A CYTOGENETIC INVESTIGATION OF SEX EXPRESSION IN SPINACIA By WILLIAM PUTNAM BE MIS A THESIS S u b m itted to the School of G raduate Studies of M ichigan State College of A g ric u ltu re and A pplied Science in p a r tia l fu lfillm e n t of the re q u ire m e n ts fo r the d eg ree of DOCTOR OF PHILOSOPHY D e p a rtm e n t of B otany and P la n t P athology, and D ep a rtm e n t of H o rtic u ltu re 1952 ProQuest Number: 10008260 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10008260 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ACKNOW LEDGM ENTS T his study of the p ro b le m of sex in h e rita n c e in S pinacia h as b een m ade p o s s ib le thro u g h the jo in t c o o p eratio n of the D e­ p a r tm e n t of B otany and P la n t P athology (D octor W. B. D rew , H ead), and the D e p a rtm e n t of H o rtic u ltu re (D octor H. B. Tukey, H ead). The au th o r e x p r e s s e s h is thanks to th e se d e p a rtm e n ts f o r the s e r v ic e s and f a c ilitie s re n d e re d to him . He e x p re s s e s h is thanks to the m e m b e rs of h is guidance co m m ittee, and is e s p e c ia lly in d eb ted to D octor G. B. W ilson, D ep artm en t of B otany (c o -c h a irm a n ), fo r h is p e rs o n a l s e rv ic e s and advice co n cern in g the cy to lo g ical and genetic stu d ie s. The au th o r also e x p r e s s e s h is g ra titu d e to D octor R. L. C a ro lu s, D ep artm en t of H o rtic u ltu re (c o -c h a irm a n ), and D octor A. I. Isb it, D ep artm en t of H o rtic u ltu re , f o r th e ir advice co ncerning the fie ld plan tin g s u se d in th is study. The au th o r also acknow ledges M r. P h ilip C olem an, e x ­ p e rim e n t sta tio n p h o to g ra p h e r, fo r the p h o to m ic ro g ra p h s p r e ­ se n te d in th is p a p e r. A CYTOGENETIC INVESTIGATION OF SEX EXPRESSION IN SPINACIA By W illiam P u tn a m B em is AN ABSTRACT S ubm itted to the School of G rad u ate Studies of M ichigan State C ollege of A g ric u ltu re and A pplied Science in p a r ti a l fu lfillm e n t of the re q u ire m e n ts fo r the d eg ree of DOCTOR OF PHILOSOPHY D e p a rtm e n t of B otany and P la n t P athology, and D e p a rtm e n t of H o rtic u ltu re Y ear App r o v e d____ ' „ ^<7 /t \ 1952 _______________________________________ 1 WILLIAM PUTNAM BEMIS ABSTRACT Sex e x p re s s io n in the a n g io sp e rm s, along w ith s e v e ra l cytogenetic: ex p lan atio n s of s e x in h e rita n c e in c e r ta in p la n ts and a n im a ls , and the effe c t of e n v iro n m en t a re c o n s id e re d in the re v ie w of the g e n e ra l p ro b le m of sex e x p re s s io n and sex in h e rita n c e . two p a r ts : The e x p e rim e n ta l w ork p r e s e n te d is divided into the cy to lo g ical in v e stig a tio n and the g enetic in v e s ti­ gation. The cy to lo g ical in v e stig a tio n of S pinacia ole ra c e a L . c o n s is te d of a study of m e io s is in diploid m a le and in te r s e x p la n ts , and in te tra p lo id in te r sex p la n ts . No evidence of a h e te ro m o rp h ic p a ir of c h ro m o so m e s w as d e tected . The c h ro m o ­ so m al co n fig u ratio n s of the diploid m ale w ere the sam e as those of the in te r s e x p la n ts; how ever, th e re a p p e a re d to be a d if f e r ­ ence betw een two in te r s e x lin e s . One in te r s e x line contained two n u c le o la r ch ro m o so m e p a i r s , as did the m ale, and the o th e r in te r s e x lin e con tain ed only one n u c le o la r ch ro m o so m e p a ir. The te tra p lo id m a te r ia l exam ined in d icate d the p re s e n c e of a t l e a s t two tr iv a le n ts a t M etaphase I. M eio sis was o th e r ­ w ise r e g u la r up to te tr a d fo rm a tio n , w here it b ecam e ab n o rm a l 2 WILLIAM PUTNAM BEMIS ABSTRACT by p ro d u cin g m a n y -c e lle d 1't e t r a d s M o r p o ly ad s. p ro d u c e d fro m The p o llen such polyads w as i r r e g u l a r . The g en etic in v e stig a tio n c o n s is te d of fo u r g e n e ra tio n s of b re e d in g S_. o le ra c e a L ., fro m w hich a sch em e f o r se x in ­ h e rita n c e w as d ev ised . P la n t types and flo w er types w ere d e ­ s c rib e d in o r d e r to obtain a sy ste m of c la s s ific a tio n th a t would be su ita b le fo r g en etic r a tio s . The genetic schem e d ev ised c o n s is te d of the in te ra c tio n of an X -and-Y ch ro m o so m e m e c h ­ a n is m and two co m pu lsion link ed g en es, w ith a v e ry low c r o s s ­ o v e r valu e, w hich w ere independent of the X and Y c h ro m o ­ so m e s . T hese two linked genes w ere equal in th e ir s e x - e x p r e s s ­ ing c a p a c ity b u t w ere opposite in e x p re s s in g sex type. A YY type of in dividu al was c o n s id e re d to be v iab le. The ab o v e-m en tio n ed schem e was ad apted to f it the c o n ­ ditions of se x in h e rita n c e found to e x ist in S p in acia; n am ely , the m ain ten an ce of a 1:1 sex ra tio , the p ro d u ctio n of in te r s e x p la n ts , in te r s e x p la n ts w hich a re p u re b re e d in g fo r the in te r s e x condition, in te r sex p la n ts w hich s e g re g a te into (a) in te r se x e s and m a le s , (b) in te r s e x e s and fe m a le s , (c) in te r s e x e s and m a le s and fe m a le s . TA B LE O F CONTENTS P age IN T R O D U C T IO N ............................................................................................ 1 GENERAL REVIEW OF THE PROBLEM OF SEX EXPRESSION ..................................................................................... 3 Sex E x p re s s io n in the A n g io sp erm s E n v iro n m en t as a F a c to r ................................... ........................................................ C ytogenetic In te rp re ta tio n s of Sex E x p re s s io n . . . . CYTOLOGICAL INVESTIGATIONS OF SEX EXPRESSION IN SPINACIA ................................................................ D iploids ............................................................................ 3 11 14 23 23 R eview of l i t e r a t u r e ................................................................... 23 ............................................................ 24 M eiotic o b s e r v a t i o n s ................................................................... 26 M a te ria ls and m ethods T e tra p lo id s ............................................................................................... 29 R eview of l i t e r a t u r e ................................................................... 29 ............................................................ 29 M eiotic o b s e r v a t i o n s ................................................................... 31 D i s c u s s i o n ................................................................................................... 35 G ENETIC INVESTIGATIONS OF SEX EXPRESSION IN SPINACIA ................................................................ 42 M a te ria ls and m ethods P ag e R eview of L ite r a tu r e ....................................................................... E n v iro n m e n t as a F a c to r ............................................................ 44 ................................................................... 46 ....................................................................... 48 ........................................................................................ 50 M a te ria ls and M ethods G enetic O b se rv a tio n s P la n t types 42 F lo w e r typ es ........................ G enetic E x planation .......................................................................... D i s c u s s i o n ......................................................................... S U M M A R Y .......................................................................................................... C ytological Study ......................................................................... G enetic S t u d y ................................... 55 59 82 84 84 84 B IB L IO G R A P H Y ........................................................................................... 86 A PPENDIX 91 ...................................................................................................... L IS T O F T A B L E S TABLE I. P age ............................................ 16 F re q u e n c y of C ells p e r MT e tr a d 11 fo r Two T e t r a p l o i d s ................................................................... 33 Sex E x p re s s io n of Two V a rie tie s of Spinach . . ..................................................................................... 47 IV. P u r e - b r e e d in g In te rs e x T y p e ..................................... 70 V. Selfed I n te r s e x S egregating into F e m a le s and In te r s e x e s ....................................................................... 71 Selfed In te r s e x S eg regating into M ales and In te r s e x e s ...................................................................... 73 Selfed In te rs e x S egreg atin g into M ales, I n te rs e x e s , and F e m a l e s .............................................. 77 II. III. VI. VII. Sex In dices in D ro so p h ila VIII. P la n tin g P la n , W inter, 1950-51 100 IX. P la n tin g P la n , S pring, 1 9 5 1 ....................................... 101 X. P la n tin g P la n , W inter, 1951-52 102 XI. P la n tin g P la n , S pring, 1952 103 ....................................... XII. D ata fro m W inter, 1950-51, P lan tin g ................ 107 XIII. D ata fro m Spring, 1951a P l a n t i n g ............................. 10 8 XIV. D ata fro m W inter, 1951-52, P lan tin g ................ 109 XV. D ata fro m the Spring, 1952,P lan tin g .................. 110 vi TABLE XVI. Page D ata fro m S pring, 1950, T estin g Spacing and D ate of P la n tin g on the Sex E x p r e s ­ sio n of Spinach .................................................................... 118 L IS T O F F I G U R E S FIGURE P age A. K ary otyp e of S pinacia o le ra c e a L ................................ 27 B. F lo w e r T ypes ............................................................................ 56 C. D ia g ra m a tic Schem e fo r the G enetic E xp lan atio n fo r Sex In h eritan ce in S pinacia ........................................................ 61 L IST O F P L A T E S PLA TE I* II. III. IV. P ag e M eio sis in D iploid S pinacia o le ra c e a L ................... 37 M eio sis in T e tra p lo id S pinacia o le ra c e a L. 39 . . M eiotic C o nfigu rations in Spinacia o le ra c e a L ............................................................................................ Sex Types in S pinacia o le ra c e a L .......................... . 41 54 INTRODUCTION The p ro b le m of se x in h e rita n c e in S pinacia o le ra c e a L. has b een a tta c k e d by u sing tech n iq u es of g e n e tic s and cy to g e­ n e tic s . G en etics is a r e la tiv e ly new scien c e which has p la c e d h e re d ity on a m a th e m a tic a l b a s is involving the conception of the p a r tic u la te n a tu re of in h e rita n c e . C ytogenetics is the b ra n c h of sc ie n c e w hich is co n ce rn e d w ith the m e c h a n ism by which th e s e p a r tic le s a re c a r r i e d fro m c e ll to c e ll, and fro m g e n e r a ­ tio n to g e n e ra tio n . A c le a r concept of g en etics has b een given by D arlin g to n (1951). G enetics began as a study of the re la tio n s of p a re n ts and o ffsp rin g in sexual rep ro d u ctio n . It continued by e x a m ­ ining a d e e p e r la y e r of ev en ts, the m ov em ents and a c tiv itie s of the d e te rm in a n ts re s p o n sib le fo r th e se re la tio n s . It then p a s s e d to c o n s id e r u n ic e llu la r and u n im o le c u la r o rg a n ism s in w hich the d istin c tio n betw een d e te rm in a n t and phenotype a lm o s t la p s e d and in w hich sexual re p ro d u c tio n e n tire ly la p s e d only p e rh a p s to re a p p e a r again a t a lo w er le v e l. G enetic notions then tr a n s f e r r e d to the study of c e ll-lin e a g e s w ithin o rg a n is m s in w hich developm ent took the p la ce of h e re d ity and d iffe re n tia tio n took the p la ce of v a ria tio n . By th e se sta g e s it w ill be found th a t g en etics h as g ra d u a lly b ro k e n down the b a r r i e r s betw een the d e p a rtm e n ts of biology. It has done so by in tro d u cin g those rig o ro u s notions of c o n ­ s ta n t p a r tic le s co n sta n tly d eterm in in g v e rifia b le e ffects w hich M endel so c le a r ly s e t fo rth n e a rly a h u nd red y e a rs ago. Now ind eed in 1950 we m ay claim to have re d is c o v e re d the ele m e n ts w hich s e g re g a te , and reco m b in e and, above all, d e te rm in e . 2 He f u r th e r ad ds, ’’G en etics re m o v e s the bandage fro m o u r ey es when we s e t out in p u r s u it of knowledge about livin g th in g s .” The " b a n d a g e " in the c a se of sex e x p re s s io n in the a n g io sp e rm s h as b e e n d ifficu lt to re m o v e . Sex e x p re s s io n is a c h a r a c te r w hich, in the c a s e s of h e rm a p h ro d itic and in te r s e x in d iv id u als, is v e ry d ifficu lt to p lace into sp ecified c la s s e s . T h is, along w ith d ifferin g re s p o n s e s to en v iro n m en t, has m ade g en etic a n a ly sis of the p ro b le m a d ifficu lt ta sk . H ow ever, c e r ­ ta in co n clu sio n s have b e e n re a c h e d and a re p re s e n te d in this p a p e r w hich m ay add evidence to the solution of the g e n e ra l p ro b le m of sex in h e rita n c e . GENERAL REVIEW OF THE PROBLEM OF SEX EXPRESSION Sex E x p re s s io n in the A n g io sp erm s To w hat ex ten t the dioecious and the m onoecious co m plex es a r e p r e s e n t in the a n g io sp e rm s has by no m ean s a sim ple a n sw e r. B efo re th is p ro b le m can be app ro ach ed , it is e s s e n tia l, f i r s t , to define e x a c tly w hat is m e an t by the dioecious and the m onoecious co m p lex es. The follow ing d efin itio n s, w hich a re u sed throughout th is p a p e r, have been tak en fro m a m a n u s c rip t p re p a r e d by G illy and W ilson (1952) w hich d e a lt w ith the p ro b le m of sex e x p re s s io n in the a n g io sp e rm s. 1. D efinitions ap plicab le to the se x u a lity of flo w e rs: a. P e r f e c t flo w er - - A flo w er w hich is m o rp h o lo g ically b ise x u a l (i.e ., containing both fu nctional an d ro eciu m and function al gynoecium ). b. M orpho logically stam in ate flo w er - - A flo w er c o n ­ tain in g only a functional an d ro eciu m . c. F u n ctio n ally sta m in a te flo w er - - A flo w er co n ta in ­ ing a fu nctional an d ro eciu m and a ru d im e n ta ry o r o th e rw ise nonfunctional gynoecium . d. M o rp h o lo g ically p is tilla te flo w e r- - A flo w er c o n ­ tain in g only a fu n ctio n al gynoecium . e. F u n c tio n a lly p is tilla te flo w e r- - A flo w er c o n ta in ­ ing a fu n ctio n al gynoecium and ru d im e n ta ry o r o th e rw ise nonfunctional an d ro eciu m . D efinitions ap p licab le to the sex u ality of s p e c ie s: a. P E R F E C T --S p e c ie s w ith a ll flo w ers on a ll in d i­ v iduals p e rfe c t. b. M ON O ECIO US--Species w ith som e flo w e rs on a ll individ uals m o rp h o lo g ically sta m in a te and o th e r flo w e rs on a ll individuals m o rp h o lo g ically p is tilla te . c. POLYGAM O-M ONOECIOUS--Species w ith a ll in ­ dividuals b e a rin g th re e kinds of flo w e rs; p e rfe c t, m o rp h o lo g ically stam in ate and m o rp h o lo g ically p is tilla te . d. ANDRO-M ONOECIOUS--Species w ith all in d iv id ­ u a ls b e a rin g both p e r fe c t and m o rp h o lo g ically sta m in a te flo w e rs . e. GYNO-M ONOECIOUS--Species w ith all individ uals b e a rin g both p e r f e c t and m o rp h o lo g ically p is tilla te flo w e rs . FUNCTIONAL M ON O ECIO U S--Species w ith som e flo w e rs on all ind iv id u als e ith e r m o rp h o lo g ically o r fu n ctio n ally sta m in a te and o th e r flo w e rs on a ll in d ividuals e ith e r m o rp h o lo g ically o r fu n c ­ tio n a lly p is tilla te ; to f it into th is categ o ry , e ith e r the sta m in a te o r the p is tilla te flo w ers on all in ­ div id u als m u s t be of the fu nctional, r a th e r than the m o rp h o lo g ical, type. D IO EC IO U S--Species w ith a ll flo w ers on som e ind iv iduals m o rp h o lo g ically sta m in a te and all flo w e rs on the o th e r individuals m o rp h o lo g ically p is tilla te . PO LYG A M O -D IOECIO U S--Species w ith som e in ­ dividuals b e a rin g p e r f e c t flo w e rs and e ith e r m o rp h o lo g ically stam in ate o r m o rp h o lo g ically p is tilla te flo w e rs and o th e r individuals b e a rin g flo w e rs of the opposite m o rp h o lo g ical sexual type (accom panied o r unaccom panied by p e r f e c t f lo w e rs ). A ND RO -DIO ECIO US--Species w ith som e in d iv id ­ u als w ith only m o rp h o lo g ically sta m in a te flo w e rs and o th e r in d ividu als w ith only p e r f e c t flo w e rs. 6 j. G Y N O -D IO ECIO U S--Species w ith som e in d iv id ­ u a ls w ith only m o rp h o lo g ically p is tilla te flo w e rs and o th e r in divid uals w ith only p e r f e c t flo w e rs, k. FUNCTIONAL D IO EC IO U S--Species w ith all flo w ­ e r s on som e individuals e ith e r m o rp h o lo g ically o r fu n ctio n ally stam in ate and all flo w e rs on o th e r in d iv id u als e ith e r m o rp h o lo g ically o r fu n c ­ tio n a lly p is tilla te ; to f it into th is c a te g o ry e ith e r the sta m in a te o r the p is tilla te flo w ers m u st be of the fu nctional, r a th e r than the m o rp h o lo g ical, type. Some p r e lim in a r y conclusions con cern in g the p ro b le m of the ex ten t of the dioecious and m onoecious co m plexes in an g io ­ s p e rm s is p r e s e n te d by G illy and W ilson (1952). F r o m the m o re than ten thousand g e n e ra which c o m p rise o v e r 150,000 s p e c ie s of the a n g io sp e rm s, th ey in d icate d th a t a t le a s t 85,148 s p e c ie s com e fro m fa m ilie s w hich co ntain som e s o r t of d io e c io u sn e ss, and 35,571 sp e c ie s a re fro m the f a m ilie s w hich co n tain som e tru ly dioecious s p e c ie s. ecio u s fa m ilie s c o m p ris e 530 s p e c ie s. The six te en s tr ic tly d io ­ 7 The f a m ilie s w hich co ntain m o n o e cio u sn ess of one s o r t o r a n o th e r c o m p ris e 102,797 s p e c ie s, and those fa m ilie s w hich co n tain som e tr u ly m onoecious s p e c ie s c o m p rise 22,279 s p e c ie s . The tw elve s tr ic tly m onoecious fa m ilie s c o m p rise 185 s p e c ie s. They concluded fro m th e ir in v e stig a tio n s th a t a t le a s t 2,500 to 3,000 s p e c ie s a r e d ioecio us, and 7,000 to 7,500 s p e c ie s a r e m o n o ecio u s, in the s t r i c t sen se of the definition included in th is p a p e r. The p e r f e c t condition (35,479 sp ecie s) d om in ates the a n g io s p e rm s , bu t the dioecious com plex is by no m ean s a sm a ll m in o rity . A nother q u estion w hich a r i s e s co n ce rn s the place of the d io ecio u s and m onoecious com plexes in the e v o lu tio n ary r e la tio n ­ sh ip s b etw een the ty p e s of sex e x p re s s io n . F iv e p ro p o se d s y s ­ te m s of the evolution of th e se com plexes a re given. One, b a s e d upon the sy ste m s of B entham and H ooker (1862-1883), B e sse y (1919), and H utchinson (1926, 1934), shows a tre n d fro m the p e r f e c t condition to the m onoecious o r the d ioecious condition; i.e ., P to M o r D. Two in te rp r e ta tio n s a r e b a s e d upon the s y ste m of E n g ler and P r a n tl. One in te r p r e ta tio n shows a tre n d fro m the dioecious 8 cond itio n to the p e r f e c t condition, e ith e r th ro u g h o r aro u n d the m onoecious condition; i.e ., D to P d ir e c t, o r thro u g h M. The o th e r in te r p r e ta tio n is a tre n d fro m both the dio eciou s and m o noeciou s to the p e r f e c t condition; i.e ., D and M to P . To co m p lete the s e r ie s , G illy and W ilson have added two m o re p o s sib le s y s te m s , one of w hich shows a tr e n d fro m the m onoecious condition to e ith e r the p e r f e c t o r the dioecious condition; i.e ., M to P o r D; and an o th er showing a tre n d fro m the p e r f e c t and dioecious condition to the m onoecious condition; i.e ., P and D to M. They conclude th a t the p r e s e n t data a re sim p ly not adequate fo r any d ecisio n a t th is tim e . H owever, th ey a g re e th a t d iffe re n c e s of sex e x p re s s io n in the a n g io sp e rm s a re c o r r e la te d w ith the genetic co n stitu tio n of the o rg a n is m s , and the p ro b le m of se x u a lity in the a n g io sp e rm s is , th e re fo re , to a high d e g re e a gen etic p ro b le m . F u r th e r evidence fo r the genetic c o n tro l of sex is shown by stu d ie s on the in h e rita n c e of flo w er types in the C u cu rb itacea e and in m a iz e . F ro m a s e r ie s of c r o s s e s and back c r o s s e s in C ucum is and C itru llu s , R osa (1928) e s ta b lis h e d th a t the d iffe re n tia tio n of gynoecious and h e rm a p h ro d itic flo w e rs depended upon a single 9 g en etic f a c to r , h e rm a p h ro d itis m being r e c e s s iv e and an d ro m o n o e c io u s n e s s b eing dom inant. P o o le and G rim b a ll (1939) concluded th a t in C ucum is m elo the h e rm a p h ro d itic p la n ts d iffe re d fro m m onoecious p la n ts by two r e c e s s iv e g en es. A p la n t h etero zy g o u s f o r one p a ir of gen es is an d ro m o n o ecio u s, and one h etero zy g o u s f o r the o th e r p a i r is gynom onoecious. Jo n es (1934) developed dioecious m a ize and p ro p a g a te d it th ro u g h fo u r g e n e ra tio n s . Two c la s s e s of s e x -d e te rm in in g g a m e te s w e re p ro d u ced by the m ale p la n ts; the fem a le p la n ts w e re m o n o g am etic. Double r e c e s s iv e s of ta s s e l s e e d - 2 (ts^) and s ilk ie s s (sk) w ere found to be in d istin g u ish ab le fro m ta s s e l s e e d -2 by its e lf . A pparen tly, th is ta s s e l - s e e d gene had the ab ility to n u llify the actio n of the s ilk ie s s gene. P la n ts having the co m p o sitio n ( s k - s k - ts ^ - ts ^ ) p ro d u ced seed s both in the l a t ­ e r a l a s w ell as the te rm in a l flo w e rs , and w ere fe m a le in fu n c ­ tion. When such p la n ts w ere c r o s s e d w ith s ilk le s s individuals h e tero zy g o u s fo r ta s s e l s e e d -2 (sk sk T s^ts^) w hich w ere m ale in function, the r e s u lt was a p ro g en y m ade up of the sam e two c la s s e s a s the p a r e n ts . Sex e x p re s s io n in th is ra c e of dioecious m a ize is th e re fo re c o n tro lle d by a single gene (Ts^)- 10 E m e rs o n (1924) a g re e d th a t sex is p ro b ab ly an e x p re s s io n of the in te r a c tio n of s e v e ra l, p e rh a p s m any, f a c to r s lo c a te d in d iffe re n t c h ro m o s o m e s. He a s su m e d th a t c h a r a c te r s in g e n e ra l, including sex e x p re s s io n , develop thro ugh the co o p erativ e in ­ flu e n c e s of g en etic f a c to r s and f a c to r s of the in te rn a l, a s w ell as the e x te rn a l, en v iro n m en t. He added th a t in p re v a ilin g d io ­ ecio u s fo rm s of the flo w erin g p la n ts, f a c to rs fo r m a le n e s s and f o r fe m a le n e s s p re s u m a b ly a r e p r e s e n t in both m ale and fem a le in d iv id u als, bu t h e re the b alance is m o re stro n g ly in fa v o r of one o r the o th e r condition. The ap p ro x im ate n u m e ric a l eq u ality of ind iv id u als of the two sex es in th e se fo rm s a t once su g g ests a ch ro m o so m e m e ch an ism s im ila r to th a t known to e x is t in n u m e ro u s an im al g ro u p s. The o c c a sio n a l a p p ea ra n ce of sex in te rg r a d e s app roaching the condition of ty p ic a l h e rm a p h ro d ite s m ay w ell be due to the influence of s e v e ra l h etero zy g o u s sex f a c to r s of re la tiv e ly m in o r influence. In h is re v ie w of sex e x p re s s io n in a n g io sp e rm s, A llen (1940) c ite d the genetic b a s is fo r sex e x p re s s io n as fo rm u la te d by C o rre n s in 1928, w hich a ssu m e d th a t all a n g io sp e rm s p o s s e s s p o te n c ie s f o r fe m a le n e s s , c a r r i e d by a gene o r g en e-co m p lex (G); and fo r m a le n e s s , c a r r i e d by a gene o r g en e-co m p lex (A). 11 A no ther gene o r g e n e -c o m p le x (Z) in flu en ces f o r e ac h sp e c ie s the tim e and o r d e r of ap p e a ra n c e of m ale o r fem a le o rg an s. In addition, a d io ecio u s s p e c ie s has genes ( Mr e a l i z a t o r s '') te n d ­ ing r e s p e c tiv e ly to w ard fe m a le n e s s (gam m a) and to w ard m a le n e s s (alpha). This v e ry b ro a d hyp o th esis has b een the b a s is of a n u m b e r of ex p lan atio n s of sex in h e rita n c e in the h ig h er p la n ts . E n v iro n m en t as a F a c to r The en v iro n m en tal in flu en ces upon the sex e x p re s s io n is a p ro b le m w hich does not have a c o n crete an sw e r. It is im p o ssib le to show th a t en v iro n m en t has no effect o r th a t it h as a 20- p e r c e n t effect o r is a p r im a r y co n tro llin g fa c to r . C e rta in ly , e n v iro n m en t h as an effect, fo r w ithout en v iro n m en tal change, no life would e x ist. F o r exam ple, spinach seed, if kep t in a d ry c o n ta in e r, would ev en tu ally die, o r if they w ere kept in a w a rm , m o ist, d a rk condition co n stan tly , th ey would in itia te grow th, b u t soon die. In o r d e r to m ain tain grow th and dev elo p ­ m e n t th ro u g h its com p lete re p ro d u c tio n cycle, a sp in ach seed m u s t go th ro u g h a s e r ie s of ev e r-c h a n g in g e n v iro n m e n ts. It 12 is th e se e v e r-c h a n g in g en v iro n m e n ts w hich p e r m it the gen etic co m p lex to e x p r e s s the c h a r a c te r s of the o rg a n ism . The d e g re e of influence w hich e n v iro n m en t has o v er the e x p re s s io n of c h a r a c te r s is an o th er question. S chaffner (1927) took the e x tre m e view, and concluded th a t sex was p u re ly p h y s i­ o lo g ical, and in no way dependent upon se g re g a tio n and co m b in a­ tio n of the u n its of c h ro m o so m e s. He p la c e d em p h asis upon e x ­ te r n a l f a c to rs su ch as lig h t, te m p e r a tu r e , and so il, and b eliev ed th a t e ith e r sta m in a te o r p is tilla te p la n ts c a r r i e d w ithin th e m ­ s e lv e s the p o te n tia litie s of e x p re s s io n of the opposite sex. T his l a tte r b e lie f of S chaffner is u su a lly accep ted , but in the c a se of c e r ta in dio eciou s p la n ts , the conditions n e c e s s a r y to r e a liz e the p o te n tia litie s of changing sex would be so se v e re th a t it would r e s u l t in the d eath of the o rg a n is m . F r o m o b se rv a tio n s in spin ach , it a p p e a rs th a t c e r ta in m ale types a re so co m p letely " o v e rb a la n c e d ” on the an d ro ecio u s side th a t en v iro n m en tal ch an g es, no m a tte r how s e v e re , would not change the sex of the p la n t. The sam e is tru e of the stro n g fem a le p la n ts . This c o m p a re s w ith the conditions e x istin g in m o s t a n im a ls. As the s tre n g th s of the an d ro ecio u s and gynoecious c o n ­ ditio n s tend to b alan ce each o th e r, en v iro n m en t b eco m es an 13 im p o rta n t f a c to r . E vidence of th is is shown in the effects of the w in te r (g reenhouse) g e n e ra tio n s c o m p a re d to sp rin g (field) g e n e ra tio n s . T h ree lin e s of in te rs e x e s d iffe re d m a rk e d ly in th e ir sex e x p re s s io n , while dio ecious s tr a in s m a in tain ed the 1:1 r a tio u n d er s im ila r con d itio n s. Sugim oto (1947) noted d iff e r­ en c e s c o r r e la te d w ith en v iro n m en ts of sp rin g and autum n p la n t­ in g s. The autum n p la n tin g s w ere influenced to a l e s s e r d eg ree th an w e re h is sp rin g p la n tin g s. The and rom ono ecio us p la n ts of C itru llu s v u lg a ris u sed by R osa (1928) w ere m o re se n sitiv e to en v iro n m en tal conditions th a n w e re the androm o noecio us p la n ts of C ucum is sativ a, as the sta m e n s of h e rm a p h ro d itic flo w ers w ere not alw ays equally d e ­ veloped. In o th e r v a r ie tie s of m onoecious c u c u rb ita c e a e , W hit­ a k e r (1931) re p o r te d th a t the ra tio of m ale flo w e rs to fem ale flo w e rs v a r ie s w ith seaso n , and also w ith v a rie ty . H ow ever, when the h e rm a p h ro d itic o r m onoecious condition b eco m es g e n e tic a lly sta b iliz e d , en v iro n m en t once m o re b eco m es a m in o r f a c to r . It is m ain ly when a sp ecie s is in the p r o c e s s of changing g e n e tic a lly , due to c o n tro lle d b reed in g , th a t e n v iro n ­ m e n t e x e r ts its g r e a te s t influence on the e x p re s s io n of c h a r a c ­ te rs . 14 C ytogenetic I n te r p r e ta tio n s of Sex E x p re s s io n In a n im a ls and d ioecious p la n ts th e re m u s t be a s y ste m w h ereb y one s e x w ill n o t p re d o m in a te and p o s sib ly e lim in ate the s p e c ie s . D isju n ctio n betw een h e te ro m o rp h ic sex c h ro m o so m es is one s y ste m w hereby the two sex es w ill be m a in tain ed in a p ­ p ro x im a te ly equal n u m b e rs . W here no h e te ro m o rp h ic c h ro m o ­ so m es a r e v is ib le , and a ll ch ro m o so m e p a ir s ap p ea r to be h o ­ m ologous, th e p re s e n c e of a c r o s s o v e r s u p p r e s s o r fo r a s e g ­ m e n t of a p a ir of c h ro m o so m e s w ill give the sam e actio n as if the c h ro m o so m e s w ere nonhom ologous; th a t is , a 1:1 ra tio f o r the p a r ti c u la r seg m en ts is m ain tain ed . If th e se seg m en ts a r e c o m p ris e d of s e x -d e te rm in in g gen es, then th e re is in effe c t an X-Y m e c h a n ism w ithout h e te ro m o rp h ic p a i r s of c h ro m o so m e s. M cClung (1902) stu d ied the m a le s of s e v e r a l o rth o p te ra n s and su g g e ste d th a t the u n p a ire d o r ’A c c e s s o r y " ch ro m o so m e w as the m ale sex d e te r m in e r . L a te r , in the fe m a le , he found th is ch ro m o so m e w as p r e s e n t tw ic e--X X fem a le; XO m ale. W ilson (1905) stu d ied the in s e c t L ygaeus, and found in the fe m a le two X c h ro m o so m e s, but in the m ale th e re w as an unequal p a ir , one being an X ch ro m o so m e and the o th e r being 15 sm a lle r. T his w as c a lle d the Y c h ro m o s o m e - -X fe m a le ; XY m a le . In b i r d s and le p id o p te r a it is the m a le which is h o m o ­ g a m e tic , and the sym bols Z and W a r e u s e d - - Z W fem a le; ZZ m a l e - - o r the W m ay be ab sen t, the fem a le being ZO. B rid g e s (1921, 1922, 1925, 1932), w orking with D r o s o ­ phila, found a tr ip lo id fe m a le which, when c r o s s e d with a d i ­ p lo id m a le , p ro d u c e d in t e r s e x e s . His concept of genic b alan ce o r s e x index w as f o r m u la te d to show the r e la tio n of X c h r o m o ­ s o m e s to the a u to so m e s . More exactly, the n e t m ale tendency of a s e t of a u to so m e s is l e s s than the n et fem a le tendency of an X c h ro m o s o m e . He s u g g ested th a t the X c h ro m o so m e (fe­ m ale tendency) be r e p r e s e n t e d by 100 and the au to so m es (male tendency) be r e p r e s e n t e d by a l e s s e r amount, a p p ro x im a te ly 80. F r o m th is he c a lc u la te d a sex index in which 1.25 o r l a r g e r was fe m a le , 0.63 o r lo w e r was m a le , and betw een 0.63 and 1.25 was the range of in t e r se x e s (Table I). In the dioecious p la n t Rumex a c e to s a , f e r t i l e h e r m a p h r o ­ ditic types a r e d e s c r ib e d by Ono (1935) in a s e r i e s p a r a lle lin g the in t e r s e x e s of D ro so p h ila. Since polyploidy in Rumex has b e e n p u sh ed h ig h e r, to the heptaploid, th e r e is an even g r e a t e r 16 TABLE I SEX INDICES IN DROSOPHILA (a fte r B ridges) Sex F o r m u la X 100 A 80 Sex Index Super fe m a le 2N- -3X2 A 300 160 1.88 F e m a le 4N- -4X4A 400 320 1.25 F e m a le 3N- -3X3 A 300 240 1.25 F e m a le 2N- -2X2 A 200 160 1.25 F e m a le 1N- - 1X1A 100 80 1.25 I n te r s e x 4N- -3X4 A 300 320 0.94 In te r s e x 3N- -2X3 A 200 240 0.83 Male 2N- -1X2 A 100 160 0.63 Male 4N- -2X4 A 200 320 0.63 Super m a le 3N- -1X3A 100 240 0.42 17 v a r i e t y of ty p e s. H ow ever, all types with a sex index of 0.63 o r lo w e r w e r e m a le , those with a s e x index of o v er 0.63 and u n d e r 1.25 w e re in t e r s e x e s , and a ll types w ith a sex index of 1.25 w e re f e m a le s , ex cep t f o r one c a s e . This c a s e was a t r i - p lo id which con tain ed th r e e X c h ro m o s o m e s and one e x t r a autosom e (3X3A + a) and was an in te r sex. However, an o th e r in d i­ vidual of the sam e fo r m u la (3X3A + a) was a fe m a le . This su g g e s ts th a t the au to so m e s d iffer am o n g st th e m s e lv e s in the p o ten cy of the m a le genes, and p e rh a p s the m a jo r p a r t of the m a le effec t is due to a p a r t i c u l a r two of the six a u to so m e s. In two s e p a r a te r a c e s of L e b is te s , Winge (1922-1934) found a m a r k e d in h e rite d tendency to w ard the p ro d u ctio n of f e m a le s w ith m a le - li k e gonopodia. These " m a s c u l in iz e d " f e ­ m a le s w e re f u r t h e r p e c u l ia r in th a t the X -lin k ed p a t te r n s , fo r which they w e re h etero zy g o u s, showed up fain tly . The n o r m a l f o r m u la f o r the two sex es is XX fe m a le , and XY m a le . By c r o s s in g to g e th e r th e se in h e rite d m ale te n d en cies, the two s e ts au gm en ted e a c h o th e r and r e s u lte d in a s m a ll p r o p o r tio n of XX individuals th a t w ere g en etically , phenotypic ally, and fun ction ally m a les. They showed c h a r a c t e r i s t i c s c a r r i e d by the X of the f a th e r and a lso by the X of the m o th e r. When th e se XX m a le s 18 w e re c r o s s e d to s ta n d a r d f e m a le s , all of th e i r o ffsp rin g w ere f e m a l e s , XX in c o n stitu tio n and supposedly h etero zy g o u s fo r about half of the m a sc u lin iz in g genes p r e s e n t in the au to so m es of t h e i r f a th e r . A fte r th r e e g e n e ra tio n s of b a c k c r o s s in g th e se XX m a le s to th e ir d a u g h te r s , a co m p letely m ale individual a p ­ p e a r e d among the o ffsprin g . When th is XX m ale was c r o s s e d to s i s t e r s , about half of the offspring w e re m a le s . Thus, a new r a c e was e s ta b lis h e d , homozygous fo r the X and f r e e f r o m the Y. In this r a c e the X c h ro m o so m e has stopped being the s e x - d if f e r e n tia l c h ro m o so m e and the X -b o rn e c h a r a c t e r s a r e now in h e rite d equally f r o m both se x e s, and a r e th e r e f o r e " a u to so m a l" in type. Sex differen tiatio n has been t r a n s f e r r e d to a c h ro m o s o m e th at was f o r m e r l y an autosom e, th ro u g h the acc u m u latio n of m a le -te n d e n c y genes c o n trib u ted b y two s e p a r a t e r a c e s which had b e e n s e le c te d fo r th e ir m a s ­ culinizing e ffe c ts, until th e ir influence was stro n g enough to give d ecisiv e d ifferen tiatio n . The new r a c e is fe m a le h e te r o - g a m e tic , while the old r a c e is m ale h e te ro g a m e tic. As the r e s u l t of th e se findings, Winge concludes th a t n u m e ro u s fe m a le - te n d e n c y and m a le -te n d e n c y genes e x is t in both a u to so m e s and sex c h ro m o s o m e s alike, and the s e x is the 19 o u tco m e of the sp ecific b a la n c e betw een th e se g en es, among which th e r e is no v alid d is tin c tio n as to " p r i m a r y " versu s s e x genes " m o d ifie rs." Sex d e te r m in a tio n in h y m e n o p te ra and in a few o th e r f o r m s h as long b een f o r m u la te d a s N m a le and 2N fe m a le . If IN g iv es a m a le , th e n tw ice the sa m e N should also give a m a le . P e r h a p s the e r r o r li e s in the assu m p tio n th a t the sa m e two s e ts of c h ro m o s o m e s a r e p r e s e n t in the fe m a le . In asm u ch as the fe m a le a r i s e s f r o m f e r tiliz a tio n , h e r constitution m a y alw ays be N /N ' while the m ale is e ith e r N o r N 1. O ccasio n ally , b ip a re n ta l m a le s a r e o b s e rv e d in H a b r o b r a c o n ; Whiting (1933) developed an hypothesis on the a s s u m p ­ tion th a t the n o r m a l fem a le is a h etero zy g o te betw een two dif­ f e r e n t i a l p a i r s of f a c t o r s , o r m ultiple com plexes of f a c t o r s , which m a y be d e sig n a te d X a b and X , re s p e c tiv e ly . m a le s a r e of two genotypes, one c a r r y in g the X the o th e r the X com plex, o r c h ro m o so m e . a N o rm a l com plex and The b ip a re n ta l a a b b m a le s would thus be X X AA o r X X AA, with the sam e genic a b b a la n c e as the n o r m a l haploid m a le s , that is X A o r X A. The a b f e m a le s would have a d istin ctiv e balan ce X A /X A, o r the f e ­ m a le is Na /N^ and the m a le s N o r N /N , N o r N /N . 20 Then the p o s tu la te th a t IN r e s u l t s in m ale and 2N in fe m a le is n o t the c a s e , but IN and 2N a r e both m a le while the f e m a le is N N 1. In the c a s e of H a b ro b ra c o n , no d ir e c t effect on i n t e r s e x is shown, b ut due to its in t e r e s tin g and com plex genetic m a k e ­ up, the a b o v e -m e n tio n e d sch em e is im p o rta n t to the genetic b a la n c e of s e x - d e te r m in a tio n th eo ry . G o ld sch m id t (1915-1934) has worked out one i n t e r p r e t a ­ tion of s e x in h e rita n c e in the moth, L y m a n tria d i s p a r . He has found two r a c e s , one of which is weak (European) and the o th e r a stro n g (Japanese) r a c e fo r sex. He has fo r m u la te d the i n t e r ­ p r e ta tio n th a t M (male) gene is lo c a te d on the Z ch ro m o so m e and the F (female) gene is in the F :M = fe m a le ; F:MM = m ale; o r c y to p la sm of the fe m a le , thus ZW = fem a le; ZZ = m a le . How ever, a stro n g F with weak MM r e s u lt s in an i n t e r sex, and a weak F with a stro n g M also r e s u lt s in an in te r s e x . Winge (1937) s h a r p ly c r it ic i z e d G o ld sch m id t's f o rm u la tio n and o ffe re d an a lte r n a tiv e explanation on the following b a s is : 1. The Z c h ro m o s o m e contains a n e t m a sc u lin e tendency, stro n g (M50) in the J a p a n e s e r a c e and weak (M10) in the E u r o ­ pean r a c e . 21 2. The W c h ro m o s o m e h as a n e t fem inine tendency, v e r y s tro n g (F70) in the J a p a n e s e r a c e and weak (F24) in the E u ro p e a n race. 3. All a u to so m e s c a r r y sex g en es, some of which pull in a m a s c u lin e d ire c tio n , som e in a fem inine; in the Jap an ese r a c e the fem in in e a u to so m a l f a c to r s a r e m a rk e d ly p r e p o n d e r ­ an t (F20), b ut only slig h tly so in the E u ro p ea n r a c e (F4). W arm ke (1946), w orking with polyploidy in M elan d riu m dioicum , found th a t s e x was d e te r m in e d by the X/Y ra tio , and th a t the a u to so m e s co n trib u ted little o r no effect. M elan d riu m has d is tin c t h e te r o m o r p h ic sex c h ro m o s o m e s th at can be counted, and the r a t i o s d e te r m in e d in polyploids. It was an XXXX/Y p la n t which was in te r sex, indicating th a t the Y was strong in m a le - d e te r m in i n g genes, while the X was weak in f e m a l e - d e ­ te rm in in g gen es, although XX/Y and XXX/Y show o cca sio n al in t e r sex f lo w e r s . D o ris Love (1942) m entioned the p o s s ib ility th at the cau se of one type of in t e r sex in M eland rium was due to a tr a n s l o c a ti o n betw een the X and the Y c h ro m o so m e . F rom m ea­ s u r e m e n t s of the X and Y c h ro m o s o m e s of the in te r sex she su g g e s te d th a t it was o rig in a lly an XX com position, but th a t a 22 s e c tio n of the Y c h ro m o s o m e was tr a n s l o c a te d on to the s h o r t a r m of the X. T h ese a r e but a few of the r e p o r t s w here s e x d e t e r m i n a ­ tion h a s b e e n studied, but they show definite p a t te r n s which should be c o n s id e r e d in fo rm u la tin g a genetic b a s is f o r sex e x p r e s s io n . However, the c o m p le x itie s of sex e x p r e s s io n m ay be of su ch a n a tu re th at m any u n r e la te d s y s te m s m a y e x is t in the m any and v a r i e d p a t t e r n s of sex. CYTOLOGICAL INVESTIGATIONS OF SEX EXPRESSION IN SPINACIA Diploids R eview of l i t e r a t u r e . Winge (1924) ex am in ed the c h r o m o ­ s o m e s in S pinacea o l e r a c e a L. and found no h e te ro m o rp h ic p a i r s . N e v e r th e l e s s , he concluded th at one of the six p a i r s of c h r o m o ­ s o m e s m u s t be s e x - d e te rm in in g , w h ere the X and Y a r e alike, and of the sam e a p p e a ra n c e as the a u to so m e s, and can c o n s e ­ quently show c r o s s in g o v e r. O th e r in v e s tig a to r s of the cytology of S. o le r a c e a who f a ile d to find h e te r o m o r p h ic c h ro m o so m e p a i r s include T u sch n jakowa (1929), Sinoto (1929), Haga (1934), L o r z (1937), and A r a r a tj a n (1939). Haga ex am in ed the m a c ro sp o re m e io s is , as well as m i c r o sp o re m e io s is , and found no d iffe re n c e s between the two se x e s . However, A r a r a t j a n did show the p r e s e n c e of a h e te ro m o rp h ic p a i r in S. te ta n d r a Stev. which had six p a i r s th at r e s e m b l e d the six p a i r s in S. o l e r a c e a , except fo r the h e te ro m o rp h ic p a i r . D o lch er (1949) k ary o ty p e d S. tu r k e s ta n ic a M. M. ILijn, but he m ade no m en tio n of the p r e s e n c e of h e te ro m o rp h ic ch ro m o so m e 24 p a irs. He found six p a i r s , but could d istin g u ish only the s a t e l ­ l i te d and the lo n g e s t c h ro m o s o m e s with c e r ta in ty . T h e r e h as b e e n m u ch d is a g r e e m e n t as to the r e la tiv e s i z e s of the c h r o m o s o m e s in Spinacia o le ra c e a : Sinoto (1929) found one l a r g e , two m edium , th r e e sm all; Tuschnjakowa (1929) found th r e e l a r g e and th r e e sm all; Haga (1934) showed som e d if f e r e n c e s in siz e , but did not place th em in any p a r t i c u l a r order. L o r z (1937) d e s c r ib e d th e m as two la r g e , two m edium , and two sm all; A r a r a t j a n (1939) did not place the c h ro m o s o m e s of 15. te tr a n d a into s ize c la s s ific a tio n s , but his draw ings in d i­ c a te d th a t th e re was one la r g e (h ete ro m o rp h ic), two m edium , and th r e e s m a ll p a i r s , which is roughly as Sinoto grouped th e m f o r S, o l e r a c e a . He also suggested the p o s s ib ility of k a r y o - r a c e s o c c u r r in g within S p in acia. In conjunction with the gen etical study of s e x in h e rita n c e in spinach, a cytological study was also in itia ted to d e te rm in e any d iff e r e n tia l c h ro m o s o m a l a r r a n g e m e n t sp ecific f o r any given s e x type. M a te r i a ls and m e th o d s . The so urce of m a t e r i a l fo r this study cam e f r o m two u n r e la te d in te r sex plants and p u r e m a le p la n ts . One line was a p u r e - b r e e d in g i n t e r s e x line developed 25 by M r. W. F e r g u s o n , of the C anadian D e p a rtm e n t of A g r ic u ltu r e . T his line w as d e s ig n a te d C - l . The o th e r i n t e r s e x line o r ig in a te d f r o m an open p o llin a te d i n t e r s e x p la n t followed by two g e n e ra tio n s of s e lfe d i n t e r s e x e s . I n te r s e x p la n ts s e le c te d f r o m the pro g en y of the second g e n e ra tio n of selfed in t e r sexes all b r e d tr u e f o r the in t e r sex condition. This line was d esig n ated L -1 5 . The p u r e m a le p la n ts w ere s e le c te d f r o m a planting of the c o m m e r ­ cial v a r ie ty , Long Standing B loom sdale, which was the v a r ie ty f r o m which both i n t e r s e x lin e s o rig in ated . The p u re m a le p la n t was d e sig n a te d A - 10. A n th e rs w ere tak en f r o m the flo w e rs of p u re m a le p la n ts , and f r o m i n t e r s e x p la n ts . Whole flo w er c l u s t e r s w e re fixed in a 3:1 a b so lu te a lc o h o l-g la c ia l acetic acid solution f o r f r o m to 24 h o u rs a t ro o m te m p e r a t u r e . F r o m th e se 12 " f ix e d " flo w er c l u s t e r s the a n th e r s w ere e a s ily d is s e c te d out u n d er a d i s s e c t ­ ing m ic r o s c o p e . P r e p a r a t i o n s w ere made using the iro n a c e to - c a r m in e technique and m ade p e r m a n e n t with diaphane. F o r the so m a tic d iv isio n s, ro o t tips w ere tak en f r o m f r e s h l y g e r m in a te d seed s and p la c e d in a 0.01 p e r c e n t aqueous solution of co lch icin e fo r 2 h o u rs b e fo re being fixed in the sam e 26 m a n n e r as the a n t h e r s . A c e to - c a r m in e s m e a r s w e re then m ade, and the slid e s w e re m ade p e r m a n e n t with diaphane. M eiotic o b s e r v a ti o n s . The g am etic c h ro m o so m e n u m b e r of s ix (2n = 12) was found, and is in a g r e e m e n t with all o th e r r e p o r t s on the c h ro m o s o m e count of Spinacia o l e r a c e a . It is d ifficu lt to d is tin g u is h m e io tic c h ro m o s o m e s on a s t r i c t l y size b a s i s , but d ia k in e s is co n fig uratio n s a r e quite c h a r a c t e r i s t i c (F ig u re A). T h e re a p p e a rs to be one la r g e p a i r of c h ro m o s o m e s w ith s u b te r m in a l k in e to c h o re s whose a r m s f o r m a con fig u ratio n th a t v a r i e s f r o m a rig h t angle to a s tr a ig h t line. Two s m a l l e r c h r o m o s o m e s with su b m ed ian k in e to c h o re s , one of which f o r m s and (X) with two s h o r t a r m s , and the o th e r one f o r m s a (Y) o r an open 270- d e g r e e a r c . One m e d iu m ch ro m o so m e often f o r m s a rin g , and two s m a l l e r c h ro m o s o m e s a r e a s s o c ia te d with the n u cleo lu s in lin e s A - 10 and L -1 5 . Where only one c h ro m o so m e is a s s o c ia te d with the n ucleo lu s, the o th e r one f o r m s a sm all rin g . M eio sis is r e g u l a r and the nucleolus is conspicuous at p ach y ten e, and r e m a in s about the sam e size until la te d ia k in e s is , a f te r which it d is a p p e a r s . 27 • 6 fIV *T ~ > > *1J 2 X A ✓ N 0 « C ^ 3 X I( u /ffl H H K H HA 4 FIGURE A KARYOTYPE OF SPINACIA OLERACEA L. 1. D ia k in e sis, P o lle n m o th e r cell (A10). 2. C - - m i t o s i s , Root tip c e ll (A10). 3. K aryotype of m eio tic c h ro m o s o m e s. 4. K aryotype of so m a tic c h ro m o s o m e s. The o r d e r l y a r r a n g e m e n t of m eiotic c h ro m o s o m e s and so m atic c h ro m o s o m e s shoyrs the r e la tiv e size d iffe re n c e s and the lo c a tio n of the k in e to c h o r e s between the c h ro m o s o m e s of the s a m e c e ll and b etw een m eiotic and som atic c h ro m o s o m e s. 28 At d ia k in e s is , the two s m a ll p a i r s of c h ro m o s o m e s a r e a s s o c ia t e d w ith the nu cleo lus in p la n ts of lin e s L-15 and A - 10 (P late I, No. 3), b u t only one of th e m a p p e a r s to be so a s s o ­ c ia te d in C - l lin e. Only one of the two s m a ll p a i r s of so m atic c h r o m o s o m e s c l e a r l y shows t r a b a n ts . H ardh (1939) found th a t in nine v a r i e t i e s of spinach, six v a r i e t i e s had one p a i r of s a t e l ­ lite d c h r o m o s o m e s , while th r e e v a r i e t i e s had two such p a i r s . It is p o s s ib le th at both n u c le o la r c h ro m o s o m e s found in the L-15 in t e r sex and in the p u re m a le s a r e s a te llite d c h ro m o s o m e s, but the tr a b a n ts a r e so s m a ll on one p a i r th at it is difficult to show them . At M etaphase I it is difficult to d istin g u ish the d ifferen t chrom osom es. Two with the subm edian k in e to c h o re s , and two s m a ll ones which a r e f i r s t to s e p a r a te , can be d istin g u ish ed (P late III, No. 4). At no stage is th e re any evidence of the e x iste n c e of a h e te r o m o r p h ic p a i r in any line exam ined. It m a y be p o in ted out, how ever, th a t fa ilu re to find such a p a i r is no evidence that such a p a i r does not ex ist. The differen ce m a y be too s m a ll to be re so lv e d , o r m ay c o n s is t only of a d iffe re n tia l p a irin g seg m en t. 29 T h e re is no tr u e in t e r k in e s is , the c h ro m o s o m e s going m o r e o r l e s s d ir e c tly f r o m Telophase I into M etaphase II. At M etap h ase II the c h ro m o s o m e s often a r r a n g e d th e m s e lv e s in a c i r c l e of five, w ith the s m a l l e s t one in the c e n te r , and th is s m a ll one is often the f i r s t one to move out fr o m the m e tap h ase p la te . T elo p h ase II and t e t r a d fo rm a tio n p r o c e e d in a r e g u la r m a n n e r. E x ce p t fo r the d ifferen ce in the n u c le o la r c h ro m o s o m e s, m e io s is was the sam e in the p u re m ale and both i n t e r s e x lin e s . T e tra p lo id s Review of l i t e r a t u r e . T e tra p lo id spinach has b een o b ­ ta in e d by Tandon (1951), W arm ke and B la k eslee (1939), and o th e r in v e s t ig a to r s , but a cytological study has not been r e p o rte d . Tandon (1951) counted the Anaphase I c h ro m o s o m e s , but m ad e no m ention of f u r th e r m eio tic o b s e rv a tio n s. He did note th at the p o llen s t e r i l i t y was 15 to 40 p e rc e n t, but made no m e n ­ tion of a b n o rm a l pollen. M a te r i a ls and m e th o d s . The te tra p lo id p la n ts u sed in the cytological study w ere induced fro m diploid seed of a s t r a i n of p u r e - b r e e d i n g in t e r sex p la n ts by the use of co lch icin e. The se e d was soaked in w a te r fo r 24 h o u rs , a fte r which tim e the 30 r a d i c l e s had e m e r g e d to about an eighth of an inch, and w e re then so aked in a 0 .2 - p e r c e n t aqueous solution of colchicine f o r an ad d itio nal 24 h o u rs . p o ts . They w e re then p la n ted in soil in clay Out of one h u n d red seed s thus tr e a te d , th e re w e re six which showed som e effect of the tr e a tm e n t , b u t only two of th e se s u rv iv e d , both of which w ere i n t e r s e x p la n ts . The grow th was v e r y slow, and a f te r six tr u e le a v e s w e r e f o r m e d , the p la n ts w e re p la c e d in a 16-h o u r photoperiod w hich s tim u la te d f l o w e r - s t a l k developm ent, so the full vegetative stage of the p la n ts was n e v e r attain ed. However, the l a r g e s t of the le a v e s which w e re developed w ere heavily savoyed and v e r y thick. a p p e a ra n c e . As the flo w er s ta lk fo rm e d , the p la n ts had a c o a r s e The s te m was thick and the le a f p e tio le s tended to s p lit w h ere they w ere attac h ed to the stem . Both p lants w e re in te r se x e s and s e t a " n o r m a l " n u m b e r of s e e d s . The p la n ts w ere h eav ily b ra n c h e d , w hich was c h a r a c t e r i s t i c of the s t r a i n f r o m which the seed was taken. One plan t had its m ain flo w er stalk f a s c ia te d to a th ic k n e s s of 2 in ch es, and then the f a s c ia tio n s e p a r a te d into m any growing points as the p la n t a p ­ p r o a c h e d m a tu r ity . The seed s w ere slightly l a r g e r than the diploid seed, and the s e e d co at was conspicuously w rinkled. 31 The p la n ts continued to develop about tw o - th ir d s as r a p id ly as a diploid p la n t w hich was grow n u n d e r the sam e conditions. The m a t e r i a l f o r the study of m e io s is was p r e p a r e d in the sam e m a n n e r as it was f o r the diploids. The p ollen m o th e r c e lls w e re e a s il y b ro k en , so m o re c a r e had to be tak en in the p r e p a r a t i o n of s m e a r s than was n e c e s s a r y with the diploids. M eiotic o b s e r v a ti o n s . The c h ro m o so m e count was 2n = 24, as shown a t M etaphase I and M etaphase II (P late III, No. 2, 3). At M etaphase I th e re a r e at l e a s t two tr iv a le n ts (Plate III, No. 7). H ow ever, no a tte m p t was m ade at this tim e to analyze the c h r o m o s o m e s as to the n u m b e r of u n iv alen ts, b iv a le n ts , t r i v a le n t s , o r q u ad riv a le n t s. T h e re w ere, how ever, a c o n s id e r a b le n u m b e r of lagging c h ro m o s o m e s and b r id g e s p r e s ­ ent. M eio s is , n e v e r t h e le s s , was r e g u la r , f o r the m o s t p a r t , up to the fo rm a tio n of t e t r a d s . Soon a f te r the Telophase II c h r o ­ m o s o m e s began to lo se th e ir identity, cy to k in esis was in itia ted fo r the fo r m a tio n of p ollen g r a in s . The p a t te r n of cytokinesis was u s u a lly found to be i r r e g u l a r , which r e s u l t s in a n u m b e r of m i c r o c y te s in the ’ 't e t r a d " (Plate II, No. 8). Wilson (1946) d e s c r ib e d the f o r m a tio n of m ic r o c y te s in addition to the n o r m a l fo u r c e lls in the t e t r a d s of tr ip lo id and te tr a p lo id banana, and 32 a ttr ib u te d th e m to independent division of " o m i t t e d 1' o r chrom osom es. are " la g g in g " While th e r e a r e c e r ta in ly c h ro m o s o m e s which " o m i t t e d 11 o r " la g g i n g " in th is m a te r ia l , th e re a r e in m any c a s e s m o r e c e lls p e r " t e t r a d " than one would expect f r o m the a v e ra g e n u m b e r of s eco n d -an ap h a se la g g a r d s . as m a n y o d d - c e lle d " t e t r a d s " Also, th e re a r e as th e r e a r e e v e n - c e lle d ones (Table II). The p o llen developed f r o m th e se c e lls is ju s t as v a ria b le in size as the c e lls in the te tr a d , the s m a l le s t m ic ro c y te being able to develop th ick en ed w alls c h a r a c t e r i s t i c of n o rm a l pollen g r a in s (P la te II, No. 9). The " t e t r a d s " tran sv erse counted w ere taken at random , f r o m one sweep of the slide containing s e v e r a l an th er s m e a r s , u sin g the high d r y le n s . All c e lls which could a c c u r a te ly be counted w e re counted as they a p p e a re d in the field. In T e tr a p lo id C th e re w ere eight " t e t r a d s " which c o n ­ ta in ed fo u r e q u a l - s i z e d c ells and one sm all m ic r o c y te , and in te n o th e r " t e t r a d s " th e r e w ere fo u r e q u a l- s iz e d cells and one m e d iu m - s iz e d m ic r o c y te . Of the f o rty " t e t r a d s " counted, th e re w e re t h i r t y - f o u r which had fo u r e q u a l- s iz e d c e lls , of which tw en ty-n in e had additional c e lls . o OJ 1 — 1 O o pH r— H i— 4 o o i— t o o O' t*H o TWO oo i“H 1 — 1 FOR F- r— 00 n O C O sO t -H o o rQ r- LO rO o o <\J o o r— i o o <1 U m h r T> •H * ■ * (D _Q rj fi 3 £ |^* 0) 4-> ” “ tJ •rl o r— 1 P. d +-> < L ) f-H TETRAPLOIDS O rh "TETRAD" 33 FREQUENCY OF CELLS PER lO pH U C D P. to i— H rH C L ) U 0 o P rt !h (1) H 34 In T e tr a p lo id A th e r e w ere tw enty-nine ' ' t e t r a d s 11 which c o ntain ed fo u r e q u a l - s i z e d c e lls , of which twenty-two had a d d i­ tio n al c e lls . The " t e t r a d s ' 1 w hich co ntained l a r g e n u m b e rs of c e lls did not a p p e a r to have any o r d e r l y a r r a n g e m e n t of c e lls within the " t e t r a d , " but in s te a d , r e s e m b le d a sack of m a r b l e s . l a r g e s t n u m b e r of c e lls contained in a " t e t r a d " The of the t e t r a ­ p lo id was f o u rte e n . A c l o s e r ex am inatio n of the te tr a d s of diploid a n th e rs r e v e a le d th a t an o c c a sio n a l m ic ro c y te was p r e s e n t in the t e t r a d s . They w e re so o b s c u r e d as to p a s s unnoticed u n le ss one was a c ­ tu a lly looking f o r th em . Some p r e l i m i n a r y in v e stig atio n s of the seed f r o m the two te tr a p lo id p la n ts have shown th a t T e tra p lo id A had a g e r ­ m in atio n of 90 p e r c e n t, and T e tra p lo id C had a g e rm in a tio n of 20 p e r c e n t. Tr> T e tr a p lo id A, r o o t tips w ere exam ined, and in four, w h ere m ito tic f ig u r e s w e re o b serv ed , they w ere all diploid. The T e tr a p lo id C r o o t tip s w e re exam ined and counts w ere m ad e in two, both of which w ere te tra p lo id . 35 D is c u s sio n T h e re a p p e a rs to be no sig n ifican t cytological differen ce b etw een lin e s of sp in ach showing d iffe re n t d e g r e e s of sexual e x p r e s s io n . No evidence of the p r e s e n c e of a h e te ro m o rp h ic p a i r of c h r o m o s o m e s was found in any line. This, as noted p re v io u s ly , n eed only m e a n th a t the d ifferen ce betw een the X and Y c h r o m o s o m e s is not of a n a tu re o r extent which is m o r ­ p h o lo g ically d istin g u ish a b le . The c o n s is te n c y of the 1:1 sex d istrib u tio n , as well as m o r e d e ta ile d genetic data p r e s e n te d below, in d icate s the p r e s ­ ence of som e f o r m of s e g re g a tio n m e c h a n is m equivalent to the s ta n d a r d X-Y s y s te m . It a p p e a r s th a t th e -a b n o r m a l " t e t r a d s 1' a r e the r e s u l t s of c h r o m o s o m e s which a r e s e p a r a te d f r o m the m a in m a s s e s of T elo p h ase II c h r o m o s o m e s . Telophase II p r o c e e d s r e g u la r ly , but b efo re cy to k in esis is in itia ted , the ch ro m o s o m e s a p p e a r to s p r e a d out. Then cy to k in esis b eco m es i r r e g u l a r , and actu ally a p p e a r s to cut off c e r t a in n u m b e rs of the c h ro m o s o m e s to f o r m m i c r o c y te s . 36 PLATE I MEIOSIS IN DIPLOID SPINACIA O L E R A C E A L . 1. P a c h y te n e --(lin e C - 1 i n t e r sex). 2. D i a k i n e s i s - - ( l i n e A - 10 m a le ) . T his show s th e c h a r a c t e r i s t i c f o r m s of the c h r o m o s o m e s , and the two n u c l e o l a r c h r o m o ­ som es. 3. D ia k i n e s i s - -(lin e A - 10 m a le ) . T h is sh ow s th e two n u c l e o l a r c h r o m o s o m e s a t ta c h e d to the n u c le o lu s a f t e r th e y h av e b e e n f o r c e d out of th e c e l l s . A ll of th e n u c l e o li show n h a v e two a t ta c h e d c h r o m o s o m e s . 4. L a te D i a k i n e s i s - - ( l i n e A - 10 m a le ) . The c h r o m o s o m e s a r e r e d u c e d to n e a r M e ta p h a se I s iz e . The n u c le o lu s is p r o m ­ in e n t and shows the two a t ta c h e d c h r o m o s o m e s . 5. M e ta p h a s e I - - ( l i n e A - 10 m a le ) . T he c h r o m o s o m e n u m b e r of tw elve is r e a d i l y d e t e r m i n e d . T h e r e a p p e a r s to be no e v id e n c e f o r the p r e s e n c e of a h e t e r o m o r p h i c c h r o m o s o m e p air. 6. T e lo p h a s e I — (line C - l i n t e r s e x ) . The c h r o m o s o m e s c o m ­ p l e t e l y lo s e t h e i r id e n tity and M e ta p h a s e II fo llo w s w ith o u t d elay . 7. T e lo p h a s e I I - - ( l i n e A - 10 m a le ) . 8. T e t r a d s - - (line A - 10 m a l e ) . The f o u r g r o u p s of T e lo p h a s e II c h r o m o s o m e s a r e c u t off in to in d iv id u a l m i c r o s p o r e s . T h e h e t e r o p y c n o t i c r e g i o n s r e m a i n v is ib l e in th e m i c r o s p o r e s . 9. P o l l e n - - (d ip lo id i n t e r s e x ) . 8 m i c r o n s in d i a m e t e r . S c a le --O n e T h e y a r e u n if o r m , and ab o u t 7 d i v i s i o n i s e q u a l to t e n m i c r o n s . to 37 & i 'v $ '« it * ^. ^>V# OM *y -* * * 2 ' : E' f t« :* > # • * *» 1 — * * * '; \ ! • 4 A i« k 5 V •&'*■*jV * * 's * . ,* 4'* At ty .2 t •\ •V* v > V. »ii :*4 J M 1 ' • •'«■< * —^ jN * . *• ! »* .. * ' <1 ,‘. V * Zi ;< £ U \ 4 * * ft * #. / *r \ ' / - v* * .» - 8 « •' 38 PLATE II MEIOSIS IN T E T R A P L O ID SPINACIA O L E R A C E A L . (all f i g u r e s f r o m T e t r a p l o i d A i n t e r sex) 1. P ach y ten e. 2. D ia k i n e s i s . 3. M e ta p h a s e I - - A t l e a s t one t r i v a l e n t is c l e a r l y v i s i b l e in the c e n t e r of th e g ro u p . 4. A n a p h a s e I - - T h e tw e n t y - f o u r c h r o m o s o m e s a t e i t h e r p o le c a n be a c c u r a t e l y co u n ted a t th i s s ta g e . N ote the t h r e e " l a g g i n g " c h r o m o s o m e s t h a t a p p e a r to r e m a i n on the m e t a ­ p h ase p la te . 5. T e lo p h a s e I I - - T h i s show s th e n o r m a l tig h t g ro u p in g of c h r o ­ m o s o m e s a t the f o u r p o l e s . 6. T e lo p h a s e I I - - T h e c h r o m o s o m e s a p p e a r to s p r e a d out f r o m th e c o m p a c t g ro u p in g of M i d - te lo p h a s e II. 7. C y to k in e s is s t i m u l a t i o n a f t e r T e lo p h a s e I I - - A f t e r th e T e l o ­ p h a s e II c h r o m o s o m e s s p r e a d out, i r r e g u l a r c y t o k in e s is is in i tia te d . 8. " P o l y a d s 1’- - The r e s u l t of the i r r e g u l a r c y t o k i n e s i s is the f o r m a t i o n of m u l t i c e l l e d " t e t r a d s . " T h e y v a r y in s iz e and n u m b e r p e r p o lle n m o t h e r c e ll. 9. P o l l e n - - T h e i r r e g u l a r - s i z e d p o ll e n g r a i n s r e s u l t f r o m the ab n o rm a l " -te tra d s." The s m a l l e r p o lle n g r a i n s s e e m s to b e o p ti c a ll y vo id of s u b s t a n c e w hen s ta i n e d w ith a c e t o c a rm in e . S c a le --O n e d i v i s i o n i s e q u a l to t e n m i c r o n s . 39 „ * . ■ * , - Vt- ' ■»- * Li* * - •n t $ te*. A** » «. C I- «- V ** ^ ^ **<> ' v* * i" *4 .,< > /.V fe« 4 . . ' ■; V'< 4 <*/ V ^ V V. \ v. V*/ ^ * ’, ' J4 ,■ , / - . i , ? f i *« . 5 ^ - iw sb & <* ' ■ i, w I ' f ;•' ' ^ v V* \ ■ '/ . . .* * ~ys v♦ *> •, r •« - % V \ •>-, ’■ , *o ’ L t ' ‘ y f c " o t ** \ s \ >\ ' ~ v,s ^ ** * \ # # * ‘'?/1 8 # 40 P L A T E III M EIOTIC CONFIGURATIONS IN SPINACIA O L E R A C E A L . 1. M e ta p h a s e I - - ( T e t r a p l o i d A i n t e r se x ). Shows p r e m a t u r e m i ­ g r a t i o n to w a r d th e p o l e s , o r p o s s i b l y u n iv a le n ts . 2. A n a p h a s e I - - ( T e t r a p l o i d A i n t e r s e x ). T h is s ta g e show s the a c c u r a t e c o u n ts of th e tw e n t y - f o u r c h r o m o s o m e s , tw elv e c h r o m o s o m e s a t e a c h p o le . 3. A n a p h a s e I - - ( T e t r a p l o i d A i n t e r sex ). Shows a c h r o m o s o m e b r i d g e w h ich is c o m m o n in the t e t r a p l o i d . 4. M e ta p h a s e I - - ( l i n e L - 1 5 i n t e r sex ). The c h r o m o s o m e s a r e s e p a r a t i n g p r i o r to th e m i g r a t i o n to th e p o l e s . D ifferen ces in th e r a t e of s e p a r a t i o n a r e n o te d , and c h r o m o s o m e s w ith s u b m e d ia n k i n e t o c h o r e s c a n be id e n tif ie d . T h e r e i s no v i s ­ ib le h e t e r o m o r p h i c c h r o m o s o m e p a i r . 5. M e ta p h a s e I I - A n a p h a s e I I - - ( l i n e A - 10 m a le ) . 6. M e ta p h a s e I - - ( l i n e L - 1 5 i n t e r s e x ) . Shows no v i s i b l e h e t e r o ­ m o r p h i c p a i r , a n d a p p e a r s to be no d i f f e r e n t f r o m th e M e t a ­ p h a s e I of the lin e A - 10 m a le ( P la t e I, N o. 5). 7. M e ta p h a s e I - - ( T e t r a p l o i d A i n t e r se x ). T h is show s th e p r e s ­ e n c e of a t l e a s t two d i s t i n c t t r i v a l e n t s , in lin e on e i t h e r sid e of the m e io ti c c o n f ig u r a tio n in th e c e n t e r c e ll. 8. D ia k i n e s i s - - ( lin e A - 10 m a le ) . F ro m th e ir c h a ra c te ristic s h a p e s , th e c h r o m o s o m e s can b e id e n tif ie d a t th is s ta g e . 9. D ia k in e s i s - - ( l i n e C - l i n t e r s e x ) . T h is lin e i s d i f f e r e n t in h a v in g on ly one n u c l e o l a r c h r o m o s o m e p a i r . S c a le --O n e d iv is io n i s e q u a l to te n m i c r o n s . 41 A . t ** »,* ***** - t'~* & »* \ * *j X * X 'v 'V vi • U * / f c A *4 o *» r1 ;%* :-i-: s#s • *3^ c *V‘*4 • w?%• '><• ' ' "•'»> *» rf* y j* c T v 7 . V. f t f s . V >*A ^ ° ■ £ 9 G EN ETIC INVESTIGATIONS OF SEX EXPRESSION IN SPIN A CIA Review of L ite r a tu re While w orking on the seed -ty p e in h e rita n c e of spinach, N o h ara (1923) n o ted a n e a r - p e r f e c t 1:1 sex ra tio ; n am ely , 495 fe m a le to 496 m a le . T hat the d iffe re n c e s in m ale types (e x tre m e and v e g e ta ­ tive) and m onoecious fo rm s a re due to genetic fa c to r s is in d i­ c a te d by the w ork of R osa (1925), who conducted e x p e rim e n ts w hich showed th a t en v iro n m en tal in flu en ces did not have any a p p re c ia b le influence on the se x e x p re s s io n of spinach. He te s te d r ic h v e r s u s p o o r s o ils , shade v e rs u s full lig ht, wide v e r s u s c lo se spacin g, e a r ly v e rs u s la te plantin g, and m u tilatio n . Of h is to ta l population of 5,198 p la n ts, he had 50.5 p e rc e n t m a le , 49.3 p e r c e n t fe m a le , and 0.2 p e rc e n t in te rs e x . H ir a ta and Y am am oto (1930) selfed in te rs e x e s of Spinacia and g rew only fe m a le s and in te r s e x e s fro m them . They c o n ­ cluded th a t the in te r sex es they d e a lt w ith w ere fe m a le -lik e , g e n e tic a lly . 43 N egodi (1934) in v e stig a te d sex in h e rita n c e in S. o le ra c e a , and su g g e s te d th a t sex w as c o n tro lle d by a m ultiple com plex of g en es co n stitu tin g a sex u al group, the fem a le being hom ogam etic and the m a le being h e te ro g a m e tic . He su g g ested th a t the m o n o ­ ecio u s condition depended on d iffe re n c e s in the fem ale com plex, and e ith e r would b r e e d tru e o r s e g re g a te into m onoecious and fe m a le . E n v iro n m en t w as c o n sid e re d to be a fa c to r in the d e ­ v elo p m en t of a c e r ta in type of m onoecious condition. His schem e w as of the type w h ere M M FF = fe m a le , MMFf = m ale, w ith F ^ , F ^ m o noecious f a c to r s . MMFF^ = m onoecious, which s e g r e ­ g a te s 0.25 p e r c e n t M M FF being fem a le, 50 p e rc e n t MMFF^ being lik e the p a re n t, and 25 p e rc e n t MMF^F^ being tru e b r e e d ­ ing in te r sex. MMF F MMF F 1 1 = m onoecious which s e g re g a te s 25 p e rc e n t being tr u e b reed in g in te r sex, 50 p e rc e n t M M F .F 1 2 bein g lik e the p a re n t, and 25 p e rc e n t M M F^F^ en v iro n m en tal c o n tro lle d m o n o ecio u s, o r fe m a le . M iry u ta (1937) d e te rm in e d th a t it w as quite p o ssib le to obtain c o n sta n t fo rm s , p ro d u cin g fem a le and m onoecious p la n ts in a 1:1 ra tio , w ith com p lete co n siste n c y of the m onoecious type, as r e g a r d s sex c h a r a c te r s . In the F ^ , it is p o s sib le to 44 o btain (1) m a le and m onoecious (near m ale p lan t), (2) a ll m ono­ e cio u s p la n ts w ith s e g re g a tio n into two m onoecious sub grou ps, and (3) a ll m onoecious p la n ts w ithout seg reg atio n . He su g g ested th a t s e x typ es in £3. o le ra c e a a r e no t c o n tro lle d by en v iro n m en t, b u t th a t they com e to fu ll developm ent only u nder c e r ta in e n ­ v iro n m e n ta l con d itio n s. Sugimoto (1947) o ffered a g en etical explanation b a se d upon an X-Y m e c h a n ism p lu s f a c to r s ZZ. f a c to r s : He had six ty p es of (1) fe m a le f a c t o r - - ZZXX; (2) en v iro n m en tal fem a le in te rm e d ia te --Z z X X ; (3) m ale fa c to r--z z X X ; (4) en v iro n m en tal m ale in te rm e d ia te --Z z X Y ; (5) fem a le in te rs e x --z z X X ; and (6) m a le in te r s e x - - ZZXY. F ro m the tra n s la tio n of the p a p e r, th e re was no ap p a re n t ex p lan atio n fo r the selfing of m a le -ty p e in te r sex p la n ts w hich co n tain ed the XY fa c to r. F r o m a m a th e m a tic a l view point, the selfin g of an X-Y individual w ill r e s u lt in o n e -fo u rth of the p ro g en y having a YY fa c to r . E n v iro n m en t as a F a c to r In the sp rin g of 1950, b efo re th is p r e s e n t w ork w as in i ­ tia te d , a t r i a l plan tin g of spinach, co n sistin g of two v a r ie tie s , 45 w as planted, to ch eck an unpublished r e p o r t of an e x p e rim e n t cond ucted by B o w se r (1943), indicating th a t spacing and date of p la n tin g would influence the sex ra tio . F ro m the r e s u lts of th is t r i a l p lan tin g (Table XVI in the Appendix), it was concluded th a t n e ith e r the spacing n o r the date of planting sig n ifican tly in flu en ced the sex ra tio . R osa (1925) po in ted out th a t thinning would often influence the se x r a tio , owing to the s e le c tio n of the p la n ts being thinned out. The m ale p la n ts a re often the s m a lle s t a t the stage when thinning is p r a c tic a l, and the tendency to rem ove the s m a lle s t p la n ts (m o stly m ale) w ill cau se the rem ain in g population to be p re d o m in a n tly fe m a le o r in te r sex. An influence of date of planting on the sex ra tio m ay be in d ic a te d u n le ss the p la n ts a r e all s c o re d a t the sam e age. The e a r l i e r p la n tin g s w ill often show an in c re a s e in the n u m b e r of in te r s e x e s if c o m p a re d w ith la t e r plantin gs com posed of younger p la n ts . The in te r sex condition in sp ecific p la n ts w ill m a n ife st its e lf to a g r e a t e r d eg re e as the p lan t m a tu re s . This is tru e only of p la n ts of a sp ecific g enetic m ak e-u p , a v e rs io n of Sugio m o to 's 1'e n v iro n m e n t in te rm e d ia te f a c to r ." 46 T able III co n tain s the to tal n u m b e rs of m ale, fe m a le , and in te r se x p la n ts f ro m the t r i a l planting in 1950. When th is w as b ro k en down by v a r ie tie s , the s trik in g d iffe re n c e w as in the n u m b e r of in te rs e x e s in each v a r ie ty — 8.3 p e r c e n t, c o m p a re d to 1.9 p e rc e n t. In asm uch as e n v iro n ­ m e n ta l cond itio ns w ere s im ila r fo r each v a rie ty , th is differen ce m ay be a ttrib u te d to g enetic f a c to r s . A p ro g ra m was in itia te d to t e s t th is contention. M a te ria ls and M ethods In te r sex p la n ts which w ere o p en -p o llen ated w ere s e le c te d fro m th is 1950 sp rin g planting, and a b reed in g p ro g ra m was i n i­ tia te d . By u tiliz in g the g reen h o u se, fo u r com p lete g en eratio n s w ere p ro d u c e d and ev alu ated . In the w in ter of 1950-51, fifteen p ro g e n ie s w ere grown; tw elve individuals fro m seven of th e se p ro g e n ie s w ere s e le c te d and p la n ted in the fie ld in the sp rin g of 1951. In the w in te r of 1951-52, six p ro g e n ie s w ere grow n fro m one c r o s s and five se lfs s e le c te d fro m the 1951 sp rin g p la n tin g s. In the sp rin g of 1952, fifty p ro g e n ie s w ere grow n f ro m c r o s s e s and s e lfs of the m a te r ia l grow n in the w in ter of 47 T A B L E III SEX EXPRESSION OF TWO VARIETIES OF SPINACH (field planting) T otal M ale F e m a le In te rs e x V a rie ty No. P e t. No. P e t. No. P e t. No. P e t. 1,262 66.1 598 47.6 559 44.3 105 8.3 Nobel 648 33.9 310 47.8 326 50.3 12 1.9 T o tal 1,910 100.0 908 47.5 885 46.3 117 5.7 Long Standing B loom s dale 1951-52. D ata fro m all p lan tin g s a re given in T ables XII, XIII, XIV, XV, in the A ppendix. In addition to c ro s s in g and selfing diploid p la n ts, the u se of polyploidy w as to be included. H ow ever, to date, only two te tra p lo id p la n ts have been produced. As yet, no c r o s s e s have b een a tte m p te d , pending f u r th e r study of the sta b ility of the te tra p lo id m a te r ia l as d e s c rib e d in the cytological study. 48 G enetic O b se rv a tio n s F o r the m o s t p a r t, the d ata to be u sed in th is g e n e tic a l d is c u s s io n have b een tak en fro m the sp rin g cro p grow n in 1952. Spinach, b e c a u se of its anem ophilous n a tu re and its p re d o m in an tly d io ecio u s condition, is e x tre m e ly h etero zy g o u s. It h as t h e r e ­ fo re tak en fo u r g e n e ra tio n s of co n tro lle d b reed in g to obtain lin e s w hich w ere p u re enough to show gen etical p a tte rn s of in h e rita n c e . This is d e m o n stra te d by the data c o lle c te d on the c o lo r f a c to r (A), w hich has now been shown to follow a single gene type of in h e rita n c e . But it was not u n til the fo u rth g en ­ e r a tio n th a t th is could be shown to be tru e . One c r it ic i s m of the p re v io u sly p re s e n te d sch em es of se x in h e rita n c e is th a t the a n a ly sis has b een w orked out fro m d ata fro m a sm a ll n u m b e r of p la n ts, grow n fo r only a few g en ­ e r a tio n s . Sex in h e rita n c e in spinach is obviously too com plex to be ex p lain ed fro m such a sm a ll am ount of data. The p r e s e n t study, although m o re ex ten siv e than m ost, s till p ro v id e s data su ita b le only fo r a g e n e ra l a n a ly sis . In fo rm u la tin g a genetic schem e of sex in h e rita n c e , the p r e s e n c e of an X-Y m e ch an ism has been assu m ed . This is p u re ly an assu m p tio n , b a s e d upon genetic data, and not fro m 49 c y to lo g ic a l o b s e rv a tio n s of 11sex c h ro m o s o m e s .11 As p re v io u s ly m en tio n ed , tbe p r e s e n c e of a h e te ro m o rp h ic chro m osom e p a ir h as n e v e r b e e n r e p o rte d in iS. o le ra c e a , n o r was the p re s e n c e of such a p a i r d e te c te d in th is study. H owever, as s ta te d b e ­ f o r e , th is is no t co n clu siv e evidence a g a in st the e x isten ce of a p a i r of c h ro m o so m e s w hich a c t as " s e x c h ro m o s o m e s ." It is d iffic u lt to ex p lain the 1:1 sex ra tio w ithout such a m e ch an ism . The p re s e n c e of m odifying sex genes lo c a te d on a c h r o ­ m o so m e s e p a ra te fro m the X and Y ch ro m o so m es was also a s s u m e d , b a s e d on genetic d ata. The th ir d assu m p tio n was the balancing of the m odifying sex g enes by som e m e c h a n ism in o r d e r to m a in tain a 1:1 sex ra tio u n d er n a tu ra l co ndition s. C o m m ercia l v a rie tie s of spinach have b e e n s e le c te d fo r m any y e a r s , to w ard the elim in atio n of the e x tre m e m a le type and tow ard an in c re a s in g n u m b er of in te r s e x p la n ts , u n til the m e ch an ism fo r co n tro l of the 1:1 sex ra tio h as b een a lte r e d . D ark G reen B loom sdale, Long Standing B lo o m sd ale, J u lia n a , N obel, and H ollandia a re ex am p les of c o m ­ m e r c ia lly im p o rta n t v a r ie tie s th a t have o rig in a te d fro m single p la n t s e le c tio n s of in te r sex p la n ts . Even though th e se v a r ie tie s have had th is m e c h a n ism a lte r e d during th e ir o rig in atio n , 50 n e v e r th e le s s , they s till p re d o m in an tly m a in ta in the 1:1 sex r a tio . The co m p lete a lte ra tio n of th is m e ch an ism has b een a c ­ c o m p lish e d only re c e n tly by the e s ta b lis h m e n t of p u re -b re e d in g in te r se x lin e s . A p ro b le m of m a jo r im p o rtan ce is the p lacin g of sex ty p e s into c la s s e s . F e m a le s , m a le s , and e x tre m e m ale types a re quite d is tin c t in th e ir m orphology, and a re e a s ily reco g n ized . H ow ever, the v a rio u s d e g re e s of in te r sex p la n ts p r e s e n t a d if­ f e r e n t situ a tio n . To p la c e the in te r sex p la n ts into a single c la s s ific a tio n m ak es the genetic in te rp re ta tio n difficu lt, and it is a lso d ifficu lt to d e te rm in e the p ro p e r c la s s ific a tio n fo r the v ary in g d e g re e of in te r s e x o r to d e te rm in e the extent of e n ­ v iro n m e n ta l influence on the in te r sex condition. By sc o rin g the se x type of the p la n ts a t a p p ro x im ately the sam e stage of d e ­ velo p m en t, the v ary in g en v iro n m en tal in fluen ces a re held to a m inim u m . In th is study, seven c la ss ific a tio n s fo r sex type have b een d e sig n a te d . P la n t ty p e s . 1. F e m a le - - A t an e a rly stag e, flow er developm ent is c h a r a c te r iz e d by long s tig m a s, and as the p la n t m a tu re s and p o llen is av ailab le to b rin g about fe rtiliz a tio n , the ra p id 51 d ev elo p m en t of s e e d ta k e s p la c e . P o in ts to check a re the t e r ­ m in a l ends of the l a t e r a l b ra n c h e s and the b a se of the m ain flo w e r sta lk . e rs It is in th e se a r e a s w here h e rm a p h ro d itic flo w ­ a p p e a r, if the p la n t is a fem ale in te r sex. 2. F e m a le in te r s e x --T h e p lan t, if young, m ay p a s s as fe m a le , but as it a p p ro a c h e s m a tu rity , ap p ro x im ately 30 p e r c e n t of the flo w e rs a r e e ith e r h e rm a p h ro d itic o r an d ro ecio u s. The g r e a te s t c o n c e n tra tio n s of th e se flo w e rs a re u su ally n e a r the te rm in a ls of the flo w er s ta lk s . 3. In te r s e x - - This type of p la n t p ro d u ces m ain ly a n d ro ­ ecio u s and gynoecious flo w e rs in a p p ro x im ately equal n u m b e rs , w ith a s m a lle r n u m b er of h e rm a p h ro d itic flo w e rs . The i n t e r ­ s e x e x p re s s io n is v is ib le w ith the f i r s t flo w er c lu s te r s . 4. M ale i n t e r s e x - - This type is iden tified by having a m a jo rity of a n d ro ecio u s flo w e rs. In e x tre m e s of th is a few fu n ctio n al o v a rie s a r e p re s e n t. type only T hese a re u su ally found n e a r the c e n tr a l p o rtio n of the m ain flow er stalk . 5. N onfunctional m ale in te r s e x --T h is type m ay e a s ily be s c o re d as p u re m a le , as no fun ctio nal o v a rie s a r e p r e s e n t. a p p a re n tly an d ro e c io u s flo w er buds, sm all h a ir- lik e stig m as p ro tru d e fro m the c e n te r of the flo w er b efo re the stam en In 52 fila m e n ts elo n g ate. The n u m b er of th e se nonfunctional h e rm a p h ­ ro d ite flo w e rs is u su a lly few, and they can e a s ily be m is s e d . C a re m u s t be ta k en not to confuse the w ith e re d stam en f i l a ­ m e n ts of old flo w e rs f o r s tig m a s, as th e re is a c lo se r e s e m ­ b la n ce betw een the two. This type of p la n t is m o rp h o lo g ically m a le in a p p e a ra n c e , being s m a lle r and m a tu rin g e a r l i e r than f e m a le s o r fu n ctio n al in te r se x e s. It is p o ssib le th a t the gyno- ecio u s e x p re s s io n in th is type of p la n t is co m p arab le to the an d ro e c io u s e x p re s s io n in the stro n g fem ale in te rs e x , except th a t in red u cin g the an d ro ecio u s e x p re ssio n , it is the n u m b er of a n th e rs w hich a r e red u ced , and in the c a se of the gynoecious e x p re s s io n the o v ary b eco m es red u ced to a nonfunctional body. H ow ever, one fu n ctio n al a n th e r m ay produce enough p o llen to f e r tiliz e a g r e a t n u m b e r of gynoecious flo w e rs. 6. V eg etative m a le -- T h e flo w ers on th is type a re p u re ly a n d ro e c io u s, and the p la n t re s e m b le s the nonfunctional m ale in te r sex type. 7. E x tre m e m a le - - T h is type is m o rp h o lo g ically d iffe re n t in th a t it flo w e rs e a rly , seldom b ra n c h e s , and m a tu re s and d ies e a rly . The flo w e rs a r e a ll an d ro ecio u s. H ow ever, th e re have b een h e rm a p h ro d itic flo w e rs noted on the e x tre m e m a le-ty p e 53 P L A T E IV SEX T Y PE S IN SPINA CIA O L E R A C E A L . 1. E x tr e m e m a le ty p e - - T h e flo w e rs a r e a ll a n d r o e c io u s . The s ta m e n f ila m e n ts , a f t e r the a n th e r s h av e d e h is c e d and d r ie d up, m a y g iv e th e a p p e a ra n c e of s tig m a s . 2. M ale i n t e r s e x - - N o te th e h o r n e d - ty p e s e e d s , w h ich a r e l i m ­ ite d to one o r two p e r flo w e r c l u s t e r . 3. I n te r s e x - - A n d r o e c io u s an d g y n o e c io u s f lo w e r s a r e e q u a l in n u m b e r th ro u g h o u t the p la n t. 4. F e m a le in t e r s e x - - The p la n t w as p r e d o m in a n tly g y n o e c io u s, b u t the te r m i n a l b r a n c h e s a s show n h e r e r e v e r t e d to th e a n d ro e c io u s c o n d itio n . 5. F e m a l e - - T h e f lo w e r s a r e th e s tig m a s . ab o u t a ll g y n o e c io u s; n o te the le n g th of T h e s e f ig u r e s a ls o in d ic a te th a t flo w e r c l u s t e r s c o n ta in in g g y n o ­ e c io u s f lo w e r s a r e m o re a p t to be a c c o m p a n ie d b y s m a ll le a v e s th a n flo w e r c l u s t e r s c o n ta in in g a n d r o e c io u s f lo w e r s . 54 55 p la n t in c e r ta in fo re ig n s tr a in s of spinach grow n h e re a t this sta tio n . F lo w e r ty p e s . Seven flow er types w hich show five i n t e r ­ g ra d a tio n s f ro m gynoecious to an d ro ecio u s flo w e rs a re in d icate d by sev en d raw ings in F ig u re B. The draw ings w ere m ade fro m flo w e rs w hich w ere d is s e c te d fro m a single fem ale in te r s e x flo w e r stalk . V isually , m o rp h o lo g ically p is tilla te flo w ers (Type 1) a re c h a r a c te r iz e d by th e ir lo n g -b ra n c h e d stig m a s, the length of w hich v a r ie s c o n sid e ra b ly among d iffe re n t p la n ts . The o v ary is la rg e and in c r e a s e s in size as soon as f e r tiliz a tio n ta k e s p la c e . P e r f e c t (Type 2) is a weak an d ro ecio u s type flo w er, b u t the sin g le a n th e r p ro d u ced is functional, producing a c o n sid e ra b le am ount of p o llen . The ap p earan ce of the an th er u su a lly is la te , and often the flow er h as b een f e r tiliz e d b efo re the included a n th e r m a tu r e s . P e r f e c t (Type 3) is functional fo r both p a r ts . The n u m b e r of b ra n c h e s of the stig m a is u su a lly redu ced, but the o v a ry is s till la rg e . the a n th e r s . O ften sm a ll b r a c ts a re fo rm ed n e a r P e r f e c t (Type 4) is often fun ctionally stam in ate only, as the o v a ry is c o n sid e ra b ly red uced , and often a b o rts , r a th e r than fo rm in g n o rm a l seed. The naked seed (ovule) often grow s out of the o v ary , and is not f e r tile . Types 5 and 6 a re FIGURE B FLOWER TYPES V isually m o rp h o lo g ically p is tilla te (Type 1). P e r f e c t (Type 2). P e r f e c t (Type 3). P e r f e c t (Type 4). F u n c tio n a lly stam in ate (Type 5). F u n c tio n a lly stam in ate (Type 6). V isu ally m o rp h o lo g ically p is tilla te (Type 7). 57 fu n c tio n a lly s ta m in a te flo w e rs . R u d im en tary stig m as a re fo rm e d and m ay be b ra n c h e d and extend beyond the a n th e rs , o r m ay be a sin g le h a ir - lik e s tr u c tu re w hich extends beyond the a n th e rs only, w hile th ey a r e in the bud stag e. T hese types of flo w e rs a re often co nfused w ith p u re an d ro ecio u s flo w e rs which have m a tu re d th e ir a n th e rs . The stam en fila m e n ts sh rin k in size and the a n th e r w all fa lls off, giving the ap p earan ce of s tig m a ­ lik e s tr u c t u r e s . The bud stage is the b e s t tim e to exam ine f o r fu n ctio n ally sta m in a te flo w e rs. V isually m o rph olo gically s ta m in a te flo w e rs (Type 7) u su a lly contain fo u r a n th e rs , but th is n u m b e r is not co n stan t. O ccasio n ally , a fte r the flow er has m a tu re d and the stam en fila m e n ts have shrunk to the size of s tig m a -lik e s tr u c tu r e s , the la rg e b ra c ts w ill fold upw ard and can give an a p p ea ra n ce s im ila r to th a t of a p is tilla te flo w er. Only by using such a sy ste m of c la s s ific a tio n can the m i nimum n u m b e r of f a c to rs re q u ire d to fit a genotype to the v a rio u s c la s s e s be d e te rm in e d . The ZZXY s y ste m , as p ro p o sed by Sugiomoto (1947), is b a s e d upon a schem e s im ila r to the type u se d h e re , but his is lim ite d in the n u m b er of c la s s e s to which his fa c to rs w ill fit; 58 ho w ever, h is te r m ' 1en v iro n m en tal in te rm e d ia te " allow s the in ­ c lu sio n of s e v e r a l d e s c rib e d ty p e s. A sch em e b a s e d upon c ro s s in g o v er betw een the X and Y c h ro m o s o m e s, w hich p e r m its varying am ounts of each sex d e te rm in in g ch ro m o so m e to be included, adapts v e ry w ell to the v a ry in g d eg re e of the in te r s e x condition, and to the se g re g a tio n of e ith e r fe m a le s o r m a le s , but b re a k s down when selfed i n t e r ­ se x p la n ts s e g re g a te into m a le s and fe m a le s w ith o r w ithout the in te r s e x condition also se g re g a tin g . F ro m data obtained w ith the b reed in g m a te ria l of spinach u se d in th is study, an accep tab le g en etical schem e fo r sex in ­ h e rita n c e m u s t explain: 1. C on stan t 1:1 sex ra tio . 2. P ro d u c tio n of in te r sex es of d iffe re n t d e g re e s . 3. M aintenance of a p u re -b re e d in g in te r sex line. 4. S eg reg atio n of in te rs e x e s into (a) m a le s, fe m a le s , and in te r s e x e s ; (b) fe m a le s and in te r sexes only; o r (c) m a les and in te r sex es only. 5. P u re s e x - in te r s e x c r o s s e s of d iffe re n t ty p e s. 59 G enetic E xplanation The g en etic sch em e d ev ised to fit the conditions of the o b s e rv e d r e s u lts of the b reed in g m a te r ia l is shown d ia g ra m a tic a lly in F ig u re C. It h as been a rra n g e d in a m odified P u n n ett sq u are to show the g a m e te s and the re s u ltin g genotype of the in d iv id u als, and by keying out to the m a rg in it shows the g am etes p ro duced by e ac h type of individual, a ssu m in g com plete linkage of the A-G g en es. The A and G genes a re the a n d ro e c io u s- and g y n o e c io u s-d e te rm in in g genes. By a ssu m in g a v e ry low c ro s s o v e r value, n e a rly c o m ­ p le te coupling linkage of the A-G genes, then the g r e a t m a jo rity of genotypes p ro d u ced would be as r e p re s e n te d by the eight c o r n e r s q u a re s of the XX and XY b lo c k s. This sy ste m w ill then m a in ta in a 1:1 ra tio fo r sex. In o r d e r to p ro d u ce the in te rs e x condition th e re m u st be c ro s s in g o v er betw een the A -G genes, and this m u s t n a tu ra lly o ccu r in in d iv id u als of the (Aa Gg) type. This condition also re d u c e s the ch an ces fo r the fo rm a tio n of in te r s e x p la n ts, as c ro s s in g o v e r in the (AA GG) o r (aa gg) individuals w ill not a l te r the genotype of the g am etes produced. In fa c t, it m ight be p o s sib le to have the A-G genes p r e s e n t in only the r e c e s s iv e , E X PL A N A T IO N F O R FIG U R E C The XX b lo c k a n d th e YY b lo c k s e g r e g a te only two ty p e s of g a m e te s , w hile th e XY b lo c k s e g r e g a te s fo u r ty p e s of g a m e te a s in d ic a te d in th e m a r g in s . In a ll c a s e s th e A -G g e n e s a r e a s s u m e d to b e lin k e d w ith a v e r y low c r o s s o v e r v a lu e . How ­ e v e r , th e y a r e in d e p e n d e n t of th e X o r Y c h r o m o s o m e s . AA. > Aa > a a , f o r a n d ro e c io u s te n d e n c ie s , and lik e w is e , GG > Gg > gg, fo r g y n o ecio u s te n d e n c ie s . 61 F IG U R E C DIAGRAMATIC SCHEME FOR THE GENETIC EXPLANATION FOR SEX INHERITANCE IN SPINACIA G am ete s X A-G v A A -g X a-G X a -g X A-G X A -g X a -G X a -g XX AA GG XX AA Gg XX Aa GG XX Aa Gg XX AA Gg XX AA gg XX Aa Gg XX Aa gg * XX Aa GG XX Aa Gg XX aa GG XX aa Gg XX Aa Gg XX Aa gg * XX aa Gg XX aa gg * D e n o te s e n v ir o n m e n ta lly u n s ta b le in te r s e x ty p e s. 62 F I G U R E C (C o n tin u e d ) G am etes X A-G X A -g X a-G X a -g G am etes X A -G X A -g X a-G X a -g XY AA GG XY AA Gg XY Aa GG XY Aa Gg XY AA Gg XY AA gg XY Aa Gg XY Aa gg XY Aa GG XY Aa Gg XY aa GG XY aa Gg * XY Aa Gg XY Aa gg XY aa Gg * XY aa gg Y A-G Y A -g Y a-G Y a -g G am ete s I A-G V " JL A -g V X a-G Y a-g Game te s * D e n o te s e n v ir o n m e n ta lly u n s ta b le in te r s e x ty p e s . 63 F I G U R E C (C o n tin u e d ) G am etes Y A-G Y A -g Y a-G Y a -g v X YY AA GG YY AA Gg YY Aa GG * YY Aa Gg YY AA Gg YY AA gg YY A a Gg YY Aa gg YY Aa GG * YY Aa Gg YY aa GG YY aa Gg * YY Aa Gg YY Aa gg YY aa Gg * YY aa gg A-G v i A -g I a-G I a -g * D enotes en v iro n m en tally u n stab le in te r sex ty p es. 64 o r d om inant condition in the population, which, would elim in ate the p o s s ib ility of the p ro d u ctio n of in te rs e x e s , and m ain tain a c o n sta n t 1:1 sex ra tio . A ssu m in g som e c ro s s in g o v er does take p la ce (all h o ­ m ologous c h ro m o so m e p a ir s w ere o b serv ed to show c h ia sm a ta fo rm a tio n during m e io s is in S. o le ra c e a ) , the f i r s t step is the p ro d u c tio n of p u r e - s e x individuals w hich w ill produce g am etes which, when com bined, w ill give a la rg e p ro p o rtio n of in te rs e x ty p e s, o r it is p o s sib le to p ro d u ce in te r s e x types d ire c tly as the r e s u lt of the c r o s s in g -o v e r . F o r exam ple, the individual (XX Aa Gg) w ill, as a r e s u lt of c ro s s in g o v er, produce g am etes of the (X A-g) and X a-G) type. These g am etes com bined w ith Y -contain in g g am etes w ill produ ce m a les of the type (XY A- g -), o r m a le in te rs e x e s of the type XY a - G -), and if com bined w ith X -con tain ing g am etes they w ill be r e v e r s e d in th e ir actio n and p ro d u ce fe m a le s of the (XX a - G-) type, o r fe m a le in te r s e x e s of the type (XX A- g -). The fe m a le in te rs e x e s p ro duced in th is m a n n er would a lso be of two ty p e s. The " s tr o n g e s t" in te r sex of the type (XX AA Gg) would, when selfed , se g re g a te into fe m a le s, the p a te r n a l type, and into the p u re -b re e d in g in te r sex type, in the 65 ra tio of 1:2:1. The o th e r fem ale in te r sex of the type (XX Aa gg) would be a stro n g fe m a le in te rs e x , su b ject to en v iro n m en tal in flu en ces to a g r e a te r extent, and would also s e g re g a te , when se lfe d , into fe m a le s , the p a re n ta l type, and into the p u r e - b r e e d ­ ing in te r s e x type in the ra tio of 1:2:1. To m e e t the conditions of the se g re g a tio n of se lfe d in ­ t e r s e x p la n ts into m a le s , as w ell as fe m a le s and in te r sex ty p es, the YY type of individual was c o n sid e re d to be viable, and to develop n o rm a lly . F ro m the cyto lo g ical study w here the twelve ch ro m o so m es w ere of six m o rp h o lo g ically id e n tic a l p a ir s , it would seem p la u s ­ ib le th a t th e re w ere no g r e a t d iffe re n c e s betw een the c h ro m o ­ so m es m aking up the X-Y m ech an ism . It would also then seem p la u sib le th a t the e x isten ce of a YY individual th a t would d iffer only in its d e g re e of sex e x p re s s io n would be p o s sib le . g e n e tic a l data b e a r th is out, as w ill be shown. The A ssum ing this condition to e x ist, the XY m ale in te r sex p lan ts w ill then s e g r e ­ gate w hen se lfe d into fe m a le s , the p a re n ta l type, o th e r in te r sex ty p e s, and m a le s , depending upon the genotype of the p a re n t in te r sex. 66 In the c a se w h ere only m a le s and m ale in te rs e x e s s e g ­ re g a te fro m a se lfe d m ale in te r sex, the absence of the X c h r o ­ m osom e m u s t be a ssu m e d . In o th e r w o rd s, the m ale in te rs e x w as of the YY type. F ro m the g e n e tic a l schem e involving the X-Y m ech an ism and the A-G m odifying g enes, th e re a re tw en ty -sev en genotypes (or th irty , counting linkage p a tte rn s ) re p re s e n tin g six phenotypes. They a r e as follow s: I. M ales (pure b re e d in g , en v iro n m en tally stab le). (XY AA GG) (XY Aa Gg) (XY aa gg) (A-G, a -g linked) (YY AA GG) (YY Aa Gg) (YY aa gg) (A-G, a -g linked) Note: The YY m a les a re uncom m on, being the r e s u lt of selfed XY in te rs e x p la n ts, o r such in te r s e x p la n ts o u tc ro s s e d to XY m a le s , and the YY m a le s w ill in tu rn p ro d u ce only m a les when c r o s s e d to fem ale p la n ts . II. M ales (se g re g a tin g , en v iro n m en tally stable). (XY (XY (XY (XY AA Aa AA Aa gg) gg) Gg) Gg) (A-g, a-G linked) 67 (YY (YY (YY (YY AA Aa AA Aa gg) gg) Gg) Gg) (A-g, a-G linked) Note: This type of YY m ale, when c r o s s e d to fem ale p la n ts , w ill give Type II XY m a les and XY in te r s e x p la n ts . III. N onfunctional m ale in te rs e x (seg reg atin g , e n v iro n ­ m e n ta lly influenced to produce seed). (YY Aa GG) (YY aa Gg) IV. M ale in te r s e x (seg reg atin g , en v iro n m en tally u nstable). (XY Aa GG) (XY aa Gg) V. M ale in te r s e x (pure b reed in g , f a ir d eg ree of e n v iro n ­ m e n tal sta b ility ). (YY aa GG) VI. In te rs e x (seg reg atin g , high d eg ree of env iro n m en tal s ta b ility ). (XY aa GG) VII. In te rs e x (pure b reed in g , en v iro n m en tally stab le). (XX AA gg) VIII. F e m a le in te r s e x (seg reg atin g , en v iro n m en tally u n stab le). (XX Aa gg) (XX AA Gg) 68 XX. F e m a le (se g re g a tin g , en v iro n m en tally stab le). (XX (XX (XX (XX X. Aa aa Aa aa GG) GG) Gg) Gg) (A-g, a-G linked) F e m a le (pure b reed in g , en v iro n m en tally stable). (XX AA GG) (XX Aa Gg) (XX aa gg) (A-G, a -g linked) The six phenotypes r e p re s e n te d and iden tifiab le, b a r r in g e n v iro n m e n ta l in flu en ces, a re m a le s, nonfunctional m ale i n t e r ­ s e x e s , m ale in te r s e x e s , in te r s e x e s , fem ale in te r s e x e s , and f e ­ m a le s . The m o rp h o lo g ically e x tre m e m ale is no d ifferen t in sex fro m the v eg etativ e m a le s. The com plete data fo r all p lantin gs a re included in the A ppendix, and only sp ecific c a s e s w ill be used h e re to illu s tr a te p a r ti c u la r m odes of in h e rita n c e . The fo rm a tio n of a p u re -b re e d in g in te r s e x line is b e s t shown by the p ro g en y of the ten selfed in te rs e x p la n ts of the p e d ig re e ( X F - 14-11 -15) which w ere grown in the sp rin g of 1952. The XF p la n t w as a m ale in te rs e x type s e le c te d fro m a p lan tin g of Long Standing B loom sdale grown in the sp rin g of 69 1950. T h is p la n t w as o p en -p o llin ated , but was selfed to a high d eg ree by the heavy p ro d u c tio n of an d ro ecio u s flo w e rs. In the green h o u se in 1950-51, its p ro g en y s e g re g a te d into six m a le , fo u r fem a le, and fou r in te r s e x p la n ts . the fie ld in 1951. The fo u r in te rs e x p lan ts w ere selfed and p lan ted in L ine (X F-14-11), which was the pro gen y of one of th e se in te r s e x lin e s , s e g re g a te d into th re e m a le, th re e fe m a le , eight fe m a le in te r s e x , tw enty-one in te r s e x , and tw elve m ale in te rs e x p la n ts . Two in te r s e x p la n ts w ere s e le c te d fro m th is progeny, selfed, and grow n in the g reen h o u se in 1951-52. F ro m the pro geny of one of th e se p la n ts ( X F -14-11 - 15), ten in te r s e x p la n ts w ere se lfe d and p lan ted in the field in 1952. The p a tte r n of se g re g a tio n of th ese is shown in Table IV. It is quite obvious th a t th is p a r tic u la r line is b reeding tru e f o r the in te r s e x condition. The v a ria tio n s noted a re p ro b ­ ably due to en v iro n m en tal in fluen ces on the ra te of m a tu ratio n of the p la n ts , and to som e slig h t e r r o r in sco rin g . The geno­ type of th is lin e m ay be c o n sid e re d as being (XX AA gg), and should re m a in as a tru e b reed in g line fo r the in te r s e x condition. E x am p les of selfed in te rs e x p la n ts seg reg atin g into f e ­ m a le s and in te r sex es a r e in d icated by the data fo r four p ro g e n ie s shown in T able V. One line was grown during the sp rin g of 1951, and th r e e , during the sp rin g of 1952. 70 T A B L E IV PU R E-B R EED IN G INTERSEX TYPE (XX AA gg) P e d ig r e e No. Male In te rs e x In te rs e x F e m a le In te rs e x (X F- 1 4 -1 1- 15- I) 1 45 3 (XF -1 4 -1 1 -1 5 -2 ) 10 68 - (XF -1 4 -1 1 -1 5 -3 ) 7 33 1 (XF - 14-11- 15-4) 2 55 1 (XF - 1 4-11-1 5-5 ) 20 56 2 (XF -1 4 -1 1 -1 5 -6 ) - no 2 (XF - 14-1 1-15-7) 3 73 4 (XF - 14-11 -15 -8) 3 53 5 (XF - 1 4-11-15-9) 20 36 1 (XF - 14-11-15-18) 14 36 - 71 v P 73 > 1 if sO• o 1 1 1 — 1 oo o o 1 INTERSEXES Ph cm X flj S C D f=4 AND FEMALES CM o’ to C D i— 4 1 — 1 i— H if £> CM If CM iH if C M tf i— i if r— C O * CO if r~ if < d U < d ft * w < D CO u INTO SEGREGATING o if« o C D co co * * if if + if t> CM (D & +J |X | iD C O C O INTERSEX n C D C D 73 0CD 73 in CM C M CO l— l C M CO r— 1 73 cd ?> C D C O rQ * X O C D CO u o C D p * * CM if + vO CM X C D CM C D +•> P CO & C D C D h bo $ C D pH o 1 i— 4 ! X to X p r—I Pi vO CM 0> o Ph in oo f- X * x 0) 01 U "d (D -M (D tn i-H vO 5 u (D 0* u VI in o TABLE nj * X (D (0 h +< ■L ») tJ V > u < D C O oo in -Sfin co (D < D a t p Q o i-H nj nj d o *rH +-> u vO d d cd 01 < D O £ (D (D U OO -r-l O Q J S' M 'til oo a co i— H t-H i-H ■ o 00 O' -sf * o r^ o* r—t in t"00* i-H • i— l co • o C M CO * o O' • o C M O' O' o’ O' O' ♦ o in o o o’ co i-H • o C M m r00* 0 5 < U rH ni < D ft O' + in C M C O vO in C M r- m C M -o’ 00 CM C M o C M (M U 05 oo 19 Cl ) o 0) 05 O C M U C M C M CO C M C O 43 ft ft 05 0.73 (U 2 r— A 78 in co O sO rQ cd Oh CJ n O 04 X CO • rH o 7d S cu IH TABLE VII (Continued) Tf C D + ■ » u Q j 81 w vO o 00 • o H1 in 04 TJ in 04 i O' CO ptH 01 Tf < L > > 0 01 rO X 0 01 h d> ■ 5f -V . o < L > 01 04 co o CO rO id S3 o o t3 pi *«H < tf +-> +J a 0 S3 oT i 01 Tl co Pf i r-H a hi S3 X « >s < l» s> s o 'a ■}{■ ■X X X ft id 01 O * .. -£ ■ 0)t — ft sid X W 79 T h is follow s the p a tte r n of p ro d u ctio n of th e se ty p es, w hich a r e p ro d u c e d in the ra tio of 2:1:2; th a t is 2 (XY Aa GG) : 1 (XY a a GG) : 2 (XY aa Gg). I. The C ro s s B etw een In te rs e x and Strong M ale. stro n g m a le w as tak en fro m an in c re a s e planting of a fo re ig n p la n t in tro d u c tio n population (F .P .I. 164965). The plan t was of the m o rp h o lo g ically e x tre m e m ale type. T his c r o s s was acc o m p lish ed in the green h o u se in 195152, as w ere the o th e r c r o s s e s . As stated b e fo re , the andro ecio u s condition is s u p p re s s e d o r delayed in greenho use planting, and b e c a u se of th is condition the in te rs e x p la n t had p ro duced no an d ro e c io u s flo w e rs , bu t was in a full gynoecious bloom . These gynoecious flo w ers w ere p o llin ated with pollen fro m the e x tre m e m a le p la n t and the seed had s e t b efo re any and roeciou s flo w ers a p p e a re d . The p la n t w as then p ru n ed back, leaving only the p o rtio n of the ste m s b e a rin g fe rtiliz e d seed s. The andro ecious flo w ers then a p p e a re d , but as no m o re gynoecious flo w ers d e ­ veloped, th e re was no dan ger of producing selfed seed. p ro g en y b o re th is out by using o th e r fa c to rs as c o n tro ls . The In th is c a s e it w as the h o rn e d -s e e d condition w hich was dom inant, and the m ale p la n t w as hom ozygous fo r th is dom inant c h a ra c te r, The 80 th u s, a ll s e e d -b e a rin g p la n ts in the p ro g en y e x p re s s e d th is h o rn e d c h a r a c te r . The r e s u lts of th is c r o s s as to sex e x p re ssio n w ere th irty -n in e m o rp h o lo g ically e x tre m e m a le s, tw e n ty -th re e i n t e r ­ s e x e s , and six te e n fe m a le in te r s e x e s . m a le to one in te rs e x . This is a p e r f e c t one The genotype of the m ale w as pro b ab ly (XY Aa Gg), w ith A -G and a -g linked. could have b een (XX AA gg). The in te rs e x genotype This c r o s s would then se g re g a te 1 (XY AA Gg) : 1 (XY Aa gg), both being m a le s, and 1 (XX AA gg) in te r s e x : 1 (XX Aa gg), which should show the fem ale in te r s e x condition. II. ( F .P .I. This schem e fitte d the data v e ry w ell. F e m a le C ro s s e d With M orphologically E x tre m e M ale 164965). The p ro g en y se g re g a te d fifty -th re e m orp h o lo g ically e x tre m e m a le s , fo rty -o n e fe m a le s, and no in te rs e x e s . The m ale w as (XY Aa Gg), as in d icated in the f i r s t c r o s s , and the fem ale could be any one of th re e types: (XX aa gg). (XX AA GG), (XX Aa Gg), o r By a ssu m in g linkage of the A-G o r a -g , only m a les and fe m a le s would re s u lt. The ra tio (53:41) has a c h i-s q u a re value of 1.532 and a P value of 0.21 fo r a 1:1 ra tio . III. F e m a le C ro s se d With M orphologically E x trem e M ale (F .P .I. 164965). The r e s u lts fo r sex e x p re ssio n w ere th irty -o n e 81 m o rp h o lo g ic a lly e x tre m e m a le s and tw e n ty -six fe m a le s , plus six s tro n g fem a le in te r s e x p la n ts . The m ale was (XY Aa Gg), and in th is c a s e the fem a le was p ro b ab ly (XX Aa gg). This could be p o s sib le b ecau se th is fem ale was fro m the p rogen y of a se lfe d in te r s e x p la n t. The expected r e s u lts of such a c ro s s w ould be two m a le s to one fem ale to one fem ale in te r s e x of two ty p e s. A gain, en v iro n m en t could m odify the 1:1 ra tio of fem ale to fe m a le in te r s e x type. But, the fa c t th a t som e a n d ro e c io u sn e ss w as p r e s e n t in the fe m a le s in th is c r o s s , and not in the p rev io u s c r o s s , in d ic a te d a d ifferen c e in the genotype of the two fem ale p la n ts involved. IV. F e m a le C ro s s e d w ith In te rs e x P la n t. The in te r s e x p la n t u se d w as a p u re -b re e d in g in te rs e x , the p ro g en y of which gave one hundred ten in te r s e x and two fem ale in te r s e x p la n ts. It was then of the genotype (XX AA gg). This p lan t, when used as the p o llen p a r e n t fo r a fem ale p lan t, gave a progeny of nine in te rs e x , e ig h ty -fo u r fe m a le in te rs e x , and four fe m a le . The nine in te r s e x and fo u r fem a le p lan ts o b serv ed could have been due to en v iro n m e n ta l influ ences or e r r o r s in sco rin g . 82 A ssu m in g a fe m a le w ith the genotype of (XX AA GG), th e n th e re s u ltin g p ro g en y would be all (XX AA Gg), which is a fe m a le in te r s e x genotype. V. F e m a le C ro s se d With In te rs e x P la n t. The i n t e r ­ sex p la n t w as of the genotype (XY Aa GG), as ind icated by the r a tio s of its p ro g e n y a s a r e s u lt of having been selfed (R efer to P la n t No. 40). The seg reg atio n fo r sex e x p re ssio n of th is c r o s s w as one m a le , tw elve nonfunctional m ale in te rs e x , tw entynine m ale in te r s e x , one in te rs e x , one fem ale in te rs e x , and f o r ty fe m a le s . The m a jo r c la ss ific a tio n s a re fem a les and i n t e r ­ sex ty p es in the ra tio of 1:1. If the genotype of the fem ale was (XX A a GG), and th at of the in te r s e x was (XY Aa GG), the re s u ltin g ex p ected p ro g en y would be fo u r fem ale to one in te rs e x to two m ale in te r s e x to one m ale. T his fits the data obtained. The r a tio s of the in te rs e x types v a ry som ew hat, as was to be expected, due to the clo se balancing of sex fa c to rs and th e ir re a c tio n to en v iro n m en tal influences. D iscus sion It h as been shown fro m the data c o llected over fo u r g e n e ra tio n s of c o n tro lle d b reed in g of spinach, th a t the in h e rita n c e 83 of sex is no t a sim p le p a tte rn , bu t is a com plex of s e v e ra l f a c to r s lo c a te d on m o re than one p a ir of ch ro m o so m e s. The a ssu m p tio n of an X-Y m ech an ism was n e c e s s a r y to f it a 1:1 r a tio . The n u m b er of fa c to rs m aking up the sexual blo ck of the X-Y ch ro m o so m es is not known, but it a p p ea re d to be m o re th an a single fa c to r. The A-G gene linkage group and the YY type was b ased upon the gen etic data of in te r s e x p lan ts seg reg atin g fo r m ales and fe m a le s . The o c c u rre n c e of a low c r o s s o v e r freq u en cy w as u tiliz e d to explain the in te r s e x p la n ts. F u r th e r study, using the m a te r ia l which now a p p e a rs to be known gen otypically , should c la rify som e of the s till-o b s c u re p a tte r n s of in te r s e x type seg reg atio n . The v a rio u s re s p o n s e s of the d ifferen t genotypes to en ­ v iro n m e n ta l effects need f u rth e r study. This is a v e ry co m ­ p le x p ro b le m , and, a s th e re a re two v a ria b le s , it would be a c o n s id e ra b le ta s k to obtain conclusive r e s u lts . SUMMARY C ytological Study S p in acia o le ra c e a L . has a chrom osom e num ber of twelve (n = six ). T h ere a r e d iffe re n c e s betw een lin e s concerning the n u m ­ b e r of n u c le o la r c h ro m o so m es, and in no line w as th e re e v i­ dence of a h e te ro m o rp h ic chrom osom e p a ir. T h ere w ere no c h ro m o so m a l d iffe re n c e s o b se rv e d betw een m ale and in te r s e x lin e s . T e tra p lo id spinach was p roduced and studied, and the p ro d u ctio n of p o llen was o b serv ed to be ir r e g u la r . G enetic Study A schem e was su ggested to fit the o b serv ed sex in h e r i­ ta n ce. It was p r im a r ily an X-Y sy stem , plu s two p a ir s of linked m odifying gen es, independent of the X-Y sy stem , and having a v e ry low c r o s s o v e r freq u en cy . The existence of YY m a les and YY in te r se x e s w as a ssu m e d , b a se d on g en etical data and cy to ­ lo g ic a l o b s e rv a tio n s . 85 C o lor F a c to r A, a sin g le-g en e type of in h e rita n c e , can be u s e d a s a m a r k e r gene fo r c r o s s e s betw een in te r s e x p lan ts w h ere e m a sc u la tio n is an inhibiting fa c to r. E n v iro n m en t is a fa c to r which affects the e x p re s s io n of c e r ta in c la s s e s of in te r sex es. Sex e x p re s s io n affects the developm ent of flow er s ta lk s, bu t the in itia tio n of flo w er stalk s is co n tro lled by a se p a ra te f a c to r o r f a c to r s independent of sex e x p re ssio n . BIBLIOGRAPHY 1. A llen, C. E, 1940. The Genotypic B asis of Sex E x p re s s io n in A n g io sp e rm s. Bot. Rev. 6:229-300. 2. A r a r a ta ja n , A. G. 1931. H etero ch ro m o so m e in the Wild Spinach. C. R. (dolclady) Acad. Sci. U.R.S.S. 24: 56-57. 3. B o w se r, P . H. 1943. U npublished re p o rt of seed tr i a l s in the U pper P en in su la of M ichigan. Dept, of H o rt., M ich. State C ollege. 4. B rid g e s , C. B. 1916. N on-disjunction as P ro o f of the C hrom osom e T heory of H ered ity . G enetics 1:1-52. 5.___________ . 1925. Sex in R elation to C hrom osom es and G enes. A m e r. Nat. 59:127-137. 6. _________ . 1939. Sex and In te rn a l S e cretio n s. 2nd ed. (Chap. 2, C ytological and G enetical B a sis of Sex), pp. 15-63. 7. D arlin g to n , C. D. 1951. G enetics in the 20th C entury (Mendel and the D eterm in an ts), pp. 315-332. 8. D o lch er, T. 1949. Sulla C ario logia di Spinacia tu rk e s ta n ic a M. M. Ilijn . C aryologia 2:55-59. 9. E m e rso n , R. A. 1924. A G enetic View of Sex E x p re ssio n in F lo w erin g P la n ts . Science 59:176-182. 10. G illy, C. L ., and G. B. W ilson. 1952. Sex E x p re s s io n in the A n g io sp erm s. M ich. State C oll., Dept, of Bot. (unpublished data). 11. G old sch m idt, R. 1934. ( a b s tr a c t) . L y m a n tria . Bibliog. Gen. 11:1 87 12. H aga, T. 1935. Sex and C hrom osom es in Spinacia o le ra c e a L.. Ja p . J o u r. Gen. 10:218-222. 13. __________ . 1938. The Sex R atio in Spinach. Oyohi Dobitu. 6:1573-1574. 14. H ard h, H. 1939. T utkim uksia K ro m o so m i-m o rfo lo g ia sta ja P o ly s o m a tia -e le m io s ta Spinacia o le ra c e a 11a L. M a a ta lo u st A ikakausk 11:317-332 (a b s tra c t). B iol. A bst. 14:12887. 15. H ay asi, S. 1932. R elatio n Betw een Age of the Seed and Sex in Spinach. A g ric. and H o rt. Japan . 7:11491156. 16. H ira ta , K ., and K. Y am am oto. 1931. On the O ccu rre n c e of F e m a le In te r sexual P la n ts in Spinacia and M eland r iu m . Jap . J o u r. Gen. 7:105-107 (su m m ary). 17. Jo n e s, D. F . 1934. U nisexual M aize P la n ts and th e ir B earin g on Sex D eterm in atio n in o th e r P la n ts and in A n im als. G enetics 19:552-567. 18. K o taro , K. 1935. C ytological Studies on the C ultivated C ro c u s. Jap . J o u r. Gen. 11:162-168. 19. Loehw ing, W. F . 1938. P h y sio lo g ical A sp ects of Sex in A n g io sp e rm s. Bot. Rev. 4:581-625. 20. Love, D o ris. 1942. In te r sex u ality in M elandrium rub rum P ro b a b ly C aused by a T ra n slo c a tio n Betw een the Sex C h ro m o so m es (an a b s tra c t). H e re d ita s 28: 497-498. 21. L o rz , A. 1937. C ytological Investig atio n s on F ive Chenopo d iaceo u s G en era w ith Special E m phasis on C h ro ­ m oso m e M orphology and Som atic Doubling in S p in a c ia . C ytologia 8(2):241-276. 22. M a g ru d e r, R ., et al. 1938. D escrip tio n of Types of P r i n ­ cip al A m e ric a n V a rie tie s of Spinach. M isc. P ubl. No. 316, USDA. Syokubutu 88 23. M cClung, E. E. 1902. The A c c e s s o ry C h ro m o so m e-S ex D e te rm in a n t? B iol. B ull. 3:43-84 (a b s tra c t). 24. M iry u ta , J . P . 1937. Sex in P la n ts . 843-850. 25. N egodi, G. 1934. C om portam ento E r e d ita r io del Monoc e ism o in S pinacia o le ra c e a . Riv. Biol. 17:445-450. 26. N o h ara, S. 1923. G enetical Studies on Spinacia. J o u r. B ot. 1:111-120. 27. Ono, T. 28. P o o le , C. F ., and P . C. G rim b a ll. 1939. In h eritan ce of New Sex F o rm s in Cucum is m elo L. Jo u r. H ered. 30:21-25. 29. R osa, J . T. 1925. Sex E x p re s s io n in Spinach. l(12):259-274. 30. _________ . 1928. The In h eritan ce of F lo w er Types in Cu­ cu m is and C itru llu s . H ilg ard ia 3(9):233-250. 31. S chaffner, J . H. 1935. O b se rv a tio n s and E x p erim en ts on Sex in P la n ts . Bui. T o rre y Bot. Club 62:387-402. 32. Sinoto, Y. 1929. C hrom osom e Studies in som e D ioecious P la n ts , w ith S pecial R eferen ce to the A llo so m es. C ytologia 1:109-191. 33. Sugim oto, Y. 1948. Studies on the B reeding of Spinach. 2. Sex E x p re s s io n and G enetical E xplanation. H ort. A sso c. Jap an . J . 17:17-83. 34. Tandon, S. L. 1951. C olchicine Induced P olyploidy in Spinach. C ur. Sci. 19:66. A C ontribution to the G enetics of B ull. Acad. Sci. U.R.S.S. Sci. B iol. Jap . 1935. C hrom osom en und S exualitat von Rumex a c e to s a . D ei. Rep. Tohoku. Univ. Biol. 10:41 ( a b s tr a c t) . H ilg a rd ia 89 35. 36. T asch n jak o w a, M. 1929. U ntersuchungen u b e r die K ern b e sc h a ffe n h e it e in ig e r D io z isc h e r P flan zen . Z e itsc h r, W iss. B iol. Abt. E . P la n ta 7(4):427-443. W arm ke, H. E. 1946. in M elan d riu m . Sex D eterm in atio n and Sex B alance A m er. Jo u r. Bot. 33:648-660. 37. W arm ke, H. E ., and A. F . B la k eslee. 1939. E ffect of P o ly p lo id upon the Sex M echanism in D ioecious P la n ts . G enetics 24:88-89 (an a b s tra c t). 38. _________ . 1940. E s ta b lis h m e n t of a 4n D ioecious Race in M elan drium . A m e r. J o u r. Bot. 27:751-762. 39. W hitaker, T. W. 1931. Sex R atio and Sex E x p re s s io n in the C u ltiv ated C u cu rb its. A m er. Jo u r. Bot. 18: 359-366. 40. W hiting, P . W. W asps. 1935. Sex D eterm in atio n in B ees and J o u r. H ered . 26:263. 41. W ilson, G. B. 1946. C ytological Studies in the M usae. I. M eiosis in som e T rip lo id C lones. G enetics 31: 214-258. 42. _________ . 1946. C ytological Studies in the M usae. III. M eio sis in som e Seedling C lones. G enetics 31: 483-493. 43. 44. 45. . 1950. N u clear Cytology. lege P r e s s . M ichigan State C o l­ Winge, O. 1924. On Sex C h ro m o so m es, Sex D eterm in atio n and P re p o n d e ra n c e of F e m a le s in Some D ioecious P la n ts . C. R. T rav . L a b o r. C a rls b e rg 15(5): 1-26. 1931. X and Y L inked In h eritan ce in M elan d riu m . H e re d ita s 15:127-165. 90 46. 1934. The E x p e rim e n ta l A lte ra tio n of Sex C h ro m o so m e s into A utosom es and Vice V e rsa , as I llu s tr a te d by L e b is te s . C. R. T rav . L abo r. C a rls b e rg 21:1. 47. 1937. G o ld sch m id t's T heory of Sex D e te rm in a ­ tion in L y m a n tria . Jo u r. Gen. 36:81. 48. Y am polsky, C. 1933. Sex and C h rom o so m es in P la n ts. T o r r e y Bot. Club Bui. 60:639-655. APPENDIX OTHER GENETIC CHARACTERS OBSERVED IN S. OLERACEA L. B e s id e s sex e x p re s s io n , o th e r c h a r a c te r s which a r e g e n e tic a l in n a tu re w ere o b se rv e d during the c o u rse of the in ­ v e stig a tio n . C olor F a c to r A T his is a sin g le -g en e f a c to r, fo r re d co lo r a t the s te m ro o t a r e a . The a r e a w hich w ill show the co lo r v a rie s fro m o n e -h a lf in ch to th re e in ch es, depending upon the size of the p la n t, and a tta in s m axim um in te n sity when the p lan ts a re in full flo w e r. Red is dom inant o v er c o lo rle s s , w ith m o st c o m m e rc ia l v a r ie tie s being h etero zy g o u s fo r the fa c to r. th r e e g e n e ra tio n s D ata fro m the la s t shown in ta b le s in the Appendix ind icate the n a tu re of the in h e rita n c e of this gene. This c h a r a c te r could be u sed a s a m a rk e r gene in the c ro s s in g of in te r s e x p lan ts w h ere e m a sc u la tio n is im p o ssib le in p r a c tic e . By the use of a hom ozygous r e c e s s iv e in te r s e x p lant, a c r o s s can be m ade w ith a hom ozygous dom inant p o llen p a re n t plan t, and when the p ro g en y is grow n, a ll re d — stem. (C olor F a c to r A) p lan ts w ill 93 be c r o s s e d ind ivid u als, and all w h ite -s te m p la n ts will be the r e s u l t s of se lfe d seed. C olor F a c t o r B This f a c t o r was noted on the m orp h o lo g ically e x tre m e m a le p la n t u s e d in c r o s s in g . It is ap p aren tly a single-gene type in h e rita n c e , but th is has not been conclusively shown. In th is c a s e , the r e d color p e r s i s t s v e ry pale throughout the flow er s talk , and if a n th e r s a r e fo rm e d the a n th e r wall b eco m es quite re d . This f a c to r , if p r e s e n t, will m a sk Color F a c to r A. H om ed-seed F acto r All of the p la n ts b e a rin g seed which w ere c r o s s e d with th is m o rp h o lo g ica lly e x tre m e m ale e x p r e s s e d the h o r n e d - s e e d condition. This is in a g r e e m e n t with N ohara (1923), who showed th a t this h o r n e d - s e e d f a c to r had a single-gene type of in h eritan ce, and the h o rn ed seed was dominant o v er the round seed. F rom o b s e rv a tio n s of h o rn ed seed, it was noted that the seed had f r o m two to fo u r sp in es, o r h o rn s, and that in some rounds e e d e d ty p e s, s m a ll h o rn s w ere o b s e rv e d on seed fr o m some p la n ts . 94 The M orph o log ically E x tre m e Type Male P la n t All m a le s f r o m the c r o s s with this type m ale p la n t w ere of the sam e type, being m orp h olo gically e x tre m e . This also a p ­ p e a r s to be a dom inant condition, and is fully e x p r e s s e d only by m a le p la n ts . Savoyed Type Leaf and Dwarf Type F lo w e r Stalk Savoyed type le a f and dwarf type flow er stalk conditions have been o b se rv e d , but th e ir mode of in h e ritan ce is not known. F a s c ia tio n and P r o lif e r a tio n of Growing P o in ts One in b re d line was o b serv ed fo r this c h a r a c te r . The flo w er stalk s all b eca m e fa s c ia te d , and, as the plant reach e d full m a tu r ity , the tips of the f a s c ia te d p o rtio n s of the ste m b eca m e a m a s s of growing points. Its mode of in h eritan ce is unknown, but it a p p e a rs to be a r e c e s s iv e c h a r a c te r . R esponse to P hoto perio d Spinach r e m a in s in the vegetative state until a c e r ta in len gth of p h o to p erio d e x is ts . The length of photoperiod r e q u ir e d 95 to s tim u la te flo w e r stalk developm ent v a r ie s with, d ifferen t p la n ts . Some of the fo re ig n p la n t introductions of S. ole r a c e a w e re o b s e r v e d to resp o n d to a photoperiod of nine h o u rs, while m o s t c o m m e r c ia l v a r i e t i e s r e q u ir e a photoperiod of f ro m twelve to f o u r te e n h o u r s to in itiate f lo w e r - s ta lk development. The sex of the p la n t m odifies the r a te of f lo w e r - s ta lk development, but a p p a r e n tly has little influence on f lo r a l initiation. It was o b ­ s e r v e d th a t in t e r s e x and fem ale plan ts will re m a in vegetative lo n g e r than m a le , if the populations o b serv ed w ere of the sam e genotype f o r p h otoperiodic r e s p o n s e . However, it was also o b s e r v e d th a t f e m a le s and in t e r s e x p lan ts will f o r m flow er s ta lk s ah ead of m ale p la n ts. The explanation fo r this is the in h e re n t r e s p o n s e to p h o to p e rio d within the v a rio u s p la n ts. A nother indication of th is is th a t the in t e r sex p la n ts which w ere used in this e x p e r i­ m e n t w e re u su a lly se le c te d e a rly , and as a r e s u l t w ere uncon­ s c io u s ly s e le c te d f o r re s p o n s e to s h o r te r photoperiods, as in d i­ c a te d by the e a r l y f lo w e r - s ta lk fo rm a tio n in the p ro g en ie s grown in the e a r l y spring. SEX REVERSAL D e s c rip tio n of P a r e n t P la n t of P ro g en y (XF -14-1 2 -8-38 ) A r e d - s t e m m e d fem a le plan t grown in the g reenhouse in the w in te r of 1951-52 p ro d u ced a v e ry few a n th e rs (about ten to fifteen) n e a r the lo w er p o rtio n of the main flow er stalk, while the r e m a in d e r of the p la n t was fe m a le . The m ain flow er s talk r e a c h e d a height of 3 feet, and was all fe m a le , when an apparent " s e x r e v e r s a l" the m a in flo w er stalk. took place within the l a s t 5 inches of Within th is 5 -in ch span, the flo w ers tr a n s f o r m e d f r o m the p u re fem ale condition through a s e r i e s of the m onoecious com plex and h e rm a p h ro d itic flo w ers to a p u r e m a le condition, which te rm in a te d the flow er stalk. S im ­ i l a r conditions e x iste d to a l e s s e r extent on the l a t e r a l s . The only s e e d which was s e t on this plan t developed n e a r the b a s e of the m ain flow er stalk, where the f i r s t a n th e rs a p p e a re d , and a l a r g e r n u m b er of seeds was s e t f r o m the t e r ­ m in a ls of the flo w er stalk s where the l a t e r a n th e rs ap p eared . The m a jo r p o rtio n of the flo w er stalk, which was p u re fem a le, fa ile d to s e t seed, p ro b ab ly due to the lack of pollen. 97 While th is was a m a n ifestatio n of environm ent, it was not u n iv e r s a l f o r all the fem ale p la n ts grown under this con­ dition, b u t only a p p e a re d on a few p la n ts. This indicates, again, th a t it is a com bination of in te rn a l f a c to r s (genetic c o n ­ trol) and e x te r n a l f a c to r s which d e te rm in e th is in spinach. "sex re v e rsa l" PEDIGREE EXAMPLES P la n tin g N um ber One, Spring, 1952 (XF- 14- 11-15-1) In the sp rin g of 1950, an in t e r s e x p lan t was selec ted f r o m a f ie ld p lanting of Long Standing B loom sdale and Nobel. The p la n t s e le c te d was of the Long Standing B loom sdale v arie ty , w ith no c o n tro l o v er the m ale p a re n t; however, this p la n t was an i n t e r s e x which was ten p e r cen t fem ale and ninety p e r cent m a le . This p la n t w as desig n ated as (XF). The seed f r o m this p la n t was p la n ted in the green h o u se in the w inter of 1950-51. F r o m the p ro g en y of this planting an in te r s e x was selfed. p la n t was d esig n ated as (XF-14). This The seed f r o m th is plant was p la n te d in the fie ld in the spring of 1951. A w h ite -s te m m e d i n t e r s e x p la n t was selfed f r o m the progeny and was designated a s ( X F - 1 4 - 11). The seed f r o m this p lant was planted in the g reen h o u se in the w in te r of 1951-52. F r o m the progeny of th is planting, a white - ste m m e d i n t e r s e x plant was selfed. p la n t was d e sig n a te d ( X F - 14-11 - 15). This The seed f r o m this p la n t was p la n te d in the field in the spring of 1952, and the pro g eny 99 f r o m th is p lan tin g was d esig n ated ( X F - 14-11 -15-1). g r e e would then be li s t e d as follows: The p e d i­ (XF); (XF-14); (XF-14-11); ( X F - 14-11-15); (X F -1 4 -1 1 -1 5 -1 ). P lan tin g N u m b er F o r ty - s e v e n , Spring, 1952 [ ( X F - 3-2) x ( X F -3 -2 )-1 -47] (XF); ( X F - 3); (X F-3-2) x (X F-3-2); [(XF-3-2) x (X F - 3 - 2 ) - l] ; [(X F -3-2) x (X F-3-2) -1-47]. F o r d e s c rip tio n s of the individuals, consult Tables VIII, IX, X, and XI in the Appendix, and fo r d es c rip tio n s of the p r o g e n ie s of individuals, co n su lt Tables XII, XIII, XIV, and XV in the Appendix. 100 T A B L E VIII PLANTING PLAN, WINTER, 1950-51 (all s e e d - b e a r in g p lan ts w ere of the Long Standing B lo o m sd ale v a rie ty ; m ale p a r e n t was unknown) 1. (XF) fem a le 9. 2. (XF) fem a le 10. (XF) in te r sex 3. (XF) fem a le 11. (XF) in te r sex 4. (XF) fe m a le 12. (XF) in te r sex 5. (XF) fem a le in te r sex 13. (XF) m ale in te r sex 6. (XF) fe m a le in te r sex 14. (XF) m ale in te r s ex 7. (XF) fem a le in te r sex 15. (XF) fem ale 8. (XF) fem a le in te r sex (XF) fem ale 101 TABLE IX PLANTING PLAN, SPRING, 1951 1. (XF-3) in t e r sex 7. (XF-11) in te r s e x 2. (XF-3) in t e r sex 8. (XF-12) in te r s e x 3. (X F -6) in tersex 9. (XF-14) in te r sex 4. (XF-7) in t e r s e x 10. (XF-14) in te r sex 5. (XF-9) in tersex 11. (XF-14) in te r sex 6. (XF-11) i n t e r s e x 12. (XF-14) in te r s e x 102 TABLE X PLANTING PLAN, WINTER, 1951-52 P e d i g r e e No. Sex Stem Color m ale x fem ale r e d x white 1. (X F -3 -2 )x (X F -3-2) 6. ( X F - 14-9) in t e r s e x re d 7. (X F -1 4 - 11) in t e r s e x red 8. (XF -1 4 - 12) in t e r s e x red 12. (XF -14-9) in t e r s e x 15. (XF -14-11) in te r sex white 103 TABLE XI PLANTING PLAN, SPRING, 1952a P e d ig r e e No. Sex Stem Color (XF - 14 -11-15) in tersex white 2. (X F-14 - 11-15) in tersex white 3. (XF - 14-11-15) in t e r s e x white 4. (X F -1 4 - 11-15) i n te r s e x white 5. (X F- 14- 11-15) in tersex red 6. (XF -14-11-15) in te r sex white 7. (X F -1 4 - 11-15) in te r sex white 8. ( X F - 1 4 - 11- 15) in te r sex white 9. (XF -14-11-15) in te r sex white i— i (XF -14 -11 - 15) in tersex white 20. (X F -1 4 - 11 -7) in t e r s e x re d 21. (XF -1 4 -11 -7 ) in t e r s e x re d 22. (XF -1 4 - 11-7) in te r sex white 23. (X F -1 4 - 11-7) in t e r s e x red 24. (XF -14 - 11-7) in t e r s e x red 25. ( X F - 14-11-7) in te r sex red 26. (XF -14 -1 1 -7 ) in t e r s e x red 00 1. 104 T A B L E XI (C o n tin u e d ) P e d ig r e e No. Sex Stem Color 27. (XF - 1 4 - 9 - 1 2 ) in tersex white 28. ( X F - 14-9 -12) in te r s e x re d 29. ( X F - 14-9-6) in tersex red 30. (X F - 1 4 - 9- 6 ) in te r sex red 31. (X F - 1 4 - 9 - 6 ) in te r s e x red 32. (XF-14-9-6) in te r s e x re d 33. ( X F - 1 4- 9- 6 ) in te r sex red 36. ( X F - 1 4 - 1 2 - 8) in te r sex red 37. (XF - 1 4 - 12 - 8) in tersex re d 38. ( X F - 1 4 - 12-8) in te r sex re d 40. [ ( X F - 3 - 2 ) x ( X F - 3 - 2 ) -1] in te r sex re d 41. [ ( X F - 3 - 2 ) x ( X F - 3 - 2 ) -1] in t e r s e x red 42. [(X F-3-2)x(X F-3-2)-l] in te r s e x red 43. [(XF - 3 - 2 ) x ( X F - 3 - 2 ) -1] in te r s e x white 44. [(XF - 3 - 2 ) x ( X F - 3 - 2 ) -1] in te r sex red 45. [ ( X F - 3 - 2 ) x ( X F - 3-2) -1] in te r sex white 105 T A B L E XI (C o n tin u ed ) P e d ig r e e No. Sex Stem Color 46. [(XF - 3 -2 )x (X F -3-2) -1] in te r sex white 47. [(X F -3 -2 )x (X F -3-2) -1] in te r sex red 48. [(XF -3-2)x(X F - 3-2) -1] in te r s e x red 49. [(X F -3-2)x(X F - 3-2) -1] in t e r s e x red 50. [(X F -3 -2 )x (X F -3 -2 ) -1] in te r sex white (XF -1 4 - 11-15) in t e r s e x white 11. X X X (F .P .I.) m ale red (XF -14- 11-7) fem ale X X (X F -1 4 - 11-15) in te r sex re d x white (XF - 14- 12- 8 ) fem ale re d X X X (F .P .I.) m ale re d (X F-14 - 12-8) fem ale white X X X (F .P .I.) m ale red [XF - 14-12-8] fem ale red X X X [(X F -3 -2 )x (X F -3 -2 ) -1] in t e r s e x red 52. (X F -1 4 - 1 l)b in te r sex red 53. (XF -1 4 -9 )° in te r sex re d 19. 34. 35. 39. 106 T A B L E XI (C o n tin u e d ) P e d ig r e e No. Stem Color Sex J 54. ( X F - 1 4 - 11) white in te r sex B ecau se of the env iro n m en tal effects under g r e e n ­ house conditions, the in t e r s e x p lan ts w ere all c o n sid ere d as in t e r s e x , and no a tte m p t was made to f u r th e r c la s s ify them . The c o lo r r e f e r s to the s te m colo r. 1^ Identical to n u m b e r 7 in w inter, 1951-52. c Id entical to n u m b er 6 in w in ter, 1951-52. Id en tical to n u m b e r 15 in w inter, 1951-52. 107 T A B L E XII DATA FROM WINTER, 1950-51, PLANTING P e d ig r e e No. Male I n te r s e x F e m a le Total (XF - 1) 17 - 9 26 (XF-Z) 13 - 12 25 (XF-3) 17 2 12 28 (XF-4) 14 - 9 23 (XF-5) 9 - 14 23 (X F -6 ) 13 1 13 27 (XF -7) 10 1 12 23 (XF - 8 ) 6 - 16 22 (XF-9) 10 2 8 20 (XF- 10) 9 1 14 24 (XF-11) 12 2 12 26 (XF -13) 7 - 13 20 (XF-14) 6 4 4 14 (XF-15) 12 2 9 23 161 16 169 346 Total 108 CD ■4-* Vi O r —1 ^F vO o O S (u TJ o CD i—i CO rj fc r-H i-H ■ i-H i—1 CM 1—4 co o 1—1 vO m rco ^F co sO ■vO CO CO O CM tF i-H ^F r—i in C" co vO co vO 00 co in vO vO CM CO l> ^F CM 00 CM CM oiH m i—H i—t I in P*H CM <—1 CM i co I vO 1—1 m CM CM m 1—1 1—1 nO 'cF o CO CM CM i—i i—i r— •—i i—i CD fa CL) T—1 X CD CO Vt CD g H CD s 00 £