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ABSTRACT

Space, while inherent to the natural world, often finds itself omitted in bio-inspired com-

putational system designs. Spatial Genetic Programming (SGP) is a Genetic Programming

(GP) paradigm that incorporates space as a fundamental dimension, evolving alongside Lin-

ear Genetic Programming (LGP) programs. In SGP, each individual model is represented by

a 2D space consisting of one or many LGP programs. These programs execute in an order

controlled by their spatial position. The contributions of this work are: Introducing SGP as

a tool for studying evolution of space in GP. Application of the proposed system to a range

of problems including symbolic regression, classic control and decision-making problems and

a comparison to other common GP paradigms. A study on how spatial dimension influences

generational diversity, on emergence of spatially-induced localization within the system, and

on the emergence of iterative structures within the system. The findings of this research open

new avenues towards a better understanding of natural evolution and how the dimension of

space could be useful as a handle for controlling important aspects of evolution.
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Chapter 1

Introduction

Parts of this chapter have been adapted from [Miralavy and Banzhaf, 2023a], and some others

are reproduced with permission from Springer Nature from [Miralavy and Banzhaf, 2023c].

1.1 Background and Motivation

Nature presents a wide range of complex problems. Over millions of years, natural evolution

has developed biological systems capable of solving these problems, allowing organisms to

survive, reproduce, and pass down their genetic information to the next generation. Even

the highly sophisticated human brain, the locus and source of our intelligence, is not the

limit to what can evolve through this process. For example, in the past 3,000 years, the

continuous process of evolution has caused the spatial volume of human brains to significantly

decrease in order to enhance its efficiency [Hofman, 2014] which shows that even such highly

evolved biological systems are still under evolution. Biological systems are often intricate,

composed of numerous diverse elements. At times, multiple biological systems collaborate

to achieve a unified goal. Consider how the immune system, the respiratory system, the

skeletal system, the nervous system, and the digestive system in a mammal work together to

ensure the host’s survival. The capabilities of natural systems have caused many researchers

to study them and draw inspiration from them to solve problems in various frameworks,
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including computational ones. While the complexity of biological organisms serves a purpose

and often arises out of necessity, computational models inspired by them are abstractions.

These abstractions aim not only to simplify the complexity of biological systems but also to

adapt them to a computational environment rather than a biological one. However, it is a

challenge in creating bio-inspired algorithms to determine the necessary level of abstraction

without diminishing the power of their natural counterparts [Vieu, 1997].

Space and time constitute the fundamental framework within which natural evolution

unfolds. Between the two, space is often the element abstracted away in bio-inspired systems,

due to the inherent complexity stemming from its multidimensional nature. However, in

natural evolution space plays a critical role in determining the habitat of organisms, their

morphology, and access to environmental resources. It also naturally enables organisms to

work in parallel and facilitates interaction among natural systems [Vieu, 1997]. For instance,

within the human body, various biological systems operate concurrently in distinct spatial

locations, such as the nervous system. An intriguing aspect of biological systems is their

spatial locality [Chen and Konstantinides, 2022]. These systems exhibit high modularity,

with elements within each module typically situated in close spatial proximity. In organisms

like plants, the spatial arrangement of components significantly influences their function. For

example, roots must be underground to access resources, while leaves need to be positioned to

capture sunlight for photosynthesis. An unresolved question arises: should space be abstracted

away when developing new bio-inspired systems, or should it be retained in computational

models? It is evident that, thus far, achieving the same functional prowess as natural systems

in their computational counterparts has proven challenging. This fact, in addition to the lack

of related research in previous literature, justifies the ongoing exploration of space within

computational frameworks as a valid and promising approach.

When we abstract space from a bio-inspired system, the result becomes simpler and

more suitable for implementation within a computational framework. This abstraction also

entails the removal of the capabilities that space contributes to the system, preventing
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spatial phenomena from emerging. One of the primary reasons for abstracting space away in

classical algorithms has historically been the limitations of technology. However, with recent

advancements, these computational constraints have become significantly less pronounced,

prompting a re-evaluation of the conventional perspective about such abstractions. It is

noteworthy that space, as a dimension, inherently facilitates parallelization and can, in some

cases increase the computational speed at which the evolutionary system operates. Another

challenge arises when designing more complex algorithms that are less abstract: the models

can become too complicated to understand. One of the crucial benefits of incorporating space

in computational problem-solvers is the natural facilitation of classification and management

of entities, as well as that of the visualization and understanding of the elements contained

within. Spatial analysis has been an approach incorporated in the vast majority of scientific

fields through visualizations, generation of graphs, maps and so on potentially making it less

of an obstacle when it comes to the complexity of algorithms.

My general interest is in studying bio-inspired problem solvers and investigating ap-

proaches to enhance them. Specifically, I am interested in examining the role of space in

natural evolution and utilizing it as a primary dimension in the evolution of computational

problem solvers and specially in Genetic Programming (GP).

To achieve this goal, this dissertation introduces Spatial Genetic Programming (SGP), a

Genetic Programming (GP) paradigm in which individuals are spatial, and space significantly

influences the execution of individual models. I present how Spatial Genetic Programming

(SGP) can be configured and utilized as a tool for studying spatial GPs. As a proof of

concept, I apply SGP to various problem classes and, using spatial analysis, I explore the

effects of space on the evolution of SGP models. To initiate an investigation in this vast area

of research, I target two primary criteria — diversity and localization — when analyzing

the impact of space on SGP individuals. Maintaining a healthy diversity in an evolutionary

algorithm can enhance the algorithm’s performance by enabling it to cover more parts of

the search space in a population of individual models. Thus, it is beneficial to investigate
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whether the dimension of space can add diversity to a computational framework, similar to

what occurs in nature through environmental conditions and their changes. Observing nature,

the localization of natural entities that serve distinct purposes is a common phenomenon.

I investigate whether similar patterns can emerge in the computational framework of SGP.

Additionally, I investigate how spatial organizations provide a unique method for evolving

iterative structures.

1.2 Evolutionary Computation

Evolutionary Computation (EC) is a sub-field of Artificial Intelligence (AI) in which inspi-

rations from natural evolution are incorporated as a metaphor for solving computational

problems through search and optimization [Dumitrescu et al., 2000]. The advent of the

general idea of EC dates back to the invention of computers, with Evolutionary Program-

ming [Fogel, 1962], Evolution Strategies [Rechenberg, 1973, Schwefel, 1981], and Genetic

Algorithms [Holland, 1975,Goldberg, 1989] emerging between the 1960s and 1980s, followed

by the introduction of GP [Koza, 1992a] in the early 1990s [Banzhaf et al., 1998]. Models

that are studied in EC are usually referred to as an Evolutionary Algorithms (EA).

Natural evolution [Darwin, 1909] adapts populations of organisms to challenges posed by

their surrounding environment through variation and reproduction. The fittest organisms

are those that can survive under environmental selection pressures and can pass their genetic

markers to the next generation through reproduction. Variations in these genetic markers

accidentally occur during reproduction and might result in deleterious, neutral, or beneficial

outcomes for the phenotypic traits of the offspring. Over generations of evolution, organisms

undergo changes to become adapted for surviving in their environments.

In EAs, the fundamental essence of natural evolution is harnessed to evolve computational

representations through trial and error, serving specific purposes such as solving tasks or

computationally modeling a system. Figure 1.1 presents an overview of the core processes

commonly used in EA, where a population of individual solutions is evolved to find an
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optimized solution to a given problem. It is crucial to determine a representation of individuals

capable of solving the specified problem. In the initialization step, a population of individuals

is randomly initialized as the first generation. Next, in the evaluation step, the fitness of

these individuals is assessed. In terms of natural evolution, fitness refers to an organism’s

ability to survive; however, in EA, fitness is defined as a quantified measurement of how well

an individual solution performs in relation to the given problem. Since the first generation is

randomly initialized, it typically does not contain individuals with satisfactory fitness levels.

Nonetheless, the population undergoes a selection phase, where, following a selection scheme,

a set of the best individuals, based on their fitness values, are chosen to create the next

generation. In the variation phase, the selected individuals, serving as parents, undergo

crossover and mutation. During crossover, usually two parent individuals are selected to

create one or more offspring by combining parts of their genetic markers. An offspring created

from crossover inherits traits from its parents, meaning crossover works towards converging

the population of individuals, making the offspring more similar in their representation.

Conversely, mutation, as an evolutionary operator, introduces diversity into the population

and allows evolution to explore different regions of the fitness landscape by introducing

random alterations in the genetic markers of the offspring. Variation causes diversity in

the population, and maintaining diversity is a crucial task in evolutionary computation.

Evaluation, selection, and variation form an iterative process, where in each iteration, a new

generation of individuals replaces the former one. This process continues until a termination

condition is met, such as reaching a limit on the number of generations or finding an adequately

optimized solution.
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Figure 1.1: General principle of Evolutionary Algorithms

1.3 Genetic Algorithm

Genetic Algorithm (GA) [Sastry et al., 2005,Holland, 1975] is a search-based optimization

algorithm that is inspired by the Darwinian conception of natural evolution. A GA follows the

core features of EAs. Figure 1.2 shows a flowchart that represents how a GA operates. First,

a generation of individuals is randomly generated as the initial population. Individuals should

be represented by a data structure suitable for defining the target optimization problem in a

computational framework. A common approach is to use bit strings, as illustrated in the figure.

The next step involves evaluating the fitness or the performance level of every individual.

This step highly depends on the target problem, and various metrics can be incorporated to

quantify the performance level of the individuals. Subsequently, a termination condition is

checked. This condition can be a certain number of evolutionary generations or finding a

satisfactory solution. If the termination condition is not reached, then a selection mechanism

is applied to the population to select a number of individuals to recombine and mutate to

form the next generation. For example, a conventional selection algorithm used in GAs is
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the proportional selection, roulette wheel [Holland, 1975]. In this algorithm, a proportional

fitness value is calculated for every individual by dividing their fitness by the sum of all

fitness values in the population. Each individual’s proportional fitness corresponds to a slice

of the roulette wheel (represented as a pie chart in Figure 1.2). A random number between 0

and 1 is then selected to determine the slice representing an individual that is chosen to be

a parent for recombination. The whole evolutionary process described in the figure iterates

until the termination condition is met, and an output is produced by the system.

Figure 1.2: A flowchart of the Genetic Algorithm

Evolutionary operators in the context of a GA or generally in EAs are responsible for

promoting variation within the population to effectively explore and exploit the search

space. Crossover [Eiben and Smith, 2015] combines traits from two parent individuals in

a generation to create offspring that share characteristics of both parents. Crossover can

enhance the performance of an EA [Doerr et al., 2008] and, when combined with other
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evolutionary operators, can be utilized to introduce a healthy amount of diversity to the

population [Dang et al., 2017,McGinley et al., 2011]. Choosing a proper crossover operator

highly depends on the target problem of the EA algorithm and there is no perfect recipe

for this operator [Back and Schwefel, 1996]. Figure 1.2 depicts a point crossover algorithm

for the bit string representation, in which parts of P1 and P2, which are the two selected

parents, recombine to form O1 and O2, representing the two offspring.

Mutations [Eiben and Smith, 2015] are other types of evolutionary operators tasked with

introducing diversity to the population of individual models. Similar to crossover, different

mutational strategies can be beneficial depending on the specific problem at hand. During

mutation, a random change is introduced to the individual’s representation. Figure 1.2 shows

a point-mutation algorithm which is applied to the bit string representation. Note that the

two randomly selected sites, marked by red squares, have their values changed from 1 to 0.

1.4 Genetic Programming

GP [Koza, 1992a] is an extension of GA, in which computational problem-solving mod-

els—usually in the form of computer programs—are evolved and optimized over a repeated gen-

erational cycle. GP can be considered an evolutionary machine learning technique [Banzhaf

et al., 1998]. There are crucial differences between a GA and GP. While a GA uses a

fixed-size representation, the representation size in GP may vary. There are also differences

in the forms of model representations and genetic operators between the two evolutionary

techniques [Woodward, 2003]. Although all GP algorithms follow a core process inspired by

natural evolution, they come in various forms and representations. Typically, the GP process

also adopts the core principles of EA by starting with a population of random individuals

representing unknown solutions to a given problem. A predefined fitness function evaluates

these individuals to measure how well they solve the problem. A selection mechanism is

then used to choose parent individuals that will undergo evolutionary operators (crossover

and mutation) to form the next generation of the population. Sometimes, an additional
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survival selection step called Elitism is implemented to ensure the best offspring remain

unchanged for inclusion in the population. The cyclical process continues until a termination

condition, such as finding a model that satisfies user requirements, is met. GP models are

interpretable, allowing industry domain experts to understand and evaluate them. The fol-

lowing six preparatory steps should be determined to utilize GP for solving a computational

problem [Koza, 1994]:

1. Representation: The encoding of individuals in the GP system is referred to as the

GP representation.

2. Terminal Set: Terminals are the inputs or constant values in a GP system. They can

serve as operands for functions or operators.

3. Function Set: The function set includes functions or operators that are defined based

on the target problem. Examples include mathematical operators, which can be utilized

to solve problems within a mathematical framework, such as symbolic regression.

4. Evaluation Function: An evaluation function, also known as the fitness function,

provides a quantified measure of an individual’s fitness. Biologically, higher fitness

values indicate fitter individuals. However, in problems aiming to minimize an error

value, the error measurement can serve as the fitness indicator, where lower values

correspond to fitter individuals.

5. Configuration Parameters: These parameters are used to configure the evolutionary

process. Examples include the size of the starting population and the mutation rates.

6. Termination Condition and Result Designation: Since GP is a cyclic algorithm,

conditions must be established to break the cycle. A common practice is to set a

threshold for the number of generations before terminating the process. Additionally,

a mechanism should be designated to preserve the best results of the evolution.
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1.5 GP Representations

Various works in the literature focus on evolving graphs capable of representing solutions to

computational problems. Tree GP (TGP) [Koza, 1992a] is the most common type of GP

where tree data structures represent models. A tree is an acyclic undirected graph where only

one edge can connect any two vertices [Bender and Williamson, 2010], making it an excellent

candidate for evolving mathematical equations and conditional pathways for decision-making

problems. Figure 1.3 illustrates a sample tree representation for a GP individual, denoting a

mathematical equation.

Figure 1.3: An example TGP. 0.1, a and b are among the terminal set, and / and + are
among the function set of this tree

TGP has been used for various applications such as transportation [Yao and Hsu, 2009],

symbolic regression [Augusto and Barbosa, 2000,Amir Haeri et al., 2017], image processing

[Tran et al., 2016], classification [Aoki and Nagao, 1999], and others. Although the tree

data structure is straightforward for understanding and evolving solutions, traversing these

structures is not computationally trivial and often leads to bloat problems.

Cartesian Genetic Programming (CGP) [Miller, 1999] is another mainstream graph-
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evolving GP paradigm that has shown good performance in solving computational problems.

CGP uses integer values as genes to represent nodes in a graph, their functions, links between

the nodes, and the connections of inputs and outputs to these nodes. Compared to TGP,

CGP is computationally less demanding, resulting in faster evaluation times and a reduced

tendency for bloat [Miller, 2020]. An interesting feature of CGP is its ability to encode

and control computational systems similar to Artificial Neural Networks [Turner and Miller,

2013,Khan et al., 2013]. CGP has also been applied in agent control [Harding and Miller,

2005], image processing [Harding et al., 2013], and circuit design [Hodan et al., 2021].

It is possible to evolve GP models that do not rely directly on graph representations.

Linear Genetic Programming (LGP) is among these types of GP, represented as a series

of instructions, typically in the form of an imperative programming language or machine

language, that execute sequentially. LGP supports branching operators, which allow the

execution pointer to jump between instructions. A particular challenge of LGP is determin-

ing the correct number of internal registers; an incorrect choice can drastically affect the

performance of the solutions [Oltean and Grosan, 2003]. However, LGP programs can be

quite fast because they can be designed to run directly on the processor. Another GP variant

that does not use graphs for representation is Stack-based Genetic Programming [Perkis,

1994]. In this paradigm, stack-based operations are used to manage operands for the pro-

gram operators from a data stack and push the results back onto the stack. Depending on

the rules, multiple data stacks for different data types might exist. Generally, Stack-based

Genetic Programming models are faster than tree structures, and it is possible to create

bloat-free mutations and crossover mechanisms. Push GP [Spector, 2001] is one of the most

notable stack-based systems and has been used for various applications such as automatic

code simplification [Helmuth et al., 2017] and Python code synthesis [Pantridge and Spector,

2020].
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Figure 1.4: Point crossover in a TGP

Figure 1.5: Point mutation in a TGP
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1.5.1 Crossover and Mutation in TGP

Mutation and crossover in GP are highly similar in principle to those in other EAs, with the

primary distinction being the different representations they target.

Figure 1.4 depicts an example of a crossover approach known as point-crossover [Poli

and Langdon, 1998] within a tree representation. A common node (represented in green

in the figure) is chosen from two parent trees. The subtrees connected to this node are

then exchanged to form two new offspring. While most characteristics of the offspring

are similar to those of their parents, the exchanged subtrees introduce distinct differences.

Numerous studies have examined crossover algorithms to enhance the evolution of models in

GP systems [Clegg et al., 2007,Beadle and Johnson, 2008,Poli et al., 1998].

Figure 1.5 illustrates a point-mutation [Poli and Langdon, 1998] occurring in a tree

structure. The node selected for mutation (highlighted in red) is changed from a division

operator to a multiplication operator, while the terminal nodes connected to it remain

unchanged. If the nature of the newly selected operator is incompatible with the old terminal

nodes, then these terminals may also be subject to random changes. The exact approaches

used for such modifications depend on the design decisions of the underlying mutation

algorithm. The study of mutational algorithms is a significant aspect of the literature [Piszcz

and Soule, 2006,Langdon et al., 2010,Beadle and Johnson, 2009].

1.5.2 Crossover and Mutation in LGP

In the context of this dissertation, the LGP paradigm is extensively incorporated. Therefore,

it is particularly important to discuss the common approaches taken to add variety to LGP

populations. Figure 1.6 illustrates a two-point crossover algorithm. Two random points are

chosen for each individual, as indicated by the lines in the figure, to describe a randomly

selected region (marked with red and blue rectangles in the figure). During the crossover,

the instructions located in the randomly selected region of parent A are transferred directly

to offspring B, while the remaining instructions for offspring B are taken from parent B.
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Figure 1.6: A two-point crossover algorithm in a LGP system

Conversely, offspring A consists of the randomly selected region from parent B, and the rest

of the instructions are taken from parent A.

A variety of mutation schemes can be utilized for LGP programs. Figure 1.7 depicts

two of these approaches. In the first mutation scheme, an operand in a randomly selected

instruction of an individual is subjected to a random change, wherein register r5 is replaced

with another register, r4. The second mutation scheme adds a randomly generated instruction

to a random position within the individual, which is marked by the red rectangle. Other

types of mutations in LGP aim to manipulate the program instructions to add diversity

to the population. For example, there are mutation schemes that add instructions to an

individual program or change the operator in an instruction rather than altering an operand.
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Figure 1.7: Two instances of different mutations occurring in a LGP system

1.6 Selection Mechanisms and Tournament Selection

Selection mechanisms determine which individuals from the current generation will survive

and be chosen to undergo crossover and mutation, thereby forming the next generation.

Among the most common selection approaches are Tournament [Blickle, 2000], Roulette

Wheel, and Lexicase selection [Helmuth et al., 2014], with Tournament selection being the

method used in the experiments conducted for this dissertation. As illustrated in Figure 1.8,

this selection type involves randomly choosing a group of individuals from the population and

ranking them based on their fitness values. In a multi-winner tournament, the individuals

with the highest fitness values are then selected as parents. These parents undergo crossover

and mutation to produce offspring that will become part of the next generation in the

EA. Tournament selection is effective, straightforward to implement, robust, allows for

parallelization, and can adjust the selection pressure by configuring the tournament size [Miller

et al., 1995].
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Figure 1.8: An overview of a multi-winner tournament selection

1.7 Space-Oriented Computing

While there is no universally accepted definition for Space-Oriented Computing in the lit-

erature, it is generally regarded as a field where computational models integrate space as a

primary factor for optimization. The principles of space-oriented computing can be applied

in GP when designing spatial GP algorithms. This field points out the importance of space

in computational processes, highlighting three key reasons [DeHon et al., 2007]:

1. Efficient Management: In large computational systems with numerous components,

space provides an intuitive means to manage, categorize, classify, and regulate interac-

tions among these elements.

2. Computational Power: Spatial properties are crucial for the computational capabili-

ties of certain systems. For example, the behavior of ant colonies or fish swarms cannot

be accurately modeled without considering their spatial dynamics.

3. Real-world Integration: The integration of computational systems with the phys-
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ical world necessitates a comprehensive understanding of spatial characteristics. For

instance, architectural algorithms must consider the spatial properties of building com-

ponents to ensure the validity of relevant computations.

These considerations are particularly relevant in the context of GP, where the spatial ar-

rangement of individuals can significantly influence the evolutionary process and the resulting

computational models.

Furthermore, akin to natural systems, space offers an inherent mechanism for enabling

parallelization within computational frameworks [Gear, 1993,Narlikar and Blelloch, 1997].

Also, the ability to visualize spatial elements can simplify the analysis of these systems.

1.8 Research Objectives and Contributions

In my research, I aim to explore the often-overlooked dimension of space in bio-inspired

systems and its applications for computational frameworks, and specially GP. Recognizing

that many computational models traditionally neglect the dimension of space, my study is

motivated by the following hypotheses:

1. Spatially represented individuals within GP systems can be constructed to achieve

results comparable to those of common GP representations.

2. The incorporation of space as a primary dimension in GP evolution could enhance

key aspects of the evolutionary algorithm, such as diversity, thereby improving its

problem-solving capabilities.

3. In spatial GP, similar to natural processes, evolution prompts computer programs to

localize and form clusters that fulfill specific functions.

4. Proximity in space can serve as a straightforward method for evolving iterative struc-

tures.

Specifically, my research explores the integration of the dimension of space in GP, exam-

ining its impact on forming iterative structures, diversity in the population, localization of
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computer programs, and the construction of conditional pathways. I propose SGP, a GP

paradigm where individuals are program nodes distributed across a 2D space, executing in

an order determined by their spatial positioning. This dissertation presents SGP as a novel

tool for the study of spatial GP dynamics.

In exploring the application of SGP to various problem types, I utilize SGP—primarily

in its spatial mode—to evolve problem solvers, targeting a testbed of symbolic regression

problems. I demonstrate that a spatially represented GP can produce results comparable to

those of LGP [Brameier et al., 2007] and TGP [Koza, 1992b]. By introducing the program-

matic mode of SGP, I identify an approach that combines the spatial properties of programs

with logical statements to create conditional pathways for program execution within an SGP

individual. I apply SGP mainly in its programmatic mode to a series of decision-making and

classic control problems and compare its performance with that of LGP and TGP.

A significant portion of my research focuses on how spatial proximity within SGP affects

the evolution of iterative loops and the precision in determining the number of iterations

in evolved models. I present evidence that SGP, with its inherent spatial characteristics,

exhibits a unique capability in evolving loop structures for solving problems that necessitate

iteration. Through spatial analysis, I show the feasibility of evolving such complex structures

by leveraging the spatial elements of SGP.

Furthermore, my research examines the impact of different spatial topologies on the

performance of the SGP system. I conduct experiments with various constraints on 2D

topologies, such as lattice and ring structures, and extend my exploration to 3D spatial

configurations. These studies provide insights into how spatial structuring and topological

constraints can direct and shape the evolutionary process within the SGP framework.

Another contribution of my study is the utilization of spatial evolutionary operators and

their impact on SGP’s performance. I explore scenarios in which different 2D regions exhibit

varying mutation rates. The goal of this setup is to understand how these variations in spatial

conditions affect the evolution of SGP models. This aspect of my research seeks to mimic
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natural phenomena where environmental or spatial factors influence evolutionary processes.

Through this study, I hope to contribute to a broader understanding of spatial dimensions

in computational systems, emphasizing how spatial characteristics can alter the behavior

and performance of GP systems. I hope that my findings open new pathways for incorpo-

rating spatial elements into various computational paradigms, potentially leading to novel

approaches in problem-solving and evolutionary computing.

My findings can also initiate discussions on potential future research topics. I hope that

this work serves a foundation for numerous studies on the impact of spatial dimensions on

the evolution of nature-inspired models, raising various research questions. For instance:

• What other aspects of the evolutionary process are altered through the introduction of

the dimension of space?

• How can spatial elements provide a handle for controlling localization, diversity, or

bloat?

• Are there other dimensions or fundamental concepts that should be considered when

designing AI or evolutionary algorithms?

• Does constraining the spatial dimension through the employment of spatial topologies

affect the evolutionary process for solving various classes of problems? If so, how can

we benefit from it?

• How can the incorporation of space make a GP system more interpretable or under-

standable through spatial analysis?

• Is it possible that the localization emerging through spatial GP leads to a better or

easier understanding of the characteristics of individuals in a population?

These questions focus on the potential for spatial considerations to influence the future

of genetic programming approaches.
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Figure 1.9: A high-level architecture of SGP

1.9 Research Methods

I conduct most of my experiments using the SGP framework that I developed over the course

of my research. The modularity and flexibility of SGP are achieved through a configurable

setup that positions it as a potential framework for investigating individual models in spatial

GP. The high-level architecture of the system is depicted in Figure 1.9. The main method

of SGP orchestrates the system’s initialization by linking various essential modules, each

governing a distinct aspect of the algorithm. Implementations of modules that follow the

requirements of SGP can replace the existing ones.

The core loop of the GP system resides within the Evolver module, which essentially

acts as the evolutionary algorithm responsible for evolving GP models. The Evolver oversees

the Population and Fitness modules. The Population module is tasked with creating and

maintaining a population of individuals, while the Fitness module evaluates each individual’s

performance within the Evolver. The Evolver then selects the fittest individuals, executes evo-

lutionary procedures like crossover and mutation, saves the top-performing elite individuals,

and provides updates on the status of each generation.

SGP is equipped with a suite of tools for analyzing SGP populations. The SGP Analysis

Tool performs multiple analyses on a given population of SGP individuals. For example, Fig-
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Figure 1.10: SGP analysis tool

ure 1.10 provides information about an individual’s index, execution details, each program’s

statements, the spatial position of each program, and the order of execution for the individual

(indicated by red arrows).

This tool generates graphs that depict the evolutionary progression of the best individuals

and the average of the population. Additionally, the analysis tool creates spatial heatmaps of

the population, which illuminate common traits among individuals through the localization

of programs (see Figure 1.11). These graphs and heatmaps are produced using the public

Python libraries matplotlib [Hunter, 2007] and seaborn [Waskom, 2021]. For data analysis,

the pandas [development team, 2020] and numpy [Harris et al., 2020] libraries are utilized.

For the experiments involving the implementation of the TGP algorithm, I utilized the

DEAP library [Fortin et al., 2012]. This library offers a comprehensive framework and

guidelines for employing various evolutionary algorithms and provides statistical tools for their

analysis. For experiments addressing classic control problems, I used OpenAI’s Gymnasium

library. This resource encompasses a suite of benchmarks designed for solving a diverse array

of problem classes, including classic control challenges.
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Figure 1.11: An example heatmap generated by the SGP analysis tool. Hotter points
represented by increased hue of red represent localized clusters of programs

The majority of the experiments were conducted with the support of computational

resources from the Institute for Cyber-Enabled Research at Michigan State University [MSU,

2023]. ChatGPT-4 [OpenAI, 2023] was employed to review parts of this manuscript for

grammatical accuracy. Finally, the iThenticate [iParadigms, 2023] tool, provided through

Michigan State University, was used to make sure the work complies with the guidelines of

responsible research conduct.

1.10 Outline of Dissertation

The chapters of this thesis explore the utilization of SGP for solving various types of problems

and examine the role of space in the evolution of its individual models.

Chapter 2 introduces SGP as a tool for studying space within GP, explaining the SGP

algorithm and its spatial representation of individuals. This chapter also details the execution

of SGP models, the conditions under which they evolve, the operators used, and the process

for adding new operators. It discusses how the system can be configured for different problem

scenarios and describes the problem benchmarks included in the SGP system.

Chapter 3 conducts a spatial analysis of the system, demonstrating how iterative behaviors
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and loop structures can emerge in SGP. It investigates the localization of programs within

the system, examines the impact of different spatial topologies, explores various evolutionary

operators, and measures the system’s diversity.

In Chapter 4, SGP is applied to symbolic regression problems as a proof of concept, with

an analysis focused on system performance.

Chapter 5 applies SGP to different classes of classic control and decision-making problems

in a distinct mode. It demonstrates how incorporating logical elements to determine the

execution order of SGP programs can introduce impactful conditional pathways.

Finally, Chapter 6 concludes the results presented in the previous chapters of this disser-

tation and discusses potential future research opportunities that arise from this work.

1.11 Summary

When EAs are applied properly, they serve as potent methods for addressing a wide array of

computational challenges. Genetic Programming (GP), in particular, leverages the distinctive

processes of biological evolution for problem-solving and machine learning applications by

evolving computer programs. Examining the differences between bio-inspired models like GP

and their natural counter-parts can result in insights into the necessary level of abstraction

and the potential trade-offs involved.

In this dissertation, I introduce and explore a novel variant of GP known as Spatial Genetic

Programming (SGP), where individuals are defined within a spatial context. I demonstrate

that SGP can achieve results comparable with conventional GP methods while outperforming

them in some cases. As a foundational step, I conduct a spatial analysis of SGP individuals,

revealing how spatial considerations affect diversity and program localization. Additionally,

I investigate the utility of spatial proximity in the evolution of complex loop structures.

SGP is applied to a spectrum of problem types, and its performance is benchmarked

against two prevalent GP methodologies. This comparative analysis not only underscores

the viability of SGP but also opens research pathways for further studying the integration
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of spatial dynamics within EAs.
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Chapter 2

A Framework for Studying the Impact

of Space in GP

Parts of this chapter are reproduced with permission from Springer Nature from [Miralavy

and Banzhaf, 2023a].

2.1 Introduction

Morphology, shape, mass, and volume of an organism are all intrinsically linked to the

three-dimensional space they occupy, making spatial considerations a cornerstone of nat-

ural evolution. The proximity of spatial entities shapes the habitats of organisms, highly

influencing their evolutionary paths. For instance, sloths have adapted to conserve energy

through slow metabolism to thrive in nutrient-scarce environments [Cliffe et al., 2018], while

snow leopards have developed long claws and thick fur to navigate and survive in harsh, icy

terrains [Fox et al., 2024]. Drawing inspiration from these natural phenomena, computa-

tional problem solvers often overlook the dimension of space in evolutionary algorithms. This

abstraction simplifies the algorithms, potentially easing implementation and reducing compu-

tational demands. However, such simplification comes at the cost of removing the advantages

that spatial considerations can offer. Historically, limited computational power necessitated
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abstractions to develop complex problem-solving algorithms. Yet, with technological advance-

ments, this constraint is becoming increasingly obsolete, allowing us to reconsider previously

unexplored domains of bio-inspired evolutionary algorithms without traditional limitations.

Moreover, space as a dimension can facilitate parallelization, potentially accelerating the

computational processes within evolutionary systems. Complexity in algorithm design often

leads to models that are challenging to interpret. However, one of the defining features of

spatially-oriented computational problem solvers is their inherent capacity for organization,

management, and visualization of entities. Spatial analysis, a technique widely employed

across numerous scientific disciplines through imaging, graphs, maps, and heatmaps, offers a

natural and intuitive means to understand and interpret complex data [Fotheringham and

Brunsdon, 1999,Dell’Ovo et al., 2018,Dale and Fortin, 2014].

The impact of space in natural evolution is not yet fully understood. Some researchers

focus on analyzing the effect of spatial elements in natural processes. For example, Allen

et al. [Allen et al., 2015] argue that spatial properties impact the molecular clock. Using

mathematical models they show that asymmetries in space can lead to increase or decrease

of the number of mutations. [Hickinbotham et al., 2021] perform a series of comprehensive

experiments to show how spatial patterning can prevent the extinction of parasitism. Hancock

et al. [Hancock et al., 2022] argue that the common methods used for phylogenetic inference

such as multispecies coalescent are spatially-independent. In their model, they include a z-axis

which proves useful in identifying modes of speciation and characterization of demographic

factors that impact the phylogenetic trees.

Space is a basic principle in some areas of evolutionary computation, particularly in fields

such as Artificial Life, where digital organisms heavily rely on spatial properties [Gershenson

et al., 2020,Chan, 2018,Kondo and Miura, 2010]. A notable example is Avida, introduced by

Ofria et al. [Ofria and Wilke, 2004], which serves as a framework for studying digital evolution

through self-replicating digital organisms. These organisms undergo mutation, reproduction,

and natural selection, enabling researchers to analyze and observe their evolutionary processes
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using the Avida framework. Notably, this system allows digital organisms to possess spatial

properties, which are instrumental in determining interactions among them. Spatial Evolu-

tionary Game Theory [Killingback and Doebeli, 1998,Roca et al., 2009,Cui et al., 2015] has

also garnered significant interest among researchers. Killingback et al. explored this domain

in their work [Killingback and Doebeli, 1996], comparing spatial models with traditional

models of evolutionary game theory. They spatially represented the Hawk-Dove game, where

different sites evolve distinct strategies, and each site’s strategy changes if a neighboring

site adopts a more favorable approach. Their findings unveiled differences between the two

systems, including statistical variations in the number of hawks compared to the traditional

model. Furthermore, they observed that spatial properties facilitate the evolution of specific

types of strategies.

A common approach for modeling systems that require spatial elements involves the

use of Cellular Automata (CA) [Chopard and Droz, 2005]. CAs are simple discrete models

consisting of a grid of cells, each capable of having multiple states. A set of rules governs

changes to the cell states at each time step of the system influenced by a properly defined

neighborhood of cells. For instance, Vayadande et al. [Vayadande et al., 2022] utilized a CA to

simulate Conway’s Game of Life, observing the emergence of natural groups. Such simulations

provide valuable insights for researchers aiming to understand and predict phenomena in their

natural counterparts. Giabbanelli et al. [Giabbanelli et al., 2019] proposed several approaches

for modeling the cell-to-cell and cell-free spread of the HIV-1 virus within the human body

using CA. Their goal was to strike a balance between realism and model validity. In a more

computational context, Enescu et al. [Enescu et al., 2019] asserted that CAs are spatially-

aware systems that can be evolved to account for spatial elements in image processing tasks.

They employed an evolutionary algorithm and defined evolutionary operators to evolve CAs

capable of detecting edges in images.

Spatially structured [Tomassini, 2005] and cellular [Tomassini, 2010] evolutionary algo-

rithms are examples where interactions among individuals in a population are influenced
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by their spatial elements. Dittrich et al. [Dittrich and Elmenreich, 2015] conducted a study

comparing the evolution of a panmictic population of artificial neural network controllers with

a spatially-structured population to solve an XOR task and a complex agent self-organization

task. Their results indicated that the spatially structured population outperformed the

panmictic one. Fernandes et al. [Fernandes et al., 2018] argue that structured evolutionary

algorithms can’t fully reach their potential unless there is flexibility in population size. They

demonstrated that, for a fixed-size population, structures represented by regular graphs with

lower degrees consistently converge to global optima. However, when the population size is

appropriately set, convergence occurs faster and with a higher probability for graphs with

higher degrees. Kuo et al. [Kuo et al., 2021] introduced the idea that populations represented

by more complex graphs may be more effective. They demonstrated that the distribution of

network degrees and the organization of nodes play a crucial role in shaping the dynamics of

new mutations within the system. [Dick and Whigham, 2013] employs a spatially structured

population to control bloat in a GP system. This approach, known as spatial structure with

lexicographic parsimonious elitism (SS+LPE), integrates a lexicographic parsimony scheme

during replacement to effectively manage program size and improve fitness.

Understanding the structural properties of the target problem is crucial for applying

problem-solving techniques to real-world physical challenges. For instance, Richards and

Amos [Richards and Amos, 2016] incorporated regulatory representations for architectural

building design. To tackle this problem effectively, the regulatory representation must ac-

count for spatial constraints essential for evolving feasible structures. One intriguing aspect

of combining evolutionary computation with spatial considerations is the emergence of novel

spatial patterns, which adds to its appeal. Kicinger et al. [Kicinger et al., 2005] conducted

an extensive review of state-of-the-art algorithms that integrate evolutionary computation

into structural design. Circuit design is another domain where evolutionary computation has

found application [Vasicek and Sekanina, 2014,Miller et al., 2000]. In such cases, a significant

challenge lies in minimizing space usage while adhering to constraints that necessitate specific
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circuit elements to be located closer to one another. Lastly, most of the swarm algorithms

such as ant colony [Dorigo et al., 2006] or particle swarm optimization [Kennedy and Eber-

hart, 1995] are inspirations from natural systems that often rely on spatial organization

of agents. Importance of these spatial organizations becomes more announced in swarm

robotics [Schranz et al., 2020].

The rest of this chapter introduces SGP as a tool for studying space in GP and discusses

in details how SGP algorithm performs.

2.2 Spatial Genetic Programming

We begin our study on the impact of space as a first-order effect in evolving GP models by

introducing the Spatial Genetic Programming (SGP) computational framework. SGP, is a

GP system in which models are represented by a number of LGP program nodes spread in

a 2D space that execute in an order determined by their spatial position. SGP operates in

two modes: the programmatical mode, which is useful in solving decision-making problems,

and the spatial mode. In the current chapter, we focus on the spatial mode of the system.

The programmatical mode will be explained in detail in chapter 5.

Figure 2.1 shows the schematic of an example SGP individual. This individual consists

of eight LGP programs which include statements capable of tweaking the internal system

registers of the model. Programs represented by circle nodes, are non-terminal nodes and

the program represented by a square, is a terminal node (P7). Only four of these eight

programs execute while the rest of the programs, shown with faded orange color, do not

execute and therefore have no impact on the output of the model. The order of execution of

these programs, depicted with green lines, is based on attempts to minimize the traverse cost.

In the spatial mode of the system, this cost only considers spatial proximity. In the rest of

this section, first an overview of the LGP paradigm incorporated in our study is given and

then algorithms for determining the order of the execution of the LGP models are explained.
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Figure 2.1: Schematic of a SGP model and its order of execution. The execution starts
from the (0, 0) coordinate and stops with the execution of P7 as its terminal node

2.3 LGP programs

SGP nodes can be Neural Networks, trees of TGP or any other type of problem solver that

follows an input/output approach. In this study, programs within SGP comply with the

guidelines of a basic LGP system, which encompasses fundamental mathematical operations,

rudimentary branching options, and function calls. These LGP programs are devoid of

loops, allowing only basic if statements, each carrying a singular instruction. Every program

statement is essentially a call to an operator function that might require zero or more operands

for execution. These operators are picked from the GP function set during model evolution.

The primary role of program statements is to adjust the internal state of SGP, principally

represented by shared memory registers. A number of internal registers can be marked to

act as output registers. Nevertheless, statements might also include calls to atomic functions

or interactions with an external environment. For example, basic mathematical operations
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like -, +, /, and × demand two numerical operands, which could be constants, inputs, or

values residing in internal registers. The output of these operators can only be stored in

an internal or an output register, subsequently modifying the system’s inherent state. In

contrast, invoking a function like ’print’ does not alter the system’s inner state as it remains

agnostic to register value adjustments.

There are a few additional details about the LGP programs to note. Every LGP program

concludes with a return statement responsible for returning a single numerical value, R, to

the SGP system. This value could be a register, a constant, or an input value and may be

used later as a factor in shaping the cost function. When R is utilized in the cost function, the

order of executed programs in an individual becomes dependent on the problem’s input values.

Further examples on cost functions that incorporate R as a factor can be found in chapter

5. Additionally, output registers are exempt from being used as operands for operators, and

their values can only be modified by the return outcomes of other operators. Finally, input

registers, which constitute the problem inputs, remain immutable to any statement.

2.4 Spatial Representation and Execution of Individu-

als

SGP individuals are represented by LGP programs that are distributed in a continuous

2D space and execute sequentially in an order determined by their spatial positions. The

execution of a LGP program can modify the internal state of the system by changing the

values of internal registers. During the process of evolution, not only do the instructions within

these LGP programs evolve, but their spatial positions also can change in order to discover

an optimal execution order for these programs. This flexibility allows SGP individuals to

possess unrestricted topologies and to form intricate control structures.

In an imperative SGP model, program nodes consist of non-terminal nodes and a single

terminal node which, when executed, terminates the execution of an individual model. The

order of the execution of programs in SGP follows a simple distance-based rule: Starting
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Figure 2.2: In the spatial mode of SGP, the order of execution for LGP programs is
determined based on the provided diagram. In the diagram, circular nodes represent non-
terminal nodes, while square nodes represent terminal nodes. Each node corresponds to a
LGP program. There are a total of five programs, consisting of four non-terminal programs
and one terminal program node (P3). The green lines in the diagram indicate the sequence
of executed programs. The light blue node in the diagram represents the program currently
selected for execution, while white nodes depict programs that have been previously executed

from (x, y) = (0, 0) as the source point, the program which has the cheapest traverse cost is

selected for execution and the source point updates to be the position of currently executed

program. In case the chosen cost function is only compromised of a distance1 method, the

cheapest traverse cost program node is the same as the closest program to the source point.

This process continues until there are no more program node or until a terminal program

node is executed.

Figure 2.2 shows a SGP individual where loops are not allowed (a node only executes once)

1Distance method, returns the Euclidean distance between a source and a target point.
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Algorithm 1: Algorithm of how SGP handles selecting the next program for indi-
vidual execution
Data: Pcurrent, Programs
Result: Pnext

Pnext ← None;
for Pi in Programs do

// Loop through all programs
costi ← D(locsource, locPi

);
if loops are not permitted and Pi is already visited then

continue;
// Don’t allow revisit if loops are set to off

end
if Pnext == None then

Pnext ← Pi;
// Select the first program, if there is no candidate costnext ← costi;

end
if costi < costnext then

Pnext ← Pi;
// Replace the candidate costnext ← costi;

end

end
return Pnext;

and how the order of execution of the LGP programs is determined for that case. Initially,

starting from the source point in Figure 2.2a, the Euclidean distance to every other program

node is calculated and normalized as the traverse cost. The program with the lowest cost, in

this case P4, is then selected to be executed, and the source point is updated to the location

of P4. In step 1, the same approach of cost calculation takes place to find the cheapest cost

program with regards to P4, and P2 is selected for execution. The same process continues

and P1 and P3 execute in order. P3 is a terminal node and therefore concludes the execution

of the individual model causing P5 not to be executed. P5 can be considered similar to

introns in biological genes which are not expressed.

The cost function for calculating the traverse cost is as follows:

costi = ln (1 +D(locsource, loci))
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Here, costi represents the cost of traversing from the source point to program i. The function

D(source, target) calculates the Euclidean distance between two points in a 2D space, with

locsource and loci representing the 2D coordinates of the source point and program i′s location,

respectively. The natural logarithm is employed to normalize the distance value. The cost

function is configurable and while normalization may not be necessary for a simple spatial cost

function like the one described, it proves beneficial when the cost function is combined with

additional elements to create more sophisticated equations. For a more detailed understanding

of how the next program is selected for execution in SGP, Algorithm 1 provides more details.

Algorithm 2: Algorithm for execution of SGP individual models

Data: model, registers, inputs
Result: output,memory
memory ← registers+ inputs;
// Initialize the system parameters
Pcurrent ← None;
outputs← None;
reset(model);
timestart = timenow;
while True do

Pcurrent ← select program(Pcurrent,model.programs);
if Pcurrent == None then

break;
// No more program candidates left for selection

end
output,memory ← execute(Pcurrent,memory);
if is terminal(Pcurrent) then

break;
// Terminal program reached

end
timecurrent = timenow;
if timecurrent − timestart > T then

break;
// Time limit reached

end

end
return output,memory;

If revisiting a node is permitted, the program execution order can potentially lead to the

emergence of loops. To prevent infinite loops, a modification has to be made to the cost
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function as follows:

costfinal = costi + (costi + 1)× v × µ

Here, costfinal represents the traverse cost to Pi after applying the re-visit penalty. In this

equation, v denotes the number of previous visits to Pi, and µ is an arbitrary constant

representing the re-visit penalty coefficient. Larger values of µ increase the difficulty for the

system to evolve loop structures.

Algorithm 2 outlines the execution process of a SGP individual. The algorithm initiates by

initializing all the necessary variables. The function reset(model) is responsible for clearing

any information stored in a model from prior executions, such as tracking the number of

times each program has been visited. The variable timestart serves as a timestamp marking

the beginning of the individual’s execution. This timestamp plays a role in a mechanism

that prevents individuals from stalling execution for more than the specified time threshold,

denoted as T . The function select program(Pcurrent,model.programs) determines the next

program to be executed, following the principles described in Algorithm 1. If Pcurrent holds

a None value, it signifies that there are no suitable candidate programs for execution, and

consequently, the individual’s execution loop is terminated. Subsequently, the selected

program is executed, producing return values that include a single numerical value and

memory representing the internal state of the system. If Pcurrent is a terminal node, this

marks the termination of the individual’s execution. The final termination condition arises

when more than T seconds have elapsed since the start of the individual’s execution. This

time limit primarily serves to handle situations involving infinite loops.

2.5 Evolution of Models

The evolution of models in SGP commences with the random initialization of a population

of individuals. During the initialization phase, a random number of LGP programs with

randomly generated instructions are created. SGP employs a panmictic population structure
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as opposed to the internal spatial structure of each individual which means that the population

lacks spatial organization. In such population, every individual has an equal chance of

producing offspring for the next generation through tournament selection. Each individual

is then evaluated based on a fitness function tailored for solving a specific computational

problem. The fitness function assesses how effectively the model has performed, assigning

a fitness value to each individual. In the selection phase, a fixed number of individuals are

randomly chosen, and the two best individuals with the highest fitness values are selected

as parents to produce two offspring for the next generation. If crossover is permitted, the

two parent individuals recombine to create two new offspring. These two offspring undergo

mutation, which introduces changes to the LGP statements of the model programs or their

spatial positions. In case there is no crossover, the two parent individuals only mutate to

produce two new offspring. This process continues until a new population of models, equal

in size to the previous generation, is generated. Throughout this evolutionary process, the

best individuals of each generation, referred to as elites, are preserved. The termination

condition for SGP is determined by a predefined total number of generations set before

running an experiment. For most of the experiments conducted for this dissertation, no

crossover algorithm is used; however, forms of spatial crossover is investigated and explained

in the next chapters.

2.6 Mutation Operators

In SGP, mutations can either influence the spatial attributes of program nodes or happen at

the LGP level. Various mutation operators are designated for each mutation category. The

application of the mutational operators to each program or statement is elaborated upon in

this section.

2.6.1 LGP Mutations

There are five mutation operators that are used to introduce diversity in the LGP programs:
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1. Add statement: There’s a mLGP percent chance for each program of an individual

to gain a new statement. Individuals cannot exceed a predefined maximum number of

statements.

2. Remove statement: There’s a mLGP percent chance for each program of an individual

to lose a statement. An individual must maintain at least one statement, as every

program requires a return statement.

3. Mutate return value: There’s a mLGP percent chance for each program to have its

return value (last statement) altered.

4. Mutate operand: Each statement has a mLGP percent chance of having one of its

operands modified.

5. Mutate statement output: Each statement has a mLGP percent chance for its return

value to be stored in a different register.

2.6.2 Spatial Mutations

There are three mutation operators that are used to introduce diversity to the spatial prop-

erties of the programs:

1. Add program: There’s an mspatial percent chance for an individual model to gain a

program. The total number of programs cannot exceed a predefined maximum size.

2. Remove program: There’s an mspatial percent chance for a program to be removed

from an individual model. An individual must maintain at least one program.

3. Position mutation: Each program has an mspatial percent chance of being assigned a

new random spatial position in the entire 2D space.

2.7 Introduction of New Operators

A pivotal aspect of any GP system involves the ability to introduce new operators tailored

for solving specific target problems. For instance, mathematical operators prove effective
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for solving many regression problems, while addressing image processing tasks necessitates

operators capable of manipulating or extracting features from images. In the case of SGP, it

comes equipped with a default set of operators, including basic mathematical operations. To

facilitate the incorporation of new operators, SGP provides an abstract operator class along-

side its default operators, offering guidelines for implementing custom ones. The default SGP

operators encompass fundamental mathematical operations such as addition, subtraction,

multiplication, protected division, square root, logarithm, exponential, sin, cos, as well as an

assignment operator and a basic conditional if statement operator. The if operator can skip

the execution of the next instruction if a specified condition is not met, but it cannot prevent

the execution of the return statement. Typically, an SGP operator necessitates manual defi-

nition of internal functions that specify the number and types of inputs and outputs required

by the operator. It also mandates an evaluation function that processes the inputs and

generates the expected outputs. Additionally, the operator provides an annotation indicating

how it can be utilized within a programming language. In the context of this work, the

Python programming language [Python, 2021] is selected as the target due to its simplicity.

This approach allows for the seamless integration of new operators into the SGP framework,

enhancing its adaptability and problem-solving capabilities.

The process of introducing new operators in the SGP system requires manual implemen-

tation of a dedicated class for each operator. While this approach may appear more involved

compared to certain other GP frameworks, it offers two significant advantages:

1. Modular Expansion: By adding operator classes in a modular fashion, users gain

the flexibility to introduce more complex operators into the system. This opens the

door to incorporating sophisticated operators, including machine learning algorithms.

Such flexibility can create a hierarchy of problem-solving capabilities within the SGP

framework.

2. Support for New Data Types: The approach also enables the introduction of new data

types to the system. For instance, an operator can specify an arbitrary input type,
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such as XYZ. SGP will subsequently search for input values, registers, or constants

with the same data type and align the operators with the operands accordingly. This

capability enhances the versatility of SGP by accommodating a broader range of data

types and problem-solving scenarios.

2.8 The Translator Component

Another contribution of this work is a translator component that produces Python scripts

equivalent to the evolved SGP models. These scripts can be quickly evaluated by simply

executing them with the Python compiler. They are written in style easy enough to explore

and understand, even though they are generated from complex SGP models. Relying on

these scripts also increase the transparency of the SGP models, allowing domain experts to

understand and modify the models if necessary. Selecting Python as programming language

for the produced scripts was an arbitrary choice due to its simplicity and closeness to human

language. The principles used in the design of the SGP translator could be utilized for any

other similar programming language. Figure 2.3 illustrates different sections of these Python

scripts and parts of corresponding codes taken from an evolved SGP model. When executed,

the script starts by importing required packages for running and a debug flag which, if set to

true, shows the order of execution of the SGP programs (For example, P0, P1, P2, P1, P2,

end). Next, the script attempts to retrieve problem inputs by requesting the user to enter

appropriate values. This part of the script can be easily modified to feed the script with

arbitrary inputs using other approaches. For example, directly connecting the SGP script

to external software. Then, the register values are defined and initially set to zero. All the

operators in the SGP operator set are, in fact, human-written code snippets that perform a

custom action (see Introduction of New Operators). Declaration of these operator methods is

added to the generated script for SGP programs to call during the execution process. LGP

program classes are blueprints of the evolved LGP programs that are translated into Python

codes. These classes have attributes determining properties of the evolved program, such
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as length, type, return parameter, coordination, and the number of times this program has

previously been executed (an essential attribute for the interpreter to avoid infinite loops).

Next are the model attributes, which define the parameters necessary for the SGP interpreter

to execute the model correctly. Furthermore, a critical portion of the SGP interpreter is

included in the script, which serves as a glue that connects everything and executes the

evolved programs in the proper order. Finally, the model output as described is printed

on the output screen; however, much like the situation with inputs, this part can be easily

modified in other desirable ways.

Figure 2.3: An overview of the different sections of a produced Python scripts from a SGP
model

2.9 Configuring the SGP system

Setting up the SGP system is achievable through modifying a single configuration file. In

this section, every hyper-parameter of the system that is modifiable is explained in details

and a brief introduction of the technical implementation of the system is given. Keep in mind

that not all of the parameters described here were part of the experiments conducted for this

dissertation. However, the SGP tool comes with these capabilities. The title of the following

parameters is as appears in the configuration file of SGP to make the following descriptions
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more practical:

• fitness: Points to a fitness file located in the Fitness directory of the SGP environments.

This file is in charge of evaluating SGP models based on a specific problem. For example,

fitness = Loop.A5B5 indicates that the SGP is incorporated to solve the A5B5 problem

which resides in the Fitness/Loop/ directory of the SGP environment.

• seed: Determines a random seed for the experiment. This value is extremely helpful

for identical replication of the experiment.

• generations: Number of evolutionary generations set to be the termination condition

of the system.

• population size: Determines the size of the population.

• tournament size: Size of the tournament pool used during selection.

• structural mutation rate: Chance of performing a structural mutation. This param-

eter takes a value in the range of [0, 1] representing the percentage chance for mutation.

For example, 0.2 indicates a 20% chance of mutation.

• LGP mutation rate: Chance of performing a LGP mutation. Range: [0, 1]

• crossover rate: Chance of performing a crossover between the two parents chosen by

the tournament selection. Range: [0, 1]

• elitism: Number of elite individuals to be taken to the next generation without modi-

fication.

• cost formula: The cost function used for determining the order of execution of the

programs in each individual. Any combination of the following variables and mathe-

matical operators can be utilized to form the cost equation: distance, max distance,

length, max length and return val. distance is the distance between the source point

and the target program. max distance is the maximum distance possible between two

programs. length is the number of statements in the target LGP program. max length
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is the maximum allowed number of statements for a LGP program. return val or the R

value is the numerical value that every LGP program returns as their final statement.

• topology: Sets specific constraints on the position of the LGP programs. Possible

values are: circle, ring, line, lattice and 3D

• output ratio: This parameter can take values of single indicating that the SGP models

will only be consisted of a single terminal node, none indicating that the SGP model

will not have a terminal node and every program should execute in order for the model

execution to terminate and a numerical value in the range of [0, 1] with indicates a

chance that every individual might be a terminal node. Numerical values can cause a

SGP system to have multiple terminal nodes.

• evaluation count: Sets the number of times a fitness function should evaluate an

individual model to return a fitness value.

• conditionals: A list of conditional operators that can be given to the GP system to

be used in LGP statements.

• constants: A set of constant values given to the GP system to be used in LGP

statements

• operators: A set of operators that is given to the GP system as its function set.

• registers: The number of internal system registers for chosen for the experiment.

• init size min: Minimum number of programs when randomly initializing the individ-

uals.

• init size max: Maximum number of programs when randomly initializing the individ-

uals.

• size max: Maximum number of allowed programs in the individuals.

• enable loops: Allows or disallows the formation of loop structures. Can be True or

False.
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• self loop: Whether or not self-loop of programs is allowed. Can be True or False.

• revisit penalty: This is a coefficient that increases the cost of travelling to an already

visited node in SGP. The default value is set to be 0.01. Higher values makes it harder

for the system to form iterative structures while lower values works conversely.

• init lgp size min: Minimum number of statements when randomly initializing LGP

programs.

• init lgp size max: Maximum number of statements when randomly initializing LGP

programs.

• lgp size max: Minimum number of statements allowed in programs.

• init radius: Determines the size of the 2D space of the individuals.

• individual: Points to the implementation file for the individual module of the system.

This or similar modules can be replaced with other implementations this way.

• population: Points to the implementation file for the population module of the system.

• evolver: Points to the implementation file for the evolver module of the system.

• program: Points to the implementation file for the program module of the system.

For example, the default is set to be LGP for SGP’s programs to be of that type.

• evo file: Path to the evolutionary log of the experiment to be saved.

• pop save path: Path to where the population file containing information for all of

the individuals to be saved.

Once the SGP system is properly configured with respect to a target problem, it can be

used to evolve solutions for the target problems.

2.10 SGP Benchmarks

Along with the SGP system comes a series of computational tasks that can ease the evaluation

of developing spatial GP algorithms. All of these computational tasks are classified into
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different modules, the number and the data type of each input and output is explicitly

specified and a suitable fitness function is defined for the optimizers to tackle them. Most of

these problems, such as the Symbolic Regression (SR) problems are defined and explained

in details throughout this dissertation. However, a list of all of these problems along with a

short explanation is provided here:

1. Feynman Symbolic Regression Problems: This is a SR benchmark consisted of 92 trivial

to non-trivial problems taken from Feynman Lectures in Physics [Feynman et al., 2011].

Example data points for evaluation of models are provided along with the benchmark.

2. Nicolau Regression Problems: This benchmark taken from [Nicolau et al., 2015] is

consisted of 21 non-trivial SR problems.

3. Loop Problems: This is a small collection of simple high-degree SR problems.

4. Classic Control Problems: This is a benchmark of four control problems taken from

Open AI’s Gym Library [Brockman et al., 2016] and modified to be evaluated in the

SGP environment.

5. Toy Problems: This is a collection of three custom decision-making toy problems that

are the tackled by SGP in chapter 5.

6. Artificial Ant Variation: This is a variation of the classic Santa Fe Ant problem. The

difference between this implementation and the conventional ones is that the problem-

solver is in charge of evolving iterative structures to execute an evolved routine.

7. TicTacToe Problem: An implementation of the famous TicTacToe game.

2.11 Summary

In this chapter previous literature on how space can be impactful in computational frameworks

was explored and the importance of studying space in genetic programming was briefly

discussed. Next, the algorithms for Spatial Genetic Programming were introduced and

different parts of the system such as mutational operators, underlying LGP programs, and
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the evolutionary process were explained in details. It was discussed how it is possible to

add new operators to SGP for solving target problems and how the translator component of

SGP is capable for producing executable Python scripts from evolved SGP models to further

increase the transparency of the system. Furthermore, different configuration parameters

of the SGP system were discussed in details and the benchmark problems included in the

SGP tools were named. In the next chapters, experiments using different modes of the SGP

system for solving various classes of problems is discussed and the impact of space in SGP

individuals is analyzed.
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Chapter 3

Spatial Analysis of SGP Individuals

Parts of this chapter is adopted from [Miralavy and Banzhaf, 2023a].

3.1 Introduction

In this chapter, we aim to increase our understanding of the characteristics of SGP caused

by integrating space as a fundamental concept within its individuals. We explore how the

addition of spatial dimensions can impact traditional frameworks of genetic programming.

To this end, a spatial analysis of SGP is conducted, involving various experiments to study

diversity, localization, and the structure of SGP individuals. The structural characteristics

of the SGP system are examined from two perspectives: how imposing spatial constraints

affects system performance, and how SGP individuals inherently self-organize over the course

of evolution

Spatial proximity, a fundamental concept in computational models, offers unique features

that are particularly beneficial in EAs and GP. This chapter studies the utilization of

spatial proximity, defined by Euclidean distance, within the context of SGP’s individuals.

While the notion of spatial proximity in SGP is novel, somewhat similar concepts have been

previously explored in the literature. For instance, in tree-based structures, the traversal

distance between nodes can be considered a form of proximity. Similarly, in grammatical
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Figure 3.1: A Non-spatial tree structure and it’s spatial equivalent

representations or the statements in LGP systems, the sequential arrangement of instructions

captures the essence of entities being close in a two-dimensional (2D) space. Instructions

that are sequentially adjacent resemble entities that are near each other in 2D space, whereas

those that are further apart in the sequence are akin to entities that are more distant in 2D

space.

To illustrate, consider the weighted graph shown in Figure 3.1. On the left, a simple

graph with three nodes is presented, where the weight of the edge between nodes A and B is

less than that of the edge between nodes A and C. On the right, an equivalent representation

is depicted, with weights translated into Euclidean distances within a 2D space.

In the previous chapters the importance of exploring the dimension of space in compu-

tational algorithms was discussed. Towards this mean, SGP was introduced as a framework

which facilitates research of understanding the impact of space in GP. The focus of this

chapter is twofold: To use SGP to evolve complex iterative structures and to perform a

spatial analysis on the impact of space on the SGP models.
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Index Equation SGP LGP

93 f = a20 Yes Yes

94 f = a40 Yes Yes

95 f = a5 + b5

96 f = (a+ b)5 Yes Yes

Table 3.1: High-degree equations tackled by SGP and LGP. These equations were not part
of the Feynman equation set

3.2 Results: Evolving Abstract Loop Structures

Incorporating spatial elements into the system introduces the capability of using distance as

a mechanism to control the number of iterations in a loop between two program nodes in a

way that the closer the nodes are, the higher the chance that a loop between the two occurs.

This unique characteristic of SGP paves the way for generating abstract models particularly

suited for tasks demanding iteration.

Figure 3.2 showcases the evolutionary progression of the best individuals evolved by SGP

and LGP, aiming to tackle four elementary high-degree symbolic regression challenges as

detailed in Table 3.1. The index column, specifies the a unique number associated with the

equations as a naming convention. Configurations of the SGP system is experimentally chosen

and is as disclosed in Table 3.2. The data used for evolving models in this experiment, as

well as for the subsequent regression problems, are adopted from the example files associated

with [Udrescu et al., 2020]. Unless otherwise stated, a simple correlation-based fitness metric

is employed to evaluate the performance of models in the symbolic regression experiments.

This correlation fitness metric is explained in detail in Section 4.4, with the objective being

to minimize the fitness equation.

A spatial mutation rate of 40% was adopted for these experiments, and the function set

for both algorithms was limited to the four fundamental mathematical operators. To make
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Parameter Description Value
g Number of evolutionary generations 100

Sizepop Population size of the experiment 300
Sizetournament Size of the tournament selection pool 10

e Number of elites that are directly selected to be a 3
part of the next generation

mspatial Spatial mutation rate 20%
mLGP LGP mutation rate 20%
C Crossover rate 0%

costi Cost function ln(1 + distance)
Topology Describes any topological limitation for placing circle

nodes on the 2D space
Typeoutput Describes the output type of the system single

Countevaluation Number of points used for evaluation of an 30
individual model

Countregisters Number of internal system registers input count + 2
initSizemax Minimum number of programs per individual 10

during initialization
Sizemax Maximum number of programs per individual 15

lgpInitSizemax Maximum number of statements per program 10
during initialization

lgpSizemax Maximum number of statements per program 15
T Maximum individual evaluation time 100ms

radius Size of the topology representing the 2D space 150
SetOP Operator or function set +,−,×, /

Constants Set of constant values -1, 1, 2, 3, 5
reps Number of replicates for each experiment 50

Table 3.2: Parameter setup of SGP. Relevant parameters for LGP unless specified are
chosen similarly

the comparison fair, for the LGP system maximum number of statements is set to be 225 to

compensate with the maximum of 15 programs with 15 instructions in SGP. Both LGP and

SGP demonstrate proficiency in solving f = a20, f = a40 and f = (a+b)5. However, they fail

to solve the equation f = a5 + b5 within 100 generations. The two solved problems by SGP

seem to be trivial for this system, as it consistently derives solutions in under 5 generations.

In contrast, while LGP can also decipher these equations, a recognizable pattern emerges:

as the number of iterations grows, LGP demands an extended period to identify an optimal

solution for such problems. f = (a+b)5 and f = a5+b5 are two equations of the same degree.
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Figure 3.2: Evolution of programs for solving high-degree equations. Lines are median
values while the shaded areas represent 75th percentiles. AB5 denotes the f = (a + b)5

equation while A5B5 denotes the f = a5 + b5 equation

Even though the expanded form of equation 96 is more complicated than equation 95, it can

be simplified into a single high-degree term. This comparison leads to the conclusion that

both LGP and SGP, in their current configurations, are not proficient at solving symbolic

regression equations comprised of two or more high-degree terms that cannot be simplified

into a single high-degree term. However, this presents a research opportunity to investigate

evaluation metrics that encourage these systems to solve such problems.

Figure 3.3 illustrates an optimal solution that SGP develops to address the equation a20.

Arrows indicate the order in which SGP orchestrates its model programs, with a deeper hue

on the arrows with multiple traversals of the same execution path. In the solution exemplified,

program P4 is the initial program executed. Upon its termination, the model pivots to P1,

drawn by its spatial closeness to P4. Subsequent to P4, even factoring in the revisit penalty

of µ, P1 retains the most minimal traversal cost. These two programs, P1 and P4, create a

loop that cycles 21 times (both P1 and P4 are executed 21 times each), halting only when
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Figure 3.3: An optimal solution comprising 9 programs, of which only 3 are executed.
Other than P0, P1 and P4, the rest of the orange circles represent programs that are never
executed and serve as introns for the individual. This visualization is generated automatically
by the SGP’s analysis tool. Each executed node is associated with its corresponding LGP
program. The title of each program designates the individual under analysis, accompanied
by a program index for easier identification

transitioning to P0 (a terminal node) becomes a more economical choice than preserving the

loop between P1 and P4 by having a lower traverse cost.

This particular solution encompasses 17 statements dispersed across the three programs.

A manual simplification of the programs, which involves removing only obvious redundant

statements, reveals that this model effectively operates on 11 statements. In contrast, an

equivalent solution generated by LGP entails over 20 effective statements. Notably, as the

required iteration count for a problem rises (such as with higher-degree equations), LGP

demands an increasing number of statements, and consequently larger models. However,

SGP can achieve similar results with a consistent statement count, but with altered spatial
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placements. To illustrate, adapting the solution for a40 instead of a20 only requires a minor

spatial adjustment: the two programs, P1 and P4, must be positioned slightly closer, enabling

them to iterate 41 times rather than 21.

On the other hand, both SGP and LGP fail to solve c = a5 + b5, an equation which

theoretically requires two separate iterative components to add together to result in a perfect

solution. This could potentially be due to not choosing a proper fitness function or data

points for solving the problem, however, it also indicates that not every loop problem can be

solved by SGP as simple as the ones that are solved here even though that SGP seems to be

well-equipped for solving iterative problems.

3.3 Results: Localization of Programs

Localization manifests itself at multiple levels in SGP. Efforts have been made to underscore

instances of localization throughout this chapter. This phenomenon surfaces at the individual,

population, and program levels. At the LGP level, experimental outcomes indicate that each

program tends to cluster instructions that cater to a particular function, and in certain

scenarios, this operates as though a program is a specialized module designed to address

a specific task. This behavioral pattern becomes more pronounced for tasks that are more

interpretable than mere mathematical equations. Illustrating such behavior, is presented

later in this contribution while tackling a variant of the Santa Fe ant problem.

At the population level, localized clusters emerge, suggesting that members of the pop-

ulation possess traits beneficial for addressing the task at hand. A spatial analysis of an

individual pinpoints areas within the 2D space where these clusters form. The subsequent

step involves identifying individuals possessing these significant spatial traits. Such localiza-

tion, apparent upon spatial analysis, can serve as a straightforward method for examining and

pinpointing similar traits within the population. The presence of these population clusters

becomes clear when observing heatmaps that depict the spatial positions of a population.

Lastly, localization can also manifest itself at the individual level. Here, programs that
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have synergistic functions in addressing a portion of a problem tend to gravitate spatially

closer, ensuring they are executed consecutively. An illustration of this type of localization

is evident in Figure 3.3, where the iterative nature of the target problem encourages P1 and

P4 to be in close proximity, fostering the formation of loops between them.

To investigate the phenomenon of localization in the evolution of SGP programs in more

detail, an additional series of experiments was undertaken. The goal was to ascertain how

frequently programs gravitate towards one another to establish a cluster, which occupies

less than 4% of the total permissible 2D space of an individual. For this analysis, the

DBSCAN [Schubert et al., 2017] (Explained in details in the Methods section) algorithm

was employed, setting the epsilon value at 30 and a minimum sample of 2, given that the

complete allowed 2D space for program placement is a circle with a radius of 150. Three loop

problems from Table 3.1 and equation number 18 from Table 4.2 were selected for this study

(P = q2a2

6πϵc3
). Notably, equation 18 can be resolved without iteration, making it intriguing to

measure if, in instances where program proximity doesn’t induce iterative behavior, there

still exists evidence of localization. The same experimental settings as outlined in table 3.2

were employed for resolving all problems, with the exception that no loops were permitted

for the solution of equation 18.

Figure 3.4 depicts the average number of clusters formed during 50 replicates of SGP

while evolving models to address the four designated problems. A clear pattern emerges: as

the programs evolve, they exhibit an increased inclination for localization. This trend can

be attributed to the fact that spatially proximate programs are more likely to be executed

consecutively. Interestingly, for equation 18, which does not necessitate iteration, clustering

still occurs and is not significantly diminished compared to the other scenarios.
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Figure 3.4: Localization of SGP programs. Lines are mean values and the shaded areas are
95% confidence intervals. Top figure shows the number of clusters formed on average in 50
replicates of each experiment over generation. Bottom figure shows the number of programs
that are inside a cluster for each experiment over generations
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3.4 Results: Impact of the Spatial Elements on Diver-

sity

We examine the influence of integrating spatial components on the diversity of population

members. Computationally, quantifying diversity within SGP individuals and contrasting

different system configurations—or even comparing it with LGP—poses a challenge. As

a result, we approach diversity assessment indirectly, focusing on the fitness diversity of

individuals across generations and analyzing their structural variations.

3.4.1 Fitness Diversity

To measure the fitness diversity within a population, we calculated the distinct fitness values

for each generation. Specifically, four configurations were used. A LGP configuration and

three SGP configurations with spatial mutation rates of 20, 40 and 60. Figure 3.5a depicts the

evolutionary progress of the best models over 20 generations. A shorter generation span was

chosen to analyze the system phase where the majority of individuals haven’t yet converged

to an optimal solution. The evolutionary paths, upon comparison, show little differentiation,

though LGP, on average, exhibits superior performance. Figure 3.5b visualizes the fitness

diversity throughout generations for the four analyzed configurations. This experiment’s

setup mirrors that described in table 3.2, but with these variations: the population size is

fixed at 100, the tournament size at 5, and only a single elite individual is carried over to

the succeeding generation unaltered. Instead of relying on a correlation-based metric, we

adopted an RMSE technique for fitness evaluation. This ensures that the recorded fitness

values aren’t influenced by subsequent calculations, as the metric is error-based. Every data

point symbolizes the mean standard deviation value across 50 experimental replications for

each setup. The error bars display the confidence interval for the standard deviations over

the 50 repeated tests. This chart reveals that, on average, SGP configurations yield a notably

reduced count of unique fitness values within a population over 20 evolutionary generations.

A crucial point is that even though helpful, solely examining the diversity based on distinct
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fitness values provides a limited perspective and doesn’t inherently signal overall diversity.

For instance, consider two individuals: Individual A, with a lone program and statement

being 2+ 2, always outputs 4. On the other hand, Individual B’s sole instruction is 2 ∗ 2 = 4.

While both models possess identical fitness values upon evaluation, Individual A investigates

the application of addition, whereas Individual B delves into multiplication in their quest for

the optimal solution. Despite their inherent diversity, their equivalent fitness values are not

able to capture this distinction.

3.5 Structural Diversity

It is evident that SGP programs exhibit greater structural diversity compared to LGP, due

to spatial operators that can dramatically alter the state of an individual model by adding or

removing LGP programs. Quantifying this claim is challenging given the structural differences

between LGP and SGP. Yet, another insightful diversity metric, which is somewhat structural

and permits a comparison between the two systems, pertains to the number of statements

executed by each individual model. Figure 3.6 presents the outcome of this comparison.

Analyzing the average number of executed statements over generations for each exper-

iment’s replicates reveals that, despite employing identical values for both the maximum

and minimum statement counts for model initialization and evolution in LGP and SGP,

the executed statement count in LGP surpasses that of the three SGP configurations by a

significant margin. As a general principle, a greater number of executed statements likely

results in more diverse system state alterations, thus yielding varying fitness values. This

partially elucidates why LGP demonstrates a heightened fitness diversity compared to SGP

configurations.

Conversely, Figure 3.6b, which displays the standard deviation for the number of executed

programs across 50 replicates of each experiment throughout the generations, indicates that

while LGP offers more diversity during the initial generations, this diversity diminishes rapidly.

This suggests that in subsequent generations, LGP primarily probes a specific portion of
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(a) Evolution of models

(b) Fitness diversity

Figure 3.5: Fitness diversity among individuals for different configurations. sm indicates
spatial mutation. a) Shows how the best models from each replicate evolve during 100
generations. Lines indicate median values while the shaded areas indicate 75th percentiles b)
Shows the fitness diversity observed among the individuals of a population. Lines are mean
values and error bars indicate 95% confidence intervals
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the search space, consistently engaging with a similar number of instructions (approximately

16 on average). In contrast, the diversity metric for SGP notably increases post the initial

generations. This implies that SGP individuals maintain a diverse range of both shorter and

longer programs.

3.6 Results: Structured Spatial Topology for Models

The incorporation of spatial elements in SGP systems offers a unique dynamism by enabling

computer programs to maneuver within a 2D circle in an individual. The topology within

which these programs operate can influence the performance and output, contingent on

the nature of the target problem and the output extraction methodology. While different

topologies may favor specific problems, the overarching aim of this work is not solely to test

an array of spatial topologies and benchmark them against diverse problem types. Instead,

it seeks to demonstrate the potential of SGP for investigating different topologies within the

framework.

To illustrate this, several topologies were selected for the symbolic regression problem

equation number 18 as a proof of concept. These encompass:

1. Circle Topology: Serving as the default configuration, the circle topology grants

every program the liberty to position itself anywhere within a circle of radius radius.

2. Lattice Topology: This topology predetermines points on a lattice, contingent on

the maximum permissible program size in SGP. Within each individual, programs

sequentially occupy lattice positions starting from the zero index. Should an individual

contain fewer programs than the maximum size, the residual lattice slots remain un-

occupied. Specifically, for this topology, since changing position to a random point in

the 2D space was not feasible, a special spatial mutation approach was used in which

two programs have a chance to have their spatial position substituted.

3. Line Topology: In this configuration, programs can only migrate along a 2D line

aligned with the x-axis.
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(a) Average count of executed statements

(b) Statement Execution Diversity

Figure 3.6: Comparing structural diversity. a) Compares the mean count of executed
statements between LGP and 3 SGP configurations b) Shows the standard deviation of
average count of executed statements across the replicates for each generation
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Figure 3.7: Evolution of models with different topologies for solving the regression problem
number 18 from Table 4.2. The number 348 represents the ID of the equation. Lines represent
median values while shaded areas are 75th percentiles

4. Ring Topology: Here, programs can move exclusively on the circle’s perimeter, with

the interior being off-limits.

Through this exploration, it becomes evident that SGP can adapt to a range of spatial

topologies, with each potentially influencing the evolutionary trajectory and solution quality.

Determining the optimal topology necessitates an understanding of the problem’s nuances,

combined with empirical testing to identify the most suitable spatial configuration.

Here, the experimental setup is the same as in table 3.2, but with the following alterations:

the population size is set to 100, the tournament size to 5, and only a single elite is carried

over to the succeeding generation unaltered. Figure 3.7 shows the results of this comparison.

When observing the evolutionary trajectory across all topologies, no significant difference is

evident among the individuals. The shaded areas, representing the 75th percentiles, suggest

that individuals with the circle topology tend to be more diverse in terms of fitness and
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Topology Circle Lattice Line Ring
Solved 18% 4% 12% 20%

Table 3.3: The percentage of the individuals that solve the problem

have more models with fitness values close to zero (perfect fitness). Table 3.3 displays the

percentage of the programs that completely solve the given problem. For a basic symbolic

regression problem, the increased spatial freedom of the ring and circle topologies likely

enhances the performance of the individuals, especially when compared to the restrictive

lattice topology and the somewhat constrained 1D line topology in which only 4% of the

replicates solve the target problem.

Figure 3.8 displays the spatial positions of a solution individual from each topology,

along with their heatmap for four models that evolved to solve the problem. These figures

are generated using the SGP analysis tool. Higher density points in the heatmap of the

population indicate that a majority of the population’s individuals have the same spatial

position for programs at that particular point. This can be especially useful for identifying

programs that are likely beneficial in solving the target problems.

3.7 Results: Spatial Evolutionary Operators

In this section, the impact of spatial evolutionary operators on the evolution of programs

and their spatial positions is examined. A spatial crossover algorithm is introduced, and

spatially-aware mutation rates are applied to the system.

3.7.1 Spatial Crossover

Figure 3.9 illustrates the high-level algorithm of the spatial crossover used in this experiment.

Firstly, two fitter parents are selected through tournament selection. Let’s refer to the top

right quadrant of each individual model as Q1. Then, every program of Parent A located

inside Q1 of that model will be transferred to Q1 of Offspring B, maintaining its position. The

remaining programs of Parent A are transferred to Offspring A. The same process is applied
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(a) Circle (b) Lattice (c) Line (d) Ring

(e) Circle Heatmap (f) Lattice Heatmap (g) Line Heatmap (h) Ring Heatmap

Figure 3.8: Schematic of the individuals and their respective population heatmap that solve
the equation 18 problem. Four topologies of circle, lattice, line and ring were used

to Parent B, with the only difference being that the Q1 programs of Parent B are directed to

Offspring A, while the rest of the programs of Parent B are transferred to Offspring B. If an

offspring exceeds the total allowed number of programs, the extra programs (excluding the

output program) are randomly selected for removal from the offspring to ensure size limit

requirements are met.

3.7.2 Spatial Regions with Different Mutation Rates

An fundamental observation in biology is that the molecular clock of genes can vary, sometimes

depending on the environment or the spatial location or orientation of the molecules. SGP

enables us to identify zones or regions with distinct rules for mutation or crossover. While

it’s beyond the scope of this work, this approach could introduce a new form of diversity to

the system. In this particular experiment, we designated a region within individuals where

programs located therein experience an increased LGP mutation rate. Figure 3.10 depicts a

general overview of the region in which LGP mutation rate is increased for the containing

62



Figure 3.9: Spatial Crossover algorithm. The two programs of parent A residing in its Q1 are
moved to the Q1 region of offspring B while maintaining their position. The three programs
of parent B residing in its Q1 are moved to the Q2 region of offspring while maintaining their
position. The rest of the programs of parent A are moved to offspring A and the rest of the
programs of parent B are moved to offspring B
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Figure 3.10: Different regions of the 2D space can have different mutation rates in SGP

programs. The rest of the 2D space represented by the grey area of the circle, follow the

normal mutation rates.

Table 3.4 presents the results of incorporating the high mutation region and crossover

methods described in this section. Once again, equation number 18 from Table 4.2 is chosen

to be the target problem and the same experimental setup as table 3.2 is utilized. No

significant difference is observed when examining the portion of problems that reside in each

quadrant compared to the Base configuration where the crossover rate is set to zero. A

similar study is performed in chapter 5, where the programmatic mode of SGP was used to

tackle a set of control and decision-making problems. This suggested that spatial crossover

causes individual programs to move away from the crossover zone. The results in this section

for the fully spatial mode contradict the findings from the decision-making problems and

the programmatic mode. The spatial mode of SGP only relies on the spatial properties of

the programs of an individual to determine their execution order. On the other hand, in

the programmatical mode, logical elements such as problem inputs also impact this order.

The spatial crossover introduced in this section, does not account for such logical elements

causing it to be more destructive in the programmatical mode, and pressuring the programs

to drift away from Q1. It’s noteworthy that the total count of the programs drops in cases
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where crossover exists. This occurs because when two parents recombine to produce two

offspring, an offspring might exceed the maximum allowed size of programs. In such cases,

additional programs are removed from the offspring, leading to a decrease in the total number

of programs in the population compared to scenarios without crossover.

In Table 3.4, results for having regions with high mutation rates are indicated by different

mutation rates of 20%, 40%, and 60%, which represent the additional rate applied to the

programs located in Q1. The base LGP mutation rate for all individuals is set at 20%. In

this context, the cumulative LGP mutation rate for Q1 programs becomes 40%, 60%, and

80%. There is no decrease in the total count of the programs, although the number slightly

rises on average (except for the case with a mutation rate of 40%) when mutation regions

are present. Conversely, the density of programs in Q1 diminishes by a little over 1%.

Figure 3.11 illustrates the evolution of SGP with different configurations over 100 gener-

ations. The base setup does not include any additional spatial crossover or high mutation

regions. Although no benefits from the spatial evolutionary operators are evident in this fig-

ure, it is clear that changes in the spatial properties of the 2D space, brought about by spatial

evolutionary operators, influence the evolution of individual models. Figure 3.12 displays the

heatmap of the entire population from the experiments conducted in this section. Aside from

the observation that the Q1 region in Figure 3.12f appears less dense than in other figures,

these heatmaps do not provide clear additional insights about the spatial operators. However,

it’s noteworthy that even at the population level, dense clusters of programs form. This

localization is less pronounced in cases where the crossover rate is set to 100% or when the

regional mutation rate is set to 20%, with programs appearing more uniformly distributed.

3.8 Results: Moving to a 3D space

In this section, we explore the concept of introducing additional dimensions to the system

and simulating a 3D structure for individual models. There were two motivations behind

this experiment : 1) to determine if adding more dimensions would correlate with increased
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Figure 3.11: Evolution of different configurations of SGP with spatial crossover and high
mutation regions

Setup Q1 Q2 Q3 Q4 Total Count
Base 25.06% 25.07% 24.36% 25.52% 35959

Crossover rate = 50 26.18% 24.18% 24.04% 25.56% 32879
Crossover rate = 100 25.20% 25.70% 24.16% 24.95% 31660
Mutation rate = 20 23.33% 25.78% 25.75% 25.13% 36475
Mutation rate = 40 23.83% 25.55% 24.97% 25.62% 35232
Mutation rate = 60 23.37% 25.31% 25.70 25.61 37006

Table 3.4: Impact of different spatial evolutionary operators on the arrangement of the
programs in the 2D space

66



(a) Base Configuration (b) 50% Crossover (c) 100% Crossover

(d) 20% Spatial Mutation
Rate Increase

(e) 40% Spatial Mutation
Rate Increase

(f) 60% Spatial Mutation
Rate Increase

Figure 3.12: Comparison of the population heatmap produced after applying different
spatial operators
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Figure 3.13: Evolutionary performance of SGP in a 2D and a 3D spatial setup

control over the spatial impact of the system, and 2) to investigate a system with fundamental

dimensions more closely aligned with real-world biological systems.

Figure 3.13 displays the evolutionary dynamics produced from both 2D and 3D SGP

systems that solve the same symbolic regression equation (equation number 18 from Table

4.2) across 50 replicates. No significant difference was observed when comparing the two

algorithms. Indeed, for most generations, the two systems operate almost identically, with the

shaded areas representing the 75th percentile not showing much variation between the two

systems. This suggests that merely adding more spatial dimensions to the system, without

taking into account problem-domain specifics does not necessarily lead to a change in system

performance.

3.9 Methods

The methods used in this research are explained in more details in this section:
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3.9.1 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [Schubert et al.,

2017] is a clustering algorithm that groups together points that are closely packed together,

marking as outliers points that lie alone in low-density regions. This algorithm is particularly

effective for identifying clusters of arbitrary shape in a data set, as opposed to algorithms

like k-means, which assume spherical clusters.

DBSCAN primarily requires two parameters:

Epsilon ϵ: This defines the radius of the neighborhood around a point. It determines

how close points should be to be considered part of a cluster.

MinPts (Minimum Points): The minimum number of points required to form a dense

region. A point is considered a core point of a cluster if it has at least MinPts within its ϵ

neighborhood.

These parameters are crucial as they control the scale and density of the clusters identified

by the algorithm.

3.10 Conclusion

In this chapter, we explored the dynamics and implications of SGP in evolving computational

models, focusing on the impact of spatial elements on program structure, diversity, and

performance. Our investigation revealed several key insights:

Program Localization and Clustering: We observed a distinct pattern of increasing

localization and clustering in SGP models as they evolved. This trend was consistent across

different problem scenarios, indicating a natural inclination of SGP systems towards spatial

organization through localization.

Diversity in Fitness and Structure: The integration of spatial components was found

to influence the diversity within the SGP population. While LGP populations had signif-

icantly higher fitness diversity, the same was not the case when comparing the structural

diversity of the two algorithms. SGP primarily due to its spatial operators caused more
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dramatic alterations in the models.

Impact of Spatial Topologies: The study demonstrated that SGP could adapt to

various spatial topologies (Circle, Lattice, Line, Ring), each influencing the evolutionary

trajectory and solution quality differently. This adaptability highlights the potential of SGP

in exploring diverse solution spaces through topologies and indicated that some topologies

outperform the others with regards to the target problem.

Spatial Evolutionary Operators: The introduction of spatial crossover and region-

specific mutation rates introduced new dynamics to the evolutionary process. While these

operators did not show a significant advantage in the context of the problems and configura-

tions tested, they underscore the potential for more nuanced and biologically-close control

in the evolutionary process.

Extension to 3D Space: Expanding the SGP model to a 3D space aimed to align

more closely with real-world biological systems and provide increased control. However, this

extension did not result in notable performance differences compared to the 2D setup for the

problems considered.

Overall, this chapter contributes to the understanding of SGP by highlighting how spatial

elements and topologies can influence the evolution and capabilities of genetic programming

models. The findings suggest that while spatial structures and operators introduce complexity,

they also offer new avenues for enhancing diversity and problem-solving efficacy in genetic

programming. This work lays the groundwork for further exploration into more sophisticated

spatial models and their applications in various problem domains.
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Chapter 4

SGP for Solving Regression Problems

Parts of this chapter are adopted from [Miralavy and Banzhaf, 2023a].

4.1 Introduction

This chapter focuses on a more practical viewpoint of this research by applying SGP on a

series of Symbolic Regression problems. This problem class is specifically chosen, because of

how common it is to apply GP algorithms for solving them in the previous literature and can

give us a good understanding of the capability of the proposed algorithm when compared

against the common GP systems as a proof of concept that the SGP system works.

4.2 Symbolic Regression Problems

Regression is a type of problems where the goal is to find a function that best fits a series

of observations. In some cases, the form of the underlying function is known and the goal

is to find the correct coefficients to fit the function as much as possible to the observations.

However, in cases that the form of the function is also unknown, the problem is referred to

as a SR problem [Augusto and Barbosa, 2000]. This is a type of problem that requires the

problem-solving model to be transparent, making GP a suitable candidate for solving them.

For example, GPTIPS [Searson et al., 2010] is an open source, easy to access and easy to
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implement tool for solving SR problems in MATLAB. This tool evolves both incorporates

a multi-gene representation and evolves both the structure and the hyper-parameters of the

regression models. [Zhong et al., 2018] employed the power of a multi-factorial GP algorithm

to solve multiple SR problems in a single run showing the efficacy of such models. [Haut

et al., 2022] investigated on the impact of incorporating active learning on the performance of

StackGP algorithm for solving SR problems. Numerous other researches have been conducted

before in the literature showing how GP can be utilized and customized to solve SR problems

[Astarabadi and Ebadzadeh, 2019]. Some focus on the evolutionary operators to improve the

performance of GP in solving SR problems [Uy et al., 2011,Uy et al., 2009], some propose

techniques which combines GP with machine learning algorithms [Mundhenk et al., 2021,Icke

and Bongard, 2013] or some focus on the selection schemes that can improve GP for this

purpose [Chen et al., 2017,Mart́ınez et al., 2014].

4.3 Feynman Symbolic Regression Problems

The spatial mode of SGP is designed to be adept in addressing continuous value problems

while the programmatical mode is more equipped to solve decision-making tasks. Seeking to

delve deeper into this observation, we designed an experiment drawing upon 92 equations

from the Feynman lectures on Physics [Feynman et al., 2011]. These equations served as

our testing ground to evaluate the performance of SGP. The results generated from this

were compared against those obtained from utilizing TGP and LGP. Importantly, for a fair

comparison, the same LGP system embedded within SGP was employed. To expedite the

LGP implementation, we used the capabilities of the DEAP framework [Fortin et al., 2012]

which is explained in details further in the chapter. Configurations of each system can be

found in table 4.1.
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Parameter Description Value
g Number of evolutionary generations 100

Sizepop Population size of the experiment 300
Sizetournament Size of the tournament selection pool 10

e Number of elites that are directly selected to be a 3
part of the next generation

mspatial Spatial mutation rate 40%
mLGP LGP mutation rate 20%
C Crossover rate 0%

costi Cost function ln(1 + distance)
Topology Describes any topological limitation for placing circle

nodes on the 2D space
Typeoutput Describes the output type of the system single

Countevaluation Number of points used for evaluation of an 30
individual model

Countregisters Number of internal system registers inputs + 2
initSizemax Maximum number of programs per individual 10

during initialization
Sizemax Maximum number of programs per individual 15

lgpInitSizemax Maximum number of statements per program 10
during initialization

lgpSizemax Maximum number of statements per program 15
T Maximum individual evaluation time 100ms

radius Size of the topology representing the 2D space 150
SetOP Operator or function set +,−,×, /, e,

√
, sin, cos, log

Constants Set of constant values -1, 1, 2, 3, 5
RevisitPenalty Penalty for revisiting a node when loop is allowed 0.01

reps Number of replicates for each experiment 50

Table 4.1: Parameter setup of SGP. Relevant parameters for LGP and TGP are chosen
similarly

Index EQ ID Equation SGP LGP
Tree

GP

1 I.10.7 m = m0√
1− v2

c2

2 I.12.1 F = µNn Yes Yes Yes

Table 4.2: Symbolic regression equations sourced from Feynman’s lectures on physics, along-
side the performance of the algorithms studied for solving these problems
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Table 4.2 (cont’d)

Index EQ ID Equation SGP LGP
Tree

GP

3 I.12.2 F = q1q2
4πϵr2

Yes Yes

4 I.12.4 Ef = q1
4πϵr2

Yes Yes

5 I.12.5 F = q2Ef Yes Yes Yes

6 I.13.4 K = 1
2
m(v2 + u2 + w2)

7 I.14.3 U = mgz Yes Yes Yes

8 I.14.4 U =
kspringx

2

2
Yes Yes Yes

9 I.15.3t t1 =
t−ux/c2√
1−u2/c2

10 I.15.3x x1 =
x−ut√
1−u2/c2

11 I.16.6 v1 =
u+v

1+uv/c2

12 I.18.4 r = m1r1+m2r2
m1+m2

13 I.24.6 E = 1
4
m(ω2 + ω2

0)x
2

14 I.27.6 ff = 1
1
d1

+ n
d2

Yes Yes

15 I.29.4 k = ω
c

Yes Yes Yes

16 I.30.3 I∗ = I∗0
sin2(nϕ/2)
sin2(ϕ/2)

17 I.32.5 P = q2a2

6πϵc3

18 I.34.8 ω = qvB
p

Yes Yes Yes

19 I.37.4 I∗ = I1 + I2 + 2
√
I1I2cosδ
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Table 4.2 (cont’d)

Index EQ ID Equation SGP LGP
Tree

GP

20 I.40.1 n = n0e
(−mgx

kbT
)

21 I.44.4 E = nkbT ln(V2

V1
)

22 I.6.20 f = e−
θ2

2σ2 /
√
2πσ2

23 I.6.20a f = e−
θ2

2 /
√
2π Yes

24 I.6.20b f = e−
(θ−θ1)

2

2σ2 /
√
2πσ2

25 I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2

26 I.9.18 F = Gm1m2

(x2−x1)2+(y2−y1)2+(z2−z1)2

27 I.11.19 A = x1y1 + x2y2 + x3y3

28 I.12.11 F = q(Ef +Bvsinθ)

29 I.13.12 U = Gm1m2(
1
r2
− 1

r1
)

30 I.15.10 p = m0v√
1−v2/c2

31 I.18.12 T = rFsinθ Yes Yes

32 I.18.16 L = mrvsinθ Yes Yes

33 I.25.13 Ve =
q
C

Yes Yes Yes

34 I.29.16
x =√

x2
1 + x2

2 − 2x1x2cos(θ1 − θ2)

35 I.32.17
P = (1

2
ϵcE2

f)(8πr
2/3)(ω4/(ω2 −

ω2
0)

2)
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Table 4.2 (cont’d)

Index EQ ID Equation SGP LGP
Tree

GP

36 I.34.10 ω = ω0

1−v/c
Yes Yes

37 I.34.14 ω = 1+v/c√
1−v2/c2

ω0

38 I.34.27 E = hω Yes Yes Yes

39 I.38.12 r = 4πϵℏ2
mq2

Yes Yes

40 I.39.10 E = 3
2
pFV Yes Yes Yes

41 I.39.11 E = 1
γ−1

pFV Yes Yes

42 I.39.22 PF = nkbT
V

Yes Yes

43 I.41.16 Lrad =
ℏω3

π2c2(e
ℏω
kbT −1)

44 I.43.16 v =
µdriftqVe

d
Yes Yes Yes

45 I.43.31 D = µekbT Yes Yes Yes

46 I.43.43 κ = 1
γ−1

kbv
A

Yes Yes

47 I.47.23 c =
√

γpr
ρ

Yes Yes

48 I.48.20 E = mc2√
1−v2/c2

49 I.50.26 x = x1[cos(ωt) + acos(ωt)2]

50 II.8.7 E = 3
5

q2

4πϵd
Yes Yes Yes

51 II.10.9 Ef = σden

ϵ
1

1+χ
Yes Yes

52 II.11.3 x =
qEf

m(ω2
0−ω2)
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Table 4.2 (cont’d)

Index EQ ID Equation SGP LGP
Tree

GP

53 II.15.4 E = −µMBcosθ Yes Yes Yes

54 II.15.5 E = −pdEfcosθ Yes Yes Yes

55 II.2.42 P = κ(T2−T1)A
d

Yes Yes

56 II.3.24 FE = P
4πr2

Yes Yes

57 II.34.2 µM = qvr
2

Yes Yes

58 II.34.2a I = qv
2πr

Yes Yes

59 II.37.1 E = µM(1 + χ)B Yes Yes Yes

60 II.38.3 F = Y Ax
d

Yes Yes Yes

61 II.4.23 Ve =
q

4πϵr
Yes Yes

62 II.6.15b Ef = 3
4πϵ

Pd

r3
cosθsinθ

63 II.8.31 Eden =
ϵE2

f

2
Yes Yes Yes

64 II.11.20 P ∗ =
nρp2dEf

3kbT
Yes Yes

65 II.11.28 θ = 1 + na
1−(na/3)

Yes Yes

66 II.13.17 B = 1
4πϵc2

2I
r

Yes Yes

67 II.13.23 ρc =
ρc0√

1−v2/c2

68 II.13.34 j = ρc0v√
1−v2/c2

69 II.21.32 Ve =
q

4πϵr(1−v/c)
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Table 4.2 (cont’d)

Index EQ ID Equation SGP LGP
Tree

GP

70 II.27.16 FE = ϵcE2
f Yes Yes

71 II.27.18 Eden = ϵE2
f Yes Yes Yes

72 II.34.11 ω = gqB
2m

Yes Yes

73 II.34.29a µM = qh
4πm

Yes Yes Yes

74 II.34.29b E = gµMBJz
ℏ Yes Yes

75 II.35.18 n = n0

exp(µmB/kbT ))+exp(−µmB/(kbT )))

76 II.36.38 f = µmB
kbT

+ µmαM
ϵc2kbT

77 II.38.14 µS = Y
2(1+σ)

Yes Yes

78 II.4.32 n = 1

e
ℏω
kbT −1

79 II.4.33 E = ℏω

e
ℏω
kbT −1

80 III.7.38 ω = 2µMB
ℏ Yes Yes Yes

81 III.8.54 pγ = sin(Et
ℏ )

2 Yes

82 III.9.52 pγ =
pdEf t

ℏ
sin((ω−ω0)t/2)2

((ω−ω0)t/2)2

83 III.10.19 µM =
√

B2
x +B2

y +B2
z

84 III.12.43 L = nℏ Yes Yes Yes

85 III.13.18 v = 2Ed2k
ℏ Yes Yes

86 III.14.14 I = I0(e
qVe
kbT − 1) Yes Yes
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Table 4.2 (cont’d)

Index EQ ID Equation SGP LGP
Tree

GP

87 III.15.12 E = 2U(1− cos(kd)) Yes Yes

88 III.15.14 m = ℏ2
2Ed2

Yes Yes

89 III.15.27 k = 2πα
nd

Yes Yes Yes

90 III.17.37 f = β(1 + αcosθ) Yes Yes

91 III.19.51 E = −mq4

2(4πϵ)2ℏ2
1
n2

92 III.21.20 j = −ρc0qAvec

m
Yes Yes Yes

4.4 Results:

Experimental parameters for comparing the three systems were empirically chosen. While the

configuration of LGP and SGP differ mainly in that SGP introduces spatial elements to the

system, the LGP programs remain identical across both systems. For evaluating individuals

in all three systems, we use a correlation-based fitness metric with the goal of minimizing

the equation:

f = 1− r2

Here, f denotes the fitness value of an individual, and r represents the Pearson correlation

coefficient [Cohen et al., 2009]. This coefficient, calculated between a set of measured and

estimated values for solving each equation, ranges from -1 to 1. An r value of 0 signifies no

correlation between the data set and the GP model; a value of 1 implies a perfect positive

correlation, while -1 indicates a perfect negative correlation.

Table 4.2 provides a summary of the results from this experiment. A Yes value in an
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algorithm column signifies the algorithm’s success in identifying at least one generalized

solution for the corresponding equation. Of the 92 problems, both SGP and LGP delivered

comparable performances, outperforming TGP. Specifically, SGP solved 52 problems, LGP

54, and TGP 22. Equations number 23 and 81 were uniquely solved by LGP but remained

unsolved by SGP. However, it’s worth noting that only a handful of the 50 LGP replicates

were able to find a solution for these two equations, highlighting their complexity.

Extending the search to 1,000 generations yielded no significant differences in the results.

Most individuals either resolved the problem within the first 100 generations or failed to do

so entirely. Each individual was evaluated using 30 data points within the range of (0, 5].

Looking at table 4.2 most of the more trivial equations were solved by the three algorithms.

4.5 Methods

Methods for running the experiments conducted in this chapter are explained here:

4.5.1 DEAP Framework

DEAP [Fortin et al., 2012] is an evolutionary computation framework which uses a design

principle similar to SGP in several occasions. For example, through utilizing and configuring

two objects of creator and toolbox, it serves as a centralized unit that puts together different

modules responsible for different parts of the evolutionary algorithm. This enables users

to replace different modules of the EA to construct custom algorithms suitable for solving

problems. This framework comes with the implementations of algorithms such as GA, TGP,

Evolution Strategies [Beyer and Schwefel, 2002] and Particle Swarm Optimization algorithm

[Poli et al., 2007] while enabling users to craft and construct their own type of EA.

4.5.2 Pearson r and a Correlation-Based Fitness Function

Given two variables representing two series of points, Pearson Correlation Coefficient r

determines the strength and the direction of the relation between the two series. The

following formula is used to calculate the Pearson r coefficient:
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r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2

in which Xi and Yi are the two series of points, and X̄ and Ȳ represent the mean values

for Xi and Yi respectively. r is a value between -1 and 1. Values higher than 0.5 indicate a

strong positive correlation, values lower than -0.5 indicate a strong negative correlation. A

value of 0, indicates no correlation between the two series while values of 1 and -1, indicate

a perfect positive and negative correlation between the two series, respectively. In order to

calculate the r value for solving SR problems in SGP, each individual model was evaluated

30 times for each solving each equation. The estimated outputs by SGP and the actual

output for each given sets of inputs were stored creating two series of numbers containing

30 data points. Next, using the implementation of Pearson r in the stats module of the

scipy [Virtanen et al., 2020] public Python library, the correlation value between the two

series were calculated. We then use the formula discussed in section 4.4 to calculate our

fitness value.

4.6 Conclusion

This chapter presented an in-depth exploration of the application of SGP in addressing

Symbolic Regression problems, a domain traditionally targeted by GP algorithms. In the

experimental study, using a benchmark consisting of 92 equations from the Feynman lectures

on Physics, a comparison between SGP, LGP, and TGP was performed.

The results of these experiments indicate the effectiveness of SGP in solving SR problems.

SGP demonstrated a competitive performance, successfully solving 52 out of the 92 problems,

closely rivaling LGP, which solved 54, and significantly outperforming TGP, which solved

only 22.

The use of the Pearson correlation coefficient as a fitness metric proved to be a robust

method for evaluating the performance of the algorithms. On an experimental study not

included in this chapter, this metric proved to have significantly better results to a RMSE-
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based metric. It’s interesting to note that the majority of the problems were either solved

within the first 100 generations or not at all, suggesting that the initial stages of the evo-

lutionary process are crucial in these GP systems. Using larger populations often yielded

better results; however, to ensure the experiment’s feasibility with respect to computational

cost, a population size of 300 was chosen. Moreover, the fact that only a few LGP replicates

could solve the more complex equations like numbers 23 and 81 highlights the challenging

nature of these problems and the potential need for further algorithmic refinement or more

extended evolutionary runs with different configurations.

In conclusion, this chapter demonstrates the viability of SGP in solving SR problems

and opens opportunities for future research through enhancing the utilized algorithms. The

close performance of SGP and LGP, along with the distinct advantage over TGP, positions

SGP as a promising tool in the field of symbolic regression. Future work could explore the

optimization of SGP parameters, the integration of other types of evolutionary algorithms

within SGP, and the application of SGP to a broader range of problems beyond the scope of

symbolic regression.
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Chapter 5

SGP for Decision Making Problems

Parts of this chapter are reproduced with permission from Springer Nature from [Miralavy

and Banzhaf, 2023c]. A small portion of this chapter is adopted from [Miralavy and Banzhaf,

2023a].

5.1 Introduction

In the previous chapters we utilized SGP in its spatial mode for solving a series of SR problems.

We also performed a spatial analysis on the system, investigating localization and quantifying

two instances of diversity. An evident characteristic of SGP is how it allows the individual

topologies to form free of constraint. However, in the spatial mode, this order is deterministic

and is not subject to change with regards to the problem inputs, significantly undermining

SGP’s power in it’s spatial mode for solving decision-making problems. In this chapter, we

study an extension of SGP which is adept in forming dynamic conditional pathways when

determining the order of the execution of the LGP programs within individuals. The primary

contribution of this chapter is introducing SGP in its programmatical mode. Same as the

spatial mode, this GP system is controlled by a 2D space that evolves LGP programs. In the

spatial mode of SGP, space plays the primary role in determining the order of execution of

LGP programs, however, in the programmatical mode of the system, it is not the only factor
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in doing so. In each individual, the program nodes form a network of interactions, responsible

for regulating the order of execution of the LGP programs based on their spatial properties

and the internal dynamics of the system. If necessary, the flexible representation of SGP

allows for controlling the evolution of iterative behavior to develop more compact models.

To show the effectiveness of the proposed system, we utilize SGP to solve different classes of

problems which require decision-making and compare it to two common GP paradigms.

Figure 5.1: Model representation and interpretation steps for an SGP model with 4 programs
in its programmatical mode a) Different contributions to the cost function. b) Step 1: P1
is selected since it has the lowest traverse cost from the starting point. Red values indicate
cost c) Step 2: P1 is the source point and P0 with the lowest traverse cost is selected. d)
Step 3: P0 is the starting point and P2 is selected

5.2 Programmatical Spatial Genetic Programming

As discussed, SGP models are program nodes spread in a 2D coordinate system. The aim of

the SGP interpreter is to choose the order of program executions until a termination condition
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is met while minimizing the traversing cost between programs. In the programmatical mode

of SGP, a different cost function is employed to calculate the cost of moving from the source

coordinate (starting from (0, 0) as null program) to other program nodes. In each step,

a weighted network of interactions between all the program nodes is formed in which the

weights are the cost of traversing from a source coordinate to a destination program node.

Unlike the spatial mode, these weights do not solely rely on the proximity between programs

but alter as the source coordinate or the internal state of the system change.

Similar to the spatial mode, the program with the lowest traverse cost is then selected to

execute prior to the others. If termination conditions are not met, the same process repeats.

The position of the most recently executed program is then set to be the source coordinate

to determine the next program to be executed. In Figure 5.1a, an overview of an SGP model

is illustrated in its initial conditions. Each node represents a program and is labeled with

the program name. Each program contains instructions that manipulate internal memory

registers shared between all programs and outputs a single value corresponding to an internal

register, an input, or a constant value. In step 1 (Figure 5.1b), the cost of traversing from

(0, 0) to every other node is calculated (details of which can be found in the next section).

It is evident in the figure that the cost values calculated in each step do not only follow a

proximity rule. For example, P1 is not the closest node to the starting point (0, 0). However,

since P1 has the lowest cost, it is selected for execution. In the next step (Figure 5.1c), P1

is the source point for calculating the costs to every other node, and therefore P0 is chosen

for execution. The same principle continues until a termination condition is reached. A

similar algorithm to the spatial mode, indicates how SGP selects the next program in line

for execution. All of the individual programs are stored in a list. A loop on the program list

is performed to calculate the cost of traveling to each program. Safeguards for protecting

against infinite cost values and revisiting a node in case of loop-free configuration are in

place to prevent invalid selections. The program with the lowest traverse cost is chosen to

be executed.
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In its programmatic mode, there are similarities between Tangled Programming Graphs

(TPG) [Kelly and Heywood, 2017] and the SGP systems, as both evolve computer programs

and the relationships between them in the form of a graph, with different input values resulting

in different product graphs to be utilized. TPGs have been previously used for solving visual

reinforcement learning problems, such as Atari games, and have produced results comparable

to deep learning algorithms. TPGs are among the works closest to the idea of SGP in the

literature, as they are constructed based on mechanisms that control the execution flow of

programs until a terminal state is reached; however, there are key differences between the

two systems. In SGP, the execution order is determined by minimizing a traversal cost

value between the source program and every other program in the system. Furthermore,

SGP supports iterative behaviors by allowing programs to execute more than once. In

contrast, TPGs use a bidding system among teams of programs to determine the execution

pathways. SGP is controlled by a 2D space, making the spatial properties of the nodes

important for selecting the subsequent programs to execute. Finally, unlike TPGs, and more

like conventional GP systems, SGP uses a population of mutually exclusive individuals.

5.3 The Cost Function

The cost function considers the spatial and internal states of the system to calculate the cost

of traversing to a given program node based on a source coordinate.

cost =
Ltarget

Lmax

+
D(source, target)

Dmax

+R

In which R denotes the current value of the parameter set to be the output of the

target LGP program. L denotes program length, Lmax denotes the maximum program

length allowed, D() is an internal function that returns the Euclidean distance between two

coordinates, and Dmax denotes the maximum possible distance between two nodes of SGP.

Each LGP program terminates with a return statement that outputs a numerical value for

R. The current value of R cannot be pre-computed and at every step highly depends on

86



the previously executed programs and how the internal registers have been manipulated

prior to the cost calculation step. To retrieve the different R values associated with various

programs, it is not necessary to execute all of these programs in full. Instead, only the last

statement of each program is executed. If a target program has the lowest traversal cost and

is therefore chosen for full execution, then all of its statements are executed in order. The

impact of program length and the distance between nodes are normalized; however, the value

of R is not bounded to any range and depends on the problem inputs. This design decision

might increase the impact of R on selecting the next program significantly; however, the cost

function is configurable and can be modified to normalize the scale of R. It is prevalent for

models evolved in this mode to take different execution routes with different sets of given

inputs, forming dynamic solution graphs. This feature enables the opportunity to evolve

localization in the system so that different sections of an SGP model respond to different

sets of stimuli, a known characteristic of the brain in natural organisms.

5.4 Outputs, Termination Conditions and Model Exe-

cution

An imperative SGP system has four means of producing outputs. First is the numeric value

returned by the last executed SGP program. Second, SGP also outputs the system’s internal

state, which is all the register values (initially set to 0) manipulated during the run-time of

a model. Third, SGP operators are allowed to manipulate an external file, a computational

object, or a third-party environment. Finally, it is possible to associate terminal programs

with discrete actions or outputs. In other words, if a terminal program is reached, the action

associated with that program is performed in the problem environment ending the individual

execution. Depending on the model inputs, a different final program might get selected and

thus produce a different action.

Similar to the spatial mode, multiple conditions can end the execution of a model. Each

model program has a chance to be a terminal node and end the execution. Suppose a model
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does not have any terminal program. In that case, a limit equal to the total number of

programs in that model is set, breaking the execution if the count of executed programs

exceeds that limit. Execution also ends if there are no more candidate programs or if the

execution time exceeds a time threshold.

Figure 5.2: Crossover between two SGP models. Suppose (x, y) is the randomly chosen
point within r

2
distance of the center (0, 0). Programs within r

2
distance of (x, y) form Si

of parent A (red circle) and parent B (green circle), and the rest of the programs form So

(blue circle for parent A and purple circle for parent B). Offspring A is a combination of
the programs in Si of parent A and So of parent B and Offspring B is a combination of the
programs in Si of parent B and So of parent A

5.5 Evolution of Models and the Genetic Operators

Initially, a population of random SGP individual models is generated, in which the number

of programs in each model, their length, and the initial coordination of the nodes within

an allowed 2D space are randomly chosen. Next, an object pool of operators and operands

is created from which the operator and operand(s) of each statement or instruction are
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randomly selected. If there is no suitable operand for an operator, it will be removed from

the selection pool. Operator and operand objects are reusable and therefore do not add to

the computational cost of the system.

After evaluating models in each generation of the evolution, tournament selection is

applied to the population. The two best competitor models are selected and have a chance

to crossover to produce two offsprings or directly make it to the next generation of models

after mutation. If the crossover happens, a mutation with a chance is also applied to the two

new offsprings.

The 2D space of the SGP models is bounded by a radius parameter r, meaning that

the program coordinates must be within r distance from (0, 0). A random coordinate point

within r
2
distance from (0, 0) is selected to be utilized while performing crossover between two

individual models. Let us denote the set of programs within r
2
distance from the randomly

chosen point of an individual with Si and the set of programs outside that radius with So.

Then, in the crossover between parent A and B, every program in Si of parent A and So of

parent B form one offspring while the rest of the programs form the other offspring (Figure

5.2). There is no limit to the number of programs that are impacted by the crossover operator.

After crossover, there is a chance for every program of each individual to undergo mu-

tation. SGP mutations can happen on a structural level, i.e., altering a program location

or switching a program type (input program to output or vice versa), or on a statement

level, i.e., altering the LGP programs. There are three types of structural mutations. 1) A

program’s coordination can change by performing a random walk with a fixed random step

size. 2) The program type can alter from input to output or vice versa. 3) A program can be

added or removed from/to the system. These modifications, along with an LGP mutation

that targets the return value of the programs, are responsible for changing the behavior of

how the programs will be selected for execution. There are three types of LGP mutations,

which add statements to the program, delete a statement from the program or modify an

existing statement if possible. By default, these mutations have an equal chance of occurring.

89



5.6 Conditional Return Statements

One of the abilities of SGP is to evolve rational pathways that change in response to the

problem inputs. Conditional operators such as the basic if statements can help build a logic

behind the return values of each program, forcing a different order of execution when different

input values are given to the system. By default, however, SGP requires each program to

have a final single return statement that cannot be connected to any other operators, such

as being tied to a conditional if statement. Since allowing evolution to use a combination of

conditional operators and internal state values to evolve conditional pathways is not trivial,

we came up with the idea of replacing the normal return statements of the program with a

custom conditional operator called RetCon (stands for Return Conditions). This operator

forces a condition on the return statement in a way that if the condition is true, an internal

state value or a constant value will be returned. Otherwise, another return value will be

selected. The two return values could be the same.

5.7 Experiments and Results

In this section, we apply SGP to a set of problems classified into two case studies to analyze

the behavior of the system by comparing different modes of otherwise identical SGP setups

with classical TGP and LGP. The TGP included in the DEAP framework [Fortin et al.,

2012] and the same LGP system used for the SGP programs were used to conduct the

experiments. The use of RetCon in SGP facilitates the evolution of conditional pathways,

making SGP models well-suited for addressing problems that require decision-making. The

specific problem set for each case study was selected due to the presence of a decision-making

component. The experimental setup used for solving the problems of this chapter is as

described in table 5.1.
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Parameter Description Value
g Number of evolutionary generations 1000

Sizepop Population size of the experiment 100
Sizetournament Size of the tournament selection pool 5

e Number of elites that are directly selected to be a 1
part of the next generation

mspatial Spatial mutation rate 30%
mLGP LGP mutation rate 60%
C Crossover rate 100%

costi Cost function cost = Ltarget

Lmax
+

D(source,target)
Dmax

+R

Topology Describes any topological limitation for placing circle
nodes on the 2D space

Typeoutput Describes the output type of the system 20%
Countevaluation Number of evaluation of an 10+

individual model
Countregisters Number of internal system registers inputs + 2
initSizemax Maximum number of programs per individual 5

during initialization
Sizemax Maximum number of programs per individual 10

lgpInitSizemax Maximum number of statements per program 3
during initialization

lgpSizemax Maximum number of statements per program 8
T Maximum individual evaluation time 200ms

radius Size of the topology representing the 2D space 20
SetOP Operator or function set Problem-dependent

Constants Set of constant values 1, 2, 3
RevisitPenalty Penalty for revisiting a node when loop is allowed 0.03

reps Number of replicates for each experiment 50

Table 5.1: Parameter setup of SGP. Relevant parameters for LGP and TGP are chosen
similarly

5.8 Results: Classic Control Problems

OpenAI Gym [Brockman et al., 2016] is a library of Reinforcement Learning problems in

Python which helps with the development and comparison of problem-solving algorithms by

providing a straightforward environment-to-algorithm API. In particular, we tackled Cart

Pole, Mountain Car, Pendulum and the Acrobat problems from the Gym library which are

detailed as follows:
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• The Cart Pole Problem: This is a version of the cart pole problem introduced

in [Barto et al., 1983]. In this problem, a pole is attached to a moving cart on a 2D

track through a non-actuated joint. The goal of this problem is to prevent the pole

from falling by accelerating the cart pole to the left and right (Figure 5.3a).

• The Mountain Car Problem: In this problem, a car is randomly placed at the

bottom of a sinusoidal valley. The goal is to reach the end state (shown as a flag

in Figure 5.3b) by accelerating toward the left and right to build the momentum to

cross the valley. The description of this problem first appeared in the thesis of Andrew

Moore [Moore, 1990].

• The Pendulum Problem: This is a famous problem in control theory in which a

reverse pendulum is attached to a fixed point, and the goal is to torque the pendulum

so it faces upwards in a way that its center of gravity is directly above the attached

point (Figure 5.3c).

• The Acrobat Problem: In the acrobat problem, two links are attached, forming a

chain while one end is free and the other is attached to a fixed point. The goal is to

apply torque to the chain so it swings, and the free end reaches a certain height (shown

as a line in Figure 5.3d). This problem is introduced in [Sutton, 1995].

(a) Cart Pole (b) Mountain Car (c) Pendulum (d) Acrobat

Figure 5.3: Four different classic control problems tackled in this chapter
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(a) Cart Pole (b) Mountain Car

(c) Pendulum (d) Acrobat

Figure 5.4: The fitness over generations plot for solving the four classic control problems.
a) Fitness equals to the number of steps in which the pole is held in an upright position. b)
Fitness represents the car altitude at the end of each evaluation. c) Fitness equals to the
altitude of the free end of the Pendulum at the end of each evaluation. d) Fitness indicates
a -1 penalty for each step in which the free end has not passed the threshold line

Figure 5.4 shows the results for tackling the OpenAI Gym classic control problems. 50

replicate experiments with different random seed values were conducted for each of the four

problems. The median fitness values over generations for the best-evolved models of each

replicate are illustrated. The shaded areas represent the 25 and the 75 quantiles, while

the solid lines represent the median. Three configurations of SGP are tested against these

problems and are compared with classical TGP and LGP. Prog refers to the programmatical

mode of the system; Prog RetCon indicates the usage of conditional return statements in the
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programmatical mode, and Spatial refers to the spatial mode. In the spatial mode, the usage

of RetCon operators does not make a difference since the return statements of the programs

do not change the execution order. All of the experiments are run for 1000 generations;

however, depending on the problem, after a certain number of generations, the fitness values

cease to change, and therefore, a portion of the generations are selected to ease the analysis

of the results. Finally, even though all the classic control problems are deterministic, the

starting conditions are slightly randomized (e.g., the position of the car in the mountain car

problem) to help the problem solvers find a generalized solution. For all of the experiments,

if, assign, and basic math operators are used as the function/operator set of LGP and SGP.

To solve the Cart Pole problem, SGP is configured to use discrete outputs in which

each individual must consist of two terminal nodes, each associated with an action of either

accelerating the cart towards left or right. 5.4a shows the results for solving the Cart

Pole problem. SGP with RetCon and TGP solve this problem in less than 20 generations.

Programmatical settings without RetCon also solve the problem. However, it takes more

generations to solve, and the shaded green area shows that it takes more time for all the

individuals in all the replicates to be able to solve this problem while all the individuals of

the replicates for the RetCon settings solve the problem in less than 30 generations. LGP

also solves the problem but its performance is not as good as the rest of the approaches The

spatial setting fails to solve the task over all generations since, in this setting, the network

inputs do not change the execution order of the graph. In other words, the same discrete

action is always taken; therefore, constant fitness is achieved over generations.

Same as the Cart Pole problem, for the Mountain Car problem, SGP is configured to

use discrete outputs. As illustrated in Figure 5.4b the RetCon outperforms the other two

configurations by solving the problem for all the replicates in less than 50 generations.

LGP performs slightly worse, solving the problem in approximately 60 generations. The

programmatical setting without RetCon has a cold start, but the replicates mostly solve the

problem at around 450 generations. However, the difference between the fitness of the best
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models among all the replicates varies greatly. The shaded orange area shows that there are

individuals in the TGP approach that solve the problem but the median results are worse

than the other approaches in 500 generations. Once again, the spatial mode fails to solve

the problem while producing a constant fitness.

The nature of the Pendulum problem is slightly different from the other problems since

it requires a continuous output indicating the amount of torque applied. Unlike the other

three problems, the spatial configuration performs comparable to the other approaches.

TGP outperforms all other approaches; however as shown in Figure 5.4c fitness values of

approximately 10−4 were achieved by the best individuals of all the approaches showing

almost an upright position of the pendulum. The high fluctuation of the median line is due

to the high impact of the random starting position of the pendulum on the outcome of the

evaluation.

The final classic control problem tackled in this chapter is the Acrobat problem. As

illustrated in Figure 5.4d, SGP manages to solve the problem in both programmatical modes

with or without RetCon in less than 5 generations and improves its performance until 10

generations managing to reach the specified line in all of the best models in about 60 steps.

Like the other discrete output problems, the spatial mode drastically fails by only producing

a constant output. TGP has a slightly worse performance while LGP solves the problem in

40 generations.

5.9 Results: Custom Toy Problems

The custom Toy Problems is a custom library of three Reinforcement Learning problems

included with the SGP source code that can be briefly described as the following (Figure

5.5):

• The Adventure Problem: This problem is inspired by an Atari 2600 game called

Adventure [Chance, 2022]

• The Foraging Problem: This is a famous classic Artificial Life problem in which an
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agent has to gather all the food spread in a 2D grid. The tiles are often blocked by

obstacles or walls (Figure 5.5b).

• The Obstacle Avoidance Problem: As illustrated in Figure 5.5c a car agent is

driving on a road that is occasionally blocked by randomly appearing roadblocks. The

car agent has to avoid hitting the roadblocks for a specified number of time steps.

(a) Adventure (b) Foraging (c) Obstacle Avoidance

Figure 5.5: Three different toy problems. Icons used in the images are from: flaticon.com

Figure 5.6 depicts the results produced for solving the three Toy Problems for 50 repli-

cates. The only non-deterministic problem is Obstacle Avoidance since the roadblocks spawn

randomly.

In the adventure problem, the observation consists of 6 integer inputs corresponding to

the agent’s vision cone and a single bit corresponding to whether the agent has picked the

treasure or not. The agent’s vision cone shows two three-tile rows in front of the agent. The

problem’s action space consists of three discrete actions: moving one tile ahead, turning left,

and turning right. All the entities in the problem grid and the empty tiles are coded with

unique integer values and are visible to the agent. The agent can move to the treasure tile

to automatically pick up the treasure. A small reward of 0.01 is given to the agents that

move. The computational models are responsible for giving an agent instructions to solve

the task through actions, and the individual’s fitness equals the score the controlled agent

achieves. A significant score of 10 is given to the agents that manage to grab the treasure,

and a very significant score of 20 is given to the agents that reach the final destination while

carrying the treasure. The simulation ends after 100 time steps or when the agent reaches

the final destination or falls into a trap. The score is returned to the SGP evolver module as
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the controlling model’s fitness value. Figure 5.6a depicts the results produced for solving the

Adventure problem over 500 generations.

(a) Adventure (b) Foraging

(c) Obstacle Avoidance

Figure 5.6: The fitness over generations plot for solving the three toy problems. a) Fitness
indicates the score of the agent at the end of evaluation. b) Fitness is equal to the number
of food gathered by the agent c) Fitness is the total number of time steps that the agent has
survived the environment

As expected, the spatial configuration fails to solve a task with discrete output. The

programmatical settings manage to evolve agents capable of picking up the treasure; however,

they fail to reach the final destination. The RetCon settings, however, solve the problem
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entirely in less than 250 generations. TGP slightly outperforms the Prog settings since in

later generations, the best TGP individuals fully solve the problem. LGP on the other hand,

only manages to find the treasure in the later generations but fails to completely solve the

problem and the median line always stays low.

The Foraging problem has an observation space consisting of 6 inputs corresponding

to the agent’s vision cone. Like the adventure problem, the vision cone includes the two

three-tile rows in front of the agent. The action space of the problem is the same as the

Adventure problem consisting of three actions: moving, turning left, and right. A total of 20

food tiles are available for the agents to take, which are often placed at the end of a maze-like

pattern in which the agent will have to return to the path taken to reach the food to get

out (e.g., top left food in Figure 5.5b). The simulation is run for 200 time steps while no

reward is considered for moving. Compared to other problems, this is a more challenging

task to solve since the maze-like patterns make it quite difficult to gather all the food in the

allowed time steps. Figure 5.6b shows the result for solving this problem. Same as most

cases, the Programmatical settings with RetCon outperforms the other two modes while

being able to gather as much as 14 food items at best among all the replicates. The changes

in the median line seem to show evolution after 700 generations. Perhaps, running this task

for a more extended period would help the system to completely solve the problem. The

programmatical SGP needs substantially more time to evolve conditional logic to solve these

types of problems only using a basic if statement, and the spatial mode fails to solve the

task. The performance of TGP on this scenario is slightly worse than the RetCon settings

while LGP only manages to perform better than the spatial mode after approximately 400

generations.

The observation space in the obstacle avoidance problem consists of 12 integer values

corresponding to the vision cone of the car agent. This vision cone includes four three-tile

rows in front of the agent. The action space of the problem is three discrete actions: moving

left and right and doing nothing. To achieve a perfect score, the car agent must avoid all the
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roadblocks for 100 time steps. The number of time steps before the car agent hits a roadblock

is the fitness of the controlling SGP model. Figure 5.6c shows the results produced for solving

this task. Both SGP programmatical configurations with or without RetCon manage to avoid

all the obstacles in less than 20 generations. At the same time, it takes a bit longer for all the

replicates to completely solve the problem for the setting without RetCon. The fluctuations

in the case of spatial mode are due to the randomness of the roadblock patterns selected to

appear in the far front of the car. TGP and LGP do not achieve good fitness levels on this

problem but outperform the spatial mode.

5.10 Results: Impact of a Spatial Crossover on the

Evolution of Programs

To check whether the mechanisms in the system impact the spatial properties of the SGP

models, an experiment was conducted with a different crossover algorithm called the Spatial

Crossover. This crossover is quite similar to the normal crossover used in SGP however,

instead of choosing a random circular area to form Si, programs that are located in the top

right quadrant of the 2D space (x-coord and y-coord greater than or equal to 0) are selected

to form Si of the parent individuals. In this approach, always the same spatial portion of the

individuals swap to form offspring. We tracked the position of all the individuals’ programs

(not just the best) in all the 50 replicates. The results are summarized in Table 5.2. SC stands

for Spatial Crossover, NC stands for Normal Crossover and P1 and P2 refer to two arbitrary

test problems. The 2D space of each individual is divided into four quadrants starting from

the top right (Q1) and going clockwise to the top left (Q4). Results show that in the case of

using the Spatial Crossover, programs tend to move out of the Q1 area in which the crossover

is happening. This behavior is reflected by the significantly lower percentage of appearance

of programs in Q1 compared to the case where the normal crossover is being applied. The

employed spatial crossover swaps full LGP program nodes to or from a SGP model. While

this method adds significant diversity early in the evolution, it can become destructive later,
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as it is agnostic to the logic behind determining the execution flow of each model. The

implication of this experiment is that nodes tend to move away from the crossover region.

Quadrant
RetCon P1

(NC)
RetCon P1

(SC)
RetCon P2

(NC)
RetCon P2

(SC)
Spatial P1

(NC)
Spatial P1

(SC)
Spatial P2

(NC)
Spatial P2

(SC)
Q1 25.69% 12.63% 26.23% 10.98% 27.51% 8.98% 34.17% 6.8%
Q2 22.09% 30.21% 22.84% 27.07% 21.68% 29.78% 26.48% 28.58%
Q3 27.87% 27.72% 23.79% 29.32% 21.66% 30.38% 17.68% 33.52%
Q4 24.34% 29.64% 27.14% 32.63% 29.14% 30.87% 21.67% 31.1%

Total 38310 40030 27.14% 38493 38566 41742 38059 41597

Table 5.2: Position of the final programs of all individuals in the latest generation using
Normal Crossover (NC) and Spatial Crossover (SC) for two test problems

5.11 Results: Tackling the Santa Fe Ant Problem

Revisiting the inclusion of loops in SGP and examining localization at both the LGP and

SGP levels, we tackled a variation of the classic Santa Fe Ant Problem, also referred to as

the Artificial Ant problem. The common approach for addressing this challenge involves

evolving a routine that directs the ant agent to maximize the number of food pieces consumed

within a specified number of time steps. In contrast, our approach treated the problem as an

external environment. We tasked SGP with not only evolving a routine but also formulating

an iterative structure to execute the evolved procedure. SGP controls an ant agent capable

of navigating a 2D grid, even though it lacks any knowledge about the food’s location until

it employs an action to detect the presence of food in a single grid cell ahead. The problem’s

objective is for the ant agent to maximize the amount of consumed food, which is scattered

in the form of multiple separate trails.

The problem’s action space comprises discrete actions: ”move,” ”left,” ”right,” and

”sense.” These actions are provided to SGP as callable operators that engage with the

problem’s environment. Essentially, when these methods are invoked, they either alter the

state of the ant agent within the 2D space or probe the surroundings for available food in

front of the ant, returning relevant sensory data.

In the experimental setup, SGP was equipped with basic mathematical operators, the

discrete actions previously described, an ”if” operator, and an ”assign” operator. The output

from the ”sense” method could be directly employed as the condition in the ”if” operator.
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We carried out experiments using four configurations of SGP: programmatical with RetCon

settings, either with or without loops, and a Spatial configuration, also available with or

without loops.

For the problem addressed, evolution can produce conditions that detect food in front of

the ant agent and, based on the result, prompt the executing program to return a specific

numerical value. As the cost function is influenced by the return values of the programs,

RetCons facilitate the evolution of conditional execution orders, simplifying finding fitter

models for solving decision-making problems.

Each individual was restricted to a maximum of 10 programs. SGP had a limit of 600

actions before the problem was terminated, and a fitness score equivalent to the number

of food pieces consumed by the ant agent was computed. Figure 5.7 showcases the results

for addressing the Santa-Fe Ant variation. To solve this problem, the SGP models had to

develop a routine enabling the ant agent to strategically move to gather the food on each trail

while simultaneously evolving an iterative structure in charge of repeatedly executing the

routine. The RetCon, Spatial, and Spatial Loop configurations exhibited similar performances,

with the Spatial Loop setup marginally surpassing the other two in the earlier generations.

Conversely, the RetCon Loop configuration consistently outperformed the other setups across

the generations, efficiently utilizing its iterative structure to gather 54 of the available 80

food items in a concise representation.

The smallest SGP model, consisting of just four programs, provides an intriguing study

case for the Santa Fe Ant problem. While it may not have achieved the highest score in

terms of collected food, its streamlined structure offers valuable insights. Notably, there’s

evidence of program localization, where distinct programs specialize in specific tasks. The

primary aim of our current assessment is to delve deeper into the workings and efficiency of

this concise model.

The illustrated programs in Figure 5.8 provide a view of the chosen individual’s operational

functions. Upon inspecting the evolved programs p0 and p1, it becomes clear that they are
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Figure 5.7: The fitness over generations plot for the Santa-Fe Ant variation. The plots
represent the median performance of the top models over 50 repetitions of each experiment
across various evolutionary generations. Four distinct SGP configurations were employed
for this problem. ”RetCon” indicates the Programmatical mode using the RetCon operator.
”RetCon Loop” is akin to RetCon but permits the repetition of the same program multiple
times. ”Spatial” denotes the Spatial mode, while ”Spatial Loop” is the Spatial mode that
incorporates loops

comprised of function calls directing the ant agent to progress straight and turn either right

or left, respectively. When deployed in a precise sequence, these programs enable the ant to

traverse the grid, ensuring that it does not retrace its steps and effectively covering multiple

directions.

This evolved individual demonstrates an interesting iterative pattern, depicted in Figure

5.9. It initiates with p0 from the starting coordinates (0, 0), transitioning to pattern a

as shown in Figure 5.9a. Here, the execution bounces between P0 and P1, directing the

ant to cover the grid, collect any discovered food, and make a turn before each program’s

termination.

Subsequently, pattern b (visible in Figure 5.9b) takes over, with p3 diverting from p0.

This leads to a repetitive interplay between p0 and p1. After several such iterations, the
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(a) P0 (b) P1

(c) P2 (d) P3

Figure 5.8: LGP programs associated with the SGP nodes of the studied individual model.
simulator is an object controlling the problem environment. Four internal register variables
(a0 to a3) are shared between the programs. op div is a protected division operator which
returns 1 if division by zero occurs. P2 is the only terminal program

pointer loops back to p3, causing a repeat of this same pattern.

The concluding pattern, c, is displayed in Figure 5.9c. This pattern surfaces when the

model’s other maneuvers have been exhausted, often triggered by a penalty for revisiting

the same grid sections. After several back-and-forths between p0 and p1, the system finally

settles on the terminal program, p2.

This intricate substitutions of patterns underscores the model’s adaptive power to maneu-

ver based on the environment’s feedback and the problem’s inherent goals. Notably, the clear

differentiation in the roles of p0 and p1 with regards to their task or behavior highlights a

manifestation of modularity at the LGP level, where the two programs distinctively manage
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straight movements and directional shifts.

(a) Iterative Pattern 1 (b) Iterative Pattern 2 (c) Termination Pattern

Figure 5.9: Iterative patterns evolved for the selected individual

5.12 Conclusion

This chapter introduced a new mode of SGP, a GP paradigm which accounts for the dimension

of space as a first-order effect to optimize. SGP can work in two modes of spatial and

programmatical, which bring unique characteristics to the system, allowing it to evolve static

and dynamic graphs, respectively. The impact of these two operation modes was tested against

two classes of problems while introducing conditional return statements. SGP was tested

against four classic control problems of OpenAI Gym library. RetCon’s ability to quickly

evolve conditional statements to choose the right pathway of the graph by manipulating the

weights of the underlying regulatory network was shown during these experiments. For all the

cases except the Pendulum problem, RetCon quickly solved the control tasks. The Pendulum

problem required less decision-making and more accuracy on the produced continuous outputs

(amount of torque). The programmatical mode without RetCon was able to solve the control

problems as well. However, it takes more time for evolution to evolve the factual conditional

statements in the LGP programs to reflect the same decision-making structures. The spatial

mode fails in producing discrete outputs while showing promise in the Pendulum problem

that requires continuous outputs. This is because of the ability of the spatial mode to refrain

from using too many conditional statements and rely more on the power of LGP to produce

continuous outputs. SGP was compared to two other approaches of TGP and LGP. Except

for the Pendulum task which had a more continuous nature, SGP outperformed the other

two approaches in all cases.
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Three custom Toy Problems were introduced in this chapter, on which SGP was tested.

These problems had a larger observation space compared to the classic control problems.

Comparing the three tested configurations, SGP produced a similar result to the control

problems, with RetCon outperforming the two other configurations. The more complex

observation space did not significantly impact the performance of SGP showing better per-

formance than TGP and LGP. The Foraging problem was not completely solved; however,

improvements in the fitness values showed the possibility of solving this problem if run for

an extended period.

A shortcoming of SGP is not having enough control to create a balance in evolving

structural elements and LGP programs simultaneously. Perhaps, the utilization of parallel

island models that decouple focusing on the evolution of the structural elements and the SGP

programs from the main population while interacting with it now and then could be helpful

to achieve better results. Furthermore, a method for optimizing the system hyper-parameters

during evolution could also be among the future directions of this work. As of now, the cost

function used in the system adds the normalized distance and length to the return value of

the SGP programs. This reduces the impact of distance and length compared to the possible

return values. Perhaps a different cost function can result in more exciting results. Finally,

to show the effectiveness of SGP, it is necessary to apply it to more realistic and complex

problems and to compare it with state of the art problem solvers.
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Chapter 6

Summary and Discussion

6.1 Introduction

In the final chapter, I summarize the content of each chapter of the thesis, discuss the

significance of the work performed for each chapter, and discuss the future possible research

opportunities. Finally, I conclude this thesis by the points I realized throughout conducting

my experiments and research on the subject.

6.2 SGP Framework for Studying Space in Evolution

Chapter 2 provides a comprehensive overview of Spatial Genetic Programming (SGP) as

tool for studying speciality in GP. SGP is a tool that leverages the addition of spatial

properties to its individuals to enhance its problem-solving capabilities. This chapter begins

with a discussion on the importance of spatial considerations in computational regimes and

how space is often abstracted away in computational regimes. It proceeds to introduce the

core components and mechanisms of the SGP algorithm, including an introduction to the

mutational operators, the role of LGP programs within the system, and how the system

evolves its individuals. The flexibility of SGP is highlighted by its ability to incorporate new

operators for addressing specific problems. The translator component in SGP, which can
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convert SGP models into Python scripts, increases the transparency and understand-ability

of the evolved individuals.

Additionally, the chapter delves into the configuration parameters of the SGP system,

while explaining each setting’s role in tailoring the system for solving various computational

tasks. It also outlines a suite of benchmark problems designed to assess the performance of

different SGP or LGP setups. The chapter sets the stage for subsequent discussions on the

experiments conducted using SGP across different problem classes.

This chapter advances the field of GP by integrating spatial structure into the evolu-

tionary process, which is a relatively unexplored dimension in the field. Such investigations

could result in the emergence of more robust and efficient problem-solver algorithms. By

embedding spatial constraints and relationships within the SGP paradigm, SGP provides a

novel approach to problem-solving that can potentially lead to solutions that are not only

innovative but also more reflective of complex real-world systems where spatial relationships

are key. Furthermore, the detailed configuration parameters and the inclusion of a diverse set

of benchmark problems demonstrate the flexibility and potential applicability of SGP across

various domains. The ability to translate evolved models into Python scripts enhances the

practicality of the system, allowing for easier integration with existing software and further

analysis. This research could pave the way for new applications in areas such as control

systems, and game strategy development, where the spatial aspects of a problem are integral.

Moreover, the contribution of this chapter can serve as a foundation for future studies that

may investigate the impact of spatiality on evolutionary algorithms.

Accounting for a fundamental dimension such as space in the GP individuals is not a

trivial task and requires enormous amount of implementation and consideration for design

decisions hindering the research. This makes existence of tools which can accelerate the

research process and remove the need for unnecessary implementations extremely important.

Such scenarios are evident when witnessing how frameworks such as PyTorch [Paszke et al.,

2019], TensorFlow [Abadi et al., 2016] or scikit-learn [Pedregosa et al., 2011] have been
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used frequently in the literature. The SGP tool presented in this dissertation provides

researchers with a modular framework in which each module can be replaced with newly

implemented custom modules which in turn change the behavior of the underlying algorithm

accordingly. The implementation of SGP is meant to be simple and self-explanatory and

introduces a lot of research opportunities. The SGP tool is available online for free at:

[https://github.com/elemenohpi/SpatialGP].

Given the variety of parameters and settings available within SGP, auto-tuning such

variables to conduct experiments could be conducted to optimize these settings for various

classes of problems. The power of SGP is highly dependant on the problem solver that is

utilized as its nodes. There is potential to extend the research to hybridize SGP with other

evolutionary algorithms or machine learning methods to create more powerful problem-solving

frameworks.

Another promising direction is the application of SGP in dynamic environments where the

evolutionary process could benefit from real-time adaptation to changing spatial constraints.

This would require establishment of a link between the spatial properties of the programs

within an individual and the spatial components of the environment. In addition, investi-

gating the scalability of SGP to tackle large-scale problems and integrating multi-objective

optimization criteria could provide valuable information. Finally, enhancing the usability of

SGP through improved user interfaces and visualization tools would make it more accessible

to researchers and practitioners across various scientific and engineering disciplines. Specifi-

cally, the SGP algorithm takes a step towards a more biologically-close algorithm. Ease of

access in SGP could potentially help biologists to use this system to better understand and

study the phenomena occurring in nature in which space plays an integral role.
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6.3 Impact of Space in the Evolution of the SGP indi-

viduals

Chapter 3 presents an exploration into the effects of spatial components on the evolution and

efficiency of SGP. An interesting observation in the chapter was how SGP programs utilize

spatial proximity as a unique method for evolving iterative structures. It was observed that

SGP systems inherently tend towards spatial organization, with a pronounced clustering of

programs as the evolution progresses. The study also noted that spatial aspects impacted

the diversity of the population, with LGP exhibiting greater fitness diversity, albeit not in

structural diversity, which was more influenced by SGP’s spatial operators. Various spatial

topologies such as Circle, Lattice, Line, and Ring were tested, revealing that certain topologies

could influence the evolutionary path and quality of solutions, with some performing better

than others depending on the problem at hand.

The introduction of spatial evolutionary operators like spatial crossover and region-specific

mutation rates added new dynamics, but didn’t substantially enhance performance in the

tested scenarios. Furthermore, extending the dimension of SGP into a 3D space, while the

intention was to mirror the complexity of biological systems more closely and to increase

control, did not improve outcomes over the 2D model. Overall, the chapter concludes that

while spatial structures add complexity to GP, they also open up possibilities for improved

diversity and analysis of the system.

By investigating the impact of spatial structures on the evolution of SGP programs, the

study advances our understanding of how spatial elements can be strategically leveraged

to enhance the diversity and performance of GP models. This is particularly important

because the SGP model in this case, mimics the dynamics of natural evolution, where spatial

distribution and diverse environmental conditions play critical roles in the development and

adaptation of organisms. Generally, evolving iterative structures in EAs is a cumbersome

task since it allows the necessary computations of the models to exponentially grow. The
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proposed method in this chapter for evolving iterative structures solves many challenges in

this area of the field.

The findings of this chapter highlights the potential of SGP to adapt to different spatial

topologies, suggesting that the physical arrangement of individuals within a population

can impact the evolutionary outcomes. While the extension to 3D space did not yield

significant performance improvements, this line of study may inspire further research into

multi-dimensional genetic programming frameworks. While measuring fitness diversity in

this chapter, it was found that SGP executes less number of statements compared to LGP

while the same maximum size was allocated for either systems’ individuals. It would be

interesting to perform the same fitness diversity measurement by repeating the experiment

while assuring that the average number of executed statements between the two systems are

on similar levels. Furthermore, maintaining a healthy amount of diversity in the population

of an EA, allows the individual models to escape local optima to find fitter solutions. A very

unique feature of SGP that becomes possible via the 2D space representing individuals, is

how it is possible to indicate regional mutation rates. In theory, it is possible to utilize a

combination of regional mutations rates and repositioning of SGP programs to assist with

valley-crossing and to avoid premature convergence of individuals.

Building on the insights gained from this chapter, future research could explore several

promising avenues. One immediate step could be to investigate the impact of spatial evo-

lutionary operators in more depth, particularly in how they affect populations over longer

evolutionary timescales and in more complex problem environments. Since the 3D spatial

setup did not show marked improvements in this study, a deeper analysis of how dimension-

ality interacts with problem complexity could be insightful, potentially identifying scenarios

where additional dimensions do yield benefits specially in cases that SGP programs need to

learn properties from a 3D space to solve a target problem.

SGP can facilitate the research in areas such as neuro-evolution if neural networks are

combined with it as the programs that control the outcome of the system. Additionally,
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applying these spatially structured GP models to real-world problems, such as those in bio-

informatics, network design, and artificial life simulations, could provide concrete benchmarks

for their effectiveness and lead to practical applications of the research. A finding that was

observed in this chapter indicated that SGP excels in solving loop problems that are consisted

of a single high-degree term or can be simplified as such. It would be interesting to design

more sophisticated evaluation metrics that could guide the evolution towards solving more

instances of SR problems that need iteration. A possible research avenue that was briefly

mentioned in this dissertation but not studied was performing a spatial analysis on population

level rather than individual level to specify traits that evolve in a population of individuals.

Such study could be potentially fruitful towards better understanding how speciation occurs

in such populations through spatial visualization.

Space intuitively aids in visualization. For example, elements within a space can be

easily depicted based on their spatial positions. Furthermore, as mentioned previously in

this dissertation, it is more trivial to classify spatial elements by repositioning them in space.

However, a very important characteristic of space that comes with elements being spread in

different spatial positions is how it can make parallelization intuitive. This idea can be clearly

observed in natural systems or even in computational ones, such as how distributed systems

operate while each component of such systems is located in a different spatial position. This

further increases the potential of utilizing island models in SGP, targeting different aspects

of the algorithm on each island. The same principle can be applied to create a parallelized

version of SGP in which programs execute concurrently in a temporospatial manner.

6.4 Solving Symbolic Regression Problems with SGP

Chapter 4 details an examination of SGP for solving Symbolic Regression problems, typically

addressed by GP algorithms. The investigation benchmarks SGP against LGP and TGP

through a series of 92 equations sourced from the Feynman lectures on Physics. The outcomes

of this comparative analysis are telling that SGP successfully solves 52 of these equations,
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closely trailing the 54 solved by LGP and significantly outperforming the 22 addressed by

TGP. The adoption of the Pearson correlation coefficient as the fitness measure is a important

to achieve such results in the study. The chapter concludes by confirming SGP’s potential

in solving SR problems, given its close performance to LGP and superior results over TGP.

The significance of these findings is in the potential refinement of SGP and its application

across a wider array of problems. The insights contribute to the domain of spatial evolu-

tionary computation, suggesting a robust methodology for solving regression problems and

highlighting areas for future research, such as the optimization of SGP parameters and the

exploration of other evolutionary algorithms within the framework.

This chapter represents a significant contribution to the field of evolutionary computation,

specifically in the context of SR problems. By investigating the application of SGP, it extends

the understanding of how different GP paradigms perform when tasked with finding symbolic

representations for given data. The detailed comparison against LGP and TGP using a

robust dataset from the Feynman lectures provides empirical evidence of SGP’s capabilities.

Notably, SGP’s comparable results with LGP and its clear advantage over TGP in solving a

majority of the test equations demonstrates its potential as a powerful tool for SR problems.

This is especially significant in light of the complexity and diversity of the problems tackled,

which are representative of real-world physics and mathematical challenges.

The chapter suggests several future directions for research in the field of evolutionary com-

putation, particularly with the application of SGP to symbolic regression problems. One area

of future investigation is the optimization of SGP parameters, which could involve fine-tuning

the algorithm’s settings to improve its efficiency and accuracy in deriving symbolic equa-

tions. Experimenting with different population sizes, mutation rates, and selection strategies

could result in valuable insights into the best practices for SGP application. Furthermore,

looking at the instances in which SGP failed to solve the problems indicates that usage of

semantically-aware operators could be specially helpful in promoting the algorithm to solve

the equations which were not solved in the experiments conducted in this work.
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Another prospective is the integration of other types of evolutionary algorithms with SGP.

This interdisciplinary approach could lead to hybrid models that leverage the strengths of

various evolutionary strategies, potentially leading to breakthroughs in the ability to solve

more complex SR problems. Furthermore, applying SGP to a wider array of problems beyond

the scope of SR, such as optimization challenges in engineering or predictive modeling in

finance, could demonstrate its versatility and effectiveness in other domains. The exploration

of these pathways promises to expand the applicability of SGP and evolutionary computation

as a whole.

6.5 Solving Decision-Making Problems with SGP

Chapter 5 points out a shortcoming of SGP in solving problems that requires decision making.

In order to address this issue, the programmatical mode of the system is introduced. In this

mode, the cost of travelling from a program node to the subsequent programs is impacted by

the state of the internal registers of the system in addition to the proximity of the programs.

The performance of this mode is tested against classic control problems from the OpenAI

Gym library and three custom Toy Problems. A new operator called RetCon was introduced

which further enhanced SGP’s capability in forming conditional pathways making it more

adept in solving the targeted class of problems. Comparison with the spatial mode of the

system should significant improvements on the evolved solutions, also pointing out that the

spatial mode is more suitable for solving continuous value problems.

This chapter also acknowledges limitations within SGP, such as the challenge of balancing

the evolution of structure and LGP programs. Future directions are proposed to enhance

the model, including the use of parallel island models and the optimization of system hyper-

parameters during evolution. It is also pointed out that a different more sophisticated cost

function might yield more substantial results. The chapter concludes with an emphasis

on the need to test SGP against more realistic and complex problems to truly validate its

effectiveness against state-of-the-art problem solvers.
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The significance of this chapter is pointed out by introducing the programmatical mode of

SGP. A simple change in the cost function, results in substantial changes on both the dynam-

ics of how the individuals evolve and execute, significantly increasing the performance of the

system when leveraged against decision-making problems. The introduction of conditional

return statements within the SGP model allows for a more refined approach to problem-

solving, showcasing its superior performance in a variety of test cases against established

methods like TGP and LGP.

Moreover, the chapter sets the stage for further research by identifying potential im-

provements and directions for future work. The contemplation of alternative cost functions,

the use of parallel evolution models, and the refinement of hyper-parameters underline the

ongoing evolution of the SGP framework. This work paves the way for a new generation of

evolutionary algorithms with enhanced decision-making capabilities, potentially impacting a

wide range of fields from artificial intelligence to automated control systems.

Future steps in the field of Spatial Genetic Programming (SGP) as discussed in the text

include the exploration of parallel island models, which might better balance the evolution of

structural elements and LGP programs. By decoupling these aspects, researchers could focus

on refining each component individually while still allowing for interaction and integration,

potentially leading to more robust and efficient solutions. Additionally, the development of

methods for dynamic hyperparameter optimization during the evolution process presents a

promising avenue. This adaptive approach could further tailor the SGP framework to the

specific challenges of different problems, enhancing the system’s flexibility and performance.

The application of SGP to more complex and realistic problems stands out as a critical

future step for the field. By benchmarking SGP against state-of-the-art problem solvers

in real-world scenarios, researchers can validate and show the practical effectiveness of the

approach.
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6.6 Next Steps

The core objective of this dissertation was to dissect the consequences of introducing space

as a fundamental concept in genetic programming individuals. Indeed, this study could

only cover a small portion of the vast possibilities that come with the utilization of space in

computational frameworks. In many cases, such as studying diversity, localization, or the

introduction of iterative structures through SGP, the goal was not to focus on the specific

topic as much as to present new ideas for future investigations.

SGP, as it currently stands, could be a potential tool for continuing research on spatial

GP models. The reason for this statement is based on how this tool, as software, has evolved

ever since this research was initiated. These changes were aimed at simplifying the usage

of the system, increasing its potency for research by introducing analysis tools, including

benchmarks that remove the need for implementations not related to the core of the research,

and so on. However, with all the benefits that come with SGP, there is much more that can be

done to improve it even further. For example, the implementation can be further optimized,

and interfaces can be added to the tool to enable scientists from other disciplines to use

the tool with ease. In evolutionary algorithms, in most cases, parts of the algorithm such

as evaluation of individuals are mutually exclusive. This aspect allows for these algorithms

to be parallelized. SGP is not an exception of this case. Parallelization of the evolutionary

algorithm in SGP, and perhaps more, will result in a computationally faster framework

allowing researchers to perform experiments in a shorter time.

An important consideration is how the spatial phenomena emerging through the evolu-

tion of individuals in SGP resemble nature. While it is extremely difficult, time-consuming,

and costly to conduct experiments regarding natural evolution, it is much more feasible

to study such experiments in a computational framework, which could be potentially fa-

cilitated through SGP. Unlike applications discussed in this dissertation which were more

focused on computational problem-solving, there’s an opportunity to mimic environmental

pressure through regional elements presented in SGP. Such experiments in SGP could lead
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to discoveries in the realm of natural evolution.

From a more engineering viewpoint, the idea of including spatial elements in computational

algorithms to enhance their performance is not a new concept. In this dissertation, a few

classes of problems were tackled, showing that SGP’s spatial overhead is not a hindrance to

performance in finding proper solutions. While SGP was compared to TGP and LGP in the

current manuscript, it is important to extend such comparisons with other state-of-the-art

algorithms such as Markov Brains or Neural Networks.

A possible future step towards further investigating spatial elements in SGP is to evolve

individuals where their spatial organization is correlated with the spatial properties of the

problem at hand. Tackling problems such as image processing where the position of the

pixels determine patterns that form shapes, or problems that require physical elements to be

positioned in a space such as circuit design could be a good step towards this goal.

In some cases, while solving high-degree equations similar to the f = a40 problem, SGP

found the problems very trivial, solving them in fewer than five evolutionary generations.

This was possible only by utilizing spatial proximity, a property of the dimension of space.

This area of research could be more fruitful than what was introduced in this dissertation. In

near future, the plan is to maintain and improve the SGP framework, focusing on making it

more accessible to the general audience by providing technical documentation and practical

guides. Finally, when evolving iterative structures, limitations were put in place to avoid

self-loops of nodes. It is interesting to see whether self-loops can be utilized in the system to

evolve more elegant and abstract solutions for problems that require iteration.
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Attributions and Other Contributions

Chapters of this work are extended text based on two manuscript that were authored by

Iliya Miralavy and Wolfgang Banzhaf: [Miralavy and Banzhaf, 2023c] [Miralavy and Banzhaf,

2023a]

Miralavy contributed on the original idea, implementation of software, conducting experi-

ments and writing the original manuscript. Banzhaf, contributed on improving the idea and

on the writing and revision of the manuscripts.

I made other contributions to the EC community which are described as follows:

• Protein Optimization Engineering Tool (POET): POET is a GP tool which facilitates

screening and mutagenesis in the process of Directed Evolution to aid protein engineers

to find fitter proteins with respect to specific target protein functions. As a result of

this research, the following manuscripts were prepared: [Miralavy et al., 2022], [Bricco

et al., 2023], [Scalzitti et al., 2023]

• An Artificial Chemistry Implementation of a Gene Regulatory Network: This work

discusses a biologically more realistic model for gene regulatory networks which incorpo-

rates Artificial Chemistry along with a spatial representation to model the interactions

between regulatory proteins called the Transcription Factors and the regulatory sites

of genes. The following manuscript describes this work: [Miralavy and Banzhaf, 2023b]

• Factorio Learning Environment (FLE): This study utilizes the engine of the video

game Factorio to create a benchmark for solving various realistic problem scenarios.

This work includes an interface that allows optimizers in any programming language

to interact with the benchmark. This work is published as: [Reid et al., 2021]
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