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ABSTRACT 

Mars was once Earth-like, with habitable environments ranging from benign to extreme. Venus 

might also have been Earth-like, perhaps having an ocean for two billion years. But today, the 

surface of Mars is a dry-ice-cold, radiation-soaked, hyper-arid desert with an oxidizing regolith 

under a hypobaric atmosphere, while that of Venus is a lead-meltingly hot, crushingly hyperbaric 

desert. Understandably, most astrobiologists consider the surfaces of both Mars and Venus to be 

uninhabitable. However, if life ever existed on the surface of those worlds, could it have adapted 

to their drastic environmental change and evolved mechanisms to persist today in Mars’s shallow 

subsurface and Venus’s middle to lower clouds? If so, desiccation and, to a lesser extent, 

ultraviolet-C (UV-C) radiation would exert tremendous selective pressures on any such Martian 

and Venusian life. While the mechanisms of tolerance to those stressors in bacteria are fairly well 

understood, the evolutionary dynamics that can produce those tolerances have been largely 

unexplored. Therefore, I performed an evolution experiment in which replicated populations of a 

desiccation- and UV-C radiation-sensitive strain of Escherichia coli were exposed to daily pulses 

of either desiccation only, UV-C radiation only, or both stressors combined. Tolerance to those 

stressors, both separately and combined, evolved within a mere 500 generations. I also 

hypothesized that cross-tolerance would evolve, i.e., treatment with one stressor would result in a 

correlated gain of tolerance to the non-treatment stressor, but this hypothesis was rejected. Thus, 

the evolution of co-tolerance required selection with both stressors combined. My results show 

that a non-extremophile can readily and rapidly adapt to two Mars- and Venus-relevant stressors. 

The implications of my findings for our neighboring planets are that life might persist today in 

Mars’s shallow subsurface and in Venus’s clouds, provided that the drastic environmental changes 

that occurred on those worlds allowed adaptation to one or two stressors at a time. 
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INTRODUCTION 

Investigations of Mars’s surface via landed spacecraft have shown that it once supported multiple 

habitable environments, ranging from benign to extreme (Squyres et al., 2004, 2008; Grotzinger 

et al., 2014, 2015; Hurowitz et al., 2017; Arvidson and Catalano, 2018; Losa-Adams et al., 2021; 

Vasavada, 2022). But eventually, Mars lost most of its atmosphere (Lammer et al., 2018; Jakosky, 

2021; Vasavada, 2022), resulting in a surface that today is a frigid, radiation-soaked, hyper-arid 

desert with an oxidizing regolith under a hypobaric atmosphere (Gómez‐Elvira et al., 2014; 

Hassler et al., 2014; Lasne et al., 2016; Martínez et al., 2017; Fischer et al., 2019; Lange et al., 

2022; Harri et al., 2023; Munguira et al., 2023; Polkko et al., 2023). When exposed to high-fidelity 

simulations of Mars’s present-day surface conditions, some terrestrial organisms, including 

Serratia liquefaciens and Bacillus subtilis, can survive for some period; however, they are unable 

to grow and reproduce (Schuerger and Nicholson, 2006; Hansen et al., 2009; Smith et al., 2009; 

Berry et al., 2010; Kerney and Schuerger, 2011; Schuerger et al., 2020; Schwendner et al., 2020). 

Thus, many astrobiologists argue that the surface of Mars is uninhabitable (e.g., Tarnas et al., 

2021). 

However, if life ever existed on Mars and was present near the surface, then its evolution would 

have been shaped by a very different environmental history than that of life on Earth (McKay and 

Stoker, 1989; Clark, 1998; Fairén et al., 2005, 2017; Schulze-Makuch et al., 2005, 2013; Dohm et 

al., 2011; Davila and Schulze-Makuch, 2016; Cabrol, 2018, 2021; Salvatore and Levy, 2021). This 

historically contingent evolution would perhaps have facilitated the capacity for Martian life to not 

only survive, but also grow and reproduce in a specific environment — namely, the shallow 

subsurface — where sporadic liquid water and permissive temperatures might allow a patchy and 
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transitory existence (Warren-Rhodes et al., 2006, 2007a, 2007b, 2019, 2022; Schulze-Makuch et 

al., 2018; Davila et al., 2020).  

   The environmental history of Venus is opposite that of Mars. Whereas Mars’s 

surface went from being Earth-like to a dry-ice-cold, hypobaric desert after losing most of its 

atmosphere, Venus’s surface went from being possibly Earth-like to a lead-meltingly hot, 

crushingly hyperbaric desert after its atmosphere suffered a runaway greenhouse effect 

(Petropoulos and Telonis, 1988; Lammer et al., 2018; Gillmann et al., 2022; Westall et al., 2023). 

While the surface of Venus is now uninhabitable, its lower to middle cloud layers might be 

conducive to an aerial biosphere (Cockell, 1999; Schulze-Makuch et al., 2004, 2013; Grinspoon 

and Bullock, 2007; Limaye et al., 2018, 2021a, 2021b; Bains et al., 2021, 2023; Schulze-Makuch, 

2021; Seager et al., 2021; Westall et al., 2023). Therefore, as with the plausible, historically 

contingent evolution of hypothetical Martian life that I put forth above, Venusian life, if it ever 

existed, might have adapted from living on a once-habitable surface to persisting solely in the 

clouds. 

Desiccation and, to a lesser extent, ultraviolet-C (UV-C) radiation would exert intense selective 

pressures on any life that might persist in Mars’s shallow subsurface (Hansen et al., 2009; Smith 

et al., 2009; Berry et al., 2010; Schulze-Makuch et al., 2018; Warren-Rhodes et al., 2019; Davila 

et al., 2020) or Venus’s middle clouds (Schulze-Makuch et al., 2004, 2013; Bains et al., 2021, 

2023; Limaye et al., 2021b; Seager et al., 2021). The mechanisms of tolerance to desiccation and 

UV-C radiation in bacteria are fairly well understood (Krisko and Radman, 2010, 2013a, 2013b; 

Slade and Radman, 2011; Lebre et al., 2017; Esbelin et al., 2018; Greffe and Michiels, 2020; 

Laskowska and Kuczyńska-Wiśnik, 2020; Daly, 2023). However, the evolutionary dynamics that 

can produce those tolerances have been largely unexplored. I therefore carried out an evolution 
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experiment in which I propagated replicate populations of Escherichia coli under substantial stress 

from desiccation and UV-C radiation, both separately and in combination. 
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MATERIALS AND METHODS 

Ancestral strain and growth conditions 

I performed the evolution experiment starting from two sub-strains, REL606 and REL607, of 

Escherichia coli strain B (Lenski et al., 1991; Daegelen et al., 2009). These bacteria are strictly 

asexual, lacking plasmids or functional bacteriophages (Lenski et al., 1991). Lenski et al. (1991) 

derived REL607 from REL606, which are nearly identical to each other, the key difference being 

that REL607 has a mutation conferring the ability to catabolize the sugar L-(+)-arabinose (Ara+), 

whereas REL606 does not (Ara‒). These sub-strains are easily distinguished from one another by 

the color of their colonies when plated on nutrient-rich agar supplemented with arabinose and the 

redox indicator tetrazolium chloride (TA agar [Levin et al., 1977]): colonies of REL607 (Ara+) 

appear white on TA agar, while those of REL606 (Ara−) appear red. This phenotypic marker 

permits direct measurement of fitness through evolved-vs-ancestor competition assays (see below, 

competitive fitness assays and cell density measurements). Moreover, the marker has repeatedly 

been shown to be selectively neutral in medium limited by glucose and other sugars, as well as in 

various other environmental conditions (Lenski, 1988; Bennett et al., 1992; Travisano et al., 1995; 

Travisano and Lenski, 1996; Turner et al., 1998; Rozen and Lenski, 2000; Ostrowski et al., 2005; 

Sleight and Lenski, 2007; Izutsu and Lenski, 2022). 

Cells were grown at pH 7 in Davis minimal (DM) broth, which is formulated as follows: 0.7% 

potassium phosphate dibasic trihydrate; 0.2% potassium phosphate monobasic (anhydrous); 0.1% 

ammonium sulfate; 0.05% sodium citrate tribasic dihydrate; 0.01% magnesium sulfate 

(anhydrous); 0.0002% thiamine hydrochloride; and 0.04% D-(+)-glucose (Lenski, 1988). The 

magnesium sulfate, thiamine, and glucose were added to the autoclaved base medium from 0.2-

µm-filtered solutions. Cells grew in 800-µL cultures in 96-deep-well plates at 37°C while orbitally 
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shaken at 475 rpm. The 0.04% glucose in the DM broth limited the ancestral strains’ population 

density at stationary phase to 3.1 × 108 ± 1.7 × 107 cells mL‒1 (95% confidence interval), and thus 

2.5 × 108 ± 1.4 × 107 total cells per culture. 

Treatment and control populations 

Four groups of six replicate populations evolved for 500 generations (75 daily cycles) under one 

of four conditions: desiccation only, UV-C radiation only, both stressors combined, or no stress 

(control). Half of the populations comprising each group were founded by clones of REL606 and 

the other half by clones of REL607; each population started from a separate colony, with each 

colony the outgrowth of a single haploid cell. Therefore, the replicate populations were identical 

at the beginning of the experiment, ensuring that selection would act on de novo mutations and not 

standing genetic variation (Lenski et al., 1991; Izutsu and Lenski, 2022; Lenski, 2023).  

The half-and-half founding of populations allowed me to account for any effects of the 

arabinose-utilization marker on fitness; no such effects occurred. I archived all the evolving 

populations in 15% glycerol at −80°C after 50 generations, 100 generations, and every 100 

generations thereafter. The REL606 and REL607 ancestral strains remained in cryogenic storage 

during the experiment. Aliquots of both the ancestral and evolved samples were later revived and 

used to assess changes in the fitness of the evolved populations relative to their ancestors (see 

below, competitive fitness assays and cell density measurements). 

Procedures for desiccation and UV-C irradiation 

I developed the following procedure for the desiccation-treated populations: I took 8-µL aliquots 

of cultures grown for 22 – 24 h in DM broth, spotted them onto the bottom of 5-mL borosilicate 

glass beakers, and dried them at 37°C for 1 h in an air-tight plastic box containing anhydrous 

calcium sulfate (8-mesh granules of Drierite; WA Hammond Drierite, Xenia, Ohio, USA). The 
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aliquots were visibly dry after 45 min; hence, the cells were in a desiccated state for at least 15 

min. After desiccation, the cells were re-hydrated by adding 800 µL of fresh DM broth to each 

beaker and then orbitally shaken at 120 rpm for 15 – 30 min at room temperature (20 – 24°C) to 

re-suspend them. After re-hydration and re-suspension, I transferred the 800 µL of broth in each 

beaker to a well in a 96-deep-well plate, and the cultures were grown until the next day under the 

conditions described above. The survival rate of the ancestors under these conditions was 1.2% ± 

0.3% (95% confidence interval). Figure 1(a) illustrates my desiccation procedure. 

My procedure for the UV-C radiation-treated populations was similar to that for the 

desiccation-treated populations: 8-µL aliquots of cultures grown for 22 – 24 h in DM broth were 

spotted onto the bottom of 5-mL borosilicate glass beakers and then irradiated at room temperature 

(20 – 24°C) with 254-nm-wavelength light using a Spectroline model EF‒140C lamp (Spectronics, 

Melville, New York, USA). After irradiation, the cells were re-suspended, without shaking, in 792 

µL of fresh DM broth. I then transferred the resulting 800 µL of broth in each beaker to a well in 

a 96-deep-well plate, and the cultures grew alongside the desiccation-treated populations until the 

next day. The survival rate of the ancestors under these conditions was 2.5% ± 1.1% (95% 

confidence interval). Figure 1(b) shows my irradiation procedure. 

Each UV-C radiation-treated population was spotted, irradiated, and then re-suspended before 

proceeding to the next population to prevent any evaporation of the 8-µL aliquot. Populations 

treated with UV-C radiation only were irradiated for 16 sec, whereas those subjected to the 

combined desiccation and UV-C radiation treatment were irradiated for 8 sec. The 4-Watt lamp 

was positioned 4 cm directly above each aliquot, giving radiation doses of ~4 and 2 J cm‒2, 

respectively. This halving of the dose was necessary to ensure adequate numbers of surviving cells 

in the dual-treated populations after sequential exposure to both stressors. Dual-treated populations 
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were first irradiated as described and then desiccated under the same conditions and for the same 

amount of time as those treated with desiccation only. These populations were grown in a 96-deep-

well plate alongside the other stressed populations until the next day. 

Compensation for a stress-induced bottleneck 

During the evolution experiment, the stress-treated populations experienced an additional 

bottleneck when the aliquots were exposed to the stressor(s) that the non-stressed control 

populations did not experience. To account for those conditions, after 22 – 24 h of growth, I diluted 

the control populations in fresh, glucose-free DM broth such that 1% of each population would be 

transferred to the next round of growth. Aliquots from the dilutions were then transferred to 

separate wells of fresh DM broth in a 96-deep-well plate and grown alongside the stress-treated 

populations until the next day. This dilution ensured that the control populations’ effective survival 

rate — and hence the impact of random drift caused by the population bottleneck — was close to 

that of the stress-treated populations. 

Procedural controls 

My experiment also included procedural controls to detect any contamination that might have 

occurred during the stress procedures and daily transfers to the 96-deep-well plates. I placed 

uninoculated DM broth in the outermost wells of the 96-deep-well plates, immediately adjacent to 

the wells containing the stress-treated and control populations. The procedural control wells went 

through the same stress procedures and daily incubations as the experimental populations. For 

example, aliquots from the procedural control wells next to the desiccation-treated populations 

underwent the same desiccation procedure and were then incubated alongside those populations. 

None of my procedural controls showed any contamination during the evolution experiment, as 

determined by the absence of colonies when I spread samples on TA agar plates. In addition, I 
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alternated Ara+ and Ara‒ populations in the wells of the 96-deep-well plates to monitor for possible 

cross-contamination events. Cross-contamination did not occur during the experiment, as verified 

by the lack of red colonies on TA agar plates of Ara+ populations and the lack of white colonies 

on TA agar plates of Ara‒ populations. 

Competitive fitness assays and cell density measurements 

I performed competitive fitness assays using mixtures of the evolved and ancestral cells having 

the opposite arabinose-marker states. Thus, evolved populations derived from REL607 (Ara+) 

were mixed with the ancestral REL606 strain (Ara−), and vice versa. Each fitness assay began by 

inoculating from their frozen stocks 16 µL of the evolved population in 800 µL of DM broth and 

16 µL of the appropriate ancestral competitor in a separate 800 µL of broth. These cultures grew 

alongside each other for 24 h as described above, and they were then transferred to another pair of 

separate 800-µL volumes of broth for a second 24 h of growth. These two days of separate growth 

allowed the bacteria, after being revived from the frozen samples, to acclimate to the environment 

in which they would compete. After the second day’s growth, aliquots of the two competitors were 

mixed in equal culture volumes (providing approximately equal numbers of evolved and ancestral 

cells) for the competition. 

The two days of growth were necessary not only to allow the cells to recover from being frozen, 

but also to allow them to consume all the glycerol used as a cryoprotectant. The presence of 

glycerol could adversely impact the fitness assays and their interpretation in two ways. First, 

residual glycerol has been shown to alter the growth dynamics of E. coli (Atolia et al., 2020). 

Second, a variety of organisms, albeit mostly eukaryotes, use glycerol and its derivatives as an 

osmoprotectant (Borowitzka and Brown, 1974; Adler et al., 1985; Somero, 1992; Roberts, 2005; 

Yobi et al., 2013; Raymond et al., 2020; Khan et al., 2023), and supplemental glycerol can be used 
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to alleviate stress from low water activity (e.g., Sriram et al., 2011). Therefore, residual glycerol 

might provide some protection to E. coli during the desiccation process. 

I performed the competitions by subjecting aliquots of the evolved-ancestor mixture to the 

relevant stress and then re-grew the mixed culture as described above and illustrated in Figure 1. 

Cells from the competition mixture were plated on TA agar at three time points to enumerate 

colonies for the fitness calculations described below. First, a dilution of the competition mixture 

was plated to determine the initial densities of the evolved and ancestral cells (diluted from NR in 

Figure 1). Second, the stress was applied to an aliquot of the mixture, and the cells in that aliquot 

were re-suspended as described above. A dilution of the re-suspended cells was plated, again on 

TA agar, before placing the culture of re-suspended cells in the incubator for re-growth, to 

determine the densities of evolved and ancestral cells after the stress (diluted from NS in Figure 1). 

Third, and lastly, a dilution of the re-grown culture was plated to determine the densities of evolved 

and ancestral cells after their recovery from stress (diluted from NGʹ in Figure 1). I used the 

numbers of evolved and ancestral colonies from these three samples to calculate fitness values for 

the entire stress‒growth cycle and for the two separate fitness components, as described next. 

Fitness components and their calculations 

I calculated fitness components from two non-overlapping periods of the competitions that I call 

“survival” and “growth”. The survival component spanned the period between the first and second 

platings described above. The growth component spanned the period between the second and third 

platings. I then summed the survival and growth components to give “total” fitness. 

Each fitness component was calculated as a selection-rate differential (Lenski et al., 1991; 

Travisano et al., 1995) per daily stress–growth cycle. Whereas the more commonly encountered 

relative fitness (W) expresses the ratio of the competitors’ realized growth rates, the selection-rate 
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differential (r) is the difference in their realized growth rates. The selection-rate differential is more 

appropriate under two conditions, both of which are relevant to my study: (i) when the net growth 

rate of one or both competitors is negative, as it generally was during the survival phase; and (ii) 

when the difference in fitness between the competitors is large (Travisano et al., 1995), as was the 

case when the ancestor competed against the stress-evolved populations in a stressful environment. 

I used the following three equations to calculate the selection-rate differentials for the survival (rS) 

and recovery (rG) fitness components, and then for the total fitness (rT): 

 

rS = [ln(Es / Ei) ‒ ln(As / Ai)] / day; 

 

rG = [ln(Eg / Es) ‒ ln(Ag / As)] / day; 

 

rT = (rS + rG) / day; 

 

where Ei, Es, Eg and Ai, As, Ag are the densities of the evolved (E) and ancestral (A) cells estimated 

from the three successive platings, respectively. 

Statistical analyses 

I performed 4 replicate competition assays for each of the 6 endpoint evolved populations in each 

treatment and control group, and I did so under each of three assay conditions: desiccation stress, 

UV-C radiation stress, and the unstressed control environment. Thus, I performed 288 competition 

assays (4 treatments × 6 populations × 4 replicate assays × 3 conditions), and each assay provided 

3 estimates (864 total estimates): survival, growth, and total fitness. I analyzed the results as 9 sets 

of data, partitioned by the 3 estimates and the 3 assay conditions. For example, survival of the 24 
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evolved populations (4 treatments × 6 populations) when exposed to desiccation forms one set of 

data, their growth when exposed to that same stressor is a second dataset, and their total fitness 

under that same condition constitutes the third set. 

I performed the statistical analyses using the SAS software, version 9.4 (SAS Institute, Cary, 

North Carolina, USA). This analysis involved three steps. First, I tested for outliers in each group 

using Cook’s distance (Cook, 1977) and by visually inspecting plots of residuals. I identified a 

value as an outlier (i) if its Cook’s distance was > 0.38 and it was evident in the plots of residuals, 

or (ii) if it was clearly present in the plots of residuals (e.g., a discontinuous bin in the histogram), 

even if its Cook’s distance was < 0.38. I based the Cook’s distance threshold on equation MC from 

Kim and Storer (1996). Only 6 of the 864 (0.7%) fitness estimates were judged to be outliers, and 

none of the sets of 4 replicate assays had multiple outliers. In order to maintain the balanced design, 

I replaced the value of each outlier with the median of the three other replicate measurements of 

the population to which it belonged. 

Second, I checked if each group’s residuals were normally distributed using Shapiro‒Wilk’s 

test (Shapiro and Wilk, 1965) and by visually inspecting plots of residuals. If a test was significant 

at the 95% confidence level and that result was evident in the plots of residuals, then I performed 

a Box‒Cox power transformation (Box and Cox, 1964, 1982) of the entire fitness data set. When 

I performed this transformation, the group means from the transformed data were used in place of 

those from the untransformed data for an analysis of variance (ANOVA), which I describe next. 

Third, and finally, I performed a one-way Welch’s ANOVA (Welch, 1951) of group means 

for each of the 9 datasets using the MIXED procedure (SAS, 2015). I used Satterthwaite’s 

approximation (Satterthwaite, 1946) to determine the denominator degrees of freedom. If the 

Welch’s ANOVA was significant at the 95% confidence level, then I made post hoc comparisons 
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of each treatment group’s mean to that of the control group using Welch’s t test (Welch, 1938). I 

adjusted the P values of the three, two-tailed Welch’s t tests for multiple comparisons using 

Dunnett’s T3 correction for heterogeneous variances (Dunnett, 1980). 

To determine whether the mean total fitness of the treatments varied, I performed a one-way 

Welch’s ANOVA of the population means for each of the 12 combinations of treatment and assay 

condition. For example, I ran one ANOVA for the total fitness of the desiccation-treated 

populations when not stressed (control condition), a second ANOVA for the total fitness of the 

same populations when exposed to desiccation, and a third ANOVA for their total fitness when 

exposed to UV-C radiation. These ANOVAs were carried out in the same way as described for the 

ANOVAs of group means, but without post hoc comparisons. 

Because Welch’s ANOVA and Welch’s t test are intended for unequal variances, I did not 

perform a preliminary test for homogeneous variances. In fact, I expected the variances between 

treatment groups to be heterogeneous due to the severity of the stresses from UV-C radiation and 

desiccation (relative to the benign control treatment) and the potential for small deviations in my 

procedures (e.g., slight variations in drying time) to have large effects. When there is a reasonable 

expectation of heterogeneous variances, an unconditional analysis is more robust against Type 1 

errors, with little loss of power, than an analysis that is conditioned on whether the variances are 

homogeneous (Moser et al., 1989; Moser and Stevens, 1992; Ruxton, 2006; Hayes and Cai, 2007; 

Derrick et al., 2016; Delacre et al., 2019). 

Comparisons of treatment and control groups, but not among treatments 

As I mentioned above (in the sub-section on procedures for desiccation and UV-C irradiation), the 

survival rates of the ancestors when stressed by desiccation and UV-C radiation were 1.2% ± 0.3% 

and 2.5% ± 1.1%, respectively. The lower bound of the radiation survival rate’s 95% confidence 
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interval overlaps the upper bound for the desiccation survival rate, but it does not overlap the mean 

estimate of the desiccation survival rate. Thus, the difference in survival rate between the two 

stressors is significant. 

Because of that significant difference in the ancestors’ survival rate, it would not be appropriate 

to compare one treatment group’s level of fitness to that of another treatment group. Consequently, 

I only compare the various stress treatments with the control group, and all my conclusions about 

changes in survival, growth, and total fitness are relative to the evolved control group when 

exposed to the same conditions as the treatment groups. Although I intended to equalize the 

ancestors’ survival rates when stressed by UV-C radiation and desiccation, that effort was stymied 

by the idiosyncrasies of my irradiation apparatus and procedures, most notably the manual on/off 

switching of the UV lamp, which led to substantial variation in survival (as indicated by the wide 

95% confidence interval). 
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RESULTS 

Fitnesses of the evolved groups when stressed by desiccation 

Figure 2(a) shows that the control populations, as a group, had no significant change in their 

survival when stressed by desiccation (i.e., the corresponding 95% confidence interval includes 

0). Both the desiccation group and the dual-stressed group (i.e., evolved with desiccation and 

radiation stresses combined) achieved significant gains relative to the ancestor in their survival 

when exposed to desiccation. By contrast, the radiation group experienced a significant loss in 

survival under desiccation. In all three treatment groups, those changes are significant not only 

relative to the common ancestor (as shown by the confidence intervals), but also in comparison to 

the control group (as indicated by the asterisks). 

Figure 2(b) shows that all four groups, including the control, grew faster than the common 

ancestor. This result is not an indication of adaptation to desiccation per se; rather, as I will show 

later, it simply reflects faster growth in the culture medium used in all the treatments. After 

accounting for multiple statistical comparisons, neither the desiccation group nor the dual-stressed 

group grew faster than the control group, although both treatment groups trended in that direction. 

However, the radiation group’s significant loss in survival was offset by significantly faster growth 

than that of the control group.  

Total fitness represents the sum of the survival and growth fitness components. Figure 2(c) 

shows that both the desiccation and dual-stressed groups had gains in total fitness that were 

significantly greater than the control group. The radiation group showed no significant difference 

in total fitness relative to the control group, as the differences in survival and growth components 

offset one another. 
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Fitnesses of the evolved groups when stressed by UV-C radiation 

Figure 3(a) shows that neither the control group nor the desiccation group showed any significant 

change relative to the common ancestor in survival when stressed by UV-C radiation. However, 

the radiation and dual-stressed groups had highly significant gains in survival relative to the 

common ancestor as well as when compared to the control group. Moreover, as shown in Figure 

3(b), only the radiation group had significantly faster growth than the control group. 

Figure 3(c) shows that the radiation and dual-stressed groups had gains in total fitness that 

were significantly greater than those of the control group. The desiccation group had a total fitness 

gain relative to the ancestor that was slightly, but significantly, less than that of the evolved control 

group. This deficit in the desiccation group’s total fitness resulted from the combination of small 

differences in survival and growth. 

Fitnesses of the evolved groups when not stressed 

Figure 4(a) shows that the evolved control group’s survival did not differ from the ancestor under 

the control conditions. Furthermore, none of the evolved treatment groups differed from the control 

group in this respect. Figure 4(b) reveals that the control group grew significantly faster than the 

common ancestor, which demonstrates adaptation to the culture medium, as expected. 

Unexpectedly, both the radiation and dual-stressed groups not only grow faster in the control 

environment than the ancestor, but they also show significantly greater gains in this fitness 

component than the control group. By contrast, the desiccation group exhibited smaller gains than 

the control group.  

In terms of total fitness, the residuals for the desiccation group were not normally distributed, 

perhaps in part due to heterogeneity among the replicate populations (as examined in the next sub-

section), and therefore the data were transformed (as explained in the sub-section on statistical 
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analyses). After transformation, all four evolved groups had higher total fitness in the non-stressed 

environment than the common ancestor, as can be seen in Figure 4(c). The radiation group had 

slightly, but significantly, higher total fitness than the control group, whereas the desiccation group 

had significantly smaller gains than the control group. The dual-stressed group’s gains were 

indistinguishable from the control group. 

Variation among the replicate populations in each evolved group 

All the analyses above examined average fitness values for a group of evolved populations; any 

heterogeneity among the six replicate populations within a treatment group was therefore simply 

a source of statistical noise. Figures 5(a) ‒ 5(c) show the total fitness relative to the common 

ancestor for the 24 evolved populations (4 treatments × 6 populations) individually in each of the 

three assay environments. Thus, I can visualize the variation among the replicate populations in 

each environment and thereby assess the consistency of their evolutionary responses. Importantly, 

I replicated the fitness assays for each population, and therefore I could perform ANOVAs to test 

whether there was significant variation among the populations within a treatment group.   

Overall, six of the 12 ANOVAs show significant variation among the replicate populations, as 

indicated by the asterisks above the set of populations in each treatment group. Thus, genetic 

diversity in the evolutionary responses was an important outcome of the experiment. At the same 

time, this visualization of the data provides compelling evidence of the specificity of adaptation to 

the stressful treatments. As Figure 5(a) shows, all 12 populations that experienced daily desiccation 

events during the evolution experiment (i.e., 6 populations in the desiccation group and 6 in the 

dual-stressed group) had average total fitness in the desiccation environment (direct response) that 

was greater than the grand mean of the control populations (shown by the dashed line). In the case 
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of the radiation-only-treated populations, half of them had average total fitness in the desiccation 

environment (correlated response) greater than the grand mean of the control group.  

Like the desiccation-treated populations’ direct response to desiccation, Figure 5(b) shows that 

all 12 populations that experienced daily exposures to UV-C radiation (i.e., 6 populations in the 

radiation group and 6 in the dual-stressed group) had average total fitness in the radiation 

environment (direct response) that was greater than the grand mean of the control group. On the 

other hand, all but one of the desiccation-only-treated populations had lower average total fitness 

in the radiation environment (correlated response) than the grand mean of the control populations.  

In contrast to the populations in the stressed environments, the pattern in the unstressed control 

environment is less clear, as shown in Figure 5(c). The three treatment groups that evolved in 

stressful conditions include individual populations with average fitness values both above and 

below the grand mean of the evolved control populations. This ambiguity presumably reflects the 

fact that the culture medium was the same in all four treatments, so that adaptation to that medium 

was important in all cases.  

In summary, the population-level analyses generally support the group-level results reported 

in the previous sections, which demonstrated adaptation to the specific stresses of desiccation and 

UV-C radiation. At the same time, the population-level analyses reveal significant variation among 

the independently evolved populations in most groups in their direct response to the environment 

where they evolved, in their correlated responses to other environments, or both. 

A serendipitous finding of differences in cell pellets 

Toward the end of the evolution experiment, I noticed that the cells of all 12 populations in the 

desiccation and dual-stressed groups formed diffuse pellets after settling overnight in their spent 

growth medium, as seen in the upper two rows of Figure 6. By contrast, as seen in the lower two 
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rows, the populations in the radiation and control groups formed condensed pellets, with the 

possible exception of one population in the radiation-treated group (second from left) that seems 

to have an intermediate phenotype. Thus, this diffuse-pellet phenotype appears to have evolved as 

a specific response to desiccation. I have not yet further explored this phenotype. 
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DISCUSSION 

Hypotheses on the evolutionary dynamics of tolerance to desiccation and radiation 

My experiment was designed to test four broad hypotheses concerning the evolutionary dynamics 

of tolerance to desiccation and radiation.  

(1) The treatment groups that had daily exposures to desiccation and UV-C radiation separately 

would evolve increased tolerance to the corresponding stressor, while the dual-stressed group 

would evolve increased tolerance to both stressors. The increased tolerance would be manifest 

by each treatment group having greater gains in total fitness than the evolved control group, 

when fitness was measured by competitions against the common ancestor in the corresponding 

stress environment. 

(2) The groups treated with only one stressor would have correlated gains in total fitness when 

exposed to the non-treatment stressor, and thus cross-tolerance would evolve, e.g., the 

desiccation group would also gain tolerance to radiation. I based this hypothesis on two 

observations: (i) desiccation and UV-C radiation cause similar damage to cells, primarily 

through oxidation of proteins (França et al., 2007; Fredrickson et al., 2008; Krisko and 

Radman, 2010, 2013a, 2013b; Slade and Radman, 2011; Santos et al., 2013; Kragh and 

Truelstrup Hansen, 2020; Daly, 2023; Łupkowska et al., 2023), and (ii) some organisms exhibit 

unusually high tolerance to both of these stressors (e.g., members of the bacterial genus 

Deinococcus [de Groot et al., 2005; Yang et al., 2009, 2010; Slade and Radman, 2011; Dong 

et al., 2015; Liu et al., 2017]). 

(3) The greater gains in total fitness in the treatment groups relative to the control group would be 

driven by improved survival during exposure to the stressors, rather than by improved growth. 

All the treatment and control populations were propagated in the same culture medium, and 
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therefore all of them had similar opportunities to adapt to that medium. Consequently, 

adaptation to the medium would be evident by improvement, relative to the ancestor, in the 

growth component of fitness, and improvement beyond that of the evolved control group 

would suggest specific adaptation to the stressor. In the case of survival, any improvements in 

that fitness component would indicate specific adaptation to the stressor. I based this 

hypothesis of survival being key to evolving tolerance on previous research (cited immediately 

above) that suggests protective mechanisms, often mediated by the proteome during acute 

exposure to stressors, are central to tolerating desiccation and radiation, including UV-C, in 

microbes. 

(4) Tolerance to desiccation and UV-C radiation would incur trade-offs, i.e., correlated losses in 

total fitness, when exposed to benign (control) conditions. The trade-off would be manifest in 

one of two ways: (i) each treatment group’s total fitness grand mean would be negative relative 

to the ancestor, or (ii) most of each treatment group’s total fitness population means would be 

less, but not necessarily negative, than the evolved control group’s total fitness grand mean, 

when fitness was measured by competitions against the common ancestor in the benign 

environment. I derived these two trade-off criteria from concepts laid out in the works of 

Lenski and Travisano (1994), Novak et al. (2006), and Bennett and Lenski (2007). I based this 

hypothesis of correlated losses when not stressed on the fact that similar kinds of trade-offs 

have been seen in nature (Luo et al., 2008; Chang and Leu, 2011; Friman et al., 2013; Porter 

and Rice, 2013; Comont et al., 2020; Yang et al., 2023), and they also often arise in evolution 

experiments (Mongold et al., 1996; Sleight et al., 2006; Bennett and Lenski, 2007; Caspeta 

and Nielsen, 2015; Boyd et al., 2022; Ballu et al., 2023; Wang et al., 2023). 
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All treatment groups evolved increased tolerance 

Figures 2(c) and 3(c) show that all the treatment groups increased their total fitness more than the 

evolved control group when stressed, and thus they evolved tolerance to the corresponding 

stressor(s). This result agrees with my first hypothesis. Furthermore, this de novo tolerance to 

desiccation and UV-C radiation evolved within 500 generations, a mere blink of the eye in 

evolutionary time. Further still, it is important to point out that the dual-stressed group evolved 

tolerance to the combined stressors within the same number of generations as those groups treated 

with only one of the stressors. And this rapid evolution of tolerance occurred in a non-extremophile 

that was very sensitive to those stressors. Taken together, these observations suggest that tolerance 

to desiccation and UV-C radiation can readily evolve, and it is possible for a non-extremophile to 

evolve tolerance to more than one harsh stressor at the same time. 

Figure 5(a) shows that there was significant variation among total fitness of the desiccation 

group’s populations when stressed by desiccation, suggesting that there were multiple evolutionary 

paths to desiccation tolerance. Therefore, it is likely that multiple mechanisms exist between those 

populations for tolerance to desiccation, be it fitness components involving both direct and indirect 

responses or changes in the genome, physiology, biochemistry, etc. Figures 5(a) ‒ 5(c) reveal that 

the heterogeneous variation among total fitness of the desiccation group’s populations existed 

under all conditions. Future studies are needed to explore how the different types of mechanisms 

might be coupled. For example, one could address whether more similar paths based on fitness 

components are also more similar in terms of the underlying genetic and/or physiological changes. 

Conversely, Figure 5(b) shows the lack of significant variation among total fitness of the 

radiation group’s populations when stressed by UV-C radiation, suggesting that there was only 

one, or very limited, evolutionary path(s) to UV-C radiation tolerance. Consequently, it is likely 



22 

 

that a single mechanism, or very similar ones, exists between those populations for tolerance to 

UV-C radiation. It can be seen in Figure 5(a) that the homogeneous variation among total fitness 

of the radiation group’s populations also existed under desiccation, but Figure 5(c) reveals it was 

heterogeneous under benign (control) conditions. 

Regarding the dual-stressed group, Figures 5(a) ‒ 5(c) show that its populations’ total fitness 

did not vary significantly under any condition. When that group was stressed separately by 

desiccation and UV-C radiation, the lack of variation among its populations’ total fitness indicates 

that, like evolution under radiation only, there were very limited, or perhaps a single, evolutionary 

path(s) to dual-tolerance. Thus, as I suggested for tolerance to UV-C radiation, dual-tolerance 

probably involves very similar mechanisms, or maybe just one. The dynamics of de novo tolerance 

to desiccation and UV-C radiation described immediately above leads me to suspect that the 

evolution of dual-tolerance was confined by the apparently limited path(s) to UV-C radiation 

tolerance. In other words, the multiple paths to achieving desiccation tolerance might have been 

more difficult hikes than the main trail leading to radiation tolerance. 

To my knowledge, this is the first published study to experimentally evolve tolerance to 

desiccation in a prokaryote. However, desiccation tolerance has been experimentally evolved 

repeatedly in more than one species of fruit fly (Hoffmann and Parsons, 1989; Gibbs et al., 1997; 

Tejeda et al., 2016). Tolerance to UV-C radiation has been experimentally evolved multiple times 

in different bacteria (Alcántara-Díaz et al., 2004; Wassmann et al., 2010; Selveshwari et al., 2021; 

Ellington et al., 2023). And in one experiment, Begyn et al. (2020) evolved endospores under 

stress from UV-C radiation and found that they became even more recalcitrant, but the vegetative 

cells remained sensitive. 
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Cross-tolerance did not evolve, but an unexpected trade-off did evolve 

Figures 2(c) and 3(c) show that neither the desiccation group nor the radiation group had 

statistically significant correlated gains in total fitness relative to the evolved control group when 

exposed to the non-treatment stressor, and therefore cross-tolerance did not evolve. Nonetheless, 

both of those groups had gains relative to the ancestor. Tolerance to both stressors required the 

combined treatment of the dual-stressed group. This result refutes my second hypothesis. And it 

is also surprising, not only because there are numerous examples of organisms that are highly 

tolerant of both desiccation and UV-C radiation (e.g., members of the genus Deinococcus, as cited 

above), but as I discuss next, an unexpected trade-off occurred between those two stressors. 

Figure 3(c) reveals that the desiccation group incurred a trade-off in total fitness when stressed 

by UV-C radiation. I determined that this trade-off occurred based on the second criterion given 

above in my fourth hypothesis, whereby most of the desiccation group’s population means fall 

below the evolved control group’s grand mean when exposed to radiation, as can be seen in Figure 

5(b). Five of the 6 population means are below the evolved control group’s grand mean, and 4 of 

those 5 have 95% confidence intervals that do not include the control’s mean. In the case of the 

radiation group under desiccation, Figure 2(c) shows that it did not incur a trade-off. This dynamic 

of the desiccation group incurring a trade-off while the radiation group did not, suggests that, under 

the conditions of my experiment, the de novo evolved mechanisms for tolerance to desiccation and 

UV-C radiation differed considerably. 

Survival mechanisms were key to desiccation tolerance, but not radiation tolerance 

Figure 2(a) shows that the desiccation group had a significant gain in the survival component of 

fitness when stressed by desiccation, both relative to the ancestor and to the evolved control group. 

However, Figure 2(b) shows that its gain in the growth component was significant relative to the 
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ancestor, but not to the evolved control group. Therefore, mechanisms for better surviving the 

stressor were key to evolving desiccation tolerance. Figures 2(a) and 2(b) and Figures 3(a) and 

3(b) reveal that survival mechanisms were also key for the dual-stressed group’s evolution of 

tolerance to desiccation and UV-C radiation. 

When the radiation group was stressed by UV-C radiation, Figures 3(a) and 3(b) show that it 

had significant gains, relative to the evolved control group and the ancestor, in both the survival 

and growth components of fitness. Thus, mechanisms for better surviving the stressor and 

recovering from it contributed to the evolution of UV-C radiation tolerance. This result refutes my 

third hypothesis, as I thought that survival mechanisms would be key for evolving tolerance to 

both stressors, separately and combined. 

When the radiation group was stressed by desiccation, Figure 2(a) reveals that it incurred a 

trade-off in survival, according to the first criterion stated above in my fourth hypothesis, whereby 

the group has a negative mean value relative to the ancestor. However, Figure 2(b) shows that the 

trade-off was offset by a trade-up in growth. Nevertheless, it can be seen in Figure 2(c) that the 

offsetting gain in growth was not enough to provide cross-tolerance to desiccation, though there 

was a gain in total fitness relative to the ancestor. Figures 3(a) and 3(b) show that this dynamic did 

not play out with the desiccation group when stressed by UV-C radiation, although Figure 3(a) 

reveals that there was a statistically non-significant loss in survival relative to the ancestor. 

Desiccation, but not radiation, tolerance incurred a trade-off under benign conditions 

Figure 4(c) reveals that the evolution of desiccation tolerance came with a trade-off under benign 

conditions, as per my second criterion. As Figure 5(c) shows, all but one of the desiccation group’s 

total fitness population means fall below the grand mean of the evolved control group, and of those 

5 populations, 4 of them have 95% confidence intervals that do not include the control’s mean. 
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Moreover, half the populations are less fit than the ancestor, and another one’s fitness is the same 

as that of the ancestor. Figure 4(b) shows that the desiccation group’s trade-off in the benign 

environment was due to its growth component of fitness being significantly less than that of the 

evolved control group, but nonetheless slightly better than the ancestor. 

Conversely, Figure 4(c) reveals that the evolution of UV-C radiation tolerance came with a 

trade-up under benign conditions, as its total fitness is significantly greater than that of the evolved 

control group. Figure 4(b) shows that this trade-up in the benign environment was due to a 

significant gain in the radiation group’s growth component of fitness relative to the evolved control 

group. It can be seen in Figure 4(b) that, like the radiation group, the dual-stressed group had a 

significant gain in growth under benign conditions. Nevertheless, Figure 4(c) shows that this gain 

was insufficient to give a trade-up in that environment, perhaps due to a slight loss in survival 

(Figure 4(a)). And concerning survival, Figure 4(a) shows that all the treatment groups had slight 

losses in that fitness component relative to the ancestor, while the evolved control group’s survival 

remained the same as the ancestor. These results partially refute my fourth, and final, hypothesis, 

as I thought that all stress-treated groups would incur trade-offs when not stressed. 

Implications of my study for possible extant life in Mars's shallow subsurface 

Researchers have experimentally evolved bacteria to tolerate 6 of the harshest stressors existing in 

the shallow subsurface of Mars: desiccation (this study); UV-C radiation (Alcántara-Díaz et al., 

2004; Wassmann et al., 2010; Begyn et al., 2020; Selveshwari et al., 2021; Ellington et al., 2023; 

this study); ionizing radiation (Wright and Hill, 1968; Licciardello et al., 1969; Davies and 

Sinskey, 1973; Parisi and Antoine, 1974; Ewing, 1995; Harris et al., 2009; Lim et al., 2009; Byrne 

et al., 2014; Bruckbauer et al., 2019, 2020); hypobaria (Nicholson et al., 2010); lowered 

temperature (Mongold et al., 1996); and freeze‒thaw‒growth cycles (Sleight and Lenski, 2007; 
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Kwon et al., 2018). Those experiments have established that non-extremophiles can easily evolve 

tolerance to Mars-relevant stressors, at least individually. Importantly, my evolution experiment 

establishes, I believe for the first time, that not only can desiccation tolerance readily evolve, but 

also that a non-extremophile can quickly adapt to two harsh stressors at the same time. 

The surface of Mars is a hyper-arid desert (Martínez et al., 2017; Fischer et al., 2019; Polkko 

et al., 2023), where the relative humidity can be < 5% during the day and near 100% at night, 

depending on the season and latitude. Nighttime highs of 10% to 30% are typical throughout most 

of the Martian year, except for the north polar region, where typical highs are 30% to 60%. Those 

levels of relative humidity and their daily fluctuation would impose severe desiccation stress on 

any life that might exist near Mars’s surface. Nevertheless, two environments exist on Earth where 

life persists under extremely arid (and other) conditions that approach those of Mars, the Atacama 

Desert’s hyper-arid core (Davila et al., 2021; Azua-Bustos et al., 2022; Warren-Rhodes et al., 

2022) and Antarctica’s McMurdo Dry Valleys (McKay et al., 2017; Salvatore and Levy, 2021; 

Warren-Rhodes et al., 2022). A number of studies of those two Mars analogs have demonstrated 

that desiccation would be a very intense selective pressure on possible Martian life near the surface 

(e.g., Sun, 2013; Schulze-Makuch et al., 2018). 

Mars’s surface is soaked in radiation (Gómez‐Elvira et al., 2014; Hassler et al., 2014), with 

ultraviolet radiation ~4 times that of Earth. Yet there exist terrestrial organisms that could tolerate 

that level of radiation, e.g., the aforementioned Deinococcus species. My evolution experiment 

and those by Wassmann et al. (2010) and a few other researchers (cited above) showed that 

tolerance to UV-C radiation can easily evolve in radiation-sensitive microbes. Furthermore, Godin 

et al. (2023) found that Bacillus subtilis had a 10% survival rate under broad-spectrum UV 

radiation when covered by just a dusting (0.3 mm thick) of Mars’s regolith, and Mancinelli and 
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Klovstad (2000) and Schuerger et al. (2003) had similar results with B. subtilis endospores covered 

by a mere 0.5 mm-thick dust layer. Other researchers have reported that a few millimeters, or even 

a fraction of a millimeter, of regolith or rock could be enough to attenuate UV-C and broad-

spectrum UV radiation to survivable levels (Cockell et al., 2005; Gómez et al., 2010; Schuerger 

et al., 2012; Mickol et al., 2017; Carrier et al., 2019). Further still, individual regolith grains 

(Osman et al., 2008) and small-scale geomorphology (Moores et al., 2007) could partially shield 

microbes from UV radiation. Thus, UV-C radiation would likely be sterilizing only in the 

uppermost millimeter of Mars’s surface. 

The evolvability of co-tolerance to desiccation and UV-C radiation, or to any two stressors, 

would have been highly advantageous as Mars’s climate changed drastically. But today, all 6 

Mars-relevant stressors to which tolerance has been experimentally evolved are concurrent in 

Mars’s shallow subsurface (as opposed to the deep subsurface where conditions are thought to be 

Earth-like [Tarnas et al., 2021]), and their combined effects would exert tremendous selective 

pressures on extant life that might exist there. However, while at first this environment, with its 

multitude of severe stressors, might seem inhospitable, the results of my evolution experiment and 

those just cited lead me to hypothesize that, if Mars’s drastic climate change allowed adaptation 

to one or two stressors at a time, then Martian life, if it ever existed, might persist today in the 

shallow subsurface. 

Implications of my study for possible extant life in Venus's clouds 

The relative humidity of Venus’s lower to middle cloud layers is < 0.4% (Hallsworth et al., 2021). 

Therefore, like Mars, extreme desiccation would exert immense selective pressure on life that 

might exist in Venus’s clouds. Ionizing and UV-C radiation do not penetrate Venus’s middle cloud 

layer (Dartnell et al., 2015; Patel et al., 2022). Thus, unlike Mars, possible Venusian cloud life 
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would likely face only minor, intermittent selection from UV-C and ionizing radiation, as these 

stressors would act only when, or if, cells are lifted to the higher cloud layers. 

The highly concentrated sulfuric acid droplets within Venus’s potentially habitable cloud 

layers have a pH less than zero (Grinspoon and Bullock, 2007). Hence, severe acidity would be 

another intense selective pressure on possible Venusian cloud life, as it is those droplets that life 

would inhabit. Nevertheless, at least two chemical mechanisms that could reduce the sulfuric acid 

droplets’ severe acidity have been proposed. Rimmer et al. (2021) suggested that a pH of 1 to 2 

could result from the reaction of sulfur dioxide gas dissolving in acidic droplets containing 

hydroxide salts. The other mechanism, put forth by Bains et al. (2021), builds on that of Rimmer 

et al. (2021) by suggesting that dissolved sulfur dioxide gas reacts with, in particular, ammonium 

salts in the acidic droplets, resulting in a pH of ‒1 to 1. 

If those chemical mechanisms indeed take place in Venus’s clouds, then notwithstanding the 

tremendous desiccation, there exist terrestrial extreme acidophiles that could persist in the acidic 

droplets. For example, the archaeon, Picrophilus torridus grows optimally at pH 0.7 and as low as 

pH ‒0.06 (Schleper et al., 1995)! Moreover, Seager et al. (2023) showed that nucleic acid bases 

were stable at sulfuric acid concentrations and temperatures that would be encountered in droplets 

existing in Venus’s middle to lower cloud layers. Taken together, these studies indicate that the 

severe acidity of Venus’s cloud droplets might have been an evolutionarily surmountable peak. 

However, the extreme desiccation of Venus’s clouds would have been an even higher and more 

rugged peak to climb. 
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CONCLUSIONS 

I have demonstrated that a non-extremophile can readily and rapidly adapt to two harsh, Mars- and 

Venus-relevant stressors simultaneously. However, co-tolerance to desiccation and UV-C 

radiation combined required treatment with both stressors, as populations that were treated with 

just one of the stressors did not evolve cross-tolerance to the other one. Furthermore, the 

desiccation-treated group incurred a trade-off when exposed to UV-C radiation, and when placed 

in the benign environment of the control group. Improvements in survival were key to evolving 

desiccation tolerance, while improvements in both survival and growth were significant for UV-C 

radiation tolerance. I also found that multiple evolutionary paths led to desiccation tolerance, 

whereas few paths led to UV-C radiation tolerance. Lastly, I serendipitously discovered that 

desiccation-treated populations form different cell pellets than those of UV-C radiation-treated and 

evolved control populations, whereby the former form diffuse cell pellets while the latter form 

typical condensed pellets. 

The implications of my findings for our neighboring planets are that life might persist today in 

Mars’s shallow subsurface and in Venus’s clouds, provided that the drastic environmental changes 

that occurred on those worlds allowed adaptation to one or two stressors at a time. This is not to 

say in any way that E. coli, or its experimentally evolved descendants, reflect what microbes might 

be like on Mars or Venus. I used E. coli simply as a powerful and tractable model organism to 

explore the evolutionary dynamics of de novo tolerance to two Mars- and Venus-relevant stressors. 

To that end, future evolution experiments with non-extremophiles like E. coli that simultaneously 

combine three, or perhaps even four, stressors that are relevant to Mars and/or Venus would 

significantly expand our understanding of what might have been evolutionarily possible on those 

planets as their environments became extreme. 
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APPENDIX 

FIGURES 

 

Figure 1: Stress–growth procedure. The treatment groups underwent daily pulses of stress from 

desiccation (a) or UV-C radiation (b), or both stressors during the evolution experiment. From left 

to right, an 8-µL aliquot of an 800-µL culture grown for 22 ‒ 24 h at 37°C was spotted on the 

bottom of a small glass beaker, subjected to the stressor(s), re-suspended in fresh medium and then 

re-grown for 22 ‒ 24 h before repeating this procedure (75 cycles total). For the group treated with 

both stressors, the desiccation conditions remained the same while the exposure to UV-C radiation 

was halved (~2 J cm−2). Halving the UV-C radiation exposure ensured sufficient survival of that 

treatment group after being subjected to both stressors (UV-C radiation followed by desiccation). 

During competitive fitness assays, the cell densities used to calculate fitness were determined at 

the points in the procedure labeled with an “N” as explained in the text (see Materials and methods, 

sub-section “Fitness components and their calculations”). 
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Figure 2: Fitness of the evolved groups when stressed by desiccation. The survival (a) and growth 

(b) fitness components were summed to give the total fitness (c). Fitness is expressed as a 

selection-rate differential, where a value of zero corresponds to the null hypothesis of no difference 

between the evolved group and ancestor. Triangles indicate that the fitness assay stress, in this 

case, desiccation, was also the treatment for that respective group during the evolution experiment. 

The error bars represent 95% confidence intervals about the group mean, where the degrees of 

freedom are the number of replicate populations in each group, minus one (6 – 1 = 5). Multiple 

two-tailed Welch’s t-tests were performed to compare each treatment group mean to the evolved 

control group mean, with the number of asterisks signifying the following Dunnett’s T3-adjusted 

P-values: *, 0.01 < P ≤ 0.05; **, 0.001 < P ≤ 0.01; ***, P ≤ 0.001; “ns”, no significant difference 

(P > 0.05). 
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Figure 3: Fitness of the evolved groups when stressed by UV-C radiation. The details of the 

charts are the same as those described in Figure 2’s legend. Concerning the total fitness, the 

desiccation group’s residuals were not normally distributed. Thus, I performed a Box-Cox power 

transformation of the entire total fitness data set. The stippled columns and error bars represent the 

untransformed data, while the asterisks represent the transformed data that were used to make 

comparisons of each treatment group’s total fitness mean to that of the evolved control group. 
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Figure 4: Fitness of the evolved groups when not stressed (control conditions). The details of 

the charts are the same as those described in Figure 2’s legend. Concerning the total fitness, the 

desiccation group’s residuals were not normally distributed. Therefore, I transformed the entire 

total fitness data set and made comparisons in the same way as described in Figure 3’s legend. 
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Figure 5: Total fitness of the evolved groups’ replicate populations. The populations’ total fitness 

when stressed by desiccation (a), UV-C radiation (b), and not stressed (c). Triangles indicate that 

the fitness assay stress was also the treatment for those respective populations during the evolution 

experiment. The error bars represent 95% confidence intervals about the population mean, where 

the degrees of freedom are the number of replicate measurements for each population, minus one 

(4 – 1 = 3). One-way Welch’s ANOVAs were performed to determine if the means of populations 

within a group varied significantly, with the number of asterisks signifying the following one-

tailed P-values: *, 0.01 < P ≤ 0.05; **, 0.001 < P ≤ 0.01; ***, P ≤ 0.001; “ns”, no significant 

difference (P > 0.05). Stippled columns specify that transformed data was used in the ANOVA,  
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Figure 5 (cont’d) 

but the columns themselves and error bars represent the untransformed data. The dashed line marks 

the mean of the evolved control group. 
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Figure 6: Differences in cell pellets. Shown here is a composite image of a single 96-deep-well 

plate, seen from above, looking down into the wells. A row between the control populations and 

UV-C radiation-evolved populations was cropped out because that row contained cell pellets of 

populations not presented in this paper. The outermost wells to the left and right are negative 

controls (no cells). Populations that evolved under stress from desiccation only and those evolved 

under stress from desiccation and UV-C radiation combined formed diffuse cell pellets after 

settling overnight in their spent growth medium, as is evident in the upper two rows. These diffuse 

cell pellets were not formed by populations that evolved under stress from UV-C radiation only 

and those evolved under benign conditions (control), instead, those populations formed typical, 

condensed pellets, as can be seen in the lower two rows. 


