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ABSTRACT 

In United States alone, more than 1 in 4 children are diagnosed with some form of allergy, yet 

the exact etiology of allergy development in childhood is unknown. Many factors have been 

associated with this rise in such disorders including genetics, epigenetics, environmental toxins 

and particulates, as well as the microbiota. The host microbiome has been associated with a 

multitude of human and animal diseases, disorders, and conditions. Its involvement in the atopic 

and autoimmune disorders is an every-growing field of new knowledge. In this work, I explore 

the effect of the gut microbiome on allergy, specifically childhood eczema and asthma, using 

samples and data collected from the Isle of Wight allergy study cohort as well as a fecal-

transplanted humanized microbiota mouse models. In addition, measured specific gut metabolites 

that were significant in distinguishing between the pathology phenotypes in both study sets will 

be discussed. In chapter 1, I explored the gut bacterial microbiota of infants in the Isle of Wight 

allergy study cohort and their association with their development in eczema. We also explored 

bacterial taxa previously shown in published work to be associated with allergy as agonists or 

antagonists. Subsequent statistical analyses including random forest and logistic regressions 

supported these findings and results from logistic regressions provide statistical significance for 

the association of eczema status at age 3 months with the relative abundance of genus Veillonella 

at that age. In chapter 2, a study conducted using a mouse model of asthma created by fecal 

transplantation of the infants featured in chapter 1, connection between gut microbiota in infancy 

and lung baseline responses were studied and supported. In chapter 4, the role of the gut 

metabolome in the development of allergic phenotype was explored using the samples from both 

chapters 1 and 2, where it was shown that infants with allergic phenotype have a distinct gut 

metabolomic profile compared to infants without allergic phenotype; and mice with reduced lung 

functionality expressed a distinct gut metabolic profiles compared to mice without reduced lung 

functionality. Overall, these studies confirmed previously associated relationship between 

specific bacterial taxa and allergy using a unique infant cohort as well as an original mouse 

model, while also providing new points of interest to further deepen the understanding of the 

relationship and the interaction between the gut contents and the host’s development of allergy. 
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Allergic diseases and the role of the microbiome 

Allergic diseases are immune-mediated disorders mainly caused by IgE-dependent 

immunological reactions to innocuous environmental antigens called allergens[1]. In affected 

individuals the site of contact with an allergen determines which clinical manifestations develop 

such as in the airways, skin, or gastrointestinal tract[1]. Allergy triggered by airway exposures 

include allergic asthma, allergic rhinitis often called hay fever, and ocular allergy or 

conjunctivitis. Allergic asthma causes coughing, wheezing, shortness of breath, chest tightness, 

and difficulty breathing when an affected individual is exposed to allergens in the airways. 

Allergic rhinitis causes sneezing, nasal congestion, runny nose, and itchy nose, eyes, and/or 

throat upon exposure. Ocular allergy symptoms are seen in the eyes that become red, itchy, and 

watery[1]. Allergy frequently triggered by skin exposures include dermatitis, urticaria or hives, 

and angioedema. Dermatitis has several categories, such as contact dermatitis and atopic 

dermatitis often referred to as eczema, and the common symptoms are redness, itchiness, and 

inflamed skin [1]. Allergies triggered by GI exposure include food and drug allergies, where 

allergic reactions occur upon ingestion of an allergen. These GI allergies manifest as nausea, 

vomiting, diarrhea, swelling of the lips, tongue, or throat, as well as skin and systemic 

reactions[1]. The development of allergies has been linked to the gut microbiome, especially that 

of early infancy[2, 3]. Although the exact etiology is unknown, there has been several studies 

showing relationship between specific and/or a collection of bacterial species within the gut 

microbiota[4].  

 

Significance and prevalence of allergic diseases  

According to the CDC, in the United States, nearly 1 in 3 adults and more than 1 in 4 

children suffers from some form of allergy in 2021[5].  Out of the total of adults in the US, 

25.7% have seasonal allergy, 7.3% have eczema, and 6.2% have food allergy[5]. For children, 

18.9% have seasonal allergy, 10.8% have eczema, and 5.8% have food allergy[5]. For both 

adults and children, those identifying as Black, non-Hispanic are more likely to have food allergy 

compared to other groups, while for seasonal allergies affected individuals were more likely in 

white, non-Hispanic adults than other racial or ethnic groups[5]. The percentage of those with 

eczema within the total percentage of those with allergies was higher in children (10.8%) than 

for adults (7.3%), with the highest percentage of eczema in children aged 6-11 years (12.1%), 
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then 10.4% in children between the age of 0-5 years, followed by 9.8% in children aged 12-17 

years[5].  

 

Development, manifestation, and impact of childhood eczema 

Eczema, or atopic dermatitis, is a chronic allergic condition where the majority of cases 

(60%) develop within the first year of life, with 45% developing during the first 2 to 6 months of 

life[6]. Although not life-threatening on its own, the symptoms experienced along with common 

comorbidities, such as sleep disturbances and psychological and mental illnesses, eczema can 

have great impact on the quality of life of those affected[7]. There have been many reports of 

sleep disturbances caused by childhood eczema[8-10], as well as comorbidities of psychosocial 

and mental diseases[11-14], where those with eczema suffered depression and suicidal ideation 

significantly more than their non-eczemic peers[15].  

There are many studies demonstrating significant outcomes that support a genetic 

disposition for developing eczema, shown by the higher prevalence in children with parental 

eczema history[16, 17] as well as twin studies[18, 19]. Thereafter, additional molecular genetic 

studies have identified several chromosomal loci as well as specific genes associated with 

eczema[20]. The most notable, and well studied gene is the filaggrin (FLG) gene, which plays a 

key role in epidermis differentiation[20]. There also has been associations of multiple Single 

Nucleotide Polymorphisms (SNPs) in immune genes involved in allergic inflammation, such as 

interleukin(IL)4, IL5, and IL13[20]. However, as with many complex immune diseases, eczema 

development cannot be fully explained by host genetic predispositions alone. 

Eczema prevalence increased in industrialized nations in recent decades[21], suggesting 

the existence of external, environmental factors driving the development of this allergic disease. 

One of the extensively studied environmental factors associated with eczema is environmental 

tobacco smoke. However, while smoking has stronger associations with lower airway diseases, 

association with eczema is not as consistent[22]. Many of the studies examining the association 

of eczema and environmental tobacco smoke, especially those that produced contradicting 

results, measured levels of cotinine, a by-product of nicotine formed within the body, in bodily 

fluids[23-25]. A different study examined the skin barrier function instead of cotinine levels, 

where they found an association with environmental tobacco smoke and eczema[26]. This 

suggested in cases of eczema that environmental tobacco smoke may be directly interacting with 
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the skin where the disease manifests.  

There are other associations for other environmental factors influencing the development 

of eczema, especially in industrialized nations where a clear molecular mechanism has yet to be 

identified. However, when focusing on those societies within higher areas of eczema prevalence 

in industrialized nations, it has been observed that eczema is more common in urban areas than 

in rural areas[27, 28]. In addition, having multiple siblings[29, 30], early daycare attendance, and 

co-habitation with a dog[27] have been identified to reduce the likelihood of a child developing 

eczema and other allergies. In contrast, children in higher socioeconomic households were seen 

to have higher prevalence of eczema[31], although this finding may be influenced by the 

availability of healthcare access[32]. Composition of the gut microbiome has also been 

associated with development of childhood eczema [4, 33].  

The current clinical consensus for children diagnosed with eczema is that most will 

“outgrow” this condition as they age[34]. However, for those that do not, they are more likely to 

develop more persistent eczema, and/or additional allergic diseases, such as allergic asthma, in a 

phenomenon referred to as “atopic march”[34]. Atopic march is a natural progression of allergic 

diseases typically starting from atopic dermatitis or eczema, that progresses from infancy into 

childhood typically into food allergy, asthma, and allergic rhinitis[35].  

 

Development, manifestation, and impact of childhood asthma 

The allergic disease frequently developed as the later part of atopic march is asthma. 

Asthma is a chronic airway disease affecting 8.0% of adults and 6.5% of children in the US[36]. 

It is a disease that is often difficult to diagnose in the early years of childhood[37, 38] and its 

development has been associated with pre-existing eczema in children[34] and co-morbidity with 

eczema in adults[39]. In 2017, there were an estimated 1.6 million visits to the emergency 

department along with 183,000 hospitalizations attributable to asthma in the US alone[40]. 

Asthma prevalence was higher in those identifying as non-Hispanic Black, non-Hispanic 

multiple-race, and Puerto Rico persons, with asthma attacks more prevalent in children and adult 

women, and many racial ethnic groups with highest mortality in adult, female, and Black 

persons[40].  

Hallmark phenotypes of asthma are airway hyperresponsiveness (AHR) and 

inflammation of the airway, both leading to the excessive narrowing of the airways that 
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contribute to the difficulty of breathing[41]. Although AHR can exist in non-asthmatic disease 

such as chronic obstructive pulmonary disease (COPD)[42], it is still a key feature used 

clinically to diagnose a patient with asthma[41]. In a clinical setting, the extent of AHR is 

measured to deliver a more accurate diagnosis of asthma as well as to monitor the disease 

severity and progression as part of bronchial provocation tests (BPTs)[41]. There are two major 

ways of administering BPTs: indirect and direct. In an indirect BPT, bronchial constriction is 

mediated by a stimulus that elicits bronchoconstriction, such as exercises and allergens[41]. In 

direct BPT, a bronchial constriction is induced using a pharmacological agonist directly acting 

on airway smooth muscle receptors, such as methacholine or histamine[41].  

The mechanisms and the exact etiology of AHR and asthma development is still 

unknown, yet there are currently multiple studies that have indicated factors associated with the 

development of asthma, one of which is host genetics. Several SNPs have been identified to be 

potential risk factors for developing asthma in childhood[43, 44], including a variation in the 

FLG gene that was also associated with childhood eczema development[45]. In addition to the 

coded genetic variations, epigenetic factors, specifically DNA methylation events, have also 

been identified to play a role[46-48], suggesting a molecular mechanisms for how the 

environmental factors like cigarette smoke[49] could influence asthma development on a genetic 

level. Other environmental factors that have been associated with childhood asthma development 

include but are not limited to, early daycare attendance, livestock contact, cohabitation with a 

dog, endotoxins, diet, and gut and airway microbiome[50-55].  

 

Education of the early immune system  

The phenomenon of atopic march suggests the importance of immune system 

development during early life. A large portion of innate and adaptive immune system education 

commences at birth with the rush of exposure to environmental antigens; many of these 

exposures are bacterial cells from the birth canal, parental contact, and food and environmental 

sources that will become commensal residents of the gut microbiota[56]. However, some 

immune education has been observed prenatally [57, 58]. Inflammatory cytokines and memory 

responses can be produced by the immune cell population as early as the second trimester[57-

59]. In addition, during mid-gestation, it was observed that viable bacteria in human fetal 

intestines can influence memory T cell activation, expand fetal lymph node T cells, and reduce 
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inflammatory cytokine production[59].  

Despite prenatal immune activities, innate immunity is impaired during the neonatal stage 

immediately following birth. Antibody responses along with Type 1 T cells are weak. Early T 

cell responses are also skewed toward Foxp3+ CD25+ regulatory T cells via T cell responses 

directed against the mother’s alloantigens[60]. As the neonate develops and is exposed to foreign 

antigens, both innate and mature immune responses increasingly mature to provide better 

protection from infectious agents. During these periods, T cells may be activated toward a Type 

2 response, a hallmark immune response in allergies, including eczema and allergic asthma[56, 

61].  

 

Effects of the microbiome on allergies 

An adult human body is estimated to carry about 38 trillion bacterial cells on and in the 

body, with large and small intestines carrying the greatest burden of all the body parts[62]. 

Considering that an adult human body is estimated to be made of 30 trillion cells[62], there is no 

question that such a collection of 38 trillion bacterial cells could have multitudes of effects on the 

host human body. The “gut microbiota,” referring to the microbiota existing in the 

gastrointestinal (GI) tract, has been a leading interest in regards to its effect on the host body due 

to the sheer volume of the microbes that reside in the intestines. The term gut microbiome is also 

used but refers specifically to the gut microbiota and all of its genetic elements in a more 

inclusive definition. The gut microbiome has been linked to myriad pathologies and diseases in 

humans, including but not limited to obesity, Crohn’s disease, Inflammatory Bowel Disease 

(IBD), diabetes, and various allergic diseases like food allergy, eczema, and asthma[63]. The 

exact molecular mechanisms of how the gut microbiota mediates such a wide array of diseases 

and conditions are still not fully understood. However, in case of allergic disease development, 

there is growing agreement that the gut microbiome composition exerts significant affects during 

the first year of life when the immune system is developing[54, 55]. Atopy, eczema, and food 

allergy can develop during infancy, and while many children do recover as they age, other 

children later develop additional allergic diseases such as asthma; a phenomenon described as 

“atopic/allergic march”[52, 53]. Because 27% of the child population in the US have been 

diagnosed with atopic, allergic, and autoimmune disorders[64] an in depth review as of 2021 

indicated that more scrutiny of the role of the gut microbiota in development of allergic disorders 
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is needed.  

 

Human Studies linking the microbiome to development of allergy 

A number of studies have shown relationships between particular gut microbiota and the 

development of allergy, especially during the period of early immune development[3, 65]. In a 

study by Jones et al. focused on detecting characteristics of allergy development and identifying 

interventions they observed that older children with peanut allergies were less likely to be 

successfully desensitized compared to their younger cohort[3], indicating the importance of 

immune development in earlier age. Moreover, the importance of the gut microbiota in the 

development of food allergies was displayed in an animal study where fecal transfer from an 

infant with cow’s milk allergy to germ-free mice resulted in an anaphylactic response in the mice 

to cow’s milk antigen [65].  

Several specific microbial taxa have been associated with the development of allergic 

diseases. We are calling these putative allergy agonists, while taxa associated with protection 

from allergy have also been identified. In terms of the microbiome members during the early 

neonatal stage of life, the phyla Proteobacteria, and genera Acinetobacter, Enterococcus, and 

Lactobacillus were found to be in lower abundance in neonates with positive allergic 

sensitizations, while having higher abundance of Bacteroidaceae and Bifidobacterium 

catenulatum was associated with lack of allergic manifestations[4]. Higher abundance of 

Bacteroidaceae, Clostridaceae, and Enterobacteriaceae, and lower abundance of 

Lactobacillaceae has also been observed in neonates with eczema[4]. 

Although asthma cannot be fully diagnosed in neonates, some association of specific 

neonatal microbial members have been made utilizing wheeze phenotype for having higher 

abundance of B fragilis, C coccoides, and C difficile, all of which are anaerobes, and a lower 

abundance of Staphylococcus aureus[4]. Intestinal microbial diversity has had mixed 

observations in its association with allergy development with some studies showing significance 

and others not[4].  

 

Mouse models of allergy 

Animal models are created and used based on the comparative medicine principle[66], 

and have been used to further the understanding of biology as early as 6th BCE in ancient Greece. 
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However, the use and development of modern animal models, such as genetically inbred mice, 

with focus on reproducibility did not enter the field of biomedical research until the 1940s[67, 

68]. The most commonly used species today are rodents[69], however many other species are 

also been used including but not limited to: dogs, rabbits, birds, ruminants, horses, fish, frogs, 

monkeys, cats, reptiles, squid, crabs, bees, chimpanzees, hamsters, sea slugs, pigs, nematodes, 

fruit flies, and protozoans[66]. The animal species to use is selected based on the purpose and 

functionality that fits the objective of the study[70, 71], and it is required that they replicate the 

physiological and pathological processes while containing biological, anatomical, functional, 

and/or genetic similarities to the research topic target, frequently humans[71, 72]. 

In studying allergic asthma in humans, there have been many studies successfully 

developing and using murine models[73]. Mice do not naturally develop asthma[74], thus 

requiring a sensitization protocol with an allergen in order to mimic the allergic asthma 

phenotypes commonly seen in humans[73, 75]. The two main ways of inducing asthma, 

specifically airway characteristics such as AHR and airway inflammations, are by acute or 

chronic allergen challenges[73, 75]. Development of acute challenge model is done by multiple 

administration of allergen along with an adjuvant to promote Th2 responses, with sensitization 

periods typically lasting less than 2 weeks[73]. In contrast, chronic challenge models are 

developed by exposing mice to lower doses of allergen for longer periods of sensitization, 

typically up to 12 weeks[73]. Acute challenge models are capable of producing clinical asthma’s 

key features such as elevated levels of IgE, airway inflammation, AHR, and epithelial 

hypertrophy[73]. The limitation lies in the fact that an acute challenge model is short-term in 

nature while clinical asthma is often chronic in humans. Humans with chronic asthma experience 

chronic inflammation of the airway walls and subsequent airway remodeling, both of which are 

absent in an acute challenge model[73]. Despite its limitations, acute challenge models have 

been used to produce supporting evidence of allergic asthma’s Th2-mediation, the role of T cells 

in allergic response, and the role of eosinophils in AHR development[73]. Chronic challenge 

models were created to address some of the issues of acute challenge models. It also is capable of 

producing clinical asthma’s key features such as Th2-dependent allergic inflammation, allergen-

dependent sensitization, and AHR, in addition to airway remodeling, a chronic pathology absent 

in the acute challenge models[73]. However, it also has its limitations as it expresses some 

features not seen in human asthma such as lung inflammation not restricted to the airways, as 
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well as the lack of development of increased airway smooth muscle lesions nor lung 

parenchymal and vascular remodeling[73, 76]. Both acute and chronic models have their benefits 

and limitations, thus caution and understanding of one’s study objective are vital.  

The common allergens used during the sensitization period are ovalbumin (OVA), house 

dust mites (HDM), cockroach extracts, and Aspergillus[73, 75]. OVA is a protein derived from 

chicken egg that induces a robust allergic pulmonary inflammation in laboratory mice[73]. The 

use of OVA is very wide-spread in asthmatic mouse models[77], however, it is an allergen that 

has very little role in human allergic asthma, leading to the use of a more clinically relevant 

allergens such as HDM, cockroach extracts, and Aspergillus[73]. Both HDM and cockroach 

exposure has been identified as being risk factors for allergic predisposition in children with 

asthma[78], with HDM allergy considered to be the most frequent of the inhalant allergies[79], 

making this preparation a more clinically translatable choices to use as sensitizing allergens.  

Murine models have also been used in studying the effect of the gut microbiome on the 

allergic disease phenotypes[80-82]. In one study by Herbst et al, they observed that germ-free 

mice developed an upregulation of allergic airway inflammation along with increase in Th2-

associated cytokines and IgE production, both of which was associated with allergy in 

humans[82]. Their findings were also supported in a study by Cahenzli et al, where an increase 

in serum IgE levels was also observed in germ-free mice, which also developed systemic 

anaphylaxis[81]. They also observed that systemic anaphylaxis was prevented in mice raised 

with a specific pathogen-free microbiota[81]. The elevation in IgE was also observed in a study 

where mice were treated with antibiotics to ablate their commensal gut microbiota by antibiotic 

treatment[80].  

In addition to studying the lack of the gut microbiota, a “humanized” mouse model has 

been created to reproduce the effect of specific gut microbiota compositions on disease 

development. This has been done by performing fecal transplantation on either germ-free, or 

antibiotic treated mice[83]. In mice, fecal microbiota transplantation is performed to model the 

effect of specific microbiome species or compositions related to human diseases[83-86].  Fecal-

transplant as a method has existed as a treatment option for humans and was first proposed in 

1958 as a treatment for different intestinal and extraintestinal diseases[87]. In human clinical 

settings, fecal microbiota transplantation (FMT) has been approved for, and successfully used in 

treating Clostridium difficile infections[88], and is currently being explored and studied for 
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treatment of other diseases linked to the gut microbiome, such as inflammatory bowel 

disease[89, 90] and ulcerative colitis[91]. Although observed to be effective, FMT does display 

some safety issues mostly stemming from the current lack of understanding of the effect of a gut 

microbiome long-term[92]. FMT materials are filtered and screened for transmissible pathogens, 

however, longer term effects of having a new microbiota such as its effect on phenotype 

transmission of obesity and metabolic disorders[92]. FMT has yet to receive marketing approval 

from the US Food and Drug Administration (FDA), and FDA currently are working assiduously 

to encourage efforts to provide defined and safe FMT[92].  

 

The production of microbial metabolome in the gut 

As part of the digestive process of food, animals with a digestive tract utilize mechanical 

digestions and chemical digestions[93]. While mechanical digestion involves movements of the 

digestive system like chewing with teeth or intestinal movements, chemical digestion involves 

breakdown of food materials with “chemicals” with very low or high pH or abrasive enzymes 

such as stomach acid or bile acid[93]. The consumed food moves through the digestive tract and 

gets broken down into its component compounds that enables absorption through the intestinal 

epithelium[93]. The gut microbiota contributes to further breakdown of the consumed food, 

producing vital nutrients that the host can then uptake[94]. What the host consumes as food 

becomes the main source of nutrients for the microbes that reside in the host digestive system. 

Members of the gut microbiota uptake available food particles traveling through the GI tract, 

utilize these compounds for their metabolism, and produce metabolites or by-products that other 

microbial community members can utilize[94]. It is the collection of these secreted metabolites 

that contributes to the building of, and the maintaining of, what is referred to as the gut 

metabolome.  

Microbes consuming each other’s metabolic products within the gut, or within any 

environmental proximity, is called cross-feeding[95]. Bacterial cross-feeding of metabolites has 

been shown to be ecologically stable and increases the genotypic diversity within the 

community[96]. The metabolites directly used in central metabolism such as sugars, and 

metabolites requiring biosynthesis or uptake that are essential nutrients, such as amino acids and 

vitamins, are the two main categories of microbially produced metabolites within the cross-

feeding networks[95]. Cross-feeding for metabolites in central metabolism occurs in trophic 
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levels, starting with primary degraders that breaks down complex polysaccharides that get 

utilized by primary fermenters in glycolysis to produce by-products used by secondary 

fermenters producing short-chain fatty acids[95]. Molecular hydrogen get produced by primary 

and secondary fermenters during this process, which gets used by sulfate reducing bacteria, 

methanogens, and acetogens as electron donor[95]. The trophic level organization of microbial 

cross-feeding within the gut allows for a better structure for the complex interactions between the 

members of the microbiota. The resulting food web allows one to focus on specific interactions 

of interest within this community.  

Beyond the utilization of microbially produced metabolites within the microbial community, 

some metabolites have been identified as hugely beneficial and often vital to the human host’s 

health. The most notable example being the provision of vitamin K and vitamin B groups from 

members of the gut microbiota[97]. It has also been observed that bacterial microbiota helps to 

digest dietary carbohydrates, proteins, and polyphenols, as well as host-produced bile acids in 

humans[98]. It is through this process that many bacterial metabolites that have been associated 

with host immune modulation are produced.  

 

Bacterial metabolites and allergic disease development 

Processing of dietary carbohydrates is done through bacterial fermentation, resulting in 

production of short chain fatty acids (SCFAs) and gases[98]. Acetate, butyrate, and propionate 

are the SCFAs most abundant in human feces[98], and have been associated with eliciting anti-

inflammatory properties in the host [99]. Generally speaking, Bacteroidetes members tend to 

produce acetate and propionate efficiently, while Firmicutes members tend to produce 

butyrate[100]. Several host immune and gut epithelial cell receptors for SCFAs have been 

identified, suggesting their involvement in host immune system modulation[33]. High levels of 

acetate has been associated with protection from food allergy[101], and childhood asthma and 

wheeze[2, 102, 103]. Presence of abundant butyrate and propionate have also been associated 

with protection from wheeze and asthma[102, 104]. 

Bile acids gets secreted by the liver to help with digestion of lipids and have also been 

associated with allergic phenotypes. Bile acids prior to microbial processing are called 

conjugated bile acids, and unconjugated bile acids are bile acids that went through the post-

processing by the intestinal microbiome. Conjugated bile acids have been associated with 
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protection in asthma[105, 106], and unconjugated bile acids, a product of microbial metabolism, 

has also been associated with protection in allergic responses[107, 108] as well as wheeze and 

childhood asthma[109]. Tryptophan is another bacterial metabolite produced in the digestive 

system that has been associated with protection from allergic asthma[110-112]. This metabolite 

has been shown to bind to and stimulate upregulation of the Aryl Hydrocarbon receptor on the 

surface of many cells in the gastrointestinal tract and other organs during these beneficial 

responses[113]. With the existence of host-beneficial bacterial metabolites, it is only logical that 

the opposite, host-detrimental bacterial metabolites also exist. Most acute and well-studied 

secreted bacterial products are those of human pathogens. Many human-pathogenic bacterial 

species will secrete some metabolic products with toxic properties to the host that then induce 

the disease phenotype in the host. Some notable examples of human pathogen toxins include 

lipopolysaccharide, a metabolic endotoxin produced by gram-negative bacteria, as well as 

cytotoxic and mitochondriotoxic metabolites produced by Streptomyces species[114].   

In contrast to pathogen-produced toxic metabolites, bacterial metabolites that induce the onset and 

the development of allergic diseases have not been made clear. Allergic disease development involves 

a complex layer of education and activation of immune cells, which includes a wide array of bacterial 

orders and families, each having their own set of receptors, signals, and functions that are still being 

uncovered today. Some of the bacterial metabolites reported to be associated with the development of 

allergy include sphingolipids that have been shown to be active in inducing food allergy[105] and 12, 

13-diHOME in childhood allergic asthma[115, 116]. 12,13-diHOME produced by bacterial epoxide 

hydrolase genes, and was observed that increase in expression of the said gene was associated with an 

increase in the likelihood of developing atopy, eczema, and asthma during childhood[116] 

Histamine is a molecule produced by host immune cells known to elicit Type 2 inflammatory 

responses. It is produced mainly by mast cells and basophils and is a hallmark of allergic responses. 

Histamine is stored in cytoplasmic granules within these cells along with other amines such as 

serotonin, proteases, proteoglycans, cytokines, chemokines and angiogenic factors. Although there are 

several triggering stimuli, a key mechanism for granule release in mast cells is IgE binding to FcεRI 

receptors on their surface that are subsequently cross-linked by allergen that can occur in several 

configurations[117]. This cross linking leads to anaphylactic degranulation producing an 

immediate type I hypersensitivity. This results in many of the cardinal features of allergy 

mentioned previously and including   vasodilation, increased permeability and smooth muscle 
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contraction, Histamine has also been observed to be produced via bacterial decarboxylation of amino 

acids in digestion[118].  

 

Specific aims 

 The incidence of atopic and autoimmune disorders have been on the rise in industrialized 

nations[5, 24]. The exact cause and mechanism for this rise in incidence have yet to be clearly 

determined. However, many factors have been associated with this rise in such disorders 

including host genetics and epigenetics, exposure to environmental toxins and particulates, 

bacterial breakdown of ingested dietary materials, as well as exposures to the microbiota in lungs 

and gut[7, 23, 29, 36, 49, 51, 52, 119].   

Currently, the host microbiome has been associated with a multitude of human and 

animal diseases, disorders, and conditions, and its involvement in the atopic and autoimmune 

disorders is an ever-growing field of new knowledge. One leading hypothesis is that the 

microbiota encountered at the start of life determines such outcomes, because it is responsible for 

initiating early-life immune system development. However, the exact molecular mechanism is 

still undetermined, but there have been two main hypotheses that have been argued based on 

current data. One hypothesis is that specific microbe(s) within the host microbiome interacts with 

the host immune system to trigger the development of allergy. The second hypothesis is that host 

associated microbes produce and excrete specific metabolite(s) that are taken up by the host to 

interact with the immune system, leading to allergy development.  

 The long-term goal of these studies was to determine how gut microbiota and 

metabolome compositions could affect the development of allergic diseases. My overarching 

hypothesis was that there exists a specific composition of both the microbiome and the 

metabolome in the gut that mediates the development of allergic diseases. To test this hypothesis, 

the short-term goal was to describe and compare the bacterial gut microbiome of infants with 

allergic eczema to those without. Then, to utilize fecal microbiota from these infants to create an 

animal model of allergic vs. non-allergic gut microbiota by fecal transplantation to further study 

the mechanisms of the effect of gut microbiome and metabolome composition on allergic 

phenotype.  
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Specific Aim 1: Identify the differences in early gut microbiota between infants with allergic 

phenotypes and infants without allergic phenotypes 

Hypothesis: Composition of the early gut microbiota is associated with development of 

eczema and/or atopy in infants.  

Specific Aim 2: Examine the role of human infant allergy-associated bacterial taxa in 

development of allergy phenotype in a mouse model of asthma 

Hypothesis: Enterobacteriaceae-dominant gut microbiota from eczemic infants will cause 

increased T helper 2 (Type 2) inflammation and decreased lung function after house dust mite 

antigen (HDM) exposure in transplanted mice, while Bacteroidaceae-dominant gut microbiota 

from non-eczemic infants will be protective. 

Specific Aim 3: Investigate key differences in gut metabolome based on expressed allergic 

phenotypes 

 Hypothesis 3a: Human infants with eczema express distinct set of metabolites in the gut 

compared to those without eczema.  

 Hypothesis 3b: Mice treated with an allergen (House Dust Mites) express a distinct set of 

metabolites in the gut compared to mice with sham treatment. 

 Hypothesis 3c: Mice with a human-derived gut microbiota from infants with eczema have 

increased airway hyper-responsiveness and express a distinct set of metabolites in the gut 

compared to the mice with conventional gut microbiota with observed dampened airway hyper-

responsiveness.  

Chapter 2 entitled “Veillonella and other allergy agonists in 3-month-old infant gut 

microbiota were associated with development of eczema in early childhood” shows the 

results from Specific Aim 1 (page 23). Chapter 3 entitled “Fecal microbiota transplants of 

three distinct human communities to germ-free mice exacerbated inflammation and 

decreased lung function in their offspring” shows the results of Specific Aim 2 (page 72). 

Chapter 4 entitled “Metabolomic profiles significantly distinguished in the gut based on 

expressed allergic phenotypes in eczemic infants and in mouse model of asthma” shows the 

results from Specific Aim 3 (page 155). Finally, Chapter 5 discusses the overall conclusions and 

next steps for future studies (page 202).  
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Abstract  

Mounting evidence suggests that exposure to microbially-rich environments in infancy reduces 

risk for allergy and asthma and that gut microbiota influence maturation of immune function in 

early life. We hypothesized that particular compositions of the early gut microbiota are 

associated with development of eczema and/or atopy in infants. Fecal samples from 3-month-old 

infants were analyzed using 16S V4 rRNA gene Illumina Amplicon sequencing to characterize 

gut microbiome in an ongoing multigenerational prospective longitudinal study of newborns 

(Isle of Wight 3rd generation birth cohort). Children were assessed for eczema, wheeze, and 

atopy up to age 3 years. Eczema was classified as “None” for no eczema ever, “Intermediate” for 

1-3 positive diagnoses, and “Persistent” for >4 positive diagnoses. We tested for associations of 

bacterial taxa profiles with risk of eczema and how this was modified by the age of the child. We 

also tested for associations of particular bacterial taxa and predicted metabolites with eczema 

outcomes. A bacterial taxon of the genus Veillonella was associated with a diagnosis of eczema 

in infants at 3 months of age (Random Forest analysis followed by logistic regression P=0.036). 

Principal components analysis (PCA) showed that allergy-associated taxa, Bifidobacterium, 

Escherichia-Shigella, Lachnospiraceae, Veillonella and Bacteroides contributed most to the 

separation between infants with and without eczema in the ordination. Neighbor joining data 

showed Escherichia-Shigella, Bacteroides_b and Veillonella taxa were in highest relative 

abundance in decreasing order among the allergy-agonists. Canonical Correspondence Analysis 

(CCA) showed that eczema and atopy were correlated and associated with allergy agonists 

Lachnospira, Haemophilus, Veillonella, and Escherichia-Shigella. Allergy antagonists 

Lactobacillus (two OTUs), Ruminococcus (two OTUs), and Bifidobacterium_ambiguous_taxon 

were associated with absence of eczema and atopy. Children with “Intermediate” eczema with 1-

3 positive diagnoses had fecal microbiota more similar to those who never developed eczema 

during the study period than to those who had a consistent positive diagnosis of eczema 

persisting for the majority of the study period. Eczema was also associated with atopy (p=0.031, 

Fischer’s exact test), but no other clinical factor examined had a significant association with 

development of eczema. We identified a candidate bacterial genus, Veillonella, along with 

previously allergy-associated bacterial taxa with a significant risk of eczema in the first 3 years 

of age in this birth cohort and showed there are differences in the fecal microbiome associated 

with the severity and persistence of eczema symptoms over the first 3 years of life.  
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Introduction 

Significant increase in incidence of atopic and autoimmune disorders have been documented 

recently in industrialized nations [120]. Mounting evidence suggests that exposure to 

microbially-rich environments in infancy reduces risk for allergy and asthma [121, 122] and that 

gut microbiota influences maturation of immune function in early life [123]. Yet, a recent meta-

analysis of probiotic supplementation of infants demonstrated small effects on eczema and none 

on airway allergies [124]. Thus, knowledge gaps limit usefulness of currently known probiotics 

to prevent allergy. 

The most pressing knowledge gap concerns the influence of gut microbiota in the critical 

window of immune development during the neonatal period. Despite strong evidence for a 

common mucosal immune system where pathogen stimulations of gut associated lymphoid 

tissues affect adaptive immune responses in lungs [125], studies revealing gut microbiota-

immune system interactions in allergy are limited. Effects of gut-lung or gut-skin microbiome 

interactions are even less studied. Eczema, a skin condition of itchy rashes, often appears in early 

childhood preceding other atopic/allergic disease development such as asthma, a sequence 

described as the atopic march [126, 127]. Decreases in gut microbiota diversity in early life have 

been linked to development of asthma [128, 129] and atopic dermatitis [81], but specific 

causative bacteria taxa remain unknown.  

Education of the innate and adaptive immune systems begins at birth with exposure to 

environmental antigens, many of which are intestinal commensal bacteria [56]. Neonatal infants 

have impaired innate immunity and weak Type 1 T cell and antibody responses. In this early 

period, infants have T cell responses directed against the mother’s alloantigens that skew their 

early responses toward Foxp3+ CD25+ regulatory T cells [60]. Foreign antigen activation of 

these neonatal T cells can result in Type 2 immunity, which exacerbates allergy [56]. Risks 

imposed by an immature immune system and pathogen exposures wane as innate and adaptive 

responses mature, facilitated by diverse balanced bacterial populations. We expect this neonatal 

period is a window when infants may be predisposed toward allergy when microbial exposures 

fail to establish a stable commensal community accompanied by appropriate immune system 

maturation.    

Our overarching hypotheses are that gut microbiota impacts risk of childhood allergic disease 

due to (1) early exposures to pathogens or pathogenic microbiomes, (2) shifts in microbiome 
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composition with lack of or removal of probiotic members, or (3) presence of specific metabolic 

products. We addressed our hypotheses using the Isle of Wight (IOW) multi- generation birth 

cohort to evaluate effects of gut microbiome on allergic outcomes. This is a unique population-

based study integrating two consecutive extensively-characterized birth-cohorts: parents born in 

1989-1990 (IOW F1) and their children born since 2010 (3rd generation IOW F2). Benefits of 

this cohort include longitudinal assessments and detailed clinical outcomes related to allergy, 

which exists at proportions between 30-40% in this study population [130-132]. The approach 

was to conduct 16S rRNA gene sequencing of fecal microbiota in children born to cohort 

participants to determine if associations exist between early gut microbiota and development of 

several allergic manifestations with a main focus on eczema.  

 

Methods 

Study cohort and experimental 

Influence of gut microbiome composition on allergic outcomes of eczema, recurrent wheeze, and 

atopy was examined in the IOW F2 birth cohort. Fecal samples were collected from 60 children 

at 3 months of age by either their parents or the local nurse. Children were assessed for eczema, 

wheeze, and atopy at 3, 6, 12, and 36 months of age[132] from Jul, 2010 until Oct, 2017. To 

define microbial patterns associated with triggering or protection from allergies, fecal samples 

were analyzed using 16S rRNA gene sequencing. Children were recruited into the “Third 

Generation Study” under ethics approval numbers 09/H0504/129 (22 December 2019), 

14/SC/0133 (22 December 2019), and 14/SC/1191 (15 November 2016) from the University of 

Southampton. The data analysis was carried out without the knowledge of the identity of the 

infants. 

Sample collection  

Fecal samples were collected from 60 children at 3 months of age from their diapers either at the 

time of their visit to the clinic, or at a later date at their home by a visiting nurse.  

Samples were each placed into a sterile container, stored on ice during transport, then stored at -

80°C for prolonged storage. Each sample was coded to protect the patient identity and their 

clinical status, then shipped on dry ice to Michigan State University where it was stored at -80°C 

until processed for DNA isolation, and only opened in an anaerobic hood to preserve strict 

anaerobes.  
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Clinical assessments  

Children were assessed for their health and clinical status at ages 0, 3, 6, 12, 24, and 36 months 

at the local clinic by the clinician using International Study of Asthma and Allergy in Childhood 

(ISAAC) questionnaires (Table 2.1) [18-20]. At 3, 6, 12, 24, and 36 months, eczema and wheeze 

diagnoses were made based on the ISAAC questionnaire answers. Skin prick test (SPT) was 

performed at 12 and 36 months to test for atopy.  

Eczema status was defined as answering: (1) YES to either (i) “ever have itchy rash coming 

and going for at least 6 months” (not valid at 3 or 6 months of age), (ii) “rash or eczema that has 

lasted at least 7 days or more,” or (iii) “ever eczema” (not valid at 3 months), and (2) YES to 

“the rash was itchy,” and (3) YES to “affected the folds of elbows, behind knees, in front of 

ankles, on cheeks or around neck, ears, or eyes.” “No eczema” was defined as “never presence of 

an itchy rash.” 

Recurrent wheeze was documented as three or more separate episodes of wheeze in the last 

12 months based on the Global Initiative for Asthma, Global Strategy for Asthma Management 

and Prevention [133]. 

 Skin prick testing (SPT) to 10 common allergens (house dust mite, grass pollen, tree 

pollen, cat, dog, Alternaria alternata, cow’s milk, egg, peanut, and cod) using standardized 

extracts was conducted at 12 and 36 months of age [134]. A diagnosis of atopy was made when 

one or more SPT was positive (wheal ≥ 3mm above negative control) at either timepoint.  

 

Table 2.1 Longitudinal study design with assessments and samples collected from children 
of the Isle of Wight third generation birth cohort. At 3, 12, and 36 months, children were 
examined for severity of eczema using SCORAD[135]. Skin prick testing was performed at 12 
and 36 months of age. Validated questionnaires based on the template from the International Study 
of Asthma and Allergy in Childhood [136] were administered at 3, 6, 12, 24, and 36 months of age 
(Table 2.1) [137-139].  

SAMPLING AND ASSESSMENTS BIRTH 3 MO. 6 MO. 12 
MO. 

24 
MO. 

36 
MO. 

ISAAC Questionnaires (family history, 
feeding, smoking, pets, respiratory 
infections, socioeconomic class, housing 
characteristics, farm living, exposure to 
pollutants) (refs 51, 52-54) 

x x x x x x 
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Table 2.1 (cont’d) 
Pregnancy complications and birth 
characteristics x      

 

Height, weight, BMI x x  x x x 

Urine cotinine  x  x  x 

Skin prick tests (atopy diagnosis)    x  x 

Genetics, genome-wide DNA-
methylation x      

Microbiome from stool  x  x  x 

Eczema and wheeze diagnosis based on 
ISAAC   x x x x x 

Eczema severity using SCORAD (ref 50)  x  x  x 

Medical records scrutiny (antibiotic use, 
other drugs, infections, physician 
diagnosed asthma and allergy, treatment 
given, chest infections) 

x x x x x x 

 

Isolation of bacterial DNA from infant fecal samples 

DNA was isolated from 500mg each of infant fecal sample using the FastDNA SPIN Kit for 

stool (MP Biomedicals, Solon, OH) according to the manufacturer’s protocol. 60 fecal samples 

were frozen at -80°C prior to processing. Out of the 60, 2 samples did not contain enough fecal 

material to obtain adequate quality DNA and thus were excluded from further analysis from this 

point forward. The extracted DNA was checked for concentration and purity using the NanoDrop 

Spectrophotometer (ThermoFisher Scientific, Inc., Waltham, MA) immediately after isolation, 

then confirmed using Qubit (ThermoFisher Scientific, Inc., Waltham, MA). The extracted DNA 

solutions were adjusted for their concentration to be similar among the samples, then validated 

for presence of 16S V4 region by PCR[140]. All reagents used in the isolation process were 

tested in the same manner to ensure against the undesired incorporation of environmental 

bacteria in our microbiome samples, and sterile bacterial 16S rRNA gene DNA-free water was 

used as a negative control throughout. 

16S rRNA gene sequencing and analysis 

Isolated DNA samples were submitted to be sequenced for the V4 region of 16S rRNA gene 

using Illumina MiSeq at the Michigan State University, Research Technology Support Facility 
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Genomics Core. All microbiome analyses were processed along with the mock communities 

(HM-782D, BEI) used as a positive control, and the DNA-free water as a negative control for 

estimation of sequence error. At the time of processing initial data analysis, the data were 

blinded for all clinical outcomes. Once raw, demultiplexed sequence reads were returned, they 

were processed through the QIIME2 (version 2019.1) pipeline [141]. At this time, 2 additional 

samples were removed due to their very low numbers of sequence reads, resulting in total of 56 

samples. Within QIIME2, Deblur [142] was used for denoising and vsearch [143] was used for 

operational taxonomic units (OTU) clustering. The Silva (release 128) database was used to 

identify taxa at 97% similarity. The processed sequence data were then exported to a local drive 

where remaining data processing was done in Python and statistical analysis was performed in R, 

which used open-source packages, vegan (version 2.5-7), factoextra (version 1.0.7), and 

pheatmap (version 1.0.12).  

Isolation and identification of E. coli from eczemic infants using Matrix-assisted laser 

desorption/ionization-time of flight (MALDI-TOF)  

Fecal materials from infants with eczema with enough remaining material were streaked on 

MacConkey agar using aseptic technique for isolation of aerobic bacteria, specifically to isolate 

for the most abundant agonist taxa readily culturable, E. coli. Bacterial growth from the initial 

fecal materials was re-streaked for isolation on MacConkey agar plates several times until pure 

single-colony isolates were obtained. Isolated colonies were then submitted to the Veterinary 

Diagnostic Laboratory at Michigan State University to be identified using MALDI-TOF[144]. 

PAPRICA analysis 

PAPRICA (version 0.5) analysis pipeline was used to predict metabolic output and enzymatic 

activities based on phylogenetic placement using 16S rRNA gene sequence data [26, 27]. The 

output from PAPRICA analysis was further analyzed in R and Python. The package pheatmap 

(version 1.0.12) was used to produce the heatmap (Figures 2.5A, 2.9A) with complete Euclidean 

clustering and factoextra (version 1.0.7) was used to visualize the result of the principal 

components analysis (PCA) calculation.  

 

Statistical Analysis 

Grouping of eczema diagnosis for analyzing cumulatively and individually 

The microbiome analyses were done using two different approaches to clinical categorization 
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and grouping. Analysis Approach 1 took the cumulative counts of positive eczema diagnosis 

from a total of 5 time points (3, 6, 12, 24, and 36 months). Those with 4 to 5 instances of positive 

eczema diagnosis were grouped as having “Persistent” eczema. Those with 1 to 3 instances of 

positive eczema diagnosis were grouped as “Intermediate” eczema, and those with 0 instances 

were grouped as “None” for never having eczema. Analysis Approach 2 focused the analysis at a 

finer level by taking the eczema diagnosis at each individual timepoint of 3, 6, and 12 months. 

For each time point, the diagnosis was categorized as either “yes” for having a positive eczema 

diagnosis or “no” for not having an eczema diagnosis.  

Analysis of associations between eczema and other allergic conditions  

Fischer’s Exact test (VassarStats; http://vassarstats.net/) was used to determine if significant 

differences occurred between observed and expected frequencies between categorical variables 

of eczema diagnosis (persistent: > 4 diagnoses, intermediate: 1-3 diagnoses, none: 0 diagnosis) 

and presence or absence of each variable individually: atopy (positive SPT), wheeze, 

breastfeeding, and antibiotic treatment. In the extended study focused on individual time points 

(Table 2.2), associations of bacterial taxa with eczema diagnoses of None, intermediate with 1-3 

diagnoses, and persistent with 4 or more diagnoses were explored. In all analyses, statistical 

significance was defined as p < 0.05. If applicable, corrections for multiple comparisons were 

made. 

Ordination and clustering analyses of microbiotas 

PAST software (V4.03) was used to analyze 16S rRNA gene sequence, eczema, and atopy data.  

Canonical Correspondence Analysis (CCA) was performed to analyze the microbiota data using 

two clinical factors: eczema, atopy and wheeze. Neighbor joining clustering was used to classify 

the microbiota data without the influence of the clinical outcomes. Groups identified by 

neighbor-joining analysis were further analyzed using similarity percentage (SIMPER), analysis 

of similarity (ANOSIM) and non-parametric multivariate analysis of variance (PERMANOVA). 

Welch’s unequal variance t-tests were performed for allergy-associated OTU’s with Holm-Sidak 

correction for multiple comparisons.  

Random Forest Analysis  

Random Forest, a decision tree-based method, was used to identify specific OTU’s with the 

highest potential to correctly classify childhood eczema status. The R function randomForest 

was applied to conduct the analyses [145]. An importance value for each OTU was extracted 

http://vassarstats.net/
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from the analysis and the top five OTUs with the highest importance values were selected for 

subsequent analyses. The selected OTUs were further examined using logistic regressions on 

their association with eczema. The SAS 9.4 procedure PROC LOGISTIC [146] was applied for 

this purpose and a statistical testing with a p-value of 0.05 or smaller was deemed statistically 

significant.  

 

Results 

Note - For all of the microbiome results, the conversion of OTU numbers to the bacterial taxa 

can be found in Supplemental Table 2.1.  

 

Overview (Allergic Outcomes and Microbiota Sequencing) 

Clinical data at each assessment (3, 6, 12, 24, and 36 months of age) was available for all 56 

children who provided fecal samples that were analyzed. Four DNA samples of the 60 extracted 

were removed for technical reasons – see below. 17 of the 56 children had no instance of positive 

eczema diagnosis in the first 36 months of life, while the remaining 39 had at least one instance 

of positive eczema diagnosis. Of these, 18 were classified as having “Persistent” eczema, defined 

as having 4 to 5 instances of positive eczema diagnosis out of 5 total allergy assessment visits 

that occurred at 3, 6, 12, 24, and 36 months of age. 21 were classified as having “Intermediate” 

eczema, defined as having 1 to 3 instances of positive eczema diagnosis out of 5 allergy 

assessment visits (Fig 2.1.A). Data on the allergic outcomes of eczema, atopy, and wheeze as 

well as the potentially related histories of breastfeeding and antibiotic use in these 56 infants 

appear in Table 2.2.  
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Figure 2.1 Breakdown of the sample population by eczema diagnosis. (A)Grouping based on 
the cumulative count of positive eczema diagnosis over five time points across the first 36 
months of life. The diagnoses were made at 3, 6, 12, 24, and 36 months of age. Persistent group 
is defined as having 4 to 5 instances, Intermediate group is defined as having 1  
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Figure 2.1 (cont’d) 
to 3 instances, and “None” group is defined as having 0 instances of positive eczema diagnosis 
over the time period. Out of the total 56 samples analyzed, 18 were categorized into Persistent 
group, 21 into Intermediate group, and 17 were categorized into “None” group. (B) Bacterial 
taxa as OTU relative abundances in the fecal samples of infants grouped by their eczema 
diagnosis: Persistent (4-5 diagnosis instances), Intermediate (1-3 diagnosis instances), and 
“None” (0 diagnosis instances). Each OTU follows the naming connotation of “OTU_#”, where 
# represents some numerical integer assigned to each unique OTU. All OTU’s represented as a 
block of unique color for all 3 eczema diagnosis groupings. The width of each block corresponds 
to the relative percentage of each OTU. 

 

Wheeze was assessed for all children at ages 3, 6, 12, 24, and 36 months (Table 2.2). No 

association was found between wheeze and eczema using the none, intermediate, and persistent 

categories for eczema and “never wheeze” or “ever wheeze” categories (P=0.1193, Fisher’s 

exact test). For additional testing, ten children were classified as having “Persistent” wheeze, 

defined as having 4 or 5 positive diagnoses of wheeze; 33 were classified as having 

“Intermediate” wheeze, defined as having one to three positive diagnoses of wheeze; and 13 had 

no evidence of wheeze at any point. No association was found between wheeze and eczema 

using the none, intermediate, and persistent categories for wheeze as well as eczema (P=0.1884, 

Fisher’s exact test).  

Skin prick testing (SPT) was performed at 12 and 36 months to assess for atopy. Out of 56 

children, 11 tested positive at least once, and 4 were not tested. Of 18 children with “Persistent” 

eczema, 9 were diagnosed with atopy (Table 2.2). Fisher’s exact test for the three eczema 

categories and “never atopy” and “ever atopy” categories was significant (P=0.0003). Pairwise 

comparisons were made with Fisher’s exact test; the no eczema vs persistent eczema and 

intermediate eczema vs persistent eczema comparisons were significant after Holm-Sidak 

correction for multiple comparisons (P=0.0031 and P=0.0212, respectively). The “no eczema” vs 

“intermediate eczema” comparison was not significant (P=0.4922).  

Breastfeeding and antibiotic use were also evaluated with Fisher’s exact test using the 

three eczema categories and categories “never breastfed” and “ever breastfed” (for even 1 day) 

and “no antibiotic treatment” and “ever antibiotic treatment” (range, 1 to 3 times), respectively. 

Neither result was significant (P=0.1561 for breastfeeding; P=1.0 for antibiotic treatment).  
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Table 2.2 Allergic characteristics of the cohort based on clinical assessments, 
questionnaires, and testing.  

No. 

Infants 
Eczema Diagnoses 

Ever 

Wheeze 

Skin Prick 

positive 

Ever 

Breast Fed 

Ever 

Antibiotics 

17 None, No Eczema 10 (59%) 0 (0%) 12 (70%) 4 (24%) 

21 Intermediate Eczema1 17 (81%) 2 (10%) 13 (62%) 5 (24%) 

18 Persistent Eczema2 16 (89%) 9 (50%) 16 (89%) 4 (22%) 

39 Intermediate or Persistent Eczema 33 (85%) 11 (28%) 29 (74%) 9 (23%) 
1“Intermediate” eczema defined as positive diagnosis of eczema at one to three time points.  
2“Persistent” eczema defined as 4 or 5 diagnoses of eczema.  

 

Microbiota sequencing of fecal samples from 3 month old infants 

Out of 60 total samples collected, 2 were removed from the study due to not meeting DNA 

quality standards for sequencing as a result of an insufficient amount of fecal material. DNA was 

successfully isolated from the remaining 58 samples. Once ensured for concentration and quality 

by NanoDrop, Qubit, and PCR, the DNA samples were submitted for sequencing of the 16S 

rRNA gene V4 hyper-variable region using Mi-Seq Illumina amplicon sequencing. An additional 

2 samples were removed after sequencing for insufficient read depth, resulting in a total of 56 

samples used in this study.  

 

Analysis: Approach 1 

Microbiota composition at 3 months showed major overlap when grouped by cumulative 

eczema status 

For the first analysis, 3 groups were created based on the cumulative count of positive eczema 

diagnosis instances over the first 36 months. Each child received clinical assessments at ages 3, 

6, 12, 24, and 36 months. Counting each occurrence of positive eczema diagnosis as “1,” each 

sample was categorized as having A) “Persistent” eczema, B) “Intermediate” eczema, or C) 

“None”, or no eczema. If an infant had a total of 4 to 5 instances of positive eczema diagnosis 

out of the 5 total clinical assessment time points, it was categorized as having “Persistent” 

eczema. If an infant had 1 to 3 instances, it was categorized as having “Intermediate” eczema. 

All infants having 0 instances of eczema across all 5 assessment points were categorized as 

“None”. Out of the 56 samples, 18 were categorized as having “Persistent” eczema, 21 as having 
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“Intermediate” eczema, and 17 as “None”, or no eczema (Fig 2.1A). 

 

Taxa relative abundance showed overall similarities, with the least variability in higher 

abundance taxa and more variability in lower abundance taxa (Fig 2.2)  

Averaged relative abundance of each OTU with its assigned bacterial taxa based on 16S rRNA 

gene sequence results are shown as stacked bar charts for the 3 cumulative eczema groupings 

(Fig 1B). Overall, all 3 groups share the same most highly abundant OTU’s, all at slight 

differences from one another. OTU_2 (genus Bifidobacterium) was in highest abundance across 

all 3 groups, followed by OTU_45 (family Lachnospiraceae, genus unknown) and OTU_75 

(Genus Escherichia-Shigella), then OTU_5 (genus Bacteroides). OTU_45 was highest in “None” 

(no eczema) which also had the lowest abundance of OTU_75 compared to the other 2 groups, as 

opposed to “Persistent” eczema, which had the lowest OTU_45 relative abundance and highest 

OTU_75 relative abundance. A similar pattern was seen for OTU_1 and OTU_67; the 

“Persistent” eczema group had the highest relative abundance of OTU_67 (genus Veillonella) 

while having lowest relative abundance of OTU_1 (genus Bifidobacterium, ambiguous taxa). 

“None” (no eczema) had the opposite where the relative abundance of OTU_67 was the lowest 

and OTU_1 was highest amongst the 3 groups. When looking at the relative abundance of 

OTU’s subgrouped by their Family levels, regardless of their overall relative abundance, some 

families of bacteria had more members present while some only had one or two (Fig 2). Family 

Lachnospiraceae had the greatest number of OTU’s of 21, followed by family 

Ruminococcaceae, which had 11 OTU’s, then Clostridiaceae, Enterobacteriaceae, and 

Veillonellaceae, which all had 4 OTU’s. Other Families either had 3, 2, or 1 OTU’s. Within 

Families, typically there was a single OTU that had higher relative abundance than any other 

OTU’s of that Family, except for Clostridiaceae. In Lachnospiraceae, OTU_45 (genus 

unknown) overshadowed in their relative abundance compared to other OTU’s of its Family. In 

Ruminococcaceae, OTU_48 (genus Faecalibacterium) stood out as having the highest relative 

abundance, but only in the “Persistent” eczema group. In Enterobacteriaceae, OTU_75 (genus 

Escherichia-Shigella) was in much higher relative abundance than the other 3 OTU’s. In 

Veillonellaceae, OTU_67 (genus Veillonella) was in highest relative abundance, and some 

OTU’s were completely lacking in some of the groups while being present in another. OTU_64 

(genus Megamonas) and OTU_65 (genus Megasphaera uncultured), which were at lower 
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relative abundance, were also only present in the “Persistent” group, and not present in both 

“Intermediate” and “None” eczema groups. Another OTU in Veillonellaceae Family, OTU_66 

(genus Megasphaera) was present in both “Persistent” and “Intermediate” eczema, but not 

present in “None” (no eczema). Families Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae, 

and Streptococcaceae all had 2 OTU’s identified that belonged to their family, with one of them 

being at much higher relative abundance than the other. In Bacteroidaceae, OTU_5 (genus 

Bacteroides uncultured) was overall higher in relative abundance across all 3 groups than 

OTU_6 (genus Bacteroides). In Bifidobacteriaceae, OTU_2 (genus Bifidobacterium) was overall 

higher in relative abundance than OTU_1 (genus Bifidobacterium ambiguous taxa). In 

Prevotellaceae, OTU_9 (genus Prevotella.9) was present in all 3 groups, while OTU_10 (genus 

Prevotellaceae NK3b31 group) was only present in “Intermediate” group. In Streptococcaceae, 

OTU_19 (genus Streptococcus) was at much higher relative abundance across all 3 groups 

compared to OTU_18 (genus Lactococcus). Lactobacillaceae had OTU_16 (genus Lactobacillus 

uncultured) that was in highest relative abundance across all 3 groups and all 3 OTU’s in the 

“None” eczema group, but it was much lower in abundance in other 2 groups. OTU_17 (genus 

Lactobacillus) instead showed its presence across all 3 groups and was only lower than another 

OTU within this Family in the “None” eczema group. Clostridiaceae, which was mentioned as 

being an exception, had both OTU_21 (genus Clostridium sensu stricto 1 uncultured) and 

OTU_22 (genus Clostridium sensu stricto 1) as the OTU’s that was consistently in higher 

abundance than other OTU’s across all 3 groups.  
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Figure 2.2 Relative abundances of OTUs separated and grouped at the Family level of each 
bacterial taxon. Each unique color represents a unique OTU, which are grouped by their eczema 
diagnosis: “Persistent” (4-5 diagnosis instances), “Intermediate” (1-3 diagnosis instances), and 
“None” (0 diagnosis instances). 
 

Principal Components Analysis (PCA) overlapped “Intermediate” and “None” eczema 

groups almost completely, and both had slightly less overlap with the “Persistent” group 

PCA was used to visualize the spread of the microbiota data based on the 3 cumulative eczema 

diagnosis groupings. In the PCA bi-plot with all three groups, the first dimension explained 

27.7% and the second dimension explained 14.5% of the spread of the data (Fig 2.3A). The 95% 
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confidence ellipses were not distinct from one another, showing great overlaps amongst all three 

groups. Out of 3, “None” and “Intermediate” eczema showed the most overlaps, while “None” 

and “Persistent” eczema showed the least. The variables most responsible for the spread were 

OTU_2 (genus Bifidobacterium), OTU_75 (genus Escherichia-Shigella), OTU_45 (family 

Lachnospiraceae), OTU_67 (family Veillonellaceae), and OTU_5 (genus Bacteroides 

uncultured) in order of importance (Fig 2.3A). When visualized with just the “None” and 

“Persistent” eczema, the 95% confidence ellipses still showed great overlaps, however there 

were some distinction along the 1st dimension, represented as the x-axis (Fig 2.3B). The first 

dimension contributed 27.9% of the spread of the data, while the second dimension contributed 

16.6%. The variables most responsible for the spread of the data were OTU_2 (genus 

Bifidobacterium), OTU_75 (genus Escherichia-Shigella), OTU_45 (family Lachnospiraceae), 

OTU_67 (family Veillonellaceae), and OTU_5 (genus Bacteroides) in order of importance (Fig 

2.3C-D).  
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Figure 2.3 Principal Components Analysis (PCA) of bacterial taxa relative abundance  
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Figure 2.3 (cont’d) 

data.(A) PCA grouped by all 3 eczema diagnosis groupings (“Persistent” in orange, 

“Intermediate” in green, “None” in blue). The top 6 most contributing OTUs (variables) are 

represented by black arrows. The length and direction of each arrow represents the weight and 

direction of its contributions. (B) PCA of the same data with only the 2 most extreme eczema 

diagnosis groupings (“Persistent” in orange, “None” in blue). Black arrows represent the top 5 

most contributing OTUs (variables). (C) Bar plot of the percentage of contribution of each of the 

top 5 most contributing taxa. (D) Keys for the identities of the top 5 most contributing taxa 

represented in B and C.  NaN stands for undefined taxa. 

 

Similarity Percentage (SIMPER) analysis showed that the “None” (no eczema) group had 

more similar microbiota composition to “Intermediate” eczema than to “Persistent” 

eczema 

SIMPER analysis showed that the OTU compositions in the “None” (no eczema diagnosis) 

group was most similar to that of “Intermediate” eczema (1-3 positive diagnosis) than to 

“Persistent” eczema (4-5 positive diagnosis) (Fig 2.4.A). There were many OTU’s that were 

similar in their relative abundance across the three groups, for both high (shown in red) and low 

(shown in dark blue) abundance levels. However, there were also a number of OTU’s that 

showed difference in their relative abundance across the three allergy groupings. Most notable 

were those in phylum Firmicutes. Many members of this phylum showed higher relative 

abundance in “Persistent” eczema compared to the “None” (no eczema) group. A few members 

of the Proteobacteria also showed the same pattern of having the highest relative abundance in 

the “Persistent” eczema group. 
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Figure 2.4 (A) Heatmap representations of SIMPER (SIMilarity PERcentage) analysis 
using relative abundance values of each taxa grouped by the 3 eczema diagnosis groupings.  
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Figure 2.4 (cont’d) 
(“Persistent”: left, “Intermediate”: middle, “None” (labeled as ‘No Eczema’: right). Each cell 
represents the relative abundance by color, with dark blue being lowest and red color being 
highest. The dendrogram on the top represents the SIMPER result showing that “Intermediate” 
and “None” groupings were more similar to each other than to the “Persistent” group. (B) Shows 
the Shannon Diversity Index using the OTU data grouped by the 3 eczema diagnoses 
(“None”: left in green, “Intermediate”: middle in yellow, “Persistent”: right in red). The mean 
differences between the 3 groups were not statistically significant (p=0.57, Kruskal-Wallis).  
 

Alpha diversity calculated using the Shannon Alpha Diversity Index showed no significant 

difference amongst all three groups 

Shannon diversity index accounts for both richness and evenness to assign a value to explain the 

level of alpha diversity of a community. The mean differences between the three groups were not 

statistically significant (p=0.57, Kruskal-Wallis). The “None” group had 2 outliers while having 

the smallest range around its mean. “Intermediate” eczema had 4 outliers and had a slightly 

greater range around its mean. “Persistent” eczema had no outliers but showed the greatest range 

around its mean (Fig 2.4B).  

 

Metabolic potentials were not distinguishable between the three groups as inferred using 

PAPRICA (PAthway Prediction by phylogenetIC plAcement) 

The result of 16S rRNA gene sequencing were fed into PAPRICA software to obtain inferred 

metabolic pathway potentials of each sample. Each sample were clustered for its inferred relative 

abundance of metabolic pathway potentials using the complete Euclidean method, forming a 

dendrogram on the left side of the heatmap (Fig 2.5A). Each of the samples were labeled with 

their respective group based on their cumulative positive eczema diagnosis count. Clustering 

showed no distinction amongst the samples based on the eczema grouping, showing an evenly 

mixed spread. There was one cluster that was most distinct from the rest containing five samples, 

3 of which belonged to “None”, 1 to “Intermediate”, and 1 to “Persistent” eczema. This group 

also showed most the distinguishable pattern on the heatmap representing the relative abundance 

of each pathway ranging from lowest (dark blue) to highest (red). However,  

PCA analysis of the predicted metabolome results also showed great overlaps of 95% 

confidence ellipses between the groupings. The “None” group showed the largest area of spread, 

followed by “Persistent” eczema, and then “Intermediate” eczema, which had the tightest spread 
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(Fig 2.5B). The first dimension represented on the x-axis accounted for 45% of the spread, and 

the second dimension along the y-axis accounted for 16.8% of the spread.  
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Figure 2.5 PAPRICA analysis results of inferred metabolic pathway potentials based on 
16S rRNA gene sequence data. (A) Heatmap of the relative abundance of each of the inferred  
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Figure 2.5 (cont’d) 

metabolic pathways for each sample. The color gradient of each of the cells goes from red (high 
abundance) to dark blue (low abundance). Each sample is represented as a row and identified for 
its eczema diagnosis grouping by the color ribbon (red = Persistent, yellow = Intermediate, green 
= None). The dendrograms used the complete clustering method. (B) Shows the PCA of each 
sample using the PAPRICA pathways results and grouped by the 3 eczema diagnosis groupings. 
(C) Shows the top 10 most contributing variables (predicted metabolic pathways) in the spread of 
data in the PCA shown in (B). The metabolic pathways are shown in decreasing order from 1 – 
most contributing, to 10 – least contributing of the top 10, with a key to the names of each 
pathway by numbered ranks. * - Indicates the most distinct cluster. 
 

Analysis: Approach 2 

Overview of Analyses from Approach 2 

Although there was little differentiation between the microbiotas of infants at the three eczema 

diagnosis levels as broadly assessed by PCA, SIMPER analysis indicated that the compositions 

of those diagnosis groups did differ in their levels of several taxa, including taxa associated with 

allergy in the literature. Furthermore, taxa associated with allergy, hereafter termed allergy 

agonists were major contributors to the ordinations. Therefore, we performed further analyses to 

elucidate the possible effects of these differences. First, (1) we performed neighbor-joining 

clustering of the full data table (all samples, all taxa) to explore whether samples could be 

separated into distinct clusters based on the bacterial community composition at 3 months of age 

alone, without respect to allergy diagnoses. Second, (2) we hypothesized that analysis of 

individual bacterial taxa and groups of taxa implicated as allergy agonists in previous studies 

would reveal patterns associated with allergy in this population. Next, (3) we hypothesized that 

addition of another allergic diagnoses, atopy, would strengthen the correlation found between 

allergic manifestation and the microbiota. And finally, (4) we hypothesized that analysis of the 

influence of the early gut microbiota on eczema diagnosis at individual early assessment times 

would provide evidence of the importance of the early gut microbiota on the pattern of eczema 

development and confirm the importance of presence of individual taxa.  

 

(1) Two distinct microbiota groups emerged using neighbor-joining analysis 

Neighbor joining clustering using the Bray Curtis similarity measure with 1000 bootstrap 

replications was performed on the microbiota data (Figure 2.6, Panel A). This analysis is blind to 
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allergy phenotype – eczema, atopy, both eczema and atopy, or neither. Two groups with 100% 

bootstrap support emerged from the analysis where Group 2 containing 20 samples had a 

preponderance of infants with eczema (85%) and Group 1 containing 36 samples was more 

evenly divided between infants with no eczema at any time point (39% in that group) and infants 

with eczema including “Intermediate” and “Persistent”(61% of the samples in that group). In 

addition, the proportion of infants with atopy diagnoses was higher in group 2 than in group 1; 

14% (5 of 36) of the infants in Group 1 had atopy diagnoses, while 30% (6 of 20) of the infants 

in group 2 had atopy diagnoses. The compositions of the microbiotas in the two groups differed 

significantly, which was confirmed with one-way PERMANOVA with Bray Curtis similarity 

(P≤0.0001).  
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Figure 2.6 Neighbor-joining and Canonical Correspondence analyses.  



 48 

Figure 2.6 (cont’d) 

Panel A. Neighbor-joining. Relative abundances of all taxa; Bray Curtis/1000 bootstraps. Green 
text indicates the “None” eczema diagnoses, orange text indicates “Intermediate” with 1-3 
eczema diagnoses; and red text indicates “Persistent” eczema with 4-5 eczema diagnoses. Red 
arrows indicate “Persistent” eczema with one or two diagnoses of atopy. Panel B. Allergy 
agonists and antagonists in neighbor-joining groups: mean ± SEM. Average relative 
abundances of taxa are shown. Mann-Whitney rank test for equality of medians for each taxon 
was used followed by Holm-Bonferroni correction for multiple comparisons (*, P≤0.05; 
**,*P≤0.005; ***, P≤0.0005). Panel C. CCA samples. Relative abundances of all taxa; factors 
= total observations of eczema (0-5) and total observations of atopy (0-2). Symbols: square - 
infant that had at least one atopy diagnosis; dot - infant that did not have atopy; green – “None” 
eczema (0 eczema diagnoses), orange – “Intermediate” eczema (1-3 eczema diagnoses), and red 
– “Persistent” eczema (4-5 eczema diagnoses). Panel D. CCA: taxa. Relative abundances of all 
bacterial taxa; Factors = total observations of eczema (0-5) and total observations of atopy (0-2). 
The taxa named have been associated with allergy in the literature. The plot was truncated to 
improve visibility; outlying taxa are not shown and their XY coordinates on the full plot are 
given in the lower left and lower right corners.  

 

(2) Groups defined by neighbor-joining had significant differences in the relative 

abundances of some bacterial taxa previously associated with allergy development  

Multiple studies have implicated a number of bacterial taxa associated with either development 

or prevention of allergy. Twenty-six such bacterial taxa detected in the infant samples are 

represented in Table 2.3; 15 of these bacterial taxa have been identified as allergy agonists, and 

11 identified as allergy antagonists [2, 55, 81, 82, 102, 147-152]. 
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Table 2.3 Allergy agonists and antagonists detected in the infant samples.  

Allergy Agonists Allergy Antagonists 

Alistipes a uncultured Bifidobacterium 

Alistipes b Bifidobacterium ambiguous 

Bacteroides a uncultured Coprococcus 2 uncultured 

Bacteroides b Faecalibacterium uncultured 

Clostridium sensu stricto 1 a Lachnospira uncultured 

Clostridium sensu stricto 1 b uncultured Lactobacillus a 

Desulfovibrio Lactobacillus b uncultured 

Escherichia-Shigella Lactobacillus casei 

Haemophilus uncultured Roseburia uncultured 

Klebsiella Ruminococcus 1 

Prevotella 9 uncultured Ruminococcus 2 uncultured 

Streptococcus uncultured  

Sutterella a uncultured  

Sutterella b  

Veillonella uncultured  

 

The relative abundances of some members of this subset of allergy-associated taxa were 

significantly different between the two groups identified using neighbor joining clustering 

(Figure 2.6, Panel B). The Escherichia-Shigella taxon was in highest relative abundance among 

the allergy-agonists while Bifidobacterium was highest amongst the allergy antagonists. In the 

allergy agonist group, Bacteroides_b and Veillonella were in higher relative abundance in Group 

2, while Bacteroides_a was higher in Group 1. In the allergy antagonist group, Bifidobacterium 

that was present at the highest relative abundance was seen to be higher in average relative 

abundance for Group 2, while Bifidobacterium_ambiguous taxon was higher in Group 1.  

 

(3) Eczema and atopy considered together lead to differentiation of microbiotas of infants 

by Canonical Correspondence Analysis (CCA)  

Epidemiological associations have been made between the presence of one or more allergic 

manifestations in infancy and early childhood and subsequent development of asthma [2]. 
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Because there was a significant association between eczema and atopy in our dataset (Fisher’s 

exact test, P = 0.0311), we then asked whether consideration of the two factors together would 

strengthen the correlation found between allergy and the microbiota [153]. CCA was used to 

analyze the separation of the microbiota data using the factors atopy and eczema. The two factors 

were the total number of eczema diagnoses over the five assessment time points (range 0-5) for 

each individual and the individual’s total number of atopy diagnoses obtained by skin prick tests 

at 12 and 24 months of age (range 0-2).  

Samples (Figure 2.6, Panel C) and taxa (Figure 2.6, Panel D) are shown in separate plots for 

clarity. The infants are designated in Figure 2.6C as having no eczema (green; N = 17), 

intermediate eczema (orange; N = 21), or persistent eczema (red; N=18). Square symbols 

indicate at least one positive atopy diagnosis; dots indicate no atopy. The taxa named in Figure 

2.6D have been associated with allergy in the literature. The two factors, eczema and atopy, 

exhibited correlation, contributed approximately equally to the outcome of the analysis, and 

together separated most infants with “Intermediate” or “Persistent” eczema (lower two 

quadrants) from most infants with “None” eczema (upper two quadrants). Infants with atopy fell 

mainly in the lower left quadrant. Allergy-associated taxa, both agonists and antagonists, were 

distributed through all quadrants of the plot. Allergy antagonists Lactobacillus (two OTUs), 

Ruminococcus (two OTUs), and Bifidobacterium_ambiguous taxon were particularly prominent 

in the upper quadrants, while allergy agonists Lachnospira, Haemophilus, Veillonella, and 

Escherichia-Shigella were prominent in the lower quadrants. The plot was truncated to improve 

visibility; outlying taxa not shown and their XY coordinates on the full plot are given in the 

lower left and lower right corners.  

 

Analysis: Approach 3 

Further examination of the association between the microbiota composition at 3 months of age 

with eczema diagnosis status at each time point over the first year of life.  

 

Eczema diagnosis given at 3, 6, and 12 months was used to group, then to analyze the 

microbiota composition of infants at 3 months of age 

To further investigate the effect of microbiota composition at infancy on eczema development, 

we used the individual instances of eczema diagnosis made at 3, 6, and 12 months of age in 
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addition to the cumulative diagnosis count. Assessments performed at 24 and 36 months were 

excluded due to a large number of missing values that would cause high uncertainty in 

inferences. All samples were grouped as either “having a positive eczema diagnosis at the time 

indicated as “Eczema”, or “having a negative eczema diagnosis at the time” indicated as “No 

Eczema”. At 3 months of age, out of 56 infants, 18 infants received a positive diagnosis of 

“Eczema” and 38 infants were categorized as “No Eczema” (Fig 2.7A). At 6 months of age, the 

number of infants with a positive “Eczema” diagnosis increased to 30 and the remaining 26 were 

deemed as “No Eczema”. At 12 months of age, 29 infants were diagnosed as having “Eczema” 

while 27 were diagnosed as “No Eczema”. 
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 Figure 2.7 Breakdown of the sample population based on their eczema diagnosis. 
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Figure 2.7 (cont’d) 
(A) Grouping based on positive or negative diagnosis of eczema at each time point of allergy 
assessment. Out of the 56 samples analyzed, at 3 months of age, 18 were diagnosed as positive 
and 38 were diagnosed as negative. At 6 months of age, 30 were diagnosed as positive and 26 as 
negative. At 12 months of age, 29 were diagnosed as positive and 27 as negative for eczema. (B) 
Bacterial taxa as OTU relative abundances in the fecal samples of infants (collected at 3 months) 
grouped by their eczema diagnosis made at 3, 6, and 12 months (“eczema” or “no eczema”). All 
OTU’s represented as a block of unique color for both eczema diagnosis at each 3 ages. 
 

Taxa relative abundance showed overlapping patterns as the cumulative eczema count 

grouping for highly abundant OTU’s, while showed opposite patterns in lowly abundance 

OTU’s (Figs 2.7 and 2.8) 

Averaged relative abundance of each OTU with its assigned bacterial taxa based on 16S rRNA 

gene sequence results are shown as stacked bar charts for both “Eczema” and “No eczema” 

diagnosis groups at 3, 6, and 12 months. All 6 groups shared similar compositions for their most 

highly abundant OTU’s, while showing more variation within less abundant OTU compositions.  

OTU_2 (genus Bifidobacterium) was the most highly abundant at more consistent percentage 

across all groups. OTU_45 (family Lachnospiraceae) and OTU_75 (genus Escherichia-Shigella) 

were the next most highly abundant OTUs in all groups, except for “Eczema” group at 3 months, 

where OTU_67 (genus Veillonella) was in higher relative abundance. OTU_45 was more 

consistent in their relative abundance between the “Eczema” and the “No eczema” groups along 

with OTU_75 at 3, 6, and 12 months. OTU_67 was in higher abundance in “Eczema” groups at 

all 3 time points, but the difference was largest at 3 months.  

For lower relative abundance OTU’s, the similar trend of having select few OTU within each 

taxonomic family at higher relative abundance than the rest stayed true. In family 

Lachnospiraceae, OTU_45 (genus unknown) overshadowed in its relative abundance compared 

to the rest of the OTU’s as it did in the cumulative eczema count grouping. In family 

Ruminococcaceae, OTU_48 (genus Faecalibacterium) was in much higher abundance than any 

other OTU’s of the family as seen in cumulative eczema count grouping. It was in much higher 

relative abundance in the “eczema” group at 3, 6, and 12 months. In Enterobacteriaceae family, 

OTU_75 (genus Escherichia-Shigella), which was also one of the most highly abundant OTU 

and was the OTU in higher abundance than other members of the family. It was the same case in 

Veillonellaceae, where OTU_67 (genus Veillonella) was highest within the Family, while being 
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one of the most highly abundant OTU overall. Out of the lesser abundant OTU’s within 

Veillonellaceae, OTU_64 (genus Megamonas) was consistently in higher abundance in the “No 

eczema” groups across all 3 time points. OTU_65 (genus Megasphaera uncultured), which was 

only present in the cumulative “Persistent” eczema group, was in highest abundance in the “No 

eczema” group at 3 months, then appearing in “Eczema” group at 6, then 12 months. OTU_66 

(genus Megasphaera) appeared in both the “Eczema” and “No eczema” group at 3 months and 

was minimal in “No eczema” groups in 6 and 12 months. In Bacteroidaceae family, the relative 

abundance of OTU_5 (genus Bacteroides uncultured) was less distinct from each other 

compared to that when using the cumulative eczema count grouping. OTU_5 was still higher 

than OTU_6 (genus Bacteroides)  for both diagnoses at 3 months but had an even distribution of 

relative abundance in the 12 month group. OTU_6 showed consistently higher relative 

abundance amongst the “Eczema” group.  

Bifidobacteriaceae showed a pattern that was more consistent with the cumulative grouping, 

where OTU_2 (genus Bifidobacterium) was in much higher relative abundance across the groups 

compared to OTU_1 (genus Bifidobacterium ambiguous taxa). In Prevotellaceae, OTU_9 (genus 

Prevotella.9) was in higher relative abundance than OTU_10 (genus Prevotellaceae NK3b31 

group) overall, and much higher in “No eczema” groups. OTU’s in family Streptococcaceae 

followed the pattern in cumulative grouping where OTU_19 (genus Streptococcus) was at much 

higher relative abundance across all the groups compared to OTU_18 (genus Lactococcus). 

Lactobacillaceae had OTU_16 (genus Lactobacillus uncultured) that was consistently in higher 

abundance in the “No eczema” group in all 3 ages. OTU_17 (genus Lactobacillus) was in higher 

abundance than OTU_15 (genus Lactobacillus casei species) and got skewed in relative 

abundance pattern going from being about even within 3 months grouping, to much higher in 

“No eczema” within 6 and 12 months grouping. Clostridiaceae had OTU_21 (genus Clostridium 

sensu stricto 1 uncultured) and OTU_22 (genus Clostridium sensu stricto 1) that were higher 

relative abundance overall compared to the cumulative grouping. However, OTU_23 (genus 

Sarcina) was at higher relative abundance in the “Eczema” group at 12 months.  
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Figure 2.8 Comparisons of specific bacterial taxa in infants with eczema or no eczema. 
Bacterial taxa are from fecal samples of infants (collected at 3 months) that are shown as OTU 
relative abundances and grouped by their eczema diagnosis made at 3, 6, and 12 months of age. 
Bacterial taxa are shown at the family level of taxonomic rank. 
 

Principal Components Analysis (PCA) showed varying overlaps between the 2 eczema 

statuses at 3, 6, and 12 months of age 

PCA was used to visualize the spread of the microbiota data based on their OTU compositions, 

with 95% confidence ellipses representing the eczema diagnosis grouping (Fig 2.9). The first 

dimension explained 27.7% and the second dimension explained 14.5% of variation in the data. 

The top contributing variables are the same OTU’s as they were in cumulative grouping. In PCA 
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visualized using eczema diagnosis at 3 months of age, the 95% confidence ellipse representing 

the “eczema” group was narrower than that of “no eczema” group, leaving 4 samples in “no 

eczema” group and 1 in “eczema” group outside of its ellipse (Fig 2.9A). When visualized with 

groupings by eczema diagnosis at 6 months, the 95% confidence ellipse for “no eczema” group 

increased in size to include additional samples that sat outside of its range with 3 months 

grouping. In addition, “eczema” ellipse changed shape to leave out 3 samples now belonging in 

“eczema” group (Fig 2.9B). With diagnosis at 12 months grouping, “no eczema” ellipse 

increased its size even more, including all samples. The “eczema” 95% confidence ellipse now 

contained all the samples belonging to its grouping (Fig 2.9C).  

 

 
Figure 2.9 PCA of bacterial taxa relative abundance data and the percentage of 
contribution of each of the top 5 most contributing taxa for each of the ages. (A) made at 3  
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Figure 2.9 (cont’d) 
months of age. The black arrows represent the top 5 most contributing OTUs (variables). (B) 
PCA and its top 5 made at 6 months of age. (C) PCA grouped by the eczema diagnosis made at 
12 months of age. (D) top 5 contributing OTU’s for the spread of PCA in (A) – (C).  

 

Alpha diversity calculated using Shannon Diversity Index was not significant for any time 

point 

Shannon Diversity Index was calculated on microbiota compositions grouped by individual 

eczema diagnosis at 3, 6, and 12 months. Using eczema diagnosis at 3 months, the difference in 

the Shannon diversity index between those diagnosed with eczema (“Eczema”) and those 

without eczema (“No eczema”) were not statistically significant (p=0.54, Kruskal-Wallis). 

Grouping by eczema diagnosis made at 6 months, the mean difference was also not statistically 

significant (p=0.86, Kruskal-Wallis). When grouped by eczema diagnosis made at 12 months, 

the mean difference was still not statistically significant (p=0.59, Kruskal-Wallis)(Fig 2.10A).  
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Figure 2.10 (A) Shannon Diversity Index using the OTU data grouped by the eczema  
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Figure 2.10 (cont’d) 
Diagnosis. (“eczema”: red, “no eczema”: blue) at 3, 6, and 12 months of age. The mean 
differences were not statistically significant for all 3 time points (3 months: p=0.54, 6 months: 
p=0.86, 12 months: p=0.59; Kruskal-Wallis). (B) PAPRICA analysis results of inferred 
metabolic pathway potentials based on 16S rRNA gene sequence bacterial taxa data. 
Heatmap of the relative abundance of each of the inferred metabolic pathways for each sample. 
The color gradient of each of the cells goes from red (high abundance) to dark blue (low 
abundance). Each sample is represented as a row and identified for its eczema diagnosis 
grouping by the color ribbon for each of the 3 time points (red =”eczema”, blue = “no eczema”). 
The dendrograms used complete clustering method. 

 

Metabolic potentials as inferred using PAPRICA (PAthway Prediction by phylogenetIC 

plAcement) were not distinguishable between groups 

The inferred metabolic pathway potentials obtained using PAPRICA software was re-analyzed 

using the individual eczema diagnosis status grouping at 3, 6, and 12 months. When clustering 

each sample based on its composition of inferred pathway potential relative abundances using 

Euclidean method, there were no clear separation of those in “eczema” grouping or “no eczema” 

grouping on the dendrogram (Fig 2.10B).  

 

Random Forest analysis followed by logistic regression showed statistically significant 

association between OTU_67 (genus Veillonella) and eczema status at 3 months of age 

This analysis used an eczema diagnosis defined as answering: (1) YES to (i) “ever have itchy 

rash coming and going for at least 6 months” (not valid at 3 or 6 months of age), (ii) “rash or 

eczema that has lasted at least 7 days or more,” or (iii) “ever eczema” (not valid at 3 months), 

and (2) YES to “the rash was itchy,” and (3) YES to “affected the folds of elbows, behind knees, 

in front of ankles, on cheeks or around neck, ears, or eyes.” “No eczema” was defined as “never 

presence of an itchy rash.” 

The method of random forest was applied to select OTUs potentially associated with eczema 

at different ages. The R function randomForest was run on the microbiota composition and the 

eczema status at 3, 6, and 12 months to examine their potential associations. Using 10-fold cross 

validation, the average accuracy for predicting eczema status based on constructed forests were 

80%, 63%, 68%, and 60%, indicating a close connection between microbiota composition at 3 

months and the eczema status at 3 months. Five top OTUs out of 15 OTU’s that received the 
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highest importance values in random forest analysis (Fig 2.11) were further analyzed using 

logistic regressions. Out of the 5 OTU’s analyzed, OTU_67(genus Veillonella) showed a 

statistically significant association with eczema status at 3 months of age (Odds ratio=2.42 for 

every 10% of increase in relative abundance, p=0.036) after adjusting for offspring gender. 

Additional associations between OTU_67 and eczema status at other ages were tested using the 

same model (Table 2.3).  

Table 2.3 Estimated odds ratios, 95% confidence intervals, and p-values for the association 
of Veillonella with eczema status at different ages. 

  Odds ratio 

(for every 10% of 

increase 

in relative abundance) 

95% Confidence Interval 

P-values 
2.50% 97.50% 

Month 3 2.42 1.16 6.17 0.036 

Month 6 1.91 0.98 4.37 0.085 

Month 12 1.10 0.54 2.09 0.774 

 

 
Figure 2.11 Top 15 variable importance from Random Forest analysis. OTU_67, belonging 
in the Veillonella genus was the highest.  
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Discussion 

Samples and data from 56 children of the Isle of Wight Birth Cohort third generation were used 

to address the hypothesis that a particular composition of the early gut microbiota is associated 

with development of eczema and/or atopy in infants. Of these, 17 of 56 children were graded as 

“None” for eczema status in the first 36 months of their life, while the remaining 39 had at least 

one instance of positive eczema diagnosis. Eighteen had “Persistent” eczema, while 21 were 

classified with “Intermediate” eczema. This study established an association between Veillonella 

and other allergy agonists in infant gut microbiota at 3 months of age with risk of developing 

eczema from 1 to 3 years of age in children of the Isle of Wight Birth Cohort.  

In the initial family level analysis of the three eczema categories “None” no eczema, 

“Intermediate” eczema and “Persistent” eczema, there were differences between microbiotas of 

infants in these three categories. PCA analysis at the OTU level showed considerable overlap; 

however four known allergy-associated taxa were major contributors to separation of points 

along major axis 1 (Bifidobacterium, Escherichia-Shigella, Prevotella, and Veillonella). 

Furthermore, SIMPER analysis indicated that the compositions of those clinical groupings did 

differ in their levels of several taxa, including taxa associated with allergy in the literature. 

Moreover, bacterial taxa previously associated with allergy, termed allergy agonists, were major 

contributors to the ordinations. This suggested that analyzing OTU abundance associations 

would be better served by testing for associations with known allergy agonists or allergy 

antagonists. These results led us to perform additional analyses via neighbor-joining and 

canonical correspondence. 

Our first approach employed neighbor-joining clustering of the full data table (all samples, 

all taxa) to explore whether samples could be separated into distinct clusters based on the 

bacterial community composition at 3 months of age alone, without respect to allergy diagnoses.  

Neighbor-joining clustering, which does not take eczema category into account, indicated the 

presence of two strongly separated clusters of microbiotas with 100% bootstrap support. The 

compositions of the microbiotas in these groups differed significantly by one-way 

PERMANOVA with Bray Curtis similarity (P≤0.0001) and one, Group 2, had higher proportions 

of infants with eczema and atopy. These groups differed markedly in the levels of some allergy-

associated taxa (Escherichia-Shigella, Veillonella, two Bacteroides OTUs, Bifidobacterium, and 

Bifidobacterium_ambiguous taxon). The Bifidobacterium OTU was the most important and the 
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Escherichia-Shigella OTU  the 2nd most important taxa contributing to the dissimilarity between 

neighbor-joining Group 1 and Group 2 (SIMPER).   

In the second approach, we hypothesized that analysis of individual bacterial taxa and groups 

of taxa implicated as allergy agonists in previous studies would reveal patterns associated with 

allergy in this population. After analysis, we accepted this hypothesis because groups defined by 

neighbor-joining had significant differences in the relative abundances of some bacterial taxa 

previously associated with allergy development. The Escherichia-Shigella taxon was in highest 

relative abundance among the allergy-agonists while Bifidobacterium was highest amongst the 

allergy antagonists. In the allergy agonist group, Bacteroides and Veillonella were in higher 

relative abundance in Group 2 with the preponderance of infants with eczema, while 

Bacteroides_a was higher in Group 1. In the allergy antagonist group, Bifidobacterium that was 

present at the highest relative abundance was seen to be higher in average relative abundance for 

Group 2, while Bifidobacterium_ ambiguous taxon was higher in Group 1.  

In our third approach, we hypothesized that addition of atopy would strengthen the 

correlation found between eczema and the microbiota. Here, CCA showed that the two factors, 

eczema and atopy were correlated, contributed approximately equally to the outcome of the 

analysis, and together separated most infants with “Intermediate” or “Persistent” eczema from 

most infants with “None” eczema (upper two quadrants) in the ordination plot. These outcomes 

were associated with the allergy agonists Lachnospira, Haemophilus, Veillonella, and 

Escherichia-Shigella. Conversely, allergy antagonists Lactobacillus (two OTUs), Ruminococcus 

(two OTUs), and the Bifidobacterium_ ambiguous_taxon were associated with absence of 

eczema and atopy. Thus, eczema and atopy considered together by CCA lead to substantial 

improvements in distinguishing which bacterial taxa of the fecal microbiotas of infants correlated 

with an allergic clinical presentation. The CCA result confirmed the contributions of both 

eczema and atopy and the correlation between them.  

Finally, in a fourth approach we hypothesized that analysis of the influence of the early gut 

microbiota on eczema diagnosis at individual early assessment times would provide evidence of 

the importance of the early gut microbiota on the pattern of eczema development and confirm the 

importance of key individual taxa. Here, Random Forest analysis followed by logistic regression 

showed a statistically significant association between Veillonella and eczema status at 3 months 

of age. Taken together, our results support that infants with “Persistent” eczema in the first three 
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years of life represent a group where the genera Lachnospira, Haemophilus, Veillonella, and 

Escherichia-Shigella acted as a risk microbiome and Bifidobacterium and Bacteroides acted in a 

protective manner. Interestingly, in no instance did diversity of the microbiota have impact on 

susceptibility to allergy in these studies. These results provide evidence for a relationship 

between microbiota composition at 3 months and development of allergy, particularly for 

allergy-associated taxa, and justified exploration of the time factor in eczema development.  

The next step in assigning allergy agonist status to these bacterial taxa is to culture and 

identify them at the isolate level and conduct Koch’s postulates for validation. While connections 

between allergy and Escherichia have been made previously, we note that Escherichia-Shigella, 

notably Escherichia coli contains a wide array of pathotypes within its species that are 

unidentifiable by 16S rRNA gene sequencing. Escherichia coli has been directly isolated and 

identified from the fecal samples of infants belonging to all eczema diagnosis categories[154]. In 

this study, we identified two E. coli isolates by culture and MALDI-TOF from children with 

“Persistent” eczema. In further studies we isolated a human-derived E. coli strain LM715-1 from 

a mouse given a fecal microbiota transplant from three of these infants from the third generation 

Isle of Wight Birth Cohort diagnosed with “Persistent” eczema. We characterized E. coli 

LM715-1 based on Illumina whole genome sequencing and multilocus sequence typing (MLST) 

using a scheme of seven housekeeping genes; aspC, clpX, fadD, icdA, lysP, mdh, and uidA as 

described previously[155]. Based on this Achtman MLST scheme[156], E. coli LM715-1 

belonged to sequence type ST141 lineage B2 and predicted serotype O2:H6, which is most often 

assigned to uropathogenic E. coli.  We also searched metadata of isolates related to ST141 E. 

coli strains in the EnteroBase dataset containing 235,990 E. coli strains, which also supported the 

classification of this strain as uropathogenic [157]. Given that the infant it was derived from and 

the mouse that it was transplanted to did not show discernible disease, we assigned it commensal 

status. However, this outcome supports the goal of characterizing more of these identified 

agonists for their molecular roles in mediating allergy. Eczemic infant bacterial communities will 

be tested using molecular Koch’s postulates for underlying mechanisms in a mouse model of 

allergic airway disease. 

This study indicated an association between eczema status at 3 months of age and the relative 

abundance of genus Veillonella in infant fecal content at that age. This association was 

statistically significant at P=0.036 using logistic regression, following a random forest analysis 
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that assigned the highest variable importance value to OTU_67: genus Veillonella. Genus 

Veillonella, represented as OTU_67 in this study, was consistently one of the OTU’s in higher 

relative abundance overall. Veillonella is an anaerobic, gram-negative bacterial genus regarded 

as a commensal member of the oral and GI tract microbiome [158]. Although commensal, there 

are some species within the genus that have been identified to cause cavities and periodontal 

diseases, and there are recorded cases of meningitis and bacteremia[159, 160]. While there is not 

yet any direct causational link found between Veillonella spp. and human diseases and conditions 

relating to allergies, multiple microbiome studies have found an association indicating that this 

genus may be playing a role in human allergy development, specifically eczema and asthma [55, 

161-163]. These authors found an association between an increased abundance of Veillonella 

spp. and asthma by the age of 5 [55, 162], allergic rhinitis at 6 years of age [161], and eczema in 

infants [163]. These findings all align with our findings associating increased abundance of 

Veillonella spp. with positive eczema diagnosis in infants. The infants from which our samples 

came are still enrolled in the cohort to continue receiving clinical analysis as they age. We expect 

the infants with increased Veillonella spp. content and positive eczema diagnosis to be at a 

higher risk of developing more allergic diseases, such as asthma and allergic rhinitis, in the 

coming years.  

This study established the association between positive eczema diagnosis in infancy and the 

previously allergy-related bacterial taxa including Bifidobacterium, Escherichia-Shigella, 

Prevotella, and Veillonella spp. in the fecal microbiota of infants residing on the Isle of Wight 

and highlighted the value of having both cross-sectional clinical information and a longitudinal 

clinical trajectory to better assess relationships between the microbiome and allergy. More work 

is needed to further identify the microbial taxa identities to derive species-level associations, 

which will allow us to study potential molecular mechanisms in which these members of the 

microbiota are exacerbating eczema in infants. Further, analysis of actual metabolites will also 

allow for insight in the collective effect of bacterial microbiota that may surpass the individual 

taxonomic effects. We also wait on the clinical outcomes of the individuals in the cohort as they 

age to re-assess our prediction of continued and/or increased severity in allergic diagnosis, for 

example development of asthma. In the meantime, we have transplanted fecal material from 

selected individuals in this cohort into germ-free mice to develop a mouse model in which to test 

Koch’s postulates for causation in the pathogenesis of eczema and allergy.  
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The Isle of Wight cohort provides a population with high rates of allergy and asthma that 

have been closely followed over three generations. Its strength lies in the consistency of the 

enrolled population and the minimal uprooting of enrolled families from the island, as well as the 

relatively small size of the island itself. These factors allow for frequent clinical assessments 

paired with longitudinal data collection as shown in the previous 2 generations. On the other 

hand, it also means that the sample size of our cohort is smaller. In developing strong statistical 

associations, large sample size is always preferred. This limited the options for statistical 

analyses and forced us to consider other factors that may be influencing our results. Throughout 

our study, we focused not only on statistical significance but also the detection of qualitative 

trends across analyses to alleviate the effects of a smaller sample size. We also explored bacterial 

taxa previously shown in published work to be associated with allergy as agonists or antagonists. 

Subsequent statistical analyses including random forest and logistic regressions supported these 

findings and results from logistic regressions provide statistical significance for the association 

of eczema status at age 3 months with the relative abundance of genus Veillonella at that age. 
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APPENDIX 

Table 2.4 OUT number to taxa conversion table.
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Table 2.4 (cont’d) 
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Abstract   

Lack of appropriate microbial exposure in early life has emerged as a key factor explaining 

explosive rise in allergies and autoimmune diseases [1, 2], yet little is known about effects of gut 

microbiota on postnatal immune development. We hypothesized that Enterobacteriaceae-

dominant gut microbiota from eczemic infants would cause increased T helper 2 (Type 2) 

inflammation and decreased lung function after house dust mite antigen (HDM) exposure in 

transplanted mice, while Bacteroidaceae-dominant gut microbiota from non-eczemic infants 

would be protective. Mixed fecal slurries from 3-month-old infants of the Isle of Wight 3rd 

generation birth cohort designated “Infant A” (eczema positive) and “Infant B” (eczema 

negative) were transplanted into germ-free C57BL/6 mice. Infant A and B offspring were used to 

test effects of specific microbiotas on allergic airway disease with and without HDM compared 

to C57BL/6 mice with mouse microbiota (Mouse negative control) and with adult human-

derived microbiota (Adult C positive control). Infant A and B microbiotas were successfully 

transplanted, maintained initial levels of diversity, and passed to offspring largely unchanged. 

Baseline lung mechanics (without methacholine [MCh]) for mice with three human-derived 

microbiotas were significantly different from Mouse microbiota controls in both non-allergic 

(PBS treated) and allergic (HDM treated) mice. Respiratory system resistance (Rrs) was 

increased (p < 0.05 to p< 0.01) and respiratory system compliance (Crs) was decreased (p < 0.05 

to p< 0.01) in mice carrying all three human microbiotas. Measures of airway 

hyperresponsiveness (AHR) showed higher estimated means of peak Rrs and peripheral airway 

resistance (G) with each unit increase of MCh for mice carrying Infant A, Infant B or Adult C 

microbiota compared to Mouse negative controls; differences were significant only in Infant B 

mice (p<0.0119). Differences between microbiotas were mainly due to increases in resistance in 

smaller airways and in tissue resistance. HDM treatment significantly elevated IL-4, eosinophils, 

lung inflammation and mucus cell metaplasia and decreased macrophages and lung function 

(p<0.05)  in mice of all microbiotas. Human-derived microbiotas produced distinct features. 

Infant B and Adult C mice had significantly elevated basal levels of total IgE compared to 

negative controls (p<0.05), while Infant A mice did not. In human-derived microbiota mice 

given HDM, only Adult C mice had significantly elevated IL-5 and IL-13 (p<0.05). HDM 

treated Adult C and Infant B mice had significantly elevated neutrophils (p<0.05), while HDM 

treated Infant A mice had significantly elevated lymphocytes (p<0.01). Allergy agonists were 
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abundant in human-derived microbiotas compared to mouse microbiotas, while allergy 

antagonists were numerous in mouse microbiotas and low in human-derived microbiotas. Pro-

inflammatory taxa were abundant in human-derived microbiotas and low or absent in mouse 

microbiotas, while anti-inflammatory taxa were abundant in mouse microbiotas and few in 

human-derived microbiotas. 

 

Importance   

Data support multiple proinflammatory allergy agonists functioning in a community-wide 

fashion to impair lung function in the absence of antagonistic anti-inflammatory taxa. The 

structure of these human-derived microbiotas played an important role in determining the 

characteristics of these varied allergic responses and the resulting lung impairment, yet all three 

human-derived microbiotas had detrimental effects on lung function even in the absence of the 

allergen. Using a comparative approach, we showed that composition of gut microbiota can alter 

innate/immune regulation in the gut-lung axis to increase baseline responses and the risk of 

allergic sensitization.  

 

Introduction 

Asthma is a chronic airway disease characterized by inflammation and airway hyper-

responsiveness (AHR) with a prevalence of 7.9% in the US population [164]. It is the most 

common chronic condition among children worldwide according to WHO and may be preceded 

by eczema, wheeze or atopy [38]. The exact etiology of asthma is yet unknown, however, 

multiple factors have been associated with its development, such as genetics, mode of birth, 

childhood setting, early animal exposures, use of antibiotics, and, more recently, composition of 

the gut and lung microbiota [44-49, 131, 137, 147, 165-168]. AHR, a cardinal feature of asthma, 

is a state in which the airways constrict excessively in response to either a direct stimulus (e.g. 

histamine, methacholine) that acts directly on receptors of the airway smooth muscle (ASM) or 

an indirect stimulus (e.g. allergen)[41]. AHR can be present in both allergic and non-allergic 

asthmatic patients and is associated with other diseases such as chronic obstructive pulmonary 

disease [42, 169]. The degree of AHR in asthma is correlated with disease severity, often 

precedes asthma in children, and is a main therapeutic target for the management of exacerbated 

symptoms [170]. Yet mechanisms underlying AHR are heterogeneous and include genetic 
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factors, ASM alterations, airway extracellular matrix component remodeling, and airway 

inflammation [170, 171]. Hyperresponsiveness is characterized by functional changes in airway 

resistance and lung elastic properties; these changes are commonly assessed by measuring lung 

function [170]. 

Specific microbiota or microbes have been linked to the pathogenesis of allergies, including 

asthma, eczema, and food allergies [63]. Development of the respiratory microbiota depends 

heavily on exposures during the first few hours of life onward, which are dependent upon 

delivery mode, early environment, and infections among other factors [2, 172, 173]. In one 

study, tracheal aspirates soon after birth showed dominant Firmicutes and Proteobacteria with 

presence of Actinobacteria and Bacteroidetes [150]. Bisgaard et al. showed that in 1 month-old 

infants, bacterial colonization of the hypopharyngeal region of the airway with Streptococcus 

pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis was associated with later 

development of asthma [148]. In the lower respiratory tract, Proteobacteria, including those of 

the genera Haemophilus, Moraxella and Neisseria, were over-represented in asthma patients 

compared to non-asthmatic volunteers [149].   

Studies on the gut-lung axis have examined the role of gut microbiota on allergic airway 

disease. Reduced diversity of fecal bacterial microbiota in infants at 1 or 12 months of age was 

associated with increased risk of allergic sensitization, allergic rhinitis, and peripheral blood 

eosinophilia at 5 years [174]. Penders and colleagues examined the composition of the infant 

fecal microbiota in association with development of atopic dermatitis and food allergy. They 

found that increased Clostridium cluster I prevalence at ages 5 and 13 weeks was positively 

associated with development of atopic dermatitis [152]. Likewise, increased risk of asthma at 5 

years was found to be significantly associated with increased abundance of Veillonella and 

decreased abundance of Roseburia, Alistipes and Flavonifractor in fecal microbiota at 1 year of 

age when compared to children without an asthma diagnosis [55]. Lack of protective taxa have 

also been implicated in asthma pathogenesis. Lynch et al. studied early life house dust exposures 

and showed that abundant Firmicutes and Bacteroidetes bacteria reduced asthma risk in the 

inner-city high asthma prevalence Urban Environment and Childhood Asthma cohort [151]. 

Arrieta et al. showed that decreased abundance of the genera Lachnospira, Veillonella, 

Faecalibacterium, and Rothia and both associated decreases in fecal acetate and dysregulation of 

enterohepatic metabolites occurred in children who developed asthma [2]. Depner and colleagues 
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demonstrated that the protective effect of farm exposures in reducing asthma prevalence was 

partially mediated by maturation of the gut microbiota in the first year of life; protection was 

correlated with bacterial taxa predicted to produce butyrate and increased abundance of genes 

encoding butyryl–CoA:acetate–CoA-transferase [102]. Bacterial taxa contributing to these 

protective effects included Roseburia and Coprococcus. These studies strongly suggest that 

microbiota composition influences allergic susceptibility.   

Mouse models also support the role of early life microbiota in modulating allergic sensitization 

[80-82]. Herbst et al showed that upregulation of allergic airway inflammation occurred in germ-

free mice and could be reversed by colonizing the mice with specific pathogen free commensal 

gut microbiota in early life at least 4 weeks before sensitizing mice to ovalbumin [82]. In a 

related study, germ-free mice and those with low-diversity gut microbiota developed greatly 

elevated serum IgE levels and increased mast-cell-surface-bound IgE leading to exaggerated oral 

ovalbumin-induced systemic anaphylaxis [81]. This effect could be prevented by active 

colonization with mouse specific pathogen free microbiota during a critical time window in early 

life. In limited-flora gnotobiotic mice, Stefka and colleagues determined that specific Clostridia 

within the gut microbiota regulated innate lymphoid cell function and intestinal epithelial 

permeability by an innate lymphoid cell-3 (ILC3) and IL-22-dependent mechanism to protect 

against allergen sensitization [80]. Moreover, mice fed house dust from homes with dogs 

exhibited significantly reduced bronchial responsiveness and lung inflammation after both 

allergic challenge and inoculation with respiratory syncytial virus [175]. Despite these studies, 

knowledge gaps still exist regarding the specific taxa and mechanisms in early childhood by 

which the gut microbiota influences development of asthma and allergic diseases [176]. 

Our long-term goal is to determine the role of the early infant microbiota in providing 

resistance or enhancing susceptibility to allergic diseases. To discover bacterial taxa associated 

with allergic disease or protection from it in an early trial, we conducted 16S rRNA gene 

sequencing of fecal samples of 60 infants at 3 months of age and tested clinical indicators of 

allergy over the first three years of life in an ongoing prospective longitudinal study of the 

offspring of the well-characterized Isle of Wight (IOW) birth cohort [131]. Infants that harbored 

low diversity microbial communities with increased abundance of Escherichia coli/Shigella had 

higher risk for eczema, while high diversity microbial communities with high Bacteroides 

abundance were associated with protection against eczema. As eczema often precedes asthma, 
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these results suggested the possibility of a relationship between the microbiota and asthma [177]. 

We hypothesized that offspring of mice transplanted with Escherichia coli/Shigella/ 

Bifidobacterium enriched microbiotas from infants with persistent eczema would develop 

allergic inflammation and have a lower threshold to methacholine (MCh)-induced AHR when 

sensitized to house dust mite antigen (HDM) and, conversely, mice without these taxa but with 

high levels of Bacteroides spp. would be protected. Selected fecal samples from infants with 

persistent eczema and from infants with no discernible allergic manifestations were transplanted 

into germ-free C57BL/6 mice. Offspring from germ-free mice transplanted with microbiota from 

healthy young adults (Adult C) demonstrated a Type 2 immune bias to Campylobacter jejuni in 

our previous study and served in this study as a positive control for AHR after HDM 

sensitization [140]. Using these three types of transplanted mice and conventional mouse 

microbiota negative control mice that were all of the same C57BL/6 genetic background, we 

conducted a study to link early microbiota composition to development of allergic 

hyperresponsiveness with and without exposure to HDM. Our objectives in these studies were 1) 

to provide proof-of-concept for transplanted human microbiota mouse models of allergic asthma 

and 2) to study mechanisms underlying microbial effects on infant allergy related to the Isle of 

Wight birth cohort participants.  

 

Results  

Selection of infant fecal microbiotas for transplant (Figure 3.1)  

Fecal samples from sixty 3-month-old infants were analyzed in a preliminary trial in an ongoing 

multigenerational prospective longitudinal study of newborns (Isle of Wight third generation 

birth cohort) using 16S rRNA gene sequencing to examine the association of bacterial taxa 

profiles with risk of eczema [131]. Three-month-old infants harboring a fecal microbiota with 

increased abundance of Escherichia coli-Shigella and Bifidobacterium had higher risk for 

eczema at 1–3 years based on SIMPER (similarity percentage) analysis of bacterial taxa OTUs, 

while infants with higher abundance of fecal Bacteroides were non-eczemic (Figure 3.1A). 

Representative fecal samples from infants with and without eczema were selected for transplant 

into mice based on the 16S rRNA gene sequencing analysis (Figure 3.1B), canonical 

correspondence analysis (CCA), and SIMPER results. Four samples with elevated 

Enterobacteriaceae that were also closely grouped in the CCA were selected and designated as 
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Infant A microbiota (Figure 3.1B). All of these fecal samples had high levels of 

Escherichia/Shigella and low levels of Bacteroides 16S sequence reads, and these infants had 

eczema diagnosed at 4 or 5 time points between 3 and 36 months of age. Likewise, three fecal 

samples with high levels of Bacteroides reads from infants with no evidence of eczema or other 

allergic responses were selected and designated as Infant B microbiota (Figure 3.1B). Fecal 

samples were handled in an anaerobic chamber, mixed in equal volumes and stored for transplant 

at minus 80oC. 

 



 80 

 
Figure 3.1 Relative abundance of fecal bacterial taxa in Isle of Wight 3-month-old infants. 
A) Taxa proportions in eczemic and non-eczemic infant samples. B) Infant samples used to 
inoculate germ free mice.   
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Fecal Microbiota Transplantation (FMT) of inocula and experimental mice 

Transplant procedure and starting inocula (Figure 3.2)  

Mixed fecal slurries from Isle of Wight 3-month-old infants with persistent eczema designated 

“Infant A” and without eczema designated “Infant B” were transplanted into germ-free mice via 

oral gavage. First and second-generation offspring of transplanted mice were used to conduct 

two experiments to test the effects of Infant A and B microbiotas on enhancing allergic airway 

disease after HDM exposure. Individual mouse-to-mouse variation in the three human-derived 

fecal communities was minimal (Figure 3.2A). Mice with mouse microbiota were only slightly 

more variable in this regard (Figure 3.2A). Principal components analysis (PCA) showed that all 

four microbiotas in mice were distinct (Figure 3.2B).  PCA comparing human-derived Infant A, 

Infant B and Adult C microbiotas showed that all three human-derived microbiotas were distinct 

(Figure 3.2C). Bacterial taxa contributing to separation in dimension 1 of the PCA of all four 

microbiotas and accounting for 72% of the variance between Infant A, Infant B, Adult C and 

Mouse microbiotas included Bacteroides uncultured, Bacteroidales S24.7 uncultured, and 

Faecalibacterium, while those contributing to dimension 2 and accounting for 8.1% of the 

variance were Bacteroides uncultured, Lachnospiraceae, Bacteroidales S24.7, 

Faecalibacterium, Alistipes and Bacteroides (Figure 3.2B). Bacterial taxa contributing to 

separation in dimension 1 of the PCA of the three transplanted microbiotas and accounting for 

42.5% of the variance between Infant A, Infant B, and Adult C microbiotas included Bacteroides 

uncultured, Alistipes, Bacteroides and Coprobacter, while those contributing to dimension 2 and 

accounting for 21.5% of the variance were Lachnospiraceae and Alistipes (Figure 3.2C). The 

dendrogram based on UPGMA analysis of mice in experiment 1 showed that experimental mice 

with the same microbiota given either Dulbecco’s Phosphate Buffered Saline (PBS) or HDM 

(Figure 3.2D) grouped with their similar microbiotas post treatment. These results showed that 

experimental treatment with HDM allergen did not cause large shifts in the microbiota.  
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Figure 3.2 Comparisons of 16S rRNA gene sequencing of all mouse groups. (A) shows 
relative taxa abundance of mice in all experimental groups, showing Adult C, Infant A, Infant B 
and Mouse microbiotas. (B) Principal components analysis (PCA) of Infant A, Infant B, Adult C 
and Mouse microbiota bacterial taxa abundance. (C) PCA of Infant A, Infant B and Adult C 
human-derived microbiota bacterial taxa abundance. (D) UPGMA clustering with Bray Curtis 
similarity index with 1000 bootstrap replications of all mouse samples and Enterobacteriaceae 
or Bacteroidaceae dominant inocula showing clustering by microbiota groups. Treatment of 
mice with phosphate buffered saline (PBS) or house dust mite (HDM) did not produce 
recognizable differences in fecal bacterial taxa. Outliers are shown with arrows. 
 



 83 

Figure 3.2 (cont’d) 

 
 

Outcome of inocula transfer to Infant A and B mice after stabilization, adaptation to mouse 

diet, and breeding (Figure 3.3A). 

 Microbiota that remained in transplanted mice were passed to the offspring largely unchanged 

although abundances of bacterial taxa were altered and some taxa did not persist (Figure 3.3A). 

For example, Infant A mice did not retain Ruminiclostridium or Mollicutes taxa that were at very 

low abundance in the inoculum. SIMPER analysis was used to determine the contribution of 

each taxon to the observed similarity (or dissimilarity) between samples (Figure 3.3A and B). 

When considering the higher abundance taxa in the Infant A inoculum, we found that 
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Bifidobacterium, E. coli-Shigella, Lachnospiraceae, Roseburia, Peptoclostridium and 

Streptococcus transferred to mice and decreased in abundance, while Clostridium sensu stricto, 

Akkermansia, Desulfovibrio, Peptostreptococcaceae and Veillonella transferred and increased in 

abundance. When considering the higher abundance taxa in the Infant B inoculum, we found that 

Bifidobacterium, Bacteroides, E. coli-Shigella, Lachnospiraceae, Prevotella, Peptoclostridium 

and Streptococcus transferred to mice and decreased in abundance, while uncultured 

Bacteroides, Lachnospiraceae NK4A136, Alistipes, Clostridium sensu stricto, Akkermansia, 

Sutterella, Peptostreptococcaceae, uncultured Lachnospiraceae, Lachnoclostridium and 

Christensenellaceae R-7 transferred and increased in abundance. The remainder of the taxa in 

Infant A and B inocula transferred to mice and remained at similar abundances.    

Comparison of transplanted human-derived community compositions (Figure 3.3B)  

The human-derived microbiotas were largely distinct. Bacterial taxa present in the three human-

derived communities but absent in the mouse communities included Akkermansia, 

Parasutterella, Sutterella, Peptostreptococcaceae and Lachnoclostridium. An uncultured 

Bacteroides taxon was elevated in all three human-derived microbial communities but not 

present in mice with mouse microbiota. An OTU identified as Escherichia-Shigella was 

abundant in Infant A, present at very low levels in Infant B, and undetectable in Adult C human-

derived microbiotas. Bifidobacterium and Akkermansia were more abundant in Infant A than in 

Infant B mice. One bacterial taxon in Infant A mice that did not appear in Infant B mice was 

Coprobacter. Several taxa were more abundant in Infant B than Infant A mice, including 

Alistipes, Parabacteroides, Lactobacillus, Parasutterella uncultured, Sutterella, a member of the 

family Lachnospiraceae, Roseburia, Ruminiclostridium and Blautia. Further, Infant A mice had 

Klebsiella that was not present in the other microbiotas. Bacterial taxa present in Adult C 

microbiotas and not present in either Infant microbiota included Lactobacillus, Parasutterella 

and a member of the Clostridiales vadinBB60 group. Thus, there were bacterial taxa shared 

between microbiotas and those that were distinct to each microbiota studied.  
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Figure 3.3 Average relative abundance of all bacterial taxa. (A) Heatmap of taxa collectively  
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Figure 3.3 (cont’d) 
contributing 90% of differences in SIMPER analysis and having high loadings in the principal 
components analysis for the inocula (Enterobacteriaceae-enriched, Bacteroidaceae-enriched), 
the human-derived microbiota (Infant A, Infant B and Adult C), and mouse microbiota. B) 
SIMPER analysis of 90% of cumulative bacterial taxa from mice transplanted with Infant A, 
Infant B and Adult C human-derived fecal microbiota compared to mouse microbiota. Top of 
Table shows taxa contributing 90% of difference in SIMPER; Taxa contributing <90% of 
difference are shown below black line. 
 

Comparison of microbiota diversity in four microbiotas (Figure 3.4A)  

Analysis of the diversity of the four microbial communities showed that 3 of 4 communities 

were diverse and that the transplanted Infant communities retained the diversity seen in the donor 

samples (Figure 3.4A)[140, 178]. Shannon alpha diversity analyses were not significantly 

different between donor Infant A inoculum and Infant A mice and between donor Infant B 

inoculum and Infant B mice (Figure 3.4A). However, the Infant A donor inoculum and the Infant 

A mouse microbiotas were significantly decreased in diversity compared to the Infant B 

inoculum, Infant B mouse microbiota, Adult C mouse microbiota and the control mice carrying 

mouse microbiota (Figure 3.4A).  



 87 

 
Figure 3.4 Characteristics of bacterial taxa in mouse models. (A) Shannon alpha diversity 
Index performed on operational taxonomic units from Enterobacteriaceae inoculum, 
Bacteroidaceae inoculum, Infant A mice given phosphate buffered saline and house dust mite, 
Infant B mice given phosphate buffered saline and house dust mite, Adult C mice given 
phosphate buffered saline and house dust mite, and conventional mouse microbiota mice given 
phosphate buffered saline and house dust mite. Enterobacteriaceae inoculum and Infant A mice 
given phosphate buffered saline and house dust mite had significantly lower diversity that all of 
the other groups.(B) abundant in human-derived microbiotas compared to mouse microbiotas 
(Panel 1), while allergy antagonists were numerous in mouse microbiotas and low in human-
derived microbiotas (Panel 2). Pro-inflammatory taxa were abundant in human-derived 
microbiotas and low or absent in mouse microbiotas (Panel 3), while anti-inflammatory taxa 
were abundant in mouse microbiotas and few in human-derived microbiotas (Panel 4). Panels C-
F show average relative abundance of bacterial taxa grouped according to the four microbiotas 
Infant A, Infant B, Adult C, and Mouse. Grouped by abundance as (C) high abundance, (D) 
medium abundance, (E) Low abundance and (F) lowest abundance. Each graph shows the taxa 
displayed in that chart (see keys). Note that many taxa are found only in the human-derived or 
the mouse microbiota. 
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Figure 3.4 (cont’d) 
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Figure 3.4 (cont’d) 
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Allergy agonists/antagonists and pro-/anti-inflammatory bacterial taxa in experimental mice 

(Figure 3.4B)  

We also considered the average relative abundance of bacterial taxa known to act as allergy 

agonists or antagonists and those known to be proinflammatory or anti-inflammatory in human-

derived versus mouse microbiotas (Figure 3.4B). The total fraction of allergy agonists was 

greater in the human-derived microbiotas than in the mouse microbiotas (Figure 3.4B, panel 1; 

Table 3.1). There were greater numbers of individual agonist taxa than antagonist taxa detected 

in the entire dataset. The situation in the conventional mouse microbiota was reversed–allergy 

agonistic taxa were in smaller proportions and fewer in number of individual taxa, while allergy 

antagonistic taxa were in greater total proportions and there were more individual taxa (Figure 

3.4B, panel 2; Table 3.1). The relative total proportions of allergy agonist taxa reflect the trends 

in relative severities of lung function responses in the mice with human-derived microbiotas 

(Figure 3.6).  

The average relative abundance of pro- and anti- inflammatory taxa had somewhat different 

patterns; however, there were still more individual pro-inflammatory taxa than individual anti-

inflammatory taxa detected in the entire dataset (Figure 3.4B, panels 3 and 4). The human-

derived microbiotas had more pro-inflammatory taxa than the mouse-adapted microbiotas and 

each human-derived microbiota had particular proinflammatory taxa present or in greater 

abundance than in the others (Table 3.2). Of these, only the uncultured Bacteroides and 

Haemophilus were found in all three communities (Figures 3.4B, 3.4C, 3.4F). Infant A mice 

carried more E. coli-Shigella (Figure 3.4E). Infant B and Adult C had one proinflammatory 

taxon in common, Parabacteroides OTU59 (Figure 3.4C). Adult C had higher levels of 

Parasutterella OTUs (Figure 3.4E). Adult C microbiota mice had the largest difference in total 

proportions and total numbers of pro- and anti-inflammatory taxa, with abundant pro-

inflammatory taxa (Figure 3.4B, panels 3 and 4; Table 3.2). The outcomes in the protected mice 

with mouse microbiota were reversed with regard to pro- and anti-inflammatory taxa (Figure 

3.4B, panels 3 and 4).  
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Table 3.1 Bacterial taxa found in Infant A, Infant B, Adult C and Mouse microbiotas known 
to act as allergy agonists or antagonists based on published studies [2, 55, 80-82, 102, 147-
152].  

ALLERGY AGONISTS Infant A Infant B Adult C Mouse 
Streptococcus pneumonia 1 1 1 0 
Moraxella catarrhalis 0 0 0 0 
Neisseria 0 0 0 0 
Veillonella 0 1 0 0 
Clostridium cluster I 1 1 1 1 
Desulfovibrio 1 1 1 0 
Sutterella 0 1 1 0 
Parasutterella 0 0 1 0 
Escherichia coli/Shigella 1 0 0 0 
Klebsiella 1 0 0 0 
Haemophilus 1 1 1 0 
Prevotella 0 1 0 0 
Alistipes 0 1 1 0 
Total Agonist Taxa 6 8 7 1 

 
ALLERGY 

ANTAGONISTS 
Infant A Infant B Adult C Mouse 

Clostridia (Clostridiales) 0 0 0 1 
Lachnospira 1 1 1 1 
Veillonella 1 0 0 0 
Faecalibacterium 0 0 0 1 
Rothia mucilaginosa 0 0 0 0 
Roseburia 0 1 1 1 
Ruminococcus, Coprococcus 0 0 0 1 
Lactobacillus 0 1 0 1 
Bifidobacteria 1 0 0 1 
Total Antagonist Taxa 3 3 2 6 
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Table 3.2 Bacterial taxa found in Infant A, Infant B, Adult C and Mouse microbiotas 
known to function in a proinflammatory or antiinflammatory manner in acute of chronic 
diseases based on published studies [2, 55, 80-82, 102, 147-152]. Data represents presence 
absence values. Microbiotas were scored as 1 if a particular taxa was present and 0 if it was not 
present.   

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROINFLAMMATORY TAXA Infant A Infant B Adult C Mouse 
Clostridia/C. perfringens/C. difficile 1 1 1 1 
Collinsella 0 1 1 0 
Enterobacter aerogenes 0 0 0 0 
Enterococci 1 0 0 0 
Escherichia coli/Shigella OTU42 1 1 0 0 
Haemophilus 1 1 1 0 
Klebsiella 1 0 0 0 
Moraxella 0 0 0 0 
Morganella morganii 0 0 0 0 
Neisseria 0 0 0 0 
Parabacteroides OTU59 0 1 1 0 
Parasutterella OTU26 0 1 1 0 
Prevotella 0 1 0 0 
Staphylococcus aureus 0 0 0 0 
Veillonella 0 1 0 0 
Total Proinflammatory Taxa 5 8 5 1 

ANTI-INFLAMMATORY 
TAXA 

Infant 
A 

Infant 
B 

Adult 
C Mouse 

Akkermansia muciniphila 1 1 0 0 
Bacteroides 1 1 1 0 
Bifidobacterium OTU 18 1 0 0 1 
Coprococcus eutactus 0 1 0 1 
Faecalibacterium prausnitzii 0 0 0 0 
Lactobacillus 0 0 0 1 
Lactobacillus uncultured 
OTU 7 0 0 0 1 

Roseburia OTU 0 1 0 1 
Roseburia OTU 0 0 0 1 
Total Anti-Inflammatory 
Taxa 3 4 1 6 
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Mouse microbiota composition potentially modulating immune responses  

While all four microbiotas had some taxa with bioinformatic evidence of potentially anti-

inflammatory taxa, the mouse microbiota had more of these genera and they were more abundant 

(Figure 3.4B panel 2 and panel 4, 4D, 4E, Tables 3.1 and 3.2). Known anti-inflammatory taxa 

present in the mouse microbiotas and absent or at exquisitely low amounts in the three human-

derived communities were members of the order Bacteroidales, Faecalibacterium, 

Lactobacillus, Roseburia, and a member of the order Clostridiales (Figure 3.4B-F).  A member 

of the family Ruminococcaceae was another anti-inflammatory taxon present in the mouse 

microbiotas and absent in the human-derived communities except for a few reads in Adult C 

(Figure 3.3A and B).  

 

Measurement of lung function in mice with human microbiotas after HDM sensitization 

A protocol was developed with the goal of devising an allergen-exposure that would induce a 

moderate level of allergic response and decline in lung function, such that we could test for 

components of the microbiota that either increased or decreased the response to allergens (Table 

3.3). A 2-week exposure using 30-50 ug HDM delivered intranasally in PBS was found to be 

most appropriate for our purposes. Lung function was assessed in terms of resistance, 

compliance and elastance of the respiratory system, as well as Newtonian resistance, tissue 

resistance and tissue elastance. We used C57BL/6 mice because they have been shown to exhibit 

modest AHR responses to HDM that could be exacerbated by other factors such as microbiota. 

Measurements at peak responses of resistance (Rrs in cmH2O.s/ml), compliance (Crs in 

ml/cmH2O), elastance (Ers in cmH2O/ml), tissue elastance (H in, cmH2O/ml), tissue damping 

(G in cmH2O/ml), and conducting airway (Newtonian) resistance (Rn in cmH2O.s/ml) for each 

methacholine dose for PBS and HDM treatment groups produced usable data for all mice tested 

to assess airway hyperresponsiveness (Supplemental Tables 3.1 and 3.2). 
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Table 3.3 Design for Experiment 1 shows the four gut microbiotas used and the number (N) 
of male (M) and female (F) mice in each group of microbiota and treatment combination. 
Each group was treated with phosphate buffered saline (PBS) control or house dust mite (HDM) 
extract intranasally on Days 0, 2, 5, 7, 9, and 12. On Day 14, several phenotypes were assessed.  
Specifically, lung function measurements were taken using flexiVent over the course of 
increasing doses of aerosolized methacholine. Thereafter, bronchoalveolar lavage, blood, lung, 
and gastrointestinal samples were collected. The design for experiment 2 was exactly the same as 
in experiment 1, except that we used only mice carrying Infant B or Infant A microbiota and 
mice with Adult C and Mouse microbiota were not used. 

Microbiota Treatment N & sex 
Treatments administered1 

Phenotype 
Day 0 Day 2 Day 5 Day 7 Day 9 Day 12 

Mouse 
Control PBS 5M, 5F 25 ul 30 ul 30 ul 30 ul 30 ul 30 ul Day 14 

Mouse 
Control HDM 5M, 5F 50 ug 30 ug 30 ug 30 ug 30 ug 30 ug Day 14 

Infant A PBS 5M, 5F 25 ul 30 ul 30 ul 30 ul 30 ul 30 ul Day 14 

Infant A HDM 5M, 5F 50 ug 30 ug 30 ug 30 ug 30 ug 30 ug Day 14 

Infant B PBS 3M, 3F 25 ul 30 ul 30 ul 30 ul 30 ul 30 ul Day 14 

Infant B HDM 5M, 5F 50 ug 30 ug 30 ug 30 ug 30 ug 30 ug Day 14 

Adult C PBS 5M, 5F 25 ul 30 ul 30 ul 30 ul 30 ul 30 ul Day 14 

Adult C HDM 5M, 5F 50 ug 30 ug 30 ug 30 ug 30 ug 30 ug Day 14 
1All HDM extract administered in 0.2 ml volume of PBS. 
 

Human-derived microbiota modifies baseline pulmonary function in mice (Experiment 1) 

Before analyzing the effects of allergen exposure on airway hyperresponsiveness using MCh, we 

found that baseline lung mechanics for mice with all three human microbiotas were significantly 

different from the controls carrying mouse microbiota in both non-allergic (treated with PBS) 

and allergic (treated with HDM) mice (Figure 3.5). Baseline mechanics corresponds to values 

taken before any MCh was administered. Overall, respiratory system resistance (Rrs), which 

includes contributions from the conducting and peripheral airways, the lung tissue, and the chest 

wall, was increased in mice carrying all 3 human microbiotas (Figure 3.5A). Respiratory system 

compliance (Crs), which describes the ease with which the respiratory system can be expanded, 

was decreased (Figure 3.5B), and respiratory system elastance (Ers), which represents the elastic 
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stiffness of the respiratory system, was increased in mice carrying human microbiotas compared 

to the controls carrying mouse microbiota (Figure 3.5G).  These findings indicate an overall 

decrease in lung function in mice carrying human microbiotas compared to mice carrying control 

mouse microbiota. 

The effects of microbiota on baseline respiratory mechanics were also seen when the 

mechanics of the large airways and smaller peripheral airways and tissue were examined. For 

tissue and peripheral airway resistance (G), mice with all 3 human microbiotas had higher values 

than mice with mouse microbiota, and this increment was significant for 2 experimental groups:  

non-allergic (treated with PBS) mice with Adult C human microbiota when compared to those 

with control mouse microbiota with the same treatment, and allergic (treated with HDM) mice 

with Infant A microbiota when compared to those with mouse microbiota with the same 

treatment (Figure 3.5H). For tissue elastance (H), which represents tissue stiffness, mice with 

Infant B and Adult C human microbiotas had significantly higher values compared to mice with 

control microbiota, and this increase was seen both in HDM- and PBS-treated mice (Figure 

3.5I,L). Conversely, Newtonian Resistance (Rn), which represents mainly the resistance of the 

large conducting airways, was shown to be significantly increased for mice with Infant A and 

Adult C microbiota treated with PBS when compared to mice carrying mouse microbiota with 

the same treatment (Figure 3.5C). These results indicate that mice carrying any of the three 

human microbiotas had different lung mechanics at baseline characterized by overall greater lung 

stiffness and airway resistance and decreased compliance compared to mice carrying mouse 

microbiota. No significant differences were found in lung measurements between the PBS- or 

HDM-treated mice carrying different human microbiotas when compared to each other (Figures 

3.5D, E, F, J, K, L). The treatment with HDM caused no significant increase at baseline when 

compared to PBS treatment (mice that did not receive HDM) for any of the microbiotas, with the 

exception of mouse microbiota, where the group challenged with HDM had significantly lower 

values of compliance when compared to the group carrying the same microbiota but given PBS 

treatment (Figure 3.5B, E).
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Figure 3.5 Lung baseline mechanics for mice with all three human microbiotas were 
significantly different from the controls carrying mouse microbiota. Data shows examination 
of baseline lung mechanics for (A,D) total airway resistance Rrs, (B,E) total airway compliance 
Crs, (C,F) central airway resistance Rn, (G,J) tissue elastance Ers, (H.K) peripheral airways and 
tissue damping G, and (I,L) tissue elastance H for mice treated with PBS or HDM. Data 
represent mean ± SE from 10 mice per group. Data analyzed with Kruskal Wallis with Mann-
Whitney for pairwise comparisons.  *p < 0.05.  **p< 0.01. # p<0.05 compared to same 
microbiota with different treatment. 
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Airway hyperresponsiveness (AHR) (Experiment 1)  

After recording baseline lung mechanics, methacholine (MCh), a muscarinic agonist, was 

given at increasing doses via nebulization to evaluate AHR in the context of both allergic and 

non-allergic conditions. Methacholine induces bronchoconstriction by acting directly on 

muscarinic receptors of the airway smooth muscle. The methacholine test is a sensitive tool to 

confirm or exclude a diagnosis of asthma [179]. AHR in these experiments was measured in the 

context of changes in lung function by assessing respiratory parameters and analyzing their dose 

response curves. To account for the differences observed at baseline between mice carrying 

different microbiotas, a general linear mixed model (GLMM)(See Methods) was used to analyze 

the observed data and generate predicted dose response curves (Supplemental Tables 3.1 and 

3.2). 

Based on the results of the GLMM the effect of an increase in dose of MCh (levels = 

0,12.5,25,50,100 mg/mL) on the total airway resistance (Rrs) parameter, which represents total 

respiratory constriction, was different for the microbiota groups (χ! = 	9.1195, 𝑝 =

0.0277)(Figure 3.6A, Table 3.4). There was a 0.0059 ± 0.0019 cmH2O.s/mL increase in the 

peak Rrs value for mice with Infant B microbiota over mice with mouse microbiota for each 1 

mg/mL increase in MCh. Refer to the observed values of Rrs, Crs, Peak Rn, G, Ers and H 

collected for each experimental group at each MCh dose as shown in Supplemental Figure 3.1. 
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Table 3.4 Linear mixed effects model for respiratory system resistance (Rrs) data: type III 
sum of squares and contrasts corresponding to significant categorical variables. *P-values 
adjusted with Tukey method; significant values are bolded. 

Variable 𝝌𝟐 −	statistic Degrees of 
freedom 

P-value 

Intercept 30.4520 1 0.0000 
Log(Baseline_Rrs) 353.3577 1 0.0000 
Dose 0.4688 1 0.4935 
Microbiota 1.7320 3 0.6298 
Treatment 1.2579 1 0.2621 
Dose*Microbiota 9.1195 3 0.0277* 
 Estimates of dose effects for microbiota groups 
 Estimate Standard Error 95% Conf. Interval 

(Slope) 
Mouse 0.0009 0.0013 (-0.0016,0.0033) 
Human Adult 0.0039 0.0014 (0.0012,0.0067) 
Infant A 0.0049 0.0016 (0.0019,0.0080) 
Infant B 0.0067 0.0019 (0.0031,0.0104) 
 Contrasts of dose effects between different microbiota groups 
 Estimate Standard Error P-value 
Human Adult - Mouse 0.0031 0.0016 0.2365 
Infant A - Mouse 0.0041 0.0017 0.0778 
Infant B - Mouse 0.0059 0.0019 0.0119* 
Infant A - Human Adult 0.0010 0.0018 0.9433 
Infant B - Human Adult 0.0028 0.0020 0.4813 
Infant B - Infant A 0.0018 0.0020 0.7900 

 

When examining the resistance of the conducting larger airways versus the peripheral smaller 

airways and tissue compartments, which are represented by Newtonian Resistance (Rn)(Figure 

3.6C) and tissue resistance (G)(Figure 3.6B, Table 3.5), respectively, we observed that the 

differences in resistance between the microbiotas were mostly due to the increase in resistance in 

smaller airways and in tissue peak resistance. The effect of an increase in the dose of MCh was 

different for the microbiota groups (χ! = 	11.8434	, 𝑝 = 	0.0079	)(Figure 3.6, Table 3.5), while 

the same effect in resistance of the larger airways showed no significant difference between the 

microbiota groups (χ! = 2.1436	, 𝑝 = 0.5432)(Figure 3.6C). Specifically, for the AHR observed 

in the smaller airways and tissue, mice with Infant B microbiota had a 0.0320 ± 0.0125 

cmH2O/mL increase in the peak G value (Tissue resistance) over mice with mouse microbiota 

for each 1 mg/mL increase in MCh, corresponding to a 0.4 % increase with each unit (Figure 

3.6B; Table 3.5).  Even though we observed higher estimated means of peak Rrs and G with each 
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unit increase of MCh for mice carrying Infant A or Adult C microbiota when compared to mouse 

microbiota, these differences were not significant (Figure 3.6A and B; Table 3.4, Table 3.5). 

 

Table 3.5 Linear mixed effects model for tissue damping (G) data: type III sum of squares 
and contrasts corresponding to significant categorical variables. *P-values adjusted with 
Tukey method; significant values are bolded. 

 

Airway hyperresponsiveness in mice carrying humanized microbiotas was also 

characterized by an overall increased in stiffness or Respiratory elastance (Ers) of the respiratory 

system (Figure 3.6D; Table 3.6) and, as expected, a decrease in its reciprocal, lung compliance 

(Crs)(Figure 3.6E; Table 3.7). The effect of an increase in dose of methacholine on peak Ers and 

bottom Crs values was different for the microbiota groups (χ! = 	9.1195, 𝑝 = 0.0277 and χ! =

	9.4158, 𝑝 = 		0.0242, respectively)(Figures 3.6D and E, Tables 3.6 and 3.7). Once again, mice 

Variable 𝝌𝟐 −
	statistic 

 Degrees of freedom P-value 

Intercept 30.8900  1 0.0000 
Log(Baseline_G) 198.4985  1 0.0000 
Dose 13.5011  1 0.0002 
Microbiota 10.1044  3 0.0177* 
Treatment 5.1657  1 0.0230* 
Dose*Microbiota 11.8434  3 0.0079** 
  Estimates of dose effects for microbiota 

groups 
 Estimate  Standard Error 95% Conf. Interval 

(Slope) 
Mouse 0.0234  0.00641 (0.0108,0.0360) 
Human Adult 0.0396  0.00837  (0.0231,0.0560) 
Infant A 0.0429   0.00855  (0.0261,0.0597) 
Infant B 0.0715   0.01059  (0.0507,0.0924) 
 Contrasts of dose effects between different microbiota 

groups 
 Estimate  Standard Error P-value 
Human Adult - Mouse 0.01620  0.0100  0.3722  
Infant A - Mouse 0.01953   0.0101  0.2145  
Infant B - Mouse 0.04816   0.0117  0.0003**  
Infant A - Human 
Adult 

0.00333   0.0110  0.9905  

Infant B - Human 
Adult 

0.03196   0.0125  0.0528  

Infant B - Infant A 0.02864  0.0124  0.0972  



 100 

with Infant B microbiota had the highest estimated means of peak Ers with each unit increase of 

MCh, and there was a 0.1520 ± 0.0450 cmH2O/mL increase in the peak Ers value for mice with 

infant B microbiota over mice with mouse microbiota for each 1 mg/mL increase in MCh, 

corresponding to a 0.31% increase with each unit, which was significant (	𝑝 = 0.0045) (Figure 

3.6D; Table 3.6). Mice with Infant B microbiota also showed the highest estimated means for  

peak tissue elastance (H) values, an indicator of airway closure, where there was a 0.0528 

±0.0272 cmH2O/mL increase in the peak H value over mice with mouse microbiota for each 1 

mg/mL increase in MCh, corresponding to a 30% increase compared to mice with Mouse 

microbiota (𝑝= 0.0051) (Figure 3.6F, Table 3.8). 
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Table 3.6 Linear mixed effects model for respiratory system elastance (Ers) data: type III 
sum of squares and contrasts corresponding to significant categorical variables. *P-values 
adjusted with Tukey method. 
 

 
 
 
  

Variable 𝝌𝟐 −	statistic Degrees of 
freedom 

P-value 

Intercept 0.1265   1 0.7221     
Log(Baseline_Ers) 551.8094   1 0.0000 
Dose 3.2407   1 0.0718  
Microbiota 5.8657 3 0.1183 
Treatment 5.4813 1 0.0192 *   
Dose*Microbiota 11.1608   3 0.0109 * 
 Estimates of dose effects for microbiota groups 
 Estimate Standard Error 95% Conf. Interval 
Mouse 0.0477  0.0270  (-0.00541,0.101) 
Human Adult 0.1042  0.0306  (0.04402,0.164) 
Infant A 0.1131  0.0321  (0.04984,0.176) 
Infant B 0.1997  0.0378  (0.12544,0.274) 
 Contrasts of dose effects between different microbiota groups 
 Estimate Standard Error P-value 
Human Adult - Mouse 0.05648  0.0397  0.4864  
Infant A - Mouse 0.06534  0.0405  0.3729  
Infant B - Mouse 0.15202  0.0450  0.0045**  
Infant A - Human Adult 0.00886  0.0423  0.9968  
Infant B - Human Adult 0.09554  0.0466  0.1717  
Infant B - Infant A 0.08668  0.0469  0.2523 
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Table 3.7 Linear mixed effects model for respiratory system compliance (Crs) data: type III 
sum of squares and contrasts corresponding to significant categorical variables. *P-values 
adjusted with Tukey method.  
 

 

  

Variable 𝝌𝟐 −	statistic Degrees of freedom P-value 
Intercept 0.4009   1 0.52661 
Log(Baseline_Crs) 536.6499   1 0.00000 
Dose 2.4957   1 0.11416 
Microbiota 6.8176   3 0.07795 
Treatment 4.3851   1 0.03625*  
Dose*Microbiota 9.4158   3 0.02424*  
 Estimates of dose effects for microbiota groups 
 Estimate Standard Error 95% Conf. Interval 
Mouse -0.00003  0.0000178 (-0.00006, 0.000006) 
Human Adult -0.00007  0.0000166 (-0.00010, -0.00004) 
Infant A -0.00006  0.0000161 (-0.00009, -0.00002) 
Infant B -0.00010  0.0000168 (-0.00010, -0.00006) 
 Contrasts of dose effects between different microbiota groups 
 Estimate Standard Error P-value 
Human Adult - Mouse -0.0000424  0.0000236 0.2772  
Infant A - Mouse -0.0000277  0.0000230  0.6245  
Infant B - Mouse -0.000069  0.0000235  0.0186*  
Infant A - Human Adult  0.0000147  0.0000222  0.9110  
Infant B - Human Adult -0.0000266 0.0000227  0.6447  
Infant B - Infant A -0.0000413  0.0000220 0.2402 
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Table 3.8 Linear mixed effects model for tissue elastance (H) data: type III sum of squares 
and contrasts corresponding to significant categorical variables. *P-values adjusted with 
Tukey method. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Variable 𝝌𝟐 −	statistic Degrees of freedom P-value 
Intercept 24.7364   1 0.0000 
Log(Baseline_H) 460.5645   1 0.0000 
Dose 6.3121   1 0.0111 *   
Microbiota 6.9794   3 0.0726  
Treatment 11.2480   1 0.0008 *** 
Dose*Microbiota 10.3063   3 0.0161 * 
 Estimates of dose effects for microbiota groups 
 Estimate Standard Error 95% Conf. Interval 
Mouse 0.0403   0.0162  (0.0083,0.0722) 
Human Adult 0.0888   0.0196  (0.0503,0.1274) 
Infant A 0.0750   0.0183  (0.0390,0.1109) 
Infant B 0.1277   0.0210  (0.0864,0.1691) 
 Contrasts of dose effects between different microbiota groups 
 Estimate Standard Error P-value 
Human Adult - Mouse 0.0485   0.0251  0.2150  
Infant A - Mouse 0.0347   0.0240  0.4723  
Infant B - Mouse 0.0875   0.0262  0.0051**  
Infant A - Human Adult -0.0139   0.0262  0.9519  
Infant B - Human Adult 0.0389   0.0282  0.5129  
Infant B - Infant A 0.0528   0.0272  0.2144  
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Figure 3.6 Mice carrying Infant B microbiota showed increased airway 
hyperresponsiveness after methacholine challenge compared to mice with control 
microbiota. Lines represent predicted change in peak value of lung function for each unit 
increase of methacholine (MCh) using a general linear mixed (GLM) model for the 
corresponding microbiota. Data represented on each line include mice from both PBS and HDM 
treatment groups for A) Total airway resistance, B) Tissue resistance, C) Central airway 
resistance, D) Respiratory elastance, E) Airway compliance, and F) Tissue elastance. Pairwise 
comparisons were used to compare slopes. *p < 0.05.  **p < 0.01.   
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While peak Rrs in mice treated with HDM had a higher estimated mean at each dose of MCh 

compared to mice treated with PBS, the effect of treatment with HDM was not statistically 

significant (𝑝 =0.2621, Figure 3.7A; Table 3.4), and the same pattern was observed for peak Rn 

values (Figure 3.7B).  In contrast, peak G, Ers, Crs, and H values in mice treated with HDM had 

higher estimated means at each dose of MCh when compared to PBS-treated mice, and these 

increases were statistically significant (Figure 3.7C-F and Tables 3.5-3.8). Despite these 

findings, the effect of HDM treatment was not different between microbiotas. Thus, treatment 

with HDM did decrease lung function, as expected, but its effect did not vary among mice with 

the different human-derived microbiotas or between mice with any of the human-derived 

microbiotas and those with mouse microbiota. Collectively, these data suggest early gut 

microbiota composition plays an important role in determining baseline characteristics of AHR, 

and that in this study, its effect on AHR was more relevant than the presence or absence of the 

allergen. 

Overall, these results indicate that mice with all 3 humanized microbiotas showed a tendency 

to increased AHR compared to mice with conventional mouse microbiota. Mice carrying Infant 

B microbiota showed the highest AHR and had a significant increase in AHR compared to the 

control group. The differences in AHR between mice carrying Infant B compared to mouse 

microbiota were characterized by increased resistance of the smaller peripheral airways (G) as 

well as an increase in airway closure (H), while resistance of the conducting airways (Rn) likely 

played a lesser role. Additionally, when airway resistance (Rrs) is elevated, as was detected in 

mice with Infant B microbiota, air can become trapped in the lungs limiting gas exchange 

resulting in bronchospasms, airway inflammation and increased mucus over time. Finally, the 

decreases in compliance (Crs) and elastance (Ers) detected here indicates that the lungs were 

stiffer with a higher than normal elastic recoil. This is expected to require a greater-than-average 

change in pleural pressure to change the volume of the lungs, thus, increasing the respiratory 

effort.  
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Figure 3.7 Mice treated with HDM had higher estimated means at each dose of MCh but its 
effect did not vary among the different microbiotas. A general linear mixed model was used 
to evaluate reactivity to methylcholine (Mch). Lines represent predicted change in peak value of 
lung function for each unit increase of MCh using a GLM for the corresponding treatment. Data 
represent the rate of change of (A) total airway resistance, (B) Central airway resistance, (C) 
Tissue resistance, (D) Respiratory elastance, E) Airway compliance, and F) Tissue elastance, 
relative to dose change of Mch. Red is phosphate buffered saline treated and blue is house dust 
mite treated. Y axis represents value of the specific lung function in their original scale. Pairwise  
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Figure 3.7 (cont’d) 
comparisons were used to compare slopes. *P < 0.05.  **P < 0.01. Data represented on each line 
include mice from all four microbiotas given the same treatment. Pairwise comparisons were 
used to compare slopes. *p < 0.05.  **p < 0.01. 
 

Effect of sex in baseline mechanics and airway hyperreactivity 

No differences were found between male and female baseline values for any of the lung 

parameters measured, although this study was not designed or powered to specifically determine 

the effect of sex on airway hyperreactivity. Given these considerations, the main effect of sex 

was not significant for any of the parameters in our linear mixed models that evaluated AHR. 

 

Mice carrying human or mouse microbiotas had similar histopathologic changes after 

acute exposure to HDM 

Lung tissues and bronchoalveolar lavage fluid (BALF) were obtained to evaluate tissue 

inflammation, airway remodeling, infiltration of inflammatory immune cells, mucus cell 

metaplasia and an array of cytokines, including the Th2, Th1 and Th17 families. 

Histopathological scoring showed that treatment with HDM increased inflammation in the lungs 

of mice with all 4 types of microbiotas when compared to their PBS controls (p values were 

Mouse p=0.003, Adult C p=0.033, Infant A p=0.003, Infant B p=0.038) (Figure 3.8A). 

Histopathology scores were highest in Adult C mice given HDM. Inflammation in the lungs was 

concentrated around mid to small sized airways in HDM-treated mice (Fig. 3.8A).  

Proportions of inflammatory cells changed in the BALF in response to HDM treatment in all 

microbiotas (Figure 3.8B). Mice with the Adult C microbiota given HDM had the greatest 

increases in eosinophils, lymphocytes and neutrophils. We observed significantly increased 

numbers of inflammatory cells in the BALF after HDM exposure, mainly an increase in the 

relative number of eosinophils (Mouse p=0.003, Adult C p=0.005, Infant A p=0.004, Infant B 

p=0.048), compared to mice carrying the same microbiota but treated with PBS (Figure 3.8C). 

Adult C and Infant B microbiota mice also had significant increases in neutrophils after HDM 

treatment when compared to mice given PBS (p<0.01 and p<0.05, respectively)(Figure 3.8C). 

Infant A microbiota mice had a significant increase of lymphocytes after HDM treatment when 

compared to mice given PBS (p<0.01)(Figure 3.8C). When comparing mice in all microbiota 

groups given PBS, no significant differences were found in the percentage of total BALF cells. 
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Similarly, when comparing mice in all microbiota groups given HDM, no significant differences 

were found in percentage of total BALF cells.   

 
Figure 3.8 Histopathology and broncho alveolar lavage results. (A – C) A) Lung 

histology and scores for each group. B) Total cell numbers from bronchoalveolar lavage with  
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Figure 3.8 (cont’d) 

differential cell counts. C) Percentage of total cell count for cell populations in the 
bronchoalveolar lavage. Data represents mean ± SE.*P < 0.05.  **P < 0.01. Quantification of (D) 
Inflammation in hematoxylin and eosin stained lung sections, (E) Mucus Cell Metaplasia in 
Alcian Blue PAS stained lung sections, and (F) Density of Eosinophils on major basic protein 
stained lung sections. G) Total airway compliance  and (H) total airway resistance of mice at 
baseline and after receiving increasing doses of Mch. (I) stacked bar graphs represent total cell 
number in BAL with proportions for each cell type in different color based on differential cell 
count performed in 300 cells per field.
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Finally, IL-4 from lung homogenates of mice given HDM was significantly increased 

compared to those given PBS for mouse, Adult C, infant A and infant B microbiotas (p 

values=0.047, 0.016, 0.019, 0.035, respectively), while IL-13 was significantly increased for 

mice with Adult C microbiota given HDM (p<0.05) and IL-5 was significantly increased for 

mice with Mouse and Adult C microbiotas given HDM (p<0.05)(Figure 3.9A-C). Other 
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cytokines showed no differences in their levels neither between mice with the same microbiota 

give PBS or HDM treatments nor between those with different microbiotas (data not shown). 

Our results are consistent with an acute allergic airway response to HDM, as seen by the 

inflammation surrounding airways and blood vessels in the lung accompanied by marked 

infiltration of eosinophils and increased production of Type 2-associated cytokines. Most of the 

inflammatory responses were not significantly different between the different microbiotas, but 

certain cell types and Il-5 and Il-13 cytokines varied according to microbiota. 
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Figure 3.9 Type 2 immune response to HDM in different mice carrying different 
microbiotas. A) Interleukin-4 cytokine responses measured in lung tissue. B) Interleukin-13 
cytokine responses measured in lung tissue. C) Interleukin-5 cytokine responses measured in 
lung tissue. D) Total immunoglobulin E responses in mice with different microbiotas given 
phosphate buffered saline or house dust mite allergen. Data represent mean ± SE from 10 mice 
per group. Data analyzed with Kruskal Wallis with Mann-Whitney for pairwise comparisons. *p 
< 0.05.  **p < 0.01. 
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Mice with human microbiota developed elevated levels of total serum IgE 

Mice with all human-derived microbiotas had overall increased levels of serum total IgE 

compared to mice with mouse microbiota in both PBS- and HDM-treated conditions (Figure 

3.9D).  Specifically, mice carrying Adult C human microbiota treated with PBS had significantly 

higher total serum IgE levels compared to mice carrying Mouse microbiota treated with PBS (p 

value= 0.007). Also, mice carrying Infant B microbiota given PBS had significantly higher 

values of total serum IgE compared to mice carrying Mouse microbiota given PBS (p values= 

0.055). Infant B microbiota mice given HDM trended to higher levels of IgE compared to Mouse 

microbiota mice given PBS (p values= 0.062). Only mice carrying Mouse microbiota showed a 

significant increase in total serum IgE after treatment with HDM compared to the PBS control (p 

value= 0.009) (Figure 3.9D). This difference between levels of total serum IgE does not reflect a 

specific HDM-IgE increase since we only observed a few animals with detectable levels of 

HDM-specific IgE after the two weeks of HDM treatment (Supplemental Figure 3.2). 

Furthermore, other studies suggest that HDM-specific serum IgE levels require more than 2 

weeks of HDM treatment to develop [180]. These results suggest that there is an association of 

increased total serum IgE with the increased AHR observed in mice carrying human microbiotas, 

compared to mice carrying mouse microbiota. However, since pretreatment total serum IgE 

levels were not measured in this experiment, additional work is needed to verify such an 

association. 

 

Functional alterations in the resistance and elasticity of the respiratory system in mice with 

human-derived microbiota were associated with increased in total serum IgE levels but not 

HDM-specific IgE 

To determine whether there was an association between eosinophilic infiltrates, lung 

inflammation, and Th17 and Th2 cytokines with lung function measurements, we evaluated the 

correlation between the presence of these factors and lung function parameters. A statistically 

significant moderate to strong positive correlation between overall baseline values for lung 

resistance and total serum IgE levels was found in all microbiota groups given HDM or PBS 

(Pearson correlation coefficient for HDM and PBS treated animals were equal to 0.408 and 

0.650, respectively).  Similar results were found for Total airway compliance (Crs), Total airway 

elastance (Ers), Tissue resistance (G) and Tissue elastance (H) (Supplemental Table 3.3).  When 
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evaluating these correlations grouped by microbiota, we found that Adult C mice treated with 

HDM had a significant strong correlation between Rrs and total IgE at baseline, dose 0 mg/ml of 

Mch, dose 12.5 mg/ml of MCh, and dose 50 mg/ml, and a significant strong correlation between 

G and total IgE at dose 12.5 mg/ml of Mch. Mice carrying Infant A microbiota treated with PBS 

showed significant strong correlation between several lung function parameters at both baseline 

and dose 0 mg/ml of the Mch challenge. Mouse microbiota only had a significant strong 

correlation between Rrs at baseline and IgE, and only in PBS conditions. Infant B microbiota had 

no significant correlations between lung function parameters and total IgE. Interestingly, none of 

the other variables measured in our experiment showed a relevant correlation with lung function, 

or with each other, when analyzed  by Pearson and Spearman correlation. Thus, we did not 

observe a correlation between the numbers of eosinophils, IL-4 or IL-13 cytokine levels, or lung 

inflammation with the amount of resistance and compliance lung function values. However, a 

strong correlation between baseline values (MCh = 0) for lung resistance and compliance and 

total serum IgE levels was found in two of the 6 groups of mice: those carrying human Adult C 

microbiota and given HDM treatment, and mice carrying Infant A microbiota and treated with 

PBS (Figure 3.10).  

 

 
Figure 3.10 Summary heatmap showing responses of different microbiota groups given 
phosphate buffered saline (PBS) or house dust mite (HDM). (A) Summary heatmap shows 
data driving distinctions between lung function impairments in mice carrying one of four 
microbiota groups given PBS or HDM treatments and assessed using flexiVent, lung 
bronchoalveolar lavage cell counts (BAL), lung histopathology scoring and fecal microbiota16S 
rRNA gene sequencing. Proinflammatory and antiinflammatory taxa categories and agonist and  
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Figure 3.10 (cont’d) 
antagonist categories are ranked scores for presence absence of defined bacteria shown in B and 
C. Shannon alpha diversity for the four microbiota groups are shown as high (H) or low (L) 
diversity. ERS is elastance, CRS is compliance, RRS is respiratory resistance, H Is tissue 
elastance, G is smaller peripheral airways and tissue damping, RN is central airway resistance 
and AHR is airway hyperresponsiveness.  Methacholine (MCH) administration caused 
significant increases in lung resistance (RRS) and decreases in compliance (CRS) as shown by 
gray squares. Significant differences between lung baseline mechanics of groups compared to 
mice with mouse microbiota given PBS are also shown by gray squares. Infant B microbiota 
mice were the only group that had significantly increased airway hyperresponsiveness after 
MCH challenge when compared to mice with control microbiota given PBS. 
 

Mice in Experiment 2 had similar responses to those in Experiment 1 (Table 3.9) 

To confirm our previous findings that mice with Infant A and Infant B microbiotas were not 

different in their allergic airway response, we conducted a second experiment with four groups 

1) Infant A with PBS, Infant A with HDM, Infant B with PBS and Infant B with HDM. Mice 

were sensitized to HDM, and MCh challenge given and lung function measured as in experiment 

1. We observed no significant differences in lung function at baseline between Infant A or Infant 

B microbiota mice, given the same treatments. Also, we did not observe a significant difference 

in responses to increasing doses of Mch or AHR, measured as total airway resistance and 

compliance (Figure 3.8G and H).  Furthermore, baseline lung function values and values taken at 

different doses of MCh for each microbiota were similar between experiment 1 and experiment 2 

for mice in the same treatment group with the same microbiota (Data not shown). As seen in 

experiment 1, there were no significant differences between AHR responses between mice with 

the same microbiota treated with HDM and PBS, except for Infant A microbiota at dose 50 

mg/ml of MCh, in which the increase in airway resistance and decrease in airway compliance 

were significantly higher than the PBS treated group (Figure 3.8G and H). Overall similar results 

from experiments 1 and 2 support the rejection of our hypothesis that Infant B microbiota 

decreased allergic response compared to Infant A microbiota. 
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Table 3.9 Comparison of Average +/SEM values obtained. A) total airway resistance and B) 
Total airway compliance measurements for similar experimental groups between experiment 1 
and experiment 2, at both baseline and at increasing doses of Mch. 
A 

Experiment   
Baseline 
values 0 mg/ml 12.5 mg/ml 25 mg/ml 50 mg/ml 100 mg/ml 

1 Inf B-PBS 
0.5512 ± 
0.0345 

0.5795 ± 
0.0371 

1.0437 ± 
0.0672 

1.6699 ± 
0.1148 

2.0632 ± 
0.1552 

2.2268 ± 
0.1340 

 2 Inf B-PBS 
0.5881 ± 
0.0174 

0.6421 ± 
0.0187 

1.3302 ± 
0.0992 

2.0525 ± 
0.2234 

2.2647 ± 
0.2107 

3.2423 ± 
0.2404 

 1 
Inf B-
HDM 

0.5989 ± 
0.0244 

0.6544 ± 
0.0324 

1.2302 ± 
0.1445 

2.5534 ± 
0.4232 

3.1823 ± 
0.3079 

6.0280 ± 
1.1228 

 2 
Inf B-
HDM 

0.5711 ± 
0.0488 

0.6334 ± 
0.0519 

1.3573 ± 
0.1804 

2.6771 ± 
0.4078 

3.1805 ± 
0.5177 

4.7392 ± 
0.8228 

 1 Inf A-PBS 
0.5523 ± 
0.0124 

0.6127 ± 
0.0221 

1.0951 ± 
0.0490 

1.8097 ± 
0.1454 

1.8817 ± 
0.1277 

3.1757 ± 
0.5439 

 2 Inf A-PBS 
0.5647 ± 
0.0192 

0.6226 ± 
0.0172 

1.1888 ± 
0.1312 

1.8694 ± 
0.1336 

1.8123 ± 
0.0531 

2.8665 ± 
0.2331 

 1 
Inf A-
HDM 

0.5361 ± 
0.0220 

0.6037 ± 
0.0361 

1.0237 ± 
0.1123 

2.2247 ± 
0.5509 

2.5345 ± 
0.3490 

2.9607 ± 
0.3431 

 2 
Inf A-
HDM 

0.5393 ± 
0.0181 

0.6040 ± 
0.0202 

1.0292 ± 
0.0896 

2.0994 ± 
0.2909 

3.1587 ± 
0.3845 

3.6473 ± 
0.4978 

 
B 

Experiment   
Baseline 
values 0 mg/ml 12.5 mg/ml 25 mg/ml 50 mg/ml 100 mg/ml 

1 Inf B-PBS 
0.0335 ± 
0.0015 

0.0324 ± 
0.0013 

0.0277 ± 
0.0008 

0.0236 ± 
0.0014 

0.0207 ± 
0.0009 

0.0172 ± 
0.0012 

 2 Inf B-PBS 
0.0345 ± 
0.0018 

0.0329 ± 
0.0018 

0.0253 ± 
0.0014 

0.0225 ± 
0.0018 

0.0203 ± 
0.0017 

0.0150 ± 
0.0009 

 1 
Inf B-
HDM 

0.0335 ± 
0.0020 

0.0315 ± 
0.0019 

0.0260 ± 
0.0013 

0.0184 ± 
0.0013 

0.0161 ± 
0.0014 

0.0105 ± 
0.0016 

 2 
Inf B-
HDM 

0.0358 ± 
0.0026 

0.0335 ± 
0.0025 

0.0275 ± 
0.0023 

0.0200 ± 
0.0025 

0.0154 ± 
0.0019 

0.0121 ± 
0.0017 

 1 Inf A-PBS 
0.0350 ± 
0.0013 

0.0332 ± 
0.0013 

0.0275 ± 
0.0012 

0.0232 ± 
0.0014 

0.0213 ± 
0.0018 

0.0166 ± 
0.0019 

 2 Inf A-PBS 
0.0341 ± 
0.0017 

0.0321 ± 
0.0013 

0.0264 ± 
0.0016 

0.0229 ± 
0.0008 

0.0223 ± 
0.0011 

0.0166 ± 
0.0018 

 1 
Inf A-
HDM 

0.0349 ± 
0.0019 

0.0324 ± 
0.0021 

0.0273 ± 
0.0026 

0.0211 ± 
0.0028 

0.0179 ± 
0.0021 

0.0139 ± 
0.0018 

 2 
Inf A-
HDM 

0.0371 ± 
0.0017 

0.0349 ± 
0.0016 

0.0292 ± 
0.0014 

0.0206 ± 
0.0021 

0.0147 ± 
0.0014 

0.0124 ± 
0.0012 
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Once again, lung inflammation was evaluated by total cell counts and differential counts in 

BALF and by lung histopathology. No differences were found in the amount or type of cell 

infiltration in the BAL when comparing Infant B to Infant A mice given the same treatment (PBS 

or HDM)(Figure 3.8I). Again, the amount of cell infiltration increased significantly after HDM 

treatment for mice with both microbiotas with a predominance of eosinophils over lymphocytes 

and neutrophils (Figure 8I). Total cell numbers were also similar to what was observed for Infant 

A and Infant B in experiment 1 (Figure 3.8B). For lung histopathology scoring in experiment 2 

we found a significant difference in inflammation between mice with the Infant A microbiota 

who received PBS inoculations and those with the Infant A microbiota who received HDM 

inoculations (p<0.05), and between mice with the Infant B microbiota who received PBS 

inoculations and those with the Infant B microbiota who received HDM inoculations 

(p<0.05)(Figure 3.8D). No significant differences were observed when comparing the two PBS 

groups or when comparing the two HDM groups to one another. In the second experiment 

comparing outcomes in Infant A and B mouse groups, the amount of mucus cell metaplasia in all 

mice given HDM was increased compared to mice given PBS, but no differences between the 

microbiotas were found (Figure 3.8E).  

Similar to the results for lung inflammation, significant increases were observed when 

comparing mucus cell metaplasia in HDM treated groups to PBS (p<0.05)(Figure 3.8E). Lastly, 

significant differences were observed when comparing the density of eosinophils in groups 

treated with HDM to groups treated with PBS (p<0.05), but not when comparing mice with 

Infant A microbiota treated with HDM or PBS to mice with Infant B microbiota treated with 

HDM or PBS, respectively (Figure 3.8F). Overall these results indicate an increase in lung 

inflammation after treatment with HDM, but no differences were found in the amount of 

inflammation between the two microbiota groups. Moreover, the difference in findings between 

experiment 1 and 2 can be explained by the increase in variance among data during experiment 1 

and the larger number of experimental groups. Despite this difference we can conclude that the 

values of Baseline IgE for mice with the same microbiota were similar between the two 

experiments. The average value of baseline IgE for the Infant A PBS treated group was 39 ng/ml, 

and for the Infant B PBS group it was 242 ng/ml, which represents  similar values when 

compared to experiment 1 (Figure 3.9, D and E). This shows that mice carrying Infant A or 

Infant B microbiota maintain their specific IgE phenotype throughout subsequent generations 
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because the microbiota is passed on essentially unchanged.  

 

Discussion  

This study established two new murine models with human-derived fecal microbiota from 

infants of the Isle of Wight birth cohort to study effects of gut microbiota in asthma 

pathogenesis 

Fecal microbiotas from Infant A eczemic infants and Infant B non-eczemic infants were 

successfully transplanted to germ-free mice, remained stable, passed to offspring largely 

unchanged, and maintained a consistent diversity. To evaluate inflammatory allergic responses in 

airways of mice carrying different microbiotas, we used an induced asthma-like model using 

HDM, a common allergen associated with human asthma known to generate a Type 2 immune 

response polarization. This response is characterized by increased T helper 2 cytokines IL-4, IL-

5 and IL-13, induction of class switch recombination in activated B cells to IgE; and eosinophilic 

infiltration into the lungs [181]. Despite having distinct microbiotas, Infant A, Infant B, and 

Adult C models all had decreased lung function at baseline without any allergen treatment when 

stimulated with methacholine in a dose-response design. The lung functions we evaluated 

corresponded to the overall resistance, elastance and compliance of the respiratory system 

(referred to as Rrs, Ers, and Crs, respectively), central airway resistance (Rn), smaller peripheral 

airway resistance and tissue damping (G), and tissue elastance (H). Significant increases in Rrs 

and Rn at baseline were seen in mice with Infant A and Adult C microbiotas. Significant 

decreases in compliance (Crs) at base line were seen in mice with all human-derived 

microbiotas, which correlated with modest increases in cellular infiltrates in lungs. These results 

indicated a direct effect of the human-derived microbiotas in eliciting increased respiratory 

resistance (Rrs), elastance (Ers), central airway resistance (Rn), tissue damping (G), tissue 

elastance (H) and decreased lung compliance. When mice were sensitized with HDM, significant 

differences were seen in lung baseline mechanics in Ers, G, H and decreased compliance (Crs), 

but the human-derived microbiotas had less effect on Rrs and Rn. Nevertheless, when sensitized 

with HDM, mice carrying all human-derived microbiotas demonstrated AHR compared to PBS 

controls with mouse microbiota, but these elevations were statistically significant only in the 

Infant B mice. All three of these human-derived microbiota models will be useful for studying 

how acquisition and maturation of the microbiota affects an individual’s respiratory mechanics 
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and immune responses. A great advantage to this comparative approach was using germ-free 

mice of the single C57BL/6 genotype so that host genetic background is not a consideration. 

Also, the models were established without using antibiotics to deplete the original microbiota; 

this procedure eliminates previous microbial influences on the immune response. Further, the 

offspring we used as experimental mice acquired microbiota vertically and passively from their 

parents and littermates, similar to how a child would acquire its microbiota from parents and 

siblings. Because these microbiotas were vertically transferred largely unchanged to their 

offspring, they provide replenishable and tractable models for testing effects of the 

microbiota on allergic airway disease outcomes. Strict exclusion of extraneous microbiota 

was achieved because mice were maintained in a closed barrier colony with sterile gowning 

and gloving for handling the mice. Since most work done on influence of gut microbiota points 

to an early life effect, using a model where the microbiota establishes and matures naturally 

before mice are tested for asthmatic responses is an advantage for mimicking the human life 

course that predisposes to asthma.  

In mice with all three human microbiotas we found significant impairment in baseline 

respiratory mechanics—in the absence of a direct stimulus for bronchoconstriction—when 

compared to the control mouse microbiota and to healthy non-allergic animals. To our 

knowledge, this is the first demonstration of impairment of baseline lung function 

attributed to specific human gut microbiotas. The differences in lung function at baseline 

between mice carrying human microbiotas versus congenic mice carrying mouse 

microbiota points towards a direct effect of the gut microbiota on respiratory mechanics. 

This direct effect may be mediated by the early microbiota during the time of education of 

the immune system, which subsequently contributes to susceptibility to AHR. This 

conclusion is strengthened by the findings that lung function parameters from these three 

models, e.g. tissue elastance versus central airway resistance, did not show the same 

magnitude of change. In examining the reported results of a recent study by Brown and 

colleagues examining lung responses to ozone in C57BL/6 mice of from two different vendors 

with different gut microbiotas, we noticed differences in pulmonary baseline responses even in 

the absence of ozone [182]. Although the authors don’t comment on these data, this result 

provides another example where changes in baseline respiratory mechanics provoke 

differences in AHR between mice with different gut microbiotas, reinforcing the idea that 
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gut microbiota has a direct effect on lung function. Because differences observed at baseline 

respiratory mechanics within each lung function may mislead one to believe that differences 

observed at different MCh doses are caused by increased reactivity to MCh or AHR, and not just 

due to the initial differences found at baseline, we developed a statistical model to evaluate 

reactivity to MCh while controlling for baseline in order to accurately pinpoint differences in 

AHR of these mice. Thus, we were able to account for differences at baseline respiratory 

mechanics when measuring AHR in mice exposed to PBS or HDM. The significant effects seen 

here on baseline respiratory mechanics support the idea that investigators should define 

and control for gut microbiota in studies where lung function parameters are being 

evaluated. 

 

Lung function results indicated that mice with all three human-derived microbiotas 

showed a tendency to increased AHR compared to mouse microbiota after only two weeks 

of HDM sensitization 

Mice with Infant B microbiota showed the highest AHR and had significant increases in AHR 

compared to the control group. The differences in AHR between mice carrying Infant B 

compared to mouse microbiota were characterized by increased resistance of the smaller 

peripheral airways (G) as well as an increased in airway closure (H), while resistance of the 

conducting airways (Rn) likely play a lesser role. This occurred even before a full adaptive 

immune response to HDM was present.  

 

When taken together, the BALF cell counts, histopathological scoring, cell-specific staining 

and cytokine analyses suggest that inflammation, while elevated, appears to be involved but 

not sufficient to account for the decreased lung function in mice with the three human-

derived microbiotas 

We observed a pattern of AHR in Infant B microbiota mice that was significantly increased 

compared to mice carrying the mouse microbiota. Importantly, this phenomenon was observed in 

the absence of specific HDM-induced inflammatory responses (non-allergic). In HDM-treated 

mice, those with Adult C and Infant A microbiotas had higher lung histologic scores than mice 

with mouse microbiota and mice with all human-derived microbiotas had increases in 

inflammatory cells, mainly surrounding the small airways. However, these responses were not 
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statistically significant due to large variation in the range of lung inflammation within the 

groups. Slight elevation of lung inflammation occurred in the PBS-treated human-derived 

microbiota groups but it was not significant. Likewise, when given PBS, Infant B mice had 

elevated macrophages in BALF that was not significant. When given HDM, proportions of 

inflammatory cells increased in the BALF in response to HDM treatment in all microbiotas; mice 

carrying the Adult C microbiota had the highest numbers of eosinophils, lymphocytes, and 

neutrophils, but these were not statistically significantly different from mice with other 

microbiotas. Interestingly, only Adult C and Infant B microbiota mice had significant increases 

in neutrophils after HDM treatment. In contrast, mice with Infant A microbiota had significant 

increases in BALF lymphocytes after HDM treatment, not seen in other groups. These specific 

increases in neutrophils and lymphocytes in BALF likely relate to distinct bacterial exposures. 

Also, after HDM sensitization, we did see significant increases in mucus cell metaplasia in Infant 

A and B microbiota mice compared to their PBS controls. When given HDM, mice with all four 

microbiotas had elevated IL-4 responses. There was a similar trend toward elevated IL-13 in 

HDM-treated mice for all microbiotas, but only mice with Adult C microbiota had statistically 

significant elevations. After HDM treatment, IL-5 was elevated in mice with either Mouse or 

Adult C microbiota, but neither Infant A nor B microbiota mice produced this cytokine at 

significant levels. We also examined total serum IgE levels in all mice at the time of necropsy. 

When given HDM, mice with mouse microbiota had significantly elevated total serum IgE. 

However, two of the human-derived microbiota groups (Adult C and Infant B), had significant 

elevations when given PBS alone, compared to the mouse PBS control group. In fact, none of the 

human-derived microbiotas had significantly elevated total serum IgE when given HDM because 

the background responses in the PBS-treated groups were so high. Levels of HDM-specific 

serum IgE were not detectable two weeks post sensitization, which was not surprising since 

adaptive responses take longer to fully develop [180]. Taken together, these data suggest that 

inflammatory changes alone do not explain the decreased lung function found in mice with 

human-derived microbiotas.  This conclusion is further supported by the presence of lung 

function decline in the absence of HDM sensitization or in HDM-treated mice only two weeks 

after sensitization at a time when a full adaptive immune response had not occurred. These 

studies confirm what has been seen in patients with asthma, where AHR can be present in the 

absence of significant inflammation [183]. 
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These studies support the concept that multiple allergy agonists and proinflammatory taxa 

functioned in a community-wide fashion to impair lung function in the absence of 

antagonistic and anti-inflammatory taxa  

The summary heatmap (Figure 3.10A) shows that this concept is strongly supported and that 

each human-derived microbiota harbored a different constellation of agonists and 

proinflammatory taxa, which likely lead to the varied allergic and pathologic manifestations 

measured. Candidate taxa acting as putative allergy agonists in microbiotas 1) Infant A were 

Bacteroides, Lachnospiraceae, Turicibacter, Clostridium, Escherichia coli/Shigella, Coprobacter, 

Lachnoclostridium, Klebsiella, Haemophilus, 2) Infant B were Bacteroides, Lachnospiraceae, 

Alistipes, Turicibacter, Clostridium, Parabacteroides, Sutterella, Parasutterella, Haemophilus, 

and Veillonella, and 3) Adult C were Bacteroides, Lachnospiraceae, Turicibacter, 

Parabacteroides, Alistipes, Ruminiclostridium, Sutterella, Parasutterella and Haemophilus 

(Figure 3.10B). Known proinflammatory taxa present in these human-derived microbiotas 

included Bacteroides, Parabacteroides, Akkermansia, Sutterella, E. coli-Shigella, Parasutterella, 

Klebsiella, Haemophilus, and Veillonella (Figure 3.10C). Only the uncultured Bacteroides sp. 

and Haemophilus were found in all three communities, but none of the proinflammatory taxa 

mentioned appeared in the protected mouse microbiota. Thus, the pattern of responses in each 

microbiota correlated to presence of different mixes of agonist and inflammatory taxa. For 

example, Infant A mice where lung function responses were less than in mice with Infant B and 

Adult C microbiotas had much smaller proportions of allergy agonists Alistipes, Sutterella, and 

Parasutterella and a larger proportion of the allergy antagonist Bifidobacterium. Also, Infant A 

microbiotas had much smaller proportions of pro-inflammatory taxa Parabacteroides and 

Parasutterella and a larger proportion of anti-inflammatory Bifidobacterium. Finally, diversity 

had no apparent effects as the Infant A microbiota was low diversity and these mice had the 

lowest positive allergic responses when compared with Infant B and Adult C.  

We acknowledge that there could be single bacterial taxon that exerted large effects 

because several potential respiratory pathogens were identified, but none that solely 

explain the data. Thus, our results lead us to reject our hypothesis that E. coli-Shigella were 

the sole responsible agonist taxon, given that this taxon was only present in appreciable 

amounts in the Infant A microbiota. Another possibility is that metabolites from groups of 

taxa may act to impair lung function in mice with the human-derived microbiotas, but, if 
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so, these metabolites would be different for these three human-derived communities. 

Because of the complexity of the mixes of allergy agonists/antagonists and pro- and 

antiinflammatory taxa in the three human-derived microbiotas that were associated with 

lung function decline, more work is needed to discern whether the metabolites produced by 

these three human microbiotas could be mainly responsible for these effects or whether 

specific virulence mechanisms drive the phenomena. Other studies have shown the 

association of certain gut microbiota compositions, diversity, or metabolites with the 

presence of allergic airway disease [123, 184]. While mechanisms are not yet known, Olszak 

et al. showed that microbial exposure during early life has persistent effects on natural killer T 

cell function [123]. Depner et al. mentioned the association of increased levels of butyrate 

produced by the microbiota as a potential clue to how specific microbial communities exert an 

asthma-protective effect [102]. Since butyrate and other metabolic products can be sensed by the 

vagus nerve as described in the process of Inflammatory bowel disease [185], it is likely that 

either the presence or absence of certain gut metabolites may have effects on the afferent and 

efferent nerve output which innervate the airways and chest wall and that travel via the vagus 

nerve. These nerve terminals are responsible for the degree of airway smooth muscle constriction 

and AHR, especially in response to increasing doses of MCh, and they exhibit plasticity in early 

stages of life when certain conditions are met, such an increase in the amount of specific 

neurotrophins and nerve growth factors.  

Known allergy antagonists and antiinflammatory bacterial taxa dominated the mouse microbiota 

while the number of these genera and their abundances were much lower in the human-derived 

microbiotas. Allergy antagonists unique to the mouse microbiota included Clostridia 

(Clostridiales), Faecalibacterium, and Ruminococcus-Coprococcus, while Roseburia, 

Lactobacillus, and Bifidobacteria were in high amounts but also present in one of the human-

derived communities. Antiinflammatory bacterial taxa were also found exclusively in the 

protected mouse microbiota including Roseburia and Lactobacillus which were distinct OTUs 

from the same genera seen in Infant B microbiotas. These observations are consistent with the 

findings of Arrieta and colleagues in children at risk of asthma that were also missing some of 

these protective taxa (Lachnospira, Veillonella, Faecalibacterium, Rothia) [2]. Yet, genera such 

as Veillonella contain both protective and pathogenic species, so more work is needed to 

determine species specific characteristics of the identified bacterial taxa. Depner et al. showed 
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that microbial communities with the likelihood of producing butyrate—especially those in 

children on farms—were the ones associated with the highest protective effect against asthma 

[102]. They demonstrated that bacterial taxa contributing to protective effects of butyrate 

included Roseburia and Coprococcus [102]. In our study Roseburia and Coprococcus were 

present in protected mice with mouse microbiota but were also found in similar levels in Infant B 

and Adult C mice bearing human-derived microbiotas. Moreover, mice with Infant B microbiota 

hypothesized to be “protective” had decreased lung function and the highest AHR compared to 

the control mouse microbiota. This may have been due to the shifts in abundance observed in 

bacterial taxa in the transplanted mice compared to donor infants; all mice were fed a high fiber, 

low fat diet mouse chow substantially different from the milk and/or formula diet of the infants 

from whom the transplant inocula were derived. In another study, Trompette et al. found that 

treatment of mice with the short chain fatty acid (SCFA) propionate led to alterations in bone 

marrow hematopoiesis that were characterized by enhanced generation of macrophage and 

dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic 

capacity but an impaired ability to promote Type 2 cell effector function [186]. Recognizing our 

results and these findings, we rejected our hypothesis that a high abundance Bacteroides-

enriched gut microbiota from non-eczemic infants was protective in transplanted mice after 

challenge with HDM. More work is needed to determine if adding back each or all of these 

organisms could prevent decreases in lung function in mice with human-derived microbiotas. 

Thus, lung function declines in mice with what we expected to be a protective Infant B 

microbiota were clear-cut, but the cause for this outcome was not. We acknowledge it was 

more difficult to discern impairments in lung function due to a specific microbiota when 

examining mice sensitized with HDM because increased allergen-associated inflammatory 

responses were high across all microbiota groups. After HDM treatment, inflammation 

around the airways caused an overall increase in resistance and tissue stiffness, making 

subtle differences in respiratory mechanics observed at baseline in the negative control 

mice harder to detect. However, it is known that HDM has no effect on baseline respiratory 

mechanics as seen in studies of HDM-treated BALB/c mice [187]. Therefore, this study 

suggests the AHR differences found between mice carrying the human-derived microbiotas and 

the control mice are due to a direct effect of the microbiota on airway structural components and 

potentially airway innervation. Yet, we can’t rule out action by other immune cells known to 
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influence airway innervation and AHR that were not evaluated such as mast cells [188-191]. 

Mast cells may provide an intermediary pathway between gut microbiota and lung function 

responses [191, 192].  

 

Possible limitations 

The main limitations identified were high variance within each experimental group especially 

those groups with human-derived microbiota and the presence of a few outliers for respiratory 

mechanics, inflammatory responses and specific immune markers measured. This is not 

surprising when measuring biological variables and may be due to variation in the abundance of 

bacterial taxa acquired by individual mice from their parents. For example a greater abundance 

of a proinflammatory/agonist taxon or decreased abundance of anti-inflammatory/antagonist 

taxon in an individual mouse could cause variation in responses. Another possibility for the 

variation was that we chose a relatedly short time course of HDM sensitization and challenge. 

This was chosen to focus specifically on innate responses while capturing some early adaptive 

response but was not ideal for evaluating peak adaptive immune responses or HDM-specific IgE 

levels between the mice with different microbiotas such as pointed out by Woo et al. [180]. This 

variation did impede us from being able to use parametric statistical tools such as ANOVA to 

evaluate our data. Yet, the same response patterns were found in repeated experiments over 

generations of mice, which gave us confidence in the results. Furthermore, this variation was not 

due to age or sex in our experiments. Moreover, we did find a correlation between levels of 

baseline IgE and baseline lung function responses for compliance and resistance in mice with 

Infant B and Adult C microbiotas.  

In conclusion, our study strongly supports a direct connection between a particular gut 

microbiota exposure in infancy and lung baseline responses. Because altered lung responses may 

lead to AHR and therefore to asthma, our study supports the existence of a mechanism through 

which the gut microbiota can alter the threshold level for developing asthma independently of the 

level of airway inflammation. Future experiments will focus on determining changes in airway 

innervation after exposure to a particular microbiota, as well as changes in other immune cells 

that can be targeted by IgE during development to influence lung mechanics and airway 

innervation during lung development and maturation. We propose that a risk microbiota 
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promotes structural and functional changes in the lungs during the developmental period, which 

exacerbates the overall airway allergic response. 

 

Materials and methods 

Laboratory Animals  

Mouse experiments followed the guidelines of the National Institutes of Health Guide to the Care 

and Use of Laboratory Animals. All protocols were reviewed and approved by the Institutional 

Animal Use and Care Committee of Michigan State University (06/12-107099, 6/15-101-00, and 

05/17-091-00). All mice used in these studies were C57BL/6 mice originally obtained from The 

Jackson Laboratory (Bar Harbor, ME) barrier facility. Mice used had conventional mouse 

microbiota or human microbiota from 1) 3-month-old infants from the Isle of Wight Birth Cohort 

[18] or 2) young adults (Adult C)[140, 178]. Mice with human-derived microbiota were 

offspring of the mice given FMT from Isle of Wight infants. All experiments were conducted 

with age-matched male and female mice between 8-10 weeks of age. Specific pathogen free 

breeding colonies for these mice were established on the campus of Michigan State University in 

facilities free of Helicobacter, Campylobacter, Citrobacter rodentium, Enterococcus faecalis, 

and other known colitis-causing or respiratory pathogens based on testing as previously 

described [19]. Mice were tested for these bacteria prior to use. Sentinel mice were used in both 

the conventional and humanized microbiota mouse colonies to monitor for known mouse 

pathogens at 6-month intervals (IDEXX BioAnalytics, Columbia, MO).     

Study cohort and collection of fecal samples from infants  

Fecal samples from 3-month-old infants of the Isle of Wight (IOW) third generation birth cohort 

were used [131]. 60 infants were recruited by obtaining consent from pregnant IOW cohort 

members and pregnant partners of male cohort members to collect fecal samples and clinical 

outcome parameters at 3, 6, 12, 24 and 36 months of age. IRB documents and approvals have 

been published for this study [54]. Fecal samples were collected from diapers by nurses, coded to 

protect identity and clinical status, and placed into a sterile container at the 3-month visit. If a 

fecal sample was not available during the clinic visit, nurses arranged a home visit to collect 

samples. Samples were stored on ice for the short transport, bagged in an anaerobic pouch,  and 

then stored at -80°C until processed. Infant fecal samples for transplant into germ-free mice were 

selected based on 16S rRNA gene sequencing and correlation with assessments for allergic 
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disease including eczema, wheeze, atopy and asthma over the 3-year time frame. Thus, all 

samples used for the FMT of germ-free mice were collected previously [54] and data analyzed to 

determine which samples to use for transplantation. Fecal samples for transplant were selected 

based on 1) bacterial taxonomic structure at genus level, 2) ordination using canonical 

correspondence analysis (CCA), and 3) similarity percentage analysis (SIMPER).   

Fecal collection and Illumina 16S rRNA gene sequencing and data analysis to assess which 

samples to use for FMT 

Batches of samples were sent to the Mansfield lab by overnight Federal Express shipping on dry 

ice. Samples were handled in an anaerobic hood for aliquoting. DNA was isolated from 500 mg 

of each sample using the FastDNA SPIN Kit for stool (MP Biomedicals, Solon, OH) according 

to the manufacturer’s protocol. Careful attention was given to preventing lab contamination by 

the operator or within the laminar flow hood. All reagents were validated free of 16S DNA 

before use. Standard controls (Mock Community, ATCC/BEI) were run alongside samples to 

control for contamination of the reagents during processing. Qubit analysis (Thermo-Fisher 

Scientific, Waltham, MA) was performed to determine DNA concertation; 16S rRNA gene PCR 

was performed to validate the quantity and purity of the DNA samples prior to submission to the 

Michigan State University Research Technology Support Facility (RTSF) for Illumina MiSeq 

sequencing.  At RTSF, the V4 region of the 16S rRNA gene were amplified by PCR in triplicate 

using two sets of barcoded primers [58], and the PCR products purified, combined, and 

sequenced using Illumina MiSeq. In all, 62 samples were submitted for sequencing, including 60 

mouse samples, the original fecal slurry used for inoculation of founder mice, and a mock 

community (HM-782D, BEI) for estimation of sequencing error. PCR products were normalized 

using an Invitrogen SequalPrep DNA normalization plate and the normalized products pooled. 

After quality control and quantitation, the pool was loaded on a standard MiSeq v2 flow cell and 

sequenced with a 500 cycle MiSeq v2 reagent kit (paired-end 250 base pair reads). Base calling 

was performed by Illumina Real Time Analysis (RTA) v1.18.54 and output of RTA was de-

multiplexed and converted to FastQ format files with Illumina Bcl2fastq v1.8.4. 109,085 high-

quality reads from Illumina sequencing remained - average read number per group: 3896 (min 

3245, max 5053). 

16S rRNA gene amplicon analysis protocol was performed using QIIME2 (v. 2019.1) 

version https://docs.qiime2.org/2019.1/ accessed May 2019. Alignment was accomplished using 

https://docs.qiime2.org/2019.1/
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the Silva 16S ribosomal gene database [59]. Chimeric sequences and any sequences classified as 

chloroplast, mitochondria, Archaea, or Eukaryota, were removed from the dataset using 

UCHIME. Sequences were clustered in Operational Taxonomic Units (OTUs) of 97% sequence 

identity yielding 128 OTUs. Analyses were performed in PAST 3.07 [60] and R version 4.06 

[193]. Following processing of sequences and chimera removal in QIIME2. Groups were sub-

sampled at a depth of 3245 reads and grouped using an average neighbor method. Sequence read 

data has been made available through the DRYAD database under 

https://doi.org/10.5061/dryad.xgxd254hs.  

Preparation of the inocula  

To preserve all components of the microbiota in its original state, fecal samples and the inocula 

were handled in an anaerobic hood. Each sample was suspended in 2 ml of Trypticase soy broth. 

The samples for each microbiota mixture were combined in a single 50 ml conical centrifuge 

tube. Solids were removed by sedimentation in a sealed tube and removing the supernatant to a 

sterile tube. Inocula-containing tubes were sealed prior to removal from the anaerobic hood and 

transported on ice to the containment facility.  200 µl of inoculum was delivered to each mouse 

immediately by oral gavage in a laminar flow biological safety cabinet using a 3.5 French red 

rubber feeding tube attached to a 1 ml syringe. Approximately 0.5 ml of each Infant A and Infant 

B mix was saved in 2.0 ml cryovials for DNA isolation for sequencing of the inocula.  

Fecal Microbiota Transplantation (FMT) of germ-free mice (Figure 3.2)  

C57BL/6 germ-free mice were from the same barrier facility at The Jackson Laboratory as the 

C57BL/6 mice with conventional mouse microbiota. They underwent caesarian rederivation and 

their offspring were thereafter propagated in the germ-free facility at University of Michigan 

(Ann Arbor, MI). Germ-free C57BL/6 mice were bred for these studies by University of 

Michigan. At 7 weeks of age, mice were transported to Michigan State University in sterile 

shipping containers, immediately placed into a biosafety cabinet and inoculated with the human 

fecal microbiota by oral gavage. All operators including scientists and animal care personnel 

gowned and gloved every time mice were handled. Sterile technique was used to prevent transfer 

of the operators’ or environmental microbiota to mice. Five male and 5 female germ-free 

C57BL/6 mice received a fecal transplant of the Infant A inoculum and 5 male and 5 female 

mice received the Infant B inoculum.  

Mice were observed for clinical signs after fecal transplant twice daily for two weeks. 

https://doi.org/10.5061/dryad.xgxd254hs
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Then they were placed in breeding pairs according to their microbiota and allowed to breed for at 

least two breeding cycles to generate mice for a closed colony and to conduct the two 

experimental studies. Breeding practices were employed to maximize the mixing of the 

microbiota within a microbiota type: 1) male mice were left with the pregnant female until the 

offspring were weaned and 2) we randomized the selection of males for females for breeding 

pairs to eliminate a “family” bias in subsequent generations. Details for Adult C mice were 

transplanted in a similar manner as previously described [140, 178]. All mice were monitored by 

a rigorous testing program for mouse pathogens using sentinels and testing by Charles River 

Laboratories (Wilmington, MA).    

 

Experimental designs for mouse model of allergic airway disease  

Experiment 1 Design (Table 3.3)  

To address the effect of microbiota on airway allergic responses, 20 mice, from each of the 4 

different gut microbiota groups including mouse (control), Infant A, Infant B, and Adult C, were 

randomly assigned to treatment groups with vehicle (PBS) or HDM as previously described 

[194]. The outcomes assessed in each of these experiments (airway responsiveness, 

histopathology scores, BALF cytology, serum immunoglobulins and cytokines) are quantitative 

measures of allergy that were analyzed as continuous variables.  

Age-matched C57BL/6 mice (n=10 per group) were used in all experiments. We used inbred 

mice housed in a strictly controlled environment and handled in a highly standardized 

manner, which improves uniformity of the allergy response variables within groups. This 

uniformity of outcome variables has long been our experience, is widely established in the 

literature [1, 3-7], and was the basis for our sample size (n= 8 or 10/group). Finally, the sample 

size was selected based on achieving 83.1% power for broncho-hyperresponsiveness to MCh 

after HDM treatment. A total of 8 experimental groups (n=10 per group, 5 males and 5 females) 

were used. At the end of the HDM treatment protocol, data was collected from each mouse to 

evaluate allergic responses based on lung function and immune responses. Mice that were mis-

dosed during the treatment protocol (4 mice in Infant B PBS group), and mice that died during 

the surgical procedure or during measurement of lung mechanics for lung function were 

excluded from the analysis. 
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Experiment 2 Design (Table 3.3) 

 In order to confirm our previous findings of Infant A and Infant B not being different in their 

airway’s allergic response, we conducted a second experiment.  The experimental design was 

exactly the same as in experiment 1, except that we used only mice carrying Infant B or Infant A 

microbiota. Experimental design is shown in Table 3.3 recognizing that mice with Adult C and 

Mouse microbiota were not used. Mice were sensitized to HDM as indicated in experiment 1. 

Lung function and MCh challenge were obtained as indicated in experiment 1. Once again, lung 

inflammation was evaluated by total cell counts in BALF and by lung histopathology. 

Differential cell counts were also performed as described in Experiment 1. For experiment 2, 

lung histopathology scoring was evaluated in three categories: Inflammation, mucus cell 

metaplasia and density of eosinophils. We measured mucus cell metaplasia in this experiment as 

another possible inflammatory marker for the degree of the airway allergic response, with the 

intention of picking up other differences between responses in mice with Infant A and Infant B 

microbiota. 

 

Sensitization to allergen  

Approximately 10–15 weeks after birth, house dust mite allergen sensitization was initiated 

(Table 3.3). Mice were inoculated on a schedule such that those receiving allergen were exposed 

to 50 µg of HDM in 25 µL of Dulbecco’s Phosphate Buffered Saline (PBS) on the first day, 

designated day 0, and 30 µg of HDM in 30 µL of PBS on days 2, 5, 7, 9, and 12 (Table 3.3). 

Those controls receiving only PBS received equivalent volumes on those days. To perform the 

sensitization, mice were placed in an induction chamber and given 3% isoflurane through a 

vaporizer at a rate of 1L/min until non-motile and non-responsive to handling. Mice were then 

removed from the chamber, held by scruffing, and had 10 ul of the HDM solution or PBS 

administered intranasally via a pipette. Between each subject the isolation chamber and all 

gloves were sprayed with 70% ethanol.  

 

Tracheal Cannulation and Respiratory Mechanics Evaluation using flexiVent Analysis 

Forty-eight hours after receiving the last dose of HDM or PBS, mice were anaesthetized via a 

mixture of ketamine (range 80-120 mg/kg), xylazine (range 8-12 mg/kg), and acepromazine 

(range 5-10 mg/kg) given intraperitoneally. Once movement ceased and mice were non-
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responsive to a toe pinch, a ventral midline incision was made over the mid-cervical region from 

the base of the jaw to the thoracic inlet. The trachea was exposed by blunt dissection, a small 

incision made in the mid-cervical trachea distal to the larynx, and an 18-gauge beveled cannula 

was inserted and secured with a ligature. Animals were then ventilated using a flexiVent 

apparatus (SCIREQ, Montreal, QC) at a frequency of 15000-120 breaths per minute and at a 

volume of 10 ml/kg body weight at 0.17-0.2 ml/breath. Mice were allowed to exhale passively 

through an expiratory valve to an end pressure of 4 cm H2O positive end expiratory pressure. 

Any animals which displayed respiratory effort during the process were administered an 

additional 0.1 ml injection of ketamine (range 80-120 mg/kg), xylazine (range 8-12 mg/kg), and 

acepromazine (range 5-10 mg/kg) given intraperitoneally. To stimulate airway constriction, an 

allergic challenge of aerosol acetyl-β-methylcholine (MCh, Sigma-Aldrich, St. Louis, MO) was 

generated through an in-line nebulizer (Aeroneb, SCIREQ, Montreal, QC) that was administered 

in increasing doses (0.625 to 200 mg/mL) in 10 second dosing intervals with a 3-5-minute break 

between dosing. Six increasing doses of MCh starting at 0 (PBS), 6.25, 12.5, 25, 50 and 100 

mg/ml were delivered. Data were collected for 2 minutes 45 seconds following each 

methacholine dose in a series of 12 repetitions of the single frequency forced oscillation 

(SnapShot-150) and complex forced oscillation (Quick Prime) maneuvers as applied by the 

flexiVent apparatus. Data on pressure and flow was collected throughout and used to determine 

resistance and compliance of the airways. Responses to increasing methacholine doses were 

measured within 2m 45s post nebulization using the flexiVent. Single frequency or complex 

forced oscillations maneuvers were applied by the flexiVent. Volumes and pressures were 

recorded, and the following parameters measured or derived from those measurements to 

evaluate lung function including: dynamic resistance of the respiratory system (Rrs), which 

assesses the resistance to air flow as a function of the extent (level of airway constriction); 

dynamic compliance of the respiratory system (Crs), which assesses the ability of the lungs to 

stretch; dynamic elastance (Ers), which assesses lung stiffness; Newtonian resistance (Rn), 

which assesses central airway resistance constriction; tissue damping (G), which reflects tissue 

(alveolar) resistance; and  alveolar tissue constriction and tissue elastance (H), which reflects 

tissue (alveolar) elastance (alveolar tissue stiffness).  
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Bronchoalveolar lavage (BAL) total cell and differential cell counts  

To collect BALF, 0.7 to 0.8 ml of sterile saline was slowly instilled through the tracheal catheter. 

Then, BALF was slowly withdrawn until bubbles appeared, dispensed into a sterile tube and the 

process repeated. BALF samples were pooled, and total cells counted on a hemocytometer.  

Following this, 150ul BALF was centrifuged onto slides using a Shandon Cytospin 3 Centrifuge 

 (Marshall Scientific, Hampton, NH) at 40x g for 10 minutes. Slides were air dried, fixed in 

methanol and stained with Diff Quick stain (Polysciences, Inc., Warrington, PA) for differential 

counting. Remaining BALF was centrifuged at 465g (=1500 rpm), at 4°C for 15 minutes, 

supernatants removed and stored at -80°C.  

 

Euthanasia 

Mice still under anesthesia from the mechanics evaluation, were euthanized via exsanguination. 

Mice were wet with 70% ethanol to avoid hair in the incision site, and then a ventral midline 

incision was made from the xiphoid process to the pubis. Visceral organs were evaluated for 

gross abnormalities then moved to the side to expose the abdominal aorta.  A 1 mL syringe with 

a 25g needle was used to collect approximately 0.5 mL of blood, after which the vessel was 

severed to complete exsanguination.  The collected blood was transferred into a 0.8 mL lithium 

heparin separator tube, which was then spun for 15 minutes at 3,500 rpm at 4oC. Serum was then 

removed and stored in a freezer (-20oC).  At this point the thoracic cavity was opened via blunt 

dissection of the hemi-diaphragms, and complete collapse of the lungs was evaluated before 

complete removal of the chest wall. Finally, the heart, lung, and trachea were removed as a 

block. 

 

Lung dissection, fixation, sectioning, and staining 

Once BALF was collected, the heart-lung block was removed by dissection with extreme care to 

prevent nicking of trachea, extrapulmonary bronchi or lung lobes. Lungs were removed from the 

thoracic cavity attached to the canula and placed on a sheet of dental wax to reduce surface 

friction. First the right main stem bronchus was ligated using silk-suture and the 4 right lung 

lobes were removed. The right cranial, middle, and postcaval lobes were placed into a 2 mL 

screw-top cryovial and snap frozen in liquid N2. These lobes were then stored in the -20oC 

freezer. The right caudal lobe was cut in half and placed into a 2 mL flat bottom tube containing 
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1.5 mL of RNAlater and placed in a 4oC refrigerator for 24 hours before being moved to a -20oC 

freezer for future RNA analysis. Next the trachea and left lung lobes were fixed in 10% neutral 

buffered formalin using an inflation-fixation apparatus. The trachea and lungs were perfused 

under constant pressure (30 cm of fixative pressure) for 1 hour under 30 cm of fixative pressure. 

Thereafter lungs were tied off, removed from the apparatus, and stored in a large volume of 

formalin until further processing. 

The fixed left lobes were separated from the trachea by severing the left main stem 

bronchus using scissors. The lobes were then sectioned on dental wax and sliced transversely 

into approximately 3 mM sections using a straight razorblade. These sections were placed cut 

side down into a cassette which was then submerged into 30% ethanol. The specimens were 

dehydrated, embedded in paraffin, and three sections cut from each block at 4 µm thickness. 

Sections were then deparaffinized and stained with hematoxylin and eosin (H&E), Alcian blue 

periodic acid-Schiff (ABPAS), or major basic protein (MBP) by the Investigative Histopathology 

Laboratory, Division of Human Pathology, Department of Physiology, Michigan State 

University. Slides were then scanned and digitized using an Olympus VS110 machine and were 

subsectioned at 20x using Visiomorph Microimager (Visiopharm, Denmark) [195]. In order to 

score inflammation, slides stained for Hematoxylin and Eosin were assessed. 6 10X fields under 

were captured using a Nikon DS-F13 camera attached to a Nikon H600L light microscope and 

stitched together using the NIS-Elements BR 5.02.00 program (Nikon-USA, Melville, NY). 

Within these fields large airways, small airways, and vasculature were assessed for the layers of 

inflammatory cells that surrounded each structure at their densest/thickest point. The results for 

each type of structure were averaged, and then the three resulting values were averaged for an 

overall ‘inflammatory score.  

 

Lung histopathology scoring 

The histologic scoring system for the lungs was based on published scoring criteria [196-200]. 

Our scoring system was based on a meta-analysis of four published protocols and allows for 

focus on observed lesions by the slide reader. We first noted the number of tissue sections on the 

slide. Using a battlement pattern for each section, the total number of large airways was 

recorded. The reader then repeated the battlement pattern evaluating how many of these airways 

were affected by inflammation. To be considered positive, an airway was required to be cuffed 



 134 

with closely associated mononuclear cells. Thereafter the large airway(s) with the worst 

pathology were evaluated to determine the density/thickness of inflammation surrounding the 

structures. This evaluation was based on the thickness of the layer of inflammatory cells 

comprising the diameter of the aggregate that was recorded as a ranked score (0-3, none, mild, 

severe) based on the rubric for those structures. We also noted the diameter of the largest 

aggregate evaluated. The process was repeated (Steps 1-4) for small airways and for vasculature 

(Steps 1-4). Thereafter the parenchyma was evaluated for the presence of inflammatory cells not 

associated with airways or vasculature and a score assigned (0-3, none, mild, severe) for 

generalized inflammation. Next, a point of 1 was added if focal clusters of inflammatory cells 

were present within the parenchyma. Finally, a point of 1 was added if there was evidence of 

obliterated small airways within areas of dense parenchymal inflammation (either focal or 

generalized). A total score was reached by adding all the points scored to achieve a ‘Pathology 

Grade’. Two independent blinded investigators (LSM, IMU) scored the images based on the 

consensus scoring system and graded the inflammation score.  

 

Measurement of lung cytokines  

The cranial right lung lobes were thawed on ice, weighed and homogenized in Q-mammalian 

protein kit buffer containing protease inhibitor (QIAGEN Inc. USA), using the TissueLyser II 

(QIAGEN Inc., Germantown, MD). Homogenates were further centrifuged at 14,000x g for 20 

minutes in a microcentrifuge precooled to 4°C, and supernatants (i.e., total protein fractions) 

were aliquoted into new microcentrifuge tubes precooled to 4°C and stored at -80°C until further 

analysis. Total protein in mg/ml was measured using the Pierce™ BCA Protein Assay Kit 

(Thermo Fisher Scientific Inc. Massachusetts, U.S). Cytokines were measured using a 

commercially available flow cytometry-based, multiplexed, bead assay panel (LEGENDplex 

Mouse Th Cytokine Panel, BioLegend, San Diego, CA). Just before analysis, aliquoted 

supernatants of the lung homogenates were thawed on ice and centrifuged at 300 x g for 10 

minutes at 4°C to further pellet any debris and ensure clarity. The assay was performed using 

undiluted supernatant and a V-bottom microplate, according to the manufacturer’s instructions. 

All samples were run in duplicate. Analytes included IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-9, 

IL-10, IL-13, IL-17A, IL-17F, IL-21, and IL-22. Data were acquired on a BD FACSCanto II 

flow cytometer and analyzed using the LEGENDplex Data Analysis software, where standard 
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curves were generated for each analyte. Data are presented as the average of the replicates in pg 

cytokine/mg of protein. 

 

Total IgE and specific anti-HDM IgE analysis  

Plasma samples were aliquoted to avoid repetitive freezing and thawing and stored at -80°C . 

Total plasma IgE was measured using BioLegend Mouse IgE ELISA MAX Deluxe Set 

(BioLegend, Inc. San Diego, CA). Briefly, samples were diluted according to a standardized 

dilution factor based on results from preliminary assays. Samples that were higher than the limit 

of detection on the first run were repeated using a higher dilution.  Mouse IgE standard was 

reconstituted in buffer, and six two-fold serial dilutions were performed according to the 

manufacturer’s instructions. All incubation steps with shaking were done at 200 rpm. Capture 

antibody for mouse IgE was diluted in 1X coating buffer. 100 µL was added to each well of a 96 

well plate, and the plate was incubated overnight at 4°C. Plates were washed four times with 

ELISA wash buffer (20X) (BioLegend, Inc. San Diego, CA) and 200 µL of 1X Assay Diluent A 

was added to each well for blocking. Plates were incubated for 1 hour at room temperature. 

Samples were diluted in 1X Assay Diluent A. Plates were washed four times and 100 µL of each 

sample was added to appropriate wells. Plates were incubated at room temperature with shaking 

for 2 hours and then washed four times. 100 µL of biotinylated detection antibody (diluted 1:200 

in 1X Assay Diluent A) was added to each well and plates were incubated for 1 hour at room 

temperature with shaking. Plates were washed four times. 100 µL of Avidin-HRP (diluted 

1:1000 in 1X Assay Diluent A) was added to each well; then plates were incubated 30 minutes at 

room temperature with shaking. Plates were washed five times. Wash buffer was allowed to sit 

for 30-60 seconds between each wash. TMB substrate solution was prepared and 100 µL of 

substrate solution was added to each well. Plates were then incubated in the dark at room 

temperature for 15 minutes. 100 µL of stop solution (2 N sulfuric acid) was added to each well 

and the absorbance was read at 450 nm using a microplate reader. All the samples were run in 

duplicate. Concentrations were calculated through elisaanalysis.com, using a 4-parameter logistic 

curve as recommend in the kit instructions. For samples that were repeated on multiple plates, 

the concentrations were averaged. Data are presented as ng/ml. 

For specific HDM-IgE measurement, we used the Mouse Anti-House Dust Mite (HDM) IgE 

Antibody Assay Kit (Chondrex Inc, Woodinville, WA). Plasma samples were handled as above 
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and different dilutions were tested in preliminary assays to arrive at a standard dilution of 1:10. 

All samples were run in duplicates. The assay was performed following the manufacturer kit’s 

instructions. Final concentrations were calculated using a 4-parameter logistic curve through 

elisaanalysis.com and are presented as the average of the duplicates in ng/ml. 

 

Bacterial DNA isolation from mouse feces  

At the time of necropsy, fecal samples were collected, the tubes immediately placed on dry ice, 

stored at -80oC and later processed for 16S rRNA gene sequencing to assess the fecal microbiota 

of the mice. DNA was extracted using the FastDNA SPIN Kit stool kit (MP Biomedicals, Solon, 

OH) following the manufacturer’s protocol. Briefly, for each mouse, a single fecal pellet was 

suspended in 978 µL of sodium phosphate, 122 µL of MT buffer added, and the sample 

homogenized using a bead beater for 40 seconds. The samples were centrifuged at 14,000 x g for 

10 minutes, and the supernatant was then extracted, combined with 250 µL PBS, and centrifuged 

at 14,000 x g for 5 minutes. The supernatant was again collected and combined with 1 mL of the 

provided DNA binding matrix. The resulting solution was mixed on a tube vortex for 2 minutes, 

allowed to resettle, and then 500 µL of supernatant was discarded. The remaining solution was 

resuspended and then centrifuged 600 µL at a time at 14,000 x g for 1 minute in a Spin Filter 

tube. The resulting pellet was washed by resuspending in 500 µL of ethanolated SEWS-M and 

centrifuged at 14,000 x for 1 minute, then again for 2 minutes after disposing of the waste fluid. 

Samples were then allowed to air dry at room temperature for 5 minutes before being 

resuspended in 200 µL of DES (DNase/Pyrogen-Free Water) and incubated at 55oC for 15 

minutes on a heating block. Samples were then centrifuged at 14,000 x g for 2 minutes, and the 

filtered liquid was collected for further analysis. The presence of DNA was assessed in all 

samples using a Nanodrop instrument before being placed in a -80oC freezer for storage.  

DNA samples from all mouse fecal samples were validated and processed for 16S rRNA 

gene sequencing as described for infant fecal samples above. 16S rRNA gene amplicon analysis 

was performed using QIIME2 (v. 2019.1) as described above for infant fecal samples and 

microbial ecology data analyzed.  

 

Statistical analysis  

Microbial ecology data from16S rRNA gene sequencing of infant and mouse fecal DNA was 
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analyzed to determine the richness and evenness of the infant and mouse fecal bacterial 

communities. Principal Components Analysis (PCA) was performed in R [193] to examine 

relative compositions of  the three human-derived microbiotas (Infant A, Infant B and Adult C), 

Mouse microbiota and the two Infant inocula A and B. PCA was also performed to examine the 

relatedness of the three human-derived microbial communities Infant A, Infant B and Adult C 

microbiotas separately. To examine similarity (dissimilarity) between bacterial taxa in these two 

sets of groups, we performed a two-way PERMANOVA in PAST 4.03 using the Bray Curtis 

similarity measure (with microbiota and treatment as factors). Unweighted Pair Groups with 

Arithmetic Averaging (UPGMA) was performed in PAST 4.03 on samples from all microbiota 

groups and the Infant A and Infant B inocula using the Bray Curtis similarity measure with 1000 

bootstrap replications in PAST version 4.03. For the heat maps, we compared the average 

relative abundance of the bacterial taxa contributing 90% of the differences in Similarity 

Percentage calculation (SIMPER; in PAST 4.03) for 1) all samples (Infant A, Infant B and Adult 

C, Mouse microbiotas and the two Infant inocula A and B) and for 2) the three human-derived 

microbiotas. 

For cytokine analysis, plasma total and specific HDM IgE, differential cell counts and lung 

histopathology, and lung function measurements are presented as mean ± standard error.  

Kruskal-Wallis one way ANOVA statistic was used on PAST 4.02 to compare baseline lung 

functions for the microbiota groups. 

A general linear mixed (GLM) model was used to examine the effects of methacholine 

(MCh) concentrations, microbiota groups, and treatment assignment on the degree of airway 

hyperresponsiveness [201]. Outcomes were measurements of the lung function at peak (bottom 

for Crs) after each MCh dose or after nebulized PBS was delivered (dose 0). The outcomes were 

included in the model with a logarithmic transformation. Predictors included dose, microbiota, 

treatment, and the log-transformed baseline values for each dose. Random effects accounted for 

the repeated measures on each mouse. Mouse microbiota group served as the reference category 

in microbiota groups, whereas PBS (sham) treatment served as the reference treatment. 

Interaction terms were included to assess the effect of dose on the peak lung function for each 

microbiota group. To compare reactivity to increasing doses of MCh, the predicted slopes 

coefficients from the linear mixed model for each microbiota group were compared using the 

Tukey test for multiple pairwise comparisons. For each model, we considered a p-value < 0.05 to 
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indicate a statistical significance. All analyses were conducted using statistical software R 

version 4.06 using the glmmTMB and lme4 packages [193]. Pearson and Spearman correlation 

analyses were conducted using the ggpairs and ggally packagesin R software. 
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APPENDIX 

Supplemental Figures

 
Figure 3.11 Observed peak values for each lung function, at each Mch dose given and 
separated by treatment. Panel (A) represents total airway resistance. Panel (B) represents total 
airway compliance. Panel (C) represents central airway constriction, Panel (D) represents 
alveolar tissue constriction, Panel (E) represents airway stiffness, and Panel (F) represents 
alveolar tissue stiffness. Data shown as mean ± SEM (n=10). 
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Figure 3.12 Blood HDM-IgE levels in mice treated with HDM for 12 days did not show 
significant increase. Data represent mean ± SE from 10 mice per group. Individual values per 
group are also shown as single data points. Some individual values per group that were equal to 0 
ng/ml may overlap with each other in the graph. One value from Adult C group (45.74 ng/ml) is 
not shown due to being extremely high compared to the rest of the data and was left outside the 
graphing scale. 
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Supplemental Tables 

Table 3.10 Measurements at peak responses of resistance (Rrs in cmH2O.s/ml), compliance 
(Crs in ml/cmH2O), elastance (Ers in cmH2O/ml), tissue elastance (H in cmH2O/ml), tissue 
damping (G in cmH2O/ml), and conducting airway (Newtonian) resistance (Rn in 
cmH2O.s/ml) for each methacholine dose for phosphate buffered saline (PBS) treatment 
groups. The peak response is the top three measurements for all parameters except Crs, for 
which it is the lowest three measurements.  x ± s represents average ± 1 SD. N is the number of 
non-missing values. 

 Methacholine dose 

Lung function 
parameter 

0 mg/ml 
(N=36) 

12.5 mg/ml 
(N=36) 

25 mg/ml 
(N=36) 

50 mg/ml 
(N=36) 

100 mg/ml 
(N=36) 

Baseline Rrs 0.533 ± 0.097 
†0.562 ± 0.096

* 
†0.853 ± 0.196 †0.980 ± 0.243 †1.215 ± 0.31 

Peak 
Respiratory 
Resistance 

(Rrs) 

0.59 ± 0.10 0.96 ± 0.22 1.54 ± 0.47 1.67 ± 0.58 2.27 ± 1.29 

Baseline_Crs 0.0374 ± 0.00
85 

†0.0355 ± 0.00
7 

†0.0316 ± 0.00
8 

†0.0290 ± 0.00
7 

†0.0267 ± 0.00
7 

Peak 
Respiratory 
Compliance 

(Crs) 

0.0353 ± 
0.0077 

0.0305 ± 
0.0077 

0.0260 ± 
0.0074 

0.0252 ± 
0.0081 

0.0200 ± 
0.0082 

Baseline_Ers 27.9 ± 5.6 †29.4 ± 5.8 †33.4 ± 7.2 †36.3 ± 8.0 †40.2 ± 10.4 

Peak 
Respiratory 
Elastance  

(Ers) 

29.5 ± 5.8 †34.5 ± 7.4 †41.2 ± 10.3 †43.2 ± 12.6 †58.4 ± 24.2 

Baseline_H 25.4 ± 5.3 †26.4 ± 5.7 †27.9 ± 6.3 †30.2 ± 7.1 †32.6 ± 10.6 

Peak Tissue 
Elastance  

(H) 
27.3 ± 5.6 29.5 ± 6.4 31.5 ± 7.2 34.6 ± 10.6 42.1 ± 13.9 

Baseline_G 4.29 ± 0.85 †4.33 ± 0.77 †5.48 ± 1.27 †5.79 ± 1.38 †7.29 ± 3.19 

Peak Tissue 
Resistance  

(G) 
4.77 ± 0.78 6.27 ± 1.42 8.97 ± 2.59 9.48 ± 3.57 12.11 ± 5.50 
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Table 3.10 (cont’d) 

Baseline_Rn 0.202 ± 0.048 †0.217 ± 0.056 †0.358 ± 0.095 †0.460 ± 0.146 †0.599 ± 0.189 

Peak 
Conducting 

Airway 
Resistance  

(Rn) 

0.256 ± 0.051 0.437 ± 0.093 0.679 ± 0.184 0.855 ± 0.253 1.071 ± 0.402 

† Baselines for doses 12.5-100 mg/ml of Mch correspond to the last value measured by flexiVent 
at the end of the dose response curve of the preceding dose.  
 
 
Table 3.11 Measurements at peak responses of resistance (Rrs in cmH2O.s/ml), compliance 
(Crs in ml/cmH2O), elastance (Ers in cmH2O/ml), tissue elastance (H in, cmH2O/ml), 
tissue damping (G in cmH2O/ml), and conducting airway (Newtonian) resistance (Rn in 
cmH2O.s/ml) for each methacholine dose for house dust mite (HDM) treatment groups. 
The peak response is the top three measurements for all parameters except Crs, for which it is the 
lowest three measurements.  x ± s represents average ± 1 SD. N is the number of non-missing 
values. 

 Methacholine dose 

Lung 
function 

parameter 

0 mg/ml 
(N=40) 

12.5 mg/ml 
(N=40) 

25 mg/ml 
(N=40) 

50 mg/ml 
(N=40) 

100 mg/ml 
(N=40) 

Baseline_Rr
s 0.56 ± 0.11 †0.60 ± 0.13 †0.95 ± 0.35 †1.37 ± 0.67 †1.82 ± 0.85 

Peak 
Respiratory 
Resistance  

(Rrs) 

0.64 ± 0.21 1.04 ± 0.38 1.93 ± 1.25 2.55 ± 1.14 3.97 ± 3.81 

Baseline_Cr
s 

0.0365 ± 0.008
1 

†0.0342 ± 0.008
0 

†0.0297 ± 0.007
5 

†0.0255 ± 0.008
3 

†0.0224 ± 0.007
8 

Peak 
Respiratory 
Compliance  

(Crs) 

0.0339 ± 0.007
6 

0.0289 ± 0.007
7 

0.0232 ± 0.008
3 

0.0202 ± 0.007
8 

0.0152 ± 0.007
3 

Baseline_Er
s 28.8 ± 7.0 †31.1 ± 8.4 †36.3 ± 11.2 †45.0 ± 20.0 †51.9 ± 23.5 

Total 
Respiratory 
Elastance  

(Ers) 

31.3 ± 8.3 37.9 ± 13.7 52.2 ± 31.6 58.8 ± 27.0 90.3 ± 61.8 

Baseline_H 26.6 ± 7.0 †28.4 ± 8.7 †30.5 ± 10.0 †34.4 ± 13.0 †37.7 ± 16.3 
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Table 3.11 (cont’d) 
Peak Tissue 
Elastance  

(H) 
29.9 ± 8.8 32.0 ± 9.9 37.0 ± 15.2 42.1 ± 18.6 52.2 ± 23.2 

Baseline_G 4.6 ± 1.1 †4.8 ± 1.1 †6.1 ± 2.2 †7.8 ± 3.8 †9.9 ± 4.7 
Peak Tissue 

Damping  
(G) 

5.3 ± 1.5 6.8 ± 2.5 11.4 ± 7.0 13.6 ± 6.5 20.0 ± 14.4 

Baseline_Rn 0.204 ± 0.062 †0.223 ± 0.061 †0.387 ± 0.150 †0.569 ± 0.197 †0.769 ± 0.338 
Peak 

Conducting 
Airway 

Resistance  
(Rn) 

0.260 ± 0.056 0.474 ± 0.180 0.746 ± 0.291 1.115 ± 0.429 1.332 ± 0.719 

 
† Baselines for doses 12.5-100 mg/ml of Mch correspond to the last value measured by flexiVent 
at the end of the dose response curve of the preceding dose.  
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Table 3.12 Pearson correlation coefficients (ρ) for baselines of each of the lung function 
parameters verss total serum IgE and separated by treatment. “Corr” value corresponds to 
the correlation value for all microbiota groups given that specific treatment. (PBS or HDM). 
Correlation coefficients values separated by microbiota are shown below. A value between 0.3 to 
0.5 is considered moderate positive correlation, while a value between  0.5 to 1.0 is considered 
strong positive correlation. *- indicates correlation test p values that were <0.05. ***.- indicates 
correlation test p values that were <0.1. 

 PBS (ρ) HDM (ρ) 
Total airway resistance (Rrs) Corr: 0.408* 

MOUSE: 0.655* 
ADULT C: 0.409 
INFANT A: 0.644 
INFANT B: 0.394 

Corr: 0.650*** 
MOUSE: −0.066 
ADULT C: 0.772** 
INFANT A: 0.544 
INFANT B: 0.201 

Total airway Compliance (Crs) Corr: −0.326. 
MOUSE: −0.378 
ADULT C: −0.161 
INFANT A: −0.565 
INFANT B: −0.387 

Corr: −0.390* 
MOUSE: −0.266 
ADULT C: −0.467 
INFANT A: −0.383 
INFANT B: 0.125 

Total airway elastance (Ers) Corr: 0.342* 
MOUSE: 0.393 
ADULT C: 0.160 
INFANT A: 0.680. 
INFANT B: 0.273 

Corr: 0.460** 
MOUSE: 0.266 
ADULT C: 0.537 
INFANT A: 0.349 
INFANT B: −0.214 

Central airways resistance (Rn) Corr: 0.103 
MOUSE: 0.347 
ADULT C: −0.180 
INFANT A: −0.354 
INFANT B: 0.300 

Corr: 0.339* 
MOUSE: −0.112 
ADULT C: 0.604. 
INFANT A: 0.282 
INFANT B: 0.058 

Tissue resistance (G) Corr: 0.367* 
MOUSE: 0.246 
ADULT C: 0.513 
INFANT A: 0.699. 
INFANT B: −0.078 

Corr: 0.423** 
MOUSE: 0.063 
ADULT C: 0.510 
INFANT A: 0.416 
INFANT B: −0.308 

Tissue Elastance (H) Corr: 0.245 
MOUSE: 0.388 
ADULT C: −0.185 
INFANT A: 0.793* 
INFANT B: 0.428 

Corr: 0.423** 
MOUSE: 0.063 
ADULT C: 0.510 
INFANT A: 0.416 
INFANT B: −0.308 
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CHAPTER 4: Metabolomic profiles significantly distinguished in the gut based on 
expressed allergic phenotypes in eczemic infants and in mouse model of asthma 
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Abstract  

 Increasing evidence supports the importance of the role the gut microbiome plays on the 

development and manifestation of allergic diseases, such as eczema and asthma. In addition to 

specific bacterial taxa influencing the allergic outcomes of the hosts, various bacterial 

metabolites have been associated with allergy. We hypothesized that varying gut microbiota, 

along with varying allergic phenotypes results in a distinguishable metabolome. Two sets of 

samples were used in this study: fecal samples of 3-months old infants originating from the Isle 

of Wight 3rd generation cohort, and ceca samples of mouse models of asthma and allergy with 

three different humanized gut microbiota with predispositions to allergic phenotypes. Untargeted 

metabolomic profiling utilizing liquid chromatography-mass spectrometry was performed on all 

samples, and metabolite abundance data was analyzed by experimental groups. Infants with 

persistent early childhood eczema exhibited a distinct metabolite profile compared with infants 

without any childhood eczema. Hippuric acid and dihydrocortisol were in significantly lower 

abundance in infants with persistent eczema in infancy. Mice with humanized gut microbiota 

with predispositions to allergic response and lowered lung functions had significantly 

distinguishable metabolite profiles compared to mice with conventional mouse microbiota and 

dampened allergic response. Mice treated with an allergen (house dust mites) also exhibited 

number of metabolites significantly distinguishable from mice without allergen exposure, 

although in less degree than the microbiota differences.  

 

Introduction 

 Allergic diseases affected nearly third of the adult, and over a quarter children in the U.S. 

in 2021 according to CDC[5]. The exact underlying mechanisms of allergy development is still 

unknown, yet many factors has been attributed to aiding in either developing, or preventing of 

developing allergies that can be categorized in 3 main genres: genetics[20, 43-45, 47], the 

environment[27, 29, 50, 51], and the microbiome[4, 33, 53-55, 63]. The effect of the 

microbiome, especially the gut microbiome on allergy has been a fast-growing field in both 

deepening the understanding of the mechanisms of allergic diseases, as well as the development 

of novel treatment and prevention of said diseases[55, 80, 124, 202, 203]. Specific bacterial taxa 

has been associated with the development of allergy such as Higher abundance of 

Bacteroidaceae, Clostridaceae, and Enterobacteriaceae with neonatal eczema[4], increased risk 
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of asthma development with Enterobacteriaceae abundance[202], and increased Veillonella 

abundance in children with asthma[2, 55, 203]. Veillonella abundance was also associated with 

eczema in early infancy in our previous study of Isle of Wight cohort infants[204]. The 

molecular mechanisms of how bacterial members of the gut microbiome can influence the host 

immune system to a point of allergy manifestation is still unknown, yet there are arguments for 

the microbial metabolites playing such role[33, 99, 203]. Metabolites like short-chain fatty 

acids(SCFA)[33, 99, 104], both conjugated[105, 106] and unconjugated[107, 108] bile acids, and 

tryptophan[110-112] have all been associated with protection from allergy. On the opposite end, 

histamine [118], indole propionate[105], and 12,13-diHOME[116] are examples of bacterial-

related metabolites associated with the development of allergy. Histidine was also associated 

with wheeze in children in a different study[205] Relationship between the gut microbiome and 

metabolome on allergic phenotype also have been explored using mouse models[80-83].  

 Our overarching hypothesis was that the allergic phenotype produces distinguishable gut 

metabolome composition compared to those without allergy. This was explored by performing 

an untargeted metabolomic profiling on A) infant fecal samples collected at 3 months of age, 

combined with eczema diagnosis over the first 3 years of their life[204], and B) mice ceca 

samples of mice with fecal-transplanted, humanized gut microbiota, that were studied for their 

lung functions and allergic responses upon allergen sensitizations[206]. This set of studies was 

used to answer our hypothesis that I) human infants with eczema expresses distinct set of 

metabolites in the gut compared to those without eczema, II) mice with a human-derived gut 

microbiota from infants with eczema will have an increased airway hyper-responsiveness and 

express a distinct set of metabolites in the gut compared to the mice with conventional gut 

microbiota with observed dampened airway hyper-responsiveness, and lastly, III) mice treated 

with an allergen (house dust mites) will express distinct set of metabolites in the gut compared to 

mice with sham treatment.  

 

Materials and methods 

Human infant study cohort  

Influence of gut microbiome composition on allergic outcomes of eczema, recurrent wheeze, and 

atopy was examined in the IOW F2 birth cohort. Fecal samples were collected from 60 children 

at 3 months of age by either their parents or the local nurse. Children were assessed for eczema, 
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wheeze, and atopy at 3, 6, 12, and 36 months of age[132] from July 2010 until October 2017. To 

define microbial patterns associated with triggering or protection from allergies, fecal samples 

were analyzed using 16S rRNA gene sequencing at the Michigan State University, Research 

Technology Support Facility Genomics Core. Children were recruited into the “Third Generation 

Study” under ethics approval numbers 09/H0504/129 (22 December 2019), 14/SC/0133 (22 

December 2019), and 14/SC/1191 (15 November 2016) from the University of Southampton. 

The data analysis was carried out without knowledge of the identity of the infants. Each infant 

was categorized in 3 groups based on their eczema diagnoses during the first 3 years of their life: 

“Persistent” if they had 4-5 positive diagnosis of eczema, “Intermediate” if 1-3 positive diagnosis 

of eczema, and “None” for never being diagnosed with eczema[204]. 

 
Sample collection 

Human infant fecal samples 

Fecal samples of infants at 3 months of age were collected as described in Terauchi et al[204]. 

Briefly, fecal samples were collected from 60 children at 3 months of age from their diapers 

either at the time of their visit to the clinic, or at a later date at their home by a visiting nurse. 

Samples were each placed into a sterile container, stored on ice during transport, then stored at -

80°C for prolonged storage. Each sample was coded to protect the patient identity and their 

clinical status, then shipped on dry ice to Michigan State University where it was stored at -80°C 

until processed for DNA isolation, and only opened in an anaerobic hood to preserve strict 

anaerobes. Of the 56 samples analyzed in the previous study, 31 samples had enough material 

remaining for this metabolome analysis, and thus were used in this study.  

Mouse cecal samples 

Total of 80 mice ceca of fecal-transplanted and control C57BL/6 mice were dissected and flash-

frozen during necropsy at the time of the experiment as described in Moya-Uribe et al[206]. 

There were 4 microbiota-based groups with 20 mice each, further divided into either the negative 

control sham-treated with PBS, or house dust mite (HDM) allergen treated mice evenly, totaling 

in 8 groups with 10 mice in each group. The 2 experimental microbiota groups were called 

InfantA and InfantB, both having received a fecal-transplant from infant groups as germ-free 

mice, where InfantA group received the fecal contents of allergy-prone infants and InfantB group 

received the fecal contents of infants without allergy. AdultC group was a positive control for 
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allergy-prone humanized mouse model, having received fecal-transplant of adults that increased 

the allergic response in mice[140]. Fourth group called “Mouse” was a negative control of mice 

having never received a fecal-transplant, containing the conventional mouse microbiota. The 

collected cecum was stored at -80°C in cryovials until processing for this study.  

 

Sample preparation 

Human infant fecal samples 

Aliquots of the original samples were created in the anaerobic hood using sterile serological 

loops into sterile cryovials. The sample aliquots were transported and kept on dry ice, until 

immediately before processing when they were thawed on wet ice. Approximately 30 – 50 mg of 

the sample were taken from each sample to be processed for mass spectrometry analysis for 

metabolites using individual sterile serological loops. A method control consisting of the sterile 

serological loop alone was also added.  

Mice cecal content samples 

Frozen mice ceca were thawed on wet ice. Inside a laminar flow bacteriological hood, contents 

were squeezed out of each cecum inside of a sterile Petri dish. This procedure was performed 

using sterile bacterial serological loops and surgical forceps and scissors sterilized in a bead 

heater.  Each sample was processed individually with a new set of sterile equipment. 

Approximately 30 – 50 mg of the cecal contents were processed further for analysis.  

Both human infant fecal samples and mice cecal content samples were processed for metabolite 

extraction simultaneously following the same protocol. Approximately 30-50 mg of each sample 

content was added to a microcentrifuge tube containing 50 µL of internal standard cocktail. 

Internal standard cocktail consisted of: 10 µL of labeled bile acid internal stock solution 

containing 100 pmol each of glycocholic acid-d4 and glycoursodeoxycholic acid-d4 (Avanti Polar 

Lipids, Alabaster, AL, USA), [13C16]palmitic acid (Toronto Research Chemicals, Toronto, ON, 

Canada) internal standard stock solution containing 100 pmol, succinic acid-d4 (Sigma-Aldrich) 

internal standard stock solution containing 500 pmol, phenylalanine-d7 (Toronto Research 

Chemicals) internal standard stock solution containing 100 pmol, and labeled short-chain fatty 

acids (SCFA; containing 1.5 µg each of [13C]sodium formate, [13C2]sodium acetate, 

[13C3]sodium propionate, and [13C4]sodium butyrate) internal stock solution, provided by the 

RTSF Mass Spectrometry and Metabolomics Core at Michigan State University. The sample was 
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homogenized in ice water ultrasound bath, then 350 µL of ice-cold HPLC-grade methanol 

containing 0.1% butylated hydroxytoluene (BHT) was added. After 10 minutes of resting on ice, 

tubes were vortexed and centrifuged for 10 minutes at 10,000 x g. Supernatant was removed and 

transferred to the total extract tube to be used for mass spectrometry analysis. Extracts were 

divided into 5 different tubes to preserve opportunities for additional analyses in the future.  

Remaining pellet was washed with 200 µL of ice-cold high-performance liquid chromatography 

(HPLC)-grade isopropanol, then centrifuged again at 10,000 x g for 10 minutes. Supernatant was 

combined with the previously removed supernatant, then dried for storage using SpeedVac 

without the application of heat. Dried samples were stored at -80°C until the day of mass 

spectrometry analysis.  

 

Metabolite profiling using liquid chromatography-mass spectrometry(LC-MS) on a 

quadrupole time-of-flight (QToF) mass spectrometer 

 All samples were re-suspended in initial mobile phase solution used for the LC-MS analysis, 

which was acetonitrile/10 mM ammonium formate + 10 mM ammonium hydroxide in water 

(95:5 v/v). Re-suspended samples were transferred to amber glass autosampler vials along with 

the following controls: “blank” initial mobile phase only control, experimental negative controls, 

“method” control of sterile serological loop, “pooled” containing a portion of every single 

sample. Samples were analyzed using electrospray ionization in negative-ion mode on a QTof 

mass spectrometer (Waters Xevo G2-XS QTof) using an Acquity pump and Waters BEH amide 

column (2.1 x 100 mm, 1.7 µm particles). This approach is more likely to detect polar acidic 

metabolites common in central metabolic pathways than other chromatographic and ionization 

methods but may miss some neutral lipids. Mobile phase A consisted of 10 mM ammonium 

formate + 10 mM ammonium hydroxide in water, and acetonitrile/10 mM ammonium formate + 

10 mM ammonium hydroxide in water (95:5 v/v) was used as mobile phase B. Total flow rate 

was set to 0.40 mL/min with column temperature: 40˚C. Linear solvent gradient (A/B) was set 

as: 0.0 min (0/100); 1.0 min (0/100), 10.0 min (40/60); 15.0 min (60/40), 18.0 min (60/40); 18.01 

min (0/100); 20.0 min (0/100), followed by a 5-min hold. Data acquisition was set as continuum 

mode MSE with dynamic range extension over mass range of m/z 50-1200; sensitivity mode; 

scan time 0.25 seconds/scan; data acquisition from 0-20 minutes. Lockspray reference was 

leucine enkephalin, and mass correction was not automatically applied as this correction was 



 164 

performed during subsequent data processing. 

 

Data analysis 

Initial Processing of Mass Spectrometry Raw Data Using ProgenesisQI and EZinfo 

Resulting raw data from the Quadrupole Time of Flight (QToF) mass spectrometer were 

uploaded to the analysis software Progenesis QI (ver 3.0; Waters Corporation). The raw data 

files were imported, and mass corrected using the signal from the lockspray reference; then 

peaks underwent retention time alignment using the negative control as a reference. Once 

aligned, peak picking was performed using the automatic peak picking feature combining signals 

from a list of adducts that are commonly observed in negative-ion mode electrospray ionization 

(e.g. [M-H]-, [M+formate]-, [M+Cl]-, [M-H-H2O]-, and some dimer ions), and signals from the 

various adducts and naturally-occurring stable isotopes were combined for each compound to 

yield a single value. Any metabolites with highest abundance mean in blank, method control, or 

negative controls were removed. This dataset was exported as a CSV document for 2-group 

comparisons. For ordination analysis in EZinfo, abundances of metabolites were normalized 

using default parameters and then filtered using thresholds of: Anova p-value ≤0.01, max fold 

change ≥10, and max abundance > 10,000. The processed compound data were then imported 

into EZinfo version 3.0.2.0 software (Umetrics, Malmö, Sweden) where ordination analyses 

were performed using both Principal Components Analysis (PCA) and Partial Least Squares-

Discriminant Analysis (PLS-DA). The data were log-transformed and scaled (e.g. Pareto scaling) 

for each comparison made.  

 

2-group comparisons of metabolites  

Further manual filtering of the compound abundance data 

For analysis of metabolite data between two groups, a five-step filtering process was performed, 

beginning by using statistical measures of between group differences and fold-change 

differences between groups. Between-group p-values were calculated by ProgenesisQI software 

based on the normalized abundance values. Once exported, in step 1, all the metabolites with p-

values > 0.05 were removed. In step 2, all metabolites with max foldchange, calculated in 

Progenesis QI using the normalized abundances, below 2.0 were removed. In step 3, relative 

mass defect, a measure of fractional hydrogen content[207, 208], was calculated based on the 
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m/z values using the equation: m/z –$%&'(')([m/z)]
+/z

∗ 1,000,000, calculated by rounding the mass 

down to the lower integer. Then removed all metabolites with relative mass defect above 1200 

ppm, as these are usually signals from inorganic salts. In step 4, any metabolites with frequency 

of zero values across samples above 30% were removed. In step 5, median values using raw 

abundances per metabolite were calculated. Then the median value ratios between the groups 

were calculated, then sorted in numerical order.  

 

Statistical analysis of metabolite abundances between 2 groups 

Paired Wilcoxon tests were performed to obtain the significance p-values for comparison 

between 2 test groups for each metabolite, followed by Bonferroni correction for multiple 

comparisons using rstatix package (ver 0.7.2) in R. Visualization of data was done using 

packages ggplot2 (ver 3.4.2) and ggpubr (ver0.4.0) in R.  

 

Results 

 Overall, total of 8688 unique metabolites were measured by mass spectrometry. Thirteen 

compounds were identified as having highest abundance means in either the blank, method-, or 

run-control, thus removed, and the remaining 8675 unique metabolites were retained for 

analyses. Filtering process done for the ordination analyses removed additional 7931 

metabolites, retaining 744 total distinct metabolites. For 2-group analyses, additional filtering 

was performed on the 8675 metabolites, leaving varying number of unique metabolites for each 

group comparisons as explained for each analysis in the appropriate sections below.  

 

Analyses of Isle of Wight human infant metabolome  

Separation of metabolite profiles were clearer between Persistent group and None group than 

Intermediate group 

To reduce the dimensionality of such large data sets, it is useful to visualize the 

similarities of metabolite profiles between samples. Metabolite abundance data with filtering 

done in Progenesis QI was processed in EZinfo software for ordination analyses. Principal 

Component Analysis (PCA) was performed on 744 unique metabolites using three experimental 

groups created based on the eczema diagnosis during the first 3 years of life (Figure 4.1A). All 

samples fell within the 95% Hotelling’s ellipse in the PCA scores plot, indicating a lack of 
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outliers (Figure 4.1A). All three groups included in this analysis, Persistent, Intermediate, and 

None, were not clearly separated by groups in the first two principal components (Figure 4.1A). 

Partial least squares-discriminant analysis (PLS-DA), a supervised classification method, was 

performed on the same dataset containing 744 unique metabolites and 3 clinical eczema groups. 

All samples fell within the scores plot Hotelling’s ellipse again, indicating the lack of an outlier 

(Figure 4.1B). In addition, the groups were seen to be more spread apart in the scores plot but 

retained overlaps with samples belonging in the None group most present in the upper left 

quadrant, those in the Intermediate group mostly belonging in the lower right quadrant, and those 

in the Persistent group falling in between the other two groups (Figure 4.1B).  
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Figure 4.1 Ordination analyses of metabolite abundances in human infant samples grouped 
by eczema status over the first 3 years of life. Neon lime green color indicates samples that 
belong in the Persistent eczema group, Red color indicates samples belonging in the None group, 
and black color indicates samples in the Intermediate eczema group. (A)PCA scores plot 
calculated from abundances of 744 unique metabolites scaled using Unit Variance and log 
transformed. All samples fell within the Hotelling’s ellipse. (B) PLS-DA scores plot performed  
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Figure 4.1 (cont’d) 
on 744 unique metabolites using Unit Variance scaling and log transformation. All samples fell 
within the Hotelling’s ellipse. 
 

The PCA and PLS-DA analyses were repeated with just using Persistent and None 

groups to emphasize the potential differences between the eczema diagnosis by using the two 

most extreme groups (Figure 4.2). In either case, all samples remained within the scores plot 

Hoteling’s ellipse, and one metabolite was removed due to not being present in either of the 

groups included in this analysis. PCA showed a separation and some clustering of samples that 

was not explained by the clinical grouping, as both groups were in either side of the spread 

(Figure 4.2A). However, in PLS-DA, the separation became clearer with samples in the 

Persistent group falling mostly within the upper right quadrant, containing samples only in the 

Persistent group, while lower left quadrant only contained samples in the None group (Figure 

4.2B). Upper left and lower right quadrants were shared by samples from both groups, however 

there was a wider separation between those from different groups (Figure 4.2B).  
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Figure 4.2 Ordination analyses of metabolite abundances in human infant samples grouped 
by 2 most extreme eczema status over the first 3 years of life. Red color indicates samples in 
the Persistent eczema group, and black color indicates samples in the None group. (A) PCA 
scores plot of 743 unique metabolites with their abundances scaled with Unit Variance and log 
transformed. All samples fell within the Hotelling’s ellipse. (B) PLS-DA scores plot of 743 
unique metabolites with abundances scaled with Unit Variance and log transformation. All 
points fell within the Hotelling’s space, and samples in Persistent group mostly fell on the upper  
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Figure 4.2 (cont’d) 

right quadrant while samples in the None group fell mostly on the remaining three quadrants. 
 

A collection of metabolites significantly differed in abundances between the Persistent and 

None groups 

 To further investigate the differences in the metabolome of those with childhood eczema 

and those without, abundances of each metabolites were compared and filtered statistically to 

reveal a group of metabolites that distinguished the two study groups. Upon stringent filtering as 

described in the methods section, 113 unique metabolites were identified as being most 

distinguishing between the metabolome of Persistent and None groups. Of 113, 50 metabolites 

had their re-calculated p-value < 0.05, suggesting statistically significant difference (data not 

shown). From the 50 statistically significant metabolites, 39 metabolites were further selected 

based on the ratios of median values between the Persistent and None group. Eleven metabolites 

were identified for having both p-value < 0.05 and median ratio of Persistent:None < 0.5, 

indicating a significant lower abundance in infants with persistent eczema, and higher abundance 

in infants who never developed childhood eczema (Figure 4.3A). 28 metabolites were identified 

for having both p-value < 0.05 and the median ratio of Persistent/None > 2.0, indicating a 

significantly higher abundance in the metabolome of infants with persistent eczema and lower 

abundance in infants without childhood eczema (Figure 4.3B).  

Although most of the metabolite identifications were inconclusive using spectral database 

searches, a few of the metabolites measured in the infant samples were manually annotated. Of 

the 11 metabolites with significantly higher abundance in the None, or no-eczema, group, 

metabolite-89 was annotated as hippuric acid and metabolite-9 was annotated as dihydrocortisol. 

Of the 28 metabolites with significantly higher abundance in Persistent group, metabolite-18 was 

identified as the tripeptide Asn-Ser-Thr and metabolite-24 as an unknown compound with a 

formula of C16H26N6O5 based on high resolution mass analysis. 
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Figure 4.3 Box plot comparisons of discriminating metabolite abundances between infants 
in Persistent eczema group and infants in None eczema group. All metabolites shown have 
significantly different mean value of p < 0.05 (Wilcoxon test, Bonferroni correction for multiple 
comparisons) between the Persistent and None group. The y-axis shows log2-transformed raw 
abundance values, while x-axis displays each metabolite identified by its unique identifier 
number used within this study. Dark red color indicates the Persistent group, while the light blue 
color indicates the None group. (A) 11 selected unique metabolites with p-value < 0.05, and 
median ratio of Persistent/None < 0.5. (B) 28 selected metabolites with p-value < 0.05 and 
median ratio of Persistent/None > 2.0.  
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Analyses of fecal-transplanted, humanized mouse metabolome 

Mice samples taken from in a previous experiment included 4 different gut microbiota: 

InfantA, InfantB, AdultC, and Mouse[206]. InfantA, InfantB, and AdultC samples all came from 

mice that were germ-free, then received fecal-transplant from different human samples. Mouse 

group contained a conventional mouse microbiota as they never received any fecal-

transplant[206]. Each microbiota group was separated into halves, where one half received the 

sham-treatment of phosphate buffered-saline (PBS), while the other half was treated with house 

dust mites (HDM). 

 

Metabolome clustered clearly by base microbiome 

  To visualize the overall spread of metabolome data, PCA was performed on the 736 

metabolites present in the 8 experimental groups. With all 80 samples included, there was one 

extreme outlier in the PCA scores plot belonging in the PBS-treated conventional Mouse 

microbiota group (Figure 4.4A). Once the outlier was removed and PCA repeated, general 

clustering by microbiota could be seen (Figure 4.4B). Samples in InfantA-grouping, both PBS- 

and HDM-treated groups were closer together within the upper left quadrant (Figure 4.4B). 

Samples in InfantB groups had a slightly wider spread, mostly residing in the bottom left 

quadrant and spreading into the upper left quadrant (Figure 4.4B). Samples in AdultC grouping 

fell exclusively on the right quadrants, and equally in upper and lower quadrants on that side 

(Figure 4.4B). Mouse conventional group seemed to be most widely spread, spanning from the 

very bottom of the Hotelling’s ellipse and close to the top border of the ellipse, but still enclosed 

on the right hand side of the quadrants (Figure 4.4B). PLS-DA was performed on the full set of 

samples with the outlier from the first PCA included. In the PLS-DA, the groups were clearly 

clustered by their microbiome types, and PBS- and HDM-treated groups within were 

intermingled (Figure 4.4C). InfantA groups clustered closely in the bottom right quadrant, 

InfantB groups clustered in the upper right quadrant, AdultC groups clustered in the upper left 

quadrant, and the conventional Mouse group clustered in the bottom left quadrant (Figure 4.4C). 
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Figure 4.4 Ordination analyses of murine gut metabolome. (A-B) Each color represents each 
experimental group. First part of the label in the legend refers to the gut microbiome group of the 
mice. The second part of the label indicates the treatment group, PBS is sham-treated group and 
HDM was the allergen treated group. 736 metabolites were used. (A) PCA with metabolite 
abundances scaled with Unit Variance and individually transformed. One samples in dark green 
is an extreme outlier as it lies well beyond the Hotelling’s ellipse. (B)  PCA repeated with the 
single outlier removed, using Unit Variance scaling and individual transformation. (C) PLS-DA 
of all samples with abundances scaled with Unit Variance and transformed individually. 
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Figure 4.4 (cont’d) 

 
 
Metabolome profile differs for each mouse group with different gut microbiome 

 Ordination analyses were repeated for all four microbiome groups that were sham-treated 

with PBS to investigate the differences in the metabolome influenced by their gut microbiome. 

In the PCA, the two mouse groups with gut microbiota stemming from human infants with or 

without allergy, InfantA and InfantB, fell on the left side of the plot, with some overlapping 

(Figure 4.5A). The group with human adult-based microbiome, AdultC, fell on the right hand 

side of the plot, both above and below the middle line (Figure 4.5A). Those with the 

conventional Mouse microbiota also fell on the right hand side, with wider vertical spread within 

the group (Figure 4.5A). In PLS-DA, the clustering was tighter within the groups, with each 

group contained within a single quadrant (Figure 4.5B). Infant A group and InfantB group were 

clustered most closely to each other; InfantA clustering in the bottom right quadrant and InfantB 

in the upper right quadrant (Figure 4.5B). AdultC group clustered in the upper left quadrant and 

conventional Mouse group clustered in the lower left quadrant (Figure 4.5B).  



 175 

 

 
Figure 4.5 Ordination analyses of sham-treated mouse metabolome grouped by 
microbiome. 735 metabolites were included in the analyses. All samples and groups received 
the sham-treatment (PBS) in the previous experiment. Each group is indicated by the color as 
shown in the figure legend. (A) PCA scores plot of the four microbiota groups, scaled with Unit 
Variance and log transformed. All samples fell within the Hotelling’s ellipse. (B) PLS-DA of the 
four microbiota groups scaled with Unit Variance, log transformed, and predicting 92% of the 
variance.  
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More than half of humanized and conventional mouse gut metabolome significantly 

differed 

Fecal gut metabolite abundances of each humanized mouse group (InfantA, InfantB, and 

AdultC) were compared to that of conventional mouse group using PBS-treated groups for each 

microbiota groups to assess the differences in the basal level of metabolites. 

 For the comparison of the conventional mouse group to InfantA mouse groups, together 

they had 1454 unique metabolites after filtering, of which 903 metabolites (62.1% of total) had 

significant mean difference with p-value < 0.05, and 541 metabolites (59.9% of total) had 

significant mean difference with p-value < 0.01, both after correction for multiple comparisons 

(data not shown). Out of the 541 metabolites with significantly different abundance, 25 total 

metabolites were further selected based on the median ratio of the abundance between the groups 

being above 100,000 in either direction. Seven metabolites were identified for having at least 

100,000-fold lower median in the InfantA mouse metabolome compared to the conventional 

mouse metabolome (Figure 4.6A). 18 other metabolites were identified for having at least 

100,000-fold higher median in the InfantA mouse metabolome compared to the conventional 

mouse metabolome (Figure 4.6B). These 25 unique metabolites represent the most striking 

differentiating features of the metabolome of the InfantA mouse group and conventional mouse 

group.  
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Figure 4.6 Comparisons of metabolite abundances between humanized InfantA mouse 
group and conventional mouse group. All metabolites shown have mean difference 
significance p-value < 0.01 (Wilcoxon test, corrected for multiple comparison with Bonferroni 
correction) between the humanized InfantA mouse group and conventional mouse group, both 
PBS-treated. The y-axis is log-2 transformed for better visualization, post p-value calculation. 
Each unique metabolite is indicated as an integer on the X-axis, functioning as their unique 
identifier within this study. (A) Selected seven unique metabolites with at least 100,000 fold 
difference in their median values with higher median in the conventional mouse group. (B) 
Selected 18 unique metabolites with higher median value in humanized InfantA mouse group by 
at least 100,000 fold.  
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When comparing InfantB mouse group’s metabolome to that of conventional mouse 

metabolome, they had 1284 unique measured metabolites post-filtering together, 885 unique 

metabolites (68.9% of total) that were significant at p < 0.05, and 592 unique metabolites 

(41.2%) that were significant at p < 0.01 (data not shown). Out of the 592 unique metabolites 

with significant abundance difference of p<0.01, 27 were further identified for having at least 

100,000 fold differences in the medians between InfantB and conventional mouse. 5 metabolites 

were identified for being lower in InfantB than in conventional mice by at least 100,000 fold 

(figure 4.7A), while 22 were identified for being higher in the InfantB than in conventional mice 

(figure 4.7B).  
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Figure 4.7 Comparisons of metabolite abundances between humanized InfantB mouse 
group and conventional mouse group. All metabolites shown have mean difference 
significance p-value < 0.01 (Wilcoxon test, corrected for multiple comparison with Bonferroni 
correction) between the humanized InfantB mouse group and conventional mouse group, both 
PBS-treated. The y-axis is log-2 transformed for better visualization, post p-value calculation. 
Each unique metabolite is indicated as an integer on the X-axis, functioning as their unique 
identifier within this study. (A) Selected five unique metabolites with at least 100,000 fold 
difference in their median values with higher median in the conventional mouse group. (B) 
Selected 22 unique metabolites with higher median value in humanized InfantB mouse group by 
at least 100,000 fold.  
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For the comparison of AdultC mouse group and conventional mouse group, of the total 

691 unique metabolites retained after filtering, 425 unique metabolites (61.5%) were 

significantly different at p < 0.05, and 258 unique metabolites (37.3%) were significant at p < 

0.01. Out of the 258 unique metabolites, 9 total metabolites had at least 100,000 fold differences 

in their medians between the groups. Only one metabolite was identified as having 100,000 

higher median in conventional mouse group (metabolite 25), and 8 metabolites had higher 

medians in AdultC groups than conventional mouse group (Figure 4.8). 

 

 
Figure 4.8 Comparisons of metabolite abundances between humanized InfantB mouse 
group and conventional mouse group. All metabolites shown have mean difference 
significance p-value < 0.01 (Wilcoxon test, corrected for multiple comparison with Bonferroni 
correction) between the humanized InfantB mouse group and conventional mouse group, both 
PBS-treated. The y-axis is log-2 transformed for better visualization, post p-value calculation. 
Each unique metabolite is indicated as an integer on the X-axis, functioning as their unique 
identifier within this study. Selected nine unique metabolites with at least 100,000 fold 
difference in their median values are shown. The metabolite on the very left (25) is the only 
metabolite with median 100,000 fold higher in the conventional mouse group than AdultC group. 
The remaining 8 metabolites had medians 100,000 fold higher in the AdultC group than in 
conventional mouse group.  
 

HDM treatment altered gut metabolome in mice 

 Despite not being the main driver of the clustering and spreading of the metabolome data 
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amongst the 8 mouse groups, the groups receiving HDM expressed an altered gut metabolome 

profile compared to their sham- groups. The separation is not as clear in the PCA scores plot of 

all groups separated based on HDM- or PBS-treatment (Figure 4.9A), however it becomes more 

clear in the PLS-DA where the HDM-treated groups cluster to the right and PBS-treated groups 

to the left (Figure 9B). Although with four different microbiota still present in the dataset, their 

effect on the spread is still prominent.  
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 Figure 4.9 Ordination analyses of 736 metabolites, grouped by PBS- or HDM- treatment.  
(A) PCA scores plot generated with abundance scaled using Unit Variance and individually 
transformed. (B) PLS-DA scores plot scaled with Unit variance and transformed individually.  
  

 When separated by each microbiota groups to eliminate the effect of the microbiota 

differences driving the spread of the data, better spread between the PBS- and HDM-treated 

groups can be observed (Figure 4.10). For InfantA, PCA shows a tendency for the PBS-treated 
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samples to cluster in the top half and HDM-treated samples in the bottom half with some 

exceptions (Figure 4.10A). The separation between the treatment group is emphasized in the 

PLS-DA scores plot where the HDM-treated samples move to the right-hand side of the plot 

away from the PBS-treated samples (Figure 4.10B). In the PCA of InfantB group, there was less 

clustering and more spread of the PBS-treated group, while the HDM-treated group had narrower 

spread (Figure 4.10C). In PLS-DA, InfantB group had one HDM-treated sample that laid outside 

of the Hotelling’s ellipse, indicating it as a potential outlier in this analysis (Figure 4.10D). The 

treatment groups within the ellipse separated with samples from each perspective treatment 

groups clustering together on each side (Figure 4.10D). AdultC PCA displayed the least clear 

clustering by the treatment groups, where samples from both treatment group was more spread 

out across all 4 quadrants without any clear clustering (Figure 4.10E). The PLS-DA of AdultC 

group did show horizontal separation between the treatment groups, however, it also had the 

widest vertical spread of the samples within each of the groups (Figure 4.10F). In the 

conventional Mouse group PCA, there was a small cluster near the horizontal midline consisting 

of samples from both treatment groups, but no clear clustering by the groups (Figure 4.10G). 

However in PLS-DA, the two treatment groups were more tightly clustered with all the samples 

from HDM-treated groups clustering in the upper right quadrant and most of the PBS-treated 

samples clustering in the bottom left quadrant on the opposite side (Figure 4.10H).  
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Figure 4.10 Ordination analyses of metabolites for each microbiota group, grouped by 
PBS- or HDM-treatment. Black color indicates HDM-treated samples and red color indicates 
the PBS-treated samples. The black ellipse represent the 95% Hotelling’s ellipse. (A) PCA  
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Figure 4.10 (cont’d) 
scores plot of 731 metabolites in InfantA group with center scaling and individual 
transformation. (B) PLS-DA scores plot of 731 metabolites in InfantA group with unit variance 
scaling and log transformation. (C) PCA of 732 metabolites in InfantB group with center scaling 
and log transformation. (D) PLS-DA of 732 metabolites in InfantB group with Unit Variance 
scaling and log transformation. (E) PCA of 731 metabolites in AdultC group with center scaling 
and log transformation. (F) PLS-DA of 731 metabolites in AdultC group with Unit Variance 
scaling and log transformation. (G) PCA of 730 metabolites in conventional Mouse group with 
center scaling and log transformation. (H) PLS-DA of 730 metabolites in conventional mouse 
group with Unit Variance scaling and log transformation. 
 

HDM treatment significantly changed the abundances of several metabolites 

 Fecal gut metabolite abundances of each treatment group were compared to each other 

within each microbiota group to assess the differences of metabolite expression induced by the 

allergen treatment. Metabolites were selected by applying the more stringent filtering described 

in the methods on the metabolite raw abundance data for each comparison.  

 Within the InfantA group, there were 78 metabolites that remained after the stringent 

filtering, indicating the metabolites most responsible for distinguishing between the HDM- and 

PBS-treated groups within the InfantA microbiota group. Of those 78, 25 metabolites were 

shown to be significantly different in their means by having re-calculated p-values < 0.05 (data 

not shown). These 25 significant metabolites and their abundances are shown per metabolite and 

the treatment group in Figure 11. 14 of the 25 metabolites had higher medians in the PBS-treated 

groups compared to the HDM-treated groups, as shown by the bold black line within the boxes 

(Figure 4.11). Eleven other metabolites had median values higher in the HDM-treated group 

compared to the PBS-treated group (Figure 4.11).  
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Figure 4.11 Comparison of significantly different metabolite abundances between PBS- and 
HDM-treated InfantA mice. All 25 metabolites shown have statistically significant mean 
difference of p-value < 0.05 (Wilcoxon test, corrected for multiple comparison with Bonferroni 
correction) between the HDM-treated and PBS-treated groups. The y-axis is log-2 transformed 
for better visualization, post p-value calculation. Each unique metabolite is indicated as an 
integer on the X-axis, functioning as their unique identifier within this study.  
  

 The InfantB groups retained 119 metabolites upon the same stringent filtering process 

and had 56 unique metabolites that were statistically significant (p-value < 0.05) upon re-

calculation. Out of the 56 metabolites, 32 metabolites were further selected using the median 

ratio of HDM-treated group/PBS-treated group. 12 metabolites were selected for having the 

median ratio < 0.2, indicating a notably higher abundance in the PBS-treated group (Figure 

4.12A). 20 metabolites were selected for having the median ratio > 2.0, indicating at least a 

doubling of the median values in the HDM-treated group compared to the PBS-treated group 

(Figure 4.12B).  
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Figure 4.12 Comparison of significantly different metabolite abundances between PBS- and 
HDM-treated InfantB mice. All metabolites shown have statistically significant mean 
difference of p-value < 0.05 (Wilcoxon test, corrected for multiple comparison with Bonferroni 
correction) between the HDM-treated and PBS-treated groups. The y-axis is log-2 transformed 
for better visualization, post p-value calculation. Each unique metabolite is indicated as an 
integer on the X-axis, functioning as their unique identifier within this study. (A) 12 metabolites 
with median ratio of HDM-treated/PBS-treated < 0.2. (B) 20 metabolites with HDM-
treated/PBS-treated ratio > 2.0.  
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 Adult C group retained a total of 131 metabolites upon stringent filtering, and 38 of those 

metabolites were identified as statistically significant in their mean differences (p-value < 0.05). 

Out of the 38 significant metabolites, 7 were selected for having HDM-treated/PBS-treated 

group median ratio of < 0.3, indicating they are more abundance in the PBS-treated groups 

compared to the HDM-treated groups (Figure 4.13A). 17 other were selected for having HDM-

treated/PBS-treated group median ratio of > 3.0, indicating at least 3-fold higher abundance in 

mice treated with HDM compared to mice treated with PBS (Figure 4.13B).  
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Figure 4.13 Comparison of significantly different metabolite abundances between PBS- and 
HDM-treated AdultC mice. All metabolites shown have statistically significant mean 
difference of p-value < 0.05 (Wilcoxon test, corrected for multiple comparison with Bonferroni 
correction) between the HDM-treated and PBS-treated groups. The y-axis is log-2 transformed 
for better visualization, post p-value calculation. Each unique metabolite is indicated as an 
integer on the X-axis, functioning as their unique identifier within this study. (A) 7 metabolites 
with HDM/PBS median ratio < 0.3. (B) 17 metabolites with HDM/PBS median ratio > 3.0. 
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 In the conventional Mouse group, total of 125 metabolites remained following the 

stringent filtering process, of which 42 metabolites were shown to be statistically significant in 

their abundance means (p-value < 0.05). Of the 42 further selected metabolites, three metabolites 

were selected for also having the HDM-treated/PBS-treated group median ratio < 1.0, and 19 

metabolites were selected for having the HDM-treated/PBS-treated group median ratio > 2.0 

(Figure 4.14). These metabolites represent those that are significant in the differences of their 

abundance across the compared groups, thus distinguishing the metabolomic profiles of the 

compared groups.  

 

 

Figure 4.14 Comparison of significantly different metabolite abundances between PBS- and 
HDM-treated conventional Mouse group. All 22 metabolites shown have statistically 
significant mean difference of p-value < 0.05 (Wilcoxon test, corrected for multiple comparison 
with Bonferroni correction) between the HDM-treated and PBS-treated groups. The y-axis is 
log-2 transformed for better visualization, post p-value calculation. Each unique metabolite is 
indicated as an integer on the X-axis, functioning as their unique identifier within this study.3 
metabolites on the left most side had HDM/PBS median ratio < 1.0, while the remaining 19 
metabolites had HDM/PBS median ratio > 2.0.  
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Discussion 

 Using 31 fecal samples from human infants and 80 cecal samples from mice, total of 

8675 unique metabolites were measured to be used for analyses. 744 of those metabolites were 

selected based on abundance, fold change differences, and pre-calculated p-values to be used for 

ordination analyses to visualize the similarities of metabolite profiles. Human infant metabolite 

profiles were most different when comparing the Persistent group, the infants diagnosed with 

eczema persistently during the first 3 years of life, and None group, the infants that never 

developed eczema during the first 3 years. 50 unique metabolites were identified for being 

significantly different (p<0.05) between the Persistent and None group. Hippuric acid and 

dihydrocortisol were amongst the metabolites most significantly in higher abundance in the None 

group, those who lacked eczema. Asn-Ser-Thr and an unknown compound with a formula 

C16H26N6O5 were amongst the metabolites most significantly in higher abundance in the 

Persistent group, those with chronic childhood eczema. Mouse metabolome were heavily 

clustered by the base gut microbiome group. The humanized microbiota mouse groups, which all 

showed increased airway-hyperresponsiveness previously[206], expressed more than half of 

metabolite profiles that were significantly different from the conventional mouse microbiota 

group that did not show an increased airway-hyperresponsiveness. HDM-treatment also altered 

the measured fecal metabolome in each of the mouse groups, although not as significantly as the 

basal gut microbiota differences.  

 In the initial analyses of human infant’s metabolite profiles using the three eczema 

diagnosis groups, Persistent, Intermediate, and None, PCA showed very little spread based on 

the group identity. Although PLS-DA was able to separate the data by the groups more than 

PCA, overlap of the groups still occurred. To minimize the overlaps and noise, using the two 

most clinically relevant groups, Persistent and None were used for further analyses. PCA 

analysis of Persistent and None group still did not show spread of data based on the clinical 

grouping. PLS-DA did show a better separation of samples by the groups, however the clustering 

by the group was still rather wide. Given the influence of the gut microbiome in gut metabolome, 

it was expected that the ordination analyses of infant fecal metabolome will yield similar 

overlapping seen in its equivalent 16S microbiota ordination analyses[204]. The lack of clear 

clustering can also be explained by the fact that these samples came from real human infants, all 

having reported to have been on varying diets, a factor known to affect the gut microbiome and 
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especially gut metabolome greatly [98].  

 Despite the ordination overlaps, there were several metabolites identified as being 

significantly different in abundance between the samples from infants with “Persistent” eczema 

and infants having “None” eczema diagnosis. Using a stringent filtering process to identify the 

metabolites most distinguishing between the two groups, 113 metabolites were identified. Of the 

113, 50 metabolites had a significantly (p<0.05) different mean difference between the Persistent 

and None groups. 39 metabolites were then further identified using the abundance median ratios. 

Of the 11 metabolites that had significant mean difference, and twice as high abundance median 

in the None group compared to the Persistent group, 2 metabolites were manually identified as 

hippuric acid and dihydrocortisol. Hippuric acid is a uremic toxin that is endogenously produced 

by metabolism in mammals [209, 210]. A metabolomics study comparing the metabolite profiles 

of germ-free mice to conventional mice observed hippuric acid to be 17-fold higher in 

conventional mice than in germ-free mice, suggesting the importance of the gut microbiome in 

hippuric acid accumulation[211]. As it was higher in the infants without early childhood eczema, 

the infants with early childhood eczema may be missing certain microbial flora that contribute to 

the hippuric acid accumulation. Dihydrocortisol is a steroid derivative molecule that is 

endogenously produced in animals including humans and can also be exogenously sourced 

through consumption of animal meat[212-216]. Dihydrocortisol has been studied across different 

settings. One study suggested that it as a potential mineralcorticoid in humans[217], while 

another showed a potential of measuring dihydrocortisol to assess the levels of beef cattle 

welfare[218]. As dihydrocortisol was also higher in infants without eczema, it may be a potential 

marker for not developing childhood eczema. The two compounds manually identified that had 

twice as high median ratios in the Persistent group compared to None were the tripeptide Asn-

Ser-Thr and metabolite-24 as an unknown compound with a formula of C16H26N6O5. Currently 

there are no known specific biological functionalities tied directly to Asn-Ser-Thr nor 

C16H26N6O5, a metabolite most likely another tripeptide. However, given amino acids are the 

building blocks of proteins, they may be part of specific protein degradation that are increased in 

the infants with persistent early childhood eczema.  

 Mouse groups showed cleaner clustering by experimental groups than the human infant 

samples, which were expected as all the mice used were of the same genotype sharing the same 

diet and caging environment, reducing environmentally induced variability. This was also seen in 
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their equivalent 16S microbiota analyses previously[206]. In analyses including all 8 groups, 4 

microbiota groups with 2 treatment groups each, the treatment groups clusters overlapped within 

the same microbiota group in PCA and PLS-DA, suggesting that the gut microbiota has a larger 

effect on the metabolic profiles than the allergen-exposure treatment (HDM). The role of the 

underlying gut microbiome shaping the gut metabolome was further highlighted in the following 

analyses using just the 4 microbiota groups, all sham(PBS)-treated. Visualized without the effect 

of the allergen(HDM)-treatment, the metabolic profiles were mostly clustered by the underlying 

microbiota in PCA, and seen clearly clustered in PLS-DA. Although in PCA, AdultC microbiota 

group and the conventional Mouse microbiota groups were seen to be split into 2 separate 

clusters within each group, where each of those clusters were in close proximity to the other 

group. This phenomenon was not observed in the PLS-DA analysis.  

 In the previous experiment, all 3 of the humanized microbiota mouse groups were 

measured to have significantly decreased baseline lung mechanics capabilities as well as having 

significantly increased airway hyper-responsiveness, a pathology commonly associated with 

asthma[206]. This results were in support of the other published studies suggesting the 

importance the role of the gut microbiota in the development of allergy and asthma[4, 80-83]. To 

explore the mechanism in which the 3 different humanized gut microbiota of mice altered the 

lung functionalities, metabolite profiles of the 3 humanized microbiota mouse groups were each 

compared to that of the conventional mouse microbiota group. InfantA group, which received the 

fecal-transplant from infants with persistent eczema, had 541 metabolites with abundances 

statistically significant (p<0.01) compared to the conventional Mouse group. 25 of those 

metabolites had abundance median difference of at least 100,000-fold. Seven of these 

metabolites were in significantly higher abundance in the conventional mouse group, while 18 

remaining metabolites were in significantly higher abundance in the InfantA group. Similarly, 

InfantB group had 592 metabolites with abundances statistically significant (p<0.01) compared 

to the conventional Mouse group, 27 of which had median difference of at least 100,000 fold, 

with five higher in conventional Mouse group and 22 higher in InfantB group. AdultC group had 

fewer significantly different metabolites at 258 (p<0.01), and one metabolite that was 100,000 

fold higher median in the conventional Mouse group and eight metabolites 100,000 fold higher 

in the AdultC group. Although their metabolite identities are currently unassigned, these 

metabolites represent a subset of metabolites that distinguishes the humanized microbiota mice 
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with decreased lung functions from the conventional mouse groups without the decreased lung 

functions.  

 House dust mites (HDM) serves as a common allergen associated with development and 

triggering of allergic asthma in humans[78, 79]. HDM was used to induce allergic phenotypes in 

all four groups of mice in the previous experiment[206]. Although the HDM-treatment did not 

differentiate the metabolic profiles as much as the underlying gut microbiota, it still induced 

changes and shift in the measurable metabolome. The differentiation induced by HDM-treatment 

was slightly variable between the microbiota types as seen by the spread and clustering of the 

samples in ordination analyses, suggesting the effect of the gut microbiota in the host- and/or gut 

microbial-metabolism in response to an allergen exposure. The shift in the metabolome due to 

the HDM-treatment was characterized by a group of metabolites. The median fold changes as 

well as the total number of metabolites that were statistically significant were much less in 

number than the metabolites differentiating between the microbiota types, however, a collection 

of metabolites were still identified to be significantly differentiating between the HDM-treated 

groups and sham(PBS)-treated groups. Within the InfantA group, HDM-treatment made total of 

25 metabolites to be significantly different (p<0.05) compared to the PBS-treated group. InfantB 

group had 32 metabolites that were significant (p<0.05) and having at least two-fold difference 

in the abundance median between the HDM- and PBS-treated groups. AdultC group had 38 

significant (p<0.05) metabolites with at least three-fold difference, and conventional Mouse 

group had 22 significant (p<0.05) metabolites with at least 1 to 2-fold abundance median 

differences. The presence of metabolites significantly differing in their abundance in HDM- and 

PBS-treated group displayed that an allergen (HDM) exposure significantly alters the gut 

metabolic profiles. The shift in the gut metabolome may be driven by the alteration of the gut 

microbiota either in their composition or their metabolic activities from the exposure to HDM. 

Several studies have shown that exposure and sensitization to inhaled allergens can alter the 

composition of the gut microbiome[219-221]. Other studies have also observed that the host-

response to the allergen exposures are influenced by the gut microbiota[4, 80, 81, 222], 

suggesting that this shift in metabolome seen with HDM-treatment is most likely due to the 

complex interplay and dual feedback of allergen altering the gut microbiota composition, and gut 

microbiota altering the host-response to the allergen.  

 This study established the differences of the metabolite profiles between disease states 
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(early childhood eczema) and identified a group of gut metabolites that distinguished those 

groups in humans, such as hippuric acid. In addition, the differences in the gut metabolome of 

fecal-transplanted with humanized gut microbiota mice were established, along with a with a 

group of metabolites that were significantly distinguished between the groups. The altering effect 

of HDM-treatment on gut metabolome was also established in mouse models, both with 

humanized microbiota and with a conventional mouse microbiota. To further the understanding 

of different metabolic signatures of each groups studied, measuring sample metabolites using a 

different mass spectrometry method may assist this current dataset by providing more extensive 

metabolic profiles. More work is needed to further identify the metabolites to allow a more 

clinically-translatable insight into metabolic production that could be directly tied to either a 

specific gut microbial members or an environmental/dietary exposures in relation to allergy 

development. Most of the detected metabolites have yet to be identified, highlighting the need 

for a more extensive metabolite databases in the current state of the field of metabolomic 

profiling studies. More investigations of gut chemistry and biochemistry, as well as roles of 

individual taxa and microbial members of the gut are needed to better understand the interactions 

of metabolites between the host and the microbiota, as well as within the microbiota, which will 

help shed the light on their role in disease manifestation, as well as development of better 

treatments and preventions.  
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 Allergy affects nearly third of the adult population and over quarter of child population in 

the United States[5]. Eczema, or atopic dermatitis, is a chronic skin allergic condition affecting 

over 10% of the total population of children in the US[5], where the majority of cases (60%) 

develop within the first year of life[6]. Despite not being life-threatening on its own, eczema is 

known to have significant impact on the quality of life throughout childhood and adolescence if 

the disease persists [7, 8, 10-12, 14, 15]. Most children diagnosed with eczema in early 

childhood is believed to “outgrow” the condition with age by current clinical consensus, however 

it has been observed that those who do not “outgrow” the condition are more likely to develop 

additional allergic comorbidities such as severe eczema and allergic asthma with age in a 

phenomenon named “atopic march”[34]. Asthma is a chronic airway disease affecting 6.5% of 

children in the US[36], and is characterized by wheezing, shortness of breath, coughing, chest 

tightness, and difficulty breathing[1]. Allergic asthma is a subtype of asthma where symptoms 

are aggravated by exposure to allergens[1], and is commonly associated with Type 2 immune 

response[61].  

 Given the phenomenon of atopic march combined with observations of early life 

environment affecting the risk of allergy development[27-29, 55], education of the early system 

has been suggested to play an important role in the susceptibility to developing allergy. Early 

immune system is educated through exposures to environmental antigens, many of which are 

microbial species that gets ingested by the infant that becomes commensal residents of their gut 

microbiota[56]. Gut microbiota has been associated with a wide array of pathologies and 

diseases, both allergic and non-allergic, in humans[63]. Although the exact etiology remains 

unknown, in case of allergic disease development, gut microbiome composition during the first 

year of life is thought to have a significant impact[54, 55]. Many studies have identified an 

association with either a specific bacterial taxon, or a collection of bacterial taxa especially 

within the first year of life, with development of allergic diseases[3, 4, 65]. Other studies have 

sought to explore the possible molecular mechanism of how the gut microbiota can affect allergy 

development by focusing on the gut metabolome[2, 33, 99, 102]. Given these previous studies, 

we sought to further close the gap of knowledge on how a gut composition of both bacteria and 

their metabolites are influencing allergy development. We hypothesized that specific 

compositions of the gut microbiota and the gut metabolome affect the development of allergy. 

Both a human infant allergy cohort and a mouse model of asthma were utilized to address this 
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question.  

First using the Isle of Wight infant allergy cohort, we tested the hypothesis that a 

particular composition of the early life gut microbiota is associated with the development of 

eczema and atopy in infants. Out of the 56 infants used in this study, 18 were graded to have 

“persistent” eczema, 21 to have “Intermediate” eczema, and 17 to have “None” based on the 

number of eczema diagnosis in the first 36 months of their life. Upon analyzing their gut 

microbiota obtained with 16SV4 rRNA amplicon sequencing, several previously allergy-

associated taxa (Bifidobacterium, Escherichia-Shigella, Prevotella, and Veillonella) were 

identified as major contributors to the differences in the gut microbiota between the clinical 

groups. Bifidobacterium and Escherichia-Shigella were further identified as having the most 

importance in differentiating between a group with higher prevalence of both eczema and atopy 

diagnosis from another group with less allergy prevalence. Atopy was also found to strengthen 

the correlation between eczema diagnosis and microbiota composition. Finally, Veillonella was 

identified as having statistically significant association with eczema status at 3 months of age. 

This study confirmed the relevance of certain bacterial taxa in their relation to allergy in infancy 

and early childhood. Bacterial taxa previously associated with allergy in other cohorts were also 

observed to differentiate those with allergy and those without. These results suggests the need to 

further explore these bacterial species for their involvement in allergy development. The 

relatively small sample size along with a higher variability characteristic of human studies did 

provide some challenges and limitation in computations of statistical significance. There still lies 

a strength in the use of this cohort, given its longitudinal and multi-generational aspect, allowing 

for additional follow up analyses of the same infants studied here. At the time of this study, the 

infants had yet to reach an age where they can be accurately diagnosed with asthma[37, 38]. 

Revisitation of the same cohort past their early infancy will provide value to further explore the 

shift in their gut microbiome with age, and additional clinical diagnoses will allow for the 

exploration of the microbial effects on atopic march. Variability introduced by uncontrolled 

environmental factors is a nature of human subject studies, which can be accommodated by 

using an animal model.  

A mouse model of asthma was developed to further study the effect of specific gut 

microbiota composition on allergic phenotypes. The infant fecal samples used and analyzed from 

the Isle of Wight allergy cohort discussed in the previous section were transplanted into germ-



 212 

free C57BL/6 mice to create A) mice with allergy-prone gut microbiome, and B) mice with 

allergy-averse gut microbiome. Upon successful fecal-transplantation and breeding of the 

transplanted mice, the two new infant-based mouse groups were used to test our hypothesis that 

Enterobacteriaceae-dominant gut microbiota from eczemic infants will cause increased T helper 

2 (Type 2) inflammation and decreased lung function after house dust mite antigen (HDM) 

exposure in the transplanted mice, while Bacteroidaceae-dominant gut microbiota from non-

eczemic infants will be protective. The mice transplanted with fecal samples of select infants 

with “Persistent” eczema diagnosis and Enterobacteriaceae-dominance in the gut microbiota 

was named “InfantA,” while the mice transplanted with fecal samples of select infants with no 

eczema diagnosis and Bacteroidaceae-dominance in the gut microbiota was named “InfantB.” 

These two groups were compared to a positive control group named “AdultC,” a previously 

established Th-2 prone fecal-transplanted mice[140], and a negative control group with 

untouched, conventional mouse microbiota named “Mouse.” Despite receiving a fecal transplant 

from infants lacking allergy, “InfantB” mouse group showed a decrease in lung functions and an 

increase in airway hyper-responsiveness (AHR) alongside “InfantA” and “AdultC” groups, in 

comparison to the conventional “Mouse” group. The impairment of lung functions was seen in 

all three humanized gut microbiota mouse groups without any treatment with an allergen, 

suggesting that carrying of a humanized gut microbiota lead to the lowered lung functions. In 

addition, treatment with an allergen (HDM) increased AHR in all three humanized gut 

microbiota mouse groups compared to the conventional mouse group. Immuno- and 

histopathological analyses performed did not identify any inflammatory characteristics to be 

statistically significant, although elevated in the three humanized gut microbiota mice.  

Albeit the expressions of similar phenotypes, gut microbiota compositions of these mice 

were shown to be distinct between all four groups based on 16S amplicon sequencing data. All 

three humanized gut microbiota mouse groups carried varying set of bacterial taxa previously 

associated with allergy and inflammation. “InfantA” carried Bacteroides, Lachnospiraceae, 

Turicibacter, Clostridium, Escherichia coli/Shigella, Coprobacter, Lachnoclostridium, 

Klebsiella, Haemophilus. ”InfantB” carried Bacteroides, Lachnospiraceae, Alistipes, 

Turicibacter, Clostridium, Parabacteroides, Sutterella, Parasutterella, Haemophilus, and 

Veillonella. “AdultC” carried Bacteroides, Lachnospiraceae, Turicibacter, Parabacteroides, 

Alistipes, Ruminiclostridium, Sutterella, Parasutterella and Haemophilus. On the other hand, 
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“Mouse” group carried a set of unique bacterial taxa previously associated with protection from 

allergy: Clostridia (Clostridiales), Faecalibacterium, and Ruminococcus-Coprococcus. The lack 

of statistically significant measured inflammatory responses is most likely due to the use of acute 

sensitization protocol, with its relatively short sensitization period did not allow for the full 

development of adaptive immune response[180]. The allergen exposed mice in this experiment 

still displayed significant changes in the baseline lung functions as well as allergen induced 

AHR, thus making them a viable mouse model of asthma with humanized gut microbiota. 

Testing of repeatability of this result with longer sensitization would extend the comparative 

relevance of this model to the chronic nature of asthma, although the limitation arising from 

chronic sensitization models should also be noted[73]. The similarities of phenotype among the 

three humanized gut microbiota mouse groups suggests that disease phenotypes are not induced 

by a singular bacterial taxon, but rather, a combination of multiple bacterial taxa which may 

differ by individual. Further characterization of the commonalities and differences of these 

microbiota compositions between varying disease phenotypes is needed to understand the 

possible mechanisms in which a select group of bacterial taxa could affect the host disease 

phenotypes. Methods such as whole genome sequencing followed by culturing will aid in 

species-level identification of bacteria, which will allow more insight into the mechanistic 

interactions of the microbiome and the host. The differences in the bacterial composition of the 

three humanized gut microbiota mice also suggests the possibility that it is not the presence of 

specific bacterial taxa that affect the host disease phenotype, but rather what is produced within 

the gut. This question can be addressed by measuring the gut metabolite contents using 

proteomics tools such as mass-spectrometry. 

Based on the microbiome analyses of both the infants from Isle of Wight allergy cohort 

and the humanized mouse models of asthma, we decided to pursue the search for the underlying 

mechanisms of association between an allergic/asthmatic phenotype and the gut microbiome 

using metabolomics and liquid chromatography-mass spectrometry. We hypothesized that there 

are distinct differences in the metabolite profiles between groups expressing a disease phenotype 

compared to the groups that did not. In analyzing the samples from Isle of Wight allergy cohort, 

the metabolite profiles were most distinct between the infants with “Persistent” eczema and 

infants having “None” of eczema diagnoses; a difference characterized by 113 unique 

metabolites. Within the 113 metabolites, hippuric acid and dihydrocortisol were identified to be 
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higher in the “None” group, with statistically significance(p<0.05) in both mean and median 

abundance value. Two more metabolites, Asn-Ser-Thr and C16H26N6O5, were also identified to be 

statistically significant (p<0.05), but this time higher in the “Persistent” group. Analyses of the 

ceca samples from the mouse model of asthma study also revealed that the gut metabolite 

profiles were significantly distinct by the microbiota groups. Each of the three humanized gut 

microbiota mouse groups were significantly distinct to the conventional mouse group in their 

metabolite profiles, with over 600 to 1000 unique metabolites characterizing these differences. 

The HDM-treatment also significantly altered the gut metabolite profiles compared to the sham 

(PBS)-treatment. Each microbiota grouping had a set of unique metabolites in distinct 

abundances between the HDM- and PBS-treated groups that were statistically significant, but the 

number of metabolites characterizing the distinct differences were fewer in number than the 

microbiome comparisons, ranging from 78 to 131 metabolites. The metabolites in the mouse 

groups were unidentified. Despite majority of the metabolites being unidentified, this study 

clearly displayed the difference in the metabolic profiles between the clinical and experimental 

groups for both humans and mice. These results further confirmed the underlying role of the gut 

microbiota and the gut contents regarding allergy development. Pursuing the identities of the 

differentiating metabolites will further contribute to fill the gap of knowledge on the exact 

molecular mechanism of gut-mediated allergy development.  

Current major limitation of metabolomic studies is the difficulty in metabolite 

annotations[223]. Much of this difficulty stems from the lack of established standardized 

protocols due to the very recent technical advancements[223] combined with the sheer 

complexity of metabolic cross-feeding that occurs within the gut[94, 95]. Main source of 

metabolites in the gut stems from consumed food[94], yet there is a great uncertainty on exactly 

how the consumed dietary nutrients interact with the host and the members of the gut 

microbiota[223]. Many researchers have opted to using a mathematical model to understand this 

complex metabolite network within the gut[224, 225]. However, it is still limited by the lack of 

knowledge on the individual members that make up the gut microbiota[225]. To fill this gap will 

require a large-scale interdisciplinary effort; microbiologists to identify and characterize more of 

the unidentified bacterial species within the gut microbiome as well as their metabolic geno-

/phenotypes, chemists and biochemists to identify the unidentified measurable metabolites along 

with their molecular characteristics and role in the gut environment, mathematicians and 
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statisticians to better model and analyze the complex network of metabolic exchange, clinicians 

to facilitate clinical studies and provide clinical insight, engineers to improve the mechanic 

measurement tools, and many others with appropriate specialties.  

Study of the role of gut microbiome and metabolome on disease phenotypes is an ever-

growing field with an ever-growing knowledge, and knowledge gaps that follow. This study 

aimed to contribute to the field by identifying specific bacterial taxa associated with eczema in 

infants, as well as lowered lung functionality and increased AHR in mouse models of asthma. A 

collection of metabolic profiles that distinguishes between disease phenotypes in infants and 

mice were also identified. These findings can now be used as a basis for future studies that aims 

to explore the roles and the mechanisms of human gut microbiome and metabolome on allergy 

and asthma.  
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