INVERSE PROBLEMS IN BIOLUMINESCENCE TOMOGRAPHY AND WAVE IMAGING: THEORY, ALGORITHM AND IMPLEMENTATION By Tianyu Yang A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Computational Mathematics, Science and Engineeringโ€”Doctor of Philosophy 2024 ABSTRACT Ultrasound modulated bioluminescence tomography (UMBLT) is a technique for imaging the 3D distribution of biological objects such as tumors by using a bioluminescent source as a biomedical indicator. It uses bioluminescence tomography (BLT) with a series of perturbations caused by acoustic vibrations. UMBLT outperforms BLT in terms of spatial resolution. The current UMBLT algorithm in the transport regime requires measurement at every boundary point in all directions, and reconstruction is computationally expensive. In Chapter 2, we will first introduce the UMBLT model in both the diffusive and transport regimes, and then formulate the image reconstruction problem as an inverse source problem using internal data. Second, we present an improved UMBLT algorithm for isotropic sources in the transport regime. Third, we generalize an existing UMBLT algorithm in the diffusive regime to the partial data case and quantify the error caused by uncertainties in the prescribed optical coefficients. The inverse boundary value problem (IBVP) of wave equation aims to recover medium distri- bution via boundary measurement of wave propagation. Using an important identity that connects boundary data and internal wave states, one can recover the mediumโ€™s interior structure by selecting suitable boundary sources. In Chapter 3, we will first introduce the IBVP and the key identity. Second, we present a direct wave speed reconstruction algorithm with vanished wave potential. Third, we apply linearization on IBVPs to derive algorithms with nonvanishing parameters for both wave speed and wave potential reconstruction. Copyright by TIANYU YANG 2024 ACKNOWLEDGEMENTS First of all, I would like to express my deepest appreciation to my advisor and committee chair, Professor Yang Yang, for his guidance, support, and encouragement though my Ph.D. study. He led me into the area of inverse problems and helped me to establish a deep understanding of theoretical and numerical PDE theory. I would like to express my thanks to my dissertation committee members, Professor Jianliang Qian, Professor Zhen Qiu, and Professor Adam Alessio, for their guidance as well. I would like to thank Dr. Albert Chua, Liantao Li and Henry Fessler for sharing their ideas and research during group meetings. I would like to thank Remy Liu, Jiaxin Yang, Shuyang Qin, Dr. He Lyu, Dr. Hao Wang, Dr. Qi Lyu, Kang Yu, Liantao Li, Dr. Danqi Qu, Dr. Ziyi Xi, Dr. Runze Su, Dr. Wenjie Qi, Dr. Binbin Huang for the hotpot, barbecue, movies, mahjong, poker, and other activities we enjoyed together. Finally, I would like to thank my parents, Mr. Fashen Yang and Mrs. Lihua Chen, for their support in pursuing a Ph.D. far away from home. iv TABLE OF CONTENTS CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CHAPTER 2 ULTRASOUND MODULATED BIOLUMINESCENCE TOMOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 CHAPTER 3 INVERSE BOUNDARY VALUE PROBLEMS FOR WAVE EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 CHAPTER 4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 APPENDIX A APPENDIX FOR CHAPTER 2 . . . . . . . . . . . . . . . . . . . . . . 104 APPENDIX B APPENDIX FOR CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . 110 v CHAPTER 1 INTRODUCTION Inverse Problems are defined as the inverse of Forward Problems. Forward problems typically involve determining the status of a physical system or predicting an outcome based on model parameters, such as calculating a rocketโ€™s trajectory or simulating the spread of water pollution. The forward map of the physical system (model) is formulated as ๐”‰ : ๐‘‹ โ†’ ๐‘Œ , ๐”‰( ๐‘) = ๐‘‘, (1.1) where the operator ๐”‰ describes the relation between model parameter space ๐‘‹ with the observed data space ๐‘Œ , ๐‘ denote the parameters and ๐‘‘ denote the data. Inverse problems focus on determining model parameters ๐‘ from measurement data ๐‘‘, i.e. inverting the operator ๐”‰. Inverse problems are considered when the model parameters ๐‘ of interest cannot be measured directly or practically, such as generating 3D images of internal organs or reconstructing the seismic velocity structure of the Earth. In mathematics, a well-posed problem, which is introduced by Jacques Hadamard (1865-1963), satisfies the following three properties: (1) Existence: The problem has a solution, (2) Uniqueness: The solution is unique, (3) Stability: The solutionโ€™s behavior changes continuously with the initial conditions. Unlike well-posed problems, ill-posed problems violate at least one of the three properties. Forward problems are usually well-posed, while inverse problems are usually ill-posed, which means that either ๐”‰ is not invertible or ๐”‰โˆ’1 is not continuous. Assuming that ๐”‰โˆ’1 exists, the model parameter ๐‘ is theoretically given by ๐‘ = ๐”‰โˆ’1๐‘š. If the observation carry measurement error ๐œ€ โˆˆ ๐‘Œ , the reconstructed parameter becomes หœ๐‘ = ๐”‰โˆ’1 หœ๐‘š = ๐”‰โˆ’1 [๐‘š + ๐œ€] = ๐‘ + ๐”‰โˆ’1๐œ€. 1 The difference between หœ๐‘ and ๐‘ could be relatively large depending on the behavior of ๐”‰โˆ’1, even if the measurement error ๐œ€ is relatively small. In these cases, the theory of regularization of ill-posed problems have been considered by A. N. Tikhonov and his followers [48, 63, 77, 93]. When the physical model describes the propagation of lights, the 3D structure of an object is reconstructed using light that has been transmitted and scattered. During light propagation, two main effects occur: absorption and scattering. For example, in photoelectric absorption, the photon is completely absorbed by the atom electron; in Rayleigh scattering, the photon is scattered, with the effect proportional to the fourth power of its frequency. In this case, it is common to assume that the model is time and frequency independent. For Optical Tomography, a series of near-infrared sources are attached on the surface of the object. The scattered field are measured on the same surface in order to generate images of soft tissues [34, 50, 100]. For Bioluminescence Tomography, biologists use transfection technology to generate an internal light source. The distribution of different optical coefficients can be recovered by measuring the output flux through the boundary [29,69,101]. However, both Optical Tomography and Bioluminescence Tomography have poor resolution due to the ill-posedness [35]. The diffusive nature of the photons is cause for the ill-posedness, which means the obtained images have low resolution and are very sensitive to noise. In order to improve the resolution, a high resolution modality is combined; these combina- tions are known as Hybrid inverse problems, also called coupled-physics inverse problems, which combine a high resolution modality with a high contrast modality for better reconstruction. For example, in Ultrasound Modulated Optical Tomography [64, 80, 99] and Ultrasound Modulated Bioluminescence Tomography [6, 8, 28], a series of ultrasound perturbations are performed to the medium in order to generate more measurements, thereby overcoming the ill-posedness of the original inverse problems. In Chapter 2, we introduce one of the hybrid inverse problems, Ultrasound Modulated Biolu- minescence Tomography(UMBL). Depending on the scattering effects of medium, we introduce UMBLT under transport regime in Section 2.2 and diffusive regime in Section 2.3. The algorithms 2 in both full and partial data cases, as well as the uncertainty quantifications are given. When the physical model describes the propagation of waves, the corresponding inverse problem are concerned with extracting information about structural features from scattered wave measure- ments. For example, in Ultrasound Computerized Tomography, a series of transducers are placed around the object. Each transducer will send acoustic waves into the object and other transducers will collect the waves. It can image soft tissue with high resolution [53,73,79]. If the wave are gen- erated from external sources, the forward problems are formulated as boundary value problems of wave equation, and the inverse problems are called inverse boundary value problems of wave equa- tion. Under this framework, the Neumann boundary condition represent the external sources, and the measurement is the Dirichlet value of the solution, or equivalently, the Neumann-to-Dirichlet map ฮ›. Boundary Control Method is an effective approach to solve the inverse boundary value problems [13, 47, 51, 88]. This method allow us generate a special input (Neumann boundary condition) such that the solution will reach a desired state at a fixed time, and the existance of such input is guaranteed by Tataruโ€™s theorem in [90]. With Blagoveห˜sห˜censkiห˜ฤฑโ€™s identity [21], one can connect the boundary data with internal waves, which help recover the structure features, such as wave speed. In Chapter 3, we introduce nonlinear Inverse Boundary Value Problems of wave equation with potential. In Section 3.2, we introduce a direct wave speed reconstruction algorithm with vanished wave potential. In Section 3.3, we consider wave equation with non-vanished potential. We apply linearization method to the inverse boundary value problems to derive algorithms for recovering wave speed and wave potential, respectively. 3 CHAPTER 2 ULTRASOUND MODULATED BIOLUMINESCENCE TOMOGRAPHY 2.1 Introduction Bioluminescence is the production and emission of light by a living organism; It is widely occured in vertebrates and invertebrates, such as in firefly, anglerfish. This phenomenon can be utilized in a medical imaging method called Bioluminescence tomography (BLT). BLT aims to reconstruct images of biological objects, like tumors, by using the bioluminescent source as a biomedical indicator. Specifically, scientists tag biological entities or process components (e.g. bacteria, tumor cells, immune cells, or genes) with reporter genes that encode one of a number of light-generating enzymes (luciferases) [29]. By measuring the light generated by the luciferin- luciferase reaction, one can image the 3D distribution of the internal source, which can be used for diagnosing diseases. However, BLT have one main weakness, the spatial resolution of BLT is poor. This is because changes of light source will only cause relatively small changes on the measured data, the mea- surement error might have a large effect on the reconstruction. Even worse, sometimes different sources can lead to same measurement [35]. In order to prevent the worst case, which means we need to uniquely determine the source from the boundary measurement, BLT need additional in- formation about the source, like its geometric aspect. One effective approach to enhance the spatial resolution of BLT is to use the ultrasound modulation, and the new method is called Ultrasound Modulated Bioluminescence tomography (UMBLT). This method performs BLT under series of acoustic modulations to perturb the mediumโ€™s optical properties. With different type of ultrasound, the measured data are different, which means the measured data are increased and different sources can not give same measurement with all types of ultrasound modulations, which can help overcome the weakness of BLT. The first BLT scanner was developed by G. Wang et al. in 2003 [94] and the first small animal study using BLT was conducted by Chaudhari et al. in 2005 [27]. In 2004, G. Wang et al. gave uniqueness theorems of BLT under diffusion approximation [95], which is a simplified model for 4 strongly scattering medium based on diffusion equation. They proved the source can be uniquely determined from the boundary measurement if the source is a linear combination of impulses or ball sources. They also gave a summary of uniqueness theorems under different assumptions proposed by other people. In 2007, the uniqueness theorem of BLT under transport regime was given [9], they proved the source can be uniquely determined when the scattering kernel ๐‘˜ is invariant of rotation and is relatively small under certain norm. One year later, Stefanov and Uhlmann gave a generic result of BLT that when attenuation coefficient ๐œŽ and scattering kernel ๐‘˜ are continuous, the source can be uniquely determined from boundary measurement when (๐œŽ, ๐‘˜) is in a open dense subset which contains a neighbor of (0, 0) [85]. The inverse problem of UMBLT was first considered under diffusion approximation by Bal and Schotland [8]. They showed the well-posedness of the problem and developed an inversion formula by assuming the diffusion and absorption coefficients are given. Two years later, the inverse problem of UMBLT under transport regime was considered by Bal, Chung and Schotland [6]. They assumed the scattering kernel is invariant under rotation, all optical coefficients are continuous and ๐œŽ, ๐‘˜ are known. They showed the well-posedness of the problem and give an algorithm to reconstruct the source. They first derive an internal functional from the boundary measurements. Theoretically the directional derivative of photon intensity ๐œƒ ยท โˆ‡๐‘ข can be extract from the internal functional, and then the interior value of the photon intensity ๐‘ข can be calculated using ๐œƒ ยท โˆ‡๐‘ข and the corresponding boundary value, which can be used to calculate the source term. However, in this proposed algorithm, the reconstruction of photon intensity needs measurement on every boundary points with all directions and needs lots of computation. To this end we designed a more efficient algorithm for UMBLT under transport regime when the source is isotropic [28], where the source can be directly reconstruct by inverting a linear operator. 2.2 UMBLT under Transport Regime The UMBLT method aims to image the distribution of light source. In order to model the UMBLT, we need to model the light propagation first. The propagation of light through a medium ๐‘‹ is affected by absorption, emission, and scattering processes, which can be modeled using 5 standard Radiative Transfer Equation (RTE). Such problem is called the UMBLT under transport regime [6, 28]. In this section, we consider following RTE model: ๐œƒ ยท โˆ‡๐‘ข + ๐œŽ(๐‘ฅ)๐‘ข โˆ’ โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ)๐‘ข(๐‘ฅ, ๐œƒโ€ฒ) d๐œƒโ€ฒ = ๐‘†(๐‘ฅ, ๐œƒ), ๐‘ข|ฮ“โˆ’ = 0, (2.1) (2.2) where ๐‘ข denote the intensity of light at spatial location ๐‘ฅ traveling in direction ๐œƒ, ๐œŽ is attenuation coefficient, ๐‘˜ is the scattering kernel, ๐‘† is an isotropic source, ๐‘‹ is a bounded subset of R๐‘› with smooth boundary, ฮ“ยฑ are the outgoing/incoming boundary, which are defined as ฮ“ยฑ = (cid:8)(๐‘ฅ, ๐œƒ) โˆˆ ๐œ• ๐‘‹ ร— S๐‘›โˆ’1 | ยฑ๐œƒ ยท ๐œˆ โ‰ฅ 0(cid:9) . The vibration of the medium under acoustic modulation can be modeled using the time-harmonic plane wave with frequency ๐œ” as ๐‘ = ๐ด cos(๐œ”๐‘ก) cos(๐‘ž ยท ๐‘ฅ + ๐œ‘), (2.3) where ๐‘ is the pressure, ๐‘ž is the wave vector and ๐œ‘ is the phase. Since the pressure is related to the changes of local density of the medium, the effect of the acoustic modulation on the optical properties [7] can be modeled as ๐œŽ๐œ€ (๐‘ฅ) (cid:66) (1 + ๐œ€ cos(๐‘ž ยท ๐‘ฅ + ๐œ‘))๐œŽ(๐‘ฅ), ๐‘˜๐œ€ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ) (cid:66) (1 + ๐œ€ cos(๐‘ž ยท ๐‘ฅ + ๐œ‘))๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ), ๐‘†๐œ€ (๐‘ฅ, ๐œƒ) (cid:66) (1 + ๐œ€ cos(๐‘ž ยท ๐‘ฅ + ๐œ‘))๐‘†(๐‘ฅ, ๐œƒ), (2.4) (2.5) (2.6) where 0 โ‰ค ๐œ€ โ‰ช 1 is a small parameter related to the amplitude, frequency, time, density and acoustic wave speed. With the acoustic modulation, the model of UMBLT is the following modulated RTE with modulated optical properties and the same boundary condition ๐œƒ ยท โˆ‡๐‘ข๐œ€ + ๐œŽ๐œ€ (๐‘ฅ)๐‘ข๐œ€ โˆ’ โˆซ S๐‘›โˆ’1 ๐‘˜๐œ€ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ)๐‘ข๐œ€ (๐‘ฅ, ๐œƒโ€ฒ) d๐œƒโ€ฒ = ๐‘†๐œ€ (๐‘ฅ), ๐‘ข๐œ€ |ฮ“โˆ’ = 0. 6 (2.7) (2.8) The solution of the modulated RTE is denote as ๐‘ข๐œ€, notice that when ๐œ€ = 0, it is exactly the solution of the standard RTE. Under different modulations, our measurement is the operator ๐‘† : R๐‘› ร— {0, ฮ›๐œ€ ๐œ‹ 2 } โ†’ ๐ถ (ฮ“+), (๐‘ž, ๐œ‘) โ†ฆโ†’ ๐‘ข๐œ€ |ฮ“+ , ๐œ€ โ‰ฅ 0, (2.9) which is the light flows out through the boundary under different modulations. The goal is to reconstruct source ๐‘† from the measurement assuming ๐œŽ๐œ€, ๐‘˜๐œ€, ๐‘‹ are given. Throughout this section, we make the following assumptions to ensure well-posedness of some forward boundary value problems. (A1): ๐œŽ, ๐‘˜ and ๐‘† are continuous on ๐‘‹; moreover, ๐œŽ โ‰ฅ ๐‘ > 0 and ๐‘˜ โ‰ฅ ๐‘ > 0 for some constant ๐‘ everywhere in ๐‘‹. (A2): Set ๐œŒ (cid:66) (cid:13) โˆซ (cid:13) S๐‘›โˆ’1 (cid:13) ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ) d๐œƒโ€ฒ(cid:13) (cid:13) (cid:13)๐ฟโˆž (๐‘‹ร—S๐‘›โˆ’1) , one of the following inequalities holds: where ๐›ผ > 0 is a positive constant, or (cid:19) ๐œŽ (cid:18) inf ๐‘ฅโˆˆ๐‘‹ โˆ’ ๐œŒ โ‰ฅ ๐›ผ diam(๐‘‹) ๐œŒ < 1 (2.10) (2.11) where diam(๐‘‹) (cid:66) sup{|๐‘ฅ โˆ’ ๐‘ฆ| : ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ } is the diameter of ๐‘‹. To ensure the integral in (2.1) is self-adjoint over ๐‘‹ ร— ๐‘†๐‘›โˆ’1, we assume the scattering kernel ๐‘˜ is invariant under rotation, which means ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ) = ๐‘˜ (๐‘ฅ, ๐œƒ ยท ๐œƒโ€ฒ), then we can derive an internal functional for reconstruction. Under these assumptions, the following well-posedness theorem holds in the function space ๐ฟ ๐‘ (S๐‘›โˆ’1, ๐ถ (๐‘‹)), where the norm is defined as โˆฅ๐‘ขโˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐‘‹)) (cid:66) (cid:18)โˆซ S๐‘›โˆ’1 โˆฅ๐‘ข(๐‘ฅ, ๐œƒ) โˆฅ ๐‘ ๐ถ (๐‘‹) d๐œƒ (cid:19) 1 ๐‘ . 7 Proposition 2.1 ( [6, Theorem 2.1]). Suppose the assumptions (A1)(A2) hold. Then for any ๐‘“โˆ’ โˆˆ ๐ถ (ฮ“โˆ’), the RTE (2.1) has a unique solution ๐‘ข โˆˆ ๐ฟ ๐‘ (S๐‘›โˆ’1, ๐ถ (๐‘‹)) (1 โ‰ค ๐‘ โ‰ค โˆž) with the boundary condition ๐‘ข|ฮ“โˆ’ = ๐‘“โˆ’. Moreover, if (2.10) holds, we have the estimate โˆฅ๐‘ขโˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐‘‹)) โ‰ค (cid:16) 1 ๐›ผ (๐œŒ + ๐›ผ) โˆฅ ๐‘“โˆ’โˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐œ• ๐‘‹)) + โˆฅ๐‘†โˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐‘‹)) (cid:17) . If instead (2.11) holds, we have the estimate โˆฅ๐‘ขโˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐‘‹)) โ‰ค 1 1 โˆ’ diam(๐‘‹) ๐œŒ (cid:16) โˆฅ ๐‘“โˆ’โˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐œ• ๐‘‹)) + diam(๐‘‹) โˆฅ๐‘†โˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐‘‹)) (cid:17) . This well-posedness theorem can ensure the operators we defined later is well-defined, and can be used in the estimation of the operator norm. We consider the adjoint RTE for derivation. Let ๐‘ฃ = ๐‘ฃ(๐‘ฅ, ๐œƒ) be the solution of the adjoint RTE with prescribed outgoing boundary condition ๐‘”: โˆ’๐œƒ ยท โˆ‡๐‘ฃ + ๐œŽ๐‘ฃ โˆ’ โˆซ S๐‘›โˆ’1 ๐‘ฃ|ฮ“+ = ๐‘”. ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ)๐‘ฃ(๐‘ฅ, ๐œƒโ€ฒ) d๐œƒโ€ฒ = 0 (2.12) (2.13) Theoretically, we know ๐‘ฃ in the entire space ๐‘‹ ร— S๐‘›โˆ’1. Multiply ๐‘ฃ on both sides of (2.7), multiply ๐‘ข๐œ€ on both sides of (2.12), subtract two equations and integrate over ๐‘‹ ร— S๐‘›โˆ’1, integration by parts gives โˆซ โˆซ S๐‘›โˆ’1 ๐œ• ๐‘‹ ๐‘ข๐œ€๐‘ฃ๐‘› ยท ๐œƒ d๐‘ฅ d๐œƒ = โˆซ โˆซ โˆซ (๐‘˜๐œ€ โˆ’ ๐‘˜)๐‘ฃ(๐‘ฅ, ๐œƒ)๐‘ข๐œ€ (๐‘ฅ, ๐œƒโ€ฒ) d๐œƒ d๐œƒโ€ฒ d๐‘ฅ ๐‘‹ โˆซ S๐‘›โˆ’1 โˆซ S๐‘›โˆ’1 + ๐‘‹ S๐‘›โˆ’1 ๐‘ฃ๐‘†๐œ€ d๐œƒ d๐‘ฅ โˆ’ โˆซ โˆซ ๐‘‹ S๐‘›โˆ’1 (๐œŽ๐œ€ โˆ’ ๐œŽ)๐‘ข๐œ€๐‘ฃ d๐œƒ d๐‘ฅ. (2.14) By the asymptotic expansion on ๐œ€, write ๐‘ข๐œ€ = ๐‘ข0 + ๐œ€๐›ฟ๐‘ข, the first order term gives โˆซ โˆซ S๐‘›โˆ’1 ๐œ• ๐‘‹ ๐›ฟ๐‘ข๐‘ฃ๐‘› ยท ๐œƒ d๐‘ฅ d๐œƒ โˆซ โˆซ S๐‘›โˆ’1 ๐‘‹ โˆซ โˆซ โˆซ = โˆ’ + ๐‘‹ S๐‘›โˆ’1 S๐‘›โˆ’1 cos(๐‘ž ยท ๐‘ฅ + ๐œ‘)๐œŽ๐‘ข๐‘ฃ d๐œƒ d๐‘ฅ + โˆซ โˆซ ๐‘‹ S๐‘›โˆ’1 cos(๐‘ž ยท ๐‘ฅ + ๐œ‘)๐‘ฃ๐‘† d๐œƒ d๐‘ฅ (2.15) cos(๐‘ž ยท ๐‘ฅ + ๐œ‘)๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ)๐‘ฃ(๐‘ฅ, ๐œƒ)๐‘ข(๐‘ฅ, ๐œƒโ€ฒ) d๐œƒ d๐œƒโ€ฒ d๐‘ฅ. Notice that the LHS is known from the adjoint solution ๐‘ฃ and the boundary measurement ๐‘ข๐œ€, RHS is an inner product of a cosine function and another function over ๐‘‹. By varying ๐‘ž and ๐œ‘, the RHS 8 is exactly the Fourier coefficient of a functionโ€™s Fourier transform, and we denote the function as ๐ป๐‘ฃ: ๐ป๐‘ฃ (๐‘ฅ) (cid:66) โˆ’ ๐œŽ๐‘ข๐‘ฃ d๐œƒ + โˆซ S๐‘›โˆ’1 ๐‘ฃ๐‘† d๐œƒ โˆซ S๐‘›โˆ’1 โˆซ โˆซ S๐‘›โˆ’1 S๐‘›โˆ’1 + โˆซ = S๐‘›โˆ’1 ๐‘ฃ(๐‘ฅ, ๐œƒ)๐œƒ ยท โˆ‡๐‘ข(๐‘ฅ, ๐œƒ) d๐œƒ, ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ)๐‘ฃ(๐‘ฅ, ๐œƒ)๐‘ข(๐‘ฅ, ๐œƒโ€ฒ) d๐œƒโ€ฒ d๐œƒ (2.16) Then we construct the internal functional ๐ป๐‘ฃ from the boundary measurement ฮ›๐œ€ ๐‘†. 2.2.1 Anisotropic Source The optical coefficients in biological objects could depend on both location and direction. For example, since each muscle is made up of muscle fiber groups, the ability of light to propagate along fiber direction and perpendicular to fiber direction differs significantly. In this section, we consider the reconstruction of anisotropic source ๐‘†(๐‘ฅ, ๐œƒ), which depend both on spatial location and direction [6]. Let Since ๐œ+(๐‘ฅ, ๐œƒ) = min{๐‘ก > 0|๐‘ฅ + ๐‘ก๐œƒ โˆˆ ๐œ• ๐‘‹ }. ๐‘ข(๐‘ฅ, ๐œƒ) = ๐‘ข(๐‘ฅ + ๐œ+๐œƒ, ๐œƒ) โˆ’ โˆซ ๐œ+ (๐‘ฅ,๐œƒ) ๐œƒ ยท โˆ‡๐‘ข(๐‘ฅ + ๐‘ก๐œƒ, ๐œƒ) d๐‘ก, (2.17) (2.18) 0 Once ๐œƒ ยท โˆ‡๐‘ข(๐‘ฅ, ๐œƒ) can be reconstructed from the internal functional ๐ป๐‘ฃ, the forward RTE solution ๐‘ข(๐‘ฅ, ๐œƒ) can be calculated by (2.18), then the source ๐‘†(๐‘ฅ, ๐œƒ) can be calculated by substituting ๐‘ข(๐‘ฅ, ๐œƒ) into (2.1). In order to reconstruct ๐œƒ ยท โˆ‡๐‘ข(๐‘ฅ, ๐œƒ), the controllability of RTE is required: Proposition 2.2 ( [6, Theorem 1.3]). Suppose ๐‘‹, ๐‘˜ and ๐œŽ are given. Then for any point ๐‘ฅ0 โˆˆ ๐‘‹ and any continuous function โ„Ž on ๐ฟ ๐‘ (S๐‘›โˆ’1), there is a function ๐‘” โˆˆ ๐ฟ ๐‘ (S๐‘›โˆ’1, ๐ฟโˆž(๐œ• ๐‘‹)) such that the boundary value problem (2.12)(2.13) has a unique solution ๐‘ฃ โˆˆ ๐ฟ ๐‘ (S๐‘›โˆ’1, ๐ฟโˆž(๐‘‹)) which is continuous in a neighbourhood of ๐‘ฅ0, and satisfies the property that ๐‘ฃ(๐‘ฅ0, ๐œƒ) = โ„Ž(๐œƒ), for all ๐œƒ โˆˆ S๐‘›โˆ’1. Moreover, for any 1 โ‰ค ๐‘ โ‰ค โˆž, โˆฅ๐‘ฃโˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ฟโˆž (๐‘‹)) + โˆฅ๐‘”โˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ฟโˆž (๐œ• ๐‘‹)) โ‰ค ๐ถ โˆฅโ„Žโˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1), (2.19) 9 where ๐ถ depends only on ๐‘‹, ๐‘˜ and ๐œŽ. With the controllability theorem, for any ๐‘ฅ0 โˆˆ ๐‘‹, we can arrange ๐‘ฃ(๐‘ฅ0, ๐œƒ) to be any continuous function in ๐œƒ, then knowing ๐ป๐‘ฃ (๐‘ฅ0, ๐œƒ) for any ๐‘ฃ is equivalent to knowing ๐œƒ ยท โˆ‡๐‘ข(๐‘ฅ0, ๐œƒ), thus we can recover ๐œƒ ยท โˆ‡๐‘ข(๐‘ฅ, ๐œƒ) from the internal functional ๐ป๐‘ฃ. 2.2.2 Isotropic Source The inversion formula in Section 2.2.1 requires measurement on each boundary points (๐‘ฅ, ๐œƒ) โˆˆ ฮ“+, which is hard in practice. Besides, the reconstruction needs a lot of computations, since the inversion formula is point-to-point. To this end, we focus on the inverse problem of UMBLT in full RTE model with an isotropic source [28], i.e. the source ๐‘† = ๐‘†(๐‘ฅ) is independent of the angle ๐œƒ. We built a more efficient inversion formula to reduce the requirement of measurement and computation. Since ๐‘† is independent of ๐œƒ, the internal functional can be written as ๐ป๐‘ฃ (๐‘ฅ) = = = โˆซ S๐‘›โˆ’1 โˆซ S๐‘›โˆ’1 โˆซ S๐‘›โˆ’1 ๐‘ฃ(๐‘ฅ, ๐œƒ)๐œƒ ยท โˆ‡๐‘ข(๐‘ฅ, ๐œƒ) d๐œƒ ๐‘ฃ(๐‘ฅ, ๐œƒ) [A๐‘ข(๐‘ฅ, ๐œƒ) + ๐‘†(๐‘ฅ)] d๐œƒ, (2.20) ๐‘ฃ(๐‘ฅ, ๐œƒ)A๐‘ข(๐‘ฅ, ๐œƒ) d๐œƒ + ๐‘†(๐‘ฅ) โˆซ S๐‘›โˆ’1 ๐‘ฃ(๐‘ฅ, ๐œƒ) d๐œƒ, where A๐‘ข(๐‘ฅ, ๐œƒ) (cid:66) โˆ’๐œŽ(๐‘ฅ)๐‘ข(๐‘ฅ, ๐œƒ) + โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ)๐‘ข(๐‘ฅ, ๐œƒโ€ฒ) d๐œƒโ€ฒ. (2.21) and the norm of ๐‘† in Proposition 2.1 becomes โˆฅ๐‘†โˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐‘‹)) = Vol(S๐‘›โˆ’1) 1 ๐‘ โˆฅ๐‘†โˆฅ๐ถ (๐‘‹) , where Vol(S๐‘›โˆ’1) denote the volume of (๐‘› โˆ’ 1)-dimensional unit ball. With (A1)(A2), we can choose a suitable adjoint solution satisfies ๐‘ฃ0 โ‰ฅ ๐‘ > 0 [28, Lemma 2]. Dividing (2.20) by โˆซ S๐‘›โˆ’1 ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ on both sides gives ๐ป๐‘ฃ0 (๐‘ฅ) ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ โˆซ S๐‘›โˆ’1 (cid:66) ๐‘†(๐‘ฅ) + โˆซ S๐‘›โˆ’1 A๐‘ข(๐‘ฅ, ๐œƒ)๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ โˆซ S๐‘›โˆ’1 ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ , (2.22) 10 notice that the LHS is known, the first term on RHS is exactly the source ๐‘† we want to reconstruct and the second term is linear in ๐‘ข, which is linearly depend on ๐‘†, the RHS can be written as an identity operator plus a linear operator act on ๐‘†. To represent the linear operator, we define the following three operators. The first one is the source-to-solution operator S: S : ๐ถ (๐‘‹) โ†’ ๐ฟ ๐‘ (S๐‘›โˆ’1, ๐ถ (๐‘‹)), ๐‘† โ†ฆโ†’ ๐‘ข (2.23) with the norm estimation from the well-posedness Theorem 2.1 โˆฅSโˆฅ๐ถ (๐‘‹)โ†’๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐‘‹)) โ‰ค 1 ๐‘ Vol(S๐‘›โˆ’1) ๐›ผ diam(๐‘‹)Vol(S๐‘›โˆ’1) 1โˆ’diam(๐‘‹) ๐œŒ 1 ๐‘ ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ (cid:19) ๐œŽ (cid:18) inf ๐‘ฅโˆˆ๐‘‹ โˆ’ ๐œŒ โ‰ฅ ๐›ผ diam(๐‘‹) ๐œŒ < 1 (2.24) The second operator is K๐‘ฃ0 : ๐ฟ ๐‘ (S๐‘›โˆ’1, ๐ถ (๐‘‹)) โ†’ ๐ถ (๐‘‹), ๐‘ข(๐‘ฅ, ๐œƒ) โ†ฆโ†’ โˆซ S๐‘›โˆ’1 A๐‘ข(๐‘ฅ, ๐œƒ)๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ (2.25) where the operator A is introduced in (2.21). K๐‘ฃ0 is a bounded operator and โˆฅK๐‘ฃ0 โˆฅ ๐ฟ ๐‘ (S๐‘›โˆ’1,๐ถ (๐‘‹))โ†’๐ถ (๐‘‹) โ‰ค โˆฅ๐‘ฃ0โˆฅ๐ถ (๐‘‹) (โˆฅ๐œŽโˆฅ๐ถ (๐‘‹) + ๐œŒ)Vol(S๐‘›โˆ’1)1โˆ’ 1 ๐‘ (2.26) The third operator is the multiplication operator M๐‘ฃ0 : ๐ถ (๐‘‹) โ†’ ๐ถ (๐‘‹), ๐‘“ (๐‘ฅ) โ†ฆโ†’ 1 โˆซ S๐‘›โˆ’1 ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ ๐‘“ (๐‘ฅ). (2.27) It is bounded since ๐‘ฃ0 is chosen in such a way that โˆซ S๐‘›โˆ’1 ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ is bounded away from zero. We have โˆฅM๐‘ฃ0 โˆฅ๐ถ (๐‘‹)โ†’๐ถ (๐‘‹) โ‰ค inf๐‘ฅโˆˆ๐‘‹ Then (2.22) can be represented as 1 ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ (cid:16)โˆซ S๐‘›โˆ’1 . (cid:17) (2.28) M๐‘ฃ0 [๐ป๐‘ฃ0] = (๐ผ๐‘‘ + M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S) [๐‘†]. To invert linear operator ๐ผ๐‘‘ + M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S, there are two approaches. The first one is to prove M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S is a contraction under certain norm, then we can use Neumann series to invert this 11 operator. The second approach is to prove M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S is compact over certain function space, then ๐ผ๐‘‘ + M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S is a Fredholm operator, we can use Fredolm inversion to solve ๐‘†. For the first approach, the inversion formula is given in the following theorem Theorem 2.3 ( [28, Theorem 3]). Suppose the assumptions (A1)(A2) hold. If the following inequality holds โˆฅ๐‘ฃ0โˆฅ๐ถ (๐‘‹) (โˆฅ๐œŽโˆฅ๐ถ (๐‘‹) + ๐œŒ)diam(๐‘‹)Vol(S๐‘›โˆ’1) (cid:17) ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ (1 โˆ’ diam(๐‘‹) ๐œŒ) inf๐‘ฅโˆˆ๐‘‹ then the operator M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S is a contraction, and the source ๐‘† can be computed from the < 1 when diam(๐‘‹) ๐œŒ < 1, (2.29) S๐‘›โˆ’1 (cid:16)โˆซ following Neumann series: ๐‘† = โˆž โˆ‘๏ธ ๐‘—=0 (โˆ’M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S) ๐‘— (M๐‘ฃ0 [๐ป๐‘ฃ0]). For the second approach, we need additional assumptions on optical coefficients. For ๐‘  โˆˆ R, let ๐‘Š ๐‘ ,2 be the usual ๐ฟ2โˆ’based Sobolev space, for 1 โ‰ค ๐‘ โ‰ค โˆž, let H 1 ๐‘ be the following function space H 1 ๐‘ (cid:66) (cid:8)๐‘ข โˆˆ ๐ฟ ๐‘ (๐‘‹ ร— S๐‘›โˆ’1) | ๐œƒ ยท โˆ‡๐‘ข โˆˆ ๐ฟ ๐‘ (๐‘‹ ร— S๐‘›โˆ’1)(cid:9) with norm โˆฅ๐‘ขโˆฅH 1 ๐‘ = (cid:18)โˆซ ๐‘‹ร—S๐‘›โˆ’1 |๐‘ข| ๐‘ + |๐œƒ ยท โˆ‡๐‘ข| ๐‘ d๐‘ฅ d๐œƒ (cid:19) 1 ๐‘ . we make following assumptions (A3): ๐œŽ(๐‘ฅ) โ‰ฅ ๐œŽ0 > 0 everywhere in ๐‘‹ for some constant ๐œŽ0. (A4): โˆฅ 1 ๐œŽ(๐‘ฅ) โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ) d๐œƒโ€ฒโˆฅ ๐ฟโˆž (๐‘‹ร—๐‘†๐‘›โˆ’1) โ‰ค ๐‘˜0 < 1 for some constant ๐‘˜0. (A5): ๐œŽ(๐‘ฅ) โˆˆ ๐‘Š 1,2(๐‘‹), ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ) โˆˆ ๐‘Š 1,2(๐‘‹) for any ๐œƒ, ๐œƒโ€ฒ โˆˆ S๐‘›โˆ’1. Here (A3) and (A4) are to ensure the well-posedness of forward RTE in H 1 2 , see Proposition 2.4. (A5) is used in the averaging lemma [32]. Proposition 2.4 ( [1, Theorem 3.2]). For any ๐‘†(๐‘ฅ) โˆˆ ๐ฟ2(๐‘‹), the boundary value problem (2.1) (2.2) admits a unique solution ๐‘ข โˆˆ H 1 2 . Moreover, the following estimate holds for some constants ๐ถ, หœ๐ถ > 0 independent of ๐‘† and ๐‘ข : ๐ถ โˆฅ๐‘†โˆฅ ๐ฟ2 (๐‘‹) โ‰ค โˆฅ๐‘ขโˆฅH 1 2 โ‰ค หœ๐ถ โˆฅ๐‘†โˆฅ ๐ฟ2 (๐‘‹). 12 Proposition 2.5. The operator M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S : ๐ฟ2(๐‘‹) โ†’ ๐ฟ2(๐‘‹) is compact. Proof. Since ๐‘‹ is bounded and ๐‘†(๐‘ฅ) โˆˆ ๐ถ (๐‘‹), we have ๐‘†(๐‘ฅ) โˆˆ ๐ฟ2(๐‘‹), hence ๐‘ข โˆˆ H 1 tion 2.4. Similarly, we have ๐‘ฃ0, ๐œŽ๐‘ฃ0 โˆˆ ๐ฟ2(๐‘‹ ร— S๐‘›โˆ’1). Moreover, 2 by Proposi- (cid:12) (cid:12) (cid:12) (cid:12) 1 2 (cid:32)โˆซ โˆซ ๐‘‹ S๐‘›โˆ’1 โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ)๐‘ฃ0(๐‘ฅ, ๐œƒโ€ฒ) d๐œƒโ€ฒ (cid:33) 1 2 d๐œƒ d๐‘ฅ 2 (cid:12) (cid:12) (cid:12) (cid:12) โ‰คVol(S๐‘›โˆ’1) (cid:18)โˆซ โˆซ โˆซ S๐‘›โˆ’1 = sup |๐‘˜ |Vol(S๐‘›โˆ’1)โˆฅ๐‘ฃ0โˆฅ ๐ฟ2 (๐‘‹ร—S๐‘›โˆ’1) < โˆž, S๐‘›โˆ’1 ๐‘‹ (sup |๐‘˜ |)2 |๐‘ฃ0(๐‘ฅ, ๐œƒโ€ฒ)|2 d๐œƒโ€ฒ d๐œƒ d๐‘ฅ (cid:19) 1 2 then from (2.12), we have ๐œƒ ยท โˆ‡๐‘ฃ0(๐‘ฅ, ๐œƒ) โˆˆ ๐ฟ2(๐‘‹ ร— S๐‘›โˆ’1), thus ๐‘ฃ0 โˆˆ H 1 2 . The assumption (A5) ensures ๐œŽ๐‘ข๐‘ฃ0 โˆˆ H 1 2 and โˆซ S๐‘›โˆ’1 the Averaging Lemma (see [32, Theorem 1.1]) implies K๐‘ฃ0 โ—ฆ S [๐‘†] โˆˆ ๐‘Š 1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ)๐‘ข(๐‘ฅ, ๐œƒ)๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒโ€ฒ โˆˆ H 1 ,2(๐‘‹). 2 2 , then As the embedding ๐‘Š 1 ,2(๐‘‹) โ†ฉโˆ’โ†’ ๐ฟ2(๐‘‹) is compact, the operator K๐‘ฃ0 โ—ฆ S is a compact operator from (๐ถ (๐‘‹), โˆฅ ยท โˆฅ2) to ๐ฟ2(๐‘‹), which can be extend to be a compact operator defined on the entire 2 space ๐ฟ2(๐‘‹). We slightly abuse the notation and denote such extension again by K๐‘ฃ0 โ—ฆ S. On the other hand, the multiplication operator M๐‘ฃ0 can be extended to be a bounded operator on ๐ฟ2(๐‘‹). Thus, the operator M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S : ๐ฟ2(๐‘‹) โ†’ ๐ฟ2(๐‘‹), as the composition of a bounded โ–ก operator with a compact operator, is compact as well. We therefore have the following result due to the Fredholm alternative. Theorem 2.6 ( [28, Theorem 5]). Suppose the assumptions (A1)~(A5) hold. If 0 is not an eigenvalue of the Fredholm operator ๐ผ๐‘‘ + M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S, then (๐ผ๐‘‘ + M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S)โˆ’1 is a bounded linear operator on ๐ฟ2(๐‘‹), and the source ๐‘† can be computed as ๐‘† = (๐ผ๐‘‘ + M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S)โˆ’1(M๐‘ฃ0 [๐ป๐‘ฃ0]). Then the stability estimation is immediately obtained from the inversion formulae Corollary 2.7. Suppose the assumptions (A1)~(A5) hold. Let ๐‘† and หœ๐‘† be two different sources with corresponding internal functional ๐ป๐‘ฃ0 and หœ๐ป๐‘ฃ0, respectively. If 0 is not an eigenvalue of the 13 operator ๐ผ๐‘‘ + M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S, then the following stability estimate holds โˆฅ๐‘† โˆ’ หœ๐‘†โˆฅ ๐ฟ2 (๐‘‹) โ‰ค ๐ถ โˆฅ๐ป๐‘ฃ0 โˆ’ หœ๐ป๐‘ฃ0 โˆฅ ๐ฟ2 (๐‘‹) for some constant ๐ถ > 0 depending on ๐œŽ, ๐‘˜, ๐‘ฃ0, ๐‘‹ yet independent of ๐‘† and หœ๐‘†. 2.2.3 Numerical Experiment In this section, we test our algorithm in Section 2.2.2. For the numerical experiment, we consider the two dimension cases, ๐‘‹ is a square in R2, the coordinate is denoted as (๐‘ฅ1, ๐‘ฅ2), and we choose the scattering kernel to be the Henyey-Greenstein function ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ) = 1 2๐œ‹ 1 โˆ’ ๐‘”2 1 + ๐‘”2 โˆ’ 2๐‘” cos ๐œ™ , where ๐œ™ is the angle between ๐œƒ and ๐œƒโ€ฒ, and โˆ’1 โ‰ค ๐‘” โ‰ค 1 is the anisotropy parameter of the medium. In this section, we present a number of numerical experiments. We discretize the spatial domain into a 121 ร— 121 uniform grid and the angular space into ๐‘€ = 8 directions for the forward issue. In order to prevent the inverse crime, we interpolate the measurement using a spatial 61 ร— 61 uniform grid for the reconstruction. Employing a 121 ร— 121 spatial grid with a coarser angular mesh ๐‘€ = 8 and a finer mesh ๐‘€ = 16, we compared the forward solutions. Next, a projection of the ๐‘€ = 16 solution onto the coarser mesh is made, and the results are compared with the previous solution. Relative ๐ฟ2-error as a result is 0.0447%. All the numerical experiments are performed on a Windows 10 laptop with Intel Core i7-9750H 2.6GHz CPU and 16GB RAM. 2.2.3.1 RTE Solver In order to develop a RTE solver, since ๐‘ข depend on the spatial domain ๐‘‹ and angular domain S1, we uniformly discrete the angular space and use upwind scheme for spatial discretization. The angular space [0, 2๐œ‹) is uniformly discretized into ๐‘€ angles, denote as ๐œ”๐‘– = (๐‘– โˆ’ 1)ฮ”๐œ” with ฮ”๐œ” = 2๐œ‹ ๐‘€ . Then the integral over S1 can be discretized using the trapezoidal rule โˆซ S1 ๐‘˜ (๐‘ฅ, ๐œƒโ€ฒ, ๐œƒ)๐‘ข(๐‘ฅ, ๐œƒ) d๐œƒ โ‰ˆ ๐‘€ โˆ‘๏ธ ๐‘–=1 ๐‘˜ (๐‘ฅ, ๐œƒโ€ฒ, ๐œƒ๐‘–)๐‘ข(๐‘ฅ, ๐œƒ๐‘–)ฮ”๐œ”. 14 The spatial discretization uses the upwind scheme, which is ๐œ•๐‘ข ๐œ•๐‘ฅ1 ๐œ•๐‘ข ๐œ•๐‘ฅ2 (๐‘ฅ1, ๐‘ฅ2, ๐œƒ๐‘–) โ‰ˆ sgn(cos ๐œ”๐‘–) (๐‘ฅ1, ๐‘ฅ2, ๐œƒ๐‘–) โ‰ˆ sgn(sin ๐œ”๐‘–) ๐‘ข(๐‘ฅ1 + sgn(cos ๐œ”๐‘–)ฮ”๐‘ฅ1, ๐‘ฅ2, ๐œƒ๐‘–) โˆ’ ๐‘ข(๐‘ฅ1, ๐‘ฅ2, ๐œƒ๐‘–) ฮ”๐‘ฅ1 ๐‘ข(๐‘ฅ1, ๐‘ฅ2 + sgn(sin ๐œ”๐‘–)ฮ”๐‘ฅ2, ๐œƒ๐‘–) โˆ’ ๐‘ข(๐‘ฅ1, ๐‘ฅ2, ๐œƒ๐‘–) ฮ”๐‘ฅ2 . , where ฮ”๐‘ฅ1 and ฮ”๐‘ฅ2 are the spacings along the ๐‘ฅ1-direction and ๐‘ฅ2-direction, respectively. Although the fraction in the scheme above is not an approximation of the derivative when sin ๐œ”๐‘– or cos ๐œ”๐‘– is 0, but in these cases, the product with the sign function is still 0 as expected. With the discretization in spatial domain and angular spaces, we use the Jacobi iteration method to solve the RTE and the adjoint RTE. Given a known source ๐‘†, we generate the measurement ๐ป๐‘ฃ (๐‘ฅ) in the following steps. First, we find the solution ๐‘ข(๐‘ฅ, ๐œƒ) by solving the forward problem (2.1) (2.2) using the RTE solver. This, together with the known attenuation coefficient and scattering kernel, is employed to compute A๐‘ข(๐‘ฅ, ๐œƒ) in (2.21). Finally, we solve the adjoint RTE (2.12) (2.13) to get ๐‘ฃ, and compute ๐ป๐‘ฃ (๐‘ฅ) in (2.20) with the trapezoidal rule. Since ๐œƒ โˆˆ S1 is periodic, the discrete integration is simply โˆซ S1 ๐‘“ (๐œƒ) d๐œƒ โ‰ˆ ๐‘€ โˆ‘๏ธ ๐‘–=1 ๐‘“ (๐œƒ๐‘–)ฮ”๐œƒ. We test our algorithms in continuous and discontinuous cases based on the assumptions of inversion formulae. 2.2.3.2 Neumann Series Inversion The algorithm for Theorem 2.3 is simple. The operator S can be implemented using the forward RTE solver, the operator K๐‘ฃ0 and M๐‘ฃ0 can be discretized using the trapezoidal rule, then the reconstruction can be done by an iteration, see Algorithm 2.1 2.2.3.3 Fredholm Inversion The Fredholm inversion in Theorem 2.6 boils down to solving the linear system (2.31). For this purpose, we discretize the source ๐‘† with respect to some basis functions. Two types of basis functions are used, one is polynomial functions of the form {๐‘ฅ๐‘– 1 ๐‘ฅ ๐‘— 2 }๐‘–, ๐‘— โ‰ฅ0, ๐‘–+ ๐‘— โ‰ค10, which is used to 15 Data: adjoint RTE solution ๐‘ฃ0, measurement ๐ป๐‘ฃ0, scattering kernel ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œƒโ€ฒ), attenuation coeffi- cient ๐œŽ(๐‘ฅ), domain ๐‘‹. ๐‘† โ† 0; ฮ”๐‘† โ† M๐‘ฃ0 [๐ป๐‘ฃ0]; ๐œ€ โ† 10โˆ’6; while โˆฅฮ”๐‘†โˆฅ ๐ฟ2 > ๐œ€ do ๐‘† โ† ๐‘† + ฮ”๐‘†; ฮ”๐‘† โ† M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S [ฮ”๐‘†]; end return ๐‘†; Algorithm 2.1 Neumann Series Reconstruction. represent the smooth feature of the source; the other is the following functions ๐‘“๐‘– ๐‘— = max (cid:26) 1 โˆ’ max (cid:26) 20 (cid:12) (cid:12) (cid:12) (cid:12) ๐‘ฅ1 โˆ’ ๐‘– 20 (cid:12) (cid:12) (cid:12) (cid:12) , 20 (cid:12) (cid:12) ๐‘ฅ2 โˆ’ (cid:12) (cid:12) ๐‘— 20 (cid:27) (cid:12) (cid:12) (cid:12) (cid:12) (cid:27) , , 0 ๐‘–, ๐‘— โˆˆ {0, 1, . . . , 20}. which is inspired from the finite element basis functions. Note ๐‘“๐‘– ๐‘— a pyramid-shaped function with the tip at ( ๐‘– 20 ๐‘— 20 ), it captures some information of singularities. We write the expansion of a source , ๐‘† with respect to these basis functions as ๐‘†(๐‘ฅ1, ๐‘ฅ2) โ‰ˆ โˆ‘๏ธ ๐‘๐‘– ๐‘— ๐‘ฅ๐‘– 1 ๐‘ฅ ๐‘— 2 + โˆ‘๏ธ ๐‘– ๐‘— ๐‘“๐‘– ๐‘— (cid:67) โˆ‘๏ธ ๐‘โ€ฒ หœ๐‘๐‘–๐‘๐‘–, (2.30) where ๐‘๐‘– ๐‘— , ๐‘โ€ฒ 0โ‰ค๐‘–, ๐‘— โ‰ค20 ๐‘– ๐‘— are the coefficients of the expansion. We use {๐‘๐‘– (๐‘ฅ1, ๐‘ฅ2)} to denote these basis ๐‘–, ๐‘— โ‰ฅ0,๐‘–+ ๐‘— โ‰ค10 ๐‘– functions and { หœ๐‘๐‘–} the correponding coefficients. Denote T := ๐ผ๐‘‘ + M๐‘ฃ0 โ—ฆ K๐‘ฃ0 โ—ฆ S, then the internal measurement (2.22) can be represented as M๐‘ฃ0 [๐ป๐‘ฃ0] = T [๐‘†] โ‰ˆ หœ๐‘๐‘–T [๐‘๐‘–]. โˆ‘๏ธ ๐‘– We can compute the inner product with T [๐‘ ๐‘— ] as follows: โŸจM๐‘ฃ0 [๐ป๐‘ฃ0], T [๐‘ ๐‘— ]โŸฉ โ‰ˆ โˆ‘๏ธ ๐‘– หœ๐‘๐‘– โŸจT [๐‘๐‘–], T [๐‘ ๐‘— ]โŸฉ. (2.31) Solving the linear equation (2.31) gives the coefficient หœ๐‘๐‘–, and then we can numerically reconstruct the projection of the source ๐‘† on the chosen basis. 2.2.3.4 Experiment 1: Continuous Source In this experiment, we choose the spatial domain ๐‘‹ = [0, 0.2]2 with attenuation coefficient ๐œŽ1(๐‘ฅ1, ๐‘ฅ2) = 0.1 + 0.1๐‘ฅ1 and anisotropy parameter ๐‘” = 0.5 in the scattering kernel. ๐‘ฃ0 is chosen as 16 the adjoint solution with boundary condition ๐‘ฃ0|ฮ“+ = 1. The source is chosen as ๐‘†1(๐‘ฅ1, ๐‘ฅ2) = ๐‘’โˆ’100[(๐‘ฅ1โˆ’0.08)2+(๐‘ฅ2โˆ’0.12)2], see Figure 2.1. Figure 2.1 Left: source ๐‘†1. Right: attenuation coefficient ๐œŽ1. Such choice of optical coefficients gives the following numerical values: โˆฅ๐‘ฃ0โˆฅ๐ถ (๐‘‹) โ‰ˆ 1.2603, (cid:18)โˆซ S1 inf ๐‘ฅโˆˆ๐‘‹ (cid:19) ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ โ‰ˆ 6.4870. On the other hand, ๐œŒ โ‰ก 1 for any anisotropy parameter between โˆ’1 and 1, thus โˆฅ๐‘ฃ0โˆฅ๐ถ (๐‘‹) (โˆฅ๐œŽ1โˆฅ๐ถ (๐‘‹) + ๐œŒ)diam(๐‘‹)Vol(S1) (1 โˆ’ diam(๐‘‹) ๐œŒ) inf๐‘ฅโˆˆ๐‘‹ ๐‘ฃ0(๐‘ฅ, ๐œƒ) d๐œƒ (cid:16)โˆซ S1 (cid:17) โ‰ˆ 0.5392 < 1, thus the optical coefficients satisfy the condition of Theorem 2.3. Applying Neumann series inversion with different levels of Gaussian noise added to ๐ป๐‘ฃ0 gives the following result, see Figure 2.2. 2.2.3.5 Experiment 2: Discontinuous Source We choose the spatial domain ๐‘‹ = [0, 1]2 with attenuation coefficient ๐œŽ1(๐‘ฅ1, ๐‘ฅ2) = 0.1 + 0.1๐‘ฅ1. The anisotropy parameter is still ๐‘” = 0.5 and ๐‘ฃ0 is chosen as the adjoint solution with boundary condition ๐‘ฃ0|ฮ“+ = 1. The source ๐‘†2 is chosen as the Shepp-Logan Phantom, see left and right panels of Figure 2.3. Apply Neumann series inversion with different levels of Gaussian noise added to ๐ป๐‘ฃ0 gives the following result, see Figure 2.4. 17 00.050.10.150.200.020.040.060.080.10.120.140.160.180.20.10.20.30.40.50.60.70.80.9100.050.10.150.200.020.040.060.080.10.120.140.160.180.20.10.1020.1040.1060.1080.110.1120.1140.1160.1180.12 Figure 2.2 Reconstructed ๐‘†1 using Neumann series. For the first row, 0%, 1%, 2%, 5% random noises are added to ๐ป๐‘ฃ0. The relative ๐ฟ2 errors of the reconstructions are 0.0268%, 1.0682%, 2.1759%, 5.4680%, respectively. The second row displays the corresponding differences between the ground truth and the reconstructions. Figure 2.3 Left: Shepp-Logan Phantom ๐‘†2. Center: Smoothed Shepp-Logan Phantom ๐‘†3. Right: attenuation coefficient ๐œŽ1. The errors of reconstruction is very large since we choose finitely many continuous basis to approximate a discontinuous source. If we change the source to the Gaussian filtered Shepp-Logan Phantom, see the middle panel of Figure 2.3, the reconstruction becomes better, see Figure 2.5. 2.2.3.6 More experiments: We also test the performance of the inversion formulae in different cases, such as Neumann inversion beyond the assumption of Theorem 2.3, and the Fredholm inversion in continuous case, see [28, section 4.2] for more details. 2.3 UMBLT under Diffusive Regime Biological objects are usually strongly scattering medium. The light propagation in strongly scattering medium is diffusive. It can be simplified as diffusive regime, which is called the diffusion approximation [5], see also Appendix A. The diffusive regime models the light propagation using 18 00.050.10.150.200.020.040.060.080.10.120.140.160.180.20.10.20.30.40.50.60.70.80.9100.050.10.150.200.020.040.060.080.10.120.140.160.180.20.10.20.30.40.50.60.70.80.9100.050.10.150.200.020.040.060.080.10.120.140.160.180.20.10.20.30.40.50.60.70.80.9100.050.10.150.200.020.040.060.080.10.120.140.160.180.20.10.20.30.40.50.60.70.80.911.100.050.10.150.200.020.040.060.080.10.120.140.160.180.212345610-400.050.10.150.200.020.040.060.080.10.120.140.160.180.20.0050.010.0150.020.0250.0300.050.10.150.200.020.040.060.080.10.120.140.160.180.20.010.020.030.040.050.060.0700.050.10.150.200.020.040.060.080.10.120.140.160.180.20.020.040.060.080.10.120.140.1600.20.40.60.8100.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.9100.20.40.60.8100.10.20.30.40.50.60.70.80.9100.050.10.150.20.250.30.3500.20.40.60.8100.10.20.30.40.50.60.70.80.910.10.110.120.130.140.150.160.170.180.190.2 Figure 2.4 Reconstructed ๐‘†2 using Fredholm inversion. For the first row, 0%, 1%, 2%, 5% random noises are added to ๐ป๐‘ฃ0. The relative ๐ฟ2 errors of the reconstructions are 57.5806%, 57.5818%, 57.5880%, 57.6199%, respectively. The second row displays the corresponding differences between the ground truth and the reconstructions. Figure 2.5 Reconstructed ๐‘†3 using Fredholm inversion. For the first row, 0%, 1%, 2%, 5% random noises are added to ๐ป๐‘ฃ0. The relative ๐ฟ2 errors of the reconstructions are 4.3211%, 4.3405%, 4.4136%, 5.0152%, respectively. The second row displays the corresponding differences between the ground truth and the reconstructions. the following diffusion equation [8] โˆ’โˆ‡ ยท ๐ท (๐‘ฅ)โˆ‡๐œ™(๐‘ฅ) + ๐œŽ๐‘Ž (๐‘ฅ)๐œ™(๐‘ฅ) = ๐‘†(๐‘ฅ) in ๐‘‹. ๐œ™ + โ„“๐œˆ ยท ๐ทโˆ‡๐œ™ = 0 on ๐œ• ๐‘‹. (2.32) (2.33) where the positive definite matrix function ๐ท is the diffusion coefficient, ๐œŽ๐‘Ž is the absorption coefficient, โ„“ is the extrapolation length, ๐œˆ is the outer normal vector and ๐œ™ is the angularly averaged intensity of light. 19 00.20.40.60.8100.10.20.30.40.50.60.70.80.91-0.200.20.40.60.800.20.40.60.8100.10.20.30.40.50.60.70.80.91-0.200.20.40.60.800.20.40.60.8100.10.20.30.40.50.60.70.80.91-0.200.20.40.60.800.20.40.60.8100.10.20.30.40.50.60.70.80.91-0.200.20.40.60.800.20.40.60.8100.10.20.30.40.50.60.70.80.910.10.20.30.40.50.60.700.20.40.60.8100.10.20.30.40.50.60.70.80.910.10.20.30.40.50.60.700.20.40.60.8100.10.20.30.40.50.60.70.80.910.10.20.30.40.50.60.700.20.40.60.8100.10.20.30.40.50.60.70.80.910.10.20.30.40.50.60.700.20.40.60.8100.10.20.30.40.50.60.70.80.9100.050.10.150.20.250.30.3500.20.40.60.8100.10.20.30.40.50.60.70.80.9100.050.10.150.20.250.30.3500.20.40.60.8100.10.20.30.40.50.60.70.80.9100.050.10.150.20.250.30.3500.20.40.60.8100.10.20.30.40.50.60.70.80.9100.050.10.150.20.250.30.3500.20.40.60.8100.10.20.30.40.50.60.70.80.910.0050.010.0150.020.0250.0300.20.40.60.8100.10.20.30.40.50.60.70.80.910.0050.010.0150.020.02500.20.40.60.8100.10.20.30.40.50.60.70.80.910.0050.010.0150.020.02500.20.40.60.8100.10.20.30.40.50.60.70.80.910.0050.010.0150.020.0250.03 The ultrasound modulation is modeled as [8] ๐ท๐œ€ (๐‘ฅ) (cid:66) (1 + ๐œ€(2๐›พ โˆ’ 1) cos(๐‘ž ยท ๐‘ฅ + ๐œ‘))๐ท (๐‘ฅ), ๐œŽ๐‘Ž,๐œ€ (๐‘ฅ) (cid:66) (1 + ๐œ€(2๐›พ + 1) cos(๐‘ž ยท ๐‘ฅ + ๐œ‘))๐œŽ๐‘Ž (๐‘ฅ), ๐‘†๐œ€ (๐‘ฅ) (cid:66) (1 + ๐œ€ cos(๐‘ž ยท ๐‘ฅ + ๐œ‘))๐‘†(๐‘ฅ), (2.34) (2.35) (2.36) where ๐›พ is the elasto-optical constant, ๐‘ž is the wave vector, ๐œ‘ is the phase and 0 โ‰ค ๐œ€ โ‰ช 1 is a small parameter related to the amplitude, frequency, time, density and acoustic wave speed. Then the UMBLT under diffusion approximation is modeled as โˆ’โˆ‡ ยท ๐ท๐œ€ (๐‘ฅ)โˆ‡๐œ™๐œ€ (๐‘ฅ) + ๐œŽ๐‘Ž,๐œ€ (๐‘ฅ)๐œ™๐œ€ (๐‘ฅ) = ๐‘†๐œ€ (๐‘ฅ) in ๐‘‹. ๐œ™๐œ€ + โ„“๐œˆ ยท ๐ท๐œ€โˆ‡๐œ™๐œ€ = 0 on ๐œ• ๐‘‹. (2.37) (2.38) Under different modulations, our measurement is the Neumann boundary value โˆ’๐œˆ ยท ๐ท๐œ€โˆ‡๐œ™๐œ€ |G, ๐œ€ โ‰ฅ 0, which is considered as the output flux on boundary. Here G โŠ‚ ๐œ• ๐‘‹ is a relatively open subset which denotes the region of measurement. The goal is to reconstruct the distribution of ๐‘† assuming ๐ท, ๐œŽ๐‘Ž, ฮ“ and ๐‘‹ are given. 2.3.1 Full Data Case In this section, we start with a simple case G = ๐œ• ๐‘‹, which means we can make measurement on the entire boundary. Such case is called UMBLT under diffusive regime with full data [8]. Similar to the UMBLT under transport regime, we consider the adjoint diffusion equation with prescribed Robin boundary condition ๐‘” โˆ’โˆ‡ ยท ๐ท (๐‘ฅ)โˆ‡๐œ“(๐‘ฅ) + ๐œŽ๐‘Ž (๐‘ฅ)๐œ“(๐‘ฅ) = 0 in ๐‘‹. ๐œ“ + ๐‘™๐œˆ ยท ๐ทโˆ‡๐œ“ = ๐‘” on ๐œ• ๐‘‹. (2.39) (2.40) Since ๐ท and ๐œŽ๐‘Ž are known, we know ๐œ“ in the entire space ๐‘‹. Multiply ๐œ“ on both sides of (2.37), multiply ๐œ™๐œ€ on both sides of (2.39), subtract two equations and integrate over ๐‘‹. Integration by 20 parts gives โˆซ ๐œ• ๐‘‹ ๐‘”๐œˆ ยท ๐ท๐œ€โˆ‡๐œ™๐œ€ d๐‘ฅ = โˆซ ๐‘‹ (๐ท๐œ€ โˆ’ ๐ท0)โˆ‡๐œ™๐œ€ ยท โˆ‡๐œ“ + (๐œŽ๐‘Ž,๐œ€ โˆ’ ๐œŽ๐‘Ž,0)๐œ™๐œ€๐œ“ โˆ’ ๐œ“๐‘†๐œ€ d๐‘ฅ, (2.41) By the asymptotic expansion on ๐œ€, write ๐œˆ ยท ๐ท๐œ€โˆ‡๐œ™๐œ€ = ๐œˆ ยท ๐ทโˆ‡๐œ™0 + ๐œ€๐›ฟฮฆ, the first order term gives โˆซ ๐œ• ๐‘‹ ๐‘”๐›ฟฮฆ d๐‘ฅ = โˆซ ๐‘‹ ((2๐›พ โˆ’ 1)๐ทโˆ‡๐œ™0 ยท โˆ‡๐œ“ + (2๐›พ + 1)๐œŽ๐‘Ž๐œ™0๐œ“ โˆ’ ๐œ“๐‘†) cos(๐‘ž ยท ๐‘ฅ + ๐œ‘) d๐‘ฅ. (2.42) Notice that the LHS is theoretically known from the Neumann boundary measurement and the adjoint boundary condition, RHS is an inner product of a cosine function and another function over ๐‘‹. By varying ๐‘ž and ๐œ‘, the RHS is exactly the Fourier coefficient of a functionโ€™s Fourier transform, and we denote the function as ๐ป๐œ“: ๐ป๐œ“ (cid:66) (2๐›พ โˆ’ 1)๐ทโˆ‡๐œ™0 ยท โˆ‡๐œ“ + (2๐›พ + 1)๐œŽ๐‘Ž๐œ™0๐œ“ โˆ’ ๐œ“๐‘†. (2.43) For a specific ๐œ“0 > 0, dividing ๐œ“0 on both sides and substitute (2.32) to replace the ๐‘† term, we have the following PDE ๐น๐œ“0 (cid:66) ๐ป๐œ“0 ๐œ“0 = (2๐›พ โˆ’ 1)๐ทโˆ‡๐œ™0 ยท โˆ‡ log ๐œ“0 + 2๐›พ๐œŽ๐‘Ž๐œ™0 + โˆ‡ ยท ๐ท (๐‘ฅ)โˆ‡๐œ™0 (2.44) with boundary condition (2.33). Once 0 is not an eigenvalue of the PDE, the solution ๐œ™0 can be uniquely determined, substitute ๐œ™0 to (2.32) will give us ๐‘†. 2.3.2 Partial Data Case In the proposed full data algorithms, see Section 2.3.1, the measurement is required on the entire boundary ๐œ• ๐‘‹. But in practice, it is hard to obtain all data on the boundary. For example, for the brain imaging, the sensors could only be placed on the top half of head, the data in the neck-direction will lost. A natural question is: Can we determine the source from measurements only on a subset on the boundary? Such question is considered as inverse problem with partial data. If the sources can be determined from partial data, then the full data measurement is redundant, the partial data algorithm would be an improved algorithm for those sources. Suppose we can only measure on a relatively open subset G โŠ‚ ๐œ• ๐‘‹, i.e. ๐›ฟฮฆ in (2.42) is known only on a subset G. A natural idea is to choose a special prescribed boundary condition ๐‘” such that 21 ๐‘” is supported on G, then the left hand side of (2.42) is still known from the boundary measurement and boundary condition ๐‘”. In this case, we need to show that there exist such boundary condition ๐‘” support on G and gives positive adjoint solution ๐œ“. Instead of consider adjoint equation (2.39) with Robin boundary condition (2.40), we consider the following diffusion equation with mixed boundary condition โˆ’โˆ‡ ยท ๐ท (๐‘ฅ)โˆ‡๐œ“(๐‘ฅ) + ๐œŽ๐‘Ž (๐‘ฅ)๐œ“(๐‘ฅ) = 0 in ๐‘‹. ๐œ“ + โ„“๐œˆ ยท ๐ทโˆ‡๐œ“ = 0 on ๐œ• ๐‘‹ \ G. ๐œ“ = ๐‘“ on G. (2.45) (2.46) (2.47) Once we find a positive solution ๐œ“ to this mixed boundary value problem, we can simply take ๐‘” = (๐œ“ + โ„“๐œˆ ยท ๐ทโˆ‡๐œ“)|๐œ• ๐‘‹ to be the prescribed boundary condition in the adjoint problem (2.39)- (2.40). Throughout this section, the following hypotheses are made upon the anisotropic diffusion coefficient ๐ท (๐‘ฅ) and the scattering coefficient ๐œŽ๐‘Ž (๐‘ฅ): H1 ๐ท (๐‘ฅ) = ๐ผ near ๐œ• ๐‘‹, where ๐ผ is the identity matrix. H2 ๐œŽ๐‘Ž โˆˆ ๐ถ๐›ผ (๐‘‹), ๐ท๐‘– ๐‘— โˆˆ ๐ถ1,๐›ผ (๐‘‹) H3 ๐ท (๐‘ฅ) is uniformly elliptic for all ๐‘ฅ โˆˆ ๐‘‹, that is, there exists a constant ๐œ† > 0 such that 1 ๐œ† |๐œ‰ |2 โ‰ฅ ๐œ‰โŠค๐ท (๐‘ฅ)๐œ‰ โ‰ฅ ๐œ†|๐œ‰ |2 a.e. on ๐‘‹ holds for any ๐œ‰ โˆˆ R๐‘›. H4 ๐œŽ๐‘Ž โ‰ฅ 0 a.e. on ๐‘‹. Theorem 2.8 ( [65, Theorem 1]). Assume that ๐œŽ๐‘Ž โˆˆ ๐ถ๐›ผ (๐‘‹), ๐ท๐‘– ๐‘— โˆˆ ๐ถ1,๐›ผ (๐‘‹), ๐‘“ โˆˆ ๐ถ (G) โˆฉ ๐ฟโˆž(G), then (2.45)-(2.47) has a unique solution ๐œ“ โˆˆ ๐ถ2(๐‘‹ \ G) โˆฉ ๐ถ0(๐‘‹) 22 Theorem 2.9 ( [97]). Under the hypotheses H1-H4. If the Dirichlet boundary condition ๐‘“ โˆˆ ๐ถ (G) โˆฉ ๐ฟโˆž(G) is positive, then the mixed boundary value problem (2.45)-(2.47) admits a unique solution ๐œ“ โˆˆ ๐ถ2(๐‘‹ \ G) โˆฉ ๐ถ0(๐‘‹) which is positive on ๐‘‹. Proof. Theorem 2.8 ensure that (2.45)-(2.47) have a unique solution ๐œ“ โˆˆ ๐ถ2(๐‘‹ \ G) โˆฉ ๐ถ0(๐‘‹). Assuming that ๐œ“ has a negative value on ๐‘‹, the minimum is reached on the boundary ๐œ• ๐‘‹, according to the weak maximum principle [41, Section 6.4 Theorem 2]. The minimum is attained on ๐œ• ๐‘‹ \ G since ๐œ“|G > 0. Assume that ๐œ“(๐‘ฅ0) = inf๐‘ฅโˆˆ๐‘‹ ๐œ“ < 0 and that ๐‘ฅ0 โˆˆ ๐œ• ๐‘‹ \ G. The Robin boundary condition (2.46) states that ๐œˆ ยท ๐ทโˆ‡๐œ“ > 0, meaning that ๐œ•๐œˆ๐œ“(๐‘ฅ0) > 0 because ๐ท (๐‘ฅ) = ๐ผ is close to ๐œ• ๐‘‹. This contradicts the assumption ๐œ“(๐‘ฅ0) = inf๐‘ฅโˆˆ๐‘‹ ๐œ“, implying that ๐œ“ โ‰ฅ 0. The strong maximum principle [41, Section 6.4 Theorem 4] indicate that ๐œ“| ๐‘‹ > 0, otherwise ๐œ“ โ‰ก 0, which contradict to ๐œ“|G = ๐‘“ > 0. It remains to prove ๐œ“|๐œ• ๐‘‹ > 0. Assume on ๐‘ฅ0 โˆˆ ๐œ• ๐‘‹ \ G, ๐œ“(๐‘ฅ0) = inf๐‘ฅโˆˆ๐‘‹ ๐œ“ = 0. Apply the Hopf Lemma [41, Section 6.4 Lemma] on โˆ’๐œ“ shows that ๐œ•๐œˆ๐œ“(๐‘ฅ0) < 0, which contradict to the boundary condition ๐œ“(๐‘ฅ0) + โ„“๐œˆ ยท ๐ทโˆ‡๐œ“ = 0, thus ๐œ“|๐œ• ๐‘‹ > 0. Thus ๐œ“ is a positive solution in ๐ถ2(๐‘‹ \ G) โˆฉ ๐ถ0(๐‘‹). Since ๐‘‹ is compact, ๐œ“ have positive lower bound. โ–ก The theorem above ensures that one can construct a suitable positive adjoint solution ๐œ“, then the source ๐‘† can be recovered under the same process as the full data case. 2.3.3 Uncertainty Quantification The reconstruction methods described in Section 2.3.1 and Section 2.3.2 depend primarily on precise prior knowledge of the optical coefficients (๐ท, ๐œŽ) to solve the elliptic equation (2.44) (along with boundary conditions) for ๐œ™0. The rationale is that these optical coefficients can be measured beforehand using other imaging modalities, such as optical tomography [5]. In practice, the imaging process in these additional modalities inevitably introduces inaccuracies in the optical coefficients, which have an impact on UMBLT reconstruction. In the following two sections, we will use the continuous and discretized models to quantify the impact on the reconstruction of the 23 bio-luminescence source ๐‘† caused by optical coefficient inaccuracies. Let (๐ท, ๐œŽ๐‘Ž) be the underlying true optical coefficients, and ( หœ๐ท, หœ๐œŽ๐‘Ž) be the optical coefficients that are reconstructed through additional imaging modalities before performing UMBLT. Observe that ( หœ๐ท, หœ๐œŽ๐‘Ž) do not play a role in the derivation of the internal data: This is because the boundary integral on the left hand side of (2.42) remains the same, thus we can derive ๐ป๐œ“ as before. Hereafter, we will assume that the internal data ๐ป๐œ“ has been accurately extracted, and focus on quantifying the uncertainty of the reconstructed source ๐‘†. The full data and partial data cases will be handled in one shot, since the reconstruction process are identical once a suitable positive adjoint solution ๐œ“0 > 0 is chosen. 2.3.3.1 Uncertainty Quantification with Continuous Diffusive Model We record a regularity result for the diffusion equation with Robin boundary conditions. Proposition 2.10 ( [33, Theorem 2.4]). Suppose ๐ท is uniformly elliptic, ๐ท๐‘– ๐‘— โˆˆ ๐ฟโˆž(๐‘‹), ๐œŽ๐‘Ž โ‰ฅ 0 a.e. For ๐‘† โˆˆ ๐ฟ2(๐‘‹) and ๐‘” โˆˆ ๐ป 1 2 (๐œ• ๐‘‹), the following boundary value problem โˆ’โˆ‡ ยท ๐ท (๐‘ฅ)โˆ‡๐œ™(๐‘ฅ) + ๐œŽ๐‘Ž (๐‘ฅ)๐œ™(๐‘ฅ) = ๐‘†(๐‘ฅ) in ๐‘‹. ๐œ™ + โ„“๐œˆ ยท ๐ทโˆ‡๐œ™ = ๐‘” on ๐œ• ๐‘‹. admits a unique solution ๐œ™ โˆˆ ๐ป2(๐‘‹) with the estimation โˆฅ๐œ™โˆฅ๐ป2 (๐‘‹) โ‰ค ๐ถ (โˆฅ๐‘†โˆฅ ๐ฟ2 (๐‘‹) + โˆฅ๐‘”โˆฅ ) ๐ป 1 2 (๐œ• ๐‘‹) where ๐ถ is a constant independent of ๐œ™. (2.48) (2.49) (2.50) Then we have the following global uncertainty quantification (UQ) estimate for the aforemen- tioned UMBLT reconstruction in the diffusive regime. Theorem 2.11 ( [97]). Suppose all optical coefficients and solutions satisfy โˆฅ๐ท๐‘– ๐‘— โˆฅ๐‘Š 1,โˆž (๐‘‹), โˆฅ หœ๐ท๐‘– ๐‘— โˆฅ๐‘Š 1,โˆž (๐‘‹) โ‰ค ๐ถ๐ท, โˆฅ๐œ™โˆฅ๐‘Š 2,โˆž (๐‘‹), โˆฅ หœ๐œ™โˆฅ๐‘Š 2,โˆž (๐‘‹) โ‰ค ๐ถ๐œ™, โˆฅ๐œ“โˆฅ๐‘Š 2,โˆž (๐‘‹), โˆฅ หœ๐œ“โˆฅ๐‘Š 2,โˆž (๐‘‹) โ‰ค ๐ถ๐œ“, โˆฅ๐œŽ๐‘Ž โˆฅ ๐ฟโˆž (๐‘‹) โ‰ค ๐ถ๐œŽ, ๐œ“, หœ๐œ“ โ‰ฅ ๐‘๐œ“ > 0, 24 where ๐ถ๐ท, ๐ถ๐œ™, ๐ถ๐œ“, ๐ถ๐œŽ, ๐‘๐œ“ are constants, and 0 is not eigenvalue of the following operators equipped with the zero Robin boundary condition: โˆ‡ ยท ๐ทโˆ‡ + (2๐›พ โˆ’ 1)๐ทโˆ‡ log ๐œ“0 ยท โˆ‡ + 2๐›พ๐œŽ๐‘Ž, โˆ‡ ยท หœ๐ทโˆ‡ + (2๐›พ โˆ’ 1) หœ๐ทโˆ‡ log หœ๐œ“0 ยท โˆ‡ + 2๐›พ หœ๐œŽ๐‘Ž, then we can find constants ๐ถ1๐‘– ๐‘— , ๐ถ2 > 0 such that โˆฅ๐‘† โˆ’ หœ๐‘†โˆฅ ๐ฟ2 (๐‘‹) โ‰ค โˆ‘๏ธ ๐‘–โ‰ค ๐‘— ๐ถ1๐‘– ๐‘— โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ๐ป1 (๐‘‹) + ๐ถ2โˆฅ๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž โˆฅ ๐ฟ2 (๐‘‹) (2.51) Proof. Let ๐œ™ and หœ๐œ™ solve the diffusion equations ๐‘† = โˆ’โˆ‡ ยท [๐ทโˆ‡๐œ™] + ๐œŽ๐‘Ž๐œ™, หœ๐‘† = โˆ’โˆ‡ ยท [ หœ๐ทโˆ‡ หœ๐œ™] + หœ๐œŽ๐‘Ž หœ๐œ™, respectively. Subtract these equations to get ๐‘† โˆ’ หœ๐‘† = โˆ’โˆ‡ ยท [(๐ท โˆ’ หœ๐ท)โˆ‡๐œ™] โˆ’ โˆ‡ ยท [ หœ๐ทโˆ‡(๐œ™ โˆ’ หœ๐œ™)] + (๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž)๐œ™ + หœ๐œŽ๐‘Ž (๐œ™ โˆ’ หœ๐œ™). Taking the ๐ฟ2-norms on both sides, we have โˆฅ๐‘† โˆ’ หœ๐‘†โˆฅ ๐ฟ2 (๐‘‹) โ‰ค โˆฅโˆ‡ ยท [(๐ท โˆ’ หœ๐ท)โˆ‡๐œ™] โˆฅ ๐ฟ2 (๐‘‹) + โˆฅโˆ‡ ยท [ หœ๐ทโˆ‡(๐œ™ โˆ’ หœ๐œ™)] โˆฅ ๐ฟ2 (๐‘‹) + โˆฅ(๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž)๐œ™โˆฅ ๐ฟ2 (๐‘‹) + โˆฅ หœ๐œŽ๐‘Ž (๐œ™ โˆ’ หœ๐œ™) โˆฅ ๐ฟ2 (๐‘‹) โˆ‘๏ธ โ‰ค ๐‘– ๐‘— โˆฅ๐œ•๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– (๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) + โˆ‘๏ธ ๐‘– ๐‘— โˆฅ๐œ•๐‘– ๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) โˆ‘๏ธ + ๐‘– ๐‘— โˆฅ๐œ•๐‘– หœ๐ท๐‘– ๐‘— โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘— (๐œ™ โˆ’ หœ๐œ™)โˆฅ ๐ฟ2 (๐‘‹) + โˆ‘๏ธ ๐‘– ๐‘— โˆฅ หœ๐ท๐‘– ๐‘— โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– ๐‘— (๐œ™ โˆ’ หœ๐œ™) โˆฅ ๐ฟ2 (๐‘‹) + โˆฅ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž โˆฅ ๐ฟ2 (๐‘‹) + โˆฅ หœ๐œŽ๐‘Ž โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ™ โˆ’ หœ๐œ™โˆฅ ๐ฟ2 (๐‘‹) โ‰ค๐‘1โˆฅ๐œ™ โˆ’ หœ๐œ™โˆฅ๐ป2 (๐‘‹) + โˆ‘๏ธ ๐‘–โ‰ค ๐‘— ๐‘2๐‘– ๐‘— โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ๐ป1 (๐‘‹) + ๐‘3โˆฅ๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž โˆฅ ๐ฟ2 (๐‘‹) where the constants ๐‘1, ๐‘2๐‘– ๐‘— , ๐‘3 > 0 can be made explicit as follows: (cid:118)(cid:117)(cid:117)(cid:116) ๐‘1 = โˆฅ หœ๐œŽ๐‘Ž โˆฅ2 ๐ฟโˆž (๐‘‹) + (cid:34) โˆ‘๏ธ โˆ‘๏ธ ๐‘— ๐‘– (cid:35) 2 โˆฅ๐œ•๐‘– หœ๐ท๐‘– ๐‘— โˆฅ ๐ฟโˆž (๐‘‹) + 4 โˆ‘๏ธ ๐‘–< ๐‘— โˆฅ หœ๐ท๐‘– ๐‘— โˆฅ2 ๐ฟโˆž (๐‘‹) + โˆ‘๏ธ ๐‘– โˆฅ หœ๐ท๐‘–๐‘– โˆฅ2 ๐ฟโˆž (๐‘‹) (2.52) ๐‘2๐‘– ๐‘— = โˆš๏ธƒ 4โˆฅ๐œ•๐‘– ๐‘— ๐œ™โˆฅ2 ๐ฟโˆž (๐‘‹) + (cid:0)โˆฅ๐œ•๐‘– ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) + โˆฅ๐œ•๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) (cid:1) 2 (๐‘– < ๐‘—) โˆš๏ธƒ ๐‘2๐‘–๐‘– = โˆฅ๐œ•๐‘–๐‘– ๐œ™โˆฅ2 ๐ฟโˆž (๐‘‹) + โˆฅ๐œ•๐‘– ๐œ™โˆฅ2 ๐ฟโˆž (๐‘‹) ๐‘3 = โˆฅ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) 25 In order to estimate the term โˆฅ๐œ™ โˆ’ หœ๐œ™โˆฅ๐ป2 (๐‘‹), we turn to the second order elliptic equations generated from the internal data ๐ป๐œ“ = ๐ป หœ๐œ“: ๐น๐œ“ = ๐น หœ๐œ“ = ๐ป๐œ“ ๐œ“ ๐ป๐œ“ หœ๐œ“ = (2๐›พ โˆ’ 1)๐ทโˆ‡๐œ™ ยท โˆ‡ log ๐œ“ + 2๐›พ๐œŽ๐‘Ž๐œ™ + โˆ‡ ยท ๐ทโˆ‡๐œ™ = (2๐›พ โˆ’ 1) หœ๐ทโˆ‡ หœ๐œ™ ยท โˆ‡ log หœ๐œ“ + 2๐›พ หœ๐œŽ๐‘Ž หœ๐œ™ + โˆ‡ ยท หœ๐ทโˆ‡ หœ๐œ™. Subtracting these equations gives โˆ’ โˆ‡ ยท หœ๐ทโˆ‡[๐œ™ โˆ’ หœ๐œ™] โˆ’ 2๐›พ หœ๐œŽ๐‘Ž (๐œ™ โˆ’ หœ๐œ™) โˆ’ (2๐›พ โˆ’ 1) หœ๐ทโˆ‡(๐œ™ โˆ’ หœ๐œ™) ยท โˆ‡ log ๐œ“ = ๐ป๐œ“ ๐œ“ หœ๐œ“ (๐œ“ โˆ’ หœ๐œ“) + (2๐›พ โˆ’ 1)(๐ท โˆ’ หœ๐ท)โˆ‡๐œ™ ยท โˆ‡ log ๐œ“ + (2๐›พ โˆ’ 1) หœ๐ทโˆ‡ หœ๐œ™ ยท (โˆ‡ log ๐œ“ โˆ’ โˆ‡ log หœ๐œ“) + 2๐›พ(๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž)๐œ™ + โˆ‡ ยท [๐ท โˆ’ หœ๐ท]โˆ‡๐œ™, This is a second order elliptic equation for ๐œ™ โˆ’ หœ๐œ™ with zero Robin boundary condition, we have the following regularity estimate by Proposition 2.10: โˆฅ๐œ™ โˆ’ หœ๐œ™โˆฅ ๐ป2 (๐‘‹) ๐ป๐œ“ ๐œ“ หœ๐œ“ (cid:18)(cid:13) (cid:13) (cid:13) (cid:13) (๐œ“ โˆ’ หœ๐œ“) โ‰ค๐ถ (cid:13) (cid:13) (cid:13) (cid:13)๐ฟ2 (๐‘‹) + |2๐›พ โˆ’ 1|โˆฅ(๐ท โˆ’ หœ๐ท)โˆ‡๐œ™ ยท โˆ‡ log ๐œ“โˆฅ ๐ฟ2 (๐‘‹) + |2๐›พ โˆ’ 1|โˆฅ หœ๐ทโˆ‡ หœ๐œ™ ยท (โˆ‡ log ๐œ“ โˆ’ โˆ‡ log หœ๐œ“)โˆฅ ๐ฟ2 (๐‘‹) + โˆฅโˆ‡ ยท [๐ท โˆ’ หœ๐ท]โˆ‡๐œ™โˆฅ ๐ฟ2 (๐‘‹) + |2๐›พ|โˆฅ (๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž)๐œ™โˆฅ ๐ฟ2 (๐‘‹) (cid:18) โˆฅ๐ป๐œ“ โˆฅ ๐ฟโˆž (๐‘‹) ๐‘2 ๐œ“ โˆฅ๐œ•๐‘– log ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) โˆฅ๐œ“ โˆ’ หœ๐œ“โˆฅ ๐ฟ2 (๐‘‹) + |2๐›พ โˆ’ 1| โˆ‘๏ธ ๐‘– ๐‘— โ‰ค๐ถ (cid:19) + |2๐›พ โˆ’ 1| โˆ‘๏ธ ๐‘– ๐‘— โˆฅ หœ๐ท๐‘– ๐‘— โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘— หœ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– (log ๐œ“ โˆ’ log หœ๐œ“)โˆฅ ๐ฟ2 (๐‘‹) + โˆ‘๏ธ ๐‘– ๐‘— โˆฅ๐œ•๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– (๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) โˆฅ๐œ•๐‘– ๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) + |2๐›พ|โˆฅ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž โˆฅ ๐ฟ2 (๐‘‹) (cid:19) โˆ‘๏ธ + ๐‘– ๐‘— โ‰ค๐‘4โˆฅ๐œ“ โˆ’ หœ๐œ“โˆฅ ๐ป1 (๐‘‹) + โˆ‘๏ธ ๐‘– โ‰ค ๐‘— ๐‘5๐‘– ๐‘— โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ ๐ป1 (๐‘‹) + ๐‘6โˆฅ๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž โˆฅ ๐ฟ2 (๐‘‹) (2.53) where in the last inequality, we used the upper bound โˆฅ๐œ•๐‘– log ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โ‰ค 1 ๐‘ ๐œ“ โˆฅ๐œ•๐‘–๐œ“โˆฅ ๐ฟโˆž (๐‘‹) and โˆฅ๐œ•๐‘– (log ๐œ“ โˆ’ log หœ๐œ“)โˆฅ ๐ฟ2 (๐‘‹) โ‰ค โ‰ค 1 ๐‘2 ๐œ“ 1 ๐‘2 ๐œ“ โˆฅ๐œ“๐œ•๐‘– หœ๐œ“ โˆ’ หœ๐œ“๐œ•๐‘–๐œ“โˆฅ ๐ฟ2 (๐‘‹) = 1 ๐‘2 ๐œ“ โˆฅ(๐œ“ โˆ’ หœ๐œ“)๐œ•๐‘– หœ๐œ“ โˆ’ หœ๐œ“๐œ•๐‘– (๐œ“ โˆ’ หœ๐œ“) โˆฅ ๐ฟ2 (๐‘‹) โˆฅ๐œ•๐‘– หœ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ“ โˆ’ หœ๐œ“โˆฅ ๐ฟ2 (๐‘‹) + 1 ๐‘2 ๐œ“ โˆฅ หœ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– (๐œ“ โˆ’ หœ๐œ“) โˆฅ ๐ฟ2 (๐‘‹) 26 The constants ๐‘4, ๐‘5๐‘– ๐‘— , ๐‘6 > 0 are defeind as ๐‘4 = ๐ถ |2๐›พ โˆ’ 1| ๐‘2 ๐œ“ (cid:32) โˆ‘๏ธ ๐‘— ๏ฃฎ โˆ‘๏ธ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ ๐‘– โˆฅ หœ๐ท๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) โˆฅ๐œ•๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ หœ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) (cid:33) 2 (cid:32) โˆฅ๐ป๐œ“ โˆฅ ๐ฟโˆž (๐‘‹) |2๐›พ โˆ’ 1| + โˆ‘๏ธ + ๐‘– ๐‘— โˆฅ หœ๐ท๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) โˆฅ๐œ•๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– หœ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) (cid:32)(cid:18) ๐‘5๐‘– ๐‘— =๐ถ ยท 2โˆฅ๐œ•๐‘– ๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) + |2๐›พ โˆ’ 1| ๐‘ ๐œ“ โˆฅ๐œ•๐‘–๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) + 1 2 (cid:33) 2๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป |2๐›พ โˆ’ 1| ๐‘ ๐œ“ (cid:16) + โˆฅ๐œ•๐‘– ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) + โˆฅ๐œ•๐‘— ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) (cid:33) 1 2 (cid:17) 2 (๐‘– < ๐‘—) โˆฅ๐œ•๐‘—๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) (cid:19) 2 โˆš๏ธ„(cid:18) ๐‘5๐‘–๐‘– =๐ถ ยท โˆฅ๐œ•๐‘–๐‘–๐œ™โˆฅ ๐ฟโˆž (๐‘‹) + |2๐›พ โˆ’ 1| ๐‘ ๐œ“ โˆฅ๐œ•๐‘–๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) (cid:19) 2 + โˆฅ๐œ•๐‘– ๐œ™โˆฅ2 ๐ฟโˆž (๐‘‹) ๐‘6 =|2๐›พ|๐ถ ยท โˆฅ๐œ™โˆฅ ๐ฟโˆž (๐‘‹) It remains to estimate the term โˆฅ๐œ“ โˆ’ หœ๐œ“โˆฅ๐ป1 (๐‘‹). Let us consider the adjoint equations โˆ’โˆ‡ ยท ๐ทโˆ‡๐œ“ + ๐œŽ๐‘Ž๐œ“ = 0, โˆ’โˆ‡ ยท หœ๐ทโˆ‡ หœ๐œ“ + หœ๐œŽ๐‘Ž หœ๐œ“ = 0. (2.54) Subtract these two equations to get โˆ’โˆ‡ ยท หœ๐ทโˆ‡(๐œ“ โˆ’ หœ๐œ“) + หœ๐œŽ๐‘Ž (๐œ“ โˆ’ หœ๐œ“) = โˆ‡ ยท (๐ท โˆ’ หœ๐ท)โˆ‡๐œ“ โˆ’ (๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž)๐œ“ (2.55) This is a second order elliptic equation for ๐œ“ โˆ’ หœ๐œ“ with the zero Robin boundary condition. Again, by the elliptic regularity result, we have โˆฅ๐œ“ โˆ’ หœ๐œ“โˆฅ๐ป1 (๐‘‹) โ‰ค๐ถ (โˆฅโˆ‡ ยท [(๐ท โˆ’ หœ๐ท)โˆ‡๐œ“] โˆฅ ๐ฟ2 (๐‘‹) + โˆฅ(๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž)๐œ“โˆฅ ๐ฟ2 (๐‘‹)) โ‰ค๐ถ (cid:18)โˆ‘๏ธ ๐‘– ๐‘— โˆ‘๏ธ + ๐‘– ๐‘— โˆฅ๐œ•๐‘— ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ๐œ•๐‘– (๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) โˆฅ๐œ•๐‘– ๐‘— ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ ๐ฟ2 (๐‘‹) + โˆฅ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆฅ(๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž) โˆฅ ๐ฟ2 (๐‘‹) (2.56) (cid:19) โ‰ค โˆ‘๏ธ ๐‘–โ‰ค ๐‘— ๐‘7๐‘– ๐‘— โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ๐ป1 (๐‘‹) + ๐‘8โˆฅ๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž โˆฅ ๐ฟ2 (๐‘‹) 27 with constants ๐‘7๐‘– ๐‘— , ๐‘8 > 0, where ๐‘7๐‘– ๐‘— = ๐ถ ยท ๐‘7๐‘–๐‘– = ๐ถ ยท โˆš๏ธƒ(cid:0)โˆฅ๐œ•๐‘–๐œ“โˆฅ ๐ฟโˆž (๐‘‹) + โˆฅ๐œ•๐‘— ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) โˆš๏ธƒ โˆฅ๐œ•๐‘–๐œ“โˆฅ2 ๐ฟโˆž (๐‘‹) + โˆฅ๐œ•๐‘–๐‘–๐œ“โˆฅ2 ๐ฟโˆž (๐‘‹) (cid:1) 2 + 4โˆฅ๐œ•๐‘– ๐‘— ๐œ“โˆฅ2 ๐ฟโˆž (๐‘‹) (๐‘– < ๐‘—) ๐‘8 = ๐ถ ยท โˆฅ๐œ“โˆฅ ๐ฟโˆž (๐‘‹) Combining (2.52) (2.53) (2.56), we conclude that โˆฅ๐‘† โˆ’ หœ๐‘†โˆฅ ๐ฟ2 (๐‘‹) โ‰ค โˆ‘๏ธ ๐‘–โ‰ค ๐‘— ๐ถ1๐‘– ๐‘— โˆฅ(๐ท โˆ’ หœ๐ท)๐‘– ๐‘— โˆฅ๐ป1 (๐‘‹) + ๐ถ2โˆฅ๐œŽ โˆ’ หœ๐œŽโˆฅ ๐ฟ2 (๐‘‹), (2.57) with ๐ถ1๐‘– ๐‘— = ๐‘1๐‘4๐‘7๐‘– ๐‘— + ๐‘1๐‘5๐‘– ๐‘— + ๐‘2๐‘– ๐‘— and ๐ถ2 = ๐‘1๐‘4๐‘8 + ๐‘1๐‘6 + ๐‘3. Note that all the constants in this proof are explicit, except for the constant ๐ถ that comes from the estimate of elliptic regularity. โ–ก Remark 2.12. Theorem 2.11 can be interpreted as follows. Squaring the estimate (2.51) gives โˆฅ๐‘† โˆ’ หœ๐‘†โˆฅ2 ๐ฟ2 (๐‘‹) โ‰ค โ„ญ (cid:16) โˆฅ๐ท โˆ’ หœ๐ท โˆฅ2 ๐ป1 (๐‘‹) + โˆฅ๐œŽ๐‘Ž โˆ’ หœ๐œŽ๐‘Ž โˆฅ2 ๐ฟ2 (๐‘‹) (cid:17) where the constant โ„ญ is in terms of ๐ถ1๐‘– ๐‘— and ๐ถ2. If we take ๐‘†, ๐ท, ๐œŽ๐‘Ž to be the underlying ground-truth parameters and หœ๐‘†, หœ๐ท, หœ๐œŽ๐‘Ž the corresponding parameters with random uncertainty of mean zero, then E[ หœ๐‘†] = ๐‘†, E[ หœ๐ท] = ๐ท, E[ หœ๐œŽ๐‘Ž] = ๐œŽ๐‘Ž. Therefore, the estimate provides a quantitative error bound on the variance of the bioluminescent source. 2.3.3.2 Uncertainty Quantification with Discretized Diffusive Model In the previous section, we considered the impact of inaccurate (๐ท, ๐œŽ๐‘Ž) using continuous PDE models. However, for the subsequent numerical simulation, the PDEs have to be discretized into finite dimensional discrete models. This motivates us to study a similar UQ problem based on the finite difference discretization of the PDE model. The analysis in this section provides a finite dimensional counterpart of the infinite dimensional UQ estimate (2.51), bridging the gap between the infinite dimensional analysis and the finite dimensional numerical experiments. We will consider the discretization of three diffusion-type equations: the forward problem (2.37) (2.38), the adjoint problem (2.39) (2.40), and the internal data problem (2.43) equipped with the 28 zero Robin boundary condition. These problems need to be discretized in order to implement the reconstruction procedure outlined in Section 2.3.1. The discretization procedure requires numerical evaluation of the terms โˆ‡ ยท ๐ทโˆ‡๐œ™0, ๐ทโˆ‡๐œ™0 ยท โˆ‡ log ๐œ“0, and ๐œŽ๐‘Ž๐œ™0. The last term can be readily evaluated on a grid. In the following, we explain how to discretize the first two differential operators using the staggered grid scheme. We take ๐‘‹ to be a 2D domain to agree with the setup of the subsequent numerical experiments. The 2D coordinates are written as (๐‘ฅ, ๐‘ฆ). The problem in 3D can be considered likewise with an additional spatial variable. Let ฮ”๐‘ฅ, ฮ”๐‘ฆ denote the grid size on the ๐‘ฅ-direction and ๐‘ฆ-direction, respectively. We will discretize the divergence-form diffusion operator using the staggered grid scheme, see Figure 2.6. The black dots are indexed by (๐‘–, ๐‘—), where ๐‘– = 1, 2, . . . , ๐‘๐‘ฅ, ๐‘— = 1, 2, . . . , ๐‘๐‘ฆ, white dots are indexed by (๐‘– + 1 2 , ๐‘—), where ๐‘– = 1, 2, . . . , ๐‘๐‘ฅ โˆ’ 1, ๐‘— = 1, 2, . . . , ๐‘๐‘ฆ and (๐‘–, ๐‘— + 1 2), where ๐‘– = 1, 2, . . . , ๐‘๐‘ฅ, ๐‘— = 1, 2, . . . , ๐‘๐‘ฆ โˆ’ 1. For a function ๐‘ข, we use ๐‘ข๐‘–, ๐‘— to represent an approximate value of ๐‘ข(๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ), where ๐‘ฅ๐‘– = ๐‘ฅ1 + (๐‘– โˆ’ 1)ฮ”๐‘ฅ and ๐‘ฆ ๐‘— = ๐‘ฆ1 + ( ๐‘— โˆ’ 1)ฮ”๐‘ฆ are the coordinates of the grid points. Figure 2.6 The illustration of staggered grid scheme. The zero and second order terms are defined on the grid points (black dots), the first order terms and ๐ท are defined on the edges (while dots). Discretization with Isotropic ๐ท. We begin the discretization with an isotropic diffusion coeffi- cient, that is, ๐ท = ๐ท (๐‘ฅ) is a scalar function. 29 Discretization of the Forward Problem. First, we consider discretization of the forward problem (2.37) (2.38). Using the staggered grid scheme, the operator โˆ‡ ยท ๐ทโˆ‡ is discretized as [โˆ‡ ยท ๐ทโˆ‡๐‘ข]๐‘–, ๐‘— =[๐œ•๐‘ฅ ๐ท๐œ•๐‘ฅ๐‘ข + ๐œ•๐‘ฆ ๐ท๐œ•๐‘ฆ๐‘ข]๐‘–, ๐‘— [๐ท๐œ•๐‘ฅ๐‘ข]๐‘–+ 1 2 , ๐‘— โˆ’ [๐ท๐œ•๐‘ฅ๐‘ข]๐‘–โˆ’ 1 ฮ”๐‘ฅ 2 [๐ท๐œ•๐‘ฆ๐‘ข]๐‘–, ๐‘—+ 1 2 , ๐‘— + โˆ’ [๐ท๐œ•๐‘ฆ๐‘ข]๐‘–, ๐‘—โˆ’ 1 ฮ”๐‘ฆ 2 , ๐‘— [๐‘ข๐‘–+1, ๐‘— โˆ’ ๐‘ข๐‘–, ๐‘— ] โˆ’ ๐ท๐‘–โˆ’ 1 2 , ๐‘— [๐‘ข๐‘–, ๐‘— โˆ’ ๐‘ข๐‘–โˆ’1, ๐‘— ] โ‰ˆ ๐ท๐‘–+ 1 2 โ‰ˆ ฮ”๐‘ฅ2 [๐‘ข๐‘–, ๐‘—+1 โˆ’ ๐‘ข๐‘–, ๐‘— ] โˆ’ ๐ท๐‘–, ๐‘—โˆ’ 1 2 [๐‘ข๐‘–, ๐‘— โˆ’ ๐‘ข๐‘–, ๐‘—โˆ’1] (2.58) = ๐‘ข๐‘–+1, ๐‘— + ๐ท๐‘–, ๐‘—+ 1 2 + 2 (cid:35) (cid:34) ๐ท๐‘–+ 1 , ๐‘— ฮ”๐‘ฅ2 (cid:34) ๐ท๐‘–+ 1 , ๐‘— ฮ”๐‘ฅ2 โˆ’ 2 ฮ”๐‘ฆ2 (cid:35) (cid:34) ๐ท๐‘–โˆ’ 1 , ๐‘— ฮ”๐‘ฅ2 2 ๐‘ข๐‘–โˆ’1, ๐‘— + ๐ท๐‘–โˆ’ 1 , ๐‘— ฮ”๐‘ฅ2 2 ๐ท๐‘–, ๐‘—+ 1 ฮ”๐‘ฆ2 2 + + + ๐ท๐‘–, ๐‘—โˆ’ 1 ฮ”๐‘ฆ2 2 2 (cid:34) ๐ท๐‘–, ๐‘—+ 1 ฮ”๐‘ฆ2 (cid:35) ๐‘ข๐‘–, ๐‘— , (cid:35) ๐‘ข๐‘–, ๐‘—+1 + (cid:35) (cid:34) ๐ท๐‘–, ๐‘—โˆ’ 1 ฮ”๐‘ฆ2 2 ๐‘ข๐‘–, ๐‘—โˆ’1 where โ‰ˆ denotes the staggered grid scheme approximation. For the Robin boundary condition on the four boundaries (excluding the four corners), it is simply ๐‘ข ยฑ 2๐ท๐œ•๐‘ฅ๐‘ข on the right/left boundary, ๐‘ข ยฑ 2๐ท๐œ•๐‘ฆ๐‘ข on the top/bottom boundary. For the four corner points, e.g. the bottom left corner (Figure 2.7), the outgoing vector ๐œˆ is chosen as โˆš 2 2 , โˆ’ โˆš 2 2 ). For example, (โˆ’ [๐‘ข + โ„“๐œˆ ยท ๐ทโˆ‡๐‘ข]1,1 =๐‘ข1,1 โˆ’ โˆš 2โ„“ 2 โˆš 2โ„“ 2 2โ„“๐ท 2ฮ”๐‘ฅ [๐ท๐œ•๐‘ฅ๐‘ข]1+ 1 ๐ท 2 ,1 1+ 1 2 ฮ”๐‘ฅ 1+ 1 2 ,1 + โˆš 2โ„“ 2 ,1 โˆ’ [๐‘ข1,1 โˆ’ ๐‘ข1,2] + โˆš 1,1+ 1 2 2โ„“๐ท 2ฮ”๐‘ฆ ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป 2 โˆš [๐ท๐œ•๐‘ฆ๐‘ข]1,1+ 1 2โ„“ 2 ๐ท ๐‘ข1,1 โˆ’ =๐‘ข1,1 + โˆš = 1 + ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ 1,1+ 1 2 ฮ”๐‘ฆ โˆš 2โ„“๐ท 2ฮ”๐‘ฅ [๐‘ข1,1 โˆ’ ๐‘ข2,1] โˆš 1+ 1 2 ,1 ๐‘ข1,2 โˆ’ 1,1+ 1 2 2โ„“๐ท 2ฮ”๐‘ฆ ๐‘ข2,1. (2.59) This discretization gives rise to a linear system with the unknowns ๐‘ข๐‘–, ๐‘— . In order to make this linear system explicit, we introduce the index function I (๐‘–, ๐‘—) (cid:66) (๐‘–โˆ’1)๐‘๐‘ฆ + ๐‘— and use (๐‘–, ๐‘—) โˆผ (๐‘–โ€ฒ, ๐‘— โ€ฒ) to mean that the (๐‘–โ€ฒ, ๐‘— โ€ฒ)-point is a neighbor of (๐‘–, ๐‘—)-point. Denote by ๐ผ the set of interior points, by ๐ต the set of non-corner boundary points, and by ๐ต๐‘ the set of four corner points. According to the scheme (2.58), (2.59), the forward problem (2.37) (2.38) is discretized to yield the linear system L๐“0 = s 30 Figure 2.7 The outgoing vector at the corner. where ๐“0 consists of the vectorized values of the forward solution ๐œ™0 at black dots such that ๐“0I (๐‘–, ๐‘—) = ๐œ™0(๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ). LI (๐‘–, ๐‘—),I (๐‘–โ€ฒ, ๐‘— โ€ฒ) = ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ (cid:205) (หœ๐‘–, หœ๐‘—)โˆผ(๐‘–, ๐‘—) ๐ท ๐‘–+๐‘–โ€ฒ 2 โˆ’ , |๐‘–โˆ’๐‘–โ€ฒ |ฮ”๐‘ฅ2+| ๐‘—โˆ’ ๐‘— โ€ฒ |ฮ”๐‘ฆ2 ๐‘—+ ๐‘—โ€ฒ 2 1 + โ„“ (cid:205)๐ผโˆ‹(หœ๐‘–, หœ๐‘—)โˆผ(๐‘–, ๐‘—) ๐ท ๐‘–+๐‘–โ€ฒ 2 |๐‘–โˆ’๐‘–โ€ฒ |ฮ”๐‘ฅ+| ๐‘—โˆ’ ๐‘— โ€ฒ |ฮ”๐‘ฆ , โˆš ๐‘—+ ๐‘—โ€ฒ 2 โˆ’โ„“ , (cid:205) 2โ„“ 2 (หœ๐‘–, หœ๐‘—)โˆผ(๐‘–, ๐‘—) ๐ท ๐‘–+๐‘–โ€ฒ 2 , ๐‘—+ ๐‘—โ€ฒ 2 |๐‘–โˆ’๐‘–โ€ฒ |ฮ”๐‘ฅ+| ๐‘—โˆ’ ๐‘— โ€ฒ |ฮ”๐‘ฆ , 2โ„“ 2 1 + โˆš โˆ’ 0 ๐ท ๐‘–+หœ๐‘– 2 , ๐‘—+ หœ๐‘— 2 |๐‘–โˆ’หœ๐‘–|ฮ”๐‘ฅ2+| ๐‘—โˆ’ หœ๐‘— |ฮ”๐‘ฆ2 + ๐œŽ๐‘–, ๐‘— , (๐‘–โ€ฒ, ๐‘— โ€ฒ) = (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ผ , (๐‘–โ€ฒ, ๐‘— โ€ฒ) โˆผ (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ผ ๐ท ๐‘–+หœ๐‘– , 2 |๐‘–โˆ’หœ๐‘–|ฮ”๐‘ฅ+| ๐‘—โˆ’ หœ๐‘— |ฮ”๐‘ฆ ๐‘—+ หœ๐‘— 2 , (๐‘–โ€ฒ, ๐‘— โ€ฒ) = (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ต ๐ผ โˆ‹ (๐‘–โ€ฒ, ๐‘— โ€ฒ) โˆผ (๐‘–, ๐‘—) โˆˆ ๐ต, (2.60) ๐ท ๐‘–+หœ๐‘– , 2 |๐‘–โˆ’หœ๐‘–|ฮ”๐‘ฅ+| ๐‘—โˆ’ หœ๐‘— |ฮ”๐‘ฆ ๐‘—+ หœ๐‘— 2 , (๐‘–โ€ฒ, ๐‘— โ€ฒ) = (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ต๐‘, (๐‘–โ€ฒ, ๐‘— โ€ฒ) โˆผ (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ต๐‘, others sI (๐‘–, ๐‘—) = ๐‘†๐‘–, ๐‘— , (๐‘–, ๐‘—) โˆˆ ๐ผ, 0, (๐‘–, ๐‘—) โˆˆ ๐ต โˆช ๐ต๐‘. (2.61) ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ Before discussing further properties of the matrix L, we recall the definition of some special matrices. Given a square matrix ๐ด = ( ๐ด๐‘˜๐‘™), its ๐‘˜-th row is said to be weakly diagonally dominant (WDD) if | ๐ด๐‘˜ ๐‘˜ | โ‰ฅ (cid:205)๐‘™โ‰ ๐‘˜ | ๐ด๐‘˜๐‘™ |, and the matrix ๐ด is said to be WDD if all the rows are WDD. Likewise, its ๐‘˜-th row is said to be strictly diagonally dominant (SDD) if โ‰ฅ is replaced by a strict inequality >, and the matrix ๐ด is said to be SDD if all the rows are WDD. 31 ฮฝ Definition 2.13. A square matrix ๐ด = ( ๐ด๐‘˜๐‘™) is said to be weakly chained diagonally dominant (WCDD) if โ€ข ๐ด is WDD. โ€ข For each row ๐‘˜ that is not SDD, there exists ๐‘˜1, ๐‘˜2, . . . , ๐‘˜ ๐‘ such that ๐ด๐‘˜ ๐‘˜1, ๐ด๐‘˜1๐‘˜2, . . . , ๐ด๐‘˜ ๐‘โˆ’1๐‘˜ ๐‘ , ๐ด๐‘˜ ๐‘๐‘™ are nonzero and the row ๐ด๐‘™,: is SDD. Proposition 2.14. L is a WCDD matrix. Proof. First, we show L is WDD. As ๐ท > 0, ๐œŽ๐‘Ž โ‰ฅ 0 everywhere, all the off-diagonal terms (see Row 2, 4, 6, 7 in (2.60)) are non-positive and all the diagonal terms (see Row 1, 3, 5 in (2.60)) are non-negative. It suffices to show that LI (๐‘–, ๐‘—),I (๐‘–, ๐‘—) โ‰ฅ โˆ‘๏ธ (๐‘–โ€ฒ, ๐‘— โ€ฒ)โ‰ (๐‘–, ๐‘—) โˆ’LI (๐‘–, ๐‘—),I (๐‘–โ€ฒ, ๐‘— โ€ฒ). Move all the terms in this inequality to the left side. It suffices to show that any row sum of L is non-negative. This is obvious from the definition of L in (2.60), where the row sum of the I (๐‘–, ๐‘—)- th row is ๐œŽ๐‘–, ๐‘— when (๐‘–, ๐‘—) โˆˆ ๐ผ, and the row sum of the I (๐‘–, ๐‘—)-th row is 1 when (๐‘–, ๐‘—) โˆˆ ๐ต โˆช ๐ต๐‘. This proves that L is WDD. Moreover, the analysis shows that the I (๐‘–, ๐‘—)-th row is SDD when (๐‘–, ๐‘—) โˆˆ ๐ต โˆช ๐ต๐‘. Next, we show the chain condition. If the I (๐‘–, ๐‘—)-th row is not SDD, then (๐‘–, ๐‘—) โˆˆ ๐ผ. As the finite difference grid is connected, there exist (๐‘–1, ๐‘—1), . . . , (๐‘– ๐‘, ๐‘— ๐‘) such that (๐‘– ๐‘, ๐‘— ๐‘) โˆˆ ๐ต โˆช ๐ต๐‘ and (๐‘–, ๐‘—) โˆผ (๐‘–1, ๐‘—1) โˆผ ยท ยท ยท โˆผ (๐‘– ๐‘, ๐‘— ๐‘). Notice that the definition of L has the property that LI (๐‘–, ๐‘—),I (๐‘–โ€ฒ, ๐‘— โ€ฒ) < 0 for (๐‘–, ๐‘—) โˆผ (๐‘–โ€ฒ, ๐‘— โ€ฒ) (see Row 2,4,6 in (2.60)), we conclude the entries LI (๐‘–, ๐‘—),I (๐‘–1, ๐‘—1), . . . , LI (๐‘– ๐‘โˆ’1, ๐‘— ๐‘โˆ’1),I (๐‘– ๐‘, ๐‘— ๐‘) are all negative, and the row LI (๐‘– ๐‘, ๐‘— ๐‘),: is SDD since (๐‘– ๐‘, ๐‘— ๐‘) โˆˆ ๐ต โˆช ๐ต๐‘. โ–ก Proposition 2.15 ( [82]). WCDD matrices are invertible. As a result, the discretized forward problem admits a unique solution ๐“0 = Lโˆ’1s. 32 Discretization of the Adjoint Problem. The adjoint problem(2.39), (2.40) takes a similar form as the forward problem, except that the source ๐‘” is imposed on the boundary. Therefore, the adjoint problem can be discretized likewise to yield a linear system L๐ = g where L is the same finite difference matrix defined in (2.60), ๐ consists of the vectorized values of the adjoint solution ๐œ“ at black dots such that ๐I (๐‘–, ๐‘—) = ๐œ“(๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ), and gI (๐‘–, ๐‘—) = ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ 0, (๐‘–, ๐‘—) โˆˆ ๐ผ, ๐‘”(๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ), (๐‘–, ๐‘—) โˆˆ ๐ต โˆช ๐ต๐‘. (2.62) Discretization of the Internal Data Problem. It remains to discretize the internal data problem (2.43) along with the zero Robin boundary condition. This requires discretizing an operator of the form ๐ทโˆ‡๐‘ข ยท โˆ‡๐‘ฃ = ๐ทโˆ‡๐‘ฃ ยท โˆ‡๐‘ข. The staggered grid scheme gives โ‰ˆ โ‰ˆ [๐ทโˆ‡๐‘ฃ ยท โˆ‡๐‘ข]๐‘–, ๐‘— [๐ท๐œ•๐‘ฅ๐‘ข๐œ•๐‘ฅ๐‘ฃ]๐‘–+ 1 2 , ๐‘— + [๐ท๐œ•๐‘ฅ๐‘ข๐œ•๐‘ฅ๐‘ฃ]๐‘–โˆ’ 1 2 2 [๐ท๐œ•๐‘ฅ๐‘ฃ]๐‘–+ 1 2 , ๐‘— [๐‘ข๐‘–+1, ๐‘— โˆ’ ๐‘ข๐‘–, ๐‘—] + [๐ท๐œ•๐‘ฅ๐‘ฃ]๐‘–โˆ’ 1 2 , ๐‘— + [๐ท๐œ•๐‘ฆ๐‘ข๐œ•๐‘ฆ๐‘ฃ]๐‘–, ๐‘—+ 1 + [๐ท๐œ•๐‘ฆ๐‘ข๐œ•๐‘ฆ๐‘ฃ]๐‘–, ๐‘— โˆ’ 1 2 , ๐‘— [๐‘ข๐‘–, ๐‘— โˆ’ ๐‘ข๐‘–โˆ’1, ๐‘—] 2 2 [๐ท๐œ•๐‘ฆ๐‘ฃ]๐‘–, ๐‘—+ 1 2 + 2ฮ”๐‘ฅ [๐‘ข๐‘–, ๐‘—+1 โˆ’ ๐‘ข๐‘–, ๐‘—] + [๐ท๐œ•๐‘ฆ๐‘ฃ]๐‘–, ๐‘— โˆ’ 1 2ฮ”๐‘ฆ 2 [๐‘ข๐‘–, ๐‘— โˆ’ ๐‘ข๐‘–, ๐‘— โˆ’1] (cid:34) ๐ท๐‘–+ 1 2 = , ๐‘— [๐‘ฃ๐‘–+1, ๐‘— โˆ’ ๐‘ฃ๐‘–, ๐‘—] (cid:35) ๐‘ข๐‘–+1, ๐‘— + (cid:34) ๐ท๐‘–, ๐‘—+ 1 2ฮ”๐‘ฅ2 [๐‘ฃ๐‘–, ๐‘—+1 โˆ’ ๐‘ฃ๐‘–, ๐‘—] 2ฮ”๐‘ฆ2 2 (cid:35) ๐‘ข๐‘–, ๐‘—+1 + (cid:34) ๐ท๐‘–โˆ’ 1 2 , ๐‘— [๐‘ฃ๐‘–โˆ’1, ๐‘— โˆ’ ๐‘ฃ๐‘–, ๐‘—] (cid:35) (cid:34) ๐ท๐‘–, ๐‘— โˆ’ 1 2ฮ”๐‘ฅ2 [๐‘ฃ๐‘–, ๐‘— โˆ’1 โˆ’ ๐‘ฃ๐‘–, ๐‘—] 2ฮ”๐‘ฆ2 , ๐‘— [๐‘ฃ๐‘–โˆ’1, ๐‘— โˆ’ ๐‘ฃ๐‘–, ๐‘—] 2 ๐‘ข๐‘–โˆ’1, ๐‘— (cid:35) ๐‘ข๐‘–, ๐‘— โˆ’1 + โˆ’ (cid:34) ๐ท๐‘–+ 1 2 , ๐‘— [๐‘ฃ๐‘–+1, ๐‘— โˆ’ ๐‘ฃ๐‘–, ๐‘—] 2ฮ”๐‘ฅ2 ๐ท๐‘–โˆ’ 1 2 + 2ฮ”๐‘ฅ2 ๐ท๐‘–, ๐‘—+ 1 2 + [๐‘ฃ๐‘–, ๐‘—+1 โˆ’ ๐‘ฃ๐‘–, ๐‘—] 2ฮ”๐‘ฆ2 + ๐ท๐‘–, ๐‘— โˆ’ 1 2 (cid:35) [๐‘ฃ๐‘–, ๐‘— โˆ’1 โˆ’ ๐‘ฃ๐‘–, ๐‘—] 2ฮ”๐‘ฆ2 ๐‘ข๐‘–, ๐‘—, The discretization of (2.43) becomes A๐0 ๐“0 = h๐0 33 where ๐“0 consists of the vectorized values of the forward solution ๐œ™0 at black dots such that ๐“0I (๐‘–, ๐‘—) = ๐œ™(๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ), and ๐ท ๐‘–+ หœ๐‘– 2 , [ ๐œ“๐‘–, ๐‘— + 2๐›พโˆ’1 ๐‘—+ หœ๐‘— 2 |๐‘–โˆ’ หœ๐‘– |ฮ”๐‘ฅ2+| ๐‘— โˆ’ หœ๐‘— |ฮ”๐‘ฆ2 2 [ ๐œ“หœ๐‘–, หœ๐‘— โˆ’ ๐œ“๐‘–, ๐‘— ] ] + 2๐›พ๐œŽ๐‘–, ๐‘—๐œ“๐‘–, ๐‘—, (๐‘–โ€ฒ, ๐‘— โ€ฒ) = (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ผ ( หœ๐‘–, หœ๐‘— )โˆผ(๐‘–, ๐‘— ) , (๐‘–โ€ฒ, ๐‘— โ€ฒ) โˆผ (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ผ (A๐œ“)I (๐‘–, ๐‘—),I (๐‘–โ€ฒ, ๐‘— โ€ฒ) = ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ โˆ’ (cid:205) ๐ท ๐‘–+๐‘–โ€ฒ 2 , [ ๐œ“๐‘–โ€ฒ , ๐‘—โ€ฒ โˆ’ ๐œ“๐‘–, ๐‘— ] ] 2 [ ๐œ“๐‘–, ๐‘— + 2๐›พโˆ’1 ๐‘—+ ๐‘—โ€ฒ 2 |๐‘–โˆ’๐‘–โ€ฒ |ฮ”๐‘ฅ2+| ๐‘— โˆ’ ๐‘—โ€ฒ |ฮ”๐‘ฆ2 ๐ท ๐‘–+ หœ๐‘– , 2 |๐‘–โˆ’ หœ๐‘– |ฮ”๐‘ฅ+| ๐‘— โˆ’ หœ๐‘— |ฮ”๐‘ฆ ๐‘—+ หœ๐‘— 2 1 + โ„“ (cid:205)๐ผ โˆ‹ ( หœ๐‘–, หœ๐‘— )โˆผ(๐‘–, ๐‘— ) ๐ท ๐‘–+๐‘–โ€ฒ 2 |๐‘–โˆ’๐‘–โ€ฒ |ฮ”๐‘ฅ+| ๐‘— โˆ’ ๐‘—โ€ฒ |ฮ”๐‘ฆ , ๐‘—+ ๐‘—โ€ฒ 2 โˆ’โ„“ , 1 + โˆš 2โ„“ 2 (cid:205) ( หœ๐‘–, หœ๐‘— )โˆผ(๐‘–, ๐‘— ) ๐ท ๐‘–+๐‘–โ€ฒ 2 ๐‘—+ ๐‘—โ€ฒ 2 , |๐‘–โˆ’๐‘–โ€ฒ |ฮ”๐‘ฅ+| ๐‘— โˆ’ ๐‘—โ€ฒ |ฮ”๐‘ฆ , โˆš 2โ„“ 2 โˆ’ 0 ๐ท ๐‘–+ หœ๐‘– , 2 |๐‘–โˆ’ หœ๐‘– |ฮ”๐‘ฅ+| ๐‘— โˆ’ หœ๐‘— |ฮ”๐‘ฆ ๐‘—+ หœ๐‘— 2 , (๐‘–โ€ฒ, ๐‘— โ€ฒ) = (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ต ๐ผ โˆ‹ (๐‘–โ€ฒ, ๐‘— โ€ฒ) โˆผ (๐‘–, ๐‘—) โˆˆ ๐ต, , (๐‘–โ€ฒ, ๐‘— โ€ฒ) = (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ต๐‘, (๐‘–โ€ฒ, ๐‘— โ€ฒ) โˆผ (๐‘–, ๐‘—), (๐‘–, ๐‘—) โˆˆ ๐ต๐‘, others (h๐œ“)I (๐‘–, ๐‘—) = (๐ป๐œ“)๐‘–, ๐‘— , (๐‘–, ๐‘—) โˆˆ ๐ผ, 0, (๐‘–, ๐‘—) โˆˆ ๐ต โˆช ๐ต๐‘. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ Discrete Uncertainty Quantification Estimate. In parallel to Theorem 2.11, we can derive the following UQ estimate for the discretized model. Note that the uncertainties of the optical parameters (๐ท, ๐œŽ๐‘Ž) are implicitly encoded in the difference หœL โˆ’ L and หœA หœ๐“0 โˆ’ A๐“0. Theorem 2.16 ( [97]). Suppose 0 is not an eigenvalue of A๐0 for some ๐0 > 0, then โˆฅหœs โˆ’ sโˆฅ2 โ‰คโˆฅh๐“0 โˆฅ2(โˆฅAโˆ’1 ๐œ“0 โˆฅ2โˆฅ หœL โˆ’ Lโˆฅ2 + โˆฅ หœLโˆฅ2โˆฅ หœAโˆ’1 หœ๐“0 โˆฅ2โˆฅAโˆ’1 ๐“0 โˆฅ2โˆฅ หœA หœ๐“0 โˆ’ A๐“0 โˆฅ2). (2.63) Proof. Under the assumption, the matrix A๐0 is invertible for some ๐0 > 0. We can represent ๐“0 = Aโˆ’1 ๐0 h๐œ“0, then s = L๐“0 = LAโˆ’1 ๐0 h๐0. Therefore, )h๐“0 โˆฅ2 โˆ’ LAโˆ’1 ๐“0 โˆฅหœs โˆ’ sโˆฅ2 =โˆฅ( หœL หœAโˆ’1 หœ๐“0 โ‰คโˆฅ หœL หœAโˆ’1 หœ๐“0 โ‰ค(โˆฅ ( หœL โˆ’ L)Aโˆ’1 ๐“0 โˆ’ LAโˆ’1 ๐“0 โˆฅ2โˆฅh๐“0 โˆฅ2 (2.64) โˆฅ2 + โˆฅ หœL( หœAโˆ’1 หœ๐“0 โˆ’ Aโˆ’1 ๐“0 ) โˆฅ2) โˆฅh๐“0 โˆฅ2 โ‰ค(โˆฅ หœL โˆ’ Lโˆฅ2โˆฅAโˆ’1 ๐“0 โˆฅ2 + โˆฅ หœLโˆฅ2โˆฅ หœAโˆ’1 หœ๐“0 โˆ’ Aโˆ’1 ๐“0 โˆฅ2) โˆฅh๐“0 โˆฅ2 where โˆฅ ยท โˆฅ2 denotes the vector/matrix 2-norm. Using the relation ๐ดโˆ’1 โˆ’ ๐ตโˆ’1 = ๐ดโˆ’1(๐ต โˆ’ ๐ด)๐ตโˆ’1, we obtain the desired estimate. โ–ก 34 Discretization with Anisotropic ๐ท. When ๐ท is anisotropic, i.e, a symmetric positive definition matrix-valued function, the operators โˆ‡ ยท ๐ทโˆ‡ and ๐ทโˆ‡๐‘ฃ ยท โˆ‡ can be discretized as follows [โˆ‡ ยท ๐ทโˆ‡๐‘ข]๐‘–, ๐‘— = [๐ทโˆ‡๐‘ฃ ยท โˆ‡๐‘ข]๐‘–, ๐‘— = [(๐ทโˆ‡๐‘ข)1]๐‘–+ 1 , ๐‘— โˆ’ [(๐ทโˆ‡๐‘ข)1]๐‘–โˆ’ 1 ฮ”๐‘ฅ [(๐ทโˆ‡๐‘ฃ)1๐œ•๐‘ฅ๐‘ข]๐‘–+ 1 2 2 , ๐‘— + [(๐ทโˆ‡๐‘ฃ)2๐œ•๐‘ฅ๐‘ข]๐‘–โˆ’ 1 , ๐‘— + [(๐ทโˆ‡๐‘ข)2]๐‘–, ๐‘—+ 1 2 โˆ’ [(๐ทโˆ‡๐‘ข)2]๐‘–, ๐‘—โˆ’ 1 ฮ”๐‘ฆ [(๐ทโˆ‡๐‘ฃ)2๐œ•๐‘ฆ๐‘ข]๐‘–, ๐‘—+ 1 2 2 , ๐‘— + 2 2 2 + [(๐ทโˆ‡๐‘ฃ)2๐œ•๐‘ฆ๐‘ข]๐‘–, ๐‘—โˆ’ 1 2 2 where (๐ทโˆ‡๐‘ข)1 (resp. (๐ทโˆ‡๐‘ข)2) denotes the first (resp. second) component of the vector ๐ทโˆ‡๐‘ข. The discretization now differs from the isotropic case. This is because for an isotropic ๐ท (๐ทโˆ‡๐‘ข)1 = ๐ท๐œ•๐‘ฅ๐‘ข, (๐ทโˆ‡๐‘ข)2 = ๐ท๐œ•๐‘ฆ๐‘ข which only requires to compute [๐œ•๐‘ฅ๐‘ข]๐‘–+ 1 anisotropic ๐ท: 2 , ๐‘— and [๐œ•๐‘ฆ๐‘ข]๐‘–, ๐‘—+ 1 2 in the staggered grid. However, for an (๐ทโˆ‡๐‘ข)1 = ๐ท11๐œ•๐‘ฅ๐‘ข + ๐ท12๐œ•๐‘ฆ๐‘ข, (๐ทโˆ‡๐‘ข)2 = ๐ท21๐œ•๐‘ฅ๐‘ข + ๐ท22๐œ•๐‘ฆ๐‘ข which requires to compute two additional terms [๐œ•๐‘ฅ๐‘ข]๐‘–, ๐‘—+ 1 2 and [๐œ•๐‘ฆ๐‘ข]๐‘–+ 1 2 , ๐‘— . These additional terms can be discretized as follows: [๐œ•๐‘ฆ๐‘ข]๐‘–+ 1 2 , ๐‘— = [๐œ•๐‘ฅ๐‘ข]๐‘–, ๐‘—+ 1 2 = [๐œ•๐‘ฆ๐‘ข]๐‘–, ๐‘— + [๐œ•๐‘ฆ๐‘ข]๐‘–+1, ๐‘— 2 [๐œ•๐‘ฅ๐‘ข]๐‘–, ๐‘— + [๐œ•๐‘ฅ๐‘ข]๐‘–, ๐‘—+1 2 = = ๐‘ข๐‘–+1, ๐‘—+1 + ๐‘ข๐‘–, ๐‘—+1 โˆ’ ๐‘ข๐‘–, ๐‘—โˆ’1 โˆ’ ๐‘ข๐‘–+1, ๐‘—โˆ’1 4ฮ”๐‘ฆ ๐‘ข๐‘–+1, ๐‘—+1 + ๐‘ข๐‘–+1, ๐‘— โˆ’ ๐‘ข๐‘–โˆ’1, ๐‘— โˆ’ ๐‘ข๐‘–โˆ’1, ๐‘—+1 4ฮ”๐‘ฅ , , see [45] for the detail. Once discretized, the rest of the steps are similar and one can derive the estimate in Theorem 2.3.3.3 Numerical Experiment In this section, we demonstrate numerical experiments to validate the reconstruction procedure and quanfity the impact of inaccurate optical coefficients (๐ท, ๐œŽ๐‘Ž) to the source recovery. We will restrict the discussion in this section to isotropic ๐ท for the ease of notations. Uncertainty Generation We will utilize the generalized Polynomial Chaos Expansion (PCE) to facilitate generation of uncertainty. PCE approximates a well-behaved random variable using 35 a series of polynomials under certain probability distribution. Specifically, let (๐‘‹, F , P) be a probability space, and let ๐œ‰ (๐œ”) be a random variable (where ๐œ” is a sample) with probability density function ๐‘(๐‘ก). Suppose a deterministic ground-truth ๐”ฒ = ๐”ฒ(x) is given, then the uncertainty generated by PCE takes the form ๐”ฒ(x, ๐œ‰ (๐œ”)) = โˆž โˆ‘๏ธ ๐‘˜=0 ๐”ฒ๐‘˜ (x)ฮฆ๐‘˜ (๐œ‰ (๐œ”)), (๐‘ฅ, ๐œ”) โˆˆ ฮฉ ร— ๐‘‹ (2.65) where ๐”ฒ๐‘˜ (x)โ€™s are the coefficients, ๐”ฒ0 is the ground truth, ฮฆ0 = 1, ฮฆ๐‘˜ โ€™s are orthogonal polynomials, that is, โˆซ R ฮฆ๐‘– (๐‘ก)ฮฆ ๐‘— (๐‘ก) ๐‘(๐‘ก) d๐‘ก = ๐›ฟ๐‘– ๐‘— . For the numerical experiments, ๐œ‰ is chosen to be uniformly distributed on the sample space ๐‘‹ = [โˆ’1, 1]; ฮฆ๐‘˜ โ€™s are the Legendre polynomials on [โˆ’1, 1]; the PCE is truncated at ๐‘˜ = ๐พ๐‘. Then E[๐”ฒ] = ๐”ฒ0, Var[๐”ฒ] = ๐พ๐‘โˆ‘๏ธ ๐‘˜=1 ๐‘˜ . ๐”ฒ2 In the subsequent numerical experiments, we inject uncertainties into the optical coefficients (๐ท, ๐œŽ๐‘Ž) based on the following process: (1) Generate the coefficients ๐”ฒ๐ท ๐‘˜ , ๐”ฒ๐œŽ๐‘Ž ๐‘˜ using the truncated Fourier series in x: ๐”ฒ๐ท ๐‘˜ = ๐”ฒ๐œŽ๐‘Ž ๐‘˜ = โˆ‘๏ธ โˆฅnโˆฅโˆž=๐‘˜ โˆ‘๏ธ โˆฅnโˆฅโˆž=๐‘˜ ๐‘1n sin(๐œ‹n ยท x) + ๐‘2n cos(๐œ‹n ยท x), ๐‘3n sin(๐œ‹n ยท x) + ๐‘4n cos(๐œ‹n ยท x). Here n โˆˆ Z๐‘›, the Fourier coefficients ๐‘1n, ๐‘2n, ๐‘3n, ๐‘4n are independently chosen from the uniform distributions on [โˆ’1, 1]. Once generated, they are fixed so that the coefficients ๐”ฒ๐ท ๐‘˜ , ๐”ฒ๐œŽ๐‘Ž ๐‘˜ are deterministic. (2) Randomly generate ๐œ‰ from the uniform distribution on [โˆ’1, 1], then construct the uncertain- ties ๐”ฒ๐ท, ๐”ฒ๐œŽ๐‘Ž according to (2.65) with ๐‘˜ = 1, 2, . . . , 10: ๐”ฒ๐ท (cid:66) 10 โˆ‘๏ธ ๐‘˜=1 ๐”ฒ๐ท ๐‘˜ ฮฆ๐‘˜ (๐œ‰ (๐œ”)), ๐”ฒ๐œŽ๐‘Ž (cid:66) 10 โˆ‘๏ธ ๐‘˜=1 ๐”ฒ๐œŽ๐‘Ž ๐‘˜ ฮฆ๐‘˜ (๐œ‰ (๐œ”)) Note that E[๐”ฒ๐ท] = E[๐”ฒ๐œŽ๐‘Ž] = 0. 36 (3) Once the uncertainties are generated, we rescale the uncertainties based on prescribed relative uncertainty levels ๐‘’๐ท, ๐‘’๐œŽ๐‘Ž to construct the optical coefficients with uncertainty ( หœ๐ท, หœ๐œŽ๐‘Ž) as follows: หœ๐ท := ๐ท + หœ๐œŽ๐‘Ž := ๐œŽ๐‘Ž + โˆฅ๐ท โˆฅ๐ป1, ๐”ฒ๐ท ๐‘’๐ท โˆฅ๐”ฒ๐ท โˆฅ๐ป1 ๐”ฒ๐œŽ๐‘Ž ๐‘’๐œŽ๐‘Ž โˆฅ๐”ฒ๐œŽ๐‘Ž โˆฅ ๐ฟ2 โˆฅ๐œŽ๐‘Ž โˆฅ ๐ฟ2. (2.66) The impact of the inaccuracy in the optical coefficients will be quantitatively measured by the relative standard deviation defined as follows: E๐‘† (cid:66) โˆš๏ธƒ E[โˆฅ หœ๐‘† โˆ’ ๐‘†โˆฅ2 ๐ฟ2] โˆฅ๐‘†โˆฅ ๐ฟ2 , E๐ท (cid:66) โˆš๏ธƒE[โˆฅ หœ๐ท โˆ’ ๐ท โˆฅ2 โˆฅ๐ท โˆฅ๐ป1 ๐ป1] , E๐œŽ๐‘Ž (cid:66) โˆš๏ธƒE[โˆฅ หœ๐œŽ๐‘Ž โˆ’ ๐œŽ๐‘Ž โˆฅ2 ๐ฟ2] โˆฅ๐œŽ๐‘Ž โˆฅ ๐ฟ2 . (2.67) Note that E๐ท = ๐‘’๐ท and E๐œŽ๐‘Ž = ๐‘’๐œŽ๐‘Ž are precisely the relative uncertainty levels that are used to define ( หœ๐ท, หœ๐œŽ๐‘Ž) in (2.66). This justifies that the relative standard deviation is a reasonable quantity to measure the uncertainty. In the following, we will specify various uncertainty levels ๐‘’๐ท, ๐‘’๐œŽ๐‘Ž and plot E๐‘† versus them, see Figure 2.12 and Figure 2.17. Numerical Implementation. We choose the 2D computational domain ฮฉ = [โˆ’1, 1]2, โ„“ = 1. The diffusion equation is solved using the staggered grid scheme as is outlined in Section 2.3.3.2. To avoid the inverse crime, the forward problem is solved on a fine mesh with step size โ„Ž = 1 200, while the inverse problem is solved on a coarse mesh with step size โ„Ž = 1 100 using re-sampled data. We numerically calculate the noise-free ๐œ™0 and ๐œ“0 using ground truth ๐‘† and (๐ท, ๐œŽ๐‘Ž), here we choose ๐œ“0 > 0 by solving (2.39) with a positive Dirichlet boundary condition. Once we have ๐œ™0 and ๐œ“0, we can calculate the internal data ๐ป๐œ“0 through (2.43). Note that the internal data is derived from the boundary measurement, hence is independent of the uncertainty on the optical coefficients. Experiment 1. In this experiment, we consider the case that the optical coefficients can be represented using low-frequency Fourier basis. We choose ๐ท = cos2(๐‘ฅ + 2๐‘ฆ) โˆ’ 3 sin2(3๐‘ฅ โˆ’ 4๐‘ฆ) + 5, ๐œŽ๐‘Ž = cos2(5๐‘ฅ) + sin2(5๐‘ฆ) + 1, and the source ๐‘† to be the Shepp-Logan phantom, see Figure 2.8. 37 Figure 2.8 Left: Diffusion coefficient ๐ท. Middle: Absorption coefficient ๐œŽ๐‘Ž. Right: Shepp-Logan Source ๐‘†. Using the ground-truth (๐ท, ๐œŽ๐‘Ž), we generate the uncertainties according to (2.66) to obtain 1000 samples of the inaccurate optical coefficients ( หœ๐ท, หœ๐œŽ๐‘Ž). Set ฮ”๐ท := หœ๐ท โˆ’ ๐ท and ฮ”๐œŽ๐‘Ž = หœ๐œŽ๐‘Ž โˆ’ ๐œŽ๐‘Ž. We implemented the reconstruction procedure 1000 times to plot the distribution of โˆฅฮ”๐‘†โˆฅ ๐ฟ2 versus โˆฅฮ”๐ท โˆฅ๐ป1 and โˆฅฮ”๐œŽ๐‘Ž โˆฅ ๐ฟ2, see Figure 2.9. It is clear that for fixed โˆฅฮ”๐ท โˆฅ๐ป1, โˆฅฮ”๐‘†โˆฅ ๐ฟ2 is more concentrated compared to fixed โˆฅฮ”๐œŽ๐‘Ž โˆฅ ๐ฟ2, suggesting that the uncertainty in หœ๐ท has larger impact to the reconstruction than the uncertainty in หœ๐œŽ๐‘Ž. Moreover, the distribution of the scatter plot suggests that โˆฅฮ”๐‘†โˆฅ ๐ฟ2 is locally Lipschitz stable with respect to โˆฅฮ”๐ท โˆฅ๐ป1 for small ฮ”๐ท, agreeing with the estimates in Theorem 2.11 and Theorem 2.16 One of the reconstructions is illustrated in Figure 2.10, and the average of the 1000 reconstructed sources is illustrated in Figure 2.11. We can see that the averaged หœ๐‘† is close to the ground truth ๐‘†, which means the relation between หœ๐‘† and ( หœ๐ท, หœ๐œŽ๐‘Ž) near (๐ท, ๐œŽ๐‘Ž) have no sharp points, see Remark 2.17. It implies that the uncertainty in หœ๐‘† have certain regularity with respect to the uncertainties in ( หœ๐ท, หœ๐œŽ๐‘Ž). To better understand the relations between E๐‘† versus E๐ท (resp. E๐‘† versus E๐œŽ๐‘Ž), we take ฮ”๐œŽ๐‘Ž = 0 (resp. ฮ”๐ท = 0) and add ๐‘’๐ท = 2%, 4%, 6%, 8%, 10% of random noise to ๐ท (resp. ๐‘’๐œŽ๐‘Ž = 2%, 4%, 6%, 8%, 10% of random noise to ๐œŽ๐‘Ž). The plots are shown in Figure 2.12. We observe that E๐‘† depends linearly or superlinearly on E๐ท and E๐œŽ๐‘Ž, and the same level of relative uncertainty on ๐ท has larger impact than on ๐œŽ๐‘Ž. We remark that the plotted curves are nonlinear because the constant factors ๐ถ1๐‘– ๐‘— , ๐ถ2 in Theorem 2.11 also depend on ( หœ๐ท, หœ๐œŽ๐‘Ž). Remark 2.17. Choose random variable ๐‘‹ โˆผ ๐‘ (cid:16) , ๐‘“๐›ผ (๐‘ฅ) = |๐‘ฅ|๐›ผ (0 < ๐›ผ < 1), we have 0 = ๐‘“๐›ผ (E[๐‘‹]) < E[ ๐‘“๐›ผ (๐‘‹)] = ฮ“ (cid:19) (cid:18) ๐›ผ + 1 2 < 1, (cid:17) 0, 1 100 2โˆ’ ๐›ผ 2 5โˆ’๐›ผ โˆš ๐œ‹ 38 -1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.812.533.544.555.56-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.811.21.41.61.822.22.42.62.8-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.10.20.30.40.50.60.70.80.91 Figure 2.9 The distribution of the error with respect to the inaccuracies in optical coefficients. Figure 2.10 Reconstructed source หœ๐‘† and its error under 10% Gaussian random noise. Figure 2.11 Averaged reconstructed source หœ๐‘† and its error under 10% Gaussian random noise. and E[ ๐‘“๐›ผ (๐‘‹)] is monotonically converged to 1 as ๐›ผ โ†’ 0+. 39 00.20.40.60.811.21.4|| D||0.040.050.060.070.080.090.10.110.120.130.14|| S||00.10.20.30.40.50.60.7||||0.040.050.060.070.080.090.10.110.120.130.14|| S||-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.20.40.60.811.2-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.020.040.060.080.10.120.140.16-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.20.40.60.81-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.010.020.030.040.050.060.070.080.090.1 Figure 2.12 Left: E๐‘† versus E๐œŽ๐‘Ž. Right: E๐‘† versus E๐ท. Experiment 2: In this experiment, we consider the case that the optical coefficients can not be represented using the low frequency Fourier basis. We choose ๐ท = 3 โˆ’ max{|๐‘ฅ|, |๐‘ฆ|}, ๐œŽ๐‘Ž = (cid:18) 3 2 โˆ’ 1 2 sgn ๐‘ฅ2 + ๐‘ฆ2 โˆ’ (cid:19) , 4 5 and we choose the source ๐‘† to be the Shepp-Logan phantom, see Figure 2.13. Figure 2.13 Left: Diffusion coefficient ๐ท. Middle: Absorption coefficient ๐œŽ๐‘Ž. Right: Shepp-Logan Source. We choose the relative uncertainty level at 10% and run 1000 reconstructions to plot the distribution of โˆฅ หœ๐‘† โˆ’ ๐‘†โˆฅ ๐ฟ2 versus โˆฅ หœ๐ท โˆ’ ๐ท โˆฅ๐ป1 and โˆฅ หœ๐œŽ๐‘Ž โˆ’ ๐œŽ๐‘Ž โˆฅ ๐ฟ2, see Figure 2.14. One of the reconstructions is illustrated in Figure 2.15, and the average of 1000 reconstructed sources is illustrated in Figure 2.16. 40 0.020.030.040.050.060.070.080.090.1E0.102250.10230.102350.10240.102450.10250.102550.10260.102650.10270.10275ES0.020.030.040.050.060.070.080.090.1ED0.10.150.20.250.30.350.40.450.5ES-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8122.12.22.32.42.52.62.72.82.93-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8111.11.21.31.41.51.61.71.81.92-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.10.20.30.40.50.60.70.80.91 Figure 2.14 The distribution of the error with respect to the inaccuracies in optical coefficients. Figure 2.15 Reconstructed source หœ๐‘† and its error under 10% Gaussian random noise. Figure 2.16 Averaged reconstructed source หœ๐‘† and its error under 10% Gaussian random noise. For the relation between the relative standard deviations, we fix ๐ท and ๐œŽ๐‘Ž respectively and add 2%, 4%, 6%, 8%, 10% Gaussian random noise to another optical coefficient. The relations are shown in Figure 2.17. We can see that the average of หœ๐‘† is approximately ๐‘† and the same relative 41 00.10.20.30.40.50.60.70.80.9|| D||0.060.070.080.090.10.110.12|| S||00.10.20.30.40.50.6||||0.060.070.080.090.10.110.12|| S||-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.20.40.60.81-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.020.040.060.080.10.120.14-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.20.40.60.81-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8100.020.040.060.080.10.12 uncertainty level on ๐ท have larger impact than ๐œŽ๐‘Ž on หœ๐‘†. From the scatter plot, we can see that the uncertainty in หœ๐‘† is at least locally Lipschitz boundeded by uncertainties in ( หœ๐ท, หœ๐œŽ๐‘Ž). The impact E๐‘† is also linearly or superlinearly depend on E๐ท and E๐œŽ๐‘Ž. Figure 2.17 Left: E๐‘† versus E๐œŽ๐‘Ž. Right: E๐‘† versus E๐ท. Remark 2.18. Since we plot the distribution of norms, it is natural to have branches in the result. A simple example is plotting |๐‘ฆ| versus |๐‘ฅ| with relation ๐‘ฆ = (๐‘ฅ + 1)2. 42 0.020.030.040.050.060.070.080.090.1E0.144850.14490.144950.1450.145050.14510.145150.14520.14525ES0.020.030.040.050.060.070.080.090.1ED0.1450.150.1550.160.1650.170.1750.18ES CHAPTER 3 INVERSE BOUNDARY VALUE PROBLEMS FOR WAVE EQUATIONS 3.1 Introduction We begin with the formulation of the Inverse Boundary Value Problem (IBVP) for the wave equation. Let ๐‘‡ > 0 be a constant and ฮฉ โŠ‚ R๐‘› be a bounded open subset with smooth boundary ๐œ•ฮฉ. Consider the following boundary value problem for the acoustic wave equation with potential: ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด โ–ก๐œŒ,๐‘ž๐‘ข(๐‘ก, ๐‘ฅ) = 0, in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐‘ข = ๐‘“ , on (0, 2๐‘‡) ร— ๐œ•ฮฉ (3.1) ๐‘ข(0, ๐‘ฅ) = ๐œ•๐‘ก๐‘ข(0, ๐‘ฅ) = 0 ๐‘ฅ โˆˆ ฮฉ. ๏ฃณ Here โ–ก๐œŒ,๐‘ž is a linear wave operator defined as โ–ก๐œŒ,๐‘ž๐‘ข(๐‘ก, ๐‘ฅ) := ๐œŒ(๐‘ฅ)๐œ•2 ๐‘ก ๐‘ข(๐‘ก, ๐‘ฅ) โˆ’ ฮ”๐‘ข(๐‘ก, ๐‘ฅ) + ๐‘ž(๐‘ฅ)๐‘ข(๐‘ก, ๐‘ฅ); ๐œŒ(๐‘ฅ) (cid:66) ๐‘โˆ’2(๐‘ฅ) โˆˆ ๐ถโˆž(ฮฉ), where ๐‘(๐‘ฅ) is a smooth wave speed bounded away from 0 and โˆž, ๐‘ž(๐‘ฅ) โˆˆ ๐ฟโˆž(ฮฉ) is a real-valued function referred to as the potential. We write the wave solution as ๐‘ข = ๐‘ข ๐‘“ (๐‘ก, ๐‘ฅ) whenever it is necessary to specify the Neumann data. The wave equation with vanished potential are often used to describe mechanical wave, such as acoustic wave, water wave, and seismic wave, whereas the wave equation with potential arise for example in quantum mechanics in the context of the Klein-Gordon equation. In mathematics, we formulate these equations together as (3.1). Given ๐‘“ โˆˆ ๐ถโˆž ๐‘ ((0, 2๐‘‡) ร— ๐œ•ฮฉ), the well-posedness of this problem is ensured by the standard theory for second order hyperbolic partial differential equations [40]. As a result, the following Neumann-to-Dirichlet map (ND map) is well defined: ฮ›๐œŒ,๐‘ž ๐‘“ := ๐‘ข ๐‘“ | (0,2๐‘‡)ร—๐œ•ฮฉ. (3.2) The IBVP for the acoustic wave equation aims to recover the wave speed ๐‘(๐‘ฅ) or wave potential ๐‘ž(๐‘ฅ) from the knowledge of the ND map ฮ›๐œŒ,๐‘ž. Many imaging technologies are based on this inverse problem with vanished potential ๐‘ž. The Ultra-Sound Computed Tomography (USCT) is one significant example. During USCT, an 43 acoustic pulse is emitted from a known location outside the tissue by a point-like ultrasound source. A group of nearby ultrasonic transducers records the wave field created when the acoustic wave passes through the tissue. The aim of USCT is to reconstruct the acoustic wave speed throughout the tissue by repeating this process numerous times for a large number of emitter locations. Figure 3.1 shows an example using ๐‘€ transducers. Seismic tomography uses a similar data collection strategy to find oil reservoirs by attempting to recover the underground wave speed. In the continuous formulation of USCT and seismic tomography, the measurement is the boundary values of the Greenโ€™s function. However, it is well known [71] that such data is equivalent to knowledge of the ND map under mild assumptions. Figure 3.1 Data acquisition scheme in USCT [68]. In the literature, the IBVP for the acoustic wave equation has been thoroughly examined. For variable ๐‘ and ๐‘ž โ‰ก 0, Belishev [11] demonstrated that ๐‘ is uniquely determined by combining Tataruโ€™s unique continuation result [91] with the boundary control (BC) method. Since then, a great deal of work has been done to extend the result to wave equations on Riemannian manifolds with boundary [16, 36, 37, 38, 39, 43, 46, 49, 54, 55, 59, 62, 78, 81, 87]. Several studies have provided stability estimates: [2, 10, 17, 18, 24, 66, 70, 83, 84, 86]. The wave speed has been numerically reconstructed using the BC method in [12], and later in [15,31,76,96]. The implementations [12,15,31] involve solving unstable control problems, while the implementations [76, 96] are based on solving stable control problems with target functions exhibiting exponential growth or decay. The exponential behaviour leads to instability as well. On the other hand, the linearized approach introduced in [75] is stable. It should be noted that the one-dimensional case can be implemented steadily using the BC method [57]. See [22] on detection 44 of blockage in networks for an intriguing use of a variant of the method in the one-dimensional case. Under suitable geometric assumptions, it can be proven that the problem to recover the speed of sound is Hรถlder stable [83, 84], even when the speed is given by an anisotropic Riemannian metric. Moreover, a low-pass version of ๐‘ can be recovered in a Lipschitz stable manner [66]. The problem to recover ๐‘ž is Hรถlder stable assuming, again, that the geometry is nice enough [18, 70, 88]. To our knowledge, the method, based on using high frequency solutions to the wave equation and yielding the latter three results, has not been implemented computationally. Stability results applicable to general geometries have been proven using the BC method in [4], with an abstract modulus continuity, and very recently in [25, 26], with a doubly logarithmic modulus of continuity. 3.2 Nonlinear Inverse Boundary Value Problem In this section, we consider the IBVP with vanished potential, i.e. ๐‘ž(๐‘ฅ) โ‰ก 0. (3.1) can be written as ๐‘ก ๐‘ข(๐‘ก, ๐‘ฅ) โˆ’ ๐‘2(๐‘ฅ)ฮ”๐‘ข(๐‘ก, ๐‘ฅ) = 0, ๐œ•2 in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐‘ข = ๐‘“ , on (0, 2๐‘‡) ร— ๐œ•ฮฉ (3.3) ๐‘ข(0, ๐‘ฅ) = ๐œ•๐‘ก๐‘ข(0, ๐‘ฅ) = 0 ๐‘ฅ โˆˆ ฮฉ. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ This model is frequently used to describe the propagation of mechanical waves, and the inverse problems focus on recovering the wave speed distribution in order to learn about the mediumโ€™s internal structure. The ND map is represented as ฮ›๐‘, and we aim at recover wave speed ๐‘(๐‘ฅ) from the ND map [96]. Given function ๐‘ข(๐‘ก, ๐‘ฅ), we write ๐‘ข(๐‘ก) to represent the spatial part ๐‘ข(๐‘ก, ยท). 3.2.1 Derivation Introduce the time reversal operator ๐‘… : ๐ฟ2( [0, ๐‘‡] ร— ๐œ•ฮฉ) โ†’ ๐ฟ2( [0, ๐‘‡] ร— ๐œ•ฮฉ), ๐‘…๐‘ข(๐‘ก, ยท) := ๐‘ข(๐‘‡ โˆ’ ๐‘ก, ยท), 0 < ๐‘ก < ๐‘‡; (3.4) 45 the low-pass filter ๐ฝ : ๐ฟ2([0, 2๐‘‡] ร— ๐œ•ฮฉ) โ†’ ๐ฟ2( [0, ๐‘‡] ร— ๐œ•ฮฉ) ๐ฝ ๐‘“ (๐‘ก, ยท) := โˆซ 2๐‘‡โˆ’๐‘ก ๐‘ก 1 2 ๐‘“ (๐œ, ยท) ๐‘‘๐œ, 0 < ๐‘ก < ๐‘‡ . the orthogonal projection operator ๐‘ƒ๐‘‡ : ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ) โ†’ ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ) ๐‘ƒ๐‘‡ : ๐‘“ โ†ฆโ†’ ๐‘“ | (0,๐‘‡)ร—๐œ•ฮฉ (3.5) (3.6) and its adjoint operator ๐‘ƒโˆ— ๐‘‡ : ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ) โ†’ ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ), which is the extension by zero from (0, ๐‘‡) to (0, 2๐‘‡). Let T๐ท and T๐‘ be the Dirichlet and Neumann trace operators respectively, that is, T๐ท๐‘ข(๐‘ก, ยท) = ๐‘ข(๐‘ก, ยท)|๐œ•ฮฉ, T๐‘๐‘ข(๐‘ก, ยท) = ๐œ•๐œˆ๐‘ข(๐‘ก, ยท)|๐œ•ฮฉ. Lemma 3.1. Let ๐‘ข ๐‘“ be the solution of (3.3) with ๐‘“ โˆˆ ๐ถโˆž ๐‘ ((0, 2๐‘‡) ร— ๐œ•ฮฉ). Suppose ๐‘ฃ(๐‘ก, ๐‘ฅ) โˆˆ ๐ถโˆž((0, 2๐‘‡) ร— ฮฉ) satisfies the wave equation (๐œ•2 ๐‘ก โˆ’ ๐‘2(๐‘ฅ)ฮ”)๐‘ฃ(๐‘ก, ๐‘ฅ) = 0, in (0, 2๐‘‡) ร— ฮฉ Then (๐‘ข ๐‘“ (๐‘‡), ๐‘ฃ(๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) = (๐‘ƒ๐‘‡ ๐‘“ , ๐ฝT๐ท๐‘ฃ)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ (๐‘ƒ๐‘‡ (ฮ›๐‘ ๐‘“ ), ๐ฝT๐‘ ๐‘ฃ)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). where ๐œˆ is the unit outer normal vector field on ๐œ•ฮฉ. Here, the weighted space ๐ฟ2(ฮฉ, ๐‘โˆ’2 0 ๐‘‘๐‘ฅ) is defined as Proof. Define We compute ๐ฟ2(ฮฉ, ๐‘โˆ’2 0 ๐‘‘๐‘ฅ) := โˆซ (cid:26) ๐‘ข : ฮฉ |๐‘ข(๐‘ฅ)|2๐‘โˆ’2 0 (๐‘ฅ) d๐‘ฅ < โˆž (cid:27) . ๐ผ (๐‘ก, ๐‘ ) := (๐‘ข ๐‘“ (๐‘ก), ๐‘ฃ(๐‘ ))๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ). (๐œ•2 ๐‘ก โˆ’ ๐œ•2 ๐‘  )๐ผ (๐‘ก, ๐‘ ) =(ฮ”๐‘ข ๐‘“ (๐‘ก), ๐‘ฃ(๐‘ ))๐ฟ2 (ฮฉ) โˆ’ (๐‘ข ๐‘“ (๐‘ก), ฮ”๐‘ฃ(๐‘ ))๐ฟ2 (ฮฉ) (3.7) =( ๐‘“ (๐‘ก), T๐ท๐‘ฃ(๐‘ ))๐ฟ2 (๐œ•ฮฉ) โˆ’ (ฮ›๐‘ ๐‘“ (๐‘ก), T๐‘ ๐‘ฃ(๐‘ ))๐ฟ2 (๐œ•ฮฉ), 46 where the last equality follows from integration by parts. Since ๐‘ข ๐‘“ (0, ๐‘ฅ) = ๐œ•๐‘ก๐‘ข ๐‘“ (0, ๐‘ฅ) = 0, we have ๐ผ (0, ๐‘ ) = ๐œ•๐‘ก ๐ผ (0, ๐‘ ) = 0, thus (3.7) can be considered as a inhomogeneous 1D wave equation together with initial conditions ๐ผ (0, ๐‘ ) = ๐œ•๐‘ก ๐ผ (0, ๐‘ ) = 0. Solving this PDE gives ๐ผ (๐‘‡, ๐‘‡) โˆซ ๐‘‡ 1 2 0 โˆซ ๐‘‡ โˆซ 2๐‘‡โˆ’๐‘ก ๐‘ก [( ๐‘“ (๐‘ก), 1 2 0 = = (cid:2)( ๐‘“ (๐‘ก), T๐ท๐‘ฃ(๐œŽ))๐ฟ2 (๐œ•ฮฉ) โˆ’ (ฮ›๐‘ ๐‘“ (๐‘ก), T๐‘ ๐‘ฃ(๐œŽ))๐ฟ2 (๐œ•ฮฉ) โˆซ 2๐‘‡โˆ’๐‘ก โˆซ 2๐‘‡โˆ’๐‘ก T๐ท๐‘ฃ(๐œŽ) ๐‘‘๐œŽ)๐ฟ2 (๐œ•ฮฉ) โˆ’ (ฮ›๐‘ ๐‘“ (๐‘ก), 1 2 ๐‘ก ๐‘ก (cid:3) ๐‘‘๐œŽ๐‘‘๐‘ก T๐‘ ๐‘ฃ(๐œŽ) ๐‘‘๐œŽ)๐ฟ2 (๐œ•ฮฉ)] ๐‘‘๐‘ก =(๐‘ƒ๐‘‡ ๐‘“ , ๐ฝT๐ท๐‘ฃ)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ (๐‘ƒ๐‘‡ (ฮ›๐‘ ๐‘“ ), ๐ฝT๐‘ ๐‘ฃ)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). โ–ก Lemma 3.1 is used to derive two important results. The first is the Blagoveห˜sห˜censkiห˜ฤฑโ€™s identity. To this end, denote by ฮ›๐‘,๐‘‡ the truncated ND map defined as in (3.2), (3.3) with 2๐‘‡ replaced by ๐‘‡. It can be easily verified from integration by parts that its adjoint operator (with respect to the inner product in ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ)) is ฮ›โˆ— ๐‘,๐‘‡ = ๐‘…ฮ›๐‘,๐‘‡ ๐‘… where ๐‘… is the time reversal operator (3.4), see also Appendix B.1. Introduce the connecting operator ๐พ := ๐ฝฮ›๐‘๐‘ƒโˆ— ๐‘‡ โˆ’ ๐‘…ฮ›๐‘,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘‡ , (3.8) which is the principal object of the boundary control method [14]. The operator ๐พ connects inner-products between waves in the interior to measurements on the boundary, see Proposition 3.2. Moreover, ๐พ is a compact operator since ฮ›๐‘,๐‘‡ : ๐ฟ2((0, ๐‘‡) ร—๐œ•ฮฉ) โ†’ ๐ป2/3((0, ๐‘‡) ร—๐œ•ฮฉ) is smoothing, see [92]. The Blagoveห˜sห˜censkiห˜ฤฑโ€™s identity we will establish is slightly different from its original form [21]. Instead, it is a reformulation that has been previously used in [20, 30, 74]. Proposition 3.2. Let ๐‘ข ๐‘“ , ๐‘ขโ„Ž be the solutions of (3.3) with Neumann traces ๐‘“ , โ„Ž โˆˆ ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ), respectively. Then (๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) = ( ๐‘“ , ๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). (3.9) 47 In particular if โ„Ž = ๐‘“ , one has โˆฅ๐‘ข ๐‘“ (๐‘‡)โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) = ( ๐‘“ , ๐พ ๐‘“ )๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ ๐‘“ , ๐‘“ )๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). (3.10) Proof. We first prove this for ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘‡ โ„Ž and T๐‘๐‘ขโ„Ž = ๐‘ƒโˆ— notice that T๐ท๐‘ขโ„Ž = ฮ›๐‘๐‘ƒโˆ— ๐‘‡ โ„Ž. One has ๐‘ ((0, ๐‘‡) ร— ๐œ•ฮฉ). Apply Lemma 3.1 to ๐‘ข ๐‘“ and ๐‘ฃ = ๐‘ขโ„Ž and (๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) =(๐‘ƒ๐‘‡ ๐‘“ , ๐ฝฮ›๐‘๐‘ƒโˆ— ๐‘‡ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ (๐‘ƒ๐‘‡ (ฮ›๐‘ ๐‘“ ), ๐ฝ๐‘ƒโˆ— ๐‘‡ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( ๐‘“ , ๐ฝฮ›๐‘๐‘ƒโˆ— ๐‘‡ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ (ฮ›๐‘,๐‘‡ ๐‘“ , ๐ฝ๐‘ƒโˆ— ๐‘‡ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( ๐‘“ , ๐ฝฮ›๐‘๐‘ƒโˆ— ๐‘‡ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ ( ๐‘“ , ๐‘…ฮ›๐‘,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘‡ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( ๐‘“ , ๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) where we have used that ๐‘ƒ๐‘‡ (ฮ›๐‘ ๐‘“ ) = ฮ›๐‘,๐‘‡ ๐‘“ and that ฮ›โˆ— ๐‘,๐‘‡ = ๐‘…ฮ›๐‘,๐‘‡ ๐‘… in ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ). This establishes the first equality in (3.9). Interchanging ๐‘“ and โ„Ž yields the second equality in (3.9). For general ๐‘“ , โ„Ž โˆˆ ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ), simply notice that ๐พ is a continuous operator and that compactly supported smooth functions are dense in ๐ฟ2. The proof is completed. โ–ก Notice that harmonic functions can be considered as time independent wave solutions, we can establish an inner product between waves and harmonic functions from boundary data. Introduce an operator ๐ต as ๐ต := ๐ฝT๐ท โˆ’ ๐‘…ฮ›๐‘,๐‘‡ ๐‘…๐ฝT๐‘ . (3.11) Proposition 3.3. Let ๐‘ข ๐‘“ be the solutions of (3.3) with Neumann traces ๐‘“ โˆˆ ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ). For any harmonic function ๐œ™ โˆˆ ๐ถโˆž(ฮฉ), one has (๐‘ข ๐‘“ (๐‘‡), ๐œ™)๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) = ( ๐‘“ , ๐ต๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). Proof. Similar to the proof of Proposition 3.2, let ๐‘“ โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡) ร— ฮฉ), apply Lemma 3.1 to ๐‘ข ๐‘“ and 48 ๐‘ฃ = ๐œ™. One has (๐‘ข ๐‘“ (๐‘‡), ๐œ™)๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) =( ๐‘“ , ๐ฝT๐ท ๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ (๐‘ƒ๐‘‡ (ฮ›๐‘ ๐‘“ ), ๐ฝT๐‘ ๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( ๐‘“ , ๐ฝT๐ท ๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ (ฮ›๐‘,๐‘‡ ๐‘“ , ๐ฝT๐‘ ๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( ๐‘“ , ๐ฝT๐ท ๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ ( ๐‘“ , ๐‘…ฮ›๐‘,๐‘‡ ๐‘…๐ฝT๐‘ ๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). by the continuity of ๐ต and density of compactly supported functions in ๐ฟ2, we complete the proof. โ–ก Suppose for any harmonic function ๐œ“, one can find an explicit sequence ๐‘“๐›ผ such that ๐‘ข ๐‘“๐›ผ (๐‘‡) โ†’ ๐œ“ as ๐›ผ โ†’ 0 in ๐ฟ2(ฮฉ, ๐‘โˆ’2๐‘‘๐‘ฅ), then according to Proposition 3.3: (๐œ“, ๐œ™)๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) = lim ๐›ผโ†’0 (๐‘ข ๐‘“๐›ผ (๐‘‡), ๐œ™)๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) = lim ๐›ผโ†’0 ( ๐‘“๐›ผ, ๐ต๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). (3.12) The right hand side can be computed from ฮ›๐‘, see (3.11). Thus the integral (๐œ“, ๐œ™)๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) = โˆซ ฮฉ ๐œ“๐œ™ ๐‘โˆ’2(๐‘ฅ) ๐‘‘๐‘ฅ (3.13) is known for all harmonic functions ๐œ“ and ๐œ™. For any fixed vectors ๐œ‰, ๐œ‚ โˆˆ R๐‘› with |๐œ‰ | = |๐œ‚| and ๐œ‰ โŠฅ ๐œ‚, choose the complex harmonic functions as ๐œ“(๐‘ฅ) := ๐‘’ ๐‘– 2 (โˆ’๐œ‰+๐‘–๐œ‚)ยท๐‘ฅ, ๐œ™(๐‘ฅ) := ๐‘’ ๐‘– 2 (โˆ’๐œ‰โˆ’๐‘–๐œ‚)ยท๐‘ฅ. (3.14) Then ๐œ“๐œ™ = ๐‘’๐‘–๐œ‰ยท๐‘ฅ and one recovers F (๐‘โˆ’2), the Fourier transform of ๐‘โˆ’2, by varying ๐œ‰, the wave speed ๐‘ is recovered. In order to construct sequence ๐‘“๐›ผ, we introduce the control operator ๐‘Š ๐‘“ := ๐‘ข ๐‘“ (๐‘‡). where ๐‘ข ๐‘“ is the solution of (3.3). According to [61], ๐‘Š : ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ) โ†’ ๐ฟ2(ฮฉ) is a bounded linear operator. Moreover, Tataruโ€™s theorem in [90] implies that the range of ๐‘Š is dense in ๐ฟ2(ฮฉ). It follows from Proposition 3.2 that ๐พ = ๐‘Š โˆ—๐‘Š. It is also easy to verify that ๐‘Š โˆ—๐œ“ = ๐ต๐œ“ for any harmonic function ๐œ“. The control sequence ๐‘“๐›ผ is constructed using Tikhonov regularization, and the following lemma is used to prove the convergence. 49 Lemma 3.4 ( [74, Lemma 1]). Let ๐ด : ๐‘‹ โ†’ ๐‘Œ be a bounded linear operator between two Hilbert spaces ๐‘‹ and ๐‘Œ . For any ๐‘ฆ โˆˆ ๐‘Œ , let ๐›ผ > 0 be a constant and ๐‘ฅ๐›ผ := ( ๐ดโˆ— ๐ด + ๐›ผ)โˆ’1 ๐ดโˆ—๐‘ฆ. Then ๐ด๐‘ฅ๐›ผ โ†’ ๐‘ƒ ๐‘ฆ ๐‘…๐‘Ž๐‘›( ๐ด) as ๐›ผ โ†’ 0 where ๐‘ƒ ๐‘…๐‘Ž๐‘›( ๐ด) ๐‘ฆ denotes the orthogonal projection of ๐‘ฆ onto the closure of the range of ๐ด. Proposition 3.5. For any harmonic function ๐œ“, the following minimization problem with parameter ๐›ผ > 0: ๐‘“๐›ผ := arg min ๐‘“ โˆฅ๐‘Š ๐‘“ โˆ’ ๐œ“โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) + ๐›ผโˆฅ ๐‘“ โˆฅ2 ๐ฟ2 (0,๐‘‡)ร—๐œ•ฮฉ . has a unique solution ๐‘“๐›ผ โˆˆ ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ). This solution satisfies the linear equation (๐พ + ๐›ผ) ๐‘“๐›ผ = ๐ต๐œ“. (3.15) Moreover, ๐‘ข ๐‘“๐›ผ (๐‘‡) โ†’ ๐œ“ as ๐›ผ โ†’ 0 in ๐ฟ2(ฮฉ, ๐‘โˆ’2๐‘‘๐‘ฅ). Proof. The functional to be minimized is ๐น๐›ผ ( ๐‘“ ) := โˆฅ๐‘Š ๐‘“ โˆ’ ๐œ“โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) + ๐›ผโˆฅ ๐‘“ โˆฅ2 ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) . As ๐‘Š : ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ) โ†’ ๐ฟ2(ฮฉ) is bounded and linear, [56, Theorem 2.11] claims that ๐น๐›ผ has a unique minimizer, named ๐‘“๐›ผ, in ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ). The functional to be minimized is ๐น๐›ผ ( ๐‘“ ) :=โˆฅ๐‘ข ๐‘“ (๐‘‡) โˆ’ ๐œ“โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) + ๐›ผโˆฅ ๐‘“ โˆฅ2 ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =โˆฅ๐‘ข ๐‘“ (๐‘‡)โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) โˆ’ 2(๐‘ข ๐‘“ (๐‘‡), ๐œ“)๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) + โˆฅ๐œ“โˆฅ2 =( ๐‘“ , ๐พ ๐‘“ )๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ 2( ๐‘“ , ๐ต๐œ“)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + โˆฅ๐œ“โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) + ๐›ผโˆฅ ๐‘“ โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) + ๐›ผโˆฅ ๐‘“ โˆฅ2 ๐ฟ2 (0,๐‘‡)ร—๐œ•ฮฉ . ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( ๐‘“ , (๐พ + ๐›ผ) ๐‘“ )๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ 2( ๐‘“ , ๐ต๐œ“)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + โˆฅ๐œ“โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) The terms โˆฅ๐‘ข ๐‘“ (๐‘‡)โˆฅ2 ๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) and (๐‘ข ๐‘“ (๐‘‡), ๐œ™)๐ฟ2 ((ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ)) are computed using Proposition 3.2 and Proposition 3.3, respectively. This is a bilinear form of ๐‘“ whose Frechรฉt derivative is ๐นโ€ฒ( ๐‘“ ) = 2(๐พ + ๐›ผ) ๐‘“ โˆ’ 2๐ต๐œ“. 50 The minimizer satisfies ๐นโ€ฒ( ๐‘“๐›ผ) = 0, hence (3.15). Finally, since ๐พ = ๐‘Š โˆ—๐‘Š and ๐ต๐œ“ = ๐‘Š โˆ—๐œ“ (see the content before Proposition 3.5), we conclude from Lemma 3.4 that ๐‘Š ๐‘“๐›ผ โ†’ ๐‘ƒ ๐‘…๐‘Ž๐‘›(๐‘Š) ๐œ“ in ๐ฟ2(ฮฉ, ๐‘โˆ’2๐‘‘๐‘ฅ) as ๐›ผ โ†’ 0. Tataruโ€™s theorem [90] claims that the range of ๐‘Š is dense in ๐ฟ2(ฮฉ), hence ๐‘ƒ ๐œ“ = ๐œ“. ๐‘…๐‘Ž๐‘›(๐‘Š) โ–ก Summarizing the discussion in this section, we have proved global convergence of the following reconstruction algorithm, see Algorithm 3.1. Input: low-pass filter ๐ฝ, time-reversal operator ๐‘…, projection operator ๐‘ƒ๐‘‡ , ND map ฮ›๐‘ Output: wave speed ๐‘ 1. Assemble the connecting operator ๐พ = ๐ฝฮ›๐‘๐‘ƒโˆ— ๐‘‡ โˆ’ ๐‘…ฮ›๐‘,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— 2. Assemble the operator ๐ต = ๐ฝT๐ท โˆ’ ๐‘…ฮ›๐‘,๐‘‡ ๐‘…๐ฝT๐‘ (see (3.11)). 3. Construct the harmonic function ๐œ“(๐‘ฅ) = ๐‘’ ๐‘– (๐พ + ๐›ผ) ๐‘“๐›ผ = ๐ต๐œ“, (see (3.15)). 4. Construct the harmonic function ๐œ™(๐‘ฅ) := ๐‘’ ๐‘– jection ๐‘‡ (see (3.8)). 2 (โˆ’๐œ‰โˆ’๐‘–๐œ‚)ยท๐‘ฅ (see (3.14)) and compute the Fourier pro- 2 (โˆ’๐œ‰+๐‘–๐œ‚)ยท๐‘ฅ (see (3.14)) and solve the linear system โˆซ ฮฉ ๐‘’โˆ’๐‘–๐œ‰ยท๐‘ฅ๐‘โˆ’2(๐‘ฅ) ๐‘‘๐‘ฅ = lim ๐›ผโ†’0 ( ๐‘“๐›ผ, ๐ต๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) through the limiting process, (see (3.12)). 5. Repeat the above steps with various ๐œ‰ to recover the Fourier transform F (๐‘โˆ’2). 6. Invert the Fourier transform to recover ๐‘โˆ’2, and eventually ๐‘. Algorithm 3.1 Non-Iterative Reconstruction Algorithm for Acoustic IBVP. 3.2.2 Algorithm Implementation In this section, we numerically implement the algorithm using finite difference scheme. We choose the spatial domain to be ฮฉ = [โˆ’1, 1]2. For the forward problem, we uniformly discretized ฮฉ into 101 ร— 101 grids, i.e. ฮ”๐‘ฅ = ฮ”๐‘ฆ = 1 ๐‘ฅ๐‘– = โˆ’1 + ๐‘– 100 , 0 โ‰ค ๐‘–, ๐‘— โ‰ค 100. The time step size ฮ”๐‘ก is chosen as ฮ”๐‘ก = 2๐‘‡ 50 . The grid points are represented as (๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ), where ฮ”๐‘ฅ 100, ๐‘ฆ ๐‘— = โˆ’1 + ๐ฟ โ‰ค โˆš ๐‘— 2 2๐‘max to fulfill the Courantโ€“Friedrichsโ€“Lewy (CFL) condition, where ๐‘max denote the maximum of ๐‘(๐‘ฅ) over ฮฉ, ๐ฟ is the number of time steps. Then the temporal grid points are labeled using ๐‘ก๐‘™ = ๐‘™ฮ”๐‘ก, ๐‘™ = 0, 1, . . . , ๐ฟ. For simplicity, the values of ๐‘ข on the grid points are denoted by ๐‘ข๐‘™ ๐‘– ๐‘— := ๐‘ข(๐‘ก๐‘™, ๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ), ๐‘™ = 0, 1, . . . , ๐ฟ, ๐‘–, ๐‘— = 0, 1, . . . , 100. 51 3.2.2.1 Discrete Wave Equation Solver The finite difference solver for (3.3) requires the approximation of operators ฮ”, ๐œ•2 ๐‘ก and ๐œ•๐œˆ. We use the second order approximation for interior grid points: ๐‘ก ๐‘ข(๐‘ก๐‘™, ๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ) โ‰ˆ ๐œ•2 ๐‘–, ๐‘— + ๐‘ข๐‘™+1 ๐‘–, ๐‘— โˆ’ 2๐‘ข๐‘™ ๐‘ข๐‘™โˆ’1 ๐‘–, ๐‘— ฮ”๐‘ก2 ; ฮ”๐‘ข(๐‘ก๐‘™, ๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ) โ‰ˆ ๐‘–โˆ’1, ๐‘— + ๐‘ข๐‘™ ๐‘ข๐‘™ ๐‘–+1, ๐‘— + ๐‘ข๐‘™ ๐‘–, ๐‘—โˆ’1 ฮ”๐‘ฅ2 + ๐‘ข๐‘™ ๐‘–, ๐‘—+1 โˆ’ 4๐‘ข๐‘™ ๐‘–, ๐‘— , which gives us the update formula for interior points: ๐‘–, ๐‘— = 2๐‘ข๐‘™ ๐‘ข๐‘™+1 ๐‘–, ๐‘— โˆ’ ๐‘ข๐‘™โˆ’1 ๐‘–, ๐‘— + ๐‘2(๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ) ฮ”๐‘ก2 ฮ”๐‘ฅ2 [๐‘ข๐‘™ ๐‘–โˆ’1, ๐‘— + ๐‘ข๐‘™ ๐‘–+1, ๐‘— + ๐‘ข๐‘™ ๐‘–, ๐‘—โˆ’1 + ๐‘ข๐‘™ ๐‘–, ๐‘—+1 โˆ’ 4๐‘ข๐‘™ ๐‘–, ๐‘— ]. The boundary points are updated from the discretization of Neumann derivatives. For instance ๐‘– = 0, we have ๐œ•๐œˆ๐‘ข(๐‘ก๐‘™, ๐‘ฅ0, ๐‘ฆ ๐‘— ) โ‰ˆ โˆ’ 3๐‘ข๐‘™ 0, ๐‘— โˆ’ 4๐‘ข๐‘™ 2ฮ”๐‘ฅ 1, ๐‘— + ๐‘ข๐‘™ 2, ๐‘— . The initial condition ๐‘ข(0, ๐‘ฅ) = ๐‘ข๐‘ก (0, ๐‘ฅ) = 0 is implemented by setting ๐‘ข0 ๐‘–, ๐‘— = 0, ๐‘–, ๐‘— = ๐‘ขโˆ’1 ๐‘ข1 ๐‘–, ๐‘— . Notice that all the finite difference approximation above have second order accuracy, we have an discrete wave solver. 3.2.2.2 Implementation of ND Map ฮ›๐‘ The spatial boundary ๐œ•ฮฉ consists of 400 boundary grid points, thus the temporal boundary [0, ๐‘‡] ร— ๐œ•ฮฉ contains 400(๐ฟ + 1) boundary grid points in total. These boundary grid points are ordered in the lexicographical order to form a column vector, that is, a boundary grid point (๐‘ก๐‘™, ๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ) is ahead of another (๐‘ก๐‘™โ€ฒ, ๐‘ฅ๐‘–โ€ฒ, ๐‘ฆ ๐‘— โ€ฒ) if and only if (1) ๐‘™ < ๐‘™โ€ฒ; or (2) ๐‘™ = ๐‘™โ€ฒ and ๐‘– < ๐‘–โ€ฒ; or (3) ๐‘™ = ๐‘™โ€ฒ, ๐‘– = ๐‘–โ€ฒ, ๐‘— < ๐‘— โ€ฒ. In this way, the discretized ND map is a 400(๐ฟ + 1) ร— 400(๐ฟ + 1) square matrix, denoted by [ฮ›๐‘] โˆˆ R400(๐ฟ+1)ร—400(๐ฟ+1). In order to find the matrix representation [ฮ›๐‘], we place a unit source ๐‘“ ๐‘™ ๐‘– ๐‘— on each boundary grid point as the Neumann data and utilize the forward solver to obtain the resulting Dirichlet data on all 52 the boundary grid points. Here ๐‘“ ๐‘™ ๐‘– ๐‘— takes the value 1 on (๐‘ก๐‘™, ๐‘ฅ๐‘–, ๐‘ฆ ๐‘— ) and 0 on all the other boundary grid points. Once the matrices are generated, we re-sample the ND map on a coarser grid of size (๐ฟ + 1) ร— 51 ร— 51 and implement Algorithm 3.1 to avoid the inverse crime, i.e. changed to ฮ”๐‘ฅ = ฮ”๐‘ฆ = 1 25. Thus the ND map matrices are [ฮ›๐‘,๐‘‡ ] โˆˆ R200โŒˆ ๐ฟ+1 the spatial grid size 2 โŒ‰ร—200โŒˆ ๐ฟ+1 2 โŒ‰ and [ฮ›๐‘] โˆˆ R200(๐ฟ+1)ร—200(๐ฟ+1). 3.2.2.3 Implementation of Connecting Operator ๐พ In order to discretize ๐พ, we need to discretize ๐ฝ first. The integration is calculated using trapezoidal rule, which is โˆซ 2๐‘‡โˆ’๐‘ก๐‘™ ๐‘ก๐‘™ ๐‘“ (๐œ, ยท) ๐‘‘๐œ โ‰ˆ ๐ฟโˆ’๐‘™โˆ’1 โˆ‘๏ธ ๐‘˜=๐‘™ ๐‘“ (๐‘ก๐‘˜ , ยท) + ๐‘“ (๐‘ก๐‘˜+1, ยท) 2 ฮ”๐‘ก. Since we rearrange the grid points into lexicographical order, the discretized filtering operator can be written as a blocking matrix [๐ฝ] โˆˆ R200โŒˆ ๐ฟ+1 matrix. Here โŒˆ ๐ฟ+1 2 โŒ‰ denote the smallest integer which is greater or equal to ๐ฟ+1 2 . 2 โŒ‰ร—200(๐ฟ+1), whose blocks are all 200 ร— 200 diagonal Specifically, if ๐ฟ is odd, [๐ฝ] = ฮ”๐‘ก 2 (cid:169) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:171) If ๐ฟ is even, [๐ผ] 2[๐ผ] 2[๐ผ] [๐ผ] 2[๐ผ] . . . . . . . . . . . . . . . . . . . . . . . . . . . 2[๐ผ] 2[๐ผ] [๐ผ] [๐ผ] . . . 2[๐ผ] . . . . . . [๐ผ] 2[๐ผ] 2[๐ผ] [๐ผ] [๐ผ] [๐ผ] , (cid:170) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:172) [๐ฝ] = ฮ”๐‘ก 2 [๐ผ] 2[๐ผ] 2[๐ผ] [๐ผ] 2[๐ผ] . . . . . . . . . . . . . . . . . . . . . 2[๐ผ] 2[๐ผ] [๐ผ] [๐ผ] . . . 2[๐ผ] . . . . . . [๐ผ] 2[๐ผ] [๐ผ] [๐‘‚] (cid:169) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:171) , (cid:170) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:172) where [๐ผ] denote the identity matrix and [๐‘‚] denote the zero matrix. 53 Similarly the discretized time reversal operator [๐‘…] โˆˆ R200โŒˆ ๐ฟ+1 2 โŒ‰ร—200โŒˆ ๐ฟ+1 2 โŒ‰ and discretized restric- tion operator [๐‘ƒ๐‘‡ ] โˆˆ R200โŒˆ ๐ฟ+1 2 โŒ‰ร—200(๐ฟ+1) can be represented as (cid:16) [๐‘ƒ๐‘‡ ] = [๐ผ]200โŒˆ ๐ฟ+1 [๐ผ] , (cid:17) 2 โŒ‰ร—200โŒˆ ๐ฟ+1 2 โŒ‰ [๐‘‚] [๐‘…] = (cid:169) (cid:173) (cid:173) (cid:173) (cid:173) (cid:173) (cid:171) ๐‘‡ ] is taken to be [๐‘ƒ๐‘‡ ]๐‘ก, the transpose of [๐‘ƒ๐‘‡ ]. It is obvious that (cid:170) (cid:174) (cid:174) (cid:174) (cid:174) (cid:174) (cid:172) . . . [๐ผ] . The discrete extension operator [๐‘ƒโˆ— [ฮ›๐‘,๐‘‡ ] = [๐‘ƒ๐‘ก] [ฮ›๐‘] [๐‘ƒโˆ— ๐‘‡ ], which implies [ฮ›๐‘,๐‘‡ ] is simply the top left submatrix of [ฮ›๐‘]. Finally, the discretized ๐พ is the following matrix product, according to (3.8): [๐พ] = [๐ฝ] [ฮ›๐‘] [๐‘ƒ๐‘‡ ]๐‘ก โˆ’ [๐‘…] [ฮ›๐‘,๐‘‡ ] [๐‘…] [๐ฝ] [๐‘ƒ๐‘‡ ]๐‘ก โˆˆ R200โŒˆ ๐ฟ+1 2 โŒ‰ร—200โŒˆ ๐ฟ+1 2 โŒ‰ . 3.2.2.4 Implementation of the Operator ๐ต The implementation of operator ๐ต requires to calculate T๐ท, T๐‘ . Since the harmonic function ๐œ“ is handcrafted and time independent, we can analytically calculate Dirichlet and Neumann value of the known harmonic function and make ๐ฟ + 1 copies to form vector [T๐ท๐œ“], [T๐‘ ๐œ“] โˆˆ R200(๐ฟ+1)ร—1. 3.2.2.5 Solve Boundary Control Sequence ๐‘“๐›ผ Following The next step is to solve for [ ๐‘“๐›ผ] from the discretized version of (3.15): ([๐พ] + ๐›ผ) [ ๐‘“๐›ผ] = [๐ต] [๐œ“|๐œ•ฮฉ]. (3.16) Here [ ๐‘“๐›ผ] is the discretized version of ๐‘“๐›ผ in (3.15); ๐œ“ is an arbitrary harmonic function and [๐œ“|๐œ•ฮฉ] โˆˆ R200(๐ฟ+1)ร—1 denotes the vectorized boundary restriction ๐œ“|๐œ•ฮฉ. Both [ ๐‘“๐›ผ] and ๐œ“|๐œ•ฮฉ are in the lexicographical order as before. Since [๐พ] is calculated using matrix multiplication, it is not guaranteed to be positive semidefinite. Instead of solving (3.15) with Tikhonov regularization, the equation that we solve is ([๐พ]๐‘ก [๐พ] + ๐›ผ) [ ๐‘“๐›ผ] = [๐พ]๐‘ก [๐ต] [๐œ“|๐œ•ฮฉ] (3.17) where [๐พ]๐‘ก is the transpose of [๐พ]. 54 3.2.2.6 Solve Wave Speed ๐‘ In Algorithm 3.1, ๐‘ is recovered by creating appropriate complex exponential harmonic func- tions (3.14) and inverting the Fourier transform. However, due to their propensity for explosive growth in some directions, such harmonic functions are not appropriate for numerical implemen- tation. We build harmonic functions using the fundamental solutions method (FSM) as an alternative to selecting complex exponential harmonic functions. Kupradze [58] was the first to propose this method, which has the advantage of being easily implemented numerically. There has been research on its suitability for elliptic boundary value problems in general [23]; additionally, see also the review paper [42]. In FSM, the harmonic functions are of the form ๐‘ โˆ‘๏ธ ๐‘—=1 ๐‘Ž ๐‘— ฮฆ(|๐‘ฅ โˆ’ ๐‘ฅ ( ๐‘—) |) (3.18) ฮฆ(๐‘Ÿ) = 1 Here ฮฆ is the fundamental solution of the Laplace operator, i.e. ฮฆ(๐‘Ÿ) = log ๐‘Ÿ for ๐‘› = 2 and ๐‘Ÿ for ๐‘› โ‰ฅ 3, and ๐‘Ž ๐‘— are real scalar coefficients. These functions are harmonic in R๐‘› except at the singularities ๐‘ฅ ( ๐‘—), which are chosen to be outside the computational domain. It has been shown [67] that an arbitrary 2D function which is harmonic inside the unit disk and continuous up to the boundary can be approximated to any prescribed accuracy using functions of the form (3.18). Under such construction, for a fixed sufficiently small ๐›ผ > 0, the right-hand side of (3.12) can be approximate using the trapezoidal rule: ( ๐‘“๐›ผ, ๐ต๐œ™)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โ‰ˆ 200โŒˆ ๐ฟ+1 2 โŒ‰ โˆ‘๏ธ ๐‘—=1 ๐‘ค ๐‘— [ ๐‘“๐›ผ] ๐‘— [๐ต๐œ™] ๐‘— ฮ”๐‘ฅฮ”๐‘ก (3.19) where [ ๐‘“๐›ผ] has been obtained from (3.17), [๐ต๐œ™] is computed from the matrix multiplication, and ๐‘ค โˆˆ R200โŒˆ ๐ฟ+1 2 โŒ‰ is the weight coefficient vector from the trapezoidal rule, whose first and last 200 elements are 1 2 and others are 1. On the left-hand side of (3.12), we approximate the interior integral over ฮฉ by successively applying the trapezoidal rule first to ๐‘ฆ and then to ๐‘ฅ. If we write หœ๐‘ค = ( 1 2 , 1, . . . , 1, 1 2) โˆˆ R51 for the 55 coefficient vector of the trapezoidal rule, then (๐œ“, ๐œ™)๐ฟ2 (ฮฉ,๐‘โˆ’2๐‘‘๐‘ฅ) = โ‰ˆ โˆซ 1 โˆซ 1 ๐œ“(๐‘ฅ, ๐‘ฆ)๐œ™(๐‘ฅ, ๐‘ฆ)๐‘โˆ’2(๐‘ฅ, ๐‘ฆ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ โˆ’1 หœ๐‘ค ๐‘— หœ๐‘ค ๐‘˜ ๐œ“(๐‘ฅ ๐‘— , ๐‘ฆ๐‘˜ )๐œ™(๐‘ฅ ๐‘— , ๐‘ฆ๐‘˜ )๐‘โˆ’2(๐‘ฅ ๐‘— , ๐‘ฆ๐‘˜ ) (ฮ”๐‘ฅ)2. (3.20) โˆ’1 ๐ผ โˆ‘๏ธ ๐‘—,๐‘˜=0 Equating (3.19) and (3.20) and inserting various harmonic functions of the form (3.18) gives rise to a system of linear equations on the unknowns ๐‘โˆ’2(๐‘ฅ ๐‘— , ๐‘ฆ๐‘˜ ), ๐‘—, ๐‘˜ = 0, 1, . . . , 50. Depending on the number of harmonic functions, the linear system can be over determined or under determined, we can apply different regression methods, such as least square regression, Tikhonov regularization, to solve for the regularized unknowns. 3.2.3 Numerical Experiment In this section, following (3.18), we choose harmonic basis to be ๐œ™(1) = ln((๐‘ฅ โˆ’ 2.3)2 + (๐‘ฆ โˆ’ 2.2)2), ๐œ™(2) = ln((๐‘ฅ + 2.5)2 + (๐‘ฆ โˆ’ 2.1)2), ๐œ™(3) = ln((๐‘ฅ โˆ’ 2.7)2 + (๐‘ฆ + 1.9)2), ๐œ™(4) = ln((๐‘ฅ + 1.5)2 + (๐‘ฆ + 2.5)2), ๐œ™(5) = ln((๐‘ฅ + 1.2)2 + (๐‘ฆ + 2.5)2), ๐œ™(6) = 1. We denote the vector space generated by the products of these harmonic functions by ๐‘†6, that is, ๐‘†6 := span{๐œ™(๐‘–) ๐œ™( ๐‘—) : ๐‘–, ๐‘— = 1, . . . , 6}. If ๐‘โˆ’2 is in the vector space ๐‘†6, we have following representation ๐‘โˆ’2 = โˆ‘๏ธ ๐‘๐‘– ๐‘— ๐œ™(๐‘–) ๐œ™( ๐‘—). 1โ‰ค๐‘–โ‰ค ๐‘— โ‰ค6 Take the inner product (ยท, ยท)๐ฟ2 (ฮฉ) with ๐œ™(๐‘˜) ๐œ™(๐‘™) respectively, 1 โ‰ค ๐‘˜ โ‰ค ๐‘™ โ‰ค 6, to obtain the following linear system A ยท = ๐‘11 ๐‘12 ... ๐‘66 ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป (๐‘โˆ’2, ๐œ™(1) 2)๐ฟ2 (ฮฉ) (๐‘โˆ’2, ๐œ™(1) ๐œ™(2))๐ฟ2 (ฮฉ) ... (๐‘โˆ’2, ๐œ™(7) 2)๐ฟ2 (ฮฉ) ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ . ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป 56 (3.21) where the 21 ร— 21 coefficient matrix A is (๐œ™(1) 2, ๐œ™(1) 2)๐ฟ2 (ฮฉ) (๐œ™(1) ๐œ™(2), ๐œ™(1) 2)๐ฟ2 (ฮฉ) ... (๐œ™(6) 2, ๐œ™(1) 2)๐ฟ2 (ฮฉ) ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ (๐œ™(1) 2, ๐œ™(1) ๐œ™(2))๐ฟ2 (ฮฉ) (๐œ™(1) ๐œ™(2), ๐œ™(1) ๐œ™(2))๐ฟ2 (ฮฉ) ... (๐œ™(6) 2, ๐œ™(1) ๐œ™(2))๐ฟ2 (ฮฉ) . . . . . . . . . . . . (๐œ™(1) 2, ๐œ™(6) 2)๐ฟ2 (ฮฉ) (๐œ™(1) ๐œ™(2), ๐œ™(6) 2)๐ฟ2 (ฮฉ) ... (๐œ™(6) 2, ๐œ™(6) 2)๐ฟ2 (ฮฉ) ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป The coefficient matrix on the left-hand side can be analytically computed, and the components of the vector on the right-hand side are exactly the inner products on the left hand side of (3.20). We then solve the discretized version of this linear system to obtain the coefficients ๐‘๐‘– ๐‘— . The orthogonal projection of ๐‘โˆ’2 onto ๐‘†6 is implied by the inner products on the right side of (3.21) if ๐‘โˆ’2 is not in the vector space ๐‘†6. The linear system can be solved to obtain an orthogonal projection. Since harmonic function products are dense in ๐ฟ2(ฮฉ), the orthogonal projection should better approximate ๐‘โˆ’2 as the number of harmonic functions ๐œ™( ๐‘—) increases. 3.2.3.1 Experiment 1: ๐‘ โ‰ก 1, ๐‘โˆ’2 โˆˆ ๐‘†6. We start our experiment by evaluating the reconstruction for the simplest case, the wave speed ๐‘1 โ‰ก 1. Notice that ๐‘โˆ’2 1 โ‰ก 1 โˆˆ ๐‘†6 since ๐œ™(6) = 1. Figure 3.2 shows the reconstructed speed and errors in the presence of 0%, 5%, and 50% of Gaussian random noises with zero mean and unit variance, respectively. It is observed that the reconstructed wave speed are little affected by the presence of random noise. This is because, in the definition (3.8) of ๐พ, the low-pass filter ๐ฝ and the ND map ฮ›๐‘ tend to smooth out the Gaussian random noise. 3.2.3.2 Experiment 2: ๐‘ is variable, ๐‘โˆ’2 โˆˆ ๐‘†6. The algorithm is then tested with a variable speed ๐‘2, where ๐‘โˆ’2 2 โˆˆ ๐‘†6. In this experiment, the random Gaussian noise is fixed at 5%. The ground-truth speed is generated as ๐‘โˆ’2 2 = 6 โˆ‘๏ธ ๐‘– 10 ๐‘–=1 ๐œ™(๐‘–), see the leftmost of Figure 3.3. We execute the reconstructions using the first 2, 4, and 6 harmonic functions ๐œ™(๐‘–), correspond- ingly, to demonstrate how the quality of the images improves with an increase in the number of basis 57 Figure 3.2 Experiment 1. Top row: reconstructed ๐‘. Bottom row: error between the reconstruction and the ground truth. First column: 0% noise; the relative ๐ฟ2-error is 0.4769%. Second column: 5% noise; the relative ๐ฟ2-error is 0.4873%. Third column: 50% noise; the relative ๐ฟ2-error is 0.5454%. Grid: 283 ร— 51 ร— 51. Figure 3.3 The variable speed ๐‘2. functions. As the number of harmonic functions rises, we find that the reconstruction becomes more accurate; Figure 3.4 provides numerical evidence for this observation. 3.2.3.3 Experiment 3: ๐‘ is variable, ๐‘โˆ’2 โˆ‰ ๐‘†6. Next, we test the ability of the algorithm in recovering a variable speed ๐‘3(๐‘ฅ, ๐‘ฆ) = 1 + 0.08 sin ๐œ‹๐‘ฅ + 0.06 cos ๐œ‹๐‘ฆ, with ๐‘โˆ’2 3 โˆ‰ ๐‘†6. The wave speed ๐‘3 and its orthogonal projection on ๐‘†6 are illustrated in Figure 3.5. The reconstructions with the first 2, 4, and 6 harmonic functions ๐œ™(๐‘–) are shown in Figure 3.6. It is not possible to recover the exact discrete version of ๐‘โˆ’2 in this scenario. The ๐ฟ2-orthogonal projection of ๐‘โˆ’2 onto the subspace ๐‘†6 is what the algorithm produces instead. This is because, in 58 Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.9940.9960.99811.0021.0041.0061.008Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.9940.9960.99811.0021.0041.0061.008Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.9920.9940.9960.99811.0021.0041.0061.008Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.811234567810-3Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.811234567810-3Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8112345678910-3Ground Truth c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.470.480.490.50.510.520.530.540.550.560.57 Figure 3.4 Experiment 2. Top row: reconstructed ๐‘. Bottom row: error between the reconstruction and the ground truth. First column: First 2 harmonic functions; the relative ๐ฟ2-error is 15.6987%. Second column: First 4 harmonic functions; the relative ๐ฟ2-error is 0.7939%. Third column: All 6 harmonic functions; the relative ๐ฟ2-error is 0.7907%. Grid: 323 ร— 51 ร— 51. Figure 3.5 Left: the variable speed ๐‘3. Right: orthogonal projection of ๐‘3 on ๐‘†6. order to solve for [๐‘โˆ’2], Tikhonov regularization was used. You can view the numerical validation in Figure 3.6. 3.2.3.4 More Experiments We also test the performance of the inversion formulae in different cases, such as discontinuous wave speed ๐‘(๐‘ฅ) or partial data case, i.e. the NP map is set to zero at the region can not be measured. See [96] for details. 3.3 Linearized Inverse Boundary Value Problem Linearization, such as Born approximation, Kirchhoff approximation, is a method to give linear approximation of a nonlinear model. It is widely used to solve nonlinear inverse problems [3, 19, 60, 98]. The linearized inverse problems consider the model as a perturbation of a (known) background model. One can construct a perturbed model which is linearly depend on the unknown 59 Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.450.50.550.60.65Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.470.480.490.50.510.520.530.540.550.560.57Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.470.480.490.50.510.520.530.540.550.560.57Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.020.040.060.080.10.120.140.160.180.2Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.811234567810-3Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.811234567810-3Ground Truth c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.90.9511.051.1Projection-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.90.920.940.960.9811.021.041.061.08 Figure 3.6 Experiment 3. Top row: reconstructed ๐‘. Bottom row: error between the reconstruction and the orthogonal projection of the ground truth. First column: First 2 harmonic functions; the relative ๐ฟ2-error is 12.3535%. Second column: First 4 harmonic functions; the relative ๐ฟ2-error is 0.4139%. Third column: All 6 harmonic functions; the relative ๐ฟ2-error is 0.3104%. Grid: 323 ร— 51 ร— 51. parameters. In this section, we introduce linearized IBVP algorithms for both wave speed and wave potential reconstruction. 3.3.1 Reconstruct Wave Speed through Linearization In Section 3.2, we introduce an algorithm to reconstruct wave speed with full nonlinear treat- ment. In this section, we apply linearization to the nonlinear IBVP to reconstruct the wave speed. We assume the wave potential ๐‘ž = ๐‘ž0(๐‘ฅ) โˆˆ ๐ถโˆž(ฮฉ) is known, and we want to recover ๐‘(๐‘ฅ) from the ND map ฮ›๐œŒ,๐‘ž0. For simplicity, we use ฮ›๐œŒ to represent ฮ›๐œŒ,๐‘ž0 in this section. We use the linearization to solve the IBVP. For the formal derivation, we write ๐œŒ(๐‘ฅ) = ๐œŒ0(๐‘ฅ) + ๐œ€ (cid:164)๐œŒ(๐‘ฅ), ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘ข0(๐‘ก, ๐‘ฅ) + ๐œ€ (cid:164)๐‘ข(๐‘ก, ๐‘ฅ) where ๐œŒ0 = ๐‘โˆ’2 0 from a known background wave speed and ๐‘ข0 is the background solution. Substitute these into (3.1). Equating the ๐‘‚ (1)-terms gives โ–ก๐œŒ0,๐‘ž0 ๐‘ข0(๐‘ก, ๐‘ฅ) = 0, in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐‘ข0 = ๐‘“ , on (0, 2๐‘‡) ร— ๐œ•ฮฉ (3.22) ๐‘ข0(0, ๐‘ฅ) = ๐œ•๐‘ก๐‘ข0(0, ๐‘ฅ) = 0, ๐‘ฅ โˆˆ ฮฉ. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ 60 Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.911.11.21.31.4Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.920.940.960.9811.021.041.061.08Reconstructed c-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.90.920.940.960.9811.021.041.061.08Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.050.10.150.20.250.30.350.4Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.8124681012141610-3Error-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.810.511.522.533.5410-3 Equating the ๐‘‚ (๐œ€)-terms gives โ–ก๐œŒ0,๐‘ž0 (cid:164)๐‘ข(๐‘ก, ๐‘ฅ) = โˆ’ (cid:164)๐œŒ(๐‘ฅ)๐œ•2 ๐œ•๐œˆ (cid:164)๐‘ข = 0, ๐‘ก ๐‘ข0(๐‘ก, ๐‘ฅ), in (0, 2๐‘‡) ร— ฮฉ on (0, 2๐‘‡) ร— ๐œ•ฮฉ (3.23) (cid:164)๐‘ข(0, ๐‘ฅ) = ๐œ•๐‘ก (cid:164)๐‘ข(0, ๐‘ฅ) = 0 ๐‘ฅ โˆˆ ฮฉ. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ Write the ND map ฮ›๐œŒ = ฮ›๐œŒ0 + ๐œ€ (cid:164)ฮ› (cid:164)๐œŒ, where ฮ›๐œŒ0 denote the ND map for the unperturbed boundary value problem (3.22), and (cid:164)ฮ› (cid:164)๐œŒ is defined as (cid:164)ฮ› (cid:164)๐œŒ : ๐‘“ โ†ฆโ†’ (cid:164)๐‘ข| (0,2๐‘‡)ร—๐œ•ฮฉ. (3.24) Since ๐œŒ0 and ๐‘ž0 are known, the unperturbed problem (3.22) can be explicitly solved to obtain ๐‘ข0 and ฮ›๐œŒ0. As in the previous section, we will write (cid:164)๐‘ข = (cid:164)๐‘ข ๐‘“ if it is necessary to specify the Neumann data ๐‘“ . Then the linearized IBVP concerns recovery of the speed (cid:164)๐œŒ from (cid:164)ฮ› (cid:164)๐œŒ. 3.3.1.1 Derivation Similar to Section 3.2, introduce the time reversal operator ๐‘…, see (3.4), the low-pass filter ๐ฝ, see (3.5). the orthogonal projection operator ๐‘ƒ๐‘‡ , see (3.6) and its adjoint operator ๐‘ƒโˆ— ๐‘‡ as the extension by zero from (0, ๐‘‡) to (0, 2๐‘‡). Let T๐ท and T๐‘ be the Dirichlet and Neumann trace operators respectively, that is, T๐ท๐‘ข(๐‘ก, ยท) = ๐‘ข(๐‘ก, ยท)|๐œ•ฮฉ, T๐‘๐‘ข(๐‘ก, ยท) = ๐œ•๐œˆ๐‘ข(๐‘ก, ยท)|๐œ•ฮฉ. Introduce the connecting operator ๐พ := ๐ฝฮ›๐‘ž๐‘ƒโˆ— ๐‘‡ โˆ’ ๐‘…ฮ›๐‘ž,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘‡ Similarly, the following Blagoveห˜sห˜censkiห˜ฤฑโ€™s identity holds. Proposition 3.6. Let ๐‘ข ๐‘“ , ๐‘ขโ„Ž be the solutions of (3.1) with Neumann traces ๐‘“ , โ„Ž โˆˆ ๐ฟ2((0, ๐‘‡) ร— ๐œ•ฮฉ), respectively. Then (๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 ๐‘‘๐‘ฅ) = ( ๐‘“ , ๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). (3.25) 61 Proof. The proof is similar to the proof of Proposition 3.2. We first prove this for ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡)ร— ๐œ•ฮฉ). Define We compute ๐ผ (๐‘ก, ๐‘ ) := (๐‘ข ๐‘“ (๐‘ก), ๐‘ขโ„Ž (๐‘ ))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 . ๐‘‘๐‘ฅ) (๐œ•2 ๐‘ก โˆ’ ๐œ•2 ๐‘  )๐ผ (๐‘ก, ๐‘ ) =((ฮ” + ๐‘ž)๐‘ข ๐‘“ (๐‘ก), ๐‘ขโ„Ž (๐‘ ))๐ฟ2 (ฮฉ) โˆ’ (๐‘ข ๐‘“ (๐‘ก), (ฮ” + ๐‘ž)๐‘ขโ„Ž (๐‘ ))๐ฟ2 (ฮฉ) =( ๐‘“ (๐‘ก), ฮ›๐œŒ๐‘ƒโˆ— ๐‘‡ โ„Ž(๐‘ ))๐ฟ2 (๐œ•ฮฉ) โˆ’ (ฮ›๐œŒ๐‘ƒโˆ— ๐‘‡ ๐‘“ (๐‘ก), โ„Ž(๐‘ ))๐ฟ2 (๐œ•ฮฉ), (3.26) where the last equality follows from integration by parts. Notice that the expression in (3.26) is exactly the same as in (3.7), the following proof are exactly the same as the proof of Proposition 3.2. Corollary 3.7. Suppose ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ). Then (ฮ”๐‘ข ๐‘“ (๐‘‡) โˆ’ ๐‘ž๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 ๐‘‘๐‘ฅ) = (๐œ•2 ๐‘ก ๐‘“ , ๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ๐œ•2 ๐‘ก ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). Proof. Replacing ๐‘“ by ๐œ•2 ๐‘ก ๐‘“ in (3.25), we get โ–ก (3.27) (๐‘ข๐œ•2 ๐‘ก ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 ๐‘‘๐‘ฅ) = (๐œ•2 ๐‘ก ๐‘“ , ๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ๐œ•2 ๐‘ก ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). As both ๐‘ข๐œ•2 ๐‘ก ๐‘“ and ๐œ•2 ๐‘ก ๐‘ข ๐‘“ satisfy (3.1) with ๐‘“ replaced by ๐œ•2 ๐‘ก ๐‘“ , the well-posedness of the boundary value problem ensures that ๐œŒ๐‘ข๐œ•2 ๐‘ก ๐‘“ = ๐œŒ๐œ•2 ๐‘ก ๐‘ข ๐‘“ = ฮ”๐‘ข ๐‘“ โˆ’ ๐‘ž๐‘ข ๐‘“ . Remember that we write ฮ›๐œŒ = ฮ›๐œŒ0 + ๐œ€ (cid:164)ฮ› (cid:164)๐œŒ in the linearization setting, we have the following linearization ๐พ = ๐พ0 + ๐œ€ (cid:164)๐พ. Here ๐พ0 is the connecting operator for the background wave equation (3.22): ๐พ0 := ๐ฝฮ›๐œŒ0 ๐‘‡ โˆ’ ๐‘…ฮ›๐œŒ0,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘ƒโˆ— ๐‘‡ . (3.28) โ–ก 62 ๐พ0 can be explicitly computed since ฮ›๐œŒ0,๐‘ž0 is known. (cid:164)๐พ is the resulting perturbation in the connecting operator: (cid:164)๐พ := ๐ฝ (cid:164)ฮ› (cid:164)๐œŒ๐‘ƒโˆ— ๐‘‡ โˆ’ ๐‘… (cid:164)ฮ› (cid:164)๐œŒ,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘‡ . (3.29) (cid:164)๐พ can be explicitly computed once (cid:164)ฮ› (cid:164)๐œŒ is given. We write (cid:164)ฮ› for (cid:164)ฮ› (cid:164)๐œŒ when there is no risk of confusion. Linearizing (3.25) and (3.27) gives the following integral identity, which is essential to the development of the reconstruction procedure: Proposition 3.8. Let 0 โ‰  ๐œ† โˆˆ R be a nonzero real number. If ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) satisfy [ฮ” โˆ’ ๐‘ž0 + ๐œ†๐œŒ0]๐‘ข ๐‘“ 0 (๐‘‡) = [ฮ” โˆ’ ๐‘ž0 + ๐œ†๐œŒ0]๐‘ขโ„Ž 0 (๐‘‡) = 0 in ฮฉ, (3.30) then the following identity holds: โˆ’( (cid:164)๐œŒ๐‘ข ๐‘“ 0 (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) = 1 ๐œ† [(๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ)]. (3.31) Proof. For ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡) ร— ๐œ•ฮฉ), we will make use of (3.25) (3.27) to obtain some identities. First, we substitute all linearizations into (3.25). Equating ๐‘‚ (1)-terms gives (๐œŒ0๐‘ข ๐‘“ 0 (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) = ( ๐‘“ , ๐พ0โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ0 ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). Equating ๐‘‚ (๐œ€)-terms gives ( ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = ( (cid:164)๐พ ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( (cid:164)๐œŒ๐‘ข ๐‘“ 0 0 (๐‘‡))๐ฟ2 (ฮฉ) + (๐œŒ0 (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) + (๐œŒ0๐‘ข ๐‘“ 0 (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ). (3.32) Similarly, we substitute all linearizations into (3.27). Equating ๐‘‚ (1)-terms gives (ฮ”๐‘ข ๐‘“ 0 (๐‘‡) โˆ’ ๐‘ž๐‘ข ๐‘“ 0 (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) = (๐œ•2 ๐‘ก ๐‘“ , ๐พ0โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ0๐œ•2 ๐‘ก ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). Equating ๐‘‚ (๐œ€)-terms gives (๐œ•2 ๐‘ก ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = ( (cid:164)๐พ๐œ•2 ๐‘ก ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =((ฮ” โˆ’ ๐‘ž0) (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž =( (cid:164)๐‘ข ๐‘“ (๐‘‡), (ฮ” โˆ’ ๐‘ž0)๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) + ((ฮ” โˆ’ ๐‘ž0)๐‘ข ๐‘“ 0 (๐‘‡))๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) + ((ฮ” โˆ’ ๐‘ž0)๐‘ข ๐‘“ (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ) 0 0 (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ) 63 where the last inequality use the integration by parts and the fact that (cid:164)๐‘ข ๐‘“ | (0,2๐‘‡)ร—๐œ•ฮฉ = (cid:164)ฮ› ๐‘“ and ๐œ•๐œˆ (cid:164)๐‘ข = 0. Add (3.32) multiplied by ๐œ† โˆˆ R to get (๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) =(๐œ•2 ๐‘ก ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) + (๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( (cid:164)๐‘ข ๐‘“ (๐‘‡), [ฮ” โˆ’ ๐‘ž0 + ๐œ†๐œŒ0]๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) + ( [ฮ” โˆ’ ๐‘ž0 + ๐œ†๐œŒ0]๐‘ข ๐‘“ 0 (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ) + ๐œ†( (cid:164)๐œŒ๐‘ข ๐‘“ 0 (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ). If [ฮ” โˆ’ ๐‘ž0 + ๐œ†๐œŒ0]๐‘ข ๐‘“ 0 (๐‘‡) = [ฮ” โˆ’ ๐‘ž0 + ๐œ†๐œŒ0]๐‘ขโ„Ž 0 (๐‘‡) = 0 in ฮฉ, the first term and second term on the right-hand side vanish, resulting in (3.31). โ–ก Notice that all parameters in (3.30) are known. For each ๐œ† โˆˆ R, we can construct functions ๐œ™, ๐œ“ satisfy (3.30). According to Proposition 3.8, once we find control sequence ๐‘“๐›ผ, โ„Ž๐›ผ such that ๐‘ข ๐‘“๐›ผ (๐‘‡) โ†’ ๐œ™, ๐‘ขโ„Ž ๐›ผ (๐‘‡) โ†’ ๐œ“, we have the weighted inner product (๐œ™, ๐œ“)๐ฟ2 (ฮฉ, (cid:164)๐œŒ d๐‘ฅ) from (3.31). The following proposition ensures the existance of such boundary controls: Proposition 3.9. Let ๐‘0 โˆˆ ๐ถโˆž(ฮฉ) be strictly positive and ๐‘ž0 โˆˆ ๐ถโˆž(ฮฉ). Suppose that all maximal1 0 d๐‘ฅ2) have length strictly less than some fixed ๐‘‡ > 0. Then for any ๐œ™ โˆˆ ๐ถโˆž(ฮฉ), geodesics on (ฮฉ, ๐‘โˆ’2 there is ๐‘“ โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) such that ๐‘ข ๐‘“ 0 (๐‘‡) = ๐œ™ in ฮฉ, where ๐‘ข0 is the solution of (3.22). Moreover, there is ๐ถ > 0, independent of ๐œ™, such that โˆฅ ๐‘“ โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) โ‰ค ๐ถ โˆฅ๐œ™โˆฅ๐ป4 (ฮฉ). Proof. See [75, Proposition 4]. 3.3.1.2 Stability and Reconstruction (3.33) (3.34) โ–ก The following reconstruction is mostly based on (3.30) (3.31). 1For a maximal geodesic ๐›พ : [๐‘Ž, ๐‘] โ†’ ฮฉ there may exists ๐‘ก โˆˆ (๐‘Ž, ๐‘) such that ๐›พ(๐‘ก) โˆˆ ๐œ•ฮฉ. The geodesics are maximal on the closed set ฮฉ. 64 Case 1: ๐œŒ0 is constant Without loss of generality, we assume ๐œŒ0 = 1. When ๐‘ž0 is constant, we choose ๐œ† โ‰ฅ ๐‘ž0. The equation (3.30) becomes the Helmholtz equation [ฮ” + (๐œ† โˆ’ ๐‘ž0)]๐‘ข ๐‘“ 0 (๐‘‡) = [ฮ” + (๐œ† โˆ’ ๐‘ž0)]๐‘ข ๐‘“ 0 (๐‘‡) = 0 in ฮฉ. Without loss of generality, we take ๐‘ž0 = 0. Then the Helmholtz solutions are ๐‘’๐‘– ๐œƒ โˆˆ S๐‘›โˆ’1 is an arbitrary unit vector. Furthermore, Proposition 3.9 guarantees the existence of โˆš ๐œ†๐œƒยท๐‘ฅ, where ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) such that ๐‘ข ๐‘“ 0 (๐‘‡) = ๐‘ขโ„Ž 0 (๐‘‡) = ๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ. (3.35) Theorem 3.10. Suppose ๐œ† > 0, ๐‘0 = 1 and ๐‘ž0 = 0. Then the Fourier transform ห†(cid:164)๐œŒ of (cid:164)๐œŒ can be reconstructed as follows: โˆš ๐œ†๐œƒ) = โˆ’ ห†(cid:164)๐œŒ(2 1 ๐œ† [(๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ)] (3.36) where ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) are solutions to (3.35). Proof. The formula is obtained by substitute (3.35) into (3.31). Since ๐œƒ โˆˆ S๐‘›โˆ’1 and ๐œ† โ‰ฅ 0 are arbitrary, it gives the Fourier transform of (cid:164)๐œŒ everywhere. See also Algorithm 3.2. โ–ก Remark 3.11. An explicit procedure to solve for ๐‘“ and โ„Ž from (3.15) is explained in Section 3.3.1.3. Input: low-pass filter ๐ฝ, time-reversal operator ๐‘…, projection operator ๐‘ƒ๐‘‡ , linearized ND map (cid:164)ฮ› (cid:164)๐œŒ Output: sound speed perturbation (cid:164)๐œŒ 1. Choose ๐œ† > 0 and ๐œƒ โˆˆ S๐‘›โˆ’1. 2. Solve the boundary control equations ๐‘ข ๐‘“ 0 3. Construct the linearized connecting operator (cid:164)๐พ by (cid:164)๐พ := ๐ฝ (cid:164)ฮ›๐‘ƒโˆ— 4. Compute F [ (cid:164)๐œŒ] (2 โˆš ๐œ†๐œƒยท๐‘ฅ for ๐‘“ and โ„Ž. ๐‘‡ โˆ’ ๐‘… (cid:164)ฮ›๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘‡ . (๐‘‡) = ๐‘ขโ„Ž 0 (๐‘‡) = ๐‘’๐‘– ๐œ†๐œƒ) by โˆš F [ (cid:164)๐œŒ] (2 โˆš ๐œ†๐œƒ) = โˆ’ 1 ๐œ† (cid:2)(๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) (cid:3) . (3.37) 5. Repeat the above steps with various ๐œ† > 0 and ๐œƒ โˆˆ S๐‘›โˆ’1 to recover the Fourier transform F [ (cid:164)๐œŒ]. 6. Invert the Fourier transform to recover (cid:164)๐œŒ. Algorithm 3.2 Linearized Boundary Control Reconstruction of (cid:164)๐œŒ when ๐‘ž โ‰ก 0. 65 Theorem 3.12. Suppose ๐œ† > 0, ๐‘0 = 1 and ๐‘ž0 = 0. There exists a constant ๐ถ > 0, independent of ๐œ†, such that โˆš (cid:12) (cid:12) (cid:12) ห†(cid:164)๐œŒ( 2๐œ†๐œƒ) (cid:12) (cid:12) (cid:12) โ‰ค ๐ถ (1 + โˆš 2๐‘‡ (1 + ๐œ†))๐œ†3โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) Proof. For a bounded linear operator ๐‘‡ : X โ†’ Y between two Hilbert spaces X and Y, we write โˆฅ๐‘‡ โˆฅXโ†’Y for the operator norm of ๐‘‡. Let ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) be solutions of (3.35) obtained from Proposition 3.9. We employ (3.36) to estimate: ๐œ† (cid:12) (cid:12) (cid:12) F [ (cid:164)๐œŒ] ( โˆš 2๐œ†๐œƒ) (cid:12) (cid:12) (cid:12) โ‰คโˆฅ๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅโ„Žโˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅ (cid:164)๐พ โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) +โˆฅ (cid:164)ฮ› ๐‘“ (๐‘‡)โˆฅ ๐ฟ2 (๐œ•ฮฉ) โˆฅโ„Ž(๐‘‡) โˆฅ ๐ฟ2 (๐œ•ฮฉ) โ‰ค(1 + ๐œ†)โˆฅ ๐‘“ โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅโ„Žโˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅ (cid:164)๐พ โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) +โˆฅ (cid:164)ฮ› ๐‘“ โˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅโ„Žโˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) by the continuity of the trace operator. In order to estimate โˆฅ (cid:164)ฮ› ๐‘“ โˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ), we extend ๐‘“ โˆˆ ๐ป2((0, ๐‘‡) ร— ๐œ•ฮฉ) to a function ๐น โˆˆ 2 ((0, ๐‘‡) ร— ฮฉ) so that ๐œ•๐œˆ๐น | (0,๐‘‡)ร—๐œ•ฮฉ = ๐‘“ and ๐น (๐‘ก, ๐‘ฅ) = 0 for ๐‘ฅ โˆˆ ฮฉ and ๐‘ก close to 0 (recall that ๐ป2+ 3 ๐‘“ (๐‘ก, ๐‘ฅ) = 0 for ๐‘ก near 0). Such ๐น can be chosen to fulfill โˆฅ๐น โˆฅ ๐ป3+ 1 2 ((0,๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ ๐‘“ โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) Set ๐‘ฃ := ๐น โˆ’ ๐‘ข0 where ๐‘ข0 is the solution of (3.63), then ๐‘ฃ satisfies โ–ก๐œŒ0,๐‘ž0 ๐‘ฃ = โ–ก๐œŒ0,๐‘ž0 ๐น, in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐‘ฃ = 0, on (0, 2๐‘‡) ร— ๐œ•ฮฉ ๐‘ฃ|๐‘ก=0 = ๐œ•๐‘ก๐‘ฃ|๐‘ก=0 = 0, ๐‘ฅ โˆˆ ฮฉ. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ The regularity estimate for the wave equation [40] implies โˆฅ๐‘ฃโˆฅ ๐ป2+ 1 2 ((0,๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅโ–ก๐œŒ0,๐‘ž0 ๐น โˆฅ ๐ป1+ 1 2 ((0,๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ๐น โˆฅ ๐ป3+ 1 2 ((0,๐‘‡)ร—ฮฉ) We conclude ๐‘ข0 โˆˆ ๐ป2+ 1 2 ((0, ๐‘‡) ร— ฮฉ) and (cid:164)๐œŒ๐œ•2 ๐‘ก ๐‘ข0 โˆˆ ๐ป 1 2 ((0, ๐‘‡) ร— ฮฉ). The same regularity estimate for the wave equation applied to (3.23) implies โˆฅ (cid:164)๐‘ขโˆฅ ๐ป1+ 1 2 ((0,๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐œŒ๐œ•2 ๐‘ก ๐‘ข0โˆฅ ๐ป 1 2 ((0,๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ๐‘ข0โˆฅ ๐ป2+ 1 2 ((0,๐‘‡)ร—ฮฉ) 66 These inequalities together with the trace estimate yield โˆฅ (cid:164)ฮ› ๐‘“ โˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐‘ขโˆฅ ๐ป1+ 1 2 ((0,๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ ๐‘“ โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) where the constant ๐ถ > 0 is independent of ๐‘“ . Hence (cid:164)ฮ› : ๐ป2((0, ๐‘‡) ร— ๐œ•ฮฉ) โ†’ ๐ป1((0, ๐‘‡) ร— ๐œ•ฮฉ) is a bounded linear operator. It remains to estimate โˆฅ (cid:164)๐พ โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). Consider the norms of each operator in (3.29). It is clear that โˆฅ๐‘ƒโˆ— ๐‘‡ โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) = 1, โˆฅ๐‘ƒ๐‘‡ โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = 1, โˆฅ๐‘…โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = 1. Since (cid:164)ฮ›๐‘‡ = ๐‘ƒ๐‘‡ (cid:164)ฮ›๐‘ƒโˆ— ๐‘‡ , โˆฅ (cid:164)ฮ›๐‘‡ โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โ‰ค โˆฅ (cid:164)ฮ›โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ). To estimate operator ๐ฝ, it is important to observe that โˆฅ๐ฝ ๐‘“ โˆฅ2 ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = โˆซ ๐‘‡ โˆซ 0 โˆซ ๐‘‡ ๐œ•ฮฉ โˆซ (cid:12) (cid:12) (cid:12) (cid:12) โˆซ 2๐‘‡โˆ’๐‘ก 1 2 (cid:18)โˆซ 2๐‘‡โˆ’๐‘ก ๐‘ก ๐‘“ (๐œ, ๐‘ฅ) d๐œ 2 (cid:12) (cid:12) (cid:12) (cid:12) d๐‘ฅ d๐‘ก | ๐‘“ (๐œ, ๐‘ฅ)| d๐œ (cid:19) 2 d๐‘ฅ d๐‘ก 0 โˆซ ๐‘‡ ๐œ•ฮฉ โˆซ ๐‘ก (cid:18)โˆซ 2๐‘‡ | ๐‘“ (๐œ, ๐‘ฅ)| d๐œ (cid:19) 2 d๐‘ฅ d๐‘ก 0 โˆซ ๐‘‡ ๐œ•ฮฉ โˆซ 0 ๐œ•ฮฉ 0 โˆซ 2๐‘‡ 0 2๐‘‡ | ๐‘“ (๐œ, ๐‘ฅ)|2 d๐œ d๐‘ฅ d๐‘ก โˆฅ ๐‘“ โˆฅ2 ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) , โ‰ค 1 4 โ‰ค โ‰ค = 1 4 1 4 ๐‘‡ 2 2 we have Thus, we conclude โˆฅ๐ฝ โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โ‰ค ๐‘‡ โˆš 2 , โˆฅ (cid:164)๐พ โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โ‰ค โˆš 2๐‘‡ โˆฅ (cid:164)ฮ›โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ). 67 Finally, we can complete the stability estimate: โˆš (cid:12) (cid:12) (cid:12) 2๐œ†๐œƒ) (cid:12) F [ (cid:164)๐œŒ] ( (cid:12) (cid:12) 1 + ๐œ† ๐œ† 1 โˆฅ (cid:164)ฮ› ๐‘“ โˆฅ๐ป3 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅโ„Žโˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) ๐œ† โˆš 2๐‘‡ (1 + ๐œ†) ๐œ† โ‰ค + โ‰ค โˆฅ ๐‘“ โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅโ„Žโˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅ (cid:164)๐พ โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅ ๐‘“ โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅโ„Žโˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅ (cid:164)ฮ›โˆฅ ๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + 1 ๐œ† โˆฅ ๐‘“ โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅโ„Žโˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) โ‰ค๐ถ๐œ† โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) where the constant ๐ถ๐œ† satisfies (see (3.34)) โˆš ๐ถ๐œ† (cid:66) 1 + โ‰ค๐ถ 1 + 2๐‘‡ (1 + ๐œ†) ๐œ† โˆš 2๐‘‡ (1 + ๐œ†) ๐œ† โˆฅ ๐‘“ โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅโ„Žโˆฅ๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅ๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ โˆฅ2 ๐ป4 (ฮฉ) โ‰ค ๐ถ (1 + โˆš 2๐‘‡ (1 + ๐œ†))๐œ†3 for some constant ๐ถ > 0 independent of ๐œ†. โ–ก When ๐‘ž0 is variable, choose ๐œ† โ‰ฅ 0, then (3.30) becomes the perturbed Helmholtz equation [ฮ” + ๐œ† โˆ’ ๐‘ž0]๐‘ข ๐‘“ 0 (๐‘‡) = [ฮ” + ๐œ† โˆ’ ๐‘ž0]๐‘ขโ„Ž 0 (๐‘‡) = 0 in ฮฉ. A class of solutions are total waves of the form ๐œ™(๐‘ฅ) = ๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ + ๐‘Ÿ (๐‘ฅ; ๐œ†) with ๐œƒ โˆˆ S๐‘›โˆ’1 and the scattered wave ๐‘Ÿ (๐‘ฅ; ๐œ†) satisfying According to [75, Lemma 13], for any ๐‘  โ‰ฅ 0. (ฮ” + ๐œ† โˆ’ ๐‘ž0)๐‘Ÿ = ๐‘ž0๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ in ฮฉ. โˆฅ๐‘Ÿ โˆฅ๐ป๐‘  (R๐‘›) = ๐‘‚ (๐œ† ๐‘ โˆ’1 2 ) as ๐œ† โ†’ โˆž 68 (3.38) (3.39) (3.40) One dimension: In one dimension (1D), ๐œƒ = ยฑ1. Let us take ๐œƒ = 1 and choose (3.38) to be (๐‘‡). Substituting into (3.31) gives ๐œ†) + 2( (cid:164)๐œŒ๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ, ๐‘Ÿ)๐ฟ2 (ฮฉ) + ( (cid:164)๐œŒ๐‘Ÿ, ๐‘Ÿ)๐ฟ2 (ฮฉ) the value of ๐‘ข ๐‘“ 0 Since (๐‘‡) and ๐‘ขโ„Ž 0 โˆš ห†(cid:164)๐œŒ(2 1 ๐œ† = โˆ’ [(๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ)] (3.41) |( (cid:164)๐œŒ๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ, ๐‘Ÿ)๐ฟ2 (ฮฉ) | โ‰ค ๐ถ โˆฅ (cid:164)๐œŒโˆฅ ๐ฟโˆž (ฮฉ) โˆฅ๐‘Ÿ โˆฅ ๐ฟ2 (ฮฉ), |( (cid:164)๐œŒ๐‘Ÿ, ๐‘Ÿ)๐ฟ2 (ฮฉ) | โ‰ค ๐ถ โˆฅ (cid:164)๐œŒโˆฅ ๐ฟโˆž (ฮฉ) โˆฅ๐‘Ÿ โˆฅ2 ๐ฟ2 (ฮฉ) . The left hand side of (3.41) decay like ๐‘‚ (๐œ†โˆ’ 1 2 ) as ๐œ† โ†’ โˆž according to (3.40). The approximate reconstruction follows in the high-frequency regime. Moreover, an approximate stability estimate can be provided in the same way as in the proof of Theorem 3.12 with an extra ๐‘‚ (๐œ†โˆ’ 1 2 ) term: (cid:12) (cid:12) (cid:12) ห†(cid:164)๐œŒ( โˆš 2๐œ†๐œƒ) (cid:12) (cid:12) (cid:12) โˆš โ‰ค ๐ถ (1 + 2๐‘‡ (1 + ๐œ†))๐œ†3โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) + ๐‘‚ (๐œ†โˆ’ 1 2 ). (3.42) High Dimension: In dimension ๐‘› โ‰ฅ 2, more freedom is available in choosing the wave vectors. Let ๐œƒ, ๐œ” โˆˆ R๐‘› be two vectors such that ๐œƒ โŠฅ ๐œ”. We take the following solutions: ๐œ™(๐‘ฅ) :=๐œ™0(๐‘ฅ) + ๐‘Ÿ1(๐‘ฅ; ๐œ†), ๐œ™0(๐‘ฅ) := ๐‘’๐‘–(๐‘˜๐œƒ+๐‘™๐œ”)ยท๐‘ฅ ๐œ“(๐‘ฅ) :=๐œ“0(๐‘ฅ) + ๐‘Ÿ2(๐‘ฅ; ๐œ†), ๐œ“0(๐‘ฅ) := ๐‘’๐‘–(๐‘˜๐œƒโˆ’๐‘™๐œ”)ยท๐‘ฅ where ๐‘Ÿ1, ๐‘Ÿ2 satisfy (3.40). Choose ๐‘˜ 2 + ๐‘™2 = ๐œ† such that (ฮ” + ๐œ†)๐œ™0 = (ฮ” + ๐œ†)๐œ“0 = 0. Proposition 3.9 asserts that there are ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) such that ๐‘ข ๐‘“ 0 (๐‘‡) = ๐œ™ = ๐œ™0 + ๐‘Ÿ1, ๐‘ขโ„Ž 0 (๐‘‡) = ๐œ“ = ๐œ“0 + ๐‘Ÿ2. (3.43) Inserting (3.43) into (3.31) gives โˆ’ ห†(cid:164)๐œŒ(2๐‘˜๐œƒ) โˆ’ ( (cid:164)๐œŒ๐‘’๐‘–(๐‘˜๐œƒ+๐‘™๐œ”)ยท๐‘ฅ, ๐‘Ÿ2)๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)๐œŒ๐‘’๐‘–(๐‘˜๐œƒโˆ’๐‘™๐œ”)ยท๐‘ฅ, ๐‘Ÿ1)๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)๐œŒ๐‘Ÿ1, ๐‘Ÿ2)๐ฟ2 (ฮฉ) 1 ๐œ† ๐‘ก ๐‘“ + (๐‘˜ 2 + ๐‘™2) ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ)] [(๐œ•2 = (3.44) If we fix ๐‘˜ and let ๐‘™ โ†’ โˆž, then ๐œ† โ†’ โˆž. Due to the decay property (3.40), โˆฅ๐‘Ÿ1โˆฅ ๐ฟ2 (ฮฉ), โˆฅ๐‘Ÿ2โˆฅ ๐ฟ2 (ฮฉ) โ†’ 0. We obtain the reconstruction formula for any ๐‘˜ โ‰ฅ 0 and any ๐œƒ โˆˆ S๐‘›โˆ’1: ห†(cid:164)๐œŒ(2๐‘˜๐œƒ) = โˆ’ lim ๐‘™โ†’โˆž 1 ๐‘˜ 2 + ๐‘™2 (cid:2)(๐œ•2 ๐‘ก ๐‘“ + (๐‘˜ 2 + ๐‘™2) ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) (cid:3) . 69 Moreover, we can obtain a Hรถlder-type stability estimate for โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (R๐‘›), where ๐‘  > 0 is an arbitrary real number and ๐ปโˆ’๐‘  (R๐‘›) is the ๐ฟ2-based Sobolev space of order โˆ’๐‘  over R๐‘›. Theorem 3.13. Suppose ๐‘0 = 1, ๐‘ž0 โˆˆ ๐ถโˆž(ฮฉ) and ๐‘ž0 is not identically zero. For any ๐‘  > 0, there exists a constant ๐ถ > 0 independent of ๐œ† such that โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (R๐‘›) โ‰ค ๐ถ โˆฅ (cid:164)ฮ›โˆฅ 2๐‘  9(๐‘›+2๐‘ ) ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ) . Proof. Write ๐œ‰ := 2๐‘˜๐œƒ and ๐›ฟ := โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ). Let ๐œ‰0 > 0 be a sufficiently large number that is to be determined. We decompose โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (R๐‘›) = โˆซ |๐œ‰ |โ‰ค๐œ‰0 | ห†(cid:164)๐œŒ(๐œ‰)|2 (1 + |๐œ‰ |2)๐‘  โˆซ ๐‘‘๐œ‰ + |๐œ‰ |>๐œ‰0 | ห†(cid:164)๐œŒ(๐œ‰)|2 (1 + |๐œ‰ |2)๐‘  ๐‘‘๐œ‰. For the integral over high frequencies, we have โˆซ |๐œ‰ |>๐œ‰0 | ห†(cid:164)๐œŒ(๐œ‰)|2 (1 + |๐œ‰ |2)๐‘  ๐‘‘๐œ‰ โ‰ค 1 (1 + ๐œ‰2 0 )๐‘  โˆซ |๐œ‰ |>๐œ‰0 | ห†(cid:164)๐œŒ(๐œ‰)|2 ๐‘‘๐œ‰ โ‰ค For the integral over low frequencies, it is easy to see that: โˆฅ (cid:164)๐œŒโˆฅ2 ๐ฟ2 (R๐‘›) (1 + ๐œ‰2 0 )๐‘  โ‰ค ๐ถ 1 ๐œ‰2๐‘  0 . โˆซ |๐œ‰ |โ‰ค๐œ‰0 | ห†(cid:164)๐œŒ(๐œ‰)|2 (1 + |๐œ‰ |2)๐‘  โˆซ ๐‘‘๐œ‰ โ‰ค |๐œ‰ |โ‰ค๐œ‰0 | ห†(cid:164)๐œŒ(๐œ‰)|2 ๐‘‘๐œ‰ โ‰ค ๐ถ๐œ‰๐‘› 0 โˆฅ ห†(cid:164)๐œŒโˆฅ2 ๐ฟโˆž (๐ต(0,๐œ‰0)) . The norm โˆฅ ห†(cid:164)๐œŒโˆฅ ๐ฟโˆž (๐ต(0,๐œ‰0)) can be estimated using (3.82). Indeed, for |๐œ‰ | โ‰ค ๐œ‰0, we have | ห†(cid:164)๐œŒ(๐œ‰)| โ‰ค ๐‘ก ๐‘“ + (๐‘˜ 2 + ๐‘™2) ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) | + โˆš ๐ถ โˆš ๐œ† โˆฅ๐œ™โˆฅ๐ป4 (ฮฉ) โˆฅ๐œ“โˆฅ๐ป4 (ฮฉ)๐›ฟ + ๐ถ โˆš ๐œ† (cid:16) (cid:16) โˆฅ๐œ™0โˆฅ๐ป4 (ฮฉ) + โˆฅ๐‘Ÿ1โˆฅ๐ป4 (ฮฉ) (cid:17) (cid:16) โˆฅ๐œ“0โˆฅ๐ป4 (ฮฉ) + โˆฅ๐‘Ÿ2โˆฅ๐ป4 (ฮฉ) (cid:17) ๐›ฟ + ๐ถ โˆš ๐œ† ๐œ†2 + ๐œ† 3 2 (cid:17) 2 ๐›ฟ + ๐ถ โˆš ๐œ† |(๐œ•2 1 ๐œ† โ‰ค ๐ถ 1 + โ‰ค ๐ถ 1 + โ‰ค ๐ถ 1 + โˆš โˆš 2๐‘‡ (1 + ๐œ†) ๐œ† 2๐‘‡ (1 + ๐œ†) ๐œ† 2๐‘‡ (1 + ๐œ†) ๐œ† where the first and the last inequality is a consequence of (3.40), the second inequality follows from the proof of Proposition 3.12. Utilizing the relation ๐œ† = ๐‘˜ 2 + ๐‘™2, we conclude โˆฅ ห†(cid:164)๐œŒโˆฅ2 ๐ฟโˆž (๐ต(0,๐œ‰0)) โ‰ค ๐ถ โˆš (cid:20) (1 + 2๐‘‡ (1 + ๐œ†))2๐œ†4(1 + โˆš ๐œ†)4๐›ฟ2 + (cid:20) โ‰ค ๐ถ (cid:21) 1 ๐œ† (๐œ‰2 0 + ๐‘™2)8๐›ฟ + (cid:21) 1 ๐‘™2 70 provided ๐œ‰0 > 0 is sufficiently large. Combining these estimates, we see that โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (R๐‘›) โ‰ค ๐ถ (cid:34) ๐œ‰๐‘› 0 (๐œ‰2 0 + ๐‘™2)8๐›ฟ2 + ๐œ‰๐‘› 0 ๐‘™2 + (cid:35) . 1 ๐œ‰2๐‘  0 Choosing ๐‘™2 = ๐œ‰๐‘›+2๐‘  0 and ๐œ‰0 = ๐›ฟโˆ’ 2 9(๐‘›+2๐‘ ) yields โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (R๐‘›) โ‰ค ๐ถ๐›ฟ 4๐‘  9(๐‘›+2๐‘ ) , where ๐ถ is a constant independent of ๐œ† and ๐›ฟ is sufficiently small. โ–ก Case2: ๐œŒ0 is variable When ๐œŒ0 = ๐œŒ0(๐‘ฅ) > 0 is non-constant, the equations (3.30) are no longer perturbed Helmholtz equations, but Schrรถdingerโ€™s equations with the potential โˆ’๐‘ž + ๐œ†๐œŒ0 โˆˆ ๐ฟโˆž(ฮฉ). The idea is to employ Schrรถdinger solutions to probe based on the identity (3.31). The class of solutions we will resort to are the complex geometric optics (CGO) solutions that were first proposed in [89] for dimension ๐‘› โ‰ฅ 3. A CGO solution ๐œ™ is a function of the form ๐œ™(๐‘ฅ) := ๐‘’๐‘–๐œ ยท๐‘ฅ (1 + ๐‘Ÿ (๐‘ฅ)). where ๐œ โˆˆ C๐‘› is a complex vector with ๐œ ยท ๐œ = 0, and the remainder term ๐‘Ÿ (๐‘ฅ) satisfies ฮ”๐‘Ÿ + 2๐œ ยท โˆ‡๐‘Ÿ โˆ’ (๐‘ž โˆ’ ๐œ†๐œŒ0)๐‘Ÿ = ๐‘ž โˆ’ ๐œ†๐œŒ0. Moreover, ๐‘Ÿ โ†’ 0 in a certain function space as |๐œ | โ†’ โˆž. (3.45) (3.46) The following proposition is a direct application of [89, Theorem 2.3 and Corollary 2.4] to the Schrรถdingerโ€™s equation (ฮ” โˆ’ ๐‘ž + ๐œ†๐œŒ0)๐œ™ = 0. Lemma 3.14 ( [89, Theorem 2.3 and Corollary 2.4]). Let ๐‘› โ‰ฅ 3 and ๐‘  โˆˆ R a real number such that 2 . Let ๐œ โˆˆ C๐‘› be a complex vector with ๐œ ยท ๐œ = 0 and |๐œ | โ‰ฅ ๐œ€0 > 0 for some positive constant ๐‘  > ๐‘› ๐œ€0. There exist positive constants ๐ถ0, ๐ถ1, depending on ๐‘ , ๐‘›, ๐œ€0 and ฮฉ, such that if ๐ถ0โˆฅ๐‘ž โˆ’ ๐œ†๐œŒ0โˆฅ๐ป๐‘  (ฮฉ) < |๐œ |, then ๐œ™ = ๐œ™(๐‘ฅ) defined in (3.45) satisfies (ฮ” โˆ’ ๐‘ž + ๐œ†๐œŒ0)๐œ™ = 0; moreover โˆฅ๐‘Ÿ โˆฅ๐ป๐‘  (ฮฉ) โ‰ค ๐ถ1 |๐œ | โˆฅ๐‘ž โˆ’ ๐œ†๐œŒ0โˆฅ๐ป๐‘  (ฮฉ) (3.47) 71 We now construct specific CGO solutions that are useful for our purpose. Let ๐œ‰ โˆˆ R๐‘› (๐‘› โ‰ฅ 3) be an arbitrary non-zero vector, and let ๐‘’(1), ๐‘’(2) โˆˆ S๐‘›โˆ’1 be two real unit vectors such that {๐œ‰, ๐‘’(1), ๐‘’(2) } forms an orthogonal set. Choose a positive number ๐‘… with ๐‘… โ‰ฅ |๐œ‰ | โˆš 2 . Define ๐œ (1) := โˆ’ ๐œ‰ + ๐‘– 1 2 ๐‘… โˆš 2 ๐‘’(1) + โˆš๏ธ‚ ๐‘…2 2 โˆ’ |๐œ‰ |2 4 ๐‘’(2), ๐œ (2) := โˆ’ ๐œ‰ โˆ’ ๐‘– 1 2 ๐‘… โˆš 2 ๐‘’(1) โˆ’ โˆš๏ธ‚ ๐‘…2 2 โˆ’ |๐œ‰ |2 4 ๐‘’(2). It is easy to verify that ๐œ (1) + ๐œ (2) = โˆ’๐œ‰, ๐œ ( ๐‘—) ยท ๐œ ( ๐‘—) = 0, |๐œ ( ๐‘—) | = ๐‘…, for ๐‘— = 1, 2. If ๐‘… is sufficiently large, by Lemma 3.14, we can construct CGO solutions ๐œ™ ๐‘— (๐‘ฅ) = ๐‘’๐‘–๐œ ( ๐‘— ) ยท๐‘ฅ (1 + ๐‘Ÿ ๐‘— (๐‘ฅ)) where the remainder term ๐‘Ÿ ๐‘— satisfies โˆฅ๐‘Ÿ ๐‘— โˆฅ๐ป๐‘  (ฮฉ) โ‰ค ๐ถ1 |๐œ ( ๐‘—) | โˆฅ๐‘ž โˆ’ ๐œ†๐œŒ0โˆฅ๐ป๐‘  (ฮฉ) โ‰ค ๐ถ1 ๐ถ0 . (Here, ๐ถ0 is the constant in Lemma 3.14.) Thus for ๐‘  > ๐‘› 2 , (3.48) (3.49) โˆฅ๐œ™ ๐‘— โˆฅ๐ป๐‘  (ฮฉ) โ‰ค โˆฅ๐‘’๐‘–๐œ ( ๐‘— ) ยท๐‘ฅ โˆฅ๐ป๐‘  (ฮฉ) โˆฅ1 + ๐‘Ÿ ๐‘— โˆฅ๐ป๐‘  (ฮฉ) โ‰ค (cid:18) |ฮฉ| 1 2 + (cid:19) ๐ถ1 ๐ถ0 โˆฅ๐‘’๐‘–๐œ ( ๐‘— ) ยท๐‘ฅ โˆฅ๐ป๐‘  (ฮฉ). By choosing ๐œ†0 such that for any ๐œ† > ๐œ†0, we have ๐ถ0โˆฅ๐‘ž โˆ’ ๐œ†๐œŒ0โˆฅ๐ป๐‘  (ฮฉ) โ‰ฅ 1 โˆš ๐‘› , then |๐œ ( ๐‘—) | โ‰ฅ 1โˆš ๐‘› . Noticing that for integer ๐‘˜ โ‰ฅ 0, โˆฅ๐‘’๐‘–๐œ ( ๐‘— ) ยท๐‘ฅ โˆฅ2 ๐ป ๐‘˜ (ฮฉ) = ๐‘˜ โˆ‘๏ธ โˆ‘๏ธ ๐‘–=0 |๐›ผ|=๐‘– โˆฅ๐ท๐›ผ๐‘’๐‘–๐œ ( ๐‘— ) ยท๐‘ฅ โˆฅ2 ๐ฟ2 (ฮฉ) = ๐‘˜ โˆ‘๏ธ โˆ‘๏ธ (cid:32) ๐‘› (cid:214) (cid:33) |๐œ ( ๐‘—) ๐‘š |๐›ผ๐‘š ๐‘–=0 (cid:205)๐‘› ๐‘š=1 ๐›ผ๐‘š=๐‘– ๐‘š=1 โˆฅ๐‘’Im๐œ ( ๐‘— ) ยท๐‘ฅ โˆฅ2 ๐ฟ2 (ฮฉ) โ‰ค๐ถ ๐‘˜ โˆ‘๏ธ ๐‘–=0 โˆฅ๐œ ( ๐‘—) โˆฅ๐‘– 1 ๐‘’ โˆš 2๐‘… โ‰ค ๐ถ ๐‘˜ โˆ‘๏ธ โˆš ( ๐‘›โˆฅ๐œ ( ๐‘—) โˆฅ2)๐‘–๐‘’ โˆš 2๐‘… = ๐ถ ๐‘–=0 ๐‘˜ โˆ‘๏ธ ๐‘–=0 โˆš ( ๐‘›๐‘…)๐‘–๐‘’ โˆš 2๐‘… โ‰ค ๐ถ ๐‘…๐‘˜ ๐‘’ โˆš 2๐‘… where ๐ถ only depend on ๐‘˜, ๐‘›, ฮฉ. Thus from interpolation formula, we have โˆฅ๐œ™ ๐‘— โˆฅ๐ป๐‘  (ฮฉ) โ‰ค (cid:18) |ฮฉ| 1 2 + (cid:19) ๐ถ1 ๐ถ0 โˆฅ๐‘’๐‘–๐œ ( ๐‘— ) ยท๐‘ฅ โˆฅ๐ป๐‘  (ฮฉ) โ‰ค ๐ถ ๐‘… ๐‘  2 ๐‘’ ๐‘… โˆš 2 . (3.50) 72 We begin with a pointwise estimate for (cid:164)๐œŒ in the Fourier domain. For simplicity, we denote ๐›ฟ := โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป1 ((0,๐‘‡)ร—๐œ•ฮฉ). Lemma 3.15. Let ๐‘  > ๐‘› 2 with ๐‘› โ‰ฅ 3. Suppose there exists a constant ๐‘€ > 0 such that โˆฅ๐‘žโˆฅ๐ปmax(๐‘ ,4) (ฮฉ) โ‰ค ๐‘€, โˆฅ ๐œŒ0โˆฅ๐ปmax(๐‘ ,4) (ฮฉ) โ‰ค ๐‘€. Then there exists a constant ๐ถ, independent of ๐œ† and ๐›ฟ, such that ๐ถ (cid:104) ๐œ†+1 ๐œ† (๐œ† + 1)max(๐‘ ,4)๐‘’ โˆš 2๐‘Ž0 (๐œ†+1)๐›ฟ + 1 ๐‘Ž0 โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (ฮฉ) (cid:105) โˆš |๐œ‰ | โ‰ค 2๐‘Ž0(๐œ† + 1) |๐œ‰ | โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (ฮฉ) for any ๐œ† > 0 and sufficiently small ๐›ฟ. Here, ๐‘Ž0 is a constant satisfying ๐‘Ž0 โ‰ฅ ๐ถ0๐‘€, where ๐ถ0 is the ๐œ† |๐œ‰ |max(๐‘ ,4)๐‘’|๐œ‰ |๐›ฟ + ๐œ†+1 2๐‘Ž0(๐œ† + 1) |๐œ‰ | โ‰ฅ ๐ถ (cid:105) โˆš (3.51) | ห†(cid:164)๐œŒ(๐œ‰)| โ‰ค (cid:104) ๐œ†+1 ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ constant in Lemma 3.14. Proof. From Proposition 3.9, there exist boundary controls ๐‘“ ๐‘— such that ๐‘ข ๐‘“ ๐‘— 0 (๐‘‡) = ๐œ™ ๐‘— for the CGO solutions ๐œ™ ๐‘— defined in (3.45). With similar estimation as in the proof of Theorem 3.12, (cid:12) (cid:12) (cid:12) (cid:12) โˆซ ฮฉ (cid:164)๐œŒ๐œ™1๐œ™2 d๐‘ฅ (cid:12) (cid:12) (cid:12) (cid:12) โ‰ค๐ถ๐œ†๐›ฟ where the constant ๐ถ๐œ† is 1 + ๐ถ๐œ† := โˆš 2๐‘‡ (1 + ๐œ†) ๐œ† โˆฅ ๐‘“1โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆฅ ๐‘“2โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ) โ‰ค๐ถ 1 + ๐œ† ๐œ† โ‰ค๐ถ 1 + ๐œ† ๐œ† โ‰ค๐ถ 1 + ๐œ† ๐œ† โˆฅ๐œ™1โˆฅ๐ป4 (ฮฉ) โˆฅ๐œ™2โˆฅ๐ป4 (ฮฉ) โˆฅ๐œ™1โˆฅ๐ปmax(๐‘ ,4) (ฮฉ) โˆฅ๐œ™2โˆฅ๐ปmax(๐‘ ,4) (ฮฉ) ๐‘…max(๐‘ ,4)๐‘’ โˆš 2๐‘…. (3.52) where the last inequality comes from (3.50). We obtain the estimate (cid:12) (cid:12) (cid:12) (cid:12) (cid:164)๐œŒ๐‘’โˆ’๐‘–๐œ‰ยท๐‘ฅ (๐‘Ÿ1 + ๐‘Ÿ2 + ๐‘Ÿ1๐‘Ÿ2) d๐‘ฅ (cid:164)๐œŒ๐œ™1๐œ™2 d๐‘ฅ | ห†(cid:164)๐œŒ(๐œ‰)| โ‰ค (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) โˆซ โˆซ + ฮฉ ฮฉ โ‰ค๐ถ๐œ†๐›ฟ + โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (ฮฉ) โˆฅ๐‘Ÿ1 + ๐‘Ÿ2 + ๐‘Ÿ1๐‘Ÿ2โˆฅ๐ป๐‘  (ฮฉ) โ‰ค๐ถ๐œ†๐›ฟ + โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (ฮฉ) (โˆฅ๐‘Ÿ1โˆฅ๐ป๐‘  (ฮฉ) + โˆฅ๐‘Ÿ2โˆฅ๐ป๐‘  (ฮฉ) + โˆฅ๐‘Ÿ1โˆฅ๐ป๐‘  (ฮฉ) โˆฅ๐‘Ÿ2โˆฅ๐ป๐‘  (ฮฉ)) (3.53) โ‰ค๐ถ๐œ†๐›ฟ + ๐ถ โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (ฮฉ) (cid:18) 2 ๐‘… โˆฅ๐‘ž โˆ’ ๐œ†๐œŒ0โˆฅ๐ป๐‘  (ฮฉ) + 1 ๐‘…2 โˆฅ๐‘ž โˆ’ ๐œ†๐œŒ0โˆฅ2 ๐ป๐‘  (ฮฉ) (cid:19) โ‰ค๐ถ๐œ†๐›ฟ + ๐ถ (๐œ† + 1)๐‘…โˆ’1โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (ฮฉ), 73 where in the last inequality we used the estimate (3.49). This derivation holds for any ๐‘… โ‰ฅ |๐œ‰ | โˆš 2 particular, we choose ๐‘… = |๐œ‰ | 2๐‘Ž0(๐œ†+1) โˆš 2 2๐‘Ž0(๐œ†+1) when |๐œ‰ | โ‰ค 2๐‘Ž0(๐œ†+1), and ๐‘… = when |๐œ‰ | > . In โˆš โˆš โˆš to obtain (3.51). The condition ๐‘Ž0 โ‰ฅ ๐ถ0๐‘€ arises since ๐ถ0โˆฅ๐‘ž โˆ’ ๐œ†๐œŒ0โˆฅ๐ป๐‘  (ฮฉ) โ‰ค ๐ถ0(โˆฅ๐‘žโˆฅ๐ป๐‘  (ฮฉ) + ๐œ†โˆฅ ๐œŒ0โˆฅ๐ป๐‘  (ฮฉ)) โ‰ค ๐ถ0๐‘€ (๐œ† + 1) is a natural upper bound, thus we require |๐œ ( ๐‘—) | = ๐‘… > ๐ถ0๐‘€ (๐œ† + 1) to fulfill the assumption of Lemma 3.14. For either choice of ๐‘… above, it holds that ๐‘… > ๐‘Ž0(๐œ† + 1). It remains to require ๐‘Ž0 โ‰ฅ ๐ถ0๐‘€. โ–ก With the help of Lemma 3.15, the following stability estimate can be established for (cid:164)๐œŒ. Theorem 3.16. Let ๐‘  > ๐‘› 2 with ๐‘› โ‰ฅ 3. Suppose there exists a constant ๐‘€ > 0 such that โˆฅ๐‘žโˆฅ๐ปmax(๐‘ ,4) (ฮฉ) โ‰ค ๐‘€, โˆฅ ๐œŒ0โˆฅ๐ปmax(๐‘ ,4) (ฮฉ) โ‰ค ๐‘€, โˆฅ (cid:164)๐œŒโˆฅ๐ป๐‘  (ฮฉ) โ‰ค ๐‘€. and (cid:164)๐œŒ is compact supported in ฮฉ, then there exist a constant ๐ถ (independent of ๐œ† and ๐›ฟ) and a positive constant ๐œ†0 > 0 such that (cid:34) โˆฅ (cid:164)๐œŒโˆฅ ๐ฟโˆž (ฮฉ) โ‰ค ๐ถ (๐œ† + 1)max(๐‘ ,4)๐‘’๐ถ (๐œ†+1)๐›ฟ + (cid:35) 2๐‘ โˆ’๐‘› 8๐‘  (cid:19) ๐‘›โˆ’2๐‘  2 (cid:18) ๐œ† + ln 1 ๐›ฟ for any ๐œ† > ๐œ†0 > 0 and 0 < ๐›ฟ โ‰ค ๐‘’โˆ’1 (๐‘’ = 2.71828... is the Eulerโ€™s number). Remark 3.17. For any fixed ๐›ฟ > 0, it is clear that (cid:16) ๐œ† + ln 1 ๐›ฟ (cid:17) ๐‘›โˆ’2๐‘  2 โ†’ 0 as ๐œ† โ†’ โˆž since ๐‘› โˆ’ 2๐‘  < 0. Therefore, for a large ๐œ† > 0, the estimate in Proposition 3.16 becomes a nearly Hรถlder-type stability. Proof. We follow the idea in the proof of the increasing stability result [72] and name all the constants that are independet of ๐œ† and ๐›ฟ as ๐ถ. 74 Let ๐œ‰0 be a constant such that ๐œ‰0 โ‰ฅ โˆš 2๐‘Ž0(๐œ† + 1), then โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) = = โˆซ R๐‘› โˆซ (1 + |๐œ‰ |2)โˆ’๐‘  | ห†(cid:164)๐œŒ(๐œ‰)|2 d๐œ‰ (1 + |๐œ‰ |2)โˆ’๐‘  | ห†(cid:164)๐œŒ(๐œ‰)|2 d๐œ‰ + โˆซ โˆš 2๐‘Ž0 (๐œ†+1)โ‰ค|๐œ‰ |โ‰ค๐œ‰0 (1 + |๐œ‰ |2)โˆ’๐‘  | ห†(cid:164)๐œŒ(๐œ‰)|2 d๐œ‰ (3.54) |๐œ‰ |>๐œ‰0 โˆซ + |๐œ‰ |โ‰ค โˆš 2๐‘Ž0 (๐œ†+1) (1 + |๐œ‰ |2)โˆ’๐‘  | ห†(cid:164)๐œŒ(๐œ‰)|2 d๐œ‰ (cid:67)๐ผ1 + ๐ผ2 + ๐ผ3. We estimate ๐ผ1, ๐ผ2, ๐ผ3 as follows. For ๐ผ1, as (cid:164)๐œŒ is compact supported in ฮฉ, Hรถlderโ€™s inequality gives | ห†(cid:164)๐œŒ(๐œ‰)| โ‰ค โˆซ ฮฉ (cid:12) d๐‘ฅ โ‰ค ๐ถ โˆฅ (cid:164)๐œŒโˆฅ ๐ฟ2 (ฮฉ). Thus, (cid:12) (cid:164)๐œŒ(๐‘ฅ)๐‘’๐‘–๐œ‰ยท๐‘ฅ(cid:12) (cid:12) ๐ผ1 := โˆซ |๐œ‰ |>๐œ‰0 (1 + |๐œ‰ |2)โˆ’๐‘  | ห†(cid:164)๐œŒ(๐œ‰)|2 d๐œ‰ โˆซ โ‰ค ๐ถ โˆฅ (cid:164)๐œŒโˆฅ2 ๐ฟ2 (ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป๐‘  (ฮฉ) |๐œ‰ |>๐œ‰0 ๐œ‰๐‘›โˆ’2๐‘  0 (1 + |๐œ‰ |2)โˆ’๐‘  d๐œ‰ โ‰ค ๐ถ๐œ‰๐‘›โˆ’2๐‘  0 (cid:32) (cid:32) (cid:125) (cid:123)(cid:122) (cid:124) :=ฮฆ1 (๐œ‰0) where the last inequality follows from โˆฅ (cid:164)๐œŒโˆฅ๐ป๐‘  (ฮฉ) โ‰ค ๐‘€. The function ฮฆ1(๐œ‰0) denotes an upper bound of ๐ผ1. For ๐ผ3, we use | ห†(cid:164)๐œŒ(๐œ‰)| โ‰ค โˆฅ ห†(cid:164)๐œŒโˆฅ ๐ฟโˆž (๐ต(0, โˆš 2๐‘Ž0 (๐œ†+1))) (here ๐ต(0, ๐‘ก) means the unit ball of center 0 and radius ๐‘ก) to get ๐ผ3 := โˆซ |๐œ‰ |โ‰ค โˆš 2๐‘Ž0 (๐œ†+1) (1 + |๐œ‰ |2)โˆ’๐‘  | ห†(cid:164)๐œŒ(๐œ‰)|2 d๐œ‰ โˆซ R๐‘› (1 + |๐œ‰ |2)โˆ’๐‘  d๐œ‰ (3.55) โ‰ค โˆฅ ห†(cid:164)๐œŒโˆฅ2 ๐ฟโˆž (๐ต(0, โˆš 2๐‘Ž0 (๐œ†+1))) โˆš 2๐‘Ž0 (๐œ†+1))) โ‰ค ๐ถ โˆฅ ห†(cid:164)๐œŒโˆฅ2 (cid:34) โ‰ค ๐ถ ๐ฟโˆž (๐ต(0, (๐œ† + 1)2 ๐œ†2 โˆš (๐œ† + 1)2 max(๐‘ ,4)๐‘’2 2๐‘Ž0 (๐œ†+1)๐›ฟ2 + (cid:35) . โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) 1 ๐‘Ž2 0 where the last inequality is a consequence of (3.51) combined with the estimate (๐‘Ž+๐‘)2 โ‰ค 2๐‘Ž2+2๐‘2. 75 For ๐ผ2, we apply the estimate (3.51) to get ๐ผ2 := โˆซ โˆš (1 + |๐œ‰ |2)โˆ’๐‘  | ห†(cid:164)๐œŒ(๐œ‰)|2 d๐œ‰ 2๐‘Ž0 (๐œ†+1)โ‰ค|๐œ‰ |โ‰ค๐œ‰0 โˆซ โˆš 2๐‘Ž0 (๐œ†+1)โ‰ค|๐œ‰ |โ‰ค๐œ‰0 โˆซ โˆš 2๐‘Ž0 (๐œ†+1)โ‰ค|๐œ‰ |โ‰ค๐œ‰0 โ‰ค ๐ถ โ‰ค ๐ถ (1 + |๐œ‰ |2)โˆ’๐‘  (1 + |๐œ‰ |2)โˆ’๐‘  (cid:12) ๐œ† + 1 (cid:12) (cid:12) ๐œ† (cid:12) (cid:20) (๐œ† + 1)2 ๐œ†2 |๐œ‰ |max(๐‘ ,4)๐‘’|๐œ‰ |๐›ฟ + ๐œ† + 1 |๐œ‰ | โˆฅ (cid:164)๐œŒโˆฅ๐ป โˆ’๐‘  (ฮฉ) 2 (cid:12) (cid:12) (cid:12) (cid:12) d๐œ‰ |๐œ‰ |2 max(๐‘ ,4)๐‘’2|๐œ‰ |๐›ฟ2 + (๐œ† + 1)2 |๐œ‰ |2 โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) (cid:21) d๐œ‰ = ๐ผ21 + ๐ผ22 Let ๐‘ก := |๐œ‰ | be the radial variable, then ๐ผ21 := ๐ถ โˆซ โˆš (1 + |๐œ‰ |2)โˆ’๐‘  (๐œ† + 1)2 ๐œ†2 |๐œ‰ |2 max(๐‘ ,4)๐‘’2|๐œ‰ |๐›ฟ2 d๐œ‰ (1 + ๐‘ก2)โˆ’๐‘ ๐‘ก2 max(๐‘ ,4)+๐‘›โˆ’1๐‘’2๐‘ก ๐‘‘๐‘ก 2๐‘Ž0 (๐œ†+1)โ‰ค|๐œ‰ |โ‰ค๐œ‰0 โˆซ ๐œ‰0 โˆš ๐›ฟ2 2๐‘Ž0 (๐œ†+1) โˆซ ๐œ‰0 โ‰ค ๐ถ โ‰ค ๐ถ = ๐ถ (๐œ† + 1)2 ๐œ†2 (๐œ† + 1)2 ๐œ†2 (๐œ† + 1)2 ๐œ†2 ๐‘’2๐œ‰0๐›ฟ2 ๐‘ก2 max(๐‘ ,4)+๐‘›โˆ’1โˆ’2๐‘  ๐‘‘๐‘ก 0 ๐œ‰2 max(๐‘ ,4)+๐‘›โˆ’2๐‘  0 ๐‘’2๐œ‰0๐›ฟ2; and ๐ผ22 := ๐ถ โˆซ โˆš 2๐‘Ž0 (๐œ†+1)โ‰ค|๐œ‰ |โ‰ค๐œ‰0 = ๐ถ (๐œ† + 1)2โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) (1 + ๐‘ก2)โˆ’๐‘ ๐‘ก๐‘›โˆ’3 ๐‘‘๐‘ก โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) d๐œ‰ (1 + |๐œ‰ |2)โˆ’๐‘  (๐œ† + 1)2 |๐œ‰ |2 โˆซ ๐œ‰0 โˆš 2๐‘Ž0 (๐œ†+1) โˆซ โˆž โˆš ๐‘ก๐‘›โˆ’3โˆ’2๐‘  ๐‘‘๐‘ก โˆš 2๐‘Ž0 (๐œ†+1) 2๐‘Ž0(๐œ† + 1)]๐‘›โˆ’2โˆ’2๐‘  โ‰ค ๐ถ (๐œ† + 1)2โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) โ‰ค ๐ถ (๐œ† + 1)2โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) [ 1 ๐‘Ž2 0 0 โ‰ค ๐ถ (๐œ†0 + 1)๐‘›โˆ’2๐‘ ๐‘Ž๐‘›โˆ’2๐‘  โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) ๐ถ ๐‘Ž2 0 Put together, we have the following upper bound for ๐ผ2: โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) = . ๐ผ2 โ‰ค ๐ผ21 + ๐ผ22 โ‰ค ๐ถ (cid:124) (๐œ† + 1)2 ๐œ†2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) ๐œ‰2 max(๐‘ ,4)+๐‘›โˆ’2๐‘  0 ๐‘’2๐œ‰0๐›ฟ2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) + ๐ถ ๐‘Ž2 0 โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) . (3.56) (cid:125) (cid:123)(cid:122) :=ฮฆ2 (๐œ‰0) 76 Combining the estimate for ๐ผ1, ๐ผ2, ๐ผ3, we conclude โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) =๐ผ1 + ๐ผ2 + ๐ผ3 (cid:34) โ‰คฮฆ1(๐œ‰0) + ฮฆ2(๐œ‰0) + (cid:35) โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) ๐ถ ๐‘Ž2 0 (cid:34) + ๐ถ (๐œ† + 1)2 ๐œ†2 (๐œ† + 1)2 max(๐‘ ,4)๐‘’2 โˆš 2๐‘Ž0 (๐œ†+1)๐›ฟ2 + (3.57) (cid:35) โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) ๐ถ ๐‘Ž2 0 where the right hand side has been combined into three groups which are the upper bounds of ๐ผ1, ๐ผ2, ๐ผ3, respectively. By choosing ๐‘Ž0 sufficiently large, the ๐ปโˆ’๐‘  norm can be absorbed by the left hand side to yield โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) โ‰คฮฆ1(๐œ‰0) + ฮฆ2(๐œ‰0) + ๐ถ (๐œ† + 1)2 ๐œ†2 โˆš (๐œ† + 1)2 max(๐‘ ,4)๐‘’2 2๐‘Ž0 (๐œ†+1)๐›ฟ2 (3.58) The estimate will henceforth be split into two cases: โˆš โˆš 2๐‘Ž0(๐œ† + 1). When 1 2 ln 1 ๐›ฟ โ‰ฅ 2๐‘Ž0(๐œ† + 1), we choose ๐œ‰0 = 1 ๐›ฟ โ‰ฅ 1 2 ln 1 2 ln 1 ๐›ฟ to get โˆš 2๐‘Ž0(๐œ† + 1) and 1 2 ln 1 ๐›ฟ < ฮฆ1(๐œ‰0) + ฮฆ2(๐œ‰0) =๐ถ๐œ‰๐‘›โˆ’2๐‘  0 (cid:20) =๐ถ 1 + ๐œ‰2 max(๐‘ ,4)+๐‘›โˆ’2๐‘  0 ๐‘’2๐œ‰0๐›ฟ2 + ๐ถ (๐œ† + 1)2 ๐œ†2 (๐œ† + 1)2 ๐œ†2 ๐œ‰2 max(๐‘ ,4) 0 (cid:21) ๐‘’2๐œ‰0๐›ฟ2 (cid:34) โ‰ค๐ถ 1 + (๐œ† + 1)2 ๐œ†2 (cid:18) ln 1 ๐›ฟ (cid:19) 2 max(๐‘ ,4) ๐›ฟ ๐œ‰๐‘›โˆ’2๐‘  0 (cid:35) (cid:18) ln 1 ๐›ฟ (cid:19) ๐‘›โˆ’2๐‘  . As lim๐›ฟโ†’0+ (cid:17) 2 max(๐‘ ,4) (cid:16) ๐›ฟ ln 1 ๐›ฟ = 0 and lim๐œ†โ†’โˆž (๐œ†+1)2 ๐œ†2 = 1, the square parenthesis is bounded whenever ๐›ฟ โˆˆ (0, ๐‘’โˆ’1] and ๐œ† โ‰ฅ ๐œ†0 for some ๐œ†0 > 0. Hence, ฮฆ1(๐œ‰0) + ฮฆ2(๐œ‰0) โ‰ค ๐ถ (cid:18) (cid:32) ln 1 ๐›ฟ โˆš (cid:19) ๐‘›โˆ’2๐‘  = ๐ถ (cid:32) ln 1 ๐›ฟ ๐œ† + ln 1 ๐›ฟ (cid:33) ๐‘›โˆ’2๐‘  (cid:18) (cid:19) ๐‘›โˆ’2๐‘  ๐œ† + ln 1 ๐›ฟ (cid:33) ๐‘›โˆ’2๐‘  (cid:18) (cid:19) ๐‘›โˆ’2๐‘  ๐œ† + ln 1 ๐›ฟ โ‰ค ๐ถ (cid:18) โ‰ค ๐ถ 2 2๐‘Ž0 2 โˆš 2๐‘Ž0 + 1 1 ๐›ฟ ๐œ† + ln (cid:19) ๐‘›โˆ’2๐‘  where the second but last inequality holds since the function ( ๐‘ก ๐œ†+๐‘ก )๐‘›โˆ’2๐‘  is decreasing in ๐‘ก > 0. When 2๐‘Ž0(๐œ† + 1), then ๐ผ2 = 0. As a result, we can simply choose 1 2 ln 1 ๐›ฟ < โˆš 2๐‘Ž0(๐œ† + 1), we choose ๐œ‰0 = โˆš 77 ฮฆ2(๐œ‰0) = 0 as an upper bound of ๐ผ2, hence ฮฆ1(๐œ‰0) + ฮฆ2(๐œ‰0) = ฮฆ1(๐œ‰0) = ๐ถ๐œ‰๐‘›โˆ’2๐‘  0 (cid:33) ๐‘›โˆ’2๐‘  = ๐ถ In either case, we have (cid:32) ๐œ† + 1 ๐œ† + ln 1 ๐›ฟ = ๐ถ (๐œ† + 1)๐‘›โˆ’2๐‘  (cid:19) ๐‘›โˆ’2๐‘  (cid:18) ๐œ† + ln 1 ๐›ฟ โ‰ค ๐ถ (cid:18) 1 โˆš 1 + 2 2๐‘Ž0 (cid:19) ๐‘›โˆ’2๐‘  (cid:18) ๐œ† + ln (cid:19) ๐‘›โˆ’2๐‘  . 1 ๐›ฟ ฮฆ1(๐œ‰0) + ฮฆ2(๐œ‰0) โ‰ค ๐ถ (cid:19) ๐‘›โˆ’2๐‘  (cid:18) ๐œ† + ln 1 ๐›ฟ for some constant ๐ถ > 0 that is independent of ๐œ† โˆˆ [๐œ†0, โˆž) and ๐›ฟ โˆˆ (0, ๐‘’โˆ’1]. In view of (3.58), we conclude โˆฅ (cid:164)๐œŒโˆฅ2 ๐ป โˆ’๐‘  (ฮฉ) โ‰ค๐ถ (๐œ† + 1)2 ๐œ†2 โˆš 2๐‘Ž0 (๐œ†+1)๐›ฟ2 + ๐ถ (๐œ† + 1)2 max(๐‘ ,4)๐‘’2 (cid:19) ๐‘›โˆ’2๐‘  (cid:18) ๐œ† + ln 1 ๐›ฟ โ‰ค๐ถ (๐œ† + 1)2 max(๐‘ ,4)๐‘’๐ถ (๐œ†+1)๐›ฟ2 + ๐ถ (cid:18) ๐œ† + ln 1 ๐›ฟ (cid:19) ๐‘›โˆ’2๐‘  . (3.59) Finally, we interpolate to obtain an estimate for the infinity norm. Let ๐œ‚ > 0 such that ๐‘  = ๐‘› 2 +2๐œ‚, choose ๐‘˜0 = โˆ’๐‘ , ๐‘˜1 = ๐‘ , ๐‘˜ = ๐‘› 2 + ๐œ‚ = ๐‘  โˆ’ ๐œ‚. Then ๐‘˜ = (1 โˆ’ ๐‘)๐‘˜0 + ๐‘๐‘˜1, where ๐‘ = 2๐‘  โˆ’ ๐œ‚ 2๐‘  . Using the interpolation theorem and the Sobolev embedding, we have โˆฅ (cid:164)๐œŒโˆฅ ๐ฟโˆž (ฮฉ) โ‰ค๐ถ โˆฅ (cid:164)๐œŒโˆฅ๐ป ๐‘˜ (ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐œŒโˆฅ1โˆ’๐‘ ๐ป โˆ’๐‘  (ฮฉ) โˆฅ (cid:164)๐œŒโˆฅ ๐‘ ๐ป๐‘  (ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐œŒโˆฅ 2๐‘ โˆ’๐‘› 8๐‘  ๐ป โˆ’๐‘  (ฮฉ) (cid:19) ๐‘›โˆ’2๐‘ (cid:35) 2๐‘ โˆ’๐‘› 16๐‘  (cid:34) (cid:34) โ‰ค๐ถ โ‰ค๐ถ (๐œ† + 1)2 max(๐‘ ,4)๐‘’๐ถ (๐œ†+1)๐›ฟ2 + ๐ถ (cid:18) ๐œ† + ln 1 ๐›ฟ (๐œ† + 1)max(๐‘ ,4)๐‘’๐ถ (๐œ†+1)๐›ฟ + ๐ถ (cid:35) 2๐‘ โˆ’๐‘› 8๐‘  (cid:19) ๐‘›โˆ’2๐‘  2 (cid:18) ๐œ† + ln 1 ๐›ฟ (3.60) โ–ก 3.3.1.3 Numerical Experiment This section demonstrates the numerical implementation and validation of the reconstruction formula (3.36) in a one-dimensional (1D) context, where ๐œŒ0 = 1 and ๐‘ž0 = 0. 78 Computing Boundary Controls with Time Reversal Notice that there is a second order deriva- tive of ๐‘“ in (3.36), the boundary controls should have at least second order differentiable. The ๐œ•2 ๐‘ก operator will magnify the error caused by solving ๐‘“ using similar methods as in Section 3.2.2.5. In this section, we introduce an analytic method to construct boundary control with high-order smoothness. In order to find boundary control ๐‘“ such that ๐‘ข ๐‘“ 0 (๐‘‡) = ๐œ™, we consider the following backward initial value problem โ–ก1,0๐‘ฃ(๐‘ก, ๐‘ฅ) = 0, in (0, ๐‘‡) ร— R๐‘› ๐‘ฃ(๐‘‡) = หœ๐œ™, ๐œ•๐‘ก๐‘ฃ(๐‘‡) = 0, in R๐‘› in R๐‘›. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ where หœ๐œ™ is the extension with compact support from ฮฉ to R๐‘›. If ๐‘‡ > 0 is sufficiently large and dimension ๐‘› is odd, we would have ๐‘ฃ(0) = ๐œ•๐‘ก๐‘ฃ(0) = 0 by the Huygenโ€™s principle. This implies ๐‘ข ๐‘“ โˆ’๐œ•๐œˆ๐‘ฃ 0 (๐‘‡) = ๐‘ข ๐‘“ 0 (๐‘‡) โˆ’ ๐‘ฃ(๐‘‡) = 0 in ฮฉ. As a result, we can take ๐‘“ = ๐œ•๐œˆ๐‘ฃ| [0,๐‘‡]ร—๐œ•ฮฉ. Note that ๐‘ฃ can be explictly expressed using the Kirchhoffโ€™s formula [40], thus ๐œ•2 ๐‘ก ๐‘“ = ๐œ•๐œˆ๐œ•2 ๐‘ก ๐‘ฃ| [0,๐‘‡]ร—๐œ•ฮฉ can be analytically computed. Recall that ๐‘› = 1, we take ฮฉ = (๐‘Ž, ๐‘). Dโ€™Alembertโ€™s formula gives ๐‘ฃ(๐‘ก, ๐‘ฅ) = 1 2 [ หœ๐œ™(๐‘ฅ + ๐‘ก โˆ’ ๐‘‡) + หœ๐œ™(๐‘ฅ + ๐‘‡ โˆ’ ๐‘ก)]. (3.61) Thus ๐‘ก ๐‘“ = ๐œ•๐œˆ๐œ•2 ๐œ•2 ๐‘ก ๐‘ฃ| [0,๐‘‡]ร—๐œ•ฮฉ = ยฑ 1 2 [ หœ๐œ™โ€ฒโ€ฒโ€ฒ(๐‘ฅ + ๐‘ก โˆ’ ๐‘‡) + หœ๐œ™โ€ฒโ€ฒโ€ฒ(๐‘ฅ + ๐‘‡ โˆ’ ๐‘ก)] |๐‘ฅ=๐‘Ž,๐‘, where we take + when ๐‘ฅ = ๐‘ and โˆ’ when ๐‘ฅ = ๐‘Ž. We choose the following extension: หœ๐œ™ := ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ ๐œ™ ๐‘ฅ โˆˆ [๐‘Ž, ๐‘], ๐œ™ ยท exp{1 โˆ’ 1 1โˆ’(๐‘ฅโˆ’๐‘Ž)2 ๐‘ } ๐‘ฅ โˆˆ (๐‘Ž โˆ’ 1, ๐‘Ž), ๐œ™ ยท exp{1 โˆ’ 1 1โˆ’(๐‘ฅโˆ’๐‘)2 ๐‘ } ๐‘ฅ โˆˆ (๐‘, ๐‘ + 1), 0 ๐‘ฅ โˆ‰ (๐‘Ž โˆ’ 1, ๐‘ + 1), 79 where ๐‘ โ‰ฅ 1 is a positive integer. It is easy to verify that หœ๐œ™ is ๐ถโˆž almost everywhere, except for two boundary points ๐‘ฅ = ๐‘Ž, ๐‘, where it only have ๐ถ2๐‘โˆ’1 continuity. To guarantee the existence of the second derivative of ๐‘“ , we take ๐‘ โ‰ฅ 2. Numerical Experiment We choose the spatial domain to be ฮฉ = [โˆ’1, 1] with ๐‘‡ = 5. Since we can analytically give the boundary control for each Helmholtz solution ๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ, we do not have to write all operators into matrices as in Section 3.2.2. The solution of (3.22) is given by (3.61), and the forward problem (3.23) is solved using the second order central difference scheme on a temporal-spatial grid of size 24999 ร— 501, i.e. the linearized ND map (3.24) is implemented by solving (3.23) with background solution (3.61). Then (3.35) are inserted into (3.36) to recover the Fourier transform of (cid:164)๐‘ž at 2 โˆš ๐œ†๐œƒ, where ๐‘“ and โ„Ž are computed using the time revesal method as in Section 3.3.1.3. The basis functions for the prescribed Helmholtz solution ๐œ™ in our experiments are 1, sin (cid:17) ๐‘ฅ (cid:16) ๐œ‹ 2 , cos (cid:17) ๐‘ฅ (cid:16) ๐œ‹ 2 , . . . , sin (cid:19) ๐‘ฅ , cos (cid:18) ๐‘ ๐œ‹ 2 (cid:18) ๐‘ ๐œ‹ 2 (cid:19) ๐‘ฅ (3.62) with ๐‘ = 10. They correspond to Helmholtz solutions with Noticing that the right hand side of (3.31) involves 1 Instead, we can take an arbitrary positive eigenvalue ๐œ† ๐‘— = โˆš ๐œ† = 0, ๐œ‹ 2 , . . . , ๐‘ ๐œ‹ 2 . ๐œ† , we can not directly compute F [ (cid:164)๐œŒ] (0). for some ๐‘—, compute the inner ๐‘— 2๐œ‹2 4 products ( (cid:164)๐œŒ, cos2( ๐‘— ๐œ‹ 2 ๐‘ฅ))๐ฟ2 (โˆ’1,1) and ( (cid:164)๐œŒ, sin2( ๐‘— ๐œ‹ 2 ๐‘ฅ))๐ฟ2 (โˆ’1,1) using (3.31), then add them to get F [ (cid:164)๐œŒ] (0) = ( (cid:164)๐œŒ, 1)๐ฟ2 (โˆ’1,1) = ( (cid:164)๐œŒ, cos2( ๐‘— ๐œ‹ 2 ๐‘ฅ))๐ฟ2 (โˆ’1,1) + ( (cid:164)๐œŒ, sin2( ๐‘— ๐œ‹ 2 ๐‘ฅ))๐ฟ2 (โˆ’1,1). Experiment 1. We start with a continuous perturbation (cid:164)๐œŒ = sin(๐œ‹๐‘ฅ) + sin(2๐œ‹๐‘ฅ) โˆ’ cos(5๐œ‹๐‘ฅ) + cos(7๐œ‹๐‘ฅ) โˆ’ 1, which is in the span of the Fourier basis functions (3.62). The graph of (cid:164)๐œŒ is shown in Figure 3.7. The Gaussian random noise are added to the measurement (cid:164)ฮ› by adding to the numerical solutions on the boundary nodes. The reconstructions and corresponding errors with noise level 0%, 1%, 5% are illustrated in Figure 3.8. 80 Figure 3.7 Ground truth (cid:164)๐œŒ. Figure 3.8 Left: Reconstructed (cid:164)๐œŒ with 0%, 1%, 5% Gaussian noise and the ground truth. Right: The corresponding error between the reconstruction result and the ground truth. The relative ๐ฟ2-errors are 0.14%, 3.66% and 19.37%, respectively. Experiment 2. In this experiment, we consider a discontinuous perturbation (cid:164)๐œŒ = ๐œ’ [โˆ’1,โˆ’ 1 6 ] โˆ’ ๐œ’ [โˆ’ 1 6 , 1 4 ] , where ๐œ’ is the characteristic function. The Fourier series of (cid:164)๐œŒ is given by (cid:164)๐œŒ = 5 24 + (cid:34) โˆž โˆ‘๏ธ โˆ’ sin (cid:0) ๐‘›๐œ‹ 4 ๐‘›=1 (cid:1) (cid:1) + 2 sin (cid:0) ๐‘›๐œ‹ 6 ๐‘›๐œ‹ cos(๐‘›๐œ‹๐‘ฅ) + cos(๐‘›๐œ‹) + cos (cid:0) ๐‘›๐œ‹ 4 ๐‘›๐œ‹ (cid:1) + 2 cos (cid:0) ๐‘›๐œ‹ 6 (cid:1) (cid:35) sin(๐‘›๐œ‹๐‘ฅ) . With the choice of the basis functions (3.62), we can only expect to reconstruct the orthogonal projection: (cid:164)๐œŒ๐‘ (cid:66) 5 24 + (cid:34) ๐‘ โˆ‘๏ธ โˆ’ sin (cid:0) ๐‘›๐œ‹ 4 ๐‘›=1 (cid:1) (cid:1) + 2 sin (cid:0) ๐‘›๐œ‹ 6 ๐‘›๐œ‹ cos(๐‘›๐œ‹๐‘ฅ) + cos(๐‘›๐œ‹) + cos (cid:0) ๐‘›๐œ‹ 4 ๐‘›๐œ‹ (cid:1) + 2 cos (cid:0) ๐‘›๐œ‹ 6 (cid:1) (cid:35) sin(๐‘›๐œ‹๐‘ฅ) , see Figure 3.9. We plot the reconstruction result and the corresponding error with respect to the orthogonal projection (cid:164)๐œŒ๐‘ with different noise level in Figure 3.10. 81 -1-0.500.51-5-4-3-2-10123Ground Truth-1-0.500.51-5-4-3-2-10123ReconstructionGround TruthNo noise1% noise5% noise-1-0.500.5100.10.20.30.40.50.60.7ErrorNo noise1% noise5% noise Figure 3.9 Ground truth (cid:164)๐œŒ. Figure 3.10 Left: Reconstructed (cid:164)๐œŒ with 0%, 1%, 5% Gaussian noise and the ground truth. Right: The corresponding error between the reconstruction result and the ground truth. The relative ๐ฟ2-errors are 0.39%, 1.57% and 8.15%, respectively. Experiment 3. In this experiment, we apply the algorithm to the non-linear IBVP where ๐œŒ = ๐œŒ0 + ๐œ€ (cid:164)๐œŒ + ๐œ€2 (cid:165)๐œŒ, with ๐œ€ = 0.001 and (cid:164)๐œŒ = sin(๐œ‹๐‘ฅ) + sin(2๐œ‹๐‘ฅ) โˆ’ cos(5๐œ‹๐‘ฅ) + cos(7๐œ‹๐‘ฅ) โˆ’ 1, (cid:165)๐œŒ = 200 sin(25๐œ‹๐‘ฅ). See Figure 3.11 for the graph of ๐œŒ. Since ฮ›๐œŒ โˆ’ ฮ›๐œŒ0 โ‰ˆ ๐œ€ (cid:164)ฮ› (cid:164)๐œŒ = (cid:164)ฮ›๐œ€ (cid:164)๐œŒ when ๐œ€ is small, we can use ๐œ€โˆ’1(ฮ›๐œŒ โˆ’ ฮ›๐œŒ0) as an approximation of (cid:164)ฮ› (cid:164)๐œŒ in (3.31). In this case, ฮ›๐œŒ ๐‘“ ๐‘“ are computed by numerically solving the forward problem (3.22) with ๐œŒ and ๐œŒ0 โ‰ก 1. We and ฮ›๐œŒ0 then apply Algorithm 3.2 to find (cid:164)๐œŒ, and view 1 + (cid:164)๐œŒ as an approximation of the ground truth ๐œŒ. In 82 -1-0.500.51-1.5-1-0.500.511.5Ground Truth-1-0.500.51-1.5-1-0.500.511.5ReconstructionProjectionNo noise1% noise5% noise-1-0.500.5100.020.040.060.080.10.120.140.160.18ErrorNo noise1% noise5% noise the experiment, we added the Gaussian noise to the difference ฮ›๐œŒ โˆ’ ฮ›๐œŒ0 rather than to ฮ›๐œŒ ๐‘“ and ๐‘“ individually, see [75] for discussion of the difference. The reconstruction and the respective ฮ›๐œŒ0 errors with 0%, 1%, 5% Gaussian noise are illustrated in Figure 3.12. Figure 3.11 Ground truth ๐œŒ. Figure 3.12 Left: Reconstructed ๐œŒ with 0%, 1%, 5% Gaussian noise and the ground truth. Right: The corresponding error between the reconstruction result and the ground truth. The relative ๐ฟ2-errors are 18.09%, 20.95% and 26.46%, respectively. 3.3.2 Reconstruct Wave Potential through Linearization The wave potential ๐‘ž, similar to the potential energy function of quantum mechanics, describes the reflection and transmission characteristics of the system [44]. However, the full nonlinear treatment introduced in Section 3.2 is not sufficient for the potential reconstruction. In the algorithm for reconstructing wave speed ๐‘(๐‘ฅ), the most important step is to construct a series of boundary controls ๐‘“๐›ผ such that ๐‘ข ๐‘“๐›ผ (๐‘‡) converge to a handcrafted time independent wave solution ๐œ“ as ๐›ผ โ†’ 0. 83 -1-0.500.510.9750.980.9850.990.99511.0051.011.015Ground Truth-1-0.500.510.970.9750.980.9850.990.99511.0051.011.015ReconstructionGround TruthNo noise1% noise5% noise-1-0.500.5101234567810-3ErrorNo noise1% noise5% noise However, for unknown ๐‘ž, the time independent wave solution ๐œ“ of (3.1) satisfies equation [โˆ’ฮ” + ๐‘ž(๐‘ฅ)]๐œ“(๐‘ฅ) = 0, which can not be construct explicitly. With linearization, the background potential ๐‘ž0 would give us a series of time independent background wave solutions, which can help reconstructing the perturbed wave potential [75]. In this section, we assume the wave speed ๐‘ = ๐‘0(๐‘ฅ) โˆˆ ๐ถโˆž(ฮฉ) is known, and we want to recover ๐‘ž(๐‘ฅ) from the ND map ฮ›๐œŒ0,๐‘ž. For simplicity, we use ฮ›๐‘ž to represent ฮ›๐œŒ0,๐‘ž in this section. We use the linearization to solve the IBVP. For the formal derivation, we write ๐‘ž(๐‘ฅ) = ๐‘ž0(๐‘ฅ) + ๐œ€ (cid:164)๐‘ž(๐‘ฅ), ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘ข0(๐‘ก, ๐‘ฅ) + ๐œ€ (cid:164)๐‘ข(๐‘ก, ๐‘ฅ) where ๐‘ž0 is a known background potential and ๐‘ข0 is the background solution. Substitute these into (3.1). Equating the ๐‘‚ (1)-terms gives โ–ก๐œŒ0,๐‘ž0 ๐‘ข0(๐‘ก, ๐‘ฅ) = 0, in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐‘ข0 = ๐‘“ , on (0, 2๐‘‡) ร— ๐œ•ฮฉ (3.63) ๐‘ข0(0, ๐‘ฅ) = ๐œ•๐‘ก๐‘ข0(0, ๐‘ฅ) = 0, ๐‘ฅ โˆˆ ฮฉ. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ Equating the ๐‘‚ (๐œ€)-terms gives โ–ก๐œŒ0,๐‘ž0 (cid:164)๐‘ข(๐‘ก, ๐‘ฅ) = โˆ’๐‘ข0(๐‘ก, ๐‘ฅ) (cid:164)๐‘ž(๐‘ฅ), in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ (cid:164)๐‘ข = 0, on (0, 2๐‘‡) ร— ๐œ•ฮฉ (3.64) (cid:164)๐‘ข(0, ๐‘ฅ) = ๐œ•๐‘ก (cid:164)๐‘ข(0, ๐‘ฅ) = 0 ๐‘ฅ โˆˆ ฮฉ. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ Write the ND map ฮ›๐‘ž = ฮ›๐‘ž0 + ๐œ€ (cid:164)ฮ› (cid:164)๐‘ž, where ฮ›๐‘ž0 denote the ND map for the unperturbed boundary value problem (3.63), and (cid:164)ฮ› (cid:164)๐‘ž is defined as (cid:164)ฮ› (cid:164)๐‘ž : ๐‘“ โ†ฆโ†’ (cid:164)๐‘ข| (0,2๐‘‡)ร—๐œ•ฮฉ. (3.65) Since ๐‘0 and ๐‘ž0 are known, the unperturbed problem (3.63) can be explicitly solved to obtain ๐‘ข0 and ฮ›๐‘ž0. As in the previous section, we will write (cid:164)๐‘ข = (cid:164)๐‘ข ๐‘“ if it is necessary to specify the Neumann data ๐‘“ . Then the linearized IBVP concerns recovery of the potential (cid:164)๐‘ž from (cid:164)ฮ› (cid:164)๐‘ž. 84 3.3.2.1 Derivation The derivation of the Blagoveห˜sห˜censkiห˜ฤฑโ€™s identity is exactly the same. Introduce the connecting operator ๐พ := ๐ฝฮ›๐‘ž๐‘ƒโˆ— ๐‘‡ โˆ’ ๐‘…ฮ›๐‘ž,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘‡ . Similar to the proof of Proposition 3.6 and Corollary 3.7, we have (๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 ๐‘‘๐‘ฅ) = ( ๐‘“ , ๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). (ฮ”๐‘ข ๐‘“ (๐‘‡) โˆ’ ๐‘ž๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 ๐‘‘๐‘ฅ) = (๐œ•2 ๐‘ก ๐‘“ , ๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ๐œ•2 ๐‘ก ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). (3.66) (3.67) Remember that we write ฮ›๐‘ž = ฮ›๐‘ž0 + ๐œ€ (cid:164)ฮ› (cid:164)๐‘ž in the linearization setting, we have the following linearization ๐พ = ๐พ0 + ๐œ€ (cid:164)๐พ. Here ๐พ0 is the connecting operator for the background wave equation (3.63): ๐พ0 := ๐ฝฮ›๐‘ž0 ๐‘‡ โˆ’ ๐‘…ฮ›๐‘ž0,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘ƒโˆ— ๐‘‡ . (3.68) ๐พ0 can be explicitly computed since ฮ›๐œŒ0,๐‘ž0 is known. (cid:164)๐พ is the resulting perturbation in the connecting operator: (cid:164)๐พ := ๐ฝ (cid:164)ฮ› (cid:164)๐‘ž๐‘ƒโˆ— ๐‘‡ โˆ’ ๐‘… (cid:164)ฮ› (cid:164)๐‘ž,๐‘‡ ๐‘…๐ฝ๐‘ƒโˆ— ๐‘‡ . (3.69) (cid:164)๐พ can be explicitly computed once (cid:164)ฮ› (cid:164)๐‘ž is given. We write (cid:164)ฮ› for (cid:164)ฮ› (cid:164)๐‘ž when there is no risk of confusion. Linearizing (3.66) and (3.67) gives the following integral identity, which is essential to the development of the reconstruction procedure: Proposition 3.18. Let ๐œ† โˆˆ R be a real number. If ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) satisfy [ฮ” โˆ’ ๐‘ž0 + ๐œ†]๐‘ข ๐‘“ 0 (๐‘‡) = [ฮ” โˆ’ ๐‘ž0 + ๐œ†]๐‘ขโ„Ž 0 (๐‘‡) = 0 in ฮฉ, then the following identity holds: โˆ’( (cid:164)๐‘ž๐‘ข ๐‘“ 0 (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) = (๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) (3.70) (3.71) Proof. Similar to the proof of Proposition 3.8, substitute all linearizations into (3.66) and (3.67). Equating ๐‘‚ (1)-terms gives (๐‘ข ๐‘“ 0 (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 ๐‘‘๐‘ฅ) = ( ๐‘“ , ๐พ0โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ0 ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). 85 (ฮ”๐‘ข ๐‘“ 0 (๐‘‡) โˆ’ ๐‘ž0๐‘ข ๐‘“ 0 (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 ๐‘‘๐‘ฅ) = (๐œ•2 ๐‘ก ๐‘“ , ๐พ0โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = (๐พ0๐œ•2 ๐‘ก ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ). Equating ๐‘‚ (๐œ€)-terms gives ( ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = ( (cid:164)๐พ ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =( (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 ๐‘‘๐‘ฅ) + (๐‘ข ๐‘“ 0 0 (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 . ๐‘‘๐‘ฅ) (3.72) 0 (๐œ•2 ๐‘ก ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) = ( (cid:164)๐พ๐œ•2 ๐‘ก ๐‘“ , โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) =(ฮ” (cid:164)๐‘ข ๐‘“ (๐‘‡) โˆ’ (cid:164)๐‘ž๐‘ข ๐‘“ 0 (๐‘‡) โˆ’ ๐‘ž0 (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 ๐‘‘๐‘ฅ) 0 + (ฮ”๐‘ข ๐‘“ 0 = (ฮ” (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) 0 (๐‘‡))๐ฟ2 (ฮฉ) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) ๐‘‘๐‘ฅ) 0 0 (๐‘‡) โˆ’ ๐‘ž0๐‘ข ๐‘“ (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ,๐‘โˆ’2 0 (๐‘‡))๐ฟ2 (ฮฉ) โˆ’ (๐‘ž0 (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (cid:123)(cid:122) :=๐ผ1 0 (๐‘‡))๐ฟ2 (ฮฉ) (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ) โˆ’ (๐‘ž0๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) 0 (cid:123)(cid:122) :=๐ผ2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) โˆ’ ( (cid:164)๐‘ž๐‘ข ๐‘“ 0 + (ฮ”๐‘ข ๐‘“ 0 (cid:124) . (3.73) Notice that ๐ผ1 =(ฮ” (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž =( (cid:164)๐‘ข ๐‘“ (๐‘‡), ฮ”๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) โˆ’ (๐‘ž0 (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)ฮ› ๐‘“ (๐‘‡), ๐œ•๐œˆ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) 0 (๐‘‡))๐ฟ2 (๐œ•ฮฉ) โˆ’ (๐‘ž0 (cid:164)๐‘ข ๐‘“ (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) =( (cid:164)๐‘ข ๐‘“ (๐‘‡), [ฮ” โˆ’ ๐‘ž0]๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ). Here we use the integration by parts and use the fact that (cid:164)๐‘ข ๐‘“ | (0,2๐‘‡)ร—๐œ•ฮฉ = (cid:164)ฮ› ๐‘“ and ๐œ•๐œˆ (cid:164)๐‘ข = 0. On the other hand, combing the terms in ๐ผ2 gives ๐ผ2 = ([ฮ” โˆ’ ๐‘ž0]๐‘ข ๐‘“ 0 (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ). Insert these expressions for ๐ผ1 and ๐ผ2 into (3.73), then add (3.72) multiplied by ๐œ† โˆˆ R to get (๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) =( (cid:164)๐‘ข ๐‘“ (๐‘‡), [ฮ” โˆ’ ๐‘ž0 + ๐œ†]๐‘ขโ„Ž + ([ฮ” โˆ’ ๐‘ž0 + ๐œ†]๐‘ข ๐‘“ (๐‘‡), (cid:164)๐‘ขโ„Ž (๐‘‡))๐ฟ2 (ฮฉ). 0 0 (๐‘‡))๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)๐‘ž๐‘ข ๐‘“ 0 (๐‘‡), ๐‘ขโ„Ž 0 (๐‘‡))๐ฟ2 (ฮฉ) (3.74) 86 If [ฮ” โˆ’ ๐‘ž0 + ๐œ†]๐‘ข ๐‘“ 0 (๐‘‡) = [ฮ” โˆ’ ๐‘ž0 + ๐œ†]๐‘ขโ„Ž 0 (๐‘‡) = 0 in ฮฉ, the first term and last term on the right-hand side vanish, resulting in (3.71). โ–ก Notice that all parameters in (3.70) are known. For each ๐œ† โˆˆ R, we can construct functions ๐œ™, ๐œ“ satisfy (3.70). Proposition 3.9 ensures that we can find control sequence ๐‘“ , โ„Ž such that ๐‘ข ๐‘“ (๐‘‡) = ๐œ™, ๐‘ขโ„Ž (๐‘‡) = ๐œ“, therefore, we have the weighted inner product (๐œ™, ๐œ“)๐ฟ2 (ฮฉ, (cid:164)๐‘ž d๐‘ฅ) from (3.71). 3.3.2.2 Stability and Reconstruction Observing that the right hand side of (3.31) and (3.71) differ only by a constant ๐œ†, the discussion is almost the same as in Section 3.3.1.2, see also [75]. Case 1: ๐‘ž0 is constant Without loss of generality, we take ๐‘ž0 = 0. By choosing ๐œ† โ‰ฅ 0, the equation (3.70) becomes the Helmholtz equation [ฮ” + ๐œ†]๐‘ข ๐‘“ 0 (๐‘‡) = [ฮ” + ๐œ†]๐‘ข ๐‘“ 0 (๐‘‡) = 0 in ฮฉ. Let ๐œƒ โˆˆ S๐‘›โˆ’1 be an arbitrary unit vector, Proposition 3.9 guarantees the existence of ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) such that ๐‘ข ๐‘“ 0 (๐‘‡) = ๐‘ขโ„Ž 0 (๐‘‡) = ๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ, (3.75) which is the Helmholtz solution. Similarly, we have following results: Theorem 3.19. Suppose ๐‘0 = 1 and ๐‘ž0 = 0. Then the Fourier transform ห†(cid:164)๐‘ž of (cid:164)๐‘ž can be reconstructed as follows: ห†(cid:164)๐‘ž(2 โˆš ๐œ†๐œƒ) = โˆ’(๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) โˆ’ ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) (3.76) where ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) are solutions to (3.75). Proof. The formula is obtained by substitute (3.75) into (3.71). Since ๐œƒ โˆˆ S๐‘›โˆ’1 and ๐œ† โ‰ฅ 0 are arbitrary, it gives the Fourier transform of (cid:164)๐‘ž everywhere. โ–ก Theorem 3.20. Suppose ๐‘0 = 1 and ๐‘ž0 = 0. There exists a constant ๐ถ > 0, independent of ๐œ†, such that โˆš (cid:12) (cid:12) (cid:12) ห†(cid:164)๐‘ž( 2๐œ†๐œƒ) (cid:12) (cid:12) (cid:12) โ‰ค ๐ถ (1 + โˆš 2๐‘‡ (1 + ๐œ†))๐œ†4โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป3 ((0,๐‘‡)ร—๐œ•ฮฉ) 87 Proof. The proof is nearly a word-by-word repetition of Theorem 3.12, see also [75]. โ–ก Case 2: ๐‘ž0 is variable Let ๐œ† โ‰ฅ 0, then (3.70) becomes the perturbed Helmholtz equation [ฮ” + ๐œ† โˆ’ ๐‘ž0]๐‘ข ๐‘“ 0 (๐‘‡) = [ฮ” + ๐œ† โˆ’ ๐‘ž0]๐‘ขโ„Ž 0 (๐‘‡) = 0 in ฮฉ. For any ๐œƒ โˆˆ S๐‘›โˆ’1, we choose the solution to be ๐œ™(๐‘ฅ) = ๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ + ๐‘Ÿ (๐‘ฅ; ๐œ†) the residual ๐‘Ÿ (๐‘ฅ; ๐œ†) satisfies According to [75, Lemma 13], for any ๐‘  โ‰ฅ 0. (ฮ” + ๐œ† โˆ’ ๐‘ž0)๐‘Ÿ = ๐‘ž0๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ in ฮฉ. โˆฅ๐‘Ÿ โˆฅ๐ป๐‘  (R๐‘›) = ๐‘‚ (๐œ† ๐‘ โˆ’1 2 ) as ๐œ† โ†’ โˆž (3.77) (3.78) (3.79) One dimension: In one dimension (1D), ๐œƒ = ยฑ1. Let us take ๐œƒ = 1 and choose (3.77) to be the value of ๐‘ข ๐‘“ 0 (๐‘‡) and ๐‘ขโ„Ž 0 (๐‘‡). Substituting into (3.71) gives โˆ’ ห†(cid:164)๐‘ž(2 โˆš ๐œ†) โˆ’ 2( (cid:164)๐‘ž๐‘’๐‘– โˆš ๐œ†๐œƒยท๐‘ฅ, ๐‘Ÿ)๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)๐‘ž๐‘Ÿ, ๐‘Ÿ)๐ฟ2 (ฮฉ) =(๐œ•2 ๐‘ก ๐‘“ + ๐œ† ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) (3.80) With similar analysis as (3.42), we have (cid:12) (cid:12) (cid:12) ห†(cid:164)๐‘ž( โˆš 2๐œ†๐œƒ) (cid:12) (cid:12) (cid:12) โˆš โ‰ค ๐ถ (1 + 2๐‘‡ (1 + ๐œ†))๐œ†4โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป3 ((0,๐‘‡)ร—๐œ•ฮฉ) + ๐‘‚ (๐œ†โˆ’ 1 2 ). High Dimension: In dimension ๐‘› โ‰ฅ 2, let ๐œ† โ‰ฅ 0, ๐œƒ, ๐œ” โˆˆ R๐‘› be two vectors such that ๐œƒ โŠฅ ๐œ”. We take the following solutions: ๐œ™(๐‘ฅ) :=๐œ™0(๐‘ฅ) + ๐‘Ÿ1(๐‘ฅ; ๐œ†), ๐œ™0(๐‘ฅ) := ๐‘’๐‘–(๐‘˜๐œƒ+๐‘™๐œ”)ยท๐‘ฅ ๐œ“(๐‘ฅ) :=๐œ“0(๐‘ฅ) + ๐‘Ÿ2(๐‘ฅ; ๐œ†), ๐œ“0(๐‘ฅ) := ๐‘’๐‘–(๐‘˜๐œƒโˆ’๐‘™๐œ”)ยท๐‘ฅ 88 where ๐‘Ÿ1, ๐‘Ÿ2 satisfy (3.79), ๐‘˜ 2 + ๐‘™2 = ๐œ† such that (ฮ” + ๐œ†)๐œ™0 = (ฮ” + ๐œ†)๐œ“0 = 0. Proposition 3.9 asserts that there are ๐‘“ , โ„Ž โˆˆ ๐ถโˆž ๐‘ ((0, ๐‘‡] ร— ๐œ•ฮฉ) such that ๐‘ข ๐‘“ 0 (๐‘‡) = ๐œ™ = ๐œ™0 + ๐‘Ÿ1, ๐‘ขโ„Ž 0 (๐‘‡) = ๐œ“ = ๐œ“0 + ๐‘Ÿ2. (3.81) Inserting (3.81) into (3.71) gives โˆ’ ห†(cid:164)๐‘ž(2๐‘˜๐œƒ) โˆ’ ( (cid:164)๐‘ž๐‘’๐‘–(๐‘˜๐œƒ+๐‘™๐œ”)ยท๐‘ฅ, ๐‘Ÿ2)๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)๐‘ž๐‘’๐‘–(๐‘˜๐œƒโˆ’๐‘™๐œ”)ยท๐‘ฅ, ๐‘Ÿ1)๐ฟ2 (ฮฉ) โˆ’ ( (cid:164)๐‘ž๐‘Ÿ1, ๐‘Ÿ2)๐ฟ2 (ฮฉ) =(๐œ•2 ๐‘ก ๐‘“ + (๐‘˜ 2 + ๐‘™2) ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) (3.82) If we fix ๐‘˜ and let ๐‘™ โ†’ โˆž, we obtain the reconstruction formula for any ๐‘˜ โ‰ฅ 0 and any ๐œƒ โˆˆ S๐‘›โˆ’1: ห†(cid:164)๐‘ž(2๐‘˜๐œƒ) = โˆ’ lim ๐‘™โ†’โˆž (cid:2)(๐œ•2 ๐‘ก ๐‘“ + (๐‘˜ 2 + ๐‘™2) ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) (cid:3) . Similarly, we can obtain a Hรถlder-type stability estimate for โˆฅ (cid:164)๐‘žโˆฅ๐ป โˆ’๐‘  (R๐‘›). Theorem 3.21. Suppose ๐‘0 = 1, ๐‘ž0 โˆˆ ๐ถโˆž(ฮฉ) and ๐‘ž0 is not identically zero. For any ๐‘  > 0, there exists a constant ๐ถ > 0 independent of ๐œ† such that โˆฅ (cid:164)๐‘žโˆฅ๐ป โˆ’๐‘  (R๐‘›) โ‰ค ๐ถ โˆฅ (cid:164)ฮ›โˆฅ 2๐‘  11(๐‘›+2๐‘ ) ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป3 ((0,๐‘‡)ร—๐œ•ฮฉ) . Proof. Write ๐œ‰ := 2๐‘˜๐œƒ and ๐›ฟ := โˆฅ (cid:164)ฮ›โˆฅ๐ป2 ((0,๐‘‡)ร—๐œ•ฮฉ)โ†’๐ป3 ((0,๐‘‡)ร—๐œ•ฮฉ). Let ๐œŒ > 0 be a sufficiently large number that is to be determined. We decompose โˆฅ (cid:164)๐‘žโˆฅ2 ๐ป โˆ’๐‘  (R๐‘›) = โˆซ |๐œ‰ |โ‰ค๐œŒ | ห†(cid:164)๐‘ž(๐œ‰)|2 (1 + |๐œ‰ |2)๐‘  โˆซ ๐‘‘๐œ‰ + |๐œ‰ |>๐œŒ | ห†(cid:164)๐‘ž(๐œ‰)|2 (1 + |๐œ‰ |2)๐‘  ๐‘‘๐œ‰. For the integral over high frequencies, we have โˆซ |๐œ‰ |>๐œŒ | ห†(cid:164)๐‘ž(๐œ‰)|2 (1 + |๐œ‰ |2)๐‘  ๐‘‘๐œ‰ โ‰ค 1 (1 + ๐œŒ2)๐‘  โˆซ |๐œ‰ |>๐œŒ | ห†(cid:164)๐‘ž(๐œ‰)|2 ๐‘‘๐œ‰ โ‰ค For the integral over low frequencies, it is easy to see that: โˆฅ (cid:164)๐‘žโˆฅ2 ๐ฟ2 (R๐‘›) (1 + ๐œŒ2)๐‘  โ‰ค ๐ถ 1 ๐œŒ2๐‘  . โˆซ |๐œ‰ |โ‰ค๐œŒ | ห†(cid:164)๐‘ž(๐œ‰)|2 (1 + |๐œ‰ |2)๐‘  โˆซ ๐‘‘๐œ‰ โ‰ค |๐œ‰ |โ‰ค๐œŒ | ห†(cid:164)๐‘ž(๐œ‰)|2 ๐‘‘๐œ‰ โ‰ค ๐ถ ๐œŒ๐‘› โˆฅ ห†(cid:164)๐‘žโˆฅ2 ๐ฟโˆž (๐ต(0,๐œŒ)) . 89 The norm โˆฅ ห†(cid:164)๐‘žโˆฅ ๐ฟโˆž (๐ต(0,๐œŒ)) can be estimated using (3.82). Indeed, for |๐œ‰ | โ‰ค ๐œŒ, we have | ห†(cid:164)๐‘ž(๐œ‰)| โ‰ค |(๐œ•2 ๐‘ก ๐‘“ + (๐‘˜ 2 + ๐‘™2) ๐‘“ , (cid:164)๐พ โ„Ž)๐ฟ2 ((0,๐‘‡)ร—๐œ•ฮฉ) + ( (cid:164)ฮ› ๐‘“ (๐‘‡), โ„Ž(๐‘‡))๐ฟ2 (๐œ•ฮฉ) | + ๐ถ โˆš ๐œ† โ‰ค ๐ถ (1 + โˆš 2๐‘‡ (1 + ๐œ†))โˆฅ๐œ™โˆฅ๐ป4 (ฮฉ) โˆฅ๐œ“โˆฅ๐ป4 (ฮฉ)๐›ฟ + ๐ถ โˆš โ‰ค ๐ถ (1 + โˆš 2๐‘‡ (1 + ๐œ†)) โ‰ค ๐ถ (1 + โˆš 2๐‘‡ (1 + ๐œ†)) (cid:16) (cid:16) โˆฅ๐œ™0โˆฅ๐ป4 (ฮฉ) + โˆฅ๐‘Ÿ1โˆฅ๐ป4 (ฮฉ) ๐œ†2 + ๐œ† 3 2 (cid:17) 2 ๐›ฟ + ๐ถ โˆš ๐œ† ๐œ† (cid:17) (cid:16) โˆฅ๐œ“0โˆฅ๐ป4 (ฮฉ) + โˆฅ๐‘Ÿ2โˆฅ๐ป4 (ฮฉ) (cid:17) ๐›ฟ + ๐ถ โˆš ๐œ† where the first and the last inequality is a consequence of (3.79), the second inequality follows from the proof of Proposition 3.20. Utilizing the relation ๐œ† = ๐‘˜ 2 + ๐‘™2, we conclude โˆฅ ห†(cid:164)๐‘žโˆฅ2 ๐ฟโˆž (๐ต(0,๐œŒ)) โ‰ค ๐ถ (cid:20) (1 + โˆš 2๐‘‡ (1 + ๐œ†))2๐œ†6(1 + โˆš ๐œ†)4๐›ฟ2 + (cid:20) โ‰ค ๐ถ (cid:21) 1 ๐œ† (๐œŒ2 + ๐‘™2)10๐›ฟ + (cid:21) 1 ๐‘™2 provided ๐œŒ > 0 is sufficiently large. Combining these estimates, we see that โˆฅ (cid:164)๐‘žโˆฅ2 ๐ป โˆ’๐‘  (R๐‘›) โ‰ค ๐ถ (cid:20) ๐œŒ๐‘› (๐œŒ2 + ๐‘™2)10๐›ฟ2 + ๐œŒ๐‘› ๐‘™2 + 1 ๐œŒ2๐‘  (cid:21) . Choosing ๐‘™2 = ๐œŒ๐‘›+2๐‘  and ๐œŒ = ๐›ฟโˆ’ 2 11(๐‘›+2๐‘ ) yields โˆฅ (cid:164)๐‘žโˆฅ2 ๐ป โˆ’๐‘  (R๐‘›) โ‰ค ๐ถ๐›ฟ 4๐‘  11(๐‘›+2๐‘ ) , where ๐ถ is a constant independent of ๐œ† and ๐›ฟ is sufficiently small. โ–ก 3.3.2.3 Numerical Experiment This section demonstrates the numerical implementation and validation of the reconstruction formula (3.76) in a one-dimensional (1D) context, where ๐‘0 = 1 and ๐‘ž0 = 0. The setting is the same as in Section 3.3.1.3. We choose the spatial domain to be ฮฉ = [โˆ’1, 1] with ๐‘‡ = 5. The forward problem (3.64) is solved using the second order central difference scheme on a temporal-spatial grid of size 24999 ร— 501. The basis functions for the prescribed Helmholtz solution ๐œ™ in our experiments are 1, sin (cid:17) ๐‘ฅ (cid:16) ๐œ‹ 2 , cos (cid:17) ๐‘ฅ (cid:16) ๐œ‹ 2 , . . . , sin (cid:19) ๐‘ฅ , cos (cid:18) ๐‘ ๐œ‹ 2 (cid:18) ๐‘ ๐œ‹ 2 (cid:19) ๐‘ฅ 90 with ๐‘ = 10. They correspond to Helmholtz solutions with โˆš ๐œ† = 0, ๐œ‹ 2 , . . . , ๐‘ ๐œ‹ 2 . Boundary controls are computed using the time revesal method as in Section 3.3.1.3. Experiment 1. The first experiment aims to reconstruct the following smooth (cid:164)๐‘ž using the for- mula (3.76): (cid:164)๐‘ž = sin(๐œ‹๐‘ฅ) + 2 cos(2๐œ‹๐‘ฅ) + 4 sin(4๐œ‹๐‘ฅ) โˆ’ 3. The graph of (cid:164)๐‘ž is shown in Figure 3.13. The measurement (cid:164)ฮ› (cid:164)๐‘ž is added with 0%, 1%, and 5% of Gaussian noise, respectively. The reconstructions and the corresponding errors are illustrated in Figure 3.14. Notice that the reconstruction error with 5% noise is relatively larger, as can be expected. When multiple measurements are available, we can repeat the reconstruction several times and then take the average. This strategy effectively reduces the error, since the inverse problem is linear and the Gaussian noise has zero mean, see Figure 3.15. Figure 3.13 Ground truth (cid:164)๐‘ž = sin(๐œ‹๐‘ฅ) + 2 cos(2๐œ‹๐‘ฅ) + 4 sin(4๐œ‹๐‘ฅ) โˆ’ 3. Experiment 2. The second experiment tests reconstruction of a discontinuous (cid:164)๐‘ž. we choose (cid:164)๐‘ž to be the Heaviside function ๐ป (๐‘ฅ) = The Fourier series of ๐ป (๐‘ฅ) on ฮฉ = [โˆ’1, 1] is 1 0 ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ ๐‘ฅ โ‰ฅ 0, ๐‘ฅ < 0. ๐ป (๐‘ฅ) = 1 2 + โˆž โˆ‘๏ธ ๐‘›=1 2 (2๐‘› โˆ’ 1)๐œ‹ sin((2๐‘› โˆ’ 1)๐œ‹๐‘ฅ). 91 -1-0.500.51-10-8-6-4-2024Ground Truth Figure 3.14 Left: Reconstructed (cid:164)๐‘ž with 0%, 1%, 5% Gaussian noise and the ground truth. Right: The corresponding error between the reconstruction and the ground truth. The relative ๐ฟ2-errors are 0.1%, 2.5%, and 23.9% respectively. Figure 3.15 Left: Reconstructed (cid:164)๐‘ž under 1, 7, 14, 21 times repetition with 5% Gaussian noise and the ground truth. Right: The corresponding error between the reconstruction and the ground truth. The relative ๐ฟ2-errors are 23.9%, 9.4%, 5.5%, and 4.0% respectively. With the choice of the finite computational basis, we can only expect to reconstruct the following orthogonal projection: ๐ป๐‘ (๐‘ฅ) := 1 2 + โŒˆ ๐‘ 2 โŒ‰ โˆ‘๏ธ ๐‘›=1 2 (2๐‘› โˆ’ 1)๐œ‹ sin((2๐‘› โˆ’ 1)๐œ‹๐‘ฅ), see Figure 3.16 for the graph of ๐ป (๐‘ฅ) and ๐ป๐‘ (๐‘ฅ). The reconstruction formula (3.76) is implemented with 0%, 1%, and 5% of Gaussian noise added to (cid:164)ฮ› (cid:164)๐‘ž, respectively. The reconstructions and corresponding errors with a single measurement are illustrated in Figure 3.17. The averaged reconstruction with 5% of Gaussian noise and multiple repeated measurements are illustrated in Figure 3.18. 92 -1-0.500.51-10-505ReconstructionGround TruthNo noise1% noise5% noise-1-0.500.5100.511.522.53ErrorNo noise1% noise5% noise-1-0.500.51-10-8-6-4-20246Reconstruction1 time7 times14 times21 timesGround Truth-1-0.500.5100.511.522.53Error1 time7 times14 times21 times Figure 3.16 Ground truth (cid:164)๐‘ž = ๐ป (๐‘ฅ) and its projection ๐ป๐‘ (๐‘ฅ). Figure 3.17 Left: Reconstructed (cid:164)๐‘ž with 0%, 1%, 5% Gaussian noise and the projection of the ground truth. Right: The corresponding error between the reconstruction and the projection of the ground truth. The relative ๐ฟ2-errors are 0.6%, 6.2%, and 33.8%, respectively. Figure 3.18 Left: Reconstructed (cid:164)๐‘ž under 1, 7, 14, 21 times repetition with 5% Gaussian noise and the projection of the ground truth. Right: The corresponding error between the reconstruction and the projection of the ground truth. The relative ๐ฟ2-errors are 33.8%, 7.2%, 6.9%, and 6.1% respectively. Experiment 3. This experiment aims to test the reconstruction in the case ๐‘0 = 1 and a small ๐‘ž0 โ‰  0. We choose ๐‘ž0 = 1 10 sin(๐œ‹๐‘ฅ), 93 -1-0.500.51-0.200.20.40.60.811.2Ground TruthH(x)HN(x)-1-0.500.51-0.500.511.5ReconstructionProjectionNo noise1% noise5% noise-1-0.500.5100.10.20.30.40.50.6ErrorNo noise1% noise5% noise-1-0.500.51-0.500.511.5Reconstruction1 time7 times14 times21 timesProjection-1-0.500.5100.10.20.30.40.50.6Error1 time7 times14 times21 times and (cid:164)๐‘ž to be the same Heaviside function as in Experiment 2, see Figure 3.19. We attempt to reconstruct an approximate (cid:164)๐‘ž based on (3.80) by neglecting the terms involving ๐‘Ÿ. A computational challenge is that we cannot find explicit form of ๐œ•2 ๐‘ก ๐‘“ when ๐‘ž0 โ‰  0. Instead, we make use of the ๐‘ก ๐‘“ as if ๐‘ž0 = 0. In the meanwhile, the operator (cid:164)๐พ and smallness of ๐‘ž0 to approximately construct ๐œ•2 (cid:164)ฮ› (cid:164)๐‘ž are still implemented using the exact ๐‘ž0 and (cid:164)๐‘ž. The reconstructions and corresponding errors with a single measurement under 0%, 1%, and 5% of Gaussian noise are illustrated in Figure 3.20. The averaged reconstruction with 5% of Gaussian noise and multiple repeated measurements are illustrated in Figure 3.21. This experiment confirms that approximate reconstruction using (3.80) remains possible for ๐‘ž0 โ‰  0 as long as it is small. Figure 3.19 Left: ๐‘ž0 = 1 10 sin(๐œ‹๐‘ฅ). Right: Ground truth (cid:164)๐‘ž = ๐ป (๐‘ฅ) and its projection ๐ป๐‘ (๐‘ฅ). Figure 3.20 Left: Reconstructed (cid:164)๐‘ž with 0%, 1%, 5% Gaussian noise and the projection of the ground truth. Right: The corresponding error between the reconstruction and the projection of the ground truth. The relative ๐ฟ2-errors are 5.8%, 8.9%, and 24.2%, respectively. 94 -1-0.500.51-0.1-0.08-0.06-0.04-0.0200.020.040.060.080.1q0-1-0.500.51-0.200.20.40.60.811.2Ground TruthH(x)HN(x)-1-0.500.51-0.4-0.200.20.40.60.811.21.4ReconstructionProjectionNo noise1% noise5% noise-1-0.500.5100.050.10.150.20.25ErrorNo noise1% noise5% noise Figure 3.21 Left: Reconstructed (cid:164)๐‘ž under 1, 7, 14, 21 times repetition with 5% Gaussian noise and the projection of the ground truth. Right: The corresponding error between the reconstruction and the projection of the ground truth. The relative ๐ฟ2-errors are 24.2%, 9.38%, 9.87% and 9.93%, respectively. More Experiments We also apply the reconstruction formula (3.76) to measurement from the non-linear IBVP, see [75] for more details. 95 -1-0.500.51-0.4-0.200.20.40.60.811.21.4Reconstruction1 time7 times14 times21 timesProjection-1-0.500.5100.050.10.150.20.250.30.350.4Error1 time7 times14 times21 times CHAPTER 4 CONCLUSION In Chapter 2, we introduce several algorithms for UMBLT. For UMBLT under transport regime, see Section 2.2, we proposed an algorithm to reconstruct isotropic sources, which reduce the measurement requirement and computational demand. However, our proposed algorithm still based on the measurement over entire outgoing boundary, and the source are limited to isotropic source. In future, we can generalize the algorithm to the partial data case similar to the partial data case in diffusive regime. We can choose the adjoint outgoing boundary condition to be supported on the measurement area and we can prove that we can choose such boundary condition to make the adjoint RTE solution positive. For UMBLT under diffusive regime, see Section 2.3, we generalize the algorithm from full data case to partial data case, and give uncertainty quantification based on PDE theory. However, the numerical experiment start from the internal functional and lack of real world data. In future, we could try to numerically recover internal functional from boundary measurement to test the algorithm. In Chapter 3, we introduce nonlinear IBVP for wave speed reconstruction, see Section 3.2, and linearized IBVP for wave speed and wave potential reconstruction, see Section 3.3. We show that the wave speed can be uniquely determined with vanished wave potential using stable, non-iterative method. We also show that both wave speed and potential can be reconstructed using linearization with at least Hรถlder stability. However, the nonlinear IBVP are limited to vanished wave potential, the numerical experiment of linearized IBVP are limited to constant background speed and vanish background potential due to the accuracy requirement of second order temporal derivative, and we do not have algorithm to reconstruct wave speed and wave potential together from boundary measurement. In future, we will consider the nonlinear IBVP of wave speed reconstruction with nonvanished wave potential. We will also consider wave model with more parameters, such as wave equation with absorption effect. 96 BIBLIOGRAPHY [1] [2] [3] V. Agoshkov. Boundary Value Problems for Transport Equations. Birkhauser Boston Inc., USA, 1998. I. B. Aรฏcha. Stability estimate for a hyperbolic inverse problem with time-dependent coeffi- cient. Inverse Problems, 31(12):125010, 2015. A. Allers and F. Santosa. Stability and resolution analysis of a linearized problem in electrical impedance tomography. Inverse problems, 7(4):515, 1991. [4] M. Anderson, A. Katsuda, Y. Kurylev, M. Lassas, and M. Taylor. Boundary regularity for the Ricci equation, geometric convergence, and Gelโ€™fandโ€™s inverse boundary problem. Invent. Math., 158(2):261โ€“321, 2004. [5] [6] [7] [8] [9] S. R. Arridge and J. C. Schotland. Optical tomography: forward and inverse problems. Inverse problems, 25(12):123010, 2009. G. Bal, F. J. Chung, and J. C. Schotland. Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation. SIAM Journal on Mathematical Analysis, 48(2):1332โ€“1347, 2016. G. Bal and J. C. Schotland. Inverse scattering and acousto-optic imaging. Physical review letters, 104(4):043902, 2010. G. Bal and J. C. Schotland. Ultrasound-modulated bioluminescence tomography. Physical Review E, 89(3):031201, 2014. G. Bal and A. Tamasan. Inverse source problems in transport equations. SIAM journal on mathematical analysis, 39(1):57โ€“76, 2007. [10] G. Bao and H. Zhang. Sensitivity analysis of an inverse problem for the wave equation with caustics. Journal of the American Mathematical Society, 27(4):953โ€“981, 2014. [11] M. Belishev. On an approach to multidimensional inverse problems for the wave equation. In Soviet Math. Dokl, volume 36, pages 481โ€“484, 1988. [12] M. Belishev and V. Y. Gotlib. Dynamical variant of the bc-method: theory and numerical testing. Journal of Inverse and Ill-Posed Problems, 7(3):221โ€“240, 1999. [13] M. I. Belishev. Recent progress in the boundary control method. Inverse Problems, 23(5):R1โ€“ R67, 2007. [14] M. I. Belishev. Recent progress in the boundary control method. Inverse problems, 23(5):R1, 2007. [15] M. I. Belishev, I. B. Ivanov, I. V. Kubyshkin, and V. S. Semenov. Numerical testing in determination of sound speed from a part of boundary by the bc-method. Journal of Inverse and Ill-posed Problems, 24(2):159โ€“180, 2016. 97 [16] M. I. Belishev and Y. V. Kuryiev. To the reconstruction of a Riemannian manifold via its spectral data (bcโ€“method). Communications in partial differential equations, 17(5-6):767โ€“ 804, 1992. [17] M. Bellassoued and I. B. Aรฏcha. Stable determination outside a cloaking region of two time- dependent coefficients in an hyperbolic equation from Dirichlet to Neumann map. Journal of Mathematical Analysis and Applications, 449(1):46โ€“76, 2017. [18] M. Bellassoued and D. D. S. Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 5(4):745โ€“773, 2011. [19] G. Beylkin and R. Burridge. Linearized inverse scattering problems in acoustics and elas- ticity. Wave motion, 12(1):15โ€“52, 1990. [20] K. Bingham, Y. Kurylev, M. Lassas, and S. Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems & Imaging, 2(1):63, 2008. [21] A. Blagoveshchenskii. The inverse problem in the theory of seismic wave propagation. In Spectral Theory and Wave Processes, pages 55โ€“67. Springer, 1967. [22] E. Blรฅsten, F. Zouari, M. Louati, and M. S. Ghidaoui. Blockage detection in networks: The area reconstruction method. arXiv preprint arXiv:1909.05497, 2019. [23] A. Bogomolny. Fundamental solutions method for elliptic boundary value problems. SIAM Journal on Numerical Analysis, 22(4):644โ€“669, 1985. [24] R. Bosi, Y. Kurylev, and M. Lassas. Reconstruction and stability in Gelโ€™fandโ€™s inverse interior spectral problem. arXiv preprint arXiv:1702.07937, 2017. [25] R. Bosi, Y. Kurylev, and M. Lassas. Reconstruction and stability in Gelโ€™fandโ€™s inverse interior spectral problem, 2019. [26] D. Burago, S. Ivanov, M. Lassas, and J. Lu. Stability of the Gelโ€™fand inverse boundary problem via the unique continuation, 2021. [27] A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Physics in Medicine & Biology, 50(23):5421, 2005. [28] F. Chung, T. Yang, and Y. Yang. Ultrasound modulated bioluminescence tomography with a single optical measurement. Inverse problems, 37(1):015004, 2020. [29] C. H. Contag and M. H. Bachmann. Advances in in vivo bioluminescence imaging of gene expression. Annual review of biomedical engineering, 4(1):235โ€“260, 2002. [30] M. V. De Hoop, P. Kepley, and L. Oksanen. An exact redatuming procedure for the inverse boundary value problem for the wave equation. SIAM Journal on Applied Mathematics, 78(1):171โ€“192, 2018. 98 [31] M. V. de Hoop, P. Kepley, and L. Oksanen. Recovery of a smooth metric via wave field and co- ordinate transformation reconstruction. SIAM Journal on Applied Mathematics, 78(4):1931โ€“ 1953, 2018. [32] R. DeVore and G. Petrova. The averaging lemma. Journal of the American Mathematical Society, 14(2):279โ€“296, 2001. [33] H. Dong and Z. Li. On the w 2 p estimate for oblique derivative problem in lipschitz domains. International Mathematics Research Notices, 2022(5):3602โ€“3635, 2022. [34] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh. Diffuse optics for tissue monitoring and tomography. Reports on progress in physics, 73(7):076701, 2010. [35] A. El Badia and T. Ha-Duong. An inverse source problem in potential analysis. Inverse Problems, 16(3):651, 2000. [36] G. Eskin. A new approach to hyperbolic inverse problems. Inverse problems, 22(3):815, 2006. [37] G. Eskin. Inverse hyperbolic problems with time-dependent coefficients. Communications in Partial Differential Equations, 32(11):1737โ€“1758, 2007. [38] G. Eskin. Inverse problems for the schrรถdinger equations with time-dependent electro- Journal of Mathematical Physics, magnetic potentials and the aharonovโ€“bohm effect. 49(2):022105, 2008. [39] G. Eskin. Inverse problems for general second order hyperbolic equations with time- dependent coefficients. Bulletin of Mathematical Sciences, 7(2):247โ€“307, 2017. [40] L. C. Evans. Partial differential equations. Graduate studies in mathematics, 19(4):7, 1998. [41] L. C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I., 2010. [42] G. Fairweather and A. Karageorghis. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 9(1):69โ€“95, 1998. [43] A. Feizmohammadi and Y. Kian. Recovery of non-smooth coefficients appearing in anisotropic wave equations. arXiv preprint arXiv:1903.08118, 2019. [44] B. J. Forbes, E. R. Pike, and D. B. Sharp. The acoustical kleinโ€“gordon equation: The wave-mechanical step and barrier potential functions. The Journal of the Acoustical Society of America, 114(3):1291โ€“1302, 2003. [45] S. Gรผnter, Q. Yu, J. Krรผger, and K. Lackner. Modelling of heat transport in magnetised plasmas using non-aligned coordinates. Journal of Computational Physics, 209(1):354โ€“370, 2005. [46] G. Hu and Y. Kian. Determination of singular time-dependent coefficients for wave equations from full and partial data. arXiv preprint arXiv:1706.07212, 2017. 99 [47] M. Ikehata, G. Makrakis, and G. Nakamura. Inverse boundary value problem for ocean acoustics. Mathematical methods in the applied sciences, 24(1):1โ€“8, 2001. [48] V. A. Ilโ€™in. Tikhonovโ€™s work on methods of solving ill-posed problems. Russian Mathemat- ical Surveys, 22(2):142, 1967. [49] V. Isakov and Z. Sun. Stability estimates for hyperbolic inverse problems with local boundary data. Inverse problems, 8(2):193, 1992. [50] F. F. Jรถbsis. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323):1264โ€“1267, 1977. [51] A. Kachalov, Y. Kurylev, and M. Lassas. Inverse boundary spectral problems. Chapman and Hall/CRC, 2001. [52] J. Kaipio and E. Somersalo. Statistical and computational inverse problems, volume 160. Springer Science & Business Media, 2006. [53] A. C. Kak and M. Slaney. Principles of computerized tomographic imaging. SIAM, 2001. [54] Y. Kian. Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data. SIAM Journal on Mathematical Analysis, 48(6):4021โ€“4046, 2016. [55] Y. Kian and L. Oksanen. Recovery of time-dependent coefficient on Riemannian manifold for hyperbolic equations. International Mathematics Research Notices, 2019(16):5087โ€“5126, 2017. [56] A. Kirsch. An introduction to the mathematical theory of inverse problems, volume 120. Springer Science & Business Media, 2011. [57] J. Korpela, M. Lassas, and L. Oksanen. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Problems & Imaging, 13(3):575โ€“596, 2019. [58] V. D. Kupradze. On the approximate solution of problems in mathematical physics. Russian Mathematical Surveys, 22(2):58โ€“108, 1967. [59] Y. V. Kurylev and M. Lassas. Hyperbolic inverse problem with data on a part of the boundary. In UAB-GIT International Conference on Differential Equations and Mathematical Physics, pages 259โ€“272. American Mathematical Society, 2000. [60] P. Lailly and J. Bednar. The seismic inverse problem as a sequence of before stack migrations. In Conference on inverse scattering: theory and application, pages 206โ€“220. Philadelphia, Pa, 1983. [61] I. Lasiecka and R. Triggiani. Regularity theory of hyperbolic equations with non- homogeneous neumann boundary conditions. ii. general boundary data. Journal of Dif- ferential Equations, 94(1):112โ€“164, 1991. 100 [62] M. Lassas and L. Oksanen. Inverse problem for the Riemannian wave equation with Dirichlet data and neumann data on disjoint sets. Duke Mathematical Journal, 163(6):1071โ€“1103, 2014. [63] M. M. Lavrent_ev, V. G. Romanov, and S. P. Shishatski_. Ill-posed problems of mathematical physics and analysis, volume 64. American Mathematical Soc., 1986. [64] W. Li, Y. Yang, and Y. Zhong. Inverse transport problem in fluorescence ultrasound modulated optical tomography with angularly averaged measurements. arXiv preprint arXiv:1902.09638, 2019. [65] G. M. Lieberman. Mixed boundary value problems for elliptic and parabolic differential equations of second order. Journal of Mathematical Analysis and Applications, 113(2):422โ€“ 440, 1986. [66] S. Liu and L. Oksanen. A lipschitz stable reconstruction formula for the inverse problem for the wave equation. Transactions of the American Mathematical Society, 368(1):319โ€“335, 2016. [67] R. Mathon and R. L. Johnston. The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM Journal on Numerical Analysis, 14(4):638โ€“650, 1977. [68] T. P. Matthews and M. A. Anastasio. Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements. Inverse problems, 33(12):124002, 2017. [69] L. Mezzanotte, M. vanโ€˜t Root, H. Karatas, E. A. Goun, and C. W. Lรถwik. In vivo molecular bioluminescence imaging: new tools and applications. Trends in biotechnology, 35(7):640โ€“ 652, 2017. [70] C. Montalto. Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to-Neumann map. Communications in Partial Differential Equations, 39(1):120โ€“145, 2014. [71] A. I. Nachman. Reconstructions from boundary measurements. Annals of Mathematics, 128(3):531โ€“576, 1988. [72] S. Nagayasu, G. Uhlmann, and J.-N. Wang. Increasing stability in an inverse problem for the acoustic equation. Inverse Problems, 29(2):025012, 2013. [73] F. Natterer and F. Wubbeling. A propagation-backpropagation method for ultrasound to- mography. Inverse problems, 11(6):1225, 1995. [74] L. Oksanen. Solving an inverse obstacle problem for the wave equation by using the boundary control method. Inverse Problems, 29(3):035004, 2013. [75] L. Oksanen, T. Yang, and Y. Yang. Linearized boundary control method for an acoustic inverse boundary value problem. Inverse Problems, 38(11):114001, 2022. 101 [76] L. Pestov, V. Bolgova, and O. Kazarina. Numerical recovering of a density by the bc-method. Inverse Problems & Imaging, 4(4):703, 2010. [77] B. Ptashnik. Ill-posed boundary-value problems for partial differential equations, 1984. [78] A. G. Ramm et al. Property c and an inverse problem for a hyperbolic equation. Journal of Mathematical Analysis and Applications, 156(1):209โ€“219, 1991. [79] N. V. Ruiter, M. Zapf, T. Hopp, R. Dapp, E. Kretzek, M. Birk, B. Kohout, and H. Gemmeke. European Journal of 3d ultrasound computer tomography of the breast: A new era? Radiology, 81:S133โ€“S134, 2012. [80] S. Sakadลพiฤ‡ and L. V. Wang. High-resolution ultrasound-modulated optical tomography in biological tissues. Optics letters, 29(23):2770โ€“2772, 2004. [81] R. Salazar. Determination of time-dependent coefficients for a hyperbolic inverse problem. Inverse Problems, 29(9):095015, 2013. [82] P. Shivakumar and K. H. Chew. A sufficient condition for nonvanishing of determinants. Proceedings of the American mathematical society, pages 63โ€“66, 1974. [83] P. Stefanov and G. Uhlmann. Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media. journal of functional analysis, 154(2):330โ€“358, 1998. [84] P. Stefanov and G. Uhlmann. the hyperbolic Dirichlet-to-Neumann map. 2005(17):1047โ€“1061, 2005. Stable determination of generic simple metrics from International Mathematics Research Notices, [85] P. Stefanov and G. Uhlmann. An inverse source problem in optical molecular imaging. Analysis & PDE, 1(1):115โ€“126, 2008. [86] P. Stefanov and Y. Yang. The inverse problem for the Dirichlet-to-Neumann map on Lorentzian manifolds. Analysis & PDE, 11(6):1381โ€“1414, 2018. [87] P. D. Stefanov. Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials. Mathematische Zeitschrift, 201(4):541โ€“559, 1989. [88] Z. Sun. On continuous dependence for an inverse initial boundary value problem for the wave equation. Journal of Mathematical Analysis and Applications, 150(1):188โ€“204, 1990. [89] J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse boundary value problem. Annals of mathematics, pages 153โ€“169, 1987. [90] D. Tataru. Unique continuation for solutions to PDEโ€™s; between Hormanderโ€™s theorem and Holmgrenโ€™s theorem. Communications in Partial Differential Equations, 20(5-6):855โ€“884, 1995. [91] D. Tataru. Unique continuation for solutions to PDEโ€™s; between Hรถrmanderโ€™s theorem and Holmgrenโ€™s theorem. Comm. Partial Differential Equations, 20(5-6):855โ€“884, 1995. 102 [92] D. Tataru. On the regularity of boundary traces for the wave equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 26(1):185โ€“206, 1998. [93] A. N. Tikhonov. On the solution of ill-posed problems and the method of regularization. In Doklady akademii nauk, volume 151, pages 501โ€“504. Russian Academy of Sciences, 1963. [94] G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, J. Meinel, et al. Development of the first bioluminescent ct scanner. Radiology, 229(566):0033โ€“8419, 2003. [95] G. Wang, Y. Li, and M. Jiang. Uniqueness theorems in bioluminescence tomography. Medical physics, 31(8):2289โ€“2299, 2004. [96] T. Yang and Y. Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems & Imaging, 2021. [97] T. Yang and Y. Yang. The diffusive ultrasound modulated bioluminescence tomography with partial data and uncertain optical parameters. arXiv preprint arXiv:2404.03124, 2024. [98] Y. Yang and J. Zhai. Unique determination of a transversely isotropic perturbation in a linearized inverse boundary value problem for elasticity. Inverse Problems and Imaging, 13(6):1309โ€“1325, 2019. [99] G. Yao and L. V. Wang. Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue. Applied Optics, 39(4):659โ€“664, 2000. [100] A. Yodh and B. Chance. Spectroscopy and imaging with diffusing light. Physics today, 48(3):34โ€“40, 1995. [101] H. F. Zhang, K. Maslov, M.-L. Li, G. Stoica, and L. V. Wang. In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy. Optics Express, 14(20):9317โ€“ 9323, 2006. 103 APPENDIX A APPENDIX FOR CHAPTER 2 A.1 Diffusion Approximation In strong scattering medium, such as biological objects, the propagation of light is diffusive and can be approximately described by diffusion equation. The standard way to accomplish the approximation from RTE to diffusion equation is to expand functions in terms of spherical harmonics and truncate the series. In order to derive the diffusion approximation, we need following assumptions on the optical coefficients: 1. ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) = ๐‘˜ (๐‘ฅ, โˆ’๐œ—, โˆ’๐œƒ) โ‰ฅ 0 for any ๐‘ฅ โˆˆ ๐‘‹, ๐œƒ, ๐œ— โˆˆ S๐‘›โˆ’1, 2. โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) d๐œƒ = โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) d๐œ— = ๐œŽ๐‘  (๐‘ฅ) โ‰ฅ 0 for any ๐‘ฅ โˆˆ ๐‘‹, ๐œƒ, ๐œ— โˆˆ S๐‘›โˆ’1, 3. ๐œŽ(๐‘ฅ) โ‰ฅ ๐œŽ๐‘  (๐‘ฅ) for any ๐‘ฅ โˆˆ ๐‘‹, 4. ๐‘†(๐‘ฅ, ๐œƒ) is either independent of direction ๐œƒ, or compact supported on ๐‘‹ for any ๐œƒ โˆˆ S๐‘›โˆ’1. We introduce the diffusion approximation under spherical harmonics up to the first order. The space spanned by the spherical harmonics up to the first order in S๐‘›โˆ’1 is H1 = span{1, ๐œƒ1, ๐œƒ2, . . . , ๐œƒ๐‘›} โŠ‚ ๐ฟ2(S๐‘›โˆ’1), (A.1) where ๐œƒ๐‘– denote the ๐‘–-th entry of ๐œƒ โˆˆ S๐‘›โˆ’1. Lemma A.1 ( [52, Lemma 6.10]). The orthogonal projection P : ๐ฟ2(S๐‘›โˆ’1) โ†’ H1 is given as โจ P ๐‘“ (๐œƒ) = โจ S๐‘›โˆ’1 ๐‘“ (๐œ—) d๐œ— + ๐‘› โจ S๐‘›โˆ’1 ๐œƒ ยท ๐œ— ๐‘“ (๐œ—) d๐œ—, where denote the average integral. 104 Let B denote the integro-differential operator on the right hand side of (2.1), i.e. the RTE can be written as B๐‘ข(๐‘ฅ, ๐œƒ) = ๐‘†(๐‘ฅ, ๐œƒ). The diffusion approximation is given by PBP๐‘ข(๐‘ฅ, ๐œƒ) = P๐‘†(๐‘ฅ, ๐œƒ). Denote P๐‘ข(๐‘ฅ, ๐œƒ) = P๐‘†(๐‘ฅ, ๐œƒ) = โจ S๐‘›โˆ’1 โจ S๐‘›โˆ’1 ๐‘ข(๐‘ฅ, ๐œ—) d๐œ— + ๐‘› ๐‘†(๐‘ฅ, ๐œ—) d๐œ— + ๐‘› โจ S๐‘›โˆ’1 โจ S๐‘›โˆ’1 ๐œƒ ยท ๐œ—๐‘ข(๐‘ฅ, ๐œ—) d๐œ— (cid:67) ๐œ™(๐‘ฅ) + ๐‘›๐œƒ ยท ๐ฝ (๐‘ฅ), ๐œƒ ยท ๐œ—๐‘†(๐‘ฅ, ๐œ—) d๐œ— (cid:67) ๐‘†0(๐‘ฅ) + ๐‘›๐œƒ ยท ๐‘†1(๐‘ฅ), (A.2) (A.3) Lemma A.2. The explicit form is given by PBP๐‘ข(๐‘ฅ, ๐œƒ) = (๐œŽ(๐‘ฅ) โˆ’ ๐œŽ๐‘  (๐‘ฅ))๐œ™(๐‘ฅ) + โˆ‡ ยท ๐ฝ (๐‘ฅ) + ๐‘›๐œƒ ยท โˆ‡๐œ™(๐‘ฅ) + (๐œŽ(๐‘ฅ)๐ผ โˆ’ ๐ต(๐‘ฅ))๐ฝ (๐‘ฅ) (cid:19) , (A.4) (cid:18) 1 ๐‘› where ๐ผ is ๐‘› ร— ๐‘› identity matrix, ๐ต(๐‘ฅ) is a ๐‘› ร— ๐‘› matrix with entries ๐ต๐‘– ๐‘— (๐‘ฅ) = ๐‘› Vol(S๐‘›โˆ’1) โˆซ โˆซ S๐‘›โˆ’1 S๐‘›โˆ’1 ๐œƒ๐‘–๐œ— ๐‘— ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) d๐œƒ d๐œ—. Proof. We first introduce following identities from the symmetricity โจ S๐‘›โˆ’1 โจ S๐‘›โˆ’1 โจ S๐‘›โˆ’1 ๐œƒ๐‘– d๐œƒ = 0, ๐œƒ๐‘–๐œƒ ๐‘— d๐œƒ = ๐›ฟ๐‘– ๐‘— ๐‘› , ๐œƒ๐‘–๐œƒ ๐‘— ๐œƒ ๐‘˜ d๐œƒ = 0, where 1 โ‰ค ๐‘–, ๐‘—, ๐‘˜ โ‰ค ๐‘›, ๐›ฟ๐‘– ๐‘— is the Kronecker delta. For any fixed ๐‘ฅ, it is clear that ๐œƒ ยท โˆ‡๐œ™(๐‘ฅ), ๐œŽ(๐‘ฅ) (๐œ™(๐‘ฅ) + ๐‘›๐œƒ ยท ๐ฝ (๐‘ฅ)) โˆˆ H1, we have P [๐œƒ ยท โˆ‡๐œ™(๐‘ฅ)] = ๐œƒ ยท โˆ‡๐œ™(๐‘ฅ), P [๐œŽ(๐‘ฅ) (๐œ™(๐‘ฅ) + ๐‘›๐œƒ ยท ๐ฝ (๐‘ฅ))] = ๐œŽ(๐‘ฅ) (๐œ™(๐‘ฅ) + ๐‘›๐œƒ ยท ๐ฝ (๐‘ฅ)). (A.5) Since ๐œƒ ยท โˆ‡(๐œƒ ยท ๐ฝ (๐‘ฅ)) = ๐œƒโŠค ๐ด(๐‘ฅ)๐œƒ 105 where ๐ด(๐‘ฅ) denote the Jacobian of ๐ฝ (๐‘ฅ), we have ๐œ— ยท โˆ‡(๐œ— ยท ๐ฝ (๐‘ฅ)) d๐œ— = โจ ๐‘› โˆ‘๏ธ S๐‘›โˆ’1 ๐‘–, ๐‘—=1 โจ S๐‘›โˆ’1 โจ (๐œƒ ยท ๐œ—)(๐œ— ยท โˆ‡(๐œ— ยท ๐ฝ (๐‘ฅ))) d๐œ— = S๐‘›โˆ’1 ๐ด๐‘– ๐‘— (๐‘ฅ)๐œ—๐‘–๐œ— ๐‘— d๐œ— = 1 ๐‘› tr๐ด(๐‘ฅ) = 1 ๐‘› โˆ‡ ยท ๐ฝ (๐‘ฅ), โจ ๐‘› โˆ‘๏ธ S๐‘›โˆ’1 ๐‘–, ๐‘—,๐‘˜=1 ๐ด๐‘– ๐‘— (๐‘ฅ)๐œ—๐‘–๐œ— ๐‘— ๐œ—๐‘˜ ๐œƒ ๐‘˜ d๐œ— = 0, thus P [๐œƒ ยท โˆ‡(๐œ™(๐‘ฅ) + ๐‘›๐œƒ ยท ๐ฝ (๐‘ฅ))] = ๐œƒ ยท โˆ‡๐œ™(๐‘ฅ) + โˆ‡ ยท ๐ฝ (๐‘ฅ). (A.6) Consider the integral operator in B. Since โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) d๐œƒ = โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) d๐œ— = ๐œŽ๐‘  (๐‘ฅ), we conclude โจ โˆซ โจ S๐‘›โˆ’1 โˆซ S๐‘›โˆ’1 โจ S๐‘›โˆ’1 โˆซ S๐‘›โˆ’1 S๐‘›โˆ’1 โจ S๐‘›โˆ’1 โˆซ S๐‘›โˆ’1 S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—)๐œ™(๐‘ฅ) d๐œ— d๐œƒ = ๐œŽ๐‘  (๐‘ฅ)๐œ™(๐‘ฅ) ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—)๐œ— ยท ๐ฝ (๐‘ฅ) d๐œ— d๐œƒ = ๐œŽ๐‘  (๐‘ฅ) ๐œƒ ยท ๐œ—๐‘˜ (๐‘ฅ, ๐œ—, ๐œ—โ€ฒ)๐œ™(๐‘ฅ) d๐œ—โ€ฒ d๐œ— = ๐œŽ๐‘  (๐‘ฅ)๐œ™(๐‘ฅ) โจ ๐œ— ยท ๐ฝ (๐‘ฅ) d๐œ— = 0 S๐‘›โˆ’1 โจ ๐œƒ ยท ๐œ— d๐œ— = 0 S๐‘›โˆ’1 ๐œƒ ยท ๐œ—๐‘˜ (๐‘ฅ, ๐œ—, ๐œ—โ€ฒ)๐œ—โ€ฒ ยท ๐ฝ (๐‘ฅ) d๐œ—โ€ฒ d๐œ— = ๐œƒโŠค โจ (cid:20) โˆซ S๐‘›โˆ’1 S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œ—, ๐œ—โ€ฒ)๐œ—๐œ—โ€ฒโŠค d๐œ—โ€ฒ d๐œ— (cid:21) ๐ฝ (๐‘ฅ) = 1 ๐‘› ๐œƒโŠค๐ต(๐‘ฅ)๐ฝ (๐‘ฅ) thus P (cid:20)โˆซ S๐‘›โˆ’1 ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—)(๐œ™(๐‘ฅ) + ๐‘›๐œ— ยท ๐ฝ (๐‘ฅ)) d๐œ— (cid:21) = ๐œŽ๐‘  (๐‘ฅ)๐œ™(๐‘ฅ) + ๐‘›๐œƒ ยท ๐ต(๐‘ฅ)๐ฝ (๐‘ฅ) Combining (A.5) (A.6) (A.7) gives (A.4). (A.7) โ–ก Lemma A.3. ๐ต(๐‘ฅ) is positive definite with eigenvalues in [0, ๐œŽ๐‘  (๐‘ฅ)] for each ๐‘ฅ โˆˆ ๐‘‹. Proof. Since ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) = ๐‘˜ (๐‘ฅ, โˆ’๐œ—, โˆ’๐œƒ) โ‰ฅ 0, we have ๐ต๐‘– ๐‘— (๐‘ฅ) = ๐ต ๐‘—๐‘– (๐‘ฅ), i.e. ๐ต(๐‘ฅ) is symmetric. For 106 arbitrary vector ๐œ” โˆˆ S๐‘›โˆ’1, ๐œ”โŠค๐ต(๐‘ฅ)๐œ” = = = = ๐‘› Vol(S๐‘›โˆ’1) ๐‘› Vol(S๐‘›โˆ’1) + ๐‘› Vol(S๐‘›โˆ’1) โˆฌ ๐‘› Vol(S๐‘›โˆ’1) + ๐‘› Vol(S๐‘›โˆ’1) โˆฌ ๐‘› Vol(S๐‘›โˆ’1) โ‰ฅ0, (๐œ”ยท๐œƒ)(๐œ”ยท๐œ—)โ‰ฅ0 โˆฌ (๐œ”ยท๐œƒ)(๐œ”ยท๐œ—)<0 (๐œ”ยท๐œƒ)(๐œ”ยท๐œ—)โ‰ฅ0 โˆฌ (๐œ”ยท๐œƒ)(๐œ”ยท๐œ—)<0 (๐œ”ยท๐œƒ)(๐œ”ยท๐œ—)โ‰ฅ0 โˆซ โˆซ S๐‘›โˆ’1 S๐‘›โˆ’1 โˆฌ (๐œ” ยท ๐œƒ)๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) (๐œ” ยท ๐œ—) d๐œƒ d๐œ— (๐œ” ยท ๐œƒ)๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) (๐œ” ยท ๐œ—) d๐œƒ d๐œ— (๐œ” ยท ๐œƒ)๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) (๐œ” ยท ๐œ—) d๐œƒ d๐œ— (๐œ” ยท ๐œƒ)๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) (๐œ” ยท ๐œ—) d๐œƒ d๐œ— (๐œ” ยท ๐œƒ)๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) (๐œ” ยท โˆ’๐œ—) d๐œƒ d(โˆ’๐œ—) (๐œ” ยท ๐œƒ) [๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) + ๐‘˜ (๐‘ฅ, ๐œƒ, โˆ’๐œ—)] (๐œ” ยท ๐œ—) d๐œƒ d๐œ— ๐œ”โŠค๐ต(๐‘ฅ)๐œ” ๐‘› Vol(S๐‘›โˆ’1) ๐‘› Vol(S๐‘›โˆ’1) ๐‘›๐œŽ๐‘  (๐‘ฅ) Vol(S๐‘›โˆ’1) ๐‘›๐œŽ๐‘  (๐‘ฅ) Vol(S๐‘›โˆ’1) = โ‰ค โ‰ค = =๐œŽ๐‘  (๐‘ฅ). โˆฌ S๐‘›โˆ’1ร—S๐‘›โˆ’1 โˆš๏ธ„โˆฌ (cid:104) (๐œ” ยท ๐œƒ)โˆš๏ธ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) (cid:105) (cid:104) (๐œ” ยท ๐œ—)โˆš๏ธ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) (cid:105) d๐œƒ d๐œ— (๐œ” ยท ๐œƒ)2๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) d๐œƒ d๐œ— โˆฌ S๐‘›โˆ’1ร—S๐‘›โˆ’1 (๐œ” ยท ๐œ—)2๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) d๐œƒ d๐œ— S๐‘›โˆ’1ร—S๐‘›โˆ’1 โˆš๏ธ„โˆซ S๐‘›โˆ’1 (๐œ” ยท ๐œƒ)2 d๐œƒ โˆซ S๐‘›โˆ’1 (๐œ” ยท ๐œ—)2 d๐œ— โˆซ S๐‘›โˆ’1 1 d๐œƒ ๐œƒ2 we conclude ๐ต(๐‘ฅ) is positive definite with eigenvalues in [0, ๐œŽ๐‘  (๐‘ฅ)]. โ–ก Proposition A.4. The diffusion approximation of (2.1) is given by โˆ’โˆ‡ ยท ๐ท (๐‘ฅ)โˆ‡๐œ™(๐‘ฅ) + ๐œŽ๐‘Ž (๐‘ฅ)๐œ™(๐‘ฅ) = ๐‘ž(๐‘ฅ), where ๐ท (๐‘ฅ) = 1 ๐‘› (๐œŽ(๐‘ฅ)๐ผ โˆ’ ๐ต(๐‘ฅ))โˆ’1, ๐œŽ๐‘Ž (๐‘ฅ) = ๐œŽ(๐‘ฅ) โˆ’ ๐œŽ๐‘  (๐‘ฅ), ๐‘ž(๐‘ฅ) = ๐‘†0(๐‘ฅ) โˆ’ ๐‘›โˆ‡ ยท ๐ท (๐‘ฅ)๐‘†1(๐‘ฅ). 107 Proof. According to (A.4) gives PBP๐‘ข(๐‘ฅ, ๐œƒ) = P๐‘†(๐‘ฅ, ๐œƒ), (๐œŽ(๐‘ฅ) โˆ’ ๐œŽ๐‘  (๐‘ฅ))๐œ™(๐‘ฅ) + โˆ‡ ยท ๐ฝ (๐‘ฅ) + ๐‘›๐œƒ ยท โˆ‡๐œ™(๐‘ฅ) + (๐œŽ(๐‘ฅ)๐ผ โˆ’ ๐ต(๐‘ฅ))๐ฝ (๐‘ฅ) (cid:19) = ๐‘†0(๐‘ฅ) + ๐‘›๐œƒ ยท ๐‘†1(๐‘ฅ), (cid:18) 1 ๐‘› thus which gives ๐‘†0(๐‘ฅ) = (๐œŽ(๐‘ฅ) โˆ’ ๐œŽ๐‘  (๐‘ฅ))๐œ™(๐‘ฅ) + โˆ‡ ยท ๐ฝ (๐‘ฅ) = ๐œŽ๐‘Ž (๐‘ฅ)๐œ™(๐‘ฅ) + โˆ‡ ยท ๐ฝ (๐‘ฅ), ๐‘†1(๐‘ฅ) = 1 ๐‘› โˆ‡๐œ™(๐‘ฅ) + (๐œŽ(๐‘ฅ)๐ผ โˆ’ ๐ต(๐‘ฅ))๐ฝ (๐‘ฅ) = 1 ๐‘› (โˆ‡๐œ™(๐‘ฅ) + ๐ทโˆ’1(๐‘ฅ)๐ฝ (๐‘ฅ)), ๐‘†0(๐‘ฅ) = ๐œŽ๐‘Ž (๐‘ฅ)๐œ™(๐‘ฅ) + โˆ‡ ยท ๐ฝ (๐‘ฅ) = ๐œŽ๐‘Ž (๐‘ฅ)๐œ™(๐‘ฅ) + โˆ‡ ยท ๐ท (๐‘ฅ) (๐‘›๐‘†1(๐‘ฅ) โˆ’ โˆ‡๐œ™(๐‘ฅ)), or equivalently โˆ’โˆ‡ ยท ๐ท (๐‘ฅ)โˆ‡๐œ™(๐‘ฅ) + ๐œŽ๐‘Ž (๐‘ฅ)๐œ™(๐‘ฅ) = ๐‘ž(๐‘ฅ). Remark A.5. When ๐œŽ(๐‘ฅ) > ๐œŽ๐‘  (๐‘ฅ) or the eigenvalues of ๐ต(๐‘ฅ) are strictly smaller than ๐œŽ๐‘  (๐‘ฅ) for any ๐‘ฅ โˆˆ ๐‘‹, ๐ท (๐‘ฅ) is well defined. โ–ก Proposition A.6. ๐ท (๐‘ฅ) is isotropic if ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) is invariant under rotation Proof. When ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) is invariant under rotation, ๐ต๐‘– ๐‘— = ๐‘› Vol(S๐‘›โˆ’1) โˆซ โˆซ S๐‘›โˆ’1 S๐‘›โˆ’1 ๐œƒ๐‘–๐œ— ๐‘— ๐‘˜ (๐‘ฅ, ๐œƒ ยท ๐œ—) d๐œƒ d๐œ—. From the symmetricity, ๐ต๐‘– ๐‘— = 0 if ๐‘– โ‰  ๐‘—, and the diagonal terms are identical: ๐ต๐‘–๐‘– (๐‘ฅ) = = 1 ๐‘› tr๐ต(๐‘ฅ) = โˆซ S๐‘›โˆ’1 1 Vol(S๐‘›โˆ’1) โˆซ โˆซ S๐‘›โˆ’1 S๐‘›โˆ’1 ๐œƒ ยท ๐œ—๐‘˜ (๐‘ฅ, ๐œƒ ยท ๐œ—) d๐œƒ d๐œ— ๐œƒ ยท ๐œ—๐‘˜ (๐‘ฅ, ๐œƒ ยท ๐œ—) d๐œƒ = โˆซ 1 โˆ’1 ๐‘ก๐‘˜ (๐‘ฅ, ๐‘ก)Vol(S๐‘›โˆ’2) (1 โˆ’ ๐‘ก2) ๐‘›โˆ’3 2 d๐‘ก (cid:67) ๐‘(๐‘ฅ). Thus ๐ต(๐‘ฅ) = ๐‘(๐‘ฅ)๐ผ if ๐‘˜ (๐‘ฅ, ๐œƒ, ๐œ—) is invariant under rotation, which implies ๐ท (๐‘ฅ) is isotropic. โ–ก 108 Proposition A.7. The diffusion approximation of (2.2) is given by where ๐œ™(๐‘ฅ) + ๐›พ๐œˆ ยท ๐ท (๐‘ฅ)โˆ‡๐œ™(๐‘ฅ) = 0, ๐›พ = โˆš ๐œ‹(๐‘› โˆ’ 1)ฮ“ (cid:1) 2ฮ“ (cid:0) ๐‘› 2 (cid:17) (cid:16) ๐‘›โˆ’1 2 . Proof. The photon flux intensity at ๐‘ฅ โˆˆ ๐œ• ๐‘‹ into the body is ฮฆโˆ’(๐‘ฅ) = โˆ’ โˆซ ๐œƒยท๐œˆ<0 ๐‘ข(๐‘ฅ, ๐œƒ)๐œƒ ยท ๐œˆ d๐œƒ = 0. With the diffusion approximation, it is โˆซ โˆ’ ๐œƒยท๐œˆ<0 (๐œ™(๐‘ฅ) + ๐‘›๐œƒ ยท ๐ฝ (๐‘ฅ))๐œƒ ยท ๐œˆ d๐œƒ = 0. Since โˆซ ๐œƒยท๐œˆ<0 โˆซ โˆ’ ๐œƒยท๐œˆ<0 ๐œƒ ยท ๐œˆ d๐œƒ = โˆซ S๐‘›โˆ’1 1 2 |๐œƒ1| d๐œƒ = 1 2 โˆซ 1 โˆ’1 |๐‘ก|Vol(S๐‘›โˆ’2) (1 โˆ’ ๐‘ก2) ๐‘›โˆ’3 2 d๐‘ก = Vol(S๐‘›โˆ’2) ๐‘› โˆ’ 1 , ๐œƒ ยท ๐ฝ (๐‘ฅ)๐œƒ ยท ๐œˆ d๐œƒ = ๐‘ฃโŠค (cid:20)โˆซ ๐œƒยท๐œˆ<0 (cid:21) ๐œƒ๐œƒโŠค d๐œƒ ๐ฝ (๐‘ฅ) = ๐‘ฃโŠค 1 2 (cid:20)โˆซ S๐‘›โˆ’1 (cid:21) ๐œƒ๐œƒโŠค d๐œƒ ๐ฝ (๐‘ฅ) = Vol(S๐‘›โˆ’1) 2๐‘› ๐œˆ ยท ๐ฝ (๐‘ฅ), we conclude ๐œ™(๐‘ฅ) = (๐‘› โˆ’ 1)Vol(S๐‘›โˆ’1) 2Vol(S๐‘›โˆ’2) ๐œˆ ยท ๐ฝ (๐‘ฅ) = (๐‘› โˆ’ 1)Vol(S๐‘›โˆ’1) 2Vol(S๐‘›โˆ’2) ๐œˆ ยท ๐ท (๐‘ฅ) (๐‘›๐‘†1(๐‘ฅ) โˆ’ โˆ‡๐œ™(๐‘ฅ)). Since ๐‘†(๐‘ฅ, ๐œƒ) is either independent of direction ๐œƒ, or compact supported on ๐‘‹ for any ๐œƒ โˆˆ S๐‘›โˆ’1, ๐‘†1(๐‘ฅ) = 0, thus ๐œ™(๐‘ฅ) + (๐‘› โˆ’ 1)Vol(S๐‘›โˆ’1) 2Vol(S๐‘›โˆ’2) ๐œˆ ยท ๐ท (๐‘ฅ)โˆ‡๐œ™(๐‘ฅ) = ๐œ™(๐‘ฅ) + ๐›พ๐œˆ ยท ๐ท (๐‘ฅ)โˆ‡๐œ™(๐‘ฅ) = 0. โ–ก Thus the diffusion approximation of RTE is given by the diffusion equation with Robin boundary condition. 109 APPENDIX B APPENDIX FOR CHAPTER 3 B.1 Adjoint of ND Map Lemma B.1. Suppose ฮ›๐œŒ,๐‘ž is the ND map of following wave equation โ–ก๐œŒ,๐‘ž๐‘ข(๐‘ก, ๐‘ฅ) = 0 in [0, 2๐‘‡] ร— ฮฉ, ๐‘ข(0, ๐‘ฅ) = ๐œ•๐‘ก๐‘ข(0, ๐‘ฅ) = 0 on ฮฉ, (B.1) ๐œ•๐œˆ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘“ on [0, 2๐‘‡] ร— ๐œ•ฮฉ, ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ we have ฮ›โˆ— ๐œŒ,๐‘ž = ๐‘…ฮ›๐œŒ,๐‘ž ๐‘…. Proof. Let ๐‘ฃ denote the solution of the following adjoint wave equation โ–ก๐œŒ,๐‘ž๐‘ฃ(๐‘ก, ๐‘ฅ) = 0 in [0, 2๐‘‡] ร— ฮฉ, ๐‘ฃ(2๐‘‡, ๐‘ฅ) = ๐œ•๐‘ก๐‘ฃ(2๐‘‡, ๐‘ฅ) = 0 on ฮฉ, (B.2) ๐œ•๐œˆ๐‘ฃ(๐‘ก, ๐‘ฅ) = ๐‘” on [0, 2๐‘‡] ร— ๐œ•ฮฉ, ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ with ๐‘” in ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ), where ๐ฟโˆ— = โˆ’โˆ‡ ยท ๐ดโˆ‡ โˆ’ ๐‘ ยท โˆ‡ + ๐‘ is the adjoint operator of ๐ฟ. Let ฮ›โˆ— denote the ND map of the adjoint equation. The weak formulation gives โˆซ โˆซ 2๐‘‡ ฮฉ 0 Define [๐œŒ(๐‘ฅ)๐œ•2 ๐‘ก ๐‘ข ๐‘“ (๐‘ก, ๐‘ฅ) โˆ’ ฮ”๐‘ข ๐‘“ (๐‘ก, ๐‘ฅ) + ๐‘ž(๐‘ฅ)๐‘ข ๐‘“ (๐‘ก, ๐‘ฅ)]๐‘ฃ(๐‘ก, ๐‘ฅ) d๐‘ก d๐‘ฅ = 0. ๐ผ1 (cid:66) โˆซ โˆซ 2๐‘‡ ฮฉ 0 ๐œŒ(๐‘ฅ)๐‘ข ๐‘“ ๐‘ก๐‘ก (๐‘ก, ๐‘ฅ)๐‘ฃ(๐‘ก, ๐‘ฅ) d๐‘ก d๐‘ฅ = โˆซ โˆซ 2๐‘‡ ฮฉ 0 ๐œŒ(๐‘ฅ)๐‘ข ๐‘“ (๐‘ก, ๐‘ฅ)๐‘ฃ๐‘ก๐‘ก (๐‘ก, ๐‘ฅ) d๐‘ก d๐‘ฅ, โˆซ โˆซ 2๐‘‡ ฮฉ โˆซ 0 โˆซ 2๐‘‡ ๐ผ2 (cid:66) = [โˆ’ฮ”๐‘ข ๐‘“ (๐‘ก, ๐‘ฅ) + ๐‘ž(๐‘ฅ)๐‘ข ๐‘“ (๐‘ก, ๐‘ฅ)]๐‘ฃ(๐‘ก, ๐‘ฅ) d๐‘ก d๐‘ฅ [โˆ’ฮ”๐‘ฃ(๐‘ก, ๐‘ฅ) + ๐‘ž(๐‘ฅ)๐‘ฃ(๐‘ก, ๐‘ฅ)]๐‘ข ๐‘“ (๐‘ก, ๐‘ฅ) d๐‘ก d๐‘ฅ 0 ฮฉ + (ฮ›๐œŒ,๐‘ž ๐‘“ , ๐‘”)๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) โˆ’ ( ๐‘“ , ฮ›โˆ— ๐œŒ,๐‘ž๐‘”)๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) 110 thus ๐ผ1 + ๐ผ2 = (ฮ›๐œŒ,๐‘ž ๐‘“ , ๐‘”)๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) โˆ’ ( ๐‘“ , ฮ›โˆ— ๐œŒ,๐‘ž๐‘”)๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) = 0, which implies ฮ›โˆ— ๐œŒ,๐‘ž is the adjoint operator of ฮ›๐œŒ,๐‘ž in ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ). Notice that the solution of equation โ–ก๐œŒ,๐‘ž๐‘ข(๐‘ก, ๐‘ฅ) = 0 in [0, 2๐‘‡] ร— ฮฉ, ๐‘ข(0, ๐‘ฅ) = ๐œ•๐‘ก๐‘ข(0, ๐‘ฅ) = 0 on ฮฉ, (B.3) ๐œ•๐œˆ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘…๐‘” on [0, 2๐‘‡] ร— ๐œ•ฮฉ, ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ is the time reversed adjoint solution of (B.2), which means the adjoint operator can be represent as ฮ›โˆ— ๐œŒ,๐‘ž = ๐‘…ฮ›๐œŒ,๐‘ž ๐‘… โ–ก B.2 Frechรฉt Differentiability of ND map ฮ›๐‘ž In this section, we collect a few results that are used in the main text. First, we provide the rigorous justification for the formal linearization process in the introduction to derive (3.63) (3.64) (3.65). Recall that ๐‘0 โˆˆ ๐ถโˆž(ฮฉ). For ๐‘“ โˆˆ ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ), the solution ๐‘ข = ๐‘ข ๐‘“ of the boundary value problem (3.1) satisfies ๐‘ข โˆˆ ๐ถ ([0, 2๐‘‡]; ๐ป5/6โˆ’๐œ€ (ฮฉ)) for any ๐œ€ > 0 with the norm estimate [61] โˆฅ๐‘ขโˆฅ๐ถ ([0,2๐‘‡];๐ป5/6โˆ’ ๐œ€ (ฮฉ)) โ‰ค ๐ถ โˆฅ ๐‘“ โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) (B.4) where โˆฅ๐‘ข ๐‘“ โˆฅ๐ถ ([0,2๐‘‡];๐ป5/6โˆ’ ๐œ€ (ฮฉ)) ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ) โ†’ ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ) is a bounded linear operator. := ess sup0โ‰ค๐‘กโ‰ค2๐‘‡ โˆฅ๐‘ข(๐‘ก) โˆฅ๐ป5/6โˆ’ ๐œ€ (ฮฉ). As a result, the ND map ฮ›๐‘ž : Denote by L (๐ฟ2((0, 2๐‘‡)ร—๐œ•ฮฉ), ๐ฟ2((0, 2๐‘‡)ร—๐œ•ฮฉ)) the Banach space of bounded linear operators over ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ). The IBVP aims to invert the following nonlinear map F : ๐‘ž โˆˆ ๐ฟโˆž(ฮฉ) โ†ฆโ†’ ฮ›๐‘ž โˆˆ L (๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ), ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ)) Suppose ๐‘ž = ๐‘ž0 + (cid:164)๐‘ž with ๐‘ž0 โˆˆ ๐ถโˆž(ฮฉ). Define a linear operator (which will turn out to be the Frechรฉt differentiation of F ): ๐‘‘F : (cid:164)๐‘ž โˆˆ ๐ฟโˆž(ฮฉ) โ†ฆโ†’ (cid:164)ฮ› (cid:164)๐‘ž โˆˆ L (๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ), ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ)). 111 where (cid:164)ฮ› (cid:164)๐‘ž is the operator defined in (3.65). Proposition B.2. The nonlinear map F is Frechรฉt differentiable at a fixed ๐‘ž0 โˆˆ ๐ถโˆž(ฮฉ), and the Frechรฉt derivative along (cid:164)๐‘ž โˆˆ ๐ฟโˆž(ฮฉ) is (cid:164)ฮ› (cid:164)๐‘ž. Proof. It suffices to show that as โˆฅ (cid:164)๐‘žโˆฅ ๐ฟโˆž (ฮฉ) โ†’ 0, we have โˆฅF (๐‘ž) โˆ’ F (๐‘ž0) โˆ’ ๐‘‘F ( (cid:164)๐‘ž) โˆฅL (๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ),๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ)) = ๐‘‚ (โˆฅ (cid:164)๐‘žโˆฅ2 ๐ฟโˆž (ฮฉ)) (or equivalently, โˆฅฮ›๐‘ž โˆ’ ฮ›๐‘ž0 โˆ’ (cid:164)ฮ› (cid:164)๐‘ž โˆฅL (๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ),๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ)) = ๐‘‚ (โˆฅ (cid:164)๐‘žโˆฅ2 ๐ฟโˆž (ฮฉ))) to justify that ๐‘‘F is indeed the Frechรฉt differentiation of F . To this end, we will prove for any ๐‘“ โˆˆ ๐ฟ2((0, 2๐‘‡) ร— ๐œ•ฮฉ) that โˆฅฮ›๐‘ž ๐‘“ โˆ’ ฮ›๐‘ž0 ๐‘“ โˆ’ (cid:164)ฮ› (cid:164)๐‘ž ๐‘“ โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐‘žโˆฅ2 ๐ฟโˆž โˆฅ ๐‘“ โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) (B.5) for some constant ๐ถ > 0 that is independent of ๐‘“ . For ease of notation, we will denote all the constants independent of ๐‘“ by ๐ถ. We continue to denote the solutions of (3.1) and (3.63) by ๐‘ข and ๐‘ข0, respectively. Write ๐‘ข = ๐‘ข0 + ๐›ฟ๐‘ข. Then ๐›ฟ๐‘ข satisfies ๐›ฟ๐‘ข| [0,2๐‘‡]ร—๐œ•ฮฉ = ฮ›๐‘ž ๐‘“ โˆ’ ฮ›๐‘ž0 ๐‘“ and โ–ก๐‘0,๐‘ž0 ๐›ฟ๐‘ข(๐‘ก, ๐‘ฅ) = โˆ’๐‘ข (cid:164)๐‘ž, in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐›ฟ๐‘ข = 0, on (0, 2๐‘‡) ร— ๐œ•ฮฉ (B.6) ๐›ฟ๐‘ข(0, ๐‘ฅ) = ๐œ•๐‘ก๐›ฟ๐‘ข(0, ๐‘ฅ) = 0 ๐‘ฅ โˆˆ ฮฉ. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ Using the regularity estimate for the wave equation [40] and the trace theorem, we obtain โˆฅ๐›ฟ๐‘ขโˆฅ๐ป1 ((0,2๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ๐‘ข (cid:164)๐‘žโˆฅ ๐ฟ2 ((0,2๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ๐‘ขโˆฅ ๐ฟ2 ((0,2๐‘‡)ร—ฮฉ) โˆฅ (cid:164)๐‘žโˆฅ ๐ฟโˆž (ฮฉ). (B.7) Next, set ๐‘ค := ๐›ฟ๐‘ข โˆ’ (cid:164)๐‘ข, then ๐‘ค| [0,2๐‘‡]ร—๐œ•ฮฉ = ฮ›๐‘ž ๐‘“ โˆ’ ฮ›๐‘ž0 ๐‘“ โˆ’ (cid:164)ฮ› (cid:164)๐‘ž ๐‘“ , and ๐‘ค satisfies โ–ก๐‘0,๐‘ž0 ๐‘ค(๐‘ก, ๐‘ฅ) = โˆ’ (cid:164)๐‘ž๐›ฟ๐‘ข, in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐‘ค = 0, on (0, 2๐‘‡) ร— ๐œ•ฮฉ (B.8) ๐‘ค(0, ๐‘ฅ) = ๐œ•๐‘ก๐‘ค(0, ๐‘ฅ) = 0 ๐‘ฅ โˆˆ ฮฉ. ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ 112 Applying the regularity estimate for the wave equation again yields โˆฅฮ›๐‘ž ๐‘“ โˆ’ ฮ›๐‘ž0 ๐‘“ โˆ’ ฮ› (cid:164)๐‘ž ๐‘“ โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—๐œ•ฮฉ) โ‰ค โˆฅ๐‘คโˆฅ๐ป1 ((0,2๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐‘ž๐›ฟ๐‘ขโˆฅ ๐ฟ2 ((0,2๐‘‡)ร—ฮฉ) โ‰ค โˆฅ (cid:164)๐‘žโˆฅ ๐ฟโˆž (ฮฉ) โˆฅ๐›ฟ๐‘ขโˆฅ ๐ฟ2 ((0,2๐‘‡)ร—ฮฉ). Combining the estimates (B.4) (B.7) (B.9) yields the desired estimate (B.5). B.3 Frechรฉt Differentiability of ND map ฮ›๐œŒ According to [61, Theorem A], if ๐‘“ (0) = ๐œ•๐‘ก ๐‘“ (0) = ยท ยท ยท = ๐œ• ๐‘˜โˆ’1 ๐‘ก ๐‘“ (0) = 0, we have โˆฅ๐‘ขโˆฅ ๐ถ ([0,2๐‘‡],๐ป ๐‘˜+ 3 5 โˆ’ ๐œ€ (ฮฉ)) โ‰ค ๐ถ โˆฅ ๐‘“ โˆฅ๐ป ๐‘˜ ((0,2๐‘‡)ร—๐œ•ฮฉ), where ๐‘˜ โ‰ฅ 0, ๐œ€ is an arbitrary positive real number. Thus we have (B.9) โ–ก โˆฅ๐‘ขโˆฅ๐ป3 ((0,2๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ ๐‘“ โˆฅ , 5 2 ๐ป (B.10) then the linearized ND map should be in Banach space L (๐ป 5 2 ((0, 2๐‘‡) ร— ๐œ•ฮฉ), ๐ป 1 2 ((0, 2๐‘‡) ร— ๐œ•ฮฉ)) The IBVP aims to invert the following nonlinear map F : ๐œŒ โˆˆ ๐ถโˆž(ฮฉ) โ†ฆโ†’ ฮ›๐œŒ โˆˆ L (๐ป 3 2 ((0, 2๐‘‡) ร— ๐œ•ฮฉ), ๐ป 1 2 ((0, 2๐‘‡) ร— ๐œ•ฮฉ)) Assuming that ๐œŒ = ๐œŒ0 + (cid:164)๐œŒ with ๐œŒ0 โˆˆ ๐ถโˆž(ฮฉ), define the following linear operator dF : (cid:164)๐œŒ โˆˆ ๐ถโˆž(ฮฉ) โ†ฆโ†’ (cid:164)ฮ› (cid:164)๐œŒ โˆˆ L (๐ป 3 2 ((0, 2๐‘‡) ร— ๐œ•ฮฉ), ๐ป 1 2 ((0, 2๐‘‡) ร— ๐œ•ฮฉ)) where (cid:164)ฮ› (cid:164)๐œŒ is the linearized ND map defined in (3.65). Proposition B.3. The nonlinear map F is Frechรฉt differentiable at ๐œŒ0 โˆˆ ๐ถโˆž(ฮฉ), and the Frechรฉt derivative along the direction (cid:164)๐œŒ โˆˆ ๐ถโˆž(ฮฉ) is (cid:164)ฮ› (cid:164)๐œŒ. Proof. In order to show that F is Frechรฉt differentiable, we need to show โˆฅF (๐œŒ) โˆ’ F (๐œŒ0) โˆ’ dF ( (cid:164)๐œŒ)โˆฅ L (๐ป 5 2 ((0,2๐‘‡)ร—๐œ•ฮฉ),๐ป 1 2 ((0,2๐‘‡)ร—๐œ•ฮฉ)) (cid:16) = ๐‘‚ (cid:17) โˆฅ (cid:164)๐œŒโˆฅ2 ๐‘Š 1,โˆž (ฮฉ) 113 as โˆฅ (cid:164)๐œŒโˆฅ๐‘Š 1,โˆž (ฮฉ) โ†’ 0, which is equivalent to โˆฅฮ›๐œŒ ๐‘“ โˆ’ ฮ›๐œŒ0 ๐‘“ โˆ’ (cid:164)ฮ› (cid:164)๐œŒ ๐‘“ โˆฅ ๐ป 1 2 ((0,2๐‘‡)ร—๐œ•ฮฉ) (cid:16) = ๐‘‚ โˆฅ (cid:164)๐œŒโˆฅ2 ๐‘Š 1,โˆž (ฮฉ) โˆฅ ๐‘“ โˆฅ ๐ป 5 2 ((0,2๐‘‡)ร—๐œ•ฮฉ) (cid:17) (B.11) for any ๐‘“ โˆˆ ๐ป 5 2 ((0, 2๐‘‡) ร— ๐œ•ฮฉ) as โˆฅ (cid:164)๐œŒโˆฅ๐‘Š 1,โˆž (ฮฉ) โ†’ 0. Write ๐‘ข = ๐‘ข0 + ๐›ฟ๐‘ข, where ๐‘ข and ๐‘ข0 are the solutions of (3.1) and (3.63), respectively. Then ๐›ฟ๐‘ข satisfy equation ๐œŒ0๐›ฟ๐‘ข๐‘ก๐‘ก โˆ’ ฮ”๐›ฟ๐‘ข + ๐‘ž๐›ฟ๐‘ข = โˆ’ (cid:164)๐œŒ๐‘ข๐‘ก๐‘ก in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐›ฟ๐‘ข = 0 on (0, 2๐‘‡) ร— ๐œ•ฮฉ (B.12) ๐›ฟ๐‘ข(0, ๐‘ฅ) = ๐›ฟ๐‘ข๐‘ก (0, ๐‘ฅ) = 0 ๐‘ฅ โˆˆ ฮฉ ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ Using the regularity estimate for wave euation and the trace theorem, we have โˆฅ๐›ฟ๐‘ขโˆฅ๐ป2 ((0,2๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐œŒ๐‘ข๐‘ก๐‘ก โˆฅ๐ป1 ((0,2๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ๐‘ขโˆฅ๐ป3 ((0,2๐‘‡)ร—ฮฉ) โˆฅ (cid:164)๐œŒโˆฅ๐‘Š 1,โˆž (ฮฉ) (B.13) Denote ๐‘ค (cid:66) ๐›ฟ๐‘ข โˆ’ (cid:164)๐‘ข, then ๐‘ค| [0,2๐‘‡]ร—๐œ•ฮฉ = ฮ›๐œŒ ๐‘“ โˆ’ ฮ›๐œŒ0 ๐‘“ โˆ’ (cid:164)ฮ› (cid:164)๐œŒ ๐‘“ and satisfies ๐œŒ0๐‘ค๐‘ก๐‘ก โˆ’ ฮ”๐‘ค + ๐‘ž๐‘ค = โˆ’ (cid:164)๐œŒ๐›ฟ๐‘ข๐‘ก๐‘ก in (0, 2๐‘‡) ร— ฮฉ ๐œ•๐œˆ๐‘ค = 0 on (0, 2๐‘‡) ร— ๐œ•ฮฉ (B.14) ๐‘ค(0, ๐‘ฅ) = ๐‘ค๐‘ก (0, ๐‘ฅ) = 0 ๐‘ฅ โˆˆ ฮฉ ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ Applying similar estimate yields โˆฅ๐‘คโˆฅ ๐ป 1 2 ((0,2๐‘‡)ร—๐œ•ฮฉ) โ‰ค โˆฅ๐‘คโˆฅ๐ป1 ((0,2๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ (cid:164)๐œŒ๐›ฟ๐‘ข๐‘ก๐‘ก โˆฅ ๐ฟ2 ((0,2๐‘‡)ร—ฮฉ) โ‰ค ๐ถ โˆฅ๐›ฟ๐‘ขโˆฅ๐ป2 ((0,2๐‘‡)ร—ฮฉ) โˆฅ (cid:164)๐œŒโˆฅ ๐ฟโˆž (ฮฉ) Combining (B.10) (B.13) (B.15) gives (B.11). (B.15) โ–ก 114