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ABSTRACT

Domain adaptation is an important task that considers how to apply a model trained

on a labeled source dataset to an unlabeled target dataset. This is becoming an increasingly

relevant concern as many datasets do not contain a large number of reliable labels and must

consider additional training data from other sources. The domain adaptation task is chal-

lenging as the distributions of the source and target datasets may not be fully aligned. Such

discrepancy in data distribution is called concept drift. This thesis focuses on the problem

of domain adaptation in node classification for network data, a task known as cross-network

node classification (CNNC). Unlike approaches specific to independent and identically dis-

tributed (i.i.d.) data, CNNC is concerned with the additional challenges introduced by the

link structure of the source and target networks and differences in their node distributions.

Such differences may exacerbate unfairness in node classification, and lead to one protected

group receiving a disproportionately large number of positive outcomes. Additionally, ex-

isting CNNC approaches are computationally expensive as they rely upon having access to

both the entire source and target graphs at one time.

In this thesis I first present OTGCN, a method for performing domain adaptation

between multiple disconnected networks for the task of node classification. OTGCN combines

the powerful graph convolutional network (GCN) architecture along with techniques from

optimal transport to design source node embeddings that are more aligned with nodes in

the target graph. This allows us to train a more accurate node classifier within the target

domain. I then present FOCI, an improvement to OTGCN which addresses fairness by

implementing a novel optimal transport approach designed to directly target harmful link

bias. Lastly I introduce FastFOCI and SpFOCI, two further enhancements to FOCI, which

directly address performance and statistical parity, a popular group fairness measure. I

demonstrate the effectiveness of each of these methods on several real-world datasets and

discuss their strengths and weaknesses.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Within the modern data landscape a typical dataset is often thought of as a single table

filled with rows of independent and identically distributed (i.i.d.) data points. However,

realistic datasets often take much more complex forms such as images, which must consider

the spatial relationships between pixels, or time series, which considers sequence of the data

points. Another complex dataset is the network, which considers both individual data points

and the relationships between them. A network or graph consists of a set of nodes which are

connected to each other by edges. These edges introduce relationships between data points

which can be useful for modeling a wide range of important factors. Graphs can be used

for modeling social networks, traffic patterns, brain structures, molecules, and many other

scenarios in which structures, locations, similarity, or relationships are of importance.

One of the most common tasks when working with graphs is node classification. The

standard node classification problem is to classify some unlabeled nodes when given a graph

with node features, edge structure, and some labeled nodes. However, while the node clas-

sification task is common, real world scenarios are often much more nuanced. In particular,

often a dataset of interest may not include enough labeled training data and must supple-

ment from another labeled dataset. This can lead to complications as the datasets may not

always have identical distributions. For example, social networks may represent different

regions where node classification is complicated by divergence in societal norms. Population

graphs used to model medical conditions in patient populations may come from large re-

search institutions or small rural clinics. These scenarios motivate the task of cross-network

node classification.

In cross-network node classification (CNNC) you typically have two graphs: a labeled

source graph and an unlabeled target graph. The goal is to correctly classify nodes in the

target graph. The source and target graphs contain the same features, but have varying

distributions. The difference between the two distributions is called concept shift and is a
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major focus of this work.

1.2 Challenges

In this thesis I consider three major challenges with CNNC. The primary challenge to

any CNNC approach is to perform domain adaptation in a manner which respects the graph

structure. In addition, fairness and performance are two very practical challenges when

implementing a method for CNNC.

Domain adaptation is generally the task of classifying unlabeled target data points by

making use of target feature information and a labeled source dataset. As described in the

CNNC problem, the source and target datasets are often separated by concept drift. Most

previous CNNC methods implement some form of adversarial domain adaptation [20] [67]

[75] [56]. However, adversarial domain adaptation is often difficult to train and may not be

effective in cases with a large amount of concept drift [30]. In this work I instead choose

to address the domain adaptation challenge by implementing an optimal transport domain

adaptation method. Optimal transport (OT) is a technique for discovering the best way to

map between two distinct probability distributions. This map can be used to transform data

points from one domain to another and can serve as a powerful tool in domain adaptation.

Importantly, OT can be used to map between datasets with a large amount of concept drift

and can be implemented with very little data.

Fairness in artificial intelligence can be grouped into two main categories. Individual

fairness considers whether an outcome is fair to individuals, and group fairness considers

if an outcome is fair to a group as a whole. The focus of this work is group fairness, and

one of the most popular group fairness metrics is statistical parity. Statistical parity states

that each protected group (e.g., males and females) should have an equal probability of

experiencing a positive outcome. However, due to the fairness-utility trade off improving

statistical parity may degrade model utility or performance [53] [15]. The challenge in this

work is to incorporate statistical parity in a manner which balances this trade-off.

For various reasons most CNNC approaches encounter scalability issues when tasked
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with large graphs. While these issues manifest at various technical points they all stem back

to the same root cause. These CNNC approaches assume access to the entire graph in each

step. For example, ASN, a state-of-the-art CNNC approach, implements variational auto-

encoders which require access to complete source and target graphs and then a loss function

with aggregation steps that can quickly explode as graphs increase in size [75]. In this work

I specifically design a CNNC approach which is capable of scaling to large graphs if needed.

1.3 Key Contributions

In this thesis I introduce several novel contributions to address the challenges described

above.

• I develop OTGCN, a CNNC approach that relies upon optimal transport based domain

adaptation.

• I introduce two new fair Sinkhorn distance measures, one supervised and one unsuper-

vised, which can be used to mitigate unfairness in optimal transport.

• I develop FOCI, a CNNC approach that addresses fair domain adaptation by imple-

menting a fair optimal transport algorithm.

• I develop FastFOCI and SpFOCI, two additional CNNC approaches that extend the

work of FOCI to add more scalability and an alternative approach to fairness.

• I perform experiments to demonstrate the effectiveness of these new approaches on

several real-world datasets.

1.4 Thesis Organization

The remainder of this thesis will be organized in the following manner. Chapter 2

contains a broad overview of various areas of relevant literature. Areas of literature presented

in this chapter are relevant to the complete body of work, and are supplemented in later

chapters with related work sections specific to the chapter of interest. Chapter 3 presents

OTGCN, our initial CNNC framework, and then demonstrates it as an effective approach

when working with fMRI data collected from several different collection sites. Chapter 4

presents two new approaches to optimal transport which allow it to consider fairness directly
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within the transportation process. I then use these new optimal transport algorithms to

develop several improvements to OTGCN which allow it to consider fairness and improve

performance. All new methods are demonstrated experimentally on datasets of various sizes.

1.5 Publications

Much of the work in this thesis has been adapted from the following papers:

• Anna Stephens, Francisco Santos, Pang-Ning Tan, Abdol-Hossein Esfahanian. “Popu-

lation Graph Cross-Network Node Classification for Autism Detection Across Sample

Groups”. In Proceedings of the Data Mining in Biomedical Informatics and Healthcare

workshop at IEEE International Conference on Data Mining (DMBIH@ICDM, 2023),

Shanghi (2023)

• Anna Stephens, Francisco Santos, Pang-Ning Tan, Abdol-Hossein Esfahanian. “FOCI:

Fair Cross-Network Node Classification via Optimal Transport.” (under review), 2023
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CHAPTER 2: LITERATURE REVIEW

In this chapter I review literature related to several key areas of this project. Specifically

this chapter includes literature on node or graph representation learning, cross-network node

classification (CNNC), optimal transport as it has been used with graph data structures, and

fairness in neural networks. Some of these areas are much too large to be fully reviewed within

the confines of this chapter, and in those cases I refer the reader to survey papers for a more

thorough discussion of the topic.

2.1 Node Representation Learning

In current literature the most common method for constructing node representations or

embeddings is via graph neural networks (GNNs). GNNs generally consider graph structure

by using message passing techniques to combine a node’s features with features from other

nodes in its neighborhood. Notably, node representation learning is a large field and this

section will only hit some of the highlights. For more information please consider a survey

paper on the topic [76] [36].

Arguably the most well known and straightforward GNN is the Graph Convolutional

Network (GCN)[37]. GCN uses a simple message passing technique to combine node features

with features from all of its immediate neighbors in one step. GCN layers can then be stacked

to expand to additional neighbors beyond one hop. Most other convolutional GNNs build off

the GCN in some way. JKNet [68] and MixHop [2] are approaches for expanding convolutions

beyond the immediate neighborhood. FastGCN [12] and simple graph convolution (SGC)

[66] are methods for simplifying and speeding up GCN. GraphSAGE [28] is also similar to

GCN, but does not require the model to evaluate the whole graph at one time; instead

performing strategic graph sampling before sending portions of the graph to a GCN-like

model.

While graph convolutional networks are perhaps the largest and well known family

of GNNS, graph attention networks follow closely behind. The most well known graph

attention networks is aptly named Graph Attention Network (GAT) [62]. GAT introduces
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an attention mechanism by which the model can weight various neighboring nodes differently

when combining features. GATv2 [8] re-orders the steps of GAT in order to provide a more

expressive representation. Multi-hop Attention Graph Neural Network (MAGNA) [63] also

operates similarly to GAT, but considers larger neighborhoods in each layer or step.

2.2 Cross Network Node Classification

One of the earliest works on CNNC is the CDNE algorithm [57]. CDNE uses stacked

autoencoders to learn separate embeddings for the source and target networks and tackles

domain adaptation by utilizing maximum mean discrepancy (MMD) loss between the two

embeddings. ACDNE[56] was a follow up work to CDNE which improved upon embedding

construction by designing separate methods for the node features and graph structure. Ad-

ditionally, it used an adversarial discriminator to address domain adaptation instead of the

MMD loss.

More recently AdaGCN[20], UDA-GCN[67], and ASN[75] have attempted to address

the CNNC task. All three of these methods relied upon the GCN acchitecture [37] to

generate the node embeddings. AdaGCN[20] addresses the domain adaptation issue with

an adversarial discriminator. UDA-GCN[67] followed on the heels of AdaGCN by utilizing

the PPMI matrix instead of an adjacency matrix along with an entropy loss to update the

target GCN. Finally ASN[75] is the most recent of these works and combined concepts from

both AdaGCN and UDA-GCN. ASN used variational auto-encoders (VAE) to help preserve

information unique to the source and target graphs respectively. None of these methods

address fairness concerns.

2.3 Optimal Transport with Graphs

There is a small body of work investigating OT within the context of graph data. Some

of these works [60][1] have developed OT-inspired distance measures for graph data, while

others employ OT for graph comparison or alignment tasks instead of node classificaiton. For

example, GOT[13] uses a combination of traditional Wasserstein distance with the Gromov-

Wasserstein to find a transport plan for the purposes of graph alignment. Zhang et al. [74]
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employed OT to fine-tune large GNNs while OT-GNN[11] used OT to develop a prototype

for prototype learning on whole graph classification. Unfortunately, none of these works

consider using OT for CNNC nor addressing the issue of algorithmic bias.

2.4 Fairness in Neural Networks

Previously I mentioned that fairness metrics and definitions can be grouped into ones

targeting group fairness and individual fairness. On the other hand, fairness mechanisms are

typically grouped based on when they occur in the machine learning pipeline: pre-process,

in-process, and post-process. This section focuses on some popular fairness mechanisms.

Similar to node representation learning, fairness in neural networks is a large topic, and I

recommend a survey paper for a more in-depth review of both fairness history, metrics, and

mechanisms [53].

Pre-processing fairness approaches modify the training data before sending it to a model

for training. One approach does this by using a k-nearest neighbor classify to strategically

flip training labels so that a later model will be more generous towards specific protected

groups [45]. Another approach implements representation learning techniques to design a

more fair feature set [71].

In-processing approaches modify the model directly in some way during training in or-

der to train a fair model more directly. This is often done by adding additional terms to the

model’s loss function [32] [7] [5]. Sometimes, however, these approaches can become more

creative. For example, one method uses maximum mean discrepancy (MMD) to align dis-

tributions of various protected groups [54]. Another method uses variational auto-encoders

and MMD to remove any dependence on the protected attribute [44].

Post-processing methods modify model output in some way to encourage fairness. A

straighforward example of this is using different probability thresholds for different protected

groups in a binary classification task [47]. More generally one can strategically flip the labels

of some predicted outputs to meet some specific fairness criteria [29].
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CHAPTER 3: CNNC ACROSS SAMPLE GROUPS

3.1 Introduction

The proliferation of graph-based data in various application domains has motivated the

need to develop more advanced techniques based on deep learning to harness the network data

from multiple sources in order to improve the performance of node classification algorithms.

Current techniques would learn a feature embedding of the nodes from multiple graphs using

their node features and link structure information. The learned feature representation is then

presented to a fully-connected network layer to perform the final classification. However,

despite the notable advances in graph neural networks, there are still numerous challenges

that must be addressed in order for the techniques to be successfully deployed to solve

real-world problems.

First, existing techniques often assume that the graphs share similar distributional prop-

erties, thus enabling us to apply a model trained on one graph, a.k.a. the source graph, to

the nodes in another, a.k.a. the target graph. Unfortunately, such a scenario is too idealistic

for the real world as one would likely encounter some form of distributional shift, where the

training data only captures the essence of a particular graph but fails to account for some

unforeseen differences in another graph. Such type of concept drift is illustrated in Fig. 3.1,

Figure 3.1: An illustration of OT for domain adaptation, where the color represents class
labels. The diagram on the left is the original source dataset and on the far right is the
target dataset. The dotted line is a the decision boundary of logistic regression trained on
the source dataset. The middle diagram shows the transported source dataset using OT,
with the solid line representing the decision boundary obtained by logistic regression.
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where the decision boundary induced from the learned representation of a source graph (left)

does not reflect the class separation of the nodes in the target graph (right).

To address the concept drift problem, domain adaptation and transfer learning methods

[50] have been developed. Here, the deep neural network is initially trained using data from

a related source domain. The model is then fine-tuned to fit characteristics of the target

domain. Transfer learning is particularly useful when there is limited training data available

in the target domain. For graph data, transfer learning is typically studied under the guise

of cross-network node classification (CNNC) problems [56, 57, 20, 67, 75]. In CNNC, we

consider a scenario in which there is a source graph, with fully or mostly labeled nodes, and

a target graph, which has either a few or no class labels.

CNNC approaches are particularly well suited to address the multi-site Autism Spec-

trum Disorder (ASD) detection problem. ASD refers to a condition characterised by specific

communication impairments, restricted interests, and repetitive behaviours [43]. As the

disorder typically presents itself early in life, early and accurate detection can help reduce

the severity of many lifelong symptoms. Towards this end, automated techniques based on

machine learning and deep learning have been developed for the early detection of ASD.

Specifically, these techniques have been applied to a wide range of subject data including

detailed subject screening data [22], videos of subject movements [77], and Magnetic Reso-

nance Imaging (MRI) data [42]. Given the diverse modalities of data available, it is likely

that the best detection results can be achieved by combining the data from different sources.

Previous works have established an effective method to combine various modalities of

data using graph structures because of their flexible yet powerful representation [61] [72].

These approaches make use of population graphs, where the nodes represent individuals and

edges are generally defined with some similarity measure. In several prior ASD research, the

node features are generated from image information while the edges consider a combination

of subject information (sex, age, etc) in addition to image similarity [51] [52] [35] [31]. Once

these graphs are constructed, detecting ASD becomes a node classification problem.
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Similar to other diagnosis problems, one of the major challenges in applying machine

learning to ASD detection is the limited amount of labeled data available. This has led to

growing interest in utilizing labeled data from multiple sites to train the machine learning

model. One limitation of these approaches is that they fail to consider a more realistic

scenario in which there may be little or no labeled data associated with the population of

interest. For example, a model may be trained on a research dataset but needs to be applied

to another location with a different imaging equipment or patient demographics that were

not well represented in the training data. This problem can be addressed using an approach

generally known as domain adaptation or transfer learning [59]. Within the context of

node classification tasks, it is also referred to as cross-network node classification (CNNC)

approach. CNNC assumes the availability of a sufficiently large number of labeled nodes in

a source network and an unlabeled target network, whose node labels are to be predicted

accurately.

This chapter focuses on addressing the CNNC task for ASD detection. We use the pop-

ular ABIDE [17] dataset, which contains both resting-state functional Magnetic Resonance

Imaging (fMRI) information and phenotypic data such as age, sex, and screening results.

Samples in the ABIDE dataset were collected from several different collection sites, which

were then divided into 2 groups to form the source and target networks for our experimental

studies.

CNNC has two major challenges when applied to the ABIDE dataset. The first is

extracting relevant information from the networks for ASD detection. In this work we

will learn a graph embedding of the source and target networks via a graph convolutional

network (GCN) [37]. A GCN layer is capable of learning a node embedding which contains

information about a node and its immediate neighbors. This method relies on the homophily

principle [46], which states that similar individuals tend to form neighborhoods within a

graph. Therefore, in a graph with high homophily we can improve a node embedding by

adding information from it’s neighborhood.
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The second major challenge is to handle potential concept drift between the source

and target networks. As the separate data collection sites may have different fMRI imaging

equipment and procedural differences, this may introduce some discrepancies or ”drift” be-

tween the two networks. As previously mentioned, the presence of concept drift often leads

to poor results if a classifier is simply trained on the source dataset and applied as it is to

the target dataset. Fig. 3.1 demonstrates the challenge of CNNC when the learned node

embedding does not account for such distributional shift. A decision boundary learned from

the source dataset is likely to incorrectly classify a significant portion of the target dataset.

In this chapter we introduce OTGCN, a novel approach to address the CNNC task for

ASD detection. Our proposed approach combines graph neural network with optimal trans-

port (OT) to handle the drift between the source and target networks. OT is a method for

mapping a transportation between two distributions. We will use OT to map the learned

source representation to the target representation. This strategy allows us to train an ac-

curate model for classifying the target nodes. Experimental results on the ABIDE dataset

demonstrate the effectiveness of our approach at diagnosing ASD across different collection

sites compared to state of the art CNNC methods.

3.2 Related Works

In previous chapters we have discussed works relevant to node classification and cross-

network node classification tasks. In this chapter, however, we specifically focus on the use

of optimal transport for addressing ASD detection across various sample collection sites. To

that end, we must now explore works which are specifically relevant to detecting ASD as

well as addressing fMRI data collected from multiple sites.

3.2.1 Machine Learning Approaches to ASD Detection

ASD detection is a task that lends itself to a wide variety of approaches. Zunino et al [77]

employed computer vision approaches for automatic early detection of ASD by evaluating

videos of subject movements when grasping a bottle. They then applied recurrent neural

networks to distinguish subjects who have ASD from those who do not. Erkan and Thanh
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[22] analyzed detailed screening data collected from mobile app surveys using traditional

machine learning methods such as k-nearest neighbor, support vector machines, and random

forests to diagnose subjects with ASD. Yuan et al. [70] applied natural language processing

(NLP) techniques to analyze hand written medical forms of potential ASD patients while

Carette et al. [10] performed ASD detection on eye tracking data using long-short term

memory (LSTM) networks.

The majority of the recent works in this area, however, focuses on using MRI data [42]

[49] along with other subject information such as sex, age, and screening results [51] [52]

[31] [35] for screening potential ASD patients. For example, Li et al. [42] presented a graph

neural network approach to find biomarkers that can be used to detect ASD while Parisot

et al. [51] employed a graph convolutional network (GCN) to perform the detection using

both fMRI imaging and non-imaging phenotypic data. Similar to these works, the work in

this chapter focuses on using a combination of fMRI and other subject data, though our

approach is also applicable to blend other forms of data given the representation power of

graph neural networks.

3.2.2 Machine Learning on Multi-site fMRI Data

Previous works on diagnosing brain-related problems using fMRI data from multiple

sites generally fall into two major categories—transfer learning and federated learning.

Transfer learning [59] is a machine learning approach that enables prediction models

trained from a given data domain (known as the source domain) to be applied to another

domain (known as the target domain). Such a domain adaptation approach can be used

even if the target domain has no labeled training data. Previous works on applying trans-

fer learning to fMRI data can be found in [14] [64] [27]. However, these approaches are

mostly designed for using only the image information and do not consider more complex

data structures or the use of additional non-imaging information.

In contrast, federated learning [73] is designed for training prediction models in a col-

laborative fashion on decentralized datasets. The approach assumes restricted or indirect
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access to the source dataset and direct access to a partially labeled target dataset. There

has been a few works applying federated learning approaches to multi-site fMRI data [41]

[65], but none of them consider non-imaging information.

3.3 Preliminaries

3.3.1 Problem Statement

Let G(V,E,X, Y ) be an attributed graph, with a node set V , edge set E ⊆ V ×V , node

feature matrix X, and node label Y . Let A denote the adjacency matrix representation of

E, where Aij > 0 if (vi, vj) ∈ E and 0 otherwise. In a domain adaptation setting, we assume

there exists a source graph, Gs(Vs, Es, Xs, Ys), where the node labels in Ys are known, and

a target graph, Gt(Vt, Et, Xt, Yt), where the node labels in Yt are unknown. The adjacency

matrices corresponding to the source and target graphs are denoted as As ∈ Rns×ns and

At ∈ Rnt×nt , respectively, where ns and nt are the corresponding number of source and

target nodes.

We further assume that both graphs have identical features, i.e., Xs ∈ Rns×m and

Xt ∈ Rnt×m. Both graphs are also assumed to have the same set of class labels, i.e., Ys ∈

{0, 1, · · · , k − 1}ns and Yt ∈ {0, 1, · · · , k − 1}nt , where k is the number of classes. For

ASD detection, we consider a binary node classification problem with k = 2. At times,

we also consider the combined graph Gc(Vc, Ec, Xc, Yc), where Vc = Vs ∪ Vt, Ec = Es ∪ Et,

Xc = [Xs;Xt] ∈ Rn×m, Ac = [As 0; 0
T At] ∈ Rn×n, Yc ∈ {0, 1, · · · , k− 1}n, n = ns +nt, and

0 is an ns × nt null matrix.

Definition 1 (Cross Network Node Classification (CNNC)). Given a source graph, Gs =

(Vs, Es, Xs, Ys) and target graph, Gt = (Vt, Et, Xt, Yt), our goal is to learn a target function,

f : V → {0, 1, · · · , k − 1}, that accurately classifies the labeled nodes in Ys as well as the

unlabeled nodes in Yt.

3.4 Graph Convolutional Network (GCN)

Graph convolutional networks [37] employ a message passing strategy to succinctly

capture both the node features and graph structure information when learning the feature
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Figure 3.2: An illustration of the cost and transport plan matrices of optimal transport.

embedding of a node in the graph. Specifically, each “message” corresponds to the feature

embedding information of a node, which will be passed to all of its immediate neighbors. By

aggregating the features gathered from the neighbors, a new embedding for the node will be

generated.

The message passing strategy can be formally stated as follows. Given an adjacency

matrix A and node feature matrixX, the feature embedding of the nodes in layer l+1, H(l+1),

can be computed based on its feature embedding at its previous layer, H(l), as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

Ã = A+ I

D̃ii =
∑
j

Ãij

where H(0) = X (i.e., original node features), σ(·) is the ReLU activation function, and D̃ is

a diagonal matrix containing the sum of the edge weights associated with each node in the

graph.

3.5 Optimal Transport

Optimal Transport (OT) provides a principled approach for comparing two probability

distributions by finding the least costly way to reshape one of the distributions into the other

while incorporating their geometric information. The original OT problem was proposed by

Monge [48], with its modern formulation being attributed to Kantorovich [33]. Given two

marginal distributions µs ∈ Rns and µt ∈ Rnt let C ∈ Rns×nt be a cost matrix, where Cij
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is the cost of transporting one unit from µs
i to µt

j. Consider a transportation plan matrix

P ∈ Rns×nt , where pij is the proportion of probability mass µs
i that should be moved to µt

j.

The optimal transport (OT) problem seeks to find a transportation plan P that min-

imizes the total transportation cost. The minimum transportation cost W (µs, µt) is also

called the Wasserstein distance or the earth-mover distance.

W (µs, µt) := min
P∈U(µs,µt)

⟨P,C⟩F (2)

U(µs, µt) := {P ∈ Rns×nt
+ |P1nt = µs, P

T1ns = µt}

The discrete OT formulation [33] shown above can be solved as a linear programming

problem. However, it is computationally expensive O((n+m)nm log(n+m)), unstable, and

is not guaranteed to have unique solution. Fortunately these problems can be addressed by

employing the Sinkhorn distance Wλ [18] shown below, which utilizes an entropy regulariza-

tion function H(P ) to accelerate the OT computation. Specifically, Wλ(µs, µt) and P λ can

be solved using the well-known Sinkhorn algorithm as established by Cuturi [18].

Wλ(µs, µt) = ⟨P λ, C⟩ (3)

P λ = argmin
P∈U(µs,µt)

⟨P,C⟩ − λH(P )

U(µs, µt) :=
{
P ∈ Rns×nt

+

∣∣P1nt = µs, P
T1ns = µt

}
where H(P ) = −

∑
ij Pij logPij is the entropy regularization and λ is a user-specified regu-

larization hyperparameter.

3.6 Methodology

We employed a combination of graph convolutional networks (GCN) with node feature

transformation layers to learn the feature embedding of the nodes in the source and target

graphs. We then performed optimal transport on the learned embedding of the source nodes

to match the distribution of the learned embedding of the target nodes. Figure 3.3 provides

a high-level illustration of our proposed deep neural network architecture along with its
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training procedure. Details of the proposed architecture are described in the subsections

below.

3.6.1 Initial Node Embedding Construction & Pretraining

As previously noted, conventional GCN employs a message passing strategy to transmit

information about the feature embedding of a node to its immediate neighbors. This allows

each node to aggregate the feature information of its neighbors when constructing its own

latent embedding. Unfortunately, in graphs with low homophily, it is possible that the neigh-

borhood information obtained via message passing is of less value than the original feature

information of the node itself, which was the case with the population graph constructed

Figure 3.3: High level architecture of our model. Combined source and target datasets are
fed to two GCN layers and two NFT layers to learn two distinct embeddings. In pretraining
(left) these embeddings are concatenated and sent directly to a fully connected classifier.
Model weights are then updated using just cross entropy loss. In OT training (right) con-
catenated embeddings are routed to an OT layer before being sent to the classifier. The OT
layer replaces the source embedding with a transported version and then sends the target
embedding and the transported source embedding to the classifier. At this point the model
weights are updated with a combination of cross entropy and OT losses.
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from the ABIDE dataset. However, due to its current formulation (see Eqn. 1), conventional

GCN may not be able to attenuate the influence of the graph structure in comparison to the

influence of the original features.

To overcome this challenge, we propose a modification to the graph convolutional net-

work architecture to independently learn a nonlinear embedding of the original node features.

We call this the node feature transformation (NFT) layer in Fig 3.3. The NFT layer consists

of a combination of linear layer plus ReLU activation functions to transform the original

node features into their corresponding nonlinear embedding. The transformed features are

then concatenated with the structural embedding of the nodes obtained from GCN for sub-

sequent node classification. This strategy increases the flexibility of the model to capture

the relative influence of the node features and homophily (i.e., neighborhood features) on

the classification task. As shown in the architecture diagram, the GCN layers are trained on

combined adjacency and feature matrices of the source and target graphs, while the NFT

layers are trained on the combined feature matrices. The weights of the GCN and NFT

layers are jointly updated during backpropagation.

The pretraining process of the deep neural network can be seen on the left side of Fig

3.3. The purpose of pretraining is to ensure that the full network with optimal transport

(right side of Fig 3.3) can be seeded with a good set of initial weights. During pretraining, we

train the NFT and GCN layers to each produce their own feature embeddings, HL (output

of NFT layer) and HG (output of GCN layer). The two embeddings are then concatenated

and sent to a fully connected network for node classification. The network is trained to

minimize the following cross-entropy loss function:

Pretraining: LCE = − 1

ns

∑
xi∈Xs

l∑
j=0

Yij log(Ŷij) (4)

3.6.2 Domain Adaptation via Optimal Transport GCN

We address the domain adaptation problem for cross network node classification (CNNC)

by combining the pretrained network with an optimal transport layer as shown on the right
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side of Fig. 3.3. The optimal transport layer utilizes the Sinkhorn algorithm [18] to learn

the relevant transportation plan matrix P that will transform the learned embedding of the

source nodes to match the distribution of the target node embedding.

The OT layer takes the source and target node embeddings along with the entropy

regularization hyperparameter λ as inputs and returns a new embedding of the source nodes,

Ĥs, which matches the distribution of the target nodes, Ht. This can be accomplished by

solving the OT problem given in Eqn. (3) to learn the transportation plan P and using the

barycentric mapping approach in [16] [23] to transform the source node features. Specifically,

for each source node i, its latent features will be transported to a new embedding as follows:

Ĥs,i = argmin
H∈Rd

∑
j

P λ
i,j C(H,H t

j)

If the cost function C corresponds to the squared l2 distance, then the barycentric mapping

reduces to the following form.

Ĥs = diag(P λ1nt)
−1P λHt

For domain adaptation, we typically choose the marginal distributions of the source and

target node embeddings, µs and µt, to be a uniform distribution. This allows us to further

simplify the equation as follows:

Ĥs = nsP
λHt (5)

where ns is the number of source nodes.

Both Ĥs andHt are then fed to a fully connected layer to perform the node classification.

By replacing Hs with Ĥs we train the model to work on data that has been transported to

the target domain. This addresses the domain adaptation problem and allows the classifier

to accurately classify the target nodes.

Finally, the full OTGCN network is trained to minimize the following joint objective

function:

L = LCE + θLOT (6)
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where LCE is the cross entropy loss given in Eqn. (8) and LOT is the optimal transport loss

defined as follows:

LOT = ⟨P λ, C⟩ − λH(P λ) (7)

with the hyperparameter θ controlling how much emphasis is placed on the optimal transport

term.

3.7 Experimental Evaluation

This section presents the experiments performed to evaluate the effectiveness of our

proposed OTGCN framework. The source code for the framework and other aspects of our

experiments can be found at https://github.com/ajoystephens/otgcn

Site Samples Autism Dataset
YALE 41 22 target

CALTECH 15 5 target
CMU 11 6 target
NYU 172 74 source
UM 1 86 34 source
USM 67 43 source

UCLA 1 64 37 source
PITT 50 24 source

MAX MUN 46 19 source
TRINITY 44 19 source
UM 2 34 13 source
KKI 33 12 source

LEUVEN 2 28 12 source
LEUVEN 1 28 14 source

OLIN 28 14 source
SDSU 27 8 source
SBL 26 12 source

STANFORD 25 12 source
OHSU 25 12 source
UCLA 2 21 11 source

Table 3.1: The data collection sites for ABIDE and its selection as source/target graph.
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Autism Control Total
Source 370 (46.0%) 434 (54.0%) 804
Target 33 (49.3%) 34 (50.7%) 67

Table 3.2: ABIDE Totals by Label and Dataset.

3.7.1 Data Preparation

The ABIDE [17] dataset is a combination of samples obtained from 20 different collection

sites as shown in Table 4.1 for ASD classification. We split these collection sites into source

and target sites for a total of 804 source samples and 67 target samples. Following the

terminology used in other previous works in this area [51] [64] [42] we refer to the two classes

in the dataset as autism and control. Autism refers to a subject who developed ASD while

control refers to a subject without ASD.

For the ABIDE dataset, the image data was prepared following the methodology of [51].

A population graph is constructed by considering each subject as a node and computing the

similarity of their fMRI images for edge construction. Specifically, an edge was placed be-

tween a pair of nodes only if their image similarity exceeds certain threshold value. The edges

are also weighted according to their computed similarity. The node features were derived

from phenotype information. After removing all columns with a known direct relationship to

the class label, the features were one-hot-encoded as applicable. They were then normalized

and any features with an abnormally high correlation to the label were also removed.

3.7.2 Experimental Setup

We compared the performance of OTGCN against the following baselines. Aside from

GCN, the rest of the baseline methods are designed for cross network node classification

problems.

• GCN [37]: A graph neural network that uses a message-passing technique to learn the

feature embedding of the nodes. The architecture has been incorporated into OTGCN

as well as other graph neural networks [52] [35] [31]. The GCN implementation was

written using code from the torch geometric library [24] and involved two GCN layers
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followed by a fully connected classification layer.

• AdaGCN [20]: A CNNC technique which uses a series of GCN layers to learn separate

embeddings for the source and target networks. It then performs domain adaptation

by using an adversarial discriminator to force the two embedding into a shared do-

main. The AdaGCN implementation used in this chapter was taken directly from

the author’s provide source code1. No significant changes were made to the author’s

implementation, which consists of three GCN layers and a single layer discriminator.

• ASN [75]: Another CNNC approach which consists of two separate GCN variational

autoencoders (VAE) for the source and target, a shared GCN encoder which looks at

both the source and target, and a adversarial discriminator. Here we used source code

provide by the author2 with a small modification to correct for NaNs produced by the

VAE reconstruction loss. The VAE reconstruction loss equation implemented in ASN

includes a large exponential term followed by an aggregation step which can lead to

NaNs if there is a large dataset or large values in VAE output. We addressed this issue

by restricting values in VAE-generated embedding to between -10 and 10. Each of the

three encoders in ASN were implemented with two GCN layers and the two decoders

had a single layer.

• ACDNE [56]: A CNNC approach which uses special feature extraction layers to learn

separate embeddings for the features and structure of each network. It then concate-

nates the two embeddings into a single source embedding and a single target embedding

before sending both to an adversarial discriminator. We followed the authors source

code3 with this method as well and made no significant changes. Each of the four

feature extractors consisted of two layers.

For fair comparison we implemented OTGCN with two NFT layers and two GCN layers,

similar to most of the baseline methods. We use the macro- and micro-F1 scores[26] as

1https://github.com/daiquanyu/AdaGCN TKDE
2https://github.com/yuntaodu/ASN
3https://github.com/shenxiaocam/ACDNE
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our evaluation metrics when comparing the performance of different classification methods.

We perform 10-fold cross validation to select the hyperparameters of OTGCN as well as

the reported baselines. For OTGCN, we tune the hyperparameters for λ and θ as well as

standard hyperparameters such as learning rate. Possible hyperparameter values were [0.01,

0.03, 0.05] for λ and [5, 10, 15] for θ. Since the target graph is completely unlabeled and

has potentially different distribution than the source graph, this poses a significant problem

for hyperparameter tuning. To our knowledge there is no ideal solution to this problem.

For this work, the source dataset was split into 10 folds and the target dataset was excluded

from the hyperparameter tuning process. In each pass the fold selected for validation was

removed from the remainder of the source dataset and treated as a distinct target dataset.

We followed this process to choose the best hyperparameters for both our method and the

reported baselines.

For OTGCN the first and second NFT layers produced hidden embeddings of 32 and

64 units respectively. Similarly, the two GCN embeddings were also 32 and 64. The selected

hyperparameters were λ = 0.01 and θ = 10.

Each of ACDNE’s feature extrators is build with two layer models which contain 64 and

32 hidden dimensions. We chose hyperparameter candidate values by referencing the paper

associated with the work. Our tuning script selected 1× 10−5 for the weight of the pairwise

constraint loss and 1× 10−5 for the weight of the l2 regularization term.

ADAGCN’s three GCN layers have 64, 32 and 16 hidden dimensions and the discrimina-

tor has a single 16 unit hidden layer. We chose hyperparameter candidate values by looking

at existing values within their source code for other datasets. There were three model-specific

hyperparmeters for controlling various portion of their loss functions. Our tuning script se-

lected 5 × 10−5 for the weight of the l2 loss, 1.0 for the weight of the Wasserstein loss, and

5.0 for the weight of the penalty loss.

ASN’s encoders were all two layers with 64 and 32 hidden units. Once again we chose

hyperparameter candidate values by looking at existing information within the source code.
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Our tuning script chose 0.0001 for the weight of the difference loss, 1.0 for the weight of the

domain loss, and 0.5 for the weight of the reconstruction loss.

After hyperparameter tuning each method was trained with the chosen hyperparameters

ten times with distinct random seeds. Each time the model was trained on the entire labeled

source dataset and evaluated on the target dataset. The mean and standard deviation of

the resulting micro and macro F1 results are recorded in Table 3.3.

Method Macro F1 Micro F1
GCN 0.50265 +/- 0.03876 0.55821 +/- 0.02234

AdaGCN 0.27853 +/- 0.18966 0.37112 +/- 0.22752
ASN 0.38712 +/- 0.09156 0.52537 +/- 0.04418

ACDNE 0.94310 +/- 0.04065 0.94328 +/- 0.04049
OTGCN 0.97907 +/- 0.00733 0.97910 +/- 0.00731

Table 3.3: Performance results on target dataset.

Figure 3.4: TSNE plot of combined embeddings before and after transport in the first pass
of our OT layer. Points represent subjects and the lines are potential decision boundaries
based off from each source dataset. The light colors represent the source dataset, before
transport on the left and after transport on the right. The dark colors represent the target
datset, which is the same in both cases. The green circle points out a portion of the target
group which will likely be incorrectly classified before transportation occurs. The green
arrow points to that same group on the right.
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3.7.3 Results

Table 3.3 shows the micro- and macro-F1 results for OTGCN and all baselines on the

prepared ABIDE target dataset. These results demonstrate the improved performance of

OTGCN over existing CNNC baselines. The next best performing result was from ACDNE,

which did not rely on GCN for it’s graph embedding, but rather extracted structural and

feature information separately into separate embeddings. OTGCN and ACDNE perfomed

significantly better than all other baselines, likely because these two methods do not rely

strictly upon GCN and the homophily principle.

Next we endeavor to establish the effectiveness of our optimal transport layer. To do this

we save off a GCN embedding just before we send it to the very first OT transportation. We

then transport the source embedding, use TSNE to reduce the embeddings to two dimensions

and plot the results.

Fig. 3.4 is an example of a plot after this process. Here the points are colored according

to label and dataset. On the left we see source before transportation in lighter colors,

autism is light blue and control is light orange. The target dataset is plotted with it in

darker colors, autism is dark blue and control is dark orange. A dark green line illustrates

a potential decision boundary according to the source dataset, and it is clear that it will

likely misclassify a significant group of the target samples. On the right we see a similar

plot, but in this case the source samples have been transported to the target domain via

our OT layer. Once again a dark green line illustrates a potential decision boundary based

off from the source samples. It is clear from this demonstration that a decision boundary

derived from the transported source embedding will more accurately classify subjects in the

target network.

3.8 Conclusion

This chapter presents a deep learning framework called OTGCN to address the ASD

detection problem using imaging and non-imaging information from multiple sites. OTGCN

leverages ideas from graph neural networks to learn a feature representation of the nodes
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and optimal transport to effectively tackle the domain adaptation problem between source

and target graphs. Our framework also incorporates a nonlinear feature transformation

layer to alleviate the issue of graphs with low homophily. We experimentally compared the

performance of OTGCN against several state of the art CNNC baselines using the multi-site

ABIDE dataset. These experiments demonstrated the superior performance of OTGCN over

the baseline methods.
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CHAPTER 4: FAIR CNNC VIA OPTIMAL TRANSPORT

4.1 Introduction

The previous chapter presented a method for leveraging optimal transport to address

the concept drift challenge within the task of cross-network node classification (CNNC). In

this chapter we extend the previous method to to address the challenges of fairness and

scalability within CNNC.

Incorporating fairness consideration into node classification is a necessary challenge that

must be addressed to prevent the model from generating biased prediction results. Graph

neural networks (GNNs) are especially prone to fairness issues due to an artifact of the ho-

mophily principle, which states that similar nodes tend to be connected to each other [46].

GNNs rely upon this principle as they use message-passing to incorporate neighborhood in-

formation into the learning of node representations. Past research on graph fairness have,

however, shown that neighborhood structure is often more dependent on the protected at-

tributes than the classification labels [21][55]. As a consequence, GNNs have the potential to

exacerbate unfairness as the learned node embeddings may capture more information about

a node’s protected group than its class label [34], a phenomenon that is also known as link

bias [19]. To alleviate such bias, the goal of many fair node classification algorithms is to

learn an embedding that is less reliant upon an individual’s protected group [3][19][55]. How-

ever, despite the increasing research, current fairness-aware methods are mostly designed for

homogeneous networks without accounting for the effect of concept drift.

Furthermore, despite their growing research, none of the existing CNNC approaches are

designed to address fairness concerns. Similar to CNNC, while OT is a powerful approach

for graph transfer learning [11], there has yet been any studies on incorporating fairness into

the OT learning formulation. As OT maps samples in the source domain to similar samples

in the target, it is also vulnerable to generating biased transportation plans. As previously

noted, GNNs have an established weakness in that they often learn node representations

which more closely represent protected groups than they do classification outcomes [55][34].
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Thus, when used in conjunction with a GNN, OT has the potential to exacerbate unfairness

by mapping between members of the same protected group instead of members of the same

class.

One simple way to ensure fairness is by postprocessing the classifier trained on the

feature embeddings generated by OT so they would not discriminate against particular

subgroups of the population. However, this approach may not be as helpful since the post-

processing does not alter the learned OT embedding that may still be biased. This begs the

question: How to effectively impart fairness into OT for fair cross-network node

classification?

In this chapter, we first present a novel framework called FOCI (Fair CrOss-Network

Node ClassIfication) that performs fair optimal transport while mitigating the concept drift

issue in cross-network node classification. Specifically, FOCI considers the nodes’ protected

attribute information when transporting the source nodes to their corresponding target nodes

when learning their feature embedding. We introduce a fair Sinkhorn distance measure for

OT to encourage diversity in the mapping of the source nodes to target nodes. This strategy

ensures that the learned features are oblivious to the protected attribute information, which

is essential for creating an unbiased node feature representation.

After establishing the effectiveness of FOCI we develop and evaluate two additional

variations. FastFOCI is the core FOCI approach, but with a few architectural improvements

which allow it to scale to larger datasets. SpFOCI is a method which takes advantage of the

performance improvements of FastFOCI to integrate statistical parity more directly into the

optimal transport algorithm.

In summary, the main contributions of the paper include the following:

• We introduce a fair Sinkhorn distance measure to alleviate bias in the OT process by

encouraging connections between members of distinct protected groups.

• We introduce a second fair Sinkhorn distance measure which aleviates bias by directly

considering statistical parity within the optimal transport loss function.
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• We developed FOCI, a graph neural network framework that uses the fair Sinkhorn

distance measure for cross-network node classification. To the best of our knowledge,

this is the first CNNC and OT method that considers fairness in its formulation.

• We develop FastFOCI and SpFOCI, two modifications which can be made on the core

FOCI approach.

• We perform extensive experiments to demonstrate the effectiveness of FOCI, FastFOCI,

and SpFOCI on several real world datasets.

4.2 Related Works

Previous chapters have disused foundational works in the areas of node classification,

cross-network node classification and fairness in neural networks. This chapter brings these

concepts together in fair cross-network node classification. To the best of our knowledge this

is the first work addressing fair cross-network node classification and, therefore, there are no

other related works in the space at this time. There is, however, a significant body of work

addressing fairness in node classification tasks.

4.2.1 Fair Node Classification

As fairness has become an important factor to consider for node classification, various

methods have recently been developed. For example, the FairDrop [58] method aims to

reduce the negative effect of homophily by reducing the number of edges between nodes

sharing the same sensitive attribute.Dai et al.[19] proposed FairGNN, which addresses the

shortage of sensitive attributes for adversarial debiasing by estimating the users’ sensitive

attributes. Agarwal et al.[3] proposed the NIFTY algorithm, which enforces fairness and

stability conditions on both the objective function and GNN architecture. However, none

of these methods are designed for cross-network node classification, where there could be

distribution shift among the networks.
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4.3 Preliminaries

4.3.1 Problem Statement

Consider a set of graphs, G1,G2, · · · Gn, where each Gk(Vk, Ek, Xk, Yk) is an attributed

graph, with a node set Vk, edge set Ek ⊆ Vk × Vk, node attribute matrix Xk, and node

label vector Yk. We further partition the columns of the node attribute matrix Xk into two

submatrices, X
(p)
k and X

(u)
k , where X

(p)
k corresponds to the submatrix associated with the

set of protected attributes (e.g., gender, race, age group, etc) while X
(u)
k is the submatrix

associated with the remaining (unprotected) attributes. LetA(k) denote the adjacency matrix

representation of Ek, where A
(k)
ij > 0 if (vi, vj) ∈ Ek and 0 otherwise.

In a domain adaptation setting, we assume there exists a partitioning on the set of the

graphs into two disjoint groups—source graph Gs(Vs, Es, Xs, Ys), where the node labels in Ys

are known, and a target graph, Gt(Vt, Et, Xt, Yt), where the node labels in Yt are unknown.

Assuming the first m graphs contain labeled nodes, then Gs = ∪m
k=1Gk and Gt = ∪n

k=m+1Gk,

where Vs = ∪m
k=1Vk, Es = ∪m

k=1Ek, Vt = ∪n
k=m+11Vk, and Et = ∪n

k=m+1Ek. The adjacency

matrices corresponding to the source and target graphs are denoted as As ∈ Rns×ns and

At ∈ Rnt×nt , respectively, where ns =
∑m

i=1 |Vi| and nt =
∑n

i=m+1 |Vi| are the corresponding

number of source and target nodes. Assuming the graphs have identical node features and

the same set of class labels, therefore Xs ∈ Rns×d and Xt ∈ Rnt×d, Ys ∈ {0, 1, · · · , k − 1}ns

and Yt ∈ {0, 1, · · · , k−1}nt , where k is the number of classes. At times, we also consider the

combined graph Gc(Vc, Ec, Xc, Yc), where Vc = Vs ∪ Vt, Ec = Es ∪Et, Xc = [Xs;Xt] ∈ Rn×m,

Ac = [As 0; 0T At] ∈ Rn×n, Yc ∈ {0, 1, · · · , k − 1}n, n = ns + nt, and 0 is an ns × nt null

matrix.

Given a source graph, Gs = (Vs, Es, Xs, Ys) and target graph, Gt = (Vt, Et, Xt, Yt),

the goal of fair cross-network node classification is to learn a target function, f : V →

{0, 1, · · · , k − 1}, that accurately classifies the labeled nodes in Ys as well as the unlabeled

nodes in Yt while minimizing the disparity in the classification performance for different

groups of the protected attributes.
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4.3.2 Statistical Parity

We define fairness through the lens of statistical parity, which is one of the most com-

monly used fairness metrics. The metric states that the positive prediction outcomes should

be evenly distributed between members of different protected groups. The metric is defined

in the following equation where statistical parity is noted SP.

SP = |P (Ŷ = 1|X(p) = 0)− P (Ŷ = 1|X(p) = 1)|

where Ŷ is a given prediction, X(p) is a protected attribute, and the goal is to have a value

as close to zero as possible. Statistical parity is typically used in scenarios such as default

prediction for a loan or insurance claims. In these scenarios specific protected groups are

often disproportionately associated with a given label for complicated cultural reasons and

improvements in statistical parity can be an important first step towards achieving equity.

4.4 Proposed FOCI Architecture

Fig. 4.1 shows a high-level overview of our proposed architecture. FOCI consists of 3 in-

tegrated modules for representation learning, OT for domain adaptation, and fully connected

layers for node classification. Details of the architecture are given below.

Figure 4.1: A schematic illustration of the FOCI framework. The framework contains in-
tegrated modules for representation learning (using 2-layer GCN with PPMI matrix along
with 2-layer NFT), fair OT for domain adaptation, and a fully connected node classification
layer.
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4.4.1 Representation Learning & Pretraining

FOCI modifies the GCN architecture [37] to learn a joint embedding of the nodes in

the source and target networks. The modifications are needed for two reasons. First, due

to oversmoothing effect [40], current GCN cannot be easily extended beyond 2 or 3 layers,

thus throttling the effective neighborhood size of its message passing. Because of its limited

neighborhood size and the link bias problem noted in the introduction, the learned represen-

tation may inadvertantly encode the protected attribute information [19]. To overcome this

limitation, we expand the neighborhood utilized by the GCN through the use of the positive

pointwise mutual information (PPMI) matrix [39]. A PPMI matrix measures the topological

proximity of nodes within some K-steps within the network and has been used with other

GNN approaches [9, 57, 56, 75] to expand the neighborhood of interest. By using a PPMI

matrix, the embedding learned will more likely capture information from nodes beyond those

from the same protected group.

The representation learning module also learns a separate nonlinear embedding of the

node features. This allows us to maintain a node embedding that is free of link bias for

later use. We refer to this as the node feature transformation (NFT) layer, which consists of

a fully-connected linear layer with ReLU activation function. We pre-train the network to

classify only the labeled nodes in the source network. Specifically, FOCI uses two GCN layers

with the PPMI matrix and two NFT layers. The learned node embeddings are concatenated

as shown in Fig. 4.1 before being sent to a fully connected classification layer, which is

trained to minimize the following cross-entropy loss:

Pre-training: LCE = − 1

ns

∑
xi∈Xs

l∑
j=0

Yij log(Ŷij) (8)

4.4.2 Fair Optimal Transport

Our strategy to incorporate fairness into OT for graph transfer learning is by encour-

aging mappings between members of different protected groups. This heuristic helps to

alleviate the link bias problem due to the inherent homophily effect in network data. This
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method will be integrated directly into OT, resulting in a new fair Sinkhorn algorithm.

Let X
(p)
s and X

(p)
t be the protected attributes of the nodes in the source and target

networks, respectively. We first create two sparse matrices, R ∈ [0, 1]ns×nt and S ∈ [0, 1]ns×nt ,

where

Rij =


1 if X

(p)
s,i = X

(p)
t,j

0 otherwise

, Sij =


1 if X

(p)
s,i ̸= X

(p)
t,j

0 otherwise

Given a transportation plan matrix P , we compute the following fairness loss:

ℓF =
⟨P,R⟩F
⟨R,R⟩F

− ⟨P, S⟩F
⟨S, S⟩F

,

where ⟨A,B⟩F =
∑

ij AijBij denotes the Frobenius inner product between two matrices. The

smaller the fairness loss, the greater the emphasis is on transportation between samples in

different protected groups. This enables us to incorporate fairness consideration into OT by

introducing the following γ-fair Sinkhorn distance:

Wγ(µs, µt) = ⟨P γ, C⟩ (9)

where

P γ = argminP∈U(µs,µt)LOT ,

LOT = ⟨P,C⟩ − λh(P ) + γ

[
⟨P,R⟩
⟨R,R⟩

− ⟨P, S⟩
⟨S, S⟩

]
U(µs, µt) :=

{
P ∈ Rns×nt

+

∣∣P1nt = µs, P
T1ns = µt

}
Armed with this new formulation we introduce the following theorem.

Theorem 1. Given the γ-fair Sinkhorn distance in Eqn. 9, the solution for P γ can be

simplified as

P γ = diag(u)Kdiag(v)

where

K = e
− 1

λ
(C+γ( R

n1
− S

n2
))
, u = e−

1
2
− 1

λ
α, v = e−

1
2
− 1

λ
β

The proof for Theorem 1 is as follows.
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Proof. The Lagrangian of the function in Eqn. 9 is

L =
∑
ij

[
PijCij + λPij logPij + γPij

(
Rij

n1

− Sij

n2

)]
+ αT (P1d − µs) + βT (P T1d − µt)

where n1 = ⟨R,R⟩ and n2 = ⟨S, S⟩. The solution can be found by taking the derivative of

the Lagrangian function with respect to Pij and setting it to zero.

Pij = e−
1
2
− 1

λ
αie

− 1
λ
(cij+γ(

rij
n1

−
sij
n2

))
e−

1
2
− 1

λ
βj

The theorem follows by replacing the terms for K, u, and v, respectively, into the above

equation.

Theorem 1 enables us to compute P γ using the modified fair Sinkhorn algorithm shown

in Algorithm 1, which in turn, allows us to find a fairness-aware transportation plan. These

changes can be seen in Algorithm 1 and has no significant impact on computational com-

plexity of existing Sinkhorn algorithm [18]. Additionally, since we are still utilizing squared

l2 loss for our cost and uniform marginals, the transported source node representation by

OT remains unchanged as shown below:

Ĥs = nsP
λHt (10)

4.4.3 Cross-Network Node Classification

The fair OT module will generate a transported source node embedding matrix, Ĥs

using equation (10). Next Ĥs and the un-transformed target embedding Ht are passed to

a fully connected network for node classification. After pre-training, the entire network is

trained end-to-end to optimize the following joint objective function, which is a combination

of the cross-entropy loss and optimal transport loss.

L = LCE + θLOT (11)

where θ is a hyperparameter that controls the tradeoff between the two losses.

33



Algorithm 1 Fair Sinkhorn

Require: Hs, Ht, X
(p)
s , X

(p)
t , λ, γ

C = computeCost(Hs, Ht)
µs, µt = computeUniformMarginals(Hs, Ht)
R, S = getMasks(gs, gt)

K = e
− 1

λ
(C+γ( R

n1
− S

n2
))

▷ Modification
u = ones(length(µs))/length(µs)
K̃ = diag(1/µs)K
while u changes do

u = 1/(K̃(µt/(K
′u))

end while
v = µt/(K

′u)
W = sum(u⊙ ((K ⊙ C)v)) ▷ Distance Measure
P = diag(u)Kdiag(v) ▷ Transport Plan
Ĥs = nsPHt

4.5 Proposed FOCI Modifications

4.5.1 FastFOCI

The first obvious hindrance to performance in FOCI is that the representation learning

step must evaluate both the source and target graphs at the same time. GCN has a compu-

tational complexity of O(|E|mh1h2) where |E| is the number of edges, m is the number of

Figure 4.2: A schematic illustration of the FastFOCI framework.

34



Algorithm 2 FOCI

Require: Xs, X
(p)
s , As, Ys, Xt, X

(p)
t , At, λ, γ, θ

Ac, Xc = Combine(Xs, As, Xt, At)
Qc = ComputePPMI(Ac)
for epoch in max epochs do

HG = GCN(Qc, Xc)
HL = NFT (Xc)
H = HG

⊕
HL

Hs, Ht = SeparateSourceAndTarget(H)
if epoch > pretrain then

Ĥs, P, R, S = FairSink(Hs, Ht, X
(p)
s , X

(p)
t , λ, γ)

end if
ŷs, ŷt = Classifier(Ĥs, Ht)
if epoch > pretrain then

ot loss = ⟨P,C⟩ − λh(P ) + γ
(

⟨P,R⟩
⟨R,R⟩ −

⟨P,S⟩
⟨S,S⟩

)
loss = LCE(ys, ŷs) + θLOT

else
loss = LCE(ys, ŷs)

end if
update layer weights

end for

input channels or features in X, h1 is the number of hidden features in the first GCN layer,

and h2 is the number of features in the output layer [37]. While GCN is not horribly com-

plex, it is linear in the number of graph edges, and therefore forcing a GCN to look at both

graphs can have a significant impact. Therefore, the first major improvement implemented

in FastFOCI is that the representation learning phase will consider the source data only.

Previously FOCI representation learning consisted of a GCN and an NFT which con-

sidered the source and target togeather. In FastFOCI the source graph will be fed to source

GCN and NFT layers, GCNs and NFTs. In pretraining the output of these layers will be sent

to a classifier and source predictions will be used to update the GCNs, NFTs, and classifier.

In later steps GCNs and NFTs will first pass their current parameters to target GCNt and

NFTt. Then GCNs and NFTs will be used to construct a source representation HS while

GCNt and NFTt is used to construct a target representation HT . Later the loss will be used

to update parameters of GCNs, NFTs, and classifier. In this way we reduce the number of
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edges required by the GCN, which no longer requires full access to both source and target

graphs at the same time.

The next area of improvement is in the optimal transport layer. The Sinkhorn algorithm

has been experimentally shown to be O(nsnt) [18]. The purpose of our optimal transport

layer is to transport node representations from the source domain to the target domain prior

to sending them to a classifier. The classifier does not need all node representations at

the same time so we can improve the speed of the optimal transport layer by inserting a

sampling step after node representations are acquired and before optimal transport occurs.

Within the sampling step we randomly sample representations from both the source and

target embeddings HS and HT described above and then pass those samples on to optimal

transport. We can then transport the sampled source representations to send on to the

classifier. These changes are all shown in Fig. 4.2.

4.5.2 SpFOCI

Previously the FOCI algorithm sought to improve fair treatment by intuitively encourag-

ing transportation between members of different protected groups. Another option, however,

is to incorporate statistical parity into the optimal transport loss function in a more direct

manner. Remember that the formulation for statistical parity is the following:

P (Ŷ = 1|X(p) = 0) = P (Ŷ = 1|X(p) = 1)

According to our problem statement we have access to the source labels ys as well as a

binary protected attribute from the target dataset X
(p)
t ∈ Rnt where X

(p)
ti can be either 0 or

1. We now define ỹt = P Tys, an approximation of ŷt where ỹti is the proportion of target

sample i that is being mapped with source samples where ys = 1. This approximation allows

us to define a statistical parity measure below.

SPFOCI =

∣∣∣∣∣ (X(p)
t )T ỹt

(X
(p)
t )T1nt

− (1−X
(p)
t )T ỹt

(1−X
(p)
t )T1nt

∣∣∣∣∣ =
∣∣∣∣∣
(

X
(p)
t )T

(X
(p)
t )T1nt

− (1−X
(p)
t )T

(1−X
(p)
t )T1nt

)
P Tys

∣∣∣∣∣
Or for simplicity,
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SPFOCI = |wTP Tys| where w =
X

(p)
t

(X
(p)
t )T1nt

− 1−X
(p)
t

(1−X
(p)
t )T1nt

We can now add this new term into the OT loss function and introduce a new SP-fair

Sinkhorn distance:

Wsp(µs, µt) = ⟨P sp, C⟩ (12)

where

P sp = argminP∈U(µs,µt)LSP ,

LSP = ⟨P,C⟩ − λh(P ) + γ|wTP Tys|

U(µs, µt) :=
{
P ∈ Rns×nt

+

∣∣P1nt = µs, P
T1ns = µt

}
This OT formulation leads us to the following theorem.

Theorem 2. Given the SP-fair Sinkhorn distance in Eqn. 12, the solution for P SP can be

simplified as

P SP = diag(u)Kdiag(v) where u = e−
1
2
− 1

λ
α, v = e−

1
2
− 1

λ
βand

K =


e−

1
λ
(C+γwyTs ), if wTP Tys > 0

e−
1
λ
(C−γwyTs ), if wTP Tys < 0

e−
1
λ
C , if wTP Tys = 0

(13)

The proof for Theorem 2 is as follows.

Proof. The Lagrangian of the function in Eqn. 12 is

L =
∑
ij

λpij log pij + pijcij + γ

∣∣∣∣∣∑
ij

wipijysj

∣∣∣∣∣+ αT (P1d − µs) + βT (P T1d − µt)
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dataset nodes edges #(Y = 1) #(X(p) = 1)
Pokec-n 2933 16821.0 2145 (73%) 1722 (59%)
Pokec-z 3285 22454.0 2137 (65%) 1844 (56%)
Compas-0 2170 137473 1042 (48%) 1690 (78%)
Compas-1 1434 148012 674 (47%) 1140 (79%)
Abide-large 804 93886 370 (46%) 685 (85%)
Abide-small 67 587 33 (49%) 42 (63%)
Credit-0 10468 75669 8029 (76%) 5462 (52%)
Credit-1 10169 29227 8384 (82%) 5360 (52%)

Table 4.1: Breakdown of datasets used in experiments.

We can then solve the Lagrangian function with respect to Pij to obtain the following result.

pij =


e−

1
2
− 1

λ
αie−

1
λ
(cij+γwiysj)e−

1
2
− 1

λ
βj , if wTP Tys > 0

e−
1
2
− 1

λ
αie−

1
λ
(cij−γwiysj)e−

1
2
− 1

λ
βj , if wTP Tys < 0

e−
1
2
− 1

λ
αie−

1
λ
cije−

1
2
− 1

λ
βj , if wTP Tys = 0

(14)

The theorem follows by replacing the terms for K, u, and v, respectively, into the above

equation.

This new formulation allows us to obtain a solution by computing three different trans-

port plans, one for each value of K, and then checking to see which one minimizes LSP .

This approach will be more computationally expensive as we must run a Sinkhorn algorithm

three times to obtain our three transport plans. Therefore, this OT approach is combined

with the improvements made in FastFOCI to present SpFOCI.

4.6 Experimental Evaluation

This section describes the experiments performed to evaluate the effectiveness of our

proposed FOCI framework. The source code for our approach can be found at https://github.

com/ajoystephens/foci.

4.6.1 Data Preparation

We consider four real-world datasets for our experiments. Pokec [38] is a popular social

media platform in Slovakia. The node feature information is obtained from the user profile
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data while the link structure represents relationships between users. The classification task

in this case is to predict whether a user smokes while the protected attribute here is user’s

sex. We use data from two separate geographical regions—Pokec-n and Pokec-z—to form

the source and target networks for CNNC.

Compas [4] is a recidivism dataset in which each node corresponds to an incarcerated

individual while an edge is formed by connecting individuals who were incarcerated during

an overlapping time period. The classification task here is to predict whether an individual

will re-offend again in the future. We use race as the protected attribute. The source

and target networks are created by applying spectral clustering to split the network into 2

subgraphs, denoted as Compas-0 and Compas-1, respectively.

ABIDE [17] is a popular dataset for studying Autism Spectrum Disorder (ASD). Simular to

previous works [51][52][35][31], we construct a population graph by using phenotypic subject

data as node features and resting-state fMRI similarity to construct the edges. Here the

presence of ASD is node label and sex is the protected attribute. The dataset was split into

two separate graphs according to their data collection sites. Since many of the collection

sites provide few or no female samples, we split the dataset into two by combining collection

sites with over 70% male samples into a large source dataset and the remaining collection

sites into a smaller target dataset. Given the small size of the ABIDE dataset and the need

to have a large enough sample to train GNN models, there is only 1 version of the source

and target networks in our experiments.

Credit [69] is a financial dataset where the task is to predict whether or not an individual will

default on a loan. The protected attribute is the age of the individual, and edges are formed

between individuals with similar spending and payment patterns. Credit-0 was selected from

the initial 30,000 node dataset by first selecting the highest degree node and then repeatedly

adding all immediate degree neighbors until the Credit-0 included over 10,000 nodes. Once

Credit-0 was removed from the intial graph the process was repeated to obtain Credit-1.
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4.6.2 Baseline Approaches

We compared FOCI against the following CNNC baseline methods.

• ACDNE [56]: This approach uses an adversarial deep network embedding approach

for domain adaptation. It learns a separate embedding from the node features and link

structure before sending them to a discriminator. We use the implementation provided

by the authors4.

• AdaGCN [20]: This approach learns the node embeddings using a 3-layer GCN, fol-

lowed by a single layer discriminator to address the domain drift issue. All experiments

were performed using the source code made available by the authors5.

• ASN [75]: This approach uses a series of 2-layer GCNs and GCN variational autoen-

coders (VAE) to learn the feature embedding. It addresses the domain adaptation

issue using an adversarial discriminator. We use the authors’ implementation6 with

a minor change using gradient clipping to address the NaN values generated by their

VAEs.

For every method, we performed 10-fold cross fold validation on the source dataset to

select their best hyperparameters. For the baseline methods, the range of their hyperparam-

eter values include those reported in their authors’ published papers and source code. Once

the best hyperparameters were chosen, we acquired the final results by training the models

on the full source dataset and applied them to the full target dataset. We repeated this 10

times with different random seeds and recorded the average F1-score and statistical parity

values. Recall that an ideal F1-score should be 1 while statistical parity should be as close

to 0 as possible.

4.6.3 Performance Comparison

The results comparing FOCI method to other CNNC approaches are shown in Fig. 4.3.

Here the goal is to achieve high node classification results, as measured by F1-score, while

4https://github.com/shenxiaocam/ACDNE
5https://github.com/daiquanyu/AdaGCN TKDE
6https://github.com/yuntaodu/ASN
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(a) Pokec-n to z (b) Pokec-z to n (c) Compas-0 to 1

(d) Compas-1 to 0 (e) Abide

Figure 4.3: F1-score and statistical parity for FOCI and other CNNC baselines. The goal is
to be closest to the upper left corner by balancing a high f1-score and low statistical parity.

simultaneously improving fairness, as measured by statistical parity. A good results moves

closer to the upper left corner, achieving a high F1-score and low statistical parity. Both

AdaGCN and ASN struggled to classify nodes in most of the datasets that we reviewed.

They achieved very low F1-scores and low statistical parity by classifying the majority of

nodes as the same class. We provide an example confusion matrix for one of the 10 runs of

ASN in Table 4.2. Though the result suggests ASN has an excellent statistical parity, i.e.,

0.0002, its F1-score is 0.1329, which is significantly lower than the average F1-score for FOCI

(0.6637). This example illustrates how a model can achieve excellent statistical parity despite

performing equally badly on all groups of the protected attribute. The exception to this is the

Pokec datasets, where ASN manages to obtain reasonably high F1-score (though still lower

than FOCI and ACDNE) and low statistical parity on Pokec-z to Pokec-n. Unfortunately,

these good results were not consistent for ASN.

In each case, FOCI and ACDNE consistently achieve the two highest F1-scores, though

the scores were relatively close. ACDNE had a slightly higher F1-score than FOCI in three of

the five datasets. However, FOCI outperformed ACDNE in terms of statistical parity in all 5

41



X(p) = 0 X(p) = 1
Y = 0 Y = 1 Y = 0 Y = 1

Ŷ = 0 422 298 438 569

Ŷ = 1 32 26 40 47

Table 4.2: Example results from ASN on a target dataset of Compas-0 after training on
Compas-1 over one seed. Though its statistical parity is 0.0002, its F1-score is poor (0.1329).

datasets. These results show that FOCI can perform comparably to other CNNC approaches

in terms of their F1-scores while achieving better fairness.

4.6.4 Ablation Study

Here we investigate the impact of the introduced hyperparameter γ on the OT transport

plan and model outcome. For this portion of the experiments we limit our exploration to the

Pokec datasets and the FairSinkhorn OT algorithm as shown in Algorithm 1 and implemented

in the FOCI method. In the first set of experiments we saved off hidden layers just before

they were sent to OT and then performed OT on them with several different values of

γ, evaluating the resulting transport plan matrix P γ. In these and all other experiments

involving OT we held λ = 0.03. Fig. 4.4 shows these results by plotting γ against the mean

value of pij where nodes i and j do or do not share protected groups respectively. Note that

(a) same
protected groups

(b) different
protected groups

Figure 4.4: Impact of γ on transport plan matrix when mapping from pokec-n to pokec-z.
As γ increases transport plan values decrease between nodes which share a protected group
and increase for nodes which are in different protected groups.
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(a) impact of γ on statistical parity (b) impact of γ on f1-score

Figure 4.5: Impact of γ on FOCI model outcomes.

mean values for pij are very small as P γ ∈ Rm×n.

Next we look at the impact of γ on model outcomes in terms of statistical parity and

f1-score. For these experiments γ values were varied within the range that saw impact on P γ

in Fig. 4.4, but all other hyperparameters were kept the same. The models were trained with

10 random seeds for each value of γ and the resulting mean statistical parity and f1-scores

were plotted in Fig 4.5.

Source Target Method F1-Score SP Epoch Time (s)
pokec-n pokec-z FOCI 0.790 +/- 0.004 0.007 +/- 0.006 0.569 +/- 0.067
pokec-n pokec-z FastFOCI 0.773 +/- 0.041 0.013 +/- 0.014 0.117 +/- 0.042
pokec-n pokec-z SpFOCI 0.700 +/- 0.067 0.045 +/- 0.026 1.162 +/- 1.614

pokec-z pokec-n FOCI 0.784 +/- 0.008 0.056 +/- 0.016 0.627 +/- 0.065
pokec-z pokec-n FastFOCI 0.756 +/- 0.071 0.047 +/- 0.027 0.110 +/- 0.029
pokec-z pokec-n SpFOCI 0.672 +/- 0.072 0.068 +/- 0.054 2.481 +/- 1.672

compas-0 compas-1 FOCI 0.560 +/- 0.187 0.122 +/- 0.041 0.277 +/- 0.024
compas-0 compas-1 FastFOCI 0.599 +/- 0.085 0.158 +/- 0.027 0.108 +/- 0.022
compas-0 compas-1 SpFOCI 0.578 +/- 0.025 0.079 +/- 0.030 0.111 +/- 0.027

compas-1 compas-0 FOCI 0.638 +/- 0.009 0.163 +/- 0.011 0.177 +/- 0.021
compas-1 compas-0 FastFOCI 0.622 +/- 0.037 0.169 +/- 0.026 0.084 +/- 0.023
compas-1 compas-0 SpFOCI 0.627 +/- 0.018 0.181 +/- 0.017 0.086 +/- 0.023

credit-0 credit-1 FastFOCI 0.883 +/- 0.001 0.014 +/- 0.001 0.123 +/- 0.089
credit-0 credit-1 SpFOCI 0.910 +/- 0.001 0.026 +/- 0.011 0.194 +/- 0.162

credit-1 credit-0 FastFOCI 0.868 +/- 0.009 0.006 +/- 0.004 0.145 +/- 0.195
credit-1 credit-0 SpFOCI 0.866 +/- 0.008 0.020 +/- 0.018 0.263 +/- 0.527

Table 4.3: Comparison of FOCI, FastFOCI and SpFOCI in terms of F1-Score, statically parity
(SP), and epoch time in seconds.

43



4.6.5 FOCI Comparison

Lastly we compare results from FOCI, FastFOCI and SpFOCI in terms of F1-score, sta-

tistical parity, and run time. The results for this comparison can be seen in Table 4.3. FOCI

results for the credit datasets are excluded from this table because the FOCI method was

unable to process the credit dataset. FOCI’s optimal transport layer encountered numerical

errors when attempting to transport the entire source and target credit datasets.

Here we see quickly see that FastFOCI provides significant run time improvements over

FOCI, but with a slight decline in model utility and fairness. This suggests that FastFOCI

may be the best option with larger datasets, but that FOCI may be the better choice with

a smaller dataset. On the other hand, SpFOCI did not see an improvement in fairness over

FOCI or FastFOCI in most cases.

4.7 Conclusion

This chapter presents a framework called FOCI for fair cross-network node classifica-

tion. The framework uses a novel fair Sinkhorn distance measure to encourage mapping

between members of different protected groups in the source and target networks. It then

presents FastFOCI, a incremental improvement to FOCI which improves performance and

scalablilty, and SpFOCI, a combination of FastFOCI and an alternative fair OT approach.

We have experimentally shown that all three proposed approaches help to mitigate unfair-

ness while maintaining accuracy comparable to other state-of-the-art CNNC baselines. We

have also presented run time values comparing our three approaches and demonstrating the

performance improvements of FastFOCI .

44



CHAPTER 5: CONCLUSION & FUTURE WORK

In this thesis I present several approaches for using optimal transport for domain adap-

tation in the CNNC task. OTGCN was introduced in Chapter 3 and provides a basic CNNC

approach which utilizes optimal transport for domain adaptation and a GCN for node rep-

resentation learning. I then expanded upon the OTGCN framework to develop FOCI , an

intuitively fair CNNC framework in Chapter 4. FastFOCI and SpFOCI were then introduced

as improvement addressing performance and offering an alternative fairness approach. OT-

GCN and FOCI were compared to other state-of-the-art CNNC baselines. FOCI, FastFOCI

and SpFOCI were all compared on the largest of our datasets to explore scalabilty and per-

formance.

Two immediate areas for further exploration are in the application of statistical parity

and the sampling method. Perhaps SpFOCI could be improved by checking the transport

plan within each iteration of the three Sinkhorn algorithms. Additionally, both FastFOCI

and SpFOCI may see performance improvements with a more intelligent sampling approach

such as active sampling [6] [25].

Another area to explore is methods for considering fairness directly within alternative

domain adaptation approach. For example, instead of transporting source samples to the

target domain it may be possible to generate an adapted training set using diffusion or other

generative approaches

Lastly, a large area for future work is to design methods which target different definitions

of fairness. In this thesis FOCI and FastFOCI implemented an intuitive fairness approach

while SpFOCI addressed statistical parity, but, as discussed in Chapter 1, statistical parity is

not always an ideal or applicable metric. Other metrics such as equalized odds or disparate

impact are more applicable in some scenarios and may be explored in the CNNC setting.
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