
DATA, MACHINE LEARNING, AND POLICY INFORMED AGENT-BASED
MODELING

By

David J. Butts

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computational Mathematics, Science, and Engineering – Doctor of Philosophy

2024

ABSTRACT

Agent-based models (ABMs) examine emergent phenomena that arise from individual

agent rules. This work extends the basic ABM paradigm in three key areas: data integra-

tion, evaluation of policies, and incorporating machine learning techniques. The dissertation

investigates how data-driven approaches can enhance the accuracy of ABMs, explores the

practical applications of ABMs in developing policies for real-world issues, and examines the

fusion of machine learning with ABMs to optimize model design and functionality.

The dissertation begins by establishing the background and fundamental principles of

agent-based models, highlighting their evolution from simple cellular automata to intricate

systems encapsulating decision-making and adaptive behavior. It examines the role of these

models in simulating dynamic interactions within systems, especially in scenarios where tra-

ditional methods may fall short of capturing the complexities of agent interactions. Following

the introduction of key concepts, a series of projects that function in pairs demonstrate the

versatility of ABMs and address the three key areas discussed above.

The first pair addresses data integration of GPS deer movement data into a generalized

Langevin model and its use in uncertainty quantification of disease spread. Exploratory

data analysis revealed a discernible non-parametric trend in the GPS data with non-Gaussian

statistics. This analysis led to a model that is consistent with the observed data. Subsequent

incorporation of chronic wasting disease (CWD) and population dynamics were used to

forecast the prevalence of CWD. This extended model was analyzed with a global sensitivity

analysis that tied variance in disease prevalence to variance in the parameters of the model,

providing predictions of future prevalence of the disease.

The second pair examines policy evaluation, specifically strategies for mitigating disin-

formation in social networks. Multiple strategies were evaluated on various topologically

diverse networks that led to policy recommendations. Simulations on these graphs revealed

challenges associated with large network simulations, particularly in computational cost and

influence of network topologies. These challenges led to a method to miniaturize real social

networks while preserving key attributes, enabling more efficient and realistic simulations to

run on artificial social networks.

The final pair investigates the possibility of inverting the ABM paradigm to instead have

agents learn their own rules through environmental interactions. Reinforcement learning

was applied to a model of conflict based on capture the flag, where an agent learned in

progressively difficult competitions. The emergence of deterrence was explored through

adding asymmetries between competing teams, and differential equation-based models were

created to help interpret results.

To Guido van Rossum, Leslie Lamport, and Linus Torvalds.
Without you, creating this dissertation would have literally been impossible.

iii

ACKNOWLEDGEMENTS

Throughout my time spent in graduate school, I have received a large amount of support

from many people. I am sure I have not listed everyone who has helped me along the way,

but that does not mean I do not appreciate your support.

First and foremost, I want to thank to my advisor Michael Murillo. Your guidance,

mentorship, and friendship has shaped me into a better scientist and a better person. I

will greatly miss the many conversations had over wine and old fashions, and time spend

kayaking and walking around campus. I also want to thank the remaining members of

my PhD committee. Arika Ligmann-Zielinska, I really enjoyed your class in agent-based

modeling, and your continued assistance with the sensitivity analyses in my projects. John

Luginsland, it is always fun to have conversation with you, and I hope to be as humorous

as you when I have a “real job”. More seriously, thank you for your support when I was

searching for jobs. Yuying Xie, you taught what I can only describe as the hardest class I

have ever taken. However, I appreciate it because not only did I learn a lot during your class,

but I gained confidence in my abilities to solve difficult problems. To each of you on my

committee, thank you again for your guidance and support throughout my time in graduate

school.

I also want to thank the Murillo Group’s current and past members. Specifically, Zach

Johnson, Jorge Martinez-Ortiz, Luciano Silvestri, Jannik Eisenlohr, Chris Gerlach, Thomas

Chuna, Luke Stanek, and close collaborators Liam Stanton and Jeff Haack. You have all

helped me improve my research and presentation skills through countless meetings and prac-

tices. I also really enjoyed our many happy hours, including the ones that occurred virtually

throughout the pandemic. It was great being part of a research group that effortlessly dou-

bled as a group of friends. Outside of the Murillo group, I want to thank Cole Stewart who

volunteered to read and provide feedback for many of the chapters in this dissertation.

I would like to thank the the many collaborators here at Michigan State and at Los

Alamos National Lab who have been a part of the research presented in this dissertation

and research I have done outside what is discussed here. I would definitely not be where I

am now without you, and it has been great learning about your areas of expertise.

One of the hardest parts of leaving Michigan will be leaving Mid-Michigan Runners. For

the past few years you have all helped me keep my sanity, and I will really miss Tuesday

night runs. It amazes me how many memories we have made through training runs, the

sweater run, races, vacations, parties, and general get togethers. Thank you, Seth, Simon,

Robert, Lewis, Jenn, and the rest!

Ben, Sam, Joe, Terrence, and Will, you guys are some of my oldest friends. Thank you for

making an effort just about every year for the past 10 years to come see me on my birthday.

iv

I hope we can keep at least a yearly get together going in the future. I want to thank you

guys, and the rest of the Watertown crew, for the much needed breaks throughout graduate

school.

Finally, I want to thank my family. In particular, for the emotional and moral support of

my mother, Sarah Rabin, brother, Jake Butts, and sister, Rachel Butts, that kept me moving

forward throughout my PhD. Thank for being available, especially through the hardest times

in graduate school. And thank you for putting up with my stress and complaining for at least

the past six years! To my girlfriend Fran, thank you for your support throughout graduate

school. You listened to endless rants when deadlines were closing in, but you helped stay

focused on getting things done. Most importantly, thank you for being willing to start a new

job in a different state to avoid living across the country from me. I am looking forward to

starting a new chapter in life.

v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: DATA-DRIVEN AGENT-BASED MODEL BUILDING FOR
ANIMAL MOVEMENT THROUGH EXPLORATORY DATA
ANALYSIS . 6

CHAPTER 3: A GLOBAL SENSITIVITY ANALYSIS OF AN AGENT-BASED
MODEL OF CHRONIC WASTING DISEASE 33

CHAPTER 4: MATHEMATICAL MODELING OF DISINFORMATION AND
EFFECTIVENESS OF MITIGATION POLICIES 40

CHAPTER 5: AN ATTRIBUTE-PRESERVING METHOD TO MINIATURIZE
LARGE SOCIAL NETWORKS . 60

CHAPTER 6: STOCHASTIC DIFFERENTIAL EQUATION BASED MODELING
OF DETERRENCE . 73

CHAPTER 7: APPLYING REINFORCEMENT LEARNING TO AGENT-BASED
SIMULATIONS OF CONFLICT . 93

CHAPTER 8: CONCLUSION . 107

BIBLIOGRAPHY . 109

APPENDIX A: SUPPLEMENT TO CHAPTER 2 128

APPENDIX B: SUPPLEMENT TO CHAPTER 4 136

vi

CHAPTER 1:

INTRODUCTION

1.1 Background on agent-based models
Models are indispensable tools for researchers, offering invaluable insights into various phe-

nomena when real-world experiments are impractical or unfeasible. There are several reasons

that might sway a researcher toward modeling over direct experimentation. For instance, the

sheer cost of certain experiments can be prohibitively high, as exemplified by the expenses

tied to launching payloads into space, which can cost up to tens of thousands of dollars per

kilogram [1]. In such scenarios, modeling acts as a precursor, allowing researchers to assess

the feasibility of their endeavors before actual implementation. Equally, time-critical situa-

tions, such as the planning of evacuation routes amidst looming weather threats, necessitate

immediate action; waiting for real-time data, in such cases, is not only impractical but also

perilous. Beyond these tangible constraints, there also exist ethical barriers. For example,

deliberately releasing pathogens to study the propagation of diseases is not an option. While

these examples are far from exhaustive, they underscore the myriad challenges that models

help researchers navigate.

Just as there are numerous reasons for utilizing models, the realm of modeling is vast.

There are many tools and methods tailored to diverse phenomena. These range from mathe-

matical constructs such as partial differential equations, to tangible replicas like solar system

models, or even surrogate organisms like rats in drug trials. Among these, computational

models – those that rely on computers to be evaluated – are widely applied across var-

ious fields, and can significantly mitigate the financial, temporal, and ethical limitations

associated with conducting experiments. One subtype, the agent-based model, stands out,

particularly for simulating complex, multi-agent systems. This dissertation aims to delve

deeper into this computational paradigm.

What is commonly referred to as agent-based modeling encompasses a trio of model

types: cellular automata (CA), individual-based models (IBM), and agent-based models

(ABM). Of these, CAs, with their simple arrays and iterative rule-based updates, are the

most straightforward. IBMs and ABM, in contrast, encapsulate more complexity. They can

comprise arrays, but their defining feature is the incorporation of agents, entities capable

of mobility and decision-making. Historically, the distinction lay in their focus: IBMs em-

phasized the variability among individuals, whereas ABMs prioritized decision-making and

adaptive behavior. Now, the terms “individual-based” and “agent-based” are often used

interchangeably [2].

1

Fundamentally, agent-based modeling is a simulation technique. It characterizes the

evolution of a system’s state through a rule-driven process. Here, the “system” encapsulates

the entirety of the model, specifically both the agents and the environment. A “state”

captures a specific configuration of these agents and the environment, and “rules” guide the

transitions between these states. The complexity of rules isn’t strictly tied to mathematical

formulations [3, 4]. To illustrate, consider binary CA models such as: John von Neumann’s

self-replicating device [5], James Conway’s game of life [6], or Stephan Wolfram’s Wolfram

models [7]. In these models, their systems consists of single arrays with cells that can have

a value of either 0 or 1. With each iteration, each cell either maintains or switches its based

on neighboring cell values. Even such simple systems can generate many states. For an

array with n cells, there are a total of 2n possible. This complexity is only amplified in

intricate models. Take, for instance, the forest management ABM described in [8]. This

model contains three types of agents: government, conservationist, and logging-company

agents, each of which has a distinct forestry goal. The model represents the forest has two

two-dimensional array that encodes the availability and monetary value of trees. Each agent

type uses these availability and value maps to construct conceptual maps that encode plans

to fulfill their forestry goals. Capturing the vast plethora of potential states in such models

reveals the depth and adaptability of agent-based modeling.

By describing models as transitions between states due to actions being taken, agent-

based modeling employs a bottom-up approach. Such an approach allows for the observa-

tion of emergent collective behaviors among agents in the model. Moreover, this approach

ensures modularity, making complexity additions to the model seamless. As an example, con-

sider modeling an influenza-like illness. A common modeling approach is to use susceptible-

infected-recovered (SIR) compartmental models [9]; however, agent-based models offer richer

dynamics. Figure 1.1 contrasts an agent-based SIR model with its ordinary differential equa-

tion (ODE) counterpart. The right panel plots the number of susceptible (green), infected

(red), and recovered (yellow) individuals versus time. The thicker lines are the solutions to

the ODEs and each thinner line is from a single execution of the ABM; in total the ABM

was executed 100 times.

In the ABM version, individual agents move randomly in space. Infected agents, repre-

sented with red points, can transmit the disease to susceptible individuals, represented with

green points, when they come into close contact. Eventually, infected individuals recover

and become immune; these recovered individuals are shown as yellow points. This agent-

based methodology allows for a direct exploration of potential correlations in the model.

For instance, it might provide insights into how the initial spatial distribution of infected

individuals can influence the rate or extent of disease spread. However, when the goal is to

2

Figure 1.1: On the left is a snapshot of an SIR model implemented as an ABM. Here, red
points represent infected individuals who can infect the susceptible green points. Red points
eventually recover and become immune yellow points. The center shows the mean-field
limit of this model, which is the first order ODE implementation of an SIR model. On the
right individual runs of the ABM are shown with translucent lines, while bold lines are the
solutions of the ODEs. Notably, while the ODE implementation effectively describes average
behavior, it fails to capture certain dynamics like stochastic extinction, where the disease
ceases to spread before infecting the entire population.

summarize the larger-scale dynamics without getting into the specifics of individual inter-

actions, we often turn to the mean-field approximation. For diseases, this might manifest

as ordinary differential equations (ODEs) that take into account the average behavior of

agents. In the case of our SIR example, the ODEs are a first-order approximation of the

ABM and arise in the mean-field limit [10] of the model. This limit assumes that pairwise

correlations among agents factor into a product of averages (〈SI〉 = 〈S〉 〈I〉); however, other

approximations could be used to derive higher order sets of equations [11, 10]. For instance,

a second order approximation would require nine total equations to describe each single and

pairwise correlation of S, I, and R. Although ODE approximations simplify the dynamics,

they can sometimes omit essential details present in the full agent-based model. Such ODE

models condense the complex interactions into parameters, like β for disease transmission,

that average out the diverse individual interactions.

Taking the idea further, to account for agent attributes like age or gender, one would

expand the agent-based model rules to factor in these variables. The differential equation-

based model would then require a new set of equations and parameters for each added

attribute. This could quickly lead to more complex models like partial differential equations

(PDEs), which are inherently more challenging to solve. Despite this, the strength of agent-

based models lies in their inherent flexibility to integrate added complexities. However, the

trade-off is computational efficiency; ABMs are generally more computationally demanding

than solving ODE models, especially when one needs multiple model runs, such as in training

3

or uncertainty quantification scenarios.

Beyond the cases presented, agent-based modeling has applications in a wide range of

fields including: finance [12], optimization [13], human behaviors [14], sociology [15], health-

care [16, 17], and many more [18].

1.2 Areas of improvement for agent-based models
As the field of agent-based modeling evolves, it grapples with an inherent tension regarding

the appropriate level of model detail. This tension anchors itself in the age-old principles

of parsimony versus accuracy. Some ABM practitioners posit that models should be as

streamlined as possible, capturing only essential features for clarity, generalizability, and to

prevent overfitting. This perspective aligns with Grimm et al.’s discussion the Medawar

zone, which represents the optimal range of model complexity for maximum benefit [19, 20].

Epstein [21] further elucidates this viewpoint, highlighting how even a potentially “wrong”

yet simple model can underpin the foundation of fields, e.g. Hooke’s Law and the Lotka-

Volterra model. Conversely, Edmonds and Moss [22] introduce the “Keep It Descriptive

Stupid” (KIDS) approach, contrasting it against the traditional “Keep It Simple Stupid”

adage. They argue for comprehensive models, and emphasize simplification only when it’s

justifiable. Central to this debate is the overarching question of how one strikingly captures

the complexity of reality in computational representations—a challenge that has been echoed

in disciplines beyond ABM, reflecting broader epistemological concerns about representation,

comprehension, and forecasting [23, 24].

This competition between parsimony and realism illuminates three facets of agent-based

modeling warranting deeper exploration. 1) Data integration: exploring how data can be

harnessed to determine the necessary complexity of a model and, moreover, once a model’s

structure is established, how data can further guide the determination of its functional form

and parameterization. Rand [25] discusses the development and challenges of agent-based

models in an era of big-data. Additionally, many authors have applied a data-driven approach

to a variety of applications including forecasting diseases [26, 27], family formation [28], and

adoption of solar power [29]. 2) Policy evaluation: delving into how agent-based models can

be effectively applied to real-world challenges, thereby bridging the gap between theoretical

modeling and practical problem-solving. Macal provides an extensive overview of ABM’s

various real-world applications, focusing on both its benefits and the associated challenges

[18]. 3) machine learning incorporation: investigating the fusion of machine learning (ML)

techniques with agent-based modeling to aid in defining the model.

In pursuit of exploring, refining, and pushing the boundaries of agent-based modeling, this

dissertation delves into the previously discussed facets of this paradigm. Each subsequent

4

pair of chapters represents unique projects I undertook aimed at advancing the design and

utility of agent-based models across diverse applications. Chapter 2 incorporates previously

published work [30] that showcases how data can be used to develop an agent-based model

of the movement of deer. Through exploratory data analysis, pivotal features from multiple

datasets were gleaned, culminating in a data-consistent random walk model that underpinned

the agent rules. Chapter 3 builds upon this work incorporating disease and population

dynamics into the model. Using data from multiple sources, the model is parameterized, and

a global sensitivity analysis is performed. This analysis provides methods for quantitatively

exploring variance in the models output to variance in the data used as input to the model.

Chapter 4 pivots to creating agent-based models that can be used to make decisions in the

real world, and is based on previously published work [31]. In particular, this chapter focuses

on strategies to curtail the spread of disinformation in social networks. This chapter presents

an ABM simulating the spread of disinformation and evaluates different mitigation strategies,

with the goal of informing users of the model of which strategies are viable. In Chapter 5,

I discuss methods for generating simulated social network. These generated networks are

smaller versions of larger social networks, created such that they preserve attributes of the

original network. The capability to generate networks in this fashion will allow for more

experiments to be run while not compromising the results of the experiments from over-

simplifications. Transitioning to the intersection of ML and ABM in Chapter 6, we start by

proposing new models of deterrence to use as a baseline comparison to ML-infused ABMs.

Chapter 7, the focuses on the inclusion of reinforcement learning (RL) within ABMs, with

the aim of inferring policies directly from an ABM. We explore deterrence in an agent-based

model of capture the flag where players in the game are controlled by RL agents.

To ensure clarity and ease of navigation, each chapter commences with a succinct sum-

mary, spotlighting the principal contributions and discoveries. Through discussing diverse

applications, from deer movement patterns to the spread of disinformation on social net-

works, this dissertation presents a comprehensive investigation into the future of agent-based

modeling.

5

CHAPTER 2:

DATA-DRIVEN AGENT-BASED MODEL BUILDING FOR

ANIMAL MOVEMENT THROUGH EXPLORATORY DATA

ANALYSIS

2.1 Summary
This chapter delves into the initial facet of ABMs: data integration. The work discussed

in this chapter is based on my previously published work in [30]. The primary goal was to

develop a data-driven ABM to model the movements of deer. To achieve this, two distinct

datasets were analyzed: one of deer relocation data and the other consisting of resource

selection functions. Exploratory data analysis revealed an absence of correlations between

these datasets and a discernible non-parametric trend in the relocation data. To address

this trend, the Fused-lasso machine learning technique was employed, enabling the trend’s

detection and subsequent removal.

My major contribution in this work was the development of a random walk model that

utilized non-Gaussian noise. The random walk model was able to accurately produce sim-

ulated data that was consistent with the data used to develop it, and captured movement

features that are absent in more traditional modeling techniques. Such features are im-

portant when considering the management of diseases and populations of animals, which is

discussed in the following chapter.

2.2 Introduction
Understanding how wildlife move and use the landscape has interested wildlife professionals

since the inception of wildlife ecology and management [32]. Researchers have explored

behaviors such as migration [33, 34, 35], resource use [36, 37, 38], space use [39, 40], and

risk avoidance [41, 42]. Knowledge obtained from such research improves our ability to

manage and conserve wildlife [43]. Quantifying movement behavior is aided by incorporating

observations into mathematical models, such as hidden Markov models [44, 45, 46] aimed at

detecting behavior switching, state-space models [47, 48, 49] used to correct measurement

errors and identify behaviors, and models of random walks on potential surfaces [50, 51] that

attempt to tie movements to resource distributions.

As technology for collecting telemetry data advances, higher-quality data are becoming

available. Such additional data provide insights into complex behavior that can be used

to create more realistic models. One way to bridge the gap between data generation and

analysis is through exploratory data analysis (EDA) [52, 53, 54]. EDA aids the development

6

of more realistic models by enabling features of the data to be identified and allowing model

assumptions to be checked. EDA methods are broad and vary with the application, but many

approaches, including visualizing data, exploring correlations, and generating statistics, can

be applied to any domain. The importance of checking model assumptions was highlighted in

a series of papers that revealed that 16 out of 17 models claiming to provide evidence for Levy

flights were incorrect [55]. Problems with the analyses included misinterpretation of data

[56], the use of inaccurate fitting methods [57], and the assumption of a heavy tail without

testing alternative hypotheses. EDA can mitigate these problems by allowing assumptions

to be verified and by exposing model weaknesses.

We provide insight about the importance of EDA and present a specific example of

applying EDA to model development using movement data and resource-selection functions

(RSFs). The rest of the chapter is summarized in Fig. 2.1 and organized as follows. In

the next section, we give an overview of EDA and present our data and EDA approach.

Our analysis begins with visualizing and identifying features that we later either corrected

for or incorporated into our models. We then test for correlations between the movement

data and RSFs. Next, we present a machine-learning technique to remove trends from

our movement data. The section is concluded by introducing copulas and kernel-density

estimates (KDEs) that are used to construct bivariate distributions from the marginals. In

the following section, we develop a Langevin random-walk model with non-Gaussian noise

that models the movement of a single deer. This model is then discretized to create a

multiple-deer agent-based model (ABM) of deer movement with parameters obtained from

our movement data. We compare our Langevin model to three other random-walk models

to illustrate the importance of EDA and its utility for model development. Finally, we show

the results of ABM simulations of 15 deer in three groups to illustrate how parameters can

be sampled from the data and to illustrate the distributions of areas covered. We discuss

group overlap patterns exhibited in our simulations; studying such group overlap patterns

could lead to a better understanding of disease spread.

2.3 Exploratory Data Analysis
In this chapter, we use EDA to suggest a model’s rules and to provide empirical param-

eters for it. As emphasized by Tukey [52], developing models in this order mitigates the

introduction of biases.

In general, we group EDA into two steps. The first step is to explore and adjust data

quality [58, 59]. This step can include data transformations (e.g., logarithmic compression),

imputation, smoothing noisy signals, resampling on more convenient grids and data fitting.

In the second step, patterns are sought in the cleaned data. These patterns may appear as

7

Figure 2.1: Summary of chapter organization. Each green box represents a major step taken
in the corresponding section listed in parentheses.

shapes of distributions, summary statistics, correlations or causal relations. More complex

patterns can be discovered using machine-learning techniques that are capable of finding

patterns that are difficult for humans to find. Central to all of these EDA efforts is visual-

ization. Visualization very clearly reveals patterns [60] such as trends (with line plots) and

correlations (with scatter plots); the functional forms of distributions are readily revealed

and quantified with, for example, histograms, violin plots and box-and-whisker plots. High-

dimensional data can be viewed using parallel plots [61, 62] and/or using dimensionality-

reduction techniques [63, 64]. All of these analysis and visualization techniques are readily

available in most programming languages, such as in Python’s matplotlib [65], scikit-learn

[66] seaborn [67] and yellowbrick [68] libraries. In what follows, we will employ these EDA

steps to analyze a real dataset. As we will see, some EDA results directly impact the choice of

rules for an ABM, whereas other results provide insight and error detection without directly

impacting model formulation.

2.3.1 Initial Data Analysis
The first step in EDA is initial data analysis (IDA), which serves to clean and explore data

without impacting model formation or attempting to answer questions. The goals of IDA

are to remove bad data, identify outliers, expose inconsistencies, perform transformations,

assess the relevance of data and begin visualizations.

To illustrate the IDA process, we begin with a specific dataset relevant to our goal of

characterizing deer movement patterns. We examine data from GPS-collared deer that were

captured, collared, and monitored according to and with approval by State University of

8

New York College of Environmental Science and Forestry Institutional Animal Care and Use

Protocol no. 2005-1. These data tracked the movements of 71 white-tailed deer inhabiting

central New York, USA from 2008 to 2009 and have been published previously [69, 70].

The data collected on each deer consisted of location data, in the form of GPS locations

and turn angles recorded for each deer in 5-hour intervals, together with the age and sex of

each deer. Locations were recorded for between 8 and 600 days for each deer in this study;

the duration of data collection for each deer varied with the life span of the deer and of the

GPS-collar battery, with how long each collar remained on each deer, and with mechanical

error.

RSFs are also included in the dataset (see Fig. 2.5); RSFs are models that yield values

proportional to the probability that a unit of resource will be used [71]. RSFs can be

constructed using many methods [71], including methods that account for observed animal

movements [51]. The RSFs that we examined were created using a step-selection method to

assess resource selection by the collared deer in this study; these RSFs have been described

previously [69] (link). Six RSFs are included in the dataset, corresponding to resource

selection in three seasons for both males and females.

We began our EDA of this dataset by visualizing the data. Fig. 2.2 depicts a single deer’s

recorded GPS locations in universal transverse mercator (UTM) coordinates in a scatter plot

showing spatial locations and in other plots showing UTM coordinates over time. Note that,

although the collar is attached to a single deer, it reflects that deer’s individual behaviors

and its interactions with other deer and the environment. This trajectory shows that the

deer spent time in two regions. We refer to these regions as “basins,” and we refer to jumps

between basins as ”basin hops.” In the time-series data for UTM coordinates, basins can be

seen as relatively constant coordinate values at which the animal remained over a substantial

period of time. A basin hop is indicated by a sudden shift in at least one coordinate. The

number of basins visited varied for each deer in the dataset. Movement within basins and

basin-hopping behavior may reflect different behavioral states of an animal; for example,

slow motion in a basin may indicate foraging, while basin hops may indicate migration or

dispersal [72].

Positions were recorded with non-uniform time intervals, and there were instances of

missing entries due to GPS collar malfunctions. For later convenience, the dataset was

mapped onto a uniform grid with no missing entries. A uniform grid with Ng grid points

was chosen based on the number of measurements in the dataset. The value at each grid

point was found by linearly interpolating between the closest points in the original dataset

on either side of the chosen grid point.

After interpolating the movement data, we examined the jumps j, calculated as the

9

https://www.proquest.com/docview/762785557?pq-origsite=gscholar&fromopenview=true

393000 394000 395000 396000 397000
UTM Easting

4.737

4.738

4.739

4.740

4.741

4.742

4.743
UT

M
 N

or
th

in
g

1e6

394000

396000

UT
M

 E
as

tin
g

0 250 500 750 1000 1250 1500 1750
Timesteps

4.7375

4.7400

4.7425

UT
M

 N
or

th
in

g 1e6

Figure 2.2: Identifying basins and basin hops. On the left, we show a single deer’s recorded
GPS locations in UTM coordinates. There are two discernible regions, which we refer to
as basins. On the right, the two UTM coordinates are plotted separately vs. the five-hour
timestep. Basins are indicated by relatively constant locations, and a jump between basins,
which we term a basin hop, is seen as a sudden shift in at least one coordinate.

distances between two adjacent recorded locations. In Fig. 2.3, we show an example of a jump

distribution, which, like the others, closely resembles the zero-mean Laplace distribution

f(j, b) =
1

2b
e−|j|/b. (2.1)

The parameter b characterizes the scale of the distribution and, for n jumps, has the maxi-

mum likelihood estimate

b̂ =
1

n

n∑
i=0

|ji|. (2.2)

Jump distributions are typically assumed to be Gaussian or power-law distributions [44, 45,

46, 47, 48, 49, 50, 51, 56, 57, 55], resulting in normal random-walk or Levy-flight models,

respectively. A Laplace distribution decays more slowly than a Gaussian distribution, al-

lowing for larger jump sizes; however, Laplace jumps are not as extreme as those of a Levy

flight. Thus, jump sizes allowed by Laplace noise range between those predicted by a normal

random-walk model and those of a Levy-flight model. Comparisons of maximum likelihood

estimates for each type of distribution to the jump data are made in Fig. 2.3, which shows

that a Laplace distribution is superior to a Gaussian, without over-predicting the tail as

would a power law.

We used Akaike’s information criterion (AIC) as a metric to compare Gaussian and

Laplace models for all of our movement data, as shown in Fig. 2.4. For each deer, we treat

UTM Easting and Northing movement data separately, and we compute AIC scores for each

using both the Gaussian and Laplace models. Each blue point corresponds to a single deer’s

10

1000 500 0 500 1000
Jump Size (meters)

10 5

10 4

10 3
Pr

ob
ab

ilit
y

Gaussian
Laplace
Power Law

Figure 2.3: Comparison of jump distributions. Shown are the data (grey) and maximum
likelihood fits for power-law (green), Gaussian (blue) and Laplace (orange) distributions.
The data and the Laplace distribution have tail jump sizes in between those of the Gaussian
and power-law models.

interpolated UTM Easting AIC scores, and each orange point to its UTM Northing AIC

scores. The difference between the AIC for the Gaussian model and the AIC for the Laplace

model for each point is shown on the vertical axis, and the Gaussian AIC for each point is

shown on the horizontal axis. The dashed grey line indicates where the vertical axis value is

zero, i.e., where both AIC measurements are equal. Points lying above the gray line represent

movement data for which a lower AIC is obtained using a Laplace-distribution fit. For all

but two of these points, the Laplace fit had a lower AIC. Both of our proposed fits had a

single parameter, which indicates that for all of our data points lying above the grey line,

the Laplace distribution fit the corresponding movement data more accurately.

After visualizing and interpolating our data, we treated the basin-hopping trends we

observed. Many EDA methods and time-series models assume that data are stationary and

account for trends separately. Before further analysis, the basin-hopping trend needed to be

removed. One method for removing trends from animal-movement data is to use a potential

function [50, 73, 74] whose gradient guides the motion of an animal.

These potentials can be used to construct potential surfaces, which can be linked to the

distribution of resources [51]. The RSFs provided to us could possibly be used to generate

a potential surface, but they were created at a discrete spatial resolution, which resulted in

flat regions with sharp boundaries. These discontinuities make it difficult to approximate

11

0 5000 10000 15000 20000 25000 30000 35000
AIC Gaussian

0

200

400

600

800

1000

1200

1400

1600

AI
C

Ga
us

sia
n

- A
IC

 L
ap

la
ce

UTM Easting
UTM Northing

Figure 2.4: AIC comparison for model selection. Each point corresponds the UTM Easting
or Northing movement data of a single deer. Each blue point corresponds to a single deer’s
interpolated UTM Easting AIC scores, and each orange point to its UTM Northing AIC
scores. The difference between the AIC for the Gaussian model and the AIC for the Laplace
model for each point is shown on the vertical axis, and the Gaussian AIC for each point is
shown on the horizontal axis. The dashed grey line indicates where the vertical axis value
is zero, i.e., where both AIC measurements are equal. Both models had one parameter;
therefore, points above the gray line correspond to data that are fit more accurately with a
Laplace distribution. All but two of our data points corresponded to movement data that
are fit more accurately with Laplace distributions.

the gradient of an RSF; a smoothing transformation is necessary to accurately incorporate

these RSFs into a model. Moreover, such a discontinuous gradient can mask correlations

between an animal’s positions and an RSF. Using a Gaussian filter, we created smoothed

maps; Fig. 2.5 shows a comparison of the original and smoothed RSFs. The large regions

of constant values in the original map transition between each other much more gradually,

resulting in a smoother gradient.

2.3.2 Examining Movement Relative to the RSFs
Although our RSFs were not intended to inform animal movement, but rather to inform

seasonal habitat use and selection of resources given availability in the surrounding landscape

[75, 69, 76, 37], we investigated whether correlations between RSF values and deer locations

and preferences for moving to relatively higher RSF values exist coincidentally. The results

for deer locations are shown in Fig. 2.6 and for deer movement are given in Table 2.1.

Note that while there appear to be correlations between the RSFs and deer locations and

12

Figure 2.5: Smoothing resource-selection functions (RSFs). On the left, we show a section
of the original RSF with its sharp boundaries. On the right, we show the same section after
smoothing using a Gaussian filter. This operation created a smoother function. In these
plots, lighter colors represent higher RSF values, and darker colors represent lower values.
We measured whether animals spent more time at positions with higher RSF values and
whether they tended to move towards positions with higher RSF values and compared the
results for the original and smoothed maps.

movements, they are not strong but are very sex dependent; the reasons for this are unknown.

However, there appear to be no correlations between our RSFs and movement steps, as Table

2.1 shows. Thus, while aspects of the RSFs have potentially useful information, the lack of a

clear picture of the role of this data in describing deer movements led us not to incorporate

this data into our model development.

Change in value Change in value
using original map male female using smoothed map male female

higher 27.7% 26.2% higher 47.6% 48.3%
lower 27.2% 26.4% lower 47.7% 48.4%
equal 45.1% 47.4% equal 4.6% 3.4%

Table 2.1: Correlations between deer movements and RSFs. This table shows how often
deer moved to locations with higher, lower or equal resource values in the original (left) and
smoothed (right) resource maps. These values are calculated using the six RSFs and all deer
movement data. Each deer uses the map which corresponds to its gender and the time of
year it was tracked. A single deer can use all three seasonal maps for a single gender. The
data reveal a lack of preference for movement relative to these RSFs.

13

0.0 0.2 0.4 0.6 0.8
RSF Value

0

2

4

6

8

Re
la

tiv
e

Pr
ob

ab
ilit

y

Original
Female
Male

0.0 0.2 0.4 0.6 0.8
RSF Value

0

2

4

6

8

10

Re
la

tiv
e

Pr
ob

ab
ilit

y

Smoothed
Female
Male

Figure 2.6: Exploration of correlations between deer locations and RSFs. The top histogram
shows the probabilities of males and females occupying a location with a given value on the
original set of resource maps, and the bottom histogram shows the same probabilities for the
smoothed set of resource maps. The results are very similar for the two sets of maps and do
not provide evidence that deer locations are correlated with higher values on these resource
maps.

2.3.3 Removing Trends From Non-Stationary Time-Series Data
Because the basin-hopping trend was surprisingly uncorrelated with our RSF values, we were

unable to remove the basin-hopping trend using these RSFs. We then turned to regression

analysis. When a trend has a known functional form (e.g., exponential growth or seasonality),

it can be fit and subtracted from the data. In Fig. 2.2, we see that movement trends in the

time-series data for deer locations are functionally flat regions connected by discontinuities.

The fused-lasso (least absolute shrinkage and selection operator) machine-learning technique

[77] allows us to automatically find such a function.

The fused-lasso method aims to find a non-parametric function θ that fits uniformly

sampled time-series data y, where y is either of the UTM coordinates with n values (see Fig.

14

2.2). Because θ can take on any value at any point in its domain, the fused-lasso method

first constrains the fit to be close to the data through minimizing ||θ − y||22 =
∑

(θi − yi)2.

Letting

D =

1 −1 0 . . . 0

0
.

...
...

. 0

0 . . . 0 1 −1

 ∈ Rn−1×n, (2.3)

the regularizer λ||Dθ||1 = λ
∑
|θi−θi+1| penalizes jumps in the fit θ by pushing the difference

in adjacent points in θ to 0. Notice that this regularizer has a different purpose than it would

in cross-validation. The strength of the penalty is controlled by the hyperparameter λ ≥ 0.

When λ = 0, there is no penalty for jumps, and the resulting fit θ is equal to the data. As

λ→∞, no jumps are allowed, and θ will be the average of the data. Written mathematically,

the fused-lasso method aims to minimize the relation

min
θ∈Rn
||y − θ||22 − λ||Dθ||1. (2.4)

For a given λ, the quantity in equation 2.4 can be minimized using optimization software;

here, we used CVXPY [78, 79]. Next, we consider how to choose a value for λ.

To choose the optimal λ, we need to define the critical jump size, defined as

J = j̄ + 3σj, (2.5)

that differentiates between a basin hop and random motion. Here, j̄ is the average jump

size, and σj is the standard deviation of the jump sizes in a trajectory. When optimizing λ,

we will compare the jumps in the data, jy, to jumps produced by the fits, jθ. With these

definitions, we define another loss function to be optimized. This is done by finding the

jumps in the data y, and setting to zero the sizes of any jumps that are less than J . This

process results in jumps given by

jyi =

|yi+1 − yi|, |yi+1 − yi| ≥ J

0, |yi+1 − yi| < J
. (2.6)

Here, the superscript indicates that the jump is calculated from data, and the subscript enu-

merates the total number of jumps. Our objective is to find the value of λbest corresponding

to a fit that best reproduces jyi . The optimization in Equation 2.4 is solved for n values of

15

λ, (λ1, . . . , λn) and the jumps it produces,

jθi = |θi+1 − θi|, (2.7)

are compared to jyi . We select λk and corresponding θ such that

||jy − jθ||22 =
∑
i

(jyi − jθi)2 (2.8)

is minimized.

Using synthetic data, we illustrate how the fused-lasso approach can be used to detect

basin hops in Fig. 2.7. The left panel illustrates the threshold for basin hops, which is set

at the mean jump size plus three standard deviations. The middle panel shows that the

model, with this choice of threshold, correctly characterizes the largest jumps in the data as

basin hops. Finally, the right panel shows the fit (orange line) to the synthetic data (blue

dots) and shows that this fit successfully captures the functional form of the trend. To test

the robustness of our fitting procedure, we varied the number and sizes of basin hops and

the amount of noise. Fig. 2.8 shows this comparison; in each row, one parameter is varied,

while the other two are held constant. We found that the fused-lasso method reliably fits

basin-hopping in different regimes, and we thus used this method to remove basin-hopping

trends from our data.

0 200 400
Timesteps

0.0

0.2

0.4

0.6

0.8

y t
+

1
y t

Jumps in Time Series

0 200 400
Timesteps

0.0

0.2

0.4

0.6

0.8

y t
+

1
y t

Data and Fit Jump Signals

0 200 400
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

y
(a

rb
. u

ni
ts

)

Time Series Data

y

Figure 2.7: Example of fused-lasso fitting. Simulated data is used to illustrate our fused-
lasso fitting procedure. In the left panel, we show all jump sizes from the simulated data in
blue, and the critical jump size from Equation 2.5 is shown in green. In the middle panel,
we show the critical jumps from data in blue, and those from the fused-lasso fit in orange.
In the right panel, the simulated location data are shown in blue, with the fused-lasso fit
overlaid in orange.

16

0 200 400
1.0

0.5

0.0

0.5
Po

sit
io

n
Jump Size: 1

0 200 400

15

10

Po
sit

io
n

Jump Size: 10

0 200 400
100

80

60

Po
sit

io
n

Jump Size: 50

0 200 400
200

150

100

Po
sit

io
n

Jump Size: 100

0 200 400
1.0

0.5

0.0

Po
sit

io
n

Noise: Max=0

0 200 400
1.0

0.5

0.0

Po
sit

io
n

Noise: Max=0.25

0 200 400
1.0

0.5

0.0

0.5

Po
sit

io
n

Noise: Max=0.75

0 200 400
1

0

1

Po
sit

io
n

Noise: Max=1

0 200 400
Timestep

1.0

0.5

0.0

0.5

Po
sit

io
n

Basin Hops: 1

0 200 400
Timestep

1.0

0.5

0.0

0.5

Po
sit

io
n

Basin Hops: 4

0 200 400
Timestep

3

2

1

0

Po
sit

io
n

Basin Hops: 9

0 200 400
Timestep

0

5

Po
sit

io
n

Basin Hops: 49

Figure 2.8: Testing the robustness of the fused-lasso method using well-controlled simulated
data in arbitrary units. We varied characteristics of simulated time-series data, including
the number and sizes of basin hops and the amount of noise, to assess the robustness of our
lasso-fitting procedure. In each row, one parameter is varied, while the other two are held
constant. In the top row, the basin-hop jump size is varied. In the middle row, the maximum
noise value is varied; the noise added in these plots is sampled from a uniform distribution
between zero and the maximum value listed in the title above each panel. In the bottom
row, the number of basin hops is varied. When not varying, the basin-hop jump size is set
to 1, the maximum value for the noise is set to 0.5, and the number of basin hops is set to
4. Our procedure is able to produce realistic fits to the data in many regimes.

2.3.4 Statistical Inference From Stationary Time-Series Data
Beyond visualizing and detrending data, many techniques can be used to mine useful infor-

mation from time-series data [80]. In this section, we introduce two metrics that we used

to analyze time-series data: autocorrelation functions and the mean-squared displacement.

Calculating autocorrelation functions generated insights about repetitive motion in our data,

though such motion was not a feature we had aimed to reproduce in our model. An exam-

ination of mean-squared displacements provided evidence for basins in our data and thus a

rationale for including basins in our models.

Time Autocorrelation Function

The first metric we explored was the time autocorrelation function (ACF). ACFs can be

used in combination with Fourier transforms for pattern discovery in time-series data [81] to

reveal insights and test a model’s assumptions [82].

17

The ACF R measures how correlated a time series r(t) is with itself over a time lag. For

discrete location measurements, the ACF can be calculated for a lag k = t′ − t as

R(k) =

∑N−k
i=1 (ri − r̄)(ri+k − r̄)∑N

i=1(ri − r̄)2
, (2.9)

where r̄ is the average position. Using the Fourier transform

R̂(ω) =

∫ ∞
−∞

R(k)e−2πikωdk, (2.10)

the ACF can be decomposed into its component frequencies. These frequencies measure the

time scale of repetitive behavior in the time series. The power |R̂(ω)| of each frequency ω, can

be calculated to determine the contribution of each frequency to the total ACF. In practice,

we evaluated a discrete Fourier transform using the fast Fourier transform algorithm. For

many deer, we found that the ACF of their positions primarily took the form of exponential

decay, with high- and low-frequency periodic signals superimposed. Fig. 2.9 shows an

example of the ACF and corresponding power spectra, which highlight the high and low

frequencies in the movement data. The high-frequency peak corresponds to daily repetition

in activity, which is likely circadian in origin. The low-frequency peak consists of fewer power

spectral data points and hence is not as statistically significant.

The method presented above assumed that the data were uniformly sampled. Alternative

approaches, such as those employing the Lomb-Scargle periodogram [83, 84], allow irregu-

lar data to be treated directly without interpolation. However, because interpolation was

required for other methods used in this work, we implemented the fast Fourier transform

method in our analysis.

Mean-Squared Displacement

The second metric we examined was the mean-squared displacement (MSD). The MSD is

defined as E[|r(t) − r(0)|2]. The MSD measures how far an animal moves on average and

can be used to classify diffusion by the power by which the MSD increases versus time.

In Fig. 2.10, we examined the MSD of our stationary (within-basin movement) and non-

stationary (basin-hopping) data. In the non-stationary data, there was no clear relationship

between time and the MSD. In addition, basin hops caused large shifts in the MSD. After

removing the basin-hopping trend, the MSD was constant in time, as expected. A constant

MSD results when an animal remains in one region; for example, the MSD is approximately

constant if an animal remains in a basin.

18

0.2

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

X ACF

0

5

10

15

20

25

30

35

Po
we

r

X Power Spectrum

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Y ACF

0

5

10

15

20

25

30
Po

we
r

Y Power Spectrum

0 20 40 60 80 100
120

140
160

180
200

220
240

Days

0.0

0.5

1.0

AC
F

R ACF

110306090120
150
180

360

Days

0

10

20

30

Po
we

r

R Power Spectrum

Figure 2.9: Time autocorrelation functions and their Fourier transforms. ACFs of a deer’s
motion in the x, y, and r =

√
x2 + y2 directions are shown in the left column. In the

right column, we show the corresponding power spectra of these ACFs. The high-frequency
oscillation in the ACFs is seen as a daily peak in the power spectra, and the lower-frequency
oscillation is captured by a wider peak at around one to three months.

19

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SD

 M
et

er
s2

1e6 X Non-Stationary

0

50000

100000

150000

200000

M
SD

 M
et

er
s2

X Stationary

0 200 400 600 800
Day lags

0

200000

400000

600000

800000

M
SD

 M
et

er
s2

Y Non-Stationary

0 200 400 600 800
Day lags

0

25000

50000

75000

100000

125000

150000

175000

M
SD

 M
et

er
s2

Y Stationary

Figure 2.10: Mean-squared displacements. We show the mean-squared displacements for
our non-stationary data in the left column and for our stationary data in the right column.
In neither case is there an obvious ta dependence; moreover, the stationary data reflect a
“non-diffusing” deer, as evidenced by the mean-squared displacement being constant over
all but the longest lags.

2.3.5 Recovering Correlations in Position Data
The above EDA explored our data in each coordinate separately. In doing so, we assumed

that the data in each coordinate were independent and imposed an importance on the co-

ordinate system that our data happened to be measured in. For example, by rotating the

coordinates such that a basin hop is perpendicular to one axis, a trend that was observed

in both coordinates before rotation would be observed in only one of the new, rotated

coordinates. Changing coordinates would affect our fused-lasso regression analyses, jump

distributions, and other metrics examined in our EDA. Therefore, it is important to ensure

one coordinate system is used consistently.

One way to remove the assumption of independence between coordinates is through

correlated random walks [85]; however, these models assume that the resulting bivariate

jump distribution is normally distributed, something we did not observe in our data. To

preserve correlations in the data and to avoid imposing a form on the jump distributions

that we pick, we used two methods to estimate bivariate distributions from the data directly:

copulas and KDEs. Copulas allow us to generate a bivariate distribution from the marginal

distributions, which we know well from our stationary data. Jumps in the trends do not

follow an obvious distribution, so we use KDEs to approximate these instead.

20

Copulas

Animal locations are often recorded in arbitrary coordinates that are useful for modelers.

There is no reason to assume that motion in these directions should be independent. There-

fore, any distributions stemming from data in these coordinates should be bivariate to ac-

count for correlations. When the marginal distributions are well known, copulas provide a

way to estimate a bivariate distribution while preserving the observed marginals. A cop-

ula C(·) is a function that joins a multivariate distribution function FUV (u, v) to its one-

dimensional marginals FU(u), FV (v) [86] through the relation

FUV (u, v) = C(FU(u), FV (v)). (2.11)

Using copulas, one can construct a joint distribution of two variables while knowing only the

individual marginal distributions [87]. Thus, we can estimate the bivariate jump distribution

for our data from the one-dimensional distributions we observed. Copulas have been used

in ecological studies to accommodate under-reporting in wildlife-vehicle crash data [88], to

approximate joint space use among animals [89], and to describe distributions of multiple

species of animals [90].

Mappings from the marginals to the joint distribution function are not unique; a C must

be chosen for each application. While there are many options for creating copulas [86], for

convenience, we employed the Gaussian copula by allowing C to be a multivariate Gaussian,

to model jumps in our stationary data (data with trends removed).

In Fig. 2.11, we graphically show an example of the procedure we employed to generate

a bivariate jump distribution using a copula. First, for each individual deer, we identified

jumps in their separate UTM coordinates. We considered only jumps that happened simul-

taneously in both coordinates, and we treated jumps that happened simultaneously in both

coordinates as single, two-dimensional data points. The resulting two-dimensional distribu-

tion of within-basin jump data was fit with a zero-mean bivariate Gaussian distribution, as

shown in the upper-left panel of Fig. 2.11. The marginals of these data are also shown in

the upper-left panel of Fig. 2.11. This bivariate Gaussian distribution was then sampled for

illustration purposes; the resulting data, together with their associated marginals, are shown

in the upper-right panel of Fig. 2.11. The correlations from our data in the upper-left panel

are preserved here, but the marginals which were Laplace distributions in the upper-left are

Gaussian distributions in the upper-right. Using the probability integral transformation,

the data from the bivariate Gaussian distribution were transformed to have uniform dis-

tributions, while retaining correlations; the resulting uniform, bivariate distribution, shown

in lower-left panel of Fig. 2.11, is the copula of the two jump-coordinate variables of the

21

fitted bivariate distribution shown in the upper-right panel of Fig. 2.11. Finally, the copula

was used together with the observed Laplace-distributed marginals to create a non-Gaussian

bivariate jump distribution with marginal distributions that were constructed from our data.

This bivariate jump distribution is correlated, has marginals that match our data, and can

be sampled efficiently.

Figure 2.11: Illustration of a procedure for generating a bivariate probability distribution
from one-dimensional marginal distributions using a copula. In the upper-left panel, jump
data for an individual deer are shown, and the marginals from these data are shown on
the top and right sides of the main figure in the panel. A bivariate Gaussian was fit to
the marginals data, and this fit is indicated by the orange oval. In the upper-right panel,
points sampled from the the bivariate Gaussian fit are shown, together with their marginals.
Using the probability integral transformation, the bivariate Gaussian data and marginals
were transformed to uniform data and marginals, while retaining correlations; the resulting
uniform, bivariate distribution is the copula and is shown in the lower-left panel. Finally, the
copula was used with the observed Laplace-distributed marginals to create a non-Gaussian
bivariate jump distribution whose marginal distributions are constructed from our real data.

Kernel-Density Estimates

The power of copulas comes from their ability to constrain the marginal distributions of

an approximate bivariate distribution by exploiting known marginal distributions. When

22

known marginal distributions are unavailable, a KDE can be used to estimate a multivariate

distribution f̂ . KDEs have been used in animal ecology studies in methods for estimating

home ranges for animals [91, 92].

To construct a KDE, we consider a probability density kernel K over each observed point

x and create a weighted average of the distances between the current observed point and all

other points in the dataset Xi, through

f̂(x) =
1

nh2

n∑
i=1

K

{
(x−Xi)

h

}
. (2.12)

Here, h is a smoothing parameter that controls how closely the output resembles the kernel

used. In our application, each x is a two-dimensional point that describes the size of a basin

hop in each coordinate.

We used KDEs to estimate the bivariate jump distribution of the trends removed from

our movement data. First, we identified the jumps in the trend. In some cases, the jumps

were not aligned in the separate coordinates, and a smoothing procedure was therefore used

to correct for slight misalignments within the data. We approximated the bivariate jump

distribution of the trend using a Gaussian KDE with h = ∆̄r/4 meters, where ∆̄r is the

average distance between points. This value of h was chosen to yield a smooth distribution

function without losing details present in the original dataset.

In summary, throughout our EDA, we explored many aspects of our data to illuminate

features that then guided the selection of the form of our model. Visualizing our data

informed us of the basin-hopping features in our data and demonstrated that jumps in the

data are not normally distributed. We found that correlations between our movement data

and our RSFs are weak, and we have thus excluded RSF data from our model.

When examining the MSDs of our data, we found additional evidence of basins in which

deer locations were constrained. Using these findings, in the next section, we propose a

model that can reproduce the features of the data revealed in our EDA.

2.4 Modeling
As part of the process of constructing an ABM, we first developed a mathematical model of a

single deer’s movement that was consistent with our EDA; this model was then discretized to

form the basis of our ABM. This intermediate step, of generating a model for an individual

deer’s movements before formulating an ABM, allows us to exploit the EDA performed

above.

Our EDA results suggest that a stochastic drift (i.e., basin-hopping), non-Gaussian

random-walk model would capture important features of our data well; hence, we chose

23

to develop a model of this form as our single-animal movement model. Our starting point

was the usual Langevin equation, which is usually written in terms of particle velocities as

dv

dt
= −γv(t) + ψ(t). (2.13)

Our modification of the Langevin model constructs a random process directly from the

data, using a copula to approximate a bivariate distribution of jumps. This results in a

correlated random-walk model with non-Gaussian noise. Moreover, we include basins in

our model through the use of a harmonic potential to constrain deer within a region. To

simulate the basin-hopping trend, basins move according to a Poisson process; this choice

will be discussed in the subsection below.

While our Langevin model is applied to a single animal and misses the effects of hetero-

geneity, these effects can be incorporated into an ABM extension of the Langevin model.

An ABM can model multiple individuals with different ages and sexes and can integrate

other data streams, such as knowledge of the locations of bodies of water and impenetrable

objects. Additionally, other features, such as a disease model, are readily incorporated into

an ABM to study disease transmission, without the need to rederive the movement model.

Our goal is for our ABM to serve as a foundational framework into which additional wildlife

models can be incorporated; such a model will facilitate the study of wildlife phenomena

in which movement plays an important, underlying role. In the next two subsections, we

describe the formulation of our Langevin model and then its extension to an ABM.

2.4.1 Single-Animal Langevin Dynamics on a Potential-Energy

Surface
We develop the stationary and non-stationary components of our Langevin model of a single

animal’s movements separately. We will first discuss the stationary portion of our Langevin

model. Consider a single tagged animal at a position (x, y) and moving in a two-dimensional

space. The lack of a trend in the MSD data suggests that deer remain localized in a basin

with center (cx, cy) that acts as a potential energy surface, which we model as

U =
(x− cx)2

ax
+

(y − cy)2

ay
, (2.14)

where ax and ay describe the widths of the basin. The stationary movement within the basin

is modeled by [
dx

dy

]
= 2

[
γxax 0

0 γyay

]−1 [
x− cx
y − cy

]
dt+

[
λxx
γx

λxy
γx

λyx
γy

λyy
γy

][
dΨx

dΨy

]
, (2.15)

24

which is analogous to a harmonically trapped particle obeying the Langevin equation [93].

The first term is the gradient of equation 2.14 and models the effects of the basin, and the

second term contains all of the correlations and describes the random motion of an animal.

Next, we model the animal’s non-stationary basin-hopping. We assumed that basin hops

were independent events that occurred at distinct, random times, and we calculated the

average rate of basin hops from the data. Our assumptions are consistent with a Poisson

process; thus, we used a Poisson process to model basin-hopping behavior. In a Poisson

process, the inter-arrival times t between k basin hops are described by an exponential

distribution

P (c moves at t) ∼ k

T
e−(k/T)t, (2.16)

where T is the total number of timesteps at which the movement of an animal is observed,

and k/T is the average rate of basin hops. The cumulative sum of the inter-arrival times

provides the times at which a basin moves instantaneously. The sizes of the basin hops are

sampled from a bivariate distribution constructed from the removed trends using a KDE.

The stationary and non-stationary components of our model are fit separately. In order

to fit the stationary component described by Equation 2.15, we first need to remove the

effects of the basin from our stationary data. We do not know the basin’s parameters a

priori, so we choose many possible sets of basin parameters that are then used to subtract

the basin from our stationary data. In practice, we let C1x = 2/λxax and C1y = 2/λyay

and perform a grid search over values for C1x and C1y. Once the basin is removed, we fit

a Gaussian copula, using the method described in Section 2.3.5, to the resulting data to

capture the parameters and random processes in Equation 2.15. To determine the best set

of C1x and C1y, we run our model 10 times for each set of parameters and corresponding

random process fit, and we select the parameters that minimize the least-squares differences

in the variances and covariances of locations between the simulated location data and real

location data.

To fit the parameters of the non-stationary Poisson process, we set k to the number of

critical jumps observed in a trajectory; then T/k is the ratio of the total number of timesteps

to the number of critical jumps. Each of these parameters, as well as the removed trends,

were stored for each deer. Using the method described in Section 2.3.5, we construct a

bivariate jump distribution from the removed trend with a Gaussian KDE, from which we

sample basin hops.

After fitting the parameters of our Langevin model to all of our deer, we simulated a

trajectory by selecting a set of parameters for a single deer and the corresponding trend and

then running our model. An animal was given an initial position (x(0), y(0)), and the basin

center (cx, cy) was chosen. The entire stationary component of the trajectory was simulated

25

using [
x(t+ 1)

y(t+ 1)

]
=

[
x(t)− C1x(x(t)− cx) +Kx

y(t)− C1y(y(t)− cy) +Ky

]
. (2.17)

This equation is a discretized version of equation 2.15. Here, K represents a random number

sampled from the bivariate jump distribution constructed using a Gaussian copula. After

simulating the stationary component, we simulated a trend. This was done by sampling the

times at which basin hops occur, using Equation 2.16.

We then sampled the basin-hop sizes from the KDE constructed from the removed trend

jumps (i.e., the basin hops) and added the simulated trend to the simulated stationary

trajectory. With this model, we are able to simulate the trajectory of a deer with movements

that follow patterns seen in the original dataset. In the next subsection, we extend this

single-animal model to a multiple-animal ABM.

2.4.2 Multiple-Group Agent-Based Model
We began with a Langevin model that treated a single deer at a time because the data

that we have tracks individual deer. However, in practical applications, we require models

of multiple groups with population diversity. Moreover, many environmental and social

effects are implicitly contained in the harmonic potential used to constrain deer within a

basin. While we would prefer to incorporate these effects explicitly in our models, our

ability to do so is limited without additional data. Nonetheless, to move toward a multiple-

animal simulation, we assumed that a number of non-tracked animals were together with the

tracked animals in a basin and that these non-tracked and tracked animals formed a group

that underwent basin hops together.

Here we provide a simplified description of our model. For a full description following

description following the Overview, Design concepts and Details (ODD) protocol [94], see

Appendix A. Our ABM consists of group designations (collectives within the population)

and deer. The simulation contains a number of groups, each of which is initialized with a

shared basin center, a number of deer, and a set of parameters and trends trained from a

tracked deer. Based on their parameters, groups determine when they will undergo a basin

hop and how many basin hops they will undergo. At every step of the simulation, the deer in

each group update their positions (x, y) individually using equation 2.17. Each group then

determines whether the current timestep requires a basin hop. If so, the group samples a

jump size from the KDE fit to the trend data and moves the center of the basin along with

its deer according to the sampled jump. Our ABM can be used as a foundation for models

that involve deer movement. For example, a disease or deer-management model could be

added to the ABM to study additional phenomena while allowing for deer movement that is

consistent with real movement data; this will be the subject of future work.

26

2.5 Results
One of our goals was to demonstrate the importance of EDA in developing models. We

compare our Langevin single-deer model (data and basin-hopping; DBH) with three other

models that use different assumptions. The first two single-deer models are random-walk

models without basin hopping: one with Gaussian noise (Gaussian random-walk; GRW),

and the other with non-Gaussian noise constructed from the location data via a copula

(data and random-walk; DRW). These models ignore trends in the data; such models might

be selected if the data were not visualized and the basin hops were not observed. The

third model incorporates basin hopping and employed Gaussian noise (Gaussian and basin

hopping; GBH). These models are not an exhaustive list of alternatives, but they illuminate

how assumptions made about trends and types of noise can affect the accuracy of movement

models. We additionally present example results from our multiple-deer ABM that display

how groups of deer can come into contact.

The models compared to our Langevin model were fit using methods similar to those

used for our Langevin model. For models without basin hopping, a zero-mean Gaussian

distribution was fit to the bivariate jump distribution constructed from the non-stationary

data. The GRW model sampled this fit directly, while the DRW model passed the same

jumps through a Gaussian copula to simulate a deer’s jumps. Models with basin hops fit a

Gaussian distribution to the bivariate jump distribution of the stationary data. The GBH

model sampled this fit directly, but the DBH model passed the jumps through a Gaussian

copula, so that its jumps were sampled from a Gaussian copula-based distribution. Both the

GBH and DBH models sampled a Gaussian KDE, as described in section 2.4, to simulate a

trend that was used for both models.

We compared the four individual-deer models by training them on a single deer in our

dataset and performing 100 simulations using each model. Both the GRW and DRW models

appear to capture correlations in the location data, as evidenced in Fig. 2.12 by the similarity

of the orientations of the distributions to those of the data. The basin-hopping models

produce very similar distributions in Fig. 2.13 because they share the same basin-hopping

trend in each of the 100 trials, and this trend represents larger jumps than are seen with the

underlying random motion.

Next, we further examined the differences between models that included jumps sampled

from a Gaussian distribution and those that included jumps sampled from a copula-based

distribution generated using a Gaussian copula. In Fig. 2.14, we show the counts of po-

sitions of a deer moving with Gaussian-distributed jumps within a basin (reds) superim-

posed on the counts of positions moving with copula-based-distributed jumps (blues). Blues

in Fig. 2.14, corresponding to positions moving with copula-based-distributed jumps, are

27

Figure 2.12: A comparison of trajectories for two random-walk models that do not include
basin hops. We compare how often locations were visited using a random-walk model that
uses jumps sampled from a bivariate non-Gaussian distribution constructed using a Gaussian
copula trained on our data, shown in the left panel, with a random-walk model that samples
jumps from a Gaussian distribution fit to our data, shown in the right panel. Each model
was used to generate 100 trajectories, and the densities of the locations visited are shown.

Figure 2.13: A comparison of trajectories for two random-walk models that include basin
hops. We compare a random-walk model using jumps sampled from a bivariate non-Gaussian
distribution constructed using a Gaussian copula trained on our data, shown in the left
panels, with a random-walk model sampling jumps from a Gaussian distribution fit to our
data, shown in the right panels. Both models include the same basin-hopping trend produced
by sampling a KDE trained on our data. Each model was used to generate 100 trajectories,
and the densities of the locations visited are shown. The blue dots show the data on which
the models were trained.

28

spread out over a larger area than reds in the figure, corresponding to positions moving

with Gaussian-distributed jumps; i.e., the deer movements modeled using a copula-based

distribution covered a larger area than those modeled using Gaussian-distributed jumps.

To further illustrate how these two models differ from each other, in Fig. 2.15, we

show the logarithms of the magnitudes of the differences between these two sets of position

counts; the position counts generated from Gaussian jumps (reds in Fig. 2.14) are subtracted

from the position counts generated from copula-based jumps (blues in Fig. 2.14). Short-

distance movements are reflected in the center of Fig. 2.15, and the green color at the center

of the figure indicates that far more short-distance movements occur with copula-based-

distributed jumps than with Gaussian-distributed jumps. The yellow points away from the

center of the figure indicate that occasional larger jumps are also more common among the

copula-based-distributed jumps than among the Gaussian-distributed jumps. Intermediate

distances, shown as red points, were less common among the copula-based-distributed jumps

than among Gaussian-distributed ones.

-1000 -500 0 500 1000
Easting distance from origin (m)

-1000

-500

0

500

1000

No
rth

in
g

di
st

an
ce

 fr
om

 o
rig

in
 (m

)

100

101

102

103

100

101

102

Figure 2.14: Densities (counts) predicted by both copula-based- and Gaussian-distributed
noise in a basin centered at the origin (cx = cy = 0). Density predictions from our Langevin
model for both Gaussian and copula-based noise, using parameters from a deer in our dataset,
are shown. The deer density for the copula-based model is shown in blues; over that density is
the density from the Gaussian-based model in reds. It is evident that more distant locations
can be reached using a copula-based noise than with a Gaussian noise.

After examining how different sets of assumptions affected the movement patterns of our

Langevin-based model, we ran our ABM to explore the behaviors of multiple deer. First, to

29

-1000 -500 0 500 1000
Easting distance from origin (m)

-1000

-500

0

500

1000

No
rth

in
g

di
st

an
ce

 fr
om

 o
rig

in
 (m

)

4

2

0

2

4

6

Figure 2.15: Difference in deer densities from Fig. 2.14. The log of the magnitude of the
differences is reported. When using copula-based-distributed movements instead of Gaussian,
there is a large correction for smaller-sized jumps that allow for the occurrence of rare,
very large movements. Further, when using copula-based-distributed jumps, there are fewer
movements to intermediate-range locations compared to Gaussian-distributed jumps.

construct our multiple-deer model, we fit each deer’s data to our Langevin model, creating

distributions of parameters. By sampling these distributions, we created an ABM of three

groups, each containing five deer. In Fig. 2.16, each group’s approximate density is outlined

with contours in a unique color for each group, with the initial center of the group marked

with an ‘x’ of the same color. The blue group underwent a basin hop into the region occupied

by the green group. This is an example of a behavior that may have been missed using a

model without basin hops. In the context of disease management, this behavior could allow

for the transmission of a disease between two groups.

2.6 Conclusion
We presented an EDA approach as the starting point for model building that resulted in less-

biased models. Our approach was applied to a real dataset consisting of GPS deer locations

and RSFs. The use of an EDA provided a formal testing ground for exploring our data and

testing model hypotheses. For example, we found weak correlations between our movement

data and RSFs, leading us not to incorporate our RSFs in the construction of our models.

It is possible that different RSFs, perhaps constructed in a data-driven way to account for

observed animal movements [51], could aid the development of improved, future models.

Our initial EDA identified important features of our movement data, namely that there

30

Figure 2.16: Sample multiple-deer agent-based model output. The results of a simulation of
the movements of three deer groups (red, blue and green), each with five deer, are shown.
The initial location of the center of each group is indicated by a colored ’x’. In this sample,
the blue group underwent a basin hop into the region occupied by the green group.

were disparate geographic regions in which animals spent time, and that animals hopped

between these regions. We referred to these features as basins and basin hops, respectively,

and our models would need to be able to reproduce them. Further exploration of the data

revealed that jumps within these basins do not follow a Gaussian distribution.

In our IDA, we identified the non-stationary basin-hopping trend that we attempted to

remove from our data with the use of our RSFs. When we found that the movement data and

the RSFs were only weakly correlated, we turned to the fused-lasso machine-learning method

to remove trends from our data. This method successfully and automatically detected trends

in our data and was used to split our data into stationary and non-stationary components.

Beyond our initial data analysis, we examined ACFs and their Fourier transforms, which

highlighted behaviors on multiple time scales. We also calculated MSDs, which provided

additional evidence for the presence of basins that constrained deer movements. We then

used the insights gained from performing our EDA to develop a model of deer movement. We

began with the intermediate step of building a model for a single animal and then extended

this model to a multiple-animal ABM.

31

Our EDA results suggested that a random-walk model that featured a copula-based

jump distribution would capture important features of our movement data. Additionally,

the model would require terms that constrain deer to a basin but allow for the basin to move

intermittently. We created such a model for a single deer and compared it with three other

models that employed assumptions that could be made in the absence of EDA. We found

large differences in the amount of area covered by deer in each model.

Our single-deer Langevin model was expanded to a multiple-deer ABM that featured

multiple groups of deer. Our ABM was able to reproduce features of deer movement that

our Langevin model could not. In particular, our ABM simulations occasionally revealed

two deer groups moving into the same region. The ability to model such phenomena can be

important for modeling the spread of disease.

In future work, we will extend our movement ABM to model the spread of chronic wasting

disease in white-tailed deer. This disease requires accurate modeling of movement and space

use to understand its transmission and geographic spread.

32

CHAPTER 3:

A GLOBAL SENSITIVITY ANALYSIS OF AN AGENT-BASED

MODEL OF CHRONIC WASTING DISEASE

3.1 Summary
The following chapter builds upon the work discussed in Chapter 2, and is derived from

a paper currently under review, for which I am a coauthor [95]. This work extends the

animal movement model described in [30] by incorporating deer ecology and chronic wasting

disease (CWD) dynamics. The refined model produces both realistic population dynamics of

Midwestern white-tailed deer, and CWD dynamics that are consistent with field observations

from Wisconsin. This allows for predictions on the progression of CWD and its impacts on

white-tailed deer populations.

There is a large uncertainty in many of the parameters used in modeling CWD. Because

of this, a comprehensive sensitivity analysis was performed. Such an analysis not only

allows for uncertainty in the results to be reported, but also allows the relative importance

of parameters to be ranked. My main contributions in this project were aiding in the

incorporation of population and disease dynamics, and implementing the sensitivity analysis.

3.2 Background on sensitivity analysis
All models inherently have uncertainties associated with them; such uncertainties may arise

for many reasons, such as unknown initial conditions, variation in parameters, or uncertain-

ties in a model’s structure [96]. Regardless of the form of these uncertainties, sensitivity

analysis is a crucial tool for evaluating the influence these uncertainties have on the vari-

ability of a model’s outputs [97]. In this chapter, we focus on uncertainties related to model

parameters. Broadly, sensitivity analyses are categorized into local and global types [98].

Local sensitivity analysis explores sensitivity near a nominal point, while global sensitiv-

ity analysis expands this to the entire sample space, including interactions between inputs

[98, 99, 100, 101, 102].

The first step of any sensitivity analysis is identifying the quantities of interest, denoted

as Q. These are the metrics that evaluate the model’s performance, and can be direct outputs

from the model or derived from post-processed model data. Q is considered a function of

the p input variables x = [x1, . . . , xp] ∈ Rp. This input vector is a random vector, where

each element is sampled from a corresponding probability distribution.

In local sensitivity analysis, Q is expanded around a nominal point x̄. While the nominal

point can be any value, commonly it is chosen to be the mean value of the input parameters

33

[96]. Following the notation of [96],

Q(x) = Q(x̄) +

p∑
i=1

(xi − x̄i)
∂Q

∂xi

∣∣∣∣∣
x̄

+

p∑
i=1

p∑
j=1

(xi − x̄i)(xj − x̄j)
2

∂2Q

∂xi∂xj

∣∣∣∣∣
x̄

+ . . . , (3.1)

where only the first few terms of the expansion are written. The second term of the expansion

consists of p derivatives of Q. Each of these derivatives describe the change in Q near x̄ due to

a small change in xi. These derivatives are referred to as first-order sensitivities. It is worth

noting, however, that they only measure sensitivity near x̄, are linear approximations, and

ignore interactions among inputs. To ensure comparability across different units, sensitivities

must be scaled. Two scaling approaches are to multiply the ith sensitivity by the mean or

standard deviation of the ith element of x̄, resulting in the scaled sensitivity coefficient and

sensitivity index, respectively.

A global sensitivity analysis can remedy some of issues of a local one. Specifically, the full

input space can be explored, the linearity assumptions are eased, and interactions between

inputs can be examined. However, a global sensitivity analysis is often much more involved

to perform compared to a local one [97, 101, 98, 102]. Global sensitivity analysis methods fall

under broad categories, such as regression-based, variance-based, and density-based [103].

In this chapter we will focus on variance-based global sensitivity analysis [104].

Variance-based methods rely on decomposing the variance of the quantities of interest as

var(Q) =

p∑
i=1

Di(Q) +

p∑
i<j

Dij(Q) + . . .+D12...D(Q), (3.2)

where Di = var [E(Q|xi)], Dij = var [E(Q|xi, xj)] −Di(Q) −Dj(Q), and so on [101]. From

this decomposition, the sensitivity indices

Si =
Di(Q)

var(Q)
and (3.3)

STi =
∑
l∈I

Sl (3.4)

are calculated, where I is the set of all subsets that include i (e.g. i, ij with j 6= i, and

so on). Si is referred to as the first-order sensitivity coefficient, and STi is the total effect

index [105, 104, 106]. The first-order sensitivity coefficient describes the amount of variance

in Q due to the input xi individually, while the total effect index describes the variance

in the output that can be accounted for by xi, including interactions among other inputs.

An overview of performing a variance-based global sensitivity analysis is discussed in [104].

34

This method relies on generating sequences of quasi-random numbers, referred to as Sobol

sampling. Each sequence consists of p+2 points in Rp, where p is the number of inputs to the

model. The first two points, A and B, are generated by independently sampling each of the

p parameters. Then, an additional p points are generated by combining components from A

and B, these points are denoted as Ab1, . . . , Abp. A point Abi is generated by replacing the

ith component of A with the ith component of B.

As discussed, it is typically more expensive to perform a global sensitivity analysis com-

pared to a local one, but global analyses are more informative. Mixed methods can alleviate

the issue of computational expense [97] by ranking the importance of inputs using a com-

putationally inexpensive screening method. This ranking is then used to select a subset of

parameters to include in the global sensitivity analysis.

In this chapter, we focus on the Morris method [107] for screening parameters. This

method estimates the first-order sensitivities at many random points in the sample space

using a series of trajectories. Each trajectory consists of p+ 1 points in Rp. The first point

is sampled randomly, then each of the following p points differs from the previous point

in a single element by ∆xi. This process is carried out such that each element is changed

once. Q is calculated at each point in the trajectory (Q(x) and Q(x + x̃i)), where the

vector x̃i represents a vector of zeros except for the ith that has a value ∆xi. Using these

measurements, the sensitivity of Q with respect to xi can be estimated using the forward

difference approximation
dQ

dxi
(x) ≈ Q(x + x̃i)−Q(x)

∆xi
. (3.5)

This process is repeated for R trajectories that start at random points in the sample space.

The average, µ, average of the absolute value, µ∗, and standard deviation, σ, of the R

estimates are then used to rank the inputs. The average effect of an input is measured by

µ; however, sign cancellations may lead to misleading conclusions. The total effect of an

input estimate is measured by µ∗ and is unaffected by sign cancellations. Higher values of

µ∗ indicate parameters of which Q is more sensitive. Non-linear effects are estimated by σ,

where larger values correspond to more interactions between parameters. Creating a scatter

plot of σ versus µ∗ is a useful tool for choosing important parameters. Parameters that are

close to the origin are less important. Figure 3.1 shows an example with four points. The

parameter x1 would be excluded from further analysis because Q is not sensitive to x1, and

x1 does not interact with other parameters. The parameter x2 does not interact with other

parameters, however Q is sensitive to it. The point x3 interacts with other parameters, but

Q is not very sensitive to it. Lastly, x4 interacts with other parameters, and Q is sensitive

to it. Therefore x2, x3, and x4 would be included in further analysis.

35

Figure 3.1: Example scatter plot of σ versus µ∗. This plot can be used to choose important
features from the Morris method. On the vertical axis, σ approximates how much a pa-
rameter interacts with other parameters. On the horizontal axis, µ∗ estimates how sensitive
Q is to the parameter. In this example, Q is sensitive to the parameters x2 and x4. The
parameters x3 and x4 interact with other parameters. The parameter x1 would be excluded
from further analysis.

3.3 Sensitivity analysis results
In this section, I overview the results of the sensitivity analysis performed on our model of

CWD in Midwestern white-tailed deer. We performed a mixed method sensitivity analysis

that utilized the Morris method to screen 15 parameters, and a variance-based global sen-

sitivity analysis to examine a subset of 11 parameters that the Morris method identified as

important.

Two modules were added to the movement model, population and disease dynamics.

With the addition of these modules, many parameters were added as well. There is a fair

amount of uncertainty in these parameters. However, they can be tuned such that our model

reproduced realistic short- and long-term population dynamics of Midwestern white-tailed

deer. Additionally, minimum and maximum values for each parameter can be estimated.

Each of these parameters is treated as a random variable. In an effort to not bias these

parameters, we assume that they were distributed following triangular distributions. Such

36

distributions only require the minimum, maximum, and most likely value of a parameter.

These values are listed in Table 3.1 for each parameter.

name min mode max µ∗ σ

0) group number 50 251 630 .0074 .01437
1) direct transmission rate .0001 .00052 .002 2321.6 4224.1
2) indirect transmission rate .0001 .00052 .002 2589.3 4976.8
3) prion shedding rate .001 20 1 0.5952 2.13531
4) prion half-life 3 48 120 0.05414 0.15123
5) disease mortality rate .00005 .00015 .002 3871.2 10699.0
6) adult male harvest mortality rate .0002 .0031 .007 698.5 1401.7
7) adult female harvest mortality rate .0002 .0013 .007 1518.5 2870.5
8) yearling male harvest mortality rate .0002 .003 .007 654.6 1360.9
9) yearling female harvest mortality rate .0002 .00144 .007 1131.0 2579.4
10) fawn morality .0002 .0012 .003 1856.5 3891.8
11) spring immigration/emigration rate 0 .00267 .03 336.8 724.9
12) fall immigration/emigration rate 0 .00267 .03 468.9 1042.7
13) spring dispersal rate 0 .01267 .03 181.8 329.6
14) fall dispersal rate 0 .00433 .03 239.8 569.4

Table 3.1: Parameter distributions and sensitivity estimates. We list the minimum, mode,
and maximum value for each of the 15 parameters. These values are used to define a
triangular distribution that are sampled to generate inputs to our model for sensitivity
analyses. The total effect, µ∗, and estimate for non-linear effects σ, are listed in the last two
rows. Using µ∗ and σ as guides, we removed parameters from future analysis (see Fig. 3.2).

Using the distributions for our input parameters, we evaluated 79 trajectories for the

Morris method. Equation 3.5 was calculated 79 times for each input parameter, using a

spacing ∆xi that perturbed the previous point by 10% percent. In total, our model was

run 1264 times to screen the parameters. We approximated µ∗ and σ for each of the input

parameters; they are listed in Table 3.1. In Fig. 3.2, σ and µ∗ for each parameter is shown

as a labeled point. Based on results of the screening, we decided to remove the number of

groups, prion shedding rate, prion half life, and spring dispersal rate from future analysis.

The remaining parameters were used in a variance-based global sensitivity analysis. We

generated 95 Sobol samples from the remaining 11 parameters for a total of 1235 sets of

inputs. In Table 3.2 ,we show the total effect index of our parameters after five, ten, fifteen,

and twenty years of simulated time.

3.4 Conclusion
Based on our results in Table 3.2, we can see that prevalence of CWD is most sensitive to

harvesting female deer throughout the simulation. Likely, this is due to the fact that when

fawns are born in the simulation, they are placed in a close proximity of their female parent.

37

Figure 3.2: Scatter plot of σ versus µ∗ for the model inputs listed in Table 3.1. The points 0,
4, and 3 are approximately on top of each other. Based on this observation, group number
(0), prion shedding rate (3), prion half life (4), and spring dispersal (13) we removed from our
global sensitivity analysis. We decided to keep fall dispersal rate (14) in our future analysis
as we did not want to full remove dispersal behaviors from the model.

Therefore if that female is infected, or if they are in a contaminated part of the environment,

there is a high probability that the fawn will become infected. These ideas are reinforced by

the low sensitivity to male harvest. However, over time prevalence becomes more sensitive

to harvesting all deer. These observations suggests that culling should be done over longer

timescales, focusing on female deer early on. Early in the simulation, prevalence of CWD is

more sensitive to direct transmission of the disease. As time goes on, prevalence becomes

more sensitive to indirect transmission compared to direct transmission. This is likely due to

the prions needing to accumulate in the environment to have a larger effect. Regardless, the

early importance of direct transmission to late importance of indirect transmission suggest

focusing on culling efforts soon after the detection of the disease. While the results discussed

in this chapter have been specific to one scenario, our model can be applied to other regions

to model CWD.

38

name STi(5 yr) STi(10 yr) STi (15 yr) STi(20 yr)

1) direct transmission rate 0.073 0.124 0.11 0.084
2) indirect transmission rate 0.068 0.065 0.076 0.089
5) disease mortality rate 0.082 0.082 0.073 0.076
adult male harvest mortality rate 0.056 0.042 0.054 0.078
adult female harvest mortality rate 0.194 0.186 0.16 0.15
yearling male harvest mortality rate 0.048 0.04 0.056 0.065
yearling female harvest mortality rate 0.102 0.128 0.115 0.123
fawn morality 0.082 0.091 0.11 0.101
spring immigration/emigration rate 0.063 0.061 0.062 0.069
fall immigration/emigration rate 0.126 0.098 0.095 0.093
fall dispersal rate 0.107 0.084 0.087 0.072

Table 3.2: Results from global sensitivity analysis. Here we list the total effect index after
5, 10, 15, and 20 years of simulated time. This index measures the amount of variance in
disease prevalence that can be accounted for by each input, including interactions amount
the inputs. Throughout the simulation, prevalence is most sensitive to adult female harvest
rate and least sensitive to yearling male harvest rate. Early in the simulation, prevalence
is more sensitive to direct transmissions than indirect; however, prevalence becomes more
equally sensitive to these inputs as the simulation goes on.

39

CHAPTER 4:

MATHEMATICAL MODELING OF DISINFORMATION AND

EFFECTIVENESS OF MITIGATION POLICIES

4.1 Summary
The following chapter explores the second facet of ABMs: real-world applications. This

chapter is based on my previously published work in [31]. Here, the focus is on decision-

making processes in the context of disinformation spread on online social networks. A graph-

based ABM was developed and employed to evaluate six strategies for combating the spread

of disinformation. These strategies fall under the broad categories of content moderation,

education, and counter-campaigns, with two strategies from each of these categories being

implemented. This approach involved extensive simulations carried out on thousands of

graph structures, including those modeled after real social networks, to test the efficacy of

these strategies.

My major contributions in this work were implementing the models, and thoroughly

exploring the effectiveness of disinformation combating strategies on various types of graphs.

Care was taken to tie the simulated strategies to real world analogs, ensuring that the findings

offer valuable insights for practical decision-making in tackling disinformation. This research

not only aids in studying disinformation, but also serves as a guide for creating ABMs that

can aid in decision-making.

4.2 Introduction
The spread of disinformation has brought numerous adverse consequences, such as the

manipulation of the 2016 US presidential election [108, 109], COVID vaccine hesitancy

[110, 111, 112], and the growth of QAnon [113]. Advances in the development of chatbots

are creating new concerns [114, 115, 116, 117]. In response, considerable efforts have been

devoted to detecting [118, 119, 120, 121] and combating [122, 123, 124, 125] disinformation.

Disinformation tracking, bot detection, and credibility scoring tools [126] have been devel-

oped, but the spread of malicious information remains a major challenge. Disinformation has

escalated to a degree that the US Congress is examining intervention policies [127]. These

policies can be divided into two categories: individual-empowering and structure-changing

policies [128].

Individual-empowering policies help individuals to evaluate information they are exposed

to and include policies such as fact-checking social-media platforms [125]. Ideally, when

social-media users interact with disinformation, they would be warned and discouraged from

believing or spreading it further [128]. The reliability of information sources can also be rated

40

[129]. This rating can be performed by experts or users who either rate many articles from

a single source, generating an aggregate score, or rate sources directly. Individuals are more

skeptical of sources with low ratings and are less likely to interact with information from

such sources [129]. In addition to fact-checking and rating sources, one of the most powerful

ways to empower individuals is through education. For example, instructional materials for

teaching critical thinking can be created, such as guides for librarians to teach students to

be aware of fake news [124], or for teachers to teach young students to think critically about

news they come across on social media [122].

In contrast to individual-empowering policies, structure-changing policies prevent individ-

uals from being exposed to certain disinformation entirely. Policies that fall in this category

are primarily implemented by social-network operators who monitor the content on their sites

and remove users or content they deem unacceptable [127]. Additionally, groups can run

counter-campaigns on social media to drown out disinformation with facts [130, 131, 125].

Mathematical models are often used to evaluate, choose and optimize strategies for im-

plementing such policies for combating disinformation, because it is usually impractical to

test such strategies in the real world. Many models can be applied to study the spread of

disinformation [132, 133], including the voter model [134, 135, 136], the Axelrod model [137],

epidemiological models [138, 139, 140, 141, 142], the attraction-repulsion model [143], the

naming-game model [144, 145], and the binary agreement model [146, 147, 148, 149, 150].

In this work, we adopt a policy-driven approach to understanding and combating dis-

information, diverging from the prevalent trend in the literature that often emphasizes the

mathematical or statistical mechanics of models. By both offering the theoretical underpin-

nings of our modeling approach and linking our modeling directly to real-world policies, we

hope to provide insights that can aid in effective policymaking.

Towards this goal, we employ the binary agreement model with committed minorities,

an agent-based model developed by Xie et al. This model was chosen not merely because

it is well studied but because it encapsulates critical properties of disinformation spread.

Furthermore, it highlights a pivotal moment in majority opinion, influenced by a committed

minority that permits minority rule. In the binary agreement model, a tipping point occurs

when a critical fraction of a network population, pc, which is only approximately one tenth

of the population on complete graphs, advocates a particular opinion strongly [146]. On

heterogeneous graphs, pc is even lower, as the average connectivity of the graph decreases

[151]; such low values of pc make it very challenging to mitigate disinformation. The fact

that this model exhibits a tipping point is important because tipping points have been

observed in real human interactions. For example, in groups assigned to identify an item

in an image, a 25% minority can sway the majority’s answer [148]. Moreover, a goal of

41

disinformation campaigns is often to sway public opinion towards a tipping point. The

ability of a committed minority to overtake majority opinions can have large effects in the

real world, as has been seen with social-media influence campaigns leading up to the 2016

US presidential election [108, 109], influence campaigns that have affected societal responses

to the COVID-19 pandemic [110, 111, 112], and the rise of QAnon [113].

The basic binary agreement model of Xie et al. [146] can be extended to incorporate

more realistic features. Examples of extensions that have been developed include modifying

the propensity of an agent in the mixed state to share one of its opinions [152], varying the

number of interactions needed for an agent to change opinions [152, 153], adding a competing

committed minority [147], expanding the number of possible opinions [154], varying the level

of commitment of the minority [145], and including heterogeneous [155] and dynamic [156]

graphs.

While many studies have examined the effects of a single change to the binary agreement

model on the dynamics of the model, to our knowledge, no study has examined the effects of

incorporating one or more disinformation-management strategies. Here, we explore strategies

that have previously been identified as potential real-world strategies for combating the

spread of disinformation [127]. We implement individual-empowering and structure-changing

policies – in the form of content-moderation, education, and counter-campaign strategies

– in a modified version of the binary agreement model, and we examine their ability to

move, smooth, or remove the tipping point exhibited by the model when implemented on

several weighted, heterogeneous networks. We incorporate these strategies into our model

by removing or adding agents or altering agents’ susceptibility to other opinions. Properties

of the tipping point provide us with metrics that can be used to quantify the effectiveness of

various strategies for countering disinformation. We apply our methods to several types of

synthetic networks, including small-world and scale-free networks that capture many features

of social networks. Additionally, we apply our methods to real social-network data, from

Asian users of LastFM [157].

4.3 Methods

4.3.1 Binary Agreement Model and Its Computational Implemen-

tation
We construct agent-based models in which agents are connected by a graph and follow the

binary agreement model proposed by Xie et al. [146] Each agent can hold one of the single

opinions A or B, or the mixed opinion AB, and can be either committed or uncommitted to

that opinion. Pairs of agents update their opinions through one of 12 interactions, using the

update rules given by Xie et al. [146]; for convenience, these update rules are summarized

42

in Table 4.1. We refer to these basic update rules as the opinion update rules.

before interaction after interaction

(speaker
opinion−−−−→ listener) (speaker – listener)

A
A−→ A A− A

A
A−→ B A− AB

A
A−→ AB A− A

B
B−→ A B − AB

B
B−→ B B −B

B
B−→ AB B −B

AB
A−→ A A− A

AB
A−→ B AB − AB

AB
A−→ AB A− A

AB
B−→ A AB − AB

AB
B−→ B B −B

AB
B−→ AB B −B

Table 4.1: Binary agreement model update rules for the three opinions A, B and AB. Here,
our convention is that opinion A is disinformation. Each row of the table shows one possible
interaction. In the left column, the speaker’s state is listed at the tail of the arrow, the
opinion that speaker shares is above the arrow, and the listener’s state is at the head of the
arrow. The right column shows the outcome of the interaction; the speaker’s state is listed
first followed by the listener’s state.

Committed agents are introduced by choosing a fraction, pa, of agents who always hold

the opinion A, regardless of their interactions with others. In our model, this committed

minority spreads disinformation; i.e., the opinion A is disinformation, and the opinion B is

the truth. In general, pa is varied over a wide range to find the critical value that defines the

model’s tipping point; disinformation mitigation strategies aim to move this tipping point

to a more favorable value.

We applied the opinion update rules to agents who were connected on simulated social

networks, which will be discussed in the subsection below. At each time step, for each

agent in the network, one of that agent’s neighbors was selected randomly and uniformly.

For each such pair of agents, either the agent or the neighbor was randomly assigned to be

the speaker, and the other was assigned to be the listener. Probabilistically, the speakers

shared their opinions with the listeners; such interactions determined the new opinions of

both the speakers and the listeners. We show these rules, which govern our computational

implementation of our model, in Fig. 4.1. We refer to these rules as the simulation update

rules.

43

Unless otherwise specified, all agents not committed to A, i.e., not in the committed

minority, were initialized as uncommitted to B, i.e., as holding the opinion B but not

committed to that opinion. The simulation was updated repeatedly, over many time steps,

until either no agent changed state and none were in a mixed state, or 5,000 time steps had

passed. The fractional densities nA and nB of the nodes was then computed.

We examined the tipping point in our simulations by comparing the fraction of agents

with opinion B (the truth), denoted by nB, with the fraction of agents committed to the

opinion A (disinformation), denoted by pa. Many simulations on each graph type were

performed for each anti-disinformation strategy and the basic binary agreement model; see

the Simulations subsection below for further details. At the end of each simulation, we

recorded the values of nB and pa. We compared these results across simulations; for each

strategy and the basic model, and for each graph type, we plotted nB vs. pa on a single plot.

For the basic binary agreement model without any intervention, a tipping point is evident

on the plot; at the tipping point, nB falls from approximately one to zero once pa ≈ .1, as is

shown by the black dot-dash line in Fig. 4.4 and Fig. 4.5. We compare the locations of the

tipping point, i.e., the value of pa at which nB begins to fall steeply toward zero, for each

strategy to the location of the tipping point in the basic model and to the locations of the

tipping points seen with other strategies.

The goal of our work was to measure the effects of several disinformation-mitigation

strategies on the spread of disinformation using our model. To measure the spread of disin-

formation in our simulations, we examined to what extent each strategy moved, smoothed,

or removed the tipping point exhibited by our model. Concretely, to measure how much a

strategy moved the tipping point relative to another condition, we measured relative changes

in the value of pa at the tipping point between conditions. Smoothing and removal of a tip-

ping point were noted as qualitative changes. These are the outputs of our simulations that

we examine in the Results section below.

4.3.2 Simulated Social Networks
Artificial social networks were modeled using weighted, directed graphs G = (V,E). Agents

vi ∈ V were represented by the graph’s vertices, and an edge between agents, (vi, vj, wij) ∈
E, represented a connection that allowed vi to interact with vj with probability wij. We

generated several graph types that were initially undirected and unweighted, all of which were

created using NetworkX [158]. The graphs we generated, and their required arguments, are

listed in Table 4.2. We created random and small-world networks by varying the probability

of creating an edge in Erdős-Rényi graphs, and by varying the initial number of edges and the

probability of rewiring an edge in Watts-Strogatz graphs. Scale-free graphs were created by

tuning the number of edges to attach from a new node to existing nodes in Barabási-Albert

44

Figure 4.1: Simulation update rules governing computational implementation of the binary
agreement model. At each time step, for each node vi (i.e., each individual) in the graph
(step 1), one of its neighbors vj was selected randomly (step 2). In each pair of nodes, one
was randomly assigned to be the speaker, and the other was assigned to be the listener (step
3). With probability wij (the weight of the edge between the speaker and the listener), the
nodes interacted and updated their opinions (step 4). See Table 4.1 for a table of opinion
update rules.

graphs. Additionally, we examined barbell, lattice, and complete graphs.

Real social networks can be very large. Here, our numerical results are based on relatively

small graphs with 400 nodes, a value chosen to minimize computational cost while retaining

accuracy. This value was chosen by executing the binary agreement model on networks of

progressively larger size and comparing the steady state of the simulations to the mean-

field (large-node) limit of the model. Consistent with Xie et al. (see Fig. 1.a) [146], we

found that results obtained with a complete graph with 400 nodes agree well with the mean-

field approximation. However, as a final study, we performed simulations on the real social

network of Asian users of LastFM [157], which has 7,624 nodes and 27,806 edges; this result

will be discussed in the next section. A graph of the Asian users of LastFM is shown in Fig.

4.2.

The basic topology of G contains the presence or absence of an edge. Each edge was

converted into two weighted, directed edges that formed a loop between the two connected

nodes. These edges can be can be assigned real-valued edge weights that reflect the relative

strength of a social interaction. We used a graph’s structure to determine its weights; nodes

were more likely to interact with neighbors that they shared more connections in common

with. Similar to graph transitivity, we define social transitivity as the ratio of the number of

neighbors shared between the successor and predecessor nodes of an edge to the total number

45

Figure 4.2: Asian users of the LastFM social network. Users are represented as green
nodes, and edges represent a mutual follower relationship between users. This social network
consists of 7,624 nodes and 27,806 edges. The placements of the nodes were determined using
the Yifan Hu algorithm [159].

of neighbors of the predecessor node. We then weighted each edge by its social transitivity.

Mathematically, the weights in the graph are given by

wij =
1 + number of shared neighbors between vi and vj

number of neighbors of vi
. (4.1)

Here, the additional 1 in the numerator accounts for the fact that vi and vj share a connection.

We used these weights to encode the probability that two nodes will interact in our model.

A listener that shares many neighbors with a speaker has a higher probability of switching

state than one that shares few neighbors with the speaker.

46

graph type N k p m n m1 m2

complete graph 400
watts strogatz graph (small world) 400 .02N .5
watts strogatz graph (small world) 400 .12N .5
watts strogatz graph (small world) 400 .25N .5

watts strogatz graph (random) 400 .02N 1
watts strogatz graph (random) 400 .12N 1
watts strogatz graph (random) 400 .25N 1

erdos renyi graph (random) 400 .02
erdos renyi graph (random) 400 .12
erdos renyi graph (random) 400 .25

barabasi albert graph 400 4
barabasi albert graph 400 24
barabasi albert graph 400 50

grid 2d graph 200 200
barbell graph 199 2

Table 4.2: Graphs that were explored and their parameters. We list the graph types and their
required arguments. For the Watts-Strogatz graphs, the argument k is the initial number of
nearest neighbors that are connected, and p is the probability of rewiring an edge. For the
Erdős-Rényi graphs, p is the probability of creating an edge between a pair of nodes. For the
grid graph, the arguments m and n are the dimensions of the grid. For the barbell graph,
m1 is the number of nodes in each of two fully connected subgraphs that are attached by m2

intermediate nodes. Every graph had 400 nodes, but graphs had different numbers of edges.
We also explored a real-world graph of Asian users of LastFM [157], not listed here.

4.3.3 Mitigation Strategies
Using our modified version of the binary agreement model, we evaluated three mitigation

policies – content moderation, education, and counter-campaigns – that are discussed in the

following subsubsections. In this subsection, we first provide an overview of the strategies

we consider for implementing those policies, and the implementation of these strategies in

our model. In the subsubsections below, we discuss details of their implementation in our

model.

We first discuss content moderation, in the form of banning some users who spread disin-

formation from social media platforms. We implemented two content-moderation strategies

in our model by removing agents from our graphs in two ways: removing influential agents

in the committed minority that spreads disinformation, or removing randomly chosen agents

in the committed minority.

Next, we consider two educational strategies. These strategies aim to educate individuals

broadly, and target those who are interacting with disinformation. Broad education consists

of teaching individuals how to identify disinformation to reduce the chances that they will

47

believe disinformation or hold immutable opinions. We refer to this strategy as a skepti-

cism strategy, and we implemented it in our model by reducing committed agents’ level of

commitment to ideas. In contrast, a targeted educational strategy includes fact-checking in-

formation and labeling sources, for example by providing labels on online videos or warnings

on cigarettes, to bias individuals towards the truth. We refer to this strategy as an attentive

strategy, and implemented it in our model by giving all non-committed agents a bias towards

sharing and believing the truth.

Finally, we discuss counter-campaign strategies that counter disinformation with facts.

A counter-campaign strategy can be driven by large agencies; for example, the US Centers

for Disease Control and Prevention provides guidance about sharing vaccine information

[160]. Alternatively, counter-campaigns can be conducted by groups of people who share

information to combat disinformation directly. We modeled counter-campaign strategies by

introducing a second committed minority that is committed to the truth and competes with

the original committed minority that is spreading disinformation.

Using our model, we examined the effects of each of these strategies separately. The

strategies we implemented in our model are shown in Fig. 4.3, and the policies, specific

strategies, and our implementations of them in our model are given in Table 4.3.

Content Moderation

We examined the strength of content moderation by removing different proportions of com-

mitted agents from a graph over an order-of-magnitude range; we removed 0.25%, 0.5%, 1%,

2%, or 2.5% of the total number of nodes in the graph, for values of pa that varied from

0.03 to 0.13. Committed nodes were removed before we executed each simulation examining

content-moderation strategies.

One content-moderation strategy we considered required removing influential agents in

the committed minority that were spreading disinformation. Thus, we needed to identify

influential nodes in the committed minority in a graph. We define influence using two key

metrics: degree centrality and betweenness centrality. Degree centrality measures the number

of connections an agent has, while betweenness centrality measures how centrally located an

agent is in the graph. Both measures of centrality are normalized to fall between zero and

one. The degree centrality of a node is how many connections that node has divided by the

total number of possible connections, while its betweenness centrality is calculated as how

many shortest paths pass through that node divided by the total number of shortest paths

in the graph. An agent with both high degree centrality and high betweenness centrality has

the potential to spread disinformation directly to many agents and to spread disinformation

to disparate parts of a graph that might not interact without that agent. Using these metrics

48

p
o
li
cy

st
ra

te
g
y

im
p
le

m
e
n
ta

ti
o
n

in
m

o
d
e
l

re
su

lt
co

n
te

n
t

m
o
d
er

at
io

n
•

te
m

p
or

ar
y

or
p

er
m

an
en

t
b
an

s
of

h
ig

h
ly

co
n
n
ec

te
d

u
se

rs
sp

re
ad

in
g

d
is

in
fo

rm
at

io
n

•
te

m
p

or
ar

y
or

p
er

m
an

en
t

b
an

s
of

ra
n
d
om

ly
ch

os
en

u
se

rs
sp

re
ad

in
g

d
is

in
fo

rm
at

io
n

•
re

m
ov

in
g

in
fl
u
en

ti
al

ag
en

ts
in

th
e

co
m

m
it

te
d

m
in

or
it

y,
i.
e.

,
in

fl
u
en

ti
al

co
m

m
it

te
d
-m

in
or

it
y

n
o
d
es

in
a

gr
ap

h
•

re
m

ov
in

g
ra

n
d
om

ly
ch

os
en

ag
en

ts
in

th
e

co
m

m
it

te
d

m
in

or
it

y,
i.
e.

,
ra

n
d
om

ly
ch

os
en

co
m

m
it

te
d
-m

in
or

it
y

n
o
d
es

in
a

gr
ap

h

•
sl

ig
h
tl

y
in

cr
ea

se
s

re
q
u
ir

ed
si

ze
of

co
m

m
it

te
d

m
in

or
it

y
fo

r
ti

p
p
in

g
p

oi
n
t

•
ra

n
d
om

an
d

ta
rg

et
ed

ap
p
ro

ac
h

p
er

fo
rm

si
m

il
ar

ly
,

ex
ce

p
t

on
gr

ap
h
s

w
it

h
u
n
iq

u
e

to
p

ol
og

y,
e.

g.
,

b
ar

b
el

l

ed
u
ca

ti
on

•
sk

ep
ti

ci
sm

:
te

ac
h
in

g
cr

it
ic

al
th

in
k
in

g
•

at
te

n
ti

on
:

p
ro

v
id

in
g

in
d
iv

id
u
al

s
w

it
h

ra
ti

n
gs

fo
r

so
u
rc

es
an

d
fa

ct
-c

h
ec

k
in

g
of

in
fo

rm
at

io
n

•
re

d
u
ci

n
g

th
e

le
ve

l
of

co
m

m
it

m
en

t
to

id
ea

s
of

ag
en

ts
,

i.
e.

,
n
o
d
es

,
in

th
e

co
m

m
it

te
d

m
in

or
it

y
•

gi
v
in

g
al

l
ag

en
ts

,
i.
e.

,
n
o
d
es

,
n
ot

in
th

e
co

m
m

it
te

d
m

in
or

it
y

a
b
ia

s
to

w
ar

d
s

to
w

ar
d
s

th
e

tr
u
th

•
sk

ep
ti

ci
sm

gr
ea

tl
y

in
cr

ea
se

s
th

e
re

q
u
ir

ed
si

ze
of

a
co

m
m

it
te

d
m

in
or

it
y

•
at

te
n
ti

on
h
as

li
tt

le
to

n
o

eff
ec

t
on

th
e

ti
p
p
in

g
p

oi
n
t

co
u
n
te

r-
ca

m
p
ai

gn
s

•
sp

re
ad

of
fa

ct
s

b
y

gr
ou

p
s

to
co

u
n
te

r
d
is

in
fo

rm
at

io
n

•
in

tr
o
d
u
ci

n
g

an
op

p
os

in
g

m
in

or
it

y
of

ag
en

ts
,

i.
e.

,
n
o
d
es

,
co

m
m

it
te

d
to

th
e

tr
u
th

•
la

rg
er

co
u
n
te

r-
ca

m
p
ai

gn
s

in
cr

ea
se

th
e

ti
p
p
in

g
va

lu
e

of
p a

T
ab

le
4.

3:
P

ol
ic

ie
s

an
d

st
ra

te
gi

es
fo

r
co

m
b
at

in
g

d
is

in
fo

rm
at

io
n

an
d

th
ei

r
im

p
le

m
en

ta
ti

on
s

in
ou

r
m

o
d
el

.
T

h
e

p
ol

ic
ie

s
w

e
co

n
si

d
er

ed
ar

e
gi

ve
n

in
th

e
fi
rs

t
co

lu
m

n
.

In
th

e
m

id
d
le

co
lu

m
n
,

w
e

li
st

th
e

sp
ec

ifi
c

st
ra

te
gi

es
fo

r
im

p
le

m
en

ti
n
g

th
es

e
p

ol
ic

ie
s

th
at

w
e

ex
am

in
ed

in
th

is
w

or
k
.

In
th

e
th

ir
d

co
lu

m
n
,

w
e

li
st

ou
r

im
p
le

m
en

ta
ti

on
s

of
th

es
e

st
ra

te
gi

es
in

ou
r

m
o
d
el

.
In

th
e

fi
n
al

co
lu

m
n
,

w
e

su
m

m
ar

iz
e

th
e

eff
ec

t
ea

ch
p

ol
ic

y
h
as

on
th

e
ti

p
p
in

g
p

oi
n
t

in
th

e
b
in

ar
y

ag
re

em
en

t
m

o
d
el

.

49

Figure 4.3: Mitigation strategies examined using our model. Solid arrows represent edges in
the graph, dot-dashed arrows represent a change made to the graph structure, and dashed
arrows represent comments. Blue nodes represent agents with the true opinion, red nodes
represent agents in the committed minority who believe disinformation, and purple nodes
represent agents with variable commitment to an opinion. Two strategies for content mod-
eration, both involving banning users from a network, were implemented in our model by
removing disinformation-spreading, committed-minority nodes from a graph. An education
strategy aimed at increasing skepticism was implemented by reducing the level of com-
mitment to ideas of committed-minority nodes. Another education strategy that brought
attention to disinformation was implemented by biasing all non-committed nodes towards
the truth. We also introduced counter-campaigns into a graph by adding a second committed
minority that was committed to the truth. Each strategy was investigated separately.

and a normalization method, we define the influence of a node as:

I(v) =
1

2

(
CD(v) + CB(v)

)
, (4.2)

where CD is the degree centrality and CB is the betweenness centrality. This metric allowed

us to identify influential nodes in the committed minority. In each simulation in which

influential committed-minority nodes were removed, the most influential committed-minority

nodes were removed, up to the desired percentage of all nodes in the graph.

Clearly, if enough nodes were removed, the size of a committed minority would be too

small for it to overtake the majority. Moreover, the size of the committed minority could be

decreased by removing nodes at random as well as by removing influential nodes. Therefore,

50

we compared the effects of our strategy of removing the most influential committed-minority

nodes against the effects of a second strategy of removing randomly selected committed-

minority nodes.

Education

Another mitigation policy we examined was education. In particular, we examined two

strategies based on education: skepticism and attention. We implement a skepticism strategy

in our model by relaxing the strength of commitment, c, held by the committed minority and

endowing committed agents with a probability of changing their opinion after an interaction.

This probability is defined as

p(c) =

2(c− cmin)/(1− cmin)2 cmin ≤ c ≤ 1,

0 else.
(4.3)

Here, cmin is the lowest level of commitment that a committed individual can have; we

assume cmin = 1/2. Equation 4.3 is a triangular distribution that linearly increases between

zero and four when 1/2 ≤ c ≤ 1. Note that as cmin tends to one, p(c) tends towards a delta

function centered at c = 1. This implies that all agents are fully committed, and thus we

recover the original binary agreement model. In this strategy, a partially committed agent

becomes fully uncommitted if it switches its opinion to the mixed state.

We implemented an attention strategy consisting of fact checking and source rating into

our model by biasing non-committed agents towards the truth. In our model, the true

opinion is B, and we assume that our attention strategy leads agents to be more likely to

believe B. Therefore, agents in the mixed state are more likely to switch their opinion to

B than to A. Additionally, those who already believe the truth have a preference toward

keeping that opinion. To implement these two effects, we introduce a truth bias, β = .1,

that is the difference between the probability that an agent with the mixed opinion will

share B in an interaction with a neighbor and the probability that the agent will share

A in an interaction. The truth bias β is also used to increase the probability that an

agent with opinion B will change its opinion after an interaction. Mathematically, we have

P (AB shares B) − P (AB shares A) = β, and P (B switches to AB|neighbor shared A) =

1− β.

Counter-campaigns

Counter-campaigns were implemented by initializing a group of agents to be committed to

the opinion B, which is the truth, to combat disinformation from those who are committed to

51

A, which is disinformation. To examine the effects of different sizes of counter-campaigns, we

considered competing minorities consisting of either 5% or 15% of the total population, and

we initialized these minorities to be committed to B. We assumed that counter-campaigns

would begin in a local region of the graph, similar to an echo-chamber. This effect was

incorporated by initializing the graphs in a non-random way, without changing the topology

of the graph. Using NetworkX’s “spring layout” routine that implements the Fruchterman-

Reingold force-directed algorithm, we assigned a position to each node in the graph that was

contained in the box [−1,−1]×[1, 1]. We then ensured that all nodes that were committed to

A were initialized on the left side of the graph (their first coordinate was negative), and that

those that were committed to B were on the right side (their first coordinate was positive).

All remaining individuals were initialized as uncommitted to B, i.e., holding the opinion B

but not committed to that opinion.

4.3.4 Simulations
For each of the six anti-disinformation strategies, we conducted 30 simulations on a new

instantiation of each of the 15 graph topologies listed in Table 4.2 and 30 simulations on the

real social network. Each of these 2880 simulations executed our model either 11 (content

moderation) or 15 (education and counter campaigns) times, corresponding to the values

of pa we examined, and had a new initial configuration of committed agents. In total, our

model was executed 118,080 times, and required over 18,000 core hours on a distributed

memory supercomputer. Each simulation was ran until either no agent changed state and

none were in a mixed state, or 5,000 time steps had passed. The results of these simulations

were averaged for each graph topology; this allowed us to examine the variance in outcomes

and outlier results.

4.4 Results
We investigated the effects of three anti-disinformation policies, implemented in the form

of six specific strategies for combating disinformation, using a binary agreement model we

modified to incorporate these strategies. We conducted a total of 2880 simulations on 15

different graph topologies to explore the effects of each of these strategies, and an additional

30 simulations on a real social network. At the end of each simulation, we recorded the

fraction of agents with opinion B at steady state and the fraction of agents committed to

the opinion A. Following the notation in Xie. et al. [147], these values are denoted by

nB and pa, respectively. For each anti-disinformation strategy, we plotted nB vs. pa and

examined how the value of pa at the tipping point varied among the strategies employed.

We also examined whether a strategy affected the shape of the tipping point or removed the

tipping point altogether. Below, we discuss our results for each strategy. Because of space

52

limitations, we show results from complete graphs and the real social network in the main

manuscript; the results for all graph types are shown in Appendix B.

4.4.1 Content Moderation
Content moderation was implemented by removing committed nodes from a graph before we

executed our simulations. Committed nodes were removed either based on their influence

or randomly. In Fig. 4.4a, we show an example of the effects of content moderation on

a complete graph, and in Fig. 4.5a we show the results on a real social network. Due to

computational limitations, only up to 1% of the committed agents were removed from the

real social network. Results for removing highly influential committed nodes are shown with

solid lines, and results for removing committed nodes randomly are shown with dashed lines.

Results for the basic binary agreement model in the absence of intervention are indicated

with a black dot-dash line. Different line colors indicate different percentages of the total

nodes that were removed. Each opaque line shows the average result of 30 simulations,

and each partially transparent line shows the result of a single simulation. Similar plots for

content moderation implemented on all of our graphs are shown in Appendix B.

As expected, as more nodes were removed from a graph, the initial size of the committed

minority needed to be larger to overtake the majority; this feature was shared among all graph

types. For most graphs, removing nodes randomly performed similarly, if not identically, to

removing based on influence. However, on the real network, removing based on our influence

metric outperformed removing randomly. As shown in Fig. 4.2, the LastFM social network

has many clusters of nodes. These clusters are interconnected by a few nodes, and our metric

does well at identifying these nodes. For barbell, grid, and the small world graphs with a

low average degree, removing nodes randomly outperformed using our influence metric. The

unique topology of the grid and barbell network ranks many of the nodes as equally important

(e.g., nodes in the fully connected components of a barbell graph) and continuously ranks

certain nodes as most important (e.g., the center node of the grid graph), while removing

randomly we might find a better set of nodes. Once a large number of nodes have been

removed, either method for removing nodes work equally well, except for our real network.

These results suggest using the influence metric to remove a small number of nodes from

a graph, unless the graph has special topology that may severely constrain how nodes are

selected. If a large number of nodes (relative to the size of the graph) are being removed,

a random approach is better due to the extra computational cost for little to no gain in

performance.

53

4.4.2 Education
We also examined the use of education that aimed to increase individual’s skepticism and

attention. Individuals who are more skeptical of information are less likely to be fully

committed to an opinion. Whereas attentive individuals are biased towards the truth. Here,

we implemented skepticism by relaxing the commitment of individuals and attention by

introducing a bias towards sharing and holding the opinion B. Using a complete graph in

Fig. 4.4b and a real social network in Fig. 4.5b, we show the effects of skepticism with an

orange dashed line, attention with a green dotted line, a combination of both with a solid

blue line, and no education with a black dot-dashed line. Each opaque line is the average

of 30 runs, and transparent lines are singular runs. We show similar plots for applying

education policies to all graph types in Appendix B.

Attention had a small effect for all graph types. In random graphs, when an attention

strategy was used the size of the committed minority needed to overtake the majority grew

slightly with the average connectivity. Attention had no effect for on the real social network

nor complete, barbell, and grid graphs. Contrary to attention, skepticism required the size

of the committed minority to be between 30% and 35% in order to overtake the majority.

Using both attention and skepticism together produces similar results as just using a strategy

based on skepticism. These results suggest that educating people to be more skeptical can

greatly reduce the dangers of a committed minority.

4.4.3 Counter-Campaigns
Additionally, we examined counter-campaigns that were implemented by introducing an

additional group committed to the opinion B, denoted by pb. For a small counter-campaign,

we let pb = .05, and pb = 0.15 for a large one. In Fig. 4.4c, we examine the effects of

different sized counter-campaigns on a complete graph, and a real social network in Fig.

4.5c. As before, we show the result of no intervention with a black dot-dashed line. We

show the effects of the small counter-campaign with a solid blue line and the large counter-

campaign with a dashed orange line. Each opaque line is the average of 30 simulations, and

transparent ones are individual runs. Again, similar plots for counter-campaigns applied to

all graph types are shown in Appendix B.

As expected, when a larger counter-campaign is used there is a larger portion of individ-

uals with the opinion B at steady-state. The only exceptions are the barbell, grid, and real

social network graphs, where small and large counter-campaigns have the same effect; this

is likely due to their unique topologies. On most graphs when a small counter-campaign is

introduced, the tipping point is located when pa is between .1 − .12, and past the tipping

point nB ≈ 0.05: the size of the counter-campaign. This behavior is not observed on the

grid graph, instead nB appears to decay exponentially to .4.

54

For most graphs, when a large counter-campaign is introduced the tipping point is lo-

cated when pa is between .15 − .2, and past the tipping point nB ≈ .18 − .3. Again,

the exceptions are the barbell, grid and real social network graphs, where large and small

counter-campaigns act similarly and nB decays exponentially to approximately .5. For the

remaining graphs, the final proportion of individuals with the true opinion is larger than the

initial counter-campaign, showing the counter-campaign convinced non-committed individ-

uals of their viewpoint. While these results suggest that the larger the counter-campaigns is,

the better, our large counter-campaign was unable to keep the majority of individuals from

holding the disinformation.

4.5 Discussion
In this work, we investigated the spread of disinformation on various weighted, directed,

heterogeneous graphs with committed minorities using the binary agreement model. We

evaluated the effectiveness of three types of policies, namely content moderation, education,

and counter-campaigns. For each policy we implemented two strategies to combat the spread

of disinformation. These strategies were tested on hundreds of graphs based on 15 graph

topologies, and a real social network generated from data of Asian users of LastFM [157].

Over 18,000 core hours were used to explore the effectiveness of the mitigation strategies on

these networks.

Regarding content moderation, we found that removing nodes based on our influence

metric did not significantly outperform removing nodes randomly for most graphs. As more

nodes were removed, the two methods converged towards each other. This is encouraging,

because our simple influence metric scales as O(|V ||E| + |V 2|), which can quickly become

burdensome to calculate for large graphs. However, on the real social network graph a

more targeted approach outperformed a random one. Therefore, our model suggests that

removing sources of disinformation as they are identified is a viable method for implementing

content moderation, however a more targeted approach might prevail on graphs with unique

topology.

We also explored education-based policies and found that a strategy that increased peo-

ple’s skepticism had a notably stronger positive impact in our model than a strategy that

focused on people’s attention to disinformation. In fact, our model suggested that strate-

gies such as fact-checking, had little effect, and only showed a small positive effect when

any change occurred. However, it is worth noting that our definitions for skepticism and

attention are crude due to the simplicity of our model. Therefore, while our model suggests

that strategies that bring attention to disinformation may not be very effective, we caution

against blindly following this advice. We recommend implementing any method that can in-

55

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

(a) The results of removing the most influen-
tial nodes are shown with solid lines, and the
results of removing nodes randomly are shown
with dashed lines. Different colors indicate dif-
ferent fractions of the total number of nodes that
were removed. Removing nodes randomly per-
forms similarly to removing the most influential
nodes, as more nodes are removed.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
skepticism
attention

(b) The results of increased skepticism are shown
with an orange dashed line, the results of in-
creased attention are shown with a dotted green
line, and the results of both are shown with a
solid blue line. Attention has little to no effect,
while skepticism greatly reduced the reach of the
committed minority.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

(c) The results of a small counter-campaign are
shown with blue lines, and the results of a large
counter-campaign are shown with a dashed or-
ange line. The large counter-campaign was able
to convince more uncommitted individuals of
their opinion, but overall were unable to stop
the minority from taking over.

Figure 4.4: Strategies based on a) content moderation, b) education, and c) counter-
campaigns applied to a complete graph. In each subfigure, the fraction of nodes with opinion
B at steady-state, nB, is plotted versus the fraction of nodes committed to A, pa. For refer-
ence, the black dot-dash line shows how nB varies with pA when no nodes are removed, i.e.,
for the basic binary agreement model in the absence of a mitigation strategy. Each opaque
line shows an average of 30 simulations, while the partially transparent lines represent indi-
vidual simulations.

56

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

n B

none removed
0.25% removed
0.5% removed
1.0% removed

(a) The results of removing the most influen-
tial nodes are shown with solid lines, and the
results of removing nodes randomly are shown
with dashed lines. Different colors indicate dif-
ferent fractions of the total number of nodes that
were removed. Removing nodes based on influ-
ence outperforms removing nodes randomly.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
skepticism
attention

(b) The results of increased skepticism are shown
with an orange dashed line, the results of in-
creased attention are shown with a dotted green
line, and the results of both are shown with a
solid blue line. Attention has little to no effect,
while skepticism greatly reduced the reach of the
committed minority.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

(c) The results of a small counter-campaign are
shown with blue lines, and the results of a large
counter-campaign are shown with a dashed or-
ange line. Both sizes of counter-campaigns re-
sulted in the graph being approximately equally
split in opinions. The larger counter-campaign
resulted in slightly more individuals believing the
truth.

Figure 4.5: Strategies based on a) content moderation, b) education, and c) counter-
campaigns applied to the Asian users of the LastFM network [157]. In each subfigure,
the fraction of nodes with opinion B at steady-state, nB, is plotted versus the fraction of
nodes committed to A, pa. For reference, the black dot-dash line shows how nB varies with
pA when no nodes are removed, i.e., for the basic binary agreement model in the absence
of a mitigation strategy. Each opaque line shows the average of 30 simulations, while the
partially transparent lines represent individual simulations.

57

crease skepticism, while noting that strategies that focus on immediately biasing individuals

towards the truth may not be as effective as those aimed at more broadly educating people

to be critical thinkers.

After exploring the effectiveness of counter-campaigns, we found that small counter-

campaigns were ineffective at combating the spread of disinformation for most graphs. When

employed, they left only the original counter-group holding the true opinion. Contrarily,

larger counter-campaigns were able to sway some uncommitted individuals, suggesting those

committed to the disinformation had less reach. However, in the real social network, grid,

and barbell graphs both large and small counter-campaigns resulted in an approximately

equal split between individuals holding the true or disinformed opinion. We believe this is

due to the topology of these graphs and our initialization of the committed agents. We ini-

tialized counter-campaigns and the original committed minority on opposite sides of graphs

to account for them starting locally on the graph. However, in the real social network, grid,

and barbell graph these two sides are more strongly intraconnected than interconnected,

resembling echo-chambers. Thus each competing group of committed agents overtake their

respective side of the graph, resulting in a fairly equal split of opinions. In contrast, previous

work has explored initializing the competing committed group randomly on graphs [147].

For each strategy we implemented based on content moderation, education, and counter-

campaigns, we found that the fraction of individuals with the true opinion versus the fraction

of individuals committed to the disinformation were quantitatively similar. The vast major-

ity of individuals held the true opinion until a critical number of individuals were committed

to the disinformation. Then there was a tipping point in opinions where the disinformation

group quickly dominated the popular opinion. Past this critical value the number of people

believing each opinion stays constant. The different implementations of our polices were able

to quantitatively vary these features. Most notably, education and content moderation in-

creased the required size of the minority needed to sway the majority and counter-campaigns

preventing individuals from being swayed by disinformation. The different implementations

of our polices were able to quantitatively vary these features through various mechanisms.

The quantitative changes produced by these strategies are summarized in Table 4.3. Content

moderation and education address two sides of the disinformation issue: the source and the

receiver. Content moderation attempts to curtail the spread at its origin, while education,

especially fostering skepticism, equips individuals to resist misleading narratives. On the

other hand, counter-campaigns introduce a competitive narrative to challenge and diminish

the influence of the primary disinformation source. Each strategy has its merits, but their

effectiveness can vary based on the structure and nature of the network in question. Most

notably, education and content moderation had stronger effects on the tipping point than

58

content moderation. Specifically, skepticism moved the tipping point forward, while larger

counter campaigns increased the number of individuals that remained with the true opinion

after the tipping point. As the ability of generative models to produce convincing material

grows they might be used to generate disinformation that is difficult to detect [117]. In such

scenarios, educating individuals will become evermore important.

Based on the results of our simulations, education-based policies that increase skepticism

and counter-campaign policies were the most promising. Examples of real world policies that

increase skepticism could include creating media literacy programs. Such programs teach

individuals to recognize trustworthy sources and discern fact from opinion. Additionally,

incorporating critical thinking curriculum into the education curriculum at an early age can

build a foundation of skepticism. Another potential strategy would be creating feedback

loops on social media platform that notify users when they engage with potential disinfor-

mation. Example of real world strategies that focus on counter-campaigns could range from

launching corrective advertising campaigns that directly address and correct false narratives,

to establishing rapid response teams. These teams would monitor social media for emerging

disinformation so that they could quickly launch counter-efforts.

In summary, our goal in this work was to create a model that captures realistic mitiga-

tion strategies within the confines of a binary agreement model so that our result may be

applicable to both modelers and policymakers. Additionally, there is a vast number of other

policies, strategy implementations, and combinations of the two that could be explored. This

leaves many avenues for future studies to extend our work. One promising direction is to in-

corporate a more realistic model of the spread of opinions, such as the Attraction-Repulsion

Model [143]. This model allows for multiple, continuous-valued opinions to be held by each

individual. This more nuanced representation of opinions allow individuals to become more

or less closely aligned with their neighbors. Additionally, we could enhance the realism of

the model by incorporating multiple online and offline social networks, dynamic networks,

and news sources. Beyond improving the model, future studies can explore policies we did

not test, optimal parameters for existing policies, or learning entirely new policies.

59

CHAPTER 5:

AN ATTRIBUTE-PRESERVING METHOD TO MINIATURIZE

LARGE SOCIAL NETWORKS

5.1 Summary
This chapter builds upon the work discussed in Chapter 4. Specifically addressing the

difficulty in running simulations on real social networks, as well as the non-representative

nature of simulated social networks. In this chapter, a method for miniaturizing social

networks is presented; though, this method can be applied to any type of network. There

are many ways to generate graphs, such as Erdős-Rényi and Watts-Strogatz models; however,

this proposed method differs in that it creates graphs that have multiple similar metrics to

a given graph but are reduced in size. Many more simulations can be evaluated on these

miniaturized graphs compared to large network, without sacrificing accuracy.

My main contribution in this chapter is the implementation of a parallelized version of

the parallel tempering algorithm. This algorithm generates miniaturized versions of social

networks, with the constraint that the error in a set of metrics is minimized. I present

an example of miniaturizing a real social network while maintaining the density, degree

assortativity coefficient, and clustering coefficient. This example provides all the necessary

steps to initialize and execute the algorithm.

5.2 Introduction
Networks serve as a fundamental tool for modeling systems composed of interconnected

entities, offering insights across various disciplines [161]. Biologists, for example, utilize

networks to describe genetic dependencies impacting protein expression [162, 163, 164]. In

the realm of social sciences, networks represent social interactions, aiding in understanding

how community structures influence behavioral dynamics [165, 166, 167, 168]. Similarly,

networks are fundamental in modeling contagion-like phenomena such as the spread of dis-

eases [169, 170, 171], ideas [29, 172], and misinformation [31, 173]. Networks also shed light

on the intricacies of broader social-ecological systems, guiding scientists, stakeholders, and

policymakers. The proliferation of large network datasets, increasingly available through

public data repositories [174, 175, 176], open new avenues for simulating real-world systems

on realistic graphs. These datasets present notable opportunities to simulate the dynamics

of many real-world systems on realistic graphs.

However, the large size and complexity of existing network datasets pose significant scal-

ability challenges, particularly for researchers relying on graphs as a tool for modeling and

analysis. As networks grow in size and complexity, running simulations incur prohibitive

60

computational costs, often restricting our ability to accurately model associated real-world

systems [177]. While new scalable algorithms have been proposed to mitigate these issues

[178, 179], they are often developed for specific modeling tasks and may not be generally ap-

plicable outside of that task. Additionally, computing solutions that have sought to capital-

ize on the increased capabilities of distributed memory computing clusters require expertise

in graph-based parallel computing paradigms, imposing additional constraints on network

science practitioners [180, 181].

One approach to addressing the scalability challenges of large networks is the generation

of structurally similar yet miniaturized synthetic graphs, enabling more manageable analysis

and simulations. Existing graph generation methods excel at matching a narrow set of

characteristics of the graphs that they represent at the expense of control over a broader

network metrics. For instance, Erdős-Rényi [182] and Barabási-Albert [183] models are adept

at replicating specific graph characteristics, such as degree distributions, but they fall short

in controlling broader network features, such as community structure. Our proposed graph

generator is designed to provide more generalized control over a range of properties, aligning

closely with the structural intricacies of large-scale real-world networks. This approach

not only facilitates efficient model testing but also ensures that the models retain greater

relevance and applicability to real-world scenarios.

We propose a graph generator that employs the optimization technique parallel tempering

[184, 185]. This algorithm consists of multiple instances of the Metropolis Monte Carlo

algorithm, called replicas, each at a unique temperature level. Periodic swaps of temperatures

between these replicas allow the algorithm to overcome shortcomings traditionally associated

with optimization, such as convergence to sub-optimal solutions. The process begins with a

seed network – a smaller, preliminary version of the network – and a set of graph metrics

to match from a larger network. The algorithm then iteratively refines this seed network,

ensuring that it evolves towards resembling the target graph in terms of the chosen metrics.

This method offers an effective means of generating miniaturized networks that retain the

structural essence of their larger counterparts.

5.3 Methods
Our objective is to generate a miniaturized undirected graph G = (V,E) with vertices v ∈ V ,

and edges (vi, vj) ∈ E, such that it closely resembles a set of graph properties of a given target

graph Gtarget = (Vtarget, Etarget). Importantly, we aim to maintain structural and statistical

similarity while ensuring |V | < |Vtarget| and |E| < |Etarget|, thereby achieving a reduction

in both the number of nodes and edges compared to Gtarget. This reduction is crucial for

simplifying the computational complexity while preserving the essential characteristics of the

61

original network. We employ the Monte Carlo optimization algorithm, parallel tempering,

known for its efficacy in sampling complex optimization landscapes by avoiding local optima

to achieve this goal. The following subsections detail the algorithm and how it is applied to

optimize miniaturized graphs.

5.3.1 Metropolis Monte Carlo
As discussed, our objective is to create a graph that minimizes a sum of metric errors, χ,

for various graph properties like assortativity, density, and clustering coefficient. The error

function is defined as:

χ =
∑
i

χi(G,Gtarget), (5.1)

where each χi represents the error in a specific graph property, G is the graph under con-

sideration, and Gtarget is the target graph with desired properties. The Metropolis Monte

Carlo (MC) algorithm forms the foundation of our approach to minimizing χ. The MC al-

gorithm on its own can be used to explore the space of possible graph configurations, and is

particularly useful for optimizing graph properties due to its ability to sample from complex

probability distributions.

The algorithm is defined as follows. Initially, a seed graph G0 is initialized. In each

iteration of the algorithm, a uniformly random number of modifications between 1 and

10, such as adding, removing, or rewiring edges, are proposed to the current graph G to

obtain a new graph G′. In this implementation, moving an edge has a 50% chance of being

selected while adding and removing each have a 25% chance of being selected; however these

probabilities can be adjusted. The change in error, ∆χ = χ(G′)−χ(G), is calculated, and the

proposed change is accepted with a probability p = min
(
1, e−β∆χ

)
, where β represents the

inverse temperature. The process is repeated with a new proposed change until a specified

number of iterations is reached. While the algorithm converges to an optimal solution given

enough iterations and a suitable choice of β, setting a value for β itself is challenging. When

β is low, many configurations are explored without converging towards a specific solution.

Conversely, when β is high, the algorithm will quickly converge to the closest minimum of

χ, regardless if it is optimal. This balancing of β is known as the exploration-exploitation

trade off. Practitioners suggest tuning β such that the acceptance probability is about 23%

[186, 187] to balance the trade off.

This balancing can be achieved by assuming

χi =
∑
i

ωi|mi(G)−mi(Gtarget)|, (5.2)

where each mi ∈ [0, 1] is a min-max scaled metric that is weighed by ωi. This scaling ensures

62

that metrics are on a comparable scale, preventing any one metric from disproportionately

influencing the optimization process and makes differences in weights more directly compa-

rable. The weights ωi are set such that each metric is equally weighted based on how much a

they change on average when a graph is perturbed. This balancing is achieved by executing

a MC simulation with β = 0 and ωi = 1 for Test iterations. After each iteration j, the value

|mi(G) − mi(Gtarget)|j is recorded for each metric. Based on these values, the weights are

adjusted as:

ωi =
Test∑

j |mi(G)−mi(Gtarget)|j
, (5.3)

ensuring a balanced consideration of all metrics. Subsequently, another MC simulation is

executed with these determined weights for another Test iterations. After each iteration, the

absolute change in error (|∆χ|)j = (|χ(G)−χ(G′)|)j is calculated. From these measurements,

the optimal β is defined as

β̄ = −Test ln(.23)∑
j(|∆χ|)j

, (5.4)

which inversely relates to the acceptance probability. With this optimal value for β, we move

to extending the MC algorithm in the next section.

5.3.2 Parallel Tempering
Even with an optimal β to balance exploration-exploitation trade off, a single instantiation

of the MC algorithm may still struggle to find the global optimal solution in complex er-

ror landscapes. Parallel tempering addresses this challenge by running multiple Metropolis

MC simulations (replicas) simultaneously, each assigned a different β. This multi-replica

approach allows hotter (lower β) replicas to explore the surface broadly, while cooler (higher

β) replicas focus on exploiting promising regions. Periodic exchanges of β values between

adjacent replicas prevents replicas from getting trapped in local optima, while maintaining

their ability to converge towards optimal solutions.

The parallel tempering algorithm is defined as follows. Initially, N replicas of the MC

algorithm are initialized, each with a unique βi and initial graph. Each replica independently

runs the MC model as described in Sec. 5.3.1. However, at every Tswap iterations, adjacent

replicas propose to swap their β values. This swap is accepted with probability αswap =

min
(
1, e(βi−βj)(χ(Gj)−χ(Gi))

)
, facilitating dynamic adjustment to the exploration process.

We implement a parallelized version of the parallel tempering algorithm using OpenMPI.

In this implementation, each replica runs independently on a separate MPI rank, except

during the swap proposal phase. This approach allows for efficient execution of multiple

replicas with minimal additional computational cost. Communication among the ranks in-

volves a structured multi-step process. We assume an even number of replicas, with ranks

63

sequentially numbered starting from 0. In the first step, even-numbered ranks send their

inverse temperature βi and current error χ(Gi) to the next odd-numbered rank i + 1. The

rank i + 1 evaluates αswap to determine if a swap should occur. If a swap is to occur, rank

i+ 1 sends rank i its own βi+1 and then both ranks exchange there own value of β for their

neighbor’s value; if not, no exchange happens. In the subsequent step, even-numbered ranks

greater than zero send their βi to the preceding rank i− 1 that then decide whether to swap

β values in a similar manner. A visual schematic of this communication process is illustrated

in Fig. 5.1, providing a clearer understanding of the algorithm’s structure.

Figure 5.1: Schematic of communication between ranks. In the first step, even-numbered
ranks send their current βi and χ(Gi) forward. If the corresponding odd rank determines
a switch should occur, it sends βi+1 backward and updates its own βi+1 to βi, otherwise it
sends βi backward. Next, even-numbered ranks greater than 0 send their current βi and
χ(Gi) backward and a similar process is repeated.

In addition to the optimal β̄ calculated in Sec. 5.3.1, we incorporate a range of β values to

achieve different average acceptance probabilities. We introduce both higher (more exploita-

tive) and lower (more exploratory) β values than β̄. Here, we set acceptance probabilities

for adjacent replicas to vary by a factor of two (e.g. β̄/2, β̄, 2β̄). This strategy is designed

to ensure a broad exploration of the solution space, while still effectively converging to op-

64

timal solutions. Employing the Metropolis Monte Carlo and parallel tempering algorithms

as outlined, we shift to applying these techniques to the miniaturization of a social network,

as detailed in the next section.

5.4 Results
In this section, we present the results of applying our graph miniaturization methods to the

Hamsterster online social network [188, 174]. This original network consists of 2426 nodes and

16,630 edges, representing individual users and their friendship connections, respectively (see

Fig. 5.4). We miniaturized this network to 600 nodes, achieving an approximately fourfold

reduction (see Fig. 5.5). The primary goal of this miniaturization was to closely match the

original network’s density, degree assortativity coefficient, and clustering coefficient.

For the miniaturization process, our seed graph was an Erdős-Rényi graph with 600 nodes

and edge inclusion probability of .01. To determine the weights for the metrics, we conducted

10 independent MC simulations, each running for 100 iterations. These simulations were used

to evaluate Eq. 5.3 for each metric. The computed average weights from these 10 simulations

are listed in Table 5.1. Using these weights, we performed another set of 30 independent

MC simulations, each running for 100 iterations, to calculate β̄ = .78873 per Eq. 5.4.

metric weight

density 166081
degree assortativity coefficient 1146

clustering coefficient 8709

Table 5.1: Weights (ω) for metrics. These weights were determined by averaging the results
from 10 independent MC simulations and evaluating Eq. 5.3. Using these values will weight
each metric equally.

Using the calculated weights and β̄, we executed the MC algorithm for 10,000 iterations.

The outcomes of these simulations are shown in Fig. 5.2, where panel (a) illustrates the

trajectory of χ, and panels (b), (c), and (d) display the absolute percent error in the degree

assortativity coefficient, density, and clustering coefficient, respectively. In these figures, in-

dividual results from the 10 simulations are shown in grey lines, while the black line is the

average trend. Notably, χ decreases smoothly across the simulations, indicating an overall

successful miniaturization, with most metrics trending towards minimal error. However,

matching the clustering coefficient proved to be more challenging, as evidenced by its persis-

tent error rate of over 40% even after 10,000 iterations, in contrast to the near-zero error in

the other metrics. The algorithm more readily captured the target network’s density, show-

ing a smoother and more steady convergence towards zero error, compared to the degree

assortativity coefficient, which also showed improvement but with more variation.

65

(a) χ (b) degree assortativity coefficient

(c) density (d) clustering coefficient

Figure 5.2: Loss (χ) and target metrics versus iterations for 30 MC runs. The grey lines are
the results from individual runs, and the black line is the average of the result. Overall, χ is
smoothly decreasing for each of the runs. The degree assortativity coefficient and density are
being matched well on average, though the degree assortativity coefficient has much more
variance. While the clustering coefficient is decreasing, it struggles to get below 50% error.
Even with the challenge of matching clustering, a single MC run is trending towards the
target metrics.

Following from this example we turn to the parallel tempering algorithm. Here we chose

to use 6 replicas. This includes β̄, three lower and two higher betas. Here the set of βi =

{1.90472, 1.53273, 1.16073, 0.78873, 0.41674, 0.04474}. In Fig. 5.3, we show the trajectory of

χ of each replica and their values for each metric, in addition to the β value each replica

has throughout the simulation. With the exception of the trajectory with the lowest β, χ

is trending downward for all replicas. As with the single replica run, the degree assorativity

coefficient and density are fairly easy to match though with more variance in the degree

assortativity coefficient. Given enough iterations, replicas with higher β values correctly

capture the clustering coefficient as well. Exchanges of β between replicas mostly happen

during isolated parts of the simulation and mostly occur between the central values. The

66

steady decrease in error among the metrics, coupled with the the observation that replicas

with higher β values perform better suggest that the error surface has a dominating minimum

that is fairly easy to find. This is further illuminated by the replicas with low β values

struggling to find a region where the metrics significantly deviate enough to outperform

other replicas.

To highlight the similarity in the miniaturized and target networks structures, we display

the target graph and best miniaturized graph in Fig. 5.4 and Fig. 5.5, respectively. Both of

these graphs were drawn using the force atlas algorithm in Gephi [189]. The target network

consists of 2426 nodes and 16,630 edges, while the miniaturized one consists of 600 nodes

and 1002 edges. Many of the features displayed in these figures are driven by the method

used to draw them; however, both appear similar in that they have a centralized connected

component surrounded by smaller sub-graphs. In both graphs, the central component also

appears to have long strings of connected nodes.

To further examine how similar the generated graph’s metrics are to the target graph’s

metrics, we list the value of the metrics after 20,000 iterations, as well as their initial values

and the target values in Table 5.2. In agreement with Fig. 5.2, we see that all of the metrics

converge to values near their targets.

metric initial final target

degree assortativity coefficient (scaled) 0.46803 0.52333 0.52370
degree assortativity coefficient (unscaled) −0.06393 0.04667 0.04740

density 0.01002 0.00557 0.00565
clustering coefficient 0.01003 0.53757 0.53753

Table 5.2: The initial and final metrics of a miniaturized network versus the target metrics.
As displayed in Fig 5.2, each of the metrics eventually converge to their target values.

67

(a) χ (b) degree assortativity coefficient

(c) density (d) clustering coefficient

(e) β

Figure 5.3: Loss (χ), target metrics, and β versus iterations for a parallel tempering run,
with each color representing a replica. As with the single replica run, the degree assortativity
coefficient and density are matched quickly, with more variation in the degree assortativity
coefficient. Given enough iterations the cluster coefficient is also matched while preserving
the other metrics. The replica with the smallest β explored many configurations but did not
share information outside of one exchange.

68

Figure 5.4: Hamsterster social network. Blue nodes represent users of the online social
network, and black edges represent a friendship between users. This graph has 2426 nodes
and 16,630 edges. The attributes we aim to match for this graph are listed in Table 5.2.

69

Figure 5.5: Example of a miniaturized graph. This graph is a miniaturized version of the
Hamsterster social network. Similar to Fig. 5.4, the blue nodes represent users of the social
network and the black edge represent friendships between users.

70

5.5 Discussion
In this work we proposed a method for miniaturizing a target network such that the resulting

network has attributes that resemble the target one. To achieve this, we implemented a ver-

sion of the parallel tempering algorithm. We present a method for selecting the optimal β for

a single replica, and then produce β values for additional replicas from the optimal one. Our

implementation of the parallel tempering algorithm is parallelized in such a way that allows

for additional replicas to be added with minimal computational cost. Using our algorithm,

we presented an example of successfully miniaturizing a graph by approximately fourfold,

while preserving the degree assortativity coefficient, density, and clustering coefficient.

In our example, we were careful to chose a target network that was large enough to be

miniaturized by a fair amount but not so large we could not display it. Another advantage

to our target network, was having the ability to exactly calculate our metrics of interest in a

short time. Nonetheless, our methods can be applied to any network, so long as the target

metrics can be calculated.

In our exploration of miniaturizing graphs a single replica performed fairly well. We

tuned β by running preliminary simulations and adjusting β until it accepted around 23%

of the suggested changes. While mildly tedious, it produced decent results by matching

two of the three metrics and tending towards matching the last. By shifting to parallel

tempering we were able to achieve much better results. However, the main benefit of gaining

exploration did not aid our search. While there were exchanges between the replicas, they

were not among the best performing replicas. We believe this is mostly driven by the metrics

we chose to match causing the error surface to not be very complex. However, different sets

of parameters very well could complicate the error surface providing a better use case for

parallel tempering.

While the need to balance the exploration-exploitation trade off was not prevalent in

this work, we still prefer the multi-replica algorithm over the single replica one because our

algorithm scales with negligible computational cost as replicas are added. It is worth noting

that care should be taken in the number and spacing of replicas [190]. Additionally, our

choice for the optimal β was not the best performing replica as it intentionally allows for

missteps to avoid local optima. However, without running multiple long simulations it is

not possible to know the complexity of the error surface. Therefore, we suggest using our

method for determining an optimal β and ensuring replicas with higher and lower values are

added to the simulation.

This work shows that it is possible to miniaturize a network, while preserving multiple

attributes. Future studies should investigate how the reduction in the graph relates to the

error. For example, if the graph is miniaturized by too large of an amount, it will no

71

longer be possible to match metrics, and conversely a small reduction should prove easy

to match metrics. However, the exact nature of this relation is unknown. We examined

a set of metrics we thought were important, but there is a quasi-infinite number of metric

combinations that could be studied. At a minimum, exploring various combinations of

metrics to determine the difficult in matching them would be useful for future studies. In

a similar vein, the initialization of graphs can be done such that they start closer to the

target metrics. Perhaps the use of greedy algorithms before the parallel tempering could

aid in finding optimal solutions. Most importantly, future work should study the amount of

error incurred from the miniaturization process and tie these errors to the metrics that are

matched. Specifically, investigating how much a result should be expected to change as a

function of reduction amount and metrics preserved.

The work presented here is an important first step to miniaturizing social network for

use in simulations. Our parallel tempering algorithm with its excellent scaling and ability

to match metrics is a valuable contribution to optimizing graphs.

72

CHAPTER 6:

STOCHASTIC DIFFERENTIAL EQUATION BASED

MODELING OF DETERRENCE

6.1 Summary
This chapter begins the shift to the final facet: machine learning. The main objective through

this chapter the development of a differential equation-based model of deterrence, the results

of which will inform decisions in future work on applying ABMs to modeling conflict. The

development of this model is my main contribution in the chapter. The analysis of this model

is in its early stages. Nonetheless, two types of global sensitivity analyses are performed on

a version of the model geared towards modeling short-term conflicts. Utilizing the Python

package SALib a variance-based Sobol and a PAWN global sensitivity analysis are performed

to examine the sensitivity of conflict outcomes to various parameter of the model. Two

profiles for competing actors are defined and the sensitivity analyses are performed on the 3

possible combinations of actors.

6.2 Introduction
Conflict and deterrence have been central themes in the study of international relations and

military strategy for centuries [191, 192, 193]. The relevance of these themes has evolved

with the changing nature of warfare, prompting the need for sophisticated analytical tools

to understand and predict conflict dynamics. The use of mathematical and computational

methods in this domain can be traced back to pioneers like Thomas Schelling, whose work

in game theory and strategic analysis laid the groundwork for quantitative approaches to

conflict studies [194]. The importance of such studies lies not only in their academic value but

also in their practical applications. Governments and military strategists have long sought

effective means to deter potential adversaries, and understanding the underlying mechanics

of conflict can inform more effective policies and strategies. The mathematical modeling of

conflict allows for the analysis of complex systems and interactions, providing insights that

are often not apparent through qualitative methods alone.

Over the years, various models have been developed to analyze conflict, each with its

unique focus and limitations. For instance, the Lanchester model [195], is renowned for its

application in conventional warfare scenarios, providing insights into force attrition and the

outcomes of direct engagements. Many real world battle have been studied through the lens

of Lanchester [196, 197, 198, 199], and various extensions of Lanchester models have been

proposed, such three-way combat [200], irregular warfare [201], and adding spatial compo-

nents [202]. Another example, the Richardson model [203], delves into the dynamics of arms

73

races, highlighting the feedback loops inherent in competitive armament policies. This model

has also applied to Vietnam war [204] and middle east [205]. Guerrilla warfare models, such

as the one developed by Deitchman [206], offer perspectives on asymmetric conflicts where

conventional military metrics may not apply. While these models have significantly con-

tributed to our understanding of conflict dynamics, they primarily address tactical aspects

of warfare. Strategic, long-term considerations, particularly in the realm of deterrence, have

been less emphasized. Additionally, these models often do not account for the psycholog-

ical elements of conflict, such as the mindset of actors regarding deterrence, nor do they

adequately incorporate the stochastic nature of long-term conflict dynamics.

This chapter introduces a mathematical model that extends the traditional framework

of conflict analysis to address these gaps. Our model integrates the foundational principles

of the Lanchester model with new components that reflect the strategic, long-term aspects

of conflict and deterrence. Key innovations of our model include:

1. A system of ordinary differential equations (ODEs) that goes beyond fight-to-the-finish

scenarios, reflecting long-term strategic considerations.

2. Explicit accounting for the role of deterrence, not just as a consequence of initial

conditions but as an integral component of the conflict dynamics.

3. Inclusion of psychological state equations, modeled as stochastic differential equations

(SDEs), to represent the deterred or undeterred mindset of actors, incorporating a

pitchfork bifurcation mechanism.

4. The introduction of noise terms in the psychological state equations to capture random

fluctuations and events over extended periods. Coupling terms that link the psycho-

logical state of actors to their resource levels, aligning with the deterrence model.

5. Additional terms to enhance realism, including a surrender term that allows actors

to withdraw under certain conditions and a refresh term that simulates rebuilding

capabilities between conflicts.

By incorporating these elements, our model provides a more comprehensive and realistic

framework for analyzing conflict and deterrence over extended periods. This approach not

only fills existing gaps in the literature but also offers practical insights for policymakers and

strategists seeking to understand and navigate the complex landscape of modern conflicts.

74

6.3 Methods
Our model is detailed in this section. Because the model describes several processes, we

develop the model progressively in several subsections beginning with a review of the Lanch-

ester model in the next subsection. We extend this model to include a resource refresh term.

In the following subsection we introduce a psychology model that reflects the mindset of the

actors; this model is stochastic to reflect long-term random events that trigger conflicts and

couples to the extended Lanchester model.

6.3.1 Lanchester’s models of conflict: Review
Lanchester models are a widely used class of conflict models used to study combat dynamics.

Typically consisting of systems of coupled ordinary differential equations, these models pre-

dict the outcome of fight-to-the-finish conflicts. The models revolve around key parameters,

αx and αy, representing the combat strengths of two opposing actors with resource levels x

and y. For simplicity, we label the actors by the resources they control, i.e. actor x and

actor y. While Lanchester models often look similar, they model different quantities, e.g.,

personnel or armaments. Here, we treat x and y as general resources that can be adapted

to other quantities through post-processing. This flexibility allows for broader applications,

such as equating resource depletion to specific outcomes like causalities in a battle. Minguel-

Castro et al. [193] overview various adaptations of Lanchester models tailored to different

conflict scenarios. However, we build upon Lanchester’s foundational models [195], aiming

to integrate stochastic events and psychological aspects of deterrence, thereby extending the

models’ applicability to modern, multifaceted conflict environments.

Lanchester proposed two fundamental models to predict conflict dynamics in one-on-one

and all-on-all scenarios. Both of these models describe the time evolution of the number of

combatants available to each actor. The one-on-one model, formulated as

dx

dt
= −αyyx, (6.1)

dy

dt
= −αxxy, (6.2)

assumes the loss rate of each actor is proportional to the size of the opposing force and their

own force. Such a model resembles scenarios akin to series of individual duels among the

combatants. In contrast, the all-on-all model represented by

dx

dt
= −αyy, (6.3)

dy

dt
= −αxx, (6.4)

75

assumes losses are proportional to the size of the opposing force resembling a scenario where

combatants are engaged in collective battle. This fundamental distinction in the models

provides different insights into conflict dynamics, with the one-on-one model emphasizing

the impact of mutual engagement, while the all-on-all model focuses on the sheer force size.

Figure 6.1: Example of Lanchester’s laws. In this example each actor’s available resources are
displayed with either a solid or dashed lines. The two colors represent which of Lancheser’s
laws describe the dynamics of the actors’ resources.

A comparison of these models is illustrated in Fig. 6.1, with parameters set at αx = 4

and αy = 8. The initial resources available to actor x are depicted in blue, and those of actor

y in orange. Solid lines represent the one-on-one model, while dashed lines correspond to

the all-on-all model. In both scenarios, actor x emerges as the victor. Notably, the all-on-all

enters a nonphysical regime once an actor’s resources are depleted; traditionally, the results

past this point are disregarded. Conversely, the one-on-one is unaffected by this issue due

to its inherent non-linear dynamics. This example, among many possible parameter sets

and initial conditions, illustrates the foundational principles of these models. However, from

these models general laws can be derived. From Eq. 6.1 and Eq. 6.2 Lanchester’s linear

law can be derived. This law states that team x wins if αxx0 > αyy0. That is, there is an

equal exchange for the number of fighters and their strength in determining the outcome.

Similarly from Eq. 6.3 and Eq. 6.4 Lanchester’s square law can be derived. This law states

that team x wins if αxx
2
0 > αyy

2
0. Here the initial number of fighters have a disproportional

importance compared to their strength.

Due to the non-physical behavior of the all-on-all model, we will use only the one-on-one

76

variant of Eqns. 6.3 and 6.4 in what follows. Additionally, when fitting Lanchester’s models

to real battle data, researcher have found similar performance among the all-on-all and one-

one-one models [197]. In the next subsection we add a term needed to extend the Lanchester

model to longer time scales over which actors can regroup and replenish their resources. We

then turn to adding the psychological state of the actors x and y.

6.3.2 Lanchester’s models of conflict: Replenish
We are interested in long-term strategic modeling, and thus we require a term that allows

actors to replenish their resources. We introduce a resource equation of the form

dx/dt = g(1− x/C), (6.5)

which includes a growth rate g of resources and a term (1− x/C) that limits the growth to

a capacity C. With this term alone, the resources obey

x = C − (C − x(t0))eg(t0−t)/C , (6.6)

which steadily tends toward C on time scale g−1. Combined with the Lanchester model, we

obtain

dx

dt
= −αyyx+ gx (1− x/Cx) , (6.7)

dy

dt
= −αxxy + gy (1− y/Cy) . (6.8)

6.3.3 Psychology model
One of the main modifications of Lanchester models we considered was the addition of a

psychological state for the actors. We incorporated such a state as a random walk on a

potential energy surface. The stochastic differential equations that dictate the psychological

state consist of multiple terms that capture physical phenomenon. In Section 6.3.3 we discuss

the first of such terms that constructs a quasi-binary state resembling the willingness of an

actor to engage in conflict. Then in Section 6.3.3 we discuss the threat-response term that

tries to match the psychological states of the actors. Next in Section 6.3.3 we discuss a term

that captures an actor surrendering due to excessive losses. Lastly, we address our deterrence

in Section 6.3.3 that utilizes Lanchester’s square law to inform an actor’s psychological state.

77

Quasi-binary state

To introduce a quasi-binary state into our model, we utilized a pitchfork bifurcation, com-

monly characterized by two stable and one unstable fixed points under certain conditions.

We define the psychological potential function as

U(S) = S4 − 2S2, (6.9)

where S represents the psychological state of an actor. This potential, visualized in Fig.

6.2, has minima at S = ±1 and a local maximum at S = 0. These minima correspond to

distinct psychological states: near S = −1 is the soft war state, characterizing a period of

non-engagement, and near S = 1 is the total war state, representing full combat engagement.

The stability of these minima and instability of the local maximum at S = 0 imply that

an actor’s state will settle near one of these two extremes. The variable γ controls the

randomness of transitions between the soft and total war states. Larger values of γ allow

for more frequent shifts between soft and total war, reflecting the unpredictable nature of

an actor’s decision-making process under varying external pressures

Figure 6.2: Psychological state potential energy surface. When an agent is in the left well,
they are in a peacetime state, and utilize few resources. If an actor is in the right state, they
will use resources to their fullest extent. Using this potential to describe the psychological
state of the actors creates a quasi-binary state system.

78

An actor’s psychological state is described by the stochastic differential equation

dS

dt
= −4S3 + 4S + γη, (6.10)

where η represents non-correlated Gaussian white noise, characterized by 〈η〉 = 0 and

〈η(t)η(t′)〉 = δ(t − t′). This equation captures the dynamics of the psychological state

(S), where the term −4S3 + 4S reflects the tendency of the state towards soft and total war.

The addition of γη simulates the unpredictable nature of psychological responses in conflict

situations.

The evolution of this psychological state is illuminated through the Fokker-Planck equa-

tion, which describes the evolution of the probability density function P (S, t):

∂P

∂t
=

∂

∂S

(
dU

dS
P

)
+ γ

∂2P

∂S2
; (6.11)

(see [207] for a review). This equation predicts how the distribution of psychological states

evolves, providing insights into the likelihood of different states over time. The steady-state

probability density function is given by

P (S) =
N

γ
exp

(
−U(S)

γ

)
, (6.12)

where N is a normalization constant. This equation describes a long-term view of the

psychological states, indicating the probabilities of an actor being in various states under

stable conditions.

In Fig. 6.3 we visualize the psychological potential (shown in blue) with the steady-state

probability density function P (S) for different values of γ – .25 in orange, 1 in green, and 4

in red. This illustration highlights how the size of random steps that is controlled through γ

influences the likelihood of an actor’s psychological state transitioning between states. When

the size of random steps is lower, indicated by lower values of γ, the psychological state is

most likely to be near one of the minima, as indicated by the pronounced peaks in P (S).

Conversely, when γ is higher, the size of random steps is larger and an actor’s psychological

state is less influenced by the potential. This is indicated by P (S) tending towards a uniform

distribution. Looking ahead, we will further develop our model by assigning individual

psychological states Sx and Sy to each actor, laying the groundwork for additional, more

complex terms.

79

Figure 6.3: Solutions of Eq. 6.12 for various values of γ. The psychological potential is
displayed in blue, with three values of the size of random steps in Eq. 6.10. The orange,
green, and red lines display the probability of a random walker being found at a certain
location. When the step sizes are small, the random walker is most likely to be found
in one of the wells. As the temperature increases, the distribution approaches a uniform
distribution, meaning the random walker is likely to be found in or between the wells.

Threat-Response

Building upon our model’s framework of psychological states, we now introduce a new com-

ponent: the threat-response term. This term is designed to dynamically adjust an actor’s

psychological state in response to perceived changes in their enemy’s stance. When an actor

perceives that their enemy is in a higher psychological state, this term acts to elevate the

actor’s own state, potentially increasing the rate resources are utilized. Conversely, if an

actor’s psychological state is higher than their enemy’s, the term works to moderate their

state, aligning closer to the enemy’s level. This mechanism allows for modelling strategic

adjustments made by actors in response to their enemy’s actions. The relative strength

of the threat-response term is controlled by a constant β; higher values of β imply more

pronounced adjustments.

For actor x, the threat-response term is expressed as β(Sy − Sx), and for actor y it is

80

β(Sx − Sy). We integrate the threat-response term with the quasi-binary state as

dSx
dt

= −4S3
x + 4Sx +

β

2
(Sy − Sx), (6.13)

dSy
dt

= −4S3
y + 4Sy +

β

2
(Sx − Sy), (6.14)

where each actor has their own psychological state denoted by a subscript. To gain insight

on how this term alters the dynamics, we examine the location and stability of fixed points

of the system, listed in Table 6.1 and visualized in Fig. 6.4.

Sx Sy

0 0
1 1
−1 −1√

4− β/2 (4− β)(
√

4− β − 4 + β/2)/β
−
√

4− β/2 −(4− β)(
√

4− β − 4 + β/2)/β√
−Z − β + 8/4

√
8− Z − β(β − Z − 8)/8

−
√
−Z − β + 8/4 −

√
8− Z − β(β − Z − 8)/8√

Z − β + 8/4
√
Z − β + 8(β + Z − 8)/8

−
√
Z − β + 8/4 −

√
Z − β + 8(β + Z − 8)/8

Table 6.1: Fixed points and stability of fixed points for threat-response term. Here Z =√
−3β2 − 16β + 64.

In our analysis, nine fixed points are identified, though their presence and positions

depend on the values of β. Particularly noteworthy are β = 0, β = 8/3, and β = 4, where

the fixed points tend to align or overlap.

These these alignments and convergences, are demonstrated in Fig. 6.4 through quiver

plots for β = 0.01 (Fig. 6.4a), β = 1 (Fig. 6.4b), β = 3 (Fig. 6.4c), and β = 5 (Fig. 6.4d). In

these figures, stable nodes, saddle points, and unstable nodes are represented as blue squares,

purple circles, are red diamonds, respectively. The arrows indicate the derivatives of Sx and

Sy with respect to time, illustrating the evolution of the actor’s psychological states and the

speed of change.

When β is near zero, the system has nine fixed points: four stable nodes at (±1,±1) and

(±1,∓1), four saddles points at (0,±1) and (±1, 0), and an unstable node at (0, 0). In this

regime, each actor acts independently, influenced predominately by the quasi-binary state.

This independence results in actors gravitating towards the nearest minima unless starting at

a psychological state of zero. As β increases, the saddle-points at (−1, 0) and (0, 1) approach

the stable node at (−1, 1), while the saddle points (0,−1) and (1, 0) approach the stable

node at (1,−1). Notably these groups of fixed points are approaching (0, 0) along the line

81

Sx = −Sy. At β = 8/3, these points collide, transforming into two saddle points. With

further increases to β, these saddle points continue to move towards the central unstable

node, until at β = 4, they merge into a single saddle point at (0, 0). Throughout these

changes, the stable nodes at (±1,±1) remain fixed. When β exceeds 4, actors are more

inclined to align their psychological states with their enemies. If positioned symmetrically

on either side of zero, (on the line Sx = −Sy), actors are drawn to the (0, 0) state. Otherwise,

their states are attracted to a soft war for negative dominate psychological states, or total

war for positive ones.

The dynamics of these fixed points align with the anticipated behavior of a defensive

term in our model. Actors who assign a lower weight to their enemy’s psychological state

remain largely unaffected by their enemy’s state, indicating independent decision making.

In contrast, as the weight increases, actors tend to mirror their enemy’s psychological state,

reflecting adaptive strategies in response to changing conflict dynamics. Crucially, all fixed

points are bounded within the region [−1,−1] × [1, 1], ensuring that the values of Sx and

Sy remain in this realistic range, regardless of the value of β. This boundedness prevents

the psychological state of the actors from reaching unrealistic extremes such as ∞ or −∞,

thereby maintaining the model’s applicability to real-world scenarios.

Surrender

Having established the dynamics of the threat-response term, we now turn our attention

to another aspect of our model: the surrender term. This term plays a role in simulating

the conditions and consequences of surrender, and further enhancing our understanding of

decision-making in conflict scenarios. Comprising of two components, the surrender term

firstly acts as a switch that turns of the term once an actor’s psychological state reaches

S = −1. The second component models the reduction in an actor’s psychological state pro-

portional to a losses in resources, characterized by R. This captures the diminishing morale

and willingness to continue conflict as losses mount. The influence of this term is controlled

by the constant, ε. For actor x, the term is ε (Sx + 1)
(
x− 1

R

)
, and ε (Sy + 1)

(
y − 1

R

)
, for

actor y.

Considering the coupling of these terms to the available resources, identifying and vi-

sualizing fixed points for this system becomes challenging. Nonetheless, we can examine

the influence of the surrender term on the psychological state of an individual actor. For

simplicity, let’s consider the psychological state of actor x describe by the equation:

dSx
dt

= −ε (Sx + 1) (x−R) . (6.15)

82

(a) When β approaches 0, the saddle-points align
with the stable points. This alignment in combi-
nation with the unstable node push the psycho-
logical state towards the nearest corner.

(b) Here we let β = 1. Once β hits 8/3 these
saddle-points combine with the stable nodes, re-
sulting in two saddle-points.

(c) Here we let β = 3. Once β is greater than
8/3, the resulting saddle-points tend towards the
center.

(d) Here we let β = 5. Once β passes 4 there is
a saddle-point at the center with stable nodes at
(±1,±1). Actors will either be in a total war or
peace state.

Figure 6.4: Stable points as a function of β, where blue squares are stable nodes, purple
circles are saddle points, and red diamonds are unstable nodes.

83

We simplify our analysis by assuming that losses, l = (x− R), remain constant. Using this

assumption, the solution to Eq. 6.15 is

s(t) = (s0 + 1)e−εlt − 1, (6.16)

where s0 is the initial psychological state of the actor. This result shows that the psycho-

logical state of the actor exponentially decays to −1, indicating an increasing inclination to

surrender as losses continue. The rate of this decay is controlled by the weight ε and losses, l.

An actor with a lower value of ε will have a slower reaction to accumulating losses, reflecting

a more resilient or less responsive attitude towards surrender, compared to an actor with a

higher ε, who will react more swiftly. This variation can be interpreted as different tolerances

for surrendering among actors in conflict scenarios.

Confidence-Deterrence term

The final component we introduce to our model is the integration of confidence and deter-

rence factors. Traditional one-shot fight-to-the-finish models implicitly incorporate deter-

rence within their logical structure, but often do not explicitly model it. An actor’s decision

to engage in battle is based on their perceived performance, e.g. evaluating one of Lanch-

ester’s laws. Only if an actor decides to engage is the model evaluated. In contrast, our

model seeks to explicitly incorporate deterrence into the psychological states of the actors.

This includes not only a weaker actor being deterred, but also the strong actor gaining

confidence based on strategic assessments. Specifically, each actor evaluates their likelihood

of success by applying Lanchester’s square law, comparing the combat strengths αyy
2 and

αxx
2 weighted by δ. This approach allows us to simulate not only the physical aspects of

conflict but also the psychological warfare that often precedes and dictates the course of

engagements.

In our model, each actor evaluates their combat strength by subtracting it from their

enemy’s strength. For actor x this has the form αxx
2−αyy2 and for actor y its αyy

2−αxx2.

An actor who perceives a higher combat strength gains confidence, leading to an increase

in their psychological state. Conversely, an actor who determines that they are at a combat

disadvantage is deterred, and their psychological state is decreased correspondingly.

6.3.4 Lanchester with deterrence
Using the discussed terms, we move to couple the equations for resources available to and

psychological states of the actors. The model is further generalized to allow for each actor

84

to separately weight each term, denoted by subscripts. The full model is given by:

dx

dt
= −αyyxB(Sy) + gx

(
1− x

Cx

)
, (6.17)

dy

dt
= −αxxyB(Sx) + gy

(
1− y

Cy

)
, (6.18)

dSx
dt

= −4S3
x + 4Sx +

βx
2

(Sy − Sx) +
εx
2

(Sx + 1) (x−Rx) + δx(αxx
2 − αyy2) + γxηx, (6.19)

dSy
dt

= −4S3
y + 4Sy +

βy
2

(Sx − Sy) +
εy
2

(Sy + 1) (y −Ry) + δy(αyy
2 − αxx2) + γyηy, (6.20)

where B bounds Sy and Sx between −1 and 1. Each of the parameters and the range of

values they can take is listed in Table 6.2.

variable description

0 ≤ x ≤ 1 fraction of total available resources for actor x
0 ≤ y ≤ 1 fraction of total available resources for actor y

−∞ ≤ Sx ≤ ∞ psychological state of actor x
−∞ ≤ Sy ≤ ∞ psychological state of actor y
0 ≤ βx(y) ≤ 1 strength of threat-response term
0 ≤ εx(y) ≤ 1 strength of surrender term
0 ≤ Rx(y) ≤ 1 losses an actor is willing to take willing to take
0 ≤ δx(y) ≤ 1 strength of confidence-deterrence term
0 ≤ γx(y) ≤ 1 controls size of random jumps
0 < Cx(y) ≤ 1 maximum number of resources for an actor
0 < αx(y) ≤ 1 fighting strength of an actor
0 ≤ gx(y) ≤ 1 growth rate of an actor’s resources

Table 6.2: Model parameters and acceptable values.

While these parameters can be set to any number in their range, we construct a few sets

of parameters to represent types of actors. The sets are broken down into two types based

on an actor’s risk aversion. A conservative actor is less likely to accept losses, more likely to

surrender, have medium-level of confidence, and more likely to respond to an enemy with a

matched response compared to a reckless actors. These traits are captured for conservative

actors by assuming R = 1, ε = 1, δ = .5, and β = 1, while for reckless actors we assume

R = 0, ε = 0, δ = 1, and β = 0. In both cases, we set C = 1 to represent each actor

attempting to build resources to the same highest level.

Using our model and actor profiles, we performed sensitivity analyses on our model

for confrontations between different actor profiles. We solved out model using the RK-45

implementation in scipy [208], and examined the sensitivity of the steady-state value of x, y,

Sx and Sy to the 4 remaining actor specific parameters and the initial conditions of resources

85

and psychological states. In practice we solved the system of equations until a simulated

time t = 100, with a max time step of .1. Utilizing the Python package SALib [209, 210], we

generated 1,024 Sobol quasi-random sequences, each sequence consists of 10 sets of values for

the model’s parameters and initial condition. In total, our model was executed 10,240 times.

Using these sets of inputs and corresponding outputs, we performed a Sobol, variance-based

global sensitivity analysis [104], and the moment-independent global sensitivity analyses

PAWN [211].

A variance-based global sensitivity analysis relates the variance in a model’s parameters

to variance its outputs. Typically this relation is presented with the first-order (S1) and

total effect (ST) Sobol indices. The first-order effect measures how much of the model’s

output variance can be described by a single input on its own, while the total effect captures

interactions among parameters as well. While often informative, variance-based methods are

not well suited for highly-skewed or bimodal output distributions. In these cases moment-

independent methods better capture the importance of inputs on outputs. In this study, we

utilized the PAWN method that measures the change in the cumulative distribution function

of the output when all inputs are allows to vary versus when inputs are held constant. This

change is measured using the Kolmogorov–Smirnov statistic.

6.4 Results
In this section we discuss the results of our sensitivity analyses conflicts between two con-

servative actors (Table 6.3), two reckless actors (Table 6.4), and a conservative and reckless

actor (Table 6.5). These results are presented in three tables, one for each pair of actors.

Each table is divided into four subtables where the final states of the resources, denoted

x(∞) and y(∞), and psychological states, denoted Sx(∞) and Sy(∞), are presented. In

each subtable, we bold the sensitivity index that corresponds to the parameter that each

model output is most sensitive.

In all scenarios, the distributions of values for x(∞) and y(∞) are left skewed with a peak

near 1, while the distributions of values for Sx(∞) and Sy(∞) are both bimodal, with peaks

at ±1 for the 10,240 simulations we examined. We performed a variance-based sensitivity

analysis on these simulations, but since the distributions of the final states are not well

described by variance alone, we also present a moment-free sensitivity analysis.

In all of our analyses we see that the variance-based and moment-free analyses produce

similar rankings for which parameters x(∞), y(∞), Sx(∞) and Sy(∞) are sensitive. While

the ranking of parameters are similar, the difference in sensitivity indices is smaller in the

moment-free analysis. As expected, this is more evident in the sensitivities of the psycho-

logical states that have bimodal distributions, and thus are not well described by variance

86

alone. Nonetheless, all model outputs are most sensitive to the initial conditions of the

psychological states, Sx(0) and Sy(0), with x(∞) and Sy(∞) most sensitive to Sy(0), while

y(∞) and Sx(∞) most sensitive to Sx(0). The observation that the final values of the psy-

chological state are most sensitive to their initial conditions agrees with the behavior we

see in Fig. 6.4. This figure examines the behavior of the psychological state when only the

quasi-binary state and threat-response term are at play. Specifically, in Fig. 6.4a when the

threat-response term is small there are four stable nodes that determine the possible final

values of the psychological states that are completely controlled by the initial conditions of

the psychological states. Even as the threat-response term becomes larger there are consis-

tently at least two stable nodes that determine the final values of the psychological state,

and which value the model tends towards is fully determined by the initial value of the psy-

chological states. While there are other terms at play, they must not be strong enough to

overcome the effects of the quasi-binary state term.

A reckless actor’s final psychological state has a low sensitivity to their opponent’s initial

psychological state this is partly expected as when ε = 0, some influence of the opponent’s

psychological state is removed, but nonlinear effects can still enter through the confidence-

deterrence term. However, a conservative actor is influenced by their opponent’s initial

psychological state. When examining the PAWN indices, conservative actors are about twice

as sensitive to their own initial psychological state as their opponent’s initial psychological

state, while reckless actors are over 6 times more sensitive to their own initial psychological

state compared to their opponents.

The final value of an actor’s resources are second most sensitive to growth rate of their

resources and their enemy’s fighting strength. A reckless actor is about slightly more sensitive

to their own fighting strength compared to a conservative actor. Additionally reckless actors

are more sensitive to their own initial conditions compared to conservative actors.

87

parameter ST S1 T

x(0) 0.010 0.000 0.030
y(0) 0.043 0.002 0.036
Sx(0) 0.105 0.015 0.160
Sy(0) 0.658 0.387 0.361
αx 0.033 0.013 0.116
αy 0.213 0.109 0.138
gx 0.275 0.169 0.139
gy 0.049 0.005 0.053

(a) x(∞)

parameter ST S1 T

x(0) 0.061 0.011 0.039
y(0) 0.024 −0.005 0.031
Sx(0) 0.676 0.404 0.357
Sy(0) 0.113 −0.022 0.156
αx 0.195 0.105 0.151
αy 0.054 0.007 0.115
gx 0.052 0.004 0.050
gy 0.265 0.180 0.133

(b) y(∞)

parameter ST S1 T

x(0) 0.074 0.010 0.039
y(0) 0.019 −0.003 0.028
Sx(0) 0.976 0.803 0.454
Sy(0) 0.142 0.016 0.268
αx 0.038 0.004 0.117
αy 0.046 0.000 0.113
gx 0.026 −0.001 0.064
gy 0.007 0.003 0.049

(c) Sx(∞)

parameter ST S1 T

x(0) 0.011 0.000 0.027
y(0) 0.061 0.012 0.034
Sx(0) 0.147 0.038 0.264
Sy(0) 0.962 0.820 0.453
αx 0.034 0.009 0.121
αy 0.022 0.000 0.104
gx 0.002 0.002 0.042
gy 0.016 −0.007 0.068

(d) Sy(∞)

Table 6.3: Global sensitivity analysis for conservative actor vs conservative actor. Here ST
is the total effect Sobol index, S1 is the first-order effect Sobol index, and T is the PAWN
index. For convenience, we bold the most important input as judged by each index. The
final value of resources is most sensitive to their opponent’s initial psychological state, while
the the final value of the psychological state is most sensitive to its own initial condition.

88

parameter ST S1 T

x(0) 0.037 0.010 0.028
y(0) 0.046 −0.009 0.029
Sx(0) 0.053 0.028 0.074
Sy(0) 0.643 0.437 0.413
αx 0.057 0.022 0.132
αy 0.247 0.137 0.148
gx 0.252 0.164 0.208
gy 0.029 0.003 0.042

(a) x(∞)

parameter ST S1 T

x(0) 0.041 0.008 0.032
y(0) 0.033 0.002 0.035
Sx(0) 0.675 0.453 0.407
Sy(0) 0.041 0.002 0.074
αx 0.236 0.136 0.168
αy 0.070 0.027 0.140
gx 0.032 0.004 0.041
gy 0.250 0.150 0.216

(b) y(∞)

parameter ST S1 T

x(0) 0.043 0.005 0.030
y(0) 0.043 0.000 0.027
Sx(0) 0.988 0.894 0.500
Sy(0) 0.000 0.000 0.078
αx 0.056 0.006 0.197
αy 0.058 0.020 0.200
gx 0.012 0.000 0.041
gy 0.006 −0.002 0.058

(c) Sx(∞)

parameter ST S1 T

x(0) 0.035 0.016 0.029
y(0) 0.054 −0.011 0.031
Sx(0) 0.000 0.000 0.076
Sy(0) 0.990 0.892 0.500
αx 0.056 0.011 0.203
αy 0.042 0.004 0.201
gx 0.002 −0.002 0.053
gy 0.000 0.000 0.049

(d) Sy(∞)

Table 6.4: Global sensitivity analysis for reckless actor vs reckless actor. Here ST is the total
effect Sobol index, S1 is the first-order effect Sobol index, and T is the PAWN index. For
convenience, we bold the most important input as judged by each index. The final value of
resources is most sensitive to their opponent’s initial psychological state, while the the final
value of the psychological state is most sensitive to its own initial condition.

89

parameter ST S1 T

x(0) 0.012 0.002 0.034
y(0) 0.051 0.002 0.044
Sx(0) 0.121 0.023 0.170
Sy(0) 0.638 0.378 0.354
αx 0.032 0.010 0.109
αy 0.218 0.111 0.142
gx 0.284 0.180 0.140
gy 0.050 0.009 0.054

(a) x(∞)

parameter ST S1 T

x(0) 0.040 0.007 0.033
y(0) 0.032 0.000 0.036
Sx(0) 0.651 0.429 0.403
Sy(0) 0.028 −0.003 0.066
αx 0.235 0.135 0.167
αy 0.071 0.031 0.142
gx 0.040 0.005 0.046
gy 0.265 0.165 0.208

(b) y(∞)

parameter ST S1 T

x(0) 0.043 0.005 0.031
y(0) 0.042 0.000 0.029
Sx(0) 0.987 0.894 0.500
Sy(0) 0.000 0.000 0.073
αx 0.056 0.007 0.190
αy 0.059 0.020 0.186
gx 0.012 0.000 0.043
gy 0.006 −0.002 0.059

(c) Sx(∞)

parameter ST S1 T

x(0) 0.011 0.000 0.026
y(0) 0.073 0.007 0.034
Sx(0) 0.170 0.047 0.304
Sy(0) 0.962 0.811 0.455
αx 0.027 −0.005 0.121
αy 0.030 −0.007 0.113
gx 0.007 0.000 0.039
gy 0.029 −0.005 0.067

(d) Sy(∞)

Table 6.5: Global sensitivity analysis for reckless actor (x) vs conservative actor (y). Here
ST is the total effect Sobol index, S1 is the first-order effect Sobol index, and T is the PAWN
index. For convenience, we bold the most important input as judged by each index. The
final value of resources is most sensitive to their opponent’s initial psychological state, while
the the final value of the psychological state is most sensitive to its own initial condition.

90

6.5 Conclusions
In this work we proposed a model for long-term strategic studies of the statistical properties

of conflict. This model was adapted from a Lanchester model with replenishment that was

further coupled to a psychology model. Our psychology model included multiple terms

representing responding to threats, surrendering, confidence, and deterrence. We defined

multiple profiles for actors involved in a conflict, and performed extensive sensitivity analyses

to examine the outcomes of matches between these actor profiles. These results informed the

importance of fighting capabilities, resource levels, and psychological states on the outcome

of the conflict.

We examined two types of sensitivity analyses based on the distributions of outputs from

our model that produced similar rankings among the parameters. Overall, we saw that the

initial conditions of the psychological state were the dominate parameter in determining

the final state of the model in all scenarios. This result was not unexpected based on the

examinations of subsets of the model terms in Sec. 6.3. Even though the quasi-binary state

has values between 0 and 1, in future iterations of this model, an additional parameter should

control its relative strength to other terms. An alternative could be tuning the noise term

such that it allows for the psychological state to switch.

When examining the final level of resources among the actors, we found this final value

was second most sensitive to how quickly the resources are replenished and how strong the

opponent’s fighting strength was. Such an observation implies that a stronger enemy could

be successfully defended by replenishing resources faster than they can destroy, even if your

ability to fight is less than your opponents. For both types of actors this behavior was

present without a dependence on the profile of the opponent, suggesting this observation is

robust to profile type. When observing the first-order effect, we see much of the variance in

the amount of final resources is being driven by interactions among the parameters. Future

work could examine higher order indicies that describe the effects of subsets of parameters.

In our analysis, we also saw that reckless agent’s final level of resources were more sensitive

to their initial conditions compared to conservative actors. This observation combined with

the one that reckless agent’s have a lower sensitivity to their opponent’s initial psychological

state than conservative actors suggest self-centered behaviors from the reckless agents. A

conservative agent who finds themselves in a conflict with such a reckless agent would benefit

from adopting strategies that effect an opponents resources before a conflict breaks out as

well as attempting to adjust their psychological states to more favorable values.

In future studies we hope to continue to explore theoretical conflicts using additional actor

profiles. These profiles can constrain the same parameters we have explored here, or even

be less restrictive. We note that in preliminary sensitivity analyses that allowed all model

91

parameters to vary resulted in result that were hard to map to actionable results. However,

performing such a large analysis did aid in model building by informing which parameters

the model was sensitive. Comparing this information to our expectations allowed for changes

to be implemented that were more aligned to our modeling goals. Additional actor profiles

can be mapped to real world leaders to help inform strategies in a conflict. The choices made

here were coarse, but a fair starting point.

While our analysis here focused on a deterministic version of the model, we plan to address

including stochastic terms in future work. The addition of stochastic terms will require new

quantities of interest to be examined. In preliminary runs of a stochastic model, we found

the number of, size of, and duration of conflicts were interesting and dynamic quantities.

Another topic worth exploring is the use of other base models. In this work, we extended

a two player version of Lanchester’s square law. However, there are many other versions,

such as adding a third player, that provide an opportunity for richer conflict dynamics. A

final area of interest for future work is improvements to our psychological potential energy

surface. Here, we only included a static potential that captured a two state system. However,

adjusting the parameters of this surface, as well as making it time dependent could lead to

informative new insights. While the development of this model is in an early stage, it shows

promise for expanding the capabilities of ordinary differential equation based models to

explicitly account for deterrence. Additionally, insights gained from this model can lead to

improved experiments in more complex models, such as agent-based models, of conflict.

92

CHAPTER 7:

APPLYING REINFORCEMENT LEARNING TO

AGENT-BASED SIMULATIONS OF CONFLICT

7.1 Summary
In this chapter we shift fully to incorporating machine learning into agent-based models.

The main objective is to create an agent-based implementation of the game capture the

flag such that reinforcement learning techniques can be applied to control players in the

game. The reinforcement learning packages Gymnasium [212] and stable-baselines3 [213]

are utilized to frame the implementation of capture the flag as a reinforcement learning

problem and subsequently train a reinforcement learning agent. The reinforcement learning

agent is incrementally trained to solve increasingly complex tasks. These tasks starting with

controlling a single player to capture an undefended flag and work towards controlling a

team to play against another team. Additionally, aspects of deterrence are examined in the

game. Namely, the willingness of a reinforcement learning agent to play as the penalty it

receives for being captured increases. While this work is preliminary, there is an extensive

discussion of paths to continue this project.

7.2 Introduction
Conflict is a complex phenomenon that is influenced by various factors ranging from indi-

vidual differences to societal contexts. For the purposes of this thesis, we define conflict as

a scenario where two or more groups have incompatible interests, and the actions of these

groups interfere with one another. On a personal level, conflict arises from differences in

relationships, values, facts, structures, and interests [214, 215]. While personal disputes

arise from these individual differences, on a macro scale, the dynamics shift and evolve. At

this broader scale, power dynamics, climate [216], inequality [217], and cultural and social

contexts play significant roles [218]. Beyond these, broader material and existential reasons

further incite conflict [219]. Addressing and understanding conflict demands a holistic, mul-

tidisciplinary approach, merging insights from diverse fields including psychology, sociology,

political science, and computer science. This understanding can aid in anything from resolv-

ing personal disagreements to mediating national-scale disputes. A particularly intriguing

dimension of conflict is its asymmetric nature, where the entities in opposition have unequal

resources.

Asymmetric conflicts are studied in many contexts. For example, Clark and Konrad

explore multifront wars, illustrating scenarios where a defending team is spread across mul-

tiple fronts. In contrast, the attacking team is only required to capture a single front to be

93

victorious [220]. In another study, Dunne et al. propose a three-stage game where a weaker

challenger triumphs over a stronger incumbent, leveraging unconventional means that catch

the incumbent off-guard [221]. A distinct exploration of asymmetric conflict dynamics can be

seen in the works of Johnson and MacKay, who explore the implications of Lanchester’s laws

[222] in modern warfare [223]. These laws predict the outcome of conflicts, either one-on-one

or all-against-all, by evaluating the size and combat capabilities of the engaged groups. The

parameters of Lanchester’s laws make them particularly well-suited for studying asymmetric

conflict. Chapter 6 discusses extended Lanchester models with added replenishing terms

and a model of actor’s psychological states. Building on the extended Lanchester models,

this chapter employs the game of capture the flag (CTF) as a representative model to delve

deeper into asymmetric conflict dynamics and deterrence.

Capture the flag is a popular adversarial game that has been used to study conflict in

cyber security [224, 225, 226] and robotics [227, 228, 229, 230], among other fields. In the

physical world, the game is typically played in a large area, such as a field or gymnasium,

and consists of two teams that compete to capture each other’s flag, while simultaneously

defending their own. Gameplay unfolds through a series of strategic decisions, such as

whether to defend one’s own flag or attack the opponent’s flag, and how to coordinate

with one’s team members. Computational adaptations of CTF follow the general rules of

the game, however the inherent flexibility of the medium allows for adaptations that may

be unfeasible to study in a physical game of the CTF. For example, in a computational

implementation players ability to detect their surroundings can be varied. Such discrepancies

can be mapped onto real conflict scenarios, and allow CTF to be used to study asymmetric

conflict.

Capture the flag lends itself well to the modeling technique reinforcement learning (RL).

Reinforcement learning is often framed as a Markov decision process (MDP), and revolves

around two fundamental components: an agent, which serves as the learning entity, and

an environment, with which the agent interacts. The agent takes a sequence of actions

within the environment over a defined number of iterations, T . At each iteration, t, the

state of the environment is represented by st ∈ S, where S represents the set of all possible

configurations. The agent observes the current state, st, and selects an action, at, from

the set of possible actions, A. Performing the action transitions the environment from st

to st+1, while the agent receives a reward rt+1 from the reward set, R. Notably, the state

may remain unchanged (st = st+1), and the reward can be positive, negative, or zero. The

goal of the agent is to learn a policy, π, that represents the series of action that maximize

the expected cumulative reward. Typically, rewards are discounted using a discount factor

γ ∈ [0, 1], to balance short-term gains against long-term goals. Thus, the total cumulative

94

reward at iteration t is computed as

Rt =
T−t−1∑
i=0

γirt+i+1, (7.1)

where an agent with γ close to 0 exhibits shortsighted behavior, while γ closer to 1 implies

a more farsighted approach.

Applied to CTF, a team is controlled by a reinforcement learning agent, similar to a

coach or general directing the actions of the team. The positions of players and flags dictate

the state of the system. As dictated by the reinforcement agent, players take actions to

update their positions, and are correspondingly rewarded based on events in the game,

such as capturing the flag or getting captured. There are many algorithms to solve RL

tasks [231, 232], many of which are performed in discrete action and state spaces. Such

as Q-learning [233], deep Q-learning [234], value-iteration [235], and temporal difference

[236]. Some of these methods can handle continuous state spaces, but fail when both the

state and action space are continuous. Other algorithms have been developed to solve such

problems [237, 238, 239, 240]. Recently genetic algorithms have been applied to training

reinforcement learning agents, and been found to be faster to train and produce comparable

solutions as other methods in certain scenarios [241, 242]. The Python package stable-

baselines3 [213] provides implementations of many standard RL algorithms. In particular,

their implementation of the Proximal Policy Optimization (PPO) algorithm is utilized in

this chapter.

Our overarching goal is to use reinforcement learning to train teams in our capture the flag

environment that have various levels of ability. These abilities can include, how individuals

perceive and move through the environment, the size of teams, and the length of time a team

is trained. By competing these teams against each other, we can examine their deviations

from simpler models, such the Lanchester model discussed in Chapter 6. Such an exploration

can be used as a proxy to study asymmetric conflict in the real world.

7.3 Methods

7.3.1 Creating Capture the Flag Environment
There are many variations of CTF that vary in the number of players and flags, as well as the

rules for capturing these entities. Traditionally, CTF is played with two teams, in a rectan-

gular, two-dimensional space such as a field. The goal of each team is to capture the enemy’s

flag and return in to their side without being captured while simultaneously defending their

own flag. For our implementation, we have relaxed some of these assumptions.

We implemented a version of CTF in Python using Shapely [243] that allowed us to

95

easily define elements of the games as geometries and test for their intersections. We refer

to the area the game unfolds as the field, and it is represented as an adjustable rectangle

Ω = [xmin, xmax] × [ymin, ymax] ∈ R2. The field is split into a left and right side, with an

impenetrable boundary that keeps the players within its bounds. One team defends the

right side ((xmax−xmin)/2 > 0), while the other defends the left side ((xmax−xmin)/2 < 0).

Players and flags are represented as circles in Ω with radii Rp and Rf , respectively. A team’s

players and their flag initially start on the team’s side of the field, but players can move

throughout the field as the game progresses. The game is broken into a series of iterations,

where players select a velocity vector, v, to move themselves to a new location, with a

maximum magnitude of vmax. During each iteration there are two events that can occur,

depending on entities overlapping. These events are: 1) a player getting captured, when a

two opposing players overlap, 2) a flag getting captured, when a player overlaps an opposing

flag, and 3) a player hits the boundary, when a player overlaps with the boundary (see Table

7.1). When players overlap, the player that is on the side they are defending captures the

opposing player, removing them from the game. When a player overlaps with the opposing

team’s flag, the flag is captured and the game ends. If a player intersects the boundary,

they are moved back in bounds, perpendicular to the intersection. The team that is able

to capture the enemy’s flag without having all their players captured wins. If neither team

successfully captures the enemies flag within 1000 iterations, they both lose.

7.3.2 Applying Reinforcement Learning to Capture the Flag En-

vironment
With the basics of game play defined, players require a method to determine how they

move during a game. One method would be to supply each player with a series of rules to

determine their next move, however we do not want to limit ourselves to strategies that we

propose. Instead, we wish to learn policies that can adapt to what other players are doing.

To accomplish this, we framed the game as a reinforcement learning task.

Each simulation consists of two team comprised of N1 and N2 players. The players on

each team are supplied actions either by an agent or a supplied set of rules. The players on

a team are unable to fully detect their environment, and instead rely on a set of R rays of

length L that are evenly spaced around their body. These rays can detect the distance from,

type of, and velocity of objects they intersect. The possible object types are teammate,

enemy, team flag, enemy flag, boundary, and open space. The agent (or rule set) that

controls each team can observe the positions and velocities of each team member, if the

member is defending or attacking, and the information detected by each ray. In total there

are (4R+5)N1 and (4R+5)N2 variables for the teams. As an example, a single iteration of a

96

simulation is shown in Fig. 7.1. Here, the bounds of the field are given by xmin = ymin = −1

and xmax = ymax = 1, with the boundary represented as a black rectangle. The teams

are denoted with red and blue entities, where the larger circles are the teams flags, and

the smaller circles are the individuals that make up the teams. The blue lines emanating

from the blue player are the rays it uses to perceive the environment. Most of the rays are

intersecting walls, however there are rays intersecting each flag and the red player. Therefore,

the blue player can see these entities during this iteration. However, in a later iteration if

they rays are no longer intersecting these entities the blue player would not detect them. In

this example, only the blue players rays were shown to reduce clutter in the image.

Figure 7.1: Example capture the flag environment. The boundary marking out-of-bounds
is shown in black. The larger colored circles are each team’s flag, while the smaller circles
are the players. The rays emanating from the blue player allow the player to observe the
environment. Along each ray the player can detect what type of object the ray is intersecting,
the distance to the object, and the velocity the object is moving.

Using the input from the players on a team, an agent determines the action each player

should take. In this model, a player’s action is a velocity vector used to update its position.

The RL agent uses a neural network with two hidden layers, each with 140 neurons with

tanh activation functions to produce a velocity vector for each player. Each iteration after

each player has updated thier position, the RL agents receive rewards based on the player-

involved events that occurred. The events and their associated rewards are listed in Table 7.1.

Negative rewards are given in an effort to penalize behaviors, while positive ones encourage

behaviors. In this model, each step taken incurs a reward of −1 to encourage the agent to

97

finish the game quickly. Similarly, a reward of −2 is given when players touch the boundary

to encourage them to stay in bounds. The final negative rewards are given when a player

or their flag is captured. Each of these rewards are relative to the number of iterations that

pass before they occur, such that they are 0 if the player or flag are never captured in the

maximum number of iterations. Positive rewards are given for capturing the enemy flag or

players. These rewards start at 1000 and are reduced by the number of iterations that pass

to encourage a quick solution.

event reward

player takes action −1
player touches boundary −2

player captures flag 1000− iterations
player captures enemy 1000− iterations

player’s flag is captured iterations− 1000
player is captured iterations− 1000

Table 7.1: Rewards for capture the flag. Negative rewards penalize behaviors while positive
ones encourage them. The first two rewards encourage the RL agent to act quickly and keep
players in bounds. The second two rewards encourage the agent to capture entities, while
the final two rewards encourage the agent to avoid being captured and protect their flag.

Based on our implementation of CTF and associated rewards, we used the Proximal

Policy Optimization (PPO) algorithm implemented through stable-baselines3 [213] to train

RL agents to control a team. Our training occurred as a series of progressively more complex

tasks that are discussed below. In each of these simulations, we used xmin = ymin = −1 and

xmax = ymax = 1. The flags had a radius of Rf = .1, while players had a radius of Rp = .05

and R = 16 rays of length of L = 2.

The simplest task we examined was training a single agent to capture a flag without a

defender. For this scenario, the field was not partitioned into sides, so the single player was

always in an attacking state. We made this choice to ensure that the agent examined the

flag from all directions, and would not simply learn to move in a singular direction. Only

the first three rewards in Table 7.1 are available to the agent in this scenario. We trained

the RL agent controlling the player for 3 million iterations, while monitoring its average

rewards over time. These iterations consisted of multiple games, called episodes. In each

episode, the agent and flag are spawned at uniformly random locations in the field. An

episode is completed when the player either successfully captures the flag, or 1000 iterations

have passed. We selected the number of training iterations by examining when the average

reward per episode leveled near the maximum of 1000. The resulting trained agent was used

as a base model for proceeding teams that have a single player.

98

With a baseline agent trained, we added complexity to the task by introducing a second

team, as well as partitioning the field into sides. In this new scenario, all of the rewards

in Table 7.1 were available. Each episode the side the agent defended switched to prevent

the agent from developing a preference to move the player in one direction. Training in

this scenario employed self-play, allowing the RL agent to learn against a previous version of

itself. That is, the new team was controlled by a static version of the baseline agent; however,

the RL agent continued to train. The RL agent was trained for an additional 7 millions steps

for a total of 10 million training steps. This process could be repeated, where the static team

is the one that was trained for 10 million steps, and the learning team continues to train

against its improved adversary. However, we only examined one iteration of self-play here.

The final scenario we examined was the emergence of deterrence in the game. This sce-

nario is important for understanding how agents adapt to high-risk, high-reward situations,

aligning with our broader objective of examining strategic decision-making in complex en-

vironments. To this end, we improved the defending ability of the static agent by having

it following two rules: it would move directly towards the enemy at full speed if the enemy

was on its side of the field, and otherwise, it would move randomly. To investigate the

threshold at which the RL agent would refrain from aggressive play, it was trained against

this improved defender, with a varying negative reward for being captured ranging from 0

to -10,000 points. The RL agent was trained for an additional 1 million iterations for each

value. As in previous scenarios, we ensured randomness in the initial placement of entities,

with each starting on their respective sides of the field.

7.4 Results
Recall the simplest scenario we examined, where an RL agent was trained to control a single-

player team to capture a flag anywhere in the field. In Fig. 7.2, we show the progression of

average rewards per episode against training iterations in blue. Initially, the agent quickly

learns basic navigation, as evidenced by balancing negative and positive rewards within

approximately 500, 000 iterations. Within the subsequent 1.5 million iterations, the agent

reliably develops a strategy to move quickly towards the flag. Given the random initial con-

ditions and step penalties, a perfect 1000 point reward is unattainable, leading to variation in

the maximum achievable reward. Nevertheless, the agent consistently attains rewards near

the theoretical maximum of 1000 points. Training was extended for an additional 1.5 million

iterations to reinforce the acquired behaviors and expose the agent to rarer edge cases. This

phase of training demonstrates the agent’s proficiency in mastering basic strategies, setting

a foundation for more complex scenarios.

Building on the understanding of the RL agent’s learning process, we next explore the

99

Figure 7.2: Average reward per episode versus training iteration of an RL agent learning to
capture a flag with a single player. The RL agent learns basic navigation within 500,000
iterations and is able to balance negative and positive rewards. Within an additional 1
million iterations, the RL is reliably capturing the flag.

specific actions undertaken by the trained agent in varying scenarios. Figure 7.3 illustrates

the agent’s action in four different placements of the enemy flag. Similarly, Fig. 7.4 demon-

strates the agent’s behavior in the absence of an enemy flag. In these figures, the agent’s

actions are represented by arrows indicating the direction a player movement at each location,

with the enemy flag marked as a red circle. In all cases, the agent has learned to prevent the

player from hitting the black boundary, as indicated by all actions by the boundary leading

the player away. In the scenario with no flag, the agent’s general search strategy is evident,

characterized by moving the player in a clockwise pattern around the field, spiralling around

central point. These behaviors highlight the agent’s adaptive strategies in different game

environments.

In the next scenario, we shifted to training the agent against a static version of itself.

Figure 7.5 shows the actions the agent would supply a blue player at various field positions,

represented by arrows. The red player, depicted as a smaller red circle aims to defend the

red flag, while the RL agent is tasked with defending the blue flag, both indicated by larger

colored circles. It is important to note that in this figure, we assume that both the red and

blue agents are stationary when determining these actions. However, in a live game scenario,

these agents likely to be in motion. Consequently, these predicted actions occur within a

parameter space the RL agent may not have previously encountered. This aspect should be

considered when interpreting the actions.

100

(a) Enemy flag on the left half of field. (b) Enemy flag on the top half of field.

(c) Enemy flag on the right half of field. (d) Enemy flag on the bottom half of field.

Figure 7.3: Actions of single player attacking a flag. In each subfigure the arrows denote
the direction the attacking player would move. The black square is the boundary for the
field, and the red circle is the enemy’s flag. The agent has learned to avoid the boundary, as
denoted by all of the arrows pointing away from the boundary. Additionally, the agent has
generally learned how to move towards the flag in various locations in the field.

In Fig. 7.5a, the red player is positioned defensively. When the RL is on the offensive, it

generally advances towards the enemy flag. Its actions are unaffected by the defending red

101

Figure 7.4: Actions of a single player without a flag. Similar to Fig. 7.3, the arrows denote
the direction the attacking player would move. The black square is the boundary for the
field, and the red circle is the enemy’s flag. When the agent is unable to detect a flag, it
searches by moving clockwise around the field around a central point.

player when distant from it. Interestingly, when the agent is near both the red player and

the center of the field, it shifts towards its own flag, indicating a defensive strategy. However,

in its own defensive position, the agent consistently moves towards its flag. Notably, near

the bottom of the field, the agent does not shift to an offensive strategy, possibly indicating

a gap in its training.

Contrastingly, Fig. 7.5b places the red player in an offensive position. In this scenario,

when the RL agent is on the offensive it predominantly heads towards the enemy flag, except

in areas adjacent to the red player near the center line. In a defensive position, the agent has

learned to target the attacking red player. This is evidence by arrows near the red player

directing towards it. These scenarios demonstrate the agent’s capacity for dynamic strategy

adjustments in response to different threats.

In our final analysis, we explored the emergence of deterrence by varying the negative

reward associated with the agent’s player being captured. Figure 7.6 presents the average

reward (depicted in blue) and average number of steps taken (in orange) across 30 simula-

tions, plotted against the varying penalties for being captured. As expected, with a minimal

penalty, the agent attempts to capture the flag, indicated by the relatively low number of

steps coupled with a negative reward. However, as the penalty increases, a significant shift

in the agent’s strategy is observed. Notably, at a penalty of approximately 8000 points, the

102

(a) If the red team is in a defensive position,
the blue player moves to capture the flag when
they are in an offensive position and defend their
flag in a defensive one. There is a slight prefer-
ence for moving around the defensive red player.
Around the center line in front of the red player,
we see the agent’s actions leading to a defensive
position.

(b) If the red team is in an offensive position,
the blue player moves to capture the agent when
they are in a defensive position, and move to
capture the flag in an offensive one. The blue
agent decides to move back to their side if they
are close to the center and near the red agent.

Figure 7.5: Actions of single player against single player. In these scenarios, the field is
partitioned into two sides by a grey dashed line, where the red team defends the left and
the blue team defends the right. The large circles denote the teams flags, and the smaller
circle is a red player. The arrows denote the action a blue player would make, assuming all
entities are at rest.

agents average score raises to around -1000 points, with an average of 1000 steps taken. This

indicates a strategic change where the agent opts to remain on its side of the field throughout

the game, effectively exhibiting deterrence.

7.5 Conclusion
In this chapter, we successfully implemented a numerical version of capture the flag and ap-

plied reinforcement learning to develop strategic gameplay. Our preliminary results demon-

strate the capability of training an RL agent to control a single player in progressively

complex scenarios.

Initially, the agent was tasked with capturing a randomly place flag. Starting from this

basic task aided the RL agent in learning robust strategies. In early attempts, an agent

always started on a specified side of the field. Having never experienced the flag behind it,

103

Figure 7.6: Average reward and number of steps versus penalty of being caught. The average
number of steps (orange) and reward (blue) for 30 simulations is shown versus the penalty
of being caught. When the penalty is low, the RL agent attempts to capture the enemy flag.
However, once the penalty reaches approximately 8000, the agent is deterred from play and
spends the total 1000 timesteps on their side of the field.

the agent learned to always move in a single direction regardless of its observations. This

insight influenced the initialization of subsequent scearios.

Once the baseline agent was trained to stay in bounds and capture a flag, we moved to

training it against another player. When the new player followed a prescribed set of rules,

the RL excelled in adapting to offensive rolls, however it struggled in subsequent defensive

roles. This challenge was partially mitigated through self-play that allowed the agent to

experience both offensive and defensive roles during training and kept the opposing player

at a similar ability level. While this approach led to improved strategic behavior, such as

retreating to defend its flag, it also highlighted areas for improvement. For example, as seen

in Fig. 7.5a, the agent occasionally fails to optimally avoid defenders.

The final area we examined was the emergence of deterrence. By varying the negative

reward an RL agent was given for its player being captured, we were eventually able observe

it no longer play the game. This threshold was reached only at a relatively high penalty,

highlighting the agent’s initial propensity for risk-taking or goal-directed behavior despite

potential negative outcomes. This observation suggests that the agent’s decision making

process might require substantial negative reinforcement to override its objective-focused

strategies. Interestingly, it also implies that with further training iterations, a lower penalty

threshold might achieve similar deterrence effects.

104

While the results we have been able to produce so far are informative, there are areas

that this research can be improved in the future. We sort these improvements into the

three broad categories of improved training, scenarios, and algorithms. Regarding train-

ing improvements, RL agents should be trained for many more iterations to provide ample

opportunities to develop and refine sophisticated strategies, particularly through increased

self-play iterations. A significant limitation of our work was the lack of hyperparameter

tuning, primarily driven by computational constraints. Nonetheless, future efforts should

focus on exploring various neural network architectures, including adjustments in the num-

ber of hidden layers, their sizes, and activation functions. Additionally, fine-tuning player

hyperparameters, such as the number and size of sensory rays, could lead to more nuanced

and effective strategies.

In terms of scenario development, future research should explore crafting sculpted sce-

narios specifically designed to expedite the learning process of RL agents. In this work, the

starting locations of entities were randomized, which is effective for broadly sample the state

space of the game. However, strategically selecting initial conditions to ensure diversity can

speed up the RL agent’s learning. This approach would expose the agent to a wide range

of situations in a more systematic manner, enhancing its ability to build strategies. Addi-

tionally, experimenting with varying team sizes and altering player attributes (e.g. player

hyperparmeters) presents an exciting opportunity. With these changes, we can dive deeper

into the dynamics of asymmetric conflict, examining how differences in team composition

and capabilities affect strategic outcomes.

Finally, with respect to algorithms the more general multi-agent reinforcement learning

(MARL) should be explored. While we utilized single-agent reinforcement learning as a

starting point in this work, many complex real-world problems are not well represented in

the framework. Using MARL, both teams would be controlled by RL agents that learn simul-

taneously. Many RL algorithms can be generalized to multiple players. For example, [244]

examines extending trust region policy optimization, deep deterministic policy gradient, and

deep-q networks, while Kar et al. [245] discuss extending Q-learning to the multi-agent ver-

sion, QD-learning. Buşoniu et al. [246] provides a review many MARL algorithms. However,

transitioning from single-agent to multi-agent RL introduces unique challenges as outlined

by Nguyen el al. [247]. These areas include partial observability, non-stationarity, continu-

ous action spaces, multi-agent training schemes, and transfer learning. Our implementation

has already began to address partial partial observability and continuous spaces, providing

a solid foundation for tackling the other challenges in MARL.

In summary, this chapter lays the groundwork for addressing asymmetric conflict with

reinforcement learning through the use of a simulated capture the flag game. Through many

105

scenarios, we have demonstrated the adaptability of RL agents in dynamic environments.

While are current results are promising, we have illuminated several areas for potential

improvement to further extend the capabilities of RL in simulations of conflict.

106

CHAPTER 8:

CONCLUSION
Throughout this dissertation, we explored areas of improvement for the field of agent-based

modeling, namely data integration, policy evaluation, and the incorporation of machine

learning. These areas were examined through projects presented in pairs of chapters, where

each chapter consisted of a unique yet interconnected project.

Chapter 2 and 3 focused on using data to develop and refine ABMs, specifically ap-

plied to the spread of chronic wasting disease in white tailed deer. These chapters serve as

comprehensive examples of data-driven model development and underscore the challenges in

modeling uncertainty. While our model produced simulations closely resembling real data,

the complexity of model creation and computational demands highlighted the need for more

efficient methodologies.

The data integration projects underscored two major takeaways: the importance of ex-

ploratory data analysis (EDA) and sensitivity analysis in agent-based modeling. EDA was

instrumental in identifying subtle features present in our data that shaped the model’s de-

velopment. While integrating these features was challenging in our case, it may be more

straightforward in other applications. Future modeling efforts should prioritize extensive

data examination to extract key features, thereby enhancing model accuracy across vari-

ous fidelities. Similarly, sensitivity analysis (SA) plays an important role in model building

and assessment. SA aided in understanding the impact of parameters on model outcomes,

guiding decision on which features to include. For example, if a SA reveals that added

parameters have little to no effect on important model outputs, you can safely omit those

parameters from the model. Moreover, SA can rank parameter importance, offering insights

and understanding of the model that would otherwise be unattainable.

In Chapters 4 and 5, our research shifted towards employing ABMs for policy assessment.

Chapter 4 focused on evaluating strategies to mitigate the spread of disinformation across

social networks. We dedicated thousands of core hours to analyze and rank various strategies

across different graph topologies and conducted a similar evaluation on a real social network.

However, the significant computational demands posed challenges. These challenges led to

the focus of the subsequent chapter, where we explored ways to reduce the size of graphs while

preserving certain attributes. Such a process enhances the feasibility of applying models to

real-world social networks.

These projects highlighted the necessity of substantial computing resources for an in-

depth examination of policy implications using ABMs. Although our research demonstrated

107

techniques to lessen the demand for extensive resources, we were careful in our approach to

ensure these methods still accurately reflect real-world scenarios. This balance is crucial;

as we develop more efficient computational strategies, it is imperative to maintain a high

degree of realism in our models. This ensures that the insights and recommendations derived

from ABMs remain relevant and applicable to actual policy-making. Future research should

continue to focus on optimizing computational efficiency while preserving the integrity and

realism of the models, thereby enabling a comprehensive and pragmatic evaluation of policies

in various domains.

Lastly, in Chapters 6 and 7, our focus shifted to the integration of machine learning within

ABMs, with a particular emphasis on models of conflict and deterrence. The first chapter

in this segment laid the groundwork, enhancing existing mathematical models of conflict to

explicitly incorporate aspects of deterrence. Building on this, the following chapter presented

preliminary efforts to apply reinforcement learning as the rules in agent-based models. This

approach was then used to examine the emergence of deterrence in a model of conflict, thus

illustrating how machine learning can contribute to the sophistication of ABMs in complex

scenarios.

While preliminary, these chapters illuminate the power of combining machine learning

with ABMs. This fusion not only enhances the analytical capabilities of ABMs but also

opens up new avenues for exploring intricate systems and behaviors. This advancement

points to a future where ABMs can be more effectively used to simulate and understand

complex phenomena, offering insights that might be difficult to obtain through traditional

modeling methods. Future research can further refine these methodologies, exploring their

applicability across a broader spectrum of disciplines and deepening our understanding of

the emergent properties within these systems.

The contributions of this dissertation to the field of agent-based modeling highlight po-

tential avenues for future exploration. The dissertation demonstrates that integrating tra-

ditional modeling techniques with contemporary data and machine learning approaches can

lead to the development of more robust tools, better equipped to address the complexities

of today’s challenges.

108

BIBLIOGRAPHY

[1] Harry Jones. The recent large reduction in space launch cost. 48th International
Conference on Environmental Systems, 2018.

[2] Steven F. Railsback and Volker Grimm. Agent-Based and Individual-Based Modeling:
A Practical Introduction. Princeton University Press, 2011.

[3] C. M. Macal and M. J. North. Tutorial on agent-based modeling and simulation. In
Proceedings of the Winter Simulation Conference, 2005., pages 14 pp.–, 2005.

[4] C. M. Macal and M. J. North. Tutorial on agent-based modeling and simulation part 2:
How to model with agents. In Proceedings of the 2006 Winter Simulation Conference,
pages 73–83, 2006.

[5] John von Neumann and Arther Burks. Theory of Self-Replicating Automata. University
of Illinois Press, 1966.

[6] Martin Gardner. Mathematical Games The fantastic combinations of John Conway’s
new solitaire game “life”. Scientific American, pages 120–123, 1970.

[7] Stephen Wolfram. A New Kind of Science. Wolfram Media Inc., Champaign, Ilinois,
USA, 2002.

[8] Christopher Bone and Suzana Dragićević. Simulation and validation of a reinforcement
learning agent-based model for multi-stakeholder forest management. Computers, En-
vironment and Urban Systems, 34(2):162–174, 2010.

[9] William Ogilvy Kermack, A. G. McKendrick, and Gilbert Thomas Walker. A con-
tribution to the mathematical theory of epidemics. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character,
115(772):700–721, 1927.

[10] Thomas House, Geoffrey Davies, Leon Danon, and Matt J Keeling. A motif-based
approach to network epidemics. Bulletin of Mathematical Biology, 71:1693–1706, 2009.

[11] Jaewook Joo and Joel L Lebowitz. Pair approximation of the stochastic susceptible-
infected-recovered-susceptible epidemic model on the hypercubic lattice. Physical Re-
view E, 70(3):036114, 2004.

[12] Anirban Chakraborti, Ioane Muni Toke, Marco Patriarca, and Frédéric Abergel. Econo-
physics review: II. Agent-based models. Quantitative Finance, 11(7):1013–1041, 2011.

[13] M. Barbati, G. Bruno, and A. Genovese. Applications of agent-based models for opti-
mization problems: A literature review. Expert Systems with Applications, 39(5):6020
– 6028, 2012.

[14] Li An. Modeling human decisions in coupled human and natural systems: Review
of agent-based models. Ecological Modelling, 229:25 – 36, 2012. Modeling Human
Decisions.

109

[15] Federico Bianchi and Flaminio Squazzoni. Agent-based models in sociology. Wiley
Interdisciplinary Reviews: Computational Statistics, 7(4):284–306, 2015.

[16] Sean Barnes, Bruce Golden, and Stuart Price. Applications of agent-based model-
ing and simulation to healthcare operations management. In Handbook of healthcare
operations management: methods and applications, pages 45–74. Springer, 2013.

[17] Melissa Tracy, Magdalena Cerdá, and Katherine M Keyes. Agent-based modeling in
public health: current applications and future directions. Annual review of public
health, 39:77–94, 2018.

[18] Charles M Macal. Everything you need to know about agent-based modelling and
simulation. Journal of Simulation, 10:144–156, 2016.

[19] Volker Grimm, Eloy Revilla, Uta Berger, Florian Jeltsch, Wolf M Mooij, Steven F
Railsback, Hans-Hermann Thulke, Jacob Weiner, Thorsten Wiegand, and Donald L
DeAngelis. Pattern-oriented modeling of agent-based complex systems: lessons from
ecology. science, 310(5750):987–991, 2005.

[20] Craig Loehle. A guide to increased creativity in research: inspiration or perspiration?
Bioscience, 40(2):123–129, 1990.

[21] Joshua M Epstein. Why model? Journal of artificial societies and social simulation,
11(4):12, 2008.

[22] Bruce Edmonds and Scott Moss. From kiss to kids–an ‘anti-simplistic’modelling ap-
proach. In International workshop on multi-agent systems and agent-based simulation,
pages 130–144. Springer, 2004.

[23] David O’Sullivan, Tom Evans, Steven Manson, Sara Metcalf, Arika Ligmann-Zielinska,
and Chris Bone. Strategic directions for agent-based modeling: avoiding the yaawn
syndrome. Journal of land use science, 11(2):177–187, 2016.

[24] William Rand and Roland T Rust. Agent-based modeling in marketing: Guidelines
for rigor. International Journal of research in Marketing, 28(3):181–193, 2011.

[25] William Rand. Theory-interpretable, data-driven agent-based modeling. Social-
behavioral modeling for complex systems, pages 337–357, 2019.

[26] Srinivasan Venkatramanan, Bryan Lewis, Jiangzhuo Chen, Dave Higdon, Anil Vul-
likanti, and Madhav Marathe. Using data-driven agent-based models for forecasting
emerging infectious diseases. Epidemics, 22:43–49, 2018.

[27] Elizabeth Hunter, Brian Mac Namee, and John Kelleher. An open-data-driven agent-
based model to simulate infectious disease outbreaks. PloS one, 13(12):e0208775, 2018.

[28] Mazhar Sajjad, Karandeep Singh, Euihyun Paik, and Chang-Won Ahn. A data-driven
approach for agent-based modeling: Simulating the dynamics of family formation.
Journal of Artificial Societies and Social Simulation, 19(1):9, 2016.

110

[29] Haifeng Zhang, Yevgeniy Vorobeychik, Joshua Letchford, and Kiran Lakkaraju. Data-
driven agent-based modeling, with application to rooftop solar adoption. Autonomous
Agents and Multi-Agent Systems, 30:1023–1049, 2016.

[30] David J Butts, Noelle E Thompson, Sonja A Christensen, David M Williams, and
Michael S Murillo. Data-driven agent-based model building for animal movement
through exploratory data analysis. Ecological Modelling, 470:110001, 2022.

[31] David J Butts, Sam A Bollman, and Michael S Murillo. Mathematical modeling of
disinformation and effectiveness of mitigation policies. Scientific Reports, 13(1):18735,
2023.

[32] Aldo Leopold. The Conservation Ethic. Journal of Forestry, 31(6):634–643, 10 1933.

[33] Hugh Dingle and V. Alistair Drake. What Is Migration? BioScience, 57(2):113–121,
02 2007.

[34] Navinder J. Singh, Andrew M. Allen, and Göran Ericsson. Quantifying migration
behaviour using net squared displacement approach: Clarifications and caveats. PLOS
ONE, 11(3):1–20, 03 2016.

[35] Mevin B. Hooten, Henry R. Scharf, Trevor J. Hefley, Aaron T. Pearse, and Mitch D.
Weegman. Animal movement models for migratory individuals and groups. Methods
in Ecology and Evolution, 9(7):1692–1705, 2018.

[36] Sophie Bestley, Toby A. Patterson, Mark A. Hindell, and John S. Gunn. Feeding
ecology of wild migratory tunas revealed by archival tag records of visceral warming.
Journal of Animal Ecology, 77(6):1223–1233, 2008.

[37] B.F. Manly, L. McDonald, D.L. Thomas, T.L. McDonald, and W.P. Erickson. Re-
source Selection by Animals: Statistical Design and Analysis for Field Studies. Springer
Netherlands, 2007.

[38] Douglas H. Johnson. The comparison of usage and availability measurements for eval-
uating resource preference. Ecology, 61(1):65–71, 1980.

[39] Geert Aarts, Monique MacKenzie, Bernie McConnell, Mike Fedak, and Jason
Matthiopoulos. Estimating space-use and habitat preference from wildlife telemetry
data. Ecography, 31(1):140–160, 2008.

[40] D. John Anderson. The home range: A new nonparametric estimation technique.
Ecology, 63(1):103–112, 1982.

[41] D. B. Shepard, A. R. Kuhns, M. J. Dreslik, and C. A. Phillips. Roads as barriers
to animal movement in fragmented landscapes. Animal Conservation, 11(4):288–296,
2008.

[42] A. David M. Latham, M. Cecilia Latham, Mark S. Boyce, and Stan Boutin. Movement
responses by wolves to industrial linear features and their effect on woodland caribou
in northeastern alberta. Ecological Applications, 21(8):2854–2865, 2011.

111

[43] Mevin B. Hooten, Devin S. Johnson, Brett T. McClintock, and Juan M. Morales.
Animal Movement Statistical Models For Telemetry Data. Taylor & Francis, 2017.

[44] Kim Whoriskey, Marie Auger-Mèthè, Christoffer M. Albertsen, Frederick G. Who-
riskey, Thomas R. Binder, Charles C. Krueger, and Joanna Mills Flemming. A hidden
markov movement model for rapidly identifying behavioral states from animal tracks.
Ecology and Evolution, 7(7):2112–2121, 2017.

[45] Roland Langrock, Ruth King, Jason Matthiopoulos, Len Thomas, Daniel Fortin, and
Juan M. Morales. Flexible and practical modeling of animal telemetry data: hidden
markov models and extensions. Ecology, 93(11):2336–2342, 2012.

[46] Ann E. McKellar, Roland Langrock, Jeffrey R. Walters, and Dylan C. Kesler. Using
mixed hidden Markov models to examine behavioral states in a cooperatively breeding
bird. Behavioral Ecology, 26(1):148–157, 09 2014.

[47] Ian D. Jonsen, Ransom A. Myers, and Joanna Mills Flemming. META-ANALYSIS
OF ANIMAL MOVEMENT USING STATE-SPACE MODELS. Ecology, 84(11):3055–
3063, 2003.

[48] Ian D. Jonsen, Joanna Mills Flemming, and Ransom A. Myers. ROBUST STATE-
SPACE MODELING OF ANIMAL MOVEMENT DATA. Ecology, 86(11):2874–2880,
2005.

[49] Toby A. Patterson, Len Thomas, Chris Wilcox, Otso Ovaskainen, and Jason
Matthiopoulos. State-space models of individual animal movement. Trends in Ecology
& Evolution, 23(2):87 – 94, 2008.

[50] Haiganoush K. Preisler, Alan A. Ager, and Michael J. Wisdom. Analyzing animal
movement patterns using potential functions. Ecosphere, 4(3):art32, 2013.

[51] Thèo Michelot, Pierre Gloaguen, Paul G. Blackwell, and Marie-Pierre Ãtienne. The
langevin diffusion as a continuous-time model of animal movement and habitat selec-
tion. Methods in Ecology and Evolution, 10(11):1894–1907, 2019.

[52] John W Tukey et al. Exploratory data analysis, volume 2. Reading, Mass., 1977.

[53] Frederick Hartwig and Brian E Dearing. Exploratory data analysis. Sage, 1979.

[54] Matthew B Miles and A Michael Huberman. Qualitative data analysis: An expanded
sourcebook. sage, 1994.

[55] Andrew M. Edwards. Overturning conclusions of lèvy flight movement patterns by
fishing boats and foraging animals. Ecology, 92(6):1247–1257, 2011.

[56] Andrew M. Edwards, Richard A. Phillips, Nicholas W. Watkins, Mervyn P. Free-
man, Eugene J. Murphy, Vsevolod Afanasyev, Sergey V. Buldyrev, M. G. E. da Luz,
E. P. Raposo, H. Eugene Stanley, and Gandhimohan M. Viswanathan. Revisiting
lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature,
449(7165):1044–1048, 2007.

112

[57] Andrew M. Edwards. Using likelihood to test for lèvy flight search patterns and for
general power-law distributions in nature. Journal of Animal Ecology, 77(6):1212–1222,
2008.

[58] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches.
IEEE Data Eng. Bull., 23(4):3–13, 2000.

[59] Tamraparni Dasu and Theodore Johnson. Exploratory data mining and data cleaning,
volume 479. John Wiley & Sons, 2003.

[60] Jonathan Schwabish. Better Data Visualizations: A Guide for Scholars, Researchers,
and Wonks. Columbia University Press, 2021.

[61] Robert M Edsall. The parallel coordinate plot in action: design and use for geographic
visualization. Computational Statistics & Data Analysis, 43(4):605–619, 2003.

[62] Takayuki Itoh, Ashnil Kumar, Karsten Klein, and Jinman Kim. High-dimensional data
visualization by interactive construction of low-dimensional parallel coordinate plots.
Journal of Visual Languages & Computing, 43:1–13, 2017.

[63] Andrej Gisbrecht and Barbara Hammer. Data visualization by nonlinear dimensional-
ity reduction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
5(2):51–73, 2015.

[64] Samuel Kaski and Jaakko Peltonen. Dimensionality reduction for data visualization
[applications corner]. IEEE signal processing magazine, 28(2):100–104, 2011.

[65] John D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
Engineering, 9(3):90–95, 2007.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[67] Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source
Software, 6(60):3021, 2021.

[68] Benjamin Bengfort and Rebecca Bilbro. Yellowbrick: Visualizing the scikit-learn model
selection process. Journal of Open Source Software, 4(35):1075, 2019.

[69] Amy Quinn. Influences of movement behavior and space use in evaluating disease risk
amoung white-tailed deer in central new york. Syracuse, New York: State University
of New York College of Environmental Science and Forestry, 2010.

[70] David M. Williams, Amy C. Dechen Quinn, and William F. Porter. Informing disease
models with temporal and spatial contact structure among gps-collared individuals in
wild populations. PLOS ONE, 9, 01 2014.

113

[71] Mark S Boyce, Pierre R Vernier, Scott E Nielsen, and Fiona K.A Schmiegelow. Eval-
uating resource selection functions. Ecological Modelling, 157(2):281–300, 2002.

[72] Toby A. Patterson, Marinelle Basson, Mark V. Bravington, and John S. Gunn. Classi-
fying movement behaviour in relation to environmental conditions using hidden markov
models. Journal of Animal Ecology, 78(6):1113–1123, 2009.

[73] D. R. Brillinger, H. K. Preisler, A. A. Ager, and J. G. Kie. The Use Of Potential
Functions In Modelling Animal Movement, pages 385–409. Springer New York, New
York, NY, 2012.

[74] David R. Brillinger, Haiganoush K. Preisler, Alan A. Ager, John G. Kie, and Brent S.
Stewart. Employing stochastic differential equations to model wildlife motion. Bulletin
of the Brazilian Mathematical Society, 33(3):385–408, 2002.

[75] A. Quinn Dechen, David Williams, W. Porter, M. Smith, F. DeSantis, and McNulty
F. Risk assessment of a chronic wasting disease outbreak in new york: Final report.
New York State Department of Environmental Conservation, 2009.

[76] Daniel Fortin, Hawthorne L. Beyer, Mark S. Boyce, Douglas W. Smith, Thierry Duch-
esne, and Julie S. Mao. Wolves influence elk movements: Behavior shapes a trophic
cascade in yellowstone national park. Ecology, 86(5):1320–1330, 2005.

[77] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight.
Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(1):91–108, 2005.

[78] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[79] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting
system for convex optimization problems. Journal of Control and Decision, 5(1):42–60,
2018.

[80] Tak chung Fu. A review on time series data mining. Engineering Applications of
Artificial Intelligence, 24(1):164 – 181, 2011.

[81] Christos Berberidis, Walid G. Aref, Mikhail Atallah, Ioannis Vlahavas, and Ahmed K.
Elmagarmid. Multiple and parital periodicity in mining in time series databases. In
Proceedings of the 15th European Conerene on Artificial Intelligence, 2002.

[82] Stéphane Dray, Manuela Royer-Carenzi, and Clément Calenge. The exploratory analy-
sis of autocorrelation in animal-movement studies. Ecological Research, 25(3):673–681,
2010.

[83] Guillaume Péron, Chris H. Fleming, Rogerio C. de Paula, and Justin M. Calabrese.
Uncovering periodic patterns of space use in animal tracking data with periodograms,
including a new algorithm for the lomb-scargle periodogram and improved randomiza-
tion tests. Movement Ecology, 4(1):19, 2016.

114

[84] Jacob T. VanderPlas. Understanding the lomb–scargle periodogram. The Astrophysical
Journal Supplement Series, 236(1):16, may 2018.

[85] Devin S. Johnson, Joshua M. London, Mary-Anne Lea, and John W. Durban.
Continuous-time correlated random walk model for animal telemetry data. Ecology,
89(5):1208–1215, 2008.

[86] Tsutomu T. Takeuchi. Constructing a bivariate distribution function with given
marginals and correlation: application to the galaxy luminosity function. Monthly
Notices of the Royal Astronomical Society, 406(3):1830–1840, 08 2010.

[87] Pravin K. Trivedi and David M. Zimmer. Copula Modeling: An Introduction for
Practitioners. Foundations and Trends(R) in Econometrics, 1(1):1–111, April 2007.

[88] Yajie Zou, Xinzhi Zhong, Jinjun Tang, Xin Ye, Lingtao Wu, Muhammad Ijaz, and
Yinhai Wang. A copula-based approach for accommodating the underreporting effect
in wildlife-vehicle crash analysis. Sustainability, 11(2), 2019.

[89] Justin T. French, Hsiao-Hsuan Wang, William E. Grant, and John M. Tomeček. Dy-
namics of animal joint space use: a novel application of a time series approach. Move-
ment Ecology, 7(1):38, 2019.

[90] Marti J. Anderson, Perry de Valpine, Andrew Punnett, and Arden E. Miller. A path-
way for multivariate analysis of ecological communities using copulas. Ecology and
Evolution, 9(6):3276–3294, 2019.

[91] B. J. Worton. Kernel methods for estimating the utilization distribution in home-range
studies. Ecology, 70(1):164–168, 1989.

[92] D. Erran Seaman and Roger A. Powell. An evaluation of the accuracy of kernel density
estimators for home range analysis. Ecology, 77(7):2075–2085, 1996.

[93] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys.
Rev., 36:823–841, Sep 1930.

[94] Volker Grimm, Steven F Railsback, Christian E Vincenot, Uta Berger, Cara Gallagher,
Donald L DeAngelis, Bruce Edmonds, Jiaqi Ge, Jarl Giske, Juergen Groeneveld, et al.
The odd protocol for describing agent-based and other simulation models: A second
update to improve clarity, replication, and structural realism. Journal of Artificial
Societies and Social Simulation, 23(2), 2020.

[95] Noelle E Thompson, David J Butts, Michael S Murillo, David M Williams, Sonja A
Christensen, William F Porter, and Gary J Roloff. An individual-based model for
direct and indirect transmission of chronic wasting disease in free-rangin white-tailed
deer. Ecological Modelling, (under review).

[96] Ryan G McClarren, Penrose McClarren, and RL Penrose. Uncertainty quantification
and predictive computational science. Springer, 2018.

115

[97] Arika Ligmann-Zielinska, Peer-Olaf Siebers, Nicholas Magliocca, Dawn C Parker,
Volker Grimm, Jing Du, Martin Cenek, Viktoriia Radchuk, Nazia N Arbab, Sheng
Li, et al. ‘one size does not fit all’: a roadmap of purpose-driven mixed-method path-
ways for sensitivity analysis of agent-based models. Journal of Artificial Societies and
Social Simulation, 23(1), 2020.

[98] Andrea Saltelli, Stefano Tarantola, and KP-S Chan. A quantitative model-independent
method for global sensitivity analysis of model output. Technometrics, 41(1):39–56,
1999.

[99] Jérôme Morio. Global and local sensitivity analysis methods for a physical system.
European journal of physics, 32(6):1577, 2011.

[100] Arika Ligmann-Zielinska. Spatially-explicit sensitivity analysis of an agent-based
model of land use change. International Journal of Geographical Information Science,
27(9):1764–1781, 2013.

[101] Bertrand Iooss and Paul Lemâıtre. A review on global sensitivity analysis methods.
Uncertainty management in simulation-optimization of complex systems: algorithms
and applications, pages 101–122, 2015.

[102] Andrea Saltelli, Stefano Tarantola, Francesca Campolongo, Marco Ratto, et al. Sen-
sitivity analysis in practice: a guide to assessing scientific models, volume 1. Wiley
Online Library, 2004.

[103] Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review of recent
advances. European Journal of Operational Research, 248(3):869–887, 2016.

[104] Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and
Stefano Tarantola. Variance based sensitivity analysis of model output. design and es-
timator for the total sensitivity index. Computer physics communications, 181(2):259–
270, 2010.

[105] IM Soból. Sensitivity estimates for nonlinear mathematical models. Math. Model.
Comput. Exp., 1:407, 1993.

[106] Toshimitsu Homma and Andrea Saltelli. Importance measures in global sensitivity
analysis of nonlinear models. Reliability Engineering & System Safety, 52(1):1–17,
1996.

[107] Max D Morris. Factorial sampling plans for preliminary computational experiments.
Technometrics, 33(2):161–174, 1991.

[108] Adam Badawy, Emilio Ferrara, and Kristina Lerman. Analyzing the digital traces
of political manipulation: The 2016 russian interference twitter campaign. In 2018
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pages 258–265, 2018.

116

[109] Adam Fourney, Miklos Z Racz, Gireeja Ranade, Markus Mobius, and Eric Horvitz. Ge-
ographic and temporal trends in fake news consumption during the 2016 us presidential
election. In CIKM, volume 17, pages 6–10, 2017.

[110] Sahil Loomba, Alexandre de Figueiredo, Simon J Piatek, Kristen de Graaf, and Heidi J
Larson. Measuring the impact of covid-19 vaccine misinformation on vaccination intent
in the uk and usa. Nature human behaviour, 5(3):337–348, 2021.

[111] Talha Burki. Vaccine misinformation and social media. The Lancet Digital Health,
1(6):e258–e259, 2019.

[112] Warren Cornwall. Officials gird for a war on vaccine misinformation, 2020.

[113] Matthew W. Hughey. The who and why of qanon’s rapid rise. New Labor Forum,
30(3):76–87, 2021.

[114] Derek du Preez. Chatgpt has the potential to spread misinformation ‘at unprece-
dented scale’. https://diginomica.com/chatgpt-has-potential-spread-misinformation-
unprecedented-scale, 2023.

[115] Jack Brewster, Lorenzo Arvanitis, and McKenzie Sadeghi. Misinformation monitor:
January 2023. https://www.newsguardtech.com/misinformation-monitor/jan-2023/,
2023.

[116] Chatbots trigger next misinformation nightmare. https://www.axios.com/2023/02/21
/chatbots-misinformation-nightmare-chatgpt-ai, 2023.

[117] Josh A. Goldstein, Girish Sastry, Micah Musser, Renee DiResta, Matthew Gentzel, and
Katerina Sedova. Generative language models and automated influence operations:
Emerging threats and potential mitigations, 2023.

[118] Monther Aldwairi and Ali Alwahedi. Detecting fake news in social media networks.
Procedia Computer Science, 141:215–222, 2018. The 9th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2018) / The 8th Inter-
national Conference on Current and Future Trends of Information and Communication
Technologies in Healthcare (ICTH-2018) / Affiliated Workshops.

[119] Supanya Aphiwongsophon and Prabhas Chongstitvatana. Detecting fake news with
machine learning method. In 2018 15th International Conference on Electrical En-
gineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), pages 528–531, 2018.

[120] Jun Lin, Glenna Tremblay-Taylor, Guanyi Mou, Di You, and Kyumin Lee. Detecting
fake news articles. In 2019 IEEE International Conference on Big Data (Big Data),
pages 3021–3025, 2019.

[121] Stephanie Preston, Anthony Anderson, David J. Robertson, Mark P. Shephard, and
Narisong Huhe. Detecting fake news on facebook: The role of emotional intelligence.
PLOS ONE, 16(3):1–13, 03 2021.

117

[122] Kai Shu, Amrita Bhattacharjee, Faisal Alatawi, Tahora H Nazer, Kaize Ding, Man-
sooreh Karami, and Huan Liu. Combating disinformation in a social media age. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(6):e1385, 2020.

[123] Florian Saurwein and Charlotte Spencer-Smith. Combating disinformation on social
media: Multilevel governance and distributed accountability in europe. Digital Jour-
nalism, 8(6):820–841, 2020.

[124] Joanna M Burkhardt. Combating fake news in the digital age, volume 53. American
Library Association Chicago, IL, 2017.

[125] Karishma Sharma, Feng Qian, He Jiang, Natali Ruchansky, Ming Zhang, and Yan
Liu. Combating fake news: A survey on identification and mitigation techniques.
ACM Transactions on Intelligent Systems and Technology (TIST), 10(3):1–42, 2019.

[126] Tools that fight disinformation online. https://www.rand.org/research/projects/truth-
decay/fighting-disinformation/search.html.

[127] JA Gallo and CY Cho. Social media: Misinformation and content moderation issues
for congress. Congressional Research Service Report, 46662, 2021.

[128] David MJ Lazer, Matthew A Baum, Yochai Benkler, Adam J Berinsky, Kelly M Green-
hill, Filippo Menczer, Miriam J Metzger, Brendan Nyhan, Gordon Pennycook, David
Rothschild, et al. The science of fake news. Science, 359(6380):1094–1096, 2018.

[129] Antino Kim, Patricia L Moravec, and Alan R Dennis. Combating fake news on social
media with source ratings: The effects of user and expert reputation ratings. Journal
of Management Information Systems, 36(3):931–968, 2019.

[130] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the spread of mis-
information in social networks. In Proceedings of the 20th international conference on
World wide web, pages 665–674, 2011.

[131] Xinran He, Guojie Song, Wei Chen, and Qingye Jiang. Influence blocking maximization
in social networks under the competitive linear threshold model. In Proceedings of the
2012 siam international conference on data mining, pages 463–474. SIAM, 2012.

[132] Mei Li, Xiang Wang, Kai Gao, and Shanshan Zhang. A survey on information diffusion
in online social networks: Models and methods. Information, 8(4), 2017.

[133] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 137–146, 2003.

[134] Thomas M Liggett et al. Stochastic interacting systems: contact, voter and exclusion
processes, volume 324. springer science & Business Media, 1999.

[135] Giordano De Marzo, Andrea Zaccaria, and Claudio Castellano. Emergence of polar-
ization in a voter model with personalized information. Physical Review Research,
2(4):043117, 2020.

118

[136] Lúıs Carlos F Latoski, WG Dantas, and Jeferson J Arenzon. Curvature-driven growth
and interfacial noise in the voter model with self-induced zealots. Physical Review E,
106(1):014121, 2022.

[137] Robert Axelrod. The dissemination of culture: A model with local convergence and
global polarization. Journal of conflict resolution, 41(2):203–226, 1997.

[138] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the math-
ematical theory of epidemics. Proceedings of the royal society of london. Series A,
Containing papers of a mathematical and physical character, 115(772):700–721, 1927.

[139] Daryl J Daley and David G Kendall. Epidemics and rumours. Nature, 204(4963):1118–
1118, 1964.

[140] Daniel P Maki and Maynard Thompson. Mathematical models and applications: with
emphasis on the social, life, and management sciences. Prentice Hall, 1973.

[141] José RC Piqueira, Mauro Zilbovicius, and Cristiane M Batistela. Daley–kendal mod-
els in fake-news scenario. Physica A: Statistical Mechanics and its Applications,
548:123406, 2020.

[142] Saeed Jamalzadeh, Kash Barker, Andrés D González, and Sridhar Radhakrishnan.
Protecting infrastructure performance from disinformation attacks. Scientific Reports,
12(1):12707, 2022.

[143] Robert Axelrod, Joshua J Daymude, and Stephanie Forrest. Preventing extreme polar-
ization of political attitudes. Proceedings of the National Academy of Sciences, 118(50),
2021.

[144] Luc Steels. A self-organizing spatial vocabulary. Artificial life, 2(3):319–332, 1995.

[145] Xiang Niu, Casey Doyle, Gyorgy Korniss, and Boleslaw K Szymanski. The impact of
variable commitment in the naming game on consensus formation. Scientific reports,
7(1):1–11, 2017.

[146] Jierui Xie, Sameet Sreenivasan, Gyorgy Korniss, Weituo Zhang, Chjan Lim, and
Boleslaw K Szymanski. Social consensus through the influence of committed minorities.
Physical Review E, 84(1):011130, 2011.

[147] Jierui Xie, Jeffrey Emenheiser, Matthew Kirby, Sameet Sreenivasan, Boleslaw K Szy-
manski, and Gyorgy Korniss. Evolution of opinions on social networks in the presence
of competing committed groups. PLoS One, 7(3):e33215, 2012.

[148] Damon Centola, Joshua Becker, Devon Brackbill, and Andrea Baronchelli. Experi-
mental evidence for tipping points in social convention. Science, 360(6393):1116–1119,
jun 2018.

[149] Sreeja Nair, Kin Wai Ng, Adriana Iamnitchi, and John Skvoretz. Diffusion of social
conventions across polarized communities: an empirical study. Social Network Analysis
and Mining, 11:1–17, 2021.

119

[150] William W Hackborn, Tetiana Reznychenko, and Yihang Zhang. Consensus building
by committed agents. CODEE Journal, 12(1):2, 2019.

[151] David Galehouse, Tommy Nguyen, Sameet Sreenivasan, Omar Lizardo, G Korniss,
and B Szymanski. Impact of network connectivity and agent commitment on spread
of opinions in social networks. In Proceedings of the 5th International Conference on
Applied Human Factors and Ergonomics, pages 2318–2329, 2014.

[152] Andrew M Thompson, Boleslaw K Szymanski, and Chjan C Lim. Propensity and
stickiness in the naming game: Tipping fractions of minorities. Physical review E,
90(4):042809, 2014.

[153] Casey Doyle, Sameet Sreenivasan, Boleslaw K Szymanski, and Gyorgy Korniss. Social
consensus and tipping points with opinion inertia. Physica A: Statistical Mechanics
and its Applications, 443:316–323, 2016.

[154] Mauro Mobilia. Commitment versus persuasion in the three-party constrained voter
model. Journal of Statistical Physics, 151(1):69–91, 2013.

[155] Weituo Zhang, Chjan Lim, and Boleslaw K Szymanski. Analytic treatment of tipping
points for social consensus in large random networks. Physical Review E, 86(6):061134,
2012.

[156] Dina Mistry, Qian Zhang, Nicola Perra, and Andrea Baronchelli. Committed activists
and the reshaping of status-quo social consensus. Physical Review E, 92(4):042805,
2015.

[157] Benedek Rozemberczki and Rik Sarkar. Characteristic Functions on Graphs: Birds
of a Feather, from Statistical Descriptors to Parametric Models. In Proceedings of
the 29th ACM International Conference on Information and Knowledge Management
(CIKM ’20), page 1325–1334. ACM, 2020.

[158] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynam-
ics, and function using networkx. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[159] Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica journal,
10(1):37–71, 2005.

[160] How to tailor covid-19 vaccine information to your specific audience.
https://www.cdc.gov/vaccines/covid-19/hcp/tailoring-information.html.

[161] Mark Newman. Networks. Oxford university press, 2018.

[162] Bert Vogelstein, David Lane, and Arnold J. Levine. Surfing the p53 network. Na-
ture, 408(6810):307–310, November 2000. Number: 6810 Publisher: Nature Publishing
Group.

120

[163] Jingchun Chen and Bo Yuan. Detecting functional modules in the yeast protein–protein
interaction network. Bioinformatics, 22(18):2283–2290, September 2006.

[164] Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s
functional organization. Nature reviews genetics, 5(2):101–113, 2004.

[165] Matthew O. Jackson. Social and economic networks. Princeton University Press,
Princeton, N.J. Woodstock, 2011.

[166] Morris H DeGroot. Reaching a consensus. Journal of the American Statistical associ-
ation, 69(345):118–121, 1974.

[167] Nicholas Economides. The economics of networks. International Journal of Industrial
Organization, 14(6):673–699, October 1996.

[168] W Brian Arthur. Increasing returns and path dependence in the economy. University
of michigan Press, 1994.

[169] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in scale-
free networks. Physical review letters, 86(14):3200, 2001.

[170] István Z Kiss, Joel C Miller, Péter L Simon, et al. Mathematics of epidemics on
networks. Cham: Springer, 598:31, 2017.

[171] Thomas House. Modelling epidemics on networks. Contemporary Physics, 53(3):213–
225, 2012.

[172] Sebastiano A Delre, Wander Jager, Tammo HA Bijmolt, and Marco A Janssen. Will
it spread or not? the effects of social influences and network topology on innovation
diffusion. Journal of Product Innovation Management, 27(2):267–282, 2010.

[173] Daron Acemoglu, Asuman Ozdaglar, and Ali ParandehGheibi. Spread of (mis) infor-
mation in social networks. Games and Economic Behavior, 70(2):194–227, 2010.

[174] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015.

[175] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[176] Marinka Zitnik, Rok Sosič, Sagar Maheshwari, and Jure Leskovec. BioSNAP Datasets:
Stanford biomedical network dataset collection. http://snap.stanford.edu/biodata, Au-
gust 2018.

[177] Srijan Sengupta. Statistical Network Analysis: Past, Present, and Future, October
2023. arXiv:2311.00122 [stat].

121

[178] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph process-
ing. In Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of data, SIGMOD ’10, pages 135–146, New York, NY, USA, June 2010. Associ-
ation for Computing Machinery.

[179] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking Like a Vertex: A
Survey of Vertex-Centric Frameworks for Large-Scale Distributed Graph Processing.
ACM Computing Surveys, 48(2):25:1–25:39, October 2015.

[180] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Hideki Saito, Rakesh Krishnaiyer,
Mikhail Smelyanskiy, Milind Girkar, and Pradeep Dubey. Can traditional program-
ming bridge the Ninja performance gap for parallel computing applications? ACM
SIGARCH Computer Architecture News, 40(3):440–451, June 2012.

[181] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo
Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey.
Navigating the maze of graph analytics frameworks using massive graph datasets. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 979–990, New York, NY, USA, June 2014. Association for
Computing Machinery.

[182] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst.
hung. acad. sci, 5(1):17–60, 1960.

[183] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

[184] David J Earl and Michael W Deem. Parallel tempering: Theory, applications, and
new perspectives. Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.

[185] Robert H Swendsen and Jian-Sheng Wang. Replica monte carlo simulation of spin-
glasses. Physical review letters, 57(21):2607, 1986.

[186] Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling for various metropolis-
hastings algorithms. Statistical science, 16(4):351–367, 2001.

[187] Andrew Gelman, Walter R Gilks, and Gareth O Roberts. Weak convergence and op-
timal scaling of random walk metropolis algorithms. The annals of applied probability,
7(1):110–120, 1997.

[188] Hamsterster. Hamsterster social network. http://www.hamsterster.com.

[189] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an open source
software for exploring and manipulating networks. In Third international AAAI con-
ference on weblogs and social media, 2009.

122

[190] Yves F Atchadé, Gareth O Roberts, and Jeffrey S Rosenthal. Towards optimal scaling
of metropolis-coupled markov chain monte carlo. Statistics and Computing, 21:555–
568, 2011.

[191] Paul K Huth. Deterrence and international conflict: Empirical findings and theoretical
debates. Annual Review of Political Science, 2(1):25–48, 1999.

[192] Moshe Kress. Modeling armed conflicts. Science, 336(6083):865–869, 2012.

[193] Gerardo Minguela-Castro, Ruben Heradio, and Carlos Cerrada. Automated support
for battle decision making. Military Operations Research, 27(4):5–24, 2022.

[194] Thomas C Schelling. Arms and influence. In Strategic Studies, pages 96–114. Rout-
ledge, 2008.

[195] Frederick William Lanchester. Aircraft in warfare: The dawn of the fourth arm. Con-
stable limited, 1916.

[196] Manvi Sahni and Sumanta Kumar Das. Performance of maximum likelihood estimator
for fitting lanchester equations on kursk battle data. Journal of Battlefield Technology,
18(2):23–30, 2015.

[197] Thomas W Lucas and Turker Turkes. Fitting lanchester equations to the battles of
kursk and ardennes. Naval Research Logistics (NRL), 51(1):95–116, 2004.

[198] Ian R Johnson and Niall J MacKay. Lanchester models and the battle of britain. Naval
Research Logistics (NRL), 58(3):210–222, 2011.

[199] Jerome Bracken. Lanchester models of the ardennes campaign. Naval Research Logis-
tics (NRL), 42(4):559–577, 1995.

[200] Moshe Kress, Jonathan P. Caulkins, Gustav Feichtinger, Dieter Grass, and Andrea
Seidl. Lanchester model for three-way combat. European Journal of Operational Re-
search, 264(1):46–54, 2018.

[201] Moshe Kress. Lanchester models for irregular warfare. Mathematics, 8(5):737, 2020.

[202] Eduardo González and Marcelo Villena. Spatial lanchester models. European Journal
of Operational Research, 210(3):706–715, 2011.

[203] William R Caspary. Richardson’s model of arms races: description, critique, and an
alternative model. International Studies Quarterly, 11(1):63–88, 1967.

[204] Norman Z Alcock and Keith Lowe. The vietnam war as a richardson process. Journal
of Peace Research, 6(2):105–111, 1969.

[205] Jean-Christian Lambelet. A dynamic model of the arms race in the Middle East,
1953-1965. Society for General Systems Research, 1971.

123

[206] Seymour J Deitchman. A lanchester model of guerrilla warfare. Operations Research,
10(6):818–827, 1962.

[207] Hannes Risken and Hannes Risken. Fokker-planck equation. Springer, 1996.

[208] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272, 2020.

[209] Takuya Iwanaga, William Usher, and Jonathan Herman. Toward SALib 2.0: Ad-
vancing the accessibility and interpretability of global sensitivity analyses. Socio-
Environmental Systems Modelling, 4:18155, May 2022.

[210] Jon Herman and Will Usher. SALib: An open-source python library for sensitivity
analysis. The Journal of Open Source Software, 2(9), jan 2017.

[211] Francesca Pianosi and Thorsten Wagener. A simple and efficient method for global sen-
sitivity analysis based on cumulative distribution functions. Environmental Modelling
& Software, 67:1–11, 2015.

[212] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola,
Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Ro-
drigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin
Shen, and Omar G. Younis. Gymnasium, March 2023.

[213] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementa-
tions. Journal of Machine Learning Research, 22(268):1–8, 2021.

[214] Christopher W Moore. The mediation process: Practical strategies for resolving con-
flict. John Wiley & Sons, 2014.

[215] Claude-Hélène Mayer. Intercultural Mediation and Conflict Management Training.
Springer, 2020.

[216] Solomon M Hsiang, Marshall Burke, and Edward Miguel. Quantifying the influence of
climate on human conflict. Science, 341(6151):1235367, 2013.

[217] Christopher Cramer. Does inequality cause conflict? Journal of International Devel-
opment: The Journal of the Development Studies Association, 15(4):397–412, 2003.

124

[218] Frances Stewart, Douglas Holdstock, and Antonio Jarquin. Root causes of violent
conflict in developing countriescommentary: Conflict—from causes to prevention? bmj,
324(7333):342–345, 2002.

[219] Gerry O’Reilly. Aligning geopolitics, humanitarian action and geography in times of
conflict. Springer, 2019.

[220] Derek J Clark and Kai A Konrad. Asymmetric conflict: Weakest link against best
shot. Journal of Conflict Resolution, 51(3):457–469, 2007.

[221] J Paul Dunne, Maŕıa DC Garćıa-Alonso, Paul Levine, and Ron P Smith. Managing
asymmetric conflict. Oxford Economic Papers, 58(2):183–208, 2006.

[222] Frederick William Lanchester. Aircraft in warfare: The dawn of the fourth arm. Con-
stable limited, 1916.

[223] Dominic DP Johnson and Niall J MacKay. Fight the power: Lanchester’s laws of
combat in human evolution. Evolution and Human Behavior, 36(2):152–163, 2015.

[224] Lucas McDaniel, Erik Talvi, and Brian Hay. Capture the flag as cyber security in-
troduction. In 2016 49th hawaii international conference on system sciences (hicss),
pages 5479–5486. IEEE, 2016.

[225] Fabio Massimo Zennaro and Laszlo Erdodi. Modeling penetration testing with re-
inforcement learning using capture-the-flag challenges: trade-offs between model-free
learning and a priori knowledge. arXiv preprint arXiv:2005.12632, 2020.

[226] Crispin Cowan, Seth Arnold, Steve Beattie, Chris Wright, and John Viega. Defcon cap-
ture the flag: Defending vulnerable code from intense attack. In Proceedings DARPA
Information Survivability Conference and Exposition, volume 1, pages 120–129. IEEE,
2003.

[227] Matthew A Blake, Gerrit A Sorensen, James K Archibald, and Randal W Beard.
Human assisted capture-the-flag in an urban environment. In IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, volume 2,
pages 1167–1172. IEEE, 2004.

[228] Michael Novitzky, Paul Robinette, Michael R Benjamin, Danielle K Gleason, Caileigh
Fitzgerald, and Henrik Schmidt. Preliminary interactions of human-robot trust, cog-
nitive load, and robot intelligence levels in a competitive game. In Companion of the
2018 ACM/IEEE international conference on human-robot interaction, pages 203–204,
2018.

[229] Gorka Olalde Mendia, Lander Usategui San Juan, Xabier Perez Bascaran, Asier Bil-
bao Calvo, Alejandro Hernández Cordero, Irati Zamalloa Ugarte, Aday Muniz Rosas,
David Mayoral Vilches, Unai Ayucar Carbajo, Laura Alzola Kirschgens, et al. Robotics
ctf (rctf), a playground for robot hacking. arXiv preprint arXiv:1810.02690, 2018.

125

[230] Alexandros Merkouris, Varvara Garneli, and Konstantinos Chorianopoulos. Program-
ming human-robot interactions for teaching robotics within a collaborative learning
open space: Robots playing capture the flag game: Programming human-robot interac-
tions within a collaborative learning open space. In CHI Greece 2021: 1st International
Conference of the ACM Greek SIGCHI Chapter, pages 1–5, 2021.

[231] Eisha Akanksha, Neeraj Sharma, Kamal Gulati, et al. Review on reinforcement learn-
ing, research evolution and scope of application. In 2021 5th international conference
on computing methodologies and communication (ICCMC), pages 1416–1423. IEEE,
2021.

[232] Aurélien Géron. Hands-on machine learning with scikit-learn and tensorflow: Con-
cepts. Tools, and Techniques to build intelligent systems, 2017.

[233] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292,
1992.

[234] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[235] RICHARD Bellman. Dynamic programming, princeton univ. Press Princeton, New
Jersey, 1957.

[236] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3:9–44, 1988.

[237] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[238] Kenji Doya. Reinforcement learning in continuous time and space. Neural computation,
12(1):219–245, 2000.

[239] Hado Van Hasselt. Reinforcement learning in continuous state and action spaces.
Reinforcement Learning: State-of-the-Art, pages 207–251, 2012.

[240] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Reinforcement learning in
continuous action spaces through sequential monte carlo methods. Advances in neural
information processing systems, 20, 2007.

[241] Adarsh Sehgal, Hung La, Sushil Louis, and Hai Nguyen. Deep reinforcement learning
using genetic algorithm for parameter optimization. In 2019 Third IEEE International
Conference on Robotic Computing (IRC), pages 596–601. IEEE, 2019.

[242] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning. arXiv preprint
arXiv:1712.06567, 2017.

126

[243] Sean Gillies, Casper van der Wel, Joris Van den Bossche, Mike W. Taves, Joshua
Arnott, Brendan C. Ward, et al. Shapely, December 2022. Please cite this software
using these metadata.

[244] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent
control using deep reinforcement learning. In Autonomous Agents and Multiagent
Systems: AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017,
Revised Selected Papers 16, pages 66–83. Springer, 2017.

[245] Soummya Kar, José MF Moura, and H Vincent Poor. Qd-learning: A collaborative
distributed strategy for multi-agent reinforcement learning through consensus + inno-
vations. IEEE Transactions on Signal Processing, 61(7):1848–1862, 2013.

[246] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement
learning: An overview. Innovations in multi-agent systems and applications-1, pages
183–221, 2010.

[247] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and applications.
IEEE transactions on cybernetics, 50(9):3826–3839, 2020.

[248] Benjamin Golub and Matthew O Jackson. Naive learning in social networks and the
wisdom of crowds. American Economic Journal: Microeconomics, 2(1):112–149, 2010.

127

APPENDIX A: SUPPLEMENT TO CHAPTER 2

In this supplement we provide a description of our model using the updated Overview,

Design concepts and Details (ODD) protocol [94].

Overview, Design concepts, and Details

Purpose and patterns
The purpose of our model is to produce new, unobserved GPS locations of white-tailed deer

that are consistent with recorded GPS location data of white-tailed deer in the Midwest.

There are three patterns our model aims to reproduce.

1. The first pattern is the distribution of jumps (distance between two positions recorded

one after another) should follow a Laplace distribution as observed in our recorded

data.

2. The deer in our data move in one or more distinct spatial locations and occasionally

jump between them. We refer to these spatial locations as basins and the jumps

between them as basin hops. When animals are in one of these spatial locations,

their movements are constrained to a localized region. Therefore the second pattern is

reproducing movements in a single basin.

3. The final pattern is reproducing the hops between the basins.

Entities, state variables, and scales
Our model consists of the following three entities.

1. A deer agent that represents a single deer that moves individually in a basin,

2. a herd collective that represents a group of deer that undergo basin hops together, and

3. a world environment containing the herds and deer. The world initializes and runs

each simulation.

The state variables for each of the entities are summarized in Table 8.1, Table 8.2, and Table

8.3.

The spatial scale of our model is a single UTM zone as our GPS data employed the UTM

coordinate system and all data are in a single zone. We generated positions in smaller areas

(approximately 18 km2). We chose this smaller region to examine herd movements that are

close to each other and could overlap. A single time-step in our simulation is 5 hours, since

that was the resolution our GPS was measured. In our example simulations we ran our

model for 1000 steps (approximately 208 days).

128

Variable name Type and units Description
x float, dynamic; m The UTM Easting of a deer.
y float, dynamic; m The UTM Northing of a deer.

c1x float, static; unitless
Movement model parameter.
Controls size of basin in combination with c1y.

c1y float, static; unitless
Movement model parameter.
Controls size of basin in combination with c1x.

bx float, static; m−1 Laplace distribution scale parameter for UTM
Easting jump distribution.

by float, static; m−1 Laplace distribution scale parameter for UTM
Northing jump distribution.

cov mat float array, static; m2 Covariance matrix of UTM Easting and UTM
Northing data.

Table 8.1: Deer state variables.

Variable name Type and units Description
num deer int, static; deer The number of deer in the herd.

cx float, dynamic; m UTM Easting of center of basin.
cy float, dynamic; m UTM Northing of center of basin.

num crit jumps data int, jumps Scale for Poisson process.

xtrds float array, static;m
Basin hop trend removed from UTM
Easting data.

ytrds float array, static; m
Basin hop trend removed from UTM
Northing data.

deer list Deer list, static; deer object List of deer that are in the herd.
jump times int array, static; time-steps Time-steps which basin hops occur.

time int, dynamic; time-step Herd’s current time-step.

Table 8.2: Herd state variables.

Variable name Type and units Description
num herds int, static; herds Number of herds in a simulation.
herd sizes int array, static; deer Number of deer in each herd.
herd pos int tuple list, static; (m,m) Initial position of each herd.
herd list herd list, static; herd object List of herds in simulation.

Table 8.3: World state variables.

Process overview and scheduling
We designed our model to produce GPS locations of white-tailed deer in the Midwest mea-

sured at approximately 5 hour intervals, as this was the location and time-scale of our data.

There are two movement processes that we wished to capture, localized movement (within

129

basins) and uncommon large movements (basin hops).

Our data does not track every deer in a region, and thus we assumed that groups of

deer (herds) existed and our data tracked one deer in a group. We assumed that all deer in

a shared herd were constrained to the same area (basin), but had independent movements

from each other. When a basin-hop occurred, we assumed all deer in the herd underwent

the large movement together. These processes are captured through the herd’s and deer’s

“move” submodel.

The schedule of each time-step is as follows.

1. The world calls its “update” submodel, which includes:

(a) Each herd calls their “move” submodel, which includes:

i. Each deer calls their “move” submodel, in which they update their individ-

ual positions (x,y) according to the parameters of their herd and a random

component.

ii. The herd checks if a basin-hop should occur on the current time-step. If yes:

A. A basin-hop is sampled and all deer in the herd are moved according to

the sampled jump.

B. The center of the basin is moved according to the sampled jump, updating

cx and cy.

iii. time is incremented by one.

Design concepts

Basic principals

In designing our model we aimed to highlight the importance of EDA in model creation. This

concept is widely applicable to agent-based models of different phenomenon. We additionally

wanted to create a model that was able to reproduce three aspects of our data, non-Gaussian

distributed step distributions, localized movement (within basins), and uncommon large

movements (basin-hops). It is common to use Gaussian random walks of some flavor and/or

Levy flights as models for animal movement, but through our EDA we found these models

were not consistent with our data. Therefore, we used our data as a guide to build a model

that was more representative of our data. Namely, our model produces GPS locations of

white-tailed deer using a non-Gaussian random walk in combination with a basin-hopping

model to produce realistic simulated GPS positions. This model could be extended to study

other phenomenon related to deer movement, for example the spread of CWD.

130

Emergence

They key result of our model are the generated GPS locations. Specifically, jumps (differences

between adjacent locations) distributions being Laplace distributed, local movements (inside

basins), and uncommon large movements (basin-hops). In our model, the distribution of

jumps, and two movement patterns are imposed by the deer’s movement update rule. From

the deer’s movement rule, the spatial distribution of deer in a simulation emerge.

Adaptation

Our model has one adaptive behavior, whether or not a herd performs a basin-hop. This

behavior is modeled with indirect objective seeking. There are two rules herds follow to

produce basin-hops. First, herds sample multiple time-steps that they will perform a basin-

hop at. These distributions are trained on real data to produce a number of jumps similar

to the number observed in our data. The second rule is when a herd’s time is equal to one

of the basin-hop times, it samples a basin hop from a kernel density estimate trained on the

observed basin hops, and move all of the deer in its deer list and its center (cx,cy) according

to the sampled jump.

Objectives

Our model only has indirect objective seeking, so there are no objectives.

Learning

The model includes no learning.

Prediction

The adaptive behavior of basin-hopping utilizes implicit prediction. There are many reasons

that deer might disperse, for example finding a new food source or a dispersal event. Our

model is not attempting to explain how these predictions are actually made, but are modeling

them to produce results that are similar to those observed in our data.

Sensing

Deer are the only agents in this model. They are able to perfectly sense all of their state

variable. Their position (x,y) and movement parameters (c1x, c1y) are used directly to

update their positions, and the remaining variables are used to produce a random component

to their movement. Deer are also able to perfectly sense the center of a the herd they belong

131

to (cx, cy) but not any other herd. They are attracted to the center of the herd they belong

to.

Interaction

Deer do not directly interact with each other, as their inner-basin movements are indepen-

dent. Though deer who belong to a common herd are constrained to the same localized

regions (basins) as they are attracted towards the center of the herd. They also undergo

basin-hops together.

Stochasticity

Our model uses stochasticity in many ways. In the initialization, herds initial center could

be set using a random number generator. Herds are then randomly assigned state variables

by sampling distributions trained on our data to include variability in the herds. Using these

variables, they sample a number of basin-hops they will perform from an Poisson distribution

and when the basin-hops will occur from an exponential distribution. Once the herds have

been created, they populate themselves with deer. The deer’s initial positions are generated

randomly by adding separate random numbers, sampled from a normal distribution with

zero mean and unit variance, to the herds center (cx,cy). These additional random numbers

keep all of the deer from starting at the same location. Deer in different herds are randomly

assigned state variables, but deer in a single herd have the same state variables (excluding

x and y)

There is also stochasticity used when the model updates. When a deer moves, it adds a

random component to its new position sampling a distribution constructed from our data.

This keeps deer from making the same moves, and from deer just moving to the center

of the basin they are in. Additionally, when a herd undergoes a basin-hop it samples a

random jump from a distribution constructed from our data. We sample these jumps to add

variability in our model and produce results that differ from our data, but are consistent

with the data.

Collectives

We have one explicit collective in our model, herds. Herds are groups of deer that move in the

same localized areas (basins) and undergo basin hops together. Herds have their own state

variables (see Table 8.2). We included herds as a collective to approximate the movement

of deer that were not tracked in our data. We assumed that the deer that happened to be

tracked had some number of other untracked deer they stayed near. As discussed above the

132

deer in a herd stay in the same basin and undergo basin hops together. It was convenient

to model groups of deer as a collective instead of each individual deer on their own.

Observation

The purpose of our model is to produce new, realistic GPS locations of white-tailed deer.

Therefore the output of our model is the positions of each deer and the herd they belong

to. These data can be used to make density distribution plots of each herd, show the GPS

locations of each herd, and the individual GPS locations of each deer. World has a submodel

“draw” to draw each of the herds GPS locations for all deer. Herds has a submodel “draw”

to draw the GPS locations of each deer in the herd. Finally, deer has a submodel “draw”

that draws its GPS locations.

Initialization
A total number of herds, their sizes, and centers are defined. These parameters along with

distributions of c1x, c1y, bx, by, cov mat, num crit jumps data, xtrds, ytrds are passed to

an instantiation of world.

Each herd is passed their corresponding herd size and center, and all distributions which

were passed to world. The heard then randomly samples the distributions for its state

variables. Then the herd constructs a kernel density estimate from xtrds and ytrds to be

used to sample basin-hops later. Next the herd instantiates the total number of deer passed

from world to deer list. It passes a random initial location (see Sec. 8), and samples the

deers state variables. Each deer in a herd have the same state variables, except x and y.

Next the herd sets the parameter time to zero, and samples the number and times of basin

hops.

For each deer in a herd, it was passes a random initial location and state variables. These

are stored to be used in updating positions.

Input data
The model does not use input data to represent time-varying processes.

Submodels

World

init This submodel instantiates a simulation by spawning all of the herds to be

simulated.

draw This submodel calls the draw method for all of the herds, which draws the GPS

locations of all the deer.

133

update This submodel calls the “move” method for all of the herds.

Herd

init This submodel instantiates a herd. It samples the state variables for itself, and

those to be passed to the deer that belongs to the herd. It then spawns all of the deer that

belong to the herd.

get params This submodel samples all of the distributions that are passed to a herd

by world. This is done by generating a uniform random number between zero and the total

number of samples in the distributions. Then the parameters in the position that corresponds

to that random number are returned.

draw This submodel draws the GPS location of all deer in the herd.

make kde This submodel smooths xtrds and ytrds for a herd. Then combines xtrds

and ytrds as a list of two dimensional points. Then each adjacent point is subtracted to

arrive at a list of jumps. Next the average distance between all jumps in list is found. Half

of this average distance was used as the bandwidth for a Gaussian kernel density estimate

(KDE) fit on the list of jump. The resulting KDE can be sampled to generate basin-hops.

move This submodel calls the move function for every deer in the herd. Then it checks

if a basin-hop should occur on the current time-step. If so it samples a jump from the

KDE produced by “make kde”. This jump is added to the center of the herd (cx,cy) and

every deer’s position in the herd. Finally, time is incremented by one to advance the current

time-step.

lasso times The submodel samples a number of simulated basin-hops from a Poisson

distribution. The argument of the Poisson distribution is the state variable num crit jumps data.

After it generates the number of simulated basin-hops, it samples a time-step for each step

to occur. The cumulative sum of these times is returned.

Deer

init This submodel instantiates a deer.

draw This submodel plots the GPS location of a simulated deer.

134

rng This submodel uses cov mat to generate normally distributed jumps. It then uses

a copula (this requires the state variables bx and by) to transform the normally distributed

jumps to Laplace distributed ones.

move This submodel updates a deers position. The deer move towards the center of the

basin they belong to, and sample “rng” to add a random component to their new position.

135

APPENDIX B: SUPPLEMENT TO CHAPTER 4

DeGroot Model
In this Supplement, we analyze and adapt a second model, the DeGroot model, [166] to

each of the policies discussed in the main document. The DeGroot model was chosen for

its mathematical transparency, with the goal of assessing its ability to describe the effects

of disinformation-mitigation policies. In Subsection 8, we review the basic properties of

the DeGroot model. In the following subsections, the model is then modified to include

disinformation-mitigation strategies. Section 8, Section 8, and Section 8 contain figures il-

lustrating the effects of content moderation, education, and counter-campaigns, respectively,

in this model.

DeGroot Model
The model employed in the main document requires moderately intensive computational

effort to explore the wide ranges of anti-disinformation policies, their model implementations

and social graphs. It would be convenient to have an analytic model of the spread of

disinformation that provides insight and intuition with minimal computational effort. A

model that employs a linear update, contains social-network structure and has an equivalent

of a committed agent is the DeGroot model. [166] We adapt this model to include the three

interventions policies (education, content moderation, and counter campaigns) we consider

in this work and their effects on disinformation dynamics.

In the DeGroot model, we consider a group of N agents connected by a network, which

can be represented by an adjacency matrix A = [aij]. Each agent forms its belief as a

weighted average of the beliefs of its neighbors. Formally, if x(t) = [x1(t), x2(t), . . . , xN(t)]T

represents the beliefs of the N agents at time t, then the belief of agent i at time t + 1 is

given by the discrete-time update

xi(t+ 1) =
N∑
j=1

tijxj(t), (8.1)

or in matrix notation,

x(t+ k) = Tkx(t). (8.2)

Here, T = [tij] is referred to as the trust matrix, with tij representing the (constant) weight

that agent i assigns to agent j when updating its belief; in other words, tij quantifies the

extent to which agent i trusts agent j. The trust matrix T is derived from the adjacency

matrix A by normalizing each row to sum to one; i.e., tij = aij/
∑N

k=1 aik. Starting from

136

some initial set of beliefs x(0), this model repeatedly updates each agent’s belief based on a

weighted sum of all other agents’ beliefs, weighted by levels of trust.

In this framework, we have an interpretable update rule in which tij represents a trust

level that varies from tij = 0 for no trust to tij = 1 for complete trust; the model can

be initialized to these discrete values, or trust levels can be allowed to be continuous. In

Fig. 8.1, we show examples of symmetric, directed graphs with equal weights, and their

corresponding trust matrices. In general, however, the graph represented by A is weighted

and directed: I may listen to you, but you need not listen to me. It is through flexibility in

T that we include committed agents and mitigation strategies in the DeGroot model; in the

context of the DeGroot model, committed agents are referred to as “stubborns”.[248]

Many details of the model dynamics are easily revealed by considering the structure of

T. By construction, T is a right-stochastic matrix and thus has a spectral radius of 1;

this is an important property, as updates are obtained using progressively higher powers of

T, as in (8.2). At least one eigenvalue is 1 and corresponds to a right eigenvector whose

elements are all 1. Eigenvalues associated with left and right eigenvectors are equal for square

matrices; this implies that T has at least one left eigenvector associated with an eigenvalue

of 1. If T can be represented as a directed, weighted graph that is strongly connected (i.e.,

irreducible), then we can apply the Perron-Frobenius theorem that states that there is a

unique left eigenvector v that sums to one and corresponds to an eigenvalue of 1. This

eigenvector determines the final consensus belief; specifically, the final state is given by

xfinal = vTx(0), (8.3)

where we see that v represents the long-term influence of the agents. This equation identifies

v, which is the eigenvector centrality of A, as the relevant parameter for describing the

spread of information, including disinformation. Intuitively, eigenvector centrality measures

a node’s influence in a network by considering both the number and quality of its connections,

recursively factoring in the influence of neighboring nodes. It is also immediately clear

from (8.3) that initial beliefs x(0) contribute to the final consensus. A block structure in

T represents independent echo chambers that evolve according to the reducibility class of

each block. It is possible that T is periodic, although some structures (e.g., upper/lower

triangular or symmetric) guarantee that it is aperiodic. We can also examine the second

largest eigenvalue of T to obtain the eigenvalue gap, which reveals the speed of convergence;

larger gaps are associated with faster convergence.

We now extend the DeGroot model to include the three disinformation-mitigation strate-

gies – education, content moderation, and counter campaigns – that we consider in this work

137

0

1

2
3

4

5

6

7

8

9

0

1
2

3

4

5

6
7

8

9

0 1

2
3

4

56

7

8

9

Figure 8.1: Example graphs and their corresponding trust matrices. Despite its simplicity,
the DeGroot model contains a complete social network structure as a directed and weighted
graph. Social network graphs are shown in the top row, and their corresponding trust
matrices are shown in the bottom row.

and their effects on the spread of disinformation in the presence of stubborns. We model

these interventions as modifications to the trust matrix and/or the initial condition and

analyze their impact through the lens of the eigenvalue spectrum and eigenvectors of the

modified trust matrix. For each mitigation strategy, we begin with a (scale-free) Barabasi-

Albert graph with 100 nodes. Each edge is then converted into two directed arcs that point

in opposite directions, and their weights are determined using social transitivity (described

in the main document). This method of generating directed and weighted edges guaran-

tees that the corresponding trust matrix is irreducible, because the graph is clearly strongly

connected. Opinions have values between 0 and 1; here, we assume that 0 is the truth

and that 1 is disinformation. Values between 0 and 1 indicate a bias towards the truth or

disinformation, with the exception of 0.5, which indicates a completely neutral position.

Stubborns are added to the model by selecting an individual i and setting tii = 1, with

tij = 0 for i 6= j. Importantly, the addition of stubborns make the trust matrix reducible,

and consensus is not necessarily reached. However, opinions will converge to a value that

depends on the structure of the trust matrix and on agents’ initial opinions. One important

scenario is that in which all stubborns have the same opinion. In such a case, any node that

is reachable from a stubborn will converge to the stubborn’s opinion. Using our method

for generating trust matrices guarantees that the presence of one or more stubborns with

the same opinion, and no stubborns with a different opinion, will eventually converge the

network to a consensus of their opinion. Unless otherwise stated, xi(0) = 1 if an individual is

stubborn, and is initially 0 otherwise, in each of our scenarios; i.e., stubborns are committed

to disinformation, and all other agents initially believe the truth. The goal of mitigation

strategies is to minimize xfinal when a consensus is reached, or if a consensus is not reached,

138

then the goal is to push opinions towards the truth or to minimize the eigenvalue gap when

opinions tend towards disinformation.

Education
Skeptical and attentive education strategies are modeled by altering the tij based on the

type of education received by each agent i. In the skeptical education strategy, the values

of the diagonal elements of T of committed agents are decreased; this reflects a weaker

commitment to one’s own belief. In the attentive strategy, the tij of neighbors adjacent to

stubborn agents are decreased. To test both education strategies, utilized Barabási-Albert

graphs with 100 agents, selecting 10 of these agents to be committed to opinion A, leaving

the remainder uncommitted to opinion B. The edges of these graphs are then transformed

into two directed edges in both directions, weighted using social transitivity as described

in the main document. We generate a trust matrices, {T} by normalizing the adjacency

matrices of these graphs, and then we apply our education mitigation strategies to these

trust matrices.

The skepticism educational strategy reduces diagonal elements tii of the trust matrix

by a factor σ < 1, and the remaining elements corresponding to a committed individual’s

neighbors (determined by the adjacency matrix) are increased by equal parts of σtii, so

that the row still sums to 1. Such a change to T changes the eigenvalue spectrum. Most

importantly, it guarantees that tii < 1, ensuring that the matrix is reducible, and a consensus

opinion is reached at a value less than 1. In Fig. 8.2, we show the consensus opinion versus

σ. For each value of σ, we executed 50 simulations and averaged over initial conditions and

graphs; for each value of σ, the average consensus opinion reached is shown with a black

x, and the value each simulation converged to is shown with a grey dot. When there is

no education (σ = 0), the stubborns’ opinion takes over, and all simulations converge to

disinformation. As the stubborns become more skeptical (σ increases), the average value of

consensus decreases and approaches a constant value of approximately 0.2. The variance in

the consensus value is approximately constant for all values of σ > 0.

The attentive strategy is modeled by increasing elements tij that correspond to non-

stubborn individuals i listening to other non-stubborn individuals j with initial opinions of

zero, by a factor α > 1, and reducing elements ti,k equally such that the rows of T sum to 1.

Such a change biases individuals to listen more to true opinions. The attentive educational

strategy does not affect the opinions of stubborn individuals, which means that eventually,

the population will still converge to the disinformation opinion. However, the attentive

strategy can affect how quickly the model converges, which is measured by the eigenvalue

gap. A smaller eigenvalue gap is associated with a longer convergence time. In Fig. 8.3,

we examine the eigenvalue gap versus α in 50 simulations. The blue line shows the average

139

0.00 0.05 0.10 0.15 0.20 0.25

0.2

0.4

0.6

0.8

1.0

op
in

io
n

individual
average

Figure 8.2: Final consensus opinions versus the education parameter σ. For each value of σ,
gray circles and dark x indicate the value each individual run converged to and the average
final opinion over 50 runs, respectively. The final opinion decreases toward the truth with
more skepticism education (larger values of σ).

eigenvalue gap in the absence of a mitigation strategy, and the orange line shows the average

eigenvalue gap when long-term education is employed. The 95% confidence intervals for

both are shown as shaded regions. The attentive education mitigation strategy was applied

to the same 50 networks examined in the absence of a mitigation strategy, and thus, both

lines share random fluctuations. When no mitigation is applied, the eigenvalue gap is fairly

constant with respect to α. Attentive education reduced the eigenvalue gap slightly as α

increases, but not substantially.

The results for the skepticism and attentive education strategies we obtained using a

DeGroot model are consistent with what we found when studying such strategies using the

binary agreement model. As we found using that model, reducing people’s commitment to

disinformation can largely counteract the stubborn’s ability to sway individuals’ opinions.

However, solely biasing people towards the truth is not sufficient to overcome the influence

of stubborns.

Content Moderation
In our model of disinformation spread, we first create a Barabási-Albert graph with 100

agents, selecting 10 of these agents to be committed to opinion A, leaving the remainder

uncommitted to opinion B. The edges of this graph are then transformed into two directed

edges in both directions, weighted using social transitivity as described in the main document.

We create three copies of this graph for distinct analyses. In the first copy, we randomly

140

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

ei
ge

nv
al

ue
 g

ap

no mitigation
attentive education

Figure 8.3: Eigenvalue gap versus the education parameter α. The blue line shows the
eigenvalue gap when no education is employed, while the orange line shows the eigenvalue
gap for increasing amounts of attentive education. The eigenvalue gap reduces slightly as α
increases meaning the rate that the model converges to the disinformation is slightly slowed.

select n committed nodes to remove, where n varies from 0 to 9. In the second copy, we

systematically remove n committed agents based on their eigenvector centrality. To do this,

we compute eigenvector centrality, remove the node with the highest centrality, recompute

the centrality, and repeat this process until n agents have been removed. The third copy

remains unaltered, serving as a control. For each of these three graphs, we generate a

trust matrix by normalizing the adjacency matrix and then calculate the eigenvalues of the

trust matrices. We also compute the difference in the two largest eigenvalues, ignoring any

repeated values (e.g., if the eigenvalues are 1, 1, 0.75, then the eigenvalue gap is 0.25).

This entire process is repeated 50 times. For each value of n, ranging from 0 to 9, we

average the 50 runs and plot this average as a solid line, also calculating a 95% confidence

interval to create a band around the solid lines. This methodology allows us to explore the

effects of content moderation through both random and strategic removal of influential nodes

on the dynamic behavior of the system, as characterized by the eigenvalue gap. Removing

individuals from the graph alters the dominant eigenvector and the eigenvalue spectrum of T,

thereby shifting control away from the removed agents. However, as discussed previously, if

we do not remove all of the stubborns, then the population opinion will eventually converge to

the disinformation opinion. As before, we can then examine the eigenvalue gap to determine

whether the rate of convergence changes.

In Fig. 8.4, we show the eigenvalue gap versus the number of committed individuals

141

Figure 8.4: Eigenvalue gap versus number of committed agents removed. The eigenvalue
gap versus removing agents randomly is shown in orange, and for removing agents based
on eigenvalue centrality in green. As a baseline we show the eigenvalue gap when not
removing agents in blue. Solid lines are the average of 50 simulations, while shaded regions
are 95% confidence intervals. Removing agents with either strategy reduces the eigenvalue
gap, however, a targeted approach based on eigenvalue centrality reduces the eigenvalue gap
a a faster rate.

removed from the model. Results for removing individuals randomly are shown with a

solid orange line, and results for removing individuals based on their level of influence are

shown with a solid green line. We also show results for removing no individuals with a solid

blue line, for comparison. The results shown with all three solid lines were obtained using

the same graphs and are averages over 50 simulations. The shaded regions indicate 95%

confidence intervals. When no individuals are removed, the eigenvalue gap is approximately

0.07. When stubborns are removed from the graph with either approach, the eigenvalue gap

tends towards zero. However, when stubborns are removed based on eigenvalue centrality, the

eigenvalue gap converges towards zero faster than when stubborns are removed randomly.

Therefore, in this model, a targeted approach to removing stubborns slows the spread of

disinformation more than does removing individuals randomly.

Counter Campaigns
Counter campaigns are modeled by introducing another group of stubborns who are commit-

ted to the truth. The social networks we consider contain 3 subgroups of agents: 1) agents

spreading disinformation (nA nodes), 2) agents running a counter campaign for truth (nB

nodes), and 3) regular agents comprising the remaining nodes. We model the committed

142

agents as ”stubborn” in the DeGroot model by setting their self-weights to 1. This ensures

that they do not update their opinions over time. The initial opinion vectors for the groups

are xi(0) = 1 if you are committed to A, and 0 otherwise.

In Fig. 8.5 we show many examples of counter-campaigns of various sizes. As in our

previous simulations, we began with a Barabási-Albert graph with 100 agents, selecting 10

of these agents to be committed to opinion A, and nB agents to be committed to B, and the

remaining to be uncommitted to B. The edges of this graph are then transformed into two

directed edges in both directions, weighted using social transitivity. Each subplot of Fig. 8.5

shows results for a values of nB between 0 and 10, i.e., for a different size of counter-campaign.

In each subplot, each individual’s opinion versus the number of iterations is shown as a grey

line. The committed agents’ opinions can be seen as horizontal lines with values 0 and 1.

Uncommitted individuals’ opinions begin at zero and grow quickly to values between 0 and

1. As discussed previously, when all of the stubborns are committed to disinformation, all

individuals eventually become committed to the disinformation opinion, as can be seen in the

upper left subplot. However, as the size of the counter-campaign grows, uncommitted agents’

opinions converge to opinions that are closer to the truth. When nB = nA, uncommitted

agents’ opinions converge to values near 0.5.

Conclusion
Understanding and combating the spread of disinformation in social networks is a critical

challenge. Through the lens of the DeGroot model, we have examined three potential inter-

ventions and their impacts on the dynamics of belief formation. Our results highlight the

importance of network topology and the distribution of trust in shaping these dynamics. In

comparison with the more complete model in the main document, the DeGroot model allows

for extremely fast exploration of parameter space, mainly related to the cost of diagonalizing

T .

The results we obtained using the DeGroot model resemble the results of the binary

agreement model in the main document. Namely, a skepticism education strategy was by

far the most effective way to combat disinformation, while an attentive one had little to

no affect. In our content moderation policies, we again saw if we do not remove all of the

committed agents, eventually the committed agents will convince everyone of their opinion.

However, in the DeGroot model our targeted approach performed better than our random

approach, however, they both performed similarly. Counter-campaigns seemed to have a

stronger effect in the DeGroot model compared to in the binary agreement model. However

the initial positions of the counter-campaign agents were placed randomly when exploring

the DeGroot model, which possibly gives those agents a further reach than those conisdered

in the binary agreement model.

143

Figure 8.5: Agents opinions versus time in the presence of counter-campaigns. Agent’s
opinions versus the number of iterations of the DeGroot model are shown in grey for various
sizes of counter-campaigns. For each size of counter-campaign (nB), the size of the minority
committed to the disinformation is held constant (nA = 10). As the counter-campaign grows,
uncommitted agents converge to opinions closer to the truth. When the counter-campaign
is equal in size to the minority committed to disinformation, uncommitted agents converge
to opinions near .5.

144

The DeGroot model allowed us to quickly explore some of our mitigation strategies, but

its simplicity limits the applicability of results derived from using it. Utilizing the binary

agreement model in the main document allowed us to incorporate more complex attributes,

such as nonlinearities. Nonetheless, further research is needed to develop more sophisticated

models and strategies for combating disinformation in social networks.

Content Moderation Figures
This section contains all of the results for content moderation applied to various artificial

social networks. Each plot corresponds to the graph type listed in the caption. Results for

removing nodes based on their level of influence are shown with solid lines, and those for

removing nodes randomly are shown with dashed lines. The colors of the lines represent the

percentage of the total nodes that were removed. Each opaque line shows the average of 5

simulations, and each transparent line shows results for a single simulation.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.6: Barbell graph.

145

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.7: Complete graph.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.8: Erdos-Renyi graph with p = .02.

146

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.9: Erdos-Renyi graph with p = .12.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.10: Erdos-Renyi graph with p = .25.

147

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.11: Grid graph.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.12: Watts-Strogatz random graph with k = 8 and p = 1.

148

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.13: Watts-Strogatz random graph with p = 1 and k = 48.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.14: Watts-Strogatz small world graph with p = 1 and k = 100.

149

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.15: Watts-Strogatz small world graph with p = .5 and k = 8.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.16: Watts-Strogatz small world graph with p = .5 and k = 48.

150

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.17: Watts-Strogatz small world graph with p = .5 and k = 100.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.18: Barabasi-Albert graph with m = 4.

151

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.19: Barabasi-Albert graph with m = 4.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.20: Barabasi-Albert graph with m = 24.

152

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

none removed
0.25% removed
0.5% removed
1.0% removed
2.0% removed
2.5% removed

Figure 8.21: Barabasi-Albert graph with m = 50.

153

Education Figures
This section contains all of the results for applying early and late education to various

artificial social networks. Each plot corresponds to the graph type listed in the caption. We

show the effects of early education with an orange dashed line, late education with a green

dotted line, a combination of both with a solid blue line, and no education with a black

dot-dashed line. Each opaque line shows the average of 30 runs, and transparent lines show

results for individual runs.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
skepticism
attention

Figure 8.22: Barbell graph.

154

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

no
both
skepticism
attention

Figure 8.23: Complete graph.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
early
late

Figure 8.24: Erdos-Renyi graph with p = .02.

155

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

no
both
early
late

Figure 8.25: Erdos-Renyi graph with p = .12.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
skepticism
attention

Figure 8.26: Erdos-Renyi graph with p = .25.

156

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

no
both
skepticism
attention

Figure 8.27: Grid graph.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
early
late

Figure 8.28: Watts-Strogatz random graph with p = 1 and k = 8.

157

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

no
both
early
late

Figure 8.29: Watts-Strogatz random graph with p = 1 and k = 48.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
skepticism
attention

Figure 8.30: WSR25.

158

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

no
both
early
late

Figure 8.31: Watts-Strogatz small world graph with p = .5 and k = 8.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
early
late

Figure 8.32: Watts-Strogatz small world graph with p = .5 and k = 48.

159

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

no
both
skepticism
attention

Figure 8.33: Watts-Strogatz small world graph with p = .5 and k = 100.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
skepticism
attention

Figure 8.34: Barabasi-Albert graph with m = 4.

160

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

no
both
skepticism
attention

Figure 8.35: Barabasi-Albert graph with m = 24.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

no
both
skepticism
attention

Figure 8.36: Barabasi-Albert graph with m = 50.

161

Counter-Campaign Figures
This section contains all of the results for applying counter-campaigns to various artificial

social networks. Each plot corresponds to the graph type listed in the caption. As before,

we show the results for no intervention with a black dot-dashed line. We show the effects of

a small counter-campaign (pb = .05) with a solid blue line and of a large counter-campaign

(pb = .15) with a dashed orange line. Each opaque line shows the average of 10 simulations,

and transparent lines show the results for individual runs.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

Figure 8.37: Barbell graph.

162

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

pb = 0
pb = . 05
pb = . 15

Figure 8.38: Complete graph.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

Figure 8.39: Erdos-Renyi graph with p = .02.

163

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

pb = 0
pb = . 05
pb = . 15

Figure 8.40: Erdos-Renyi graph with p = .12.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

Figure 8.41: Erdos-Renyi graph with p = .25.

164

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

pb = 0
pb = . 05
pb = . 15

Figure 8.42: Grid graph.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

Figure 8.43: Watts-Strogatz random graph with p = 1 and k = 8.

165

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

pb = 0
pb = . 05
pb = . 15

Figure 8.44: Watts-Strogatz random graph with p = 1 and k = 48.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

Figure 8.45: WSR25.

166

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

pb = 0
pb = . 05
pb = . 15

Figure 8.46: Watts-Strogatz small world graph with p = .5 and k = 8.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

Figure 8.47: Watts-Strogatz small world graph with p = .5 and k = 48.

167

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

pb = 0
pb = . 05
pb = . 15

Figure 8.48: Watts-Strogatz small world graph with p = .5 and k = 100.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

Figure 8.49: Barabasi-Albert graph with m = 4.

168

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0
n B

pb = 0
pb = . 05
pb = . 15

Figure 8.50: Barabasi-Albert graph with m = 24.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
pa

0.0

0.2

0.4

0.6

0.8

1.0

n B

pb = 0
pb = . 05
pb = . 15

Figure 8.51: Barabasi-Albert graph with m = 50.

169

	INTRODUCTION
	DATA-DRIVEN AGENT-BASED MODEL BUILDING FOR ANIMAL MOVEMENT THROUGH EXPLORATORY DATA ANALYSIS
	A GLOBAL SENSITIVITY ANALYSIS OF AN AGENT-BASED MODEL OF CHRONIC WASTING DISEASE
	MATHEMATICAL MODELING OF DISINFORMATION AND EFFECTIVENESS OF MITIGATION POLICIES
	AN ATTRIBUTE-PRESERVING METHOD TO MINIATURIZE LARGE SOCIAL NETWORKS
	STOCHASTIC DIFFERENTIAL EQUATION BASED MODELING OF DETERRENCE
	APPLYING REINFORCEMENT LEARNING TO AGENT-BASED SIMULATIONS OF CONFLICT
	CONCLUSION
	BIBLIOGRAPHY
	APPENDIX A: SUPPLEMENT TO CHAPTER 2
	APPENDIX B: SUPPLEMENT TO CHAPTER 4

