THE BEHAVIOR OF APPLIED PHOSPHORUS AND POTASSIUM IN ORGANIC SOIL AS INDICATED BY SOIL TESTS AND THE RELATIONSHIP BETWEEN SOIL TESTS, GREEN-TISSUE TESTS AND CROP YIELDS Theodore Cuyler Bigger AN ABSTRACT Subm itted to the School o f Graduate S tu d ies o f M ichigan S tate C ollege o f A gricu ltu re and A pplied S cien ce in p a r tia l fu lfillm e n t o f the requirem ents fo r th e degree o f DOCTOR OF PHILOSOPHY Department o f S o il Scien ce 1953 Approved b y .L . ProQuest Number: 10008262 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10008262 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Theodore Cuyler Bigger ABSTRACT The Behavior o f A pplied Phosphorus and Potassium in Organic S o il as In d ica ted by S o il T ests and the R elation sh ip Between S o il T e sts, G reen-T issue T ests and Crop Y ield The u se o f rapid s o i l t e s t s and tis s u e t e s t s in a rriv in g a t p r a c tic a l f e r t i l i z e r recommendations and in diagnosing p la n t n u trien t d e fic ie n c ie s has receiv ed con sid erab le emphasis* In 1950 an in v e s t i­ g a tio n was sta r te d to study some o f th e fa c to r s a sso cia ted w ith s o i l and g r e e n -tissu e a n a ly sis w ith s p e c ia l referen ce to organic s o ils * S o il samples were c o lle c te d a t th ree con secu tiv e s ix -in c h dep­ th s in th e sp rin g o f 1950 from a s e r ie s o f p lo ts o f a f e r t i l i t y ex p eri­ ment sta r te d in 19^1 and lo c a te d a t th e Muck Experim ental Farm in C lin ton County, Michigan* Phosphorus was ex tra cted from the s o il by fo u r reagen ts: 0*025N HC1-0.03N N%F, 0*1N HC1 - 0.03N NH3F, 0.135N HC1, and 0.018N CH3COOH. A 1:10 s o il:e x tr a c ta n t r a tio was employed* The m ixture was shaken fo r one minute p r io r to f ilt e r in g , and the phosphorus con ten t o f th e f i l ­ tr a te determ ined c o lo r im e tr ic a lly as molybdenum-blue. Potassium was ex tra cted from th e s o i l by th ree reagen ts: 23 p ercen t NaNC^, 0*135N HC1, and 0*018N CH3COOH, u sin g th e same e x tr a c t­ in g procedure as fo r phosphorus. The ex tra cta b le potassium was de­ term ined w ith a Perkins-Elm er (model 02A) flam e photom eter, except fo r th e NaN03 ex tr a c ts in which potassium was determ ined by a sodium co b a lt in it r it e procedure. 322626 Theodore Cuyler B igger The q u an tity o f calcium and magnesium in se v e r a l NaNO^ e x tr a c ts was determined* Other d eterm inations in clu d e: exchangeable hydrogen, c a tio n ex­ change c a p a c ity , p ercen t base sa tu r a tio n , pH, h eat o f w e ttin g , and h ygroscopic m oistu re. Water so lu b le n itr a t e , phosphorus, and potassium were d ete rained by g r e e n -tissu e t e s t s o f sugar b e e ts , pepperm int, and onions a t 15day in te r v a ls during th e 1951 growing sea so n . A 1:10 g r e e n -tissu e : w ater r a tio was employed, d isin te g r a tin g th e m a terial fo r two m inutes in a Waring blendor p rio r to f il t e r i n g . The n itr a te and phosphorus con ten t o f th e f il t r a t e was determ ined c o lo r im e tr ic a lly u sin g brucine and molybdenum-blue proced u res, r e s p e c tiv e ly . The potassium con ten t was determ ined by a flam e photom eter. A h ig h ly s ig n ific a n t c o r r e la tio n was found to e x is t between th e amount o f phosphorus ap p lied and th e amount o f phosphorus removed from th e s o i l by any o f th e fou r e x tr a c ta n ts. The amount o f potash ap p lied p er acre showed a h ig h ly s ig n if i ­ can t c o r r e la tio n w ith the amount o f potassium ex tra cted from the s o i l by any o f th e th ree rea g en ts. A pplied phosphorus was found to remain p r in c ip a lly in th e sur­ fa c e s o il w h ile potassium was found d istr ib u te d throughout th e 18-in c h s o i l p r o f ile . The ex tra cta b le potassium con ten t was approxim ately doubled be­ tween f a l l and sprin g san p lin g w h ile the con ten t o f ex tra cta b le phos­ phorus was found to be about th e same. Theodore Cuyler Rigger A mean o f 6 9 .3 m ,e. o f calcium and a mean 12*1 m*e* o f magnesium p er 100 grams o f s o i l were found in 23 p ercen t NaN(>3 s o i l ex tra ct* The c a tio n exchange ca p a city in the su rfa ce s ix in ch es was found to be 227 m*e* p er 100 grains o f s o il* The exchangeable hydrogen s lig h t ­ l y decreased w h ile th e p ercen t base sa tu ra tio n and pH s lig h t ly in crea sed w ith s o il depth* No ap p reciab le v a r ia tio n occurred in the p ro p erties o f h eat o f w ettin g and th e con ten t o f hygroscopic m oisture* P erio d ic g r e e n -tissu e t e s t s o f sugar b e e ts , pepperm int, and onions in th e summer o f 1951 rev ea led a sea so n a l v a r ia tio n in the com­ p o s itio n o f w ater ex tra cta b le n itr a t e , phosphorus, and potassium in th ese p lan ts* Y ield s co rrela ted b e tte r w ith g r e e n -tissu e t e s t s than w ith rapid s o i l te s ts * In c o r r e la tin g rap id s o i l t e s t s , g r e e n -tissu e t e s t s , and crop y ie ld s , i t was im p ossib le to e s ta b lis h optimum le v e ls o f phosphorus and potassium fo r maximum y ie ld s o f sugar b eets and pepperm int because o f th e fo llo w in g fa c to r s : the p h y sio lo g ic a l nature o f th e p la n ts , the sea so n a l v a r ia tio n s in p la n t com position, th e d iff e r e n t ia l response o f th e crops to th e f e r t i l i z e r r a t io s , and th e lim ita tio n s in th e f e r t i l i ­ zer an alyses and r a te s in t h is experim ent* THE BEHAVIOR OF APPLIED PHOSPHORUS AND POTASSIUM IN ORGANIC SOIL AS INDICATED BY SOIL TESTS AND THE RELATIONSHIP BETWEEN SOIL TESTS, GREEN-TISSUE TESTS AND CROP YIELDS by Theodore Cuyler Bigger A THESIS Subm itted to th e School o f Graduate S tu d ies o f M ichigan S ta te C ollege o f A gricu ltu re and Applied S cien ce in p a r tia l fu lfillm e n t o f th e requirem ents fo r th e degree o f DOCTOR OF PHILOSOPHY Department o f S o il S cien ce 1953 ACKNOWLEDGEMENT The author exp resses h is sin cer e ap p recia tio n to D octors J . F . D avis and K irk Lawton to whom he i s g r e a tly Indebted fo r t h e ir continuous in te r ­ e s t , valu ab le a s s is ta n c e , and ab le guidance which made t h is in v e s tig a tio n p o s s ib le • P a r tic u la r a p p reciatio n i s extended to D octors L» M. Turk and R* L . Cook fo r th e ir ready a ssista n c e and coop eration throughout th e course o f t h is in v e s tig a tio n . To h is w ife , H arriet Welborn B igger, th e author i s d evoted ly g ra te­ f u l fo r her e v e r la stin g f a it h and confidence which aided in th e f u llf ilim e n t o f a l l th e requirem ents fo r th e author* s program o f advanced stu d y . TABLE OF CONTENTS PAGE INTRODUCTION............................................... 1 REVIEW OF LITERATURE.................................................................... 2 PROCEDURE................................................................................................................. h RESULTS AND DISCUSSION...................................... 10 SUMMARY..................................................................................................................... U6 LITERATURE CITED. U8 ................................................................................. LIST OF TABLES TABLE I* II, III, I? , V, V I, V II, V III, IX , <* X, PAGE The E ffe c t o f th e Number o f Drops o f Molybdate hydrochloric Acid and Reducing (F-S) Reagents on th e Formation o f the Molybdenum-Blue Color in Standard and S o il E xtract S o lu tio n s • • « , , « « • « 12 The In flu en ce o f One Drop o f Concentrated h yd roch loric Acid and Two or More Drops o f Molybdate on th e Norm ality o f th e S o lu tio n and S t a b ilit y o f th e Molybdenum-Blue Color 13 The In flu en ce o f E xtractin g R eagent, F e r tiliz e r T reat­ ment, and Depth o f Sampling on the Amount o f Ex­ tr a c ta b le Phosphorus in Organic S o il, « • • « « « * • 16 A Comparison o f the Amount o f E xtractab le Phosphorus and th e In flu en ce o f th e E xtractan t on th e Amount o f Phosphorus Recovered from 0 to 6, 6 to 12 and 12 to 18-In ch Depths o f Organic S o il Treated a t D iffe r e n t R ates o f Phosphorus A p p lication fo r a Nine-Tear P erio d , 17 The In flu en ce o f E xtractin g R eagent, F e r tiliz e r T reat­ ment, and Depth o f Sampling on th e Amounts o f Ex­ tr a c ta b le Potassium in Organic S o il , , • • « • * • • 18 A Comparison o f th e Phosphorus and Potassium E xtractin g by 0,135>N HC1 from Samples o f 6-In ch Depths o f Or­ ganic S o il C o llected in the Spring and F a ll , , • • « 19 The Amount o f Calcium and Magnesium E xtracted from Organic S o il a t 0 to 6, 6 to 12 and 12 to 18-Inch Depths Determined by Method o f Cheng and Bray (5>) , , 20 The Exchangeable hydrogen, th e C ation Exchange Capacity, the Exchangeable B ases, and th e P ercent Base Satura­ tio n o f th e 0 to 6, 6 to 1 2 , and 12 to 18-Inch Depths o f Organic S o il • • • » « , * * , * * • • • , , « • • 21 The pH o f Organic S o il a t 0 to 6 , 6 to 1 2 , and 12 to 18-Inch Depths from P lo ts R eceiving 1000 Pounds o f F e r tiliz e r per Acre A nnually, ............................ , , , , ♦ 23 The In flu en ce o f Depth and F e r tiliz e r s on th e Heat o f W etting D eterm inations in Organic S o il, , » • • • • • 2k TABLE XI* XU. X III* XIV. PAGE The H ygroscopic M oisture Content o f A ir Dry S o il a t 0 to 6, 6 to 1 2 , and 12 to 18-Inch Depths from S ev era l o f th e Experim ental P lo ts • • • • • • * • • * 25 The In flu en ce o f F e r tiliz e r Treatment on th e Amount o f Water E x tractab le Phosphorus and Potassium in th e G reen-T issue o f P o ta to es, Onions, and Peppermint Grown in 1950 . • • • • • • * * • • • • • • • • « • « 27 Seasonal Changes in th e C oncentration o f Water Ex­ tr a c ta b le N itr a te in Sugar B eets as In flu en ced by D iffe r e n t Amounts o f Phosphorus andPotash A pplied Annually to an Organic S o il fo r a 10-Year Period* * • 31 Seasonal Changes in th e C oncentration o f Water Ex­ tr a c ta b le N itr a te in Peppermint as In flu en ced by D iffe r e n t Amounts o f Phosphorus andPotash A pplied A nnually to an Organic S o il fo r a 10-Year P eriod . * * 3U XV* The In flu en ce o f A pplied N itrogen on th e C oncentration o f Water E xtractab le N itr a te , Phosphorus, and P otas­ sium in Onion Leaves* • • • • • • • • • • • • * • • * 35 XVI* The E ffe c t o f F e r t iliz e r on the Y ield o f S everal Crops. 37 XVII. The In flu en ce o f D iffe r e n t Rates o f A pplied Phosphorus on the Y ield o f Sugar B eets and Peppermint and the E xtractab le Phosphorus Recovered by Four Methods from th e 6-In ch Depth o f th e S o il • • • • • • • • • • X17IU. XIX. XX. XXI. 38 The In flu en ce o f D iffe r e n t Rates o f A pplied Potash on th e Y ield o f Sugar B eets and Peppermint and th e Ex­ tr a c ta b le Potassium Recovered by Three Methods from th e 6-In ch Depth o f th e S o il. • • • • • • • • • • • * 39 The In flu en ce o f D iffe r e n t Rates o f Applied Phosphorus on the C oncentration o f Water E xtractab le Phosphorus and th e Y ield o f Sugar B eets. • • • • • • • « . . • * Ul The In flu en ce o f D iffe r e n t Rates o f Applied Potash on th e C oncentration o f Water E xtractab le Potassium and th e Y ield o f Sugar B ee ts. • • . • • • • • . . . • b2 The In flu en ce o f D iffe r e n t Rates o f Applied Phosphorus on th e C oncentration o f Water E xtractab le Phosphorus and th e Y ield o f Peppermint U3 TABLE XXIX* The In flu en ce o f D iffe r e n t R ates o f A pplied Potash on th e C oncentration o f Water E xtractab le P otas­ sium and th e Y ield o f Peppermint* * • • • • • • LIST OF FIGURES FIGURE 1* 2. 3* !*• 5* 6* PAGE A Comparison o f th e Amounts o f E xtractab le Phosphorus Recovered by Four Methods from the 6-In ch Depth o f Organic S o il Treated w ith D iffe r e n t Amounts o f Phosphorus fo r a Nine-Tear P e r io d ........................................ 11 A Comparison o f th e Amounts o f E xtractab le Potassium Recovered by Three Methods from the 6-In ch Depth o f Organic S o il T reated w ith D iffe r e n t Amounts o f Potash fo r a Nine-Year P e r io d ............................................... lf> Seasonal Changes in th e C oncentration o f Water Ex­ tr a c ta b le Phosphorus in Sugar B eet P e tio le s as In flu en ced by D iffe r e n t Amounts o f Phosphorus Ap­ p lie d Annually to an Organic S o il fo r a 10-Tear P erio d . • • • « • • • • • • • • • * • • * • « • * • • 28 Seasonal Changes in th e C oncentration o f Water E xtractab le Potassium in Sugar Beet P e tio le s as In flu en ced by D iffe r e n t Amounts o f Potash A pplied Annually to an Organic S o il fo r a 10-Year Period* * ..................... 30 Seasonal Changes in th e C oncentration o f Water S olu b le Phosphorus in Peppermint Stems as In flu en ced by D if­ fe r e n t Amounts o f Phosphorus A pplied Annually to an Organic S o il fo r a 10-Year P eriod • • • • • • » • • • 32 Seasonal Changes in th e C oncentration o f Water E x tra ctab le Potassium in Peppermint Stems as Influ en ced by D iffe r e n t Amounts o f Potash A pplied Annually to an Organic S o il fo r a 10-Year P eriod • • • • • • • • • • 33 INTRODUCTION C onsiderable emphasis has been p la ced on th e u se o f rapid s o i l t e s t s and t is s u e t e s t s in a rriv in g a t p r a c tic a l f e r t i l i z e r recommenda­ tio n s and in diagn osin g p la n t n u tr ien t d e fic ie n c ie s (12) (13) (15)* Because o f th e wide d istr ib u tio n o f organic s o ils in M ichigan ( fiv e m illio n a cres) and th e in crea sed reclam ation o f th e se s o il s in recen t y e a r s, an in v e s tig a tio n was sta r te d in 1950 to study some o f th e fa c ­ to r s a sso cia ted w ith s o i l and g r e e n -tissu e a n a ly sis w ith s p e c ia l r e ­ feren ce to organic s o ils * A f e r t i l i t y experim ent sta r te d in 19U1 and lo c a te d a t the Muck Experim ental Farm in C lin ton County, Michigan was s e le c te d on which to carry ou t t h is experim ent* low s: The p r in c ip a l o b je c tiv e s were as f o l­ f i r s t , to con sid er th e behavior o f a p p lied phosphorus and potash in organic s o i l as in d ica ted by rapid s o il t e s t s ; second, to compare d iffe r e n t methods fo r ex tra ctin g phosphorus and potassium from th e s o il and th ir d , to study th e r e la tio n sh ip between s o i l t e s t s , g r e e n -tissu e t e s t s and crop y ie ld s* REVIEW OF LITERATURE In com parison w ith the amount o f work rep orted on rap id s o i l t e s t s and tis s u e t e s t s o f crops grown on m ineral s o i l s , r e la t iv e ly l i t t l e work o f th is nature has been reported fo r organic s o ils * At th e E verglades Experiment S ta tio n o f F lo rid a , Forsee (11) has conducted experim ents co rrela tin g crop y ie ld s w ith s o i l and t is s u e t e s t s on a number o f crops* In a f e r t i l i t y experim ent w ith c e le r y on O keelanta p eaty muck, d i s t i l l e d w ater was found p refera b le to 0*5N a c e tic a cid as an ex tra eta n t fo r phosphorus determ ination in rapid s o i l te s ts * A s ig n ific a n t r e la tio n sh ip e x iste d between th e w ater so lu b le phosphorus and th e amount o f phosphate a p p lied to th e s o il* The same was tru e fo r potassium so lu b le in 0*5N a c e tic acid* Green- tis s u e s were ex tra cted w ith 0*5N a c e tic a cid fo r phosphorus and p o ta s­ sium determ inations* The maximum y ie ld o f c e le r y grown on Okeelanta p eaty muck was a sso cia ted w ith 250 pounds o f a cid so lu b le potassium and 30 pounds o f w ater so lu b le phosphorus p er a cre, 0*3 and 11*0 per­ cen t (dry w eigh t b a sis ) o f phosphorus and potassium r e s p e c tiv e ly in th e g r e e n -tis s u e , and an ad justed s o i l pH o f 5*5* With sodium a c e ta te -a c e tic a cid s o lu tio n b u ffered to pH U*8, Dawson (7) found th e average potassium con ten t o f c u ltiv a te d p eat s o ils in New York to be 760*650 pounds p er acre and th e average phos­ phorus con ten t to be 200*210 pounds p er acre* He estim ated th e sa fe le v e l o f s o i l - t e s t potassium a t n ot l e s s than 250 nor more than 350 pounds per acre and th e le v e l o f s o i l - t e s t phosphorus a t n ot l e s s than 3 $0 pounds p er acre* Dawson concluded th a t when a p ea t s o i l was f e r ­ t i l i z e d w ith potash a t a co n sta n t ra te per acre per y ea r, th e a v a ilab le potassium con ten t o f th e s o i l as measured by s o i l - t e s t methods ad ju sted i t s e l f w ith in th ree to f iv e y ears to th e r a te o f f e r t iliz a t io n and remained con stan t u n t il th e f e r t iliz e r p r a c tic e was changed again* A sim ila r s itu a tio n occurred fo r phosphorus p rovid in g th e con ten t o f s o i l - t e s t ir o n p lu s aluminum was le s s than 100 pounds p er acre* When th e ir o n p lu s aluminum con ten t exceeded 200 pounds p er a c re, th e s o i l t e s t phosphorus was found to be $0 pounds or le s s p er acre* The im­ portance o f th e r e la tio n sh ip between the ir o n p lu s aluminum con ten t and th e a v a ila b le phosphorus com position o f c u ltiv a te d p eat s o il s was emphasized* Filman and co-workers ( 9 ) p referred a m echanical p ress to ex­ tr a c ta n ts in removing e x tr a c ts from organic s o il s in Canada* S o lu tes exp ressed by p ressu re from th e organic s o ils appeared to rep resen t the n u tr ie n ts a v a ila b le to the growing crops where methods used fo r m ineral s o il s had f a ile d to do so* These in v e stig a to r s rep orted evid en ce o f mass movements o f s o lu te s in both h o rizo n ta l and v e r t ic a l d ir e c tio n s in th e organic s o il* PROCEDURE The f i e l d work o f th is in v e s tig a tio n was conducted in a f e r ­ t i l i t y experim ent lo c a te d a t th e Muck Experim ental Farm in C lin ton County, M ichigan which was sta r te d in 19^1* Included in the tr e a t­ ments were ten d iffe r e n t f e r t iliz e r s a p p lied a t th e r a te s o f 500 and 1,000 pounds per acre referred to as th e low and high f e r t i l i t y s e r ie s . Four o f the treatm ents were r e p lic a te d f iv e tim es and th e rem aining s ix w ith ou t r e p lic a tio n were intended fo r dem onstration purposes* There were two u n fe r tiliz e d p lo ts* The low f e r t i l i t y s e r ie s in clu d ed fou r 2 5 -fo o t se c tio n s in it ia t e d in 19U8 which perm itted th e crops to he r o ta te d , exc'ept fo r brome g rass which con tin u ou sly occupied one s e c tio n s in c e 19U1* P rio r to 19U8 areas o f unequal s iz e were u t iliz e d in t h is experim ent. The c h ie f ro ta ted crops were sugar b e e ts, soy­ b ean s, w heat, pepperm int, and spearmint# The high f e r t i l i t y s e r ie s was s im ila r ly d iv id ed in to fo u r se c tio n s and th e fo llo w in g were th e main crops ro ta ted in th e sectio n s* cabbage, c a r r o ts, c e le r y , p ota­ t o e s , o n io n s, and ta b le b eets* S o il sam ples were c o lle c te d a t th ree co n secu tiv e s ix -in c h depths in th e sprin g o f 1950* Each sample c o n siste d o f s o i l taken a t f iv e lo c a tio n s in a 25 x 30 fo o t p lo t; th e cen ter and n in e f e e t from th e cen ter toward th e co rn ers• There were 28 p lo ts sampled in each o f th e low and h igh f e r t i l i t y s e r ie s . The samples were screened through a two m illim ete r s ie v e when p a r tia lly dry and allow ed to a ir dry a t room tem perature* 5 S o il sam ples o f th e su rfa ce s ix in ch es were taken in th e sp rin g and f a l l o f 1950 and 1951 r e s p e c tiv e ly from one p lo t o f each low fe r ­ t i l i t y treatm ent w hich was r e p lic a te d f iv e tim es. Phosphorus was ex tra cted from th e s o i l by fou r rea g en ts: 0*025 N HC1-0.03 N NH^F and 0 *1N HC1-0.03N N%F s o lu tio n proposed by Bray and Kurtz (h ), 0.135N HC1 and 0 *0l 8N CH3COOH as used by Spurway and Lawton (16) • These methods were m odified by in crea sin g th e s o il- e x ­ tr a c tin g s o lu tio n r a tio to 1:10 in order to accommodate th e high w ater ab sorp tive ca p a city o f organic s o ils and by shaking th e m ixture o f s o i l ex tra ctin g so lu tio n fo r one minute* O ne-fourth teasp oon fu l o f a c t i­ vated carbon was added to each f iv e grams o f s o i l te s te d in order to ob ta in a c le a r e x tr a c t. The ex tra cta b le phosphorus was determ ined c o lo r im e tr ic a lly as molybdenum b lu e em ploying th e ammonium m olybdateb yd roch loric a cid s o lu tio n according to Dickman and Bray (8 ) and th e 1 -am ino, 2-n a p th o l, L -sulphonic a cid reducing reagent developed by F isk e and Subbarow (10)* When Bray*s 0*025N H d-0*03N NH^F ex tra ctin g reagen t was u sed , th e c le a r e x tr a c t f ilt e r e d from the s o i l would become cloudy a fte r standing fo r a few m inutes* The colo rim eter readings o f th ese s o i l e x tr a c ts w ere q u ite ir r e g u la r and the in te n s ity o f th e molybdenumb lu e c o lo r in crea sed e x c e p tio n a lly ra p id . The pH o f th e e x tr a c t was found to be ii*05 w h ile th a t o f th e ex tra ctin g s o lu tio n was 2*70* T h erefore, i t was apparent th a t th e amount o f a cid su p p lied in th e s ix drops o f th e molybdate s o lu tio n which was added according to th e normal procedure was in s u f f ic ie n t to bring about th e proper molybdenumb lu e colo r* P o s s ib ilit ie s con sid ered fo r co rrectio n were: f i r s t , th e a d d itio n o f one drop o f con cen trated h yd roch loric a cid ; secon d , th e ad­ d itio n o f two or more drops o f th e molybdate s o lu tio n which con tain ed 3*5N HC1. Potassium was ex tra cted from th e s o i l by th ree reagen ts; 23 p er­ cen t NaN03 as employed by Bray ( 3 ) , 0,135N HC1, and 0#0l8N CH3COOH pro­ posed by Spurway and Lawton (1 6 ), making th e same m o d ifica tio n s in th e e x tr a c tin g procedures as fo r phosphorus* The ex tra cta b le potassium was determ ined w ith a Perkins-ELmer (model 52A) flam e photom eter u sin g th e in te r n a l standard method, excep t fo r th e sodium n itr a te e x tr a c ts in which potassium was determ ined by a sodium c o b a ltin it r ite procedure*"*" Cheng and Bray ($) have e sta b lish e d a technique fo r th e d eter­ m ination o f calcium and magnesium in s o i l and p la n t m aterial* S in ce th e ex tr a c tio n procedure w ith 23 p ercen t NaNO^ s o lu tio n i s q u ite sim i­ la r to th a t fo r e x tra ctin g potassium , th e q u an tity o f calcium and mag­ nesium in se v e r a l e x tr a c ts was determ ined by t h is technique to see i f th ese elem ents were uniform ly d istr ib u te d throughout th e experim ental area* ^ Formaldehyde was n ot used to p reven t th e in te r fe r e n c e o f p o s­ s ib ly occurring ammonia* Subsequent n e s s le r iz a tio n t e s t s rev ea led th e presence o f le s s than 10 PPM o f ammonia in th e s o i l extract* On th is b a sis potassium v a lu es should n ot vary more than / 5 p ercen t. 7 The exchangeable hydrogen and th e ca tio n exchange ca p a city were determ ined by th e method p rescrib ed by M ehlieh (111) » The exchangeable bases were c a lc u la te d by d iffe r e n c e o f th e c a tio n exchange ca p a city and th e exchangeable hydrogen. This method was m odified by p la cin g one gram sam ples o f dry s o i l in g la ss v ia ls each con tain in g f iv e m il­ l i l i t e r s o f d is t ille d w ater and w h ile the s o i l was soaking th e ex cess a ir was removed tinder p a r tia l vacuum fo r 35 m in u tes. A fter standing fo r 2li hours th e samples were tra n sferred to Gooch c r u c ib le s f it t e d w ith d isc s o f f i l t e r paper and th e s o i l was lea ch ed under slow vacuum w ith th e p rescrib ed amount o f 0 . 2N BaCCH-jCOO^.E^O. In order to check th e q u an tity o f exchangeable hydrogen d eter­ mined by Mehlieh* s procedure, th e exchangeable hydrogen was a lso de­ term ined by th e method proposed by B ra d field and A lliso n (2 ) which in v o lv e s b rin gin g a s o i l sample to eq u ilib rium w ith IN NH^Cl 0.01N NH[jOH b u ffer s o lu tio n adjusted to pH 7.U (pH 7 .5 in t h is ca se) and t it r a t in g th e excess base w ith a 0.01N HC1 so lu tio n u sin g m ethyl red as an in d ic a to r . The method in th is case in v olved a g g ita tin g a one gram san p le o f a ir dry s o i l w ith 100 m il li l i t e r s o f b u ffer so lu ­ tio n in a 250 m i l l i l i t e r fla s k in an end-over-end manner fo r two h ou rs. The fla s k s remained c lo se d fo r l|8 hours a fte r which th e co n ten ts were f ilt e r e d and 50- m i l l i l i t e r a liq u o ts tit r a t e d p o te n tio m e tr ic a lly to an end p o in t o f pH 5*1* The pH o f a l l sam ples from the p lo ts receiv in g th e high f e r t i l ­ i t y treatm ent was determ ined w ith a Beckman AC (model H-2) pH m eter, 8 U6in g a 1 :5 s o il:w a te r ratio n The s o i l and w ater were mixed thorough­ l y and allow ed to stan d fo r 15 m inutes b efo re in s e r tin g th e e le c tr o d e s and making th e d eterm in ation . Heat o f w ettin g was proposed a l i t t l e over a quarter o f a cen­ tu ry ago as a means o f estim a tin g the c o llo id a l m a teria l in s o il s (1 )* This technique was u sed in t h is in v e stig a tio n to determ ine i f th e depth o f th e s o i l from which s o i l samples were taken or f e r t i l i z e r treatm ent had an in flu e n c e on h eat o f w ettin g o f organic s o ils * The p ercen t hygroscopic m oisture was determ ined fo r sam ples from fou r rep resen ta tiv e p lo ts a t th e th ree d ep th s, 0 to 6 , 6 to 12 and 12 to 18-in ch * P relim inary g r e e n -tissu e t e s t s were made during th e 1950 grow­ in g season to e s ta b lis h a su ita b le technique fo r determ ining th e con­ cen tra tio n o f w ater ex tra cta b le n itr a te , phosphorus and potassium * R ecen tly developed tis s u e was s e le c te d , keeping in mind th e p referen ce o f u sin g stem s and p e tio le s in ste a d o f le a v e s in order to elim in a te th e in te r fe r e n c e o f ch lo ro p h y ll (6 )* P otato p e t io le s , onion le a v e s and mint stem s were s e le c te d a t random from p la n ts on th e p lo ts* The g r e e n -tissu e was p laced im m ediately in cellophane bags and kept frozen u n t il analyzed* Each sample was s lic e d in to th in se c tio n s w h ile fro zen , th or­ oughly m ixed, and 10 grams o f th e frozen tis s u e p la ced in a Waring blendor w ith 100 m i l li l it e r s o f d is t ille d water* A fter th e blendor d isin te g r a te d th e m a teria l fo r two m inutes, the d isp ersed t is s u e was 9 f ilt e r e d in a Buchner fu n n el under su ction * In th e ca se o f onions th e mucous substance found in th e le a v e s n e c e s sita te d the u se o f two te a ­ sp o on fu ls o f c e l i t e $03, a flo c c u la tin g a g en t, to ex p ed ite f ilt e r in g * T h ir ty -fiv e m il l i li t e r s o f the i n i t i a l f il t r a t e was c la r if ie d by add­ in g on e-fou rth teasp oon fu l o f a c tiv a te d carbon and r e filte r in g * Water so lu b le n itr a t e , phosphorus and potassium were determ ined c o lo r im e tr ic a lly on th e f in a l f il t r a t e u sin g b ru cin e, molybdenum-blue, and sodium c o b a lt in it r it e m ethods, resp ectiv ely * G reen -tissu e t e s t s were made a t l$ -d a y in te r v a ls during th e 1951 growing season to determ ine th e season al changes in th e con cen tra tion o f w ater ex tr a c ta b le n itr a t e , phosphorus and potassium in on ion , sugar b e e t and peppermint p lan ts* dom lo c a tio n s in th e p lo t* Bach sample was c o lle c te d from f iv e ran­ The samples were wrapped in cellop h an e bags in th e f ie ld and p laced in an in su la te d cardboard box con tain in g ’’dry ic e ” to in h ib it chem ical changes* The sam ples were la t e r p laced in a co ld room a t 0 ° C entigrade and allow ed to remain a t th a t tempera­ tu re u n til analyzed* The e x tr a c ts were obtained and analyzed in th e same manner as th e 1950 d eterm in ation s, excep t th a t th e flam e photom eter was used in determ ining th e ex tr a c ta b le potassium * RESULTS AND DISCUSSION The amount o f phosphorus ex tra cted from th e s o i l by a l l o f th e fo u r rea gen ts was c lo s e ly c o r r e la te d w ith th e amount o f phosphorus a p p lied , as shown in Figure 1* The c o r r e la tio n c o e f fic ie n t s fo r th e se rea g en ts were 0*986, 0*915, 0*9h3 and 0*967 fo r 0*1N HC1 - 0*03N NIfyF, 0.135N HC1, 0.025N HQ - 0*03N N%F, and 0*0l8N CH^COOH, r e sp e c tiv e ly * When an alyzin g th e s o i l e x tr a c t receiv ed by u sin g th e 0*02$N HC1 - 0*03N NH^F s o lu tio n , one drop o f con cen trated h yd roch loric a cid was added to th e e x tr a c t b efore th e a d d itio n o f th e m olybdate and th e reducing reagents* A b lu e c o lo r o f l e s s in te n s ity and more s t a b ilit y was formed which faded o n ly one p ercen t tra n sm issio n in 15 m in u tes, as shown in Table I* One drop o f con cen trated h yd roch loric a cid d id n o t cause e x c e ssiv e a c id ity in th e e x tr a c t b ein g te s te d because i t s norm ality was l e s s than th o se receiv in g e ig h t and ten drops o f th e m olybdate reagen t as shown in Table II* The a d d itio n o f one drop o f con cen trated h yd roch loric a c id to th e 10 m il l i l i t e r s o f e x tr a c t was p refera b le t o two or fou r ex tra drops o f m olybdate so lu tio n because th e r a tio o f m olybdate:reducing so lu tio n s was unchanged and th e blu e c o lo r was more sta b le * A p o ss ib le reason fo r the clo u d in ess o f th e c le a r ex tr a c t was th e form ation o f a calcium flu o r id e p r e c ip ita te * T his s o i l was found to co n ta in 69 m*e. o f exchangeable calcium and 12 m*e* o f exchangeable magnesium p er 100 grams o f s o il* A com parison o f th e potassium ex tra ctin g reagen ts on th e amount o f potassium removed from th e s o i l , a s illu s t r a t e d in F igure 2 , shows 11 NH/ Y= 1.12X - 22 (25) 2. 0.135 N HCL 3. 0.018 N CH,C00H Y 0.2 6 X - 3.8 ( 3 ) 4. 0 .0 2 5 N HCL Y =0.33 X + 1.2 (6) 0 .0 3 N NH^F 200 Standard Error of Estimate 100 EXTRACTABLE PHOSPHORUS (PPM) IN SOIL 0.03 N 0 100 200 POUNDS OF P( 08 APPLIED PER ACRE ANNUALLY fig u r e 1* A com parison o f th e amounts o f eaetraeiabXe phosphorus r e ­ covered Tby fou r methods fmm the 6»ineh depth ©f organic s o i l tr e a te d w ith d iffe r e n t amounts o f phosphorus fo r a n in e-y ea r period® 12 TABLE I THE EFFECT OF THE NUMBER OF DROPS OF MOLYBDATE - HYDROCHLORIC ACID AND REDUCING (F -S) REAGENTS ON THE FORMATION OF THE MGLYBDENUM-HLUE COLOR IN STANDARD AND SOIL EXTRACT SOLUTIONS Number o f drops o f rea g en ts Time in m inutes between m ixing and reading P ercen t tra n sm issio n PPM phosphorus Standard E xtract Standard E x tra ct 6 m olybdate 6 F-S 15 30 1*1* 1*3 67 61 2 .2 1 2.2 9 1 .0 8 1 .3 5 6 m olybdate 6 F-S 1 cone* HC1 15 30 Mi IA 76 75 2*21 2 .2 1 0.7U 0 .7 7 8 molybdate 6 F-S 15 30 1*5 14* 70 61* 2.18 2 .2 1 0 .9 5 1 .2 0 10 m olybdate 6 F-S 15 30 1*3 72 69 2 .2 1 2 .2 9 0 .8 7 1 .0 0 10 m olybdate 8 F-S 15 30 hh 1*3 70 61* 2 .2 1 2 .2 9 0 .9 5 1 .1 9 10 m olybdate 10 F-S 15 30 1*1* 1*2 71 67 2.21 2 .3 5 0 .9 6 1 . 11* 13 TABLE H THE INFLUENCE OF ONE DROP OF CONCENTRATED HYDROCHLORIC ACID AND TWO OR MORE DROPS OF MOLYBDATE ON THE NORMALITY OF THE SOLUTION AND STABILITY OF THE MOLYBDENUM-BLUE COLOR Number o f drops o f reagen ts N orm ality o f s o lu tio n P ercent tra n sm issio n 15 m in. 30 m in. PPM P 15 m in. 30 m in. D if fe r ence 6 m olybdate 6 F-S 0 . 2l*l 77 6k 0 .7 0 1 .2 0 0 .5 0 6 m olybdate 6 F-S 1 co n c. HCl 0.262 87 82 0 .3 8 o.5U 0 .1 6 8 molybdate 6 F-S 0 .3 0 7 80 69 0 .6 0 1 .0 0 0 . 1*0 10 m olybdate 6 F-S 0 .3 7 6 86 80 0 . 1*0 0 .6 0 0 .2 0 co n sid era b le v a r ia tio n between the amounts o f potassium ap p lied and th e amount e x tr a c te d . N ev erth eless, th e c o r r e la tio n c o e f fic ie n t s fo r th ese reagen ts are h ig h ly s ig n ific a n t w ith corresponding v a lu es o f 0.61*0, 0.667 and 0 .6 7 1 fo r 23 p ercen t NaNO^, 0.135N HCl, and 0.018 N CH3COOH, r e sp e c tiv e ­ ly . The data in Table I I I show th a t phosphorus a p p lied to th e s o i l re­ mained la r g e ly in th e su rfa ce s ix in c h e s. However, th ere are d e fin ite in d ic a tio n s o f th e movement o f phosphorus down as fa r as the 12 to 1 8 in ch depth in th e p r o f ile , as shown in Table IV . The downward movement o f phosphorus i s m an ifested by a s ig n ific a n t d iffe r e n c e in most ca ses o f th e ex tr a c ta b le phosphorus found in th e 12 to 18-in c h depth o f p lo ts r e ­ c e iv in g both r a te s o f 0 - 20-10 f e r t i l i z e r in co n tra st to th a t found in 1U th e same depth o f p lo ts r e c e iv in g both r a te s o f 0 - 10- 10 , 0- 10- 20, and 0 - 10-30 f e r t iliz e r s # A pplied potassium was leach ed from th e su rfa ce la y e r and moved down to th e low er d ep th s, as shown by th e data in Table V# These data a ls o show th a t as the potassium in the f e r t i l i z e r a n a ly sis was in ­ creased th ere was a h ig h ly s ig n ific a n t in c r e a se in th e amount o f p o ta s­ sium ex tra cted from the th ree co n secu tive s ix -in c h la y e r s o f th e s o il# However, when th e r a te o f f e r t i l i z e r a p p lic a tio n was in crea sed from 500 to 1 ,0 0 0 pounds p er a cre, th e amount o f ex tra cta b le potassium in th e s o i l f a ile d to in crea se a cco rd in g ly , and was found to same# be about th e The reason fo r th e la t t e r co n d itio n i s probably due more to the e f f e c t o f lea ch in g than to crop removal because the dem onstration p lo ts which receiv ed the 0 - 0-30 l o s t very l i t t l e potassium by crop rem oval, sin c e the y ie ld s were g en e r a lly low fo r most cro p s, y e t th e potassium ex tra cted from th e s o i l o f th e p lo ts receiv in g d iffe r e n t r a te s o f potash was p r a c tic a lly equal in concentration# Although th e data in Table VI were obtained from s in g le p lo t s , th ere was a d e fin ite tren d fo r the con cen tration o f ex tra cta b le s o i l phosphorus to be h igh er in th e f a l l and th e con cen tration o f e x tr a c ta b le s o i l potassium to be con sid erab ly h igh er in th e spring# S in ce th e sam ples were taken in th e sprin g before th e a p p lica tio n o f f e r t i l i z e r , r e sid u a l phosphorus may be th e exp lan ation fo r th e in c r e a se in f a l l sam ples# The in crea se in ex tra cta b le potassium between f a l l and sp rin g must be due to th e lib e r a tio n o f n on -extractab le potassium during th e w in te r , probably due to th e e f f e c t o f fr e e z in g and thawing# 15 500 + 76 (93) + 82 (8 0 + 22 (47) 400 * Stondord Error of Estimate 300 POTASSIUM (PPM) IN SOIL I. 2 3 % No N 03 Ys |.I5X 2. 0.135 N HCL Y=I.I0X 3. 0.018N CH.COOH Y*0.63X EXTRACTABLE 200 100 200 100 POUNDS K,0 APPLIED PER ACRE ANNUALLY Figure 2* 300 A com parison o f th e amounts o f ex tra cta b le potassium recovered by th ree methods fi*om th e 6-djich depth o f organ ic s o i l tr e a te d w ith d iffe r e n t amounts o f potash fo r a n in e-y ea r period* o !S * g g _ lAfe CM CM o• o• oo CM CM CMNO CM XA COvO CM C~- O Os H XA C— H rH 37 68 16 CMCM CO Q -=t a r1! ® •s CMN HH d 3 (Xj s S ^ m S S3 EH H CD u 1 S3 CM XACO O ft KO H I. ♦; | § 13 co h CO C M CM CM H CMH CM CM CMCM CMCM TLA NO A- A- XAMD CMXA sO -rt H CM CMXA 1 09 ■s 3f t O g oo 7 (D o CO O CM CO i •H «H *P OO CD ro f t (D 09 &D CD (6 Jh Q> CD ft m fe *+ 'S I sfd OO a o i ft tCD u Eh 8 o8 us H § 8 O O a §H Q) CO H •H g> ? n o ?0 C M 1 o 0 - 20-0 £ (0 & c CM w o E5 Eh CM OS CMNO o g P3 CO **Hl H 10 oo g M Eh Eh g < O CMCM HH 5 3 s5S8M ? CM I 0 O fcTS fe Os t— H 9IT zn 3 Os Os 119 275 ft 22 30 S , 5 (S *** fci sj CMCM CMIA H CM S 1 XA, 5 3 CO M M H £ CD CMCM XA-Cf ft «3} Os -5 CM sO CMCM 159 378 R S S 10 CM HO oo g£ Eh CO •o 0) N H 8 g iS ^ a 31 17 no 3 $ 78 128 CO Nona f t Os 1 •p 0 ft 11 7 I I s •> «J *d ■8 3 ■d o 2 s}e CM TJ C (0 17 TABLE IV A COMPARISON OF THE AMOUNT OF EXTRACTABLE PHOSPHORUS AND THE INFLUENCE OF THE EXTRACTANT ON THE AMOUNT OF PHOSPHORUS RECOVERED FROM 0 TO 6, 6 TO 12 AND 12 TO 18-INCH DEPTHS OF ORGANIC SOIL TREATED AT DIFFERENT RATES OF PHOSPHORUS APPLICATION FOR A NINE-YEAR PERIOD E xtractan t Depth in in ch es Pounds P2O5 ap p lied p er acre annually High f e r t i l i t y Low f e r t i l i t y s e r ie s series-*50 100 100 200 Pounds P2O5 p er acre ex tra cted 0.018N CH3COGH 0—6 6-12 12-18 12.27 5*32 2.87 25.97** 6 .7 1 2.68 26.31 6 .0 9 2.9k 53.68** 7.35 3 .5 9 0*135N HC1 0 -6 6-12 12-18 U2.7U 18.93 9.62 87.71** 22.21 8.70 106.U0 20.81* 9.39 231.75** 29.5k* 16. 72** 0.025N HC1 0.03N N%F 0 -6 6-12 12-18 21.22 9.79 3.27 37.10** 10.51 3.71* U1.99 7 .71 2 .7 6 68. 01** 9.3k 5.31** 0.1N HC1 0*03N N%F 0 -6 6-12 12-18 75.72 29.39 10.08 132.13** 3k.57 10.99* 127.18 21.98 10.39 253.50** 29.5k l k . 66* 1 Low f e r t i l i t y » 500 pounds f e r t i l i z e r an n u ally. High f e r t i l i t y * 1,000 pounds f e r t iliz e r an n u ally. * S ig n ific a n t a t $% le v e l* ** S ig n ific a n t a t 1% le v e l* 18 TABLE V THE INFLUENCE OF EXTRACTING REAGENT, FERTILIZER TREATMENT, AND DEPTH OF SAMPLING ON THE AMOUNTS OF EXTRACTABLE POTASSIUM IN ORGANIC SOIL Treatm ent* F e r t iliz e r 0.018N CH3COQH 0—6 6-12 12-18 0 * 0 Pounds p er acre E xtractin g reagent 23% NaN03 0#135N HC1 Sampling depth in in ch es 0 -6 (6-12 12-18 6-12 12-18 Pounds o f K2O p er acre 1*3 ia 3k ko 26 25 20 18 20 12 Trace 5 7 7 82 71; 1*2 3U 28 25 67 71* 21 8 Trace 1* 22 20 16 13 155 121 90 55 37 U3 167 125 95 23 10 15 108 126 39 37 21; 27 213 2kk 130 121* 5k 53 223 239 122 95 29 1*5 201; 201; 66 80 53 71 219 239 1L6 136 61 101; 336 321* 210 21*6 81 108 0 0 17 6 5 8 0 - 10-10 500 1000 35 28 7 11 0 - 10-20 500 1000 73 52 5oo None v 1000 5oo 1000 Trace 8 * A ll data averages o f f iv e r e p lic a tio n s excep t fo r 0 -0-30 and no f e r t i l i z e r p lo ts which are 1 and 2 r e p lic a tio n s , r e sp e c tiv e ly # 19 TABLE 71 A COMPARISON OF THE PHOSPHORUS AND POTASSIUM EXTRACTED BI 0.135N HC1 FROM SAMPLES OF 6-INCH DEPTH OF ORGANIC SOIL COLLECTED IN THE SPRING AND FALL F e r t iliz e r * , Spring 500 pounds 1950 p er acre Sampling data F a ll 1950 !Spring 1951 F a ll 1951 Spring 1950 F a ll 1950 Spring 1951 F a ll 1951 Pounds KgO per acre Pounds P2O5 per acre None 17 17 18 18 10* 36 1*0 1*0 0- 20-10 82 101 110 121* 75 32 60 1*8 0 - 10-10 1*2 55 57 51* 72 Uo 11*8 1*0 0- 10-20 53 61 1*9 57 201* 72 252 132 0 - 10-30 1*6 55 1*9 51* 21*2 156 360 161* Mean 1*8 58 57 61 127 67 172 85 * Data from one p lo t o f each f e r t i l i z e r treatm ent The calcium and magnesium content o f the s o i l as ex tra cted was found t o be d istr ib u te d r e la t iv e ly uniform throughout th e p lo t s o f th e experim ental area as shown by the data in Table VH* The q u an tity o f exchangeable calcium decreases s li g h t l y w ith an in crea se in depth, whereas no d e f in it e p a ttern appears to e x i s t in the case o f magnesium* The data in Table V III show th e amount o f exchangeable hydrogen determined by two methods which agree very w e ll w ith one another* A s l i g h t decrease in the m illie q u iv a le n ts o f exchangeable hydrogen (M ehlich’s procedure) and a very s lig h t in crease i n percent base s a t ­ u ra tio n i s noted w ith an in crea se in the depth o f th e s o il* The mean 20 TABLE 711 THE AMOUNT OF CALCIUM AND MAGNESIUM EXTRACTED FROM ORGANIC SOIL AT 0 TO 6, 6 TO 12 AND 12 TO 18-INCH DEPTHS DETERMINED BT METHOD OF CHENG AND BRAY (5) Treatment F e r t iliz e r 1000 pounds per acre Non© 0- 10-20 0- 10-30 Mean o f f e r t ­ i l i z e d p lo ts Sampling depth in inches P lo t number 0 -6 6-12 12-18 M.e. ex tra cta b le Ca 20 31 Mean 83 .9 83.1* 8 3 .6 5 8 .6 55.8 3 7 13 17 27 Mean 69.6 67.1* 71.8 6 8.5 69*0 1* 8 11* 18 26 6 9 .6 67.9 6 9 .6 69.0 69.6 Mean 0-6 6-12 12-18 M.e. ex tra cta b le Mg 56.1* 65.2 60.8 13.8 13.U 1 3 .6 1 3 .0 1 1 .5 1 2 .2 17.1* 13.1* 65.2 60.8 68.5 6L*.l 65.2 61*.8 1*5.9 56.9 U5.3 53.0 55.8 1U.6 11*. 6 1 5 .0 l l *.6 1U.6 51.3 11.5 12.2 1 3 .0 11.5 11.8 1 2 .0 8 .7 9 .7 9 .5 1 1 .1 9 .3 9 .3 1*8 .1 1*9.7 l*i*.2 1*9.2 1*3.1 1 2 .6 13.1* 1 2 .6 11 .8 11.1 1 2 .6 1 1 .1 13.1* 13 .8 1 2 .6 69.1 6 9 .6 61.9 60.8 66.3 50.3 61.8 1*6.9 12 .3 12.7 1 0 .7 13 .0 1 1 .1 11 .7 9 .1 11 .1 69.3 63.3 1*9.1 1 2 .1 1 3 .7 1 0 .2 69.5 57.2 l it . 7 15.1* 21 TABLE V III THE EXCHANGEABLE HYDROGEN, THE CATION EXCHANGE CAPACITY, THE EXCHANGEABLE BASES, AND THE PERCENT BASE SATURATION OF THE 0 TO 6, 6 TO 12, AND 12 TO 18-INCH DEPTHS OP ORGANIC SOIL P lo t number Sample number M.e* per 100 grams a ir dry s o i l Exchangeable Exchange­ Cation hydrogen B ra d field exchange able A llis o n Mehlich ca p a city bases Percent base sa tu ra tio n 0 to 6-Inch depth 1 16 31 1 2 1 2 1 2 1 8 .2 21 .2 20.3 2 0 .1 2 1 .U 21.0 21.8 20.7 23U.0 221.0 236.8 22U.0 226.8 218.0 213.7 200.9 215.1; 203.0 205.0 197.3 Mean 1 9 .7 2 0.9 226.6 205.9 91.3 9 0 .9 91.0 9 0 .6 90.1; 9 0 .5 90.8 6 to 12-in c h depth 1 16 31 1 2 1 2 1 2 18 .U 1 8 .8 19.9 1 9 .5 19 .0 16.2 2 0 .6 1 9.3 208.8 203.2 20U.0 227.2 212.8 212.0 Kean 1 8 .6 19.1 211.3 188.9 183.7 185.0 211.0 192.2 192.7 192.2 9 0.5 90 .U 90.7 92.9 90.3 90.9 90.9 12 to 18-in ch depth 1 16 31 1 2 1 2 1 2 20.8 19 .2 17.7 1 8 .5 15.8 1 6 .2 18.7 1 7 .9 19h.h 206. 1; 216.0 212.8 211.2 228.0 176.7 187.9 200.2 196.6 192.5 210.1 90.9 91.1 92.7 92.U 91.1 92.1 Mean 20.0 17.1; 211. 1; 19U.0 91.7 22 c a tio n exchange ca p a city o f the surface s ix in ch es o f th e s o i l was found t o he 22? m.e* per 100 grains o f s o i l . Values fo r the 6 to 12 and th e 12 t o 18-in ch depths were r e la t iv e ly th e same; namely, 211 m .e. per 100 grams o f s o il* Data from Tables V and VII in d ic a te th a t the 23 percent NaNO^ rap id s o i l t e s t method removed from the s o i l a maximum o f 28*7 m .e. o f potassium (336 pounds o f Kj>0 per a c r e ), a mean o f 69*3 m.e* o f calcium and a mean o f 12*1 m .e. o f magnesium or a t o t a l o f 110*1 m*e. per 100 grams o f s o i l which rep resen ts l e s s th a t $0 p ercent base saturation* The reason fo r such a discrepancy was probably caused by the sh ort time o f c o n ta c t (one minute) between the s o i l and th e ex tra cta n t in the case o f th e rap id s o i l t e s t w h ile th e tim e o f con tact between the s o i l and ex tr a c ta n t was 2h hours i n the case o f Mehlich*s procedure. In the l a t ­ t e r procedure the s o i l was leached w ith 50 m i l l i l i t e r s o f Ba(CH3C00) 2 .H20 which was added i n incrim ents o f f iv e m i l l ili t e r s * The pH o f th e s o i l was q u ite uniform throughout the experim ental area and the pH in crea sed as depth o f s o i l sampling in creased as shown i n Table IX* Depth apparently has more in flu en ce on the heat o f w ettin g pro­ p e r ty o f the s o i l than treatm ent, but n eith er has much e f f e c t , as r e ­ p orted in Table X. Depth had no appreciable in flu e n c e on the content o f hygroscopic m oisture o f th e a ir d iy samples as shown in Table XI* 23 TABLE IX THE pH OF ORGANIC SOIL AT 0 TO 6, 6 TO 1 2 , AMD 12 TO 18-INCH DEPTHS FROM PLOTS RECEIVING 1000 POUNDS OF FERTILIZER PER ACRE ANNUALLY 0-6 Treatment Depth i n inches 6-12 12-18 P lo t number pH valu es 0- 20-10 1 5 11 15 29 6 .3 6 . 1* 5.9 6 .3 6 .3 6 .3 6 .5 6 .2 6. 1* 6 .3 6 . 1* 6 .7 6 .3 6 .5 6. 1* 0 - 10-10 2 6 12 16 28 6 .3 6 .2 6 .2 6 .2 6.3 6. 1* 6. 1* 6 .3 6 .5 6 .3 6 .5 6 .6 6 . 1; 6 .5 6 .3 0 - 10-20 3 7 13 17 27 6 .3 6 .2 6 .1 6 .2 6 .3 6 .5 6 .3 6 .3 6 . 1; 6 .3 6 .8 6. 1* 6 .5 6 .5 6 .5 0 - 10-30 U 8 1k 18 26 6. 1* 6 .2 6 .2 6 .2 6.2 6 . 1* 6 .3 6 .3 6 .3 6 .3 6 .6 6 .3 6 .5 6.U 6. 1* None 20 31 6 .1 6*2 6 .2 6 .2 6. 1* 6 . 1* 0 - 0-30 0 -5 -3 0 0 - 10-30 0 -1 5 -3 0 21 22 23 21* 25 30 6 .2 6 .2 6 .1 6 .3 6.k 6 .1 6 .3 6 .3 6 .3 6 .3 6 .3 6 .2 6 .3 6 .3 6 . 1* 6 . 1* 6 .3 6. 1* o-io-Uo 0 - 20-0 2k TABLE X THE INFLUENCE OF DEPTH AND FERTILIZERS ON THE HEAT OF 'WETTING DETERMINATIONS IN ORGANIC SOIL Depth in inches 0 -6 6-12 12-18 C alories per gram of s o il Pounds per acre Sample number 26 100 P2O5 300 K20 1 2 32.85 33.26 27 . 0i|. 26.37 28.26 29.98 26 50 P2O5 150 K2O 1 2 31.36 33.06 28.27 29.U1 29.67 26.09 5 100 P2O5 50 K2O 1 31.U7 29.U2 29.92 None 1 33.06 26.52 30.55 32.51 27.8U 29.08 P lo t 20 Mean TABLE XI THE HYGROSCOPIC MOISTURE CONTENT OP AIR DRY SOIL AT 0 TO 6, 6 TO 1 2, AND 12 TO 18-INCH DEPTHS FROM SEVERAL OP THE EXPERIMENTAL PLOTS P lo t Pounds number jper acre Sangjle number Depth in inches 0 -6 6-12 12-18 Percent hygroscopic m oisture 5 100 P2O5 50 k2o 1 2 3 Mean 12*72 12.92 12.1*1 12.1*2 11.87 12.09 12.33 12 .1*8 1 2 .6 6 12 .3 0 11.57 12.18 26 50 P2O5 50 * KoO c 1 2 -3 Mean 12.69 12.37 12.53 12.1*1* 12.50 12.78 12.21* ll.la 12.32 11.77 11.83 1 2 3 Mean 12.51 12.51 11.89 12.97 12.71* 12.51* 12.03 12.1|1* 13.33 12.83 12.71 1 2 .9 6 12.76 12.63 12.01 12.1*7 12.55 12.22 11.81 12.19 13.78 13.11 12.22 13.01* 12.1*0 12.1*2 12*50 26 100 P2O5 100 K20 20 None _ 1 2 ......- - 3 .. Mean Mean o f a l l t r i a l s 26 G reen -tissu e t e s t s i n 1950 shewed an in c r e a se i n th e water ex­ tr a c ta b le phosphorus and potassium when th ese elem ents were ap p lied to th e s o i l as shown by th e data in Table XII* The g r e a te s t con cen tration o f phosphorus occurred i n th e g r e e n -tissu e when phosphorus was ap plied alone as a f e r t i l i z e r , w h ile th e sm a llest concentration occurred when potash was ap p lied alone* When the amount o f ap p lied phosphorus was doubled, th e con cen tra tio n o f the w ater ex tra cta b le phosphorus was a l­ most doubled in p o ta to es and peppermint, but l i t t l e d iffe r e n c e was noted i n onions* When the a p p lied potash was in crea sed , there was a c o n s is te n t in c r e a se i n con cen tration o f the water extractab le potassium i n the t i s ­ sue o f p o ta to e s , onions and peppermint, except fo r a decrease when the amount o f potash was in crea sed from 200 pounds to 300 pounds per acre a p p lied fo r potatoes* The 1951 g r e e n -tis su e t e s t s w ith sugar b eet p e t io le s showed an in c re a se in the con cen tration o f water ex tra cta b le phosphorus when the amount o f phosphorus applied was increased from 50 to 100 pounds o f phosphate f e r t i l i z e r p er acre per year as illu s t r a t e d in Figure 3* The t is s u e c o lle c t e d on three o f the seven sampling dates showed s ig n if ic a n t in c r e a se s i n ex tra cta b le phosphorus when the amount o f phosphorus ex­ tr a c te d and a p p lied were compared* F o lia r symptoms o f potassium d e f i­ c ien c y appeared a f te r the second sampling date and t h is con d ition probably had some bearing on the phosphorus r e s u lts obtained* The w ater ex tra cta b le potassium in green sugar b eet t is s u e as in ­ flu en ced by the d iffe r e n t amounts o f potassium ap plied to the s o i l was 27 TABLE XU THE INFLUENCE OF FERTILIZER TREATMENT ON THE AMOUNT OF WATER EXTRACTABLE PHOSPHORUS AND POTASSIUM IN THE GREEN-TISSUE OF POTATOES, ONIONS, AND PEPPERMINT GROWN IN 1950 Green t is s u e o f crop Treatment* Number of P otato p lo ts p e t io le s Onion lea v es Pepper­ mint stems PPM o f phosphorus Potato p e t io le s Onion lea v es Pepper­ mint stems PPM o f potassium 0-0-0 2 10 123 111* 65 85 88 0-20-10 186 211* 251 1*171* 1316 1638 0-10-10 5 5 116 183 163 1*1*20 11*83 1878 0-10-20 5 108 203 129 571*1* 1796 361*6 0-10-30 5 110 182 126 5290 2056 5652 0-10-1*0 l — 185 98 --------- 1600 6000* 0-20-0 l — 275 365 125 75 0-0-30 l - — 80 35 2750 6000 * 0-5-30 l — 175 58 1980 5750 0-15-30 l — 185 170 1980 5ooo --------- * Data o f r e p lic a te d p lo t s averaged* One thousand pounds o f f e r t i l i z e r p er acre fo r p o ta to es and onions? 500 pounds per acre fo r peppermint. 200 LBS. P2 Eoh CO rO I TO rf rH o and wheat £ CO rQ TO Eh © & d> (0 8 H C O £CM CM -P -3 vO EH <5 - H o XA soybeans £ peppermint, H © C H o Eh Io CM -=t CM « t © i© ptt s O o 1* o 8 I o V o 37 CM *H o © § sugar beets, ca -c r • XA CA CM © .g for brome grass, © 38 TABLE XVH THE INFLUENCE OF DIFFERENT RATES OF APPLIED PHOSPHORUS ON THE YIELD OF SUGAR BEETS AND PEPPERMINT AND THE EXTRACTABLE PHOSPHORUS RECOVERED BY FOUR METHODS FROM THE 6-INCH DEPTH OF THE SOIL Y ie ld 2 Sugar b ee ts Treatment Tons per acre E xtractant Peppermint 0.018N 0.025N HC1 0.1N HC1 CH3COOH 0.135N HC1 0.03N N%F 0.03N N%F Pounds o i l " p er acre 0 - 0 -3 0 6*2 9.1* 0 -5 -3 0 1 5 .7 0 - 10-30 0-15-30 Pounds extractab le P2O5 per acre 1 .5 20.0 1*3.5 1*2. 1* liu l 2. 1* 27.5 57.3 57.0 1 5 .8 1 8 .9 1*.0 3 6 .6 57.3 7U.1* 1 6 .1 1 9 .7 8 .5 70.5 58.1* 93.8 r ( y ie ld vs e x tr a c ta b le P2O5 ) Sugar b eets Peppermint 0.731 0.817 0 . 681* 0.802 0.977* 0.876 0.270 0.9U9 Y ield data from s in g le p lo t s f e r t i l i z e d w ith 000 pounds per acre excep t th e f iv e r e p lic a te d 0-10-30 p lo ts o f peppermint* 2 Averages o f 191*9,1950 and 1951, and 191*7, 191*9, 1950 and 1951 y ie ld s o f sugar b eets and peppermint, resp ectiv ely * ** S ig n ific a n t a t f i v e percent l e v e l (0 .9 5 0 )j fo r s ig n ific a n c e a t one p ercen t l e v e l r equals 0 *990* 39 TABLE XVIII THE INFLUENCE OF DIFFERENT RATES OF APPLIED POTASH ON THE YIELD OF SUGAR BEETS AND PEPPERMINT AND THE EXTRACTABLE POTASSIUM RECOVERED BY THREE METHODS FROM THE 6-INCH DEPTH OF THE SOIL Y ield 2 E xtractant Sugar b eets Peppermint Tons p er acre Pounds o i l per acre 0 - 10-10 1 1 .1 21.0 35.U 82 67 0 - 10-20 13.9 22.9 70.0 155 167 0 - 10-30 1U.5 1 8 .9 107.8 213 223 0 - 10-U0 1 6 .1 I 8 .lt 20lt.0 Treatment^ r ( y ie ld vs ex tr a c ta b le Kg0 ) Sugar b eets Peppermint 0.018N 23% CH3COOH 0.135N HC1 NaN03 Pounds o f extractab le KgO per acre 0.935 - 0 .7 3 5 32U 0.959 —0 .U63 0 . 981* - 0.669 ^ A ll data averages o f f iv e r e p lic a tio n s except the O-lO-ltO s in g le p l o t . 2 Averages o f 1 9h99 1950 and 1951* and 19U7* 19U9* 1950 and 1951 y ie ld s fo r sugar b eets and peppermint, r e s p e c tiv e ly . * S ig n ific a n t a t f i v e percen t le v e l (2 df 0 .9 5 0 j 1 d f 0 .9 9 7 ). ko The c o r r e la tio n o f the w ater ex tra cta b le phosphorus o f the greent is s u e and th e y i e l d o f sugar b eets was s ig n if ic a n t (Table XIX) fo r th e 1951 y i e l d as w e ll as th e 19U9* 195° and 1951 mean y i e l d . The r e s u lts o f the dem onstration p lo ts were used in determining t h is c o r r e la tio n . The g r e a te s t sea so n a l v a r ia tio n in the concentration o f water so lu b le phosphorus in the g r e e n -tis su e occurred when no phosphate was applied to th e s o i l . The d ata o f Table XX show a s ig n if ic a n t co r r e la tio n fo r water e x tra c ta b le potassium and the 19U9* 1950 and 1951 mean y ie ld o f sugar b e e t s , b u t not fo r the 1951 y ie l d . As the ra te o f applied potash was in c re a se d , th e w ater so lu b le potassium i n the g reen -tissu e increased w ith a subsequent decrease in v a r ia b ilit y o f the means. In th e case o f peppermint as in d ic a te d in Table XXI the water e x tr a c ta b le phosphorus was co rrela ted w ith the y ie ld and was found to be s ig n if ic a n t fo r the mean y ie ld o f 19U7* 19U9* 1950 and 1951* but not s ig n if ic a n t f o r the y ie ld o f 1951 which was probably due to crop f a i l ­ ure on th e 0-0 -3 0 p l o t . The w ater ex tra cta b le potassium o f the peppermint g reen -tissu e and th e y ie ld o f peppermint shewed no s ig n if ic a n t c o r r e la tio n , as re­ p orted in Table XXII. In comparing th e re la tio n sh ip o f s o i l t e s t s and g r e e n -tissu e t e s t s w ith th e y ie ld o f sugar b eets and peppermint, a c lo s e r co r r e la tio n e x is te d f o r the g r e e n -tissu e t e s t s and y ie ld than f o r the s o i l t e s t s and y ie ld . 1*1 & © UN On H O H UN © nOv u P? H © On p UN c— CO H UN >0 « • CO o o * © VA i Eh UN rH UN On rH ♦ -=r r« r-- co • CM On & i CO CO • •p o © p. o X © •p © * Ov Ov ♦ pj o\ CM I On S3 T1 co o a O U *H © u C o 25 CM Pt a Pt c *- Pt CO Q Pt CO r- co VO CA Pt UN vO H UN rH tA CO UN UN o a ti txO m o ft © •8 p ! § C O p»- o rj P © o •H H f©t (4 © > CO o H > © H tl © 0 P ©i © Tf ■s & U & *4 ■8 * « o 8 o CA o •H 8 co p t £ P- o «d CM On CO vO P t On J t ft © « CM © g •? o rt o *H ft • e © © ft © UN t *8 © 1 a © P © •o t© •rl *© CO * E P © © ft 9 H I ? ? ? O o • On UN On • O 1*3 TABLE X X I THE INFLUENCE OF DIFFERENT RATES OF APPLIED PHOSPHORUS ON THE CONCENTRATION OF WATER EXTRACTABLE PHOSPHORUS AND THE YIELD OF PEPPERMINT Sampling d ates o f 1951 Treatment^ 8-3 8-18 9-2 Mean Percent error of mean Pounds o f o i l per acre 19l*7,19i*9, 1951 1950,1951 PPM ex tr a cta b le phosphorus 68 85 91 81+ 6 .1 7 .5 2 .1 8 .9 0-0 -3 0 1*9 1*9 73 0• 00 + 1 U**0 0 9.U 0 -5 -3 0 100 80 135 io 5 t 5 .1 1**8 8 .2 li w l 0-10-30 112 113 185 137^21** 2 17*6 1 1 .0 18.9 0-15-30 11*5 135 217 166125.8 1 5 .5 10. 1* 1 9 .7 eV\ 0 -0 -0 r ( y ie ld vs w ater ex tra cta b le phosphorus) 0.55U 0*955* ^ A ll data from s in g le p lo t s f e r t i l i z e d w ith 500 pounds per acre except fo r the f iv e r e p lic a te d 0-10-30 p lo ts* * S ig n ific a n t a t 5 percent le v e l (0*878 )% fo r s i g n i f i ­ cance a t 1 percent l e v e l r equals 0*959* uu TABLE X X H THE INFLUENCE OF DIFFERENT RATES OF APPLIED POTASH ON THE CONCEN­ TRATION OF WATER EXTRACTABLE POTASSIUM AND THE YIELD OF PEPPERMINT Sampling d ates o f 1951_____ Treatment'*' 8-3 8-18 9-2 Mean Percent error of mean Pounds o f o i l per acre 19U7,191*9, 1951 1950,1951 PPM e x tra c ta b le potassium 0 -0 -0 2088 0-10-10 922 703 1238^ 30 3U.7 2 .1 8 .9 39h9 31U7 2595 3230^367 11 .3 Du 3 21.0 0-10-20 i|823 5170 W i+98o tl 01 2.0 17.2 22.9 0-10-30 5378 5527 5377 5U271 50 0 .9 11.0 18 .9 o-io-Uo 5600 58)40 7U75 6305^589 9 .3 5*6 18 .k r ( y ie ld vs w ater extractab le potassium ) 0.336 0 . 68)}.* ^ A ll data averages o f f iv e r e p lic a tio n s except the 0-10-Ji0 s in g le p l o t . ^ For s ig n ific a n c e a t 5 percent l e v e l r equals 0 .8 ? 8 . In c o r r e la tin g s o i l t e s t s , g r e e n -tissu e t e s t s and crop y ie ld s , i t was found th a t the e x tr a cta b le phosphorus and potassium i n th e s o i l and green t is s u e in crea sed when the app lied phosphorus and potassium was in c r e a se d . Higher y ie ld s o f sugar b eets accompanied th e in crease o f a p p lied potassium , whereas th e y ie ld o f peppermint o i l was decreased when th e r a te o f a p p lic a tio n exceeded 100 pounds per acre* Both crops showed l i t t l e change i n y i e l d w ith the ra te o f phosphorus a p p lica tio n varied* Thus, i n e s ta b lis h in g optimum le v e l s o f p la n t n u tr ien ts fo r ob­ ta in in g maximum y ie ld s w ith th e aid o f rapid s o i l t e s t s and greent is s u e t e s t s , sea so n a l flu c tu a tio n s i n p la n t com position and crop r e ­ sponse t o th e ap p lied n u tr ien ts should be considered# When working w ith peppermint, i t should be kept in mind th a t an in crea se in fo lia g e y i e l d i s not n e c e s s a r ily accompanied by an in crea se in o i l y ie ld ; in f a c t , the o p p osite s it u a t io n w i l l more l i k e l y occur. Due to the lim ita tio n s in the f e r t i l i z e r analyses and ra tes in t h is experim ent, i t was im p ossib le to e s ta b lis h optimum l e v e ls o f phos­ phorus and potassium fo r maximum y ie ld s o f sugar b e e ts and mint* SUMMARY A study was made o f the behavior o f ap p lied phosphorus and potas­ sium i n organic s o i l as in d ic a te d by s o i l t e s t s and the r e la tio n sh ip be­ tween s o i l t e s t s , g r e e n -tis su e t e s t s , and crop y i e l d s . The r e s u lt s o f th e in v e s t ig a tio n are summarized as fo llo w s! 1. A h ig h ly s ig n if ic a n t c o r r e la tio n e x is t s between the amount o f phosphorus a p p lied and th e amount o f phosphorus ex tra cted from the s o i l by a l l o f the fo llo w in g reagents; 0.025N HC1-0.03N NH^F, 0 . 1N HC1-0.03N N%F, 0 .1 3 5 N HC1, and 0.018N CH3COOH. The c o r r e la tio n coe­ f f i c i e n t s f o r th e se reagents were 0.9U3, 0 .9 8 6 , 0 . 915, and 0 .9 6 7 , r e s p e c tiv e ly . 2. One drop o f concentrated hydrochloric a cid added to 10 m il­ l i l i t e r s o f the s o i l e x tr a c t when u sing 0.025N HC1-0.03N NH^F as an e x tr a c ta n t, was s u f f i c ie n t t o properly a c id ify th e medium fo r th e moly­ bdenum-blue phosphorus determ ination. 3. The amount o f potash applied per acre shows a h ig h ly s ig n i­ f ic a n t c o r r e la tio n w ith the amount o f potassium extracted from the s o i l by any o f th e fo llo w in g reagents; 23 percent NaN03, 0.135N HC1 and 0.018N CH3COOH. The c o r r e la tio n c o e f f ic ie n t s f o r th ese reagents were 0.61*0, 0 . 667, and 0 .6 7 1 , r e s p e c tiv e ly . 1*. Applied phosphorus remained p r in c ip a lly i n the su rface s o i l w h ile potassium was found throughout the 18-in ch p r o f ile o f th e s o i l . 5* The ex tra cta b le s o i l phosphorus expressed as PgOcj was a few pounds per acre higher in the f a l l sanples w h ile the ex tra cta b le s o i l i*7 potassium expressed as pounds o f K^O per acre was approximately doubled between f a l l and spring sam pling. 6* Calcium and magnesium occurred uniform ly throughout the ex­ perim ental s o i l a rea . 7. The c a tio n exchange ca p a city i n the su rface s ix -in c h e s was 227 m .e. per 100 grams o f s o i l . The exchangeable hydrogen s lig h t l y de­ creased w h ile th e p ercen t base sa tu ra tio n and pH s li g h t l y in creased w ith s o i l depth. 8. No appreciable v a r ia tio n in th e p ro p erties o f h eat o f w ettin g and th e con ten t o f hygroscopic m oisture occurred w ith in the 18 -in ch pro­ file . 9. P e rio d ic g r e e n -tis su e t e s t s o f sugar b eets and peppermint in th e summer o f 1951 revealed a season al v a r ia tio n i n the com position o f w ater e x tra c ta b le n it r a t e , phosphorus and potassium in th e se p la n ts . 10. Sugar b e et and peppermint p la n ts showing f o l i a r symptoms o f potassium d e fic ie n c y contained 1800 ppm and 1000 ppm o f th a t elem ent, r e s p e c tiv e ly . 11. H e ld co rrela ted b e tte r w ith g r e e n -tissu e t e s t s than w ith s o il te s ts . 12. In c o r r e la tin g rapid s o i l t e s t s , g r e e n -tissu e t e s t s , and crop y i e l d s , i t was im possible to e s ta b lis h optimum l e v e l s o f phos­ phorus and potassium fo r maximum y ie ld s o f sugar b eets and peppermint because o f the fo llo w in g fa c to r s : the p h y sio lo g ic a l nature o f th e <• p la n ts , th e season al v a r ia tio n s in p la n t com position, the d if f e r e n t ia l response o f the crops t o the f e r t i l i z e r r a t io s , and th e lim ita tio n s in th e f e r t i l i z e r analyses and ra te s in t h is experim ent. LITERATURE CITED Bouyoucos, G. J . , MThe c h ie f fa c to r s which in flu e n c e the h eat o f w e ttin g o f s o i l c o llo id s ," S o il S c i. 19: 1*77-1*82. 1925. B ra d field , R. and A llis o n , W. B ., " C riteria o f base sa tu ra tio n in s o i l s ," Trans. Second Coian. and A lk a li Subcomn., I n t . Soc. S o il S c i . , Copenhagen, A:63-79. 1933. Bray, R. H ., "Potassium, phosphorus, and other t e s t s fo r I l l i n o i s s o i l s ," 111. Agr. Expt. S ta . Pub. AG878. 19l*0. . and Kurtz, L. T ., "Determination o f t o t a l , organ ic, and a v a ila b le forms o f phosphorus in s o il s ," S o il S c i. 59* 39-1*5. 191*5. Cheng, K. L. and Bray, R .E ., "Determination o f calcium and mag­ nesium i n s o i l and p la n t m aterial," S o il S c i. 72: 1*1*9-1*58. 1951. Cook, R. L . and M illa r , C. E ., "Plant n u tr ien t d e fic ie n c ie s ," Mich. Agr. Expt. S ta . Spec. B u ll. 353* 59. 191*9. Dawson, J . E ., "A pplication o f s o i l - t e s t methods to p eat s o il s ," Mimeographed m a teria l, C ornell U niv., New York. 1951. Dickraan, S . R. and Bray, R. H ., "Colorim etric determ ination o f phosphate," Ind . and Eng. Chem. Anal. Ed. 12: 665-668. 19l*0. Film an, C. C ., e t a l , "A 5000-acre w ater garden?" w ith P la n t Food, XXXII, No. 1*: 1 5-18. 191*8. B etter Crops F isk e, C. H. and Subbarow, V ., "The co lo rim etric determ ination o f phosphorus," Jour. B io l. Chem. 66: 375-1*00. 1925. F orsee, ¥ . T ., J r ., "The p lace o f s o i l and t is s u e te s tin g in e v a l­ u atin g f e r t i l i t y l e v e ls under Everglades co n d itio n s," Proc. S o i l S c i. Soc. Amer. 15* 297-299. 1950. K itchen, H. B ., "D iagnostic techniques fo r s o i l s and crops," The American Potash I n s t it u t e : Washington 6 , D. C. 191*8. Lawton, K. e t a l , "D iagnostic techniques used in s o i l f e r t i l i t y studies," Q uarterly B u lle tin , Mich. Agr. Expt. S ta . 3i*: 1*66-1*71. 1952. k9 ( lb ) M ehlich, A ., ’’E ffe c t o f type o f s o i l c o llo id on ca tio n -a d so ip tio n ca p a city and on exchangeable hydrogen and calcium as measured by d iff e r e n t m ethods,” S o il S c i . 60: 289-303* 19b5* (15) Scarseth, G. W*, ”Plant-tissue testing in diagnosis of the nutri­ t io n a l sta tu s o f growing p la n t s ,” S o il S c i. 55* 113-120. 19U3* (16) Spurway, C. H. and Lawton, K ., ”S o il te s tin g s a p r a c tic a l system o f s o i l d ia g n o s is ,” Mich. A gri. Expt. S ta . Tech* B ull 132 (r e v ise d ) • 19b.9 .