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ABSTRACT 

Population growth increases urbanization, impacting surface albedos and altering surface 

energy balances, including the reduction of urban evaporative cooling, thus forming surface urban 

heat islands (SUHIs). Neighborhoods with higher vegetative densities, therefore, tend to have 

lower temperatures than those with sparse vegetation. In the United States, racially and ethnically 

segregated neighborhoods have limited green infrastructure, exposing populations to higher 

ambient temperatures. The increase in the number and quality of urban forests has become popular 

to reduce intra-urban tree-canopy inequality and mitigate urban heat. The effectiveness of trees in 

heat mitigation is highly site-dependent. Different mitigation interventions thus must be evaluated 

with the use of numerical microscale models, which could facilitate decision-making.  

This study determined seasonal daytime and nighttime land surface temperature (LST) 

trends and distributions in Santa Clara County (SCC), California. It then related these results to 

vegetation (NDVI) and evapotranspiration (ET) values, as well as to census tract-level median 

household income, percentage of Hispanic/Latino populations, and the built environment per the 

Local Climate Zone (LCZ) classification framework. The level of segregation and socioeconomic 

status (SES) between Hispanics and non-Hispanic Whites and among Hispanic/Latinos was further 

explored and related to temperature exposures and health outcomes. In response to the findings, 

the ENVI-Met software was used to evaluate urban heat mitigation measures. The combination of 

these assessments comprised a comprehensive human-environment approach for health exposure 

evaluation emphasizing differences among Hispanics by the origin of birth by which to define 

environmental injustice.  

Results show upward trends in daytime summer (0.10°C per year) and winter (0.11°C per 

year) mean LST and weak nighttime trends (0.03 and 0.04°C per year, respectively). Winter NDVI 

and LST values exhibit positive correlations, but negative correlations are found for summer NDVI 

and LST values, which are stronger during daytime hours, indicating that the cooling effects of 

vegetation occur primarily during the daytime. Maximum LSTs occur in low-income 

neighborhoods characterized by scarce vegetation with a high percentage of Hispanic/Latino 

populations, particularly of Mexican origin. Mexicans live in highly segregated neighborhoods 

with low and very low SES and report low health insurance coverage rates. Evaluation of 

mitigation strategies suggests a non-linear relationship between tree coverage percentage and air 

temperature changes, with a threshold cooling effect associated with increasing tree coverage.  
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CHAPTER 1. INTRODUCTION  

Heat waves (HWs) are extreme weather events during which unusually high temperatures 

last several consecutive days (Center for Disease Control and Prevention-CDC, 2013). HWs can 

reduce human thermal comfort, exacerbate symptoms for individuals with preexisting diseases and 

medical conditions, and cause sudden and premature death (Basu & Samet, 2002), even in high-

income countries with high-quality healthcare services (Martínez-Austria et al., 2016). The risk of 

premature mortality during HWs is highest among people aged 65 years or older (Hajat & Kosatky, 

2010), those who live in urban areas, vulnerable communities (e.g., low-income populations), and 

individuals who may experience high heat exposure due to their occupation. During the August 

2003 European HW, 70,000 excess deaths were attributed to extreme heat exposure (Robine et al., 

2008). Most of those deaths occurred in the elderly who lived alone (Vandentorren et al., 2006). 

This HW occurred after an unusually warm June, with temperatures 4-5°C above monthly means 

averages. In the United States, deaths attributable to natural heat exposure, although generally 

considered preventable, represent a continuing public health concern. An average of 702 heat-

related deaths occurred annually in the US from 2004-2018 (Vaidyanathan et al., 2020).  

The direct effects of high ambient heat on human physiology and susceptibility are 

mediated by indirect factors (e.g., socioeconomic and the built environment). The impact of HWs, 

for example, may be exacerbated for residents who live in high-vulnerability areas (e.g., low-

income urban areas with few amenities, high-population density, and poorly ventilated housing; 

Grineski et al., 2015; Shonkoff et al., 2011), with no in-home air-conditioning (A/C) units, or 

where energy is unaffordable (Hajat & Kosatky, 2010). In the United States, segregated racial and 

ethnic minority populations of low socioeconomic status will likely experience higher heat 

exposure (Mitchell & Chakraborty, 2018), partly because of the paucity of vegetated areas. In 

Phoenix, Arizona, for example, Mexican-Americans living in unvegetated dense downtown 

neighborhoods have been shown to have higher numbers of heat distress calls into the 911 system. 

In contrast, Anglo-American populations living in low-density suburban neighborhoods with 

vegetated areas experience lower vulnerability to extreme heat (Uejio et al., 2011).  

Urban areas are less vegetated than their rural and suburban surroundings; they store heat 

during the day and slowly release it at night, resulting in higher ambient temperatures that 

contribute to a phenomenon known as Urban Heat Island (UHI; Rosenfeld et al., 1995). In UHIs, 

city centers are 1-2°C warmer than their surroundings, and during calm, clear nights, this difference 



2 

can be up to 12°C (Voogt, 2007). The urban-rural temperature difference defines the UHI intensity 

(UHII; Zhao et al., 2018) of Air Urban Heat Islands (AUHIs), as exhibited in measurements of 2-

m height air temperature (Ta), and Surface Urban Heat Islands (SUHIs), based on radiative surface 

temperature (Ts) measurements (Li et al., 2017).   

Spatial variability in vulnerability within UHIs results from the non-uniform distributions 

of built environmental features and social factors (e.g., elders living alone and/or urban crime rates; 

Huang et al., 2011). Some factors that may explain variations in vulnerability include 

anthropogenic heat from residential, commercial, and industrial activities (Ching et al., 2018). 

Neighborhood instability also influences heat mortality through the disinvestment of protective 

amenities (e.g., fewer parks) and reduced ability to maintain social networks, thus increasing heat-

related mortality rates (Semenza et al., 1996; Smoyer, 1998). In Philadelphia (1999) and Phoenix 

(2005), high vacancy rates resulted in weak social networks and higher social isolation, which led 

to an increase in heat distress calls and higher heat mortality probability (Uejio et al., 2011).  

Urban Climate  

The UHI term was introduced to English-language literature in 1947. Balchin & Pye (1947) 

found that warmer temperatures in the center of Bath resembled a “heat island within a built-up area.” 

The isotherm maps showed concentric rings around the central city area, where temperatures were 

highest in the city center in proportion to building density and decreased with distance to the 

peripheral rural lands (Sundborg, 1950). UHIs are complex phenomena (Peterson, 1969) as each one 

displays different characteristics and is controlled by unique energy exchange processes (Arnfield, 

2003). UHIs result from particular aspects of urban morphology (form and function) and 

anthropogenic heat emissions (Priyadarsini et al., 2008) and are influenced by topography, solar 

radiation, wind speed, and cloud cover (Sundborg, 1950; Voogt, 2007; Giovannini et al., 2013). Their 

temperatures also vary horizontally and vertically (Duckworth & Sandberg, 1954). UHIs also exhibit 

seasonal, daytime, and nighttime variations (Rivera et al., 2017; Deilami et al., 2018;). The results 

from UHI analyses, therefore, vary by scale, from regional to city to building to pedestrian levels 

(Mirzaei, 2015). Studies of UHIs are generally  classified into three categories (Voogt, 2007; Deilami 

et al., 2018):  

1. Boundary-Layer UHI (BLUHI): The planetary boundary layer lies over the canopy layer 

(rooftop) and can extend upwards to 1 km or more during the day and hundreds of meters or 

less at night (Deilami et al., 2018). The BLUHI is generally used for mesoscale studies. 
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Temperature data are acquired with direct measurements obtained by sensors mounted on 

aircraft, radiosondes, and tall towers or indirectly via Sonic Detection Ranging (Sodar), Light 

Detection and Ranging (LiDAR), and Radio Acoustic Sounding System (RASS; Oke et al., 

2017); 

2. Canopy-Layer UHI (CLUHI): Closest to the city surface, the canopy layer extends above the 

mean building height (rooftop). The urban morphology, land uses, and available vegetation 

regulate the canopy layer temperature (Ta) distribution (Mills et al., 2010). The CLUHI 

intensity is, therefore, weak or negative during the day in areas with extensive shading created 

by high-rise buildings or irrigation. The CLUHI is best suited for microscale studies. 

Temperature measurements are made with the use of fixed or mobile sensors at 2-m height 

(Oke et al., 2017). Measurements of CUHIs are, however, limited by network densities, so 

some studies use satellite-derived estimates to measure UHIs distributions. 

3. Surface UHI (SUHI): SUHIs are measured with thermal infrared (TIR) sensors onboard 

satellites (e.g., Landsat, ASTER, and MODIS), which measure the ‘skin’ temperature (Ts) or 

land surface temperature (LST) of urban surfaces. LST values depend on satellite view angle, 

solar elevation angle, and surface radiative properties, e.g., emissivity ε (Voogt & Oke, 2003). 

The spatial and temporal variability of UHIs interacts with the spatial variability of 

vulnerable populations, as they result from non-uniform distributions of social factors (e.g., elders 

living alone and/or urban crime rates; Huang et al., 2011), demographics (e.g., population size and 

age-structure; Tran et al., 2006), cultural and behavioral factors, environmental factors (e.g., urban 

morphology and land use;  Johnson & Wilson, 2009) which further complicates the identification 

of at-heat risk areas.  

Heat Vulnerability  

Population vulnerability to UHIs results from complex human-environment interactions. It 

can result from marginalization, discrimination, psycho-social or economic breakdowns, and/or 

risky behaviors pertaining to the environment (Rosenberg, 2017). Heat vulnerability indices 

(HVIs) have been constructed with the use of census data to identify populations at risk during 

HWs and the placement of cooling centers (Bradford et al., 2015). Socio-demographic 

characteristics have often proved to be a heat vulnerability predictor, as they position an individual 

or group within a power hierarchy with the use of objective indicators, such as education, 

occupation, income, and wealth (Diemer et al., 2013). Socioeconomic status also influences the 
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ability of populations to protect themselves during extreme heat events because of the potential for 

reduced access to amenities, such as air conditioning or parks, and access to health care resources 

(Browning et al., 2006). 

Discrepancies in socioeconomic variables that determine heat-related morbidity and 

premature mortality are due to differences in study areas, study designs, and/or the local and 

dynamic processes that change the spatial location(s) of vulnerable populations over short periods 

(Gronlund, 2014). Demographic and economic variables may also complement remotely sensed 

LST values to identify vulnerable populations (Johnson et al., 2009; Uejio et al., 2011; Bradford 

et al., 2015). For example, urban slum forms (e.g., overcrowded housing, impervious land cover, 

poor housing conditions) are associated with high LST values that make these areas more vulnerable 

to heat during heat waves (Tomlinson et al., 2011; Rosenthal et al., 2014).  In the United States, the 

built environment may vary by race, ethnicity, and income, reflecting historic racial residential 

segregation; (e.g., Whites reside in detached dwelling neighborhoods surrounded by vegetation, while 

African Americans reside in contained single- and multi-family housing; Smoyer, 1998).   

The increase in the number and quality of urban forests has become popular to reduce intra-

urban tree-canopy inequality and mitigate the UHI. There is, however, variability in the 

effectiveness of trees in reducing the UHI, which results from the combination of design factors 

(e.g., type of vegetation, area size, fragmentation, arrangement of trees, dominant winds) and local 

environmental conditions. 

Urban Heat Mitigation 

Heat mitigation strategies involve the modification of the built-up environment (e.g., 

increased vegetation), replacement of low albedo surfaces with highly reflective materials, 

placement of water elements (e.g., roof pond, roof spray cooling, moving water), shades, and 

increasing ventilation (Memon et al., 2008). City governments implement heat mitigation 

strategies that increase the number and quality of urban forests, like the Million Trees NYC 

initiative (Webb, 2017), combined with albedo-based changes like the NYC CoolRoofs program 

(City of New York, 2023). The use of green infrastructure at both the pedestrian and roof levels 

significantly reduced air temperature more than highly reflective surfaces (Rosenzweig et al., 

2006). The percentage of tree coverage and height of the vegetation, however, influence urban 

temperatures (Li et al., 2018; Yu et al., 2018). Larger and well-connected green areas, for example, 

relate to lower LSTs (Kim et al., 2016; Park et al., 2017) and consequently decrease human heat 
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exposure (Uejio et al., 2011). The question of maximizing the benefits of urban green areas through 

design (e.g., size, orientation, and spacing), however, still needs to be answered for most cities. 

Trees can absorb a high amount of heat and, if well-watered, moderate their leaf 

temperature via transpiration, thus cooling the surroundings (Oke et al., 1989). Trees provide 

shade, attenuating radiant energy flows through absorption and reflection, further cooling the 

surface and near-surface temperature (Declet-Barreto et al., 2013). With moderate winds, the 

cooling effects can extend beyond the vegetated areas into adjacent, non-vegetated surfaces 

(Declet-Barerto et al., 2012). The extension of the cooling effects will depend on the arrangement 

of trees and wind direction, e.g., trees must be placed along dominant wind paths to maximize their 

cooling potential (Tan et al., 2016). Wind velocity, however, decreases with an increasing green 

coverage ratio (0.9 m/s), which could significantly affect outdoor thermal comfort (Yuan et al., 

2017).  

The type of vegetation (species) will also determine the cooling potential. Some plants 

require the regular opening of leaf pores (stomata) and transpire significant volumes of water, 

which could provide higher cooling effects than trees with low transpiration (Gunawardena et al., 

2017). Evapotranspiration rates, however, vary among species and within individuals of the same 

species, depending on the environmental conditions (Ballinas & Barradas, 2015).  

Tree density, crown diameter (horizontal canopy area), vertical canopy area, leaf area index 

(LAI), and leaf area density (LAD) are additional characteristics that determine the cooling 

potential of urban forests (Ballinas & Barradas, 2015). A tree with LAD of 1.0 m2/m3 and LAI of 

5 can reduce Ta and Ts values by 1.3°C and 14.7°C, respectively. A tree with a LAD of 1.8 m2/m3 

and an LAI of 3 can intercept 84% of free horizontal solar direct radiation, thus reducing 

temperatures by providing shade (Tan et al., 2016). Microclimate simulations show that 

temperature values in intensively vegetated areas do not change with the addition of trees, which 

suggests a threshold in the maximum number of trees to ensure cooling capacity (Makido et al., 

2019). In those scenarios, designers should consider additional strategies to improve thermal 

comfort (Taleghani et al., 2016).    

The application of bioclimatic architecture principles can create a climate-conscious design 

of outdoor spaces with the use of natural components to reduce and enhance their climatic and 

social benefits (Gaitani et al., 2007). Santos Nouri et al. (2018) constructed four Measure Review 

Frameworks (MRFs) to describe the application of different types of Public Space Design (PSD) 
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measures as a bottom-up adaptation response to existing and future climate systems at a local scale: 

1) Green – urban vegetation: 2) Sun – shelter canopies; 3) Surface – materials; and 4) Blue – water 

or misting systems. A public space is, therefore, one that alleviates the impacts of increasing 

temperatures and enhances its use; these benefits, however, further require the establishment of 

quantitative and qualitative criteria for its evaluation (Santos Nouri & Costa, 2017).  

Gap in Literature  

Urban Climate. Since Luke Howard published “The Climate of London” in 1833, 

significant advances have been made in urban climate studies. The study of urban exposure, 

however, involves multi-temporal and multi-spatial human and environmental processes. Meso-

scale analyses can expand over larger regions but do not have enough accuracy at a microscale 

level to provide essential information to decision-makers (Mirzaei, 2015). LST distributions do 

not correlate to 2-m air temperature measurements (Rivera et al., 2017) and only provide limited 

spatial coverage. Whereas Ta can be measured hourly, Ts can be measured daily (e.g., MODIS) at 

a low-spatial resolution or on a 16-day basis (e.g., Landsat) at a higher spatial resolution.  

Heat Vulnerability. Besides inconsistencies in socioeconomic variables, HVIs use a limited 

number of satellite images to calculate LSTs. Urban heat-related morbidity and premature 

mortality studies, additionally, show contradictory findings due to the nature of the study area, 

study designs, and variables involved. Some variables, for example, exhibit strong 

multicollinearity, e.g., no high school diploma correlates with low mean household income, while 

age and occupation are associated with homeownership (Hattis et al., 2012). Age, race, and 

socioeconomic status alone do not predict heat risk consistently (Xu et al., 2013). Some indices 

give variables an equal weight, even when not all variables are equally important, and their 

significance will vary by study (Chow et al., 2012).  

Urban Heat Adaptation. The identification of areas at high risk of heat stress facilitates the 

targeting of public health programs and other mitigation strategies, such as the increase of urban 

vegetation (Weber et al., 2015). In the US, local governments establish cooling centers, typically 

with air-conditioning (A/C), providing a cool environment for vulnerable individuals, thereby 

preventing heat-related illnesses (Widerynski et al., 2017). The use of A/C, however, increases 

energy demand and could enhance street air temperatures, further exacerbating the potential of 

adverse health outcomes (De Munck et al., 2013).  Urban adaptation for current and future HWs 
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requires critical thinking of optimal design and suitable location of public spaces that provide 

temporary shelter from heat for local populations.  

These studies demonstrate the variability of the intensity and spatial distribution of UHIs 

as they result from urban morphology (land use, land cover, building form, and materials) and 

anthropogenic heat emissions (Priyadarsini et al., 2008) and are influenced by topography, solar 

radiation, wind speed, and cloud cover, and soil moisture. Given the complexity of physical and 

socio-demographic factors, a multidisciplinary perspective is necessary to understand the physical 

processes of UHIs and the population groups most vulnerable to heat-related morbidity and 

premature death due to urban heat exposures. This dissertation, therefore, is conducted within the 

discipline of Geography, which is multifaceted, with four prominent research areas: Physical 

Geography, Urban Geography, and Human-Environment Interactions, which includes Health 

Geography and Geospatial Technologies.  

Purpose of Study 

This dissertation addresses the gap between the subdisciplines of Geography: physical, 

urban, and health geography to perform a multi-scale and multi-temporal analysis of SUHIs, their 

impacts on susceptible populations and vulnerable communities, and evaluate adaptation strategies 

for current and future climate scenarios for Santa Clara County (SCC), California. This dissertation 

research aims to advance our understanding of temporal and spatial variations of the SUHI response 

to evapotranspiration and its impacts on public health outcomes in a large urban area of the United 

States. Spatio-temporal variations in SUHI and human health relationships will inform the optimal 

location of a landscape intervention that considers an increase in the number of trees to reduce the 

adverse effects of current and projected LST values.  Three research objectives are conducted to 

achieve the goal of this study.  

In Chapter 1 (Objective 1), the urban climate analysis determined annual summer daytime 

and nighttime SUHI temporal trends and spatial distributions with the use of geospatial 

technologies (e.g., geographic information systems and remote sensing imagery). MODIS datasets 

aided the long-term temporal analysis for 2000-2020, while ECOSTRESS, on board the ISS, 

assisted in the spatial analysis for 2018-2022. The Local Climate Zone (LCZ) framework was then 

used to analyze urban morphology, its relationship with land surface temperature (LST) and 

evapotranspiration (ET) distributions, as well as to describe the built environment of 

Hispanic/Latino neighborhoods. In Chapter 2 (Objective 2), heat vulnerability and population 
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susceptibility were measured with the use of timely census datasets for the same study period to 

characterize their socioeconomic status and race/ethnicity, which, combined with health data 

records, resulted in the identification of at-high-risk heat stress populations. In response to the 

findings from the urban climate and heat vulnerability analyses, urban heat adaptation measures 

were proposed and evaluated in Chapter 3 (Objective 3) via the ENVI-Met software to measure 

the potential cooling effect of trees in Reid-Hillview Airport, located in east SCC. Figure 1 shows 

the overall proposed methodology to fulfill the research objectives.  

 

Figure 1. A conceptual framework to fulfill the research goal and objectives. 

Theoretical Framework 

Geography is a unique discipline that bridges the physical and social sciences, offering the 

multidisciplinarity necessary to study urban heat. Since the quantitative revolution, physical 

geographers- meteorologists and climatologists- have focused on chemical and biological 

principles using statistical and mathematical analysis, models, remote sensing, GIS, and field data 

collection to empirical formulas and theory formulation (Aspinall, 2010). The first and third 

objectives of this dissertation, therefore, use a positivist theory to investigate urban temperature 

distributions and heat mitigation, respectively. Through the lens of positivist theory—the spatial 

and temporal data used in these analyses were studied for their order and patterns to maximize 

spatial associations to best understand underlying causation in relationships. Urban heat 
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vulnerability studies explore the causes (alteration of the built environment) and the effects 

(population morbidity and mortality). As with physical geography, they are also marked by 

positivism and environmental determinism (e.g., an individual’s class status or income, behavioral 

and genetic adaptation to determine environmental exposure; Emch et al., 2017). The second 

objective of this dissertation, borrowed from the field of human geography, uses a structuralism 

theory to investigate urban heat vulnerability. This research focused on the higher-level 

“upstream” structures of society, particularly those that impact how individuals live, work, and 

recreate, through the lens of structuralism. The spatial distribution of vulnerable populations was 

explored in relation to socioeconomic status and racial residential segregation, thus uncovering 

underlying patterns of poverty and racial injustice. 

Study Area 

The study site is SCC (Figure 2), located in the San Francisco Bay Area (37°18'23"N, 

121°54'46"W). SCC has 3,400 square kilometers of land surrounded by water from the San 

Francisco Bay to the North, the Santa Cruz Mountains to the southwest, and the Diablo Range to 

the northeast. According to the National Land Cover Dataset (NLCD; Dewitz and USGS, 2021), 

25% of SCC was classified as urban developed. The rest of the study area was comprised of forest 

(31%), shrubland (24%), and herbaceous vegetation (14%). Only 2% of the non-developed area 

was classified as planted or cultivated. The remaining area was comprised of water (2%), wetlands 

(<1%), or barren land (<1%).  

SCC has experienced, from 1950 to 2010, a surge in heat wave events, which are also 

projected to intensify in the future (Gershunov & Guirguis, 2012). The mean daily apparent 

temperature in SCC during the warm season (May 1 to September 30), calculated from 

meteorological data from 1999 to 2006, was 18.2°C with a range of 9.1 to 32.8°C (Basu & Malig, 

2011). Within SCC, San Jose had the highest increase in temperature values, with an average rise 

of 0.32°C per decade (Lebassi et al., 2009).  
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Figure 2. Location of Santa Clara County (SCC): (a) in Northern California (red area), and (b) its 

land cover (USGS, 2021), 15 cities, and historic neighborhoods of Alviso, East San Jose, and 

Almaden, as well as topographic contours (m, MSL). 

The US Census Bureau (2021) reports a population in SCC of 1.9 million, an increase of 

0.15 million from 2010. SCC is a multiracial, multilingual, multicultural society. Of its total 

population (1,911,226), 32% (622,266) is non-Hispanic White, 26% (498,253) is Hispanic/Latino, 

of which 85% (420,559) is Mexican, 6% (29,464) Central American, and 3% (15,104) South 

American (US Census Bureau, 2018). The increased population and intensive droughts have 

further strained water reservoirs, which could impact water availability that, coupled with rising 

temperatures, could result in increased health risks, especially for vulnerable groups (e.g., low-

income populations). The Hispanic population, as of 2016, was the most significant ethnic or racial 

minority in the United States, and by 2060, they will represent 27.5% of the total population (Vespa 

et al., 2020). The findings from this study inform other coastal as well as inland cities with high 

Hispanic populations on the variability of temperature exposure and health outcomes. 

  



11 

CHAPTER 2. SURFACE URBAN HEAT ISLAND SPATIAL AND TEMPORAL 

TRENDS IN SANTA CLARA, CALIFORNIA: MODERATING EFFECTS OF THE 

HUMAN ENVIRONMENT 

Introduction 

Population growth has driven an increase in anthropogenic greenhouse gas emissions into 

the atmosphere through the combustion of fossil fuels (IPCC, 2014). These also affect local climate 

conditions in cities, where anthropogenic releases of heat, moisture, and pollutants and changes in 

surface properties are some of the leading causes of modified urban climates (Oke, 1987). Heat 

exchange between the surface and air depends on the thermal properties of the surface and 

atmospheric conditions (Oke, 1982). Urbanization impacts surface albedos and evapotranspiration 

(ET) rates, altering surface energy balances and thus creating distinctive local urban climates, 

including the formation of urban heat islands (UHIs; Oke et al., 2017). UHIs negatively impact 

energy use, air quality, and human thermal comfort and health (He, 2018). Children, the elderly, 

low-income groups, and people with preexisting respiratory and cerebrovascular conditions are 

most vulnerable to these effects (McMichael, 2000). In the United States, racial and ethnic 

minorities tend to live in neighborhoods with higher heat exposure, which increases heat-related 

deaths (Jesdale et al., 2013).   

UHIs are stronger at the surface (Duckworth & Sandberg, 1954; Bornstein, 1968) under 

calm wind and clear sky conditions, and they decrease in magnitude outward from the urban core 

(Raj et al., 2020). Their intensity, defined as the difference between urban and rural temperatures 

(ΔTu−r), exhibits temporal variations due to several factors (Peng et al., 2012), including 

differences between urban and rural vegetation, resulting in differing ET cooling rates (Jauregui, 

1997). The thermal inertia (TI), the degree of slowness with which the temperature of a body 

approaches that of its surroundings (Ng et al., 2011), is higher for wet rural areas than for urban 

environments, and thus wet-rural areas (vs. urban areas) warm more slowly during daytime hours 

and cool more slowly during evening hours (Swaid, 1991); the reverse is true for dry rural soil 

areas. Daytime UHIs are thus, in theory, stronger, and nighttime values are weaker for cities 

surrounded by wet rural environments; the reverse is thus true for cities surrounded by dry rural 

soils (Imamura,1991; Bornstein et al., 2012; Dou et al., 2015). 

UHIs can be estimated via 2-m air temperatures measured by fixed or mobile sensors, 

producing Canopy UHI values. Measurements of CUHIs are, however, limited by network 
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densities, so some studies use satellite-derived land surface temperature (LSTs) to estimate Surface 

Urban Heat Islands (SUHIs) magnitudes and distributions (Voogt, 2007; Stewart & Mill, 2021). 

Previous results from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor report 

negative annual-mean daytime MODIS SUHI intensity trends over 2003-2016 were found in arid 

Lima, Peru (Wu et al., 2019), as rural regional-warming rates were larger than in urban areas. 

Positive trends in the extent and intensity of SUHI over 17 years were found in tropical-wet 

Chennai, India (Raj et al., 2020). A similar positive annual trend was also found in Pune, India, 

which means its wet season trend is stronger than its dry season value. Negative trends in nighttime 

values were observed in tropical-wet Lucknow, India (Siddiqui et al., 2021). The same study also 

reported negative daytime trends, contrary to the generalization of Swaid (1991). Another 

contradictory study is from tropical-wet Cali, Colombia, which showed increased annual nighttime 

SUHI intensity from 2003-2016 (Wu et al., 2019).  

An analysis by Li et al. (2020) of large cities in various climates showed 2003-2013 

MODIS-derived daytime SUHIs amplified by increased wet seasonal precipitation while 

corresponding nighttime values were reduced or became negative, as wet season rural moisture is 

greater than urban values. Other examples include MODIS-derived weak or negative daytime 

SUHIs in dry conditions, e.g., during the 2001-2018 dry season periods in Pune, India (Siddiqui et 

al., 2021) and from irrigated urban parks in arid Phoenix, Arizona, USA, during 2003-2005 

(Imhoff et al., 2010). In Mediterranean climates (e.g., Csa in the Köppen classification system), 

daytime SUHI intensity peaks in late spring and early summer and decreases as precipitation 

declines (Sismanidis et al., 2022). As rural vegetation dries due to reduced precipitation, ET 

decreases, and so does the SUHI intensity. The UHI intensity is, therefore, directly linked to local 

precipitation (Manoli et al., 2020). 

The reduction of evaporative cooling is an important factor contributing to UHIs, as urban 

moisture content is lower than in nonurban areas, allowing urban areas to warm faster than their 

vegetated surroundings (Taha, 2017). Droughts, however, can intensify UHIs as insufficient soil 

moisture in urban areas leads to less latent heat by evapotranspiration (Dong et al., 2018). During 

the 2012-2016 drought in Los Angeles County, USA, ET values, measured with the combination 

of Landsat and MODIS, declined from 29.3% in 2011 to 24.6% in 2016, and annual mean daytime 

LST increased from 34.4 to 37.1°C as the cooling effect from grasses was reduced due to 

physiological responses, irrigation changes, and losses of green vegetation cover (Allen et al., 
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2021). The Normalized Difference Vegetation Index (NDVI), a measure of vegetation cover, has 

been used to monitor drought conditions and to extract information on soil moisture (Thanabalan 

et al., 2023). NDVI values range from -1 to 1, with negative values indicating water, positive 

values near zero indicating bare soil, and higher positive values ranging from sparse vegetation 

(0.1 - 0.5) to dense green vegetation (0.6 and above). In Los Angeles, CA, MODIS/ASTER-

derived NDVI and LST exhibit strong negative correlations, showing that the availability of 

vegetation may enhance local cooling   (Tayyebi & Darrel Jenerette, 2016).  

As droughts continue to impact the State of California, limits to outdoor watering will 

reduce ET rates in urban areas, decreasing their cooling capacity and increasing UHI intensities. 

Within urban areas, however, outdoor watering varies significantly. High-income areas, for 

example, are strongly correlated with highly irrigated areas, as high-income households are willing 

to pay for irrigation despite irrigation limits (Miller et al., 2022). In Los Angeles, higher income 

was related to greener landscapes, whereas less green landscapes were related to higher 

percentages of Hispanic or Latino residents (Mini et al., 2014). There is a need to further 

understand the role of ET and its relation to SUHI intensity, particularly in areas where spatial 

variations in ET may partly depend on water usage differences among residents of varying income 

levels. 

UHIs have shown significant intra-city variability due to the heterogeneity of urban areas 

(e.g., differences in the intensity of human activities, amount of green space, and amount and 

properties of built-up materials), suggesting higher temperatures located in neighborhoods 

inhabited by low-income populations (Chakraborty et al., 2020). Intra-urban SUHI variability also 

exhibited seasonal and spatial variations resulting in higher intensity during summer days and 

within high-density zones (Wang et al., 2023). The intensity of SUHIs has high temporal and 

spatial variability (Rivera et al., 2017), rendering some sensors insufficient to understand these 

variabilities, e.g., MODIS has a high-temporal (1-2 days) but a low-spatial resolution (1 km), while 

Landsat 8 has a high-spatial (100 m) but a low-temporal resolution (16 days). ECOsystem 

Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), aboard the 

International Space Station (ISS), provides daily coverage (superior to Landsat) at a 38 by 69-

meter resolution (superior to MODIS), with higher latitude areas measured multiple times per day.  

ECOSTRESS data can provide daily LST and ET values; the latter is a valuable indicator 

of consumptive water use, as it results from the direct evaporation of water and plant transpiration 
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(Cawse-Nicholson et al., 2021), allowing for the understanding of ET and LST response at the 

intraurban level. An analysis with the use of ECOSTRESS by Coleman et al. (2020) in Los Angeles 

shows that LSTs for irrigated and non-irrigated areas were similar in the morning (8-11 a.m.) when 

atmospheric conditions favor stomatal conductance in both areas. LST values were, however, 

different in the afternoon (1-3 p.m.), as high temperatures can cause heat stress in non-irrigated 

areas as soil moisture is insufficient to meet atmospheric demands (Coleman et al., 2020). 

ECOSTRESS data, therefore, provide the capacity to analyze SUHI variations at high temporal 

and spatial resolution (Chang et al., 2022). The analysis of long-term LST trends, however, 

requires large data sets, which limits the number of thermal images that can be analyzed (Ermida 

et al., 2020). Additional problems arise from inconsistent definitions for land-use and land cover 

classes, a challenge for comparison studies.  

The Local Climate Zones (LCZs) classification system (Stewart & Oke, 2012) was 

developed to standardize urban morphology classes. It recognizes 10 urban and seven nonurban 

LCZ areas with uniform surface cover, structure, construction materials, and human activity. LSTs 

vary broadly by LCZ class, with maximum LST usually recorded for compact and heavy industry 

areas (Cai et al., 2018). In conjunction with related seasonal variations in urban vegetative cover, 

soil moisture variation can alter the typical LST-LCZ relationships (Ren et al., 2019). High-density 

urban areas in compact mid- and low-rise classes have high-heat stress zones (Verdonck et al., 

2018) due to their high population densities. Even though industrial and paved classes exhibit high 

LSTs, they produce only minor stress impacts due to their low densities. 

Whereas most previous studies have primarily focused on the LST spatial variability 

among LCZs, few have explored the use of the LCZ framework to analyze thermal inequality. The 

current study, therefore, uses a combination of remotely sensed data to determine temporal and 

spatial summer SUHI distributions and trends in Santa Clara County (SCC), California, and its 

relationship to the human environment. A 20-year summer averaged MODIS data was used to 

determine annual winter and summer SUHI and NDVI temporal trends. ECOSTRESS-derived 

LST and ET variability among LCZs was then studied. The association between race and LCZs, 

as well as income and LCZs, were then explored via multinominal logistic regressions. The results 

identified Hispanic/Latino and low-income populations at potentially high heat stress risk from a 

combination of environmental and social factors, which allowed for the investigation of nature-
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society relationships: the role of humans in changing the environment and how this changed 

environment influences humans (Moseley et al., 2013).  

Data and Methods 

The first step in this framework evaluated the physical environment via the calculation of 

annual and seasonal daytime and nighttime LSTs and their corresponding NDVI values from 

MODIS for 2000-2020 to determine temporal trends. A 4-year summer LST and ET ECOSTRESS 

for 2018-2022 was then calculated to determine spatial trends. The second step evaluated the social 

environment per the LCZ framework and US Census data to describe the built environment and 

assess the distribution of Hispanic/Latino and low-income populations across census tracts in SCC. 

The third step analyzed LST and ET in relation to LCZ and LCZ in relation to socioeconomic 

factors. The combination of these assessments resulted in a comprehensive human-environment 

approach to evaluate SUHI intensity in areas of varying levels of MHHI in SCC.  

Physical Environment 

MODIS. Annual summer and winter LST and NDVI trends were determined from MODIS. 

A total of 14 303 satellite images from 5 March 2000 to 31 December 2020 were accessed for 

Santa Clara County to derive 21 daytime (1000-1400 Central Standard Time = GMT-6 h) and 21 

nighttime 2200-0200 (Central Standard Time = GMT-6 h) monthly mean LST trends, as well as 

the corresponding annual mean NDVI values. For seasonal analysis, summer considers June 01 to 

August 31, whereas winter considers December 1 to February 28. Images were accessed via Earth 

Engine (code.earthengine.google.com/), which provides free access to satellite datasets (Gorelick 

et al., 2017), allowing for long-term LST and NDVI trend computations (Budhiraja et al., 2020; 

Chakraborty & Lee, 2019; M. Wang et al., 2020). Cloud-covered pixels (>0% cloudiness) in 

MODIS images were first masked by the use of a Quality Assessment (QA) procedure that 

provides information on pixel quality and allows users to apply pixel-based filters. The National 

Land Cover Dataset (USGS, 2019) was then used to retrieve pixels corresponding with values 

classified as urban developed (classes 21-24) for each LST and NDVI satellite product. This 

process filtered non-developed (rural) areas from developed (urban) locations to better estimate 

the urban variability of LST values (Rivera et al., 2022).  

ECOSTRESS. Approximately 300 ECOSTRESS scenes were retrieved via the NASA Earth 

Data Cloud web application, also known as AppEEARS (appeears.earthdatacloud.nasa.gov), for 

the summer months (June to August) of 2018 to 2022. Determination of LST (Level-2) and ET 
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(Level-3) distributions first involved a per-pixel filter applied to ECOSTRESS images, using its 

cloud product to mask cloudy and cloud shadow pixels. As with the MODIS products, pixels 

corresponding with values classified as urban developed (classes 21-24) for each LST and ET 

satellite product were retrieved. These values were combined to produce summer LST (°C) and 

ET (W/m2) distributions for the study area.  

Socioeconomic Environment  

Local Climate Zones. The built environment of SCC was described in the current study via 

the LCZ framework of Stewart and Oke (Stewart & Oke, 2012). The LCZ classification system, 

developed to standardize urban morphology classes, recognizes 10 urban and seven nonurban LCZ 

areas with uniform surface cover, structure, construction materials, and human activity. This 

methodology is based on the World Urban Database and Access Portals Tools (WUDAPT) of 

Ching et al. (2018) and integrates satellite imagery with open-source software (Bechtel et al., 

2015). User knowledge of local morphological conditions helped create the minimum required 20 

WUDAPT training samples for each LCZ class via Google Earth software, using 20 June 2020 

imagery as the base layer. Less than 15 training samples were digitized for LCZ 2 (compact mid-

rise) as it is rare in SCC, and no LCZ 1 (compact high-rise) and LCZ 4 (open high-rise) areas exist 

in the study area. The samples were then used as input to run an LCZ classification algorithm in 

the LCZ Generator (lcz-generator.rub.de), a web application to create LCZ maps with its 

corresponding automated accuracy assessment (Demuzere et al., 2021). As with previous datasets, 

pixels corresponding with values classified as urban developed (classes 21-24) were retrieved. 

Neighborhood Demographics. Racial/ethnicity and economic data were acquired at the 

census tract level for SCC from the US Census Bureau, ACS Five-Year Estimates (2017-2021). 

Since the Hispanic/Latino population comprises a third of the total population in SCC, this ethnic 

group was selected to explain the moderating effects of race on environmental outcomes. The 

Hispanic/Latino (DP05_0071E) variable was divided by the total population variable 

(DP05_0001E) to estimate the percentage of the Hispanic/Latino (any race) population per census 

tract. The socioeconomic status of residents was measured with the use of the median household 

income (MHHI) variable (DP03_0062E). Census Tract 5116.08 was omitted as it represented 

Stanford University and had no income data.  
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Human-Environment 

The Zonal Statistics tool in ArcGIS Pro© (version 3.0.3) was used to calculate the mean 

LST and ET values per census tract. The potential association between the LST, ET, and 

percentage of Hispanic/Latinos, as well as MHHI, was explored with Spearman correlation 

statistics, as values do not follow a parametric distribution. The relationship between the built 

environment and race/ethnicity at the census tract level was examined with the use of a 

multinomial logistic regression. The most frequently occurring LCZ class per census tract was first 

found with the use of the Zonal Statistic Tool, majority option, and assigned to each spatial unit to 

define the dependent variable. The independent variable was defined as Hispanic/Latino 

(percentage) or as MHHI (dollars).  

Results  

The human-environment conceptual framework allows for the study of the temporal and 

spatial variation of LSTs related to NDVI and ET values, as well as Hispanic/Latinos in SCC. 

MODIS-derived LST results show stronger daytime summer (0.10°C per year) and winter (0.11°C 

per year) means than their corresponding nighttime values (0.03 and 0.04°C per year, respectively). 

MODIS-derived NDVI results show no strong temporal trends for summer and winter. Positive 

correlations were, however, found for winter NDVI and LST values, whereas negative correlations 

were found for corresponding summer values. ECOSTRESS-derived LST values range from 7.4 

to 56.1°C and ET values from 0.7 to 500.4 Watts/m2. The spatial distribution analysis shows an 

increasing LST with decreasing ET and an increasing percentage of Hispanic/Latino populations 

(0.02°C per percent increase in Hispanic/Latinos). Hispanic/Latinos in SCC are, therefore, most 

likely to experience high LST values due to low soil moisture resulting from high-density buildings 

(compact low-rise) and the prevalence of impervious surfaces in large low-rise areas.  

Physical Environment 

MODIS. MODIS annual-mean summer LST values (Figure 3) from 2000 to 2020 show a 

slight upward daytime trend (m = 0.10°C per year, R² = 0.52), with a minimum of 37.4°C in 2001 

to a peak of 47.8°C in 2020, along with large yearly annual variabilities (±1σ) ranging from 2.93 

to 3.32°C. The corresponding nighttime annual mean-summer values (Figure 2b) show a weak 

upward trend (m = 0.03°C per year, R² = 0.14) with values ranging from 14.6°C in 2011 to 16.3°C 

in 2017, and smaller annual variabilities (1.10 to 1.44°C). Annual LST variations are slightly larger 

for daytime (0.39°C) than for nighttime (0.34°C) hours due to daytime turbulence levels. Annual 
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summer-mean NDVI ranges from 0.32 in 2005 to 0.37 in 2010 and exhibits no trend (m = -0.0006 

per year). The Spearman correlation between summer annual-mean LST and NDVI shows a 

negative but moderate relationship for daytime (rho = -0.42, p-value = 0.06) and nighttime (rho = 

-0.38, p-value = 0.09) values, although nonsignificant.  

 

Figure 3. MODIS (2000-2020) summer annual-mean and ± 1σ (color band) variations of a) 

daytime and b) nighttime LST (°C), as well as annual mean NDVI values.  

MODIS annual-mean winter LST values (Figure 4) from 2000 to 2020 show a slight 

upward daytime trend (m = 0.11°C per year, R² = 0.28), similar in magnitude to the daytime-

summer LST trend. These LST values range from 15.0°C in 2001 to 19.7°C in 2020 and exhibit 

small yearly annual variabilities (±1σ), ranging from 1.36 to 1.97°C. Corresponding nighttime 

annual-mean LSTs (Figure 3b) show a weak upward trend (m = 0.04°C per year, R² = 0.07) with 

values ranging from 3.18°C in 2006 to 7.15°C in 2014, and very small annual variabilities (0.58 

to 1.06°C). Annual LST variations are larger for daytime (0.61°C) than nighttime (0.48°C) hours, 

and both values are larger than their corresponding summer annual measures. Annual-mean NDVI 

b) 

a) Summer 
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ranges from 0.18 in 2009 to 0.37 in 2017, showing a much larger range than summer NDVI values 

but with an equal maximum value. Winter NDVI exhibits a non-existent trend (m = 0.002 per 

year). The Spearman correlation between winter annual-mean LST and NDVI shows a strong and 

significant positive relationship for daytime values (rho = 0.60, p-value = 0.00) and a positive but 

weak relationship with nighttime values (0.11, p-value = 0.65), although nonsignificant.  

 

Figure 4. MODIS (2000-2020) winter annual-mean and ± 1σ (color band) variations of a) daytime 

and b) nighttime LST (°C), as well as annual mean NDVI values. 

ECOSTRESS. ECOSTRESS-derived summer 2018-2022 LSTs (Figure 5) for the entire 

domain range from 7.40 to 56.1°C, with a mean of 26.6°C. The distributions of minimum values 

are found along the southwest towards the mountain over low-density areas in Saratoga and Los 

Gatos, while maximum LSTs are found east of San Jose over the Reid-Hillview Airport area. 

Lower than average values are located west towards Palo Alto and Los Altos Hills, where most of 

the developed open-space area is located. Sunnyvale and Santa Clara mostly exhibit average LST 

values over medium-to-high-intensity developed areas corresponding to commercial areas. Major 

a) 

b) 

Winter 
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roads, the San Jose Airport, and the southern part of the City of San Jose have higher-than-average 

summer LST values.  

 
Figure 5. ECOSTRESS (2018-2022) summer (June-August) mean LST (°C) distributions at 70-

meter resolution for SCC in its a) central and b) southernmost part.  

Summer-mean 2018-2022 ET values for the entire domain range from 0.72 to 500.4 

Watts/m2, with a mean of 130.0 Watts/m2. The resulting range of values is probably due to the 

cloud filtering process, where cloud pixels not recognized as clouds were not masked. Another 

process to remove these undetected cloud pixels includes filtering outliers (e.g., removing pixels 

below the 8% or above 98% percentile). This process, however, was not done in the current effort 

to avoid over-filtering pixels. The spatial distributions (Figure 6) show minimum values over the 

highly impervious Airport and Downtown areas in San Jose and to the southernmost region (6b) 

in Morgan Hill. Additional minimum ET areas are west in Cupertino, north in Milpitas, and the 

southernmost part of the study area in Gilroy over high-density and highly impervious areas.  

Maximum ET values are to the west in Palo Alto and south of Downtown San Jose over 

residential areas. Higher-than-average ET values are found in low-density and highly vegetated 

Los Altos, Saratoga, and Los Gatos. Lower-than-average ET values are primarily located east and 

south of San Jose over highly-vegetated residential areas. ET and LST values exhibited similar 

spatial patterns, which thermal inertia can explain; surfaces with low ET values warm faster than 

their vegetated and well-watered surroundings. The Spearman correlation statistic, therefore, 

a) b) 

LST (°C) 
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showed a strong negative and significant relationship between ET and LST values (rho = -0.64, p-

value = 0.00).  

 
Figure 6. ECOSTRESS (2018-2022) mean-summer (June-August) evapotranspiration (W/m2) 

distributions at 70-meter resolution for SCC in its a) central and b) southernmost part.  

Socioeconomic Environment  

Local Climate Zones. The resulting LCZ classification yielded an overall accuracy of 0.73. 

The 100-meter LCZ distribution (Figure 7) shows that low-rise urban structures (LCZs 3, 6, 8) 

comprise most of the urbanized area of SCC. LCZ 3 (compact low-rise) is primarily located within 

San Jose to its eastern and southernmost parts over highly-density and low-vegetated residential 

areas, where high LST values were also detected. LCZ 6 (open low-rise), in contrast, is mainly 

east of the study area over lower-density and highly-vegetated residential areas, while LCZ 8 (large 

low-rise) is found in the upper part of SCC towards the San Francisco Bay, where most commercial 

areas are located. LCZ 9 (sparsely built) surrounds the study area and is particularly prevalent in 

south SCC (Figure 6b) around Morgan Hill, where most agricultural land is located. LCZ A (dense 

trees), B (scattered trees), and D (low plants) comprised most of the non-urban classes and are 

primarily found outside city limits.  

a) b) 

ET (Watts/m2) 
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Figure 7. Local Climate Zones (LCZs) distribution at a 100-m resolution for SCC in its a) central 

and b) southernmost part.  

Results of the evaluation between LSTs and LCZs (Figure 8a) show LCZ A (dense trees) 

had the lowest mean LST of 22.0°C, with values ranging from 16.0 to 27.1°C. Areas comprised of 

LCZ 3 (compact low-rise) exhibit the highest mean LST (27.7°C) and the smallest range of values 

from 24.0 to 29.0°C. Maximum ranges of 18.6 to 35.0°C are found for LCZ 9  (sparsely built) due 

to their spatial variability, reflecting the differences in the surrounding vegetation. For urban LCZ 

classes, the minimum LST value (26.0°C) is found in LCZ 9 (sparsely built) and the maximum 

(27.7°C) in LCZ 3 (compact low-rise). Results of the relationships between ET and LCZs (Figure 

8b) show that the LCZ A (dense trees) class has the highest mean ET of 204.1 Watts/m2 with a 

maximum of 308.6 Watts/m2, whereas the lowest ET mean (102.6 Watts/m2) is in LCZ F (bare 

soil). LZC 9 (large low-rise) exhibits the largest range of values from 60.6 to 263.3 Watts/m2, with 

minimum ET in Mountain View and Sunnyvale and maximum in Santa Clara, San Jose, and 

Milpitas. For urban classes, the minimum ET value (108.7 Watts/m2) is found in LCZ 10 (heavy 

industry) and the maximum (123.7 Watts/m2) in LCZ  6 (open low-rise).  

 

a) b) 



23 

 
 

 
Figure 8. Box plots of a) Land Surface Temperature (°C) and Evapotranspiration (Watts/m2) values 

per LCZ class in SCC. 

 

a) 

b) 
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Neighborhood Demographics. In SCC, the percentage of Hispanic/Latinos per census tract 

varies from 0.38 to 85.6%, with a mean of 25.5%. Resulting distributions (Figure 9) show a 

maximum concentration (76-86%) of Hispanic/Latino populations in two census tracts in San Jose 

and two in the southernmost region in Gilroy. These tracts were surrounded by higher-than-

average (51-75%) concentrations of Hispanic/Latinos, with an additional census tract to the north 

in the below-sea level and residential Alviso neighborhood, where most salt marshes out to open 

waters of the San Francisco Bay are located. A slightly higher-than-average concentration (26-

50%) was primarily found east SCC in San Jose and to the south towards Morgan Hill and Gilroy. 

In the remaining tracts, mostly east of SCC in Palo Alto, Los Altos, and Los Altos Hills, a lower-

than-average (0-25%) concentration of Hispanic/Latino populations is found, as well as in the 

southwest in Los Gatos and Saratoga.  

 

Figure 9. Spatial distribution of Hispanic/Latino population as a percentage per census tract in 

SCC derived from US Census Bureau American Community Survey (ACS), Five-Year Estimates 

(2017-2021) data (US Census Bureau, 2022).  

In SCC, MHHI values ranged from $34,000 to more than $250,000, with an average value 

of $145,000. MHHI distributions (Figure 10) show minimum values in the East San Jose 

neighborhoods and the southernmost region of SCC in Gilroy, coinciding with areas with a 

maximum concentration of Hispanic/Latino populations. Maximum MMHI values were found to 

the southwest in Los Gatos, southeast in Los Altos Hills, and east in Palo Alto. Higher-than-
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average MHHI census tracts are mostly in Los Altos, Cupertino, and Mountain View, as well as 

in Campbell and the eastern part of SCC. Lower-than-average values are in the Downtown San 

Jose Area and some neighborhoods in Santa Clara.  

 

Figure 10. Spatial distribution of median household income (MHHI), in dollars, from the US. 

Census Bureau American Community Survey (ACS), Five-Year Estimates (2017-2021) data (US 

Census Bureau, 2022).  

Human-Environment 

The Zonal Statistic Tool was used to calculate census-tract mean ET and LST to evaluate 

the human-environment via the relationship of race/ethnicity and physical environment (ET and 

LST). A Spearman statistic shows that the percentage of Hispanic/Latinos negatively correlates 

with ET (rho = -0.38, p-value = 0.00) but positively correlates with LST (rho = 0.42, p-value = 

0.00). Simple linear regressions were performed to analyze rates of change of ET and LST values 

by the percentage of the Hispanic/Latino population. Results show a positive LST-Hispanic/Latino 

trend (R2 = 0.15), with LST values increasing by 0.017°C per percent increase in Hispanic/Latino. 

A negative trend (R2 = 0.13) is therefore found between ET and Hispanic Latinos, which decreases 

by 0.52 Watts/m2 per percent increase in Hispanic/Latino populations.  

The most frequently occurring LCZ was assigned to each census tract to analyze the 

relationship between sociodemographic variables and the built environment per the LCZ 

classification system. Results of this evaluation (Figure 11) show that neighborhoods comprised 
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of LCZ 3 (compact low-rise) exhibit the highest mean (38%) and maximum (86%) percentage of 

Hispanic/Latino populations, followed by LCZ 8 (large low-rise) with 27 and 86%, respectively. 

The lowest concentration of Hispanic/Latinos (2%) corresponds to LCZ A (dense trees), followed 

by LCZ 6 (open low-rise) with 16% Hispanic/Latino populations. Open low-rise neighborhoods, 

however, had a maximum concentration of 66%, reflecting that Latinos are likely to inhabit areas 

mainly comprised of LCZ 3, LCZ 8, as well as LCZ 6.  

 

Figure 11. Box plot of Hispanic/Latino populations (percentage) per LCZ class in SCC. 

Results of this evaluation (Figure 12) show that neighborhoods comprised of LCZ 2 

(compact mid-rise) exhibit the lowest MHHI mean ($115,171), followed by LCZ 3 (compact low-

rise) with a MHHI mean of $117,081. Maximum mean MHHI values are in LCZ 9 (sparsely built). 

LCZ 5 (open mid-rise), 7 (lightweight low-rise), and 8 (large low-rise) lower-than-average MHHI 

values (<$145,000) ranging from $121000 to $133,000. Higher-than-average MHHI values, in 

contrast, are found in the rest of the LCZ classes, ranging from $148,000 in LCZ (scattered trees) 

to $182,000 in LCZ A (dense trees). 
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Figure 12. Box plot of Median Household Income (in dollars) per LCZ class in SCC. 

Results of the multinomial logistic regression (Table 1) show a negative relationship 

between the percentage Hispanic/Latinos coefficients and LCZ 6 (open low-rise), 9 (sparsely 

built), A (dense trees), and B (scattered trees). Coefficients are positive and high for LCZ 3 

(compact low-rise) and D (low plants). Still positive coefficients, but not as large, are in LCZ 5 

(open mid-rise), 7 (lightweight low-rise), and 8 (large low-rise). The Wald Statistic (z) shows, at 

an alpha level of 0.05, no significance for all LCZ classes. Although coefficients are not 

significant, the odds ratio shows large values in LCZ 3 (compact low-rise) and D (low plants), 

followed by LCZ 5 (open midrise), LCZ 8 (large low-rise), and 7 (lightweight low-rise). Odds of 

Hispanic/Latino populations are less likely in LCZ B (scattered trees) and 9 (sparsely built). 

Extremely low odds ratio values are found in LCZ 6 (open low-rise) and A 9 (dense trees).  

The multinomial logistic regression results for MHHI show positive coefficients for all 

LCZ classes, although at different magnitudes. Coefficients are relatively high for LCZ 9 (sparsely 

built), A (dense trees), and 6 (open low-rise). LCZ B (scattered trees) and 8 (large low-rise) follow 

with values of 0.019 and 0.11, respectively. Very low coefficients are found for LCZ 7 (lightweight 

low-rise) and 5 (open mid-rise). Near-zero coefficients are shown for LCZ D (low plants) and 3 

(compact low-rise). The Wald Statistic (z) shows, at an alpha level of 0.05, no significance for all 

LCZ classes except LCZ 6, 9, and A, which also show relatively high odds ratio values ranging 
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from 1.03 to 1.05. Although not all coefficients are significant, the odds ratio indicates relatively 

low- values in LCZ 3, 5, 7, and D.  

Table 1. Results of multinomial logistic regression between LCZ (majority per census tract) and 

percentage of Hispanic/Latino (any race) population, as well as Median Household Income (in 

dollars).  

Independent 

Variable (Y) 
LCZ Coefficient Standard Error Wald Statistic P-value 

Odd 

Ratio 

Percentage of 

Hispanic/Latinos 

(any race)  

3 4.06 4.28 0.95 0.34 57.7 

5 1.78 4.64 0.38 0.70 5.96 

6 -2.92 4.29 -0.68 0.49 0.05 

7 1.03 5.78 0.18 0.86 2.79 

8 1.59 4.29 0.37 0.71 4.89 

9 -1.59 4.59 -0.34 0.72 0.20 

A -109 90.9 -1.98 0.23 0.00 

B -0.07 5.04 -0.01 0.98 0.93 

D 3.52 4.76 0.74 0.46 33.7 

Median 

Household 

Income (in 

dollars)  

3 0.001 0.009 0.15 0.88 1.00 

5 0.004 0.011 0.34 0.74 1.00 

6 0.029 0.008 3.60 0.00 1.03 

7 0.005 0.017 0.30 0.76 1.00 

8 0.011 0.008 1.32 0.19 1.01 

9 0.038 0.009 4.07 0.00 1.04 

A 0.035 0.017 1.98 0.05 1.05 

B 0.019 0.012 1.52 0.13 1.02 

D 0.003 0.013 0.22 0.83 1.00 

 

Discussion  

Temporal analysis of SUHI in this study found contrary results to trend analysis reported 

previously for SCC. An analysis by Lebassi et al. (2009), from summer (June-August) long-term 

(1970-2005) daily 2-m air temperatures, reported a maximum trend of -0.53°C per decade for SCC, 

resulting from marine air intrusions, as the air penetrated through a sea-level passage from the 

northern part of the San Francisco Bay southward towards SCC. As nighttime land surfaces cooled 

more rapidly than the sea, temperature differences produced maritime airflow. Kueppers et al., 

2007 suggested that summer cooling in California resulted from increased irrigation, mainly from 

agricultural areas. Similarly, vegetation transpiring significant volumes of water within urban areas 
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could provide higher cooling effects than trees with lower transpiration rates; thus, unirrigated 

trees or under water stress do not provide sufficient cooling (Ballinas & Barrandas, 2015).  

In the urbanized area of SCC, summer LSTs have an upward trend of 0.10°C per year (or 

1.00°C per decade), whereas the corresponding nighttime values show no trend of 0.03°C per year 

(or 0.30 per decade). A higher proportion of the variance is explained for summer daytime (R2 = 

52%) than for corresponding nighttime values daytime (R2 = 14%). The difference in summer 

trends between the current effort and those of Lebassi et al. (2009) may be attributed to 

measurement instruments. While this study uses remotely sensed data to measure LSTs, the latter 

uses National Climatic Data Center (NCDC) observational sites to measure daily Tmin and Tmax 

2-m air temperatures to produce average monthly values.  

This difference in trends may also be explained by Simpson’s Paradox, which arises 

because aggregated data supports a trend that disappears or reverses when subgroups are combined 

(Pearl, 2022). Lebassi et al. (2009) found that from 1970 to 2005, daily mean summer 2-m air 

temperatures increased by 0.15°C per decade. Observations were then aggregated into inland and 

coastal subgroups. The former showed an increasing trend of 0.24° per decade, whereas the latter 

showed a decreasing trend of -0.01°C per decade. The aggregation of spatial data may also result 

in the Modifiable Areal Unit Problem (MAUP), which arises when data is aggregated according 

to different zonal systems, causing inconsistent results.  

During the summer season, NDVI values exhibit no trend, with a near-zero proportion of 

variance explained. During summer daytime, high NDVI values from plant growth provide 

maximum cooling via evapotranspiration, particularly in highly-irrigated areas, allowing them to 

cool faster. Vegetation also provides shade and absorbs radiation, cooling even over soil and 

impervious surfaces. A negative relationship consequently exists between summer LST and NDVI 

values, particularly during daytime hours. The cooling effect of vegetation on LST is, therefore, 

during the daytime than at nighttime, although most heat-related deaths occur at night.  During 

winter months, there is, however, a positive LST-NDVI relationship. The low photosynthesizing 

of vegetation provides no cooling and thus does not regulate LST values (Marzban et al., 2017).  

During summer, irrigated vegetative cover in urban areas has high evapotranspiration 

values and warm at a slower rate than those with low evapotranspiration, thus explaining the 

negative relation. The spatial distribution of summer ET values shows high values in known high-

income neighborhoods to the west in Palo Alto and Los Altos. Contrary results were found to the 
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east in San Jose, where very low-income and majority Hispanic/Latino populations are located. TI 

may also explain these differences in cooling rates: high-income neighborhoods tend to have high 

vegetative cover and, thus, warm and cool at slower rates than their impervious counterparts. Trees 

within high-income communities provide shade, which attenuates radiant energy flows through 

absorption and reflection, further cooling the surface and near-surface temperature (Declet-Barreto 

et al., 2013). 

In the US, there is substantial evidence that a high proportion of low-income communities, 

where most racial and ethnic minorities reside, are deprived of green areas that resulted from 

historical ethno-racial oppression and segregated park system (Wolch et al., 2014). Although the 

LCZ-Hispanic/Latino multinomial logistic regression results show no statistically significant 

coefficient (p-value>0.05), the odds of Hispanic/Latino populations are higher in LCZ 3 than in 

the rest of the urban classes. LCZ 3 exhibits the highest mean LST (27.7°C) and an average ET 

value of 113.7 W/m2. The multinomial logistic regression results of LCZ and MHHI show the 

minimum statistically significant coefficient in LCZ 3, exhibiting a very low MHHI of $117,081. 

The large but low significant LCZ-Hispanic/Latino vs. the low but significant LCZ-MHHI 

coefficients may result from 1) different vegetation types within LCZ classes and 2) the 

aggregation of Hispanic/Latino populations. For the former, results show a wide range of LST and 

ET values for LCZ 6 (sparsely built), as previous land cover surrounding buildings have different 

evaporation rates (e.g., low-plants vs. scattered trees). A subclass of LCZ 6 that reflects a 

difference in surroundings is, therefore, recommended. For the latter, this study does not 

disaggregate Hispanic/Latinos by origin.  

There are socioeconomic differences within Hispanic subgroups, which may expose them 

to different levels of environmental hazards. Williams et al. (2017) report that Cubans have a 

college graduation rate three times higher than Mexicans, and Puerto Ricans have higher high 

school graduation rates than Mexicans (74% vs. 54%), which may contribute to health disparities 

and risk exposure. Hispanic/Latinos in the US have been treated as a homogenous group, although 

differences have been reported within this population. Mexicans and Cubans, for example, are less 

likely to have emergency department visits than non-Hispanic Whites (Weinick et al., 2004), 

potentially affecting their representation in rates of heat-related emergency room visits. MHHI 

operates with other characteristics like race, ethnicity, age, and gender. Additional 

sociodemographic variables, such as employment status, professional occupation, median house 
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value, education levels, or occupational prestige, should be considered to analyze human-

environment relationships. Heat vulnerability studies have documented that minorities are 

overexposed to environmental hazards, including extreme heat. In California, for example, 

communities of color have lower MHHIs, and fewer are homeowners (Morello-Frosch et al., 

2002). They also have limited access to resources, support, information regarding heat protection 

actions, and mobility that could reduce their vulnerability (Wolf & McGregor, 2013).  

There is, however, a lack of consistency among variables used to measure heat exposure 

(climatic and built-up environment) and vulnerability (health, demographics, and SES). A heat 

vulnerability index that considers the nuances of an area (e.g., ethnic/racial differences by origin), 

including its historical and institutional context (e.g., racial segregation), is required to identify 

individuals susceptible to extreme heat and that would facilitate place-to-place comparisons. The 

political and economic forces that lead to that environmental inequality must be examined to 

understand how institutional discrimination interacts with larger structural forces (Morello-Frosch 

et al., 2002). Studies that attempt to explain the geographical distribution of heat risk must 

emphasize the historical roots that caused today's health disparities among communities of color 

(Ford & Airhihenbuwa, 2010). 

There are also different levels of exposure to environmental racism. Thus, the level of heat 

exposure and perception will vary, to a certain extent, by age, gender, socioeconomic status among 

races (high-income Hispanic/Latino vs. high-income White), within races (e.g., high-income 

South American vs. low-income Mexican), immigration status, length of time in the US, health 

care access, and geographical location (Hispanic/Latino in LA vs. Hispanic/Latino in Vermont). 

Intersectionality is a theoretical framework suggesting multiple social categories intersect at the 

individual level (Bowleg, 2012), which may affect their heat vulnerability. The intersection of race 

and income was studied in the context of fluid intake of individuals (Brooks et al., 2017). Results 

showed Hispanic/Latino heritage and non-Hispanic Black people in the US are higher than for 

non-Hispanic Whites, while lower-income adults had a higher risk of inadequate hydration than 

higher-income adults. Heat studies that consider how differences in the built environment, 

individual bodies (e.g., children, elderly, people with mobility constraints, pregnant women), and 

social characteristics (e.g., race, gender, socioeconomic status) intersect are necessary to 

understand how these moderate heat experiences, including physiologically and behavioral 

responses (Hamstead, 2021). 
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Conclusion 

As the urban population increases, the built environment expands and replaces natural land 

cover, human-made surfaces, and heat-emanating activities will continue exacerbating the SUHI 

formation with deleterious health effects on local populations, particularly among the vulnerable. 

The spatial identification of these at-risk areas is paramount for implementing effective mitigation 

and adaptation actions to reduce heat stress. The study of population exposure, however, involves 

multi-temporal and multi-spatial human and environmental processes and, thus, renders some 

sensors insufficient to understand these human-environment interactions. 

The present study suggests an exploratory methodology to explore the potential association 

of  LST-NDVI/ET values and race/ethnicity-MHHI to evaluate the human-environment spatial 

relationships between heat exposure and evaporative cooling for each group, as well as differences 

in the built environment. The physical environment was assessed from a temporal and spatial 

perspective via the acquisition of MODIS and ECOSTRESS. The built environment was evaluated 

with the use of the LCZ framework, while the socioeconomic environment was assessed with the 

use of the MHHI and Hispanic/Latino (any race) variables acquired from the USGS ACS 2017-

2021 census data. 

Significant results from this effort show that for the urbanized area of SCC, a positive 

summer-daytime LST trend of 0.11°C per year but a weak LST trend for corresponding nighttime 

hours (0.04°C per year). A negative relation between summer-daytime LST and NDVI values was 

found, reflecting the cooling effect of vegetation on LST higher than for nighttime hours. During 

winter, a positive LST-NDVI relationship was found, particularly for daytime hours, given that 

the low photosynthesizing of vegetation provides no cooling, thus not regulating LST values. A 

strong negative relationship was also found for ECOSTRESS-derived summer LST and ET values. 

The spatial distribution shows minimum LSTs and maximum ET  values in high-income 

communities like Los Altos Hills,  Los Altos, and Palo Alto, where a low percentage of 

Hispanic/Latino populations is found. Maximum ET values and minimum LSTs primarily 

occurred in low-income neighborhoods of San Jose, with a maximum concentration of 

Hispanic/Latinos. Low MHHI populations ($117,081) and Hispanic/Latinos most likely exist 

within LCZ 3, which exhibits the highest mean LST (27.7°C). 

Future efforts should overcome some of the limiting assumptions required for the current 

effort, e.g., the use of monthly mean LSTs instead of hourly 2-m observations. While the latter are 
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consistent with local government heat warnings, they only provide limited spatial coverage. A 

technique thus must be developed to combine the 2-m values, satellite-derived LST distributions, 

and fine-scale 2-m values from Weather Research and Forecasting model simulations. 

Surrounding vegetation differences within LCZ classes must also be considered to better establish 

LCZ-LST relationships. Future multidisciplinary efforts should also consider an intersectionality 

framework for the study of heat vulnerability, as well as differences between and within race/ethnic 

groups, to predict future heat risks under various climate change scenarios.  The identification of 

areas at high risk of heat stress would facilitate the targeting of public health programs and other 

mitigation strategies, such as the increase of urban vegetation or the establishment of cooling 

centers (Widerynski et al., 2017), which could provide a cool environment for vulnerable 

individuals in Santa Clara County and elsewhere experiencing similar intra-urban human-

environment phenomena. 
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CHAPTER 3. ENVIRONMENTAL INJUSTICE AMONG HISPANICS IN SANTA 

CLARA, CALIFORNIA: A HUMAN-ENVIRONMENT HEAT VULNERABILITY 

ASSESSMENT 

Introduction 

The United Nations projects that by 2030, 60.4% of the world will be urbanized (UN-

Habitat, 2020). As cities expand, the urban population will increase energy consumption, 

greenhouse gas emissions, and environmental degradation. Exposure of cities to weather hazards, 

like heat waves, will increase and intensify with global warming. Although heat waves are a 

regional phenomenon, localized heat-stress illnesses (e.g., cramps, heat exhaustion, and heat 

stroke, leading to thermoregulatory malfunction, organ system failure, and death) are generally 

observed in urban areas (Grady, 2012). These adverse health outcomes primarily occur in areas 

with a high concentration of low-income individuals, a majority of racial/ethnic minorities, and 

those living in poor housing conditions (e.g., inadequate housing materials) and poverty are more 

likely to suffer from the adverse effects of a changing climate (Rosenthal et al., 2014). Racial and 

ethnic minorities, who have historically lived in segregated and densely populated neighborhoods, 

are thus expected to experience higher heat exposure, which will increase heat-related deaths 

(Jesdale et al., 2013); consequently, the problem is framed as environmental injustice (Mitchell & 

Chakraborty, 2015). 

In the United States, there is substantial evidence that a high proportion of racial and ethnic 

minorities reside within low-income neighborhoods deprived of green areas and limited access to 

cooling resources (Gronlund, 2014). On average, non-Hispanic Whites tend to live in census tracts 

with lower temperatures than census tracts with a majority of people of color, thus reflecting heat 

exposure as an unevenly distributed environmental burden (Hsu et al., 2021). In Portland, Oregon, 

mean temperatures during a 2014 heat wave event were negatively correlated with the percentage 

of non-Hispanic Whites (-0.1515°C for every 10% increase) but positively correlated with the 

percentage of African Americans and Hispanics (+0.3471°C for every 10% increase), at a US 

census block group level (Voelkel et al., 2018). 

 Historical uneven urban development patterns, discriminatory housing realtors, bank loan 

lending, and zoning practices created racial and ethnic segregated neighborhoods with poor 

housing conditions and limited green infrastructure, which have persisted and continue to expose 

them to higher ambient temperatures (Uejio et al., 2011). A study of 108 previously redlined 



35 

neighborhoods showed temperatures of almost 7°C higher in redlined areas than in non-redlined 

ones (Hoffman et al., 2020). In Richmond, Virginia, previously redlined neighborhoods had the 

highest rates of heat-related emergency room visits, as the number of visits increased by 2.5% for 

every one-degree increase in ambient temperature (Plumer & Popovich, 2020). In Phoenix, a 

higher number of heat distress calls have shown to be associated with neighborhoods with a high 

proportion of Black, Hispanic, linguistically, and socially isolated residents, while in Philadelphia, 

neighborhoods with high heat mortality were more likely to have low housing values and a higher 

proportion of Black residents (Uejio et al., 2011). 

There is also an association between race, socioeconomic status, and the ability of a 

population to cope with the heat as it determines their access to mitigating resources (e.g., air 

conditioning systems). A study performed at a city level indicated that, in four US cities, the 

prevalence of central air conditioning (A/C) was lower among Black households and likely 

correlated with socioeconomic characteristics (O’Neill, 2005). In the United States, neighborhoods 

with a high proportion of minority residents have been associated with low-income status due to 

institutionalized racism in the form of redlining and zoning ordinances (Gronlund, 2014). In 

Phoenix, neighborhoods with a high proportion of Hispanic residents, mainly of Mexican origin, 

were associated with low-income status (Jenerette et al., 2007), low educational attainment, and 

low use or availability of A/C systems (Harlan et al., 2013). 

High levels of segregation result in the isolation of a minority group from amenities, 

opportunities, and resources that affect social and economic well-being (Massey & Denton, 1989) 

and, thus, their ability to cope with heat exposure. Highly segregated areas with higher proportions 

of non-White and low-income residents tend to experience more significant cumulative 

environmental hazards (e.g., toxic release facilities, noise, heat; Casey et al., 2017; Morello-Frosch 

et al., 2002). There is, however, a variation in heat-related outcomes by race. During a heat wave 

in California, Latinos reported increased cardiac-related illnesses, African Americans had acute 

renal failure and electrolyte imbalance, and Asians had significantly elevated emergency visits for 

respiratory disorders (Green et al., 2010). Measures of residential segregation are necessary to 

understand the origins and persistence of environmental health disparities (Morello-Frosch & 

Lopez, 2006). 

Residential segregation is the degree of separation between two or more groups within an 

urban environment (Massey & Denton, 1988). Residential segregation indices are an objective 
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measure of racial and economic segregation that could serve as proxies for structural racism 

(Chambers et al., 2019). There are five key dimensions of residential segregation: evenness, 

exposure, concentration, centralization, and clustering (Massey & Denton, 1998; US Census 

Bureau, 2000). The Index of Dissimilarity is a common measure of racial evenness/unevenness 

across the urban environment and is often used in environmental justice studies.  Baxter (2010) 

used the Index of Dissimilarity (range, 0 to 1) to estimate the degree of ethnic residential 

segregation in Santa Clara, CA, by block groups in 1990 and 2000. Results showed higher 

segregation levels between Whites and Hispanics (0.54) than between Whites and Asians (0.45). 

Comparisons of 1990 and 2000 results showed an increase in residential segregation with fewer 

White residents in Asian and Hispanic neighborhoods, from 43 to 23% and from 32 to 17%, 

respectively. The number of White residents in White block groups remained stable (82%). The 

proportion of Hispanic residents in Asian neighborhoods decreased (16 to 13%), and the 

proportion of Asians in Hispanic areas increased (12 to 14%). As of 2010, Latinos in Santa Clara 

County showed the highest levels of segregation (Menendian & Gambhir, 2018). 

Levels of segregation, however, vary among Hispanics by origin (Bean & Tienda, 1987). 

For example, Mexicans tend to live in isolated inner-city ghettos, denying them equal access to 

schooling, jobs, and health care compared to other Hispanic groups (National Research Council, 

2001). The literature is unclear if Hispanics are at higher risk of hospital admissions, which may 

be related to the differences among Hispanics in socioeconomic status, origin, nativity, and length 

of time in the United States (Do et al., 2017).  Some studies suggest a lower heat health effect, 

whereas others have found an association between segregation and health outcomes, positioning 

Hispanics at higher heat risk (Gronlund, 2014). These adverse effects are most likely cardiac-

related illnesses, as it has been the primary reported outcome among Latinos (Green et al., 2010). 

The differences within Hispanic subgroups may expose them to unique environmental 

hazards that could contribute to higher morbidity, resulting in widening health disparities. Cubans, 

for example, have a college graduation rate three times higher than Mexicans, while Puerto Ricans 

have higher high school graduation rates than Mexicans (Williams et al., 2010). The spatial 

distribution of land surface temperatures and vegetation, income disparity, the cultural diversity of 

the population (multiracial, multinational, multilingual, multicultural), and the spatial segregation 

patterns increase the complexity of assessing heat vulnerability. 
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The current effort applied existing and fully developed metrics of socioeconomic status 

and racial segregation to spatially identify heat-vulnerable neighborhoods. It evaluated the 

relationship between race/ethnicity, the environment (e.g., temperature exposure), socioeconomic 

status, and health outcomes in Santa Clara County (SCC), CA. The differences among 

Hispanic/Latinos by origin (Mexican, Central American, and South American) were emphasized. 

The Hispanic population, as of 2016, was the most significant ethnic or racial minority in the 

United States, and by 2060, they will represent 27.5% of the total population (Vespa et al., 2020). 

The findings from this study inform other coastal as well as inland cities with high Hispanic 

populations on the variability of temperature exposure and health outcomes. 

Data and Methods 

The current methodology combined Landsat 8 satellite data, the US Census Bureau-

American Community Survey (ACS) 2015-2019, Five-Year Estimate, and the PLACES Dataset 

to determine the distribution of heat-vulnerable populations and health outcomes in SCC. The first 

step assessed the physical environment via the calculation of the Land Surface Temperature (LST) 

and Normalized Difference Vegetation Index (NDVI). The second part evaluated the social 

environment with the use of the Modified Darden-Kamel Composite Socioeconomic Index (CSI) 

to determine the spatial variability of SES (Darden et al., 2010). The Index of Dissimilarity (D; 

Massey and Denton, 1988) was calculated to determine levels of segregation within the 

Hispanic/Latino population. The third part evaluated levels of segregation and SES measures in 

explaining the variance in the health outcomes among Hispanics, with the use of PLACES data 

acquired by the Center for Disease Control and Prevention (CDC). The combination of these 

assessments resulted in a comprehensive human-environment approach for health exposure 

evaluation by which to define environmental injustice. Details are provided below. 

Physical Environment 

Heat exposure was determined from LST and NDVI values, calculated from Landsat 8 

imagery, accessed via the freely available (Google) Earth Engine website for 2015-2019, in 

accordance with the ACS (Five-Year Estimates) dataset. Landsat 8, with a time range from 1100-

1115 Central Standard Time (CST), has a 30-m spatial resolution in the Visible, Near-Infrared 

(NIR), and Shortwave Infrared (SWIR) bands and 100-m resolution in the thermal infrared (TIR-

1 and TIR-2) bands. The atmospherically corrected TIR and surface reflectance (SR) bands were 

resampled and made available at a 30-m resolution in Earth Engine. The dataset also included a 
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Quality Assessment (QA) band, which provides per-pixel cloud, shadow, water, and snow 

information. 

The procedure to retrieve LST and NDVI values first involved a per-pixel filter applied to 

Landsat 8 images, using its QA band to mask cloudy and cloud shadow pixels from the SR bands. 

The remaining pixels were then used to calculate LST distributions using the brightness 

temperature derived from the TIR-1 band. The NIR and Red bands were also utilized to perform 

an emissivity correction of LST via the calculation of NDVI values (Avdan & Jovanovska, 2016; 

Weng et al., 2004). The emissivity-corrected LST values were then converted from °K to °C and 

averaged for the 5-year study period. The averaged values reduce the effects of anomalously wet 

or dry years and seasonal vegetation and soil moisture changes, which could impact the calculated 

LST and NDVI values. 

The National Land Cover Dataset (USGS, 2019) was used to extract NDVI and LST pixels 

that corresponded with values classified as developed (21-24), as shown in Figure 1. This process 

filtered non-populated locations and allowed for the accurate calculation of mean LST and NDVI 

values per census tract. The extraction of these values reduced the elevation and vegetation effects, 

especially from the non-developed area of the hills. The ArcGIS Zonal Statistics tool was then 

used to calculate the mean LST and NDVI values at the census tract level to obtain the mean value 

per census tract. 

Socioeconomic Environment 

Socioeconomic and race/ethnicity data used to calculate the Modified Darden-Kamel CSI 

and the Index of Dissimilarity, respectively, were acquired at the census tract level for SCC from 

the US Census Bureau, American Community Survey (ACS) 2015-2019 (US Census Bureau, 

2020). 

Modified Darden-Kamel CSI. The Modified Darden-Kamel CSI measures SES for the 

entire population in a study area and considers nine variables: 1) percentage of bachelor’s degrees, 

2) median household income, 3) percentage of managerial and professional status positions, 4) 

median value of dwelling, 5) median gross-rent of dwelling, 6) percent of homeownership, 7) 

incidence of low income (-), 8) unemployment rate (-), and 9) percent of households with vehicle 

(Darden & Rubalcava, 2018). The formula to calculate the Modified Darden-Kamel CSI is: 

𝐶𝑆𝐼𝑖 = ∑
𝑉𝑖𝑗−𝑉𝑗𝐷𝑀𝐴

𝑆(𝑉𝑗𝐷𝑀𝐴)

𝑘

𝑗=𝑖

  ;               (1) 
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where 𝑉𝑖𝑗 is the jth SES variable for a given census tract i, 𝑉𝑗𝐷𝑀𝐴 is the mean of the jth variable in 

the study area, and S (𝑉𝑗𝐷𝑀𝐴) is the standard deviation of the jth variable in the study area. Census 

tracts with a higher socioeconomic position were assigned a higher score. These scores were then 

divided into five degrees (or classes) by use of the Dalenius & Hodges (1959) stratification method, 

which minimizes variation within each group. This process was conducted with the use of the 

stratification library and implemented in RStudio© (version 4.1.2).  

Index of Dissimilarity. The Index of Dissimilarity (D; range 0 to 100) assigns higher values 

to neighborhoods (census tracts) with a high degree of residential segregation. It was used to 

evaluate the levels of segregation between non-Hispanic Whites and the Hispanic/Latino 

population and within Hispanic subgroups, including Mexican, Central American, and South 

American. It calculates the proportion of Group A that would have to change their neighborhood 

(or census tract) to achieve an even distribution with Group B (Massey and Denton, 1988, p. 284). 

High D values reflect a high degree of residential segregation. The formula to calculate D is: 

                                     𝐷 = (
1

2
∑|𝑥𝑖 − 𝑦𝑖|

𝑘

𝑖=1

)                                                (2) 

where 𝑥𝑖 is the percentage of the total ethnic minority population in SCC (e.g., Hispanic/Latino) 

in census tract i, 𝑦𝑖 is the percentage of the total non-minority population in SCC (e.g., non-

Hispanic White) living in the same census tract i, and k is the total number of tracts in the study 

area. The absolute differences between these percentages by census tract were then divided into 

five degrees (or classes) of segregation by use of the Dalenius & Hodges (1959) stratification 

method to minimize variations within each group, also done in RStudio© with the implementation 

of the stratification library. This process allowed us to visualize the spatial distribution of 

Hispanics in the study area. One-half of the sum of these absolute differences results in segregation 

measurement (D) for the study area.  

Health Outcomes. The PLACES 2022 release project data, acquired via the CDC at the 

census tract level, was used to evaluate health outcomes by SES and segregation levels within 

Hispanic subgroups (Mexican, Central American, and South American). In partnership with the 

Robert Wood Johnson Foundation, the CDC provides model-based estimates of health outcomes, 

unhealthy behaviors, and health prevention measures for urban areas across the United States. Data 

sources used to generate the 2022 dataset include the Behavioral Risk Factor Surveillance System 
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(BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community 

Survey (ACS) 2015–2019 estimates.  

Spatial regressions were conducted in the GeoDa software (Anselin et al., 2006) to 

determine the relationship between environmental and racial measures with chronic health 

outcomes (e.g., the prevalence of asthma, coronary heart disease) and health status (e.g., current 

lack of health insurance) for adults (≥18 years) while accounting for spatial effects. The level of 

LST, segregation, and SES were included as potential predictors of spatial variability in health 

outcomes. LST was measured on a continuous scale from 7.40 (base) to 56.1°C. The percentage 

of Hispanic/Latino population per census tract (%) was also measured on a continuous scale from 

0 (base) to 100. SES (DK-CSI) was measured on an ordinal scale from VL-SES (base) to VH-

SES.  A total of 45 models were performed: one per health outcome per racial group assessed.  

Human-Environment 

Mean LST and NDVI values at the census tract level were overlayed with the Modified 

Darden-Kamel CSI and Index of Dissimilarity (D) results to evaluate the physical and social 

environmental risks and study human-environment interactions between heat exposure, 

socioeconomic status, and race/ethnicity. LST and NDVI values per SES first inform about 

differences in environmental exposure between the five classes. Mean LST and NDVI values were 

then compared with the D values to evaluate the differences in environmental exposure by the 

degree of segregation for each considered race/ethnic group.  

The Shapiro-Wilk test (Shapiro & Wilk, 1965) determined LST and NDVI values as non-

normal; thus, Kruskal-Wallis tests (Kruskal & Wallis, 1952) were performed to determine how 

LST and NDVI values differ by SES and ethnicity, with 95% Confidence Intervals. The Univariate 

Moran’s I Index (Anselin, 1995) measured global spatial autocorrelation of the LST and Modified 

Darden-Kamel CSI values, while the Bivariate Local Moran’s I (Anselin et al., 2002) provided a 

local spatial autocorrelation measure between these two variables. All analyses used first-order 

Queen contiguity (Anselin & Rey, 2014) to determine neighboring census tracts.  

Results  

Physical Environment 

 Landsat 8-derived mean LST distributions (Figure 13) from 2015-2019 for the 

corresponding developed classes, per the NLCD, show values ranging from 18.2 to 37.9°C, with 

an average of 28.9°C for the study area. Minima values are mainly found in southeast Los Gatos, 
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Saratoga, and Los Altos Hills, while maxima values are in East San Jose and South of the 

Downtown area. Above-average values are found in Santa Clara, Campbell, Cupertino, and 

Sunnyvale, whereas below-average LSTs are recorded in Palo Alto, Mountain View, Los Altos, 

and Stanford. Minimum LST values are also along the Guadalupe River and Coyote Creek 

corridors.  

 
Figure 13. Land Surface Temperature (LST, °C) distribution for 2015-2019. 

Landsat 8-derived mean NDVI distributions for 2015-2019 (Figure 14) range from -0.45 

to 0.89, where higher values indicate greenness or photosynthetic activity. Maximum values are 

found in southeast Los Gatos, Saratoga, and Los Altos Hills, corresponding with vegetated 

mountainous areas and golf courses dispersed throughout the study area. Minimum values are 

primarily located in the Downtown and northern SCC, corresponding with industrial sites and 

airports. Below-average values (<0.35) are found in the East San Jose areas and along major transit 

corridors (e.g., main boulevards and highways). Above-average values (>0.35) are found in Palo 

Alto, Los Altos, and the southwest San Jose Downtown area.  
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Figure 14. Normalized Difference Vegetation Index (NDVI) distribution for 2015-2019. 

Socioeconomic Environment 

Modified Darden-Kamel CSI. There are significant disparities between the populations 

living in Very High-(VH) and Very Low-(VL) socioeconomic status (SES) census tracts in Santa 

Clara County. Results (Table 2) show a positive linear trend for all variables except for poverty, 

which increases with decreasing SES, and unemployment, which shows minor variation. The 

Medium-(M) SES is, however, smaller than the overall mean value in SCC for median household 

income (MHHI), median house value, and homeownership, suggesting a heavier weight on those 

variables in the distribution of wealth in SCC. 

Neighborhoods with VH-SES have, on average, a median income of $205,06, nearly three 

times that of neighborhoods with VL-SES, and both higher than the 2019 national median 

household income of $69,560 (Shrider et al., 2021). VL-SES households spend 28% of their 

median annual household income on rent ($1,694 per month), almost twice that of VH-SES 

households ($3,198 per month). Households with a VH-SES are mostly homeowners (82%) with 

median house values of 1.8 million, further exacerbating the gap between the VH-SES and VL-

SES groups. Although vehicle ownership is above 90% for all groups, VH-SES neighborhoods 

have higher vehicle ownership than VL-SES. 

Similar values among groups are found for unemployment, with values that range between 

4.1 to 4.3, with minimum ones for VH-SES that increase as SES decreases, except for the M-SES 
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class, with maximum unemployment of 4.4%. Despite similar unemployment levels, the 

percentage of families living in poverty in VL-SES is three times that of those with a VH-SES. 

The percentage of professional and managerial workers is similar to those with bachelor’s degrees 

or higher education, with lower values for VL-SES areas, 28 and 31%, respectively, and increasing 

with SES to a maximum of 79% (bachelor’s degree) and 77.1% (professional and managerial 

workers) for VH-SES areas. 

Table 2. Mean value, as well as its corresponding minimum and maximum (in parentheses), per 

SES for each considered variable used to calculate the Modified Darden-Kamel (DK) CSI.  

SES VL L M H VH 
Mean 

SCC 

Number of 

census tracts 
62 85 91 84 50 372 

DK-CSI 
-6.54 -2.87 -0.04 3.06 7.92 -5.59 

(-13.0, -4.7) (-4.5, -1.5) (-1.5, 1.3) (1.4, 5.0) (5.0, 11.0)  

Bachelor’s 

degree or higher 

education (%) 

27.9 39.8 52.4 63.7 78.9 51.5 

(8.4, 95.7) (7.9, 89.9) (10.3, 89.6) (29.1, 90.6) (56.2, 91.5)  

MHHI (in 

thousands of $) 

73 102 125 158 205 129 

(26, 116) (31, 141) (45, 167) (98, 240) (110, 250+)  

Professional and 

managerial 

workers (%) 

31.2 44.3 55.4 65.5 77.1 54.0 

(10.9, 72.3) (17.9, 76.4) (15.0, 89.2) (35.0, 86.3) (57.7, 86.9)  

Median house 

value (in 

thousands of $) 

647 794 992 1,280 1,756 1,060 

(122, 1046) (148, 1659) (239, 2000+) (655, 2000+) (1070, 2000+)  

Median monthly 

rent ($) 
1,694 2,038 2,389 2,679 3,198 2,363 

(686, 2596) (810, 3500+) (1357, 3303) (818, 3500+) (1945, 3500+)  

Home-

ownership (%) 
38.9 52.2 58 67.7 82.0 58.9 

(2.0, 80.9) (0.0, 89.1) (2.5, 92.4) (0.4, 97.3) (54.4, 95.3)  

% Poverty 
7.8 6.3 4.3 3.5 2.5 4.9 

(0, 27.3) (0.8, 37.5) (0.0, 14.8) (0.0, 12.8) (0.0, 9.6)  

Unemployment 

(%) 
4.3 4.3 4.4 4.1 4.1 4.2 

(0.0, 9.3) (0.0, 12.5) (0.9, 16.2) (0.9, 10.0) (1.3, 8.2)  

Vehicle 

ownership (%) 
90.3 93.9 95.6 96.6 98 94.9 

(66.1, 99.5) (61.3, 100) (75.5, 100) (88.4, 100) (93.5, 100)  
 

Distributions of the Modified Darden-Kamel CSI results at the census tract level (Figure 

15) show neighborhoods with VH-SES in southwest SCC in Palo Alto, Los Altos, Los Altos Hills, 

Cupertino, Saratoga, Monte Sereno, and Los Gatos, while VL-SES ones are in Downtown and 

East San Jose, as well as in the southeast cities of Morgan Hill and Gilroy. Stanford University is 

classified as having a VL-SES and is considered an outlier. Areas with Low (L)-SES surround 
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those neighborhoods with VL-SES. Almost 25% of the census tracts are classified as areas with 

M-SES and 23% with H-SES. Of the total population, 12% live within neighborhoods with VH-

SES, 24% with H-SES, 25% with M-SES, 22% with L-SES, and 17% with VL-SES.  

 
Figure 15. Spatial distribution of socioeconomic status (SES) and number of census tracts per class 

calculated per the Modified Darden-Kamel Composite Socioeconomic Index (CSI).  

The share of the Hispanic/Latino population and within Hispanic subgroups, including 

Mexican, Central American, and South American, by socioeconomic status in SCC (Table 3) 

shows an inverse relationship between SES for Hispanic/Latino, Mexican, and Central American 

groups. A similar proportion of non-Hispanic Whites and South Americans is found for H-, M-, 

and L-SES. A higher proportion of South Americans is, however, located in the VL-SES group 

(13.4%) than of non-Hispanic Whites (9.9%). The reverse occurs for VH-SES groups, with 9.1% 

of South Americans and 16.1% of non-Hispanic Whites belonging to this group. Between 

subgroups, South Americans show small disparities between VH- and VL-SES (9.1 to 13.4%), 

followed by Central Americans (3.6-25.3%), with the greatest difference for Mexicans (1.6 to 

34.9%). 

 While 16% of the non-Hispanic White population lives within a VH-SES neighborhood, 

only 1.6% of the Mexican population lives in a VH-SES area, followed by Central Americans 

(3.6%) and South Americans (9.1%); these last two with values higher than that of the general 

Hispanic/Latino population (2.3%). Mexicans are, however, overrepresented in L- and VL-SES 
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neighborhoods, with 32.6 and 34.9% of their population in these groups, respectively. Central 

Americans have a lower share of their population in the L- and VL-SES (31.1 and 25.3%). As the 

SES decreases for all Hispanic/Latino groups, the percentage of the population per class increases, 

except for South Americans, who have the lowest percentage of their population within an L- and 

VL-SES neighborhood, a similar trend to that of the non-Hispanic White population. 

Table 3. Total population by ethnicity and socioeconomic status. 
 

Hispanic/ 

Latino 
Mexican 

Central 

American 

South 

American 

Non-Hispanic 

White 

SES n % n % n % n % n      % 

VH 11,362 2.3 6,452 1.6 1,084 3.6 1,613 9.1 98,162 16.1 

H 60,095 12.2 44,689 11.0 3,788 12.6 4,603 26.0 177,574 29.2 

M 104,023 21.2 81,045 19.9 8,235 27.4 4,921 27.8 156,308 25.7 

L 155,147 31.6 132,561 32.6 9,350 31.1 4,202 23.7 115,979 19.1 

VL 160,351 32.7 142,189 34.9 7,588 25.3 2,383 13.4 59,880 9.9 

 

Index of Dissimilarity. Results of the Index of Dissimilarity (D) by census tract were 

divided into five classes, per the Dalenius and Hodge stratification method. The descriptive 

statistics (Table 4) show the mean value, as well as its corresponding minimum and maximum 

values (in parentheses) per level of segregation between Hispanics and non-Hispanic Whites and 

among Hispanics/Latinos by origin. The spatial distribution of the results (Figure 16) shows that 

the highest levels of residential segregation are within the Central American community (Figure 

16c), with a D of 52.7. Mexican neighborhoods (Figure 16b) also have high residential segregation 

(D = 51.4) and are primarily clustered in the East San Jose area. South Americans (Figure 16d) 

show the least amount of residential segregation (D = 42.0), even lower than the general 

Hispanic/Latino population (D = 47.4).  

Table 4. Mean D value, as well as its corresponding minimum and maximum (in parentheses), per 

level of segregation, based on the Index of Dissimilarity.  

Segregation (D) Hispanic/Latino Mexican Central American  South American 

VH 
0.72 0.92 0.96 0.87 

(0.55, 0.96) (0.82, 1.03) (0.62, 1.69) (0.54, 2.08) 

H 
0.44 0.73 0.47 0.43 

(0.36, 0.54 (0.62, 0.79) (0.39, 0.59) (0.34, 0.53) 

M 
0.28 0.49 0.31 0.26 

(0.22, 0.36) (0.41, 0.62) (0.25, 0.39) (0.20, 0.33) 

L 
0.15 0.29 0.18 0.13 

(0.10, 0.22) (0.21, 0.40) (0.12, 0.25) (0.08, 0.20) 

VL 
0.05 0.10 0.06 0.04 

(0.10, 0.22) (0.21, 0.40) (0.12, 0.25) (0.08, 0.20) 
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Figure 16. The spatial distribution and Index of Dissimilarity of (a) Mexicans, (b) Central 

Americans, (c) South Americans, and (d) the Hispanic/Latino population in Santa Clara County.  

Human-Environment 

The LST and NDVI relation with SES shows that as SES decreases, mean LST values 

increase from 28.5 to 29.9°C (Figure 17). The reverse occurs for NDVI values and SES, which 

decrease from 0.41 to 0.27 as SES decreases. Only VH- and H-SES areas exhibit LSTs lower than 

the SCC average (29.4°C). VH- and H-SES census tracts exhibit values above the SCC average 

(0.33). Kruskal-Wallis results show that LST and NDVI values are statistically significantly 

different for at least one of the groups (H = 53.44, df = 4, p-value = 0.00; H = 117.89, df = 4, p-

value = 0.00, respectively). Pairwise comparisons show that LST values vary between groups 

except between M-and L-SES and L-and VL-SES.  
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Figure 17. a) Mean LST and b) NDVI by Socioeconomic Status (SES) per the Darden Kamel 

Composite Socioeconomic Index.  

Mean LST and NDVI results combined with stratified D values (Table 5) show a broader 

range of mean LST values for Mexicans than for non-Hispanic Whites (29.3-30.2°C vs. 29.2-

29.5°C). Areas with a VH concentration of the Hispanic/Latino population, particularly Mexicans, 

have a higher LST than areas with a VL concentration of the Hispanic/Latino population (29.8°C 

vs. 29.4°C). Minimum LST (28.5°C) and maximum NDVI (0.37) values are observed for areas 

with an H concentration of South Americans. Minimum NDVI values are observed in areas with 

a VH concentration of Hispanic/Latino and Mexican populations (0.30 and 0.29, respectively), 

whereas maximum values are in areas with a H-Hispanic/Latino and M-concentration of Mexican 

populations (0.37 and 0.36, respectively).  

Kruskal-Wallis results show that only LST values are different for at least one group (H = 

14.22, df = 4, p-value = 0.007), while no statistically significant difference is found for NDVI 

values (H = 8.221, df = 4, p-value = 0.084). Pairwise comparisons show no statistically significant 

differences in LST values between areas with a VH-Concentration of South Americans and VH-

Concentration of Central Americans and between South Americans and non-Hispanic Whites. 

Significant differences in LST values are found between Mexicans and South Americans and 

Mexicans and non-Hispanic Whites. 

 

 

 

 

a) b) 
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Table 5. Mean LST, NDVI, and minimum and maximum values (in parentheses) by the level of 

segregation for Hispanic/Latino, Mexican, Central American, South American, and non-Hispanic 

Whites.  

 
Hispanic/Latino Mexican 

Central 

American 
South American 

Non-Hispanic 

White 

Segregation LST NDVI LST NDVI LST NDVI LST NDVI LST NDVI 

VH 

29.8 0.30 30.2 0.29 29.4 0.32 29.5 0.32 29.5 0.34 

(22.9, 

31.4) 

(0.20, 

0.67) 

(26.2, 

31.4) 

(0.21, 

0.54) 

(22.9, 

31.3) 

(0.22, 

0.67) 

(28.3, 

31.4) 

(0.25, 

0.42) 

(27.8, 

31.1) 

(0.18, 

0.67) 

H 

29.1 0.37 30.0 0.30 29.2 0.35 28.8 0.37 29.2 0.34 

(25.4, 

31.8) 

(0.17, 

0.56) 

(27.8, 

31.1) 

(0.20, 

0.48) 

(25.4, 

31.4) 

(0.17, 

0.56) 

(22.9, 

30.9) 

(0.16, 

0.67) 

(22.9, 

31.3) 

(0.17, 

0.56) 

M 

29.3 0.35 29.1 0.36 29.2 0.34 29.4 0.33 29.3 0.33 

(24.5, 

31.1) 

(0.16, 

0.63) 

(22.9, 

31.8) 

(0.17, 

0.67) 

(24.5, 

31.1) 

(0.18, 

0.63) 

(24.5, 

31.3) 

(0.17, 

0.63) 

(24.5, 

30.9) 

(0.17, 

0.63) 

L 

29.6 0.31 29.3 0.35 29.5 0.32 29.6 0.31 29.5 0.32 

(27.8, 

30.9) 

(0.18, 

0.44) 

(24.5, 

31.1) 

(0.16, 

0.63) 

(26.4, 

31.8) 

(0.16, 

0.53) 

(26.4, 

31.1) 

(0.17, 

0.53) 

(25.4, 

31.8) 

(0.16, 

0.46) 

VL 

29.4 0.31 29.5 0.31 29.6 0.31 29.6 0.31 29.5 0.31 

(27.5, 

30.8) 

(0.18, 

0.46) 

(27.5, 

30.9) 

(0.18, 

0.46) 

(27.5, 

31.1) 

(0.17, 

0.46) 

(26.6, 

31.8) 

(0.19, 

0.51) 

(27.5, 

30.8) 

(0.18, 

0.44) 

 

The Univariate Moran’s I Index results show 0.610 and 0.581 values for the LST and 

Modified Darden-Kamel CSI measures, respectively, with a p-value < 0.05; thus, values for both 

variables are clustered. The spatial association between these two variables, explored via the 

Bivariate Local Moran’s I, shows a value of -0.324 (p-value <0.05). Results indicate a negative 

correlation between LST and SES (Figure 18). High-high clusters of SES and LST values are 

located within neighborhoods with large low-rise and medium-rise buildings, with a medium 

concentration of Hispanic/Latinos, specifically South Americans. Low-low clusters of SES and 

LSTs are mainly located east and southeast of SCC, where the proportion of the Hispanic/Latino 

population is insignificant (L to VL). Low-high clusters of low SES and high LSTs are in East San 

Jose, where most of the Hispanic/Latino population resides, where historically, Mexicans have 

been ghettoized. High-low clusters of high SES and low LSTs are mainly located in the southwest, 

where most non-Hispanic White and high-income population resides.  
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Figure 18. Land Surface Temperature and Modified Darden-Kamel CSI bivariate spatial 

autocorrelation (p-value <=0.050). 

Health Outcomes. A multivariate multiple spatial regression was performed to estimate the 

prevalence of selected health outcomes and access to health insurance per the PLACES dataset 

related to the proportion of race/ethnicity, SES, and LST per census tract. Table 6 provides 

descriptive statistics of the variables used in the analysis. All variables are continuous. Each Health 

Outcome was defined as an independent variable, and the rest were defined as predictors. A 

regression was run for each health outcome in combination with each race/ethnicity group, giving 

a total of 45 multivariate regressions.  

Results (Table 7) show that the independent variables account for 23 to 91% of the variance 

in health outcomes. For all races, high R2 values (≥70%) are shown in no health insurance, asthma 

prevalence, and obesity spatial regression models, and moderate R2 values (40 to 50%) in 

diagnosed diabetes spatial regression models. The significance of each independent variable, 

however, varies by race. Although the percentage of the Hispanic/Latino population is positively 

related to the number of adults with no health insurance, for example, when disaggregated by 

origin, results show a similar statistically significant high coefficient (18.22) for Mexicans. In 

contrast, the coefficients for South Americans and non-Hispanic Whites are negative (-40.04 and 

-6.75, respectively) and statistically significant, whereas the coefficient for Central Americans is 

insignificant.  
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The ethnic concentration (%) is positive and statistically significantly explanatory for 

asthma prevalence, obesity, and diagnosed diabetes for Hispanic/Latinos and Mexicans. 

Unexpectedly, non-Hispanic Whites also show a positive and significant explanatory value, but 

only for asthma prevalence and obesity. The South American variables show a significant negative 

coefficient for diagnosed diabetes, whereas the Central American variable shows no explanatory 

significance for any health outcome. The spatial regression results from The Darden-Kamel CSI 

coefficients are negative and significant for the no health insurance and asthma suggesting that 

with increasing SES no health insurance and asthma prevalence decrease but positive for high 

cholesterol in all racial/ethnic groups. Although LST has been related to cardiac-related illnesses, 

results from the model regressions do not show statistically significant coefficients for coronary 

heart disease and stroke outcomes. LST coefficients, however, are positive and statistically 

significant for no health insurance (0.44) in the Hispanic/Latino, Mexican, and South American 

(0.45) groups but negative and statistically significant for obesity (-0.30) in the Hispanic/Latino 

group. The spatial regression results from The Darden-Kamel CSI coefficients are negative and 

significant for the no health insurance and asthma variables but positive for high cholesterol in all 

racial/ethnic groups. 

Table 6. Descriptive statistics of variables considered in the multivariate spatial regression. 

Variable Mean St Dev Min Max 

Health Outcome 

(Prevalence) 

No Health Insurance 11.67 5.80 4.10 29.20 

Asthma Prevalence 7.61 0.83 5.70 11.00 

Obesity 21.39 3.62 13.80 31.80 

Stroke 2.24 0.47 0.50 4.10 

High Blood Pressure 23.06 3.34 7.00 37.00 

Diagnosed Diabetes 8.47 1.90 1.30 17.40 

High Cholesterol 26.69 3.47 7.90 38.00 

Chronic Kidney Disease 2.27 0.41 0.70 3.80 

Coronary Heart Disease  3.83 0.89 0.70 8.00 

Race/Ethnicity 

(Proportion per census 

tract) 

Hispanic/Latino 0.25 0.20 0.00 0.86 

Mexican 0.21 0.19 0.00 0.83 

Central American 0.02 0.02 0.00 0.10 

South American  0.01 0.01 0.00 0.07 

Non-Hispanic White 0.33 0.20 0.00 0.88 

Socioeconomic Status DK CSI 0.00 4.59 -13.03 11.01 

Exposure (°C) Mean LST  29.43 1.08 22.93 31.78 
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Table 7. Summary Table of Multivariate Spatial Linear Regression Results by Ethnic 

Concentration. Coefficients are shown for significance ≤ 0.001.  

Ethnicity Health Outcome (Y) 
Spatial 

Lag 
B0 

Ethnic 

Concentration 

(%) 

DK-

CSI 
LST R2 

Hispanic/ 

Latino 

No Health Insurance 0.35 -9.77 17.18 -0.12 0.44 0.91 

Asthma Prevalence 0.69 4.62 0.99 -0.03 -0.08 0.71 

Obesity 0.55 16.17 9.32 
 

-0.30 0.81 

Stroke 0.52 2.28 
   

0.24 

High Blood Pressure 0.60 18.10 
   

0.28 

Diagnosed Diabetes 0.68 
 

1.84 
  

0.52 

High Cholesterol 0.64 16.47 
 

0.15 
 

0.43 

Chronic Kidney Disease 0.51 2.09 0.48 
  

0.30 

Coronary Heart Disease  0.53 5.17 
   

0.23 

Mexican No Health Insurance 0.33 -8.99 18.22 -0.15 0.44 0.92 

Asthma Prevalence 0.70 4.51 0.90 -0.03 -0.08 0.71 

Obesity 0.58 15.55 8.79 
  

0.80 

Stroke 0.52 2.32 
   

0.24 

High Blood Pressure 0.60 18.28 
   

0.28 

Diagnosed Diabetes 0.67 
 

2.11 
  

0.52 

High Cholesterol 0.64 16.57 
 

0.16 
 

0.43 

Chronic Kidney Disease 0.51 2.13 0.52 
  

0.30 

Coronary Heart Disease  0.53 5.22 0.39 
  

0.23 

Central 

American 

No Health Insurance 0.68 
  

-0.40  0.82 

Asthma Prevalence 0.75 3.85 
 

-0.05  0.70 

Obesity 0.76 
  

-0.20  0.74 

Stroke 0.55 
  

  0.24 

High Blood Pressure 0.61 17.96 
 

  0.29 

Diagnosed Diabetes 0.73 
  

  0.51 

High Cholesterol 0.64 16.42 
 

0.16  0.43 

Chronic Kidney Disease 0.59 
  

  0.29 

Coronary Heart Disease 0.55 5.03 
 

  0.23 

South 

American 

No Health Insurance 0.67 
 

-40.04 -0.43 0.45 0.83 

Asthma Prevalence 0.75 3.84 
 

-0.05 
 

0.70 

Obesity 0.77 
  

-0.21 
 

0.74 

Stroke 0.54 2.29 
   

0.26 

High Blood Pressure 0.60 18.61 
   

0.30 

Diagnosed Diabetes 0.70 
 

-27.68 
  

0.53 

High Cholesterol 0.64 17.04 
 

0.16 
 

0.45 

Chronic Kidney Disease 0.58 1.86 
   

0.30 

Coronary Heart Disease  0.55 5.14 
   

0.25 

Non-

Hispanic 

Whites 

No Health Insurance 0.57 
 

-6.75 -0.42 
 

0.84 

Asthma Prevalence 0.65 
 

1.08 -0.07 
 

0.72 

Obesity 0.74 
 

2.54 -0.25 
 

0.75 

Stroke 0.55 
  

-0.02 
 

0.25 

High Blood Pressure 0.61 
    

0.29 

Diagnosed Diabetes 0.67 
    

0.51 

High Cholesterol 0.64 
  

0.14 
 

0.44 

Chronic Kidney Disease 0.59 
  

-0.02 
 

0.30 

Coronary Heart Disease  0.53 
    

0.25 
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Discussion  

This study reveals socioeconomic neighborhood inequalities and an uneven spatial 

distribution of NDVI and LST values across Hispanic communities in SCC. Almost half the 

Mexican population lives in highly segregated neighborhoods with L- and VL-SES, mainly located 

in East San Jose, where, historically, they have been ghettoized. Areas with a VH-Concentration 

of Mexicans show higher LST and lower NDVI values than neighborhoods with a VH-

Concentration of Whites. The spatial patterns of residential segregation and environmental and 

socioeconomic neighborhood inequality reflect high-temperature values and a low amount of 

green areas available in Mexican neighborhoods, implying possible environmental racism that 

could have resulted from historical racial/ethnic processes (e.g., racism and discrimination). 

Results of this study thus suggest that the ethnic composition of a neighborhood is strongly linked 

to LST values. Mexicans, in general, could be at a higher risk of heat stress and heat mortality 

during heat waves. 

Although the study area is racially diverse, there is an intrinsic ethnic division of labor 

(Mehrens, 2015), as shown in Table 1. Since the “Factory Valley,” when the region dominated the 

manufacture of semiconductors, thus earning the name Silicon Valley (Cheyre, Kowalski, & 

Veloso, 2015), around 70-80% of people working in manufacturing jobs were immigrants, women, 

and people of color, who continued being the backbone of Santa Clara County’s economy long 

after the Gold Rush (Pellow & Park, 2002). For example, Siegel (1995) states that, during the 

1970s, most managers were White (88%), and only 4% and 5% were Latino and Asian, 

respectively. By the 1980s, the number of Asians in managerial positions increased from 5 to 10%, 

but the percentage of Latinos remained. From the 1970s to the 1980s, however, the percentage of 

White laborers decreased from 41 to 19%, while the number of Latinos remained almost the same 

(34 to 36%; Siegel, 1995). In the current tech industry, the ethnic division of labor remains in the 

top three most profitable companies – Google, Facebook, and Apple – where only 2 to 7% of the 

workforce is Hispanic/Latino (Mehrens, 2015). Hispanic/Latinos make up 69% of janitorial 

workers. As shown in this study, only 30% of the population in VL-SES tracts hold a professional 

or managerial occupation, of which nearly 30% are Hispanic/Latino. 

There is a massive disparity between the population living in VHSES and VLSES and high 

living costs. The median rent in SCC was $2,363 a month, yet the minimum wage in SCC is 

$15.65/hour. Skyrocketing house prices have forced many people into homelessness, and the area 
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hosts the largest homeless camp in the continental US (R. Johnson, 2013). Of the 4,350 homeless 

people, 3,219 were unsheltered. Most homeless individuals are male (70%), and 46% self-

identified as Latino; among homeless families with children, 78% were single-mother families, of 

which 56% were Hispanic/Latino. Approximately 47% of unaccompanied children also identified 

as Hispanic or Latino (Applied Survey Research, 2017). The Hispanic/Latino population, most 

living with a median household income of $73,000, although with low levels of unemployment 

(4.3%), live in poverty and are at risk of eviction and homelessness.  

Homeless individuals showed higher rates of preexisting psychiatric illnesses and 

comorbid conditions (e.g., cancer, cerebrovascular, infectious diseases), which increases their heat 

mortality risk (Ramin & Svoboda, 2009). Their inability to access drinking water and lack of 

healthcare make them susceptible to high temperatures and further exacerbate their illnesses 

(Nicolay et al., 2016). Homelessness and age are critical variables that drive heat-related mortality 

(Putnam et al., 2018). Homeless populations do not perceive themselves as vulnerable, avoid water 

distribution routes, and are frequently asked to leave cooled public areas (Benmarhnia et al., 2018). 

Inequalities exist within the Hispanic/Latino Population. Although the Hispanic/Latino 

population is, on average, highly segregated and impoverished, Mexicans represent the highest 

share of VLSES. Residential segregation in Silicon Valley dates to the late 1800s, during the gold 

rush. Southwest San Jose became a valuable player with the discovery of a quicksilver mine in the 

Almaden Valley. Mexicans and Native Americans, considered second and third-class citizens, 

worked the mines in dangerous conditions. Over time, the area around the Almaden mine would 

become known as the segregated neighborhood of Mexican workers. According to this study, a 

high concentration of the Hispanic/Latino population, primarily Central Americans, is located 

around the Almaden mine and less in the East San Jose area, exhibiting M- to VH-SES but being 

the most segregated Hispanic subgroup.  

By the 1940s, most Latinos lived in the segregated muddy fields on the East Side of San 

Jose. Nearly 30% of the Mexican population, however, lives in VL-SES and concentrates in East 

San Jose, also known as “Sal Si Puedes” (get out if you can; Heppler, 2018). Most Central 

Americans, in contrast, concentrate southwest SCC towards the Almaden neighborhood. South 

Americans are the least segregated group but do not concentrate in the same areas where Mexicans 

and Central Americans commonly settle. The percentage of South Americans in VH-SES (9.1%) 
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is four times higher than that of Mexicans in VH-SES (1.6%). According to results from the 

Modified Darden-Kamel CSI, most Mexicans (67%) exhibit VL-and L- SES.  

Heat disparities within Hispanics. Although areas with a VH concentration of Hispanics 

have higher LST values than non-Hispanic Whites, Mexicans have the highest LST values (1.2°C 

higher than non-Hispanic Whites), thus reflecting being overburdened by heat and, as previously 

discussed, poverty. The most considerable differences in LST values (1.4°C) are shown between 

the VH-Mexican and H-South American groups. Results also showed the same statistically 

significant temperature (1.4°C) difference between VH- and VL- SES. The VL-SES group is also 

1°C above the mean SCC value.  

Epidemiological studies have found that a 1°C increase in maximum temperature can 

increase ambulance response calls due to heat-related illnesses by 29% (Bassil et al., 2011), heat-

related emergency-room visits by 2.5% (Plumer & Popovich, 2020), and heat-related mortality 

from 1 to 3% (Hajat & Kosatky, 2010). Based on findings from our study, low-income Mexicans 

would have the highest rates of heat-related outcomes, mainly due to their lack of health insurance 

(18.22) and comorbidities: obesity (8.79), diagnosed diabetes (2.11), asthma prevalence (0.90), 

chronic kidney disease (0.52), and coronary heart disease (0.39). Mexicans, therefore, are the 

primary racial group driving adverse health outcomes. The concentration of Central Americans 

exhibits no explanatory value of health outcomes, whereas the concentration of South Americans 

has a negative explanatory value.  

Klinenberg (2002) found that suburbs in Chicago composed mainly of African American 

residents exhibited a higher mortality rate than those primarily consisting of Latino residents. The 

low heat-related risk among the Hispanic population may be partly explained by the differences in 

SES between the Hispanic/Latino population and the Hispanic Health Paradox (HPP). HPP 

indicates that although Hispanic immigrant populations in the US experience high economic 

deprivation, they tend to have better health outcomes than their native-born counterparts and other 

racial/ethnic subgroups, including the Anglo-White majority (Kim et al., 2014).   

Conclusion 

From the Gold Rush to the Apple janitorial strike, Silicon Valley was built by 

discriminatory practices and policies (Pitti, 2004). The capitalist wage system and the dominance 

of Euro-American culture helped marginalize non-White groups in California (Almaguer, 2009). 

Income inequalities emerged in the region because of economic and political policies that resulted 
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in specific residential patterns. Five-year Landsat 8 satellite and Census Bureau-ACS 2015-2019 

data were used to assess the physical and social environment via the calculation of LST, NDVI, 

Modified Darden-Kamel CSI, and Index of Dissimilarity. This study used the Index of 

Dissimilarity to estimate the degree of Latino/Hispanic residential segregation and the Darden-

Kamel CSI to calculate SES by census tract. The combination of these indicators allowed for the 

identification of vulnerable communities. Results showed differences in residential segregation, 

socioeconomic status, and high-temperature exposure (LST and NDVI) among Hispanics by 

origin. Hispanic/Latinos, primarily Mexicans, live in highly segregated areas and are exposed to 

high LST and low NDVI values. The Univariate Moran’s I Index and Bivariate Local Moran’s I 

results show a statistically significant spatial correlation. These measures allowed for the 

identification of heat-vulnerable populations, who in SCC are more likely to be Mexicans 

experiencing comorbidities and living in the historic neighborhood of Sal Si Puedes, where 

institutionalized racist and discriminatory processes have historically segregated them.  

Relatively small differences in LSTs by SES and ethnic group may result from the 

aggregation of mean annual values that could homogenize extreme cold and heat days. Although 

non-developed areas were filtered to produce a more accurate temperature measurement of 

populated areas, this study does not consider urban morphology (e.g., land use and building form), 

which may vary by class and ethnicity, as studies have found higher population densities in 

Hispanic neighborhoods in the US. Future studies should consider averaging LST values for warm 

months only (e.g., May – September) and describing the built environment (e.g., population 

density, building materials), which may vary by SES. Additional variables, such as homelessness, 

housing characteristics, crime, social cohesion or isolation, collective behaviors, and age-structure 

differences within the Hispanic population, need to be included in more comprehensive heat-

related studies to provide a more robust evaluation of the at-risk population in urban areas, where 

heat stress is expected to intensify. 

Proposed solutions to reduce heat exposure include urban greening projects, shading 

sidewalks, parking lots, and other paved surfaces, and using trees or additional structures (e.g., 

sailcloth and solar panels; Rodriquez & Chapman, 2013). Urban greening is a complex affair: it 

involves major infrastructural, management, maintenance, and watering complexities that impose 

costs and challenges for low-income communities. Recommendations thus also include 

promulgating local codes to accelerate the adoption of cooling strategies. This regulatory approach 
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could be complemented with heat-emergency preparedness plans at the community level and the 

placement of cooling centers. Local communities must have input in the development of these 

mitigation and adaptation strategies (Wilhelmi & Hayden, 2010). A multi-scale, multi-stakeholder 

approach would be the best path to ensure hazard reduction, especially in low-income and 

racial/ethnic minorities. 
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CHAPTER 4. EVALUATION OF HEAT MITIGATION STRATEGIES IN SANTA 

CLARA, CALIFORNIA: A SENSITIVITY ANALYSIS OF URBAN TREES  

Introduction  

Neighborhoods with higher vegetative densities tend to have lower temperatures, 

especially during heatwaves, than those with sparse vegetation (Declet-Barreto et al., 2013). 

Wealthier neighborhoods, however, have more access to healthy green spaces than low-income 

communities (Wilson & Belonis, 2016). In the United States (US), a high proportion of racial and 

ethnic minorities reside within racially segregated urban areas and low-income communities 

deprived of green areas and with scarce vegetative coverage that resulted from historical ethno-

racial oppression and segregated park systems (Wolch et al., 2014). In four metropolitan areas in 

the State of California (Los Angeles, Sacramento, San Diego, and San Francisco), the percentage 

of impervious surfaces positively correlates to the number of residents of color and the proportion 

of residents living in poverty (Shonkoff et al., 2011).  

Parks in primarily racial and ethnic minority neighborhoods also tend to have less acreage 

than parks in predominately White communities (Boone et al., 2009). A smaller park size results 

in a higher pressure on park space (e.g., a higher number of users per unit area), leading to higher 

park degradation (Wolch et al., 2014). Lack of park maintenance can also increase particulate 

matter (PM) pollution from dirt lots, as grasses and trees tend to be less irrigated (Declet-Barreto 

et al., 2013). In Phoenix, for example, Latino neighborhoods tend to have fewer green areas (Wolch 

et al., 2014) and higher levels of temperature-dependent air pollution (e.g., Nitrogen Dioxixe-NO2 

and PM2.5) than their White counterparts (Taha, 2004; Su et al., 2011). 

  In Los Angeles, more funding is designated for creating and maintaining parks in White-

dominated areas than in colored communities (Wolch et al., 2005). In 1996, the City of Los 

Angeles adopted Proposition K to generate revenue through a real-property tax that would provide 

enough funding for local communities to increase their green infrastructure. The results showed 

that funding patterns often exacerbated rather than alleviated existing inequalities in park and open 

space resource distributions, as resources were unevenly distributed across racial/ethnic 

communities. Much more funding was allocated to neighborhoods with already accessible parks. 

Park spending equaled $45.13 per child in predominantly White areas (more than 50% White) and 

only $26.64 per child in non-White dominant areas (less than 50% White). Access to parks does 
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not translate into its use, especially if neglected, as they can be perceived as “dangerous, 

unpleasant, and unwelcoming” and can even serve as crime generators (Boessen & Hipp, 2018).  

The provision of ecologically adequate and maintained vegetation is vital for equitable 

outcomes, especially since neglected parks often create ecologies of fear that emphasize legacies 

of race-based social control and criminalization of environments and their occupants (Brownlow, 

2006). The benefits of green areas also extend to public health, as they create salutogenic urban 

environments that can help mitigate human health problems, such as asthma, allergies, obesity, 

and increased stress. Parks can, therefore, be defined as therapeutic landscapes or areas that 

positively affect an individual’s health or have a therapeutic effect (Emch et al., 2017). Low-

income communities, however, receive even fewer benefits from green spaces than higher-income 

neighborhoods and tend to lack other resources (e.g., healthcare and A/C access) that could 

mediate the detrimental effects. 

The increase in the number and quality of urban forests has become popular to reduce intra-

urban tree-canopy inequality, enhance community well-being, and mitigate urban heat. Trees 

provide shade and moderate leaf temperature via transpiration, significantly decreasing air 

temperatures (Oke et al., 1989; Turner-Skoff & Cavender, 2019). Their shade attenuates radiant 

energy flows through absorption and reflection, further cooling the surface and near-surface 

temperature (Declet-Barreto et al., 2013). Tree density, crown diameter (horizontal canopy area), 

vertical canopy area, leaf area index (LAI), and leaf area density (LAD) are additional 

characteristics determining the cooling potential of urban forests (Ballinas & Barradas, 2015). A 

tree with an LAI of 5 and LAD of 1 m2/m3 can reduce the air temperature by 1.3°C and the surface 

temperature by 14.7°C (Tan et al., 2016).  

The use of numerical modeling software at the microscale level has become popular among 

urban climatologists and designers to explore and evaluate the improvement of human thermal 

comfort through tree planting. ENVI-met, a computational fluid dynamics (CFD) model developed 

by the Institute for Geography at Ruhr-University in the late 1990s (Taleghani et al., 2016), has 

been recognized as the most often used model for micro-climate studies (Jänicke et al., 2021). 

ENVI-met simulates three-dimensional environments at high levels of temporal (1-10 sec) and 

spatial (0.5-10 m) resolutions (Hebbert & Jankovic, 2013). It, therefore, allows the representation 

of complex geometries and various vegetation covers (Ali-Toudert & Mayer, 2007). The software 

consists of five models: 1) an atmospheric model that calculates air movement, temperature, and 
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humidity; 2) a surface model that calculates long- and short-wave radiation from different surfaces 

based on shading and solar paths; 3) a vegetation model that calculates foliage using LAD and 

evaporation rates;  4) a soil model that considers the exchange processes of natural and artificial 

surfaces, including water bodies; and 5) a biometeorological model, that calculates the energy 

balance of the human body to determine thermal comfort (Ambrosini et al., 2014).   

The model requires two files: the input file (.inx), which describes the physical properties 

of the simulation area (buildings, surface, vegetation), and the configuration file (.simx), which 

contains the initial weather data, duration, and time of simulation (Taleghani, 2018). The locations 

of buildings and rooftops are drawn using the SPACES application, available in the ENVI-met 

suit, using aerial imagery. The ENVI-met .simx file requires input parameters as initial conditions 

(i.e., air temperature, wind speed, wind direction, relative humidity) from weather stations, usually 

located at airports or buildings’ rooftops, which may not represent the modeled area. To overcome 

the limitations of larger-scale processes not modeled by ENVI-met, including the unavailability of 

atmospheric variables for initialization and validation purposes, ENVI-met can be combined with 

mesoscale models, like the urbanized version of the Weather Research and Forecasting (uWRF; 

Mc Rae et al., 2018).  

Significant results from ENVI-met show that the benefits of trees for the improvement of 

thermal comfort come mainly from shading rather than transpiration (Mballo et al., 2021). With 

moderate winds, the cooling effects can extend beyond the vegetated areas into adjacent, non-

vegetated surfaces (Declet-Barreto et al., 2012). The extension of the cooling effects, however, 

will depend on the arrangement of trees and wind direction. Tan et al. (2016) reported that trees 

placed along dominant wind paths resulted in maximized cooling effects. Similarly, Ng et al. 

(2012) used microclimate simulations to analyze different green design strategies to reduce the air 

temperature in Hong Kong. The increase in green coverage, however, results in decreased wind 

velocities (0.9 m/s), which could significantly affect outdoor thermal comfort (Yuan et al., 2017). 

Tree planting is a common and effective mitigation strategy, often less costly than lakes/blue 

spaces or other evaporative surfaces. During the daytime, the effectiveness of trees in improving 

thermal comfort reduces with increasing urban density as the shadowing effect of building heights 

reduces the cooling effects of tree shade (Morakinyo et al., 2017). Microclimate simulation results 

reported that areas with existing vegetation coverage do not change in temperature when adding 

more trees (Makido et al., 2019). These results suggest a threshold in the number of trees to 
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maximize cooling capacity and thermal comfort. The effect of trees on the local environment, 

however, is highly dependent on the particular characteristics of a place (e.g., surrounding urban 

morphology); thus, their effects must be analyzed using the most highly spatial resolution available 

(Garrison, 2021), accounting for different urban forms and climates (Janicke et al., 2021).  

The current effort evaluated the potential cooling effect of trees in Reid-Hillview Airport 

(RHVA), located in east Santa Clara County (SCC), in California, via ENVI-Met simulations. 

Whereas most previous efforts have primarily focused on the evaluation of multiple mitigation 

strategies, this study performs a sensitivity analysis to analyze the thermal conditions of the area 

under current summer and extreme heat conditions after increasing the percentage of tree coverage. 

Land Surface Temperature in the surrounding neighborhood ranges from 30 to 33°C, with the 

maximum values at the RHVA (Rivera et al., 2022). Most residents in the area are Hispanics, 

mainly of Mexican or Central American origin, with a very low to medium socioeconomic status. 

Most residents are not homeowners, which tree-planting projects within these residential areas, as 

residents cannot make long-term decisions regarding the property. In August 2021, the SCC Board 

of Supervisors voted to close the RHV Airport, as elevated blood lead levels were found in children 

living near the Airport, similar to those found in children tested in Flint, Michigan, during the 

water crises (Wittenberg, 2023). The RHVA area could be a site of urban renewal where tree 

coverage can be increased. The current social and environmental conditions, as well as the site's 

potential for future land uses, thus justified the selected area to perform a sensitivity analysis. 

Data and Methods  

The current methodology uses satellite imagery from Google Earth and data from 

OpenStreet Map to localize building footprints and vegetation distributions within the model 

domain and produce the input files (.inx). Five scenarios were simulated to evaluate the cooling 

potential of tree coverage in a potentially repurposed RHVA. The first scenario served as a baseline 

to assess the current thermal conditions of the selected site. The subsequent scenarios evaluated 

the thermal conditions of the area after increasing tree coverage to 25%, 50%, 75%, and 100%. 

All scenarios were assessed under typical (9 July 2017) and extreme (1 September 2017) cloudless 

summer conditions.  

Simulation Area. The microclimate analysis was conducted for the RHVA in the East San 

Jose neighborhood (Figure 19). Satellite imagery shows the Airport has a surface of 0.73 km2, 

including a runway of 0.36 km2. Of the runway area, 0.25 km2 is covered by pervious surfaces, 
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primarily grasses. The location of trees was only considered along one section of the runway (in 

red) within a 0.02 km2 area. The RHVA is surrounded by high-density housing to the east and 

north. A small park with a few trees is located to the north, while a water park is located to the 

west. A large mall is south of the airport area, with impervious surfaces and no trees.  

 
Figure 19. Study area map showing a) elevation (m, MSL) of Santa Clara County and boundaries 

for its 15 cities, as well as the location of the Reid-Hillview Airport, and b) ENVI-met simulation 

site (red box) within the Airport.  

ENVI-Met Model  

The simulation site included a domain area of 120 by 240 meters. A grid spacing of 1.5 

meters was used for each 3-D axis to maximize resolution and minimize computational time. The 

model resulted in 80 by 160 horizontal grids, considering five additional cells at each lateral 

boundary. The height of the model equaled 30 meters or 20 vertical grids, which is sufficient for 

this application, given the absence of building structures within the simulation site. The tree 

species considered for this analysis is an Oak (Quercus spp.) of medium height (13 meters) and 

crown diameter (8 meters) with deciduous foliage, given they are endemic to the study area. The 

default properties of the oak, available on the ENVI-met 5 library, define the tree as having a C3 

a) 
b) 
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photosynthetic metabolism, which requires the regular opening of leaf pores (stomata), transpiring 

significant volumes of water (Gunawardena et al., 2017). Default values for foliage short-wave 

albedo (0.18) and short-wave transmittance (0.30) were maintained for all simulations. To achieve 

a tree coverage of 25%, 50%, 75%, and 100%, the number of trees placed was 19, 41, 60, and 82, 

respectively (Figure 20). All were placed with a uniform spacing of 6 meters to minimize crown 

overlapping. 

                                       

 

           
Figure 20. ENVI-Met simulation scenarios for a) existing conditions and after increased tree cover 

by b) 25%, c) 50%, d) 75%, and e) 100%. 

Typical summer simulations started on 9 July 2017 at 0700 Local Standard Time (LST) 

and were run over a 12-hour period. The first five hours were considered a spin-up period and 

were not further analyzed. Simulated air temperature results were analyzed for daytime (1200-

1800 LST) hours. A similar period was used for extreme conditions, with simulations starting on 

1 September 2017. All simulations were run with the use of simple forcing meteorological 

conditions, which require minimum and maximum air temperature and relative humidity values 

during a 24-hour cycle, along with their corresponding times of occurrence (Table 8). Model 

parameters are then computed at each time step. ENVI-Met initialization values were extracted 

from uWRF simulation results, previously run for the considered dates (McRae et al., 2018). A 

a) b) 

c) d) e) 

0% 
25%

% 

50% 75% 100% 
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constant wind speed value of 1.5 m/s was used for all simulations, given numerical problems 

reported for higher speeds. The roughness length of the surface was established at 0.010 meters.  

Table 8. Meteorological constants for daytime (1200-1800 LST) ENVI-Met simulations. 

Input Variable Typical Extreme 

Date 09 July 2017 01 September 2017 

Specific humidity (g/kg) 6.6 5.6 

Wind direction (°) 320 307 

Air Temperature  

(°C, hour in LST) 

Min: 15, 0700  

Max: 31, 1600 

Min: 20, 0700 

Max: 40, 1500 

Relative Humidity  

(%, hour in LST)  

Min: 24, 1300 

Max: 79, 0700 

Min: 15, 1500 

Max: 54, 0700 

 

Results 

ENVI-Met simulation results show air temperature reductions (Δ) at a 1-meter street level 

in the study area. The mean air temperature for the entire domain (Figure 21) shows that during 

typical summer conditions, a 25% tree coverage reduces mean baseline temperature from -0.03°C 

at 1500 to -0.08°C at 1800, whereas a 50% tree coverage reduces temperature from -0.07 to -

0.18°C during the same hours. A 75% tree coverage reduces baseline mean air temperature from -

0.10 to -0.25°, and a 100% reduces values from -0.12 to -0.31°C during the same hours. During 

extreme heat conditions (Figure 3b), mean air temperature differences from baseline values show 

the cooling effects of tree planting starting at 1500, with maximum cooling effects at 1800. A 25% 

tree coverage reduces baseline mean air temperature from -0.04 to -0.14°C at 1500 and 1800 hours, 

respectively. A 50% tree coverage scenario reduces air temperature from -0.07 to -0.24°C, whereas 

a 75% tree coverage scenario reduces values from -0.09 to -0.32°C during the same hours. A 100% 

tree coverage scenario reduces mean air temperature from -0.10°C at 1500 to -0.39°C at 1800.  

Hourly rates of change are, however, non-linear during both weather conditions for all 

scenarios. During typical summer conditions, minimum decreases in hourly air temperature are 

seen for the 25% tree coverage scenario, ranging from 0.00°C from 1500 to 1600 to 0.03ºC from 

1400 to 1500 and 1700 to 1800. Greater temperature changes occur from 1400 to 1500 hours for 

50 and 75% of tree coverage scenarios, with -0.06 and -0.08°C reductions, respectively. Lower 

mean air temperature changes then occur until 1800. For a 100% tree coverage scenario, the 

temperature is reduced by -0.09°C from 1400 to 1500 and by -0.07°C every hour from 1600 until 

1800. During extreme heat conditions, temperatures change at a faster rate than for typical summer 
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conditions. Minimum decreases in hourly air temperature (from -0.02 to -0.03°C) are also seen for 

the 25% tree coverage scenario, from 1400 to 1700, with maximum reduction from 1700 to 1800 

(-0.05°C). A similar behavior occurs for the 50% tree coverage scenario, with a constant rate of 

change of -0.05°/hour until 1700, with a -0.08°C change from 1700 to 1800. Higher rates of change 

from previous hours, particularly from 1700 to 1800, are found for the 75 and 100% tree coverage 

scenarios, with -0.11 and -0.14°C, respectively. 

 
Figure 21. Mean air temperature differences (°C) from the baseline scenario for the entire 

simulation by the hour (Local Standard Time; LST) during a) typical summer (09 July 2017) and 

b) extreme heat (01 September 2017) weather conditions.  

The non-linear changes in hourly air temperature during both weather conditions for all 

scenarios thus suggest a threshold in the number of trees to maximize cooling capacity, as 

additional trees would reduce air temperature minimally. Comparisons of air temperature at a 1-

meter street level (Figure 22) during typical summer conditions show that at 1500, the largest 

difference between 25 and 50% tree coverage scenarios (0.04°C) and the smallest between 75 and 

100% tree coverage (0.02°C). A similar pattern is found at 1800 (Figure 22b), with the largest 

difference between 25 and 50% tree coverage (0.09°C) and the minimum between 75 and 100% 

tree coverage (0.06°C). For extreme weather conditions, maximum differences are found between 

baseline and 25% tree coverage scenarios at 1500 (0.04°C) and 1800 (0.014°C), whereas minimum 

differences are found between 75 and 100% tree coverage scenarios (0.01 at 1500°C and 0.07°C 

at 1800). As tree coverage increases, differences in mean air temperature between scenarios 

decrease. 

 

Typical 
Extreme 

a) b) 
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Figure 22. Mean air temperature differences (°C) from the baseline scenario for the entire 

simulation by the hour (Local Standard Time; LST) during a) typical summer (09 July 2017) and 

b) extreme heat (01 September 2017) weather conditions.  

Distributions of air temperature at 1800 for all scenarios (Figure 23) show that, under 

typical summer conditions, minimum values decrease with increasing tree coverage from 29.00 to 

27.64°C, but maximum values only decrease from 29.95 to 29.88°C. The range of median 

temperature values, therefore, only range from 29.40 to 29.29°C from 0 to 100% tree coverage, 

respectively, whereas the mean ranges from 29.41 to 29.10°C. Typical temperature values under 

50 to 100% tree coverage scenarios follow a bimodal distribution, with a first peak around the first 

interquartile range and a second peak around the median. Corresponding values under extreme 

heat weather conditions minimum values range from 25.90°C for a 0% tree coverage (baseline) 

scenario to 34.32°C for a 100% tree coverage scenario, while maximum values range from 36.59 

to 36.44°C under the same scenarios. The median temperature ranges from 36.09 to 25.86°C and 

a) b) 

d) c) 
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mean values from 36.13 to 35.14°C. Under extreme conditions, however, values for all mitigation 

scenarios follow a normal but negatively skewed distribution, with a second but smaller peak for 

maximum temperatures. As the percentage of tree coverage increases, distributions tend to be 

platykurtic, meaning fewer values are distributed around the mean.  

 
Figure 23. Mean air temperature distributions (°C) at 1800 (LST) for all scenarios during a) typical 

summer (09 July 2017) and b) extreme heat (01 September 2017) weather conditions.  

Spatial distributions of air temperature reductions (Δ) at a 1-meter street level from baseline 

conditions (Figure 24) show that during typical summer conditions, a 25% tree coverage decreases 

values along the tree path around -0.86 to -0.70°C, with cooling extending south and reaching 

values ranging from -0.22 to -0.06°C. Some warming (0.11°C) is also seen along the east, parallel 

to the tree path. A 50% tree coverage further reduces baseline temperatures by -1.18 to -1.02°C, 

particularly along tree paths, with cooling extending values (-0.38 to -0.22°C) extending 

southwards and eastwards. A 75% tree coverage decreases temperatures also along tree paths, but 

maximum cooling (-1.34°C) is located in the southern parts of the tree paths. A 100% tree coverage 

decreases temperatures by -1.51 to -1.34°C, with cooling effects reaching the southmost area with 

a) b) 
Typical Extreme 
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values ranging from -0.54 to -0.38°C. These patterns suggest dominant winds enter from the 

northern side of the simulated site, decreasing in value along the tree path and then extending the 

cooling effects to the south towards the Eastridge Mall parking lot and southeast towards 

residential areas.  

 
Figure 24. Mean air temperature differences (°C) from the baseline scenario for the entire 

simulation at 1800 (Local Standard Time; LST) during typical summer (09 July 2017) 

conditions, with increased tree coverage of a) 25%, b) 50%, c) 75%, and d) 100%.  

During extreme heat conditions, spatial distributions of air temperature differences from 

baseline values (Figure 25) show that the cooling effects of tree planting follow a similar pattern 

to those in typical summer conditions. The cooling effects, however, are higher than those of 

typical summer conditions. For a 25% tree coverage, temperature differences from baseline range 

from -1.00 to -0.86°C, with cooling effects now extending to the southeast by -0.30 to -0.16°C, 

while a 50% tree coverage results in maximum cooling ranges between -1.14 to -1.00°C along the 

tree paths and cooling effects further decreasing temperatures by -0.44 to -0.30°C. A 75% tree 

coverage reduces baseline air temperatures from -1.42 to -1.28°C, with cooling effects extending 

by -0.58 to -0.44°C. A 100% tree coverage changes baseline temperatures by -1.62 to -1.42°C, 

with cooling effects extending southerly toward the Eastridge Moll parking lot.  

 

a) b) c) d) 
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Figure 25. Mean air temperature differences (°C) from the baseline scenario for the entire 

simulation at 1800 (Local Standard Time; LST) during extreme (01 September 2017) conditions, 

with increased tree coverage of a) 25%, b) 50%, c) 75%, and d) 100%.  

Discussion 

Institutionalized racism, in the form of redlining and zoning ordinances, has 

disproportionately segregated a higher number of low-income and racial/ethnic minorities within 

green-area deprived neighborhoods, exposing them to higher ambient temperatures (Rivera et al., 

2022). Most actions to address green infrastructure inequity are urban reforestation projects, like 

the Million Trees NYC initiative (Webb, 2017). In Chicago, UHI mitigation measures were part 

of a landscape ordinance to plant new trees and shrubs. The Arizona Heat Ready project also 

required shading of at least 75% of sidewalks per the Walkable Urban Code (Phoenix Zoning 

Ordinance-Chapter 13, 2019; Hammett et al., 2019) 

In 2013, the State of California coordinated the Climate Adaptation Strategy to plan for 

extreme heat and recommend local codes to accelerate the adoption of cooling strategies. 

California recently adopted residential voluntary measures to reduce the UHI effect: the 2019 

California Green Building Standards Code, also known as CalGreen (International Code Council, 

2018). CalGreen’s “first-in-the-nation mandatory building standards code” was developed by the 

State’s authority to meet Assembly Bill 32 (AB 32). The CalGreen building code contemplates 

measures to reduce the surface temperatures of nonroof areas. These heat mitigation actions 

include planting trees that provide shade and mature within 15 years of planting and permeable 

pavements for at least 20% of parking, walking, or patio surfaces (Commission, n.d.). 

a) b) c) d) 
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These results suggest a threshold of a minimum number of trees coverage to ensure 

maximum cooling capacity. In the RHVA, under typical summer conditions, a 25% tree coverage 

minimally reduces the mean air temperature compared to a 50% tree coverage scenario. As the 

number of trees per area increases, however, more cooling is achieved, as maximum temperature 

changes result under the 100% tree coverage scenarios. Previous research suggests implementing 

additional or complementary mitigation strategies, such as cool pavements or roofs in already 

shaded locations, to improve pedestrian thermal comfort further (Taleghani et al., 2016). The most 

effective daytime strategy for temperature reduction has been increased vegetation, as it affects 

the largest area, while changes in albedos provide negligible impacts (McRae et al., 2020).  

Trees with a high leaf density can reduce air temperatures by 1.3°C and surface 

temperatures by 14.7°C and intercept 84% of free horizontal solar direct radiation, thus lowering 

temperatures by providing shade (Tan et al., 2016). Higher temperature reduction due to tree shade 

and evapotranspiration are related to greater leaf density, as dense and wide canopies intercept and 

reflect large amounts of incoming short-wave radiation (Sharmin et al., 2023; C. Wang et al., 

2023). Police Departments, however, discourage the placement of dense trees and shrubs that 

could provide natural shade because their planting obscures the view of open spaces, encouraging 

criminal activities. In Los Angeles, city officials required the removal of canopy structures, 

including trees, to comply with the Americans with Disabilities Act (ADA; Bloch, 2019). 

 Trees that transpire significant volumes of water provide higher cooling effects than trees 

with low transpiration, as it affects the cooling produced by a tree under its shade (Gupta et al., 

2018; Jänicke et al., 2021). Green areas must then be heavily irrigated to increase 

evapotranspiration (Smith et al., 2023). Irrigated urban green spaces can reduce daily maximum 

air temperature by 2.5°C (Cheung et al., 2022). Irrigation can enhance evapotranspiration, 

particularly in arid regions and sites with small amounts of summer precipitation, such as San 

Francisco, California (May & Oliphant, 2023). There is, however, an increasing concern from 

public health officials on how the rise in urban green space to reduce temperatures might increase 

vector-borne diseases by enhancing the survival of mosquitoes and ticks that transmit Malaria, 

West Nile Virus, and Lyme disease (Huston, 2016).  

Urban greening is not a simple affair: it involves major infrastructural, management, 

maintenance, and watering complexities that impose costs and challenges for low-income 

communities (Garrison, 2021). As previously discussed, marginalized populations, typically 
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belonging to minority racial and ethnic groups, have limited resources for neighborhood park 

maintenance (Sister et al., 2010). Due to decreased government budgets, there are also costs of 

implementing and maintaining tree planting that may be difficult to fund, and politicians may be 

willing to spend the money on other issues (e.g., housing education; Pincetl et al., 2013). Some 

tree species can also be high-allergen or with high volatile organic compounds (VOCs) that could 

trigger asthma symptoms or contribute to ozone pollution, counteracting some of the benefits of 

urban green areas (Werbin et al., 2020).  

Redressing park deprivation in these communities can also create an urban green space 

paradox (Wolch et al., 2014). As green space increases, these neighborhoods can become more 

attractive for non-area residents, leading to rising real estate values and housing costs and 

exacerbating resident displacement (Sousa-Silva et al., 2023). Improving green areas could result 

in green gentrification (Hoffman et al., 2020), in which low-income residents meant to benefit 

from greening projects are displaced to similar neighborhoods with a low park provision (Wolch 

et al., 2014). In Chicago, for example, urban greening initiatives resulted in a lower sense of 

community, as many residents felt that they did not belong in green space, with communities of 

color being targeted by community policing, resulting in some youth limiting their visits to green 

spaces (Harris et al., 2020, 2021). Communities, therefore, do not get the full benefits of greening 

projects, as access to green infrastructure is often temporary (Jelks et al., 2021).  

Conclusion 

The increase of urban greenery has become popular among urban planners and 

policymakers to mitigate the urban heat island effect and reduce green tree inequality. The question 

of how to maximize the benefits of urban greenery through design remains for most cities. This 

effort evaluated the cooling effects of green infrastructure at the micro-environment scale, the 

street level, in SCC. A sensitivity analysis of the thermal conditions of a section of the RHVA after 

incrementally increasing the percentage of tree coverage was used to evaluate the potential cooling 

effect of each intervention. Five scenarios, including a baseline, were assessed for daytime hours 

(1200-1800) under typical summer and extreme heat conditions via ENVI-Met simulations.  

Results showed that under both conditions, decreases in mean 1-m air temperature from 

baseline conditions were maximized under extreme conditions at 1800. After a 25% tree coverage 

scenario, values changed by -0.14°C, while maximum changes in air temperature were quantified 

for 50% (-0.24°) and 75% (-0.32°C) of tree coverage scenarios. Slight temperature differences 
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were observed between the 75 and 100% (-0.39°C) tree coverage scenarios. Non-linear 

relationships were thus found between changes in air temperature and time for all tree coverage 

scenarios, suggesting a threshold in the number of trees to maximize cooling capacity, as additional 

trees would reduce air temperature minimally. A maximum cooling effect was, however, found 

under the 100% scenario, with 1-m air temperature reductions extending to surrounding residential 

areas to the west and impervious surfaces to the south. 

Future efforts should overcome limitations of the current study, e.g., expand the 

intervention area to cover a larger extent of the RHVA, evaluate a complete landscape design that 

includes shrubs and other design elements (e.g., blue spaces), and evaluate interventions in future 

or projected climates. Additionally, future studies must assess the benefits of increasing urban 

green areas beyond improving the thermal comfort of trees, such as additional ecological services 

or social and health impacts. The use of ENVI-Met as the only modeling software is also a 

limitation since it does not allow the quantification of other benefits, such as carbon sequestration. 

Tree planting initiatives require community support to ensure full environmental benefits 

while contributing to quality of life. Citizen participation in tree-planting initiatives must, 

therefore, be considered to improve social cohesion among residents, which can create more 

climate change-resilient communities. Finally, future efforts should address design interventions 

that meet the cultural needs of minority communities as well as the safety needs of low-income 

communities. Human and environmental interventions at the micro-scale will lead to sustainable 

projects in urban areas that meet the unique needs of places and people. 
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CHAPTER 5. CONCLUSION 

Global urbanization accelerates as the world population grows (Chen et al., 2006). Urban 

land cover transformations produce anthropogenic heat emissions into the atmosphere, which 

contribute to the formation of UHIs (Mohan et al., 2020). Such areas are found within urban 

canopy layers (e.g., atmosphere layer at or near the ground surface) and have warmer temperatures 

than their rural surroundings (Voogt, 2007). The highest temperatures are typically recorded at the 

city core under calm wind conditions and gradually decrease with distance toward suburban, rural, 

and wildland areas (Raj et al., 2020). The intensity and magnitude of UHIs are controlled by 

regional climate conditions and building characteristics (e.g., albedo, emissivity, sky view factor, 

anthropogenic heat fluxes; Jauregui et al., 1992; Taha et al., 2018). They are also related to 

seasonal changes in vegetation cover and rural soil moisture (Kim et al., 2016; Park et al., 2017; 

Li et al., 2020). UHIs negatively impact energy use, air quality, and human thermal comfort and 

health (He, 2018). Children, the elderly, low-income groups, and people with pre-existing 

respiratory, cardiovascular, and cerebrovascular conditions are most vulnerable to their adverse 

effects (McMichael, 2000). 

The current methodology evaluated the combined risk of stresses on the SCC population 

from environmental and socioeconomic factors. This study determined MODIS-derived summer 

daytime and nighttime LST and  NDVI trends from 2000 to 2020, as well as ECOSTRESS-derived 

LST and ET distributions from 2018 to 2022 in SCC. It then related these results to census tract-

level MHHI, the percentage of Hispanic/Latino populations, and the built environment per LCZ 

classification framework. The level of segregation between Hispanics and non-Hispanic Whites 

and among Hispanic/Latinos per the Index of Dissimilarity and SES per the Modified Darden-

Kamel Composite Socioeconomic Index were calculated and related to health outcomes and 

temperature exposure. The combination of these assessments comprised a comprehensive human-

environment approach to human health exposure evaluation, emphasizing differences among 

Hispanics by their national origin of birth, thereby exposing them to environmental injustice. In 

response to the findings from the urban climate and heat vulnerability analyses, urban heat 

adaptation measures were proposed and evaluated via the ENVI-Met software to measure the 

potential cooling effect of trees in Reid-Hillview Airport, located in east SCC.  
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Summary of Dissertation Chapters 

Objective 1. Population growth increases urbanization, impacting surface albedo and ET 

rates. This process results in altered surface energy balances, thus creating distinctive local urban 

climates, including the formation of SUHIs. The reduction of urban evaporative cooling is an 

important factor contributing to SUHIs. Urban moisture content is lower than in surrounding areas, 

allowing them to warm faster than their vegetated counterparts. This exploratory study determined 

summer daytime and nighttime land surface temperature (LST) and ET trends and distributions in 

urban Santa Clara County, USA, from 2018 to 2022, as derived from high temporal (diurnal) and 

spatial (38 by 69-meter pixel) resolution ECOSTRESS data. It then related these results to census 

tract-level median household income (MHHI).  

Results showed downward LST trends in summer area-mean daytime (-0.23°C per year) 

and nighttime (-0.54°C per year) LST trends. The area-minimum daytime LST increased (1.34°C 

per year) while its maximum decreased (-0.87°C per year). The corresponding nighttime values 

were -0.5°C and -1.11°C per year, respectively. Differences between these extremes resulted in a 

negative daytime (-2.21°C per year) and nighttime (-0.61°C per year) trend of intra-urban SUHI 

intensity. Spatial distribution showed that LST increased with either decreasing ET or MHHI 

values. ET values increased with increasing MHHI values. Neighborhoods with very-high MHHI 

thus experienced slower cooling rates than their very-low-income counterparts (-0.23 vs. -0.32 °C 

per year), an important finding for future population vulnerability assessments.  

Objective 2. In the United States, there is a growing interest in understanding how heat 

stress in lower-income and racially segregated neighborhoods results in adverse health outcomes. 

This study spatially identified heat-vulnerable neighborhoods in Santa Clara County (SCC), CA. 

It evaluated the relationship between temperature exposure, race/ethnicity, and health outcomes of 

residents in those neighborhoods, emphasizing differences among Hispanics by the origin of birth 

to capture potential environmental injustices. The current methodology used Landsat 8 via Google 

Earth Engine to measure the Land Surface Temperature (LST) and Normalized Difference 

Vegetation Index (NDVI) to assess the potential of heat stress in the physical environment. The 

human environment was evaluated using the Modified Darden-Kamel Composite Socioeconomic 

Index to determine the spatial variability of socioeconomic status (SES) and the Index of 

Dissimilarity to assess the level of segregation between Hispanics and non-Hispanic Whites and 
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among Hispanic/Latinos. Spatial regression models were used to quantify the relationship between 

these measured assessments and health outcomes.  

Results revealed socioeconomic inequalities and uneven residential distributions between 

Hispanic/Latinos and non-Hispanic Whites. High LST and low NDVI values were found only in 

Mexican neighborhoods, implying possible environmental racism. Almost half of the Mexican 

population lived in highly segregated neighborhoods with low and very low SES, mainly located 

in East San Jose, where, historically, they have been ghettoized. Mexicans reported low health 

insurance coverage rates and could be at a higher risk of heat stress and heat mortality during heat 

waves. Future work should examine additional variables (e.g., housing characteristics, crime, 

social cohesion, and collective behaviors) to comprehensively evaluate the at-risk Mexican 

population. The combination of these assessments comprised a comprehensive human-

environment approach for health exposure evaluation by which to define environmental injustice. 

 Objective 3. The increase in the number and quality of urban forests has become popular 

to reduce intra-urban tree-canopy inequality, enhance community well-being, and mitigate urban 

heat. Previous studies have evaluated the impact of increased vegetation on urban temperature, but 

the number of trees necessary to effectively improve thermal comfort has been under-explored. 

This study assessed the cooling efficiency of urban greenery as a heat mitigation measure for a 

low-income neighborhood in SCC via ENVI-Met software. A series of sensitivity tests were 

conducted for daytime hours (1200-180) under typical and extreme summer conditions to evaluate 

the thermal conditions of the area after increasing tree coverage from the baseline scenario (0%) 

to 25%, 50%, 75%, and 100%.  

The results allowed for the quantification of the potential cooling effects of increasing tree 

coverage. On a 25% tree coverage scenario, values changed by -0.14°C, while maximum changes 

in air temperature were quantified for 50% (-0.24°) and 75% (-0.32°C) of tree coverage scenarios. 

Slight temperature differences were observed between the 75 and 100% (-0.39°C) tree coverage 

scenarios. Similar changes between scenarios were observed under extreme heat conditions, 

although temperatures decreased faster than under typical summer conditions. Non-linear 

relationships were found between changes in air temperature and time for all scenarios, suggesting 

a threshold in the number of trees to maximize cooling capacity, as additional trees would reduce 

air temperature minimally. As tree coverage increases, differences in mean air temperature 

between scenarios decrease. 
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Limitations 

Heat vulnerability assessments are necessary for stakeholders to correctly identify 

vulnerable populations and implement effective mitigation and adaptation strategies. This study 

proposes the use of the Darden-Kamel CSI, given the lack of consensus among researchers about 

the variables to measure heat exposure (climatic and built-up environment) and vulnerability 

(health, demographics, and SES). Different measures of SES, however, would yield different 

results in the spatial distribution of vulnerable populations. Low-income status is usually 

associated with racial or ethnic minorities, neighborhoods with less vegetation, and more heat-

absorbing surfaces (Gronlund, 2014). High levels of exposure to environmental hazards, including 

extreme heat weather events, may be related to minorities’ lower SES, which limits their access to 

mitigating resources (e.g., A/C, access to transportation, quality of housing materials) and may 

also determine acclimatization and adaptation.  

SES, however, can be measured using wealth, inherited wealth, occupation, family 

structure, social networks, and education. Wealth, consequently, can be measured using per capita 

income, median house value, education levels, or occupational prestige. The most used SES 

indicator in social science is family income, although it is more likely to be misreported because 

participants ignore the precise amount of their income or might feel discomfort to report it (Diemer 

et al., 2013). In the case of the American Community Survey, a recurrent data source for heat 

vulnerability indices, “the same respondent may give different answers to a question about income 

or race when interviewed more than once due to random factors, such as how the respondent 

interprets the question” (National Research Council, 2007, p. 53).  

Familial wealth is another indicator that could better represent household economic 

resources due to their multigenerational nature. Family wealth is the total net worth of a family 

(stocks, bonds, home equity, businesses owned) minus the family’s debt (i.e., mortgage loans, car 

loans, credit card debt). Finally, SES indicators operate with other individual characteristics like 

race, ethnicity, age, and gender (Diemer et al., 2013). “Traditional measures of SES are not 

equivalent across race because, for example, compared to Whites, Blacks may have less 

purchasing power because the costs of goods and services are higher in Black communities” 

(Madrigano et al., 2018, p.6).  

Distributions of vulnerable populations would also depend on the scale of analysis (e.g., 

individual-level, zip codes, block groups, census tracts, counties, and metropolitan areas), which 
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may produce different findings. For example, different segregation patterns may result if they are 

examined with the use of block groups or census tracts because “block groups tend to be modestly 

more homogenous than census tracts” (Iceland & Steinmetz, 2003); “the higher the homogeneity, 

the higher the level of apparent segregation” (Massey & Denton, 1988, p. 262). Additional studies 

must be performed in other sites at multiple scales for place comparison to uncover other human-

environment processes occurring within other administrative boundaries. Results of these studies 

would allow a better understanding of Hispanic/Latino experiences in the US, as the population is 

expected to double by 2050.  

Future Research  

Accounting for race in heat vulnerability studies can be complicated because 1) structural 

racism influences the production of knowledge (literature characterized by stereotypes) that reflect 

uncritical, popular understandings of race (Pulido, 2000) and 2) the concept and measure of race, 

and the subsequent racial groupings, has varied over time in the history of the United States, mainly 

shaped by political forces (Ford & Airhihenbuwa, 2010; Hamilton et al., 1988). Race is a social 

construct, not biological, and therefore, future discussion of racial differences in heat vulnerability 

should focus on this social aspect, recognizing that all people may be susceptible to heat, but some 

people are more or less vulnerable to heat because of where they live. Culture also plays an 

important role in the adaptation to heat and whether heat contributes to poorer health outcomes. 

Heat vulnerability indices can be characterized by stereotypes that reflect an uncritical 

understanding of an ethnic or racial group. For example, when constructing heat vulnerability 

indices, researchers suggest that Hispanics tend to be more vulnerable during extreme heat events, 

but this could be a social construct. Hispanics could be at higher exposure but could also have 

become more resilient. Low-income Hispanics are exposed to cumulative hazards, but their ability 

to cope with adversity will determine their vulnerability, which includes intangible resources such 

as cultural, social, or religious groups (Williams et al., 2010).  

Immigration status and duration of residence in the United States may also influence health 

outcomes. For example, the health outcomes of US-born Hispanics are comparable to 

Black/African Americans, while highly segregated foreign-born Hispanics report better health 

outcomes (Do et al., 2017). The findings suggest that segregation can have deleterious effects on 

US-born Hispanics but may offer a protective health benefit for newcomers, also referred to as the 

ethnic density effect (Grady, 2006). Future efforts in heat vulnerability analysis must, therefore, 
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evaluate the capacities of vulnerable groups with the use of quantitative (secondary data sources) 

and qualitative (primary data sources) measures. Heat-adapted building codes are further needed 

as risks rise under climate change. Qualitative methods are vital in identifying coping and 

adaptation strategies, including social capital via networks and institutions, while quantitative 

methods could be used to compare the vulnerability of places and trends over time (Tate, 2012).  

Heat vulnerability studies have documented that minorities are overexposed to 

environmental hazards, including extreme heat. In California, communities of color have lower 

MHHI and home values, and fewer are homeowners while also being exposed to higher toxic 

release facilities (Morello-Frosch et al., 2002). Inequities can be explained from an institutional 

racism lens, which is reflected in the social and geographic characteristics of minorities (Chow et 

al., 2012). Future studies that attempt to explain the geographical distribution of heat risk must, 

therefore, emphasize the historical roots that contribute to  today’s health disparities and the poor 

health outcomes among communities of color (Ford & Airhihenbuwa, 2010).  

Vulnerability is not a time-fixed variable as it varies with socioeconomic, political, and 

cultural dynamics. As with this study, heat vulnerability is presented as a cross-sectional measure, 

exploring risk exposure at one period in time. Future efforts could benefit from a longitudinal 

evaluation (Morello-Frosch & Shenassa, 2006), considering additional variables such as the 

generational effect of populations, economic downturns, and other policies in mediating heat 

vulnerability. Vulnerability indices need to transition from an academic construct to a decision-

making tool (Tate, 2012). Heat vulnerability indices should consider the nuances of an urban area, 

including its historical and institutional context, to make cities and their people resilient to current 

and future extreme heat weather events. 

Policy Implications 

The results of this study provide a methodology for local governments to evaluate high-

temperature distributions and implement mitigation/adaptation strategies to reduce heat risks (heat 

warning systems and urban greenery projects, zoning codes, and air quality standards), particularly 

in low-income communities whose residents are most vulnerable. Heat syndromic surveillance can 

be implemented with the analysis of diagnostic codes beyond those related to heat-related illnesses 

(e.g., sunstroke), such as cardiovascular disorders. Additional health programs can be implemented 

during summer and heat waves, particularly in areas where populations report not having access 

to health insurance.  
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Heat mitigation actions are important, but they are not the definite solution if unequal heat 

exposure continues disadvantaging groups based on income, race, or color. Government agencies 

must identify areas where human health and the environment are disproportionately affected by 

heat and other noxious facilities. Programs, policies, and zoning ordinances must then be placed 

to redress inequities and allocate resources and actions where the environmental and health needs 

are the greatest. Even if green areas are required by building and construction codes, evidence 

suggests that zoning ordinance enforcement is low within low-income communities, especially in 

areas where homeownership is low.  

Although green redevelopment can mitigate the increasing urban heat effects, it can also 

exclude those whose need for access is most acute. As access to green space is recognized as 

environmental justice, cities have implemented the supply of urban green areas in low-income 

areas, which has made them attractive to a population of higher status, encouraging gentrification. 

Access to credits for landlords to upgrade housing materials in low-income communities could 

decrease the negative impacts of high summer temperatures without promoting green 

gentrification. 
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