𝑂𝑃 + 3.6563 

Rutting 

𝑠𝑒(𝐻𝑀𝐴) = 0.24(𝑅𝑢𝑡𝐻𝑀𝐴)0.8026 + 0.001 

𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.1477(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.6711 + 0.001 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.1235(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.5012

+ 0.001 

Transverse cracking 

Level 1 𝑠𝑒 = 0.14(𝑇𝐶) + 168 

Level 2 𝑠𝑒 = 0.20(𝑇𝐶) + 168 

Level 3 𝑠𝑒 = 0.289(𝑇𝐶) + 168 

IRI Estimated internally by the software 
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Figure 5-3: Calibration summary of rubblized pavement design
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CHAPTER 6 LOCAL CALIBRATION 

The PMED models' parameters are adjusted to match observed data for reliable performance 

predictions during calibration. The calibration process can be challenging because of the model's 

complexity and the many parameters involved. However, technological advancements and data 

collection methods have made the calibration process more efficient and effective. Automated 

data collection techniques, such as laser-based measurements (sensors), provide high-resolution 

data that can calibrate the PMED models accurately. 

This chapter discusses the different options and the calibration results for each model. No 

sampling and bootstrapping approaches were used for calibration only, whereas traditional split 

sampling techniques were used for calibration and validation. The following models were 

recalibrated for both design approaches. 

a. Fatigue bottom-up cracking. 

b. Fatigue top-down cracking. 

c. Total rutting. 

d. Transverse (thermal) cracking. 

e. IRI. 

As already mentioned in Chapter 5, the thermal cracking model was calibrated using 

PMED. Multiple run analysis was done for thermal cracking sections using PMED by varying 

thermal cracking model coefficient "K". The PMED was initially used for other performance 

models to determine the damage with all available inputs (material, traffic, and climate). Then, 

the calibration approaches mentioned above were implemented using the outputs from the 

PMED program. A predicted vs. measured distress plot was generated for each model with a line 

of equality at 45 degrees. These plots can visually inspect a model's SEE and bias. For an ideal 

model, all the points should lie on equality. The calibration approach used the hypothesis tests 

outlined in the local calibration guide. 

The local calibration results are presented for new and overlay design approaches among 

the different statistical techniques and the hierarchical input levels. Table 6-1 illustrates the 

hierarchical input levels and HMA properties used at each input level. It is pertinent that MLE 

analysis was done using three distributions, as discussed in Chapter 5. Only the results of the 

selected distribution of MLE are reported in this chapter. 
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The following section presents a detailed comparison of new and overlay designs of 

rubblized pavements and the local calibration of performance prediction models.  

Table 6-1: Summary of input levels 

Input 
PMED 

input level 
Input source 

Layer 

materials 

HMA 

Mix 

properties 
1,2, and 3 

MDOT HMA mixture characterization 

study (DYNAMOD database) 

HMA mixture 

aggregate 

gradation 

1 

Project-specific mixture gradation data 

obtained from data collection or 

average statewide values 

Binder 

properties 
1,2, and 3 

MDOT HMA mixture characterization 

study (DYNAMOD database) 

Rubblized 

PCC 

MR 1 Default value of PMED 

Crack spacing 1 Default value of PMED 

LTE 1 Default value of PMED 

Base/ 

subbase 
MR 3 

Recommendations from MDOT 

unbound material study 

Subgrade 

MR 3 
Soil-specific MR values per MDOT 

subgrade soil study 

Soil 

properties 

A mix of 

all levels 

Location-based soil type per MDOT 

subgrade soil study 

 

6.1 Fatigue Bottom-Up Cracking Model 

The bottom-up cracking model was recalibrated for both design approaches. The number of 

sections showing bottom-up cracking is relatively lower. Therefore, sections with even two 

measured points have been included in the calibration. Two different approaches were used to 

calibrate the bottom-up cracking model.  

a. Approach 1: Measured bottom-up cracking only. Only 12 sections with measured 

bottom-up cracking were used for calibration. 

b. Approach 2: Measured bottom-up + top-down cracking. It is difficult to differentiate 

visually between bottom-up and top-down cracking in the wheel path. The accurate way 

is to take cores on the crack and determine its initiation mechanism. Therefore, in this 

approach, measured bottom-up and top-down cracking in the wheel path was assumed as 

bottom-up cracking. A total of 24 sections were used to calibrate the bottom-up cracking 

in this approach. 
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6.1.1 Approach 1: Measured Bottom-up Cracking only 

This approach only used measured bottom-up cracking for calibration. Local calibration was 

done using the following techniques.  

6.1.1.1 No Sampling 

In no sampling, the entire dataset was used for recalibration. The error was minimized between 

the predicted and measured fatigue cracking. Figures 6 1 and 6-2 show the predicted vs. 

measured bottom-up for the global and locally calibrated models at three hierarchical input levels 

for new and overlay designs, respectively. The global model under-predicts bottom-up cracking. 

Table 6-2 shows the local calibration results. Figure 6-3 shows the measured and locally 

predicted bottom-up cracking with time. These measured and predicted cracking values are for 

the same sections and at the same ages. 

Table 6-2: Local calibration summary for bottom-up cracking (No sampling) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

C1 1.31 0.30 1.31 0.29 1.31 0.43 1.31 0.20 1.31 0.43 1.31 0.26 

C2 < 5" 2.16 0.84 2.16 0.78 2.16 0.71 2.16 0.80 2.16 0.79 2.16 0.74 

5"<C2<12" 2.16 0.29 2.16 0.25 2.16 0.25 2.16 0.20 2.16 0.25 2.16 0.29 

SEE 7.16 6.05 7.16 6.20 7.16 5.26 7.17 6.21 7.16 5.26 7.16 6.64 

Bias -4.70 2.85 -4.70 3.26 -4.69 0.68 -4.71 0.19 -4.69 0.67 -4.70 3.93 
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(a) Global model (level 1) 

 

(b) Local model (level 1) 

 

(c) Global model (level 2) 

 

(d) Local model (level 2) 

 

(e) Global model (level 3) 

 

(f) Local model (level 3) 

Figure 6-1: Predicted vs. measured bottom-up cracking (No sampling) – New design  
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(a)  Global model (level 1) 

 

(b)  Local model (level 1) 

 

(c) Global model (level 2) 

 

(d) Local model (level 2) 

 

(e) Global model (level 3) 

 

(f) Local model (level 3) 

Figure 6-2: Predicted vs measured bottom-up cracking (No sampling) – Overlay design 

6.1.1.2 Split Sampling 

Split sampling was used with a random split of 70% sections for the calibration set and the rest 

30% for the validation set. Figures 6-4 and 6-5 show the predicted vs. measured bottom-up 

cracking for the calibration and validation set. The validation set shows a similar trend as the 

calibration set. Tables 6-3 and 6-4 summarize the local calibration and validation results. Though 
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SEE is higher than the global model, bias is significantly improved from -4.54 to 0.7018 in the 

validation set. Overall, the validation results are satisfactory.  

 

(a) New vs. overlay - level 1 

 

(b) New vs. overlay - level 2 

 

(c) New vs. overlay - level 3 

Figure 6-3: Measured vs. predicted with time series for bottom-up cracking 

Table 6-3: Local calibration summary for bottom-up cracking (calibration set) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

C1 1.31 0.15 1.31 0.29 1.31 0.54 1.31 0.53 1.31 0.48 1.31 0.53 

C2 < 5" 2.16 1.61 2.16 1.76 2.16 0.59 2.16 1.05 2.16 1.09 2.16 1.05 

5"<C2<12" 1.00 0.45 1.00 0.25 1.00 0.15 1.00 0.05 1.00 0.21 1.00 0.05 

SEE 7.31 5.96 7.29 5.67 6.87 5.49 6.76 5.57 6.66 5.42 6.76 5.57 

Bias -4.68 -2.14 -4.75 -1.87 -4.48 -2.10 -4.17 -1.91 -3.99 -1.69 -4.17 -1.91 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure 6-4: Predicted vs. measured bottom-up cracking (split sampling) – calibration set 

Table 6-4: Local calibration summary for bottom-up cracking (validation set) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

C1 1.31 0.15 1.31 0.29 1.31 0.54 1.31 0.53 1.31 0.48 1.31 0.53 

C2 < 5" 2.16 1.61 2.16 1.76 2.16 0.59 2.16 1.05 2.16 1.09 2.16 1.05 

5"<C2<12" 1.00 0.45 1.00 0.25 1.00 0.15 1.00 0.05 1.00 0.21 1.00 0.05 

SEE 7.27 6.83 7.35 6.03 8.37 6.75 8.60 7.10 8.80 6.88 8.60 7.10 

Bias -4.78 -2.79 -4.58 -2.27 -5.27 -2.92 -6.05 -4.14 -6.49 -3.65 -6.05 -4.14 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure 6-5: Predicted vs. measured bottom-up cracking (split sampling) – validation set 

6.1.1.3 Bootstrapping 

Bootstrapping was used as a resampling technique to calibrate the bottom-up cracking model. 

One thousand bootstrap samples were created, randomly sampling with replacement. Unlike split 

sampling, the entire dataset was used in bootstrap. Tables 6-5 and 6-6 summarize the parameters 

for global and local models, respectively. SEE and bias significantly improved after local 
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calibration. Figures 6-6 and 6-7 show the local model’s measured versus predicted and residual 

distribution plots for the 1000 bootstrap samples, respectively. 

Table 6-5: Bootstrapping global model summary 

Parameters 
Levels 1 2 3 

Design New Overlay New Overlay New Overlay 

C1 
Mean 

1.31 
Median 

C2 < 5" 
Mean 

2.158 
Median 

5"<C2<12" 
Mean 

1 
Median 

SEE 
Mean 7.08 7.06 7.09 7.06 7.11 7.17 

Median 6.99 7 7.01 7 7.11 7.12 

Bias 
Mean -4.71 -4.68 -4.73 -4.68 -4.71 -4.77 

Median -4.68 -4.64 -4.69 -4.64 -4.67 -4.75 

Table 6-6: Bootstrapping local calibration results summary 

Parameters Levels 1  2  3  

 Design New Overlay New Overlay New Overlay 

C1 Mean 0.27 0.26 0.29 0.25 0.29 0.26 

 Median 0.3 0.27 0.3 0.2 0.3 0.28 

C2 < 5" Mean 1.35 1.35 1.36 1.21 1.34 1.35 

 Median 1.34 1.36 1.35 1.14 1.35 1.36 

5"<C2<12" Mean 0.31 0.27 0.42 0.21 0.43 0.29 

 Median 0.3 0.27 0.41 0.2 0.41 0.29 

SEE Mean 5.56 5.43 5.82 6.74 5.85 5.48 

 Median 5.51 5.4 5.78 6.68 5.83 5.47 

Bias Mean -1.89 -1.8 -2.11 -3.99 -2.1 -1.78 

 Median -1.86 -1.77 -2.06 -3.93 -2.06 -1.77 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure 6-6: Measured vs. predicted for local model (bootstrapping) 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure 6-7: Residual distribution (bootstrapping) 

6.1.1.4 Maximum Likelihood Estimation (MLE) 

As discussed in Chapter 5, three distributions were used to calibrate the performance prediction 

models. The exponential distribution significantly improved the bias; however, a slight increase 

in SEE is noted. Tables 6-7 and 6-8 show the calibration summary results using exponential 

distribution. Figures 6-8 and 6-9 present the measured vs. predicted and residual distribution, 

respectively. Table 6-9 compares statistical parameters between least squares and MLE.  
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Table 6-7: Global model summary - bootstrapping using MLE (exponential distribution) 

Parameters 
Levels 1 2 3 

Design New Overlay New Overlay New Overlay 

C1 
Mean 

1.31 
Median 

C2 < 5" 
Mean 

2.158 
Median 

5"<C2<12" 
Mean 

1 
Median 

SEE 
Mean 7.08 7.06 7.09 7.06 7.11 7.17 

Median 6.99 7 7.01 7 7.11 7.12 

Bias 
Mean -4.71 -4.68 -4.73 -4.68 -4.71 -4.77 

Median -4.68 -4.64 -4.69 -4.64 -4.67 -4.75 

 

Table 6-8: Local model summary – bootstrapping using MLE (exponential distribution) 

Parameters Levels 1  2  3  

 Design New Overlay New Overlay New Overlay 

C1 Mean 0.2 0.27 0.24 0.25 0.24 0.25 

 Median 0.19 0.26 0.21 0.23 0.21 0.24 

C2 < 5" Mean 1.07 1.07 1.06 1.05 1.07 1.08 

 Median 1.09 1.07 1.04 1.05 1.09 1.07 

5"<C2<12" Mean 0.28 0.2 0.35 0.08 0.36 0.23 

 Median 0.29 0.19 0.36 0.08 0.36 0.23 

SEE Mean 5.69 5.31 6.25 6.12 6.2 5.4 

 Median 5.7 5.29 6.2 6.01 6.09 5.4 

Bias Mean 0 0 0 0 0 0 

 Median 0 0 0 0 0 0 

Table 6-9: Local model statistics 

Levels Design 

Parameters 

MLE (exponential distribution) Least square 

NLL AIC BIC NLL AIC BIC 

1 
New 141.89 285.79 288.56 288.75 581.50 585.55 

Overlay 141.82 285.64 288.49 347.66 699.31 703.37 

2 
New 142.37 286.94 288.77 233.47 470.93 474.98 

Overlay 142.57 287.60 289.16 865.54 1735.07 1739.12 

3 
New 141.56 285.89 287.14 236.04 476.09 480.14 

Overlay 142.07 286.62 288.17 315.27 634.54 638.59 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure 6-8: Measured vs. predicted for the local model using MLE (exponential distribution) 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure 6-9: Residual distribution using MLE (exponential distribution) 

6.1.1.5 Summary 

All calibration approaches have significantly improved the bottom-up cracking model. Tables 6-

10 and 6-11 show the calibration summary of the bottom-up cracking model for new and overlay 

designs, respectively. Figure 6-10 illustrates the SEE and bias comparison of all calibration 

techniques for both design approaches. An overlay design at input Level 1 produced better 

results with minimum SEE and bias. 
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Table 6-10: Summary of results for all sampling techniques (new design) 

Levels Sampling technique SEE Bias C1 
C2 (hac < 

5 in.) 
C2 (5 in. <= hac <=12 in.) 

1 

No sampling (LS) 6.05 2.85 0.30 0.84 (0.867+0.2583* hac)*0.29 

Split sampling (LS) 5.96 -2.14 0.15 1.61 (0.867+0.2583* hac)*0.45 

Bootstrapping (LS) 5.56 -1.89 0.27 1.35 (0.867+0.2583* hac)*0.31 

Bootstrapping (MLE) 5.69 0.00 0.20 1.07 (0.867+0.2583* hac)*0.28 

2 

No sampling (LS) 5.26 0.68 0.43 0.71 (0.867+0.2583* hac)*0.25 

Split sampling (LS) 5.49 -2.10 0.54 0.59 (0.867+0.2583* hac)*0.15 

Bootstrapping (LS) 5.82 -2.11 0.29 1.36 (0.867+0.2583* hac)*0.42 

Bootstrapping (MLE) 6.25 0.00 0.24 1.06 (0.867+0.2583* hac)*0.35 

3 

No sampling (LS) 5.26 0.67 0.43 0.79 (0.867+0.2583* hac)*0.25 

Split sampling (LS) 5.42 -1.69 0.48 1.09 (0.867+0.2583* hac)*0.21 

Bootstrapping (LS) 5.85 -2.10 0.29 1.34 (0.867+0.2583* hac)*0.43 

Bootstrapping (MLE) 6.20 0.00 0.24 1.07 (0.867+0.2583* hac)*0.36 
LS = least square 

Table 6-11: Summary of results for all sampling techniques (overlay design) 

Levels Sampling technique SEE Bias C1 
C2 (hac < 5 

in.) 

C2 (5 in. <= hac <=12 

in.) 

1 

No sampling (LS) 6.20 3.26 0.29 0.78 (0.867+0.2583* hac)*0.25 

Split sampling (LS) 5.49 0.00 0.24 1.85 (0.867+0.2583* hac)*0.21 

Bootstrapping (LS) 5.43 -1.80 0.26 1.35 (0.867+0.2583* hac)*0.27 

Bootstrapping (MLE) 5.31 0.00 0.27 1.07 (0.867+0.2583* hac)*0.20 

2 

No sampling (LS) 6.21 0.19 0.20 0.80 (0.867+0.2583* hac)*0.20 

Split sampling (LS) 6.34 0.00 0.21 1.22 (0.867+0.2583* hac)*0.10 

Bootstrapping (LS) 6.74 -3.99 0.25 1.21 (0.867+0.2583* hac)*0.21 

Bootstrapping (MLE) 6.12 0.00 0.25 1.05 (0.867+0.2583* hac)*0.08 

3 

No sampling (LS) 6.64 3.93 0.26 0.74 (0.867+0.2583* hac)*0.29 

Split sampling (LS) 6.34 0.00 0.21 1.22 (0.867+0.2583* hac)*0.10 

Bootstrapping (LS) 5.48 -1.78 0.26 1.35 (0.867+0.2583* hac)*0.29 

Bootstrapping (MLE) 5.40 0.00 0.25 1.08 (0.867+0.2583* hac)*0.23 
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(a) SEE - new design 

 

(b) SEE – overlay design 

 

(c) Bias – new design 

 

(d) Bias – overlay design 

 
(e) SEE 

 
(f) Bias 

Figure 6-10: SEE and bias comparison of new vs. overlay design 

6.1.2 Approach 2: Measured Bottom-up + Top-down Cracking 

As discussed earlier, bottom-up and top-down cracking in the wheel path were combined to 

calibrate the fatigue bottom-up cracking model. The least square method was used for local 

calibration using no sampling, split sampling, and bootstrapping sampling techniques. Three 

MLE distributions (exponential, log-normal, and gamma) were used for local calibration; the 

exponential distribution produced better results than another least square method with minimum 

SEE and bias. Figures 6-11 and 6-12 show the measured versus predicted results for new and 

overlay designs at all three input levels and residuals distribution, respectively.  
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure 6-11: Measured vs. predicted for the local model using MLE (exponential distribution) 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure 6-12: Residual distribution using MLE (exponential distribution) 

6.1.2.1 Summary 

All sampling techniques improved the local calibration. However, MLE using exponential 

distribution is the most effective calibration technique for the fatigue bottom-up cracking model. 

Tables 6-12 and 6-13 show the local calibration results for new and overlay designs. Figures 6-



125 

 

13 show the comparison plots of SEE and bias. Overall, local calibration of an overlay design at 

input Level 1 and 3 produced better results with a minimum SEE and bias.  

Table 6-12: Summary of results for all sampling techniques (new design) 

Levels Sampling technique SEE Bias C1 
C2 (hac < 

5 in.) 
C2 (5 in. <= hac <=12 in.) 

1 

No sampling (LS) 6.79 1.72 0.31 0.53 (0.867+0.2583* hac)*0.31 

Split sampling (LS) 6.45 0.00 0.37 0.60 (0.867+0.2583* hac)*0.12 

Bootstrapping (LS) 7.03 -3.00 0.37 0.65 (0.867+0.2583* hac)*0.28 

Bootstrapping (MLE) 6.72 0.00 0.24 0.60 (0.867+0.2583* hac)*0.20 

2 

No sampling (LS) 7.16 0.46 0.28 0.61 (0.867+0.2583* hac)*0.35 

Split sampling (LS) 6.30 -1.81 0.38 0.82 (0.867+0.2583* hac)*0.39 

Bootstrapping (LS) 6.57 -1.47 0.40 0.63 (0.867+0.2583* hac)*0.35 

Bootstrapping (MLE) 6.78 0.00 0.34 0.60 (0.867+0.2583* hac)*0.31 

3 

No sampling (LS) 7.19 -2.80 0.28 0.53 (0.867+0.2583* hac)*0.32 

Split sampling (LS) 7.05 0.00 0.27 0.82 (0.867+0.2583* hac)*0.21 

Bootstrapping (LS) 7.06 -2.96 0.37 0.67 (0.867+0.2583* hac)*0.30 

Bootstrapping (MLE) 6.70 0.00 0.23 0.60 (0.867+0.2583* hac)*0.23 
LS = least square 

Table 6-13: Summary of results for all sampling techniques (overlay design) 

Levels Sampling technique SEE Bias C1 
C2 (hac < 

5 in.) 
C2 (5 in. <= hac <=12 in.) 

1 

No sampling (LS) 7.18 -3.09 0.20 0.87 (0.867+0.2583* hac)*0.34 

Split sampling (LS) 6.49 0.00 0.33 0.80 (0.867+0.2583* hac)*0.12 

Bootstrapping (LS) 6.98 -3.01 0.36 0.65 (0.867+0.2583* hac)*0.25 

Bootstrapping (MLE) 6.58 0.00 0.23 0.65 (0.867+0.2583* hac)*0.18 

2 

No sampling (LS) 7.08 -2.94 0.32 0.56 (0.867+0.2583* hac)*0.27 

Split sampling (LS) 6.91 0.00 0.20 0.60 (0.867+0.2583* hac)*0.20 

Bootstrapping (LS) 7.05 -3.00 0.35 0.65 (0.867+0.2583* hac)*0.26 

Bootstrapping (MLE) 6.69 0.00 0.24 0.66 (0.867+0.2583* hac)*0.19 

3 

No sampling (LS) 7.09 -2.97 0.30 0.77 (0.867+0.2583* hac)*0.29 

Split sampling (LS) 6.89 0.00 0.20 0.72 (0.867+0.2583* hac)*0.20 

Bootstrapping (LS) 6.97 -2.94 0.34 0.66 (0.867+0.2583* hac)*0.27 

Bootstrapping (MLE) 6.49 0.00 0.24 0.65 (0.867+0.2583* hac)*0.19 
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(a) SEE - new design 

 

(b) SEE – overlay design 

 

(c) Bias – new design 

 

(d) Bias – overlay design 

 

(e) SEE 

 

(f) Bias 

Figure 6-13: SEE and bias comparison of new vs. overlay design 

6.2 Fatigue Top-down Cracking Model 

The following section shows the calibration of the top-down cracking model. The model contains 

crack initiation and crack propagation models. Since the actual crack initiation time is not 

known, it was not possible to calibrate the crack initiation model separately. So, a single function 

was used by substituting the crack initiation function with the crack propagation function. Four 

coefficients from the crack initiation function (kL2, kL3, kL4, kL5) and two from the crack 

propagation function (C1, C2) have been calibrated. Only no sampling method was used for this 
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calibration. The PMED predicted the same performance for new and overlay designs; only a 

single set of plots is reported for both design approaches. Measured vs. predicted plots are 

appended in Appendix A. Table 6-14 summarizes model parameters for both design approaches. 

The SEE and bias at input Level 1 are acceptable. Figure 6-14 compares SEE and bias at each 

level.  

Table 6-14: Calibration results for top-down cracking 

Parameters 
Level 1 Level 2 Level 3 

Global Local Global Local Global Local 

SEE 4.657 3.672 4.629 3.670 4.402 3.732 

Bias -1.097 0.000 -0.093 0.000 0.310 0.000 

KL2 0.286 0.657 0.286 1.529 0.286 0.915 

KL3 0.011 0.100 0.011 0.028 0.011 0.105 

KL4 0.015 0.092 0.015 0.086 0.015 0.081 

KL5 3.266 2.044 3.266 1.702 3.266 1.376 

C1 2.522 0.097 2.522 0.105 2.522 0.057 

C2 0.807 2.416 0.807 2.336 0.807 3.143 
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(a) SEE 

 

(b) Bias 

 

(c) SEE 

 

(d) Bias 

Figure 6-14: SEE and bias comparison of new vs. overlay design 

6.3 Rutting Model 

Rutting in the PMED is a sum of permanent deformations from individual layers. The total 

measured rutting was calibrated against the sum of individual predicted rutting where β1r, βs1, 

and βsg1 were calibrated simultaneously to match measured performance. No sampling, split 

sampling, and bootstrapping techniques were used for local calibration. The detailed results are 

appended as section A-2 in Appendix A.  

6.3.1.1 Summary 

The statistical results of all sampling techniques are summarized in Tables 6-15 and 6-16 for new 

and overlay designs, respectively. The SEE and bias improved for all calibration approaches. 

Based on the results, both design approaches at Level 1 input produce better results. Figures 6-26 

illustrate the comparison of SEE and bias within each input level and calibration technique for 

new and overlay designs. The minimal SEE and bias were observed for an overlay calibration at 

Level 3.  
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Table 6-15: Summary of results for all sampling techniques (new design) 

Levels Sampling technique SEE Bias Br1 Bs1 Bsg1 

1 

No sampling (LS) 0.079 -0.002 0.445 0.101 0.851 

Split sampling (LS) 0.079 0.000 0.150 0.362 0.905 

Bootstrapping (LS) 0.079 -0.001 0.598 0.536 0.647 

Bootstrapping (MLE) 0.079 0.000 0.576 0.569 0.659 

2 

No sampling (LS) 0.081 -0.004 0.057 2.173 0.200 

Split sampling (LS) 0.079 0.000 0.169 0.309 0.844 

Bootstrapping (LS) 0.079 -0.004 0.378 0.865 0.422 

Bootstrapping (MLE) 0.078 0.000 0.313 0.540 0.617 

3 

No sampling (LS) 0.077 -0.001 0.176 0.926 0.626 

Split sampling (LS) 0.079 0.017 0.129 0.326 0.959 

Bootstrapping (LS) 0.078 -0.003 0.413 0.894 0.471 

Bootstrapping (MLE) 0.077 0.000 0.779 0.519 0.391 
LS = least square 

Table 6-16: Summary of results for all sampling techniques (overlay design) 

Levels Sampling technique SEE Bias Br1 Bs1 Bsg1 

1 

No sampling (LS) 0.082 -0.005 0.580 2.245 0.351 

Split sampling (LS) 0.080 0.000 0.331 0.297 0.953 

Bootstrapping (LS) 0.077 -0.002 0.361 0.504 0.510 

Bootstrapping (MLE) 0.077 0.000 0.359 0.542 0.552 

2 

No sampling (LS) 0.077 -0.001 0.233 0.930 0.676 

Split sampling (LS) 0.083 0.000 0.149 0.367 0.916 

Bootstrapping (LS) 0.079 -0.004 0.386 1.312 0.455 

Bootstrapping (MLE) 0.077 0.000 0.322 0.546 0.704 

3 

No sampling (LS) 0.076 -0.002 0.248 0.392 0.830 

Split sampling (LS) 0.081 0.000 0.129 0.326 0.959 

Bootstrapping (LS) 0.078 -0.003 0.463 1.270 0.489 

Bootstrapping (MLE) 0.076 0.000 0.816 0.258 0.520 
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(a) SEE - new design 

 

(b) SEE – overlay design 

 

(c) Bias – new design 

 

(d) Bias – overlay design 

 

(e) SEE 

 

(f) Bias 

Figure 6-15 SEE and bias (Rutting) comparison of new vs. overlay design 

6.4 Transverse (Thermal) Cracking Model 

The thermal cracking model was calibrated for all input levels in the PMED. The model 

calibration only considered sections with Performance Grade (PG) binder type. The thermal 

cracking model was calibrated as a single K-value by running PMED multiple times. Since 

reflective cracking is not critical distress in rubblized pavements, only the thermal cracking 

model was calibrated.  
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Although calibration coefficient K is a function of mean annual air temperature (MAAT), 

it was calibrated as a single value. For this purpose, the PMED was run at different K values for 

both designs. SEE and bias were determined for each value of K. Table 6-17 summarizes the 

SEE and bias for the global model and for different K values at each input level for both designs. 

Based on the SEE and bias, the recommended K-values for each design at each input level are 

marked in bold. Recalibration improved the SEE and bias, but thermal cracking predictions still 

show high variability. The predicted vs. measured plot can be found in Appendix A.   

6.4.1 Summary 

No sampling technique was used for calibration because all sections were run multiple times in 

PMED at different K-values. The SEE and bias improved for all calibration approaches. The 

results at level 1 and 2 are reasonable, but input Level 3 produced not acceptable K value as per 

MDOT’s practices. Figures 6-16 illustrate the comparison of SEE and bias within each input 

level and calibration technique for new and overlay designs. 

Table 6-17: Transverse thermal cracking results 

Design Level 1 Level 2 Level 3 

New 

K SEE Bias K SEE Bias K SEE Bias 

Global 1517.62 -1323.93 Global 1785.53 -1670.69 Global 632.72 346.72 

0.6 635.25 255.12 0.45 620.40 309.58 0.85 633.19 347.22 

0.65 704.48 145.38 0.55 705.21 136.94 1.5 619.26 327.15 

0.75 915.93 -91.91 0.65 937.46 -163.12 2 622.93 201.70 

0.8 964.95 -183.89 0.7 990.04 -383.00 2.5 719.99 -170.60 

0.85 989.44 -300.45 0.75 1105.58 -606.38 3.5 961.45 -540.56 

Overlay 

Global 1463.21 -1136.94 Global 1672.05 -1504.65 Global 631.56 345.49 

0.65 654.62 227.81 0.55 643.02 239.04 0.85 633.24 347.28 

0.75 773.46 93.18 0.65 723.88 30.88 2.0 316.34 129.92 

0.85 790.06 -96.98 0.75 861.64 -292.61 2.2 337.01 47.16 

0.9 830.13 -196.71 0.8 1006.69 -459.63 2.5 445.43 -32.19 

1.25 1281.30 -823.02 0.85 1135.35 -594.81 3.5 818.48 -353.66 
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(a) SEE 

 

(b) Bias 

 

(c) SEE 

 

(d) Bias 

Figure 6-16: SEE and bias comparison of new vs. overlay design 

6.5 IRI Model 

IRI is a linear function of initial IRI, rut depth, total fatigue cracking, transverse cracking, and 

site factor. The IRI model was calibrated after the local calibration of the fatigue, transverse 

cracking, and rutting models. 

6.5.1 Summary 

The statistical results of all sampling techniques are summarized in Tables 6-18 and 6-19 for new 

and overlay designs, respectively. The SEE and bias improved for all calibration approaches. 

Based on the results, both designs at input Level 1 produced better results. Figure 6-17 compares 

the SEE and bias for each input level within both design approaches and using four calibration 

techniques. Overall, both design using input level 1 and 3 are acceptable. 
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Table 6-18: Summary of results for all sampling techniques (new design) 

Levels Sampling technique SEE Bias C1 C2 C3 C4 

1 

No sampling (LS) 10.31 0.00 14.05 0.36 0.00 0.008 

Split sampling (LS) 9.34 0.00 10.22 0.42 0.00 0.002 

Bootstrapping (LS) 10.93 0.34 13.98 0.25 0.01 0.003 

Bootstrapping (MLE) 10.59 0.05 13.51 0.28 0.01 0.003 

2 

No sampling (LS) 10.02 0.00 9.86 1.93 0.00 0.003 

Split sampling (LS) 10.43 0.00 10.01 0.45 0.02 0.004 

Bootstrapping (LS) 12.99 0.02 12.68 0.33 0.02 0.004 

Bootstrapping (MLE) 10.61 0.27 14.33 0.51 0.01 0.003 

3 

No sampling (LS) 10.21 0.00 7.30 1.30 0.00 0.004 

Split sampling (LS) 10.03 0.43 19.39 0.32 0.01 0.003 

Bootstrapping (LS) 11.25 -0.08 13.15 0.32 0.01 0.003 

Bootstrapping (MLE) 10.52 0.00 19.56 0.44 0.01 0.003 
LS = least square 

Table 6-19: Summary of results for all sampling techniques (overlay design) 

Levels Sampling technique SEE Bias C1 C2 C3 C4 

1 

No sampling (LS) 10.29 0.00 28.19 0.61 0.00 0.004 

Split sampling (LS) 9.99 0.00 12.59 0.20 0.00 0.006 

Bootstrapping (LS) 11.22 0.12 13.43 0.24 0.01 0.004 

Bootstrapping (MLE) 10.38 0.13 13.24 0.34 0.01 0.003 

2 

No sampling (LS) 10.09 0.00 10.40 1.25 0.00 0.005 

Split sampling (LS) 10.69 0.00 10.64 0.13 0.00 0.008 

Bootstrapping (LS) 11.59 -0.06 12.69 0.15 0.01 0.004 

Bootstrapping (MLE) 10.55 0.22 16.78 0.22 0.01 0.003 

3 

No sampling (LS) 10.58 0.00 10.62 0.52 0.00 0.007 

Split sampling (LS) 10.60 0.33 17.76 0.15 0.01 0.002 

Bootstrapping (LS) 11.16 0.12 13.63 0.13 0.01 0.003 

Bootstrapping (MLE) 10.82 0.00 14.97 0.24 0.01 0.003 
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(a) SEE - new design 

 

(b) SEE – overlay design 

 

(c) Bias – new design 

 

(d) Bias – overlay design 

 

(e) SEE 

 

(f) Bias 

Figure 6-17: SEE and bias comparison of new vs. overlay design 

6.6 Reliability  

The calibration process and the PMED predictions are obtained at a reliability of 50%. The 

concept and method are discussed in Chapter 5. The pavements are generally designed with a 

reliability of 90-95% based on desired usage. This section summarizes the results of reliability 

for each model.  
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6.6.1 Bottom-up Cracking 

The measured and predicted cracking were sorted in bins based on the expected cracking. A 

relationship was developed between the standard deviation of the measured cracking and the 

mean predicted cracking. Tables 6-20 and 6-21 summarize the standard error equations for both 

approaches ing the bottom-up cracking model. Figure 6-18 compares the standard deviations of 

approaches 1 and 2 used to calibrate bottom-up cracking.  

Table 6-20: Standard error equations summary – bottom-up cracking only (approach 1) 

Design 
Sampling 

technique 
Global model equation Local model equation 

New 

Level 1 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.13

+
13

1 + 𝑒7.57−15.5×𝑙𝑜𝑔(𝐷+0.0001)
 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 0.9951

+
2.3915

1 + 𝑒0.1135−6.0511×𝑙𝑜𝑔(𝐷)
 

Level 2 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 0.6314

+
2.9354

1 + 𝑒0.00098−2.1243×𝑙𝑜𝑔(𝐷)
 

Level 3 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.055

+
2.3813

1 + 𝑒0.3771−3.1495×𝑙𝑜𝑔(𝐷)
 

Overlay 

Level 1 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.179 +
2.383

1 + 𝑒0.1721−4.096×𝑙𝑜𝑔(𝐷)
 

Level 2 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 0.7279

+
2.7976

1 + 𝑒0.0013−4.4145×𝑙𝑜𝑔(𝐷)
 

Level 3 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.0256

+
2.4828

1 + 𝑒0.0046−5.2091×𝑙𝑜𝑔(𝐷)
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Table 6-21: Standard error equations summary – bottom-up + top-down cracking (approach 2) 

Design 
Sampling 

technique 
Global model equation Local model equation 

New 

Level 1 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.13

+
13

1 + 𝑒7.57−15.5×𝑙𝑜𝑔(𝐷+0.0001)
 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.0332

+
3.3329

1 + 𝑒0.0003−1.7523×𝑙𝑜𝑔(𝐷)
 

Level 2 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 0.9264

+
3.4358

1 + 𝑒0.0002−1.5021×𝑙𝑜𝑔(𝐷)
 

Level 3 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.0414

+
3.3069

1 + 𝑒0.0097−1.5147×𝑙𝑜𝑔(𝐷)
 

Overlay 

Level 1 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.1179

+
3.5761

1 + 𝑒0.0008−3.4492×𝑙𝑜𝑔(𝐷)
 

Level 2 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.0532

+
3.2628

1 + 𝑒0.0006−4.3429×𝑙𝑜𝑔(𝐷)
 

Level 3 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

= 1.0742

+
3.3675

1 + 𝑒0.007−3.2995×𝑙𝑜𝑔(𝐷)
 

 

 

(a) Approach 1: Bottom-up only 

 

(b) Approach 2: Bottom-up + top-down 

Figure 6-18: Bottom-up cracking reliability comparison 
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6.6.2 Top-down Cracking 

The reliability of the top-down cracking model is estimated by developing a relationship between 

the standard deviation of the measured cracking and the mean predicted cracking. It is noted that 

predictions of top-down cracking for new and overlay designs are the same, so reliability was 

estimated for one of the design options. Table 6-22 outlines the standard error equations for the 

top-down cracking model. Figure 6-19 graphically represents the comparison between standard 

errors of each input level.  

Table 6-22: Top-down cracking standard error equations 

Design 
Sampling 

technique 
Global model equation Local model equation 

New/ 

Overlay 

Level 1 

𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.3657 × 𝑇𝑂𝑃

+ 3.6563 

𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.2846 × 𝑇𝑂𝑃

+ 2.8188 

Level 2 
𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.5658 × 𝑇𝑂𝑃

+ 1.8088 

Level 3 
𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.5534 × 𝑇𝑂𝑃

+ 1.9319 

 

 

Figure 6-19: Top-down cracking reliability comparison 

6.6.3 Rutting Model 

The rutting predictions using the calibrated model are at 50% reliability. The standard error 

equations were formulated using the standard deviation of the measured rutting and mean 

predicted rutting to incorporate reliability in the model. The reliability of the rutting model was 

estimated for individual layer models. Tables 6-23 show the standard error equation for AC and 

unbound layer’s rutting models for new and overlay designs at each input level. Figure 6-20 

shows the graphical comparison between the reliabilities of rutting models at different input 

levels for new and overlay designs.  
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Table 6-23: Standard error equations comparison of rutting model 

Design/ 

Level 

Pavement 

layer 
Global model equation Local model equation 

HMA 

rutting 

New 

Level 1 

𝑠𝑒(𝐻𝑀𝐴) = 0.24(𝑅𝑢𝑡𝐻𝑀𝐴)0.8026

+ 0.001 

𝑠𝑒(𝐻𝑀𝐴)

= 0.0971(𝑅𝑢𝑡𝐻𝑀𝐴)0.3506 

New 

Level 2 

𝑠𝑒(𝐻𝑀𝐴)

= 0.0913(𝑅𝑢𝑡𝐻𝑀𝐴)0.3423 

New 

Level 3 

𝑠𝑒(𝐻𝑀𝐴)

= 0.0644(𝑅𝑢𝑡𝐻𝑀𝐴)0.202 

Overlay 

Level 1 

𝑠𝑒(𝐻𝑀𝐴)

= 0.089(𝑅𝑢𝑡𝐻𝑀𝐴)0.4613 

Overlay 

Level 2 

𝑠𝑒(𝐻𝑀𝐴)

= 0.0732(𝑅𝑢𝑡𝐻𝑀𝐴)0.3073 

Overlay 

Level 3 

𝑠𝑒(𝐻𝑀𝐴)

= 0.0672(𝑅𝑢𝑡𝐻𝑀𝐴)0.2352 

Base 

Rutting 

New 

Level 1 

𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.1477(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.6711

+ 0.001 

𝑠𝑒(𝑏𝑎𝑠𝑒)

= 0.0204(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.3438 

New 

Level 2 

𝑠𝑒(𝑏𝑎𝑠𝑒)

= 0.0346(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.4769 

New 

Level 3 

𝑠𝑒(𝑏𝑎𝑠𝑒)

= 0.0154(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.4522 

Overlay 

Level 1 

𝑠𝑒(𝑏𝑎𝑠𝑒)

= 0.0306(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.3879 

Overlay 

Level 2 

𝑠𝑒(𝑏𝑎𝑠𝑒)

= 0.0363(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.4066 

Overlay 

Level 3 

𝑠𝑒(𝑏𝑎𝑠𝑒)

= 0.0128(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.2804 

Subgrade 

Rutting 

New 

Level 1 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

= 0.1235(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.5012

+ 0.001 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

= 0.0097(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.7809

 

New 

Level 2 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

= 0.008(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.7101

 

New 

Level 3 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

= 0.0054(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.6123

 

Overlay 

Level 1 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

= 0.0121(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.8892

 

Overlay 

Level 2 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

= 0.0069(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.506

 

Overlay 

Level 3 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

= 0.0056(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.6628
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6.6.4 Transverse (Thermal) Cracking  

The standard error equations were developed using the standard deviation of the measured 

cracking and mean predicted cracking, as explained in Chapter 5. Table 6-24 summarizes the 

standard error equations for all input levels and design options. Figure 6-21 shows the standard 

error equation plots for transverse (thermal) cracking. 

Table 6-24: Standard error equations summary of thermal cracking model 

Design 
Sampling 

technique 
Global model equation Local model equation 

Level 1 
New 

𝑠𝑒 = 0.14(𝑇𝐶) + 168 
𝑠𝑒 = 0.015(𝑇𝐶) + 238.84 

Overlay 𝑠𝑒 = 0.0653(𝑇𝐶) + 167.75 

Level 2 
New 

𝑠𝑒 = 0.20(𝑇𝐶) + 168 
𝑠𝑒 = 0.0375(𝑇𝐶) + 194.34 

Overlay 𝑠𝑒 = 0.0653(𝑇𝐶) + 167.75 

Level 3 
New 

𝑠𝑒 = 0.289(𝑇𝐶) + 168 
𝑠𝑒 = 0.0325(𝑇𝐶) + 213.53 

Overlay 𝑠𝑒 = 0.0394(𝑇𝐶) + 184.48 

 

 

(a) AC rutting 

 

(b) Base rutting 

 

(c) Subgrade rutting 

Figure 6-20: Reliability comparison of rutting models 
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Figure 6-21: Reliability comparison of the thermal cracking model 

6.7 Impact of Calibration 

The accuracy in PMED design is subjected to an optimum solution of transfer function 

coefficients by reliable local calibration results by minimizing the error between measured and 

predicted performance. In this section, rubblized pavement sections with variable traffic and 

different climatic regions were designed using locally calibrated transfer function coefficients. 

Eleven random sections were designed as new and overlaid using PMED to analyze the impact 

of local calibration. MDOT recommends a minimum of 6.5-inch HMA thickness over rubblized 

PCC with a maximum of ± 1 inch from the original thickness achieved from AASHTO93. Table 

6-25 shows selected sections' traffic, climate region, and other layer properties.  

Table 6-25: Summary of selected sections used for design 

No. Region Traffic (ADT) 

Unbound layers 

Base Subbase Subgrade 

Thickness 

(in.) 

Modulus 

(psi) 

Thickness 

(in.) 

Modulus 

(psi) 

Modulus 

(psi) 

1 North 1081 4 30000 10 13500 4400 

2 North 847 6 30000 14 13500 7000 

3 University 2492 7 30000 10 13500 5000 

4 North 1398 - 30000 11 13500 4400 

5 Bay 2619 3 30000 11 13500 5000 

6 Bay 2844 3 30000 11 13500 5000 

7 Bay 1917 3 30000 11 13500 5000 

8 North 972 3 30000 11 13500 4400 

9 University 715 7.5 30000 10 13500 4400 

10 University 318 7.5 30000 10 13500 4400 

11 North 399 3 30000 13 13500 7000 

These sections were designed at PMED input Level 1 using both design options for HMA 

over rubblized PCC, i.e., new flexible and an overlay design. The local calibration coefficients of 
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the bottom-up cracking model were based on approach 2 (measured bottom-up + top-down 

cracking in wheel path). Table 6-26 compares the design thickness between the new and overlay 

designs. It is pertinent to mention that these design thicknesses are directly obtained from PMED 

to compare AASHTO and PMED design options. However, MDOT recommends not deviating 

+-1 inches from the original AASHTO93 design thickness (4). Figure 6-22 shows the thickness 

comparison and average thickness along with the standard deviation.  

Table 6-26: Designed thicknesses comparison for HMA overlay over rubblized PCC 

Section no. 
AASHTO93 

thickness (in.) 

PMED thickness (in.) 

New Design Overlay Design 

1 6.7 5 4.5 

2 6.5 5 6 

3 7 5 5 

4 6.5 6.5 6 

5 6.5 6 5.25 

6 6.5 6 5.25 

7 6.5 6 5.25 

8 8.5 7 7 

9 6.5 4.5 4.5 

10 6.5 5 4.5 

11 6.5 5.25 4.5 

Average 6.745 5.568 5.250 

Standard Deviation 0.602 0.775 0.806 

 

 
(a) Design thicknesses comparison  

 
(b) Average thicknesses 

Figure 6-22: Design thicknesses comparison between AASHTO93 and PMED designs 

6.8 Summary of Findings 

This chapter outlines the calibration comparison for an overlay and new design approaches of 

rubblized pavements using different calibration techniques. The fatigue bottom-up, total rutting 

and IRI models are calibrated using all four calibration techniques discussed earlier. Three 



142 

 

distributions are used in MLE, and the most suitable distribution is selected based on NLL, AIC, 

and BIC values. The top-down and thermal cracking models are calibrated using no sampling 

technique only. PMED predicted the distresses and roughness at 50% reliability. Standard error 

equations for all distress models were developed to design the pavement sections at the desired 

reliability level (90%).   

Once all the models are locally calibrated and validated, each model's final model 

statistics and coefficients are summarized. The following are the recommended final results for 

the locally calibrated models for Michigan conditions. It was found that there is no significant 

difference between the new and overlay design of rubblized pavement, and the input levels 1 

produced better results; however, Level 3 results are acceptable where Level 1 data is not 

available. The bootstrapping technique led to the most robust calibration with minimum standard 

error and bias.  

Table 6-27 summarizes the new design's global and locally calibrated model coefficients using 

input Level 3. 
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Table 6-27: Summary - locally calibrated model coefficients 

Performance 

prediction model 

Global 

coefficient 

Local 

coefficient 

Selected 

distribution 

Statistical 

parameters 

Global 

model 

Local 

model 

Approach 1: 

Fatigue cracking 

– Bottom-up 

only 
𝐶1 = 1.31 
𝐶2 =
2.1585 (hac 

<5 in.) 

𝐶2

= (0.867
+ 0.2583
∗ ℎ𝑎𝑐) ∗ 1 

(5 in. <= hac 

<=12 in.) 

𝐶1 = 0.20 
𝐶2 =
1.07 (hac <5 

in.) 

𝐶2

= (0.867
+ 0.2583
∗ ℎ𝑎𝑐)
∗ 0.28 
(5 in. <= hac 

<=12 in.) 
Exponential 

SEE 7.17 5.69 

Bias -4.77 0.00 

NLL - 142 

AIC - 286 

BIC - 288 

Approach 2: 

Fatigue cracking 

– Bottom-up + 

top-down 

𝐶1 = 0.24 
𝐶2 =
0.60 (hac <5 

in.) 

𝐶2

= (0.867
+ 0.2583
∗ ℎ𝑎𝑐)
∗ 0.20 
(5 in. <= hac 

<=12 in.) 

SEE 7.59 6.72 

Bias -4.29 0.00 

NLL - 242 

AIC - 486 

BIC - 489 

Top-down 

cracking 

K𝐿2 = 0.286 
K𝐿3 = 0.011 
K𝐿4 = 0.015 
K𝐿5 = 3.266 

𝐶1 = 2.522 
𝐶2 = 0.807 

K𝐿2 = 0.657 
K𝐿3 = 0.100 
K𝐿4 = 0.092 
K𝐿5 = 2.044 

𝐶1 = 0.097 
𝐶2 = 2.416 

- 

SEE 4.402 3.672 

Bias 0.310 0.000 

Rutting 

𝛽1𝑟 = 0.4 

𝛽𝑠1 = 1 

𝛽𝑠𝑔1 = 1 

𝛽1𝑟 = 0.576 

𝛽𝑠1 = 0.569 

𝛽𝑠𝑔1

= 0.659 

Exponential 

SEE 0.096 0.079 

Bias 0.055 0.000 

NLL - 383 

AIC - 768 

BIC - 771 

Transverse 

(thermal) 

cracking 
𝐾 = 1.0 𝐾 = 0.65 - 

SEE 1517.6 704.48 

Bias 
-

1323.9 
145.38 

IRI 

𝐶1 = 40.026 

𝐶2 = 0.40 
𝐶3 = 0.008 

𝐶4 = 0.015 

𝐶1 = 13.51 

𝐶2 = 0.28 

𝐶3 = 0.01 

𝐶4 = 0.003 

Normal 

SEE 15.79 10.59 

Bias 10.92 0.05 

NLL - 1182 

AIC - 2368 

BIC - 2375 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

The study's first objective was to compare the performance predictions of the two design 

approaches for rubblized pavements, i.e., new and overlay, at three hierarchical input levels. 

Forty-eight rubblized sections were available throughout the different climate regions of 

Michigan state. In option 1, these sections were designed as new flexible pavement, modeling 

rubblized PCC layer as unbound aggregate base material with a modulus of 70,000 psi. Design 

option 2 modeled the rubblized pavement as an HMA overlay over fractured JPCP with a 

minimum modulus of 150,000 psi for the fractured JPCP layer. Chapter 3 discusses the selection 

process of the pavement sections and other inputs used in the evaluation of rubblized pavement 

performance predictions.  

The study's second objective was to calibrate the performance prediction models locally 

at three hierarchical input levels and recommend a suitable option for MDOT design practices. 

Various calibration and sampling techniques minimize the local model's SEE and bias. For 

fatigue bottom-up cracking, the study used no sampling, traditional split sampling, and 

bootstrapping techniques, while for total rutting and IRI models, least square regression and 

maximum likelihood estimation (MLE) approaches are adopted. Only least square regression is 

used to calibrate the top-down cracking model. However, transverse thermal cracking is 

calibrated by running the PMED multiple times at a range of K-values.  

The next objective was to perform a sensitivity analysis of transfer function coefficients 

using SSCs over the entire range of available sections and independent variables. The sensitivity 

analysis used various distresses and roughness while not changing the material inputs. The SSC-

based ranking was compared with NSI values reported by Kim et al. (2014).  

7.1 Conclusions 

The following conclusions can be drawn based on the work performed. 

a. The global model under-predicted the bottom-up fatigue cracking for new and overlay 

designs at all hierarchical input levels. Fatigue bottom-up cracking was calibrated using 

two different approaches; approach 1 uses bottom-up measured cracking only, and in 

approach 2, the bottom-up and top-down measured cracking in the wheel path was 

assumed as bottom-up cracking. Local calibration of an overlay and new design at input 
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Level 1 produced acceptable results with minimum SEE and bias using exponential 

distribution in MLE.  

b. No difference was observed in top-down global prediction for new and overlay designs. 

No sampling technique using least square regression was adopted for local calibration of 

top-down cracking—the local calibration of top-down cracking at hierarchical input level 

1 produced minimum SEE and bias. The SEE was reduced from 4.657 to 3.672, and the 

bias was improved from -1.097 to 0.00.  

c. The global model for new and overlay design approaches slightly over-predicted the total 

rutting. The local calibration used all sampling techniques. The MLE using exponential 

distribution produced acceptable results for the new design at input Level 1; however, the 

difference between the new and overlay design after local calibration at hierarchical input 

levels 1 and 3 was insignificant. The SEE was reduced from 0.096 to 0.079, and the bias 

was reduced from 0.055 to 0.00. 

d. Transverse thermal cracking was over-predicted at input Levels 1 and 2, whereas Level 3 

under-predicted thermal cracking. The local calibration of an overlay design at input 

Levels 1 and 2 produced acceptable results per MDOT’s practices. The K value for input 

Level 3 through local calibration exceeded 2 in both design approaches, which is not 

aligned with MDOT practices. As a result, it was rejected. Overall, the input Level 1 of 

the new design produced minimum SEE and bias. The SEE was reduced from 1517.62 to 

704.48, and the bias was reduced from -1323.93 to 145.38.  

e. IRI was slightly over-predicted by the global model for new and overlay design. No 

sampling, split sampling, or bootstrapping sampling techniques were used in the least 

square regression analysis, and only bootstrapping was used in the MLE analysis of the 

IRI model. The normal distribution using the MLE approach for new designs at input 

Level 1 produced better results; however, the difference between an overlay and new 

designs at input Level 1 is insignificant. The SEE was reduced from 21.48 to 10.59, and 

the bias was reduced from 19.02 to 0.05.  

f. The standard error equations were obtained based on the predicted and measured 

performance to design the pavement sections at the desired reliability level. No 

significant difference was noted between standard error equations at three hierarchical 

input levels.  
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g. Eleven (11) random sections with varying traffic and climate regions were designed at 

90% reliability to validate the impact of calibration for designed thicknesses. All these 

sections were designed as new and overlay to get the optimum thickness of the AC layer 

and then compared with AASHTO93 design thicknesses. The overlay design yielded 

minimum thickness compared to the new design and AASHTO93 design. The average 

difference between the AASHTO93 design and the PMED overlay design was around 1.5 

inches, and the average difference between the new and overlay design using PMED was 

about 0.32 inches. 

h. Sensitivity analysis using SSCs is a forward problem and does not require actual data; 

only a mathematical model is needed to analyze the sensitivity of coefficients over the 

range of the independent variables. 

i. SSCs provide a visual representation of the variability in the sensitivity of the coefficient 

at a continuous range of independent variables. Unlike NSI, a point estimate, SSCs make 

it easier for users to understand and interpret the sensitivity results. 

j. For a wide range of damage in the bottom-up cracking model, C1 is more sensitive than 

C2, and both are not correlated. Moreover, C1 and C2 are large enough to be confidently 

estimated. However, for a narrow range of damage, the sensitivity of the calibration 

coefficients is the same, i.e., C2 is as sensitive as C1 if the damage is less than 18 %. 

Coefficients with negative SSCs indicate that an increase in the coefficient will decrease 

predicted performance. Therefore, an increase in C1 or C2 will reduce bottom-up cracking. 

k. The sensitivity of coefficients changes with the independent variables t (analysis time in 

days) and t0 (time to crack initiation). Overall, C3 is the most sensitive coefficient, 

followed by C2 and C1. C1 and C2 are correlated, indicating that only one can be 

confidently estimated. All coefficients have negative SSC values, which means an 

increase in any of the coefficients will reduce the predicted top-down cracking. 

l. Subgrade rutting coefficient (𝛽𝑠𝑔1) is the most sensitive, followed by the AC rutting 

coefficient (𝛽1𝑟). The base rutting coefficient ( 𝛽𝑠1) is the least sensitive. All coefficients 

are not correlated, and the magnitude of SSCs is large enough to be estimable with 

confidence. SSC values are positive for all coefficients, which indicates an increase in 

individual layer rutting with an increase in coefficient value.  
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m. Likewise, the rutting model, the IRI for flexible pavements, is linear. The site factor 

coefficient C4 is the most sensitive, followed by the total rutting coefficient C1 and 

thermal cracking coefficient C3. Meanwhile, the fatigue cracking coefficient C2 is the 

least sensitive. All coefficients have positive values for SSCs, which means that with an 

increase in coefficient value, the IRI-predicted performance will increase. 

7.2 Recommendations 

The following recommendations would improve the design and calibration methodology of 

rubblized pavements.  

a. It is recommended for sensitivity analysis to use SSCs, as it is a convenient way of visual 

representation. Coefficients are ranked over a continuous range of independent variables. 

Visualizing the sensitivity of the model's coefficients through SSCs is a more practical 

approach for straightforward interpretation. 

b. The local calibration of an overlay design and a new design has no significant difference 

after calibration. Therefore, MDOT’s existing practices of designing rubblized pavement 

as new flexible pavement is recommended.  

c. The global performance prediction and local calibration results of new and overlay 

designs at input Level 1 are not significantly different. Level 1 input is recommended to 

design rubblized pavement using any design approach accurately.  

d. Overall, PMED resulted in a thinner AC layer than AASHTO93 designs. It is 

recommended to use PMED design as compared to AASHTO93.  

e. A total of 48 sections were used in this study. It is recommended to include more sections 

of rubblized pavement in the MDOT database with additional performance data points. 

f. Resampling techniques provide more robust results; hence, these techniques can improve 

local calibration.  

g. Local calibration using the MLE approach is recommended for bottom-up cracking and 

rutting models.  

7.3 Future Work 

The study recommends the following future work. 

a. The default properties of the existing rubblized PCC layer were used in this study. It is 

recommended for future work to characterize the in situ properties of the existing layer. 
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b. The modulus, crack spacing, and LTE directly affect the predicted performance. For 

example, if rubblization is not done correctly, it could lead to reflective cracking in the 

HMA overlay of rubblzied pavements. The actual data on the existing layer will further 

improve the design of rubblized pavements. 

c. This study did not include the reflection cracking model of an overlay design. The 

reflection cracking model in future studies may be included to observe the rubblized 

pavement response. 

d. Different distributions can be used to improve the calibration results further using MLE. 
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APPENDIX 

A.1 Top-down Cracking Model 

A.1.1 No Sampling 

 

(a)  New vs. overlay - level 1 

 

(b)  New vs. overlay - level 2 

 

(c) New vs. overlay - level 3 

Figure A- 1: Measured and predicted top-down-cracking (time series) 
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(a) Global model (level 1) (b) Local model (level 1) 

(c) Global model (level 2) (d) Local model (level 2) 

(e) Global model (level 3) (f) Local model (level 3) 

Figure A- 2: Predicted vs. measured top-down cracking (No sampling) 

A.2 Total Rutting Model 

A.2.1 No Sampling 

Total predicted rutting is simply the sum of rutting predictions for individual layers. Figure A-3 

shows the measured and predicted total rutting with time. Figures A-4 and A-5 simultaneously 

show the predicted vs. measured total rutting for both design approaches at global and local 

models. Table A-1 shows the calibration results for the global and local models. The SEE and 
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bias are minimal for calibrating overlay design predictions at Level 3. However, a negligible 

difference is noted between Levels 2 and 3 values. The predictions are close to the measured 

values for most of the rutting range. 

Table A- 1: Local calibration summary for total rutting (No sampling) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

Br1 0.400 0.445 0.400 0.580 0.400 0.057 0.400 0.233 0.400 0.176 0.400 0.248 

Bs1 1.000 0.101 1.000 2.245 1.000 2.173 1.000 0.930 1.000 0.926 1.000 0.392 

Bsg1 1.000 0.851 1.000 0.351 1.000 0.200 1.000 0.676 1.000 0.626 1.000 0.830 

SEE 0.099 0.079 0.088 0.082 0.122 0.081 0.103 0.077 0.111 0.077 0.095 0.076 

Bias 0.057 -0.002 0.038 -0.005 0.089 -0.004 0.065 -0.001 0.076 -0.001 0.054 -0.002 

 

 

(a) New vs. overlay - level 1 

 

(b) New vs. overlay - level 2 

 

(c) New vs. overlay - level 3 

Figure A- 3: Measured vs. predicted with time series for total rutting 
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(a) Global model (level 1) 

 

(b) Local model (level 1) 

 

(c) Global model (level 2) 

 

(d) Local model (level 2) 

 

(e) Global model (level 3) 

 

(f) Local model (level 3) 

Figure A- 4: Predicted vs. measured total rutting (No sampling) – New design 
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(a) Global model (level 1) 

 

(b) Local model (level 1) 

 

(c) Global model (level 2) 

 

(d) Local model (level 2) 

 

(e) Global model (level 3) 

 

(f) Local model (level 3) 

Figure A- 5: Predicted vs measured total rutting (No sampling) – Overlay design 

A.2.2 Split Sampling 

Split sampling was performed on 70% of the sections for the calibration set and 30% for the 

validation set. Figures A-6 and A-7 show the predicted vs. measured for calibration and 

validation set for both design approaches. Tables A-2 and A-3 show the calibration and 

validation results. Both SEE and bias significantly improved. Validations results are also 

satisfactory.  
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Table A- 2: Local calibration summary for total rutting (calibration set) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

Br1 0.40 0.15 0.40 0.33 0.40 0.17 0.40 0.15 0.40 0.13 0.40 0.13 

Bs1 1.00 0.36 1.00 0.30 1.00 0.31 1.00 0.37 1.00 0.33 1.00 0.33 

Bsg1 1.00 0.90 1.00 0.95 1.00 0.84 1.00 0.92 1.00 0.96 1.00 0.96 

SEE 0.10 0.08 0.09 0.08 0.12 0.08 0.11 0.08 0.12 0.08 0.10 0.08 

Bias 0.06 0.00 0.04 0.00 0.08 0.00 0.06 0.00 0.08 0.02 0.05 0.00 

Table A- 3: Local calibration summary for total rutting (validation set) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

Br1 0.40 0.15 0.40 0.33 0.40 0.17 0.40 0.15 0.40 0.13 0.40 0.13 

Bs1 1.00 0.36 1.00 0.30 1.00 0.31 1.00 0.37 1.00 0.33 1.00 0.33 

Bsg1 1.00 0.90 1.00 0.95 1.00 0.84 1.00 0.92 1.00 0.96 1.00 0.96 

SEE 0.10 0.08 0.08 0.11 0.13 0.08 0.10 0.06 0.10 0.08 0.09 0.07 

Bias 0.06 -0.01 0.03 -0.08 0.10 0.00 0.08 0.01 0.06 -0.01 0.06 0.01 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 6: Predicted vs. measured total rutting (split sampling) – calibration set 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 7: Predicted vs. measured total rutting (split sampling) – validation set 

A.2.3 Bootstrapping 

Bootstrapping was performed with 1000 bootstrap samples with replacement. Tables A-4 and A-

5 summarize the calibration results for the global and local models. SEE and bias significantly 

improved for all models. Overall, an overlay design at Level 3 input produced better results. 

Figures A-8 and A-9 show the local model’s measured versus predicted and residual distribution 

plots for the 1000 bootstrap samples, respectively.  
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Table A- 4: Bootstrapping global model summary 

Parameters 
Levels 1 2 3 

Design New Overlay New Overlay New Overlay 

Br1 
Mean 

0.40 
Median 

Bs1 
Mean 

1.00 
Median 

Bsg1 
Mean 

1.00 
Median 

SEE 
Mean 0.099 0.088 0.122 0.104 0.111 0.096 

Median 0.099 0.088 0.122 0.104 0.111 0.096 

Bias 
Mean 0.057 0.038 0.088 0.065 0.076 0.055 

Median 0.057 0.038 0.088 0.065 0.077 0.055 

Table A- 5: Bootstrapping local calibration results summary 

Parameters 
Levels 1  2  3  

Design New Overlay New Overlay New Overlay 

Br1 
Mean 0.598 0.361 0.378 0.386 0.413 0.463 

Median 0.592 0.361 0.342 0.305 0.329 0.383 

Bs1 
Mean 0.536 0.504 0.865 1.312 0.894 1.27 

Median 0.554 0.512 0.776 0.956 0.801 0.94 

Bsg1 
Mean 0.647 0.51 0.422 0.455 0.471 0.489 

Median 0.659 0.508 0.386 0.461 0.467 0.522 

SEE 
Mean 0.079 0.077 0.079 0.079 0.078 0.078 

Median 0.078 0.077 0.079 0.079 0.078 0.078 

Bias 
Mean -0.001 -0.002 -0.004 -0.004 -0.003 -0.003 

Median -0.001 -0.002 -0.004 -0.003 -0.003 -0.002 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 8: Measured vs. predicted for local model (bootstrapping) 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 9: Residual distribution (bootstrapping) 

A.2.4 Maximum Likelihood Estimation (MLE) 

The exponential distribution significantly improved the bias; however, a negligible difference in 

SEE is noted for least square and MLE. Tables A-6 and A-7 show exponential distribution 

calibration summary results. Figures A-10 and A-11 present the measured vs. predicted and 

residual distribution, respectively. Table A-8 compares statistical parameters between least 

squares and MLE.  
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Table A- 6: Global model summary - bootstrapping using MLE (exponential distribution) 

Parameters 
Levels 1 2 3 

Design New Overlay New Overlay New Overlay 

Br1 
Mean 

0.40 
Median 

Bs1 
Mean 

1.00 
Median 

Bsg1 
Mean 

1.00 
Median 

SEE 
Mean 0.099 0.088 0.122 0.104 0.111 0.096 

Median 0.099 0.088 0.122 0.104 0.111 0.096 

Bias 
Mean 0.057 0.038 0.088 0.065 0.076 0.055 

Median 0.057 0.038 0.088 0.065 0.077 0.055 

Table A- 7: Local model summary - bootstrapping using MLE (exponential distribution) 

Parameters 
Levels 1  2  3  

Design New Overlay New Overlay New Overlay 

Br1 
Mean 0.576 0.359 0.313 0.322 0.779 0.816 

Median 0.573 0.36 0.31 0.319 0.779 0.813 

Bs1 
Mean 0.569 0.542 0.54 0.546 0.519 0.258 

Median 0.574 0.524 0.532 0.548 0.52 0.257 

Bsg1 
Mean 0.66 0.552 0.617 0.704 0.391 0.52 

Median 0.665 0.551 0.622 0.705 0.392 0.527 

SEE 
Mean 0.079 0.078 0.078 0.077 0.077 0.076 

Median 0.079 0.078 0.077 0.077 0.077 0.076 

Bias 
Mean 0 0 0 0 0 0 

Median 0 0 0 0 0 0 

Table A- 8: Local model statistics 

Levels Design 

Parameters 

MLE Least square 

NLL AIC BIC NLL AIC BIC 

1 
New 383.29 768.59 771.68 928.96 1861.93 1868.11 

Overlay 383.12 768.25 771.34 4540.59 9085.17 9091.36 

2 
New 382.93 767.87 770.96 952.45 1908.90 1915.09 

Overlay 383.04 768.09 771.18 1005.40 2014.80 2020.99 

3 
New 383.12 768.24 771.33 958.98 1921.95 1928.14 

Overlay 383.09 768.18 771.27 1014.25 2032.51 2038.70 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 10: Local models’ measured vs. predicted using MLE (exponential distribution) 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 11: Residual distribution using MLE (exponential distribution) 

  



168 

 

A.3 Transverse Thermal Cracking 

A.3.1 No Sampling 

 

(a) New vs. overlay - level 1 

 

(b) New vs. overlay - level 2 

 

(c) New vs. overlay - level 3 

Figure A- 12: Measured vs. predicted thermal cracking with time 
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(a) Global model (level 1) 

 

(b) Local model – K = 0.65 (level 1) 

 

(c) Global model (level 2) 

 

(d) Local model – K = 0.55 (level 2) 

 

(e) Global model (level 3) 

 

(f) Local model – K = 2.0 (level 3) 

Figure A- 13: Predicted vs measured thermal cracking (No sampling) – New design 
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(a) Global model (level 1) 

 

(b) Local model – K = 0.85 (level 1) 

 

(c) Global model (level 2) 

 

(d) Local model – K = 0.65 (level 2) 

 

(e) Global model (level 3) 

 

(f) Local model – K = 2.2 (level 3) 

Figure A- 14: Predicted vs measured thermal cracking (No sampling) – Overlay design 

A.4 IRI Model 

A.4.1 No Sampling 

This method used the entire dataset to calibrate the predicted IRI against the total measured 

performance. Figures A-15 and A-16 show the predicted vs. measured IRI for the global and 

local models for new and an overlay design, respectively. Table A-9 shows the summary of 
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model parameters using no sampling technique. SEE and bias are significantly enhanced from 

local calibration. Figure A-17 shows the measured and predicted IRI with time. 

 

(a) Global model (level 1) 

 

(b) Local model (level 1) 

 

(c) Global model (level 2) 

 

(d) Local model (level 2) 

 

(e) Global model (level 3) 

 

(f) Local model (level 3) 

Figure A- 15: Predicted vs. measured IRI (No sampling) – New design  
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(a) Global model (level 1) 

 

(b) Local model (level 1) 

 

(c) Global model (level 2) 

 

(d) Local model (level 2) 

 

(e) Global model (level 3) 

 

(f) Local model (level 3) 

Figure A- 16: Predicted vs. measured IRI (No sampling) – Overlay design 
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(a) New vs. overlay - level 1 

 

(b) New vs. overlay - level 2 

 

(c) New vs. overlay - level 3 

Figure A- 17: Measured vs. predicted IRI with time 

Table A- 9: Local calibration summary for IRI (No sampling) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

C1 40.00 14.05 40.00 28.19 40.00 9.86 40.00 10.40 40.00 7.30 40.00 10.62 

C2 0.40 0.36 0.40 0.61 0.40 1.93 0.40 1.25 0.40 1.30 0.40 0.52 

C3 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

C4 0.02 0.01 0.02 0.00 0.02 0.00 0.02 0.01 0.02 0.00 0.02 0.01 

SEE 21.27 10.31 20.54 10.29 24.41 10.02 23.05 10.09 16.33 10.21 15.76 10.58 

Bias 18.45 0.00 17.38 0.00 21.99 0.00 20.45 0.00 11.67 0.00 10.87 0.00 

 

A.4.2 Split Sampling 

The entire dataset was split into two parts, with 70% of the sections used for calibration and 30% 

for validation using a split sampling approach. Figures A-18 and A-19 show the predicted vs. 

measured IRI for calibration and validation. Tables A-10 and A-11 summarize the model 

parameters for the calibration and validation set. 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 18: Predicted vs. measured IRI (split sampling) – calibration set 
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(a)  Level 1 – local model (new design) 

 

(b)  Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 19: Predicted vs measured IRI (split sampling) – validation set 
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Table A- 10: Local calibration summary for IRI (calibration set) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

C1 40.00 10.22 40.00 12.59 40.00 10.01 40.00 10.64 40.00 19.39 40.00 17.76 

C2 0.40 0.42 0.40 0.20 0.40 0.45 0.40 0.13 0.40 0.32 0.40 0.15 

C3 0.01 0.00 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01 

C4 0.02 0.00 0.02 0.01 0.02 0.00 0.02 0.01 0.02 0.00 0.02 0.00 

SEE 21.48 9.34 20.21 9.99 24.07 10.43 22.54 10.69 16.80 10.03 15.80 10.60 

Bias 19.02 0.05 16.99 0.13 21.74 0.27 19.92 0.22 12.26 0.43 10.93 0.33 

 

Table A- 11: Local calibration summary for IRI (validation set) 

Parameter 

Level 1 Level 2 Level 3 

New Overlay New Overlay New Overlay 

Global Local Global Local Global Local Global Local Global Local Global Local 

C1 40.00 10.22 40.00 12.59 40.00 10.01 40.00 10.64 40.00 19.39 40.00 17.76 

C2 0.40 0.42 0.40 0.20 0.40 0.45 0.40 0.13 0.40 0.32 0.40 0.15 

C3 0.01 0.00 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01 

C4 0.02 0.00 0.02 0.01 0.02 0.00 0.02 0.01 0.02 0.00 0.02 0.00 

SEE 21.01 12.51 21.51 11.01 25.46 12.80 24.48 10.17 15.34 11.76 15.87 11.41 

 

A.4.3 Bootstrapping 

Tables A-12 and A-13 summarize the calibration results for the global and local models. Figures 

A-20 and A-21 show the local model’s measured versus predicted and residual distribution plots 

for the 1000 bootstrap samples, respectively. The SEE and bias improved in after local 

calibration. 

Table A- 12: Bootstrapping global model summary 

Parameters 
Levels 1 2 3 

Design New Overlay New Overlay New Overlay 

C1 
Mean 

40.00 
Median 

C2 
Mean 

0.40 
Median 

C3 
Mean 

0.01 
Median 

C4 
Mean 

0.02 
Median 

SEE 
Mean 21.28 20.5 24.37 23.03 16.34 15.79 

Median 21.26 20.48 24.37 23.03 16.35 15.81 

Bias 
Mean 18.47 17.34 21.95 20.44 11.71 10.92 

Median 18.48 17.34 21.96 20.46 11.7 10.94 
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Table A- 13: Bootstrapping local calibration results summary 

Parameters 
Levels 1  2  3  

Design New Overlay New Overlay New Overlay 

C1 
Mean 13.98 13.43 12.68 12.69 13.15 13.63 

Median 11.08 11.14 11.07 11.03 11.1 11.07 

C2 
Mean 0.25 0.24 0.33 0.15 0.32 0.13 

Median 0.18 0.1 0.14 0.08 0.13 0.06 

C3 
Mean 0.01 0.01 0.02 0.01 0.01 0.01 

Median 0.01 0.01 0.01 0.01 0.01 0.01 

C4 
Mean 0.003 0.004 0.004 0.004 0.003 0.003 

Median 0.003 0.003 0.002 0.003 0.002 0.002 

SEE 
Mean 10.93 11.22 12.99 11.59 11.25 11.16 

Median 10.59 10.84 11.37 11.03 10.95 10.99 

Bias 
Mean 0.34 0.12 0.02 -0.06 -0.08 0.12 

Median 0.24 0.05 -0.03 -0.16 -0.24 -0.13 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 20: Measured vs. predicted for local model (bootstrapping) 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 21: Residual distribution (bootstrapping) 

A.4.4 Maximum Likelihood Estimation (MLE) 

Tables A-14 and A-15 show the global and local calibration results using exponential 

distribution. Figures A-22 and A-23 present the measured vs. predicted and residual distribution, 

respectively. Table A-16 compares statistical parameters between least squares and MLE. 
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Table A- 14: Global model summary (bootstrapping using MLE) 

Parameters 
Levels 1 2 3 

Design New Overlay New Overlay New Overlay 

C1 
Mean 

40.00 
Median 

C2 
Mean 

0.40 
Median 

C3 
Mean 

0.01 
Median 

C4 
Mean 

0.02 
Median 

SEE 
Mean 21.28 20.5 24.37 23.03 16.34 15.79 

Median 21.26 20.48 24.37 23.03 16.35 15.81 

Bias 
Mean 18.47 17.34 21.95 20.44 11.71 10.92 

Median 18.48 17.34 21.96 20.46 11.7 10.94 

 

Table A- 15: Local model summary (bootstrapping using MLE) 

Parameters 
Levels 1  2  3  

Design New Overlay New Overlay New Overlay 

C1 
Mean 13.51 13.24 14.33 16.78 19.56 14.97 

Median 11.38 11.07 12.52 14.14 18.28 12.81 

C2 
Mean 0.28 0.34 0.51 0.22 0.44 0.24 

Median 0.25 0.34 0.56 0.22 0.43 0.21 

C3 
Mean 0.01 0.01 0.01 0.01 0.01 0.01 

Median 0.01 0.01 0.01 0.01 0.01 0.01 

C4 
Mean 0.003 0.003 0.003 0.003 0.003 0.002 

Median 0.003 0.003 0.002 0.002 0.003 0.001 

SEE 
Mean 10.59 10.38 10.61 10.55 10.52 10.82 

Median 10.46 10.32 10.55 10.51 10.49 10.83 

Bias 
Mean 0 0 0 0 0 0 

Median -0.03 -0.05 -0.03 -0.02 0 0 

Table A- 16: Local model statistics 

Levels Design 

Parameters 

MLE Least square 

NLL AIC BIC NLL AIC BIC 

1 
New 1180.54 2365.08 2372.46 2945.26 5894.53 5901.90 

Overlay 1182.19 2368.38 2375.75 2939.89 5883.79 5891.16 

2 
New 1182.20 2368.40 2375.77 2775.31 5554.62 5562.00 

Overlay 1181.86 2367.72 2375.10 2857.42 5718.85 5726.22 

3 
New 1182.07 2368.13 2375.51 2745.05 5494.10 5501.48 

Overlay 1181.90 2367.79 2375.17 2862.76 5729.53 5736.90 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 22: Local models’ measured vs. predicted using MLE (log-normal distribution) 
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(a) Level 1 – local model (new design) 

 

(b) Level 1 – local model (overlay design) 

 

(c) Level 2 – local model (new design) 

 

(d) Level 2 – local model (overlay design) 

 

(e) Level 3 – local model (new design) 

 

(f) Level 3 – local model (overlay design) 

Figure A- 23: Residual distribution using MLE (log-normal distribution) 

 

 


