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ABSTRACT

Internet of Things (IoT) utilizes sensors as the information source of machine intelligence. Its

applications widely exist from Smart Home, Smart City to Wearable Healthcare and Smart Farm-

ing. An IoT architecture usually covers four stages: sensor data connection, data transmission,

data processing and application model. On top of prediction precision, the interest of IoT research

includes efficiency, economic saving and system scalability.

In pursuit of these goals, we push the limit of IoT system design from the following three

perspectives. (1) We exploit the potential of sensors of smart devices, including sensor fusion and

possibility of new IoT applications. (2) We design Machine Learning models for IoT applications,

including feature engineering and model selection. (3) We implement lightweight IoT systems

for smart devices like laptops, smartphones and voice assistants, considering the constraint of

computation resources.

In this dissertation, we especially introduce our effort to IoT applications related to localization

and security. EyeLoc is a smartphone vision enabled localization we designed for large shopping

malls. The results show that the 90-percentile errors of localization and heading direction are

5.97m and 20◦ in a 70,000 m2 mall. Patronus protects acoustic privacy from malicious secret audio

recordings using the nonlinear effect of microphones. Our experiments show that only 19.7% of

the words protected by Patronus can be recognized by unauthorized recorders. SoundFlower is a

sound source localization system for voice assistants. It can locate a user in 3D space through the

wake-up command with a median error of 0.45 m.

In general, we explore the potential of diverse sensors to IoT services and build machine learn-

ing models to exploit the most information from sensor data. The applications we study are specif-

ically about localization and security.
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CHAPTER 1

INTRODUCTION

Internet of Things (IoT) refers to the network of computing devices which are embedded with

sensors and interconnected through the Internet [1]. Distributed sensors gather data from physi-

cal objects, networking transfers diverse information from various locations to the computational

system, which enables a comprehensive understanding of the environment as well as reactions of

actuators. With cloud service deploying computation resources and machine learning analyzing

sensor data, IoT could lead to complete automation of large infrastructures. Lots of novel con-

cepts have been proposed and relevant systems are under construction, such as Smart Home [2],

Smart Office [3] and Smart City [4]. In this dissertation, we are particularly interested in smart

applications related to mobile devices. As mobile devices are the most common and widespread

computational systems, exploring their existing sensors and building effective computational mod-

els is important to many IoT applications. With proper utilization, a mobile device can play an

essential role to IoT products like Smart Home and Smart Office.

IoT architecture can be divided into four layers:

• Sensing layer: To initiate exchange of information between a physical object and a compu-

tational system, sensors play an essential role. Sensors monitor the physical conditions of the

environment and collect data. Our IoT systems in this dissertation studies sensors like micro-

phones, cameras and inertial sensors (IMU). As for physical signals, we can either use existing

environmental signals, like sound source localization, or use modulated signals that interact with

the surroundings, like gesture recognition through WiFi signals. For the latter one, the modulated

signal is expected to be non-intrusive to the environment. For example, when acoustic signal is

adopted to monitor infants, BreathJunior [5] especially selects chirps from 6 kHz to 21 kHz and

modulate the chirps into pseudo white noise because long-term exposure to high-frequency chirps

does harm to infants.

• Network layer: Network layer manages communication between devices. It can be wired or

wireless communication. Wired communication transfers data through a wired medium like Eth-

1



ernet or USB. Our research focuses more on wireless signals. Nowadays wireless communications

such as WiFi, LoRa, Bluetooth Low Energy (BLE), cellular networks (3G, 4G, 5G) and Radio-

Frequency Identification (RFID) are very popular in IoT. In this dissertation, we especially studied

acoustic signals to form a sensor network.

• Data preprocessing layer: After sensor data is collected and transferred to the computational

system, the next step is to remove noises and extract relevant features. Sometimes we also need

to remove redundant information to reduce the computational overload. In our application sce-

narios, hardware imperfection and environmental disturbances are major sources of noises. Signal

processing and machine learning techniques are common methods to preprocess data in IoT.

• Application layer: After we have clean data, we can build computational models to achieve

smart applications. Geometric models [6–9] and machine learning models [10–13] are two popular

choices.

In spite of attractive capabilities, IoT system design faces manifold challenges. First, no sen-

sor could provide perfect transfer function between the physical signal and the sensor data. For

example, acoustic sensing suffers from information loss due to the discretization between analog

signal and digital signal. WiFi sensing struggles with phase offset across radio chains, sampling

frequency offset, symbol timing offset and carrier frequency offset. Image sensing is limited by

resolution. Second, environmental noise is pervasive. The environmental noise might be more than

random white noise. The sensor data contains traces of environmental information and interfer-

ence, which is challenging to be completely removed. For example, one common environmental

noise source for acoustic sensing is multipath effect. Due to this reason, the performance of an IoT

system might degrade significantly after the system is deployed to a new environment. Third, the

computational power of mobile devices is limited while most IoT applications require real-time

responses. The training of larger neural networks like ChatGPT requires a cluster of GPUs[14],

which is not affordable for mobile devices like laptops, smartphones and voice assistants. Last

but not the least, the existence of sensors incurs privacy concern from users. On the one hand, we

should choose proper sensors in different application scenarios. On the other hand, we need to
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protect use privacy from malicious attackers by exploring the potential of sensors.

Over the years, many IoT systems have been designed to overcome the challenges and push the

limit of IoT system design. In this dissertation, we introduce one system for indoor localization,

one system for sound source localization and one system for acoustic security. For indoor local-

ization, we propose EyeLoc [15] to enable self-localization in large shopping malls. For malls like

Outlets, their area can reach as high as 70,000 m2. Usually people depend on nearby kiosks to fig-

ure out directions, which is time-consuming and tiresome. With EyeLoc, people hold smartphones

and turn a circle in place, then their location and heading direction will be shown on floor-plan

images, which are widely offered by map providers like Google Maps and Gaode Maps. EyeLoc

combines cameras and IMUs to explore the geometric relationship between angles and the relative

location of the user with respect to three or more Point-of-Interests (POI). The 90-percentile errors

of localization and heading direction are 5.97m and 20◦ in 70,000 m2 malls, which is sufficient to

find a shop or an exit in a mall.

For sound source localization, we implemented SoundFlower for voice assistants like Amazon

Echo. If voice assistants like Amazon Echo, Google Home or Apple HomePod can locate a person

based on the speech he/she utters, they can better understand the context of commands and deliver

more considerate tasks. Sound source localization is challenging because voice assistants are blind

to the original speech. SoundFlower extracts Time Difference of Arrival (TDoA) information from

phase data of cross spectrum. To cope with internal noise and environmental noise, we design a

self-adjusting speech detection method to recognize speech-involved phase data. Robust regression

is applied to extract TDoA from phase data against multipath effect. Our experiments prove that

SoundFlower is robust and efficient.

For acoustic security, we designed a system to protect acoustic privacy from unauthorized

recordings. Smart devices such as smartphones, smartwatches and digital wristbands are all de-

signed with recording feature. In spite of conveniences, such function from portable and widespread

devices expose us to the risk of malicious secret recording. We propose Patronus [16] to scram-

ble unauthorized recordings with ultrasounds, while authorized devices can still recover informa-
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tion from scrambled recordings with keys received through WiFi or bluetooth. The rationale of

scrambling speech with ultrasounds is drawn from an observation discovered by BackDoor [17].

Although commercial mobile devices cannot sense ultrasounds due to their sampling rate limit,

two ultrasounds with different frequency can incur a low-frequency signal within the microphone.

When it comes to recovering information from the scrambled recording with the received key, we

apply Normalized Least-Mean-Square (NLMS) adaptive filter. The process of NLMS filter is to

simulate the received ultrasound and remove it from the recording.

For the structure of this dissertation, Chapter 2 introduces EyeLoc which is designed for indoor

localization in large shopping malls. EyeLoc especially shows our efforts on achieving the trade-

off among cost, computational power and real-time responses. Chapter 3 introduces SoundFlower,

which is a sound source localization system for voice assistants. SoundFlower places emphasis

on how to overcome pervasive environmental noise. Chapter 4 presents Patronus which is used to

protect acoustic privacy. Patronus shows how to protect user privacy by making use of sensors and

wireless signals. Finally, we conclude our work in Chapter 5.
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CHAPTER 2

SMARTPHONE VISION ENABLED PLUG-N-PLAY INDOOR LOCALIZATION IN
LARGE SHOPPING MALLS

Nowadays, the physical layout of many large shopping malls is becoming more and more com-

plex [18]. As there are many location-based activities (e.g., shopping, eating, watching movies) in

large shopping malls, indoor localization is becoming an important service for people. Although

outdoor localization (i.e., GPS) has been put into practice for many years, there is still no practical

deployed indoor localization systems.

Many indoor localization systems rely on pre-collected information (e.g., Wi-Fi

signals [19] [20] [21] [22] [23], lamp positions [24] [25] [26], scene images [27] [28] [29] and mag-

netic fingerprints [30] [31]), called site survey, to construct a localizable map. In large shopping

malls, the site survey usually incurs extensive bootstrap overhead which hinders corresponding ap-

proaches from widespread adoption. Even when the site survey is accomplished, the information

needs to be timely updated and calibrated to ensure the accuracy. Moreover, some indoor localiza-

tion systems [22] require custom hardware, which is not supported in commodity smartphones.

Our core question is can we set up a plug-and-play indoor localization system in large shopping

malls with commodity smartphones? We notice a possible way by leveraging the widely available

floor-plan images, which can be obtained from indoor map providers (e.g., Google Maps, Gaode

Maps, Baidu Maps, etc.). Those floor-plan images contain positions of many shops, called Point of

Interests (POI). POIs are used as visual hints when users try to manually localize themselves. This

kind of nonautomatic self-localization usually requires users to have good geometric sense and the

ability of space transformation. To reduce users’ mental work and provide real-time localization

service, we refine the question as can users automatically obtain their positions on floor-plan

images from their smartphones just like traditional outdoor localization systems such as Google

Maps and Baidu Maps? In this sense, it is possible to achieve a plug-and-play indoor localization

system by bridging this gap.

In this chapter, we propose EyeLoc, a step towards plug-and-play indoor localization in large
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shopping malls. The key idea of EyeLoc is to imitate human self-localization with smartphone vi-

sion. After obtaining a floor-plan image, EyeLoc uses scene text detection/recognition techniques

to extract a set of POIs from the image. The recognized texts are used to identify different POIs and

their corresponding text bounding boxes provide the approximate POI positions in the floor-plan

coordinate system (called floor-plan space). Correspondingly in real space (called vision space),

a user holds his/her smartphone and turns a 360◦ circle. The smartphone automatically shoots a

series of images (called view image), which contain the surrounding POI signs. For those observed

POIs, EyeLoc extracts their texts and geometric constraints in vision space, which are further used

to match the user’s position in floor-plan space.

Technically, EyeLoc develops several novel methods to address three challenges. First, there

is a big difference between human vision system and smartphone vision system. Human vision

system is a binocular system that supports estimating the direction and distance of an object. Most

of the smartphones, however, only have one camera which is hard to achieve direction and distance

measurements in a light-weight way with existing vision methods. We develop an accurate and

ubiquitous monocular vision system which is available on most smartphones. We construct the

constant geometric constraints of 3 observed POIs to enable position matching between floor-plan

space and visual space. Second, to extract the directions of different POIs, text detection and

recognition are necessary, but usually time-consuming. To reduce the processing time of POI

extraction, an outlier image filtering method and a sparse image processing method are designed.

Third, the measurement errors from motion sensors and floor-plan images may incur inaccurate

position matching, for which we design an error-resilient method.

We implement EyeLoc on Android smartphones and evaluate its performance in an office en-

vironment, two large shopping malls (7,500m2 and 10,000m2) and a semi-outdoor large Outlets

(70,000m2). The evaluation results show that the 90-percentile errors of localization and heading

direction can achieve 5.97m and 20◦. The contributions of this chapter are as follows.

•We propose EyeLoc, a smartphone vision enabled plug-and-play indoor localization in large

shopping malls. No site survey nor periodical calibration of floor map is required.
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•We develop a ubiquitous smartphone vision system and corresponding geometric localization

model. To guarantee the localization accuracy and processing efficiency, we propose countermea-

sures to address several practical challenges.

• We implement EyeLoc on Android smartphones and evaluate its performance in an office

environment and two large shopping malls. The evaluation results show that EyeLoc is effective in

both localization accuracy and processing efficiency.

The rest of this chapter is organized as follows. Section 2.1 introduces the overview of EyeLoc.

Section 2.2 illustrates the detailed design of EyeLoc. Section 2.3 and Section 2.4 show the details

of EyeLoc implementation and evaluation respectively. Section 2.5 introduces the related work.

Finally, we conclude our work in Section 2.6.

2.1 Overview

Plug-and-play outdoor localization has been successfully achieved on smartphones with the

help of GPS. Referring to the criteria of GPS-based outdoor localization, EyeLoc has two goals:

• Plug-and-play. EyeLoc should not assume any extra bootstrap cost (e.g., site survey, system

calibration) in large shopping malls. Moreover, EyeLoc should not require users to own any prior

knowledge or follow complex smartphone operations.

• Efficient and robust. Facing computation-intensive image processing and various mea-

surement errors from motion sensors and floor-plan images, EyeLoc should be able to accurately

localize a user with short processing time.

To meet the first goal, EyeLoc is inspired by two observations. First, the indoor floor-plan

images of shopping malls (e.g., shown in Figure 2.1(a)) can be easily fetched from indoor map

providers through Android and iOS APIs. The other observation is that people are used to turning

around to observe surrounding POIs and localize themselves. After fetching the floor-plan images,

EyeLoc enables the self-localization of the smartphone through absorbing data from the on-board

motion sensors and camera. No bootstrap cost or user training is involved.

Figure 2.1 is an example showing how EyeLoc works in a plug-and-play manner. Alice is lost

in a large shopping mall and she wants to go to H&M. As Alice opens EyeLoc on her smartphone,
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(a) Indoor Floor-plan Image (b) Circle Shoot (c) Location & Heading

Figure 2.1 Illustration of an example of the EyeLoc innovation.

the corresponding floor-plan image is automatically fetched. She holds the smartphone and turns

a 360◦ circle, during which the camera and motion sensors keep working. This operation is called

circle shoot. With input data from the camera and motion sensors, EyeLoc extracts geometric

information of surrounding POIs (e.g., GAP, UGG, MISS SIXTY, Calvin Klein). Meanwhile,

EyeLoc uses text detection and recognition techniques to find the POI positions on the floor-plan

image. Finally, EyeLoc projects Alice’s position and heading direction onto the floor-plan image

as shown in Figure 2.1(c).

The involvement of image processing significantly increases the difficulty to meet the second

goal. As Figure 2.1 illustrates, EyeLoc depends on text detection and recognition techniques to

extract POI signs from view images. Text detection and recognition for color images have been

widely studied in the past decade, especially with deep learning models like convolutional neural

networks. A few open-source models (e.g., OpenCV [32], Tesseract [33]) are also available on

smartphones. Smartphones can also utilize cloud service from companies like Google, Baidu,

etc. However, none of the two approaches can achieve real-time execution due to computation

overhead on images or extra network delay. This contradiction demands us to design an efficient

method to extract enough geometric information without incurring long processing latency. We

have two intuitions for the method design. First, since the extracted POIs with error geometric

information is useless even harmful for localization, we should not deal with those view images

of low quality. Second, we observe that the view images are usually redundant for extracting the

geometric information of an observed POI. Hopefully, we can only select a subset of those view

images which contain equivalent geometric information of the observed shops as the whole set
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does for further processing.

On the other hand, various measurement errors are invertible and may lead to inaccurate local-

ization. For example, as shown in Figure 2.1(c), the text bounding boxes of the four observed shops

may be not exactly aligned to that of the corresponding shop signs that appeared in vision space.

To mitigate potential errors and achieve robust localization, our observation is that the spatial POI

distribution is usually dense in large shopping malls, which means multiple POIs are available.

Hopefully, we can use the redundant information to refine the estimated user position.

In comparison with human binocular vision system, EyeLoc develops a monocular vision sys-

tem, which is accurate and ubiquitous for smartphones. EyeLoc enables user position matching

between vision space and floor-plan space with constant geometric constraints of observed POIs.

The system architecture of EyeLoc is shown in Figure 2.2, including three parts as follows.

Raw Data Collection. The first part is to fetch floor-plan images from indoor map providers

and collect raw information of view images from circle shoot. According to the coarse GPS lo-

calization, EyeLoc queries indoor map providers to obtain floor-plane images. During the circle

shoot, Eyeloc uses the camera and motion sensors (e.g., compass, gyroscope, accelerometer) to

continuously capture view images and corresponding motion attributes (e.g., camera facing direc-

tion, angle velocity). Section 2.2.3 shows the design details.

POI Extraction. Taking the information of view images and floor-plan images as input, the

second part extracts geometric information of observed POIs in both vision space and floor-plan

space. Because text detection and recognition are time-consuming, we need to extract enough

geometric information while keeping the number of processed images as small as possible. EyeLoc

filters out some view images which are blurred or have error motion attributes. Then EyeLoc

develops a sparse image processing method to extract geometric information of all observed POIs

from the rest of the images and keeps the number of processed images small. On the other hand,

after extracting all POIs on the floor-plan image, EyeLoc obtains the positions of the observed POIs

in floor-plan space by matching their names. The detailed design is illustrated in Section 2.2.4.

Position Matching. With the geometric information of the observed POIs, EyeLoc now

9



Circle Shoot

Floor Plan 
Images

Raw Data Collection

View Images

Motion 
Sensor

Camera

Coarse GPS 
Localization

View Image 
Attribute

POI Extraction Position Matching

View Image 
Filtering

Sparse Image  
Processing

Indoor Map 
Provider

Observed 
POI Name

Observed 
POI Direction

POI Name 
Matching

Text Detect & 
Recognize

Observed 
POI Position

POI Grouping

POI Tuple 1

POI Tuple 2

POI Tuple k

…

Geometric 
Localization

Error 
Estimation

User Position 
& Heading

Figure 2.2 Illustration of the system architecture of EyeLoc.

projects the user’s position and heading direction onto floor-plan space. The redundancy of the

observed POIs is explored to mitigate unavoidable errors of geometric information in vision space

and positions in floor-plan space. The observed POIs are grouped into tuples. Each POI tuple

can be used to calculate the user’s position and heading direction with geometric constraints. The

localization errors of different tuples are diverse with the same measurement errors. EyeLoc com-

bines several inferred positions and the corresponding errors to vote the final user’s position and

heading direction. The detailed design is shown in Section 2.2.5.

2.2 Design

To relieve humans of self-localization, EyeLoc achieves plug-and-play localization in large

shopping malls. Due to the fundamental difference between the vision principle of humans and

smartphones, we first establish the smartphone vision system and illustrate the geometric local-

ization model. To further put EyeLoc into practice, we show the detailed design of three function

components (shown in Figure 2.2) step by step.

2.2.1 Smartphone Vision System

We intend to define a ubiquitous smartphone vision system to fetch the geometric relationship

between a smartphone and an observed POI. Human eyes form a binocular vision system, which

enables us to estimate our distance and direction to an observed POI. Smartphone vision differs

significantly from human vision. First, not all smartphones have been equipped with dual or triple

cameras. It is hard to extract the distance and direction of an observed object from a monocular

image except there is a preconfigured Structure from Motion (SfM) based model or learning based

model. However, both of these two approaches require a large set of images for model training,
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which incurs the heavy burden of site survey. Second, humans have practiced a lot since childhood,

so camera calibration [34] is a must to achieve accurate estimation. Since the parameters of camera

calibration are not explicitly known for those smartphones, the complicated operation induces

unacceptable difficulty to bootstrap this ability for common users. In EyeLoc, the question is can

we estimate distance and direction as the geometric descriptor of an observed object through the

monocular view images of circle shoot?

P

F1

F2

O1
O2

d
r

r
f

f
C1 C2

K1

K2

θ1 θ2

H

EyeLoc sightline of object P

O

C(F)

Figure 2.3 Direction and distance measurement with circle shoot.

It is confirmative that the direction information of a POI can be constructed with the monocular

view images of circle shoot. We define the EyeLoc sightline of an object as the virtual line between

the object and the user. For example, as shown in Figure 2.3, given a POI P and a user H, the

EyeLoc sightline is HP. O is the optical center of the camera lens and C is the center of the

image plane. H, C and O are approximately kept on the same line all the time during circle shoot.

When the user is facing P, HP coincides with CO and its direction can be measured by smartphone

motion sensors [35]. During circle shoot, however, the user’s facing direction is continuously

changing. For example, C1O1 and C2O2 are not aligned with HP. The key observation is that

when CO and HP are aligned, F that indicates the position of P on a view image will coincide with

C. Otherwise, it will appear at the side of C as F1 and F2 show. As shown in Figure 2.4(b), (c) and
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(d), when a user turns in clockwise during circle shoot (e.g., Figure 2.4(a)), for shop “MOUSSY”,

its text bounding box will appear from left to right in the view images. EyeLoc finds the view

image (e.g., Figure 2.4(c)) of which the text bounding box is at the center, then the direction of

EyeLoc sightline can be estimated by motion sensor.

(a) (b) (c) (d)

Figure 2.4 An example of the sightline change during circle shoot in physical space.

To enable distance estimation with monocular vision, it is possible to exploit the camera motion

of circle shoot to imitate a binocular vision system. As shown in Figure 2.3, the distance between

the POI P and the user H is indicated as d. The distance between H and the optical center of

smartphone camera lens O1 is r. The focal length of the smartphone camera lens f is unknown

for most smartphones. θ1 indicates the intersection angle between line HO1 and EyeLoc sightline

HP. Since△F1O1C1 is similar to△PO1K1, we have the following equation:

F1C1

d sinθ1
=

f
d cosθ1− r

(2.1)

where F1C1 indicates the pixel offset between F1 and C1. Combining the same equation under

another angle θ2 (θ1 ̸= θ2), we can derive d as follow:

d = r
sinθ1− k sinθ2

cosθ2 sinθ1− k cosθ1 sinθ2
(2.2)

where k equals the ratio between F1C1 and F2C2. If θ1, θ2, k and r are known, the distance d can

be calculated. As the direction of HP, HO1 and HO2 can be obtained by motion sensors, θ1 and

12



θ2 can be calculated. For a shop, we recognize the center of its text bounding box as F1 and F2

on a view image so that F1C1, F2C2 and k can be calculated. r can be roughly estimated according

to human arm length. In this way, EyeLoc can estimate the distance of a POI without any prior

knowledge of camera parameters in large shopping malls.
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Figure 2.5 Illustration of distance error in terms of the error of θ2 and k. (a) and (b) show the
distance error under different θ2 and k when other parameters are fixed.

Since the error of θ and k estimation is inevitable, we further conduct the error analysis. We

assume r is 0.5m. Given θ1, θ2 and k are 24◦, 12◦ and 2.11, d will be 5.48m. We change one

parameter (e.g., θ1, θ2, k) to calculate the distance error when other parameters are fixed. The

results are shown in Figure 2.5a and Figure 2.5b. Surprisingly, given the distance as 5.48m, the

distance error is huge when θ1, θ2 and k have a small bias. The distance error is getting to 1.97m,

when θ1 decreases from 24◦ to 23.9◦. Similarly, when θ2 increases from 12◦ to 12.1◦, the distance

error increases from 0m to 2.68m. 0.1◦ error is common for the facing direction measurement

with motion sensors. The same trend happens on k. When k increases from 2.11 to 2.16, the

distance error increases from 0m to 3.77m. Due to the limitation of image resolution, given that

F1C1 is as large as 1000 pixels, 0.05 error of k means about no more than 50 pixels error of F2C2

which is hard to achieve due to the relatively large estimation error of text bounding box. When

θ1 increases or θ2 and k decreases a little, the situation is getting even worse. Hence, due to the

limitation of motion sensor precision and image resolution, the potential huge error makes the
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distance estimation unpractical currently.

Overall, in our smartphone vision system, for a POI, we only use the direction of its Eye-

Loc sightline as the geometric descriptor to develop an error-controllable localization model (Sec-

tion 2.2.2). To accurately and efficiently trace the sightline of a smartphone, we further develop

several countermeasures in Section 2.2.4 and Section 2.2.5. We leave the accurate distance mea-

surement using a monocular vision system as our future work.

2.2.2 Geometric Localization Model

After we obtain the direction of the EyeLoc sightline of several POIs, the next question is

how to construct constant geometric constraints, then figure out the user’s position and heading

direction on the floor-plan image.
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Figure 2.6 Illustration of the model used to localize a user’s position on floor-plan image with
3 observed POIs. (a) and (b) exhibit a constant geometric constraint in both vision space and
floor-plan space. (c) shows the model to calculate the user’s location with the extracted geometric
information.

Let us show the constant geometric constraints through an example. As shown in Figure 2.6(a),

H is a user’s position. The user observes 3 POIs (e.g., POI1 Miss Sixty, POI2 UGG and POI3

GAP) in their appearance order and Nv indicates the north direction in vision space. As shown in

Figure 2.6(b), H also indicates the user’s position. 1, 2 and 3 represent the corresponding center

of text bounding boxes of 3 observed POIs. Given the coordinate system X-Y of the floor-plan

image, (x1,y1), (x2,y2) and (x3,y3) are the corresponding coordinate of 1, 2 and 3. N f is the north

direction in floor-plan space which aligns with Y axis. In vision space, the directions of EyeLoc

sightline δ1, δ2 and δ3 can be estimated. However, since Nv and N f may not be aligned with each
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Algorithm 2.1 Geometric Constraints Extraction Algorithm
Input: 3 POIs sorted as their appearance order; the directions of the corresponding EyeLoc sight-

line δ1, δ2, δ3 in vision space.
Output: d12, d23, d31, θ12, θ23 and θ31.

1: vector of POI1 EyeLoc sightline v1 = (sinδ1,cosδ1).
2: vector of POI2 EyeLoc sightline v2 = (sinδ2,cosδ2).
3: vector of POI3 EyeLoc sightline v3 = (sinδ3,cosδ3).
4: d12 = v1× v2, d23 = v2× v3 and d31 = v3× v1.
5: θ12 = (δ2−δ1) mod 360◦; θ23 = (δ3−δ2) mod 360◦; θ31 = (δ1−δ3) mod 360◦

other, we cannot directly determine the coordinate of H with these directions in floor-plan space.

We have two constant geometric constraints in both vision and floor-plan spaces. The first is

the rotation direction of circle shoot is constant. The 3 POIs will appear in the same order (e.g.,

POI1 →POI2 →POI3 and 1→ 2→ 3) along the rotation direction. We use d12, d23 and d31 to

indicate the rotation direction between each pair of adjacent POIs. The other is that, according to

the similar triangles, ∠POI1HPOI2, ∠POI2HPOI3 and ∠POI3HPOI1 equal to ∠1H2, ∠1H2 and

∠1H2. The 3 intersection angles are indicated as θ12, θ23 and θ31. The rotation direction and the

intersection angles between any two POIs sever the constant geometric constraints for both vision

space and floor-plan space. Algorithm 2.1 exhibits the details to determine the d12, d23, d931, θ12,

θ23 and θ31 given 3 POIs and their corresponding directions of EyeLoc sightline.

Given POI coordinates ((x1,y1), (x2,y2), (x3,y3)), rotation direction (d12, d23, d31) and inter-

section angle (θ12, θ23, θ31), we need a method to calculate the coordinate (xH ,yH) of the user’s

position H in floor-plan space. As shown in Figure 2.6(c), given the coordinates of two POIs (e.g.,

1, 2), the rotation direction d12 and the intersection angle θ12, if θ12 is 180◦, H is on the segment

between 1 and 2. Otherwise, the possible position of H is on an arc that takes the segment 1⃗2 as

the chord and θ12 as the inscribed angle. The pixel distance between 1 and 2 is l12 which equals√
(x1− x2)2 +(y1− y2)2. M is the middle point of the chord 1⃗2 and it’s coordinate (xM, yM) equals

( x1+x2
2 , y1+y2

2 ). O12 is the center of the circle and R is the length of its radius. We use (xo, yo) to

indicate the coordinate of O12. If θ12 is 90◦, O12 and M have the same coordinate. Otherwise,

since 1 and 2 are on the circle, the chord 1⃗2 is perpendicular to MO12 and we have the following
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equation:
x1− x2

y1− y2
=−yo− yM

xo− xM
= k (2.3)

where k is the slope of the chord 1⃗2. Moreover, the central angle ∠1O122 is twice the corresponding

inscribed angle which equals 180◦− θ12 and ∠1O12M is half the central angle ∠1O122. Hence,

∠1O12M = 180◦−θ12 and R = d12
2sinθ12

. For the length of O12M, we have the following equation:√
(xo− xM)2 +(yo− yM)2 =− l12

2tanθ12
(2.4)

Combining Equation 2.3 and Equation 2.4, we can obtain (xo, yo) as follows:

xo = xM±
l12

2tanθ12
√

1+ k2
;yo = yM∓

kl12

2tanθ12
√

1+ k2
(2.5)

Besides O12, we obtain another false center of circle O′12 which is symmetric with O12 by taking

1⃗2 as a mirror. To filter out the outlier O′12, we further exploit the information of the rotation

direction d12 and acute/obtuse angle θ12. If θ12 is an acute angle, O12 is on the same side with H

regarding segment 1⃗2. Otherwise, O12 is on the opposite side with H. In this way, we can identify

the unique coordinate of O12. Algorithm 2.2 summarizes the detailed calculation of O12 and R.

Now, we know H is on an arc determined by O12 and R. Similarly, we can calculate another arc

where H is on with POI2, POI3 and θ23. We further calculate the intersections of these two arcs.

One intersection is POI2, the other is the position of H.

In the angel-based geometric localization model, localization bias may be incurred by an un-

expected situation: when H, POI1, POI2 and POI3 are on the same circle, we cannot localize H

through the geometric constraints of the 3 POIs. This situation rarely happens in practice as shown

in Section 2.4. Moreover, we may be able to observe more than 3 POIs at large shopping malls. If

the situation has happened, EyeLoc will popup a message to remind the user that he/she needs to

walk several steps and relocalize himself/herself.

When the coordinate of H is known, we can calculate the directions of HPOI1, HPOI2 and

HPOI3 in floor-plan space. Then, with δ1, δ2 and δ3, we can calculate the angle offset ∆N between

the vision north Nv and floor-plan north N f . Given any user’s heading direction (e.g., camera facing
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Algorithm 2.2 Arc Calculation Algorithm
Input: 2 POIs, POI1 and POI2, sorted as their appearance order; the rotation direction d12; the

angle θ12 between the directions of the corresponding EyeLoc sightline in vision space; the
corresponding coordinates (x1,y1) and (x2,y2) in floor-plan space.

Output: The coordinate of circle center (xo,yo); the length of circle radius R.
1: pixel distance and slope of the chord 1⃗2 as d12 =

√
(x1− x2)2 +(y1− y2)2 and k = x1−x2

y1−y2
.

2: if θ12 equals to 180◦ then
3: H is on the segment between POI1 and POI2. (xo,yo) and R are set as NULL.
4: else if θ12 > 180◦ then
5: θ12 = 360◦−θ12.
6: else if θ12 equals to 90◦. then
7: (xo,yo) = (x1+x2

2 , y1+y2
2 );R = d12/2

8: else
9: R = d12

2sinθ12
; two possible coordinates (xo1,yo1) and (xo2,yo2) of circle center are calculated

by Equation 2.5.
10: set (xo,yo) as (xo1,yo1)
11: calculate the rotation direction do12 = vector(xo− x1,yo− y1)×vector(xo− x2,yo− y2)
12: if d12 ·do12 > 0⊕θ12 < 90◦. then
13: set (xo,yo) as (xo2,yo2).
14: end if
15: end if

direction) in vision space, we can infer his/her heading direction in floor-plan space. Overall,

EyeLoc can calculate a user’s position and heading direction by observing no less than 3 POIs.

More POIs can further improve the accuracy as introduced in Section 2.2.5.

2.2.3 Raw Data Collection

EyeLoc takes three data sources as input: view images captured by the camera, view image

attributes measured by motion sensors and the floor-plan image fetched from indoor map providers.

The camera and motion sensors work during the circle shoot, while the user is moving and the

smartphone may be shaking slightly. To control the consequent measurement errors, as well as the

processing latency and overhead, we conduct the raw data collection as follows:

2.2.3.1 View Images

Two system parameters are crucial to image shooting. One is the image resolution Ir. The

higher its value is, the text of more POIs can be accurately detected and recognized. However,

the processing time also increases when Ir becomes high. Empirically, EyeLoc fixes Ir as 1536p
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during the circle shoot. The other parameter is the shooting frequency fs, which means the interval

between two adjacent view images is 1
fs

. A high fs ensures all surrounding POIs can be recorded

when the rotation speed of a user is fast. Redundant view images also have a negative influence

on processing time. EyeLoc selects a relatively high fs to guarantee the abundance of raw data.

Later in Section 2.2.4 a smaller resolution Ip will be introduced for further image filtering and

complement Ir and fs.

2.2.3.2 Motions Sensor Readings

In most cases, when a user operates circle shoot, the facing direction of the user and his/her

smartphone camera is the same as illustrated in Figure 2.7. We define the EyeLoc sightline of an

object as the virtual line between the object and the user as shown in Figure 2.7. The direction of

a sightline δ is the angle between earth north and the projected direction Z′ of the smartphone Z

axis, which is measured through the estimation of the camera facing direction.
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Figure 2.7 Illustration of the camera facing direction δ measurement.

We use the motion sensors (e.g., accelerometer, gyroscope and compass) to capture the camera

facing direction. EyeLoc continuously samples the readings of the motion sensors. We collect

the direction of gravity via the acceleration sensors along 3 smartphone axes (e.g., X , Y and Z ),

and determine the direction of north with compass sensors to calculate the direction of Z in the

earth coordinate system. As a result, the direction of Z′ and δ are calculated correspondingly. To

remove potential magnetic interference and bursty noise, EyeLoc adopts several methods [35] [36]
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to calibrate the camera facing the direction of each view image.

2.2.3.3 Floor-plan Image

Given the coarse GPS readings in a shopping mall, EyeLoc can fetch the floor-plan images

of all floors in the shopping mall through APIs of indoor map providers. Each floor-plan image

contains the skeleton and name of all POIs on that floor.

Overall, the raw data collection module outputs a series of view images, corresponding Eye-

Loc sightline directions and floor-plan images. However, the redundancy and measurement errors

existing in raw data will incur computation inefficiency and localization error. Next, we introduce

the methods to improve the efficiency and robustness.

2.2.4 POI Extraction

For the floor-plan image, we use text detection/recognition techniques to collect POI signs and

record their coordinates on the floor-plan image as shown in Figure 2.1(c). As for view images, our

goal is to detect all available POI signs and determine corresponding sightlines. The angle formed

by two EyeLoc sightlines is critical for position matching in Section 2.2.5. The key issue is how

to achieve real-time performance on smartphones.

2.2.4.1 View Image Outlier Filtering

During raw data collection, we obtain abundant view images and motion sensor readings. As

the user is moving while the camera and motion sensors are working, some data contain errors

that can significantly influence the localization result. Filtering out those data can also save the

processing time.

If a view image is blurred, we cannot detect any text at all. We treat blurred view images as

outliers that should be filtered out. EyeLoc adopts Laplacian-based operator [37], which is a widely

used function for focus measure, to define the degree of image blur. We randomly selected 1692

view images from the whole data set shot in two large shopping malls (Section 2.4). We guarantee

there is at least one POI sign in each of these view images. In Figure 2.8, the black curve shows the

Laplacian variances of these images are distributed from 0 to 400. The larger the variance is, the

19



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

C
D

F

P
ro

ba
bi

lit
y 

of
 T

ex
t D

et
ec

tio
n

Image Laplacian Variance

CDF

Text Detection

Figure 2.8 The influence of image blur on the accuracy of text detection.

less the image blur is, as shown in the comparison between the example view images with variance

in the range [0,20] and [300,320]. In a view image, if the length of any recognized text string is

more than 2, it is text-detectable. We further select 15 view images from each level of image blur

to evaluate the probability of text detection under different levels of image blur. The red curve

shows that the probability of text detection is higher than 80% when the Laplacian variance is

larger than 80. Hopefully, we should filter out those view images whose Laplacian variance is less

than 80 because it is hard to detect any text clues from it. Thus, we define a threshold ∆Lap (e.g.,

approximate 80) to determine whether a view image is blurred or not.

Moreover, the smartphone vibration around Y axis and Z axis can influence the position of

a POI on view images. As a result, the estimation error of EyeLoc sightline may increase. The

gyroscope outputs the angular velocity around 3 axes as ωx, ωy and ωz, then the total angular

velocity is ω =
√

ω2
x +ω2

y +ω2
z . On the other hand, we can also calculate the angular velocity ω ′

given the Z′ direction of two adjacent view images and the corresponding time interval. We conduct

a circle shoot by setting fs as 2Hz. During circle shoot, we manually vibrate the smartphone as

a common user does when the picture ID is from 15 to 18 and from 26 to 30. As shown in

Figure 2.9, the angle velocity difference between ω and ω ′ is close to zero as usual. However,

smartphone vibration will obviously increase the difference. This observation indicates different
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motion sensors have different sensitivity for the vibration. Hence, EyeLoc sets a threshold ∆ω and

filters those view images when the angular velocity difference is larger than ∆ω .
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Figure 2.9 The angle velocity measured by different combination of motion sensors.

2.2.4.2 Text Filtering and Matching

In large shopping malls, text may appear or extract anywhere. It is possible to detect multi-

ple text strings from a view image. Figure 2.10 shows the case in the office environment. The

top figures are RGB scene pictures and the bottom figures exhibit the red text bounding boxes on

corresponding binary images. We can see that besides the desired text bounding box of “STAR-

BUCK”, many redundant ones are also extracted from the textures of curtains, tables and switches.

Moreover, in Figure 2.10(a), only part of “STARBUCK” are recognized. Situations in shopping

malls can be more complex since the name of a POI may appear at multiple places.

EyeLoc filters out the irrelevant and duplicate text bounding boxes through the following steps.

First, given the minimum and maximum length of POI names extracted from floor-plan images,

EyeLoc filters out the illegal text strings. Second, we group the rest of the text strings. Two text

strings belong to the same group when the difference between them is smaller than a threshold

∆t . The difference between the two text strings is defined as the ratio between their Levenshtein

Distance [38] and the maximum string length. Given the list of POI names extracted from floor-

plan images, EyeLoc further removes those invalid groups whose text strings are not on the list
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Figure 2.10 Landmark identification and text bounding box.

(i.e., the similarity is smaller than ∆t in comparison with any POI name). Finally, in each valid

group, EyeLoc combines the coordinates of all text bounding boxes to calculate the average value

as the unique text bounding box position of the observed POI on the view image. In this way,

EyeLoc identifies available POIs and corresponding positions of text bounding boxes on a view

image.

2.2.4.3 Sparse Image Processing

After filtering the outliers of view images, for all observed POI, we need to exactly find the view

images (e.g, Figure 2.4(c)) where the corresponding text bounding boxes appear in the middle.

The intuitive approach is to process all view images, but this will incur heavy networking and

computation burden as the sampling frequency fs is set high. Even worse, the desired view image

may not be captured or blurred. Instead of processing every view image to extract the geometric

information of all potential POIs, EyeLoc develops a sparse image processing approach to achieve

the same goal. The key idea is after the position of a text bounding box is known from a view

image (e.g., Figure 2.4(b)), we can enable EyeLoc sightline estimation of a POI with one more

view image which contains the same POI (e.g., Figure 2.4(d)) by feature point matching. As

shown in Figure 2.11, given two view images I1 and I2, the text bounding box of I1 is extracted and

it is d1 pixel from the middle line. Then, in I2, we use ORB algorithm to extract the same feature

points which fall into the text bounding box of I1. Given a feature point, its coordinates on I1 and
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I2 are (x1,y1) and (x2,y2). The pixel distance of the feature point is
√
(x1− x2)2 +(y1− y2)2. The

average pixel distance of all feature points is indicated as l f . Due to the approximate constant ratio

between pixel distance and central angle, given their direction as δ1 and δ2, we can calculate the

direction δ of the POI EyeLoc sightline as following:

δ = δ1 +
d1

l f
(δ2−δ1) (2.6)

When we recognize the text bounding box of a POI from a view image, we use its adjacent images

which probably contain the same POI to calculate the direction of POI EyeLoc sightline with

Equation 2.6.

I1 I2

Figure 2.11 Feature point matching in two different view images of the same POI.

To extract the geometric information of all observed POIs, the problem becomes to quickly

target a view image for each observed POI. Given n view images {I1, I2, ..., In}, we set a step

length ∆s and view images {I∆s, I2∆s, ..., Ik∆s} (k = ⌊ n
∆s
⌋) are selected for processing. Hopefully,

if the minimum number of view images of a POI is larger than ∆s, EyeLoc cannot miss the view

image of any observed POI. However, due to the possible failure of text recognition, we may miss

some POIs so that no enough POIs are extracted. In this case, EyeLoc will exponentially reduce

∆s and reprocess the new view images until at least 3 POIs are extracted or all view images are

processed. Overall, we can fetch enough available POIs and corresponding directions of EyeLoc
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sightline as soon as possible for later location matching. Next, we remove the potential estimation

errors to achieve accurate location matching.

2.2.5 Position Matching

According to the localization model in Section 2.2.2, the user’s position can be localized with

three observed POIs, called localization tuple. Figure 2.12 shows the measured POI coordinates

of a localization tuple (e.g., POI1, POI2, POI3) and the calculated user’s position H. The corre-

sponding measured intersection angle θ12, θ23 and θ31 are 120◦. The POI text bounding boxes in

the floor-plan image may not exactly align with that in physical space. Due to the POI coordinate

errors, we assume the true POI positions may appear on a circle around it and the radius is Re.

As shown in Figure 2.12(a), when moving the POI1 around a circle with a radius of 3 pixels and

keeping the positions of other POIs fixed, the calculated positions are shown as the green marks

in the figure. Moreover, due to the possible errors from motion sensor and image processing, θ12

may be inaccurately measured in comparison with the true intersection angle θ ′12 as shown in Fig-

ure 2.12(b). The same situation may happen for θ23 and θ31. We assume the error of θ12, θ23 and

θ31 is in the range of [−∆θ ,∆θ ]. For θ12, Figure 2.12(b) shows the possible true positions shown

as the green marks when ∆θ is 10 ◦. Regarding the errors of POI1 and θ12, the maximum local-

ization errors are indicated as de. The ratio between de and Re or ∆θ is further defined as the error

sensitivity of a POI or an intersection angle. Given a localization tuple u, we define its localization

error sensitivity les(u) as the sum of the error sensitivity of all three POIs and three intersection

angles.

When k (k ≥ 3) POIs are extracted, we have total m = k(k− 1)(k− 2)/6 localization tuples

indicated as {u1,u2, ...,um}. For the ith tuple ui, its localization result and error sensitivity are

indicated as hi and les(ui). The larger the les(ui) is, the more accurate the hi is. Hence, EyeLoc

sets the weight wi of localization result hi as 1/les(ui). Then, the final match location h is calculated

as follows:

h =
∑

m
i=1 wihi

∑
m
i=1 wi

(2.7)

With h and k extracted POIs, EyeLoc can calculate the user’s heading direction according to the
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method in Section 2.2.2.

2.3 Implementation

We implement EyeLoc as a mobile application in Android 7.0. Figure 2.13 demonstrates the

user interface (UI) of EyeLoc application when we conduct experiments in a shopping mall. As

shown in Figure 2.13(a), after a user opens EyeLoc application, the view captured by the camera

appears on the smartphone screen. The view keeps refreshing with the circle shoot. A vertical

white line appears in the center of the screen as the reference. Once a POI appears during the

circle shoot, EyeLoc extracts its text string from the view image. If the text bounding boxes is

aligned with the sightline of the smartphone camera, a green checkmark appears on the screen

like Figure 2.13(b). In this way, users can simply record POIs as many as possible. After the user

finishes the circle shoot, EyeLoc exhibits the user’s position and heading direction on the floor-plan

image as shown in Figure 2.13(c). We discuss several system details and settings as follows.

2.3.1 Scene Text Detection and Recognition

Scene text detection and recognition techniques serve as a fundamental role in EyeLoc. We

compare several existing techniques on Android smartphones in terms of recognition accuracy

and processing time. Here, we adopt the same method in Section 2.2.4.2 to judge the similarity

between two text strings. ∆t is set as 50%. We randomly select 100 images shot by a smartphone

in two large shopping malls. Some of them are shot at daytime and the others are shot at night.
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Figure 2.13 The UI of EyeLoc when running in a large shopping mall.

Each image contains one shop sign which is manually labeled as the ground truth.

2.3.1.1 Local processing v.s. Cloud processing

According to different processing platforms, we can either perform the text detection and

recognition processes locally on the smartphone, or remotely on cloud. The approaches of local

processing include OpenCV [32] and Tesseract [33]. We choose Baidu Cloud as the platform for

the typical cloud processing. LTE network, which is available in most shopping malls nowadays,

is adopted to connect the smartphone with the cloud server.

Given the dataset of 100 images, the recognition accuracy and processing time are shown in

Figure 2.14. We can see that the text recognition accuracy of Baidu Cloud is 66%, which is much

higher than 12% of Tesseract and 2% of OpenCV. The text recognition accuracy of Tesseract

and OpenCV is surprisingly low since it is challenging for the text classifiers and extreme region

extraction to adapt to the complex lighting condition and text format of POI signs. The average

processing time of Baidu Cloud is 2s which is a little higher than that of OpenCV, but much smaller

than Tesseract. Due to the superior recognition accuracy and low processing time, we choose cloud
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processing instead of local processing.
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Figure 2.14 Different text recognition approaches.

2.3.1.2 The influence of image resolution

We further explore the performance of Baidu Cloud by using different image resolutions. We

vary the resolution of the 100 images from 180p to 1538p. The performance is shown in Fig-

ure 2.15. We can see that both text recognition accuracy and processing time increase with the

increase of image resolution. When the image resolution is 720p, the text recognition accuracy

and average processing time are 54% and 0.74s. In comparison, the text recognition accuracy and

average processing time increase to 72% and 1.89s when the image resolution increases to 1536p.

EyeLoc chooses Ip to keep the text recognition accuracy higher than 60%. Meanwhile, EyeLoc

minimizes the expected time for successfully recognizing a POI which is the ratio between the

average processing time and the recognition accuracy. Hence, we set Ip as 1080p. For outlier view

image filtering, according to the observation of Figure 2.8 and Figure 2.9, we set ∆Lap and ∆ω as

80 and 10◦/s.

2.3.2 Circle Shoot Operation

We set fs as 2Hz, namely EyeLoc shoots 2 view images per second. The step length for sparse

image processing ∆s is set to be 3. According to our empirical experience, 20% of view images

are observed to be blurred (Figure 2.8) and 37% of 1080p view images encounter text recognition
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Figure 2.15 Different image resolution choices.

failure (Figure 2.15), it is better to obtain at least 6 view images of a POI (e.g., 3s) to ensure the

reliability and efficiency of POI extraction. That means if there are 5 POIs around a user, the circle

shoot will take 15s at least.

2.3.3 Floor-plan Images

�D��6KRSSLQJ�0DOO����/RFDOL]DWLRQ�(UURU�����P �E��6KRSSLQJ�0DOO����/RFDOL]DWLRQ�(UURU�����P

Figure 2.16 Two experiment positions in two shopping malls.

EyeLoc generates high-resolution indoor floor-plan images from Gaode Maps. Since the font

of POI texts on floor-plan images is in regular print format, the text recognition accuracy is close

to 100%. The resolution of the floor-plan image is set to 2560×1440. Using the floor-plan image,

however, the texts of different shops are often placed in the middle of the shops’ blocks, while the
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POIs captured by EyeLoc are shop signs which are often located on the entrances. The caused

direction and coordinate errors can further lead to possible localization errors. To mitigate the

influence of the floor-plan error, we refine the shop coordinates with fine-grained floor-plan data

fetched from Gaode Maps. The floor plans are shape files containing several image layers, depict-

ing shops, roadmaps, and doors. In our experiments we directly use the coordinates of the “doors”

as the location of POIs (e.g., the blue circles in Figure 2.16). The coordinates acquired this way

are more accurate and it is beneficial to improve localization quality. Moreover, for error sensi-

tivity estimation, we empirically set ∆θ and Re as 10◦ and 20 pixels. The threshold of text string

similarity ∆t is set to be 50%.

Overall, Table 2.1 summarizes all system parameters of EyeLoc.

Symbol Description Value
Ip The resolution of view image 1080p
fs The sampling frequency of view image 2 Hz

∆Lap The threshold of view image blur 80
∆ω The threshold of angle velocity difference 10◦/s
∆t The threshold of text string similarity 50%
∆s The step length of sparse image processing 3
∆θ The error of intersection angle estimation 10◦

Re The error of extracted POI coordinates 20 pixels

Table 2.1 Summary of system parameters.

2.4 Evaluation

We evaluate EyeLoc with different smartphones (e.g., MI 5 and Huawei Mate 7) in an office

environment1 and two large shopping malls2. The office environment is a 7m×9m office room. We

print 6 shop signs such as NIKE on A4 papers, then hang them on the wall or curtains in clockwise

order. The area of each floor in two large shopping malls is 7,500 m2 and 10,000 m2 respectively.

The area of the semi-outdoor Outlets is about 70,000 m2. The distance between adjacent shops and

the width of corridors are much larger than office and shopping malls. We invited two volunteers

(Male, 20-30 years old) to complete all the experiments both in daytime and at night. User 1 uses
1Demos in the office environment: https://youtu.be/v7CT6gTBNEc, https://youtu.be/wCu8STdRG_c, https:

//youtu.be/iT5pdjO6RVk
2A demo in a shopping mall: https://youtu.be/iHh0R8TkNLo
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MI 5, User 2 uses Huawei Mate 7. The two users exhibit different habits as User 1 turns faster than

User 2.

In the office environment, we uniformly split the office into 18 areas. Users stand at the center

of each area to perform circle shoots. The ground truth is obtained through a laser rangefinder.

In the two large shopping malls and the semi-outdoor Outlets, we mainly select the positions near

entrances, elevators and bathrooms where users have high localization demands. For each of the 16

positions we evaluated, we also use the laser rangefinder to measure its ground truth. The minimum

and maximum distances between the user and a POI are 2.26m and 37.4m in our experiments.
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Figure 2.17 The reliability of EyeLoc.

2.4.1 The Accuracy of Localization and Heading Direction Estimation

We first discuss the reliability of EyeLoc. As shown in Figure 2.17a and Figure 2.17b, in the

two large shopping malls, the median errors of localization and heading direction are 2.6m and

10.5◦. The 90-percentile errors of localization and facing direction increase to 4m and 20◦. In the

office environment, the 90-percentile errors of localization and facing direction are 1.1m and 8◦,

which are much better than the performances in large shopping malls. There are two reasons. First,

in the office environment, we can precisely measure the POI coordinates on the floor-plan images.

However, the POI coordinates suffer larger error due to the position mismatch between the text

bounding boxes and the observed POI signs on the floor-plan images obtained from indoor map
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providers. Moreover, in the office environment, usually we have only one POI in a view image.

However, in large shopping malls, several signs of the same POI may appear in a view image,

which will introduce error into the sightline estimation. Given the area as large as 7,500m2 and

10,000m2, 4m and 20◦ is still relatively accurate for the most location-based services.

In 70,000 m2 semi-outdoor Outlets, the 90-percentile errors of localization and facing direction

are 5.97m and 20◦. The error of facing direction is comparable with that in shopping malls. The

localization error, however, is getting large. The reason is that the distance between user and POIs

is larger in Outlets than that in shopping malls. A small estimation error of POI direction can lead

to more position estimation errors. Hence, although the facing direction accuracy is similar, the

localization error increases in a larger space.

2.4.1.1 The influence of the number of observed POIs
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Figure 2.18 Different influencing factors.

In position matching, EyeLoc utilizes the POI redundancy to mitigate the measurement er-

rors of POI coordinates and EyeLoc sightlines. Figure 2.18a shows the relationship between the

number of observed POIs and the localization error. We can see the average localization error

decreases as the number of observed POIs increases. Specifically, the localization error decreases

by 33.7%/34.9% when the number of observed POIs increases from 3 to 4/5 in large shopping

malls respectively. This indicates the error mitigation approaches are effective for improving the
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localization accuracy. Moreover, 5 or more POIs cannot provides more useful information for

improving the localization accuracy rather than 4 POIs.

2.4.1.2 The influence of POI distribution

(m)

Figure 2.19 The distribution of the localization error in office environment.

We evaluate the influence of POI distribution on the localization error. Figure 2.19 shows

the localization error distribution of 18 experiment positions given the positions of 6 POIs. The

darker the color is, the higher the localization error is. We can see the localization error is getting

higher when the distance between the user’s position and POIs is large. Moreover, the top left

area is higher than its surrounding area, that is because it is close to the circle formed by several

POIs. According to Section 2.2.2, when the user’s position and POIs tend to be on the same circle,

the accurate localization will be hard to achieve. Moreover, we give two experiment positions in

shopping mall 1 (Figure 2.16(a)) and shopping mall 2 (Figure 2.16(b)). The white areas are roads

and the yellow blocks are shops. The green points are the results of EyeLoc localization. The red

points are the ground truths. The localization error of the position in shopping mall 1 is 1.56m, but

that of the other one is 3.64m. From the POI distribution on the floor-plan images, we can see the

large error in Figure 2.16(b) is because the true position, GLORIA, AFU and MOFAN tend to on

the same circle. In contrast, the position in Figure 2.16 has more POIs which are close to it and

uniformly distributed. Hence, the results suggest that the localization error is indeed related to the

distribution of surrounding POIs, especially when the user’s position and observed POIs are on the

same circle. However, the situation only happens twice among total 29 positions. If the situation
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happens, we will ask the user to walk a short distance and relocalize himself/herself again.

2.4.1.3 The influence of smartphone hardware

We further evaluate the localization error by using different smartphones at the same positions

in large shopping malls. The results are shown in Figure 2.18b. We can see the average localization

error is 2.66m for MI 5 and 2.51m for Huawei Mate 7. Since User 2 turns slower than User 1,

the more redundant view images make the localization error variance of Huawei smartphone is

smaller than MI 5. Overall, EyeLoc works well on both smartphones and does not depends on any

smartphone specific hardware and parameters.

2.4.2 Processing Efficiency
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Figure 2.20 The processing efficiency with outlier filtering and sparse processing.

Another important metric is the processing time, which is from the end of circle shoot to the

user’s position is shown on the screen. Since the view image processing dominates the overall

processing time, we designed two approaches, namely, outlier image filtering and sparse image

processing. We evaluate the processing time of three methods: “All” indicates we process all

view images; “Filter” indicates we only process the view images after filtering the outliers. “Fil-

ter+Sparse” indicates we combine outlier filtering and sparse processing approaches. As shown in

Figure 2.20, we can see “Filter+Sparse” outperforms the other two methods and its median pro-

cessing time is 18.2s which is 55.5% shorter than “All”. Moreover, the median processing time of

“Filter” is 27.3s which is 36.2% shorter than “All”. That verifies both outlier filtering and sparse
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processing are effective to improve the processing efficiency. In the worst case, the processing

time of “Filter+Sparse” is 37.4s. That means the user can obtain the localization result in no more

than half a minute after circle shoot. Figure 2.21 further shows the processing time on different

smartphones.

 0

 10

 20

 30

 40

 50

 60

 70

MI5 Huawei

P
ro

ce
ss

in
g 

Ti
m

e 
(s

)
All

Filter

Sparse+Filter

Figure 2.21 The comparison of processing time on different smartphones.

2.4.3 Energy Efficiency

We evaluate the energy efficiency of EyeLoc with Battery Historian [39], which is a tool to

analyze battery consumption using Android “bugreport” files. We decompose EyeLoc to 3 function

modules which are image recording, image processing and location calculation. To evaluate the

energy efficiency of each function module, we set them in infinite loops and continuously run

them for an hour. For each experiment, we charge MI 5 to 100% at the beginning. We also

evaluate the total energy efficiency of EyeLoc with the same method. For each experiment, we

repeat it 3 times and obtain the average value. The results are shown in Table 2.2. We can see

that among different function modules, the energy cost of image recording is 1.94 W which is

much higher than that of image processing (0.34 W) and location calculation (0.65 W). Hence,

the network communication of image processing and computation of location calculations is much

more energy-efficient than shooting images with the camera. In our implementation of EyeLoc, we

use multi-thread to overlap image recording and processing. The circle shooting usually dominates

the operation time of EyeLoc. As a result, the total energy efficiency of EyeLoc is 2.17 W which
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is mainly spent on imaging shooting.

Function Module Energy Efficiency (W)
Image recording 1.94
Image processing 0.34

Location calculation 0.65
Total EyeLoc 2.17

Table 2.2 Energy efficiency of EyeLoc.

2.4.4 Localization Performance Comparison

To compare the localization performance, we implement Sextant [29] and evaluate its perfor-

mance in the semi-outdoor Outlets. For each shop, we take 3 high-quality images to construct the

visual clue and localization map. During evaluation, users are well trained and follow the rules of

Sextant to shoot images. For example, users manually keep the POI in the middle of the image.

The performance comparison is shown in Figure 2.22. We can see the 90-percentile localization

error of Sextant is 6.6m which is 10% higher than EyeLoc. The reason is that EyeLoc can auto-

matically capture the angle of POI which is less accurate by using the user dependent method of

Sextant. If users are not well trained, the localization error of Sextant could be increased since the

increasing error of POI angle estimation.
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2.5 Related Work

In recent years, many works target on developing efficient indoor localization and positioning

systems. However, most of them need some site surveying. Some of them even need custom hard-

ware. According to different types of data sources, we divide existing works into four categories.

• Wi-Fi Signal Many indoor localization methods are proposed based on Wi-Fi signals. One

approach is fingerprinting-based. The Wi-Fi signal patterns serve as the fingerprint that represents

every location. The system manager builds a fingerprint database in the target areas to initialize

localization service. The user’s location is estimated by matching the measured fingerprint to

database records. RADAR [40], Horus [41], Place Lab [42], PinLoc [43] and Smart2 [44] use site

survey to construct the fingerprint database. LIFS [45] and Zee [46] further utilize crowdsourcing

to alleviate the burden of labor-intensive site survey. A theoretical analysis around how good a

performance the RSS fingerprinting can achieve is provided in [47].

The other approach is model-based. The basic principle is the relationship between the geo-

metric structure from Wi-Fi access point (AP) to user’s location and the physical features of the

received Wi-Fi signal can be modeled. If the location of Wi-Fi AP is pre-known, the user’s loca-

tion can be inferred. Based on the log-distance path loss (LDPL) model, EZ [48] uses the received

signal strength (RSS) to estimate the signal propagation distance and combines several estima-

tions of different APs to find the user’s location. SpinLoc [49] and Borealis [50] observe if a user

faces an AP, the RSS is usually higher than the user turns his back on the AP. After making a full

360◦ turn, SpinLoc and Borealis extract the angle-of-arrival (AoA) of several APs to determine the

user’s location. ArrayTrack [51] uses antenna array and Wi-Fi signal phase to obtain accurate AoA

spectrum to calculate a user’s location. CUPID [52], SAIL [53], Chronos [22] and Ubicarse [54]

further refine the distance and AoA measurement methods to achieve high localization precision or

adapt to COST Wi-Fi AP. SpotFi [55] proposes a super-resolution AoA algorithm to extract AoAs

from Channel State Information (CSI).

• Visible Light In a typical visible light positioning (VLP) system, lamps (fluorescent and LED)

are served as landmarks. After a light receiver (smartphone camera or photodiode) obtains sev-
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eral lamps’ location, the light receiver further measures the geometric structure from the observed

lamps to find the user’s location. Luxapose [24] takes an image which contains several LEDs as

input and fetches LEDs’ AoA to calculate the user’s location. According to inherent and com-

mon optical emission features of both LED and fluorescent, iLAMP [25] and Pulsar [56] identify

a lamp’s location from a pre-configured database by feature matching. iLAMP further combines

camera image and inertial sensors to infer user’s location. Pulsar utilizes a custom device to mea-

sure the lamp’s AoA, then determine user’s location.

The other approach is to customize the lamp to establish a mapping function between the loca-

tion of light receiver and the corresponding received light physical features. CELLI [57] develops

a custom LED bulb which projects a large number of fine-grained light beams toward the service

area. CELLI adopts a modulation method to encode the coordinate of a fine-grained cell into the

corresponding light beam. Thus, the light receiver can obtain its location by visible light commu-

nication. SmartLight [26] uses LED array and a lens to form the light transmitter. On LED array,

different LED lamps use different PWM frequencies. According to the frequencies of the received

light, the coordinate of the observed LEDs circle can be inferred on LED array. The location of

light receiver can be further calculated by optical geometric translation function of the lens.

• Scene Image Using scene images containing landmark details and architectural features is also

a popular direction. SLAM (Simultaneous Localization and Mapping) aims to output a map as

well as the user’s real-time location. Both 2D and 3D positions are acceptable. We especially

introduce SLAM with the camera as its main sensor in this paper. A single image and a floor plan

is used as the input in [18] and the main technology is Markov random field. SfM (Structure from

Motion) builds a 3D model from 2D images or video. Based on the 3D model, we can know the

camera pose and shooting location given another image. iMoon [58] and Jigsaw [59] adopt SfM

to construct indoor 3D model and enable localization services. Sextant [29] builds a geometrical

model with static reference points and works for a lightweight site survey. All these papers need a

collection of images for site survey, which EyeLoc avoids.

• Others Magicol [30] and FollowMe [60] combine the geomagnetic field and user trajectory as
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the fingerprint to localize user’s location. With acoustic speakers as the landmarks, Swadloon [61]

and Guoguo [62] use acoustic signal based geometric model and inertial sensors to localize user’s

location. Shenlong Wang, etc. [18] utilize the floor-plan image and a scene image to localize a

user in large shopping malls. Based on edge, text and layout features of a scene image, they use

Markov random field model to infer the camera pose on the floor-plan image. However, they need

to search through all possible positions which further incurs huge computation complexity. Hence,

it is not practical on COTS smartphones.

To conclude, compared with these methods, as shown in Table 2.3, EyeLoc depends on neither

pre-deployed infrastructure nor pre-collected information. Moreover, EyeLoc does not depend on

any custom hardware and can be implemented as a smartphone application. EyeLoc can achieve

the comparable accuracy of localization and heading direction in real large shopping malls which

are much larger than the prototype deployment of the existing indoor localization systems.

Technology Site Survey Custom Hardware Range (m2) Localization Error (m) Heading Error (◦)

LIFS [45] WiFi fingerprint 1,600 9 NA
SAIL [53] WiFi AP location

√
2,800 2.3 NA

SmartLight [26] Lamp modification
√

16 0.5 NA
iLAMP [25] Lamp fingerprint 8 0.032 2.6
iMoon [58] Environment image 1,100 2 6
Sextant [29] Environment image 11,250/60,000 20 NA

FollowMe [60] Geomagnetic fingerprint 2,000 2 NA

EyeLoc FREE 7,500/10,000/70,000 5.97 20

Table 2.3 Summary of existing indoor localization systems.

2.6 Conclusion

In this chapter, we propose EyeLoc, a plug-and-play localization system for large shopping

malls without the burden of system bootstrap nor calibration. EyeLoc enables the smartphone to

imitate human self-localization behavior. After a user opens the EyeLoc application, he/she carries

out the circle shoot and the smartphone continuously shoots view images meanwhile. After that,

EyeLoc automatically projects the user’s position and heading direction onto the floor-plan image.

The evaluation results show that the 90-percentile accuracy of localization and heading direction

is 5.97m and 20◦. Moreover, EyeLoc can be extended to other environments (e.g., office building,

train station, airport) where floor-plan and indoor texts are available. We will extend EyeLoc to
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these environments in the future.

EyeLoc achieves a good balance among cost, computational power and real-time responses.

While alternative localization methods can be developed for large shopping malls, EyeLoc better

fulfills the constraints of practical situations such as the low budget requirement of application

providers and the low latency requirement of users.
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CHAPTER 3

A ROBUST SOUND SOURCE LOCALIZATION SYSTEM FOR VOICE ASSISTANTS

Acoustic signals serve significant location information. For example, underwater sonar system

can detect shipwrecks and fishes, medical ultrasonography images internal body structures. As

IoT prospers, a new trend of acoustic localization application arises: sound source localization for

voice assistants. To the benefit of Smart Home and Smart Office, machines need ears to perceive the

environment. If voice assistants like Amazon Echo, Google Home or Apple HomePod can locate

a person based on the speech he/she utters, they can better understand the context of commands

and deliver more considerate tasks. For example, with user location known, voice assistants can

send commands to TV screen or lights to adjust angles, volume or magnitude, after which the

smart system provides better user experience and is more energy-saving. In some cases when

voice assistants fail to understand commands directly from speech due to poor recording quality

or ambiguous speech, location information can narrow down the possibilities and increase the

accuracy of speech recognition. Last but not the least, passive localization woken up by speech is

more friendly to user privacy and energy conservation compared to continuous camera monitoring,

especially for places like fitting rooms and high-security labs.

Although sound source localization can empower voice assistants with fancy functions, it is

challenging to determine the location of the sound source in three dimensions: azimuth, eleva-

tion and distance. Auditory distance perception is mainly achieved through monaural features like

intensity loss or frequency loss, while Direction-of-Arrival (DoA) estimation uses binaural cues

like phase difference or Time Difference of Arrival (TDoA) [63]. Although auditory distance per-

ception and DoA estimation are developing into two subfields now and struggling with their own

issues, they have a close relationship and sometimes share new ideas. Here we provide a compre-

hensive research survey to discuss the main challenges to implement a sound source localization

system for voice assistants and the reasons behind, which can also be seen as the history of sound

source localization:

• Auditory distance perception is extremely challenging when the signal of interest is un-
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known. Theoretical research[64] has quantified loss of intensity and change of frequency as dis-

tance increases in the ideal case. However, to put the theory into practical applications, we need

to know the initial intensity and spectral of the sound. Although voice assistants know their wake-

up commands, they stay blind to the intensity and spectral shape of the original sound all the

time. Experiments in [65] further shows that accurate distance judgements are unlikely to happen

without intensity and spectral shape recorrelated with the environment on the basis of experience.

Recent research make progress from three perspectives. (1) A machine learning model is proposed

in [66] to memorize variation patterns contained in training data. The output falls into different

distance classes (0 m, 0.5 m, ..., 3 m). However, the localization accuracy is constrained by the

granularity of labels. Experiments further reveal the performance significantly decays when the

system is trained on data collected from room A while tested on data of room B. (2) By combining

auditory cues with visual cues, distance perception can be achieved. (3) Some IoT systems allow

prior information of the transmitted signal. Earlier works [6, 67] achieve acoustic ranging between

smartphones using impulses. Later Frequency-modulated Continuous-Wave (FMCW)[68, 69] is

introduced to track smart devices.

• The accuracy of DoA estimation shows instability due to multipath effect and background

noise. By analyzing the difference of signals received by two microphones, we can estimate the

DoA according to Far-Field Effect[70, 71]. One single DoA will lead to Cone of Confusion[72].

With three precise DoAs from multiple non-collinear microphone pairs, we can retrace the 3D

location through intersection of three cones. Unfortunately, a minor fluctuation of DoA estimation

leads to non-ideal retrace. Over the years, the majority of research on sound source localization

focus on improving the accuracy of DoA estimation. One category builds its foundation on cross-

correlation[73–76]. It aligns two signals after delaying one signal. The best match corresponds to

the most possible TDoA. In practice the existing of noise obfuscates the peak of cross-correlation

and decreases the accuracy. Studies from[75, 77] assume the background noise follows Gaussian

distribution and add a phase weight derived from magnitude squared coherence function. How-

ever, this method cannot deal with multipath effect. Another popular category[78–80] is based on
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MUSIC[81]. MUSIC builds signal covariance matrix and extracts eigenvalues. Although it is ca-

pable of locating multiple sources, MUSIC assumes signals from different sources are uncorrelated

as well as noise. With multipath effect existing, the assumption is compromised.

• Voice assistants expect a system without extra deployment expense or prerequisite opera-

tions. Due to two challenges above, current employable sound source localization systems turn to

adding another sensor (depth sensor, camera, etc) or collecting prior information ((user height, en-

vironment space structure, etc). If multiple microphones[8, 62, 82–85] scatter around the place or

multiple anchor speakers[9, 86–90] serve as beacons, geometric models can be built after strictly

aligning the clocks across different microphones and speakers. Owlet[91] designs a 3D-printed

metamaterial structure to obtain spatial information. Recently VoLoc[92] proposes to turn mul-

tipath effect from disturbance to information as it extracts location information from the second

reflection path. After collecting the user height as prior information, VoLoc achieves 2D localiza-

tion. However, its application scenario is limited as it requires voice assistants to be near a wall.

Symphony[71] achieves multi-source localization but still requires the relative position of the mi-

crophone array to a nearby wall. MAVL[93] extends the application scenario of VoLoc as it does

not require a wall nearby. However, MAVL needs to estimate the reflectors in the room by emitting

wideband chirps before localization the sound source.

To solve the first challenge, we inherit the idea of TDoA. As long as TDoA between a pair

of microphones is available, we can turn it into distance information and further 3D location.

Instead of cross-correlation, we approach TDoA by formulating our problem into linear regression

as θ = ω · τ + ε where ω is angular frequency, τ is TDoA and ε is noise term. θ is the phase

difference between two microphones obtained from cross spectrum. Under this formulation, we

get a better visualization of acoustic data and the ways to remove outliers become more explicit,

which further helps the system on solving the second challenge. To be more accurate, θ = ω ·τ +ε

is a theoretical representation which only stands when there are only LoS path and uncorrelated

noise. With the existence of multipath effect, the assumption is compromised and the performance

of linear regression becomes unstable. To compress the disturbance of multipath effect, we extend
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the idea of robust regression from [94]. Compared to linear regression, robust regression will

dilute the impact of outliers on loss function. The main difference between [94] and our work is,

[94] tests robust regression in simulated experiments. They modulate signals to simulate multipath

environment and Gaussian background noise. However, our experiments are completely performed

in real-life scenarios. The noises are more complicated and cannot be perfectly handled by robust

regression. Moreover, the phase difference between two microphones in real life can be larger than

2π if the user has a high voice, but phase data from spectrum always falls into [0,2π]. We make

adjustments to accommodate robust regression to practical applications. As for hardware noise and

background noise, we propose self-adjusting speech detection algorithm to predict the probability

of existence of speech in a certain frequency bin. We also remove outliers which are in conflict

with the known distances between each pair of microphones. The known distance projects certain

constraints for TDoA estimation, which can be applied to filter out outrageous phase data.

We implement SoundFlower on a 6-mic circular array and Raspberry Pi as a simulation to

Amazon Echo. We also implement state-of-the-art work VoLoc[92] as our baseline model. We

collect 1,000 data points from different indoor environments and test on SoundFlower. The overall

accuracy of 2D localization and 3D localization is 0.45m and 0.5m with consumption time of 3s

and 5s, which is sufficient for voice assistants. Around 700 data points are collected next to a wall

and are tested on both VoLoc and SoundFlower for 2D localization as VoLoc requires user height

as input.

Our contributions can be summarized as:

• We propose the design of SoundFlower, a robust and real-time sound source localization

system for voice assistants. We obtain phase difference from cross spectrum, extract TDoA from

phase data, turn it into distance, and derive 3D localization through lightweight optimization.

• We formulate TDoA and phase shift into a robust regression problem. Robust regression

shows great performance on compressing multipath effect. We also propose self-adjusting speech

method to detect speech-involved phase data and an unwrapping scheme to rectify phase data from

periodicity issue.
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•We implement SoundFlower and compare it with state-of-the-art work. While extending pre-

vious work from 2D localization to 3D localization, we achieve comparable localization accuracy

to state-of-the-art work.

The following content of this chapter is organized as follows: We discuss related work about

acoustic localization in Section 3.1. Section 3.2 establishes mathematical preliminary about TDoA

estimation and our motivation to SoundFlower. Section 3.3 is an overview of SoundFlower. We

further introduce the system in detail in Section 3.4. Section 3.5 shows our implementation details

as well as experiment setup. Section 3.6 presents experiment results. We analyze our limitations

in Section 3.7. Finally we conclude our work in Section 3.8.

3.1 Related Work

Acoustic localization can be done passively or actively. Active acoustic localization involves

the modulation and transmission of the signal of interest. Traveling along different paths leaves

fingerprints on the specially-designed signal. The location information can be extracted through

comparing the transmitted signal and the received signal. Passive acoustic localization waits for

the sound from the target. Usually limited spectral information about the original sound is avail-

able. The location is usually obtained with the help of multiple microphones with known relative

positions.

Active Acoustic Localization Active acoustic localization designs distinguishable signals. After

the receiver captures the signal, several mechanisms can figure out the target location. Some

systems[6, 8, 62, 87] are ranging-based by measuring TDoA. Some[68, 95–97] keep track of the

moving velocity of the target through Doppler Effect. There are also some papers[89, 98–100]

exploiting the phase shift of the signal and then derive its traveling distance. Some[69, 101, 102]

combine acoustic signal with inertial sensors and achieve localization through tracking. Up to now,

TDoA based models are constrained by the accuracy of timing, Doppler Effect based models are

limited by the frequency resolution while phase shift based models only apply to scenarios whose

phase shift is below 2π .

Passive Acoustic Localization Our paper falls into passive acoustic localization. Passive acoustic
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localization is widely studied for applications like voice assistants and self-driving cars, where the

target is located as soon as they make a sound like wake-up commands or ambulance sirens. Unlike

active acoustic localization, the receiver usually does not have comprehensive knowledge about

the spectrum of the sound of interest. Thus passive sound source localization uses multiple micro-

phones with known positions to derive AoA of the sound and then locate the source. One classic

technique is cross correlation[73–76, 103], which computes TDoA between microphones through

cross correlating their signals. Another large category is based on MUSIC[78–81, 104], which

analyzes spatial covariance matrix of microphone signals, extracts signal subspace from noise sub-

space and peeks the AoA which maximizes the energy. We specially introduce VoLoc[92] as we

will use it as the baseline model. Multipath effect is believed to be one of the main interferences

to acoustic localization. Unlike other models trying to get rid of it, VoLoc turns multipath effect

into information by putting the voice assistant next to a wall. With wall distance and orientation

known to the voice assistant, VoLoc successfully extracts the second AoA, namely the AoA of

the wall reflection path, and achieves 2D localization after fusing two AoAs and the user height.

MAVL[93] does not require voice assistants to be next to a wall, but before localization it has to

transmit FMCW signals from 1 kHz to 3 kHz for AoA estimation.

3.2 Preliminary and Motivation

In Section 3.1, we summarized various categories of acoustic localization methods. Our paper

falls into the category of TDoA estimation of passive acoustic localization. Suppose the signal

transmitted from the source is s(t), the signals captured by two microphones x1(t),x2(t) can be

represented as:

x1(t) = h1(t)∗ s(t)+n1(t)

x2(t) = h2(t)∗ s(t− τ)+n2(t)
(3.1)

where h1(t) and h2(t) are channel state information, n1(t) and n2(t) are additive noises uncor-

related to our source, and τ is the TDoA of interest. As Figure 3.1 shows, once τ is at hand, we can

derive the difference between the distances of two microphones to the source, which could further
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contribute to the derivation of the source location.

Figure 3.1 TDoA reveals the distance difference between two microphones to the source.

Now that we track our problem from location to TDoA, one fundamental and classic method

for TDoA is General Cross Correlation (GCC). Roughly speaking, GCC tries all possible TDoAs

and performs cross correlation on two signals with one signal delayed by the assumed TDoA, the

TDoA which generates the peak cross correlation result is believed to be the actual TDoA τ̂ . In

equation 3.2 we use ω to represent angular frequency. Cross correlation Rx1x2(τ) is calculated

through the inverse Fourier Transform of the cross spectrum X1(ω)X∗2 (ω). The weighting function

W (ω) is to show emphasis on different frequencies in the presence of uncorrelated noise[75].

τ̂ = argmax
τ

Rx1x2

Rx1x2(τ) =
∫

∞

−∞

W (ω)X1(ω)X∗2 (ω)e jωτdω

(3.2)

W (ω) brings up a challenge as effective cross correlation needs to focus on frequencies from

speech rather than noise under the condition that we have no information about the original speech.

Previous works like [75, 105] use magnitude squared signal coherence. The idea works well when

the noise is ideal and follows Gaussian distribution but shows instability to non-stationary noise

and multipath effect.

To work on non-stationary noise, we bypass W (ω) and turn to cross spectrum X1(ω)X∗2 (ω).

The phase of cross spectrum can be represented:

Θ(ω) = ωτ + ε (3.3)

46



where τ is TDoA and ε is noise term. As we can see, the problem has been transferred from TDoA

to phase. If we have the phase of cross spectrum, we can figure out TDoA and then derive the

location of source. However, equation 3.3 only stands when there is only LoS path existing and ω

is from speech frequency. In real-life scenarios, multipath effect and other uncorrelated noise will

taint the phase data. Facing the disturbance of multipath effect, VoLoc[92] proposes an idea by

extracting the second path, which is speaker-wall-microphone reflection path, to turn disturbance

into useful location information. However, the idea requires the voice assistant to be near a wall.

Whenever the voice assistant is moved, VoLoc has to re-evaluate the distance and orientation from

the voice assistant to wall, which takes hours according to the paper. In this paper, we propose

robust regression to deal with multipath effect. Signals from NLoS is weak compared to LoS

signal. Thus robust regression will see patterns from NLoS paths as outliers and concentrate on

LoS pattern. As for uncorrelated noise, we filter them out before feeding phase data to robust

regression.

To summarize, phase data from cross spectrum contains distance information which could lead

to sound source location, the challenge is raw phase data from commercial microphones is very

noisy. The cause of noises come from: (1) environmental noise; (2) internal hardware noise; (3)

multipath effect. Facing the three challenges, we propose SoundFlower. Especially, we propose

self-adjusting speech detection in Section 3.4.3.1 to recognize speech from environmental noise

and internal hardware noise, and robust regression in Section 3.4.2.2 to deal with multipath effect.

3.3 System Overview

Figure 3.2 illustrates the overall architecture of SoundFlower. After the user speaks a command

and the microphone array captures it, we perform self-adjusting speech detection to the sound

samples collected by each microphone. During this step, we calculate spectrum and recognize

frequency bins which are closely related to the speech. On the other hand, we calculate cross

spectrum of each pair of microphones, and collect speech-involved phase data. After that, the

filtered phase data is fed to robust regression. Robust regression outputs the TDoA of the speech to

two microphones. With sound traveling speed 343 m/s, we obtain the distance difference from the
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Figure 3.2 System architecture.

two microphones to the source. As we use a circular microphone array which has 6 microphones,

we can have up to 15 distance differences. We fuse distance difference information from all pairs of

microphones into an optimization model. By exhaustive search, we obtain the final user location.

3.4 Design

In this section, we elaborate the design details of SoundFlower and explain the motivation of

each step. After the user utters a command, sound arrives at multiple microphones at slightly

different times. The TDoA information encloses the location of sound source. We formulate

TDoA estimation as regression problem where frequency is independent variable, phase difference

is dependent variable and TDoA is weight. We also introduce cross spectrum to obtain the phase

difference between each pair of microphones. In practice, the phase data is easily-polluted. We

analyze the sources of noises and propose corresponding solutions. Finally, we locate the target in

3D space through optimization.

3.4.1 Phase from Cross Spectrum

Cross spectrum is the Fourier Transform of cross-correlation result. It describes the relationship

between two time series as a function of frequency. Suppose we have two signals x,y captured by

a pair of microphones. During cross-spectrum calculation, we first apply Fourier Transform to
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time-domain signals and get X ,Y . Then we multiple X with the conjugate of Y and get,

X ·Y ∗ = a1(cosθ1 + j ∗ sinθ1) ·a2(cosθ2− j ∗ sinθ2)

= a1a2(cos(θ1−θ2)+ j sin(θ1−θ2))

As we can see, the phase of the resulting cross spectrum is the phase shift between the original two

signals as long as their phase shift is smaller than 2π . If the distance between two microphones is d

and the sound speed is c, the phase shift could be correctly tracked if we only use frequency under

c
d . For frequencies larger than c

d , we unwrapped the phase data as introduced in Section 3.4.3.2.

3.4.2 TDoA Estimation

After we have phase information, we use robust regression to extract TDoA between each pair

of microphones, which later will be used in 3D localization.

3.4.2.1 Linear Regression

Before we discuss the technical details of our model, we use linear regression to formulate our

problem and project phase data to time delay. Considering that the phase of the cross spectrum θ

changes linearly with its frequency f , we have:

θ( f ) = 2πτ · f + ε

where τ is the TDoA of the signal arriving at two microphones and ε is the noise component.

Under ideal scenarios, ε follows zero-mean, uncorrelated Gaussian distribution[77]. Thus we have

the following optimization problem:

τ̂ = argmin
τ

∫
(θ( f )−2π f τ)2d f

Now we can see the original problem turns into a linear regression problem.

3.4.2.2 Robust Regression

Compared to linear regression, robust regression is more resistant to outliers. Theoretically lin-

ear regression is a perfect solution to TDoA estimation in Gaussian noise only scenarios, however

in practice phase data is biased by multipath effect. The disturbance is extremely complicate as
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noise incurred by multipath effect is not uncorrelated to the speech. Thus we use robust regres-

sion as its loss function is more insensitive to outliers. Robust regression will concentrate on the

direct-path phase data as they are more weighty.

The objective function of robust regression[106, 107] is:

τ̂ = argmin
τ

∫
ρ(

θ( f )−2π f τ

S( f )
)2d f

where S( f ) is a scaling term of residual and ρ(x) is a loss function of scaled residual x:

ρ(x) =


− (1−x2)3

6 , |x| ≤ 1

0, |x|> 1

As we can see from Figure 3.3, when we have outliers caused by multipath effect or accumu-

lated error from phase unwrapping (which we will illustrate in Section 3.4.3.2), robust regression

can restrict the influence of outliers, focus on coherent data points, and generate output that is more

related to ground truth, while linear regression covers all data points and outliers will distract the

output from ground truth.

Figure 3.3 Comparison between robust regression and linear regression in presence of outliers.

Robust regression is proposed in [94] as a solution to reverberation. In their experiments,

GCC-ML[108] shows great performance in the noise only situations, while robust regression out-

performs GCC-ML when reverberation exists. However, their experiments use simulated data.
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They simulate a room with plane reflective surfaces and frequency-independent reflections. To

substantiate and quantize multipath effect, room impulse responses are modulated with the image

technique[109]. Signal-to-noise (SNR) is controlled by adding zero-mean Gaussian noise with a

fixed energy level. When we test robust regression in real-life scenarios, the phase data is more

tainted and biased than we have expected. One significant reason is: the speech will not cover

the whole frequency band (if the sampling rate of ADC is 16 kHz, then the frequency band is 0

- 8 kHz), so we should not use phase data from all frequencies. To accurately recognize the fre-

quency bins in which speech exists, we design a self-adjusting speech detection method in 3.4.3.1

to predict the probability of presence of speech in each frequency bin. We are inspired by a noise

estimation method MCRA[110] but modify it to make it simpler, computationally efficient and

suitable with short speech like wake-up commands of voice assistants.

3.4.3 Data Pre-processing

When we acquire phase data from cross spectrum, we have phase data of all frequency bins.

If we feed the complete phase data directly to robust regression, two issues arise: (1) Speech

does not exist in all frequency bins. With too much phase data from irrelevant frequency bins,

robust regression will be overwhelmed by outliers and fail to recognize the real pattern. (2) Phase

information provided by spectrum is given in the format of complex number. We may transform it

into angle in radians, but all the resulting radians will be in [0,2π]. Thus we propose Self-Adjusting

Speech Detection in Section 3.4.3.1 to clean phase data, and unwrap phase data in Section 3.4.3.2.

After cleaning and reforming, it will be easier for robust regression to extract TDoA from the

pre-processed phase data.

3.4.3.1 Self-Adjusting Speech Detection

Being blind to the speech makes it challenging to separate speech and noise from the captured

signal. Due to hardware imperfection and the way ADC works, it is inevitable to have internal

noise, and at this point it is almost impossible to estimate the internal noise. On the other hand,

environmental noises, like heating noise and fridge noise, are quite common in the workplace

of voice assistants. Previous works either uses magnitude squared signal coherence [75, 105] or
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record silent intervals as prior information and use it to estimate SNR[108]. These methods either

assume the noise to follow Gaussian distribution or require silent intervals as priori knowledge to

estimate noise power spectrum. For non-stationary noise like heating noise and fridge noise, we

need a self-adjusting speech detection method to recognize the speech.

In spite of noises, the signal is dominated by speech when the user starts talking, and the mag-

nitude of speech frequency sharply decreases when the speech stops. Based on this phenomenon,

a natural solution could be setting a threshold and filtering out the data points whose frequency

magnitude is lower than the threshold. However, as the user may speak at different volumes, it

is hard to decide on a numeric value for the threshold that works every time. Thus we propose

Self-Adjusting Speech Detection to predict the probability of speech existing in a frequency bin.

Speech presence in a frequency bin of current time frame is determined by the ratio between

the energy of the current frequency bin and its minimum within a specified time window. Suppose

the magnitude of the i-th frequency bin is M( f , t). We keep track of the last L frames of Short-

Time Fourier Transform (STFT) results. The minimum magnitude of the frequency bin in the

last L frames is Mmin( f , t). By comparing the ratio M( f , t)/Mmin( f , t) to a threshold δ , we can

decide speech exists in the i-th frequency bin if M( f , t)/Mmin( f , t) > δ . The number of frames

L is determined empirically according to how fast the user speaks. In our experiments, we use

a frame of 512 samples, a step of 128 samples and L is 10. As for δ , it is closely related to the

ratio between the energy of speech and that of the noise. In practice, we coarsely detect the arrival

and end of the speech by monitoring the energy increase and decrease, calculate the power when

speech exists, and compare it with that of a silent interval. In this way, we obtain an estimation of

δ .

Figure 3.4 shows how frequency 343.75 Hz varies as the user speaks the wake-up command.

In spite of the fact that we have 91 data points on record from the whole speech window, we only

collect 25 of them as self-adjusting speech algorithm thinks there is high chance that the other

data points are from internal noise or environmental noise instead of the speech. You may notice

from Figure 3.4 that there are some data points whose magnitude is at the peak but have not been
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Figure 3.4 Self-adjusting speech detection.

selected. This is because the decision is made mutually from a pair of microphones. The speech

detection result from the other microphone does not believe these points are from the speech.

3.4.3.2 Unwrapping Phase Data

The phase information is encapsulated in the form of complex number in cross spectrum as

the consequence of FFT. Directly unwrapping the complex number through inverse tangent will

result in a value between [0,2π]. On the other hand, the maximum distance between a pair of

microphones from our microphone array[111] is 0.092 m, which means the phase difference be-

tween two microphone could be larger than 2π if the upper-bound frequency bin is greater than

3731 Hz. Thus we add an unwrap step before feeding the phase data to robust regression in or-

der to restore phase information larger than 2π . During the unwrapping, not only do we rectify

the periodicity issue, but also more outliers are removed as they break certain rules under known

distance constraints. After unwrapping, the data provided to robust regression is more clean and

lightweight.

The prior information for unwrapping is the known distances between each pair of micro-

phones, which leads to two rules: (1) there is an upper bound for phase difference between each

pair of microphones. For example, if the distance between a pair of microphones is d, then their

maximum phase difference is 2π f d
c where c is the sound speed. This rule is a general boundary

for all phase data. Any phase data which is greatly larger than 2π f d
c or smaller than −2π f d

c is
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outlier. (2) The phase difference between two adjacent frequency bins f1, f2( f1 > f2) is between

[−2π( f1− f2)d
c , 2π( f1− f2)d

c ]. If the rule is broken, we check if phase data could follow the rule after

adding 2kπ to it or minus 2kπ (k = 1,2,3, ...), otherwise we label it as outlier and remove it. This

rule especially works for phase data which are larger than 2π .

During implementation, we make two more practical adjustments. First, we slightly expand

the theoretical threshold of two rules to leave certain error-tolerant space. We allow error space

of π

36 to rule (1) and π

18 to rule (2). The rationale is, some experimental phase data is very close

to ground truth but contains a little fluctuation. We keep them as they still provide valuable infor-

mation. Second, we try our best to catch the information about which microphone receives signal

first. This information, if reliable, directs unwrapping to either positive phase or negative, which

further increase the accuracy of robust regression as it receives less outliers. Generally, we moni-

tor the energy increase of each microphone. The first microphone which has an energy increase is

considered to be closer to the speaker. However, this method is not always reliable as minor energy

increase could be overwhelmed by noise fluctuations. So we only consider the result as informa-

tive but not trustworthy. On the other hand, we still unwrap phase data to both positive array and

negative array. If the ground truth is positive, the length of positive array would be larger and with

greater magnitude, and vice versa. If both energy increase and array length support the same result

about which microphone receives the speech first, we consider the result as trustworthy and keep

the corresponding phase array. Otherwise we believe the two mechanisms fail to recognize the

information for reasons such as the speaker is on or near the median line of two microphones. We

feed both positive data and negative data to robust regression so that it could make further decision.

3.4.4 3D Localization

In spite of plenty of papers[73–76, 78–81] studying AoA between two microphones, it is chal-

lenging to project AoA into location, especially 3D location. For a linear microphone array, AoA

information narrows down potential space to a cone. Even with user height, theoretically there are

still infinite points consistent with AoA results. For circular microphone arrays, we have one cone

from each microphone, predicting the intersection of several cones easily gets stuck into an unsolv-
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able situation in practice. Thus we choose optimization to obtain 3D localization from traveling

distance differences.

(a) Loss Variation of 2D Localization (b) Loss Variation of Height

Figure 3.5 Loss function minimizes at parameters that are close to the ground truth.

After TDoAs between each pair of microphones are available, we reformulate the 3D localiza-

tion problem as an optimization problem and use grid search to find the optimal spot. If we use

(x,y,z) to denote a random point within the searching area S, the optimal source location would

be:

xopt ,yopt ,zopt = argmin
(x,y,z)∈S

∑
i, j
| fi, j(x,y,z)−di, j|

where di, j is the distance difference between two microphones to the sound source derived from

TDoA estimation, and fi, j(x,y,z) is the distance difference between two microphones to (x,y,z).

Mean average error is convex function. Figure 3.5 shows an example of how objective function

varies across the searching area. Figure 3.5a shows loss variation of 2D localization. The loss

decreases sharply when approaching ground truth and reaches minimum at ground truth. However,

Figure 3.5a also reveals points close to line y = yg
xg

x have close values to the minimum loss, where

(xg,yg) is the ground truth and the microphone array is at the origin. Our experiments show similar

conclusion, outputs of SoundFlower are around this line once they deviates from ground truth.

Figure 3.5b shows the variation of loss function with height after SoundFlower finds the (xg,yg).

We rationally assume the sound source is higher than the voice assistant as it is often the case in
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real life. The technical need for the assumption is because two points symmetric to the horizontal

plane of the voice assistant have the same TDoA estimation result.

We use mean absolute error (MAE) instead of mean square error (MSE) due to the fact that

MAE is more robust to outliers. With several pairs of microphones available, it is possible some

TDoA estimations deviate from ground truth. MAE will prevent loss function from greatly in-

creasing by one or two offset TDoA estimations.

3.5 Implementation

(a) 6-Mic Circular Array (b) Raspberry Pi 4

(c) Bedroom System Setup (d) Basement System Setup

Figure 3.6 System setup.

We implement SoundFlower using an assembly of a 6-mic circular array [111] in Figure 3.6a

and Raspberry Pi 4 Model B [112] in Figure 3.6b. We use the simulation tool kit instead of off-the-
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shelf voice assistants like Amazon Echo because raw acoustic signals are enclosed for commercial

products. The sampling rate is set to be 16 kHz as the range could cover most of human voice

frequency. Higher sampling rate actually may incur aliasing. The microphone array is mounted

over the Raspberry Pi to connect acoustic samples. Afterwards the samples are sent from the

Raspberry Pi to a laptop through wireless connection as Figure 3.6c and Figure 3.6d show. We use

the laptop to run models and output locations.

We collected 1,000 data points from a bedroom, a basement, a kitchen and a living room

like Figure 3.7 shows. To compare SoundFlower and VoLoc in Section 3.6.1, we use data points

collected from scenarios like Figure 3.6c, Figure 3.6d and Figure 3.7c to assure the assumption of

VoLoc, which is the reflection from the wall is the second sound traveling path. For study on how

multipath effect influences the performance of SoundFlower in Section 3.6.2.2, we add objects

in Figure 3.6d to complicate the surroundings and generate multipath environment. The overall

results shown in Section 3.6.1 covers all different scenarios.

We record the wake-up commands by a small mobile device and place the mobile device in

different locations as the sound source. We use prerecorded audio instead of human volunteers

because (1) we want to remove volume as a variant and better study the influence of distance

in Section 3.6.2.1 and the influence of multipath effect in Section 3.6.2.2. Uncontrollable voice

volume uttered from human volunteers will introduce new variant and undermine the reliability of

our conclusion. (2) We want to collect ground truth in a more refined manner. This is important

as we suggest a practical searching step in Section 3.6.2.3. We aim to find a step size which is

accurate enough for human shape size as well as being friendly to the computation capacity of

voice assistants.

We use two different wake-up commands, ’Alexa’ for Amazon Echo and ’Hi Siri’ for Apple

products. Both male voice and female voice are tested in our experiments. For evaluation metrics,

we use localization error in meters to show the accuracy of SoundFlower, and consumption time

in seconds to show the computation overload.
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(a) Living Room (b) Kitchen (c) Bedroom System Setup

Figure 3.7 Different experiment scenarios.

3.6 Experiment

In this section, we present the performance of SoundFlower. Especially, we want to find an-

swers to the following questions and evaluate the feasibility of SoundFlower as a sound source

system for voice assistants:

•What is the overall localization accuracy of SoundFlower? How is it compared to the state-

of-the-art baseline model VoLoc?

•What factors are influencing the overall performance of SoundFlower? What should we target

to improve for future development of indoor sound source localization?

•What is running time of SoundFlower? Is it affordable for voice assistants?

3.6.1 Localization Accuracy

We test SoundFlower with both 2D localization and 3D localization. Considering our target

indoor applications like Smart Home and Smart Office, 2D localization information is more of in-

terest. Thus VoLoc chooses to collect user height as input and use it to narrow down the searching

space. When there are several family members or workmates, voice assistants will have to recog-

nize different users and choose different heights. Also, human body might lean or be on tiptoe.

Having a fixed height value is not an ideal choice to serve our ultimate goal. Thus we choose to

search a 3D space of 6m× 6m× 0.6m, which is large enough to cover a basement or conference

room and has a height variation of 0.6m.

We first show our 2D and 3D localization accuracy in Figure 3.8a and then compare 2D local-

ization with VoLoc in Figure 3.8b. The median error of 2D location is 0.45m, while that of 3D
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localization is 0.5m. Considering the area covered by a single person, this accuracy is sufficient

for location-based applications. Another point worth noting is, the 2D localization error is similar

to 3D error. This is because at most locations, the loss function of SoundFlower is more sensitive

to horizontal movement than vertical movement of independent parameters as Figure 3.5 implies.

Thus with or without user height, SoundFlower is able to find the planar location of sound source.

The minor higher increment of 3D localization error is usually from the height prediction offset.

(a) Overall Localization Accuracy (b) 2D Localization Comparison with VoLoc

Figure 3.8 Localization accuracy.

Among all collected data points, we pick data points which are collected near a wall. VoLoc

requires to know the distance and orientation of the voice assistant to the wall. The original paper

shows their average error for wall estimation is 1.2cm and 1.4◦, but the estimation takes hours every

time the voice assistant has been moved. To be more efficient, we feed the information directly to

VoLoc. The median error of SoundFlower is 0.5m while that of VoLoc is 0.65m. The accuracy of

SoundFlower is slightly decreased because the second reflection path from wall is indeed strong.

VoLoc can extract a second AoA information from it, but it will confuse SoundFlower from the

LoS signal. If the magnitude of the second path is similar to the third and the fourth path, LoS

signal will be more apparent to SoundFlower.

Through implementation and experiments, we analyzed several situations that could hurt the

performance of VoLoc. (1) One important assumption of VoLoc is, the reflection of wall is the
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second strongest component in the received signal apart from LoS component. For scenarios like

3.6d, the assumption stands and VoLoc receives great performance. However, real-life scenarios

are more like 3.7c where different objects may be around the voice assistant. In these cases, the

assumption is undermined and the performance goes down. (2) The very first step of VoLoc is

to calculate the direct AoA. The resulting AoA will narrow down the searching space from 2D

plane to a beam in the 2D plane. This step significantly reduces the running time of VoLoc and

makes the computation overload affordable to voice assistants. The side effect is, the estimation

of direct AoA needs clean direct-path signal. In other words, we need to clip the signal before

the second path signal pollutes the direct path signal. VoLoc[92] states they use "tens of samples"

right after detecting the rise of signal energy for direct-path DoA estimation with a sampling rate

of 16 kHz. Following the instruction, we choose 32 samples and the same sampling rate in our

implementation, which means we assume the second path is at least 0.686 m longer than the first

path if the sound speed is 343 m/s. This assumption does not always hold. To extract effective

direct path signal, we actually need coarse prior estimation about the distance difference between

the direct path and the second path. Otherwise variation on the clipped samples could affect the

direct-path AoA estimation, and further leads VoLoc to wrong searching area or take too much

time to finally reach a location.

3.6.2 Influencing Factors

In this part we analyze the factors that influence the performance of SoundFlower. Distance

and multipath effect are known to be influential to sound source systems[92, 94], our experiments

show distance is still the most influential factor to localization performance. We also show the

impact of switching searching step size. This is important as we make trade-offs between accuracy

and consumption time. Our experiments show if a searching step size cannot cover the ground

truth, usually it turns to the closest searching point. Switching to a larger searching step size will

not significantly affect accuracy but can decrease consumption time.
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Figure 3.9 The influence of distance to localization accuracy.

3.6.2.1 Influence of Distance

Both VoLoc[92] and our experiments observe great impact of distance on localization accuracy.

The further the speaker is to the microphone, the greater the attenuation of acoustics would be.

SNR ratio would considerably decrease. After quantization of ADC, some information will be lost.

Figure 3.9 shows the decrease of localization accuracy of SoundFlower as distance increases. We

use mid-range error, namely the arithmetic mean of the largest and the smallest observed errors, to

show the influence. For area within 1m to the microphones, the localization error is always smaller

than 0.5m. For area around 3m - 4m to the microphones, the maximum observed error is 2.8m

while the smallest error is 0.22m.

Figure 3.10 The influence of multipath effect to localization accuracy.
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3.6.2.2 Influence of Multipath Effect

In this part, we explore the influence of multipath effect to the localization accuracy of Sound-

Flower. We create different degrees of multipath effect by adding objects around the microphone

array as Figure 3.7c shows. As we can see from Figure 3.10, the accuracy of cluttered table is

slightly lower than clean table. The median error is 0.5m if table is relatively clean and 0.6m if

table is very cluttered.

3.6.2.3 Influence of Searching Step

Figure 3.11 The influence of different searching steps to localization accuracy.

For experiments shown in Section 3.6.1, we use a searching step size of 0.1m to scan possible

area. In this section, we further test our model on a step size of 0.01m, 0.03m and 0.07m. The

result is shown in Figure 3.11. The increment of granularity does not lead to noteworthy accuracy

increase. If the step size cannot cover the ground truth, usually SoundFlower will return the closest

location to the ground truth.

3.6.3 Consumption Time

Figure 3.12 presents the consumption time for experiments of different scales. We run the

model on a MacBook Pro (13-inch, Early 2015). The code is implemented in Python 3. For

scanning area of 6m × 6m × 0.6m, 2D localization with a searching step size of 0.1m takes 3 -

4 seconds. 3D localization with step size of 0.1m takes around 5 seconds. 2D localization with

a step size of 0.01m takes around 30 seconds. Due to the size of a normal person, we believe
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Figure 3.12 Consumption time.

a step size of 0.1m could achieve a good balance between consumption time and localization

accuracy. According to [92], VoLoc takes 6 - 10 seconds to locate a person and hours to estimate

the distance and orientation from the microphone array to the wall. We quote the time of VoLoc

from the original paper in Figure 3.12 instead of measuring it by ourselves because when testing

VoLoc, we found its consumption time is highly related to a preset parameter which narrows down

the searching area after its initial estimation of direct-path AoA. If the parameter is small, the

running takes seconds. But the algorithm may fail to find a location when the initial estimation of

AoA deviates from the ground truth and the parameter filters out every possible location. If the

parameter is large, VoLoc always finds an answer but the running takes minutes.

3.7 Discussion and Future Work

The main limitation of SoundFlower is, it cannot work when multiple people are speaking

simultaneously. In practice, it is common when one person tries to wake up the voice assistant

while other people are talking in the background. In this case, self-adjusting speech detection

will return all frequency bins in which speeches exist, rather than the frequency bins in which the
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wake-up command exists. To solve this issue, speech recognition method must be combined to

recognize the wake-up command and truncate the time window of the wake-up command. We also

need ideas like MUSIC[81] to explore the independence of multiple sound sources and separate

the wake-up command from other speeches. We take these challenges as future work.

3.8 Conclusion

In this chapter, we present a robust system for voice assistants to obtain user location through

user speech. After state-of-the-art work[92] shows the feasibility of such a model with the user

height known and a wall next to the voice assistant, we extend the application scenario to 3D

localization without the assumption of a second reflection path. We continue the idea of TDoA

estimation between a pair of microphones, extract phase information from cross spectrum, design

self-adjusting speech detection algorithm and unwrapping scheme to remove environmental noise

and hardware noise, and apply robust regression to obtain TDoA against the disturbance of multi-

path effect. We achieve similar localization accuracy to state-of-the-art work with less assumptions

as well as less consumption time.

SoundFlower shows our efforts on overcoming diverse noises for sound source localization.

Common sources of noises for IoT applications are imperfect hardware, the background noise

and multipath effect. In this chapter, we show how to use statistical methods to compress the

disturbance to system performance.
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CHAPTER 4

PREVENTING UNAUTHORIZED SPEECH RECORDINGS WITH SUPPORT FOR
SELECTIVE UNSCRAMBLING

Human beings have long used acoustic signals to exchange information with each other. Human

beings now use acoustic signals, which is speech, to exchange information with ubiquitous smart

devices such as smartphones, smartwatches, and digital assistants that are equipped with embedded

microphones. While these speech detection and recognition capabilities make possible many con-

venient features, they also introduce many privacy risks such as secret, unauthorized recordings of

our private speech [113, 114] that can have real world consequences. For example, the Ukrainian

prime minister offered his resignation after an unauthorized recording was leaked [115].

Manufacturers claim that they are trying their best to protect users’ privacy, but there is no

effective and user-friendly technical anti-recording solution available despite the fact that anti-

recording is not a new problem. One existing anti-recording solution is to talk near a white noise

source, e.g. near an FM radio tuned to unused frequencies, so that the conversation cannot be

clearly recorded. This approach is not user-friendly because the people having the conversation

must put up with the white noise that interferes with their normal communication. A similar

solution [116] emits high frequency noise near the upper bound of human sensitivity; most people

do not notice the interference, but pets and infants may notice it [117], so this solution is not

environment-friendly. Electromagnetic interference was an effective anti-recording solution [118]

in the past, but modern microphones are immune to electromagnetic interference. Moreover, all

of these traditional anti-recording approaches cannot allow authorized devices to clearly record

conversations.

Any effective anti-recording solution must provide the following three key properties: (1) nor-

mal human conversation should be unaffected by the anti-recording solution meaning the anti-

recording solution should not change what humans hear while having a conversation; (2) unau-

thorized devices should not be able to make a clear recording of any conversation protected by

the anti-recording solution; (3) authorized devices should be able to make a clear recording of any
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conversation protected by the anti-recording solution.

One potential solution that can satisfy all three properties is to generate multiple ultrasonic

frequency sound waves because of the following two properties of ultrasonic waves. First, hu-

mans cannot hear ultrasonic sound waves. Second, commercial off-the-shelf (COTS) microphones

exhibit nonlinear effects, which means that when these microphones receive multiple ultrasonic

sound waves, they generate low-frequency sound waves that can be heard by humans and thus

interfere with the clarity of recordings made with those microphones [17, 117, 119–123]. There

are three main challenges that must be overcome in order to develop an ultrasonic anti-recording

solutions that satisfies the three key properties:

• First, any ultrasonic anti-recording solution must defend against potential attacks such as

using Short-time Fourier transform (STFT) to analyze unauthorized recordings and using filters to

cancel out the low-frequency sound waves that interfere with recording clarity.

• Second, ultrasound travels along a straight line [124], which means a single ultrasonic wave

generator can only interfere with recording devices within a limited range of angles from the gen-

erator. In practice, it is difficult to design an ultrasonic anti-recording solution that can neutralize

all recording devices within a large coverage area.

• Finally, the performance of authorized devices could be affected by the ringing effect due to

electronic behaviors. Such ringing impulses are hard to be canceled and may remain in authorized

recordings, severely downgrading the quality of the descrambled recordings.

In this paper, we present Patronus, an ultrasonic anti-recording system that satisfies the three

key properties. Patronus has two key components: the scramble that is the pseudo-noise generated

at all microphones, and descrambling that is the process to remove the scramble for authorized

devices. We form the scramble by randomly picking frequencies from the human voice frequency

band and then shifting them to the ultrasonic band. To thwart STFT attacks, we further fine-tune the

period of the scramble so that it cannot be easily analyzed and canceled. We add a reflection layer

with a curved surface to create a reflected ultrasonic wave that can cover a wider area. Finally,

to mitigate ringing effects, i.e. sudden hardware impulses due to discrete frequency changes of
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current waves, we use chirps to smooth the frequency changing components of the scramble, as

shown in Figure 4.1.

t

t

f

f
(a) Discrete frequency scramble components.

(b) Continuous frequency changing scramble 
with chirps.

Cosine Wave Chirp

Figure 4.1 Using chirps to smooth the frequency changing components of the scramble.

Patronus lets authorized devices clearly record audio conversations by sending them the scram-

ble pattern. With scramble pattern, the authorized device applies the Normalized Least-Mean-

Square (NLMS) adaptive filter [125] to cancel the scramble and thus produce a clear audio record-

ing of the conversation.

We implement a prototype of Patronus and conduct comprehensive experiments to evaluate

its performance. We use the Perceptual Evaluation of Speech Quality (PESQ) [126], the Speech

Recognition Vocabulary Accuracy (SRVA, see Section 4.5), and speech recognition error rates

(1 - SRVA) to evaluate the performance of Patronus. Our results show that only 19.7% of the

words protected by Patronus’ scramble can be recognized by unauthorized devices. Furthermore,

authorized recordings have 1.6x higher PESQ and, on average, 50% lower speech recognition error

rates than unauthorized recordings.

In this paper, we provide several unique technical contributions when compared to existing

works. First, to the best of our knowledge, Patronus is the first system to leverage the nonlin-

ear effect of COTS microphones to prevent unauthorized recordings while allowing authorized

recordings. Second, we perform a thorough study of the nonlinear effects of ultrasound frequen-

cies including the effects of higher orders whereas recent works[17, 119, 120, 127] only consider
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the order up to 2. This is critical for descrambling when the signal components with order higher

than 2 will likely lie in the human voice frequency band, which means simply cutting off the high

frequency components will result in message loss. Instead, our descrambling solution carefully

removes these higher order frequencies using an NLMS filter. Third, we mitigate ringing effects

by connecting scramble segments with chirps. This simplifies learning the coefficients of impulse

response in existing work [17], especially when we deploy multiple ultrasonic transducers in a

large space.

In general, our contributions are as follows:

• We propose a novel ultrasound modulation approach to provide privacy protection against

unauthorized recordings that does not disturb normal conversation.

•We do a thorough study around the nonlinear effect of ultrasound on commercial microphones

and propose an optimized configuration to generate the scramble.

• To overcome the fact that ultrasound travels in a straight line, we design a low cost reflection

layer to effectively enlarge the coverage area of Patronus in a cost-effective way.

• We present Speech Recognition Vocabulary Accuracy, a new metric to measure the record-

ing quality. Our experimental results with both PESQ and SRVA show that Patronus effectively

prevents unauthorized devices from making secret recordings.

The organization of the rest of this paper is as follows. Section 4.1 introduces related work.

Section 4.2 introduces the nonlinear effect of common microphones, which we analyze more thor-

oughly than existing works. Section 4.3 presents the design of Patronus. Section 4.4 presents the

prototype implementation of Patronus. Section 4.5 presents our evaluation results of Patronus.

Section 4.6 discusses the limitations of Patronus and future work, and Section 4.7 concludes this

work.

4.1 Related Works

4.1.1 Nonlinear Effect of Microphones

There has been a lot of research into the nonlinear effect of microphones. For many years, the

development of ultrasonic systems on smartphones was restricted due to being limited to a roughly
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4 kHz range of frequencies between the high end of human hearing to the cutoff frequency of typi-

cal microphones. Furthermore, some infants and pets can actually perceive frequencies within this

small band. Roy et al. [17] performed detailed research on the nonlinear effects of microphones

to break through these limitations and expand the working frequency band for ultrasonic systems

on smartphones. DolphinAttack [120] leverages the nonlinear effect to generate audio commands

that are inaudible to humans. After being recorded by the microphone, the input ultrasonic signals

would generate a shadow signal that could be recognized by VCS. Therefore, attackers can per-

form unauthorized commands without being discovered. SurfingAttack [123] uses oscillation of a

surface such as a table to transmit inaudible commands. With this modality, attackers can deploy

their speakers in hidden spots such as the back of the surface being used to transmit the secret com-

mands. LipRead [119] extends the attack range by leveraging characteristics of human hearing. It

also puts forward a model to filter out such commands generated by the nonlinear effect. Meta-

morph [121] injects inaudible commands into human-made commands to achieve unauthorized

actions. AIC [127] presents a mechanism that fundamentally cancels inaudible commands against

VCS, which we will discuss as an attack model in Section 4.3.2. NAuth [122] uses the nonlinear

effect to authenticate devices. Unlike most of these methods, Patronus aims to preserve privacy

by adding a removable scramble generated by ultrasonic signals to the recorded human speech.

From a technical perspective, Patronus is unique in that it takes into account third and higher order

terms from the nonlinear effect. Our experiments show those high order terms can affect record-

ings whereas most existing methods (e.g., AIC) only consider the second order term and assume

the higher order sub-band of the microphone is clean.

4.1.2 Dual Channel Applications

Some applications leverage the difference between humans and devices. For example, hu-

man eyes and devices have different perceptions of flicker frequency. Technologies exist that use

this phenomena to communicate between the screen and the camera without affecting human vi-

sion [128–131]. Likewise, some technologies modulate acoustic signals in ways that no human can

detect to communicate between devices [132, 133].
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The difference between the sensitivity of humans and devices is also used in privacy protection.

Kaleido [134] protects a movie’s copyright by adding a flashing distractor with very high frequency

into movie frames that cannot be seen by human eyes. If such a protected movie is subsequently

recorded by an unauthorized camera equipped with a rolling shutter, the distractor will be visible

on the unauthorized recording because of its high sample rates making the pirated recording a

low quality recording. LiShield [135] also uses the Rolling Shutter effect to reduce the quality of

photos. Lights with different colors are set to flash in alternating high frequencies that provide

normal lighting because human eyes cannot sense the flashing. However, cameras are influenced

because the Rolling Shutter samples column by column meaning unexpected color stripes will

appear on the photo. In the end, it prevents unauthorized cameras from taking photos. Although

Patronus has a similar motivation to prevent unauthorized recordings, Patronus is different from

the two papers as it targets acoustics rather than visuals.

4.2 Nonlinear Behavior of Common Microphones

In this section, we provide a brief primer about nonlinearity of common microphones; a more

comprehensive introduction can be found in recent papers [17, 119]. Ideally, COTS microphones

are linear systems. Given the input signal s(t), the output signal y(t) is expected to be linear

combinations of the input signal, i.e., y(t) = A1s(t) where A1 is the complex gain quantifying

the change of the phase and amplitude. Due to the physical properties of materials and varia-

tions in manufacturing, the components of a common microphone, such as the diaphragm and the

pre-amplifier, are imperfect and typically do not constitute a linear system. As a result, COTS

microphones, which are widely equipped on smartphones and smartwatches, typically exhibit

nonlinear behavior. Specifically, the output signal y(t) is under nonlinear effect, where y(t) =

A1s(t)+A2s2(t)+A3s3(t)+ · · · , and the power gains of each component satisfy |Am|> |An|(m< n).

When the input signals are composed of two different ultrasonic frequencies, the output from a

nonlinear microphone would contain several new shadow sounds with frequencies that are a linear

combination of the two input frequencies. Assuming that the input signal is s(t) = cos(2π f1t)+

cos(2π f2t) where f1 and f2 are the ultrasonic frequencies, the output signal would be y(t) =
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∑
+∞

i=1 Aisi(t). Without loss of generality, we assume f1 > f2 in the following discussion. For each

component Aisi(t),

si(t) = (cos(2π f1t)+ cos(2π f2t))i

= µ +
i

∑
j=1

[α j cos(2π j f1t)+β j cos(2π j f2t)]

+
i−1

∑
j=1

[λ j cos(2π( j f1− (i− j) f2)t)+ γ jcos(2π( j f1 +(i− j) f2)t)],

where α j, β j, λ j and γ are coefficients of the polynomial expansion, and µ is the consequent

constant.

After the pre-amplifer, the signals would pass through an embedded low-pass filter whose cut-

off frequency is usually 24 kHz. Since f1 and f2 are both ultrasonic frequencies, j f1 and j f2 are all

ultrasonic frequencies. However, if i = 2 j, j f1−(i− j) f2 = j( f1− f2) may be a non-ultrasonic fre-

quency when j is small enough. Therefore, when the input signal is s(t)= cos(2π f1t)+cos(2π f2t),

new audible cosine waves cos(2π j( f1− f2)t) appear, where j = 1,2, . . . ,k, k≤ i, and k( f1− f2)≤

24 kHz.

Existing works like BackDoor[17] and DolphinAttack[120] make use of A2s2(t) but ignore

higher-order components; they essentially assume that for i> 2, |Ai| is relatively small and has little

effect on the output signal. However, in our experiments, we find that more high-order components

should be taken into consideration as they do affect the output signal.

4.3 Design

4.3.1 Overview

As shown in Figure 4.2, there are three parties involved in Patronus: the Scramble Transmitter,

authorized devices with descramble receivers, and unauthorized devices.

The Scramble Transmitter sends a series of scramble signals with randomly varying frequen-

cies. To ensure that unauthorized voice recordings will be affected, the frequencies of the recorded

scrambles should be located in the human voice band. Therefore, we use the Scramble Generator

to generate random frequencies in the target range, store them as a secret key, and send them to
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the Descramble Receivers through Wi-Fi, Bluetooth, or other media. The Scramble Generator then

generates cosine wave segments according to these frequencies. The generated segments are then

sent to the Frequency Shifter and their frequencies will be increased by f0, which is an ultrasonic

frequency. To ensure the scramble signal is picked up by microphones of unauthorized devices

because of the nonlinear effect, we design a Constant Cosine Wave Generator to transmit a cosine

wave with a constant ultrasonic frequency of f0.

Scramble Transmitter
Scramble Generator

Scramble Pattern
(Key)

Frequency Shifter

Constant Cosine
Wave Generator

Unauthorized
Device

Authorized
Device

Speech with 
Scramble

Speech with 
Scramble
Scramble 
Pattern

Wi-Fi / Bluetooth / etc.

A
daptive 
Filter

Speech

Descramble Receiver

Figure 4.2 System overview.

During human talking protected by Patronus, the actual human conversation plus two ultrasonic

signals will arrive essentially simultaneously at recorders (both authorized and unauthorized) and

human ears. Human ears will not detect the ultrasonic signals and thus receive the human conversa-

tion with no additional noise. As discussed in Section 4.2, the two ultrasonic signals will generate

a shadow audible signal that will be included in any recording made by a COTS microphone due

to nonlinear effects. This applies to both authorized and unauthorized devices. Authorized devices,

which receive a secret key from the Scrambling Transmitter, can generate the scramble waveform.

They can then feed the scramble waveform along with the scrambled recording into an adaptive

filter to extract clear speech from the scrambled speech. The details of descrambling will be dis-

cussed in Section 4.3.5.

We must overcome three challenges in order to design Patronus. First, we must design a system
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whose working area is as large as possible. This is difficult because a sound wave of high frequency

typically travels along a straight line meaning a straightforward implementation of ultrasonic gen-

erators will only cover a small area defined by a limited range of angles. Second, there is a trade-off

between a shorter and a longer period of scramble frequencies. As the period increases, the sys-

tem is more vulnerable to unauthorized recordings using STFT attacks. As the period decreases,

the difficulty of descrambling increases. Our goal is to maximize the information recovered by

authorized devices over unauthorized ones without exposing the scramble pattern to STFT. These

details are discussed in Section 4.3.3.4. Third, when frequency changes frequently, a severe ringing

effect (Section 4.3.3) occurs in the scrambled recording, which affects even the recordings made

by authorized devices after descrambling. We use chirps to connect each frequency component of

the scramble to eliminate the sudden change of the input to ultrasonic speakers, hence minimizing

the ringing effect and enhancing the quality of the recovered speech by authorized devices.

4.3.2 Attack Model

Based on common acoustic processing technologies and known properties of nonlinearity ef-

fects, we consider the following types of attacks:

4.3.2.1 Short-Time Fourier Transform (STFT)

One natural way for an unauthorized device to try to extract a useful recording from its scram-

bled recording is to analyze the scrambled recording with STFT and filter out suspicious frequen-

cies. We address this attack model by changing the scramble frequency according to a finely-tuned

period model, making it impossible for the attacker to obtain each exact scramble frequency along

with its start and end time. Detailed analysis is provided in Section 4.3.3.4. Even with the correct

scramble frequencies available, bandpass filters will not work because the scramble frequencies are

selected from the human voice band. The frequencies from chirps and those from human speak-

ing are mixed together. To prove Patronus can defeat this attack model, we simulate the attack

scenario when (1) the attacker is aware that our scramble pattern is varying continuous waves

smoothed by chirps (2) the attacker calculates approximate scramble frequencies with STFT (3)

the attacker applies NLMS adaptive filter (Section 4.3.5.4) to remove the scramble with the approx-
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imate scramble frequencies they obtained from STFT. Our simulated attack experiments, provided

in Section 4.5.8, show that this attack will fail because the approximate scramble frequencies are

not accurate enough.

4.3.2.2 Extra Ultrasonic Transmitter Attack

After DolphinAttack[120] proposes to inject malicious commands into ultrasound, AIC [127]

adds three more ultrasonic transmitters to cancel the malicious commands and protect Voice Con-

trol Systems (VCS). AIC assumes the legitimate as well as malicious commands are within the

lower sub-band of the microphone sensible frequency band. Their added ultrasonic transmitters

project only the malicious commands onto the higher sub-band, which can be used to filter the

malicious commands in the low sub-band. With a fast changing of scramble frequencies, we can

cover the whole frequency band, and make sure no clean band is left for attackers.

4.3.2.3 Wi-Fi/Bluetooth Snifing

Attackers can sniffer the Wi-Fi or Bluetooth channel to get the scramble pattern transmitted

from the Scramble Transmitter to the authorized device. However, there are many cryptographic

approaches to prevent attackers from sniffing channels. For example, we can encrypt the scramble

pattern by AES-CTR using a pre-shared key and then directly send it to authorized devices.

4.3.2.4 Physical Attacking

There are also some physical attack models. First, attackers can place an obstacle before the

Scramble Transmitter. However, attackers cannot do it secretly and nobody would like to do so.

Second, attackers may just wrap a cover on their microphones. However, the cover itself may

defeat the attackers objective of making a good recording. Although Patronus cannot perfectly

handle such attack models, it enhances the difficulty of making an unauthorized recording. Finally,

attackers may conduct experiments to discover where Patronus fails. This can be fixed by enlarging

the working area through some methods that we will discuss later.
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4.3.3 Ultrasonic Scramble Modulation

Two ultrasonic signals will be superimposed at the recorders to create the desired low-frequency

component. In the design of the scramble using ultrasonic signals, we mainly consider the follow-

ing issues:

4.3.3.1 Range of Frequency

The first issue is how to make it hard to cancel out the scramble without the key. Basically, the

range of human speech frequency is from 85 Hz to 255 Hz [136, 137]. If the scramble consists of

multiple random frequencies from this range, it is hard for attackers to cancel the scramble using

linear filters. The application of a linear filter, e.g. highpass filter, will not only cancel the scramble,

it will also change the original human speech. To ensure the scramble covers all human speech

frequencies in practice, we modulate the scramble with a wider frequency band than [85,255] Hz.

4.3.3.2 Random Frequencies

If we always use specific frequencies to generate the scramble, attackers could analyze the

frequency spectrum of their recordings to infer the scramble frequencies; with those, they could

then recover the original audio signals.

To address this issue, we choose scramble frequencies randomly. We also periodically change

the scramble frequencies over time. The sequence of scramble frequencies can be thought of as a

one-time pad key. Without the sequence, it would be difficult for attackers to remove the scramble.

4.3.3.3 Ringing Effect

Frequent changing of the scramble frequencies produces a ringing effect [17] that makes it

challenging for authorized devices to produce a high-quality descrambled recording. Specifically,

the ringing effects incur heavy-tailed impulse responses that will remain in descrambled recordings

as shown in Figure 4.3 (a) and (b). Since the ringing effect occurs when the input changes suddenly,

we use a chirp signal to connect two adjacent segments with different frequencies in the scramble

to smooth such a sudden change. Specifically, when the scramble changes from frequency A to

frequency B, we add a transition signal that starts at frequency A and moves linearly to end with
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Figure 4.3 Illustration of how linear chirps mitigate the ringing effect.

frequency B.

The impulse incurred by ringing effects can have a very high amplitude or power. It will sup-

press other signals due to the microphone Passive Gain Suppression [17]. Figure 4.3 confirms that

the ringing effect is mitigated by chirps. Figure 4.3 (a) shows a scrambled recording with no chirp,

the resulting descrambled recording in Figure 4.3 (b) has many areas where most of the signal is

suppressed. In contrast, Figure 4.3 (c) exhibits a scrambled recording with chirp signals, the result-

ing descrambled recording in Figure 4.3 (d) does not have the peak signals corresponding to the

ringing effect and the rest of the signal is not suppressed.

4.3.3.4 Duration of each frequency

The next challenge is choosing the proper duration for each frequency in the sequence of scram-

ble frequencies. Intuitively, if we give each frequency a long duration, unauthorized devices could

easily split the record into multiple segments where each segment is only protected by a constant

frequency scramble. They could then apply simple techniques such as using a linear bandpass filter

to the scrambled recording to extract a clear speech recording.
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More generally, there are two competing issues in choosing the duration of each scramble

frequency, namely, defending against STFT attacks that are discussed in Section 4.3.2.1, and en-

suring that authorized devices can obtain high-quality descrambled recordings. We first consider

defending against STFT attacks. An STFT attack can successfully remove the scramble waveform

if it can both accurately infer the frequencies and time periods for each scramble frequency in

the sequence of frequencies. When the window length is n, the frequency resolution would be

∆ f = fs
n = fs

fs×t =
1
t where fs is the sampling rate and t is the duration of the window. Taking 0.1s

as an example, the offset of STFT can reach 10Hz. If the attacker tries to improve the frequency

resolution by lengthening the window, the accuracy of the estimated time periods for the given

scramble frequency will diminish. If the scramble frequency duration is long, scramble frequency

will exhibit fewer changes within any given window, thus STFT attacks can use longer windows

to accurately estimate the frequency with exact estimates of the frequency time period. Therefore,

to thwart STFT attacks, we should make the frequency duration as short as possible. However, a

too-short duration may misshape the scrambled recording due to imperfect hardware. A typical mi-

crophone and speaker use a diaphragm to sense and generate the vibration; this diaphragm moves

continuously and can not change its position instantaneously. Circuit latency also makes it hard for

the system to respond to frequent and instant changes. As a result, the scrambled waveform would

be slightly distorted. This means the NLMS adaptive filter at authorized devices may not correctly

descramble the scrambled waveform because it does not expect the distortion caused by frequent

frequency changes. Therefore, the frequency duration cannot be too short. In summary, to balance

these competing concerns, we must find a frequency duration that maximizes the information re-

covered by authorized devices compared to the information recovered by unauthorized devices.

To identify a good frequency duration, we measure the descrambling performance with different

frequency durations in Section 4.5.8.

4.3.3.5 Key Construction

We have two choices to construct the key for granting the privilege of recording the audio to

authorized devices. One is directly using the scramble waveform generated by the Scramble Gen-

77



erator as the key. After getting the scramble waveform, authorized devices remove the scramble

from the recorded audio. But there are some issues we need to consider. First, the sampling rate

of authorized devices may vary from one to another. It means that in terms of the digital signal,

devices having different sampling rates will get different presentations of the same scramble wave-

form. To grant the privilege to devices, the Scramble Transmitter should generate different digital

scramble waveforms according to different sampling rates of authorized devices. This results in

high computational overheads. Second, in addition to different sampling rates from different au-

thorized devices, the sampling rates of the Scramble Generator and an authorized device may be

also different. As a result, the scramble that the speaker emitted might have a different presentation

of the recorded waveform.

In Patronus, we choose another way to construct the key. We select the frequency sequence used

to generate the scramble as the key. After receiving the frequency sequence, an authorized device

can reconstruct the scramble waveform with their sampling rates, which we discuss in more detail

later. After that, an authorized device can use the reconstructed scramble waveform to remove the

scramble from the recording and get the clear speech.

With the discussion above, we formally describe the scramble generation. We set one speaker

to transmit an ultrasonic continuous wave S1(t) = cos(2π f0t), while the other speaker transmits

continuous waves linked by chirps S2(t) = cos(2π f (t)t), where

f (t) =


fi, (2i−2)∆t ≤ t < (2i−1)∆t,

fi +
fi+1− fi

∆t t, (2i−1)∆t ≤ t < 2i∆t,
(4.1)

and fi(i = 1, . . . ,n) are randomly generated constant frequencies. ∆t is the duration of a single sine

wave or a chirp. The induced low-frequency noise will be

R(t) = cos(2π( f (t)− f0)t). (4.2)

To ensure R(t) covers human voice, fi(i = 1, . . . ,n) are sampled from [ flow + f0, fhigh + f0]

where [ flow, fhigh] covers the human voice band.
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Figure 4.4 Enlarge working area with reflection.

4.3.4 Enlarge Scramble Working Area

The scramble signal is generated by two ultrasonic signals, which incurs another issue as the

ultrasonic wave typically propagates in a straight line. In other words, if you want to prevent

a certain device from recording, the ultrasonic speaker should be pointed directly towards that

device. This results in a limited coverage area for ultrasonic anti-recording solutions.

Inspired by lamps that often use a bow-shaped cover to reflect the light beam in many direc-

tions, we build a reflection layer that reflects the ultrasonic wave in many directions. As Figure 4.4

shows, we put ultrasonic speakers near the center of the reflection layer and place the devices (au-

thorized and unauthorized) in the working area. When the ultrasonic wave hits the reflection layer,

it gets reflected in many directions leading to a much larger cover area.

4.3.5 Grant Recording Privilege

The goal of Patronus is not only to block unauthorized devices from recording audio, but also to

provide authorized devices with a mechanism to recover speech. Patronus achieves this by creating

a way for authorized devices to remove the scramble from the scrambled recording. Specifically,

Patronus grants the clear recording privilege to authorized devices using the following steps.
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4.3.5.1 Key Transmission

The Descramble Receiver needs the waveform of the scramble generated by the Scramble

Generator before it can remove the scramble. Intuitively, if it had the pure scramble waveform, it

could remove the scramble from the recorded audio by subtracting the scramble waveform from

the recorded audio waveform. The scramble waveform here acts as the key for deciphering the

recorded audio. We send the key through non-acoustic channels such as Wi-Fi or Bluetooth with

cryptographic protection to prevent eavesdroppers from getting the key. Additionally, because of

the randomness of scramble frequencies, they cannot get a usable scramble waveform by listen-

ing to the acoustic channel. Instead, they can get either the combination of interfered speech with

scramble, or get the scramble without speech but independent of the successive scramble wave-

form.

4.3.5.2 Scramble Reconstruction

As discussed in Section 4.3.3, the Scramble Transmitter sends the random frequency sequence

instead of the scramble waveform to authorized devices as the key. Patronus needs to use these

frequencies to reconstruct the scramble waveform before removing the scramble. An authorized

device uses Equation (4.2) and its recording sampling rate to generate the scramble waveform.

4.3.5.3 Synchronization

We need to synchronize the reconstructed scramble with the recorded scramble before remov-

ing it from recordings. Specifically, we choose a segment from the reconstructed scramble as the

template, e.g. the beginning segment. Then we use cross-correlation to find the segment that is the

most similar to the template. We then synchronize the recorded scramble and the reconstructed

scramble by aligning the two segments.

4.3.5.4 Adaptive Filtering

Now we have the waveform of the scramble. The next task is to remove the scramble from the

recorded audio with the known waveform of the scramble. Practically, we cannot directly subtract

the scramble from the recorded audio because when the sound propagates through the air, it will be
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distorted due to reflection and attenuation. We use adaptive filter to remove the waveform-known

scramble.

Adaptive filter is widely used in Active Noise Cancellation (ANC) headsets. Technically, there

is a reference microphone outside the headset. The reference microphone captures the noise, and

the digital signal processor (DSP) generates the anti-noise wave according to the captured noise.

When the noise wave and the anti-noise wave arrive at the ear, they eliminate each other. In Pa-

tronus, we denote the speech as x1. It propagates through the acoustic channel h1, arrives at the

authorized device and becomes h1∗x1, where the operator ∗ denotes the convolution operation. Ad-

ditionally, we denote the scramble waveform that is generated by non-linear effects and recorded

by the authorized device as x2. It propagates through another channel h2, arrives at the authorized

device and becomes h2 ∗ x2. Therefore, the audio recorded by the authorized device is

y = h1 ∗ x1 +h2 ∗ x2. (4.3)

Similar to ANC headsets, here we see the scramble x2 as the noise in ANC headsets. Different

from ANC headsets, the noise here is generated from the key as we discussed in Section 4.3.5.2.

Therefore, we can use the Normalized Least-Mean-Square (NLMS) Adaptive Filter [125] to re-

move the scramble. Formally, we are trying to find a channel vector h′2 to solve the optimization

problem

minE[(y−h′2 ∗ x2)
2]. (4.4)

When the expectation in Equation (4.4) is minimized, h2 ≈ h′2. Therefore, h1 ∗ x1 ≈ y− h′2 ∗ x2,

and it can be regarded as the speech without the scramble. Stochastic gradient descent is usually

adopted to solve the optimization problem defined by Equation (4.4), but it is hard to derive the

gradient of the expectation. Researchers thus use (y−h′2 ∗ x2)
2 instead of the expectation to solve

the problem. In this way, the noise gets canceled [138].

Following this design, we can develop a mechanism that prevents unauthorized recording while

supporting authorized recording. The mechanism also prevents attackers from descrambling with-

out authorization. Figure 4.5 gives an example. A piece of VOA news audio is used as the original
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record, the attack result has severe scramble effects just like the unauthorized record, but the au-

thorized record removes almost all scrambles.
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Figure 4.5 Illustration of original waveform, authorized waveform, unauthorized waveform, and
descrambled waveform by STFT attack.

4.4 Implementation

This section discusses the details of the implementation of Patronus, which contains two parts,

the Scramble Transmitter and the Descramble Receiver for authorized devices. We use an ordinary

smartphone with its built-in audio recorder as the Unauthorized Device or Authorized Device.
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Amplifier
Ultrasound
Transducers

Power Adapter

×103

Figure 4.6 Implementation of scramble transmitter.
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4.4.1 Scramble Transmitter

4.4.1.1 Hardware Implementation

As Figure 4.6 shows, we use eight TCT40-16R/T 16 mm ultrasonic transducers. Half of them

play the frequency-shifted scramble and they are connected in parallel. The other half play the

fixed-frequency cosine wave and are connected in parallel as well. We utilize an AOSHIKE DC12V-

24V 2.1 Channel TPA3116 Subwoofer Amplifier Board to enhance the power of output ultrasonic

signals. The two waveforms are played through a stereo channel. The frequency-shifted scramble

uses the left channel, and the constant-frequency cosine wave uses the right channel.

As we have discussed in Section 4.3.4, we use a reflection layer to enlarge the working area.

In this prototype, we use an iron wok as the reflection layer. The opening diameter of the iron wok

is 30 cm, and the depth is 10 cm. As shown in Figure 4.7, the ultrasonic transducers are placed

towards the center of the iron wok.
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Figure 4.7 Prototype of Patronus.

4.4.1.2 Format of Key

As we have mentioned in Section 4.3, Patronus uses the frequency sequence as the key. This

key must include the duration of each frequency in addition to the frequency itself in order for the
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Descramble Receiver to generate the scramble waveform. Thus, our key file includes the frequency

sequence plus the sample rate of the Scramble Transmitter and the number of samples of each

frequency.

4.4.2 Descramble Receiver for Authorized Devices

We use an ordinary smartphone as an authorized device. The authorized device receives the

key from the Scramble Transmitter. After the audio is recorded, the smartphone reconstructs the

scramble waveform with the given key and leverages NLMS Adaptive filter to cancel the scramble.

Formally, it takes the following steps:

4.4.2.1 Reconstruct Scramble Waveform

As we mentioned, in addition to the frequency sequence, the received key also contains the

sampling rate of the Scramble Transmitter, which is denoted by fst , as well as the number of

samples of each frequency nt . With the known sampling rate of the authorized device fsr, the

number of its recovered samples for each scramble frequency component can be calculated through

the equation

nr =
fsrnt

fst
, (4.5)

After getting nr, the authorized device uses the same process as the Scramble Transmitter to

generate the scramble, i.e. generating the discrete cosine signal with the frequency fi and fi+1, and

connecting them by a chirp signal with start frequency fi and end frequency fi+1, where fi and

fi+1 are from the frequency sequence in the key.

4.4.2.2 Normalized Least-Mean-Square (NLMS) Adaptive Filter

After reconstructing the scramble waveform, we can use the Normalized Least-Mean-Square

Adaptive Filter to cancel the scramble from the scrambled record. Specifically, we put the scram-

bled record recs and the scramble waveform s into the NLMS Adaptive Filter to get the descram-

bled waveform e by removing s from recs. According to the discussion in Section 4.2, the scramble

wave is not only generated by frequencies in the given frequency sequence but also generated by

high-order frequencies that are multiples of the target frequencies. Therefore, after getting e from
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the NLMS Adaptive filter, we still need to iteratively remove the multiples of the frequency se-

quence scramble by NLMS Adaptive filter. It means that we iteratively put e and the scramble

waveform generated by k-times multiple of the frequency sequence into NLMS Adaptive Filter,

where k = 2,3,4,5,6 in our prototype.

In summary, the procedure of authorized devices for removing the scramble from the record is

shown in Algorithm 4.1.

Algorithm 4.1 Remove Scramble from the record.
Input: recs, fsr, fst , nt ,

the frequency sequence f [1..n]
Output: Speech Record without Scramble e

1: nr ← fsrnt/ fst
2: e← recs
3: for k = 1 to 6 do
4: s← ScrambleGenerator(k× f [1..n], nr).
5: e← NLMS-Adaptive-Filter(e, s)
6: end for
7: e

The NLMS-Adaptive-Filter can be found in many open-source libraries, e.g. MATLAB, Python,

etc.. Due to the selective frequency response of different smart devices, each model has its own

parameter setting. In the implementation, we choose 500 as the number of taps and 0.005 as the

step size for an iPhone, 100 as the number of taps and 0.003 as the step size for a Pixel, and 300 as

the number of taps and 0.005 as the step size for a Galaxy S9.

4.4.3 Simulated STFT Attacker

We also simulate an STFT attacker to verify whether or not Patronus can prevent such an at-

tack. Specifically, as discussed in Section 4.3.2.1, we apply STFT to the scrambled recording using

the MATLAB function stft to infer its frequency sequence. We then feed the frequency sequence

to an NLMS adaptive filter to get the descrambled recording. Experiment results are shown in

Section 4.5.8. Here, we illustrate an example, which contains the original waveform, authorized

waveform, unauthorized waveform and the waveform descrambled by STFT, in Figure 4.5. As

illustrated by the figure, we observe that the authorized waveform is similar to the original wave-
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form, the unauthorized waveform is different from the original one, and the unauthorized wave-

form is similar to the waveform descrambled by STFT attack. Therefore, our prototype proves

that Patronus can block the unauthorized recording while allowing authorized recording, and it can

prevent STFT attacks.

4.5 Evaluation

4.5.1 Overview

To evaluate the performance of Patronus, we select six news speech waveforms from Voice

of America (VOA) and note these waveforms as A - F. The news speeches are read by a male, a

female, or both alternatively, sometimes with background music.

A normal speaker (shown in Figure 4.7) is set to play these news waveforms, and we also

read the news ourselves. While the news waveforms are played under different conditions, we start

Patronus to interfere with the unauthorized recording device. Meanwhile, an authorized device

is recording too. Later we apply scramble cancellation to recordings from the authorized device.

After getting the scrambled recordings and scramble-canceled recordings, the following metrics

are adopted to measure the performance of Patronus.

4.5.1.1 Perceptual Evaluation of Speech Quality (PESQ)

PESQ is a common-used metric of speech quality [126]. It is widely adopted by phone man-

ufacturers, network equipment vendors, and telecom operators. Technically, the inputs include a

clear speech signal as the reference and a signal that needs to be measured. The output is a Mean

Opinion Score (MOS) [139] ranging from −0.5 to 4.5. A high PESQ score means that the corre-

sponding speech has a high hearing quality and vice versa.

Typically, PESQ values ranging from 1.00 to 1.99 means “No meaning understood with any

feasible effort” while those ranging from 3.80 to 4.50 meaning “Complete relaxation possible; no

effort required”. However, we cannot regard the audio recording as strict as lossless communica-

tion. To fit PESQ to characterize the performance of Patronus, we measure the PESQ of recordings

without scrambling by turning off Patronus, and use that result as the baseline. As shown in Fig-
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ure 4.8a, such recordings have PESQ between 2.2 and 2.7. We regard them as the upper bound of

both unauthorized and authorized recordings.

In the following experiments, we use the PESQ implementation written in MATLAB [140] to

compute the PESQ score.

4.5.1.2 Speech Recognition Vocabulary Accuracy (SRVA)

We also use a Speech Recognition service to measure the effectiveness of scrambling and de-

scrambling. Specifically, we apply Google’s Speech To Text (STT) service to transform the acous-

tic signals to text. We first use the STT service to recognize the original speech without interference

and treat the recognized word sequence wc as the ground truth. Then we use the STT service to rec-

ognize the scrambled speech and descrambled speech, and use ws and wd to denote their results,

respectively. We name
∑

i∈ws
isTrue(i∈wc)

|wc| (or
∑

i∈wd
isTrue(i∈wc)

|wc| ) as the Speech Vocabulary Recognition

Accuracy (SRVA) and use it to quantify the effectiveness of scrambling and descrambling. Note

that isTrue(i ∈ wc) returns 1 when i is a word from wc, and 0 when i is not a word from wc. We

define SRVA Error as 1−SRVA which indicates the error rates of recognition with the STT service.

Using the above metrics, we try to answer the following questions:

• Can Patronus effectively scramble the unauthorized speech recordings?

• Can Patronus permit authorized devices to record the speech?

• Can Patronus work on different mobile devices?

•What is the impact of the distance between Patronus and a recorder?

•What is the impact of the reflection layer?

•What is the impact of the frequency switching time?

• Is it possible to perform real-time descrambling?

4.5.2 Effectiveness of Scrambling and Descrambling

We split the 6 news speech waveforms into 55 segments (1650 seconds in total), each 30 sec-

onds long. Both the authorized and unauthorized device are Apple iPhone X in this experiment,

so do the following experiments except that of Section 4.5.5. As shown in Figure 4.8a, with Pa-

tronus’s scrambling, the hearing qualities of most segments are extremely low. Specifically, 44 out
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of 55 (80.0%) segments have PESQ scores lower than 1.5. For SRVA, overall, only 551 out of

2796 (19.7%) words are recognized correctly. More detailed results are shown in Figure 4.8b. The

upper half shows the CDF of the SRVA Error. We can know that 50% of the recordings have SRVA

Error lower than 0.84, and 80% of the recordings have SRVA Error lower than 0.98. The lower

half shows the ratio of SRVA between scrambled recordings and original waveforms. The results

show that all of the news waveforms having a recognition rate lower than 0.3. Here we want to

mention that if a word appears multiple times in a speech, SRVA would result in a high value or

a low value compared to the actual word recognition rate. However, duplicated words have little

impact because the duplicate rates of every segment, i.e. the ratio between the count of a specific

word and the total count of words in the segment, are lower than 5%.
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Figure 4.8 (a) PESQ of recordings captured by unauthorized and authorized devices, and PESQ of
recordings without scrambling by turning off Patronus as the baseline. (b) Upper half: The CDF of
SRVA Error of scrambled recordings from the unauthorized device. Lower half: The ratio of SRVA
between scrambled recordings and original waveforms. (c) Upper half: The CDF of SRVA Error
of descrambled recordings from the authorized device. Lower half: The ratio of SRVA between
descrambled recordings and original waveforms.

To evaluate the effectiveness of descrambling, an authorized device records the speech under

the scrambling from Patronus. The authorized device then cancels the scramble using the received

key. As shown in Figure 4.8a, after descrambling, only 9 out of 55 (16.3%) segments having PESQ

scores lower than 1.5. On average, descrambled recordings have 1.6x higher PESQ scores than

their corresponding scrambled recordings. As for SRVA, we show the CDF of the SRVA Error in

the upper half of Figure 4.8c. These results show that 50% of the descrambled recordings have

SRVA Error lower than 0.43, which is 49% lower than scrambled recordings. Moreover, 80% of
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the descrambled recordings have SRVA Error lower than 0.64, which is 35% lower than scrambled

recordings. As shown in the lower half of Figure 4.8c, ratios of SRVA between descrambled record-

ings and original waveforms are higher than 0.4 and lower than 0.8. They are at least 2x better than

the scrambled recordings. The quality of the descrambled recordings is not as good as the original

ones because there are residual components of the scramble after applying the NLMS adaptive fil-

ter. Moreover, background music and the volume of the original waveform also affects the quality

of the descrambled recordings. For example, news C has a lower ratio after being descrambled

by the authorized device compared to the other news clips because it has background music that

could affect the performance of authorized devices. It also affects the SRVA of the record without

scrambling, i.e., only 223 words are recognized from 295 in total. The reader of news E reads the

news in a lower volume compared to others, so it has a lower ratio after being descrambled by the

authorized device compared to the other news clips.

4.5.3 Effectiveness of Human Voice Scrambling and Descrambling

To verify whether Patronus works for real human speaking other than a sound player, we read

the news and calculate SRVA. As shown in Figure 4.9a, Patronus can effectively scramble and

descramble the human voice. Specifically, for the scrambled recordings, the median of SRVA Error

is 0.74, and 80% of scrambled recordings have SRVA Error lower than 0.83. For the descrambled

recordings, the median of SRVA Error is 0.27, and 80% of the descrambled recordings have SRVA

Error lower than 0.4. The descrambling effectiveness of the human speaker is better than that of

recorded sounds because recorded sounds from VOA sometimes play background music.

4.5.4 Effectiveness of Human Recognition to Scrambled Recordings and Descrambled Record-
ings

Because there might exist differences between machine learning-based speech recognition and

human speech recognition, we invite 11 volunteers to write down words after listening to the 55

scrambled recordings and 55 descrambled ones. The results are shown in Figure 4.9b. People

react differently to noise. Some people are very sensitive and the scrambled noise make them

very uncomfortable. Note, the noise is generated by ultrasound speakers and only captured by the
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Figure 4.9 (a) Compare SRVA between before and after descrambling for the human voice. (b)
Compare SRVA between before and after descrambling for human recognition. (c) Compare aver-
age PESQ and SRVA among different models.

nonlinear effects of microphones, so it will not disturb the people in the original conversation.

It will only be heard after getting recorded by unauthorized devices. Further, authorized devices

will be able to filter out such noises eliminating the discomfort for those listeners. The recovered

information from humans listening to descrambled recordings is still better than that of humans

listening to scrambled ones. 50% of the scrambled recordings have SRVA Error lower than 0.63,

and 80% of the scrambled recordings have SRVA Error lower than 0.86. As a comparison, 50%

of the descrambled recordings have SRVA Error lower than 0.34, and 80% of the descrambled

recordings have SRVA Error lower than 0.63.

4.5.5 Effectiveness on Different Mobile Models

To verify whether Patronus works on different mobile models, we test it on three devices, an

Apple iPhone X, a Samsung Galaxy S9, and a Google Pixel. We play all 55 segments using the

normal speaker, and calculate average PESQs and SRVAs.

As shown in Figure 4.9c, less than 30% of words can be recognized by the STT service for

all the unauthorized devices, and around 65% of words can be recognized for all the authorized

devices. When the mobile devices are unauthorized, the average PESQ of iPhone X is 1.06, and the

average PESQ of the other two models are even lower, roughly 0.5. When the mobile devices are

authorized, they all achieve an average PESQ around 1.85. This demonstrates that Patronus works

well for all devices; namely, it prevents all models from making good unauthorized recordings and
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RT (s)

DT (ms) MSO
1 2 3 4 5 6

1 51 96 159 209 265 328
2 73 145 218 291 373 454
5 161 322 487 634 798 954

10 290 582 851 1108 1389 1653
20 548 1094 1653 2165 2695 3298
30 822 1617 2348 3088 3830 4563

Table 4.1 Descramble time (DT) of different record times (RT) with different max scramble orders
(MSO, the upper bound of k in Algorithm 4.1).

allows all models to make acceptable authorized recordings.

4.5.6 Impact of the Distance

We also characterize the impact of the distance between Patronus and the recording devices

(both authorized and unauthorized). We put the Scramble Transmitter at the origin. A randomly-

picked speech segment (which has 43 words) is played by a normal speaker, which simulates the

talker. The authorized device and an unauthorized device are recording at the same time. Their

distance to the Scramble Transmitter varies from 25 cm to 70 cm. Results of SRVA and PESQ

between two devices are shown in Figure 4.10a. Overall, as the distance increases, the ultrasound

would attenuate more. Therefore, the strength of the scramble decreases as the distance from the

scramble transmitter increases. As a result, when the device is far enough away, both the authorized

and unauthorized device can both record a clear speech. On the other hand, when devices are close

enough, unauthorized devices produce recordings that are severely scrambled whereas authorized

devices can recover much clearer speech using the secret key. The working area can be extended

by using high power ultrasonic speakers, which we will discuss later. Here we want to mention

that although there is a bump in Figure 4.10a at 55 cm with the SRVA, PESQs of 55cm and 60cm

are close. This means that humans cannot see much difference between these two recordings,

something we confirmed in person by listening to these recordings with this objective in mind.

Thus, the SRVA bump at 55cm might be due to an error-correction mechanism of the Google STT

engine; of course, since this is proprietary technology, we do not know how or why this error-

91



correction would produce such a performance bump for this recording.
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Figure 4.10 (a) Compare PESQ and SRVA at different distances. (b) Illustration of the reflection
layer experiment. (c) Compare PESQ and SRVA with different frequency switching times.

4.5.7 Impact of the Reflection Layer

As we mentioned before, the ultrasound wave often propagates along a straight line. To enlarge

the range of Patronus scrambling, we design a reflection layer. In this experiment, we apply the

common speaker to play the chosen speech segment (43 words). As shown in Figure 4.10b, we

point the ultrasonic speakers towards the reflection layer and change angles of both authorized

and unauthorized devices to the ultrasonic speakers and measure Patronus’ performance; in other

experiments, the devices are always put at the 90◦ angle. We also measure the performance without

using the reflection layer. We turn the ultrasonic speakers around so they face in the same direction

as the normal speaker when we remove the reflection layer. The results when using the reflection

layer are shown in Figure 4.11a and 4.11b, and the results without using the reflection layer are

shown in Figure 4.11c and 4.11d. From the results, we see that with the reflection layer, Patronus

can successfully scramble the unauthorized device when the angle is more than 15◦, which is

signficantly larger than the angle of more than 45◦ needed by Patronus without the reflection layer.

Therefore, the reflection layer does significantly enlarge the scramble range of Patronus.

4.5.8 Impact of the Frequency Duration

We also measure the impact of the frequency duration. As we discussed in Section 4.3, we

would like to make the duration of each frequency as short as possible. However, the shorter the
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Figure 4.11 (a) and (b): Compare PESQ and SRVA with the using of the reflection layer. (c) and
(d): Compare PESQ and SRVA without the using of the reflection layer.

frequency duration is, the harder it is for authorized devices to descramble. To verify this feature,

we put an authorized and an unauthorized device at 40 cm to Patronus and play the chosen segment

(43 words) using the normal speaker. Both devices record the speech under Patronus using 5 dif-

ferent frequency durations: 0.1 s, 0.2 s, 0.3 s, 0.4 s and 0.5 s. We calculate PESQs and SRVAs for

each duration. Moreover, we implement the attack model from Section 4.3.2, which first calculates

approximate scramble frequencies using STFT and then attempts to cancel the scramble using an

NLMS adaptive filter. We calculate PESQs and SRVAs for each duration and all devices including

the attack model.

As shown in Figure 4.10c, for all durations, SRVAs of the unauthorized device are lower than

0.1, and PESQs are lower than 0.5. The authorized device has higher SRVAs and PESQs than the

unauthorized device. Specifically, when the duration comes to 0.3 s, the SRVA reaches roughly 0.8

and PESQ exceeds 2.0. This verifies our claim that authorized devices can successfully descramble

when the frequency duration is long enough.

A shorter duration also makes it harder for attackers to crack the scrambled record, e.g. SRVAs

for the attacker also increase as the duration increases. Although both SRVAs and PESQs are

higher than those of the unauthorized device, they are still too low to extract useful information.

The reason why the NLMS adaptive filter fails is that the attacker cannot identify the scramble

frequencies with enough accuracy. NLMS adaptive filter solves the optimization problem defined

by Equation (4.4), which estimates the weight vector h′2. Since convolution does not change the

frequency of the signal, the attacker cannot make up for any offset existing between the correct
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frequency and the result from STFT. According to the frequency resolution problem of STFT as

discussed in Section 4.3.3.4, the simulated attacker in our experiment gets an average frequency

offset around 3 Hz, which makes it hard to descramble the recording.

4.5.9 Descramble Time

Sometimes when we grant recording permission to a specific speaker, the speaker would like

to perform real-time descrambling. Patronus can achieve this working with real-time smart devices

such as Amazon Alexa. To prove this, we measure the descramble time for records with differ-

ent durations on a laptop with an Intel Core i7-4870HQ 2.5 GHz CPU. Since different high-order

scramble waves (second-order component, third-order component, ...) may exist in a record si-

multaneously, we measure descramble time as a function of different max scramble orders, i.e.

the upper bound of k in Algorithm 4.1. As shown in Table 4.1, Patronus can descramble the record

quickly. Specifically, when the record time is 1 s, Patronus can finish descrambling in 328 ms, even

when the max scramble order is 6. This means that Patronus supports real-time descrambling.

4.6 Limitations and Future Works

Range: In our implementation, we use cheap and low power ultrasonic transducers to build the

Scramble Transmitter. The result is a short working distance, i.e. less than 70 cm. To enlarge

the working area to a wider range of angles, we designed a reflection layer and verified that it

could enlarge the working area by using an iron wok in our prototype. We can also use a high

power ultrasonic speaker to protect a larger area. Some commercial off-the-shelf devices can emit

ultrasound which could be sensed in a larger area. For example, UPS+ [117] uses an ultrasonic

speaker with a working area of 50m × 50m. However, it is expensive. We can reduce the cost by

deploying one expensive speaker and multiple transducers like UPS+[117]. Here we provide users

with three options to deploy Patronus according to their requirements such as working area and

budget. The first option is to use cheap transducers and a reflection layer to protect a small area.

The second is combining an expensive speaker and multiple transducers to protect a larger area.

The third is using multiple expensive speakers to protect the largest area.

Volume: In our implementation, we assume the talker uses a normal volume, i.e. not too loud or
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too quiet. However, the performance of Patronus does vary as a function of the speaker volume. For

example, if the talker speaks too loudly, the scramble cannot mess up the recording; in the opposite

extreme, a quiet talker cannot be recovered using descrambling. To adapt to different volumes, we

can add a microphone to measure the talker’s volume. With multiple deployed ultrasonic speakers

or transducers, we can first detect the position of recording devices and then adjust the power

of ultrasound emitted from the nearest speakers according to the talker’s volume. There are two

challenges that need to be solved. First, the microphone we use to measure the talker’s volume can

also be scrambled. Second, we need to localize recording devices before emitting scrambles. We

leave these challenges as future work.

4.7 Conclusion

Acoustic privacy protection has always been an important topic. In this chapter, we study the

nonlinear effects on commercial off-the-shelf microphones. Based on our study, we propose Pa-

tronus, which leverages the nonlinear effects to disrupt unauthorized devices from recording the

speech while simultaneously allowing authorized devices to record clear speech audio. We im-

plement and evaluate Patronus in a wide variety of representative scenarios. Results show that

Patronus effectively blocks unauthorized devices from making secret recordings while allowing

authorized devices to successfully make clear recordings.

While pervasive sensors in mobile devices rise privacy concern, Patronus shows the possibility

of making use of these sensors to defend user privacy.
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CHAPTER 5

CONCLUSION

IoT utilizes sensors as the information source of machine intelligence and achieves comprehensive

understanding of the environment. Further reactions of actuators could enable complete automa-

tion of large infrastructures like Smart City and Smart Home. In this dissertation, we push the

limit of IoT system design on mobile devices. We particularly introduce three IoT systems to show

our study on overcoming common challenges of IoT applications. EyeLoc is a localization system

for large shopping malls. It shows our effort on achieving a good balance among cost, compu-

tational power and real-time responses. SoundFlower is a sound source localization system for

voice assistants. It presents our study on dealing with pervasive noises from both internal hardware

and the environment. Patronus provides acoustic privacy protection against unauthorized record-

ings. While sensors rise privacy concern, Patronus shows the possibility of defending privacy by

exploiting existing sensors.

With the rapid development of machine learning and sensing technology, plenty of IoT designs

are being implemented and will benefit our lives. With mobile devices being the most common

computational systems, pushing the limit of IoT system design on mobile device will play an

essential role in smart applications.
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