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ABSTRACT

As a prominent component of artificial intelligence (Al), machine learning (ML) techniques
play a significant role in the stunning achievement obtained by Al technologies in human society.
ML techniques enable computers to leverage collected data to tackle various kinds of tasks in
practice. However, more and more studies reveal that the capability of a ML model will be
decreased dramatically if the distribution of collected data used for training this model is imbalanced.
As imbalanced data distribution is widespread in many real-world applications, improving the
performance of ML models under imbalanced data distribution has attracted considerable attention.

While a growing number of related works have been proposed to make ML models learn from
imbalanced data more effectively, the study on this topic is far from complete. In this dissertation, I
propose several studies to fill up the gaps in this direction. First, most existing data generation based
works only consider the local distribution information within classes, while the global distribution
is totally ignored. I demonstrate both global and local distribution information are important for
producing high-quality synthetic data samples to balance the data distribution. Second, almost
all existing studies assume that collected data samples are associated with noisy-free labels, and,
hence, they cannot work well when annotated labels are noisy. I investigate the problem of learning
from imbalanced crowdsourced labeled data and propose a novel framework as a solution with
satisfactory performance. Third, currently the research on investigating the impact of imbalanced
data distribution on the robustness of ML models is rather limited. To this end, I empirically
verify the adversarial training (AT) approach alone cannot bring enough robustness for ML models
under imbalanced scenarios while integrating the reweighting strategy with AT can be very helpful.
In addition, I also propose an effective data augmentation based framework to benefit AT under

imbalanced scenarios.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

As a prominent component of artificial intelligence (Al), machine learning techniques play
an important role in the great successes achieved by Al technologies in human world. The core
objective of machine learning is to instruct computers to leverage collected data to tackle diverse
tasks [75]. Machine learning techniques have been applied into a wide range of applications,
which facilitate people’s daily lives greatly while also improving productivity in various sectors
effectively. For instances, in e-commerce, recommender systems [6] can provide personalized
product recommendations to customers, which helps customers find their interested products more
efficiently and hence brings more profits to e-commerce platforms; in information security, face
recognition systems [53] are able to confirm people’s identities by matching their faces against faces
stored in database, which accelerates the verification process when people accessing confidential
data and also supplies an enhanced security for protecting these confidential data at the same time;
in healthcare, medical image analysis methods [65] make diagnosis by analyzing medical images,
which leads to reduced costs for patients and improved efficiency for healthcare organizations.

Despite the huge potential of developing advanced machine learning algorithms to handle more
complex tasks and enhance the power of Al in human world, recent studies [8] reveal that the
capability of a machine learning model will be decreased dramatically if the quality of data used
for training this model is low. For supervised classification algorithms who utilize data samples
with corresponding class labels to train a model to predict class information of target data samples,
imbalanced data distribution can be regarded as one common type of low-quality data. The
imbalanced data distribution refers to the case that some classes have exceedingly large number
of data samples while others have very small amount of data samples in the data set. Since most
supervised classification algorithms are developed based on a common assumption that each class
in the training data set has a relatively equal number of data samples, their trained models tend to

be overwhelmed by classes with large training samples while ignoring classes with small training



samples [16] in the training phase and hence cannot obtain satisfactory classification performance
on these ignored classes in the inference phase.

Considering imbalanced data distribution is widespread in many applications and aforemen-
tioned negative impacts brought by it for machine learning algorithms, in the past few decades,
many efforts have been devoted to making models learn from imbalanced data more effectively.
Although many related works have been proposed, the study on this topic is far from complete.
First, when generating synthetic data samples, most existing data generation based works only
consider the local distribution information within classes with amount of data samples, while the
global distribution is totally ignored. Hence, the quality of synthetic data samples generated by
these work cannot be guaranteed. Second, almost all existing studies assume that collected data
samples are associated with noisy-free labels. Therefore, they cannot deal with a more complicated
but realistic scenario that the annotated labels are noisy. For example, multiple crowd works may
be invited to annotated labels for collected data samples and hence the annotated labels can be
very inconsistent and noisy. Third, the majority of all previous studies only focus on improving
the prediction accuracy of models under imbalanced data distribution, while the research on inves-
tigating the impact of imbalanced data distribution for the robustness of trained models is rather
limited. Recently, the robustness of machine learning models has attracted increasing attention
when deploying machine learning models into real-world applications.

In this dissertation, I present several studies to fill up the gaps in terms of three aforementioned
perspectives. First, I focus on mitigating imbalanced data distribution through generating synthetic
data samples. I will demonstrate both global and local distribution information are important for
producing high-quality synthetic data samples. Second, I investigate the problem of learning from
imbalanced crowdsourced labeled data, which is a more realistic and challenging scenario in the
real world. I will propose a novel framework for training a discriminative model on imbalanced
crowdsourced labeled data directly with satisfactory prediction performance. Third, I study the
model robustness problem under imbalanced data distribution. I will empirically verify that the

adversarial training approach alone cannot bring enough robustness for models under imbalanced



scenarios while integrating reweighting strategy with adversarial training can be very helpful. In
addition, I will also present an effective data augmentation based framework to befit adversarial

training under imbalanced scenarios

1.2 Contributions

The major contributions of this dissertation are summarized as follows:

* Iconductresearch on three important but less-explored topics about learning from imbalanced
data distribution: (1) generating high-quality synthetic data, (2) learning from imbalanced

crowdsourced labeled data, and (3) improving model robustness;

* In chapter 2, I first identify the importance of both global and local distribution information
in data generation approaches for imbalanced data and then propose a novel framework to
generate more realistic synthetic data samples under imbalanced data distribution by utilizing

both global and local distribution information;

* In chapter 3, I present a novel framework to obtain a discriminative model that can achieve
good prediction performance on all classes involved in the data set by training on imbalanced

crowdsourced labeled data directly;

* In chapter 4, I first empirically discover two major differences between naturally trained
models and models trained by adversarial training approach under imbalanced data distribu-
tion and then propose a new framework to improve model robustness under imbalanced data

distribution.

* Inchapter 5, I present an effective framework to augment imbalanced training data so that the

robustness of models can be boosted by applying adversarial training into the training phase.



CHAPTER 2

GLOBAL-AND-LOCAL AWARE DATA GENERATION FROM IMBALANCED DATA
DISTRIBUTION

In many real-world classification applications such as fake news detection, the training data can
be extremely imbalanced, which brings challenges to existing classifiers as the majority classes
dominate the loss functions of classifiers. Oversampling techniques such as SMOTE are effective
approaches to tackle the class imbalance problem by producing more synthetic minority samples.
Despite their success, the majority of existing oversampling methods only consider local data
distributions when generating minority samples, which can result in noisy minority samples that do
not fit global data distributions or interleave with majority classes. Hence, in this chapter, we study
the class imbalance problem by simultaneously exploring local and global data information since:
(i) the local data distribution could give detailed information for generating minority samples; and
(i1) the global data distribution could provide guidance to avoid generating outliers or samples that
interleave with majority classes. Specifically, we propose a novel framework GL-GAN, which
leverages the SMOTE method to explore local distribution in a learned latent space and employs
GAN to capture the global information, so that synthetic minority samples can be generated under
even extremely imbalanced scenarios. Experimental results on diverse real data sets demonstrate
the effectiveness of our GL-GAN framework in producing realistic and discriminative minority
samples for improving the classification performance of various classifiers on imbalanced training

data.

2.1 Chapter Introduction

The classification performance heavily relies on the quality and quantity of the training data [49].
However, in many real-world applications, due to some practical concerns such as privacy and time
cost, only limited labeled data can be collected. Meanwhile, such data could be imbalanced.
Specifically, some classes have significantly larger number of data samples while others have very
limited amount of data, which is called class imbalance problem [44]. For instance, in fake news

detection [88], the majority of news in the collected data are true news while only a small portion



of news are fake news. The imbalanced data has negative impacts on the classifier training since
the standard classifiers tend to be overwhelmed by the majority classes while ignoring the minority
classes [16]. Furthermore, even though minority classes may only take extremely small ratio of
one data set, for some applications like medical diagnosis, misclassifying a minority class sample
is usually more severe than misclassifying a majority one [68].

Oversampling has been proven to be an effective way to alleviate the class imbalance problem
by oversampling minority samples into the imbalanced data set [70]. As one of the most popular
oversampling methods, Synthetic Minority Over-sampling Technique (SMOTE) [14] generates new
synthetic minority samples by performing linear interpolation operations between existing minority
samples and their nearest neighbors within the same class. As shown in Figure 2.1, by applying the
SMOTE method, new synthetic minority samples are generated along with the linear interpolation
between two existing minority samples.

Despite the success of SMOTE and its variants [35, 39], they still face some challenges. First,
SMOTE-based methods only consider the local neighbor relationship of each minority sample,
while the global distribution is totally ignored. Without considering the global distribution of the
given data, the generated minority samples could not fit the real data distribution. For instance, the
generated samples in Figure 2.1 are either located on the null space of the given data samples or
interleaved with majority data samples. Second, the interpolation operations performed by these
methods on raw feature space may not generate realistic data samples. For instance, for the given
text data which lies in discrete space, SMOTE-based methods cannot guarantee their generated
texts are readable.

Therefore, in this chapter, we study the class imbalance problem by simultaneously exploring
both global and local information. The local data distribution provides detailed local information for
generating minority samples; and the global data distribution provides guidance from a global view
to avoid generating samples that interleave with majority samples or fall in the null space of the given
data. We are faced with two challenges: (i) how to explore global data distribution for minority

sample generation; and (ii) how to simultaneously leverage global and local distribution information
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Figure 2.1 An example of imbalanced data and SMOTE method. The synthetic minority samples
are generated along the dash line between two minority samples.

to generate realistic and discriminative synthetic minority samples. Recently, generative adversarial
learning [31] has shown promising results in generating realistic data samples [31, 74] through
estimating the latent global data distribution, which paves us a way to solve these two challenges.
Hence, we propose a novel framework which leverages oversampling techniques to capture local data
structure and generative adversarial learning to explore global data distribution. The contributions

of this chapter are summarized below:

* We identify the importance of both global and local distribution information in tackling the
class imbalance problem.

* We propose a novel generative adversarial framework, GL-GAN, to generate realistic and
discriminative minority samples by exploring both global and local distributions.

* We conduct extensive experiments on diverse real data sets to demonstrate the effectiveness

of GL-GAN on alleviating the class imbalance problem.

2.2 Related Work
In many real world applications, we are faced with class imbalance problem. The popularity of

class imbalance has attracted increasing attention, and, various kinds of effective approaches have



been proposed in the last few decades. Existing works for tackling the class imbalance problem
can be roughly classified into three categories[55]: (i) data-level methods, which modify the class
distribution by adding or removing samples from training set; (ii) algorithm-level methods, which
modify the existing algorithm to adapt imbalanced scenarios; (iii) and hybrid methods, which
combine the advantages of two previous categories. Our GL-GAN is a data-level method.
Undersampling [110, 68] and oversampling [14, 35, 39] are two fundamental data-level so-
lutions. Briefly, undersampling approaches downsize the majority class by removing majority
samples, while oversampling approaches upsize the minority class by generating minority sam-
ples [66]. Oversampling with replacement, also called random oversampling [30], is the simplest
oversampling approach that randomly duplicates existing minority samples to augment the minor-
ity class. However, the random oversampling method often makes the decision boundary of the
classifier smaller and causes the classifier to over-fit [35]. As an improved approach, SMOTE [14]
inflates the minority class by producing synthetic minority samples instead of duplicating existing
minority samples. Based on the SMOTE method, several variants, such as borderline-SMOTEI and
borderline-SMOTE2 [35] and ADASYN [39], have been proposed to achieve better performances in
the past few years. Different from SMOTE-based methods that utilize Euclidean distance to perform
interpolation operations, some recent work [2, 86] introduced Mahalanobis distance into synthetic
minority samples generation process and achieved good performance on classifier training.
Recently, more and more researchers have been attracted by the generative adversarial learning
due to its great power on generating different kinds of realistic synthetic data samples. The pioneer
work introduced by [31] presented Generative Adversarial Networks (GAN) to learn the real data
distribution through a minimax game between a generator G and a discriminator D. The generator
G produces synthetic samples to fool the discriminator D, while the discriminator D judges whether
the input samples come from the generator or from the real data set. These two components fight
against each other and improve themselves gradually [29]. In the perfect equilibrium, the generator
G is able to capture the global distribution information of real training data and generate synthetic

samples following this distribution [20]. Due to the great ability of generative adversarial learning



models on generating realistic data samples, some recent research applied generative adversarial
learning into the class imbalance problem. For instance, conditional GAN [74] is adopted in [24]
for producing minority samples effectively. BAGAN [72], is a data augmentation model that can
alleviate the class imbalance problem by modifying the discriminator D in the traditional GAN.
However, all aforementioned models used in solving the class imbalance problem take the random
noise as the input of generator G, which may bring a lot of uncertainty during the model training
phase. Moreover, the local structure of training minority samples is not explored by these models,
so some generated synthetic samples may close to the decision boundary and thus hard to be utilized
to train a classifier.

Our GL-GAN is inherently different from existing works. We simultaneously explore the
global and local information by leveraging local-based oversampling techniques and generative
adversarial learning models. Therefore, GL-GAN can overcome the drawbacks of the oversampling
techniques and utilize the power of the generative adversarial models to produce more realistic and

discriminative synthetic minority data samples.

2.3 The Proposed Framework

In this chapter, we focus on the binary class imbalance problem. Given an imbalanced sample
set X,r¢ containing a majority sample set X,,,; and a minority sample set X,;,, our goal is to
generate a set of realistic and discriminative synthetic minority samples Xjy, so that, comparing
with training only on the original imbalanced sample set X, the classification performance of
classifiers can be greatly improved by training on the balanced augmentation sample set X4 U Xy,

As shown in Figure 2.2, our GL-GAN is composed of two modules, local structure exploration
and global distribution learning. The former is designed for generating latent representations
of minority samples through exploring the local distribution information, and the latter aims to
produce realistic and discriminative minority samples that can fit the global distribution. Next, we

will introduce details of each module.
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Figure 2.2 An overview of GL-GAN.

2.3.1 Local Structure Exploration
The local structure exploration module consists of two components, i.e., an encoder E and a

local data representation interpolator I, specifying for two different tasks separately.

2.3.1.1 Discriminative Representation Learning

In many cases, directly generating synthetic data samples in raw feature space by local-based
oversampling techniques such as SMOTE may cause several problems.

Firstly, as we demonstrated before, these methods cannot generate realistic synthetic samples for
some specific data types like text data. Secondly, the generated minority data samples may interleave
with majority samples. This motivates us to first learn discriminative latent representations of the
raw data, then exploit the local data structure in the learned latent space. The advantages of doing
this are as follows: (i) By learning a low-dimensional latent representation, we can preserve the
most important information of the data while drop some noisy information; and (ii) During the
latent representation learning process, we can enforce the latent representations of data samples
belonging to the same class to be closed to each other.

Deep autoencoders have been proved to be an effective way to extract important information
from high-dimensional data using low-dimensional representations [84]. Typically, an autoencoder
consists of two components: an encoder £ and a decoder Q. The encoder E takes the high-

dimensional data as input and maps them to the corresponding latent representations. The decoder



Q recovers these learned latent representations back to the raw feature space. The goal of training
an autoencoder is to minimize the reconstruction error between the input data and the reconstructed

data produced by the decoder Q, which can be defined as

1

~£rec(Q (E (Xorg)) > Xorg) = m

e (E () - xil3. (2.1)

xi€Xorg

In our GL-GAN framework, we propose to embed the given real data samples into a latent
space with majority samples in one cluster and minority samples in another cluster, and these two
clusters should be far-away from each other. To do that, we aim to reduce the interleaving between

the synthetic generated minority samples and the given majority samples. Formally, this process

can be described by
1 _ 4
Ley=—— ||E(xl) _Zmaj”%'l'
|Xmaj| X €Xoma |Xmm|
! (2.2)
D NEGD) = Zinll3 = A211Zmay = Zminll3,
X €Xinin

where Z,,4; and Z,,;, are mean of the latent representations of majority sample set X,,,,; and minority
sample set X,,,;,,, respectively. 41 and A, are two hyper-parameters controlling the weights. Starting
from here, we use A or A to represent hyper-parameters.

Therefore, the autoencoder in our GL-GAN can be trained by minimizing the following loss

function:

-LA = Lrec + Al-Lclu + AZR(G)- (23)

Here R(6) is the regularizer of the model parameters #. Once the autoencoder is trained well, the

latent representation of sample x; can be given as z; = E (x;).

2.3.1.2 Local-based Data Generation

With the learned latent representations, we can generate synthetic minority samples in the latent
space by exploring the local structure of the sample set Z,,;,,, which is the latent embedding of the
minority sample set X,;,. In our GL-GAN, we adopt SMOTE as the implementation of the local

data interpolator I because of its simplicity.
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For any minority sample z; € Zyin, SMOTE 1) discovers k nearest neighbors {z}, zl.z, e, zl’.‘}
of z; within the same minority class set i, 2) randomly picks up any one nearest neighbor z'
(n € [1,k]) from the set {zl-l, Zl-z, e ,zl’?} and chooses a random number € [0, 1]. Hence, a
new synthetic minority sample z; could be created by z; = z; + 7 (zf —z;). The second step can
be repeated N times, and, finally, N X | Z,;;,| synthetic minority samples will be generated when
executing the same process on every minority sample in Z,,;,. After the synthetic minority sample
set Zyy, is obtained, we can get a balanced augmentation sample set Z = Zyaj U Zinin U Lsyn in

the latent space.

2.3.2 Global Distribution Learning
For making the generated minority samples in Zj,, more realistic and discriminative, we
introduce a generative adversarial learning model to learn the global information of given samples

and modify samples in Z;,, accordingly.

2.3.2.1 Discriminator D

The role of the discriminator D is to differentiate if a data sample is real or fake. For a data
sample who comes from the given real data set, the discriminator D labels it as a real sample. If a
data sample is synthetically generated by the generator G, it will be classified as a fake sample. The
discriminator D and the generator G fight against each other and improve themselves gradually.

The loss function for training the discriminator D can be written as

Lp DL IDG) - 13+ é—| D IID(G(z)) -0l (2.4)

|XO}’g| xiexm‘g Ziez
In equilibrium, the discriminator D cannot find the difference between real and synthetic samples,
which means the quality of synthetic data generated by the generator G are approximate to the real

data.

2.3.2.2 Classifier C
For making sure that generated data samples can have expected labels, we introduce a classifier
C in our GL-GAN. Specifically, the classifier C also takes both real samples and synthetic samples

generated by the generator G as input. Since the input of G in GL-GAN is the balanced augmentation

11



sample set Z, every output of the generator G, i.e. G(z;), has its corresponding label. The classifier
C works on labeled data samples and makes classification for them. The loss function for training
the classifier C in our GL-GAN is

1
| Xor|

A
1ZI

Le= > IC) - T3 +

xiexorg

DIC(G () - T3, (2.5)
7zi€Z

Here I'y, and I';, are true labels of real sample x; and latent representation z;, respectively. By
introducing the classifier C into the traditional GAN, the generator G is forced to produce synthetic

samples which can be classified by C correctly.

2.3.2.3 Generator G

Different from the traditional generator G that takes a set of random noise following some prior
distribution as input, during the model training phase, the generator G in our GL-GAN is fed with
the balanced augmentation sample set Z. Since there are two types of latent representations in Z,
i.e., the latent representations of real samples in Z,,q; and Zyin, denoted as Zorg = Zinaj Y Limins
and the latent representations of synthetic samples in Z,,, the generator G should be able to
project latent representations Z,,¢ back to the raw feature space as well as produce synthetic data
samples that can fool the discriminator D. Therefore, the loss for training generator G includes
three different types: the reconstruction loss .L,.. for mapping latent representations Z,, back to
the raw feature space, the discriminator loss .L(g,p) produced by the discriminator D for evaluating
the difference between the real data samples and data samples generated by G, and the classifier
loss L(g,c) brought by the classifier C for making classification on the generated data samples of

G. Formally, the loss function for training the generator G in our GL-GAN can be defined as

LG = Lrec(G(Zorg), Xorg) + /11~£(G,D) + /12~£(G,C)
1
D> lIGG@) Xl +

A
1< (2.6)

|X07‘g| xiGXorg’Zie-Zurg
A2
> ID(G () = 13+ > IC(G(z)) ~ To I3
1Z|
zi€Z zi€Z

After the whole framework is trained well, the generator G is able to produce a set of realistic and

discriminative synthetic minority samples.

12



Algorithm 2.1 The algorithm of GL-GAN.

Input: an imbalanced sample set X,
1: Initialize the parameters of autoencoder.

2: Pre-train the autoencoder to obtain the latent representations Zyr¢ = Znaj Y Lmin of Xorg-
3: Apply SMOTE method for Z,,;, to get the synthetic minority sample set Z;yp.
4: Form a balanced augmentation sample set Z = Z,4; U Znin U Lsyn in the latent space.
5: repeat
6:  for discriminator-epochs do
7: Train the discriminator D with augmented latent sample set Z and real sample set X,
(Sec. 2.3.2.1).
end for
:  for classifier-epochs do
10: Train the classifier C with augmented latent sample set Z and real sample set X,
(Sec. 2.3.2.2).
11:  end for
12:  for generator-epochs do
13: Train the generator G (Sec. 2.3.2.3).
14:  end for

15: until model convergence

2.3.3 Objective Function of GL-GAN
With local structure exploration module and global distribution learning module introduced

above, the final objective function of GL-GAN is given as:

min max Lrec(G(Zorg), Xorg) + A1-[:(G,D) + AZ-E(G,C) 2.7)

0c.09c 6p

where 0, 6¢ and 6p are the parameters of generator G, classifier C and discriminator D, respec-

tively.

2.3.4 Algorithm

In this subsection, we present our GL-GAN framework in Algorithm 2.1.

As shown in Algorithm 2.1, we train the autoencoder part at first to make sure the autoencoder
could map the input data samples into two far-way clusters in the latent space. After pre-training the
autoencoder, we utilize the encoder E to obtain the latent representations of the input data samples.
Then, the local data interpolator / can be applied in the learned latent space to generate a set of
synthetic minority samples within the same cluster. In order to train the generative adversarial

learning part more effectively, we use the knowledge learned by the pre-trained autoencoder to

13



initialize the generative model. Specifically, the discriminator D and the classifier C have the
same architecture with the encoder E except both D and C have one more layer. The last layer
of the discriminator D is a dense layer with a softmax activation function for producing binary
outputs and the last layer of the classifier C is a dense layer for producing classification results.
The parameters learned by the encoder E will be used to initialize the discriminator D and the
classifier C during the generative model training phase. Similarly, the generator G is initialized by

the weight parameters learned by the decoder Q since they have the same architecture.

2.4 Experiment
In this section, we conduct experiments to verify the effectiveness of our proposed GL-GAN

framework. We aim at answering the following two questions:

* Can the proposed GL-GAN framework generate discriminative minority samples for improv-
ing the classification performance of imbalanced data?

* What is the impact of each module of GL-GAN?

We begin by introducing the data sets and experimental settings, then we compare GL-GAN with
several state-of-the-art related methods on the classification task to answer the first question. We

then analyze the impact of each module of GL-GAN to answer the second question.

2.4.1 Experimental Settings
In order to test how the generated synthetic samples alleviate the binary class imbalance problem,
we utilize the classification performance of different classifiers training on various augmented

sample sets as the evaluation indicator.

2.4.1.1 Data Sets

The experiments are conducted on five real data sets, i.e., USPS, Sensorless Drive Diagnosis,
Gas Sensor Array Drift, Madelon and Gisette. Sensorless Drive Diagnosis and Gas Sensor Array
Drift are publicly from the UCI data repository! and the rest three can be obtained from Feature

Selection data repository2. Since all these five data sets are class balanced, we construct the

Thttps://archive.ics.uci.edu/ml/index.php
Zhttp://featureselection.asu.edu/datasets.php
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Table 2.1 Statistical information of imbalanced data sets.

Data Set | # Features | # Majority | # Minority
USPS 256 744 7
Sensorless Drive Diagnosis 48 4256 42
Gas Sensor Array Drift 128 1549 15
Madelon 500 1040 10
Gisette 5000 2800 28

imbalanced data set for each of them according to the following three steps. Firstly, we randomly
choose one class as majority class and another one as minority class to obtain a balanced binary data
set. Then we divide 80% data samples of the balanced binary class data set as the candidates set and
the rest as the test set. Lastly, we artificially imbalance the candidates set to form the imbalanced
data set by utilizing a predefined imbalanced ratio r. For instance, if r = 0.01, then 99% minority
samples will be removed from the candidates set so that the ratio of the minority samples to the
majority samples in the imbalanced data set is 0.01. Table 2.1 provides the statistical information
of five imbalanced data sets obtained by the aforementioned three steps when the imbalanced ratio

r =0.01.

2.4.1.2 Classifiers

Since our goal is to generate synthetic minority samples for improving the classification per-
formance, we introduce several classifiers to help to evaluate the quality of the generated samples.
Three representative classifiers, i.e., Multi-layer Perceptron (MLPClassifier), Linear Support Vector
Classification (LinearSVC) and AdaBoost are adopted in our experiments. We train these classifiers
on the training sets augmented by the synthetic minority samples generated by our model or base-
lines and test them on the corresponding test data sets. All these three classifiers are implemented

by the scikit-learn package?® in Python, and we use their default settings in all experiments.

2.4.1.3 Evaluation Metrics
For measuring the classification performance of classifiers, we introduce three different metrics,
macro F1-score, micro F1-score and Matthews correlation coefficient (MCC) [73] into our experi-

ments. The value of MCC is in the range [—1, 1], in which MCC = 1 indicates a perfect prediction,

3https://scikit-learn.org/stable/index.html
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Table 2.2 Classification performance of classifiers on the USPS data set.

Evaluation Method

Classifier Metrics Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN
macro F1 0.7712 0.8840  0.8825 0.8914 0.8415 0.6443 0.8208 0.8937
MLPClassifier | micro F1 0.7969 0.8899  0.8887 0.8947 0.8503 0.6595 0.8356 0.8985

MCC 0.6232 0.7839  0.7823 0.7858 0.7022 0.4731 0.6872 0.7990
macro F1 0.8473 0.8580  0.8580 0.8834 0.8408 0.6184 0.8836 0.8912
LinearSVC micro F1 0.8589 0.8681 0.8680 0.8865 0.8497 0.6380 0.8896 0.8957

MCC 0.7346 0.7510  0.7510 0.7683 0.7010 0.4440 0.7838 0.7913
macro F1 0.8024 0.7878  0.8036 0.8436 0.7883 0.8900 0.7848 0.8920
AdaBoost micro F1 0.8218 0.8095  0.8221 0.8558 0.8098 0.8906 0.8077 0.8966
MCC 0.6689 0.6441 0.6662 0.7291 0.6444 0.7865 0.6433 0.7942

Table 2.3 Classification performance of classifiers on the Sensorless Drive Diagnosis data set.

Evaluation Method

Classifier Metrics || Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN
macro F1 0.7697 0.8642  0.8700 0.8580 0.8510 0.8439 0.9078 0.9334
MLPClassifier | micro F1 0.7809 0.8666  0.8722 0.8608 0.8542 0.8476 0.9086 0.9338

MCC 0.6251 0.7608  0.7699 0.7513 0.7406 0.7299 0.8310 0.8755
macro F1 0.8195 0.8425  0.8425 0.8455 0.8420 0.8435 0.9281 0.8714
LinearSVC micro F1 0.8250 0.8462  0.8462 0.8490 0.8457 0.8471 0.9285 0.8735

MCC 0.6939 0.7277  0.7277 0.7322 0.7269 0.7292  0.8659 0.7721
macro F1 0.8962 0.9683  0.9686 0.9955 0.9835 0.9924 0.9817 0.9959
AdaBoost micro F1 0.8973 0.9683  0.9687 0.9955 0.9835 0.9924 0.9817 0.9959
MCC 0.8119 0.9385 0.9392 0.9910 0.9676 0.9849 0.9638 0.9918

Table 2.4 Classification performance of classifiers on the Gas Sensor Array Drift data set.

Evaluation Method

Classifier Metrics || Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN
macro F1 0.3879 0.7880 0.8116 0.6540 0.7182 0.6974 0.8891 0.8881
MLPClassifier | micro F1 0.5376 0.8003  0.8201 0.6833 0.7424 0.6985 0.8908 0.8884

MCC 0.1077 0.6518  0.6832 0.4819 0.5592 0.3967 0.7933 0.7782
macro F1 0.8580 0.9270  0.9296 0.6588 0.9216 0.3822 0.9290 0.9694
LinearSVC micro F1 0.8619 0.9270  0.9296 0.6866 0.9216 0.5126 0.9296 0.9695

MCC 0.7511 0.8560 0.8610 0.4871 0.8445 0.1606 0.8666 0.9391
macro F1 0.3825 0.4620  0.4739 0.5299 0.5295 0.4795 0.4995 0.5976
AdaBoost micro F1 0.5255 0.5418  0.5352 0.5963 0.6082 0.5445 0.5352 0.6082
MCC 0.0689 0.0940  0.0690 0.3423 0.3174 0.0954 0.0653 0.2181

MCC = 0 means the prediction made by a classifier is no better than the random prediction and

MCC = -1 represents total wrong between the prediction and the observation.

2.4.2 Effectiveness Evaluation
For evaluating the effectiveness of our GL-GAN framework on alleviating the binary class
imbalance problem, we compare the quality of the synthetic samples generated by GL-GAN with

several representative and state-of-the-art oversampling methods, including: 1) Imbalanced, which
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Table 2.5 Classification performance of classifiers on the Madelon data set.

Evaluation Method

classifier Metrics Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN
macro F1 0.3333 0.3346  0.3364 0.4513 0.4440 0.4088 0.3376 0.4821
MLPClassifier | micro F1 0.5000 0.5006  0.5008 0.4931 0.5213 0.5128 0.5019 0.5260

MCC 0.0 0.0132  0.0120 -0.0165 0.0628 0.0465 0.0439 0.0640
macro F1 0.3324 0.3333  0.3367 0.4643 04306 0.3894 0.3376 0.4390
LinearSVC micro F1 0.4981 0.5000  0.5000 0.4942 0.5092 0.5058 0.5019 0.5212

MCC -0.0439 0.0 0.0 -0.0131 0.0276  0.0237  0.0439 0.0657
macro F1 0.3354 0.3325  0.3400 0.3529 0.4860 0.4504 0.3325 0.3612
AdaBoost micro F1 0.5000 0.4981 0.5000 0.4942 0.4885 0.4962 0.4981 0.5019
MCC 0.0034 -0.0439 0.0 -0.0324 -0.0233 -0.0094 -0.0439 0.0092

Table 2.6 Classification performance of classifiers on the Gisette data set.

Evaluation Method

Classifier Metrics || Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN

macro F1 0.4618 0.6051  0.6161 0.6317 0.5888 0.4462 0.8552

MLPClassifier | micro F1 0.5685 0.6528  0.6604 0.6710 0.6426 - 0.5558 0.8568

MCC 0.2423 0.4246 04371 0.4486 0.4066 0.2418 0.7277

macro F1 0.6053 0.6115 0.6115 0.8616 0.6718 0.3521 0.8636

LinearSVC micro F1 0.6529 0.6571  0.6571 0.8636 0.7011 - 0.5086 0.8650

MCC 0.4248 0.4318 0.4318 0.7482 0.5018 0.0930 0.7457

macro F1 0.5226 0.5874  0.5669 0.3361 0.5718 0.5949 0.6271

AdaBoost micro F1 0.5993 0.6400  0.6271 0.4850 0.6300 - 0.6199 0.6679

MCC 0.3320 0.4001  0.3817 -0.0935 0.3848 0.2770 0.4476

directly uses original imbalanced data sets without adding minority samples; 2) Random [30],
i.e., random oversampling, which inflates minority class by duplicating existing minority samples;
3) SMOTE [14], which generates minority samples by performing linear interpolation operations
between minority samples and their nearest neighbors; 4) MDO [2], which produces minority
samples that have the same Mahalanobis distance from the considered class mean with existing
minority samples; 5) NRAS [81], which performs a noise removal process on the minority class
first and then constructs synthetic samples from the remaining samples; 6) SWIM [86], which
utilizes the distribution information of majority class to generate minority samples located at the
same Mahalanobis distance from the majority class; and 7) BAGAN [72] which takes random
noise as input and produces synthetic samples to balance the imbalanced data set. We adopt the
implementations of Random and SMOTE methods provided by literature [60] and of MDO and
NRAS methods provided by literature [54] in all experiments with default settings. BAGAN is

developed upon its public source code*.

“https://github.com/IBM/BAGAN
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For each imbalanced data set, we apply baselines and our model to generate synthetic minority
data samples and then form different augmented data sets for training classifiers. Table 2.2 to
Table 2.6 list the classification performance of three different classifiers on five test data sets.
We conduct each experiment ten times and report average results. From these tables, we make
the following observations: (i) Compared with the imbalanced set, the classification performance
generally increases with the oversampling techniques, which shows the importance of oversampling.
(i1) In most cases, with GL-GAN, the classification performance of classifiers outperforms with
baselines, which implies the high quality of synthetic minority samples generated by GL-GAN. This
is because local-based oversampling methods like SMOTE may produce some synthetic minority
samples which are interleaved with existing majority samples or located in the null space of the
given data set, while only global distribution information is explored in BAGAN and the generated

synthetic samples may overlook the local structure of the given minority samples.

2.4.3 Components Analysis

In order to investigate the impact of each module in our GL-GAN framework, we implement
two models employing part of components contained in GL-GAN to generate synthetic minority
samples and compare the quality of generated samples with GL-GAN. First, we combine the
autoencoder component and the local data interpolator component together to obtain a new model
called Auto-only. In Auto-only, the encoder E maps all given data samples into a latent space and
the new synthetic minority samples are generated by the local data interpolator /. This procedure is
the same with the first module in GL-GAN. However, instead of importing all latent representations
into the generator G, Auto-only model employs the decoder Q to project all latent representations
back to the raw feature space. Second, for studying the functionality of GAN-based module, we
adopt conditional GAN [74] to generate synthetic minority samples. The conditional GAN takes
random noise as input and produces synthetic samples with minority class label.

We conduct experiments on two real data sets and display the experimental results in Figure 2.3
and Figure 2.4, respectively. Here we can see, despite autoencoder (Auto-only) or conditional

GAN (cGAN) can also produce synthetic minority samples for training a classifier, the quality
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Figure 2.3 MCC score of AdaBoost on the Gisette data set.
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Figure 2.4 MCC score of AdaBoost on the USPS data set.

of generated synthetic samples are not good enough, especially in the extremely imbalanced
scenario (r = 0.01). However, since our GL-GAN could simultaneously explore the global and
local information through combining the advantages of local-based oversampling techniques and
generative adversarial learning together, the synthetic samples produced by GL-GAN could be

more helpful for training a better classifier.

2.5 Case Study
For verifying whether GL-GAN can produce more realistic synthetic minority samples, we
visualize the synthetic samples generated on a handwritten digits data set MNIST>. Here we

randomly choose images “4" as majority class and images “7" as minority class, and form the

imbalanced data set as described in Sec 2.4.1.1.

2.5.1 Functionality of Autoencoder

As we mentioned before, in order to avoid minority samples are generated in the null space
of the given sample set or interleaved with majority samples, we require the encoder contained in
our GL-GAN framework is able to map the given sample set X,,, into two far-away clusters in the
latent space, which can be achieved by Eq. (2.2). Here we utilize the MNIST data set to verify the

usefulness of this design. In Figure 2.5, the right figure shows a snippet of images generated by the

>http://yann.lecun.com/exdb/mnist/
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Figure 2.5 Images generated by different autoencoders.

Auto-only method, in which the setting of the encoder is exactly same with the encoder E contained
in our GL-GAN. As a comparison, we remove the loss function defined in Eq. (2.2) from the
final loss function of the autoencoder, i.e., Eq. (2.3), and also apply SMOTE to generate synthetic
minority samples in the latent space. In other words, the majority samples and minority samples
are not required to be mapped far-away from each other in the latent space learned by the encoder,
which is a common setting in the traditional autoencoder (AE). As the left figure shown, under this
setting, the quality of generated synthetic minority samples “7" is worse than the Auto-only method
generated ones. The reason is that, in the latent space, the synthetic minority samples generated by
SMOTE may still have probability to interleave with majority samples if the majority cluster and
minority cluster are not far-away from each other. Hence, the generated synthetic images may not
good enough. In short, these two figures demonstrate the loss function described by Eq. (2.2) is

useful and indispensable.

2.5.2 Quality of Generated Image Data

We also visualize the synthetic minority samples generated by SMOTE and our proposed
GL-GAN framework on the MNIST data set. In the left figure of Figure 2.6, several synthetic
samples produced by SMOTE looks like some intermediates between the majority class “4" and
minority class “7". As we discussed before, due to only local neighbor relationships are utilized in
SMOTE and the global information is totally ignored, SMOTE cannot avoid producing outliers or

samples that interleaved with majority samples. On the contrary, our GL-GAN framework is able
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Figure 2.6 Images generated by SMOTE and GL-GAN.
to generate more realistic synthetic minority samples. Since both global and local distributions are
simultaneously explored in GL-GAN, the drawbacks of SMOTE can be overcame and high quality

synthetic minority samples can be generated.

2.6 Chapter Conclusion

In this chapter, we propose a novel framework to solve the class imbalance problem through
generating synthetic data samples for minority class. Different from local-based oversampling
methods which only explore the local structure of minority samples and generative adversarial
learning models which only utilize the global distribution information of all given samples, our
GL-GAN framework considers both global and local information of the given data in the synthetic
minority sample generation process. Extensive experimental results demonstrate that, comparing
with existing baselines, our model can produce more realistic and discriminative synthetic minority
samples, which are helpful for training better classifiers. In the future, we would extend our GL-
GAN framework to the class imbalance problem of multi-class as well as some specific imbalanced

application scenarios such as credit fraud detection.
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CHAPTER 3

LEARNING FROM IMBALANCED CROWDSOURCED LABELED DATA

Crowdsourcing has proven to be a cost-effective way to meet the demands for labeled training
data in supervised deep learning models. However, crowdsourced labels are often inconsistent and
noisy due to cognitive and expertise differences among crowd workers. Existing approaches either
infer latent true labels from noisy crowdsourced labels or learn a discriminative model directly
from the crowdsourced labeled data, assuming the latent true label distribution is class-balanced.
Unfortunately, in many real-world applications, the true label distribution typically is imbalanced
across classes. Therefore, in this chapter, we address the problem of learning from crowdsourced
labeled data with an imbalanced true label distribution. We propose a new framework, named
“Learning from Imbalanced Crowdsourced Labeled Data" (ICED), which simultaneously infers
true labels from imbalanced crowdsourced labeled data and achieves high accuracy on downstream
tasks such as classification. The ICED framework consists of two modules, i.e., a true label inference
module and a synthetic data generation module, that augment each other iteratively. Extensive
experiments conducted on both synthetic and real-world data sets demonstrate the effectiveness of

the ICED framework.

3.1 Chapter Introduction

The success of supervised deep learning models in many real-world applications, such as image
classification [57, 89, 42] and speech recognition [33, 1, 38], is inseparable from the availability
of large-scale labeled training data. However, obtaining a large amount of labeled data is often
challenging. Annotating certain types of data samples such as medical images requires specific
domain knowledge [93], while some other types of data such as videos or audios are expensive
in terms of time [101]. By inviting multiple crowd workers to annotate labels for data samples
simultaneously or sequentially, modern crowdsourcing platforms such as Amazon Mechanical
Turk! offer a cost-effective way to collect large-scale labeled data [82]. Although crowdsourcing

alleviates the label shortage problem to some extent, the annotated labels can be very inconsistent

Thttps://www.mturk.com
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and noisy due to the cognitive differences between crowd workers [28]. For example, non-experts
and experts may annotate the same object with distinct labels. As most existing supervised deep
learning models only work well with determinate noise-free labels, there is a need for alternative
approaches to handle such noisy labeled data.

In the past few decades, several approaches have addressed noisy crowdsourced labels. One
class of approaches infer true labels from crowdsourced labels [22, 79, 104]. Another class of
approaches learn a discriminative model directly from crowdsourced labeled data [82, 51, 92].
All the above approaches assume that the given training set is class-balanced, which is not true
in real-world scenarios [95, 69], where majority classes have a significantly higher number of
data samples than minority classes. Hence, those approaches perform poorly when training on
imbalanced datasets.

There have been many attempts to address the challenges brought by imbalanced datasets, such
as re-sampling approaches [67, 15, 35] and re-weighting approaches [21, 10]. These approaches
require determinate noise-free training labels and are not able to handle data with crowdsourced
labels. Therefore, there is a need for a new approach to address both imbalanced and noisy
data in the crowdsourcing settings. To address this need, we study the problem of learning from
imbalanced crowdsourced labeled data in this chapter. To the best of our knowledge, this is the first
work to learn an effective discriminative model on crowdsourced labels when the latent true label
distribution is imbalanced. Our goal is simultaneously obtaining accurate supervised information
by inferring true labels from crowdsourced labels and ensuring good prediction performance of the
classifier on all classes in the balanced test set.

In this chapter, we propose a novel framework ICED (Learning from Imbalanced Crowdsourced
labEled Data). The ICED framework consists of two modules. One module uses generated synthetic
data for minority classes to improve the true label inference process. Another module uses the
inferred true labels to improve the quality of generated synthetic data. These two modules augment
each other and improve themselves iteratively. After training, ICED can learn a classifier with good

prediction performance on all classes uniformly distributed in the test set. The main contributions
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of this chapter are summarized below:

* We are the first one to address the problem of learning from imbalanced crowdsourced labeled

data, a more realistic scenario in the real world.

* We present a novel framework ICED, which can simultaneously infer true labels from imbal-

anced crowdsourced labeled data and achieve good prediction performance on all classes.

* We conduct extensive experiments on both synthetic and real datasets to demonstrate the

effectiveness of ICED on the classification task.

3.2 The Proposed Framework
In this section, we first formulate the problem we studied in this chapter and then introduce our

proposed ICED framework in detail.

3.2.1 Problem Formulation
Definition 3.2.1 (Learning from Imbalanced Crowdsourced Labeled Data). Given a set of data
X = {x1,X2,...,X,}, W crowd workers are invited to annotate every sample in X to produce a

crowd label set Y = {y;,y2,...,¥,} and

Vi = {(yi1,wi1)s Vi2swia) ..., Viw, wiw)}s

where each annotation pair (y;,, w;,) represents label y;, provided by worker w, for sample x;
from C classes, our goal is to obtain a deep neural network based classifier ¥, which can achieve
good prediction performance on uniformly distributed C-classes test data based on the data set X

and corresponding crowdsourced label set Y.

Note that, for each data sample x; € X, we assume it has W annotated labels. Moreover, as the
true labels for sample data set X is unknown, we denote the estimated true labels inferred by our
proposed framework for X as T = {¢1, 1, ...,1,}. In this chapter, our focus is on the classification
task for binary classes, i.e, there are two classes in the data set X and, one is the majority class
and the other is the minority class. Note that our proposed ICED framework is also suitable for

multi-class classification tasks with slight modifications and we will leave it as one future work.
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Figure 3.1 An overview of ICED. The solid yellow arrow and red arrow indicate outputs of synthetic
data generation module and true label inference module in the current training iteration, respectively.
The red dash arrow and black dash arrow represent the inferred labels obtained and synthetic data
samples generated in the previous iteration, respectively.

3.2.2 Framework Overview

For tackling the learning from imbalanced crowdsourced labeled data problem, we propose a
novel framework ICED as shown in Figure 3.1. The main structure of ICED is a deep neural network
based classifier # consisting of a feature extractor G and a fully connected Layer (FC). During
training the classifier 7, ICED introduces two modules: true label inference module and synthetic
data generation module. The true label inference module estimates determinate true labels from
given crowdsourced labeled data, and the synthetic data generation module generates synthetic
data samples for minority class using the estimated true labels. These two modules augment each
other and improve themselves iteratively. Furthermore, to make our ICED framework obtain better
initial learning ability at the beginning of framework training phase, ICED also includes a warm-up
training strategy specifically designed for the crowdsourced labeled data. Next, we introduce details

of each component.
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3.2.3 True Label Inference

Many classical approaches to infer true labels from crowdsourced labels ignore the correlation
between data samples and cognitive differences between individual crowd workers. For example,
some workers tend to judge class ¢, as class cg by mistake due to their cognitive differences.
Therefore, for overcoming the aforementioned shortages, our ICED framework adopts an EM
approach [22] into the true label inference module to estimate determinate labels from given
crowdsourced labeled data.

To capture the annotation behaviors of crowd workers, we define ¥, (co, cﬁ) as the prob-
ability that worker w, will annotate data samples with true label c, as class cg. Therefore,
2icg#cq ¥w,(Ca, cp) represents the annotation error rate of the worker w,, when true label of sam-
ples are c,. Let T be the random variable representing the true label of sample set X (similarly T;
for sample x;) and ®., = p(T = co) = p(T; = ¢,) be the prior of class c,, in the absence of any
observations.

Our task is to estimate the probability of each label ¢, (¢, € [C]) to be the latent true label for
each sample x; based on the crowdsourced labels Y, i.e., p(T; = ¢,|Y). The label with maximal
probability is then chosen as the current estimated true label to train the deep neural network based

classifier . The steps in the EM algorithm to estimate true labels are:

* E-step: computes the likelihood function of the observed crowdsourced labels Y based on
current estimated true labels T and parameters ¥ = {¥,,, (co. cp)lwu € [W],co,cp € [C]}

and ® = {®,_|c, € [C]};

* M-step: updates the parameters by maximizing the likelihood function and refine the esti-

mated true labels with new parameters.

In detail, we assume the labels provided by crowd workers are independently distributed. Given the

current estimated true labels T and parameters ¥ and @, the likelihood of the observed crowdsourced
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labels Y can be obtained by:
QY2 @) e [ [ p(Ti=1) [ | Puti i), (3.1)
ie[n] ue[ W]
where i, u are the indices of data sample and crowd worker, respectively; [n] and [W] denote the
sets {1,2,...,n}and {1,2,..., W}, respectively.
The parameters in ¥ and @ are updated by maximizing the above likelihood function. Specifi-

cally, ¥ can be computed as

d(wua Ca’ Cﬂ)
‘PW a» =~

u(c Cﬂ) d(Wu, Ca')
where d(w,, co, cg) represents the number of samples labeled as ¢z by worker w, when their
current estimated true labels is ¢,, and d(w,, c,) represents the number of samples labeled by

worker w, when their current estimated true labels is c¢,. In addition, ® can be computed as

_ # samples whose true label is estimated as c,
Ca —

# samples in data set X

Based on these updates, we can refine the estimation of true label by Bayes’s theorem

p(Tl = CG’|Y’ ‘P’ ®) & p(Yl‘{,, ¢, Ti = C(l)p(Tl = C(I)

o< p(Ty = co) | | Pulcaryia), (3.2)
ue[Wj

and choose the label ¢, with highest probability as the current estimated true label for data sample
x;. We repeat E-step and M-step iteratively until convergence.

In summary, the true label inference module can provide two important information for our
ICED framework: 1) an estimation of latent true labels T, which can be used as supervised
label information to train the deep neural network based classifier #; 2) the marginal distribution
p(T = c,) which reveals the data imbalance level between classes and thus guides the synthetic
data generation module to augment a balanced synthetic data set. Moreover, we can also obtain a
by-product from the EM algorithm, i.e., the annotation error rate of each worker w, derived from
W, (-, ), which can be potentially used to eliminate or penalize the unqualified workers whose

error rate is relatively high, depending on different application scenarios.
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3.2.4 Synthetic Data Generation

The performance of the EM approach adopted in the true label inference module depends on
the choice of prior probability, e.g., @, for initialization. Conventionally, uniform prior is used
for initialization resulting in poor performance on imbalanced crowdsourced labeled data sets.
Motivated by over-sampling approaches as an effective solution for an imbalanced data set, we
integrate a synthetic data generation module in our ICED framework to balance the training data
set.

As shown in Figure 3.1, we first apply the true label inference module to obtain estimated true
labels T. We then use the feature extractor G in the deep neural network based classifier F to map
all data samples in X from the raw data space into a latent embedding space. Finally, we apply the
following synthetic data generation process in the embedding space.

Suppose z be the embedding of the data sample x in the learned latent space, based on the
information involved in the estimated true labels T, all embeddings z; which its corresponding
determinate label #; belongs to the minority class will be selected as candidate embeddings to
help generate synthetic minority samples. After that, we utilize the linear interpolation operations
adopted in the SMOTE [15] approach as the way to create synthetic minority sample embeddings.
Specifically, for any candidate embedding z;, we (i) discover k nearest neighbors {zl.l, zl.z, e ,zl’.‘}
for z;; and (i1) randomly pick up one nearest neighbor z; from the set {zl.l, zl.z, e ,zl’.‘} to create a

synthetic minority sample embedding z; as follows:
4 =2,+06 (2 1), (33)

where ¢ is a scalar in range [0, 1]. The step (ii) can repeat R times, and, finally, R X m synthetic
minority sample embeddings will be generated when executing the same process on all selected
candidate embeddings with size m.

Since the true label inference module cannot guarantee 100% accuracy on estimating latent true
labels from crowdsourced labels, the estimated determinate labels still have a chance to be opposite

to the latent true labels. Hence, to reduce the adverse effects of possible wrong inference, different
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from the SMOTE approach, which chooses ¢ randomly, we assign the value for ¢ based on the label

certainty score of a sample x; and its selected neighbor x; .

Definition 3.2.2 (Label Certainty Score). Given a data example x; and we assume that its crowd-
sourced labels {y;, | u € [W]} follow the multinomial distribution. The label certainty score S(x;)

is defined as the inverse variance of this distribution and is computed as:

1

S(X) = 5
Y By —Bu(yi) |2+ €

(3.4)

where E,, is the expectation over crowdsourced label {y; , | u € [W]} for sample x;, and € is a small

constant to avoid numerical issue.

The label certainty score measures the agreement degree among crowd workers. Label certainty
score reaches its minimum value when a tie or a draw happens and goes to its maximum value
when all annotated labels for one data sample are consistent.

Therefore, given sample x; and its neighbor X, ¢ can be calculated by:
§=S(xD)/(S(x:) + S(x)) +7, (3.5)

where 71 is sampled from a uniform distribution to add some randomness on the scalar 6. With
the help of Eq. (3.5), the generated synthetic embeddings z; will close to the candidate embedding
which has larger label certainty score, such that the probability of the generated z_ is located in the
minority embedding clusters can be increased and, finally, the imbalanced issue can be alleviated
via the aforementioned generation process.

After the synthetic minority sample embeddings are generated, we introduce the k-NN approach
into the latent embedding space to construct synthetic crowdsourced labels for generated sample
embeddings. More specifically, for any generated minority embedding z;, we collect crowdsourced
labels of its k£ nearest neighbor embeddings of real data samples and then determine its synthetic
crowdsourced labels by simulating the annotation behavior of each crowd worker in these collected

k crowdsourced labels.
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Algorithm 3.1 The algorithm of warm-up training.

Input: sample set X, crowdsourced label set Y
1: Calculate label agreement score S(x;) for each sample x; € X.
2: Obtain estimated true label ¢; for each y; € Y using MV.
3: Random initialize parameters of classifier F.
4: Divide sample set X and estimated true label set T into four different groups based on their
label certainty scores.
for warm-up epochs do
6:  Train the classifier  using the data samples and determinate labels in the third highest
certainty group.
7: end for
8: for warm-up epochs do
Train the classifier ¥ using the data samples and determinate labels in the second highest
certainty group.
10: end for
11: for warm-up epochs do
12:  Train the classifier ¥ using the data samples and determinate labels in the highest certainty
group.
13: end for

o

When we obtain synthetic minority sample embeddings and corresponding synthetic crowd-
sourced labels, as shown in Figure 3.1, we use a pre-trained decoder Q to map the synthetic
embeddings back to the raw data space and will use the augmented balanced training set to update
the parameters of the deep neural network based classifier ¥ .

In summary, the synthetic data generation module in our ICED framework addresses the issues
causes by imbalanced training data set via generating sufficient synthetic minority samples with
synthetic crowdsourced labels, which can benefit both the true label inference process and the deep

neural network training.

3.2.5 Warm-up Training

Recent studies have discovered that deep neural networks can learn even on noisy labeled
data [76, 61]. Hence, a warm-up training phase is an effective strategy to initialize supervised deep
learning models. Existing literature [59, 36] uses all available data in the warm-up training phase.
Different from existing literature, in our ICED framework, we design a new warm-up training
strategy specifically designed for the crowdsourced labeled data.

As shown in Algorithm 3.1, given data set X and crowdsourced label set Y, we first calculate
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Algorithm 3.2 The algorithm of ICED.

Input: sample set X, crowdsourced label set Y

1: Conduct warm-up training as described in Algorithm 3.1.

2: repeat

3:  Generate synthetic minority samples and corresponding synthetic crowdsourced labels as

described in Sec. 3.2.4.

4:  Obtain the inferred true label set T” for the augmented crowdsourced labels as described in
Sec. 3.2.3.
Train the classifier # using the augmented data samples and inferred determinate labels T".
6: until model converge or maximum training epoch reached

9,1

the label certainty score for each data sample x;. After gathering label certainty scores for all data
samples, we apply majority voting (MV) on the crowdsourced label set Y to obtain an estimated
true label set T. Each element #; in T is obtained by aggregating the corresponding crowdsourced
label Y; using MV. We then divide the sample set X and corresponding true label set T into four
different subgroups based on the label certainty scores: low certainty group, third-highest certainty
group, second highest certainty group, and highest certainty group. We use all data samples except
those in the low certainty group to initially train the deep neural network based classifier  with
associated determinate labels in a supervised way.

In general, there is a higher probability of the determinate label #;, obtained by MV, being the
same as the latent true label when sample x; has a higher label certainty score S(x;). Our new
warm-up training strategy is similar to using noisy labeled data to help provide the initial ability
for the deep neural network based classifier # and using clean labeled data to fine-tune . After

the warm-up training phase, the ICED framework can get a better initial prediction ability.

3.2.6 Algorithm

In this subsection, we present our ICED framework for learning from imbalanced crowdsourced
labeled data in Algorithm 3.2.

As shown in Algorithm 3.2, we first introduce our designed warm-up training strategy to make
the deep neural network based classifier ¥ obtain better initial ability. Then, in each training epoch,
we apply the synthetic data generation module to produce synthetic minority samples with synthetic

crowdsourced labels for balancing the training data set. After that, the true label inference module is
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used to inferred latent true labels for the augmented crowdsourced labels. Hence, the parameters of
the classifier ¥ can be updated based on the augmented balanced data samples and corresponding
inferred determinate labels in a supervised way. We continuously conduct this iteration process

until F converges or the maximum training epoch is reached.

3.3 Experiment
In this section, we conduct experiments to verify the effectiveness of our proposed ICED

framework by answering the following three questions:

1. Can the proposed framework obtain good prediction performance on the balanced test data?

2. Does the generated synthetic data improve the accuracy of the true label inference process?

3. Does our newly designed warm-up training strategy improve over existing warm-up training

strategies?

To answer the first question, we compare the performance of ICED with several state-of-the-art
crowdsourced label processing approaches on the classification task. For the second question, we
compare the accuracy of true label inference with and without synthetic data generation modules on
two synthetic datasets. Finally, we compare the prediction performance of the deep neural network
based classifier ¥ using our designed warm-up training strategy and by traditional warm-up training

strategies to answer the third question.
3.3.1 Data Sets

3.3.1.1 Synthetic Data Sets

We conduct experiments on three synthetic data sets and one real-world data set. Table 3.1
summarizes key statistical information of these four data sets. The three synthetic imbalanced
crowdsourced labeled data sets are constructed based on three widely used data sets: Gisette,
USPS, and Gas Sensor Array Drift (GSAD). Specifically, Gisette and USPS datasets are from

Feature Selection data repository? and the GSAD data set is from UCI data repository3. Next,

Zhttp://featureselection.asu.edu/datasets.php
3https://archive.ics.uci.edu/ml/index.php
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Table 3.1 Statistics of data sets. The entries in “# majority class" and “# minority class" represent
the number of samples we used for those classes, respectively, to construct a synthetic training data
set.

Statistic item Dataset
Gisette-Syn | USPS-Syn | GSAD-Syn | Emotion
# features 5,000 256 128 1,582
# training data 3,080 734 2,575 3,027
# majority class 2,800 668 2,341 -
# minority class 280 66 234 -
# crowd worker 7 9 11 5
# test data 1,400 332 1,170 900

using the USPS data set as an illustrative example, we describe how we construct a synthetic
imbalanced crowdwourced labeled data set USPS-Syn. First we randomly choose one class as a
majority class and another one as a minority class from the total ten classes contained in the USPS
data set to obtain a balanced binary data set. Then we split 80% data samples in this balanced
binary data set as candidate training set and the rest as the test set. Note that the test set is class-
balanced. Different from previous crowdsourced label processing approaches that randomly assign
a mislabeling probability for each worker to all data samples [3, 50], in this chapter, we present
a new way to synthesize the crowdsourced labels by considering the difficulties of data samples.
Intuitively, it should be easier to infer true labels from data samples with a higher label certainty
score (e.g., all W crowd workers annotate the same label for the same data sample). Motivated by
this intuition, we introduce a deep neural network to evaluate the identification difficulty of each
sample. Specifically, we train a deep neural network based on the candidate training set and stop
the training process when the training accuracy is higher than 98%. Then, for each class, we use the
softmax outputs of the trained deep neural network to indicate the identification difficulties of data
samples. Then, we assign a mislabeling probability for each data sample based on the relative ease
of inferring from that data sample. Higher the difficulty in inferring from a data sample, the higher
the mislabeling probability for all crowd workers. Finally, we remove 90% minority samples from

the candidate training set based on their ground truth labels to obtain an imbalanced crowdsourced

labeled data set USPS-Syn.
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Another two synthetic data sets Gisette-Syn and GSAD-Syn can be constructed in the similar
way as mentioned above. Once again, we textitasize that only the training set in these three synthetic
data sets is an imbalanced crowdsourced labeled data set while the test set is a class-balanced data

set with determinate labels.

3.3.1.2 Real Data Set

We collected a real-world imbalanced crowdsourced labeled data set Emotion from our edu-
cational practice. The collected data samples in the Emotion dataset are 1-minute audio tracks
collected from multiple teachers who teach courses such as Mathematics and English in primary
school. We split all audio tracks in Emotion into a training set and a test set with sample size
3,027 and 900 separately. Five teaching professionals are invited to annotate every audio track in
the training set as either high emotion arousal or low emotion arousal to assess teaching effects
on courses and the annotation results provided by one teaching expert for audio tracks in the test
set are adopted as the ground truth labels. As the original data samples in the Emotion data set
are audio tracks, neither our ICED framework nor baseline methods can directly deal with those
data samples. For addressing this issue, we apply OpenSmile# to extract 1,582 acoustic features,
such as signal energy, loudness, MFCC features, etc., from the collected audio tracks. Since the
Emotion dataset is collected from our educational practice, it cannot guarantee the latent true label
distribution in the training set is class-balanced. Moreover, based on the label inference results
produced by majority voting, among the total of 3,027 samples in the training set, there are 1,911
samples in one class and 1,116 samples in the other class. For experiment purpose, we maintained

the same number of data samples in each class in the test set.
3.3.2 Performance Comparison

3.3.2.1 Baseline Methods
For evaluating the effectiveness of our proposed ICED framework on the learning from im-
balanced crowdsourced labeled data problem, we compare the performance of ICED with several

representative state-of-the-art crowdsourced label processing approaches on the classification task,

“https://www.audeering.com/opensmile/
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including:

Majority Voting (MV), which infers determinate labels based on the majority of annotated

labels.

* D&S [22], which infers determinate labels via estimating the error rate of each crowd worker.

* Crowd-Layer [82], which is an end-to-end deep neural network containing a novel crowd

layer to learn from crowdsourced labeled data directly.

* MBEM [51], which is able to learn from crowdsourced labeled data via jointly modeling

latent true labels and crowd worker qualifications.

* CPC [48], which improves the performance of classifier via learning parameters of classifier

and clusters of crowd workers jointly.

As MV and D&S can only infer determinate labels instead of learning a classifier from crowd-
sourced labels, we introduce two classifiers Logistic regression (LR) and deep neural networks
(DNN). Specifically, we train LR and DNN on the same datasets with determinate labels inferred
by MV and D&S individually and use them as baseline methods. We denote these baseline methods
as MV+LR, MV+DNN, D&S+LR and D&S+DNN.

Table 3.2 shows the classification performance of our ICED framework by comparing against
seven baseline methods on three synthetic data sets and one real data set. Based on this table,
we have the following observations. First, the classification performance of both LR and DNN,
measured in terms of accuracy and Fl-score, is higher when using MV instead of D&S to infer
determinate labels. D&S, as an EM-based approach, assumes a uniform label distribution. MV
independently aggregates annotated labels of each crowdsourced label. Hence, given an imbalanced
crowdsourced labeled data set, the performance of MV on the true label inference task will not
be affected by the imbalanced true label distribution. On the contrary, D&S may show poor

performance due to its inaccurate uniformity assumption. Second, our ICED framework achieves
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Table 3.2 Classification performance of our ICED framework and baseline methods on four data
sets.

Gisette-Syn USPS-Syn GSAD-Syn Emotion

Methods Accuracy Fl-score Accuracy Fl-score Accuracy Fl-score Accuracy Fl-score
MV+LR 0.8179 0.8175 0.8494 0.8480 0.7094 0.6872 0.8289 0.8277
MV+DNN 0.8000 0.7979 0.8735 0.8732 0.8333 0.8327 0.7944 0.7901
D&S+LR 0.7671 0.7592 0.8193 0.8136 0.6974 0.6716 0.8311 0.8294
D&S+DNN  0.7636 0.7562 0.7530 0.7386 0.8085 0.8082 0.7811 0.7749
Crowd-Layer  0.8200 0.8167 0.9006 0.8998 0.8342 0.8295 0.8300 0.8273
MBEM 0.6967 0.4211 0.7813 0.5334 0.6826 0.5577 0.6344 0.5324

CPC 0.8021 0.8020 0.8313 0.8311 0.6154 0.5917 - -

ICED 0.8521 0.8512 0.9036 0.9030 0.8872 0.8865 0.8644 0.8640

the best classification performance on all four data sets comparing with several representative state-
of-the-art crowdsourced label processing approaches. We believe there are three reasons behind
this phenomenon. First, even though the D&S approach assumes uniformity in data distribution,
ICED generates synthetic data to augment the imbalances between classes in the training set. The
resulting training set will approximate a uniform distribution, enhancing the performance of the
D&S approach. Second, the more accurate determinate labels inferred by the true label inference
module improves the synthetic data generation module. The reason being, the synthetic data
generation module can use the inferred determinate labels to differentiate minority data samples
from majority ones to generate synthetic samples in minority classes. As a result, the data samples
produced by the synthetic data generation module have a higher probability of belonging to the
minority classes. Third, the synthetic generated data can also help the classifier ¥ in ICED to
obtain better generalization ability during the model training phase via augmenting the imbalanced
training set. In summary, comparing with several representative state-of-the-art crowdsourced label
processing approaches, our ICED framework is more effective to tackle the problem of learning

from imbalanced crowdsourced labeled data.

3.3.3 Ablation Study
As we mentioned before, the D&S approach assumes uniform label distribution as prior knowl-
edge for initialization. Therefore, the true label inference performance of the D&S approach is

lower than the MV approach on the imbalanced crowdsourced labeled dataset. The ICED frame-

36



1.0 1.0

0.9 0.91
0.8 0.8
0.7 0.7

0.6 0.6

0.5 0.5-

MV D&S-orig D&S-first D&S-final MV D&S-orig D&S-first D&S-final
(a) Gisette-Syn. (b) GSAD-Syn.

Figure 3.2 Accuracy of true label inference using MV and the true label inference module (D&S)
in ICED.

work addresses the issue in the D&S approach by integrating a synthetic data generation module.
The synthetic data generation module balances the imbalanced training set via generating synthetic
data samples for minority classes. The resulting augmented dataset better fits the prior knowledge
used in D&S.

To verify whether and how the synthetic generation module benefits from the true label inference
module in our ICED framework, we compare the true label inference accuracy of D&S adopted
in ICED with MV. We show the comparison on two synthetic datasets— Gisette-Syn and GSAD-
Syn— because the ground truth labels are available for these two datasets. In our experiments,
we record the true label inference accuracy of D&S for three cases: 1) before introducing the
synthetic data generation module, 2) after applying the synthetic data generation module once, and
3) after completing the training procedure of ICED. We denote these three cases as D&S-orig,
D&S-first, D&S-final, respectively. In Figure 3.2, we find that the performance of D&S varies
widely for different cases. Take the experimental results obtained on the training set of Gisette-
Syn as an example. As shown in Figure 3.2a, before introducing the synthetic data generation
module, the true label inference accuracy of D&S is below 60%, which is much worse than MV.
Surprisingly, by conducting the synthetic data generation process just once, the label inference
accuracy of D&S is higher than 80%. After finishing the training procedure of ICED, i.e, after

repeating the synthetic data generation process multiple times, D&S achieves higher than 90% true
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Table 3.3 Performance of different warm-up strategies.

Datasets | Methods | # samples | # epochs | Accuracy | Fl-score

Trad-I 3,080 15 0.8014 0.7989

Gisette-Syn | Trad-II 2,043 15 0.6079 0.5372
ICED-w 2,043 5x3 0.8186 0.8126

Trad-I 734 6 0.7500 0.7333

USPS-Syn | Trad-1I 103 6 0.7922 0.7828
ICED-w 103 2x3 0.8373 0.8329

Trad-1 2,575 6 0.4581 0.3142

GSAD-Syn | Trad-II 507 6 0.4504 0.3105
ICED-w 507 2x3 0.8376 0.8332

label inference accuracy, which is a significant improvement in comparison to a naive application
of D&S on the imbalanced crowdsourced labeled dataset. In conclusion, the synthetic generation

module significantly enhances the performance of the true label inference module in ICED.

3.3.4 Effectiveness of Warm-up Training

In this subsection, we test the effectiveness of our designed warm-up training strategy. Given a
set of crowdsourced labeled data, the warm-up training strategy adopted in our ICED framework
first calculates label certainty score for each data sample based on its corresponding crowdsourced
label. Then it divides data samples into different groups based on their label certainty scores.
Data samples in the third-highest certainty group will feed the classifier ¥ in ICED first with their
corresponding determinate labels produced by MV. Data samples in the highest certainty group will
train ¥ after those in the second-highest group are picked. In experiments, we denote our designed
warm-up training strategy as ICED-w. As a comparison, we implement one common warm-up
training strategy used in literature for learning from noisy labeled data that uses all available
data simultaneously to warm up the model. We denote this warm-up strategy as Trad-1. Another
warm-up training strategy Trad-II, which is the same as Trad-I, except it only uses data samples
in the highest, second-highest, and third-highest certainty groups rather than all the available data
samples. In other words, Trad-II chooses the same data samples adopted in our designed warm-up
training strategy ICED-w and uses them to feed F at the same time. For evaluation, we report the

classification performance of ¥ by training on different warm-up training strategies in Table 3.3.
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We observe that the classifier ¥ training by ICED-w achieves the best classification performance,
comparing with Trad-I and Trad-II, on all datasets. Thus, our designed warm-up training strategy

more effectively initializes ICED.
3.4 Related Work

3.4.1 Processing Crowdsourced Labels

Inferring true labels from crowdsourced labels is a challenge as the crowd workers have diverse
expertise [113]. A naive approach to infer true labels is majority voting (MV), which uses the
majority of annotated labels as the true label. The MV approach performs poorly in practice, as
the crowd workers have diverse expertise and reliability. An Expectation-Maximization (EM) [22]
approach addresses the differences between crowd workers by estimating the error rate of each
crowd worker from the crowd labels. Therefore, an EM approach has higher accuracy than MV in
inferring true labels. Inspired by this, Whitehill et al. [104] used an iterative approach considering
both sample difficulty and crowd worker reliability to infer true labels. The above approaches focus
only on inferring true labels. Some recent works integrate true labels inference with downstream
tasks. Kajino et al. [48] developed a clustered personal classifier method that simultaneously trains
a classifier and estimates a cluster of workers. Rodrigues et al. [83] generalized Gaussian process
classification considering crowd workers with diverse expertise. Raykar et al. [79] designed an
EM-based approach to jointly learn a crowd worker noise model and a regression model. Khetan
et al. [51] proposed another EM-based approach for learning from crowdsourced labeled data by
jointly modeling latent true labels and crowd worker qualifications. Guan et al. [34] modeled
information from each worker and then learned combination weights via back-propagation. As all
the above approaches assume a uniformed label distribution as prior knowledge for initialization,
they cannot achieve good generalization when the given training set has an imbalanced true label

distribution.
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3.4.2 Handling Imbalanced Data

The performance of a classifier heavily relies on the quality and quantity of training data [49].
Since the majority of classes in the imbalanced training set can dominate the loss function of
training, classifiers trained on imbalanced data often generalize poorly. Existing approaches to
handle imbalanced data mainly falls into two categories: re-sampling and re-weighting. Re-
sampling approaches balance the imbalanced data through under-sampling data samples from
majority classes [110, 67] or over-sampling data samples from minority classes [15, 100]. As
under-sampling approaches often discard several data samples, over-sampling approaches are better
in practice. Synthetic Minority Over-sampling Technique (SMOTE) [15] is a well-accepted over-
sampling approach. Instead of duplicating existing minority data samples to inflate minority classes,
SMOTE produces unseen synthetic minority samples by applying linear interpolation operations
between a specific minority sample and one of its nearest neighbors within the same class. Several
variants of SMOTE [35, 39] further improve the prediction performance of classifiers training
on imbalanced datasets. Re-weighting approaches allocate different weights for different classes
or even different data samples. For example, Lin et al. [63] proposed Focal loss to reshape the
standard cross entropy loss such that it down-weights the loss assigned to well-classified data
samples. Cui et al. [21] presented to utilize the data overlap measurement to quantify the effective
number of samples for each class and re-weight each class by the inverse of the number of effective
samples per class. Existing imbalanced data handling approaches assume that the given labels are
determinate and noise-free, which is not the case in crowdsourcing settings. Therefore, learning

from imbalanced crowdsourced labels needs to be addressed.

3.5 Chapter Conclusion

In this chapter, we investigate the problem of learning from imbalanced crowdsourced labeled
data. We present a novel ICED framework to deal with the imbalanced true label distribution and
noisy crowdsourced labels. The ICED framework alleviates the negative impacts of imbalanced
true label distribution while using the supervised information in the crowdsourced labels. To

evaluate the performance of the ICED framework, we apply ICED into a classification task by
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training on both synthetic and real imbalanced crowdsourced labeled datasets and comparing its
performance with several representative crowdsourced label processing approaches. Extensive
experimental results demonstrate the effectiveness of our proposed framework ICED on learning

from imbalanced crowdsourced labeled data.
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CHAPTER 4

IMBALANCED ADVERSARIAL TRAINING WITH REWEIGHTING

Adversarial training has been empirically proven to be one of the most effective and reliable
defense methods against adversarial attacks. However, the majority of existing studies are focused
on balanced data sets, where each class has a similar amount of training examples. Research
on adversarial training with imbalanced training data sets is rather limited. As the initial effort
to investigate this problem, we reveal the facts that adversarially trained models present two
distinguished behaviors from naturally trained models in imbalanced data sets: (1) Compared
to natural training, adversarially trained models can suffer much worse performance on under-
represented classes, when the training data set is extremely imbalanced. (2) Traditional reweighting
strategies which assign large weights to under-represented classes will drastically hurt the model’s
performance on well-represented classes. In this chapter, to further understand our observations,
we theoretically show that the poor data separability is one key reason causing this strong tension
between under-represented and well-represented classes. Motivated by this finding, we propose
the Separable Reweighted Adversarial Training (SRAT) framework to facilitate adversarial training
under imbalanced scenarios, by learning more separable features for different classes. Extensive

experiments on various data sets verify the effectiveness of the proposed framework.

4.1 Chapter Introduction

The existence of adversarial samples [91, 32] has risen huge concerns on applying deep neural
network (DNN) models into security-critical applications, such as autonomous driving [17] and
video surveillance systems [58]. As countermeasures against adversarial attacks, adversarial train-
ing [71, 111, 103] has been empirically proven to be one of the most effective and reliable defense
methods. In general, it can be formulated to minimize the model’s average error on adversarially
perturbed input examples [71]. Although promising to improve the model’s robustness, most ex-
isting adversarial training methods assume that the number of training examples from each class is
equally distributed. However, datasets collected from real-world applications typically have imbal-

anced distribution [27, 64]. Hence, it is natural to ask: What is the behavior of adversarial training
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under imbalanced scenarios? Can we directly apply existing imbalanced learning strategies in
natural training to tackle the imbalance issue for adversarial training? Recent studies find that
adversarial training usually presents distinct properties from natural training. For example, com-
pared to natural training, adversarially trained models suffer more from the overfitting issue [85],
and they tend to present strong class-wise performance disparities, even if the training examples
are uniformly distributed over different classes [108]. Imagine that if the training data distribution
is highly imbalanced, these properties of adversarial training can be greatly exaggerated and make
it extremely difficult to be applied in practice. Therefore, it is necessary but challenging to answer
aforementioned questions.

As the initial effort to study the imbalanced problem in adversarial training, in this work, we
first investigate the performance of existing adversarial training under imbalanced settings. As a
preliminary study shown in Section 4.2.1, we apply both natural training and PGD adversarial train-
ing [71] on multiple imbalanced training datasets constructed from CIFAR10 training dataset [56]
and evaluate trained models’ performance on class-balanced test dataset. From the preliminary
results, we observe that, compared to naturally trained models, adversarially trained models always
present very low standard & robust accuracy! on under-represented classes. This observation
suggests that adversarial training is more sensitive to imbalanced data distribution than natural
training. Thus, when applying adversarial training in practice, imbalance learning strategies should
be considered for help.

As aresult, we explore potential solutions which can handle the imbalance issue for adversarial
training. In this chapter, we focus on studying the behavior of the reweighting strategy [41] and
leave other strategies such as resampling [26] for one future work. In Section 4.2.2, we apply the
reweighting strategy to adversarial training with varied weights assigning to one under-represented
class and evaluate trained models’ performance. From the results, we observe that, in adversarial
training, increasing weights for an under-represented class can substantially improve the standard &

robust accuracy on this class, but drastically hurt the model’s performance on the well-represented

'In this chapter, we denote standard/robust accuracy as model’s accuracy on the input examples without/with
perturbations, respectively. Without clear clarification, we consider the perturbation is constrained by /,,-norm 8/255.
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class. This finding indicates that the performance of adversarially trained models is very sensitive
to the reweighting manipulations and it could be very hard to figure out an eligible reweighting
strategy which is optimal for all classes.

It is also worth noting that, in natural training, we find that upweighting the under-represented
class increases model’s standard accuracy on this class but only slightly hurts the accuracy on
the well-represented class, even when adopting a large weight for the under-represent class. To
further investigate the possible reasons leading to different behaviors of the reweighing strategy
in natural and adversarial training, we visualize their learned features (in Figure 4.3), and observe
that features learned by the adversarially trained model of different classes tend to mix together
while they are well separated for the naturally trained model. This observation motivates us to
theoretically show that when the given data distribution has poor data separability, upweighting
under-represented classes will hurt the model’s performance on well-represented classes. Motivated
by our theoretical understanding, we propose a novel framework SRAT (Separable Reweighted
Adversarial Training) to facilitate the reweighting strategy in imbalanced adversarial training by
enhancing the separability of learned features. Through experiments, we validate the effectiveness

of SRAT. The main contributions of this chapter include:

* We empirically discover two major differences between naturally trained models and adver-
sarial trained models under imbalanced settings, which reveal a fact that adversarial training

alone cannot work well given an imbalanced training dataset.

» We theoretically verify the poor data separability is one key reason causing the failure of

adversarial training based methods under imbalanced settings.

* We propose a novel framework SRAT to facilitate the reweighting strategy in imbalanced

adversarial training and demonstrate the effectiveness of SRAT via extensive experiments.
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Figure 4.1 Class-wise performance of natural & adversarial training using an imbalanced CIFAR10.
4.2 Preliminary Study

4.2.1 The Behavior of Adversarial Training

In this subsection, we conduct preliminary studies to examine the performance of PGD adver-
sarial training [71]. Following previous works [21, 10], we construct an imbalanced CIFAR10 [56]
training dataset, where each of the first 5 classes (a.k.a. well-represented classes) has 5,000 training
examples and each of the last 5 classes (a.k.a. under-represented classes) has 50 training examples.

Figure 4.1 shows the performance of naturally and adversarially trained models using a
ResNet18 [42] architecture. From the figure, we can observe that, compared with natural training,
PGD adversarial training will result in a larger performance gap between well-represented classes
and under-represented classes. For example, in natural training, the ratio between the average
standard accuracy of well-represented classes (brown) and under-represented classes (violet) is
about 2:1, while in adversarial training, this ratio expands to 16:1. Moreover, for adversarial
training, it has extremely poor performance on under-represented classes. There are 3 out of the 5
under-represented classes with 0% standard & robust accuracy. As a conclusion, the performance
of adversarial training is easier to be affected by imbalanced distribution than natural training
and suffers more on under-represented classes. We also conduct more experiments under various

imbalanced settings and get have similar findings.

4.2.2 The Reweighting Strategy in Natural Training v.s. in Adversarial Training
The preliminary study in Section 4.2.1 demonstrates that it is highly demanding to adjust the

original adversarial training methods to accommodate imbalanced data distribution. Next, we
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Figure 4.2 Class-wise performance of reweighted natural & adversarial training in binary classifi-
cation.

investigate the effectiveness of adopting the reweighting strategy [41] in adversarial training. Our
experiments are conducted under a binary classification setting, where the training dataset contains
two classes that are randomly selected from CIFAR10 dataset, with each class having 5,000 and
50 training examples respectively. Based on this training dataset, we arrange multiple trails of
(reweighted) natural training and (reweighted) adversarial training, with the weight ratio between
the under-represented class and well-represented class ranging from 1:1 to 200:1.

Figure 4.2 shows the experimental results with training data sampled from the classes “cat”
and “horse”. As demonstrated in Figure 4.2, increasing the weight for the under-represented
class (horse) will drastically increase the model’s performance on this class, while also immensely
decreasing the performance on the well-represented class (cat). For example, when increasing the
weight ratio from 1:1 to 150:1, the standard accuracy of the under-represented class is improved
from 0% to ~ 60% and its robust accuracy from 0% to ~ 50%. However, the standard accuracy on
the well-represented class drops from 100% to 60%, and its robust accuracy drops from 100% to
50%. These results illustrate that adversarial training’s performance can be significantly affected by
the reweighting strategy. As a result, the reweighting strategy in this setting can hardly help improve
the overall performance no matter which weight ratio is chosen, because the model’s performance
always presents a strong tension between these two classes. We also conduct more experiments

using different binary imbalanced datasets and get have similar observations.
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Figure 4.3 t-SNE visualization of learned features.
4.3 Theoretical Analysis

In Section 4.2.2, we observe that in natural training, the reweighting strategy can only make
a small impact on the two classes’ performance. This phenomenon has been extensively studied
by recent works [9, 107], where they find that a linear classifier optimized by SGD on a linearly
separable data will converge to the solution of the hard-margin support vector machine [77]. In
other words, as long as the data can be well separated, reweighting will not make huge influence
on the finally trained models.

Inspired by their conclusions, we hypothesize that, as the adversarially trained models separate
the data poorly, their performance is highly sensitive to the reweighting strategy. As a direct
validation of our hypothesis, in Figure 4.3, we visualize the learned (penultimate layer) features
of the imbalanced training examples used in the binary classification problem in Section 4.2.2.
We find that adversarially trained models do present obviously poorer separability on the learned
features. Next, we theoretically analyze the impact of reweighting on linear models which are

optimized under poorly separable data.

Binary Classification Problem. To construct the theoretical study, we focus on a binary
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classification problem, with a Gaussian mixture distribution 9 which is defined as:

N(u, oI, ify=+1
y~{-1,+1}, x~ , (4.1)

N(—u, D), ify=-1

where the two classes’ centers (+u € R?) with each dimension have mean value +7 (7 > 0) and
variance o2. Formally, we define the data separability as S = n/o>. Intuitively, when S is larger,
it suggests that two classes are well separated. Previous work [9] also closely studied this term to
describe data separability.

Besides, we assume the imbalanced training dataset satisfying the condition Pr.(y = +1) =
K -Pr.(y = —1) and K > 1, which indicates the imbalance ratio between two classes. During test,
we assume two classes have the equal probability to appear. Under the data distribution D, we will
discuss the performance of linear classifiers f(x) = sign(w’x — b) where w and b are the weight
and bias terms of the model f. If a reweighting strategy is involved, we define the model upweights
the under-represented class “-1” by p.

In the following lemma, we first derive the solution of the optimized linear classifier f training
on this imbalanced dataset. Then we will extend the result of Lemma 4.3.1 to analyze the impact

of data separability on the performance of model f.

Lemma 4.3.1. Under the data distribution D as defined in Eq. (4.1), with an imbalanced ratio K

and a reweight ratio p, the optimal classifier which minimizes the (reweighted) empirical risk:

fr= arg;nin(Pr-(f(X)iyly:—l) -Pr.(y=-1)-p

4.2)
+ Pr.(f(x)#yly=+1) - Pr.(y=+1))
has the solution: w =1 and b = %log(%)%'z = %log(%)%.
Proof. We will first prove that the optimal model f* has parameters wi; = wy =--- =wg (orw = 1)
by contradiction. We define G = {1, 2, ..., d} and make the following assumption: for the optimal

w and b, we assume if there exist w; < w; fori # j and i, j € G. Then we obtain the following
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standard errors for the class “-1" and the class “+1" of this classifier f with weight w:
Pr.(f*(x) # yly = -1) = P. (W N (-n,0?) = b > 0)
=Pr.{ Z wiN (1, 02) +w;N (n, 0'2)+ij(—77, o) =b>0},
k#i k] 4.3)
Pr.(f*(x) # yly = +1) = P.(W/ N (+n,0%) — b < 0)

=Pr.{ Z WiN (417, 72) +wiN (1, 0'2)+ij(+77, o2)=b<0}.
k#i k# )

However, if we define a new classier f whose weight w uses w; to replace w;, we obtain the errors

for the new classifier:

Pr.(f(x) # yly = -1)

=Pr.{ Z wiN (-1, 0'2)+ij(—17, 0'2)+ij(—77, o) =b>0},
ki k#j

Pr.(f(x) # yly = +1)

=Pr.{ Z wiN (7, 72) +w N @, 02 +w N @1, 02) —b < 0},
k#i,k#j

(4.4)

Comparing the errors in Eq. (4.3) and Eq. (4.4), as w; < w;, then the classifier f has smaller
standard error in each class. Therefore, it contradicts with the assumption that f is the optimal
classifier with smallest error. Thus, we conclude for an optimal linear classifier in natural training,
it must satisfies w; = wy = --- = wy (or w = 1) if we do not consider the scale of w.

Next, we calculate the optimal bias term b given w = 1, where we find an optimal b can

minimize the (reweighted) empirical risk:
Errortrain (f *)
=Pr.(f*(x)#y|ly=-1) - Pr.(y=-1)-p+Pr.(f*(x) £y|y=+1)-Pr.(y=+1)

o Pr.(f"(x) #yly=-1) - p+Pr.(f(x) £ yly =+1)- K

d d
=p-Pr(O N(-n,0%) =b>0)+K -Pr.(O N(,0%) b < 0)
i=1 i=1

b+d b-d
Ay LK PR(N(O, 1) < 2=
do do

=p-PrN(0,1) < — ),

49



and we take the derivative with respect to b:

OErToryin 1 _l _b +dn.,
— v_ (=) expl—5 (<)
1 _l b- dn
\/ﬂ ( ) )%).

When 9Error,i,/db = 0, we can calculate the optimal » which gives the minimum value of the

empirical error, and we have:

p.do? 1 p.d
— =—log(%)=.
oely 2 el

O

Lemma 4.3.1 indicates that the final optimized classifier has a weight vector equal to 1 and its
bias term b only depends on K, p and the data separability S. In the following, we first focus on one
special setting when p = 1, which is the original ERM model without reweighting. Specifically, we
aim to compare the behavior of linear models when they can poorly separate data (like adversarial

trained models) or they can well separate data (like naturally trained models).

Theorem 4.3.2. Under two data distributions (xV, y(D) € Dy and (x@, y?) € D, with different
separabilities S1 > S3, let f" and f; be the optimal non-reweighted classifiers (p = 1) under D

and D,, respectively. Given the imbalance ratio K is large enough, we have:

Pr.(fF(x M)y Wy =)= Pr(fr(xM) £y Dy =41)
4.5)
<Pr(f; @) 2yPyP =) =Pr(f; &) 2yP |y =41).

Proof. Without loss of generality, for distribution D;, 9, with different mean-variance pairs
(xn1, 0'12) and (£n,, 0'22), we can only consider the case 177 = 1, and 0'12 < cr%. Otherwise, we can
simply rescale one of them to match the mean vector of the other and will not impact the results.
Under this definition, the optimal classifier f;" and fJ has weight vector wi = w, = 1 and bias term
by, by, with the value as demonstrated in Lemma 4.3.1. Next, we will prove the Theorem 4.3.2 by

2 steps.
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Step 1. For the error of class “-1”, we have:

d
Pr.(fl*(x(l)) ;ty(l) Iy(l) =-1)= Pr.(Z N(-n, 0'12)—191 >0)
i=1

d d
< Pr.(Z N(=n,02) = by > 0) < Pr.(z N(-n,02) = by > 0)
i=1 i=1

= Pr(f; (¢ ?) # @@ = -1),

Step 2. For the error of class “+1”, we have:

d
Pr.(f; (x ) £y Oy M =+1)=Pr.(> " N(p, 07) b1 <0)

i=1 (4.6)
_ loo(K)-
= PENO.1) < 2 e (0,1 <DL
2 (o]
and similarly,
Pr.(fz*(x(z)) iy(z) Iy(z) =+1)=Pr.(N(0,1)< w —l) 4.7)
n %)

Note that when K is large enough, i.e., log(K) > ——, we can get the Z-score in Eq. (4.6) is larger

oo’
than Eq. (4.7). As a result, we have:
Pr.(f7 (xD) £ y D y® = 41) > Pr.(f; (x?) £ y@[y? = +1). (4.8)
By combining Step I and Step 2, we can get the inequality in Theorem 4.3.2. O

Intuitively, Theorem 4.3.2 suggests that when the data separability S is low (such as D), the
optimized classifier (without reweighting) can intrinsically have a larger error difference between
the under-represented class “-1” and the well-represented class “+1”. Similar to the observation
in Section 4.2.1 and Figure 4.3, adversarially trained models present a weak ability to separate
data, and they also present a strong performance gap between the well-represented class and
under-represented class. Conclusively, Theorem 4.3.2 indicates that the poor ability to separate the
training data can be one important reason which leads to the strong performance gap of adversarially
trained models.

Next, we consider the case when the reweighting strategy is applied. Similar to Theorem 4.3.2,

we also calculate the models’ classwise error under 9 and 9, with different levels of separability.
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In particular, Theorem 4.3.3 focuses on the well-represented class “+1” and calculates its error
increase when upweighting the under-represented class “-1” by p. Through the analysis in Theo-
rem 4.3.3, we compare the impact of upweighting the under-represented class on the performance

of well-represented class.

Theorem 4.3.3. Under two data distributions (x(V, y1)) € Dy and (x®, y?) € D, with different
separabilities S1 > S, let f" and [} be the optimal non-reweighted classifiers (p = 1) under D
and D», respectively, and let f|* and f;* be the optimal reweighted classifiers under D and D
given the optimal reweighting ratio (p = K). Given the imbalance ratio K is large enough, we

have:

P?’.(fl’*(x(l)) ¢y(1)|y(1) =+1)—Pr.(f1*(x(l))iy(l)ly(l) —4)
4.9)

<Pr(ff @)y D@ =) =Pr(f; @) £y @y D =41).
Proof. We first show that under both distribution 9; and 9,, the optimal reweighting ratio p is

equal to the imbalance ratio K. Based on the results in Eq. (4.3) and calculated model parameters

w and b, we have the test error (given the model trained by reweight value p):

Errortest(f *)
=Pr.(f" (x)#y|ly=-1)-Pr.(y=—1)+Pr.(f(x) £y|y=+)-Pr.(y=+)
b+dn b—dn

o )+Pr(N(0, ]) < T)

= Pr.(N(0, 1) <—% 1og(§)—%)+1>r.(/v(o, 1) < %log(%) - %).

o Pr.(N(0,1) <—

The value of taking the minimum when its derivative with respect to p is equal to 0, where we can
get p = K and the bias term b = 0. Note that the variance values have the relation: 0'12 < 0'2%.

Therefore, it is easy to get that:

d
Pr.(f7"(xD) # yDy™ = +1) = Pr.(Z N(.02) < 0)
d = (4.10)
< Pr.(z N(U,O'zz) <0)= Pr.(fz'*(x(z)) + y(2)|y(2) = +1).
i=1

Combining the results in Eq. (4.8) and (4.10), we have proved the inequality in Theorem 4.3.3. O
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As Theorem 4.3.3 shows, when the data distribution has poorer data separability (such as
9,), upweighting the under-represented class can cause greater hurt on the performance of the
well-represented class. It is also consistent with our empirical findings about adversarial training
models. Since the adversarially trained models poorly separate the data (Figure 4.3), upweighting
the under-represented class always drastically decreases the performance of the well-represented
class (Section 4.2.2). Through the discussions in both Theorem 4.3.2 and Theorem 4.3.3, we
conclude that the poor separability can be one important reason which makes adversarial training
and its reweighted variants extremely difficult to achieve good performance under imbalance data
distribution. Therefore, in the next section, we will explore potential solutions which can facilitate

the reweighting strategy in adversarial training.

4.4 Separable Reweighted Adversarial Training

The observations from both preliminary study and theoretical understandings indicate that
more separable data will advance the reweighting strategy in adversarial training under imbalanced
scenarios. Thus, in this section, we present a framework, Separable Reweighted Adversarial
Training (SRAT), which enables the effectiveness of the reweighting strategy in adversarial training

under imbalanced scenarios by increasing the separability in the learned feature space.

4.4.1 Reweighted Adversarial Training

Given an input example (x, y), adversarial training [71] aims to obtain a robust model fy that can
make the same prediction y for an adversarial example x’, generated by applying an adversarially
perturbation on x. The adversarial perturbations are typically bounded by a small value € under
Ly-norm, i.e., [|x" —x||, < €.

As indicated in Section 4.2.1, adversarial training cannot be applied in imbalanced scenarios
directly, as it presents very low performance on under-represented classes. To tackle this problem,
a natural idea is to integrate existing imbalanced learning strategies proposed in natural training,

such as reweighting, into adversarial training to improve the trained model’s performance on those
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under-represented classes. Hence, the reweighted adversarial training can be defined as

min T > max wiL(o(x)). ). @1

6 n |-l <e

where w; is a weight value assigned for each input sample (x;, y;) based on the example size of
the class (x;, y;) belongs to or some properties of (x;, y;). In most existing adversarial training
methods [71, 111, 103], the cross entropy (CE) loss is adopted as the loss function £ (-, -). However,
the CE loss could be suboptimal in imbalanced scenarios and some new loss functions designed for
imbalanced learning specifically, such as Focal loss [63] and LDAM loss [10], have been proven

their superiority in natural training. Hence, besides CE loss, Focal loss and LDAM loss can also

be adopted as the loss function £(-, ) in Eq. (4.11).

4.4.2 Increasing Feature Separability

Our preliminary study indicates that only reweighted adversarial training cannot work well
under imbalanced scenarios. Moreover, the reweighting strategy behaves very differently between
natural training and adversarial training. Meanwhile, our theoretical analysis suggests that the
poor separability of the feature space produced by the adversarially trained model can be one
reason to understand these observations. Hence, in order to facilitate the reweighting strategy
in adversarial training under imbalanced scenarios, we equip a feature separation loss with our
SRAT method. We aim to enforce the learned feature space as separable as possible. More
specifically, the goal of the feature separation loss is to make (1) the learned features of examples
from the same class well clustered, and (2) the features of examples from different classes well
separated. By achieving this goal, the model is able to learn more discriminative features for
each class. Correspondingly adjusting the decision boundary via the reweighting strategy to fit
under-represented classes’ examples more will not hurt well-represented classes drastically. The

feature separation loss is formally defined as:

= exp(zi - 2,/7) .12)

‘L (‘x[/) = T o Og ’ ’ ’
o 1401 Lae(i) eXP(z] - 2a/T)

where z is the feature representation of the adversarial example x; of x;, 7 € R* is a scalar

peP(i)

temperature parameter, P (i) denotes the set of input examples belonging to the same class with x;
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and A (i) indicates the set of all input examples excepts X.. When minimizing the feature separation
loss during training, the learned features of examples from the same class will tend to aggregate
together in the latent feature space, and, hence, result in a more separable latent feature space. Our
proposed feature separation loss L, () is inspired by the supervised contrastive loss proposed
in [52]. The main difference is, instead of applying data augmentation techniques to generate two
different views of each data example and feeding the model with augmented data examples, our

feature separation loss directly takes the adversarial example x’ of each data example x; as input.

4.4.3 Training Schedule
By combining the feature separation loss with the reweighted adversarial training, the final

object function for Separable Reweighted Adversarial Training (SRAT) is defined as:

1 n
min = > max _ wi L(fo(x)), yi) + ALsep (), (4.13)

0 n L lx-xillpse
where we use a hyper-parameter A to balance the contributions from the reweighted adversarial
training and the feature separation loss.

In practice, in order to better take advantage of the reweighting strategy in our SRAT method,
we adopt a deferred reweighting training schedule [10]. Specifically, before annealing the learning
rate, our SRAT method first trains a model guided by Eq. (4.13) without introducing the reweighting
strategy, i.e., setting w; = 1 for every input example X, and then applies reweighting into model
training process with a smaller learning rate. Our SRAT method enables to learn more separable
feature space, thus comparing with applying the reweighting strategy from the beginning of training,
this deferred re-balancing training schedule enables the reweighting strategy to obtain more benefits

from our SRAT method, and as a result, it can boost the performance of our SRAT method with

the help of the reweighting strategy.

4.4.4 Algorithm
The algorithm of our proposed SRAT framework is shown in Algorithm 4.1. Specifically, in
each training iteration, we first generate adversarial examples using PGD for examples in the current

batch (Line 5). If the current training iteration does not reach a predefined starting reweighting
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Algorithm 4.1 Separable Reweighted Adversarial Training.

Input: imbalanced training dataset D = {(x;, y;)}"_,, number of total training epochs T, starting
reweighting epoch Ty, batch size N, number of batches M, learning rate y
Output: adversarially robust model fy
1: Initialize the model parameters € randomly.
2: forepoch=1,...,T;,—1do
3:  for mini-batch=1,..., M do

4: Sample a mini-batch 8 = {(x;, y;)}?, from D.
5: Generate adversarial example x; for each x! € 8.
6: L(fo) =5 2, max 1, <e Lfo(x), i) + ALgep(x))
7: 0 — 60 —yVoL(fy)

8:  end for

9:  Optional: y « vy/k
10: end for
11: for epoch=Ty,...,T do
12:  for mini-batch=1,...,M do
13: Sample a mini-batch 8 = {(x;, y;)}?, from D.
14: Generate adversarial example x; for each x| € 8.

15: L(fo) =% 2, max 1, <e Wil (fo(x]), i) + ALsep (x))
16: 0 «— 0 - ’}/Vg.[:(fg)

17:  end for
18:  Optional: y « y/k
19: end for

epoch T;, we will assign same weights, i.e., w; = 1 for all adversarial examples x; in the current
batch (Line 6). Otherwise, the reweighting strategy will be adopted in the final loss function (Line
15), where a specific weight w; will be assigned for each adversarial example x; if its corresponding

clean example x; comes from an under-represented class.

4.5 Experiment

In this section, we perform experiments to validate the effectiveness of our SRAT method.
We first compare SRAT with several representative imbalanced learning methods in adversarial
training under various imbalanced scenarios and then conduct ablation study to deeply understand

SRAT.

4.5.1 Experimental Settings
Data sets. We conduct experiments on multiple imbalanced training datasets artificially cre-

ated from two benchmark image datasets CIFAR10, and CIFAR100 [56] with diverse imbalanced
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distributions. Specifically, we consider two different imbalance types: Exponential (Exp) imbal-
ance [21] and Step imbalance [7]. For Exp imbalance, the number of training examples of each
class will be reduced according to an exponential function n = n;7', where i is the class index,
n; is the number of training examples in the original training dataset for class i and 7 € (0, 1).
We categorize half classes with most frequent example sizes in the imbalanced training dataset
as well-represented classes and the remaining half classes as under-represented classes. For Step
imbalance, we follow the similar process adopted in Section 4.2.1. Moreover, we denote imbalance
ratio K as the ratio between training example sizes of the most frequent and least frequent class.
We construct different imbalanced datasets “Step-10", “Step-100", “Exp-10" and “Exp-100", by
adopting different imbalanced types (Step or Exp) with different imbalanced ratios (K = 10 or
K =100) to train models, and evaluate model’s performance on the original uniformly distributed
test datasets of CIFAR10 and CIFAR100 correspondingly.

Baseline methods. We implement several representative and state-of-the-art imbalanced learn-
ing methods (or their combinations) into adversarial training as baseline methods. These methods
include: (1) Focal loss (Focal); (2) LDAM loss (LDAM); (3) Class-balanced reweighting (CB-
Reweight) [21], where each example is reweighted proportionally by the inverse of the effective
number? of its class; (4) Class-balanced Focal loss (CB-Focal) [21], a combination of Class-
balanced method and Focal loss, where well-classified examples will be downweighted while
hard-classified examples will be upweighted controlled by their corresponding effective number;
(5) deferred reweighted CE loss (DRCB-CE), where a deferred reweighting training schedule is
applied based on the CE loss; (6) deferred reweighted Class-balanced Focal loss (DRCB-Focal),
where a deferred reweighting training schedule is applied based on the CB-Focal loss; (7) deferred
reweighted Class-balanced LDAM loss (DRCB-LDAM) [10], where a deferred reweighting train-
ing schedule is applied based on the CB-LDAM loss. We also include the original PGD adversarial
training method using cross entropy loss (CE) in our experiments.

Our proposed methods. We evaluate three variants of our proposed SRAT method with

’The effective number is defined as the volume of examples and can be calculated by (1 — 8%)/(1 — ), where
B € [0, 1) is a hyperparameter and n; denotes the number of examples of class i.
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Table 4.1 Performance comparison on the CIFAR10 Step-10 dataset under [, threat model.

Metric Standard Accuracy Robust Accuracy

Method Overall Under Overall Under
CE 63.26 £ 0.59 | 40.62 + 1.10 | 36.96 + 0.36 | 14.23 +0.83
Focal 63.57 £0.92 | 41.17 £ 2.07 | 36.89 +0.36 | 14.25 + 0.97
LDAM 57.08 £1.16 | 31.09 +2.20 | 37.18 £ 0.56 | 12.44 + 0.93
CB-Reweight | 73.30 £ 0.30 | 74.80 + 0.88 | 41.34 + 0.42 | 42.15+ 1.42
CB-Focal 73.42 +0.29 | 7435+ 1.39 | 41.34 £0.23 | 41.80 = 1.24
DRCB-CE 75.89 £ 0.23 | 70.55 £ 1.10 | 39.93 £+ 0.24 | 33.33 + 1.42
DRCB-Focal | 74.61 +0.35 | 67.06 + 1.37 | 37.91 £ 0.24 | 29.50 = 1.31
DRCB-LDAM | 72.95 +0.08 | 75.42 + 1.83 | 45.23 £ 0.19 | 44.98 + 1.90
SRAT-CE 76.69 + 0.33 | 73.07 £ 0.63 | 41.02 + 0.49 | 36.57 = 0.92
SRAT-Focal | 75.41 +£0.69 | 74.91 £ 0.70 | 42.05 £ 0.52 | 41.28 + 0.82
SRAT-LDAM | 73.99 + 0.52 | 76.63 + 0.39 | 45.60 + 0.18 | 45.95 + 0.51

Table 4.2 Performance comparison on the CIFAR10 Step-100 dataset under [, threat model.

Metric Standard Accuracy Robust Accuracy

Method Overall Under Overall Under
CE 4729 +032 | 9.03+£0.99 | 3039+0.24 | 1.62+041
Focal 4736 +£0.19 | 9.03 £0.52 | 30.12+0.31 | 1.45+0.12
LDAM 4249 +0.62 | 0.85+0.46 | 30.80+0.31 | 0.05+0.06
CB-Reweight | 37.68 + 1.18 | 19.64 + 1.82 | 25.58 £ 0.62 | 10.33 + 0.82
CB-Focal 15.44 £3.85 | 0.00+0.00 | 14.46 +3.16 | 0.00 = 0.00
DRCB-CE 53.40 £ 1.20 | 22.86 +3.03 | 28.31 £0.59 | 3.35 +0.56
DRCB-Focal | 52.75 +0.96 | 21.81 £2.27 | 27.78 £0.49 | 3.24 £ 0.57
DRCB-LDAM | 61.60 + 0.44 | 50.69 + 2.27 | 31.37 £ 0.45 | 16.25 £ 2.04
SRAT-CE 60.04 £ 1.16 | 41.71 +2.07 | 30.00 £ 0.80 | 12.25 + 1.43
SRAT-Focal | 62.93 +1.10 | 51.83 +3.33 | 28.38 £ 1.00 | 15.89 + 3.15
SRAT-LDAM | 63.13 + 1.17 | 52.73 + 3.23 | 33.51 + 0.68 | 18.89 + 0.59

different implementations of the prediction loss L(-,-) in Eq. (4.11), i.e., CE loss, Focal loss
and LDAM loss. The variant utilizing CE loss is denoted as SRAT-CE, and, similarly, other two
variants are denoted as SRAT-Focal and SRAT-LDAM, respectively. For all these three variants,
Class-balanced method [21] is adopted to set weight values within the deferred reweighting training
schedule.

Implementation details. All aforementioned methods are implemented using a Pytorch library
DeepRobust [62]. For CIFAR10/CIFAR100 based datasets, the adversarial examples used in

training are calculated by PGD-10, with a perturbation budget € = 8/255 and step size y = 2/255;
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Table 4.3 Performance comparison on the CIFAR10 Exp-10 dataset under [, threat model.

Metric Standard Accuracy Robust Accuracy

Method Overall Under Overall Under
CE 7195 +0.52 | 64.09 +0.44 | 37.94 £ 0.19 | 26.79 = 0.51
Focal 72.06 £ 0.78 | 63.99 + 1.15 | 37.62 + 0.34 | 26.27 + 1.04
LDAM 67.39 + 1.00 | 58.01 +2.26 | 41.35 +£0.32 | 28.65 + 0.83
CB-Reweight | 75.17 £ 0.15 | 76.87 £ 0.69 | 41.02 + 0.39 | 41.67 + 0.89
CB-Focal 7473 £ 0.41 | 76.67 £ 0.26 | 38.86 + 0.67 | 42.41 + 0.56
DRCB-CE 76.25 £ 0.09 | 75.83 £ 0.49 | 40.02 £ 0.45 | 37.93 + 0.65
DRCB-Focal | 75.36 +£0.40 | 72.72 £+ 0.94 | 37.76 + 0.54 | 33.83 + 0.68
DRCB-LDAM | 73.92 + 0.31 | 78.53 + 1.24 | 46.29 + 0.46 | 48.81 + 0.54
SRAT-CE 76.74 + 0.15 | 78.61 + 0.63 | 42.39 + 0.71 | 43.37 £ 0.38
SRAT-Focal | 75.26 + 0.00 | 80.52 + 0.00 | 42.37 + 0.00 | 47.22 + 0.00
SRAT-LDAM | 74.63 + 0.00 | 79.82 + 0.00 | 46.72 + 0.00 | 50.38 + 0.00

Table 4.4 Performance comparison on the CIFAR10 Exp-100 dataset under /,, threat model.

Metric Standard Accuracy Robust Accuracy

Method Overall Under Overall Under
CE 48.40 +£0.59 | 23.04 £ 1.15 | 2694 £0.84 | 6.17 £0.86
Focal 49.16 £ 0.61 | 23.69 £ 1.15 | 26.84 £ 0.59 | 5.88 +£0.48
LDAM 48.39 +0.99 | 25.69 £ 1.35 | 29.51 £0.27 | 8.95 +£0.45
CB-Reweight | 57.49 + 0.58 | 56.47 + 1.67 | 29.01 £ 0.30 | 26.53 + 1.27
CB-Focal 50.35 £ 0.44 | 60.05 £ 0.53 | 27.15 £ 0.20 | 33.56 + 0.35
DRCB-CE 5730+ 0.30 | 37.90 + 1.23 | 26.97 £ 0.55 | 10.57 £ 1.03
DRCB-Focal | 54.76 + 0.30 | 31.79 £ 1.30 | 25.24 £ 0.39 | 7.81 £ 0.87
DRCB-LDAM | 62.65 £ 0.50 | 57.19 + 2.10 | 31.66 £ 0.56 | 22.11 £ 1.70
SRAT-CE 64.29 + 0.46 | 61.81 +£1.83 | 29.99 +£0.43 | 24.09 + 0.98
SRAT-Focal | 62.57 + 0.47 | 64.88 + 0.81 | 30.34 + 0.67 | 28.66 + 1.60
SRAT-LDAM | 63.11 + 0.08 | 65.60 + 1.94 | 34.22 + 0.41 | 32.55 + 1.70

4.5.2 Performance Comparison

strategy will be applied starting from epoch 160.

in evaluation, we report robust accuracy under /.,-norm 8/255 attacks generated by PGD-20 on
Resnet-18 [42] models. We set the total training epochs to 200 and the initial learning rate to 0.1,

and decay the learning rate at epoch 160 and 180 with the ratio 0.01. The deferred reweighting

Table 4.1 and Table 4.6 show the performance comparison on several different imbalanced
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CIFAR10 and CIFAR100 data sets. In these two tables, we use bold values to denote the highest

accuracy among all methods and use the underline values to indicate our SRAT variants which



Table 4.5 Performance comparison on the CIFAR100 Step-10 dataset under [, threat model.

Metric Standard Accuracy Robust Accuracy

Method Overall Under Overall Under
CE 3990 +£0.11 | 1790 £ 0.38 | 17.88 £ 0.32 | 6.40 = 0.60
Focal 40.10 £ 0.27 | 17.99 £ 0.75 | 17.67 £ 0.30 | 6.40 £ 0.18
LDAM 39.34 +0.54 | 17.57 £0.94 | 2095 £ 0.20 | 7.41 +0.37
CB-Reweight | 38.88 £ 0.40 | 30.73 £ 0.49 | 16.67 +0.58 | 11.71 £ 0.62
CB-Focal 39.49 + 0.30 | 2896 + 0.14 | 16.55 +£0.39 | 11.09 + 0.33
DRCB-CE 4521 +0.11 | 33.26 £ 0.09 | 1836 £ 0.33 | 11.15 £ 0.48
DRCB-Focal | 44.28 + 0.15 | 30.57 £0.22 | 17.30+£0.39 | 9.73 +£0.18
DRCB-LDAM | 44.70 £ 0.46 | 3590 +£ 0.92 | 21.80 £ 0.12 | 15.19 + 0.36
SRAT-CE 47.17 + 0.26 | 37.81 + 0.38 | 21.36 + 0.31 | 15.41 +0.19
SRAT-Focal | 46.83 + 0.28 | 38.10 = 0.58 | 21.66 + 0.32 | 16.52 + 0.32
SRAT-LDAM | 45.41 £ 0.55 | 36.39 + 0.65 | 23.15 + 0.15 | 16.84 = 0.08

Table 4.6 Performance comparison on the CIFAR100 Exp-10 dataset under [/, threat model.

Metric Standard Accuracy Robust Accuracy

Method Overall Under Overall Under
CE 41.88 £0.36 | 31.30 £0.57 | 16.62 £0.03 | 11.22 £0.21
Focal 41.64 +0.51 | 31.02 £0.71 | 16.29 £ 0.18 | 10.97 + 0.34
LDAM 41.55 +£0.60 | 31.74 £ 0.91 | 20.20 £ 0.20 | 14.71 £ 0.51
CB-Reweight | 41.82 £ 0.11 | 34.37 £+ 0.31 | 17.05 £ 0.35 | 13.53 £ 0.57
CB-Focal 40.86 + 0.13 | 32.21 £ 0.01 | 16.08 = 0.41 | 12.30 + 0.59
DRCB-CE 43.89 +0.26 | 37.28 £0.29 | 16.90 £ 0.19 | 13.62 + 0.14
DRCB-Focal | 43.38 £ 0.30 | 36.17 £ 0.57 | 16.04 £ 0.18 | 12.56 + 0.27
DRCB-LDAM | 43.36 £ 0.48 | 39.27 + 0.72 | 20.36 +£ 0.30 | 17.63 + 0.38
SRAT-CE 45.84 £0.18 | 41.72 £ 0.53 | 21.20 +£ 0.15 | 19.23 + 0.36
SRAT-Focal | 46.38 + 0.28 | 42.53 + 0.79 | 20.09 + 0.25 | 17.83 + 0.56
SRAT-LDAM | 44.98 + 0.33 | 40.39 + 0.69 | 21.83 +0.33 | 18.99 + 0.59

function for making predictions.

achieve the highest accuracy among their corresponding baseline methods utilizing the same loss

From these tables, we can make the following observations. First, compared to baseline meth-

60

ods, our SRAT method obtains improved performance in terms of both overall standard & robust
accuracy under almost all imbalanced settings. More importantly, SRAT makes significant im-
provements on those under-represented classes, especially under the extremely imbalanced settings.
For example, on the CIFAR10 Step-100 data set, our SRAT-Focal method improves the standard

accuracy on under-represented classes from 21.81% achieved by the best baseline method utilizing
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Figure 4.4 t-SNE visualization of different learned features.
Focal loss to 51.83% and robust accuracy from 3.24% to 15.89%. These results demonstrate that
SRAT is able to obtain more robustness under imbalanced settings. Second, the performance gap
among three SRAT variants are mainly caused by the gap between the loss functions in these
methods. As shown in these two tables, DRCB-LDAM typically performs better than DRCE-CE
and DRCB-Focal, and similarly, SRAT-LDAM outperforms SRAT-CE and SRAT-Focal under the

same settings.

4.5.3 Ablation Study

In this subsection, we provide ablation study to understand our SRAT method more compre-
hensively.

Feature space visualization. In order to facilitate the reweighting strategy in adversarial
training under the imbalanced setting, we present a feature separation loss in our SRAT method.
The main goal of the feature separation loss is to enforce the learned feature space as much separated
as possible. For checking whether the feature separation loss can work as expected, we apply t-
SNE [94] to visualize the latent feature space learned by our SRAT-LDAM method as well as by
original PGD adversarial training method (CE) and DRCB-LDAM method in Figure 4.4.

As shown in Figure 4.4, the feature space learned by our SRAT-LDAM method is more
separable than two baseline methods, which demonstrates that, with our feature separation loss, the

adversarially trained model is able to learn much better features and thus SRAT can achieve better
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Figure 4.5 The impact of weights.

performance.

Impact of weight values. As in all SRAT variants, we adopt the Class-balanced method [21]
to assign different weights to different classes. To explore how the assigned weights impact the
performance of SRAT, we conduct experiments using CIFAR10 Step-100 dataset to see the change
of model’s performance using different reweighting values. Specifically, we assign well-represented
classes with weight 1 and change the weight for under-represented classes from 10 to 200. The
experimental results are shown in Figure 4.5. Here, we use an approximated value 78 to denote the
weight calculated by the Class-balanced method when the imbalance ratio equals 100.

From Figure 4.5, we can obverse that, for all SRAT variants, the model’s standard accuracy
is increased with the increasing of the weights for under-represented classes. However, the robust
accuracy for these three methods do not synchronize with the change of their standard accuracy.
When increasing the weights for under-represented classes, robust accuracy of SRAT-LDAM is
almost unchanged and of SRAT-CE and SRAT-Focal even has slight decrease. As a trade-off, using
a relative large weight, such as 78 or 100, in SRAT can obtain satisfactory performance on both
standard & robust accuracy.

Impact of hyper-parameter A. In our SRAT method, the contributions of feature separation
loss and prediction loss are controlled by a hyper-parameter A. In this part, we study how this hyper-
parameter affects the performance of SRAT. In experiments, we evaluate the models’ performance

of all SRAT variants with different values of A used in training process on CIFAR10 Step-100
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dataset.
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Figure 4.6 The impact of A.

As shown in Figure 4.6, the performance of all SRAT variants are not very sensitive with the
choice of 1. However, a large value of A, such as 8, may hurt the model’s performance.

Impact of imbalance ratio K. In previous experiments, we evaluate the effectiveness of our
SRAT method using various imbalanced datasets with imbalance ratio K = 10 or K = 100. To
investigate the performance of our SRAT method more comprehensively, in this part, we test
our SRAT method on more imbalanced datasets with diverse imbalance ratios. Specifically, we
construct a series of "Step" imbalanced CIFARI10 datasets by setting the value of the imbalance
ratio K from 5 to 100. For comparison, we apply both DRCB-Focal method and our SRAT-Focal
variant to train models on those imbalanced datasets and test the trained models’ performance on

the original uniformly distributed CIFARI1O0 test dataset. The experimental results are shown in
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Table 4.7 Performance comparison on the CIFAR10 Step-100 dataset under /, threat model.

Metric Standard Accuracy Robust Accuracy

Method Overall Under Overall Under
CE 65.01 £ 1.84 | 35.79 +3.72 | 52.22 + 1.99 | 20.07 + 3.48
Focal 66.15 +2.75 | 38.77 +5.80 | 55.02 + 3.13 | 24.67 = 5.99
LDAM 57.35+2.47 | 2025 +4.37 | 52.11 £2.14 | 15.49 +3.44
CB-Reweight | 64.32 £ 0.85 | 40.75 £2.47 | 52.72 £ 0.71 | 27.47 £ 1.75
CB-Focal 65.89 + 0.82 | 45.65 +£2.01 | 55.81 + 1.31 | 33.85 + 2.64
DRCB-CE 70.78 + 1.84 | 48.57 +4.01 | 56.00 £ 2.00 | 30.39 = 4.01
DRCB-Focal | 71.59 + 1.21 | 50.85 +£2.60 | 57.89 + 1.88 | 34.14 + 3.31
DRCB-LDAM | 71.51 £ 1.32 | 50.99 + 1.85 | 64.68 + 1.15 | 40.55 + 1.75
SRAT-CE 76.27 +1.46 | 60.76 + 3.04 | 61.83 + 1.53 | 42.72 +2.93
SRAT-Focal | 73.73 +0.48 | 54.68 + 1.06 | 60.12 + 0.54 | 38.01 + 1.35
SRAT-LDAM | 73.89 £ 0.78 | 57.09 +2.43 | 67.38 + 0.92 | 47.45 + 2.75

Figure 4.7.

From Figure 4.7, we can obverse that, under different imbalanced scenarios, the model trained
by our SRAT-Focal method can always achieve better performance than the one trained by DRCB-
Focal method. In other words, the effectiveness of our SRAT method will not be affected by the

imbalanced ratio K, which determines the data distribution of the imbalanced training dataset.

4.5.4 Performance under /> Threat Model

To further evaluate the effectiveness of our SRAT method, we also adversarially train Resnet-
18 [42] models on CIFAR10 Step-100 dataset under [, attack. We follow the same settings in [105],
where the perturbation budge € = 128/255 and step size y = 15/255. As shown in Table 4.7,
SRAT outperforms all baseline methods with a large margin, which verifies the effectiveness of

SRAT.

4.6 Related Work
Adversarial Robustness. The vulnerability of DNN models to adversarial examples has

been verified by many existing successful attack methods [32, 11]. To improve model robustness

against adversarial attacks, various defense methods have been proposed [71, 78, 19]. Among

them, adversarial training has been proven to be one of the most effective defense methods [4].

Adversarial training can be formulated as solving a min-max optimization problem where the
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outer minimization process enforces the model to be robust to adversarial examples, generated by
the inner maximization process via some existing attacking methods like PGD [71]. Based on
adversarial training, several variants, such as TRADES [111], MART [103], have been presented
to improve the model’s performance further. More details about adversarial robustness can be
found in recent surveys [13, 109]. Since almost all studies of adversarial training are focused on
balanced datasets, it’s worthwhile to investigate the performance of adversarial training methods
on imbalanced training datasets.

Imbalanced Learning. Most existing works of imbalanced training can be roughly classi-
fied into two categories, i.e., re-sampling and reweighting. Re-sampling methods aim to reduce
imbalance level through either over-sampling examples from under-represented classes [7, 9] or
under-sampling examples from well-represented classes [46, 25, 40]. Reweighting methods allo-
cate different weights for different classes or even different examples. For example, Focal loss [63]
enlarges the weights of wrongly-classified examples while reducing the weights of well-classified
examples in the standard cross entropy loss; and LDAM loss [10] regularizes the under-represented
classes more strongly than the well-represented classes to attain good generalization on under-
represented classes. More details about imbalanced learning can be found in recent surveys [41, 47].
The majority of existing methods focused on the nature training scenario and their trained models
will be crashed when facing adversarial attacks [91, 32]. Hence, in this chapter, we develop a
novel method that can defend adversarial attacks and achieve well-pleasing performance under

imbalanced scenarios.

4.7 Chapter Conclusion

In this chapter, we first empirically investigate the behavior of adversarial training under im-
balanced scenarios and explore potential solutions to assist adversarial training in tackling the
imbalanced issue. As neither adversarial training itself nor adversarial training with reweighting
can work well under imbalanced scenarios, we further theoretically verify the poor data separa-
bility is one key reason causing the failure of adversarial training based methods. Based on our

findings, we propose the Separable Reweighted Adversarial Training (SRAT) method to facilitate
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the reweighting strategy in imbalanced adversarial training. We validate the effectiveness of SRAT
via extensive experiments. In the future, we plan to examine how other types of defense methods
perform under imbalanced scenarios and how other types of balanced learning methods behave

under adversarial training.

66



CHAPTER 5

MIX-UP STRATEGY TO ENHANCE ADVERSARIAL TRAINING WITH
IMBALANCED DATA

Adversarial training has been proven to be one of the most effective techniques to defend
against adversarial examples. The majority of existing adversarial training methods assume that
every class in the training data is equally distributed. However, in reality, some classes often have
a large number of training data while others only have a very limited amount. Recent studies have
shown that the performance of adversarial training will degrade drastically if the training data is
imbalanced. In this chapter, we propose a simple yet effective framework to enhance the robustness
of DNN models under imbalanced scenarios. Our framework, Imb-Mix, first augments the training
dataset by generating multiple adversarial examples for samples in the minority classes. This is
done by first adding random noise to the original adversarial examples created by one specific
adversarial attack method. It then constructs Mixup-mimic mixed examples upon the augmented
dataset used by adversarial training. In addition, we theoretically prove the regularization effect
of our Mixup-mimic mixed examples generation technique in Imb-Mix. Extensive experiments on

various imbalanced datasets verify the effectiveness of the proposed framework.

5.1 Chapter Introduction

Deep neural networks (DNNs) have been successfully applied in a wide range of real-world
applications, such as computer vision [42], natural language processing [96] and speech recog-
nition [1]. However, DNNs are highly vulnerable to adversarial examples [32, 11]. By adding
an imperceptible amount of noise to benign examples, manually crafted adversarial examples can
mislead a well-trained DNN based classifier. This can cause the classifier to incorrectly classify
benign samples, with high confidence, that it previously classified correctly. Due to the large
threat of adversarial examples, considerable efforts have been made to improve the robustness of
DNNs. Among them, adversarial training [71, 111] has been empirically proven to be one of the
most effective and reliable defense methods. Generally, adversarial training can be formulated

as a min-max optimization problem where the inner maximization process generates adversarial
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examples that can mostly fool the model, and the outer minimization process reduces the model’s
average classification error on the generated adversarial examples.

Although they have been shown to improve the robustness of DNNs, most existing adversarial
training methods assume that the number of training examples from each class is balanced. However,
this assumption does not hold in many real-world applications where some classes can have a notably
larger presence than other classes [95, 69]. Hence, the training data is typically imbalanced among
classes. Very recently, there have been works [106, 102] that examine adversarial training under
imbalanced scenarios. They’ve shown that in such situations, adversarial training will lead to a
huge performance discrepancy between classes with more training examples (i.e., majority classes)
and classes with fewer training examples (i.e., minority classes). Furthermore, it cannot provide
satisfactory robustness for those minority classes. Therefore, it is natural to ask: How can we
improve adversarial training under imbalanced scenarios? Since imbalanced training data often
causes the trained classifier to be overwhelmed by the majority classes and ignore the minority
classes, two common ways to alleviate the negative impacts are re-sampling and re-weighting. Re-
sampling attempts to balance the data distribution [15, 26] by upsampling minority class samples or
downsampling majority class samples. Re-weighting, assigns higher weights in the loss to samples
from the minority class to make the trained model to be biased toward minority classes [63, 21, 10].
The majority of existing works only consider the imbalanced problem within the natural training
paradigm, where their ultimate goal is improving model’s standard accuracy under imbalanced
scenarios. However, few studies focus on improving the model’s robust accuracy under the on the
adversarial training paradigm?®. In addition, as demonstrated in [102], some effective techniques
for handling the imbalanced problem for the nature training paradigm are not applicable to the
adversarial training paradigm. Hence, it’s worthwhile to investigate new approaches to boost the
model robustness under imbalanced scenarios.

Recently, data augmentation techniques have been proven to be an effective way to improve

'In this chapter, we denote standard accuracy as model’s prediction accuracy on the input examples without adver-
sarial perturbations and robust accuracy as model’s prediction accuracy on the perturbed input examples constrained
by l-norm 8/255.
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model robustness with respect to noisy inputs like blurred images [43, 80]. This provides a
potential way to solve the imbalanced problem within the adversarial training paradigm. Therefore
we propose Imb-Mix, a novel data augmentation based framework to advance model robustness
under imbalanced scenarios. Imb-Mix first generates multiple adversarial examples for the minority
classes. This is done by adding random noise to the original adversarial examples created by the
PGD adversarial attack [71]. This is done to balance the imbalanced data distribution between
classes. Next, to increase the generalization ability of the trained model, we construct Mixup-mimic
mixed examples upon the augmented dataset used by adversarial training. Moreover, to further
improve the model performance, we introduce the stochastic model weight averaging (SWA) [45]
technique into our proposed framework. SWA has been shown to be effective in improving the
performance of DNNs with almost no extra computational overhead. The contributions of this

chapter include:

* We introduce a simple yet effective data augmentation based framework into the adversarial

training paradigm to benefit adversarial training under imbalanced scenarios.

* We theoretically prove the regularization effect of our Mixup-mimic mixed examples genera-
tion technique. This provides an understanding as to why this process can be effective under

imbalanced scenarios.

* We conduct extensive experiments on multiple datasets with various imbalanced scenarios

to verify the effectiveness of our proposed framework.

5.2 Related Work

5.2.1 Adversarial Robustness

The existence of successful adversarial attacks [32, 11] reveals the vulnerability of DNN
models. As a countermeasure against adversarial attacks, many defense methods [71, 78, 19]
have been proposed to improve model robustness. Among them, adversarial training has been

proven to be one of the more effective methods [4]. Generally, adversarial training aims to solve
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a min-max optimization problem where the inner maximization process utilizes some existing
attack methods, such as PGD [71], to generate adversarial examples that can mislead the current
model mostly, and the outer minimization process enforces the model to be robust to the generated
adversarial examples. Because of its effectiveness, many variants of adversarial training have been
proposed to further improve the robustness of models under various settings [111, 103, 108]. More
details about adversarial robustness can be obtained in related surveys [13, 109]. Note that, as
the majority of existing adversarial training based methods only focus on balanced datasets. As
such, the performance of these methods will be drastically decreased when the training dataset is

imbalanced [106, 102].

5.2.2 Imbalanced Learning

Due to its commonality in many real-world applications [44], learning from imbalanced datasets
has been widely investigated in the past few decades. Most existing works can be roughly classified
into two categories, i.e., re-sampling and re-weighting. The re-sampling methods focus on balancing
the data distribution through either downsizing the majority classes [7, 9] or upsizing the minority
classes [46, 25, 40]. The re-weighting methods assign different weights for different classes
or even different examples. For instance, Focal loss [63] allocates larger weights for wrongly-
classified examples while giving smaller weights for well-classified examples based on the standard
cross entropy loss. The LDAM loss [10] regularizes the minority classes more strongly than the
majority classes to achieve a good generalization performance on minority classes. More details
about imbalanced learning can be obtained in related surveys [41, 47]. Note that, most existing
imbalanced learning methods focused on the nature training paradigm and their trained models
will be crashed when facing adversarial attacks [91, 32]. Therefore, in this chapter, we present
a novel framework that is able to improve the model robustness against adversarial attacks under

imbalanced scenarios.

5.2.3 Data Augmentation
Data augmentation methods have been empirically shown to be an effective way of improving

the generalization ability of DNN models. For instance, random flipping and cropping are two most
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commonly used techniques in image classification tasks [42]. Some random occlusion techniques
such as Cutout [23] can also help models to obtain better standard classification accuracy on
images. Besides applying operations on every single image, Mixup [112] adopts an pair-wise
linear combination of two images to create a mixed image along with a mixed corresponding label.
Although simple, experimental results verify that Mixup is able to bring much better generalization
performance for DNN models. Variants of Mixup have been proposed for multiple domains
including, NLP [90], computer vision [97], and graphs [37, 87]. Furthermore, Mixup strategies
have also been proposed to further improve the standard classification accuracy of models under
different scenarios. AUGMIX [43] demonstrate that randomly mixing generated augmentations
instead of original input images can improve DNN models’ robustness against noisy images (e.g.,
blurred images). Although various kinds of data augmentation methods have been proposed, there
1s no existing data augmentation methods considering the problem of improving adversarial training

on imbalanced data distributions.

5.3 The Proposed Framework

In this section we present our proposed framework. We first introduce the basic idea of
adversarial training in Section 5.3.1. In Section 5.3.2 we present our proposed data augmentation
method Imb-Mix. In Section 5.3.3 we introduce the stochastic model weight averaging (SWA)
technique used in our framework. Lastly, in Section 5.3.4 we detail the full training algorithm of

Imb-Mix.

5.3.1 Adversarial Training

In order to improve the model robustness against adversarial attacks, previous works propose to
include adversarial examples generated by some adversarial attacks methods into the model training
process. This helps teach the trained model to recognize adversarial examples correctly [71, 111].
Specifically, given an input example (x, y), the PGD adversarial training [71] aims to obtain a
robust model fy where the (correct) prediction y is the same for the original sample x and the
adversarial example x’. The sample x” is generated by applying an adversarially perturbation on

x. The adversarial perturbations are typically bounded by a small value € under L,-norm, i.e.,
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® majority class
® minority class

Figure 5.1 A toy example of creating augmented adversarial examples by our Imb-Mix framework.
The blue and red circles represent data examples from one majority class and one minority class,
respectively. The solid lines denote the process of producing adversarial examples through the
inner maximization process described in Eq. (5.1). The dash lines denote the process of generating
various adversarial examples for the minority class, respectively.

|lx" — x||, < €. Formally, the PGD adversarial training on a dataset X can be defined as,
X
"X an s oo LU 0D 1) G-
Based on the PGD adversarial training, many variants have been proposed to further improve
the model robustness against adversarial attacks from different aspects [111, 103]. Most existing
adversarial training based methods assume that the number of training examples from each class is

equally distributed. However, as pointed by a few recent works [106, 102], these methods cannot

achieve satisfactory performance when the training data distribution is imbalanced.

5.3.2 Imb-Mix

To facilitate adversarial training under imbalanced scenarios, we propose a simple yet effec-
tive data augmentation based framework to balance the training data distribution. Inspired by
SMOTE [15], a classical method that generates synthetic training data examples for minority
classes, we focus on creating more adversarial examples for the minority classes to balance the
imbalanced data distribution. This will help the model learn more useful information from minority
classes, thereby improving the performance of the trained model on the those classes. Specifically,
our proposed framework Imb-Mix contains two main procedures (1) supplementary adversarial

example creation and (2) generated adversarial example Mixup. In the rest of this section we detail
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both procedures.

5.3.2.1 Supplementary Adversarial Examples Creation

Given a data example x; from the original imbalanced training dataset X,,o, Imb-Mix first
generates it’s adversarial counterpart x; using the inner maximization process described in Eq. (5.1).
Then, for any data example belonging to a minority class, Imb-Mix produces multiple adversarial

examples based on its original adversarial example x; through the following the process:
R =xi+ax(x;—x;) X N(,1), (5.2)

where a is a hyper-parameter to determine the level of perturbations added into the data example x;.
This step is repeated ¢ times to obtain ¢ different adversarial examples. Here the hyper-parameter
t can be determined by users’ domain knowledge upon the application settings. The main idea
behind this design is to obtain a larger number of diverse adversarial examples for minority classes
to balance the original imbalanced dataset. If a data example x; belongs to a majority class, we
set X7 = x;, as no additional samples are needed. After the supplementary adversarial examples
creation procedure, we can obtain an augmented adversarial example set X4, .

Although the aforementioned data augmentation method is able to produce ¢ adversarial ex-
amples for every input example in the minority classes, we empirically find that the improvement
of model’s robustness on the minority classes is limited. We argue that this is caused by a lack
of diversity between the different generated adversarial examples for each minority data example.
Therefore the augmented adversarial examples produced do not contain sufficient information for
the minority classes to enhance the learnt model. In addition, in many applications like fraud de-
tection and medical diagnosis, misclassifying a minority class sample is usually more severe than
misclassifying one from the majority class [68]. Therefore, we further use the idea of a re-balanced
version of Mixup [112] to generate additional adversarial examples. We later show that this works

as a form of regularization, thereby improving the model performance on the minority classes.
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5.3.2.2 Generated Adversarial Example Mixup

To adapt Mixup into imbalanced scenarios, Remix [18] relaxes Mixup’s formulation and enables
the mixing factors of data and labels to be disentangled. In our Imb-Mix framework, we follow a
similar idea. Specifically, for any two adversarial examples £; and )2} sampled from the augmented
adversarial example set X4, the mixed adversarial example £/ . and it’s corresponding label y ;x
can be obtained by:

a’ _ a’ N4
Kin = Ax * X+ (1= Ay) * &,

(5.3)
Ymici = Ay x yi+ (1 = 4,) *y;,
where A, is sampled from a beta distribution B(y,y) (typically we choose vy = 1.0) and A, is
defined as,

0, ni/nj>«k and A, < T

Ay =191, ni/n; <1/k and 1-2, <7 (5.4)

A, otherwise.
Here n; and n; represent the number of adversarial examples for class i and class j, respectively.
k and 7 are two hyper-parameters. We follow the default settings x = 3 and 7 = 0.5 adopted by
Remix [18] in our implementation.

By applying the aforementioned mixup procedure on all generated adversarial examples, we
can obtain a set of mixed data-label pair (ﬁjm.x,l., Ymix.i), denoted as X,;c. Finally, the DNN classifier
fp will be trained by minimizing the model’s cross entropy loss on elements of the set X,;;,, instead

of the original imbalanced dataset X,,,. Formally, the final objective function of our Imb-Mix

framework can be described as,

|Xmix|

T 2 Ve ymisd) (5.5)
mix i=1

To better demonstrate the data augmentation process in our proposed framework Imb-Mix, we

min
9

provide a toy example of applying Imb-Mix on a binary imbalanced classification problem in
Figure 5.1. As shown in this example, adversarial examples for data examples x;, x;, and x; will
be generated first using a PGD attack [71]. Then our Imb-Mix framework will produce several

different adversarial examples )E; for the minority data example x; by adding random noise to its
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original adversarial counterpart x;.. Finally, mixup-mimic mixed examples will be created based

on )2; and adversarial examples of the majority class £; and £/,

5.3.3 Stochastic Model Weight Averaging

DNNss are typically trained by minimizing a loss function with stochastic gradient descent
(SGD), which is an iterative method proposed for optimizing model parameters. Recently, some
existing works [45, 5] discovered that simply averaging multiple points along the trajectory of SGD
can lead to a better generalization ability. This kind of averaging strategy is called stochastic model

weight averaging (SWA). Formally, it can be defined as

OswA X Nmodels + 6
Oswa < )
Nmodels + 1

where 6 is the model parameters obtained by SGD and np04els 1s the number of models used for
averaging the parameters. At the beginning of applying SWA, Oswa = 6.

In addition to the effectiveness, SWA will not add any additional costs during the model training
process and can be easily integrated with any other optimization methods besides SGD. Therefore,
to further improve the model robustness under imbalanced scenarios, we adopt SWA in our Imb-
Mix framework. We empirically find that SWA can make a visible contribution to the performance

of our Imb-Mix framework. More results can be found in Section 5.5.

5.3.4 Algorithm

The overall algorithm of our proposed framework Imb-Mix is shown in Algorithm 5.1. Given an
imbalanced training dataset X,,,¢, for each iteration Imb-Mix framework first obtains the augmented
adversarial examples set X,4,. Using this, it produces the mixed adversarial example-label pairs
set X,y based on X,4,. The parameters of the DNN classifier fy will be updated by minimizing
the model’s empirical loss on X,,;;;. If the training iteration reaches a pre-defined value, then SWA

will be introduced to update model parameters 6.

5.4 Regularization Effect Of Imb-Mix
In this section, we examine the properties of our proposed framework, Imb-Mix. We theoreti-

cally prove that the Mixup-mimic mixed examples generation technique adopted in Imb-Mix can
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Algorithm 5.1 The algorithm of Imb-Mix.

Input: an imbalanced training dataset X,
Output: a trained DNN classifier fy

1: Initialize the parameters 6 of the DNN classifier fj.

2: repeat

3:  Obtain an augmented adversarial examples set X, 4, based on PGD attack and Eq. (5.2).
Get a mixed data-label pairs set X,,,;, based on Eqgs. (5.3)-(5.4).
Optimize the final objective function Eq. (5.5).
Update the parameters 6 < 6 — 9 * Vyly.
if swa-epochs then

Apply SWA as described in Section 5.3.3.

9: endif

10: until model convergence

e AN

be formulated as a form of regularization on the minority class examples.

To simplify our analysis, we consider a binary imbalanced setting, where only two classes are
involved. Furthermore, we assume the dataset is imbalanced such that there is a majority class
C,, and a minority class C,. Recall that when performing linear interpolation on any two data
examples x; and x;, Imb-Mix assigns two different mixing factors A, and A, for them in data space
and label space, respectively. The mixing factor A, is sampled from a Beta distribution B(vy,y).
The factor A, is determined by the ratio between the example size of the class x; belonging to and
the example size of the class x; belonging to, the value of A, and two hyper-parameters « and 7, as
shown in Eq. (5.4). More specifically, the value of A for data examples x; and x; is determined by:
1) if both x; and x; are sampled from the majority class Cy,, then 4, = A; 2) if both x; and x; are
sampled from the minority class C,, then A, = A,; and 3) if x; and x; are sampled from different
classes, then A, can be either 0, 1 or A,. In our binary imbalanced case, we further assume the
ratio between the example size of two classes C,, and C,, satisfy |C,,|/|C,| > « and set 7 = 0.5 as
adopted in Remix [18]. Hence, if x; is sampled from the majority class Cy, and x; is sampled from
the minority class C,, when A, < 0.5 then A, = 0. Otherwise we set A, = A,. Note that we omit the
scenario where x; is sampled from the minority class C, and x; is sampled from the majority class
Cn, as it is equivalent to our discussed scenario. As a conclusion, A, can be either A, or 0. Next,

we will analyze the regularization effect of Imb-Mix on these two cases, separately.
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Case 1: 1, = 0. In this case, Imb-Mix will only conduct linear interpolation on two data
examples on the data space and then assign the label of minority class C, to the mixed data

example. Hence, the loss function on all mixed data examples, denoted as Lj,,p-pmix(8), can be

defined as
1 |Cinl |Cnl
Limp-mix(0) = CoTxIC ; ; Ealg (yj, fo(Axi + (1 - /l)xj))~ (5.6)

where the loss function /g represents the binary cross-entropy loss, y; = C,, and A ~ B[o,0.51(7,7)-
For simplicity, we use A to represent A, in the following.

Following [12], we define A = E 1 and introduce a random perturbation ¢; formulated as
0; = (/l —/i)x,' + (1 - /l)Xj - (1 - /i))f

Then Eq. (5.6) can be rewritten as

|Con|

1
D Eailo(y)s fol®i+6), (5.7)
i=1

mb-Mix(0) = ——
Limp-mix(6) Col

where j ~ Uniform(Xc,;) and X{c,) is a set that contains all minority examples and mixed
samples,
Xi :)E+/i(xl- —)?).

For the loss function Lj,,,5—uix(0) described in Eq. (5.7), we have the following theorem.

Theorem 5.4.1. The Imb-Mix loss function L,p—pmix(0) defined in Eq. (5.7) can be rewritten as

the following
|Cn
Linpowin0) = 75 ol fo5) + R1(O) + R20), (5.8)
M i=1
where
1 |Conl AT 1
RIO) = 5i6] 2. (Vfo@) = 10) (Viadolys. £ ()
Gl
R2(0) = 2, <2)(5;),Vule(yj,fe(ffi))vzfe(fi)>

Il
—_

i

and for any i € {1,2, ..., |X(c,)1}»
o , ! - ) (5@
J :_(Vuule(yj,fe()ﬁ))) V”l"(yf’fg(x"))zyji(zﬁ) '
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Proof. Inspired by recent work [12], we examine the regularizing effect of the mixing factor
A. This is achieved by approximating the loss function /gy using a second-order quadratic Taylor
approximation near each mixed example pair (X;,y;). Assuming [y is twice differentiable and

expressing the derivatives of /(y, f(x)) as derivatives of /(y, u) and f(x), then we can have
Eajlo(yj, fo(%i +06i) = lo(y;, fo(%i +6:))
1 T T2 - "
+5 Ex,j0i0; , Vfe(%) Vi lo(yj, fo(X))V f(X)
+ Vufe(fi)vzfe(fi)>-

By replacing the expectations in the above equation by their values given by Lemma 2 in [12], we

can have
Epjlo(yj, fo(Xi +06i) = lg(yj, fo(%i))
+ ;(:gg, V£ (&) T2 0o (), f9<aa-)>>
+ ;(;ggg, Vafs <ii>V2fe<x»>,

where for any i € {1,2, ..., |X(c, 1}

5 _ o2 (% -3 (X - %) + 225
XX T 02 ’
2
i) _ &
XYj 6_2 >

Here 1 and o2 be the mean and variance of a Bo,0.5) (v, v) distributed random variable, respectively,
and £ = o2 + (1 — 1)%. By summing over i, finally we can get

|Con

Limp-wi(0) = 15— D lolyj fol5) + R1(0) + R2(0),
=1
where
1 [Cin ~ 0 T 5 ~ %
= st S0 1) (a0
Cul |
R2(0) = 2|é | <Z)Ec;),VMZG(Yj’fG(ii))szO(ii)>

Il
—
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and forany i € {1,2, ..., [ X, }>
" 2 S =@ (x0)7
J Z—(Vuulg(yj,fﬁ(xi))) Vule()’j’fe(xi))zij(zﬁ) ’
m|

As shown in Eq. (5.8), the loss function of Remix consists of three parts, /g (y j» Jo (i,-)) denotes
the loss value on the mixed data examples with a minority label y;, and two additional terms R1(6)
and R2(0). These two terms act as a regularization effect on the mixed data examples. Hence, we
can see the advantages of Imb-Mix. On the one hand, Imb-Mix generates more training examples
intentionally assigned to the minority class, which can help learn a better decision boundary
between the majority and minority classes. This can lead to better model generalization. On the
other hand, similar with Mixup, Imb-Mix can also be rewritten as an empirical risk on perturbed
data examples (i.e.(%;, y;)). This allows us to interpret Imb-Mix as a form of regularization. The
regularization helps the model avoid simply remembering data examples in the original training
dataset and improve the generalization ability of the model.

Case 2: 1, = A,. In this case, the Imb-Mix performs exactly same with Mixup [112]. Hence,
based on [12], we have

Limp-mix(0) = Litixup(6)

(5.9)

w
- % Z lo(5:, fo(%)) + R1(6) + R2(6) + R3(6) + R4(6).
i=1

Here we use W to denote the number of example pairs used in Mixup and
§i=y+Ayi - ).
Similarly, there are four regularization terms, i.e., R1(6), R2(0), R3(0) and R4(6), in the loss

function of Mixup, which can effectively improve the generalization ability of the trained model.

For details of these four regularization terms, please refer to [12].

5.5 Experiment
In this section, we conduct various experiments to validate the effectiveness of our Imb-Mix

framework. We aim at answering the following two questions:
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* Can the proposed framework Imb-Mix boost adversarial training under various imbalanced

scenarios?

* What is the impact of each component on Imb-Mix?

We begin by introducing the experimental settings including datasets construction and implemen-
tation details. Next, we compare Imb-Mix with several representative methods to answer the first
question. Then we analyze the impact of each component on Imb-Mix to answer the second

question.

5.5.1 Experimental Settings

Datasets. We create several imbalanced training datasets based on two benchmark image
datasets CIFAR10 and CIFAR100 [56] with diverse imbalanced distributions. Specifically, follow-
ing existing imbalanced learning works, we consider two different imbalance types: Exponential
(Exp) imbalance [21] and Step imbalance [7]. For Exp imbalance, the number of training examples
of each class will be reduced according to an exponential function n = n; 7%, where i is the class
index, n; is the number of training data examples in the original training dataset for class i and
7 € (0, 1). We categorize the half of the classes with most frequent example sizes in the imbalanced
training dataset as majority classes and the remaining half as minority classes. For Step imbalance,
we equally split the classes into majority and minority classes where the number of training data
examples are equal in each majority/minority class. Moreover, we denote imbalance ratio K as the
ratio between training example sizes of the most frequent and least frequent classes. We construct
different imbalanced datasets “Step-107, “Step-100”, “Exp-10" and “Exp-100”, by adopting differ-
ent imbalanced types (Step or Exp) with different imbalanced ratios (K = 10 or K = 100) to train
models. We evaluate the model’s performance on the original uniformly distributed test datasets
of CIFAR10 and CIFAR100 correspondingly.

Baseline methods. We implement several representative imbalanced learning methods (or
their combinations) into adversarial training as baseline methods. These methods include: (1) the

original PGD adversarial training (vanilla adv.); (2) PGD adversarial training with re-sample (adv.
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Table 5.1 Experiment results on the CIFAR10 Exp-10 dataset under /., threat model.

Metric Standard Accuracy ‘ Robust Accuracy

Method Overall ‘ Minority ‘ Overall ‘ Minority
vanilla adv. 72.42 +£0.52 | 64.15 £0.55 | 33.18 £ 0.60 | 22.57 + 0.60
adv. + resample | 68.72 + 0.97 | 57.57 £ 1.86 | 31.68 = 0.19 | 20.90 + 0.77
adv. + reweight | 72.91 + 0.26 | 65.50 £ 0.24 | 33.22 + 0.40 | 24.29 + 0.53
mixup + adv. | 75.26 £ 0.43 | 67.91 + 0.26 | 37.23 £ 0.15 | 26.23 + 0.08
remix + adv. | 75.61 £ 0.60 | 69.34 + 0.91 | 37.39 £ 0.54 | 27.45 + 0.75
Imb-Mix 78.17 + 0.18 | 73.03 + 0.44 | 39.00 + 0.27 | 30.52 + 0.37

Table 5.2 Experiment results on the CIFAR10 Exp-100 dataset under [, threat model.

Metric Standard Accuracy ‘ Robust Accuracy

Method Overall ‘ Minority ‘ Overall ‘ Minority
vanilla adv. 4930+ 1.13 | 23.40 = 1.71 | 24.29 £ 0.38 | 4.67 = 0.18
adv. + resample | 45.61 + 0.44 | 18.38 £ 1.86 | 23.12 £ 0.32 | 4.41 + 0.82
adv. + reweight | 50.89 + 0.69 | 25.69 + 1.26 | 24.35 + 0.47 | 5.73 £ 0.42
mixup + adv. | 50.33 £ 1.22 | 25.67 + 1.75 | 26.47 £ 0.29 | 547 £ 0.55
remix + adv. | 51.35 +1.45 | 27.13 £ 2.07 | 26.64 +0.27 | 6.18 £ 0.76
Imb-Mix 55.15 + 0.42 | 32.93 + 0.63 | 26.87 + 0.34 | 7.95 + 0.55

Table 5.3 Experiment results on the CIFAR10 Step-10 dataset under [, threat model.

Metric Standard Accuracy ‘ Robust Accuracy

Method Overall ‘ Minority ‘ Overall ‘ Minority
vanilla adv. 66.09 = 0.25 | 45.07 £ 0.50 | 32.71 £ 0.40 | 12.81 £ 0.29
adv. + resample | 59.90 £ 0.77 | 34.81 £ 0.96 | 31.92 + 0.17 | 10.29 + 0.47
adv. + reweight | 67.47 + 0.14 | 48.71 £0.22 | 33.12 £ 0.16 | 14.90 + 0.06
mixup + adv. | 66.99 = 1.34 | 46.20 + 2.28 | 36.08 £ 0.15 | 14.17 = 1.17
remix + adv. | 67.78 £ 1.07 | 47.91 + 1.65 | 36.37 = 0.13 | 14.86 + 0.62
Imb-Mix 71.70 + 0.18 | 55.31 + 0.30 | 37.89 + 0.20 | 18.49 + 0.45

+ resample), where the probability of each example to be selected in each training batch equals to
the inverse of the effective number of each class; (3) PGD adversarial training with reweighting
(adv. + reweight), where each example is reweighted proportionally by the inverse of the effective
number of its class; (4) PGD adversarial training with Mixup (mixup + adv.), where we apply
Mixup [112] on pair-wise adversarial examples generated by PGD attack; and (5) PGD adversarial
training with Remix [18] (remix + adv.), where we apply Remix on pair-wise adversarial examples
generated by PGD attack.

Implementation details. All aforementioned methods are implemented using a Pytorch library

DeepRobust [62]. For CIFAR10 and CIFAR100 based datasets, the adversarial examples used in
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Table 5.4 Experiment results on the CIFAR10 Step-100 dataset under /., threat model.

Metric Standard Accuracy ‘ Robust Accuracy

Method Overall ‘ Minority ‘ Overall ‘ Minority
vanilla adv. 47.59 £ 040 | 7.61 £ 1.06 | 28.14 £ 0.16 | 0.82 + 0.11
adv. + resample | 43.49 + 0.08 | 2.97 + 0.50 | 28.75 £ 0.45 | 0.50 £ 0.17
adv. + reweight | 46.98 + 0.42 | 9.44 + 0.25 | 2847 +£0.12 | 1.38 + 0.16
mixup + adv. | 44.58 £ 0.74 | 2.27 £ 1.55 | 29.61 + 0.66 | 0.19 + 0.17
remix + adv. | 47.08 £ 1.19 | 7.24 £ 2.09 | 29.69 + 0.61 | 0.81 + 0.37
Imb-Mix 48.05 + 0.20 | 9.81 + 0.46 | 30.25 + 0.20 | 1.29 + 0.28

Table 5.5 Experiment results on the CIFAR100 Exp-10 dataset under [, threat model.

Metric Standard Accuracy ‘ Robust Accuracy

Method Overall ‘ Minority ‘ Overall ‘ Minority
vanilla adv. 41.36 £0.25 | 30.84 £0.20 | 15.06 £ 0.15 | 9.95 + 0.09
adv. + resample | 38.49 + 0.18 | 25.88 £ 0.30 | 14.81 £ 0.07 | 9.49 +0.34
adv. + reweight | 39.85 + 0.40 | 28.23 £+ 0.39 | 14.70 £ 0.04 | 9.59 +0.21
mixup + adv. | 46.39 +0.29 | 34.21 £ 0.39 | 18.84 £ 0.21 | 12.35 + 0.21
remix + adv. | 47.01 £0.37 | 3577 £+ 0.33 | 18.82 £ 0.25 | 12.96 + 0.28
Imb-Mix 51.22 + 0.49 | 41.32 + 1.00 | 19.14 + 0.21 | 13.99 + 0.41

Table 5.6 Experiment results on the CIFAR100 Step-10 dataset under /., threat model.

Metric Standard Accuracy ‘ Robust Accuracy

Method Overall ‘ Minority ‘ Overall ‘ Minority
vanilla adv. 39.68 +0.33 | 18.46 £ 0.24 | 1543 +£0.07 | 5.13 £ 0.30
adv. +resample | 36.16 £ 0.39 | 12.07 £ 0.44 | 1551 £ 0.13 | 4.14 + 0.31
adv. + reweight | 38.33 + 0.47 | 15.73 £0.60 | 15.12 + 0.13 | 4.78 + 0.24
mixup + adv. | 42.62 +0.28 | 17.28 + 0.61 | 19.35 +£0.17 | 5.77 £ 0.28
remix + adv. | 43.90 £ 0.17 | 20.59 + 0.42 | 19.60 = 0.10 | 6.51 +£0.35
Imb-Mix 46.79 + 0.67 | 26.33 + 1.13 | 19.94 + 0.31 | 7.84 + 0.52

training are calculated by PGD-10, with a perturbation budget € = 8/255 and step size y = 2/255.
In evaluation, we report robust accuracy under /,-norm 8/255 attacks generated by PGD-20 on
Resnet-18 [42] models. We set the total training epochs to 250 and the initial learning rate to 0.1,

and decay the learning rate at epoch 160 and 180 with the ratio 0.01.

5.5.2 Performance Comparison

Tables 5.1-5.6 report the performance comparison on multiple imbalanced datasets with various
imbalanced scenarios. The highest accuracy achieved among all methods are denoted by bold
values.

From these tables, we have the following observations. First, compared to baseline

methods, Imb-Mix obtains improved performance in terms of both overall standard accuracy and
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Figure 5.3 Performance on the CIFAR10 Step-100 dataset.
robust accuracy under almost all imbalanced scenarios. This suggests that Imb-Mix is able to
facilitate adversarial training under imbalanced scenarios. Second, Imb-Mix obtains significant
improvement on those under-represented classes with a large margin. For instance, on the CIFAR10
Exp-10 dataset, Imb-Mix improves the standard accuracy on minority classes from 69.34% achieved
by the best baseline method to 73.03% and robust accuracy from 27.45% to 30.52%. These results
demonstrate that Imb-Mix is able to obtain more robustness under imbalanced settings. In addition,
we find that the baseline method adv. + re-sample always achieves the worst performance among
all methods. This demonstrates that simply combining adversarial training with re-sampling

techniques cannot improve the models’ robustness under imbalanced scenarios. In other words,

novel data augmentation methods, such as our proposed framework Imb-Mix, are necessary.

5.5.3 Ablation Studies
In this subsection, we investigate how each component contributes to Imb-Mix. This includes

our proposed data augmentation method as well as the SWA technique. We further explore the
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performance under various imbalanced scenarios. To achieve this goal, we first implemented a
variant of Imb-Mix, which only integrates our proposed data augmentation method with adversarial
training and adopts stochastic gradient descent (SGD) to optimize the loss function. We then
compared the performance of this method, i.e. adv. + data_aug, with vanilla adversarial training
and our Imb-Mix framework on our constructed imbalanced datasets.

Figures 5.2-5.7 show both standard accuracy and robust accuracy achieved by aforementioned
three methods on different imbalanced datasets. From these figures, we can have the following
observations. First, our proposed data augmentation method indeed benefits adversarial training un-
der imbalanced scenarios. Compared to vanilla adversarial training, adversarial training combined
with our data augmentation method achieves significant improvement on both clean examples and
adversarial examples. For example, on CIFAR100 Step-10 datasets, adversarial training combined
with our data augmentation method obtains a standard accuracy of 50% and a robust accuracy

20%. However, vanilla adversarial training only achieves a 40% and 15% standard accuracy and
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robust accuracy, respectively. Secondly, our Imb-Mix framework achieves the best performance
among three methods. This verifies the effectiveness of the SWA technique adopted by our Imb-Mix
framework, as the only difference between Imb-Mix and adv. + data_aug is that the former applies
SWA while the latter utilizes the normal SGD during the model training process. To sum up,
experimental results reported in Figures 5.2-5.7 demonstrate the contribution of each component

to our framework.

5.5.4 Robustness against [, Attack

To further evaluate the effectiveness of our Imb-Mix framework, we also adversarially train
Resnet-18 [42] models on CIFAR100 Exp-10 dataset under /, attack. We follow the same settings
as in [105] with s perturbation budget of € = 128/255 and a step size of y = 15/255. As shown in
Table 5.7, Imb-Mix outperforms all baseline methods with a large margin. This further verifies the

effectiveness of Imb-Mix.
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Table 5.7 Experiment results on the CIFAR100 Exp-10 dataset under /, threat model.

Metric Standard Accuracy ‘ Robust Accuracy

Method Overall ‘ Minority ‘ Overall ‘ Minority
vanilla adv. 58.17 £0.07 | 47.81 £0.29 | 47.22 + 0.31 | 37.81 £ 0.76
adv. + resample | 55.77 + 0.22 | 44.25 +£0.73 | 45.84 £ 0.36 | 35.18 + 0.71
adv. + reweight | 57.70 + 0.22 | 47.43 £+ 0.46 | 47.13 £ 0.33 | 37.87 £ 0.75
mixup + adv. | 62.60 = 0.06 | 51.45 +0.16 | 52.47 +0.47 | 41.35 + 0.37
remix + adv. | 63.22 +0.44 | 53.49 + 0.66 | 52.67 £ 0.49 | 42.97 + 0.79
Imb-Mix 63.97 + 0.54 | 54.05 + 0.97 | 53.51 + 0.16 | 43.38 + 0.47

5.6 Chapter Conclusion

In this chapter, we propose a novel data augmentation based framework, Imb-Mix, to facilitate
the adversarial training method under imbalanced scenarios. Imb-Mix first generates adversarial
examples for the minority classes to balance the dataset. It then constructs Mixup-mimic mixed
examples as inputs during the model training process. In addition, stochastic model weight aver-
aging is also included in our framework and helps achieve better performance. We validate the
effectiveness of Imb-Mix via comprehensive experiments. In the future, we plan to investigate more
advanced data augmentation methods to further improve the model robustness under imbalanced

scenarios.
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CHAPTER 6

CONCLUSIONS
In this chapter, I summarize the research efforts described in this dissertation and discuss

promising research directions.

6.1 Dissertation Summary

In this dissertation, I introduced my studies on learning from imbalanced data distribution under
various kind of settings. Specifically, I presented several effective solutions for (1) generating high-
quality synthetic data to balance data distribution, (2) learning from imbalanced crowdsourced
labeled data, and (3) improving model robustness given imbalanced training data.

To generate more realistic realistic and discriminative data samples for minority classes, in
Chapter 2, I first pointed out the importance of both local and global data distribution information
in generating high-quality synthetic minority samples to tackle the class imbalance problem. Based
on that, I proposed GL-GAN [100], a novel data generation framework utilizing both global
and local information of the given imbalanced data in the synthetic minority sample generation
process. Comparing with common related works only considers local data distribution information
when generating synthetic minority samples, as shown in experimental results, GL-GAN is able
to produce more realistic and discriminative synthetic minority samples by taking global data
distribution information into consideration.

To learn useful information from imbalanced crowdsourced labeled data, in Chapter 3, I pro-
posed a deep neural network based classifier ICED [99]. During training, a true label inference
module equipped in ICED will estimate determinate true labels from given crowdsourced labeled
data by the true label inference module while a synthetic data generation module will generate
synthetic data samples for the minority class using the estimated determinate true labels. These
two modules are able to augment each other and improve themselves iteratively. With the help
of these modules, ICED is able to infers true labels from imbalanced crowdsourced labeled data
and achieves high accuracy on the classification task simultaneously. I conducted a series of

experiments to verify the effectiveness of ICED.
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To improving model robustness under imbalanced scenarios, I explored several solutions from
different perspectives. In Chapter 4, I demonstrated that adversarial training alone cannot be effec-
tive for improving the robustness of models under imbalanced scenarios, because of adversarially
trained models can suffer much worse performance on minority classes observed in empirically
studies, and simply combing adversarial training with reweighting strategies also cannot work well,
due to the poor data separability brought by adversarial training training proven by theoretical anal-
ysis. Based on findings, I proposed a novel method SRAT [102] to boost the reweighting strategy
in adversarial training under imbalanced scenarios. By testing the performance of SRAT in various
kinds of experiments, I validated the effectiveness of it. In Chapter 5, I focused on boosting adver-
sarial training under imbalanced scenarios by augmenting imbalanced training data. The proposed
framework Imb-Mix [98] is able to generate multiple adversarial examples for minority classes, by
adding random noise to the original adversarial examples created by one specific adversarial attack
method first and then constructing Mixup-mimic mixed examples upon the augmented dataset used
by adversarial training. I also theoretically proven the regularization effect of the Mixup-mimic
mixed examples generation technique adopted in Imb-Mix. Experimental results demonstrated that
data augmentation can also be an effective way to benefit adversarial training under imbalanced

scenarios.

6.2 Future Work
In addition to the achievements obtained by my studies, I also plan to explore the following

research directions in the future:

e Multi-label Imbalanced Classification. Multi-label classification task is omnipresent in
many real-world applications, such as annotating a given movie category and creating a profile
for a customer. Different from the common multi-class classification task I investigated in
this dissertation, in multi-label classification task, each data sample is typically associated
with series of labels instead of one and there is no constraint on how many labels one data
sample can be assigned to. Hence, the imbalanced data distribution as almost unavoidable

in the multi-label classification task, as it’s very hard to guarantee each label occur with
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the same number. I plan to explore how to learn from imbalanced multi-label data more

effectively to obtain satisfied performance on the multi-label classification task.

Learning from Imbalanced Text Data. Most existing approaches for handling imbalanced
data distribution mainly focused on continuous data like image, and research on addressing
this problem on non-continuous data, such as text, is rather limited. Considering that text data
is everywhere in human society, this direction deserves more attention. Hence, as one future
work, I plan to investigate the negative impacts brought by the imbalanced data distribution
in various text data related applications, such as text classification and sentiment analysis,

and explore effective solutions to mitigate negative impacts.
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