
 
 

 

 

 

A GENETIC PROGRAMMING TECHNIQUE FOR PROTEIN OPTIMIZATION DEMONSTRATED IN MRI 
REPORTER GENES 

 
 
 
 
 

By 
 

Alexander Robert Bricco 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A DISSERTATION 
 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements  
for the degree of 

 
Biomedical Engineering—Doctor of Philosophy 

 
2024 

  



 
 

ABSTRACT 

Reporter genes are important tools for researchers studying molecular and cellular biology as 

they give location and measurable values to the expression level of a given gene, as reporter 

genes link the activation of a gene to a detectable phenomenon. Reporter genes for MRI, allow 

these functions to be done at arbitrary tissue depth and noninvasively. Chemical Exchange 

Saturation Transfer (CEST) based reporter genes have shown promise in acting as reliable 

reporters in MRI but the relatively low sensitivity to the method has decreased its utility in 

research situations. Initial attempts to optimize existing CEST reporter genes proved difficult 

due to a series of technical challenges. This led to the development of a new protein 

engineering machine learning tool, the Protein Optimization Engineering Tool (POET). Using a 

process where POET and experimentation were used to develop improved CEST reporter genes 

resulted in new peptides that produce nearly a fourfold increase in contrast over prior art. 

Additionally POET is used to generate a reporter gene that produces significant contrast at a 

farther downfield frequency than prior CEST reporter genes.  



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

I dedicate this work to my wife, Emily, and my Lord, Jesus Christ, who when I lacked strength 
enough to continue, lent me some of theirs. 

 

  



iv 
 

ACKNOWLEDGEMENTS 

This work would not have been possible without the guidance and assistance of many others. I 

would like to thank my collaborator and friend Illiya Miralavy who wrote the first (and several 

subsequent) version of POET, Dr. Jory Schlossau who optimized and improved it, and their 

advisor Dr. Banzhaf for guiding its development. 

I would also like to thank Dr. Michael McMahon at Johns Hopkins University for guiding me 

through learning CEST MRI and keeping the project moving forward when I was still learning. 

Further thanks go to Dr. Christian Farrar, and his lab at Harvard Medical School for providing 

the information on exchange rates that help complete this project’s flow. 

This work was made possible via funding from NIH/NINDS: R01-NS098231; R01-NS104306 

NIH/NIBIB: R01-EB031008; R01-EB030565; R01-EB031936; P41-EB024495 and NSF 2027113. 

Lastly, but mostly, I would like to thank my advisor, Dr. Assaf Gilad, who introduced me to the 

project, taught me countless things about science and served as an exemplary role model for 

what it means to be a professor and run a laboratory.  



 

v 
 

TABLE OF CONTENTS 

INTRODUCTION ............................................................................................................................... 1 

METHODS ...................................................................................................................................... 11 

PROJECT 1: IMPROVING CEST PEPTIDE SENSITIVITY THROUGH DIRECTED EVOLUTION ............. 21 

PROJECT 2: IMPROVING CEST CONTRAST AT 3.6 PPM VIA MACHINE LEARNING ........................ 24 

PROJECT 3: IMPROVING CEST CONTRAST AT 5.0 PPM VIA MACHINE LEARNING ........................ 42 

CONCLUSION ................................................................................................................................. 53 

REFERENCES .................................................................................................................................. 56 

APPENDIX A: CESTIDE PROPERTIES ............................................................................................... 61 

APPENDIX B: POET CODE .............................................................................................................. 68 

 

  



 

1 
 

INTRODUCTION 

Many portions of this section are adapted from a currently published paper1. 

Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is a field of biomedical imaging that uses powerful magnetic 

fields to align the magnetic moments of unbalanced nuclei. MRI is widely used clinically to 

inform the diagnosis of a wide variety of diseases2. 

In an MRI scanner a strong homogenous magnetic field (B0) is applied. This field causes the spin 

of unbalanced nuclei to align the field and allows them to resonate. Not all nucei in within the 

field are aligned, with the number of aligned nuclei being associated with the strength of the B0
 

field. In clinical practice scanners have a B0
 field with a strength of 0.5T-3T, while preclinical 

scanners typically achieve strengths 7T-15T.  

Along with aligning their magnetic moment, the nuclei spin around the axis of the B0
 field in a 

motion called precession. The Lamor frequency is the rate of precession and is linearly related 

to the strength of the B0
 field. Within MRI, frequency is often expressed in the number of 

millionths of the Lamor frequency (ppm), so for a 7T preclinical MRI would have a Lamor 

frequency of ~300 MHz for a hydrogen nucleus and one “ppm” on that magnet would represent 

300 Hz for a hydrogen nucleus. 

These nuclei can be shifted out of alignment with the B0
 field by exposing them to a radio 

frequency (RF) pulse in a perpendicular magnetic field (B1). At the cessation of the RF pulse the 

nucei are in a higher energy state, referred to as excited, and decay from this high energy state 

to realign with the B0
 field in a process called relaxation. As these nuclei relax they produce a 

measurable change in the magnetization which is detected often by the same coils used to 



 

2 
 

generate the B0
 field and is the signal measured in MRI3. 

Chemical Exchange Saturation Transfer (CEST) 

By applying an RF pulse before the imaging RF pulse, a nucleus may be saturated. When an 

imaging pulse is applied to these saturated nuclei it results in the nuclei being aligned 

antiparallel to the B0
 field. As these saturated nuclei undergo relaxation, they produce a 

negative signal as they drop to the normal excited state in addition to the normal signal as they 

relax from excited to their normal state. These signals cancel each other out and as a result can 

be said to produce no signal. 

Although the B0
 field is the major contributor to the magnetic field experienced by a given 

nucleus undergoing MRI there is also an effect from the surrounding chemistry. Each nuclei 

surrounding the nucleus being imaged has its own magnetic field which produces a change in 

the Lamor frequency for those nuclei called a chemical shift4. This allows these nuclei to be 

saturated or excited specifically without saturating or exciting other nuclei in the surrounding 

area. The change in magnetic field, and thus the change in Lamor frequency is constant for a 

given chemistry. This allows for the specific saturation of protons associated with a given 

functional group.  

If a saturation pulse is sustained, and the nucleus is a in a molecule where it can be exchanged  

with the solvent (such as a hydrogen nucleus in a hydroxyl group)5, this saturated proton may 

be exchanged with the environment. If this exchange is fast enough, the bulk solvent will begin 

to have enough signal loss to generate a measurable decrease in signal, despite the low 

concentration of the exchangeable nucleus’s chemical solute. This mechanism of contrast is 

called chemical exchange saturation transfer (CEST)6. This process can be seen graphically in 



 

3 
 

figure 1. 

 

Figure 1: Visualization of CEST MRI. An organic amide sits in solution with water (a). In a normal 

T1 weighted MRI scan a RF pulse is applied to the hydrogens in the water (b) and this results in 

signal (c). In a CEST scan, first a saturation pulse is applied, which saturates a proton on the 

amide (d). The saturated proton is then exchanged with the protons in the surrounding water  

 (e). When the RF pulse is applied to produce an image (f), the saturated proton doesn’t produce  

a signal, resulting in reduced signal (g).  

a 

b 

c 

d 

e 

f 

g 



 

4 
 

In the most ordinary example, a hydrogen nucleus (frequently simply called a proton) is 

exchanged with the water from an exchangeable organic group such as a hydroxyl or amide7. 

In CEST MRI 0 ppm is the water saturation frequency, and the subject is typically exposed to a 

series of saturation pulses at different frequencies symmetrical around the water saturation 

frequency, which is called a z-spectra. The effect of CEST after a saturation pulse is visible as a 

decrease in signal in the area where the exchangeable protons are present. This localized 

decrease in signal is called CEST contrast. CEST contrast is quantified by comparing the signal 

after a given saturation pulse with the signal produced at the frequency multiplied by -1. The 

difference between them is then generated divided by the signal at a frequency far off field 

from the water saturation frequency. The asymmetry due to the transfer of saturated particle 

results in the magnetization transfer ratio (MTRasym) as shown in equation 1 below8, where Sω is 

the signal at a given frequency, S-ω is the signal at the inverse of that frequency and S0 is the 

signal without any saturation. This can be seen visually in figure 2. 

𝐸𝑞. 1          𝑀𝑇𝑅𝑎𝑠𝑦𝑚 =
𝑆−𝜔 − 𝑆𝜔

𝑆0
 

In addition to the MTRasym it is important in experiments via correcting for mass and 

concentration, as larger molecules, can generate more contrast than smaller ones by virtue of 

having more exchangeable protons to saturate and higher concentrations of a CEST contrast 

agent produces more contrast. This correction is done by multiplying the MTRasym by the 

concentration of protons in the solvent to the concentration of the CEST compound. This 

results in the proton transfer efficiency (PTE) of a given peptide see equation 2 below8, where 

[H2O] is the molar concentration of H2O in the sample and [peptide] is the molar concentration 

of the pepide. In this dissertation all PTE values are divided by 1000, for ease of communication. 



 

5 
 

𝐸𝑞. 2         𝑃𝑇𝐸 = 𝑀𝑇𝑅𝑎𝑠𝑦𝑚 ∗
2 ∗ [𝐻2𝑂]

[𝑝𝑒𝑝𝑡𝑖𝑑𝑒]
 

  

 

Figure 2: Visualization of MTR calculation. (a) In black is the Z-spectra acquired from the highest 

contrast protein from the 5th generation of 3.6 development (see below). If the water was 

instead pure, it would be symmetrical across the 0 ppm point which can be seen in blue. The 

difference between the two is used to calculate the MTRasym seen in red. (b) the three input 

calculations (S0, Sω, S-ω) for a frequency of 3.6 ppm offset from the water saturation frequency.  

S0 was acquired without a saturation pulse. S3.6 was acquired after a saturation pulse at 3.6 ppm 

offset from water. S-3.6 was acquired after a saturation pulse at -3.6 ppm offset from water. The 

MTRasym figure is the result of performing the calculation from equation 1 for the data on each 

pixel in the images.  

a 

b 



 

6 
 

CEST contrast is generated naturally by any compound that exchanges imageable atoms with 

the surrounding solvent, including naturally occurring biomolecules. Carbohydrates produce 

contrast from their hydroxl groups, which has led to studies this hydroxl CEST signal as an 

indicator of metabolism and function in the brain9 and in mouse livers10. Proteins produce 

contrast from the amine groups present in the backbone of their amino acid chain and are also 

able to produce contrast at other frequencies due to the presence of exchangeable protons in 

their functional groups.  The saturation frequency used to generate CEST contrast from some 

functional groups common in biochemistry can be seen in Table 1 below. 

Table 1: Saturation frequency of common functional groups 

Functional Group Chemistry Saturation Frequency(ppm) 

Hydroxyl R-OH 0.8 

Primary Amine R-NH2 1.8 

Secondary Amine R-NH-R 3.6 

 

Although functional groups produce contras at a consistent frequency, different compounds 

produce different amounts of MTRasym. The primary influences are the number of exchangeable 

protons, the rate at which each of those protons exchange, and the accessibility of those 

exchangeable protons to the solvent11,12. 

Reporter Genes 

In the study of genetics and molecular biology it can be difficult to tell cells apart from one 

another or to tell cells where a gene is active appart from cells where a gene is inactive. To 

overcome these challenges researchers employ reporter genes. A reporter gene is a gene, that 

when expressed, produces a measurable change that can be used to tell that the gene is 

currently being expressed and the level of expression. Typically this change is a result of a 



 

7 
 

protein being generated that has a detectable presence. 

The first reporter genes were for optical imaging13-15. When these genes are expressed the 

proteins produced can generate light from chemical energy (bioluminescence), emit light at one 

frequency after stimulation with light from another frequency (fluorescence), or create a 

change in the color of a solution.  

In MRI the initial efforts at reporter genes developed relied on generating T1 or T2 based 

contrast by binding metals within cells16-20. More recently there has been a demand for 

reporter genes that don’t require an added substrate for them to work.  

MRI reporter genes using CEST have shown great success21, despite their relatively low 

sensitivity compared to T1 or T2 based reporter genes. The mechanism allows the generation of 

contrast without the addition of metals, and since the contrast requires a presaturation pulse, 

researchers can get a clear structural image without the effects of contrast.  

The first reporter gene designed for CEST was the Lysine Rich Protein (LRP)22,23 which true to its 

name was primarily a large series of lysines with other residues interspersed to improve 

expression and was designed from the observation of high contrast from poly-l-lysine (PLL), a 

synthetic lysine polymer, in prior experiments24. Later CEST reporter genes included human 

protamine (hPRM1)25, and an adaption of the thymidine kinase system already used in positron 

emission tomography (PET)26, both of which primarily produce contrast as a result of amine 

exchange at 3.6 ppm. There has also been work done to generate CEST contrast at other 

frequencies such as 0.8 ppm and 1.8 ppm8, as when expressed alongside 3.6 ppm reporters 

they allow multiple different contrast agents to be detected in parallel for “multicolor” imaging.  

LRP remains the most used CEST reporter gene and has been used in the study of systems as 



 

8 
 

complex as. LRP remains the most used CEST reporter gene and has achieved a PTE of roughly 

12.5 thousand. This leads to detection in the nM-mM range, allowing it to be used in the study 

of cardiac gene therapy27 and oncolytic virotherapy28, but leaves the analysis of smaller systems 

such as neuronal activation out of reach. 

Protein Engineering 

Proteins have been very useful for industrial, medical, and environmental purposes. However, 

having been developed in nature, few of these proteins are optimal for usage in the purposes 

that we have taken them for. Protein engineering is based on either generating a new protein 

to fulfill a task that there has yet to be a natural protein for, or to optimize a protein for a given 

task. 

The most common mechanism for protein optimization is via directed evolution29. From a 

starting point of a natural protein, and a test capable to measuring that protein’s fitness in the 

required task. After a base line is developed mutations are generated by a variety of means in 

the genetic code for the protein. Each of these mutant variants are then measured for their 

fitness. The most fit protein then becomes the new base line, new mutations are introduced 

into it. This process continues until the protein has hit the desired level of function or the 

experimenter chooses to stop. Although straight forward and easy to perform, directed 

evolution has difficulties where the process can be locked in a plateu or local maximum and be 

unable to find its way to the global maximum30,31. 

There have been many attempts to use computational methods to aid in protein engineering to 

help bypass the time limitations, and lab requirements of directed evolution. One notable 

example is Rosetta32 which computationally determines the shape a protein will take allowing 



 

9 
 

researchers to attach pieces of other proteins to a common backbone33, which makes it very 

easy for the design of a protein when the protein engineer knows what overall shape they are 

trying to achieve.  

Since the ideal conformation of an engineered protein is sometimes unknown, machine 

learning tools have been developed to aid in protein engineering. A notable example is Protein 

Optimization with Optimal Learning (POOL) which makes use of Bayseyan classification34. There 

are other machine learning models35 such as AlphaFold which uses deep learning to model 

protein structure36, UniREP which uses a generalized understanding of protein structure to 

provide a generalized model37 and more recently language models that predict interactions by 

sequence without developing a structure38. Existing machine learning methods of designing and 

optimizing proteins currently rely on large amounts of training data, and long proteins which 

provides increased context for understanding a given protein. Otherwise the training data that 

enables optimization tools like POOL to work relies on proteins that share a high degree of 

similarity existing within the training data. 

Genetic Programming 

Evolutionary Computation is a field in computer science, studying algorithms inspired by 

biological evolution. Genetic Programming (GP)39,40 is among powerful evolutionary 

computation techniques that evolves solutions to difficult structural design tasks as a general 

problem solver. GP has been used in protein engineering before to predict key protein motifs41, 

to evolve energy functions for evaluating protein structures42, and predict protein-protein 

interactions related to disease43. This earlier work demonstrates the capability of GP to model 

features in the protein search domain, and in particular its ability to extract features relevant 



 

10 
 

for a prediction task. This is a central capability in biological applications where often high-

dimensional inhomogeneous datasets are used as input to predict output values. In addition to 

creating predictive models, the underlying mechanisms of GP allows it to come up with novel 

models, often on first sight surprising or even counter-intuitive to the user44. Over the last 

decades, GP has proven to produce human-competitive solutions to many problems45.  

Significance 

My work has pursued the development of new CEST reporter genes, as well as demonstrating 

the utility of a tool for generalized protein engineering. The reporter genes offer a wealth of 

new options for scientists to study the molecular biology and genetics of living creatures non-

invasively through use of MRI. As the sensitivity of such reporters increase, smaller events such 

as the activity of neurons in the brain, could be measured using such reporter genes. 

POET can help scientists develop proteins for a variety of purposes. Currently it has been used 

to engineer reporter genes or targeting proteins for extracellular vesicles (EVs)46. The approach 

of POET can be used to help develop any important small proteins, with such option as silk 

monomers47, or pain killers46.  



 

11 
 

METHODS 

Directed Evolution 

For directed evolution experiments I used an error prone polymerase kit as a means of 

introducing mutations into the gene of interest. The DNA target was replicated via a 

polymerase chain reaction (PCR) using the error prone polymerase. The resulting sequences 

were cloned using a TOPO TA Cloning Kit (ThermoFisher, K4600-01). pCR II-TOPO recombinant 

plasmids were transformed into One Shot TOP10 Chemically Competent E. coli (ThermoFisher, 

C404010). Bacterial colonies were grown on ampicillin-rich agar plates overnight at 37 °C. 

Colony PCR was performed using Quick-Load Taq 2X master mix (New England Biolabs, 

M0271L). Successful colonies were grown in 100 µg/mL ampicillin-rich lysogeny broth overnight 

at 37 °C. DNA was extracted using PureLink Quick Plasmid Miniprep Kit (Thermofisher, K4510-

02) and then sent to MSU genomics core for DNA sequencing. 

MRI 

Scanners 

MRI experiments were done on three different MRI machines. One of them was a 7T Bruker 

horizontal bore preclinical MRI, at the Biomedical and Physical Sciences Building (BPS) at MSU. 

The next was a 7T Bruker horizontal bore preclinical MRI at the Institute for Quantitative Health 

Science and Engineering (IQ). The last one was a 11.7T Bruker horizontal bore preclinical MRI 

that was used by our collaborator at Johns Hopkins University (JHU).  

Pulse Program 

CEST spectra, also known as Z-spectra were captured in scans that spanned -7 to 7 ppm offset 

from water frequency in units of 0.2 ppm. The saturation pulses have a saturation power of 4.7 



 

12 
 

µT and lasted for 4 seconds. To do B0 correction a WASSR scan48 was also performed spanning 

from -1.5 to 1.5 in units of 0.1 ppm. The saturation pulses for the WASSR scans had a saturation 

power of 1.25 µT and lasted for 2 seconds. Both the WASSR and CEST scans used a modified 

RARE scan with a RARE factor of 16 and a resolution of 48 X 48 covering a field of view of 40 

mm x 40 mm, with a slice thickness of 3 mm. Both WASSR and CEST scans had a TR of 10s, and a 

TE of 4.74 ms. 

The resulting scans results in a series of images, all covering the same geometric area that 

contains the entire phantom. Each image is taken after the application of a saturation pulse at a 

different frequency allowing for comparisons between the intensities of each voxel across the 

range of saturation frequencies. 

To account for changes in the B0 field over time a new WASSR scan was done before each CEST 

scan. Four to five Z-spectra were acquired in each experiment. 

Phantom and Phantom Preparation 

MRI experiments were done in a custom designed 3D printed phantom with 12 wells within a 

central body which contains water to prevent the magnetic field from distorting at the air water 

interface. Each well is designed to hold 250 µL of liquid. The circular distribution of the wells 

ensures that each well is experiencing a similar field strength. The shape of the phantom can be 

seen in figure 3 below. 



 

13 
 

  

Figure 3: Imaging Phantom. A 3D image from the software used to design the phantom. 

Proteins were ordered from Genscript (Piscataway NJ). All samples were dissolved to a 

concentration of 5 mg/mL in PBS. After dissolution, pH was correct for each sample’s to 7.4 via 

titration with 0.1M HCl & 0.1 M NaOH and measuring the pH with pH paper.  

In a typical experiment five experimental proteins would be used. In addition to these, there 

would be wells of PBS, a negative control; salmon protamine (sPRM), a positive control; and a 

peptide of twelve consecutive lysines (K12), which is used as a comparison to LRP, since LRP 

represents the contrast generated by currently used CEST reporter genes. 

Data Processing 

CEST Processing 

The data from all MRI scans were processed using an in-house MATLAB script based on prior 

literature49,50. First the ROIs are isolated automatically using a greedy region growing algorithm, 

which finds the highest intensity voxel not already in a mask. The program then checks the 

voxels adjacent to all the voxels in the mask, and if they aren’t in another mask and produce at 

least 55% of the intensity of the initial voxel of the mask they are added to the mask. The mask 

grows until it can’t acquire additional voxels, and then a new voxel is selected as above. Masks 

including areas that aren’t part of one of the phantom’s wells are excluded if they aren’t 



 

14 
 

circular, determined by their ratio of diameter to area, or of an unusual size. All masks are 

visually confirmed before use in image processing. 

B0 correction is done using the data from the WASSR scan48 done immediately prior to the scan 

that is being corrected. In this scan a spline interpolation of the Z-spectra is used to determine 

the true central point of the water saturation peak. Later in the process this B0 map is used to 

correct the Z-spectra for each voxel via a spline interpolation. 

From a single CEST experiment the contrast values are determined by averaging all voxels 

within the same ROI. All repetitions of the same scan are averaged together to determine the 

final MTRasym value for a given well, and all the voxels in a well are averaged together to achieve 

a single value for each peptide at each frequency. The PTE values are determined by 

normalizing the values according to water, adjusting them to account for molar concentrations 

and then correcting them the literature value of K12 of 12.5*10008 to retain consistency across 

the different scanners used by us and our collaborators. For ease of communication and entry 

into POET (see below), these PTE values are divided by 1000. 

T-test mapping 

To the generate t-test maps used in this dissertation, I used an in-house MATLAB script based 

on prior literature49,50.  The intensity of each voxel across five experiments at 3.6 ppm was 

compared to the intensity of the same voxel at -3.6 ppm using a two tailed unpaired t-test. The 

resulting p-value was assigned to the same 2d location of the voxel to produce the map. 

Protein Optimization Engineering Tool (POET) 

POET is a genetic program that was developed in a collaboration between the Banzhaf and 

Gilad labs, for the purpose of improving the function of peptides. POET uses genetic 



 

15 
 

programming as its means of learning. 

As input data POET takes in a table of a series of peptides as amino acid sequences using single 

letter amino acid codes and a numeric measure of fitness of the protein. These values are 

loaded into POET in the form of a comma separated value (CSV) file, the first 10 lines of the 

training data can be seen Table 2 below. Within this work, the training data of POET uses the 

PTE values for the appropriate frequency (3.6 ppm for project 2, and 5.0 ppm for project 1) as 

the fitness value for each peptide, but the concept is deliberately vague, and can be any quality 

of a peptide that can be numerically quantified and the experimenter wishes to optimize. This 

open definition of fitness in POET allows it to be used in a variety of applications. PTE was 

chosen as the measurement for fitness to allow the use of existing data from literature in 

training POET. 

Table 2: Example POET input data 

Sequence Fitness 

KKKKKKKKKKKK 12.5 

KSKSKSKSKSKS 17 

KHKHKHKHKHKH 12.7 

KGKGKGKGKGKG 10.8 

KSSKSSKSSKSS 13.2 

KGGKGGKGGKGG 11.8 

KSSSKSSSKSSS 13 

KGGGKGGGKGGG 12.1 

RRRRRRRRRRRR 22 

RSRSRSRSRSRS 12.8 

 

POET generates models called Protein Optimization Evolved Models (POEMs), which predict 

protein fitness as a function of a peptide’s sequence. Each POEM consists of a series of rules. 



 

16 
 

Each rule is composed of a motif and a weight. A motif is a series of amino acids with a length 

between 1 and 10. A weight is a number, which may be positive if it benefits fitness or negative 

if it impairs fitness. Each model assesses peptide sequences by applying its rules: the predicted 

fitness for each peptide is the sum of the weights for the motifs it contains. 

POEMs are generated in groups of 100 called populations. Each time POET is run it begins with 

a population where the rules in each POEM are random, while the later populations are 

generated from a process of tournament selection, crossover, and mutation. 

 Each POEM within the population is randomly assigned to a group of five called a tournament. 

The POEMs within a tournament are evaluated by their ability to accurately predict fitness of 

peptides in the training data. The two most accurate POEMs in each tournament produce four 

new POEMs for a new population, where each POEM’s rules are randomly inherited from each 

of the two tournament winners. An additional POEM is produced by applying “mutations” to 

the best POEM in the tournament. 

Mutations in POET are modifications to the rules of a POEM in a manner analogous to 

mutational changes to DNA in biological evolution. The types of mutation can be separated into 

two groups: POEM mutations and rule mutations. When a POEM is being mutated, first POET 

randomly determines for each POEM mutation whether it occurs, then each rule of the POEM, 

has a chance for each of the rule mutations to occur to it. The different types of mutation 

performed in POET can be seen in Table 3. 

 

 

 



 

17 
 

Table 3: Mutations in POET 

Mutation Type Type Chance Description 

Add Rule POEM 20% A randomly generated new rule is added to the 

POEM 

Remove Rule POEM 20% A randomly selected existing rule is removed from 

the POEM 

Adjust Weight Rule 20% The rule’s weight is increased or decreased by a 

percentage of its prior weight. 

Add Letter Rule 10% The rule’s motif has an additional letter added to it 

unless the rule already has the maximum number of 

letters. 

Remove Letter  Rule 10% The rule’s motif has a letter removed from it, unless 

the rule has one of fewer letters. 

 

This cycle of generating rules, comparing POEMs to produce a new population of models. If a 

rule is useful for predicting the training data, it will improve the accuracy of the POEMs 

containing it. As these rules mutate, beneficial mutations will increase the accuracy of the 

model, leading to their presence in later populations, while detrimental mutations decrease the 

POEM’s accuracy and thus make them less likely to be present in later populations. This results 

in the accrual of useful rules that increase the POEM’s as the learning process continues, 

despite all the rules being generated randomly, and being mutated randomly. 

When running POET on MSU’s High Power Computing Center (HPCC), POET’s process of 



 

18 
 

learning was run multiple times in parallel, typically 100. Each of these runs produced their own 

series of POEMs from the initial steps and evolved in different ways.  

After POEMs are developed, POET can be used to predict the fitness of a peptide from its 

sequence. First POET finds the most accurate model at predicting the training data and then 

that model is used to predict the fitness of the peptide. Additionally before the fitness values of 

a peptide are calculated, POET applies a simple amino acid model of hydrophobicity51 to predict 

if the amino acids are soluble. 

The learning process of POET can be visualized in figure 4. 

 

Figure 4: Visual depiction of POET. Motifs, such as arginine-lysine-arginine (RKR) or lysine-serine 

(KS), are identified from the peptides in the training data provided to POET (a). Weights are 

assigned to these models to create POEMs (b). A population of POEMs undergo mutation and  



 

19 
 

Figure 4 (cont’d) 

recombination (c) to produce the next generation of POEMs (d), which themselves are used to 

generate later generations of models using further cycles of recombination and mutation. 

When using POET to produce a list of peptides to examine, first it generates a random list of 

peptides, predicts the fitness for each peptide on the list, sorts the list and returns the top 

results. The number of randomly generated peptides, length of the peptides generated, and the 

number of top peptides that are returned are variables that can be altered in POET’s config file, 

for ease of use in different applications. My experiments used 10,000, 12, and 10 respectively 

for these inputs. 

For more information on POET please consult an article published by my collaborator on it52. 

POET Design Cycle 

The cycle of using POET would begin with predictions of new peptides, which would then be 

synthesized commercially by Genscript (Piscataway, NJ). These peptides then had their contrast 

measured as described above. The new data from these peptides was then added to the overall 

training data. Then POET is started again from the beginning, to develop a new series of POEMs 

using this newer, larger, body of training data. This design cycle can be visualized in figure 5 

below. 

 



 

20 
 

 

Figure 5: Design Cycle using POET. POET identifies motifs from a preexisting dataset (bottom). 

This leads to identifying proteins for testing (upper left). The proteins are tested, here using an 

MRI (upper right) and the data is added to POET to begin the cycle anew (bottom). 

  



 

21 
 

PROJECT 1: IMPROVING CEST PEPTIDE SENSITIVITY THROUGH DIRECTED EVOLUTION 

Introduction 

Prior work established that sPRM, an alternate histone produced in sperm cells to tightly bind 

DNA, was able to function as a good CEST contrast agent, since the many positively charged 

arginine residues used to bind positively charged DNA provided many highly accessible amide 

protons. Use of sPRM as a transgenic reporter gene, however, presents the long-term issue of 

immune system rejection common to using a non-human gene within a human body. In human 

sperm there is a homolog to sPRM, human protamine 1 (hPRM1)53. Experiments in testing the 

CEST contrast produced by hPRM1 demonstrated substantial contrast, but less than that of 

sPRM25,54 and its localization in sperm cells should prevent it from interfering with the 

background signal in humans. We hypothesized that if we were to apply optimization to hPRM1 

we would be able to increase its contrast without significantly increasing its immunogenicity. 

Results 

 

Figure 6: Logo of Human Protamine Variants. The height of each letter demonstrates the 

relative occurrence of a given amino acid in the mutant protein using single letter amino acid 

codes. The wild type for hPRM1 is MARYRCCRSQSRSRYYRQRQSRRRRRRSCQTRRRAMRCCRPRY  

This figure was made using WebLogo 3.6.0. 

The experiment was repeated three times producing three plates and 65 colonies where the 

sequence was analyzed. Across all of the studied peptides sequences there were 23 different 



 

22 
 

mutants. Of these there were 13 different mutations to the overall protein sequence. A logo of 

the mutants generated can be seen in figure 6.  

Discussion 

Of the 13 mutations to the protein sequence, only 4 of them occurred to one of the sequences 

arginine residues, despite the arginine residues making up 20 of the 44 amino acids in the 

overall sequence. This can be understood as a result of arginine codon bias. Arginine has more 

codons than any other amino acid. Any change to the third nucleic acid results in a silent 

mutation, while an alteration to the second amino acid has two chances to result in a silent 

mutation and one chance to mutate into a stop codon.  

Conclusion 

Due to the slow progress of these directed evolution experiments, the project was ended 

before the contrast of the mutants could be evaluated or the immunogenicity of the mutants 

could be measured. Whether an improved version of hPRM1 could be produced via directed 

evolution remains unclear. Furthermore, whether any of hPRM1 mutants have immunogenicity 

that would prevent them from clinical application is unclear. Although this project did not 

produce the reporter gene that it set out to produce, it did generate insights into the 

development of CEST reporter genes using directed evolution and provide insights on what can 

be done to overcome these limitations. 

Mutagenesis seems to introduce changes very slowly into hPRM1. The density of arginine 

residues and the likelihood of an arginine codon mutating into another arginine codon present 

a high likelihood that any mutations to the DNA sequence would result in a silent mutation. 

Further the process of evaluating the contrast from these variants produces many challenges 



 

23 
 

such as purification, and standardization of concentration, which could obscure any effects of a 

change in sequence if the change is small, such as the mutation of only a single amino acid into 

a similar amino acid in a chain of 44. 

This would suggest that if further developments are to be made in the engineering of a CEST 

reporter gene a means of development they must be done using a method other than directed 

evolution. Optimally it would scan allow a greater variety of different protein biochemistries to 

be assayed. 

 

  



 

24 
 

PROJECT 2: IMPROVING CEST CONTRAST AT 3.6 PPM VIA MACHINE LEARNING  

Many portions of this section are adapted from a currently published paper1. 

Introduction 

The results of directed evolution experiments encountered a variety of problems. The mutation 

count was low, the silent mutation rate was high and normalizing for protein in each sample 

presented technical difficulties. This led us to pursue a different means of developing the CEST 

reporter genes using machine learning. This provided issues in that in prior literature there was 

only one paper which provided a database of peptides, but it only had 31 peptides each being 

12 amino acids long. Current machine learning methods of protein engineering require far 

larger dataset, typically thousands of proteins, and rely on longer sequences, typically over 100 

amino acids, to provide context.  

This led to the collaboration with the Banzhaf lab and along with that the development of 

POET. The first experiments using POET would focus on the development of a CEST producing 

peptide (CESTide) that produced contrast at 3.6 ppm, which is the amine resonance frequency. 

This was taken as a focus due to the relatively large amount of prior data available in literature 

and the lab’s prior focus on reporter genes at this frequency, such as LRP, while there aren’t 

published results that would allow a training library at other frequencies, such as 1.8 ppm or .8 

ppm. Despite 1.8 and .8 ppm peaks being larger than the 3.6 ppm peaks in many cases, they are 

far closer to the water saturation frequency, which produces issues with contrast to noise ratio 

(CNR) especially on scanners of clinical strength. This would demonstrate POET’s ability to 

understand a relatively well understood question. 



 

25 
 

Generational Development 

The first generation resulted in only one soluble peptide which generated less contrast than 

K12. The issue of solubility led to integrating a solubility estimation into POET’s predictor (see 

methods). The Z-spectra and MTR values for generation 1 can be seen in figure 7.

 

Figure 7: 3.6 ppm Generation 1. Shows the MTR (a) and Z-spectra (b) acquired from the only 

soluble peptide in the 1st generation of 3.6 ppm POET design. The results are from one 

experiment. 

The second generation saw an increase in contrast and universal solubility. The best peptide in 

the generation produced more contrast than K12. Further this peptide, NSSNHSNNMPCQ, had a 

neutral charge (pI 7.32), which was of interest since prior attempts to engineer a CEST reporter 

gene focused on incorporating as many positively charged residues as possible, leading them to 

have a strong positive charge55. The Z-spectra and MTR values for generation 2 can be seen in 

figure 8.



 

26 
 

 

Figure 8: 3.6 ppm Generation 2. Shows the MTR (a) and Z-spectra (b) acquired from the 

peptides in the 2nd generation of 3.6 ppm POET design. Data is taken from a single experiment. 

Error bars show standard deviation. 

Generation 3 was developed unusually, with half of the peptides produced using a model that 

was developed to predict generation 2, but was overlooked in that generation due to not being 

the most accurate at the time. The model was in the final population for predicting generation 

2, but didn’t have the lowest error when determining which POEM would be used with the 

predictor. A post-hoc analysis determined that when incorporating the data gathered from the 

generation 2 peptides the model’s error was lower than a model trained from scratch with both 

generations of data. The other five were predicted from a model developed as normal. The 

peptides from generation 2 model produced significantly (p=0.01) more contrast than those 

with an entirely new model. Similar post-hoc analysis wasn’t done on later generations in an 

attempt to maintain a consistent experimental framework across generations. Later 

generations wouldn’t use this same split model approach to maintain a consistent experimental 

framework across generations. The Z-spectra and MTR values for generation 3 can be seen in 



 

27 
 

figure 9. 

Figure 9: 3.6 ppm Generation 3. Shows the MTR (a) and Z-spectra (b) acquired from the 

peptides in the 3rd generation of 3.6 ppm POET design. Points are the average from two 

experiments for the first five peptides or five experiment for the last five peptides. Error bars 

show standard deviation. 

The 4th generation was the first generation to see a decrease in maximal contrast to 22.30, but 

the average of the generation did see increase to 14.49. The Z-spectra and MTR values for 

generation 4 can be seen in figure 10.  

 

Figure 10: 3.6 ppm Generation 4. Shows the MTR (a) and Z-spectra (b) acquired from the 

peptides in the 4th generation of 3.6 ppm POET design. All values are from the average of two 

experiments. Error bars show standard deviation. 



 

28 
 

In the 5th generation, two new peptides were discovered that produced more contrast than any 

prior generation: WFGLQRHLKKKD (40.58) and LELKLGKRPMGW (43.64) and the average 

contrast increased to 23.14. The Z-spectra and MTR values for generation 5 can be seen in 

figure 11. 

 

Figure 11: 3.6 ppm Generation 5. Shows the MTR (a) and Z-spectra (b) acquired from the 

peptides in the 5th generation of 3.6 ppm POET design. Points are taken from the average of four 

experiments. Error bars show standard deviation. 

During the production of the 6th generation of peptide optimization the peptides were 10 

amino acids long instead of the 12 that is normal, due to an experimenter error in using POET’s 

predictor function. The maximum contrast produce was 31.40, which is less than the top 

CESTides of generation 5. The average contrast also decreased to 14.30. The Z-spectra and MTR 



 

29 
 

values for generation 6 can be seen in figure 12. 

 

Figure 12: 3.6 ppm Generation 6. Shows the MTR (a) and Z-spectra (b) acquired from the 

peptides in the 6th generation of 3.6 ppm POET design. Points are taken from the average of five 

experiments for the first five peptides or four experiments for the last five peptides. Error bars 

show standard deviation. 

The 7th generation of peptide optimization saw the two highest contrast peptides generated by 

POET: LWSDIKMKLKKT (PTE of 49.4) and KMGKLIGIPVLK (PTE of 47.8). This generation also 

achieved an average PTE of  21.67, the second highest after generation 5. The Z-spectra and 

MTR values for generation 7 can be seen in figure 13. 

Figure 13: 3.6 ppm Generation 7. Shows the MTR (a) and Z-spectra (b) acquired from the 

peptides in the 7th generation of 3.6 ppm POET design. Points are taken from the average of five  



 

30 
 

Figure 13 (cont’d) 

experiments. Error bars show standard deviation. 

The 8th generation of CESTides saw a decrease in both peak and average to 30.59 and 18.54 

respectively. The Z-spectra and MTR values for generation 8 can be seen in figure 14. 

Figure 14: 3.6 ppm Generation 8. Shows the MTR (a) and Z-spectra (b) acquired from the 

peptides in the 8th generation of 3.6 ppm POET design. Points are taken from the average of four 

experiments for the first five peptides or five experiments for the last five peptides. Error bars 

show standard deviation. 

In the 9th generation of CESTides the maximum contrast increased relative to the 8th generation 

to 30.64, but the contrast average contrast decreased to 12.25. The Z-spectra and MTR values 

for generation 9 can be seen in figure 15. 

Figure 15: 3.6 ppm Generation 9. Shows the MTR (a) and Z-spectra (b) acquired from the 



 

31 
 

Figure 15 (cont’d) 

peptides in the 9th generation of 3.6 ppm POET design. Points are taken from the average of five 

experiments. Error bars show standard deviation. 

In the 10th and final generation of 3.6 ppm peptide evolution there was an increase in the peak 

contrast and average contrast to generation 9, with values of 29.03 and 17.64 respectively. The 

10th generation can be seen in figure 16 and the contrast generated in each generation can be 

seen in figure 17. 

 

Figure 16: 3.6 ppm Generation 10. Shows the MTR (a) and Z-spectra (b) acquired from the 

peptides in the 10th generation of 3.6 ppm POET design. Points are taken from the average of 

five experiments for the first five peptides or three experiments for the last five peptides. Error 

bars show standard deviation. 



 

32 
 

 

Figure 17: Contrast by generation for 3.6 ppm peptides. Each point represents a single peptide 

from the generation. The red dashed line is the contrast generated by K12, used as a 

comparison to K12. Black lines represent the median of the generation. Contrast values are 

normalized to K12. 

Sensitivity Experiments 

To examine whether the increases in exchange rate and concentration were able to lead to 

higher sensitivity, I examined differing concentrations of K12 and KYTKTRKQSSKA (the highest 

contrast peptide from generation 3, chosen for its high exchange rate). T-test maps were 

generated from this experiment as described in methods. The comparison between the two 

samples can be seen in figure 18. KYTK produced more contrast and had more voxels 

determined to significant by a t-test at every concentration. 



 

33 
 

 

Figure 18: Sensitivity increase from exchange rate increase. Wells of KYTK and K12 graphed by 

concentration and contrast (a), compared by the results of a student’s t-test (b), and the MTR 

values for each of the wells (c).  



 

34 
 

Interesting Discoveries 

The CESTides found using POET demonstrated several unique qualities as a result of not being 

developed in a manner of iterative changes to a single base peptide. This is most clearly evident 

in the unusual combinations of amino acids seen within the peptides. Earlier attempts to create 

CEST reporter genes were highly homogenous, relying on large numbers of lysine and arginine 

residues. Although lysine is the most commonly used amino acid in the CESTides studied, no 

amino acid holds a majority of the residues like is seen in hPRM25 or LRP22.The variety of amino 

acids used by the CESTides generated with POET can be seen in figure 19. 

These trends also form trends in the learning throughout the generations of POET design and 

optimization as seen in figure 20. The most notable trend following lysine and arginine which 

form major parts of currently studied CEST reporter genes such as LRP and hPRM1. Initially 

lysine and arginine make up a small portion of the generations. Identifying the importance of 

these residues in generating contrast, POET increases the amount of lysine and arginine in its 

predictions up through generation five. The concentration decreases in generations six and 

seven, where the highest peak contrast is achieved. Generations eight and nine see the lysine 

and arginine content stabilize, before increasing in generation 10. This perhaps follows POET 

learning how to generate contrast via lysine and arginine content before reaching a fitness 

plateau and attempting to find additional means of increasing contrast, such as the surges in 

hydrophobic residues such as valine in generation nine and leucine in generation seven. 



 

35 
 

 

Figure 19: Diversity of Amino acids within CESTides generated with POET. Every peptide 

generated is shown in the order of its testing. 



 

36 
 

 

Figure 20: Generational Changes in Amino Acid Usage. 

Another area of interest is the way these changing chemistries have impacted chemical 

properties, most notably the protein’s charge. In prior literature peptides were engineered to 

generate more contrast by introducing additional positively charged residues, such as lysine55. 

The relationship between the charge of the CESTide and the contrast it generated can be clearly 

seen in figure 21. Although the highest contrast producing peptides are still positively charged, 

peptides generated by POET demonstrated higher contrast than any peptide in the training 

data with neutral and negatively charged peptides.  



 

37 
 

 

Figure 21: Relationship between charge and contrast. Black circles are the peptides from 

literature used as training data. Red squares are the peptides generated using POET. 

Analysis of POET Predictions 

We sought to examine the differences between the peptides generated by POET to determine if 

POET was converging toward a solution. This was calculated via the nearest neighbor distance 

from peptides in the same generation using Grantham distance, which takes into consideration 

differences between the size, charge, and hydrophobicity of different amino acids56. The basic 

assumption is that amino acids that are similar in chemical composition, polarity and molecular 

volume are more likely to change throughout evolution as they are less disruptive to protein 

function. To determine whether POET was learning and converging on a solution, we compared 

the Grantham distance between the peptides discovered with POET with peptides that were 

generated randomly. We first examined the intergenerational nearest neighbor distance by 

comparing finding the shortest Grantham distance within each peptide’s generation and all 



 

38 
 

prior generations. As the Grantham distance decreased with an increase in the number of 

generations, this implies that learning took place since it shows that the predictions of POET are 

more similar than would be generated by randomness and are decreasing in distance faster. 

Next, we examined the intragenerational nearest neighbor distance by comparing each peptide 

to all peptides in the same generation to determine the most similar peptide. We find that the 

distance stays lower than the random simulation, implying that there is a form of selection 

occurring since the distance is lower than that of random peptides. . As POET optimizes, it 

would be expected to see the diversity of new generations decrease as POET begins to single 

out the area of the global maximum in the fitness landscape. The distance in the experiments 

are however, not decreasing by generation which suggests that POET is not converging on a 

solutionn  . The nearest neighbor analysis over the CESTides generated by POET can be seen in 

figure 22. 



 

39 
 

 

Figure 22: Learning with POET. The intergenerational (a) and intragenerational (b) nearest 

neighbor distance from all the CESTides produced by POET. The data from the actual POET data 

set is shown in blue circles, while the data from a random simulation is shown as red squares. 

Brackets show the 95% CI for the data. 

Conclusions 

POET demonstrated the ability to discover several new peptides with higher contrast than 

those in prior literature, with the peak seeing roughly a fourfold increase over K12. This peptide 

can be seen compared to K12 in figure 23. With work done through collaborators indicating 

that the increased contrast generated is a result of an increased exchange rate1. 



 

40 
 

 

Figure 23: Top 3.6 ppm peptide vs K12. The top peptide produced by the 3.6 ppm POET 

experiments is shown beside the K12 MTR. Data is the average of five experiments. 

This suggests that POET is a good tool for engineering CEST reporter genes and possibly 

peptides in general.  Although not universal, the increased contrast appears to be generated by 

an increased rate of proton exchange. Most of the peptides that were discovered in the search 

have chemistries that mean that they would likely to never have been found by standard 

methods, such as directed evolution, within a feasible time scale. 

There is an unknown loss of improvement after the 7th generation, which could have many 

possible sources. One possibility is that of a fitness plateau as POET isn’t able to generate a 

better peptide with the same mechanism. 



 

41 
 

Another possibility is in a known bug of POET that wasn’t discovered until after the final 

experiment was run. The bug results in the decrease in overall learning done by POET by ending 

POET’s learning process prematurely. This problem scaled with the increase in time to evaluate 

a population because of the increasing volume of learning data. 

 

  



 

42 
 

PROJECT 3: IMPROVING CEST CONTRAST AT 5.0 PPM VIA MACHINE LEARNING  

Introduction 

Generating contrast at 3.6 ppm is very common for proteins and has been the approach taken 

by using hPRM1, LRP and scGFP, as well as prior experimentation using POET. This is because 

due to the ease of incorporating exchangeable amine groups into proteins using a lysine, 

histidine, or arginine residue. This ease however works in reverse and these same residues are 

used frequently in naturally occurring proteins, the sum of which make up a large portion of the 

contents of a cell. This results in a high background signal at 3.6 ppm (see figure 24). There are 

measures of CEST contrast at other frequencies than 3.6, notably 5.0 which is generated by 

thymidine and other biomolecules6. It is believed that it is related exchangeable protons bound 

to ring structures such as found in histidine or tryptophan, but no protein CEST agents have 

been developed that generate contrast at that frequency. If a protein CEST agent were 

developed that generated contrast at 5 ppm, it would be easier to distinguish from the 

background in a biological system. This would result in increased specificity and sensitivity. 

 Since POET doesn’t understand the mechanism of contrast, but instead determines 

relationships between the amino acid sequence and the output, we sought to use POET to 

generate a new class of reporters at 5 ppm. 



 

43 
 

   

Figure 24: CEST Background. In black circles is the MTRasym of cell lysate from E. coli. In red 

squares is the best protein from generation 5 of the 3.6ppm POET experiments. 

Generational Development 

A full z spectrum running from -7 to 7 ppm was acquired for prior work in the generation of 3.6 

ppm reporters (see above). The contrast values at 5 ppm were used as the initial training data 

(generation 0), containing all the data from generations 1-5 (all peptides with a gen less than 5 

and a series value of 3.6 in appendix 1). For purposes of statistical analysis, the training data 

was used as an understanding of the contrast produced by a random soluble peptide. The 

overall contrast generated by the peptides in each generation can be seen in figure 25. 



 

44 
 

 

Figure 25: 5ppm contrast in each generation. Each peptide tested from the POET development 

of a 5ppm contrast agent is included. MTR values are normalized to the 3.6 peak of K12. 

Generation 0 represents the learning data. 

The first generation saw significant (p= 1.2*10-15) improvement over the training data, with the 

best peptide having a PTE of 10.1 and the average being 6.9. None of the peptides show clear 

signs of generating contrast from an exchangeable proton at 5 ppm and instead most of the 

signal at 5 ppm seems to be part of a gradual decrease of the 3.6 ppm peak. The MTRasym and Z-

spectra for the 1st generation can be seen in figure 26. 



 

45 
 

 

Figure 26: 5 ppm Generation 1. Shows the MTR (a) and Z-spectra (b) acquired from the peptides 

in the 1st generation of 5 ppm POET design. Points are the average from three experiments for 

the first six peptides or two experiment for the last 4 peptides. Error bars show standard 

deviation. 

The second generation had difficulties with solubility with five of the peptides for that 

generation being insoluble and going unmeasured. The generation has a lower average than 

generation 1 as well, with an average of 5.6 among the soluble peptides, but the peptides 

performed significantly better than the training data (p=0.005). The MTRasym and Z-spectra for 

the 2nd generation can be seen in figure 27. 

 

Figure 27: 5 ppm Generation 2. Shows the MTR (a) and Z-spectra (b) acquired from the peptides 

in the 2nd generation of 5 ppm POET design. Points are the average from three experiments.  



 

46 
 

Figure 27 (cont’d) 

Error bars show standard deviation. 

In the third generation like the second generation saw a decrease in both maximum (10.77) and 

average contrast (5.32). The results were still significantly (p=0.008) better than the training 

data. The MTRasym and Z-spectra for the 3rd generation can be seen in figure 28. 

 

Figure 28: 5 ppm Generation 3. Shows the MTR (a) and Z-spectra (b) acquired from the peptides 

in the 3rd generation of 5 ppm POET design. Points are the average from four experiments for 

the first five peptides or five experiments for the last five. Error bars show standard deviation. 

In the fourth generation the maximum contrast decreased to a PTE of 7.1 and the average 

decreased to 4.38. The results were still significantly (p=0.008) better than the training data. 

The MTRasym and Z-spectra for the 3rd generation can be seen in figure 29. 



 

47 
 

 

Figure 29: 5 ppm Generation 4. Shows the MTR (a) and Z-spectra (b) acquired from the peptides  

in the 4th generation of 5 ppm POET design. Points are the average from five experiments for the 

first five peptides or three for the last five.  Error bars show standard deviation. 

In the fifth generation maximum and average contrast increased to 9.73 which is higher than 

the fourth generation but remained lower than the first generation. The MTRasym and Z-spectra 

for the 5th generation can be seen in figure 30. 

 

Figure 30: 5 ppm Generation 5. Shows the MTR (a) and Z-spectra (b) acquired from the peptides 

in the 5th generation of 5 ppm POET design. Points are the average from five experiments. Error 

bars show standard deviation. 

The sixth generation saw the peak of the 5 ppm experiments. Its top CESTide, KVNFNKAVSNLK, 

produced the highest 5 ppm PTE of 14.23 and it appears to form a distinct peak, despite an 



 

48 
 

apparent contribution from the amide exchangeable at 3.6 ppm. The average contrast for this 

generation was also the highest at a PTE of 7.01.  The MTRasym and Z-spectra for the 6th 

generation can be seen in figure 31. 

 

Figure 31: 5 ppm Generation 6. Shows the MTR (a) and Z-spectra (b) acquired from the peptides 

in the 6th generation of 5 ppm POET design. Points are the average from five experiments. Error 

bars show standard deviation. 

In the seventh generation the maximum contrast decreased to 8.01 and the average contrast 

decreased to 3.82. The MTRasym and Z-spectra for the 7th generation can be seen in figure 32. 

 

Figure 32: 5 ppm Generation 7. Shows the MTR (a) and Z-spectra (b) acquired from the peptides 

in the 7th generation of 5 ppm POET design. Points are the average from five experiments. Error 

bars show standard deviation. 



 

49 
 

The eighth generation continued the pattern of decrease with a maximum contrast value of 

7.26 and an average contrast value of 3.14. This generation wasn’t significantly different than 

the initial training data (p=0.062). The MTRasym and Z-spectra for the 8th generation can be seen 

in figure 33. 

 

Figure 33: 5 ppm Generation 8. Shows the MTR (a) and Z-spectra (b) acquired from the peptides 

in the 8th generation of 5 ppm POET design. Points are the average from five experiments for the 

first five peptides or four for the last five. Error bars show standard deviation. 

In the ninth and final generation performed the worst out of all the generations, performing 

significantly (p=0.017) worse than the training data. The generation’s maximum is the lowest 

generational maximum at 3.67 and the average was also the lowest with a mean contrast of 

2.81. The MTRasym and Z-spectra for the 9th generation can be seen in figure 34. 



 

50 
 

 

Figure 34: 5 ppm Generation 9. Shows the MTR (a) and Z-spectra (b) acquired from the peptides 

in the 9th generation of 5 ppm POET design. Points are the average from four experiments for 

the first five peptides or three for the last five. Error bars show standard deviation. 

Conclusions 

Using POET, I was able to develop a single peptide (KVNFNKAVSNLK) that produces a greater 

amount of contrast at 5 ppm than K12 produces at 3.6 ppm which was over three times the 

highest amount of 5 ppm contrast in any of the data used to train the initial POEMs for the 5 

ppm experiments. This peptide should prove a useful tool as a basis for reporter genes and 

could become the baseline for later optimization work via other methods such as directed 

evolution. The contrast produced by this top peptide compared to the contrast of K12 can be 

seen in figure 35. 



 

51 
 

 

Figure 35: Top 5ppm peptide vs K12. The top peptide produced by the 5ppm POET experiments 

is shown beside the K12 MTR. Data is the average of five experiments. 

POET was unable to continue developing better 5 ppm peptides after the 6th generation, and 

later generations saw increasingly low contrast produced by the peptides being developed, 

instead of the maximum contrast increasing as the amount of training data increased. The 

reason for this decrease is unclear, but many factors are possible contributors.  

One possible cause is the initial dataset was composed of peptides designed to generate 

contrast at 3.6 ppm. In such a dataset the majority of 5 ppm contrast is a result of decay from 

the peak at 3.6 ppm instead of contrast by a proton exchanging at 5 ppm. This bias might have 

caused POET’s learning to focus on increasing 5 ppm contrast in the relatively inefficient 



 

52 
 

manner of increasing the 3.6 peak. This could be adjusted instead of the PTE at 5 ppm as the 

fitness value instead calculate the fitness as in equation 3 below.  

   Eq. 3    𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑃𝑇𝐸5 𝑝𝑝𝑚

𝑃𝑇𝐸3.6 𝑝𝑝𝑚
⁄  

The fitness being calculated in this way would maintain a selective pressure to produce peptide 

that generate high contrast at 5 ppm, but make peptides that have a high contribution to their 

5 ppm contrast from the 3.6 peak have low fitness, and thus be less likely to be suggested. 

Another problem was one in the design of POET itself discovered after the experiments were 

performed, where a bug in POET caused the learning process to end prematurely as the length 

of learning time increased from additional training data. This bug has been addressed in the 

current version of POET, but wasn’t addressed when this research took place.  



 

53 
 

CONCLUSION 

Functionality of POET 

Using POET I have been able to engineer CESTides that produce nearly four times as much 

contrast as what was priorly used as the state of the art. I was additionally able to develop a 

5ppm reporter that produces contrast at 5ppm at a similar scale to what was produced by PLL 

at 3.6 ppm. This suggests that POET is a useful tool for protein engineers and synthetic 

biologists, for the development of peptides that can’t be screened in a quick or efficient way. 

The dramatic differences between the peptides discovered and peptides that were used as a 

starting point would imply that directed evolution would not have developed them within an 

efficient amount of time. 

As the dataset of POET grows its ability to learn seems to decrease after crossing a certain point 

which I have not had the ability to experimentally determine, but colleagues focusing on 

improving POET did find several improvements and fix several bugs that allows POET to develop 

POEMs with lower error faster than they did before. Whether this weakness in learning persists 

into the current version of POET is a point for further research. 

Impact 

POET has shown to be an effective means of designing new reporter genes for MRI. This 

demonstration and the early results from the development of uPar peptides suggest that POET 

will be useful for researchers seeking to optimize peptides by their function in ways that 

explore a wide area of the search space.  

The 3.6 series peptides show to be unique in chemistry and produce contrast that exceeds that 

of prior peptides. If developed into fully functional reporter genes, these peptides show 



 

54 
 

likelihood of becoming the backbone of later efforts for generating MRI reporter genes using 

CEST. 

Future Research 

Over the course of me writing this dissertation, POET has continued to develop with the 

objective of making it more efficient, and able to solve different kinds of problems. There is 

substantial room for improvement still as POET’s ability to learn grows faster and more 

complete. 

Since POET is seeking a simple correlation between peptide function and sequence, it is 

currently being used to optimize proteins used in guiding extracellular vesicles. These peptides 

would be used to help the vesicles deliver drugs to the area they are most needed.  

The peptides themselves are not at a finished point. To make the jump from protein contrast 

agent to reporter gene, the peptides need to be assembled into complete proteins and 

expressed in cells. Work on this has already begun in the Gilad Lab57. 

Several of the proteins discovered by using POET demonstrate properties that are highly 

unexpected, especially the reporters that have neutral or negative charge. Closer examination 

to these peptides could yield discoveries in protein biochemistry on what factors influence the 

exchange rate of amine protons. 

The peptides developed with this project are not yet full reporter genes. To reach the point of 

being full reporter genes the peptides would need to be combined into a longer protein, which 

would allow more efficient expression in vivo. Further to ensure that there are no 

immunogenicity problems with the fully developed reporter gene, it should go through testing 

with software to predict immunogenicity, and also undergo testing in humanized small animals 



 

55 
 

prior to it being useful in clinical work. 

  



 

56 
 

REFERENCES 

1 Bricco, A. R. et al. Protein Optimization Evolving Tool (POET) based on genetic 
programming. bioRxiv, 2022.2003. 2005.483103 (2022). 

2 Smith-Bindman, R. et al. Trends in Use of Medical Imaging in US Health Care Systems 
and in Ontario, Canada, 2000-2016. Jama 322, 843-856, doi:10.1001/jama.2019.11456 
(2019). 

3 Plewes, D. B. & Kucharczyk, W. Physics of MRI: a primer. Journal of magnetic resonance 
imaging 35, 1038-1054 (2012). 

4 Brateman, L. Chemical shift imaging: a review. American Journal of Roentgenology 146, 
971-980 (1986). 

5 Meyerhoff, D. J., Rooney, W. D., Tokumitsu, T. & Weiner, M. W. Evidence of multiple 
ethanol pools in the brain: an in vivo proton magnetization transfer study. Alcoholism: 
Clinical and Experimental Research 20, 1283-1288 (1996). 

6 Ward, K., Aletras, A. & Balaban, R. S. A new class of contrast agents for MRI based on 
proton chemical exchange dependent saturation transfer (CEST). Journal of magnetic 
resonance 143, 79-87 (2000). 

7 Van Zijl, P. C. & Yadav, N. N. Chemical exchange saturation transfer (CEST): what is in a 
name and what isn't? Magnetic resonance in medicine 65, 927-948 (2011). 

8 McMahon, M. T. et al. New “multicolor” polypeptide diamagnetic chemical exchange 
saturation transfer (DIACEST) contrast agents for MRI. Magnetic Resonance in Medicine: 
An Official Journal of the International Society for Magnetic Resonance in Medicine 60, 
803-812 (2008). 

9 Nasrallah, F. A., Pagès, G., Kuchel, P. W., Golay, X. & Chuang, K.-H. Imaging brain 
deoxyglucose uptake and metabolism by glucoCEST MRI. Journal of Cerebral Blood Flow 
& Metabolism 33, 1270-1278 (2013). 

10 Van Zijl, P. C., Jones, C. K., Ren, J., Malloy, C. R. & Sherry, A. D. MRI detection of glycogen 
in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proceedings 
of the National Academy of Sciences 104, 4359-4364 (2007). 

11 Woessner, D. E., Zhang, S., Merritt, M. E. & Sherry, A. D. Numerical solution of the Bloch 
equations provides insights into the optimum design of PARACEST agents for MRI. 
Magnetic Resonance in Medicine: An Official Journal of the International Society for 
Magnetic Resonance in Medicine 53, 790-799 (2005). 

12 Zhang, S., Merritt, M., Woessner, D. E., Lenkinski, R. E. & Sherry, A. D. PARACEST agents: 
modulating MRI contrast via water proton exchange. Accounts of chemical research 36, 



 

57 
 

783-790 (2003). 

13 Casadaban, M. J., Chou, J. & Cohen, S. N. In vitro gene fusions that join an enzymatically 
active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: 
Escherichia coli plasmid vectors for the detection and cloning of translational initiation 
signals. Journal of bacteriology 143, 971-980 (1980). 

14 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent 
protein as a marker for gene expression. Science 263, 802-805 (1994). 

15 Brasier, A., Tate, J. & Habener, J. Optimized use of the firefly luciferase assay as a 
reporter gene in mammalian cell lines. Biotechniques 7, 1116-1122 (1989). 

16 Louie, A. Y. et al. In vivo visualization of gene expression using magnetic resonance 
imaging. Nature biotechnology 18, 321-325 (2000). 

17 Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. 
Nature medicine 6, 351-354 (2000). 

18 Cohen, B. et al. MRI detection of transcriptional regulation of gene expression in 
transgenic mice. Nature medicine 13, 498-503 (2007). 

19 Genove, G., DeMarco, U., Xu, H., Goins, W. F. & Ahrens, E. T. A new transgene reporter 
for in vivo magnetic resonance imaging. Nature medicine 11, 450-454 (2005). 

20 Kodibagkar, V. D., Yu, J., Liu, L., Hetherington, H. P. & Mason, R. P. Imaging β-
galactosidase activity using 19F chemical shift imaging of LacZ gene-reporter molecule 2-
fluoro-4-nitrophenol-β-D-galactopyranoside. Magnetic resonance imaging 24, 959-962 
(2006). 

21 Gilad, A. A., Bar‐Shir, A., Bricco, A. R., Mohanta, Z. & McMahon, M. T. Protein and 
peptide engineering for chemical exchange saturation transfer imaging in the age of 
synthetic biology. NMR in Biomedicine, e4712 (2022). 

22 Gilad, A. A. et al. Artificial reporter gene providing MRI contrast based on proton 
exchange. Nature biotechnology 25, 217-219 (2007). 

23 Perlman, O. et al. Redesigned reporter gene for improved proton exchange-based 
molecular MRI contrast. Scientific reports 10, 20664 (2020). 

24 Goffeney, N., Bulte, J. W., Duyn, J., Bryant, L. H. & Van Zijl, P. C. Sensitive NMR detection 
of cationic-polymer-based gene delivery systems using saturation transfer via proton 
exchange. Journal of the American Chemical Society 123, 8628-8629 (2001). 

25 Bar-Shir, A. et al. Human protamine-1 as an MRI reporter gene based on chemical 
exchange. ACS chemical biology 9, 134-138 (2014). 



 

58 
 

26 Bar-Shir, A. et al. Transforming thymidine into a magnetic resonance imaging probe for 
monitoring gene expression. Journal of the American Chemical Society 135, 1617-1624 
(2013). 

27 Meier, S. et al. Non-invasive detection of adeno-associated viral gene transfer using a 
genetically encoded CEST-MRI reporter gene in the murine heart. Scientific reports 8, 
4638 (2018). 

28 Farrar, C. T. et al. Establishing the lysine-rich protein CEST reporter gene as a CEST MR 
imaging detector for oncolytic virotherapy. Radiology 275, 746-754 (2015). 

29 Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed evolution. 
Nature reviews Molecular cell biology 10, 866-876 (2009). 

30 Goldsmith, M. & Tawfik, D. S. Enzyme engineering: reaching the maximal catalytic 
efficiency peak. Current opinion in structural biology 47, 140-150 (2017). 

31 Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in 
phage lambda. Science 335, 428-432 (2012). 

32 Rohl, C. A., Strauss, C. E., Misura, K. M. & Baker, D. in Methods in enzymology Vol. 383    
66-93 (Elsevier, 2004). 

33 Loshbaugh, A. L. & Kortemme, T. Comparison of Rosetta flexible‐backbone 
computational protein design methods on binding interactions. Proteins: Structure, 
Function, and Bioinformatics 88, 206-226 (2020). 

34 Tallorin, L. et al. Discovering de novo peptide substrates for enzymes using machine 
learning. Nature Communications 9, 5253, doi:10.1038/s41467-018-07717-6 (2018). 

35 Xu, Y. et al. Deep Dive into Machine Learning Models for Protein Engineering. Journal of 
Chemical Information and Modeling 60, 2773-2790, doi:10.1021/acs.jcim.0c00073 
(2020). 

36 David, A., Islam, S., Tankhilevich, E. & Sternberg, M. J. The AlphaFold database of protein 
structures: a biologist’s guide. Journal of molecular biology 434, 167336 (2022). 

37 Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified rational 
protein engineering with sequence-based deep representation learning. Nature 
Methods 16, 1315-1322, doi:10.1038/s41592-019-0598-1 (2019). 

38 Dong, T. N., Brogden, G., Gerold, G. & Khosla, M. A multitask transfer learning 
framework for the prediction of virus-human protein–protein interactions. BMC 
Bioinformatics 22, 572, doi:10.1186/s12859-021-04484-y (2021). 

39 Koza, J. R. Genetic programming as a means for programming computers by natural 



 

59 
 

selection. Statistics and computing 4, 87-112 (1994). 

40 Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. Genetic programming: an 
introduction: on the automatic evolution of computer programs and its applications.  
(Morgan Kaufmann Publishers Inc., 1998). 

41 Koza, J. R. & Andre, D. in Evolutionary Computation: Theory and Applications     171-197 
(World Scientific, 1999). 

42 Widera, P., Garibaldi, J. M. & Krasnogor, N. GP challenge: evolving energy function for 
protein structure prediction. Genetic Programming and Evolvable Machines 11, 61-88 
(2010). 

43 Vyas, R. et al. Application of genetic programming (GP) formalism for building disease 
predictive models from protein-protein interactions (PPI) data. IEEE/ACM Transactions 
on Computational Biology and Bioinformatics 15, 27-37 (2016). 

44 Lehman, J. et al. The surprising creativity of digital evolution: A collection of anecdotes 
from the evolutionary computation and artificial life research communities. arXiv 
preprint arXiv:1803.03453 (2018). 

45 Koza, J. R. Human-competitive results produced by genetic programming. Genetic 
programming and evolvable machines 11, 251-284 (2010). 

46 Mironidou-Tzouveleki, M. & Dokos, C. Nature's drug store attacks again: the cone snail's 
pain relief toxin. Aristotle University Medical Journal 34, 23-30 (2007). 

47 Vendrely, C. & Scheibel, T. Biotechnological production of spider‐silk proteins enables 
new applications. Macromolecular bioscience 7, 401-409 (2007). 

48 Kim, M., Gillen, J., Landman, B. A., Zhou, J. & Van Zijl, P. C. Water saturation shift 
referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. 
Magnetic Resonance in Medicine: An Official Journal of the International Society for 
Magnetic Resonance in Medicine 61, 1441-1450 (2009). 

49 Gilad, A. A. et al. Functional and molecular mapping of uncoupling between vascular 
permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role 
of stroma cells in tumor angiogenesis. International journal of cancer 117, 202-211 
(2005). 

50 Gilead, A., Meir, G. & Neeman, M. The role of angiogenesis, vascular maturation, 
regression and stroma infiltration in dormancy and growth of implanted MLS ovarian 
carcinoma spheroids. International journal of cancer 108, 524-531 (2004). 

51 Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for 
proteins at membrane interfaces. Nature Structural Biology 3, 842-848, 



 

60 
 

doi:10.1038/nsb1096-842 (1996). 

52 Miralavy, I., Bricco, A., Gilad, A. & Banzhaf, W. Using Genetic Programming to Predict 
and Optimize Protein Function. arXiv preprint arXiv:2202.04039 (2022). 

53 McKAY, D. J., RENAUX, B. S. & DIXON, G. H. Human sperm protamines: Amino‐acid 
sequences of two forms of protamine P2. European Journal of Biochemistry 156, 5-8 
(1986). 

54 Oskolkov, N. et al. Biophysical characterization of human protamine-1 as a responsive 
CEST MR contrast agent. ACS Macro Letters 4, 34-38 (2015). 

55 Bar-Shir, A., Liang, Y., Chan, K. W., Gilad, A. A. & Bulte, J. W. Supercharged green 
fluorescent proteins as bimodal reporter genes for CEST MRI and optical imaging. 
Chemical Communications 51, 4869-4871 (2015). 

56 Grantham, R. Amino Acid Difference Formula to Help Explain Protein Evolution. Science 
185, 862-864 (1974). 

57 Fillion, A. J. et al. Development of a Synthetic Biosensor for Chemical Exchange MRI 
Utilizing In Silico Optimized Peptides. bioRxiv, 2023.2003. 2008.531737 (2023). 

 
 

  



 

61 
 

APPENDIX A: CESTIDE PROPERTIES 

Table 4: CESTide Properties 
Sequence Series Gen Mass Charge pI MTR @3.6 MTR @5 3.6/K12 5.0/K12 3.6 PTE 5.0 PTE 

NQYSNWNKNYK 3.6 1 1458.54 2 9.93 2.64% 0.68% 0.3997 0.1036 5.3300 1.3821 

NSSNHSNNMPCQ 3.6 2 1332.39 0.2 7.36 28.03% 4.69% 1.3671 0.2290 19.9573 3.3431 

IRTYLRKRNSTQ 3.6 2 1535.76 4 12.23 16.22% 1.99% 0.7912 0.0973 10.0214 1.2319 

GIFKTTKCKHNS 3.6 2 1363.59 3.2 10.51 15.64% 2.35% 0.7630 0.1144 10.8835 1.6319 

SNHKMSECRGLR 3.6 2 1417.62 2.2 9.82 11.62% 1.47% 0.5670 0.0718 7.7795 0.9858 

FNSNKITPTSNM 3.6 2 1353.51 1 9.69 9.61% 1.85% 0.4688 0.0903 6.7376 1.2979 

VNSDPSNGQMRD 3.6 2 1319.36 -1 4.11 8.31% 2.09% 0.4054 0.1021 5.9771 1.5051 

LSNRRGREQYAG 3.6 2 1406.51 2 11.05 13.64% 2.34% 0.6653 0.1140 9.2007 1.5767 

QTATENSQMNSG 3.6 2 1267.29 -1 3.85 7.27% 1.43% 0.3545 0.0697 5.4404 1.0699 

QTEHYENSARNS 3.6 2 1435.42 -0.8 5.48 2.31% 2.18% 0.1127 0.1062 1.5273 1.4396 

KDRTSKPKRPWC 3.6 3 1501.76 3.9 11.06 6.68% 3.47% 1.6561 0.8601 21.4496 11.1401 

GRKRGAIWKDTK 3.6 3 1415.65 4 11.75 9.80% 3.99% 2.4314 0.9899 33.4077 13.6019 

CCWHNPKWRRTR 3.6 3 1642.92 4.2 11.38 4.81% 2.31% 1.1928 0.5717 14.1218 6.7689 

KYTKTRKQSSKA 3.6 3 1425.64 5 11.28 8.76% 3.72% 1.5194 0.6450 20.7299 8.7997 

RGKMPLRWMTRK 3.6 3 1559.96 5 12.81 8.94% 3.06% 2.2182 0.7589 27.6587 9.4622 

GNCPMKVCSPMG 3.6 3 1223.52 0.9 8.23 7.40% 3.63% 1.8346 0.9003 29.1656 14.3128 

VNLPMVMPNLRM 3.6 3 1414.81 1 10.55 6.15% 4.63% 1.0656 0.8024 14.6495 11.0312 

GPMPMNAKMKLC 3.6 3 1320.72 1.9 9.67 5.09% 4.89% 0.8821 0.8470 12.9911 12.4750 

KVIRYVVAPMKL 3.6 3 1416.82 3 10.9 8.55% 4.54% 1.4825 0.7865 20.3534 10.7975 

IKGMNIKMPTDQ 3.6 3 1375.66 1 9.53 11.14% 4.64% 1.9309 0.8049 27.3020 11.3816 

MWQMKWTRKTRE 3.6 4 1681.00 3 11.65 10.97% 6.22% 1.7114 0.9701 19.8029 11.2255 

HGRKWKRTKFDD 3.6 4 1573.76 3.2 11.05 11.56% 5.64% 1.8044 0.8802 22.3019 10.8788 

DKRKIKQKMWWG 3.6 4 1603.94 4 11.25 6.05% 4.33% 0.9433 0.6756 11.4397 8.1935 

RRMVNRTITRMW 3.6 4 1619.97 4 12.98 10.39% 6.17% 1.6217 0.9625 19.4717 11.5567 

RKHHGWRWEQWK 3.6 4 1733.94 3.5 11.65 8.28% 4.67% 1.2924 0.7282 14.4985 8.1692 

HWSTCTRTRTLS 3.6 4 1448.61 2.2 10.53 0.00% 0.00% 0.0000 0.0000 0.0000 0.0000 

WWWKPKREDFMK 3.6 4 1737.04 2 10.5 7.31% 3.85% 1.1410 0.6001 15.3203 8.0583 



 

62 
 

Table 4 (cont’d) 
Sequence Series Gen Mass Charge pI MTR @3.6 MTR @5 3.6/K12 5.0/K12 3.6 PTE 5.0 PTE 

HIKWRLTKGTRT 3.6 4 1496.77 4.2 12.53 9.54% 5.79% 1.4892 0.9039 19.3531 11.7464 

WDRTSTRPSSVL 3.6 4 1404.53 1 10.45 3.98% 3.70% 0.6208 0.5769 8.5967 7.9896 

KPWHGCASRTKR 3.6 4 1426.66 4.2 11.65 6.64% 4.53% 1.0365 0.7064 14.1323 9.6317 

DKRKIKQKMWWG 3.6 5 1603.94 4 11.35 5.27% 2.13% 1.5834 0.640964 19.20307 7.773029 

KKRLHWIRWHCG 3.6 5 1619.95 4.4 11.65 2.03% 0.60% 0.6114 0.180985 7.341661 2.173127 

RKHHGWRWEQWK 3.6 5 1733.94 3.5 11.65 7.05% 1.47% 2.1189 0.441435 23.76972 4.951965 

WFGLQRHLKKKD 3.6 5 1555.83 3.2 11.08 10.80% 2.78% 3.2462 0.834161 40.58454 10.42875 

CHLKDLRKMGLR 3.6 5 1469.83 10.78 3.2 9.20% 3.04% 2.7647 0.912535 36.58821 12.07611 

QRHDSHRHGLWL 3.6 5 1541.68 1.7 10.45 3.33% 1.06% 1.0017 0.317516 12.63926 4.006044 

LELKLGKRPMGW 3.6 5 1427.76 2 10.79 10.66% 1.60% 3.2035 0.481419 43.64305 6.558619 

GQRWLYKMKDSM 3.6 5 1542.83 2 10.75 4.53% 1.66% 1.3625 0.499469 17.17881 6.297021 

LDHTWGKWGHQS 3.6 5 1451.55 0.5 7.72 4.68% 1.66% 1.4077 0.49875 18.86464 6.683378 

DKVCKIQKRKWH 3.6 5 1568.90 4.2 10.8 3.11% 1.28% 0.9342 0.384813 11.58307 4.770885 

WDWEQKKKWI 3.6 6 1446.66 1 9.45 7.77% 2.28% 2.3350 0.6839 31.3955 9.1958 

ERQEEKIKKW 3.6 6 1373.56 1 9.45 4.90% 2.12% 1.4733 0.6368 20.8631 9.0175 

SDGSKIKDRD 3.6 6 1120.18 0 6.51 1.66% 0.85% 0.4987 0.2569 8.6591 4.4611 

SSDQDRDKWL 3.6 6 1249.29 -1 4.31 3.61% 1.00% 1.0840 0.3018 16.8780 4.6992 

LLRLLGLVER 3.6 6 1181.48 1 10.45 0.62% 0.40% 0.1851 0.1209 3.0482 1.9900 

KEEVWLKWLI 3.6 6 1343.62 0 6.51 2.62% 0.97% 0.8278 0.3058 11.9835 4.4267 

KGKLDKDRNL 3.6 6 1186.37 2 10.5 4.93% 1.99% 1.5579 0.6296 25.5433 10.3234 

HDDKNKESDD 3.6 6 1202.15 -2.8 4.19 1.45% 0.90% 0.4578 0.2858 7.4068 4.6245 

QERRDDILWD 3.6 6 1345.42 -2 4.06 0.59% 0.69% 0.1869 0.2194 2.7023 3.1713 

KRIIEDDQLE 3.6 6 1258.38 -2 4.11 2.95% 0.61% 0.9340 0.1934 14.4364 2.9897 

VCNRIEPLKPIL 3.6 7 1394.73 0.9 8.55 5.36% 1.23% 1.5409 0.3541 21.4892 4.9386 

LHSSQWLKVDHLL 3.6 7 1575.82 0.5 7.72 5.00% 1.85% 1.4376 0.5306 17.7453 6.5493 

VINKVISNPCVN 3.6 7 1299.55 0.9 8.55 1.89% 0.72% 0.5440 0.2065 8.1418 3.0914 

GNKKNWRWYKNR 3.6 7 1649.86 5 11.76 4.36% 1.64% 1.2538 0.4702 14.7815 5.5431 

ICLKSQPICGID 3.6 7 1289.57 -0.1 6.07 6.83% 2.30% 1.9645 0.6600 29.6311 9.9543 

LWSDIKMKLKKT 3.6 7 1490.86 3 10.8 11.90% 3.13% 3.7870 0.9970 49.4092 13.0076 



 

63 
 

Table 4 (cont’d) 
Sequence Series Gen Mass Charge pI MTR @3.6 MTR @5 3.6/K12 5.0/K12 3.6 PTE 5.0 PTE 

LWSDIKMKLKKT 3.6 7 1490.86 3 10.8 11.90% 3.13% 3.7870 0.9970 49.4092 13.0076 

NWRDCLSLIVPN 3.6 7 1429.65 -0.1 6.18 0.73% 0.46% 0.2337 0.1456 3.1803 1.9811 

KMGKLIGIPVLK 3.6 7 1296.71 3 11.1 10.03% 3.18% 3.1918 1.0104 47.8780 15.1564 

NDISMCNKNNNW 3.6 7 1452.58 -0.1 6.18 2.07% 0.69% 0.6580 0.2180 8.8105 2.9197 

VSLQCWELGPNK 3.6 7 1373.58 -0.1 6.18 3.48% 0.86% 1.1072 0.2751 15.6792 3.8963 

TVSEPVMMVSVS 3.6 8 1265.50 -1 3.85 1.97% 1.55% 0.4845 0.3811 7.4473 5.8584 

PRSWEVKEKETM 3.6 8 1519.73 0 6.62 5.79% 2.42% 1.4242 0.5959 18.2290 7.6270 

PGGVRSNDLLEV 3.6 8 1255.38 -1 4.19 3.11% 2.26% 0.7658 0.5569 11.8653 8.6293 

PVNRLGKMSKNR 3.6 8 1399.67 4 12.53 8.95% 2.68% 2.2014 0.6583 30.5927 9.1487 

VGSVKSGNLRMR 3.6 8 1303.54 3 12.51 6.22% 1.90% 1.7579 0.5361 26.2309 7.9991 

TSKSKKRMTAKK 3.6 8 1393.71 6 12.06 7.55% 2.94% 2.1357 0.8311 29.8071 11.5992 

ETNVRVKVVSES 3.6 8 1346.49 0 6.51 1.40% 0.92% 0.3946 0.2602 5.7005 3.7595 

EPSNLPKGMNEK 3.6 8 1343.51 0 6.51 6.03% 1.10% 1.7061 0.3107 24.7003 4.4982 

RLWNSGEGRGEN 3.6 8 1374.42 0 6.51 3.06% 1.25% 0.8660 0.3547 12.2564 5.0203 

RPPMLNVVRVVG 3.6 9 1336.66 2 12.5 1.55% 0.64% 0.4524 0.1865 6.5834 2.7145 

KWVVRPRIRRLL 3.6 9 1592.00 5 12.98 4.19% 1.07% 1.2228 0.3120 14.9403 3.8123 

IGVLRSVKQTVR 3.6 9 1355.64 3 12.51 6.91% 1.68% 2.0159 0.4893 28.9254 7.0210 

VINKVISNPCVN 3.6 9 1299.55 0.9 8.55 2.04% 0.64% 0.5951 0.1873 8.9079 2.8029 

ETNVRVKVVSES 3.6 9 1346.49 0 6.51 0.61% 0.63% 0.1792 0.1841 2.5889 2.6591 

RLPKRVQGNVEK 3.6 9 1423.67 3 11.65 7.37% 1.32% 2.2428 0.4009 30.6422 5.4776 

GLGNQHVVVLGV 3.6 9 1191.39 0.2 7.55 0.71% 0.50% 0.2155 0.1521 3.5190 2.4829 

KVRCLVEARPSW 3.6 9 1443.72 1.9 9.82 2.00% 0.78% 0.6087 0.2373 8.2005 3.1976 

HLVVSPRVSWGC 3.6 9 1339.57 1.2 8.55 1.20% 0.76% 0.3656 0.2306 5.3092 3.3481 

IIRSPICCVSRV 3.6 9 1345.68 1.9 8.83 2.93% 0.72% 0.8920 0.2199 12.8927 3.1790 

DKRKIKQKMWWG 3.6 10 1603.94 4 11.25 5.03% 2.02% 1.5780 0.6349 19.1361 7.6999 

RKHHGWRWEQWK 3.6 10 1733.94 3.5 11.65 5.98% 1.37% 1.8767 0.4311 21.0528 4.8359 

EMRQWKWMWENA 3.6 10 1694.94 0 6.51 1.53% 0.94% 0.4802 0.2945 5.5107 3.3791 

PIKQIAWPIIEH 3.6 10 1444.73 0.2 7.55 3.19% 1.20% 1.0018 0.3757 13.4878 5.0584 

KMWDWEQKKKWI 3.6 10 1706.03 2 10.33 6.78% 2.35% 2.1270 0.7384 24.2503 8.4193 



 

64 
 

Table 4 (cont’d) 
Sequence Series Gen Mass Charge pI MTR @3.6 MTR @5 3.6/K12 5.0/K12 3.6 PTE 5.0 PTE 

ARNRKKIMMRWI 3.6 10 1603.02 5 12.81 7.75% 2.83% 2.3923 0.8744 29.0288 10.6099 

NAPWKHWRIINE 3.6 10 1563.77 1.2 9.69 2.32% 0.78% 0.7157 0.2423 8.9019 3.0134 

NKQRRMLSRERS 3.6 10 1560.79 4 12.51 7.41% 2.15% 2.2884 0.6651 28.5194 8.2886 

LSQQPRKRATWR 3.6 10 1526.75 4 12.81 3.21% 0.89% 0.9899 0.2755 12.6112 3.5103 

IRRWNDRIRITS 3.6 10 1585.82 3 12.5 3.67% 1.17% 1.1343 0.3612 13.9124 4.4307 

RRCQAQEFWLGA 5 1 1464.66 0.9 8.55 3.05% 1.40% 0.7700 0.3542 10.2256 4.7036 

GLIEARAMQQCC 5 1 1322.58 -0.1 6.23 1.27% 1.68% 0.3218 0.4237 4.7330 6.2316 

QCRAGAMPAMYV 5 1 1297.58 0.9 8.53 4.53% 2.63% 1.1436 0.6639 17.1431 9.9518 

NFLRAQRQCQKQ 5 1 1519.74 2.9 11.48 5.54% 1.59% 1.4000 0.4017 17.9181 5.1412 

MAMADAAAPMNA 5 1 1164.38 -1 3.75 1.48% 1.24% 0.3734 0.3140 6.2378 5.2457 

AQCCQHRKGYMN 5 1 1164.38 2.2 3.75 5.15% 2.28% 1.2996 0.5770 21.7106 9.6385 

MAALLYQHRLARR 5 1 1598.92 3.2 12.21 1.04% 1.20% 0.2748 0.3165 3.3429 3.8498 

KPCKWAGRACAK 5 1 1318.62 3.9 10.51 5.98% 1.78% 1.5767 0.4698 23.2581 6.9305 

CQLAWRPCAKAS 5 1 1333.59 1.9 8.83 6.92% 2.06% 1.8239 0.5433 26.6024 7.9241 

QCSGWVQKRQIQ 5 1 1460.67 1.9 9.84 7.56% 2.88% 1.9930 0.7590 26.5398 10.1078 

NRVTESVRNVKM 5 2 1432.66 2 11.48 0.93% 0.78% 0.316758 0.265939 4.300599 3.61064 

NVVVQRRNHHTS 5 2 1446.58 2.5 12.5 6.99% 1.44% 2.386539 0.492561 32.09008 6.623116 

VINKVISCPCVN 5 2 1288.59 0.9 8.23 2.29% 1.56% 0.782529 0.532269 11.81219 8.034538 

GGRVWEWNVAA 5 2 1244.36 0 6.34 1.80% 1.03% 0.613375 0.35141 9.587929 5.49304 

NNKCQVVAAFVM 5 2 1323.59 0.9 8.55 1.80% 1.03% 2.1930 1.2564 32.2278 18.4637 

VPNIQVKGSK 5 3 1069.26 2 10.8 0.95% 0.87% 0.2746 0.2514 4.9961 4.5740 

PVARKVVQICHP 5 3 1346.65 2.2 9.48 4.44% 1.20% 1.2888 0.3476 18.6148 5.0211 

VTRMTIQVKGSK 5 3 1347.63 3 11.82 7.20% 2.12% 2.0923 0.6170 30.1993 8.9059 

MAMADAAAPMNA 5 3 1164.38 -1 3.75 1.44% 0.57% 0.4173 0.1646 6.9711 2.7492 

MKVAAAMAPKQV 5 3 1244.58 2 10.8 8.52% 2.13% 2.4757 0.6181 38.6914 9.6601 

PVVYKTVIQCCD 5 3 1367.64 -0.1 6.07 0.83% 0.54% 0.2867 0.1869 4.0781 2.6585 

KVLWRMPAQIIQ 5 3 1482.84 2 11.66 3.07% 0.74% 1.0557 0.2549 13.8476 3.3434 

VSVVATGCVWET 5 3 1250.43 -1.1 3.85 2.77% 0.57% 0.9526 0.1969 14.8188 3.0629 

AKCKVQSANVCK 5 3 1278.55 2.9 9.67 7.54% 2.06% 2.5923 0.7082 39.4381 10.7740 



 

65 
 

Table 4 (cont’d) 
Sequence Series Gen Mass Charge pI MTR @3.6 MTR @5 3.6/K12 5.0/K12 3.6 PTE 5.0 PTE 

VAWVMKAHVCTM 5 3 1375.73 1.2 8.56 0.95% 0.51% 0.3273 0.1765 4.6271 2.4957 

EAPMPKVNVIVN 5 4 1310.57 0 6.34 0.74% 0.41% 0.274349 0.150771 4.071816 2.237699 

VPKRLVVVMNTC 5 4 1358.72 1.9 9.84 0.83% 0.53% 0.308921 0.197219 4.422446 2.823342 

VINKVISNPCVN 5 4 1299.55 0.9 8.55 1.56% 0.64% 0.578747 0.236603 8.662444 3.541376 

PLPDNVVKAVVW 5 4 1336.58 0 6.23 3.57% 0.85% 1.320008 0.314956 19.20996 4.58353 

RPPMLNVVRVVG 5 4 1336.66 2 12.5 1.35% 0.49% 0.498041 0.182992 7.247509 2.662906 

LTFNLVSDKVVV 5 4 1333.58 0 6.23 2.11% 1.06% 0.6720 0.3371 9.8021 4.9172 

TNVLCVPEMVGV 5 4 1260.53 -1.1 3.85 3.30% 1.37% 1.0539 0.4358 16.2628 6.7245 

TFPANPNVKVTV 5 4 1286.48 1 9.69 6.87% 1.16% 2.1917 0.3698 33.1381 5.5918 

NSWDSVPNPRVV 5 4 1369.49 0 6.23 3.52% 0.81% 1.1243 0.2576 15.9681 3.6585 

PPVVNECCPHSV 5 4 1280.48 -0.8 5.35 3.59% 1.47% 1.1448 0.4701 17.3907 7.1409 

PGPPAGPTLSNR  5 5 1163.29 1 10.55 4.01% 1.37% 1.0934 0.3739 18.2825 6.2517 

NRSMPLPMNPGD  5 5 1328.52 0 6.23 3.31% 1.30% 0.9028 0.3556 13.2179 5.2058 

ANNNPWSGMMNG 5 5 1292.41 0 6.02 3.77% 1.56% 1.0282 0.4258 15.4752 6.4084 

NSPQLNLNPPQS  5 5 1308.40 0 6.02 4.66% 1.75% 1.2728 0.4775 18.9221 7.0986 

NAARMNRLNDAM 5 5 1376.57 1 10.45 3.11% 1.01% 0.8490 0.2769 11.9968 3.9130 

CATNAKNNNMRG 5 5 1293.44 1.9 9.84 3.61% 1.23% 1.0891 0.3710 16.3789 5.5788 

TTWPNNRSQWP 5 5 1386.48 1 10.55 4.11% 0.99% 1.2405 0.2997 17.4028 4.2046 

NQHTPPKPLNNA 5 5 1330.46 1.2 9.69 7.27% 2.20% 2.1977 0.6658 32.1296 9.7337 

NKAKACNGMKPR  5 5 1317.59 3.9 11.08 4.70% 1.72% 1.4193 0.5199 20.9532 7.6752 

CKPARTDWPPMP 5 5 1398.66 0.9 8.55 3.38% 1.43% 1.0205 0.4317 14.1924 6.0038 

PVARKVVQICHP 5 6 1346.65 2.2 9.84 4.24% 1.19% 1.6667 0.4670 24.0737 6.7461 

DAPSFAKVVPNR 5 6 1300.47 1 9.71 2.45% 0.78% 0.9633 0.3053 14.4078 4.5663 

PLPDNVVKAVVW 5 6 1336.58 0 6.23 6.51% 1.86% 2.5585 0.7317 37.2337 10.6487 

RPPMLNVVRVVG 5 6 1336.66 2 12.5 2.06% 1.06% 0.8099 0.4181 11.7854 6.0843 

EAPMPKVNVIVN 5 6 1310.57 0 6.34 2.63% 0.95% 1.0341 0.3719 15.3478 5.5189 

KVNFNKAVSNLK 5 6 1361.60 3 11.1 9.68% 2.90% 3.3259 0.9962 47.5116 14.2310 

LVKPMNKRWVRM 5 6 1557.98 4 12.53 3.15% 1.04% 1.0837 0.3578 13.5299 4.4677 

VPKDKRKKLTNP 5 6 1423.71 4 11.25 3.98% 1.71% 1.3678 0.5888 18.6873 8.0437 



 

66 
 

Table 4 (cont’d) 
Sequence Series Gen Mass Charge pI MTR @3.6 MTR @5 3.6/K12 5.0/K12 3.6 PTE 5.0 PTE 

VPKRLVVVMNTC 5 6 1358.72 1.9 9.84 0.95% 0.96% 0.3274 0.3314 4.6876 4.7443 

AACPNLAVAAPM 5 6 1128.37 -0.1 6.02 1.47% 0.85% 0.5062 0.2931 8.7267 5.0518 

RDPDKNNRDWPI 5 7 1525.63 0 6.51 6.85% 2.43% 1.3125 0.4653 16.7336 5.9324 

WLLDLRRQMDDT 5 7 1561.77 -1 4.31 2.91% 1.17% 0.5568 0.2248 6.9350 2.7995 

QLGVHRNPRWNQ 5 7 1504.66 2.2 12.5 6.60% 2.05% 1.2639 0.3924 16.3390 5.0730 

LHKDRRKPLPLP 5 7 1469.78 3.2 11.65 3.61% 1.76% 0.6919 0.3373 9.1566 4.4643 

HLRLNKNRMQKS 5 7 1524.80 4.2 12.53 9.33% 3.28% 1.7866 0.6282 22.7905 8.0131 

LDDDTPDRNRDW 5 7 1517.52 -3 3.85 1.51% 0.96% 0.2999 0.1908 3.8435 2.4451 

VGQNNDERRRQR 5 7 1527.61 2 12.02 2.16% 0.89% 0.4303 0.1770 5.4785 2.2541 

HQWHRHRPPIRR 5 7 1675.91 4.7 12.98 2.00% 0.87% 0.3976 0.1738 4.6152 2.0166 

DNPHQLLPVNWR 5 7 1488.66 0.2 7.55 2.95% 1.24% 0.5860 0.2467 7.6571 3.2236 

RWHHVNVLWQDR 5 7 1645.83 1.5 10.45 1.25% 0.86% 0.2484 0.1718 2.9358 2.0302 

KPWWMTTQVDVP 5 8 1487.73 0 6.23 1.03% 0.51% 0.1746 0.0861 2.2833 1.1255 

NTTWPNNRSQWP 5 8 1500.58 1 10.55 5.35% 1.66% 0.9058 0.2820 11.7415 3.6550 

KMPPKLNCPGVW 5 8 1369.70 1.9 9.67 4.24% 1.51% 0.7186 0.2556 10.2048 3.6293 

PVPWLQTGPTNC 5 8 1312.50 -0.1 6.02 1.66% 0.87% 0.2810 0.1470 4.1649 2.1789 

VVPGLCRVKTQA 5 8 1270.55 1.9 9.84 4.84% 1.25% 0.8197 0.2118 12.5488 3.2418 

WKKYNVQPPKVW 5 8 1572.86 3 10.64 4.28% 1.14% 0.7118 0.1893 8.8021 2.3413 

CSWNVGDNPPVD 5 8 1302.38 -2.1 3.49 2.85% 0.95% 0.4739 0.1571 7.0779 2.3468 

PNVRMNKQSWQP 5 8 1484.69 2 11.66 9.19% 3.34% 1.5277 0.5545 20.0150 7.2645 

GWTPPLVVNDTL 5 8 1311.49 -1 3.75 1.43% 0.75% 0.2383 0.1254 3.5338 1.8603 

AVQLKPPSPNDN 5 8 1279.40 0 6.23 4.01% 1.50% 0.6662 0.2495 10.1289 3.7936 

IVMCNLNVQVRD 5 9 1403.68 -0.1 6.18 0.82% 0.77% 0.1658 0.1558 2.2970 2.1585 

TISDIVKVVIRS 5 9 1329.59 1 9.71 1.97% 1.05% 0.3957 0.2121 5.7882 3.1025 

VIDMSDMVVEIV 5 9 1349.62 -3 3.38 1.38% 1.20% 0.2773 0.2424 3.9963 3.4932 

VITNNWALAQVR 5 9 1384.59 1 10.55 0.98% 0.93% 0.1964 0.1867 2.7587 2.6231 

MLMKVPVIRRVW 5 9 1527.99 3 12.51 3.08% 1.08% 0.6206 0.2178 7.9005 2.7725 

VARVDIDLQAIA 5 9 1283.48 -1 4.11 0.53% 0.60% 0.1070 0.1206 1.6214 1.8275 

DCLAVPPNAVTI 5 9 1212.42 -1.1 3.75 3.07% 1.14% 0.6178 0.2287 9.9122 3.6693 



 

67 
 

Table 4 (cont’d) 
Sequence Series Gen Mass Charge pI MTR @3.6 MTR @5 3.6/K12 5.0/K12 3.6 PTE 5.0 PTE 

VVLVIADMCSAN 5 9 1234.49 -1.1 3.75 1.74% 0.72% 0.3494 0.1450 5.5049 2.2843 

PLNIAISNSPDS 5 9 1227.33 -1 3.75 0.77% 1.08% 0.1558 0.2176 2.4694 3.4490 

NWRDCLSLIVPN 5 9 1429.65 -0.1 6.18 2.37% 1.01% 0.4776 0.2033 6.4986 2.7662 

 

Notes on data:  

The PTE values are calculated through the contrast after it’s normalized contrast to K12.  Where K12’s PTE is 12.5 *1000. This is 

maintained consistent with our collaborators and the literature values that formed the initial training data for the 3.6 experiments. 

Data is provided for every peptide that I can find the experiment where it was measured. When possible I use the experiment or 

experiments that were used to develop the learning data for POET. The first two generations were thus measured by my 

collaborator Dr. Michael McMahon at Johns Hopkins University, on a 9T scanner instead of the 7T scanners that I used to perform 

my experiments. Thus contrast values are relatively high in the first two generations, although the contrast relative to K12 is low. 

PTE values  are all divided by 1000, to maintain consistency with the original literature values.



 

68 
 

APPENDIX B: POET CODE 

POET was written for use in python 3.6.4. This is the version of POET that I used in my 

experiments detailed in the main body of this dissertation, presented should a reader wish to 

reproduce my work or deeply examine the code to answer a question. This version of the code 

is no longer current and contains several known bugs. For an updated version of POET please 

contract me and I can direct you to an appropriate GitHub. 

POET 

# POET: Protein Optimization Enhancing Tool 
# Authors:  
#   Iliya "eLeMeNOhPi" Alavy - Department of Computer Science and 
Engineering - Michigan State University 
#       Alexander Bricco - Department of Bioengineering -  Michigan State University 
#   All Rights Reserved @ Michigan State University 
 
import argparse 
import pandas as pd 
import pop as Population 
import settings 
import optimizer as Optimizer 
import predictor as P 
import individual as I 
import math 
import fitness as F 
import os 
import random as R 
from subprocess import call 
import archivist as Archivist 
 
def main(): 
 print ("\n\n######################################################\n") 
 print ("POET V3.0 \n") 
 print ("######################################################\n")  
 
 print ("Configuring the application...\n") 
 
    # Argument descriptions 



 

69 
 

 parser = argparse.ArgumentParser(description='Finds a model to predict fitness value of 
any given protein sequence. Fitness can be manually defined to any protein characteristic but 
our main goal is to predict CEST ability of proteins') 
 
 parser.add_argument('-learn', default=settings.default_learn, help='Path to the learn 
data (format: csv, default: ' + settings.default_learn + ')') 
 parser.add_argument('-translation', default=settings.TT, help='Path to the translation 
table (format: csv, default: ' + settings.TT + ')') 
 parser.add_argument('-pop', help='Path to the initial population files. If not specified, 
this application uses random initial population as default (format: csv)') 
 parser.add_argument('-model', help='Path to a generated model to determine a given 
protein\'s fitness. You will need to use -seq after this command') 
 parser.add_argument('-seq', help='A sequence to be tested using an already specified 
model. This command only runs if it\'s used jointly with the -model command') 
 parser.add_argument('-predict', help='Number of potential protein sequences you want 
the program to predict. Must be jointly used with -seqsize and -iter') 
 parser.add_argument('-seqsize', help='Size of the protein sequences for prediction') 
 parser.add_argument('-iter', help='Number of iterations to predict/find potential 
proteins') 
 parser.add_argument('-hpcc', help="Number of replications you need to queue on hpcc. 
Uses the default config file") 
 parser.add_argument('-o', help="Output file name") 
 parser.add_argument('-r', default=settings.runs, help='Number of GP iterations to find a 
model.') 
 parser.add_argument('-seed', help='The random seed') 
 parser.add_argument('-f', help="Gets path to a model as it's input and returns the 
fitness of it") #ToDo:: Code this part. 
 parser.add_argument('-c', nargs='*', help="Compares the fitness of all given models") 
 parser.add_argument('-al', nargs='*', help="Computes the average length of all given 
models") 
 parser.add_argument('-archive', nargs='*', help='Setups the default output directories if 
necessary and archives existing files/results') 
 
 args = parser.parse_args() 
 
 # Read the tables 
 settings.learn_df = pd.read_csv(args.learn) 
 settings.TT = pd.read_csv(args.translation) 
 
 arch = Archivist.Archivist() 
 
 if args.archive != None: 
  arch.setup(True) 
  print("Archiving completed Successfully!") 



 

70 
 

  exit(1) 
 
 # Setting up the random seed 
 if args.seed != None: 
  settings.seed = int(args.seed) 
 R.seed(settings.seed) 
 
 # total number of runs 
 if args.r != None: 
  settings.runs = int(args.r) 
 
 # output file name 
 if args.o != None: 
  settings.output_file_name = args.o 
 
 # Should be after initializing the output file name ^^^ 
 arch.setup() 
 
 # run on hpcc 
 if args.hpcc != None: 
  hpcc(int(args.hpcc), 13, 10000, 300) 
  exit(1) 
 
 # get the fitness of a given model 
 if args.f != None: 
  modelFitness(args.f) 
 
 # compare a bunch of models 
 if args.c != None: 
  compareModels(args.c) 
 
 # calculate the average length of the models 
 if args.al != None: 
  averageLength(args.al) 
 
 # Make a dictionary out of the translation table 
 for i, row in settings.TT.iterrows(): 
  settings.dic[row[0]] = row[1] 
 
 # Translate the data using the translation table in case we are not using a numeric 
translation table 
 #if not is_numeric(): 
  #for i, row in settings.learn_df.iterrows(): 
  # translatedSeq = "" 



 

71 
 

   #origSeq = row[0] 
   #for j in range(len(origSeq)): 
   # try: 
    # translatedSeq += settings.dic[origSeq[j]] 
   # except IndexError: 
   #  print("Could not find all the required data in the 
Translation Table. Exiting...") 
   #  exit(0) 
   #settings.learn_df.iloc[i, 0] = translatedSeq 
 
 # ToDo:: I never checked the prediction part 
 if args.predict != None: 
  if args.seqsize == None or args.iter == None: 
   raise("Prediction mode needs -seqsize and -iter in order to work") 
  else: 
   predictor = P.Predictor(int(args.predict), int(args.seqsize)+1, int(args.iter)) 
   predictor.predict() 
   return 
 elif args.pop == None and args.seq == None and args.model == None: 
  pop = Population.Population() 
  opt = Optimizer.Optimizer(pop) 
  opt.optimize() 
 elif args.seq != None and args.model != None: 
  proteinSeq = args.seq 
  modelPath = args.model 
 else: 
  raise("Invalid arguements.") 
  pass  
 return 
 
def is_numeric(): 
 codes = settings.TT['code'] 
 for i in range(codes.size): 
  try: 
   float(codes[i]) 
  except ValueError: 
   return False 
 return True 
 
def modelFitness(path): 
 model = I.Individual() 
 model.makeFromFile(path) 
 f = F.Fitness() 
 fitness = f.measureTotal(model) 



 

72 
 

 print("Pro-Predictor: Fitness (RMSE) of {}: {}".format(path, fitness)) 
 exit(1) 
 
def compareModels(paths): 
 model = I.Individual() 
 avg = 0 
 best = 100000 
 bestModel = '' 
 for path in paths: 
  model.makeFromFile(path) 
  f = F.Fitness() 
  fitness = f.measureTotal(model) 
  avg += fitness 
  print("Pro-Predictor: Fitness (RMSE) of {}: {}".format(path, fitness)) 
  if fitness < best: 
   bestModel = path 
   best = fitness 
 avg /= len(paths) 
 print("Pro-Predictor: Best model: {} with RMSE: {} Average RMSE: {}".format(bestModel, 
best, avg)) 
 exit(1) 
 
def averageLength(paths): 
 model = I.Individual() 
 for index, path in enumerate(paths): 
  model.makeFromFile(path) 
  f = F.Fitness() 
  fitness = f.measureTotal(model) 
  sumL = 0 
  counter = 0 
  for rule in model.rules: 
   if rule.status: 
    try: 
     if math.isnan(rule.pattern): 
      continue 
    except: 
     pass 
    sumL += len(rule.pattern) 
    counter += 1 
  if counter == 0: 
   print("Pro-Predictor: {}: Old Model. Old Models are Not 
Supported".format(path)) 
   continue 
  avg = sumL/counter 



 

73 
 

  print("Pro-Predictor: {}: Fitness (RMSE): {} Average Rule Length: {}".format(path, 
fitness, avg)) 
 exit(1) 
 
def hpcc(reps, hours, runs, startingSeed): 
 for i in range(reps): 
  filename = "subs/{}.sb".format(i) 
  file = open(filename, "w") 
  file.write("#!/bin/bash --login\n") 
  file.write("\n########## SBATCH Lines for Resource Request ##########\n\n") 
  file.write("#SBATCH --time={}:02:00             # limit of wall clock time - how long 
the job will run (same as -t)\n".format(hours)) 
  file.write("#SBATCH --nodes=1-5                 # number of different nodes - could be 
an exact number or a range of nodes (same as -N)\n") 
  file.write("#SBATCH --ntasks=5                  # number of tasks - how many tasks 
(nodes) that you require (same as -n)\n") 
  file.write("#SBATCH --cpus-per-task=2           # number of CPUs (or cores) per task 
(same as -c)\n") 
  file.write("#SBATCH --mem-per-cpu=2G            # memory required per allocated 
CPU (or core) - amount of memory (in bytes)\n") 
  file.write("#SBATCH --job-name POET_rep_{}      # you can give your job a name 
for easier identification (same as -J)\n".format(i)) 
  file.write("\n########## Command Lines to Run ##########\n\n") 
  file.write("module pandas\n") 
  # file.write("module load GCC/6.4.0-2.28 OpenMPI  ### load necessary modules, 
e.g\n") 
  file.write("cd ~/POET\n") 
  file.write("srun -n 5 python poet.py -r {} -o {} -seed {}\n".format(runs, i, 
i+startingSeed)) 
  file.write("cd batch\n") 
  file.write("scontrol show job $SLURM_JOB_ID     ### 

Optimizer 

# Authors: Iliya "eLeMeNOhPi" Alavy - Department of Engineering - Michigan State University 
#      Alexander Bricco - Department of Bioengineering -  Michigan State University 
 
import settings 
import pop as Population 
import fitness as F 
import pandas as pd 
import archivist as Archivist 
import copy 
import random as R 
import individual as I 



 

74 
 

import rule as Rule 
import time 
 
class Optimizer: 
 def __init__(self, population): 
  self.TT = settings.TT 
  self.codes = self.TT['code'] 
  self.P = population 
  self.runs = settings.runs 
  self.tournamentSize = settings.tournament_size 
  self.logInterval = settings.pop_log_interval 
  self.crossRate = settings.cross_rate 
  self.ruleSize = settings.rule_size 
  self.ruleCount = settings.maximum_rule_count 
  self.minWeight = settings.rule_weight_min 
  self.maxWeight = settings.rule_weight_max 
  self.output_file_name = settings.output_file_name 
  self.mAR = settings.mut_add_rule 
  self.mRR = settings.mut_remove_rule 
  self.mCW = settings.mut_change_weight 
  self.mATP = settings.mut_add_to_pattern 
  self.mRFP = settings.mut_remove_from_pattern 
  self.mCWmin = 0 
  self.mCWmax = 1 
  pass 
 
 def optimize(self): 
  # We need an instance of the Fitness and Archivist classes for later usage 
  fitness = F.Fitness()  
  arch = Archivist.Archivist() 
 
  # ToDo::  
  # raise("Add dynamic mutation rates to escape from premature 
convergence.\nAdd Remove duplicate rules to make space for the new rules without changing 
the fitness") 
 
  # growthLog = 0 
  # mutRates = [self.mAR, self.mRR, self.mCW, self.mATP, self.mRFP, 
self.mCWmin, self.mCWmax] 
 
  # For all the generations 
  for i in range(self.runs): 
   # To log the time 
   start_time = int(round(time.time() * 1000)) 



 

75 
 

 
   # Measure fitness 
   avgFitness = 0.0 
   avgRuleCount = 0.0 
   avgUsedRulesCount = 0.0 
    
   # To calculate the best fitness 
   # Temporarily set the first member as the best member 
   self.P.pop[0].fitness = fitness.measureTotal(self.P.pop[0])  
   bestIndividual = self.P.pop[0] 
 
   for j in self.P.pop: 
    j.fitness = fitness.measureTotal(j) 
    avgFitness += j.fitness 
    avgRuleCount += len(j.rules) 
    avgUsedRulesCount += j.usedRulesCount 
    if j.fitness < bestIndividual.fitness: 
     bestIndividual = j 
 
   # To calculate the average fitness and the average  
   avgFitness = round(avgFitness / float(len(self.P.pop)), 3) 
   avgRuleCount = round(avgRuleCount / float(len(self.P.pop)), 0) 
   avgUsedRulesCount = round(avgUsedRulesCount / float(len(self.P.pop)), 
0) 
   bestFitness = round(bestIndividual.fitness, 3) 
   bestRuleCount = len(bestIndividual.rules) 
   bestUsedRulesCount = bestIndividual.usedRulesCount 
 
   # Log the outcome before doing the changes to the population / 
generating a new population 
   log_string = "{}: -b {} -rc {} -urc {} ||| -a {} -arc {} -aurc {}".format(i, 
bestFitness, bestRuleCount, bestUsedRulesCount, avgFitness, avgRuleCount, 
avgUsedRulesCount) 
 
   # Print the evolutionary log 
   print(log_string) 
 
   # Dynamic Mutation 
   # If the fitness is not growing every 25 generations, increase the rates 
   # if i%25 == 0 and bestIndividual.fitness == growthLog: 
   #  print("Mutation rate increasing") 
   #  self.mAR += 0.05 
   #  self.mRR += 0.1 
   #  self.mCW += 0.2 



 

76 
 

   #  self.mATP += 0.1 
   #  self.mRFP += 0.1 
   #  self.mCWmin = 0 
   #  self.mCWmax = 0.1 
   #  if self.mCW >= 0.6: 
   #   self.mAR = mutRates[0] 
   #   self.mRR = mutRates[1] 
   #   self.mCW = mutRates[2] 
   #   self.mATP = mutRates[3] 
   #   self.mRFP = mutRates[4] 
   # elif i%25 == 0 and growthLog != bestIndividual.fitness: 
   #  print("Mutation rate reset") 
   #  self.mAR = mutRates[0] 
   #  self.mRR = mutRates[1] 
   #  self.mCW = mutRates[2] 
   #  self.mATP = mutRates[3] 
   #  self.mRFP = mutRates[4] 
   #  self.mCWmin = mutRates[5] 
   #  self.mCWmax = mutRates[6] 
   #  growthLog = bestIndividual.fitness 
 
 
   # Log the evolution  
   arch.saveEvo(log_string) 
 
   # Create a copy of the population 
   newPop = copy.deepcopy(self.P) 
   newPop.pop.clear() 
 
   # Note: This is the code for storing the population with an interval of 
generations. I temporarily disabled this feature to see if it needs any further developments. 
Right now I'm only concerned about the core. 
 
   # # Check if we need to store the data 
   # if i % self.logInterval == 0 and self.logInterval > 0: 
   #  index = 0 
   #  for individual in self.P.pop: 
   #   data = [] 
   #   for rule in individual.rules: 
   #    data.append([rule.pattern, rule.weight, 
rule.status]) 
   #   # Store the data  
   #   df = 
pd.DataFrame(data,columns=['pattern','weight','used']) 



 

77 
 

   #   arc.saveCSV(df, self.outputPath + "/" + str(i), 
str(100+index)) 
   #   index += 1 
 
   # Elitism 
   newPop.pop.append(bestIndividual) 
 
   # Save the best model 
   data = [] 
   for rule in bestIndividual.rules: 
    data.append([rule.pattern, rule.weight, rule.status]) 
   df = pd.DataFrame(data,columns=['pattern','weight','status']) 
   arch.saveModel(df) 
 
   # Select Parents (Tournament Selection) and Crossover 
   for k in range(len(self.P.pop)-1): 
    tournament = [] 
    offspring = I.Individual() 
 
    for j in range(self.tournamentSize): 
     # Randomly append as much individuals to the 
tournament as we need 
     tournament.append(self.P.pop[R.randint(0, 
len(self.P.pop)-1)]) 
 
    tournament = self.bubbleSortTournament(tournament) 
     
    # We got two best parents 
    parentA = copy.deepcopy(tournament[0]) 
    parentB = copy.deepcopy(tournament[1]) 
 
    # Do the crossover magic - Cluster crossover 
    # Efficiency thing. Find the greater rule length 
    lenA = len(parentA.rules) 
    lenB = len(parentB.rules) 
    maxLen = lenA 
    if lenA < lenB: 
     maxLen = lenB 
     
    # we keep track of the rules we want to add to the offspring 
    rules = [] 
    for j in range(maxLen): 
     if j < lenA: 
      ruleA = parentA.rules[j] 



 

78 
 

      if ruleA.status == 1: 
       rules.append(ruleA) 
      elif R.random() < self.crossRate: # we give unused 
rules some chance to get selected 
       rules.append(ruleA)      
    
     if j < lenB: 
      ruleB = parentB.rules[j] 
      if ruleB.status == 1: 
       rules.append(ruleB) 
      elif R.random() < self.crossRate: # we give unused 
rules some chance to get selected 
       rules.append(ruleB) 
 
 
 
    offspring.rules = rules 
    offspring.bubbleSort() 
 
    # Resize the offspring so it doesn't exceed the maximum allowed 
count 
    while len(offspring.rules) > self.ruleCount: 
     countGreens = 0 
     for index in range(len(offspring.rules)-1, -1, -1): 
      if(countGreens >= index): 
       del(offspring.rules[index]) 
       break 
      else: 
       if(offspring.rules[index].status == 0): 
        del(offspring.rules[index]) 
        break 
       else: 
        countGreens += 1 
 
    newPop.pop.append(offspring) 
 
   self.P.pop = copy.deepcopy(newPop.pop) 
 
   # Mutations 
 
   # We keep a copy of the elite 
   elite = copy.deepcopy(self.P.pop[0]) 
 
   for indv in self.P.pop: 



 

79 
 

    # On Model 
    if R.random() <= self.mAR: 
     # add rule 
     self.mut_add_rule(indv) 
 
    if R.random() <= self.mRR: 
     # remove rule 
     self.mut_remove_rule(indv) 
 
    # On Rule     
    for rule in indv.rules: 
     if R.random() <= self.mCW: 
      # change weight 
      self.mut_change_weight(rule) 
     if R.random() <= self.mATP: 
      # add to pattern 
      self.mut_add_to_pattern(rule) 
     if R.random() <= self.mRFP: 
      # remove from pattern 
      self.mut_remove_from_pattern(rule) 
      if rule.pattern == "": 
       indv.rules.remove(rule) 
    indv.bubbleSort() 
 
   zeroFitness = fitness.measureTotal(self.P.pop[0]) 
 
   # Check if elite got worse 
   if elite.fitness < zeroFitness: 
    self.P.pop[0] = elite 
 
   # self.P.pop[0].print() 
 
   # for indv in self.P.pop: 
   #  # print(len(indv.rules)) 
   #  self.removeExtra(indv) 
   #  # print("after: {}".format(len(indv.rules))) 
 
   # self.P.pop[0].print() 
 
   # To Log the time 
   end_time = int(round(time.time() * 1000)) - start_time 
   # print(end_time) 
  pass 
 



 

80 
 

 def bubbleSortTournament(self, t): 
     n = len(t) 
     # Traverse through all array elements 
     for i in range(n): 
         # Last i elements are already in place 
         for j in range(0, n-i-1): 
             # traverse the array from 0 to n-i-1 
             # Swap if the element found is greater 
             # than the next element 
             if t[j].fitness > t[j+1].fitness: 
              t[j], t[j+1] = t[j+1], t[j] 
     return t 
 
 # Add a random rule mutation 
 def mut_add_rule(self, individual): 
  if len(individual.rules) >= self.ruleCount: 
   return 
  pattern = "" 
  weight = round(R.uniform(self.minWeight, self.maxWeight), 2) 
  # Add these many rules 
  for i in range(R.randint(1, self.ruleSize)): 
   # Rule size is calculated randomly, and now we need to select a random 
combination of codes with a specified size 
   code = self.codes[R.randint(0, self.codes.size - 1)] 
   randomchar = code[R.randint(0, (len(code) - 1))] 
   pattern += randomchar 
  rule = Rule.Rule(pattern, weight,0) 
  individual.rules.append(rule) 
 
 # Remove rule mutation 
 def mut_remove_rule(self, individual): 
  # print("mrr") 
  fitness = F.Fitness()  
  if len(individual.rules) == 0: 
   return 
  tempRand = R.randint(0, len(individual.rules)-1) 
  del(individual.rules[tempRand]) 
 
 # Add to weight mutation 
 def mut_change_weight(self, rule): 
  optRand = R.randint(0, 1) 
  weightRand = round(R.uniform(self.mCWmin, self.mCWmax), 2) 
  if optRand == 0: 
   # Addition 



 

81 
 

   rule.weight += weightRand 
  elif optRand == 1: 
   # Substraction 
   rule.weight -= weightRand 
  pass 
 
 # Alter patterns mutation (add letter) 
 def mut_add_to_pattern(self, rule): 
  if len(rule.pattern) >= self.ruleSize: 
   return 
  pattern = rule.pattern 
  code = self.codes[R.randint(0, self.codes.size - 1)] 
  randomchar = code[R.randint(0, (len(code) - 1))] 
  if len(pattern) == 0: 
   pattern = randomchar 
  else: 
   insPos = R.randint(0, len(pattern)) 
   pattern = pattern[0:insPos] + randomchar + pattern[insPos:(len(pattern))] 
  rule.pattern = pattern 
 
 # Alter patterns mutation (remove letter) 
 def mut_remove_from_pattern(self, rule): 
  if len(rule.pattern) == 0: 
   return 
  if len(rule.pattern) == 1: 
   rule.pattern = "" 
   return 
  pattern = rule.pattern 
  insPos = R.randint(0, len(pattern)-1) 
  pattern = pattern[0:insPos] + pattern[insPos+1:(len(pattern))] 
  rule.pattern = pattern 
 
 def removeExtra(self, indv): 
  # removeList = [] 
  for j, rule in enumerate(indv.rules): 
   for k in range(j+1, len(indv.rules)): 
    if indv.rules[k].pattern == indv.rules[j].pattern: 
     # removeList.append(indv.rules[j]) 
     if indv.rules[j].status == 0: 
      indv.rules.remove(indv.rules[j]) 
      j -= 1 
     elif indv.rules[k].status == 0: 
      indv.rules.remove(indv.rules[k]) 
      k -= 1 



 

82 
 

     break 
  # for i in removeList: 
  #  indv.rules.remove(i) 

Settings 

# Authors: Iliya "eLeMeNOhPi" Alavy - Department of Engineering - Michigan State University 
#      Alexander Bricco - Department of Bioengineering -  Michigan State University 
 
import configparser 
 
import random as R 
 
global rule_size, TT, default_learn, default_unseen, population_size, alphabet_size, 
maximum_rules_count, rule_value_min, rule_value_max 
 
config = configparser.ConfigParser() 
config.read('config.ini') 
 
# Parameter Initialization 
 
# LEARN 
default_learn = config['LEARN']['learn_data']  
default_unseen = config['LEARN']['unseen_data'] 
 
# PREDICTOR 
prediction_model = config['PREDICTOR']['prediction_model'] 
 
# TRANSLATION 
TT = "data/translation/" + config['TRANSLATION']['translation_table'] 
dic = {} 
alphabet_size = int(config['TRANSLATION']['alphabet_size'])     
 
# GENETIC PROGRAMMING 
population_size = int(config['GP']['population_size']) 
rule_size = int(config['GP']['maximum_rule_size']) 
maximum_rule_count = int(config['GP']['maximum_rule_count']) 
rule_weight_min = float(config['GP']['rule_weight_min']) 
rule_weight_max = float(config['GP']['rule_weight_max']) 
runs = int(config['GP']['runs']) 
pattern_mode = int(config['GP']['pattern_mode']) 
tournament_size = int(config['GP']['tournament_size']) 
cross_rate = float(config['GP']['crossover_unused_selection_chance']) 
 
# output_name 



 

83 
 

pop_log_interval = int(config['OUTPUT']['pop_log_interval']) 
output_file_name = config['OUTPUT']['output_name'] 
 
# GENERAL 
seed = int(config['GENERAL']['seed']) 
debug = int(config['GENERAL']['debug']) 
 
# MUTATION 
mut_add_rule = float(config['MUTATION']['mut_add_rule']) 
mut_remove_rule = float(config['MUTATION']['mut_remove_rule']) 
mut_change_weight = float(config['MUTATION']['mut_change_weight']) 
mut_add_to_pattern = float(config['MUTATION']['mut_add_to_pattern']) 
mut_remove_from_pattern = float(config['MUTATION']['mut_remove_from_pattern']) 

Pop 

# Authors: Iliya "eLeMeNOhPi" Alavy - Department of Engineering - Michigan State University 
#      Alexander Bricco - Department of Bioengineering -  Michigan State University 
 
import individual as Individual 
import settings 
 
class Population: 
 # constructor for random initialization 
 def __init__(self): 
  self.size = settings.population_size 
  self.TT = settings.TT 
  self.pop = [] 
 
  print ("Initializing a population with size of " +str(self.size) + "...\n") 
 
  if self.is_numeric(): 
   print ("Translation Table supports the NUMERIC mode - Generating 
formula...\n") 
   self.populate_formulas() 
  else: 
   print ("Translation Table supports the PATTERN mode - Generating 
rules...\n") 
   self.populate_rules() 
 
 # Randomly initializes the population with rules 
 def populate_rules(self): 
  for i in range(self.size): 
   indv = Individual.Individual() 
   indv.init_pattern() 



 

84 
 

   self.pop.append(indv) 
 
 # Randomly initializes the population with formulas 
 def populate_formulas(self): 
  raise("This feature is not coded yet.") 
  for i in range(self.size): 
   indv = Individual.Individual() 
   indv.init_formula() 
   self.pop.append(indv) 
 
 # Uses the input files to create the population 
 def populate_preset(self, population): 
  raise ValueError('Uncharted terretories... Exiting') 
  pass 
 
 # Returns True if all the codes are numeric, otherwise returns False 
 def is_numeric(self): 
  codes = self.TT['code'] 
  for i in range(codes.size): 
   try: 
    float(codes[i]) 
   except ValueError: 
    return False 
  return True 

Individual 

# Authors: Iliya "eLeMeNOhPi" Alavy - Department of Engineering - Michigan State University 
#      Alexander Bricco - Department of Bioengineering -  Michigan State University 
import rule as Rule 
import settings 
import random as R 
import pandas as pd 
 
class Individual: 
 # Constructor  
 def __init__(self): 
  self.TT = settings.TT 
  self.aSize = settings.alphabet_size 
  self.rules = [] 
  self.usedRules = {} 
  self.usedRulesCount = 0 
  self.ruleSize = settings.rule_size 
  self.maxRuleCount = settings.maximum_rule_count 
  self.minWeight = settings.rule_weight_min 



 

85 
 

  self.maxWeight = settings.rule_weight_max 
  self.fitness = 0 
  self.validate = 0 
  self.extra = {} 
 
 def makeFromFile(self, file): 
  # print ("Creating an Individual from file...") 
  self.rules = [] 
  self.usedRules = {} 
  self.fitness = 0 
  tempIndv = pd.read_csv(file) 
  tmpPatterns = tempIndv['pattern'] 
  tmpWeights = tempIndv['weight'] 
  try: 
   tmpStatus = tempIndv['status'] 
  except: 
   print("Pro-Predictor: model {} does not have status column, putting 0 for 
all.".format(file)) 
   tmpStatus = [0]*len(tmpPatterns) 
  # print("size " + str(tmpPatterns.size)) 
  for i in range(0, len(tmpPatterns) - 1): 
   # print (str(i) + " " + str(tmpPatterns[i]) + " " + str(tmpWeights[i])) 
   rule = Rule.Rule(tmpPatterns[i],tmpWeights[i], tmpStatus[i]) 
   self.rules.append(rule) 
  pass 
 
 def init_pattern(self): 
  codes = self.TT['code'] 
  for i in range(R.randint(1, int(self.maxRuleCount/3))): 
   pattern = "" 
   weight = round(R.uniform(self.minWeight, self.maxWeight), 2) 
   # Add these many rules 
   for j in range(R.randint(1, self.ruleSize)): 
    # Rule size is calculated randomly, and now we need to select a 
random combination of codes with a specified size 
    code = codes[R.randint(0, codes.size - 1)] 
    randomchar = code[R.randint(0, (len(code) - 1))] 
    pattern += randomchar 
   rule = Rule.Rule(pattern, weight, 0) 
   self.rules.append(rule) 
 
  # for i in self.rules: 
  #  print(str(i.pattern) + " => " + str(i.weight)) 
 



 

86 
 

  # print ("\n\n") 
  self.bubbleSort() 
 
  # for i in self.rules: 
  #  print(str(i.pattern) + " => " + str(i.weight)) 
 
 
 def init_formula(self): 
  raise Exception ("uncharted territories") 
  pass 
  
 def bubbleSort(self): 
     n = len(self.rules) 
     # Traverse through all array elements 
     for i in range(n): 
         # Last i elements are already in place 
         for j in range(0, n-i-1): 
             # traverse the array from 0 to n-i-1 
             # Swap if the element found is greater 
             # than the next element 
             if len(self.rules[j].pattern) < len(self.rules[j+1].pattern): 
              self.rules[j], self.rules[j+1] = self.rules[j+1], self.rules[j]  
 
 def print(self): 
  for kh, rule in enumerate(self.rules): 
   print("{}- {} - {} - {}".format(kh, rule.pattern, rule.weight, rule.status)) 
 
 

Fitness 

# Authors: Iliya "eLeMeNOhPi" Alavy - Department of Engineering - Michigan State University 
#      Alexander Bricco - Department of Bioengineering -  Michigan State University 
 
import random as R 
import settings 
import individual as I 
import math 
 
class Fitness: 
 def __init__(self): 
  self.learn = settings.learn_df 
  self.mode = settings.pattern_mode # 0 is the summation mode and 1 is the 
multiplication mode 
  self.k = 0 # for 10-fold cross validation implementation 



 

87 
 

  pass 
 
 def measureTotal(self, individual): 
  # Re-initalize the values to 0 
  fitness = 0.0 # this is the model's fitness 
  sum = 0.0 
  individual.usedRulesCount = 0 
 
  # Make sure that every rule status is 0 
  for rule in individual.rules: 
   rule.status = 0 
   
  # Iterating through the training set 
  for i, row in self.learn.iterrows():  
   # Pretty much initialization 
   sequence = row[0] 
   actualFitness = row[1] 
   # This is the starting position of the sequence that we're looking at each 
time.  
   pos = 0 
   measuredFitness = 0.0 # Fitness of individual i 
 
   # Iterate through the sequence 
   while pos < len(sequence): 
    # Check every rule 
    for rule in individual.rules: 
     # Find the length of the rule 
     try: 
      length = len(rule.pattern) 
     except: 
      # happens in the case of empty rules. 
      continue 
 
     # Continue if the rule length is more than the unchecked 
sequence length  
     if length < (len(sequence) - pos) or length == 0: 
      continue 
 
     reverse_pattern = rule.pattern[::-1] 
     # Normal or Reverse 
     if ((rule.pattern == sequence[pos : (pos + length)]) or 
reverse_pattern == sequence[pos : (pos + length)]): 
      # rule is found. Update its status and the 
usedRulesCount to avoid further computation 



 

88 
 

      if rule.status == 0: 
       rule.status = 1 
       individual.usedRulesCount += 1 
 
      # Check the multiplication/summation mode. We 
always use the summation mode tho.  
      if self.mode == 0: 
       measuredFitness += rule.weight 
      elif self.mode == 1: 
       measuredFitness *= rule.weight 
       
      # If the rule is found, we don't wanna check any 
other "shorter" rules on the very same position. We wanna update the positioning and look for 
other rules. If no rule was found, the position updates anyway after the end of this loop so the 
difference is only the break command which happens only if the rule is found. This defenitely 
takes more processing power and considers overlapping rules but this is the way to go to 
consider all the possible cases. Also, note that this raises the issue of exponential slow-down 
when the number of rules in a table increase. Therefore, I assume we need some sort of bloat 
removal when the speed of the tool has decreased drastically. 
      break 
 
    # Update the position  
    pos += 1 
 
   # Calculate the error after the estimation 
   error = (measuredFitness - actualFitness)**2 
   fitness += error 
    
  MSE = fitness / int(self.learn.size) 
  RMSE = math.sqrt(MSE) 
  return RMSE 
 
 def measure(self, individual): 
  raise("update this function according to measureTotal") 
  if self.k == 10: 
   self.k = 0 
  fitness = 0.0 
  sum = 0.0 
  for i, row in self.learn.iterrows():  
   if i >= int(self.learn.size/10) * self.k and i < 
int(self.learn.size/10)*(self.k+1): 
    continue 
   sequence = row[0] 
   actualFitness = row[1] 



 

89 
 

   pos = 0 
   measuredFitness = 0.0 # Fitness of individual i 
   if self.mode == 1: 
    measuredFitness = 1.0 
 
   # Iterate through the sequence 
   while pos < len(sequence): 
    # Check every rule 
    found = False 
    for rule in individual.rules: 
     length = len(rule.pattern) 
     reverse_pattern = rule.pattern[::-1] 
     # Normal or Reverse 
     if (pos + length < len(sequence) and (rule.pattern == 
sequence[pos : (pos + length)]) or reverse_pattern == sequence[pos : (pos + length)]): 
      # rule is found 
      individual.usedRules[rule.pattern] = True 
      # print("pos is at " + str(pos) + " sequence is: " + 
sequence + " found: " + sequence[pos : (pos + length)] + " weight: " + str(rule.weight)) 
      if self.mode == 0: 
       measuredFitness += rule.weight 
      elif self.mode == 1: 
       measuredFitness *= rule.weight 
      pos = pos + length 
      found = True 
      break 
    if not found: 
     pos += 1 
    if found and length == 0: 
     pos += 1 
    # print("pos: "+str(pos)+" len: "+str(len(sequence))) 
   error = (measuredFitness - actualFitness)**2 
   #ToDo:: Checkout limiting measuredFitness to possitive values 
    
   fitness += error 
   # print ("actualFitness: " + str(actualFitness) +" measuredFitness: 
"+str(measuredFitness)+" error: "+str(error)+" accuracy: "+ str(accuracy)) 
   # print("Training:: {}- Actual: {}, Estimate: {} Squared Error: {}".format(i, 
actualFitness, measuredFitness, error)) 
  MSE = fitness / int(self.learn.size - int(self.learn.size/10)) 
  RMSE = math.sqrt(MSE) 
  # print("ENDDDD:: MSE: {}, RMSE: {}".format(MSE, RMSE)) 
  return RMSE 
 



 

90 
 

 def validate(self, individual): 
  raise("update this function according to measureTotal") 
  if self.k == 10: 
   self.k = 0 
  fitness = 0.0 
  sum = 0.0 
  for i, row in self.learn.iterrows():  
   if not (i >= int(self.learn.size/10) * self.k and i < 
int(self.learn.size/10)*(self.k+1)): 
    continue 
   sequence = row[0] 
   actualFitness = row[1] 
   pos = 0 
   measuredFitness = 0.0 # Fitness of individual i 
   if self.mode == 1: 
    measuredFitness = 1.0 
 
   # Iterate through the sequence 
   while pos < len(sequence): 
    # Check every rule 
    found = False 
    for rule in individual.rules: 
     length = len(rule.pattern) 
     reverse_pattern = rule.pattern[::-1] 
     # Normal or Reverse 
     if (pos + length < len(sequence) and (rule.pattern == 
sequence[pos : (pos + length)]) or reverse_pattern == sequence[pos : (pos + length)]): 
      # rule is found 
      individual.usedRules[rule.pattern] = True 
      # print("pos is at " + str(pos) + " sequence is: " + 
sequence + " found: " + sequence[pos : (pos + length)] + " weight: " + str(rule.weight)) 
      if self.mode == 0: 
       measuredFitness += rule.weight 
      elif self.mode == 1: 
       measuredFitness *= rule.weight 
      pos = pos + length 
      found = True 
      break 
    if not found: 
     pos += 1 
    if found and length == 0: 
     pos += 1 
    # print("pos: "+str(pos)+" len: "+str(len(sequence))) 
   error = (measuredFitness - actualFitness)**2 



 

91 
 

   fitness += error 
   # print ("actualFitness: " + str(actualFitness) +" measuredFitness: 
"+str(measuredFitness)+" error: "+str(error)+" accuracy: "+ str(accuracy)) 
   # print("Validation:: {}- Actual: {}, Estimate: {} Squared Error: {}".format(i, 
actualFitness, measuredFitness, error)) 
  MSE = fitness / int(self.learn.size / 10) 
  # print(self.learn.size / 10) 
  RMSE = math.sqrt(MSE) 
  # print("ENDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD:: MSE: {}, RMSE: 
{}".format(MSE, RMSE)) 
  return RMSE 
 
 def measure_unseen(self, individual): 
  raise("update this function according to measureTotal") 
  if self.unseen.size <= 0: 
   return 0 
  fitness = 0.0 
  sum = 0.0 
  for i, row in self.unseen.iterrows():  
   sequence = row[0] 
   actualFitness = row[1] 
   pos = 0 
   measuredFitness = 0.0 # Fitness of individual i 
   if self.mode == 1: 
    measuredFitness = 1.0 
 
   # Iterate through the sequence 
   while pos < len(sequence): 
    # Check every rule 
    found = False 
    for rule in individual.rules: 
     length = len(rule.pattern) 
     # Not tested #ToDo:: 
     reverse_pattern = rule.pattern[::-1] 
     if (pos + length < len(sequence) and (rule.pattern == 
sequence[pos : (pos + length)]) or reverse_pattern == sequence[pos : (pos + length)]): 
      # print("pos is at " + str(pos) + " sequence is: " + 
sequence + " found: " + sequence[pos : (pos + length)] + " weight: " + str(rule.weight)) 
      if self.mode == 0: 
       measuredFitness += rule.weight 
      elif self.mode == 1: 
       measuredFitness *= rule.weight 
      pos = pos + length 
      found = True 



 

92 
 

      break 
    if not found: 
     pos += 1 
    if found and length == 0: 
     pos += 1 
   error = (measuredFitness - actualFitness)**2 
   fitness += error 
   # print ("actualFitness: " + str(actualFitness) +" measuredFitness: 
"+str(measuredFitness)+" error: "+str(error)+" accuracy: "+ str(accuracy)) 
  MSE = fitness / self.learn.size 
  RMSE = math.sqrt(MSE) 
  return RMSE 
 
 def predict(self, sequence, individual): 
  fitness = 0.0 
  pos = 0 
 
  # Iterate through the sequence 
  while pos < len(sequence): 
   # Check every rule 
   found = False 
   for i, rule in enumerate(individual.rules): 
    if rule.status == 0: 
     continue 
    try: 
     length = len(rule.pattern) 
    except: 
     continue 
    reverse_pattern = rule.pattern[::-1] 
    if (pos + length < len(sequence) and (rule.pattern == sequence[pos 
: (pos + length)]) or reverse_pattern == sequence[pos : (pos + length)]): 
     # print("pos is at " + str(pos) + " sequence is: " + sequence 
+ " found: " + sequence[pos : (pos + length)] + " weight: " + str(rule.weight)) 
     if self.mode == 0: 
      fitness += rule.weight 
     elif self.mode == 1: 
      fitness *= rule.weight 
     pos = pos + length 
     found = True 
     break 
   if not found: 
    pos += 1 
   if found and length == 0: 
    pos += 1 



 

93 
 

  return fitness 

Rule 

# Authors: Iliya "eLeMeNOhPi" Alavy - Department of Engineering - Michigan State University 
#      Alexander Bricco - Department of Bioengineering -  Michigan State University 
 
class Rule: 
 def __init__(self, pattern, weight, status): 
  self.pattern = pattern 
  self.weight = weight 
  self.status = status 

Predictor 

# Authors: Iliya "eLeMeNOhPi" Alavy - Department of Engineering - Michigan State University 
#      Alexander Bricco - Department of Bioengineering -  Michigan State University 
import settings 
import fitness as F 
import random as R 
import individual as I 
 
class Sequence: 
 def __init__(self, pattern, fitness): 
  self.pattern = pattern 
  self.fitness = fitness 
  pass 
 
# all I know is that iter is a lie... #ToDo::  
class Predictor: 
 
 def __init__(self, count, size, iter): 
  self.count = count 
  self.size = size 
  self.iter = iter 
  self.pop = [] 
  self.output = [] 
  self.popSize = 100 
  self.codes = settings.TT['key'] 
  self.hydroDic = { 
   "I":-0.31, 
   "L":-0.56, 
   "F":-1.13, 
   "V":0.07, 
   "M":-0.23, 



 

94 
 

   "P":0.45, 
   "W":-1.85, 
   "J":0.17, 
   "T":0.14, 
   "E":2.02, 
   "Q":0.58, 
   "C":-0.24, 
   "Y":-0.94, 
   "A":0.17, 
   "S":0.13, 
   "N":0.42, 
   "D":1.23, 
   "R":0.81, 
   "G":0.01, 
   "H":0.96, 
   "K":0.99 
  } 
  pass 
 
 def predict(self): 
  self.populate() 
  self.sort() 
  for i in range(self.count): 
   print(self.pop[i].pattern+" -> "+str(self.pop[i].fitness)) 
  pass 
 
 def populate(self): 
  print ("Populating the sequence poolP...\n") 
  # Read the best model and turn it to an individual 
  individual = I.Individual() 
  individual.makeFromFile(settings.prediction_model) 
 
  objF = F.Fitness() 
  for i in range(self.popSize): 
   pattern = "" 
   if self.size <= 0: 
    self.size = R.randint(8, 12) 
   for j in range(self.size - 1): 
    rand = R.randint(0, len(self.codes) - 1) 
    pattern += self.codes[rand] 
   if self.hydrophobic(pattern): 
    tempF = 0 
   else: 
    tempF = objF.predict(pattern, individual) 



 

95 
 

   sequence = Sequence(pattern, tempF) 
   self.pop.append(sequence) 
 
 def hydrophobic(self, pattern): 
  temp = 0 
  for char in pattern: 
   temp += self.hydroDic[char] 
  if temp >= 0: 
   return False 
  else: 
   return True 
 
 def sort(self): 
  print ("Sorting the sequences...\n") 
  n = len(self.pop) 
  # Traverse through all array elements 
  for i in range(n): 
   # Last i elements are already in place 
   for j in range(0, n-i-1): 
    # traverse the array from 0 to n-i-1 
    # Swap if the element found is greater 
    # than the next element 
    if self.pop[j].fitness < self.pop[j+1].fitness: 
     self.pop[j], self.pop[j+1] = self.pop[j+1], self.pop[j] 
 
# Restrict the amino acid search 
# empirical research 
 

 

 
 


