RADIO-EMITTING COMPACT BINARIES IN MILKY WAY GLOBULAR CLUSTERS By Laura Katharine Shishkovsky A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Astrophysics & Astronomy—Doctor of Philosophy 2023 ABSTRACT Globular clusters are dense populations of hundreds of thousands to millions of stars, and were expected to at one point also contain a population of around 1000 stellar-mass black holes. However, theory predicted that as the clusters evolved, these black holes would be ejected from the cluster through gravitational interactions with other black holes, leaving only ∼1-2% of globular clusters with a stellar-mass black hole. Recent research suggests though, that stellar-mass black holes could be far more common in globular clusters. This project aims to investigate the frequency of black holes in globular clusters using radio observations of Milky Way globular clusters from the Very Large Array (VLA), and has the potential to increase the number of known black holes in the Milky Way significantly. This project focuses the search for stellar-mass black holes on cores of globular clusters, where, through dynamical mass-segregation, these black holes are expected to be. Radio observations are increasingly sensitive to low-luminosity accretion onto compact objects, which makes the deep VLA observations ideal for this search. Stellar-mass black hole candidates are identified by their flat spectrum radio emission, and followed up with observations at different wavelengths to confirm that candidates are not accreting neutron stars, white dwarfs, or background galaxies. If stellar-mass black holes are indeed common in globular clusters, this would have significant implications, such as that more accurate study of stellar-mass black holes could be done, and there would be increased chance of the formation of black hole-black hole binaries, which would be important sources of gravitational waves. TABLE OF CONTENTS LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 CHAPTER 3 CHAPTER 4 THE MAVERIC SURVEY: A RED STRAGGLER BINARY WITH AN INVISIBLE COMPANION IN THE GALACTIC GLOBULAR CLUSTER M10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 THE MAVERIC SURVEY: RADIO CATALOGS AND SOURCE COUNTS FROM DEEP VERY LARGE ARRAY IMAGING OF 25 GALACTIC GLOBULAR CLUSTERS . . . . . . . . . . . . . . . . . . 41 THE MAVERIC SURVEY: MULTI-WAVELENGTH CLASSIFICATION OF RADIO-SELECTED BLACK HOLE CANDIDATES IN GLOBULAR CLUSTERS . . . . . . 71 CHAPTER 5 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . 92 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 APPENDIX A RADIO CONTINUUM SOURCES . . . . . . . . . . . . . . . . . . . . 107 APPENDIX B DEEPER CATALOG OF SOURCES IN NGC 6304 . . . . . . . . . . . 145 iii LIST OF ABBREVIATIONS The Advanced CCD Imaging Spectrometer Active Galactic Nuclei Astronomical Image Processing System Australia Telescope Compact Array Black Hole Common Astronomy Software Application Charge-Coupled Device Chandra Interactive Analysis of Observations Color-Magnitude Diagram Cataclysmic Variable Declination ACIS AGN AIPS ATCA BH CASA CCD CIAO CMD CV DEC FWHM Full Width at Half Maximum GC HST IRAF LMXB Globular Cluster Hubble Space Telescope Image Reduction and Analysis Facility Low Mass X-Ray Binary MAVERIC Milky-way ATCA and VLA Exploration of Radio-sources In Clusters NRAO National Radio Astronomy Observatory NS PSF RA RFI Neutron Star Point Spread Function Right Ascension Radio frequency interference RMS RS CVn Root Mean Square RS Canum Venaticorum iv SNR SOAR UV UVOT VLA VLBA WFC WD XMM Signal-to-noise ratio Southern Astrophysical Research Telescope Ultraviolet Ultraviolet/Optical Telescope on board Swift Very Large Array Very Long Baseline Array Wide Field Camera White Dwarf X-ray Multi-Mirror Mission XSPEC X-Ray Spectral Fitting Package v CHAPTER 1 INTRODUCTION 1.1 Compact Objects Compact objects represent the end of life for most of the stars in the universe. Very low-mass stars (𝑀 ≲ 0.5 M⊙) evolve too slowly to experience stellar death, but most stars with initial masses above 0.8 M⊙will eventually become a white dwarf, neutron star, or black hole. Stars in the mass range 0.5–8 M⊙ shed their outer layers after becoming red giants, eventually leaving behind only their dense core, a white dwarf. Neutron stars are created when a more massive star, 8 – 20M⊙, evolves to the point where its degenerate iron core cannot be supported against the bulk of the star. This creates a core-collapse supernova when the core eventually collapses inward, leaving behind a compact neutron star, with the explosion expelling the envelope. Black holes are also typically formed this way when the progenitor star is above ≥ 20 M⊙, but when the core collapse is not energetic enough to expel the envelope, leading to a core mass too high to be supported against degeneracy pressure. These compact object remnants have the highest densities of any celestial objects. White dwarfs (WDs) have an average density of 𝜌 ≲ 107 g cm−3, and are supported only by electron degeneracy pressure, which limits their mass at 𝑀 ≲ 1.4 M⊙. Neutron stars (NSs) are held up by neutron degeneracy pressure with mean densities estimated as 𝜌 ≲ 1015 g cm−3. The complex structure and physical properties of NSs prevents their mass from being firmly constrained from first principles, with broad theoretical limits placing NS masses in the range 1M⊙≲ 𝑀 ≲ 3M⊙. Black holes (BHs) are practically infinitely dense, with gravitational forces so extreme even light cannot escape. They are categorized by their estimated masses, the greatest being the supermassive black holes that reside in the center of most massive galaxies, having masses 𝑀 > 106 M⊙. The least massive stellar-mass BHs are categorized by estimated masses in the range 3M⊙≲ 𝑀 ≲ 100M⊙. Intermediate mass BHs (∼ 102 – 104 M⊙) are proposed to be the evolutionary link from stellar-mass BHs to supermassive BHs, but no definitive evidence of their existence has been found as yet. The high densities of compact objects make them unique testbeds for physical theories, including 1 how neutrons and potentially other exotic particles behave at above nuclear densities (for NSs) and of detailed tests of general relativity (for BHs). In the cases of both NSs and BHs, gravitational waves created by the collision of binary compact objects allows for the detection of compact object binaries at large distances from the Earth through gravitational wave detectors like the Laser Interferometer Gravitational-Wave Observatory (LIGO). On their own, compact objects are somewhat difficult to find. White dwarfs are often able to be detected in optical imaging, but neutron stars and black holes don’t show any bright intrinsic optical emission. However, if a neutron star is in a pulsar state they often show detectable radio emission, and sometimes X-ray emission. The bright X-ray emission that is commonly observed in binaries with compact objects is a consequence of the interaction between the compact object and the other star in the system. It is typically caused by mass transfer from the donor star to the compact object, a process called accretion. 1.2 Accretion Accretion occurs when some sort of matter falls toward an object due to its gravitational field. As the infall of matter occurs, it experiences a change in its gravitational potential energy, which is converted other forms of energy such as kinetic energy as well as electromagnetic radiation. The radiation can be emitted suddently if the infalling matter collides with the surface of the accreting object, or more slowly if it is due to the viscous interaction of material in the accretion flow. The characteristics of this emission can give valuable insight to the properties of the accreting system. Accretion is ubiquitous in our universe, occurring in a variety of circumstances and at all time and mass scales. It is the process driving the accumulation of material into protoplanetary discs, as well as the process that feeds the supermassive black holes at the centers of galaxies. When white dwarfs, neutron stars, and stellar-mass black holes accrete material from a stellar companion, it allows for the study of accretion on relatively short timescales, as well as study of the compact objects themselves. In the case of compact binaries accretion primarily occurs in two different scenarios: stellar wind accretion or Roche-lobe overflow. If the stellar companion is of high mass (≥ 10 M⊙) it will 2 blow off material via stellar winds which gets captured by the compact object. These binaries are typically very bright at X-ray and optical wavelengths, and short-lived due to the relatively short lives of the massive stars that drive strong stellar winds. Roche-lobe overflow occurs in compact binaries with lower mass companions (≲ 1 M⊙) when the companion is close to the compact object so that it fills its Roche-lobe: the potential boundary in which material is bound to the star. It defines the edge of equilibrium between the star and other objects. If some portion of the stellar material crosses it, either driven by to stellar evolution of the donor star, or via loss of angular momentum that drives the components into closer contact, the star will transfer mass to the compact object through the inner Lagrangian point of the binary system. The matter in the accretion stream will typically not directly impact the compact object (due to its residual angular momentum) but instead form an accretion disk that spreads through viscous friction with other infalling matter (See Figure 1.1). The matter in the accretion disk will then slowly spiral inward until it eventually has shed enough angular momentum to be accreted onto the compact object (Misner et al., 1973; Steiner et al., 2010). Figure 1.1 An artist’s depiction of a compact object accreting through Roche-Lobe overflow. Credit: Rob Hynes. 3 1.3 X-ray Binaries X-ray binaries are accreting systems with either a central neutron star or black hole accreting from a less massive companion star. They are often very bright at X-ray wavelengths and differenti- ated into two categories according to the mass of the companion star. X-ray binaries hosting donors stars with masses 𝑀 ≤ 3𝑀⊙ are called low mass X-ray binaries (LMXBs) while high mass X-ray binaries (HMXBs) host companion stars with masses 𝑀 ≥ 10𝑀⊙ (due to evolutionary reasons, donor masses between these values are relatively rare). HMXBs are driven by wind-fed accretion and are typically found in young stellar populations with an available host of massive stars. LMXBs are generally powered by the Roche-Lobe overflow of their companion, and are expected to be far more common than HMXBs in typical galaxies. LMXBs are typically found in older stellar populations such as the galactic bulge and globular clusters. The companion star in LMXBs is usually an older and faint main-sequence or slightly evolved star (i.e. G, K and M) with a mass rarely exceeding ≈ 1M⊙ (Lewin et al., 1997). LMXBs are often classified according to their accretion rate. Persistent systems (e.g, GRS 1915+105) typically have high accretion rates (∼ 10−8 M⊙/year), and X-ray luminosities close to Eddington limit: 𝐿𝐸 𝑑𝑑 = 4𝜋𝑀𝐺𝑚 𝑝𝑐 𝜎𝜏 = 1.26 × 1038( 𝑀 𝑀⊙ )𝑒𝑟𝑔 𝑠−1 These systems are more easily detectable due to their high luminosities, but are not expected to be typical of LMXBs. Sources with lower accretion rates (≤ 10−9 M⊙/year) show more transient behavior, and likely are more representative of the overall LMXB population. These systems spend most of their life in a quiescent states where they are challenging to detect, but can undergo sporadic outbursts during which their brightness can rise by orders of magnitude, reaching luminosities similar to persistent sources (Tanaka & Shibazaki, 1996). It is during these X-ray outbursts that most transient LMXBs have been found. During outbursts, the X-ray spectrum is dominated by a “thermal" component that is well-represented by a multi-temperature blackbody and is thought to arise from the hot accretion disk. 4 After the peak of the outburst, the accretion rate drops and the X-ray spectrum hardens, signaling that the LMXB has entered the low-hard state. During the hard state, the source’s X-ray spectrum is dominated by a hard non-thermal power law (power law photon index 1.4 < Γ < 2), which is though to be the result of inverse-Compton scattering by hot electrons in a “corona" close to the compact object (Zdziarski & Gierliński, 2004; Poutanen & Veledina, 2014). During this time, radio emission is also present, resulting from self-absorbed synchrotron radiation created by outflowing compact jets (Corbel et al., 2000; Fender, 2001). Close observation of quiescent LMXBs has shown that the emission of outflowing compact radio jets seems to be strongly coupled to the accretion flow, i.e., the observed X-ray emission. A correlation between the radio and the X-ray luminosity during the hard spectral state has been observed in many LMXB systems (Corbel et al., 2000, 2003; Gallo et al., 2012, 2014). This disk-jet coupling between the radio and X-ray luminosities of LMXBs generally differs for neutron star vs. black hole accretors, with neutron stars being generally less radio bright than black holes. This can be seen in Figure 1.2, which shows the radio-X-ray correlation for accreting compact objects. In addition to its usefulness in understanding accretion dynamics, the radio-X-ray correlation for accreting compact objects has also been shown to be a useful tool in the practice of identifying the nature of different compact object binaries. At the higher luminosity end of the source population, quiescient BH and NS systems mostly occupy different regions of the parameter space, with BHs being brighter. Neutron star systems can be further differentiated based on whether they have shown X-ray pulsations (accreting milliecond pulsars; AMXPs), or have been observed to transition between a radio pulsar state and accreting neutron star state (transitional millisecond pulsars; tMSPs). Bright accreting white dwarf systems (cataclysmic variables; CVs) are also included as they have some overlapping characteristics with LMXBs. In the case of black hole binaries, the radio and X-ray properties can be a strong indicator of the presence of a black hole accretor, but the most definitive way to determine a BH candidate’s true nature is through stringent constraints placed on its mass. With the established upper limits on white dwarf mass (M < 1.4 M⊙) and neutron stars (M < 3 M⊙), one can say to high certainty 5 Figure 1.2 The radio/X-ray correlation for accreting compact objects. The black circles show known quiescent black holes in the field (Miller-Jones et al., 2011; Gallo et al., 2012; Ratti et al., 2012; Corbel et al., 2013; Rushton et al., 2016; Plotkin et al., 2017). The dotted black line shows the best-fitting 𝐿 𝑅–𝐿 𝑋 correlation for black holes from Gallo et al. (2014). The green triangles are transitional millisecond pulsars (Hill et al., 2011; Papitto et al., 2013; Deller et al., 2015; Bogdanov et al., 2018). Blue squares are NSs in the hard state, and pink stars are accretion-powered millisecond X-ray pulsars (Migliari & Fender, 2006; Tudor et al., 2017). The orange diamonds are the bright CVs AE Aqr (𝐿 𝑋 = 5.0 × 1030 erg s−1), SS Cyg (in outburst; 𝐿 𝑋 = 1.4 × 1032 erg s−1; Russell et al. 2016), and white dwarf “pulsar" AR Sco (𝐿 𝑋 = 2.9 × 1030 erg s−1; Marsh et al. 2016). Figure adapted from Bahramian et al. (2017b). that a central compact object is a black hole if justified by accurate and precise measurements of the binary orbital parameters. The period (𝑃) and velocity semi-amplitude (𝐾2), in addition to the mass of the companion donor, place constraints on the candidate’s mass via the mass-function: 𝑓 (𝑀) = 3 2𝜋𝐺 = (𝑚1 sin 𝑖)3 𝑃 𝐾2 (𝑚1+𝑚2)2 where 𝑖 is the binary inclination. Measurement of the period and velocity semi-amplitude requires measurements of spectral Doppler shifts in the companions spectrum over multiple spectrographic observations. This often requires satisfactory justification for repeated optical telescope observa- 6 102910301031103210331034103510361037103810391-10keVX-rayluminosity(ergs−1)10251026102710281029103010315-GHzradioluminosity(ergs−1)Quiescent/hardstateBHsQuiescent/hardstateNSsAMXPstMSPs(inaccretionstate)CVs(atflarepeak) tions, and this equation also shows that if a binary system happens to have a more face-on orientation (low 𝑖) then it may have a low mass function even if the compact object is a BH. These points underscore the utility of radio and X-ray observations in identifying new black hole candidates. 1.4 Globular Clusters Figure 1.3 HST optical image of Galactic GC M15. Credit: ESA/HST/NASA. Globular clusters are dense spherical systems of stars with masses M ≈ 105—106 M⊙. The Milky Way GC M15 is shown in 1.3. Most GC populations are very old (≥ 10 Gyr), with primarily late-type stars, and are particularly abundant in stellar remnants. Rapidly rotating neutron stars (millisecond pulsars) are frequently detected at low-frequency radio wavelengths in GCs (e.g., Camilo & Rasio 2005; Ransom 2008), and CVs are suspected in many GCs to account for low- luminosity X-ray sources. NS LMXBs are at least an order of magnitude more common in GCs that isolated field systems, and are expected to account for nearly all of the brightest (𝐿 𝑋 ∼ 1036 erg s−1) GC X-ray sources (Verbunt & Lewin 2006). 7 The efficient formation of binary compact object systems in GCs is attributed to their evolved stellar populations in hand with their high stellar densities. Field binaries outside of star clusters likely co-evolved in isolation, but GC binaries are expected to form through one or more close encounters in the dense environment. The physical nature of these formation encounters are likely tidal capture, three-body exchange, and direct collision with another cluster object (e.g., Fabian, Pringle & Rees 1975; Hills 1976; Verbunt & Hut 1983; Bailyn & Grindlay 1990; Davies & Hansen 1998; Ivanova et al. 2008; Ivanova et al. 2010). Being fundamentally gravitational encounters, they ensure that most massive cluster members — NSs and potentially BHs — capture companions at an enhanced rate. Massive compact objects also sink towards the cluster center over time due to dynamical friction, which further increases the capture rate. 1.4.1 Black Holes in Globular Clusters Though rates of NS LMXBs in GCs are elevated, there is only one dynamically confirmed BH in a GC, and it is not in an X-ray binary (Giesers et al. 2018). This in contrast to the rates of BH and NS LMXBs in the field, where BH LMXBs account for approximately one-third of the LMXB systems (vlad cites liu 2007). For a typical GC with a present day mass of M ≈ 105—106 M⊙, 100—1000 stellar-mass BHs, each of mass M ≈ 5-20 M⊙, should be born in the first 10 Myr of the GC. Assuming the BHs receive small natal kicks, they will rapidly mass segregate to the cluster center and form a subcluster that is dynamically segregated from the rest of the GC. Many BH–BH binaries will then be formed through three-body interactions. These binaries halt the collapse of the subcluster through interactions with one another. This process will tend to harden the binaries and lead to interactions with large recoil velocities, ejecting the BHs from the GC. Analytical arguments once held that the ejection process would continue until all of the BHs were ejected from the cluster, and that only perhap 1 in 100 GCs would still have a BH (Sigurdsson & Hernquist, 1993; Kulkarni et al., 1993). But subsequent observational and theoretical results have suggested that the BH ejection process is less efficient that previously believed, and that GCs may be able to retain many BHs. Extragalactic GCs have produced several prime ultra-luminous BH binary candidates (e.g., Sarazin et al. 2001; Maccarone et al. 2007; Zepf et al. 2008; Irwin et al. 8 2010; Peacock et al. 2012), and several Milky Way GCs host low-luminosity candidates identified with multi-wavelength observations (Strader et al. 2012; Chomiuk et al. 2013; Miller-Jones et al. 2015; Bahramian et al. 2017a; Shishkovsky et al. 2018). Numerous theoretical studies have also shown that a BH subcluster will dynamically re-couple with the GC as it loses mass, halting the ejection process (Mackey et al., 2008; Moody & Sigurdsson, 2009; Sippel & Hurley, 2013; Morscher et al., 2013; Breen & Heggie, 2013; Heggie & Giersz, 2014; Morscher et al., 2015). 1.5 Motivation This thesis outlines our ongoing work to discover new LMXBs in globular clusters by searching for radio emission. Most LMXB systems that have been discovered were found due to a spontaneous X-ray outburst. But it is believed that most LMXBs may never go into a bright X-ray outburst, which makes our collective knowledge of LMXB behavior biased toward a minority of X-ray bright systems. By selecting LMXB candidates because of their radio emission, we are more likely to find systems that are typical rather than uncommonly bright X-ray sources. Any LMXBs we find are also likely to have formed via a dynamical exchange rather than co-evolving with its companion. This would allow comparison of physical properties with those of primordial LMXBs. Chapter 2 discusses a new black hole candidate in M10, and was published as a peer-reviewed article in the Astrophysical Journal as Shishkovsky et al. (2018). Chapter 3 describes our radio survey and gives a broad interpretation of the sample as a whole, and this chapter was published as a peer- reviewed article in the Astrophysical Journal as Shishkovsky et al. (2020). Chapter 4 introduces black hole candidates selected from the radio survey sample. We then summarize in Chapter 5 our interpretation of the current results and outline plans for further work on this project. 9 CHAPTER 2 THE MAVERIC SURVEY: A RED STRAGGLER BINARY WITH AN INVISIBLE COMPANION IN THE GALACTIC GLOBULAR CLUSTER M10 2.1 Introduction Due to their high stellar densities and large populations of stellar remnants, globular clusters are unique environments for the efficient formation of binaries with compact objects. The pathways to forming these low-mass X-ray binaries in globular clusters include tidal capture, three-body binary exchange, and direct stellar collisions with compact objects (e.g., Fabian et al. 1975; Hills 1976; Verbunt & Hut 1983; Bailyn & Grindlay 1990; Davies & Hansen 1998; Ivanova et al. 2008, 2010)— in contrast with field X-ray binaries, which likely evolved as isolated systems. The formation of low-mass X-ray binaries through close encounters accounts for the high specific abundance of X-ray binaries in globular clusters in both the Milky Way and in other galaxies (e.g., Pooley et al. 2003; Kundu et al. 2002). While a substantial fraction of field low-mass X-ray binaries in the Milky Way host black holes (e.g., Tetarenko et al. 2016a; Remillard & McClintock 2006), the overwhelming majority of low- mass X-ray binaries in globular clusters—at least those which are bright and well-studied—host neutron stars rather than black holes (Verbunt & Lewin, 2006; Bahramian et al., 2014), typically identified through Type I X-ray bursts (Lewin et al., 1993). Many authors have argued that the relative paucity of black holes was real, beginning with analytic arguments about the fate of black holes in the dense cluster environment. After formation, any black holes that do not receive strong natal kicks will sink to center of the cluster and become segregated from less massive stars. In these close quarters, the black holes will form tight binaries that are largely ejected, through interactions with other black holes or black hole–black hole binaries. This process was argued to continue until all (or nearly all) black holes were depleted from the cluster (Sigurdsson & Hernquist, 1993; Kulkarni et al., 1993). Parallel observational and theoretical tracks have led to a reconsideration of this conclusion. Several globular clusters in external galaxies may contain black holes accreting near the Eddington 10 luminosity, with the quality of the evidence ranging from suggestive to compelling (e.g., Sarazin et al. 2001; Maccarone et al. 2007; Zepf et al. 2008; Irwin et al. 2010; Peacock et al. 2012). In the Milky Way, low-luminosity black hole candidates have been identified by a combination of radio continuum, X-ray, and optical data in the globular clusters M22 (Strader et al., 2012), M62 (Chomiuk et al., 2013), and 47 Tuc (Miller-Jones et al., 2015; Bahramian et al., 2017b). A number of theoretical papers have concluded that black hole ejection is less efficient than originally thought, since a putative subcluster of black holes cannot remain dynamically isolated from the rest of the cluster as its mass declines (Mackey et al., 2008; Moody & Sigurdsson, 2009; Sippel & Hurley, 2013; Morscher et al., 2013; Breen & Heggie, 2013; Heggie & Giersz, 2014; Morscher et al., 2015). This work has accelerated since the discovery of merging black hole–black hole binaries by Advanced LIGO (Abbott et al. 2016), and the dynamical formation of black hole–black hole binaries in globular clusters may be an important or even dominant channel for such systems (Rodriguez et al., 2016; Chatterjee et al., 2017). No bright (> 1036 erg s−1) X-ray binary in a Galactic globular cluster has ever been identified to host a black hole; the candidates identified thus far are all in quiescence. Given the limited number of bright X-ray binaries in clusters, this could be due to small number statistics or could reflect unusual formation channels for cluster X-ray binaries compared to field systems. For example, short-period black hole X-ray binaries could undergo shorter, less-luminous outbursts that would not be detected by all-sky X-ray monitors (Maccarone & Patruno, 2013; Knevitt et al., 2014). In any case, black hole low-mass X-ray binaries are expected to spend most of their lives in a low-luminosity state with 𝐿 𝑋 ∼ 1030–1033 erg s−1 (Corbel et al. 2006) In this state it is typically not possible to separate them from other X-ray sources, such as compact binaries containing white dwarfs or neutron stars, or even active binaries, on the basis of X-ray observations alone. However, in quiescence, black holes are observed to emit steady flat-spectrum radio continuum emission, thought to originate via partially self-absorbed synchrotron radiation from compact jets (Blandford & Königl, 1979). The possibility of identifying quiescent black hole low-mass X-ray binaries through radio 11 continuum emission motivated our group to conduct a systematic survey of 50 Galactic globular clusters using radio continuum observations from the upgraded Karl G. Jansky Very Large Array (VLA) and the Australia Telescope Compact Array (ATCA). We name this survey MAVERIC (Milky-way ATCA and VLA Exploration of Radio-sources In Clusters). Here we present a multi-wavelength study of a radio-selected black hole candidate in the Galactic globular cluster M10 (NGC 6254; D = 4.4 kpc; Hurley et al. 1989; Harris 1996). M10 has a [Fe/H] ∼ −1.5, and its mass is about 1.5 ×105 𝑀⊙ (McLaughlin & van der Marel, 2005; Haynes et al., 2008). In Section 2, we discuss our VLA observations, Chandra X-ray data, Hubble Space Telescope optical photometry, and ground-based SOAR spectroscopy of the system. In Section 3 we discuss the properties of the binary: identity of the binary companion, orbital parameters, and mass constraints. In Section 4 we discuss the interpretation of the system, and summarize our findings and discuss future work in Section 5. 2.2 Observations and Analysis 2.2.1 Radio We observed M10 using the VLA in early 2014 in five 2-hr blocks (10 hr total, about 7 hr on source). The observations were done in A configuration and with C band receivers, with two 1-GHz basebands centered at 5.0 GHz and 7.4 GHz. Each baseband consisted of eight spectral windows, each 128 MHz wide, sampled with 64 channels of width 2 MHz. We used 8-bit samplers and obtained full polarization products. 3C286 was used as a flux density and bandpass calibrator, while J1651+0129 was used as a phase calibrator. The radio data from each epoch were reduced using Common Astronomy Software Application (CASA) (McMullin et al., 2007) version 4.2.2 with version 1.3.1 of the VLA calibration pipeline. 1 The pipeline imports raw data, applies preliminary flags, and then iteratively calibrates the data while running automatic flagging algorithms for radio frequency interference. We manually flagged any remaining corrupt data and then re-ran the pipeline. Once the target was properly calibrated and flagged, we imaged each baseband separately. 1https://science.nrao.edu/facilities/vla/data-processing/pipeline 12 The field of view was selected to match the FWHM size of the primary beam: 11′ at 5.0 GHz and 7.5′ at 7.4 GHz. We used Briggs weighting with a robust parameter of 1, and nterms = 2 to account for the non-zero spectral indices of the various sources in the field. The synthesized beams for the 5.0 and 7.4 GHz images are 0.75′′ × 0.36′′ and 0.53′′ × 0.26′′, respectively. In a future paper we will discuss the details of all radio continuum sources detected within the VLA’s primary beam. This paper focuses on the only source within the 48′′ (1.0 pc; Dalessandro et al. 2011) cluster core radius detected in both the upper and lower basebands. This source, which we term M10-VLA1, is located at a J2000 position of (R.A., Dec.) = (16:57:08.478 ± 0.013s, −04:05:55.72 ± 0.19′′), only 10′′ (0.2 pc) in projection from the photometric center of the cluster (Goldsbury et al., 2010). The source was clearly detected in both basebands during the first 2-hr observing block (on 2014 Feb 20; Table 2.1) and marginally detected at 5 GHz on 2014 Apr 29; it was not detected in the other three blocks in either baseband. The images of the source from the first block are shown in Figures 2.1 and 2.2. We determined the flux densities of M10-VLA1 by fitting a point source in the image plane using the task imfit in CASA, constraining the source size to the dimensions of the synthesized beam. On 2014 Feb 20, the flux density was 16.2 ± 5.4 𝜇Jy (5.0 GHz) and 27.2 ± 4.2 𝜇Jy (7.4 GHz, giving a luminosity spectral density of 6 × 1026 erg s−1 GHz−1). Assuming a power-law frequency dependence (𝑆𝜈 ∝ 𝜈𝛼) the source has evidence for a flat to inverted spectrum, with 𝛼 = 1.3 ± 0.9. There was no clear detection of M10-VLA1 in either baseband for the subsequent epochs, taken 36 to 68 days after the initial data. There is a marginal 5 GHz detection of the source on 2014 Apr 29 (14.7 ± 4.5𝜇Jy beam−1), accompanied by a non-detection at 7.4 GHz at this epoch (3𝜎 upper limit of < 10.8𝜇Jy beam−1). This suggests a spectral index of 𝛼 < −0.8, which is much steeper than the 2014 Feb 20 epoch. However, given the large uncertainties in the flux densities, an inverted spectral slope consistent with the earlier epoch (𝛼 = 1.3 ± 0.9) cannot be ruled out at even the 2𝜎 level. The flux densities and 3𝜎 upper limits from the initial detection and the other epochs are listed in Table 2.1. The individual epochs with non-detections were also combined and imaged, yielding no detections and 3𝜎 upper limits of 7.7𝜇Jy beam−1 (5.0 GHz) and 5.8𝜇Jy beam−1 (7.4 GHz). 13 Figure 2.1 VLA 5.0 GHz radio image of the 2014 Feb 20 detection of M10-VLA1. The red cross marks the location of the source center given by imfit from the combined 6.0 GHz image of the 2014 Feb 20 observation. We note that the source position is dominated by the 7.4 GHz flux—at 5.0 GHz the detection is just 3𝜎. The image synthesized beam is denoted as a white ellipse in the bottom left corner of the image. To check for short-term variability, we re-imaged the 2014 Feb 20 epoch on timescales of about 10 min (averaging 9 target scans, each of 62.8 s duration) in each frequency band. For both basebands, the flux densities were constant within the uncertainties across the observation. Therefore, there is no evidence that M10-VLA1 was variable over the 2 hr observation on 2014 Feb 20. 14 Figure 2.2 VLA 7.4 GHz radio image of the 2014 Feb 20 detection of M10-VLA1. The red cross marks the location of the source center given by imfit from the combined 6.0 GHz image of the 2014 Feb 20 observation. We note that the source position is dominated by the 7.4 GHz flux—at 5.0 GHz the detection is just 3𝜎. The image synthesized beam is denoted as a white ellipse in the bottom left corner of the image. 2.2.2 X-ray 2.2.2.1 Chandra Subsequent to the detection of the radio continuum source, we observed M10 in X-rays with Chandra/ACIS-S for 32.6 ksec on 2015 May 08. The Chandra image is shown in Figure 2.3. We used CIAO 4.7 and CalDB 4.6.9 to complete the Chandra data analysis (Fruscione et al., 2006). Using the CIAO wavdetect task for source detection, a faint X-ray source with ∼ 12 net counts is clearly present at the position of the radio source to within the Chandra absolute astrometric 15 Table 2.1. VLA Radio Flux Densities of M10-VLA1 Epoch Date Epoch Date (MJD) Time (UTC) 5.0 GHz Peak Flux (𝜇Jy) RMS (𝜇Jy/beam) 7.4 GHz Peak Flux (𝜇Jy) RMS (𝜇Jy/beam) Feb 20, 2014 Mar 28, 2014 Apr 7, 2014 Apr 10, 2014 Apr 29, 2014 56708.4 56744.3 56754.3 56757.4 56776.2 09:19:32 − 11:19:12 07:32:59 − 09:32:36 06:49:09 − 08:48:46 09:07:49 − 08:06:32 04:56:49 − 06:56:29 16.2 < 13.8 < 14.7 < 15.9 14.7 5.4 4.6 4.9 5.3 4.5 27.2 < 11.4 < 11.4 < 12.3 < 10.8 4.2 3.8 3.8 4.1 3.6 Note. — The flux density upper limits represent 3𝜎 limits. accuracy of 0.6′′. There is no evidence for variability, however the low number of counts prevents us from concluding this definitively. The field is not crowded in the X-rays: only 10 X-ray sources are detected by wavdetect within the 1.95′ half-light radius of M10 (equivalent to a source density of ∼ 2 × 10−4 arcsec−2). There are less than ten 5𝜎 radio sources (at 6.0 GHz) within the half-light radius, suggesting extremely low odds of a chance match between an X-ray source and the radio source. Therefore the X-ray source is almost certainly associated with the radio source. Using a circular source region of 2′′ radius and a source-free annulus background around the source (inner/outer radii: 10′′/20′′), we extracted the X-ray spectrum with specextract. The spectral analysis was performed using XSPEC (version 12.9.0; Arnaud 1996), assuming Anders & Grevesse (1989) abundances and Verner et al. (1996) absorption cross-sections. Given the limited number of photons, we analyzed the spectrum by binning the data with at least one count per bin and using the XSPEC operation cstat, a modified version of the Cash statistic (Cash, 1979) for studying low-count spectra.2 2.2.2.2 Swift There are several Swift/XRT observations of M10, including one taken essentially simultane- ously (within one day) of the initial radio observations reported in §2.1. These X-ray observations are detailed in Table 2.2. M10-VLA1 is not detected in any of these observations. To determine flux upper limits, we assumed the best-fit parameters from the Chandra observations, using an extraction radius of 25′′ to reduce the chance of contamination from the nearby X-ray sources. 2https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/ XSappendixStatistics.html 16 Figure 2.3 Chandra/ACIS-S X-ray image of the core of M10 (blue circle; radius 46.2′′ ∼ 1.0 pc) in the 0.3 - 7.0 keV energy band. The magenta cross marks the cluster photometric center (Goldsbury et al., 2010). The X-ray source associated with M10-VLA1 is circled in green. These background-subtracted upper limits are at the 95% confidence level and assume an energy range of 0.5–10 keV. Table 2.2 also contains a stacked upper limit from a combination of all the Swift observations. The individual epoch upper limits are all in the range of < (5–16) ×1031 erg s−1, and the stacked upper limit is < 2.2 × 1031 erg s−1, hence consistent with the Chandra flux value. 17 Table 2.2. Swift X-ray Constraints Epoch Date Epoch Date (MJD) Effective time (s) Luminosity limit (erg s−1) Oct 30, 2009 Feb 21, 2014 Oct 21, 2014 Jan 20, 2015 Oct 20, 2015 Jan 20, 2016 Jan 21, 2016 Combined 55117.81375 1928 1071 56709.72004 56951.26891 402 57042.62936 465 57315.31564 787 57407.33950 1631 57408.13957 989 7272 < 4.7 × 1031 < 5.3 × 1031 < 1.6 × 1032 < 1.3 × 1032 < 7.7 × 1031 < 5.6 × 1031 < 1.3 × 1032 < 2.2 × 1031 Note. — All limits are at the 95% level and over the energy range 0.5–10 keV. Luminosities assume a distance of 4.4 kpc. 2.2.3 Optical Photometry Hubble Space Telescope Advanced Camera for Surveys (ACS) photometry for M10 in 𝐹606𝑊 and 𝐹814𝑊 has already been published as part of the ACS survey of Galactic globular clusters (Sarajedini et al., 2007; Anderson et al., 2008). We corrected the astrometry of these images using a large number of Gaia stars (Gaia collaboration et al. 2016), finding an rms of about 0.02′′ per coordinate. The closest optical source to M10-VLA1 is located 0.116′′ from the radio source, consistent within the combined positional uncertainties of the radio and optical sources. The unusual optical properties of this source (see below) confirm its identity as the optical counterpart to M10-VLA1. Figures 2.5 and 2.6 show the position of the source in a color-magnitude diagram (CMD) of M10. Here the plotted stars are restricted to a radius of 15′′ around M10-VLA1 to reduce the effects of differential reddening on the distribution of stars in the CMD (we note all photometry listed is as observed, not corrected for the substantial foreground reddening (𝐸 (𝐵 − 𝑉) = 0.25–0.28)). 18 Figure 2.4 HST 𝐹814𝑊 image of the optical counterpart to M10-VLA1 with the detection positions of the Chandra observation and 20 Feb 2014 VLA observation overlaid. The optical counterpart is marked by the magenta cross. The VLA position and associated positional error is shown by the blue cross and blue ellipse. The Chandra position is shown by the green cross, with the green circle representing the Chandra astrometric accuracy. The optical counterpart to M10-VLA1 has 𝐹606𝑊 = 17.238 ± 0.005 and 𝐹606𝑊-𝐹814𝑊 = 1.036 ± 0.009 mag on the VEGAMAG system. It sits ∼ 0.19 mag redward in 𝐹606𝑊 − 𝐹814𝑊 of the lower giant branch members of M10 of the same 𝐹606𝑊 mag. The unusual color would normally lead to the conclusion that the star is not a cluster member. However, the spectroscopic observations (Section 2) show the star has a radial velocity consistent with the cluster systemic velocity, and it is located only 0.2 pc in projection from the center of M10. Hence we conclude that the star is indeed a member of the cluster but with an unexpectedly low effective temperature for its luminosity. The nomenclature of these stars is somewhat confusing, and we follow the 19 recent suggestion of Geller et al. (2017) that such stars, when brighter than the subgiant branch, be referred to as “red stragglers"; the term “sub-subgiants" is reserved for systems fainter than normal subgiants. Using the solar-scaled MIST isochrones (Dotter, 2016; Choi et al., 2016) for [𝑍/H] = –1.2, an age of 12 Gyr, and assumed 𝐸 (𝐵 − 𝑉) = 0.28, giants with 𝐹606𝑊 − 𝐹814𝑊 matching that observed for M10-VLA1 have 𝑇𝑒 𝑓 𝑓 ∼ 4800 K (of course, these giants are much more luminous than M10-VLA1). The bolometric luminosity inferred from the temperature and the 𝐹814𝑊 magnitude is about 4.4𝐿⊙. While these ACS data were obtained on 2006 Mar 5, the ground-based SOAR telescope photometry of Salinas et al. (2016), taken in July 2015, show a qualitatively similar location of the star in a 𝑔 − 𝑖 vs. 𝑖 CMD (Figure 2.7). This implies the location of M10-VLA1 in the ACS CMD is not a fluke, but is persistent over timescales of years. The star’s short-term variability is poorly constrained: the SOAR photometry covered about 6.7 hr, over which the star became ∼ 0.01 mag fainter in 𝑖, but these data cover only a tiny fraction of the 80 hr orbital period (see §2). Additional HST/WFC3 imaging in 𝐹275𝑊, 𝐹336𝑊, and 𝐹438𝑊 was obtained on 2013 Aug 16 and 2014 May 27 with Wide Field Camera 3 (WFC3). The time-averaged photometry at these bands is available from the catalogs of Soto et al. (2017), which represent preliminary measurements from the HST Treasury program of Piotto et al. (2015). These values are 𝐹275𝑊 = 20.80 ± 0.18, 𝐹336𝑊 = 19.09 ± 0.14, and 𝐹438𝑊 = 18.80 ± 0.09. As the uncertainties in these measurements are substantially larger than for other stars of this brightness, we individually photometered the two epochs to search for variability. We found that the source brightened by −0.21 ± 0.03 mag in 𝐹275𝑊, −0.16 ± 0.03 mag in 𝐹336𝑊, and −0.23 ± 0.02 mag in 𝐹438𝑊 between the two epochs. Given this evidence for variability, we cannot combine the data for these bluer bands with the 𝐹606𝑊 and 𝐹814𝑊 data to model the spectral energy distribution. CMDs made with the bluer filters confirm that the star is an outlier, sitting far redward of the main locus of stars in any pair of filters, consistent with the unusual 𝐹606𝑊-𝐹814𝑊 color. If we use the same MIST isochrones discussed above to infer the 𝑇𝑒 𝑓 𝑓 from 𝐹275𝑊–𝐹438𝑊 or 𝐹336𝑊–𝐹438𝑊, we find 𝑇𝑒 𝑓 𝑓 ∼ 5100 20 K for both, warmer than found for the 𝐹606𝑊-𝐹814𝑊 color. This difference could be due to a real change in the disk-averaged 𝑇𝑒 𝑓 𝑓 (e.g., from starspots) or due to a varying contribution from a warmer component, such as an accretion disk. Future simultaneous photometry over a broad baseline could allow one to better constrain the presence of a hot companion or a disk. Figure 2.5 HST color-magnitude diagrams in 𝐹275𝑊 vs. 𝐹275𝑊 − 𝐹336𝑊 of the stars within 15′′ of M10-VLA1. The optical counterpart to M10-VLA1 is shown with the red triangle. 2.2.4 Optical Spectroscopy We initiated spectroscopy of the optical counterpart to M10-VLA1 in 2015, using the Goodman 21 Figure 2.6 HST color-magnitude diagrams in 𝐹606𝑊 vs. 𝐹606𝑊 − 𝐹814𝑊 of the stars within 15′′ of M10-VLA1. The optical counterpart to M10-VLA1 is shown with the red triangle. spectrograph on the SOAR 4.1-m telescope (Clemens et al., 2004). All observations were made with a 0.95′′ slit, but used several different gratings: some with a 1200 l mm−1 grating (resolution 1.7 Å; range 5380–6640 Å, for studying H𝛼), and radial velocity measurements with a 2100 l mm−1 grating (resolution 0.9 Å; range 5020–5660 Å) or a 2400 l mm−1 grating (resolution 0.7 Å; range 5080–5610 Å). Typical individual exposure times were 900 sec each, with two spectra generally taken back-to-back on a particular night. Spectra were reduced and wavelength calibrated with a 22 Figure 2.7 SOAR color-magnitude diagram in 𝑖 vs. 𝑔 − 𝑖 of M10, observed ∼9 years after the HST photometry presented in Figure 2.4. The optical counterpart to M10-VLA1 is shown with the red triangle. The similarity to its location in the Figure 3 CMD shows that its unusual color is persistent over long timescales and is not due to variability. FeAr arc lamp using standard routines in IRAF. The spectra covering H𝛼 show clear H𝛼 emission (Figure 2.9), indicative of binary interaction, providing additional evidence that this object is the counterpart to the radio source. We determined radial velocities through cross-correlation over the region 5150–5300 Å with spectral templates of similar spectral type taken with the same setup. Given the long period of the system (see below), we used a weighted average of the radial velocities for the consecutive 900-sec spectra to represent each epoch of data. The barycentric radial velocities are listed in Table 2.3. The corresponding observation times are given as Barycentric Julian Dates on the TDB system (Eastman et al. 2010). 2.3 Binary Properties and Analysis 2.3.1 Orbital Parameters Using the custom Keplerian sampler TheJoker3 (Price-Whelan et al., 2017), we initially fit a 3https://github.com/adrn/thejoker/ 23 0123g-i(mag)121416182022i(mag) Figure 2.8 Radial velocity curve of the red straggler in M10-VLA1, with the best-fit circular Keplerian model overplotted. circular model to the 20 radial velocity epochs. The posterior distributions for the fitted parameters were all unimodal and close to Gaussian, with median values: period 𝑃 = 3.3391 ± 0.0010 d, systemic velocity 𝑣𝑠𝑦𝑠 = 86.3 ± 1.1 km s−1, semi-amplitude 𝐾2 = 12.5 ± 1.5 km s−1, and the ascending node of the compact object 𝑇0 = 2457169.1292 ± 0.0846 d. A fit with these values is plotted in Figure 2.8. The residuals around the best orbital fit have an rms dispersion of 3.9 km s−1. 24 For an eccentric model, the posterior distribution of the eccentricity is very broad, strongly disfavoring only high eccentricities > 0.4. As expected, allowing an eccentric fit slightly improves the model, with a small reduction of the rms from 3.9 to 3.7 km s−1 for eccentricities in the range ∼ 0.1–0.2. These fits still yield periods and semi-amplitudes very similar to the circular case and hence do not affect any of our scientific conclusions. A modest eccentricity is possible, but given the long period and low semi-amplitude, it is not well-constrained with the current set of observations, and we restrict our discussion to the circular case. The systemic velocity is somewhat surprising: the velocity of M10 itself is 74 km s−1, with a central velocity dispersion of about 5 km s−1 (Bellazzini et al., 2012; Carretta et al., 2009). Hence M10-VLA1 has a relative velocity close to escape velocity for the cluster. To investigate this possible velocity discrepancy, we used a Besançon Galactic model (Robin et al., 2003) to simulate the field star population in a square degree around M10. Of field stars with colors and magnitudes comparable to M10-VLA1, only about 1.3% had radial velocities as high as that inferred for the systematic velocity of M10-VLA1. Hence, given the radial velocity of this binary and its position very close to the center of M10, we conclude that it is much more likely to be a cluster member than an interloping field star. A future proper motion measurement with the Hubble Space Telescope or Gaia can confirm this definitively. It is possible that the binary had a recent encounter with another system and received a kick. If mass transfer is occurring (§3.3), the multi-day period implies a low-density, evolved donor, as expected on the basis of the location of the star in the color-magnitude diagram (Figures 2.5 and 2.6). 2.3.2 Masses The semi-amplitude and period together give the mass function 𝑓 (𝑀) 𝑓 (𝑀) = 𝑃𝐾 3 2 2𝜋𝐺 = 𝑀1 (sin 𝑖)3 (1 + 𝑞)2 (2.1) where 𝑖 is the inclination and 𝑞 the mass ratio 𝑀2/𝑀1. We find 𝑓 (𝑀) = 6.7+2.7 −2.1 × 10−4𝑀⊙ using the posterior samples from §3.1. There are two possible cases: first, if the visible star is indeed the donor, then the low 𝑓 (𝑀) immediately implies that the system must be close to face-on. 25 To quantify this, we note that the donor mass 𝑀2 must be in the range 0.3𝑀⊙ ≲ 𝑀2 ≲ 0.8𝑀⊙. The upper limit of 0.8𝑀⊙ corresponds to the main sequence turnoff mass and 0.3𝑀⊙ corresponds to the mass of a heavily-stripped star that still appears to be a red giant in the color-magnitude diagram. As a comparison, the stripped optical companion to a millisecond pulsar in NGC 6397 (COM J1740–5340) has a dynamical mass of 0.22𝑀⊙ – 0.32𝑀⊙ and a red color, but is fainter than the main sequence turnoff of the cluster (Ferraro et al., 2003; Mucciarelli et al., 2013). The red giant optical companion of M10-VLA1 is more luminous than this star, consistent with a comparable or higher mass than COM J1740-5340. Given the value of 𝑓 (𝑀), an assumed value of 𝑀2 then gives a relationship between the primary mass 𝑀1 and the inclination 𝑖. For the case where the visible star is the secondary, the maximum inclination would be at the extreme case where the primary is a low-mass He white dwarf or a main sequence star with a mass slightly above ∼ 0.3𝑀⊙; in this case 𝑖 ∼ 12◦. For any less extreme set of assumptions, the inclination would be even lower. If the red straggler is the secondary, M10-VLA1 must be essentially face-on. The alternative case is if the red straggler is the source of the X-ray and radio emission. It might still be the donor if accretion is occurring onto a ∼ 0.2𝑀⊙ He white dwarf (see §4.4), or it could be the sole source of the X-ray and radio emission, due to chromospheric activity rather than mass transfer. Depending on the red straggler mass, in the former case we find 𝑖 = 16 − 26◦, which is still relatively face-on. If no accretion is occurring and the secondary is not a compact object, a wide range of inclinations are allowed. For for a typical case with 𝑀1 = 0.8𝑀⊙ and an inclination of 𝑖 = 60◦, 𝑀2 ∼ 0.09𝑀⊙, near the border between brown dwarfs and the lowest-mass main sequence stars. If the red straggler is the donor in the binary, an independent estimate of the mass is possible by assuming the star fills its Roche Lobe and using the optical photometry. From the orbital period, the density of the red straggler is ∼ 0.017 g cm−3 (Eggleton 1983). Using the temperature and bolometric luminosity determined above, we find a donor mass of 0.34𝑀⊙, which would be consistent with a scenario in the star was substantially stripped. However, we emphasize this mass 26 Table 2.3. Barycentric Radial Velocities of M10-VLA1 BJD (d) RV (km s−1) Error (km s−1) 2457166.6664853 2457166.8171978 2457166.8458049 2457170.6829383 2457170.7138864 2457186.6184706 2457186.7838743 2457196.7163945 2457252.5998639 2457257.5697872 2457473.8156011 2457476.8085067 2457484.8487222 2457508.8464624 2457598.6466511 2457602.6214264 2457603.5856243 2457509.8408503 2457629.5657976 2457630.5586368 83.2 92.3 92.3 99.3 97.6 88.3 84.9 94.0 72.0 97.9 94.5 79.6 95.3 90.9 93.1 84.6 70.6 76.1 70.0 85.8 3.3 3.4 3.6 3.5 4.4 3.4 3.0 5.1 3.6 4.9 3.6 5.3 3.1 3.1 4.6 4.4 3.3 7.1 6.1 5.3 estimate is strongly dependent on the assumptions that the red straggler is Roche lobe-filling and on the temperature and luminosity used. 2.3.3 Optical Spectrum and Emission The optical spectra of M10-VLA1 are consistent with a G-type star, with relatively modest metal lines, as would be expected for a star in M10 (with [Fe/H] ∼ −1.5, Haynes et al. 2008). The most notable feature of the spectra is the presence of H𝛼 in emission, which is observed at all six epochs (spanning 16 months) for which spectra covering this region were obtained. By fitting a Gaussian convolved with the instrumental resolution (79 km s−1) to rectified spectra in this region, we find that the mean full-width at half-maximum (FWHM) of the H𝛼 line is 180 ± 25 km s−1 (with the uncertainty representing the standard error of the mean). In some of the H𝛼 spectra, the line appears double-peaked rather than simply broadened, though 27 this is challenging to confirm in individual exposures given the modest width of the line. In Figure 2.9 we show an average spectrum of six 15-min exposures taken on 2015 May 15, which represents the highest signal-to-noise spectrum of the region. Here the double-peaked nature of the line is obvious. Fitting a single Gaussian model as above yields a FWHM wider than the mean value (243 ± 19 km s−1). We also fit a double-Gaussian model, yielding a velocity difference of the two emission peaks of 147 ± 11 km s−1. Given the modest H𝛼 velocities and that these values are not orbital averages, we do not wish to over-interpret them. Instead we simply remark that the ratio of the peak separation to the FWHM is 0.60 ± 0.06, exactly the value observed for typical accretion disks around compact objects (e.g., Casares 2015, 2016.) Therefore these observations provide evidence that an accretion disk could be present in M10-VLA1. 2.4 Discussion The X-ray and radio emission and optical photometry and spectroscopy all point to the identifi- cation of M10-VLA1 as an interacting binary in the globular cluster M10. While we have observed a red straggler star as one member of this system, the nature of its companion is not clear. We discuss the options in turn. 2.4.1 Black Hole There are several pieces of observational evidence that suggest a black hole origin for M10- VLA1. First, its ratio of radio to X-ray luminosity puts M10-VLA1 within the scatter of the 𝐿 𝑋–𝐿 𝑅 correlation for quiescent black hole systems (Figure 2.10; Gallo et al. 2014). The radio continuum spectral index is 𝛼 = 1.3 ± 0.9, poorly constrained but consistent with the flat-to-inverted value expected for self-absorbed synchrotron emission from a compact jet, as observed for low-luminosity accreting black holes (e.g., Gallo et al. 2005). We must add that the radio and X-ray observations of M10-VLA1 were not obtained simultaneously, and interpret its position on the 𝐿 𝑋–𝐿 𝑅 diagram cautiously. The Feb 20 2014 VLA observed radio luminosity is shown with both the Chandra X-ray detection from May 08 2015 as well as the almost simultaneous Feb 21 2014 Swift observation upper limit in Figure 2.10. Both points lie above the 𝐿 𝑋–𝐿 𝑅 relation, with the Feb 2014 datapoint 28 Figure 2.9 Optical spectrum of the red straggler in M10-VLA1, taken on 2015 May 15, over the wavelength range 6000 to 6650 Å. The inset panel shows a zoom-in on H𝛼, where the double- peaked nature of the line is obvious. somewhat closer the the parameter space occupied by accreting neutron star systems. We also remind the reader that the source is variable in the radio, and multiple simultaneous X-ray and radio observations are needed in the future to determine its relationship with the 𝐿 𝑋–𝐿 𝑅 relation with more certainty. 29 Another line of argument uses the X-ray luminosity and orbital period of the system. M10-VLA1 has a low X-ray luminosity of ∼ 1031 erg s−1. In the context of an X-ray binary, the X-ray luminosity is determined by the accretion rate and radiative efficiency of the accretion flow. For an evolved Roche lobe-filling donor, the mass loss rate is thought to be set by the nuclear evolution of the star. The physical mechanism that determines the quiescent radiative efficiency is not well-understood, but it has been argued that black hole binaries typically have lower X-ray luminosities than neutron star X-ray binaries at the same orbital periods (and thus accretion rates), perhaps because accretion luminosity can be advected across the event horizon in a black hole (Garcia et al., 2001). It has also been suggested that black holes simply transfer more energy to jets rather than into the area of the hot accretion disk as hard X-rays (Fender et al., 2003). Using the Reynolds & Miller (2011) relation for X-ray luminosity vs. orbital period for quiescent black holes and neutron stars, M10-VLA1, with an orbital period of 3.339 d, has properties much more consistent with a black hole than a neutron star: a typical neutron star with this period should have 𝐿 𝑋 ≳ 5 × 1032 erg s−1. It is worth noting that some sources “disobey" this relation: e.g., GS 1354-64, which is much more X-ray luminous than other black holes with comparable orbital periods (Reynolds & Miller, 2011). This is unsurprising given the tenuous physical basis for understanding the radiative efficiency in these systems. Nonetheless, it is still true that the X-ray luminosity of M10-VLA1 would be remarkably low for an accreting neutron star. Circumstantial evidence for a black hole primary is the possible presence of an accretion disk in the system, as suggested by the unusual donor (consistent with mass transfer), double-peaked H𝛼 emission and UV/optical variability. An accretion disk suggests a compact primary, and as this and the other subsections show, in this case the radio and X-ray emission strongly favor a black hole. The counterargument is straightforward: if the primary is a black hole, the inclination must be very low. Even in the extreme case of a 3𝑀⊙ black hole, 𝑖 = 3.9 ± 0.5◦. If we instead assume a uniform distribution of black hole masses between 3 and 15 𝑀⊙, we find 𝑖 = (2.5+0.7 −0.4)◦. Such a low inclination is unlikely to occur by chance (∼ 0.1 % chance), and in Sec. 4.5 we discuss the possibility that face-on systems would be preferentially observed. 30 Figure 2.10 The radio/X-ray correlation for accreting compact objects, showing that M10-VLA1 has properties consistent with a quiescent stellar-mass black hole. Hollow points indicate an upper limit. Two magenta pentagons are shown for M10-VLA1, both using the radio luminosity of the 20 Feb 2014 VLA observation with the Chandra X-ray detection on 08 May 2015 and Swift upper limit of 21 Feb 2014. The dark green circles show known quiescent black holes in the field (Miller-Jones et al., 2011; Gallo et al., 2012; Ratti et al., 2012; Corbel et al., 2013; Rushton et al., 2016; Plotkin et al., 2017). The dotted black line shows the best-fitting 𝐿 𝑅–𝐿 𝑋 correlation for black holes from Gallo et al. (2014). Orange circles are radio-selected black hole candidates (Strader et al., 2012; Chomiuk et al., 2013; Miller-Jones et al., 2015; Tetarenko et al., 2016b; Bahramian et al., 2017b). The purple triangles are transitional millisecond pulsars (Hill et al., 2011; Papitto et al., 2013; Deller et al., 2015; Bogdanov et al., 2018), and the dotted purple line shows their proposed 𝐿 𝑅–𝐿 𝑋 track. Blue squares are NSs in the hard state, and pink stars are accretion-powered millisecond X-ray pulsars (Migliari & Fender, 2006; Tudor et al., 2017). The light green diamonds are the bright CVs AE Aqr (𝐿 𝑋 = 5.0 × 1030 erg s−1), SS Cyg (in outburst; 𝐿 𝑋 = 1.4 × 1032 erg s−1; Russell et al. 2016), and white dwarf “pulsar" AR Sco (𝐿 𝑋 = 2.9 × 1030 erg s−1; Marsh et al. 2016). Figure adapted from Bahramian et al. (2017b). One fact not strongly on either side is the variability of the radio source. There is substantial evidence that the flat-spectrum radio emission from compact jets from neutron stars and black holes 31 102910301031103210331034103510361037103810391-10keVX-rayluminosity(ergs−1)10251026102710281029103010315-GHzradioluminosity(ergs−1)Quiescent/hardstateBHsLr/LxBHcandidatesQuiescent/hardstateNSsAMXPstMSPs(inaccretionstate)CVs(atflarepeak)M10-VLA1 is variable on a range of timescales (we discuss white dwarfs below in Sec. 3.3). For example, Miller-Jones et al. (2008) show that the stellar-mass black hole V404 Cyg has factor of ∼ 3 variations in its quiescent 8.4 GHz radio continuum flux density on timescales of < 1 hr, an observation borne out by a much larger sample of VLA data obtained over decades (Plotkin et al., 2019). Similar variability persists on longer timescales; the low-luminosity black hole X-ray binary A0620-00 has been seen to vary by a factor of ∼2.5 between 2005 and 2013 in quiescence (Dinçer et al., 2018). Finally, we note that Ivanova et al. (2017) have recently proposed that red straggler companions (like that of M10-VLA1) are expected for some stellar-mass BHs in globular clusters. The binary is formed in a glancing tidal capture between a BH and a subgiant star, and the interaction strips a few ×0.1𝑀⊙ off the subgiant. As the donor evolves, it may spend 0.5–1 Gyr in the red straggler portion of the color-magnitude diagram. The long timespan that stars spend as subgiants and their enhanced cross-sections as they swell favor such interactions for subgiants above that of main sequence stars or normal giants (Ivanova et al., 2017). This scenario is consistent with the location of M10-VLA1 near the cluster center, at a projected radius of only 0.2 core radii. 2.4.2 RS CVn RS CVn systems are detached binary systems with an evolved primary (typically a F/G subgiant or a K giant) and a non-degenerate secondary. Generally the secondary is of similar mass (Gunn, 1996), though here we also consider systems with a wider range of mass ratios. The evolved star shows enhanced chromospheric activity, resulting in variability at a wide range of wavelengths. Relevant for M10-VLA1, RS CVn stars show increased radio and X-ray luminosity compared to similar stars without binary companions (Montesinos et al., 1988; Gunn, 1996). The orbital periods of RS CVn systems are typically between 2 and 14 days, and shorter period systems are more active due to enhanced tidal synchronization. Activity in RS CVn stars is manifested in flares, lasting minutes to hours, with order-of-magnitude increases in the X-ray, UV, and radio luminosities (Osten et al., 2000) RS CVns show non-thermal radio emission associated with the enhanced magnetic field of the rapidly rotating evolved star (Osten et al., 2000; García-Sánchez et al., 2003). At cm wavelengths, 32 the spectral luminosity typically ranges from 1023–1026 erg s−1 GHz−1 (Morris & Mutel, 1988; Drake et al., 1989, 1992), and extreme flaring events may reach 1027 erg s−1 GHz−1 (Mutel et al., 1987). The spectral indices of these systems are typically between –1 and 1, with quiescent radio emission flat to steep (𝛼 ≲ 0), tending toward inverted (𝛼 ∼ 1) during luminous flares (Gibson et al., 1975; Owen & Gibson, 1978; Mutel et al., 1987). Quiescent radio emission from RS CVn systems shows moderate circular polarization at frequencies above 5 GHz, but less than 3% during flares. Flares also produce X-ray emission, with typical luminosities of 𝐿 𝑋 ∼ 1029–1032 erg s−1. The X-ray and radio emission during flares is correlated (Osten et al., 2000). Standard chromospheric emission lines (Ca H+K; Balmer lines) are commonly observed. These systems have several overlapping characteristics with those of M10-VLA1. The X- ray luminosity of M10-VLA1 is well within the range of known X-ray luminosities of RS CVn binaries, and the optical counterpart is evolved, as expected for an RS CVn system. The radio spectral luminosity of M10-VLA is at the upper edge of those observed for RS CVn systems in flares, though the low flux density means that any polarization constraints are not useful. The aspects of the system less consistent with standard RS CVn binaries are the low mass of the secondary for reasonable inclinations and the tentative evidence for an accretion disk (double- peaked H𝛼). Double-peaked H𝛼 has been exceptionally observed in RS CVn systems, e.g., in SZ Pis (Bopp, 1981), where it was attributed to circumstellar material ejected in transient mass transfer events. Unusually for RS CVn stars, the subgiant in SZ Pis nearly fills its Roche lobe. This suggests that if the origin of the H𝛼 is similar in M10-VLA1, then it is also likely to be close to Roche lobe-filling. The analysis in §3.2 would then imply that the subgiant in M10-VLA1 is likely to be a stripped, low-mass star. We note that the X-ray luminosity and orbital period of M10-VLA1 are consistent with those of some binaries containing sub-subgiant or red straggler primaries (Geller et al., 2017), though such systems do not typically have evidence for accretion, and their radio continuum properties are unknown. At least some sub-subgiants are found in compact binaries (e.g., Mucciarelli et al. 2013). 33 2.4.3 Neutron Star Compact binaries with neutron star primaries are frequently identified in globular clusters. Many of these neutron stars are millisecond radio pulsars spun up by accretion in a dynamically- formed binary, but for which the accretion has temporarily or permanently ceased. The flat to inverted spectrum radio continuum emission and evidence for an accretion disk from M10-VLA1 are unlike the steep spectrum radio emission and lack of accretion observed for normal millisecond pulsars (e.g., Kramer et al. 1999). As mentioned above in Sec. 4.1, M10-VLA1 does not have properties consistent with being an actively accreting neutron star X-ray binary: its X-ray luminosity is at least a factor of ∼ 40 lower than expected for an accreting neutron star at its orbital period, and it is much more radio bright than would be expected (Figure 2.10). Indeed, the only class of neutron stars with detected flat-spectrum radio emission at X-ray luminosities < 1034 erg s−1 are the transitional millisecond pulsars that switch between accretion-powered disk states and rotation-powered pulsar states on timescales of days to years (Archibald et al., 2009; Bond et al., 2002; Hill et al., 2011; Papitto et al., 2013; Bassa et al., 2014; Deller et al., 2015). During their disk state, transitional millisecond pulsars emit flat spectrum radio emission, which is typically interpreted as compact radio jets. They may also show double peaked H𝛼 emission originating from an accretion disk. While our radio detection was not simultaneous with the Chandra X-ray detection, we can constrain this scenario through the quasi-simultaneous Swift observations, which limit an X-ray source at this position to < 5.2 × 1031 erg s−1 (0.5–10 keV). This is a factor of 10 below the X-ray luminosities observed for transitional millisecond pulsars in even their “low mode" disk states (De Martino et al., 2013; Patruno et al., 2014; Bogdanov et al., 2018). In fact, the seven Swift observations all have flux limits at least a factor of 5 below the typical 2 × 1033 erg s−1 X-ray luminosity observed for accreting transitional millisecond pulsars (a mixture of the “low" and “high" modes), and some Swift observations are much deeper. The ratio of radio to X-ray flux of M10-VLA1 is also dissimilar to the average values for known transitional millisecond pulsars. Bogdanov et al. (2018) show that the transitional PSR J1023+0023 34 shows anti-correlated radio and X-ray variability in the disk state, including periods in which the system can enter the parameter space in 𝐿 𝑋–𝐿 𝑅 occupied by accreting black holes. However, the Swift upper limit for M10-VLA1 is still about a magnitude fainter than would be expected for a transitional millisecond pulsar in the low mode disk state at the observed radio luminosity. M10- VLA1 also lacks the short-term (< 2 hours) radio variability observed in the PSR J1023+0023 disk state. Overall, the radio and X-ray evidence suggests that M10-VLA1 does not have properties similar to known transitional millisecond pulsars in their disk states, though we cannot definitely rule out the possibility that we are observing such a system in an “sub-subluminous" disk state not yet observed among the confirmed transitional millisecond pulsars. Considering the dynamical evidence, if we assume a neutron star in the mass range 1.4–2.0 𝑀⊙, the inclination inferred is 𝑖 = 5.1 ± 0.7◦. Hence this scenario has the same drawback as the black hole case (an unlikely face-on inclination) and the additional issue that the properties of M10-VLA1 are inconsistent with those of known low-mass X-ray binaries containing neutron stars. Hence a neutron star primary is disfavored, though not ruled out. 2.4.4 White Dwarf Here we discuss a number of possibilities in which the red straggler is in a binary with a white dwarf. 2.4.4.1 Flare from Accreting White Dwarf Miller-Jones et al. (2015) have exhaustively catalogued evidence for bright radio flares among accreting white dwarfs in the context of interpreting the stellar-mass black hole candidate X9 in the globular cluster 47 Tuc, and we do not repeat their discussion here. In brief, while accreting white dwarfs do emit variable radio continuum emission, this emission is generally 1–4 orders of magnitude fainter than observed for M10-VLA1 (e.g., Coppejans et al. 2015, 2016). A few well-studied intermediate polars (AE Aqr, DQ Her) occasionally emit bright flares, but these are still typically less luminous than M10-VLA1 or decay on short (< hr) timescales (Bastian et al., 1988; Abada-Simon et al., 1993; Pavelin et al., 1994). A bright, very brief (< 20 min) 15 GHz flare 35 was observed from the dwarf nova SS Cyg (Mooley et al., 2017), which would have a scaled flux density of 10–13 𝜇Jy at the distance of M10. As discussed in §3.2, a white dwarf accretor also does not easily explain the low semi-amplitude of the binary. The most favorable case would be if the white dwarf is a low-mass ∼ 0.2𝑀⊙ He white dwarf formed through mass transfer during the evolution of the initially more massive star, and we are now witnessing the evolution of the initially less massive (but now more massive) star. The evolving red straggler would likely be more massive than the white dwarf, so by standard criteria stable mass transfer is unlikely. Some recent theoretical work suggests a wider range of mass ratios might allow stable mass transfer from giants (Pavlovskii & Ivanova, 2015), which could allow accretion onto a low-mass white dwarf. Nonetheless, even if we take their most extreme case of a donor to accretor mass ratio of 2.2, a relatively face-on inclination of 𝑖 ≲ 19◦ is still required, and this source would still be the most radio-loud accreting white dwarf known. In addition, while we do observe optical/UV variability from the system, there is no strong evidence for a substantial UV excess indicative of a hot disk, though the Swift/UVOT absolute UV limit on an outburst at the time of the radio detection (𝑈𝑉𝑊20 > 2.9) is not strong. As a comparison, the variable, long-period accreting white dwarf AKO 9 in the globular cluster 47 Tuc has an inferred 𝑈𝑉𝑊20 ∼ 3.8–4.3 (Edmonds et al., 2003; Knigge et al., 2003). 2.4.4.2 A White Dwarf “Pulsar" The white dwarf binary AR Sco was previously classified as an intermediate polar, but has has recently been shown to emit bright, pulsed radio continuum radiation, and it may represent the first member of a separate class of “white dwarf pulsars". The radio emission appears to originate in an interaction between a close magnetic white dwarf–M dwarf binary rather than primarily from accretion. AR Sco has a 0.15 d period (Marsh et al., 2016; Buckley et al., 2016), quite unlike the long 3.339 d period of M10-VLA1. If the radio emission in M10-VLA1 is not associated with accretion, the double-peaked H𝛼 line is difficult to explain, and this scenario has the same requirement of a face-on inclination as a normal accreting white dwarf. Therefore, it seems reasonable to argue that 36 this scenario is disfavored, but a stronger statement would require a better understanding of the white dwarf pulsar mechanism. It is worth pointing out that AR Sco is very nearby (116 pc; Marsh et al. 2016) and so white dwarf pulsars might well be common. 2.4.4.3 An Ionized Red Straggler Wind A third scenario posits an enhanced wind from the red straggler, such as for a symbiotic system, with the X-rays produced by accretion and the radio emission due to thermal radiation from the ionized wind. The X-ray luminosity suggests an accretion rate of ∼ 10−10−10−11𝑀⊙ yr−1 (assuming a boundary layer on a 0.2 M⊙ white dwarf; Kuulkers et al. 2006). Assuming the radio emission is from an ionized wind with a velocity of 100 km s−1, this mass loss rate would be undetectable in the radio (Panagia & Felli, 1975); a much higher mass loss rate of ∼ 10−8𝑀⊙ yr−1 would be necessary to produce a thermal radio source with ∼ 10𝜇Jy. Such a mass loss rate is much higher than observed for metal-poor giants of this luminosity (Dupree et al., 2009). The natural expectation is that this thermal emission would also not be variable; significant variation in the ionizing source would be necessary to produce the time-variable radio emission observed. Hence we believe this scenario is unlikely. 2.4.4.4 The Red Straggler Alone A final option is that, if the white dwarf is not accreting, the X-ray and radio emission could be associated entirely with the rapidly rotating red straggler, as for the RS CVn scenario. As discussed in §3.2, the inclination requirements for this scenario are less extreme than for more massive white dwarfs, neutron stars, or black holes, but a face-on inclination with 𝑖 ≲ 26◦ is still necessary. 2.4.5 A Face-On Binary: Relativistic Beaming? If the faint companion in M10-VLA1 is a compact object, the binary’s radial velocity curve implies that it must be relatively face-on. Face-on inclinations are a priori unlikely. For example, given a random distribution of orientations in cos(𝑖), the value 𝑖 < 11.1◦ (as implied for a compact object primary) would occur by chance only 1.9% of the time. This leads us to consider whether any selection biases might exist for radio or X-ray emission in favor of face-on systems. Tentative evidence for a similar bias toward face-on low-mass X-ray binaries has been observed at 𝛾-ray 37 wavelengths in systems with lower X-ray luminosities (Britt et al., 2017), including the candidate transitional millisecond pulsar 3FGL J1544.6–1125, which has an inferred inclination of 5–8◦. There are a limited number of physical mechanisms that would lead to a bias for face-on systems. Perhaps the most promising candidate is relativistic beaming of the radio emission. The X-ray emission might also be beamed depending on its origin. For 𝛽 = 𝑣/𝑐, the jet Lorentz factor is Γ = (1 − 𝛽2)−1/2. Assuming a flat radio spectral index 𝛼 = 0 and a continuous jet, the observed flux density is boosted by a factor [Γ(1 − 𝛽 𝑐𝑜𝑠 𝑖)]−2 + [Γ(1 + 𝛽 𝑐𝑜𝑠 𝑖)]−2, where the second term is negligible for face-on inclinations. As a proof of concept, we consider the case where the X-ray flux is not beamed and the radio flux of M10-VLA1 is consistent with the black hole 𝐿 𝑋–𝐿 𝑅 relation in the rest frame. This would require a beaming factor of ∼ 5. For any inclination allowed by the dynamical analysis (§3.2), this beaming would require Γ ∼ 1.32–1.36, corresponding to 𝛽 ∼ 2/3, for the inferred flux boost. Beaming factors of 10 or even 20 are easily reached with 𝛽 ≲ 0.9, still in the mildly relativistic regime. The beaming required to move a source from the (admittedly poorly-defined) 𝐿 𝑋–𝐿 𝑅 relation for transitional millisecond pulsars to the location of M10-VLA1 is a factor of ∼ 4–10 higher than the black hole case. For relativistic beaming to be a likely explanation for M10-VLA1, there are two requirements for the source class. First, it requires a significant population of sources with flux densities below our detection limit but which become detectable if the orientation is favorable. Second, it requires that these sources regularly produce at least mildly relativistic jets in the quiescent regime. Both requirements would tend to favor neutron star or black hole binaries: while accreting white dwarfs might well be common in globular clusters, those that emit bright radio flares are unusual, and to our knowledge relativistic jets have not been proposed to exist for dwarf nova systems outside of outburst. Very little is known definitively about the Lorentz factors of jets in X-ray binaries, especially for low-luminosity sources with 𝐿 𝑋 < 1034 erg s−1. Heinz & Merloni (2004) show that the moderate scatter in the 𝐿 𝑋–𝐿 𝑅 correlation for black holes in the low/hard state implies that the width of 38 the Lorentz factor distribution should be relatively small, but also that no upper limit on Γ can be derived from this correlation. In a study of the stellar-mass black hole GX 339-4 undertaken in the hard state (with 𝐿 𝑋 ≳ 1036 erg s−1), Casella et al. (2010) show that Γ ≳ 2 near the jet base. Gallo et al. (2014) considered whether the different normalizations of 𝐿 𝑋–𝐿 𝑅 for different stellar-mass black holes could be explained by beaming, with no compelling evidence that this is the case. Russell et al. (2015) argue that the steep 𝐿 𝑋–𝐿 𝑅 relation of the radio-bright face-on (𝑖 = 4–15◦; Russell et al. 2014) candidate stellar-mass black hole MAXI J1836–194 could potentially be explained by a decreasing Lorentz factor as the luminosity decayed to below 1036 erg s−1 after a failed outburst, but such an argument cannot be universally applied for stellar-mass black holes (Heinz & Merloni, 2004; Soleri & Fender, 2011). Overall, we conclude that there is no strong evidence for or against the presence of relativistic jets among low-luminosity X-ray binaries. If such binaries do generally host mildly relativistic jets that could result in flux boosts from beaming, then we would expect the discovery of other face-on systems, an idea readily testable with future observations. 2.5 Summary and Future Work The central result of the paper is the discovery of a interacting binary star with an evolved red straggler companion in the globular cluster M10. The identity of this star’s companion is uncertain. As discussed in §4.1, the observed properties of the system are all consistent with a black hole primary, with the exception of the low mass function, which could be explained if M10-VLA1 is face-on and there is a selection effect favoring radio detection of face-on systems. §4.2 discussed the alternative possibility that M10-VLA1 is an extreme flaring RS CVn binary, which would better explain the dynamical data, but is in tension with the long-term evidence for accretion in the binary. There are a number of avenues for future work that could help distinguish between these possibil- ities. For a nominal 10𝑀⊙ black hole primary, the semi-major axis would be ∼ 20𝜇as, which might be marginally detectable with Gaia astrometry given the brightness of the red straggler (Barstow et al., 2014). Perhaps more attainable, a simultaneous UV to near-IR spectral energy distribution, 39 well-sampled in orbital phase, would allow improved modeling of the system. Simultaneous deep radio and X-ray observations, taken over multiple epochs, would help distinguish among classes of accreting compact objects. Theoretical modeling of the evolution of the system, as done for some specific sub-subgiant systems by Leiner et al. (2017), would also be desirable. In any case, it is clear that radio continuum imaging offers unique insights on the close binary populations in Galactic globular clusters. 40 CHAPTER 3 THE MAVERIC SURVEY: RADIO CATALOGS AND SOURCE COUNTS FROM DEEP VERY LARGE ARRAY IMAGING OF 25 GALACTIC GLOBULAR CLUSTERS 3.1 Introduction Radio observations of globular clusters (GCs) have been central to studies of compact binaries in GCs for decades. The first radio surveys of GCs were motivated by detection of variable X-ray sources in GCs by Uhuru and OSO-7 (Clark et al., 1975). There was immediate speculation that these cluster sources were formed dynamically rather than through the evolution of primordial binaries as for field X-ray sources (Clark 1975; Fabian et al. 1975; Sutantyo 1975). These radio surveys (e.g., Johnson 1976; Johnson et al. 1977; Rood et al. 1978; Gopal-Krishna & Steppe 1980) were limited to relatively bright sources (typically > 1 mJy) and in many cases the sources were found to be more likely associated with the background than with the cluster (Birkinshaw & Downes, 1982). Following the discovery of millisecond pulsars, it was speculated that such sources might be abundant in GCs. This led to radio continuum observations with the Very Large Array of a variety of clusters at different angular resolutions, but with few clear detections of candidate pulsars (e.g., Hamilton et al. 1985). Subsequent work using low-resolution radio imaging showed that a number of clusters had steep spectrum (−2 ≲ 𝛼 ≲ −1, for flux density 𝑆𝜈 ∝ 𝜈𝛼) integrated radio flux in their cores, consistent with the idea that many GCs do indeed host large populations of pulsars (Fruchter & Goss 1990; Fruchter & Goss 2000). Higher-resolution 1.4 GHz imaging of a small sample of well-studied clusters such as M15 identified both known pulsars and low-mass X-ray binaries, as well as sources with no known counterparts (Kulkarni et al., 1990; Johnston et al., 1991). Subsequent to these studies, the successful discovery and timing of many GC pulsars with Parkes, Arecibo, and later the Green Bank Telescope (e.g., Robinson et al. 1995; Hessels et al. 2007; Lynch et al. 2011) bore out the promise of the radio imaging results. While pulsars are expected to be abundant in deep low-frequency radio continuum imaging of GCs (e.g., Camilo & Rasio 2005; Ransom 2008), other classes of binaries readily observed 41 at other wavelengths (such as in the X-ray) should also be detectable in the radio. Low-mass X-ray binaries (LMXBs), in which a neutron star or black hole accretes from a Roche lobe-filling companion, are abundant within GCs. In field neutron star LMXBs, radio emission associated with non-thermal jets has been observed at X-ray luminosities of 𝐿 𝑋 ≳ 1034 erg s−1 (e.g., Tudor et al. 2017), and down to even lower luminosities of 𝐿 𝑋 ∼ 1033 erg s−1 for a few “transitional" millisecond pulsars (e.g., Deller et al. 2015), though the origin of the radio emission in this state is less clear (Bogdanov et al., 2018). Black hole LMXBs have been observed in the radio even down to quiescent luminosities of 𝐿 𝑋 ∼ 1030 erg s−1 (e.g., Gallo et al. 2014), with the emission thought to come from partially self-absorbed synchrotron radiation from a compact jet (Blandford & Königl 1979, Hjellming & Johnston 1988). Other binaries with lower typical X-ray luminosities, such as cataclysmic variables, active binaries, and even exotic systems such as “white dwarf pulsars" are also detectable with sufficiently sensitive imaging (e.g., Drake et al. 1992; Abada-Simon et al. 1993; Coppejans et al. 2015; Marsh et al. 2016). Given the depth of modern X-ray images (from Chandra or XMM) it is worthwhile to consider the utility of new radio imaging observations of GCs. One motivation is the search for radio emission from putative accreting intermediate-mass black holes (e.g., Maccarone 2004; Tremou et al. 2018). Another is the possibility of distinguishing between neutron star and black hole primaries in LMXBs: on average, accreting black holes show more luminous radio emission than neutron stars at a fixed 𝐿 𝑋 (e.g., Gallo et al. 2014, 2018), even though the X-ray spectra look very similar. Nearly all X-ray bright LMXBs in GCs are confirmed to host neutron stars, but for many of the fainter sources, the identity of the accretor is unknown, except in those cases where thermal emission from the surface of the neutron star is detectable or multi-wavelength information is available (e.g., Heinke et al. 2003). For many years it was thought unlikely that GCs hosted stellar-mass black holes in any substantial quantity, with their ejection the natural outcome of mass segregation and violent interactions in the cluster core (Sigurdsson & Hernquist, 1993; Kulkarni et al., 1993). This view was revisited starting about a decade ago with the discovery of a compelling stellar-mass black hole candidate in 42 an extragalactic GC (e.g., Maccarone et al. 2007; Zepf et al. 2008). The subsequent upgrade of the Karl G. Jansky Very Large Array (VLA), yielding a great increase in its radio continuum sensitivity, enabled the possibility of a wide-scale search for radio emission from quiescent black hole LMXBs in GCs. Our pilot surveys with the VLA and the Australia Telescope Compact Array (ATCA) successfully uncovered stellar-mass black hole candidates in the GCs M22 (Strader et al., 2012), M62 (Chomiuk et al., 2013), and 47 Tuc (Miller-Jones et al., 2015). We then initiated MAVERIC (Milky Way ATCA VLA Exploration of Radio Sources in Clusters) as a systematic survey for radio sources in 50 GCs with VLA and ATCA. The broader scientific implications of this project have accelerated in the last few years with the discovery that close black hole–black hole binaries are common in the local universe (Abbott et al., 2016), with dynamical formation in GCs a possibility to account for some or many of these systems (Rodriguez et al., 2016; Chatterjee et al., 2017). There has been a similar salvo of theoretical work on the presence of stellar-mass black holes in GCs, now arguing that some clusters could host tens to hundreds of black holes at the present day (e.g., Mackey et al. 2008; Sippel & Hurley 2013; Morscher et al. 2015; Kremer et al. 2018; Weatherford et al. 2018) While the ultimate goal of the survey is to identify, follow-up, and classify a wide variety of binaries, including perhaps accreting stellar-mass black holes, it will not be possible in every case to definitively assess a source’s classification. Even if a given source is associated with a compact object, a binary could have a sufficiently faint donor star that dynamical confirmation of the nature of the accretor is beyond the capability of present-day instrumentation. Therefore, in addition to these detailed investigations, it is useful to take a global view of the radio source populations in our radio images. Here, as an intermediate product of our overall scientific goal to assess the population of radio sources, especially black hole candidates, in Galactic GCs, we present a radio source catalog compiled from our deep VLA observations of 25 Milky Way globular clusters (the GCs with ATCA observations are presented in a companion paper by Tudor et al., in preparation). We use these catalogs to do a source count and spectral index analysis of the radio continuum sources in 43 our images, and show evidence for a significant population of individual radio sources in both our combined sample and in some individual GCs. This paper is arranged as follows. In Section 2 we describe our data reduction procedures. Section 3 outlines our source finding method and spectral index analysis. Section 4 contains our main source count and spectral index results. We summarize and conclude in Section 5. 3.2 Radio Observations & Data Reduction 3.2.1 Sample and Observations The initial MAVERIC cluster sample was selected to include all Galactic GCs with masses > 105 M⊙ and distances < 9 kpc (Figure 3.1). These limits were designed to include massive clusters more likely to host a black hole population, and clusters close enough that we had sufficient sensitivity to detect radio emission akin to the candidate quiescent stellar-mass black holes in M22 (Strader et al., 2012). We also added a few more massive GCs at larger distances, since these GCs are potential hosts for intermediate-mass black holes. More recent mass and distance determinations have moved a subset of the sample beyond these nominal mass and distance limits (see Figure 1), but the spirit of the selection is intact. Owing to its higher sensitivity, we observed as much of the sample as possible with the VLA, reserving ATCA for the more southerly clusters not accessible to the VLA. There are 50 clusters in the final sample. The 25 clusters for which reasonably homogeneous VLA datasets have been completed are presented in this paper; we expect to add about 7 additional objects in future papers. Pilot observations for the survey were made as part of National Radio Astronomy Observatory (NRAO) programs VLA/10C-109 (P.I. Chomiuk) in 2011 and VLA/12B-073 (P.I. Strader) in 2012. The main survey was approved as an NRAO Large Program (project codes VLA/13B-014 and VLA/15A-100), with observations made in 2014 and 2015, respectively. Table 3.1 lists the observation blocks for each cluster. The observations were primarily made in the most-extended A configuration, though a subset of southern clusters were observed in BnA or BnA to A “move time". The goal and median observing time per cluster was 10 hr, though a few clusters had a total observation time shorter or longer than this goal. Of this 10 hr of total observing time, the median 44 time on source was 7.4 hr. Most of the off source time was allocated to the observation of phase calibrators, with a median cycle time of about 10 min. The observing efficiency was determined primarily by the length of the observed blocks. Table 3.2 lists the total and on source time for each cluster. We made a few observations that are not used in this paper: these were all taken in move time between A and D configurations. In the course of verifying the catalogs in this paper, we found that the flux densities of apparent point sources were lower in these data compared to non-move time VLA data or ATCA data for the same clusters. We tried many experiments to account for these discrepancies and were unable to do so, other than to say they are consistent with substantial decorrelation (up to a factor of 2) in the A to D move time data. These data are excluded from this paper. The main effect of this is to remove Liller 1 and NGC 6522 from our present sample.1 For all clusters we observed with the C band receiver, including full polarization products. Data taken in 2014 or earlier used an 8-bit setup with two 1-GHz basebands centered at 5.0 and 7.4 GHz, while the 2015 data used 3-bit receivers with two 2-GHz basebands centered at 5.0 and 7.0 GHz. However, the final central wavelengths depend on the details of the flagging of radio frequency interference, which varies among the sample (see Table 3.2). For simplicity, for the remainder of the paper we refer to the lower baseband as 5.0 GHz and the upper baseband as 7.2 GHz, even if the central frequencies differ slightly from these values. 1We also note that the VLA intermediate-mass black hole upper limits from Tremou et al. (2018) for only these two clusters should be increased by about 30%. While this has no effect on the overall conclusions of that paper—and indeed ATCA data for these clusters show no evidence of a central source that could be an intermediate-mass black hole—these clusters should be revisited when higher-quality data are available. 45 Table 3.1. Epochs of VLA Data ID Date Obs. Time Project Code (hr) M2 M3 M4 M5 M9 M10 M12 M13 2015 Jun 28 2015 Jul 3 2015 Jun 30 2015 Jul 26 2015 Aug 1 2015 Aug 4 2015 Aug 16 2015 Aug 28 2015 Aug 30 2015 Sep 2 2015 Sep 4 2014 Feb 11 2014 Feb 12 2014 Feb 15 2015 May 20 2015 May 25 2015 Jun 1 2015 Jun 7 2015 Jun 25 2015 Jun 26 2015 Jul 16 2015 Jul 20 2014 Feb 20 2014 Mar 28 2014 Apr 7 2014 Apr 10 2014 Apr 29 2015 Jun 27 2015 Jul 3 2014 Feb 25 2014 Mar 1 2014 Mar 7 2014 Apr 12 2014 May 1 2014 May 20 2015 Jun 18 2015 Jul 1 5 5 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2 4 4 5 5 2 2 2 2 2 4 4 1 1 1 1 1 1 2.5 2.5 46 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 13B-014 13B-014 13B-014 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 13B-014 13B-014 13B-014 13B-014 13B-014 15A-100 15A-100 13B-014 13B-014 13B-014 13B-014 13B-014 13B-014 15A-100 15A-100 Table 3.1. (cont’d) ID Date Obs. Time Project Code (hr) M14 M19 M22 M28 M30 M54 M55 M62 M92 2015 Jul 10 2015 Jul 12 2011 May 19 2011 May 20 2011 May 21 2011 May 22 2011 May 23 2011 May 25 2011 May 29 2014 May 2 2014 May 4 2014 May 19 2014 May 23 2014 May 29 2014 May 30 2015 Jun 23 2015 Jul 4 2015 Jul 5 2015 Jun 9 2015 Jun 10 2015 Jun 12 2015 Jun 17 2015 May 20 2015 May 22 2015 Jun 1 2015 Jun 2 2015 Jun 4 2015 Jun 5 2015 Jun 6 2012 Sep 10 2012 Sep 11 2012 Sep 14 2012 Sep 15 2012 Sep 16 2015 Jun 19 2015 Jun 24 2015 Jul 4 5 5 5 2.5 2.5 2.5 2.5 2.5 2.5 1 2 2 1 1 2 3.3 3.3 3.3 2 1 2 1 1 1 1 1 1 1 2 1 3.75 1.75 1.75 1.75 3.3 3.3 3.3 47 15A-100 15A-100 10C-109 10C-109 10C-109 10C-109 10C-109 10C-109 10C-109 13B-014 13B-014 13B-014 13B-014 13B-014 13B-014 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 12B-073 12B-073 12B-073 12B-073 12B-073 15A-100 15A-100 15A-100 Table 3.1. (cont’d) ID Date Obs. Time Project Code (hr) 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 15A-100 13B-014 13B-014 13B-014 13B-014 15A-100 15A-100 15A-100 13B-014 13B-014 13B-014 13B-014 13B-014 13B-014 13B-014 13B-014 15A-100 13B-014 13B-014 13B-014 13B-014 13B-014 13B-014 13B-014 15A-100 15A-100 M107 NGC 6304 NGC 6325 NGC 6440 NGC 6539 NGC 6544 NGC 6712 NGC 6760 2015 Jul 8 2015 Jul 9 2015 Jun 9 2015 Jun 12 2015 Jun 17 2015 Jul 23 2015 Jul 29 2015 Aug 1 2015 Aug 3 2014 May 5 2014 May 12 2014 May 16 2014 Jun 1 2015 Jul 6 2015 Jul 2 2015 Jul 4 2014 May 3 2014 May 5 2014 May 6 2014 May 10 2014 May 13 2014 May 22 2014 May 31 2014 Jun 2 2015 Jul 11 2014 Apr 5 2014 May 5 2014 May 8 2014 May 9 2014 May 13 2014 May 18 2014 May 20 2015 Jul 1 2015 Jul 7 5 5 3 1 1 2 4 2 4 1 1 1 2 5 5 5 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 5 5 48 Table 3.2. Information for our cluster sample and images ID R.A. (J2000) Dec. (J2000) Distance (h:m:s) (◦ : ′ : ′′) (kpc) Core radius (′′) Half-light radius (′′) time (hr) on src (hr) 𝜈𝑙𝑜𝑤 (GHz) beam𝑙𝑜𝑤 rms𝑙𝑜𝑤 𝜈ℎ𝑖𝑔ℎ 𝜇Jy/beam (GHz) beamℎ𝑖𝑔ℎ rmsℎ𝑖𝑔ℎ 𝜇Jy/beam M2 M3 M4 M5 M9 M10 M12 M13 M14 M19 M22 M28 M30 M54 M55 M62 M92 M107 N6304 N6325 N6440 N6539 N6544 N6712 N6760 21:33:26.96 13:42:11.38 16:23:35.03 15:18:33.21 17:19:11.78 16:57:08.92 16:47:14.18 16:41:41.21 17:37:36.10 17:02:37.80 18:36:23.94 18:24:32.73 21:40:22.12 18:55:03.33 19:39:59.71 17:01:12.98 17:17:07.43 16:32:31.86 17:14:32.25 17:17:59.21 17:48:52.70 18:04:49.68 18:07:20.12 18:53:04.30 19:11:12.01 –00:49:22.90 +28:22:39.10 –26:31:33.80 +02:04:51.80 –18:30:58.50 –04:05:58.00 –01:56:54.70 +36:27:35.60 –03:14:45.30 –26:16:04.70 –23:54:17.10 –24:52:13.00 –23:10:47.50 –30:28:47.50 –30:57:53.10 –30:06:49.00 +43:08:09.30 –13:03:13.60 –29:27:43.30 –23:45:57.60 –20:21:36.90 –07:35:09.10 –24:59:53.60 –08:42:22.00 +01:01:49.70 11.5 10.1 1.8 7.7 7.8 4.4 5.2 7.6 9.3 8.2 3.1 5.5 8.6 23.9 5.7 6.7 8.9 6.1 5.9 6.5 8.5 7.8 3.0 8.0 7.4 19.2 22.2 69.6 26.4 27.0 46.2 47.4 37.2 47.4 25.8 79.8 14.4 3.6 5.4 108.0 13.2 15.6 33.6 12.6 1.8 8.4 22.8 3.0 45.6 20.4 63.6 138.6 259.8 106.2 57.6 117.0 106.2 101.4 78.0 79.2 201.6 118.2 61.8 49.2 169.8 55.2 61.2 103.8 85.2 37.8 28.8 102.0 72.6 79.8 76.2 10 10 10 8 10 10 8 11 10 10 10 9 10 6 8 10 10 10 5 12 10 10 10 10 10 8.3 7.1 6.9 6.6 8.2 7.9 6.6 7.6 8.4 7.4 7.3 6.0 8.0 3.8 5.1 7.0 7.9 8.2 3.2 9.0 7.7 8.2 6.2 7.2 8.2 5.2 5.0 5.0 5.2 5.0 5.0 5.2 5.0 5.3 5.0 5.0 5.0 4.9 5.1 5.1 5.0 5.0 5.0 5.0 5.0 5.0 5.2 5.0 5.0 5.1 0.46′′ × 0.38′′ 0.58′′ × 0.46′′ 1.18′′ × 0.88′′ 0.47′′ × 0.39′′ 0.63′′ × 0.41′′ 0.75′′ × 0.36′′ 0.49′′ × 0.40′′ 0.54′′ × 0.45′′ 0.46′′ × 0.40′′ 1.28′′ × 0.96′′ 1.54′′ × 0.81′′ 0.94′′ × 0.40′′ 0.74′′ × 0.39′′ 1.09′′ × 0.44′′ 1.15′′ × 0.75′′ 1.53′′ × 1.16′′ 0.35′′ × 0.38′′ 0.63′′ × 0.42′′ 0.91′′ × 0.56′′ 0.68′′ × 0.41′′ 0.90′′ × 0.60′′ 0.51′′ × 0.39′′ 1.02′′ × 0.39′′ 0.66′′ × 0.39′′ 0.52′′ × 0.42′′ 1.8 2.8 2.3 1.8 1.7 2.5 2.0 2.0 1.8 2.3 2.4 2.5 1.7 3.4 2.3 3.2 1.7 2.3 3.8 1.9 2.7 1.7 2.5 2.3 2.2 7.2 7.0 7.2 7.2 7.0 7.4 7.2 7.2 7.2 6.8 6.8 7.4 7.0 7.1 7.1 7.4 7.1 7.2 7.1 7.1 7.1 7.2 7.4 7.4 7.2 0.31′′ × 0.26′′ 0.37′′ × 0.29′′ 0.84′′ × 0.63′′ 0.33′′ × 0.28′′ 0.44′′ × 0.31′′ 0.53′′ × 0.26′′ 0.39′′ × 0.27′′ 0.35′′ × 0.28′′ 0.35′′ × 0.29′′ 0.95′′ × 0.72′′ 1.14′′ × 0.59′′ 0.66′′ × 0.27′′ 0.52′′ × 0.28′′ 0.74′′ × 0.30′′ 0.83′′ × 0.62′′ 0.95′′ × 0.71′′ 0.33′′ × 0.27′′ 0.41′′ × 0.29′′ 0.65′′ × 0.44′′ 0.52′′ × 0.31′′ 0.65′′ × 0.40′′ 0.39′′ × 0.28′′ 0.69′′ × 0.26′′ 0.46′′ × 0.26′′ 0.37′′ × 0.29′′ 1.7 2.1 2.1 1.8 1.7 1.9 1.8 2.1 1.7 2.0 2.0 2.1 1.6 2.8 2.2 2.2 1.6 2.2 3.9 2.0 2.6 2.2 2.1 2.1 2.0 Note. — The sources for the photometric centers, distances, and structural parameters are as in Tremou et al. (2018). 49 3.2.2 Data Reduction The data for both cluster frequency bands were separately flagged and calibrated according to standard procedures with either Common Astronomy Software Application (CASA; McMullin et al. 2007) version 4.2.2, or Astronomical Image Processing System (AIPS; Greisen 2003). Before imaging, the reduced visibilities from each observational epoch were stacked to maximize the sensitivity in each baseband. The combined bands were then imaged separately, with minimum fields of view (diameters) of 11′ at 5.0 GHz and 7.5′ at 7.2 GHz. These were chosen to match the full width at half-maximum (FWHM) of the primary beam at the lowest frequency of each baseband (4.0 or 6.0 GHz, respectively). Pixel sizes were set to 0.08′′ at 5.0 GHz and 0.06′′ at 7.2 GHz to adequately sample the synthesized beams of each frequency range. In AIPS, the data were imaged using IMAGR, Briggs weighting with a robust parameter of 1, frequency-independent deconvolution, and facets to account for wide-field effects. With data imaged in CASA/clean, nterms=2 was used to account for non-zero spectral indices of sources in the field. A primary beam response correction was applied to each subband image assuming the average frequency in that subband. The synthesized beam size for each image, as well as the image rms flux density values in 𝜇Jy per beam, are listed in Table 3.2. The median rms values for the low and high frequency basebands across all clusters were 2.3 and 2.1 𝜇Jy per beam, respectively. We used self-calibration on the few clusters for which there was sufficient flux (≳ 5 mJy), typically with a single pass of phase self-calibration with a solution interval of 10 min. The final reduced images for each cluster are hosted as science-ready data products at NRAO. 3.3 Source Finding Procedure & Analysis We do source finding on the individual baseband images using Aegean (Hancock et al. 2012; Hancock et al. 2018) and the associated program BANE. This latter routine creates local background and rms images which are used as input to Aegean. Aegean searches for individual pixels above a threshold to seed a potential source, then grows this source using pixels above a lower threshold. With a goal of having a final catalog of sources of 5𝜎 significance, after experimentation, we settled on a seed threshold of 4.5𝜎 and a grow (“flood") threshold of 3𝜎. The final significance 50 Figure 3.1 GC mass vs. distance for Galactic GCs, showing the selection of the MAVERIC (VLA and ATCA) GC sample with masses ≳ 105𝑀⊙ and distance ≲ 9 kpc, with an extension to massive distant GCs for intermediate mass black hole searches. The VLA sample is shown by the purple circles and the ATCA sample (Tudor et al., in preparation) by the turquoise triangles. Orange squares are the five clusters observed by both the VLA and ATCA. Black points are other Galactic GCs (Baumgardt & Hilker, 2018). For the VLA sample, the cluster distances are listed in Table 3.2 (see Tremou et al. 2018 for a full set of references) and the masses are taken from Baumgardt & Hilker (2018). cut was made after final flux density fitting (see below). As discussed below, we also constructed an experimental deeper catalog of NGC 6304 which had a a seed threshold of 2.5𝜎 and a grow threshold of 2𝜎, which we cut to a final catalog of 3𝜎. Given the modest extent of most of the GCs (median half-light radius 1.3′) and the desire to have spectral information for source classification, in both basebands we restrict our source finding to a radius of 3.7′ around the cluster center. This value is the typical half-width at half maximum 51 of the upper baseband, and is sufficiently large to cover the area within the half-light radii of all but one of the sample GCs (M4: 𝑟ℎ = 4.33′). All detections were visually inspected. The main changes made after this inspection were to remove a few instances of obvious artifacts and to note any extended sources that had been split into multiple detections. These were replaced by a single source positioned at the most central or compact location of the emission. Given the high resolution of our images and the expectation that all cluster sources of interest will be unresolved, we performed the final source fitting in a different manner. The detection catalogs were fed as input to the AIPS task JMFIT, which fits a model of the beam to a small 20 pixel box (1.6′′ for lower baseband; 1.2′′ for upper baseband) around each detection. This fitting gave a flux density and uncertainty and position and uncertainty for each source. Sources were removed if < 5𝜎 after this process. After experimentation, we also removed any sources whose position changed by more than 4 pixels from the initial detection. We then matched the baseband source lists. The final catalog for each GC contains all sources detected at 5𝜎 at either frequency. The formal astrometric uncertainties in source positions are related to the beam FWHM and the signal-to-noise (SNR) of the detection as ∼ FWHM/(2 SNR), where the approximation is due to the typically correlated nature of noise in radio images, among other factors (Condon, 1997). However, calibration uncertainties typically limit the astrometric precision of the VLA to ∼ 10% of the beam FWHM.2 In the absence of additional external tests of the astrometric precision, espescially at the level of ≲ 0.1′′, we adopt this value as a floor. Future tests of the quality of our absolute astrometry would be valuable. 3.3.1 Spectral Index Analysis The radio spectral indices contain important information about the nature of the sources, and some information is available even for those sources without 5𝜎 detections at both frequencies. For such sources, we force fit the location of the significant source at the other frequency using JMFIT. If the resulting fit yields a 3𝜎 detection at a location within 4 pixels of the original location, this is 2https://science.nrao.edu/facilities/vla/docs/manuals/oss/ performance/positional-accuracy 52 retained as a valid detection of the same source at the other frequency. If these conditions are not met, the 3𝜎 upper limit is given instead. For these cases with limits, we also report the exact flux density at the corresponding pixel (in case a reader is interested), but we only use the upper limits for the subsequent analysis in this paper. We modeled spectral indices assuming a power law with the flux density 𝑆𝜈 ∝ 𝜈𝛼. We used a Bayesian Markov Chain Monte Carlo code to fit these values, which self-consistently includes both the uncertainties on the flux densities and the 3𝜎 upper limits, if present. We assumed a flat prior over the range 𝛼 = −3.5 to +1.5. This prior has little effect for brighter sources with measurements at both flux densities but a larger effect for very faint sources, or those with a single detection. In the individual source tables, if there are detections in both bands, we report the median of the posterior as the best point estimate of the spectral index, equivalent to 1𝜎 limits (containing 68.3% of the posterior density around the median). If there is only a detection in a single band, we report a 3𝜎 lower or upper limit on the spectral index. 3.3.2 Final Catalogs Our final catalog is listed in Table A.1 in Appendix A. As a sample presentation of the sources, the final 5.0 GHz and 7.2 GHz images of M2 are shown in Figures 3.2 and 3.3 with the source detection regions overlaid. As a sample of the deeper but more contaminated catalog of 3𝜎 sources, the 3𝜎 sources for NGC 6304 are listed in Table B1 in Appendix B. A small fraction of the sources in Table A.1 are known previously, such as bright millisecond pulsars or luminous X-ray binaries. A comprehensive cross-matching with other catalogs and existing data at other wavelengths is a substantial undertaking that we defer to a future paper. 3.3.3 Potential Sources of Bias There are several sources of bias that can affect the interpretation of our catalogs. First, the faintest sources in our catalog could potentially be affected by “flux boosting": sources pushed above their true flux densities by rare positive noise spikes at the source position. We discuss the effects of flux boosting on our source count analysis in §4, but in general, flux boosting is unlikely to significantly affect 5𝜎 catalogs like the ones in this paper. 53 Figure 3.2 Final image of M2 at 5.0 GHz. The white circle represents the area within our 3.7′ total search radius, and the green and blue circles show the areas enclosed by the cluster core radius and half-light radius of M2. The detected sources at each frequency are indicated in the corresponding image by the orange circles. A related, but separate issue is that of entirely spurious sources. In the highest resolution images at 7.2 GHz there are of order 2 × 106 beams within the central 3.7′, which would imply about 0.5 false detections per cluster if the noise were perfectly Gaussian (the false detection rate at 5.0 GHz is about half this size). Since real noise is correlated it is reasonable to expect a somewhat higher false detection rate, and indeed in some of the clusters there are 5𝜎 sources detected at 7.2 GHz without even a 3𝜎 detection at 5.0 GHz. Sources with such inverted spectra (𝛼 ∼ 1.4) are expected to be rare and hence many or most of these 7.2 GHz-only sources may indeed be spurious. 54 21h33m18.00s24.00s30.00s36.00sRA (J2000)53'00.0"52'00.0"51'00.0"50'00.0"49'00.0"48'00.0"47'00.0"-0°46'00.0"Dec (J2000)M2 5.0 GHz5.02.50.02.55.07.510.012.515.0Flux (uJy/beam) Figure 3.3 Final image of M2 at 7.2 GHz. The white circle represents the area within our 3.7′ total search radius, and the green and blue circles show the areas enclosed by the cluster core radius and half-light radius of M2. The detected sources at each frequency are indicated in the corresponding image by the orange circles. Frequency-dependent variability, due for example to refractive scintillation (e.g., Hancock et al. 2019), could also be relevant for a subset of these sources. All 5𝜎 sources are retained in the catalogs but they should be interpreted with these caveats. We expect few spurious sources within the smaller cluster cores, especially at 5.0 GHz. A separate source of bias is “resolution bias": the loss of diffuse flux from sources more extended than the synthesized beam. This can result in non-detection of sources whose total flux would place them above the nominal flux density detection limit, or a bias to a lower flux even if 55 21h33m18.00s24.00s30.00s36.00sRA (J2000)53'00.0"52'00.0"51'00.0"50'00.0"49'00.0"48'00.0"47'00.0"-0°46'00.0"Dec (J2000)M2 7.2 GHz02468101214Flux (uJy/beam) detected. While we expect most of the cluster sources to be unresolved, this is not the case for field or background sources. Previous work on radio source counts have estimated the effects of resolution bias, which has the strongest impact on sources below 100 𝜇Jy, but with a substantial uncertainty both in the size of the effect and how it depends on frequency (Windhorst et al., 1990, 1993; Huynh et al., 2020). This bias may affect the number counts around these flux densities by up to ∼ 25%, depending on the assumptions made about the source size distribution (Windhorst et al., 1984, 1993; Fomalont et al., 1991). We also note that we did not attempt to measure the diffuse flux from a small number of extended bright (mostly >> 1 mJy) sources. The listed flux densities for these sources solely reflect a point source fit to the core. All sources that appeared to be extended in our imaging, whether bright or not, are marked as such in the catalog. 3.4 Source Counts A number of radio continuum sources discovered in our survey have already been confirmed as cluster members through optical spectroscopy (e.g., Shishkovsky et al. 2018), with compelling multi-wavelength evidence for others (e.g., Chomiuk et al. 2013). Such work will eventually be extended to our entire survey in a systematic manner. In the meantime, we consider the radio source counts in the clusters by themselves. Historically, studies of radio source counts were undertaken with the goal of understanding the evolution of the universe, as their distribution was among the earliest evidence against the existence of uniform cosmic evolution (Ryle & Scheuer, 1955; Scheuer, 1957; Ryle & Neville, 1962). The suggested sources that dominate the differential counts are radio-loud AGN, galaxies with active star formation, and radio-quiet AGN (e.g., Condon 1984), with each class contributing more or less as a function of flux density. Bright sources are mostly AGN, but below ∼ 1 mJy extragalactic source counts exhibit some flattening in the the slope of the Euclidian-normalized differential counts. The origin of this flattening is uncertain, and may be due to radio-quiet AGN, star forming galaxies, or a combination thereof (Padovani et al., 2007; Huynh et al., 2008; Smolčić et al., 2008). Known compact Galactic radio sources at 1.4 GHz (the most common survey frequency) are primarily composed of H II regions and nominally confined near the Galactic plane, with latitudes 56 |𝑏| < 5° (e.g., Becker et al. 1990; Griffith & Wright 1993; Giveon et al. 2005). In a 5.0 GHz VLA survey of Galactic plane radio sources, Purcell et al. (2013) found that bright resolved H II regions overwhelmingly accounted for the excess of radio sources around |𝑏| = 0°, yet only comprised ∼ 25% of their 7𝜎 sample (see also Hoare et al. 2012). The H II regions were distributed very close to the Galactic plane with a scale height of 0.47°. Their unresolved sources dominated the fainter population, and were distributed evenly over their Galactic latitude coverage (|𝑏| < 1°), suggesting that the faint compact sources in their sample were predominantly background sources. However, the flux density limits of the Purcell et al. (2013) study were a factor of ∼ 100 brighter than the VLA GCs in MAVERIC, so it is quite possible our data are probing a new, fainter regime where the density of Galactic radio continuum sources is yet unknown. We can make a separate argument that Galactic plane sources are unlikely to substantially affect our study: none of our sample GCs are within 1.5° of the Galactic plane, and only four (NGC 6440, NGC 6544, NGC 6712, NGC 6760) are within 5° of the plane. These four GCs have an average of 18 sources detected at 5𝜎 at 5.0 GHz in the radial range 2.5–3.7′ that we take as the “background" region. The other VLA GCs with imaging of comparable sensitivity have an average of 18.6 sources per GC in this region. Hence, from our data themselves there is no evidence of a population of sources that is more common at low Galactic latitude, as would be expected for essentially any Galactic population except for one within tens of pc of the Sun. The serendipitous discovery of a 0.2–0.3 mJy Galactic radio continuum source in the foreground (distance ∼ 2.2 kpc) of the GC M15 (𝑏 = −27) using very long baseline interferometry (Kirsten et al., 2014; Tetarenko et al., 2016b) shows that such sources do exist at some surface density, but evidently not a level sufficient to measurably affect our results. The main goal of the source counts in this paper is to allow an estimate, on a cluster-by-cluster basis, of the evidence for a population of radio sources associated with the GC itself. However, we also check our source counts against previous work and models of the faint extragalactic population. 3.4.1 Calculation of Radio Source Counts We present our radio source counts in the typical differential form normalized to a static 57 Euclidean universe, given by: 𝑆𝜈 𝑑𝑆 (Jy1.5 Ω−1). Since each image has a different depth, and within each image the sensitivity falls off with radius, the catalogs cannot be directly used to 2.5 𝑑𝑁 calculate source counts. Instead, for each cluster, we sort the sources by flux density and radius, and use the aforementioned background and rms images from BANE to create sensitivity maps. We use these to calculate the area of the image in which a source could have been detected at 5𝜎. These corrected counts, added together for all clusters, make up the full differential source counts for the survey. The total survey area is ∼ 0.4 deg2, with a median 5𝜎 depth of ∼ 11𝜇Jy per beam, making it among the deepest C band surveys with this angular coverage. These radio source counts are shown in Table 3.3 and plotted in Figures 3.4 and 3.5. As expected, we observe a modest flattening in the Euclidian-normalized differential source counts below 1 mJy, and perhaps an upturn in the faintest flux bins. Fainter sources dominate the total counts: 1254 of the total 1267 5𝜎 sources are below 700𝜇Jy. For comparison, we also plot the source counts from several other deep surveys. At the lower frequency, Huynh et al. (2015) present source counts from a deep ATCA survey, reaching 43𝜇Jy (5𝜎) over ∼ 0.34 deg2 in the 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 Deep Field South. We scale these 5.5 GHz counts to 5.0 GHz using the median spectral index of their sample (𝛼 = −0.58). Heywood et al. (2013) describe their radio catalog derived from deep VLA observations of the William Herschel Deep Field, reaching a sensitivity of 2.5𝜇Jy. Their 8.4 GHz source counts are included with the upper band counts, and were scaled to 7.2 GHz using the typical extragalactic spectral index 𝛼 = –0.7. We also include the older literature compilation by De Zotti et al. (2010), scaled from 4.8 GHz to 5.0 GHz and 8.4 GHz to 7.2 GHz assuming 𝛼 = –0.7. Finally, we include the simulations of Wilman et al. (2008), which were derived semi-empirically using existing radio luminosity functions extrapolated down to nanoJy levels. These values, presented at 4.86 GHz, are scaled to both 5.0 GHz and 7.2 GHz, again using 𝛼 = –0.7. Overall, given the uncertainties in our new measurements and the scatter among previous source count estimates, our differential source counts are generally consistent with previous work, at least down to ∼ 100𝜇Jy. We note that somewhat lower counts for brighter sources might be expected 58 Table 3.3. Source Counts at 5.0 and 7.2 GHz a 𝑆𝜈 (𝜇Jy) lim. (low)b (𝜇Jy) lim. (high)c (𝜇Jy) d 𝑁5.0 e 𝑁7.2 𝜈 𝑑𝑁5.0/𝑑𝑆f 𝑆2.5 (Jy1.5 sr−1) 𝜈 𝑑𝑁7.2/𝑑𝑆g 𝑆2.5 (Jy1.5 sr−1) 9.15 12.3 16.5 22.2 29.8 40 53.8 72.3 97.1 130 175 235 316 425 571 767 1030 1380 1860 2500 3350 4510 6050 8130 10900 14700 19700 7.90 10.61 14.25 19.14 25.72 34.55 46.42 62.36 83.77 112.53 151.18 203.09 272.83 366.52 492.39 661.47 888.62 1193.8 1603.7 2154.4 2894.3 3888.2 5223.4 7017.0 9426.7 12663.8 17012.5 10.61 14.25 19.14 25.72 34.55 46.42 62.36 83.77 112.53 151.18 203.09 272.83 366.52 492.39 661.47 888.62 1193.8 1603.7 2154.4 2894.3 3888.2 5223.4 7017.0 9426.7 12663.8 17012.5 22854.6 35 162 211 157 96 67 33 33 21 19 10 6 8 4 3 2 3 1 1 3 0 2 0 0 0 0 1 32 127 159 149 94 56 28 18 18 13 6 8 3 3 4 0 3 3 0 1 2 0 0 0 0 1 0 0.41+0.08 −0.07 0.67+0.06 −0.05 0.66+0.05 −0.05 0.62+0.05 −0.05 0.58+0.07 −0.06 0.63+0.09 −0.08 0.48+0.10 −0.08 0.75+0.16 −0.13 0.74+0.20 −0.16 1.04+0.30 −0.24 0.86+0.37 −0.27 0.80+0.48 −0.32 1.67+0.82 −0.58 1.30+1.02 −0.62 1.52+1.47 −0.82 1.58+2.07 −1.02 3.68+3.57 −2.00 1.90+4.34 −1.57 2.98+6.81 −2.47 13.92+13.50 −7.55 — 22.40+29.43 −14.43 — — — — 102.50+234.44 −84.92 0.52+0.11 −0.09 0.80+0.08 −0.07 0.74+0.06 −0.06 0.74+0.07 −0.06 0.60+0.07 −0.06 0.53+0.08 −0.07 0.41+0.09 −0.08 0.41+0.12 −0.10 0.64+0.19 −0.15 0.71+0.26 −0.20 0.51+0.31 −0.20 1.07+0.53 −0.37 0.62+0.61 −0.34 0.97+0.94 −0.53 2.03+1.60 −0.97 — 3.68+3.57 −2.00 5.69+5.52 −3.09 — 4.64+10.62 −3.85 14.37+18.87 −9.25 — — — — 66.21+151.44 −54.85 — aCharacteristic flux value of the bin (geometric mean). bLower limit of bin. cUpper limit of bin. dRaw 5.0 GHz counts. eRaw 7.2 GHz counts. fEuclidian-normalized 5.0 GHz differential source counts. gEuclidian-normalized 7.2 GHz differential source counts. 59 Figure 3.4 Differential radio source counts for our sample at 5.0 GHz, normalized for the standard 𝑆2.5 Euclidian term (yellow diamonds). The other points represent different literature measure- ments, as described in the text. Our measurements are in general agreement with published values but slightly lower in the flux density range ∼ 50 − 200 𝜇Jy, likely due to us resolving out diffuse flux at our higher resolution. from our survey, given our high resolution and limited treatment of extended emission. Fainter than 100𝜇Jy, our source counts have much smaller Poissonian uncertainties than the comparison studies. The differential source counts are flat down to the ∼ 11𝜇Jy 5𝜎 survey limit at 5.0 GHz and show a small upturn at 7.2 GHz. Since most sources are not expected to have inverted radio spectra, we attribute this 7.2 GHz upturn primarily to spurious sources rather than real sources, but this point should be revisited in the context of future follow-up and other deep surveys. 60 105104103102S (Jy)101100101102103S2.5dN/dS (Jy1.5sr1)MAVERIC 5.0 GHzde Zotti et al. 2010Huynh et al. 2015Wilman et al. 2008 Figure 3.5 Differential radio source counts for our sample at 7.2 GHz, normalized for the standard 𝑆2.5 Euclidian term (yellow diamonds). The other points represent different literature measure- ments, as described in the text. Our measurements are in general agreement with published values but slightly lower in the flux density range ∼ 50 − 200 𝜇Jy, likely due to us resolving out diffuse flux at our higher resolution. 3.4.2 Cluster Radio Source Excess To determine whether individual GCs show an excess of radio sources, we choose a somewhat conservative approach with a minimum set of assumptions. Since most sources have higher flux densities at 5.0 GHz than 7.2 GHz, we only carry out the following analysis at 5.0 GHz. Because of cosmic variance, it is better to use a local estimate of the background, rather than the global source counts discussed above. After examination of the radial distribution of sources in each cluster, we found that radii beyond 2.5′ are strongly dominated by non-cluster sources in most or all GCs. Hence we chose an annulus of 2.5–3.7′ as a clean, relatively large area in which a 61 105104103102S (Jy)101100101102103S2.5dN/dS (Jy1.5sr1)MAVERIC 7.2 GHzde Zotti et al. 2010Heywood et al. 2012Wilman et al. 2008 local background can be estimated. For each cluster, we estimated the areal density of background sources using a sensitivity analysis similar to that as for the source counts. We took two bracketing approaches for defining a likely set of radio sources that could be associated with the GC: the sources within the core radius or within the half-light radius. The former is guided by the observed central mass segregation of X-ray populations within GCs (e.g., Grindlay et al. 1984; Verbunt & Hut 1987; Grindlay et al. 2002; Verbunt & Lewin 2006). Cluster X-ray sources are mostly binary stars or their progeny: the relatively massive (and hence centrally concentrated) objects one would expect to be observable as radio continuum sources. If the radio sources instead follow the cluster stars—an unlikely limiting case since nearly all single cluster stars are undetectable in the radio with current facilities (e.g., Maccarone et al. 2012)—then half would be expected to be contained within the half-light radius. To determine the “excess" number of sources within the core or half-light radius of each GC, we first calculated the expected number of background sources by scaling the sensitivity-corrected background density to the comparison GC area. We then subtracted this from the sensitivity- corrected observed number of sources in the core or half-light radius. This latter correction had little effect on the results, with two exceptions discussed below. Uncertainties in all quantities were determined by bootstrapping. For the few GCs with half-light radii larger than 2.5′ (M4, M22, and M55), we use 2.5′ as the boundary between the background and the inner area we take to be associated with the GC. While we cannot be entirely sure that there are zero sources associated with the GC outside 2.5′ in these GCs, they have an average background source density comparable to that of the other clusters, suggesting this assumption is reasonable for our first-order analysis. In our final catalog, there are 54 sources detected at 5.0 GHz within the core radius of a cluster, 201 within the half-light radius (this includes the 54 sources with the core radius), and 435 in the 2.5–3.7′ background region. These core and half-light excesses are shown in Figures 3.6 and 3.7 and listed in Table 3.4. The points represent median values of the boostrapped samples and the error bars standard 1𝜎 uncertainties. 62 ID M2 M3 M4 M5 M9 M10 M12 M13 M14 M19 M22 M28 M30 M54 M55 M62 M92 M107 NGC 6304 NGC 6325 NGC 6440 NGC 6539 NGC 6544 NGC 6712 NGC 6760 Table 3.4. 5.0 GHz Radio Source Excesses Excess (𝑟 < 𝑟𝑐) −0.27 ± 0.07 −0.24 ± 0.06 5.37 ± 2.57 −0.53 ± 0.12 −0.09 ± 1.02 −1.34 ± 0.36 −1.38 ± 1.14 1.31 ± 1.38 1.48 ± 2.03 0.64 ± 0.97 6.05 ± 3.65 1.73 ± 1.40 −0.016 ± 0.003 −0.011 ± 0.003 4.50 ± 3.96 0.89 ± 0.95 −0.29 ± 0.05 0.68 ± 1.47 −0.05 ± 0.02 −0.002 ± 0.001 0.94 ± 1.02 3.78 ± 1.96 −0.007 ± 0.001 0.49 ± 1.42 −0.46 ± 0.10 Excess (𝑟 < 𝑟ℎ) 2.77 ± 2.60 2.73 ± 4.26 29.47 ± 10.16 −4.29 ± 3.04 −2.69 ± 1.87 2.28 ± 4.25 −2.36 ± 3.87 3.54 ± 3.22 7.34 ± 3.86 2.95 ± 2.81 −0.97 ± 6.92 −7.99 ± 5.09 −1.96 ± 2.09 −0.03 ± 1.02 6.20 ± 6.36 2.09 ± 2.12 −0.61 ± 2.19 1.27 ± 4.48 −1.62 ± 1.25 −0.20 ± 1.07 1.31 ± 1.43 4.36 ± 3.28 20.14 ± 10.22 −2.47 ± 1.71 −0.46 ± 2.96 Note. — These are the sensitivity-corrected “excesses" of 5.0 GHz radio sources within the core or half-light radius of the GC compared to the scaled local density of background sources. 63 The behaviors differ somewhat between the core and half-light samples. About 1/3 of the GCs show some evidence for an excess within a core radius, including four clusters that show excesses of at least 2 sources. One of these is M22, the first cluster in which our collaboration found candidate quiescent stellar-mass black holes (Strader et al., 2012). Three of these four GCs also have relatively large core radii. About half the clusters show no apparent excess (see Figure 3.6), in many cases due to their very small core radii. The combined overall significance of the core radius excess in this conservative bootstrapped analysis is about 4𝜎. The half-light radius excesses generally track those of the core radius, though in some cases with larger uncertainties or more extreme values. The two GCs with the largest half-light excesses are M4 and NGC 6544. The values for both of these GCs are boosted by the sensitivity correction, since there are a significant number of sources just above 5𝜎 within the half-light radius. Each cluster would have a noticeable (but less extreme) excess were no correction applied. 3.4.3 Interpreting the Radio Counts It is worth emphasizing that some radio sources have been individually established as cluster members, even in clusters where there is not a statistically significant excess of sources. For example, M10 contains a radio continuum source (M10-VLA1) which is slightly too faint to appear in a 5𝜎 catalog for this cluster, but which optical spectroscopy of the counterpart proves is a cluster member (Shishkovsky et al., 2018). Other clusters in the sample host radio pulsars, which are certainly radio continuum sources, but mostly too faint to be detectable at 5.0 GHz. The two clusters with the largest core excesses are M4 and M22, two of the nearest objects in our sample. It is clear that our survey is sensitivity limited and that even the VLA can only reveal the brighter part of the luminosity distribution of radio continuum sources in GCs. Hence our excess measurements represent conservative lower limits to the radio source population. A complete analysis of the luminosity function of radio sources in the MAVERIC sample, including both VLA and ATCA data, will occur in a future paper. Since one of the central goals of MAVERIC is to constrain the population of stellar-mass black holes in GCs, we note that twelve of our sample GCs also appear in the study of Weatherford 64 Figure 3.6 “Excess" of 5.0 GHz radio sources within the core radius of each GC in our sample, compared to the local density of background sources. The GCs are sorted in descending order from greatest to least excess. 1𝜎 uncertainties inferred from bootstrapping are also plotted. Excess values of 0, without apparent uncertainties, are GCs with very small core radii. et al. (2019), who combine models of how black hole populations affect cluster structure and mass segregation with observed data for a sample of Galactic GCs, theoretically predicting the number of black holes in each cluster. Of the twelve overlapping GCs, the two with the largest core excesses of radio sources, M22 and M55, are both in the top quartile of predicted black hole numbers. On the other hand, we see only mild evidence for a core radio source excess in M13, which has the largest predicted black hole population in the Weatherford et al. (2019) sample. Since most black holes are unlikely to be in mass-transferring binaries and hence observable as radio continuum sources, these comparisons are not straightforward to interpret. It would be valuable to obtain new, deep radio data for some of the GCs not in our current VLA sample that are suggested to host large black hole populations. 65 M22M4M55N6539M28M14M13N6440M62M107M19N6712N6325N6544M54M30N6304M9M3M2M92N6760M5M10M12−20246810Excessnumberofsources Figure 3.7 “Excess" of 5.0 GHz radio sources within the half-light radius of each GC in our sample, compared to the local density of background sources. The GCs are sorted in descending order from greatest to least excess. 1𝜎 uncertainties inferred from bootstrapping are also plotted. Excess values of 0, without apparent uncertainties, are GCs with very small half-light radii. 3.4.4 Spectral Index Distribution An independent comparison of GC vs. background sources is possible by considering the radio continuum spectral indices of the sources. Background AGN can have a range of spectral indices, depending on their orientation, size, and accretion state; those with large-scale jets typically show steeper 𝛼 < −0.5 spectra, while emission from the compact core of the AGN has a flatter spectrum (𝛼 ∼ 0) due to partially self-absorbed synchrotron radiation. Star forming galaxies typically have steeper spectra around 𝛼 ∼ −0.8 arising from optically thin synchrotron radiation associated with supernovae (Condon, 1992; De Zotti et al., 2010; Huynh et al., 2015; Tisanić et al., 2019). The median spectral index observed in different surveys varies depending on the depth, selection method, and precise frequencies used, but is typically around 𝛼 ∼ –0.6 to –0.7, with a standard deviation of ∼ 0.4–0.5 (e.g., Huynh et al. 2015; Smolčić et al. 2017). 66 M4N6544M14M55N6539M13M19M2M3M10M62N6440M107M54N6325N6760M92M22N6304M30M12N6712M9M5M28−10010203040Excessnumberofsources In Figures 3.8 and 3.9 we compare the spectral index distributions of sources within 1 core radius and outside 2.5′, representing “clean" GC and background populations, respectively. Only those sources with spectral index uncertainties < 0.5 are plotted, and the distributions are normalized for comparison. We find that the 120 background sources that meet these criteria have a broad distribution, as expected, with a median around 𝛼 =–0.9. By contrast, the 13 sources within the core radius have a bimodal distribution, with a very steep population with 𝛼 mostly in the range –1 to –2, and a narrower peak centered around 𝛼 ∼ 0 where there are few background sources. We tentatively identify the first population as millisecond pulsars, which show steep spectra (e.g., Bates et al. 2013; Zhao et al. 2020). The second, narrower peak is consistent with a population of binaries that show flat spectra, such as quiescent stellar-mass black holes, transitional millisecond pulsars, or even active binaries (see discussion in Shishkovsky et al. 2018; Bahramian et al. 2018; Miller-Jones et al. 2015; Chomiuk et al. 2013; Strader et al. 2012). For example, one of these sources is M62-VLA1, which has been established as a low-mass X-ray binary in M62 (Chomiuk et al., 2013), though the nature of the accretor has yet to be definitely determined. The formal statistical support for a difference between the core and background populations is not well-established with these samples: an Anderson-Darling test finds 𝑝 = 0.11, which is not surprising given that the the number of sources within the core radii with well-measured spectral indices is relatively small. Hence the visually suggestive difference between the distribution of spectral indices for GC and background sources needs to be bolstered by additional future work. The spectral index distribution of the 61 sources within the half-light radius (but outside the core) is more similar to the distribution of background sources (Figure 3.9), suggesting that many (or even most) of the sources outside the core but within the half-light radius are indeed background sources. A similar Anderson-Darling test between the half-light radius and background samples gives 𝑝 = 0.68. Follow-up observations will be necessary to identify and classify the subset of these sources associated with the cluster rather than the background. 67 Figure 3.8 Normalized distribution of spectral indices for sources inside the core radius vs. sources outside of 2.5′, our estimated background (yellow). 3.5 Conclusions Here we have presented the initial results of our VLA radio continuum survey of Milky Way GCs. We observed 25 relatively nearby and massive clusters for ∼ 10 hrs each with the VLA at typical frequencies of 5.0 GHz and 7.2 GHz. These data represent the first deep high-resolution radio continuum survey of GCs as well as a sensitive C band ∼ 0.4 deg2 extragalactic survey. This paper presents radio source catalogs for each GC; in most cases these catalogs will represent a mixture of cluster and background sources. Through both source counts and spectral indices we found strong evidence for a population of radio sources associated with GCs. It is likely that a subset of these sources are steep-spectrum millisecond pulsars, while others represent compact or other kinds of binaries whose classification is not yet clear. Within the core radii, a conservative bootstrapped estimate suggests that just below half (23/54) 68 −3−2−101α0.000.050.100.150.200.25n>2.5’<1Rc Figure 3.9 Normalized distribution of spectral indices for sources between the half-light radius and the core radius vs. sources outside of 2.5′, our estimated background (yellow). of the 5.0 GHz sources are likely associated with the GCs. The corresponding estimate for the half-light radii is about 30% (61/201), and the fraction is likely lower at larger radii. These catalogs represent an important but incomplete step in our efforts to understand the radio continuum source populations in GCs. Future papers from our group will use the full range of multi- wavelength information, including X-ray observations and optical photometry and spectroscopy, to determine and refine classifications of individual sources. New VLA data have recently been obtained for 7 additional GCs not discussed here, and an analysis of these data, as well as the ATCA part of the MAVERIC sample, will allow more secure conclusions about the properties and classification of cluster radio continuum sources. In addition, despite our deep VLA images with ∼ 2–3 𝜇Jy noise levels, we are still strongly limited by sensitivity: half of the VLA sources within the core radii have 5.0 GHz flux densities < 15 𝜇Jy. Hence, surveys at these frequencies with future telescopes such as the Next Generation VLA (Murphy et al., 2018) 69 −3−2−101α0.000.050.100.150.200.25n>2.5’Rc-1.0) radio spectral index (𝛼), and radio sources with a match (<1′′ away) in the MAVERIC X-ray source catalog (Bahramian et al., 2020). We justify these choices in the following text. Because of mass segregation, the most massive stars in the globular cluster system migrate towards the center of the cluster over time (Verbunt & Meylan, 1988). Therefore we expect to find 71 compact objects, in particular BH candidates, in the cores of globular clusters, because they are much heavier than the typical ∼ 0.5M⊙ stars in the cluster. The choice of constraining the sample to sources with a radio spectral index 𝛼 >-1.0 is two-fold. Known stellar-mass BH binaries in quiescence typically have a flat 𝛼 ≈ 0 radio spectral index due to partially self-absorbed synchrotron radiation emanating from the radio jets of the BH (Blandford & Königl, 1979; Hjellming & Johnston, 1988). This constraint would also keep many millisecond pulsars (MSPs) from being included the BH candidate sample. MSPs are abundant in GCs (Camilo & Rasio, 2005; Ransom, 2008) but on average have a steeper negative spectral index (𝛼 ≈ –1.4 to –2; Bates et al. (2013)). The final criteria of a radio/X-ray source match is implemented due to the importance of observed X-ray emission in accreting BH binary systems, via the complementary MAVERIC Chandra catalog of faint X-ray sources in 38 Galactic GCs (Bahramian et al., 2020). Bahramian et al. (2020) details the construction of the X-ray catalog, which includes spectral analysis of each source, probability of being a foreground/background source, and characterization of variability where possible. The absolute astrometric accuracy of Chandra is rarely better than about 1′′ except for when clear matches can be made at radio or optical wavelengths. Hence an X-ray match to within 1′′ of a radio source is typically good enough to be a likely true astrometric match, except in the densest few clusters with the highest number of X-ray and/or radio sources, in which case more care needs to be taken. In addition, while we recognize the possibility that some true accreting BHs might only have faint radio emission and no detected X-ray emission, it is hard to separate these sources from background active galactic nuclei, so we focus on objects with detections in both wavelengths here. 4.3 Candidate sources There are 9 radio sources in total from the overall survey that meet our selection criteria: 7 of these come from the VLA survey which has been the main focus of my thesis (4.1). Another two were originally observed in the southern component of the MAVERIC survey that uses the Australia Telescope Compact Array (ATCA), as described in Tudor et al. (2022), but were characterized using 72 Table 4.1. MAVERIC selected black hole candidates ID R.A. (h:m:s) Dec. (◦:′:′′) 𝑆5 (𝜇Jy) 𝑆7 (𝜇Jy) 𝛼 M4-VLA31 M22-VLA22 M28-VLA31 M55-VLA32 M55-VLA34 M62-VLA1 N6539-VLA24 Ter5-VLA31 Ter5-VLA42 0.37+0.59 12.2±2.2 −0.77 19.5±2.1 −0.81+0.51 −0.51 16:23:31.44 18:36:24.85 18:24:32.18 19:39:59.57 19:40:00.22 17:01:13.21 –30:06:50.63 18:04:49.72 –07:35:26.32 -24:46:43.87 17:48:05.02 -24:46:47.66 17:48:05.23 9.7±2.7 –26:30:57.90 –23:55:14.95 25.0±2.7 –24:52:14.77 14.5±2.6 <6.3±3.1 < 0.2 –30:57:30.98 12.4±2.4 <6.8±1.6 < 0.9 0.21+0.67 13.0±2.2 –30:57:39.94 11.7±2.4 −0.78 18.9±2.3 −0.40+0.57 22.4±3.7 −0.53 0.51+0.53 12.7±2.4 9.6±1.9 −0.76 −0.2±0.02 14±4 32±3 – – – VLA data from MAVERIC. An overview of their observed properties is given in Table 4.1. 4.3.1 M4-VLA31 M4-VLA31 was detected by the MAVERIC source finding algorithm above the 5𝜎 significance threshold at 7.0 GHz, and subsequently detected at lower significance at the same position in the 5.0 GHz radio image (Figure 4.2). M4-VLA31 is located at the coordinates 16:23:31.448 ±0.08′′, -26:30:57.90 ±0.07′′. It is near the edge of the cluster core, 1′ from the center of M4. The radio flux density was measured as 𝑆5=9.7±2.7𝜇Jy at 5.0 GHz and 𝑆7=12.2±2.2𝜇Jy at 7.0 GHz, which correspond to a slightly inverted radio spectral index of 𝛼=0.37+0.59 −0.77 (4.1). We calculate the radio luminosity at 5.0 GHz to be 𝐿 𝑅 = 2.81 × 1026 erg s−1. The MAVERIC GOOSE catalog contains a Chandra X-ray source 0.405′′ away from the radio position of M4-VLA31, which is a high-probability astrometric match to the radio source. The GOOSE coordinates of source CXOU 162331.46-263057.9 are 245.881159°, -26.516087°±0.0530′′ (16:23:478, -26:30:57.91). Its X-ray spectrum is best fit using using a power-law, with the resultant 1-10keV unabsorbed flux given as 𝐹1−10 = 7.943 × 10−15 erg s−1 cm−2. From this flux we derive the 1-10keV X-ray luminosity: 𝐿 𝑋 = 4.6 × 1030 erg s−1. The power-law fit photon index is given in the GOOSE catalog as Γ = 2.52 ± 0.43. On the radio-X-ray correlation for accreting compact 73 Figure 4.1 The radio/X-ray correlation for accreting compact objects, showing the 10 black hole candidates with filled cross sign from MAVERIC survey using VLA and ATCA radio data and Chandra X-ray. The dark green circles show known quiescent black holes in the field (Miller-Jones et al., 2011; Gallo et al., 2012; Ratti et al., 2012; Corbel et al., 2013; Rushton et al., 2016; Plotkin et al., 2017). The dotted black line shows the best-fitting 𝐿 𝑅–𝐿 𝑋 correlation for black holes from Gallo et al. (2014). Purple circles are radio-selected black hole candidates, (Strader et al., 2012; Chomiuk et al., 2013; Miller-Jones et al., 2015; Tetarenko et al., 2016b; Bahramian et al., 2017b). The light green triangles are transitional millisecond pulsars (Hill et al., 2011; Papitto et al., 2013; Deller et al., 2015; Bogdanov et al., 2018). Blue squares are NSs in the hard state, and pink stars are accretion-powered millisecond X-ray pulsars (Migliari & Fender, 2006; Tudor et al., 2017). The orange diamonds are the bright CVs AE Aqr (𝐿 𝑋 = 5.0 × 1030 erg s−1), SS Cyg (in outburst; 𝐿 𝑋 = 1.4 × 1032 erg s−1; Russell et al. (2016)), and white dwarf “pulsar" AR Sco (𝐿 𝑋 = 2.9 × 1030 erg s−1; Marsh et al. (2016)). Figure adapted from Bahramian et al. (2018)). 74 Figure 4.2 VLA images of 5.0 GHz (left) and 7.4 GHz (right) show a 10′′ x 10′′ field of view centered at M4-VLA31 (white circle). The flux density is 9.7±2.7𝜇Jy at 5.0 GHz and 12.2±2.2𝜇Jy at 7.0 GHz. The synthesized beam is plotted on the left corner of each radio map with grey color. objects (4.1) M4-VLA31 lies toward the lower-luminosity end of the figure, but almost directly on the black hole correlation line. This X-ray source was first designated as CX8 in a Chandra X-ray survey of M4 and matched to a known variable optical counterpart and classified as an active binary (Kaluzny et al., 1997; Mochejska et al., 2002; Bassa et al., 2004). Kaluzny et al. (2013) finds that the optical source is 0.1 magnitudes redder and 1 magnitudes brighter than the M4 main sequence, and classifies it as a red straggler. They find the luminosity varies with modulated period of P=0.7785087, but note that the average luminosity also varies by season (Kaluzny et al., 2013). A light curve of the source shows optical flaring, leading to their classification of the source as a chromospherically active binary (Kaluzny et al., 2013). In this interpretation, the radio emission would result from a chromospheric process, and would not indicate accretion. Preliminary optical spectroscopy of this source shows a low semi-amplitude (J. Strader, private communication) and hence supports the interpretation of this source as an active binary rather than a black hole binary. 4.3.2 M22-VLA22 M22-VLA22 was detected at >5𝜎 significance in both the 5.0GHz and 7.0GHz radio images 75 of M22 (4.3). Its position was measured at 18:36:24.859 ±0.10′′, -23:55:14.95 ±0.09′′, 0.99′ from the center of M22. The radio flux density is 𝑆5=25.0±2.7𝜇Jy at 5.0 GHz and 𝑆7=19.5±2.1𝜇Jy at 7.0 GHz (4.1). The calculated radio spectral index is 𝛼=−0.81+0.51 −0.51 . The 5.0GHz radio luminosity is 𝐿 𝑅 = 1.53 × 1027 erg s−1. There is a Chandra X-ray source coincident with M22-VLA22 in the MAVERIC GOOSE catalog, CXOU 183624.84-235514.4. The GOOSE coordinates of this source are 279.103536°, -23.920675°±0.024′′ (18:36:24.849, -23:55:14.43), 0.539′′ away from the radio position of M22- VLA22, and consistent with an astrometric match. The 1-10keV unabsorbed X-ray Flux is 𝐹1−10 = 6.9 × 10−14 erg s−1 cm−2 when the spectrum is fit by a power-law. The X-ray luminosity over 1-10keV is calculated as 𝐿 𝑋 = 8.5 × 1031 erg s−1, and the photon index is given to be Γ = 1.23+0.19 −0.18. In 4.1 M22-VLA22 sits almost directly on the radio-X-ray black hole correlation. The X-ray counterpart to M22-VLA22 has been included in earlier Chandra catalogs as well as X-ray source catalogs created by observations done with XMM-Newton (Wang et al., 2016; Tranin et al., 2022; Evans et al., 2010). However, there have been no published attempts to characterize the nature of the X-ray source thus far. At optical wavelengths, M22-VLA22 has a close counterpart in the Hubble Space Telescope photometric catalogs of the HST UV Globular Cluster Survey (HUGS) (Sarajedini et al., 2007; Piotto et al., 2015; Nardiello et al., 2018). The optical source is 0.13′′ from the radio position of M22-VLA22 (4.4), and has measured magnitudes in the following filters: F275W=19.6, F336W=18.6, F438W=18.6, F606W=17.5, F814W=16.7. A color-magnitude diagram using the HUGS catalog for M22 is shown in 4.5, with the M22-VLA22 optical counterpart shown in blue. It is clearly on the main sequence of M55, right at or just below the turn-off to the sub-giant branch. This confirms that the optical counterpart is a member of the cluster, and of spectral type often found in LMXBs. It does not clearly have a UV excess, so there is no evidence for a bright accretion disk, though one would not necessarily be visible at this X-ray luminosity. Optical spectroscopy is needed to further clarify the nature of this candidate. 4.3.3 M28-VLA31 M28-VLA31 was detected at >5𝜎 significance in the 5.0 GHz radio image of M28 (Fig. 76 Figure 4.3 VLA images of 5.0 GHz (left) and 7.4 GHz (right) show a 10′′ x 10′′ field of view centered at M22-VLA22 (white circle). The flux density is 25±2.7𝜇Jy at 5.0 GHz and an upper limit of 19.5±2.1𝜇Jy at 7.4 GHz. The synthesized beam is plotted on the left corner of each radio map with grey color. Figure 4.4 Hubble Space Telescope image of M22 in the F275W filter. The radio position of M22-VLA22 is denoted by the red circle, and its optical counterpart can be clearly seen at the same position. 77 Figure 4.5 A F606W vs. F275W-F606W color-magnitude diagram of the stars in M22 from the HUGS catalog. The optical counterpart is shown by the blue circle, and the other stars in the M22 field are the green diamonds. 78 4.6), but not detected at all at 7.0 GHz. Its position was measured as 18:24:32.188 ±0.06′′, - 24:52:14.77 ±0.09′′, 0.13′ from the center of M28, within the cluster core. The radio flux density is 𝑆5=14.5±2.6𝜇Jy at 5.0 GHz with an upper limit of 𝑆7 < 6.3±3.1𝜇Jy at 7.0 GHz (Table 4.1). These data constrained the radio spectral index to 𝛼 < 0.2. The 5.0 GHz radio luminosity is 𝐿 𝑅 = 2.62 × 1027 erg s−1. M28-VLA31 is close match (separation = 0.05′′) with a Chandra X-ray source in the MAVERIC GOOSE catalog, CXOU 182432.18-245214.8. The GOOSE coordinates of this source are 276.134119°, -24.870783°±0.102′′ (18:24:32.189, -24:52:14.82). The 1-10 keV unabsorbed X-ray Flux is 𝐹1−10 = 5.0 × 10−16 erg s−1 cm−2 when the spectrum is fit by a power-law. The calculated X-ray luminosity over 1-10 keV is 𝐿 𝑋 = 1.8 × 1030 erg s−1, and the photon index is given as Γ = 3.15+0.71 −1.12. M28-VLA31 is a known X-ray source and has been previously identified as radio pulsar binary J1824-2452C (Bégin, 2006; Bogdanov et al., 2011). The system pulsar has a measured spin period of P=4.16 ms, and orbital period of P=8.1 days. Its systemic mass is estimated to be ≈ 1.6M⊙. Our calculated radio and X-ray luminosities are not at odds with the pulsar interpretation given that we could only constrain the radio spectral index to 𝛼 < 0.2. Therefore we are satisfied with classifying this source as a radio pulsar. This source is also an example of how a pulsar can look like an accreting black hole if only has an upper limit on the spectral index vs. a measurement. 4.3.4 M55-VLA32 M55-VLA32 was detected with a flux density of 12.4 ± 2.4𝜇Jy at 5.0 GHz and an upper limit of <6.8 ± 1.6𝜇Jy at 7.0 GHz (see Figure 4.7; Table 4.1). It is located at the coordinates 19:39:59.574 ±0.08′′, -30:57:30.98 ±0.11′′, 0.37′ from the center of M55. The radio flux density measurements constrain the radio spectral index as 𝛼 < 0.9. The 5.0 GHz radio luminosity is 𝐿 𝑅 = 2.16 × 1027 erg s−1. The GOOSE X-ray source closest to M55-VLA32 is identified as CXOU 193959.59-305730.2. It is 0.51′′ away from the position of M55-VLA32, with coordinates given by 294.998280°, - 30.958471° ±0.1280′′, consistent with an astrometric match. The unabsorbed X-ray flux over 79 Figure 4.6 VLA radio map of 5.0 GHz show a 10′′ x 10′′ field of view centered at M28-VLA31 (white circle). The flux density is 14.5 ±2.6𝜇Jy. The synthesized beam is plotted on the left corner with grey color. 1-10 keV is 𝐹1−10 = 8.2 × 10−15 erg s−1 cm−2, assuming the spectrum follows a power-law. The subsequent X-ray luminosity in the 1-10 keV range is 𝐿 𝑋 = 2.8 × 1031 erg s−1. The photon index is listed as Γ = 0.11+2.29 −0.94, although the spectral analysis is flagged as “not reliable” owing to the low number of source photon counts (𝑁 = 6). It is also worth noting that the probability of the source being a background AGN is substantial, estimated to be 𝑃=0.362. On the radio-X-ray correlation (4.1) M55-VLA32 sits near the BH correlation line, about a half-magnitude brighter in radio luminosity. M55-VLA32 is not associated with any previously characterised sources. It has an optical counterpart in the HUGS catalog for M55, 0.16′′ away from the radio position. 4.10 shows an optical image from ACS Survey of Globular Clusters with the radio position of M55-VLA32 overlaid. The measured photometry from the HUGS catalogs in each filter is listed as: F275W=21.2, F336W=20.2, F438W=20.5, F606W=19.6, F814W=18.9. A color-magnitude diagram of the M55 field is shown in 4.8, with the optical counterpart to M55-VLA32 overlaid in a blue circle. The counterparts position in the color-magnitude diagram is distinctly redder than the main sequence of the cluster in the figure. This suggests that the optical counterpart is most likely not a member 80 Figure 4.7 VLA images of 5.0 GHz (left) and 7.4 GHz (right) show a 10′′x 10′′ field of view centered at M55-VLA32 (white circle). The flux density is 12.4 ± 2.4𝜇Jy at 5.0 GHz and an upper limit of <6.8 ± 1.6𝜇Jy at 7.4 GHz. The synthesized beam is plotted on the left corner of each radio map with grey color. of the cluster, and likely a background source. 4.3.5 M55-VLA34 M55-VLA34 is located within the core of M55, at position 19:40:00.222±0.07′′, -30:57:39.94± 0.08′′, 15′′ from the cluster center (4.9). It was detected in both 5.0 GHz and 7.0 GHz radio images with a flux density of 11.7±2.4 𝜇Jy and 13.0±2.2 𝜇Jy, respectively (4.1). The radio flux density measurements correspond to a radio spectral index of 𝛼=0.21+0.67 −0.78. The 5.0 GHz radio luminosity is 𝐿 𝑅 = 2.04 × 1027 erg s−1. An X-ray counterpart to M55-VLA34 (separation=0.4226′′) was found in the GOOSE catalog. The source, with Chandra identifier: CXOU 194000.25-305739.8, has the coordinates 295.001060◦, -30.961075◦±0.1840′′ (19:40:00.254, -30:57:39.87). Like M55-VLA32, this source has a decent probability of being an AGN (P=0.322), and an unreliable spectral fit due to a low number of photon counts (N=6 from 1-10keV). The photon index is listed as Γ = 2.52+1.16 −1.25 . The X-ray flux in the 1-10keV energy band is 𝐹1−10 = 1.8 × 10−15 erg s−1 cm−2, which corresponds to an X-ray luminosity of 𝐿 𝑋 = 6.3 × 1030 erg s−1. On the radio-X-ray plane (4.1), M55-VLA34 lies about one magnitude in radio luminosity above the BH LMXB correlation. 81 Figure 4.8 A F606W vs. F275W-F606W color-magnitude diagram of the stars in M55 from the HUGS catalog. The optical counterparts to M55-VLA32 and M55-VLA34 are shown by the blue and orange circles respectively. The other stars in the M55 field are shown by the green diamonds. 82 Figure 4.9 VLA images of 5.0 GHz (left) and 7.4 GHz (right) show a 10′′ x 10′′ field of view centered at M55-VLA34 (white circle). The flux density is 10.5 ± 2.3𝜇Jy at 5.0 GHz and 11.4 ± 2.3𝜇Jy at 7.4 GHz. The synthesized beam is plotted on the left corner of each radio map with grey color. The X-ray source corresponding the M55-VLA34 has been observed in the past, but no classi- fication has been made based on its X-ray properties (Evans et al., 2010; Chen et al., 2019). The VISTA Hemisphere Survey catalog (VHS; McMahon et al. (2013, 2021)) shows a near-infrared counterpart 0.371′′ away from M22-VLA22 and classifies it as a galaxy, with a probability of P=0.9 of being a background galaxy. Like M55-VLA32, M55-VLA34 has an optical counterpart in the HUGS catalog (Piotto et al., 2015; Sarajedini et al., 2007). It is 0.268′′ away, and can be seen in the optical F814W image of the radio position of M55-VLA34 (4.10; Sarajedini et al. (2007)). The position of the HUGS counterpart on a color-magnitude diagram of the stars in M55 can be seen in Fig. 4.8. The optical counterpart looks like it could be consistent with a main sequence star in M55, but the plotted data are not deep enough to assess this one way or the other. We tentatively suggest this source is a background AGN, but additional photometry and/or an optical spectrum would be valuable to aid in classification. 4.3.6 M62-VLA1 M62-VLA1 is located 3.7′′ (0.12 pc) from the center of M62, at the position 17:01:13.214±0.07′′, -30:06:50.63±0.08′′ (Figure 4.11). Its radio catalog values are 22.4±3.7 𝜇Jy and 18.9±2.3 𝜇Jy at 83 Figure 4.10 Optical image of the M55 globular cluster centered at the M55-VLA32 source (red region, left) and M55-VLA34 source (red region, right). The data were taken with HSTACS WFC instrument in the F814W (I) filter. 5.0 and 7.2 GHz respectively, and it has a radio spectral index of 𝛼=−0.4+0.50 −0.53 (Table 4.1). This source was discovered at the very beginning of the MAVERIC project, and classified in detail by Chomiuk et al. (2013) as a LMXB. I will summarize that discussion below. M62-VLA1 shows variations in C-band radio flux within ∼1 week and has a flat radio spectral index similar to previously discovered LMXB black hole systems. Chandra observations revealed an unabsorbed X-ray luminosity of 𝐿 𝑋 = 4.8 × 1032 erg s−1 and a photon index Γ = 2.5 ± 0.1. On the radio-X-ray correlation (Fig. 4.1), M62-VLA1 lies almost directly on the black hole correlation line. A combined power-law and black-body model fits best its X-ray spectrum, however, accreting neutron stars show similar X-ray spectra in the low-hard accretion state. Archival Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) images show that M62-VLA1 is accompanied by a star on the lower red-giant branch. Narrow band data from F658N show a slight evidence of H𝛼 excess while a variability of 0.05-0.07 mag, and consistent with a 3-4 day period. There is newer high resolution data of M62-VLA1, taken from the panoramic integral-field spectrograph at the Very Large Telescope (MUSE; Bacon et al. (2010)). The data were taken as part of a survey of Galactic globular clusters, and the multiple spectra taken between 2015 and 2018 are presented by Göttgens et al. (2019) (Figure 4.12). There is clear broad H𝛼 emission, consistent with an accreting compact objects, and evidence for radial velocity variations from the 84 Figure 4.11 VLA images of 5.0 GHz (left) and 7.2 GHz (right) show a 10′′ x 10′′ field of view centered at M62-VLA1 (white circle). The flux density is 22.4 ± 3.7𝜇Jy at 5.0 GHz and 18.9 ± 2.3𝜇Jy at 7.2 GHz. The synthesized beam is plotted on the left corner of each radio map with grey color. absorption lines. Additional MUSE data have been obtained that should allow the determination of the period and semi-amplitude for this source to assess whether it is an accreting black hole or else an unusually accreting neutron star. 4.3.7 NGC6539-VLA24 NGC6539-VLA24 (R.A 18:04:49.723±0.03′′, DEC -07:35:26.32±0.04′′) is within the core of NGC6539, 17′′ from the cluster center (Fig. 4.13). It has measured flux densities of 9.6 ± 1.9 and 12.7 ±2.4 𝜇Jy at 5.0 and 7.2 GHz, respectively (Table 4.1). These values imply a spectral index of 𝛼 = 0.51+0.53 −0.76 , consistent with a flat or inverted radio spectrum. The corresponding radio luminosity is 𝐿 𝑅 = 3.5 × 1027 erg −1 𝑠 . X-ray observations of the NGC6539 globular cluster show a counterpart 0.5′′ from N6539- VLA24, CXOU J180449.72–073526.7. This source is the brightest X-ray source in the cluster at 𝐿 𝑋 ≈ 2 × 1033 erg s−1, and is described in detail in Bahramian et al. (2020). The source shows evidence of strong variability while it has a hard X-ray spectrum, which is best fit by an absorbed power law or an absorbed APEC (Figure 4.14). The X-ray photon index is Γ = 1.64 ± 0.28, and the 85 Figure 4.12 M62-VLA1 H𝛼 spectra of the black-hole candidate M62-VLA1. This part of the spectrum varies on the timescale of minutes. Adapted from Göttgens et al. (2019). source has a very low probability of being a background AGN (𝑃 = 0.001). Using the radio and the X-ray data, in Figure 4.1 we plot the source on the radio-X-ray correlation and it is located in the region occupied both by black holes and by transitional millisecond pulsars in the sub-luminous disk state. In the absence of radio pulsations, this source can only be differentiated between a black hole and neutron star binary with constraints on the accretor’s mass. Initial optical spectroscopy has shown strong H𝛼 emission consistent with an accreting compact object, and additional follow-up is needed to obtain the period and semi-amplitude. 86 Figure 4.13 VLA images of 5.0 GHz (left) and 7.4 GHz (right) show a 10′′ x 10′′ field of view centered at NGC6539-VLA24 (white circle). The flux density is 19.6 ± 1.9 𝜇Jy at 5.0 GHz and 12.7 ±2.4 𝜇Jy at 7.2 GHz. The synthesized beam is plotted on the left corner of each radio map with grey color. Figure 4.14 CXOU J185503.47–302847.6 X-ray spectra (left) and quantile–quantile (qq) plot for the NGC6539-VLA24 source. The black curves represent a random sample from the posterior for the best-fit model. For the purpose of plotting, the data in the spectral plots have been binned adaptively with at least 5 counts. Adapted from Bahramian et al. (2020). 87 4.3.8 Terzan 5 Terzan 5 is an exceptionally interesting globular cluster due to its high stellar density and stellar interaction rate (Bahramian et al., 2013). It has a large population of X-ray sources (Heinke et al., 2006) and many confirmed MSPs (Prager et al., 2017). Due to its known pulsar population, Terzan 5 was observed between 2012 and 2015 with the VLA radio telescope array at multi frequency bands covering ∼ 2.5 to ∼ 11 GHz. Unfortunately the Terzan 5 VLA data were not included in the initial MAVERIC source count catalog (Shishkovsky et al., 2020) due to calibration issues. These were later fixed with the results published by Urquhart et al. (2020). 4.3.8.1 Ter5-VLA31 An extensive analysis of VLA radio data is presented in Urquhart et al. (2020) for Ter5-VLA31 in Urquhart et al. (2020)). The fluxes at 5.0 and 7.4 GHz are listed in Table 4.1. It is shown to have a flat radio spectral index of 𝛼 = -0.2 ± 0.2 in the VLA data (the only radio source with a well constrained flat spectral index within the cluster’s half-light radius). The source was fairly persistent, being detected in most of the 2012 and 2014 VLA observations, except at 2.6 GHz (see Figure 4.15). The 5.0 GHz radio luminosity is calculated to be 𝐿 𝑅 = 6.2 × 1027 erg −1 𝑠 . An X-ray source was detected at the radio position of Ter5-VLA31 (Bahramian et al., 2020), which was best fit with a soft power law spectrum, yielding a photon index of Γ = 2.1 ± 0.5. The unabsorbed 1–10 keV luminosity is 𝐿 𝑋 = 1.57 × 1033 erg s−1. In Figure 4.1, we plot the X-ray and radio luminosities of Ter5-ATCA2. Compared to the space occupied by with other compact objects, Ter5-ATCA2 is closest to the region corresponding to the black hole systems, with the caveat that the radio-X-ray correlation is less populated at the lower X-ray luminosities. Alternative scenarios (e.g., radio flare from accreting white dwarfs, accreting neutron star) for the nature of the accretor are discussed in Urquhart et al. (2020). These are ultimately deemed unlikely due to the lack of X-ray variability and the magnitude of X-ray and radio luminosity. The overall properties of Ter5-ATCA2 are most consistent with that of quiescent stellar-mass black hole, but a confirmation of the accretors mass is required to definitively give Ter5-ATCA2 a black hole designation. 88 Figure 4.15 Adapted from Urquhart et al. (2020). Radio spectrum of the candidate stellar-mass black hole candidate Ter5-ATCA2. Red squares indicate the quasi-simultaneous 2012 VLA observations at frequencies 2.6, 3.2, 5.0, and 7.4 GHz. Blue circles represent the 9.0 and 11.0 GHz VLA observations from 2014. Open data points indicate 3𝜎 upper limits. The best fitting spectral index (black solid line) is calculated using only the quasi simultaneous 2012 observations (red) points. The shaded regions indicate the 1𝜎 uncertainties on the spectral index. 4.3.8.2 Ter5-VLA42 Ter5-VLA42 was included in this sample despite its non-detections at 5.0 and 7.4 GHz because Urquhart et al. (2020) detects the source at 9.0 and 11.0 GHz: 𝑆9=99±4𝜇Jy & 𝑆11=95±4𝜇Jy (see Tab. 4.1). And although the spectral index is unconstrained, it is located in the core of Terzan 5, and has an X-ray counterpart. Ter5-VLA42 is a known neutron star low mass X-ray binary, alternately identified as EXO 1745–248. In the X-ray catalog of Bahramian et al. (2020), a corresponding X-ray source is located at the position of Ter5-VLA42. It has a photon index of Γ=1.5 and 𝐿 𝑋 = 1.6 × 1033 erg s−1 cm−2. Figure 89 4.1 shows Ter5-VLA424 lying in much more radio bright region compared to other neutron stars. The source has a very steep radio-X-ray relationship relative to other neutron stars, and lies closer to the black hole region of the plot, despite being a confirmed neutron star system (Figure 4.1). A detailed analysis of its 2015 outburst combining MAVERIC radio data and Swift/XRT data have been presented in Tetarenko et al. (2016c), which focuses on the characteristic of the disc/jet coupling. They find that the radio spectral index of the source varies from being inverted, flat, and somewhat steep over timescales of weeks. They use 10 GHz radio luminosity to examine the radio/X-ray correlation for black holes and neutrons stars and find that Ter5-VLA42 is approximately a magnitude below the black hole correlation, in the region occupied by tMSPs and AMXPs. This is an interesting system that does not exhibit the typical infow/outflow seen in quiescent neutron star LMXBs, and may turn out to be an AMXP or rare tMSP system. Nonetheless, it has been firmly established to have a neutron star accretor through characteristic X-ray bursts, and can be ruled out as a black hole candidate. 4.4 Conclusions Of the nine sources analyzed, two already considered identified. M28-VLA31 is a known pulsar, and Ter5-VLA42 is a known accreting neutron star binary. Two sources are potentially background galaxies: M55-VLA32 is likely to be one, while the evidence for M55-VLA34 is more equivocal. The identification of M4-VLA31 is not final, but the best explanation that explains its observed properties is as an “active binary" without a compact object. Three of the sources have already been identified by the MAVERIC collaboration as possible black hole candidates: M62-VLA1, NGC6359-VLA24, and Ter5-VLA31. For the first two of these, ongoing optical spectroscopy programs can help classify them and will give a definitive answer to their nature. Ter5-VLA31 is more difficult to assess due to the high extinction toward this object, though future spectroscopy with the James Webb Space Telescope is a potential avenue to discovering its nature. The source represents a new black hole candidate: M22-VLA22. This candidate is sufficiently bright that ground-based optical spectroscopy is a viable means to determine its identity in the 90 future. For all of these objects whose nature is as yet unconfirmed, the the MAVERIC radio and X-ray data would be vital to providing scientific justification in order to be granted the necessary telescope time. 91 CHAPTER 5 SUMMARY AND CONCLUSIONS This work describes our efforts to use radio continuum imaging to study radio sources in globular clusters, in particular those that have the characteristics of accreting black hole binaries. Here we give an overview of our results, and outline the next steps for this projects in the future. 5.1 Summary of Results In chapter 2, we focused on the discovery and classification of the radio selected black hole binary M10-VLA1. This source was first discovered at significance in a 7.4 GHz image of the Milky Way globular cluster M10. It has a flat to inverted radio spectrum as well as an X-ray counterpart shown in Chandra X-ray observations. Its radio and X-ray properties together put it close to the black hole binary correlation. It has an unusual red straggler optical companion that has been observed to have an orbital period of ≈3.3 days. SOAR telescope observations show double-peaked H𝛼 emission, that could be interpreted as evidence of an accretion disk. However, spectroscopy shows that the system has a low velocity semi-amplitude, which would require an almost face-on orientation to be indicative of a black hole accretor. We conclude that at present, the most likely explanations for this system are either a face-on accreting black hole binary, or a bright RS CVn active binary. Chapter 3 details the compilation of our GC radio source catalog, as well as the properties of that source population. We performed the first deep radio imaging survey of 25 Milky Way globular clusters, for an average of 10 hrs each, in the VLA C-band with central frequencies at 5.0 and 7.2 GHz. A radio source-finding procedure was used to catalog almost 1300 radio sources to 5𝜎 significance. Comparing our source-density to the estimated background density at 5.0 GHz we find strong evidence for an excess of radio sources in certain clusters. We examined the distribution of radio spectral indices of our sample, and observed a bimodal distribution. It showed a flat- spectrum and steep-spectrum source population which we interpret as possible compact binaries and millisecond pulsars. In chapter 4, we examine a selection of the MAVERIC radio catalog sources in an attempt to 92 identify quality black hole binary candidates. We first selected cataloged radio sources that were confined to the cores of their host clusters, as well as those with flat radio spectral indices. Those remaining sources were then matched to the X-ray catalogs in another MAVERIC group study cataloging the faint X-ray sources in galactic globular clusters. There were 9 sources that met the required criteria, 7 from the VLA catalog, and 2 from the ATCA catalog that also had VLA data. This method was effective in picking out three previously identified black hole candidates, as well as a new black hole candidates to be further investigated in the future of this project. 5.2 Implications and Future Work Overall, the discovery of candidate accreting black holes in globular clusters has already had a significant impact on the field. Early papers in this field by the MAVERIC collaboration was a factor in prompting theorists to revisit their models of black holes in dense stellar clusters, which previously predicted that black holes should be rare or absent. Now, using the most recent simulations, several groups now argue that significant numbers of black holes can be retained to the present day, consistent with our findings. These results have wide implications: perhaps the most important is that dynamical interactions in globular clusters can lead to the formation of black hole–black hole binaries observable as gravitational wave sources, and that some of the black hole–black hole binaries detected in the last several years by the Advanced LIGO/Virgo project may have formed in globular clusters. Unfortunately, the dynamical confirmation of a stellar-mass black hole in a candidate discovered in the radio has been more challenging than initially anticipated. While there is little doubt that some black holes exist in clusters, the theoretical models need to be confronted with details that can only be obtained by observations: what masses of black holes exist in clusters today? Do these vary with cluster properties to the extent predicted from models? We have made progress on these questions, but still need to confirm candidates using optical or near-infrared observations to continue to progress. I also should emphasize that owing to the restrictive nature of my search, other black hole candidates likely remain in the MAVERIC radio catalogs, and need follow-up as well. 93 BIBLIOGRAPHY Abada-Simon M., Lecacheux A., Bastian T. S., Bookbinder J. A., Dulk G. A., 1993, The Astro- physical Journal, 406, 692 Abbott B. P., et al., 2016, Physical Review X, 6, 041015 Anders E., Grevesse N., 1989, Geochimica et Cosmochimica Acta, 53, 197 Anderson J., et al., 2008, The Astronomical Journal, 135, 2055 Archibald A. M., et al., 2009, Science, 324, 1411 Arnaud K. A., 1996, in Jacoby G. H., Barnes J., eds, Astronomical Society of the Pacific Conference Series Vol. 101, Astronomical Data Analysis Software and Systems V. p. 17 Bacon R., et al., 2010, in McLean I. S., Ramsay S. K., Takami H., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III. p. 773508, doi:10.1117/12.856027 Bahramian A., Heinke C. O., Sivakoff G. R., Gladstone J. C., 2013, The Astrophysical Journal, 766, 136 Bahramian A., et al., 2014, The Astrophysical Journal, 780, 127 Bahramian A., et al., 2017a, Monthly Notices of the Royal Astronomical Society, 467, 2199 Bahramian A., et al., 2017b, Monthly Notices of the Royal Astronomical Society, 467, 2199 Bahramian A., et al., 2018, The Astrophysical Journal, 864, 28 Bahramian A., et al., 2020, The Astrophysical Journal, 901, 57 Bailyn C. D., Grindlay J. E., 1990, The Astrophysical Journal, 353, 159 Barstow M. A., et al., 2014, arXiv e-prints, p. arXiv:1407.6163 Bassa C., et al., 2004, The Astrophysical Journal, 609, 755 Bassa C. G., et al., 2014, Monthly Notices of the Royal Astronomical Society, 441, 1825 Bastian T. S., Dulk G. A., Chanmugam G., 1988, The Astrophysical Journal, 324, 431 Bates S. D., Lorimer D. R., Verbiest J. P. W., 2013, Monthly Notices of the Royal Astronomical Society, 431, 1352 94 Baumgardt H., Hilker M., 2018, Monthly Notices of the Royal Astronomical Society, p. 1027 Becker R. H., White R. L., McLean B. J., Helfand D. J., Zoonematkermani S., 1990, The Astrophysical Journal, 358, 485 Bégin S., 2006, Master’s thesis, University of British Columbia, Canada Bellazzini M., Bragaglia A., Carretta E., Gratton R. G., Lucatello S., Catanzaro G., Leone F., 2012, Astronomy & Astrophysics, 538, A18 Birkinshaw M., Downes A. J. B., 1982, The Astrophysical Journal, 258, 154 Blandford R. D., Königl A., 1979, The Astrophysical Journal, 232, 34 Bogdanov S., et al., 2011, The Astrophysical Journal, 730, 81 Bogdanov S., et al., 2018, The Astrophysical Journal, 856, 54 Bond H. E., White R. L., Becker R. H., O’Brien M. S., 2002, Publications of the Astronomical Society of the Pacific, 114, 1359 Booth R. S., de Blok W. J. G., Jonas J. L., Fanaroff B., 2009, arXiv e-prints, p. arXiv:0910.2935 Bopp B. W., 1981, The Astronomical Journal, 86, 771 Breen P. G., Heggie D. C., 2013, Monthly Notices of the Royal Astronomical Society, 432, 2779 Britt C. T., Strader J., Chomiuk L., Tremou E., Peacock M., Halpern J., Salinas R., 2017, The Astrophysical Journal, 849, 21 Buckley D. A. H., Kotze M. M., Charles P. A., Sanchez D. M., Munoz-Darias T., Israel G., Masetti E. J. M. N., Jonker P., 2016, The Astronomer’s Telegram, 9649, 1 Camilo F., Rasio F. A., 2005, in Rasio F. A., Stairs I. H., eds, Astronomical Society of the Pacific Conference Series Vol. 328, Binary Radio Pulsars. p. 147 (arXiv:astro-ph/0501226) Carretta E., Bragaglia A., Gratton R., Lucatello S., 2009, Astronomy & Astrophysics, 505, 139 Casares J., 2015, The Astrophysical Journal, 808, 80 Casares J., 2016, The Astrophysical Journal, 822, 99 Casella P., et al., 2010, Monthly Notices of the Royal Astronomical Society, 404, L21 Cash W., 1979, The Astrophysical Journal, 228, 939 95 Chatterjee S., Rodriguez C. L., Rasio F. A., 2017, The Astrophysical Journal, 834, 68 Chen J. C., et al., 2019, VizieR Online Data Catalog, p. IX/57 Choi J., Dotter A., Conroy C., Cantiello M., Paxton B., Johnson B. D., 2016, The Astrophysical Journal, 823, 102 Chomiuk L., Strader J., Maccarone T. J., Miller-Jones J. C. A., Heinke C., Noyola E., Seth A. C., Ransom S., 2013, The Astrophysical Journal, 777, 69 Clark G. W., 1975, The Astrophysical Journal, 199, L143 Clark G. W., Markert T. H., Li F. K., 1975, The Astrophysical Journal, 199, L93 Clemens J. C., Crain J. A., Anderson R., 2004, in Moorwood A. F. M., Iye M., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 5492, Ground-based Instrumentation for Astronomy. pp 331–340, doi:10.1117/12.550069 Condon J. J., 1984, The Astrophysical Journal, 287, 461 Condon J. J., 1992, Annual Reviews of Astronomy & Astrophysics, 30, 575 Condon J. J., 1997, Publications of the Astronomical Society of the Pacific, 109, 166 Coppejans D. L., Körding E. G., Miller-Jones J. C. A., Rupen M. P., Knigge C., Sivakoff G. R., Groot P. J., 2015, Monthly Notices of the Royal Astronomical Society, 451, 3801 Coppejans D. L., et al., 2016, Monthly Notices of the Royal Astronomical Society, 463, 2229 Corbel S., Fender R. P., Tzioumis A. K., Nowak M., McIntyre V., Durouchoux P., Sood R., 2000, Astronomy & Astrophysics, 359, 251 Corbel S., Nowak M. A., Fender R. P., Tzioumis A. K., Markoff S., 2003, Astronomy & Astro- physics, 400, 1007 Corbel S., Coriat M., Brocksopp C., Tzioumis A. K., Fender R. P., Tomsick J. A., Buxton M. M., Bailyn C. D., 2013, Monthly Notices of the Royal Astronomical Society, 428, 2500 Dalessandro E., Lanzoni B., Beccari G., Sollima A., Ferraro F. R., Pasquato M., 2011, The Astrophysical Journal, 743, 11 Davies M. B., Hansen B. M. S., 1998, Monthly Notices of the Royal Astronomical Society, 301, 15 De Martino D., et al., 2013, Astronomy & Astrophysics, 550, A89 96 De Zotti G., Massardi M., Negrello M., Wall J., 2010, Astronomy and Astrophysics Reviews, 18, 1 Deller A. T., et al., 2015, The Astrophysical Journal, 809, 13 Dinçer T., Bailyn C. D., Miller-Jones J. C. A., Buxton M., MacDonald R. K. D., 2018, The Astrophysical Journal, 852, 4 Dotter A., 2016, The Astrophysical Journal Supplements, 222, 8 Drake S. A., Simon T., Linsky J. L., 1989, The Astrophysical Journal Supplements, 71, 905 Drake S. A., Simon T., Linsky J. L., 1992, The Astrophysical Journal Supplements, 82, 311 Dupree A. K., Smith G. H., Strader J., 2009, The Astronomical Journal, 138, 1485 Edmonds P. D., Gilliland R. L., Heinke C. O., Grindlay J. E., 2003, The Astrophysical Journal, 596, 1177 Evans I. N., et al., 2010, The Astrophysical Journal Supplements, 189, 37 Fabian A. C., Pringle J. E., Rees M. J., 1975, Monthly Notices of the Royal Astronomical Society, 172, 15 Fender R. P., 2001, Monthly Notices of the Royal Astronomical Society, 322, 31 Fender R. P., Gallo E., Jonker P. G., 2003, Monthly Notices of the Royal Astronomical Society, 343, L99 Ferraro F. R., Sabbi E., Gratton R., Possenti A., D’Amico N., Bragaglia A., Camilo F., 2003, The Astrophysical Journal Letters, 584, L13 Fomalont E. B., Windhorst R. A., Kristian J. A., Kellerman K. I., 1991, The Astronomical Journal, 102, 1258 Fruchter A. S., Goss W. M., 1990, The Astrophysical Journal, 365, L63 Fruchter A. S., Goss W. M., 2000, The Astrophysical Journal, 536, 865 Fruscione A., et al., 2006, in SPIE Conference Proceedings. p. 62701V, doi:10.1117/12.671760 Gallo E., Fender R., Kaiser C., Russell D., Morganti R., Oosterloo T., Heinz S., 2005, Nature, 436, 819 Gallo E., Miller B. P., Fender R., 2012, Monthly Notices of the Royal Astronomical Society, 423, 590 97 Gallo E., et al., 2014, Monthly Notices of the Royal Astronomical Society, 445, 290 Gallo E., Degenaar N., van den Eijnden J., 2018, Monthly Notices of the Royal Astronomical Society, 478, L132 García-Sánchez J., Paredes J. M., Ribó M., 2003, Astronomy & Astrophysics, 403, 613 Garcia M. R., McClintock J. E., Narayan R., Callanan P., Barret D., Murray S. S., 2001, The Astrophysical Journal Letters, 553, L47 Geller A. M., et al., 2017, The Astrophysical Journal, 840, 66 Gibson D. M., Viner M. R., Peterson S. D., 1975, The Astrophysical Journal Letters, 200, L143 Giesers B., et al., 2018, Monthly Notices of the Royal Astronomical Society, 475, L15 Giveon U., Becker R. H., Helfand D. J., White R. L., 2005, The Astronomical Journal, 129, 348 Goldsbury R., Richer H. B., Anderson J., Dotter A., Sarajedini A., Woodley K., 2010, The Astronomical Journal, 140, 1830 Gopal-Krishna Steppe H., 1980, Astronomy & Astrophysics, 88, 354 Göttgens F., et al., 2019, Astronomy & Astrophysics, 631, A118 Greisen E. W., 2003, in Information Handling in Astronomy - Historical Vistas. Edited by Andre Heck, Strasbourg Astronomical Observatory, France. Astrophysics and Space Science Library, Vol. 285. Dordrecht: Kluwer Academic Publishers, 2003., p.109. p. 109, doi:10.1007/0-306- 48080-8_7 Griffith M. R., Wright A. E., 1993, The Astronomical Journal, 105, 1666 Grindlay J. E., Hertz P., Steiner J. E., Murray S. S., Lightman A. P., 1984, The Astrophysical Journal Letters, 282, L13 Grindlay J. E., Camilo F., Heinke C. O., Edmonds P. D., Cohn H., Lugger P., 2002, The Astrophysical Journal, 581, 470 Gunn A. G., 1996, Irish Astronomical Journal, 23, 198 Hamilton T. T., Helfand D. J., Becker R. H., 1985, The Astronomical Journal, 90, 606 Hancock P. J., Murphy T., Gaensler B. M., Hopkins A., Curran J. R., 2012, Monthly Notices of the Royal Astronomical Society, 422, 1812 98 Hancock P. J., Trott C. M., Hurley-Walker N., 2018, Publications of the Astronomical Society of Australia, 35, e011 Hancock P. J., Charlton E. G., Macquart J.-P., Hurley-Walker N., 2019, arXiv e-prints, p. arXiv:1907.08395 Harris W. E., 1996, VizieR Online Data Catalog, p. VII/195 Haynes S., Burks G., Johnson C. I., Pilachowski C. A., 2008, Publications of the Astronomical Society of the Pacific, 120, 1097 Heggie D. C., Giersz M., 2014, Monthly Notices of the Royal Astronomical Society, 439, 2459 Heinke C. O., Grindlay J. E., Lugger P. M., Cohn H. N., Edmonds P. D., Lloyd D. A., Cool A. M., 2003, The Astrophysical Journal, 598, 501 Heinke C. O., Wijnands R., Cohn H. N., Lugger P. M., Grindlay J. E., Pooley D., Lewin W. H. G., 2006, The Astrophysical Journal, 651, 1098 Heinz S., Merloni A., 2004, Monthly Notices of the Royal Astronomical Society, 355, L1 Hessels J. W. T., Ransom S. M., Stairs I. H., Kaspi V. M., Freire P. C. C., 2007, The Astrophysical Journal, 670, 363 Heywood I., Bielby R. M., Hill M. D., Metcalfe N., Rawlings S., Shanks T., Smirnov O. M., 2013, Monthly Notices of the Royal Astronomical Society, 428, 935 Hill A. B., et al., 2011, Monthly Notices of the Royal Astronomical Society, 415, 235 Hills J. G., 1976, Monthly Notices of the Royal Astronomical Society, 175, 1P Hjellming R. M., Johnston K. J., 1988, The Astrophysical Journal, 328, 600 Hoare M. G., et al., 2012, Publications of the Astronomical Society of the Pacific, 124, 939 Hurley D. J. C., Richer H. B., Fahlman G. G., 1989, The Astronomical Journal, 98, 2124 Huynh M. T., Jackson C. A., Norris R. P., Fernand ez-Soto A., 2008, The Astronomical Journal, 135, 2470 Huynh M. T., Bell M. E., Hopkins A. M., Norris R. P., Seymour N., 2015, Monthly Notices of the Royal Astronomical Society, 454, 952 Huynh M. T., Seymour N., Norris R. P., Galvin T., 2020, Monthly Notices of the Royal Astronomical Society, 491, 3395 99 Irwin J. A., Brink T. G., Bregman J. N., Roberts T. P., 2010, The Astrophysical Journal Letters, 712, L1 Ivanova N., Heinke C. O., Rasio F. A., Belczynski K., Fregeau J. M., 2008, Monthly Notices of the Royal Astronomical Society, 386, 553 Ivanova N., Chaichenets S., Fregeau J., Heinke C. O., Lombardi J. C. J., Woods T. E., 2010, The Astrophysical Journal, 717, 948 Ivanova N., da Rocha C. A., Van K. X., Nand ez J. L. A., 2017, The Astrophysical Journal Letters, 843, L30 Johnson H. M., 1976, The Astrophysical Journal, 208, 706 Johnson H. M., Catura R. C., Charles P. A., Sanford P. W., 1977, The Astrophysical Journal, 212, 112 Johnston H. M., Kulkarni S. R., Goss W. M., 1991, The Astrophysical Journal, 382, L89 Kaluzny J., Thompson I. B., Krzeminski W., 1997, The Astronomical Journal, 113, 2219 Kaluzny J., Thompson I. B., Rozyczka M., Krzeminski W., 2013, Acta Astronomica, 63, 181 Kirsten F., Vlemmings W., Freire P., Kramer M., Rottmann H., Campbell R. M., 2014, Astronomy & Astrophysics, 565, A43 Knevitt G., Wynn G. A., Vaughan S., Watson M. G., 2014, Monthly Notices of the Royal Astro- nomical Society, 437, 3087 Knigge C., Zurek D. R., Shara M. M., Long K. S., Gilliland R. L., 2003, The Astrophysical Journal, 599, 1320 Kramer M., Lange C., Lorimer D. R., Backer D. C., Xilouris K. M., Jessner A., Wielebinski R., 1999, The Astrophysical Journal, 526, 957 Kremer K., Ye C. S., Chatterjee S., Rodriguez C. L., Rasio F. A., 2018, The Astrophysical Journal Letters, 855, L15 Kulkarni S. R., Goss W. M., Wolszczan A., Middleditch J., 1990, The Astrophysical Journal Letters, 363, L5 Kulkarni S. R., Hut P., McMillan S., 1993, Nature, 364, 421 Kundu A., Maccarone T. J., Zepf S. E., 2002, The Astrophysical Journal, 574, L5 100 Kuulkers E., Norton A., Schwope A., Warner B., 2006, X-rays from cataclysmic variables. pp 421–460 Leiner E., Mathieu R. D., Geller A. M., 2017, The Astrophysical Journal, 840, 67 Lewin W. H. G., van Paradijs J., Taam R. E., 1993, Space Science Reviews, 62, 223 Lewin W. H. G., van Paradijs J., van den Heuvel E. P. J., 1997, Cambridge Astrophysics Series, 26 Lynch R. S., Ransom S. M., Freire P. C. C., Stairs I. H., 2011, The Astrophysical Journal, 734, 89 Maccarone T. J., 2004, Monthly Notices of the Royal Astronomical Society, 351, 1049 Maccarone T. J., Patruno A., 2013, Monthly Notices of the Royal Astronomical Society, 428, 1335 Maccarone T. J., Kundu A., Zepf S. E., Rhode K. L., 2007, Nature, 445, 183 Maccarone T. J., et al., 2012, Monthly Notices of the Royal Astronomical Society, 426, 3057 Mackey A. D., Wilkinson M. I., Davies M. B., Gilmore G. F., 2008, Monthly Notices of the Royal Astronomical Society, 386, 65 Marsh T. R., et al., 2016, Nature, 537, 374 McLaughlin D. E., van der Marel R. P., 2005, The Astrophysical Journal Supplements, 161, 304 McMahon R. G., Banerji M., Gonzalez E., Koposov S. E., Bejar V. J., Lodieu N., Rebolo R., VHS Collaboration 2013, The Messenger, 154, 35 McMahon R. G., Banerji M., Gonzalez E., Koposov S. E., Bejar V. J., Lodieu N., Rebolo R., VHS Collaboration 2021, VizieR Online Data Catalog, p. II/367 McMullin J. P., Waters B., Schiebel D., Young W., Golap K., 2007, in Astronomical Data Analysis Software and Systems XVI ASP Conference Series, Vol. 376, proceedings of the conference held 15-18 October 2006 in Tucson, Arizona, USA. Edited by Richard A. Shaw, Frank Hill and David J. Bell., p.127. p. 127 Migliari S., Fender R. P., 2006, Monthly Notices of the Royal Astronomical Society, 366, 79 Miller-Jones J. C. A., Gallo E., Rupen M. P., Mioduszewski A. J., Brisken W., Fender R. P., Jonker P. G., Maccarone T. J., 2008, Monthly Notices of the Royal Astronomical Society, 388, 1751 Miller-Jones J. C. A., Jonker P. G., Maccarone T. J., Nelemans G., Calvelo D. E., 2011, The Astrophysical Journal Letters, 739, L18 101 Miller-Jones J. C. A., et al., 2015, Monthly Notices of the Royal Astronomical Society, 453, 3918 Misner C. W., Thorne K. S., Wheeler J. A., 1973, Gravitation Mochejska B. J., Kaluzny J., Thompson I., Pych W., 2002, The Astronomical Journal, 124, 1486 Montesinos B., Gimenez A., Fernandez-Figueroa M. J., 1988, Monthly Notices of the Royal Astronomical Society, 232, 361 Moody K., Sigurdsson S., 2009, The Astrophysical Journal, 690, 1370 Mooley K. P., et al., 2017, Monthly Notices of the Royal Astronomical Society, 467, L31 Morris D. H., Mutel R. L., 1988, The Astronomical Journal, 95, 204 Morscher M., Umbreit S., Farr W. M., Rasio F. A., 2013, The Astrophysical Journal Letters, 763, L15 Morscher M., Pattabiraman B., Rodriguez C., Rasio F. A., Umbreit S., 2015, The Astrophysical Journal, 800, 9 Mucciarelli A., Salaris M., Lanzoni B., Pallanca C., Dalessandro E., Ferraro F. R., 2013, The Astrophysical Journal Letters, 772, L27 Murphy E. J., et al., 2018, in Murphy E., ed., Astronomical Society of the Pacific Conference Series Vol. 517, Science with a Next Generation Very Large Array. p. 3 (arXiv:1810.07524) Mutel R. L., Morris D. H., Doiron D. J., Lestrade J. F., 1987, The Astronomical Journal, 93, 1220 Nardiello D., et al., 2018, Monthly Notices of the Royal Astronomical Society, 481, 3382 Osten R. A., Brown A., Ayres T. R., Linsky J. L., Drake S. A., Gagné M., Stern R. A., 2000, The Astrophysical Journal, 544, 953 Owen F. N., Gibson D. M., 1978, The Astronomical Journal, 83, 1488 Padovani P., Giommi P., Landt H., Perlman E. S., 2007, The Astrophysical Journal, 662, 182 Panagia N., Felli M., 1975, Astronomy & Astrophysics, 39, 1 Papitto A., et al., 2013, Nature, 501, 517 Patruno A., et al., 2014, The Astrophysical Journal Letters, 781, L3 Pavelin P. E., Spencer R. E., Davis R. J., 1994, Monthly Notices of the Royal Astronomical Society, 102 269, 779 Pavlovskii K., Ivanova N., 2015, Monthly Notices of the Royal Astronomical Society, 449, 4415 Peacock M. B., et al., 2012, The Astrophysical Journal, 759, 126 Piotto G., et al., 2015, The Astronomical Journal, 149, 91 Plotkin R. M., et al., 2017, The Astrophysical Journal, 834, 104 Plotkin R. M., Miller-Jones J. C. A., Chomiuk L., Strader J., Bruzewski S., Bundas A., Smith K. R., Ruan J. J., 2019, The Astrophysical Journal, 874, 13 Pooley D., et al., 2003, The Astrophysical Journal, 591, L131 Poutanen J., Veledina A., 2014, Space Science Reviews, 183, 61 Prager B. J., Ransom S. M., Freire P. C. C., Hessels J. W. T., Stairs I. H., Arras P., Cadelano M., 2017, The Astrophysical Journal, 845, 148 Price-Whelan A. M., Hogg D. W., Foreman-Mackey D., Rix H.-W., 2017, The Astrophysical Journal, 837, 20 Purcell C. R., et al., 2013, The Astrophysical Journal Supplements, 205, 1 Ransom S. M., 2008, in Vesperini E., Giersz M., Sills A., eds, IAU Symposium Vol. 246, Dynamical Evolution of Dense Stellar Systems. pp 291–300, doi:10.1017/S1743921308015810 Ratti E. M., et al., 2012, Monthly Notices of the Royal Astronomical Society, 423, 2656 Remillard R. A., McClintock J. E., 2006, Annual Reviews of Astronomy & Astrophysics, 44, 49 Reynolds M. T., Miller J. M., 2011, The Astrophysical Journal Letters, 734, L17 Robin A. C., Reylé C., Derrière S., Picaud S., 2003, Astronomy & Astrophysics, 409, 523 Robinson C., Lyne A. G., Manchester R. N., Bailes M., D’Amico N., Johnston S., 1995, Monthly Notices of the Royal Astronomical Society, 274, 547 Rodriguez C. L., Chatterjee S., Rasio F. A., 2016, Physical Review D, 93, 084029 Rood R. T., Turner K. C., Goldstein S. J., 1978, The Astrophysical Journal, 225, 804 Rushton A. P., et al., 2016, Monthly Notices of the Royal Astronomical Society, 463, 628 103 Russell T. D., Soria R., Motch C., Pakull M. W., Torres M. A. P., Curran P. A., Jonker P. G., Miller-Jones J. C. A., 2014, Monthly Notices of the Royal Astronomical Society, 439, 1381 Russell T. D., et al., 2015, Monthly Notices of the Royal Astronomical Society, 450, 1745 Russell T. D., et al., 2016, Monthly Notices of the Royal Astronomical Society, 460, 3720 Ryle M., Neville A. C., 1962, Monthly Notices of the Royal Astronomical Society, 125, 39 Ryle M., Scheuer P. A. G., 1955, Proceedings of the Royal Society of London Series A, 230, 448 Salinas R., Contreras Ramos R., Strader J., Hakala P., Catelan M., Peacock M. B., Simunovic M., 2016, The Astronomical Journal, 152, 55 Sarajedini A., et al., 2007, The Astronomical Journal, 133, 1658 Sarazin C. L., Irwin J. A., Bregman J. N., 2001, The Astrophysical Journal, 556, 533 Scheuer P. A. G., 1957, Proceedings of the Cambridge Philosophical Society, 53, 764 Shishkovsky L., et al., 2018, The Astrophysical Journal, 855, 55 Shishkovsky L., et al., 2020, The Astrophysical Journal, 903, 73 Sigurdsson S., Hernquist L., 1993, Nature, 364, 423 Sippel A. C., Hurley J. R., 2013, Monthly Notices of the Royal Astronomical Society, 430, L30 Smolčić V., et al., 2008, The Astrophysical Journal Supplements, 177, 14 Smolčić V., et al., 2017, Astronomy & Astrophysics, 602, A1 Soleri P., Fender R., 2011, Monthly Notices of the Royal Astronomical Society, 413, 2269 Soto M., et al., 2017, The Astronomical Journal, 153, 19 Steiner J. F., McClintock J. E., Remillard R. A., Gou L., Yamada S., Narayan R., 2010, The Astrophysical Journal Letters, 718, L117 Strader J., Chomiuk L., Maccarone T. J., Miller-Jones J. C. A., Seth A. C., 2012, Nature, 490, 71 Sutantyo W., 1975, Astronomy & Astrophysics, 44, 227 Tanaka Y., Shibazaki N., 1996, Annual Reviews of Astronomy & Astrophysics, 34, 607 104 Tetarenko B. E., Sivakoff G. R., Heinke C. O., Gladstone J. C., 2016a, The Astrophysical Journal Supplement Series, 222, 15 Tetarenko B. E., et al., 2016b, The Astrophysical Journal, 825, 10 Tetarenko A., Sivakoff G. R., Bahramian A., Heinke C. O., Miller-Jones J. C. A., Maccarone T., Degenaar N., Wijnands R., 2016c, The Astronomer’s Telegram, 8744, 1 Tisanić K., et al., 2019, Astronomy & Astrophysics, 621, A139 Tranin H., Godet O., Webb N., Primorac D., 2022, Astronomy & Astrophysics, 657, A138 Tremou E., et al., 2018, The Astrophysical Journal, 862, 16 Tudor V., et al., 2017, Monthly Notices of the Royal Astronomical Society, 470, 324 Tudor V., et al., 2022, Monthly Notices of the Royal Astronomical Society, 513, 3818 Urquhart R., et al., 2020, The Astrophysical Journal, 904, 147 Verbunt F., Hut P., 1983, Astronomy & Astrophysics, 127, 161 Verbunt F., Hut P., 1987, in Helfand D. J., Huang J. H., eds, IAU Symposium Vol. 125, The Origin and Evolution of Neutron Stars. p. 187 Verbunt F., Lewin W. H. G., 2006, Globular cluster X-ray sources. pp 341–379 Verbunt F., Meylan G., 1988, Astronomy & Astrophysics, 203, 297 Verner D. A., Ferland G. J., Korista K. T., Yakovlev D. G., 1996, The Astrophysical Journal, 465, 487 Wang S., Liu J., Qiu Y., Bai Y., Yang H., Guo J., Zhang P., 2016, The Astrophysical Journal Supplements, 224, 40 Weatherford N. C., Chatterjee S., Rodriguez C. L., Rasio F. A., 2018, The Astrophysical Journal, 864, 13 Weatherford N. C., Chatterjee S., Kremer K., Rasio F. A., 2019, arXiv e-prints, p. arXiv:1911.09125 Wilman R. J., et al., 2008, Monthly Notices of the Royal Astronomical Society, 388, 1335 Windhorst R. A., van Heerde G. M., Katgert P., 1984, Astronomy & Astrophysics Supplements, 58, 1 105 Windhorst R., Mathis D., Neuschaefer L., 1990, The evolution of weak radio galaxies at radio and optical wavelengths. pp 389–403 Windhorst R. A., Fomalont E. B., Partridge R. B., Lowenthal J. D., 1993, The Astrophysical Journal, 405, 498 Zdziarski A. A., Gierliński M., 2004, Progress of Theoretical Physics Supplement, 155, 99 Zepf S. E., et al., 2008, The Astrophysical Journal Letters, 683, L139 Zhao Y., et al., 2020, Monthly Notices of the Royal Astronomical Society, 493, 6033 106 APPENDIX A RADIO CONTINUUM SOURCES Table A.1 below lists the full set of radio continuum sources found from my main thesis survey, as described in Chapter 3. 107 Table A.1. Radio Continuum Sources ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M2-VLA1 M2-VLA2 M2-VLA3 M2-VLA4 M2-VLA5 M2-VLA6 M2-VLA7 M2-VLA8 M2-VLA9 M2-VLA10 M2-VLA11 M2-VLA12 M2-VLA13 M2-VLA14 M2-VLA15 M2-VLA16 M2-VLA17 M2-VLA18 M2-VLA19 M2-VLA20 M2-VLA21 M2-VLA22 M2-VLA23 M2-VLA24 M2-VLA25 M2-VLA26 M2-VLA27 M2-VLA28 M2-VLA29 M2-VLA30 M2-VLA31 M2-VLA32 M2-VLA33 21:33:36.358 21:33:23.668 21:33:32.016 21:33:29.770 21:33:26.964 21:33:17.915 21:33:34.476 21:33:23.387 21:33:36.614 21:33:28.879 21:33:21.993 21:33:18.304 21:33:24.849 21:33:21.935 21:33:36.424 21:33:36.316 21:33:36.680 21:33:24.414 21:33:32.957 21:33:36.371 21:33:13.408 21:33:16.108 21:33:37.458 21:33:14.770 21:33:34.411 21:33:17.525 21:33:27.870 21:33:16.714 21:33:20.605 21:33:29.690 21:33:26.042 21:33:17.892 21:33:19.078 –00:51:10.14 –00:46:46.08 –00:51:34.79 –00:47:43.41 –00:46:45.88 –00:51:56.40 –00:46:49.45 –00:46:43.19 –00:51:12.55 –00:49:43.34 –00:52:15.52 –00:48:24.60 –00:46:30.12 –00:49:45.76 –00:51:07.87 –00:51:00.79 –00:49:11.56 –00:49:43.52 –00:48:16.40 –00:50:29.77 –00:50:07.37 –00:48:43.84 –00:48:53.07 –00:50:10.13 –00:48:52.10 –00:50:59.97 –00:47:50.93 –00:49:33.90 –00:48:03.13 –00:47:31.84 –00:48:27.87 –00:47:53.39 –00:47:57.54 · · · 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.03 · · · 0.03 0.04 0.04 0.04 0.04 5.6 2.2 2.1 2.0 2.2 2.7 2.4 2.2 5.4 1.9 2.5 2.1 2.3 1.9 5.7 3.7 2.4 1.9 2.0 2.8 2.7 2.2 2.4 2.5 2.1 2.4 1.9 2.2 2.0 2.0 1.9 2.1 2.1 12724.0 156.4 119.4 104.1 70.1 141.0 83.3 40.8 50.1 30.4 27.9 53.9 25.8 25.0 33.2 < 11.7 15.3 11.8 10.9 < 8.4 < 12.0 11.5 15.6 15.0 9.4 < 9.0 10.1 16.6 9.6 < 6.4 < 5.3 < 8.2 < 7.3 4.8 2.7 2.7 2.1 2.7 3.9 3.4 2.8 4.4 1.8 3.5 2.4 3.0 1.9 4.6 -1.2 2.6 1.8 2.0 0.3 -0.1 2.9 2.7 3.5 2.1 3.5 1.9 2.6 2.2 1.2 0.9 -2.2 -1.1 ext. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · art.? art.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext. · · · · · · · · · · · · · · · 2.95 2.74 2.54 1.80 2.62 3.41 3.17 2.81 3.03 0.59 3.13 2.37 2.93 1.31 2.94 2.85 2.44 0.72 1.86 2.60 3.47 2.79 2.67 3.15 1.93 2.86 1.55 2.57 2.07 1.97 0.95 2.71 2.43 · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · −1.23+0.01 −0.01 −0.61+0.06 −0.06 −0.36+0.08 −0.09 +0.20+0.09 −0.09 −0.80+0.14 −0.14 +1.42+0.06 −0.09 +0.25+0.16 −0.16 −0.80+0.24 −0.25 +0.43+0.47 −0.46 −0.95+0.23 −0.24 −0.66+0.44 −0.48 +1.31+0.13 −0.18 −0.17+0.44 −0.46 −0.24+0.32 −0.32 +0.70+0.53 −0.67 < 0.5 −1.18+0.62 −0.68 −1.71+0.55 −0.59 −1.64+0.66 −0.71 < 0.2 < 1.1 −1.23+0.88 −1.00 −0.19+0.70 −0.75 −0.32+0.84 −0.99 −1.54+0.81 −0.87 < 0.8 −1.21+0.70 −0.77 +0.36+0.61 −0.68 −0.85+0.88 −0.96 < 0.6 < 0.2 < 1.1 < 1.0 · · · 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.05 0.05 0.03 0.03 0.03 0.03 0.05 0.03 · · · 0.03 0.05 0.05 0.05 0.05 19013.3 190.7 134.4 97.6 90.9 86.2 76.7 52.7 43.8 41.5 34.3 33.9 27.1 27.0 24.4 23.3 22.0 20.2 18.2 17.9 17.1 16.4 16.3 16.0 15.1 14.9 14.7 14.5 12.3 11.9 11.8 11.3 11.1 108 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M2-VLA34 M2-VLA35 M2-VLA36 M2-VLA37 M2-VLA38 M2-VLA39 M2-VLA40 M2-VLA41 M2-VLA42 M2-VLA43 M2-VLA44 M2-VLA45 M2-VLA46 M2-VLA47 M2-VLA48 M2-VLA49 M2-VLA50 M2-VLA51 M2-VLA52 M2-VLA53 M2-VLA54 M2-VLA55 M2-VLA56 M2-VLA57 M3-VLA1 M3-VLA2 M3-VLA3 M3-VLA4 M3-VLA5 M3-VLA6 M3-VLA7 M3-VLA8 M3-VLA9 M3-VLA10 M3-VLA11 21:33:29.909 21:33:19.622 21:33:27.555 21:33:22.021 21:33:26.157 21:33:24.576 21:33:30.561 21:33:32.254 21:33:40.073 21:33:25.886 21:33:38.141 21:33:34.839 21:33:35.665 21:33:17.216 21:33:33.288 21:33:34.750 21:33:26.873 21:33:18.961 21:33:21.025 21:33:21.335 21:33:22.528 21:33:22.595 21:33:24.948 21:33:28.288 13:42:03.265 13:42:14.904 13:42:24.692 13:42:16.589 13:42:04.465 13:42:01.162 13:42:09.796 13:42:10.997 13:42:22.173 13:42:10.327 13:42:23.916 –00:48:52.38 –00:49:59.10 –00:48:37.90 –00:48:51.05 –00:48:05.20 –00:50:28.96 –00:49:36.84 –00:52:33.62 –00:48:33.28 –00:52:33.99 –00:47:53.68 –00:51:36.04 –00:51:06.89 –00:50:31.26 –00:51:43.43 –00:51:02.81 –00:51:46.69 –00:49:03.33 –00:51:17.87 –00:48:46.50 –00:47:41.89 –00:48:23.36 –00:50:15.03 –00:49:14.42 +28:23:20.06 +28:24:17.23 +28:24:54.10 +28:19:33.78 +28:20:16.79 +28:20:59.75 +28:20:17.23 +28:21:03.57 +28:22:47.59 +28:20:28.16 +28:23:03.13 R.A. unc. Dec. unc. (′′) 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 (′′) 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 1.9 2.1 1.8 1.9 1.9 1.9 1.8 1.6 -0.6 5.8 -1.9 1.9 0.9 -2.3 1.4 1.6 -0.7 -1.9 -4.0 2.8 -0.8 0.5 2.6 -0.3 3.0 3.0 3.9 3.7 3.3 3.3 3.1 3.0 3.0 3.0 3.2 < 5.1 < 6.4 6.2 < 5.6 < 5.5 < 5.6 < 5.3 20.6 19.0 18.4 17.8 16.4 15.7 14.9 14.3 13.1 13.1 12.6 12.4 11.9 10.6 9.7 9.5 9.1 285.0 227.0 92.5 119.9 58.1 73.1 60.1 24.6 20.0 23.1 20.5 4.5 0.7 1.7 1.6 1.3 -1.0 1.3 4.1 3.7 3.6 3.2 3.2 2.9 2.8 2.9 2.6 2.5 2.2 2.5 1.9 2.1 1.9 1.8 1.7 2.9 2.7 6.2 4.9 3.9 3.7 3.1 2.4 3.0 2.9 3.7 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.90 1.93 0.77 1.34 1.31 1.25 0.93 3.44 3.38 3.20 3.17 2.97 2.78 2.69 2.83 2.56 2.40 2.03 2.42 1.53 2.02 1.47 1.00 0.36 1.91 1.81 3.69 3.30 2.82 2.79 2.39 1.59 2.38 2.19 2.79 𝑟ℎ · · · 𝑟ℎ · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · 𝑟ℎ · · · 𝑟ℎ · · · < 0.4 < 0.9 −1.73+0.94 −0.96 < 0.7 < 0.8 < 0.9 < 0.8 > −2.8 > −2.6 > −2.6 > −1.8 > −2.6 > −2.0 > −2.3 > −2.9 > −2.7 > −2.4 > −1.7 > −2.9 > −1.3 > −2.7 > −2.6 > −2.3 > −2.4 −1.08+0.04 −0.04 −1.04+0.04 −0.05 −1.85+0.20 −0.21 −1.01+0.14 −0.14 −1.45+0.22 −0.24 −0.44+0.19 −0.19 −0.56+0.20 −0.20 −1.65+0.36 −0.37 −2.04+0.49 −0.53 −1.31+0.45 −0.48 −1.25+0.62 −0.69 11.1 10.7 10.7 10.5 10.0 9.4 9.4 < 7.8 < 7.7 < 7.4 < 7.3 < 7.3 < 8.6 < 6.6 < 7.2 < 6.6 < 6.3 < 6.0 < 6.5 < 5.7 < 5.9 < 5.7 < 5.6 < 5.3 409.2 322.4 171.9 168.5 94.5 84.7 72.6 42.6 39.0 35.5 30.5 109 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M3-VLA12 M3-VLA13 M3-VLA14 M3-VLA15 M3-VLA16 M3-VLA17 M3-VLA18 M3-VLA19 M3-VLA20 M3-VLA21 M3-VLA22 M3-VLA23 M3-VLA24 M3-VLA25 M3-VLA26 M3-VLA27 M3-VLA28 M3-VLA29 M3-VLA30 M3-VLA31 M3-VLA32 M3-VLA33 M3-VLA34 M3-VLA35 M3-VLA36 M3-VLA37 M3-VLA38 M3-VLA39 M3-VLA40 M3-VLA41 M3-VLA42 M3-VLA43 M3-VLA44 M3-VLA45 M4-VLA1 13:42:13.937 13:42:25.636 13:42:07.293 13:42:08.707 13:42:08.791 13:42:18.915 13:42:12.755 13:41:58.744 13:42:05.144 13:42:09.015 13:42:23.952 13:42:08.949 13:42:09.969 13:42:05.159 13:42:14.550 13:42:10.560 13:42:14.158 13:42:15.463 13:42:02.224 13:42:10.298 13:41:58.413 13:41:57.609 13:42:00.726 13:42:16.025 13:42:11.131 13:42:23.631 13:42:18.325 13:42:19.006 13:42:16.460 13:42:08.963 13:42:17.478 13:42:18.274 13:42:15.663 13:42:11.839 16:23:29.180 +28:25:07.59 +28:21:31.45 +28:19:28.03 +28:19:36.93 +28:23:06.06 +28:19:23.75 +28:21:15.14 +28:24:38.32 +28:20:49.02 +28:23:48.62 +28:20:36.39 +28:19:33.36 +28:21:30.95 +28:22:26.91 +28:20:46.62 +28:22:15.72 +28:23:08.49 +28:24:17.29 +28:21:30.55 +28:26:09.88 +28:23:48.00 +28:21:34.15 +28:20:52.11 +28:19:54.01 +28:25:17.57 +28:22:55.87 +28:21:17.44 +28:24:30.06 +28:20:24.84 +28:20:25.43 +28:21:31.20 +28:23:30.87 +28:23:32.09 +28:22:08.93 –26:29:49.16 0.04 0.06 0.06 0.06 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 3.1 3.6 3.6 3.4 2.9 3.6 2.8 3.8 3.1 3.0 3.6 3.4 2.8 2.8 3.1 2.8 2.9 3.0 3.1 -6.7 4.1 -1.2 -4.1 -2.9 5.4 3.2 0.0 0.5 -2.0 4.9 -3.0 4.1 2.9 -6.3 2.9 21.2 24.2 25.3 14.7 16.9 34.1 16.2 26.9 < 9.3 8.7 < 15.4 12.8 10.5 < 7.2 15.6 < 6.5 < 6.6 14.3 17.0 31.4 23.7 23.3 21.6 19.7 19.1 18.5 17.0 16.5 16.3 16.1 13.7 13.4 12.6 11.1 995.5 3.3 5.0 4.9 4.1 2.2 5.8 2.4 5.4 2.4 2.4 6.0 4.2 2.3 5.7 2.8 4.3 2.9 2.7 3.1 5.8 4.4 4.7 4.1 3.9 3.4 3.6 2.7 3.3 3.3 2.9 2.5 2.6 2.4 2.2 3.5 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.54 3.33 3.31 3.09 0.72 3.65 1.43 3.42 2.29 1.27 3.44 3.14 1.18 1.38 2.00 0.43 0.78 1.87 2.32 3.52 3.07 3.22 2.95 2.94 2.64 2.71 2.05 2.50 2.50 2.29 1.76 1.74 1.29 0.51 2.18 · · · · · · · · · · · · 𝑟ℎ · · · 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ −0.97+0.56 −0.61 −0.53+0.73 −0.83 −0.36+0.70 −0.78 −1.92+0.83 −0.87 −1.17+0.53 −0.54 +0.91+0.41 −0.61 −0.92+0.60 −0.61 +0.48+0.63 −0.81 < 0.1 −2.35+0.81 −0.72 < 1.3 −1.40+1.06 −1.13 −1.69+0.80 −0.83 < 0.3 −0.03+0.77 −0.82 < 0.4 < 0.7 +0.18+0.73 −0.86 +0.74+0.48 −0.74 > −2.0 > −1.8 > −2.6 > −2.1 > −2.3 > −1.6 > −2.2 > −1.2 > −2.5 > −2.6 > −1.8 > −2.1 > −2.4 > −2.4 > −2.7 −0.71+0.01 −0.01 0.03 0.05 0.05 0.05 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.07 28.9 28.1 27.9 27.3 25.0 22.1 21.9 21.4 20.5 19.8 19.7 19.7 18.2 16.3 15.6 15.1 14.4 12.9 10.8 < 10.8 < 10.4 < 10.5 < 10.2 < 10.0 < 9.6 < 9.6 < 8.9 < 9.3 < 9.4 < 9.4 < 8.8 < 8.7 < 8.5 < 8.5 1289.4 110 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M4-VLA2 M4-VLA3 M4-VLA4 M4-VLA5 M4-VLA6 M4-VLA7 M4-VLA8 M4-VLA9 M4-VLA10 M4-VLA11 M4-VLA12 M4-VLA13 M4-VLA14 M4-VLA15 M4-VLA16 M4-VLA17 M4-VLA18 M4-VLA19 M4-VLA20 M4-VLA21 M4-VLA22 M4-VLA23 M4-VLA24 M4-VLA25 M4-VLA26 M4-VLA27 M4-VLA28 M4-VLA29 M4-VLA30 M4-VLA31 M4-VLA32 M4-VLA33 M4-VLA34 M4-VLA35 16:23:32.259 16:23:29.117 16:23:28.455 16:23:37.166 16:23:35.983 16:23:33.635 16:23:44.955 16:23:38.201 16:23:22.551 16:23:45.569 16:23:34.128 16:23:41.611 16:23:30.635 16:23:27.998 16:23:38.879 16:23:32.883 16:23:21.935 16:23:25.999 16:23:38.936 16:23:32.388 16:23:29.112 16:23:36.625 16:23:37.532 16:23:41.489 16:23:32.795 16:23:30.645 16:23:40.762 16:23:35.070 16:23:30.219 16:23:31.448 16:23:43.619 16:23:44.837 16:23:29.634 16:23:47.311 –26:34:34.25 –26:33:41.78 –26:30:51.82 –26:32:23.51 –26:32:16.62 –26:29:53.70 –26:29:19.94 –26:31:54.24 –26:32:20.77 –26:29:19.22 –26:33:27.26 –26:29:38.11 –26:33:51.64 –26:32:33.78 –26:28:10.69 –26:33:53.89 –26:32:33.96 –26:33:54.77 –26:32:00.14 –26:28:26.37 –26:29:58.59 –26:29:21.27 –26:32:25.06 –26:30:11.61 –26:31:18.59 –26:32:46.59 –26:30:09.14 –26:31:13.85 –26:30:45.07 –26:30:57.90 –26:33:42.70 –26:28:56.90 –26:29:36.49 –26:32:10.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.10 0.10 0.10 0.10 0.08 0.10 0.08 0.10 0.08 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.08 0.08 0.08 0.08 0.08 3.1 2.8 2.5 2.2 2.4 2.5 2.9 2.4 3.1 3.2 2.8 2.8 3.0 2.7 3.3 3.1 3.0 3.7 2.6 3.1 2.9 2.6 2.3 2.5 2.2 2.7 2.4 2.1 2.1 2.7 4.8 -1.0 5.4 1.8 515.0 106.8 90.5 49.2 39.4 28.8 32.1 < 6.5 18.8 15.3 < 9.3 16.9 15.2 18.1 < 16.2 22.5 20.6 < 14.7 < 7.3 < 13.9 < 9.1 < 9.1 8.8 < 8.3 9.8 10.7 < 7.7 8.7 10.6 12.2 28.0 28.2 22.7 21.3 5.2 3.8 2.5 2.1 2.2 2.5 4.5 2.4 4.3 4.8 11.7 2.9 4.3 2.9 4.4 3.4 5.2 8.1 4.3 11.9 4.1 2.7 2.3 3.7 2.2 2.8 3.5 2.0 2.2 2.2 4.3 5.3 3.3 4.1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.07 2.51 1.63 0.96 0.74 1.70 3.15 0.79 2.90 3.25 1.90 2.43 2.50 1.86 3.49 2.38 3.10 3.10 0.98 3.18 2.07 2.24 1.02 1.99 0.56 1.56 1.91 0.33 1.35 1.00 2.88 3.41 2.30 2.81 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟𝑐 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ −0.22+0.03 −0.03 −0.37+0.12 −0.12 −0.44+0.10 −0.10 −1.43+0.14 −0.14 −1.37+0.18 −0.19 −2.00+0.26 −0.28 −0.98+0.42 −0.46 < −2.6 −1.33+0.68 −0.80 −1.78+0.85 −0.94 < −1.0 −1.24+0.55 −0.61 −1.35+0.84 −0.98 −0.71+0.55 −0.59 < 1.1 +0.17+0.58 −0.60 −0.16+0.78 −0.96 < 1.3 < −0.4 < 1.2 < 0.3 < 0.3 −1.68+0.80 −0.88 < 0.7 −1.11+0.76 −0.84 −0.82+0.91 −1.04 < 0.9 −1.11+0.80 −0.88 −0.20+0.75 −0.82 +0.37+0.59 −0.77 > −0.4 > −2.2 > −0.4 > −2.1 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.10 0.10 0.10 0.10 0.07 0.10 0.07 0.10 0.07 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.07 0.07 0.07 0.07 0.07 558.7 122.0 106.2 82.7 64.8 59.4 45.1 40.5 29.3 27.9 27.3 26.1 23.5 23.1 22.1 21.0 20.6 19.1 18.8 18.5 18.3 17.8 15.7 14.7 14.3 13.9 12.9 12.7 11.1 9.7 < 9.6 < 9.3 < 9.0 < 8.4 111 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M4-VLA36 M4-VLA37 M4-VLA38 M5-VLA1 M5-VLA2 M5-VLA3 M5-VLA4 M5-VLA5 M5-VLA6 M5-VLA7 M5-VLA8 M5-VLA9 M5-VLA10 M5-VLA11 M5-VLA12 M5-VLA13 M5-VLA14 M5-VLA15 M5-VLA16 M5-VLA17 M5-VLA18 M5-VLA19 M5-VLA20 M5-VLA21 M5-VLA22 M5-VLA23 M5-VLA24 M5-VLA25 M5-VLA26 M5-VLA27 M5-VLA28 M5-VLA29 M5-VLA30 M5-VLA31 M5-VLA32 16:23:28.574 16:23:36.309 16:23:36.372 15:18:36.065 15:18:47.968 15:18:27.727 15:18:28.868 15:18:32.237 15:18:19.018 15:18:38.704 15:18:42.000 15:18:40.940 15:18:29.835 15:18:19.822 15:18:32.329 15:18:33.325 15:18:20.864 15:18:30.030 15:18:42.262 15:18:31.189 15:18:24.103 15:18:28.172 15:18:39.040 15:18:32.061 15:18:29.899 15:18:27.209 15:18:34.158 15:18:32.670 15:18:27.569 15:18:47.266 15:18:46.208 15:18:28.590 15:18:20.041 15:18:24.623 15:18:22.483 –26:33:24.56 –26:29:31.21 –26:30:26.23 +02:03:05.19 +02:04:34.54 +02:07:51.86 +02:04:26.39 +02:02:47.31 +02:03:49.66 +02:03:21.73 +02:05:23.74 +02:03:13.27 +02:01:35.46 +02:03:44.75 +02:07:32.62 +02:05:27.35 +02:06:45.70 +02:01:47.57 +02:05:26.04 +02:01:57.40 +02:07:34.06 +02:07:12.82 +02:02:15.09 +02:07:28.29 +02:02:24.63 +02:03:30.30 +02:03:44.79 +02:05:23.74 +02:04:51.06 +02:05:05.09 +02:05:45.16 +02:07:55.50 +02:05:42.54 +02:07:18.28 +02:03:09.83 R.A. unc. Dec. unc. (′′) 0.08 0.08 0.08 0.03 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 (′′) 0.07 0.07 0.07 0.03 0.05 0.03 0.03 0.03 0.05 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g -3.2 -2.2 0.9 2.1 3.1 2.7 1.9 2.2 3.0 2.1 2.1 2.2 2.7 2.9 2.3 1.9 2.9 2.6 2.1 2.5 2.8 2.3 2.5 2.3 2.2 2.0 1.9 1.9 1.9 0.2 1.3 -0.2 2.8 -3.5 -0.8 21.7 13.4 10.5 106.3 23.7 24.7 18.4 17.3 23.7 11.1 13.5 14.5 14.9 17.2 < 8.8 < 5.5 < 13.8 < 11.2 13.7 < 9.7 < 13.0 8.7 < 10.0 < 8.4 < 8.3 < 6.9 < 5.9 < 5.5 10.4 22.5 21.5 20.2 20.2 20.0 18.8 3.2 2.6 2.1 2.3 5.0 3.9 2.0 2.5 4.8 2.4 2.5 2.7 4.0 4.5 6.1 2.3 -6.5 0.4 2.5 4.9 -0.5 2.8 3.2 4.5 6.7 -2.0 0.3 1.9 2.0 4.3 4.0 3.7 3.9 3.6 3.7 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.34 2.06 1.17 1.91 3.70 3.30 1.16 2.09 3.69 2.03 2.26 2.54 3.38 3.53 2.69 0.59 3.62 3.17 2.33 2.95 3.53 2.67 2.99 2.62 2.59 2.02 1.14 0.55 1.41 3.52 3.37 3.27 3.40 3.25 3.17 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · · · · > −0.4 > −2.1 > −2.5 −0.61+0.08 −0.08 −1.23+0.69 −0.81 −0.96+0.54 −0.60 −1.51+0.39 −0.41 −1.57+0.49 −0.55 −0.54+0.70 −0.81 −2.66+0.58 −0.52 −2.14+0.59 −0.64 −1.66+0.62 −0.70 −1.36+0.87 −1.01 −0.70+0.90 −1.08 < −0.2 < −1.4 < 1.3 < 1.0 −0.36+0.71 −0.77 < 1.1 < 1.4 −1.48+1.05 −1.11 < 1.2 < 1.0 < 1.1 < 0.9 < 0.7 < 0.8 +0.50+0.47 −0.75 > −2.4 > −2.2 > −2.0 > −2.5 > −1.7 > −2.7 < 8.3 < 7.6 < 6.5 129.8 34.1 33.1 29.8 28.4 27.4 27.0 26.6 24.3 22.1 20.5 19.4 18.8 18.0 16.8 15.1 14.2 14.1 13.6 13.2 12.6 11.7 11.1 10.7 9.7 7.0 < 8.5 < 7.9 < 7.8 < 8.1 < 7.7 < 7.7 112 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M5-VLA33 M5-VLA34 M5-VLA35 M5-VLA36 M5-VLA37 M5-VLA38 M5-VLA39 M5-VLA40 M5-VLA41 M5-VLA42 M5-VLA43 M5-VLA44 M5-VLA45 M5-VLA46 M5-VLA47 M5-VLA48 M9-VLA1 M9-VLA2 M9-VLA3 M9-VLA4 M9-VLA5 M9-VLA6 M9-VLA7 M9-VLA8 M9-VLA9 M9-VLA10 M9-VLA11 M9-VLA12 M9-VLA13 M9-VLA14 M9-VLA15 M9-VLA16 M9-VLA17 M9-VLA18 15:18:22.219 15:18:21.652 15:18:21.422 15:18:26.540 15:18:32.269 15:18:44.491 15:18:31.095 15:18:31.595 15:18:23.930 15:18:25.483 15:18:42.001 15:18:39.131 15:18:26.771 15:18:36.255 15:18:37.723 15:18:33.863 17:19:19.694 17:19:21.480 17:18:58.682 17:19:23.666 17:19:24.696 17:19:02.365 17:18:59.519 17:19:14.536 17:19:03.072 17:19:16.857 17:19:05.645 17:19:19.856 17:19:04.853 17:19:22.615 17:19:11.555 17:19:04.691 17:19:00.890 17:19:13.757 +02:05:54.37 +02:06:19.16 +02:04:47.94 +02:07:25.64 +02:07:34.66 +02:04:38.66 +02:02:28.91 +02:07:24.39 +02:04:48.90 +02:05:48.08 +02:04:52.83 +02:05:49.43 +02:05:49.79 +02:03:39.31 +02:05:58.54 +02:05:41.82 –18:31:44.25 –18:28:44.37 –18:30:12.98 –18:30:30.21 –18:32:26.08 –18:29:09.00 –18:32:10.31 –18:33:58.16 –18:33:00.72 –18:33:40.64 –18:30:14.18 –18:30:42.03 –18:27:48.09 –18:33:16.12 –18:28:00.40 –18:29:18.18 –18:32:32.89 –18:28:00.63 R.A. unc. Dec. unc. (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 · · · 0.03 0.04 (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.05 0.05 · · · 0.03 0.05 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 1.5 -2.0 2.3 -1.7 1.7 -1.8 -0.3 -0.6 -2.0 -0.2 -5.5 3.6 -0.1 -0.1 -1.1 -1.3 2.0 2.4 2.3 2.2 2.6 2.0 2.3 2.5 2.1 2.3 1.8 1.9 2.3 3.0 2.2 1.9 2.1 2.1 18.3 18.0 17.7 17.1 16.1 14.9 14.7 14.6 13.7 12.7 12.6 11.4 11.3 10.7 10.6 10.1 492.9 270.4 115.5 54.8 37.3 28.5 26.6 25.4 19.7 25.8 21.6 23.1 18.3 20.9 < 9.1 21.3 18.9 18.1 3.2 3.6 3.2 3.3 3.0 3.0 2.7 2.8 2.5 2.4 2.4 2.2 2.1 2.1 2.1 1.9 2.4 3.8 3.3 3.4 4.3 2.9 3.3 3.6 3.1 3.5 1.9 2.2 4.1 4.9 7.3 2.3 3.2 3.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext. ext.? · · · 2.94 3.23 2.95 3.06 2.72 2.83 2.44 2.57 2.32 2.15 2.20 1.76 1.88 1.43 1.58 0.85 2.02 3.21 3.20 2.86 3.39 2.88 3.14 3.06 2.90 2.96 1.63 1.93 3.57 3.44 2.97 2.37 3.02 3.00 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · > −1.6 > −2.8 > −1.8 > −2.4 > −2.1 > −2.7 > −1.9 > −2.4 > −1.9 > −2.3 > −2.3 > −2.5 > −2.2 > −2.6 > −2.7 > −2.3 −0.58+0.02 −0.02 −0.57+0.05 −0.05 −1.08+0.09 −0.10 −0.14+0.22 −0.22 −0.75+0.37 −0.40 −1.35+0.32 −0.35 −1.37+0.39 −0.43 −1.13+0.46 −0.51 −1.60+0.49 −0.56 −0.54+0.46 −0.50 −0.63+0.33 −0.34 −0.22+0.36 −0.37 −0.90+0.72 −0.86 −0.31+0.80 −0.95 < −0.2 +0.38+0.44 −0.45 +0.13+0.61 −0.67 +0.10+0.63 −0.69 < 7.2 < 7.8 < 7.3 < 7.5 < 7.1 < 7.3 < 6.7 < 6.7 < 6.5 < 6.2 < 6.2 < 5.9 < 6.1 < 5.7 < 5.9 < 5.7 598.5 328.0 165.9 57.3 47.4 44.5 41.7 36.6 33.0 30.5 26.6 24.8 23.6 22.2 19.6 18.7 17.7 17.1 113 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M9-VLA19 M9-VLA20 M9-VLA21 M9-VLA22 M9-VLA24 M9-VLA25 M9-VLA26 M9-VLA27 M9-VLA28 M9-VLA29 M9-VLA30 M9-VLA31 M9-VLA32 M9-VLA33 M9-VLA34 M9-VLA35 M9-VLA36 M9-VLA37 M9-VLA38 M9-VLA39 M9-VLA40 M9-VLA41 M9-VLA42 M9-VLA43 M9-VLA44 M9-VLA45 M9-VLA46 M9-VLA47 M9-VLA48 M9-VLA49 M9-VLA50 M9-VLA51 M9-VLA52 M9-VLA53 M9-VLA54 17:19:15.059 17:19:09.380 17:18:58.508 17:19:06.791 17:19:11.256 17:19:17.605 17:19:05.321 17:19:00.353 17:19:25.877 17:19:07.037 17:19:06.534 17:19:07.177 17:19:20.963 17:19:17.161 17:19:03.489 17:19:08.488 17:19:19.307 17:19:08.697 17:19:05.942 17:19:02.209 17:19:20.544 17:19:05.377 17:19:09.447 17:19:18.314 17:19:02.861 17:19:05.093 17:19:13.980 17:19:13.375 17:19:06.221 17:19:07.989 17:19:11.417 17:19:22.160 17:18:59.574 17:19:26.889 17:19:22.736 –18:28:40.83 –18:29:12.91 –18:31:05.14 –18:27:44.85 –18:31:18.65 –18:33:38.82 –18:33:34.67 –18:30:41.13 –18:31:00.72 –18:33:01.47 –18:27:56.02 –18:31:22.06 –18:33:30.24 –18:29:08.00 –18:32:41.70 –18:27:57.09 –18:33:27.46 –18:32:02.69 –18:32:11.62 –18:29:07.55 –18:29:52.17 –18:28:14.19 –18:32:08.80 –18:30:51.94 –18:29:12.70 –18:31:56.10 –18:29:03.06 –18:29:20.62 –18:30:55.76 –18:30:23.30 –18:30:16.22 –18:33:15.35 –18:28:54.10 –18:30:45.66 –18:28:29.57 0.04 0.04 · · · 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 · · · 0.03 0.03 0.03 2.0 1.8 2.3 2.4 1.7 2.3 2.3 2.0 2.5 2.0 2.3 1.7 2.4 1.9 2.1 2.2 2.2 1.8 1.9 2.1 2.0 2.2 1.8 1.8 2.0 1.8 1.9 1.8 1.7 1.7 1.7 14.5 0.3 5.1 -0.6 13.1 10.3 12.7 11.5 11.0 < 10.7 15.1 < 7.9 14.2 12.5 < 10.3 11.7 < 12.7 9.8 < 8.0 < 9.8 < 10.8 8.4 < 6.1 < 9.0 < 7.4 < 9.8 9.5 < 6.0 < 8.1 < 6.1 < 6.6 6.8 11.8 < 5.2 < 5.1 28.1 24.7 23.9 23.1 2.5 2.1 3.1 3.8 1.7 2.8 3.4 1.1 4.2 2.5 -0.6 1.8 1.9 2.4 1.9 -1.2 3.1 1.9 3.0 2.3 -1.1 1.2 1.9 3.0 1.7 2.1 0.1 2.0 1.8 0.5 0.8 4.9 4.2 4.7 4.6 · · · · · · ext. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext. · · · · · · · · · 2.42 1.85 3.15 3.44 0.36 3.01 3.02 2.72 3.34 2.34 3.29 1.16 3.34 2.24 2.61 3.12 3.06 1.30 1.84 2.93 2.35 3.13 1.29 1.55 2.75 1.85 1.99 1.67 1.32 1.07 0.71 3.35 3.56 3.59 3.59 · · · · · · · · · · · · 𝑟𝑐 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · −0.83+0.67 −0.75 −1.47+0.68 −0.77 −0.89+0.83 −0.97 −1.06+1.04 −1.22 −0.90+0.58 −0.62 < 1.2 +0.13+0.75 −0.93 < 0.7 −0.11+0.92 −1.26 −0.19+0.74 −0.83 < 1.2 −0.27+0.61 −0.64 < 1.4 −0.79+0.86 −0.99 < 1.0 < 1.2 < 1.3 −0.99+0.83 −0.92 < 0.6 < 1.2 < 1.0 < 1.3 −0.42+0.78 −0.85 < 0.8 < 1.1 < 0.9 < 1.0 −1.16+1.02 −1.13 +0.52+0.50 −0.64 < 0.8 < 0.8 · · · > −1.4 > −2.9 > −3.0 0.05 0.05 · · · 0.05 0.03 0.05 0.05 0.05 0.05 0.03 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.05 · · · 0.03 0.03 0.03 16.9 16.4 16.4 15.4 14.7 14.6 13.7 13.4 13.2 13.0 12.8 12.7 12.4 12.3 12.1 12.0 11.5 11.4 11.2 11.2 10.9 10.8 10.7 10.5 10.2 9.9 9.7 9.6 9.3 9.0 8.8 < 11.0 < 7.2 < 8.0 < 7.7 114 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M9-VLA55 M9-VLA56 M9-VLA57 M9-VLA58 M9-VLA59 M9-VLA60 M9-VLA61 M9-VLA62 M9-VLA63 M9-VLA64 M9-VLA65 M9-VLA66 M10-VLA2 M10-VLA3 M10-VLA4 M10-VLA5 M10-VLA6 M10-VLA7 M10-VLA8 M10-VLA9 M10-VLA10 M10-VLA11 M10-VLA12 M10-VLA13 M10-VLA14 M10-VLA15 M10-VLA16 M10-VLA17 M10-VLA18 M10-VLA19 M10-VLA20 M10-VLA21 M10-VLA22 M10-VLA23 17:19:14.253 17:18:59.476 17:19:00.493 17:19:02.698 17:18:58.753 17:19:00.704 17:19:19.782 17:19:05.618 17:19:17.991 17:19:18.729 17:19:11.628 17:19:08.710 16:57:07.591 16:57:16.462 16:57:12.945 16:57:13.966 16:57:10.762 16:57:04.104 16:57:07.789 16:57:22.822 16:57:07.724 16:57:02.521 16:57:17.619 16:57:06.839 16:56:59.504 16:57:10.655 16:57:18.367 16:57:09.140 16:57:13.967 16:57:17.463 16:57:18.872 16:57:05.175 16:57:01.613 16:56:57.935 –18:27:53.55 –18:30:46.04 –18:31:03.32 –18:28:40.10 –18:30:55.65 –18:31:26.16 –18:32:30.87 –18:32:28.24 –18:29:40.06 –18:31:56.05 –18:29:38.56 –18:30:16.39 –04:08:03.14 –04:08:42.55 –04:08:22.12 –04:07:24.13 –04:07:12.17 –04:05:28.56 –04:08:44.82 –04:05:03.81 –04:08:23.71 –04:07:33.21 –04:04:39.63 –04:08:27.92 –04:07:46.05 –04:03:11.77 –04:06:07.76 –04:07:43.51 –04:06:34.89 –04:03:13.81 –04:04:25.92 –04:05:52.67 –04:03:30.25 –04:04:54.65 R.A. unc. Dec. unc. (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 · · · 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.04 0.06 0.06 0.06 0.04 0.06 0.06 (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 · · · 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.04 0.06 0.06 0.06 0.04 0.06 0.06 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 2.4 4.9 -0.4 1.9 0.0 -2.6 -0.2 1.0 -0.2 -0.2 0.7 -0.1 5.2 3.6 3.1 2.8 2.6 2.6 5.7 3.5 5.1 3.0 2.8 3.7 3.3 3.0 2.8 2.8 2.6 3.3 3.0 2.7 3.2 3.1 17.7 17.0 16.6 16.3 14.7 14.7 14.3 12.8 12.6 11.8 10.3 9.2 384.5 94.7 109.1 63.4 114.7 58.9 39.1 37.8 46.3 27.4 23.8 20.4 30.7 15.4 12.5 17.8 10.1 < 12.4 < 9.7 11.1 12.9 < 10.5 3.3 2.8 2.7 3.1 2.9 2.7 2.7 2.2 2.2 2.3 1.8 1.7 3.5 4.5 3.2 2.4 2.3 2.0 4.7 4.9 3.6 2.8 2.8 3.1 3.6 3.1 2.6 2.4 2.2 -0.8 3.4 2.0 3.7 -4.0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext. · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.14 2.92 2.68 3.16 3.09 2.67 2.44 2.09 1.97 1.91 1.33 1.01 2.11 3.33 2.60 1.91 1.32 1.30 2.79 3.58 2.45 2.25 2.53 2.55 2.96 2.80 2.36 1.76 1.40 3.47 2.92 0.94 3.06 2.94 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ · · · · · · 𝑟ℎ · · · · · · > −2.1 > −1.1 > −1.0 > −2.4 > −2.6 > −1.9 > −2.1 > −1.5 > −1.6 > −2.5 > −1.7 > −2.1 −2.06+0.03 −0.03 −2.33+0.13 −0.13 −0.71+0.09 −0.09 −1.12+0.12 −0.12 +0.41+0.09 −0.08 −0.60+0.12 −0.12 −1.57+0.37 −0.39 −1.48+0.35 −0.39 +0.19+0.38 −0.36 −1.13+0.32 −0.33 −1.37+0.34 −0.37 −0.90+0.52 −0.54 +0.22+0.43 −0.43 −1.52+0.58 −0.66 −1.71+0.61 −0.69 −0.52+0.49 −0.49 −1.76+0.65 −0.71 < 0.1 < 0.5 −1.25+0.62 −0.64 −0.90+0.88 −1.04 < 1.0 < 6.9 < 6.3 < 6.1 < 6.6 < 6.5 < 5.9 < 6.1 < 5.7 < 5.7 < 5.6 < 5.3 < 5.1 862.2 235.2 144.0 98.4 97.7 74.6 71.8 66.4 43.3 42.5 40.3 28.8 28.2 27.1 23.7 21.8 19.6 18.2 18.0 17.9 17.5 15.8 115 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M10-VLA24 M10-VLA25 M10-VLA26 M10-VLA27 M10-VLA28 M10-VLA29 M10-VLA30 M10-VLA31 M10-VLA32 M10-VLA33 M10-VLA34 M10-VLA35 M10-VLA36 M10-VLA37 M10-VLA38 M10-VLA39 M10-VLA40 M10-VLA41 M10-VLA42 M10-VLA43 M10-VLA44 M10-VLA45 M10-VLA46 M10-VLA47 M10-VLA48 M10-VLA49 M10-VLA50 M10-VLA51 M12-VLA1 M12-VLA2 M12-VLA3 M12-VLA4 M12-VLA5 M12-VLA6 M12-VLA7 M12-VLA8 16:57:10.846 16:57:04.920 16:57:04.929 16:57:15.314 16:57:17.299 16:57:07.932 16:57:16.088 16:57:14.929 16:57:11.398 16:57:07.857 16:57:18.789 16:57:23.149 16:57:01.008 16:57:07.679 16:57:10.717 16:57:13.101 16:57:15.784 16:57:00.704 16:57:00.799 16:57:10.871 16:57:07.819 16:57:06.831 16:57:10.328 16:57:05.520 16:57:10.488 16:57:14.506 16:57:05.347 16:57:08.351 16:47:13.231 16:47:00.195 16:47:15.744 16:47:02.012 16:47:15.941 16:47:21.700 16:47:04.776 16:47:04.734 –04:07:06.68 –04:03:32.26 –04:08:30.27 –04:06:01.81 –04:07:27.73 –04:04:59.56 –04:04:28.41 –04:07:10.09 –04:07:17.68 –04:06:56.27 –04:08:33.37 –04:05:40.93 –04:08:34.19 –04:09:04.53 –04:08:37.58 –04:03:08.21 –04:04:03.46 –04:05:50.65 –04:06:51.38 –04:03:44.22 –04:03:49.06 –04:04:50.08 –04:04:32.97 –04:04:59.07 –04:06:35.37 –04:05:33.20 –04:06:28.41 –04:06:07.67 –01:54:17.52 –01:56:52.59 –01:54:43.18 –01:57:36.58 –01:55:15.70 –01:58:28.31 –01:57:15.33 –01:56:43.79 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 2.6 2.9 3.0 2.7 3.0 2.5 2.7 2.7 2.6 2.6 3.4 4.7 4.5 0.2 6.1 2.0 5.4 1.7 -1.4 -5.4 -4.1 3.1 5.8 -3.7 0.7 -1.3 4.4 1.3 2.5 2.9 2.4 2.6 2.1 2.4 2.3 2.3 8.4 < 8.3 < 9.9 < 6.2 < 9.0 < 6.0 < 7.8 < 7.4 8.1 16.2 25.2 24.3 22.6 22.0 20.1 17.6 14.8 14.1 13.6 13.4 12.9 12.4 11.6 11.5 11.4 11.0 10.4 9.4 109.0 68.0 86.8 39.0 43.2 34.1 22.1 19.3 2.1 -1.4 -2.2 2.6 2.4 -3.2 0.0 -1.6 2.2 2.0 5.0 4.5 4.3 4.0 3.3 3.3 2.9 2.5 2.6 2.7 2.5 2.0 2.0 2.1 1.9 2.1 1.9 1.8 2.9 4.1 2.6 3.4 2.1 2.8 2.6 2.6 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1.24 2.63 2.73 1.60 2.57 1.00 2.33 1.92 1.46 1.01 3.57 3.56 3.27 3.12 2.70 3.02 2.56 2.05 2.21 2.28 2.17 1.25 1.46 1.30 0.74 1.45 1.03 0.21 2.63 3.49 2.23 3.12 1.71 2.44 2.38 2.37 𝑟ℎ · · · · · · 𝑟ℎ · · · 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟ℎ 𝑟𝑐 · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · −1.65+0.77 −0.83 < 0.8 < 1.0 < 0.2 < 0.9 < −0.1 < 0.8 < 0.8 −1.32+0.88 −0.96 +0.63+0.48 −0.55 > −2.0 > −1.3 > −1.6 > −1.3 > −0.8 > −1.6 > −2.0 > −1.5 > −1.9 > −2.2 > −2.1 > −1.3 > −1.6 > −1.9 > −1.5 > −2.0 > −2.0 > −2.2 −0.89+0.10 −0.10 −1.49+0.20 −0.21 +0.57+0.14 −0.14 −1.55+0.29 −0.31 −0.39+0.20 −0.20 −1.12+0.29 −0.30 −1.34+0.41 −0.44 −1.75+0.45 −0.50 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 15.6 15.1 14.9 14.8 14.8 14.8 14.1 13.7 13.2 12.3 < 11.6 < 10.2 < 10.1 < 11.1 < 9.4 < 9.2 < 8.2 < 8.0 < 8.2 < 8.0 < 8.6 < 7.9 < 7.6 < 7.9 < 7.7 < 7.3 < 7.6 < 7.4 145.3 110.1 72.1 64.1 49.1 48.9 33.9 33.7 116 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M12-VLA9 M12-VLA10 M12-VLA11 M12-VLA12 M12-VLA13 M12-VLA14 M12-VLA15 M12-VLA16 M12-VLA17 M12-VLA18 M12-VLA19 M12-VLA20 M12-VLA21 M12-VLA22 M12-VLA23 M12-VLA24 M12-VLA25 M12-VLA26 M12-VLA27 M12-VLA28 M12-VLA29 M12-VLA30 M12-VLA31 M12-VLA32 M12-VLA33 M12-VLA34 M12-VLA35 M12-VLA36 M12-VLA37 M12-VLA38 M12-VLA39 M12-VLA40 M12-VLA41 M12-VLA42 16:47:26.040 16:47:23.635 16:47:12.968 16:47:23.078 16:47:06.558 16:47:22.809 16:47:28.080 16:47:28.496 16:47:23.521 16:47:26.080 16:47:10.458 16:47:23.423 16:47:21.644 16:47:20.500 16:47:00.400 16:47:10.117 16:47:24.497 16:47:01.593 16:47:13.180 16:47:21.278 16:47:26.433 16:47:14.110 16:47:12.758 16:47:04.535 16:47:23.097 16:47:07.065 16:47:17.801 16:47:14.053 16:47:21.597 16:47:15.401 16:47:19.860 16:47:18.779 16:47:08.166 16:47:07.466 –01:55:20.09 –01:58:30.16 –01:55:30.77 –01:54:37.64 –01:55:02.64 –01:56:36.20 –01:57:20.99 –01:57:03.27 –01:58:34.40 –01:58:56.90 –01:54:14.80 –01:59:22.52 –01:57:03.41 –01:57:36.50 –01:58:06.30 -02:00:16.56 –01:54:51.37 –01:57:50.21 –01:59:32.80 –01:54:31.44 –01:55:56.00 –01:55:34.80 –01:53:59.76 –01:56:10.49 –01:57:15.56 –01:58:24.41 –01:57:23.10 –01:57:36.09 –01:55:32.20 –01:55:28.14 –01:56:19.15 –01:55:37.60 –01:55:44.53 –01:57:46.63 0.03 · · · 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.04 0.04 · · · 0.04 0.05 0.04 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.05 33.0 31.9 24.9 24.8 24.0 23.4 21.5 19.8 18.7 17.1 16.8 16.4 16.1 15.8 15.7 15.3 14.7 14.4 14.0 13.7 13.6 13.4 13.0 12.7 12.6 12.5 12.4 12.3 12.2 12.2 11.7 11.6 11.5 11.2 117 2.9 2.7 2.0 2.8 2.5 2.3 2.9 3.0 2.8 3.0 2.5 2.8 2.2 2.2 3.1 3.0 2.7 2.7 2.5 2.5 2.7 2.1 2.5 2.4 2.3 2.4 2.0 2.0 2.4 2.2 2.1 2.1 2.2 2.1 19.1 22.0 19.8 15.1 14.8 16.9 < 12.1 < 13.3 14.0 < 12.8 < 9.2 < 11.5 12.8 10.4 < 13.2 < 12.7 < 10.8 < 10.8 < 8.3 < 9.3 < 10.2 10.4 < 9.4 < 8.0 8.5 < 7.4 9.0 6.2 12.5 13.8 < 6.1 8.0 11.7 < 6.9 3.7 3.0 2.0 3.5 2.8 2.4 6.2 2.9 3.2 -2.4 6.7 -4.1 2.2 2.1 -4.7 -0.5 1.2 1.5 0.1 1.8 -2.3 2.0 2.2 4.1 2.4 -0.4 1.9 1.8 2.4 2.1 1.8 2.1 2.2 -3.3 · · · ext. · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.36 2.85 1.43 3.19 2.67 2.18 3.50 3.58 2.86 3.60 2.82 3.38 1.87 1.73 3.64 3.51 3.30 3.28 2.65 2.97 3.21 1.33 2.94 2.52 2.25 2.32 1.02 0.69 2.31 1.47 1.54 1.72 1.90 1.89 · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · 𝑟ℎ 𝑟𝑐 · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · −1.77+0.63 −0.71 −1.18+0.49 −0.53 −0.72+0.40 −0.41 −1.62+0.76 −0.85 −1.56+0.65 −0.73 −1.04+0.53 −0.57 < 0.5 < 1.0 −0.98+0.85 −0.95 < 1.3 < 0.6 < 1.2 −0.74+0.69 −0.73 −1.35+0.77 −0.83 < 1.3 < 1.3 < 1.2 < 1.2 < 0.9 < 1.1 < 1.2 −0.82+0.78 −0.83 < 1.1 < 1.0 −1.30+1.02 −1.10 < 0.9 −1.04+0.83 −0.90 −2.07+0.92 −0.85 −0.03+0.77 −0.87 +0.30+0.62 −0.70 < 0.7 −1.24+0.98 −1.06 −0.04+0.75 −0.85 < 0.9 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M12-VLA43 M12-VLA44 M12-VLA45 M12-VLA46 M12-VLA47 M12-VLA48 M12-VLA49 M12-VLA50 M12-VLA51 M12-VLA52 M12-VLA53 M12-VLA54 M12-VLA55 M12-VLA56 M12-VLA57 M12-VLA58 M12-VLA59 M12-VLA60 M12-VLA61 M12-VLA62 M12-VLA63 M12-VLA64 M12-VLA65 M12-VLA66 M12-VLA67 M12-VLA68 M12-VLA69 M13-VLA1 M13-VLA2 M13-VLA3 M13-VLA4 M13-VLA5 M13-VLA6 M13-VLA7 M13-VLA8 M13-VLA9 16:47:28.412 16:47:12.328 16:47:00.933 16:47:09.567 16:47:00.868 16:47:03.502 16:47:08.504 16:47:06.241 16:47:11.699 16:47:01.913 16:47:05.247 16:47:03.314 16:47:04.694 16:47:19.201 16:47:23.312 16:47:07.157 16:47:19.946 16:47:17.778 16:47:21.741 16:47:17.564 16:47:08.818 16:47:16.014 16:47:10.951 16:47:20.346 16:47:09.302 16:47:08.690 16:47:11.506 16:41:46.710 16:41:49.662 16:41:45.938 16:41:37.133 16:41:39.132 16:41:28.611 16:41:32.595 16:41:55.248 16:41:46.288 –01:57:34.40 –01:53:36.23 –01:55:37.53 -02:00:11.23 –01:56:53.35 –01:54:57.25 –01:53:44.92 –01:59:07.58 -02:00:08.08 –01:58:08.40 –01:58:20.97 –01:55:40.24 –01:56:19.69 –01:54:23.42 –01:56:41.47 –01:55:07.23 –01:58:45.93 –01:59:07.02 –01:57:53.94 –01:58:45.29 –01:55:44.03 –01:55:22.99 –01:56:01.43 –01:57:49.40 –01:57:48.79 –01:56:39.28 –01:57:21.39 +36:24:23.86 +36:30:43.31 +36:25:32.45 +36:26:33.60 +36:29:14.13 +36:25:14.89 +36:30:37.64 +36:25:40.09 +36:28:01.58 R.A. unc. Dec. unc. (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 (′′) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.03 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g -1.1 -1.0 -3.0 2.9 -1.0 -3.1 -1.0 4.6 4.2 -1.7 -3.1 -3.5 4.1 -0.1 1.3 -0.1 -1.1 -2.7 2.7 1.5 2.8 1.0 5.9 -2.0 1.4 -0.2 2.6 2.5 2.8 2.1 1.9 2.1 2.5 2.8 2.7 2.1 22.1 21.9 21.7 20.7 20.5 20.4 20.2 20.1 19.7 18.6 17.2 17.0 15.4 14.9 14.6 13.8 13.4 13.2 12.7 12.6 12.0 11.5 11.0 10.4 10.4 9.9 9.5 83.3 67.0 62.5 24.3 26.2 < 13.7 < 16.1 40.5 18.5 4.4 3.6 4.3 4.0 3.9 3.7 4.0 3.2 3.8 3.7 2.8 3.3 2.6 2.9 2.5 2.8 2.6 2.5 2.4 2.4 2.1 2.0 1.9 2.0 2.0 2.0 1.8 4.3 5.8 2.9 2.3 2.5 13.9 10.2 4.5 2.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · 3.62 3.34 3.55 3.47 3.33 3.31 3.47 2.97 3.28 3.30 2.65 2.99 2.44 2.82 2.29 2.51 2.35 2.38 2.13 2.03 1.78 1.60 1.20 1.79 1.52 1.40 0.80 3.38 3.56 2.26 1.32 1.69 3.45 3.49 3.42 1.11 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · 𝑟ℎ 𝑟ℎ · · · · · · · · · 𝑟ℎ > −2.7 > −1.1 > −2.7 > −2.4 > −2.2 > −1.8 > −2.7 > −0.9 > −2.4 > −2.6 > −1.2 > −2.4 > −1.4 > −2.4 > −1.5 > −2.8 > −2.5 > −2.2 > −2.3 > −2.3 > −1.8 > −1.8 > −1.8 > −2.5 > −2.5 > −2.8 > −2.4 −0.55+0.15 −0.16 −0.75+0.25 −0.26 −0.06+0.16 −0.16 −0.94+0.30 −0.31 −0.64+0.31 −0.33 < −0.3 < 0.2 +1.24+0.19 −0.31 −0.34+0.43 −0.44 < 8.9 < 8.2 < 8.7 < 8.5 < 8.4 < 8.5 < 8.7 < 7.8 < 8.2 < 8.1 < 7.4 < 7.7 < 6.8 < 7.6 < 6.8 < 7.2 < 7.0 < 7.1 < 6.6 < 6.7 < 6.4 < 6.4 < 6.2 < 6.5 < 6.2 < 6.2 < 5.9 101.4 87.4 63.8 34.0 32.9 28.8 28.7 22.2 20.9 118 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M13-VLA10 M13-VLA11 M13-VLA12 M13-VLA13 M13-VLA14 M13-VLA15 M13-VLA16 M13-VLA17 M13-VLA18 M13-VLA19 M13-VLA20 M13-VLA21 M13-VLA22 M13-VLA23 M13-VLA24 M13-VLA25 M13-VLA26 M13-VLA27 M13-VLA28 M13-VLA29 M13-VLA30 M13-VLA31 M13-VLA32 M13-VLA33 M13-VLA34 M13-VLA35 M13-VLA36 M13-VLA37 M13-VLA38 M13-VLA39 M13-VLA40 M13-VLA41 M13-VLA42 M13-VLA43 M13-VLA44 16:41:48.586 16:41:31.947 16:41:45.949 16:41:31.561 16:41:32.833 16:41:34.443 16:41:38.371 16:41:23.644 16:41:37.597 16:41:37.338 16:41:51.957 16:41:40.878 16:41:35.020 16:41:34.986 16:41:48.396 16:41:36.558 16:41:46.851 16:41:48.729 16:41:41.895 16:41:39.842 16:41:49.693 16:41:45.419 16:41:48.159 16:41:24.055 16:41:59.197 16:41:54.471 16:41:26.301 16:41:47.562 16:41:57.924 16:41:24.375 16:41:55.244 16:41:28.671 16:41:26.794 16:41:47.259 16:41:55.927 +36:29:23.27 +36:28:38.27 +36:24:22.16 +36:30:32.58 +36:30:39.00 +36:26:36.54 +36:29:54.55 +36:27:56.48 +36:25:16.58 +36:30:42.48 +36:30:01.42 +36:27:15.02 +36:25:33.44 +36:30:07.98 +36:31:01.81 +36:26:17.04 +36:27:31.03 +36:27:54.74 +36:28:11.71 +36:31:01.95 +36:30:41.57 +36:31:09.55 +36:30:42.87 +36:26:39.67 +36:27:50.74 +36:25:27.16 +36:29:23.36 +36:30:22.77 +36:28:16.26 +36:28:11.92 +36:29:04.16 +36:26:04.08 +36:25:48.39 +36:30:11.01 +36:28:31.63 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 2.3 2.2 2.5 2.7 2.8 2.0 2.2 2.6 2.3 2.6 2.8 2.0 2.3 2.4 2.8 2.1 2.0 2.1 2.0 -1.3 -1.1 -2.3 -2.6 0.0 1.7 4.0 0.3 -3.9 1.8 0.9 -6.0 -3.5 3.1 -0.8 -1.7 16.5 19.8 22.9 < 16.8 21.5 10.7 18.5 < 16.1 12.2 18.3 < 13.3 9.2 8.9 < 11.5 38.2 10.8 12.9 < 6.8 < 6.0 42.3 37.5 36.8 31.1 30.8 30.7 30.3 29.6 26.9 26.8 26.1 25.6 23.6 22.9 22.5 21.9 3.0 2.8 4.1 12.3 5.4 2.4 3.2 -0.6 2.8 4.6 3.6 2.1 2.9 5.1 6.2 2.3 2.1 -2.7 1.8 5.7 5.7 6.6 5.3 5.0 5.6 4.7 5.2 4.2 5.0 4.9 4.4 3.5 4.5 4.1 4.1 · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.33 2.14 3.36 3.53 3.49 1.68 2.39 3.55 2.43 3.21 3.25 0.35 2.39 2.83 3.73 1.61 1.14 1.55 0.62 3.45 3.54 3.66 3.42 3.57 3.63 3.42 3.49 3.06 3.43 3.44 3.18 2.95 3.41 2.86 3.10 · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · 𝑟𝑐 · · · · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟𝑐 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · −0.72+0.58 −0.66 −0.15+0.49 −0.52 +0.31+0.58 −0.65 < 1.3 +0.10+0.75 −0.97 −1.48+0.68 −0.79 +0.10+0.58 −0.64 < 1.4 −0.95+0.74 −0.85 +0.33+0.71 −0.97 < 1.3 −1.34+0.73 −0.83 −1.35+0.97 −1.09 < 1.3 +1.27+0.17 −0.36 −0.54+0.75 −0.83 +0.05+0.62 −0.65 < 0.9 < 0.8 > 0.0 > −0.5 > −3.0 > −1.4 > −0.8 > −2.4 > −0.5 > −1.7 > −0.5 > −2.5 > −2.4 > −1.1 > −0.3 > −2.7 > −1.9 > −2.1 0.03 0.03 0.03 0.05 0.03 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.03 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 20.9 20.7 19.9 19.7 19.3 17.7 17.5 17.3 16.6 14.8 14.7 14.5 13.8 13.6 13.0 12.8 12.5 10.5 10.2 < 8.1 < 8.4 < 8.3 < 8.0 < 8.0 < 8.3 < 7.7 < 8.2 < 7.6 < 8.0 < 8.0 < 7.8 < 7.3 < 7.8 < 7.1 < 7.5 119 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M13-VLA45 M13-VLA46 M13-VLA47 M13-VLA48 M13-VLA49 M13-VLA50 M13-VLA51 M13-VLA52 M13-VLA53 M13-VLA54 M13-VLA55 M13-VLA56 M13-VLA57 M13-VLA58 M13-VLA59 M13-VLA60 M13-VLA61 M13-VLA62 M13-VLA63 M13-VLA64 M14-VLA1 M14-VLA2 M14-VLA3 M14-VLA4 M14-VLA5 M14-VLA6 M14-VLA7 M14-VLA8 M14-VLA9 M14-VLA10 M14-VLA11 M14-VLA12 M14-VLA13 M14-VLA14 16:41:48.951 16:41:38.164 16:41:27.789 16:41:39.834 16:41:53.711 16:41:53.708 16:41:35.520 16:41:51.031 16:41:48.539 16:41:48.269 16:41:52.287 16:41:50.332 16:41:50.439 16:41:44.713 16:41:32.104 16:41:32.976 16:41:42.941 16:41:37.853 16:41:41.047 16:41:44.698 17:37:41.709 17:37:40.355 17:37:38.570 17:37:35.292 17:37:38.537 17:37:34.272 17:37:34.121 17:37:34.327 17:37:45.118 17:37:30.096 17:37:37.139 17:37:44.914 17:37:26.534 17:37:44.864 +36:24:52.71 +36:30:24.39 +36:26:52.00 +36:24:40.52 +36:28:55.22 +36:27:50.59 +36:25:04.37 +36:25:30.42 +36:29:36.76 +36:25:07.40 +36:27:15.59 +36:28:41.92 +36:27:32.48 +36:29:28.95 +36:28:08.58 +36:28:39.63 +36:25:25.26 +36:26:08.23 +36:27:43.99 +36:27:19.56 –03:16:59.87 –03:13:21.61 –03:12:54.02 –03:13:52.57 –03:18:02.15 –03:17:35.40 –03:13:15.81 –03:14:42.22 –03:12:34.44 –03:13:42.31 –03:14:47.04 –03:17:38.19 –03:12:49.67 –03:13:25.08 R.A. unc. Dec. unc. (′′) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g -0.5 -2.7 0.7 1.2 -1.9 -1.8 0.2 0.7 -2.5 -1.7 -0.4 -3.2 -1.8 1.7 2.7 3.0 -0.2 1.9 -1.8 0.3 2.4 2.0 2.1 1.9 2.8 2.4 2.0 1.9 2.6 2.1 1.9 3.0 2.6 2.3 21.9 21.7 19.8 19.1 18.5 18.0 17.9 17.4 17.2 16.8 15.3 14.5 14.5 14.0 13.8 13.4 13.3 11.4 11.0 10.2 209.9 176.4 78.3 56.5 52.9 47.8 35.8 26.6 29.1 20.1 26.5 36.2 23.7 23.0 3.6 3.9 3.3 3.3 3.7 3.1 3.1 3.4 3.2 3.4 2.8 2.8 2.5 2.6 2.7 2.6 2.5 2.3 2.0 2.0 2.9 2.1 2.2 1.8 3.8 3.0 2.0 1.8 3.5 2.1 1.7 4.5 3.3 2.6 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.13 2.88 2.80 2.93 2.84 2.53 2.77 2.87 2.50 2.85 2.25 2.14 1.86 2.02 1.91 1.97 2.20 1.61 0.14 0.75 2.64 1.75 1.95 0.90 3.34 2.87 1.57 0.45 3.13 1.83 0.26 3.63 3.07 2.56 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟𝑐 𝑟ℎ · · · · · · · · · 𝑟ℎ · · · · · · · · · 𝑟𝑐 · · · · · · 𝑟𝑐 · · · · · · · · · > −0.8 > −1.6 > −0.9 > −1.2 > −2.7 > −1.1 > −1.2 > −2.4 > −1.8 > −2.7 > −1.6 > −2.1 > −1.3 > −1.8 > −2.3 > −2.2 > −1.9 > −2.5 > −1.7 > −2.3 −0.93+0.05 −0.05 −0.30+0.05 −0.05 −1.86+0.10 −0.11 −1.87+0.12 −0.12 −1.75+0.25 −0.26 −1.39+0.23 −0.24 −1.34+0.22 −0.22 −1.86+0.25 −0.26 −1.46+0.43 −0.46 −2.45+0.37 −0.39 −1.23+0.26 −0.27 −0.19+0.48 −0.51 −1.49+0.50 −0.55 −1.52+0.41 −0.45 < 7.4 < 7.3 < 7.0 < 7.1 < 7.3 < 6.7 < 6.9 < 6.9 < 6.9 < 7.0 < 6.6 < 6.7 < 6.3 < 6.5 < 6.4 < 6.5 < 6.4 < 6.2 < 5.9 < 6.0 278.7 193.4 138.5 100.1 90.0 73.1 53.8 46.9 45.0 42.3 38.6 38.0 36.9 36.3 120 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M14-VLA15 M14-VLA16 M14-VLA17 M14-VLA18 M14-VLA19 M14-VLA20 M14-VLA21 M14-VLA22 M14-VLA23 M14-VLA24 M14-VLA25 M14-VLA26 M14-VLA27 M14-VLA28 M14-VLA29 M14-VLA30 M14-VLA31 M14-VLA32 M14-VLA33 M14-VLA34 M14-VLA35 M14-VLA36 M14-VLA37 M14-VLA38 M14-VLA39 M14-VLA40 M14-VLA41 M14-VLA42 M14-VLA43 M14-VLA44 M14-VLA45 M14-VLA46 M14-VLA47 17:37:37.567 17:37:31.431 17:37:44.727 17:37:45.314 17:37:32.461 17:37:27.167 17:37:25.184 17:37:37.810 17:37:24.650 17:37:31.548 17:37:40.898 17:37:41.520 17:37:35.825 17:37:36.384 17:37:42.537 17:37:37.839 17:37:32.014 17:37:43.581 17:37:31.896 17:37:22.072 17:37:41.649 17:37:32.187 17:37:38.698 17:37:26.251 17:37:29.837 17:37:37.253 17:37:36.208 17:37:28.358 17:37:38.014 17:37:24.972 17:37:35.890 17:37:31.535 17:37:40.029 –03:15:11.85 –03:12:20.00 –03:14:55.20 –03:12:45.87 –03:11:56.15 –03:15:57.80 –03:14:12.67 –03:13:37.75 –03:16:18.22 –03:11:39.99 –03:13:04.62 –03:13:20.16 –03:12:14.52 –03:15:50.75 –03:17:33.45 –03:13:36.75 –03:16:55.59 –03:11:56.20 –03:14:45.36 –03:14:17.27 –03:16:48.44 –03:13:13.98 –03:12:41.72 –03:12:36.06 –03:13:41.91 –03:13:08.33 –03:17:52.43 –03:16:32.25 –03:13:55.47 –03:15:28.56 –03:14:34.70 –03:12:17.39 –03:13:55.25 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.05 0.05 0.03 0.03 0.05 0.05 0.05 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 36.0 34.1 30.4 29.1 26.1 23.8 22.2 21.2 21.0 20.5 20.4 19.4 19.1 18.8 18.8 17.6 16.7 16.3 15.8 15.7 15.3 15.2 14.8 14.7 14.4 14.0 12.8 12.7 12.5 12.5 12.3 12.0 11.9 121 1.9 2.3 2.1 2.6 2.5 2.3 2.4 2.0 2.8 2.7 2.1 2.1 2.2 2.0 2.7 2.1 2.3 2.8 1.9 2.9 2.3 2.0 2.2 2.6 2.0 2.0 2.5 2.2 2.0 2.4 1.9 2.4 1.9 34.0 23.5 31.2 17.2 14.3 16.8 20.7 8.6 < 10.5 < 11.0 11.2 21.6 11.6 21.3 12.2 12.5 11.1 < 11.5 10.1 < 12.3 10.7 6.8 7.0 < 11.0 7.7 10.8 < 10.0 < 8.2 9.2 < 8.7 < 5.1 < 8.4 < 5.6 1.7 2.8 2.4 3.2 3.1 2.6 2.9 1.9 6.2 5.9 2.4 2.2 2.7 1.8 3.6 1.9 2.6 5.1 1.9 6.0 2.6 2.1 2.3 -1.6 2.1 2.0 4.3 0.7 1.8 -4.8 4.6 4.1 -2.3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.57 2.69 2.16 3.04 2.96 2.54 2.78 1.20 3.25 3.29 2.06 1.96 2.51 1.09 3.23 1.22 2.40 3.38 1.05 3.53 2.48 1.81 2.16 3.27 1.89 1.64 3.12 2.63 0.96 2.87 0.18 2.72 1.29 𝑟𝑐 · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · 𝑟ℎ · · · 𝑟ℎ · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · 𝑟𝑐 · · · 𝑟ℎ −0.19+0.24 −0.24 −1.25+0.44 −0.48 +0.08+0.34 −0.34 −1.80+0.66 −0.72 −2.02+0.72 −0.76 −1.19+0.59 −0.65 −0.26+0.58 −0.61 −2.76+0.61 −0.49 < 0.3 < 0.4 −2.01+0.73 −0.76 +0.35+0.48 −0.49 −1.72+0.81 −0.88 +0.41+0.45 −0.44 −1.52+1.00 −1.07 −1.15+0.64 −0.67 −1.42+0.87 −0.95 < 1.2 −1.53+0.73 −0.79 < 1.3 −1.27+0.93 −1.01 −2.41+0.85 −0.71 −2.26+0.94 −0.80 < 1.2 −2.03+0.90 −0.86 −0.90+0.78 −0.83 < 1.2 < 1.0 −1.04+0.84 −0.89 < 1.1 < 0.0 < 1.1 < 0.4 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M14-VLA48 M14-VLA49 M14-VLA50 M14-VLA51 M14-VLA52 M14-VLA53 M14-VLA54 M14-VLA55 M14-VLA56 M14-VLA57 M14-VLA58 M14-VLA59 M14-VLA60 M14-VLA61 M14-VLA62 M19-VLA1 M19-VLA2 M19-VLA3 M19-VLA4 M19-VLA5 M19-VLA6 M19-VLA7 M19-VLA8 M19-VLA9 M19-VLA10 M19-VLA11 M19-VLA12 M19-VLA13 M19-VLA14 M19-VLA15 M19-VLA16 M19-VLA17 M19-VLA18 M19-VLA19 17:37:38.470 17:37:43.495 17:37:37.380 17:37:39.144 17:37:40.089 17:37:28.487 17:37:47.987 17:37:49.132 17:37:31.174 17:37:25.994 17:37:28.072 17:37:26.735 17:37:27.873 17:37:35.998 17:37:41.547 17:02:45.415 17:02:44.142 17:02:34.663 17:02:29.270 17:02:32.249 17:02:31.522 17:02:41.068 17:02:25.886 17:02:49.463 17:02:36.248 17:02:41.405 17:02:44.906 17:02:36.840 17:02:44.407 17:02:53.947 17:02:42.760 17:02:43.882 17:02:30.999 17:02:48.166 –03:12:46.99 –03:15:11.79 –03:13:52.38 –03:14:26.13 –03:13:55.18 –03:11:52.67 –03:13:26.71 –03:14:39.59 –03:11:50.03 –03:13:03.10 –03:16:05.66 –03:15:22.00 –03:13:58.08 –03:13:18.23 –03:15:17.97 –26:18:21.17 –26:17:48.95 –26:14:47.97 –26:14:35.45 –26:18:14.03 –26:16:11.57 –26:13:06.56 –26:13:52.98 –26:15:45.12 –26:19:43.85 –26:14:21.17 –26:18:22.14 –26:16:56.20 –26:14:19.92 –26:15:46.24 –26:17:20.54 –26:15:03.62 –26:12:48.02 –26:17:02.80 R.A. unc. Dec. unc. (′′) 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.12 0.12 0.12 0.12 0.12 0.09 (′′) 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.10 0.10 0.10 0.10 0.10 0.08 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 2.1 2.1 2.0 1.9 1.9 -4.6 -3.2 0.5 -1.3 1.6 -1.4 -0.8 2.6 0.7 -1.5 3.7 3.0 3.1 3.1 2.8 2.8 3.3 3.9 2.7 3.9 2.5 3.2 2.5 2.9 3.7 2.3 2.7 4.0 2.9 < 6.8 < 6.7 < 5.4 7.8 < 5.7 23.8 21.1 21.0 18.9 17.1 13.7 13.6 12.8 11.6 9.7 323.8 219.4 41.0 51.6 46.6 45.4 35.8 28.2 30.0 35.6 23.3 39.5 23.5 17.4 < 14.5 14.4 9.9 13.7 15.5 -0.3 3.7 1.5 1.8 5.1 3.9 3.5 3.6 3.5 3.2 2.5 2.5 2.3 1.9 1.9 3.6 2.9 2.4 2.7 2.8 2.1 3.7 4.6 2.9 4.4 2.4 3.2 2.1 2.8 4.6 2.0 2.5 4.5 2.9 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? 2.06 1.90 0.94 0.82 1.30 3.45 3.24 3.25 3.17 3.04 2.41 2.42 2.20 1.45 1.46 2.84 2.24 1.46 2.42 2.49 1.41 3.06 3.46 2.63 3.67 1.90 2.79 0.88 2.29 3.63 1.68 1.70 3.62 2.52 · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · < 0.9 < 0.9 < 0.5 −1.16+0.95 −1.02 < 0.7 > −1.2 > −1.3 > −1.5 > −2.2 > −2.3 > −2.1 > −2.1 > −2.1 > −1.6 > −2.7 −1.19+0.04 −0.04 −0.91+0.05 −0.05 −2.09+0.23 −0.23 −1.27+0.21 −0.22 −0.67+0.25 −0.25 −0.54+0.23 −0.23 −1.29+0.39 −0.41 −1.30+0.61 −0.67 −0.90+0.38 −0.40 +0.08+0.55 −0.56 −1.19+0.41 −0.43 +0.86+0.37 −0.41 −0.64+0.41 −0.42 −0.75+0.70 −0.72 < 1.2 −1.35+0.57 −0.60 −2.42+0.77 −0.67 −1.38+1.16 −1.19 −0.90+0.78 −0.83 11.9 11.7 11.6 10.9 10.9 < 8.2 < 8.1 < 8.0 < 7.8 < 7.7 < 6.6 < 6.5 < 6.4 < 5.9 < 5.9 466.5 290.5 77.8 76.2 57.2 53.7 52.8 41.3 39.4 34.6 33.4 30.0 28.6 21.7 21.7 21.6 21.6 20.6 20.1 122 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M19-VLA20 M19-VLA21 M19-VLA22 M19-VLA23 M19-VLA24 M19-VLA25 M19-VLA26 M19-VLA27 M19-VLA28 M19-VLA29 M19-VLA30 M19-VLA31 M19-VLA32 M19-VLA33 M19-VLA34 M19-VLA35 M19-VLA36 M19-VLA37 M19-VLA38 M22-VLA1 M22-VLA2 M22-VLA3 M22-VLA4 M22-VLA5 M22-VLA6 M22-VLA7 M22-VLA8 M22-VLA9 M22-VLA10 M22-VLA11 M22-VLA12 M22-VLA13 17:02:48.800 17:02:37.230 17:02:30.649 17:02:36.357 17:02:25.914 17:02:45.942 17:02:28.860 17:02:47.823 17:02:31.439 17:02:45.311 17:02:33.093 17:02:31.528 17:02:35.341 17:02:29.925 17:02:37.488 17:02:32.410 17:02:39.947 17:02:38.008 17:02:33.296 18:36:25.825 18:36:23.824 18:36:24.518 18:36:20.669 18:36:32.652 18:36:34.884 18:36:08.773 18:36:18.458 18:36:25.318 18:36:36.471 18:36:23.374 18:36:35.261 18:36:12.859 –26:15:07.12 –26:13:09.58 –26:17:07.00 –26:14:57.10 –26:16:50.42 –26:15:39.39 –26:15:25.23 –26:18:15.25 –26:14:24.43 –26:16:22.09 –26:18:02.57 –26:14:34.73 –26:17:48.43 –26:17:22.85 –26:15:58.37 –26:14:46.33 –26:16:04.75 –26:15:16.24 –26:17:27.58 –23:54:13.74 –23:54:33.51 –23:50:41.68 –23:51:19.92 –23:52:39.87 –23:55:40.01 –23:54:14.54 –23:57:18.07 –23:55:31.12 –23:55:01.07 –23:50:54.69 –23:54:56.75 –23:53:31.10 0.09 0.12 0.12 0.09 0.12 0.12 0.12 0.12 0.09 0.09 0.12 0.12 0.12 0.09 0.12 0.09 0.09 0.12 0.09 0.10 0.10 · · · · · · 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 3.0 3.2 2.6 2.5 3.0 2.5 2.8 3.3 2.9 2.5 2.8 2.9 2.5 2.7 2.3 2.8 2.4 2.3 1.7 2.2 2.4 3.9 3.2 3.1 3.1 3.7 3.6 2.5 2.8 3.4 3.1 3.3 16.8 11.9 15.2 12.6 < 9.4 < 7.3 < 8.1 14.5 16.3 11.8 10.5 < 8.2 11.9 19.6 < 5.8 14.2 10.6 < 6.7 11.0 59.2 53.2 895.0 557.9 78.7 50.9 47.1 46.0 34.3 40.4 38.0 32.3 23.1 3.0 3.5 2.4 2.2 5.1 4.5 5.5 3.2 2.7 2.3 2.8 8.9 2.4 2.6 3.7 2.6 2.0 4.4 2.1 2.0 2.0 4.1 3.6 2.9 3.1 4.2 4.3 2.3 3.6 3.7 3.0 3.0 · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext. ext. · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.65 2.92 1.91 1.17 2.77 1.87 2.11 3.13 2.20 1.71 2.23 2.06 1.81 2.19 0.13 1.78 0.48 0.81 1.71 0.43 0.27 3.59 3.05 2.57 2.86 3.47 3.27 1.28 2.96 3.38 2.67 2.65 · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟𝑐 · · · 𝑟ℎ 𝑟ℎ · · · 𝑟𝑐 𝑟𝑐 · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · 𝑟ℎ 𝑟𝑐 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ −0.61+0.78 −0.82 −1.52+1.06 −1.08 −0.66+0.70 −0.72 −1.29+0.73 −0.77 < 0.6 < −0.3 < 0.4 −0.59+0.96 −1.03 −0.11+0.77 −0.81 −1.08+0.83 −0.87 −1.38+1.03 −1.07 < 1.0 −0.63+0.88 −0.95 +0.83+0.44 −0.61 < 0.6 +0.23+0.73 −0.89 −0.44+0.87 −0.93 < 0.9 > −2.6 +0.00+0.16 −0.16 −0.06+0.19 −0.19 −0.76+0.02 −0.02 −0.92+0.03 −0.03 −1.11+0.15 −0.15 −1.36+0.24 −0.24 −1.31+0.33 −0.35 −1.38+0.34 −0.36 −1.99+0.25 −0.26 −0.87+0.33 −0.35 −0.47+0.40 −0.41 −0.99+0.38 −0.39 −1.52+0.52 −0.55 0.08 0.10 0.10 0.08 0.10 0.10 0.10 0.10 0.08 0.08 0.10 0.10 0.10 0.08 0.10 0.08 0.08 0.10 0.08 0.09 0.09 · · · · · · 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 20.0 18.6 18.5 18.5 18.3 18.0 17.1 17.0 16.7 16.2 15.7 14.7 14.2 13.8 12.7 12.5 12.0 11.9 < 7.2 59.2 54.3 1130.8 741.0 110.8 77.2 70.0 69.9 63.0 52.5 43.8 43.6 36.5 123 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M22-VLA14 M22-VLA15 M22-VLA16 M22-VLA17 M22-VLA18 M22-VLA19 M22-VLA20 M22-VLA21 M22-VLA22 M22-VLA23 M22-VLA24 M22-VLA25 M22-VLA26 M22-VLA27 M22-VLA28 M22-VLA29 M22-VLA30 M22-VLA31 M22-VLA32 M22-VLA33 M22-VLA34 M22-VLA35 M22-VLA36 M22-VLA37 M22-VLA38 M22-VLA39 M22-VLA40 M22-VLA41 M22-VLA42 M22-VLA43 M22-VLA44 M22-VLA45 M22-VLA46 M22-VLA47 18:36:38.363 18:36:13.846 18:36:18.314 18:36:29.852 18:36:22.728 18:36:32.551 18:36:28.205 18:36:35.316 18:36:24.859 18:36:33.174 18:36:32.368 18:36:09.529 18:36:10.950 18:36:15.556 18:36:31.471 18:36:34.254 18:36:16.704 18:36:12.108 18:36:34.556 18:36:32.917 18:36:25.447 18:36:36.963 18:36:23.400 18:36:30.021 18:36:35.162 18:36:22.860 18:36:20.486 18:36:24.299 18:36:25.165 18:36:22.421 18:36:29.404 18:36:27.704 18:36:24.478 18:36:27.975 –23:54:24.28 –23:52:50.77 –23:57:36.42 –23:53:07.27 –23:51:17.07 –23:55:28.63 –23:54:05.30 –23:56:21.10 –23:55:14.95 –23:55:45.83 –23:52:46.70 –23:53:21.18 –23:56:07.93 –23:53:07.00 –23:52:54.68 –23:52:02.19 –23:54:59.38 –23:55:21.54 –23:55:02.33 –23:51:39.76 –23:54:51.74 –23:53:53.00 –23:55:20.15 –23:56:27.54 –23:54:32.72 –23:55:13.08 –23:53:37.10 –23:55:35.45 –23:55:18.21 –23:55:58.74 –23:55:41.58 –23:53:56.62 –23:53:24.63 –23:52:59.22 0.10 0.10 0.10 0.10 0.13 0.10 0.10 0.13 0.10 0.10 0.13 0.13 0.13 0.10 0.10 0.13 0.10 0.13 0.13 0.13 0.10 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.10 0.10 0.10 3.3 3.0 3.9 2.7 3.1 2.6 2.6 3.5 2.7 3.1 2.7 3.4 4.0 2.8 2.5 3.4 2.7 3.6 3.0 3.4 2.8 3.1 2.6 3.1 2.9 2.6 2.6 2.7 2.3 2.7 2.6 2.6 2.4 -0.9 20.7 31.8 30.9 23.5 < 10.1 33.3 16.5 < 13.3 19.5 17.5 14.8 14.6 22.2 18.1 16.2 < 12.4 17.9 < 10.9 12.4 < 11.9 11.9 < 11.4 8.7 < 9.0 < 8.4 9.9 < 6.4 < 7.4 10.8 < 7.9 < 8.1 11.7 11.9 12.1 3.8 2.9 5.3 2.2 3.5 2.5 2.0 6.9 2.1 2.9 3.0 3.9 5.0 2.8 2.6 7.6 2.5 11.3 3.0 11.0 2.0 5.7 2.2 0.4 2.4 2.2 2.4 6.0 2.2 5.8 4.8 2.1 2.3 2.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.30 2.72 3.56 1.78 3.01 2.30 1.00 3.32 0.99 2.58 2.45 3.42 3.50 2.25 2.20 3.26 1.80 2.91 2.54 3.33 0.67 3.00 1.06 2.58 2.58 0.97 1.03 1.31 1.06 1.73 1.88 0.93 0.88 1.59 𝑟ℎ 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟ℎ · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟𝑐 𝑟𝑐 𝑟𝑐 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟𝑐 𝑟ℎ −1.81+0.65 −0.72 −0.24+0.41 −0.42 −0.11+0.68 −0.74 −0.80+0.43 −0.43 < −0.7 +0.79+0.37 −0.39 −1.48+0.52 −0.53 < 0.4 −0.81+0.51 −0.51 −1.18+0.68 −0.72 −1.77+0.72 −0.79 −1.69+0.93 −0.97 −0.36+0.89 −1.02 −0.93+0.64 −0.67 −1.23+0.63 −0.67 < 0.5 −0.80+0.61 −0.63 < 1.0 −1.42+0.93 −1.00 < 1.2 −1.27+0.78 −0.80 < 1.2 −2.03+0.91 −0.85 < 1.0 < 0.9 −1.32+0.94 −0.98 < 0.4 < 0.8 −0.85+0.88 −0.94 < 1.0 < 1.0 −0.42+0.87 −0.90 −0.30+0.85 −0.92 > −2.6 0.09 0.09 0.09 0.09 0.11 0.09 0.09 0.11 0.09 0.09 0.11 0.11 0.11 0.09 0.09 0.11 0.09 0.11 0.11 0.11 0.09 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.09 0.09 0.09 35.4 34.2 31.4 30.1 27.4 26.0 25.9 25.4 25.0 24.9 24.9 24.1 23.9 23.8 23.3 23.3 22.7 19.0 18.8 18.3 17.5 16.5 16.4 16.0 15.6 14.7 14.7 14.4 13.8 13.7 13.4 13.2 12.8 < 7.3 124 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M28-VLA1 M28-VLA2 M28-VLA3 M28-VLA4 M28-VLA5 M28-VLA6 M28-VLA7 M28-VLA8 M28-VLA9 M28-VLA10 M28-VLA11 M28-VLA12 M28-VLA13 M28-VLA14 M28-VLA15 M28-VLA16 M28-VLA17 M28-VLA18 M28-VLA19 M28-VLA20 M28-VLA21 M28-VLA22 M28-VLA23 M28-VLA24 M28-VLA25 M28-VLA26 M28-VLA27 M28-VLA28 M28-VLA29 M28-VLA30 M28-VLA31 M28-VLA32 M28-VLA33 18:24:43.216 18:24:17.270 18:24:32.008 18:24:31.821 18:24:34.068 18:24:36.364 18:24:47.423 18:24:29.573 18:24:44.682 18:24:36.231 18:24:16.918 18:24:44.847 18:24:36.287 18:24:25.481 18:24:19.790 18:24:32.338 18:24:33.026 18:24:20.590 18:24:44.044 18:24:20.538 18:24:25.554 18:24:41.940 18:24:27.106 18:24:42.810 18:24:31.826 18:24:28.865 18:24:46.269 18:24:29.338 18:24:35.644 18:24:42.679 18:24:32.188 18:24:38.855 18:24:26.200 –24:53:09.88 –24:52:44.53 –24:52:10.90 –24:48:49.81 –24:53:04.48 –24:53:45.15 –24:52:23.43 –24:49:36.33 –24:51:17.97 –24:52:26.08 –24:52:32.46 –24:53:25.78 –24:49:14.26 –24:54:29.26 –24:54:09.15 –24:55:38.33 –24:50:52.87 –24:51:53.41 –24:49:43.12 –24:51:32.79 –24:54:56.29 –24:52:52.06 –24:54:46.92 –24:53:39.72 –24:49:24.75 –24:49:42.13 –24:52:08.80 –24:50:53.96 –24:52:53.31 –24:53:18.50 –24:52:14.77 –24:53:03.79 –24:53:13.63 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.04 0.06 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.06 0.06 0.04 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04 2.9 3.7 2.6 3.5 2.5 2.8 3.6 3.0 3.5 2.5 4.0 3.6 3.4 3.5 3.9 3.9 2.7 3.1 3.8 3.2 3.8 2.8 3.5 3.2 3.2 3.1 3.2 2.6 2.6 3.0 2.6 2.7 2.9 278.2 112.7 57.9 34.0 25.9 26.7 < 14.2 23.9 11.0 19.4 19.5 < 12.3 17.1 16.3 20.9 < 16.9 16.4 < 10.7 < 15.4 18.5 < 14.5 14.3 24.1 < 10.9 14.6 10.3 < 11.9 < 6.9 7.7 < 9.9 < 6.3 14.2 15.6 3.6 6.1 2.1 4.4 2.2 2.8 8.5 3.2 3.5 2.1 5.7 5.0 3.9 3.9 5.9 7.5 2.4 6.5 -5.7 3.7 -4.3 2.9 4.4 1.5 3.4 3.2 4.1 6.3 2.2 -2.9 3.1 2.5 2.7 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · 2.56 3.55 0.17 3.39 0.91 1.74 3.34 2.71 2.86 0.82 3.60 3.00 3.09 2.80 3.52 3.42 1.34 2.77 3.58 2.85 3.17 2.19 2.86 2.70 2.81 2.66 3.07 1.53 0.94 2.51 0.13 1.63 1.79 · · · · · · 𝑟𝑐 · · · 𝑟ℎ 𝑟ℎ · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ · · · 𝑟𝑐 𝑟ℎ 𝑟ℎ −0.52+0.04 −0.04 −1.27+0.14 −0.15 −2.15+0.10 −0.11 −1.22+0.36 −0.40 −1.51+0.25 −0.27 −1.26+0.31 −0.33 < −1.0 −1.36+0.38 −0.42 −2.76+0.60 −0.49 −1.28+0.34 −0.35 −1.35+0.80 −0.96 < −0.1 −1.14+0.68 −0.79 −1.12+0.72 −0.83 −0.52+0.84 −1.04 < 1.1 −0.73+0.50 −0.52 < 0.3 < 1.3 −0.13+0.68 −0.74 < 1.2 −0.71+0.67 −0.73 +0.62+0.54 −0.67 < 0.9 −0.49+0.79 −0.88 −1.44+0.91 −1.02 < 1.1 < 0.1 −1.85+0.82 −0.86 < 1.0 < 0.2 −0.05+0.66 −0.68 +0.61+0.51 −0.67 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.06 0.09 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.06 0.09 0.09 0.06 0.09 0.09 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.06 0.06 341.2 184.7 134.2 54.2 46.7 43.5 40.2 40.1 35.1 31.9 31.1 26.8 25.7 24.3 24.0 22.7 21.7 20.3 19.4 19.1 19.1 18.5 18.0 17.8 17.2 17.2 17.2 15.6 15.5 15.3 14.5 14.4 11.2 125 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g M28-VLA34 M28-VLA35 M28-VLA36 M28-VLA37 M28-VLA38 M28-VLA39 M28-VLA40 M28-VLA41 M28-VLA42 M28-VLA43 M28-VLA44 M28-VLA45 M30-VLA1 M30-VLA2 M30-VLA3 M30-VLA4 M30-VLA5 M30-VLA6 M30-VLA7 M30-VLA8 M30-VLA9 M30-VLA10 M30-VLA11 M30-VLA12 M30-VLA13 M30-VLA14 M30-VLA15 M30-VLA16 M30-VLA17 M30-VLA18 M30-VLA19 M30-VLA20 M30-VLA21 18:24:34.875 18:24:19.254 18:24:34.696 18:24:22.529 18:24:26.160 18:24:42.763 18:24:22.378 18:24:40.486 18:24:25.923 18:24:32.289 18:24:36.764 18:24:34.223 21:40:33.245 21:40:08.296 21:40:16.220 21:40:21.591 21:40:21.361 21:40:26.572 21:40:08.801 21:40:12.875 21:40:12.571 21:40:16.085 21:40:27.767 21:40:29.259 21:40:21.085 21:40:32.126 21:40:34.656 21:40:15.055 21:40:07.029 21:40:11.603 21:40:35.586 21:40:16.400 21:40:13.091 –24:53:21.86 –24:53:29.65 –24:55:09.75 –24:49:58.96 –24:54:04.61 –24:53:20.62 –24:52:39.74 –24:52:34.84 –24:50:38.09 –24:50:19.93 –24:52:56.14 –24:52:24.45 –23:10:21.53 –23:10:01.28 –23:08:20.12 –23:11:28.01 –23:13:12.65 –23:11:18.82 –23:12:16.57 –23:13:23.15 –23:11:46.96 –23:09:57.75 –23:10:27.54 –23:10:31.65 –23:07:19.96 –23:09:52.49 –23:10:57.23 –23:12:17.84 –23:11:50.64 –23:11:02.33 –23:12:12.97 –23:07:38.18 –23:09:13.62 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.04 2.7 -6.7 4.1 4.0 -1.7 4.3 2.5 -1.9 -0.3 -3.0 1.1 -0.3 2.2 2.4 2.2 1.8 2.2 1.8 2.4 2.5 2.1 1.9 1.8 1.9 2.5 2.0 2.2 2.0 2.5 2.1 2.3 2.6 2.1 12.0 25.6 22.6 20.8 17.5 16.3 15.5 15.1 14.3 14.1 13.1 11.3 481.3 150.9 192.6 40.8 38.5 34.2 32.4 30.3 26.1 24.8 29.3 32.1 15.7 22.5 24.5 12.5 17.4 14.7 24.6 14.5 12.2 2.4 5.0 4.4 4.1 3.3 3.2 3.1 2.4 2.7 2.4 2.3 2.1 2.7 3.0 2.7 1.7 2.3 1.7 3.3 3.5 2.2 1.8 1.7 1.8 3.4 2.3 2.6 2.2 3.7 2.4 3.3 3.2 2.3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1.25 3.31 2.98 3.22 2.38 2.54 2.39 1.80 2.21 1.89 1.16 0.39 2.59 3.27 2.81 0.69 2.43 1.15 3.40 3.35 2.41 1.62 1.34 1.66 3.47 2.48 2.89 2.21 3.62 2.43 3.41 3.42 2.60 𝑟ℎ · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · +0.16+0.67 −0.80 > −1.9 > −1.8 > −1.9 > −1.7 > −2.0 > −2.2 > −1.1 > −1.8 > −1.4 > −1.5 > −1.9 −0.21+0.02 −0.02 −0.97+0.06 −0.06 +0.04+0.05 −0.05 −1.12+0.14 −0.14 −1.24+0.20 −0.20 −1.44+0.16 −0.17 −1.32+0.31 −0.33 −1.22+0.35 −0.38 −1.47+0.27 −0.28 −1.60+0.23 −0.25 −1.02+0.20 −0.21 −0.53+0.21 −0.21 −2.30+0.59 −0.63 −1.07+0.33 −0.35 −0.74+0.35 −0.37 −2.04+0.52 −0.58 −1.09+0.65 −0.77 −1.38+0.52 −0.58 +0.18+0.47 −0.50 −1.11+0.71 −0.81 −1.51+0.59 −0.67 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.07 0.05 0.05 0.07 0.07 10.7 < 10.9 < 10.2 < 10.1 < 9.5 < 9.2 < 8.8 < 8.5 < 8.2 < 8.3 < 7.9 < 7.5 518.5 213.3 189.9 60.8 59.7 57.1 51.5 46.4 43.9 43.8 42.1 38.7 34.9 32.7 31.6 25.3 24.7 23.6 22.8 20.8 20.4 126 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M30-VLA22 M30-VLA23 M30-VLA24 M30-VLA25 M30-VLA26 M30-VLA27 M30-VLA28 M30-VLA29 M30-VLA30 M30-VLA31 M30-VLA32 M30-VLA33 M30-VLA34 M30-VLA35 M30-VLA36 M30-VLA37 M30-VLA38 M30-VLA39 M30-VLA40 M30-VLA41 M30-VLA42 M30-VLA43 M30-VLA44 M30-VLA45 M30-VLA46 M30-VLA47 M30-VLA48 M30-VLA49 M30-VLA50 M30-VLA51 M30-VLA52 M30-VLA53 M30-VLA54 M30-VLA55 M30-VLA56 21:40:36.664 21:40:28.178 21:40:25.701 21:40:32.054 21:40:22.641 21:40:14.900 21:40:21.511 21:40:26.496 21:40:36.312 21:40:16.416 21:40:11.539 21:40:22.928 21:40:24.310 21:40:12.602 21:40:37.136 21:40:20.073 21:40:27.378 21:40:30.748 21:40:16.462 21:40:11.756 21:40:28.936 21:40:31.027 21:40:22.405 21:40:18.739 21:40:31.007 21:40:19.659 21:40:26.996 21:40:14.072 21:40:17.394 21:40:12.302 21:40:25.035 21:40:26.316 21:40:18.058 21:40:24.453 21:40:31.815 –23:12:09.20 –23:13:22.28 –23:12:41.87 –23:11:47.25 –23:07:44.00 –23:10:28.05 –23:07:12.79 –23:11:20.08 –23:09:46.57 –23:14:01.39 –23:08:38.22 –23:08:28.66 –23:12:33.53 –23:09:36.91 –23:11:17.23 –23:11:48.98 –23:10:49.25 –23:09:06.97 –23:08:43.05 –23:08:46.51 –23:11:58.15 –23:09:08.56 –23:10:48.91 –23:12:34.49 –23:10:19.25 –23:13:18.48 –23:13:07.01 –23:12:02.09 –23:11:34.39 –23:09:40.05 –23:11:49.42 –23:09:10.44 –23:09:52.09 –23:10:56.10 –23:13:43.83 R.A. unc. Dec. unc. (′′) 0.04 0.04 0.03 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 (′′) 0.07 0.07 0.05 0.05 0.07 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.05 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 2.5 2.3 2.1 1.9 2.4 2.0 2.6 1.8 2.5 2.7 2.4 2.1 1.9 2.0 2.5 1.8 1.8 2.1 2.1 2.3 1.9 2.1 1.8 2.0 2.0 2.1 2.1 2.0 1.8 2.1 1.7 1.9 1.8 1.7 0.7 < 11.2 9.1 15.7 15.2 < 8.5 9.7 16.5 < 5.1 < 9.8 < 11.3 < 9.0 < 6.4 < 6.0 < 6.9 11.5 8.5 < 5.0 < 7.2 6.9 9.3 < 6.0 < 7.2 < 4.8 6.6 < 6.2 < 7.4 < 7.3 < 6.4 6.1 < 6.8 < 5.2 < 6.0 < 5.2 < 5.0 22.2 7.5 2.9 2.2 2.2 3.2 1.9 3.5 3.9 1.6 -0.4 -2.9 1.2 3.6 1.5 3.3 1.7 2.3 2.4 2.3 2.9 -1.2 0.1 2.6 2.0 1.5 -5.3 -4.1 0.6 1.9 2.5 0.1 -1.0 2.3 -1.4 4.0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.61 2.93 2.08 2.49 3.06 1.69 3.58 1.14 3.42 3.49 3.25 2.32 1.84 2.48 3.49 1.13 1.21 2.60 2.45 3.12 1.96 2.63 0.07 1.95 2.10 2.58 2.58 2.23 1.34 2.52 1.23 1.88 1.31 0.55 3.69 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · < 0.3 −2.17+0.81 −0.79 −0.36+0.52 −0.54 −0.41+0.52 −0.54 < 0.2 −1.34+0.67 −0.74 +0.17+0.71 −0.84 < −0.7 < 1.1 < 1.3 < 1.0 < 0.4 < 0.1 < 0.5 −0.48+0.95 −1.16 −1.07+0.71 −0.77 < −0.2 < 0.8 −1.62+1.00 −1.04 −0.85+1.02 −1.19 < 0.4 < 0.9 < 0.0 −1.55+0.97 −1.02 < 0.8 < 1.0 < 1.0 < 0.8 −1.59+0.96 −1.01 < 1.0 < 0.5 < 0.9 < 0.7 < 0.7 > −1.6 20.0 19.6 17.7 17.4 16.9 15.3 14.9 14.5 14.3 13.4 13.4 12.9 12.9 12.8 12.7 12.2 12.1 12.1 11.9 11.8 11.6 11.4 11.3 11.1 10.8 10.7 10.6 10.6 10.4 10.4 10.1 9.6 9.6 9.2 < 7.8 127 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M30-VLA57 M30-VLA58 M30-VLA59 M30-VLA60 M30-VLA61 M30-VLA62 M30-VLA63 M30-VLA64 M30-VLA65 M30-VLA66 M30-VLA67 M54-VLA1 M54-VLA2 M54-VLA3 M54-VLA4 M54-VLA5 M54-VLA6 M54-VLA7 M54-VLA8 M54-VLA9 M54-VLA10 M54-VLA11 M54-VLA12 M54-VLA13 M54-VLA14 M54-VLA15 M54-VLA16 M54-VLA17 M54-VLA18 M54-VLA19 M54-VLA20 M54-VLA21 M54-VLA22 M54-VLA23 M54-VLA24 21:40:07.829 21:40:21.160 21:40:10.795 21:40:32.774 21:40:27.210 21:40:28.394 21:40:24.396 21:40:32.983 21:40:13.678 21:40:14.661 21:40:29.064 18:55:10.665 18:55:00.122 18:55:11.777 18:54:58.440 18:54:52.911 18:54:59.421 18:55:06.593 18:55:15.648 18:55:14.398 18:55:03.671 18:55:08.652 18:54:52.250 18:54:56.654 18:55:14.580 18:55:18.510 18:55:01.573 18:54:58.990 18:55:15.482 18:54:54.979 18:55:09.718 18:54:51.100 18:54:59.927 18:55:15.685 18:55:02.192 –23:09:31.28 –23:07:15.18 –23:08:19.12 –23:12:44.82 –23:08:11.27 –23:12:56.42 –23:08:11.74 –23:11:43.67 –23:11:43.89 –23:11:17.39 –23:10:14.73 –30:26:51.19 –30:30:49.71 –30:25:57.91 –30:29:32.40 –30:29:09.82 –30:27:25.60 –30:25:29.20 –30:28:05.51 –30:28:57.11 –30:29:11.76 –30:27:26.11 –30:30:57.41 –30:27:13.97 –30:27:49.34 –30:29:18.63 –30:27:33.74 –30:26:18.13 –30:28:09.23 –30:27:09.12 –30:26:10.28 –30:30:38.91 –30:26:04.15 –30:27:55.04 –30:26:35.36 R.A. unc. Dec. unc. (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.04 (′′) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.10 0.10 0.07 0.10 0.10 0.10 0.10 0.10 0.07 0.10 0.10 0.10 0.07 0.07 0.07 0.07 0.07 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g -2.6 2.7 1.9 -3.0 -2.0 1.2 -2.2 -0.5 0.0 2.4 0.7 4.5 4.1 4.8 3.6 3.8 3.5 4.7 4.1 3.9 3.3 3.7 4.8 3.8 4.1 4.7 3.5 3.9 4.1 3.6 -4.0 -4.1 -6.6 -1.0 1.0 20.9 20.7 17.8 15.4 13.9 13.2 12.9 12.9 11.7 9.8 9.0 2480.9 1590.2 64.3 48.8 28.1 44.4 36.0 < 14.6 18.9 21.7 15.3 24.0 15.7 < 13.8 < 18.9 23.4 < 13.9 21.3 < 12.4 34.5 33.3 26.4 24.6 22.7 3.4 3.4 3.5 2.9 2.6 2.5 2.3 2.5 2.2 1.8 1.8 8.8 6.1 7.3 3.1 3.9 3.4 6.9 12.1 4.6 2.9 3.6 6.4 4.0 9.5 -5.7 3.2 8.7 4.8 5.5 6.5 6.4 5.0 4.9 4.4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.52 3.55 3.59 3.13 2.85 2.59 2.65 2.67 2.16 1.79 1.69 2.50 2.15 3.36 1.29 2.27 1.60 3.38 2.74 2.39 0.41 1.78 3.22 2.12 2.61 3.31 1.29 2.66 2.70 2.43 2.96 3.22 2.82 2.80 2.22 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · > −0.8 > −0.9 > −2.4 > −1.9 > −1.9 > −2.0 > −1.6 > −2.3 > −2.0 > −2.0 > −2.6 +0.09+0.01 −0.01 −0.09+0.01 −0.01 −0.19+0.40 −0.43 −0.88+0.25 −0.26 −1.44+0.49 −0.53 +0.52+0.37 −0.37 −0.10+0.69 −0.78 < −0.1 −1.51+0.82 −0.91 −0.76+0.55 −0.57 −1.68+0.81 −0.87 −0.20+0.94 −1.16 −1.30+0.91 −1.00 < 1.0 < 1.4 +0.03+0.62 −0.63 < 1.0 −0.16+0.86 −0.99 < 1.1 > −2.1 > −2.3 > −2.0 > −2.5 > −2.2 < 7.4 < 7.7 < 7.4 < 6.8 < 6.7 < 6.4 < 6.4 < 6.2 < 6.0 < 5.8 < 5.8 2408.4 1636.0 68.0 65.2 44.7 37.5 36.2 31.6 30.1 27.8 26.1 24.0 23.5 23.3 23.3 23.2 22.6 21.6 19.0 < 13.2 < 13.2 < 12.6 < 12.5 < 11.3 128 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M54-VLA25 M54-VLA26 M55-VLA1 M55-VLA2 M55-VLA3 M55-VLA4 M55-VLA5 M55-VLA6 M55-VLA7 M55-VLA8 M55-VLA9 M55-VLA10 M55-VLA11 M55-VLA12 M55-VLA13 M55-VLA14 M55-VLA15 M55-VLA16 M55-VLA17 M55-VLA18 M55-VLA19 M55-VLA20 M55-VLA21 M55-VLA22 M55-VLA23 M55-VLA24 M55-VLA25 M55-VLA26 M55-VLA27 M55-VLA28 M55-VLA29 M55-VLA30 18:55:10.562 18:55:00.806 19:39:55.243 19:40:03.043 19:39:53.260 19:39:59.826 19:39:59.553 19:39:54.915 19:40:05.538 19:39:52.182 19:39:43.679 19:40:05.848 19:39:49.274 19:40:05.241 19:40:01.217 19:39:51.145 19:40:06.200 19:39:55.397 19:39:59.605 19:40:04.915 19:40:05.727 19:39:47.368 19:40:06.339 19:40:14.082 19:40:15.149 19:39:55.861 19:40:07.832 19:40:06.195 19:39:58.894 19:39:55.081 19:40:04.119 19:39:53.701 –30:28:05.33 –30:28:07.20 –30:55:10.72 –30:54:44.08 –30:55:38.12 –30:55:25.53 –31:00:56.38 –30:57:18.24 –30:54:48.39 –30:54:50.41 –30:58:28.84 –31:01:20.63 –31:00:08.66 –30:59:27.16 –31:01:02.76 –30:58:31.82 –30:57:21.91 –30:56:50.52 –30:54:52.76 –30:59:37.54 –30:58:43.97 –30:56:57.12 –30:55:34.64 –30:58:35.20 –30:57:14.37 –31:00:48.73 –30:56:29.67 –30:58:58.77 –30:57:30.11 –30:56:42.56 –30:56:35.59 –30:59:13.89 R.A. unc. Dec. unc. (′′) 0.04 0.04 0.07 · · · · · · 0.07 0.07 0.07 0.07 0.08 0.07 0.08 0.07 0.07 0.08 0.07 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 (′′) 0.07 0.07 0.08 · · · · · · 0.08 0.08 0.08 0.08 0.11 0.08 0.11 0.08 0.08 0.11 0.08 0.11 0.11 0.11 0.08 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 5.2 2.0 3.4 3.5 3.5 2.7 3.0 2.1 3.5 4.1 3.1 3.4 3.5 2.8 3.4 2.8 2.5 2.6 3.4 2.6 2.5 2.7 3.1 3.0 3.1 3.1 2.7 2.3 2.4 2.4 2.5 2.5 18.8 15.3 913.6 226.4 90.2 70.9 36.2 30.1 51.4 24.3 38.9 25.2 33.6 17.1 18.6 15.6 12.4 9.5 20.1 21.4 8.1 17.0 < 11.5 20.0 < 17.0 < 12.8 13.3 11.4 8.8 10.6 < 7.7 < 8.4 3.4 3.0 5.1 5.8 4.0 3.4 4.5 2.4 5.6 5.8 5.9 6.4 4.7 3.0 5.2 2.9 2.6 2.7 4.5 3.2 2.5 4.3 6.4 4.1 2.5 9.7 3.2 2.9 2.3 2.7 -1.1 1.3 · · · · · · · · · ext. ext. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · 1.71 0.86 2.87 3.23 2.64 2.46 3.06 1.18 3.32 3.45 3.49 3.70 3.18 1.96 3.18 1.95 1.49 1.39 3.01 2.07 1.54 2.81 2.71 3.16 3.37 3.04 2.23 1.77 0.42 1.54 1.60 1.86 · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ · · · 𝑟𝑐 · · · · · · · · · · · · · · · 𝑟ℎ · · · 𝑟ℎ 𝑟𝑐 𝑟𝑐 · · · 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟ℎ · · · · · · · · · 𝑟ℎ 𝑟𝑐 𝑟𝑐 𝑟𝑐 𝑟𝑐 𝑟ℎ > −1.9 > −2.5 −0.55+0.02 −0.02 −1.36+0.08 −0.08 −1.73+0.15 −0.15 −1.41+0.16 −0.17 −0.78+0.41 −0.45 −1.23+0.28 −0.29 +0.55+0.40 −0.42 −1.78+0.74 −0.82 −0.18+0.51 −0.57 −1.50+0.78 −0.91 −0.37+0.50 −0.55 −1.92+0.58 −0.64 −1.47+0.87 −1.00 −1.92+0.62 −0.67 −2.27+0.65 −0.66 −2.47+0.75 −0.65 −0.32+0.82 −0.95 +0.35+0.58 −0.64 −2.39+0.82 −0.71 −0.39+0.88 −1.05 < 1.0 +0.30+0.70 −0.86 < 1.4 < 1.3 −0.49+0.90 −1.03 −0.97+0.89 −1.03 −1.47+0.94 −1.00 −0.93+0.93 −1.05 < 0.8 < 1.0 < 11.3 < 10.4 1096.1 355.3 159.6 112.8 46.3 45.0 42.6 42.4 40.5 39.4 37.6 31.7 29.0 28.8 26.0 22.4 21.6 18.8 18.6 18.3 18.1 17.2 16.6 15.7 15.1 15.1 14.0 13.9 13.8 13.0 129 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M55-VLA31 M55-VLA32 M55-VLA33 M55-VLA34 M55-VLA35 M55-VLA36 M55-VLA37 M55-VLA38 M55-VLA39 M62-VLA1 M62-VLA2 M62-VLA3 M62-VLA4 M62-VLA5 M62-VLA6 M62-VLA7 M62-VLA8 M62-VLA9 M62-VLA10 M62-VLA11 M62-VLA12 M62-VLA13 M62-VLA14 M62-VLA15 M62-VLA16 M62-VLA17 M62-VLA18 M62-VLA19 M62-VLA20 M62-VLA21 M62-VLA22 M62-VLA23 M62-VLA24 M62-VLA25 M62-VLA26 19:40:03.626 19:39:59.574 19:40:04.097 19:40:00.222 19:40:14.647 19:39:46.628 19:40:08.276 19:40:07.112 19:39:54.013 17:01:13.215 17:01:15.541 17:01:22.221 17:01:12.789 17:01:11.053 17:01:05.540 17:01:16.806 17:01:09.710 17:01:22.141 17:01:06.278 17:01:05.552 17:01:12.508 17:01:21.650 17:01:16.382 17:01:07.809 17:01:06.457 17:01:23.938 17:01:15.562 17:01:12.845 17:01:19.565 17:01:10.826 17:01:17.728 17:01:10.596 17:01:15.590 17:01:02.447 17:01:11.204 –30:56:38.63 –30:57:30.98 –30:58:00.57 –30:57:39.94 –30:57:31.91 –30:58:18.60 –30:56:57.26 –30:58:06.37 –30:56:17.84 –30:06:50.63 –30:07:50.06 –30:08:32.65 –30:08:05.62 –30:07:45.64 –30:04:14.76 –30:05:22.64 –30:06:09.20 –30:07:56.54 –30:07:26.00 –30:04:13.64 –30:06:30.27 –30:06:30.78 –30:07:15.78 –30:10:04.45 –30:07:41.13 –30:08:12.91 –30:04:30.14 –30:08:11.26 –30:08:15.17 –30:04:01.56 –30:05:41.26 –30:05:42.92 –30:06:43.94 –30:08:14.84 –30:09:20.32 R.A. unc. Dec. unc. (′′) 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.09 0.09 0.09 0.09 0.14 0.09 0.14 0.09 0.09 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.09 0.09 (′′) 0.11 0.11 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.13 0.08 0.13 0.08 0.08 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.08 0.08 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 2.5 2.4 2.2 2.4 -1.6 -0.9 0.7 -1.4 -5.3 3.7 3.4 3.7 3.1 3.2 5.2 3.2 3.5 4.4 3.7 5.2 2.9 4.2 3.2 4.8 3.7 4.3 3.9 3.3 3.9 3.5 3.3 3.4 3.3 0.4 -0.2 < 7.9 < 6.8 11.6 13.0 26.7 21.3 17.3 16.6 15.5 18.9 39.0 63.4 25.5 20.9 15.8 21.0 8.4 18.9 20.3 17.8 < 6.4 12.4 < 7.4 < 16.2 < 8.4 < 12.4 < 8.5 < 8.3 < 9.5 < 10.7 8.7 < 7.6 < 6.8 20.2 18.6 6.4 1.6 2.2 2.2 4.7 4.1 3.1 2.6 2.9 2.3 2.6 4.3 2.4 2.4 4.1 2.6 2.2 3.4 2.5 4.2 5.2 2.9 4.2 2.0 7.7 3.2 3.5 2.3 7.3 -2.6 2.6 8.0 2.1 4.0 3.4 · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · ext.? · · · · · · · · · 1.50 0.37 0.95 0.25 3.22 2.84 2.06 1.60 2.00 0.06 1.16 2.64 1.28 1.03 3.03 1.66 0.97 2.28 1.57 3.05 0.33 1.90 0.86 3.44 1.66 2.75 2.38 1.37 2.02 2.83 1.53 1.22 0.57 2.69 2.55 𝑟𝑐 𝑟𝑐 𝑟𝑐 𝑟𝑐 · · · · · · 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟𝑐 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · < 1.0 < 0.9 −0.23+0.77 −0.83 +0.21+0.67 −0.78 > −1.5 > −2.3 > −1.7 > −1.0 > −2.0 −0.40+0.57 −0.53 −1.81+0.20 −0.21 −0.51+0.21 −0.22 −1.71+0.29 −0.30 −1.67+0.36 −0.37 −2.32+0.68 −0.67 −1.32+0.39 −0.41 −2.95+0.51 −0.37 −1.16+0.62 −0.64 −0.77+0.49 −0.48 −1.15+0.82 −0.87 < −1.6 −1.82+0.75 −0.78 < −1.1 < 1.1 < −0.5 < 0.7 < 0.0 < −0.3 < 0.4 < 0.7 −2.02+0.84 −0.83 < 0.5 < 0.2 > −2.1 > −1.7 12.5 12.4 12.3 11.7 < 9.1 < 9.0 < 7.5 < 7.4 < 7.5 22.4 78.9 77.3 49.5 39.9 39.1 35.0 30.0 29.5 27.6 27.4 26.3 25.0 24.9 24.9 24.0 23.5 21.9 21.7 21.1 19.2 19.0 17.4 17.3 < 12.3 < 11.5 130 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M62-VLA27 M92-VLA1 M92-VLA2 M92-VLA3 M92-VLA4 M92-VLA5 M92-VLA6 M92-VLA7 M92-VLA8 M92-VLA9 M92-VLA10 M92-VLA11 M92-VLA12 M92-VLA13 M92-VLA14 M92-VLA15 M92-VLA16 M92-VLA17 M92-VLA18 M92-VLA19 M92-VLA20 M92-VLA21 M92-VLA22 M92-VLA23 M92-VLA24 M92-VLA25 M92-VLA26 M92-VLA27 M92-VLA28 M92-VLA29 M92-VLA30 M92-VLA31 M92-VLA32 17:01:16.495 17:17:05.724 17:17:01.263 17:17:15.920 17:16:58.103 17:17:27.200 17:17:02.993 17:17:23.781 17:16:49.300 17:17:07.403 17:17:06.677 17:16:59.096 17:17:02.917 17:17:19.867 17:17:05.357 17:16:56.810 17:16:56.929 17:17:24.284 17:16:57.685 17:17:08.762 17:16:53.690 17:17:19.884 17:17:01.037 17:17:06.696 17:17:10.005 17:16:59.415 17:17:23.192 17:17:19.850 17:17:01.773 17:17:06.587 17:17:06.358 17:17:05.035 17:16:53.974 –30:08:22.70 +43:08:56.87 +43:10:42.52 +43:06:08.82 +43:11:05.53 +43:07:29.06 +43:09:28.09 +43:06:23.31 +43:08:00.42 +43:11:35.79 +43:05:46.14 +43:06:53.20 +43:08:02.86 +43:05:56.51 +43:06:10.12 +43:10:04.33 +43:06:10.03 +43:06:36.02 +43:06:05.18 +43:05:43.62 +43:09:37.65 +43:05:55.80 +43:10:27.24 +43:09:30.53 +43:11:14.40 +43:07:22.10 +43:08:16.67 +43:05:57.53 +43:05:07.56 +43:05:48.81 +43:08:26.51 +43:08:41.55 +43:07:14.77 R.A. unc. Dec. unc. (′′) 0.09 · · · 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 (′′) 0.08 · · · 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 2.2 2.0 2.1 2.0 2.5 2.6 1.8 2.4 2.3 2.4 1.9 1.9 1.7 2.3 1.8 2.1 2.1 2.4 2.0 1.9 2.2 2.3 2.1 1.8 2.2 1.9 2.1 2.3 2.2 1.9 1.7 1.8 2.0 14.1 112.9 82.7 36.1 24.0 25.6 29.3 21.0 27.7 16.2 15.5 16.3 9.8 20.3 16.0 12.1 10.1 < 11.0 < 7.7 < 6.9 11.2 < 9.4 < 7.6 9.9 < 9.8 9.9 9.3 < 9.4 < 9.3 11.6 < 4.9 < 5.0 < 7.4 2.8 2.0 2.9 2.4 3.9 4.2 1.8 3.7 3.4 3.8 2.3 2.0 1.7 3.1 2.0 2.8 2.6 1.1 4.1 3.8 2.9 0.1 7.7 1.9 4.7 1.9 2.8 -0.6 5.7 2.2 3.9 2.6 5.1 · · · ext. ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · ext.? · · · ext.? · · · · · · · · · 1.74 0.85 2.79 2.54 3.39 3.67 1.54 3.47 3.31 3.44 2.39 1.98 0.83 3.17 2.02 2.73 2.76 3.45 2.73 2.44 2.91 3.18 2.58 1.36 3.12 1.66 2.88 3.16 3.20 2.35 0.35 0.69 2.62 · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ · · · > −2.3 −1.40+0.06 −0.06 −1.29+0.11 −0.11 −1.86+0.20 −0.21 −2.87+0.41 −0.38 −2.54+0.45 −0.47 −1.91+0.19 −0.20 −2.49+0.48 −0.51 −1.32+0.37 −0.42 −2.31+0.62 −0.65 −2.24+0.44 −0.49 −2.04+0.38 −0.41 −2.74+0.47 −0.44 −0.37+0.52 −0.56 −0.88+0.43 −0.45 −1.47+0.71 −0.83 −1.92+0.75 −0.81 < 0.5 < −0.5 < −0.6 −1.24+0.83 −0.96 < 0.6 < 0.0 −1.37+0.63 −0.71 < 0.8 −1.27+0.66 −0.72 −1.48+0.91 −1.02 < 0.9 < 0.9 −0.66+0.67 −0.74 < −0.8 < −0.6 < 0.7 < 10.7 184.4 130.0 69.0 65.9 61.6 57.1 49.4 43.4 35.8 33.5 33.0 25.7 22.8 21.6 19.5 19.2 18.7 18.4 17.2 16.5 16.1 15.8 15.6 15.6 15.1 14.9 14.5 14.4 14.3 13.7 13.7 12.8 131 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M92-VLA33 M92-VLA34 M92-VLA35 M92-VLA36 M92-VLA37 M92-VLA38 M92-VLA39 M92-VLA40 M92-VLA41 M92-VLA42 M92-VLA43 M92-VLA44 M92-VLA45 M92-VLA46 M92-VLA47 M92-VLA48 M92-VLA49 M92-VLA50 M92-VLA51 M92-VLA52 M92-VLA53 M92-VLA54 M92-VLA55 M92-VLA56 M92-VLA57 M107-VLA1 M107-VLA2 M107-VLA3 M107-VLA4 M107-VLA5 M107-VLA6 M107-VLA7 M107-VLA8 M107-VLA9 M107-VLA10 M107-VLA11 17:17:01.612 17:17:10.937 17:16:57.783 17:16:53.049 17:17:04.379 17:17:15.116 17:17:17.642 17:17:01.007 17:16:55.903 17:16:58.758 17:17:01.674 17:17:10.208 17:17:12.042 17:17:03.132 17:17:13.908 17:17:09.818 17:17:00.450 17:17:03.106 17:17:13.886 17:17:20.125 17:17:07.422 17:16:57.695 17:16:55.457 17:16:58.536 17:17:11.826 16:32:24.751 16:32:23.274 16:32:26.211 16:32:28.699 16:32:25.109 16:32:41.539 16:32:36.244 16:32:17.882 16:32:41.877 16:32:37.562 16:32:29.792 +43:06:04.10 +43:06:57.57 +43:07:56.00 +43:06:17.47 +43:05:05.16 +43:05:28.00 +43:06:24.86 +43:05:33.35 +43:08:33.44 +43:09:54.39 +43:06:36.61 +43:06:58.14 +43:09:47.98 +43:06:26.20 +43:07:24.37 +43:05:48.51 +43:10:56.96 +43:11:16.05 +43:05:06.05 +43:09:52.70 +43:05:43.82 +43:07:14.89 +43:08:40.42 +43:08:27.16 +43:09:31.64 –13:01:19.02 –13:04:53.52 -12:59:55.74 –13:03:18.01 –13:04:48.54 –13:01:55.59 –13:04:55.19 –13:02:37.40 –13:04:01.03 –13:04:54.33 –13:06:28.64 R.A. unc. Dec. unc. (′′) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 · · · 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 (′′) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 · · · 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 1.9 1.8 1.8 2.3 2.2 2.1 2.0 2.0 1.9 1.9 1.8 1.8 1.8 1.8 1.8 1.8 -2.9 1.7 -1.2 -0.3 -1.4 -0.1 2.8 0.2 -1.0 10.6 2.9 4.0 2.7 2.8 2.8 2.5 3.4 2.8 2.5 3.4 < 6.7 7.6 < 5.9 < 9.3 < 9.0 < 8.7 < 7.1 < 8.2 < 6.5 < 7.0 7.0 8.2 7.6 < 5.9 < 5.4 11.7 17.6 17.0 16.6 14.8 12.4 12.1 11.8 10.6 9.6 3613.9 402.6 222.7 110.0 29.9 41.6 20.7 33.8 21.3 9.5 13.0 4.0 1.7 1.1 -3.5 2.0 3.0 0.1 1.4 3.8 2.9 2.0 1.7 1.9 0.3 -0.5 2.3 3.1 3.4 3.3 2.9 2.2 2.0 2.2 1.9 1.9 12.4 3.4 6.0 2.6 2.8 3.2 2.5 4.7 3.1 2.6 4.3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.34 1.36 1.77 3.22 3.12 3.03 2.55 2.85 2.14 2.36 1.87 1.29 1.85 1.89 1.40 2.38 3.07 3.21 3.27 2.89 2.42 1.99 2.24 1.65 1.59 2.58 2.67 3.57 0.77 2.28 2.69 2.00 3.46 2.56 2.18 3.29 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · < 0.4 −1.48+0.77 −0.84 < 0.4 < 1.2 < 1.2 < 1.2 < 1.0 < 1.1 < 0.9 < 1.0 −1.15+0.96 −1.08 −0.59+0.80 −0.86 −0.72+0.89 −1.02 < 0.9 < 0.8 +0.68+0.39 −0.66 > −1.4 > −2.8 > −2.7 > −2.5 > −1.6 > −1.2 > −2.0 > −1.8 > −2.6 −1.00+0.01 −0.01 −0.29+0.03 −0.03 −1.18+0.09 −0.09 −0.91+0.09 −0.09 −2.09+0.30 −0.33 −1.05+0.27 −0.28 −2.49+0.38 −0.41 −0.15+0.50 −0.54 −1.19+0.50 −0.55 −2.90+0.56 −0.41 −2.20+0.86 −0.80 12.7 12.4 11.5 11.4 11.3 10.8 10.6 10.4 10.2 10.1 10.0 9.9 9.4 9.3 9.1 6.8 < 6.7 < 6.8 < 6.7 < 6.4 < 5.8 < 5.5 < 5.7 < 5.4 < 5.3 5059.0 443.4 331.1 149.3 60.0 59.1 47.3 35.2 31.4 28.3 27.6 132 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M107-VLA12 M107-VLA13 M107-VLA14 M107-VLA15 M107-VLA16 M107-VLA17 M107-VLA18 M107-VLA19 M107-VLA20 M107-VLA21 M107-VLA22 M107-VLA23 M107-VLA24 M107-VLA25 M107-VLA26 M107-VLA27 M107-VLA28 M107-VLA29 M107-VLA30 M107-VLA31 M107-VLA32 M107-VLA33 M107-VLA34 M107-VLA35 M107-VLA36 M107-VLA37 M107-VLA38 M107-VLA39 M107-VLA40 M107-VLA41 M107-VLA42 M107-VLA43 M107-VLA44 M107-VLA45 M107-VLA46 M107-VLA47 M107-VLA48 16:32:45.124 16:32:37.312 16:32:20.557 16:32:25.348 16:32:20.076 16:32:30.402 16:32:28.577 16:32:30.758 16:32:19.881 16:32:36.639 16:32:28.680 16:32:21.888 16:32:18.958 16:32:43.366 16:32:40.561 16:32:31.361 16:32:32.012 16:32:44.242 16:32:20.760 16:32:41.219 16:32:40.832 16:32:30.480 16:32:37.141 16:32:35.368 16:32:44.473 16:32:23.465 16:32:32.131 16:32:30.876 16:32:27.868 16:32:38.751 16:32:37.429 16:32:38.335 16:32:37.279 16:32:23.634 16:32:36.867 16:32:31.958 16:32:30.024 –13:02:59.91 –13:03:44.39 –13:05:40.62 –13:00:24.43 –13:03:11.78 –13:00:40.78 –13:06:16.98 –13:03:42.03 –13:01:41.40 –13:00:04.65 –13:02:04.99 –13:05:33.26 –13:04:47.20 –13:02:08.67 –13:05:27.14 –13:01:51.58 –13:05:02.72 –13:02:13.01 –13:04:19.15 –13:01:30.51 –13:00:40.09 –13:01:14.06 –13:00:18.30 –13:02:05.47 –13:03:38.64 –13:03:50.37 –13:02:37.49 –13:05:49.82 –13:04:10.08 –13:01:29.48 –13:03:38.80 –13:02:05.66 –13:03:46.10 –13:04:14.85 –13:02:46.93 –13:03:59.21 –13:03:23.00 R.A. unc. Dec. unc. (′′) 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 (′′) 0.06 0.04 0.06 0.06 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 3.3 2.4 3.5 3.8 2.7 3.1 3.0 2.4 3.3 3.2 2.5 3.2 3.3 3.1 3.2 2.8 2.6 3.0 3.2 2.8 3.2 3.0 3.1 2.7 3.0 2.5 2.4 2.7 2.5 2.7 2.4 2.6 2.3 2.5 2.2 2.4 2.3 < 12.0 15.0 < 15.6 < 15.5 19.2 < 9.5 < 11.4 13.8 < 13.4 < 12.5 < 7.7 < 12.9 < 13.9 < 10.9 < 11.1 < 7.4 < 7.7 < 11.6 < 10.7 < 10.2 < 12.9 < 9.0 < 12.1 < 6.9 < 11.0 < 8.0 < 6.7 < 9.7 11.4 < 8.7 < 6.9 < 7.5 < 6.8 < 8.2 < 6.5 < 6.4 < 6.4 7.8 2.2 6.4 -8.7 3.4 6.5 0.3 2.1 5.4 2.5 -0.6 -3.9 3.6 -3.2 -4.3 3.8 1.7 -4.8 -3.3 1.2 -2.1 5.2 -1.5 3.1 -0.1 3.2 6.0 -1.0 2.4 0.2 -0.3 0.7 3.3 -1.8 -2.7 -1.5 -0.2 · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · 3.24 1.42 3.68 3.24 2.87 2.57 3.16 0.54 3.30 3.36 1.38 3.36 3.51 3.00 3.07 1.37 1.82 3.18 2.92 2.85 3.36 2.02 3.19 1.42 3.10 2.13 0.61 2.61 1.35 2.41 1.42 1.94 1.43 2.25 1.30 0.76 0.47 · · · 𝑟ℎ · · · · · · · · · · · · · · · 𝑟𝑐 · · · · · · 𝑟ℎ · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · 𝑟ℎ · · · 𝑟ℎ · · · 𝑟ℎ · · · 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ 𝑟𝑐 < −0.2 −1.68+0.51 −0.56 < 1.0 < 1.2 −0.31+0.65 −0.71 < 0.2 < 0.6 −1.14+0.58 −0.61 < 1.1 < 0.9 < −0.3 < 1.2 < 1.3 < 1.0 < 1.1 < 0.2 < 0.2 < 1.2 < 1.1 < 0.9 < 1.3 < 0.8 < 1.3 < 0.2 < 1.2 < 0.6 < 0.0 < 1.0 −0.85+0.82 −0.89 < 1.0 < 0.5 < 0.8 < 0.7 < 1.0 < 0.6 < 0.7 < 0.7 26.9 26.0 22.9 22.3 20.9 20.4 20.3 20.1 20.1 19.8 19.0 18.0 17.9 17.7 17.5 16.9 16.7 16.7 16.7 16.6 16.5 16.3 16.2 16.1 15.8 15.4 15.3 15.3 14.9 14.5 14.2 14.0 12.8 12.8 12.7 12.7 12.4 133 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) M107-VLA49 M107-VLA50 M107-VLA51 M107-VLA52 M107-VLA53 M107-VLA54 M107-VLA55 M107-VLA56 M107-VLA57 M107-VLA58 M107-VLA59 M107-VLA60 M107-VLA61 M107-VLA62 M107-VLA63 M107-VLA64 M107-VLA65 M107-VLA66 M107-VLA67 M107-VLA68 M107-VLA69 M107-VLA70 M107-VLA71 M107-VLA72 M107-VLA73 M107-VLA74 N6304-VLA1 N6304-VLA2 N6304-VLA3 N6304-VLA4 N6304-VLA5 N6304-VLA6 N6304-VLA7 N6304-VLA8 N6304-VLA9 N6304-VLA10 16:32:42.090 16:32:46.369 16:32:43.332 16:32:20.783 16:32:24.457 16:32:19.005 16:32:23.459 16:32:33.582 16:32:24.412 16:32:37.288 16:32:24.234 16:32:34.494 16:32:40.440 16:32:42.059 16:32:32.863 16:32:23.810 16:32:40.945 16:32:32.951 16:32:34.347 16:32:32.791 16:32:39.088 16:32:28.984 16:32:30.069 16:32:29.922 16:32:29.265 16:32:31.100 17:14:25.311 17:14:43.462 17:14:33.106 17:14:27.393 17:14:20.295 17:14:38.598 17:14:38.622 17:14:20.988 17:14:20.662 17:14:44.970 –13:05:44.31 –13:03:59.80 –13:00:48.80 –13:05:25.96 –13:05:57.80 –13:04:43.65 –13:02:16.58 –13:00:08.37 –13:02:39.62 –13:05:57.30 –13:02:54.46 –13:05:56.33 –13:02:36.10 –13:02:18.13 –13:05:38.60 –13:02:51.07 –13:03:13.02 –13:03:09.72 –13:00:59.36 –13:04:52.60 –13:01:56.98 –13:02:11.34 –13:03:36.10 –13:03:32.20 –13:03:58.49 –13:03:45.53 –29:25:28.31 –29:25:10.64 –29:26:34.48 –29:24:39.28 –29:28:17.42 –29:28:59.60 –29:25:35.05 –29:25:47.40 –29:25:17.35 –29:26:48.19 R.A. unc. Dec. unc. (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 (′′) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g -5.0 2.0 -1.0 -2.4 -2.3 0.0 0.1 -5.9 -3.8 0.1 2.3 -1.3 0.7 -1.0 -5.3 -0.3 -0.9 -0.8 1.8 -1.8 5.5 -0.8 -3.6 0.3 0.0 4.1 5.4 5.6 4.6 5.3 4.6 4.1 4.7 5.2 5.6 5.0 29.9 26.4 25.8 23.5 23.2 22.6 20.5 20.4 18.0 17.8 17.0 16.9 16.7 16.5 15.3 15.2 14.9 14.1 14.0 13.6 13.3 12.9 12.2 12.0 11.5 11.2 102.7 75.9 58.8 50.9 < 18.7 < 14.0 25.7 < 23.8 < 29.9 < 21.5 4.7 5.0 5.0 4.6 4.2 4.2 3.6 4.0 2.8 3.5 2.7 3.2 2.7 3.0 2.9 2.9 2.7 2.3 2.7 2.4 2.5 2.5 2.2 2.2 2.3 2.1 7.1 9.8 4.3 8.9 12.3 15.2 5.8 7.1 2.3 7.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.54 3.62 3.69 3.48 3.28 3.47 2.26 3.12 1.90 3.03 1.88 2.79 2.18 2.65 2.43 2.00 2.21 0.27 2.32 1.67 2.17 1.25 0.58 0.56 0.98 0.56 2.84 3.78 1.17 3.30 3.04 2.03 2.67 3.41 3.78 3.31 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟𝑐 · · · 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ 𝑟𝑐 · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · > −0.7 > −2.1 > −2.2 > −2.5 > −1.6 > −1.8 > −1.5 > −2.4 > −1.0 > −2.3 > −1.0 > −2.0 > −1.2 > −1.8 > −2.2 > −2.2 > −1.8 > −1.2 > −2.3 > −1.7 > −2.1 > −2.4 > −1.9 > −2.0 > −2.6 > −2.3 −0.55+0.23 −0.24 −0.79+0.40 −0.44 −1.44+0.25 −0.25 −1.27+0.52 −0.61 < 0.1 < −0.3 −0.63+0.79 −0.90 < 1.4 < 1.5 < 1.3 < 10.2 < 10.0 < 10.6 < 9.5 < 9.4 < 9.7 < 10.4 < 9.2 < 8.6 < 9.1 < 7.8 < 8.8 < 8.3 < 8.2 < 8.2 < 7.8 < 7.4 < 6.8 < 8.1 < 7.3 < 7.5 < 7.6 < 6.9 < 7.0 < 7.0 < 7.2 124.0 98.8 97.1 77.4 37.1 32.9 31.0 29.4 28.8 28.3 134 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g N6304-VLA11 N6304-VLA12 N6304-VLA13 N6304-VLA14 N6304-VLA15 N6304-VLA16 N6304-VLA17 N6304-VLA18 N6304-VLA19 N6304-VLA20 N6304-VLA21 N6304-VLA22 N6304-VLA23 N6304-VLA24 N6325-VLA1 N6325-VLA2 N6325-VLA3 N6325-VLA4 N6325-VLA5 N6325-VLA6 N6325-VLA7 N6325-VLA8 N6325-VLA9 N6325-VLA10 N6325-VLA11 N6325-VLA12 N6325-VLA13 N6325-VLA14 N6325-VLA15 N6325-VLA16 N6325-VLA17 N6325-VLA18 N6325-VLA19 17:14:23.835 17:14:25.511 17:14:43.906 17:14:34.327 17:14:27.102 17:14:23.615 17:14:21.129 17:14:27.337 17:14:29.997 17:14:20.952 17:14:41.042 17:14:40.216 17:14:24.420 17:14:30.180 17:17:47.595 17:17:56.665 17:17:59.955 17:18:00.997 17:18:13.864 17:17:48.327 17:17:51.400 17:18:00.934 17:18:06.491 17:17:50.592 17:18:08.647 17:17:45.418 17:17:55.729 17:18:02.386 17:17:56.169 17:17:46.156 17:17:54.608 17:18:04.171 17:17:59.420 –29:27:11.29 –29:30:47.93 –29:29:29.03 –29:30:07.31 –29:29:49.56 –29:28:48.37 –29:25:21.31 –29:24:45.87 –29:30:31.17 –29:29:00.23 –29:27:52.30 –29:28:41.12 –29:27:53.24 –29:28:38.83 –23:47:59.92 –23:44:13.66 –23:49:30.88 –23:47:46.46 –23:46:27.51 –23:46:55.53 –23:47:32.68 –23:44:13.58 –23:45:31.83 –23:47:46.57 –23:44:43.96 –23:47:44.67 –23:46:40.10 –23:43:07.03 –23:46:13.70 –23:47:08.22 –23:46:36.83 –23:44:21.07 –23:45:06.91 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 4.1 5.4 5.2 4.5 4.4 4.2 -8.0 11.1 -3.3 -1.9 0.6 3.9 4.8 2.3 2.8 2.1 3.0 2.2 2.8 2.4 2.4 2.1 2.2 2.4 2.1 3.0 2.0 2.4 2.0 2.7 2.0 2.2 1.9 19.1 < 26.5 < 23.5 < 18.1 < 16.6 < 15.2 54.3 39.6 35.0 32.5 25.5 24.9 22.7 18.8 85.8 102.4 103 40.2 45.7 23.9 18.3 20.8 18.1 16.0 28.6 < 18.0 15.3 22.8 15.4 16.0 13.8 16.5 13.3 4.6 2.6 2.5 -3.5 -8.0 14.7 9.3 7.7 6.9 6.3 4.9 5.0 4.3 3.7 5.3 2.5 6.3 2.7 5.2 3.5 3.2 2.5 2.6 3.7 3.1 0.7 2.3 3.7 2.1 4.5 2.4 2.6 2.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.17 3.51 3.40 2.45 2.46 2.41 3.65 3.20 2.85 3.10 2.20 2.21 1.96 1.06 3.35 1.83 3.56 1.86 3.39 2.67 2.39 1.78 1.72 2.68 2.48 3.62 1.07 2.94 0.75 3.21 1.24 1.97 0.85 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · −1.15+0.81 −0.92 < 1.5 < 1.4 < 1.3 < 1.3 < 1.3 > −1.1 > −2.2 > −2.3 > −2.1 > −1.9 > −2.3 > −1.9 > −2.2 −1.44+0.18 −0.19 −0.27+0.09 −0.09 +0.62+0.20 −0.21 −1.31+0.21 −0.22 −0.61+0.35 −0.38 −1.56+0.44 −0.49 −2.18+0.50 −0.56 −1.64+0.37 −0.40 −2.02+0.44 −0.48 −2.33+0.61 −0.64 −0.51+0.35 −0.37 < 0.3 −1.66+0.47 −0.52 −0.28+0.53 −0.59 −1.34+0.45 −0.49 −1.31+0.84 −1.00 −1.51+0.54 −0.62 −0.94+0.53 −0.57 −1.52+0.52 −0.59 0.09 0.09 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.07 0.05 0.05 0.05 0.07 0.05 0.05 0.05 27.6 26.8 26.2 23.8 22.0 21.3 < 17.3 < 15.9 < 14.5 < 14.0 < 12.3 < 13.2 < 11.7 < 11.2 141.9 112.6 82.8 63.4 56.0 40.5 38.5 36.6 36.1 35.8 33.9 30.3 26.8 24.7 24.4 23.8 22.9 22.6 22.2 135 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g N6325-VLA20 N6325-VLA21 N6325-VLA22 N6325-VLA23 N6325-VLA24 N6325-VLA25 N6325-VLA26 N6325-VLA27 N6325-VLA28 N6325-VLA29 N6325-VLA30 N6325-VLA31 N6325-VLA32 N6325-VLA33 N6325-VLA34 N6325-VLA35 N6325-VLA36 N6325-VLA37 N6325-VLA38 N6325-VLA39 N6325-VLA40 N6325-VLA41 N6325-VLA42 N6325-VLA43 N6325-VLA44 N6325-VLA45 N6325-VLA46 N6325-VLA47 N6325-VLA48 N6325-VLA49 N6325-VLA50 N6325-VLA51 N6325-VLA52 N6325-VLA53 N6325-VLA54 N6325-VLA55 17:17:55.643 17:18:02.176 17:17:47.718 17:18:10.104 17:18:11.358 17:17:45.200 17:17:49.168 17:18:08.197 17:17:55.113 17:17:56.943 17:17:54.957 17:17:58.208 17:18:09.221 17:17:49.177 17:17:47.714 17:18:08.448 17:17:57.547 17:17:49.298 17:18:06.778 17:17:51.497 17:18:05.863 17:17:51.527 17:18:00.338 17:18:01.534 17:17:50.228 17:17:55.475 17:17:59.782 17:17:57.310 17:18:02.080 17:17:58.269 17:17:56.747 17:18:03.588 17:18:03.333 17:17:53.239 17:17:43.692 17:18:12.738 –23:45:28.79 –23:44:41.28 –23:44:27.27 –23:43:48.92 –23:45:43.38 –23:47:48.08 –23:43:29.11 –23:42:54.29 –23:47:30.28 –23:48:00.23 –23:44:46.58 –23:44:46.04 –23:47:02.03 –23:44:16.09 –23:44:28.37 –23:46:31.86 –23:43:09.38 –23:45:14.59 –23:46:31.61 –23:47:38.56 –23:43:10.14 –23:44:32.91 –23:48:15.25 –23:44:15.44 –23:47:36.53 –23:47:38.37 –23:48:09.17 –23:43:52.39 –23:44:37.46 –23:43:43.54 –23:46:12.39 –23:46:30.09 –23:45:21.74 –23:49:14.14 –23:46:27.28 –23:47:53.47 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 1.9 2.0 2.6 2.7 2.4 3.0 2.8 2.9 2.1 2.3 2.1 2.0 2.3 2.4 2.5 2.1 2.5 2.2 2.1 2.3 2.5 2.2 2.3 2.1 2.4 2.1 2.3 2.2 2.0 2.1 1.9 2.0 1.9 -3.7 -0.2 1.2 14.3 7.0 < 12.2 < 13.7 12.0 < 18.9 20.0 < 17.2 < 8.1 < 8.7 10.0 10.0 11.0 < 11.0 < 12.3 12.0 < 10.6 < 9.3 < 7.9 13.0 < 12.3 < 8.5 < 9.4 < 7.4 < 10.4 < 8.3 < 9.2 < 8.5 < 7.0 < 8.1 < 6.4 11.0 < 6.4 33.6 32.0 31.9 2.2 2.3 9.0 3.6 3.7 -0.8 4.9 -1.2 9.7 0.7 2.4 2.2 3.3 4.7 5.4 2.9 5.4 6.3 1.7 3.1 4.0 3.3 4.9 3.4 -0.2 4.9 -8.5 1.6 2.3 -1.2 1.8 2.3 1.7 6.0 5.7 6.2 · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.95 1.44 3.03 3.29 2.79 3.70 3.38 3.68 1.81 2.11 1.53 1.21 2.53 2.85 3.02 2.19 2.83 2.38 1.82 2.44 3.18 2.25 2.31 1.78 2.63 1.88 2.20 2.13 1.49 2.24 0.62 1.14 1.12 3.55 3.58 3.65 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · −1.13+0.50 −0.55 −2.78+0.64 −0.49 < 0.7 < 1.1 −1.39+0.92 −1.06 < 1.4 +0.24+0.74 −0.97 < 1.4 < 0.0 < 0.3 −1.40+0.78 −0.88 −1.35+0.72 −0.82 −1.04+0.95 −1.11 < 1.2 < 1.3 −0.50+0.81 −0.96 < 1.2 < 1.0 < 0.7 −0.16+0.81 −0.96 < 1.3 < 1.0 < 1.1 < 0.9 < 1.3 < 1.1 < 1.2 < 1.1 < 0.9 < 1.1 < 0.9 +0.13+0.69 −0.85 < 0.9 > −2.4 > −2.2 > −3.1 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.05 0.05 20.9 20.8 19.1 18.8 18.4 18.2 17.0 17.0 16.7 16.6 15.8 15.6 14.9 14.4 13.8 13.7 13.5 13.4 13.4 13.1 13.1 12.5 12.5 11.9 11.8 11.6 11.5 11.4 11.3 10.6 10.0 9.9 9.5 < 8.8 < 8.6 < 9.0 136 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) N6325-VLA56 N6325-VLA57 N6325-VLA58 N6325-VLA59 N6325-VLA60 N6325-VLA61 N6325-VLA62 N6325-VLA63 N6440-VLA1 N6440-VLA2 N6440-VLA3 N6440-VLA4 N6440-VLA5 N6440-VLA6 N6440-VLA7 N6440-VLA8 N6440-VLA9 N6440-VLA10 N6440-VLA11 N6440-VLA12 N6440-VLA13 N6440-VLA14 N6440-VLA15 N6440-VLA16 N6440-VLA17 N6440-VLA18 N6440-VLA19 N6440-VLA20 N6440-VLA21 N6440-VLA22 N6440-VLA23 N6440-VLA24 N6440-VLA25 N6440-VLA26 N6440-VLA27 N6440-VLA28 17:18:14.479 17:17:45.165 17:17:46.295 17:18:09.276 17:18:10.047 17:17:56.429 17:18:01.890 17:18:00.505 17:48:47.962 17:48:46.319 17:48:52.046 17:48:55.325 17:48:49.000 17:48:52.685 17:48:42.207 17:48:42.641 17:48:51.274 17:48:38.060 17:49:00.993 17:49:04.055 17:48:45.592 17:48:41.580 17:49:00.459 17:49:04.564 17:48:37.562 17:48:45.347 17:48:57.901 17:48:47.562 17:49:02.089 17:48:52.032 17:48:48.906 17:48:50.024 17:48:51.659 17:48:52.660 17:48:51.483 17:49:03.646 –23:46:01.94 –23:44:52.35 –23:45:02.16 –23:46:49.82 –23:45:25.69 –23:44:36.66 –23:46:53.21 –23:45:49.44 –20:19:59.11 –20:21:36.35 –20:21:53.21 –20:19:11.82 –20:22:59.61 –20:21:39.62 –20:22:33.91 –20:20:24.84 –20:18:34.28 –20:21:42.56 –20:22:16.31 –20:24:06.04 –20:24:06.63 –20:22:56.32 –20:22:53.77 –20:21:24.98 –20:21:51.25 –20:18:26.79 –20:19:29.34 –20:20:13.34 –20:21:38.44 –20:18:56.94 –20:21:31.26 –20:19:50.78 –20:21:07.54 –20:21:06.28 –20:25:09.19 –20:19:04.76 R.A. unc. Dec. unc. (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.07 0.07 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.05 (′′) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.08 0.08 0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.06 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g -2.7 5.4 5.1 1.5 0.3 -2.3 3.0 -2.7 3.7 3.2 2.8 3.7 3.2 2.9 3.4 3.4 3.5 3.9 2.9 4.2 3.8 3.9 3.3 3.5 3.8 3.9 3.2 3.2 3.3 3.3 2.9 3.1 2.9 2.7 1.5 2.7 29.1 26.5 25.1 16.7 16.3 12.9 11.6 11.0 3260.9 1316.1 219.4 80.8 90.7 37.8 32.5 33.9 24.4 < 22.2 29.3 < 26.5 < 17.5 < 16.6 < 11.8 < 14.9 < 22.1 < 21.7 < 11.9 < 10.1 13.5 < 13.6 < 8.3 < 10.5 < 7.8 < 7.7 50.8 45.3 5.4 5.1 4.2 3.2 3.2 2.3 2.2 2.0 3.9 3.3 2.6 4.0 3.8 2.8 4.7 4.5 5.7 13.8 3.8 16.6 -5.9 3.3 2.0 7.2 -4.6 5.4 -5.8 -0.2 3.9 -4.5 1.8 3.0 4.3 -2.2 8.4 7.6 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.49 3.39 3.10 2.46 2.54 1.49 1.11 0.33 1.97 1.50 0.31 2.50 1.63 0.04 2.64 2.65 3.06 3.43 2.05 3.64 3.00 2.92 2.22 2.79 3.56 3.61 2.45 1.84 2.20 2.67 0.89 1.88 0.55 0.51 3.55 3.61 · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · 𝑟ℎ · · · · · · 𝑟𝑐 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · > −2.7 > −2.9 > −1.0 > −2.2 > −2.5 > −1.6 > −2.1 > −1.8 −1.26+0.01 −0.01 −1.47+0.01 −0.01 −0.79+0.04 −0.04 −0.99+0.17 −0.17 −0.42+0.15 −0.15 −2.03+0.23 −0.24 −1.49+0.44 −0.49 −0.96+0.42 −0.47 −1.64+0.68 −0.80 < 0.7 +0.22+0.48 −0.50 < 1.4 < 1.1 < 1.1 < 0.5 < 1.2 < 1.5 < 1.5 < 0.8 < 0.7 −1.00+0.98 −1.10 < 1.3 < 0.7 < 1.1 < 0.7 < 0.9 > −1.3 > −1.1 < 8.2 < 8.1 < 7.5 < 7.0 < 6.9 < 6.0 < 6.0 < 5.6 5072.3 2206.0 289.3 114.1 104.8 76.8 53.8 46.8 41.6 33.1 26.9 25.7 24.5 23.9 21.3 20.9 20.3 19.8 19.8 18.8 18.3 16.7 16.1 15.4 15.4 13.9 < 12.3 < 12.4 137 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) N6440-VLA29 N6440-VLA30 N6440-VLA31 N6440-VLA32 N6440-VLA33 N6440-VLA34 N6440-VLA35 N6440-VLA36 N6440-VLA37 N6440-VLA38 N6440-VLA39 N6440-VLA40 N6440-VLA41 N6440-VLA42 N6440-VLA43 N6440-VLA44 N6440-VLA45 N6440-VLA46 N6539-VLA1 N6539-VLA2 N6539-VLA3 N6539-VLA4 N6539-VLA5 N6539-VLA6 N6539-VLA7 N6539-VLA8 N6539-VLA9 N6539-VLA10 N6539-VLA11 N6539-VLA12 N6539-VLA13 N6539-VLA14 N6539-VLA15 N6539-VLA16 N6539-VLA17 17:48:44.850 17:49:06.542 17:48:57.669 17:48:50.030 17:48:56.797 17:49:04.978 17:48:51.024 17:48:45.283 17:49:01.526 17:48:54.065 17:48:57.570 17:48:56.136 17:48:52.734 17:48:56.285 17:48:48.272 17:48:55.270 17:48:56.283 17:48:57.721 18:04:52.367 18:04:52.805 18:04:46.339 18:05:00.232 18:04:48.442 18:04:39.204 18:04:51.579 18:04:39.754 18:04:57.321 18:05:03.300 18:04:49.887 18:04:50.648 18:04:44.401 18:04:41.181 18:04:49.385 18:04:58.761 18:04:49.289 –20:18:33.96 –20:22:04.06 –20:24:23.00 –20:24:28.87 –20:18:58.51 –20:20:28.65 –20:24:06.01 –20:20:39.55 –20:20:07.75 –20:23:51.06 –20:23:28.60 –20:23:19.11 –20:23:16.68 –20:23:26.49 –20:20:19.61 –20:20:04.36 –20:22:26.29 –20:21:22.98 –07:35:21.03 –07:36:01.81 –07:32:07.33 –07:34:53.29 –07:32:22.54 –07:35:50.45 –07:38:06.88 –07:33:57.37 –07:34:49.12 –07:33:52.38 –07:35:24.84 –07:35:26.64 –07:34:12.74 –07:32:08.10 –07:36:40.01 –07:37:27.85 –07:38:39.09 R.A. unc. Dec. unc. (′′) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.04 (′′) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 3.3 -3.7 -0.9 -7.3 4.3 -1.8 0.2 2.7 -6.1 3.5 3.6 3.5 2.0 -6.2 -2.1 2.2 -0.6 0.1 1.9 1.8 2.3 2.1 2.1 2.1 2.3 2.2 1.9 2.7 1.9 1.7 1.8 2.6 1.8 2.4 2.5 40.7 35.9 32.5 30.4 30.3 28.2 26.6 23.2 21.8 20.1 19.8 19.7 17.8 17.7 17.5 16.7 14.7 14.1 168.0 163.6 33.1 43.1 20.2 16.4 15.5 30.1 14.6 < 19.7 13.0 13.0 < 7.8 < 21.9 9.8 < 15.5 < 18.6 7.1 6.7 5.7 5.7 4.8 5.6 4.7 3.5 3.9 4.0 3.8 3.4 3.4 3.5 3.4 3.1 2.9 2.8 2.3 2.6 5.0 3.9 4.1 3.9 4.6 3.8 2.8 -8.9 2.4 2.3 8.8 5.1 2.6 0.6 5.8 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.56 3.28 3.00 2.93 2.81 3.09 2.52 1.98 2.55 2.26 2.18 1.88 1.66 2.01 1.65 1.66 1.18 1.20 0.69 1.17 3.15 2.63 2.80 2.68 2.99 2.74 1.92 3.61 0.26 0.37 1.61 3.69 1.51 3.22 3.49 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · 𝑟𝑐 𝑟𝑐 𝑟ℎ · · · 𝑟ℎ · · · · · · > −1.6 > −2.2 > −1.3 > −1.8 > −0.6 > −2.6 > −1.2 > −0.6 > −1.4 > −2.3 > −1.9 > −1.2 > −2.0 > −2.3 > −2.1 > −1.8 > −2.3 > −2.5 −1.20+0.05 −0.05 +0.25+0.06 −0.06 −0.70+0.48 −0.55 +0.51+0.32 −0.34 −1.63+0.63 −0.74 −1.86+0.71 −0.80 −1.99+0.83 −0.86 +0.50+0.46 −0.50 −1.03+0.66 −0.75 < 1.5 −0.68+0.68 −0.75 −0.38+0.66 −0.72 < 0.5 < 1.5 −1.07+0.90 −1.05 < 1.4 < 1.5 < 11.3 < 11.4 < 10.7 < 11.9 < 10.4 < 10.9 < 10.6 < 9.0 < 9.4 < 9.6 < 9.7 < 8.9 < 8.9 < 9.0 < 9.2 < 9.2 < 8.2 < 8.8 248.4 150.8 40.8 36.4 33.2 29.0 28.8 25.3 19.8 16.5 15.9 14.4 13.8 13.5 13.2 13.1 12.7 138 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) N6539-VLA18 N6539-VLA19 N6539-VLA20 N6539-VLA21 N6539-VLA22 N6539-VLA23 N6539-VLA24 N6539-VLA25 N6539-VLA26 N6539-VLA27 N6539-VLA28 N6539-VLA29 N6539-VLA30 N6539-VLA31 N6539-VLA32 N6539-VLA33 N6539-VLA34 N6539-VLA35 N6539-VLA36 N6539-VLA37 N6539-VLA38 N6539-VLA39 N6539-VLA40 N6539-VLA41 N6539-VLA42 N6539-VLA43 N6539-VLA44 N6539-VLA45 N6539-VLA46 N6539-VLA47 N6539-VLA48 N6539-VLA49 N6539-VLA50 N6539-VLA51 N6539-VLA52 N6539-VLA53 N6539-VLA54 18:04:56.241 18:04:54.705 18:04:50.458 18:04:47.760 18:04:48.671 18:04:35.991 18:04:49.723 18:04:56.234 18:04:52.248 18:04:49.133 18:04:50.488 18:04:54.850 18:04:44.441 18:04:37.493 18:04:57.726 18:04:35.543 18:05:00.191 18:04:57.590 18:04:56.486 18:04:53.829 18:04:36.388 18:05:01.757 18:04:59.236 18:04:53.590 18:04:42.768 18:04:50.217 18:05:00.848 18:04:57.971 18:04:42.294 18:04:53.660 18:04:58.121 18:04:55.662 18:04:45.863 18:04:46.215 18:04:42.722 18:04:44.004 18:04:44.494 –07:37:40.70 –07:36:53.01 –07:35:06.26 –07:33:07.43 –07:33:19.38 –07:36:38.52 –07:35:26.74 –07:34:03.24 –07:35:53.15 –07:38:26.64 –07:38:48.49 –07:38:28.51 –07:38:26.38 –07:36:57.21 –07:38:12.37 –07:34:48.35 –07:37:12.78 –07:37:55.34 –07:32:10.19 –07:38:16.69 –07:35:54.06 –07:36:15.17 –07:36:47.68 –07:32:17.07 –07:33:16.43 –07:32:14.71 –07:36:00.61 –07:33:15.59 –07:37:15.35 –07:37:35.19 –07:36:23.07 –07:33:12.99 –07:32:58.63 –07:33:01.68 –07:34:52.17 –07:35:19.68 –07:34:31.27 R.A. unc. Dec. unc. (′′) 0.04 0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 (′′) 0.05 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 2.2 1.9 1.8 1.9 1.8 2.7 1.9 1.9 1.8 2.4 1.8 3.0 -0.1 1.0 -0.9 -0.9 -4.1 -2.7 -0.4 -2.7 -0.2 -1.4 0.0 0.9 0.2 3.2 1.0 -0.7 -1.9 3.2 -2.1 0.2 0.0 -1.7 -1.8 1.3 -0.5 < 13.6 17.1 < 6.9 < 9.1 < 8.3 35.9 12.7 < 8.7 < 7.1 31.2 38.2 37.8 37.1 36.3 35.8 33.9 32.8 31.9 29.9 28.8 28.8 26.4 26.2 24.2 23.1 22.9 21.4 21.2 20.5 19.6 19.2 18.1 17.7 16.4 16.1 15.9 14.1 0.1 3.0 4.1 -0.6 1.1 7.1 2.4 1.7 -0.9 5.0 6.9 6.3 6.4 6.2 7.1 6.3 5.7 5.6 5.9 5.5 5.7 5.0 4.3 4.7 3.7 4.3 4.3 4.1 3.9 3.8 3.6 3.5 3.3 3.3 2.8 2.5 2.5 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.00 2.13 0.20 2.09 1.85 3.70 0.29 1.96 0.97 3.29 3.65 3.56 3.53 3.51 3.64 3.52 3.32 3.39 3.43 3.28 3.38 3.19 2.88 3.03 2.55 2.92 2.90 2.80 2.78 2.62 2.42 2.44 2.38 2.30 1.75 1.42 1.43 · · · · · · 𝑟𝑐 · · · · · · · · · 𝑟𝑐 · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ < 1.4 +0.72+0.49 −0.67 < 0.8 < 1.2 < 1.1 +1.13+0.27 −0.60 +0.51+0.53 −0.76 < 1.2 < 1.1 +1.23+0.19 −0.38 > −3.3 > −2.8 > −3.1 > −2.9 > −3.4 > −3.3 > −3.0 > −3.0 > −3.4 > −3.3 > −3.4 > −3.1 > −1.8 > −3.2 > −1.1 > −3.0 > −3.3 > −3.3 > −3.0 > −3.2 > −2.9 > −3.0 > −2.8 > −3.2 > −1.7 > −1.0 > −2.0 12.6 12.4 11.3 10.8 10.8 10.6 9.6 9.3 9.2 7.7 < 7.9 < 7.8 < 7.7 < 7.7 < 7.8 < 7.5 < 7.2 < 7.2 < 7.4 < 7.1 < 7.4 < 7.3 < 6.4 < 6.8 < 6.2 < 6.6 < 6.6 < 6.1 < 6.3 < 6.1 < 6.0 < 5.9 < 5.8 < 5.7 < 5.6 < 5.2 < 5.2 139 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) N6539-VLA55 N6539-VLA56 N6539-VLA57 N6539-VLA58 N6539-VLA59 N6539-VLA60 N6539-VLA61 N6544-VLA1 N6544-VLA2 N6544-VLA3 N6544-VLA4 N6544-VLA5 N6544-VLA6 N6544-VLA7 N6544-VLA8 N6544-VLA9 N6544-VLA10 N6544-VLA11 N6544-VLA12 N6544-VLA13 N6544-VLA14 N6544-VLA15 N6544-VLA16 N6544-VLA17 N6544-VLA18 N6544-VLA19 N6544-VLA20 N6544-VLA21 N6544-VLA22 N6544-VLA23 N6544-VLA24 N6544-VLA25 N6544-VLA26 18:04:56.217 18:04:52.596 18:04:56.384 18:04:52.684 18:04:52.936 18:04:49.220 18:04:47.046 18:07:25.015 18:07:09.189 18:07:17.734 18:07:33.024 18:07:10.138 18:07:20.355 18:07:23.271 18:07:32.983 18:07:22.893 18:07:33.842 18:07:34.441 18:07:36.503 18:07:12.576 18:07:22.866 18:07:16.367 18:07:09.897 18:07:08.795 18:07:21.096 18:07:07.696 18:07:18.337 18:07:05.829 18:07:27.492 18:07:28.998 18:07:20.875 18:07:22.732 18:07:10.208 –07:35:37.29 –07:35:21.76 –07:35:26.23 –07:35:27.75 –07:35:51.23 –07:35:21.58 –07:34:46.35 –24:58:35.73 –24:58:09.76 –25:03:20.91 –25:01:34.73 –24:58:10.56 –24:59:52.96 –25:01:42.90 –25:01:03.67 –25:01:33.52 –24:59:07.28 –24:59:44.03 –25:00:20.13 –24:59:11.16 –24:56:11.84 –25:00:37.86 –25:02:10.74 –24:59:03.75 –25:02:29.12 –24:57:42.73 –25:03:27.88 –24:58:46.05 –24:56:37.60 –24:59:39.95 –25:00:01.90 –24:59:17.87 –24:59:05.96 R.A. unc. Dec. unc. (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.04 0.06 0.04 0.06 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04 (′′) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.09 0.09 0.06 0.09 0.06 0.09 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.06 0.06 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 0.7 -0.4 -1.5 -0.2 2.3 -1.6 0.4 3.0 3.5 4.1 3.7 3.1 2.5 2.9 3.3 2.9 3.5 3.1 4.0 3.0 3.9 2.7 3.9 3.3 3.4 3.6 4.2 3.6 3.5 2.8 2.6 2.6 3.0 13.8 13.5 13.3 13.2 13.1 12.9 12.1 164.5 136.8 65.5 63.0 44.2 17.0 48.9 30.3 42.5 16.1 14.3 < 17.1 18.2 23.6 14.9 < 15.8 20.7 19.9 < 16.5 < 20.1 19.2 < 15.6 < 7.7 9.2 19.9 16.3 2.7 2.3 2.7 2.2 2.4 2.4 2.3 2.7 4.1 6.5 4.8 3.7 2.1 2.8 4.1 2.7 4.0 4.3 8.5 2.7 5.5 2.3 -0.9 3.4 3.8 -2.9 2.9 4.8 7.9 2.7 2.2 2.2 3.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1.68 0.75 1.68 0.80 1.07 0.23 0.76 1.71 3.02 3.50 3.37 2.84 0.05 1.96 3.14 1.78 3.20 3.25 3.74 1.85 3.75 1.12 3.25 2.70 2.60 3.56 3.59 3.43 3.67 2.02 0.22 0.84 2.38 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟𝑐 𝑟ℎ · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ · · · > −2.9 > −1.5 > −3.1 > −1.3 > −2.1 > −2.2 > −2.5 −0.80+0.05 −0.05 −1.05+0.09 −0.09 −1.83+0.26 −0.28 −0.76+0.22 −0.23 −1.65+0.23 −0.24 −3.41+0.12 −0.07 −1.08+0.17 −0.18 −0.88+0.40 −0.43 +0.09+0.25 −0.24 −1.65+0.68 −0.79 −1.89+0.76 −0.84 < 0.6 −1.12+0.47 −0.50 −0.49+0.71 −0.83 −1.32+0.49 −0.52 < 0.9 −0.28+0.57 −0.60 −0.31+0.64 −0.68 < 1.1 < 1.4 −0.38+0.79 −0.93 < 1.1 < −0.6 −2.11+0.66 −0.70 −0.05+0.45 −0.44 −0.54+0.65 −0.70 < 5.4 < 5.5 < 5.3 < 5.4 < 5.4 < 5.6 < 5.1 224.8 206.7 132.9 84.6 84.1 79.6 74.6 42.2 41.1 29.4 28.6 28.0 27.9 27.4 24.6 24.1 22.9 22.2 22.0 22.0 21.3 21.2 21.1 20.6 20.4 19.8 140 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) N6544-VLA27 N6544-VLA28 N6544-VLA29 N6544-VLA30 N6544-VLA31 N6544-VLA32 N6544-VLA33 N6544-VLA34 N6544-VLA35 N6544-VLA36 N6544-VLA37 N6544-VLA38 N6544-VLA39 N6544-VLA40 N6544-VLA41 N6544-VLA42 N6544-VLA43 N6544-VLA44 N6544-VLA45 N6544-VLA46 N6544-VLA47 N6544-VLA48 N6712-VLA1 N6712-VLA2 N6712-VLA3 N6712-VLA4 N6712-VLA5 N6712-VLA6 N6712-VLA7 N6712-VLA8 N6712-VLA9 N6712-VLA10 N6712-VLA11 N6712-VLA12 N6712-VLA13 18:07:06.910 18:07:19.341 18:07:17.301 18:07:28.387 18:07:28.239 18:07:16.684 18:07:09.000 18:07:24.165 18:07:18.288 18:07:19.679 18:07:22.870 18:07:17.798 18:07:18.723 18:07:21.707 18:07:27.970 18:07:06.865 18:07:28.588 18:07:09.882 18:07:29.466 18:07:29.531 18:07:14.992 18:07:14.607 18:53:01.057 18:52:56.172 18:52:51.677 18:53:11.018 18:52:58.922 18:53:00.667 18:53:04.866 18:53:13.330 18:53:02.401 18:53:09.175 18:53:10.207 18:52:58.506 18:52:50.785 –24:58:20.79 –24:56:25.82 –25:01:50.31 –25:02:24.42 –25:00:32.38 –25:01:52.60 –24:59:15.70 –25:01:47.04 –25:00:48.04 –25:00:33.32 –24:58:53.55 –24:59:30.46 –24:58:42.71 –25:03:23.92 –25:03:03.02 –24:58:25.08 –25:01:21.88 –25:00:25.61 –24:59:31.98 –24:59:25.49 –24:59:53.11 –24:58:01.07 –08:45:30.05 –08:45:25.43 –08:43:26.25 –08:39:33.66 –08:45:17.45 –08:45:41.13 –08:42:20.34 –08:43:06.79 –08:42:19.01 –08:44:27.37 –08:43:08.26 –08:40:05.45 –08:41:32.33 R.A. unc. Dec. unc. (′′) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 (′′) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 3.3 3.5 3.0 3.4 2.7 3.1 3.0 2.8 2.7 2.6 2.6 2.4 2.7 -3.6 -6.0 3.2 5.3 -0.1 -2.2 1.5 4.7 2.3 3.4 3.9 3.2 3.1 3.3 3.5 2.3 2.7 2.3 2.8 2.4 2.5 3.1 < 14.3 < 13.8 < 9.0 < 14.2 < 7.9 < 9.5 < 9.8 < 8.8 < 6.8 < 6.5 < 6.6 < 6.1 11.5 35.0 34.7 24.4 17.3 16.9 15.6 15.0 13.7 13.7 243.9 144.9 116.0 113.9 129.8 96.4 92.8 42.6 51.6 39.3 27.1 37.4 26.4 1.5 6.4 -2.2 -1.6 8.1 2.0 -1.8 -0.5 1.5 -1.8 1.3 -1.9 2.3 6.0 6.4 4.5 3.2 3.3 2.9 2.7 2.3 2.7 5.0 6.5 4.8 4.3 5.0 5.7 2.1 3.0 2.0 3.1 2.4 3.2 4.9 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · 3.37 3.47 2.05 3.13 1.95 2.13 2.60 2.10 1.00 0.67 1.18 0.65 1.22 3.52 3.62 3.35 2.42 2.38 2.15 2.18 1.16 2.25 3.24 3.66 3.30 3.26 3.21 3.44 0.14 2.35 0.47 2.41 1.65 2.69 3.44 · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · 𝑟𝑐 · · · 𝑟𝑐 · · · · · · · · · · · · < 1.2 < 1.2 < 0.4 < 1.3 < 0.0 < 0.7 < 0.7 < 0.9 < 0.6 < 0.4 < 0.6 < 0.6 +0.42+0.54 −0.76 > −0.8 > −1.4 > −1.3 > −1.5 > −1.9 > −1.6 > −1.5 > −1.3 > −2.1 −1.40+0.06 −0.06 −1.28+0.12 −0.12 −1.11+0.11 −0.12 −0.50+0.11 −0.11 −0.17+0.11 −0.12 −0.69+0.16 −0.17 +0.12+0.09 −0.09 −1.19+0.20 −0.21 −0.60+0.13 −0.13 −1.07+0.23 −0.24 −1.74+0.25 −0.27 −0.59+0.26 −0.27 −1.20+0.50 −0.59 18.5 18.2 18.1 17.8 17.8 17.1 17.0 14.5 14.0 13.9 13.1 12.3 8.2 < 11.9 < 12.2 < 10.1 < 8.8 < 9.1 < 8.6 < 8.6 < 7.9 < 8.5 422.3 238.7 178.9 138.7 138.6 125.8 88.4 67.7 65.2 59.6 53.2 46.8 40.9 141 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) R.A. unc. Dec. unc. (′′) (′′) b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g N6712-VLA14 N6712-VLA15 N6712-VLA16 N6712-VLA17 N6712-VLA18 N6712-VLA19 N6712-VLA20 N6712-VLA21 N6712-VLA22 N6712-VLA23 N6712-VLA24 N6712-VLA25 N6712-VLA26 N6712-VLA27 N6712-VLA28 N6712-VLA29 N6712-VLA30 N6712-VLA31 N6712-VLA32 N6712-VLA33 N6712-VLA34 N6712-VLA35 N6712-VLA36 N6712-VLA37 N6712-VLA38 N6712-VLA39 N6712-VLA40 N6712-VLA41 N6712-VLA42 N6712-VLA43 N6712-VLA44 N6712-VLA45 N6712-VLA46 N6712-VLA47 N6712-VLA48 18:53:03.395 18:52:54.683 18:52:53.008 18:53:15.854 18:53:08.443 18:53:07.821 18:52:56.889 18:53:16.293 18:53:00.924 18:53:12.818 18:53:18.823 18:53:09.690 18:52:56.463 18:53:14.627 18:53:05.218 18:53:10.364 18:52:56.157 18:53:00.122 18:53:00.934 18:53:07.852 18:52:56.993 18:52:57.580 18:52:58.975 18:53:11.200 18:53:17.598 18:53:05.337 18:53:02.591 18:53:10.415 18:52:57.097 18:52:59.185 18:53:08.580 18:53:11.516 18:53:14.000 18:53:05.136 18:52:58.448 –08:40:58.87 –08:41:54.27 –08:40:44.80 –08:41:48.44 –08:44:03.13 –08:45:21.92 –08:44:03.51 –08:41:34.79 –08:45:44.18 –08:44:38.27 –08:43:17.31 –08:43:43.56 –08:43:35.96 –08:44:10.04 –08:44:00.03 –08:40:55.63 –08:40:26.42 –08:44:12.41 –08:40:38.51 –08:43:49.64 –08:41:04.02 –08:42:10.39 –08:41:33.08 –08:44:11.22 –08:42:07.81 –08:45:36.28 –08:45:22.45 –08:44:48.46 –08:44:16.37 –08:44:13.63 –08:40:05.21 –08:44:03.44 –08:42:02.79 –08:40:06.16 –08:41:57.26 0.03 0.03 0.03 0.05 0.05 0.05 0.03 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 2.3 2.6 3.0 2.9 2.6 3.3 2.8 3.0 3.4 3.2 3.5 2.4 2.8 3.1 2.5 2.6 2.9 2.8 2.4 2.3 2.5 2.4 2.4 2.7 0.8 0.3 -2.3 0.1 -2.9 -4.7 -1.1 2.6 0.6 -0.2 2.7 31.0 18.6 27.1 < 10.9 9.4 16.5 33.2 < 12.0 25.9 < 13.2 < 18.3 21.3 < 9.0 < 13.1 < 7.5 < 8.2 < 10.0 10.9 < 7.6 9.6 < 8.1 < 7.5 9.5 17.6 24.6 24.3 21.7 21.0 20.1 17.3 16.4 15.7 15.6 15.4 13.3 2.3 3.1 4.2 8.6 2.8 4.4 3.4 1.1 5.8 10.6 -11.8 2.7 6.3 4.8 1.2 3.2 0.4 3.0 2.0 2.4 -0.6 -1.8 2.4 3.3 4.6 4.8 4.3 4.0 3.6 3.1 3.1 3.1 3.1 2.8 2.3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1.40 2.42 3.23 2.91 1.97 3.12 2.49 3.07 3.47 3.10 3.71 1.90 2.30 3.12 1.65 2.08 2.79 2.11 1.91 1.70 2.22 1.67 1.55 2.49 3.29 3.25 3.04 2.87 2.61 2.25 2.51 2.46 2.42 2.27 1.50 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · −0.61+0.24 −0.25 −1.40+0.47 −0.53 −0.39+0.46 −0.50 < −0.9 −2.27+0.72 −0.71 −0.85+0.79 −0.96 +1.02+0.31 −0.38 < 0.5 +0.47+0.61 −0.79 < 1.0 < 1.4 +0.44+0.47 −0.48 < 0.6 < 1.3 < 0.2 < 0.4 < 1.0 −0.72+0.89 −1.02 < 0.7 −0.89+0.80 −0.91 < 0.9 < 0.8 −0.74+0.85 −0.95 +0.80+0.43 −0.64 > −1.5 > −2.2 > −2.1 > −1.7 > −1.2 > −1.3 > −1.7 > −2.1 > −2.1 > −1.4 > −1.3 0.04 0.04 0.04 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 39.3 31.5 31.1 30.7 22.6 21.8 21.5 20.5 20.1 18.9 18.8 17.9 16.6 15.9 15.8 15.7 15.5 13.8 13.5 13.1 12.9 12.8 12.2 10.9 < 9.5 < 9.4 < 9.4 < 8.9 < 8.4 < 8.2 < 8.1 < 7.8 < 7.7 < 7.9 < 7.4 142 Table A.1. (cont’d) ID R.A.a (h:m:s) Dec.a (◦:′:′′) N6712-VLA49 N6712-VLA50 N6760-VLA1 N6760-VLA2 N6760-VLA3 N6760-VLA4 N6760-VLA5 N6760-VLA6 N6760-VLA7 N6760-VLA8 N6760-VLA9 N6760-VLA10 N6760-VLA11 N6760-VLA12 N6760-VLA13 N6760-VLA14 N6760-VLA15 N6760-VLA16 N6760-VLA17 N6760-VLA18 N6760-VLA19 N6760-VLA20 N6760-VLA21 N6760-VLA22 N6760-VLA23 N6760-VLA24 N6760-VLA25 N6760-VLA26 N6760-VLA27 N6760-VLA28 N6760-VLA29 N6760-VLA30 N6760-VLA31 N6760-VLA32 18:53:02.796 18:53:02.794 19:11:10.421 19:11:15.631 19:11:17.529 19:11:12.231 19:11:16.058 19:10:59.637 19:11:01.662 19:11:17.481 19:11:03.945 19:11:17.565 19:11:07.132 19:11:22.430 19:11:22.918 19:11:16.893 19:11:19.250 19:10:58.516 19:11:05.043 19:11:13.010 19:11:04.059 19:11:03.927 19:11:17.834 19:11:23.882 19:11:12.305 19:11:06.791 19:11:09.932 19:11:19.348 19:11:14.592 19:11:08.392 19:11:16.634 19:10:59.876 19:11:19.591 19:11:05.218 –08:43:53.17 –08:42:03.45 +01:04:34.17 +00:58:18.26 +01:05:15.90 +00:58:50.51 +01:00:20.33 +01:02:25.18 +01:03:13.08 +01:01:00.54 +00:59:15.76 +01:05:00.10 +01:00:47.28 +01:02:37.26 +01:00:09.11 +00:58:30.73 +00:59:40.41 +01:01:37.88 +01:04:15.36 +01:04:21.44 +00:58:57.98 +01:00:50.55 +00:58:56.18 +01:02:07.56 +00:58:13.75 +01:00:41.68 +01:01:37.18 +01:04:29.95 +01:01:15.08 +01:02:40.36 +01:02:05.94 +01:01:48.99 +01:03:57.10 +01:00:47.91 R.A. unc. Dec. unc. (′′) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 (′′) 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g -0.9 -0.6 3.1 3.7 3.5 2.9 2.4 3.3 3.0 2.4 3.2 3.3 2.3 2.8 3.1 3.4 2.9 3.3 2.9 2.7 3.5 2.6 3.2 3.0 3.4 2.4 2.3 3.1 2.4 2.3 2.4 2.8 2.8 2.6 12.5 11.0 1278.6 660.8 59.0 52.2 49.8 44.1 31.5 25.4 19.8 32.6 18.0 16.4 < 13.5 < 17.0 < 11.1 < 15.2 < 12.7 12.3 < 16.8 9.7 < 14.1 < 11.9 < 18.3 9.4 < 6.4 < 13.9 9.0 9.9 < 6.8 < 12.7 < 11.4 11.9 2.4 2.1 4.1 7.3 6.1 4.0 2.7 4.6 3.9 2.5 4.9 5.4 2.4 3.6 3.7 4.0 3.5 -1.9 10.1 3.2 -5.0 2.9 9.1 11.6 -7.3 2.4 6.7 5.5 2.1 2.2 5.7 0.4 1.8 2.7 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1.56 0.48 2.77 3.64 3.70 2.99 1.80 3.15 2.94 1.59 3.26 3.46 1.60 2.72 3.20 3.53 2.81 3.38 2.99 2.54 3.48 2.25 3.24 2.98 3.60 1.73 0.56 3.24 0.87 1.24 1.19 3.03 2.85 1.99 · · · 𝑟𝑐 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 𝑟ℎ · · · 𝑟ℎ 𝑟ℎ 𝑟ℎ · · · · · · · · · > −1.9 > −2.0 −1.60+0.01 −0.01 −0.98+0.03 −0.03 −1.17+0.32 −0.34 −1.35+0.24 −0.25 −0.70+0.19 −0.19 +0.02+0.38 −0.39 +0.43+0.47 −0.50 +0.10+0.41 −0.41 −0.72+0.81 −0.97 +0.75+0.48 −0.62 −0.71+0.49 −0.51 −1.03+0.73 −0.83 < 0.9 < 1.4 < 0.4 < 1.2 < 0.8 −1.33+0.85 −0.96 < 1.4 −1.83+0.89 −0.92 < 1.3 < 1.1 < 1.4 −1.76+0.82 −0.88 < −0.2 < 1.4 −1.52+0.83 −0.88 −1.23+0.80 −0.88 < 0.3 < 1.3 < 1.3 −0.55+0.86 −0.95 < 7.2 < 7.0 2223.6 927.7 87.3 82.9 63.3 43.6 27.0 24.5 24.1 23.7 22.8 22.6 21.1 20.4 20.3 20.3 19.9 18.7 18.1 17.9 17.6 17.5 17.1 16.8 15.7 15.4 14.9 14.8 14.6 14.5 14.3 14.0 143 Table A.1. (cont’d) R.A. unc. Dec. unc. (′′) 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 (′′) 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 b 𝑆5 (𝜇Jy) 𝑆5 unc. (𝜇Jy) c 𝑆7 (𝜇Jy) 𝑆7 unc. (𝜇Jy) noted radiuse (′) loc.f 𝛼g 14.0 13.9 13.3 13.0 12.3 12.1 11.8 < 10.9 < 10.2 < 9.8 < 9.5 < 9.7 < 8.4 < 9.0 < 8.6 < 8.7 < 8.2 < 8.3 < 8.2 < 7.9 < 7.3 < 7.3 < 7.2 < 7.2 < 6.9 2.8 2.3 2.4 2.3 2.4 2.4 2.4 -2.7 -3.6 -1.2 0.9 3.6 5.1 0.4 -1.2 -3.5 -3.3 -0.6 -2.3 0.5 -2.4 -0.8 -1.6 -5.3 2.8 < 12.1 < 6.0 < 7.0 < 7.4 14.0 < 7.4 < 7.8 35.5 28.4 27.7 24.7 24.0 23.8 23.0 21.5 21.4 17.7 17.1 16.9 14.8 13.7 13.0 12.5 12.3 12.1 2.9 6.6 0.7 2.1 2.2 -0.3 -0.4 6.1 5.3 5.4 4.7 4.7 3.5 4.3 3.7 4.0 3.3 3.3 3.0 2.9 2.6 2.5 2.4 2.4 2.3 · · · · · · · · · · · · · · · · · · · · · · · · ext.? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2.96 0.41 1.52 1.69 1.09 1.71 1.87 3.64 3.41 3.43 3.28 3.25 2.69 2.98 2.82 2.98 2.56 2.57 2.43 2.25 1.91 1.65 1.63 1.52 1.28 · · · 𝑟ℎ · · · · · · 𝑟ℎ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · < 1.3 < 0.1 < 0.7 < 0.8 +0.30+0.63 −0.70 < 0.9 < 1.0 > −1.2 > −1.9 > −2.6 > −2.1 > −2.4 > −0.4 > −1.9 > −1.2 > −1.9 > −1.8 > −2.2 > −1.5 > −2.3 > −2.1 > −2.2 > −2.2 > −2.4 > −2.2 ID R.A.a (h:m:s) Dec.a (◦:′:′′) N6760-VLA33 N6760-VLA34 N6760-VLA35 N6760-VLA36 N6760-VLA37 N6760-VLA38 N6760-VLA39 N6760-VLA40 N6760-VLA41 N6760-VLA42 N6760-VLA43 N6760-VLA44 N6760-VLA45 N6760-VLA46 N6760-VLA47 N6760-VLA48 N6760-VLA49 N6760-VLA50 N6760-VLA51 N6760-VLA52 N6760-VLA53 N6760-VLA54 N6760-VLA55 N6760-VLA56 N6760-VLA57 19:11:03.550 19:11:11.084 19:11:12.156 19:11:11.908 19:11:16.097 19:11:10.190 19:11:16.463 19:11:04.771 19:11:15.505 19:11:25.625 19:11:18.365 19:10:59.603 19:11:01.318 19:11:10.806 19:11:21.622 19:11:00.691 19:11:03.846 19:11:03.200 19:11:06.896 19:11:19.142 19:11:18.856 19:11:17.819 19:11:05.644 19:11:08.467 19:11:16.815 +00:59:45.06 +01:02:09.73 +01:03:20.76 +01:03:31.03 +01:01:27.26 +01:00:10.99 +01:03:19.82 +01:04:58.93 +00:58:31.68 +01:02:15.28 +01:04:41.89 +01:02:47.88 +01:02:08.34 +01:04:47.83 +01:03:18.61 +01:00:54.28 +01:00:17.40 +01:00:30.34 +00:59:45.68 +01:03:12.40 +01:00:58.76 +01:01:02.35 +01:02:10.84 +01:03:04.17 +01:01:23.71 aICRS position at epoch of observation. bFlux density in the lower subband. cFlux density in the higher subband. dWhether the source is extended or a possible imaging artifact. eProjected radius from the cluster center. fWhether the source is within the core (𝑟𝑐) or half-light (𝑟ℎ) radius. gSpectral index 𝛼 of source, for 𝑆 ∝ 𝜈 𝛼 144 APPENDIX B DEEPER CATALOG OF SOURCES IN NGC 6304 Table B1 below lists the set of 3𝜎 radio continuum sources found in NGC 6304, as described in Chapter 3. 145 Table B1. 3𝜎 Sources in NGC 6304 R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:33.353 17:14:33.400 17:14:31.917 17:14:30.486 17:14:33.348 17:14:32.544 17:14:31.151 17:14:29.441 17:14:32.217 17:14:36.248 17:14:29.038 17:14:28.480 17:14:29.924 17:14:32.788 17:14:30.826 17:14:35.515 17:14:33.149 17:14:32.980 17:14:30.947 17:14:28.411 17:14:29.428 17:14:35.990 17:14:35.561 17:14:32.993 17:14:32.992 17:14:32.616 17:14:31.154 17:14:28.261 17:14:31.924 17:14:33.644 17:14:33.625 17:14:33.353 17:14:33.155 17:14:33.093 17:14:34.347 17:14:33.589 17:14:31.038 17:14:30.390 17:14:35.542 17:14:34.947 17:14:33.546 17:14:33.096 17:14:31.919 17:14:31.892 17:14:30.156 17:14:29.537 17:14:28.490 17:14:34.223 17:14:30.927 17:14:28.474 17:14:36.210 17:14:32.739 17:14:30.731 17:14:29.831 17:14:29.512 17:14:35.930 17:14:33.520 0.036 0.038 0.037 0.041 0.041 0.040 0.040 0.043 0.042 0.044 0.044 0.046 0.046 0.046 0.044 0.045 0.047 0.047 0.046 0.047 0.047 0.046 0.048 0.050 0.048 0.047 0.048 0.046 0.044 0.048 0.049 0.048 0.048 0.047 0.049 0.047 0.049 0.047 0.050 0.049 0.049 0.047 0.049 0.050 0.049 0.049 0.051 0.048 0.047 0.047 0.050 0.050 0.048 0.051 0.050 0.051 0.050 –29:28:30.38 –29:27:22.42 –29:27:45.51 –29:27:29.59 –29:27:32.51 –29:26:59.22 –29:27:16.24 –29:28:01.67 –29:28:28.12 –29:27:30.46 –29:27:08.08 –29:28:15.90 –29:28:17.68 –29:27:51.83 –29:27:09.31 –29:27:35.72 –29:27:50.07 –29:28:33.48 –29:28:28.17 –29:27:53.41 –29:28:21.36 –29:28:12.47 –29:28:14.46 –29:28:38.88 –29:28:34.45 –29:27:07.90 –29:27:01.07 –29:27:31.38 –29:28:03.71 –29:28:03.76 –29:28:33.89 –29:27:14.98 –29:27:45.38 –29:27:59.43 –29:27:59.15 –29:28:24.01 –29:28:24.78 –29:28:02.14 –29:28:11.68 –29:27:44.56 –29:27:22.17 –29:27:03.22 –29:28:27.36 –29:28:22.18 –29:28:18.09 –29:26:58.50 –29:28:17.38 –29:27:29.79 –29:28:07.78 –29:27:27.49 –29:27:37.61 –29:28:13.63 –29:27:27.02 –29:28:08.60 –29:27:56.75 –29:27:45.11 –29:27:46.03 0.069 0.074 0.072 0.079 0.078 0.077 0.077 0.083 0.081 0.084 0.085 0.087 0.088 0.088 0.085 0.087 0.090 0.090 0.087 0.089 0.090 0.087 0.091 0.096 0.092 0.090 0.092 0.089 0.084 0.093 0.094 0.092 0.091 0.090 0.093 0.091 0.095 0.091 0.095 0.094 0.094 0.091 0.095 0.095 0.093 0.095 0.097 0.092 0.091 0.091 0.096 0.096 0.093 0.098 0.097 0.097 0.095 146 12.7 12.2 11.8 11.4 11.2 11.2 11.2 11.1 10.7 10.3 10.3 10.3 10.2 10.1 10.1 10.0 10.0 10.0 10.0 10.0 9.9 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.7 9.6 9.6 9.6 9.6 9.6 9.5 9.5 9.5 9.5 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.3 9.3 9.3 9.2 9.2 9.2 9.2 9.2 9.1 9.1 2.6 2.6 2.5 2.6 2.5 2.5 2.5 2.7 2.5 2.5 2.5 2.6 2.6 2.6 2.5 2.5 2.6 2.6 2.5 2.6 2.6 2.5 2.6 2.7 2.6 2.6 2.6 2.5 2.4 2.6 2.6 2.6 2.5 2.5 2.6 2.5 2.6 2.5 2.6 2.6 2.6 2.5 2.6 2.6 2.5 2.6 2.7 2.5 2.5 2.5 2.6 2.6 2.5 2.6 2.6 2.6 2.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:32.807 17:14:31.076 17:14:30.463 17:14:35.805 17:14:35.371 17:14:34.341 17:14:33.809 17:14:32.505 17:14:30.770 17:14:29.234 17:14:28.111 17:14:36.503 17:14:34.974 17:14:33.258 17:14:32.785 17:14:32.216 17:14:31.819 17:14:36.472 17:14:35.492 17:14:34.041 17:14:33.614 17:14:32.939 17:14:31.895 17:14:30.446 17:14:35.933 17:14:35.198 17:14:34.911 17:14:34.194 17:14:31.390 17:14:27.948 17:14:36.143 17:14:35.735 17:14:31.775 17:14:30.394 17:14:30.390 17:14:30.177 17:14:30.113 17:14:29.939 17:14:29.863 17:14:35.510 17:14:34.429 17:14:34.287 17:14:34.126 17:14:33.675 17:14:33.657 17:14:33.559 17:14:30.671 17:14:30.557 17:14:28.915 17:14:35.746 17:14:35.368 17:14:32.718 17:14:30.114 17:14:30.083 17:14:28.681 17:14:28.566 0.051 0.050 0.050 0.049 0.052 0.050 0.052 0.051 0.051 0.051 0.050 0.051 0.052 0.051 0.051 0.052 0.053 0.050 0.053 0.052 0.052 0.051 0.048 0.050 0.053 0.052 0.054 0.052 0.055 0.053 0.052 0.054 0.054 0.054 0.054 0.054 0.052 0.057 0.055 0.055 0.053 0.054 0.054 0.056 0.056 0.055 0.053 0.053 0.053 0.056 0.054 0.055 0.055 0.054 0.053 0.055 –29:27:50.06 –29:27:29.02 –29:27:21.00 –29:27:59.74 –29:27:25.12 –29:27:03.17 –29:27:36.22 –29:26:44.60 –29:28:30.61 –29:27:22.42 –29:27:18.55 –29:27:39.85 –29:27:15.77 –29:27:53.84 –29:27:23.80 –29:28:40.20 –29:27:08.48 –29:27:56.80 –29:27:25.52 –29:27:10.94 –29:26:59.63 –29:28:02.49 –29:28:02.11 –29:27:38.45 –29:27:44.51 –29:27:00.15 –29:27:22.65 –29:27:11.47 –29:26:55.54 –29:27:38.96 –29:27:50.60 –29:27:28.14 –29:27:07.34 –29:27:31.56 –29:27:16.05 –29:27:25.09 –29:27:38.62 –29:28:06.45 –29:28:09.72 –29:27:07.51 –29:27:03.38 –29:28:10.90 –29:27:03.30 –29:26:47.70 –29:28:38.98 –29:26:53.79 –29:27:26.37 –29:27:56.85 –29:28:10.48 –29:27:26.69 –29:27:23.79 –29:27:41.93 –29:27:33.40 –29:28:28.67 –29:27:14.44 –29:27:45.74 0.097 0.095 0.097 0.095 0.099 0.096 0.099 0.099 0.098 0.097 0.096 0.098 0.100 0.098 0.097 0.100 0.101 0.097 0.101 0.099 0.099 0.099 0.092 0.097 0.101 0.100 0.103 0.101 0.106 0.102 0.099 0.104 0.105 0.104 0.104 0.104 0.100 0.109 0.105 0.105 0.101 0.104 0.104 0.107 0.107 0.105 0.102 0.102 0.102 0.108 0.104 0.105 0.105 0.104 0.102 0.106 147 9.1 9.1 9.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.9 8.9 8.9 8.9 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.7 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.4 8.4 8.4 8.4 8.4 8.4 8.4 2.6 2.5 2.6 2.5 2.6 2.5 2.6 2.6 2.5 2.5 2.5 2.5 2.6 2.6 2.5 2.6 2.6 2.5 2.6 2.5 2.5 2.5 2.4 2.5 2.6 2.5 2.6 2.5 2.7 2.6 2.5 2.6 2.6 2.6 2.6 2.6 2.5 2.7 2.6 2.6 2.5 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.5 2.5 2.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:34.851 17:14:34.626 17:14:33.828 17:14:33.698 17:14:33.626 17:14:33.610 17:14:31.853 17:14:31.574 17:14:30.417 17:14:30.350 17:14:29.189 17:14:35.760 17:14:34.343 17:14:34.223 17:14:33.616 17:14:32.579 17:14:32.488 17:14:29.931 17:14:29.645 17:14:28.159 17:14:34.900 17:14:34.882 17:14:34.648 17:14:33.693 17:14:32.487 17:14:31.432 17:14:31.135 17:14:30.723 17:14:30.720 17:14:29.566 17:14:35.026 17:14:34.392 17:14:32.762 17:14:32.197 17:14:31.369 17:14:31.316 17:14:30.782 17:14:30.242 17:14:28.890 17:14:28.575 17:14:28.249 17:14:27.958 17:14:27.721 17:14:34.668 17:14:34.418 17:14:33.483 17:14:32.548 17:14:32.456 17:14:32.312 17:14:32.270 17:14:31.563 17:14:31.054 17:14:30.917 17:14:34.798 17:14:34.622 17:14:33.933 0.056 0.054 0.054 0.055 0.056 0.056 0.052 0.056 0.056 0.054 0.057 0.057 0.057 0.055 0.055 0.057 0.056 0.056 0.056 0.055 0.057 0.058 0.056 0.056 0.058 0.057 0.056 0.057 0.055 0.058 0.058 0.057 0.057 0.056 0.059 0.055 0.058 0.056 0.058 0.055 0.057 0.056 0.057 0.058 0.057 0.058 0.057 0.055 0.057 0.057 0.060 0.058 0.058 0.058 0.058 0.059 –29:27:02.20 –29:27:30.02 –29:28:18.45 –29:28:12.67 –29:26:56.50 –29:28:05.37 –29:27:48.45 –29:28:23.57 –29:27:33.51 –29:27:52.23 –29:28:13.25 –29:27:38.20 –29:27:17.23 –29:28:17.63 –29:28:22.11 –29:28:15.50 –29:27:46.51 –29:27:22.84 –29:28:32.21 –29:28:01.14 –29:28:09.61 –29:27:22.18 –29:26:56.47 –29:27:19.60 –29:28:43.18 –29:28:37.76 –29:27:30.52 –29:27:06.41 –29:27:40.41 –29:28:17.35 –29:27:15.88 –29:26:57.43 –29:28:32.12 –29:27:15.70 –29:28:38.98 –29:27:22.59 –29:27:16.42 –29:27:00.86 –29:27:52.61 –29:27:30.86 –29:27:58.95 –29:27:23.98 –29:27:51.67 –29:27:03.02 –29:27:03.88 –29:28:14.79 –29:27:59.08 –29:28:00.10 –29:28:11.29 –29:26:52.11 –29:28:42.54 –29:28:38.02 –29:27:38.01 –29:27:52.26 –29:27:08.79 –29:27:47.10 0.108 0.104 0.104 0.105 0.107 0.108 0.101 0.107 0.107 0.103 0.109 0.109 0.109 0.106 0.106 0.109 0.107 0.107 0.107 0.106 0.110 0.111 0.107 0.107 0.111 0.110 0.108 0.110 0.106 0.111 0.111 0.110 0.109 0.108 0.113 0.105 0.112 0.108 0.111 0.105 0.109 0.108 0.109 0.112 0.109 0.112 0.108 0.106 0.109 0.110 0.115 0.111 0.111 0.111 0.112 0.113 148 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 2.6 2.5 2.5 2.5 2.6 2.6 2.4 2.6 2.6 2.5 2.6 2.6 2.6 2.5 2.5 2.6 2.5 2.6 2.5 2.5 2.6 2.6 2.5 2.5 2.6 2.6 2.6 2.6 2.5 2.6 2.6 2.6 2.5 2.5 2.6 2.4 2.6 2.5 2.6 2.4 2.5 2.5 2.5 2.6 2.5 2.6 2.5 2.4 2.5 2.5 2.6 2.6 2.5 2.5 2.5 2.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:33.031 17:14:32.370 17:14:30.821 17:14:30.367 17:14:28.834 17:14:32.236 17:14:32.198 17:14:31.713 17:14:30.134 17:14:29.667 17:14:35.461 17:14:32.406 17:14:31.380 17:14:34.788 17:14:30.003 17:14:32.140 17:14:35.725 17:14:32.395 17:14:32.551 17:14:31.840 17:14:29.792 17:14:34.999 17:14:34.916 17:14:30.556 17:14:34.063 17:14:34.915 17:14:33.847 17:14:28.387 17:14:31.075 17:14:32.856 17:14:36.399 17:14:29.106 17:14:36.399 17:14:30.028 17:14:27.914 17:14:29.606 17:14:33.562 17:14:35.802 17:14:28.386 17:14:31.531 17:14:32.703 17:14:30.154 17:14:31.361 17:14:28.987 17:14:29.271 17:14:30.037 17:14:36.627 17:14:33.489 17:14:32.790 17:14:33.991 17:14:36.626 17:14:36.027 17:14:32.106 17:14:36.707 17:14:29.679 17:14:34.044 0.058 0.059 0.058 0.059 0.059 0.059 0.054 0.056 0.059 0.058 0.060 0.057 0.059 0.060 0.059 0.057 0.060 0.060 0.029 0.030 0.030 0.030 0.030 0.031 0.029 0.030 0.031 0.029 0.030 0.032 0.033 0.030 0.033 0.031 0.033 0.031 0.031 0.035 0.032 0.034 0.033 0.033 0.031 0.034 0.033 0.033 0.035 0.035 0.035 0.035 0.036 0.034 0.033 0.036 0.033 0.034 –29:27:26.71 –29:27:06.45 –29:28:13.49 –29:26:53.64 –29:27:22.11 –29:28:38.25 –29:27:26.57 –29:28:05.49 –29:27:58.54 –29:27:49.60 –29:27:14.51 –29:27:22.75 –29:27:47.46 –29:27:30.92 –29:28:32.04 –29:27:24.63 –29:27:53.03 –29:27:25.75 –29:28:33.00 –29:27:49.21 –29:28:29.26 –29:28:11.32 –29:27:14.73 –29:27:56.08 –29:27:39.47 –29:27:14.77 –29:27:04.89 –29:27:47.89 –29:27:59.52 –29:26:55.40 –29:27:50.78 –29:27:36.00 –29:27:50.77 –29:28:07.58 –29:27:57.71 –29:27:02.57 –29:28:32.27 –29:28:08.68 –29:27:24.17 –29:26:49.09 –29:27:14.69 –29:27:05.57 –29:27:45.73 –29:27:26.22 –29:27:54.25 –29:27:47.93 –29:28:00.33 –29:26:50.57 –29:28:23.46 –29:27:14.51 –29:28:00.34 –29:27:29.32 –29:26:58.68 –29:27:45.43 –29:27:47.95 –29:27:32.66 0.112 0.114 0.111 0.114 0.113 0.114 0.104 0.108 0.114 0.111 0.115 0.109 0.114 0.115 0.113 0.110 0.115 0.115 0.052 0.054 0.054 0.055 0.054 0.056 0.053 0.055 0.057 0.053 0.055 0.057 0.059 0.055 0.059 0.056 0.060 0.056 0.057 0.063 0.058 0.062 0.060 0.060 0.057 0.062 0.059 0.059 0.064 0.064 0.063 0.063 0.065 0.062 0.061 0.066 0.061 0.061 149 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.6 7.5 7.5 7.4 7.3 7.2 13.5 12.9 12.8 12.6 12.6 12.5 12.4 12.4 12.3 12.3 12.2 12.1 12.1 12.0 12.0 11.9 11.9 11.9 11.7 11.5 11.4 11.4 11.3 11.3 11.2 11.2 11.1 11.1 11.1 11.1 11.1 11.0 11.0 11.0 10.9 10.9 10.8 10.8 2.5 2.6 2.5 2.6 2.6 2.5 2.3 2.4 2.6 2.5 2.5 2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.9 2.8 2.8 2.8 2.8 2.8 2.7 2.7 2.8 2.6 2.7 2.8 2.9 2.7 2.9 2.7 2.9 2.7 2.7 2.9 2.7 2.9 2.7 2.8 2.6 2.8 2.7 2.7 2.9 2.9 2.8 2.8 2.9 2.7 2.7 2.9 2.7 2.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:28.734 17:14:33.070 17:14:32.053 17:14:33.593 17:14:28.051 17:14:29.209 17:14:29.256 17:14:29.542 17:14:34.784 17:14:30.493 17:14:34.189 17:14:31.198 17:14:33.006 17:14:31.670 17:14:29.439 17:14:28.940 17:14:35.788 17:14:33.168 17:14:29.234 17:14:32.038 17:14:33.032 17:14:34.836 17:14:33.613 17:14:28.337 17:14:33.503 17:14:35.750 17:14:32.316 17:14:34.197 17:14:33.817 17:14:31.630 17:14:28.798 17:14:34.730 17:14:32.440 17:14:28.882 17:14:31.069 17:14:34.210 17:14:31.657 17:14:29.739 17:14:30.396 17:14:28.026 17:14:31.649 17:14:30.396 17:14:30.679 17:14:28.737 17:14:34.011 17:14:32.063 17:14:29.476 17:14:31.400 17:14:34.877 17:14:33.871 17:14:31.843 17:14:33.537 17:14:33.153 17:14:34.917 17:14:36.669 17:14:32.052 0.035 0.034 0.034 0.034 0.034 0.036 0.034 0.036 0.035 0.036 0.037 0.038 0.036 0.035 0.035 0.037 0.035 0.036 0.038 0.036 0.037 0.036 0.036 0.036 0.038 0.035 0.037 0.036 0.035 0.037 0.037 0.036 0.036 0.037 0.036 0.038 0.036 0.036 0.035 0.038 0.037 0.036 0.037 0.037 0.037 0.037 0.036 0.036 0.037 0.038 0.036 0.037 0.038 0.038 0.038 0.036 –29:27:27.31 –29:27:36.17 –29:27:05.19 –29:27:54.78 –29:27:38.62 –29:28:08.77 –29:27:55.53 –29:27:39.92 –29:27:15.26 –29:28:27.62 –29:27:06.72 –29:26:47.84 –29:27:51.64 –29:26:58.40 –29:27:34.99 –29:28:22.67 –29:27:17.18 –29:26:57.45 –29:27:12.38 –29:27:13.24 –29:28:20.68 –29:27:53.33 –29:27:42.63 –29:27:21.18 –29:26:48.19 –29:27:37.89 –29:28:04.11 –29:27:17.18 –29:27:33.53 –29:28:29.31 –29:28:09.83 –29:27:13.17 –29:26:50.78 –29:27:21.65 –29:28:02.72 –29:28:27.17 –29:27:26.47 –29:26:55.23 –29:28:09.43 –29:27:26.08 –29:28:41.41 –29:28:09.43 –29:28:28.56 –29:27:24.99 –29:27:24.23 –29:28:41.39 –29:27:25.35 –29:28:10.68 –29:28:04.22 –29:27:15.06 –29:27:41.43 –29:28:29.24 –29:28:40.05 –29:28:26.32 –29:27:31.11 –29:26:59.16 0.064 0.062 0.061 0.062 0.062 0.065 0.062 0.064 0.063 0.066 0.067 0.069 0.065 0.064 0.064 0.067 0.064 0.064 0.069 0.065 0.066 0.065 0.065 0.065 0.069 0.064 0.067 0.066 0.063 0.066 0.067 0.065 0.065 0.067 0.065 0.069 0.065 0.066 0.064 0.068 0.068 0.064 0.067 0.068 0.067 0.068 0.065 0.065 0.068 0.068 0.065 0.066 0.069 0.069 0.070 0.065 150 10.8 10.8 10.8 10.8 10.6 10.6 10.6 10.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.2 10.2 10.2 10.2 10.2 10.2 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.0 10.0 10.0 10.0 10.0 2.8 2.7 2.7 2.7 2.7 2.8 2.6 2.8 2.7 2.8 2.9 3.0 2.8 2.7 2.7 2.8 2.7 2.7 2.9 2.7 2.8 2.8 2.8 2.7 2.9 2.7 2.8 2.8 2.6 2.8 2.8 2.7 2.7 2.8 2.7 2.9 2.7 2.7 2.7 2.8 2.8 2.7 2.8 2.8 2.8 2.8 2.7 2.7 2.8 2.8 2.7 2.7 2.8 2.8 2.8 2.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:29.308 17:14:30.735 17:14:28.575 17:14:32.587 17:14:32.812 17:14:30.437 17:14:29.098 17:14:31.395 17:14:32.990 17:14:31.998 17:14:28.776 17:14:35.798 17:14:28.164 17:14:31.761 17:14:34.866 17:14:33.881 17:14:35.823 17:14:31.428 17:14:31.196 17:14:30.039 17:14:30.618 17:14:33.459 17:14:35.347 17:14:27.986 17:14:33.162 17:14:34.802 17:14:33.757 17:14:31.789 17:14:29.354 17:14:32.243 17:14:32.912 17:14:29.324 17:14:30.671 17:14:36.092 17:14:34.052 17:14:28.964 17:14:31.592 17:14:31.922 17:14:28.041 17:14:32.815 17:14:32.624 17:14:32.119 17:14:34.060 17:14:32.624 17:14:32.737 17:14:33.659 17:14:28.974 17:14:31.443 17:14:34.622 17:14:34.525 17:14:35.366 17:14:33.220 17:14:34.643 17:14:32.537 17:14:34.199 17:14:28.463 0.039 0.035 0.038 0.039 0.037 0.037 0.037 0.039 0.037 0.039 0.037 0.037 0.037 0.036 0.037 0.038 0.040 0.038 0.036 0.038 0.037 0.040 0.037 0.039 0.038 0.038 0.037 0.038 0.039 0.040 0.039 0.038 0.039 0.039 0.039 0.039 0.038 0.040 0.038 0.037 0.039 0.038 0.042 0.039 0.039 0.037 0.040 0.040 0.040 0.040 0.041 0.040 0.040 0.039 0.039 0.040 –29:27:11.55 –29:27:40.27 –29:28:17.01 –29:28:29.92 –29:28:07.52 –29:28:04.97 –29:27:42.33 –29:27:06.73 –29:27:15.23 –29:27:52.72 –29:27:56.19 –29:27:18.02 –29:27:58.67 –29:27:30.52 –29:27:33.63 –29:28:25.86 –29:28:10.42 –29:27:01.24 –29:27:47.41 –29:28:14.82 –29:27:08.93 –29:26:48.26 –29:27:51.50 –29:27:57.85 –29:27:37.13 –29:27:08.11 –29:27:30.60 –29:27:15.23 –29:27:04.83 –29:28:25.67 –29:28:42.08 –29:27:19.05 –29:27:59.77 –29:27:31.90 –29:27:04.89 –29:27:17.78 –29:27:59.49 –29:28:19.93 –29:27:34.41 –29:28:02.42 –29:28:34.63 –29:27:44.36 –29:26:49.37 –29:28:34.63 –29:27:16.47 –29:27:20.86 –29:27:04.94 –29:28:39.59 –29:28:07.03 –29:27:29.39 –29:26:59.85 –29:26:53.11 –29:28:11.39 –29:27:33.77 –29:28:08.38 –29:28:11.90 0.071 0.064 0.068 0.071 0.067 0.067 0.068 0.070 0.067 0.071 0.066 0.068 0.067 0.066 0.067 0.069 0.073 0.069 0.065 0.068 0.067 0.073 0.067 0.071 0.068 0.069 0.067 0.069 0.071 0.072 0.071 0.068 0.070 0.070 0.071 0.071 0.069 0.073 0.069 0.068 0.071 0.069 0.076 0.071 0.070 0.067 0.072 0.072 0.072 0.073 0.074 0.072 0.073 0.071 0.071 0.072 151 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 2.9 2.6 2.8 2.9 2.7 2.7 2.7 2.8 2.7 2.9 2.7 2.7 2.7 2.7 2.7 2.8 2.9 2.8 2.6 2.7 2.7 2.9 2.7 2.8 2.7 2.8 2.7 2.8 2.8 2.9 2.8 2.7 2.8 2.8 2.8 2.8 2.7 2.9 2.7 2.7 2.8 2.7 3.0 2.8 2.7 2.7 2.8 2.8 2.8 2.8 2.9 2.8 2.8 2.7 2.8 2.8 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:30.455 17:14:34.777 17:14:28.086 17:14:34.777 17:14:30.463 17:14:29.993 17:14:35.682 17:14:31.683 17:14:33.245 17:14:35.540 17:14:31.821 17:14:28.509 17:14:28.178 17:14:29.309 17:14:29.394 17:14:34.080 17:14:29.027 17:14:34.569 17:14:36.688 17:14:30.921 17:14:34.129 17:14:35.799 17:14:31.264 17:14:32.025 17:14:34.815 17:14:34.183 17:14:34.403 17:14:32.795 17:14:30.256 17:14:31.201 17:14:33.771 17:14:30.370 17:14:31.709 17:14:30.289 17:14:30.023 17:14:29.656 17:14:34.183 17:14:33.169 17:14:29.387 17:14:33.396 17:14:30.493 17:14:31.695 17:14:31.871 17:14:29.966 17:14:31.682 17:14:32.651 17:14:29.937 17:14:29.966 17:14:36.278 17:14:34.177 17:14:35.963 17:14:33.860 17:14:31.138 17:14:35.003 17:14:32.814 17:14:34.382 0.040 0.039 0.040 0.039 0.041 0.041 0.042 0.038 0.039 0.041 0.039 0.039 0.039 0.039 0.042 0.040 0.040 0.041 0.043 0.039 0.040 0.040 0.041 0.042 0.040 0.041 0.043 0.039 0.039 0.039 0.040 0.041 0.039 0.040 0.040 0.040 0.041 0.039 0.040 0.040 0.042 0.041 0.043 0.040 0.041 0.043 0.039 0.040 0.042 0.042 0.043 0.041 0.042 0.042 0.040 0.042 –29:26:59.48 –29:27:55.12 –29:27:57.10 –29:27:55.14 –29:26:57.98 –29:28:18.80 –29:28:14.98 –29:26:57.15 –29:27:23.37 –29:27:04.64 –29:27:44.51 –29:27:44.59 –29:27:37.07 –29:27:21.19 –29:28:26.92 –29:28:23.35 –29:28:00.76 –29:27:25.06 –29:27:48.17 –29:28:07.02 –29:28:18.26 –29:27:56.08 –29:28:19.87 –29:28:20.00 –29:28:13.99 –29:27:26.32 –29:26:53.74 –29:27:36.29 –29:28:36.04 –29:28:03.81 –29:28:02.42 –29:26:48.67 –29:27:27.85 –29:26:59.66 –29:27:02.96 –29:27:13.35 –29:27:26.32 –29:28:12.23 –29:27:34.61 –29:27:15.48 –29:26:54.35 –29:28:03.47 –29:28:24.68 –29:27:43.95 –29:28:41.53 –29:28:41.29 –29:27:46.49 –29:27:43.95 –29:28:09.42 –29:27:11.65 –29:27:52.23 –29:28:23.81 –29:27:03.51 –29:28:30.21 –29:28:00.68 –29:28:12.44 0.073 0.070 0.072 0.070 0.074 0.073 0.076 0.070 0.070 0.074 0.071 0.072 0.071 0.071 0.076 0.073 0.073 0.075 0.077 0.071 0.073 0.072 0.074 0.076 0.073 0.074 0.078 0.071 0.072 0.071 0.073 0.075 0.070 0.073 0.073 0.073 0.075 0.071 0.072 0.073 0.076 0.075 0.078 0.072 0.074 0.077 0.071 0.072 0.075 0.076 0.078 0.075 0.076 0.076 0.073 0.076 152 9.6 9.6 9.6 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.1 9.1 9.1 9.1 9.1 2.8 2.7 2.8 2.7 2.9 2.8 2.9 2.7 2.7 2.8 2.7 2.7 2.7 2.7 2.9 2.8 2.8 2.9 2.9 2.7 2.8 2.7 2.8 2.9 2.8 2.8 2.9 2.7 2.7 2.7 2.8 2.8 2.6 2.7 2.7 2.7 2.8 2.7 2.7 2.7 2.9 2.8 2.9 2.7 2.8 2.9 2.6 2.7 2.8 2.8 2.9 2.8 2.8 2.8 2.7 2.8 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:29.221 17:14:36.238 17:14:35.556 17:14:34.196 17:14:31.940 17:14:29.008 17:14:32.303 17:14:33.827 17:14:34.495 17:14:35.549 17:14:33.091 17:14:32.642 17:14:29.964 17:14:29.669 17:14:29.786 17:14:31.965 17:14:28.803 17:14:35.263 17:14:32.564 17:14:30.431 17:14:28.392 17:14:30.961 17:14:30.968 17:14:28.191 17:14:32.105 17:14:32.367 17:14:35.476 17:14:31.814 17:14:32.945 17:14:33.436 17:14:29.614 17:14:35.892 17:14:32.253 17:14:34.860 17:14:35.721 17:14:36.267 17:14:32.027 17:14:32.152 17:14:32.683 17:14:28.341 17:14:33.037 17:14:33.326 17:14:32.334 17:14:35.140 17:14:29.321 17:14:31.443 17:14:32.574 17:14:30.672 17:14:29.353 17:14:31.973 17:14:34.851 17:14:28.026 17:14:33.113 17:14:30.317 17:14:33.409 17:14:34.070 0.042 0.042 0.042 0.041 0.041 0.042 0.042 0.041 0.043 0.041 0.042 0.044 0.042 0.043 0.039 0.042 0.042 0.044 0.042 0.042 0.042 0.038 0.040 0.042 0.043 0.041 0.042 0.042 0.043 0.042 0.043 0.041 0.040 0.045 0.043 0.043 0.043 0.040 0.044 0.041 0.042 0.042 0.042 0.044 0.041 0.041 0.042 0.042 0.043 0.042 0.042 0.042 0.043 0.044 0.042 0.042 –29:27:23.35 –29:27:29.52 –29:27:08.40 –29:27:44.59 –29:27:19.88 –29:27:27.31 –29:26:43.40 –29:28:02.37 –29:28:25.77 –29:27:23.48 –29:27:51.77 –29:28:27.00 –29:28:35.33 –29:28:30.97 –29:27:28.15 –29:28:32.06 –29:27:18.14 –29:28:13.21 –29:27:53.51 –29:27:11.34 –29:27:20.31 –29:27:41.67 –29:27:33.20 –29:27:21.08 –29:28:28.99 –29:27:16.31 –29:28:23.45 –29:27:20.05 –29:26:52.75 –29:28:16.25 –29:28:13.63 –29:27:22.21 –29:27:26.38 –29:26:54.11 –29:28:05.46 –29:27:47.40 –29:27:58.18 –29:27:25.93 –29:28:38.56 –29:27:48.14 –29:27:30.32 –29:27:49.80 –29:28:11.29 –29:28:29.15 –29:27:19.88 –29:27:34.83 –29:27:01.98 –29:27:49.64 –29:27:39.38 –29:27:39.24 –29:27:55.62 –29:27:33.30 –29:27:12.76 –29:28:16.29 –29:27:12.80 –29:27:59.73 0.076 0.077 0.076 0.073 0.075 0.075 0.076 0.075 0.078 0.073 0.076 0.080 0.076 0.078 0.072 0.077 0.077 0.080 0.076 0.076 0.076 0.070 0.073 0.076 0.078 0.074 0.076 0.077 0.078 0.077 0.078 0.075 0.072 0.081 0.077 0.079 0.078 0.073 0.080 0.074 0.076 0.075 0.077 0.080 0.075 0.075 0.076 0.077 0.078 0.075 0.077 0.077 0.077 0.079 0.076 0.077 153 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 2.8 2.8 2.8 2.7 2.7 2.8 2.8 2.8 2.9 2.7 2.8 2.9 2.8 2.9 2.6 2.8 2.8 2.9 2.8 2.8 2.8 2.5 2.6 2.8 2.8 2.7 2.8 2.8 2.8 2.8 2.8 2.7 2.6 2.9 2.8 2.8 2.8 2.6 2.9 2.7 2.7 2.7 2.7 2.9 2.7 2.7 2.7 2.7 2.8 2.7 2.7 2.7 2.8 2.8 2.7 2.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 17:14:31.078 17:14:27.902 17:14:34.798 17:14:32.262 17:14:33.767 17:14:29.241 17:14:30.907 17:14:32.392 17:14:29.786 17:14:35.099 17:14:31.106 17:14:32.718 17:14:29.824 17:14:32.927 17:14:35.793 17:14:30.077 17:14:34.375 17:14:29.599 17:14:31.990 17:14:34.571 17:14:32.091 17:14:29.522 17:14:35.127 17:14:35.498 17:14:29.841 17:14:33.998 17:14:31.062 17:14:35.440 17:14:29.328 17:14:34.663 17:14:29.165 17:14:30.138 17:14:34.411 17:14:35.662 17:14:27.948 17:14:31.441 17:14:34.085 17:14:35.316 17:14:34.737 17:14:28.833 17:14:33.386 17:14:31.611 17:14:34.370 17:14:35.131 17:14:30.460 17:14:31.259 17:14:33.615 17:14:29.831 17:14:34.809 17:14:29.988 17:14:33.452 17:14:30.708 17:14:31.035 17:14:30.355 17:14:31.473 17:14:31.879 0.042 0.043 0.043 0.044 0.042 0.044 0.044 0.045 0.044 0.042 0.042 0.043 0.044 0.043 0.043 0.043 0.045 0.043 0.045 0.045 0.043 0.044 0.041 0.042 0.044 0.044 0.042 0.043 0.044 0.043 0.043 0.044 0.045 0.045 0.045 0.043 0.043 0.042 0.043 0.044 0.043 0.043 0.045 0.043 0.044 0.042 0.044 0.045 0.043 0.044 0.043 0.044 0.044 0.043 0.044 0.045 –29:26:56.80 –29:27:30.72 –29:27:09.48 –29:28:37.49 –29:27:48.16 –29:27:44.47 –29:28:18.65 –29:28:25.47 –29:27:07.70 –29:27:57.09 –29:27:14.04 –29:27:23.80 –29:27:57.81 –29:27:29.15 –29:27:25.25 –29:27:20.52 –29:27:00.13 –29:28:23.00 –29:27:55.53 –29:28:31.28 –29:28:09.34 –29:28:25.25 –29:27:20.05 –29:27:32.42 –29:28:29.40 –29:26:56.29 –29:28:32.47 –29:27:58.70 –29:27:42.46 –29:27:17.35 –29:27:28.58 –29:27:24.56 –29:28:27.22 –29:28:07.04 –29:27:54.13 –29:27:31.97 –29:27:50.87 –29:27:47.51 –29:27:45.60 –29:27:31.04 –29:26:59.27 –29:27:56.95 –29:28:29.90 –29:27:40.21 –29:27:12.60 –29:27:21.30 –29:28:23.79 –29:28:03.69 –29:27:35.83 –29:28:12.51 –29:28:12.94 –29:27:05.16 –29:27:01.01 –29:27:38.65 –29:28:29.69 –29:28:36.50 0.077 0.078 0.077 0.080 0.076 0.079 0.080 0.081 0.079 0.076 0.076 0.077 0.080 0.078 0.079 0.079 0.082 0.078 0.081 0.082 0.077 0.080 0.074 0.077 0.079 0.080 0.076 0.078 0.079 0.078 0.078 0.079 0.081 0.082 0.082 0.079 0.077 0.075 0.077 0.080 0.078 0.078 0.082 0.078 0.079 0.077 0.080 0.081 0.079 0.080 0.078 0.079 0.080 0.078 0.079 0.082 154 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.4 8.4 8.4 8.4 8.4 8.4 2.7 2.8 2.8 2.9 2.7 2.8 2.8 2.9 2.8 2.7 2.7 2.7 2.8 2.7 2.8 2.8 2.9 2.7 2.8 2.9 2.7 2.8 2.6 2.7 2.8 2.8 2.7 2.7 2.8 2.7 2.7 2.8 2.8 2.9 2.9 2.7 2.7 2.6 2.7 2.8 2.7 2.7 2.8 2.7 2.7 2.6 2.8 2.8 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.8 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Table B1. (cont’d) R.A.a (h:m:s) R.A. unc. (′′) Dec.a (◦:′:′′) Dec. unc. (′′) flux density (𝜇Jy) flux density unc. (𝜇Jy) freq. GHz 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.0 8.0 8.0 8.0 8.0 7.9 2.6 2.8 2.8 2.8 2.6 2.7 2.8 2.8 2.7 2.7 2.8 2.6 2.8 2.7 2.7 2.7 2.8 2.8 2.6 2.7 2.8 2.8 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.7 2.6 2.7 2.7 2.6 2.7 2.5 2.6 2.6 2.6 2.6 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 17:14:35.089 17:14:33.811 17:14:30.958 17:14:29.267 17:14:29.805 17:14:30.098 17:14:30.557 17:14:32.782 17:14:33.878 17:14:35.001 17:14:27.960 17:14:33.140 17:14:30.674 17:14:36.294 17:14:31.114 17:14:30.628 17:14:34.056 17:14:28.122 17:14:30.241 17:14:34.615 17:14:29.997 17:14:30.399 17:14:30.371 17:14:30.657 17:14:28.212 17:14:31.539 17:14:30.005 17:14:29.883 17:14:32.553 17:14:35.370 17:14:29.733 17:14:33.401 17:14:31.076 17:14:30.926 17:14:32.793 17:14:30.550 17:14:34.656 17:14:31.060 17:14:31.092 17:14:33.185 17:14:35.463 17:14:33.092 0.042 0.044 0.045 0.045 0.043 0.044 0.045 0.045 0.044 0.044 0.045 0.043 0.045 0.044 0.045 0.045 0.045 0.045 0.043 0.045 0.045 0.045 0.044 0.045 0.044 0.044 0.045 0.045 0.045 0.044 0.044 0.045 0.045 0.045 0.045 0.044 0.045 0.043 0.044 0.045 0.045 0.045 –29:27:17.69 –29:28:06.05 –29:28:26.73 –29:28:03.11 –29:27:33.39 –29:27:44.01 –29:28:00.02 –29:27:50.09 –29:27:40.81 –29:27:29.56 –29:27:22.35 –29:27:20.02 –29:27:14.93 –29:27:14.98 –29:27:10.92 –29:27:18.34 –29:27:21.80 –29:27:47.91 –29:27:51.25 –29:27:48.49 –29:27:07.23 –29:28:04.10 –29:28:08.21 –29:28:08.59 –29:27:21.98 –29:28:13.39 –29:27:02.13 –29:27:15.35 –29:27:35.36 –29:27:19.27 –29:27:00.88 –29:28:04.28 –29:28:31.79 –29:27:48.38 –29:27:21.78 –29:27:41.77 –29:27:42.44 –29:27:43.20 –29:27:23.04 –29:27:19.96 –29:27:16.51 –29:27:57.75 aICRS position at epoch of observation. 0.077 0.081 0.081 0.081 0.078 0.080 0.082 0.082 0.079 0.080 0.082 0.078 0.082 0.080 0.081 0.081 0.082 0.082 0.078 0.081 0.082 0.082 0.080 0.082 0.080 0.080 0.081 0.081 0.082 0.081 0.080 0.082 0.081 0.081 0.081 0.080 0.082 0.078 0.080 0.081 0.082 0.082 155