STUDIES IN THE SEXDALITTY OF
 THE HETEROBASIDIAK

By Horace Lu Barnett

A THESIS

Presented to the Graduate School of Michigan State College of Agriculture and Applied Soience in partial fulfillment of requirements for the Degree of Doctor of Philosophy
xecox

Boteny Department

East Lansing, Michigan

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10008256
Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

ACHTOMLEDGUEMIS

Abstract

The nuthor is indebted to Dr. Erret A. Bossey for helpful suggestions and criticisms throughout the course of the investigations and in the preparation of the manuscript, to Dr. G. W. Martin for identificetion of specinens of Exidia, and to Mr. John B_{*} Roution for critical rading of the manuscript.

TALE OF COMEVAS
Page1
HATERLSLS AND LOTHOD: 1
Collootiona of Spooios Betuilod 2
ibothods of soowring culturoa 3
Caltara lyedia Unod 6
Resule or bywntime 7
Cominction of Dasiciongrot 7
Tacrosoojic Awouranoe of culturos 22
Herosoogic twearamo of hyoodis 14
Iroduation of oftia 15
Gemination of Oidia 17
Froduction of Frust godioe in Culture 18
Grorth Ratoa of Culturoo 21
Untun of Hypuna and Formation of Clurm Connsotions 22
Sosulality 23
Axpicularia aurioula-judno
Ietringe of fonospore Culturen from Sme Iruit Dody 20
Pairinga of Monozpore Cultures from Difforont 34
Exidia clandaloba

Feiringe of tonooporo Cultures Exom Difformen
Fruit Bodicsac
Ecidia reolsa
Fuirings of tonosporo Cultures fron Sano Fruit Body 6n
Fairings of monomore Culturom from Diferent
Pruit Bocios 54

Bxidia saccharina $\quad 58$
Exidia macleata 58
Atterpts to Rybridize Specice of Exidia 60
DISCUSSION 60
SWAMARY 68

Studies in the Sexuality of the Heterobasidiae

INTRODUCTION

In the present morik a study was made of various species of the orders Auriculariales, Tremellales and Dacryomycetales. Rowever, owing to the absence of clamp connections in the species of Dacryonyces, Guepinia and Celocera that were collected, and owing to the failure to develop a suitable technique for staining their molei, the sexuality of the species of this last order was not included in this study. Spore gerraination was studied in Tremolla lutescens, but due to the failure of the cultures to produce extensive mycelium on the various media used no work could be done concerning sexuality. The speciec from which monospore cultures vere obtained and whose sexuality waz studied were Auricularia auricula-judue (Pr*) Schrot. \# Exidia glandulosa (Bull.) Fr., E. ricisa (Ditm*) Fr. E. saccharina Fr. and E* nucleata (Schwo) Burt*

The literature concerning the Eeterobasidiae, other than from the texnomic standpoint, is scarce. Several writers, including Brefeld (4), Dangeard (11), M11er (21), Shear and Dodge (30), Meuhoff (24, 25), Gilbert (14), and kniep (17), have reported germination of enores in some species of this group, but few of thom (Brefeld. Shear and Dodge, Heuhoff, and Hiiep) heve reported the production of extensive mycelium. Cytological work has boen publishod by Neuhoff (24), Gilbert (14), Kthner (19), Rogers (28, 29) and whelden (40, 41, 42, 43). MATERIALS AND METHODS

Collections of Species Studied
The collections of the species of Auricularia and Exidia used in cultural work and from which monospore cultures were obtained are given in Table 1.

Table 1

Data Concerning the Colleotions of Auricularia and Exidia：

Species	Collection number	Pluce of Collection	Date	Host	Spore size
A．aurioula－ judae	I	Adirondacks． N．Y．${ }^{1}$	8／23／35	Fir？	$\begin{aligned} & 10.5-(14.6)-17.5 x \\ & 4.8-(5.4)-7 \end{aligned}$
n	III	$\begin{aligned} & \text { Lincoln } \\ & \text { Nebr. } 2 \end{aligned}$	$\begin{aligned} & \text { Received } \\ & 11 / 7 / 35 \end{aligned}$	Decidu- ous	$\begin{aligned} & 11.8-(13.5)-15.5 x \\ & 4.8-(5.2)-5.7 \end{aligned}$
－	TV	Chapel Hill	7／6／36	Oak	$\begin{aligned} & 8.8-(11.9)-14.8 x \\ & 5.3-(5.6)-6.6 \end{aligned}$
＊	V	$\operatorname{Lincol}_{\text {Nebr. }}{ }^{2}$	$\begin{aligned} & \text { Received } \\ & 10 / 28 / 35 \end{aligned}$	Decidu- ous	$\begin{aligned} & 8.8-(12.4)-14.4 x \\ & 4.4-(5.2)-6 \end{aligned}$
＂	VI	Iowa City Iowa．${ }^{4}$	9／2／36	＂	$\begin{aligned} & 10.5-(13.1)-15.2 x \\ & 4.8-(5.2)-5.7 \end{aligned}$
＊	VII	${ }^{17} \quad{ }^{4}$	9／3／36	Ash	$\begin{aligned} & 11.3-(13.3)-14 \pi \\ & 4.8-(5.5)-6.2 \end{aligned}$
＊	VIII	$\begin{aligned} & \text { Ft. Collins } \\ & \text { Colo. } \end{aligned}$	$\begin{aligned} & \text { Received } \\ & 1 / 5 / 37 \end{aligned}$	Fir	$\begin{aligned} & 13.2-(15)-17.5 x \\ & 4.4-(5.4)-6.6 \end{aligned}$
E． glandulosa	I	E．Larsing四ich．	11／4／34	Hickory	
＊	II	$3 \quad 1$	4／25／36	＊	
＊	V	Lyons， mich．	5／30／36	Oask	
E．recisa	I	E．Lencing mich。	3／28／36	Hickory	
＂	II	Lyons，符ich	5／30／36	Ook	
＂	III	E．Lansing Mich．	c／4／36	Hiciory	
E． accherina	I	Grayling, 晤oh。	9／10／36	Whito Pino	
E． nucleata	1	E．Lansing， Mich．	7／9／35	Waple	
1．Collected by Dr．E．A．Bessey 2．By courtesy of Dr．Leva B．Walker 3．By courtesy of Dr．W．C．Coker 4．By courtesy of Dr．G．W．Martin 5．By courtesy of Prof．J．L．Forsberc All other specimens were collected by the author					

In the records of spore sizes, given in Table 1 , the first and Last numbers in each case represent the extreses and the rumbers in parentheses are the means* One hundred spores from each of collections I. IV, W, and VIII werc meesured, while 20 spores each of collections III. VI and VII were measured.

It is interesting to note the differenoes in the sizes of spores of the collections of an auricula-judse. The width varied only slightly. but in length the spores varied considerably. Collections I and VIII had the longeat spores with respective moan lengths of 16.6μ and 15.0μ The mean lengths of spores from other collections ranged fron 11.9μ to $13.5 \mu_{\text {. }}$ A better comparison betweon the spores of certein collections is soen when the distribution of spore lengthe is given in the form of a graph (Text Fig. 1).

Two fruit bodies were selected from collection V of A. auriculafudce and designated as Fa and Vb. These had already been removed from the host wood and the distance apart could not be determined. From collection II of E. Elendulosa two fruit bodies (IIa and ITb) were chozen from the same log only two inches apart. The only collection of g_{a} saccharina was found groving on a stick about 12 inches long. Two fruit bodice were selectod and designated as Ia and Ib. Only one fruit body was selected froa each of the other collections.

Method of Securing Culturos
When frosh matorial was not available the dried fruit bodies mere moistened with distillod water and placed on moist paper toweling in a potri dish. After a few hours the fruit bodies were examined with low power of the compound nieroscope to be sure that thoy were producing en abundance of spores. At first a Chaberlain micronanipulator mes

Text fig. 1. Graph showing distribution of lengths of 100 spores each of four colleotions of A. anrioula-judae.
used to piok the spores from the basidia. However, this method soon proved to be unsatisfactory from the standpoint of tine and because of other discharging spores falling on the needle of the manipulator before a single spore could be picked aff. After this the spores were picked out from spore deposits on agar plates.

The most satiafactory method of obtaining spore deposits was similar to the method used by Mounce (22). A portion of a fruit body was fastened to the cover of a petri dish by means of a drop of thick Canada balsam. This permitted the later addition of a small drop of water to the pieae of fruit body without destroying the adhesive property of the balsan The petri dish cover with the piece of fruit body was then placod over an agar plate and the spores were allaved to fall upon the agar. By slow rotation of the cover a more or less even distribution of spores was obtained in a circular arca. Spores from fruit bodies produced in culture were suspended in sterile distilled water which was then poured over agar plates.
unitispore cultures were obtained by cutting out blocks of agar containing many spores and transferring them to test tubes of agar. For monospore cultures viable spores were insured by allowing them to germinate before they were picked out. A tool for picking out single spores was fashioned from a small sewing needle with a very saall rounded eyc. The metal around the eye was ground down sonewhat and sharpened making a cutting edge. This end of the needle was then bent at an angle of about 45° and the pointed end inserted into a metal holder. This mede a very convenient tool which could be sterilized in a flame and, when not allowed to becone red hot, one such tool lasted a long time.

The agar plate with the spore deposit was placed upon the stage of a binocular dissecting microscope and the germinated spores located by use of the high power objective (at a manification of about 96x). The oye of the specially prepared needle was pressed domn around a well-isolated germinated spore, outting out a small area of agar to the bottom of the plate, At this stage the spore could be observed in the area cut out by the needle. This plece of agar bearing the spore was lifted out and with the point of a second sterile needile the top portion of the agar block was picked off and transferred to a tube of agar. The use of the second needle in removing only the upper portion of the agar block reduced the possibility of transferring other spores which might stick to other parts of the first needle. The cultures were then placed under bell jars in a moist atnosphere and incubated at roon temperature. Culture Media Used

During the first part of the investigations potato-dextrose agar was used exclusively. Later, various modifications of this and several other modia were tried in ordor to determine the media best suited for vegetative growth and for the production of fruit bodies. the following nodia were tested: potatomoxtrose agar with and without peptone, malt agar with and without peptone, dextro-maltose agar, prune extractcorn meal agar, Cxapek's mediuna, powdered wood-melt extract-peptone medium as described by Arnold (1), moistened powderod wood of maple, hickory and aak, and antoclaved sticks of basswood, maple, hickory and oak. For the last medium, living stioks of wood about to 1 inch in diameter were chosen. The bark wes removed from one side of the sticks which were placed in large test tubes containing about two inches of distilled water and sterilized at 15 pounds pressure. This furnished
a. constantly moist atmosphere in the tubes and a range in the amount of moisture in the wood.

Tho best nedia for vagetative growth of all species were potatodextrose agar (broth of 200 gra potatoes, 20 gm doatrose, 15 gar agar, enough distilled water to make 1 liter), ond malt extract agar (15 gra. desiccated malt extract, $15 \mathrm{~g}_{\mathrm{a}}$ agar, 1 liter of distilled water). Little difference was seen between these two media. The sceond mediun was used almost exclusively thruout the latter part of the work and for all of the pairings of monospore cultures. The presence of 1 g. of peptone per liter in each of the media had no apparent effect on the vegetative growth. The poorest vegetative growth was produced on dextro-maltose agar, Ceapel's medium and on wood media. for the formation of fruit bodies the best media wore potato-dextrose agar with 1 gn. of peptone per liter, malt oxtract agar and pruno-corn meal agar in the order named. The most typically shaped fruit bodies of A. euricula-judee were produced on moist sticks of basswcod and hickory.

RESULIS OF EXPERTNETS
Gormination of Basidiospores
A. auricula-judae. then dried Iruit bodies were revived, spore discharge began as early as five hours after they had resumed their normal shape and size. The first spores, discharged from the fruit bodice, germinated very poorly, only about 1-4\% after four days on agar. Spores discharged later showed almost 100% germination after four days on agar at room temperature. Most of the spores germinatod within 12 to 48 hours after being discharged. Spores from a fruit body which had been in a dry condition for almost nine montins germinated poorly. At the time of discharge the spores were single celled, but before
germination they often, but not always, becmo two or threo-celled, each cell containing a single mucleas (P1. I, I).

On agar the spores germinated by means of one or rarely by two lomg germ tubese The germ tube usually arose from the apicular end of the spore (P1. I, 4), but some arose from the other end or from the convex side of the apore (PI. I, 3). The germ tubes often remained unbranched for a distance of 75 to 100μ, after which they showed frequent branching. Some of the branches soon penetrated downsard into the agar while others grew on the surface or turned upward to produce aerial hyphae. After the germ tube had reachod some length the contents in the spore passed out into the tube, revealing clearly the septa in the spore and older portion of the tube (PI. I, 4). Growth and branching continued until abundant white mycelium wes produced. Basidiospores which had fallen on moist paper toweling were oxemined after two days. Only about 20% hed germinated and these had produced coarse germ tubes sirailar to the germination of spores on agar.

Some of the mores discharged from a fruit body fell back and collected in a nass on the fruit body itself. These were exanined and several showed germination by the production of a single, slightly curved, secondary spore on a slender gerri tube (Pl. IV, I). Basidiospores in distilled water were oxminod after two days. The percentage of germination was high and most of the spores wero distinctly twom celled. A few bpores produced stout gexm tubes, but in most cases germination was by means of a sine germ tube about 1μ wide and $0-15 \mu$ long, from each cell of the spore. Each germ tube bore one or more sicklemshiped oidia at its tip (Pl. I, 2). Similar germination of spores and production of oidia in meter and in nutrient solution were
desoribed by Brefeld (4) for A. sambucine Measured along the chord connecting the tips the oidia (P1. IV, 2) were $2-3 \mu$ long, although they were actually $4-5 \mu$ in length. The thickness at the middle was 1.5μ. while the curvature was such that the distance from the chord to the outer convex side was $2-3 \mu$
E. glandulosa. Spores discharged from fresh fruit bodies germinated very readily. Germ tubes as long as 60μ were produced within 12 hours after falling on agar. The spores were single celled at the time of discharge but before germination some became two or rarely three-celled (P1. I, 10). Most of the spores produced two coarse germ tubes, one at either end of the spore (P1. 1, 12), or one aften arose from the convex side of the spore (P1. I, 13). Some of the germ tubes grew to a length of 100μ before branohing and then branched frequently. One collection was revived after being in a dried condition in the laboratory for eleven months. These fruit bodies began to discharge sporcs after ten hours. Germination of spores was poor and much slower than those from freshly collected fruit bodies. The myoolia produced, hovever, were just as vigorous in growth us those obtained from fresh frvit bodies. When spores fron a fresh fruit body were placed in distilled water three methods of germination were observed after two days. Some produced long germ tubes very similar to those on agar. A few producod a short slender germ tube bearing a single secondary spore (PI. I, 11). Many of the spores germinated by means of several (as many as eight) short slender germ tubes (P1. I, 9A, B). At the tips of these germ tubes one or more sickle-sh ped oidia (P1. I, 9C) were borne. These measured 3.5μ alone the chord connecting the tips, with the actual length about 5μ, and in thickness about 1μ. Only a few oidia were seen attached to the germ
tubes. Similar production of oidia by germinating spores of E_{e} glandulosa was described and illustrated by Brefeld (4). Spores fallen in a mass on moist wood germinated poorly. Some did so by means of secondary spores and others by long coarse germ tubes.
E. reaisa. Spores from fresh fruit bodies germinated within 12 hours after falling on agar. Germination was almost 100% after 36 hours. The spores were single-celled when discharged and some remained so, while others became twomcelled before germination (Pl. II, 1). Germination was by means of one or two coarse germ tubss, one at either end of the spore (P1. II, 2, 3). About two or three days after germination many of the young hyphae produced small straight or slightly curved oidia. which were $3.5-4 \mu$ by 1.6μ in size. These were borne in small clusters at the tips of the hiphae or on short lateral branches (Pl. II, 3). Some short peg-like branches bearing oidia were produced from the main body of the spore. The production of oidia did not prevent the growth of the hyphae or the subsequent formation of extensive mycelium. Some hyphae bore no oidia (P1. II, 2) but continued growth to form mycelia. After 36 hours in distilled water very few spores showed any signs of germination. These few produced coarse germ tubes.
E. saccharina. Spores from fresh fruit bodies germinated readily on agar and after 12 hours had formed short coarse germ tubes. One to three germ tubes grew from each syore. Some spores were two-celled at the time of germination. About 30 hours after the spores had fallen on agar, abundant small rod-sheped oidia were observed on the young hyphae (P1. V, 1). They were borne in the same manner as those of E. recisa. The oidia measured 3.5-7 1.5 x 2 2μ. Brefeld (4) has described and illustrated aimilar production of oidia in E. saccharina var. foliacea.
E. nucleati. Spores collected from fresh fruit bodies showed less than 1% germination on agar in all cases, and those from some fresh fruit bodies failed to germinate at all. Hovever, spores fron fruit bodiees grown in culture germinsted readily on agar with the production of long cerm tubes. In distilled water some spores germinated by means of a single secondary spore on a slender germ tube, (P1. VI, 2), and others by means of one (P1. VI, 3) or two gerrn tubes similar to those formed by spores on agar.

Spores which had fallen on moist wood around a fireshly collected fruit body germinated poorly. Some produced secondary spores and others bore small clusters of sickle-shaped oidia at the tips of short slender gerin tubes (fl. VI, 1). Only one such germ tube was formed by each spore. These oidis measured $2.5-3.5 \mu$ along the chord between the tips, about 4-4.5 μ in actuml length and about 1.5μ in thickness. Besidiospores in a 2% dextrose solution produced secondary spores.

Other Species. On agar the germination of basidiospores was very similar in Daoryorayces minor Pk., Calocera cornea (Batsch) Fr. and Guepinia spathularia (Schw*) Fr. Spores of all three spocies were one-colled when discharged from the fruit body but they all became septate before germination. Those of C. cornes (Pl. III, 6) and G. spathularia becane two-celled and those of D. minor formed four or more cells before germination (P1. III, 7). Gormination began after about 12 hours on agar. One or more coarse gera tubes were formed from each cell of the spore. These are illustratec for C. cornea (FI. III, 1, 2) and for D. minor (F1. III, 9). The germ tubes soon branched abundantly and mycelium was formed directly. Similar fomation of mycelium in D. deliquescens was described by Gilbert (14). In distilled water a
few spores of D. minor $^{\text {p }}$ produced coerse germ tubes while others bore amall spherical oidia on short sterigma-like structures (Pl. III, 8). Spores which had fallen in a mass on moist wood produced oidia in the same manner. Such production of oidia was described by Brefeld (4) for apecies of Dacryomyces.

Spores of Tremella lutescens Pers. germinited very readily on agar by repeated budding (P1. III, 12) which continued until there was produced a shiny opaque mass of buds, appearing much like a bacterial colony. Some of these buds germinated and produced short hyphae, a pert of which bore avoid buds or oidia, but for some reason yet unknown no definite mycelial cultures were formed. Basidiospores which had fallen back onto the fruit body germinated by mears of secondary spores (Pl. III, 11).

Macroscopic Appearance of Culturet
Ho macroscopic difference was noted between the monocaryon and dicaryon mycelia of any species. The mycelia of A. auricula-judae, E. glandulosa and E. recisa vere so nearly alike that in most cases it was impossible to distinguish between the three species by their arpearance. The mycelia of all three species were pure while, or brownish in some older cultures of A. aurioula-judae and E. recisa, with abundant aerial growth. The mycelium of E. recisa was more variable in appearance than that of any other species. In several of the cultures, both dicaryon and monocaryon, there appeared small, raised dart brown gelatinous bodies about $2-5 \mathrm{~mm}$. in diameter (Pl. $\mathrm{V}, 5$). These were considered possibly to be sterile or abortive fruit bodies and will be discussed later.

An interesting situation was found in the macroscopic apyearance
of oultures of E. glendulosa. After the monospore mycelia had been in culture for almost a year, during which time frequent transfers had been made, it was observed that cultures 23,24 and 50 had ceased to produce an abundance of white aeriel growth. Most of the hyphae were confined to the surface or under the surface of the agar. Only cultures 23 and 24 are illustrated (P1. VII, 1A, B), but culture 50 was very similar in appearance. Pairings were made between cultures of different types, using 21 (Pl . VII, 1C) and 51 as examples of cultures with much fluffy aerial mycelium. The dicaryon mycelium produced from the mating 24×50 grew close to the agar (PI. VII, 4), much in the same manner as did each of the two monocaryon mycelia. The dicaryon mycelium which resulted from the pairing 21×51 was fluffy with considerable aerial growth (P1. VII, 2). When 21 wes mated with 50 the resulting diceryon mycelium Wess somewhat intermediate in its manner of growth (PI. VIII, 3). Although no definite conclusions can be drawn from so few results, they do seem to indicate that the changes in the type of growth of the monocaryon mycelie influence the type of growth of the dicaryon mycelium produced when these cultures were mated with others.

The mycelium of E nucleata wes white and grew very slowly. The growth for the most part was low and close to the agar or was bunched up in a mass with very few aerial hyphae. The monospore cultures all produced the same t pe of erowth at first. About six or seven months after they were started, it was noticed that a few of these cultures had produced sectors which were more fluffy and with more serial growth. Then such a sector was transferred the fluffy condition of the mycelium persistec. Such changes in mycelial growth occured in five nonospore cultures, mumbers $3,17,22,25$ and 26. This change was not correlated
with any other perceptible character of the mycelium nor with either sexual phase. Unfortunately, the cultures were lost due to loss of vigor and it was not determined whether the fluffy character was influenced by a genetical factor or whether the change was due merely to prolonged growth or artificial media.

The diceryon mycelium of E. saccharins was very similar to that of E. recisa but produced a more spreading growth and wes closer to the egar. The monospore cultures varied considerably in appearance, some Teing more fluffy than others (P1. V, 3). The masses of oidia produced in culture appeared as raised, shiny, opaque areas which were white at first but later turned dark brown (Pl. V, 2).

The mycelia of Dacryomyces minor, Calocera cornea and Guepinia spathularia grew very slowiy, being quite close to the agar at the edge and more bunched up and compact in the center of the culture. The mycelia of all three species varied from bright orange to yellow in color, and afeared more faded when grown in the dark. Thick, ropelike, branching upright strands were produced in dicaryon cultures of C. cornea. When first formed they looked very much like young fruit bodies but no spores were produced by them.

Microscopic Appearance of Mycelia

Abundant clamp connections were produced by dicaryon mycelia of A. auricula-judae (P1. I, 7), E. glandulosa (P1. I, 14), E. recisa (P1. II, 5), E. saccharina (Pl. II, 6), and E. nucleata (Pl. II, 13). No clamp connections were present in multispore cultures of D. minor, C. cornea nd G. spathularia. The mycelia of all species branched frequently, eithor acutely or at right angles to the main hyphae. The hyphae of all species were quite narrow, ranging in most cases from
$1-4 \mu$ in width, with e few wide as 5μ. In general the dicaryon hyphae were somewhat wider than the monocaryon but the difference was not distinct. The hyphae of A. auricula-judae were slightly wider than those of other species. In all species they were composed of long cells. Production of Oidia
A. auricula-judae. The formation of sickle-shaped oidia on germinating basidiospoes in water has been described above. Oidia similar in shape but slightly larger were borne in clusters on monocaryon mycelia (F1. 1, 6). They measured 3. $5-5.5 \mu$ along the chord from tip to tip. about $4-6.5 \mu$ in actual length and about 1.7μ in thickness. They were rarely found in old cultures but were most abundent in young cultures about one or two weeks after the spores had germinated. Mo oidia were observed on dicaryon myeolia.
E. Glandulose Sickle-shaped oidia in very smill numbers were observed a few tines in the examination of zonospore cultures, especially in muber 50. They were first observed in this culture about six months after it mus started and frequent transfers had been nade in the meantime. The oidie were similar in size and shape to those described above in the cermination of basidiospores in water. No oidia were produced on dicaryon mycelia.
E. recisa. The production of oidia on very young monocaryon myoelia, shortiy after the germination of basidiospores, has been described above. Oidia were seen but rarely in older monoceryon mycelia and never on dicaryon mycelia.
E. nucleata. Sickle-shaped oidia neasuring 3. S-Efalong the chord from tip to tip, about $=5-7.5 \mu$ in actual length and 1.4μ in the thick-
neas were found in both young and old monospore cultures. The were produced in small clusters at the tips of branches (Pl. VI, 4). Some cultures produced a greater number than others. The monospore cultures which changed from a low growing type of mycelium to a fluffy type apparently also lost the ability to produce oidia. Oidia were al so abundant in dicaryon cultures, but when examined microscopically none were found on hyphae which bore clamp connections. It is thought that the oidia were borne only on monocaryon hyphae.
E. saccharina. The formation of straight rod-shaped oidia on gern tubes of germinating basidiosporcs hes been described above. When the monospore cultures were about three weeks old most of them showed the presence of whitish shiny opqque masses (P1. V, 2). Wicroscopic examination revealed the presence of very great numbers of straight rod-shaped oidia measuring $7-12 \mu \times 2-3 \mu$. Staining with gentisn violet showed that they were uninucleate (P1. II, 8). In these cultures some of the oidia were borne in loose clusters at the tips of hyphae (Pl. II, 9) while others were apparently cut off singly. Dicaryon cultures also prod:ced abundsnt oidia which were of the seme shape but more uniform In size, neasuring $10-14 \mu$ (mostly $10-1 ; \mu) \times 2-3 \mu$. These oidia were observed to be borne directly on hyphae with olaxp connections (PI. II, 6) and apparently were out off singly. Staining with gentian violet revenled that these oidia were binucleate (PI. II, 7).

The production of binucleate oidia on dicaryon mycelia has been desoribed by Brodie (5) for Gollybia velutipes, by Vandendries (36, 37, 38) for Pholiota aurivella, Trametes cinnabarina and Plourotus pinsitis, and by Dangeard (11) for Dacryomyces deliquescens. In the last species the binucleate oidia wore borne on young fruit bodies but they each
divided to form two uninucleate oidic before germinating.
In Calocera cornoa and Dacryomyces minor oidia werc produced in both multispore and monospore cultures. They were mostly ovoid or elliptical and measured $3-5 \times 1-3 \mu$. They were borne singly or in small elusters on very small peg-like, side branches of the hyphaed The nuclear number of the oidia was not determinod. Martens and Vandendries (20) give a revicm of the presence of oidia in soveral Basidiomycotes.

Germination of Oidia
A fer oidia of h_{0} auricula-judae showed gernination in the culture in which they were produced and also in a 2% doxtrose solution. Germination was by moans of a fine germ tube about $4-6 \mu$ long and 1μ thick (P1. I, 5). They failed to germincte in water and on agar. Germination of aidia of E. Glandulosa (P1. I, 15) was very similar to that of A. auricula-judae. In E. mucleata slight germination of oidia wes seen in the culture where they were produced, in water and on moist agr. Germination was by means of a single fine gera tube 10μ long and 1μ thick (Fl. II, 12). In these three species only the first stages in geraination were observed and no mycelium was produced.

The oidia of E. recisa gerninated readily on agar (Pl. $V, 4$) and produced either secondery oidia or branching nomal monocaryon mycelium. The uninucleate oidic of E. saccharina which were borno on monocaryon mycelis geminated readily on agar to produce nomel monocaryon mycelia. The binucleate oidie, borne on dicaryon aycelia, also gerainetec roedily on agar and produced normel dicaryon myoclia with clanf conncetions. The clamps were often formed on the gern tube near the oidium (Pl. II, 11). Binucleate oidia were picked out and 37 single-oidial cultures more obtained. When examined all of then showed the presence of clam connec-
tions. This indicates that the two nuclei present in each oidium represented two compatible sexual phases.
(Pl.III,3)
Oidia of Calocera cornean sind Dacryonyces minor also germinatea recdily on agar to produce normel nycelia.

Production of Fruit Bodies in Culture
A. quriculamjudio. Dicaryon cultures were grown on various media und under various conditions of temperature and light, but mature fertile frust bodies were produced in only one culture of collection III and transfers froz it. This culture was originally started for a monospore culture, but soon afterward microscopic exmanation of myeelium revealed the presence of clemp comections. It is ascumed that two spores belonging to opposite sexual phes had been picked out by mistake. About six months after the culture was started, a fevr smeil, rounded, light brown, gelutinous fruit bodies arreared in a one-month-old trunsfer. Whon exmined, many young basidia were observed, some of which bore four eqibasidia (F1. I, 8). The besidia were typicul in apperance but some were slightly curved. They vere produced in a definite 1 yer but did not form so compact a hymenium as in a normal fruit body. A comparatively small amount of gelatinous material was present, and the fruit bodies were less tough then those growing under naturel conditions.

Trensfers from one of these fruit bodies contimod to produce basidia while transfers from the mycelium began to fruit after three to four weeks on agar. In a flask of potato-dextrose-poptone ag. the fruit bodies first anoured as small, separate, raised bodies whieh leter coalesced and forated a convoluted gelctinous body ubout 1 ch. in diamoter (FI. IV, 4). The iruiting structure then continued gromth
and after some time it had extended to the side of a 5 cm flask (Fl. IV, 5). The later growth wes somewhat raised but was not so convoluted as the earlier growth. The basidiospores gere normal in size and shape. Both monospore and maltispore cultures were obt ined from these spores, but no fruit bodies were formed in any of the maltispore cultares nor in the dicaryon cultures producod by pairing two competible monospore cultures. iransfers from a fruiting culture were made to sterilized sticks of basswood, hickory, oek, ash and maple. About four months later a culture on basswood produced small but typically shaped fruit bodies (Fl. IV, 6). About a month later similar frift bodies were formed on two different sticks of hickory. Wo spores or basidie were found on any of the fruit bodies on wood.
E. glandulosa. No signs of fruit body production were seen in any of the dicaryon cultures. A few dark gray gelatinous bodies 1-2 man. in diamoter appeared in monospore culture number 5 . They vere examined and many young basidia were seen. Some of these were septate, mostly by a single oblique septurn but a very fow showed two oblique septa forming a four-celled basidium. The basidia were mostly atypical in shape and measured $12-20 \times 7-9 \mu$. A few of the two-celled besidia showed two short opibesidia (F1. 1, 16) but no besidia produced four epibasidia. A few typical basidiospores measuring e-12 x $4-5.5 \mu$ were seen (F1. I, 10). No cultures wore obtained from these sores. The mycelium of culture 5 was examined e refully for the presence of clamp connections but none were found. Nuclear stains were used but all colls observed were unimacleate. Some transfers fron this culture produced a fow small, gray, gelatinous bodies but no besidia ore found in any of them. honospore culturo 85 also formod a few smell golatinous bodies
in whioh a great number of young basidia were present, but no spores were seen. These appear to be cases where fertilo but quite atypical anc weak fruit bodies were produced by monocaryon mycelia.
E. recisa, A few typical four-celled basidia with long epibasidia ($12 . \operatorname{II}, 4$) were observed in one maltispore culture on potato-dextrosepeptone agar. Mo basidiospores were seen. The fruiting body in this case was merely a brown somewh t gelatinous layer on the agar and was partially overgrown by dull brown hyphae.

In mony of the dicaryon cultures and also in several of the monocaryon cultures, there appoared rounded, dark brown, gelatinous bodies (P1. V, 5) closely resombling normal young fruit bodies. They ranged from $2-9 \mathrm{~mm}$ in diameter, and were usually lerger in the dicaryon cultures. When examined they were found to be rather tough in texture, mach like that of a normal fruit body. Among the slender hyph e present, there were a number of round or oblong cells which reembled young basidia, but none were cver seen to be septate. It was thought that these gelatinous bodies represented abortive fruit bodies which rencined sterile, probobly beo use of unfavorable conditions. Such cultures werc subjected to various environnental conditions but no rocognizable basidia were observed.
E. mucleata. A maltispore culture shoved several small fruit bodics after about four months on prune-corn meal agar. These were clear, cushion-like bodies about 1-3 men in diameter. Examination of these shoved a lrge number of typical basidiospores. Many young club-shened basidia and a smaller number of mature four-celled basidia with four long epibasidia were presont (P1. II, 12, 15). In most cases the epibasidia were longer than thoso prosent in wild fruit bodies and
frequontly the four on a basidium were unozel in longth the Ioncer opibasidia wero aften onco or twice sontito.

Tranefors of ayoolium from the fraiting oulturos produoed fruit bodion with maturo besidia within 1 c days on potato-dextrone-rertone agar. Fruit bodica ware ciso produced on potatomextrosc er (withm out peptone) and on malt agar. Nonospore culturon wore otartec fran the spores bome in culture, and out of tho 13 compatible pairings betwosn the monospore culture seven produood frist bodios. No elen of any contral orystal structuro, oharecteristio of the wild fruit bodies, yes acon in any of the fruit bodios in culturo.

Ho frult todies woro produoed in any cultures of Eq secolnarime.
In esoh of two multisporo cultures of ceiocore comma amall yellow, roundod aolatinous body was fomoce sheso wore vory atypicul for frutt bodies but both protuood foriod besidia (IL. III, 5) and aporas.

Growth Butes of cultures
Duplioate malt agar plates of raltimpore oulturos of the difioront spooles wero ande und inoubatod et roon tomerature (rancing from 2l24° C). A seoond sot of duplieste cultures mero placed in the ice box whore the tomerature rangod from 10° to 13° C. The soculte of this experimont aro ahom in rablo 2.

Tablo 2
Madal Growth Ratoo of Diecryon yyculia

No ereet difference wes found in generil between growth rates of monocaryon and dicaryon nycelia of any species, but in most cases the rrowth of diceryon mycelia tras somewhat fester than that of monocaryon mycelia. The growth rates of some of the monocaryon cultures are given in Table 3. Daplicate platos were grown at room temperature on malt extract agar. There were, however, considerable difference between growth rates of different monoceryon cuitures. This is noticeable when a comparison is mide botwcen cultures 7 and 0 of A. auriculejudae, cultures 50 and 23 of E. glandulosa end cultures 256 and 263 (P1. V, SD, B) of E. seccharina.

Union of Hyphae and Production of Clamp Connections
In E_{o} saccharina one fusion between young hyphae from germinating besidiospores (P1. II, 10) was seen 30 hours after the spores had fallen on agar, or about 20 hours after gernination. In E. recisa one such union between young hyphae was seen 48 hours after the spores fell on ggar, and in E. glandulosa (P1. I, 17) one was observed four days after the discharge of the spores. In these three species clamp connections were formed within a few hours after two compatible monocaryon mycelia net. These observations were mide on young mycelia from germinating spores.

The production of clamp connections in A, auricula-judae seems to be delayed somwhat, for in certain multispore cultures clamp were first observed 11 to 18 days after the spores had germinated. It was also obscrved thet in a pairing between two compatible monocaryon mycelia clamp connections were not found until the two mycelia had intermingled guite rell.

Table 3
Radial Growth Rates of Monocaryon Culturcs

Speaies	no. of culture	R dial Growth rate after 7 days	Radial Growth Rate per day
A. auricula-judae	4	9 mm	$1.3 \mathrm{mra}$.
"	7	11 "	1.6 "
n	9	6 "	$0.9{ }^{1}$
"	101	10 "	1.4 "
E. Elandulosa	23	16 "	2.3 "
"	28	$12 \times$	$1.7{ }^{1}$
n	30	13 "	1.9 "
n	50	8.5 \%	1.2 "
"	53	13 "	$1.0{ }^{10}$
*	55	14.1	2.0 "
"	52	14 "	2.0 "
"	57	13 "	1.9 "
E. recisa	4	7 "	1.0 "
n	5	7 *	$1.0{ }^{\text {m }}$
E. sacchrina	256	9 "	$1.3{ }^{\prime \prime}$
n	257	14 "	2.0 "
"	263	15 "	2.1 "
"	265	10 "	1.20

It is atill a question as to what characteristics are best to use as a standard in determining the true dicaryon mycelium in the Basidionycetes. Bose (3) quotes Oort (27) as follows: "As a criterion for diploid mycelia the occurrence of clawp connections cen only be of a restricted use. Usod in comection with the characteristic
diploid habit and the diploid fruit bodies it remains, of course, a valuable oriterion". Because the spocies studied in the present sork showes no other distinguishable difference between dicaryon and nonocaryon mycelia, and because the production of fruit bodies was rare, the presence of clanp comections alone was taken as an indication of true dicaryon mycelium. By staining mycelia, both those with and without clarp connections, eurly in the course of this investigetion the correctness of this assumption was determined for the species in guestion. Dried fruit bodies were revived, or fresh ones were used then available. Spores were collected on agar plates and single germinated spores pieked out in the manner described above. After the cultures had grown sufficiently in test tubes they were examined microscopically for the presence of clamp connections. The monospore cultures were numberad consecutively, giving those from each fruit body a different set of Arabic numbers. The number of each fruit body corresponds to the number of the collection of that species and is indicated by a Roman numeral. Rarely a culture became contaminated ond was discarded. This fact accounts for some of the missing cultures in a set.

The monospore culturos from each fruit body were then paired in all possible combinations. This wus accomplished by placing bits of znycelis of two cultures at the sides of an cer slant in c. 15 mm . test tube. The puirings were then placed under bell-jars in a moist atmosphere and left at toon temperature. After about two weeks the two inycolia had intermingled thoroughly and at this tinie a sample was removed from the line of contact of the two meelia. A little dilute aqueous safranin was usually added to make the hyphae chow more clearly and the sumples were then exainined for the presence of clomp conre ctions
by use of the oil immersion lens.
The presonce of clamp comnoctions in such pairing was taken to indicato thut the two monocaryon mycelia were compatible, or that they belonged to different scrual pheses. Since only tro sexuel pheses were found in esch fruit body, the absence of clamp connections ws tairer, in genoral, to mean that the two mycelia belonged to the same sexual phase. However, other factors may be present which influonce the compatibility of two monocaryon mycelia. In several cases short branches were scen at septa and those may have been abortive clamp connections but unless complete and definite clamps were seen the results vere considcred as negative. Then irregular results were obtained the pairinge were repeated, but when the results were regular only one mating mas made between any two monospore cultures. In all tables the + sign indicates the presonce of clemp connections, or that the two cultures were compatible, and the - sign indicates the absence of clamp connections. No special work was done with the phenomenon of aversion bat mention is me where it was definitely observed. The presence of eversion is indicated in the tables by a dot (*).

A. euricula-judce

Fairings of Nonospore Cultures from the Same Fruit Body
Twenty-two monospore cultures vore obtainod from fruit body I. These were paired in all possible combinations and the results are given in Table 4. It is observe that the monospore cultures fell into two groups, bused upon the production of clap comnections in certain combinations. Throughout this paper these eroups are called "sexual phases". These two sexual phases were designate genetically as A and A. When nombers of the same sexunl phase were paired nono produced

A. aurioula-fudeo. Reanlta of pairing 22 monospore caltures of fruit body I.

A a																						
	1	3	7	18	20	21	23	25	4	5	6	8	9	10	12	13	15	. 16	17	19	22	24
1		-	-	-	-	-	-	-	+	+	$+$	+	+	-	+	-	$+$	+	+	+	-	+
3			-	-	-	-	-	-	$+$	-	+	$+$	+	$+$	$+$	$+$	+	+	+	+	+	+
7				-	-	-	-	-	+	+	+	$+$	-	$+$	+	$+$	+	+	+	+	$+$	+
18					-	-	-	-	+	+	+	+	$+$	$+$	+	+	+	+	+	$+$	$+$	+
20						-	-	-	+	+	+	+	$+$	+	+	\pm	$+$	+	$+$	+	+	$+$
21							-	-	+	$+$	+	-	$+$	+	+	+	+	+	+	+	+	+
23								-	+	+	+	+	$+$	$+$	+	+	+	+	$+$	+	+	$+$
25									+	$+$	+	$+$	$+$	$+$	+	$+$	$+$	+	+	+	$+$	$+$
4										-	--	-	-	-	-	-	-	-	-	-	-	-
5											-	-	-	-	-	-	-	-	-	-	-	-
6												-	-	-	-	-	-	-	-	-	-	-
8													-	-	-	-	-	-	-	-	-	-
9														-	-	-	-	-	-	-	-	-
10															-	-	-	-	-	-	-	-
a. 12																-	-	-	-	-	-	-
a $\{13$																	-	-	-	-	-	-
15																		-	-	-	-	-
16																			-	-	-	-
17																				-	-	-
19																					-	-
22																						-
24																						

-lamp connections. When members of A were paired with a, clamp connctions were found in all but six of the 112 pairings.

Nineteen monospore cultures were obtained from fruit body III and were paired in all combinations. The resulte are given in Table 5. The fruit bodien produced by dicaryon myeelium grown from spores of fruit body III mere designated as IIFP. Several monospore cultures wore obtinned from thon and ten were paired in all combinations. The results are shown in Table 6. Aversion was present in some pairinge but little correlation is seen between its presence and the absence of clamp conmetions.

Eleven monospore oultures of fruit body IV were paired in all combinations and the results are shown in Table 7. It was observed that several of the pairings showed rathor distinct aversion. In these pairings three rather distinct types of pairings were observed. (1) 22 pairing showed a space of aversion betweon the two mycelia (P1. IV, SA, B). (2) two showed aversion in which the gap wes filled with a growth of dicaryon myoelium (F1. IV, 3D). (3) 31 pairings showed even intermingling of the two mycelia (P1. IV, 3C). Clamp connections were found in only one culture of (1), in both cultures of (2) and in all but two cultures of (3). The resulte indicate that in these pairings there was a rather close corrolation between the presence of aversion and incompatibility of the cultures.

Table 8 shows the results obtained when 11 monospore cultures of fruit body Va were paired in all combinations. Slight aversion was seen only in some of the incompatiblo pairings. The results of pairing scven monospore oultures of Vo are given in Table T. Table 10

Table 5

A. auricule-judas. Results of pairing 19 monospore oultures of fruit body III.

Table 6

Teble 7
A. auriclue-fudae. Remults of pairing 11 monospore oultures of fruit body IV. \Rightarrow more or leas aversion present.

Table 8
A. anricula-judae. Results of pairing 11 monospore onltures of fruit body Va.

	${ }^{A_{3}}$					${ }^{1} 3$				
	201205			209	210	202				21
201	-.	-	-	-	-	+	+	+	+	+
205		-	-	-	-	+	+	+	$+$	$+$
207			-	\bigcirc	-	+	+	+	+	\pm
208				-	-	+	+	+	$+$	+
209					-.	$+$	$+$	$+$	+	+
210						+	+	+	+	$+$
202							-	-	-	-
203								-	-	-
${ }^{3} 3204$									-	-
206										-
211										

Table 9
An aurieult-judae. Results of pairing seven monospore oultures of frait body th.

Table 10

A. aurioula-judae. Results of pairing nine

 monospore cultures of fruit body VI.

Table 11
A. euricula-judae. Results of pairing six monoepore cultures of Pruit body VII.

gives the results obtained when nine monospore cultures of fruit body VI were paired, and Table 11 shows the results of pairing six cultures of Iruit body VII. Hine monospore cultures of fruit body VIII were paired and the resulta, given in Table 12, showed that clamp conneotions were present in only one palring (502 x 505). The pairings were repeated and clamp comections were found only in the same pairing. A culture arising from a mass of scores showed no clamp connections present, but they were present in fruit body VIII.

From the foregoing results it will be noted that the compatibility between monospore cultures from the seme fruit body of $n_{\text {e }}$ euriculam judae was, in general, quite regular. All fruit bodies, except VIII, showed distinctly the presence of two sexual phases, and all of these, except I : showed normal regular compability botween the two sexual pheses.. Such reoults indicate that the factors for compatibility are located on a single pair of chronosones and that A. auricula-judae is typicelly "heterothallic" end bipolar. The resulte obtained when monospore cultures of fruit body VIII were pired anong themselves are quite puzzling. The fect that one of the peirings produced clamp connections would indicate that both sexuel phases were represented in the nine monospore culturea used. However, if this is true, there must exist sone condition or factor which causes a very low degree of compatibility between the two sexual phases. Such low cormpetibility is further indicatec by the fact that no olamp connections vere present on mycelium arising from a mass of many spores. These results are similar to the condition described by Kniep (17) for A. mesenterica. He reported finding a fruit body in which clanp connections were preaent but mycelium grown from a mass of spores produced no clamps.

Table 12

A. aurioula-judae. Results of pairing nine moriospore cultures of fruit body VIII.

501	502	503	504	505	506	507	508	509	
501		-	-	-	-	-	-	-	-
502			-	-	+	-	-	-	-
503				-	-	-	-	-	-
504					-	-	-	-	-
505						-	-	-	-
506							-	-	-
507								-	-
508									-
509									

Table 13
A. aurioula-judae. Results of plirings between fruit bodies I and III.

Tablel4
A. auricula-jucee. Results of pairings batwoen fruit bodies I and IV.

Pairings of Monospore Cultures from Different Fruit Bodies
In most cases two monospore cultures were selected from each semual phese of each fruit body and paired with the two cultures from each semual phase of the other fruit bodies. When pairings were made botween I and Va, the results were irregular, They were then repeated, using eight cultures from each fruit body.
donospore cultures of I were paired with cultures of III, IV, Va, VI, VII and VIII. The results showed that firuit body I was completely incompatible with III, IV, VI and VII; ie., no elamp connetions were produced in any of the pairings. These results ere shown in Tables 18, 14, 17 and 18 respectively. In these tables the breckets connect only the cultures of the amo soxual phase. In $I \times V a, 11$ out of the 64 peirings were compatible (Table 15). Even in these the clamp connectlons were few and often poorly formed. In most of these pairings the mycelia did not intemingle readily and all but five of then showed the presence of a dark brown line whore the two mycelia met belov the surface of the agar. fhen examined microscopically this line was found to consist of dari brown hyphes mach like the normel white hyphae in other respects. Clamp conncetions were found in only one of the pairinge between I ind Vb (Table 16). Only three of the 20 pairings between I and VIII failed to produce clamp connections and all these imvolved culture 3. The results of these pairings are given in Tagle 19.

The four monospore cultures of fruit body III were cormatible with all four cultares of $I V, V a, V I$ and VII. The results are given in Tables $20,21,22$ and 25 respectively. When six monospons cultures from III were paired with six of IIIF1, clamp conncctions were found

Table 15

A. aurioula-judae. Results of pairings

 betwen Irait bodies I and Va.

Table 16
A. auricula-judee. Resulto of peirings botwen fruit bodies I and Fb.

Table 17
A. auricula-judae. Resutit s of pairings bebimen fruit bodies I and V.

Table 18

4. aurioule-judae. Rosulte of peirings betwen fruit bodies I and VII.

Table 20
An marioula-judae. Result or pairings betiven frait bodies III and IV.

Table 19
A. emrioule-judee. Results of pairings between fruit bodies I and VIII.

Table 21

A marioula-fudae. Results or pirifings betwoon fruit bodien III and Va.

Table 22
A. aurioula-judae. Resulte of pairings betwen fruit bodies III and VI.

Table 24
An auricula-judae. Results of paringe betwen fruit bodies III and III F_{1}.

Table 23
A. auricula-judae. Results of pairings between fruit bodies III and VII.

Table 25
A. aurioula-judae. Results of pairinge metwen fruit bodies III and VIII.

in 18 of the 36 pairings in a regul r manner, 28 shown in Table 24. The results show that the two sexual phases of IIFF $_{1}$ were identical With those of fruit body III. The results of peiring monospore cultures between fruit bodies III and VIII (Table 25) were irregular. Clamp connections were present in some and absent in others.
\$onospore cultures of fruit body IV ahowed compatibility in all pairings with monospore cultures of $V a$, VI and VII. The results are given in Tables 26,27 and 28 respectively. In the pairings between IV and VIII only one was compatible. Table 29 gives these results. Fruit body Va was also completely compatible with Vb, VI and VII. These results are given in Tables 30,31 and 32 respectively. only six of the 20 pairings between Va and VIII (Table 33) were compatible. Complete compatibility was found between fruit bodies VI and VII, and between VII and VIII. The results are given in Tables 34 and 35 respectively.

A sumary of all pairings of monospore cultures is given in Teble 36. The + sign indicates the presence of clamp connections in every pairing, while the - sign indicetes their absence in every pairing. The \pm sign indicates irrggular results; i.e.*. some pairings produced clamps and others did not.

It has already been observed that when pairings were made between monospore cultures of different fruit bodies, four different types of results were obtaned. (1) In the majority of cases clamp connections were present in every pairing. (2) In some crosses involving fruit body I, none of the ptirings producod clamp connections. (3) In some crosses involving fruit boij : we VII, clarm connections werc found in only a part of the pairings, and their presence apperently did not correspond

Table 26

Table 28
A. aurioulem judee. Results of pairing between fruit bodies IV and VII.

Table 27
A. auricula-judeo. Results of pairings between fruit
bodies IV and VI,

VI

Table 29
An auricula-judae. Rosults of pairinga between fruit bodies IV and VIII.

Table 50

Table 32
A. ouricula-judae. Results of pairinga betwen fruit bodies Va and VII.

			Va ${ }^{\text {a }} 3$		
		201	205	203	204
	351	+	+	+	+
${ }^{\text {A }} 6$		+	+	+	+
	354	+	+	+	+
6	356	+	+	+	$+$

Table 31
A. aurioula-fudee. Results of pairings between fruit bodies Va and VI. Va

Table 38

A. aurioulemfudae. Results of pairinga betwen fruit bodies Va and VIII.

Table 36
An aurioulamadie. Surmary of results of all pairings of momospore cultures.

			I	II		III		IV		Ve		Vb		VI		VI		VIII
		A	a	A_{1}	a_{1}	A_{1}	a_{1}	A_{2}	a_{2}	A_{3}	a_{3}	A_{4}	${ }^{1} 4$	${ }^{4}$	a_{5}	A_{6}	a_{6}	
I	A	-	+	-	-			-	-	\pm	\pm	\pm	-	-	-	-	-	\pm
	a		-	-	-			-	-	\pm	\pm	-	-	-	-	-	-	$+$
II	${ }^{\text {A }}$			-	+	-	$+$	+	+	+	+			+	+	+	+	\pm
	a_{1}				-	+	-	+	+	$+$	+			$+$	+	+	+	\pm
III	A_{1}					-	+											
F_{1}	a_{1}						-											
IV	A_{2}							-	$+$	+	$+$			$+$	+	+	+	-
	a_{2}								-	$+$	+			$+$	+	+	+	\pm
Va	A_{3}									-	+	+	+	+	+	+	+	\pm
	a_{3}										-	+	$+$	+	+	$+$	+	\pm
Vb	A_{4}											-	+					
	a_{4}												-					
VI	A_{5}													-	$+$	+	+	
	a_{5}														-	+	+	
VII	A_{6}															-	+	$+$
	${ }^{\text {a }} 6$																-	$+$
VII																		\pm

to any certian combination of sexual phases. (4) In tho cross IIT x IIIF1, olamp connoctions were round in just helf of the peirings. or in cortain combinations of sexual phases, showing that the two sexual phases of IIIF were identical with those of III. In the first, sccond end third typos the results show that no two sexual phases involved were identieal. This implies the concertion thet within this species soveral or many sexual phases are prosent, only two such sexual phases being present in the same fruit body, and that only one pair of chromosomes is involved. This view supposes the presence of the compatibility factors as maltiple alleloworphs. In the tablea the genetical designation of the sexual phases (A, a, A1 al, eto. is entirely arbitrary. The letters with subseripts indicate allolomorphs of A and a. Following Eniop (17), it is assumed that the presence of two jaentieal factore causes ingompatibility and that compatibility results, i.e. clamp connections are formed, when two somowhat different factore of the allelomorphic series are prescnt. It is further assumed that incompatibility also results if there is too great a difference between the two factors present. fhis latter assumption may sexve as a pertial explanation of the low degree of compatibility between certain fruit bodies, but it also seems guite likely that some other factors or conditions are present which inIluence the production of clamg conncotions.

E. Elandulosa

Pairings of Monospare Cultures from the Same Fruit Body.
Fifteen monospore cultures were obtained Iron fruit body I and paired in all possible combinations. The cultures rell into tro sexual phascs designated as A and a. The results, given in Table 35,

Table 37
E. glandulose. Results of pairing 25 monospore cuItures of fruit body I.

A

Table 38

	E. Rlanderlose. Results of peit ning introspore oultures of fruit body IIa. A_{1} a_{1}								
	21	23	24	25	29	22	27	28	30
21		-	-	-	-	+	+	+	+
23			-	-	-	$+$	+	+	+
$\mathrm{A}_{1}\{24$				-	-	$+$	+	+	+
25					-	+	+	+	+
29						+	+	+	+
22							-	-	-
27								-	-
128									-
30									

Table 39

> Be glancalosa. Results of pairing fen monospore cultures of iruit body IIb.

	A_{2}							a_{2}		
	50	53	55	56	58	59	60	51	52	57
50		-	-	-	-	-	-	+	+	+
53			--	-	-	-	-	+	$+$	+
55				-	-	-	-	+	+	+
$\mathrm{A}_{2}\{56$					-	-	-	+	+	+
58						-	-	+	+	+
59							-	+	+	+
60								+	+	+
51									-	-
$a_{2}\{52$										-
57										

Pable 40

Table 41
E. glandulosa. Results of pairings betweon fruit bodies I and IIa.

A I a
IIa al $_{1}\left\{\begin{array}{|l|l|l|l|l|}\hline & 1 & 2 & 5 & 7 \\ \hline 21 & + & + & + & + \\ \hline 23 & + & + & + & + \\ \hline 27 & + & + & + & + \\ \hline 28 & + & + & + & + \\ \hline\end{array}\right.$

Table 42
E. glendulosa. Resulte of pairings between fruit bodies I and IIb.

werg very regulr and indicate normal bipolarity.
Fron collection II two difforent fruit bodies, or "lobes" from a confluent frufting structure on baris, were selected at a Eistance of 2 inches apart. These wore designated as IIs and IIb. Tino monospore cultures from IIa were paired in all combinations, as were ten monospore culture from IIb. The results are given in Tablos 38 and 30 respeotively. Table 40 shows the results of pairing ten monospore cultures of fruit body V.

Pairings of Monospore Cultures betweon Different Fruit Bodies Four monospore cultures were selected (two from each sexual phase) from each fruit body and paired with those of the other fruit bodies. The rosults of puirings of I with $I I a$, I with $I \mathrm{Ib}_{\text {, }}$ ad I with V ere shown in Tables 41, 42 and 53 respectively.

The results of the pairings between $\mathrm{II} A$ and ∇ are show in Teble 45. As the Pruit bodies IIa and IIb were growine so close together, the pairings between them were repeate, using eight monospore cultures of IIa and all ton cultures of IIb. These results are given in Table 44. In all the pairings between nonospore cultures from two fruit bodies, the results were very regular. clamp comections were present in every pairing, showing that no two of the sexual phases involved vere identioal. As in A. guricula-judae, it is considered that the compatibility factors in E. Elandulose exist as multiple allelomorys.

The complete compatibility between fruit bodies IIa and IIb was unexpocted, becuse they grew so olose together. It would seem probeble that the two fruit bodies originated from the sone dicaryon nyccliux, but on the other hond, it is uite possiblc that they grew from two differont dicaryon mycelia growing on the sum log. whatever

Table 43
E. Flandulasa. Results of paringe between fruit bodies I and V.

Table 45
E. glendulosa. Results of pairinge between fruit bodies IIa and ∇.

Table 44

E. glandulose. Resulte of paifings betweon iruit bodies IIa and IIb.

A1IIb	$\underbrace{\mathrm{A}_{2}} \mathrm{II}$								a_{2}		
		50	53	55	56	58	59	60	51	52	57
	21	+	+	+	$+$	+	+	+	$+$	+	+
	23	+	$+$	+	+	$+$	+	+	+	+	+
	24	+	+	+	$+$	+	+	+	+	+	+
	25	+	+	+	$+$	+	$+$	$+$	+	+	+
	22	+	+	+	$+$	+	+	+	$+$	+	4
	27	$+$	$+$	$+$	$+$	$+$	$+$	+	+	+	+
	28	+	+	+	+	$+$	$+$	$+$	+	+	+
	30	+	+	$+$	+	+	+	+	+	+	+

the origin of the two fruit bodies may have boen, the flact remains that the two sexus.l phases of IIb were both unlike the two sexual phases of IIa.

The genetical designations applied to the seruel phases are given in the tables.

When the pairings between fruit bodies IIa and ITb were ex ained it was noticed that abundant clamp connections were present in some, whils in others they were present in nuch fever mumbers. Preliminary experiments showed that the low numbers of clamp connections were limited to pairings between certain definite serual phases, namely $A_{1} \times A_{2}$ and $a_{1} \times \varepsilon_{2}$

To dotermine the quantitative differences in the numbers of olump connections, pairings were made between all combinetions of sexusl phases, usine three monospore cultures from ach. These cultures were the following: 21, 23, 24, 27, 28 and 30 from 119, and 50,53 , 55, 51, 52 and 57 from Inb. Bits of the two monocaryon mycelis were pleced on malt agar plates at a distance of about 1 cm . apart and incubated at room temperature. In order to make the conditions uniform, it was nocessary to know the exact time at which the two mycelia came in cont ct. This was acomplished by placing sterilized haives of cover glasses into the agar in an upright position betwoen the two mycelia of a pairing. The mycelie were allowed to grow up agannt the cover glass which was then removed. Care mes taken not to disturb the mycelie any more than necessary.

At the end of 48 hours after the removal of the intervening cover glasses, the pairings were examined for clamp connections. The agar plate containing a pairing was placed on the stage of the microscope
and examined with the oil imersion lons at the line of contact between the two nonocuryon myoelia. A arop of aqueoue serfanin was usually added to make the hyphae more distinct. Areas in which the hyphac could be seen olearly and in which the number of hyphae was about tho average were chosen and counts were made of the clamp connections seen in the entire field, both on the surfece of the agar and below the suriece as far as the focus of the lens mould reach. Four councs mere m de from one set of pairings and six were made from a later set. The results are shown in Table 4t. The numbers in the table rerresent the everage of the ton counts. In Fable 47, which is a sumary of Table 4.6, the avera es for each combination of sexul phases are fiven. The numbers in the tsble represent the average number of clamp connections per miorosco ic field for nine pairinge.

Certain distinct differonces between the sexual phases are evident. The combinations $A_{1} \times a_{1}, A_{2} \times A_{2}$ and $A_{2} \times a_{1}$ showed approximately the same number of clamp connections, averaging $13.6,13.0$ and 13.0 respectively. The combinations $A_{1} x A_{2}$ and $a_{1} x a_{2}$ showed a decidedly smeller number of clamps, averaging 6.t and 5.5 respectively. The momber found in pairings of $A_{1} \times a_{2}$ was intemediate, averaging 10.3. Statistical data comparing the difforent combinations ar noxual phases are given in Table 48. Statistically significant differences were found between the followine pairs of corabinations: $A_{1} \times A_{2}$ and $A_{1} \times a_{2}, A_{1} \times A_{2}$ and $A_{1} x a_{1}, A_{1} \times A_{2}$ and $\varepsilon_{1} \times A_{2}, A_{1} \times A_{2}$ and $A_{2} \times a_{2}$, $a_{1} \times A_{2}$ and $a_{1} \times a_{2}$. $A_{1} \times a_{2}$ and $a_{1} \times a_{2}$, and $A_{1} x a_{2}$ and $A_{1} \times a_{1}$ No signîicant differences wore found between $A_{1} \times A_{2}$ and $a_{1} \times a_{2}$, $A_{2} x a_{1}$ and $A_{2} x a_{2}$, and $A_{1} x a_{1}$ and $A_{2} x a_{2}$

Table 46
E. glandulosa. Average mumber of clamp connections (for ton counta) per microscopic field in pairinge between fruit bodies In and IIb.

Table 47

E. elandulosa. Summer: of Table 46.

	A_{1}	a_{1}	a_{2}
A_{2}	6.4	13.0	13.0
a_{2}	10.3	5.5	
a_{1}	13.6		

Table 48
Statisticel Significance of the Differences between the lieans of Thmers of Clarn Comections in Various Combinations of somel Phases of Fruit Bodier IIa and IIb.

Combinations of Sexual Fhases	6	Actual Difference	$\frac{\text { Actual difference }}{6}$
$A_{1} \times A_{2}$ and $A_{2} \times a_{2}$	0.525	3.9	7.43
$A_{1} \times A_{2}$ and $A_{1} x a_{1}$	0.795	7.2	9.06
$\Lambda_{1} \times A_{2}$ and $a_{1} \times A_{2}$	0.612	6.6	10.75
$\mathrm{A}_{1} \times \mathrm{A}_{2}$ and $\mathrm{A}_{2}=\mathrm{a}_{2}$	0.698	6.6	2.46
$A_{1} \times A_{2}$ and $a_{1} \times a_{2}$	0.489	0.9	2.00
$a_{1} \times A_{2}$ and $a_{1} \times a_{2}$	0.576	7.5	13.02
$A_{1} x a_{2}$ and $a_{1} \times a_{2}$	0.480	4.8	10.00
$A_{1} \times a_{2}$ and $A_{1} \times a_{2}$	0.879	3.3	3.75
$a_{1} \times A_{2}$ and $A_{2} \times a_{2}$	0.785	0	
$A_{1} \times a_{1}$ and $A_{2} \times a_{2}$	0.827	0.6	0.06

$6=$ Standerd Trror of Differonce.

Attempts were mado to determine exactly wher the dicorence in the numbers of clamp comections lay. The number of clams in relstion to the number of septa was counted on dicaryon mycelia. It nas found that the number of sopta without clamp comections whe very anall and no distinct difference mas noted between any of the diesmon ryeelia observod. It was also thougt possible that a dieforence aight exist in the rato of digloidization of one monospore culturo by nother. The aetiod ongloyed to detemane this mas similax to thet usod by现iler (8). Nonospore cultures of $55,55,50$ and 57 were crown

Table 49

P. Clandulosa Presence of elamp conneotions after seven deys at given distances fros the first point of diploidization and growth rates of dicaryon myeelia.

Cultures diploidized by	Presence of clamps at given distance from first point of diploidization				Radial growth of dicaryon mycelium in seven days
	1 cm .	2 cm.	3 cm .	4 cm .	
53 by 28	$+$	+	-	-	12 mm .
28 by 53	$+$	-	-	-	
53 by 30	\pm	-	-	-	12 mm .
30 by 53	+	-	-	-	
55 by 28	+	-	-	-	15 mm .
28 by 55	+	+	$+$	-	
55 by 30	+	-	-	-	14 mm .
30 by 55	$+$	-	-	-	
52 by 28	$+$	-	-	-	13 mm
28 by 52	+	-	-	-	
52 by 30	+	-	-	-	14 mm .
30 by 52	+	-	-	-	
57 by 28	$+$	-	-	-	12 mm .
28 by 57	+	+	$+$	-	
57 by 30	$+$	-	-	-	16 mm .
30 by 57	+	-	-	-	

on agar for 13 days and at this time one set vas diploidized by placing bits of oulture 28 at their edges. A socond set of cultares was diploidized by culture zo. Conversely, bits of cuitures 53, 55 , 52 and 57 were used to diploidize 13 -day cultures of 28 and 5 . Seven days later small semples of mycelium wore tiken at distances of $1,2,3$ and 4 cm . from tho point of first diploidization und place on frosh agar plates. After now growth had started they were ozamined for clamp comections und the rosults are rocorded in rable 49. It is scen at once thet in every case clamp connoctions were prosent at a distance of 1 cra This distuace, howevar, is short enough th their prosonce can be accounted for in every case by the radial growth of the dicaryon mycolia. These growth rates are ulso given in Table 49. It is also evident that there were only slight differences between the growth rates of the dicaryon myoelia. In only three cases were clump conactions found at a cistance. grater then 1 an These were 53 diploidized by 28 , which showed olamp. conneetions at a distance of 2 cane 28 diploidized by 55 and 28 by 57, of bothn which ehowed clams at a distance of 3 cm. fron the first point of diploidization. At procent no explanation oan be given for these differonces.

It was also thought that the quantitative difrerence found in the numbers of clanp conneotions miteht be due to a differonce in the exact tine of the first union of the two mycelia fter the intervening cover elass was removed. It sears that there may be espeator attraction between oertain cultures (if such an attration exists at ail) and as a result the union of mycelia may take place sooner thin if it lesser cotration is prosent. Consequently, a beator mubor of clart connections would be formed within the 60 hours that elapsed between the
removal of the covar gless and the counting of the clams. This, however, is purely suppositional and is offered merely as a possible explenction for the differences found in the mabers of clamps described above. As, yet, no successful attompts have been madeto demonstrate the presence of such an attraction between compatible nycelia.
E. recisa

Pairings of Monospore Cultures from the Same Fruit Body Twenty monospore cultures of fruit body I were paired in all combinations and the results are given in Table 50 . Ten monospare cultures from fruit body II were paired, as were ten cultures from fruit body III. The results are shown in Tables 51 and 52 respectively. In all fruit bodies the results of pairings mere very regular. Each showed the presence of two distinct sexuel phases, showing that E_{0} rocise is typioally bipolar.

Results of Pairing Monospore Cultures from Different Fruit Bodies
Four monospore cultures of fruit body I was paired with four cultures from each of fruit bodies II and III. The results, which ere shown in tables 53 and 54 respectively, showed the presence of clamp connections in every pairing. In the pairings between cultures of II and III (Table 55), clamp connections were again found in every pairing. Such complete compatibility between the monospore cultures of different fruit bodies shows that no two of the sexual phases were identicel. As in A. auricula-judae and in E. elandulose the compotibility factors are considered to exist as multiple allelonorphs. The genetical designations of the sexual pheses are given in the tables.

Table 51

En reoisa. Results of pairing ten

	${ }^{A_{1}}$					${ }^{1}$				
	51	52	55	56	62	53	54	58	59	60
51		-	-	-	-	+	+	+	+	+
52			-	-	-	+	+	+	+	+
$\mathrm{A}_{1}\{55$				-	-	+	+	+	+	+
56					-	+	+	+	+	$+$
62						+	+	$+$	$+$	+
53							-	-	-	-
54								-	-	-
${ }^{a_{1}}\{58$									-	-
59										-
60										

Table 52

E. reeisa. Results of pairing tem monospore cultures of fruit body III.

Table 53

Table 54
E. reaisa. Results of pairing E. recisa. Results of yirirings betwen fruit bodies I and II. between fruit bodies I and III.

II $A_{A_{1}} \quad$| | 1 | 5 | 4 | 11 |
| :--- | :--- | :--- | :--- | :--- |
| 51 | + | + | + | + |
| 55 | + | + | + | + |
| 53 | + | + | + | + |
| 54 | + | + | + | + |

I
$A_{2}\left\{\begin{array}{|c|c|c|c|c|}\hline & 1 & 5 & 4 & 11 \\ \hline 101 & + & + & + & + \\ \hline 106 & + & + & + & + \\ \hline 102 & + & + & + & + \\ \hline 103 & + & + & + & + \\ \hline\end{array}\right.$

Table 55
E. rooisg. Results or pairings between fruit bodies II and III.

E. sacoharina

Two fruit bodies of the only collection were chosen and designated as Ia and Ib. Seven monospore cultures of Ia were paired in all combinations and the resulte are given in Table 56. The rosults of pairing 16 monospore cultures of Tb are given in Table 57. The monospore cultures of each fruit body fell into two sexual phases and showed normel bipolarity.

Pour monospore oultures (two from each sexual phase) of Ia were paired with four oultures of 1b. Clamip connections were found in every pairing. The results are shown in Table 58. Again, es in E. glandulosa, complate cometibility was found to exist between monospore cultures from two fruit bodies erowing very close to each other.

E. nucleata

A few multispore culturas were obtained from one wild fruit body, but owing to the very poor geraination of tho spores no monospore cultures were secured at this time. Monospore cultures, however, were obtained from spores borne on fruit bodies in oulture. These cultures grew very slowly and severel of them elther becanse contaminated or died out because of loss of vigor. Eloven culturos tero paired in all combinations (with the oxception of a fav pairinga) and the results are given in Table 59 . The blanks in the table represent no pairing due to loss of cultures. Cultures 3, 14, 15, 17, 26 and 27 fell into one sexual phase, while 12,23 and 22 fell into a second semal phase. All nembers of the first phase were compatible with all members of the second. Cultures 25 and 30 , hovever, were execptione to the nomal polarity in thoir reactions. They were incompatiblo with all other

Table 56

E. sacharina. Results of pairinir seven monospore oultures of fruit body Ia. $A\left\{\right.$| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 201 | 202 | 205 | 203 | 204 | 207 | 208 | |
| 201 | | - | - | + | + | + | + |
| 202 | | | - | + | + | + | + |
| 205 | | | | + | + | + | + |
| 203 | | | | | - | - | - |
| 204 | | | | | | - | - |
| 207 | | | | | | | - |
| 208 | | | | | | | |

Table 58
E. saccharina. Results of pairings between fruit bodies Ia and IU.
Ib

Table 57
E. saccharina, Results of pairing 15 monospore oultures of fruit body $t b_{0}$

	251	258	253	254	255	257	258	259	264	265	55	260	26	263	266
251		-	-	-	-	-	-	-	-	-	+	+	+	+	+
252			-	-	-	-	-	-	-	-	+	+	+	+	+
253			-	-	-	-	-	-	-	+	+	+	+	+	
254				-	-	-	-	-	-	+	+	+	+	+	
255						-	-	-	-	-	+	+	+	+	+
257							-	-	-	-	+	+	+	+	+
258								-	-	-	+	+	+	+	+
259									-	-	+	+	+	+	+
264										-	+	+	+	+	+
265											+	+	+	+	+
256												-	-	-	-
260													-	-	-
262													-	-	
263															-
269															

Table 59
E. nueleata. Reaults of pairing 11 monorpore oultures, $\oplus=$ mature fruit bodies and basidiospores.

	3	14	15	17	26	27	12	13	22	25	30
3		-	-	-		-	+	\oplus	+	-	-
14			-	-	-	-		\oplus		-	-
15					-	-	+	\oplus	\oplus	-	-
17					-	-	+	+	\oplus	-	-
26						-	+	\oplus	+	-	-
27							+		\oplus	-	
12									-	-	-
13									-	-	-
22										-	-
25											-
30	\cdot										

Resulte of pairings batween E. glmanlossand E. rocisa.

Table 61
Results of pairings between E. recisa and E. saccherina.

monospore cultures and Elso with each other. It is not possible to tell from these results whether these groups represent three soxual phases of quadripoler species, or wother E. macleata is typically bipolar and that culturos 25 and 30 were merely oxceptions to the normel polarity. The latter view seams the more probable. In Table 59, the \oplus sign represents the production of fruit bodies with matare basidia nd basidiospores. It is interesting to note that none of the pairinge in which culture 12 wes involved produced fruit bodies. Attempts to Hybridize Species of Exidia

Pour monospore cultures of E. glandulosa I were paired with four monospore cultures of E. rectsa It Ho clamp connections were found in any pairinge The results axe given in Table 60. Pairings vere also made between cultures of E. zaccherina Ia and E. recisa L. The results are given in qable 61. Again no clamp connections were found In any of the pairinge No indications were observed of the presence of fruit bodies or any kind of gelatinous bodies.

DISCUSSION
The torms used by different quthors in deseribing the sexuality of the Basidionycetes viyy to a cortain extent. The term "sexes" hes been used by a number of investigatore to apply to the different groupe into which the monospore oultures fall, besed upon the production of clamp connections when they are peired with other monospore cultures of the sun fruit body. "Sox", in its fundamental sonse, seems to Irply the fusion of mucled at some stage in the life of the fungus. Thene is some evidence to indicate thet the union of nuclei and the p production of basidia do not always follow the umien of mycelia :na the formation of clamp connections. Erunswik (6) found thet certain
dicaryon mycelia of Coprims friosii arising from the union of two monocaryon mycelia produced fruit bodies with meture basidia and spores while under the same conditions other dicuryon mycolia did not. Dickson (12) found the same conditions in C. sphaterosporus. A sianilar situation wes found in E. nucleata in the present work.

Considering the fungi in general, the tern "sexes" is most commonIy used to distinguish two individuals, one of which cts as melo and the otrer as female This concoption includes the pessage of malei from only one individual (male) to the other (female). In many fungi, however, this is not the case. Buller (9) has shown that, in Cogrinus lagopus, two compatible mycelis ney unite and there would follow an exchange of nuclei, so that each monocaryon mycelia becones diploidized by the other. It seers more reasonable to consider that in such fungi, soxuality is present but with no distinction between maleness and femsleners.

For these rescons, "sexes" does not sem the most appropriate term to use in referrin; to the different groups of monocaryon mycelia. Other terms have been used for theso same groups. Brodie uses the term "sexual groups", Dickson (12) uses "pairing groups", while Ressoy (2) uses the term "sexual phases". This latter term, "sexusil phases" is used throughout the present paper in the same sense that "sexes" has been apflied to many of the Basidiomycetes.

Many investigators have used the teria "fertile" to describe the preaence of clamp comections in a pairing of two monocaryon mycelia and the term "sterile" when no clang connections were produced in such a pairing. The tern "fertile", howover, seens to apply more appropriately to the production of spores, or ct loast to the formation of fruit
bodies. Following Smith and Brodie (31) and Bessey (2), in the present paper the term "compatible" is used to describe two monocaryon mycelia which unite, with subsequent production of aicaryon mycelium (indicated) by the presence of clamp comections). The term 'incormatible" is used to describe monocaryon mycelia, which when paired, do not produce dicaryon myoelium.

The results obtained from pairings of monospore cultures of the surne fruit kody of e ch species indicute that A. auricula-jude.e, E. Elandulosa, E. reciea and E. saceherina are typically bipolar. The pairings of monospore cultures of one fruit body of E. mucleata did not show nomal bipolarity and it is not known whether the species is normelly bipolar or quadripolar.

The falling of the monospore cultures of a fungus into a certain number of sexual phases besed upon compatibility is considered to be due to the presence of one or two pairs of factors which follow the simple Mendelian ratios. Kniep (17) has called these "copulation fectors". Butler (10) quotes Irunswik (7) as follows: "Brunswik has interpreted identical phenomena [reforring to the presence of Kniep's copulation factors/ in his experimental matorial by assuming the operation of sterility factors. He assumed that autocgany is the fundamental process in both moroecious and dioecious fungi; that is, both have the saine genotypic constitution es far es sex is concerned. Heterothallism is dotermined by the addition of inhibiting or sterility factors, nd matebility and allelonorphism are linked fith these rather than with the reel sex factors". Whether the condition of sexual phases is to be considered as due to the presonce of "sterility factors" or due to the absence of factors which may bo celled "copulation
factors" or "compatibility fictors", seems to be mainly one of terminology.

Seattered irregularities were found in the results of the pairings of monospore cultures from fruit bodies I and VIII of A. auriculajudee. These vere represented by constant incompatibility between certain monospore cultures belonging to different sexual phases. Such irregularities or deviations from the normsl polarity are similar to conditions reported by Vandendries (35,36) for Paneolus campanulatus, P. separatus, Coprimas micaceus and Leptoporus inberbis; by Kniep (17, 18) for Schizophyllum commune: by Brunswit (6) for Coprinus picaceus; by Dickson (12) for C. spheorosporus; and by zattler (44) for Collybia velutipes.

Concerning the pairing of monocaryon myeelia from the same fruit body of C. spheerosporus, Diokson (12) says, "It is considered that the two pairing groups are due to a single factor difference, but the evidence is not sufficient to show whether the various degrees of sterility exhibited are due to the presence of incompatibility factors and, if so. how many such factors are concerned". Vandendries (36) states thet the tendency toward "sterility" between the two "sexes" of Leptoporus inberbis is probably due to "une déficience des realisateurs sexueles". Kniep (17) attributes such doviations from normal polarity to quantitative gene ohanges.

It has boen dbserved in the prescat paper that pithin the sme species comylete compatibility was found between the three collections of E. clandulose, the three collections of E. recisa and between five of the seven collections of A. auricula-judae (III, IV, V, VI, VIII). Two of the collections of A. euricula-judae were from Nebraska, two
fron Iowe and one from Korth Carolina. In addition to the compatibility between colleotions, complete compatibility res found between two fruit bodies of the same collection of $h_{\text {e }}$ curicula-judae ($V a$ and V). This was also true for two fruit bodies of E. saccharina (Ia and Ib) growing on the same stick within 12 inchos of gach other, and also for two

Complete compatibility betwen two or more fruit bodies growing either at some distance apart or near one another has been reported by \#niep (17) for Schizophyllun comane, Bleurociscus polygonius, Collybia velutipes, C. conigena, O. cirrhata, Armeliaria mollea and Covrinus fimetarius; by Brunswik (6) for C. fimetarius, C. comatus, C. nivous, C. picaceus, C. lagopus and C. friesii; by Hama (15) for C. Iagorus; by Newton (26) for C. rostrupiamas; by Vandendries (32, 33, 34, 36, 39) for C. radians, C. micacous, Pancolus companulatus, Trametes suaveolens and Hypholom sublateritiumy by Mounce and Macrae (23) for jenzites saepiaria, Lo tradea and Tremetes americane; by Mounce (22) for fones pinicola; and by Arnold (1) for Marasmius olongatipes. Vandendrics (E4) concluded from his worl with Coprimas miceceus that pairings betweon collections of the seme region vere compaitible and that, in general, pairings betweon very distant collections were incomptible. Several exceptions were found to this General rule.

Complete incometibility was fousd in Ao euricula-judae when pairings wore made between fruit body I and each of fruit bodies III, IV, VI and VII. Partial incompatibility was found between fruit bodies I and Va, I and Wb, I and VIII, III and VIII, IV and VIII, and Va and VaII. Fruit bodies I and VIII were collected from coniferous hosts
and had longer apores than the other fruit bodies, which were collected from deciduous hosts. It is sugeested that the veriation in the apore lencths of the different iruit bodies, or the difference in the hosts, or both, may be associated with genetic differences in the fruit bodies great enough to influence the nompatibility of the monoceryon mycelia. Siniler cases of complete or partial incompatibility botween Iruit bodies of the same species havo been reported by wniep (17) for Schizoghyllun oomme and Collybia cirrhata; by Brunswile (6) for Coprimis comatus; by Vandendries (3A) for C. micaceus; and by plounce (22) for Fones pinicole.

Several different theories have been advanced in an attempt to explain the sexual phenomena in the Rasidiomyoctes. Among them are the theory of sexual matations, the theory of reletive sexuality advanced by Hertmam (16), the theory of multiple "sexes", and the theory of maltiple allelomorehs advanced by Finiep. Henne (15) states that "the sex factors for a given species may be undergoing freguent mutations with the result that new sexual strains are continually appearing". In speaking of the "complete interfertility" between different geographic races of Conrinus rostrupienus, Wewton (26) says. "....... while each strain is bisextal, tie secies as a whole mast be regarded as mulisoxual". Iniep (17) considerod that the com lete intercomatibility between two fruit bodies was due to quantitetive gene chenges and that multiple allelonorehs were involved. Ho also steted that incomatibility betweon fruit bodios of the same spocies may be coused by too great a quantitative difference in the cones, or may be due to secondsry factors. Fnicp's theory of multiple allelonorphs sems to be the best for interpreting the results obtained
in the present work.
Considering that the compatibility factors exist as multiple allelonorphs, the question arises whother certain pairs of factors produce a stronger degree of compatibility then others. An opportunity to stucy this question trose minen all monosrors cultures of E. Elundulosa IIe were found to be compatible with all monoscore cultures of IIb and a greater mabor of clam connections were found in certain combinations than in others. The assumption is made in these experiments that the greater muber of clamp connoctions indicates a sironger degree of compatibility between the two monospore cultures involved. The results given in Table 45 would then indicate a moch stronger degrea of compatibility botween A_{1} and a_{1}. A_{2} and a_{2}, A_{1} and a_{2}, and A_{1} and A_{2}, then existed between A_{1} and A_{2} and a_{1} and age If the mombers of clam commections can be considered, in this case, $\%$ representing differences between members of an allelororphic series, it is found that a_{1} and a_{2} are the most similar, with A_{1} and A_{2} only slightly less similar. the greatest difference would be botween A_{1} and a_{2} with A_{2} equelly different from a_{1} and a_{2}. It may, thorefore, be concluded that in E. glendulosa the compatibility factore may ahow verying degrees in the strongth of corpatibility when thoy are peired.

Diploidizetion experiments with monospore cultures of Ee glandulose showed that in only three out of 16 cases was the diploidizetion rafe distinctly greater then the growth reite of the dicaryon mycelium in the same pairing The difierences in the manbers of clenp conncotions produced in various pairings, therefore, cannot be due (at least in all
cases) to a differential diploidization rate. It is suggested that there may bo a greater attiraction between certain nonocaryon mycelia than botwen others, but as yet, no means have been found to demonstrate this.

SUMPARY

1. A. euricula-judae, E. glandulosa, E. recisa and E. nucleata were found to bo "heterothallio" and bipolar.
2. Pairings between monospore cultures fron seven fruit bodies of An auricula-judae showed thit five of the were completely compatible with each other. Two fruit bodies showed varying degrees of incompatibility with the others and between thenselves.
3. Cerplete compatibility was found between four fruit bodies of Eqgandulose, even between two wich were growing only two inchos apart.
4. A difference was found in the maber of clamp connections formed in pairings involving certain combinations of sexual phases of two conpletely conpetiblo fruit bodios of E. glandulosa.
5. Complete compatibility was found between three fruit bodies of E. recisa.
6. Comqlete compatibility mas found betweon two fruit bodies of Ee saccharina Erowing within 12 inches of one another.
7. The theory of anltiple allelomorphs seens to serve as the best explanation of the results obtained.

LITERATURB CITED

1. Arnold, Jean D. A corperative study of certain species of harasmius and Collybia in culture. Fiycologia 27: 380-417. Ple. 35, 36. 1935
2. Bessey. Ernst A. A text-book of mycolog. 495 m .139 fi .gs. F. Blakiston's Son and Co., Philadelphia. 1935.
3. Bose, S. R. Sexuality of Folyporus ostrieformis and Polystictus hirsutus. La Cellule 42: 249-266. I pl. 1935.
4. Brefeld, Oscar. Hesidiomyceten II, Protobasidiong ceten. Untersuchungen eus den Gesamatgebiete der myzologie 7: 1-178. P1s. 1-11. 1888.
5. Brodie, H. J. The occurrence and function of oidia in the Hymonycetes. American Journal of Botany 23:309-327. Figs. 1-41. 1936.
6. Brunswik, H. Untersuchungen tber die Geschlechts - und Xornverheltnisse der Hymenomeetengattung Coprinus. Botanische Abhandlungen herauggegeben von Dr. K, Goebel 1(5): 1-152. Figs. 1-3. 1924.
7. Wher dio sexualitetromerhitnisse boi den Besidiomyceten. Verh. Zool. Bot. Gesell. Wicn. 73: 153-154. 1924 Cited by Eutler (10).
8. Buller, A. H. Reginald. The biclogicel significance of confugate nuclei in Coprimus lagopus and other Hynenonycetes. Neture 12E: 686-c89. Figs. I-7. 1930.
9. ——nesearches on fungi vol. 4.200 mp 4 pla . 149 fige. Longrans, Green and Co., London and New York. 1921
10. Builer, L. F. Corticium centrifugum, a heterothallic pathogene on apples. Journal of Agricultural Research 41: 269-294. P1. 1 Fig. 1-2. 1930
11. Dangeard, P. A. zomoire sur la reproduction sexuelle des Basidionycètes. Le Botaniste \&: 119-181. Figs. 1-24. 1894-95.
12. DAckson, H. Stuaies on Coprime sphaerosporus I. The pairing behavior and the oharacteristies of various haploid and diploid strains. Annals of Botany 48; 527-547. Pi. 11. 1934.
13. Glumann, Ernst. Coraparstive morphology of fungi. Translated by Carroll W. Dodge. 701 pp .406 fige. HeGraw - Hill Book Co. New York. 1928.
14. Gilbert, E. H. Cytological studies of the lower Basidiomycetes. Iransactions of the wisconsin Acadany of Seience., Arts and Letters 20: 387-397. P. 29. Fig. 1. 1921.
15. Hamna, W. F. The problem of sex in Coprimas lagopus. Annals of Botany 39: 431-467. 1525.
16. Hartman, M. Relative Sexualitat und ihre Bedeutung fur eine allgemeine sexuelitits - und eine allgomeine Befruchtstheoric. Naturniss. 19: 8-19, 31-37. 1931. Cited by Bose (3).
 221 figs. Gustav Fischer. Jena 1928.
17. Vererbungserscheinungen bei Pilzen. Bibliographica Genetica 5: 371-478. Figs. 1-15. 1929
18. Kuhner, Re Contribution à l ' étude des Hymenonycetes ot specialement des Agaricacés. Le Botaniste 17: 5-207. 37 figs. 4 pls. 1926.
19. Martens. P. et R. Vendendries. Le eycle conidion haploide et diploide cher Pholiota aurivella. La Cellule 41: 335-388. 3 pls. 1933.
20. MES11er, A. Protobasidiomyceten. Sotan. Mitt. a. d. Fropen 8: 1-179. Ple. 1-6. 1895. Cited by G品umann (13).
21. Hounce, Ireme. The biology of Fomes Pinicola (Sw.) Cooke. Canada Department of Agriculture Bulletin 11l. Hew Series. 75 pp . P1: 1-10. 1929
22. and Ruth Hacrae. The behevior of paired monosporous mycelia of Lensites agepiaria (Kulf) Fr. H traboa (Pers.) Fr* Ie thermophila Falk. and Trametes americana Overh Canadian Journal of Roseareh, Section C. 14: 215-222. 1936.
23. Neuhoff 识 Zytologle und systematische Stellume der Auriculariaceon und Trencllaceon Botanische Arohiv Q $_{\text {F }}$ 250-2e7. P1s. 1-4* Fige 1-7. 1924.
24. ——. Die Plise Mitteleuropas. Band Ii. Die Gallertpilze (Trenellineac). I11ustrated. 1955-1996.
25. Herron, Dorothy B. Bisexuality of individual strains of Coprims rostrupianus. Annals of Dotany 40 105-128. Fl. G. Figs. 1-17. 1920.
26. Oort. A. J. Fe Die Sexualitat von Coprinus finetarius. Recevil des Iravaux Botaniques Meerlandais 27: 85-148. Pls. 4 -6. Figs. 1-5. 1930. Cited by Boee (3).
27. Rogers, D. F. A cytological study of Tulasnella. Botanical Gazette 94: 86-105. F1ge. 1-79. 1932.
28. Basidial proliferation through olanp-formetion In a new Sebacina. Hycologia 28: 347-362.33figs. 1936.
29. Shear, C. Lee and B. O. Dodge. The life history of Pilacre faginea (Fr.) B. \& Br. Journal of Agricultural Research 30: 407-417. Pls. 1-2. 19:5.
30. Smith, A. H. and H. J. Brodie. Culturel characters and pairing reactions of monosporous mycelia and developnent of the fruit body of Pholiota (Flamnula) polychroa. Botanical Gagette e6: 533 546. 30 figs. 1885.
31. Vandendries, René. Recherches experimentales sur la bipolarité sexuelle des Basidiomycèter. Balletin de la Société Royale Botanique de Belgique 57: 75-78. 1924.
32. ———Contribution nouvelle à l' étude de la sexualité des Basidionycètes. La Cellule 35: 120-157. Fls. 1-2. Figs. 1-4. 1925.
33. We comportment sexuel du Coprimus micaceus dans ses rapports evec la dispersion do l'espéce. Builetin de la Société Royale Botanique de seleicque $60: 62-65.1927$.
34. La bipolarité sexuelle chez Coprinus
dissominatus Fers. Foid. 62: 133-136. 1930.
3E. Wouvelle investigations dens le domane sexacl des Hyménonycetes. Bulletin Trimestriol de le Société byoologique de France 49. 130-165. Fige. 1-7. 1083.
35. Contribution à létude de la somallo dens ie genre frametes. Tbid. 50: 98-110. Pls. E-E. 1 text fig. 183t.
36. . La polarité sexuelle ot le rógime conidien chez fleurotus pinsitis. Tbid. 50: 203-212. Figs. 1-10. 1034
37. —— Lee affinites semuelle de 胃ypholoma sublateritium. Ibid. 50: 213-217. Figs. 1-4. 1934.
38. Whelden, Roy M. Cytological studies in the Tremellaceac I. Tremella. Wycologia 26: 415-485. F1s. 47-49. 1 text fig. 1934.
 8-11. 1935.
39. ————II. Sebacina. Mycologia 27: 503-520.

Figs. 1-3. 1935.
25. Observations on the cytology of Sebacina globospora n. sp. Rhodors 37: 121-127. P1. z31. 1 text fig. 1035.
44. Zattler, Fritz. Vererbunesstadien an Eutpilzen. Zeitschrift fur Botenik 16: 433-499. 102t.

Explanation of Figures in Plate I
Figs. 1-8, A. quricula-judae. 1, basidiospores; 2. A, basidiospore germinating in water by means of oidia, E_{s} oidie produced by spores in water; 3, 4, basidiospores germinating on agar; 5, germinating oidia; 6, monocaryon hyphee bearing oidia; 7, dicaryon hypha showing clain connections; 8. bacidiua from fruit body in culture. Fî̧s. 9-17, E. glandulose 9, A, B, besidiespores germinating in water, C, oidia produced by spores in water; 10 , basidiospores; 11, basidiospore producing secondary sporez 12,13 , basidiom eqores gerninating on agar; 14, dicaryon hypha showing clamp connections; 15, cominst ng oidia; 16, two-celled basidium With two epibasidia, produced by monocaryon myeoliums 17. union of two young hyphae fron gerninating basidiospores. arrows point toward spores.

Plate I

Explanation of Figures in Plate II

Figs. 1-5, E. recisa, 1, basidiospores; 2, basidiospore germinating on agar; 3, samo as 2 but showing production of oidia on young hyphae; 4, four-celled basidium produced by dicaryon myoelium; 5 , diearyon hypha showing clemp connection. Figs. 6-11. E. aecharina. 6, dicaryon bearing oidia, also showing clam connections; 7, binucleate oidia from dicaryon mycelium; 8, unimacleate oidia from monocaryon myceliun; 9 , monocrryon hypha boaring oidia; 10, union of young hyphee fron two besidiospores; 11. binucloate oidiun germinating on egur showing clamp comection on the germ tube Figs 12-15, Em nucleata 12, germinatine oidia; 13, dicuryon hypha showing clamp comaction; $2 \div$, 15, four-celled basidia stoving septate opibacidia from fruit body in cultare.

Plate II

Explanation of Pigures in Plate III

Figs. 1-6, Calocera cornee. 1, 2, basidiospores germinating on egar: 3, oidia germinating on agar; 4, hypha from monospore culture producing oidia; 5 basidium from fruit body in culture; 6 . basidiospores from fruit body in ${ }^{-}$ culture. Fisc. 7-10, Dacryomyces minor. 7, basidjoepores; 8. besidiosyores producing oidia in water; 9, basidiospore germinating on agar 10 . Mypha from monospore culture producing oidiae Figs. 11-12, Trenelle lutescens 11, besidionpore germinating by means of secondery spore: 12, basidiospore gominatime on ager by buddingo

Plate III

Explanation of Ficuros in Plate IV

All figures A quricula-judue* 2, basidiocpore groducine becondary giore, X750: 2, oidia procucod by gemainating bumidicogoros in witer, $\mathrm{x750} 3$, pairinge of manosyore cultures iron Iruit body W, X7/By is aversion,
 of nycelia, $157 \times 260, D$, arorsion with gam filled with
 day agar culure, X4/5; 5, same culture as 4, throe mocke later, $\pi / 5$; 6, fyutit bodtos groving on bastmood stict. $X{ }^{*} / 5$.

PLATE IV

Explanation of Figures in Plate ∇Figs. 1-3. B. sacoharina. 1 , basidiospore germinatingon agar and producing oidia, X400; 2, monocaryon culturesshowing shiny masses of oidia, A, culture five weeks old,B, culture three weeks old, X7/8; 3, monocaryon mycelia,
$A, 265, B, 263, G, 257, D, 256, ~ X \frac{1}{2} *$
Figs. 4. 5, E. racisa. 4, oidia germinating on agar,
some producifeg myceliun and others producing secondary
oidia, X750; 5, sterile gelatinous bodies produced by,
A, dicaryon mycelium, B, C, monocaryon mycelia, X7/B.

PLATE Z

Explanation of Figures in pl to VI

All figures E. mucleate. 1 , basidiospore germineting on noist wood and producing oidia, X700; 2, basidiospore forming secondary spore in water, $\mathbf{X 7 5 0} 3$ 3, busidionpore forming lone gern tube in vrater, X750; 4, monocaryon hyphae producing clustors of oldia, X750.

PLATE III

Explanation of Figures in Plete VII

 23, B, 24, C, 21, 效; 2, dicaryon myceliun formed by pairing monos ore cultures 21 and 51, $\mathrm{X} 4 / 5$; 3, dicaryon rycelium Comed by pairing monospore cultures 21 and 50, X4/5; 4, dicaryon myoelium formed by pairing monospore culturos 24 und $50, \pi / 5$.

PLATE VII

