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ABSTRACT 

 Many biotechnological efforts in plants have been proposed to address issues around 

climate change, sustainability, and food security. These include the modification of the oilseed 

crop Camelina sativa to improve the efficiency with which it produces oil from captured carbon, 

to the suppression of photorespiration and enhancement of yield in crops by engineering a Carbon 

Concentrating Mechanism into them. However, research and development efforts to use 

biotechnological interventions to improve plants and microbes have been hampered by their 

extreme complexity. Many of these bioengineering efforts seek to modify the rates of in vivo 

biochemical reactions – referred to hereafter as fluxes – in order to improve the efficiency or yield 

with which a desired product(s) is produced. Therefore, these efforts require the characterization 

and modification of the organism’s metabolic activity. As in other areas of engineering, these 

processes can be aided by the use of quantitative modeling.  

In the case of metabolic modeling, multiple approaches already exist. These include the 

use of simplified compartmental models (Chapter 2) and enzyme-based modeling (Chapter 4), as 

well as constraint-based approaches such as the linear-optimization-based Flux Balance Analysis 

(Chapter 3) and the nonlinear regression based Metabolic Flux Analysis (Chapter 2). Although 

these methods are rarely used in tandem, they are mathematically interrelated and can be used to 

validate and/or corroborate one another’s findings. Indeed, previous literature in the area of 

metabolic modeling has frequently paid short shrift to the importance of validation and model 

selection in this area of study, calling into question the biological relevance and accuracy of many 

modeling studies.  

 I begin with a discussion of challenges and prospects for future development in the 

statistical evaluation of metabolic models (Chapter 1), emphasizing the need for cross-comparison 

of multiple techniques, which I put into practice in later chapters. Emphasis is put on the need for 

careful validation of 13C-Metabolic Flux Analysis findings using multiple lines of evidence and 

on the usefulness of validating Flux Balance Analysis flux predictions using estimates from 13C-

Metabolic Flux Analysis.  

I apply these methodological insights to studies of Camelina sativa and its relative 

Arabidopsis thaliana. I start with a 13C-Metabolic Flux Analysis study of the metabolism of 

photosynthesizing leaves of Camelina sativa (Chapter 2). By modeling the stable isotopic labeling 

levels of Calvin-Benson intermediates with a series of polyexponential models, I corroborate the 



 

 

study’s 13C-Metabolic Flux Analysis findings, resulting in a more detailed model of C. sativa’s 

leaf metabolism and resolving a decades-old mystery in the labeling of these metabolites. 

Following this, I present a novel method of incorporating multi-omic datasets into FBA 

predictions of metabolic fluxes in the closely related organism A. thaliana (Chapter 3). I 

demonstrate that this new method successfully improves agreement between FBA and 13C-MFA 

flux maps of A. thaliana, setting the stage for improved FBA and metabolic engineering insight 

into the related C. sativa. 

Finally, I turn my attention to reaction-diffusion modeling. In Chapter 4, I apply enzyme-

based and spatial modeling techniques to understand the net CO2 fixation and light-use efficiency 

implications of incorporating a biophysical Carbon Concentrating Mechanism into a C3 plant.  

After some concluding remarks in Chapter 5, I present two additional studies that are 

related either to the quantitative modeling of plants or metabolic networks, but which are not 

directly related to the rest of the investigations in this thesis. First, I investigate the extent to 

which the kinds of tissue-specific gene expression patterns utilized in Chapter 3 are conserved 

across all flowering plants, providing evidence that such an approach may be broadly usable in 

plant metabolic modeling. Finally, I present interactive educational materials that teach the 

underlying theory for all of the metabolic modeling approaches used in the above studies. I 

implemented these materials into an intensive workshop series put on at Michigan State 

University and demonstrate that participants’ self-assessed confidence in the techniques taught 

increased significantly. 
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PREFACE 

“Two things that in my opinion reinforce one another and remain eternally true are: Do 

not quench your inspiration and your imagination, do not become the slave of your 

model; and again: Take the model and study it, otherwise your inspiration will never 

become plastically concrete.” – Vincent van Gogh, in a letter to Theo van Gogh  

There are many ways of conceptualizing what it is we do as “scientists” and what it is about the 

scientific process – nebulous and ill-defined as it is – that makes it so unusually effective at 

making predictions about the natural world and enabling new technologies. In my mind, its 

power derives in large part from the continuous back-and-forth between empirical measurement 

and model-making.  

 That the interplay between theory and observation is key to the scientific method is by no 

means a new observation, but I think we should take a moment to consider why we need both 

theory and observation and not just one or the other to make sense of the world. When we 

endeavor to understand something using reason alone, we end up writing something like Plato’s 

Timaeus: admirably creative and logically constructed, but unmoored entirely from the 

inconvenient details of how things actually work. On the other hand, if we were to try to 

understand the world using observation alone, we would accomplish nothing but an 

accumulation of miscellaneous measurements with no ability to build out of them an 

understanding of natural phenomena. To summarize: there are an infinite number of 

“reasonable” explanations of how the world works and an infinite number of observations that 

could be made about it, but it is only by combining these explanations and observations that we 

can develop a robust understanding.  

 In reality, this intricate dance between theory and observation is much harder than we 

usually like to admit and, as scientists, we are prone to missteps. Here, I will focus on those areas 

of science where we gather quantitative data about natural phenomena and then build and 

evaluate mechanistic, quantitative models to try to explain these data. We may fit a model to a 

dataset, but find that this model generalizes poorly. We might conclude, based on a model fit, 

that our pet hypothesis about an important characteristic of a system was correct, not realizing 

that a simpler model that does not invoke that characteristic at all actually fits our observations 

even better. We might rigorously validate some aspect of a model, but then use it in ways that 

have not been validated. Or, we might fixate on using one specific lens to examine our 
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observations, when the use of multiple lenses to look at the system from different angles and at 

different scales might reveal more about it and, through consilience, make us more confident in 

our findings.  

 But where there are problems, there are also opportunities, so I have worked throughout 

my Ph.D. to identify and address such challenges and, in doing so, generate new insights in the 

area of the quantitative modeling of photosynthetic metabolism. Towards this end, in this thesis I 

present work on (i) the development and exploration of different modeling techniques, (ii) the 

use these different techniques as lenses through which to contextualize data, and (iii) the 

statistical interrogation of model fits and, more generally, the use of modeling in the study of 

metabolism.  

 The admittedly abstract motivations that inspired much of the work in this thesis has 

resulted in it being composed of an unusually diverse set of studies, unified loosely by a focus on 

rigorous development and analysis of models describing photosynthetic metabolism. Despite 

these abstract motivations, however, the products of the work are concrete, and include:  

1. A resolution to a many-decades-old mystery in the labeling patterns of photosynthetic 

intermediates, pointing towards a previously underappreciated cycling between vacuolar 

and cytosolic sugars in photosynthesizing leaves.  

2. The first demonstration of an algorithm that successfully improves the accuracy of Flux 

Balance Analysis predictions in a whole-plant model using transcriptomic or proteomic 

data.  

3. Spatially-resolved reaction-diffusion models that refine our understanding of the 

metabolic tradeoffs involved in the use of Carbon Concentrating Mechanisms. 

I felt very privileged during my time here at Michigan State University to have been 

allowed – by my research mentor and my funding sources – to pursue a rather unorthodox set of 

questions. It is my hope that you, the reader, will also appreciate how the studies described in the 

following chapter interrelate and contribute to our descriptions of photosynthesis and how we 

arrive at these descriptions in the first place.  
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Model validation and selection in metabolic flux analysis and flux 
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1.1. Preface 

 The conversations and ideas that gave rise to this paper started between me, Dr. Shachar-

Hill, Dr. Xu, and Dr. Sharkey while we were conducting the study that ultimately became Chapter 

2. During the course of that study, I became increasingly interested in the general questions 

surrounding the statistical evaluation, validation, and model selection practices of 13C-MFA flux 

maps. The idea of using a simpler compartmental modeling strategy to corroborate the gross 

architecture of a 13C-MFA model, in the absence of a well worked out general model selection 

strategy for 13C-MFA, did make it into the paper presented in Chapter 2. However, the 

conversations that Dr. Shachar-Hill and I continued to have on this topic ended up ranging far 

beyond the context of that study. Moreover, my work on validating the predictions of a novel 

FBA implementation using MFA flux estimates, which I present in Chapter 3, gave me insight 

into validation practices on the FBA side of constraint-based modeling.  

After some preliminary literature review, it became quite clear that despite the importance 

of validation and model selection to the area of constraint-based metabolic modeling, shockingly 

little had been said on the topic. Due to the paucity of discussion and analysis in this area, a 

straightforward review paper would have been of little use. So, we decided to write a perspective 

article that summarizes common practices and their drawbacks, while also presenting our original 

insights and perspectives on the future of this area.  

The paper presented in this chapter has been published in the journal Biotechnology 

Progress. I am first and corresponding author on the study.  

1.2. Abstract 

13C-Metabolic Flux Analysis (13C-MFA) and Flux Balance Analysis (FBA) are widely used to 

investigate the operation of biochemical networks in both biological and biotechnological 

research. Both methods use metabolic reaction network models of metabolism operating at 

steady state so that reaction rates (fluxes) and the levels of metabolic intermediates are 

constrained to be invariant. They provide estimated (MFA) or predicted (FBA) values of the 

fluxes through the network in vivo, which cannot be measured directly. These fluxes can shed 

light on basic biology and have been successfully used to inform metabolic engineering 

strategies. Several approaches have been taken to test the reliability of estimates and predictions 

from constraint-based methods and to compare alternative model architectures. Despite advances 

in other areas of the statistical evaluation of metabolic models, such as the quantification of flux 
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estimate uncertainty, validation and model selection methods have been underappreciated and 

underexplored. We review the history and state-of-the-art in constraint-based metabolic model 

validation and model selection. Applications and limitations of the χ2-test of goodness-of-fit, the 

most widely used quantitative validation and selection approach in 13C-MFA, are discussed, and 

complementary and alternative forms of validation and selection are proposed. A combined 

model validation and selection framework for 13C-MFA incorporating metabolite pool size 

information that leverages new developments in the field is presented and advocated for. Finally, 

we discuss how adopting robust validation and selection procedures can enhance confidence in 

constraint-based modeling as a whole and ultimately facilitate more widespread use of FBA in 

biotechnology.  

1.3. Introduction 

The set of biochemical reaction rates in the metabolic network of a living system (its flux map) 

represents an integrated functional phenotype that emerges from multiple layers of biological 

organization and regulation, including the genome, transcriptome, and proteome (Nielsen, 2003). 

The study of metabolic fluxes is therefore important for systems biology, rational metabolic 

engineering, and synthetic biology. A grand challenge of systems biology is building an 

integrated mechanistic understanding of the operation of living organisms across these levels of 

regulation (Spivey, 2004) – an understanding that goes beyond statistical or correlative 

descriptions, however useful these can be. Meeting this challenge requires fluxes to be accurately 

predicted from network structure using explicit rules or hypotheses and reliably estimated using 

experimental data. Fluxes are also critical to many biotechnological and metabolic engineering 

applications. Examples such as the development of lysine hyper-producing strains of 

Corynebacterium glutamicum (Koffas et al., 2003; Koffas and Stephanopoulos, 2005; Becker et 

al., 2011) and the rewiring of E. coli’s metabolism to make it grow chemoautotrophically 

(Gleizer et al., 2019) attest to the usefulness of these techniques. As the scale and complexity of 

integrative systems biology and biological engineering efforts increase, so too will the need for 

reliable and robust estimates of fluxes. 

In vivo fluxes cannot be directly measured, necessitating modeling approaches to estimate 

or predict them. The most commonly used approaches for metabolic modeling are the constraint-

based modeling frameworks of 13C-Metabolic Flux Analysis (13C-MFA) and Flux Balance 

Analysis (FBA). Both require a metabolic network consisting of metabolites linked by 
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biochemical reactions to be defined using the biochemical literature, knowledge of the enzymes 

and transporters expressed from the genome, and physico-chemical rules. In 13C-MFA, atom 

mappings describing the positions and interconversions of the carbon atoms in reactants and 

products are also included in the model. These methods assume that the system is at metabolic 

steady-state, such that the concentrations of all metabolic intermediates and reaction rates are 

constant (Antoniewicz, 2015). External fluxes, such as the uptake of a substrate or the rate of 

production of new cells or a product, are also measured and used to constrain the possible flux 

ranges. These assumptions and constraints define a “solution space” containing all flux maps 

consistent with them but are typically insufficient to pinpoint a unique flux map.  

In 13C-MFA, isotopic labeling data is used to identify a particular solution within the 

solution space. 13C-labeled substrates are fed to the system under investigation and the endpoint 

labeling, or time-course labeling in Isotopically Nonstationary Metabolic Flux Analysis (INST-

MFA), of metabolites is measured using mass spectrometry and/or NMR techniques 

(Antoniewicz, 2015; Cheah and Young, 2018). Given a metabolic network, a flux map, and 

information about the labeled substrate fed into the system, the label distribution through all the 

metabolites in a network can be solved analytically. However, 13C-MFA works backwards from 

measured label distributions to flux maps by minimizing the differences between measured and 

estimated Mass Isotopomer Distribution (MID) values by varying flux estimates (Jazmin et al., 

2014). For INST MFA pool size measurements can also be included in the minimization process.  

In FBA, linear optimization is used to identify a flux map (or set of flux maps) from the 

solution space (Orth et al., 2010b). This is the map(s) for which the sum of one or more fluxes 

(the objective function) is maximized or minimized. Objective functions frequently represent 

measures of efficiency, including the maximization of growth rate or product formation or the 

minimization of total flux (Holzhütter, 2004). Such functions may embody hypotheses about 

what the in vivo system has been evolutionarily tuned to optimize, or questions about the 

operational capacity of that system under particular conditions. Since the objective function, 

together with the network architecture and empirical and/or theoretical constraints introduced by 

the modeler, is a key determinant of the flux maps generated by FBA, careful selection, 

justification, and, ideally, validation of objective functions is crucial. As shown in Schnitzer et 

al., (2022), alternative objective functions can, and should, be evaluated to identify those that 

result in the best agreement with experimental data. In many cases, the constraints – typically on 
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external fluxes – imposed during an FBA optimization result in a set of viable flux maps (a 

solution space) rather than a single map. In such cases, related techniques, including Flux 

Variability Analysis (Mahadevan and Schilling, 2003) and random sampling (Schellenberger and 

Palsson, 2009; Bordel et al., 2010; Megchelenbrink et al., 2014; Haraldsdóttir et al., 2017) can be 

used to characterize the set of flux maps consistent with the set constraints. The computational 

tractability and small amount of experimental data necessary to perform FBA allow the analysis 

of Genome-Scale Stoichiometric Models (GSSMs). These models incorporate all known 

reactions believed to occur in an organism based on a combination of genome annotation and 

manual curation. Additional linear-optimization-based methods for solving GSSMs using the 

FBA framework have been developed and are sometimes used together with FBA. These include 

Minimization of Metabolic Adjustment (MOMA) (Segrè et al., 2002), and Regulatory On/Off 

Minimization (ROOM) (Shlomi et al., 2005), as well as a host of methods that incorporate omic 

data into the optimization process [e.g., (Åkesson et al., 2004; Becker and Palsson, 2008; Tian 

and Reed, 2018; Pandey et al., 2019; Ravi and Gunawan, 2021)]. FBA and its related methods 

are sometimes used to analyze models other than true GSSMs, such as “core” models that focus 

on central metabolic processes that conduct the large majority of flux (Orth et al., 2010a). When 

discussing validation, however, the same principles apply to all of these linear optimization 

methods and across the different model scales. For the sake of simplicity, we will be using 

“FBA” to refer to this family of methods generally and will refer to the medium- to large-scale 

models used with these methods as “FBA models.”  

Progress has been made in improving the statistical rigor and reliability of flux estimates 

and characterizing uncertainty in estimates and predictions. For example, in MFA, the 

development of effective methods for flux uncertainty estimation (Antoniewicz et al., 2006) 

allows researchers to better quantify confidence in flux predictions and, where appropriate, to 

gather additional data to better support their conclusions. Bayesian techniques for the 

characterization of uncertainties in flux estimates derived from isotopic labeling have also been 

presented (Theorell et al., 2017). On the experimental side of MFA, there have been advances in 

designing and implementing parallel labeling experiments, wherein the labeling patterns 

obtained using multiple tracers are simultaneously fit to generate a single 13C-MFA flux map. 

This enables more precise estimation of fluxes than experiments with individual tracers or tracer 

combinations allow (Chang et al., 2008; Crown et al., 2012; Crown and Antoniewicz, 2012; 
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Leighty and Antoniewicz, 2013; Millard et al., 2014; Crown et al., 2015; Crown et al., 2016; 

Beyß et al., 2021). Greater resolution in isotopic labeling data through the use of tandem mass 

spectrometry techniques, which allow for the quantification of positional labeling, can also 

improve the precision of modeled fluxes, as described in Choi and Antoniewicz (2019) and 

Wang et al., (2021). Recent years have also seen developments in FBA meant to improve the 

reliability of its predictions. For example, studies have characterized the impact of departures 

from metabolic steady state and devised methods to account for uncertainties in biomass 

compositions [e.g., (Dinh et al., 2022; Choi et al., 2023)]. The many sources of uncertainty when 

working with FBA and genome-scale models, and attempts to characterize and mitigate this 

uncertainty, have been reviewed elsewhere (Bernstein et al., 2021).   

In this review, we specifically focus on the validation of flux predictions and estimates 

from constraint-based modeling studies and the selection of well-supported model architectures, 

which have received less attention and specific treatment in the literature. How can MFA and 

FBA researchers validate the accuracy of their estimates and predictions? These flux analysis 

methods also require researchers to make choices about the network structure of the model to be 

used. This leads to questions of model selection; that is, how do we select the most statistically 

justified model from among the alternatives? Validation and model selection are key to 

improving the fidelity of model-derived fluxes to the real in vivo ones. The fields of systems and 

synthetic biology have seen substantial development of model selection and validation practices 

(Kirk et al., 2013; Gross and MacLeod, 2017), but these topics are not frequently discussed in the 

metabolic modeling literature. Previous reviews and methods papers have touched on the use of 

tools like the χ2-test of goodness-of-fit for the validation of MFA models (Antoniewicz, 2018; 

Long and Antoniewicz, 2019a). However, to our knowledge, no reviews covering the various 

methods for validating FBA predictions exist, nor have previous reviews discussed the various 

limitations of the χ2-test. Moreover, previous reviews have not addressed the most recent 

improvements in model selection in 13C-MFA, which have not been adequately incorporated into 

routine practice. Addressing these topics explicitly is important for practitioners as they carry out 

their work. It is also important for readers of the flux analysis literature, who must understand the 

assumptions, tests of validity, and model selection techniques underlying what they are reading.  

Although only a subset of research groups conduct both FBA and MFA modeling, we 

believe most metabolic modeling practitioners and consumers read literature containing both 



 
 

7 

 

modeling paradigms. As we highlight in this review, some similar themes emerge when 

examining the validation of both FBA and MFA flux maps. Finally, one of the most robust 

validations that can be conducted for FBA predictions is comparison against MFA estimated 

fluxes, which makes simultaneously considering the validity of both FBA and MFA flux maps 

crucial. For these reasons, we consider both modeling approaches in this review.  

We review and provide our perspective on these areas and prospects for future 

development, highlighting: (1) validation methods applicable to FBA flux maps; (2) approaches 

for validating 13C-MFA flux maps; and (3) developments and prospects for model selection in 

13C-MFA; (4) How validation and model selection practices in 13C-MFA could benefit from a 

greater emphasis on the isolation of training and validation datasets and; (5) the importance of 

corroborating flux mapping results using independent modeling and experimental techniques.  

1.4. Validation techniques in FBA and 13C-MFA 

FBA and 13C-MFA studies commonly validate the model(s) used, though there is great variation 

in their nature and extent. We summarize these validation strategies in Figure 1.  
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1.4.1. Validation in FBA 

 

Figure 1.1: Graphical summary of validation strategies in (A) FBA and (B) 13C-MFA.  Dotted 

lines connect inputs with the associated validation technique(s). (A) FBA predictions can be 

validated by comparing growth rate or growth/no-growth phenotypes across different substrates, 

growth conditions, or sets of gene knockouts in silico and in vivo. Values can be calculated from 

flux maps and compared with experimental measurements. FBA internal flux predictions can be 

compared with 13C-MFA fluxes. (B) Values can be calculated from 13C-MFA flux maps and 

compared with an independent experimental measurement from the in vivo system. Goodness-

of-fit can be assessed between simulated and measured MIDs, and simulated and measured 

metabolite pool sizes in INST-MFA. Flux maps can be compared with the results of independent 

modeling exercises. Molecules are schematically shown as connected circles of atomic positions: 

open circles are unlabeled, and filled circles are isotopically labeled. Abbreviations: Mn - 

metabolites in the metabolic network; Sn – exogenous substrates; Vi – Fluxes; [Mn] – metabolite 

concentrations.   
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The COnstraint-Based Reconstruction and Analysis (COBRA) framework, implemented 

in software solutions such as the COBRA Toolbox (Heirendt et al., 2019) and cobrapy (Ebrahim 

et al., 2013) and widely used for FBA studies, features functions and pipelines that can be used 

to ensure basic functionality of models including balancing of charge, pH, and 

cofactors/cosubstrates, thermodynamic feasibility, and connectivity of all metabolites. Model 

characteristics evaluated include the inability to generate ATP without an external source of 

energy and the inability to synthesize biomass without adding substrates not known to be needed. 

Additionally, the MEMOTE (MEtabolic MOdel TEsts) pipeline contains tests to ensure, for 

example, that biomass precursors can be successfully synthesized in a model in a variety of 

growth media (Lieven et al., 2020). MEMOTE has been used to ensure appropriate stoichiometry 

and consistency with accepted format standards in models entered into the BiGG (Norsigian et 

al., 2020) model database. These forms of Quality Control are an important first step in ensuring 

that models are behaving appropriately and generating useful predictions. However, following 

these initial checks on functionality, the techniques used to validate actual model predictions are 

varied and not standardized. Indeed, even in the BiGG database, which is highly curated and 

focuses primarily on models of microbial systems, models vary in the type and extent of 

validation performed. Given the variety of validation procedures that appear in the literature, it is 

important when using an FBA model to be aware of what specific validations were used, what 

their limitations are, and consequently, what inferences or downstream applications are 

appropriate (summarized in Table 1.1).  
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Table 1.1: The most common model validation strategies in Flux Balance Analysis, what these 

methods tell us, limitations, and important considerations for researchers and/or readers, and 

examples of these methods’ implementation in the literature. 

Method 
Information 

Content 
Limitations Use case Examples 

Comparison of 

growth/no-

growth on one or 

more substrates 

Presence/absence of 

reactions necessary for 
substrate utilization and 

biomass synthesis. 

Validation is qualitative, 

only indicating the 

existence of metabolic 
routes. Does not test the 

accuracy of predicted 

internal flux values  

Useful when viability/nonviability of 

different growth conditions is of 

interest. Unlike a growth-rate 
comparison, does not indicate whether 

the efficiency of biomass synthesis is 

realistic.  

(Pinchuk et 

al., 2010; Ong 

et al., 2014; 
Arion et al., 

2023; 

Coppens et al., 
2023; Tec-

Campos et al., 

2023) 

Comparison of 

growth rates on 

one or more 

substrates 

Consistency of metabolic 

network, biomass 

composition, and 
maintenance costs with 

observed efficiency of 

substrate-to-biomass 
conversion. 

Provides quantitative 

information on the overall 

efficiency of substrate 
conversion to biomass, but 

is uninformative with 

respect to the accuracy of 
internal flux predictions. 

When done across multiple substrates 

and conditions, this validation gives 

confidence in the predicted efficiency 

with which the model produces 
biomass. Useful when identifying 

growth-limiting factors.  

(Oftadeh et 

al., 2021; 

Arion et al., 

2023; 

Coppens et al., 
2023; Tec-

Campos et al., 

2023) 

Comparison of in 

vivo and in silico 

knockout 

lethality 

Presence/absence of 

biosynthetic reactions 
necessary for substrate use 

and growth. 

Care is needed to reduce 

incorrect predictions from 
many different factors, 

including optimization 

method and biomass 
composition changes in 

response to knockout. 

Critically important to perform when 
designing growth-coupled knockout 

strategies (Burgard et al., 2003; Tepper 

and Shlomi, 2009; Stanford et al., 
2015). 

(Gatto et al., 

2015; Alzoubi 
et al., 2019; 

Oftadeh et al., 

2021; Santos-
Merino et al., 

2023) 

Comparison of 

FBA predictions 

with MFA fluxes 

Accuracy of internal flux 

predictions. 

Few MFA flux maps exist 
for most organisms, 

making this validation 

impossible or requiring 

comparison with an MFA 

flux map taken for very 

different experimental 
conditions. 

Important when the intended use of 

FBA modeling requires that the 

predictions of specific internal flux 

values be accurate. 

(Shinfuku et 

al., 2009; 

Machado and 
Herrgård, 

2014; 

Broddrick et 
al., 2019; 

Coppens et al., 

2023) 

 

Perhaps the most common validation in FBA is comparison between FBA-predicted and 

empirically measured rates of growth [e.g., (Varma and Palsson, 1994; Schroeder and Saha, 

2020; Feierabend et al., 2021; Arion et al., 2023; Blázquez et al., 2023; Noecker et al., 2023; 

Tec-Campos et al., 2023)]. One may similarly evaluate growth/no-growth in different media 

and/or with different carbon sources [e.g., (Ong et al., 2014; Arion et al., 2023; Blázquez et al., 

2023; Heinken et al., 2023; Tec-Campos et al., 2023)]. A related approach is the comparison of 

in silico metabolite uptake/secretion with experimental measurements (Heinken et al., 2021; 

Blázquez et al., 2023; Heinken et al., 2023). Such evaluations give confidence in the model’s 

basic predictions. To ensure that the accuracy of growth-rate predictions generalizes well, we 

strongly recommend validating growth rates on substrates or in media conditions from which 

biomass composition and parameters like Growth-Associated Maintenance (GAM) and Non-

Growth Associated Maintenance (NGAM) costs were not experimentally derived, as done in 
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(Arion et al., 2023). GAM represents the energy expenditure needed to support a certain rate of 

biomass growth and NGAM represents the energy expenditure required for a cell or organism to 

survive without any net growth (Thiele and Palsson, 2010). These values may vary depending on 

growth conditions, so testing whether the values measured in one set of conditions generalize to 

others is important. Otherwise, future users may use a model with, for example, another common 

media composition and find – or worse yet, simply not notice – that the resulting predictions do 

not accurately reflect essential characteristics of the organism’s actual metabolism.  

A related approach involves comparing growth/no-growth of gene knockout strains to 

FBA predictions to address whether the metabolic pathways used in the model mirror the 

biological system. Experimentally verified lethal knockouts that appear nonlethal in silico point 

to alternative routes the model can use to grow. Conversely, in silico lethality predictions not 

confirmed by experiment suggest the model is missing isoforms or alternative reaction routes. 

Collecting the true positive, true negative, false positive, and false negative predictions from the 

in silico vs. in vivo lethality predictions into a confusion matrix allows for an at-a-glance 

evaluation of overall model accuracy and for the comparison of alternative model architectures 

(Santos-Merino et al., 2023). Researchers sometimes use algorithms to identify knockouts that 

couple biomass accumulation to flux through a reaction for biotechnological applications 

(Burgard et al., 2003; Tepper and Shlomi, 2009; Stanford et al., 2015). This requires that models 

accurately predict growth/no-growth phenotypes for gene knockouts, but previous work in a 

model of Saccharomyces cerevisiae, for example, shows that FBA performs poorly at predicting 

the synthetic lethality of double-knockouts, making this a serious concern (Alzoubi et al., 2019). 

When performing such validations, one must keep in mind that imposed constraints and 

decisions made during the model construction or optimization process may implicitly or 

explicitly add the predictions one is trying to validate into the model, rendering the exercise 

meaningless. This makes clear and transparent documentation of the assumptions used in the 

modeling process key for reviewers and readers to assess the epistemic value of the validations 

that are reported.  

It is crucial to note that the methods discussed above do not validate the internal flux 

predictions made by FBA. Due to the underdetermined nature of FBA, many radically different 

flux maps may be compatible with, for example, the optimization of growth-rate (Mahadevan 

and Schilling, 2003), making validations using growth-rate or any other individual external flux 



 
 

12 

 

uninformative with respect to internal flux distributions. In well-characterized systems, there 

may be a wealth of known metabolic functionalities that an organism can carry out and 

evaluating whether the model can reproduce them can give some assurance of realistic model 

behavior. In Duarte et al., (2007) and Sigurdsson et al., (2010), 288 metabolic processes known 

to take place in mammalian cells were evaluated in models of human and mouse models, though 

it was only the ability to carry out the processes at all, and not the actual flux values, that were 

evaluated. In favorable cases, individual internal fluxes can be quantitatively estimated in vivo 

using independent methods and compared directly to ones from a predicted flux map to provide a 

powerful form of validation. For example, in a study from our group (Kaste and Shachar-Hill, 

2023) the ratio of the cyclic electron flow (CEF) to linear electron flow (LEF) fluxes in 

photosynthesis predicted by FBA was evaluated against CEF/LEF ratios from fluorescence 

measurements for validation purposes. Though less specific, the sum of FBA-predicted values 

for fluxes that produce and/or consume a product (such as CO2) can also be compared to 

experimental measurements. In addition to these approaches, there is the possibility going 

forward of integrating metabolomics data into the FBA prediction process [e.g., (Lee et al., 

2006)] and/or comparison of FBA results against metabolomic datasets. Although, it should be 

noted that metabolite levels and changes in those levels in the steady-state cannot be directly 

interpreted in terms of fluxes, so any attempts to validate FBA results using observations in 

metabolomics datasets should be done with caution. 

However, validations of internal flux predictions across the network require comparing 

FBA flux maps with high-quality ones from 13C-MFA. Such validations are the most 

information-rich of all the methods surveyed so far and tell us the most about how well the FBA 

flux maps generated by a particular combination of network architecture, constraints, and 

objective function line up with experimental data. Unfortunately, 13C-MFA flux maps are time-

consuming to generate, making this “gold-standard” validation rare. To compare FBA-predicted 

and MFA-estimated fluxes, the model architectures must be the same, or the MFA must at least 

be a subnetwork of the model used for the FBA. Additionally, the empirical constraints (e.g., 

substrate uptake and biomass accumulation) must be the same in both cases. In cases where the 

growth rates predicted or constrained for an FBA flux map do not perfectly line up with those 

from an MFA flux map, normalization of fluxes to account for this discrepancy can be used to 

get an apples-to-apples comparison (Broddrick et al., 2019). The imposition of identical external 
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flux constraints on both the FBA and MFA models may preclude validation of the accuracy of 

certain external flux predictions by the FBA. However, such comparisons can be done afterwards 

by removing the relevant constraints. Comparison is also complicated by the underdetermined 

nature of most FBA optimizations, which can result in large feasible ranges for the individual 

fluxes being compared against the corresponding flux values obtained from 13C-MFA, making 

the validation less stringent. FBA optimizations that assume parsimony (Holzhütter, 2004; Lewis 

et al., 2010) tend to yield narrower flux ranges, but this advantage may come at the cost of 

neglecting other plausible objective functions that might be more accurate.  

Finally, when FBA-predicted and MFA-estimated flux maps disagree, assuming the 

experimental constraints are consistent between the two and that the person doing the 

comparison is confident in the MFA estimates, either the FBA network architecture or objective 

function could be to blame. There is not, to our knowledge, a consistent strategy for 

disambiguating disagreements due to architecture or objective function. If the 

biological/biochemical accuracy of the objective function is in question, methods for inferring 

objective functions using isotopic labeling data can be employed [e.g., (Gianchandani et al., 

2008)], the resulting objective functions can be compared with the one being used, and 

discrepancies can be considered. All objective functions that relate to growth will be affected by 

the accuracy of the biomass composition used in the model, although in some systems central 

metabolic fluxes may be relatively robust to variability in the exact values of this composition 

(Yuan et al., 2016). In systems for which extensive biomass composition data is available, 

known variability in biomass composition can be incorporated during the optimization process 

(Choi et al., 2023). Despite these various limitations and difficulties when validating FBA using 

13C-MFA fluxes, some studies have evaluated the accuracy of FBA against 13C-MFA-estimated 

flux maps [e.g., (Schuetz et al., 2007; Chen et al., 2011; Machado and Herrgård, 2014; Tian and 

Reed, 2018; Long and Antoniewicz, 2019b; Blázquez et al., 2023; Coppens et al., 2023)], with 

mixed results.  

 A consistent challenge when validating FBA fluxes using any method is the need to 

compare the FBA flux map against empirical fluxes or other measurements that were generated 

under similar conditions to those being simulated. For organisms or systems whose metabolic 

models are undergoing continual refinement, thus requiring repeated validation, community-

curated and updated validation datasets generated under well-defined and carefully reported 
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conditions may be useful. Standards on what metabolic phenotypes and responses need to be 

captured by these models [e.g., the 288 known metabolic functions in human cells used in 

(Duarte et al., 2007)] may also help ensure that reconstructions maintain essential biological 

features as they grow larger and more detailed. 

To summarize, we make the following recommendations for the validation of FBA-

predicted flux maps: 

1. When possible, comparisons between FBA-predicted and 13C-MFA-estimated flux 

maps should be performed to validate the accuracy of FBA-predicted internal fluxes. 

This provides a greater wealth of information about where and to what extent the 

model is, and is not, lining up with experimental evidence. When performing such 

validations, care should be taken to ensure that the conditions under which the FBA-

predictions and MFA-estimates are generated are as similar as possible and that any 

necessary normalizations to account for differences have been made. For an example 

of thorough FBA-to-MFA comparisons, see Broddrick et al., (2019) and Roell et al., 

(2023).  

• Note: FBA-predicted flux maps require definition not just of the network 

architecture and constraints, but also an objective function for optimization. 

Validation of the FBA-predicted flux maps is therefore also a validation of the 

selected objective function. It is possible for a poorly selected objective 

function to generate flux predictions that do not align with MFA-estimated 

fluxes; in such cases, alternative objective functions can be explored.  

2. As highlighted in Table 1.1, different validation methods evaluate different aspects of 

the model’s predictions. Therefore, employing a number of different validations 

allows for a fuller and more detailed analysis of model performance and increases the 

likelihood that other users of the model may be able to appropriately apply it to their 

research question. For an example of a study employing several different validation 

techniques, see Heinken et al., (2023). 

3. Validations of model predictions are only valuable when the data the predictions are 

validated against has not already been used in the training or construction of the 

model. The complexity of the metabolic model reconstruction and analysis process 

can make it difficult to notice when contamination of the validation dataset by 
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training data has occurred. In order to identify contamination, one must consider the 

source of all data used for validation and consider whether it or a value derived from 

it was used at any stage of the FBA modeling process. For an example of a study that 

clearly and systematically validates FBA predictions while avoiding such 

contamination, see Arion et al., (2023). 

Improving confidence in the accuracy of FBA flux maps is valuable because generating 

validated 13C-MFA flux maps for all systems and conditions of interest is impractical. 13C-MFA 

requires substantial experimental work for each set of conditions and is unsuitable for many 

multicellular tissues and organisms where the required combination of extended periods of 

metabolic steady state, controlled provision of informative, non-perturbing labeled substrates, 

and obtaining enough labeling data cannot be achieved. This FBA-empowered future for systems 

biology and biotechnology requires well-validated MFA flux maps, so we turn our attention to 

model validation and selection in MFA.  

1.4.2. Validation in 13C-MFA 

13C-MFA flux estimates are typically validated based on the goodness-of-fit between measured 

labeling data and the corresponding values generated by the network model after the 

optimization of model parameters. The goodness-of-fit is represented by the sum of squared 

residuals (SSR) where each residual is weighted by dividing it by its experimental variance. The 

χ2-test of goodness-of-fit, which is built into commonly used 13C-MFA software (Weitzel et al., 

2013; Shupletsov et al., 2014; Young, 2014), is then used to test whether the SSR falls within the 

95% confidence interval expected for the defined number of degrees of freedom (DOF). Since its 

development as a validation method in 13C-MFA (Antoniewicz et al., 2006), the χ2-test has been 

widely used and has been useful in the validation of 13C-MFA metabolic models inferred from 

genome annotations (Au et al., 2014; Cordova and Antoniewicz, 2016; Cordova et al., 2017; Yu 

King Hing et al., 2021; Dahle et al., 2022; Imada et al., 2023; Mitosch et al., 2023).  

However, as described in Sundqvist et al., (2022) and Theorell et al., (2017), the use of 

the χ2-test can be problematic in 13C-MFA for several reasons. When upper- and lower-bounds 

are imposed on estimated flux parameter values, this makes accurate estimation of the effective 

DOF for the χ2-test difficult (Theorell et al., 2017). It can also be difficult to accurately 

determine errors in the MID measurements made for 13C-MFA, resulting in distortion of the 

variance-weighted SSR values that are being compared against the 95% Confidence Interval 
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(Sundqvist et al., 2022). 

In addition to these technical difficulties with properly applying the χ2-test, problems 

arise from how the test is implemented into the model development process during a typical 13C-

MFA study. Especially for eukaryotic systems, 13C-MFA flux modeling generally involves 

making iterative changes to the model based on how well it can explain the data – as assessed 

informally and by the χ2-test – followed by refinement and assessment of the data based on this 

agreement. For example, if the data do not allow the fluxes between the same metabolite in 

different compartments to be determined, they may be merged in the model or additional 

measurements may be made to resolve them. Metabolites may also be excluded from the model 

due to inconsistency between their simulated vs. measured MIDs causing the model to fail the χ2-

test, on the assumption that biological, model-structural, or analytical uncertainties underlie these 

unexplained divergences (Xu et al., 2022)1. The difficulty of accurately quantifying MID 

measurement errors, mentioned earlier, may be addressed by arbitrarily increasing the assumed 

measurement error, which reduces the deduced precision of flux estimates to take into account 

the potential for error sources not accounted for by experimentally observed scatter (Xu et al., 

2021b; Sundqvist et al., 2022; Xu et al., 2022)1. This process is a natural consequence of the 

diversity and uncertainty of the metabolic architecture of different systems and is a valid form of 

exploratory data analysis and model building. However, altering the model by excluding specific 

data points and adding additional fluxes or metabolites until the χ2-test passes, and then relying 

on this very same test as validation is statistically dubious from a rigorous perspective. As in the 

case of an FBA model validation in which the prediction being validated has been implicitly 

introduced to the model itself, a final validation of a 13C-MFA model with the same data used to 

make it acceptable, as quantified by the χ2-test, does not constitute a real validation. It also can 

naturally lead to over- or under-fit models, which we discuss below in the section on model 

selection.   

Due to these difficulties, we propose that the χ2-test, as it is currently used, should be 

used as one of multiple lines of evidence to consider when validating a 13C-MFA model, 

especially for less defined and/or more complex eukaryotic systems such as plants. One way to 

 
1 Here we primarily cite our own work because, as discussed, there are a number of sound reasons for leaving out 

metabolites and/or increasing MID measurement errors. We have chosen not to highlight other studies that have 

employed the same practices since we do not know all of the experimental and analytical details underlying them 

and would not want their inclusion here to be interpreted as implicit criticism. 
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address the issue of using the χ2-test for both model development and validation is to reserve a 

portion of the dataset only for final model validation. This practice of holding out a subset of the 

data to be used exclusively for validation is standard statistical practice (Gross and MacLeod, 

2017) in other areas of systems biology and, conveniently, can also be used for model selection 

(Sundqvist et al., 2022). 

In the absence of direct experimentally measurable fluxes, independent measurements 

that can be measured or inferred from empirical measurements in vivo provide an important 

ground-truth value to compare with flux estimates and can complement the use of the χ2-test for 

validation. An example of this can be found in the plant 13C-MFA literature, where independent 

measurements of the relative rates of oxygenation and carboxylation by the enzyme rubisco can 

be compared with 13C-MFA flux estimates (Ma et al., 2014; Xu et al., 2021b; Xu et al., 2022). In 

Xu et al., (2021b) for example, our group compared predicted values for the relative rates of 

oxygenation and carboxylation by the enzyme rubisco in photosynthesis versus inferred values 

from stomatal conductance and other empirical measurements. This led us to conclude that 

labeling data from whole tissue extracts was insufficient to accurately estimate photorespiratory 

fluxes without information on the compartmentation of certain metabolites. Despite the strength 

of this form of validation, it is infrequently practiced.  

Another little-used but potentially valuable approach to validation is the corroboration of 

key features of 13C-MFA models using independent modeling methods. In Xu et al., (2022), 

simplified compartmental kinetic models yielded analytical solutions predicting that overall 

labeling time courses should take the form of sums of exponential rate components. Fitting 

labeling data to these exponential models and applying statistical model selection techniques 

provided independent corroboration of the overall architecture of the 13C-MFA model that was 

used to obtain a detailed flux map. 

Returning to goodness-of-fit, one must also keep in mind what information is taken into 

consideration and the effect of the assumed network architecture. In INST-MFA, where time-

course labeling data is used, metabolite pool sizes are both estimable parameters and 

constrainable modeling inputs. When pool sizes are not provided as empirical measurements, 

pool size estimates are typically imprecise and inaccurate (Zheng et al., 2022). The inaccuracy of 

these estimates is not usually interpreted as an impediment to publishing 13C-MFA results and 

according to Zheng et al., (2022), leaving out pool size information does not adversely affect flux 
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estimate accuracy. Flux estimates are not, however, always robust against misspecifications of 

the network model (Sundqvist et al., 2022). The exclusion of pool size information provides 

greater flexibility in fitting experimental data, allowing robustness against model 

misspecifications at the expense of not detecting them (Zheng et al., 2022). A useful next step for 

this field would be to routinely measure and include pool size estimates to improve the detection 

of incorrect model architectures. Measurement of all metabolites in a way that allows 

discrimination of pools for identical metabolites in different cellular compartments requires a 

method like Non-Aqueous Fractionation [e.g., [Krueger et al., 2011)], which may be 

prohibitively difficult to implement in many studies. In such cases, use of a strategically selected 

set of metabolite levels may be used to allow for improved detection of incorrect model 

architectures. This introduces the matter of model selection.  

1.5. Model selection in 13C-MFA 

As discussed earlier, model development in 13C-MFA is an iterative process. Alternate 

models developed during this process may differ in their numbers of reactions and metabolites, 

resulting in different DOF. Adding model parameters can result in overfitting when these extra 

DOF lead the 13C-MFA optimization to fit noise rather than biological signal. Model selection 

techniques can be used to avoid this overfitting and to select the most statistically supported 

model among alternatives. The development of FBA models can also involve deciding between 

alternative architectures. However, comparison and selection of such models from sets of 

alternatives based on their predictions’ deviations from empirical measurements is uncommon, 

so we focus our attention on 13C-MFA.  

Model misspecification can result in missing important fluxes, incorrectly estimating the 

rates of modeled fluxes, or incorrectly estimating the precision of flux estimates. In a study our 

group performed of central metabolic fluxes in the oilseed crop Camelina sativa (Xu et al., 

2022), previously published model architectures that passed the χ2-test of goodness-of-fit (Xu et 

al., 2021b) were nonetheless shown to be missing an important set of metabolic reactions 

involving the movement of carbohydrates to and from the vacuole. In Sundqvist et al., (2022), in 

silico examples of sub-optimal model selection resulting in flux estimates that fall outside of the 

95% confidence intervals for those same fluxes generated using the correct model architecture 

are provided, showing the potential for biased flux estimates when model selection is not 

properly performed. Finally, the literature on “Genome-scale-13C-MFA” has provided evidence 
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that the exclusion of many reactions peripheral to the metabolic network under consideration 

(typically core metabolism) in 13C-MFA can result in artificially narrow confidence intervals. 

Genome-scale-13C-MFA involves estimating a flux map by minimizing deviation between 

predicted and measured isotopic labeling but using the kind of genome-scale metabolic network 

more typically used for FBA analyses (Gopalakrishnan and Maranas, 2015; Hendry et al., 2020). 

In studies on the cyanobacterium Synechococcus elongatus (Gopalakrishnan et al., 2018; Hendry 

et al., 2019), it has been shown that the substantially larger genome-scale 13C-MFA models 

achieved better fits to the labeling data, that these reductions in SSR were statistically justified, 

and that the original models of core metabolism underestimated the uncertainty in a number of 

flux estimates by ignoring alternative metabolic pathways that could also explain patterns in the 

labeling data (Hendry et al., 2020). The examples above demonstrate that rather than being a 

statistical curiosity, model selection (or the lack thereof) can have serious implications for the 

accuracy and reliability of flux modeling results.  

  Several approaches to model selection can be found in the 13C-MFA literature, with 

different approaches being taken in different studies. The simplest is selecting the model with the 

smallest SSR. This method does not work when the DOF of the compared models are different, 

as increasing the DOF in a model inevitably allows it to fit a given data set better. This may be 

accounted for informally by noting the change in DOF [e.g., (Xu et al., 2022)], or in a more 

statistically rigorous way using the extra-sum-of-squares test (Draper and Smith, 1998; Boyle et 

al., 2017) or information criteria (Schwarz, 1978; Akaike, 1998). The most common model 

selection approach used in 13C-MFA is an informal method using the χ2-test, wherein models are 

iteratively modified until a model and dataset pass the test, or where several alternative models 

are evaluated and the one that passes the test by the widest margin is selected (Dalman et al., 

2016; Antoniewicz, 2018; Long and Antoniewicz, 2019a; Sundqvist et al., 2022). These 

approaches have been used, for example, to demonstrate that the isotopic labeling data of co-

culture systems cannot be adequately described by modeling with a single-culture 13C-MFA 

model (Gebreselassie and Antoniewicz, 2015; Wolfsberg et al., 2018), to provide evidence for 

the operation of previously undescribed fluxes in mammalian cells (Ahn et al., 2016), and to 

detect missing reactions in metabolic network reconstructions from genome annotations or that 

are needed to describe the metabolism of mutant E. coli strains (Au et al., 2014; Long and 

Antoniewicz, 2019b).  
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However, the previously mentioned limitations of the χ2-test for model validation also 

affect its usefulness for model selection and models failing the test due to these limitations can 

lead to the addition of statistically unjustified metabolites or reactions to the model until it passes 

(Sundqvist et al., 2022). We refer to the χ2-test-based methods as “informal” model selection 

because when multiple models are evaluated, they are not directly or formally compared to 

determine whether the additional parameters in more complex models are statistically justified, 

which can naturally lead to the selection of overfit models.  

 The general approach of avoiding overfitting by evaluating models based on their 

performance on a set of data not used during the fitting process is widely used in statistics [e.g., 

cross-validation techniques (Hastie et al., 2017)]. The validation-based approach taken in 

Sundqvist et al., (2022) implements this best practice, separating fitting and testing data sets to 

avoid the pitfalls discussed above. In our view, this represents a substantial advancement in 

model selection in 13C-MFA. This method divides the labeling dataset into training and 

validation subsets and then estimates fluxes in alternative models using the training data. These 

alternative models’ flux maps, and their accompanying predicted MIDs, are then compared based 

on their agreement with the validation MID data. The model whose flux map results in the 

smallest SSR when compared with this validation data is selected. The authors generated 

synthetic labeling data from a predefined “correct” model and assessed the ability of their new 

method and other model selection techniques to identify this correct model from a set of 

alternatives. The validation-based approach accomplishes this more consistently than existing 

model selection methods, including χ2-test-based methods, and does so irrespective of the value 

of the measurement error in the labeling datasets. The incorrect models selected by other 

methods contain flux estimates that fall outside the 95% confidence intervals of the fluxes from 

the correct model, highlighting the importance of model selection for obtaining accurate flux 

estimates (Sundqvist et al., 2022). The generation of MID data in additional labeling experiments 

to precisely measure all fluxes in a network (Chang et al., 2008; Crown et al., 2012; Crown and 

Antoniewicz, 2012; Leighty and Antoniewicz, 2013; Millard et al., 2014; Crown et al., 2015; 

Crown et al., 2016; Beyß et al., 2021) provides the reserved validation datasets needed for 

Sundqvist et al., (2022). This means that for 13C-MFA studies that already require a parallel 

labeling approach, implementation of this more rigorous model selection approach is simply a 

matter of setting aside a subset of data to evaluate alternative model architectures. 
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 This approach can be extended in INST-MFA by using metabolite pool size 

measurements in the selection process. Individual pool sizes are sensitive to the local kinetic 

parameters and will fit poorly when reaction networks are incompletely specified (Zheng et al., 

2022). We therefore suggest that validation-based model selection using pool size measurements 

as input measurements is a promising prospective model selection approach for INST MFA 

(Figure 1.2). Indeed, although not referred to explicitly as model selection, in Zheng et al., 

(2022) the authors show that inclusion of pool size information results in an incorrectly specified 

network architecture failing to pass the χ2-test of goodness-of-fit, whereas a correctly specified 

network does pass. This corresponds to the “first to pass χ2” method of model selection discussed 

by Sundqvist et al., (2022) and is subject to the various limitations of the χ2-test as a model 

selection technique covered earlier. By incorporating these metabolite pool sizes into the 

formalized model selection framework described by Sundqvist et al., (2022), we may arrive at a 

more robust form of model selection that is better at detecting misspecified networks. As 

Sundqvist et al., (2022) note, the optimal model selected by their method should be subjected to 

a final validation to assess model quality. A model architecture may be selected by the model 

selection process but result in a substantial deviation of some metric from independently 

measured values. For this final validation, a combination of the χ2-test, independent experimental 

measurements, and alternative modeling approaches can be used. Keeping in mind both the 

trade-off between goodness-of-fit and model complexity and the multiple ways in which 13C-

MFA model predictions can be validated will ensure that flux estimates are as accurate and 

robust as possible.  

 Model validation and selection are an integral part of the 13C-MFA process. Notably, 

model selection practices like the use of validation-based model selection (Sundqvist et al., 

2022) and the use of the extra-sum-of-squares test (Boyle et al., 2017) to compare alternative 

model architectures represent, in our view, a major improvement over exclusive use of the χ2-test 

of goodness-of-fit test for both purposes, but are seldom practiced in the literature. We encourage 

the use of these techniques and believe they hold promise for improving confidence in both the 

fluxes and network architectures reported in studies. 

 With respect to validation and model selection in MFA, we recommend the following:  

1. As highlighted by Antoniewicz, (2018), transparency is key in 13C-MFA, given the 

assumptions that must be satisfied for 13C-MFA modeling as well as the sensitivity of 
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flux estimates to model architecture. As an example of a transparently reported 13C-MFA 

study, see Nicolae et al., (2014). 

2. The validation and selection of MFA-estimated fluxes, like the validation of any model 

output, benefits from multiple lines of corroborating evidence. When possible, the use of 

alternative modeling approaches of isotopic labeling data can be a powerful tool for 

arriving at well-supported model architectures, as in Xu et al., (2022). 

3. In INST-MFA, metabolite pool size measurements can be used to provide additional 

confidence in model validity and tighten flux confidence intervals (Nöh et al., 2007), as 

well as provide additional measurements for validation-based model selection. However, 

practitioners should be aware that these measurements can make model fits highly 

sensitive to incorrectly specified network models in ways that may or may not affect the 

accuracy of flux estimates (Zheng et al., 2022). Additionally determination of subcellular 

compartmentation of certain metabolites may be prohibitively difficult in some cases. In 

such cases, key metabolites with known subcellular compartmentation may be measured.  

4. We recommend the use of a proper model selection framework to compare alternative, 

biochemically reasonable model architectures when performing 13C-MFA modeling. The 

framework outlined in Sundqvist et al., (2022) represents the state-of-the-art in this area. 

Barring the application of that method, a more traditional model selection approach, such 

as the extra-sum-of-squares approach used in Boyle et al., (2017) can be employed.  
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Figure 1.2: Approaches to model selection for 13C-MFA. Metabolic network models 1-3 having 

increasing complexity are compared. Model 2 in this example is the correct description of the 

network. (A) Labeling data (MID1 & MID2) are gathered and, for each model, agreement 

between model output and these data is optimized. The χ2-test of goodness-of-fit is used to assess 

each model fit and these model fits are ranked 1st, 2nd, or 3rd, with the 1st passing the test by the 

widest margin and being selected as the most statistically well-supported model. (B) Labeling 

data are split into “training” and “testing” subsets and agreement between model output and the 

“training” data is optimized. The Sum-of-Squared Residuals (SSR) is then calculated for each 

model from the deviation between its output and the “testing” data. The model fits are then 

ranked 1st, 2nd, and 3rd, with the 1st having the lowest SSR and being selected. (C) Labeling data 

and metabolite pool data (C1 and C2) are gathered and split into “training” and “testing” subsets. 

For each model, agreement between model output and these data is optimized. The Sum-of-

Squared Residuals (SSR) is then calculated for each model from the deviation between its output 

and the “testing” data. The model fits are then ranked 1st, 2nd, and 3rd, with the 1st having the 

lowest SSR and being selected. The inclusion of metabolite pool size data into both the “fitting” 

and “testing” datasets provides more data to go off when evaluating goodness-of-fit, potentially 

increasing the likelihood of identifying the correct model from a set of alternatives. 

1.6. Future directions 

We believe that validation and selection deserve greater attention from the flux analysis 

community and suggest that implementing the approaches highlighted in this perspective will 

improve the accuracy and reliability of constraints-based metabolic modeling and flux estimates. 

However, we also recognize that some approaches suggested here, such as the use of pool size 

measurements, can be extremely difficult to implement in practice. A recent publication on 
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isotopically non-stationary MFA of Arabidopsis thaliana heterotrophic cell culture metabolism 

highlighted that although pool size data could potentially be used to improve the accuracy and 

precision of flux predictions, the experimental difficulty of measuring the concentrations of 

metabolites distributed across multiple subcellular compartments made this prohibitively 

difficult (Smith et al., 2022). As in all areas of science, then, the development of consensus best 

practices in the evaluation of and inference from data and models must arise at the intersection of 

rigorous statistical theory and experimental practicalities. However, we believe that researchers 

engaged in constraint-based metabolic modeling as well as readers of modeling studies benefit 

when the limitations of present validation and selection practices are clarified.     

 Several matters call for investigation before definitive recommendations can be made on 

best practices. At present, it is not clear how to appropriately weight the contributions to flux 

estimation of unambiguous direct flux measurements like substrate uptake, which typically have 

relatively large standard deviations, against MIDs, which frequently have much smaller standard 

deviations but whose relationship to fluxes depends on model structure and whose measured 

values may be offset by unknown analytical effects. Likewise, it is unclear how best to deal with 

those not infrequent MID measurements that have extremely small, but imprecisely measured, 

standard deviations, which can exert too much control over the fitting process.  

 Finally, we would like to conclude by emphasizing that the process of careful validation 

and model selection can lead to the generation of models that are not only more quantitatively 

sound, but that yield exciting scientific insights [e.g., (Ahn et al., 2016; Wolfsberg et al., 2018)].  
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2.1. Preface 

My involvement in this study began as a simple request from Dr. Shachar-Hill and Dr. Xu to 

model the decrease in the proportion of 12C over all carbon in the CBC intermediates of a C. 

sativa leaf in a 13C labeling experiment. Dr. Sharkey had previously shown using a semi-log plot 

of labeling over time that the incorporation of 13C label into the CBC intermediates could be fit to 

two distinct-looking lines, which he interpreted, as per old biochemical convention, to correspond 

to two processes acting on distinct time scales. These two processes were seen as mapping to the 

contributions of two distinct pools to the labeling time course of CBC intermediates – the 

contribution of the CBC intermediate pool back to itself, and the contribution of the cytosolic 

sugar pool via the glucose-6-phosphate shunt. This provided a convincing independent line of 

evidence in favor of the glucose-6-phosphate shunt’s contribution to CBC labeling in prior 

studies, and so he, along with Dr. Shachar-Hill and Dr. Xu, were interested in demonstrating 

something similar in this study of C. sativa they were working on.  

 Dr. Shachar-Hill noted that, mathematically speaking, the practice of fitting straight lines 

to a semi-log plot does not seem to map one-to-one with the idea of identifying processes acting 

over distinct time scales. Because of this, he was interested in using nonlinear modeling to fit the 

untransformed % 12C data, for which he enlisted my help. In the course of modeling the labeling 

data gathered by Dr. Xu, Dr. Shachar-Hill and I refined his suspicions about the problems with the 

semi-log plot approach. Indeed, in the area of pharmacokinetic modeling, a couple of facts had 

been long-since established: 

1. The movement of a metabolite or label through a system of compartments interlinked by 

pseudo first-order kinetic processes, which the labeling of the CBC intermediate pool, 

influenced by cytosolic sugars, is to a first approximation, can be described by sum-of-

exponential, or polyexponential, models.  

2. Curve-stripping, which is a more refined version of the practice of fitting straight lines to a 

semi-log plot, only gives a rough approximation of the proper nonlinear fits you get from 

performing a nonlinear regression using such polyexponential models.  

 Taken together, these suggested that in order to make an inference about the number of 

pools contributing to CBC labeling, we really did need to use a nonlinear regression approach. 

But, upon implementing such an approach – and in the course of doing so, dealing with issues 

surrounding the heteroskedasticity of the dataset – it became apparent that one could reasonably 
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fit several different models (ones assuming the presence of two, three, or four compartments, and 

with or without metabolically inactive pools). It was at this point that I stopped viewing this all as 

merely a small side-project and realized that there was a substantial intellectual contribution that I 

could make to the work. Dr. Shachar-Hill and others had been bothered by a previous 13C-MFA 

study of Arabidopsis thaliana’s central carbon metabolism due to its inclusion of metabolically 

inactive pools that both allowed the mathematical solver too much flexibility in fitting the data 

and did not cohere with our understanding of the leaf metabolism. Moreover, there had always 

been a substantial degree of fuzziness in the selection and justification of a specific 13C-MFA 

network architecture, given that there are always alternative models one could posit and 

reasonably fit to a dataset (as discussed in Chapter 1). The polyexponential fitting using nonlinear 

regression and application of model selection techniques to pick a best-supported model, which 

could then be mapped back to a broader compartmental model of metabolism that may or may not 

include metabolically inactive pools, seemed like a clever way of tackling these concerns.  

 As I carried out the study, it became apparent that Dr. Xu’s data actually fit best to a 

polyexponential model with three terms, corresponding to a three pool model, as opposed to the 

two pool model we had initially expected. Further data gathering showed convincing evidence of 

a third pool, the vacuolar sugars, whose inclusion in the 13C-MFA network used in this study 

substantially improved model fits. I corroborated this finding by fitting Nicotiana tabacum CBC 

intermediate data gathered by Dr. Xinyu Fu in Dr. Berkeley Walker’s lab here at MSU, which 

they kindly provided to us prior to its inclusion in one of their publications, which I cite later on in 

this chapter. This data was not published at the time that we were submitting our paper to the 

Proceedings of the National Academy of Sciences, and had to be excluded from the final 

publication as a result. However, now that those data are published, I have readded the N. 

tabacum data analysis back into the study featured in this chapter.  

 This study was published in the Proceedings of the National Academy of Sciences. Dr. 

Yuan Xu, Dr. Thomas Wieloch, and I share co-first authorship on the study. I carried out all of the 

regression analyses and contributed significantly to the theory and formulation of questions 

around the regression portion of the study. I also contributed to the writing of the methods, results, 

and discussion pertinent to my section of the study, as well as editing, proofreading, and 

formatting of the rest of the main text and the supplement. Finally, I assisted Dr. Xu in the 

computational implementation of uncertainty estimation in the study.  
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2.2. Abstract 

When isotopes of carbon are fed to photosynthesizing leaves, metabolites of the Calvin–Benson 

cycle (CBC) are rapidly labeled initially, but then the rate of labeling slows considerably, raising 

questions about the integration of the CBC within leaf metabolism. We have used 2-h time 

courses of labeling of Camelina sativa leaf metabolites to test models of 12C washout when the 

CO2 source is rapidly switched to 13CO2. Fitting exponential functions to the time course of CBC 

metabolites, we found evidence for three temporally distinct processes contributing to the labeling 

but none for metabolically inactive pools. We next modeled the data of all metabolites by 13C 

isotopically nonstationary metabolic flux analysis, testing a variety of flux networks. In the model 

that best explains measured data, three processes determine CBC metabolite labeling. First is 

fixation of incoming 13CO2; second is dilution by weakly labeled carbon in cytosolic glucose 

reentering the CBC following oxidative pentose phosphate pathway reactions, which forms a 

shunt bypassing much of the CBC. Third, very weakly labeled carbon from the vacuole further 

dilutes the labeling. This model predicts the shunt proceeds at about 5% of the rate of net CO2 

fixation and explains the three phases of labeling. In showing the interconnection of three 

compartments, we have drawn a more complete picture of how carbon moves through 

photosynthetic metabolism in a way that integrates the CBC, cytosolic sugar pools, glucose-6-

phosphate shunt, and vacuolar sugars into a single system. 

2.3. Significance statement 

Photosynthesis metabolites are quickly labeled when 13CO2 is fed to leaves, but the time course of 

labeling reveals additional contributing processes involved in the metabolic dynamics of 

photosynthesis. The existence of three such processes is demonstrated, and a metabolic flux 

model is developed to explore and characterize them. The model is consistent with a slow return 

of carbon from cytosolic and vacuolar sugars into the Calvin–Benson cycle through the oxidative 

pentose phosphate pathway. Our results provide insight into how carbon assimilation is integrated 

into the metabolic network of photosynthetic cells with implications for global carbon fluxes. 

2.4. Introduction 

The Calvin–Benson cycle (CBC) of photosynthesis is the source of nearly all carbon in the 

biosphere. CO2 is used in a carboxylation reaction catalyzed by rubisco, and the resulting 

carboxylic acid, 3-phosphoglycerate (PGA), is reduced to a sugar using NADPH and helped by 

adenosine 5′-triphosphate (ATP) made by light-driven photosynthetic electron transport. The 
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reactions involve both gluconeogenesis and the nonoxidative reactions of the pentose phosphate 

pathway (PPP) (Sharkey, 2019). Since the first description of the CBC by Bassham et al. 

(Bassham et al., 1954), the core reactions have been confirmed many times. However, this 

metabolism is embedded in the metabolic network of photosynthesizing cells. Carbon leaves the 

cycle primarily by export of triose phosphate from the chloroplast for sucrose synthesis in the 

cytosol (Fliege et al., 1978; Flugge and Heldt, 1991), and conversion of fructose 6-phosphate 

(F6P) to glucose 6-phosphate (G6P) for synthesis of starch inside the chloroplast (Dietz, 1985; 

Sharkey et al., 1985; Dietz, 1987; Preiser et al., 2020). Many other exports from the cycle occur, 

especially erythrose 4-phosphate (E4P) for the phenylpropanoid pathway, pyruvate for fatty acid 

synthesis, and pyruvate and glyceraldehyde 3-phosphate (GAP) for the methyl erythritol 4-

phosphate pathway that leads to isoprenoid synthesis (Sharkey et al., 2020). 

Another set of reactions comprise the photorespiration pathway. When rubisco fixes 

oxygen instead of CO2, a series of reactions involving three organelles and amino acid 

metabolism is initiated that results in 3/4 of the carbon first lost to 2-phosphoglycolate being 

returned to the CBC. 

In addition to photorespiratory production of CO2, CO2 is released by a process originally 

called dark respiration in the light (Farquhar et al., 1980) but now called day respiration 

(Tcherkez et al., 2017), or light respiration (RL) (Xu et al., 2021a). A static analysis of label in 

metabolites following 13CO2 feeding (Sharkey et al., 2020) pointed to the oxidative PPP (OPPP) 

as the source of the bulk of RL, for which our recent metabolic flux analysis (MFA) work 

provides detailed support (Xu et al., 2021a). However, there remain several puzzling observations 

on CBC kinetics that date back to early quantitative tracer studies (Mahon et al., 1974; McVetty 

and Canvin, 1981) and are reinforced by recent 13CO2-based MFA studies.  

• CBC intermediates label very quickly up to 80 to 90% of 13C, but the last 10 to 20% of 

labeling is much slower (Hasunuma et al., 2010; Szecowka et al., 2013; Ma et al., 2014; 

Arrivault et al., 2017; Arrivault et al., 2019). 

• The proportion of fully unlabeled molecules remains anomalously high well after most 

molecules are highly labeled [see Szecowka et al. (Szecowka et al., 2013) and Appendix 

A, Table S2.4, where M0 is greater than M1]. 

• To achieve acceptable fits, previous MFA studies assumed large metabolically inactive 

pools of central metabolites including metabolites of the CBC (Szecowka et al., 2013; Ma 
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et al., 2014; Arrivault et al., 2017; Arrivault et al., 2019). However, there is little 

biochemical evidence for their existence.  

• Previous studies fixed numerous fluxes, including starch and sucrose biosynthesis, 

according to independently measured experimental values (Ma et al., 2014; Xu et al., 

2021a). Recently, it was recommended to minimize fixed fluxes and imposed constraints 

in MFA analyses and compare independent experimental values with model outputs rather 

than using them as model inputs (Wieloch, 2021). 

• Estimates of the relative rate of photorespiration, that is, the ratio of velocities of 

oxygenation/carboxylation (vo/vc), in MFA, are low (Xu et al., 2021a) or light dependent 

(Ma et al., 2014). 

These anomalies indicate that we do not fully understand how the CBC is integrated into the 

metabolic network of photosynthetic cells. To explore them, we have extended a previously 

published dataset of leaf isotope labeling (Xu et al., 2021a) to 2 h, added data for neutral sugars, 

and examined the processes underlying labeling behavior. We applied several statistical tests of 

the interpretation of three linked processes. We also have made modifications to the isotopically 

nonstationary (INST)-MFA of photosynthetic metabolism (Ma et al., 2014; Young, 2014; Allen 

and Young, 2020). We find that three kinetic processes of labeling in CBC metabolites can be 

defined, and we propose pathways for each. The proposed network of carbon flow eliminates the 

need to hypothesize metabolically inactive pools and explains both the observed labeling of 

neutral sugars due to slow dynamic turnover of these products and the high ratio of unlabeled 

molecules (M0 isotopologue) to singly labeled ones (M1 isotopologues). 

2.5. Results 

2.5.1. The CBC shows three kinetic components 

Following a switch from 12CO2 to 13CO2, a semilog plot of 12C levels for the CBC 

intermediates RUBP, PGA, E4P, S7P, GAP, dihydroxyacetone phosphate (DHAP), and FBP 

(Appendix A, Dataset S1) shows three straight lines (Fig. 2.1A). This practice of fitting straight 

lines on a semilog plot and/or curve stripping is borrowed from pharmacokinetics and serves as an 

approximation of a polyexponential model with N terms, where N is the number of decay 

processes acting on distinct time scales (Gibaldi and Perrier, 1982; Dunne, 1985). Interestingly, if 

a metabolic network is represented as a kinetic model with first-order or pseudo-first-order 

kinetics and M compartments or pools, the analytical solutions for the isotopic labeling in the 
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different compartments correspond to polyexponentials containing M terms (Appendix, A 

Supplementary Text T1 and Fig. S2.1). 

 
Figure 2.1: Modeling of exponential decay of 12C in photosynthesis metabolites. (A) A semilog 

plot showing the log transformed %12C remaining in a time course dataset of aggregated CBC 

intermediates (DHAP, E4P, FBP, GAP, PGA, RUBP, and S7P) (n = 254). Error bars represent 

mean ±2 SE in A and B. Measured time points of labeling levels fitted by alternative models in 

the early, middle, and late periods of the labeling time course show evidence for three distinct 

processes. (B) The exponential, biexponential, and triexponential model fits to the %12C 

remaining time course for CBC intermediates in the linear domain. The orange shaded area 

represents the 95% CI of the regression line obtained via bootstrap resampling (resampling n = 

1,000). (C) A table summarizing the nested models we fitted to our data using nonlinear 

regression and model selection results. K: number of model parameters; SoS: extra sum of 

squares; CV: cross-validation. Green cells indicate that the model selection criterion results for a 

given model support it as statistically superior to the previous model, orange cells indicate that 

they do not support it as superior to the previous model, and gray cells indicate that the criterion 

cannot be evaluated. Details about the calculation and interpretation of these model selection 

criteria can be found in Appendix A, Supplemental Methods T2. These results uniformly point to 

the triexponential model without a constant reflecting an inactive pool as the best supported 

description of our aggregated CBC labeling dataset. 
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This indicates that we can fit our metabolite labeling data directly to polyexponential models and, 

by using model selection techniques to find the model that best describes our data, relate this to an 

underlying network architecture. 

Nonlinear regression and model selection strongly support the existence of three distinct 

processes controlling the labeling of CBC intermediates but do not support inactive pools. Fig. 

2.1B (see also Appendix A, Fig. S2.2) shows the results of fitting the measured 12C levels in the 

aforementioned aggregated CBC intermediates of Camelina sativa to models with one, two, or 

three exponential components (corresponding to one to three processes controlling labeling 

kinetics). We evaluated which model best describes the data, using four statistical model selection 

criteria. Each represents a different measure of overfitting and approach to model selection. All 

four statistical criteria support the existence of three exponential components in the CBC labeling 

time course (Fig. 2.1C), corresponding to an overall metabolic network involving fluxes among 

three compartments/pools. The model did not show statistically significant improvement in the fit 

by including constant terms, which would correspond to metabolically inactive pools. Labeling of 

the aggregate and individual CBC intermediates—as well as ADP glucose (ADPG)—shares 

similar kinetic parameter values (Appendix A, Dataset S2), consistent with their high rates of 

interconversion and turnover during photosynthesis, resulting in rapid “mixing” of carbon 

between them. 

Our data are best described by a triexponential model without constants (Fig. 2.1C; model 

5 approximates the data significantly better than model 4; model 6 provides no statistically 

significant improvement). This corresponds to a network in which three interlinked pools 

contribute to 13C labeling and argues against inactive metabolite pools. We do note that the model 

selection results for model fits to individual metabolite datasets (Figures S2.3 – 2.11) do not 

uniformly support a triexponential model, though we believe that the aggregated dataset, with its 

substantially larger sample size, represents a stronger indicator of the overall behavior and 

structure of the system, which is what we are interested in.  

 Is this network architecture unique to the CBC in Camelina sativa or does it generalize to 

other plant species? We performed the same exercise of fitting the 13C labeling of aggregated and 

individual CBC intermediates using a labeling dataset gathered from Nicotiana tabacum (Fu et 

al., 2023). We find that the model selection results for the aggregated CBC intermediates as well 

as some of the individual metabolites (RUBP, PGA, and GAP/DHAP) also support the 
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triexponential model (Figure 2.2). This suggests that the gross architecture of three interlinked 

pools contributing to 13C labeling is a general feature of CBC activity in higher plants, rather than 

a quirk of C. sativa’s metabolism. To elucidate these pools and their interconnectivity, we now 

model carbon metabolism by 13C isotopically nonstationary MFA. 

 
Figure 2.2: Nonlinear regression fits for single, biexponential, and triexponential models fitted 

to an aggregated CBC intermediate dataset from Nicotiana tabacum along with a summary of 

model selection results for the aggregated and individual metabolite datasets. (a) Nonlinear 

regression fits for polyexponential models with the aggregated CBC intermediate dataset from N. 

tabacum. The orange line represents the best-fit line and the shaded region represents the 95% CI 

estimated by bootstrap resampling. (b) Model selection results for the aggregated CBC dataset. 

Green squares represent model selection results supporting the model indicated by that row 

representing a statistical improvement over a simpler model. Orange squares represent model 

selection results that do not support adding the additional parameters needed for the model in 

that row. (c) Model selection results in the same format as that in panel (b) for individual CBC 

intermediates as well as ADP-glucose. 



 
 

43 

 

2.5.2. Network model of three pools of metabolites connected to photosynthesis. 

Since we found evidence for three phases of exponential decay and against the 

contribution of inactive metabolite pools, we looked for processes that might account for the three 

phases. We began with the hypothesis that unlabeled carbon enters photosynthetic metabolism 

(Sharkey et al., 2020). We tested four alternatives: 1) entry of 12C glucose into the cytosolic 

hexose-phosphate pool, which can reach the chloroplast via the cytosolic OPPP shunt and pentose 

phosphate transmembrane transport on either the xylulose phosphate/phosphate transporter or the 

triose phosphate/phosphate transporter (Hilgers et al., 2018a); 2) entry of 12C glucose into the 

chloroplastic hexose phosphate pool to look at the possible contribution of starch turnover; 3) 

injection of 12CO2 into the internal CO2 pool to simulate an unknown source of older C being 

broken down; and 4) addition of 12C triose phosphate to the plastid triose phosphate pool to 

simulate entry via the triose phosphate transporter from an unknown source in the cytoplasm 

(Table 2.1 and Appendix A, Table S2.3). To do so, we increased the time span and range of 

metabolites over which labeling was measured and updated our previously developed metabolic 

model to include reversibility of several reactions for which there is biochemical evidence 

(Appendix A, Dataset S3). We assessed these alternatives comparing sum of squared residuals 

(SSR), a measure of the goodness of fit between modeled and measured data (Young, 2014). 

However, SSR will be affected by how many data points are used and other factors. For this 

reason, we do not compare SSRs found in this study with those from our previous studies but only 

look for large reductions in SSRs when datasets and degrees of freedom are similar. 

Table 2.1: Comparison of goodness of fit between data and best-fit simulations from alternative 

models. 

 

The data were consistent with 12C entry from intact unlabeled glucose via the OPPP shunt 

at a rate of 1.9 μmol⋅g−1 FW⋅h−1, with the best SSR improvement from 1,340 to 1,126. The second 

possible 12C entry flux is 0.3 μmol⋅g−1 FW⋅h−1 from the triose phosphate transporter from an 
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unknown source in the cytosol, with a decrease in SSR from 1,340 to 1,273. The third possible 

12C entry is from starch turnover flux of 0.5 μmol⋅g−1 FW⋅h−1, with a decrease in SSR from 1,340 

to 1,300. We also tested other models with variations in starch metabolism to test 1) whether 

addition of reactions representing starch turnover to the metabolic model meaningfully improves 

the agreement between the measured and simulated labeling and other flux data and 2) whether 

the fitting of such models indicates biologically significant fluxes through starch turnover. We 

tested six such models with different representations of how starch turnover might act to influence 

the carbon fluxes and expected labeling patterns. Other models were tested in which either the 

whole starch pool or an intermediate pool (such as might represent either oligoglucans or short- 

versus long-term starch pools) can turn over while maintaining the measured net starch 

accumulation rates. 

No unknown source of older C being broken down is indicated, with 12CO2 entry flux of 0 

with no change of SSR (Table 2.1). This result is consistent with the M0 abundance results (see 

below), as the assimilation of 12CO2 would not selectively increase the proportion of unlabeled 

molecules, because it does not inject intact carbon skeletons. The starch model with the largest 

improvement in the fit, as defined by the SSR, was no more than a 1% improvement, with a best 

fit value for a starch turnover flux of no more than 11% of the G6P dehydrogenase activity 

(Appendix A, Table S2.3). 

2.5.3. Examination of labeling in key CBC intermediates supports the hypothesis that intact 

unlabeled molecules enter the CBC. 

In our study’s later time points, anomalously high values for fully unlabeled isotopologues 

(M0) were found well after the singly labeled (M1) isotopologues had decayed to very low levels 

(Fig. 2.3). Since the percentage of M2 was always bigger than M1, the percentage of M1 should 

also be bigger than M0. However, we found the reverse pattern. The ratio of the measured 

percentages of M1 to M0 ranged from 0.1 to 0.4, much smaller than the predicted ratio range of 

48 to 175 (Appendix A, Table S2.4). If inactive metabolite pools cause the lack of complete 

labeling, then, at later time points, for example, in G6P, only M0 and M6 should be observed. 

However, the amount of M0 could account for only one-third of the 12C in G6P at 2 h (Appendix 

A, Table S2.5). We suggest that the high amount of M0 comes from a large metabolic pool, such 

as fully unlabeled glucose that enters the CBC at a low rate. 
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Figure 2.3: Mass isotopologue distributions of CBC intermediates showing the overabundance of 

M0 isotopologue at the latest time points. Percentages of relative abundance of each isotopologue 

for key CBC intermediates at 1 h are shown, with different colors corresponding to different 

isotopologues (figure legend). The size of each pie chart corresponds to the pool size of that 

metabolite. An expanded bar next to each pie chart shows proportions of M0, M1, and M2 

isotopologues, highlighting the overabundance of the M0 relative to the M1 isotopologue. 

Abbreviations (see also Table S2.4): GAP, glyceraldehyde 3-phosphate; DHAP, 

dihydroxyacetone phosphate; PGA, 3-phosphoglyceric acid; R5P, ribose 5-phosphate; RU5P, 

ribulose 5-phosphate; XU5P, xylulose 5-phosphate; RUBP, ribulose 1,5-bisphosphate; F6P, 

fructose 6-phosphate; G6P, glucose 6-phosphate; S7P, sedoheptulose 7-phosphate. 

We also observed slow turnover of neutral sugars, which suggests that a dilution flux of 

largely or wholly unlabeled hexose enters the CBC over an extended period during labeling 

experiments (Appendix A, Fig. S2.12; labeling kinetics for other metabolites are shown in 

Appendix A, Figs. S2.13 and S2.14). At 60 min, the glucosyl and fructosyl moieties of sucrose 

contained 49% and 46% 13C, respectively (Appendix A, Fig. S2.12). Sucrose recycling through 

invertase and fructokinase yields F6P that would distribute between sucrose resynthesis and G6P, 

but this alone is insufficient to account for a prolonged dilution flux. By contrast, at 60 min, 

glucose and fructose were only 12% and 20% labeled with 13C, respectively (Appendix A, Fig. 
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S2.12), consistent with previous evidence that vacuolar sucrose turns over due to invertase 

activity (Uys et al., 2007; Nägele et al., 2010; Patrick et al., 2013). If a modest proportion of 

cytosolic G6P originates from the action of hexokinase on glucose leaving the vacuole, then there 

would be an additional source of unlabeled carbon in the cytosolic G6P pool. Sucrose recycling 

and turnover of vacuolar sugars could therefore slow the 12C decay in CBC intermediates and 

correspond to the additional carbon pool attested to by the polyexponential modeling. 

2.5.4. An integrated flux model with three compartments. 

In light of the above results, we included sucrose recycling and sugar vacuole pool 

transport reactions in the model with known biochemical reactions that can mediate such slow 

turnover processes of sucrose/glucose/fructose. Inclusion of sucrose recycling and sugar vacuole 

pool reactions markedly reduced overall SSR from 1,340 to 968 and reduced individual SSRs for 

labeling in the least well-fitted metabolites F6P, ribose 5-phosphate (R5P), G6P, ADPG, and 

UDPglucose (UDPG) (Table 2.1 and Appendix A, Table S2.3). 

Fig. 2.4 shows the flux map for photosynthetic carbon metabolism for the model, with 

sucrose recycling reactions and sugar vacuole pool reactions in orange. The nonphotorespiratory 

CO2 release during photosynthesis from the cytosolic G6P shunt was estimated at 5% of net CO2 

fixation compared to a photorespiratory CO2 release of 18% of net CO2 fixation (Appendix A, 

Table S2.6). While intermediates of the CBC, photorespiration, and starch and sucrose 

biosynthesis pathways showed substantial 13C labeling, the tricarboxylic acid (TCA) cycle 

intermediates, and most amino acids derived from them, showed very little labeling after 120 min. 

The flux map is consistent with previous reports of low TCA fluxes and operation of the OPPP 

shunt as a source of RL (Xu et al., 2021a). The 95% CIs of the flux values were estimated by both 

parameter continuation and Monte Carlo methods. These CI estimates showed that the net fluxes 

whose magnitude approaches or exceeds 1% of the rate of photosynthesis are well defined, with 

ranges less than ±5% of their values (Appendix A, Dataset S2.4). Exchange fluxes are less well 

defined, especially for reactions with modest net fluxes. 
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Figure 2.4: Central carbon metabolic fluxes in photosynthetic C. sativa leaves. Fluxes are shown 

as numbers and depicted by the variable width of arrows. Orange arrows highlight the carbon 

flow from neutral sugars through the G6P shunt, entering the CBC. Fluxes were estimated by 13C 

INST-MFA using the INCA software suite constrained by the metabolic network model and 

experimental inputs including mass isotopologue distributions of measured metabolites, net CO2 

assimilation, sucrose and amino acid export rate, and measured vo/vc ratio. Flux units are 

expressed as micromoles metabolite per gram FW per hour. The model network is 

compartmentalized into cytosol (“.c”), chloroplast (“.p”), mitochondrion (“.m”), and vacuole 

(“.v”). Abbreviations: ACA, acetyl-CoA; AKG, α-ketoglutarate; ALA, alanine; ASN, asparagine; 

ASP, aspartate; CIT, citrate; DHAP, dihydroxyacetone phosphate; EC2, transketolase-bound-2-

carbon-fragment; FBP, fructose-1,6-bisphosphatase; FUM, fumarate; GA glycerate; GLN, 

glutamine; GLY, glycine; ICI, isocitrate; MAL, malate; OAA, oxaloacetate; PEP, 

phosphoenolpyruvate; PYR, pyruvate; RU5P, ribulose-5-phosphate; RUBP, ribulose-1,5-

bisophosphate; S7P, sedoeheptulose-7-phosphate; SBP, sedoheptulose-1,7-bisophosphate; SER, 

serine; SUC, succinate; THR, threonine. 

2.5.5. Model prediction of photorespiration. 

The estimation of the photorespiration rate in leaves by 13C MFA is complicated by the 

presence of multiple subcellular pools of serine and glycine and the multiple reactions and 

interconversions that they can undergo in different compartments (Hanson et al., 2000), and the 

challenges in obtaining reliable measurements of levels, compartmentation, and labeling of other 

photorespiratory metabolites (Ma et al., 2017). Here we measured labeling in 2-phosphoglycolate 

(2PG) but were not able to reliably measure labeling in glycolate, glyoxylate, hydroxypyruvate, or 
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glycerate. In the absence of such additional measurements, the reliability of photorespiratory flux 

estimates is low, with a substantial range of possible rates, which increases if realistic 

compartmentation of glycine and serine is included. We therefore estimated vo/vc using gas 

exchange measurements (Appendix A, Supplementary Information Text T2.3). The value 

obtained (0.31) was used as input to the MFA model instead of relying on fitting the labeling 

measured in glycine and serine (Appendix A, Table S2.7). Using measurements of serine, 

glycine, 2PG, and glycerate without compartmentation, Ma et al. (Ma et al., 2014) obtained a 

vo/vc ratio of 0.28 to 0.43 in Arabidopsis under low and high light levels, which is consistent with 

the value estimated here. 

2.5.6. No metabolically inactive CBC metabolites. 

The inclusion of inactive metabolite pools was made in previous studies to account for the 

persistence of unlabeled carbon in CBC intermediates (Szecowka et al., 2013; Ma et al., 2014; 

Arrivault et al., 2019; Xu et al., 2021a). Whole shoots may include enough photosynthetically 

inactive tissues to account for significant inactive pools, while single mature leaves used here 

should have very little photosynthetically inactive tissue. We therefore eliminated model terms 

accounting for inactive metabolite pools included in previous studies (Szecowka et al., 2013; Ma 

et al., 2014; Xu et al., 2021a) for all metabolites except glycine, serine, and alanine, for which 

significant vacuolar pools with long turnover times are plausible (Fürtauer et al., 2019). The 

model without inactive pools failed to adequately explain the labeling dataset, with particularly 

poor agreement for F6P, R5P, G6P, ADPG, and UDPG (Appendix A, Table S2.3). 

To test the model shown in Fig. 2.4, we added the inactive pools removed earlier back into 

the model to see whether introducing our mechanistic explanations for the labeling dynamics of 

the metabolites in this network changed the inactive pool size estimates. Compared to the 

previous study, we found this model substantially lowered the estimated inactive pool sizes in the 

best-fit simulations (Appendix A, Fig. S2.15) compared to previous studies (Szecowka et al., 

2013; Ma et al., 2014; Xu et al., 2021a). Among them, the inactive pools for RUBP, PGA, hexose 

6-phosphates, RU5P, 2PG, ADPG, and UDPG were decreased to almost zero, indicating that the 

turnover of sugars better explains the proportion of unlabeled molecules in these metabolites than 

the idea of inactive pools. 
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2.6. Discussion 

A key finding from this study is that the kinetics of the CBC is best described as a function 

of three interconnected processes, as indicated both by our modeling analysis of the time course 

of 12C decay during 13CO2 labeling experiments (Fig. 2.1) and by our MFA modeling results 

(Appendix A, Fig. S2.15). Our model included three inputs of carbon into the CBC: 1) 172 

μmol⋅g−1 FW⋅h−1 by carboxylation by rubisco, 2) 75 (25 × 3 carbons per glycerate) μmol⋅g−1 

FW⋅h−1 returned from photorespiration, and 3) 35 (7 × 5) μmol⋅g−1 FW⋅h−1 returned from the G6P 

shunt. The carbon paths in photorespiration and the G6P shunts require an extra 110 (75 + 35) 

carbon atoms to be processed for 172 carboxylations, adding more than 50% to the required flux 

through reactions in the CBC. 

In previous work, we allowed only a stromal shunt (Xu et al., 2021a). When we allowed 

both a stromal and a cytosolic shunt with our expanded dataset, all shunt carbon flow was 

assigned to the cytosolic shunt, and other work based on label in 6-phosphogluconate indicated 

that, in unstressed plants, only the cytosolic shunt operates (Sharkey et al., 2020). Therefore, we 

left the stromal shunt out of the final model. 

The model includes release of CO2 in photorespiration at a rate of 25 μmol⋅g−1 FW⋅h−1 

and, from the G6P shunt, at a rate of 7 μmol⋅g−1 FW⋅h−1. The rate of glucose entry into the shunt 

was estimated to be about 5% of the rate of net CO2 fixation. The cost of the shunt is three ATP 

per glucose. Therefore, this shunt would increase the energy requirement for CO2 fixation from 

three ATP and two NADPH to ∼3.15 ATP and two NADPH (photorespiration also affects the 

energy cost of CO2 fixation) (Sharkey and Weise, 2016; Sharkey et al., 2020). 

The cost of the G6P shunt may be offset by benefits of refilling the CBC when 

intermediates fall during transients in light or other factors (Sharkey and Weise, 2016). This has 

also been proposed by Makowka et al., (2020) for glycolytic pathways in cyanobacteria. 

2.6.1. MFA model fits. 

The use of multiple statistical tests specifically designed for model selection and the 

comparison of nested model series shows the potential for improvement of statistical rigor in this 

important aspect of MFA modeling. Although MFA software packages like INCA (Young, 2014) 

can report out 95% CIs for SSRs, allowing researchers to flag overfit or underfit models, these 

expected ranges are not appropriate for comparing alternative model architectures. This study 

demonstrated that, by directly modeling 13C labeling time course data, we can test models of the 
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general structure of the underlying network and corroborate or contradict assumed or proposed 

MFA models. This attests to the possible utility of these kinds of statistical tools in constraint-

based modeling, and we believe advancement in this area could encourage use of MFA models to 

gain insight into photosynthetic metabolism. 

2.6.2. Reaction network improvement. 

This new model improves on previous efforts on several fronts. Comparisons of the model 

in this work with previous models (Ma et al., 2014; Xu et al., 2021a) are shown in Appendix A, 

Dataset S3.3. The reversibility of reactions in the CBC has been corrected. Reactions present in 

the previous models, representing inactive pools for all the CBC intermediates, ADPG, UDPG, 

2PG, phosphoenolpyruvate, and glycerate have been removed. The inactive pools for alanine, 

glycine, and serine have been retained because of their compartmentation complexity. Reactions 

newly added in this study, including cytosolic OPPP shunt, sucrose recycling reactions, and sugar 

vacuole pool reactions, explain the longstanding puzzle of the slow labeling phase of CBC 

intermediates and the overabundance of fully unlabeled isotopologues. These improvements to the 

metabolic network have largely eliminated the need for hypothesizing inactive pools. In showing 

the interconnection of these three compartments, we have drawn a picture of how carbon moves 

through photosynthetic carbon assimilation in a way that integrates the CBC, cytosolic sugar 

pools, the glucose-6-phosphate shunt, and vacuolar sugars into a single system. 

The data are consistent with a cytosolic G6P shunt. A stromal shunt would be 

undetectable, since the carbon source for a stromal shunt would have the same labeling kinetics as 

the rest of the CBC, as indicated by the similarity of labeling of ADPG and CBC intermediates. 

Measurements of the label in 6-phosphogluconate indicated that, in unstressed conditions, only 

the cytosolic shunt was active, while, in high temperature stress, a stromal shunt also occurs 

(Sharkey et al., 2020). When models that included both shunts were tested, no flux was assigned 

to the stromal shunt. The modified model used here predicts that the cytosolic shunt would 

proceed at a rate that is consistent with measurements of RL made using 12CO2 emission into a 

13CO2-containing atmosphere (Loreto et al., 2001). 

2.6.3. Sources of unlabeled carbon. 

Our conclusion is that the source of unlabeled carbon that reenters the CBC is sucrose, 

glucose, and fructose in the cytosol and vacuole. It has been shown that SUC4-type sucrose 

transporters can allow sucrose release from vacuoles (Payyavula et al., 2011; Schneider et al., 



 
 

51 

 

2012; Anaokar et al., 2021), and SWEET17 can mediate fructose transport across the tonoplast in 

leaves, although its primary activity may be in roots (Guo et al., 2014). Our model allows 

chloroplasts to take up pentose phosphates. A xylulose 5-phosphate transporter has been 

described (Eicks et al., 2002), but we found that plants lacking this gene have no growth or 

photosynthetic phenotype. The xylulose 5-phosphate transporter will also transport triose 

phosphates, and it is very possible that the triose phosphate/phosphate transporter is also 

bifunctional. Plants lacking both the xylulose phosphate-phosphate transporter (XPT) and triose 

phosphate transporter (TPT) accumulate pentose phosphates and show a much stronger reduction 

in growth than plants lacking the TPT alone (Hilgers et al., 2018a). 

In the past, starch recycling was proposed as a possible source (Sharkey, 2019). We have 

abandoned that idea, because a source in starch recycling would require that 36% of the carbon 

going to starch comes back into metabolism, but without any label. This is unrealistic. The results 

of various models described above (Appendix A, Table S2.3) provided clear-cut evidence against 

a biologically significant contribution of starch turnover to labeling patterns or carbon balances in 

central metabolism. 

2.6.4. Previously puzzling observations explained. 

With the insight gained here, we address the metabolism issues raised in the Introduction. 

• The CBC intermediates label very quickly up to 80 to 90% of 13C, but the last 10 to 20% 

of labeling is much slower (Hasunuma et al., 2010; Szecowka et al., 2013; Ma et al., 

2014; Arrivault et al., 2017; Arrivault et al., 2019). 

The CBC in leaves shows three phases, indicating three components. The slower two components 

account for the apparent slow-to-label pool. This is well-explained by carbon in unlabeled pools 

of glucose, fructose, and sucrose reentering the CBC by way of the glucose-6-phosphate shunt in 

the cytosol. No evidence was found for separate active and inactive pools. Hendry et al. (Hendry 

et al., 2017) proposed that glycogen could supply unlabeled carbon back to the CBC 

intermediates in Synechococcus to explain a similar lack of complete labeling. 

• The proportion of fully unlabeled molecules remains anomalously high well after most 

molecules are highly labeled [see Szecowka et al. (Szecowka et al., 2013) and Appendix 

A, Table S2.4, where M0 is greater than M1]. 

The abundance of M0 over M1 isotopologues was confirmed here. If metabolically inactive pools 

explained the lack of complete labeling, then the M0 isotopologues should account for all the 
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unlabeled carbon atoms. However, using G6P as an example, 2.9% of the molecules were fully 

unlabeled, but this accounts for only about one-third of the missing label (Appendix A, Table 

S2.5). Entry of carbon from relatively unlabeled free sugars into active pools accounts for the 

preponderance of M0 isotopologues. 

• To achieve acceptable fits, previous MFA studies assumed large metabolically inactive 

pools of central metabolites including metabolites of the CBC (Szecowka et al., 2013; Ma 

et al., 2014; Arrivault et al., 2017; Arrivault et al., 2019). However, there is little 

biochemical evidence for their existence. 

The new model of metabolism does not predict inactive pools. For all the CBC intermediates, the 

data fit well assuming carbon reentry through the shunt, eliminating any need to invoke inactive 

pools (Appendix A, Fig. S2.15 and Table S2.3). The exception is SBP as reported in Arrivault et 

al. (Arrivault et al., 2017). High levels of M0 were found. This could result from E4P export on 

the XPT transporter (Hilgers et al., 2018b) followed by attachment of DHAP catalyzed by 

aldolase. Since there is no SBPase in the cytosol, this would be a metabolic dead end and result in 

a significant inactive pool of SBP. 

• Previous studies fixed numerous fluxes, including starch and sucrose biosynthesis, 

according to independently measured experimental values (Ma et al., 2014; Xu et al., 

2021a). Recently, it was recommended to minimize fixed fluxes and impose constraints in 

MFA analyses and compare independent experimental values with model outputs rather 

than using them as model inputs (Wieloch, 2021). 

The final model had no fixed fluxes, although the ratio of vo/vc was constrained (but not fixed) 

based on gas exchange data (Appendix A, Supplementary Information Text T3.3). Fatty acid 

synthesis and RL were constrained (but not fixed) based on previous measurements (Xu et al., 

2021a). The model returned physiologically reasonable values for starch and sucrose synthesis 

(Sharkey et al., 1985). 

• Estimates of the relative rate of photorespiration, that is, velocity of rates of 

oxygenation/carboxylation (vo/vc), in MFA are low (Xu et al., 2021a) or light dependent 

(Ma et al., 2014). 

We found that vo/vc is not well estimated by the model, requiring use of other estimates. Use of 

MFA to estimate photorespiration rates is less reliable than other methods (Sharkey, 1988; Busch, 

2013). 
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Several models of plant behavior, including isotopic disequilibrium methods for 

measuring RL (Gong et al., 2018) and isoprene studies [reviewed in (Sharkey et al., 2020)], 

assume that carbon in photosynthesis is fully labeled after 10 min of feeding air with a different 

carbon isotopic composition and that other processes contribute “old” carbon that does not 

become labeled. The results presented here will allow more-refined models that include both the 

lack of complete labeling of CBC intermediates and the occurrence of some label in the sources 

for these other processes. Our results indicate that isotopic methods for measuring RL 

underestimate its rate because the source carbon (G6P in the cytosol) has some label at the time 

RL is assessed. The results presented here provide a framework for more detailed RL 

measurements. Measuring RL is a very difficult task but very important for understanding global 

carbon cycles (Tcherkez et al., 2017). 

In summary, labeling of CBC intermediates by fixation of incoming 13CO2 is diluted by 

weakly labeled carbon in glucose reentering the CBC. We predict that reentry of weakly labeled 

molecules occurs at a rate of 5% of the rate of net CO2 fixation. The model explains three phases 

of labeling. In showing the interconnection of three compartments, this model provides a more 

complete picture of how carbon moves through photosynthetic metabolism in a way that 

integrates the CBC, cytosolic sugar pools, the glucose-6-phosphate shunt, and vacuolar sugars 

into a single system. 

2.7. Methods 

2.7.1. Plant growth, gas exchange, and 13CO2 labeling. 

Plant growth and gas exchange methods were used as described previously (Xu et al., 2021a). 

The 13CO2-labeled leaf samples were collected at time points of 0, 0.5, 1, 2, 2.5, 3, 5, 7, 10, 15, 

30, 60, 90, and 120 min as described in detail in Appendix A, Supplemental Methods T3.4 and 

T3.5. 

2.7.2. Mass spectrometry. 

Mass spectrometry for anion exchange LC-MS/MS and GC-EI-MS were carried out using the 

methods described in ref. (Xu et al., 2021a) and detailed in Appendix A, Dataset S5. Reverse-

phase LC-MS/MS and GC-chemical ionization (CI)-MS had the following changes: Samples for 

reverse-phase liquid chromatography-tandem mass spectrometry were analyzed by an ACQUITY 

UPLC pump system (Waters) coupled with Waters XEVO TQ-S ultra-performance liquid 

chromatography tandem mass spectrometry (Waters) by the method described in ref. (Xu et al., 
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2021a). Samples for gas chromatography-electron ionization-mass spectrometry were analyzed by 

an Agilent 7890B GC system (Agilent) coupled to an Agilent 7010B triple quadrupole gas 

chromatography-electron ionization-mass spectrometer with an autosampler (CTC PAL) 

(Agilent). An Agilent VF5ms GC column, 30 m × 0.25 mm × 0.25 m with 10-m guard column 

was used. One microliter of the derivatized sample was injected with helium carrier gas at a flow 

rate of 1.2 mL⋅min−1. The oven temperature gradient was: 40 °C (1-min hold), increased at 

40 °C/min to 150 °C, then a 10 °/min to 250 °C, then a 40 °C/min to 320 °C, and finally held at 

320 °C for 4.5 min. CI was used, and the mass scan range was 150 amu to 650 amu with step size 

0.1 amu. The ionization source temperature was set at 300 °C, and the transfer line temperature 

was 300 °C. 

2.7.3. Nonlinear regression and model selection. 

A nonlinear ordinary least-squares algorithm implemented in the Python package SciPy was used 

to fit models 1 to 7 (Fig. 2.1C) to our dataset (Virtanen et al., 2020). Briefly, best-fit lines for 

each model were generated by initializing and estimating model parameters 100 times with 

randomly selected initial parameters and then selecting the fit with the smallest SSR. CIs for 

parameters and fitted values were determined using bootstrap resampling (n = 1,000). Extra sum-

of-squares, cross-validation, Akaike information criterion (AIC), and Bayesian information 

criterion (BIC) model selection criteria were evaluated for all models and model comparisons, and 

the Bonferroni–Holm multiple testing correction was applied for the P values generated by the 

extra sum-of-squares hypothesis testing (Holm, 1978; Schwarz, 1978; Akaike, 1998; Draper and 

Smith, 1998; Hastie et al., 2017). Further details can be found in Appendix A, Supplemental 

Information Text T3.1 and Supplemental Methods T3.2. 
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APPENDIX A: Supplemental Material for Chapter 2 

SUPPLEMENTAL TEXT 

T1. Derivation of Polyexponential Models from Analytical Solutions of Compartmental 

Models 

In Figure S2.1, we show a simplified model of photosynthetic carbon assimilation with three 

compartments and rates V1-V5. Assuming first-order or pseudo-first-order kinetics: 

  

𝑉1 = 𝑘1 ∗ [𝑋 ] (𝐸1) 

𝑉2 = 𝑘2 ∗ [𝑌] (𝐸2) 

𝑉3 = 𝑘3 ∗ [𝑌] (𝐸3) 

𝑉4 = 𝑘4 ∗ [𝑍] (𝐸4) 

𝑉5 = 𝑘5 ∗ [𝑍] (𝐸5) 

 

We define the differential operator D, where [F] is a stand-in for any compartment’s 

concentration: 

𝑑𝑛[𝐹]

𝑑𝑡
= 𝐷𝑛[𝐹] (𝐸6) 

Given definitions (E1-E5) and notation from E6, the rates of change of compartments X, Y, and 

Z are: 

𝐷[𝑋] = −𝑘1[𝑋] + 𝑘2[𝑌] (𝐸7) 

𝐷[𝑌] =  𝑘1[𝑋] − 𝑘2[𝑌] − 𝑘3[𝑌] + 𝑘4[𝑍] (𝐸8) 

𝐷[𝑍] = 𝑘3[𝑌] − 𝑘4[𝑍] − 𝑘5[𝑍] (𝐸9) 

Through a series of substitutions, it can be shown that this system of differential equations 

simplifies to a linear homogenous differential equation of the 3rd order: 

𝐷3 + 𝑎𝐷2[𝑋] + 𝑏𝐷[𝑋] + 𝑐[𝑋] = 0 (𝐸10) 

Where the coefficients a, b, and c are combinations of rate constants such that: 

𝑎 = 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 (𝐸11) 

𝑏 = (𝑘1 + 𝑘2)(𝑘3 + 𝑘4 + 𝑘5) (𝐸12) 

𝑐 = 𝑘1𝑘3𝑘5 (𝐸13) 

Which are all constants. The general solution to a linear homogenous differential equation with 

constant coefficients is of the form: 
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[𝑋](𝑡) = 𝑒𝑚∗𝑡 (𝐸14) 

Where m is some constant. From E10 and E14, we get the characteristic polynomial: 

𝑟3 + 𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 (𝐸15) 

This cubic polynomial has three roots, including repeating and complex roots. Due to the 

linearity of the system, its general solution is a linear combination of its roots, such that:  

[𝑋](𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡 + 𝑐3𝑒𝑟3𝑡 (𝐸16) 

Solving this cubic polynomial for biochemically reasonable estimates of k1
 through k5 results in 

three real and negatively valued roots, making the general result of an identical form as the 

triexponential decay models we fit our data to in this study. The analytical solutions to the 

differential equations or systems of differential equations describing single and two-compartment 

models, likewise, correspond to single exponential and biexponential functions, respectively. 

 

T2. Supplemental Methods 

Nonlinear regression and bootstrapping 

Fitting of %12C remaining data to polyexponential models was performed in Python using the 

curve_fit() function implemented in the SciPy package (Virtanen et al., 2020). We performed all 

regressions 100 times with uniformly sampled initial parameter values and selected the fit with 

the lowest SSR for further analysis. N = 1000 bootstrap resampling with replacement was 

performed using functions from the Python package recombinator. Due to the time-course 

structure of the data, circular block bootstrapping was used to preserve some of the dependence 

structure between subsequent measurements (Politis and Romano, 1991). Bootstrap samples 

were fitted using the same general procedure as that used to generate the best-fit lines, with the 

exception that the initial guesses for the parameter values for the regression of the bootstrap 

samples were set to the best-fit parameter values. 95% confidence intervals for each parameter 

were derived by taking the 2.5th and 97.5th percentile values of the resulting distributions of all 

successful fits. 

 

Data treatment for heteroskedastic residuals and outlier identification 

Heteroskedastic residuals from our nonlinear regressions were corrected using a logit 

transformation (Johnson, 1949). Specifically, we performed nonlinear regression on models of 

the form: 
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𝑙𝑜𝑔𝑖𝑡 (
𝑓(𝑡)

100
) = 𝑙𝑜𝑔𝑖𝑡 (

𝐴𝑒𝑏∗𝑡 + ⋯

100
) (𝐸17) 

This preserves the relationship between our response, independent variables, and 

estimated parameters, allowing for straightforward interpretation while substantially reining in 

the heteroskedasticity of the residuals. Due to the presence of % 12C remaining values very close 

to 100% in the tobacco dataset, a constant value of 0.1 was subtracted to avoid inflated values in 

the first time point exerting too much influence over the nonlinear regression results (and 

therefore resulting in heteroskedastic residuals). Specifically, the following model was fitted for 

the tobacco datasets: 

𝑙𝑜𝑔𝑖𝑡 (
𝑓(𝑡) − 0.1

100
) = 𝑙𝑜𝑔𝑖𝑡 (

(𝐴𝑒𝑏∗𝑡 + ⋯ ) − 0.1

100
) (𝐸18) 

Studentized residuals were calculated for all model fits and datapoints whose studentized 

residuals exceeded an absolute value of 3 were excluded (N = 5). Due to the substantial impure 

heteroskedasticity in the Model 1 fits studentized residuals greater than 3 in Model 1 fits were 

ignored for the purposes of outlier removal. 

 

Model selection criteria 

Extra-sum-of-squares: For each nested pair of models we calculated the probability that, given 

the null hypothesis that the simpler of the two models is true, we would see the observed 

improvement in model fit as measured by the sum-of-squared residuals (SSR) (Draper and 

Smith, 1998). We calculate an F statistic as follows: 

𝐹 =

𝑆𝑆𝑅𝑠𝑖𝑚𝑝𝑙𝑒 − 𝑆𝑆𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑆𝑆𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝐷𝐹𝑠𝑖𝑚𝑝𝑙𝑒 − 𝐷𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝐷𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑥

(𝐸19) 

Where SSRsimple and SSRcomplex are the SSR values for the simpler and complex – i.e., fewer and 

more parameters – models, respectively, and DFsimple and DFcomplex are the degrees of freedom for 

the two models. The F statistic resulting from E19 was then compared to the F-distribution to 

derive a p-value representing the probability of observing this F statistic given our null 

hypothesis, which is that our simpler model is correct. For this study, we set 𝛼 = 0.05 and used 

the Holm-Bonferroni correction (Holm, 1978) to adjust our p-value cutoff to one that 
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corresponds to a family-wise α of 0.05. For each p-value Pk in the family of hypothesis tests 

being tested, we evaluate the following expression:  

𝑃𝑘 <
𝛼

𝑚 + 1 − 𝑘
(𝐸20) 

where 𝛼 is the family-wise 𝛼 we are adjusting to, m is the number of hypothesis tests being 

conducted, and k is the rank of the p-value Pk in a ranked list of increasing p-values. 

 

We selected the best-supported model for a given dataset by starting with the single 

exponential model and adding more parameters until we got to a model comparison that did not 

meet our adjusted p-value cutoff, in which case we went with the simpler model in the 

comparison. In cases where there was a comparison of two more complex models than the one 

we arrived at using the method just described that yielded a low p-value, we calculated p-value 

for the F-statistic comparison between the more complex of those two and the accepted model. If 

we were justified in rejecting the null hypothesis that the simpler model is better in this case, we 

went with the more complex model.  

 

Cross-validation: For this study we used the cross_validate() function from the SciKitLearn 

package to perform between 5 and 10 iterations of 5-fold cross-validation on our datasets 

(Pedregosa et al., 2011; Hastie et al., 2017). The same non-linear ordinary least squares fitting 

procedure used for our best-fit parameter estimation on the full datasets was used for our cross-

validation, with the only difference being that the fitting was done 5 times with different 

randomly selected bins of data for training and testing, resulting in 5 estimates of prediction error 

for each alternative model at each iteration. After 5-10 iterations, we took all the negative mean 

squared error estimates for each model for a given metabolite or aggregated metabolite dataset 

and then calculated their mean value and 95% confidence interval (± 1.96 SE). The model with 

the lowest average error and whose 95% CI does not overlap with the next simplest model in 

terms of the number of fitted parameters was chosen as the best-performing model for each 

dataset. 

 

AIC/BIC: For each best-fit of Models 1-7, the AIC (Akaike, 1998) and BIC (Schwarz, 1978) 

were calculated as follows:  

𝐴𝐼𝐶 = 2𝑘 + 𝑛 ln 𝑆𝑆𝑅 (𝐸21) 
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𝐵𝐼𝐶 = 𝑘 ln 𝑛 + 𝑛 ln 𝑆𝑆𝑅 (𝐸22) 

where k is the number of estimated parameters in the model, and n is the sample size. The best-

supported model for each dataset was chosen by identifying the model with the lowest AIC/BIC 

value that is not within two absolute units of a simpler (i.e., fewer parameters) model. 

T3. Calculation of vo/vc 

We begin with the equation from Farquhar et al., (1980) 

 

𝐴 = 𝑣𝐶 − 0.5𝑣𝑂 − 𝑅𝐿 (𝐸23)

where A is the net rate of CO2 assimilation (uptake), vC is the velocity of carboxylation, vO is the 

velocity of oxygenation, and RL is all other sources of CO2 release in the light, possibly primarily 

CO2 released by the glucose 6-phosphate shunt (Xu et al., 2021a). Next, we define  

Φ =
𝑣𝑂

𝑣𝐶
(𝐸24)

and so 

𝐴 = 𝑣𝐶(1 − 0.5Φ) − 𝑅𝐿 (𝐸25)

Rearranging 

𝑣𝐶 =
(𝐴+𝑅𝐿)

(1−0.5Φ)
(𝐸26)

We can also estimate vO. 

𝐴 = 𝑣𝑂 (
1

Φ
− 0.5) − 𝑅𝐿 (𝐸27)

and so 

𝑣𝑂 =
(𝐴+𝑅𝐿)

(
1

Φ
−0.5)

(𝐸28)

Taking the ratio of equations and canceling (A+RL) 

𝑣𝑂

𝑣𝐶
=

(1−0.5Φ)

(
1

Φ
−0.5)

(𝐸29)

We can expand Φ as in Farquhar et al., (1980) 

 

Φ =
2Γ∗

𝐶
(𝐸30)

where Γ∗ is the CO2 compensation point in the absence of RL. Therefore, 

𝑣𝑂

𝑣𝐶
=

(1 −
Γ∗

𝐶⁄ )

0.5 (
𝐶
Γ∗

− 1)
(𝐸31) 
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Where C is the CO2 partial pressure equivalent at the sites of carboxylation. This is determined by  

𝐶 = 𝐶𝑖 −
𝐴

𝑔𝑚

(𝐸32) 

  

where Ci is the partial pressure of CO2 in the intercellular air spaces of the leaf (estimated from 

gas exchange) and gm is the mesophyll conductance for CO2 diffusion. In the absence of a direct 

measurement gm can be estimated as  

𝑔𝑚 = 0.3 + 0.11 ∙ 𝐴 (𝐸33) 

Based on multiple measurements reported in Caemmerer and Evans, (1991) 

We can parameterize as follows based on measured gas exchange of the leaves used for this data 

set 

A = 17.4 ± 1.9 µmol m-2 s-1 (avg ± SD) (measured) 

*= 3.18 µmol m-2 s-1 Pa-1 (for tobacco, from Sharkey, (2016), adjusted to 22°C) 

C = 20.5 Pa (measured Ci and corrected for gm using E32) 

𝑣𝑜

𝑣𝑐
=

(1 −
3.18
20.5

)

0.5 (
20.5
3.18 − 1)

= 0.31 (𝐸34) 

 

T4. Plant Growth, Gas Exchange, and 13CO2 Labeling. 

 

Wild-type Camelina sativa ecotype Suneson was grown under 8/16-h day/night cycles, under a 

light intensity of 500 μmol m−2 s−1, temperature of 22°C, and 50% relative humidity for 4 weeks. 

The youngest fully expanded leaves were used for gas exchange and labeling experiments. a LI-

COR 6800 portable photosynthesis system (LI-COR Biosciences, Lincoln, NE, USA) was used 

to measure carbon assimilation. The reference [CO2] was set to 400 ppm, light intensity was 500 

μmol m−2 s−1, temperature was 22°C, and relative humidity was 70% to ensure that the leaf vapor 

pressure deficit was ~0.85 kPa. After 10-15 min acclimation, net CO2 assimilation rate was 

logged and then the CO2 source was switched to 13CO2 with all other parameters held constant. 

Gases were mixed with mass flow controllers (Alicat Scientific, Tucson AZ, USA) controlled by 

a custom-programmed Raspberry Pi touchscreen monitor (Raspberry Pi foundation, code 

available upon request). Labeled leaf samples were collected at time points of 0, 0.5, 1, 2, 2.5, 3, 

5, 7, 10, 15, 30, 60, 90, and 120 min. Liquid nitrogen was directly sprayed on the leaf surface via 
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a customized fast quenching (0.1-0.5 s to <0C) labeling system (13). Leaf temperature fell 

below 0C between. The frozen leaf sample was stored at -80°C. There were three biological 

replicates for data points from 0-90 min, and two biological replicates at 120 min. 

T5. Analysis of Mass Spectrometry Data.  

Data from LC-MS/MS were acquired with MassLynx 4.0 (Agilent, Santa Clara, CA, USA). Data 

from GC-EI-MS was acquired with Agilent GC/MSD Chemstation (Agilent, Santa Clara, CA, 

USA). Data from GC-CI-MS was acquired with Agilent MassHunter Workstation (Agilent, 

Santa Clara, CA, USA). Metabolites were identified by retention time and mass to charge ratio 

(m/z), in comparison with authentic standards. Both LC-MS and GC-MS data were converted to 

MassLynx format and processed with QuanLynx software for peak detection and quantification. 

Parameters for transitions of measured metabolites in multiple reaction monitoring (MRM) with 

LC-MS/MS and selected ion monitoring (SIM) with GC-MS are shown in Appendix A, Dataset 

S5. Experimentally measured mass isotopomer distributions of measured metabolites are shown 

in Appendix A, Dataset S1. 

 

Isotopologue Network and Flux Determination. 

 

The metabolic network model with all reactions and their respective carbon atom transitions 

describing photosynthetic central metabolism in Camelina sativa was constructed based upon the 

previous studies (Ma et al., 2014; Xu et al., 2021a) and KEGG database. A list of the reactions 

and abbreviations are provided in Table S2.2. INST-MFA was performed to estimate metabolic 

fluxes using the Isotopomer Network Compartmental Analysis software package (INCA2.0, 

http://mfa.vueinnovations.com, Vanderbilt University) (Young, 2014) implemented in MATLAB 

2018b. The fit for all the tested models were accepted based on χ2 test of the sum-of-squared 

residuals (SSR). Global best fit SSR were calculated by parameter continuation analysis. Fatty 

acid synthesis rate is constrained to 0.0329-0.4405 μmol CO2 g–1FW h–1 by combining the 

previous measurements of 0.049-0.067 μmol CO2 m−2 s-1 with 0.005-0.012 μmol CO2 m−2 s-1 

(Tcherkez et al., 2005; Xu et al., 2021a). RL is constrained to 8.1-10.7 μmol CO2 g–1FW h–1 

based on previous measurement (Xu et al., 2021a). vo/vc is constrained to 0.3-0.32 based on 

measurement in this study.  

 

http://mfa.vueinnovations.com/
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Assessment of Flux Precision 

Both parameter continuation method and Monte Carlo method were independently estimated the 

95% confidence intervals of the estimated flux values as shown in Appendix A, Dataset S4. 

10,000 sets of perturbed data were used for Monte Carlo analysis. The resulting distribution of 

flux values enabled the estimation of confidence intervals. The computation-intensive parameter 

continuation and Monte Carlo simulations were computed in parallel using a SLURM job 

scheduler to distribute jobs to hundreds of compute nodes within a high-performance computing 

cluster provided by the Institute for Cyber-Enabled Research at Michigan State University. The 

two approaches gave similar results of confidence intervals for each flux solution. 

 

Calculation of predicted percentage of isotopologues (fmn) 

Predicted percentage of isotopologues (fmn) is calculated by the equation of: 

 

𝑓𝑚𝑛 = (𝑝13𝐶)𝑛 ∗  (𝑝12𝐶)𝑚 − 𝑛 ∗  𝑚𝐶𝑛 (𝐸35) 

                                                                   

p13C is the measured 13C enrichment; p12C is the measured 12C enrichment; n is the number of 13C 

carbon; m is the number of total carbons; mCn is the combination for choosing objects of n from 

the total number of objects of m. 
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FIGURES 

 

Figure S2.1: Simplified compartmental model used in “T3.1: Derivation of Polyexponential 

Models from Analytical Solutions of Compartmental Models” showing the metabolite 

compartments and rates interconnecting them. Note that we are modeling the depletion of 12C 

here, not the enrichment of 13C, hence the lack of external input to the CBC under the 

assumption that we are working with pure 13CO2. 
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Figure S2.2: Nonlinear regression fits for all polyexponential models fitted to the aggregated 

Calvin-Benson Cycle intermediate dataset along with a summary of model selection results. The 

orange line represents the best-fit line and the shaded region represents the 95% CI estimated by 

bootstrap resampling. In the bottom-right table, green squares represent model selection results 

supporting the model indicated by that row representing a statistical improvement over a simpler 

model. Orange squares represent model selection results that do not support adding the additional 

parameters needed for the model in that row. Figure 2.1 is a subset of these data. 

  



 
 

70 

 

 

Figure S2.3: Nonlinear regression fits for all polyexponential models fitted to the fructose 1,6-

bisphosphate dataset along with a summary of model selection results. The orange line represents 

the best-fit line and the shaded region represents the 95% CI estimated by bootstrap resampling. 

In the bottom-right table, green squares represent model selection results supporting the model 

indicated by that row representing a statistical improvement over a simpler model. Orange 

squares represent model selection results that do not support adding the additional parameters 

needed for the model in that row. 
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Figure S2.4: Nonlinear regression fits for all polyexponential models fitted to the 3-

phosphoglycerate dataset along with a summary of model selection results. The orange line 

represents the best-fit line and the shaded region represents the 95% CI estimated by bootstrap 

resampling. In the bottom-right table, green squares represent model selection results supporting 

the model indicated by that row representing a statistical improvement over a simpler model. 

Orange squares represent model selection results that do not support adding the additional 

parameters needed for the model in that row. 
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Figure S2.5: Nonlinear regression fits for all polyexponential models fitted to the 

glyceraldehyde-3-phosphate dataset along with a summary of model selection results. The 

orange line represents the best-fit line and the shaded region represents the 95% CI estimated by 

bootstrap resampling. In the bottom-right table, green squares represent model selection results 

supporting the model indicated by that row representing a statistical improvement over a simpler 

model. Orange squares represent model selection results that do not support adding the additional 

parameters needed for the model in that row. 
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Figure S2.6: Nonlinear regression fits for all polyexponential models fitted to the 

dihydroxyacetone phosphate along with a summary of model selection results. The orange line 

represents the best-fit line and the shaded region represents the 95% CI estimated by bootstrap 

resampling. In the bottom-right table, green squares represent model selection results supporting 

the model indicated by that row representing a statistical improvement over a simpler model. 

Orange squares represent model selection results that do not support adding the additional 

parameters needed for the model in that row. 
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Figure S2.7: Nonlinear regression fits for all polyexponential models fitted to the erythrose-4-

phosphate dataset along with a summary of model selection results. The orange line represents 

the best-fit line and the shaded region represents the 95% CI estimated by bootstrap resampling. 

In the bottom-right table, green squares represent model selection results supporting the model 

indicated by that row representing a statistical improvement over a simpler model. Orange 

squares represent model selection results that do not support adding the additional parameters 

needed for the model in that row. 
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Figure S2.8: Nonlinear regression fits for all polyexponential models fitted to the sedoheptulose-

7-phosphate dataset along with a summary of model selection results. The orange line represents 

the best-fit line and the shaded region represents the 95% CI estimated by bootstrap resampling. 

In the bottom-right table, green squares represent model selection results supporting the model 

indicated by that row representing a statistical improvement over a simpler model. Orange 

squares represent model selection results that do not support adding the additional parameters 

needed for the model in that row. 
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Figure S2.9: Nonlinear regression fits for all polyexponential models fitted to the ribulose 1,5-

bisphosphate dataset along with a summary of model selection results. The orange line represents 

the best-fit line and the shaded region represents the 95% CI estimated by bootstrap resampling. 

In the bottom-right table, green squares represent model selection results supporting the model 

indicated by that row representing a statistical improvement over a simpler model. Orange 

squares represent model selection results that do not support adding the additional parameters 

needed for the model in that row. 
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Figure S2.10: Nonlinear regression fits for all polyexponential models fitted to the ADP-glucose 

dataset along with a summary of model selection results. The orange line represents the best-fit 

line and the shaded region represents the 95% CI estimated by bootstrap resampling. In the 

bottom-right table, green squares represent model selection results supporting the model 

indicated by that row representing a statistical improvement over a simpler model. Orange 

squares represent model selection results that do not support adding the additional parameters 

needed for the model in that row. 
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Figure S2.11: Nonlinear regression fits for all polyexponential models fitted to the UDP-glucose 

dataset along with a summary of model selection results. The orange line represents the best-fit 

line and the shaded region represents the 95% CI estimated by bootstrap resampling. In the 

bottom-right table, green squares represent model selection results supporting the model 

indicated by that row representing a statistical improvement over a simpler model. Orange 

squares represent model selection results that do not support adding the additional parameters 

needed for the model in that row. 
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Figure S2.12: Transient 13CO2 labeling in glucose, fructose, sucrose glucosyl moiety, and 

sucrose fructosyl moiety. Experimentally determined isotope labeling measurements are shown 

as points with error bars (n=3, ± stdev). INST-MFA fitted mass isotopologue distributions are 

shown as solid lines. Nominal masses of M0 mass isotopologues are shown in parentheses. Error 

bars represent standard errors. 
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Figure S2.13: Transient 13CO2 labeling in measured ions. Experimentally determined isotope 

labeling measurements are shown as points with error bars (n=3, ± stdev). INST-MFA fitted 

mass isotopologue distributions are shown as solid lines. Nominal masses of M0 mass 

isotopologues are shown in parentheses. Error bars represent standard errors. (A) C3 and 

Glycolysis related metabolites. Core C3-only intermediates [labeled in red]; intermediates shared 

with glycolysis [purple]; core glycolysis metabolites and products [green]; photorespiratory 

intermediates [blue]; then carbohydrate building substrates [black]. (B) TCA cycle related 

metabolites. OAA derived AA’s [labeled in red]; and more slowly Thr which is made from Asp 

at a slower rate than Asn [purple]; Citrate [green]; Glu and Gln ions [labeled Glx in blue]; 

Malate Fumarate and Succinate [black]. 
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Figure S2.14: Transient 13CO2 labeling in measured ions. Experimentally determined isotope 

labeling measurements are shown as points with error bars (n=3, ± stdev). INST-MFA fitted 

mass isotopologue distributions are shown as solid lines. Nominal masses of M0 mass 

isotopologues are shown in parentheses. Error bars represent standard errors. (A) C3 and 

Glycolysis related metabolites. Core C3-only intermediates [labeled in red]; intermediates shared 

with glycolysis [purple]; core glycolysis metabolites and products [green]; photorespiratory 

intermediates [blue]; then carbohydrate building substrates [black]. (B) TCA cycle related 

metabolites. OAA derived AA’s [labeled in red]; and more slowly Thr which is made from Asp 

at a slower rate than Asn [purple]; Citrate [green]; Glu and Gln ions [labeled Glx in blue]; 

Malate Fumarate and Succinate [black]. 
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Figure S2.15: The INST-MFA estimated inactive pools for serine, glycine, R5P, RUBP, 3-PGA, 

H6P, FBP, RU5P, S7P, 2PG, ADPG, UDPG, and alanine were compared with Xu et al., (2021a) 

and Ma et al., (2014). MSU model lowered the inactive pool sizes for all the above metabolites. 

Among them, the inactive pools for RUBP, 3-PGA, H6P, RU5P, 2PG, ADPG, UDPG 

dramatically lowered to almost zero. 
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TABLES 

Table S2.1: Rate parameters for CBC intermediates, ADPG, and UDPG. The top row is data 

derived from the average of all the individual metabolites and following the data for each 

metabolite, the time constants for each is averaged (CBC average not included) and standard 

deviation is shown. 

Metabolite(s) Slopes (min-1) 

Fast Middle Slow 

CBC average -1.071 -0.203 -0.007 

PGA -1.007 -0.161 -0.003 

S7P -1.078 -0.163 -0.003 

GAP -1.050 -0.196 -0.008 

DHAP -0.950 -0.140 -0.005 

FBP -1.690 -0.371 -0.018 

RUBP -0.802 -0.141 0.002 

ADPG -0.665 -0.179 -0.013 

Average - CBC -1.04 -0.194 -0.007 

Std Dev 0.30 0.075 0.006 
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Table S2.2: Abbreviations for metabolites and reactions. 

Abbreviations  Full name 

2PG 2-phosphoglycolate 
3PGA 3-phosphoglycerate 
ACA acetyl-CoA 
acetyl-CoA acetyl-coenzyme A  
ADPG adenosine diphosphate glucose 
AGP ADP-glucose phosphorylase 
AKG α-ketoglutarate 
ALA alanine 
ALD aldolase 
ALT alanine transaminase 
AS asparagine synthase 
ASN asparagine 
ASP aspartate 
ASPT aspartate transaminase 
C3 cycle  Calvin–Benson–Bassham cycle 
CIT citrate 
CO2 carbon dioxide 
CS citrate synthase 
DOF degrees of freedom  
E4P erythrose-4-phosphate 
EC2 transketolase-bound-2-carbon-fragment 
ESI electrospray ionization 
F6P fructose-6-phosphate 
FBA fructose-bisphosphate aldolase 
FBP fructose-1,6-bisphosphatase 
Fru fructose 
FUM fumarate 
FVCB Farquhar, von Caemmerer and Berry  
G1P glucose-1-phosphate 
G6P glucose-6-phosphate 
G6PDH glucose-6-phosphate dehydrogenase 
GA glycerate 
GAPDH glyceraldehyde-3-phosphate dehydrogenase 
GC-MS gas chromatography-mass spectrometry 
GDC glycine decarboxylase 
GK glycerate kinase 
Glc glucose 
GLN glutamine 
GLY glycine 
GPU UDP-glucose pyrophosphorylase 
GS glutamine synthetase 
ICI isocitrate 
IDH isocitrate dehydrogenase 
INST-MFA isotopically nonstationary metabolic flux analysis 
LC-MS/MS liquid chromatography-tandem mass spectrometry 
MAL malate 
M1P mannose 1-phosphate  
MDH malate dehydrogenase 
ME malic enzyme 
MFA metabolic flux analysis 
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Table S2.2 (cont’d) 
MID mass isotopologue distribution 
MRM multiple reaction monitoring 
netA net CO2 assimilation 
OAA oxaloacetate 
OPP oxidative pentose phosphate 
PCR pyrroline-5-carboxylate reductase 
PDH pyruvate dehydrogenase 
PEP phosphoenolpyruvate 
PFP phosphofructokinase pyrophosphate 
PGAM phosphoglycerate mutase 
PGI phosphoglucose isomerase 
PGM phosphoglucomutase 
PGP phosphoglycolate phosphatase 
PK pyruvate kinase 
PPC phosphoenolypyruvate carboxylase 
PPE phosphopentose epimerase 
PPI phosphopentose isomerase 
PRK phosphoribulokinase 
PRO proline 
PYR pyruvate 
R5P ribose-5-phosphate 
RL respiration in the light  
RU5P ribulose-5-phosphate 
RUBISCO_CO2 ribulose-1,5-bisphosphate carboxylase (oxygenase) 
RUBISCO_O2 ribulose-1,5-bisphosphate (carboxylase) oxygenase 
RUBP ribulose-1,5-bisophosphate 
S6P sucrose-6-phosphate 
S7P sedoeheptulose-7-phosphate 
SBP sedoheptulose-1,7-bisophosphate 
SBPase sedoheptulose-1,7-bisphosphatase 
SCA succinyl-CoA 
SER serine 
SFrc sucrose fructosyl moiety 
SGA1 serine:glyoxylate aminotransferase 
SGlc sucrose glucosyl moiety 
SIM selected ion monitoring 
SPS sucrose-phosphate synthase 
SRES squared residual  
SS starch synthase 
SSR sum-of-squared residuals 
Suc sucrose 
SUC succinate 
T_3PGA 3PGA transporter 
T_TP TP transporter 
TBDMS tert-butyldimethylsilyl 
TCA tricarboxylic acid  
THR threonine 
TK1 transketolase 
TMS trimethylsilyl 
TP triose phosphate 
TS threonine synthase 
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Table S2.2 (cont’d) 

UDPG uridine diphosphate glucose  
vc velocity of rates of carboxylation  
vo velocity of rates of oxygenation  
Vpr photorespiratory CO2 release  
X5P xylulose-5-phosphate  
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Table S2.3: A comparison of the goodness of fit between data and best-fit simulations from 

alternative models. Starting model with no inactive pools, model with unlabeled glucose source, 

and model with sucrose recycling reactions and sucrose vacuole pool reactions were compared 

with fluxes for key reactions, SSR, top five most different SSR, and DOF. 5* DOF in terms of 

fluxes. The lowest value of SSR is shown in blue, the 50th percentile of SSR is shown in yellow, 

the highest value of SSR is shown in red. The starting model with no  pools had the biggest 

overall SSR (1340) and highest individual SSR for R5P, FBP, UDPG, G6P, and F6P. The model 

with an unlabeled glucose source had both lower overall SSR and individual SSR for R5P, FBP, 

UDPG, G6P, and F6P. The model with sucrose recycling reactions and sucrose vacuole pool 

reactions had both lowest overall SSR and individual SSR for R5P, FBP, UDPG, G6P, and F6P. 

All abbreviations are shown in Table S2.2.   

Model Reactions Flux SSR TOP5 most different SSR ΔDOF 

No inactive pools     1340 

UDPG 215 

0 

R5P 115 

FBP 112 

G6P 123 

F6P 109 

No inactive pools 
+ unlabeled 

glucose source 

CO2.u -> CO2 0 1340 

UDPG 218 

1 

R5P 118 

FBP 114 

G6P 112 

F6P 98 

Glucose.u -> G6P.p 0.5 1300 

UDPG 216 

1 

R5P 116 

FBP 113 

G6P 85 

F6P 102 

TP.u -> TP.p 0.3 1273 

UDPG 209 

1 

R5P 112 

FBP 62 

G6P 109 

F6P 96 

Glucose.u -> G6P.c 1.9 1126 

UDPG 109 

1 

R5P 117 

FBP 101 

G6P 62 

F6P 59 

No inactive pools 
+ sucrose 

recycling reactions 
+ sucrose vacuole 

pool reactions 

Suc.v <-> Suc.c 2.11 

968 

UDPG 53 

5* 

Glc.v <-> Glc.c 2.11 R5P 101 

Suc.c-> Glc.c + Fru.c 0.05 FBP 76 

Glc.c -> G6P.c 2.16 G6P 32 

Fru.c -> F6P.c 2.16 F6P 19 

Lowest value                                         50 percentile                                            highest value 
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Table S2.4: Predicted and measured ratios between M1 to M0 of CBC intermediates based on 

their predicated and measured percentage of isotopologues. 

Metabolites Isotopologue 

Percentage of 
isotopologue 

Ratio between M1/M0 

Predicted Measured Predicted Measured 

GAP/DHAP 

M0 0.01 2.4 

65 0.2 
M1 0.6 0.5 

M2 12.1 5.0 

M3 87.4 92.1 

PGA 

M0 0.01 1.6 

67 0.4 
M1 0.5 0.7 

M2 11.7 6.5 

M3 87.7 91.1 

R5P 

M0 0.001 2.4 

48 0.2 

M1 0.04 0.4 

M2 0.7 4.6 

M3 6.6 4.0 

M4 31.7 11.2 

M5 61.0 77.3 

RU5P/XU5P 

M0 0.001 2.2 

51 0.2 

M1 0.03 0.4 

M2 0.6 4.7 

M3 6.1 3.1 

M4 30.9 12.2 

M5 62.4 77.4 

RUBP 

M0 0.0001 1.6 

85 0.2 

M1 0.005 0.4 

M2 0.2 1.3 

M3 2.6 1.5 

M4 22.2 11.5 

M5 75.1 83.7 

F6P 

M0 0.000004 2.3 

97 0.1 

M1 0.0004 0.3 

M2 0.02 0.4 

M3 0.3 1.2 

M4 4.0 1.9 

M5 25.9 11.4 

M6 69.7 82.6 

G6P 

M0 0.0001 2.9 

61 0.1 

M1 0.003 0.4 

M2 0.1 0.3 

M3 1.1 2.1 

M4 8.3 8.3 

M5 33.6 10.4 

M6 57.0 75.6 

S7P 

M0 0.00000001 1.2 

175 0.2 

M1 0.000002 0.3 

M2 0.0002 0.2 

M3 0.01 1.6 

M4 0.2 2.1 

M5 2.6 2.3 

M6 21.3 12.1 

M7 76.0 82.1 
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Table S2.5: Contributions of fully unlabeled and partially labeled isotopologues to the lack of 

complete labeling in glucose 6-phosphate after two hours of labeling with 13CO2. Relative 

abundances are from Table S5. Fully unlabeled G6P accounts for only 0.174 / (0.174+0.365) = 

32% of the labeling deficit. 

 

Relative 
abundance 

12C in M0 
12C in M1 

to M6 

M0 0.029 0.174 - 

M1 0.004 - 0.02 

M2 0.003 - 0.012 

M3 0.021 - 0.063 

M4 0.083 - 0.166 

M5 0.104 - 0.104 

M6 0.756 - 0 

Sum 1 0.174 0.365 
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Table S2.6: Carbon accounting for the model. Values in the absolute columns are fluxes from 

the model (Fig. 2.3) converted to a carbon basis. The last two columns are absolute values 

divided by the net rate of CO2 assimilation. 

  Absolute  Relative to net assimilation 

  μmol g-1 FW hr−1  % 

  In Out  In Out 

 Calvin-Benson cycle carbon inputs and outputs 

 Rubisco 172   123%  

 Photorespiration 75 102  54% 73% 

 TPT  117   84% 

 Starch synthesis  63   45% 

 G6P shunt 35   25%  

 Total 282 282  202% 202% 

       

 CO2 budget 

 Rubisco 172   123%  

 Photorespiration  25   18% 

 G6P shunt  7   5% 

 Fatty acids  0.4   0.3% 

 In minus out 139.6   100%  

       

 End Products 

 Starch  63.0   45% 

 Sucrose   68.4   49% 

 Other cytosolic  6.5   5% 

 Fatty acids  0.8   1% 

 Total end products  138.7   99% 
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Table S2.7: vo/vc for models with and without labeling input for serine and glycine, with and 

without constraints of vo/vc. Four scenarios were tested: 1) with serine and glycine labeling input, 

unconstrained vo/vc; 2) with serine and glycine labeling input, constrained vo/vc = 0.31 +/- 5%; 3) 

without serine and glycine labeling input, unconstrained vo/vc;  4) without serine and glycine 

labeling input, constrained vo/vc = 0.31 +/- 5%. 
 

  with serine and glycine without serine and glycine 

  Unconstrained vo/vc   Constrained vo/vc Unconstrained vo/vc   Constrained vo/vc 

vo 161.7 215.1 167.0 167.0 

vc 33.2 65.0 50.6 50.6 

vo/vc 0.21 0.30 0.30 0.30 
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DATASET LEGENDS 

All supplemental datasets can be found at the following link: 

https://doi.org/10.1073/pnas.2121531119. 

 

Dataset S1 (separate file). Experimentally measured mass isotopologue distributions of 

measured metabolites. 

 

Dataset S2 (separate file). Parameter value estimates and model selection results for aggregated 

CBC intermediate datasets and individual metabolites. Parameters in exponential terms are 

sorted in terms of the absolute magnitude of their decay term. 

 

Dataset S3 (separate file). Comparisons of the model in this work with previous models (Ma et 

al., 2014; Xu et al., 2021a). Reactions that are different from Ma et al., (2014) are labeled in red. 

Reactions from Xu et al., (2021a) are shown in yellow. Reactions newly added in this publication 

are shown in blue. Reactions have been removed from Ma et al., (2014) and Xu et al., (2021a) 

are shown in green. Note that the parameters for alanine, glycine, and serine have been kept in 

the model because of their compartmentation complexity. 

 

Dataset S4 (separate file). Estimated flux values and 95% confidence intervals by parameter 

continuation. Values are absolute fluxes (µmol metabolites gFW-1 hr-1) based on the measured 

net CO2 uptake rate. The net flux is the difference between influx and efflux of metabolites 

moved in or out of the cell. The exchange flux is the minimum of the forward and backward 

fluxes of a reversible reaction. Some confidence intervals of exchange fluxes are unidentifiable 

or infinite. Subcellular fluxes are shown by metabolites spatially separated in the plastid (.p) and 

cytosol (.c). 

 

Dataset S5 (separate file). Parameters for transitions of measured metabolites in multiple 

reaction monitoring (MRM) with LC-MS/MS and selected ion monitoring (SIM) with GC-MS. 

LC-MS/MS dwell time was set at 20 ms for each transition. Q1, m/z of the precursor ion; Q3, 

m/z of the product ion. Cone and collision energy were optimized by direct infusion of standards. 

Amino and organic acids were measured by GC-MS by tert-butyldimethylsilyl (TBDMS) 

derivatization whereas glucose, fructose, and sucrose were derivatized by trimethylsilyl (TMS). 
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3.1. Preface 

As discussed in Chapter 1, FBA flux predictions are often some combination of imprecise and 

inaccurate owing to the small amount of empirical data brought to bear in most FBA studies. One 

attractive method of improving FBA flux accuracy is to come up with methods of incorporating 

omic – particularly transcriptomic – data into the prediction process. Unfortunately, this is easier 

said than done, with many previous attempts failing to consistently generate more accurate 

predictions than parsimonious FBA. These benchmarking studies were done in unicellular 

systems where the methods evaluated are generally some variation on the idea “If gene A 

encoding reaction A* is expressed more highly than gene B encoding reaction B*, reaction A* 

should, all else being equal, have higher flux than reaction B*.” For what should be obvious 

reasons, this is not a very good assumption to make.  

 Early on in my Ph. D., it occurred to me that when modeling a multi-tissue system, it 

seems likely that the relationship between transcript abundance and flux between tissues of the 

same organism is probably more consistent than this same relationship across different gene-to-

reaction pairings within a tissue or organism. This was merely a hunch, but it was compelling 

enough for me to convince Dr. Shachar-Hill to pursue the idea of making this into an algorithm 

and assessing whether it can make our flux predictions more accurate, as benchmarked by 

comparison against 13C-MFA (the gold-standard, as we argue in Chapter 1). Although I was 

ultimately interested in doing this in C. sativa, I decided to do this study initially with A. thaliana 

since it has multiple tissue-atlas RNA-seq datasets, a publicly available quantitative proteome 

dataset, and a lot of prior genome-scale models. As it turns out, the method I developed has been 

shown to be quite effective, as we present in this chapter. Due to the similarity between A. 

thaliana and C. sativa’s genomes, we believe this represents a significant step in the direction of 

more accurate and useful flux modeling in C. sativa for the purposes of engineering this organism 

for improved biofuel production.  

 I carried out all of the model building, computational analysis, and manuscript writing for 

this study in consultation with Dr. Shachar-Hill. I am first author on the manuscript featured in 

this chapter, which has been published in the journal Bioinformatics.  

3.2. Abstract 

Motivation: The accurate prediction of complex phenotypes such as metabolic fluxes in living 

systems is a grand challenge for systems biology and central to efficiently identifying 
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biotechnological interventions that can address pressing industrial needs. The application of gene 

expression data to improve the accuracy of metabolic flux predictions using mechanistic 

modeling methods such as Flux Balance Analysis (FBA) has not been previously demonstrated 

in multi-tissue systems, despite their biotechnological importance. We hypothesized that a 

method for generating metabolic flux predictions informed by relative expression levels between 

tissues would improve prediction accuracy. 

Results: Relative gene expression levels derived from multiple transcriptomic and proteomic 

datasets were integrated into Flux Balance Analysis predictions of a multi-tissue, diel model of 

Arabidopsis thaliana’s central metabolism. This integration dramatically improved the 

agreement of flux predictions with experimentally based flux maps from 13C Metabolic Flux 

Analysis (13C-MFA) compared with a standard parsimonious FBA approach. Disagreement 

between FBA predictions and MFA flux maps, as measured by weighted averaged percent error 

values, dropped from be-tween 169-180% and 94-103% in high light and low light conditions, 

respectively, to between 10-13% and 9-11%, depending on the gene expression dataset used. The 

incorporation of gene ex-pression data into the modeling process also substantially altered the 

predicted carbon and energy economy of the plant.  

Availability: Code is available from 

https://github.com/Gibberella/ArabidopsisGeneExpressionWeights. 

3.3. Introduction 

A grand challenge for systems biology is the ability to accurately predict complex phenotypes 

from omic datasets based on functional principles and mechanisms. Patterns of cellular 

metabolism – flux maps – are one such complex phenotype (Ratcliffe and Shachar-Hill, 2006), 

for which tools to predict phenotypes from basic assumptions have proven useful in exploring 

and designing metabolic capabilities (Burgard et al., 2003; Orth et al., 2010b; Chen et al., 2011). 

Methods to quantify flux maps from labeling data now allow the testing of such predictions in 

both simpler and multicellular systems. However, the integration of omic data to improve the 

accuracy of flux predictions is still at an early stage. 

Metabolic flux predictions are also important for real world applications since modifying 

an organism’s metabolic activity in order to achieve some practical aim, such as overproducing a 

specific metabolite, is central to many biotechnology projects. As in other areas of engineering, 

metabolic engineering can benefit from mathematical models that describe and predict the 
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behavior of the relevant system(s). Researchers have developed two major modeling approaches 

to address this need: (1) 13C-Metabolic Flux Analysis (13C-MFA) and (2) Flux Balance Analysis 

(FBA) (Orth et al., 2010b; Antoniewicz, 2015). With 13C-MFA, steady-state or kinetic isotopic 

labeling data for metabolites in a small- to medium-sized network are used to obtain estimates of 

the net and exchange fluxes through that network (Antoniewicz, 2015). These metabolic flux 

maps are regarded as the most reliable measures of in vivo metabolic fluxes; however, the 

throughput of this technique is limited by the large amounts of isotopic labeling data and other 

measurements needed to generate each flux map. FBA, which is based on applying conservation 

principles to a network of reactions using one or more assumptions about the functional 

objective(s) driving biological organization, requires substantially less experimental input data, 

and is therefore an attractive and commonly used metabolic modeling technique. 

 FBA and related metabolic modeling methods in microbial systems, together with 

Genome-Scale Models (GEMs) that represent the biochemical reactions encoded in an 

organism’s genome, have enabled radical modification of microbial central metabolism (Gleizer 

et al., 2019) and substantial improvements in bioproduct yields (Lee et al., 2007; Park et al., 

2007). These methods can, for example, allow bioengineers to predict the behavior of their 

system and identify interventions, such as gene knock-outs or knock-ins, that will help them 

modify the organism’s phenotype (Burgard et al., 2003; Tepper and Shlomi, 2009b). However, 

many metabolic engineering applications require the modification not of microorganisms, but of 

multicellular eukaryotes like plants. Most GEMs of plants to date [e.g., (Poolman et al., 2009; 

Dal’Molin et al., 2010a; Saha et al., 2011; Arnold and Nikoloski, 2014)], have treated plants, 

which are composed of multiple tissues with substantial functional diversity, as single-tissue 

aggregated metabolic networks. This has motivated the creation of “multi-tissue” GEMs to 

investigate source-sink dynamics and resource allocation, with the earliest efforts in this space 

focusing on the interplay between mesophyll and bundle-sheath cells in C4 photosynthesis  

(Dal’Molin et al., 2010b; Shaw and Cheung, 2020).  

 Re-engineering of plant metabolism on the scale seen in microbial systems has not, to-

date, been possible and predictive modeling has been neither validated in detail nor applied to 

successful plant metabolic engineering. This is partly due to the ease and high throughput of 

microbial transformation relative even to model plant systems. In addition to the greater 

experimental demands, the metabolic modeling of these systems is also substantially harder. 
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There is, consequently, a relative lack of MFA datasets with which to compare the predicted flux 

maps from FBA in plants. This contrasts with the availability of rich multi-omic datasets 

combining flux estimates with transcript and protein data for a number of different genotypes 

and growth conditions in systems like E. coli (Ishii et al., 2007). The challenges involved in 

generating 13C-MFA flux maps for plants make improvement of plant FBA flux predictions an 

attractive path towards replicating the biotechnological successes seen in microbes. 

 An appealing approach to improving the quality of plant FBA predictions is the 

integration of additional network-wide data from transcriptomic and proteomic datasets. Gene 

expression data – particularly transcript data – is substantially easier to generate than 13C-MFA 

flux maps. Previous attempts at integrating gene expression datasets into metabolic flux 

predictions have been reviewed elsewhere (Machado and Herrgård, 2014; Vijayakumar et al., 

2017). Methods developed before 2014 were evaluated on the basis of their ability to improve 

upon parsimonious FBA (pFBA) (Lewis et al., 2010) in terms of their predictions’ agreement 

with MFA-estimated fluxes in microorganisms and were found to not do so reliably (Machado 

and Herrgård, 2014). A key limitation of these studies was a lack of comparison of FBA-

predictions against 13C-MFA derived flux estimates. This lack of comparison against 13C-MFA is 

shared by the plant FBA literature, in which we are aware of only a small number of evaluations 

under heterotrophic conditions in green algae (Boyle et al., 2017), Arabidopsis cell cultures 

(Williams et al., 2010; Cheung et al., 2013), and Brassica napus embryos (Hay and Schwender, 

2011). Since then, several studies have developed algorithms benchmarked by their ability to 

make predictions in agreement with empirical flux maps derived from MFA studies (Tian and 

Reed, 2018; Pandey et al., 2019; Ravi and Gunawan, 2021). These studies have focused on 

unicellular organisms or animal tissues modeled in isolation. Their application to FBA in more 

complex systems is limited by the large number of resource-intensive MFA datasets needed to 

calibrate them (Tian and Reed, 2018) or their need for a reference expression dataset paired with 

an assumed-correct flux map (Pandey et al., 2019; Ravi and Gunawan, 2021). 

 To improve the accuracy of FBA in multicellular systems, particularly plants with their 

complex metabolic networks, we developed a method that integrates tissue-atlas data from multi-

tissue systems into the flux-minimization procedure employed in pFBA. This method 

incorporates evidence from gene expression datasets into FBA metabolic flux predictions by 

applying weights to individual reactions according to the relative transcript or protein expression 
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of the gene(s) assigned to those reactions between different modeled tissues. The method is 

evaluated on its ability to make predictions in agreement with MFA flux maps. We demonstrate 

substantial improvements in the agreement of our FBA predicted fluxes with flux estimates from 

a 13C-MFA study on Arabidopsis thaliana rosette leaf central metabolism (Ma et al., 2014). 

Finally, we show that multiple gene expression datasets, when used as inputs, result in similar 

improvements in agreement and that this result generalizes across different MFA flux maps. This 

approach has particular potential for plant and animal systems for which there are only a limited 

number of experimental flux maps.  

3.4. Methods 

3.4.1. Overview of approach 

Our method makes two key assumptions: (1) Metabolic flux maps predicted from pFBA (Lewis 

et al., 2010), minimizing the sum total of flux through the network, are more likely to reflect real 

flux maps than ones not subject to this constraint, and (2) A reaction present in two tissues A and 

B catalyzed by an enzyme encoded by a gene that is highly expressed in A and poorly expressed 

in B is likely to carry higher flux in tissue A. 

We incorporate assumption 1 by making the objective function of our FBA optimization 

the minimization of total flux, the same as pFBA (Lewis et al., 2010). This is represented 

mathematically as finding the minimum value of the linear combination of all fluxes in the 

network, with each flux vj multiplied by a corresponding coefficient ci: 

min
𝑣𝑗

∑ 𝑐𝑗 ∗ 𝑣𝑗
𝑗∈𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

(1) 

Where Reactions is the list of all reactions j in the network, vj is the flux through a 

reaction j, and cj is the coefficient – hereafter referred to as a penalty weight since it represents a 

penalization of the likelihood of using a reaction j to carrying flux. When cj is 1 for all reactions, 

our method reduces to pFBA, which can be seen as the limiting case of gene expression having 

no influence in predicting network flux patterns. We incorporate assumption 2 by calculating, for 

each reaction in our network model, a coefficient derived from the relative expression of genes 

encoding the enzyme(s) that catalyze that reaction between the different tissues in the gene 

expression dataset. Using the coefficient vector to account for relative expression resembles the 

approach taken by Jenior et al., (2020). However, our method compares gene expression across 

tissues within a multi-tissue model to generate more accurate flux predictions, rather than 
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comparing the expression of genes to the most expressed gene in a dataset as a proxy for 

transcriptional investment as a way of generating context-specific models. Reactions and genes 

are associated by the Gene-Protein-Reaction (GPR) terms in the model. This results in reactions 

mapped to relatively highly expressed genes receiving small values of cj and reactions mapped to 

minimally expressed genes receiving large ones. 

3.4.2. Model construction and dataset selection 

The Arabidopsis thaliana core metabolism model developed by Arnold and Nikoloski, (2014) 

was used as the basis for a multi-tissue diel model. This model was chosen due to its rich GPR 

annotation and focus on central metabolism. The core model was duplicated six times to create 

leaf, stem, and root versions of the model for both day and night, which were interconnected by 

transporters allowing the movement of specific compounds and metabolites. The substrates, 

products, and constraints applied to the model can be found in the Appendix B, Supplementary 

Methods. The model used in this study can be found in Appendix B, Dataset S2. 

13C-MFA flux maps were obtained in planta in Arabidopsis thaliana by Ma et al., (2014), 

and these were used as the empirical best estimates of flux distributions. Although there are not 

any other 13C-MFA flux maps available of autotrophic A. thaliana leaves, Szecowka et al., 

(2013) provides estimates of select fluxes in autotrophic A. thaliana leaf central metabolism, 

which we used for additional confirmation of our method’s efficacy. The pairing of fluxes in 

both flux studies to the FBA network are described in Appendix B, Dataset S1.  

 We searched the literature for high-quality, high-coverage RNA-seq and quantitative 

proteomic tissue atlases and found two suitable datasets meeting these criteria: Mergner et al., 

(2020) and Klepikova et al., (2016). The proteomic dataset from Mergner et al., (2020) is a mass-

spectrometry-based quantitative proteome that reports IBAQ values, which are an accurate 

measure of protein abundances (Krey et al., 2014). For bioinformatic processing details, see 

Appendix B, Supplementary Methods. For dataset IDs, growth conditions and key parameters 

from each study, see Tables S3.4-S3.5.  

3.4.3. Penalty weight vector calculation 

We calculated the expression weight for each gene in each tissue on the basis of how the 

expression of a reaction in a particular tissue, as measured by transcriptomic or proteomic 

abundance, compared to the expression of that same gene in the other tissues.  
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𝑊𝑖𝑡 =  
𝑀𝑎𝑥(𝐸𝑖)

𝐸𝑖𝑡

(2) 

Where Wit is the expression weight for a given gene i in a tissue t, Ei is the list of expression 

values of gene i for each tissue, Eit is the expression of gene i in tissue t, and Max() is the 

maximum value from a set of one or more elements. Many GPRs in the model consist of 

multiple genes that represent isozymes or members of protein complexes. The former are 

denoted by OR terms and the latter by AND terms in the GPR formulation. This results in many 

reactions having more than one expression weight due to being mapped to multiple genes. We 

combine these multiple weights into a single penalty weight value for each reaction by averaging 

the expression weights of isozymes and taking the “worst” (i.e., largest, most penalizing value) 

when genes form subunits of a protein complex. As an example, the penalty weight for a reaction 

R in the leaf subnetwork of our model with a GPR of the form (Gene1 OR Gene2) AND 

(Gene3), corresponding to a protein complex made of the product of Gene 3 and the product of 

Gene 1 or Gene 2, would be represented by: 

𝑐𝑅,𝑙𝑓 = 𝑆𝐹 ( 𝑀𝑎𝑥 (
(𝑊𝑔𝑒𝑛𝑒1,𝑙𝑓 + 𝑊𝑔𝑒𝑛𝑒2,𝑙𝑓)

2
, 𝑊𝑔𝑒𝑛𝑒3,𝑙𝑓) − 1) + 1  

Where cR,lf represents the overall penalty weight in the leaf (lf) for reaction R, SF (or the scaling 

factor) is a coefficient that modulates the magnitude of the calculated penalty weights and 

Wgene1,lf, Wgene2,lf, and Wgene3,lf are the penalty weights for the individual genes Gene1, Gene2, 

and Gene3. Note that in the present implementation of this method, stoichiometric coefficients in 

GPR terms are ignored. When the one or more genes contained in a GPR for a reaction/tissue 

combination are all more highly expressed than the same genes in the other tissues, the scale for 

that reaction/tissue combination will be 1. For reaction/tissue combinations that have no 

corresponding GPR, we explored setting the penalty weights to 1 or a value calculated from the 

median penalty weight assigned to reactions in the same tissue (for details, see Appendix B, 

Supplementary Methods). 

3.4.4. Optimization  

The optimization done in this paper is a variation on pFBA, which finds the flux map(s) 

satisfying imposed constraints with minimum total flux through the network (Lewis et al., 2010). 

The minimization of total flux (Eq. 1) is subject to the following constraints: 
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𝑆𝑣 = 0 (5) 

𝐿𝐵𝑗 ≤ 𝑣𝑗 ≤ 𝑈𝐵𝑗 (6) 

𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑡𝑖𝑠𝑠𝑢𝑒)
= 𝑣𝑓𝑖𝑥𝑒𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑡𝑖𝑠𝑠𝑢𝑒

(7) 

Where S is the stoichiometric matrix of the metabolic network being modeled, v is the 

vector of all fluxes, LB and UB are the vectors of all upper and lower bound constraints, and 

vbiomass(tissue) and vfixed biomass(tissue) are the biomass flux for a given tissue and the defined biomass 

constraint for that tissue, respectively. Eq. 5 represents the steady state of all internal 

metabolites, Eq. 6 represents the bounds and reversibility constraints, and Eq. 7 represents the 

definition of biomass accumulation rates. All optimizations were done in the COnstraint-Based 

Reconstruction and Analysis (COBRA) Toolbox in MATLAB (Heirendt et al., 2019) using the 

Gurobi™ optimizer version 8.1.1 (Gurobi Optimization, LLC, 2021). 

3.4.5. Error evaluation 

We make the assumption that the 13C-MFA fluxes reported by Ma et al., (2014b) are the true in 

vivo metabolic fluxes and therefore regard the discrepancy between FBA-predicted fluxes and 

these 13C-MFA fluxes as a measure of error. Biomass accumulation (i.e., the difference in dry 

weight between a timepoint t and another timepoint t-1 ) was not reported by Ma et al., (2014b), 

but is the basis for the flux through the biomass equation in FBA. To allow a comparison 

between our FBA-predicted fluxes and the MFA-estimated fluxes in Ma et al., (2014b), we set an 

arbitrary biomass flux of 0.01 g/hr through the leaf, stem, and root biomass reactions in both the 

day and night, similar to the approach taken by de Oliveira Dal’Molin et al., (2015). We then 

normalized our fluxes by multiplying them by a factor A calculated as the ratio of the measured 

leaf CO2 uptake from Ma et al., (2014b) and the net leaf CO2 uptake in our FBA flux map. A 

weighted average error for each FBA-predicted flux map was then obtained using the following 

expression: 

∑ (
|(𝑣𝑗

𝑝 ∗ 𝐴) − 𝑣𝑗
𝑚|

|𝑣𝑗
𝑚|

∗
|𝑣𝑗

𝑚|

∑ |𝑣𝑗
𝑚|𝑗∈𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

)
𝑗∈𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

(8) 

Where vj
p and vj

m are the FBA-predicted and MFA-estimated fluxes of a flux j and A is the 

normalization factor previously described. We calculated weighted average errors rather than just 

average errors because small absolute differences between FBA-predicted and MFA-estimated 
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flux values can correspond to extremely large % error values when the MFA-estimated fluxes are 

small. Additional details on the error evaluation can be found in the Appendix B, Supplementary 

Methods. We quantified the maximum/minimum weighted average errors of each flux map using 

Flux Variability Analysis (FVA) (Mahadevan and Schilling, 2003). For details, see Appendix B, 

Supplemental Methods. 

3.5. Results 

3.5.1. The application of gene expression penalty weights reliably reduces discrepancies 

between FBA-predicted and MFA-estimated fluxes 

Table 3.1. Weighted average % error values calculated from weighted vs. unweighted flux maps 

for transcriptomic and proteomic datasets from Mergner et al., (2020) and Klepikova et al., 

(2016). Values in brackets represent the lowest and highest possible error values given the results 

of Flux Variability Analysis. Weighted average error values were calculated from flux maps 

generated using a scaling factor of 1. 

Dataset Light Level 
Weighted average error (%) 

No gene expression weights With penalty weights 

Mergner et al. 

Transcriptome 

High 169 – 180 14.7 – 17.1 

Low 93.8 – 103 14.9 – 18.1 

Mergner et al. Proteome High 169 – 180 10.9 – 13.4 

Low 93.8 – 103 8.74 – 10.9 

Klepikova et al. 

Transcriptome 

High 169 – 180 14.8 – 17.4 

Low 93.8 – 103 19.3 – 21.7 

 

 

Predicted flux maps were generated for a multi-tissue diel model of Arabidopsis 

thaliana’s central metabolism using flux balance analysis in which the sum of all the metabolic 

and transport fluxes required for steady state growth is minimized, with each flux being 

multiplied by a penalty weight that was derived from the relative expression of the gene(s) 

involved in conducting that flux (see methods). Penalty weights for each reaction were calculated 

from RNA-seq (Klepikova et al., 2016; Mergner et al., 2020) and proteomic (Mergner et al., 

2020) datasets using the relative expression of each gene in the different tissues. The weighted 

average % error between these flux maps and 13C-MFA estimates from Ma et al., (2014b) were 

used to quantify the accuracy of these FBA predictions, as compared to the accuracy of flux 

maps generated by pFBA (Lewis et al., 2010) alone. The flux maps arrived at after the 

application of either transcriptomic or proteomic penalty weights show greater agreement, as 

measured by the weighted average % error, with 13C-MFA estimates than the results from pFBA 



 
 

105 

 

alone (Table 3.1). These reductions in error are substantial and statistically significant at α = 

0.01; they are consistent across comparisons against two different flux maps (high-light and low-

light conditions) and are sustained across a range of assumed ratios of starch to sucrose 

production and carboxylase to oxygenase fluxes through rubisco (vo/vc). Marked reductions in 

error are seen whether one uses the transcriptomic or proteomic tissue-atlas datasets from 

Mergner et al., (2020) or Klepikova et al., (2016), so that the improvement in flux predictions is 

not dependent on the values obtained in a specific gene expression dataset or type.  

We wanted to confirm that these reductions in error are in fact dependent on penalty 

weights calculated from gene expression data and not an artifact of the weighting procedure 

itself. Indeed, previous studies have used the application of randomized weights as a method of 

exploring different possible flux modes in a plant metabolic network (Cheung et al., 2015). We 

found that substituting the leaf for the root proteomic dataset, and vice-versa, resulted in no 

reduction in weighted average error (Appendix B, Table S3.1) compared to pFBA. Neither did 

randomization of the penalty weight vector and subsequent optimization. The mean of the 

weighted average errors of 50 high-light condition flux maps generated with independent 

randomized penalty weight vectors at a scaling factor of 1 was 201%, versus the unweighted 

error value of 169-180% for that condition.  
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Figure 3.1: Percent errors of specific reactions in central metabolism before (A) and after (B) 

gene expression weight application. The error values in (A) are the lowest possible given FVA 

results and the values in (B) are the highest possible given FVA results. We see substantial 

decreases in errors associated with central carbon assimilation, as well as starch and sucrose 

synthesis. Since the 13C-MFA estimated fluxes from Ma et al., (2014) do not feature the flux 

from ADPG to Starch, this flux lacks an estimated error and is therefore shown in black. Flux 

values are relative to the lowest flux in the network. 

3.5.2. Increases in agreement between FBA-predicted and MFA-estimated fluxes are broadly 

distributed across central metabolism 

Although there is variation among individual fluxes in the degree to which omic data 

integration improves agreement between predicted and experimentally derived values, the 

reduction in weighted error as a result of penalty weight application is distributed broadly across 

the fluxes for which 13C-MFA estimates are available. If, for example, the improvement were 

due to a substantial decrease in one or a small number of high-flux reactions and a negligible 

decrease or even increase in error for other reactions (Fig. 3.1) the overall finding would be less 

striking and potentially less broadly applicable. The reductions in error are consistent not only 
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across metabolic subsystems within a single FBA flux map, but also across alternative 

stoichiometric network structures. Initial pFBA-derived solutions for a model identical to that 

used to generate the other predictions except with unconstrained uptake and discharge of protons 

from root tissue show similar reductions in error (Appendix B, Table S3.2). Upon application of 

penalty weights, this model converges to a similar value of weighted average error and linear 

correlation as other model configurations. 

Table 3.1: Measures of carbon and energy utilization derived from the predicted flux maps with 

and without  penalty weights applied. Reference values: a, (Ma et al., 2014b); b, (Kramer et al., 

2004); c, (Weraduwage et al., 2015). (b) and (c) reference values are not associated with a 

particular light level. 

Dataset used 
for weighting 

Light 
Rubisco flux ÷ 
net CO2 
assimilation 

Photorespiratory 
CO2 loss / net CO2 
assimilation (%) 

Cyclic/Linear 
Electron Flow 

% of leaf 
daytime CO2 
assimilation 
going to 
biomass 

None 
High 2.86 62 24% 43 
Low 1.85 26 31% 54 

Mergner et al. 
Protein 

High 1.29 26 20% 18 
Low 1.17 14 15% 26 

Mergner et al. 
Transcripts 

High 1.20 25 21% 18 
Low 1.15 14 27% 33 

Klepikova et 
al.Transcripts 

High 1.30 27 17% 19 
Low 1.25 15 14% 31 

Reference 
values 

High 1.28a 28a 
13%b 56%c Low 1.17a 16a 

 

3.5.3. Error reductions are a function of the scaling factor parameter and are improved by the 

application of a tissue-specific median weight for reactions lacking Gene Protein Reaction 

terms 

The magnitude of the penalty weights calculated and applied by the present method depend on 

the magnitude of the scaling factor term, (Eq. 2). The increased agreement between the FBA- 

predicted and MFA-estimated flux maps only manifests in the majority of cases for scaling 

factors of 0.05-0.1 or greater (Fig 3.2). We also note that the relationship between the scaling 

factor value and the improved agreement is monotonic – that is, we do not see erratic increases 

and decreases as we increase the scaling factor value and, by extension, the strength of the 

assumed relationship between flux and gene expression. The necessity of a non-negligible 

scaling factor, the consistency of error improvement as the scaling factor is increased, and the 

similarity in the pattern of error improvement across multiple datasets as seen in Fig 3.2 all 

suggest that real biological signal related to the partitioning of metabolic activity across the 

plant’s tissues is being extracted from the gene expression datasets. Finally, we observe that the 
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flux maps generated using penalty weight derived from the Mergner et al., (2020) proteomic 

dataset have noticeably better weighted average errors than flux maps generated using 

transcriptomic dataset (Table 3.1; Fig. 3.2). This is consistent with the closer relationship 

between measured protein levels and metabolic fluxes than between transcripts and fluxes. It is 

also consistent with at least one other study’s attempts at integrating gene expression data into 

FBA in E. coli (Tian and Reed, 2018). 

 Although the presented method does not involve fitting the scaling factor parameter using 

goodness-of-fit to the 13C-MFA fluxes, in Fig 3.1 and Tables 3.1-3.2, we show results from a 

scaling factor of 1 because it falls in the plateau of low average error values we see in Fig 3.2. 

There are no independent 13C-MFA datasets of this system against which to evaluate whether a 

scaling factor value of 1 generalizes well outside of the datasets considered in the present study. 

However, Szecowka et al., (2013) do report fluxes from illuminated A. thaliana leaves estimated 

by kinetic flux profiling. The flux map generated using vo/vc and starch:sucrose synthesis 

constraints from that study without any omic weighting has a weighted average error of 108%; 

this error drops to between 6-9% when penalty weights generated with a scaling factor of 1 are 

applied (Appendix B, Table S3.6; Dataset S5).  

In our initial formulation of the algorithm for generating gene expression derived penalty 

weights, the weight of all reactions with no associated GPR was set to 1, since this is the implicit 

value of the coefficient for all reactions in a standard pFBA optimization. Since this runs the risk 

of introducing a systematic bias against using reactions that have associated GPRs, we attempted 

to counteract this risk by assigning all reactions lacking a GPR a penalty weight corresponding to 

the median penalty weight of all weighted reactions in the tissue in which those reactions are 

found. Comparing the results with and without the tissue-specific median penalty weights for 

reactions without GPRs, we see modest improvements in the weighted average errors from a 

scaling factor of 1 onwards when using the transcriptomic and proteomic datasets from Mergner 

et al., (2020) (Fig. 3.2), though the effect is not large, indicating that our method is robust to 

including or omitting the tissue-specific median weight correction.  
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Figure 3.2: Weighted average errors of FBA predictions compared with MFA-estimated flux 

maps as a function of scaling factor value, light-level, and application of a tissue-specific median 

weight correction. Panels show weighted average errors of flux maps generated using (A) low-

light constraints and a tissue-specific median correction applied, (B) low-light constraints and 

without a tissue-specific median correction applied, (C) high-light constraints and with a tissue-

specific median correction applied, and (D) high-light constraints and without a tissue-specific 

median correction applied. “M Protein” and “M Transcripts” refer to flux maps generated using 

proteomic- and RNA-seq-derived weights from Mergner et al., (2020). “K Transcripts” refers to 

flux maps generated using RNA-seq derived weights from Klepikova et al., (2016). Upper and 

lower bars on each point represent the highest and lowest possible weighted average errors given 

FVA results, and the points themselves represent the average of these values. 
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3.5.4. Changes in the carbon and energy economy upon application of gene expression 

weights 

In addition to improving quantitative agreement between the FBA-predicted and MFA-estimated 

flux maps, the gene expression weighting procedure also generates flux maps that present a 

substantially different picture of carbon and energy metabolism in Arabidopsis leaves.  

 In both high and low light FBA-predicted fluxes there is a substantial decrease in leaf 

mitochondrial Electron Transport Chain (ETC) activity and overall flux in mitochondria-

localized reactions in the light relative to nighttime ETC activity and overall flux (Appendix B, 

Table S3.3). MFA and other recent work further points to low TCA cycle fluxes in 

photosynthesizing leaves (Tcherkez et al., 2005; Xu et al., 2021a; Xu et al., 2022). This decrease 

in mitochondrial activity goes hand-in-hand with a predicted decrease in the use of unusually 

high fluxes related to proline metabolism to indirectly support the consumption of excess 

reductant produced via the light reactions of photosynthesis. Alongside this decrease in 

mitochondrial activity is a decrease in the ratio of cyclic electron flow (CEF) to linear electron 

flow (LEF) in the chloroplast (Table 3.2). Although reliable empirical measurements of this 

CEF/LEF ratio are difficult to obtain, previous studies have shown that a C3 plant like 

Arabidopsis relying on cyclic electron flow to bring the ratio of ATP/NADPH produced up to 

that needed for normal growth would have a CEF amounting to ~13% of LEF (Kramer et al., 

2004). Due to the presence of other balancing mechanisms, such as the malate valve (Selinski 

and Scheibe, 2019), this 13% value would represent an upper bound on stoichiometrically 

predicted values for CEF/LEF. Application of gene expression data decreases the CEF/LEF 

ratios in all but one FBA-predicted flux map to values much closer to the expected ~13% upper 

bound than are predicted using conventional pFBA (Table 3.2). 

 Ma et al., (2014) reported MFA-derived estimates of %vpr, or the rate of photorespiratory 

CO2 release via glyoxylate decarboxylation as a % of CO2 assimilation, as well as the ratio of 

rubisco carboxylation flux to net CO2 assimilation in the leaf. The unweighted flux predictions 

for the high and low light conditions disagree substantially with these estimates (Table 3.2). 

However, application of gene expression weights consistently brings estimates of these 

parameters into close agreement with MFA-derived values. The integration of gene expression 

also changes the predicted efficiency with which Arabidopsis converts atmospheric CO2 into 

biomass (Table 3.2). For comparison with these predicted efficiencies, we used the empirical A. 
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thaliana biomass, leaf area, and gas exchange data reported by Weraduwage et al., (2015) to 

calculate that approximately 56% of the net CO2 assimilation in illuminated leaves ends up 

incorporated into biomass, which is closer to the value in our unweighted flux predictions than 

our weighted flux predictions, although it should be noted that these data were gathered from a 

hydroponic system.  

3.6. Discussion 

13C-MFA is broadly accepted as being the most reliable method for estimating metabolic flux 

maps in vivo due to its ability to make use of substantial amounts of isotopic labeling data to 

arrive at well-supported flux maps in small- to medium-scale networks (Antoniewicz, 2015). 

However, the technique’s utility is limited by the substantial experimental effort that goes into 

the generation of each individual flux map. FBA, with its requirement of much less experimental 

data, has become the method of choice for more exploratory or predictive metabolic modeling 

studies. The implicit assumption is usually that the predictions of FBA – or at least the range of 

its predictions in cases where a unique solution is not provided – agree with those we would 

arrive at if we were able to conduct a 13C-MFA study. This makes our optimization procedures 

when performing FBA and validation of FBA models against MFA results of vital importance. 

The method presented here, by bringing FBA-predicted fluxes into line with MFA-estimates 

represents a step in the direction of higher-confidence FBA flux maps. 

 One limitation, as well as motivation, for the present study is the lack of a large set of 

13C-MFA datasets in plants and other multi-tissue eukaryotic systems. Systems like E. coli have 

multi-omic datasets consisting of transcriptomic, proteomic, and fluxomic measurements (Ishii et 

al., 2007) that have been utilized to empirically infer the relationship between gene expression 

and metabolic fluxes. This empirical training can then be used to more accurately predict fluxes 

in new contexts (Tian and Reed, 2018). The sparsity of 13C-MFA data in more complex systems 

makes such an approach currently impossible.  

 A noteworthy theoretical aspect of the present approach is its simplicity, the only variable 

parameter being a single scaling factor that controls the magnitude of the penalty weights. That 

the assumption of a consistent value relating the relative abundances of transcripts or proteins in 

different tissues to the “preference” of an organism to partition flux among particular reactions 

can result in substantial improvement in error was of great interest in light of the complexity of 

the relationship between measures of gene expression – transcriptomic and proteomic 
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abundances – and flux. Particularly when making biotechnological interventions in a system to 

modify its metabolism, there is often an assumed strong linear relationship between transcription, 

translation, and, ultimately, metabolic flux, but the reality is rarely so simple. Although moderate 

correlations between transcript and protein abundances have been demonstrated across many 

systems, the degree of correlation varies across systems and experimental contexts (Maier et al., 

2009; Liu et al., 2016). The correlation between these data types and rates of central metabolic 

reactions, which carry the large majority of total metabolic flux, is weaker still (Kuile and 

Westerhoff, 2001). Some previous studies found that changes in the gene expression related to 

individual reactions typically do not correlate well with changes in fluxes (Schwender et al., 

2014; Tian and Reed, 2018), with some central metabolic fluxes in particular showing a negative 

correlation between changes in gene expression and flux. In both cases, gene expression data 

related to reactions were compared within the same cell type or tissue; in our study, we instead 

compare inter-tissue abundances, mirroring the long-standing practice in the literature of 

inferring relative metabolic activity in different tissues by their transcript and protein investment 

in relevant pathway steps. It may be that only by considering gene expression on an inter-tissue 

basis in the context of the entire complex stoichiometric network underlying metabolism can 

predictive gains from including gene expression evidence be properly realized. 

 Future work should aim to expand the number of available datasets, and the experimental 

conditions and genotypes for which they are gathered, in order to enable more thorough 

evaluation of methods like the one presented in this paper.  Indeed, evaluating the presented 

method requires 13C-MFA fluxes, multi-tissue omic data, and a genome-scale model all for the 

same biological system, which, to our knowledge, is only possible for A. thaliana. Building on 

the work of Ma et al., (2014), experimental improvements and refinements of the underlying 

network architecture of central carbon metabolism have been introduced in the context of 13C-

MFA in Camelina sativa (Xu et al., 2021a; Xu et al., 2022) and Nicotiana tabacum (Chu et al., 

2022). In the present study the Ma et al. 2014 flux maps are used without change and we adopted 

a highly curated A. thaliana genome-scale model from which to construct the whole-plant model. 

This approach precluded the possibility of our reanalyzing the MFA-estimated flux map or 

biasing the construction of a purpose-built genome-scale model, making the MFA-to-FBA 

comparison more favorable. However, in future studies a combination of MFA network 

refinements, expanded datasets, and further improvements in the flux estimation procedures 
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holds promise for improving the fidelity of the 13C-MFA comparison data. On the FBA side, the 

use of more detailed growth and composition measurements for FBA along with more detailed 

representation of different tissue types will potentially allow for more biologically accurate and 

representative FBA flux map predictions. These improvements in both MFA-estimation and 

FBA-prediction of flux maps, along with an expansion in the number of available 13C-MFA 

datasets against which to compare FBA predictions, will allow for more extensive validation of 

the method described in this paper as well as other methods aiming to incorporate omic datasets 

into flux prediction.   

A distinct aspect of the proposed method is its demonstrated ability to bring FBA-

predicted fluxes in line with MFA-estimated fluxes across multiple input datasets, model 

architectures, and using multiple independent gene expression datasets. Our hope is that methods 

for incorporating transcriptomic and proteomic data may advance this field to the point where 

FBA-predicted flux maps can be used with high confidence for practical engineering goals. This, 

combined with the automated reconstruction of GEMs from genomic and biochemical databases 

(Saha et al., 2014) suggests a future with rapid turnaround from the initial identification of an 

organism of interest to metabolic flux predictions and rational genetic engineering to achieve 

biotechnological aims. 
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APPENDIX B: Supplemental Material for Chapter 3 

SUPPLEMENTARY METHODS 

Datasets and Omic Data Processing 

Sample IDs and SRR numbers for all transcriptomic and proteomic datasets used in this study 

can be found in Appendix B, Table S3.5. 

The raw RNA-seq data for all 137 samples in Klepikova et al., (2016) was trimmed using 

the fastp algorithm (Chen et al., 2018) and then aligned to the TAIR10 Arabidopsis thaliana 

genome obtained from ensembl plants using the salmon algorithm (Lamesch et al., 2012; Patro et 

al., 2017; Howe et al., 2020). RNA-seq reads from Mergner et al., (2020) were taken directly 

from the published supplemental material. Library normalization was performed on the RNA-seq 

datasets from both Klepikova et al., (2016) and Mergner et al., (2020) using the DeSeq2 

procedure (Love et al., 2014) and averages of the normalized transcript abundance values across 

replicates from Klepikova et al., (2016) were used. Intensity-based Absolute Quantification 

(IBAQ) (Schwanhüusser et al., 2011) values for the proteomic data from Mergner et al., (2020) 

were divided by the sum total intensity across all protein signals measured for a given sample to 

normalize them.  

Error Evaluation and Statistical Analysis 

To evaluate whether the error values for measured reactions in individual flux maps 

generated using gene expression weights were statistically significantly different from the errors 

without application of these weights, the Wilcoxon signed-rank test was used (Wilcoxon, 1992). 

The Bonferroni-Holm multiple testing correction (Holm, 1978) was used to correct the family-

wise α of all hypothesis tests to 0.01, where each hypothesis test is asking, by the Wilcoxon 

signed-rank test, whether the differences between a given FBA-predicted flux map (e.g., the flux 

map generated using protein-derived gene expression weights and a Scaling Factor of 1) and our 

MFA-estimated flux map could be attributed to random chance. In the high light condition 13C-

MFA flux map from Ma et al., (2014b), the flux through the malate dehydrogenase reaction was 

reported as exactly 0 – as this made its error undefined, it was excluded from the high light 

condition’s error calculation. Fluxes carrying zero flux were likewise excluded from error 

calculations when comparing FBA predictions against fluxes from the Szecowka et al., (2013) 

dataset. 
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Flux Variability Analysis  

Flux Variability Analysis (FVA) (Mahadevan and Schilling, 2003) was used to determine the 

maximum and minimum values possible for each of the fluxes included in the error calculation, 

subject to the following constraint: 

𝑐 ∙ 𝑣 = 𝑜𝑝𝑡 (1) 

Where c is the vector of all weight coefficients, v is the vector of all fluxes, and opt is the value 

of the objective function determined by the initial optimization procedure. As shown in 

Appendix B, Dataset S3.3, some of the fluxes included in the error function are not uniquely 

defined, such that they can vary up and down without violating Eq. 1. To account for this 

variation, maximum and minimum weighted average errors were calculated, where the minimum 

and maximum errors correspond to the smallest and largest weighted average errors possible for 

a flux map given the maximum/minimum values for all evaluated fluxes. FVA was performed in 

MATLAB using the COBRA Toolbox (Heirendt et al., 2019) and Gurobi™ 8.1.1 (Gurobi 

Optimization, LLC, 2021). Note that we encountered infeasible solutions in some cases when 

using a scaling factor of 1000 and omic datasets with the leaf and root data swapped – in such 

cases, the corresponding columns of the FVA results have been left blank. 

Model Constraints 

Light uptake and photosynthetic activity were restricted to the leaf tissue and mineral uptake was 

restricted to root tissue. Inter-tissue transport and day/night continuity of metabolites were 

defined and constrained as in Cheung & Shaw 2018 (Shaw and Cheung, 2018) as were ATP and 

NADPH maintenance flux values. Biomass compositions of leaf, stem, and root were taken from 

de Oliveira Dal’Molin et al., (2015), based on Poorter and Bergkotte, (1992). Reactions were 

added to produce biomass components that appear in the de Oliveira Dal’Molin et al., (2015) 

biomass equations but not in the core metabolic model (Arnold and Nikoloski, 2014); this 

involved adding subnetworks of missing reactions for several components and single summary 

reactions for others. Cytosolic pentose phosphate pathway reactions were also added to the 

model. All reactions were converted to irreversible form, wherein all reversible reactions were 

converted to independent forward and reverse reactions, prior to solving. This is simply to ensure 

that all fluxes, including those representing the reverse flux of a reversible reaction, take values 

that are zero or positive. 

In order to generate predictions corresponding to the high-light and low-light flux maps 
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reported by Ma et al., (2014), the vo/vc, or ratio of ribulose 1,5-bisphosphate 

carboxylase/oxygenase (rubisco) oxygenation activity to its carboxylation activity, and the ratio 

of starch to sucrose synthesis were both constrained to the values estimated in that study. vo/vc 

and starch to sucrose synthesis values were likewise constrained to the values estimated by 

Szecowka et al., (2013) when comparing FBA fluxes against that study. 
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TABLES 

 

Table S3.1: Reductions in weighted average error with application of gene expression weights 

derived from gene expression data with incorrect tissue specification or randomized values. 

Dataset Light Level 

Weighted Average Error (%) 

Without Gene 

Expression Weights  
With Leaf/Root Flipped 

Gene Expression Weights 

Mergner et al. 

Transcriptome 

High 168 – 180 181 - 215% 

Low 93.8 – 103 155 - 185 

Mergner et al. Proteome 

High 168 – 180 249 - 295 

Low 93.8 – 103 131 - 160 

Klepikova et al. 

Transcriptome 

High 168 – 180 87.9 - 109 

Low 93.8 – 103 97.2 – 120 

aWeighted average errors are calculated from flux maps generated using a scaling factor of 1. 
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Table S3.2: Reductions in weighted average errors with an alternate model architecture allowing 

free uptake and discharge of protons from the root tissue compartment. 

Dataset Light Level 

Weighted Average Error (%) 

Without Gene 

Expression Weights (%) 

With Gene Expression 

Weights (%)a 

Mergner et al. 

Transcriptome 

High 127 - 135 11.8 – 14.2 

Low 66.1 - 73.8 16.8 – 19.4 

Mergner et al. 

Proteome 

High 127 - 135 10.5 - 12.8 

Low 66.1 - 73.8 8.88 - 11.1 

Klepikova et al. 

Transcriptome 

High 127 - 135 13.7 - 16.5 

Low 66.1 - 73.8 20.8 - 23.2 

aWeighted average errors are calculated from flux maps generated using a scaling factor of 1. 
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Table S3.3: Ratios of day vs. night leaf mitochondrial fluxes and Electron Transport Chain 

fluxes in flux maps with and without integration of gene expression evidence. 

Dataset 
Light 

Level 

Ratio of total leaf mitochondrial 

flux in day vs. night 

Ratio of leaf mitochondrial ATP 

synthase flux in day vs. night 

Without Gene 

Expression 

Weights 

With Gene 

Expression 

Weightsa 

Without Gene 

Expression Weights 

With Gene 

Expression 

Weightss 

Mergner et al. 

Transcriptome 

High 1.17 
0.144 1.15 0.0888 

Low 1.23 
0.0625 1.20 1.94 * 10^-5 

Mergner et al. 

Proteome 

High 1.17 
0.0693 1.15 6.17 * 10^-5 

Low 1.23 
0.0981 1.20 1.87 * 10^-5 

Klepikova et al. 

Transcriptome 

High 1.16 
0.179 1.15 0.121 

Low 1.23 
0.615 1.20 0.503 

aValues for weighted cases calculated from flux maps generated using a scaling factor of 1. 
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Table S3.4: Growth conditions and key constraints from transcriptomic, proteomic, 13C-MFA, 

and kinetic flux profiling datasets used in the present study. 

Dataset 

Type Growth conditions 

Tissue Age vo/vc 

Starch/sucrose 

biosynthesis 

rate 

Klepikova 

et al. 

(Klepikova 
et al., 
2016) 

 

 

Transcriptomic 
 

Philips Master TL5 HO 
54 W/840 lamps light 

source at a 27cm 
distance; 22°C; 50% 
relative humidity; 

16/8-h day/night cycle 

Leaf 
Anthesis of 
first flower 

 

N/A 
 

N/A 
 

Stem 
Anthesis of 
first flower 

N/A 
 

N/A 
 

Root 
7th day after 
germination 

N/A 
 

N/A 
 

Mergner 

et al. 
(Mergner 

et al., 
2020) 

Transcriptomic 
 

Continuous white 
light; 22°C 

Leaf 22 days old 
N/A 

 
N/A 

 

Stem 30 days old 
N/A 

 
N/A 

 

Root 22 days old 
N/A 

 
N/A 

 

Proteomic 
 

Continuous white 
light; 22°C 

Leaf 22 days old 
N/A 

 
N/A 

 

Stem 30 days old 
N/A 

 
N/A 

 

Root 22 days old 
N/A 

 
N/A 

 

Ma et al. 

Low Light 

Condition

s (Ma et 
al., 2014) 

13C-MFA 

200 µmol m-2 s-1; 
22/18°C; 50% relative 

humidity; 16/8-h 
day/night cycles 

Leaf 28 days old 0.29 0.26 

Ma et al. 

High 

Light 

Condition 

(Ma et al., 
2014) 

13C-MFA 

500 µmol m-2 s-1; 
22/18°C; 50% relative 

humidity; 16/8-h 
day/night cycles 

Leaf 28 days old 0.43 0.16 

Szecowka 

et al. 
(Szecowka 

et al., 
2013) 

Kinetic flux 
profiling 

120 µmol m-2 s-1 
irradiance; 22/20°C; 

50% relative humidity; 
8/16-h day/night 

cycles 

Leaf 35 days old 0.4 0.45 
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Table S3.5: Reductions in weighted average errors when using constraints from the Szecowka et 

al. 2013 dataset and gene expression weights from different sources. 

Gene expression 

dataset 

Weighted Average Error (%) 

Without Gene 

Expression Weights (%) 

With Gene Expression 

Weights (%)a 

Mergner et al. 

Transcriptome 107.6 – 107.8 6.09 

Mergner et al. 

Proteome 107.6 – 107.8 7.55 

Klepikova et al. 

Transcriptome 107.6 – 107.8 8.65 
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Chapter 4  

Biophysical carbon concentrating mechanisms in land plants: 

insights from reaction-diffusion modeling 
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4.1. Preface 

The project described in this chapter was born out of conversations with Anne Steensma, a 

fellow graduate student in the Shachar-Hill laboratory, and Dr. Berkley Walker. Anne was 

interested in using metabolic modeling as a way of exploring a hypothetical setup for a Carbon-

Concentrating Mechanism (CCM) in the red alga Cyanidioschyzon merolae. I provided 

substantial assistance in the early stages of the project, including writing the code for the initial 

versions of the model architecture, coming up with a computational approach for estimating CO2 

compensation points in silico, and setting up the code for distribution to MSU’s High-

Performance Computing Cluster (HPCC) for parameter exploration and analysis. The analysis 

for this project is proceeding steadily and I plan on writing it up as a manuscript before the end 

of the year, on which I am anticipated to be co-first author. The conversations our group was 

having about modeling biophysical CCMs led us to asking some broader questions about the 

efficiency of such mechanisms in land plants, such as:  

1. Previous modeling studies make the addition of a carboxysome to a land plant seem very 

energetically favorable, but is this finding robust?  

2. Why do land plants not pump any bicarbonate from apoplastic water when there is a 

substantial concentration of bicarbonate available?  

3. Is there something about the physiology and/or morphology of hornworts that has caused 

them to repeatedly evolve a pyrenoid-based biophysical CCM when such biophysical 

CCMs are entirely absent in all other land plant lineages?  

I took up answering these questions by building spatially-resolved reaction-diffusion 

models of inorganic carbon and O2 movement in land plant and algal systems using the Virtual 

Cell platform. The results of this analysis have been written up as a manuscript that has been 

deposited as a preprint and is currently under peer review. 

4.2. Abstract 

Carbon Concentrating Mechanisms (CCMs) have evolved numerous times in photosynthetic 

organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, 

thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like 

the pyrenoid-based CCM of Chlamydomonas reinhardtii or carboxysome systems of 

cyanobacteria, are common in aquatic photosynthetic microbes, but in land plants appear only 

among the hornworts. To predict the likely efficiency of biophysical CCMs in C3 plants, we used 
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spatially resolved reaction-diffusion models to predict rubisco saturation and light use efficiency. 

We find that the energy efficiency of adding individual CCM components to a C3 land plant is 

highly dependent on the permeability of lipid membranes to CO2, with values in the range 

reported in the literature that are higher than used in previous modeling studies resulting in low 

light use efficiency. Adding a complete pyrenoid-based CCM into the leaf cells of a C3 land 

plant is predicted to boost net CO2 fixation, but at higher energetic costs than those incurred by 

photorespiratory losses without a CCM. Two notable exceptions are when substomatal CO2 

levels are as low as those found in land plants that already employ biochemical CCMs and when 

gas exchange is limited such as with hornworts, making the use of a biophysical CCM necessary 

to achieve net positive CO2 fixation under atmospheric CO2 levels. This provides an explanation 

for the uniqueness of hornworts’ CCM among land plants and evolution of pyrenoids multiple 

times.  

4.3. Introduction 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) catalyzes the fixation of CO2 as part 

of the Calvin-Benson Cycle (CBC) but is also capable of fixing O2. The fixation of O2 results in 

the formation of 2-phosphoglycolate (2PG), with the photorespiratory pathway being necessary 

to detoxify and recover the carbon in 2PG and recycle it back into the CBC. Although rubisco 

shows selectivity for CO2 relative to O2, significant photorespiratory flux still occurs in 

photosynthetic systems due to the much higher partial pressure of O2 in the earth’s atmosphere 

relative to CO2. Photorespiratory flux lowers net carbon assimilation and incurs substantial 

energetic costs, in the form of ATP, redox equivalents, and ultimately photons. Although the costs 

associated with photorespiration vary between plant species and environmental conditions, it has 

been estimated that photorespiration accounts for crop yield decreases of 20 and 36% for 

soybean and wheat respectively under current climate conditions (Walker et al., 2016). 

 Carbon Concentrating Mechanisms (CCMs) increase the concentration of CO2 around 

rubisco, competitively inhibiting the oxygenation reaction, suppressing photorespiration, and 

increasing carboxylation flux (Raven et al., 2017). In biochemical CCMs, such as C4 and CAM 

photosynthesis, inorganic carbon is fixed into an intermediate form of organic carbon, before 

eventually being released around rubisco (Ludwig, 2013; Bräutigam et al., 2017). Biophysical or 

“inorganic” CCMs, on the other hand, do not rely on any additional intermediate organic carbon 

species, but instead use pumps, diffusional barriers, carbonic anhydrases, and pH differences 
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between cellular compartments to increase the CO2 concentration near rubisco (Raven et al., 

2008). Such CCMs are common in cyanobacteria and algae (Raven et al., 2008), but are 

conspicuously absent in C3 plants, including almost all land plants. This has motivated 

researchers to look into the possibility of introducing a CCM, either in its entirety or individual 

components, into these plants to improve carbon fixation, reduce photorespiratory CO2 and 

energy losses, and ultimately boost yields (Ermakova et al., 2020; Hennacy and Jonikas, 2020).  

 The seemingly substantial benefits of CCMs raise the question of why they are not 

already more widespread in land plants. Despite their lack of a CCM, C3 plants are still the most 

abundant group of land plants in terms of vegetation coverage and gross photosynthetic 

productivity (Still et al., 2003; Raven et al., 2017). In the case of C4 photosynthesis, the large 

number of anatomical and biochemical features required has been invoked as a reason why, 

rather than being universally adopted in land plants, it has instead repeatedly evolved only in 

lineages exposed to the kinds of hot, arid conditions that limit water availability and exacerbate 

the losses associated with photorespiration (Sage et al., 2018). However, such an explanation is 

less satisfactory in the case of biophysical CCMs because they are present in the hornworts. It 

also raises the question of why biophysical CCMs are uniformly absent in all land plant lineages 

except for the hornworts (Villarreal and Renner, 2012).  

Have inefficiencies associated with biophysical CCMs precluded their successful 

emergence in C3 plants and can we examine the presence and absence of these biophysical 

CCMs in different groups of organisms using these inefficiencies? The efficiency of intermediate 

photosynthetic configurations, featuring some but not all of the essential parts of a CCM, may 

also represent a barrier to the emergence of CCMs in land plant lineages. Anatomical and life 

history details of hornworts may explain why, among the land plants, only hornworts have 

evolved pyrenoid-based biophysical CCMs (PCCMs), and have done so repeatedly (Villarreal 

and Renner, 2012). The poikilohydric life history of hornworts makes it necessary for them to 

have highly desiccation-tolerant cell walls which, together with bryophytes’ generally thicker 

cell walls (Flexas et al., 2021) and hornworts’ simpler tissue architecture, may explain their 

extremely low gas conductance (Meyer et al., 2008; Carriquí et al., 2019). We hypothesized that 

the distinct morphologic characteristics and habitat of hornworts may explain why they, uniquely 

among the land plants, evolved biophysical CCMs. It is possible that the different paths that 

inorganic carbon has to take from the environment into a C3 land plant cell versus an algal cell 
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can similarly explain why the former never uses pyrenoids to concentrate carbon and the latter 

frequently does.  

A closer examination of the costs of a CCM may also inform the viability and strategy of 

biotechnological projects focused on introducing them to C3 crops. Prior quantitative modeling 

work argues that incorporating individual CCM components – in particular, bicarbonate 

transporters at the chloroplast membrane – and entire CCMs into land plant systems may boost 

net CO2 fixation as well as improve the efficiency of photosynthetic carbon assimilation by 

reducing the energetic costs associated with photorespiration (McGrath and Long, 2014; Fei et 

al., 2022). Similar arguments have been made in favor of engineering biochemical – e.g. C4 – 

photosynthesis into C3 plants (Walker et al., 2016). These models represent sophisticated, 

integrative descriptions of photosynthetic carbon assimilation. For the purposes of the questions 

we are interested in, however, we needed models of both land plant and algal systems that 

represent photo-assimilatory processes at the whole-cell level. We also needed models that allow 

us to explore substantial uncertainties in certain key parameters, and that include energy costs 

associated with carbonic anhydrase (CA) activity in the thylakoid lumen.  

 Here we developed spatially-resolved reaction-diffusion models of land plants and green 

algae with and without PCCMs in the Virtual Cell platform (Schaff et al., 1997; Cowan et al., 

2012). These models represent, to our knowledge, the first such models of C3 land plants 

containing pyrenoid-based biophysical CCMs, as well as the first models of algal systems 

containing biophysical CCMs going beyond the scale of the chloroplast and including the whole 

cell in an aqueous environment. We highlight the substantial uncertainty in reported or predicted 

values of the permeability of lipid membranes to CO2 and explore how this uncertainty can give 

rise to qualitatively different conclusions as to the efficiency and effectiveness of adding 

chloroplast envelope bicarbonate pumps in particular. Finally, we find that despite the near-

ubiquity of biophysical CCMs in algae, modeling suggests that lower levels of external inorganic 

carbon (DIC) are needed to make CCMs energetically favorable for land plants. 

4.4. Methods 

4.4.1. Model details 

Spatially-resolved reaction-diffusion models of carbon assimilation were developed in the 

Virtual Cell platform, a software suite that allows for the creation and analysis of chemical 

reaction diffusion dynamics in the context of 3D models (Schaff et al., 1997; Cowan et al., 
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2012). Baseline parameters for simulations can be found in Table 4.1 and diagrams of two of the 

models used in this study, showing the representative features of the land plant and algal models, 

as well as the differences between the with- and without-PCCM models, can be seen in Figure 

4.1.  

 Systems were represented as spatially symmetrical, with spherical concentric 

compartments that were converted into volumetric pixels (voxels) according to the simulations’ 

spatial resolution. All results presented are from simulations containing either 9,261 voxels or 

12,167 voxels. Due to the large parameter explorations done in this study, minor geometrical 

modifications were made to make efficient numerical simulation feasible. Specifically, the radius 

of the apoplast water layer in the land plant models was extended out from the 9.41um it should 

be based on a cell wall thickness of 0.32µm plus an apoplast water layer of equivalent thickness 

to 10µm. We also modeled the thylakoid tubules of with-PCCM models as a set of six cylinders 

of radius 0.5µm extending into the pyrenoid, with exchange between the tubules and the 

pyrenoid occurring at the end of these cylinders, in contrast to the larger number of finer tubules 

used in Fei et al., (2022).   
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Figure 4.1: Diagrammatic representations of (A) a model of photosynthetic carbon assimilation 

in a land plant mesophyll cell containing a C. reinhardtii style PCCM, and (B) a model of an 

algal cell that does not contain a pyrenoid. CA refers to carbonic anhydrase, BLP refers to 

bestrophin-like proteins that serve as membrane channels for passive bicarbonate transport, and 

BicA is a cyanobacterial active bicarbonate transporter. In the VCell implementation of the 

model, some strongly linked steps are combined for the sake of numerical computability. Exact 

specifications for all flux equations used can be found in the publicly shared model 

implementations in VCell (see code and data availability statement). Note that for the sake of 

numerical tractability, the carbonic-anhydrase catalyzed interconversion of CO2 and HCO3 in the 

thylakoid in models featuring a CCM (v29) is localized to the pyrenoid but uses the pH value of 

the thylakoid; in the real biological system, the carbonic-anhydrase is inside the thylakoid 

tubules that penetrate into the pyrenoid. 
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Table 4.1: Model parameter definitions with source references and, where applicable with notes 

on derivation. When parameters were derived from parameterization of a previous modeling 

study, both the modeling study and the original literature reference for the parameter are cited. 

References in “Ref.” column: (1) Mazarei & Sandall 1980; (2) Fei et al. 2022; (3) Xiang & 

Anderson 1994; (4) Walker, Smith & Cathers 1980; (5) Bentley & Pittman 1997; (6) Gutknecht, 

Bisson & Tosteson 1977; (7) Missner et al. 2008; (8) Hopkinson et al. 2011; (9) Widomska, 

Raguz & Subczynski 2007; (10) Mitchell et al. 2010; (11) Larsson et al. 1997; (12) Pocker & Ng 

1973; (13) Pocker & Miksch 1978; (14) McGrath & Long 2014; (15) Bernacchi et al. 2005; (16) 

Badger & Andrews 1974; (17) Farquhar, von Caemmerer & Berry 1980; (18) von Caemmerer 

2000; (19) Price et al. 2004; (20) Bernacchi et al. 2006; (21) Kump 2008; (22) Pritchard, Grout 

& Short 1986; (23) Flexas et al. 2021; (24) Ouk, Oi & Taniguchi 2020; (25) Slaton & Smith 

2002; (26) Yu, Tang & Kuo (2000); (27) Feely, Doney & Cooley (2009); (28) Felle 2001; (29) 

Kramer, Sacksteder & Cruz 1999. 

Name Value(s) Units Notes Ref. 

Diffusion coefficient of CO2 in water 1.88 x 103 µm2 s-1  (1, 2) 

Diffusion coefficient of H2CO3 in water 1.2 x 103 µm2 s-1 Assumed in Fei et al., (2022) to be identical to 

diffusion coefficient of acetic acid  

(2, 3) 

Diffusion coefficient of HCO3
- in water 1.15 x 103 µm2 s-1  (2, 4) 

Diffusion coefficient of O2 in water 2.42 x 103 µm2 s-1  (5) 

Membrane permeability to CO2 3.50e-03; 

3.20e-02 

m s-1 Parameter scanned between reported values (6, 7) 

Membrane permeability to H2CO3 30 µm s-1  (2) 

Membrane permeability to HCO3
- 0.05  µm s-1  (8) 

Membrane permeability to O2 75 cm s-1  (9) 

Besotrophin-like channel mediated 

permeability of thylakoid to HCO3
- 

1 x 10-2 m s-1  (2) 

Chloroplast membrane permeability to 

HCO3
- mediated by LCIA 

1 x 10-8 m s-1  (2) 

Rate constant of spontaneous 

hydration of CO2 

6 x 10-2 s-1  (10) 

Rate constant of spontaneous 

dehydration of H2CO3 

2 x 101 s-1  (10) 

Rate constant of spontaneous 

deprotonation of H2CO3 

1 x 107 s-1  (10) 

Rate constant of spontaneous 

protonation of HCO3
- 

5 x 1010 M-1 s-1  (10) 

Carbonic anhydrase kcat 0.3 x 106 s-1  (11) 

Carbonic anhydrase Km for CO2 1.5 mol m-3  (12) 

Carbonic anhydrase Keq 0.56 x 10-6 mol m-3  (13) 

Carbonic anhydrase Km for HCO3 34 mol m-3  (13)  

Carbonic anhydrase concentration in 

stroma 

270 µM  (14) 

Carbonic anhydrase concentration in 

cytosol 

135 µM Assumed to be half the stroma value (14) 

 



 
 

136 

 

Table 4.1 (cont’d) 

Carbonic anhydrase concentration in 

lumen 

135 µM Assumed to be half the stroma value (14) 

Rubisco Vmax of carboxylation 7600 µmol L-1 s-1  (15) 

Rubisco Vmax of oxygenation 1596 µmol L-1 s-1 Calculated from ratio of kcat values of 

carboxylation and oxygenation. 

(16, 17) 

Rubisco Km O2 8.6 µmol L-1  (18) 

Rubisco Km CO2 215 µmol L-1  (18) 

BicA Vmax 1.85 x 10-4 mol m-2 s-1 Parameter scanned  (19) 

BicA Km HCO3
- 0.217 mol m-3  (19) 

Stomatal conductance 0.4375 mol m-2 s-1  (20) 

Atmospheric concentration of CO2 412 ppm  Assumed 

Atmospheric concentration of O2 0.21 Partial 

pressure 

 (21) 

Thickness of cell wall in angiosperms 0.32 µm  (14, 22) 

Thickness of cell wall in bryophytes 1.6 µm  (23) 

Effective porosity of C3 plant cell wall 0.2 Unitless  (14) 

Effective porosity of hornwort cell wall 0.0001  Parameter scanned  Calculated (23) 

Thickness of unstirred boundary layer 

in algal model 

0.32 µm Assumed to be the same as cell wall thickness Assumed 

Thickness of unstirred apoplast water 

layer in land plant models 

0.32 µm Assumed to be the same as cell wall thickness Assumed 

Permeability of pyrenoid starch sheath 

to dissolved inorganic carbon 

0.1 * PCO2 µm s-1 From range of permeabilities that allow 

effective carbon concentration in modeling done 

by (Hopkinson et al., 2011) 

(2) 

Permeability of pyrenoid starch sheath 

to oxygen 

0.1 * PO2 µm s-1 Assumed to behave similarly to dissolved 

inorganic carbon 

Assumed 

Radius of pyrenoid 1.0 µm  (2) 

Radius of thylakoid 0.5 µm Multiplied by 10X to account for simpler 

thylakoid architecture 

(2) 

Height of thylakoid 4 µm  Assumed 

Radius of chloroplast 4.63 µm Calculated from stroma volume fraction and 

assuming spherical geometry 

(14) 

Radius of cytosol 8.77 µm Assuming spherical geometry (24) 

Radius of plasmalemma surface 9.23 µm Calculated from radius of cytosol, cell wall 

thickness, and assumed apoplast water thickness 

Calculated 

Radius of substomatal space in land 

plant model 

11.63 µm  (14) 

Proportion of cell wall adjacent to 

intercellular airspace in land plant  

0.5 Unitless  (25) 

pH of land plant apoplast 6.0 pH  (26) 

pH of ocean water 8.1 pH  (27) 

pH of cytosol 7.2 pH  Calculated (28) 

pH of stroma 8.0 pH  (29) 

pH of lumen 6.0 pH  (29) 
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4.4.2. Reaction equations 

Carboxylation flux by rubisco is calculated as in Farquhar et al., (1980) (E1). The rate of 

carboxylation by rubisco is normally taken to be the minimum of vc and J, where J describes the 

rate of ribulose-1,5-bisphosphate regeneration enabled by photosynthetic electron transport and a 

function of Jmax, a maximum rate of RuBP regeneration, among other parameters (Farquhar et al., 

1980). Estimates of the relevant parameters are available for land plants but, to our knowledge, 

not for algae. We are also specifically examining CO2-limiting conditions where rubisco reaction 

rate limitations dominate. For these reasons, we calculate the carboxylation and oxygenation 

rates assuming that the system is not limited by RuBP regeneration as in Fei et al., (2022).  

𝑣𝑐 =
(𝑉max

𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑎𝑡𝑖𝑜𝑛
∗ [𝐶𝑂2])

([𝐶𝑂2] + 𝐾𝑚
𝐶𝑂2 (1 +

[𝑂2]

𝐾𝑚
𝑂2))

 (𝑬𝟏)
 

The ratio of oxygenation to carboxylation Vmax is: 

𝑉𝑚𝑎𝑥𝑜𝑥𝑦𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑉𝑚𝑎𝑥𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑎𝑡𝑖𝑜𝑛
=

𝑘𝑐𝑎𝑡
𝑜𝑥𝑦𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑘𝑐𝑎𝑡
𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑎𝑡𝑖𝑜𝑛

 (𝑬𝟐) 

Using a 
𝑘𝑐𝑎𝑡

𝑜𝑥𝑦𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑘𝑐𝑎𝑡
𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑎𝑡𝑖𝑜𝑛 value of 0.21 as in Farquhar et al., (1980), we can thereby calculate the 

𝑉𝑚𝑎𝑥𝑜𝑥𝑦𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛 of our systems. The oxygenation flux by rubisco is then calculated as: 

𝑣𝑜 =
(𝑉max

𝑜𝑥𝑦𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛
∗ [𝑂2])

([𝑂2] + 𝐾𝑚
𝑂2 (1 +

[𝐶𝑂2]

𝐾𝑚
𝐶𝑂2 ))

 (𝑬𝟑)
 

Interconversion of CO2 with bicarbonate via carbonic anhydrase is described as in McGrath and 

Long, (2014): 

[𝐶𝐴] ∗ 𝐶𝐴𝑘𝑐𝑎𝑡 ∗ ([𝐶𝑂2] −
[𝐻𝐶𝑂3][𝐻+]

𝐾𝑒𝑞
)

𝐾𝑚
𝐶𝑂2 + [𝐻𝐶𝑂3] (

𝐾𝑚
𝐶𝑂2

𝐾𝑚
𝐻𝐶𝑂3

) + [𝐶𝑂2]

 (𝑬𝟒) 

In the land plant models, the flux density of dissolution of gaseous CO2 or O2 into the water layer 

is as in Hemond and Fechner, (2022): 
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𝐹𝑙𝑢𝑥𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑊𝑎𝑡𝑒𝑟𝐿𝑎𝑦𝑒𝑟 =  −
𝐷𝑤 (𝐶𝑤 −

𝐶𝑎

𝐻 )

𝛿𝑤

 

 (𝑬𝟓) 

Where Dw is the diffusion rate of the dissolving species in water Cw and Ca are the concentrations 

of that species in the air and in the water layer, H is the dimensionless Henry’s Law constant, and 

𝛿𝑤

 
 is the length of the unstirred water layer into which the gas is dissolving. In our models, we 

assume the presence of a thin layer of water on top of the plant’s cell wall that is the same 

thickness as the cell wall itself into which CO2 is dissolving.  

Permeation of aqueous species through the cell wall is given by the following equation, as in 

McGrath and Long, (2014): 

𝐹𝑙𝑢𝑥𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐶𝑒𝑙𝑙𝑊𝑎𝑙𝑙 =
𝐷𝑤

𝛿𝐶𝑒𝑙𝑙𝑊𝑎𝑙𝑙
∗ 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (𝑬𝟔) 

Where EffectivePorosity is the porosity of the cell wall divided by the tortuosity of the cell wall. 

For computational tractability, we combine the processes of gases dissolving into water and the 

aqueous species passing through the cell wall. Note that in the above equation Dw / 𝛿𝑤  and Dw 

*EffectivePorosity / 𝛿𝐶𝑒𝑙𝑙𝑊𝑎𝑙𝑙 gives permeability (in units of µm/s) of the water layer and the cell 

wall, respectively. Multiplying these values by surface area (SA) gives conductivities (in units of 

µm3/s). The inverses of these values are resistances, which can be summed to give the total 

resistance of the water layer plus the cell wall. The inverse of this, again, will be the conductivity 

of the overall system, which can be multiplied by the concentration gradient from the air to the 

surface of the plasmalemma to give the total flux. 

𝐽 = ((
𝐷𝑤 ∗ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎

𝛿𝑤
)

−1

+ (
𝐷𝑤 ∗ 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 ∗ SA

𝛿𝐶𝑒𝑙𝑙𝑊𝑎𝑙𝑙
)

−1

)

−1

* (
𝐶𝑎

𝐻
− 𝐶𝑤) (𝑬𝟕) 

 

Permeation through lipid membranes is given by: 

𝑃 ∗ ([𝑂𝑢𝑡𝑠𝑖𝑑𝑒] − [𝐼𝑛𝑠𝑖𝑑𝑒]) (𝑬𝟖) 

Active transport by bicarbonate transporter BicA is described using Michaelis-Menten kinetics:  
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𝑉𝑚𝑎𝑥𝐵𝑖𝑐𝐴 ∗ [𝐻𝐶𝑂3]

𝐾𝑚 ∗ [𝐻𝐶𝑂3]
 (𝑬𝟗) 

4.4.3. Efficiency calculations 

Net CO2 fixation is described as:  

𝑁𝑒𝑡𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛 = 𝐹𝑙𝑢𝑥𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑎𝑡𝑖𝑜𝑛 −
𝐹𝑙𝑢𝑥𝑜𝑥𝑦𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛

2
 (𝑬𝟏𝟎) 

2 NADPH equivalents are expended per carboxylation or oxygenation reaction based on the 

stoichiometry of the CBC cycle and photorespiration. 3 ATP and 3.5 ATP are used for a single 

carboxylation or oxygenation event, respectively (Edwards and Walker, 1983).  

In models featuring a PCCM, there is a lumenal carbonic anhydrase that catalyzes the following 

reaction: 

𝐶𝑂2 + 𝐻2𝑂 ←→ 𝐻𝐶𝑂3
− + 𝐻+ (𝑬𝟏𝟏) 

Due to the acidic pH of the lumen (Kramer et al., 1999) the net flux of this reaction is 

overwhelmingly in the direction of CO2 and H2O, so that entry of bicarbonate depletes the proton 

motive force (pmf) that is maintained by the light reactions of photosynthesis, which imposes an 

indirect ATP cost on CCM activity by requiring additional proton pumping to maintain the pmf 

(Mukherjee et al., 2019). Based on a 14:3 ratio of pumped protons to ATP synthesis via the 

thylakoid membrane ATP synthase, inferred from the number of c-subunits in such ATP 

synthases (Seelert et al., 2000), we can calculate the indirect ATP cost of this lumen CA activity 

as:  

𝐴𝑇𝑃𝑐𝑜𝑠𝑡 = 𝐽𝐶𝐴𝑙𝑢𝑚𝑒𝑛
∗

3

14
(𝑬𝟏𝟐) 

This is added to the other ATP consumption in the model (due to the metabolic costs of 

carboxylation and oxygenation) to give total ATP use. This can be compared with NADPH use 

due to carboxylation and oxygenation to get an estimate of the total ATP, NADPH, and the 

ATP:NADPH ratio needed to support the activity in the model. From the values provided in 

Walker et al., (2020) we estimate the amount of either Cyclic Electron Flow (CEF) or Malate 

Valve activity needed to rebalance the ATP/NADPH ratio needed for a particular model, which 

we can then convert into an additional demand for photons and, therefore, a the number of 
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photons needed on a per reaction (carboxylation or oxygenation) basis (Appendix C, Figure 

S4.1). From this, we can calculate the number of photons needed to support model fluxes and 

then compare this to the net fixation achieved by a model to get an estimate of light use 

efficiency. 

𝜑𝐶𝐸𝐹 =
𝑉𝑐 −

1
2 𝑉𝑜

(𝑉𝑐 + 𝑉𝑜) (𝑃ℎ𝑜𝑡𝑜𝑛𝑠𝑏𝑎𝑠𝑒 + ((𝑅𝑎𝑡𝑖𝑜 ∗ 𝑁𝐴𝐷𝑃𝐻𝑏𝑎𝑠𝑒) − 𝐴𝑇𝑃𝑏𝑎𝑠𝑒) ∗ 0.43
𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝐴𝑇𝑃 )
(𝑬𝟏𝟑) 

𝜑𝑚𝑎𝑙𝑎𝑡𝑒 =
𝑉𝑐 −

1
2 𝑉𝑜

(𝑉𝑐 + 𝑉𝑜) ∗ (𝑃ℎ𝑜𝑡𝑜𝑛𝑠𝑏𝑎𝑠𝑒 +
(𝑅𝑎𝑡𝑖𝑜 ∗ 𝑁𝐴𝐷𝑃𝐻𝑏𝑎𝑠𝑒) − 𝐴𝑇𝑃𝑏𝑎𝑠𝑒

5.45 𝐴𝑇𝑃
2 𝑁𝐴𝐷𝑃𝐻

∗ 4
𝑝ℎ𝑜𝑡𝑜𝑛𝑠
𝑁𝐴𝐷𝑃𝐻

)

(𝑬𝟏𝟒)
 

 

Where Vc and Vo are the modeled rates of carboxylation and oxygenation, Ratio refers to the 

modeled ATP/NADPH ratio necessary to support the fluxes in the model, and Photonsbase , 

ATPbase and NADPHbase refer to the photons used and the ATP and NADPH generated in the 

process of making two NADPH molecules via Linear Electron Flow (LEF) (Walker et al., 2020).  

4.4.4. Concentration calculations 

All concentrations in the models used in this study are in units of µM. To calculate the µM 

concentrations of CO2 and O2 in the atmosphere, we used the following conversion: 

412 µmol CO2

mol air
∗

1 mol air

24.79 𝐿 air
= ~

16.62 𝑢𝑚𝑜𝑙 𝐶𝑂2

𝐿 𝑎𝑖𝑟
 

0.2095 mol O2

mol air
∗

1 mol air

24.79 𝐿 air
= ~

8450.98 𝑢𝑚𝑜𝑙 𝑂2

𝐿 𝑎𝑖𝑟
 

4.5. Results 

4.5.1. Validation of compensation point predictions and sensitivity analysis 

The land plant and algal carbon assimilation models were validated by comparing a key 

estimated result (CO2 compensation point) with experimentally measured values from the 

literature. The CO2 compensation point is the external CO2 level at which net CO2 assimilation 

by a photosynthesizing organism is zero (i.e., carbon assimilation by rubisco is balanced out by 
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CO2 losses to photorespiration and respiration in the light, denoted as RL). Low compensation 

points are also a defining feature of organisms with CCMs since they maintain net positive 

carbon assimilation at lower CO2 concentrations, making this a useful indicator of whether land 

plant and algal models with and without CCMs reasonably recreate the carbon assimilation 

dynamics of real systems.  

 As shown in Figure 4.2 and Table 4.2, the models with CCMs have substantially lower 

compensation points than the models lacking CCMs. Moreover, as shown in Table 4.2, these 

estimated compensation point values fall within the ranges of values reported in the literature for 

angiosperm land plants and algae with and without CCMs (Table 4.2). Note that the reported 

compensation points of hornworts with pyrenoids (11-13 ppm) are lower than those of closely 

related C3 liverworts, but higher than typical estimates for C4 plants and pyrenoid-containing 

algae (Villarreal and Renner, 2012).   
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Figure 4.2: Net CO2 assimilation versus external CO2 concentrations in carbon assimilation 

models. The point at which net CO2 assimilation is zero defines the compensation point. (A) The 

full range of saturation and external CO2 concentrations, and (B) a zoomed-in panel showing the 

point at which each curve reaches 0% rubisco saturation (i.e., the compensation point). 
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Table 4.2: Predicted compensation points for different models from the present study compared 

with reference values from the literature. Reference column numbers refer to their numbering in 

the bibliography. 

Model 
Compensation point 

(ppm CO2) 

Reference Values  

(ppm CO2) 
Measurement References 

Land plant with CCM 6.2 1.3; 4.3; 0.7 – 9.0 
(Fladung and Hesselbach, 1987; 

Lee et al., 2022) 

Land plant without CCM 52.7 48; 57; 48.2 – 53.4; 65-100 

(Fladung and Hesselbach, 1987; 

Tolbert et al., 1995; Peixoto et 

al., 2021) 

Algal model with CCM 2.7 0.75 – 2.5; 6.0 
(Coleman and Colman, 1980; 

Raven et al., 1982) 

Algal model without CCM 44.6 43.5 – 58; 64.5 
(Raven et al., 1982; Steensma et 

al., 2023) 

The sensitivity analysis results shown in Figure 4.3 show that simulated net CO2 

assimilation and quantum yield values from the land plant models are relatively robust to local 

variations in all parameters, providing us with confidence that these results are not merely the 

result of a very particular selection of parameters. In both the land plant and algal models 

without PCCMs, rubisco Vmax, cell and chloroplast radii, and membrane permeability to CO2 are 

the most influential determinants of net CO2 assimilation and quantum yield. In the land plant 

model, stomatal conductance also stands out. The addition of a PCCM reduces the sensitivity of 

net CO2 assimilation to changes in any input parameter but increases the sensitivity of the 

predicted quantum yield to input parameter values. The local stability of our results to 

perturbations in key parameters is comparable with previous studies, being more variable than 

the models presented in Fei et al., (2022), which spatially modeled a smaller system (algal 

chloroplasts), and significantly less variable than the models presented in McGrath and Long, 

(2014), which modeled land plant CO2 assimilation at a similar scale. We also characterized the 

sensitivity of our modeling results to the spatial resolution of the numerical simulations. Our 

results (Appendix C, Figures S4.2-3) show that rubisco saturation - the percentage of maximum 

rubisco activity achieved – and quantum yield in an algal model lacking a CCM are robust to the 

simulation resolution. Increasing the resolution all the way down to 0.32um, well beyond what 

could feasibly be done given the amount of parameter exploration done in this study, does result 
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in noticeable changes in pyrenoid [CO2] and [HCO3
+], resulting in small increases in rubisco 

saturation and small decreases in quantum yield (Appendix C, Figures S4.4-5). 

 

Figure 4.3: Sensitivity analysis results for (A) the land plant model lacking a CCM, (B) the algal 

model lacking a CCM, (C) the land plant model with a CCM, and (D) the algal model with a 

CCM. Orange bars indicate the absolute % change of quantum yield resulting from a 10% 

change in the indicated parameter, and blue bars represent the same for rubisco saturation. For 

both of the land plant models, increasing the cytosol radius by 10% resulted in problems with 

solving the systems numerically, so the cytosol radius was increased by 1% instead and, 

assuming a linear relationship between the size of radius increase and the change in rubisco 

saturation and quantum yield, multiplied by 10 to get the values shown in (A-B). 

4.5.2. Efficiency of chloroplast membrane bicarbonate channel is strongly dependent on 

assumed permeability of chloroplast membrane to CO2 

Previous studies (Price et al., 2010; McGrath and Long, 2014) have suggested that the 

incorporation of bicarbonate transporters into the chloroplast membrane of a land plant could 

improve net fixation and/or the efficiency of carbon assimilation, and that this could represent a 

reasonable intermediate stage in a broader biotechnological effort to implement a full CCM in a 

land plant. Modeling studies on CCM systems typically assume the lipid membrane permeability 
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of 0.35 cm/s, which was experimentally measured and reported in Gutknecht et al., (1977). 

However, there is substantial uncertainty as to the value of parameter, with experimental 

estimates ranging over many orders of magnitude (Evans et al., 2009). The permeability may be 

as much as an order of magnitude higher than the Gutknecht et al value, as reported by Missner 

et al., (2008). We hypothesized that the apparent favorability of employing a chloroplast 

membrane bicarbonate pump may be highly sensitive to the assumed chloroplast membrane CO2 

permeability. 

To test this hypothesis, we performed a parameter exploration from an order of 

magnitude lower than the widely cited Gutknecht et al., (1977) value up to the Missner et al., 

(2008) value in both land plant and algal systems, calculating net fixation as well as ATP/CO2 

and light-use efficiency, as shown in Figure 4.4. 

These results show that the light use efficiency of a chloroplast membrane bicarbonate 

transporter is highly sensitive to the value of the chloroplast envelope’s permeability to CO2, 

with a large range of permeabilities resulting in 2X more ATP usage per unit of CO2 fixed. In the 

land plant model, we see increases in both rubisco saturation and quantum yield as BicA 

pumping activity increases when lipid membrane permeability values are equivalent to, or below 

that reported in Gutknecht et al., (1977) (Figure 4.4A-B). At permeabilities higher than this, 

increased BicA activity actually decreases quantum yield, though net fixation still increases 

(Figure 4.4A-B). We see a similar picture in the algal model (Figure 4.4E-F), suggesting that 

the differences in DIC form, concentration, and diffusivity do not greatly impact the sensitivity 

of this strategy to the specific value of lipid membrane permeability to CO2. The decrease in 

quantum yield in models with high lipid membrane permeability to CO2 is driven by increased 

leakage of CO2 from the chloroplast back into the cytosol after it interconverts with the 

bicarbonate just pumped by BicA (shown as flux V15 in Figure 4.1). As lipid membranes 

become more permeable to CO2, its tendency to escape the chloroplast before being fixed by 

rubisco increases. Lowering the external CO2 concentration does, however, change the energy 

efficiency penalty of increased BicA activity significantly (Figure 4.4C-D;G-H). Even at higher 

lipid membrane permeability values, we see only minimal decreases in quantum yield with 

increased BicA bicarbonate pumping. 
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Figure 4.4: Rubisco saturation and quantum yield of land plant and algal models of CO2 

assimilation under 100% and 50% external CO2 levels, as a function of lipid membrane 

permeability to CO2 and BicA bicarbonate transporter Vmax. Fold change of lipid membrane 

permeability is relative to the value reported in Gutknecht et al., (1977). (A) Predicted rubisco 

saturation of a land plant model under 100% external CO2. (B) Predicted quantum yield of a land 

plant model under 100% external CO2. (C) Predicted rubisco saturation of a land plant model 

under 50% external CO2. (D) Predicted quantum yield of a land plant model under 50% external 

CO2. (E) Predicted rubisco saturation of an algal model under 100% external CO2. (F) Predicted 

quantum yield of an algal model under 100% external CO2. (G) Predicted rubisco saturation of 

an algal model under 50% external CO2. (H) Predicted quantum yield of an algal model under 

50% external CO2. The black lines in each plot indicate the Gutknecht et al., (1977) value for 

lipid bilayer permeability to CO2 as well as a transition in the y-axis from increments of 0.1X to 

1X fold changes. 
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4.5.3. Efficiency of a plasmalemma bicarbonate channel is strongly dependent on external 

DIC levels and limited by the rate of equilibration between CO2 and bicarbonate 

We found that although the strategy of pumping bicarbonate from the cytosol to the chloroplast 

may incur substantial energy costs, implementing a bicarbonate pump at the plasmalemma may 

be more effective. This makes sense considering that in aqueous systems at near-neutral pH, 

most of the DIC in the system is in the form of bicarbonate. We incorporated a plasmalemma 

bicarbonate transporter and explored the efficiency of such a system across different external 

DIC concentrations and activities of the transporter in both algal and land plant systems (Figure 

4.5).  
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Figure 4.5: Predicted rubisco saturation and quantum yield in land plant and algal models with a 

BicA bicarbonate pump present in the plasmalemma membrane, as a function of assumed lipid 

membrane permeability to CO2 and BicA Vmax. Fold change of lipid membrane permeability is 

relative to the value reported in Gutknecht et al., (1977). (A) Predicted rubisco saturation of a 

land plant model lacking an apoplastic carbonic anhydrase. (B) Predicted rubisco saturation of a 

land plant model with an apoplastic carbonic anhydrase. (C) Predicted rubisco saturation of an 

algal model. (D) Predicted quantum yield of an algal model. (E) Predicted rubisco saturation of a 

land plant model with an apoplastic carbonic anhydrase and an apoplast pH of 8. (F) Predicted 

quantum yield of a land plant model with an apoplastic carbonic anhydrase and an apoplast pH 

of 8. The black lines in each plot indicate the Gutknecht et al., (1977) value for lipid bilayer 

permeability to CO2 as well as a transition in the y-axis from increments of 0.1X to 1X fold 

changes. 
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In the land plant model, the plasmalemma bicarbonate pump is not an effective means of 

increasing either net fixation or energy efficiency. As anticipated, the pump does work in the 

algal case (Figure 4.5). The key difference appears to be that the external environment in the 

algal system, which is suffused with bicarbonate ions, can maintain reasonably high steady-state 

concentrations in the vicinity of the cell to support the bicarbonate pumping activity (Figure 

4.5C-D). In contrast, in the land plant system all dissolved bicarbonate available to the cell must 

first enter the system as CO2 in the intercellular airspace, dissolve into the water in the apoplast, 

and then spontaneously hydrate to H2CO3 and deprotonate into bicarbonate. Although the 

protonation/deprotonation between H2CO3 is extremely fast, the hydration/dehydration is not 

[first-order rate constant of hydration of CO2 to H2CO3 is 6 x 10-2 s-1 (Mitchell et al., 2010)]. The 

result is an almost instantaneous depletion of the HCO3
- concentration in the apoplast space, with 

insufficient spontaneous hydration flux to replenish it (Figure 4.5G). Adding carbonic anhydrase 

activity to the apoplast allows for much faster regeneration of the external HCO3
- concentration, 

allowing BicA to impact rubisco saturation (Figure 4.5A-B). However, the pH of the apoplast, 

although variable, tends to be slightly to moderately acidic (Yu et al., 2000), resulting in low 

HCO3
- concentrations in the land plant model even with the apoplast carbonic anhydrase 

included (Figure 4.5G). It is only when the apoplast pH is made substantially more basic (pH of 

8) and a carbonic anhydrase is included that the land plant model can replicate the algal model’s 

rubisco saturation and quantum yield gains by using a plasmalemma bicarbonate pump (Figure 

4.5E-F).  
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4.5.4. PCCM integration results in greater marginal cost of CO2 fixation improvements in 

land plants vs. algal systems and switches from decreasing to increasing light-use efficiency 

around a Ci typical of C4 plants 

 

Figure 4.6: The ratio of the marginal cost in photons of one unit of net CO2 fixation in land plant 

(A) and algal (B) models resulting from adding a PCCM relative to the average cost of fixing 

one molecule of CO2 in those same models without CCMs, as a function of lipid membrane 

permeability and external CO2 concentrations. Fold change of lipid membrane permeability is 

relative to the value reported in Gutknecht et al., (1977). Blue indicates that for a given lipid 

membrane permeability / external CO2 concentration combination, the model containing a CCM 

has a lower marginal cost of CO2 fixation – i.e.., is more light-efficient – than the average cost of 

CO2 fixation in the model lacking a CCM. Red indicates that for a given parameterization, the 

model containing a CCM has a higher marginal cost of CO2 fixation than the average cost of 

CO2 fixation in its CCM lacking counterpart. The black lines in each plot indicate the Gutknecht 

et al., (1977) value for lipid bilayer permeability to CO2 as well as a transition in the y-axis from 

increments of 0.1 to 1 in the X-fold changes. 

We compared the energy-use efficiency of PCCM integration by comparing the predicted cost in 

photons of fixing CO2 molecule in four different models: (i) a land plant model with a PCCM, 

(ii) a land plant model without a PCCM, (iii) an algal model with a PCCM, and (iv) an algal 

model without a PCCM. By dividing the increase in net CO2 fixation in models (i) and (iii) 

relative to models (ii) and (iv) we estimated the marginal cost of in photons of fixing an 

additional CO2 molecule using a PCCM in our land plant and models (Figure 4.6). As we 

observed when examining the efficiency of the plasmalemma and chloroplast envelope BicA 

bicarbonate pumps, the assumed permeability of lipid membranes can have an impact on 
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efficiency; in this case, however, the relative marginal cost values do not change dramatically 

between an assumed permeability equivalent to that used in previous studies (1.0 in Figure 

4.6A-B) and the higher value closer to that reported in Missner et al., (2008).  

 In the algal models, the use of the PCCM appears to only become marginally efficient 

with respect to light usage below an external [CO2] of 4.38 µM. In contrast, the CCM is efficient 

in the land plant model below a substomatal [CO2] of 243 ppm.    

4.5.5. As cell wall thickness increases and cell wall effective porosity decreases, PCCMs 

become more favorable in land plant models 

Given the findings regarding PCCMs in land plants highlighted above, it is interesting that many 

species of hornworts have pyrenoids – are there any meaningful biophysical differences between 

hornworts and other land plants that could explain these differences? As highlighted in Meyer et 

al., (2008) and Flexas et al., (2021) hornworts and other bryophytes have cell walls that are both 

substantially thicker and less porous compared to other land plants. From the mesophyll 

conductance values reported for angiosperms and bryophytes reported in Meyer et al., (2008) 

and Flexas et al., (2021), and with the assumption that other internal resistances to CO2 diffusion 

are similar between bryophytes and embryophytes, we can estimate that the effective porosity of 

a bryophyte like a hornwort must be on the order of four orders of magnitude smaller than in a 

typical C3 angiosperm. We explore parameters within this range of possible porosity values and 

across multiple external CO2 concentrations (Figure 4.7). 



 
 

152 

 

 

 

Figure 4.7: Rubisco saturation (A) and quantum yield (B) of a land plant model with varying 

effective porosity values. Blue points / lines represent predicted rubisco saturation or quantum 

yield in models including a PCCM; orange points/ lines represent predicted saturation or 

quantum yield in models not including a PCCM. 

Below effective porosities on the order of 10-1, which fall in the range we would expect of 

angiosperms, our model shows that the plant struggles to fix CO2 without a CCM. With a PCCM, 

however, the model can achieve some level of net CO2 fixation all the way down to effective 

porosities of 10-3. Below porosities of 10-3, we do not observe net CO2 fixation in the model 

without a PCCM, and at a porosity of 10-4, both models with and without PCCMs struggle to fix 

carbon. In terms of light-use efficiency, the model with a PCCM achieves a greater quantum 

yield of photosynthesis than the model without a PCCM below effective porosities of 10-2.  

4.6. Discussion 

We initially hypothesized that the conspicuous absence of biophysical CCMs in almost all land 

plant lineages, in contrast to algae where they are widespread (Raven et al., 2005), may be the 

result of lower efficiency of such systems in land plants relative to algae, and that this results 

from their different biophysical contexts. To our surprise, we found that PCCMs appear to result 

in qualitatively similar improvements in quantum yield and net CO2 assimilation in land plant 

and algal models. In the algal model, the fact that addition of a PCCM does not result in 

efficiency gains until relatively low external DIC levels are reached is surprising, given that 
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Chlamydomonas reinhardtii cells appear to concentrate carbon even at recent “air-level” – 

approximately 330 ppm – CO2 concentrations (Badger et al., 1980). This implies that algae may 

routinely run their CCMs even when this incurs a quantum yield penalty. In contrast, the 

intercellular CO2 concentration at which the CCM improves quantum yield in the land plant 

model (~243 ppm) is higher than reported estimates of Ci in C4 plants under laboratory, 

greenhouse, and field conditions (Bunce, 2005). Previous work has described the evolutionary 

history of C4 photosynthesis (Sage et al., 2018) and identified certain anatomical features – 

namely Kranz anatomy – and environmental factors such as hot, arid conditions that lead to 

increased transpirational water loss and factors such as Water-Use Efficiency (WUE) as key 

predictors of C4 emergence. If the estimated quantum yield gains resulting from the introduction 

of a biophysical CCM to a land plant in this study apply to biochemical CCMs like C4 and CAM 

photosynthesis, this may represent an additional evolutionary driver towards such systems.  

Hornworts are the only land plant lineage that has evolved a biophysical CCM and they 

have done so multiple times (Villarreal and Renner, 2012). Hornworts, as well as some other 

bryophytes, are noteworthy for having substantially slower gas exchange between their 

surroundings and their photosynthetic tissues when compared with vascular land plants (Meyer 

et al., 2008). Our results show that a land plant with the low effective cell wall porosities we 

might expect given their extremely poor gas exchange characteristics, the use of a CCM becomes 

necessary to achieve net CO2 fixation, which would impose a strong selective pressure for 

adopting one. The fact that hornworts represent the earliest-diverging extant branch of the land 

plants, and therefore may have maintained the genes and regulatory networks necessary to adopt 

a PCCM, may explain why this biophysical CCM strategy has been adopted by hornworts and 

not other land plants growing in conditions where biochemical CCMS have been selected for. We 

should note that in the models presented in this study, at effective porosities below 10-3, only 

single digit values of rubisco saturation are achieved even with a biophysical CCM present and 

active, which may not be sufficient for viability, especially since we do not have or include 

estimates of respiration in the light in the models. This is despite the fact that mesophyll 

conductance to CO2 in hornworts, which we are using effective porosity as a proxy for in this 

study, has been measured to be four-to-five orders of magnitude lower than in angiosperms 

(Flexas et al., 2021). This suggests that our model underestimates the strength of the hornwort 

CCM or otherwise does not properly describe some aspect of hornwort CO2 assimilation. The 
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ratio of chloroplast-to-thallus surface area has not been explored in our modeling, but was found 

in a previous study to be a potentially important determinant of hornwort mesophyll conductance 

(Carriquí et al., 2019). Future work might aim to incorporate an exploration of chloroplast 

position and surface area to better account for this in the modeling.   

These results shed light on potential challenges associated with improving crop 

productivity via the introduction of biophysical CCMs. The specific value chosen for the 

permeability of lipid bilayers to CO2 has a large effect on the predicted energy efficiency of our 

models, with values higher than those used in previous modeling studies (McGrath and Long, 

2014; Fei et al., 2022) but within the range of previously reported literature values (Gutknecht et 

al., 1977; Missner et al., 2008) resulting in qualitatively different conclusions. We see this in our 

consideration of BicA-mediated HCO3- pumping, which had been previously flagged as a 

promising intermediate step in introducing a biophysical CCM to a C3 plant (Price et al., 2010; 

McGrath and Long, 2014). As noted in Fei et al., (2022), barriers to CO2 diffusion form a key 

component of known functional CCMs, so the finding that the chloroplast membrane may 

provide enough of a diffusion barrier for the transport of HCO3
- into the stroma and subsequent 

conversion to CO2 to meaningfully improve net fixation and carbon assimilatory efficiency was 

surprising. Our results show that at or below the permeability reported in Gutknecht et al., 

(1977), which is used in other modeling studies, increasing BicA pumping activity leads to 

improvements in quantum yield, indicating more efficient CO2 fixation with respect to light use. 

However, above this value, we see uniform decreases in quantum yield with increased BicA 

activity. Net CO2 fixation increases with BicA pumping in all cases; therefore, in situations 

where light is abundant relative to CO2, this decrease in efficiency may not impact plant fitness. 

However, recent modeling work suggests that Jmax, the maximum rate of ribulose-1,5-

bisphosphate (RuBP) regeneration enabled by photosynthetic electron transport, is more limiting 

to crop yield than limits to the maximum rate of carboxylation (Vmax of rubisco carboxylation) 

under the projected elevated atmospheric CO2 levels of 2050 and 2100 (He and Matthews, 2023). 

In this study, improved quantum yields correspond to a combination of (i) lower expenditures of 

ATP for each CO2 molecule fixed, and (ii) a more favorable ATP/NADPH ratio needed for 

fixation, resulting in less energy loss from the use of Cyclic Electron Flow during ATP/NADPH 

rebalancing (Walker et al., 2020). Under conditions of Jmax limitations, differences in quantum 

yield may become a critical factor in determining yield, making the sensitivity of quantum yield 
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in this and other studies to assumed lipid bilayer permeability to CO2 a matter of critical 

importance.  

Interestingly, previous studies in this area (McGrath and Long, 2014; Fei et al., 2022) 

have performed sensitivity analyses that include this permeability as a surveyed parameter and 

its modeled effect is small compared to other parameters. These small local sensitivity values are 

estimated by observing the change in an output value like light-saturated CO2 assimilation with a 

± 10% change in the permeability parameter. This ignores the fact that the uncertainty in this 

value is in the range of at least an order of magnitude (Evans et al., 2009), and so despite low 

local sensitivity, the overall change that can result from varying it within reasonable bounds is 

substantial. The substantial uncertainty in this critical parameter could be reined in by future 

experimental measurements, though this will still be complicated by the potentially large 

variation between different plant systems, dynamic remodeling of lipid bilayers in response to 

developmental and environmental cues, etc. In the absence of well-defined values for this 

parameter, we encourage future groups modeling such systems to explore a range of values and 

to characterize the robustness of their conclusions to its variation.  

 In the near-neutral or slightly basic conditions that most photosynthetic organisms in 

aqueous environments find themselves in, HCO3
- represents the primary form of Dissolved 

Inorganic Carbon (DIC) in their surroundings. Due to the impermeability of lipid bilayers to 

passive diffusion of HCO3
-, the use of this pool of DIC requires organisms to employ an active 

transport mechanism [e.g., cyanobacterial HCO3
- pumps like BicA (Price et al., 2004)] to move it 

from the extracellular to the intracellular space, which may often make sense due to the sheer 

quantity of DIC that is present in the environment. Although land plants ultimately obtain CO2 

from the atmosphere, this CO2 must dissolve into water prior to entering photosynthesizing cells, 

at which point this aqueous CO2 interconverts with other DIC species. This raises the possibility 

of a similar strategy – pumping HCO3
- from a land plant’s apoplast water into the intracellular 

environment to increase net CO2 fixation – potentially viable. However, our results indicate that 

the limited spontaneous rate of CO2 and HCO3
- interconversion without the activity of carbonic 

anhydrase means that this strategy does not work.  

Of note here is the fact that a quantitatively very similar system arises in algae growing in 

acidic environments where external HCO3
- levels are negligible, such as the red alga 

Cyanidioschyzon merolae (De Luca et al., 1978). In such systems, all DIC must first enter the 
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cell passively as aqueous CO2, at which point it will interconvert primarily between CO2 and 

HCO3, with the ratio of CO2:HCO3 determined by the cytosolic pH. There is strong evidence that 

C. merolae has a non-pyrenoid based CCM (Steensma et al., 2023). Such a system could use 

HCO3
- pumping across the chloroplast envelope as a method of concentrating carbon, but our 

results suggest that this system would require maintenance of a near-neutral cytosolic pH along 

with the presence of carbonic anhydrases in the cytosol to be viable. The maintenance of this 

near-neutral pH in an acidic environment may, in turn, represent a substantial energetic cost to 

the organism. 

4.7. Data and Code Availability 

All results generated as part of this study can be found in the Supplemental Material. 

Models used for generating the results can all be found under the account kastejos in the Virtual 

Cell interface. Specific model names can be found for each dataset in the corresponding 

Supplemental Material tables.  

4.8. Acknowledgments 

The Virtual Cell, the software platform used for the reaction-diffusion simulations in this study, 

is supported by NIH Grant R24 GM137787.  

This research was supported by the U.S. Department of Energy, Office of Science 

Biological and Environmental Research Grant no DE-SC0018269 (J.A.M.K., Y.S-H.) and Basic 

energy Sciences Grant no DE- FG02-91ER20021 (B.J.W.). This work is supported, in part, by 

the NSF Research Traineeship Program (Grant DGE-1828149) to J.A.M.K. This publication was 

also made possible by a predoctoral training award to J.A.M.K. from Grant T32-GM110523 

from National Institute of General Medical Sciences (NIGMS) of the NIH. Its contents are solely 

the responsibility of the authors and do not necessarily represent the official views of the NIGMS 

or NIH.  

4.9. Author Contributions 

J.A.M.K, B.J.W, and Y.S-H. conceptualized the study. J.A.M.K. developed the models, ran the 

simulations, and analyzed the results. J.A.M.K. wrote the first draft of the manuscript. All 

authors contributed to revising and editing the final manuscript.  

  



 
 

157 

 

REFERENCES 

Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas 

reinhardtii: evidence for a carbon dioxide-concentrating mechanism. Plant physiology 66: 

407–413 

Bräutigam A, Schlüter U, Eisenhut M, Gowik U (2017) On the Evolutionary Origin of CAM 

Photosynthesis. Plant Physiol 174: 473–477 

Bunce J (2005) What is the usual internal carbon dioxide concentration in C4 species under 

midday field conditions? Photosynthetica 43: 603–608 

Carriquí M, Roig-Oliver M, Brodribb TJ, Coopman R, Gill W, Mark K, Niinemets Ü, 

Perera-Castro AV, Ribas-Carbó M, Sack L, et al (2019) Anatomical constraints to 

nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. 

New Phytologist 222: 1256–1270 

Coleman JR, Colman B (1980) Effect of oxygen and temperature on the efficiency of 

photosynthetic carbon assimilation in two microscopic algae. Plant Physiol 65: 980–983 

Cowan AE, Moraru II, Schaff JC, Slepchenko BM, Loew LM (2012) Spatial modeling of cell 

signaling networks. Methods in cell biology 110: 195–221 

De Luca P, Taddei R, Varano L (1978) Cyanidioschyzon merolae: a new alga of thermal acidic 

environments. Webbia 33: 37–44 

Edwards G, Walker D (1983) C3 ,C4: Mechanisms, Cellular and Environmental Regulation of 

Photosynthesis. Univ of California Press 

Ermakova M, Danila FR, Furbank RT, von Caemmerer S (2020) On the road to C4 rice: 

advances and perspectives. Plant J 101: 940–950 

Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion 

pathway inside leaves. Journal of Experimental Botany 60: 2235–2248 

Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO= 

assimilation in leaves of C3 species. Planta 149: 78–90 

Fei C, Wilson AT, Mangan NM, Wingreen NS, Jonikas MC (2022) Modelling the pyrenoid-

based CO2-concentrating mechanism provides insights into its operating principles and a 

roadmap for its engineering into crops. Nature Plants 8: 583–595 

Fladung M, Hesselbach J (1987) Developmental Studies on Photosynthetic Parameters in C3, 

C3 - C4 and C4 Plants of Panicum. Journal of Plant Physiology 130: 461–470 

Flexas J, Clemente-Moreno MJ, Bota J, Brodribb TJ, Gago J, Mizokami Y, Nadal M, 

Perera-Castro AV, Roig-Oliver M, Sugiura D, et al (2021) Cell wall thickness and 

composition are involved in photosynthetic limitation. Journal of experimental botany 72: 



 
 

158 

 

3971–3986 

Gutknecht J, Bisson MA, Tosteson FC (1977) Diffusion of carbon dioxide through lipid 

bilayer membranes: effects of carbonic  anhydrase, bicarbonate, and unstirred layers. The 

Journal of general physiology 69: 779–794 

He Y, Matthews ML (2023) Seasonal climate conditions impact the effectiveness of improving 

photosynthesis to increase soybean yield. Field Crops Research 296: 108907 

Hemond HF, Fechner EJ (2022) Chemical fate and transport in the environment. Academic 

Press 

Hennacy JH, Jonikas MC (2020) Prospects for Engineering Biophysical CO2 Concentrating 

Mechanisms into Land Plants to Enhance Yields. Annu Rev Plant Biol 71: 461–485 

Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-

concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences 

108: 3830–3837 

Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynthesis 

Research 60: 151–163 

Lee M-S, Boyd RA, Ort DR (2022) The photosynthetic response of C3 and C4 bioenergy grass 

species to fluctuating light. GCB Bioenergy 14: 37–53 

Ludwig M (2013) Evolution of the C4 photosynthetic pathway: events at the cellular and 

molecular levels. Photosynth Res 117: 147–161 

McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism 

increase photosynthesis in  crop species? A theoretical analysis. Plant physiology 164: 

2247–2261 

Meyer M, Seibt U, Griffiths H (2008) To concentrate or ventilate? Carbon acquisition, isotope 

discrimination and  physiological ecology of early land plant life forms. Philosophical 

transactions of the Royal Society of London Series B, Biological  sciences 363: 2767–

2778 

Missner A, Kügler P, Saparov SM, Sommer K, Mathai JC, Zeidel ML, Pohl P (2008) 

Carbon dioxide transport through membranes. The Journal of biological chemistry 283: 

25340–25347 

Mitchell MJ, Jensen OE, Cliffe KA, Maroto-Valer MM (2010) A model of carbon dioxide 

dissolution and mineral carbonation kinetics. Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences 466: 1265–1290 

Mukherjee A, Lau CS, Walker CE, Rai AK, Prejean CI, Yates G, Emrich-Mills T, 

Lemoine SG, Vinyard DJ, Mackinder LCM, et al (2019) Thylakoid localized 

bestrophin-like proteins are essential for the CO2 concentrating mechanism of 



 
 

159 

 

Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 116: 16915–16920 

Peixoto MM, Sage TL, Busch FA, Pacheco HDN, Moraes MG, Portes TA, Almeida RA, 

Graciano-Ribeiro D, Sage RF (2021) Elevated efficiency of C3 photosynthesis in 

bamboo grasses: A possible consequence of enhanced refixation of photorespired CO2. 

GCB Bioenergy 13: 941–954 

Price GD, Badger MR, von Caemmerer S (2010) The Prospect of Using Cyanobacterial 

Bicarbonate Transporters to Improve Leaf Photosynthesis in C3 Crop Plants. Plant 

Physiology 155: 20–26 

Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-

type bicarbonate transporter in marine cyanobacteria. Proceedings of the National 

Academy of Sciences 101: 18228–18233 

Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC (2005) Algae lacking carbon-

concentrating mechanisms. Can J Bot 83: 879–890 

Raven JA, Beardall J, Johnston AM (1982) Inorganic Carbon Transport in Relation to H+ 

Transport at the Plasmalemma of Photosynthetic Cells. Plasmalemma and Tonoplast: 

Their Functions in the Plant Cell. Elsevier Biomedical Press, Amsterdam, pp 41–47 

Raven JA, Beardall J, Sánchez-Baracaldo P (2017) The possible evolution and future of CO2-

concentrating mechanisms. Journal of Experimental Botany 68: 3701–3716 

Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon 

concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond B Biol Sci 363: 

2641–2650 

Sage RF, Monson RK, Ehleringer JR, Adachi S, Pearcy RW (2018) Some like it hot: the 

physiological ecology of C4 plant evolution. Oecologia 187: 941–966 

Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM (1997) A general computational 

framework for modeling cellular structure and function. Biophysical journal 73: 1135–

1146 

Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Proton-powered 

turbine of a plant motor. Nature 405: 418–419 

Steensma AK, Shachar-Hill Y, Walker BJ (2023) The carbon-concentrating mechanism of the 

extremophilic red microalga Cyanidioschyzon merolae. Photosynth Res 156: 247–264 

Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 

vegetation: Carbon cycle implications. Global Biogeochemical Cycles 17: 6–1 

Tolbert NE, Benker C, Beck E (1995) The oxygen and carbon dioxide compensation points of 

C3 plants: possible role in regulating atmospheric oxygen. Proceedings of the National 

Academy of Sciences 92: 11230–11233 



 
 

160 

 

Villarreal JC, Renner SS (2012) Hornwort pyrenoids, carbon-concentrating structures, evolved 

and were lost at least five times during the last 100 million years. Proceedings of the 

National Academy of Sciences 109: 18873–18878 

Walker BJ, Kramer DM, Fisher N, Fu X (2020) Flexibility in the Energy Balancing Network 

of Photosynthesis Enables Safe  Operation under Changing Environmental Conditions. 

Plants (Basel, Switzerland). doi: 10.3390/plants9030301 

Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR (2016) The Costs of Photorespiration to 

Food Production Now and in the Future. Annu Rev Plant Biol 67: 107–129 

Yu Q, Tang C, Kuo J (2000) A critical review on methods to measure apoplastic pH in plants. 

Plant and Soil 219: 29–40 

 

  



 
 

161 

 

APPENDIX C: Supplemental Material for Chapter 4 

FIGURES 

 

Figure S4.1: Carboxylation / oxygenation events per photon as a function of varying 

ATP:NADPH ratios. Costs associated with using either Cyclic Electron Flow or the malate valve 

for increasing ATP:NADPH ratio from the products of the light reactions are taken from Walker 

et al., (2020). 
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Figure S4.2: Effect of simulation spatial resolution on rubisco saturation. Simulation results are 

taken from the model of an algal cell without a CCM. 
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Figure S4.3: Effect of simulation spatial resolution on quantum yield.  Simulation results are 

taken from the model of an algal cell without a CCM. 
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Figure S4.4: Effect of simulation spatial resolution on rubisco saturation. Simulation results are 

taken from the model of an algal cell with a CCM. 
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Figure S4.5: Effect of simulation spatial resolution on quantum yield. Simulation results are 

taken from the model of an algal cell with a CCM. 
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Supplementary Datasets Descriptions 

All supplemental datasets can be found at the following link: 

https://doi.org/10.1101/2024.01.04.574220 

Supplemental Tables.xlsx: Contains results from VCell simulations discussed and analyzed in 

the manuscript.  

  

https://doi.org/10.1101/2024.01.04.574220
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Chapter 5  

Concluding Remarks 
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5.1. Introduction  

Taken as a whole, the studies presented in this thesis represent an attempt to improve and refine 

our understanding of photosynthetic metabolism by interrogating and improving the techniques 

we use to model it. I articulate the importance of careful statistical evaluation of metabolic 

models and the utility of using multiple, independent modeling approaches in Chapter 1 (Kaste 

and Shachar-Hill, 2023a), and provide an example of putting these ideas into practice Chapter 2 

(Xu et al., 2022). Again in Chapter 3, I make use of validation principles and implement the 

“gold-standard” validation of an FBA flux map – comparison against an MFA flux map – that I 

argue for in Chapter 1 (Kaste and Shachar-Hill, 2023b). Finally, in Chapter 4, I look at reaction-

diffusion modeling of photosynthetic systems, identifying sources of model uncertainty that 

affect prior work’s conclusions with regards to the efficiency of using Carbon-Concentrating 

Mechanisms.  

 In this chapter, I will review some of the takeaway results and conclusions from the 

studies that I have presented. I will also highlight limitations and future directions of this overall 

research program.  

5.2. Takeaway messages and future work 

5.2.1. Analyzing systems using multiple modeling paradigms can help reveal new aspects of 

these systems, but may be redundant with refinements or extensions of existing paradigms 

In Chapter 2, I showed that complementing our 13C-MFA study with a pharmacokinetics-derived 

polyexponential modeling approach allowed us to further refine the 13C-MFA model and 

discover new properties of the system under consideration. However, inasmuch as both 

approaches are fundamentally just different mathematical formalisms describing the same 

biological phenomena, there should exist underlying mathematical connections between the two 

that, with sufficient exploration, unify them or render one or the other redundant. As referenced 

in Chapter 1 and described in Nöh and Wiechert, (2011) and Zheng et al., (2022), fitting time-

course isotopic labeling data to incomplete metabolic network model specifications can lead to 

unmodeled reactions contributing unaccounted-for labeled/unlabeled atoms (referred to in Zheng 

et al., (2022) as “time constants”). When fitting the isotopic labeling data to generate a flux map 

without any metabolite pool sizes constrained by experimental measurements, the pool sizes 

estimates essentially capture the error introduced by these time constants (Zheng et al., 2022). In 

Xu et al., (2022), I use the polyexponential modeling appoach to essentially reveal these 



 
 

169 

 

unmodeled processes without the use of pool size data. It is possible that the routine inclusion of 

pool size measurements as a way of detecting model misspecifications, which I advocate for in 

Chapter 1, would make the polyexponential modeling approach as a way of detecting these 

unmodeled factors redundant, but further investigation will be needed to confirm whether this is 

the case. 

 Future work should also look into whether this polyexponential modeling method can be 

fruitfully applied to other systems. I use the polyexponential modeling approach in Chapter 2 to 

characterize how many processes acting over different time scales are influencing the labeling of 

CBC intermediates. I then corroborate the findings from the polyexponential modeling with our 

13C-MFA results. In that same study, I applied the same polyexponential modeling approach to 

Nicotiana tabacum data gathered by Xinyu Fu and colleagues in Fu et al., (2023) and found 

similar patterns. This corroborated our findings by suggesting that the cycling of cytosolic and 

vacuolar sugars may occur in N. tabacum as well. However, since I did not do a 13C-MFA 

incorporating the vacuolar sugar exchange and demonstrate that this resulted in a statistically 

significantly better model fit, I have not yet provided equivalent evidence of the operation of 

such a cytosolic-to-vacuolar sugar recycling pathway in any plant other than C. sativa. Future 

work should attempt to provide such evidence, with N. tabacum and A. thaliana representing the 

obvious candidates for such follow-up studies due to the presence of leaf CBC intermediate 

isotopic labeling datasets in these systems. In order to gauge how conserved this recycling 

phenomenon is, though, N. tabacum would be the system of greater biological significance. This 

is because A. thaliana and C. sativa are very closely related, so if the phenomenon was found in 

A. thaliana as well, it would raise the question of whether it is conserved broadly in land plants, 

or just in this very specific lineage of the Brassicaceae. 

5.2.2. Considering metabolic network structure in addition to omic datasets can result in 

drastically improved predictive power, but further work is necessary to demonstrate general 

applicability of this principle 

As noted by Schwender et al., (2014), there is a very poor correlation between changes in 

transcript abundance and changes in flux when comparing a particular tissue – in the case of 

Schwender et al., (2014), plant embryo tissues in different growth media – under different 

conditions. Indeed, the large number of biochemical and regulatory processes that intervene 

between transcript, or even protein, accumulation make the use of transcripts or proteins as an 
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input data type for predicting fluxes questionable. Despite this, the work presented in Kaste and 

Shachar-Hill, (2023b) and Chapter 3 suggests that it is possible to extract signal from 

transcriptomic and proteomic datasets for flux prediction. One key difference between the 

approaches taken by Schwender et al., (2014) and Kaste and Shachar-Hill, (2023b) is that the 

latter places omic abundances in the context of the entire metabolic network, constraining the 

influence of the omic data by other metabolic necessities like the accumulation of measured 

amounts of biomass. However, the datasets analyzed by Schwender et al., (2014) and Kaste and 

Shachar-Hill, (2023b) are also quite different. In order to provide stronger evidence that it is the 

consideration of the omic data in the context of a network that allows these data, despite low 

correlation with differences in flux, to generate accuracy improvements, it should be 

demonstrated that there is actually a poor correlation between flux differences and omic 

differences in Kaste and Shachar-Hill, (2023b). This could be done with the FBA predictions in 

the multiple modeled tissues alone, or as part of a broader study where MFA flux maps are 

generated for the non-photosynthetic tissues as well. 

Although successful, this method has thus far only been shown to work in A. thaliana, 

and a crucial next step to demonstrate its utility would be to show efficacy in another system. 

Moreover, the MFA-to-FBA flux map comparison was only possible for leaf tissues using values 

reported by Ma et al., (2014). If MFA flux maps of the non-photosynthetic stem and root tissues 

of A. thaliana could be generated under similar conditions, I might be able to evaluate the FBA 

flux maps for those tissues as well.  

 A number of simplifications were employed when developing and evaluating the 

algorithm described in Chapter 3 and Kaste and Shachar-Hill, (2023b), which could benefit from 

further evaluation. Although the base model of A. thaliana used to build the multi-tissue model 

evaluated in the study (Arnold and Nikoloski, 2014) contained GPR terms with detailed enzyme 

complex stoichiometries, this stoichiometric detail was ignored by the algorithm. Rewriting the 

algorithm to incorporate these stoichiometric ratios and evaluating whether it results in improved 

accuracy could be a fruitful future research project. Additionally, I ran into computational 

constraints when attempting to perform uniform random sampling of the flux solution spaces 

generated by our FBA optimizations. In short, the multi-tissue models I was optimizing were too 

large to efficiently sample. Because of this, when reporting weighted average error values, I 

calculated best- and worst-case (i.e., maximum and minimum possible errors) using the 
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maximum and minimum possible for each flux, given the model constraints, using FVA 

(Mahadevan and Schilling, 2003). This approach is suboptimal because not every linear 

combination of maximal and minimal values for each flux from FVA will represent a valid 

solution to the optimization problem. As a result, the real range of possible weighted average 

error values is almost certainly narrower than what is reported in (Kaste and Shachar-Hill, 

2023b). The use of stronger computational resources to overcome the numerical difficulties 

posed by the uniform random sampling method, or an improved process by which the FVA-

derived upper and lower bounds for each value are iteratively perturbed until a valid flux 

solution is generated, could be used in a future study to overcome this limitation.   

5.2.3. Spatially-resolved reaction-diffusion modeling allows for powerful investigations of 

photosynthetic metabolism, but is limited by computational power 

Along similar lines, computational limitations also affected the depth of analysis possible in the 

work reported in Chapter 4 and Kaste et al., (2024). As described in that chapter, a number of 

geometric simplifications were made to make solving the spatial reaction-diffusion models in 

that study numerically tractable, given the large parameter explorations I performed. In addition, 

these parameter explorations were limited to two-dimensional, or at most very coarse three-

dimensional spaces.  This stands in contrast with an extensive 10-plus-dimensional parameter 

exploration I am currently performing together with my colleague Anne Steensma on a 

forthcoming study on which I am co-first author. The relative computational simplicity of 

compartmental models allowed for a substantially more thorough parameter exploration. In order 

to achieve something similar, a follow-up on the work presented in Chapter 4 could derive 

analytical solutions for the models. One limitation of this approach is that derivation of such 

analytical solutions often requires some mathematical simplifications, as demonstrated in Fei et 

al., (2022), where the spontaneous (i.e., not CA-mediated) interconversion of CO2 and HCO3 

was omitted because it was incompatible with getting an analytical solution. An alternative, if 

too many such simplifications would be necessary, would be to distribute the Virtual Cell 

platform’s calculations to a local High Performance Computing Cluster (HPCC). By default, the 

Virtual Cell distributes simulation jobs to the HPCC at the University of Connecticut. However, 

the software imposes a limit of forty jobs per user. By implementing the Virtual Cell on a local 

university cluster, substantially larger numbers of jobs could be run simultaneously, opening the 

door for larger parameter explorations and deeper analysis of the model. 
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 Even relatively sophisticated models of similar systems have had to employ 

simplifications and idealizations (McGrath and Long, 2014; Fei et al., 2022) and the parameter 

explorations and sensitivity analyses they employ are heavily hypothesis-driven, with only a 

small number of parameters varied and investigated. As the computational power available to 

research groups continues to grow, there may be great value in revisiting these existing models 

and rerunning analyses to better characterize the robustness of previous results and conclusions. 

Such investigations may reveal surprising interactions between geometric or enzymatic 

parameters and deepen our understanding of what factors contribute to photosynthetic efficiency 

and productivity.  
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Chapter 6  

Additional Studies: Integrative Teaching of Metabolic Modeling and 

Flux Analysis with Interactive Python Modules 

 

 

 

 

 

 

 

 

 

 

 

This research was published in: 

J. A. M. Kaste, A. Green, Y. Shachar-Hill, Integrative Teaching of Metabolic Modeling and Flux Analysis with 

Interactive Python Modules. Biochemistry and Molecular Biology Education 51(6): 653-661 (2023). 



 
 

176 

 

6.1. Preface 

My interest in teaching metabolic modeling – the subject of this chapter – stems from two 

sources, one practical and one theoretical. The practical reason is that I found learning the 

underlying theory quite difficult and many concepts of central importance to metabolic modeling 

can take a great deal of time and effort to properly grasp. The theoretical reason is that the 

interrelationship between different modeling approaches – enzyme-based simulations, FBA, and 

MFA – is not emphasized or discussed very strongly in the literature, and the communities that 

have formed around these different techniques do not seem to interact extensively. As I have 

discussed in earlier chapters, there is a lot to be gained from comparing and integrating these 

different ways of looking at the same systems, so I saw great value in developing educational 

resources that puts this idea front and center for learners right from the get-go.  

 Dr. Shachar-Hill has run an annual intensive workshop series on metabolic modeling at 

Michigan State University for many years now. Previous iterations have used Excel spreadsheets 

and proprietary programs like INCA for demonstrating enzyme-based kinetic and constraint-

based modeling to learners. I decided to develop interactive Python notebooks that allowed 

learners to more easily interface with and manipulate their metabolic modeling simulations. I 

enlisted the help of a bright undergraduate researcher in our lab, Antwan Green, in doing this 

work. I set up pre- and post-workshop surveys to assess learners’ experiences and we found that 

the combination of the workshop lecture material and these interactive simulations resulted in 

positive outcomes. We decided to package these simulations together with lesson plans and 

lecture notes into a freely available GitHub repository for teachers and learners to access, and 

also wrote a manuscript describing what we put together, which I present in this chapter. I came 

up with the concept for these simulations and wrote most of the code for the project, with 

assistance from Antwan Green. I also ran all logistics related to the survey component of the 

study, including getting our IRB exemption for the study approved, and wrote up all of the 

lecture notes and lesson plans. I wrote the manuscript with input and editing from Antwan Green 

and Dr. Shachar Hill. The manuscript presented in this chapter has been published in the journal 

Biochemistry and Molecular Biology Education (Kaste et al., 2023).  

 Rather than a one-and-done study, I see this as a first step towards building a robust set of 

metabolic modeling learning resources. In future iterations of the workshop and in these learning 

materials, Dr. Shachar-Hill and I plan on interweaving the lecture and interactive sections more 
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seamlessly so that learners are running examples and engaging in active learning, reinforcing 

concepts they were just exposed to. Although the materials, as presented, already represent a big 

step-up from existing learning resources for these topics, there is always room for improvement. 

6.2. Abstract 

The modeling of rates of biochemical reactions – fluxes – in metabolic networks is widely used 

for both basic biological research and biotechnological applications. A number of different 

modeling methods have been developed to estimate and predict fluxes, including kinetic and 

constraint-based (Metabolic Flux Analysis and Flux Balance Analysis) approaches. Although 

different resources exist for teaching these methods individually, to-date no resources have been 

developed to teach these approaches in an integrative way that equips learners with an 

understanding of each modeling paradigm, how they relate to one another, and the information 

that can be gleaned from each. We have developed a series of modeling simulations in Python to 

teach kinetic modeling, Metabolic Control Analysis, 13C-Metabolic Flux Analysis and Flux 

Balance Analysis. These simulations are presented in a series of interactive notebooks with 

guided lesson plans and associated lecture notes. Learners assimilate key principles using models 

of simple metabolic networks by running simulations,  generating and using data, and making 

and validating predictions about the effects of modifying model parameters. We used these 

simulations as the hands-on computer laboratory component of a four-day metabolic modeling 

workshop and participant survey results showed improvements in learners’ self-assessed 

competence and confidence in understanding and applying metabolic modeling techniques after 

having attended the workshop. The resources provided can be incorporated in their entirety or 

individually into courses and workshops on bioengineering and metabolic modeling at the 

undergraduate, graduate, or postgraduate level.  

6.3. Introduction 

Metabolic modeling provides scientists with a quantitative description of the in vivo rates of 

biochemical reactions in biological networks. These rates of biochemical reactions – fluxes – are 

a function of many layers of cellular regulation (transcriptional, translational, post-translational, 

etc.) and relate directly to the living system’s functional phenotype. Understanding metabolic 

flux thus provides important insights into biological systems and underlies efforts to rationally 

modify their metabolism to suit our biotechnological needs (Nielsen, 2003).  

Fluxes in metabolic pathways and networks cannot be directly measured, necessitating 
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the use of mathematical modeling approaches to estimate or predict them. These approaches can 

be broadly categorized into kinetic and constraint-based methods. Within both categories, 

methods exist both for predicting fluxes and for estimating them from experimental data. Kinetic 

methods involve simulating the dynamically changing fluxes and metabolite concentrations in a 

metabolic network over time (Saa and Nielsen, 2017), whereas constraint-based methods like 

Flux Balance Analysis (FBA) (Orth et al., 2010b) and Metabolic Flux Analysis (MFA) 

(Antoniewicz, 2015) estimate steady-state fluxes using linear optimization principles or 

experimentally-measured isotopic labeling data. 

Metabolic modeling, and particularly constraint-based modeling approaches, have been 

used productively to aid in biotechnological applications. For example, Metabolic Flux Analysis 

techniques using isotopic labeling informed the engineering of the bacterium Corynebacterium 

glutamicum to produce high concentrations of lysine (Koffas et al., 2003; Koffas and 

Stephanopoulos, 2005; Becker et al., 2011). Flux Balance Analysis has been deployed to 

improve the microbial production of a number of bioproducts, including threonine (Lee et al., 

2007) and valine (Park et al., 2007), and in ambitious reengineering efforts like that described in 

(Gleizer et al., 2019) where FBA and related methods including (Burgard et al., 2003) were used 

to enable engineering of normally heterotrophic Escherichia coli to incorporate CO2 into its 

biomass using a heterologously expressed Calvin-Benson Cycle. These and an increasing 

number of other metabolic modeling applications indicate that this is an area that is of great 

value to learners and practitioners in biology, biochemistry, and chemical engineering. 

Related to kinetic metabolic analysis, Metabolic Control Analysis (MCA) provides 

mathematical tools for understanding how control over flux and internal metabolite 

concentrations are distributed between the enzymes in a biochemical network (Fell, 1992; 

Moreno-Sánchez et al., 2008). Like metabolic flux modeling and mapping the questions 

addressed by Metabolic Control Analysis have major biotechnological implications. We believe 

it therefore makes sense to introduce and teach concepts in MCA along with kinetic and 

constraint-based metabolic modeling techniques.  

 Although previous studies have described and provided resources for teaching kinetic 

metabolic modeling (Armando et al., 2009), FBA (Orth et al., 2010b; Chaves et al., 2022), MFA 

(Wong et al., 2004; Wong and Barford, 2010), and MCA (Snoep et al., 1999; Rodríguez-Caso et 

al., 2002; Angelani et al., 2018), there are not any published and freely available instructional 
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resources for introducing these toolsets to learners in an integrative and interactive fashion. 

Moreover, although papers and books exist describing how to experimentally approach 13C-MFA 

(Crown et al., 2012; Dieuaide-Noubhani and Alonso, 2014; Krömer et al., 2014; Antoniewicz, 

2018) or the theoretical background behind the technique (Stephanopoulos et al., 1998; Ratcliffe 

and Shachar-Hill, 2006), we are not aware of any dedicated and published educationally focused 

resources for introducing learners to the theoretical background behind label-assisted MFA. We 

believe introducing learners to all of these major areas of metabolic modeling together allows 

them to appreciate their interconnections and better evaluate what approach(es) may be useful to 

their own research and/or engineering goals than if they encounter them in isolation.   

 To address this gap in the biochemistry education literature, we developed a series of 

interactive Python-based Jupyter notebooks featuring exercises that give learners hands-on 

experience with kinetic modeling, FBA, MFA, and MCA. These notebooks were used as the 

hands-on laboratory exercises for the 2022 iteration of an annual metabolic modeling workshop 

at Michigan State University. To assess the efficacy of the workshop and the interactive 

exercises, surveys were distributed to participants – a mix of graduate students and postdoctoral 

researchers – before, immediately after, and four months after the workshop to measure self-

assessed competence and confidence in metabolic modeling techniques and in the application of 

these techniques to learners’ own research questions. Although the materials are structured with 

a particular sequence and timeline, the individual notebooks, paired with appropriate lecture 

material, contain sufficient explanation to be flexibly incorporated into different course or 

workshop structures.  

6.4. Methods 

6.4.1. Exercise development 

All simulation code was written in Python and packaged and presented in Jupyter notebooks 

(Kluyver et al., 2016). Numpy (Harris et al., 2020) and SciPy (Virtanen et al., 2020) were used to 

handle data import and export and calculate control coefficients for MCA. Interactive elements 

were incorporated into the notebooks using the ipywidgets package. MFA simulations were run 

in Python using the package mfapy (Matsuda et al., 2021) and FBA simulations were run using 

cobrapy (Ebrahim et al., 2013). For the FBA exercises, the genome-scale model of E. coli’s 

metabolic network iJO1366 (Orth et al., 2011) was used along with a smaller “core” model of E. 

coli’s metabolic network (Orth et al., 2010a). Several example networks from (Ratcliffe and 
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Shachar-Hill, 2006) were adopted for demonstration purposes throughout the notebooks.  

Time-courses of metabolite concentrations, fluxes, and labeling were generated in kinetic 

simulations featuring reversible or irreversible first-order and Michaelis-Menten kinetics. Euler’s 

method was used to generate all concentration, flux, and labeling values. In most of the 

simulations that feature labeling, all metabolites are treated as having only one labelable 

position, so the proportion of labeled and unlabeled metabolite is tracked. In the simulations in 

the notebook for Day 4 (see Table 6.1), both one- and two-carbon molecules are present, so the 

quantities of unlabeled, half-labeled, and fully-labeled species for each metabolite are calculated 

and tracked independently to allow for comparison with 13C-MFA flux map results. 

6.4.2. Survey ethics and analysis 

The survey component of this study was deemed exempt by the Michigan State 

University Office of Research Regulatory Support. Survey respondents were asked to self-assess 

their confidence in and understanding of kinetic and constraint-based metabolic modeling 

methods and the application of these methods to their own research goals on a Likert scale 

(Likert, 1932). Survey responses were gathered from workshop participants before, immediately 

after, and four-months following the workshop. The survey instruments can be found in the 

supplemental materials. One-sided Mann-Whitney U tests (Neuhäuser, 2011) were used to 

compare pre- and post-workshop responses, where our null hypothesis was that there is no 

difference between the pre- and post-workshop responses and our alternative hypothesis was that 

the post-workshop responses were higher than the pre-workshop responses. We evaluated each 

question with α = 0.05. 

6.5. Results and discussion 

6.5.1 Educational Jupyter notebooks 

 We developed a series of four Jupyter notebooks covering various aspects of kinetic and 

constraint-based metabolic modeling and metabolic control analysis. A graphical summary of the 

different areas of metabolic modeling covered and their relationships is shown in Figure 6.1. In 

addition to learning the theory behind these methods, learners are exposed to the key concepts 

for successful applications of flux modeling listed below. We also note in Table 6.1 and the 

lesson plans when an exercise can be used to teach one of these concepts.  
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• Concept 1: The relationship between the noise and time resolution of experimental data 

and the confidence one can have in parameter estimates and assumed model 

architectures. 

• Concept 2: The uniqueness and identifiability of flux estimates in FBA and 13C-MFA 

and their relationship to model complexity. 

• Concept 3: The distribution of control over fluxes and concentrations in a network across 

the reactions of that network. 

 
Figure 6.1: Metabolic modeling topics covered in the resources presented in this study. A 

majority of the techniques covered – kinetic modeling, FBA, and 13C-MFA – are used to 

estimate or predict fluxes through a metabolic network. MCA, on the other hand, is used to 

analyze the relationship between enzyme activities/concentrations and metabolite or regulator 

concentrations on the flux through the network. Within the flux estimation/prediction techniques, 

kinetic modeling can be used to estimate fluxes and metabolite concentrations in systems 

whether they are in steady-state or not (dynamic systems where concentrations are still 

changing). The constraint-based modeling techniques of FBA and 13C-MFA, on the other hand, 

rely on an assumption of metabolic steady-state, as does MCA. 

These concepts are necessary both to effectively conduct any experiment or study 

involving flux analysis and to understanding the primary metabolic modeling literature. They are 

often not intuitively obvious, and the first two also receive rather little attention in the teaching 

or research literature. The concepts are therefore explained in the lecture notes, revisited 

throughout the Jupyter notebooks and demonstrated with hands-on exercises. For example, in 

Exercises 4.0 – 4.2 in the Day 4 Jupyter Notebook, learners gain insight into Concept 1 by first 

using a kinetic model to generate simulated labeling data and then attempting to fit it using both 
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correctly and incorrectly specified network models using 13C-MFA. By doing so, the learners can 

observe the difference in 13C-MFA fits when using the correct or incorrect model specification 

and how this difference can be obscured even by low levels of experimental noise. This allows 

instructors to highlight important issues concerning data quality and to discuss model selection, 

which is rarely addressed in the literature (Sundqvist et al., 2022).  

Table 6.1: A table describing the contents of the interactive exercises presented in this 

publication. Descriptions of key concepts are outlined in the text. 

Day Section(s) Contents Concept 

1 

1.0 – 1.2 Introduction to the Jupyterlab Interface.  

2.0 – 2.2 Exploration of a simulation demonstrating first-order kinetics.  

3.0 – 3.1  Exercise on inferring kinetic parameters from example datasets. 1 

4.0 
Exercise demonstrating the relationship between model architecture and the 

information contained in each datapoint. 

1 

5.0 – 5.1 Introduction to metabolic steady-state and the utility of labeling data.  

2 

1.0 Introduction to reversible first-order kinetic models  

2.0 Exercise on inferring model parameters in the presence of reversibility 1 

3.0 – 3.4 
Exploration of metabolic control analysis, including calculation of flux and 

concentration control coefficients as well as elasticities. 

3 

4.0 
Comparison of results gathered in 3.0 – 3.4 “by hand” with results from an 

automated MCA script. 

1 

3 

1.0 – 1.2 
Metabolic control analysis with branching networks, negative control 

coefficients, and modeling a system with an incomplete network description. 

3 

2.0 – 2.2 Kinetic modeling with Michaelis-Menten kinetics.  

3.0 
Fitting a dataset using either first-order or Michaelis-Menten kinetics in the 

presence or absence of noise. 

1 

4.0 Kinetic modeling with reversible Michaelis-Menten kinetics.  

5.0 Using MCA to calculate response coefficients. 3 

4 

1.0 – 1.2 
A kinetic simulation that incorporates labeling dynamics, for comparison 

with 13C-MFA and FBA. 

 

2.0 Introduction to FBA modeling. 2 

3.0 – 3.3 Introduction to FVA and randomized sampling methods in FBA. 2 

4.0 – 4.2 Introduction to 13C-MFA and comparison with results from 1.0 – 1.2. 2, 1 

5.0  
Discussion about incorporating metabolic modeling into one’s own work 

and/or research. 

 

 

The subjects covered in the sections of each notebook with the timeline for a 4 day 

workshop are given in Table 6.1. On the first and second days, learners are given an extensive 

introduction to kinetic modeling theory and exercises before learning about MCA, FBA, and 13C-

MFA. We do this to allow learners to gain both a theoretical and practical understanding of the 

dynamic ways that matter moves through biochemical networks. The hands-on experience 

exposes learners to the sometimes surprisingly complex behavior of even simple networks 

governed by systems of Ordinary Differential Equations (ODEs). This is aimed at giving learners 
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a strong sense of the dynamics of metabolic systems before learning about steady-state 

approaches, in which simplifications of the kinetic state allow powerful analyses in 13C-MFA 

and FBA. MCA is explored in the second and third days and MCA calculations of flux- and 

concentration- control coefficients are discussed. Control coefficients are connected to the 

understanding of reversible first-order kinetics participants gained from the preceding kinetic 

modeling exercises. Lastly, participants are introduced to constraint-based methods by analyzing 

the same network structure using kinetic modeling, FBA, and 13C-MFA. This highlights the 

different inputs needed and the resulting outputs from each technique.  To our knowledge, this is 

the first such cross-comparison of different metabolic modeling techniques presented in the 

teaching literature, and we believe this will be of value to instructors introducing this material to 

their students and trainees.  

 Interactive sliders and drop-down menus were incorporated into all of the notebooks to 

allow learners to modify parameters, run simulations and visualize their results. This allows 

learners to expose the underlying simulation code and for those with a modest background in 

Python or general coding to see how the simulations function and potentially to modify the 

model structures. By default the code is not visible, making the notebooks approachable for 

participants interested in using metabolic modeling without engaging with the underlying code. 

We believe that the incorporation of these interactive modules into the notebooks will make the 

resources presented in this publication useable by learners with little to no coding knowledge. 

 In writing the notebooks, special attention was given to commenting the Python code 

used to run the simulations and interactive interface elements. We believe the extensive 

commenting used in these notebooks, together with the use of intuitive and easy-to-understand 

methods for implementing the simulations will make the notebooks both easy for instructors to 

adopt and for learners interested in the underlying code to understand it. This is in contrast to 

software like COPASI that, while very powerful, obscure the underlying simulation logic (Hoops 

et al., 2006). Installation and compatibility issues are commonplace when using computational 

resources, particularly when workshop or class participants are asked to run code or software on 

their own computers. To further ensure maximal useability of these resources by instructors, 

detailed installation instructions for Windows, MacOS, and Linux systems with the specific 

version numbers needed to successfully run all of the notebooks provided with the notebooks. 
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Table 6.2: Quantitative pre- and post-workshop survey results evaluating learners’ self-assessed 

confidence and competence in metabolic modeling techniques. 

Question 

Pre-

workshop 

Median 

Post-

workshop 

Median 

Significant 

improvement?a 

I feel confident in applying and incorporating metabolic 

modeling techniques to my research question(s). 
2 3 Not Significant 

I feel confident in evaluating the results of a metabolic 

modeling study or a study that incorporates metabolic 

modeling. 

2 3 Significant 

I feel confident in identifying metabolic modeling techniques 

and software that I can apply to my research question(s). 
2 4 Significant 

I understand the purpose(s) of metabolic modeling. 4 4 Significant 

I can describe kinetic metabolic modeling, what information 

it can provide, and its limitations. 
3 4 Significant 

I can describe Metabolic Flux Analysis, what information it 

can provide, and its limitations. 
3 4 Significant 

I can describe Flux Balance Analysis, what information it can 

provide, and its limitations. 
2 4 Significant 

I understand the data types I would need to carry out kinetic 

metabolic modeling. 
2.5 4 Significant 

I understand the data types I would need to carry out 

Metabolic Flux Analysis. 
2.5 4 Significant 

I understand the data types I would need to carry out Flux 

Balance Analysis. 
2 4 Significant 

I can name the language(s) or software package(s) I would 

use to incorporate metabolic modeling into my own research. 
2 4 Significant 

I can critically evaluate the application and results of 

metabolic modeling in publications and presentations relevant 

to my area of research. 

3 4 Significant 

aStatistically significant improvement was defined by rejection of the null hypothesis by the one-

sided Mann-Whitney U test (Neuhäuser, 2011) at α = 0.05.  

 

6.5.2. Implementation in workshop and survey results 

The Jupyter notebooks were incorporated into a four-day workshop held at Michigan State 

University in May 2022. Participants in the workshop included graduate students and 

postdoctoral researchers. Each day of the workshop consisted of three hours of lecture in the 

morning and a three-hour hands-on period for computational exercises. Due to time constraints 

and interest among the participants in constraint-based modeling approaches – particularly label-

assisted flux mapping using MFA – the third day’s notebook exercises were omitted and 

replaced with the fourth day’s exercises on constraint-based modeling. The last day of the 

workshop was used for an open-ended discussion about participants’ research aims and how they 

could incorporate what they learned in the workshop into their own work. For instructors 

interested in incorporating not only the computational resources developed for the workshop, but 
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also all or portions of the lecture material, detailed lecture notes have been provided online at 

https://github.com/Gibberella/Metabolic-Modeling-Lessons.  

The pre- and post-workshop survey results suggest that participants felt they gained 

greater confidence in and knowledge of metabolic modeling over the course of the workshop 

(Table 6.2). Our survey evaluated participants’ self-assessed confidence and competence but did 

not ask participants to attribute their comprehension gains to the lecture or hands-on components. 

In a free-response question (“What did you find useful about the workshop?”), one participant 

responded, "Understanding what goes into metabolic modeling, learning how to critically 

appraise these models in published literature, and beginning to learn how to implement them into 

our own projects.” In response to that same question, another participant focused more 

specifically on FBA: “The hands-on use of cobrapy was very helpful. This helped me understand 

how one goes about metabolic modeling.” It should be noted, however, that the sample sizes for 

the study were small and we had fewer respondents in the post-workshop survey than the pre-

workshop survey (N = 12 in the pre-workshop survey and N = 7 in the post-workshop survey). 

Because of this, the results may be skewed due to survivorship bias from learners who were 

either no longer interested in the topic or unhappy with the presentation of the material leaving 

and not participating in the post-workshop survey. 

Multiple respondents noted that they would have liked to have worked with real datasets 

in the exercises rather than simulated ones. Given the modifiability and extensive annotation of 

the notebooks provided, we encourage instructors using the provided resources to add analyses 

of real datasets that are relevant to their specific audience. We believe this will help provide real-

world context for learners as they carry out the exercises. 

Although we have packaged and used the materials presented in the context of an 

intensive workshop, we believe the materials can be adapted to a variety of teaching 

circumstances. The Jupyter-based simulations could be used for computer lab sessions in a 

semester-long course, for example, or used as an interactive demonstration in a lecture setting. 

With the relevant theory taught beforehand, these resources may also be appropriate for 

undergraduate learning. As noted, the extensive annotation of the code paired with the easy-to-

use graphical interface for the exercises also makes them suitable for both learners with 

extensive and with no prior knowledge of programming.  
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6.6. Conclusions 

Recognizing the absence of resources for teaching the major areas and techniques of metabolic 

modeling and flux analysis in an integrative fashion, we have developed a set of resources that 

should be readily adoptable by instructors, students, and researchers alike to teach and learn. By 

emphasizing the legibility and cross-platform useability of our code, we hope the resources 

presented in this study can be used and incorporated by the broader teaching community into 

other workshop and class settings.  

6.7. Data and code availability statement 

All code, documentation, lecture notes, and lesson plans developed for the present study can be 

found at https://github.com/Gibberella/Metabolic-Modeling-Lessons.  
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APPENDIX D: Supplemental Material for Chapter 6 

SURVEY INSTRUMENTS 

Pre-workshop survey 

1. I am a … 

a. Undergraduate 

b. Graduate student 

c. Postdoctoral researcher 

d. Faculty member 

e. None of the above 

2. I would describe myself as a … 

a. Biologist 

b. Biochemist 

c. Computational Scientist 

d. None of the above 

3. I feel confident in applying and incorporating metabolic modeling techniques to my 

research question(s) 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

4. I feel confident in evaluating the results of a metabolic modeling study or exercise. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

5. I feel confident in identifying metabolic modeling software and techniques that I can 

apply to my research question(s) 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

6. I understand the purpose(s) of metabolic modeling. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

7. I can describe kinetic metabolic modeling and its limitations. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

8. I can describe Metabolic Flux Analysis and its limitations. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

9. I can describe Flux Balance Analysis and its limitations. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree)  

10. I understand the data types I would need to carry out kinetic metabolic modeling. 
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a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

11. I understand the data types I would need to carry out Metabolic Flux Analysis. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

12. I understand the data types I would need to carry out Flux Balance Analysis. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

13. I can name the language(s) or software package(s) I would use to incorporate metabolic 

modeling into my own research  

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

14. I can critically evaluate the application and results of metabolic modeling in publications 

and presentations relevant to my area of research. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

Post-workshop survey 

1. I feel confident in applying and incorporating metabolic modeling techniques to my 

research question(s) 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

2. I feel confident in evaluating the results of a metabolic modeling study or exercise. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

3. I feel confident in identifying metabolic modeling software and techniques that I can 

apply to my research question(s) 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

4. I understand the purpose(s) of metabolic modeling. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

5. I can describe kinetic metabolic modeling and its limitations. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

6. I can describe Metabolic Flux Analysis and its limitations. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

7. I can describe Flux Balance Analysis and its limitations. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree)  

8. I understand the data types I would need to carry out kinetic metabolic modeling. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

9. I understand the data types I would need to carry out Metabolic Flux Analysis. 
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a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

10. I understand the data types I would need to carry out Flux Balance Analysis. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

11. I can name the language(s) or software package(s) I would use to incorporate metabolic 

modeling into my own research  

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

12. I can critically evaluate the application and results of metabolic modeling in publications 

and presentations relevant to my area of research. 

a. (Strongly Disagree), (Disagree), (Neutral), (Agree) (Strongly Agree) 

13. What did you find useful about the workshop? 

a. Free response 

14. What did you not find useful about the workshop? 

a. Free response 

15. What changes to the workshop do you think would improve it in future iterations? 

a. Free response 

4-months after survey 

1. If you have had one or more opportunities to apply any of the knowledge you gained in 

the metabolic modeling workshop, please share your experience(s). If you have not 

applied any of the knowledge you gained in the metabolic modeling workshop and there 

are specific reasons why, please share. 

i. Free response 
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Chapter 7  

Additional Studies: Topological data analysis reveals a core gene 

expression backbone that defines form and function across 

flowering plants 
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7.1. Preface 

The work described in this chapter was born out of a project initially conceived by Dr. Bob 

VanBuren and Dr. Dan Chitwood, who introduced it as a class project to the students of HRT841: 

Foundations in Computational and Plant Sciences, the first of a two-part course series given to 

students in the NRT-IMPACTS fellowship program at Michigan State University. The basic 

premise put forward to us students was that Topological Data Analysis (TDA) techniques could 

be used to analyze gene expression patterns in publicly available plant RNA-seq datasets. After 

the whole class deliberated, we decided that we would delimit our study to flowering plants. What 

followed was extensive data collection from the NCBI SRA followed by alignment, 

quantification, curation, and meta data organization to put together a coherent and expansive 

dataset. For the TDA portion of the study, which was helmed by postdoctoral researcher Dr. 

Saurabh Palande, we modeled our approach after a previous study that looked at organ-specific 

gene expression patterns in diverse animal lineages. This study used a statistical technique called 

Surrogate Variable Analysis (SVA) to help minimize the impact of unmodeled technical variables 

on their analyses. Myself and three other graduate students in the class – Miles Roberts, Kenia 

Segura-Aba, and Andriana Manousidaki – took on the task of applying SVA to our dataset.  

 SVA turned out to not be a suitable technique to apply to the dataset gathered for this 

study, although the process of attempting to use it was nonetheless highly informative. Despite the 

failure to use SVA, TDA applied to the “uncorrected” expression dataset we had gathered yielded 

some very interesting results. After the conclusion of both HRT841: Foundations in 

Computational and Plant Sciences and CSS844: Frontiers in Computational and Plant Sciences, I 

continued to work on interpreting and contextualizing the specific genes identified by the TDA 

analysis. This analysis ended up comprising a substantial portion of the results section of the 

study, which has been published in PLoS Biology and on which I am co-first author (Palande et 

al., 2023). 

 Although this chapter may seem like a non-sequitur from the rest of my work and came 

out of a class project, as you will see, the study concerns itself greatly with conserved patterns of 

gene expression across different plant tissues and stresses. This aspect of the study was of great 

interest to me due to the importance of tissue-specific expression patterns to the method I 

developed and presented in Chapter 3. Indeed, if such patterns can be consistently identified and 

then incorporated into metabolic modeling predictions using the method from Chapter 3 or 
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something similar, multi-tissue FBA flux predictions in novel plant systems could potentially be 

improved. Although the work presented in this chapter does not go so far as to identify any such 

patterns, it represents a first step in this direction, and as such relates to the broader aims of this 

thesis.  

7.2. Abstract 

Since they emerged approximately 125 million years ago, flowering plants have evolved to 

dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At 

their core, these adaptations have been shaped by changes in numerous, interconnected pathways 

and genes that collectively give rise to emergent biological phenomena. Linking gene expression 

to morphological outcomes remains a grand challenge in biology, and new approaches are 

needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to 

summarize the high dimensionality and noisiness of gene expression data using lens functions 

that delineate plant tissue and stress responses. Using this framework, we created a topological 

representation of the shape of gene expression across plant evolution, development, and 

environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs 

form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, 

depending on the lens function. This suggests that there are distinct and conserved expression 

patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic 

stresses. Genes that correlate with the tissue lens function are enriched in central processes such 

as photosynthetic, growth and development, housekeeping, or stress responses. Together, our 

results highlight the power of TDA for analyzing complex biological data and reveal a core 

expression backbone that defines plant form and function. 

7.3. Introduction 

Over 300,000 gene expression datasets have been collected for thousands of diverse plant species 

spanning over 900 million years of divergence (Lim et al., 2022). This wealth of publicly 

available datasets spans ecological niches, species, developmental stages, tissues, stresses, and 

even single cells, providing a largely untapped reservoir of biological information. These diverse 

datasets provide an opportunity to link insights from various biological disciplines, including 

ecology, development, physiology, genetics, evolution, biochemistry, and cell biology through a 

common computational and mathematical framework. These gene expression datasets have been 
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analyzed individually for specific experiments and hypotheses, but large-scale meta-analyses 

across the publicly available expression datasets are largely nonexistent for plants. 

Beyond a common currency that links the subdisciplines of biology, gene expression 

links its emergent levels. Below gene expression, the genome gives rise to transcriptional 

networks and protein interactions that are directly responsible for the complexity of gene 

expression. Above it, gene expression orchestrates cell-specific expression and the development 

of the organism itself, impacting phenotypes ranging from physiology to plasticity that propagate 

further to the population, community, and ecological levels. These features, from molecular 

(DNA, promoter sequences, -omics datasets) to the organismal, population, and ecological levels 

(life history traits, climatic data from species distributions, etc.) have been used in the past as 

labels and predicted outputs of machine learning models (Washburn et al., 2019; Azodi et al., 

2020). The structure—the shape—of gene expression in flowering plants is therefore a constraint 

that is formed by and impacts biological phenomena below and above it, respectively. 

Data visualization lies at the heart of exploratory data analysis and provides us with a 

powerful tool for generating hypotheses that can later be examined using standard statistical 

techniques. In the era of Big Data, the development of new data visualization pipelines has 

become increasingly important due to the high dimensionality of the datasets generated and the 

need to identify patterns and structures that can then become targets for more focused studies. 

Just as we can look upon the shape of a leaf and derive insights into how it functions from 

multiple perspectives (developmental, physiological, and evolutionary), we can visualize the 

shape of any type of data using a Mapper graph (Singh et al., 2007). The Mapper algorithm takes 

as input a filter function that describes a biological aspect of the data and uses mathematical 

ideas of shape to return a graph that reveals the underlying structure of the data. Even abstract 

data types like gene expression datasets, therefore, have a shape that we can visualize and derive 

insights from. For example, Nicolau and colleagues visualized the structure of breast cancer gene 

expression, identifying 2 distinct branches with differing underlying genotypes and prognostic 

outcomes that traditional statistical and bioinformatic approaches fail to resolve (Nicolau et al., 

2011). This structure was revealed using a pairwise correlation distance matrix as input and 

modeling of the residuals of each sample from a vector of healthy gene expression as a measure 

of disease severity. In a second example, using a lens of developmental stage on single-cell 

RNASeq data, Rizvi and colleagues visualized the underlying structure of gene expression 
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during murine embryonic stem cell differentiation, revealing transient states as well as 

asynchronous and continuous transitions between cell types (Rizvi et al., 2017). In both 

examples, Mapper allowed the shape of data, through a selected lens, to be visualized. The 

resulting topology of the graph—in the form of loops, branch points, or flares—allowed 

previously hidden structures to be seen and novel insights to be derived. Loops, branch points, 

and flares in topological data analysis (TDA)-based Mapper graphs are visual representations of 

patterns, transitions, and outliers in the data. They provide insights into the topological structure 

and organization of the data, helping to identify clusters, subgroups, and potential anomalies. 

Loops represent recurring patterns or relationships in the data, branch points occur when 

different subsets of data points exhibit distinct topological characteristics, and flares typically 

indicate outliers or subgroups within a larger cluster and can help identify regions of interest or 

anomalous behavior in the data. 

Surveys of gene expression capture tens of thousands of data points per sample, and this 

high dimensionality can be represented by a unique shape that underlies emergent biological 

features. This shape explains gene expression along evolutionary, developmental, and 

environmental trajectories, leading to innovations that have marked the successful adaptation and 

proliferation of plant species. To visualize this shape is to better understand what transcriptional 

profiles are possible and to know the boundaries or constraints that permit or limit gene 

expression. Here, we analyzed publicly available gene expression profiles across diverse 

flowering plant families and visualized the underlying structure of gene expression in plants as a 

graph using the Mapper algorithm. We identified unique topological shapes of plant gene 

expression when viewed through lenses that delineate different tissue or stress responses. These 

complex, emergent patterns were largely hidden by biological complexity and sample 

heterogeneity. Our results demonstrate the ability of Mapper to uncover these patterns in high-

dimensional plant gene expression datasets and its potential as a powerful tool for biological 

hypothesis generation. 

7.4. Results 

7.4.1. A representative catalog of flowering plant gene expression 

The vast number of gene expression datasets in plants provides a unique opportunity to search 

for patterns of conservation and divergence throughout angiosperm evolution, across 

developmental time, tissues, and stress response axes. Previous studies have tried to find 
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common signatures that define different plant tissues or responses to abiotic/biotic stresses, but 

these have been limited in species breadth (Proost and Mutwil, 2018), depth (Julca et al., 2021), 

or had limited downstream analyses (Zhang et al., 2020a). Here, we reanalyzed public expression 

data on the NCBI sequence read archive (SRA) and applied a topological data analysis method to 

map the shape of gene expression in plants. We included 54 species that captured the broadest 

phylogenetic diversity within angiosperms while maximizing the breadth of expression at the 

tissue and stress levels (Fig 7.1A). This includes 44 eudicots across 13 families and 9 monocot 

species across 2 families, as well as Amborella trichocarpa, which is sister to the rest of 

angiosperms. Raw reads were downloaded, cleaned, and reprocessed through a common 

RNAseq pipeline to remove artifacts related to the different algorithms and downstream analyses 

used by each group. After filtering datasets with low read mapping, our final set of expression 

data includes 2,671 samples across 7 distinct developmental tissues and 9 stress classifications 

for 54 species. 
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Figure 7.1: Dimensional space of plant gene expression across evolution, development, and 

stress. (A) Representative phylogeny of the 54 plant species included in this study. Nodes 

(species) are colored by plant family as denoted in Fig 7.1C. Dimensionality reduction of all 

samples by principal components (left) and t-SNE (right) are shown for tissue type (B), plant 

family (C), and abiotic/biotic stress (D). Individual samples are quantified and colored by tissue, 

family, and stress as shown in the respective bar plots. (E) Hierarchical clustering of samples 

with various biological features highlighted (stress, family, and tissue). Raw expression data 

underlying the graphs in this figure can be found in S7 Dataset, and code to regenerate analyses 

can be found in https://zenodo.org/records/8428609 (Palande, 2023). 

To facilitate comparisons of gene expression across species, we limited our analysis to a 

set of 6,328 orthologous low-copy genes that were conserved across all 54 plant species using 

Orthofinder (Emms and Kelly, 2015). These sets of orthologous genes or orthogroups are mostly 

single copy in our diploid species and scale with ploidy in polyploid species. The orthogroups 

are conserved across a diverse selection of Angiosperm lineages and correspond to well-

conserved biological processes. Gene ontology (GO) term enrichment analysis on the 

Arabidopsis thaliana loci associated with these orthogroups show enrichment for basic 
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biological functions like “DNA replication initiation” and “tRNA methylation” at the top of the 

list of enriched GO terms, as well as functions specific to photosynthetic organisms like 

“photosystem II assembly,” and “tetraterpenoid metabolic process.” Although the remaining 

orthogroups contain significant biological information, they were excluded from analysis as 

multigene families typically have diverse functions with divergent expression profiles that would 

conflate downstream comparative analyses. 

The transcript per million (TPM) counts were summed for all genes within an orthogroup 

for a given species and merged into a single dataframe to create a final matrix of 6,335 orthologs 

by 2,671 samples. Principal component analysis (PCA) (Pearson, 1901) and t-distributed 

stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008) based 

dimensionality reduction show some separation of samples by different biological factors (Fig 

7.1). The sample space is most clearly delineated by tissue, where both PC1 (explaining 25.4% 

variation) and t-SNE1 separate the samples into a gradient from root to leaf tissues with other 

plant tissues sandwiched in between (Fig 7.1B and 7.1D). This distribution largely correlates 

with tissue function, as the sink tissues of flowers, seeds, and fruits resolve closer to the root 

samples along t-SNE1 and PC1. No tissue type is separated fully by either dimensionality 

reduction approach. Samples from the 16 plant families are distributed throughout the 

dimensional space, suggesting that family- or species-level traits are not masking emergent 

features of distinct tissues (Fig 7.1C). Interestingly, abiotic and biotic stresses are similarly 

distributed throughout the dimensional space, with no clear grouping of the same stress across 

species or individual experiments. This could be due to intrinsic differences in how individual 

species respond to stress or to differences in the way stress experiments are carried out by 

different research groups. To account for batch effects and the influence of unmodeled factors, 

we applied surrogate variable analysis (SVA) to generate estimates of surrogate variables and 

their effects on our expression matrices. We identified 24 surrogate variables within the dataset, 

but these latent variables were intrinsically linked to the primary factors in our study (e.g., stress, 

tissue, and family). Removing surrogate variables would have masked much of the biology we 

were attempting to quantify, so we chose not to use these “data cleaning” approaches (see 

Appendix D, Text S7.2.A for more details). 
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7.4.2. Topological data analysis and the shape of plant gene expression 

Traditional dimensionality reduction and hierarchical clustering provided some degree of 

separation, but they were unable to delineate samples by stress or to identify expression patterns 

related to biological function. This may be related to residual heterogeneity, noise, or because of 

the inherent biological complexity that underlies plant evolution and function. To test these 

possibilities, we used a topological data analysis approach to map the shape of our data. TDA 

was implemented using Mapper (Tauzin et al., 2021), which provides a compact, multiscale 

representation of the data that is well suited for visual exploration and analysis. Mapper is 

particularly well suited for genomics data as these datasets typically have extremely high 

dimensionality and sparsity (Nicolau et al., 2011). To construct mapper graphs from our gene 

expression data, we created 2 different lenses of tissue and stress, adopting an approach similar 

to Nicolau and colleagues’ (Fig 7.2A–2E). To create the stress lens, we first identified all the 

healthy samples from the dataset and fit a linear model to them (Fig 7.2; see Methods). This 

model serves as the idealized healthy orthogroup expression. We then projected all the samples 

onto this linear model and obtained the residuals. These residuals measure the deviation of the 

sample gene expression from the modeled healthy expression, and the lens function is simply the 

length of the residual vector. 

The obvious separation between leaf and root samples in the dimension reduction plots 

supports a strong photosynthetic versus nonphotosynthetic divide. We used this observation to 

create a binary tissue lens in the same way as the stress lens. We identified all the photosynthetic 

samples (i.e., leaf tissue) and created an idealized expression profile by fitting a linear model to 

these expression profiles (Fig 7.2). We then projected all the samples onto this linear model and 

obtained the residuals to establish the lens function by tissue. To define the cover for each lens, 

we divided the range of the lens function into intervals of uniform length, with the same amount 

of overlap between adjacent intervals. We experimented with a range of value lengths of the 

intervals and the size of the overlap to identify the values that produced relatively stable mapper 

graphs. The clustering was performed using DBSCAN, a commonly used clustering algorithm in 

Mapper (Pathak et al., 2021). 
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Figure 7.2: Topology-based Mapper graphs and the shape of gene expression in plants. 

Overview of Mapper graph construction and lens functions (A-E). The lens function value of 

each sample is shown in the principal component (top) and t-SNE (bottom) based dimensional 

reduction from Fig 7.1 for the tissue (F) and stress lens (G). Mapper graphs across variable cover 

intervals and interval number for the tissue (H) and stress (I) lens function. The Mapper graph 

constructions we chose for further analysis are enclosed within a box. Raw expression data 

underlying the graphs in this figure can be found in S7 Dataset, and code to regenerate analyses 

can be found in https://zenodo.org/records/8428609 (Palande, 2023). 

Overlaying the tissue lens value of each sample over the PCA and t-SNE dimensional 

space reveals a clear gradient across PC1 and t-SNE1, with the highest lens function values 

https://zenodo.org/records/8428609
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found in seed, fruit, and flower tissues (Fig 7.2F). For the stress lens function, samples are 

distributed across the dimensional space, with no obvious correlation between healthy and 

stressed lens values, similar to the observation from individual abiotic/biotic stresses (Figs 7.1D 

and 2G). 

Mapper graphs for the tissue and lens functions reflect an emergent and striking 

topological shape of plant expression (Fig 7.2H and 7.2I). Each node in the Mapper graphs 

corresponds to a bin of similar RNAseq samples with color representing the average lens value 

of samples within each node. Edges (connections) show common samples between overlapping 

bins. Changing the cover interval overlap and interval number has marginal effects on the core 

graph structure but changes the shape and connectivity of sparse nodes on the outskirts of the 

graphs (Fig 7.2H and 2I). This central stability highlights the robustness of our input data and 

significance of the underlying features defining the graph shape (Carriere and Oudot, 2018). The 

Mapper graphs for both the tissue and stress lens functions show a backbone structure with 

numerous embedded nodes and flares that form a well-defined gradient from leaf to seed or 

healthy to stressed, respectively. This suggests that there are distinct and conserved expression 

patterns across angiosperms that delineate different tissues or responses to biotic and abiotic 

stresses. 

Our input dataset is unbalanced, with large discrepancies in the number of input samples 

for different species, stresses, or tissue types. We tested if biases in the distribution of samples 

could explain the topological shape we observed. We downsampled the most frequent factor 

combinations and surveyed the effect it had on the Mapper graph topology. Our study has 3 

factors: family, tissue, and stress with 16 families, 8 tissue types, and 10 stresses. In total, 1,280 

unique 3-way combinations are possible (family + tissue + stress), but in our dataset, only 195 

unique combinations are present and they have a heavily skewed distribution (Appendix E, Fig 

S7.1). Based on this distribution, we chose a cutoff of 30 and downsampled the 30 most common 

factor combinations. This significantly reduced the sampling bias for family, tissue, and stress, 

but it did not eliminate them (Appendix E, Fig 7.2.B). We then reran the Mapper algorithm 

using this downsampled dataset. The topology is quite similar, suggesting that biases in sample 

representation are not the major factor underlying the patterns we observed (Appendix E, Fig 

7.2.C). 
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7.4.3. Topological shape reflects the underlying biological features of gene expression 

To identify and characterize these conserved biological patterns, we first simplified the Mapper 

graphs into 18 nodes for both the tissue and stress lens functions (Figs 7.3 and 7.4). The core 

tissue-based Mapper graph has discrete nodes for each surveyed plant tissue with a gradual 

transition of leaves (node 1), to roots (2), fruits (11 and 13), and, finally, seeds (14, 15, and 16; 

Fig 7.3A). At the fourth node, the Mapper graph proliferates into terminal branches of flower 

(node 9), stem (10), fruit (12), and mixtures of uncategorized tissue types (5 and 8). RNAseq 

samples from the 16 angiosperm families are largely dispersed across nodes by tissue, with some 

notable exceptions (Fig 7.3B). Most fruit samples are found along the gradient of the core graph 

structure, but fruits from the rose (Rosaceae) family form a separate node (node 12). Flowers 

from the eudicot species are mixed with fruit tissues in nodes along the core graph structure, but 

monocot flowers from the grass family (Poaceae) are found in discrete, branching nodes (9 and 

17). The biotic and abiotic stress RNAseq samples are dispersed by tissue across the Mapper 

graph (Fig 7.3C), supporting the complexity and heterogeneity of these samples. 
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Figure 7.3: Simplified Mapper graphs detailing the distribution of samples along the tissue lens. 

Nodes along the full Mapper graphs (left) are clustered into simplified Mapper graphs (right), 

and samples are colored by tissue (A), family (B), and stress category (C). Photosynthetic and 

nonphotosynthetic ends of the Mapper graph are indicated. 
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Figure 7.4: Simplified Mapper graphs detailing the distribution of samples along the stress lens. 

Nodes along the full Mapper graphs (left) are clustered into simplified Mapper graphs (right) and 

samples are colored by tissue (A), family (B), and stress category (C). Healthy and stressed ends 

of the Mapper graph are indicated. 
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Mapper graphs clearly distinguish tissues across plant taxa, but what are the biological 

features that underlie this topology? We surveyed the expression patterns of the 6,328 

orthogroups used to generate our Mapper graphs to see if they are enriched in certain biological 

processes related to evolutionarily conserved, tissue-specific functions. We classified genes as 

positively or negatively correlated with the tissue lens and conducted GO enrichment in these 

groups of genes. We expect negatively correlated genes to be characteristic of leaf gene 

expression and positively correlated genes to be characteristic of non-leaf gene expression. 

Supporting this, Mapper graphs and GO terms associated with the tissue lens–correlated genes 

point to photosynthetic versus nonphotosynthetic metabolism as a key factor in the overall gene 

expression patterns of plant tissues (Fig 7.3 and Appendix E, S1 Dataset). Enriched negatively 

correlated GO terms are mostly related to photosynthesis and include response to red and blue 

light, chloroplast and thylakoid organization, carotenoid metabolic process, and regulation of 

photosynthesis among others (Appendix E S1 Dataset). Plants and green algae are characterized 

by a set of well-conserved genes that are not found in nonphotosynthetic organisms termed “the 

GreenCut2 inventory” (Karpowicz et al., 2011). Most of the GreenCut2 genes (421 out of 677) 

are found within the 6,328 orthogroups in our analysis, and we tested if these are enriched among 

correlated genes. Genes from the GreenCut2 inventory are overrepresented in this set of genes, 

with 26.7% of the tissue-correlated (positively or negatively) genes being in the GreenCut2 

resource versus 6.7% of the entire set of orthogroups (Appendix E, Table 7.1). This 

overrepresentation is even more stark if we delimit our analysis to only the genes negatively 

correlated with the tissue lens, of which 50.3% are in the GreenCut2 inventory. The overlapping 

loci between the 2 sets contain genes encoding protein products involved in various aspects of 

photosynthesis, including pigment biosynthesis and binding (e.g., AT4G10340, AT1G04620, 

AT1G44446) (Murray and Kohorn, 1991; Andersson et al., 2001; Meguro et al., 2011), the 

operation of the photosynthetic light reactions (e.g., AT4G05180, AT5G44650, AT3G17930) 

(Schubert et al., 2002; Albus et al., 2010; Xiao et al., 2012), or the operation of the Calvin–

Benson Cycle (AT1G32060) (Harmon et al., 2001). 

Enriched GO terms that are positively correlated with the tissue lens are largely related to 

housekeeping and core metabolic processes including ubiquitination, macromolecule catabolism, 

the electron transport chain, peptide biosynthesis, and Golgi vesicle–mediated transport among 

many others (Appendix E, S2 Dataset). Enriched genes include proteins involved in the TCA 
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cycle and respiration (e.g., AT1G47420, AT2G18450, AT4G26910) (Kruft et al., 2001; Millar et 

al., 2001; Menges et al., 2002) and in the development of specific nonphotosynthetic tissue types 

like seeds (e.g., AT2G40170, AT2G38560) (Leon-Kloosterziel et al., 1996; Wang et al., 2008) 

and pollen/pollen tubes (e.g., AT2G03120, AT2G41630) (Han et al., 2009; Zhou et al., 2013). 

However, many of the tissue lens–correlated genes do not intuitively relate to the photosynthetic 

versus nonphotosynthetic tissue distinction, and further examination of these loci on a gene-by-

gene basis may shed light on conserved differences between plant tissues. 

The simplified Mapper graph from the stress lens has 18 nodes that form a continuous 

gradation of healthy to stressed tissues (Fig 7.4). Individual tissue types, regardless of stress 

condition, are enriched in certain nodes but are less defined than under the tissue lens (Fig 7.4A). 

RNAseq samples related to light and heat stress are found in discrete nodes (1 and 2, 

respectively) at the terminus of the Mapper graph across all species where these data were 

available (Fig 7.4C). Other stress RNAseq samples are found in nodes with healthy tissues but 

are generally concentrated toward the stress end of the Mapper graph. An interesting exception is 

a group of cold stressed root samples from the grass (Poaceae) family (node 15). Clustering of 

distinct stresses within the same node suggests a core stress response conserved across 

Angiosperms for all abiotic and biotic factors. The gradient of sample distribution from healthy 

to stressed across the Mapper graph may be related to the severity of stress experienced by plants 

in each individual experiment. 

To explore what constitutes these conserved stress-related expression patterns, we 

searched for GO enrichment of genes that are positively correlated with the stress lens. This 

group of genes is heavily enriched in functions related to stress, including responses to water 

deprivation, chitin, reactive oxygen species, fungi, wounding, bacteria, and general defense 

mechanisms (Appendix E, S3 Dataset). Genes positively correlated with the stress lens include 

loci related to the biosynthesis of compounds with diverse stress-related activities like jasmonic 

acid and jasmonic acid derivatives (AT2G35690, AT2G46370) (Staswick and Tiryaki, 2004; 

Schilmiller et al., 2007) and ascorbic acid (AT3G09940) (Lisenbee et al., 2005). Negatively 

correlated genes are enriched in functions related to growth and reproduction such as DNA 

replication, mitosis, and rRNA processing, among others (Appendix E, S4 Dataset). This 

includes genes involved in regulation of the cell cycle (AT3G54650, AT4G12620, AT2G01120) 

(Collinge et al., 2004; Masuda et al., 2004; Kim et al., 2008), chromatin organization 
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(AT1G15660, AT1G65470) (Kaya et al., 2001; Ogura et al., 2004), and the development of 

reproductive structures (AT1G34350, AT2G41670, AT4G27640, AT3G52940) (Broadhvest et 

al., 2000; Dou et al., 2016; Huang et al., 2017; Liu et al., 2019). This pattern points towards an 

intuitive distinction between the stressed and unstressed samples in our dataset in terms of their 

investment in cell proliferation and reproduction. Most of these genes are involved in core 

biological functions with conserved roles across eukaryotes, and their coordinated perturbation 

could be predictive of stress responses in diverse lineages. 

7.5. Discussion  

Genome-scale datasets have high dimensionality, and even the simplest pairwise experiment has 

hundreds or thousands of complex and interconnected cellular pathways in dynamic flux 

between conditions. Comparisons across plant lineages are similarly complex, as each species 

has its own evolutionary history with thousands of duplicated, lost, or new genes enabling its 

unique and elegant biology. This complexity presents major challenges for characterizing 

underlying biological mechanisms and identifying shared and distinct properties across 

evolutionary timescales. Here, we leveraged the wealth of public gene expression datasets across 

diverse flowering plants and used a set of deeply conserved genes to search for patterns of 

conservation across tissue types, stress responses, and evolution. We first tested traditional 

dimensionality reduction and clustering-based approaches but found that they were largely 

ineffective and unable to clearly resolve samples. Instead, we used a novel topological 

framework to compare samples and test for evolutionary conservation. 

Topological data analysis has been applied to complex, high dimensionality biological 

datasets including gene expression profiles correlated with human cancers and other diseases 

(Nicolau et al., 2011; Mandal et al., 2020; Rabadán et al., 2020). To our knowledge, TDA has 

not been used for plant science datasets outside of shape (Li et al., 2018; Zeng et al., 2021; 

Amézquita et al., 2022). Flowering plants have tremendous phylogenetic, developmental, 

phenotypic, and genomic scale diversity, creating additional layers of complexity compared to 

other lineages. Despite this, Mapper was able to capture hidden and emergent signatures of gene 

expression at the tissue and stress scales that were missed using traditional approaches. Most 

developmental tissues or stress responses are not perfectly separated but instead fall within a 

gradient along a central shape. The central shape of the tissue lens Mapper graph represents the 

life cycle of a plant with transitions from the vegetative tissues of leaves and roots to 
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reproductive flowers, fruit, and, eventually, seeds. Nodes along the Mapper graphs that contain 

mixtures of tissues such as fruits and flowers, leaves and stems, or even leaves and roots reflect 

developmental plasticity, heterogeneity, and overlapping functions between different organs. 

Flowers give rise to fruits and the complex processes of fertilization, seed, and fruit development 

blur the lines between distinct tissue types. This complexity and interconnectivity is central to 

biological processes but is masked by traditional dimensionality reduction approaches, which can 

oversimplify nonlinear datasets. 

The stressed and healthy samples are less clearly delineated in the Mapper graphs than 

samples from different plant tissues. This may reflect artifacts stemming from variation in the 

severity, duration, or method of applying stresses across different experiments and species. For 

example, mildly stressed samples might have expression signatures that mirror healthy tissues 

with comparatively few differentially expressed genes. Despite this issue, we observed a strong 

gradient of sample distribution from healthy to stressed across the graph. Distinct stresses were 

generally found within the same nodes, and genes that were positively correlated with the stress 

lens show enrichment in classical stress pathways. This includes the core stress-responsive 

hormones jasmonic acid and abscisic acid and their corresponding transcriptional network as 

well as broader shifts in metabolic processes geared toward defense. Taken together, this 

suggests that plants have deeply conserved expression signatures across evolution and for 

different stresses. Abiotic and biotic stress responses have been mostly studied in isolation, but 

they typically co-occur in natural environments, and they have overlapping signaling, hormonal, 

and network responses in plants (reviewed in Rejeb et al. (2014)]. The topological shape of gene 

expression points to a shared set of pathways or perturbations that define if a tissue is healthy or 

stressed. Environmental stresses broadly disrupt photosynthesis and core metabolic and cellular 

functions either as a direct response to physical trauma or in preparation for defense or resilience. 

These changes may serve as the backbone of the topological shape we observed for the stress 

lens. 

Although we observed a deeply conserved pattern of gene expression underlying plant form and 

function, our analyses capture a snapshot of the evolutionary innovations found in flowering 

plants. We used a set of low-copy, conserved genes to enable comparisons of expression across 

species, and we had to exclude around approximately 70% of all plant genes. This includes most 

enzymes, transcription factors, and regulatory elements, which are mostly found in large, rapidly 
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evolving, or lineage-specific gene families that cannot be resolved to high-confidence orthologs 

across eudicots and monocots. Duplication and subsequent sub- or neofunctionalization of these 

genes drive the evolution of new plant traits and developmental differences of plant organs. 

Single-copy genes by contrast have deeply conserved functions in core metabolism, 

photosynthesis, and housekeeping processes that typically transcend tissue, species, and 

environmental changes. Given these limitations, it is somewhat surprising that our analyses were 

able to clearly separate tissue types and stresses despite missing information from most of the 

genes that should underlie these biological differences. Applying TDA with a full set of genes in 

a single species with well-curated gene expression profiles could uncover complex or emergent 

biological signatures that were previously hidden. 

Here, we provide a proof of concept for studying complex biological traits using TDA, 

and a similar analytical framework could be applied to numerous areas of plant science research 

and beyond. Compared to the approximately 300,000 published plant gene expression datasets 

(Lim et al., 2022), our study has a somewhat sparse sampling of species and a subset of 

expressed genes, yet we were able to detect a number of hidden trends. TDA of high-resolution 

sampling over narrower phenotypic spaces such as drought responses in a single species or tissue 

divergence across 900 million years of plant evolution could yield transformative insights that 

were previously overlooked. However, researchers should exercise caution when applying TDA 

to gene expression data as the lack of a robust hyperparameter tuning procedure could potentially 

result in misleading conclusions. This reflects a broader problem in machine learning and data 

science, but hyperparameter search, cross-validation, and feature selection can enable data-

driven tuning of the appropriate hyperparameters. With the appropriate datasets and sufficient 

sampling, TDA can be widely applicable for developing a deeper understanding of complex, 

emergent biological phenomena. 

7.6. Methods 

7.6.1. Assembling a representative catalog of flowering plant expression data 

We selected species that captured the broadest phylogenetic diversity within angiosperms and 

species that had a breadth of expression at the tissue and stress levels. We also selected only 

species with a high-quality reference genome to enable accurate read mapping and downstream 

comparative genomics. Metadata including species, accession, tissue type, experimental 

treatments, replicate number, and sequencing platform were collected manually for each sample 
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using the NCBI BioProject and SRAs, as well as the primary data publications (Appendix E, S6 

Dataset). Raw RNAseq reads were downloaded from the NCBI SRA and quantified using a 

pipeline developed in the VanBuren lab to trim, quantify, and identify differentially expressed 

genes (https://github.com/pardojer23/RNAseqV2). Using a common analytical pipeline helped 

reduce noise between experiments that used different algorithms in the original publications. 

Raw Illumina reads from various platforms were first quality trimmed using fastp (v0.23) (Chen 

et al., 2018) with default parameters. The quality filtered reads were pseudoaligned to the 

corresponding transcripts (gene models) for each species using Salmon (v1.6.0) (Patro et al., 

2017) with the quasi-mapping mode. Transcript-level estimates were converted to gene-level 

transcript per million counts using the R package tximport (Soneson et al., 2015). 

7.6.2. Comparing expression across species 

To facilitate detailed cross-species comparisons, we first clustered proteins from all 54 species 

into orthogroups using Orthofinder (v2.3.8) (Emms and Kelly, 2015). Genomes and proteomes 

were downloaded for each species from Phytozome v13 (Goodstein et al., 2012). Orthofinder 

was run using default parameters and the reciprocal DIAMOND search (v2.0.11) (Buchfink et 

al., 2021) was used for sequence alignment, and groups of similar proteins were clustered using 

the Markov Cluster Algorithm. In total, 2,317,289 genes (94% of input genes) were clustered 

into 86,185 orthogroups across the 54 species. Of these, 33,585 orthogroups are found in only a 

single species and 7,742 are found in at least 52 out of 54 species. This set of broadly conserved 

orthogroups was further refined by filtering out orthogroups with an average of >2 genes per 

ortholog for the diploid species to avoid including multigene families with diverse functions in 

the analysis. This set of 6,335 orthogroups was used as a common framework to allow 

comparison of expression across species. For orthogroups where a species had more than one 

gene, the total TPM for all genes in that orthogroup was summed and the raw TPM was used for 

single-copy genes. Expression data for each sample across all species were combined into a 

single expression matrix (Appendix E, S7 Dataset), and SVA was used to characterize the 

potential impacts of unmodeled technical variables on the dataset (see Appendix E, Text 7.A). 

PCA was performed using built-in functions in Scikit-learn (Pedregosa et al., 2011) on the 

log2+1 or z-score transformed gene expression data (raw TPMs) to reduce dimensionality and 

capture the main sources of variation within the datasets. 

https://github.com/pardojer23/RNAseqV2
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7.6.3. Surrogate variable analysis 

To account for batch effects and the influence of unmodeled factors on the expression matrix 

used for the present study, we applied SVA to generate estimates of surrogate variables and their 

effects on our expression matrices (Leek and Storey, 2007; Leek et al., 2012). Briefly, SVA 

assumes that the expression of a particular gene i across j independent RNA-seq experiments can 

be described by the following linear equation: 

𝑥𝑖𝑗 = 𝑢𝑖 + 𝑓𝑖(𝑦𝑗) + 𝑒𝑖𝑗 (𝟏) 

where ui is the baseline expression level of gene i, fi(yj) represents the effect of a measured 

variable yj, and eij is the error term (Leek and Storey, 2007). However, if there are a number of L 

unmodeled factors affecting the expression of gene i, then the error term eij contains both 

randomly distributed experimental error as well as the effects of unmodeled factors. That is: 

𝑒𝑖𝑗 = ∑ 𝑦𝑙𝑖𝑔𝑖𝑗 + 𝑒𝑖𝑗
′

𝐿

𝑙
(𝟐) 

where gl = (gl = (gl1,…,gln) is a function describing the effect of all unmodeled factors up to L, yli 

is the coefficient describing the influence of an unmodeled factor l on the expression of gene i, 

and e′ij is the true randomly distributed noise term (Leek and Storey, 2007). Combining (1) and 

(2) yields: 

𝑥𝑖𝑗 = 𝑢𝑖 + 𝑓𝑖(𝑦𝑖) + ∑ 𝑦𝑙𝑖𝑔𝑖𝑗 + 𝑒𝑖𝑗
′

𝐿

𝑙
(𝟑) 

By using the svaseq() method implemented in the R package sva (v. 3.36.0) (Leek et al., 

2012; Leek, 2014), we identified and estimated the values of 24 separate surrogate variables. 

These surrogate variables, which correspond to vectors of values for each expression value 𝑥𝑗𝑖, in 

the ∑ 𝑦𝑙𝑖𝑔𝑖𝑗 + 𝑒𝑖𝑗
′𝐿

𝑙  term in (3).  

To determine the amount of variation due to a proxy batch variable (bioproject), 3 

biological primary variables (stress, tissue, and family), and the pairwise interactions each 

surrogate variable explains, we regressed all the estimated surrogate variables on each variable 

(either batch or biological) or on a pairwise interaction. McNemar’s formula was used to 

calculate the adjusted R2 values for each surrogate variable. 
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7.6.4. Mathematical basis of topological data analysis 

The flexibility of Mapper allows us to apply it to various types of data. Here, we will describe 

the Mapper construction in the simplest setting of point cloud data and then explain how it was 

applied to the gene expression data. 

Consider a point cloud X ⊂ Rd equipped with a function f: X → R. An open cover of X is 

a collection U = {Ui}i∈I of open sets in Rd, such that X ⊂ ⋃ i∈I Ui, where I is an index set. The 1-

dimensional nerve of the cover U, denoted as M: = N1(U), is called the Mapper graph of (X, f). In 

this graph, each open set Ui is represented as a vertex i, and 2 vertices, i and j, are connected by 

an edge if and only if the intersection of Ui and Uj is nonempty. 

To construct a Mapper graph, we start by defining a cover V = {Vj} j∈J of the image f(X) 

⊂ R of f, where J is a finite index set, by splitting the range of f(X) into a collection of 

overlapping intervals. Next, for each Vj, we identify the subset of points Xj in X such that f(Xj) ⊂ 

Vj and apply a clustering algorithm to identify clusters of points in Xj. The cover U of X is the 

collection of such clusters induced by f−1(Vj) for each j. Once we have the cover U, we compute 

its 1-dimensional nerve M and visualize it in the form of a weighted graph. 

For example, consider Fig 7.2A–2E. The point cloud X in this case consists of points in 

the 2-dimensional plane, in the shape of a “Y”. The function f simply maps each point to its y-

coordinate. We divide the range of f into 4 overlapping intervals, represented by the 4 colored 

segments along the y-axis in Fig 7.2. For each interval Vj, the colored rectangles in the center 

panel of the figure show the subsets of points Xj ∈ X such that Xj = f−1(Vj). Then, we apply 

clustering to each Xj separately to obtain the cover U of X. The 1-dimensional nerve of U, i.e., 

the mapper graph M, is shown in the rightmost panel. The color of each vertex corresponds to 

the cover interval it belongs to. Fig 7.2A–2E illustrates mapper graph construction from the 

same set of points, but with x-coordinate used as the lens. We can observe that the 2 lens 

functions produce 2 slightly different mapper graphs. 

7.6.5. Constructing Mapper graphs and lens functions 

To construct Mapper graphs from our gene expression data, we create 2 different lenses, 

adopting an approach similar to the one used in Nicolau and colleagues’ paper (Nicolau et al., 

2011). We refer to these lenses as the tissue lens and the stress lens, respectively. To create the 

stress lens, we first identified all the healthy samples from the dataset and fit a linear model to 

them. This model serves as the idealized healthy orthogroup expression. Then, we project all the 
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samples (healthy as well as stressed) onto this linear model and obtain the residuals. These 

residuals measure the deviation of the sample gene expression from the modeled healthy 

expression. The lens function is simply the length of the residual vector. To define the cover, we 

divide the range of the lens function into intervals of uniform length, with the same amount of 

overlap between adjacent intervals. We experimented with a range of values length of the 

intervals and the size of the overlap to identify the values that produced relatively stable Mapper 

graphs. The clustering was performed using DBSCAN, a commonly used clustering algorithm 

for Mapper. 

The construction of Mapper graph relies on several user-defined parameters: the lens 

function f, the cover V, and the clustering algorithm. Optimizing these parameters is an 

interesting open problem in TDA research (Chalapathi et al., 2021). The function f plays the role 

of a lens, through which we look at the data, and different lenses provide different insights 

(Singh et al., 2007). The choice of f is typically driven by the domain knowledge and the data 

under consideration. In this study, the data under consideration are very similar to the dataset 

studied by Nicolau and colleagues (Nicolau et al., 2011). Therefore, we followed similar 

methods to define the lenses. Our choice of lenses is further justified by the observations from 

the dimension reduction plots. 

The cover V = {Vj}j∈J of f(X) consists of a finite number of open intervals as cover 

elements. To define V, we use the simple strategy of defining intervals of uniform length and 

overlap. Adjusting the interval length and the overlap increases or decreases the amount of 

aggregation provided by the Mapper graph. The optimal choice was made by visually inspecting 

Mapper graphs over a range of parameter values. The parameters resulting in the most stable 

structure were selected. Any clustering algorithm can be employed to obtain the cover U. We use 

the density-based clustering algorithm, DBSCAN (Ester et al., 1996), which is commonly used 

in Mapper because it does not require a priori knowledge of the number of clusters. Instead, 

DBSCAN requires 2 input parameters: the number of samples in a neighborhood for a point to be 

considered as a core point, and the maximum distance between 2 samples for one to be 

considered in the neighborhood of the other. 

7.6.6. Functional annotation of orthogroups 

The correlation between expression values and tissue lens and stress lens values was calculated 

for each orthogroup. The top 2.5% most positively and negatively correlated orthogroups for 
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each lens were selected to represent the tissue lens or stress lens correlated orthogroups. 

Arabidopsis gene IDs were used to identify the overlap between the GreenCut2 (Karpowicz et 

al., 2011) inventory with Arabidopsis orthologs in our overall set of orthogroups, as well as our 

sets of tissue lens and stress lens correlated orthogroups. The binom_test() function from SciPy 

(Virtanen et al., 2020) was used to apply one-sided binomial tests to check for enrichment of 

GreenCut2 loci in the overall, tissue lens, and stress lens correlated orthogroup sets. GO term 

enrichment of the sets of genes mapped to orthogroups and correlated with the tissue lens or 

stress lens was done using GOATOOLS (Klopfenstein et al., 2018). Data on gene function and 

biochemical reactions associated with specific loci were derived from TAIR (Lamesch et al., 

2012), KEGG (Kanehisa and Goto, 2000), and a genome-scale metabolic model of Arabidopsis 

metabolism from (de Oliveira Dal’Molin et al., 2015). 

7.7. Data availability statement 

The code, metadata, raw datasets from this project are available on a dedicated GitHub page: 

https://github.com/PlantsAndPython/plant-evo-mapper and Zenodo: 

https://zenodo.org/records/8428609.  
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APPENDIX E: Supplemental Material for Chapter 7 

Text S7.A: Confounder discussion from the Surrogate Variable Analysis 

We used Surrogate Variable Analysis (SVA) (Leek et al., 2012) to explore the effects of 

confounding technical variables on the publicly available SRA data assembled for this study. 

Briefly, we identified three primary variables of interest (tissue, stress, and family), which were 

fixed in the model used to estimate “surrogate variables” to minimize the amount of variability 

attributable to these primary variables captured by the estimated surrogate variables. These 

surrogate variables represent unaccounted for technical variables impacting the dataset. Due to 

the breadth of families, stresses, and tissues analyzed, we do not have a full factorial design (i.e., 

there are combinations of family, stress, and tissue factor values for which there are no 

expression datasets). Because of this, SVA would remove variability due to our primary 

variables and their interactions. To get a sense of what kind of impact the surrogate variables 

might have on the dataset when removed, we estimated the correlation between the first order 

interactions between our primary variables and the surrogate variables identified by SVA. We 

identified 24 surrogate variables which individually captured between 53% and 98% of variation 

between BioProjects (Fig S7.4). We also estimated the interaction terms between the tissue, 

family, and stress factor combinations that were present in the dataset and estimated how much 

of their variation was getting captured by the surrogate variables. Individual surrogate variables 

captured up to 14% of variation between stress conditions, up to 66% of variation between tissue 

conditions, and up to 63% of variation between families. For the interaction terms between 

primary variables, individual surrogate variables captured up to 83% of the variation between 

tissue and family combinations, up to 65% of the variation between stress and family 

combinations, and up to 71% of the variation between tissue and stress combinations. This 

suggests that even though stress, tissue, and family are treated as protected primary variables, 

there are underlying latent variables related to our primary variables and their interactions that 

may be important sources of biological variation being captured by the surrogate variables. 

Although individual surrogate variables could be selectively accounted for in downstream 

analyses in such a way that minimizes the removal of biological signal, this would be a highly 

subjective process. Moreover, due to our inability to precisely calculate the true correlation 
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between our surrogate variables and interaction terms due to the fact that many factor 

combinations are missing, this would be statistically dubious as well. 

Because the surrogate variables show substantial linear correlation with our primary 

variables and their interaction terms, the application of SVA would require eliminating 

substantial amounts of biological signal. Since the goal of our study is to identify heterogeneous 

patterns due to stress, tissue, and family within a high-dimensional gene expression dataset, SVA 

may not be appropriate for us to use. Alternatively, one could potentially minimize the loss of 

this signal by cherry-picking individual surrogate variables to include in downstream analysis, 

which would naturally introduce human bias. A third option would be to use an algorithm like 

ComBat-seq (Zhang et al., 2020b) that relies on explicitly defined batches, which is problematic 

for the present study since the closest metadata for batch available for the studies gathered on 

SRA is the BioProject ID’s, but these are, at best, a proxy for batches of samples and are not 

sufficient to assess the technical variability or noise in the data. More broadly, as discussed in 

(Jaffe et al., 2015), such genomic data “cleaning” methods, by their very nature, delimit the 

observable features of the resulting datasets to those prespecified by the investigator. In our 

view, this limits their utility for broad exploratory analyses of the kind described in this study. 

For all the above reasons, we opted to not use SVA, ComBat, or related techniques. 

  



 
 

226 

 

FIGURES 

 

Figure S7.1: Histogram of 3-way factors of the RNA seq samples before and after 

downsampling. The distribution of 3-way factors for family, tissue, and stress are plotted. The 16 

families, 8 tissue types and 10 stresses equate to 1280 unique 3-way combinations, but we only 

observed 195 unique combinations in our dataset. The distribution of samples from the entire 

dataset is shown on the left and the distribution of samples when downsampling the 30 most 

common 3-way combinations is shown on the right. 
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Figure S7.2: Factor-wise frequency plots of RNAseq samples before and after subsampling. The 

number of samples in each family, tissue type, or stress are plotted before (top) and after 

(bottom) subsampling. 

  



 
 

228 

 

 

Figure S7.3: Topology of Mapper graphs generated from the subsampled data. Samples from 

each node in the mapper graph are colored by plant family (A), stress (B), or tissue type (C), 

using the subsampled data. The overall topology and sample distribution are similar to the 

Mapper graphs constructed with the full, unbalanced dataset, suggesting sample distribution is 

not a major factor in our analyses. 
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Figure S7.4: Linear regression analysis of association of surrogate variables to one batch 

variable (bioproject), our biological variables of interest (stress, tissue, family), and their 

pairwise interactions. All surrogate variables were regressed on either each variable or 

interaction individually to calculate adjusted R2 values. 
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TABLES 

Table S7.1: Enrichment of GreenCut2 genes in orthogroup-mapped Arabidopsis thaliana genes 

and stress-/tissue- correlated orthogroup-mapped genes. The proportion of GreenCut2 genes in 

the all the orthogroups used in this study was compared against the proportion of GreenCut2 

genes in a list of all A. thaliana genes using a one-sided binomial test. The proportion of tissue-

lens and stress-lens correlated orthogroup-mapped genes in GreenCut2 was compared against the 

proportion of GreenCut2 genes in the entire set of orthogroup-mapped genes using one-sided 

binomial tests. Tissue-correlated genes were hypothesized to be more likely to be in GreenCut2 

than a random selection of orthogroup-mapped genes, and the stress-correlated genes were 

hypothesized to be less likely. 

Dataset 
# of Genes 
in Dataset 

# of Genes in 
GreenCut2 

% GreenCut2 p-value 

All Arabidopsis Genes 
27662 677 

2.45  

All Orthogroup-
Mapped Genes 

6328 421 
6.65 2.76 * 10-96 

All Tissue-lens 
Correlated Genes 

318 85 
26.7 9.18 * 10-29 

Stress-lens Correlated 
Genes 

318 7 
2.20 0.000252 
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Dataset Descriptions 

All supplemental datasets can be found at the following link: 

https://doi.org/10.1371/journal.pbio.3002397 

 

S1 Dataset. GO Term enrichment results on genes negatively correlated with the tissue lens 

(XLSX) 

S2 Dataset. GO term enrichment results on genes positively correlated with the tissue lens 

(XLSX) 

S3 Dataset. GO term enrichment results on genes positively correlated with the stress lens 

(XLSX) 

S4 Dataset. GO term enrichment results on genes positively correlated with the stress lens 

(XLSX) 

S5 Dataset. Overlap between orthogroup-mapped genes and tissue lens and stress lens correlated 

genes with the GreenCut2 resource (Karpowicz) (XLSX) 

S6 Dataset. Metadata of the raw data used in this experiment (CSV) 

S7 Dataset. Expression matrix of TPMs for the normalized orthogroups (CSV) 

  

https://doi.org/10.1371/journal.pbio.3002397
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