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ABSTRACT

Nuclear charge-exchange reactions at intermediate energies are powerful probes of the isovector
response of nuclei. They provide an opportunity to study isovector giant resonances, such as the
Gamow-Teller resonance and the isovector giant monopole and dipole resonances. The properties
of these giant resonances provide important insights into the bulk properties of nuclear matter
and have important implications for neutrino and astrophysics. In this work, the focus is on the
investigation of the properties of isovector giant resonances excited via the 'Ni(*He,) reaction
at 140 MeV/u up to excitation energies of 60 MeV to study the Gamow-Teller resonance, isobaric
analog state, isovector (spin) monopole, dipole, and quadrupole giant resonances.

The (*He, ) reaction was used as an isovector probe to investigate the properties of isovector giant
resonances in ®°Cu. To investigate these isovector giant resonances, the analysis was done through
a multiple decomposition analysis (MDA). The differential cross sections were fitted with a linear
combination of the distorted wave Born approximation (DWBA) angular distributions associated
with different angular momentum transfer AL. The angular distributions were calculated in DWBA
by using the code package FOLD code. Different giant resonances were seen at different excitation
energies. The results were compared with shell-model, and normal-mode calculations.

It was found that the Gamow-Teller strengths extracted from the experiment could be repro-
duced reasonably well by the shell-model calculations. The extraction of the isovector dipole and
monopole resonances was complicated by the presence of the quasi-free continuum. A detailed
extraction of the isovector monopole resonances was not possible. For isovector dipole resonance,
a reasonable consistency was found with the normal-mode calculations, after applying a simple
estimate for the contributions from the quasifree continuum.

Overall, this work provides valuable insights into the properties of isovector giant resonances,
highlights the importance of continuum subtraction, and provides a detailed analysis of the (*He,f)

reaction for probing these resonances at high excitation energies.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Charge-exchange (CE) reactions involve the exchange of charge between a target nucleus and a
nucleus of the incoming beam. CE reactions studies at intermediate beam energies (~ 100 MeV/u)
provide insight into isovector excitations, and isovector giant resonances in particular. These CE
reactions are associated with a change in isospin (AT = 1). By selecting specific types of CE
reactions, such as (n,p) or (p,n)-type CE reactions, one can define the projection of the isospin
quantum number as 7, = +1. A variety of excitations, associated with the transfer of different units
of angular momentum and spin, can be probed. Measurements of the properties of isovector giant

resonances are of interest for a variety of reasons:

* The experimental data can be used to test microscopic models of nuclei up to high excitation

energies and, therefore, test the underlying assumptions made for these models [1].

* The characteristics of isovector giant resonances are also useful to constrain macroscopic
properties of nuclei and nuclear matter. In particular, isovector giant resonances are associated
with out-of-phase oscillations of the proton and neutron "fluids" inside the nucleus. Therefore,
experimental data constrains the restoring forces when neutrons and protons are displaced

relative to each other and thus provide insight about asymmetric nuclear matter.

* The microscopic and macroscopic properties of isovector giant resonances have interesting
applications. For example, the properties of allowed and forbidden isovector transitions play
important roles in nuclear astrophysics and neutrino physics, as they determine stellar reaction
roles mediated by the weak interaction. In additions, macroscopic properties of the isovector
giant resonances reveal properties of the nuclear equation of states, with implications for

stellar phenomena such as neutron stars.

Experimentally, there are few data sets where spectra are obtained up to high excitation energies.



The motivation behind the present work is to investigate the 'Ni(*He,¢) reaction at 140 MeV/u up

to excitation energies of 60 MeV to study the:
* Gamow-Teller Resonance and Isobaric Analog State,
* Isovector (spin) monopole resonances,

* Isovector (spin) dipole resonances.

1.2 Thesis Organization

This work is divided into 6 chapters. Chapter 2 provides an overview of both microscopic and
macroscopic perspectives on giant resonances. It discusses the isospin structure of nuclei and its
significance in the isovector response. The chapter delves into the properties of isovector giant
resonances as they serve as tests of the microscopic model of nuclei at high excitation energies.
Additionally, it introduces the hydrodynamic model of giant resonances as a macroscopic model
describing a nucleus as a liquid drop of the proton and neutron fluids oscillating in different modes
around its equilibrium shape. The chapter further explores isovector giant resonances within the
charge-exchange spectrum. and concludes with an overview of the charge-exchange reaction probes.

Chapter 3 discusses a brief overview of the theoretical tools used to extract information about
charge-exchange (CE) excitations and the properties of the isovector giant resonances using the
distorted wave Born approximation in the code package FOLD. A brief overview of the Eikonal
approximation and the unit cross section for GT and IAS will be discussed in this chapter.

Chapter 4 provides an overview of the experimental setup and procedures used to investigate
isovector giant resonances in %°Ni up to excitation energy of 60 MeV by using the (*He,¢) reaction
at 140 MeV/u. The experiment was performed with the Grand Raiden Spectrometer (GRS) at
the Research Center for Nuclear Physics (RCNP) in Osaka University. Furthermore, this chapter
describes the procedures used to extract the differential cross sections from the three rigidity settings
(low, medium, and high) of the GRS.

Chapter 5 presents the results from the multiple decomposition analysis (MDA), where the

spectra were decomposed into contributions from resonances with different angular momentum



transfers. It shows the location of the isovector giant resonances investigated via the ®*Ni(*He, ¢)
reaction. This chapter details the findings for the Gamow-Teller strength, B(GT), and the study
of the B(GT) for the Ty + 1 states at 14.4 MeV and above in °°Cu, compared with known 7j + 1
states from 6ONi(p, p’) and %0ONi(e, e’) reactions. It elucidates the techniques for subtracting a
quasifree-continuum from the measured data. It underscores the significance of the continuum
subtraction. Finally, it delves into the extraction of isovector spin giant monopole and dipole
strengths. Comparisons with theoretical calculations are made

Chapter 6 marks the conclusion of the thesis with a general summary and future outlook.



CHAPTER 2
GIANT RESONANCES
2.1 Definitions and Classification of the Giant Resonances

2.1.1 Microscopic View of the Giant Resonances

In the microscopic picture, giant resonances are described as a coherent superposition of one-
particle one-hole (1p-1h) transitions excited from the ground state[2, 1], where the particle is a
proton (neutron), and the hole is neutron (proton). Charge-exchange reactions are associated with
the transfer of isospin (AT = 1). The projection of the isospin quantum number (AT,) can be
lowered (AT, = —1) or raised (AT, = +1 ) in the (p, n) or (n, p)- type charge-exchange reactions,
respectively. This is illustrated in Figure 2.1. The transitions to excited states from the ground state

for a certain giant resonance are characterized by the operator O?M [3]:
_)
04y =1 [F @ YL 13T, 2.1)

where J is the total angular momentum transfer (7 =T +_S>) and M is the projection of J, L is the
orbital angular momentum transfer, A defines the radial operator and is defined by A = AL + 2An,
where AL is the orbital angular momentum transfer, and 7 is the change in the major oscillator for
transition. If the excitation goes across a major oscillator shell, A will be increased by 2. This is,
for example, the case for the isovector giant monopole resonance (IVGMR) and its spin-transfer
partner, the isovector spin-transfer giant monopole resonance (IVSGMR). ?L) is the spherical
harmonic associated with L, & is the spin-transfer operator, and 7 is the isospin operator, with
u = x1 for charge-exchange reactions, where u is the isospin projection.

The total transition strength is constrained by the most coherent superposition of the particle-
hole excitations associated with a specific one-body operator as described through [1, 3, 4, 5, 6, 7].
The strength function described the response of a nucleus to an arbitrary one-body operator O

connecting the ground state of a nucleus to the excited states:

So = ) [(@|O|®)['6(E; — Ei) MeV 2.2)
f



Protons Neutrons Protons Neutrons

Figure 2.1 Schematic representation of collective one-particle one-hole (1p-1h) excitations of the
isovector giant resonances for AT, = —1 reactions (e.g., (p,n), CHe,?)) (left) and AT, = +1 reactions
(e.g., (n,p), (t,>He) ) (right). The arrows correspond to a constructive contribution from each p-h
component. Figure taken from [3].

where |d),~) and |<I>f) stands for the ground (i) and final (f) states respectively. For continuum

states, the sum turns into an integral.

2.1.2 Macroscopic View of the Giant Resonances

In the macroscopic picture, giant resonances are defined as a collective motion of nucleons
involving many if not all the particles in the nucleus, causing density oscillations in the proton and
neutron nuclear fluids [8]. Such collective oscillations are categorized into two types: isoscalar
(AT = 0) if the proton and neutron fluids oscillate in-phase, and isovector (AT = 1), if they oscillate
out-of-phase. In addition, the collective motion can be associated with spin. If nucleons with
opposite spin oscillate in phase the resonances are referred to as electric (AS = 0). If nucleons
with opposite spin oscillate out-of-phase, the oscillations are referred to as magnetic (AS = 1).
They are depicted schematically in Figure 2.2. In this work, we will focus on the isovector giant
resonances. Table 2.1 lists the acronyms used to describe these resonances in this thesis, although
other variations exist (for example, the acronym SDR can represent the IVSGDR). The table also

includes the relevant quantum numbers for each of these giant resonances. The list of isovector giant



resonances in Table 2.1 can be extended to resonances of higher multipolarity, but identifying such
excitations is difficult since they are situated on top of the continuum background and their angular
distributions are not very distinctive. The IAS and GTR cannot be associated with a hydrodynamic

motion as there is no radial component to the operator (r* = 1).
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Figure 2.2 Schematic of the macroscopic depiction of giant resonance modes. The symbols p and
n represent proton and neutron fluids, and the small triangles indicate spin direction and refer to
either up or down. The arrows show the direction of motion of the fluid components. Single
asterisks indicate resonances for which a second contribution exists in which spin directions are
reversed. The double asterisk indicates that this resonance does not exist in first order. The figure
was modified from Ref [3].



Table 2.1 Overview of the isovector giant resonances and their quantum numbers. AT stands for
isospin-transfer, AL for angular momentum, AS for spin, AJ for total angular momentum transfer
(AJ = AL + AS ), and « for the charge in parity. If the charge-exchange reaction is associated
with angular momentum and spin transfer, the excited giant resonance has several components with
different total spins. An is the change in the major oscillator shell, and A1 = AL + 2An.

Transition name AT AL AS AJ” An  AA(hiw)
Fermi/Isobaric Analog State (Fermi/IAS) 1 0 0 o0 0 O
Gamow-Teller Resonance (GTR) 1 0 1 1* 0 0
Isovector Giant Monopole Resonance (IVGMR) 1 0 0 o 1 2
Isovector Spin Giant Monopole Resonance (IVSGMR) | 1 0 1 1* 1 2
Isovector Giant Dipole Resonance (IVGDR) 1 1 0 1 0 1
Isovector Spin Giant Dipole Resonance (IVSGDR) 1 1 1 (01,2~ 0 1
Isovector Giant Quadrupole Resonance (IVGQR) 1 2 0 2t 0o 2
Isovector Spin Giant Quadrupole Resonance(IVSGQR) | 1 2 1 (1,2,3* 0 2

2.2 Isospin Picture

The symmetry between protons and neutrons can be described by using the isospin operator t,
which is a vector quantity that behaves identically to the ordinary spin vectors. The protons are
defined as having isospin projection ¢, = —1/2, while neutrons have 7, = +1/2. The total isospin T
of a nucleus is the vector sum of the isospins of its constituent nucleons (T = % t;) [9]. The isospin

t=i

projection 77, calculated by 7, = # can be positive, for N > Z, or negative, for N < Z. The
value of T, determines the states that can be populated in the daughter nucleus. The concept of
1sospin is key for describing charge-exchange reactions as isovector probes. There are two types of
charge-exchange reactions. The first one is 8~ -type or (p,n)-type, for which the change in isospin
projection AT, = —1. In the AT, = —1 direction, for nuclei with N > Z, states in residual nucleus
(with T, = Ty — 1, where Ty is the ground state isospin of another nucleus i.e. ground state of the
target nucleus) with isospin Ty — 1, Ty, and Ty + 1 can be populated. The second one is S*-type
or (n,p)-type charge-exchange reaction. For nuclei with N > Z states in the residual nucleus (with
T, = Ty + 1) have isospin Tj + 1; this occurs because the minimum isospin in the residual nucleus is
equal to 7;. This is shown in Figure 2.3. Here we focus on (*He,¢) reactions, which are of 8~ -type
or (p,n)-type. It is possible to write the transition strength to the final states in terms of reduced
matrix elements for which the dependence on isospin quantum numbers is made explicit. These

isospin factors are m for final states with isospin Ty + 1, = for final states with isospin

> To+1



Ty and g‘;;i for states with final isospin of Ty — 1. In the case of ®'Ni, the isospin of the target

nucleus is 2, and the isospin weights are 1—15, % and % for final states with isospin Ty + 1, Ty and

Ty — 1, respectively.

| To+1, T-1>

|T0, T0'1>
|To'1, T0'1>
S | To+l, Ty+l >
— cD(T,Tz:Tc:) —
(p,n) (*He,t) (p,p") (n,p) (t,°He)
AT=-1 AT,= AT=+1

Figure 2.3 Schematic depiction of the isospin scheme associated with charge-exchange reactions for
the excited states in both (p,n) and (n,p) directions. The dotted lines indicate the analog states and
the arrows show the possible transitions. For charge-exchange reactions with N =Z (T =T, =0)
nuclei, only final states with 7 = 1 can be populated in both AT, = +1 directions. Figure modified
from Ref [3].

As discussed for the IAS (section 2.3.1), because of isospin symmetry, analogs of states with the
same isospin can be found in isobaric nuclei. Besides the analog of the ground states, other states
can have analogs as well. This is illustrated in Figure 2.4. AT, = —1 charge-exchange reactions on
a target nucleus with isospin Ty will populate states with 7o — 1, Tp, and T + 1. States with isospin
Ty, and Tp + 1 have analogs in the target nucleus. These analogs can be populated through inelastic
scattering reactions. States with isospin 7y + 1 have analogs in the nucleus that can be reached

through AT, = +1 charge-exchange reactions. Hence, in principle, it is possible to learn about the



Ty + 1 states by performing AT, = +1 and AT, = —1 charge-exchange reactions. Unfortunately, it is

not easy to study the 7Ty + 1 states in AT, = —1 charge-exchange reactions, in part because they are

disfavored due to the clebsch-Gordan isospin coefficients for N > Z discussed above. In addition,

they are situated at excitation energies where there are many states that have lower isospin. Still,

the studies of analog states have been used to extract GT strengths for 8 direction from (p,n)

charge-exchange data, including for the case of ®*Ni(*He,r) reaction. In this work, it is attempted

to improve on that previous effort.

r

e e e

o e

[To+l, Tg-1> ™

Ex

| To-1, To-1> N
~

| To+l, T+l >

——————

AT,=-1
(p,n)/B type

AT=+1
(n,p)/B* type

Figure 2.4 Schematic depiction of isospin symmetry in charge-exchange reactions. The dotted lines

indicate states of like isospin (analog states) in both AT,

= +1 directions. In the AT, = —1 direction,

the IAS is populated from 7y to Ty transition, but no such transition can occur in AT, = +1 direction.

2.3 Isovector Giant Resonances

2.3.1 Isobaric Analogue State

The experimental measurements of nuclear spectra have shown that families of isobaric nuclei,

which have the same mass number (A), but different neutron (N) and proton (Z) numbers have



analog energy levels. The neutron and proton have similar masses and are up/down states of
a system with isospin 1/2 and have approximately identical behavior under the strong nuclear
force. Ignoring the electromagnetic and weak interactions, nuclear spectra with identical spins
are therefore similar, which is known as isospin symmetry. The IAS excited in charge-exchange
reactions is the analog of the ground state of the mother nucleus. It has the same structure, but
with one neutron (proton) replaced by a proton (neutron). The states have the same isospin 7, but
differ by one unit in 7,, same quantum numbers, and the same microscopic properties.

Focusing on nuclei with N > Z, the IAS of the mother ground state can only be excited in
AT, = —1 charge-exchange reactions: in the AT, = +1 direction, no states with isospin identical to
that of the mother ground state are available, as shown in Figure 2.3. The excitation of the IAS
is characterized with the transfer of quantum numbers AJ = AL = AS = 0 and AT = 1. In terms
of the shell-model, to excite the IAS, a target neutron is replaced with a proton that fills the same
single-particle orbit. The excitation strength of IAS exhausts the model-independent Fermi sum
rule [10] given by:

S(B7) -S(B")=N-Z, (2.3)

where S(B7) and S(B*) indicate the total strength of the 8~ and 8* decays for the Fermi transitions,
respectively. For N —Z > 0, S(B*) = 0. The simple structure of IAS can help in the understanding
of the neutron skins [11] and the nuclear equation of state [12].

For charge-exchange reactions at intermediate energies (~ 100 MeV/u and above), it has been
shown [13] that the differential cross section at small momentum transfer is proportional to the
Fermi strength, B(F):

do .
(E(q = 0))IAS = 6:B(F), (2.4)

where 0 is the unit cross section. Since this excitation is due to the central isospin transfer
(V;) component of the nucleon-nucleon interaction (see Chapter 3), the measurement of the IAS
provides direct information about this component of the interaction [13].

The IAS has an attraction property: it can be used to measure the charge-exchange cross section

at forward momentum transfers that are proportional to the N — Z transition strength. It provides a

10



direct probe of the strength of the isospin component of the nucleon-nucleon.

2.3.2 Gamow-Teller Resonances

Over the past decades, Gamow-Teller (GT) transitions have been one of the main motivations
for performing charge-exchange experiments at intermediate beam energies. The GT transition
populated through charge-exchange reactions are associated with the o7 operator and have AL = 0,
and AS = 1, and AT = 1. The GT transitions populates the same final states as in allowed
Blelectron-capture (B/EC) decays. Due to the proportionality between cross section at g = 0, and
B(GT), the Gamow-Teller transition strength can be extracted from charge-exchange reactions (see
section 5.3.1), even though CE reactions are mediated by the strong nuclear force, and S/EC decay
is mediated by the weak nuclear force. However, by using charge-exchange reactions, one can
populate states that are outside of the Q-value window available for S/EC decay (more details seen
[1,4, 14, 15, 16, 17, 18]).

The ability to extract the GT transition strength model-independently from charge-exchange
reactions allows for a stringent test of nuclear structure models. This ability has many applications
in nuclear astrophysics and neutrino physics. The well-known model-independent proportionality
relationship between GT transitions cross section and B(GT) from the charge-exchange reactions
[19, 13, 20] is given by:

do .
(E(q = 0))ALZO = 06rB(GT) (2.5)

where Ot 1s the Gamow-Teller unit cross sections, and on the left-hand side, the Gamow-Teller
cross section is extracted at zero momentum transfer (q = 0, where q = k¢ — K;), from theoretical
calculations by setting the Q-value of the reaction used to 0 MeV and considering the cross section
at zero degrees. Experimentally, the measured cross section is the combination of all possible
charge-exchange transitions. Multiple decomposition analysis (MDA) is performed to extract the
AL = 0 component by fitting the experimental angular distribution with a linear combination of
various curves ( this will be discussed in more details, see Chapters 3 and 5).

The total amount of Gamow-Teller strength, including both the 8* and B~ directions for a
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particular nucleus, is constrained by the model-independent sum rule [10]:

S(B7) =S(B") =3(N-12), (2.6)

where N is the number of neutrons present in the target nucleus, and Z is the number of protons. In

nuclei in which N is appreciably larger than Z, Equation 2.6 reduces in a shell-model picture to :
S(B7) ~3(N-2), (2.7)

since S(B*) ~ 0 due to Paul blocking [1]. Experimentally, only 50-60% of the estimated sum-rule
strength can be accounted for in the excitation-energy range including the GTR. This is known as

the quenching of the sum rule [21, 22, 23, 24].

2.3.3 Isovector-Spin & Non-Spin-Transfer Giant Monopole Resonances

The IVGMR and IVSGMR resonances can be described as breathing modes in which the
proton and neutron fluids oscillate out-of-phase. They are of fundamental interest as collective
excitations at high excitation energies that are described microscopically by coherent 2w, 1p — 1h
excitations [25, 26, 27]. Their properties serve as tests for microscopic model calculation with
effective nucleon-nucleon interactions [28]. The excitation energy of the IVGMR and IVSGMR
can be used to understand the bulk properties of nuclei and nuclear matter [2, 1, 28, 29, 30, 31].
The strength distribution of the IVGMR provides a useful tool for better understanding the neutron
skin properties from which the density dependence of the symmetry energy for asymmetric nuclear
matter can be constrained [32, 33].

The isovector giant monopole resonance (IVGMR) is characterized by no change in the orbital
angular momentum (AL = 0), non-spin-transfer (AS = 0), and isospin-transfer of one unit (AT =
1). The properties of the IVGMR resonance provide insight into the fundamental understanding
of the isovector part of the residual nuclear interaction and isospin symmetry breaking and isospin
mixing in nuclei [31]. The IVGMR and IAS differ by the change in principal quantum number (n)
between the particles and holes. The IVGMR (27w excitation) is the overtone of the IAS (0aw). To

investigate the [IVGMR experimentally, a probe for non-spin-transfer excitations is required, because
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its spin-flip partner has a much larger cross section than the IVGMR at intermediate beam energies
[34, 35, 36, 37, 38, 39, 40, 41]. Therefore, the experimental evidence for the IVGMR is limited to
the results from the small number of charge-exchange experiments. Convincing evidence for the
IVGMR has been found via the spinless pion charge-exchange reaction (%, 7r0) [42, 43, 44, 45]. In
addition, evidence for the IVGMR has been reported in °Ni(’Li, ’Be) charge-exchange reaction
[46]. Recently, the (1°Be, 9B + v[1.74 MeV]) charge-exchange reaction at E(1°Be)=100 AMeV
was reported as a new probe for isolating the isovector non-spin transfer excitations, and thus a
useful probe for studying the IVGMR, as evidenced by the successful extraction of the IVGMR and
IVGDR cross sections from 28Si('1°Be, 1°B + v) [29].

For probes that are not selective for spin-transfer, the spin-transfer partner of the IVGMR,
the IVSGMR is much more strongly excited than the IVGMR at intermediate beam energies
(100 < E, < 300 AMeV ) [34, 37]. This is because the spin-isospin (o) component of the
nucleon-nucleon interaction is much stronger than the isospin (7) component [3, 37, 41]. The
operator of the IVSGMR carries the same AL, AS, and AT as the operator of the GTR. However,
the IVSGMR is a 2%hw excitation, and the GT excitation is of O%w nature. So far, the progress in
the experimental studies of the IVSGMR is more advanced than for the IVGMR due to the much
higher cross section, which makes it easier to identify charge-exchange experiments with light ion
probes. [47, 48]. In general, isolating and observing the IVSGMR in AT, = +1 charge-exchange
reactions is easier than in the AT, = —1 charge-exchange reactions. This is because the IVSGMR in
the AT, = +1 direction is located at lower excitation energies, where the continuum background is
lower [35, 49]. The exothermic heavy-ion charge-exchange reactions have been applied to enhance
the signature of the IVSGMR through 207Zr(12N, '2C) reaction at 175 MeV/u [50]. The exothermic
nature of this reaction reduces the momentum transfer for excitations at high excitation energy

which is beneficial for enhancing the cross section for the AL = 0 giant resonances.

2.3.4 Isovector-Spin & Non-spin-Transfer Giant Dipole Resonance
Significant effort to investigate the other isovector giant resonances through charge-exchange

reaction has been made, including the isovector spin giant dipole resonances (IVSGDR, AL =
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I, AS =1, AT =1) and non-spin-transfer giant dipole resonances (IVGDR, AL =1, AS =
0, AT =1). The IVGDR was the first resonance that could be explained in a macroscopic picture
in which the neutron fluid oscillates against the proton fluid [51].

The IVSGDR consists of 3 components associated with the three possible couplings from its
spin transfer and angular momentum transfer: J }r =07,17,27, assuming J = 0%, as shown in Table
2.1. In the experimental data analysis, it is not easy to isolate the three spin-parity components
of the IVSGDR. All three components are associated with angular momentum transfer AL = 1.
Their angular distributions are therefore similar, and they peak approximately at the same scattering
angle. It is beneficial to separate the three components to perform a detailed test of the theoretical
calculations, but it requires the measurement of polarization observables, which has only been done
a few times (see e.g., [52]). The IVSGDR is more strongly excited in charge-exchange reactions
at intermediate beam energies compared to the IVGDR. This is because the spin-isospin (o 7)
component of the nucleon-nucleon interaction is much stronger than the isospin (7) component
[3, 37, 41]. However, there is no well-established proportionality between transition strength and
differential cross section for dipole resonances. There is also no model-independent sum rule for

the IVSGDR that can be used to characterize the amount of strength found in spectra [35, 36].

2.4 Hydrodynamic Model of Giant Resonances

The hydrodynamic or macroscopic model that has been applied to isovector giant resonances
describes a nucleus as a liquid drop of the proton and neutron fluids oscillating in different modes
around its equilibrium shape. The spins of the nucleons serve as an additional degree of freedom.
When describing a nucleus as an oscillation of a liquid drop, two main modes can be distinguished:
a surface-vibrational mode and a compressional mode. It is worth noting that a vibrating drop
can have a superposition of both modes [3]. The amplitude of the oscillations is small. For
the surface-vibrational mode, harmonic oscillations about a mean spherical shape are assumed
(see more theoretical discussions of the surface-vibrational and compressional modes for giant
resonances in the References [3, 53, 6, 54, 55]).

The macroscopic description of giant resonances provides a picture that connects to the bulk
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properties of the nucleus and nuclear matter. Therefore, the study of giant resonances can help
constrain models of these bulk properties. An example is the simple vibrational giant resonance
mode known as the ISGMR observed for the first time in 1977 by Harakeh et al. [56, 57]
and confirmed in the same year by Youngblood et al.[58, 59]. They used inelastic a-scattering
measurements at forward scattering angles. This properties of the ISGMR yields insights into the
bulk properties of the nucleus, in particular the incompressibility of nuclear matter (Kyn) [60, 55].
The location of the excitation energy of the ISGMR was estimated for the first time by Bohr and
Mottelson [6]. The energy of the isoscalar giant monopole resonance was determined as a function

of the mass of nucleus (A) [61] to be:

ik o [K
Eio= —20 [20mA-1/3 Mey (2.8)
=72V om

where ki stands for eigenvalues of the motion for principal quantum number n = 1 and multi-
polarity 1 = 0, and m is the nucleon mass. K, was not known at the time of derivation, and was

estimated to be Ky, = 135 MeV [6]. The solution for the ISGMR (E ) is:
EYOMR = 65A7137  MeV (2.9)

When the experimental data became available, the value of k,,, was determined to be 231 +5 MeV
[60, 55].

For the IVGMR, assuming that a nucleus consists of two inter-penetrating, incompressible fluids
[51, 3, 53, 6, 54, 55] of protons and neutrons, the restoring force is proportional to the surface of
the nucleus (R?). The frequency of the resulting harmonic oscillations is proportional to the square
root of a constant force over mass parameter (A). Therefore, this assumption leads to a behavior
that is linear with R™1/2 or linear with A=/, since R = r,A!/3 [3].

In general, the vibrational frequency and excitation energy of a particular giant resonances can
be determined come from linearized Navier-Stokes equations [62]. For example, solving for the

IVGMR, the excitation energy is:
EIVOMR — 1704713 MeV (2.10)
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However, this model with volume terms only does not accurately describe the excitation energies
of the isovector giant resonances. A study by Bowman et al. [30] indicated that besides the
volume terms, surface tension effects must be taken into account as well to describe the properties
of isovector giant resonances. Therefore, a more precise estimate of the excitation energy of the

IVGMR was found to be:

14 -2
EIVOMR _ ggA~1/0 (1 + ?A—W) MeV @.11)

and the systematic study of experimental results for nuclei gives the excitation energy of the IVGDR

as a function of mass umber (A) [3, 63] to be:

EIVOPR = 314713 1204716 Mev (2.12)

2.5 Isovector Giant Resonances in the Charge-Exchange Spectrum

In the microscopic picture, the excitation energies of giant resonances can be estimated from the
energy differences between the shells in which the particles and holes that participate in the coherent
one-particle one-hole (1p-1h) excitations are located. The excitation energy for giant resonances
is related to the difference in the major shell (AN) of the particles and the holes. The energy
difference between each major shell is estimated to be fiw = 41A~!/3. This simple approximation
provides a basic understanding of the relative excitation energies of the isovector giant resonances.
This is illustrated in Figure 2.5(a), which displays the excitation-energy spectrum in ®°Cu obtained
from the %°Ni(*He,t) reaction at 140 MeV/u for 3 ranges in scattering angle, as discussed in more
detail in Chapter 4 and 5. Different giant resonances appear at different excitation energies. The
angular distribution provides a characteristic of the angular momentum transfer associated with a

particular excitation.
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Figure 2.5 The typical AT, = —1 charge-exchange energy spectrum from the full range of excitation
energy (60 MeV) used for the three angular settings from the ®"Ni(*He,) reaction. Various isovector
giant resonances and their corresponding spin and parity (J™) are indicated. Figure (a) include
the Isobaric Analog State (IAS), Gamow-Teller Resonance (GTR), the isovector spin, and non-spin
giant dipole, monopole, and quadrupole resonances (IVSGDR/IVGDR, IVSGMR/IVGMR, and
IVSGQR/IVGQR). Their features can be identified by comparing spectra at different scattering
angles. Figure (b), the visualization of the IAS state at the lower excitation energy range between
0to 5 MeV.
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For example, the GTR, IAS, and monopole excitations are associated with AL = 0, so they peak
at 0° scattering angle. For the (®He,r) reaction at 140 MeV/u, their presence is enhanced in the
spectrum gated on scattering angles between 0 and 5 mrad. Dipole excitations peak at small but
finite angles and their features are enhanced at scattering angles between 35 and 45 mrad. The IAS
is known to reside at E, (°°Cu) = 2.55 MeV, and the main component of GTR appears at excitation
energies of ~ 10 MeV. The IVSGDR peaks at an excitation energy of about 18 MeV. The difference
in the excitation energy between AN = 17w dipole resonances and the AN = 0%w IAS is about 16
MeV, higher than estimated value of 1%w = 41A~!/3 = 10.5 MeV. The AN = 2w IVSGMR and
IVGMR are located at excitation energies of about 35 MeV and are not easy to identify due to
their large widths. The IVSGQR and IVGQR resonances are located at similar excitation energies,
but their angular distributions are relatively flat at forwarding scattering angles. Therefore, their
contributions are difficult to observe when comparing spectra at different scattering angles.

At lower excitation energies, up to 5 MeV (Figure 2.5(b)), the most dominant peak is the IAS,
and it is possible to identify individual states in °Cu. However, the level density increases as a
function of the excitation energy and even at 4-5 MeV it becomes difficult to identify individual

states. These low-lying states are non-collective in nature.

2.6 Overview of the Charge-Exchange Reaction Probes

Over the past decades, charge-exchange reactions have been used to investigate various phenom-
ena in nuclear physics with applications in nuclear structure and astrophysics. Charge-exchange
reactions have been developed since the last half-century [64, 65], and they are used to probe the
spin-isospin response of nuclei.

As discussed above, in terms of the isospin formalism, charge-exchange reactions are charac-
terized by an isospin-transfer by one unit, AT = 1 (isovector), meaning that occur with AT, = +1
as shown in Figure 2.3. AT, = —1 corresponds to the (p,n)-type, causing the residual nucleus
to become more proton-rich nucleus, while AT, = +1 corresponds to the (n,p)-type, from which
the residual nucleus become more neutron-rich. Both probes, involve spin % particles and can

mediate AS = 0 and AS = 1 excitations. In charge-exchange reactions, any amount of angular
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momentum can be transferred, AL = 0 (monopole), AL = 1 (dipole), AL = 2 (quadrupole), etc.
At intermediate beam energies, the excitations with spin-transfer are strongly favored compared to
non-spin transfer.

In -decay experiments, states may be measured in an excitation energy region from 0 MeV up
to the Q-value of the reaction, but higher-lying states will not be accessible via this reaction. In
contrast, charge-exchange reactions are not limited by the Q-value, and highly excited states can
be studied using different charge-exchange probes, such as (p, n)/(CHe,t), (n, p)/(t,3He), (d,’He),
and other reactions (see Table 2.2). A variety of probes are used with different advantages for
the study of isovector excitations. The choice depends on the experimental considerations and the
sensitivity to different resonances (see more experimental discussions about the IVGRs probes used

in References [66, 67, 4, 1, 14]).

Table 2.2 Various charge-exchange reaction probes are classified by: S~ -type or (p,n)-like reactions
(left side) and B*-type or (n,p)-like reactions (right side).

B -type | B'-type
(p,n) (n,p)
(*He,r) (1,°He)
(°Li,’He) | (d,”He)
(IZC’IZBe) (12C,12N)
(IOC,IOB) (13C,13N)
(1°Be,!%B) | ("Li,’Be)
at, 7Y a7

The analysis of data obtained from the (n,p) or (p,n)-like reactions benefits from the reduced
complexity of the reaction mechanism compared to using composite probes such as (¢,’He) or
(3He,t) reactions [68]. However, to achieve a better energy resolution, it is preferred that both the
projectile and ejectile are charged so that their momenta can be well constrained and analyzed. For
example, with the (3 He,r) reaction an excellent resolution of as low as 30 keV or less can be achieved
[69, 70, 71, 72]. Achieving a better resolution is useful for studying the reaction mechanism for
which it is preferable to isolate individual transitions, or for the study of the fine structure of giant
resonances [73].

The main difference between the (n,p) and (p,n) reactions and reactions induced by composite
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probes such as (¢,*He) and (*He,¢) reactions is that the former probe the target nucleus relatively
deeply, while the latter predominantly probe the surface of the target nucleus. The strong absorption
near the surface of the target nucleus is a general characteristic of composite probes used for
charge-exchange reactions at intermediate beam energies. Therefore, it has been used to isolate the
excitations associated with radial nodes near the nuclear surface such as the IVSGMR and IVGMR
[74]. This specific property was used to compare the (,>He) and (n,p) reactions by measuring the
double-differential cross sections at 300 MeV/u on 2°8Pb and °?Zr targets at the rare isotope beam
factory of RIKEN [40].

Experiments using the (d,”He) reaction as a probe are relatively complex compared to (¢,°He)
and (n,p) reactions, but such experiments have been successful in tracking the isovector spin-transfer
strength for many nuclei [75, 76, 77, 78, 79, 18]. The complexity of the (d,zHe) reaction is due
to the simultaneous measurement of the two emitted protons from the unbound *He particle. The
energy and angles of both protons need to be measured accurately in order to achieve good energy
and scattering angle resolutions in the reconstructed spectra and to allow for making a precise cut on
the relative energy (€,,) between the two emitted protons. [68]. However, there is a disadvantage
to using the (d,’He) reaction to study giant resonances in medium-heavy and heavy nuclei because
of the background from deuteron-breakup reactions occurring in the Coulomb fields of the target
nuclei. Consequently, the studies of the isovector giant resonances through the (d,>He) reaction
have been limited to light and medium-heavy nuclei [68].

The (°Li,®He) reaction probe has also been used as a selective filter for spin-transfer excitations
because of the transitions from the J* = 0* ground state in ®Li to the J™ = 1* ground state in °He.
Since %He has no particle-stable excited states, effects from ejectile excitation can be avoided [80].
Experiments with the (°Li,°He) reaction were performed at ~ 100 MeV/u on '>C, 13C, *8Ni, and
907 target nuclei [81]. While it was not possible to measure the scattering angle, this reaction was
successful in terms of isolating the spin-transfer of giant resonances [80].

The ("Li,’Be) and ("Li,’Be+y) reactions have been used at beam energy of E/A = 50 MeV on

6Li, 12C, 9Zr, 1208n, 298Pb and polystyrene targets [82]. The gamma rays detected from excited
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states in 'Be via (7Li,7Be+y) were successfully used to isolate excitations associated with and
without spin-transfers. With this probe, either the 3 /2~ ground state or the 1/2~ excited state at 429
keV in "Be can be populated making it possible to separate excitations associated with AS = 0 and
AS = 1. This technique has been applied to investigate the isovector giant resonances in forwarding
kinematics at beam energies of 50 — 70 AMeV [82, 83, 84, 46].

The (2C,'?B) and (!2C,!2N) reactions also have selective spin-transfer properties and they can
be used to investigate AT, = —1 and AT, = +1 transitions, respectively. The ('>C,!?B) reaction has
been used to measure GT transitions on 2C, 2Mg, 3*Fe, *3Ni, and *°Zr targets, and the (!2C,!’N)
reaction have been used on *°Fe targets at a beam energy of E/A = 70 MeV [85], 135 AMeV [86],
and others [50, 87, 88]. However, with large negative reaction Q-values, the significant momentum
transfers associated with these reactions make them less useful to study the isovector transitions,
specifically the monopole excitations.

The charge-exchange probe (!3C,'3N) has been studied to locate isovector (AT = 1) non-spin-
transfer (AS = 0) giant resonances via ONj(13C,13N)0Co reaction at E/A = 100 MeV [89].
Through a distorted wave Born approximation analysis, the isovector dipole resonance was found at
E, = 8.7 MeV and quadrupole resonance was found at £, = 20 MeV. The proton separation energy
in 13N is less than the excitation energy of the first excited state, the only transition contributed was
the one from the 13C(%_) ground state to the 13N(%_) [89, 90]. This transition is dominated by the
large Fermi matrix element, which is why this reaction provides some selectivity for AS = 0.

The pion (7%, 1) charge-exchange reactions are another probe used to investigate the isovector
excitations. Since pions are spinless particles, they are used as an ideal tool for studying spinless-
transfer excitations [91]. The (z*, 7%) and (n~, 7°) reactions were used to investigate the properties
(energies, widths, and cross sections) of the isovector monopole, and the other isovector giant
resonances in nuclei between “C and °Pb [43]. The production of pion beams is complicated
and it is difficult to achieve a high resolution in the 7° exit channel through the analysis of the
7% — yvy decay [3]. However, at Los Alamos Meson Physics Facility (LAMPF) successful the pion

charge-exchange reactions have been performed with aim of extracting information on the IVGMR
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[43, 44, 42].

The availability of rare-isotope beams has resulted in the use of new unstable charge-exchange
reaction probes in forward kinematics. Rare-isotope beams provide new possibilities to selec-
tively excite specific giant resonances, for example, the ( 1OC,IOB(OJ’,IAS)) reaction [92, 93] and the
(1°Be,!"B(0*,IAS)) reaction [29] have been used to selectively excite the non-spin-transfer excita-
tions. In addition, by using rare isotope beams it is possible to create exothermic reactions. The
released energy can offset the energy needed for the excitation of the target nucleus. Therefore, this
reduces the linear momentum transferred between the projectile and the target nucleus and results
in creating more favorable conditions to study monopole excitations. For example, the ('*N,?C)
charge-exchange reaction at 175 MeV/u was successfully developed and applied to *°Zr as a novel
probe for studying the excitation of the IVSGMR [50]. This probe comes with an additional
advantage of spin-transfer transitions that are selectively excited.

As charge-exchange reactions probe the spin-isospin response of nuclei, they are very attractive
for studying the excitations from nuclei with asymmetric neutron-to-proton ratios. By impinging the
rare-isotope beam on a hydrogen target, the (p,n) reaction in inverse kinematics can be used to study
unstable nuclei. In the first experiments, the neutron from the (p,n) reaction was not detected. This
method relies on measuring the residual nuclei from the projectile only and avoided the detection
of the recoil neutron from the proton target in the process [94, 95, 96, 97, 98, 99, 100, 101].

More recently, inverse-kinematics (p,n) experiments using the missing-mass method in which
the neutrons are detected have been developed at NSCL [102] and at RIBF group [92]. The
NSCL group has used the setup called Low Energy Neutron Detection Array (LENDA) designed
to facilitate the study of (p,n) charge-exchange reactions in inverse kinematics at intermediate
energies using unstable beams. The LENDA detector was successfully developed and used to study
the 56Ni(p,n) and 55Co(p,n) reactions at 110 MeV/u in inverse kinematics in order to extract GT
strengths for transitions to *°Cu and >Ni, respectively [103], which are of astrophysical importance.
Other experiments where this technique has been utilized are 132Sn(p,n) and 12Be(p,n) reactions at

RIBF [104] and '®C(p,n) at NSCL [105].
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The development of a new technique to perform charge-exchange experiments in inverse kine-
matics using the (n,p) reaction has been more complicated. This is because a neutron target is not
available. Therefore, one of the other probes in AT, = +1 direction must be used [68]. The first
successful attempt to study (n,p) reactions in iverse kinematics used the 3P(Li,’Be + v(429 keV))
charge-exchange reaction in inverse kinematics at 100A MeV to measure GT transition strengths in
the B* direction from 34p, populating states in 34Si [106]. Meharchand et al. (2010) used ('Li,’Be)
reaction in inverse kinematics to study the spectroscopy of '?Be [107]. This technique relies on
tagging the charge-exchange reactions with y-rays emitted from the decay of the 1/2~ excited state
at 429 keV from "Be and use the measurement of the projectile-like residual in a spectrometer to
learn about reaction kinematics and be able to extract scattering angles and the excitation energies.
As a consequence, its use is limited to relatively light nuclei and to excitation energies below the
particle-decay threshold.

The most recent (n,p)-type charge-exchange reaction developed by Giraud et al. (2021) [108]
uses the (d,’He) reaction in inverse kinematics to study exotic nuclei. This was done by using
an active-target time-projection chamber (AT-TPC). The inner volume of the AT-TPC was filled
with deuterium gas, which serves as the target and the detector medium for the tracking of the two
protons emitted from the unbound *He nucleus. The charge-exchange residual nuclei were detected
in the S800 spectrometer, and served as a trigger for the time-projection chamber data acquisition

system [109, 110].
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CHAPTER 3

CHARGE-EXCHANGE REACTION TECHNIQUES
Charge-exchange (CE) reactions involve the exchange of a proton and neutron between a target
nucleus and an incoming beam nucleus. In these reactions, the isospin changes by AT = 1
(isovector), with the potential for AS = 1 (spin transfer) or AS = 0 (non spin transfer) and the ability
to transfer various units of angular momentum: AL = 0 (monopole), AL = 1 (dipole), AL = 2
(quadrupole), AL = 3 (octupole), and so forth. This chapter gives a brief overview of CE reactions
and associated techniques.

The theoretical cross sections calculated in this thesis were performed using the distorted
wave Born approximation (DWBA) method discussed in section 3.3 and 3.4 with the FOLD code
[111]. The DWBA calculations were used to perform a multiple decomposition analysis for
extracting the isovector response associated with different units of angular momentum transfer. To
convert extracted cross sections into Gamow-Teller strength, the Eikonal approximation is applied

as discussed in section 3.5.

3.1 Introduction into Charge-Exchange Reaction Techniques
To extract information about charge-exchange excitations and giant resonances from measured
excitation-energy spectra, such as the one shown in Figure 2.5, several steps are required. The

experimental differential cross sections are determined from the data with:

exp
(d“) Y mb/st, G.1)

Q) T NpNergdQ
where Y represents the total number of counts in a specific angular bin, Ny, is the total number of
nuclei that struck the target foil, N is the number of nuclei in the target, d€2 is the opening angle,
€1 is the correction for the lifetime of the data acquisition system (DAQ) and e; is the correction for
the target purity.

To extract the contribution from transitions associated with the transfer of different units of
angular momentum transfers (AL) a multiple decomposition analysis (MDA) [112, 113] is per-

formed. The measured differential cross section for each peak or energy bin is fitted with a linear
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combination of theoretical angular distributions associated with these different angular momentum

transfers:
do- do-\PWBA do-\PWBA do-\PWBA
— = Q0 (—) + a1 (—) + a (—) + ..., (32)
(dg)exp dQ /-0 dQ 1= dQ/zL=
DWBA
where (g—g) L e the theoretical differential cross sections for AL =1 and a; are their corre-
=i

sponding fit parameters.
In this work, the theoretical differential cross sections are calculated in Distorted Wave Born
Approximation (DWBA), which will be discussed in more details in the following sections, focusing

on the case of the ®*Ni(*He,r) reaction at 140 MeV/u.

3.2 Calculation of Differential Cross Sections

Theoretical calculations for the differential reaction cross section in the (*He,t) experiment were
performed using the FOLD code package [111, 114]. This code uses the Distorted Wave Born
Approximation (DWBA), discussed in section 3.3, where both incoming and outgoing waves are
distorted by the mean field of the target nucleus. Details regarding the inputs and outputs for the
DWBA calculations are provided in section 3.4.

The FOLD code was used to calculate the differential cross sections for charge-exchange
(CE) reactions involving composite particles composed of three component codes, including the
WSAW, FOLD, and DWHI. The WSAW code was used for computing radial wave functions for
relevant shell-model orbitals, as discussed in section 3.4. The second component, FOLD, was
used to calculate the form factor based on a double folding of the one-body transition densities,
providing structural information for the target and projectile system based on the nucleon-nucleon
interaction. The third component, DWHI, was employed to calculate the differential cross section
while considering the distortion of incoming and outgoing particles due to the mean field of the
target nucleus, incorporating optical potentials. Additionally, more details about the DWHI code
were discussed in section 3.4.3

For the ®*Ni(*He,r) reaction, one-body transition densities (OBTDs) were obtained within the

normal-modes (NM) formalism using the NORMOD code [115], as detailed in section 3.4.2. The

25



folding procedure was executed using the Love-Franey effective nucleon-nucleon (NN) interaction
at 140 MeV/u [41, 37].

Figure 3.1 shows a schematic description of the inputs and outputs for the DWBA calculations
in FOLD code to calculate differential cross sections for CE reactions with composite particles that

consist of three parts: WSAW, FOLD, and DWHI.

One-body transition densities

Single particle wave function
NN interaction NORMOD WSAW
Nushellx
Formfactor,
FOLD

Radial transition densities

Optical Model Potential

Cross section

Figure 3.1 Hierarchy image describing the steps in the distorted wave Born approximation (DWBA)
used to compute theoretical differential cross sections through FOLD code.
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3.3 Brief Description of the DWBA

Above beam energies of about ~ 100 MeV/u, the charge-exchange reaction predominantly
proceeds in a single step. Therefore, to good approximation, two-step (or more-step) processes do
not have to be taken into account. Here, we assume that the nucleons of the projectile and target
system are non-identical. Participating nucleons of the target and the projectile systems are treated

equally and the initial and final states have definite isospins. For the reaction:
projectile(p) + target(t) = ejectile(e) + residual(R), (3.3)
the Hamiltonian in the prior form can be written as:
H =H, + H + Ty + Vi, (3.4)

where H, and H; are the internal Hamiltonians for the projectile and target, Ty is the kinetic
energy of the relative motion of projectile and target, and V is the interaction potential. The
scattering potential Vpy is divided into two parts: one with known solution, which contains the
elastic scattering potential (Ugjagic) including the Coulomb potential, and one that contains any

residual potential, which mediate the charge-exchange (W charge—exchange):

th = Uelastic + Wcharge—exchange- (35)

The transition between the initial and final states is described by a T-matrix [3, 116]:

Th = <(D|Uelastic|)(+> + <X_|Wcharge—exchange|\P+>’ (3.6)

where y* and y~ represent incoming and outgoing waves distorted by the mean field of the target
(Uelastic). P* is the solution of the Schrddinger equation in prior form, with an incoming plane
wave and outgoing spherical wave. @ is the incoming plane wave. The first term in equation 3.6,
which is of isoscalar type, drops out because it does not connect the initial and final states of a
charge-exchange reaction. Potential U is still used to determine the distortion of the incoming and

outgoing waves. The remaining term describes the charge-exchange reaction.
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T is used to calculate the theoretical differential cross sections of the nuclear reaction.

do —( K )21§|T 2. (3.7)

dQ " \2an?) Kk
where k; and k¢ are momenta of incoming and outgoing channels, respectively, u is the reduced

energy. For the charge-exchange reactions, Ty is usually calculated by using:
Ts = (k. R)IF(R) |7 (ki RY). (3.8)

Equation 3.8 consists of the incoming and outgoing distorted waves )(;Z and y; ,respectively, and
a form factor, F (ﬁ’), that describes the interaction between the projectile and the nucleons in the
target.

The form factor is a double folding of the nucleon-nucleon (N N) interaction over the projectile
and target-system transition densities. The transition densities for projectile and target systems
contain the overlap between the initial and final states of these separate systems and directly relate
to the transition strengths, such as the Gamow-Teller transition strengths. The transition densities
and strengths are calculated in a nuclear structure model.

The DWBA calculations for the charge-exchange reactions used in this work are done by using
the package known as FOLD [111], which consists of three modules: WSAW, FOLD, and DWHI.
The module FOLD calculates the form factor F (13’). Besides the nuclear-structure information
obtained from a structure model, it requires a single-particle radial wave function of the orbitals
of the nucleus involved in the calculation. These single-particle wave functions are calculated in
WSAW. In addition, FOLD requires a N N-potential. In this work, we use the NN-interaction of
Love and Franey [41, 37]. The form factor calculated in FOLD serves as input for DWHI, which is

used for the distorted-wave calculation resulting in the transition matrix 7; and the cross sections.
3.4 Inputs & Outputs for the DWBA Calculations

3.4.1 Single-Particle Wave Functions (WSAW)
As mentioned in the above section 3.3, one of the important ingredients needed to calculate

form factor F (13’) include single-particle wave functions calculated through the first module from
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the FOLD package known as WSAW [111]. WSAW is used to calculate the radial part of the
single-particle wave functions for the one-particle and one-hole states connected by the relevant
transition operator. A Woods-Saxon potential is assumed, and for protons, the Coulomb potential
is also included. In addition, a spin-orbit potential is included for both protons and neutrons.
The necessary nuclear physics inputs to the WSAW calculations are the nuclear charge of the
target nucleus, core mass, and the binding energies (BEs) of every single proton and neutron in
orbitals that participate in the excitation. These BEs were obtained through the shell-model code
NUSHELLX@MSU [115, 117] with the DENS function, employing the SK20 [118] interaction in
%0Ni and ®°Cu.

In WSAW, the depth of the Woods-Saxon potentials are varied to match binding energies for

each of the single-particle orbitals separately. The Woods-Saxon potential has the general form:

Vo
1 +exp(R —1,Al/3) /a,

f(R;ry,ay) = , 3.9

where Vj is the maximum depth of the volume potential, r, is the radius of the potential, A is the
mass number of the target nucleus, and a, is diffuseness of the potential [119]. In this work, the
starting value of the Woods-Saxon potential is set to 60 MeV. The radius parameter r, is fixed to
1.25 fm, and the diffuseness is fixed to 0.6 fm. The Coulomb potential has a radius parameter of
1.25 fm. The spin-orbit potential has a radial form that goes with % times the derivative of the
Woods-Saxon potential. The spin-orbit potential strength is set to 7 MeV. Note that, the program
assumes a spin-operator of the form L - & and that a factor of (anc)z ~ 2 1s already included.
Table 3.1 describes input parameters used in the WSAW program for target (*°Ni) and residual
(®°Cu) system . The full input files are included in the Appendix A, Table A.1. The outputs are
the radial wave functions for each of the orbitals involved in the calculation. The plots of these
relevant single-particle wave functions are shown in Figure 3.2. Note that all wave functions are
positive near r = 0 (by design) and are normalized such that /000 W (r)r? dr = 1. The densities for

3He-projectile and *H-ejectile system are calculated from Variational Monte-Carlo results [120].
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Table 3.1 Description of the input parameters in the WSAW file for calculating single-particle wave

functions as shown in the Appendix A, Table A.1- A.3.

Particle Input parameters | Meaning of the input values
line number 1 0.1 fm Step size for radius

20 fm Maximum value of radius

1 Step size (first point)

150 Total number of points needed to plot radius
line number 2 Ni60Cu60 File name containing radial wave functions
line number 3 59 Core mass of target nucleus

60 Starting value of the volume potential depth

.65 fm Diffuseness of the potential

1.25 fm Radius parameter of the potential

1.25 fm Coulomb radius parameter

7.0 MeV Spin-orbit potential strength
For each orbital a line with | x MeV Binding energy of paricle (proton or neutron)

1. Mass number of particle

1 Orbital angular momentum of proton

n Number of interior nodes for this particular particle

1. Charge of particle (either O or 1)

] Total angular momentum of the particle orbit

S Spin of the particle

3.4.2 Calculation of the Formfactor (FOLD)

The FOLD program [111] is used to calculate the form factor F (R)):

F(R') = (@D, | Ve | D D,) (3.10)

where @, @, @, and @, are the wave functions of the ejectile, residual, target, and projectile,
respectively, and Vg is the effective nucleon-nucleon (NN) interaction between nucleons in the
target and projectile nuclei. The ingredients for the calculation of the formfactor are the single
particle wave functions from WSAW, the effective NN interaction, and one-body transition densities
(OBTDs) calculated in the NORMOD code [121], which is discussed later in this section. The
formfactors are calculated from these ingredients by a double-folding of the effective NN interaction
over the transition densities of the projectile-ejectile and target-residual systems. The double-folding
over the transition densities of the participant nuclei in the reaction is necessary to account for the

composite nature of the nuclei involved.
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The phenomenological nucleon-nucleon interaction used to model charge-exchange reactions
were described by Love and Franey in 1981 through a phaseshift analysis of NN scattering data [37].
Later on, with an updated data set, this interaction was improved by Franey and Love in 1985 [41].
The Love and Franey interaction is particularly useful in the charge-exchange studies since Vg is
parameterized in terms of the central (V¢), spin-orbit (Vig), and tensor (V) terms contributing to

the interactions that are of interest for charge-exchange reactions. It takes the following form:
Vij = VC(”U)+VLS(”U)Z'§+ Vr(rij)Sij, (3.11)

where §;; is the tensor operator, defined as

(0i-7i) (0 -7ij) L .

Sij=3 - G- & (3.12)

r:.
tj

The radial dependence of each term is expanded as a sum of Yukawa potentials,
V(r)= > ViY(r/Ry), (3.13)

where Y (x) = % The parameters V; and the ranges R; are fit to nucleon-nucleon scattering data.
The result of the work by Love and Franey provides effective NN T-matrix interaction strengths
applicable at various incident beam energies. For the case of the ®*Ni(*He,f) reaction at the E, =
420 MeV, the Love and Franey interaction at 140 MeV/u was used.

Information about the transitions for which differential cross sections are calculated come in
the form of one-body transition densities (OBTDs), which are amplitudes for one-particle one-
hole (1p-1h) excitations that are connected by the specific operators of Eq. 2.1 for each of the
transitions. The OBTD:s for all giant resonances being investigated in the ®*Ni(*He, ) reaction were
calculated in a normal-modes formalism and the calculations were performed with the NORMOD
code [121]. Unlike the shell-model calculations with Nushellx (see section 3.4 ), in the normal-
modes formalism, the OBTDs are calculated by producing the most coherent superposition of the
1p-1h excitations, thereby maximizing the transition strength.

For the normal-modes calculations, it was assumed that the 28 protons fill all single-particle

shells up to 0f7/. The 32 neutrons are assumed to also fill the 0f7/> shell and the 1p3/> shell,
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as shown in Figure 3.3(a). Figure 3.3(b) and (c) show examples for the exciting of two isovector
transitions in the ®*Ni(*He,¢) reaction.

Table 3.2 describes the input parameters of the NORMOD input file. The full NORMOD input
file and the output tables of the OBTDs for each giant resonance being investigated in this work are
included in the appendix B, Table B.1-B.2 and Tables B.3-B.15 respectively. The plots of the radial
transition densities, which represent the overlaps between the initial and final states in the target
nucleus, for all giant resonances being investigated in this work as listed in Table 2.1 are shown in
Figure 3.4. These are calculated in FOLD code, and serve as input for the formfactor calculation.

Finally, the formfactors for each giant resonance are calculated. Given the total angular mo-
mentum transfer in the projectile (*He,r) system, AJp, and the total angular momentum transfer in

the target (°ONi,°0Cu) system, AlT, the relative angular momentum transfer is calculated with:
AJr = AJ, ® AJr, (3.14)

where AJ, = AL, + AS,, equals either 0 (S, =0) or 1 (S, = 1), since AL, = 0. AJr is defined by
the type of giant resonance excited. Since AL, = 0, the orbital angular momentum transfer in the

target system ALt, defines the charge in parity:
(=D = (7 - 7p)ars (3.15)

where 7; is the parity of the °Ni ground state and 7 1 1s the parity of the final state in 0Cu. Since
the °“Ni ground state has a spin-parity of 0*, m; = 1. 77 is negative (positive) if ALt = odd (even).
Note that for certain excitations, two sets of formfactors contribute. For example for 0* — 1*
excitations, AJ, = 1 and AJt = 1, allowing for both AJg = ALt = 0 and AJg = ALt = 2. Because
of the tensor interaction in the nucleon-nucleon interaction, the two components interfere with each
other. However, for strong excitations such as the giant resonances, the impact of such interferences
is small [20]. For the MDA, only formfactors with pure AJg = ALt are used, as its purpose is to
decompose contributions with different ALt. Each type of transition as listed in Table 2.1 requires
its own FOLD input file. Table 3.3 describes the input parameters of the FOLD input file. Example

of FOLD input files for several transitions are included in the Appendix C, Tables C.1 - C.7. The
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Figure 3.3 Figure (a) shows the configuration of %'Ni ground state assumed in the NORMOD
calculations. Protons are in red color, they fill single particle shells up to 0 f7/2, while neutrons are
in blue color and fills up to the 1p3/, shell. Figures(b) and (c) are examples of the exciting GT and
IVSGMR transitions respectively. The GT transition can only populate states in ©°Cu with pf-shell
contributions (60Ni[g.s] — 0Cu[0Aw]) while IVGMR transition can populate states in 0Cu with
pf, sdg and pfth-shell contributions (60Ni[g.s] — OCu[2aw])).

outputs of each FOLD input file are the formfactors as discussed above, which are shown in Figures
3.5 and 3.6. Since the NN interaction has real and imaginary terms, the formfactors also have
real and imaginary components. Note that excitations involving the transfer of spin (AS = 1) have

strong real formfactors, while those without the transfer of spin (AS = 0) have strong imaginary

formfactors.
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Table 3.2 Description of the input parameters in the NORMOD input file for calculating OBTDs

useful for FOLD input files for each giant resonance being investigated as shown in the Appendix
C, Tables C.1 - C.7.

Line number

Input parameters

Meaning of the input values

line number 1

1

Wave functions are defined to be
positive near origin

line number 2 14 Number of proton shells
line number 3 to 16: Protons Describing parameters of every single proton orbit
Column number 1 n-value Number of nodes in particular wave Function
Column number 2 L-value Angular momentum of proton
Column number 3 2J-value Twice total angular momentum of
single particle wave function
Column number 4 1.0 Fullness of proton-shell
Column number 5 lor0 1 for proton, 0 for neutron
Column number 6 nfiw n is major shell number of proton
Column number 7 x-value X is an arbitrary number for each shells

line number 17

11

Number of neutron shells

line number 18 to 28: Neutrons

Same as 3to 16

Same description as line 3 to 16

line number 29 IAS Parameters describing IAS

line number 30 GT Parameters describing GT transition

line number 31-33 Dipoles Parameters describing Dipoles transition
line number 34 IVGQR Parameters describing IVGQR transition
line number 35-37 IVSGQR Parameters describing IVSGQR transition
line number 38 IVGMR Parameters describing IVGMR transition
line number 39 IVSGMR Parameters describing IVSGMR transition
line number 40 Octupole Parameters describing Octupole transition
Column 1 M-value Discussed in operator of Eq. 2.1

Column 2 Al Total transferred angular momentum
Column 3 " Product of parities

Column 4 m Mass number of target

Column 5 T Isospin transfer

Column 6 1 reaction type (T=1) for CE reactions
Column 7 and 8 Anfiw Minimum and Maximum difference

between major shells number
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Table 3.3 Description of the input parameters in the FOLD files for calculating transition densities
and formfactors as shown in the Appendix C, Tables C.1 - C.7.

Line number

Input parameters

Meaning of the input values

line number 1 1 Selects CE reaction type
1FOLDNI File name to save formfactors
line number 2 to 7 600 Total number of integration steps
parameters of (*He,t) 0.03 Step size (fm)
420 Beam energy (MeV)
3 Mass of projectile (*He)
1 set to be 1 for printout for r-space densities
1 set to be 1 for printout for g-space densities
1 set to be 1 for printout for formfactors
line number 3 0.5* Spin and parity (J%) of ejectile CH)
0.5* Spin and parity (J*) of projectile (*He)
line number 4 0.5 Isospin (T) of ejectile (’H)
+0.5 Isospin projection (T,) of ejectile (*H)
0.5 Isospin of projectile particle (*He)
-0.5 Isospin projection of projectile particle (*He)
line number 5 3 3 0.000 Selection of format of OBTDs particle
line number 6 1 Single-particle wave function (ex: Osy/2)
1 hole-particle wave function (ex: Osy /)
AJ, 1 for spin transfer and O for no spin transfer
0.707 OBTD for (*He, ) system
line number 7 -1 -1 fixed end line
line number 8 HE3H3 File name of projectile and ejectile

line 9 to 10 same as
3 to 4 but for (Ni,%°Cu)

AJﬁ = 1% for GT
J7 = 0* for ©Ni

Relative final spin and parity of each transition
Initial (ground) spin and parity of target

line number 10

1 (2 for IAS)
1

Isospin (T) of residual (®0Cu)
Isospin projection (T,) of residual (®°Cu)

2 Isospin (T) of target (S°Ni)
2 Isospin projection of target (°*Ni)
line 11 same as 5 3 3 0.000 Selection of format of OBTDs
line number 13 to x-line | OBTDs (1p-1h) | Values calculated from NORMOD code
Column 1 Ip Single-particle wave function
Column 2 1h hole-particle wave function
Column 3 Al Depends on type of giant resonance excited
Column 4 0.0 ignored
Column 5 value OBTD
line number 14 -1 -1 fixed end line
line number 15 Ni60Cu60 File name containing radial wave functions
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Table 3.4 Description of the input parameters in the FOLD file for calculating transition densities

and formfactors, a continuation of Table 3.3.

line number 16

0.939

2.650

1.000
Love and Franey
NN interaction

Scaling parameter for transformation

of interaction strengths from NN system

to nucleon-nucleon system

Momentum parameter used to calculate
exchange contribution.

Not used.

Filename contains parameters at 140 MeV/u.

line number 17

lor2

Number of formfactor(s).

line number 18

AJr
Jp
It

-1

Relative spin transfer

Total angular momentum for each formfactor
Total angular momentum transfer in

the target system

Select components of NN interaction

(the -1 is all components)

line number 19-20 or 19-22

Fixed values

Scaling factors for formfactor components.
(Usually set to 1)
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Figure 3.4 Transition densities calculated from FOLD code for a target nucleus (°ONj) of the IAS,

GTR, monopoles, dipoles, quadrupoles, and octupoles transitions being investigated in this work
as all listed in Table 2.1.
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Figure 3.5 The real (left panels) and imaginary (right panels) part of the formfactors for transitions
listed in the panels. They were calculated in the FOLD code. The excitations with spin transfer
(AS = 1) have strong real formfactors, while these without spin transfer (AS = 0) have strong
imaginary formfactors. Also note that the 27iw resonances have a node in the formfactior.
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Figure 3.6 The real (left panels) and imaginary (right panels) part of the formfactors for transitions
listed in the panels. They were calculated in the FOLD code. The excitations with spin transfer

imaginary formfactors.

(AS =1) have strong real formfactors, while these without spin transfer (AS = 0) have strong

40




3.4.3 Calculation of Differential Cross Section (DWHI)

The final part of the FOLD package, called DWHI, calculates the transition matrix elements,
Ty; in Eq. 3.7 and the differential cross sections. The DWHI code uses the previously calculated
formfactor (see Eq. 3.10) together with the optical model potential (Eq. 3.9) as the ingredients.
The optical potential distorts the incoming and outgoing waves. The real and imaginary optical
potential parameters (depths of the potential, radius and diffuseness) used in this work for the
%0Ni-*He and %°Cu-*H systems, were taken from measurement of *He elastic scattering on >*Ni at
443 MeV [119]. The potential depths of ®*Cu-H system were scaled to 85% of the one of *Ni
following the procedure in Ref. [122], while the other parameters remain the same. The potential

parameters are shown in Table 3.5.

Table 3.5 Optical potential parameters used in DWHI calculations for ®*Ni(*He,#)%°Cu reaction at
140 MeV/u. These values were taken from Ref. [119]. and defined for *H following Ref. [122].

Nuclides A" Iy ay W 1y Ay

[MeV] (fm) [fm] | [MeV] [fm] [fm]
ONj+7He | 35.16 1.32 0.84 | 4443 1.021 1.018
OCu+3H |29.80 132 0.84|37.77 1.021 1.018

As discussed in section 3.4.2, each giant resonance listed in Table 2.1 requires its own DWHI
input file. Table 3.6 describes the input parameters of the DWHI input files. Examples of DWHI
input files for several transitions are included in the Appendix D, Tables D.1 - D.14. The output of
each DWHI calculation file is shown in Figure 3.7. The differential cross sections will be used in
the data analysis and serve as inputs for the MDA (Eq. 3.2. The results from MDA calculation are

discussed in Chapter 5.
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Table 3.6 Description of the input parameters in the DWHI files for calculating the angular distri-

butions for each giant resonance as shown in the Appendix D, Tables D.1 - D.14.

Line number

Input parameters

Meaning of the input values

value-2=1 or 2

line number 1 1210000041000000 | Options for calculation and plotting
cross sections for each form factor
line number 2 FOLDNI File name containing form factor
line number 3 40 Total number of angle used
0 Initial angle
0.2 Angle step size
line number 4 value-1=160 Number of partial waves for elastic

Number of form factors to expect
must match number produced by FOLD

(Imaginary part of
optical potential
parameters of %'Ni-target)

value-6=-44.43
value-7=1.021
value-8=1.018

value-3=1 2 x AJ-projectile spin in initial channel (*He)
value-4=1 2 x AJ-ejectile spin in final channel ()
value-5=0 2 x AJ-target spin initial channel (%°Ni)
value-6 2 x AJ-residual transfer (°°Cu)

line number 5 value-1=0.03 Step size
value-2=600 Total number of integration steps

line number 6 valuel= 420 Beam/lab energy

(For incoming channel) value-2 = 3 Projectile (*He) mass number
value-3 =2 Projectile proton number
value-4 = 60 Target (°Ni) mass number
value-5 =28 Target proton number
value-6 = 1.25 Coulomb radius
value-7=1 Twice the spin value of the incident projectile
value-8=0 Not used in entrance channel

line number 7 value-1=1 Woods-Saxon potential (WS)

(Real part of optical value-2=-35.16 Real well depths of WS potential

potential parameters value-3=1.32 Radius

of ®Ni-target) value-4=0.84 Diffuseness
value-5=0 Indicate that beam energy used (420 MeV)

is the lab energy or reaction Q-value

Imaginary well depths of WS potential
Radius
Diffuseness

value-9=0 Imaginary spin-orbit factor (not used)
value-10=0 Computing factor (not used)
line number 8 value=0 Fixed end line
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Table 3.7 Description of the input parameters in the DWHI file for calculating the angular distribu-

tions. Continuation of Table 3.6.

(Real part of optical
potential parameters
of 90Cu-residual )

(Imaginary part of
optical potential
parameters of Cu)

value-2=-37.77
value-3=1.021
value-4=1.018
value-5=0

value-6=-44.43
value-7=1.021
value-8=1.018

line number 9 value-1=-6.2 | Q-value

(For outgoing channel) | value-2 =3 Ejectile () mass number
value-3=1 Ejectile proton number
value-4= 60 Residual (®*Cu) mass number
value-5= 29 Residual proton number
value-6=1.25 | Coulomb radius
value-7=1 Twice the spin value of the ejectile
value-8=0 Not used in entrance channel

line number 10 Value-1=1 Wood-Saxon potential

Real depth of WS potential

Radius

Diffuseness

Indicate that beam energy used (420 MeV)
is the lab energy or reaction Q-value

Imaginary depth of WS potential
Radius
Diffuseness

value-9=0 Imaginary spin-orbit factor
value-10=0 Computing factor
line number 11 value=0 Fixed end line
line number 12 Alr Relative spin transfer
2 xJp Same as Jp in FOLD
2x At Same as J1 in FOLD
line number 13 00 0 1 Fixed line ending form factor,

where (. terminate further form factor
and 1. enter data for single form factor

line number 14

Plot filename

Filename of output
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Figure 3.7 Differential cross sections calculated for the following giant resonances excited via
the °Ni(*He,r) reaction: the isobaric analog state (top-left), Gamow-Teller resonance (top-right),
isovector(spin) monopole resonances (middle-left), isovector (spin) dipole resonances (middle-
right), isovector (spin) quadrupole resonances (bottom-left) and isovetor (spin) octupole giant

resonances (bottom-right).
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3.5 Eikonal Approximation and the Unit Cross Section for GT and IAS

The extraction of Gamow-Teller strength, B(GT), can be performed directly via a S/EC decay
half-life measurement. However, 8-decay can only populate states in the daughter nucleus that are
energetically accessible given the Q-value of the transition. As shown in Figure 3.8, CE reactions
are not limited by a Q-value, and transitions to high-lying states can be studied. CE reactions are
mediated by the strong force, and the weak force mediates S-decay. However, the operators involved
in each process are both of the same ot type and the initial and final states that are connected by
this operator are the same. It turns out that, at intermediate beam energies, the differential cross
sections, (%)AL:O, at small momentum transfer (q ~ 0) measured via charge-exchange reactions

is proportional to the Gamow-Teller strength of the transition [123]. This proportionality was

experimentally shown by Taddeucci et al [123, 19, 20, 124], and is given by:

do .
(d—Q(q - 0))AL=0 - B(GT), (3.16)

where the ¢ is the proportionality constant, called the unit cross section. For this proportionality to
hold, the AL = 0 component of the differential cross section must be used, which can be obtained
through the multipole decomposition analysis described in section 3.1 and 5.2. In the Eikonal

approximation, the unit cross section can be decomposed:

oGt = KN|Jo|?, (3.17)

where 0gr is the Gamow-Teller unit cross sections, K is a kinematical factor, carrying information
about masses and energies of particles, and is expressed in terms of incoming and outgoing wave

momenta ( k; and k¢) and their corresponding initial and final reduced energies (E; and Eg):

EE; k¢

=—=5, 3.18
(ﬂh202)2 ki ( )

N is a distortion factor defined by the ratio of the DWBA to the PWBA (plane-wave Born approxi-

mation) cross sections [123, 19]:

o PWBA
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Figure 3.8 Schematic representation of both S-decay (red colors) and CE reactions (blue colors)
from parent nucleus Y to the daughter nucleus X. 5-decay can only populate states in the daughter
nucleus that are energetically accessible with the Q-value of the decaying nucleus. However, CE
reactions are not limited by Q-value, and highly excited states (nuclei that do not 5-decay) can be
studied via CE reactions.

and J,. (or J;) is the volume integral of the corresponding effective NN interaction (see Eq.
3.11) between the projectile and target nucleons. In practice, ogr 1s conveniently calibrated by
using transitions for which the transition strengths are known from S/EC decay and one does not
have to rely on a calculation. This makes the extraction of GT strength model independent, which
is very important for testing theoretical models. Of course, not for all nuclei are measured GT
strength from B/EC decay available. However, the unit cross sections for Gamow-Teller transitions
in such cases can be calculated by using expressions that only depend only on the mass number (A)
of the nucleus which have been established experimentally. For (®He,r) reactions at E ~ 420 MeV,
this relationship is &gt = 109/A%% as shown in Figure 3.9. The proportionality described above
for GT transitions also hold for the Fermi transition to the IAS and the mass dependent 0 is also

included in Figure 3.9.
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Figure 3.9 Figures (a) and (b) are measured of Fermi and Gamow-Teller unit cross sections respec-
tively, as a function of mass number (A) for (*He,?) reaction at 420 MeV. Both figures are taken
and modified from Ref. [19].

The proportionality between strength and differential cross sections holds for beam energies
of E > 100 MeV/u. This energy is sufficiently high to strongly reduce the contribution of
multistep processes to the CE reaction. The proportionality has the least uncertainty for strong
transitions. For weak transition, interference between the V. and V7, components of the NN
interaction become significant [19]. The uncertainty as a function of B(GT) was estimated to be
Orel.syst.error = 0.03 —0.035[n[B(GT)]. For example, states at E, = 2.07[B(GT) = 0.091] and
E, =2.74[B(GT) = 0.113], standard deviations of 11.4% and 10.6% were expected, respectively

[20].
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CHAPTER 4

DATA ANALYSIS: ®Ni(*He, /) REACTION AT RCNP
This dissertation focuses on probing isovector giant resonances in 'Ni up to high excitation energies
(60 MeV) using the (*He,¢) reaction at 140 MeV/u. The experiment was performed at the Grand
Raiden Spectrometer (GRS) at Osaka University’s Research Center for Nuclear Physics (RCNP).
The method involved directing a *He beam at 420 MeV produced by the RCNP Ring Cyclotron with
an intensity of ~ 4 pnA on a %Ni foil target of 2 mg/cm?. Section 4.1 describes the experimental
setup, procedures, and devices. An overview of the GRS and its focal plane detectors are discussed
in section 4.2 and 4.3, respectively. The method used to extract the excitation energy spectrum
from “Ni(*He,t) reaction was the missing-mass method, discussed in section 4.4. The magnetic
fields of GRS and the angular acceptance are discussed in section 4.6 and 4.5, respectively. The

measured differential cross sections from °°Ni(*He,) data are discussed in section 4.7.

4.1 Experimental Setup, Procedures & Devices

The ®°Ni(*He,?) experiment was performed at the Research Center for Nuclear Physics (RCNP)
in Osaka University, Japan by using a primary *He beam of 140 MeV/u and the high-resolution
QQDD-type Grand Raiden Spectrometer described in section 4.2. The spectrometer was set at
—0.5° relative to the beam axis. The intermediate-energy 3He”* beam at the RCNP facility has been
used extensively in various experiments for studying the Gamow-Teller strength distribution and
other giant resonances via (®He,r) reactions at intermediate beam energies [19, 119, 125, 126, 127].
The Azimuthally Varying Field (AVF) and Ring cyclotrons shown on Figure 4.1 were coupled to
accelerate a beam of *He nuclei to 420 MeV and transported to the target through the WS beam
line [128] connecting the separated-sector Ring Cyclotron and the GRS. Beam intensities of up to
4 pnA were impinged on a ®Ni-target foil of 2 mg/cm? installed in the scattering chamber. The

0Ni target was 98% pure.
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Figure 4.1 Schematic layout of the RCNP Ring Cyclotron facility.

4.2 Grand Raiden Spectrometer

The Grand Raiden Spectrometer (GRS) shown in Figure 4.2, is used to identify and analyze
the momentum of tritons produced in (*He,r) reactions [129]. The GRS was designed for high-
resolution measurements. The GRS contains three dipoles magnets (D;, D, and DSR), two
quadrupoles (Q; and Q,), one sextupole (SX), and one multipole (MP) magnet as shown in Figure

4.2. The multipole magnet can produce fields that are dipole, quadrupole, octupole, sextupole,
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and decapole. It is used to correct for aberrations in the ion optics. The Dipole Magnet for Spin
Rotation (DSR), is meant for polarized beam experiments and not used in this experiment. The
GRS can achieve a momentum resolution of Ap/p = 2.7 x 10~ and operate at magnetic rigidity
of up to 5.4 Tm allowing the measurement of tritons at 140 MeV/u (Bp = 5.31 Tm ) [130, 128].

Specification parameters of the GRS are shown in Table 4.1.

)

7
Faraday Cup % Q2
SX

T 2 -
Focal Plane 0 1 3 m Ql
AN

3He** beam

Figure 4.2 Schematic representation of the Grand Raiden Spectrometer set at 0°. The position and
angle are measured in the focal plane detectors. The momentum vector of the ejectile is deduced,
from which the excitation energy in the residual nucleus and scattering angles are determined.
Figure modified from Ref. [131].

4.3 Focal-Plane Detectors for Grand Raiden Spectrometer

The Focal-plane (FP) detectors for the GRS contain two sets of Multi-Wire Drift Chambers
(MWDC:s, see Figure 4.3 and Table 4.2) placed in the focal plane of the spectrometer. They are
used to collect information about the positions and angles of the particles. Each MWDC is filled
with a gas mixture typically composed of argon (71.4%), and isobutane (28.6%). They have two

anode-wire planes known as X and U anode-wire planes. The X layer has wires perpendicular to
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Table 4.1 Specification parameters of Grand Raiden Spectrometer.

Parameters Value

Intrinsic momentum resolution (AP/P) | 2.7 x 107>

Intrinsic energy resolution (AE/E) 4.5x 107

Position resolution 300 um (both horizontal and vertical)
Maximum Bp 54Tm

Maximum B (D, Dy ) 1.8T

Maximum magnetic gradient (Q;) 0.13 T/cm

Maximum magnetic gradient (Q5) 0.033 T/cm

Momentum range 5%

Focal plane tilt 45%

Mean orbit radius 3m

Total deflection angle 160°

Angular range -5°1090°

Horizontal magnification (x|x) -0.417

Vertical magnification (y|y) 5.98

Maximum momentum dispersion 15.45m

Horizontal acceptance angle +20 mr

Vertical acceptance angle +40 mr (in over-focus mode)
Solid angle 5.6 msr ( 3.2 in over-focus mode)
Weight 600 tons

Flight path for the central ray 20 m

the medium plane of the spectrometer, and the U layer has wires at an angle of 48.19° [129] with
respect to the X plane. The potential wires are charged and serve to generate a uniform electrical
field between the cathode and anode planes [131]. Charged particles ionize the gas atoms in the
trajectory and the ionized electrons drift perpendicularly to the anode plane and are detected by the
grounded sense wires. Drift times from the four sets of anode wires were measured and particle
trajectories were determined with a position resolution of around 100 ym in each plane.

Event rates were such that the corrections for the lifetime of the data acquisition system (DAQ)
were = 95%.

The energy loss and time-of-flight information for each hit were measured by using a set of
10-mm thick plastic scintillators (PS1 and PS2), which are mounted behind the drift chambers.
The first scintillator triggers the data acquisition system, serves as the start of the time-of-flight
measurement, and benefits particle identification. The stop signal is provided by the cyclotron radio
frequency (RF) signal. A 1-mm thick aluminum plate placed between the scintillators improves the

particle identification (PID) by increasing the energy loss in the second scintillator. At the highest
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Figure 4.3 Schematic structure of an X-plane of the MWDCs for Grand Raiden Spectrometer.
Anode wires and Cathode planes are represented with a typically charged particle track.

rigidity setting, beside the tritons, singly-charged 3He" ions enter the focal plane, as they have
the same mass-to-charge ratio as the tritons. The 3He" ions are produced when the 3He®* beam
particles pick up an electron in the reaction target. The particle-identification plot for this situation
is shown in Figure 4.4. The gates used for selecting the 3H" and *He" events are also indicated.
The vertical bands associated with each species are due to pile-up. The 3He" particles produced
via the atomic charge-exchange in target material [132] can be used for the calibration of scattering
angles. Since the 3He" particles have the same rigidity as the tritons but have negligible scattering
angles, they are useful for determining the central beam axis, corresponding to 0° scattering angle.

The *He” measurement is also helpful to obtain reliable energy calibration.
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Figure 4.4 Particle identification from the plastic scintillator signals at Grand Raiden focal plane.
Gates used to select tritons (3H+) and *He (3He+) charge-state particles are indicated. Particles
near channel O in both axes are due to cosmic rays and noise in the scintillators.

2 . . .
The *He™" beam transport to the GRS target location was achromatic. More details about the

ion-optical modes for experiments at the GRS can be found in Ref. [126].

4.4 Missing-Mass Calculation

From the measured positions and angles in the MWDC detectors at the focal plane, the momen-
tum vector of the triton is deduced, from which the excitation energies in the residual nucleus and
scattering angle are determined from the missing-mass calculation [133]. The ray-trace matrix that
is used to reconstruct the momenta and scattering angles from the positions and angles measured
in the focal plane is determined empirically by using a sieve slit measurements [134]. The sieve

slit is a block of a distinctive hole pattern (see Figure 4.5). It is installed 60 mm downstream from
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Table 4.2 Specification parameters of the MWDC for Grand Raiden Spectrometer.

Parameters Value
Anode:
Wire configuration X(0° = vertical ), U(48.2°)
Sense wire ¢ 20 pum gold-plated tungsten wire
Potential wires ¢ 50 um gold-plated beryllium-copper wire
Number of sense wires 192 (X) and 208 (U)
Anode wire spacing 2 mm
Sense wire spacing 6 mm (X) and 4 mm (U)
Cathode:
Material 10 pm-thick carbon-aramid film
Supplied voltage -5.6 keV
Cathode-anode gap 10 mm
Active area 12007 mm x 120" mm
Gas mixture: Argon (71.4%) + Isobutane (28.6%) +
Isopropyl alcohol (vapor pressure at 2°C)
Distance between two MWDCs | 250 um

the target and runs with this sieve slit are taken for every setting of the spectrometer for calibration
purposes. To reconstruct horizontal and vertical scattering angles based on the hole pattern in the
sieve slit, 6/ order polynomials relying on Xgp, Yrp, @%‘;,rizomal and @;‘i‘ftical are used. Then, the
sieve slit is removed from the beam-line and the polynomials are used to reconstruct the target
angles for the rest of the data. For the momentum calibrations, excitation energy spectra of nuclei
with states for which the excitation energies are well known are used. For this experiment the

26Mg(3He,t) reaction was the primary calibration reaction.
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Figure 4.5 An example of the structure of sieve slit of the GRS for calibration of scattering angles.
Figure taken from [135].

The missing-mass is calculated using the missing energy and momentum after reconstruction:

Mpmiss = | E~... — P2 4.1)

miss miss

The excitation energy is determined based on the mass of the residual nucleus;
Ex(6ocu) = Mpiss — m(60cu)’ (42)

where m(%°Cu) is the ground-state mass of °Cu. The missing energy (E,is) is defined as the

excess energy in the ®°Ni(*He,r) reaction:

Eniss = E; — Ef
(4.3)
= Ex(PHe) + m(PHe) + m(°Ni) — E; CH) — m(*H)

where E is the kinetic energy. Ej(°H) is determined from the reconstructed momentum of the

triton.

EL(CH) = \[p>CH) — m2(CH) - m(CH) (4.4)
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The missing momentum is calculated from:

_ 2 2 2
DPmiss = \/pm[ss,x + pmiss,y + pm[ss,z (45)
where,
Pmissi = pi("He) = p;CH) (4.6)

In this calculation px(3He) and py(3He) are assumed to be 0. The x,y, and z components of the H

momentum are calculated from the measured momenta and scattering angle of the *H on the GRS:

px(3H) = pz(SH) - tan(©y)

py(*H) = p.(H) - ran(©,) 4.7)

p:(*H) = Px(’H) - cos(®)

where,

® = atan (\/tan2(®x) +tan?(0y) (4.8)
and ©, and O, are the reconstructed horizontal and vertical components of the scattering angle.

4.5 Magnetic Fields of Grand Raiden Spectrometer

As discussed in section 2.1, the strength distribution of the isovector-spin and non-spin-transfer
giant monopole and dipole resonances are expected to extend up to high excitation energies. These
features require experimental measurements with an energy range that covers the whole width of
the resonances, approximately up to 60 MeV.

The momentum acceptance of the GRS is ~ 5%. Therefore, the energy acceptance for a setting
of the magnetic field is ~ 10% (this is shown in Appendix E, since %p ~ %). This implies that
the energy range for a 140 MeV/u (420 MeV) triton covered in a single setting is about 40 MeV.
In order to cover the range of excitation energies above 40 MeV, three overlapping settings of the

magnetic field were used. Examples of the measured spectra at these three settings are shown in

Figure 4.6, for scattering angles between 25 and 30 mrad.
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Figure 4.6 Singles spectra obtained for the ®*Ni(*He,) reaction for scattering angles between 25
and 30 mrad. Top: high magnetic field for the low excitation energy setting; Middle: medium
magnetic field for the medium excitation energy setting; Bottom: low magnetic field for the high

excitation energy setting.
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4.6 Angular Acceptance and Resolution

The *He" charge state provides a convenient way to determine the angular resolution. In Figure
4.7(a) and (b), the ®, and ©, distribution for the charge state are shown, respectively. The width
(FWHM) of these distributions are 2.4 mrad (x) and 3.3 mrad (y), which constitute the angular
resolutions in each direction.

The angular acceptance of the GRS has an irregular shape as shown in Figure 4.8, which displays
O, versus O, for the low excitation energy runs. Near the edges of the acceptance, the angular
acceptance is uncertain and depends on the momentum of the tritons. For ®; < —6 mrad, the ray
tracing of ®, is uncertain, especially at low triton momentum (high excitation energy), resulting in
too many events at ® ~ 0. To ensure that only events with well-reconstructed angles are utilized
and the acceptance is well understood, only the data with -6 < ©, < 21 mrad and -36 < ©, < 36
mrad were used, as indicated by the black box in Figure 4.8. Within the angular range defined by
this box, 8 angular slices, each of 5 mrad wide, were used to create angular distributions as shown
in Figure 4.9.

The solid angle of each of these 8 angular bins was determined in a simple Monte-Carlo
integration. The result is shown in Figure 4.10. Due to the finite angular resolution, the effective
solid angle of each angular bin is slightly distorted. The effect was included in the Monte-Carlo
integration.

The estimated excitation energy resolution in ®°Cu via the ®*Ni(*He,r) was 0.11 MeV, see Figure

4.11.
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Figure 4.7 Figures(a) and (b) are the distribution of angular widths [FWHM] in horizontal (®, = 2.4
mrad) and vertical (©, = 3.3 mrad) projection, respectively. The angular resolution [FWHM] is
~ 3 mrad.
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Figure 4.8 Reconstructed angles from the highest magnetic field setting. The black box indicates
the angular ranges used in further analysis.
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Figure 4.9 Figure illustrating vertical and horizontal angular acceptance of the GRS for the three
angular settings used for ®*Ni(*He,r) reaction. The 8 angular slices, each of 5 mrad wide are shown
in circles.
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was 0.11 MeV.
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4.7 Differential Cross Sections Calculation

As discussed in section 4.5, data from the three angular settings (low, medium, and high
excitation energies) of the GRS were merged for every scattering angle bin of 5 mrad in order to
have one spectrum from the full range of excitation energies up to 60 MeV. The differential cross-

sections of the ®*Ni(*He,r) reaction at 140 MeV were calculated using the following equation:

do Y
dQ NbeamthtEIEZdQ,

4.9)

where Y is the total number of counts in an angular bin, Np..;, is the number of beam particles
(3Hez+) on target, N4, is the number of nuclei in the target ONi foil of 2 mg/cm?, € is the correction
for the lifetime of the data acquisition system (95%), e is the correction for the target purity (98%),
and dQ = 2r f;f sin 8d0 is the solid angle for angular bin as shown in Figure 4.10, where 6; and
6 ¢ are the lower and upper angular bin limits.

Figure 4.12 and 4.13 shows results of the measured differential cross sections for different
angular bins of 5 mrad from ®°*Ni(*He,r) data. The dominant observed peaks in the spectra are the
GTR, please note that since the angular distributions of the IAS and GTR are similar and they both
peak at forward angles. The IAS can be seen at an excitation energy of 2.55 MeV. The GTR peaks
around 10 MeV. At higher excitation energies, the flat structure is a combination of states related to

different angular momentum transfers. The statistical uncertainties are represented in the spectra.
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Figure 4.12 Extracted differential cross sections for each 5-mrad wide angular bin for the ®*Ni(*He,r)
reaction at 140 MeV/u. Angles are in the laboratory frame. The uncertainties presented in the data
are statistical.
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Figure 4.13 Extracted differential cross sections for each 5-mrad wide angular bin for the %ONj(*He,r)
reaction at 140 MeV/u. Angles are in the laboratory frame. The uncertainties presented in the data
are statistical.
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CHAPTER 5
RESULTS AND COMPARISON WITH THEORY

5.1 Calculated and Measured IAS

The next step in the analysis of the experimental data is to investigate the contribution from
different types of transitions and to identify the location of the giant resonances. As discussed
in Chapter 2, resonances associated with different units of angular momentum transfer peak at
different scattering angles, and we can use a multipole decomposition analysis (MDA) to separate
these contributions. In the following, we first look to the IAS, before performing a MDA of the
whole excitation energy spectrum.

In %°Cu, it is possible to identify individual states at low excitation energies. In Figure 5.1
(a) the excitation energy spectrum for E, < 5 MeV is shown, at scattering angles of ®;,, < 5
mrad. Figure 5.1 (b) shows the differential cross section for the transition to the IAS of the 6ONG:
ground state, located at an excitation energy of 2.55 MeV as indicated in Figure 5.1 (a). The error
bars show statistical errors. The measured differential cross section is compared with the theory,
based on the distorted wave Born approximation (DWBA) see section 3.4.3. The theoretical cross
section was higher than the measured cross-section and scaled down by a factor of 1.35 to match
the measured cross sections. The likely reason for this overestimation by the theory is the use of
an approximation to the exchange contribution in the NN interaction used in the calculation [37].
Other than this scaling factor, the theoretical calculation matches well with the experimental data,
indicating the ability of the DWBA calculation to accurately describe the experimental angular

distributions.
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Figure 5.1 Figure (a) shows the excitation-energy spectrum between 0 and 5 MeV for the ®*Ni(*He,r)
reaction at 140 MeV/u. Figure (b) shows the comparison of the measured differential cross section
for the IAS with theory, based on the DWBA calculation as shown with the black solid line. The
DWBA calculation was scared down by a factor of 1.35.
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5.2 Multiple Decomposition Analysis Results

As discussed in chapter 3, the MDA is a method used to extract contributions to the measured
spectra that are associated with the transfer of different units of angular momentum (AL). The
MDA was performed by fitting the measured differential cross section shown in Figures 4.12 and
4.13 for each energy bin with a linear combination of theoretical angular distributions (see Eq.
3.2), each associated with a different value of AL, as discussed in section 3.4.3.

Figures 5.2 and 5.3 illustrates the MDA fits for a few selected excitation energy bins. A bin
size of 40 keV was used in order to ensure adequate statistics for the MDA. In DWBA, the AL=0,
1, and 2 shapes were computed with matching excitation energy for each bin. Note that systematic
uncertainties related to the choice in which monopole, dipole, or quadrupole formfactor is used, is
relatively small as the angular distributions for different choices are very similar.

The top four figures in Figure 5.2 depict a fit at excitation energies below 14 MeV, where the
monopole (AL = 0) contribution dominates over other AL values. However, as the scattering angles
increase, the dipole (AL = 1) contribution becomes significant. The bottom two panels in Figure
5.2 show fits around 20 MeV, where AL =1 and 2 contributions are relatively strong. Below 1°,
the AL = 2 component dominates, while above 1°, the dipole contributions dominate.

Figure 5.3 (top two figures) shows fits around 30 MeV, where all AL values contribute to the
total strength. Below 1.25°, the monopole contribution dominates, while above 1.25°, the dipole
contribution dominates. For the fit around 47 and 48 MeV in Figure 5.3 (middle two figures), the
AL = 2 component dominates at all scattering angles, but other AL =0 and 1 values also contribute
to the total strength. Finally, the bottom two panels of Figure 5.3 show the fit around 54 and 57
MeV, where all AL values contribute to the total strength. Below 1.25°, a significant contribution
of the AL = 0 component was observed, while above 1.25°, the AL = 1 component dominates.

Please note that the components AL = 2 likely also include contributions from excitations with
higher AL, but given the relatively narrow angular range covered in the experiment, these cannot
be separated.

The results from the MDA for each individual bin can now be combined to obtain a picture of
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the multipole response as a function of excitation energy. The combined plots are shown in Figure
5.4 and 5.5 for each of the angular bins. Figure 5.4 shows the results for angular bins below 20
mrad. Each figure contains the contributions from each AL component, the sum of these three
components, and the experimental data.

The AL = 0 contributions are enhanced at low scattering angles and below E, = 12 MeV it is the
dominant contribution to the spectrum. This strength can be attributed to Gamow-Teller transitions,
aside from the IAS at 2.55 MeV. Note that the 0* — 1" GT transitions have a AL = 0 and AL =2
component. Therefore, in regions where GT transitions are strong, a AL = 2 contribution must
be present as well. Of course, AL = 2 contributions can also come from transitions to 2* and 3*
final states as well. At higher excitation energies, contributions to the AL = 0 response from the
IVGMR and IVSGMR are expected. Indeed, AL = O strength is observed above 20 MeV, but the
interpretation is complicated by contributions from quasifree reactions, as discussed below.

Dipole strength (with AL = 1) peaks at a larger scattering angle. Indeed a broad resonance
that peaks at about 19 MeV is visible at the largest scattering angles. This broad structure is due
to a combination of the IVSGDR (J* = 07,17,27) and IVGDR J* = 1~. Because the extracted
AL = 2 distribution also contains contributions from transitions with AL > 2, the interpretation of
this distribution is ambiguous. It doesn’t display a clear resonance like structure even though the
IVGQR and IVSGQR should contribute to the spectrum at high excitation energies. This is due to
the fact that the quasifree reactions contribute significantly to the AL = 2 response, as discussed

below. In the next sections, the responses will be examined in more detail.
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Figure 5.2 Figures show the MDA fit for a few selected measured center-of-mass angular distribu-
tions in 0.04 MeV bins between 0 and 60 MeV in ®*Cu. The experimental data are represented by
black dots, while the dashed red, blue, and yellow lines correspond to the AL=0,1,2 components
respectively of each fit determined from the MDA. The green solid line is the sum of the three
MDA fit components. For more details, see the text.
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Figure 5.3 Cont Figures show the MDA fit for a few selected measured center-of-mass angular
distributions in 0.04 MeV bins between 0 and 60 MeV in °Cu. The experimental data are
represented by black dots, while the dashed red, blue, and yellow lines correspond to the AL=0,1,2
components respectively of each fit determined from the MDA. The green solid line is the sum of
the three MDA fit components. For more details, see the text.
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Figure 5.4 MDA results presented as the differential cross sections of ®*Ni(*He,) reaction at 140
MeV/u for scattering angle bin from O up to 20 mrad angular distribution. Each 0.04 MeV energy
bin’s associated angular distribution was fit in the MDA with AL =0, 1 and 2 theoretical angular
distribution.
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Figure 5.5 MDA results presented as the differential cross sections of ®*Ni(*He,¢) reaction at 140
MeV/u for scattering angle bin from 25 up to 40 mrad angular distribution. Each 0.04 MeV energy
bin’s associated angular distribution was fit in the MDA with AL =0, 1 and 2 theoretical angular
distribution.
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5.3 Gamow-Teller Strength B(GT) Extraction

5.3.1 Extrapolation to q=0

Section 3.5 introduced a relationship between charge-exchange cross sections extracted to zero
momentum transfer and Gamow-Teller strength, B(GT), as shown in Eq. 3.16. The top four figures
in Figure 5.2 and Figure 5.4 indicate that the cross-section at forward angles is dominated by AL = 0
transitions, which enables the extraction of B(GT) as a function of excitation energy. Firstly, the
cross section needs to be extrapolated to zero linear momentum transfer (g — 0). For this purpose
the cross section at 0° for the AL = 0 component from the MDA was extracted from finite physical

Q value to Q = 0, using the DWBA calculations:

dor AL=0
d_Q(g = OOaQ)] 6.1

experiment

X

_[%@=0.0=0)
a=0 [§5(Q=0Q,0=0°) | 1us
The DWBA scaling factor is displayed in Figure 5.6. Finally, after extracting the experimental

do
—(a=0
0ld=0

cross section at ¢ = 0 and by using the Gamow-Teller unit cross section (Ggr = 7.614, see Figure
3.9): the B(GT) was calculated by dividing the differential cross section at ¢ = 0 by the unit cross

section.

©@=0
B(GT) = -~ AL=0 (5.2)

A 10% uncertainty that scales all GT strengths attributed to the uncertainty in 6Gr was taken into
consideration in the further analysis [136, 19, 48]. Figure 5.7(a) presents the B(GT) distribution
extracted as a function of excitation energy, while Figure 5.7(b) shows the cumulative B(GT)
strength up to 20 MeV. In the subsequent section, the comparison with the shell-model calculation
for the same excitation energy range is discussed.

For excitation energies up to 20 MeV, the MDA analysis yielded a total GT strength of 10.6 +
1.45 (stat) + 1.19 (sys). At higher excitation energy additional strength is found that is associated
with AL = 0 and likely contains some additional GT strength. However, at high excitation energies
contributions from the isovector giant monopole resonances are expected to dominate the AL = 0

response.
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Figure 5.6 The ratio of the differential cross sections at 6 = 0° and at zero Q-value (Q = 0) to that
of § = 0and Q = Q. as calculated in DWBA.
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Figure 5.7 Figure (a) shows the extracted B(GT) in ®°Cu up to 20 MeV excitation energy, while
Figure (b) displays the cumulative B(GT) strengths after removing IAS. The uncertainties shown
are statistical. An additional uncertainty of 10% that scales all GT strengths is due to the uncertainty
in 0 [136, 19, 48].
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5.3.2 Comparison with Theory, Shell-Model Calculations

The B(GT) distributions as a function of the excitation energy extracted from %ONi(3He,r) reac-
tion were compared to the strengths distributions calculated in shell-model calculations performed
in pf-shell-model space using the GXPF1A interaction [137]. Truncations in the shell-model
space were necessary to calculate the strength up to high excitation energy. The calculations were
performed with the code NushellX [117]. Three calculations were performed, one in which the
pf-shell-model space was not truncated, one in which at least 7 neutrons and protons were in f7/>
orbit (strong truncation), and one in which at least 6 neutrons and protons were in the f7,, orbit
(mild truncation). Calculations with no truncation could be performed up to an excitation energy
of 6.5 MeV. Calculations with a mild truncation could be performed up to ~ 15 MeV. Calculations
with a strong truncation were performed up to 20 MeV. All shell-model calculations were scaled by
a factor of 0.56 (see section 2.3.2) to account for a well-known quenching of the GT strength [138].

The comparisons of the experimental and theoretical GT strengths are shown in Figure 5.8 and
5.9. The theoretical strength distributions shown in Figure 5.8 match the overall structure of the
experimental spectra quite well. There are several relatively strength transitions at low excitation
energies and a broad distribution of strength between 5 and 15 MeV. On the other hand, it is not
possible to make a one-to-one correspondence between experimental and theoretical transitions
even at low excitation energies, and reducing the truncation does not provide a significantly better
result, even though the theoretical spectra change significantly with different levels of truncation.
Above 17 MeV more strength is found than in theory. Some of this strength might be attributed
to the quenched strength at low excitation energy. However, some of this strength could also be
due to the excitation of the isovector giant monopole resonances and to the quasifree-continuum as
discussed in later sections.

To compare the total strength, the cumulative strengths are plotted in Figure 5.9. The level of
truncation modifies the summed strength, and the total strength is lower with reduced truncation.
Slightly more strength is found in the experiment compared to the theoretical calculations. The

shell-model calculations plateau above 15 MeV, whereas some GT strength is observed. As
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discussed above, this could be due to quenched strength at low excitation energies shifting to higher
excitation energies or due to misinterpreted isovector monopole strength or contributions from the

quasifree-continuum.
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Figure 5.8 The comparison of the measured B(GT) strength and these from shell-model calculations.
Figure (a) shows the measured B(GT) strengths up to 20 MeV. Figure (b) to Figure (d) shows
theoretical shell-model calculations in black, green, and red for no truncation, mild truncation, and
strong truncation, respectively. Note that the IAS is visible in the extracted strengths from the
experiment, but does not appear in the theoretical calculations (Gamow-Teller only).
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Figure 5.9 The extracted cumulative B(GT) distribution after removing IAS was compared to theo-
retical shell-model calculations depicted in blue, green, and red for no truncation, mild truncation,
and strong truncation, respectively. All shell-model calculations were scaled by a factor of 0.55
[138] to account for a well-known quenching of the GT strength.
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5.3.3 Extracted B(GT) at 14.4 MeV for 7. State

Studying Tp + 1 excitations is of interest as these states are the analogs of states populated in the
%Ni(n,p) reaction, see Figure 2.3. These transitions can be used to estimate the electron-capture
rate in core-collapse supernovae [139] for which GT strengths in the 8* direction are important.
The extraction of the first Ty + 1 state, located at E,(°°Cu) = 14.4 MeV was previously analyzed
through the 60Ni(p,n) reaction [139], see Figure 5.10. The extracted B(GT) for the 60Ni(n,p)
reaction after taking into consideration the isospin scaling factor as discussed in section 2.2 to
scale the strength from the “Ni(p,n) reaction to ®*Ni(n,p) reaction was 0.95 + 0.15. The scaling
factor was 15 calculated by using the equation in section 2.2 [139]. A similar analysis but with the
(3He, t) reaction was performed in this thesis.

The process of extracting the B(GT) for the transition to the Ty + 1 state around 14.4 MeV in the
%0Ni(3He,r) reaction at 140 MeV/u is shown in Figure 5.11. Figure 5.11(a) illustrates the differential
cross section between 13.5 and 16 MeV at forward scattering angles emphasizing the prominent
To + 1 state at an excitation energy of E,(%°Cu) = 14.4 MeV. Figure 5.11(b) displays the fitted
data using a first-order polynomial background and a Gaussian function. Following background
subtraction, Figure 5.11(c) visualizes the resulting peak centered around 14.4 MeV. Subsequently,
a MDA was performed to extract the cross section at 0° and the B(GT) following the same process
as in section 5.3.1.

In order to convert the cross-section from data to B(GT), the cross sections were extrapolated
to ¢ = 0 momentum transfer and divided by unit cross-section (6gr = 7.614). In this work,
the extracted B(GT) of Ty + 1 state at 14.4 MeV is 0.86 = 0.09 (stat.)=0.08 (syst.). The value is

consistent with the result from the °Ni(p,n) experiment [139].
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Figure 5.10 Spectra for 36%-62.64Ni(p,n) reactions at 134.4 MeV, the Ty + 1 state in *°Ni nucleus is
shown at 14.4 MeV. Figure taken from [139].
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Figure 5.11 Extracting B(GT) for the transition to the Ty + 1 state at 14.4 MeV in the ®*Ni(*He,r)

reaction at 140 MeV/u .

Figure (a) depicts the differential cross section between 13.5 and 16 MeV.

Figure (b) shows the fitted peak, while Figure (c) displays the background subtracted peak centered
at E, = 14.4 MeV. Figure (d) presents the angular distribution and the MDA.
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5.3.4 Comparison with Theory, (p, p’) and (e, ¢’)

In addition to the transition to the 7p + 1 state at 14.4 MeV, it is likely that are other GT
transitions to Tp + 1 states above 14.4 MeV. In this work, it was attempted to extract the strength
of these transitions by using a simple background subtraction, as shown in Figure 5.12. Figure
5.12(a) shows the differential cross section between E, = 13 MeV and E, = 20 MeV for scattering
angles below 5 mrad, where GT transitions are dominant. Besides the peak at 14.4 MeV, several
other weaker peaks are visible. A simple linear background was subtracted, as shown in Figure
5.12(b), where the red dashed lines indicates the estimated uncertainty in this background model.
The background-subtracted differential cross sections are shown in Figure 5.12(c). The extracted
B(GT) strengths are shown in Figure 5.12(d). To verify that these states are 7y + 1 states, the
excitation energies of the states were compared with known corresponding 7y + 1 states measured
in the %Ni( p,p’) and %ONj(e, ¢’) reactions [140, 141], these excitation energies are indicated in red
and green arrows, respectively, in Figure 5.12(d). Up to about 16.5 MeV, it appears that several
Ty + 1 states can be identified. At higher excitation energies, no (p, p’) or (e, ¢’) data are available
and it cannot be proven that the peaks found are transitions to 7p + 1 states. The results were
compared with shell-model calculations with the GXPF1A interaction in the pf-shell model space
(no truncation) in the (n,p) direction. They are shown as the black dots in Figure 5.12(d).

Aside from the transition to the first 7o + 1 states, it is not possible to find a one-to-one
correspondence between states found in the experiment and states calculated in the shell-model. In

addition, more strength is found in the theoretical calculations than observed in the experiment.
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Figure 5.12 Extraction of the B(GT) for the transitions to possible T + 1 states. Figure (a) illustrates
the differential cross sections between 13 and 20 MeV. Figure (b) shows the background estimation,
while Figure (c) shows the differential cross sections of the same spectrum after the background
has been subtracted. Figure (d) presents the extracted B(GT) from the measured in the %ONj(*He,r)
data in blue dots and shell-model calculations in the (n,p) direction in black dots. The location of
the states are compared with available data for the location of the Ty + 1 states in (p, p’) in red and

(e, €’) in green data [140, 141].
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5.4 Background or quasifree-continuum Estimation

Extracting the Isovector Spin Giant Monopole Resonance (IVSGMR), Isovector Spin Giant
Dipole Resonance (IVSGDR), and other isovector giant resonances with higher multipolarities at
higher excitation energies is complicated by the presence of the quasifree-continuum in charge-
exchange reactions. As the excitation energy increases, the quasifree-continuum becomes more
pronounced, making it difficult to observe and analyze the resonant structures of interest. The
quasifree-continuum arises from non-resonant processes. At energies of an excess of 100 MeV/u
the dominant component of the continuum are quasifree reactions in which the projectile interacts
with a single nucleon and the other nucleons in the target are spectators.

In quasifree reactions in the (*He,?) reaction, the *He projectile interacts with a single neutron
in the target, where the rest of the nucleus acts as a spectator, and the neutron behaves as a free
particle, except for its binding energy. This CE process involves the transformation of this neutron
into a proton, leading to its "knockout" from the nucleus. The process must occur above the
proton separation energy to facilitate this knockout. As the transferred energy increases, removing
neutrons from deeper shells with higher binding energies becomes possible. More details about
the quasifree-continuum origin can be found in Refs. [142, 143, 144, 145, 146, 147, 42, 145, 148].

The contribution of quasifree reactions is uncertain. If quasifree reactions do not peak at
forward scattering angles, the MDA conveniently includes contributions from the continuum into
components associated AL > 2, making the extraction of AL = 0 and AL = 1 strength straight-
forward. However, if the continuum contribution peaks at forward scattering angles, it will impact
the strength extraction of AL = 0 and AL = 1 resonances and it is better to remove the continuum
contribution before the MDA. In this work, we will compare the two approaches. The quasifree-
continuum has been estimated using a phenomenological approach. Initially, Erell et al. [42]
introduced this description for 7 charge-exchange reactions, and later, it was also applied to (*He,?)
reactions [145, 146, 147, 148]. For the case of (3He,t) reaction, it has the following form:

d’o _Nl—exp[(E—Eo)/T]
dQdE 1+ [(E - Egr)/W]*’

(5.3)

where Egr is the centroid energy of a Lorentzian distribution that undergoes a shift relative to
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the energy of the free process, E;(f,ee), due to various contributing factors. These factors include
the proton binding energy S, the excitation energy E, of the neutron-hole state, and the Coulomb

barrier Bc,,; experienced by the proton:
EQF = Et(free) - (Sp +Ex + BCoul)’ (5.4)

The energy E, becomes zero only when the neutron is removed from the orbit closest to the Fermi
level. The width W is attributed to the Fermi motion inside the nucleus, while the exponential term

arises from Pauli blocking effects. The cut-oft energy E is defined by:
Eo = Ei(g5) = Sp. (5.5)
and E is derived from E, by:
E=FE, j+Qg —Ex (5.6)

The parameter T is a temperature parameter. The normalization (N) is typically selected to
match the full cross section at high excitation energies, which likely leads to an overestimation
of the quasifree-continuum due to the contribution from non-quasifree reactions at high excitation
energies.

In this work, equation 5.3 was used to estimate the quasifree-continuum in spectra from
%0Ni(3He,r) reaction as shown in Figure 5.13 and Figure 5.14. The parameters in Eq. 5.3 used in
calculating the quasifree curves are described in Table 5.1. The value of the normalization factor
N as a function of the scattering angle is shown in Figure 5.15. It was determined by scaling
the calculated quasifree curve to the experimental differential cross sections for excitation energies
above 55 MeV. N peaks at forward scattering angles, although the angular dependence is weak.

In order to extract monopole and dipole strengths from ®°Ni(*He, ) data, the estimated quasifree-
continuum was removed from data as shown in Figures 5.16 to 5.19. A comparison was made
between the MDA results for 1 MeV bins up through 60 MeV in excitation energy before and
after removing the quasifree-continuum in the °Ni(*He,t) data for a scattering angle bin ranging

from O to 40 mrad as shown in Figure 5.16 to 5.17. The top figure displays the MDA results
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before removing the quasifree-continuum, whereas the bottom figure displays the MDA after the

quasifree-continuum removal within the same angular range. Itis observed that, after the subtraction

of the quasifree-continuum, tails that extend to high excitation energies for AL = 0 and AL =1

components are strongly reduced.
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Figure 5.13 Estimating quasifree-continuum for each 5 mrad wide angular bin via the ®*Ni(*He,r)
reaction at 140 MeV/u for scattering angle bin from 5 to 20 mrad angular distribution. The black
dots in the figure represents the experimental data, while the blue dots illustrate the quasi-free curve
used for comparison.
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Figure 5.14 Estimating quasifree-continuum for each 5 mrad wide angular bin via the ®*Ni(*He,¢)
reaction at 140 MeV/u for scattering angle bin from 25 to 40 mrad angular distribution. The black
dots in the figure represents the experimental data, while the blue dots illustrate the quasi-free curve
used for comparison.
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Scaling parameter

Figure 5.15 Normalizing parameters (N) from fit was used to match the full cross-section at high

(OV)
(@)

N

N

=

=

L °
°
5_ ¢ ® °
L °

0-
5 -
0-
5 -
0 ; ; ; ;

0 10 20 30 40

Scattering Angle (8) in mrad

excitation energies for each 5 mrad wide angular bin in (*He,?) data.

Table 5.1 Parameters used in calculating the quasi-free curve/quasifree-continuum via the

%ONj(*He,r) reaction at 140 MeV/u.

N
0gs)
nQ
Eproj
Et(free)
Ei(gs)
SP
BCoul
E,
EQF
Ey

w

T

Normalization, fit

Q value for ®*Ni(*He,?)

Q value for n(3He,t)p

Beam energy (*He)

Energy of the free triton, [E,( free) = Eproj + nQ]
Ground state energy of the triton, [Et(gs) =Ep0) — Q]
Proton separation energy for 'Ni

Coulomb barrier for the proton

Excitation energy of the neutron hole state

Quasi-free energy, Egr = E;(free) = (Sp + Ex + Bcour)
Ei(gs) = Sp

Width of resonance, fit

Temperature parameter

fit

-6.147

0.762 MeV
420 MeV
420.762 MeV
413.852
9.922 MeV
7.3 MeV

2 MeV
401.932 MeV
404.3196 MeV
fit

100
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Figure 5.16 The MDA results at 1 MeV bin from ®°*Ni(*He,¢) data for a scattering angle bin ranging
from O to 10 mrad. The top figure illustrates the MDA results before removing the quasifree-
continuum, while the bottom figure shows the same results after the quasifree-continuum removal
within the same angular range.
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Figure 5.17 The MDA results at 1 MeV bin from ®°*Ni(*He,¢) data for a scattering angle bin ranging
from 10 to 20 mrad. The top figure illustrates the MDA results before removing the quasifree-
continuum, while the bottom figure shows the same results after the quasifree-continuum removal
within the same angular range.
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Figure 5.18 The MDA results at 1 MeV bin from ®*Ni(*He,r) data for a scattering angle bin ranging
from 20 to 20 mrad. The top figure illustrates the MDA results before removing the quasifree-
continuum, while the bottom figure shows the same results after the quasifree-continuum removal
within the same angular range.
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Figure 5.19 The MDA results at 1 MeV bin from ®*Ni(*He,r) data for a scattering angle bin ranging
from 30 to 40 mrad. The top figure illustrates the MDA results before removing the quasifree-
continuum, while the bottom figure shows the same results after the quasifree-continuum removal
within the same angular range.
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5.5 Extraction of the Isovector Spin Giant Monopole Strength

Due to the common transition of AL = 0 for the GT, IVGMR, and IVSGMR excitations, their
strength contributions cannot be distinguished solely through the MDA. Although some GT strength
can be situated at excitation energies above 20 MeV, it is of a non-resonant nature and is expected
to be weakly excited compared to the IVGMR and IVSGMR. In this work, separating the strength
contribution of the IVSGMR/IVGMR from that of GT transition was done by a simple assumption
that the cross sections associated with AL = 0 at low (< 20 MeV) and high (> 20 MeV) excitation
energies correspond to the excitations of GT states and the IVSGMR/IVGMR, respectively. The
extraction of the B(GT) strength was discussed in section 5.3.

To make an assessment of how much of the expected resonance strength for the IVSGMR/IVGMR
is found in the analysis, the extracted cross sections associated with AL = 0 in the MDA at 0°

were compared with the calculated cross sections in DWBA with transition densities calculated

exp
dL=0

in normal modes (see section 3.4.2). Figure 5.20 shows the extracted ratio of o (0°) to

DWBA

a(0°)|,vscomr JIVGMR for the MDA analysis performed before and after the removal of the quasifree-

continuum contributions. Figure 5.20 also includes the summed fractions as a function of excitation
energy, which provides a measure of how much of the expected normal-modes strength is observed
in the analysis. Figure 5.20(a) and (b) show the extracted ratios after quasifree-continuum subtrac-
tion, while Figure 5.20(c) and (d) shows the same analysis before quasifree-continuum subtraction.
In the former case, monopole contribution at excitation energy between 20 to 50 MeV was found
to be 8% of the expected strength from the normal-modes calculation. It is therefore likely the
background subtraction removed a fraction of the isovector spin giant monopole strength.

In the latter case, the strength distribution shows no sign of resonance structure, and three
times the expected strength is extracted. This indicates that the removal of the quasifree-continuum
is important. We conclude that in order to extract strengths for the IVGMR and IVSGMR, an
experimental method for removing the quasifree-continuum is required. In the past, this has been
achieved by requiring a coincidence between the (3 He,r) and protons at backward angles [2, 34, 149].

The reactions that contribute to the quasifree-continuum are associated with a proton emitted at the
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forward scattering angles. Protons emitted follow the excitation of the IVGMR/IVSGMR and are
distributed isotropically. Hence the coincidence with protons at backward angles provides a good

filter for reactions in which the giant resonances are excited.

« £0.12 .
& 0.015 (a) 39
=9 £0.10
2 a5
Qz —_
= 0.010+ o 0.08 ]
g } \E; 0.06 #HH
© o ll |
%0.005- { | } { l ;3’_?0.04 }}}}H}
' ¢ 2
S 0.000 }$4$ ! R 0.00 ssssstditt’ , ,
20 30 40 50 20 30 40 50
Ex(°°Cu) (MeV) Ex(°°Cu) (MeV)
0.30 E (d) .
< (c) } §% 3 S
§20.25 t as .
§§ {{ N ..
- 0.20 { 9 2 °
9 {{ E o*
o 0.15 [ <) o’
= 3 ol o
2! 0.10 §3% $31 o
DAY .l‘i 5 o o®
o 0.05/ ..."...,.-' 96 J— oe®®
o} boeoee®® W 0 PYY L
0-00,5 30 40 50 20 30 40 50
Ex(5°Cu) (MeV) Ex(°°Cu) (MeV)
. . . oN|exp oy |DWBA
Figure 5.20 Figure (a) and (b) shows the extracted ratios of o(0°)| ,,_ 0 0 (0°) |y sc 1z 1vemr fOM

%0Ni(*He,¢) reaction at 140 MeV/u after the quasifree-continuum subtraction. Conversely, Figures
(c) and (d) illustrate the same ratios derived from the original data without the quasifree-continuum
subtraction. In Figure (b) we observe that the anticipated resonance strength for IVSGMR/IVGMR
is 8% of the expected normal-modes strength, while in Figure (d) more than 300% of expected
normal-modes strength is observed.
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5.6 Extraction of the Isovector Spin Giant Dipole Strength

As previously discussed in section 2.5, the IV(S)GDR consists of three components (07, 17,
and 27). However, in the data, these components are not distinguishable from one another due to
their overlap and equal AL value and angular distribution. The summed strength peaks at around
18 MeV.

Here, we compared the differential cross sections extracted for AL = 1 transitions with the
DWBA calculations using the normal-mode framework. The comparison is performed for 35<
O;.1a» < 40 mrad, where the dipole transitions peak. As was done in the previous section 5.5 for
the IVGMR/IVSGMR, the results from the analysis with and without subtraction of the quasifree-
continuum were compared. The results are shown in Figure 5.21. With the removal of the
quasifree-continuum, a strong resonance is observed that peaks at E, = 18 MeV. The ratio between
the extracted and theoretical cross sections is about 1.25, suggesting that the quasifree-continuum
subtraction works quite well. Since, the AL = 1 excitations peak at backward angles, unlike
the quasifree-continuum, systematic uncertainties induced by the subtraction of the quasifree-
continuum appear less severe than for the monopole transitions. Without the subtraction of the
quasifree-continuum, a large amount of excess cross section above E, = 30 MeV is seen, indicating

that the subtraction of the quasifree-continuum is necessary.
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Figure 5.21 The isovector spin giant dipole strength was extracted from the ®°Ni(*He,?) reaction at
140 MeV/u. In Figure (a), we depict the ratios of dL = 1 components at 0° derived from both the
measured differential cross sections (MDA) and the theoretical calculation using DWBA. Figure
(b) showcases the cumulative ratio of the results presented in Figure (a). In contrast, Figures (c)

and (d) depict the identical ratios calculated from the original data without quasifree-continuum
subtraction.
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CHAPTER 6
CONCLUSION AND OUTLOOK

6.1 Summary

This dissertation focused on probing isovector giant resonances in ®°Cu up to high excitation
energies (60 MeV) using the (*He,t) reaction at 140 MeV/u. The experiment was performed at the
Grand Raiden Spectrometer at Osaka University’s Research Center for Nuclear Physics (RCNP).
The method involved directing a >He beam of 420 MeV with an intensity of 4 pnA onto a ®*Ni foil
target of 2 mg/cm?”. The tritons were identified and analyzed in the focal plane. From the measured
position and angles in the focal plane, the momentum vector of the triton was deduced, from which
the excitation energy in ®*Cu and scattering angle were determined.

To investigate the Gamow-Teller strengths, the isobaric analog state, the isovector (spin)
monopole, and dipole giant resonances, a multiple decomposition analysis (MDA) was performed.
The differential cross sections were fitted with a linear combination of the angular distributions
associated with different angular momentum transfer AL (AL = 0, 1, 2, ...) calculated in distorted
wave Born approximation.

Different giant resonances were observed at different excitation energies. For the (*He,r)
reaction at 140 MeV/u, the GTR, IAS, and monopole excitations are associated with AL = 0, so
they peak at 0° scattering angle and their presence is strongly enhanced in the spectrum gated on
scattering angles between 0 and 5 mrad. Dipole excitations peak at small but finite angles and their
features are enhanced at scattering angles between 35 and 45 mrad. The IAS was found to reside at
E, (®°Cu) = 2.55 MeV, and the main component of the GTR appears at excitation energies of ~ 10
MeV. The IVSGDR peaks at an excitation energy of about 18 MeV. The IVSGMR and IVGMR
were seen at the excitation energies of about 35 MeV and are not easy to identify due to their large
widths.

For excitation energies up to 20 MeV, the MDA analysis resulted in a total GT strength of 10.6 +
1.45 (stat.) + 1.19 (syst.). At higher excitation energy additional strength is found that is associated

with AL = 0 and likely contains additional GT strength. However, at high excitation energies
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contributions from IVSGMR are also expected. The study compared the extracted Gamow-Teller
Strength B(GT) running sum with shell-model calculations using the GXPF1A interaction. Various
truncation levels were applied to calculate strength distributions, and all calculations were scaled
by a factor of 0.56 to address quenching effects. The comparison of the GT strengths revealed
reasonable agreement between experiment and shell-model calculations.

Gamow-Teller strengths for Ty + 1 states were extracted. The extracted B(GT) for the Ty + 1
state at 14.4 MeV was found to be 0.86 = 0.09 (stat.) + 0.08 (syst.), consistent with results from
the ®*Ni(p,n) experiment. Additional GT transitions to Ty + 1 states above 14.4 MeV in %°Cu were
investigated. Several peaks, apart from the 14.4 MeV peak, were observed. To confirm that these
states are Ty + 1 states, their excitation energies were compared with known 7y + 1 states from
SON( p,p’) and %ONj(e, ¢’) reactions. Up to about 16.5 MeV, multiple 7y + 1 states were identified.
However, beyond this energy, there is no available data to conclusively determine if the observed
peaks via ®'Ni(*He,r) data and shell-model calculations correspond to Ty + 1 states.

The contributions from the GT and IVGMR/IVSGMR excitations were extracted simultaneously
as all are characterized by AL = O transitions. While some GT strength likely appears above 20 MeV,
it lacks a resonant nature. To separate the IVSGMR/IVGMR from GT transitions, an assumption
was made that at low excitation energy (< 20 MeV) AL = 0 cross sections correspond to GT
states, AL = O strength at high excitation energies (> 20 MeV) is due to the excitation of the
IVSGMR/IVGMR. After quasifree-continuum subtraction, monopole contributions at 20-50 MeV
were found to be 8% of the normal-mode strength, indicating that the continuum removal also
removed a portion of the isovector spin giant monopole strength. Without the quasifree-continuum
subtraction, the strength distribution lacks resonance structure and is three times the expected
strength highlighting the importance of continuum removal. To obtain a better result for the
IVSGMR, an experimental technique to remove the continuum must be used. This is possible by
requiring coincidences with protons from the decay of the [IVSGMR, as pursued in the experiments.

The contributions from the dipole resonances were extracted, and the differential cross sections

for AL = 1 transitions were compared with DWBA calculations using the normal-mode framework.
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Similar to the analysis for the IVGMR/IVSGMR, results with and without quasifree-continuum
subtraction were compared. With continuum subtraction, a strong resonance around E, = 18 MeV
was observed, with a ratio of extracted to theoretical cross sections at about 1.25, suggesting that
the continuum subtraction is reasonable. Systematic uncertainties from continuum subtraction
are less severe for AL = 1 excitations due to their backward-angle peaking behavior, in contrast
to monopole transitions. Without continuum subtraction, significant excess cross section above

E, = 30 MeV emphasizes the necessity of the subtraction.

102



6.2 Future Outlook

In this work, it has been shown that the (*He,f) reaction at 140 MeV/u is a valuable tool for
extracting information about isovector giant resonances. However, the analysis is complicated by
the presence of the quasifree-continuum, and future studies with this probe would benefit from
the measurement of protons emitted from the excited nucleus. While the quasifree-continuum
is associated with protons directed at forward scattering angles, the decay after the excitation of
isovector monopole giant resonances is associated with protons emitted isotropically. Therefore
a coincidence measurement with protons at backward angles removes the contribution from the
continuum. Such experiments have been performed successfully in the past, but require thick
silicon detectors that are difficult to produce. It is well-kown that the extraction of the Gamow-
Teller strengths via the (*He,?) reaction provides high-quality tests of theoretical models. In the
experiment studied here, the excitation energy resolution was modest (0.11 MeV) [FWHM]. By
applying the dispersion matching techniques [130], superior resolutions can be achieved (~ 30 keV),
which would be helpful for the study of T + 1 Gamow-Teller states observed at high excitation
energies.

The CE group at FRIB is preparing for the next (*He,t) experiment at RCNP. The target will be
927r and the goals will be to study transitions that are important for understanding the production
site of ”?Nb in the universe. Due to its long lifetime (*>Nb) is a potential cosmochronometer, but
the production site is still unknown, which makes its use as a cosmochronometer difficult. Many

of the techniques used in this thesis will also be used in the next experiment.
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APPENDIX A

FULL INPUT FILE IN THE WSAW CODE

Table A.1 The file with full input parameters in WSAW input program for °Ni(*He,¢) reaction as
described in Table 3.1.

0.1 20. 1 150 ©

Ni60Cu60

59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 1. 2. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 1. 2. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 3. 1. 1. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 3. 1. 1. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 5. 0. 1. 4.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 5. 0. 1. 5.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 0. 2. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 2. 1. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 2. 1. 1. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 4. 0. 1. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 4. 0. 1. 4.5 .5
59. 28. 60. .65 1.25 1.25 7.0
2.9 1. 1. 1. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
4.8 1. 1. 1. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.9 1. 3. 0. 1. 2.5 .5
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Table A.2 The file with full input parameters in WSAW input program continuation.

59. 28. 60. .65 1.25 1.25 7.9
8.6 1. 3. 0. 1. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
14.7 1. 0. 1. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
13.4 1. 2. 0. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
17.9 1. 2. 0. 1. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
24.7 1. 1. 0. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
26.8 1. 1. 0. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
35.4 1. 0. 0. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 1. 2. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 1. 2. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 3. 1. 0. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 3. 1. 0. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
3.0 1. 5. 0. 0. 4.5 .5
59. 28. 60. .65 1.25 1.25 7.0
3.0 1. 5. 0. 0. 5.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 0. 2. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 2. 1. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 2. 1. 0. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 4. 0. 0. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
5.4 1. 4. 0. 0. 4.5 .5
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Table A.3 The file with full input parameters in WSAW input program continuation.

59. 28. 60. .65 1.25 1.25 7.0
8.3 1. 1. 1. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
10.2 1. 1. 1. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
8.7 1. 3. 0. 0. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
15.4 1. 3. 0. 0. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
20. 1. 0. 1. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
20.1 1. 2. 0. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
24.0 1. 2. 0. 0. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
30.7 1. 1. 0. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
32.9 1. 1. 0. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
40. 1. 0. 0. 0. 0.5 .5
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APPENDIX B

INPUT AND OUTPUT FILES IN THE NORMOD CODE

Table B.1 The file with full input parameters in NORMOD input program for °Ni(*He, 7) reaction

as described in Table 3.2. The outputs are One-body transition densities (OBTDs).

14
1

31.013 10
51.013 11
11.01 3 12

1

03
1

1

04 91.0114 13
04 71.014 14

51.014 15
31.01416
11.014 17

12
12
20

05111.015 18

0
1
1
2

91.015 19
71.015 20
51.015 21
31.015 22
11.015 23

5
3
3
1

21

11

11.0001
31.0012
11.0013
51.00 2 4
11.00 25
31.0026
710037
31.00 338
50.0039

00
0

1
1

0

02

10
02

03
1

1

03
1

10.00 310

1

04 90.00411

00

100

1601
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Table B.2 The file with full input parameters in NORMOD input program.

01 1601 100
00-1601 111
01-1601 111
02-1601 111
02 1601 102
01 1601 102
02 1601 102
03 1601 102
20 1601 122
21 1601 122
03-1601 111

Table B.3 The OBTDs for IAS , AJ = 0*. P stand for proton and H is hole (neutron). The NP stand
for principle quantum (n) number of a single-particle (proton), LP is the orbital quantum number
of particle, 2JP is twice total angular momentum of particle and LP, 2JH have the same meaning
but for hole (neutron). TYPE =1, for proton and O for neutron.

NP LP 2]JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=0 L=-1 L=0 L=1
1 1 3 1 1 1 3 O -1.0000 0.0000 0.0000 0.0000
0 3 5 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
1 1 1 1 1 1 1 0O -0.0000 0.0000 0.0000 0.0000
0 4 9 1 0 4 9 0 -0.0000 0.0000 0.0000 0.0000
Table B.4 The OBTDs for Gamow-Teller transition, AJ = 1%.

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1

L=1 L=0 L=1 L=2
1 1 3 1 1 1 3 0 0.0000 -0.5092 0.0000 -0.2267
1 1 3 1 0 3 5 0O 0.0000 -0.0000 0.0000 -0.0000
1 1 3 1 1 1 1 0O 0.0000 0.0000 0.0000 -0.0000
0 3 5 1 0 3 7 0O 0.0000 -0.7303 0.0000 0.4064
0 3 5 1 1 1 3 0O 0.0000 -0.0000 0.0000 0.8481
0 3 5 1 0 3 5 0O 0.0000 0.0000 0.0000 0.0000
1 1 1 1 1 1 3 0 0.0000 -0.4554 0.0000 0.2534
1 1 1 1 1 1 1 0O 0.0000 0.0000 0.0000 0.0000
0 4 9 1 0 4 9 0 0.0000 -0.0000 0.0000 -0.0000
0 4 7 1 0 4 9 0O 0.0000 -0.0000 0.0000 0.0000
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Table B.5 The OBTDs for dipole transition, AJ = 0.

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=0 L=-1 L=0 L=1
1 1 3 1 0 2 3 0 0.0000 0.0000 0.0000 0.2236
O 3 5 1 0 2 5 0 0.0000 0.0000 0.0000 -0.5123
1 1 1 1 1 0 1 0 0.0000 0.0000 0.0000 0.2500
0o 4 7 1 0 3 7 0 0.0000 0.0000 0.0000 -0.6708
1 2 5 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
1 2 3 1 1 1 3 0 0.0000 0.0000 0.0000 -0.4183
2 0 1 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
® 5 9 1 0 4 9 0 0.0000 0.0000 0.0000 -0.0000

Table B.6 The OBTDs for dipole transition, AJ = 17, where values of states with AS =1, AL =1
and AS = 0, AL = 1 were used.

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=1 L=0 L=1 L=2

1 1 3 1 0 2 5 0 -0.2108 0.0000 -0.1338 0.0000
1 1 3 1 1 0 1 0 -0.2485 0.0000 0.1577 0.0000
1 1 3 1 0 2 3 0 -0.0703 0.0000 0.1784 0.0000
® 3 5 1 0 2 5 0 0.1054 0.0000 0.4015 0.0000
O 3 5 1 0 2 3 0 -0.3944 0.0000 -0.2504 0.0000
1 1 1 1 1 0 1 0 0.1757 0.0000 0.2230 0.0000
1 1 1 1 0 2 3 0 -0.1571 0.0000 0.0998 0.0000
O 4 9 1 0 3 7 0 -0.6086 0.0000 0.3863 0.0000
0o 4 7 1 0 3 7 0 0.1029 0.0000 0.5224 0.0000
0 4 7 1 0 3 5 0 -0.0000 0.0000 -0.0000 0.0000
1 2 5 1 0 3 7 0 -0.2520 0.0000 -0.1600 0.0000
1 2 5 1 1 1 3 0 -0.3944 0.0000 0.2504 0.0000
1 2 5 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
1 2 3 1 1 1 3 0 0.1315 0.0000 0.3338 0.0000
1 2 3 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
1 2 3 1 1 1 1 0 -0.0000 0.0000 -0.0000 0.0000
2 0 1 1 1 1 3 0 -0.2222 0.0000 -0.1411 0.0000
2 0 1 1 1 1 1 0 -0.0000 0.0000 0.0000 0.0000
0 5 11 1 0 4 9 0 -0.0000 0.0000 0.0000 0.0000
® 5 9 1 0 4 9 0 0.0000 0.0000 0.0000 0.0000
1 3 7 1 0 4 9 0 -0.0000 0.0000 -0.0000 0.0000
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Table B.7 The OBTDs for dipole transition, AJ = 27 (AL = 1).

=2
)

R P @A NNRERERFRPRREFRRRRRISDDD R PO P =

=
o

WWUUVE@NNNNNNNNSRAABANRNDBRDNRRWWWWRR R

[
VUV N O R RFRPRFRPRWWWWLLUVUWVNNNOOR,PEFE ULV Www

2JP TYPE NH LH

R R R R R RRERRERRERRERRERRERRERRRBRRBRRBR

(= — N — A e — I — R R I — I — I — I — I — B S — T — T e ]

DA AP WRRPWRWRWRWWERWWWNNNDMMNNSNNDNDNSDN

2JH

O O© O O UVviIWE UVIWNRE UVUIWNUVIEIwwWN TN WU O WER Wk U

TYPE S=0
L=2

(=B I — I — R — R R R A N — N~ A A A A N A — A — A~ A — AN — A — A — A~

(= — I R — R R — R R A — I — A — R~ R — R — N — R — I — R~ I — A — I — R — N — N — I — ]

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

S=
L=
.2024
. 3492
.0883
.2164
.0000
.1623
.0000
.2164
.0442
.4795
.0000
.2892
.0000
.0000
.2125
.3787
.0000
.0000
.2833
.1653
.0000
.0000
.3123
.0000
.0000
.0000
.0000
.0000

1
1

(= I — I — I — R — R R R A A A = N A — A — AN~ A — AN — A — A — A~

S=1

L=2

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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Table B.8 The OBTDs for the IVGQR and IVSGQR transitions with AJ = 27.

=2
jav)

Ll — R — R R S i T T — I — I — I — R — B e — R — I — I — R — I — R

LP 2JP TYPE NH LH

W W woulumue @ N DNNDNMNDNNMNNNMBMAMAMRARRPRRFRPREFWWWWWWRRRRRR
N NN OO RRFRPRRFRWWWLULHULUO UVUN NN OOR R RUUIUIOUEUTIUTUTWDODW W WWW
R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRBR
S PO PP RO rRrrreerrAoroee
Wk W WWwWwWwWNNNSSNDRANSON DA DNNDBADNWRRREREWRWRRRWR WR &=

2JH

VI W N U NN WU W= O WER U OwWwouloOouluntw weE U WN R WER W N =W

TYPE

(= — R — R — R — R R — R R I~ — R~ — A A — A A — A~ A — A~ N — A I — A — I — N — I — A — I — A — I — I — I~ ]

S=0

L=2

.0746
.0746
.2830
.2122
.0000
.0000
.0913
.1709
.1134
.1155
.0000
.0000
.0746
.2122
.0000
.3537
.0000
.1001
.3002
.0000
.1155
.1709
.0578
.0000
.0578
.1395
.0882
.0817
.0667
.5003
.1092
.0000
.1544
.3002
.0000

(= — R — R R — R — R R I — N — R~ — A — A A — A~ A — A~ N — A~ I — N I — I — I — N — N — A — I — I — I~ ]

S=1

L=1

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

[ I — R A — A — A — A — AN — A~

S=1

L=2

.0000
.0844
.2136
.0000
.0000
.0000
.1724
.1290
.2997
.2180
.0000
.0000
.0844
.2403
.0000
.2670
.0000
.2643
.2266
.0000
.0000
.1290
.1090
.0000
.1090
.1580
.0000
.0617
.0755
.3776
.3708
.0000
.0000
.2266
.0000

[ = I — R I — R — R — R = R R A~ I = I — R — R — R = I — A — I — A — I — A — N — A — I — A — I — I — B — I — B — I — R — I — B~ ]

S=1

L=3

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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Table B.9 The OBTDs for the IVGQR and IVSGQR transitions with AJ = 2* continuation.

N NDNDNDNDNRER R ==

R R R R R R W W Www

= =W W Www ol un

e

S PR P rRrArore

WL R~ WE WE WeEeE Ww

Ul W = U1 W NN = U1 w N

(= — I — I — I — R — R — T — R — I~}

.0535
.1225
.0000
.0000
.1070
.1248
.0000
.0000
.1248
.0000

(= — I — I — I — I — R — T — R — I~}

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

(= — I — N — N — N — I — A — A — I~

.1413
.2312
.0000
.0000
.0807
.0000
.0000
.0000
.1413
.0000

@D

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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Table B.10 The OBTDs for the IVSGQR transition, AJ = 1%,

=2
jav)

N NNNNRRRRRSONNR R RPRPRPR PR PR PP OQAODRDRFR, P P P -

LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=1 L=0 L=1 L=2

1 3 1 606 1 3 O 0.0000 -0.0000 0.0000 0.0314
1 3 1 0 1 1 O 0.0000 0.0000 0.0000 0.0351
1 3 1 1 1 3 O 0.0000 -0.5092 0.0000 -0.0894
1 3 1 0 3 5 O 0.0000 -0.0000 0.0000 -0.0000
1 3 1 1 1 1 O 0.0000 0.0000 0.0000 -0.0000
3 5 1 606 1 3 O 0.0000 0.0000 0.0000 -0.2644
3 5 1 0 3 7 O 0.0000 -0.7303 0.0000 0.1603
3 5 1 1 1 3 O 0.0000 -0.0000 0.0000 0.3345
3 5 1 0 3 5 O 0.0000 0.0000 0.0000 0.0000
1 1 1 0 1 3 O 0.0000 -0.0000 0.0000 -0.0351
1 1 1 0 1 1 O 0.0000 0.0000 0.0000 -0.0993
1 1 1 1 1 3 O 0.0000 -0.4554 0.0000 0.0999
1 1 1 1 1 1 O 0.0000 0.0000 0.0000 0.0000
4 9 1 0 4 9 O 0.0000 -0.0000 0.0000 -0.0000
4 7 1 0 2 5 O 0.0000 -0.0000 0.0000 -0.4240
4 7 1 0 4 9 O 0.0000 -0.0000 0.0000 0.0000
2 5 1 06 2 5 O 0.0000 0.0000 0.0000 0.0596
2 5 1 606 2 3 O 0.0000 -0.0000 0.0000 0.0557
2 3 1 0 2 5 O 0.0000 0.0000 0.0000 -0.0557
2 3 1 1 0 1 O 0.0000 -0.0000 0.0000 -0.1971
2 3 1 0 2 3 O 0.0000 -0.0000 0.0000 -0.1115
0 1 1 1 0 1 O 0.0000 0.0000 0.0000 0.0000
0 1 1 606 2 3 O 0.0000 -0.0000 0.0000 0.0942
5 9 1 06 3 7 O 0.0000 0.0000 0.0000 -0.6051
3 7 1 0 3 7 O 0.0000 0.0000 0.0000 0.0872
3 7 1 & 3 5 O 0.0000 -0.0000 0.0000 0.0000
3 5 1 0 3 7 O 0.0000 0.0000 0.0000 -0.0755
3 5 1 1 1 3 O 0.0000 0.0000 0.0000 -0.3547
3 5 1 06 3 5 O 0.0000 -0.0000 0.0000 -0.0000
1 3 1 1 1 3 O 0.0000 -0.0000 0.0000 0.0526
1 3 1 0 3 5 O 0.0000 0.0000 0.0000 0.0000
1 3 1 1 1 1 O 0.0000 0.0000 0.0000 0.0000
1 1 1 1 1 3 O 0.0000 -0.0000 0.0000 -0.0588
1 1 1 1 1 1 O 0.0000 0.0000 0.0000 -0.0000
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Table B.11 The OBTDs for IVSGQR transition, AJ = 3* (AL = 2).
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.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

S=
L=
.1321
.2445
.3758
.0000
.0576
.0322
.2264
.0729
.0000
.0000
.2823
.0000
.2617
.3866
.0000
.0998
.0000
.0865
.0000
.1339
.2255
.0729
.0000
.0729
.0223
.0000
.1078
.3401
.0000
.1461
.0000
.0000
.1533
.2594
.0000

1
2
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.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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.0000
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.0000
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.0000
.0541
.0000
.0000
.0956
.1710
.1377
.1814
.0000
.0000
.0468
.0000
.0772
.0522
.0000
.2023
.3258
.2337
.0000
.0395
.0000
.0725
.0000
.0725
.2369
.0000
.0000
.1504
.0000
.3501
.6238
.0000
.0904
.0722
.0000
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Table B.12 The OBTDs for IVSGQR transition, AJ = 3* (AL = 2) Continuation.

0.0000 -0.1067 0.0000 0.1298
0.0000 -0.0773 0.0000 0.2422
0.0000 -0.0924 0.0000 -0.0409
0.0000 -0.2210 0.0000 -0.0000
0.0000 -0.1067 0.0000 0.0354

N NN R =
R = WWw
= W w uv v
e
SR D~k
W= WeR W
N W NN W N
=T I R~ ]

Table B.13 The OBTDs for IVGMR transition, AJ = 0, where only values of state with AS =0
and AL = 0 was used.

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=0 L=-1 L=0 L=1
1 1 3 1 0 1 3 0 0.2840 0.0000 0.0000 0.0000
1 1 1 1 0 1 1 0 0.2008 0.0000 0.0000 0.0000
1 2 5 1 0 2 5 0 0.4115 0.0000 0.0000 0.0000
1 2 3 1 0 2 3 0 0.3360 0.0000 0.0000 0.0000
2 0 1 1 1 0 1 0 0.2840 0.0000 0.0000 0.0000
1 3 7 1 0 3 7 0 0.5388 0.0000 0.0000 0.0000
1 3 5 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
2 1 3 1 1 1 3 0 0.4752 0.0000 0.0000 0.0000
2 1 1 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
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Table B.14 The OBTDs for IVSGMR transition, AJ = 17.

=2
d
=
jav)

N NNNNRRRPRPRPRSONNRPR PR RPRPIRLR PP R
R R R REWWWWwueeed N NDNDNNNNA R R WR R

2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=1 L=0 L=1 L=2

3 1 0 1 3 0 0.0000 0.2117 0.0000 0.0350
3 1 0 1 1 0 0.0000 -0.1893 0.0000 0.0392
5 1 0 1 3 O 0.0000 0.0000 0.0000 -0.1896
1 1 0 1 3 O 0.0000 0.1893 0.0000 -0.0392
1 1 0 1 1 0 0.0000 -0.0669 0.0000 -0.1108
7 1 0 2 5 0 0.0000 -0.0000 0.0000 -0.3715
5 1 0 2 5 O 0.0000 0.2811 0.0000 0.0854
5 1 0 2 3 0 0.0000 -0.3005 0.0000 0.0799
3 1 0 2 5 O 0.0000 0.3005 0.0000 -0.0799
3 1 1 0 1 0 0.0000 -0.0000 0.0000 -0.2355
3 1 0 2 3 0 0.0000 -0.1503 0.0000 -0.1599
1 1 1 0 1 0O 0.0000 0.2840 0.0000 0.0000
1 1 0 2 3 O 0.0000 -0.0000 0.0000 0.1576
9 1 0 3 7 O 0.0000 0.0000 0.0000 -0.6267
7 1 0 3 7 0 0.0000 0.3527 0.0000 0.1529
7 1 0 3 5 0 0.0000 -0.0000 0.0000 0.0000
5 1 0 3 7 0 0.0000 0.4073 0.0000 -0.1324
5 1 1 1 3 O 0.0000 0.0000 0.0000 -0.4804
5 1 0 3 5 O 0.0000 -0.0000 0.0000 -0.0000
3 1 1 1 3 O 0.0000 0.3542 0.0000 0.0921
3 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
3 1 1 1 1 0 0.0000 -0.0000 0.0000 0.0000
1 1 1 1 3 0 0.0000 0.3168 0.0000 -0.1030
1 1 1 1 1 0 0.0000 -0.0000 0.0000 -0.0000
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Table B.15 The OBTDs for the IVSGOR and IVGOR with AJ =3~.
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.1606
.1967
.0000
.1577
.2277
.1932
.0000
.1796
.4037
.4554
.0000
. 1805
.2037
.0000
.0000
.2666
.2791
.0000
.0000
.1539
.3418
.0000
.2352
.0000
.0000
.0000
.0000
.0000
.0000

(== I A — R — R R — R A A — N — I — A — A — R A — A N — A — R — N — A — A — A — ]

S=1

L=2

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

S=1

L=3

.0466
.2281
.0000
.2744
.2640
.0560
.0000
.2083
.1170
.3960
.0000
.4186
.3542
.0000
.0000
.0773
.0809
.0000
.0000
.2678
.3963
.0000
.2045
.0000
.0000
.0000
.0000
.0000
.0000

(= — I I — R — I — R — R — R A~ I — A — I — I — B — I — I — I — I — I — I — I — B — I — I — I — I — I~}

S=1

L=4

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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APPENDIX C

FULL INPUT FILES IN THE FOLD CODE

Table C.1 The file with full input parameters in FOLD input program for GT transition as described
in Table 3.3.

1 1FOLDNIB

600 0.03 420. 3. 1 1 1
0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1
HE3H3
1.0+ 0.0+
1.0 1.0 2.0 2.0
3 3 0.000
8 8 1 0.0 -0.5092
9 10 1 0.0 -0.7303
7 8 1 0.0 -0.4554
-1 -1
Ni60Cu60
0.939 2.650 1.000 love_140
2
0 1 1 -1
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1 1 -1
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.2 The file with full input parameters in FOLD input program for IAS as described in Table
3.3.

1 1FOLDNTIA

600 0.03 420. 3. 1 1 1
0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 0 0.0 0.707
-1 -1
HE3H3
0.0+ 0.0+
2.0 1.0 2.0 2.0
3 3 0.000
8 8 0 0.0 -1.0
-1 -1
Ni60Cu60
0.939 2.650 1.000 love_140

133



Table C.3 The file with full input parameters in the FOLD input program for IVSGDR with
AJ =1,AS =1 as described in Table 3.3.

1 1FOLDNIE

600 0.03 420. 3. 1 1 1
0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1
HE3H3
1.0- 0.0+
1.0 1.0 2.0 2.0
3 3 0.000
8 6 1 0.0 -0.1338
8 4 1 0.0 0.1577
8 5 1 0.0 0.1784
9 6 1 0.0 0.4015
9 5 1 0.0 -0.2504
7 4 1 0.0 0.2230
7 5 1 0.0 0.0998
15 10 1 0.0 0.3863
14 10 1 0.0 0.5224
13 10 1 0.0 -0.1600
13 8 1 0.0 0.2504
12 8 1 0.0 0.3338
11 8 1 0.0 -0.1411
-1 -1
Ni60Cu60
0.939 2.650 1.000 love_140
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Table C.4 The file with full input parameters in FOLD input program for IVSGQR with AJ = 3 as
described in Table 3.3.

1 1FOLDNIM

600 0.03 420. 3. 1 1 1
0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1
HE3H3
3.0+ 0.0+
1.0 1.0 2.0 2.0
3 3 0.000
8 3 3 0.0 -0.1321
8 10 3 0.0 0.2445
8 8 3 0.0 0.3758
9 3 3 0.0 -0.0576
9 2 3 0.0 0.0322
9 10 3 0.0 0.2264
9 8 3 0.0 0.0729
7 10 3 0.0 0.2823
15 6 3 0.0 -0.2617
15 5 3 0.0 0.3866
14 6 3 0.0 -0.0998
14 5 3 0.0 0.0865
13 6 3 0.0 -0.1339
13 4 3 0.0 -0.2255
13 5 3 0.0 0.0729
12 6 3 0.0 -0.0729
-1 -1
Ni6OCu60
0.939 2.650 1.000 love_140
1
2 1 3 -1
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.5 The file with full input parameters in FOLD input program for IVGMR as described in
Table 3.3.

1 1FOLDNIN

600 0.03 420. 3. 1 1 1
0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 0 0.0 0.707
-1 -1
HE3H3
0.0+ 0.0+
1.0 1.0 2.0 2.0
3 3 0.000
8 3 0 0.0 0.2840
7 2 0 0.0 0.2008
13 6 0 0.0 0.4115
12 5 0 0.0 0.3360
11 4 0 0.0 0.2840
19 10 0 0.0 0.5388
17 8 0 0.0 0.4752
-1 -1
Ni6O®Cu60
0.939 2.650 1.000 love_140
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Table C.6 The file with full input parameters in FOLD input program for IVSGMR as described in
Table 3.3.

1 1FOLDNIO

600 0.03 420. 3. 1 1 1
0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1
HE3H3
1.0+ 0.0+
1.0 1.0 2.0 2.0
3 3 0.000
8 3 1 0.0 0.2117
8 2 1 0.0 -0.1893
7 3 1 0.0 0.1893
7 2 1 0.0 -0.0669
13 6 1 0.0 0.2811
13 5 1 0.0 -0.3005
12 6 1 0.0 0.3005
12 5 1 0.0 -0.1503
11 4 1 0.0 0.2840
19 10 1 0.0 0.3527
18 10 1 0.0 0.4073
17 8 1 0.0 0.3542
16 8 1 0.0 0.3168
-1 -1
Ni60Cu60
0.939 2.650 1.000 love_140
2
0 1 1 -1
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1 1 -1
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.7 The file with full input parameters in FOLD input program for IVSGOR with
AJ = 3, AS =1 transition as described in Table 3.3.

1 1FOLDNIP

600 0.03 420. 3. 1 1 1
0.5+ 0.5+

0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707

-1 -1

HE3H3
3.0- 0.0+

1.0 1.0 2.0 2.0
3 3 0.000
8 6 3 0.0 0.0466
8 5 3 0.0 -0.2281
9 6 3 0.0 -0.2744
9 4 3 0.0 -0.2640
9 5 3 0.0 0.0560
7 6 3 0.0 -0.2083
15 10 3 0.0 -0.1170
15 8 3 0.0 -0.3960
14 10 3 0.0 -0.4186
14 8 3 0.0 -0.3542
13 10 3 0.0 0.0773
13 8 3 0.0 -0.0809
12 10 3 0.0 -0.2678
12 8 3 0.0 -0.3963
11 10 3 0.0 0.2045

-1 -1

Ni60Cu60
0.939 2.650 1.000 love_140

138



APPENDIX D

FULL INPUT FILES IN THE DWHI CODE

Table D.1 The file with full input parameters in DWHI input program for IAS transition as described
in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIA
40. 0. 0.2
1606 1 1 1 0 ©
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
O 0 O
0. 0. 0. 1.
IAS.plot

Table D.2 The file with full input parameters in DWHI input program for GT transition as described
in Table 3.3.

210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIB
40. 0. 0.2
160 2 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
0 2 2
0. 0. 0 1
2 2 2
0. 0. 0. 1
GTA.plot
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Table D.3 The file with full input parameters in DWHI input program for IVGMR with
AJ = 0, AS = 0 transition as described in Table 3.3.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIN
40. 0. 0.2
160 1 1 1 0 0
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.621 1.6018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 6. O.
0 0 0
0. 0. 0. 1.
IVGMR.plot

Table D.4 The file with full input parameters in DWHI input program for IVSGMR with AJ =1,
AS =1 as described in Table 3.3.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIO
40. 0. 0.2
166 2 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
0 2 2
0. 0. 0 1
2 2 2
0 0 0. 1.

IVSGMRa.plot
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Table D.5 The file with full input parameters in DWHI input program for IVSGDR with AJ = 0,
AS =1 as described in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNID
40. 0. 0.2
160 1 1 1 0 ©
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
1 2 0
0. 0. 0. 1.
DT®.plot

Table D.6 The file with full input parameters in DWHI input program for IVSGDR with AJ =1,
AS =1 as described in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIE
40. 0. 0.2
160 1 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. ~44.43 1.021 1.018 0. O.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 6. O.
1 2 2
0. 0. 0. 1.
DT1A.plot
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Table D.7 The file with full input parameters in DWHI input program for IVSGDR with AJ =1,
AS = 0 as described in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIF
40. 0. 0.2
160 1 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. ~44.43 1.021 1.018 0. O.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
1 0 2
0. 0. 0. 1.
DT1B.plot

Table D.8 The file with full input parameters in DWHI input program for IVSGDR with AJ = 2,
AS =1 as described in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIZ
40. 0. 0.2
166 1 1 1 0 4
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
1 2 4
0. 0. 0. 1.
DT2.plot
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Table D.9 The file with full input parameters in DWHI input program for IVSGQR with AJ =1,
AS =1 as described in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIJ
40. 0. 0.2
166 1 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
2 2 2
0. 0. 0. 1.

IVSGQR1.plot

Table D.10 The file with full input parameters in DWHI input program for IVSGQR with AJ = 2,
AS =1 as described in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIK
40. 0. 0.2
166 1 1 1 0 4
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
2 2 4
0 0 0. 1.

IVSGQR2a.plot
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Table D.11 The file with full input parameters in DWHI input program for IVSGQR with AJ = 2,
AS = 0 as described in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIG
40. 0. 0.2
166 1 1 1 0 4
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
2 0 4
0. 0. 0. 1.

IVGQRa.plot

Table D.12 The file with full input parameters in DWHI input program for IVSGQR with AJ = 3,
AS =1 as described in Table 3.6.

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIM
40. 0. 0.2
166 1 1 1 0 6
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
2 2 6
0. 0. 0. 1.

IVSGQR3.plot
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Table D.13 The file with full input parameters in DWHI input program for IVGOR with AJ = 3,
AS = 0 as described in Table 3.6.

1220000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIL
40. 0. 0.2
166 1 1 1 0 6
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
3 0 6
0. 0. 0. 1.

Octupole3b.plot

Table D.14 The file with full input parameters in DWHI input program for IVSGOR with AJ = 3,
AS =1 as described in Table 3.6.

1220000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (0+SI) POTL

FOLDNIP
40. 0. 0.2
166 1 1 1 0 6
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
3 2 6
0. 0. 0. 1.

Octupole3a.plot
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APPENDIX E

PROPORTIONALITY RELATION BETWEEN dp AND dk

We can show that i—p ~ % : where p is the momentum and k is kinetic energy.

Forp=VE2-m?2andE =k +m
p =k +m)?—m? =k +2km (E.1)

Ifm >> Kk, then: p ~ V2km — m = %
d 2 2
e - - P P (E.2)

dk — 2\2km \2km 2kp 2k

dp dk (E3)

P 2k
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