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ABSTRACT
In this thesis, we look into generalizations of Mallat’s wavelet scattering transform. In the second
chapter, we generalize finite depth wavelet scattering transforms, which we formulate as L4 (R")
norms of a cascade of continuous wavelet transforms (or dyadic wavelet transforms) and contractive
nonlinearities. We then provide norms for these operators, prove that these operators are well-
defined, and are Lipschitz continuous to the action of C? diffeomorphisms in specific cases;
additionally, we extend our results to formulate an operator invariant to the action of rotations
R € SO(n) and an operator that is equivariant to the action of rotations of R € SO(n). In the
third and fourth chapters, we generalize our results to stochastic process and signals on compact

manifolds, respectively.
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CHAPTER 1
INTRODUCTION

1.1 Notation

Set R, to be the positive real numbers, i.e. R, := (0, 00). The gradient of a function f : R" — C
is given by V f, the Jacobian of a function f : R” — R™ is given by D f, and the Hessian is given by
D?f. For 1 < g < oo, the L4(R") norm of a function f : R” — C is fllg = [./R" |f(x)|4 dx]l/q .
When g = oo, || f]|e := ess sup|f|. We will also use the notation, [|Af || = supy yera [f(x) = F(¥)],
for the first two chapters of this thesis (which should not be mistaken for applying a Laplacian
operator). Greek letters with a vector symbol, such as @ = (ay, - , a,), will be a multi-index of

nonnegative integers; additionally, we write |@| = @1 + - - - + @, and the usage will be clear from

glel

—
Ox, L..gxgm

we define the function space H*(R") = {f € L>(R") : Daf e L2(R") for |a| < s}.

context. The operator D is a multi-index of derivatives: DY f = f. For integer s > 0,

1.2 Machine Learning and Model Fitting

The following material is based on [1]. A functional perspective on supervised learning is the
following. Suppose we have a set of data that is split into a training set 7' = {(x;, y;) }l.’i |» Which has
known data {x;} c X and labels {yi}f\i ;- Our goal is to find a model Fy, parameterized by a set
of weights 6 € R”", that best fits the data with respect to some metric (i.e. mean squared loss). To
check if our model Fy actually fits the data, we are given a set of test points Ti, Which are only
accessible for evaluating the fit of Fjy.

Define the set of all possible models 7 as
F ={fo(x) : 6 € R"},

where each fy is a model parameterized by weights 8 € R". One needs to narrow down the
search space by choosing an appropriate model to fit the data. One such instance is when one has
prior knowledge of the distribution of data. For example, consider linear regression; suppose that
{x,-}l.]\i1 c R"and y; c R with y; = wlx; + &, where w € R" is a set of unknown weights and € is a

small noise. Lastly, assume that we want to find a representation that minimizes the mean squared



error:
N

Z(fe(xi) - y)*.
i=1

At this point, it is natural to restrict the set of functions to have the following representation:
fo(x) = 0"x, 0 € R".

Note that this example is relatively simple. For more complex representations, such as images, one
needs to consider more sophisticated representations. Over the past two decades, convolutional
neural networks have show remarkable success for image recognition tasks. For example, [2, 3,
4, 5] have gradually redefined state-of-the art on benchmark datasets in the 2010s. However, the

mechanisms behind how they work have not been fully understood until recently [6, 7, 8, 9, 10].

1.3 Background On Convolutional Neural Networks

Before we provide more discussion about invariants in machine learning, we will discuss the
architecture for convolutional neural networks.

Consider two discrete functions: a; : Z — R and b : Z — R. Practitioners in deep learning
generally define the convolution (which is cross-correlation) as

(arxb1) (D) = ) ar(i+)bi()). (1.1)
JezZ
More generally, we can assume that we have two dimensional functions a; : Z> — R and

by : Z* — R. The two dimensional convolution is given by

(az * by)(iy,i2) = Z a>(i1 + j1,i2 + j2)ba(j1, j2). (1.2)
(j1,j2)€Z?

This is the first building block for convolution operations similar to the operations seen in deep
learning libraries, such as "Conv2d" in PyTorch. However, in practice, these operations generally
are implemented with finite filters rather than infinite filters like above.

To construct a full Conv2d layer, suppose that we have a set of N functions, and the goal is to

get a representation with N, functions via a set of convolutions. Define a set of functions {F}, »,}



withindexes 1 < n; < Nyand 1 < ny < N,. The Conv2d layer can be mathematically expressed as

N
C(f) =D Fum . (1.3)
ni=1

After applying C, a nonlinearity is applied to each entry of the result, and some form of subsampling
is done to reduce the data necessary for the representation. A convolutional neural network, less
formally speaking, is a cascade of applying a Conv2d layer, a nonlinearity, and a subsampling

operator, in that exact order.

1.4 Invariance, Equivariance, Stability, Frequency Representations, and Machine Learning
Let 81,8, be Banach Spaces and ® : 8; — B, be an operator, let T : 81 — B, be an operator.

We say that @ is invariant to 7 if
q)Tf:q)f, VfEBb

and @ is a T-invariant operator. Similarly, for 7 : 8; — $B,, for we say that ® is equivariant with
respect to 7 if

OTf =TOf, VfeB.

Similar to the regression example, CNNs restrict the the possible set of models we consider.
With respect to images, convolution has two properties that are helpful for image recognition tasks:
* Convolution is inherently a local operation and depends on neighboring pixels. That is to
say, we utilize the underlying geometry of an image.
» Convolution is equivariant with respect to translation. In other words, translating a function
and translating a function after convolution yield the same output.
However, it is not necessarily useful to have translation equivariance. Suppose we have the
following two tasks:
* Determine if a cat is in the picture.
* Determine where the cat is in the picture.
For the first task, the location of the cat does not matter, so translating the cat in the picture is

irrelevant. Thus, we would like a representation that is invariant to translation. On the other hand,



in the second task, to keep track of the location of the cat, we would like a representation that is
equivariant with respect to translations. This example illustrates the following point. Using relevant
information about our task is a way of restricting down the search space for possible models.
Along with some type of invariance or equivariance, stability is also an important property for
our representation. Let L, f(x) = f (y~'(x)), where y(x) := x — 7(x) for T € C*>(R") suitably

small. We would like a representation such that

|®f = PLfll3, < K(DflI3

and K (7) get smaller as 7 get smaller. The intuition is that small deformations of the signal will
not change the representation too much.
An important aspect of convolutional models is their ability to discern frequency information.

Empirically, high frequency information is important for image recognition. In Figure 1.1, one can

Figure 1.1 Left: Polar Bear. Middle: Low Pass filtering. Right: High Pass filtering.

see that the high frequency information is what allows us to determine that the image is in fact an
image of a polar bear, so it is important that a representation can extract high frequency information
properties. Notably, convolutions are useful for this task because of the convolution theorem.

Lastly, one also needs sufficient model complexity to retain enough meaningful information,
which is a key ingredient of deep convolutional neural networks. For example, notice that using the
representation || f ||% yields a translation invariant operator, but any meaningful information about
the function f is lost, including high frequency information.

Since convolutional neural networks learn the best model via optimizing a set of weights, it is
hard to study their mathematical properties. Instead, one can consider a proxy by using unlearned

filters to simplify the analysis. Ideally, the representation should have the following properties:



* Has some invariance/equivariance properties.

* Stable to small deformations.

* Keeps meaningful information and is sufficiently complex.

Regarding the third point, choosing an operator with sufficient complexity, invariance, and
stability is not an easy task. For now, consider a simple dilation operator L. f(x) = f((1 — ¢)x)
for |c| < 21—n A feasible way to extract more information is via a low pass filtering (e.g. define an
operator K f = f * ¢, where ¢(w) = 1Bg(0) for some R > 0). One can check that for functions f

such that £ is supported in Bg(0), we have

If*¢—Lef *ol3

- CrllfI3

If = Lef13

IA

for some constant Cg. However, high frequency information is lost because £ is only supported in
some bounded ball.

To keep high frequency information, a feasible translation invariant operator to consider is the
fourier modulus. However, this operator is not even stable with respect dilations with respect to
the 2-norm. The following informal argument from [11]. Suppose that f(x) = ¢’¢*6(x), where 6

is regular with fast decay. Then one can prove that

L f1 = 1F1ll2 =~ lell€lo]]a.

Since ¢ is arbitrary, we see that we can choose it so that the Fourier modulus is not stable to
dilations. The main point of these examples is to show that Fourier invariants, which are a natural
choice for a feature extractor, are simply not enough. Even for the most simple class of dilations, we
do not have any stability result that can contain high frequency information. To create an operator

with the properties mentioned above, we consider using wavelets.

1.5 Wavelets
We let y € L'(R") N L?(R") be a wavelet, which means it is a function that is localized in both

space and frequency and has zero average, i.e.,

Y(x)du=0.
Rn



Assume f € L?(R"). The continuous wavelet transform ‘W f € L>(R” x R,) is defined as:
V(x,) eR"XRy, Wf(x,A):=f =y (x).
Furthermore, if i satisfies the following admissibility condition

SEW 2
/ Mdﬂzcw, VweR"\ {0}, (1.4)
0

for some Cy > 0, then we will say that ¢ is a Littlewood-Paley wavelet for the continuous wavelet
transform. If i satisfies (1.4), one can show that the norm ‘W f computed with a weighted measure

(dx,d1/2™ 1) on R” x R, is well defined:

* da
W ey = [ [ WP dr

© da
— 2
—/0 /]R ool de
0 da
SRR

We note, in fact, that one can show:

W F 12 ey = B Cull 7113

where

1/2 if ¢ is real valued
B= : (1.5)
1 if ¥ is complex valued

For a function f € L?(R") we define the dyadic wavelet transform W f € £2(L*(R")) as

Wi = (f*wj)jez :

If y satisfies
Z W (2w))? =€, Vo eR"\ {0}, (1.6)

JjEZ
for some C’w > 0, then we will say that ¢ is a Littlewood-Paley wavelet for the dyadic wavelet
transform. If ¢ satisfies (1.6), one can show that the norm W f given below is well defined:

W Iz g2y = D I * w113

JEZ



In fact, we have the following norm equivalence:

”Wfll?z(Lz(Rn)) = ﬁ : éll/”f”% P

where £ is defined in (1.5). Wavelets are an ideal choice because the wavelet transform provides a

decomposition of a function into frequency bins.

1.6 Scattering Transforms

We now introduce the windowed scattering transform, which is a simple model for convolutional
neural network with desirable mathematical properties. Let ¢ : R* — R be a low pass filter
(#(0) £ 0), ¥ : R" — C a suitable mother wavelet ({/(0) = 0), and let G be a rotation group
and G* = G/{-1,1}, where 1 is the identity element for the group. Define a set of rotations and
dilations by

Aj={A=2r:reG*j>-J}if J # (1.7)

and

Ao :={2/r:r € G*, j €Z}. (1.8)

Let 1 = 2/r € A;. We further assume that our wavelet satisfies the following unitary frame

condition:

e )P+ ) (A w) =1

AEAy
is Y is a complex wavelet, and

9P+ 3 D (W )P+ (- w)P] =1

AeNy
if ¢ is a real wavelet.
Consider the operator
Ula] = / F)2y (27 (x — u)) du (1.9)
For a tuple of rotations and dilations in A, define a path of length m as the tuple p := (1y,...,4,)

and let P; be the set of all finite paths. The scattering propagator for f € L>(R") and p € Py is

Ulplf =Uldn] --- ULl f, (1.10)



which gathers high frequency information via a cascade of wavelet transforms and nonlinearities.

The scattering operator is

510 = [ Ullf@ e (111

Hp

with p), = ./R" Ul[p]é(x) dx. Additionally, to aggregate features similar to pooling, the author of

[11] define the scattering operator for f € L2(R") and p € P; as

S/Lp1F@) = [ Ulpl 26 = ) du (1.12)

Additionally, the windowed scattering transform is the set of functions

Sy[P1f ={Ss[pP]f}per,. (1.13)

This operator is similar to a convolution neural network because along each path (analogous to
each layer of a convolutional neural network) a convolution, a nonlinearity is applied, and feature
aggregation occurs via the low pass filter. The scattering norm for any set of paths € is

IS, 1Q1FIP = - 1S/ [p1£13. (1.14)

peQ

Notably, we see that the windowed scattering transform has a structure similar to a convolutional
neural network. Since it is important for a feature extractor to extract high frequency information,
we will provide an informal explanation for how the modulus nonlinearity does this.

Suppose f € L*(R"). Then

(f *4;)(0) = f(0)1(0) =0,

and assume that ¢ is C* without any loss of generality. Assume f *; # 0 on a set of positive

measure. Then
Tl = [ 17wl >0
Since | f * ;| is continuous, we can find a neighborhood around the origin where |(f—*7j)(x)| is
nonzero. In other words, high frequency information is pushed down to lower frequency bins.
Before we discuss the theoretical properties of scattering transforms, we provide empirical

justification of scattering architectures for feature extraction. First, the seminal paper [12] provided



justification for using the windowed scattering transform for small benchmark datasets. From then
on, scattering features have shown competitive results for audio tasks [13, 14, 15] and image tasks
[16, 17]. Adding learning, like in [18, 19], have been shown to help improve performance in
classification tasks as well.

Moving on to theoretical properties of the windowed scattering transform, the windowed scat-
tering transform has the following properties, which are desirable for a feature extractor. The first

property is energy preservation, under strict assumptions on the wavelet.

Theorem 1 ([11]). A scattering wavelet \ is said to be admissible if there existsn € R" and p > 0,

with |p(w)| < |¢(2w)| and p(0) = 1, such that the function

(o)

¥(w) = lp(@-n = )k (1-1pC @ =-m)P) (1.15)
k=1
satisfies
a= inf Z Z‘i’(2‘jr_1w)|(ﬁ(2_jr_lw)|2 > 0. (1.16)

1<lw|<2
slol<2 2=, 76

If a wavelet is admissible, then ||S;[Py]|| = || f]l.

The problem with the admissibility condition in above is that there are very few classes of
wavelets that are admissible. The author of [11] mentions an analytic cubic spline Battle-Lemarié
wavelet is admissible in one dimension, but provides no other examples. On a related note, [20]
has shown that scattering coeflicients have exponential decay for » = 1 under relatively mild
assumptions, but her proof only applies for n = 1, which makes the admissibility condition still
necessary for n > 2. Additionally, to our knowledge, there are no examples in the literature of

wavelets that satisfy the admissibility condition when n > 1.

The second property is that the windowed scattering transform is nonexpansive.

Theorem 2 ([11]). Suppose  is an admissible wavelet. For all f,h € L*>(R"),

ISy [Ps1f = Ss[Ps1All < |If = All2.

The third property is an "almost translation invariance" property.



Theorem 3 ([11]). Define L.f(u) = f(u — c). For admissible wavelets,
Jim [1S,[Ps17 = Sy [Ps1Lef] = 0.
for all ¢ € R" and for all f € L*(R").
The last property is a deformation stability bound.

Theorem 4 ([11], informal). Let 7 € C*(R") and L.f = f(u — t7(u)). For f € L*(R") and
ID7]le0 < 55,
IS/ [Ps1Lf = Sy[Ps1fI < KD fl2

with K(t) = 0 as ||T]|co + || DT]|co + ||D2T||OO — 0.

Deformation stability bounds have become a major point of importance in mathematical deep
learning. Since Mallat’s work, other works have tried to find feature extractors with similar
mathematical properties. For example, [21,22] consider a generalization of the scattering transform
where one uses a general frame instead of a wavelet frame. Another set of related works are [23, 24],
which uses a generalization of gabor frames, called uniform covering frames, as a convolution layer.
Convolutional kernel networks, as seen in [25, 6], also have desirable mathematical properties.
Additionally, rather than working on Euclidean space, a better intrinsic representation can be found
by working on a graph or manifold (e.g. point cloud data); works such as [26, 27, 28, 29, 30] focus
on feature extractors on noneuclidean data. We will provide a preliminary generalization of [28] in
Chapter 4 of this thesis.

Notably, other than [11, 23, 24] all these feature extractors for Euclidean data only provide

stability bounds for bandlimited functions, or the set of functions that satisfy
{f : f has compact support}.

This assumption is reasonable for actual signals because real-world implementation of signals are
implemented on a domain with compact time and frequency support.

The work in [23, 24] makes a slight generalization to (e — R) bandlimited functions. Let
Or(x) ={y e R" : [y —x[lo < R}.

10



A function f € L?(R") is (e, R) bandlimited for some ¢ € [0,1) and R > 0 if

I 2 0ro) = (1= &) fll2.

However, their stability result is slightly weaker because there are terms that are independent of the
deformation in their bound.

To our knowledge, a result similar to Mallat’s stability bound, which does not rely on the
function being bandlimited, does not exist for other feeature extractors in the current literature. An
interesting line of work appears in [31], where one relaxes the assumption on 7 in Theorem 4 from
7 € C?>(R") to t € C**(R") for @ € (0,1). Similar results also apply to our stability bound in

Chapter 2 as well.

1.7 Contributions

Windowed Scattering Transforms are useful when the representation does not need to be rigid.
For example, object detection does not require translation invariance, so a Windowed Scattering
Transform would be appropriate since a smaller choice of J would not have coeffiicents that would
be nearly translation invariant. For a task like classification that needs rigid translation invariance,
windowed scattering coefficients are not necessarily the best option. Since the set of functions {¢;}

forms an approximate identity,

J—o oo J— o0

lim S[p]f = lim 2"/ /Rn Ulpl(f * ¢5)(x) dx = ¢(O)[[U[p] f1l1-

Here, the norm acts as the global pooling layer instead of a local pooling layer with the low pass
filter. Mallat considered the set of all nonwindowed scattering coefficients, given by S[Pw] f,
which provides a rigid representation. However, he was not able to provide stability results for the
norm he considered.

We consider a slightly different problem than Mallat did for the nonwindowed scattering
transform. As mentioned before, the nonwindowed scattering transform introduced in [11] was
a collection of L'(R”) norms of various cascades of dyadic wavelet convolutions and modulus

nonlinearities applied to a signal. Here, we extend the definition of the scattering transform to the

11



continuous wavelet transform and for L4(R") norms with ¢ € [1,2]. For a continuous dilation

parameter A € R, we define the dilations of i as:
VAeR,, ya(x):=a""y(1 "),
which preserves the LZ(R”) norm of

lwalla = llwlla, VAeR,.

For the continuous wavelet transform, the one layer wavelet scattering transform with LY (R") norm

is the function Scont4 : Ry — R defined as:

VAER:, Sconigf (D) = Ilf*vallg- (1.17)
For a dyadic dilation parameter j € Z we define dilations of ¥ as:
VieZ, yj(x)=2""y(27x),
which preserves the L! (R”) norm of

Willi =1llylh, VJjeZ.

The one layer wavelet scattering transform for the dyadic wavelet transform is the function Sgyad,q f :

7, — R defined as:

Vi€Z, Sauagf()=If vl (1.18)

More generally, the m-layer wavelet scattering transforms S¢g, . f : RY' — R and Sg’ya dg f:

7" — R are defined as

S(r:rz)nt,qf(/ll’ .. aﬂm) = ”Hf * lp/l]l * w/lzl e | * w/lm”q 5 (119)

Sayad.gS U sm) = Wy bl 5o T llg - (1.20)

This is similar to working with a windowed scattering transform with a finite number of layers.

However, our operator is different from the operator S; in [11] because it does not contain the

12



filter A; to aggregate low frequency information, so the scale parameter in our formulation is not
bounded above or below. Additionally, because the averaging filter is replaced L4 (R") norms, our
representation is fully translation invariant rather than translation invariant as J — oo.

As for the significance of using L?(R") norms to replace the averaging filter, there is one area
with direct application: quantum energy regression tasks [32], where a representation that is similar
to the rotation invariant representation in Section 6.2 has already been used for quantum energy
regression.

Given a configuration of atoms, we would like to estimate the ground state energy of the
configuration. Suppose we have a molecule with K atoms with nuclear charges z; and nuclear

positions py with k = 1,..., K. The state x of a molecule is given by
x={(pr.zx) ER*xR : k=1...,K}, (1.21)

Due to how we have defined our state, we would like our representation to have the following
properties:

* Permutation Invariance: the energy should not depend on the index of the molecules.

* Deformation Stability: small deformations of the molecule should only lead to small changes
in energy of the system.

* Isometry Invariance: the energy should be invariant to group actions such as translations,
rotations, and other general isometries.

* Multiscale Interactions: molecules have many interactions terms, and these interaction
terms depend on the pairwise distance between atoms (i.e. short range covalent bonds and
longer range Van Der Waals interactions).

The rotation invariant version of our scattering transform in Chapter 6 satisfies permutation
invariance, deformation stability, and has multiscale interactions based on the proofs we’ve provided.
We do not prove isometry invariance, but the operator is rotation and translation invariant.

Motivated by DFT theory, the paper [32] uses a dictionary of one and two layer scattering
norms with ¢ = 1 and g = 2 to get (at the time) state-of-the-art results for energy regression tasks

for planar molecules. In particular, scattering operators with ¢ = 1 scaled with the number of

13



atoms in the system and g = 2 encoded pairwise interactions. The motivation for using 1 < g < 2
comes from [33, 34], which based on the Thomas—Fermi—Dirac—von Weizsicker model [35], also
use scattering norms with ¢ = 4/3,5/3. Later papers, like [33, 34], use a similar representation,

involving spherical harmonics, for 3D quantum energy regression.

Remark 1. We can replace all the modulus operators with any contraction mapping (or use different
contraction mappings in each layer) in the definition above, and all the proofs in the rest of this paper
will still work. In particular, the modulus can be replaced with a complex version of the rectified
linear unit (ReLU) nonlinearity, max(0, Re(a;));=1,..., for a € C", which is a popular choice for
complex neural networks. Nonetheless, we will use the modulus operator throughout this paper

without any loss of generality.

We provide a general roadmap for this chapter. First, we will cover notation, basic properties
about wavelets and the wavelet scattering operator, and harmonic analysis that will be necessary
for the paper. We then provide norms for an m-layer wavelet scattering transforms and prove that
the operators are well defined mappings into specific spaces when 1 < g < 2. Next, we explore
conditions under which the m-layer scattering transform is stable to dilations, and we generalize
our results to diffeomorphisms. Lastly, in the last section of this chapter, we formulate two new
translation invariant operators that are stable to diffeomorphisms. The first is rotation equivariant,
and the second is rotation invariant. Our contributions include, but are not limited to, the following:

* We formulate an extension of the dyadic wavelet scattering operator for a finite, arbitrary
number of layers with parameter ¢ € [1,2] by applying L4(R") norms instead of L!(R")
norms. Additionally, we formulate a wavelet scattering operator with ¢ € [1,2] that uses a
continuous scale parameter, like the continuous wavelet transform.

* We create a new finite depth scattering norm using dyadic and continuous scales in the
case when ¢g € [1, 2], and prove that the mappings are well defined and provide theoretical
justification for a broader class of wavelets that make the scattering transform Lipchitz
continuous to the action of C? diffeomorphisms. However, the trade-off is that our stability

bound depends on the number of layers.

14



* We provide a condition for norm equivalence in the case of g = 2 that is less stringent.

* In the case of g € (1,2], we prove that our norm is stable to diffeomorphisms 7 € CZ(R")
provided that ||7||e < zl—n and the wavelet and its first and second partial derivatives have
sufficient decay. In the case of g = 1, we show stability to dilations.

* We extend our formulation to include invariance or equivariance to the action of rotations

R € SO(n).
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CHAPTER 2

GENERALIZING THE NONWINDOWED SCATTERING TRANSFORM
The contents of this chapter were a joint work with Matthew Hirn and Anna Little. A journal
version of this chapter is published in [36]. We start by providing basic prerequisite knowledge that

will be necessary for the results in this chapter.

2.1 Fourier Transforms and Hardy Spaces

The Fourier transform of a function f € L!(R”") is the function f € L*(R") defined as:
YweR", f(w) = / F(x)e ™% dx .
Rn
The Hilbert transform of a function f € L!(R) is denoted by H f and is defined as:

Hf(x) := lim )

=0 Jix—y[>e X — Y

dy.

The map H is a convolution operator in which f is convolved against the function 1/x. We note
that

H:L{R) > LI(R), Vl<g<oo,

however the result is not true for g = 1,i.e., if f € L'(R) itis not necessarily true that H f € L'(R).
We thus introduce the Hardy space. We denote the Hardy space as H' (R) and it consists of those
functions f € L'(R) such that Hf € L'(R) as well. For f € H'(R) the Hardy space norm is

| £ Il (r)> Which we define as (see Corollary 2.4.7 of [37])

I e ey == 1A+ L £l (2.1)

One can show that if f € H!(R), then f must necessarily have zero average. An important property

of the Hilbert transform and convolution is the following:
1 1
H(f*g):Hf*g:f*Hga fELp(R)’gELq(R)7 I <—+-—.
P q

We have a similar definition for Hardy spaces when n > 2. For 1 < j < n, define the j™ Riesz

transform as

Rif@=lim [ () dy, 22)

£—0 |x—y|>e |x -y

16



where x = (x1,...,x,) and y = (y1,. .., y,). The Hardy space f € H'(R") consists of functions f
such that f € L'(R") and R; f € L'(R") for 1 < j < n as well. For f € H'(R") the Hardy space

norm is || f{|g gy, Which we define as (see Corollary 2.4.7 of [37])

1 ey 2= 11+ - IR £l (2.3)
j=1

2.1.1 Operator Valued Spaces
Consider a Banach space 8. Suppose f : R” — B and x — || f(x)||g is measurable in the

Lebesgue sense. Define L%(R”) for1 < p < ootobe

p _ p
170y ey = [ WG
Also, for 1 < p < oo, define
170y = sup3 - m({x € B < L (3l > 1)
>

We also have the following relation:

||f||L;’°°(Rn) < ||f||Lg(R") :

Note that for f : R" — R”,

10y, = [ 17 s = [ 1N ax= 115

2.2 Wavelet Scattering is a Bounded Operator

In this chapter we explore for which g > 0 and m > 1 the wavelet scattering transforms S¢;,, . f

and S

dyad.g f are well-defined as functions in some Banach space (i.e., have finite norm), and under

what circumstances.

Let ¢ be a wavelet. We assume that ¢ has the following properties:
()| < A1+ [x[)™"° (2.4)
/R (=) =g (@)l dx < Alyl” (2.5)

17



for some constants A, &, & > 0 and for all i1 # 0.

Consider the Littlewood-Paley G-function

,dt 12

v

Gy (f)(x) = ( /(O 1)

(2.6)

Let 8 = L? ((0, ), %) We can rewrite this as a Bochner integral by considering the function

K(x) = (t7%0,(x));>0. This is a mapping K : R” — B and the function x — ||K(x)]||g is

measurable. Also, if we let

T(N) = ( [Pt =n50) dy) = (P« ()

t>0

we observe that
Gy () x) =IT(H )z
and
Gy (NI = IIT(f)IIIL’%(Rn) :
From Problem 6.1.4 of [38], the two properties above for the wavelet ¢ imply that

c,A

K <=
IK(x)ls o

and

wp [ G- - KWlsds <,
yER™M{0} o |x|>2]y|

b
t>0

2.7)

(2.8)

where ¢, and ¢], depend only on n, &, and &’. We will omit the dependence on € and &’ throughout

the rest of this paper, and this will have no effect on any of our proofs.

Remark 2. For the rest of this paper, we will write G in place of G, when referring to the

G-function because the dependence on the mother wavelet is clear.

Remark 3. Note that (2.5) holds under the alternative condition
Vg ()] < AL+ ]x]) ™"
This is a consequence of Mean Value Theorem.

18
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We have the following result taken from Problem 6.1.4 of [38] and from Chapter V of [39].

Lemma 5 ([38, 39]). Assume that ¥ is defined as above and satisfies (2.7) and (2.8). Then the
operator G is bounded from L*>(R") to L?>(R"). Also, for p € (1,00) and B = L*>(R,, dt/t), we
have

1T fllLs gy < CaAmax(p, (p = D7) fllLe ) (2.10)

for some C,,. For all f € L'(R"), we also have

Il ey < CrAll s e 2.11)

and
17l ) < CrAll Ml e (2.12)

for some C,,

Remark 4. We can also formulate similar bounds for the Littlewood-Paley g operator
1/2
8(f)(x) = [Z 7 f(x)|2] (2.13)
jez

using similar arguments.

Remark 5. Let ¢ be a wavelet that has properties (2.4) and (2.5). Then with the L2 normalized

dilations, the Littlewood-Paley G-function can be written as:

o0 dl
/O o u@F

12

G(f)(x) =

(2.14)

Note that the A measure for G ( f) matches the measure in defining the norm of ‘W f.

2.2.1 The L?>(R") Wavelet Scattering Transform
In this section we prove the L?(R") scattering transforms are bounded operators. More specif-

ically, we prove that S _: L?>(R") — L?(R™), where L?(R™) has the weighted measure defined

cont,2
by
dA; da,,
/lrlz+1 e /an,?-l

1528 W = /O /0 ST e AP
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and we show that ”Scont 2 lez@my < Cllfll2@we). We also show that S(’j” ad2 : L2(R") — £2(ZM),

where

1S Gyag.2f 172 zm) = Z Z |Stvaan s - s Jm) 2.

Jm€Z JI1€EZ

Proposition 6. For any wavelet satisfying (2.4) and (2.5), we have S™ _ : L?>(R") — L*(R") and

cont,2 °
m 2(mon 2 (m7m
St g P LARY) = (2",

Proof. The proof of the dyadic case is essentially identical to the proof given below and is thus

omitted. The case of m = 1 follows by an application of Fubini’s Theorem:

© da
IScma Moy = [ 15+ valf 2
- [ [ ewpag

/ln+l
= / IG(f)(x)|* dx
Rn

< CIIfII3

by boundedness of the G-function. Now we proceed by using induction. Assume that we have

1S 2f”L2(Rm) m||f||2 Let W, f = f =y, define M f = |f|, and Uy = MW, for notational

brevity. Then notice that

WLE = a, | * a,l # - =, = a5 = 1Waa Usy -+ Un 13-
Substituting yields
dA da
2 1 +1
”Scont 2f||L2(R’"+1) - / / |(W/lm+1 U/l U,11f||2 /ln+1 .- /lnn:-l
m+1

da da da
2 &lm+1 1 m
o Ay A A O B
dAm
/ / 1Ua,, - U’llf”Lz(RJ,)/lnH"'_/lnH
da
2 ddy
<C/ /IIUA U/llf||2/1n+1 /l”“

dd da

2 1

= / / 17 (A )| —Wl...ﬁnﬁ
1 m

< " £113,
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where we used the induction hypothesis in the last line. This completes the proof. O

Proposition 7. Suppose y is a Littlewood-Paley wavelet satisfying (2.4) and (2.5). Then S”" 2

L2(R") — L2(R™) and specifically 1870 Sl = C&,"Hfll2 Also, S™  :L?(R") — €*(Z™) and

dyad,2 *
157 a2l = CRUFI.

Proof. We only provide the proof of the continuous case again. First consider the case m = 1. We

have:

0 da
”Scont,Zf”iZ(RJr) :A ”f*wﬂ”% /ln+1

I s
T / 170l
- Gy / ( [ 1w Ww)mw) -

_ (2711)n /R (/0 I@(ﬂw)|27) P do
- oo [ () ao

| )
= chllflli

= CyllfIl3-
Thus the claim holds for m = 1. Now assume that it holds through m. Then by the inductive
hypothesis,

dAy
IS 1) = / / L =, B W= colfIR.

Now consider the case of m + 1. Similar to the previous proposition, we have

® * © dd,41 ) dy da
R (/ (s, Unf) s B | S0 S0
1 m

m+1

da da

2 1

_Clp/ / |Sc0nt2f(/ll""’/l"1)| ﬂn+1 /l"ﬁ
1 m

1 2
= If1.

Thus, the claim is proven by induction. O
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2.2.2 The L!(R") Wavelet Scattering Transform
Define the notation W, f = f =y, M f = |f|, and U; = MW;. We now try to prove that for
meN,s" :H(R") — L>(R™). The norm for S  f is:

cont, 1 cont,1

1/2
m e .. m 2 1 2 e m
”Scont,lf”Lz(RT) T (/0 -/O ) L |Scont,1f(/ll’/12’ to ’/lm)| /Vlﬁ-l /ISH /vr?nﬂ)

1/2
B R 2 dAy dly  dAy,
(/ [ [ v v ﬂﬂﬂ) |

An analogous result will also hold for the operator H! (R") — £2(Z") with norm

1/2
1S5 g1 flle2zmy = (Z IS g F s ,jm>|2) :

ijZ jleZ

Before we begin, we will need an important multiplier property of the individual Riesz Trans-

forms:
I ROTE
R;f(w) :—lmf(w). (2.15)
Let @ = (ay,...,a,) be a multi-index with n-elements, and let 7 = (¢1,...,t,) € R". We say

that ¢ has k vanishing moments if for all |@| < k, we have
/ (T, 27) w (r)dr = 0. (2.16)
Rn
The following lemmas will be necessary.

Lemma 8 ([40]). Suppose that ¢ has N vanishing moments, let M > 1 be an integer, let @ be
defined as before, and let E = (B1,...,PBn) be a multi-index. Assume that  satisfies the following
properties:

o y ¢ H*(RY) N C(RY) for some s > M + 5.

® There exists A > 0 and € € [0, 1) such that ¥ satisfies
D%y | < A(L+ [x]) ™ N13 for 0 < |G| < M.
e For0<|@3| <M-1and|B| <N +]3|,

/ 7, /7' D%y (1) dr = 0.
Rn
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Then
ID¥Rip (x)| = |RiDy(x)| < A(1 + |x|) "N -ldke+d

for some 0 < & < 1 — & and DY Ry has vanishing moments up to degree N — 1 + |@|.

An immediate consequence is the following Lemma, which we will provide without proof.

Lemma 9. Suppose that  satisfies the following conditions:
o y ¢ H*(RY) N C(RY) for some s > 2 + 5.

® There exists A > 0 and € € [0, 1) such that ¥ satisfies
ID%y| < A(1 + |x]) 77271+ for 0 < |G| < 3.
o For0 < |a| <2and |,E| <2+ |al,
/Rn /7' D%y (1) dr = 0.

Then Ry and all of its first and second partial derivatives have O ((1 + |x|)"=1*7) decay for some

ne (0,1).

The first implication to take note of is that R;i is a wavelet with "good" decay of itself and
all its first and second partial derivatives. Note that the strict decay on the partial derivatives is
necessary for technical reasons in later proofs, but decay on all second partial derivatives can be

relaxed for the following theorem.

Theorem 10. Let  be a wavelet satisfying Lemma 9 and let S™ . be defined as above. Then for

cont,1

f € H'(R"), there exists a constant Cy, such that

IS ons1 [ Iz @my < Coll flla ey -

Additionally,

1S%aa1 S le@my < Cull fllar @
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Proof. We proceed by induction and only provide a proof for the continuous case because the
dyadic case follows by almost identical reasoning. Let f € H'(R") throughout the proof. By

Minkowski’s integral inequality ([41], Theorem 202), we have

/1n+1

IS 2 di 1/2
{L(Wuwmmﬂﬂm)
) 1/2
SUXA|ﬁW@KﬁJ ﬂ

=Lemmw

00 di \'?
1Scont,1 fllL2m,) = (/O £ *wall? )

=GNl

< Cllflhar ey »

where in the last inequality we used Lemma 5.

Now we assume that there exists some m > 1 such that

1Seonc 1 f lL2@my < Coull Il ey
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‘We have

1ot 1f 2oy
oo 00 da da i
2 1 m+1
— ‘/0 /O ||(UA,,,"'Uﬂlf)*Wm+1 IW /l’,;l’:rll)
) 1/2
8] 0 d/ll d/lm+1
- . (Ua,, - Ua f) =Y, dx)
Lo UL e I T T
o e . ]\ @
2 1 1
S A ..A /n |:‘/0 |(U/lm"'U/llf)*w/lm+l /lnn_:-;- ] dx /ln+1 T
m+1
_ 5 1/2
00 00 d/l] d/lm
— .. G(U, ---U x) dx
/0 /0 / (U, -+ Un () ] o Wl)
da "2
1
= / / ||G(U/lm U/llf)“z/lyﬁ_] T /ln+l)
0 00 da da 2
2 441 m
_ /0 /O ||G(fWAmUﬁm_1'--Ualf)lll/l,lm "'ﬂnmu)
since the G function has a modulus already.
It follows that
dAq da
|S™ cont, 1f||L2(Rm) <C (/ / W2, Us,_, - U/llf”Hl(R")/lrwl ﬂnﬁ

Now use the definition of the H! (R”) norm to write

W, Ua,,

J=1

Thus, since R; W), h = h= (R, ) and Ry wavelet, we can use our induction hypothesis and the

25

o Un flleeey = WL, U4,

+ Z [(R;Wa,

) (lem_l -

Ua, [l ey

U/hf)”Ll(Rn) .

da,,
/l”"'l
m

)1/2
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previous lemma to get

o (o] 2
cl[ ] Wi WUl o i

12
da
/ / |(W/1 (U/lm 1’ U/hf)”Ll(R")/lnH T ﬁnﬁ)
m

) 1/2

0 (S 2 d/l] d/l

+ CZ /o /0 |(RyWy,,) (Un,_, "'Uﬂlf)”Ll(R") Fro /ln_ﬁ)
= : ;

< Gt 1S s gy -

12
dl,  da, )

Thus, the theorem is proved by induction. m|

The case of n = 1 is a little trickier. We have the following multiplier property for the Hilbert

Transform:
_ 11 0
Hf(w) = -H]:(w) @ 2.17)
—if(w) w>0

Unfortunately, this yields less regularity for I-’I}‘ at the origin without additional assumptions.

However, notice that the Hilbert transform commutes with dilations, so in particular:

H(a) =HW), and H(y;)=H(Y);.
Using the calculation of I-/I}” in (2.17) we see that
Hy = —iy, if ¢ is complex analytic.
Thus, we have the following corollary.

Corollary 11. Let ¥ be a complex analytic wavelet such that (2.4) and (2.5) hold. Then for

f € H'(R), there exists a constant C,, such that

1S ons, 1 f Iz < Cnllf i gy -

Additionally,

1S%ad 1 lezzmy < Coll fllm g)-
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2.2.3 L4(R") Wavelet Scattering Transform

In this section, assume 1 < g < 2. We prove that form € N, S¢¢, . : LY/(R") — L%(R™). The

m 1qe
norm for S¢;, - f is:

q/2
dly di, da
”ScontquLZ(Rm) (/ / / |Scont qf(/119 /12’ ey /lm)|2 /er—l /er—l .« /ln_:r;)
1 2 m

q/2
00 0 o] 2 d/l d/l d/lm
:(/ / / (||(U1m_1...Uﬁlf)*z/umq) 1 dl )
0 0 0

/l}il+l ﬂ;+l /l;'ln+1
There is also an analagous result for

q/2
— 2
”dead qf”ZZ(Zm) - (Z Z |dead qf(/lla/IZ’ L ,/lm)l ) .

Jm€Z Jm€Z

Theorem 12. Let 1 < g < 2. Also, let  be a wavelet that satisfies properties (2.4) and (2.5) and

let S™ and S™

cont,q dyad,q
”Scontqf”Lz(R) < CullfNI for all f € L4(R"), and furthermore IIdeadqfll,;z(Z) CullF113-

be defined as above. Then there exists a universal constant C,, > 0 such that

Proof. We proceed by induction and consider the case of m = 1 first. Let f € L9(R"). For the

continuous wavelet transform, we apply Minkowski’s integral inequality:

S d1 '?
”Scont,qflliz(RJr) = |:~/O (”f * l/’/lHq)q /UHI]

0 29 ga

:Vo (/Rnlf*w(x)lqu) =
00 d q/2

< ([ irmwr ) a

=G (Nllg
< Clifllg:

q/2

where in the last inequality we used Theorem 5.

Now, let us assume that

||Scontqf||iz(RT) Cquf”Lq(Rn .
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We apply Minkowski’s Integral inequality [41] to swap and then bound:

1
||ng)-;lt,qf||iz(Rr+n+l)
i q/2
« « 2/a da, dA 41
_ (||(Uﬂl~--U11f)*'ﬁ/lm+1 ) -
Iy o

q/2

[ ) ) 2/q
da, dAm+1
:»/0 (L v vl TR T

m+1

- ~ . /2
© | pe 0\ dA o an|
=/ - (U, - U f) % g 01 dx| L e
_ 0 o |Jo R” A A A
2
© w e\ Vo a !
2 m+1 1 m
S ./O "'A /n A |(U/11”.U/11f)*¢’/lm+l(x)| /1:,;:'-11 ) dx /1?_'_1"'/12:_1
q/2
0 °° dA da
- 2271 m
=1 [ [ iew v el
q/2
* « da da
2 1 m
< /0 /0 Vs U
= qulsgént,qf”;]‘Z(RT)
< D) 113,
This proves the desired claim. O

2.3 Stability to Dilations
We now consider dilations defined by 7(x) = cx for some constant ¢, so that L f(x) =

f((1 =c)x). We will start by proving a lemma that will be useful for our work.

Lemma 13. Assume L is defined as above. Then

Lof = ya(x) = (1= o)™ (f x¥aea) (1 = 0)x).

Proof. Notice that

Lf a0 = [ £ =t =) .
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We make the substitution z = (1 — ¢)y. Then it follows that
Lefxya() = (1= | f@Wax=(1-0)"2)dz
— _\n -n/2 -1/ A d
(1-c) /Rnf(z)ﬂ v (1= (=070 dz

= (=07 [ @10 =™y (1= )™ (1= e)x - 2)) dz
Rn

== [ f@waon (- 0x-2) &
Rn

=(1=)"2f % -ea (1 = c)x)
=(1-¢o)"2L, (f *¥a-oa) ().

Remark 6. We also have

LWof(x) = (f =y (x(1=0)).

Before we begin the next Lemma, we explain the general idea behind our approach to explain

the necessity of Lemma 14. Define
Y() = (1= )"0 (0 — ¢ (). (2.18)

We want to prove that W satisfies (2.4) and (2.5) with a linear dependence on c for future stability

lemmas.

Lemma 14. Suppose that  is a wavelet that satisfies the following three conditions:

A n
ly (x)| < Tappee *€ R", (2.19)
Ve ()] < S S— (2.20)

(1 + |x|)n+1+,8

|D? x € R, (2.21)

Y ()l < W

for a, B,k > 0. Consider
¥(x) = (1= )"0 (0 — ¢ ().

forc < ﬁ Then ¥ is a wavelet satisfying (2.4) and (2.5).
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Proof. Without loss of generality, assume @ < 8 < « < 1. First, it’s clear that ./R" ¥ = 0. We now

just need to verify properties (2.4) and (2.5). Assume ¢ > 0. We can modify the proof accordingly
if ¢ < 0. Then
P00] = (1= )Py () - w )
X n
o) -0
X l-c N\ (n j
o () o = |ramam Y (D)o

j=1
Now use mean value theorem on the first term to choose a point z on the segment connecting =

o(1)-v (5|

We now use Cauchy-Schwarz to bound the left side:

=(l-¢)™"

<(l-¢)™

and x such that

—|[Ve ()] x| =

c
1-c¢

Alx|
1-c¢ (1 + |Z|)n+l+ﬁ'

Since z lies on the segment connecting 1= and x, we see that for some ¢ € [0, 1], we have

Ve ()] <

1-¢

z=(1-1) +tx
1-c¢
1-1¢ +t—tc
= X X
1-c¢ 1-c¢
1—t+1t—tc
= X
1-c¢
1-tc
= X.
1-c¢

Thus, |z| > |x|. It now follows that

c Alx| L ¢ A
L=+ 7 T=c(l+x))"*

Finally, we get
c A N =1 (?)Cj A
(1—c)™ (14 x)™F (1 =)™ (1+ |x)"

|Pa(x)| <

—n=1 31 v
<2A 2n j=1 (J) B
-1 (1+ px])™
A,c

D L —
(L+ |x)"™
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for some constant A, since we assume @ < 8 and ¢ < ﬁ Thus, (2.4) is satisfied.

We use a similar idea for proving (2.5) holds. Assume ¢ > 0 without loss of generality and
further assume that |x| > 2|y|. By Mean Value Theorem, there exists z on the line segment

connecting x and x — y such that
|¥(x —y) = ¥(x)[ = [V¥(2)]lyl.
Like before, we notice that

VP = [(1 =) "2V () - T (2)|

oo s ) -
= (1= |y (=) = (1 - 0™ Vu(2)
<=0 o () - v (=5 +<1—c>‘"-lz(”;1)cf|w @l.

Let S be the set of points on the segment connecting = and z. By Mean Value Inequality, since S

is closed and bounded, we have

‘W(ﬁc)_w’(i:gz)

The maximum for the quantity above is attained in S, so let us say the maximizeris wi = (1-1) ;%= +12

<

D? :
- max D%y (w)||, Izl
for some ¢ € [0, 1]. Now use decay of the Hessian to bound the right side:

c
1-c¢

Alz|

L=e (L Jwymt+e

2
max |[D*y (w),, Iz] <

It follows that

w1 :(l—t)ﬁ-i'lz

3 1-1¢ t—tc

= +
l—cZ l—cZ

3 1—t+1t-tc

a 1-c¢ .

3 1-1tc

a l—cZ'
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Thus, |wi| > |z|. We conclude

c Alz| . ¢ A
l_c(1+|wll)n+1+l< - 1-C(1+|Z|)n+’('

For bounding |[V¥(z)]|, we see

1 (n+ly .
A () A
V()] < — T
(1 _ C)n+2 (1 + |Z|) (1 _ C)n+1 (1 + |Z|)n+1+ﬁ
r;tl ""fl)cf
< A(l - C)_n_z%
(1+1z])
n n+l Iy .j
- o2n |24 ijl (n; )c!
“\2n-1 (1+]z))™™
Going back to proving (2.5) holds for P,
W 3) — ¥l = [PHIp] < (22 ) 2AZE el
SEECEEE AR Dy (1+ |2])™™

since the point z lies on the lines on a line segment connecting x — y and x with |x| > 2|y|, we can

use an argument similar to above to conclude

2 y”A ﬁH“Wﬂﬂ

J
2n -1

n+l+x
¥ ) = W) < 20 TR

Now integrate to get

o) n+2 n+l 1 . d
/' |Wu—w—wunwszMM(—ﬁ—) A}j”.)aw .
1220y 2n-1 =\ =21yl 1]

n+l

o\ n+1\
:2n+l+/<( ) AI"Z( . )cjlyll_K’
2n—-1 S\

where [, is some constant associated with the integration. Finally, we have a bound of

/' W(x = y) — W) dx < Ancly]*.
|x|>2]y|

for some constant A, only dependent on the dimension n. Thus, (2.5) holds with exponent

1 -k e (0,1). Let A, = max{A,, A,}. It follows that

A

A,c
(1+ |x])™™

/' W(x = y) = W) dr < Anely]™.
|x|>2]y]

Wa(x)] <
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It follows from Problem 6.1.2 in [38] that the bound in the G-function depends linearly on the
constant A from Theorem 5 when proving L?(R") boundedness. Thus, the following corollaries

hold.

Corollary 15. Assume |c| < i For  satisfying the conditions of Lemma 14, when 1 < p < oo,

there exist constants C,, , and C‘n,p such that

) di 1/2
H( | s ewer W)

< c-Cyppmax{p,(p — )"} fllLe@n)
L (R7)

and

1/2
(Z f \P,-<x)|2) <c- Gymax{p, (p = )} f o e,
Jjez Lr (R?)

Alternatively, if one of the following holds:

e n =1, Y is complex analytic and satisfies the conditions of Lemma 14,
e n > 2 and y satisfies the conditions of Lemma 9,

there exist constants H, and H, such that

) 1/2
H( /O 1 * a2 ;,ffl)

1/2
(Z £ ‘Pj(x>|2) < ¢ Al fllm .

JEZ L!(R")

< ¢+ Hyll fllm mm
L!(R™)

and

Now we can use the results above for our main dilation stability results.

Theorem 16. Suppose that  is a wavelet that satisfies the conditions of Lemma 14. Then there

exists a constants K, ,, and Ien,m only dependent on n and m such that

1Seone 2 = Seoneo Lef 2@y < lel - Knmll f1I2

and
||Sgn[1yad,2f - S:?yad,erf“Lz(RT) < el - Ienm”f”Z

forany |c| < ﬁ
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Proof. Without loss of generality, assume ¢ > 0. Let

Wif =f=*
Mf=Ifl
U, = MW,

1/q
A.f = (/Rnfq(x)dx) .

It follows that ng)mz = AoMW,, U,, ,---Uy. We will also let V,,_1 = Uy, ,---U,,, with Vj
being the identity operator, and make a slight abuse of notation by denoting W), as ‘W. First, we

will add and subtract A;M L WYV,,_; f and apply triangle inequality:

1Stoniaf = Seonc2 Lefl2@my = 1AM WV 1 f = AaMW Vi1 Lo f |12 wem)

cont,

S NAMWVior f = AaM LWV fllezgm

+[AaM LWV f = AaMW Vo1, Le fll 2wy

We’ll start by bounding the first term. We see that g = WV,,_; f € L?>(R"). Thus

[Ao MW Vo1 f — AaM LWV 1 f = |llgll2 — IL-gll2] -

Now use a change of variables:

IL-gll3 = /Rn 8((1 = c)x) P dx = (1= c)"||gll5.

It then follows that

1 1
1Legllz = ligllal = ligll2 (W - 1) < llgllz (<1 —or 1)'
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Taking the scattering norm yields

”AZM(WVm—lf - AZMLT(WVm—linZ(RT) < ”S(r;’z)m,zf“iZ(Rin)

2
||Scont Zf”Lz(RT)
2

n ,
.)C] ”Scont 2f||L2(Rm)
2

2n \" < (n) 2
(Zn—l) (J')CJ IScon2 Nz ey

2 2
Cnnll f113-

IA Il Il
—Pmm e/ —
~~
P—
| | =
)
N~
S
[

For the second term, apply Minkwoski’s inequality for 2 norms:

1AM LWV f = AaMW Vo1 Lo f 2y

1/2
2 d/l] d/lm
/1111+1 /121+1

:( Lo [ MWyl =WV sl

12
da da
(-/ / LWVt f = WLV f113 n+11 /lnf‘l)

= A2 M [ W Vo1, Le] flli2 ey

Now this 1s a commutator term, and we can now bound:

da da
1A MW Va1, Lol I ) = / / WVt Lel fI13 o+ s
1 m

= |||[(WVm—l’LT]f”iZ(Riann)
= ” [(va—la LT] ”iz(RTXR")—)LZ(R")”f”%'

We examine the commutator term more closely. Without a loss of generality, assume m > 2. By

expanding it, we see that each term contains [“W, L.]. It follows that

I LW V-1, Le]llp2 mmxeny
< m”(W| LZ(R xR")—>L2(R") ”Ml LZ(R")—>L2(R") || [(W’ LT] ||L2(R+XR”)—>L2(R”)

< CalllW, Lellli 2, xrmy—L2 (R -
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Thus, once we bound this quantity appropriately, we will finish the proof. We start by writing

* da
WLy = [ 1) 50 = Lo (F o) B

By substitution with z = (1 — ¢)x and Lemma 13,

I(Lef) % a— Lo (f ) |13
= [ NLef 49 @) = Le (f +u) @I

:/n

=(1-0™
R®

(=)™ (F #10) (1= €)0) = (f 0 (1= )| d

2
(1= (Fwaia) () = (f +u) () dz

=(1-o™
R

2
f = ((1 — )Y (1o —90/1)‘ dz
=(1-o™ x P 2d
(=07 [ 1) QP d,
=(1=)"|lf = all3.

Thus, we obtain

°° 1 e 1
|1 = Lo (oo B = (=07 [l

2 /ln+l

°° d.
=07 [ [ 1P o as

o0 a1 \12 2
=(1-¢)™ (/0 |f*lm(x>|2ﬂn+l)
2
2n \"
2 2
< (2n i 1) Cupll 13-
It follows that
ISeonia S = Seont2Lef 2@y < lel - Kumll fll2
for any ¢ < ﬁ m|

As is customary at this point, we have the following corollaries. We start with the case where

1 <qg<?2.
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Corollary 17. Assume |c| < 21—n For q € (1,2), there exists constants Ky .4 and Ky .4 such that

12t = St LWy < 1617 - K171

and

”deadqf deadq Tf”fZ(Zm) < el?- nmq”f”q

Proof. Withoutloss of generality again, assume ¢ > 0. First, we will add and subtract A, M LWV, _1 f

and apply triangle inequality:

1Scont.q.f = Scontg LS l2@my = 1AGMW V1 f — AgMW Vi Le f |2 ey
< NAGMWVyoi f = AgM LW Vit flli ey

+ |AgM LW Vi1 f = AgMW Vo1, L fll 12wy -
We’ll start by bounding the first term again. Define g = WV, f € L4(R"). and we have
|AqMWVm—1f - AqMLT(WVm—1f| = |||g||q - ||LTg||q| .
By change of variables,
lglly — I1Zegll] = gl ([~ 1] < lglly (s ~ 1)
1 1 1 (1-c)nla N1 =-c)n
Again, we have

1
”AqM(WVm—lf_AqMLT(WVm—lf”?}(RT) < (W ) || Contsz?Jz(RT)

q
< (( 1) ||Scontqf||€2(RT)
1 c)n q
— ] ||Scont qf”Lz(Rm)
o I (”)c-f 1S 11
— . cont,g/ lly2(Rrm
_(1 7 24 j (RY)
q

2 \"<& (n)
(2n - 1) > (j)c, [

J=1

IA

lcl? - Conll FUIG-

37



For the second term, apply Minkoski’s inequality for g norms:

|AGMLWVir f = AgMWV1, Lo flli2 )

+1 +1
A A

1/2
0o o0 2 dd di,,
:( /O /0 LW Vo fllg = WLV £l Sk )

q yn+l n+l
e

1/2
. , dAy d/lm)

/ / IL:WVii f = WLV fl
0 0
= [[AgM [ WVi1, L] flli2memy-

Via a similar reduction technique for Theorem 16, we can reduce to a commutator bound above.

Additionally, we have

I(Lef) # 2 = Le (f = 4) llg = (1= ) "Ilf = Fallg -

Thus,

di )Q/z

1AGMIW, Lol fIs ) = ( [0 = Lo (oo

o0 da \1?
_ - 2
—(1—c)"(/0 ||f*\1u||qﬂn+l)
q

o a1 \12
( /0 P W)
q

<lel?- Call £1I5-

<(l-¢)™

It follows that
1S = StbmnLe F I gy < 16l Knmll 11

1
for any [c| < 5. O

Additionally, for the case of ¢ = 1, we have the following corollary that we will state, but not

prove, since the idea is the same as the previous corollary.

Corollary 18. Suppose one of the following holds:

e n =1, Y is complex analytic and satisfies the conditions of Lemma 14,
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e n > 2 and y satisfies the conditions of Lemma 9,

then there exist constants Ky ,, and K H.m Such that

||Scon[ lf Scontl Tf”LZ(RT) S c- KH,m“f”Hl(Rn)

and

”deadlf deadl Tf”ﬂ(Z'") <c- kH,m”f”H'(R”)'

2.4 Stability to Diffeomorphisms

We now focus on the stability of S7 = f for general diffeomorphisms with ||D7||e < ﬁ The

cont,q

corresponding operator for diffeomorphisms is defined as L. f(x) = f(x — 7(x)).

2.4.1 Stability to Diffeomorphisms When g = 2
Proposition 19. Assume  and its first and second order derivatives have decay* in O ((1+|x])™"3),

and /R" W (x) dx = 0. Then for every T € C2(R") with ||D7||e < 21_n there exists C,, > 0 such that:

AT [|oo
1D7]leo

W, Lellliz z,xen iz < Co (nDrnm (1og v 1) - ||Dzr||oo) -

Proof. The argument is a continuous version of Lemma 2.14 in [11]. We will first show how to
transform our commutator term into an analogous commutator term from [11]. To shorten notation,

we will denote || [W, L]l 2r, <z as [[[W, L:]]|. We have

0 dt
WLl ey = [ IIWe LSR5

tn+1

- /O W5 (Lef) = Lo » IR

:/ W % (Lef) = Le (g = I dx el
0 Jrr

Notice that 1 (x) = /2y (tx). Use the change of variables r = % to get

WL Ry = [ [0y @e) = Letwy s ) 2

o
I
*Similar to [31], we have found that there needs to be O((1 + |x|)™"~>*?) decay for some & > 0 to bound (E.26)
in [11].

2 da
APy (Lef) = L@ Py s )5
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Define %, f = f = 12y 1 with 17/2y 1 (x) = A"y (Ax). In other words, % is a convolution with an

L! normalized wavelet, which matches with the normalization in [11]. Now we have

® d/l
WL Ve = [ WAL

This implies

da

[W. L' [W. L] = /0 (Wi, Ll [, L] &

Defining K; = %) — L. W, L;" so that (%}, L.] = KL, we have:

I[W, Ll = [[W, L [W, L||'/?

[, L (3, L) &

:H/ L:K*K,L, a
0 R

© M
s||LT||~H /O Kk,

1/2

1/2

1/2

2

A

Since ||LTf||2 < (1 Dl ) ||f||2’

1
Lll<—— <o
e

o 1/2
and the problem is reduced to bounding H fo K K, A1 d/lH . Lety > 1. The integral is divided

into three pieces:

® da||'’? 27 da ! i o daal\'?
KiK) — < KiK) — KiK) — KiK) —
0 A 0 A =y 1 4 1
27 di 1/2 1 di 1/2 00 dl 1/2
< K*K/l —_— + / K K,1 + / K*K/l —_—
/0 A -y 1 . A
=Pi+P+ P3.

To bound Py, we decompose K, = K, | + K, , where the kernels defining K, 1, K, » are
12,1,1 (x,u) := (1 —det({ = Dt (u)))A"Y(A(x — u))

=a(u) A"y (A(x —u)),
121,2(x, u) :=det(I — Dt(u))(A"W(A(x —u)) = A"y (A(x = 7(x) —u +1(u))),
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respectively. Since our normalization matches with [11], E.13 implies that there exists a constant
C,, such that

1Kzl < CodllAT |-

1
.. o da
R Ry =2
H/o MY

Let f € L?(R") be arbitrary and define i/ (z) = y*(—t). Based on [11], the kernel of I?j 1[3/1,1 is

We want to prove that

12
< Cul|D7|co-

given by
ka(y,z) i= a(y)a() A"« 22 (z - y).
A A

Thus, it is sufficient to bound the quantity

1
S da
JRlSHAEES
0

We see that ||a||c < n]|D7||w. Substituting in the kernel and bounding yields

1
| IR RIS - / [ /Rna@m@(ﬂ/zmw/zm)(z—y)f(y)dy

= 2 nf27 . 2 _
/O/Rn'“(z” /R,,”(Y)(ﬂ 7y %A lﬁ%)(z o

1
2 2
< 2D / /
0 R7

Let F(y) = a(y)f(y) € L*(R") and let ¥ represent taking the Fourier Transform. Then we

i
d_
Z/l

i
d_
72

i
dz .
‘72

2
/ a(y) (ﬂ””tﬁl * le) (z=y)f(y)dy
R7 A A

substitute F(y) for a(y) f(y) in the last line of the inequality above to get
1 2
n2||Dr||Zo/ / / a(y) (ﬂ”/zl/?; * ﬂ”/zt//;) (z=y)f(y)dy
0 n|JRe P 1
2 2 !
—wiprl, [ f
0 n
1 ~
=iell, [ [ (0 ek, )
0 n a 2

. LN da
=n2||DT||§o/ |F(w)]? (/ Iw(%)l“—) dw.
an 0 1

To finish up the argument, we make a substitution to rewrite

L da d
w 4_: 4 <~
/Olw(ﬂ)l ) /1 1 (Aw)|*—

41

i
d_
7

i
d_
72

2
/ (/1”/21/;1 */1"/21#;) (z=y)F(y)dy
R® A A

2
i
d_
72




Using our decay assumptions on ¥ and its partial derivatives, from Problem 6.1.3 in [38], we know
that

|9 ()| < Mymin{je], ||~}

for some constant M. Now, consider the quantity /000 |1/A/(/1a))|4%. Without loss of generality,

assume that |w| = 1 since dilations of w do not change the integral. It follows that

00 ~ /l 1 &)
¥ (Aw |4d— <M dr+ M, A17%dA < oo,
v v
0 A 0 1
and we conclude that
[ weens <a,
1 A

for some constant Ay. To finish up,

1
R N dA A
2Dl / B (w)P / B 4o < DR A, / £ ()P dw
Rn 0 A Rn
< R ID7IPAy /R a(2) f ()P d

2 2 2
< 07D Ayl 13-

12

Thus, we have the desired bound on /01 K h K dﬁ—ﬂ
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Substituting everything in yields

27y
/ Kk, 4 '
0 A

27 i 3 i 21172
= / (Kig+Ka2)" (Kai +Kap2) 1
0
2-Y 1/2
dl
= (1(111(11 *'1(111(12 +'IZA21(11 *-1(121(12) —_—
27 27 da
<
N H/ Ky, 1 12 12 1 )
) dA o Ldr [T da
< K/I,IK/U + IKioll® — + 21K 1K 2]l =
0 /1 0 /1 0

1/2

IA

2 12 2
_. - dld - da
Ky Kga—| + Kioll* =
AR Y AT
2-Y 1/2
da
el s aell [ 2
0

< 2C, (D7l + 27 A7 ] + 27| DT AT

< 4G, (IDTleo + 277 [|AT] o) -

)1/2
2= Y
dA
+ ( / 2R IR —)
0

12
da
e ian? ([ 21 ) )
0

To bound P3, we decompose K, = K1 + K, 2, where the kernels defining K, 1, K, » are

kyi(e,u) = 2" (A(x —u)) = A"y (A1 = Dt(u))(x —u)) det( — D7(u))

kao(x,u) =det( — Dt (u))A"W(A(I — Dt(u))(x —u)) — A"y (A(x — 7(x) —u +7(0))).

A similar computation to the one for P; shows that:

/OOK*K dAa /OOK P dAa
. A8 1 . A1 ll/l
00 di 1/2
+(/ 20K lIK 2l —) .

1

K5; 1, itis shown in [11] that:

12
<

Letting Q; = K |
K211l < Cal| DTl
1K 21l < min{d™" | D?7|eo, || D7 [0}

10,01l < C27 V- (|ID7]| + | D7 0)*
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so that

1/2 1/2

H/ K KZJ 1 log(2) dj
= \iog(2) H / 0, 4|
0

We now apply a continuous version of Cotlar’s Lemma (see Ch. 7 of [42], Sec. 5.5 for the

di
/ K/IIK/”_
1

continuous extension). We define:

Ci2 V- R(|D7 ]l + 1D?7llec)*  j 2 0and €20
Bj.0) = -

0 otherwise

Defining Q; = 0 for j < 0, we have ||Q;‘.Qg|| < B(j, €)% and 19,07 < B(j,€)? for all j, £. Thus

by Cotlar’s Lemma:

o
[ o
0

< sup / B0 dt.

JjER

< sup/ B(j,€) de

j=0J0

< Cu(IDT|lo0 + 1 HTll)? (Sup/ 27l dt’) :
j20 Jo

/11

Now observing that with the change of variable 4| = 27,2, = 2¢, we have 27170172 = /\ , We

obtain:

® . (A AA da
sup/ 271012 ge = sup (4 Ad2) 2

j=0J0 =1 J1 11, In(2)A,
1 A
= Sup d/12 —d/lg
In(2) /1121 1 \//11/1 " 3/2
1
= sup (2441 —2) + VA (—))
In(2) 4,21 \//1_1 \/_ \/_ VA
1 4 2 )
ln(2) A1>1 \//l_l
4
" In(2)
and conclude that
1/2

< 3G (ID7loo + [[HT][eo).-

/OOK* P da
1 a1 /l,l/l
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Thus we have:

12
<

. 1,1 A,1 1 . 1,2 1
) di 1/2
o[ 2k )
1

Now we see that there exists a constant C,, such that

00 i 1/2 )
/l K;,IKAJT < Cn(”DT”oo + ”D T”oo)
© di\ /2 o a2
(/ ||K,1,2||2 7) < Cn||D2‘r||o<, (/ A2 7)
1 1

oo I\ 2 © a2
([ 2kt §) < e [aen )
1 1

A
/OOK*K da
A 2

/OOK*K da
]

and
1/2

1 2 12 1/2
<C, (||DT||0<, + 2—||D27||oo + 2| D7) 2D Y
n n
1, 1 1,
< G | IIDT||e0 + 2—||D T|leo + =[|DT||co + =[[1D"7||co
n n n
< 2C,(|ID7]lo + [|D*7||0)-

Finally, we bound P,. Note that in the previous section it was observed (shown in [11]) that

K21l < Call DTl

IKa2ll < min{A™" | D?7|eo, [| DT]lco }-
The above two inequalities imply

KAl = 1K1 + Kapll < [[Kaall + [|Kazll < 2Cal| D7l

Lo R A
KK 7 < IKall Fl
-y 2-y

1 1/2
dAa
< 26Dl (/ —)
v A

< 2C,||D7|e (= In(277)) /2

so that

< 2Cy' 2| D7)l
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Putting everything together and since y > 1, we obtain:

I[W,L:]|| £2(P1+ P>+ P3)
< 4C, (ID7]|e0 + 277 |AT]0) + 2Cuy 2 |D7T||co + 3C, (DT |0 + | D*7 |0

< o (Y17l + 27 1Al + D7l

Choosing y = (log ||||1A):||||Z) v 1 gives

ATl
1D7]le

I[W, LIl < G ((1og v 1) 1Dl + ||Dzr||m),

and the lemma is proved. m|

Theorem 20. Assume y and its first and second order derivatives have decay in O((1 + |x|)™"73)
and /R" W(x) dx = 0. Then for every T € C*(R") with ||D7||e < 21—n, there exists Cy,, > 0 and

A

Cmn > 0 such that

”SZ)nt,Zf - SZZnt,ZLTf”iZ(RT) < CmnKZ(T)”f”%

and
”Sg;adgf - S?yad,zlfrflliz(zm) < émnKZ(T)”fllg’
with
2
K _ 2 lAT][co 2
2(7) = ID7]l5% + [ [1D7]l 0 10gW VI1+[D7le| -

Proof. The proof is only provided for the continuous case. We have the following bound for some

Cy:

Stom 2 = StomaLef 2wy < 1A2MWVoiorf = A2M LW Vo flnz )
+[[A2M [ WVt Le] fll2 ey
< A MWVyuo1 f = AsMLW Vi f e

+ CI%!” [(W’ LT] ”iz(Rf’XR")—)LZ(R”) ”f”%
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For the first term, we can mimic the dilation argument to get
|AMW Vi f = AaM LWVt f1 =gl = IL2gll2] -

The difference is the term with the diffeomorphism. Let y = y(x) = x — 7(x). Then it follows that
¥~ 1(y) = x and change of variables implies that

dy
|det(I - DT(y~"(»))I

LA = [ Vfe=rt)P ar= [ 170

We also have

1 = n||D7]lee < |det(I — DT(y ' (M)))] < 1 +1||D7||o.

Thus, we obtain

1 2 2 1 2
_ dy < ||L < — dy,
e L R dy < 1L 1B < g—nee [ 17 0F d
2 2 2
< ||L < .
Since we have a bound on ||D7||., We see that
1 I = n||D7|[e
_ 1=l T”Z > 1= n||D7lw
1+n||D7l|le  1-n2||D7||%
since 1 > 1 —n?||D7||% > 0. Similarly,
1 1+ 2n||D7||e

1-n||D7lle  1+n||D7||le - 2n2||D7||%

and

2 2
14 1||D7||e = 272||D7|% = 1+ || D7||eo — 2L||DT||OO -1
n

since ||D7||e < 5. It follows that

1
< 3, m < 1+27’l||DT||00 and

(1 =nllD7lles) 21 fll2 < Lo fll2 < (1 4+ 20l1D7]|) 21 £l2.
Since 1 — n||D7||e < 1 and 1 + 2n||D7||o > 1, Use the lower bound on || L. f||> to get
1712 = 1Ll = 1 £112 (1 = (1 = nllD7) )

< [Ifll2 (1 = (1 = nl[D7lle))

=n|[D7|le |l fll2-
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and the upper bound to get

ILefll = 11l = £l ((1+ 21 D7ll) 2 = 1)
< [I£ll2 ((1 +2n]|D7]le) — 1)

= 2n||D7lleoll fl2-

Finally, we have

A1z = 1L fll2] < 2n[[ D]l |l fll2

for any f € L?(R"). Now we mimic the argument given for dilation stability to get
1A MWVt f = AsM LWVt [l ) < CIDTIZ NN

for some constant C. For the second term, we have

2
2 2 2 _ v AT 2 2
C2IW. Lol 12 iy 2 1 F13 < € (nDrnm (1og e ML S R
for some constant C’. We now choose C,, ,, = max{C’, C} to get the desired bound. O

2.4.2 Stability to Diffeomorphisms When 1 < g < 2

Lemma 21. Let y(z) =z — 1(2), g(2) = f(v(2)), and

Ka(x,z) = det(Dy(2))yaly(x) —y(2)) —alx - 2).
Additionally, define
Tig) = [ (K2 de

and consider Tg : R" — L%(R,, &) defined by Tg(x) = (T1g(x)) AR, - Then for the Banach space

An+l

X = LZ(R+’ /%)’

ATl

2
178152 (2 < Con (nDrnw (l"gm v 1) + ||Dzr||oo) 1111

for some constant Cy, , > O.
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Proof. Notice that

/,1/

> da
:/n/o - Ky(x,2)g(z) dz e dx
://0 / FO&r@)det(Dy () ly(x) =¥(2) = va(x - )] dz| —rde

oo 2
da
-/ /0 / det(Dy(2) f (y(@a(y(x) = ¥(2)) dz - / @)W —2) de| .
Using the change of variables u = y(z), we get
1782, o / / Lo (f #02)(x) = (Lo f + 0) () W
- [ /0 (Wi, Ll FCOF i d
0 da
- [ [ e Lareor ac
o Jrn At
0 da
- /O HWa, LoD 1B
= W Lol 1 m
A7 2 2
< Com | ID7]l0 (10 V 1|+ |ID7 7]l [ 1L £115,
( * D7l :
where the last inequality follows from the ¢ = 2 case. O

Lemma 22 ([39], Marcinkiewicz Interpolation). Let A and B be Banach spaces and letT : A — B
be a quasilinear operator defined on L];? (R™) and LQ (R™) with 0 < pg < p1. Furthermore, if T

satisfies
I Fll e ey < Mil s oy
fori=0,1, then for all p € (po, p1),

||Tf||LfB(R") < Np||f||L;(Rn),

where N, only depends on My, My, and p.
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Remark 7. Like with the scalar valued estimate, it can be shown that N, = nMg M 11_5, where

po(p1 —p)

— p1 < 00,
5 = p(p1 — po)

Po

. p1 =00

p

and

(p—po)(p1—p)

1/p
2( Po ) p1 = .
P — Do

Lemma 23. Let T be the operator defined in Lemma 21. Let g € (1,2) andr € (1,q). Then T

_ 1/p
2( p(p1— Ppo) ) by < oo

satisfies
ITgllLrmny < MellfllLr )

for some constant M, > 0, which is independent of ||D7||e and ||D?7||e. Furthermore, T also
satisfies

ATl

2
Tgl? < Gy |ID7]leo |log 1 —= V 1] + [|D*7 |0 :
178120y n(ll 7| (og DTl ) 1Dl ) I NE2 ey

for some constant C,, > 0.

Proof. The second inequality obviously follows from strong boundedness of the operator, so we

will omit the proof. For the first inequality, the norm satisfies

ITg(x)Il% =/0 /R det(Dy(2)) f (y(2)a(y(x) — y(z)) dz — /R FO()Walx - 2) dz /pjl
« 2
- / / F@ya(y(x) —z)dz - / Fy()Wa(x —z)dz ;21
0 R” R®
- 2 e 2 N
< 4/0 y F@ualy () —2)dz| +4/0 , For@alx =2 dz| =

= 4Gy +4G L f(x) .

We see

ITg()llx < \/4|(Gf)(7(X))|2 +4|GL f () < 2[(Gf)(y(x))] +2|G L f (x)].
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For ¢ > 0, Chebyshev’s inequality implies that there exists A, such that

m{ITg(@)llx > 6} < m2|(Gf)(y@)|+ 2AGLcf(x)] > 5}
A,
< ZUGH TN ) + 1GLe S )

We want to now ensure that |[(G f) (y ()} (pny Can be bounded above by a constant multiple of

NG fIIf &) Since v is a diffeomorphism, we can use change of variables to get

1GHOON g = /R Gy ds
du
- G r
/Rn' Tl oo @]

< Z/Rn |G f(x)|" dx

= 201G £l -

By Theorem 5, we get

”GLTinr(Rn) < Cr”LTf”;j(Rn) < 2Cr||f”£r(Rn)

for some constant C, dependent on r. Thus, we have

M,
m{ITg(llx > 6" < Sl fllur s
for some constant M, > 0. mi

Lemma 24. Fixr = HTC’ so thatr € (1,q). For some constant Cy, 4 > 0, the operator T defined in
Lemma 21 satisfies the estimate

el < Countm®® (1Dl [tog 270 1) 4 pp2er) e
g L%(R”) — Vl,qn r Tlloo Og ||DT||00 Tlloo f ’

where n and 5 come from interpolation, and M, comes from the constant for weak boundedness in

Lemma 23.

Proof. Since T is an integral operator, it is clear that is quasilinear. Using the L”(R") and L?(R")
estimates from the previous Lemma, we interpolate using Marcinkiewicz since ||g||, < 2||f|], <

gl o
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Theorem 25. Let 1 < g < 2. Assume ¥ and its first and second order derivatives have decay in

O((1+|x))™3), and .[R" W (x) dx = 0. Then for every T € C2(R") with ||D7||e < ﬁ, there exists
Ch,q > 0 such that

1Sconsaf = SeomaLe Sl < CugKg (DI
with

. o 1AT]|oo R
Ky(0) = 107l + 1M (I1DT]es {log = v 1 + 107 .

Proof. We use the same notation as Theorem 16. Using a nearly identical argument to Corollary

17, we get

|Scont.qf = Scont.qLe fllL2r,)

=|A MW f - AMWL:fll2r,)

= |AMW f = AgMLW [+ AgMLW f = ApMW L f 2

< NAGMW f = AgMLW fllew,) + l1AGMLWf — AgMW L flly 2w,

< [(AgM = AGgM L)W fllaw,) + 1AGM W, Le] fllL2,)-

The first term, ||(A;M — AgM L)W f|l12(r,), can be bounded using an argument identical to the

q = 2 case. In particular, we can prove that

(1 =nlDrlle)lI fllg < (1= nllDTlleo) 11 Fllg < Lo fllg

and

1L fllg < (1+20)D7ll) 11 fllg < (1+22)D7(l0) 1 fllg»

which means

1(AgM = AQMLOW L[, < CIDTIGNFIIZ.

For the other term,

2/q da a/2
/1n+l)

1AgMIW. L f I ) = ( L i 0 - Lt
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Now, expand convolution and then use change of variables to get

1AGM[W, L] f]

WL

I

- 2/q a/2
da
/R g dx] W)

00 di 19
/O Tag (0l ] dx

/1n+1

o0 da |42
- [ [ /O Tig()P W] dx

q
L2(Ry)
q

J(y(2))(det(Dy(2))yaly(x) = y(2)) = ¥alx = 2)) dz

Rn
q ]2/q d1 )‘1/2
dx
/ln+1

Il
S~

[ s@ritnaa:

1]
=

IA
T

_— ATl ST R
< G M (DTl (log o= v 1+ 102l | 111G,

Thus, the proof is complete. m|

Corollary 26. Let 1 < g < 2. Assume Y and its first and second order derivatives have decay in
O((1 + |x)™3), and /Rn W (x) dx = 0. Then for every T € C2(R") with ||D7||e < % there exist

constants Cp , C‘nm > 0 such that

1% = St Lo F I ) < oKy (DA
and

100t f = Simaig e W ) < ComKa(OIFNG-

Remark 8. This bound is not exactly the same as the definition for stability to diffeomorphisms in

[11], but the idea is similar. Since r is fixed, so is §. It is easy to confirm that § = ﬁ € (%, %)

when using Marcinkiewicz interpolation in Lemma 24, so

AT ]]eo
ID7lloo

q(1-0)
Cn,qon,‘f‘s (”DT”OO (log v 1) + ||DZT||O<,) -0
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when ||D7l|cc — 0 and ||D?7]|ec — O.

2.5 Equivariance and Invariance to Rotations

We now consider adding group actions to our scattering transform and prove invariance to
rotations. Let SO(n) be the group of n X n rotation matrices. Since SO(n) is a compact Lie group,
we can define a Haar measure, say j, with u(SO(n)) < co. We say that f € L2(SO(n)) if and only

if f is u-measurable and /So(n) | (r)|? du(r) < oo.

2.5.1 Rotation Equivariant Representations

Let ¢y : R" — R be a wavelet. Define

Yar(x) =272y (A7 R x),
where R € SO(n) is a n X n rotation matrix. The continuous and dyadic wavelet transforms of f
are given by
Wrotf ={f *¥ar(x) : x €R", 1 € (0,00),R € SO(n)},
Wrotf =1{f *¥jr(x):xeR",j€Z RecSO(n)}.

We will first consider a translation invariant and rotation equivariant formulation of continuous and

dyadic one-layer scattering using

6cont,qf(/l’ R) = f = Ql’/l,RHq’
Sayad,g f (1, R) = |l f * ¥ rllg-

The translation invariance of our representation follows from translation invariance of the norm.

For rotation equivariance, notice that if fz(x) := f(R™'x), then we have
Seontg f5(4 R) = Geontq f (4. R7'R),
Sayad.g [z (/2 R) = Gayad.g f (J, R R).
Now suppose we have m layers again. Then we define our m layer transforms by
SeontgS (A1, - Amy Ris oo, Rip) = I f # Wayry | % [, R, g,

6glyad’qf(j1’ .- "jm’Rl’ s ’Rm) = ”lf * lﬁjl,R1| *... | *ij,Rm”(J'
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and rotation equivariance implies

Cltnig /2 A Riy o Ri) = Gl f(A1, . A, RTRy, R Ry,

Saag SR - s Jms R Ri) = Sl (- s jms RIR1, ..., R7'Ry).

The norm we will use is similar to our previous formulations. Denote the scattering norm for

the continuous transform as || S which is defined as

q
cont,qf”U(RT)xSO(n)’”’

q/2

« « d, da,,
IS Wjiml * - |5 W R, o di (RY) oo dum(Ry) — |

(-/0' /SO(n) -/0. /SO(n) /e / K /lrlH'l e /l"m"'1

heaa L NI7
dyad,q” ''¢2(Zm)xSO(n)™’

q/2
(Z/ Z/ |||fw,-l,R1|*...|w,-m,Rm||§dm<R1)...dum(Rn)) :
f2z /S0 SO(n)

JI1E€Z

For the dyadic transform, we denote the norm using || S which is given by

We will start by proving that these formulations of the scattering transform are well defined, and

prove properties about stability to diffeomorphisms like in previous chapters.

Lemma 27. Let  be a wavelet that satisfies properties (2.4) and (2.5).

o If1 < gq <2, we have S, . : L4(R") — L2(R™) x SO(n)" and Sgad,q

: LY(R") —
£2(Z™) x SO(n)™.
e [f g = 1 and one of the following holds:
— n=1andy is complex analytic,
— n > 2 and ¥ satisfies the conditions of Lemma 9,

then S™ : LY(R") — £2(Z™) x SO(n)™.

cont,1

LY(R") — L*(RY) x SO(n)" and &} |

e [f Y is also a Littlewood-Paley wavelet, we have

||6£’Z)nt,2f”i2(Rﬁr")><S0(n)m = u(SOm)" CNf 13,

Hegad,qf”é(zmxsom)m = u(SOm)"C N £115.

Proof. We prove the first and third claim. The second claim is almost identical to the first claim, so

the proof will be omitted for brevity. Note that we will only provide arguments for the continuous
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scattering transform since the proofs for the dyadic transform are very similar. By Fubini Theorem

and boundedness of the m-layer scattering transform, there exists a constant C, > 0, which is

dependent on ¢, such that

m q
[ 6cont,qf||LZ(RT)><SO(H)”‘

© © dl; di,,
= If % myl % oo %W, R lIZdU(RY) —— + - - du(Ry)
[/0 /SO(n) /o ./SO(n) b 1 " A Al

q/2
< [ / / (™I du(Ry) - -~ da(Ro)
SO(n) SO(n)

= C;'u(SO(m)" || £114

q/2

because each ¥, g, is still a wavelet with sufficient decay even if the rotation is applied. For the

third claim, we see that

m 2
” 6cont,2f ”LZ(RT)XSO(n)’"

= [ [ ISR R du(R)
SO(n) SO(n)

= u(SO(m)"CII£13.

O

Theorem 28. Assume |c| < ﬁ Let t(x) = cx and L f(x) = f((1 = ¢)x). Suppose that s is

a wavelet that satisfies the conditions of Lemma 14. Then there exist constants Ky , and IZ,’lm q

dependent only on n, m, and q such that
”6Z)nt,qf - ezz”t’qLTf”Zz(RT)XSO(n)m < |C|q . kn,m,q”fllz

and

m m q q . g q
1S e = Shata LS N zmesopum < 161 - KnmglI 15

Alternatively, if one of the following holds:

e n =1, ¥ is complex analytic and satisfies the conditions of Lemma 14,

e n > 2 and y satisfies the conditions of Lemma 9,
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there exist H,, , and I:I,’nn such that

1St S = Sronii Lef L2 @myssomm < ¢l Hupnll f ||z mny-
and
1St = Siyaai Lefle@mxsomm < lel - Hy |l f I gy
Theorem 29. Let T € C2(RY), and let L. f(x) = f(x — 7(x)). Suppose that ¥ is a wavelet such

that the wavelet and all its first and second partial derivatives have O((1 + |x|)™"3) decay. When

q € (1,2), there exists a constant C,, , 4 dependent on u(SO(n)), n, m, and q such that
||6ZZmz,qf - 622”1,4L7f||]%2(RT)><SO(n)m S Cn,m,qKq(T)”qu,

chn;yad,qf - 621nyad,qLTf”Z2(Zm)XsO(n)m < Cn,m,qKq(T)”qu’

1202 = Sa Lo f I esoumn S ComKa(@IIF1E.

Hgglonz,zf - 6Zan,2LTf”i2(RT)XSO(n)m S CanZ(T)Hf”%

2.5.2 Rotation Invariant Representations

The representation before was rotation equivariant, but in some tasks, we would rather have
rotation invariance. In [11], the authors choose to integrate over each group action in a group of
transformations. However, this will remove the information the relative angles between each action
if we have multiple layers in our transform.

In the case of one layer, since there is only one angle, we use a similar formulation to [11] and

define continuous and dyadic scattering transforms for rotation invariance as

Samal D= [+l du ),

dead,qf(j) = /

I 87 RIL g my AR(R).
SO(n) / La(®™)

The corresponding norms are given by

00 2/q da
q -
I Wse, = | /0 [ /S o w,Ruqu(R)] e

q/2

2

q/2

[ 2/q

L jeZ
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Now we generalize to the case where m > 2. Let Ry, ..., R, € SO(n). Define

Sg:)nt’qf(/ll’ e ’/lm’ Rz, et Rm) = ‘/SO( ) ”lf * w/ll,RzR1| d ook W/lm,Rle ”3 d:u(Rl)’
n

gg;,ad’qf(.]], .. .,jm,RZ’ .. .,Rm) = ./SO( ) |||f *k wjl,Rlel k... | *w‘]’m,Rlellg du(Rl)
n

q

1 m
The norm for the continuous transform, the norm || i ||L2 (R7)xSO(n)m-1°

is given by
q/2

© ® * dA, dA, da,,
T Sto f— d/,tz(Rz) ce d/lm(Rm) 1 s
(/o ‘/SO(n) ./o /SO(n) /o oA Pl Al

where we use the shorthand notation

<-§>(':1(1)nt,qf = Cs)c’?)nt,qf(/lh cosdms Roy o Rm)

and
§(¥;ad,q‘f = CS)(;’}Z’ad,qf(/ll’ ooy /lm, R2, ooy Rm)
for brevity.
For the dyadic transform, the norm ”Sg;a dg f ||;’2 (Z)xSO(my™-! is given by
q/2
(Z / Z / Z Siyad,g ) A1 (RY) dpa(Ry) ... dpm (Ru) |
jmez 7SO oz SOM) jiez

Like before, we will discuss the well-definedness and stability of these operators to diffeomorphisms.
The proofs will be omitted since they follow directly from the previous sections with minor

modifications.

Lemma 30. Let s be a wavelet that satisfies properties (2.4) and (2.5).

e If1 <q <2 wehave S

cont,q

: LY(R") — L2(R™) x SO(n)"~! and Sinaag * LIRY) —
2(Z™) x SO(n)" 1.
e If q = 1 and one of the following holds:
— n=1and y is complex analytic,

— n > 2 and { satisfies the conditions of Lemma 9,

then ™

cont,1

: LY(R") — L2(R™) x SO(n)"~! and S - LY(R") — £3(Z™) x SO(n)™ .
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o lf q = 2 and ¥ is also a littlewood paley wavelet, we have ”‘vaad »Sller@myxsomm-1 =

u(SOm)" ' CrNfII5 and |2, 5 FllLt @myxsomn-1 = 1SOm)" ' CFIFI3,

Theorem 31. Assume |c| < ﬁand 1 < g <2 Lett(x) =cxandlet Lt f(x) = f((1—c)x).

Suppose that  is a wavelet that satisfies the conditions of Lemma 14. Then there exist constants

Kom q and K nm.q dependent only on n, m, and q such that
q
|| Om‘qf com‘q Tf” Z(Rm)XSO(n)m 1 = |C| nmq”f”q
and
q. q
” dyadqf dyadq Tf” £2(Zm)xSO(n)ym=1 = |C| nmq”f” .

Additionally, if ¢ = 1 and one of the following holds:
e n =1, ¥ is complex analytic and satisfies the conditions of Lemma 14,
e n > 2 and y satisfies the conditions of Lemma 9,

there exist H,, mon and H', , such that

mn
”Sontlf contl Tf”LZ(R’")XSO(n)'" (S |C| mn”f”Hl(R"
and
1SS = Sivaga Lefle@mxsomm-1 < el - Hy |l f g -

Theorem 32. Let T € C*(R") and define L. f(x) = f(x —7(x)) with ||D7||e < % Suppose that Y
is a wavelet such that the wavelet and all its first and second partial derivatives have O ((1+]x|)™"3)

decay. For q € (1,2], there exist constants Cy, p, CA'm’n, Cinn,g and CA'm’mq such that

||(§)0nt2f ContZ Tf”L2(R’”)><SO(n)m 1= mnKZ(T)”f”z’
” yad2f 05’5;6,512 Tf||g2(zm)><50(n)m ) < é Kz(‘[')”f”%,

”('S)contqf contq Tf”;iz(RT)XSO(n)m 1 C n(]K (T)Hf”q’

q A q
1St f = SitagaLe F I o st < CrnaKa(OIF I
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CHAPTER 3
EXPECTED SCATTERING TRANSFORMS

3.1 Background

Generalizing to stochastic processes, one can also consider scattering moments [11, 15], which
have similar desirable properties as the nonwindowed scattering transform; other tangential works
include [43, 44]. For the modeling of objects such as audio and image textures, one can think of
them as realizations of highly non-Gaussian processes [15].

In the particular case of audio/image synthesis in particular, one would like generate a texture
with the same statistical properties without generating a repetition of the texture. Equivariant
features are more likely to lead to repetitions in textures. Thus, it is sensible to get a small number
of rich descriptors that are translation invariant (e.g. using a realization of a process and calculating
the nonwindowed scattering transform). In practice, instead of calculating an expectation, one
takes an average of multiple realizations. Applications further applications include cosmology
[45]. The main idea in all these applications is that the nonwindowed scattering transform has
desirable mathematical properties and provides a small number of relevant descriptors for high

dimensional, complicated data.

3.2 Wavelet Transforms for Stochastic Processes
Let X be a real valued stationary stochastic process with finite second moment. Also, let ¢ be
a wavelet. As a reminder, let G be a finite rotation group, and G* be the quotient of G with the set
{-1,1}, and let
A={(2/,r): jeZreG*}.

For all A € A, dilations of the wavelet are given by

Ya(u) =27y (277 r ), 3.1)

and we define the wavelet transform of X at scale 2/ as
X xy(t) :/ X(u)y(t—u)du. (3.2)
Rn
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The dyadic wavelet transform is given by
WX = {X *¢a}aen- (3.3)

We say that is ¢ a littlewood paley wavelet if ¢ satisfies the following admissibility condition:

D@l =) Y WP =¢ Vw20, (34)

AeA reG* jez

For any littlewood paley wavelet, we have the following relation between the variance o->(X) and

the energy of the wavelet transform:

DUELX wyal] = BCy o (X), (3.5)

AEA
where

1/2 if i is real valued,

1 if ¢ is complex valued.

3.3 Scattering Moments and the Expected Scattering Transform

Following [11], first order scattering moments are defined as
SIX(A) =E[|X =y,l], VA € A. (3.6)
Scattering moments for m > 1 are an iterative application of a wavelet transform followed by a
modulus, which is given by:
S"X Aty Am) =E[[IX w1 =y, l], Y(A,...,4dm) € A™. (3.7)
The expected scattering transform is the set of all scattering moments:
S1X = {S"X(A1, ..., dm) : V(A1,...,dn) € A™,Vm € N} (3.8)

with norm

ISixI2=>" > ISTX (- )P (3.9)

m=1 (1Ay,...,4,,) EA™
Additionally, suppose that Y is also a stochastic process with finite second moment. The scattering

distance is given by

ISIX=SvIP=)" D, ISPX( ) = STY (e )P (B110)
m=1 (Aq,...,Ad,) EA™

61



3.4 The Expected Scattering Transform When g = 2
Generalizing the norms above, we begin by defining the expected scattering transform and

scattering norm when g = 2. The expected scattering transform is the set of all scattering moments:
S$2X = {STX (A1, Aw) = V(AL Ay) € A, Vm € N} (3.11)

with norm

ISX13=) >, ISFX (A, )P (3.12)

m=1 (A1,....Am)EA™

and scattering distance

(o)

X =S¥ 13=>" >0 ISSX (A ) = SPY (A1 LA (Bu3)
m=1 (Ay,...,A4;m)EAN™

3.4.1 General Properties

Lemma 33. Suppose  is a littlewood paley wavelet. Then we have the following bound:

Z ISEX (A1, ..., Aw)? = B"Clo?(X) < B"CYE[X].
(A15eees i) EA

Proof. Without a loss of generality, assume that ¢ is complex and remove S from all the proofs.

We proceed by induction. The base case follows directly from (3.5) since Thus, we have

152X11% 5, = Cyo?(X) < C4E[X?].

(2)

Now assume that for some k € N,
Z ISEX (A1, ... )PP = CEo?(X) < CAE[X?].

Define the random variable Yy = ||X * ¢ ,| * ---| * ¢4, |, which is clearly stationary since the

the modulus operator and wavelet transform both preserve stationarity of a stochastic process. It
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follows that we can write

SEUX AP = Y D By, 11
(/11 ..... /lk+1)€[\k+l (/11,...,/1]()61\]( Ag+1€EA

=Cy Z o (Ye)

(J1se-rjk)EZK

O

We first begin by proving that our expected scattering transform with ¢ = 2 is a nonexpansive

operator.

Theorem 34 (Nonexpansive Operator). Suppose ¥ is a littlewood paley wavelet with fCy < %

Then ||S2X — SoY |2 < E[|X = Y|?] and ||S2X |2 < E[X?].

Proof. For notational simplicity, define

X = I X sy |- | %l

Vi =Y sy, | 5| *al.
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We begin by applying Minkowski’s inequality and (3.5) repeatedly to get

D ISEX (A ) = SEY (Ars o A

(A150n A ) EA™
2
= > B w1 - W v, P
(/11,...,/1,”)6/\’"
< Z E [|(Xm-1 = Y1) % a1’
(A15eedi)EA™

<Cy Z E [IXn-1 = Ym-1]?]
< Cw Z E [|(Xm—2 - Ym—Z) * ‘hm_l |2]

< Cl%/ Z E [le—2 - Ym—2|2]

< CyE[IX -Y|*]
Now sum over all m to get

_ _ i C
X -S:X[12< Y C"E[|X - Y|?] = —X—E[|X - Y|*] < E[|X - Y|?].
IIS2 zllz_;w[l 1] —c, [l I“] < E[| 1]

Setting Y = 0 proves ||S»X ||% < E[X?], which completes the proof. O

3.4.2 Diffeomorphism Contraction Estimates

Let 7 be a stationary random process independent of X such that || D7||c < 217 with probability

1. Define the deformed process L. X (x) = X (x — 7(x)), which is still stationary. We will need the

following lemma.

Lemma 35 ([11], Lemma 4.8). Let K; be an integral operator with a kernel k. (x, u) which depends

upon a random process 1. If the following two conditions are satisfied:

E [kT(x, u)ki(x, u')] =ke(x—u,x—u)

/ / |k (v, V)|[v = V| dv dv' < oo,
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then for any stationary process Y independent of T, E[| K.Y (x)|?] does not depend on x and
E[|K-Y’] < E[|IK-IIPIE[IY]*],
where ||K.|| is the operator norm in L>(R") for each realization of 7.

Theorem 36 (Diffeomorphism Contraction Estimate). Consider the random process X — L X. As-
sume that fCy < 1/2 and Rx_ L.x, the Fourier Transform of the covariance function, is bandlimited.

We have the following estimate for some C > 0:
182X = S2L- XI5 < (CMPE[|IT|ZDE[IX[].

Proof. Let ¢ be a function such that

R 1, a)EBl(O),
¢(w) =
0, w ¢ B1(0).

Define ¢y(x) = M™"¢(Mx). Then we also know that fRn op(x)dx = 1.

Since our scattering operator is nonexpansive, we have
182X = 2L X |13 < B[|X - L X|*],

where the expectation is over all possible randomness. Notice that since /R" opm(x)dx =1, we can

write

E[|(X = LX) * ¢ml*] = / Ry-1,x(w)|¢u(w)* dw + E*[(X = LX) * ]

n

[ BxLox@)lou(@F do+ X - L.

Rx_r,x(w)dw+E*[X - L X]
B (0)

E[|X - L. X|*].

In other words, if we define Ay, f := f * ¢r, we can write
E[|(X = LX) * ¢&|’] = B[|(Agyx — Agp L) fI7].
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From estimates given in Theorem 3.6 of [23], in the deterministic case with f € L?(R") we have

1(Agr = Ape L) f1I3 < AR(IVRITIITIZ A3,

where 7 € C!(R"). It is proven in Appendix H of [11] that a operator of the form Agp — Agpr L has

a kernel that satisfies Lemma 35. Thus, we have

E[|1X — L. X|?] < 4R*||Vo|E[||I7|I L 1E[1X]?].

3.5 The Expected Scattering Transform When 1 < g <2
Now we generalize to the case where g € (1,2). The case of ¢ = 1 has been addressed in [11].

The expected scattering transform is the set of all scattering moments:
SeX ={SIX(A1,.... Am) : V(A1,..., Am) € A, Ym € N} (3.14)

with norm

I1S,X113 =) IS X (A1, s d) P (3.15)
m=1 (A4,...,4,,) EA™

and scattering distance

IS, X = S,¥|3 = Z Z ISTX (A1, oy A) = STV (A, oy A 2. (3.16)
m=1 (A1,...,A;) EA

We start with a lemma that will help us determine when our generalized expected scattering

transform is well defined.

Lemma 37. Suppose  is a littlewood paley wavelet. Then we have the following bound:

D ISEX (A, AP < BTCYIA(X) < BCRE[X7.
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Proof. Without a loss of generality, assume that ¢ is complex and remove S from all the proofs.

For each m € N, we apply Jensen’s inequality to get

Z ISEX (A, A = Z E[IIX*MI*WI*mml"]z/q

(/ll,”-s/lnl)EAm (/ll ..... Am)eAm
< > E[IX sy lse sy, P

(/11 ..... /lm)eAm

= B"Cjo*(X)

< B"C,E[X7].
O

Additionally, the expected scattering transform when 1 < g < 2 are all nonexpansive operators

because of the following lemma.

Theorem 38. Suppose  is a littlewood paley wavelet with fCy < % Then ||§qX - EqY ||% <

E[|X - Y] and ||IS,X |3 < E[X?].
Proof. For notational simplicity, we use

Xk:||X*‘ﬁ/ll|*"'|*lﬁ/lk|,

Yi=|Y =y | % | =l

We have
DL ISEX A = SPY (s )
(Alseeesdin) EAM
1 1/q|?
= > Bl w11 =B [+, 19
(Alyeeesdi) EAM
2
< D B[t = Yar) g, 17
(A15eees A ) EA™
< Z E [|(Xm-1 = Y1) % a1’
(A15eeedim) EA™
< CJE[IX - Y]
Now sum over all m to finish the proof. O
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The following corollary also follows immediately from the proof above and the g = 2 case.

Corollary 39. Suppose 1 is a stochastic process independent of X and ¥ is a littlewood paley
wavelet with fCy, < 1/2. Consider the random process X — L:X, and suppose that the Fourier
Transform of its covariance function, R x-L,x(w), is supported on some finite ball with radius R

centered at the origin: Bg(0). We have the following estimate for some C > 0:

184X — SqL- X115 < CRPE[|ITIIZ]E[IX]?].
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CHAPTER 4

NONWINDOWED SCATTERING ON COMPACT RIEMANNIAN MANIFOLDS

In this chapter, we generalize our results with ¢ = 2 to compact Riemannian manifolds. First, let
us motivate why one would consider scattering transforms for non-Euclidean data. Suppose we
have number written on a set spheres (i.e. spherical MNIST). We would like to classify which
number is each of these spheres. A Euclidean approach would be to voxelize each of these spheres
as N X N x N discretized cubes and feed these cubes into a feature extractor (i.e. a scattering
transform or a convolutional neural network). However, compared to a N X N image, this approach
is N times more expensive in terms of memory because of the extra dimension. One can instead
consider these as signals on the sphere, which has a lower intrinsic dimension. The point is that
using Euclidean representations is not necessarily the best representation for feature extraction.

The paper [46] was the first to explore a unified framework for geometric deep learning,
and [28, 27, 29] provided a mathematical framework for scattering transforms for noneuclidean
data. Additionally, for spherical data, windowed scattering transforms have been generalized in
[47, 48], where the convolution operation is specific to the sphere, and numerical implementations
are optimized relative to [28] (with a trade-off of flexibility). As an aside, one could consider
nonwindowed versions of [47, 48] for classification tasks on the sphere.

In particular, [28] defines the nonwindowed scattering transform for compact manifolds as
L! norms of a cascade of wavelet transforms and nonlinearities, which will be reviewed below.
Similar to scattering moments and nonwindowed scattering transforms for Euclidean data, one
would suspect that using L norms instead of L' norms provide richer discriptors for signals on

manifolds. This motivates our results for ¢ = 2. Other values of g have been left to future work.

4.1 Notation for Scattering on Manifolds

Let M will be a compact, smooth, n-dimensional Riemannian manifold without boundary
contained in R, where d > n with geodesic distance between two points x;,x, € M given by
r(x1,x;) and Laplace-Beltrami operator denoted as A. The notation LZ(M) denotes the set of

all functions f : M — R such that f M | f(x)|?dx < oo, where dx is integration with respect to
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the Riemannian volume. We use the notation Isom(M;, M>) be the set of isometries between
manifolds M; and M,. Lastly, the set of diffeomorphisms on M will be denoted by Diff(M), and

the maximum placement of y € Diff(M) will be given by ||yl := sup,cpq 7 (x, y(x)).

4.2 Spectral Filters and the Geometric Wavelet Transform
We provide a brief summary of the geometric wavelet transform, as presented in [28]. The

convolution of f, g € L>(R") is usually defined in space as

(F0)® = [ FoIstr=dy,

However, for a general manifold, even under the conditions we have prescribed, a notation of
translation does not necessarily exist. Instead, one can consider a spectral definition of convolution
via the spectral decomposition of —A. Denote N U {0} = Nj. Because our manifold is compact, it
is well known that —A has a discrete spectrum, and we can order the eigenvalues in increasing order
and denote them as {1, },en,. We will denote the corresponding eigenfunctions as {¢,(x) }neny,.
which form an orthonormal basis for L?(M).

Suppose f € L2(M). Since the set of functions {@,(x)}.ey, forms a basis in L2(M), we

decompose
MOEDRIADINCEDY ( / F)Ga(3) dy) on(x), (4.1)
neNy neNy M
which is similar to a Fourier series. Since ¢,(y), is a replacement for a Fourier node, it is natural
to let
fo = [ £08,0)ay “2)
and define convolution on M between functions f, 4 € L>(M) as
Frh@) =" Fm)h(n)ga(x). (4.3)
neNy

Defining the operator T}, f (x) := f * h(x), it is easy to verify that the kernel for 7}, is given by

Kn(x,y) = ) h(m)gn(x)$,(0). (4.4)

neNy
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Similar to how convolution commutes with translations on R”, it is important for convolution
on M to be equivariant to a group action on M. The authors of [28] construct an operator by
convolving with functions that commute with isometries since the the geometry of M should be
preserved by a representation.

To accomplish this goal, we use a similar definition for spectral filters. A filter 1 € LZ(M) is a
spectral filter if A; = A, implies (k) = h(€). One can prove that there exists H : [0, o) — R such
that

H(A4,) = h(n), Vn € Ny.

Let G : [0, ) — R be be nonnegative and decreasing with G(0) > 0. A low-pass spectral filter
¢ is given in frequency as ¢ (k) := G (1) and its dilation at scale 2/ for j € Zis </5j(k) = G(2/y).

Using the set of low pass filters, {¢ i}jez, we define wavelets by

G (k) = (1,0 (02 = 16,0122, 4.5)

which is identical to standard constructions of Littlewood Paley wavelets in Euclidean Space.

Fix J € Z. Define the operators

Arf = f=dy,

W, f:=fx*y,, J<J.
The windowed geometric wavelet transform is given by
Wif ={A;f,¥Y;f: Jj<J} (4.6)
and the nonwindowed geometric scattering transform is given by
W ={¥Yf: JjeZ}. 4.7)

We have the following theorem, which provides a condition for when our wavelet frame is a

nonexpansive frame.
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Theorem 40. Let G : [0,00) — R be nonnegative and decreasing with 0 < G(0) = C,

limy 00 G(x) =0, and {Y;} jez is a set of wavelets generated by the low pass filter d(k) = G(Ap).

Then we have

DTS w3 =l

JEZ
Proof. For fixed J > 1, we telescope to get

J

J
D 1gi P = > 16 1P - 1G24 ]
j==J

j==J

=GR P - 167 )
Since limy_,. |G (277124)|? and lim;_,« |G (277 A;)|? both exist, it follows that
16,0 = lim |62 A0 - lim [G27 0P = C.
JEZ J=e0 J—eo
We can write

IF = w3 = D 1R PIF(R)P.

neNy

Thus, it follows that

DUF sz =" > If P (1P

J€Z J€Z neNy
= > 1f (k)P (Z |zﬁ,~(k>|2)
JEZ n€Ny
= CIIf1I5.

4.3 The Geometric Scattering Transform

(4.8)

In an analogous manner to the Euclidean definition of the scattering transform, one would like

to find a representation that meaningfully encodes high frequency information of a signal f. Define

the propagator as

UlJ1f =IW;ifl  VjeZ,
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which is convolution of a wavelet and applying a nonlinearity. Similarly, we can define the
windowed propogator as

Uil f =Wifl Vi<, (4.10)

Similar to Scattering Transforms on Euclidean Space, one can apply a cascade of convolutions and
modulus operators repeatedly. In particular, form € N, let ji, ..., j, € Z. The m-layer propogator

is defined as
Uljis oo ml =Uljml - - ULLLf = 1f 5 | ey -5, | (4.11)
and the m-layer windowed propogator is defined as

Usljts - s dml = Ugljml - Uglji ) f = 1 f =g gy o x4, Jtseosjm < J (4.12)

with U[Q]f = fand U;[0] f = f. To aggregate low information and get local isometry invariance,
one can apply a low pass filter in a manner similar to pooling to each windowed propogator to get

windowed scattering coeflicients:

Siliv, -« iml = AsUsLjts s jml f = Usljn, - s ml f % 40,
where we defined S;[0] f = f * ¢;. The windowed geometric scattering transform is given by
Sif={S;jlj1,-. ., jml : m>=0, ji<J VI<i<m} (4.13)

The authors of [28] were able to prove that this nonwindowed scattering operator was nonexpansive,
invariant to isometries up to the scale of the low pass filter, and stable to diffeomprohisms under
mild assumptions.

In addition, the authors consider a nonwindowed scattering transform, which removes the low
pass filtering. For applications such as manifold classification, requires full isometry invariance

instead of isometry invarance up to the scale 2/. We see that

lim S[j1..... ] f(x) = vol( M) U s -« s ) flI1- (4.14)

As a proxy, it is more appropriate to consider

SEGseeesdm) = N0 s jml fll1s (4.15)
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which motivates defining the nonwindowed geometric scattering transform as
Sf={Slj1,....jml:m=0, ji€Z V1<i<m}. (4.16)

However, as mentioned previously, [36, 49] motivate the use of nonwindowed geometric scat-

tering operators as 2-norms of a cascade of convolutions and modulus operators:

Sqf s osdm) = NUL1 - jm] fll2-

Additionally, one can generalize nonwindowed geometric scattering transform to
Sof ={S2ljt,---jml i m>0, ji€Z, ¥1<i<m} (4.17)

which we will call the 2-nonwindowed geometric scattering transform.

4.4 Generalizing Geometric Scattering Transforms

To measure stability and invariance properties of the 2-nonwindowed geometric scattering
transform, we need to define appropriate norms. The original nonwindowed geometric scattering
transform was a mapping ¢2(L!(M)) — L2(M), but our interpretation is slightly different. In
particular, rather than thinking of the coefficients as a sequence, we group the coefficients in each
layer and define the norm

(o)

ISP =200 DL 1Saf G i)l (4.18)

with scattering distance given by

(o)

2/ =SaglP= D1 D0 Saf (oo dim) = 828G i P | (419)

m=1\(j1,---sjm)EZL™

1

Theorem 41. Let G : [0,00) — R be nonnegative and decreasing with 0 < G(0) = 5

lim,_,0o G(x) =0, and {; } jez be a set of spectral filters generated by G. Then we have
1S2f = Sagll < IIf — gl
forall f,g € L2Z(M).
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Proof. We begin by proving that

D St Gt dm) = Sa8Gis i) P < 27 IFI

for all m € N via induction.

In the case of m = 1, we see that

DU 1S2£ () = Sag (NP = D HIF #wjlla = Ig ¢l

jez JjezZ
< > Ny —gruil3
JEZ
= DI - 2) i3
JEZ
<27'lf-gl3.

We can now work recursively. It follows that we can use similar ideas to the m = 1 case to get

Z 1S2£ (it -+ oo Jma1) = S28 (s« os )P
. . . . 2
= D> ULl f Wl = UL - m)g * W o]
. . . . 2
= > WLl f = UL dmle) * Wyl

<27 Z MU Ljts s et f #0511 s 18 * 95,1113

(]l ~~~~ jm)EZm
< D WLl f 5 W5 = Uljts s jmeilg % 0,113
(]1 sssss jm)GZm
<22 Ui f = ULt 1813

(J1seesjm-1)€ZM!

<271 f - gll3.

Now we can sum over all m to get

IS2f = Sagll> < > 27" = gll3 = I1f - gll3-
m=1
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1

Corollary 42. Let G : [0,00) — R be nonnegative and decreasing with 0 < G(0) < ik

lim,_,0o G(x) =0, and {Y; } jez be a set of spectral filters generated by G. Then we have

IS2/1 < 11£1l2
forall f € L2(M).

Towards the point of embedding proper invariance, we provide a theorem that demonstrates that

the 2-nonwindowed geometric scattering transform is invariant to isometries.

Theorem 43. Let ¢ € Isom(M, M), and let f € LL*(M). Define f' = Ve f and let E’z be the
corresponding 2-nonwindowed geometric scattering transform on M’ produced by a littlewood

paley wavelet satisfying the conditions described in Theorem 40. We have glz f'=8>f.

Proof. We see that S>[0]f = || fll. = IVe fll2 since Vg is an isometry. Now suppose that we

consider p = (ji,...,Jm). Then

S2ljs - s jmlf = ULP]fll2
= IVeUlLplfll2
= ULp1Vefll2
=1U[p1f"ll2

=S50j1s -5 Jmlf
Thus, we can see that g;f’ =S,f. O

Additionally, we also have a diffeomorphism stability result for A-bandlimited functions (i.e.

(k) = {f, x) = 0 whenever 1, > ).

Lemma 44 ([28]). Suppose & € Dif(M). If f € L>(M) is A-bandlimited, and & € Diff(M) can
be decomposed as & = &1 o &, where &) € Diff(M) and &, € Isom(M), then

1f = Vefllz < COMA €Nl L f 112

for some constant C(M).
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Theorem 45. Let f € L>(M), and assume that  is a wavelet family satisfying the conditions
of Theorem 41 with G(1) < e™*. If ¢ € Diff(M) can be decomposed as & = & o &, where
& € Diff( M) and &, € Isom(M), then

I1S2f = S2Veflla < CMA"|€lloll f1I2-

Proof. The transform is nonexpansive, so Lemma 44 gives the desired result. O

77



CHAPTER 5

CONCLUSIONS
This thesis has provided a generalization of nonwindowed scattering transforms to signals in
Euclidean space, as realizations stochastic processes, and signals on compact manifolds. Future
work involves the following:

* Generalize the diffeomorphism bound from chapter 2 to stochastic processes. This is possible,
but this is more difficult because the techniques used in Euclidean space for Chapter 2 do not
apply directly.

* Apply g-scattering moments to audio texture synthesis. Based on the results of [50], one
would expect that these scattering moments yield additional, relevant signal descriptors.
However, does this yield better signal synthesis?

* Generalize the results of chapter 2 to create nonwindowed scattering transforms as a cascade
of wavelet transforms, nonlinearities, and LY norms on a compact manifold. This is left to

future work, and requires results from singular integral theory.
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