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ABSTRACT

The brain soft tissue is subject to large strains due to the shape changes that occur during

growth. The biological growth alters the state of stress and leads to residual fields existing in the

equilibrium state of the tissue after morphogenesis. This resulting stress field typically involves

compressive and tensile stresses that vary through the material in a complex fashion. Hence,

the mechanical response of residually stressed tissues to finite deformations differs from that of

stress-free tissues. Furthermore, considering the role of mechanical properties of the tissues on the

regulation of the essential behavior of the cellular structure, the residual fields have a potential role

in mechanotransduction at the tissue and cellular scale. The residual fields also should be included

when seeking to model the micromechanical mechanisms that give rise to brain injury. While the

physical mechanisms of acute and secondary injuries led by extreme events (e.g., blunt impact,

blast waves, cavitation, etc.) still remain unclear, it does seem clear that residual stresses could have

a significant effect. For example, a preexisting tensile residual stress could accelerate the formation

of microfissures during an episode of physical trauma, whereas a preexisting compressive residual

stress field could provide some benefit in delaying fissure formation.

The research work presented in this dissertation concerns the study of morphogenesis-induced

residual stress fields in hyperelastic materials and the potential effect of these residual stress fields

on the material response. This research is generally based on the non-linear theory of elasticity.

To address the effect of the residual stress field on the material response, the solution of a

finite deformation boundary value problem for a residually stressed elastic spherical shell subject

to pressure inflation is first provided. To this end, the general constitutive equation for an isotropic

Mooney-Rivlin type of hyperelastic material with a background residual stress field is derived. The

problem is expressed as a compact integral expression including the base response of the material

and the response arising from the presence of the residual stress field. An asymptotic analysis is

conducted to examine the dependence of residual-stress integrals on a dimensionless measure of

radial strain. The results are compared with the base response of the Mooney-Rivlin type material

to pressure inflation and the potential effect of the residual stress field on the material response is



discussed. The numerical analysis shows that the residual stress fields have the potential to alter

the qualitative behavior of the pressure-inflation response of the material.

The work then proceeds with the examination of residual stress due to differential growth in

adjoining tissue in incompressible isotropic hyperelastic single and bilayer spherical shells. The

kinematics of differential volumetric growth utilizing the incompressible hyperelastic framework

are presented for each geometry considered, and the growth-induced residual stress fields are

computed for five different growth conditions. Then, the sensitivity of the resultant stress field to the

differential growth in adjoining layers is examined for the combination of the five growth conditions.

To address the residual stress fields generated by the morphogenesis including symmetry-breaking

bifurcation and beyond, the study later continues by building an elementary computational model

with idealized geometry, boundary conditions, and parameters. This 2D plane strain computational

model provides the residual stress/strain fields emerging in a formation resembling sulcus-gyrus

structure in a gyrified brain. Following the differential growth hypothesis, the residual stress and

strain fields are computed for the domain where the cortex undergoes only tangential (in-plane)

growth while the subcortex does not experience any growth. A detailed stress and strain analysis of

the resultant sulcus-gyrus formation is performed to understand morphogenesis-induced residual

fields specifically for the sulcal floor and gyral crown.

Due to the specific attention to physical injuries leading to the neuropathies such as Chronic

traumatic encephalopathy (CTE), the analysis is extended to encompass the response of non-

residually stressed sulci subjected to intrasulcal deformations. A 2D plane strain computational

model of a single sulcus is built to examine the deformations associated with the expansion of a

cavitation bubble in the intrasulcal region. Based on the experimental data, the quasi-static and

transient pressure loading conditions are implemented to the gray matter-cerebrospinal fluid (CSF)

boundary, and the response of the sulcus is investigated in detail. The findings demonstrate that

cavitation result in sulcal expansion and the formation of localized high strain and strain rates at the

depth of sulci. The strain and strain rate localization regions resemble the tauopathy / neurofibrillary

tangles patterns seen in early CTE.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and motivation

Cortical growth and gyrification lead to a highly convoluted outer surface, a salient hallmark

of brain morphology that exhibits a strong correlation with higher-order cognitive capacities and

functional intricacy. The cortical folding increases the neocortex volume while minimizing the

spatial occupancy of the neuronal network [77]. This structural configuration causes an energet-

ically efficient and spatially frugal configuration for the brain. It may, thus, be conceptualized

as an optimization process wherein the functionality is maximized, whereas the metabolic cost is

minimized within the limited volume.

Cortical growth and folding lead to two characteristic structures on the outer surface of the

brain: gyri (elevated ridges) and sulci (depressed grooves). Along with the morphological changes,

the mechanical state of the tissue also changes due to the slow and large deformations during

the morphogenesis. This emerging mechanical state becomes the natural state of the tissue by

persisting after the morphogenesis and thereby determining the homeostasis conditions at the tissue

and cellular level. In the absence of the surface tractions, the stress field that exists in the equilibrium

is known as residual stress [63]. Residual stress fields exhibit both inhomogeneous and anisotropic

characteristics. It encompasses compression and tension fields simultaneously due to the zero-

traction condition. Moreover, it leads to the presence of localized internal stress fields within the

material [75, 74]. Thus, it becomes evident that the mechanical behavior of bodies bearing residual

stress is notably more complex compared to the stress-free bodies. Consequently, a profound

understanding of the residual mechanical field becomes imperative in order to comprehend the

mechanical response of a residually stressed body when subjected to finite deformation and the

mechanical homeostatic conditions of tissues.

The residual stress often exhibits a complex spatial distribution. Hence, the traditional invasive

techniques (e.g., cutting experiments) may not be sufficient to identify the natural stress-free

configuration of the tissue completely. Previous experimental investigations have focused on
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characterizing residual stress fields within various tissues, primarily tubular structures such as

arteries [32], aorta [43], and trachea [59]. However, there is a noticeable scarcity of experimental

studies aiming at the residual stress field in the cortex. Xu et al. conducted a series of dissection

experiments on coronal slices of both the adult mouse brain [143] and developing ferret brain [144]

to map the residual stress fields. These experiments involved radial cuts to the tissue with various

depths, revealing that the gray matter experiences compression while the white matter undergoes

tension [143]. Still, it is important to note that these findings are confined to specific cutting

directions and regions. In contrast to tubular tissues, where the opening angle serves as a reliable

measure of residual stress, the resulting deformation following cuts in brain slices does not offer

a dependable metric for determining the magnitude of residual stress due to the brain’s intricate

geometry. The findings also suggested that the observed residual stress field is likely a result of

differential growth. The differential growth hypothesis has been tested in experiments involving

swelling layered gel samples, which have led to the development of brain-like morphologies

[125, 126, 58].

From a mechanical point of view, there have been several hypotheses in the literature explaining

cortical growth and folding, which have been recently reviewed in [10, 122]. These hypotheses

encompass the following key facets: a) constrained cortical expansion, b) axonal tension, and c)

differential tangential expansion. The details of each hypothesis will be discussed in detail later.

The constrained cortical expansion hypothesis suggests that the external constraints generated by

the surrounding structures (e.g., skull) lead to compressive stress on the outer cortex surface, which

shapes the cortex. Yet, the experimental evidence showed that cortical folding can take place in the

absence of the outer constraint [8]. The axonal tensional hypothesis suggests that tension generated

by growing axons plays a significant role in shaping the morphology of the cortex, particularly

in the formation of gyri and sulci. However, relatively recent experimental studies showed that

the axonal tension is not sufficient to form the gyri and sulci. Furthermore, the tensional stress

mostly exists in the subcortical white matter tract instead of the core of the developing gyri [144].

The differential hypothesis basically asserts that the cortex grows more than the subcortex in the
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tangential direction. The residual stress field observed in the cutting experiment is consistent with

the differential cortical growth hypothesis [144]. Considering the mechanical aspect of the growth

mechanism, the effect of mechanical parameters on growth-induced folding needs to be addressed.

Noteworthy among these are the potential influence of stiffness disparities between gray and white

matter, the initial thickness of gray matter, the fetal brain’s configuration at the onset of folding,

and the growth ratios across distinct layers. These quantities have been extensively investigated in

[21] and [140].

In terms of the mechanics of gyrification, the aforementioned works in the context of biological

growth are mechanically similar to surface instabilities in other elastic systems. This includes

multilayer films subject either to a strain mismatch due to various loading stimuli (e.g., growth,

swelling, atrophy, thermal expansion, initial stress, other chemical and physical processes of film

deposition, etc.,) that can lead to compression in the outer layer [13, 4]. Irrespective of the cause of

the compression, the generic behavior of such a system is to respond to a mismatched strain through

the formation of surface wrinkles. As the mismatch strain increases, the progression of surface

instability in the system beyond the wrinkled state depends on the stiffness contrast and interfacial

energy [137]. For a small stiffness ratio, the system develops more localized deformations such

as creases and foldings [81]. The intricate convolutions observed in the brain’s development are

thought to arise, at least in part, as a consequence of these instabilities [51, 58]. For larger stiffness

ratios, the system exhibits more intricate phenomena, including period doubling and ridge-type

instabilities [23].

On the other hand, there is a substantial body of computational research dedicated to com-

prehending the mechanisms driving cortical growth, owing to its significant clinical implications.

To this end, both elementary and advanced computational models of cortical folding, known as

gyrification, have been employed to investigate various aspects, encompassing (i) the replication

of observed cortical folding patterns in actual gyrated brains [125, 126, 133], (ii) the detection of

anomalies associated with cortical development ([19, 135]), (iii) the fundamental processes gov-

erning cortical growth and folding [152, 71, 90, 21, 139, 125, 126], and (iv) the evaluation of the
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influence of physical and material parameters, alongside their regional variations [140, 33, 21, 20].

A comprehensive overview of the common methodologies employed in numerical investigations

of cortical folding can be found in a recent review by Darayi et al. [34]. Despite the advancements

in these models in terms of complexity and predictive capabilities, their ability to discern residual

stress patterns during brain development remains somewhat limited. Consequently, addressing

residual stress fields is imperative due to their potential functional and mechanical implications.

Bayly et al. [9] developed a numerical model to elucidate stress patterns in the developing brain,

although their findings primarily pertained to sinusoidal wrinkling and isolated gyrus formations.

Furthermore, [125] identified the presence of residual stress fields in cusped foldings but did not

extensively delve into their distinctive characteristics.

In this study, a numerical analysis is conducted to examine the following aspects:

(i) the potential effect of residual stress field on the mechanical response of the isotropic

hyperelastic soft material to pressure-inflation deformation,

(ii) the attributes of the residual stress field induced by volumetric growth in idealized geometries

(e.g., single layer and bilayer spherical shells),

(iii) the strain/stress fields generated by the cavitation-induced damages occurred in the single

sulci,

(iv) the residual stress fields emerged in the soft material due to the inhomogeneous growth

including the symmetry-breaking regimes.

In the following part of this chapter, an extensive review of the literature concerning the

mechanical aspects of cortical folding and finite volumetric growth is presented. It is followed by

the review of a comprehensive examination of computational models that explore cortical growth

and gyrification from various aspects and the experimental works that investigate the behavior of

residual stress fields within the cortex. In the rest of this chapter, we introduce a somewhat broader

theoretical framework to incorporate the kinematics of volumetric growth.

In Chapter II, we provide a solution for the boundary value problem for a residually stressed

elastic hollow spherical shell subject to pressure inflation by employing a conventional hyperelastic
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model. Specifically, we consider a well-established Mooney-Rivlin-type material model, whose

response to pressure inflation is characterized by the invariants and relative shell thickness. In the

analysis, the reference configuration is considered to be inherently residually stressed. To this aim,

four simple different residual stress profiles with various levels of strength are utilized. The strain

energy function is redefined to incorporate the invariants resulting from the residual stress field

considered in addition to the finite deformations. After presenting the boundary value problem

and a comprehensive integration procedure in detail, (i) an asymptotic analysis is conducted to

examine the sensitivity of the residual stress integrals on the radial strain, (ii) the potential effects

of the residual stress field on the baseline pressure-inflation response of the material is examined

by numerical analysis.

In Chapter III, the growth-induced residual stress fields in an idealized single and bilayer

incompressible hyperelastic spherical shell are examined using the nonlinear theory of elasticity.

In this regard, the radial and circumferential residual stress fields are computed for five different

growth conditions: area, surface, isotropic, and the combination of area and surface. A numerical

analysis is conducted to understand the effect of the differential growth conditions in the bilayer

spherical shell. Lastly, the numerical results are discussed and compared to previous experimental

findings.

In Chapter IV, to address cavitation-induced damages specifically occurring in the intrasulcal

regions and its possible link to neuropathies/tauopathies such as CTE, an elementary 2D plane

strain computational model is built using small deformation theory. In the computational model,

the response of the sulci under quasi-static and time-dependent pressure boundary conditions is

examined by simulating the deformation generated by the expansion of the cavitation-induced

bubble in the intrasulcal region. Numerical results predict highly localized strain and strain rate

concentrations especially at the deepest point of the sulcus due to the expansion, which can lead to

a neuropathology like CTE.

In Chapter V, the study later continues with the analysis of the growth-induced residual stress

fields comprising the effect of the cortical folding process. The primary objective of this chapter
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is to investigate the resulting morphology and mechanical state of the tissue, particularly within

folding pattern that resemble the sulcus-gyrus formation. To this purpose, an elementary 2D

plane-strain finite element model is built to compute the displacement field leading to the lowest

total storage energy of the system among all kinematically admissible states. The computational

domain is modeled as initially flat bilayer rectangle, and adopts the differential tangential growth

hypothesis. The differential growth rate between the cortex and subcortex gives rise to a strain

mismatch, serving as the primary parameter for distinguishing various grown states presented

throughout this chapter. The chapter then proceeds with presenting the morphological changes in

evolving folding patterns and the residual stress/strain field for critical mismatched strain states. For

the mature sulcus-gyrus formation, the analysis is proceed with the computation of the eigenvalues

and eigenvectors of the stress field, enabling an investigation into the principal stress fields and their

associated directions. Lastly, the effect of skull constraint on the folding pattern and its mechanical

state is examined.

1.2 Literature review

1.2.1 On the mechanics of cortical growth and gyrification

Early attempts to explain the underlying mechanics of cortical folding posited that local dispro-

portions in the rate of size change, resulting from the molecular and cellular transformations during

cortex development, were responsible for cortical folding. Smith et al. [120] proposed that cortical

folding arises from the disproportion between the volume of the cortex and the surface area of

the neocortex, rather than being solely attributed to local changes. On the other hand, subsequent

analytical models primarily focused on extrinsic factors that could shape the cortex. One such

model postulated that constraints imposed by the surrounding brain structures, such as the skull,

induce buckling in the expanding cortex’s outer surface [80]. In other words, the relatively rigid

restrictive structures such as the skull could generate compressive stress on the growing cortex,

leading to buckling. In 1950, Barron [8] experimentally examined the effect of the skull on a

growing cortex using surgically manipulated fetal sheep brains. A part of the left hemisphere of the

fetal brain in utero was removed to reduce the pressure generated by the skull and to provide more
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intracranial space for the intact right hemisphere. Contrary to earlier hypotheses, the experimental

findings demonstrated that (i) the external constraint is not necessary to initiate the cortical growth

and (ii) a highly convoluted outer surface still developed despite the surgical intervention, with only

minor morphological differences observed. It is fair to assume that external constraints play a role

in shaping the final brain morphology, such as flattening gyral crowns, even if they do not directly

initiate cortical folding.

Subsequently, Richman et al. [106] introduced a mechanical model based on the differential

elasticity between the inner and outer stratum. In this model, the cerebral cortex was assumed as

a relatively thin and stiff layer (gray matter) growing over a relatively soft infinitely-deep elastic

core (white matter). The model proposes that the outer layer growing more than the core leads to a

sufficient compressive stress field within the outer layer to initiate the cortical buckling. This model

is capable in predicting the wavelength of the foldings using the elastic properties of the tissues and

thickness of the layers. However, this model had limitations in two aspects: (i) the assumptions for

the relative elastic properties of the gray and white matter ranging between 1/100 to 1/10. However,

these properties does not reflect the actual material properties. (ii) Due to the elastic properties, the

model estimated a sinusoidal wrinkling pattern that does not reflect the actual brain folding pattern.

Currently, there are two prominent hypotheses pointing out the driven mechanism associated

with cortical folding during the evolution of the brain as illustrated in figure 1.1. One is axonal

tension and the other is the differential growth hypothesis. The axonal tension hypothesis states

that the tension in the axons pulls the interconnected cortex regions, thereby reducing the spatial

separation between opposite banks of gyri [131]. However, recent experimental studies showed that

the residual stress field observed in an evolving ferret brain is consistent with the differential growth

hypothesis, and the axonal tension is not sufficient to generate a highly convoluted cortex as seen

in the mammalian brains [144]. On the other hand, multiple studies have indicated that axons can

influence cortical folding patterns beyond the generation of tension [122]. An experimental study

has reported deviations in the folding morphology of the occipital cortex in monkeys whose eyes

were surgically removed during embryogenesis, resulting in patterns different from the expected
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pattern [101, 36]. Furthermore, the reduction in size and number of axons and nuclei associated

with sight has been observed. A relatively recent experimental study indicated that the dissection

of eyes reduces the size of cortical gyrus in the primary visual cortex [105]. Hence, while axonal

tension may not serve as the primary mechanism, it undeniably plays a significant role in shaping

the cortex.

Figure 1.1 Illustration of cortical folding mechanisms: axonal tension (left), differential tangential
growth (right).

The kinematic description of volumetric finite growth was first formulated by Skalak [117],

and his coworkers [118] in the context of continuum mechanics. Following these early attempts,

Rodriguez and Hoger [108] presented the general formulation for the finite kinematics of the

volumetric growth, further expanded upon by Chen and Hoger [30]. The growth of a biological

tissue is described as two distinct phases: i) the addition of tissue material due to the inward mass

flux (e.g., cell migration), or the mass sources (e.g., cell growth, division, or enlargement) and

ii) subsequent to growth, an elastic deformation is required to restore tissue compatibility. It is

important to note that the growth field need not be continuous, which can result in discontinuities

within the body. Therefore, an elastic deformation is necessary to make the body compatible.

Furthermore, these elastic deformations can induce a residual stress field within the body, which is

initially assumed to be locally stress-free prior to any growth. These two subsequent processes are

mathematically modeled as the multiplicative decomposition of two tensor valued functions.
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From a mechanical perspective, the mechanics governing cortical growth and folding exhibit

similarities to surface instabilities seen in other highly elastic systems. Surface instabilities can

emerge in either homogeneous [83] or multilayered [136] highly elastic soft materials when sub-

ject to compressive stress. Various loading stimuli such as growth, swelling, atrophy, thermal

expansion/shrinkage, initial stress, and other chemical and physical processes associated with film

deposition, can induce compressive strain triggering surface instabilities. The instability conditions

for the highly localized buckling deformations in layered viscoelastic and linearly elastic medium

date back, which were studied in [12] and [14], respectively. The onset of buckling conditions

for a symmetric hyperelastic three-ply construction was examined by Pence and Song [98] in the

context of the nonlinear theory of finite elasticity. This study showed the possibility of two types of

buckling deformations in this specific case: barreling and flexural buckling. The examination was

further extended to address the family of buckled configurations for two-ply laminate associated

with the wrinkling load [148]. Regardless of the specific cause of the compressive stress, the typical

behavior of such bilayer elastic systems is to respond to the mismatched strain by forming periodic

wrinkles on the surface. Assuming a thin and relatively stiff film upon a much thicker and more

compliant substrate, the initial wavelength of the wrinkle can be estimated utilizing the formula

𝜆 = 2𝜋𝑡film(𝜇film/3𝜇sub)1/3, (1.2.1)

where 𝜇film and 𝜇sub represent the respective stiffness modulus of the film and substrate, while

𝑡film denotes the thickness of the film [29]. The elastic system releases the compression of the

film via periodic wrinkles to lower the total energy of the system, because bending is energetically

less costly than compression. The wavelength of the initial wrinkles can be predicted based on

linear stability analysis [23]. With further increases in the mismatched strain, the wrinkles become

increasingly unstable, giving rise to more complex surface patterns such as folds [100], ridges

[23], and period-doubling [15], depending on the elastic properties of the multilayered system.

Alternatively, an initially flat surface in the elastic system may transform directly into a crease

[136], resulting in localized and discontinuous surface transformation without the formation of

wrinkles [72]. It should be noted that sulcification, as suggested by Hohlfeld and Mahadevan [65],
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represents a scale-free nonlinear subcritical instability distinct from wrinkling and buckling. Wang

et al. [136] introduced a diagram to distinguish various growth-induced surface instability patterns

based on the mismatch strain, stiffness ratio, and normalized adhesion energy between the layers

for a bilayer structure.

Soft materials are prone to surface instabilities triggered by buckling due to the low elastic

moduli and being highly responsive to external stimuli. Therefore there has been an increasing

interest in surface instabilities because of their applicability to soft tissues [81]. In the context of

cortical folding, the gyrus and sulcus formations can be seen as surface instability arising from the

constrained differential growth . The difference in growth rates of cortex and subcortex leads to

compressive mismatch strain in the outer layer that leads to an instability when exceeding the certain

threshold. Swelling gel experiments, which replicate the volumetric expansion of the cortex through

constrained differential growth, demonstrate how surface instability patterns evolve as the mismatch

strain increases [58, 125], leading to a convoluted surface that resembles a human brain [126]. In

[58], it is demonstrated that cortical folding likely results from a wrinkling instability followed by

a folding transformation, rather than a direct transition from a flat to a creased state. Ben Amar and

Goriely [6] incorporated the finite growth into the incremental deformation theory and showed how

an anisotropic growth field causes surface instabilities in an incompressible hyperelastic spherical

shell by means of affecting the geometry and the internal stress field of the shell. Assuming the

gray and white matter is perfectly bonded, the diagram introduced by [136] predicts a crease type

instability for a low stiffness contrast, i.e., 𝐸gray
𝐸white

≤ 1.3, while wrinkling and folding arises for the

stiffness ratios 𝐸gray
𝐸white

> 1.3 for the primary bifurcation. As the mismatch strain increases, more

advanced modes of instabilities such as period-doubling and period-tripling can emerge depending

on the stiffness ratio in the post-bifurcation regime [18].

1.2.2 Computational Studies on Cortical Growth and Gyrification

A variety of motivations have turned into elementary and advanced computational models aimed

at simulating the mechanics of cortical growth and folding to gain insight into (i) the formation of

the cortical folding patterns as seen in the actual gyrified brain [125, 126, 133], (ii) developmental
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abnormalities linked to cortical growth and gyrification [19, 135], (iii) fundamental mechanism of

the cortical growth and folding [21, 71, 90, 125, 126, 129, 139, 152], and (iv) the potential effects of

physical and material parameters (e.g., the initial thickness of the cortex, stiffness ratio, and growth

rate difference of the layers, and initial shape of the cortex) on the folding patterns [21, 20, 33, 140].

The computational studies in the field of cortical growth and folding has been reviewed in [35].

Continuous and discrete mathematical models are two approaches to simulating biological

growth and remodeling processes. Discrete models are primarily employed to replicate biological

growth at discrete levels, particularly at the cellular and subcellular scales, (e.g., tumor growth).

Conversely, continuum modeling operates at the tissue scale, treating the tissue as a continuous

medium during the growth process. The choice between continuous and discrete approaches

represents an ongoing research aspect within the field of developmental biology [11]. In the

context of brain soft tissue growth and folding, the continuum approach is mostly used.

The theory of finite volumetric growth, introduced by Rodriguez and Hoger [109], is the

current approach used for describing the kinematics of biological growth and remodeling. This

kinematic model combines the effect of growth and elastic deformation, which is represented by

a multiplicative decomposition of the deformation gradient tensor. The growth of the cortex is

defined by a model aligning with the differential growth hypothesis, which is more commonly used

compared to the other mechanic models presented in Section (1.2.1). Experimental study shows the

residual stress fields observed in the ferret brain consistent with the differential growth hypothesis

[144]. This has been later supported by the computational models [125]. The differential growth

basically proposes that the gray matter grows more than the white matter in the tangential direction.

This requires an individual tensor-valued function for the growth of each layer in the model. The

components of the growth tensor could be a function depending on such as the spatial location

[125], the growth of the adjacent layer [19], or an independent function such as logistic-growth

function [90, 129]. The mechanics of cortical growth and gyrification can be also modeled by

coupling with differential equations representing, at least partly, the effect of underlying biological

changes. Verner et al. [133] introduced a cortical growth and folding model coupled with the
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advection-diffusion-reaction equation to include migration and tangential intercalation of neuron

cells during the development. On the other hand, an alternative approach considers the growth

rate as a singular scalar value, a method employed in several studies [19, 104, 135]. This approach

implies isotropic growth for the cortex. In cases where the growth rate is constant, it must exceed

one to signify volumetric positive growth. A growth rate that equals unity indicates no growth,

while values below the unity represent atrophy and resorption.

Furthermore, there are alternative approaches to replicate the mechanics of the volumetric

expansion of the tissue during the growth and morphogenesis such as thermal expansion [71, 135],

and osmotic expansion [46]. The volumetric expansion is controlled by the temperature of the

layer and osmotic pressure respectively. These factors act as the growth functions instead. One

of the advantages is that such a treatment allows one to make use of commercial finite element

codes (e.g., ABAQUS, Comsol) because of the availability of built-in algorithms. To the best of

my knowledge, the axonal tensional hypothesis is employed in only one work [46]. The axonal

tension was modeled by applying tension forces along the white matter fiber orientation measured

by diffusion tensor imaging (DTI). Because of the lack of experimental data related to the tensile

force in the axons, the magnitude of the tensional force was determined in the same order as the

cerebrospinal fluid (CSF) pressure applied to the cortex. The results showed that the differential

tangential growth leads to a sulcal pattern resembling the actual human brain rather than the axonal

tension.

The shape and geometrical attributes of the cortex prior to any growth are effective on the

resultant folding patterns and morphology, which is also a research question. In computational

studies, the cortex has been modeled using (i) various simplified geometries representing a certain

subsection of the brain or whole and (ii) the geometries derived from Magnetic Resonance Imaging

(MRI) images. The cortex has been extensively represented using various simplified geometries

either in two- or three- dimensions such as a semi-sphere [133], spherical shells [125], ellipsoid

[9, 135, 140], rectangular blocks [19, 66, 71, 135, 139], circular disk [125, 129, 144], coronal

slice [143], semi-ellipse [71], and hemispherical [133]. The rectangular domain with plane strain
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assumption is the most used model in the literature [19, 20, 33, 70, 104, 125, 139]. In addition to

the idealized geometries, MRI-based models of the brain, which have a complex shape even before

folding, have been also used to derive more realistic reference configurations. Of the reviewed

studies, there are two FE models where MRI images of a fetal brain at 22 weeks of gestation are

employed to obtain a more realistic reference configuration prior to any folding [90, 126]. In all

reviewed studies, the brain is treated as a bilayer structure that consists of an outer layer with various

thicknesses on a relatively thick substrate. In the context of the brain anatomy, the outer layer and

substrate correspond to the gray and white matter respectively. In the computational models, it is

commonly assumed that the gray matter thickness is uniform across the entire domain [19, 71, 135].

It should also be noted that the initial thickness of gray matter is one of the parameters that have

been extensively examined in the models. On the other hand, there have been computational models

where the thickness of gray matter exhibits heterogeneity along the white matter [33].

Unlike the variety in the geometry of reference configuration, it is fair to say that there is a

uniformity in the selection of constitutive form to model the brain soft tissue. Considering the

time scale of a typical biological growth process, it is fair to assume that the time scale of growth

is acting longer than the other time scales (e.g., stress relaxation, viscous and elastic time scales)

[50]. Hence, cortical growth and folding is generally considered a quasi-static process. That leads

to a tendency to a time-independent constitutive form. Along with the linear elastic model, the

hyperelastic constitutive models have also been used for the brain soft tissue. More specifically, the

well-known neo-Hookean type strain energy function has been heavily used in the computational

model [19, 126, 104, 103, 138]. Such a model could be sufficient to estimate how the gyrification

happens without requiring a high computational resource. The quantitative values of the material

properties are not discussed in this review purposely.

Barron’s experimental findings [8] established that even if cranial confinement is not required

for the initiation of cortical folding, the cranial constraints can exert (in part at least) influence,

particularly on the ultimate cortex morphology. The presence of relatively stiffer surrounding

tissues and skulls may contribute to the development of flattened gyral crowns [122]. Certain
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computational models have included the influence of the skull on cortical folding patterns. In the

literature, this volumetric constraint has been simulated through two primary approaches: (a) the

inclusion of a rigid shell to represent the skull or (b) the application of displacement constraints on

nodes. Tallinen et al. [125] noted that cranial confinement leads to the formation of flattened gyral

crowns. Nie et al. [90] suggested that the skull has an important regulatory role in cortical folding

even if the skull constraint is not necessary to trigger the folding mechanism. The results show that

skull constraint results in more intricate folding patterns, deeper sulci, and earlier development of

primary and secondary sulci compared to the non-skull-constrained models. Cerebrospinal fluid

(CSF) could be another source that can generate a constraint on a developing brain. The CSF

applies a pressure ranging from 1.5 mmHg to 6 mmHg (corresponding to 200 Pa to 800 Pa) in the

case of a full-term infant brain and from 10 mmHg to 15 mmHg (equivalent to 1300 Pa to 2000 Pa)

in the adult brain [38]. A recent computational investigation conducted by Jafarabadi et al. [70] has

explored the effect of cerebrospinal fluid (CSF) on the buckling behavior of a bilayer system. The

results show that the presence of CSF has an impact on the stability of the bilayer system, thereby the

buckling behavior. Still, the attention on the role of CSF is scarce. The layers of meninges (the pia

mater, dura mater, and arachnoid mater) have the potential to introduce constraints during cortical

growth and folding processes. However, any studies that have incorporated the consideration of

meninges layers within computational models do not exist in the literature.

In addition to these considerations, reviewed computational models typically employ two com-

mon boundary conditions: (a) perfect bonding between the cortex and subcortex to ensure interface

compatibility and (b) prevention of self-contact between the outer layers of gray matter. Certain

studies also introduce a cortical heterogeneity that acts as a small perturbation. These perturbations

have the potential to trigger the formation of cortical folding. Such perturbations may be in the

form of a localized variation in geometrical and material attributes such as thickness [33], stiffness,

cortical growth rate [20], or the application of external mechanical forces [125]. It is noteworthy

that such perturbations (e.g., inhomogeneities in thickness, stiffness, and growth rates) influence

the localization of specific sulcus-gyrus formations, and the growth-induced instability patterns,
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which also leads to more complex formations [20, 33]. Previous studies revealed that gyri tend

to develop more frequently in regions where the growth rate and stiffness are high, while sulci

tend to emerge at locations characterized by lower growth or stiffness [9, 20, 104]. Heterogeneous

thickness distribution can introduce mechanical perturbations that affect the initiation of folds. In

other words, folding initiates at locations where the top layer is relatively thinner, once sufficient

compressive stress accumulates in the outer layer [33].

The growth-induced cortical folding pattern is significantly influenced by several factors. These

factors include a) Cortex Thickness: A thicker cortex results in a reduced number of gyri and an

increased presence of isolated sulci. In essence, as the cortex thickness increases, the wavelength

of instability at the free surface also increases [71, 140, 19, 133]. b) Stiffness Contrast: A higher

stiffness contrast between the cortex and subcortex leads to an increased wavelength, with wrinkles

becoming the dominant type of surface instability [71]. c) Growth Rate: Higher growth rates are

associated with the formation of deeper sulci and smaller gyri [90, 135], and the emergence of gyri

is more likely in regions characterized by higher growth rates [20, 152].

Numerous validation approaches have been implemented to assess the degree of proximity

between computed results and the actual brain surface. These validation methods predominantly

rely on qualitative assessments [19, 135], the analysis of residual stress fields within the formations

[125], morphometric techniques [126], as well as the utilization of established metrics such as the

gyrification index (GI) [19], and novel metrics [140] to quantitatively characterize features of the

resulting folding pattern. One commonly utilized quantitative measure for assessing folding patterns

is the sulcification wavelength, defined as the distance between two adjacent gyri. Additionally,

other quantitative metrics include dimensionless mean curvature, the surface-based 3D gyrification

index, and sulcal depth [140]. Wang et al. [140] also introduced a novel metric designed to quantify

the anisotropy of folding orientation, facilitating an exploration of the relationship between fold

orientation and brain shape. Tallinen et al. [125] conducted a swelling gel experiment aimed at

capturing qualitative characteristics of the folding pattern, providing support for the underlying

physical mechanisms governing cortical folding. Their work also posited that the intricate surface
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morphology of the human brain is an inevitable consequence arising from the constraints imposed

by differential growth [126].

1.2.3 Experimental Studies on Residual Stress Fields in Brain

The internal histological changes associated with the external features of developing gyrus have

been examined to understand how a gyrus and sulcus form during morphogenesis. Thus, this

approach allows us to make a connection between the deformation aroused by the growth and the

internal changes in the tissue. In an experimental work conducted by Smart and McSherry [119]

performed on postnatal ferret brain, a series of changes has been observed: a) the gyrus is formed as

the result of the radial movement of the cortical plate relative to the sulcal floor, b) the radial tissue

lines tend to be curved instead of increasing the length during the sulcus formation. It also showed

that the movement of cell nuclei is tangential in the sulcal area rather than the radial [62]. It is worth

noting that the ferret has a lightly folded brain compared to humans. In that regard, further analysis

is still require to understand the advanced foldings seen in the human brain. Additionally, there

are geometrical models proposed that the initial geometry of the cortex could affect the pattern of

folding. The general direction of folding follow the minimum curvature of the brain considering a

uniform brain growth and minimal lateral movement between the outer layer and inner core [128].

This model is also consistent with the growth-driven model proposed by Richman.

The presence of residual stress in soft biological tissues can be demonstrated through an invasive

experimental technique. This method consists of the incision of tissue in various orientations,

causing the tissue to change shape as it relieves elastic stress. Subsequently, one can compute the

residual stress within the material by tracking the alterations in shape and obtain a constitutive

law using this stress-free configuration. This approach has been employed to detect the residual

stress fields, mostly the tubular structures such as the arteries [134], ventricle [92], ureter [57],

and trachea [59]. For more details about this invasive method and its applications, I refer to [44]

and the related chapters of [45]. The behavior of the incision allows for predictions regarding the

characteristic (tensile or compressive) of the residual stress in the perpendicular direction to the

cut, depending on whether the incision remains closed or not. The size of the opening is utilized as
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a quantitative measure to evaluate the magnitude of residual stress. Yet, it should be noted that the

size of the opening might not be a precise metric for quantitative analysis due to the persistence of

a substantial residual stress component even after a singular incision [130]. Moreover, the opening

may be influenced by the specific treatments applied to the tissue prior to the cut. Vossoughi

et al. [134] showed an increase in the opening angle after making a circumferential cut on the

arterial segments that already have been cut in the radial direction. In another experimental study,

Greenwald et al. [56] observed variations in the opening angle of incised bovine carotid arteries

depending on prior removed the amount of wall material.

Returning our attention to the dissection experiments conducted on the brain tissue, it is

noteworthy to mention that there have been only two experimental studies in the literature. These

studies have been conducted on the adult mouse [143] and developing ferret brain [144]. One of

the primary distinctions between these studies pertains to the morphological attributes of the brain

specimens in question. Specifically, the mouse brain exhibits a smooth outer surface, whereas

ferrets possess a lightly folded cortex in comparison to other mammals, such as primates. With this

regard, these works give us an opportunity to assess the residual stress fields within the tissue after

growth and folding separately. It is also worth noting that the ferret brain finds extensive utility

in the field of traumatic brain injury and recovery due to its morphological characteristics, which

more resemble those of the human brain [112].

Xu et al. [143] performed a series of opening angle experiments utilizing dissected coronal

slices from the adult mouse brain. The primary objective of their investigation was to examine

the existence of residual stresses and elucidate their distribution within the tissue. It is worth

noting that, for the purposes of this section, our focus shall be confined to the experimental

findings, notwithstanding the presence of numerical results within the study. In the course of these

experiments, a series of incisions were made solely in the radial direction, traversing both the

cortical gray and white matter at varying depths. The outcomes of these incisions revealed distinct

behaviors in the cortical gray and white matter. Specifically, the cortical gray matter exhibited

a tendency to remain closed, whereas the cortical white matter displayed an opening response.
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This divergence in behavior indicated the presence of a compressive residual stress field within the

gray matter and a tensile residual stress field within the white matter. The experimental results

are depicted in Figure 1.2, which also underscores that the growth process itself can engender a

residual stress field, independently of gyrification. It also shows that the growth itself can lead to

the residual stress field without the gyrification. Furthermore, it is noteworthy that the distribution

of residual stress is not uniform along the incision. Qualitatively, a broader opening was observed at

the interface between the corpus callosum and the cortical gray matter. It is essential to underscore

that this study offers insights solely into the radial direction of residual stress fields, as no incisions

were made in the circumferential direction.

In the other study, Xu et al. [144] carried out a series of opening angle experiments on the

developing ferret brain, employing various cutting directions to discern the presence and charac-

teristics of residual stress fields. To investigate the developmental progression of residual stress

fields during growth and morphogenesis, these experiments were conducted at multiple stages of

ferret development, specifically on postnatal days (P) -6, -11, -15, -18, and in adulthood (9- and

12-month old). The research outcomes were primarily focused on the P6, P18, and adult ferret

brains. This investigation yields valuable insights into two key aspects: (1) the differentiation in

the accumulation of residual stress fields within sulci and gyri and (2) the alterations in residual

stress fields during the process of gyrification. The experimental results reveal that circumferential

cuts made within both the sulci and gyri primarily remained closed, with minimal radial tension

observed. Conversely, other cuts in these regions did not exhibit any openings. Radial incisions

through sulci induced openings in both the cortex and subcortex. A noteworthy distinction was

observed, as the outermost surface exclusively exhibited an opening at P6, indicating the devel-

opment of compressive residual stress as the cortex folded. In the case of radial cuts within gyri,

openings were contingent upon the depth of the incisions. Specifically, deeper cuts, encompassing

the sub-plate of the cortex, resulted in openings; while shallow incisions that penetrated only the

gray matter remained closed. These findings collectively imply the circumferential residual stress

is formed at the pial surface (the interface between gray matter and cerebrospinal fluid) and within
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Figure 1.2 The result of a cutting experiment conducted on the mouse cortex. The coronal section of
the mouse brain is intact (a1,b1). The radial cuts have been made only through gray matter (a2,b2),
deeper white matter tract (a3) and thalamus (b3), and after waiting 15 min (b2-b4). The numerical
model of corresponding cuts and the contour of circumferential cuts (c1-c4)(Image sourced from
[143], reproduced with permission from SNCSC).

the deep layers of white matter following gyrification. The experimental observations align with

the differential growth hypothesis.
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Figure 1.3 Snapshots of microdissection experiments conducted on the coronal ferret brain sections
at different postnatal days: P6; P18; and adult (9- and 12-month old) (Image sourced from [144],
used with permission under copyright license).
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1.3 Hyperelastic treatment of growth

The kinematics of finite volumetric growth takes into account the combined effect of growth

and elastic deformation. This theoretical framework was originally proposed in [109], wherein

elastic growth is conceptualized as a sequential two-step process.

Consider a stress-free unloaded reference configuration denoted by B0 in which X is a position

vector of a generic material point prior to any deformation including growth. Growth can lead to a

change in shape and size motivated by various biological mechanisms that are regarded as given for

the present treatment. The possible biological mechanisms could be cell division, cell migration,

or cell enlargement; however, it is beyond the scope of this work. The growth is kinematically

described by a tensor valued function Fg mapping the material point in the reference configuration

X into a virtual intermediate configuration B𝜉 for the same material point, i.e., Fg : B0 → B𝜉 .

It should be noted that biological growth is a complex and tissue-specific process. To determine

the growth tensor Fg can therefore be challenging using experimental techniques due to the in-

compatible displacement field of the intermediate configuration [28]. Mathematically, the simplest

form of growth tensor is expressed as Fg = 𝑐I where 𝑐 is a scalar growth multiplier and I is a

second-order identity tensor. The growth multiplier 𝑐 must be positive and greater than the unity to

represent the growth. The scalar growth multiplier has been extensively used to simulate cortical

growth [19, 66, 103, 135].

The growth induces alterations in the size or relative position of the material points within a

body. The volume change resulting from growth can also exhibit spatial variation, i.e., 𝑣 = 𝑣(X),

which does not need to be continuous across the body. Consequently, this situation introduces a

virtual intermediate state, wherein the body’s compatibility is not maintained after growth. The

virtual intermediate configuration needs an elastic deformation to restore the compatibility of the

body, leading to the development of elastic strain within the body. Kinematically, the growth tensor

is accompanied by an elastic deformation tensor Fe that maps the same material point in the virtual

intermediate configuration to deformed configuration x, i.e., Fe : B𝜉 → B.

Equivalently, the gradient of the map between the reference configuration and the deformed
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configuration x = 𝜒(X) is the tensor

F =
𝜕x
𝜕X

, (1.3.1)

where F is the total deformation gradients including both the change of shape and volume at all

points due to growth and the elastic deformation restoring the compatibility, as depicted in figure

1.4. Hence, the total deformation gradient F is decomposed multiplicatively into

F = FeFg. (1.3.2)

As the reader is probably aware, a multiplicative decomposition of the form given in (1.3.2) is

commonly used in continuum mechanics to describe a variety of physical processes.

Similarly, the Jacobian 𝐽 is also multiplicatively decomposed into the elastic volume change

𝐽𝑒 = det F𝑒 and growth-induced volume change 𝐽𝑔 = det F𝑔. Note that Fg and Fe have positive

determinants i.e., 𝐽𝑒 = det F𝑒 > 0, and 𝐽𝑔 = det F𝑔 > 0. Further, it is often presumed that the

Figure 1.4 Standard schematic representation of the kinematics of finite growth as presented in
many sources [49, 67].

elastic accommodation is isochoric, which gives the local constraint equation

detFe = 1. (1.3.3)

Under this additional presumption, the change in volume after the growth and the volume constraint

are given by

detFg = 𝑣 ⇒ detF = 𝑣. (1.3.4)
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The energetic framework of hyperelastic materials is represented by a stored energy density

𝑊 as a function of Fe. The strain energy density is the function of the elastic deformation

tensor Fe only via the right Cauchy-Green tensor Ce due to the frame invariance of strain energy

density i.e., 𝑊 = 𝑊 (Ce,X) where Ce is the right Cauchy-Green tensor associated with the elastic

accommodation Fe, namely

Ce = FT
e Fe. (1.3.5)

The elastic deformation tensor develops elastic strains to make the body compatible subsequent

to growth. Under some circumstances that will be explained later, the elastic deformation tensor

growth may alter the internal stress field of the body. This can give rise to the introduction of residual

stress fields induced by growth. The surface tractions t on the boundary 𝜕B of the deformed body

B is defined via 𝝈 and outward unit normal n, namely

t = 𝝈n on 𝜕B, (1.3.6)

where 𝝈 denotes the Cauchy stress. Note that (1.3.6) is also valid for internal surfaces such as

tissue interfaces. In the context of morphogenesis, the growth process occurs on a relatively long

time scale ranging from days to months, which is larger than any other time scales (e.g., relaxation

time scale of soft tissue). Hence, the process can be considered quasi-static. With the absence of

the body forces, the equilibrium equation thereby reduces to

div𝝈 = 0, (1.3.7)

where div is the divergence operation with respect to current location x. The Cauchy stress 𝝈 is

given by

𝝈 =
2
𝐽𝑒

Fe
𝜕𝑊

𝜕Ce
FT

e . (1.3.8)

Throughout the presented study, the attention is confined to isotropic materials. The strain energy

function𝑊 depend upon Ce only through its principal scalar invariants,

𝐼1 = tr Ce, 𝐼2 =
1
2
[(tr Ce)2 − tr(Ce)2)], 𝐼3 = det Ce. (1.3.9)
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The Cauchy stress tensor given in (1.3.8) turns into

𝝈 =
2
𝐽𝑒

(
𝜕𝑊

𝜕𝐼𝑒1
+ 𝜕𝑊
𝜕𝐼𝑒2

𝐼𝑒1

)
Be +

2
𝐽𝑒

(
𝜕𝑊

𝜕𝐼𝑒2

)
B2

e +
𝜕𝑊

𝜕𝐽𝑒
I, Be = FeF𝑇e , (1.3.10)

where Be is the left Cauchy-Green deformation tensor. Equation (5.1.2) describes how stress in a

hyperelastic material will naturally arise from a growth process followed by elastic accommodation

when that growth process is either nonuniform or anisotropic or both. Note that when (1.3.3) holds

that the third invariant is equal to one. In this case the strain energy function becomes𝑊 = 𝑊 (𝐼1, 𝐼2)

and (5.1.2) turns into

𝝈 = 2
(
𝜕𝑊

𝜕𝐼1
+ 𝐼1

𝜕𝑊

𝜕𝐼2

)
Be − 2

𝜕𝑊

𝜕𝐼2
B2

e − 𝑝I, (1.3.11)

where 𝑝 is a hydrostatic pressure associated with the incompressibility constraint (1.3.3), I is a

second-order identity tensor.
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CHAPTER 2

GENERAL TREATMENT OF RESIDUAL STRESS IN
HYPERELASTIC SPHERICAL SHELLS

Section 1.3 established how residual stress would typically be expected to arise from the growth

process. That growth process was characterized by decomposing the deformation gradient tensor

according to (1.3.2). This made use of a reference configuration that represented a state of affairs

prior to growth depicted in figure (1.4). However, for the purpose of addressing mechanical loads

on the mature fully grown tissue, this is an inconvenient reference configuration. In continuum

mechanics it is always possible to redefine the reference configuration. A more convenient reference

configuration for this later purpose is one that describes the fully mature tissue. In making such a

reference configuration change, one will now use invariants computed from a different reference

configuration, and this requires a redefinition of 𝑊 so as to properly compensate. One must also

account for the residual stress field. Let this residual stress field, which is due to the previous growth

process, now be denoted by 𝝉. The theory of hyperelasticity with residual stress as elaborated in

[85] can now be used. In the study [85], the focus was on cylindrical geometries because of their

interest in tubular organs, in particular arteries.

Our interest in the brain motivates a focus on spherical geometries throughout the analysis

presented in Chapter 2. In this study, the effect of residual stress field 𝝉 in a hollow spherical shell

on the pressure-inflation response of a Mooney-Rivlin type material is examined using methods of

finite elasticity. The conception of residual stress follows that of Hoger [63, 64]. The Mooney-

Rivlin form is of special interest for the sphere problem because its well-known pressure-inflation

response is either monotonic or non-monotonic depending upon the shell thickness and Mooney-

Rivlin parameters 𝐼1 and 𝐼2. The specific hyperelastic framework employed here follows the

invariant formulation presented in [115]. That formulation is further developed and utilized in

subsequent treatments for residual stress including [86], [116], and [53]. The Mooney-Rivlin form

is of special interest for the sphere problem since its well-known pressure-inflation response is either

monotonic or non-monotonic depending upon the shell thickness and Mooney-Rivlin parameters 𝐼1
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and 𝐼2. The Mooney-Rivlin form of the strain-energy function is defined in terms of the invariants

associated with the deformation and the residual stress fields in the reference configuration. It is

assumed that the residual stress field 𝝉 resulted from the previous growth process but the residually-

stressed reference configuration is not obtained by modeling the theory of finite growth explained

in Section 1.3. Hence, the kinematic and mechanical quantities associated with the previous growth

process such as Fe, Ce and Be can now be replaced by F, C, and B for the purpose of Chapter 2. A

specific form for the residual stress component 𝜏𝑅𝑅, which is dependent only on 𝑅, is considered to

define the residual stress field 𝝉. This chapter was published previously in [146], and is reproduced

here with permission from Springer Nature.

The present chapter is organized as follows. The general residual stress conception and its

hyperelastic constitutive formulation is given in Section 2.1, followed by the specialization to

spherically symmetric deformations in Section 2.2. Classes of spherically symmetric residual

stress fields are introduced in Section 2.3. The integration procedure for the solution of the

boundary value problem is given in Section 2.4. This leads to the consideration of specific integrals

associated with the residual stress field, whose properties are examined in Section 2.5. This property

determination permits a rather straight forward assessment of how the residual stress affects the

pressure-inflation relation. Among the findings of interest is that particular residual stress fields

can cause a monotonic inflation graph to become non-monotonic, and vice versa. Key limitations

of our study are discussed in Section 2.7, some of which are associated with the elusive nature of

the meaning of residual stress, along with an indication of how some of the analytical findings here

could be further exploited.

2.1 Residual stress framework and constitutive modeling

A body that inhabits locations X in a reference configuration B0 is considered. A residual stress

is present within the body in this reference configuration, where it is given by the the tensor 𝝉. The

reason for the existence of the residual stress is not important – the nature of the theory permits the

consideration of residual stress fields independent of their cause. Whatever this cause, the residual

stress field is subject to the classical balance of torques and forces in the usual way. Intrinsic couple
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stresses are not considered whereupon the torque balance gives that 𝝉 is symmetric (𝝉T = 𝝉). Body

forces are regarded as negligible, whereupon force balance gives that

Div 𝝉 = 0, (2.1.1)

where Div is the divergence operation with respect to reference locations X. The residual stress is

present in the absence of surface tractions, meaning that

𝝉N = 0 on 𝜕B0, (2.1.2)

where 𝜕B0 is the external boundary of B0 and N the outward pointing unit normal vector. This

follows the residual stress conception of Hoger [63]. Other notions of initial stress may incorporate

sustaining surface tractions, whereas none are to be present here. A consequence of conditions

(2.1.1) and (2.1.2) is that the mean value of the residual stress over B0 must vanish [64], namely∫
B0

𝝉 𝑑𝑉 = 0. (2.1.3)

For this reason, any nontrivial 𝝉 will generally cause an inhomogeneous mechanical response to

subsequent deformation.

The application of surface tractions will deform the body to a new configuration B.

Let x denote locations in B. The deformation gradient of the mapping X → x is denoted by

F in the usual way. This process will generally change the internal stress field so that it is no

longer given by 𝝉. Let 𝝈 denote the associated Cauchy stress tensor. If F = I then 𝝈 is equal to 𝝉

modulo a purely reactive stress contribution associated with any internal material constraints (such

as incompressibility).

The Cauchy stress is also symmetric and it is subject to

div𝝈 = 0, (2.1.4)

where div is the divergence operation with respect to deformed locations x. The surface tractions t

follow from 𝝈 and the unit surface normal n on 𝜕B via

t = 𝝈n on 𝜕B. (2.1.5)

27



A hyperelastic constitutive framework is employed here which follows that described in [115]. It

is given in terms of a stored energy density function 𝑊 = 𝑊 (C, 𝝉) where C = FTF is the usual

right Cauchy-Green deformation tensor. This form ensures the axiom of objectivity. One could

more generally allow an explicit inhomogeneous response 𝑊 = 𝑊 (C, 𝝉,X) but this more general

case is not considered here. It is important to note that the spatial dependence 𝝉 = 𝝉(X) confers

the implicit inhomogeneous response (mentioned above) even in the context of the 𝑊 = 𝑊 (C, 𝝉)

treatment.

Attention is here restricted to incompressible materials, meaning that deformations X → x

must be volume preserving. This gives the standard isochoric constraint

detF = 1. (2.1.6)

The Cauchy stress now follows from F via

𝝈 = F
𝜕𝑊

𝜕C
FT − 𝑝I, (2.1.7)

where 𝑝 is the non-constitutive reactive pressure associated with (2.1.6). Because F = I implies

𝝈 = 𝝉 to within a hydrostatic pressure it follows that

𝝉 =
𝜕𝑊

𝜕C

���
C=I

− 𝑞I, (2.1.8)

for some scalar 𝑞 and, as discussed in [115], this imposes restrictions upon𝑊 .

Still following [115], the dependence of𝑊 upon C and 𝝉 can be developed in terms of a set of

nine independent invariants of C, 𝝉 and their combination. These can be taken as the two usual

isochoric invariants of C alone:

𝐼1 = tr C, 𝐼2 =
1
2
[(tr C)2 − tr(C2)]; (2.1.9)

(note that 𝐼3 = detC = 1), the three invariants of 𝝉 alone:

𝐼41 = tr 𝝉, 𝐼42 =
1
2
[(tr 𝝉)2 − tr(𝝉2)], 𝐼43 = det 𝝉; (2.1.10)

and four independent invariants of both C and 𝝉 in combination:

𝐼5 = tr(𝝉C), 𝐼6 = tr(𝝉C2), 𝐼7 = tr(𝝉2C), 𝐼8 = tr(𝝉2C2). (2.1.11)
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Here the specific invariant sets employed in [85] are considered. The three invariants {𝐼41, 𝐼42, 𝐼43}

are collectively denoted by 𝐼4. They are singled out this way because, unlike the other invariants,

they do not contribute derivatives to 𝝈 via (2.1.7) by a chain rule calculation on 𝜕𝑊/𝜕C. Letting

𝑊𝑖 = 𝜕𝑊/𝜕𝐼𝑖 for 𝑖 = 1, 2, 5, 6, 7, 8 such a chain rule calculation gives

𝝈 =2W1B + 2W2(𝐼1B − B2) + 2W5𝚺 + 2W6(𝚺B + B𝚺)

+ 2W7𝚺B−1𝚺 + 2W8(𝚺B−1𝚺B + B𝚺B−1𝚺) − 𝑝I,
(2.1.12)

where, following [85], 𝚺 ≡ F𝝉FT, and B = FFT is the left Cauchy-Green tensor. Note that (2.1.12)

retrieves the classical (no-residual-stress) hyperelastic result 𝝈 = 2W1B + 2W2(𝐼1B − B2) − 𝑝I

when 𝝉 vanishes.

A simple model form for𝑊 to consider is one that admits the decomposition𝑊 = 𝑊𝑜 (𝐼1, 𝐼2) +

𝑊𝜏 (𝐼5, 𝐼6, 𝐼7, 𝐼8). By taking 𝑊𝑜 to be some well vetted hyperelastic model from the conventional

isotropic theory, it permits a consideration of the effect of residual stress upon standard results.

Forms for𝑊𝜏 that have received consideration (see [85]) include

𝑊𝜏 =
1
2 (𝐼5 − tr(𝝉)) and 𝑊𝜏 =

1
4 (𝐼6 − tr(𝝉)). (2.1.13)

Note that 𝐼5, 𝐼6, tr(𝝉) and𝑊𝜏 all have the same physical units, so that 1
2 and 1

4 in (2.1.13) are pure

numbers. The particular values 1
2 and 1

4 in (2.1.13) are essential as they enable consistency with

(2.1.8).

In what follows a Mooney-Rivlin form is considered for𝑊𝑜, namely

𝑊𝑜 =
1
2𝜇 (𝜅(𝐼1 − 3) + (1 − 𝜅) (𝐼2 − 3)) . (2.1.14)

Here 𝜇, with units of stress, is the shear modulus. The pure number 𝜅 is taken to be in the range

0 ≤ 𝜅 ≤ 1 in order for the conventional theory to be consistent with the Baker-Ericksen inequalities.

The value 𝜅 = 1 gives the neo-Hookean special case. Values for 𝜅 a bit below one are often regarded

as providing a suitable first correction to the neo-Hookean theory [107].

Expressing𝑊 = 𝑊𝑜 +𝑊𝜏 by combining (2.1.14) with the first of (2.1.13) gives

𝑊 = 1
2𝜇 (𝜅(𝐼1 − 3) + (1 − 𝜅) (𝐼2 − 3)) + 1

2 (𝐼5 − tr(𝝉)). (2.1.15)
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This form for𝑊 , under the neo-Hookean specialization (𝜅 = 1), has been utilized for the analysis of

residually stressed cylinders in [86] and [85]. Also, the neo-Hookean case of (2.1.15) where𝑊𝜏 is

allowed to be augmented with a quadratic term proportional to (𝐼5− tr(𝝉))2 has been considered for

the examination of acoustic waves [115] and Rayleigh waves [116] in residually stressed materials.

Restricting attention to (2.1.15) it now follows from (2.1.12) that

𝝈 = 𝜇

(
(𝜅 + (1 − 𝜅)𝐼1)B − (1 − 𝜅)B2

)
+ F𝝉FT − 𝑝I, (2.1.16)

where it is observed that F = I and 𝑝 = (2 − 𝜅)𝜇 indeed makes 𝝈 = 𝝉.

2.2 Kinematics for a radial inflation of a residually-stressed spherical shell

A finite thickness spherical shell is considered in spherical coordinates (𝑅, Θ, Φ), occupies

𝐴 ≤ 𝑅 ≤ 𝐵, 0 ≤ Θ < 𝜋, 0 ≤ Φ ≤ 𝜋 (2.2.1)

in the reference configuration B0. Here A and B are inner and outer radii prior to any deformation.

Spherical inflation, which is one of the universal deformations in the conventional isotropic,

incompressible hyperelastic theory, is then described using spherical coordinates (𝑟 , 𝜃, 𝜙) in the

deformed configuration B, as

𝑟 = 𝑟 (𝑅), 𝜃 = Θ, 𝜙 = Φ. (2.2.2)

The deformation gradient is given by

F = 𝜆𝑟e𝑟 ⊗ E𝑅 + 𝜆𝜃e𝜃 ⊗ EΘ + 𝜆𝜙e𝜙 ⊗ EΦ, (2.2.3)

where {E𝑅,EΘ,EΦ} and {e𝑟 , e𝜃 , e𝜙} are the unit basis vectors in the reference and deformed

configuration respectively, and

𝜆𝑟 =
𝑑𝑟

𝑑𝑅
, 𝜆𝜃 = 𝜆𝜙 =

𝑟

𝑅
(2.2.4)

are the principal stretches in the corresponding directions. The associated right and left Cauchy-

Green deformation tensors are

C = 𝜆2
𝑟E𝑅 ⊗ E𝑅 + 𝜆2

𝜃 (EΘ ⊗ EΘ + EΦ ⊗ EΦ),

B = 𝜆2
𝑟e𝑟 ⊗ e𝑟 + 𝜆2

𝜃 (e𝜃 ⊗ e𝜃 + e𝜙 ⊗ e𝜙).
(2.2.5)
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The constraint (2.1.6) determines 𝑟 (𝑅) to within a single constant parameter value, which can be

taken as the radial value 𝑎 of the deformed inner radius. Then

𝑟 (𝑅) = (𝑅3 − 𝐴3 + 𝑎3)1/3, (2.2.6)

whereupon the deformed sphere occupies 𝑎 ≤ 𝑟 ≤ 𝑏 = (𝐵3−𝐴3+𝑎3)1/3. Consequently the relation

between 𝐴 and 𝑎 completely characterizes the amount of inflation. This also makes it convenient

to emphasize the azimuthal stretch via the notation

𝜆 ≡ 𝜆𝜃 = 𝜆𝜙 =
𝑟

𝑅
⇒ 𝜆𝑟 = 𝜆

−2 =
𝑅2

𝑟2 . (2.2.7)

The reference configuration is subject to the no surface traction condition (2.1.2), and the

inflation is induced by increasing the internal pressure by an amount Δ𝑃 > 0. Such loading is

consistent with a radial deformation (2.2.2) in the conventional theory where there is no residual

stress. In order to remain consistent with spherical inflation, consider residual stress fields of the

symmetric form 𝝉 = 𝜏𝑅𝑅E𝑅⊗E𝑅+𝜏ΘΘ(EΘ⊗EΘ+EΦ⊗EΦ) with 𝜏𝑅𝑅 = 𝜏𝑅𝑅 (𝑅) and 𝜏ΘΘ = 𝜏ΘΘ(𝑅).

Then (2.1.1) and (2.1.2) respectively give

𝑑𝜏𝑅𝑅

𝑑𝑅
+ 2
𝑅
(𝜏𝑅𝑅 − 𝜏ΘΘ) = 0, (2.2.8)

and

𝜏𝑅𝑅 (𝐴) = 0, 𝜏𝑅𝑅 (𝐵) = 0. (2.2.9)

A general result that follows from (2.2.8) and (2.2.9) is that∫ 𝐵

𝐴

(
(𝑚 − 1)𝜏𝑅𝑅 + 2 𝜏ΘΘ

)
𝑅𝑚 𝑑𝑅 = 0, (2.2.10)

where 𝑚 is arbitrary. The cases 𝑚 = 1 and 𝑚 = 2 then give∫ 𝐵

𝐴

𝜏ΘΘ 𝑅 𝑑𝑅 = 0,
∫ 𝐵

𝐴

(
𝜏𝑅𝑅 + 2 𝜏ΘΘ

)
𝑅2 𝑑𝑅 = 0. (2.2.11)

The first of these establishes that a nontrivial 𝜏𝜃𝜃 field must take on both tensile and compressive

values. The second of these is what (2.1.3) reduces to for the problem under consideration here.
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The Cauchy stress 𝝈 takes the form 𝝈 = 𝜎𝑟𝑟e𝑟 ⊗ e𝑟 + 𝜎𝜃𝜃 (e𝜃 ⊗ e𝜃 + e𝜙 ⊗ e𝜙) with 𝜎𝑟𝑟 = 𝜎𝑟𝑟 (𝑟)

and 𝜎𝜃𝜃 = 𝜎𝜃𝜃 (𝑟). In particular, it follows from (2.1.16), (2.2.3) and (2.2.7) that

𝜎𝑟𝑟 = 𝜇

(
2(1 − 𝜅)𝜆−2 + 𝜅𝜆−4

)
+ 𝜆−4𝜏𝑅𝑅 − 𝑝, (2.2.12)

and

𝜎𝜃𝜃 = 𝜇

(
(1 − 𝜅)𝜆4 + 𝜅𝜆2 + (1 − 𝜅)𝜆−2

)
+ 𝜆2𝜏ΘΘ − 𝑝. (2.2.13)

The equilibrium equation (2.1.4) gives 𝑝 = 𝑝(𝑟) along with the one nontrivial requirement

𝜕𝜎𝑟𝑟

𝜕𝑟
+ 2
𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) = 0. (2.2.14)

In terms of the applied pressures, the surface traction condition (2.1.5) is simply

𝜎𝑟𝑟 (𝑎) = −Δ𝑃, 𝜎𝑟𝑟 (𝑏) = 0. (2.2.15)

2.3 The residual stress fields

Given a 𝜏𝑅𝑅 field, the associated 𝜏ΘΘ follows from (2.2.8). Probably the simplest nontrivial

𝜏𝑅𝑅 field that is consistent with (2.2.9) is a parabolic profile proportional to (𝑅 − 𝐴) (𝑅 − 𝐵). It is

expressed as

𝜏𝑅𝑅 (𝑅) =
𝛼2

𝐴2 (𝑅 − 𝐴) (𝑅 − 𝐵) = 𝛼2

𝐴2 (𝑅
2 − (𝐴 + 𝐵)𝑅 + 𝐴𝐵) (2.3.1)

where 𝛼2, with units of stress, sets the field strength. The analogous radial component field

was considered in [85] for the case of a cylindrical geometry. For the spherical geometry under

consideration here, using (2.2.8) with the 𝜏𝑅𝑅 field given by (2.3.1) yields

𝜏ΘΘ(𝑅) =
𝛼2

𝐴2

(
2𝑅2 − 3

2 (𝐴 + 𝐵)𝑅 + 𝐴𝐵
)
. (2.3.2)

The subscript 2 in 𝛼2 is indicative of the highest power of 𝑅 in these expressions.

We wish to consider a wider variety of residual stress fields (𝜏𝑅𝑅 (𝑅), 𝜏ΘΘ(𝑅)) beyond that

given by (2.3.1) and (2.3.2). For reasons that will become clear later, it will also be advantageous to

consider 𝜏𝑅𝑅 fields that consist of a linear combination of terms in 𝑅0, 𝑅2, 𝑅5, and more generally

𝑅2+𝑛 for 𝑛 = 0, 1, 2, . . . . Then the boundary conditions (2.2.9) motivates the consideration of

𝜏𝑅𝑅 (𝑅) =
𝛼5

𝐴5

(
𝑅5 −

(
𝐵5−𝐴5

𝐵2−𝐴2

)
𝑅2 + 𝐴2𝐵2 (𝐵3−𝐴3)

𝐵2−𝐴2

)
, (2.3.3)
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as well as higher order forms such as

𝜏𝑅𝑅 (𝑅) =
𝛼8

𝐴8

(
𝑅8 −

(
𝐵8−𝐴8

𝐵5−𝐴5

)
𝑅5 + 𝐴5𝐵5 (𝐵3−𝐴3)

𝐵5−𝐴5

)
, (2.3.4)

and

𝜏𝑅𝑅 (𝑅) =
𝛼11

𝐴11

(
𝑅11 −

(
𝐵11−𝐴11

𝐵8−𝐴8

)
𝑅8 + 𝐴8𝐵8 (𝐵3−𝐴3)

𝐵8−𝐴8

)
. (2.3.5)

The multiplier coefficients 𝛼2, 𝛼5, 𝛼8, 𝛼11 in (2.3.1)-(2.3.5), all with units of stress, will serve as a

useful marker for distinguishing between these different fields in the various examples that follow.

The 𝜏ΘΘ corresponding to (2.3.3)-(2.3.5) will again follow from (2.2.8). In making such a

computation, and especially for later developments, it is useful to proceed term by term in the

residual stress expressions such as (2.3.3). The overbar notation 𝜏 is utilized for this purpose. Thus

employing (2.2.8) gives the single term result

𝜏𝑅𝑅 = 𝑐 𝑅𝑞, ⇒ 𝜏ΘΘ = 𝑐

(
1 + 1

2𝑞
)
𝑅𝑞 . (2.3.6)

Consequently, if 𝜏𝑅𝑅 is given by (2.3.3) then

𝜏ΘΘ(𝑅) =
𝛼5

𝐴5

(
7
2𝑅

5 − 2
(
𝐵5−𝐴5

𝐵2−𝐴2

)
𝑅2 + 𝐴2𝐵2 (𝐵3−𝐴3)

𝐵2−𝐴2

)
. (2.3.7)

The purpose of the 𝜏 notation is to provide a reminder that a single term within the overall multi-term

expression is unlikely to be consistent with (2.2.9). Thus (2.3.7) is consistent with (2.2.9) whereas

(2.3.6) is not. Rather, (2.3.6) is a preliminary single term result that will be used in conjunction

with other single term expressions to achieve consistency with the boundary conditions.

For completeness in what follows, the 𝜏ΘΘ field associated with (2.3.4) now also follows as

𝜏ΘΘ(𝑅) =
𝛼8

𝐴8

(
5𝑅8 − 7

2

(
𝐵8−𝐴8

𝐵5−𝐴5

)
𝑅5 + 𝐴5𝐵5 (𝐵3−𝐴3)

𝐵5−𝐴5

)
, (2.3.8)

and the 𝜏ΘΘ field associated with (2.3.5) follows as

𝜏ΘΘ(𝑅) =
𝛼11

𝐴11

(
13
2 𝑅

11 − 5
(
𝐵11−𝐴11

𝐵8−𝐴8

)
𝑅8 + 𝐴8𝐵8 (𝐵3−𝐴3)

𝐵8−𝐴8

)
. (2.3.9)

Figure 2.1 shows the effect of thickness on the residual stress field pair given by (2.3.1) and

(2.3.2). The 2-D counterpart to this figure is Figure 1 of [85]. As in the 2-D case, the 𝜏ΘΘ fields
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Figure 2.1 Residual stress fields (2.3.1) for 𝜏𝑅𝑅 (red) and (2.3.2) for 𝜏ΘΘ (blue) showing the effect
of shell thickness. Here 𝛼2 = 1, 𝐴 = 1 and: (a) B=1.5, (b) B=2, (c) B=3, and (d) B=4.

transition from monotone to non-monotone as the thickness increases. The minimum develops

sooner in the present 3-D case since, unlike the 2-D case, it is readily apparent here for the case

of 𝐴 = 1, 𝐵 = 2. Note also the qualitative similarity of these fields, which are independent of

constitutive law, to the residual stress field displayed in Figure 3 of [73] that is associated with the

eversion of a spherical shell composed of a particular Mooney-Rivlin material.

For a common shell thickness, Figure 2.2 displays the four different stress field pairs (𝜏𝑅𝑅, 𝜏ΘΘ)

as 𝜏𝑅𝑅 is given by the four alternatives: (2.3.1), (2.3.3), (2.3.4) and (2.3.5). In particular, 𝜏𝑅𝑅 is

of a single sign in all four cases. In contrast, 𝜏ΘΘ takes on both positive and negative values, a

result which follows from the first of (2.2.11). Note also that the fields increasingly localize to the

outer radius 𝑅 = 𝐵 as the order (highest power of 𝑅) increases in the residual stress fields. This
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Figure 2.2 Residual stress fields 𝜏𝑅𝑅 in red and 𝜏ΘΘ in blue showing how the profiles change as
higher order radial terms are employed. Here 𝐴 = 1, 𝐵 = 2 and 𝛼𝑖 = 1 in all four cases. Panel (a) is
for (2.3.1) and (2.3.2); panel (b) is for (2.3.3) and (2.3.7); panel (c) is for (2.3.4) and (2.3.8); panel
(d) is for (2.3.5) and (2.3.9).

tendency is highlighted in Figure 2.3 which redisplays the stress fields from Figure 2.2, but now

with 𝛼𝑖 chosen so that 𝜏ΘΘ(𝐵) = 1 for all four alternatives.

2.4 Pressure-inflation relations

For a given residually stressed spherical shell, one seeks to determine the relation between

applied load (embodied in 𝑃𝑎 and 𝑃𝑏) and the amount of inflation (the value of 𝑎 in relation to 𝐴).

For this purpose (2.2.14) admits to the integration

𝜎𝑟𝑟 (𝑟) − 𝜎𝑟𝑟 (𝑎) =
∫ 𝑟

𝑎

2(𝜎𝜃𝜃 − 𝜎𝑟𝑟)
𝑑𝑟

𝑟
. (2.4.1)
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Figure 2.3 Stress fields from Figure 2.2 with 𝜏𝑅𝑅 in the left panel and 𝜏ΘΘ in the right panel, now
normalized by taking 𝛼2 = 1, 𝛼5 = 3/116, 𝛼8 = 31/11344, 𝛼11 = 225/776192. This makes
𝜏ΘΘ(𝐵) = 1.

Evaluation of this at 𝑟 = 𝑏 using the boundary conditions (2.2.15) gives

Δ𝑃 =

∫ 𝑏

𝑎

2(𝜎𝜃𝜃 − 𝜎𝑟𝑟)
𝑑𝑟

𝑟
. (2.4.2)

Substituting from (2.2.12) and (2.2.13) into the above expression eliminates the hydrostatic pressure

𝑝 from the treatment. It is further convenient to then decompose the right side of (2.4.2) as∫ 𝑏

𝑎

2(𝜎𝜃𝜃 − 𝜎𝑟𝑟)
𝑑𝑟

𝑟
= 𝑃𝑜 + 𝑃𝜏, (2.4.3)

where 𝑃𝑜 and 𝑃𝜏 gather together the contributions arising from 𝑊𝑜 and 𝑊𝜏, respectively. Conse-

quently

Δ𝑃 = 𝑃𝑜 + 𝑃𝜏 (2.4.4)

with

𝑃𝑜 = 2𝜇
∫ 𝑏

𝑎

(
𝜅(𝜆2 − 𝜆−4) + (1 − 𝜅) (𝜆4 − 𝜆−2)

)
𝑑𝑟

𝑟
, (2.4.5)

and

𝑃𝜏 = 2
∫ 𝑏

𝑎

(
𝜆2𝜏ΘΘ − 𝜆−4𝜏𝑅𝑅

)
𝑑𝑟

𝑟
. (2.4.6)
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The term 𝑃𝑜 is familiar from the conventional hyperelastic theory and readily admits integration

using 𝑑𝑟/𝑟 = 𝑑𝜆/(𝜆 − 𝜆4). Introduce non-dimensionalized quantities

𝑃∗
𝑜 =

𝑃𝑜

𝜇
, 𝜂 =

𝐵

𝐴
, 𝑒 =

𝑎3

𝐴3 − 1, (2.4.7)

and note that 𝜂 serves as an aspect ratio or relative thickness parameter that characterizes the initial

shell geometry. The parameter 𝑒 represents the relative inflation, with 𝑒 = 0 corresponding to the

reference state and 𝑒 > 0 corresponding to inflation. The integration of (2.4.5) now yields

𝑃∗
𝑜 = 𝜅

(
5𝜂4 + 4𝑒𝜂
2(𝜂3 + 𝑒) 4

3
− 4𝑒 + 5

2(𝑒 + 1) 4
3

)
+ (1 − 𝜅)

(
1 + 2𝑒
(𝑒 + 1) 2

3
− 𝜂3 + 2𝑒
𝜂(𝜂3 + 𝑒) 2

3

)
. (2.4.8)

It should be noted that 𝑃∗
𝑜 vanishes when 𝑒 = 0, which is consistent with zero pressure in the

reference (undeformed) state.

The inflation relation for non-residually stressed hyperelastic spherical shells has been the

subject of longstanding study. Hence, a quick recap of the pressure-inflation response for Mooney-

Rivlin spherical shells is given in the rest of the chapter, as given by (2.4.8). In other words, this

recap recalls well known results because it is for the case in which there is no residual stress. The

associated pressure-inflation response graphs, with Δ𝑃 on the ordinate and either 𝑒 or 𝑎/𝐴 on the

abscissa, all exhibit an initial inflation, meaning that they all start from from Δ𝑃 = 0 when 𝑒 = 0

or 𝑎/𝐴 = 1, and all such graphs initially increase with 𝑒. However as 𝑒 continues to increase, one

of three behavior types is possible, depending on the values of 𝜅 and 𝜂. Type (a) behavior is one

of continued monotone Δ𝑃 increase as 𝑒 → ∞. Type (b) behavior involves increase to a local

maximum followed by monotone decrease with Δ𝑃 → 0 in an asymptotic fashion as 𝑒 → ∞. Type

(c) behavior involves three separate intervals of Δ𝑃 response; the first interval involves increase to

a local maximum, followed by decrease to a local minimum (with Δ𝑃 > 0), and then concluding

with monotone graphical increase as 𝑒 → ∞.

Type (b) behavior is restricted to the neo-Hookean case (𝜅 = 1) and this behavior type occurs for

all aspect ratios 𝜂 when the material is neo-Hookean. Type (a) behavior will occur if the Mooney-

Rivlin parameter 𝜅 < 0.823 (an exact root expression involving cubics will provide additional

precision [26]), and this is again true for all aspect ratios 𝜂. For 0.823 < 𝜅 < 1, either type
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(a) or type (c) behavior is possible depending on the aspect ratio 𝜂. If the shell is sufficiently

thick then type (a) behavior occurs. If it is sufficiently thin then type (c) behavior occurs. The

relation between 𝜂 and 𝜅 that delineates between these two behaviors can be characterized exactly

and elegantly, not only for the Mooney-Rivlin material, but also for more general incompressible

isotropic hyperelastic materials (in which case additional behavior types are not ruled out [26]).

For our purposes in what follows, we shall continue to provide certain demonstrations using the

Mooney-Rivlin base response for a spherical shell with 𝜂 = 𝐵/𝐴 = 2. Then, using the procedure

as described in [149], one finds that the transition between type (a) and type (c) behavior occurs for

𝜂 = 2 when 𝜅 � 0.847526. This is illustrated in Figure 2.4 where, for 𝜂 = 2, one finds that: 𝜅 = 0.8

gives type (a) behavior, 𝜅 = 0.9 gives type (c) behavior, and 𝜅 = 1.0 gives type (b) behavior.

Figure 2.4 Mooney-Rivlin material response for a spherical shell with 𝜂 = 𝐵/𝐴 = 2 showing the
effect of 𝜅. The neo-Hookean case 𝜅 = 1 gives type (b) behavior. Type (a) response occurs for
0 ≤ 𝜅 < 0.848 as shown by the 𝜅 = 0.8 response curve. Type (c) response occurs for 0.848 < 𝜅 < 1
as shown by the 𝜅 = 0.9 response curve. Left panel shows pressure as a function of 𝑒 and right
panel shows pressure as a function of 𝑎/𝐴.

2.5 The residual stress integrals

The residual stress effect is governed by the integral for 𝑃𝜏 in (2.4.6). Because the residual

stress fields under consideration occur as linear combinations of powers of 𝑅, it is useful to first
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observe that

𝜏𝑅𝑅 = 𝑐 𝑅𝑞 ⇒ 𝜆2𝜏ΘΘ − 𝜆−4𝜏𝑅𝑅 = 𝑐

(
𝜆2(1 + 1

2𝑞) − 𝜆
−4
)
𝑅𝑞 .

This motivates the definition

𝑃𝜏 |𝑞 ≡
∫ 𝑏

𝑎

(
(2 + 𝑞)𝜆2 − 2𝜆−4

)
𝑅𝑞
𝑑𝑟

𝑟
. (2.5.1)

The integral for 𝑃𝜏 in (2.4.6) will now be expressed in terms of these 𝑃𝜏 |𝑞. For example, the residual

stress field (2.3.1), (2.3.2) makes

𝑃𝜏 =
𝛼2

𝐴2

(
𝑃𝜏 |2 − (𝐴 + 𝐵)𝑃𝜏 |1 + 𝐴𝐵 𝑃𝜏 |0

)
. (2.5.2)

2.5.1 Explicit integration of 𝑃𝜏 |𝑞

The explicit integration of 𝑃𝜏 |𝑞 is complicated by the fact that now 𝑅 appears in the integrand,

along with 𝜆 and 𝑟. This prompts the introduction of dummy integration variable 𝛽 = (𝜆3 − 1)1/3

whereupon

𝑅 =
𝑒1/3𝐴

𝛽
, 𝜆 = (𝛽3 + 1)1/3,

𝑑𝑟

𝑟
= − 𝑑𝛽

𝛽4 + 𝛽
. (2.5.3)

This motivates the additional non-dimensionalized quantity

𝑃∗
𝜏 |𝑞 =

𝑃𝜏 |𝑞
𝐴𝑞

. (2.5.4)

One now finds that

𝑃∗
𝜏 |𝑞 = −2𝑒

𝑞

3

∫ 𝑒
1
3 /𝜂

𝑒
1
3

(
𝑞 + 2

2
− 1

(𝛽3 + 1)2

)
𝑑𝛽

(𝛽3 + 1) 1
3 𝛽𝑞+1

(2.5.5)

Whether or not (2.5.5) integrates simply depends upon the value of 𝑞. Simple integration, in the

sense of not requiring representation in terms of special functions, occurs for 𝑞 = 0, 2, 5, 8, . . . 2 +

3𝑛, . . . In particular, we find that

𝑃∗
𝜏 |0 =

5 + 4𝛽3

2(1 + 𝛽3) 4
3

�����𝛽=𝑒
1
3 /𝜂

𝛽=𝑒
1
3

(2.5.6)
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𝑃∗
𝜏 |2 = 𝑒

2
3

2 − 4𝛽3 − 5𝛽6

2𝛽2(1 + 𝛽3) 4
3

�����𝛽=𝑒
1
3 /𝜂

𝛽=𝑒
1
3

(2.5.7)

𝑃∗
𝜏 |5 = 𝑒

5
3

2 + 5𝛽3 + 16𝛽6 + 12𝛽9

2𝛽5(1 + 𝛽3) 4
3

�����𝛽=𝑒
1
3 /𝜂

𝛽=𝑒
1
3

(2.5.8)

𝑃∗
𝜏 |8 = 𝑒

8
3

10 + 16𝛽3 − 22𝛽6 − 132𝛽9 − 99𝛽12

10𝛽8(1 + 𝛽3) 4
3

�����𝛽=𝑒
1
3 /𝜂

𝛽=𝑒
1
3

(2.5.9)

and

𝑃∗
𝜏 |11 = 𝑒

11
3

40 + 55𝛽3 − 28𝛽6 + 126𝛽9 + 756𝛽12 + 567𝛽15

40𝛽11(1 + 𝛽3) 4
3

�����𝛽=𝑒
1
3 /𝜂

𝛽=𝑒
1
3

(2.5.10)

However other values of 𝑞 do not lead to such simple expressions. For example 𝑞 = 1 gives

𝑃∗
𝜏 |1 =𝑒

1
3

(
𝛽−1

2𝐹1
[
− 1

3 ,
7
3 ,

2
3 ,−𝛽

3] − 3𝛽2
2𝐹1

[ 2
3 ,

7
3 ,

5
3 ,−𝛽

3]
− 3

5 𝛽
5

2𝐹1
[ 5

3 ,
7
3 ,

8
3 ,−𝛽

3] )�����𝛽=𝑒
1
3 /𝜂

𝛽=𝑒
1
3

(2.5.11)

where 2𝐹1 [·, ·, ·, ·] is the hypergeometric function (see, e.g., [2]) that is defined by the series

2𝐹1(𝑎, 𝑏, 𝑐, 𝑧) =
Γ (𝑐)

Γ (𝑎) Γ (𝑏)

∞∑︁
𝑛=0

Γ (𝑎 + 𝑛) Γ (𝑏 + 𝑛)
Γ (𝑐 + 𝑛)

𝑧𝑛

𝑛!
. (2.5.12)

Here Γ(·) is the classical gamma function, which has many formal expressions [95], including

Γ(𝜉) =
∫ ∞

0
𝑡𝜉−1 𝑒−𝑡 𝑑𝑡. (2.5.13)

All of the 𝑃∗
𝜏 |𝑞 as functions of 𝑒 for 𝑒 > 0 as given by (2.5.6) - (2.5.11) are found to take on

positive values. Beginning from the initial value 𝑃∗
𝜏 |𝑞

���
𝑒=0

= 𝜂𝑞 − 1, the graphs are found to increase
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to a maximum and to then subsequently decrease toward zero as 𝑒 tends to infinity. This behavior

is established in the next subsection.

2.5.2 Behavior of 𝑃∗
𝜏 |𝑞 for small and large 𝑒

It is useful to obtain simplified expressions for both the small 𝑒 and large 𝑒 behavior of 𝑃∗
𝜏 |𝑞 as

functions of the parameters 𝜂 and 𝑞. This is especially true for those 𝑞, such as 𝑞 = 1, that do not

give straight forward expressions for 𝑃∗
𝜏 |𝑞.

To obtain the small 𝑒 response we rewrite (2.5.5) as

𝑃∗
𝜏 |𝑞 = 𝑒

𝑞

3

∫ 𝑒
1
3 /𝜂

𝑒
1
3

𝑔(𝑞, 𝛽) 𝑑𝛽

𝛽𝑞+1 (2.5.14)

with

𝑔(𝑞, 𝛽) = 1
(𝛽3 + 1) 1

3

(
−𝑞 − 2 + 2

(𝛽3 + 1)2

)
. (2.5.15)

Because 𝑔(𝑞, 𝛽) has the small 𝛽 expansion

𝑔(𝑞, 𝛽) = −𝑞 + 𝑎1𝛽
3 + 𝑎2𝛽

6 + 𝑎3𝛽
9 +𝑂 (𝛽12) (2.5.16)

with

𝑎1 = −4 + 1
3𝑞, 𝑎2 = 22

3 − 2
9𝑞, 𝑎3 = 46

9 + 14
81𝑞,

it follows from (2.5.14) that

𝑃∗
𝜏 |𝑞 = 𝑒

𝑞/3
(
𝛽−𝑞 + 𝑎1

3 − 𝑞 𝛽
3−𝑞 + 𝑎2

6 − 𝑞 𝛽
6−𝑞 + 𝑎3

9 − 𝑞 𝛽
9−𝑞 +𝑂 (𝛽12−𝑞)

) �����𝛽=𝑒
1
3 /𝜂

𝛽=𝑒
1
3

, (2.5.17)

provided 𝑞 ≠ 0, 3, 6, 9. The cases 𝑞 = 0, 3, 6, 9 . . . can be considered separately, with 𝑞 = 3, 6, 9 . . .

each yielding up an alternative log term in the above expression.

Finally, evaluating (2.5.17) between the upper and lower limits now shows that the small 𝑒

expansion for 𝑃∗
𝜏 |𝑞 begins as

𝑃∗
𝜏 |𝑞 = 𝜂

𝑞 − 1 − 1
3

(
12 − 𝑞
3 − 𝑞

)
(𝜂𝑞−3 − 1)𝑒 +𝑂 (𝑒2), (2.5.18)

provided 𝑞 ≠ 3 (with 𝑞 = 3 easily treated as its own special case).
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For large 𝑒 consider the large 𝛽 behavior of 𝑔(𝑞, 𝛽) using (2.5.15), namely 𝑔(𝑞, 𝛽) ∼ −(𝑞+2)/𝛽

as 𝛽 → ∞. This gives

𝑃∗
𝜏 |𝑞 ∼ −(𝑞 + 2)𝑒

𝑞

3

∫ 𝑒
1
3 /𝜂

𝑒
1
3

𝑑𝛽

𝛽𝑞+2 =

(
𝑞 + 2
𝑞 + 1

)
(𝜂𝑞+1 − 1)𝑒−1/3, as 𝑒 → ∞. (2.5.19)

The first three panels of Figure 2.5 – which consider separately 𝑞 = 0, 1, 2 – provides graphical

verification that the small 𝑒 and large 𝑒 results give good approximations to the exact integrals on

an appropriate range. The final panel of this figure puts all of the graphs for (2.5.6) - (2.5.11) on a

common plot, so as to also show results for the remaining cases 𝑞 = 5, 8, 11.

2.5.3 Consequences for 𝑃𝜏

The 𝑃𝜏 integral for each of the previously exhibited 𝜏𝑅𝑅 fields (2.3.1), (2.3.3), (2.3.4), (2.3.5)

are expressed in terms of the nondimensionalized 𝑃∗
𝜏 |𝑞 as follows:

(2.3.1) ⇒ 𝑃𝜏 = 𝛼2

(
𝑃∗
𝜏 |2 − (1 + 𝜂) 𝑃∗

𝜏 |1 + 𝜂 𝑃
∗
𝜏 |0

)
, (2.5.20)

(2.3.3) ⇒ 𝑃𝜏 = 𝛼5

(
𝑃∗
𝜏 |5 −

(
𝜂5−1
𝜂2−1

)
𝑃∗
𝜏 |2 +

(
𝜂2 (𝜂3−1)
𝜂2−1

)
𝑃∗
𝜏 |0

)
, (2.5.21)

(2.3.4) ⇒ 𝑃𝜏 = 𝛼8

(
𝑃∗
𝜏 |8 −

(
𝜂8−1
𝜂5−1

)
𝑃∗
𝜏 |5 +

(
𝜂5 (𝜂3−1)
𝜂5−1

)
𝑃∗
𝜏 |0

)
, (2.5.22)

(2.3.5) ⇒ 𝑃𝜏 = 𝛼11

(
𝑃∗
𝜏 |11 −

(
𝜂11−1
𝜂8−1

)
𝑃∗
𝜏 |8 +

(
𝜂8 (𝜂3−1)
𝜂8−1

)
𝑃∗
𝜏 |0

)
. (2.5.23)

The coefficients 𝛼𝑖 in (2.5.20) - (2.5.23) have units of stress. Here it is important to note (see,

e.g., Figure 2.2) that setting 𝛼𝑖 = 1 corresponds to very different residual stress field magnitudes

for the four cases 𝑖 = 1, . . . 4. In order to fairly contrast the different fields, we observe that 𝜏ΘΘ(𝐵)

is a dominant residual stress value in Figure 2.2. This motivates introducing the non-dimensional

𝛼∗𝑖 = 𝜏ΘΘ(𝐵)/𝜇. (2.5.24)

Consequently, using (2.3.2), (2.3.7), (2.3.8), (2.3.9), one finds that

𝛼2 =
2

𝜂 (𝜂 − 1)𝛼
∗
2 𝜇, 𝛼5 =

2(𝜂2 − 1)
𝜂2 (3𝜂5 − 5𝜂3 + 2)

𝛼∗5 𝜇, (2.5.25)
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0 5
0

0.5

1

Figure 2.5 The solid curves in panels (a) - (c) show the 𝑃∗
𝜏 |𝑞 response graphs as a function of 𝑒 for

𝜂 = 2. Panel (a) is for 𝑞 = 0 as given by (2.5.6). Panel (b) is for 𝑞 = 1 as given by (2.5.11). Panel
(c) is for 𝑞 = 2 as given by (2.5.7). The dashed curves in each of these panels depicts the associated
small 𝑒 (red) and large 𝑒 (blue) response as given by (2.5.18) and (2.5.19), respectively. The final
panel (d) shows all six graphs 𝑃∗

𝜏 |𝑞 for 𝑞 = 0, 1, 2, 5, 8, 11 on a common plot. Because the initial

value 𝑃∗
𝜏 |𝑞

���
𝑒=0

= 𝜂𝑞 − 1 = 2𝑞 − 1, only the cases 𝑞 = 8 and 𝑞 = 11 are well resolved in the last panel,
with the other cases crowded near the 𝑒-axis.
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𝛼8 =
2(𝜂5 − 1)

𝜂5 (3𝜂8 − 8𝜂3 + 5)
𝛼∗8 𝜇, 𝛼11 =

2(𝜂8 − 1)
𝜂8 (3𝜂11 − 11𝜂3 + 8)

𝛼∗11 𝜇. (2.5.26)

The final quantities to nondimensionalize are the 𝑃𝜏 in (2.5.20) - (2.5.23). The previous

nondimensionalization 𝑃∗
𝑜 = 𝑃𝑜/𝜇 from the first of (2.4.7) motivates

𝑃∗
𝜏 = 𝑃𝜏/𝜇 (2.5.27)

whereupon (2.4.4) is expressed in the nondimensionalized form

Δ𝑃/𝜇 = 𝑃∗
𝑜 + 𝑃∗

𝜏, (2.5.28)

where 𝑃∗
𝑜 continues to be given by (2.4.8). More importantly, 𝑃∗

𝜏 in (2.5.28) now follows from

(2.5.20) - (2.5.23) in terms of 𝛼∗
𝑖
. For example,

(2.3.1) ⇒ 𝑃∗
𝜏 =

2𝛼∗2
𝜂(𝜂 − 1)

(
𝑃∗
𝜏 |2 − (1 + 𝜂) 𝑃∗

𝜏 |1 + 𝜂 𝑃
∗
𝜏 |0

)
, (2.5.29)

(2.3.3) ⇒ 𝑃∗
𝜏 =

2(𝜂2 − 1) 𝛼∗5
𝜂2(3𝜂5 − 5𝜂3 + 2)

(
𝑃∗
𝜏 |5 −

(
𝜂5−1
𝜂2−1

)
𝑃∗
𝜏 |2 +

(
𝜂2 (𝜂3−1)
𝜂2−1

)
𝑃∗
𝜏 |0

)
. (2.5.30)

Similar style expressions, albeit more complicated ones, follow for 𝑃∗
𝜏 upon using (2.5.26) in the

remaining two cases of (2.5.22) and (2.5.23). Together this gives four expressions for 𝑃∗
𝜏: one each

for (2.3.1), (2.3.3), (2.3.4) and (2.3.5). Each of these is a function of 𝑒 on 𝑒 > 0 as determined by

the parameters 𝜂 > 1 and 𝛼∗
𝑖
. In each case, and for all parameter values 𝜂 and 𝛼∗

𝑖
, one may verify

that (2.5.18) gives that 𝑃∗
𝜏 = 0 when 𝑒 = 0.

The advantage of introducing the unit-free coefficient 𝛼∗
𝑖

is that the various alternative residual

stress fields are now expressed in terms of the readily interpretable scaling ratio 𝜏ΘΘ(𝐵)/𝜇. For

𝛼∗
𝑖
> 0 we find that each of the 𝑃∗

𝜏 decreases with 𝑒 from its initial zero value to a local minimum

before again increasing so as to asymptotically give 𝑃∗
𝜏 → 0 as 𝑒 → ∞. The first panel of Figure

2.6 shows this behavior for (2.3.1) and (2.3.4) on the interval 0 ≤ 𝑒 ≤ 25. The panel shows how

this behavior is also reliably predicted upon using the small and large 𝑒 results for the individual

parts 𝑃∗
𝜏 |𝑞 that make up each 𝑃∗

𝜏. The second panel of Figure 2.6 confirms that these trends hold
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Figure 2.6 Behavior of 𝑃∗
𝜏 as a function of 𝑒 for the four cases (2.3.1), (2.3.3), (2.3.4) and (2.3.5).

All graphs are for 𝜂 = 2 and 𝛼∗
𝑖
= 1. Panel (a) shows the case (2.3.1) in purple and the case

(2.3.4) in green. Small and large 𝑒 approximations are shown in the same color using dashed lines.
Panel (b) supplies the remaining graphs for (2.3.3) and (2.3.5). The general behavior for 𝛼∗

𝑖
> 0

is monotone decrease to a local minimum followed by asymptotic increase back toward the 𝑒-axis.
Changing the sign of 𝛼∗

𝑖
so as to make 𝛼∗

𝑖
< 0 reflects all curves about the horizontal 𝑒-axis.

also for the remaining two cases by showing 𝑃∗
𝜏 on the interval 0 ≤ 𝑒 ≤ 40 for all four cases (2.3.1),

(2.3.3), (2.3.4) and (2.3.5). The new scaling (2.5.24) now results in the case (2.3.1) providing the

dominant affect for a common value of the dimensionless ratio 𝜏ΘΘ(𝐵)/𝜇.

2.6 Effect of residual stress on the pressure-inflation relation

The vanishing of 𝑃∗
𝜏 both at 𝑒 = 0 and as 𝑒 → ∞ indicates that the residual stress effect on the

inflation behavior is most consequential for intermediate values of 𝑒 for the residual stress fields

under consideration here. For example, the basic 𝜏𝑅𝑅 and 𝜏ΘΘ field pair given by (2.3.1) and (2.3.2)

generates (2.5.29) for 𝑃∗
𝜏. If 𝛼∗2 > 0 then this 𝑃∗

𝜏 is negative, with an 𝜂 dependent value of 𝑒 that

locates its internal minimum. For 𝜂 = 2 this internal minimum is at 𝑒 � 3.9543. Consequently, it

is at this 𝑒-value that the residual stress will most affect the inflation graph. Figure 2.7 exhibits this

tendency, where for demonstration purposes the Mooney-Rivlin parameter 𝜅 = 0.75 is employed.

The baseline curve for no residual stress is type (a) for 𝜅 = 0.75. As confirmed by the figure,

the effect of the residual stress field (2.3.1), (2.3.2) on the inflation graph is largest near 𝑒 = 4.

Positive values of 𝛼∗2 correspond to 𝜏𝑅𝑅 < 0 in the shell interior and these lower the inflation graphs.

Conversely, interior residual stresses 𝜏𝑅𝑅 > 0 raise the graph. This reflects the same tendency for
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the corresponding 2-D cylindrical geometry problem described in [85]. Similar results follow for

the other 𝜏𝑅𝑅 fields (2.3.3), (2.3.4) and (2.3.5), although the overall effect is smaller for the same

value of 𝜏ΘΘ(𝐵) because of the overall ordering of the various 𝑃∗
𝜏 graphs as previously exhibited in

Figure 2.6.

Figure 2.7 Inflation graphs as determined by (2.5.28) for a 𝜂 = 𝐵/𝐴 = 2 spherical shell consisting
of a hyperelastic base material described by a 𝜅 = 0.75 Mooney-Rivlin stored energy density 𝑊 .
The residual stress field is given by (2.3.1) and (2.3.2). The affect of the residual stress is accounted
for in the theory via (2.1.15) which augments the Mooney-Rivlin energy density with the term
1
2 ((tr(𝝉𝐶) − tr(𝝉)). The central curve in red is the base inflation response (𝛼∗2 = 0) corresponding
to no residual stress. Solid blue curves correspond progressively to 𝛼∗2 = 0.5, 1, 2. Dashed blue
curves correspond progressively to 𝛼∗2 = −0.5, −1, −2.

The specific nature of (2.1.15), with its separate additive contributions, accounts for the straight

forward additive residual stress effect in (2.5.28) that serves to modify the base response graph

(the red curve in Figure 2.7). In particular, for 𝜂 = 2 and stress field (2.3.1), (2.3.2), the residual
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stress will continue to have its largest effect on the inflation graph near 𝑒 = 4 for other values of

the Mooney-Rivlin parameter 𝜅. Indeed, the same holds true if 𝑊 in (2.1.15) is modified so as to

replace the Mooney-Rivlin form with an alternative base material response.

Staying with the Mooney-Rivlin base response, but considering alternative values of 𝜅, recall

from the discussion at the end of section 2.4 that the value 𝜅 � 0.847526 provides the transition

between type (a) and type (c) inflation response for 𝜂 = 2 when no residual stress is present. The

question thus arises as to whether residual stress can alter the type of the inflation response away

from its base behavior? The answer to this question is “Yes". As shown in our final two figures,

residual stress can cause a base type (a) response to become type (c), and it can also cause a base

type (c) response to become type (a). Technically, such a result can be made to follow from the

decreasing-increasing behavior of 𝑃∗
𝜏 for 𝛼∗

𝑖
> 0 and its converse increasing-decreasing behavior

for 𝛼∗
𝑖
< 0. Namely, prior to the consideration of residual stress, the transition between type (a)

and type (c) behavior is characterized by an inflation graph that is locally flat at some value of 𝑒.

Specifically, this 𝑒 locates an inflection point of the base response graph. By contriving to make

the inflection point of the base response graph have an 𝑒-value that is suitably located with respect

to the single extrema of a 𝑃∗
𝜏 graph, one can chose 𝛼∗

𝑖
to push the base response graph into either

type (a) or type (c) behavior. More generally, starting with a base response graph that is just to

one side of the (a)-to-(c) transition, namely either a definite type (a) response or a definite type (c)

response, one can by continuity execute a similar push so as to transition the inflation graph to the

other type of response behavior.

To provide a demonstration of a type (a) base response that becomes type (c) for a specific

residual stress field, consider 𝜂 = 2 and 𝜅 = 0.84. This corresponds to type (a) response in the

absence of residual stress (the red curve in Figure 2.8). The residual stress field pair given by (2.3.1)

and (2.3.2) with 𝛼∗2 = −1 is then found to give a type (c) inflation response graph (the dashed blue

curve in Figure 2.8). Conversely we exhibit a type (c) base response that becomes type (a) for a

specific residual stress field by taking 𝜂 = 2 and 𝜅 = 0.86. This corresponds to type (c) response in

the absence of residual stress (the red curve in Figure 2.9). The residual stress field pair given by

47



Figure 2.8 Type (a) monotonic inflation response occurring for 𝜂 = 2 and 𝜅 = 0.84 in the absence
of residual stress (red) becomes type (c) nonmonotonic response for the residual stress field pair
given by (2.3.1) and (2.3.2) with 𝛼∗2 = −1 (dashed blue).

(2.3.1) and (2.3.2) with 𝛼∗2 = 1 is then found to give a type (a) inflation response graph (the solid

blue curve in Figure 2.9).

2.7 Additional remarks

The specific additive form𝑊 = 𝑊𝑜+𝑊𝜏 that is used in this study is motivated by, and in keeping

with, prototypical forms that are utilized in previous works. These additive forms are now beginning

to see usage in computational treatments (e.g., [110, 41]) that address fundamental questions of

bifurcation, imperfection sensitivity and symmetry breaking deformations, all of which are issues

that are beyond the scope of this article. In the context of 𝑊 = 𝑊𝑜 +𝑊𝜏 we have made use of 𝑊𝜏

given by the first of (2.1.13). For spherical symmetry this gave rise to integrals (2.4.6) which had

readily determined properties for certain residual stress field expressions. Specifically, a 𝜏𝑅𝑅 field
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Figure 2.9 Type (c) nonmonotonic inflation response occurring for 𝜂 = 2 and 𝜅 = 0.86 in the
absence of residual stress (red) becomes type (a) monotonic response for the residual stress field
pair given by (2.3.1) and (2.3.2) with 𝛼∗2 = 1 (blue).

that is a linear combination of terms in 𝑅𝑞 leads to the consideration of individual integrals given

by (2.5.1). These were then used in the context of 𝑊𝑜 given by a Mooney-Rivlin form. The M-R

form is of special interest for sphere problems, since it can give either monotone or nonmonotone

inflation response as determined by the M-R parameters and the shell thickness. Thus for example

it was possible to show how residual stress could potentially cause a nonmonotone response to

become monotone, or vice versa, without changing the problem geometry or the constitutive law.

Here it is to be noted that the same integrals (2.5.1) will arise in an alternative treatment that retains

𝑊 = 𝑊𝑜 +𝑊𝜏 with𝑊𝜏 given by the first of (2.1.13) but with an alternative choice for𝑊𝑜.

More generally, it is immediate that the form𝑊 = 𝑊𝑜+𝑊𝜏 with𝑊𝜏 given by either of (2.1.13) has

the property that the material response reduces to that of a conventional incompressible hyperelastic
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solid with stored energy𝑊𝑜 in the event that the residual stress 𝝉 vanishes. It is important to realize

that a separate issue, and one that is not addressed in this paper, is whether or not a given non-

vanishing 𝝉 could be associated with a specific relaxed configuration that is different from the

reference configuration (meaning that there is no residual stress in the relaxed configuration). In

other words, whether the hyperelastic response from the residually stressed reference configuration

using𝑊 = 𝑊𝑜 +𝑊𝜏 matches the response from the relaxed configuration using𝑊 = 𝑊𝑜 or perhaps

a suitably modified𝑊𝑜 (meaning a𝑊𝑜 that does not incorporate a residual stress).

Because this issue is not addressed here, care must be taken in describing the meaning of findings

encapsulated in, for example, Figures 2.8 or 2.9. That is why our monotone vs. nonmonotone

statement in the preceding paragraph avoids describing the results in terms of a residually stressed

M-R material. Addressing these types of subtle issues gives rise to broader notions of how to frame

such considerations in a fundamental way [54]. Within the specific context of Mooney-Rivlin type

response these issues are addressed in [3], where there is a special focus on conditions of plane

strain.

Our attention here was also limited to residual stress fields with radial normal stress in the

three-term form 𝜏𝑅𝑅 = 𝑘0 + 𝑘1𝑅
𝑞1 + 𝑘2𝑅

𝑞2 for suitably chosen integer exponents 𝑞2 > 𝑞1 > 0; these

being the simplest nontrivial forms consistent with (2.2.9). However, such 𝜏𝑅𝑅 fields are of one

sign, and the resulting 𝜏ΘΘ fields have exactly one internal node. For the purpose of constructing

more general residual stress fields that are amenable to the treatment presented here, one may

consider the general form containing 𝑛 terms (𝑛 ≥ 3):

𝜏𝑅𝑅 (𝑅) = 𝛼3𝑛−4

(
𝑐1𝑅

0 + 𝑐2𝑅
2 + 𝑐3𝑅

5 + ... + 𝑐𝑛−1𝑅
3𝑛−7 + 𝑅3𝑛−4

)
. (2.7.1)

This form, with exponents given in the above particular way, is potentially highly workable for

additional analysis because it generates integrals 𝑃𝜏 |𝑞 given by (2.5.1) in terms of specific quotient

expressions that do not make use of special functions. Note that the 𝜏𝑟𝑟 fields given by (2.3.3),

(2.3.4) and (2.3.5) are all special cases of the form (2.7.1), but (2.3.1) is not. For example, (2.3.5) is

𝑛 = 5 with 𝑐2 = 𝑐3 = 0 and 𝑐1 and 𝑐4 given by complicated expressions. In general for (2.7.1), the

parameter 𝛼3𝑛−4 can be regarded as an overall strength-of-field parameter, whereupon the degrees
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of freedom conferred by the parameters 𝑐1 to 𝑐𝑛−1 is reduced by two so as to meet the boundary

conditions (2.2.9). Thus the general form (2.7.1) effectively provides 𝑛-3 degrees of freedom

beyond that of the overall strength-of-field for tuning the form of the residual stress fields.
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CHAPTER 3

RESIDUAL STRESS FIELDS IN THE UNIFORM GROWING OF A HYPERELASTIC
SPHERICAL SHELL

Chapter 2 showed how the mechanical effect of the growth process in any later loading could be

formally accounted for by making appropriate use of the associated residual stress field 𝝉 in the

loading analysis. In particular, the examination in Chapter 2 revealed the sensitive dependence of

subsequent mechanical loading on the specific features of 𝝉. With this insight, it is now useful

to further inquire into the nature of the residual stress field 𝝉. To this end, following the same

framework presented in [50], the treatment of growth-induced residual stress fields in a single-layer

hyperelastic spherical shell is presented. Subsequently, the treatment is extended for a bilayer

spherical shell utilizing this framework. One specific feature that requires clarification is the effect

of the interface between gray and white matter on the residual stress field 𝝉. This requires a return

to the broader kinematical considerations of the theory of finite growth elaborated in Section (1.3).

The present chapter is organized as follows. The general hyperelastic treatment of a single layer

spherical shell is given in Section (3.1), followed by the demonstration of the residual stress fields

in normal directions for the considered five different growth cases in Section (3.2). The kinematic

of volumetric growth of a bilayer spherical shell are introduced in Section (3.3). Key findings of

this section, specifically the effect of mismatch growth of the layers on the residual stress fields, are

presented in Section (3.4). In section (3.5), the findings of both analytical model is compared with

the experimental studies introduced in Section (1.2.3).

3.1 Kinematics for volumetric growth of a single layer spherical shell

We examine how the volumetric growth leads to residual stress fields within a spherical shell

experiencing an inhomogeneous growth using the framework described in the previous section. To

this end, a finite thickness spherical shell with inner radius 𝑅𝑖 > 0 and outer radius 𝑅𝑜 > 𝑅𝑖 prior

to any loading or any growth is considered. The loading is taken to consist of applied pressures 𝑃𝑖

and 𝑃𝑜 on the inner and outer boundaries. These symmetric conditions motivate the consideration
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of the radial deformation for volumetric growth

𝑟 = 𝑟 (𝑅), 𝜃 = 𝛩, 𝜙 =𝛷 (3.1.1)

on 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑜, 0 ≤ 𝛩 < 2𝜋, 0 ≤ 𝛷 ≤ 𝜋 where the radial inflation function 𝑟 (𝑅) is to be

determined. Thus (3.1.1) is a map from reference spherical coordinates (𝑅,𝛩,Φ) to deformed

grown spherical coordinates (𝑟, 𝜃, 𝜙). Let {e𝑅, eΘ, eΦ} and {e𝑟 , e𝜃 , e𝜙} represent unit basis vectors

in the spherical coordinate system of the respective reference, and deformed grown configurations.

It follows from (3.1.1) that the total deformation gradient is given by

F = 𝑟′(e𝑟 ⊗ e𝑅) + 𝜆
(
e𝜃 ⊗ eΘ + e𝜙 ⊗ eΦ

)
, (3.1.2)

with 𝑟′ = 𝑑𝑟/𝑑𝑅 and 𝜆 = 𝑟/𝑅. Here 𝜆 = 𝜆(𝑅) is the azimuthal stretch, meaning that it is the

stretch along spherical surfaces. Because of the spherical symmetry, the stretch 𝜆 is the same in all

directions upon each spherical surface. However 𝜆 may vary through the thickness of the shell.

As detailed in previous section and specifically represented in (1.3.2), the kinematics of growth

is expressed by two subsequent process: growth and elastic deformation. A spherically symmetric

and continuous growth is considered. The growth tensor is given by

Fg = 𝛾𝑟E𝑅 ⊗ E𝑅 + 𝛾𝜃 (EΘ ⊗ EΘ + EΦ ⊗ EΦ), (3.1.3)

where {E𝑅,EΘ,EΦ} are the unit basis vectors for the reference B0 and virtual intermediate config-

uration B𝜉 . Here, 𝛾𝑟 = 𝛾𝑟 (𝑅) and 𝛾𝜃 = 𝛾𝜃 (𝑅) are the strictly positive growth functions in the radial

and azimuthal directions respectively. Each growth function must be greater than one for actual

volumetric growth in the given direction. Otherwise, it represents atrophy or resorption. Following

the terminology used in [50], 𝛾𝑟 and 𝛾𝜃 are referred to as the radial and area growth respectively.

Considering a spherical body, the radial growth increases the length of the shell in radial direction

while the area growth increases the surface area. The case of 𝛾𝑟 = 𝛾𝜃 is called the isotropic growth,

which is a straight forward dilatation of the body. The local volume change ratio associated with

the growth following (1.3.4) is given by

𝑣 = 𝛾𝑟𝛾
2
𝜃 = 𝑣(𝑅). (3.1.4)
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The functions 𝛾𝑟 (𝑅) and 𝛾𝜃 (𝑅) need not be continuous. If they are discontinuous then growth

alone could generate discontinuities in the body. The elastic deformation tensor, which in the event

of discontinuities growth serves to restore the continuity of the body, is described by

Fe = 𝛼𝑟e𝑟 ⊗ E𝑅 + 𝛼𝜃
(
e𝜃 ⊗ EΘ + e𝜙 ⊗ EΦ

)
, (3.1.5)

in the deformed configuration B defined by the unit basis vector {e𝑟 , e𝜃 , e𝜙}, as illustrated in figure

1.4. Here, 𝛼𝑟 and 𝛼𝜃 are the elastic principal stretches in the radial and azimuthal directions

respectively. The elastic incompressibility constraint (1.3.3) motivates the notational consolidation

𝛼 ≡ 𝛼𝜃 , and 𝛼𝑟 = 𝛼
−2. (3.1.6)

Thus, the form of (3.1.5) is revised, using (3.1.6), as

Fe = 𝛼
−2e𝑟 ⊗ E𝑅 + 𝛼(e𝜃 ⊗ EΘ + e𝜙 ⊗ EΦ), (3.1.7)

and the principal invariants are given, using (1.3.5), (1.3.9) and (3.1.7), by

𝐼1 = 𝛼−4 + 2𝛼2, 𝐼2 = 2𝛼−2 + 𝛼4. (3.1.8)

For the deformation considered here, the combination of (1.3.2), (3.1.2), (3.1.3), and (3.1.7) gives

that

𝑟
′
= 𝛼−2𝛾𝑟 , and 𝜆 = 𝛼𝛾𝜃 . (3.1.9)

The volume constraint (1.3.4) becomes det F = 𝜆2 𝑟′ = 𝑟2 𝑟′/𝑅2, making

𝑟
′
=
𝑣

𝜆2 (3.1.10)

Also, the total deformation in the form 𝑟2 𝑑𝑟 = 𝑣𝑅2 𝑑𝑅 integrates to

𝑟3 = 𝑟3
𝑖 + 3

∫ 𝑅

𝑅𝑖

𝑣(𝜁) 𝜁2 𝑑𝜁, (3.1.11)

where 𝑟𝑖 = 𝑟 (𝑅𝑖) and 𝜁 is a dummy integration variable. More generally (3.1.11) provides the map

𝑟 = 𝑟 (𝑅) in terms of the single parameter 𝑟𝑖 which still needs to be determined. The Cauchy stress

tensor takes the form

𝝈 = 𝜎𝑟𝑟 (e𝑟 ⊗ e𝑟) + 𝜎𝜃𝜃 (e𝜃 ⊗ e𝜃 + e𝜙 ⊗ e𝜙), (3.1.12)
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with the combination of (1.3.10), (3.1.7) and (3.1.8) yields to

𝜎𝑟𝑟 = −𝑝 + 2𝛼−4 𝜕𝑊

𝜕𝐼1
+ 4𝛼−2 𝜕𝑊

𝜕𝐼2
, (3.1.13)

𝜎𝜃𝜃 = −𝑝 + 2𝛼2 𝜕𝑊

𝜕𝐼1
+ 2

(
𝛼−2 + 𝛼4

) 𝜕𝑊
𝜕𝐼2

. (3.1.14)

The equilibrium equation (1.3.7) gives that 𝑝 = 𝑝(𝑅) along with the requirement

𝑑𝜎𝑟𝑟

𝑑𝑟
+ 2
𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) = 0. (3.1.15)

The specified pressures 𝑃𝑖 and 𝑃𝑜 at the inner and outer surfaces yield the boundary conditions

𝜎𝑟𝑟
��
𝑟𝑖
= −𝑃𝑖, 𝜎𝑟𝑟

��
𝑟𝑜

= −𝑃𝑜, (3.1.16)

where 𝑟𝑜 = 𝑟 (𝑅𝑜) denotes the deformed outer radius of the spherical shell. One is easily led to the

analytical expression to determine 𝑟𝑖 by performing the relevant substitutions of (3.1.13), (3.1.14),

(3.1.10) into the equilibrium equation (3.1.15), integrating, and applying the boundary conditions

(3.1.16). Once 𝑟𝑖 is known, the deformation 𝑟 = 𝑟 (𝑅) through (3.1.11) and the elastic deformation

tensor Fe is fully specified. Such a treatment could be applied however the direct use of the stored

energy density offers more straightforward procedure to obtain the output response of the shell to

the growth.

For the purpose of this study, a useful and elegant procedure is obtained by rewriting𝑊 (𝐼1, 𝐼2)

as 𝑤(𝛼) upon making use of (3.1.8). Then note that

𝜕𝑤

𝜕𝛼
=

𝜕𝑊

𝜕𝐼1

𝜕𝐼1
𝜕𝛼

+ 𝜕𝑊
𝜕𝐼2

𝜕𝐼2
𝜕𝛼

= 4
(
𝛼 − 𝛼−5

) 𝜕𝑊
𝜕𝐼1

+ 4
(
𝛼3 − 𝛼−3

) 𝜕𝑊
𝜕𝐼2

=
2
𝛼
(𝜎𝜃𝜃 − 𝜎𝑟𝑟) =

𝑟

𝛼

𝑑𝜎𝑟𝑟

𝑑𝑟
, (3.1.17)

where the last two steps employed first the pair (3.1.13) & (3.1.14) and then (3.1.15). The chain of

equations in (3.1.17) causes the equilibrium equation in (3.1.15) to take the form

𝑑𝜎𝑟𝑟

𝑑𝑟
=
𝛼

𝑟

𝜕𝑤

𝜕𝛼
𝑑𝑟. (3.1.18)
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At this point, with the aid of (3.1.9) and (3.1.10), developing the following derivation will be

useful to derive an alternative form of (3.1.18), namely

𝑑𝛼

𝑑𝑟
=
𝑑𝛼/𝑑𝑅
𝑑𝑟/𝑑𝑅 =

𝑣 − 𝜆3 − 𝜆2𝛼𝑅𝛾
′
𝜃

𝑣𝑅𝛾𝜃
, (3.1.19)

where 𝛾′
𝜃
= 𝑑𝛾𝜃/𝑑𝑅. With the aid of the boundary conditions (3.1.16), and using (3.1.19), one

transforms (3.1.18) into

Δ𝑃 ≡ 𝑃𝑖 − 𝑃𝑜 =
∫ 𝛼𝑜

𝛼𝑖

𝑣

𝑣 − 𝜆3 − 𝜆2𝛼𝑅𝛾
′
𝜃

𝜕𝑤

𝜕𝛼
𝑑𝛼, (3.1.20)

where 𝛼𝑖 = 𝛼(𝑅𝑖) = 𝑟𝑖/𝛾𝜃 (𝑅𝑖)𝑅𝑖 and 𝛼𝑜 = 𝛼(𝑅𝑜) = 𝑟𝑜/𝛾𝜃 (𝑅𝑜)𝑅𝑜 are the elastic stretches at the

inner and outer surface respectively. Also note that 𝛼𝑜 can be expressed in terms of 𝛼𝑖. All together

this shows that Δ𝑃 is indeed the function of 𝛼𝑖. Namely, in view of (3.1.9) and (3.1.11), the elastic

stretches 𝛼𝑖 and 𝛼𝑜 are related by

𝛼3
𝑜 =

𝛾𝑟

𝛾𝜃

(
1 −

𝑅3
𝑖

𝑅3
𝑜

)
+ 𝛼3

𝑖

(
𝑅𝑖

𝑅𝑜

)3
. (3.1.21)

Dividing the numerator and denominator of the above expression by 𝛾3
𝜃

it is convenient to define

Γ = 𝛾𝑟/𝛾𝜃 = Γ(𝑅), and Ξ = −𝛼3𝑅𝛾
′
𝜃/𝛾𝜃 = Ξ(𝑅)

whereupon (3.1.20), utilizing (3.1.4) and (3.1.9), takes the alternative form

Δ𝑃 =

∫ 𝛼𝑜

𝛼𝑖

Γ

Γ + Ξ − 𝛼3
𝜕𝑤

𝜕𝛼
𝑑𝛼, (3.1.22)

which presents a general relation between the amount of growth, applied pressure, and deformation

resulting from growth. Equation (3.1.22) gives the residual stress fields because of the growth in

the absence of the loading. It also shows that the growth rate might affect the residual stress fields

due to the existence of 𝛾′
𝜃

in Ξ in addition to the growth functions [30]. In evaluating (3.1.22)

both Γ and Ξ may vary with 𝑅 so the integration with respect to 𝛼 requires a parameterization of

Γ and Ξ as a function of 𝛼 to properly account for 𝑣 within the integral, i.e., Γ(𝑅) = Γ̃(𝛼), and

Ξ(𝑅) = Ξ̃(𝛼).
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For the remainder of this Section 3.1, attention is confined to a special case: homogeneous

growth of the spherical shell meaning that the growth functions 𝛾𝑟 and 𝛾𝜃 are independent of 𝑅.

Thus Γ is a constant scalar, and Ξ = 0. Equation (3.1.22) yields to

Δ𝑃 =

∫ 𝛼𝑜

𝛼𝑖

Γ

Γ − 𝛼3
𝜕𝑤

𝜕𝛼
𝑑𝛼. (3.1.23)

The classical incompressible isotropic hyperelastic result with no growth is achieved upon setting

Γ = 1 (see for example (7.18) of [55] and (5.3.21) of [91]). This setting also corresponds to the

isotropic growth (pure dilatation) that produces no residual stress in the shell. Equation (3.1.23)

also retrieves the generalized swelling form that given in (28) of [150] and (22) of [97]. The form

of constitutive model requires to be specified at this point so as to determine the stress fields.

In this regard, we shall consider the well-known Mooney-Rivlin model to be used in specific

examples, namely

𝑊MR(𝐼1, 𝐼2) =
1
2
𝜇
(
𝜅(𝐼1 − 3) + (1 − 𝜅) (𝐼2 − 3)

)
, (3.1.24)

where 𝜇 is the shear modulus with the unit of stress. 𝐼1 and 𝐼2 are the principal invariants given

already in (3.1.8). 𝜅 is a scalar material parameter in the range 0 ≤ 𝜅 ≤ 1 to be consistent with

the Baker-Ericksen inequalities. The shear modulus 𝜇 vary with the position within the spherical

shell, i.e., 𝜇 = 𝜇(X); however, we restrict attention to homogeneous shear modulus for now despite

of the possibility of growth-induced changes. One enables to obtain the auxiliary form of the strain

energy function, using (3.1.8), that

𝑤MR(𝛼) =
1
2
𝜇
(
𝜅(𝛼−4 + 2𝛼2 − 3) + (1 − 𝜅) (2𝛼−2 + 𝛼4 − 3)

)
. (3.1.25)

3.2 Growth-Induced residual stress fields in single layer spherical shell

For the case of material model (3.1.24), the combination of (3.1.23) and (3.1.25) yields to

an integral that provides a relation between: amount of growth, applied pressure Δ𝑃, and the

deformation of inner surface. By performing integration, and substitution of the boundaries in

the view of (3.1.21), one can readily obtain an analytical expression where the parameter 𝑟𝑖 is

the only unknown. In the absence of pressurization (Δ𝑃 = 0), the stress field corresponds to the
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Figure 3.1 Radial and circumferential residual stresses in a growing shell 𝜎𝑟𝑟 (red), and 𝜎𝜃𝜃 (blue)
generated by radial growth (left panel) and area growth (right panel). Here, 𝜇 = 1, 𝑅𝑖 = 1, 𝑅𝑜=2
with the following growth constants: 𝛾𝑟 = 2 and 𝛾𝜃 = 1 in the left panel and 𝛾𝑟 = 1 and 𝛾𝜃 =

√
2 in

the right panel.

residual stress field as a result of the growth. Thus the deformed inner radius 𝑟𝑖 can be determined

by applying the boundary conditions and subsequently the whole kinematic becomes fully known

through (3.1.11). Eventually, the radial residual stress 𝜎𝑟𝑟 and the circumferential stress 𝜎𝜃𝜃 can be

determined via (3.1.22) and the equilibrium equation (3.1.15) respectively.

Suppose now that the amount of growth is chosen in the way that the volume of the shell

becomes double, i.e., 𝑣 = 2. Here we consider two alternative growth forms to make a quantitative

characterization of the residual stress fields. Setting 𝛾𝑟 = 1 and 𝛾𝜃 = 1, equation (3.1.4) leads to

𝛾𝜃 =
√

2 and 𝛾𝑟 = 2. The growth constant pairs correspond to area (𝛾𝑟 = 2, 𝛾𝜃 = 1) and radial

(𝛾𝑟 = 1, 𝛾𝜃 =
√

2) growth in the shell respectively. The left and right panel of figure 3.1 shows the

radial and circumferential residual stress fields on account of radial and area growth respectively.

Figure 4 also exhibits the residual stress fields for the Mooney-Rivlin form with alternative values

of 𝜅.

Figure 3.1 confirms that the growth causes the residual stresses even in the absence of any

external loading. The same stress fields have already shown in Fig. 15.5 of [50] but for only 𝜅 = 1.

It also shows that the different growth forms, i.e., radial and area growth, influence the qualitative

behavior of the residual stress fields. Namely, the radial growth leads to compressive stress whereas
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the area growth causes tensile stress along the radius of the spherical shell. The radial stress 𝜎𝑟𝑟 is

of a single sign in both cases. However, the sign of 𝜎𝜃𝜃 coincides with the sign of 𝜎𝑟𝑟 in the inner

surface, then the sign changes as goes to the outer surface of the shell. Hence, the circumferential

stress 𝜎𝜃𝜃 can become either compressive or tensile depending on the location. The residual stress

profiles produced by area and radial growth have also different characteristics. Most notable is that

the radial growth shows a localization tendency towards the inner surface whereas the area growth

leads to a more evenly distributed stress response.

The value of 𝜅 slightly affect the qualitative behavior of the residual stress regardless of the

form of growth. Although the qualitative behavior stays the same for all cases, the magnitude of

residual stress increases as the value of 𝜅 decreases. Our focus is here to understand the behavior

of residual stress under different growth conditions instead of a particular response of a material

model. Therefore, the attention is restricted for developing a treatment for the following examples

using 𝜅 = 1 that correspond to the well-known Neo-Hookean constitutive model

𝑊NH(𝐼1) =
𝜇

2
(𝐼1 − 3). (3.2.1)

Considering the spherical symmetry, (3.2.1) can be written in the form of 𝑊̃ (𝛼𝑟 , 𝛼𝜃) = 1
2𝜇(𝛼

2
𝑟 +

2𝛼2
𝜃
− 3) then one enables to obtain, using (3.1.6), that

𝑤(𝛼) = 𝜇

2
(𝛼−4 + 2𝛼2 − 3). (3.2.2)

For the case of material model (3.2.2), (3.1.23) turns in the following form

Δ𝑃 = 2𝜇Γ
∫ 𝛼𝑜

𝛼𝑖

𝛼 − 𝛼−5

Γ − 𝛼3 𝑑𝛼. (3.2.3)

For the purposes in what follows, the section continues to provide the residual stress fields for

alternative growth cases by applying the same solution procedure to (3.2.3). The alternative growth

forms are determined as follows. Following the aforementioned specific example, the growth field

is again set as a constant and for 𝑣 = 2. The radial and area growth forms showed in the previous

example are included and labeled as the case I and V in table 3.1. Three alternative pairs of growth

constants are considered along with these two forms. As the third case, the isotropic growth where
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𝛾𝑟 = 𝛾𝜃 thus Γ = 1 is considered. Eventually, two more cases for the intermediate Γ values are

generated by taking into consideration the growth field constraint.

Table 3.1 Five alternative growth constants pairs all giving 𝑣 = 2.

Case 𝛾𝑟 𝛾𝜃 Γ Type of Growth
1 2 1 2 radial growth only
2 1.65 1.10 1.5 radial growth > area growth
3 3√2 3√2 1 isotropic growth
4 1.13 1.32 0.85 area growth > radial growth
5 1

√
2 0.70 area growth only

Figure 3.2 Residual stress fields with 𝜎𝑅𝑅 in the left panel, and 𝜎𝜃𝜃 in the right panel. Here, 𝜇 = 1,
𝑅𝑖=1, 𝑅𝑜=2 and with the following growth constants ratio given in the table 3.1 as Γ = 2 (solid),
Γ = 1.50 (solid with square marker), Γ = 1 (dotted), Γ = 0.83 (dash-dotted), and Γ = 0.707
(dashed).

Plots of 𝜎𝑟𝑟 and 𝜎𝜃𝜃 shown in figure 3.2 reflects how the type of growth affect the behavior

of residual stress fields. The sign of residual stress is consistent with the observation we made

in the previous example. The sign of 𝜎𝑟𝑟 depends on whether 𝛾 is less than or greater than one.

Namely, the cases in which radial growth is dominant or Γ > 1 generates a compressive residual

stress field whereas the cases in which Γ < 1 leads to the tensile compressive stress in the radial

direction. The radial stress vanished at the boundaries and is of single sign in for all cases. In

contrast, the circumferential residual stress takes both positive and negative values for all cases.

The sign of 𝜎𝜃𝜃 is initially the same with the sign of 𝜎𝑟𝑟 associated with the same growth type
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but then changes towards the outer radius. The location where the sign change closer to the outer

radius as Γ decreases. 𝜎𝑟𝑟 show a nonmonotonic behavior involving two intervals: increase to a

local maximum followed by a monotone decrease with 𝑅 → 𝑅𝑜. However, 𝜎𝜃𝜃 is one of continued

monotone the magnitude of residual stress decreases as 𝑅 → 𝑅𝑜. Therefore, the maximum residual

in radial direction stress occurs somewhere closer to the inner surface whereas it occurs at the

inner boundary in the circumferential direction. Differently, if the growth is isotropic (Γ = 1), the

residual stress field in both radial and circumferential direction is vanished for everywhere.

Figure 3.3 The influence of growth on the inflation response as determined by (3.2.3) for five
different growth constant pairs given in table 3.1, 𝑅𝑖=1, 𝑅𝑜=2 and 𝜇=1.

Lastly, we shall provide a demonstration of the pressure-inflation response of a growing spherical

shell for the growth constants pairs given in table 3.1. One can also determine the pressure-inflation

response by applying the aforementioned treatment to (3.2.3). This gives plots of Δ𝑃 with respect

to the elastic stretch at the inner boundary 𝛼𝑖, as shown in figure 3.3. The negative portion
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of pressure-inflation graphs is not displayed. Following the standard classification scheme for

spherical inflation [27], all cases show a so-called type (b) behavior, meaning that Δ𝑃 increase

to a local maximum followed by monotone decrease. Positive pressurization (Δ𝑃 > 0) leads to

inflation for all cases with the different local maximum values ranging between 1.73 and 0.56. In

the absence of the pressurization Δ𝑃 = 0, isotropic growth leads to dilatation (𝑟3 = 𝑣𝑅3) that gives

𝑟
′
= 𝜆. Here, 𝛼𝑎 is varying from 0.74 (Case-I) to 1.15 (Case-V) depending on the type of growth.

It can be conclude that as the area growth gets dominated the inner radius of the sphere is pushed

out more, depending on the Γ. In other words, smaller Γ values correspond to higher strain levels

at the inner surface of the sphere.

3.3 Kinematics for volumetric growth of a bilayer spherical shell

In Section 3.1, the residual stress fields in the single-layer Neo-Hookean type spherical shell

for the alternative growth forms are presented. The treatment of single-layer shells provided useful

insight into the residual stress fields associated with the growth field. However, the multi-layered

structures are more predominant among the biological tissues and organs, for instance, arteries [56],

airways [52], and brain [106]. In case of multilayered structures, the relative stiffness, growth rate

and thickness ratio of each layer could play a role in the behavior of residual stress fields. One of

the hypothesis, which explains the cortical folding, already based on the different tangential growth

ratio of gray matter (top layer) and white matter (inner layer). A recent experimental study, which

presents the residual stress field in a developing ferret brain, also supports this hypothesis [144].

The differential growth conditions need to be addressed to understand the residuals stresses in a

growing multi-layered structure. A treatment is therefore developed to determine the qualitative

behavior of residual stress fields in a bilayer spherical shell following the framework used in section

3.1. The reference configuration is now partitioned into two parts: an inner core 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑚

and an outer shell 𝑅𝑚 ≤ 𝑅 ≤ 𝑅𝑜 where 𝑅𝑚 denotes the initial interface radius. Each experiences

homogeneous growth but with possibly different values for 𝛾𝑟 and 𝛾𝜃
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𝛾𝑟 =


𝛾𝑖𝑟 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑚

𝛾𝑜𝑟 𝑅𝑚 ≤ 𝑅 ≤ 𝑅𝑜

𝛾𝜃 =


𝛾𝑖𝜃 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑚

𝛾𝑜𝜃 𝑅𝑚 ≤ 𝑅 ≤ 𝑅𝑜

(3.3.1)

where the 𝑖 and 𝑜 subscripts stands for inner and outer layers respectively. Similar to (3.1.4), the

local volume change ratio of layers can be expressed as

𝑣𝑖 = 𝛾𝑖𝑟𝛾
2
𝑖𝜃 , and 𝑣𝑜 = 𝛾𝑜𝑟𝛾

2
𝑜𝜃 . (3.3.2)

where 𝑣𝑖 and 𝑣𝑜 represent the total change in volume of each layer. Note that 𝑣𝑖 and 𝑣𝑜 are constant

as a function of 𝑅 due to homogeneous growth.

The relations given in (3.1.9) and (3.1.10) can be applied to the inner and outer layer individually

with an easy subscript modification. It is assumed that the inner and outer are perfectly bonded.

Integrating (3.1.10) from the interface to a generic radial value 𝑅 gives

𝑟3(𝑅) =


𝑟3
𝑚 − 3

∫ 𝑅𝑚

𝑅

𝑣𝑖 (𝜁) 𝜁2𝑑𝜁, 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑚,

𝑟3
𝑚 + 3

∫ 𝑅

𝑅𝑚

𝑣𝑜 (𝜁) 𝜁2𝑑𝜁, 𝑅𝑚 ≤ 𝑅 ≤ 𝑅𝑜,

(3.3.3)

where 𝑟𝑚 = 𝑟 (𝑅𝑚). Due to the compatibility condition, there is no need to use the separate notation

for the parameter 𝑟𝑚. The deformation mapping (3.3.3) enables one to obtain the following form

of the radial deformation for each layer

𝑟 (𝑅) =


(
𝑟3
𝑚 − 𝑣𝑖 (𝑅3

𝑚 − 𝑅3)
)1/3

, 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑚(
𝑣𝑜 (𝑅3 − 𝑅3

𝑚) + 𝑟3
𝑚

)1/3
, 𝑅𝑚 ≤ 𝑅 ≤ 𝑅𝑜 .

(3.3.4)

Here (3.3.4) provides a map for the deformation in terms of 𝑟𝑚 which is the only unknown

parameter. With the aid of the volume constraint (3.1.9), the elastic stretches at the inner and outer

layer are written, using (3.3.4), as
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𝛼3(𝑅) =



(
𝑟𝑚

𝛾𝑖𝜃𝑅

)3
− Γ𝑖

(
𝑅3
𝑚

𝑅3 − 1
)
, 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑚,

(
𝑟𝑚

𝛾𝑜𝜃𝑅

)3
+ Γ𝑜

(
1 −

𝑅3
𝑚

𝑅3

)
, 𝑅𝑚 ≤ 𝑅 ≤ 𝑅𝑜,

(3.3.5)

where Γ𝑖 = 𝛾𝑖𝑟/𝛾𝑖𝜃 and Γ𝑜 = 𝛾𝑜𝑟/𝛾𝑜𝜃 . Following the derivations from (3.1.15) to (3.1.23) in the

previous section, one can derive the general form of the stress equation for a spherical deformation

in which a homogeneous growth is taken into account. Similarly, in case of a bilayer spherical

shell, (3.1.23) generalizes to

Δ𝑃 ≡ 𝑃𝑖 − 𝑃𝑜 =
∫ 𝛼𝑟𝑚

𝛼𝑟𝑖

Γ𝑖

Γ𝑖 − 𝛼3
𝜕𝑤(𝛼)
𝜕𝛼

𝑑𝛼 +
∫ 𝛼𝑟𝑜

𝛼𝑟𝑚

Γ𝑜

Γ𝑜 − 𝛼3
𝜕𝑤(𝛼)
𝜕𝛼

𝑑𝛼. (3.3.6)

where 𝛼𝑟𝑖 = 𝛼(𝑅𝑖), 𝛼𝑟𝑜 = 𝛼(𝑅𝑜) and 𝛼𝑟𝑚 = 𝛼(𝑅𝑚) are the elastic stretches, already given in (3.3.5),

at the inner, outer and interface respectively, and Δ𝑃 denotes the pressure difference across the

complete two layer spherical shell. Equation (3.3.6) provides a relation between the amount of

growth of each layer, the applied pressure and the deformed interface radius 𝑟𝑚. In the absence of

pressurization i.e., Δ𝑃 = 0, (3.3.6) corresponds the residual stress fields in the layers due to growth.

At this point, the material model should be specified to obtain the qualitative behavior of the

residual stress field. A neo-Hookean material model given in (3.2.1) but with a possibly different

shear modulus 𝜇 is utilized for each individual layer

𝜇 =


𝜇𝑖, 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑚,

𝜇𝑜, 𝑅𝑚 ≤ 𝑅 ≤ 𝑅𝑜 .

(3.3.7)

For the case of material model (3.2.1) with layer-specific shear moduli (3.3.7), in the absence of

pressurization (3.3.6) takes to form of

𝜇𝑖Γ𝑖

∫ 𝛼𝑟𝑚

𝛼𝑟𝑖

𝛼 − 𝛼−5

Γ𝑖 − 𝛼3 𝑑𝛼 + 𝜇𝑜Γ𝑜
∫ 𝛼𝑟𝑜

𝛼𝑟𝑚

𝛼 − 𝛼−5

Γ𝑜 − 𝛼3 𝑑𝛼 = 0, (3.3.8)

in which enable one to obtain the relation between the amount of growth and the deformation of neo-

Hookean spherical shell. Equation (3.3.8) can be seen the additive form of the separate responses

of the inner and outer layer. The explicit integration of (3.3.8) gives an analytical expression of
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a function of 𝑟𝑚 which is the single unknown parameter. Once 𝑟𝑚 is determined from solving

(3.3.8), the deformation of the inner and outer layer is obtained through (3.3.4). Subsequently, the

residual stress in radial direction 𝜎𝑟𝑟 can be determined using the integration associated with the

layer. Eventually, 𝜎𝜃𝜃 can be determined from the equilibrium equation (3.1.14) for each layer.

While (3.3.8) has here been obtained as a formal process based on (3.3.6) for the case Δ𝑃 = 0,

it is also useful to note its physical meaning. The situation at hand accounts to the consideration

of boundary conditions (3.1.16) with 𝑃𝑖 = 0 and 𝑃𝑜 = 0. The radial normal stress 𝜎𝑟𝑟 continues

to obey (3.1.18) in each layer whereupon (3.1.18) may be integrated across each layer making use

of the substitutions that led from (3.1.18) to (3.1.23). Let 𝑟−𝑚 = 𝑟 (𝑅−
𝑚) and 𝑟+𝑚 = 𝑟 (𝑅+

𝑚) denote

locations on the interface with 𝑟−𝑚 on the core side of the interface and 𝑟+𝑚 on the shell side. It then

follows that

𝜎𝑟𝑟 (𝑟−𝑚) =
∫ 𝛼𝑟𝑚

𝛼𝑟𝑖

Γ𝑖

Γ𝑖 − 𝛼3
𝜕𝑤

𝜕𝛼
𝑑𝛼, (3.3.9)

and

𝜎𝑟𝑟 (𝑟+𝑚) =
∫ 𝛼𝑟𝑜

𝛼𝑟𝑚

Γ𝑜

Γ𝑜 − 𝛼3
𝜕𝑤

𝜕𝛼
𝑑𝛼, (3.3.10)

whereupon (4.8) is simply the statement that

𝜎𝑟𝑟 (𝑟−𝑚) = 𝜎𝑟𝑟 (𝑟+𝑚) (3.3.11)

for the neo-Hookean model. Because there are no shear tractions operating on 𝑟 = 𝑟𝑚 the formal

analysis has recovered the required condition of traction continuity at the interface.

The stress component 𝜎𝜃𝜃 does not enter into the determination of the fractions at 𝑟 = 𝑟𝑚 and

so need not be continuous at the interface. Indeed it follows from (3.1.15) and (3.3.11) that

𝜎𝜃𝜃 (𝑟+𝑚) − 𝜎𝜃𝜃 (𝑟−𝑚) =
𝑟𝑚

2

(
𝑑𝜎𝑟𝑟

𝑑𝑟

���
𝑟+𝑚

− 𝑑𝜎𝑟𝑟

𝑑𝑟

���
𝑟−𝑚

)
. (3.3.12)

Consequently discontinuity in 𝜎𝜃𝜃 at 𝑟 = 𝑟𝑚 correlates with discontinuity in the slope of 𝜎𝑟𝑟 at

𝑟 = 𝑟𝑚.

65



3.4 Growth-Induced residual stress fields in bilayer spherical shell

Figures 3.4, 3.5, 3.6, 3.7, and 3.8 display the residual stress field in the bilayer spherical shell

for all possible combinations of alternative growth fields in the table 3.1. The left and right panels

of these figures show the radial 𝜎𝑟𝑟 and circumferential residual stress 𝜎ΘΘ fields, respectively.

The thickness of layers is considered equal to each other; the location of the interface 𝑅𝑚 = 1.5 is

shown by a dashed black line for all cases. It is assumed that both layers have same shear modulus

(i.e., 𝜇𝑖 = 𝜇𝑜 = 𝜇) in the cases presented in Figs (3.4 - 3.8) and both stress field 𝜎𝑟𝑟 and 𝜎𝜃𝜃

is normalized by 𝜇. The radial stress field 𝜎𝑟𝑟 is continuous for all cases and vanished only at

the boundaries. Except for the pairs of growth fields (I-I), (I-II), (I-III), (I-IV), (II-I), (II-II) and

(II-III), 𝜎𝑟𝑟 has a monotonically either increasing or decreasing behavior. The radial residual stress

field tends to localize to the inner radius 𝑅 = 𝑅𝑖 as the radial growth is more dominant within the

inner layer as shown in figure 3.4 and 3.5. In contrast, the circumferential normal stress 𝜎𝜃𝜃 is

discontinuous except for the cases where both inner and outer layers undergo the same growth field.

Regardless of the type of growth, the differential growth leads to a stress jump at the interface in

the circumferential direction.

Lastly, the behavior of circumferential stress fields remain the same in the outer layer although

the inner layer undergoes different growth fields. It has monotonically increasing or decreasing

behavior for all cases. The magnitude of stress field shifts in the vertical direction gradually as

the growth field became area growth dominated Γ → 0.707. That results in a transition from the

compressive to the tensile stress field in the tangential direction.
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Figure 3.4 Residual stress fields 𝜎𝑟𝑟 and 𝜎𝜃𝜃 for a growing bilayer spherical shell. The growth field
ratio of inner layer is Γ = 2 while the outer layer undergoes a growth with following ratio: Γ = 2
(solid), Γ = 1.5 (dashed), Γ = 1 (dash-dotted), Γ = 0.85 (dotted), and Γ = 0.70 (solid with circle
marker).

Figure 3.5 Residual stress fields 𝜎𝑟𝑟 and 𝜎𝜃𝜃 for a growing bilayer spherical shell. The growth field
ratio of inner layer is Γ = 1.5 while the outer layer undergoes a growth with following ratio: Γ = 2
(solid), Γ = 1.5 (dashed), Γ = 1 (dash-dotted), Γ = 0.85 (dotted), and Γ = 0.70 (solid with circle
marker).

As displayed in previous figures clearly, the difference in growth fields of the layers leads to

the stress discontinuity in the circumferential direction at the interface. Figure 12 exhibits the

circumferential stress difference for each case presented above. The continuous cases in which

the inner and outer layers have the same growth field are not displayed. The red squares show a

transition from compressive to tensional while the blue circles represent a transition from tensional
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Figure 3.6 Residual stress fields 𝜎𝑟𝑟 and 𝜎𝜃𝜃 for a growing bilayer spherical shell. The growth field
ratio of inner layer is Γ = 1 while the outer layer undergoes a growth with following ratio: Γ = 2
(solid), Γ = 1.5 (dashed), Γ = 1 (dash-dotted), Γ = 0.85 (dotted), and Γ = 0.70 (solid with circle
marker).

Figure 3.7 Residual stress fields 𝜎𝑟𝑟 and 𝜎𝜃𝜃 for a growing bilayer spherical shell. The growth field
ratio of inner layer is Γ = 0.85 while the outer layer undergoes a growth with following ratio: Γ = 2
(solid), Γ = 1.5 (dashed), Γ = 1 (dash-dotted), Γ = 0.85 (dotted), and Γ = 0.70 (solid with circle
marker).

to a compressive residual stress field. The black lines are obtained by linear fit in order to illustrate

the change in the stress difference corresponding growth field of the outer layer. The highest slope

is observed in the case where the inner layer grows purely in the radial direction.
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Figure 3.8 Residual stress fields 𝜎𝑟𝑟 and 𝜎𝜃𝜃 for a growing bilayer spherical shell. The growth field
ratio of inner layer is Γ = 0.70 while the outer layer undergoes a growth with following ratio: Γ = 2
(solid line), Γ = 1.5 (dashed line), Γ = 1 (dash-dotted), Γ = 0.85 (dotted), and Γ = 0.70 (solid with
circle marker).

The influence of relative shell thickness on the stress field is now investigated for only the case

of the pair of (IV-II). Figure 3.10 shows the circumferential stress field 𝜎𝜃𝜃 along the normalized

undeformed radius 𝑅̄ as the location of interface is given by the three alternatives 𝑅𝑚 = 1.25,

Figure 3.9 Circumferential stress difference at the interface with respect to the growth ratio of the
inner and outer layer.
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Figure 3.10 The effect of thickness of inner and outer layer on the circumferential stress difference
with respect to normalized radius for the case of the pair of (IV-I). Here 𝑅𝑖 = 1, 𝑅𝑜 = 2, 𝜇𝑖 = 𝜇𝑜 = 1
and with a) 𝑅𝑚 = 1.25 (dashed), b)𝑅𝑚 = 1.50 (solid), 𝑅𝑚 = 1.75 (dotted).

𝑅𝑚 = 1.50, and 𝑅𝑚 = 1.75 (all while keeping 𝑅𝑖 = 1 and 𝑅𝑜 = 2 ). The circumferential stress

difference is illustrated by blue arrow for the case 𝑅𝑚 = 1.25 and denoted by Δ𝜎𝜃𝜃 . As the inner

layer thickness decreases, the behavior of the stress field of this layer transforms monotonically

decreasing into monotonically increasing. On the other hand, only the slope of the stress field and

the magnitude of stress at the interface change in the outer layer. For two subcases 𝑅𝑚 = 1.50 and

𝑅𝑚 = 1.75, the sign of stress field is different for either side of interface. However, the residual

stress field has negative sign (compressive) at both side of the interface for the case of 𝑅𝑚 = 1.25.

This sign transition is actually occur at 𝑅𝑚 = 1.37. The residual stress at the outer boundary 𝑅 = 𝑅𝑜

is the same for all cases. One also observes that the magnitude of stress difference at the interface

gradually increases as the inner layer becomes thinner.

The residual stress fields of the bilayer sphere with growing dependent material stiffness is

illustrated by considering the same the growth field pair (IV-I) in figure 3.11. For this purpose, two

alternative cases are considered: relatively stiff outer layer 𝜇𝑖/𝜇𝑜 = 1/10 and relatively stiff inner

layer 𝜇𝑖/𝜇𝑜 = 10 in addition to the identically stiff both layers 𝜇𝑖/𝜇𝑜 = 1 that corresponds to blue
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dashed curve in figure 3.7. The thickness ratio of layers is considered equal meaning that 𝑅𝑚 = 1.5

whose location is showed by dashed blue curve in both panels. Similarly, the radial stress field is

continuous and vanished at the inner and outer boundaries. The behavior of radial stress field is the

same which is monotonically decreasing regardless of the relative stiffness ratio. The relatively stiff

inner layer leads to non-monocity specifically parabolic profile whereas a monotonically decreasing

behavior is observed for the relatively compliant inner layer.
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Figure 3.11 The effect of relative shear modulus on the residual stress fields for the case of pair (IV-I)
with three alternative shear modulus ratio: 𝜇𝑖/𝜇𝑜 = 1 (solid), 𝜇𝑖/𝜇𝑜 = 1/10 (dotted), 𝜇𝑖/𝜇𝑜 = 10
(dashed).

3.5 Comparison of results with experimental findings

The number of experimental studies regarding the stress fields in the cortex is highly limited.

However, there are some studies providing an understanding of the formation of growth-induced

residual stress fields within the cortex. The objective of this section is to critically assess the results

obtained from the single and bilayer hyperelastic spherical models in the context of the available

experimental findings.

As detailed in section 1.2.3, there are two experimental works presenting the residual stress

fields in adult mouse brain [143] and evolving ferret brain [144]. The main distinction between

these two works undeniably lies in the anatomical characteristics of the experimental subjects. The

mouse brain is lissencephalic meaning that the outer surface of the brain is smooth. In contrast to
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species with larger brain sizes such as humans, the mouse brain does not experience a gyrification

process. Therefore, the experiment conducted on the mouse brain allows us to make a series of

qualitative observations regarding the stress field in that cortical folding does not play any role. It

is also known that the human brain experiences radial and circumferential growth until the 26th

week of gestation [31]. Hence, the experimental findings could also be useful to understand the

mechanical state of tissue just before the onset of cortical folding.

In the mouse dissection experiment [144], only the radial cuts at various depths have been made

to investigate the stress field in the coronal slice of the mouse brain. The cuts relieve the stress field

perpendicular to the cutting direction. Hence, it can give insight about only the circumferential

residual stress field 𝜎𝜃𝜃 during the analysis because the experimental data is available in this

direction. The cutting locations and their depths have been shown in figure 1.2 by solid and open

arrowheads. Figure 1.2 allows us to estimate the qualitative behavior of residual stress in the gray

matter (GM) (Cf. figure 1.2 a2-b2), gray-white matter (GM-WM) interface (Cf. figure 1.2 a3-b3).

The radial cut only through gray matter stayed closed, which means the compressional residual

stress field across the cut. The relatively wider opening is observed at the GM-WM interfaces. The

opening remains closed in the GM whereas the opening diminishes as goes toward the bulk of the

tissue. It is therefore safe to assume that the white matter, starting from the interface, exhibits a

tensional residual stress field characterized by a decreasing profile extending from the interface to

the inner depths of the tissue. It is also noted that the openings become wider after 15 min the cuts

were made as shown in figure 1.2 a4-b4, because of the viscoelastic nature of the brain soft tissue.

Revisiting the results presented in section 3.2, figure 3.2 showed that both radial and area

growth induce a residual stress field in circumferential direction, including both positive and

negative values. Specifically, cases 4 and 5 given in Table 3.1, where the area growth is more

dominant, lead to a transformation from compressive to tensile residual stress field as goes to

outer radius to inner radius. This is similar to what was observed in the mouse brain experiment.

It is worth noting that the analytical model predicts a stress field that exhibits continuity along

the circumferential dimension. In the event that the stress profile remains continuous across the
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interface, the circumferential stress profile should necessarily attain a zero value at some point

due to the transition from a compression to a tensile stress field when traversing from the cortex

to the subcortex. It is also reasonable to assert that the circumferential stress field should exhibit

discontinuities at the interface. These discontinuities may be attributed to disparities in material

properties or growth profiles between the outer and inner layers.

In Section 3.4, a bilayer spherical model characterized by differential growth conditions was

examined. This may more closely resemble the anatomical features of the mouse brain. The

obtained results reveal that the stress field in the radial direction remains continuous, while the

circumferential residual stress field exhibits discontinuities in scenarios where growth conditions

differ between the layers. Recalling the stress field observed in the mouse brain, it is expected

that the circumferential stress pattern 𝜎𝜃𝜃 should exhibit a positive sign in the region defined by

𝑅𝑖 < 𝑅 < 𝑅𝑚, followed by a transition to a negative sign in the region delimited by 𝑅𝑚 < 𝑅 < 𝑅𝑜.

Consequently, it is reasonable to assert that the cases denoted as (IV-V), (III-V), (III-IV), (II-III),

(II-IV), (II-V), (I-III), (I-IV), and (I-V) are likely to leads to a circumferential stress pattern akin

to that observed in the mouse brain dissection experiment. Assuming both layers undergo an

anisotropic growth process 𝛾𝑟 ≠ 𝛾𝜃 , the resulting residual stress field 𝜎𝜃𝜃 emerges as a consequence

of the outer layer experiencing more tangential growth.
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CHAPTER 4

MICROMECHANIC INVESTIGATION OF THE GYRI-SULCI

4.1 Motivation and background

Traumatic brain injury (TBI) is a broad term referring the pathologies in the brain that occur as

a result of exogenous mechanical forces such as a blast or impact. The consequences of TBI, which

is a major cause of long-term disabilities in both developed and developing countries, are dramatic

- a recent study reported that an estimated ten million people will be affected annually by TBI [68].

Considering the Russian invasion of Ukraine, this number is likely to be higher than estimated.

TBI leads to a wide range of impairments in physical and cognitive abilities that emerge either

immediately (primary) or subsequently (secondary). Primary injuries (PI) are mostly associated

with the transduced energy from the source of impact, which causes an abrupt injury, whereas

the secondary injuries (SI) can be initiated via the PI or observed as a consequence of PI. The

SI causes relatively long-lasting effects [25]. Along with the damage at the macro scale, physical

forces lead to disruption of structural integrity, and dysfunction in the cellular and molecular

processes within the neuron and glial cells. Due to the anisotropic and heterogeneous nature of the

brain, the components of the central and peripheral nervous system can respond differently to the

same intracranial stress and strain [61, 102], which causes distinctive impairments because of the

specialization of the cells to perform a set of specific roles.

An acute TBI can also evolve into progressive neuropathology such as Chronic Traumatic

Encephalopathy (CTE). CTE is defined as "a distinct perivascular accumulation of hyperphospho-

rylated tau (p-tau) in neurons and astrocytes within cerebral sulci" [113]. Tau is a protein that

maintains the stabilization of the microtubule. The phosphorylated tau binds normal tau proteins

and starts accumulating into neurofibrillary tangles (NFTs) [69]. The accumulation of p-tau in NFTs

results in the change in morphology of neuron dendrite and neurotransmitter receptor expression,

which is the main cause of impairments in cognitive abilities and memory loss. NFTs are the most

common biomarkers of tauopathies such as CTE, and Alzheimer’s Disease (AD). The distribution

of NFTs can diverge within the brain tissue depending on the neurodegenerative diseases. For
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instance, NFTs are localized in the base of sulci and perivascular regions of the cortex in CTE

[89]. The risk of developing CTE is higher in people exposed to the repetitive physical impact

such as service members, athletes, hockey players, college, and professional football players. An

MRI-based study showed that the repetitive force impact can lead to a change in the appearance

of subtle hemorrhagic in the base of the sulcus, increases in the width of sulci in the frontal and

occipital cortices, and decrease in total brain volume [78]. It should be noted that not only repetitive

exposure, but a single moderate or severe TBI, could also suffice to initiate a tau pathology like

CTE [132]. The initiation and progression of pathophysiological changes in a living subject is

difficult to detect using currently available diagnostic tools [1]. Yet, histological data clearly show

the distinctive p-tau pathology of CTE in the base of sulci and the spread of NFTs from the epicenter

through white matter, as shown in figure 4.1.

Figure 4.1 Distinct pattern of neurofibrillary tangles seen in CTE: at the depth of sulci (P-R and
U-W), and around the small blood vessels (S, T, X, Y). (Reused from [84] page 47. In the public
domain).

Over the last decade the awareness regarding the long-term neurotraumatic consequences of

TBI has been increased. To this end, several physical mechanisms have been proposed to explain

mechanical deformation associated with the occurrence of CTE. One of the possible mechanisms

is the strain and strain rate localizing at the depth of sulci. Computational models predicted that

the depth of sulci is likely to experience a higher strain and strain rate during TBI [39], [47], [154],

summarized in table 4.1. Regardless of the amplitude and duration of impact, the maximum strain

and strain rate have been observed within the sulcus [47]. The author has also previously reported

that the deviatoric stress is localized at the depth of the sulcus during blast-induced TBI [145]. The
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other injury mechanism is proposed by Kornguth et al. [78], which is called "the water hammer

effect". The water hammer effect is based on the idea that the exogenous impact is transmitted to

the base of the sulci. CSF is driven into the sulci as the elastic brain moves towards the relatively

rigid calvarium and non-compressible CSF. Thus, the base of the sulcus is exposed to the impulse

being transmitted from the skull to CSF, which leads to the damage specifically at the interface of

gray and white matter.

Table 4.1 The details of the computational models simulating the gyri-sulci micromechanics.
Study Domain Injury Mechanism Strain/Strain Rate
[16] Single sulcus Rigid impactor 0.2-0.45/-
[76] Single sulcus Cavitation bubble expansion 0.41/-
[124] Brain (3D) Blast exposure (Shock-Tube) 0.070-0.110 / 5-12 s−1

[39] Axial Brain Slice (2D) Rigid wall impact 0.1-0.25 / -

[47] Brain (3D)
Helmet-to-helmet impact
Fall impact
Road accident

0.6 / 250 s−1

One potential mechanism is cerebrospinal fluid cavitation occurring as a consequence of blast

exposure or impact. Cavitation is the formation and expansion of vapor bubbles in a liquid when the

hydrostatic pressure drops below the vapor pressure. The collapse of the bubble then causes a local

shock wave that produces a compressive strain field onto nearby tissue, which may lead to damage.

The bubble collapse can cause an even higher strain field than the strain field associated with the

incident shock wave passage [123]. Previous studies have experimentally investigated cavitation

generated by blast or blunt impact using SHPB [123], Shock Tube[153] [48], and FlyerPlate [24].

Multiple computational studies have also been performed to simulate the cavitation incident during

TBI [93] [127]. The possible conditions leading to the low-pressure sites where cavitation occurs

during TBI are a) in case of blast-induced TBI, the negative portion of the incident blast wave [93],

b) skull-flexure [111], and c) negative wave reflection at the boundaries because of the acoustic

impedance mismatch of tissue, skull, and CSF. It should also be noted that cavitation may not

necessarily occur solely in the CSF. Cavitation has been observed within soft solid materials, which

could indicate that it may happen within the brain tissue.
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Despite an abundance of theoretical and experimental findings, there is as yet no unambiguous

direct evidence of the occurrence of cavitation in a human brain during impact. Even if such

a piece of evidence were to be found, it is hard to distinguish whether the injury results from

cavitation or another effect pathologically. Still, the cavitation-induced damages is a reasonable

hypothesis to explain the injuries seen in the contrecoup which is likely the site of cavitation.

Multiple computational and experimental studies observed the pressure falls below the threshold

in the contrecoup, [76, 79]. In the previous study [145], the author has computationally predicted

the possible sites where cavitation occurs in the contrecoup during blast exposure. Accumulating

experimental and computational evidence shows that cavitation could also occur within a sulcus

during blast exposure [88] and impact [76]. Such an incident can cause a tauopathy seen in CTE.

In that regard, the Mejia research group has been studying the intrasulcal cavitation and the

response of sulci to cavitation-induced deformation using a simplified brain phantom. My contribu-

tion to this effort focused on build a finite element model to simulate the deformation resulted from

the cavitation occured in the intrasulcal region. The numerical model estimated that the maximum

strain occurs at the depth of sulcus during the expansion of the cavitation bubble [76]. That might

explain the occurrence of tauopathy at the depth of sulci. As additional background, an isolated

single sulcus with varying sulcal depth and radius compressed by a rigid indenter was simulated to

investigate high deformation regions within sulcal cavity in the work of Braun et. al [16]. Although

the magnitude of maximum strain varies, depending on the geometrical parameters, the maximum

strain was similarly observed at the depth of the sulcus in all cases.

Regardless of the injury mechanism and source of impact, the brain soft tissue experiences a

mechanical deformation, which initiates a cascade of neurotraumatic consequences following TBI.

High-strain rate deformation is sufficient alone to lead to tau mislocalization and phosphorylation-

dependent synaptic dysfunction that is the hallmark of CTE [16]. Current understanding of

injury mechanisms of TBI across all spatial scales is still incomplete. Thus, there is a need

for a multidisciplinary effort to understand how physical forces lead to injuries and affect the

neurobiological features across the multiple scales of the brain. Following neuropathological
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findings, it can be suggested that the pathological hallmark of CTE is localized mainly in the region

from the depth of the sulcus spreading towards gray-white matter interfaces and the perivascular

regions.

The computational study presented in the rest of the chapter was developed to investigate the

response of the brain tissue phantom to cavitation, observed in the experimental study [76]. Sections

4.2 and 4.3 presents the computational treatment and results previously published in [76].

4.2 Computational model of cavitation-induced deformation

The intrasulcal cavitation during the experiments grossly expand the sulci (cf. figure 4 on

page 6 in [76]). The experimental results indicated that the onset for cavitation is consistent with

the theoretical value of 𝑃𝑣 ≈ −98.19 kPa (gauge), calculated for water at 20◦C and at the local

atmospheric pressure (101.32 MPa). The experimental onset for cavitation was determined based

on the presence of the first nucleated bubbles in the field of view.

Cavitation has been theorized to be an injury mechanism - often attributed to the high focal

pressures after the bubbles collapse [17]. However, these experimental results also demonstrate the

gyral deformation from bubble expansion within the sulci. From a mechanistic point of view, sulci

could be considered as “notches” in a solid material. As such, their typical response to the effect

of separating their walls from each other would be to concentrate strain / stress at their ends (sulcal

depths). In order to semi-quantitatively evaluate the material response in the depths of the sulci, a

series of numerical simulations of gyral response to bubble formation is performed.

Experimental observations as presented in [76] led to the creation of an elastic two-dimensional

(2D) computational model to simulate the response of the brain tissue phantom to the cavitation

present in the blunt-impact experiments. To this aim, a numerical simulation of a single sulci was

developed to examine the resultant tissue strain from intrasulcal bubble expansion. We assumed a

plane strain and stationary state to simulate the deformation pattern resulted from the formation of

cavitation bubbles.

Figure 4.2 shows the domain of the computational model. Let X denote the initial position of

a point in the given domain. The application of surface tractions will deform this material point X
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to a new location x in a deformed configuration. The displacement of this point is defined by

u ≡ x − X, (4.2.1)

where x and X are vectors showing the initial and deformed location of the same material point

respectively. Thus, the displacement is also a vector and explicitly given in

u = 𝑢𝑥 (𝑥, 𝑦, 𝑧) î + 𝑢𝑦 (𝑥, 𝑦, 𝑧) ĵ + 𝑢𝑧 (𝑥, 𝑦, 𝑧)k̂ (4.2.2)

where 𝑢𝑥 , 𝑢𝑦 and 𝑢𝑦 are the components of displacement vector u in the cartesian coordinate

system with axes 𝑥, 𝑦, 𝑧 and unit vectors î, ĵ, k̂. A small strain treatment is appropriate when the

displacements 𝑢𝑥 , 𝑢𝑦, and 𝑢𝑧 are small. Thus, there is no distinction between the initial and

deformed configuration, i.e., x ≈ X. In linear stress-strain analysis, the deformation is measured

by a small strain tensor 𝝐 associated with the displacement field (4.2.2) that is given by

𝝐 =
1
2
(∇u + ∇uT) =


𝜖𝑥𝑥 𝜖𝑥𝑦 𝜖𝑥𝑧

𝜖𝑦𝑥 𝜖𝑦𝑦 𝜖𝑦𝑧

𝜖𝑧𝑥 𝜖𝑧𝑦 𝜖𝑧𝑧


, (4.2.3)

where ∇u denotes the displacement gradient. Considering a plane strain assumption where the

displacement in the out-of-plane is equal to zero, the displacement vector (4.2.2) reduces to

u = 𝑢𝑥 (𝑥, 𝑦) î + 𝑢𝑦 (𝑥, 𝑦) ĵ + 0k̂. (4.2.4)

Using (4.2.4) it follows that the strain components out of the plane are equal to zero i.e., 𝜖𝑧𝑧 = 𝜖𝑥𝑧 =

𝜖𝑦𝑧 = 0. Thus, the small strain tensor (4.2.3)

𝝐 =


𝜖𝑥𝑥 𝜖𝑥𝑦 0

𝜖𝑦𝑥 𝜖𝑦𝑦 0

0 0 0


. (4.2.5)

At this point, a constitutive model to relate the deformation through the small-strain tensor (4.2.5)

and the stress should be specified to conduct the analysis. The inner and outer layers are considered

as isotropic linear elastic material. In the linear elasticity, the stress tensor 𝝈 is given by

𝝈 = C : 𝝐 ⇔ 𝝈ĳ = Cĳkl : 𝝐kl, (4.2.6)
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where C is the fourth-order elastic stiffness tensor and : represents the double contraction operation.

For an isotropic linear elastic material, two material constants are enough to represent the elasticity

tensor C. In this work, the bulk modulus 𝐾 and the shear modulus 𝜇 are employed. The fourth

order stiffness tensor then has components

Cĳkl =

(
𝐾 − 2

3
𝜇

)
𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘 ), (4.2.7)

where 𝛿𝑖 𝑗 is the Kronecker delta (𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise). One can obtain the other

material parameters using the well-known conversion formulas.

Due to the small-strain assumption, one does not make a distinction between all various stress

tensors in finite deformation. Considering the plane strain assumption, the stress tensor (4.2.6) is

given in the matrix form

𝝈 =


𝜎𝑥𝑥 𝜎𝑥𝑦 0

𝜎𝑦𝑥 𝜎𝑦𝑦 0

0 0 𝜎𝑧𝑧


, (4.2.8)

where the components of stress tensor is explicitly expressed as

𝜎𝑥𝑥 =
(
𝐾 + 4𝜇

3
)
𝜖𝑥𝑥 +

(
𝐾 − 2𝜇

3
)
𝜖𝑦𝑦,

𝜎𝑥𝑦 = 2𝜇𝜖𝑥𝑦,

𝜎𝑦𝑦 =
(
𝐾 − 2𝜇

3
)
𝜖𝑥𝑥 +

(
𝐾 + 4𝜇

3
)
𝜖𝑦𝑦,

𝜎𝑧𝑧 =
(
𝐾 − 2𝜇

3
)
(𝜖𝑥𝑥 + 𝜖𝑦𝑦).

(4.2.9)

One can also notice that 𝜎𝑧𝑧 ≠ 0 despite the fact that 𝜖𝑧𝑧 = 0.

The balance of linear momentum is given by

div𝝈 + 𝜌b = 𝜌
𝜕u2

𝜕𝑡2
(4.2.10)

where 𝜌, and b denote the stress tensor, density, body forces respectively. Body forces b are

regarded negligible, whereupon (4.4.1) for an equilibrium state reduced to

div𝝈 = 0. (4.2.11)
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The computational domain is 40 mm long by 29.32 mm wide and discretized by nearly 14,300

quadrilateral elements. The initial sulcus gap was 1.1 mm, as shown in the blue shaded area in figure

4.2. The sulcus gap is also the location where the cavitation bubbles were observed from the high-

speed imaging. The boundary consists of five parts. The most important is the intrasulcal boundary

𝜕Ω𝐼 which separates the gray matter in the sulcus with the sulcal cavity containing the CSF. In other

words, the CSF itself is not part of the computational domain. The other four parts of the boundary

are top, bottom, left,and right portions labelled 𝜕Ω𝑇 , 𝜕Ω𝐵, 𝜕Ω𝐿 , 𝜕Ω𝑅 respectively, as shown in

Figure 4.4. The presented computational model is developed using COMSOL Multiphysics ® v.5.6

Solid Mechanics Module.

The solid portion which is actually modelled consists of two subdomains: an outer layer of gray

matter and an inner layer of white matter, both of which were modeled using an isotropic linear

elastic material model. The material properties were matched to that of the phantom, specifically

the density and high-frequency (25 Hz) shear modulus of the PAA gelatin [142]. The other elastic

properties (Bulk and Young’s modulus) were computed by well-known elastic conversion formulas

given

K =
2𝜇(1 + 𝜗)
3(1 − 2𝜗) , E = 2𝜇(1 + 𝜗) (4.2.12)

where 𝜇, 𝜗, and E denote shear modulus, Poisson’s ratio, and Young’s modulus of the material.

With the assumption of Poisson’s ratio of 𝜗 = 0.49, the material properties are tabulated in table

4.2.

Table 4.2 The material parameters for Layer 1 and Layer 2 used in the phantom.

Layer Density
(kg/m3)

Shear Modulus
(kPa)

Poisson’s
Ratio

Bulk Modulus
(kPa)

Young’s
Modulus (kPa)

1 (White) 1056 4.19 0.49 208.45 12.48
2 (Gray) 1037 7.27 0.49 361.47 21.66

The effect of the initiation of cavitation-induced bubbles on the surrounding phantom was

characterized by a pressure boundary condition on 𝜕Ω𝐼 . The high-speed video images demonstrate

that the range of total displacement occurring in the phantom adjacent to the cavitation bubble is
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between 2.30 mm and 2.69 mm. A preliminary study was first performed to compute the pressure

magnitude that can lead to the maximum displacement between two sulcal walls measured from

the experiment. In the computational model, the boundary load F𝐴 was then modeled by applying

the scalar pressure magnitude 𝑝 to the normal to the intrasulcal boundary i.e., F𝐴 = −𝑝n on 𝜕Ω𝐼

illustrated in figure 4.4. The magnitude of pressure 𝑝 applied to the sulcal cavity was 11.06 kPa.

This resulted in 2.36 mm maximum displacement between the sulcal walls which is in the range of

displacement observed in the experiment.

In 3-D elasticity, three boundary conditions are required at each boundary point. Considering the

plane strain model problem at hand, the number of boundary conditions reduces to two conditions.

These two boundary conditions were defined to all outer boundaries of the domain except for the

intrasulcal area represented by blue in figure 4.2. These are 1) the displacement is zero in the

normal direction to the boundary

u · n̂ = 0, (4.2.13)

where n̂ is the outward unit normal, and 2) no shear traction, which is formally expressed as

𝝈n̂ − (n̂ · 𝝈n̂)n̂ = 0 on 𝜕ΩT, 𝜕ΩB.𝜕ΩR.𝜕ΩL. (4.2.14)

Together the two boundary conditions (4.2.13) and (4.2.14) are sometimes depicted as a "roller

type" boundary condition. Boundary condition (4.2.14) is a natural boundary condition, but (4.2.13)

is a kinematic boundary condition. For this reason, (4.2.13) is explicitly enforced in numerical

treatments, whereas (4.2.14) may not need to be stated depending on the computational routine.

At the interface between white and gray matter, a displacement continuity condition was

specified over the interface where layer 1 and layer 2 match. The presented model also includes

traction continuity, which is a natural boundary condition because this condition naturally emanates

from the weak form of (4.2.11).

4.3 Examination of the equilibrium response to pressure loading

The numerical model allowed us to detect the locations where heightened mechanical strain is

induced by sulcal expansion arising from cavitation-induced blunt trauma. The contours of strain
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Figure 4.2 Geometrical illustration of 2D plane-strain single sulcus simulation domain [76].

are shown in figure 4.3 to illustrate the response of the brain’s soft tissue to cavitation-induced

sulcal expansion. The results estimated a high tensile strain concentration at the sulcal depth due to

the expansion. The maximum strain 𝜖𝑥𝑥 is measured 0.41% at the tissue / CSF interface specifically

right at the deepest point of the sulcus suggesting that this is a point of stress concentration. The

strain then reduces toward the bulk of the tissue. Based on figure 4.5, the strain decays along the

𝑦−axis when traversing from the tip of the sulcus toward the bulk of the tissue. Then, the strain

𝜖𝑥𝑥 transitions from tensile to compressive at 𝑦 ≈ 1.68 mm, and keeps decaying at a lower rate

until it reaches the layer 1 / layer 2 interface at 𝑦 = 4.15 mm. At that point, the strain 𝜖𝑥𝑥 exhibits a

slope discontinuity and reversal, relaxing asymptotically toward zero strain. Hence, this interface

is also the location at which the strain attains its minimum value (−0.17), which is the maximum

magnitude of compressive strain. As such, it can be considered a stress-concentrating feature,

though milder than the stress-concentration at the tip of the sulcus.

A qualitative comparison between our predicted contours of tensile strains secondary to bubble

expansion and the tau pathology found at the depths of the sulci have multiple similarities as has
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Figure 4.3 Computed normal strain 𝜖𝑥𝑥 around the sulcus due to deformation induced by expanding
cavitation bubbles. The computational analysis solves an equilibrium boundary value problem that
is driven by the pressure 𝑝 =11.06 kPa within the sulcal cavity. Red represents tensile strain, while
blue represents compressive strain [76].

been reported in neuropathologic investigations of human subjects [40, 84]. Firstly, high tensile

strains are located in the same location and have the same length scale ∼ 1𝑚𝑚 that is roughly

symmetric between the two sides of the sulci and is of similar positioning as tauopathy observed in

early CTE. The highest strain resulting from the expansion is measured as 0.41 from the location
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of the deepest point of the sulcus. The compressive maximum strain in x-direction 𝜖𝑥𝑥 is 0.17

and measured around the endpoint of the semi-circular of the sulcus on either side, as shown with

blue in Figure 4.3. The compressive strain seen in the simulation results are symmetric in nature

and extend distally outwards from the deepest point of the sulcus on either side. The maximum

compressive strain is observed at a ±75.6◦ angle off of the innermost portion of the sulcus.

Figure 4.4 indicates the distribution of strain along the semi-circular CSF-brain interface at the

sulcal depth. To characterize the distribution of strain along the semi-circular interface , a polar

coordinate system with radial origin at the center of the semi-circular CSF-brain interface is utilized

and 𝜃 = 0◦ at the middle point of the arc (deepest point of sulcus). Note that, for convenience, the

angle as positive in the clockwise direction is defined. Given that the sulcus is 1.1 mm wide, the

radius of the CSF-brain interface (sulcal depth) is 𝑟 = 0.55 mm. Based on this coordinate system,

we recovered the strain as a function of angle along the CSF-brain interface in figure 4.4. From the

figure, the maximum strain (0.41) is seen at 𝜃 = 0◦. The strain then reduces along the CSF-brain

interface on both sides of the maximum, reaching a minimum strain value of −0.17 (maximum

compressive strain) at ±75.6◦.
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Figure 4.4 Computed distribution of the normal strain component in 𝜖𝑥𝑥 along the semi-circular
CSF-brain interface at the sulcal depth (r = 0.55 mm, −90◦ ≤ 𝜃 ≤ 90◦) [76].
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Previous computational models have predominantly centered their attention on the localization

of strain and strain rate at the depths of the sulci as a mechanism leading to a physical injury, [16].

While the physical injury mechanisms are mostly linked to strain and strain rates, comprehending

the accumulation of stress is also important to understand these physical injury mechanisms.

To this end, von Mises stress 𝜎mises is utilized i.e., 𝜎mises =

√︃
3
2s : s where s is the deviatoric

stress 𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 − 1
3𝛿𝑖 𝑗𝜎𝑘𝑘 . The contour of figure 4.6 shows von Mises stress resulting from the

deformation triggered by the expansion of a cavitation bubble within the intrasulcal gap. Likewise,

the results clearly indicate that the stress field is localized particularly within the sulcal arc and

its adjacent walls. The maximum von Mises stress is recorded as 5.3 kPa along the semi-circular

interface between the cerebrospinal fluid (CSF) and gray matter, making this region a site of stress

concentration. Subsequently, the von Mises stress levels diminish as one moves deeper into the

bulk of the brain tissue.
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Figure 4.6 Von-Mises stress pattern within the single sulcus domain.
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4.4 Examination of the response of sulci to transient loading

In the preceding section, a static boundary condition is implemented to examine the response

of a single sulcus to the deformation induced by the expansion of a cavitation bubble within the

intrasulcal region. However, it is essential to acknowledge that the formation and expansion of

cavitation bubbles represent a time-dependent phenomenon, as demonstrated in Figure 4 of the

work by [76]. To address the temporal response of the material, a 2D plane strain computational

model is developed in the context of linear elastodynamics. For this purpose, a time-dependent

loading profile is adopted to simulate the expansion of the intrasulcal bubble. In the absence of the

body forces, the balance of linear momentum (4.2.10) is reduced to

div𝝈 = 𝜌
𝜕u2

𝜕𝑡2
. (4.4.1)

Following the framework presented in section 4.2, the geometry of reference configuration, mesh

structure, elastic properties and the boundary conditions outside the sulcus remain the same in this

fully-dynamic computational model.

The primary modification lies in the specification of the time-dependent pressure boundary

condition on the intrasulcal cavity boundary 𝜕Ω𝐼 . Zero displacement initial conditions are taken

throughout the domain. The pressure loading is in the form of a ramp and hold function as shown in

the figure 4.7. The slope of this linearly increasing portion of the pressure profile on this boundary

is obtained from experimental data spanning from 0.765 ms to 1.761 ms, as presented in Figure

5 in [76]. The rate of pressure increase is around 5.5𝑥103 kPa/ms. It is significant to note that

the experimental data was obtained from a pressure sensor located in the counter-coup region,

and it is assumed that the characteristics of the pressure profile developing within the intrasulcal

region are akin to those in the counter-coup region. A linear elastic constitutive model is again

utilized to model the gray and white matter, and as such this analysis does not treat time dependent

effects within the constitutive response itself, such as viscoelastic or poroelastic phenomena. The

simulation was conducted over the initial 7.5 ms subsequent to the initiation of cavitation bubble

expansion.
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.
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Figure 4.7 Pressure loading profile applied to the external boundary 𝜕Ω𝐼 .

In what follows we specifically examine the quantity known as the equivalent deviatoric strain,

denoted as 𝜖𝑑𝑒𝑣 which is 𝜖𝑑𝑒𝑣 = 2
3

√︃
𝜖2
𝑥𝑥 − 𝜖𝑥𝑥𝜖𝑦𝑦 + 𝜖2

𝑦𝑦 + 3𝜖2
𝑥𝑦. The equivalent deviatoric strain

combines multiple strain tensor components into a scalar value. Hence, it facilitates examine the

regions experiencing a strain in various directions. The contours of figure 4.8 illustrate the temporal

and spatial distribution of 𝜖𝑑𝑒𝑣 the deformation within the sulcus which specifically accumulated

in the regions of gray matter and the gray-white matter interface. The highest values of 𝜖𝑑𝑒𝑣 are

recorded around the semi-circular interface between cerebrospinal fluid (CSF) and gray matter at

the depth of the sulcus throughout the deformation history.

Furthermore, the sulcal walls adjacent to the sulcal arc exhibit relatively elevated deviatoric

strain during the deformation. This is represented in Figure 4.8, which also illustrates the deforma-

tions undergone by the single sulcus in response to the pressure ramp. The black boundary lines

within Figure 4.8 delineate the reference configuration prior to any deformation.

In Figure 4.9, the change in 𝜖𝑑𝑒𝑣 over time in the deepest point of the sulcus, which corresponds

to 𝜃 = 0 shown in the inset of figure 4.4. The 𝜖𝑑𝑒𝑣 experiences an increase within the first 2.42
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Figure 4.8 Time-lapse images of 𝜖𝑑𝑒𝑣 at nine different time step.

ms of the simulations, reaching a local maximum value of 0.47. During this time interval, both

the sulcal walls and the sulcal arc expand, as evident in the top row of figure 4.8. It is followed

by the propagation of the deformation along the sulcal walls moving away from the sulcal arc,
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which gradually returns to its equilibrium position simultaneously. At time instance 𝑡 = 3.82 ms

and 𝑡 = 4.69 ms, the sulcal arc region exhibits the lowest levels of deviatoric strain. However, the

sulcal arc region starts expanding again which can be explicitly seen in figure 4.8 at 𝑡 = 6.0 ms.

This resurgence in expansion corresponds to another surge in equivalent deviatoric strain, reaching

a maximum value of 0.52 at 𝑡 = 6.67 ms.

Figure 4.9 Computed time history of equivalent deviatoric strain observed at the deepest point of
the sulcus.

One potential underlying physical mechanism associated with CTE involves the localization

of strain and strain rate within the depths of the sulci during brain motion following an impact.

Hence, our focus now shifts toward an analysis of the temporal and spatial distribution of the strain

rate induced by the deformation resulting from the expansion of the cavitation bubble. The rate of

strain tensor is considered to address the possible effect of the strain rate. The rate of strain tensor

is the symmetric part of the spatial gradient of velocity field i.e., 𝑑𝑖 𝑗 = 1
2 (𝑙𝑖 𝑗 + 𝑙 𝑗𝑖) where the spatial

gradient of velocity field 𝑙𝑖 𝑗 is given by 𝑙𝑖 𝑗 = 𝑣𝑖, 𝑗 . Figure 4.10 demonstrates the variations in the

normal components of 𝑑𝑖 𝑗 , as observed at the deepest point of the sulcus. Both 𝑑𝑥𝑥 and 𝑑𝑦𝑦 exhibit
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a fluctuating pattern over the course of the simulation and attains local maxima at time instances of

1.10, 3.66, and 5.69 ms. The maximum strain rate is measured at 429 (1/s) in the x-direction and

-456 (1/s) in the y-direction at 3.65 ms.

(a)

(b)

(c)
(e)

(f)(d) d

d

1.10 3.65 5.66

Figure 4.10 Computed time history of the normal components 𝑑𝑥𝑥 (solid - black) and 𝑑𝑦𝑦 (dashed-
red) at the deepest point of the sulcus.

For the aforementioned time instances, the spatial distribution of strain rate is illustrated in

the contours depicted in Figure 4.11, which provides insight into the spatial representation of

the strain rate at the time when the maximum strain rate is observed. It should also be noted

that figure 4.11 illustrates the deformations as well and the black boundary lines delineate the

reference configuration prior to any deformation for the given time instance. The gray matter

experiences relatively higher strain rate comparing to the white matter during the computed time

histories, specifically localized around the sulcal arc and the sulcal walls. The results reveal that

the deformation generated by the expansion of the cavitation bubble at the intrasulcal region leads

to highly localized strain and strain rate fields at the deepest of the sulcus. From a mechanistic
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Figure 4.11 Time-lapse images of normal components 𝑑𝑥𝑥 (top row) and 𝑑𝑦𝑦 (bottom row) directions
at 1.10, 3.65 and 5.66 ms (from left to right).

point of view, due to the anatomical structure of the sulcus and the loading conditions, the u-shaped

semicircular notched edge analogy might be adopted to explain the highly localized strain pattern in

the depth of the sulcus. Previous studies [99] show that there is a relation between the geometrical

properties of the notch and the strain / stress concentration factor. The ratio of the depth of the

sulcus to the radius of the semi-circular end is linearly proportional to the concentration factor.

However, it has not been investigated if this relationship holds for bubble-induced strain in sulci –

as found in this study.

For an isotropic linear elastic material there are two characteristic wave speeds in the bulk.
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The first is the shear wave speed 𝑐𝑠 =
√︃
𝜇

𝜌
which is characterized by the perpendicular particle

displacement to the wave propagation direction. The second is the dilatational wave speed 𝑐𝑑 =√︃
3𝐾+4𝜇

3𝜌 which is characterized by the particle displacement in the direction of wave’s propagation

[87]. For the properties given in Table 4.2 these wave speeds are shown in Table 4.3. With the

aid of these elastic wave properties, the distance between the gray-white matter interface to side

boundaries (e.g., 𝜕Ω𝐿 , 𝜕Ω𝑅) and top boundary 𝜕Ω𝑇 , and the thickness of gray matter which are

14.11 mm, 17.91 mm and 3.6 mm respectively, one can compute how far waves travel during

the total simulation time. This in turn enables the determination of specific times at which first

interactions take place.

Namely, dilatational waves originating at the external boundary 𝜕Ω𝐼 then travel through the

gray matter, reaching the white matter interface after 0.19 ms. The required time for the dilatational

waves to reach the lateral boundaries and reflect back to the sulcal cavity boundary 𝜕Ω𝐼 is around

2.36 ms. Hence, the dilatational waves can travel multiple times back and forth between the lateral

boundaries (e.g., 𝜕Ω𝑅, 𝜕Ω𝐿), and external boundary 𝜕Ω𝐼 . The dilatation waves reflected from the

lateral boundaries reach the gray and white matter interface at 2.17 ms, 4.53 and 6.89 ms and the

sulcal cavity at 2.36 ms, 4.72 ms and 7.08 ms during the simulation time. Similarly, there is a

sufficient time for the dilatational waves to reach the top boundary 𝜕Ω𝑇 and reflect back to sulcal

cavity boundary 𝜕Ω𝐼 . Due to the longer distance between these two boundaries, the required time

for the dilatational wave to travel back and forth is slightly different, which is around 2.89 ms.

Therefore, the reflected dilatational waves reach to the sulcal cavity at 2.89 ms and 5.79 ms during

the simulation time.

Similarly, shear waves originating from the sulcal cavity 𝜕Ω𝐼 reaches the white matter interface

after traveling through the gray matter. Due to the relatively lower wave propagation velocity, shear

waves reach the interface around 1.36 ms, then continue to propagate through the far boundaries.

However, the shear waves interacting with the interface can propagate around 12.21 mm within the

simulation time considered. In other words, the shear waves do not have sufficient time to regain

the gray-white matter interface and sulcal cavity boundary 𝜕Ω𝐼 . Hence, shear wave interaction
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around the interface and the sulcal depth was not observed in this model.

The impedance of both subdomain associated with the dilatational 𝑍𝑑 and shear 𝑍𝑠 wave are

computed to understand how the waves behave specifically at the gray-white matter interface, i.e.,

𝑍 = 𝜌𝑐 where 𝑐{·} denotes the shear 𝑐𝑠 and dilatational 𝑐𝑑 wave velocity. The specific impedance

of gray and white matter are also given in Table 4.3. The impedance of gray matter associated

with the dilatational and shear wave velocity are approximately 26% greater than that of white

matter. This impedance difference results in reflecting of certain part of the incident wave while the

rest part is transmitted through the interface. The reflection coefficient 𝑅 at the gray-white matter

interface was computed -0.13, i.e., 𝑅 =
𝑍𝑤−𝑍𝑔
𝑍𝑔+𝑍𝑤 where 𝑍𝑔 and 𝑍𝑤 are the specific impedance of gray

and white matter respectively. The transmission coefficient 𝑇 at the gray-white matter interface

was computed around 0.86, i.e., 𝑇 =
2𝑍𝑤
𝑍𝑔+𝑍𝑤 . These results indicates 13% of an incident wave that is

normal to the interface is reflected while 86% of the wave is transmitted. The sign of the reflection

and transmission coefficients shows whether the phase of reflection and transmission waves are in

the same phase with the incident wave. In other words, the reflected wave is 180◦ out phase with

the incident wave whereas the transmitted wave is in the same phase with the incident wave at the

interface.

Table 4.3 The elastic wave properties for Layer 1 and Layer 2 used in the phantom.

Layer 𝑐𝑑
(m/s)

𝑐𝑠
(m/s)

𝑍𝑑
(kg/m2s)

𝑍𝑠
(kg/m2s)

1 (White) 14.23 1.99 15026.88 2103.48
2 (Gray) 18.91 2.64 19609.67 2745.72

The above commentary on the reflection and transmission of the waves is based on impedance

mismatch between the layers and the incident waves that are normal to the interface. In such solid-

solid interfaces, mode conversion also occurs when an incident wave encounters an interface with

an oblique angle. Depending on the angle of the incident wave, the impedance of the layers, and the

type of the wave, mode conversion takes place from dilatational wave to shear wave or vice-versa.

The angle of refracted dilatational and shear waves can be computed utilizing Snell’s law. Such

interactions can also give rise to localized interface waves as the angle of the incident wave becomes
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relatively shallower. In other words, this leads to a dilatational wave that travels horizontally along

the interface while all incident waves are reflected. The critical angle of incident wave, which

causes an interface wave, can be similarly computed using Snell’s law for the case where the angle

of refraction is 90◦, i.e., sin(𝜃1)
𝑐𝑑 (1)

=
sin(𝜃2)
𝑐𝑑 (2)

where 𝑐𝑑 (1) and 𝑐𝑑 (2) represent the dilatational wave velocity

of layer 1 and 2 while 𝜃1 denote the angle of incident wave, and the angle of refracted wave 𝜃2 =

90◦. For the considered bilayer simplified sulcus model, the critical angle 𝜃𝑐𝑟 is 49◦ with respect

to the normal to the interface. In other words, any incident wave traveling from the white matter to

gray matter with an angle 𝜃1 ≤ 49◦ could potentially lead to an interface wave.

It is important to note that the computational model assumes the reference configuration of

the sulcus to be stress-free. However, the biological growth and remodeling alters the mechanical

state of the soft tissues and leads to residual stress and strain fields. These residual stress fields

are inhomogeneous, and anisotropic (including both compression and tension components due to

the zero-traction condition), thereby leading to more complex mechanical behavior compared to

stress-free conditions. Furthermore, these residual stress fields have the potential to significantly

influence the baseline response of soft tissue to external forces, as presented in Chapter 2.

During the process of cortical growth and gyrification, the brain’s soft tissue experiences large

strains as a consequence of inhomogeneous growth. In the context of brain injury dynamics, it is

imperative to consider the effects of residual stress fields for a more accurate understanding of how

the brain’s soft tissue responds to various external loadings. Hence, this study proceeds with the

examination of growth-induced residual stress fields that emerge within sulcus-gyrus formation,

aiming to gain more insights into the reference mechanical state of the brain’s soft tissue.
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CHAPTER 5

THE GROWTH-INDUCED RESIDUAL STRESS FIELDS
RESULTING FROM SULCUS-GYRUS FORMATION IN THE

BRAIN

5.1 Preliminaries and kinematics of finite volumetric growth

The kinematics of finite volumetric growth takes into account the combined effect of growth and

elastic deformation, which was originally proposed in [109]. Let us assume a stress-free unloaded

reference configuration denoted by B0 in which X is a position vector prior to any deformation.

Growth leads to the change in shape and size motivated by various biological mechanisms, that is

regarded as given for the present treatment. The growth is kinematically described by a tensor valued

function Fg mapping the reference configuration B0 into a virtual intermediate configuration B𝜉 .

The growth field 𝑣 does not need to be continuous across the body that leads to discontinuity within

the body. Hence, the intermediate configuration necessarily undergoes an elastic deformation to

restore compatibility subsequently. The elastic deformation tensor maps the virtual intermediate

configuration B𝜉 to a deformed configuration B. Equivalently, the growth followed by elastic

deformation is mapped by a total deformation gradient F which is given in (1.3.1). Following

[109], the total deformation gradient F is decomposed into the growth tensor and the elastic

deformation tensor, as given in (1.3.2)

The energetic framework of hyperelastic materials is represented by a stored energy density

𝑊 as a function of Fe. The strain energy density depends on Fe only via the right Cauchy-Green

tensor Ce due to the frame invariance of strain energy density i.e.,𝑊 = 𝑊 (Ce,X) where Ce is the

right Cauchy-Green tensor associated with the elastic accommodation Fe as expressed in (1.3.5).

In the context of morphogenesis, the growth process occurs on a relatively long time scale

ranging from days to months which is larger than any other time scales (e.g., relaxation time scale

of soft tissue). Hence the process can be considered quasi-static. With the absence of the body

forces, the equilibrium equation thereby reduces to

div T = 0, (5.1.1)
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where div is the divergence operation with respect to the deformed location x and T is the Cauchy

stress. The elastic deformation accommodating the growth introduces internal mechanical stress

within the body, which preserve equilibrium by satisfying (5.1.1) without any surface tractions.

Confining our attention to compressible isotropic hyperelastic materials, the strain energy function

𝑊 depends upon Ce only through its principal scalar invariants 𝐼𝑒1 = tr Ce, 𝐼𝑒2 = 1
2 [(tr Ce)2 − trC2

e)]

and the third invariant 𝐼𝑒3 = detCe = 𝐽𝑒 denotes the volumetric change due to the elastic deformation.

The strain energy function for a nearly incompressible isotropic hyperelastic material is expressed

in the form of 𝑊 = 𝑊DEV(𝐼𝑒1 , 𝐼
𝑒
2 , 𝐼

𝑒
3) + 𝑊VOL(𝐽𝑒) where 𝑊VOL represents the pressure-volume

response. The Cauchy stress tensor is

T =
2
𝐽𝑒

Fe
𝜕𝑊

𝜕Ce
FT

e =
2
𝐽𝑒

(
𝜕𝑊

𝜕𝐼𝑒1
+ 𝜕𝑊
𝜕𝐼𝑒2

𝐼𝑒1

)
Be +

2
𝐽𝑒

(
𝜕𝑊

𝜕𝐼𝑒2

)
B2

e +
𝜕𝑊

𝜕𝐽𝑒
I (5.1.2)

where Be = FeFT
e is the left Cauchy-Green deformation tensor. Equation (5.1.2) describes growth-

induced mechanical stresses building up in an isotropic compressible hyperelastic material [109, 50].
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Figure 5.1 Schematic representation of kinematics of finite volumetric growth adapted to the cortical
growth and folding process (top). Idealized outer layer-inner core system of the computational
domain with assigned geometrical parameters, and details of the boundary conditions (bottom).

The hypothesis under consideration is that brain morphogenesis is driven by mechanical insta-

bilities in a given bilayer configuration that arise from the growing mismatch between an expanding
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outer layer and the relatively less-growing inner core. As depicted in figure 5.1, this simply pro-

poses that the outer layer grows more than the inner core in the tangential direction. The differential

growth of the layers leads to incompatible deformation fields as depicted in the intermediate con-

figuration B𝜉 . Elastic deformation Fe that restores the compatibility of the body subsequent to the

growth leads to a mismatch strain 𝜀𝑀 in the outer layer

𝜀𝑀 = (𝐿𝑜 − 𝐿𝑖)/𝐿𝑜, (5.1.3)

where 𝐿𝑜 and 𝐿𝑖 is the arc length of outer layer and inner core in the intermediate configuration

B𝜉 . Depending on the material and geometrical properties, the mismatched strain 𝜀𝑀 could cause

various patterns (e.g., folding, wrinkling, crease etc.) in the surface of the current configuration B.

Considering our particular interest in understanding the internal mechanical state of a gyrus-

sulcus formations, the inner and outer layer represent the subcortex (white) and cortex (gray matter),

respectively. The volume of the cortex and subcortex increase over time for various reasons (e.g.,

cell growth, proliferation, accumulation, etc.). However, the underlying biological mechanism

is beyond the scope of this work. We proceed by building a computational model to find out the

internal mechanical states of the soft brain tissue in response to growth and gyrification qualitatively.

To this end, a portion of the brain is idealized as a rectangular block to capture the mechanics of

gyrus-sulcus formation. Considering the block in its reference configuration occupying the region

ΩX before any growth that is given by Cartesian coordinates 𝑋,𝑌, 𝑍 where

0 ≤ 𝑋 ≤ 𝐿, 0 ≤ 𝑌 ≤ 𝐻, −∞ ≤ 𝑍 ≤ ∞. (5.1.4)

Here, 𝐿 and 𝐻 denote the length and total height of the domain, i.e., 𝐻 ≡ 𝐻𝑐 +𝐻𝑠 where 𝐻𝑐 and 𝐻𝑠

represent the inital height of the cortex and subcortex as depicted in figure 5.1. Then, the reference

configuration ΩX is partitioned into two sub-regions i.e., ΩX = ΩX𝑐 ∪ ΩX𝑠 including an subcortex

ΩX𝑠 with 0 ≤ 𝑌 ≤ H𝑠 and cortex ΩX𝑐 with H𝑠 ≤ 𝑌 ≤ H𝑐.
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5.2 The computational model of Growth-Induced Surface Instabilities

In the presented treatment, each layer requires growth tensor Fg with the distinct growth factors

to define differential growth. The growth tensor is expressed for both layers in the form of

Fg = 𝛾𝑋E𝑋 ⊗ E0,𝑋 + 𝛾𝑌E𝑌 ⊗ E0,𝑌 + 𝛾𝑍E𝑍 ⊗ E0,𝑍 , (5.2.1)

where {E0,𝑋 ,E0,𝑌 ,E0,𝑍 } and {E𝑋 ,E𝑌 ,E𝑍 } are the unit basis vectors in the reference B0 and inter-

mediate B𝜉 configurations, while 𝛾𝑋 , 𝛾𝑌 and 𝛾𝑍 represent the growth factors in the corresponding

directions. Following [50], two basis can be identified at each point so that E𝑋 = E0,𝑋 , E0,𝑌 = E𝑌 ,

E0,𝑍 = E𝑍 . The growth factor should be greater than the unity to define positive growth (expansion)

in the associated direction. If the growth factor equals unity, any growth does not occur within the

body. In case of the growth factors are less than unity, it leads to shrinkage (or atrophy). Following

the framework described in section 2, an elastic deformation requires to ensure the compatibility

of the layers subsequent to the growth. That enables a compatible displacement field in the body

u. The total deformation gradient (1.3.1) is thus expressed

F = I + 𝜕u
𝜕X

. (5.2.2)

5.2.1 Variational treatment

It is assumed that the resultant folded pattern always seeks the lowest potential energy state

among all other kinematically admissible states. In the absence of body forces, equilibrium

deformations are determined on the basis of choosing u that minimizes the energy formalism

Π = Πstored − Πload. Here, Πload is the work due to the external loads and the total stored elastic

energy Πstored is the integral of strain energy density per unit length 𝑊 (Fe) over the volume of

reference configuration

Πstored =

∫
ΩX

𝑊 (Fe) 𝐽𝑔 dΩX, (5.2.3)

where 𝐽𝑔 = det F𝑔 denotes the volume change following growth. For the bilayer system de-

picted in figure 5.1, the total stored elastic energy (5.2.3) can be explicitly expressed by Πstored =∫
Ωx𝑠
𝑊 (Fe) 𝐽𝑔,𝑠 dΩX𝑠

+
∫
Ωx𝑐

𝑊 (Fe) 𝐽𝑔,𝑐 dΩX𝑐
where 𝐽𝑔,𝑠 and 𝐽𝑔,𝑐 denotes the volume change due
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to the growth in the associated subdomain. In the computational model, we seek the displacement

field u minimizing the total stored energy Πstored which corresponds to the equilibrium state of each

grown configuration

u = arg min
u∈𝑉

Πstored, (5.2.4)

where𝑉 is the function space consisting of first-order continuous Lagrange finite element functions

that satisfy the boundary conditions. It should also be noted that the variation of (5.2.3) with respect

to the displacement field yields to the weak form of linear momentum balance with the absence of

the surface tractions.

5.2.2 Growth stipulation

The presented work proceeds with a special case to determine the qualitative behavior of

growth-induced residual fields. To this aim, an initially flat bilayer model as depicted in Figure

5.1 is employed. The bilayer model given in (5.1.4) is assumed to be infinitely thick and, thus,

it imposes its in-plane strains. The initial thickness of the cortex 𝐻𝑐 is selected 2 mm, and the

subcortex thickness is ten times as thick as the cortex. The length of the domain includes the

half-wavelength of the fold with symmetric boundary conditions. It is therefore determined based

on (1.2.1) for a given shear modulus contrast, and the initial cortex thickness 𝐻𝑐.

Following the differential tangential growth hypothesis to describe the growth kinematics of

the brain soft tissue, only tangential (in-plane) growth in the cortex is considered whereas the

subcortex does not undergoes any growth in any direction. With the reduction from 3D to 2D, the

same notation for Fg given in (5.2.1) is maintained to use after dropping z-component. The growth

factors are specified as 𝛾𝑋 = (1 + 𝑔) and 𝛾𝑌 = 1 for the cortex where 𝑔 is a pure scalar that controls

the amount of the growth in the tangential direction. Note that the parameter 𝑔 is strictly positive

𝑔 > 0. The growth tensor (5.2.1) thereby becomes Fg = (1 + 𝑔)E𝑋 ⊗ E𝑋 + E𝑌 ⊗ E𝑌 . The growth

factors are 𝛾𝑋 = 𝛾𝑌 = 1 for the subcortex, which means that any growth does not occur. Due

to the considered growth conditions, the cortex experience distinct change in size, resulting in a

compressive mismatched strain in the cortex to maintain the compatibility of layers. Recalling the
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definition given in (5.1.3), the mismatch strain 𝜀𝑀 turns into for the considered growth condition

𝜀𝑀 = 𝑔/(1 + 𝑔). (5.2.5)

As the mismatch strain 𝜀𝑀 increases, the compressive stress continues to build up in the cortex.

Once the mismatch strain exceeds a certain threshold, the cortex buckles out of the growth plane

to release accumulating compressive stress, resulting in various surface instability. Similarly, the

compatible displacement field is reduced to form of u = 𝑢𝑥 (𝑥, 𝑦)E𝑥 + 𝑢𝑦 (𝑥, 𝑦)E𝑦 for the considered

model where out-of-plane displacement is zero. Here, the displacement field u, which minimizing

the total storage energy (5.2.4), is limited with the length in the 𝑥-direction whereas the upper bound

for the displacement field in the y-direction is determined by the parameter 𝐷, i.e, 0 ≤ 𝑢𝑥 ≤ 𝐿 and

0 ≤ 𝑢𝑦 ≤ 𝐻 + 𝐷. In the context of brain morphogenesis, the parameters 𝐷 can be considered the

distance between the top surface of cortex and the inner surface of the skull. Although the skull is

not required to trigger the gyrification [8], previous computational works suggest that the existence

of the skull may affect the final morphology of the cortex by flattening the gyral crowns [125, 90].

While this approach facilitates the incorporation of potential influences stemming from the skull,

the skull constraint is neglected until for a later consideration.

5.2.3 Boundary conditions

External loads (e.g., the pressure generated by the surrounding intracranial structures such as

cerebrospinal fluid (CSF)) will initially be disregarded in the computational model because such

an external loading act as a mechanical perturbation that can potentially affect the region where

the folding initiates and lead to a different folded morphology. Along with external loads, any

anatomical and mesh imperfection, which could act as initial perturbation, were not introduced in

the model either. The top surface of outer layer 𝜕ΩT
X is thus traction free. The boundary conditions

on the right 𝜕ΩR
X and left walls 𝜕ΩL

X of the domain are: i) the displacement is zero in the normal

direction to the boundary to preserve symmetry

u · n̂ = 0 on 𝜕ΩR
X, 𝜕Ω

L
X (5.2.6)

102



where n̂ is the outward unit normal, and ii) no shear traction, which is formally expressed as

Tn̂ − (n̂ · Tn̂)n̂ = 0. (5.2.7)

The bottom surface is held fixed (i.e., u = 0 on 𝜕ΩB
X) to provide a good approximation of a half-

space for the inner core. The nature of implementation does not explicitly require enforcement of

zero traction boundary condition since this is a natural condition associated with the variational

procedure. The boundary conditions are also illustrated in figure 5.1.

5.2.4 Interface conditions

We restrict consideration to the case where the cortex and subcortex are perfectly bonded.

The displacement field is to be continuous at the interface u(𝐻+
𝑠 ) = u(𝐻−

𝑠 ) where 𝐻+
𝑠 and 𝐻−

𝑠

represent the outer layer side of the interface and the inner core side respectively. The interface

conditions imposed herein thereby eliminate some certain surface instabilities which is a possible

when the interfacial adhesion is weak. Alternative treatments that seek to account for the weak

or otherwise imperfect bonding conditions that lead to various interface phenomena (e.g., relative

sliding displacement or normal direction delamination) which are beyond the scope of this work.

For perfect bonding, the traction vector is continuous at the interface T|+n̄ = T|−n̄ where n̄

is the unit normal to the interface boundary in the deformed configuration 𝜕Ω𝐼
𝑥 . In the reference

configuration prior to growth and deformation, the normal to the interface is N = E𝑌 . The normal

vectors n and N are related by Nanson’s formula n𝑑𝑎 = 𝐽F−𝑇N𝑑𝐴. The corresponding first Piola-

Kirchhoff stress tensor P, especially for later developments, must thus satisfy P N 𝑑𝐴 = T n 𝑑𝑎

for any area element, where N is the unit vector normal to the area element 𝑑𝐴 in the reference

configuration. The stress measure P is thus expressed by

P = 𝐽TF−𝑇 . (5.2.8)

Thus, the interface condition can be expressed as P|+N̄ = P|−N̄ where N̄ is the unit normal to the

interface boundary 𝜕Ω𝐼
𝑋

in the reference configuration. Traction continuity is a natural interface

and so does not require explicit enforcement in the finite element procedure.
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5.2.5 Constitutive function for the energy

In this specific problem at hand, a compressible neo-Hookean constitutive model is considered

for both layers. The compressibility is accounted for by a direct additive contribution of the pure

volumetric part𝑊VOL(𝐽𝑒) into the deviatoric part𝑊DEV(𝐼𝑒1). The volumetric part can be expressed

using various empirical laws that lead to different stored energy density models [96]. The attention

is confined to the following form of compressible neo-Hookean type stored energy given by

𝑊 =

{ 𝑊𝑐 =
𝜇𝑐
2 (𝐼𝑒1 − 2 − 2 ln 𝐽𝑒) +

( 𝜅𝑐
2 − 𝜇𝑐

3
)
(ln 𝐽𝑒)2, on Ω𝑐

𝑊𝑠 =
𝜇𝑠
2 (𝐼𝑒1 − 2 − 2 ln 𝐽𝑒) +

( 𝜅𝑠
2 − 𝜇𝑠

3
)
(ln 𝐽𝑒)2, on Ω𝑠

(5.2.9)

where 𝜇𝑐 and 𝜇𝑠 are the shear modulus while 𝜅𝑐 and 𝜅𝑠 represents the bulk modulus of the cortex

and subcortex, respectively. In making the correlation to the small strain linear theory, 𝜅 and 𝜇

correlate with Poisson ratio 𝜈 = (3𝜅 − 2𝜇)/(2𝜇 + 6𝜅). For the purposes of the present work, 𝜅 and

𝜇 for both the cortex and subcortex are chosen so as to give a linear theory Poisson ratio of 0.45.

This makes

𝑊 =

{ 𝑊𝑐 =
𝜇𝑐
2 (𝐼𝑒1 − 2 − 2 ln 𝐽𝑒 + 9(ln 𝐽𝑒)2), on Ω𝑐

𝑊𝑠 =
𝜇𝑠
2 (𝐼𝑒1 − 2 − 2 ln 𝐽𝑒 + 9(ln 𝐽𝑒)2), on Ω𝑠

(5.2.10)

and the Cauchy stress ( 5.1.2 ) thereby becomes

T =
𝜇

𝐽𝑒

(
B𝑒 + (9(ln 𝐽𝑒) − 1)I

)
, (5.2.11)

where 𝜇 is the shear modulus of the material i.e., either 𝜇𝑐 or 𝜇𝑠 depending on the location.

5.2.6 Computational implementation

The height of subcortex 𝐻𝑠 is ten times bigger than the height of cortex layer 𝐻𝑐 to minimize

the effect of the inner core thickness on the surface pattern, i.e., 𝐻𝑠 = 10𝐻𝑐. The domain was then

discretized using structured triangular elements using the open-source mesh tool GMSH. The mesh

was refined in regions where gradients were expected to be relatively stronger, such as the outer

layer and the interface between the outer layer and the inner core.
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To avoid self-contact at the sulcal gap, we employ a half-wavelength-length domain approach

with the selection of suitable displacement bounds to simulate only one-half of the gyrus-sulcus

formation. The initial wavelength of the wrinkle 𝜆 is computed using (1.2.1). Note that the film

and substrate stiffness in (1.2.1) correspond to the cortex 𝜇𝑐 and the subcortex 𝜇𝑠 shear moduli in

the presented context. The length of the domain thereby becomes 𝐿 = 𝜆/2. With the use of suitable

upper and lower bounds for each directions, (5.2.4) turns into a bound-constrained minimization

problem.

The energetically favorable displacement field for each equilibrium was computed using Trust-

Region Optimization (TRON) algorithm [82] available in PETSc. The numerical simulation settings

were implemented using the open-source scientific computing platform FEniCS [5].

5.3 Qualitative morphological change and quantitative triggering by the increasing mis-
match strain

In the presented model, the stiffness ratio 𝜇𝑐/𝜇𝑠 is the key determinant of how the surface

patterns emerge following to a certain sequence of transformations as the mismatch strain increases.

For a validation purposes, we direct our attention to a specific scenario wherein the stiffness

contrasts 𝜇c/𝜇s are 3.64 and 67.24. Figure 5.2 demonstrates how the equilibrium configuration

of two separate patterns of morphological development evolves as the mismatch strain increases.

At relatively modest values of the mismatch strain 𝜀𝑀 , the cortical structure maintains its flat

morphology, continuing to expand perpendicularly to the original outer surface. As mismatch strain

reaches to a critical value of 𝜀𝑀 , the initially flat cortex undergoes a transformation into a wrinkled

state. The critical value of 𝜀𝑀 at which this transformation occurs is found to be 0.24 and 0.11 for

the respective cases. For the scenario with 𝜇c/𝜇s = 3.64, the wrinkled state starts folding inward

at approximately 𝜀 = 0.28 which establish self-contact, while for the case with 𝜇c/𝜇s = 67.24, the

transition to period-doubling takes place around 𝜀 = 0.31. As the strain mismatch further increases,

amplitude and wavelength of the surface pattern alters. The evolution of the folding patterns and

transformations presented above is consistent with the experimental results presented by [136] (cf.

Figure 3). It is essential to highlight that the model presented herein is not limited to the surface
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Figure 5.2 Evolution of the equilibrium configuration for 𝜇c/𝜇s = 3.64 (top) and 𝜇c/𝜇s = 67.24
(bottom) from flat to folding (top panel) and flat to period-doubling (bottom panel) as the mismatch
strain 𝜀M increases.

patterns demonstrated. Alternative surface patterns, such as creases, can also be formed through

the utilization of this model, depending on the stiffness contrast ratio. Specifically, the occurrence

of creasing instability, observed when 𝜇c/𝜇s is relatively lower, necessitates specialized treatment,

and is notably sensitive to artificial defects. Yet, this instability is beyond this study. Additionally,

when considering scenarios involving less-than-perfect bonding, the inclusion of adhesion energy

within the model description may be required. This inclusion may result in the emergence of

additional types of surface patterns, such as delamination buckling. However, it is noteworthy that

this particular instability does not align with the anatomical characteristics of the actual brain.

We confine our attention to the folding instability that resembles sulcus-gyrus formation in

the context of brain anatomy. Left panel of figure 5.3 presents a comprehensive depiction of

the morphological evolution of sulcus-gyrus formation, given in the top row of Fig. 5.2, behave

depending on the mismatch strain. In the early stage, the cortex initially runs in the direction

perpendicular to the pial surface and remains flat until 𝜀𝑀 ≈ 0.24 (inset a). Afterward, the domain

transforms into a wrinkling type instability until the initial fold starts at 𝜀𝑀 ≈ 0.28 where the

self-contact takes place (inset b). Throughout the folding phase, the sulcal floor deepens by moving

perpendicularly to the initial cortical surface, whereas the gyrus increases in height. The gyrus

continues to develop asymmetrically while bringing the adjacent gyral crowns closer together. The

ventral wall of the gyrus slopes steeply towards the sulcal floor, whereas the dorsal wall of the gyrus

shelves gently into the intrasulcal gap. As growth progresses, a shorter-wavelength secondary fold
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Figure 5.3 Evolution of the morphological features of a sulcus-gyrus formation as the mismatched
strain increases. Scalings to evaluate morphological features of the final folding formation [125]:
(− · · −) 𝜆/𝐻𝑐, (− · −) 𝑑/𝐻𝑐, and (—) ℎ𝑔/ℎ𝑠. (- - -) where 𝜆: the distance between two adjacent
gyral crown, 𝐻𝑐: initial thickness of the cortex, 𝑑: distance between the top of the gyral crown
to the deepest point of the sulcus gap, ℎ𝑔: thickness of gyrus, and ℎ𝑠: thickness of sulcus, as
illustrated in the inset. Strain mismatches: 𝜀M = 0.24 (flat to wrinkle), 𝜀M = 0.28 (wrinkle to fold)
and 𝜀M = 0.44 (shorter-wavelength secondary folding)(Left panel). Change of self-contact length
as the mismatched strain increases. (−) the self-contact length showed in the insets. (Right panel).

forms around 𝜀𝑀 = 0.44 (inset c), increasing the wavelength of the folding nearly twice. The

dorsal part of the gyrus continues to grow outwards and becomes roughly symmetrical. The cortex

thickness also varies, resulting in the gyrus becoming thicker than the cortical plate in the sulcus

during development. These findings are consistent with (i) the numerical model results and the

measurements obtained from the porcupine, cat, and human brains for the same scaled dimensions

displayed in Fig. 2 of [125], (ii) structural changes observed in postnatal ferret brain experimentally

[119].

The right panel of Figure 5.3 depicts the evolving characteristics of the self-contact area in

response to increasing strain mismatch. This self-contact region is analogous to the sulcal gap within

the context of cerebral anatomy. Specific troughs within the wrinkles undergo an inward folding

process, resulting in the establishment of self-contacts. This folding occurs after transitioning

from the wrinkled configuration, typically at a critical strain value of approximately approximately

𝜀𝑀 ≈ 0.28. Consequently, two points on the outer surface of the cortex, initially separated by a

finite distance, first make contact with each other. As the strain mismatch is further elevated, the
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self-contact, which was originally at a point, becomes a line of self contact. The length of this

self contact line increases with 𝜀𝑚 until secondary folding occurs. For the process depicted in left

panel of Fig. (5.3) this secondary folding initiates at a critical strain of approximately 𝜀𝑚 = 0.44.

Just prior to secondary folding, the original contact line is at its maximum length. Upon secondary

contact, the original contact line abruptly decreases in length as certain points previously in contact

now separate. This is evident in right panel of Fig. (5.3) where the original maximum contact

length of 2.11 is suddenly reduced to a length of 1.24. This secondary folding process gives rise to

a surface pattern characterized by a shorter wavelength and reduced amplitude.

5.4 Residual Fields in the Sulcus-Gyrus Formation

5.4.1 Residual strain fields

In conjunction with the morphological alterations, slow and substantial deformations arising

from growth and gyrification exert a significant influence on the internal mechanical state of the

tissue, thereby playing a crucial role in comprehending the homeostasis conditions within the

natural state of the tissue. Therefore, the attention is now directed to spatiotemporal evolution of

residual stress and strain fields within a sulcus-gyrus formation. To this end, the Green-Lagrange

strain measure is employed to assess the large deformations emerging during the flat-to-folding

transformation presented above, i.e., 𝜺 = 1
2 (C − I), where C is the right Cauchy-Green tensor

C = F𝑇F. It should be noted that 𝜺 is related to the total deformation meaning that 𝜺 includes

the growth and the effect of elastic deformation. The elastic deformation strain is expressed by

𝜺𝑒 =
1
2 (C𝑒 − I), where C𝑒 is given in (1.3.5). Because of the absence of the growth strain in the

subcortex, the total strain only includes the elastic effects i.e., 𝜺 = 𝜺𝑒. However, the total strain 𝜺 is

the combination of both the elastic strain and growth strain together in the cortex. The tangential

growth in cortex is constrained by the non-growing subcortex.

During the transition from a flat to a wrinkled state occurring at approximately 𝜀𝑀 = 0.24, the

tensile elastic strain manifests in the cortex and certain regions of the subcortex that corresponds to

the crest of the wrinkled state in the direction of cortex folding. As the gyral crown experiences an

increase in height, the tensile elastic strain becomes notably localized within the subcortex region
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of the gyrus, specifically emphasizing its presence at the cortex-subcortex interface. With the

initiation of folding (0.27 < 𝜀𝑀 < 0.45), the accumulation of compressive (negative) elastic strain

commences within the regions that eventually constitute the sulcal floor as the folding progresses. At

the mature sulcus-gyrus formation, compressive elastic strains become evident within the depths of

the sulcus and the subcortical areas of the sulcus, particularly along the gray-white matter interface.

Simultaneously, the substantial tensile residual strain becomes apparent throughout the entire sulcus

and gyrus, with localized concentrations observed at the sulcal floor and the pial surface of the gyral

crown, propagating in the growth direction. Notably, the magnitude of tensile strain in these regions

approximates tenfold the maximum recorded compressive strain observed within the subcortical

domain of the cortex. These results are displayed in figure 5.4.

1.8-0.45-0.35 3.02.01.0 -0.4-0.20.0 0.0 0.5 1.0 1.50.0 0.0
εyy εyyεxx εxx

3.7-0.3-0.2-0.1

Figure 5.4 Evolution of the residual strain fields in 𝜀𝑥𝑥 (column 1, 2) and 𝜀𝑦𝑦 (column 3, 4) at four
different strain mismatch states: 0.24, 0.33, 0.41, 0.41, and 0.51% (from top to bottom). The strain
fields are isolated based on the sign: compressive (column 1, 3) and tensile (column 2, 4). The
strain has opposite nature in non-colored areas.
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5.4.2 Residual stress fields in sulcus-gyrus formation: the first PK stress

Figure (5.5 ) depicts the contours of the isolated residual stress field during the sulcus-gyrus

formation. To assess the stress field, the first Piola-Kirchhoff stress measure P given in (3.8) is

employed to map the spatial distribution of the stress in the x- (tangential to the reference cortical

surface) and y-directions (normal to the reference cortical surface) as illustrated left and right two

panels respectively. The results reveal the existence of growth-induced residual stress fields that

are primarily localized in the cortex and the regions of the subcortex particularly close to the

interface. Both the cortex and subcortex exhibit inhomogeneous residual stress fields, which vary

both spatially and temporally. Notably, the cortex demonstrates a compressional residual stress

field in the x-direction maintaining this consistent behavior throughout the transformation process.

The compressional 𝑃𝑥𝑥 is then localized at the innermost part of the mature gyrus. It should be

noted that only the pial (outermost) surface of the gyrus exhibits tensile stresses in this direction.

The results further reveal a notable transition from compression to tensile residual stresses at the

gray and white matter interface, occurring in both the gyral crown and the sulcal floor. Along

with the pial surface of the gyrus, two specific regions within the subcortex exhibit tensile residual

stress fields: the inner part of the gyrus and the sulcal floor. In the y-direction, as shown in

the right two panels, there is a predominance of compressional residual stress at the sulcal floor,

concentrated around the deepest point of the sulcal gap. Conversely, the sulcal walls consist of

the tensile residual stress field along the same y-direction, which exists around the self-contact

region of the folding during throughout the transformation. The subcortex region of gyrus is the

other regions experiencing the tensile stress in y-direction. The reference configuration normal to

the outer surface and to the interface is N = E𝑌 . The associated reference configuration traction

vector is PE𝑌 = 𝑃𝑦𝑥E𝑋 +𝑃𝑦𝑦E𝑌 . The free surface boundary condition discussed in Section 3.3 thus

gives that 𝑃𝑦𝑥 and 𝑃𝑦𝑦 must vanish at the top surface. Due to the interface traction continuity i.e.,

P|+E𝑌 = P|−E𝑌 , the components 𝑃𝑦𝑦 and 𝑃𝑦𝑥 are continuous at the interface. These observations

are consistent with figure 5.5.
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Figure 5.5 Tensile (first and third column) and compressional (second and fourth column) residual
stress fields in x-(left two panels) and y-(right two panels) at four different strain mismatch states:
0.24, 0.33, 0.41, and 0.51 (from top to bottom). The stress has opposite nature in non-colored
areas.

5.4.3 Residual stress fields in sulcus-gyrus formation: Cauchy Stress

Figure (5.6) depicts the contours of the isolated residual stress field during the sulcus-gyrus

formation. To assess the stress field, the first Cauchy stress measure 𝝈 given in (5.2.11) is employed

to map the spatial distribution of the stress in the x- (tangential to the reference cortical surface)

and y-directions (normal to the reference cortical surface) as illustrated left and right two panels

respectively. The results reveal the existence of growth-induced residual stress fields that are

primarily localized in the sulcus floor, deep gyrus and the regions of the subcortex close to the

interface. Both the cortex and subcortex exhibit inhomogeneous residual stress fields, which vary

both spatially and temporally. Notably, the cortex demonstrates a compressional residual stress

field in the x-and y-directions maintaining this consistent behavior throughout the transformation

process. The compressional 𝜎𝑥𝑥 is then localized at the innermost part of the mature gyrus and the

deepest point of sulcus. It should be noted that only the pial surface of the gyrus exhibits tensile

stresses in this direction. The results further reveal a notable transition from compression to tensile

residual stresses at the gray and white matter interface, occurring in both the gyral crown and the
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sulcal fundus. In addition to the pial surface of the gyrus, the gyral white matter and the subcortex

part of sulcal fundus are two other specific regions existing tensile stress field. In the y-direction,

as shown in the right two panels, there is a predominance of compressional residual stress at the

sulcal fundus, concentrated around the deepest point of the sulcus. The subcortex region of the

gyrus is the region experiencing the tensile residual stress in the y-direction.
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Figure 5.6 Tensile (first and third column) and compressional (second and fourth column) residual
stress fields in x-(left two panels) and y-(right two panels) at four different strain mismatch states:
0.24, 0.33, 0.41, and 0.51 (from top to bottom). The stress has opposite nature in non-colored
areas.

We make use of octahedral shear stress theory to evaluate how distortional strain energy changes

within the tissue during transformations. To this end, we utilized the von Mises stress which is

related to the second invariant of the deviatoric stress s, i.e., 𝜎v = ( 3
2s : s)1/2. Here, the deviatoric

stress s is expressed by 𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 − 1
2𝛿𝑖 𝑗𝜎𝑘𝑘 , where 𝝈 denotes the Cauchy stress tensor. As depicted

in Figure (5.7), the von Mises stress is prominently observed in the cortex during development. The

von Mises stress accumulates specifically around the innermost part of the future gyrus and around

the sulcal walls as the mismatch strain elevates. In the mature gyrus-sulcus formation 𝜀𝑀 = 0.51,

the maximum von Mises stress is observed in the innermost region of gyral gray matter particularly
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close to the cortex-subcortex interface. Likewise, it is noteworthy that the sulcal floor represents

another spatial domain where von Mises stress attains a notably elevated state. These regions

exhibit a susceptibility to undergoing permanent deformations. In accordance with the deformation

theory of plasticity, such deformations could give rise to a nonlinear constitutive relation and a

softened tangent modulus in these specific regions with the onset of the permanent deformations

process. It is experimentally shown that brain tissue exhibit Mullins effect and hysteresis behavior

[42].
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Figure 5.7 The von Mises stress field during the gyrus-sulcus formation at different strain mismatch
levels.

It should be noted that every residually-stressed body has a non-zero strain energy density field

in its deformed configurations. Hence, the strain energy density function can be utilized as a metric

to quantify the residual stress field [75]. Figure (5.8) displays how the strain energy density function

evolves within the material during the gyrus-sulcus formation. As the mismatch strain increases,

the strain energy accumulates specifically around the innermost part of the future gyrus and around

sulcal fundus.
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Figure 5.8 Evolution of strain energy density field during the gyrus-sulcus formation for given
mismatch strains 𝜀𝑀 .
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5.4.4 Residual stress field distributions in the sulcal fundus, gyral crown and sulcal wall

As evident from the top panel of figure (5.9), the residual strain fields progressively increase

along the cortex until they reach the interface. The maximum strains are measured at the interface,

where 𝜀𝑥𝑥 attains a magnitude nearly 6 times higher compared to 𝜀𝑦𝑦. While 𝜀𝑥𝑥 is elongational,

𝜀𝑦𝑦 has a contractile nature along the cortex and interface. Subsequently, the both strains diminish

along both axes as they extend into the bulk of the tissue. In contrast, the maximum stress is

observed at the tip of the sulcus for both axes, gradually relaxing in an asymptotic manner as it

approaches the interface. At the interface, the normal Cauchy stress component 𝜎𝑥𝑥 and 𝜎𝑦𝑦 exhibit

a slope discontinuity. While 𝜎𝑥𝑥 undergoes a transition to the tensile field and then continues to

relax asymptotically towards zero stress, 𝜎𝑦𝑦 shows a similar behavior by remaining compressive.

In the bottom panel of figure (5.9), the highest values of 𝜀𝑥𝑥 and 𝜀𝑦𝑦 are recorded at the pial

surface and the gray-white matter interface, respectively. However, the discontinuity in 𝜀𝑦𝑦 is not

as strong as that observed in the mature sulcus, and it gradually reduces in the subcortex, displaying

a relatively linear trend. Similarly, 𝜀𝑥𝑥 diminishes along the cortex with a relatively linear trend

and follows a steady behavior in the subcortex. The results also suggest that the residual strains in

the mature sulcus exhibit the same sign in each layer, whereas the residual strains encompass both

positive and negative values in the mature gyrus. Regarding the normal stress components 𝜎𝑥𝑥 and

𝜎𝑦𝑦 progressively increases until it reaches the maximum magnitude of compressive stress at the

interface. Notably, 𝜎𝑥𝑥 undergoes a relatively strong discontinuity compared to 𝜎𝑦𝑦, subsequently

reversing and decaying towards zero stress. Conversely, the gyral white matter contains a tensile

residual stress in the y-direction 𝜎𝑦𝑦 with moderate value.

In conjunction with the analysis of stress fields within the sulcal floor and the gyral crown, we

also extend our attention to the stress distribution in the sulcal wall. The formation of the sulcal

wall arises from the transition from a wrinkled state to a folded state, a transformation occurring

at a critical strain magnitude 𝜀𝑀 ≈ 0.27. This transition emerges as the convergence of distinct

points on the outer cortical surface, originally separated by a finite spatial interval, thereby forming

a contact line corresponds to the sulcal gap. As the transformation progresses, depending on the
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Figure 5.9 Green-Lagrange strain (left column) and Cauchy stress (right column) distributions in
the 𝑥- (dashed blue) and 𝑦- (red solid) directions are shown along the probe line for the sulcus (top
panel) and gyrus (bottom panel). For the sulcus, the probe line starts from the deepest point of
the intrasulcal gap and extends through the gray matter (GM) and white matter (WM) respectively.
For the gyrus evaluation, the probe line starts from the pial surface of the gyral crown and extend
towards gyral white matter. The location of the probe line is also shown in the associated insets.
The dashed black line represents the gray-white matter interface location.

level of strain mismatch, the contact line undergoes dynamic alterations, as previously illustrated

in figure 5.3. The residual stress field in a developing sulcus-gyrus formation was also previously

demonstrated via the contours of figure 5.6. It indicates the presence of a compressive residual

stress field in the x- and y- direction.

Figure (5.10) presents the spatial distribution of residual stress along the defined probe lines

given in corresponding insets. The placement of probe lines is strategically aligned along the contact

region of the sulcal wall. Namely, the probe line in the left panel of Figure (5.10) starts at the point of

contact initiation and extends towards to the deepest point of the sulcus. Simultaneously, the probe

line in the right panel commences from the midpoint of the sulcal wall, extending horizontally into
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the gyral white matter. The results indicate a compressional stress field for both normal components

of Cauchy stress 𝜎𝑥𝑥 and 𝜎𝑦𝑦, exhibiting an increment along the contact line and concentrating at

the deepest point of sulcus. Likewise, a compressional residual stress field is observed along the

probe line depicted in the right panel inset. Notably, upon reaching the interface, 𝜎𝑥𝑥 exhibits a

discontinuity and rapidly drops to markedly low magnitude, while 𝜎𝑦𝑦 turns into a tensile stress

field and continues to exist with a relatively moderate magnitude.
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Figure 5.10 Cauchy stress distributions along the probe line illustrated in the associated insets. (· · ·)
and (−−)the deepest of sulcus, and the location of the gray-white matter interface, respectively.

Panel b of Figure 5.3 showed how folding gave rise to self contact along the sulcal wall, the

length of which increased with the mismatch strain 𝜀𝑀 . This contact length was abruptly

reduced by the advent of secondary folding, after which the contact length again increased with

𝜀𝑀 . The two contact sides push against each other with traction 𝝈E𝑋 = 𝜎𝑥𝑥E𝑋 + 𝜎𝑥𝑦E𝑌 . Figure

(5.11) shows the evolution of the normal contact stress 𝜎𝑥𝑥 with mismatch strain 𝜀𝑀 during the

first folding regime 0.27 ≤ 𝜀𝑀 ≤ 0.45 (left panel) and the subsequent secondary folding regime

0.45 ≤ 𝜀𝑀 ≤ 0.51 (right panel). It should be noted that the maximum point of the contact length

corresponds to the deepest point of the sulcus in both panels. In both regimes, the normal contact

stress is compressive along the self-contact line with monotonically increasing magnitude along

the contact line. Regardless of the mismatch strain level, the deepest point of the sulcus displays a

highly localized maximum contact stress that consistently displays values close to -30𝜇𝑠.

116



0.45

0.32

0.41

0.27

0.37

0.45

0.46

0.49

0.48

0.51

Figure 5.11 Distribution of normal contact stress along the line of self-contact in the primary fold
as determined by the value of mismatch strain. The left panel depicts the range 0.27 ≤ 𝜀𝑀 ≤ 0.45
for primary folding, and the right panel depicts the range 0.45 ≤ 𝜀𝑀 ≤ 0.51 in which a secondary
fold is developing between the primary folds.

5.4.5 Analysis of principal stress and directions

The normal components of stress tensors do not inherently align with the resultant morphology

of the gyrus-sulcus formation. To address this, the investigation is extend into the examination of

the eigenvalues of the Cauchy stress tensor and the eigenvector associated with these eigenvalues,

corresponding to the principal stresses and principal directions. These are given by the two

eigenvalues and two eigenvectors associated with the in-plane part of the stress tensor at hand. The

z-direction serves as the third principal direction. The stress component 𝜎𝑧𝑧 acts as a reactive wall

stress in the presented plane strain model, thereby inducing a compressive stress field along this

direction. Due to the compressive nature, the eigenvalue associated with the z-direction would

correspond to either intermediate or minimum principal stress in the full 3-D treatment.

Locations where the maximum principal stress from the 2-D treatment is negative correspond

to places where there is no tensile aspect to the stress field. Such locations are relatively resistant to

crack formation within the tissue. Our special interest is in locations where the maximum principal

stress from the 2-D treatment is positive, since the resulting tensile stresses can promote crack

formation and other possible failure behavior of the tissue. For this reason, only the evolution of

positive (tensile) maximum principal stress is depicted in the contours of figure 5.12. During the

wrinkling phase shown at 𝜀𝑀 = 0.24, the maximum principal stress in tension primarily localizes
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at the lateral side of the interface, with the exception of the future sulcal floor. Subsequently, as the

folding is initiated at 𝜀𝑀 = 0.27 and deepens through the subcortex 0.27 ≤ 𝜀𝑀 ≤ 0.45, the principal

stress fields begin to accumulate prominently along the sulcal floor and certain regions of the cortex

that will eventually transform into gyrus. Upon attaining the mature gyrus-sulcus formation, it

becomes evident that the maximum principal stresses in tension concentrate predominantly in two

specific regions: (i) along the gray-white matter interface along the sulcal floor and (ii) at the tip of

the gyrus within the subcortex.

The reduced dimension of the stress tensor yields two analogous eigenvectors associated with

the maximum and minimum eigenvalues thereof. These eigenvectors represent the principal

directions along which the maximum and minimum principal stresses act within the gyrus-sulcus

formation. However, our focus is confined to only the eigenvector associated with the maximum

(positive) eigenvalue since any crack opening is driven by the maximum tensile stress acting along

the associated direction. In the context of biomechanics, the term “fissure" more aptly captures

the essence of a crack within a soft tissue material. The direction of any such hypothetical

fissure is oriented at a 90◦ from the direction of the maximum principal stress. In conjunction

with the maximum (positive) principal stress contours, the direction of the possible hypothetical

fissure opening is also presented in figure 5.12 by the black lines. The length of the lines is

proportional to the magnitude of the maximum principal stress. The fissure trajectories exhibit a

strong perpendicularity to the interface where the maximum tensile principal stress field is observed.

As the analysis progresses towards regions with maximum tensile stresses with lower magnitudes

(depicted by blue color), the orientations of the fissure apertures evince a gradual convergence

towards parallelism with the fold structure.

118



0.6

0.4

0.2

0.8

0.0

6.0

4.0

2.0

6.7

0.0

1.0

0.5

1.3

0.0

4.0

2.0

5.4

0.0

1.5

1.0

0.5

2.2

0.0

3.0

2.0

1.0

4.2

0.0

εM=0.24 εM=0.28

εM=0.33 εM=0.41

εM=0.44 εM=0.51

σ
μs

σ
μs

σ
μs

σ
μs

σ
μs

σ
μs

Figure 5.12 Evolution of the maximum principal stresses for only tensile (positive) fields and
corresponding fissure pattern (dashed black lines) within the gyrus-sulcus formation. The principal
stress has a reverse sign in non-colored area.

5.4.6 Effect of skull constraint on the morphology and residual fields

Previous experimental work shows that the constraint generated by the surrounding intracranial

structures is not necessary to trigger the cortical folding [8]. Still, the presence of a skull can

influence the morphology of the cortex, particularly by flattening the gyral crown. In this section, the

effect of skull constraint on the sulcus-gyrus formations and on the mechanical field in the resultant

folding pattern is investigated. In the computational model, the confinement is implemented

through the upper bound of the displacement field in the y-direction, i.e., 0 ≤ 𝑢𝑦 ≤ 𝐻 + 𝐷 where

𝐻 is the initial height of the domain, and 𝐷 is the distance between the outermost surface of the

cortex and the skull. The presence of a skull here acts as a boundary condition that constrains the
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displacement in a direction normal to the boundary. The level of confinement is arranged by means

of the parameter 𝐷 while the other growth and boundary conditions presented above remain the

same.

Figure 5.13 shows how the skull constraint affects the resultant sulcus-gyrus formation and

corresponding stress contour at the strain mismatch 𝜀𝑀 = 0.51. In the computational model at

hand, the parameter 𝐷 was assumed as a sufficiently high value to exclude the effect of skull

constraint. This case is presented in the bottom row of Figure 5.13. Under this condition, the

gyral crowns exhibit a relatively curved outer profile, while the tips of the subplate tend to be

relatively cusped. The displacement of the outermost point of the gyrus in the y-direction 𝑢𝑦 was

obtained as 2.56 mm at 𝜀𝑀 = 0.51. Hence, all 𝐷 values less than the maximum displacement

𝐷 < 2.56 will automatically lead to constraints in this direction under the same conditions. To test

this effect, the parameter 𝐷 is assigned as 2 mm to generate a constraint acting like a skull. As

shown in the leftmost panels within the figure, the results reveal that the skull constraint results in

flattened regions within the gyrus, notably at two specific loci: the pial surface and the point of

junction between the subplate and the white matter. This observation aligns well with prior clinical

investigations and corroborates the findings reported in Tallinen et al. (2014). It is noteworthy that

the presence of the skull constraint does not exert any influence on the temporal evolution of the

gyrus-sulcus formation such as critical strain mismatch.
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Figure 5.13 Effect of skull constraint on the sulcus-gyrus formations and the normal residual stress
fields for 𝐷 = 2 mm (top panel), and 𝐷 = 4 mm (bottom panel) at the strain mismatch 𝜀 = 0.51.
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Furthermore, the results reveal that the skull constraint has the potential to affect the residual

stress field within the formation, as seen in the stress contour given in the figure. Overall the

distribution of the stress fields shows a certain similarity. Still, the skull constraint leads to notable

changes in residual stress fields specifically at the interface of the cortex and subcortex in the gyrus.

In the unconstrained model, the stress fields, and in particular, 𝜎𝑥𝑥 exhibiting compression, and 𝜎𝑦𝑦

displaying tension, tend to localize prominently at the cusped tip of the inner gyrus. However, more

uniform stress distributions are observed at these locations in the models where the skull constraint

is considered.

In addition to the stress contours, Figure 5.14 shows the effect of skull constraint on the

distribution of residual stress fields along the probe line. The probe line begins from the pial

surface of the gyrus and extends through the bulk of the tissue. While the qualitative characteristics

of the stress fields, particularly 𝜎𝑥𝑥 , remain consistent, there is a notable reduction in the magnitude

of compressive stress at the interface in cases where the skull constraint is imposed. Furthermore, in

the unconstrained model, the stress field 𝜎𝑦𝑦 exclusively exhibits a single sign (positive), whereas

the cortex in the constrained model includes both positive and negative signs. The observed

discontinuity at the interface becomes less pronounced for both normal components of the residual

stress field. It is observed that the skull constraint has minimal effect on the qualitative behavior of

the stress field along the sulcal floor. The distribution of residual stress field along the sulci is not

therefore represented intentionally.
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Figure 5.14 Distribution of the normal components of residual stress field 𝜎𝑥𝑥(blue) and 𝜎𝑦𝑦(red)
for constrained (dashed, C) and unconstrained (solid, UC) models.The dotted and dashed lines
show the location of the interface for C and UC models respectively.
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5.5 Discussion

5.5.1 Observations

Previous experimental works [143, 144] have demonstrated the qualitative attributes charac-

terizing residual stress fields within mouse and evolving ferret brains. The experimental protocol

focused on unveiling the stress distribution of the coronal section of brain tissue by executing

radial and tangential incisions with various depths. These incisions engendered stress relaxation

orthogonal to the cutting trajectory. In the mouse experiments, the observations are confined to

only tangential residual stress distributions due to the direction of incisions. The results indicate

that gray matter is in compression whereas the white matter has a tensile residual stress field. Fur-

thermore, it is important to note that the mouse brain has a lissencephalic structure, characterized

by a lack of convoluted contours on its outer surface, unlike the mammalian brain. Hence, the

growth of the mouse brain resembles the early phase of the computational model at hand where the

layers expand solely prior to folding i.e., 𝜀𝑀 ≤ 0.24.

The dissection experiment performed on the developing ferret brain emerges as a more appro-

priate endeavor to understand how the growth and gyrification shape cerebral morphology, and

the internal mechanical state of gyral and sulcal formations. It should be noted that the cerebral

architecture of the ferret is characterized by a relatively modest degree of folding. The qualitative

attributes characterizing residual stress fields within a fully matured ferret brain are summarized

in Table 5.1. This table demonstrates the comparative analysis between the outcomes acquired

from the presented model and the experimental observation. The consistency between the residual

fields intrinsic to the gyrus-sulcus formations and the empirical observations is evident. The sole

point of divergence is observed in the deep white matter of the gyrus where the model estimates

only compression whereas the experiment indicates a tensile residual stress field. For the same

region, the localized tensile residual stress at the gyrus interface predicted by the model have not

been observed in the fully mature ferret brain. Further investigation is imperative to examine the

dynamics of post-instability regimes, particularly as manifested in extensively convoluted brains

such as the human brain.
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Table 5.1 Comparison of the result of dissection experiment conducted on fully mature ferret brain
and estimations of the computational model at hand. The experimental observations have been
presented in [144] (cf. Figure 3 c1-c6). G: Gyrus, S:Sulcus, GM: Gray Matter, WM: White Matter,
XX: Tangential to the folding direction, YY: Normal to the folding direction.

Region Tissue Direction Dissection Experiment Computational Model

G GM XX Tension → Compression Tension → Compression
G WM XX Compression → Tension Compression
S GM XX Compression Compression
S WM XX Tension Tension
G GM YY Compression Compression
G WM YY Tension → Compression Tension
S GM YY No Data Compression
S WM YY Compression Compression

The stress states predicted by the computational model are consistent with previous experimental

observations. Additionally, the evolution of equilibrium states of the computational domain is

parallel to the gyrus and sulcus formation experimentally observed in [119]. Hence, it is fair to

assume that the analysis and simulations presented here support the hypothesis that differential

tangential growth of the cortex. The results also show that the growth and gyrification lead to the

nonhomogeneous residual fields within the gyrus and sulcus. The sulcal floor and gyral crowns

are the regions mostly deformed regions in the gyrus-sulcus formation. Considering the effect of

residual stress in the realm of solid mechanics, these mechanical intrinsic factors can help to explain

various phenomena regarding heterogeneity in material properties, interface conditions, and injury

kinematics. To the author’s knowledge, this is the first detailed investigation addressing growth-

induced residual stress (strain) fields within the gyrus-sulcus formation. Previous computational

studies have various motivations to investigate various aspects of cerebral growth and folding except

for the growth-induced mechanical intrinsic factors. Previous work [125] demonstrated the residual

stress field of a single sulcus for validation purposes. The computational work of [9] presented

stress distributions in a growing bilayer system; however, the computational predictions are limited

only to pre-folding phases, mostly wrinkling.
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5.5.2 Limitations of the model

The computational model provides an intuitive understanding of how the residual stress and

strain fields evolve in a developing gyrus-sulcus formation, despite the relatively low level of

elaboration of the computational model. Yet, there are multiple limitations to this model.

In this work, a specific stiffness ratio 𝜇𝑐/𝜇𝑠 = 3.64 is utilized. It is challenging to characterize

the mechanical properties of a developing brain and the substantial changes that brain tissue

undergoes at the early stages of the brain. Because of a lack of experimental data, the stiffness

modulus contrast at hand could not be fully representative. Recent experimental works suggest that

the gray and white matter in the mature brain is equally stiff, i.e., 𝜇𝑐/𝜇𝑠 ≈ 1. However, our current

understanding of the material properties of gray and white matter is significantly limited in the early

stages of brain development. Given the spatiotemporal alterations that occur in the microstructure

of brain tissue during development, it is reasonable to infer that the mechanical properties of gray

and white matter shall be distinct from those observed in the mature brain. Specifically, it is

proposed that the gray matter may exhibit greater stiffness than white matter due to advancements

in microstructural organization leading to increased cross-linking [58]. As the brain undergoes

further development, the myelination process and the emergence of astrocytic branches contribute

to the increased stiffness of white matter. Therefore, during the initial phases of development, it is

conceivable that gray matter may be stiffer than white matter [141].

Secondly, the computational model at hand employed an idealization of a small portion of the

brain’s soft tissue. The model does not encompass a detailed anatomical representation of the

complete intracranial structures (e.g., skull, CSF, etc.). The presence of the skull and CSF could

potentially alter the boundary conditions, exerting discernible pressures upon the evolving structure.

While it is established that the skull is not a necessary trigger for cortical folding, as demonstrated

by in [8], its presence has a modulatory influence on the resultant morphology, particularly through

its propensity to flatten out the curvature of gyral crowns [125]. Furthermore, the role of the skull

extends beyond mere shaping the cortex and would have a role in cortical folding dynamics [90].

In our computational model, the heterogeneous configurations inherent in the cerebral anatomy are
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not include in the model either. Although experiments have shown that the cortical thickness is no

longer homogeneous, even at a young age, in humans and even ferrets [105].

An isotropic neo-Hookean constitutive model has been utilized to simulate the response of the

tissue to growth and folding. However, the brain tissue exhibits anisotropy, viscosity, permanent

deformation, hysteresis, and a highly nonlinear relationship between stress and strain [42]. In the

presence of viscoelasticity, the transient nature of the problem, as well as the geometric and material

nonlinearities, could lead to multiple stable equilibria, thereby affecting the mechanical response

of the material, and ultimate equilibrium state [151]. Furthermore, experiments to characterize the

stiffness of the brain are rare, and measured stiffness values vary in a large range. Considering the

effect of stiffness contrast on the folding pattern, it is imperative to underscore that the scarcity

in tissues’ stiffness quantification, particularly during gestational phases, curtails the precision of

parameter selection.

5.5.3 Conclusions

In this chapter, an elementary computational model is utilized to examine how mechanical stress

builds up in a developing gyrus-sulcus formation. The tangential expansion of the cortex leads

to a folding pattern with spatially varying residual stress and strain fields. The resultant folding

pattern resembles the characteristic structures of a gyrified brain: sulcus and gyrus. Notably, the

computational findings demonstrate qualitative agreement with the results obtained from dissection

experiments conducted on the evolving ferret brain.

Future studies in this field could explore several intriguing avenues. Firstly, a parametric study

can be considered to investigate the sensitivity of the mechanical state emerging within the sulcus-

gyrus formation to various parameters. The potential parameter space may consist of:

(i) The stiffness modulus contrast 𝜇𝑐/𝜇𝑠. As presented in figure 5.2, the stiffness modulus is

one of the key determinants shaping the surface patterns that manifest through a specific sequence

of transformations. While the material typically exhibits sinusoidal wrinkling at low levels of

mismatch strain, variations in the stiffness modulus ratio, whether higher or lower, give rise to

distinct surface instabilities such as folding, period doubling, and period-tripling as the degree
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of mismatch strain increases, as discussed by Wang [137]. Not only the resultant morphology,

recalling (5.2.11), it is obvious that the stiffness of the layers is also effective on the resultant stress

field so it needs to be investigated further.

In this work, the primary goal is to the examination of the residual fields in a folding instability

resembling sulcus-gyrus formation for a specific stiffness ratio 𝜇𝑐/𝜇𝑠 = 3.64. Previous experimen-

tal and computational results show how the resultant folding pattern is sensitive to the stiffness ratio.

Consequently, it is imperative to comprehensively understand the influence of the stiffness ratio on

the emergent residual stress fields within the formation. To conduct such a parametric investigation,

it is significant to select the range of stiffness ratios under consideration. For instance, the stiffness

modulus less than 1.3 can lead to a crease formation which is different than the wrinkling i.e.,

𝜇𝑐/𝜇𝑠 ≤ 1.3. The stiffness modulus ratio should be therefore in the range of 1.3 ≤ 𝜇𝑐/𝜇𝑠 ≤ 5 to

investigate the residual fields in folding.

(ii) The initial thickness of the cortex 𝐻𝑐 and the distribution of thickness along the subcortex:

Considering the equation (1.2.1), it is evident that the thickness of the cortex prior to any growth

and gyrification affects the wavelength of the initial sinusoidal wrinkling pattern. This observation

aligns with previous computational works that have investigated the influence of initial cortical

thickness on the emerging folding pattern [135, 19]. Specifically, a cortex with an initially reduced

thickness tends to manifest numerous smaller gyri and shallower sulci, a morphological configura-

tion akin to the features observed in polymicrogyria. Along with the thickness of the cortex, how

the thickness of the cortex varies along the subcortex is significant and needs to examined further.

Namely, the presence of inhomogeneities in cortical thickness could lead to the development of

more complex sulcus-gyrus morphologies by acting like a mechanical perturbation [33]. Despite

the role of the initial thickness on the morphology, (5.2.11) implies that the initial thickness may

not be as much as explicitly effective on the residual stress field.

(iii) The growth difference between the layers: In order to emphasize the tangential growth dif-

ferences, our consideration is confined solely to the expansion of the cortical surface tangentially,

while the white matter does not undergo any concurrent growth. However, the subcortical volume
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experiences an initial accelerated expansion trajectory, subsequently yielding precedence to the

cortical volume as gestational progress ensues, in reality, [7]. It can be assumed that the growth

of white matter may be overestimated whereas the growth of gray matter could be overestimated

in the presented computational model. Along with that, a spatially uniform and time-independent

growth parameter 𝑔 is utilized, which controls the amount of tangential growth, in the computa-

tional model. Time-dependent growth functions motivated by the biological changes seen during

the morphogenesis offers an interesting research question.

Secondly, further work is required to enhance the presented computational model for some

aspects. Specifically, augmenting the model to include time-dependent (viscous) effects could

furnish a more advanced depiction of the tissue’s growth response (e.g., a visco-hyperelastic

constitutive form). There exists a need for further refinement, particularly with respect to the

incorporation of the spatial distribution of mechanical and geometrical properties of the tissue, thus

transcending the utilization of bulk tissue properties. It is noteworthy that such inhomogeneities in

tissue could also potentially affect the surface topology by acting as a perturbation. Additionally,

integrating a growth function that accounts for biological changes within a higher dimensional

representation would contribute to a more comprehensive simulation. The effect of modifications

in the parameter space of this model on growth and gyrification remains an open question and

requires further investigation, as well.

Lastly, the existence of residual stress fields holds the potential to significantly influence the

response of the brain soft tissue and the resulting injury pattern when subjected to an applied load,

such as impact. Additional commenting on the possible role of residual stress on brain dynamics

is discussed in Chapter 6.
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CHAPTER 6

CONCLUDING REMARKS, SPECULATIONS, BROADER
CONNECTIONS AND FUTURE DIRECTIONS

This research explores how a residual stress field can be treated in the framework of hyperelastic

theory. The cause of the residual stress field need not be specified during the analysis and, as

shown in Chapter 2, a relatively simple nontrivial form for the stress field can yield useful insights.

Subsequently, attention is restricted to a residual stress field induced by the differential growth in

adjoining tissue. To this end, a numerical analysis was conducted to compute the residual stress

fields in the spherical shells for different growth conditions. A finite element model is then built to

examine the residual stress fields resulting from an extensive growth period including symmetry-

breaking bifurcations. Lastly, the response of single sulci to cavitation-induced deformations in the

intrasulcal region was presented, and the potential link between the cavitation deformations and

neuropathies/tauopathies such as CTE was discussed.

In the second chapter, a new example of a solution of a finite deformation boundary-value prob-

lem for a residually-stressed spherical shell subject to pressure-inflation deformation is provided.

This study offers obvious avenues to explore further. Following the presented framework, one can

consider extending the effect of residual fields analysis for (i) more complicated deformation states,

and (ii) different constitutive models rather than the well-known Mooney-Rivlin. On the other hand,

it is important to remark that the presented model may not offer a comprehensive representation of

the effect of residual stress. One of the reasons is that a simple nontrivial stress field in the radial

direction was considered in the study due to the lack of quantitative data at present. The quantitative

behavior of the residual stress field needs to be known to develop more elaborate models.

The limited data on the state of stress motivates examining the residual stress fields itself arose

from a specific reason such as growth. The work therefore proceeded with the examination of

residual stress due to differential growth in adjoining tissue. It should be noted that the spherical

symmetry is preserved in the analysis presented in the second and third chapters. The stability

analysis was not performed for the spherical growth. This is beyond the scope of the presented
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chapter. The computational model presented in the fifth chapter gave us an opportunity to examine

the stress and strain fields emerging beyond the symmetry-breaking post-bifurcations regimes. The

results show that the volumetric growth leads to stress and strain fields in a complex fashion,

particularly in the sulcal floor and gyral crown. Thus, this work allows us to speculate on the

possible broader connections of the presented results to physical and biological phenomena.

Biological growth and remodeling change the mechanical state of the soft tissue and lead to

residual fields. The experimental findings support the existence of residual stress fields in the

soft tissues including the cortex. Due to the limited applicability of the cutting experiment to the

cortex, the residual stress fields are not fully comprehended. This motivates extensive utilization of

computational techniques to simulate the cortical growth and folding process. The main motivation

of these numerical models is generally to understand the folding process in various aspects including

cortical growth and folding mechanisms, developmental abnormalities, and the role of mechanical

quantities on morphology. However, the mechanical state of the brain soft tissue following the

growth and extensive folding period is still scarce.

The presence of residual stress holds notable significance for several reasons. The residual

stresses affect the elastic properties of soft tissue such as stiffness and cause heterogeneous and

anisotropic internal stress fields. Thus, the residual stress fields can have a role in the microme-

chanical state of the tissue that has a beneficiary or adverse effects. For example, the residual stress

in arteries makes the stress distribution more uniform along the arterial wall [45]. Furthermore,

the mechanical response of residually stressed tissues to applied loads (body forces and surface

tractions) differs from that of stress-free tissues.

Along with the effects on the mechanical state of the tissue, considering the role of mechanical

properties of the tissues on the regulation of the essential behavior of the cellular structure, the

residual fields have a potential role in mechanotransduction across all spatial scales of the brain.

A local change in the residual stress field caused by an exogenous force below the threshold for

mechanical failure may affect cellular physiology in the brain. The residual fields therefore should

be included when seeking to model the micromechanical mechanisms that give rise to brain injury.
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While the physical mechanisms of acute and secondary injuries led by extreme events (e.g., blunt

impact, blast waves, cavitation, etc.) still remain unclear, it does seem clear that residual stresses

could have a significant effect. Hence, the presence of residual fields in the reference state of the

brain tissue should be regarded for the development of more elaborate models of the physical injury

mechanisms.

In that regard, further analysis is necessary for brain soft tissue possessing an intrinsic stress

field associated with growth that is subject to a finite deformation (static or time-dependent). Such

a study provides an understanding of the effect that residual stress has on the response of brain soft

tissue to external loading that can lead to an injury.

Similar to the framework presented in chapter 2, one possible approaches would be to develop

a finite deformation boundary value problem for the geometry of mature tissue exhibiting residual

stress field specifically caused by the morphogenesis. The reference state is actually deformed

because of previous growth and folding processes, and intrinsically stressed even in the absence

of body forces and surface tractions. It is therefore required to redefine reference configuration

to account for the residual stress. To this end, one derives a general constitutive equation for a

hyperelastic material with a residual stress field using the theory of invariants. The invariants

are dependent upon the residual stress field, finite deformations by means of the right Cauchy-

Green tensor, and the combination of them. There are 10 independent invariants in total for a

compressible material in a general three-dimensional case, which reduces to 9 for the consideration

of incompressible material. Cauchy stress is then expressed using a certain number of invariants

involved to account for the residual stress adequately.

An inherent challenge in this treatment lies in nonlinearity. It might not be possible to obtain

an explicit analytical solution even if a simple form of strain energy function is utilized. The

assumption of internal constraint alleviates the challenges to some extent at this point. However,

considering the geometry of sulcus-gyrus formation and boundary conditions, the treatment might

not be possible to solve analytically. Especially regarding our particular interest in intrasulcal

deformations presented in Chapter 4, one can consider confining the attention to the intrasulcal
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region instead of a relatively complex sulcus-gyrus formation. Later, the intrasulcal region can be

idealized as illustrated in the figure 6.1. The intrasulcal region is here simplified as a cylindrical tube

culminating in a hemispherical cap. In this representation, the cylindrical tube and hemispherical

cap correspond to the sulcal walls and the depth of the sulcus, respectively.
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Figure 6.1 Idealized representation of the intrasulcal region.

6.1 On the elastodynamic analysis of incompressible hyperelastic bilayer spherical shell and
its possible connections with residual fields

In addition to the research work presented in this dissertation, we have conducted a study on

the finite amplitude pure radial oscillation of multi-layered tubes. In this work, we have treated
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the elastodynamic problem of finite amplitude radial oscillation of a multilayer cylindrical tube

where each layer consists of an incompressible hyperelastic multilayer. For the radial motion

considered, the second-order equation of motion was derived. The combination of the symmetry

of radial motion and the internal constraints of the material gives rise to a single degree of freedom

system i.e., 𝑥 = 𝑥(𝑡) which is the oscillating location of the tube’s inner radius. The first integral

of this equation yields the first-order differential equations - "energy equations", including the

response integrals for each layer that embody the layer’s constitutive response through strain energy

functions. This equation also enables the calculation of closed motion trajectories (orbits) in a

phase plane with coordinates (𝑥, ¤𝑥). Explicit results were then given for the free oscillations of a

bilayer cylindrical tube with a Mooney-Rivlin type constitutive response for each layer to examine

the influence of the layer differences for a specific problem. Specifically, we have investigated the

effect of mismatch of shear modulus, mismatch of density, and interface location on the qualitative

features of the phase plane orbits. One example of these numerical results is presented in Figure

6.2 which shows the motion as a trajectory in an (𝑥, 𝑣)-phase plane for a bilayer tube with a thick

outer layer. In this specific case, the density and shear modulus of each layer are considered to be

identical. To a large degree, common features were preserved through such parameter variation

so long as the ratio of shear modulus to density is maintained among the various layers, which

corresponds to the preservation of shear wave speed. The orbits were closed because the system is

conservative.

In the following part of the work, we have treated the elastodynamic analysis of the same motion

using a direct energy method. The second-order radial equation of motion is thereby obtainable

from either a Lagrangian or Hamiltonian dynamics formulation. The direct energy treatments offer

a potentially more manageable alternative way to generate the specific elastic response integrals

for each layer In addition, the energy formalism also provides a possible means to more easily

incorporate additional phenomena such as residual stress. Further details about the treatments

and numerical examples have been published in a research paper titled "Radially Oscillating

Incompressible Hyperelastic Multi-Layer Tubes: Interface Effects and Energy Approach" [147].
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Figure 6.2 Demonstration of the motion as a trajectory in an (𝑥, 𝑣)-phase plane. In this example, the
bilayer tube is considered with the dimensions for the inner radius 𝑅1 = 1, interface radius 𝑅2 = 2,
and outer radius 𝑅3 = 20, The shear modulus 𝜇 and the density 𝜌 of each layer are considered to
be identical i.e., 𝜇1 = 𝜇2 and 𝜌1 = 𝜌2. The table presents the turning point amplitudes (𝑎 and 𝑏),
stroke (𝑏 − 𝑎) and the corresponding period of motion 𝜏.

Energy formalism can be considered as an alternative treatment to exploring the possible effects

of the residual fields on the response of brain soft tissue. For an illustrative explanation. Recalling

the equation (3.23) in [147] for an illustrative explanation, the total stored energy 𝔘 for the problem

at hand is expressed as

𝔘 = 𝔘ref + 𝜋𝑅4
1

𝑁∑︁
𝑛=1

𝐻𝑛 (𝑥). (6.1.1)

where 𝐻𝑛 (𝑥) is the base response function of layer 𝑛 with respect to non-dimensional inner radius

stretch 𝑥, and 𝑅1 is the undeformed inner radius of the cylindrical tube, respectively. Here 𝔘ref

denotes the baseline reference stored energy that can be utilized to quantify the residual stress in

the material [63]. In case 𝔘ref = 0, the material does not possess any residual stress. It should be

noted that the equation is derived for the problem described above, and presented to show how the

effect of residual stress fields can be included in the analysis. Furthermore, It is important to remark

that energy formalism allows one to obtain phase-plane trajectories for the considered motion. The
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aforementioned treatment would be more convenient for a stress analysis.

The presented framework of radial oscillation of incompressible hyperelastic multilayer tubes

can be easily implemented to examine specific examples associated with brain injury dynamics.

Not only the free oscillations, but the problem can also be formulated for the forced oscillations

with various pressure boundary conditions such as Heaviside step loading, blast loading, harmonic

loading, and periodic step pulse load [114]. It is useful to remind that the symmetry of the motion

provides simplification to the problem to some extent. Hence, the idealized intrasulcal region

can be regarded for such an elastodynamic analysis, as given in figure 6.1. In this setting, the

cylindrical tube represents the sulcal walls while the hemispherical end represents the depth of the

sulcus. Assuming that the sulcal wall is a bilayer cylindrical tube with a thin layer (cortex) over the

thick outer layer (subcortex) with similar material properties, figure 6.2 becomes a representative

illustration of the elastodynamic response of a sulcal wall without any residual stress.

6.2 Potential roles of residual fields to brain injury mechanisms

This section is reserved to speculate about the possible implementation of the mechanomor-

phogenesis model presented in Chapter 5 to brain injury dynamics. Specifically, the potential

roles of residual field induced by morphogenesis are discussed in two broad aspects: beneficial

and adverse effects of intrinsic mechanical field on physical injury mechanisms seen in TBI, and

mechanotransduction mechanisms.

Potential roles on the physical injury mechanisms

In fracture mechanics, the role of the maximum principal stress significantly influences crack

behavior and its propensity to propagate. In the context of injury mechanics in soft tissues,

the manifestation of cracks finds equivalence in the context of rips or tears resulting from the

deformation. When the brain soft tissue is subject to a finite deformation, the internal mechanical

state might have the potential to affect the occurrence of the injury independent of the loading

condition itself. For instance, a preexisting tensile residual stress could accelerate the formation of

micro-fissures during an episode of physical trauma, whereas a preexisting compressive residual

stress field could provide some benefit in delaying fissure formation. The results indicated that the
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maximum principal stresses in tension are localized around the gray-white matter interface and the

fissure is likely to occur especially along the interfaces (see Figure 5.12). Parallel to the findings

presented here, recent experimental studies suggest that extreme events such as cavitation [37, 22]

and blast waves [121] lead to tissue rips and tears, particularly along the interfaces. However,

there is insufficient data to substantiate the formation of tears and rips in relation to micro-fissures

and the intrinsic mechanical state of the tissue, including residual stress and strains. Still, the

extension of fracture mechanics to injury mechanics, incorporating residual fields, holds promise

for elucidating the mechanisms of rips and tears observed in soft tissues subjected to extreme loads.

Further exploration is warranted for the precise quantification of residual stress and strain fields, as

well as the development of physical injury models that incorporate these intrinsic fields.

Possible roles on mechanotransduction mechanisms

Along with the role of residual fields on the continuum response of brain soft tissue, such

a discussion on the role of intrinsic effects can be extended at the sub-tissue scale since the

microenvironment plays a critical role in many cell-intrinsic mechanisms.

The tissue comprises cells and an extracellular matrix (ECM), where the ECM serves as

a scaffold offering mechanical support and driving biological signaling in cells within tissues.

Recognized as a pivotal aspect of the microenvironment, the ECM regulates cell behaviors and

phenotypes. Cells, in turn, possess the ability to sense and respond to the mechanical attributes

of their microenvironment, known as mechanosensing. Through adaptive behaviors, cells govern

critical aspects of cellular physiology, including membrane integrity, cellular morphology, and

structural robustness. Experimental findings indicate that cells can recognize deformation energy

resulting from matrix stretch, suggesting that cell mechanosensing is influenced by the deformation

energy in the ECM, not solely its stiffness [94]. It is therefore reasonable to posit that the presence

of growth-induced residual stress (strain) fields can be recognized by cell mechanosensing, and

subsequently adapted into mechanochemical signaling pathways and cellular structures. This

mechanical equilibrium between cells and residual fields thus constitutes a state of mechanical

homeostasis, preserving structural integrity and functionality. However, the influence of mechanical
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microenvironmental conditions in the presence of residual stress in the ECM remains unclear.

Returning to the outcomes of the presented study in Chapter 5, the results indicate the existence

of inhomogeneous mechanical intrinsic fields within gyrus-sulcus formations. This heterogeneity

might suggest spatially varying homeostatic conditions for extra and intracellular structures along

the gyrus-sulcus formation. Considering this diversity in cellular response, even acute physical

forces below the threshold for mechanical failure could potentially induce local alterations in the

microenvironment, disrupting mechanical homeostasis [60].
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