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ABSTRACT 

Single cell RNA-sequencing provides an opportunity for pharmacologists and toxicologists study 

the heterogeneity of cellular responses to chemical perturbations. However, analyzing these 

datasets remains incredibly challenging as they are high volume and high dimensional. Efforts to 

mitigate these challenges have centered on dimensionality reduction. Recently, it has been shown 

that variational autoencoders (VAEs), deep generative models that can perform dimensionality 

reduction, can be successfully deployed on single cell RNA-seq data to perform normalization 

and prediction. In this thesis I will explore both use cases. 

Even with the unprecedented detail single cell RNA-seq can provide for describing cell type 

specific chemical responses, exploring all relevant combinations of cell type-chemical 

perturbations remains difficult. Additionally, the dose of a chemical changes the overall character 

of its response. Variational autoencoders (VAEs) have been shown to predict chemical 

perturbations for single doses. However, VAEs have yet to be used to predict the entire dose-

response. Here I introduce single cell Variational Inference of Dose-Response (scVIDR) which 

not only predicts the trajectory of the dose-response, but also achieves better large dose 

predictions than previous VAE algorithms. First, scVIDR is shown to predict dose-dependent 

gene expression across cell types in mouse liver, human blood cells, and cancer cell lines. Next, 

regression on scVIDR’s latent space is used to biologically interpret model predictions. Finally, 

scVIDR is used to order individual cells based on their chemical sensitivity by assigning a 

pseudo-dose value. I conclude scVIDR can effectively be used to predict chemical perturbations 

in a wide range of administration scenarios.  

Analysis of the compartmentalization of liver metabolism can be described with two axes: spatial 

and temporal. The spatial axis is conferred by the hepatic lobule, which is made up of concentric 

layers or zones of cells that have distinct metabolic programs. The master regulatory pathway 

that sustains this metabolic program is the Wnt/𝛽-catenin pathway, which when activated by Wnt 

ligands, induces the transcription of potentiators of metabolic and nutritional gradients. The 

temporal axis of liver is conferred by the circadian rhythm which originates from super 

chiasmatic nucleus. Within each cell in the liver, this circadian rhythm is maintained by a core set 

of genes which confer feedback loops which sustain the necessary oscillations for metabolic 

efficiency. Previous studies have shown how the axes of the liver lobule can interact using single 

cell RNA-seq data. However, how these axes interact with toxicological perturbation is still 



 

 

 

 

unknown. In this thesis, a variational autoencoder is used to batch correct single cell RNA-seq 

data for zonation inference. Existing models originally used to analyze the zonal-rhythmic axes 

of the liver lobule are extended to account for the effects of chemical perturbation. This 

methodology is applied to mouse liver snRNA-seq data from mice subjected to acute treatment 

of 2,3,7,8 tetrachlorodibenzo-p-dioxin. 
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CHAPTER 1  
INTRODUCTION 

 1.1 The combinatorial problem in pharmacology and toxicology 

Drug discovery presents a difficult problem to scientists. The space of possible biochemical 

therapeutics is extremely large1. Just for small organic chemicals, there exist 1060 possible 

structures, and of those potentially 1023 structures could be pharmacologically relevant2. This 

space of chemicals does not even include the biologics and inorganic compounds that exhibit 

therapeutic properties. Despite this large chemical space for drug discovery, many drugs will not 

make it to market. This is due to a myriad of reasons, including, prominently, potential 

toxicological effects on any different number of physiological systems3. 

Physiological responses to the same chemical can vary from cell type to cell type4, and according 

to Tabula Sapiens5, a molecular reference atlas of human cells, there are at least 400 distinct 

human cell types. Within those cell types, there exist potential physiological gradients and 

differences in function based on the context. An example explored in this thesis is the metabolic 

gradient in the liver lobule, where hepatocytes nearer to the central vein and those closer to the 

portal triad perform different and complementary sets of metabolic functions (e.g., Ahr 

expression; Figure 1.1)6. In addition to these metabolic gradients, stochasticity resulting from the 

biochemical process of transcription and translation, global differences in cellular parameters 

(e.g., gene copy number), and the chemical environment of the cell result in variation in the 

responses of cells of the same type7–9. As a result, the spectrum of cellular response to chemical 

perturbation gives us an incomprehensibly large combinatorial space that must be explored by 

toxicologists to determine chemical safety. 
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Figure 1.1 Expression of AhR across hepatic lobule. A) A zonal expression profile of 

normalized expression as described by Yang et al10 and Halpern et al6. Zone 0 represents the 

level of AhR expression in hepatocytes closest to the central vein. Zone 9 represents the level of 

AhR expression closest to the portal vein. B) A single-cell resolution image of the liver lobule 

generated by Halpern et al.6 with AhR expression levels represented by color from Yang et al.10 

The central vein is denoted by “CV” (label in black) with the portal triad denoted by “PN” (label 

in white). 

In the past, this problem was not addressed due to the experimental limitations in measuring the 

state of a single cell. However, recent decades have created an omics revolution, in which 
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scientists can profile thousands of different endpoints from protein11 and RNA expression12 to the 

presence and concentration of particular metabolites in a cell13. This thesis will mainly focus on 

data from single cell RNA sequencing (scRNA-seq)14–16, which can be used to profile the 

transcriptomes of tens of thousands of individual cells at once. This presents an entirely new 

level of resolution for toxicologists, as for the first time ever, the true heterogeneity of cellular 

transcriptomic response can be profiled in an efficient manner17.   My thesis presents a method to 

analyze and predict high dimensional gene expression data and heterogeneity in cellular dose-

response.   

 1.2 The unreasonable effectiveness of dimensionality reduction 

In the statistical field of machine learning, there is a class of algorithms that perform a task called 

dimensionality reduction. The analysis and visualization of high dimensional data like single-cell 

gene expression can be facilitated by a broad class of dimensionality reduction algorithms. 

Examples of such algorithms include principal component analysis (PCA)18, which aims to 

preserve the global variances of the data, and uniform manifold approximation and projection 

(UMAP)19 which aims to preserve the local distances in low dimensions (Figure 1.2 B and C). 

This class of algorithms is routinely used in the study of scRNA-seq data and is useful for the 

visualization of high-dimensional datasets20, as well as in downstream tasks such as clustering 

and trajectory analysis21.  
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Figure 1.2 Dimensionality reduction of 3D mammoth. A) Point representation of wooly 

mammoth (Smithsonian Institution Archives USNM: V23792) at three different perspectives in 

3D space. Colored using K-means clustering. B) 2D representation of wooly mammoth produced 

by principal component analysis (PCA). PCA preserves inter-cluster distances better than intra-

cluster distances. C) 2D representation of wooly mammoth produced by Uniform manifold 

approximation and projection (UMAP). UMAP preserves intra-cluster distances better than inter-

cluster distances. D) 2D representation of wooly mammoth produced by Variational autoencoder 

(VAE). VAE’s utilize neural networks to do dimensionality reduction and optimize both inter- 

and intra-cluster distances.  

Dimensionality reduction is remarkably efficient, often needing only orders of magnitude fewer 

features to properly represent a space. This can be seen even in large atlas sized scRNA-seq 

datasets made up of hundreds of thousands of cells. An example of such a dataset is the Tabula 

Sapiens5 which contains ~500,000 cells across 24 tissues from 15 human donors. Despite having 

measurements for ~30,000 genes, 100 principal components explain ~40% of the variance 

(Figure 1.3). This efficiency is reflected in the ubiquity of PCA’s use as it is a common 

preprocessing step in scRNA-seq pipelines to use the first 50-100 principal components22. With 

thousands of possible measurements in hundreds of thousands of cells, it is striking that with 
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only 50-100 components, one can capture significant variation in the dataset. A possible 

explanation lies in the manifold hypothesis23. Essentially, while real-world datasets can reside in 

high-dimensional space, they can often be described with a local-coordinate system of fewer 

dimensions. These dimensions represent a more concise summary of the high-dimensional space 

and thus make it more useful for experimentalists to describe a system. This is likely to be true in 

the case of cell biology, where gene-gene regulatory interactions constrain the number of 

possible attainable cell states24,25. This is particularly helpful in the domains of pharmacology 

and toxicology. While there are potentially 1023 pharmacological drugs2, chemicals with similar 

structures will tend to induce similar effects in the same biological system26. Due to the large 

number of genes in the genome, there is an infinite set of configurations of cellular state. 

However, the interactions between genes and the process of evolution limit the possible range of 

phenotypes to a much more tractable amount27. Which is why while omics can provide 

measurements of 1000s of dimensions, they are amenable to dimensionality reduction. 
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Figure 1.3 Cumulative explained variance in PCA of Tabula Sapiens. PCA done with 

differing number of components was performed on the Tabula Sapiens. The x-axis is the number 

of principal components used in the dimensionality reduction. The y-axis is the resulting 

variance ratio explained by the PCA. 

For the purposes of this thesis, I choose to focus on dimensionality reduction using a class of 

deep neural networks called variational auto encoders (VAEs)28 (Figure 1.2 D) which have been 

used extensively to model and make predictions of changes in single cell gene expression29–34.  

1.3 A Brief Introduction to Variational Autoencoders 

VAEs are a class of deep generative models which rely on Bayesian priors to encode single cell 

data into a latent distribution28. VAE’s represent a subclass of autoencoders, which themselves 

are a generalization of PCA35. VAEs can be seen as a non-linear “cousin” to PCA, with certain 

advantages and disadvantages when comparing the two techniques. To introduce the reader to 

VAEs and how they work, I will first describe the relationship between PCA and autoencoders to 
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frame the discussion. I will then describe the basic structure of an autoencoder. Finally, I will 

describe how the autoencoder framework is extended to variational autoencoders. A full 

mathematical description of variational autoencoders can be found in section 3.4.1. 

As described in section 1.2, PCA is a form of dimensionality reduction that is used extensively in 

scRNA-seq data. PCA is a linear transformation of the data which aims to preserve as much 

variance as possible for each dimension18. A forward function brings the high dimensional 

scRNA-seq measurements to a lower dimensional representation. This lower dimensional 

representation, also known as principal component (PC) space, can be used for downstream 

analysis such as visualization 36, clustering of the data for cell type identification 37, and input 

into trajectory inference algorithms (i.e., pseudo-time)21. An advantage of PCA is that since it is 

linear the user can directly interpret the dimensions of the lower dimensional space using 

loadings38,39. These loadings can be used to describe gene expression programs in each principal 

component of the lower dimensional space. An additional useful feature of PCA is that the 

forward function is invertible, and the input data can be approximately reconstructed (Figure 1.4 

A). However, trying to generate novel snRNA-seq measurements not included in training will 

often result in inaccurate reconstructions30. To address this problem, non-linear functions can 

replace the forward and inverse functions. 
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Figure 1.4 Diagrams of PCA, an Autoencoder, and a VAE. Input scRNA-seq measurement 

data is represented by the green box labeled 𝑋 and the reconstructed scRNA-seq data from the 

lower dimensional representation is represented by the orange box labeled 𝑋′. Lower 

dimensional representations are shown as blue boxes. A) Schematic of PCA.  scRNA-seq 

measure data is orthogonally transformed using a linear 𝑓(𝑋) into a lower dimensional principal  
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Figure 1.4 (cont’d) 

component (PC) space. The inverse function, 𝑓−1(𝑋), is used to take points from PC space back 

into scRNA-seq measurement space. B) Schematic of an autoencoder. Autoencoders are like 

PCA, but instead of linear transformations 𝑓 and 𝑓−1, there are non-linear neural networks that 

replace them called an encoder and decoder respectively. The encoder takes the scRNA-seq 

measurement, and compresses it into the latent space, 𝑍. The decoder takes points from 𝑍 and 

approximately reconstructs them back into scRNA-seq measurement space.  C) Schematic of a 

VAE. Unlike a normal autoencoder, a variational autoencoder has a probabilistic encoder and 

decoder. A normal VAE encoder, 𝑞𝜙(𝑍|𝑋), outputs a mean and variance which is used to sample 

the features of the latent space, 𝑝(𝑍). The decoder then approximately maps the probability 

distribution of the latent space back into scRNA-seq measurement space. 

Autoencoders aim to perform the dimensionality reduction using deep learning. Autoencoders 

replace linear forward function and inverted function in PCA, with neural networks35. The neural 

network replacing the forward function, which compresses the high dimensional scRNA-seq data 

to a lower dimensional representation, is called the encoder. The lower dimensional 

representation of the scRNA-seq is referred to as the latent space. The neural network replacing 

the inverted function, taking latent space measurements back into scRNA-seq measurement 

space, is called the decoder (Figure 1.4 B).  The use of neural networks instead of linear 

functions is useful, since now the user can calculate more accurate lower dimensional 

representations of the scRNA-seq measurements40,41. Accurate representations are critical during 

scRNA-seq processing pipeline, as the cell type identification step requires a lower dimensional 

representation of the data as input for clustering42. This comes at a cost, however, as the non-

linearity of the neural networks makes interpretation of the latent dimensions more difficult as 

there are no longer any linear loadings. In section 4.2.3 and section 4.4.4 of this dissertation, I 

describe a method to overcome this limitation in VAEs and interpret them using a loadings like 

model. Additionally, the autoencoder’s latent space dimensions are not forced to be structured43, 

meaning that dimensions of the latent space are entangled with one another and are not 

guaranteed to be independent of one another like in PCA. As a result, vanilla autoencoders have 

latent spaces that are much less generalizable to other datasets35. 
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The variational autoencoder represents an extension of autoencoders that impose more structure 

on the latent space using Bayesian priors.  This imposed structure forces the latent dimensions to 

be as disentangled as possible. To do this, instead of the dimensionality reduction being a 

deterministic function like in vanilla autoencoders, variational autoencoders describe the data 

generation process probabilistically35. This means that instead of encoding a lower representation 

directly, the encoder calculates a mean and variance of a gaussian distribution, from which the 

user can sample features for the latent space (Figure 1.4 C). This gaussian distribution is called 

the prior distribution and is what imposes structure one the latent space. To ensure that the 

encoder’s output is as close to prior (i.e., structured) as possible, the neural network minimizes 

the difference between the encoder output and the prior distribution. This imposed structure in 

the latent space is what allows the VAE to generate non-random samples from the latent space. In 

practice this means that the decoder can generate meaningful scRNA-seq measurements from 

unobserved points in the latent space rather than just the points in the training data. Thus, VAEs 

have the non-linear power of autoencoders with added generalizability to other datasets35. Due to 

these advantages, VAE’s have proven to be an incredibly flexible and effective tool in the 

analysis of scRNA-seq30,31,33,34,44–47. 

1.4 Variational autoencoders and single cell RNA sequencing 

VAEs have been used extensively across a spectrum computational single cell task.  At its most 

basic, VAEs have been used to visualize scRNA-seq data44,45, and at its most ambitious, has been 

used to integrate scRNA-seq data with other single cell data modalities34.  Most single cell 

research on VAE’s has been in correcting scRNA-seq data for batch effects29. However, VAE’s 

have extended use in other problem domains such as cell type identification46, integration of 

datasets from multiple labs48, and inference of cell-cell interactions49. The following section is a 

brief survey of the current field, with a focus on batch correction, cell type identification, and 

prediction of chemical perturbations. 

VAEs have been used to integrate single cell RNA-seq across experimental groups29, labs48, and 

data modalities34. Integration, also called batch correction, is a process by which the variation of 

the data based on some batch covariate (e.g., sex, age, lab of origin, etc.) is removed from the 

data. This is often done in order to properly address whether the changes in the data originate 

from the variable of interest (i.e., TCDD treatment) independent of these batch effects. VAE 

models such as scVI have been used to model such covariates including library size and single 
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cell chemistry29.  To do this, models will condition the encoder and decoder on the batch labels in 

order to remove their variance from the latent space. For integrating across different labs of 

origin, models such as scArches33,48 further force integration by adding a regularization term to 

the loss function. This term causes the model to bring the batch clusters as close together as 

possible on the latent space. VAE models such as MultiVI have been used to integrate multiple 

single cell data modalities (i.e., snRNA-seq, CITE-seq, and single cell ATAC-seq)34.  To do this, 

MultiVI first encodes each modality into its own latent space. Then MultiVI averages the latent 

spaces together to make the final single latent representation of all data modalities. To make sure 

that the different latent spaces can be averaged together, an additional term is added to the loss 

function. This term forces the different latent spaces to be as similar to one another as possible. 

As with the normal integration, the aim is to make an integrated representation across all data 

modalities such that one can compare impacts across chromatin accessibility, protein expression, 

and transcription. In chapter 2 of this thesis, I describe the use of variational autoencoders to 

model and remove effects of TCDD on hepatocytes to infer liver zonation more accurately from 

scRNA-seq data. 

Conditional latent representations have been used in cell type identification. To do this, models 

will utilize existing large datasets of tissues such as the Allen Mouse Brain Atlas50, or the Tabula 

Sapiens5. These models use these large tissue datasets as reference to train the VAE’s, after which 

the VAE will then classify cells in new datasets based on their position in the latent space. 

Additionally, since these models can integrate across labs of origin, the models can utilize 

multiple large cell atlases to classify new cells. One approach, pioneered by scANVI46, is to 

utilize existing architecture created by scVI29 and extend it by incorporating a neural network 

classifier. The classifier and the VAE are trained in parallel so that the latent space is optimized 

to make it as simple as possible for the neural network to distinguish between different classes of 

cells.  Alternative models for cell type classification include MoE-Sim-VAE which utilizes a 

mixture of experts architecture to cluster and identify different cell populations51. 

One pharmacologically focused application of variational autoencoders for the prediction of 

chemical perturbations30,33. In section 1.3, one of the mentioned advantages of VAE’s were that 

they were generative models, and as a result could generate meaningful scRNA-seq 

measurements from unobserved points in the latent space. Recently, VAEs have been 

demonstrated to predict the expression of a chemical perturbation on an unobserved cell type 
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based on the perturbations of other cell types30. To understand how this might work, I take an 

example of the model in another discipline, computer vision. Much like scRNA-seq, images are 

high dimensional data (each pixel representing a dimension) which can be compressed into a 

lower dimensional space using variational autoencoders.  Let us consider a picture of a woman’s 

face, to which I want to virtually add glasses. This can be accomplished using VAEs by 

subtracting the latent representation of pictures of men’s faces from those of men’s faces with 

glasses, and subsequently adding the resulting “glasses” vector to pictures of women’s faces 

without glasses.  

I can imagine an analogue to this model, but instead of gender I have a cell type and instead of 

glasses I have a chemical perturbation. These models are examples of using vector arithmetic on 

the latent space of a VAE. One such model, scGen30, has been shown to outperform other 

generative models such as generative adversarial networks and other dimensionality reduction 

algorithms such as PCA on prediction or chemical perturbations for unseen cell types30. 

However, these models have difficulty accounting for certain complexities in biological data. For 

one, the response of a particular drug is highly dependent on cell type8,9. Thus, a simple addition 

of a perturbation must be weighted on the cell’s transcriptomic profile. Additionally, the 

magnitude of the chemical perturbation must also be considered. At lower concentrations, there 

may be little to no effect of a drug on a cell’s transcriptome. However, at higher concentrations, 

these effects can be more pronounced. Furthermore, even if I can make these predictions, 

interpretation of how the model makes predictions on a gene-by-gene basis must also be 

considered to evaluate whether the model is describing the chemical perturbation appropriately. 

In chapter 3 of this thesis, I improve on the original vector arithmetic method using regression on 

the latent space. In chapter 4, I further extend the model to account for multiple doses, interpret 

prediction on a gene-by-gene basis, and order cells based on how perturbed their transcriptomes 

are. 
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CHAPTER 2  
PERTURBATION OF LIVER RHYTHMICITY AND ZONATION BY 2,3,7,8 

TETRACHLORODIBENZO-P-DIOXIN 

2.1 Introduction 

To deal with the multitude of chemicals that an organism will need to interact with on a regular 

basis and to sustain healthy metabolic homeostasis, the liver has evolved to compartmentalize 

metabolic programs52. This compartmentalization is both spatially and temporally organized. 

Spatially organized via the porto-central axis of the hepatic lobule, repeating hexagonal sub-units 

of the liver53. Temporally organized via the circadian rhythm based on feeding/fasting cycles54,55. 

In previous studies, the spatial and temporal metabolic organization of hepatocytes was described 

for over five thousand genes in hepatocytes52.  However, it is unknown how resilient hepatic 

compartmentalization is to acute toxicological perturbation. In this chapter I investigate changes 

in the spatial and temporal axes of the liver with respect to acute treatment of 2,3,7,8 

tetrachlorodibenzo-p-dioxin (TCDD). To do this I first infer the zonation of the liver lobule using 

a Variational autoencoder28,29 and diffusion maps56,57. Then I extend a method introduced by 

Droin and Kholtei et al52 to classify genes based on their rhythmicity and zonation to include 

classifications of TCDD influence. 

The histological unit of the liver is the hepatic lobule (Figure 2.1). The hepatic lobule is a 

hexagonally shaped structure with a central vein at the center and a portal triad at each vertex of 

the hexagon6,53. Each portal triad is made up of a portal artery, portal vein, and a bile duct58. Due 

to the positioning of vasculature and the direction of blood flow (from portal to central), nutrient 

and metabolic gradients are established within each lobule that confer different metabolic 

functions at different radii extending from the central vein53. For example, hepatocytes nearer to 

the central vein will tend to have higher expression of pathways involved in metabolism of 

xenobiotics by CYP450 genes59. Hepatocytes nearer to the portal triad will tend to specialize in 

𝛽-oxidation and gluconeogenesis52. This metabolic gradation over the axis from the portal triads 

to the central vein (porto-central) is called liver zonation6,52,53,60. Liver zonation is maintained by 

a complex network of chemical cues and cell-cell interactions60. The canonical master regulatory 

pathway is the Wnt/𝛽-catenin pathway61. In brief, Wnt proteins bind to Frizzled causing 

lipoprotein receptor-related proteins to phosphorylate the 𝛽-catenin degradation complex. This 

causes 𝛽-catenin to dissociate from the degradation complex, translocate to the nucleus, and 

activate potentiators of zonation62,63. Traditionally, liver zonation refers to the categorization of 
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hepatocytes either residing the pericentral (referred to as central; zone 3), mid-lobular (zone 2), 

and periportal (referred to as portal; zone 1)53. However, in more recent studies zonation 

suggested a finer grained, or continuous pattern of concentric layers of hepatocytes6,52.  

 

. 

Figure 2.1 Cartoon of hepatic zonation within the liver lobule. Within the liver there exist 

hexagonal hepatic subunits known as liver lobules. Within these lobules exist a gradient of 

nutrient, oxygen, and metabolic functions along each liver sinusoid from the central vein to the 

portal triad (i.e., bile duct, portal vein, and portal artery). Cells along the sinusoid are separated 

into three zones (periportal zone 1, mid-lobular zone 2, and pericentral zone 3). The metabolic 

gradient of periportal functions and pathologies are represented by a green triangular gradient. 

Metabolic gradients of pericentral functions and pathologies are represented by an orange 

triangular gradient. 

Temporal regulation of the liver is described using the circadian rhythm. Temporal 

compartmentalization of metabolic functions makes sure that liver function (e.g., 
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glycolysis/gluconeogenesis) is coordinated with feeding/fasting cycles of the organism52,54,64–66. 

Disruptions of the circadian rhythm are associated with diseases such as non-alcoholic fatty liver 

disease (NAFLD)66–68. Thus, sustaining a consistent rhythm within the liver is important to the 

overall health of the organism.  

Within each cell is a molecular oscillator that is made up of a network of feedback loops. In 

hepatocytes, this oscillator is made up of a core set of circadian genes (Figure 2.2)69. CLOCK 

and ARNTL bind to one another forming the CLOCK-ARNTL complex. The CLOCK-ARNTL 

complex then binds to E-box motifs which activate the transcription of downstream core 

circadian genes. These genes include genes that translate to the PER-CRY complex which 

inhibits the binding of CLOCK-ARNTL. CLOCK-ARNTL also activates genes that translate to 

REV-ERB and DBP. DBP upregulates Nr1d1/2 (genes that encode REV-ERB) which translates 

to more REV-ERB. REV-ERB competes with ROR transcription factors and inhibits the 

translation of further Nr1d1/2 and Arntl. These feedback loops make the basis for the rhythmicity 

seen in hepatocytes69.  
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Figure 2.2 Molecular pathway of circadian rhythm in liver. Day-night cycle represented with 

box containing blue gradient. Proteins like CLOCK and DBP are indicated by colored boxes 

within the day-night diagram. Transcription of genes represented by curved arrows. Activation is 

represented by arrows. Inhibition is represented by flat-head arrows.    

A recent study by Droin and Kholtei et al demonstrated that the spatial and temporal axes overlap 

with one another52. This is mostly due to the inherently rhythmic behavior of Wnt ligand 

expression. This leads to targets of the Wnt signaling pathway such as Axin2 to exhibit rhythmic 

patterns of expression. Thus, many established zonated pathways have rhythmic patterns of 

expression. Among those pathways are many gene sets involved in drug metabolism. 

Interestingly, while rhythmicity impacted the core pathways that determine zonation, the 

converse was not true, as the core circadian clock (except for Cry1) exhibited no zonation52.  

The overlap with the temporal and spatial axes with the drug metabolism pathways suggests a 

third axis to consider when describing liver function, chemical perturbation. 2,3,7,8 

Tetrachlorodibenzo-p-dioxin (TCDD) is a particularly interesting candidate due to its known 

impact to rhythmicity and zonation pathways62,66. It has been established that TCDD in sub-

chronic exposures ablates or greatly dampens the oscillations of the majority of core circadian 

clock genes66. This is hypothesized to act through the cis-regulatory action of AhR, TCDD’s 

canonical receptor. AhR is observed to bind at the gene-body of many of the core circadian clock 

genes two hours post TCDD treatment66. Sub-chronic exposure to TCDD also impacts zonation 
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in a dose-dependent manner62. At lower doses, a clear pericentral bias appears across all 

hepatocytes which reflects a higher activation of pericentral drug metabolism pathways. At 

higher doses, dysregulation of zonation leads to complete disorganization of most zonation 

biomarkers62. Like in the effects on circadian rhythm, effects on zonation likely stem from the 

potential cross talk between AhR and Wnt signaling pathways70,71. 

 While it is established how TCDD may impact both the spatial and temporal organization 

of the hepatic lobule, it is still less understood how each of these pathways interact with one 

another. Furthermore, most results discussed above deal with month long exposures to TCDD, 

and do not describe the initial acute effects that lead to the differential zonation and rhythmicity. 

Utilizing the model I developed, I show that TCDD, even at acute exposures, has a significant 

impact on both the zonation and rhythmicity of the liver. 

2.2 Results 

2.2.1 Visualization of acute hepatocyte response to 2,3,7,8 Tetrachlorodibenzo-p-dioxin 

To elucidate the transcriptional impact TCDD treatment plays in disrupting hepatocyte 

rhythmicity and zonation, I used hepatic single-nuclei RNA-seq data from male C57BL/6 mice 

generated Cholico et al72. Mice were housed in a room with a 12:12 light:dark cycle, gavaged 

with a single dose of 30 μg/kg TCDD (or sesame oil vehicle) at time-point 0 (6:00 AM), after 

which the livers were collected and snap frozen at timepoints 2, 4, 8, 12, 18, or 24 hours post 

treatment. The data was then clustered and hepatocytes were identified using established hepatic 

biomarkers from previous studies62. All other cell types were removed from the dataset. After 

filtering the hepatocytes for low quality and low read count, I was left with 129,373 hepatocytes.  

The top 15,000 highly variable genes (HVGs) were kept for future analysis. I subsequently 

performed dimensionality reduction for data visualization and analysis on important TCDD 

response genes (see section 2.4.1 for more preprocessing details).  

I performed a UMAP analysis on the hepatocytes to observe cell clustering patterns (Figure 2.3). 

I observe that the data naturally clusters between time points (with the exception of 18 and 24 

hours with TCDD treatment). Additionally, I find that treatment groups separate sufficiently, 

indicating significant changes in the gene expression profile with respect to TCDD treatment.  

Interestingly, the UMAP hepatocyte clusters indicated a circular pattern in expression for both 

treatments. While UMAP’s are known to destroy global distance information40, I believe this 

reflects the internal rhythmicity of hepatocytes as this circular UMAP pattern was not found for 
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other cell types (data not shown). I can also observe while acute TCDD treatment impacts 

hepatocyte rhythmicity, it does not completely abolish it like in previous studies with sub-chronic 

TCDD treatments66. 

 

Figure 2.3  Visualization of snRNA-seq for acute TCDD toxicity in mouse hepatocytes. Each 

dot represents a cell. UMAP of hepatocytes colored by time in hours after treatment on the left, 

and dose of treatment in 𝜇g/kg of TCDD on the right.  

To analyze the direct response of TCDD over the time course, I analyze the expression of known 

TCDD response genes: Cyp1a1, Cyp1a2, Ahrr, and Tiparp (Figure 2.4)73,74. I find that Cyp1a1 

and Ahrr achieve saturation in expression at 12 hours post treatment, while Cyp1a2 and Tiparp 

achieve saturation in expression sometime at or before two hours post treatment. All response 

genes exhibited significant increases in expression when treated with TCDD.  
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Figure 2.4 Time Series Expression of TCDD Response Genes. Normalized counts (see section 

2.4.3) of known TCDD activated genes: Cyp1a1, Cyp1a2, Ahrr, and Tiparp. Expression of genes 

are plotted as function of the hours after treatment by TCDD (30 
𝜇𝑔

𝑘𝑔
) or sesame oil vehicle (0 

𝜇𝑔

𝑘𝑔
). 

Shaded regions represent 95% confidence interval. 

To analyze the potential acute effects TCDD has on the spatial and temporal metabolism of the 

liver lobule, I first inferred the porto-central axis for the liver hepatocytes, and then used a mixed 

non-linear effects model75 (MNLEM) to classify genes based on what factor (Rhythmicity, 

Zonation, TCDD treatment) or combination of factors controlled gene expression. 
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2.2.2 Inferring zonation of hepatocytes from single cell gene expression profiles 

Zonation of the liver lobule is not directly measured by snRNA-seq. Thus, zonation needs to be 

inferred from hepatocyte gene expression. To infer the zonation profile, expression must first be 

corrected for other confounding factors in the experimental design. For example, known 

centrally zonated gene Cyp1a210 is activated by TCDD. Another centrally zonated example, 

Slc1a2, is known to have rhythmic patterns in expression52. To correct these confounders and 

calculate the zonation trajectory I elected to utilize the approach taken by Aizarani et al76 and 

Nault et al62. Here I first perform batch correction on the single cell data to remove variance 

stemming from TCDD treatment and time-dependent effects. Then I perform trajectory inference 

to calculate the latent zonation value of each hepatocyte.  

I utilized single cell Variational Inference (scVI)29, a variational autoencoder (VAE), to perform 

batch correction on the snRNA-seq data (Figure 2.5). The major reason I utilize a variational 

autoencoder is due to the size of the dataset. After preprocessing, there are ~130,000 cells in the 

dataset and most single cell integration tools do not scale to datasets of those size easily77. scVI 

can integrate large gene expression atlases and batch correct for variation across many labs29,77. 

Thus, it is expressly tested to scale to millions of cells and can integrate them in a relatively short 

period of time29. 
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Figure 2.5 UMAP of Batch correction by scVI of snRNA-seq data. UMAP of cells not batch 

corrected on the left. In the middle is a cartoon of the encoder region of scVI which performs 

dimensionality reduction. On the right is a UMAP of the latent space of scVI. Cells in both 

UMAPs are colored by the combined label of hours after treatment and dose of TCDD treatment 

in 𝜇g/kg (Hour_𝜇g/kg). 

VAE’s like scVI can batch correct for variables using their latent space. When encoding the 

latent distribution during training, the user can condition the model on some factor in the 

experimental design (e.g., dose and time). In this way, the model encodes a latent representation 

that doesn’t contain the variance of the factors being conditioned for. I can “denoise” the data by 

decoding from the latent distribution back into gene expression distribution29.  

Utilizing scVI, I batch correct for TCDD treatment and time of harvest. I then use a trajectory 

inference algorithm, diffusion pseudo-time56, on the latent space scVI to infer the trajectory of 

expression on the porto-central axis. I utilize the second component of the diffusion pseudo-time 

plot (analogous to components in PCA) as our trajectory (see section 2.4.3) as I observed most 

zonal genes follow a gradient along this component (Figure 2.6). I will refer to trajectory 

inference values as pseudo-space, which I define as an ordering of cells based on how closely the 

cells approximate the expression of central hepatocytes (0 for most portal, and 1 for most 

central).  
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Figure 2.6 Diffusion map visualization of scVI latent space reveals zonation trajectory. 

Diffusion maps representation of batch corrected latent space of scVI. Each point represents a 

single hepatocyte. Hepatocytes on the right are colored by pseudo-space metric. Hepatocytes 

with a pseudo-space value closer to 0 have a more portal hepatocyte-like expression and closer to 

1 have a more central hepatocyte-like expression. Hepatocytes in the middle panel are colored by 

Cyp2f2 (portal marker) expression. Hepatocytes in right panel are colored by Slc1a2 (central 

marker) expression. Expression of each gene is measured in cell normalized counts (see section 

2.4.1). 

To confirm whether pseudo-space accurately represents the zonation of liver lobules, I plot 

expression profiles of known zonated genes Cyp2f2 and Slc1a2 along the pseudo-space axis. I 

observe significant correlations between the expression of these genes and the pseudo-space 

values of the cells (Figure 2.7). As a negative control, I analyze whether I see a similar 

correlation in known non-zonated genes, such as Arntl and Clock (Figure 2.7). I show that no 

significant correlations exist between the pseudo-space metric and these genes. 
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Figure 2.7 Regression plots of cell normalized expression versus pseudo-space. Regression 

plots of hepatocyte expression Cyp2f2, Slc1a2, Arntl, and Clock versus the associated pseudo-

space value. Each point is a hepatocyte. Expression of each gene is measured in cell normalized 

counts. A pseudo-space value of 0 refers to a hepatocyte with more periportal expression. A 

pseudo-space value of 1 refers to hepatocytes with more pericentral expression. Pearson 

correlations and their associated p-values were calculated between the gene expression and 

pseudo-space metric.  

To simplify downstream analysis, I bin the pseudo-space values into layers (see section 2.4.3; 

Figure 2.8). Typically, hepatocytes are separated into three zones in the liver lobule: Zone 1 or 
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periportal, Zone 2 or mid-lobular, and Zone 3 pericentral cells53. However, in more recent studies 

involving single cell RNA-seq and smFISH show zonation to be finer grained6. Selection of the 

number of layers to bin the cells into is down to the resolution of the data. For example, in 

Halpern et al6 there were fifteen zones, while in Droin and Kholtei et al52, there are only eight 

zones. I elect to bin into five layers given to make sure there are at least two-thousand cells in 

each layer. Each bin has an equal length along the pseudo-space axis (e.g., all cells in layer one 

have a pseudo-space value between zero and one-fifth). Unsurprisingly, I find that there are 

fewer cells binned into the last (more central) layer than compared to the first (more portal) layer 

(Figure 2.9). This makes sense since by having smaller radius in the liver lobule, there are fewer 

cells nearer to the single central vein than nearer to the many portal triads.   

 

Figure 2.8 UMAP visualization of pseudo-space binning and zonation biomarkers. All 

UMAPs are of scVI’s latent space. A) Top panels represent schematic of binning process. On the 

top left cells are colored by the pseudo-space metric. A pseudo-space value of 1 refers to 

hepatocytes with more pericentral expression and a pseudo-space value of 0 refers to hepatocytes  
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Figure 2.8 (cont’d)   

with more periportal expression. On the top right, the same UMAP colored by the binned layers. 

Each layer refers to hepatocytes with pseudo-space values between (layer number - 1)/5 and 

layer number/5. B) On the bottom panels are UMAP plots with cells colored by Cyp2f2, Slc1a2, 

and Arntl gene expression in cell normalized counts.  

 

 

Figure 2.9 Bar plot of the number of hepatocytes in each inferred layer. Layers are described 

in figure 2.8. Layers with smaller values represent hepatocytes that have expression more similar 

to pericentral hepatocytes and layers with larger values represent hepatocytes that have 

expression more similar to periportal hepatocytes.  

Using the binned pseudo-space values, I create pseudobulk profiles (sum of counts across cells) 

for each treatment x time x layer combination (see section 2.4.3).  These count sums are then 

normalized using size-factor estimation to normalize for the number of cells used to create each 

pseudobulk profile78. I use the normalized expression for each treatment x time x layer 

combination for down-stream analysis and classification of genes. 

2.2.3 Classifying hepatocyte genes using a mixed non-linear effects model 

To investigate the spatial and zonated expression profiles of genes, and how those profiles are 

changed by TCDD treatment, I utilize an approach described by Droin and Kholtei et al52. In 

their approach they model rhythmicity (R) using the sum of sine and cosine functions, and 

zonation (Z) using the first and second order Legendre polynomials. I extend their model to 

include the influence of TCDD (Dioxin; D) on liver expression. To model the effect of TCDD, I 
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opted for a simple indicator function in which the hepatocytes were treated with TCDD (D = 1) 

or were not treated (D = 0). Using these functions, a series of MNLEMs were constructed that 

represented different combinations of factors (D, Z, and R) that could influence gene expression 

based on the original experimental design and the inference of zonation (Figures 2.10 and 2.11). 

Effects from different factors can either be independent of one another (e.g., Z + R) or dependent 

on one another (e.g., D x Z).  How factors can influence one another to change expression is 

illustrated in figure 2.11. Using this approach, I classified the top fifteen thousand highly variable 

genes based on the MNLEM that best described said gene’s expression (see section 2.4.4 for 

more details on implementation). 
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Figure 2.10 Illustrations of each single or no effect models used for classification of 

hepatocytes genes. Ideal simulations of each model plotted in terms of time (in hours after 

treatment) versus expression, or inferred layers of the liver lobule. Each line plot is colored either 

by time, layer of dose of TCDD of treatment. TCDD (Dioxin) influence is delineated by D, 

influence of liver rhythmicity is delineated by R, and influence of liver zonation (layers) are 

delineated Z. Models with no influence from either D, R, or Z are delineated as flat, F. 
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Figure 2.11 Illustrations of multiple effect models used for classification of hepatocyte 

genes. Ideal simulations of each model as described before in Figure 2.9. Effects that are  
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Figure 2.11 (cont’d) 

separated with “+” indicate models in which factors are independent of one another. Effects that 

are separated with a “x” indicate models in which factors are dependent on one another. 

I first confirm that my classification works by analyzing genes known to have rhythmic, zonal, 

or TCDD influenced expression. For this I classified Arntl (Rhythmic Gene), and Slc1a2 

(Zonated and Rhythmic Gene), and Ahrr (a TCDD response gene that saturates at 12 hours). In 

figure 2.12 I show that my model can detect the rhythmicity of Arntl and Slc1a2. Additionally, 

the model can distinguish between TCDD saturation and true rhythmicity. The model is also able 

to find that Slc1a2 is zonated. Finally, Ahrr is classified as having TCDD influence. I find in this 

small survey that gene expression profiles reflect the classification of the gene one is looking at 

(Figure 2.12). 



 

30 

 

 

Figure 2.12 Classification of canonical rhythmic, zonal, and TCDD responsive genes. 

Analysis of canonical rhythmic gene, Arntl, canonical rhythmic and zonal gene, Slc1a2, 

canonical TCDD responsive gene Ahrr. A) Bar plots of Shwarz weights for each gene 

classification. The higher the Shwarz weight, the higher the probability the gene belongs in a 

particular class. Effects that are separated with “+” indicate classes in which factors are 

independent of one another. Effects that are separated with a “x” indicate classes in which factors  
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Figure 2.12 (cont’d) 

are dependent on one another. TCDD (Dioxin) influence is delineated by D, influence of liver 

rhythmicity is delineated by R, and influence of liver zonation (layers) are delineated Z. Models 

with no influence from either D, R, or Z are delineated as flat, F.B) Line plots of gene expression 

measured in normalized counts (see section 2.4.3). Each line is colored by layer and dose of 

TCDD (𝜇g/kg), or C) colored by hour after treatment and dose of TCDD. 

Looking at the distribution, I find that most genes are not influenced by any factors (Figure 2.13 

A). Class sizes for classes that don’t include the effect of TCDD agree with previous studies with 

more genes being zonated than rhythmic52. The largest multi-effect class with TCDD influence is 

Dx(Z+R) (Figure 2.11 A). When I look at the classification of TCDD canonical receptor, AhR, I 

find that it has a classification of Z+R (Figure 2.13 B). Furthermore, when I perform gene set 

enrichment analysis (GSEA) on Dx(Z+R) class, I find that it is enriched for many of the 

canonical pathways involved in TCDD liver response (Figure 2.13 C). I found that no genes were 

categorized to have dependence between all three factors (DxZxR). 
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Figure 2.13 Classification distributions and enrichment of TCDD toxicity pathways. A) Bar 

plot of the number of genes in each class for the top 15,000 HVGs. Heights represent the number 

of genes in each class. B) Bar plot of Shwarz weights for Ahr classification. The higher the 

Shwarz weight, the higher the likelihood Ahr belongs to a particular class. C) GSEA analysis of 

the Dx(Z+R) class of genes. Significance of a particular pathway on the y-axis is represented by 

its negative log adjusted p-value. The higher the value the more significant the pathway. The top 

10 most significant pathways are graphed. I use the above classification scheme to then 

investigate acute toxicity to rhythmic genes and zonal genes in the liver lobule. 
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2.2.4 Acute 2,3,7,8 Tetrachlorodibenzo-p-dioxin perturbation of rhythmic genes 

I first analyzed the impact of TCDD on a core set of circadian rhythm genes (Clock, Arntl, Per2, 

Cry1, Nr1d1, Npas2, Rorc). To do this I looked at gene classifications for each of the core 

circadian clock gene. All core circadian genes analyzed contained rhythmicity in their 

classification. The only genes classified as purely rhythmic were Arntl, Clock and Rorc (Figure 

2.14 A). When I looked closely at their expression, I found that Arntl and Clock exhibit 

significantly increased expression at 2 and 12 hours (p-value < 0.01 Mann-Whitney U-test) with 

TCDD treatment. This correlates with the saturation of TCDD response genes analyzed in 

section 2.2.1 and Figure 2.2 (Figure 2.14 B, C). Npas2, Per2, and Nr1d2 all were classified to 

have TCDD influence (Figure 2.15 A). I find that Per2 has significantly higher expression for all 

time points except 18 hours post treatment. Npas2 has significantly lower expression at timepoint 

2, 4 and 24. Finally, Nr1d2 exhibits significantly higher expression at time point 2 and 4, but 

significantly lower at time point 12. Cry1 was classified as zonal and rhythmic, which is 

corroborated by previous studies52. However, I note that the second highest classification of Cry1 

implies TCDD influence which can be seen at time points 18 and 24 (Figure 2.15 A, B).  



 

34 

 

 

Figure 2.14 Core circadian clock genes classified as only rhythmic. A) Bar plots of Shwarz 

weights for gene classification of Arntl, Clock, and Rorc. B) Line plots of gene expression for 

Arntl, Clock, and Rorc graphed with respect to hours after treatment and colored by dose of 

treatment of TCDD. C) Violin plots plotting the distribution of expression for each treatment 

condition at each timepoint, with p-value differences described with *’s. ** is 0.001 < p-value < 

0.01 and * 0.01 < p-value < 0.05.   
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Figure 2.15 Core circadian clock genes classified as having multiple effects. A) Bar plots of 

Shwarz weights for gene classification for Npas2, Nr1d2, Per2, and Cry1. B) Line plots of gene  
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Figure 2.15 (cont’d) 

expression for Npas2, Nr1d1, Per2, and Cry1 graphed with respect to hours after treatment and 

colored by dose of treatment of TCDD. C) Violin plots of Npas2, Nr1d1, Per2, and Cry1 plotting 

the distribution of expression for each treatment condition at each timepoint, with p-value 

differences described with *’s. ** is 0.001 < p-value < 0.01 and * 0.01 < p-value < 0.05. 

I next looked at the impact of TCDD on rhythmic genes in DxR and Dx(R+Z) classes by first 

trying to see if TCDD has induced or removed rhythmicity from a gene (see section 2.4.5). To 

investigate whether a gene has gained or lost rhythmicity with TCDD treatment, I use the 

likelihood ratio test (see section 2.4.6). Here I compare whether the expression of a gene better 

fits a rhythmic or non-rhythmic (flat) model. Genes that fit rhythmic model in control but fit flat 

model in treatment are classified to have lost rhythmicity. Genes that fit a flat expression model 

in control but fit a rhythmic expression model in treatment are classified to have gained 

rhythmicity. If the gene fits a rhythmic model in both treated and control conditions, they are 

classified to have kept rhythmicity. Looking at the distribution of genes in the TCDD influenced 

rhythmic classes, I see that 13% of genes have gained rhythmicity, while 21% of genes have lost 

rhythmicity (Figure 2.16 A). When I perform GSEA on genes that lost rhythmicity, I find 

hallmarks of TCDD gene expression response such as “Metabolism by CYP450” and “Chemical 

Carcinogenesis” (Figure 2.16 B)79. When I perform GSEA on genes that have gained 

rhythmicity, I find another hallmark of TCDD expression response, retinol metabolism (Figure 

2.16 B)80.  
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Figure 2.16 Analysis of gain/loss of rhythmicity for TCDD influenced rhythmic genes. A) A 

total of 1072 genes that were classified to be influenced by rhythm and TCDD were analyzed as 

to whether they had gained, or lost rhythmicity based on the likelihood ratio test. A bar plot of 

the proportion of genes analyzed colored by whether they lost (in orange) or gained rhythmicity 

(in blue). B) GSEA analysis of gene sets for genes that gained and lost rhythmicity. Significance 

of a particular pathway on the y-axis is represented by its negative log adjusted p-value. The 

higher the value the more significant the pathway. The top 10 most significant pathways are 

graphed unless fewer than 10 pathways were significant. 

Looking at the remaining genes that kept rhythmicity, I did analysis on how TCDD impacted the 

properties of their rhythm. In this case I analyzed the amplitudes and phases of the genes and 

how they changed with TCDD treatment. When analyzing the core circadian clock genes, I only 

see small changes in the phase and amplitude of genes (Figure 2.17 B). When looking across all 
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genes that kept rhythmicity, I similarly see that there are no major trends reflecting a delay in 

phase or reduction of amplitude (Figure 2.17 C). When looking at whether the magnitude of the 

genetic change with respect to TCDD treatment had a correlation with magnitude of the change 

of phase or amplitude to TCDD treatment, I found a weak correlation (Figure 2.15 D). 
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Figure 2.17 Analysis of rhythmic parameters for TCDD influenced rhythmic genes. A) 

Schematic and equations describing phase and amplitude of gene’s expression. B) Bar plot of 

core circadian clock genes (Arntl, Clock, Per2, Cry1, Npas2, Nr1d2, and Rorc) and their 

respective phase and amplitude in each treatment group. Phase is measured in radians, and  
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Figure 2.17 (cont’d) 

amplitude is measured in normalized counts. C) Violin plot of all genes that kept their 

rhythmicity’s rhythmic parameters. D) Regression plot of the magnitude of change of phase or 

amplitude vs. the magnitude of the mean log fold change in expression with respect to treatment. 

Each point represents a single gene. 

2.2.5 Acute 2,3,7,8 Tetrachlorodibenzo-p-dioxin perturbation of zonal genes 

Zonation is primarily determined by the Wnt/𝛽-catenin pathway81 and influenced by the Ras 

pathway and hypoxia pathways6. To investigate if TCDD influences these pathways in a 

meaningful way, I have taken a list of known targets of each pathway6,52,82 to see if they are 

enriched in TCDD influenced gene classes. I find that all zonation pathway targets are enriched 

in the Z+R class of genes. For Z+R’s TCDD influenced counterpart, Dx(Z+R), and the dual 

effect DxZ class, I find that all pathway targets except targets for down regulated by the Ras 

pathway were enriched (Figure 2.18). From this I conclude that the core pathways of zonation 

are impacted by acute TCDD treatment. 
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Figure 2.18 Enrichment analysis of zonation regulation pathways on all zonation gene 

classes. GSEA of pathways that regulate zonation (Wnt, Ras, and hypoxia pathways)6,67.  Both 

Z (Zonation) and Z + R (Zonation + Rhythmicity) represent zonated genes not affected by D 

(Dioxin). DxZ and Dx(Z+R) represent zonated genes affected by D. Significance of a particular 

pathway on the y-axis is represented by its negative log adjusted p-value. The higher the value 

the more significant the pathway.  

Similar to their rhythmic counterparts, I analyzed whether genes in the DxZ and Dx(Z+R) have 

either gained or lost zonation. Like with the rhythmic likelihood ratio test, I performed a zonated 

analogue (see section 2.4.5). I find that 18% of genes analyzed had gained zonation when treated 

with TCDD, and 13% of genes analyzed had lost their zonation with TCDD treatment (Figure 

2.19 A). When I performed GSEA on each of the groups, I found that UDP-

glucuronosyltransferase related pathways such as “Pentose and Glucoronate Interconversions” 
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were enriched in genes that lost zonation (Figure 2.19 B). I found no enriched pathways for the 

genes that gained zonation. Finally, when analyzing whether the genes that lost or gained 

zonation were more portally enriched or centrally enriched, I found that genes that lost zonation 

were more centrally enriched even when compared to background (p-value < 0.001 

Kolmogorov-Smirnov Test) (Figure 2.19 C). 
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Figure 2.19 Analysis of loss or gain of zonation based on TCDD treatment. A) Bar plot of 

proportion of 1059 TCDD influenced zonated genes. B) Enrichr83 analysis of genes that lost 

zonation with TCDD treatment. C) Stacked bar chart describing the distribution of zonated genes 

and in which zone of the liver lobule are those genes most highly expressed. Zonal location  
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Figure 2.19 (cont’d) 

based on the maximum expression of gene. Differences in distribution calculated using the two 

sample Kolmogorov-Smirnov test.   

Finally, looking at the genes that kept zonation, I looked at how TCDD impacted zonation 

parameters. For this I calculated the line of best fit for layer dependent expression of each gene. I 

call the slope of the line of best fit the gene’s “zonation slope”. I filtered out genes with centers 

of expression in the mid-lobular region, as they have a non-monotonic zonation pattern and thus 

are not linearly zonated. I found that linearly zonated genes that had larger magnitude log fold 

changes with respect to TCDD treatment also had larger magnitude changes in their zonation 

slope (Figure 2.20).  

 

Figure 2.20 Regression plot of TCDD induced log fold change vs. TCDD induced change in 

zonation. Each dot represents a zonated gene as determined by classification. Magnitude of 

change of the slope of the line best fit across liver layers is plotted versus the magnitude of the 

mean log fold change in expression of the gene.  

2.3 Discussion 

Analysis of drugs in the liver have often been limited by having to study the chronobiology and 

spatial zonation separately. In this chapter, I have taken previous results integrating 

chronobiology and spatial zonation in the liver and have extended them to account for chemical 

dependent influence. This remains important as how the liver reorganizes its metabolic functions 
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in response to toxic stimuli remains understudied. I show that even in acute situations, TCDD 

has a significant impact on both the rhythm and zonation of the liver. I show that AhR, TCDD’s 

canonical receptor, has zonal and rhythmic components to its expression, and that many effects 

of TCDD also have zonal and rhythmic components. 

Previous studies showed that sub-chronic treatment by TCDD at the same dose caused a large 

dampening effect on the amplitude, and a large shift in the core circadian clock66. While this isn’t 

true for acute perturbation, I still observe significant TCDD influence in nearly half of the core 

circadian clock genes I analyzed. This corroborates previous results that AhR directly impacts 

the core-circadian feedback loops66. Most genes in the core-circadian clock analyzed that were 

classified as impacted by TCDD were downstream CLOCK-ARNTL (e.g., Per2, and Nr1d2 

binding (with the single exception of Npas2). It has been shown in previous studies that AHR, 

ARNTL, and CLOCK colocalize on Per2 and Nr1d1, suggesting that AhR may interrupt normal 

CLOCK-ARNTL binding. Additionally, βNF-activated AhR has been shown to interact with 

ARNTL in Hepa1c1c7 cells impairing CLOCK-ARNTL heterodimer formation at E-boxes 

within the Per1 promoter84. Per1 was filtered out of the dataset due to low variance, however I 

see signs of Per1 inhibition in Per1’s cell normalized expression from time points 4-12 hours as 

well as 24 hours post TCDD treatment (Figure 2.21).  
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Figure 2.21 Time series expression of Per1. Cell normalized counts of Per1 plotted with 

respect to hours post oral gavage at ZT0 (6:00 AM). In blue (0 
𝜇𝑔

𝑘𝑔
 TCDD) are measurements 

from hepatocytes treated with just sesame oil vehicle. In orange are measurements from mice 

treated with 30 
𝜇𝑔

𝑘𝑔
 TCDD. Areas in shaded region represent a 95% confidence interval. 

TCDD’s overall effect on all rhythmic genes in the hepatocyte genome remains mixed. Most 

genes had modest effects on their expression at specific time-points. Additionally, the overall 

shape of the oscillations for genes that kept rhythmicity with treatment remained relatively 

constant. However, genes that gain or lose rhythmicity make up around 15% of all rhythmic 

genes. Additionally, GSEA results of the genes that lost rhythmicity had many of the hallmarks 

of TCDD gene expression response79,85. This suggests that TCDD ablates rhythmicity in many of 

the major pathways it targets. 
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TCDD also significantly impacts zonation pathways in the liver. TCDD alters the zonation of 

nearly a quarter of all zonated genes. Of those genes, around thirty percent of them have either 

gained or lost zonation. Genes that have lost zonation are enriched in phase II UDP- 

glucuronosyltransferase metabolism. Additionally, genes that have completely lost their zonation 

are enriched in the central liver of the liver lobule. This correlates with the central enrichment of 

AhR in the liver lobule59. 

Interestingly, I show that genes significantly affected by TCDD are enriched for targets of 

regulators of zonation pathways. This is potentially due to the cross talk between the Wnt/𝛽-

catenin signaling pathway70. Interestingly, much of this enrichment is in Dx(Z+R) class. The 

rhythmic component of this class has been hypothesized to be linked to Wnt signaling by non-

parenchymal cells in the pericentral zone52. Potentially, TCDD activation of AhR enriched in the 

central layer59 could cause perturbation to this signaling, and thus explain the observed 

perturbation to rhythmicity in these genes. Further analysis of the spatial and rhythmic effects of 

TCDD on non-parenchymal cells would be needed to confirm this hypothesis. 

Unanswered by my analysis is the exact role AhR plays in the perturbation of the spatial and 

rhythmic axes of the liver lobule. Are the effects I see on rhythmicity, for example, a result of 

TCDD activating AhR and AhR binding directly to cis-regulatory elements, or is this a more 

hierarchical effect? Is TCDD inducing changes to the core circadian clock, which in turn is 

inducing changes in the rhythmicity of other genes? Is a downstream effect of TCDD’s 

perturbation of rhythmicity the perturbation of zonation as many zonation regulators are also 

rhythmic? Or are the effects completely independent of one another? Is it different for different 

gene pathways?  One way to probe these questions in a high throughput manner is through cis-

regulatory binding analysis of AhR and its potential binding partners (ARNTL and ARNT) 

through technologies like ChIP-seq. The presence or absence of binding for each of these 

pathways could help delineate which pathways are directly perturbed by canonical AhR and 

which pathways are being perturbed by non-canonical TCDD toxicity pathways. 

The liver is a fantastically complex organ with a distinct space-time logic to its metabolic 

organization. Since the liver is central to the metabolism of many drugs, understanding how 

drugs impact this space-time logic may help to 1) describe how hepatocytes reorganize in 

response to chemical perturbation, and 2) how break down of this logic is related to liver injury. 

Here I present a methodology for analyzing the effects of chemical perturbations on zonation and 



 

48 

 

rhythmicity. The methodology can be extended to dose-response experiments via a change in the 

function describing the effect of chemical treatment. Additionally, the methodology can easily be 

applied to any snRNA-seq data set involving chemical perturbation of the liver. I envision 

pharmacologists and toxicologists utilizing the methodology described here to describe not only 

the impact that chemical have on particular pathways, but also how those impacted pathways 

figure into the overall metabolic compartmentalization of the liver. 

2.4 Methods 

2.4.1 Preprocessing of single-nuclei RNA-seq preprocessing 

Cholico et al72 performed clustering and cell type annotation of the dataset as described in 

previous lab studies79,86. All preprocessing was performed using the scanpy.pp pacakage87.  Raw 

counts were normalized to the median total cell count using the normalize_total. They were then 

log transformed with a pseudocount using the log1p function. I refer to counts normalized in this 

way as “normalized cell counts”. Highly variable genes were selected using the 

highly_variable_genes function.  

Filtering of cells first started with the removal of all non-parenchymal cell types so that I was 

only left with hepatocytes. Hepatocytes with fewer than 1,500 counts and 3 genes were removed 

from the dataset. Cells with fewer than 200 genes being expressed were also removed. Highly 

variable genes were selected using the highly_variable_genes function.  

2.4.2 Batch correction using scVI 

scVI29 was trained on the snRNA-seq data to perform batch correction on the data. To remove 

sample wise batch variance, I labeled all the cells in each biological sample and then used that 

label as input for the batch labels in scVI. I used default parameters were used for the structure 

and training the model which are shown in table 2.1 and 2.2 respectively.  
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Hyperparameter Value 

Latent dimension 30 

Number of layers 1 

Layer width 128 

Dropout rate 0.1 

Kullback-Leibler weight 5

∗ 10−5 

Gene expression 

distribution 

NB 

Latent distribution Normal 

Table 2.1 Hyperparameters for scVI’s variational autoencoder model. 

Hyperparameter Value 

Training epochs 46 

Learning rate 0.001 

Learning rate decay 10−6 

Optimizer Adam 

Optimizer epsilon 0.01 

 

Table 2.2 Hyperparameters for scVI’s variational autoencoder training. 

2.4.3 Layer calculations  

The latent space representation of the cell normalized counts was used as input into the Diffusion 

maps algorithm. Diffusion maps was calculated using the function diffmap from the scanpy.tl 

python package56. The second component of the diffusion maps representation was taken and 

then min-max scaled in order to generate the pseudo-space metric. The metric was oriented so 

that centrally enriched expression had the highest values and portally enriched expression had 

the lowest values. 

Cells were binned into five layers using the pseudo-space metric. Each bin represents a fifth of 

the pseudo-space trajectory (i.e., cells in bin 𝑖 have pseudo-dose values between 
𝑖−1

5
 and 

𝑖

5
). 

Counts from each treatment x time x layer combination were summed across all cells in then 
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normalized using the computeSumFactors function from the scran R package78. I call these 

pseudo-bulk normalized counts “Normalized Counts” in the manuscript. 

Genes were classified based on which layer they had maximum “Normalized Counts”. Genes 

that had maximum expression in layers 1 and 2 were considered portal. Genes that had maximum 

expression in layer 3 were considered mid-lobular. Genes that had maximum expression in layers 

4 and 5 were considered central. 

2.4.4 Design of Mixed Non-Linear Effects Models 

Mixed non-linear effects models (MNLEM) were deployed using the MixedLM class in 

statmodels python package88. In Table 2.3 I describe the individual terms for each factor: TCDD 

influence (D), rhythmicity (R), and zonation (Z). Equations for each class described in terms in 

Table 2.3 are described in Table 2.4.  

Term Effect Equation 

𝐷 D 
{
0 𝑖𝑓 𝑆𝑒𝑠𝑎𝑚𝑒 𝑂𝑖𝑙 𝐶𝑜𝑛𝑡𝑟𝑜𝑙

1 𝑖𝑓 𝑇𝐶𝐷𝐷 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
 

𝑅𝑆𝑖𝑛 R sin (𝜔𝑡) 

𝑅𝐶𝑜𝑠 R cos (𝜔𝑡) 

𝑍𝑃1 Z 𝑙 

𝑍𝑃2 Z 3𝑙2

2
 

Table 2.3 Terms for mixed linear effects models. Each term is denoted by its name and its 

effect. D is TCDD (Dioxin) Influence, R is rhythmicity, and Z is zonation. 𝑡 is the time in hours 

after treatment. 𝑙 is the layer the of the liver lobule. 𝜔 is the conversion factor between 𝑡 and 

radians which is equal to 
𝜋

12
.  
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Class Equation for Model 

F 𝑦 = 𝛽0 

D 𝑦 = 𝛽0 + 𝛽1𝐷 

R 𝑦 = 𝛽0 + 𝛽1𝑅𝑆𝑖𝑛 + 𝛽2𝑅𝐶𝑜𝑠 

Z 𝑦 = 𝛽0 + 𝛽1𝑍𝑃1 + 𝛽2𝑍𝑃2  

Z+R 𝑦 = 𝛽0 + 𝛽1𝑅𝑆𝑖𝑛 + 𝛽2𝑅𝐶𝑜𝑠 + 𝛽3𝑍𝑃1 + 𝛽4𝑍𝑃2 

RxZ 𝑦 = 𝛽0 + (𝛽1𝑅𝑆𝑖𝑛 + 𝛽2𝑅𝐶𝑜𝑠 ) ∗ (𝛽3𝑍𝑃1 + 𝛽4𝑍𝑃2) 

DxR 𝑦 = 𝛽0 + 𝛽1𝐷 ∗ (𝛽2𝑅𝑆𝑖𝑛 + 𝛽3𝑅𝐶𝑜𝑠) 

DxZ 𝑦 = 𝛽0 + 𝛽1𝐷 ∗ (𝛽2𝑍𝑃1 + 𝛽3𝑍𝑃2) 

Dx(Z+R) 𝑦 = 𝛽0 + 𝛽1𝐷 ∗ (𝛽2𝑅𝑆𝑖𝑛 + 𝛽3𝑅𝐶𝑜𝑠 + 𝛽4𝑍𝑃1 + 𝛽4𝑍𝑃2) 

DxZxR 𝑦 = 𝛽0 + 𝛽1𝐷 ∗ (𝛽2𝑅𝑆𝑖𝑛 + 𝛽3𝑅𝐶𝑜𝑠 ) ∗ (𝛽4𝑍𝑃1 + 𝛽5𝑍𝑃2) 

Table 2.4 Equations for each mixed non-linear effects model used for classification. Each 

term is denoted by its name and its effect. D is TCDD (Dioxin) Influence, R is rhythmicity, and Z 

is zonation. 𝑦 represents the predicted gene expression. 𝛽 represents the associated gene weight. 

All other terms such as 𝑅𝑆𝑖𝑛 and 𝑍𝑃1 are defined in Table 2.3. 

Implementation of the MNLEM was almost identical to Droin and Kholtei et al52. These 

equations were fit to normalized count of each individual gene using the Nelder-Mead 

optimization algorithm89. A noise offset (σ0 = 0.15) was added to the data to make sure that 

overfitting was avoided. Equations with the smallest overall Bayesian information criterion90 

(BIC) were classified with their corresponding class. BIC acts as a general multi-comparison 

analogue to the likelihood ratio (𝜒2) test as it penalizes more complex models. The exception to 

classifying with models that have the smallest BIC were when models tied with one another. I 

defined a tie as having a relative difference of 1%. In the case of ties, models with fewer 

parameters were selected.  

Bar graphs of classification were calculated using Shwarz weights. Shwarz weights are 

calculated using differences between the BIC values and the minimum BIC value in across all 

models (𝐵𝐼𝐶𝑀𝑖𝑛) using the following equation: 

𝑠ℎ𝑤𝑎𝑟𝑧 𝑤𝑒𝑖𝑔ℎ𝑡 =  
exp

𝐵𝐼𝐶𝑖 − 𝐵𝐼𝐶𝑀𝑖𝑛

2
Σ𝑖=0

𝑛 (𝐵𝐼𝐶𝑖 − 𝐵𝐼𝐶𝑀𝑖𝑛)
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2.4.5 Differential Rhythmicity and Zonation 

To perform differential rhythmicity and zonation analysis, I fit gene expression to models much 

like what I did in section 2.4.5. However instead of using Nelder-Mead, I used ordinary least 

squares with the ols function from the statsmodels.api python package. For each gene, I 

separated expression values between treated and control. These groups of expression values were 

then fitted either to the R class model or F class model (see table 2.4 for description of functions) 

in the case of differential rhythmicity or the Z class model or F class model in differential 

zonation. To see if the R or Z class models were more descriptive of gene expression, I used the 

likelihood ratio test (also called the 𝜒2 test). Models that were gene expression that was 

significantly better explained by the R model was said to have rhythmicity (the same goes for 

zonation and the Z model).  The likelihood ratio test was implemented using the chi2 function 

from the scipy.stats python package. 

I estimated rhythmicity parameters from the fitted parameters in R models. If I let 𝑎 = 𝛽1 and 

𝑏 = β2 then I can calculate the amplitude of the expression oscillation as: 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = √𝑎2 + 𝑏2 

And I can define the phase as: 

𝑝ℎ𝑎𝑠𝑒 = 𝑎𝑡𝑎𝑛2(𝑏, 𝑎) 

Linear zonation slope was calculated for all zonal genes that kept zonation post TCDD treatment 

and were not mid-lobular. To calculate zonation slope I fit a simpler zonation model than the one 

in table 2.4: 

𝑦 = 𝛽0 + 𝛽1𝑙 

I fit this model much in the same way I did above during differential zonation. The zonation 

slope was equal to 𝛽1. The procedure was similar to how one would find the line of best fit. 

2.4.6 Statistical Tests 

I determined differential expression between treatments and parameter values using the Mann-

Whitney U-test using the function mannwhitneyu.  To determine if there were differences 

between the distribution of gene zones between gene lists, I used the Kolmogorov-Smirnov test 

implemented in the ks_2samp function. All functions used for evaluating statistical significance 

were in the scipy. stats python package91. Gene set enrichment analysis was performed using 

Enrichr83 pathway analysis with in the gseapy package92. All significant pathways had an FDR < 

0.2. 
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CHAPTER 3  
PREDICTION OF SINGLE DOSE CHEMICAL PERTURBATIONS ACROSS CELL 

STATES USING VARIATIONAL AUTOENCODERS 

 3.1 Introduction 

The problem I aim to tackle in this chapter of the thesis is generalizing chemical responses across 

cell types. More formally, given that I know the response for some chemical 𝑋 in cell types 𝐴 

and 𝐵, can I then use that information to accurately predict the response for the same chemical in 

a third cell type 𝐶? This is an important but challenging task in pharmacology and toxicology. 

Biological context makes the physiological response to chemical perturbation unique for 

different cell types. Thus, the information about the responses in cell types 𝐴 and 𝐵 may not be 

directly applicable to the response in cell type 𝐶. As a result, toxicologists require a great deal of 

information across biological systems to make assessments about the safety of a particular drug 

or chemical. A technology that could help address this problem is single-cell RNA-Seq (scRNA-

seq). Perturbational scRNA-seq can measure the chemical responses of tens of thousands of 

individual cells across thousands of genes93. As a result, I can start to map the transcriptomic 

space of chemical perturbations at the single cell level. However, even with advances like the 

Mix-Seq protocol94 or comprehensive datasets like Sciplex95, scientists have only explored a 

small portion of the cell type x chemical perturbation space. Given this challenge, computational 

biologists have attempted to leverage large datasets to predict chemical perturbations in a variety 

of biological contexts96. Specifically, a number of deep generative modeling tools have been 

developed to predict chemical perturbations across cell types30,33,41,97,98. Such models have the 

potential to quantitatively map relevant portions of the cell type x chemical perturbation space 

using a relatively small amount of data.  

The first use of deep generative modeling in the prediction of chemical perturbations was 

scGen30, a variational autoencoder that performed dimensionality reduction by encoding scRNA-

seq data into a latent space. It then used linear vector arithmetic to predict the state of virtual 

cells in the latent space, and finally decoded the virtual cells back to the full gene expression 

space. Alternative approaches have also been described in the literature. For example, 

scPreGan98 is a generative adversarial network which utilizes a generator-discriminator 

framework to predict the distributions of the unknown perturbed cell type. Another alternative is 

CellOT97, which is an autoencoder framework that utilizes optimal transport to predict cell type-

specific perturbation.  However, I find existing approaches perform poorly when approximating 
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perturbations in in vivo experiments.  More specifically, when used to predict the in vivo 

expression of cell-type dependent differentially expressed genes (DEGs), they are unable to 

approximate the expression means accurately. As such, there is a need for models that can 

predicts the chemical perturbation of cell type specific responder genes appropriately. 

Here I propose single cell Variational Inference of Dose-Response (scVIDR), a regression-

based improvement to the scGen model (Figure 3.1). scVIDR boosts prediction accuracy for cell 

type specific differentially expressed genes (DEGs). Additionally, scVIDR approximates high-

dose experiments better than other state of the art algorithms. The model accomplishes this 

across several datasets including mouse liver cells treated with 30 𝜇g/kg TCDD sub-chronically 

(Nault et al)79,86, PBMCs treated with IFN-𝛽 (Kang et al) 99, and different mammalian species 

treated with LPS6 (Hagai et al)100. 

 

Figure 3.1 Schematic of scVIDR for prediction of a single dose for some unknown cell type. 

Outline of the scVIDR model for expression prediction for unknown single dose-response in cell 

type 3. Training is done using cell types 1 and 2 as input to a variational autoencoder model. The 

difference between the means of latent representations of the control and treated groups, 𝛿1 and 

𝛿2, are used as input into a linear regression model, which then predicts the unknown 𝛿3 of cell  
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Figure 3.1 (cont’d) 

type 3. I then use the decoder portion of the model to output the latent space predictions back 

into gene expression space. 

 3.2 Results 

 3.2.1 Description of scGen training and prediction 

I begin by considering a scRNA-seq dataset 𝑋 = {𝑥𝑖}𝑖=1
𝑁  consisting of 𝑁 cells, where 𝑥𝑖 

represents the expression profile of cell 𝑖. I assume that gene expression is generated by some 

continuous random process involving a lower dimensional random variable 𝑧. The generative 

process that describes the mapping from 𝑧 to 𝑋 is given by the probability distribution, 𝑝𝜃(𝑋|𝑧) . 

Thus, given that I know 𝑋 and not 𝑧, I would like to approximate the probability distribution that 

maps 𝑋 to 𝑧, 𝑝𝜃(𝑧|𝑋). Since calculating 𝑝𝜃(𝑧|𝑋) is usually intractable, I use a neural network, 

the encoder, to approximate it using a different Gaussian distribution, 𝑞𝜙(𝑧|𝑋). To map values 

back from 𝑧 to 𝑋, I use a second neural network, the decoder, to approximate 𝑝𝜃(𝑋|𝑧). In 

practice, both the encoder and decoder are trained together to minimize the reconstruction error 

of the decoder and the difference between the prior distribution and the encoder distribution (see 

section 3.4.1 for full mathematical description).  

I characterize whether a cell has been treated with a set concentration of the chemical of interest 

with the indicator variable 𝑡 (Figure 3.1 A). I set 𝑡 = 1 for cells that have been treated with the 

chemical (treatment) and 𝑡 = 0  for cells that have not been treated (control). A dataset contains 

𝑐 cell types within both the 𝑡 = 0 and 𝑡 = 1 groups. Each time a model is evaluated, one treated 

cell type is withheld from training and used in evaluation. In standard VAE vector arithmetic 

(scGen) the latent space representation of the perturbation of some cell type 𝐴 is approximated 

by 

 �̂�𝑖,𝐴,𝑡=1 = 𝑧𝑖,𝐴,𝑡=0 + 𝛿 

where 𝑧𝑖,𝐴,𝑡=0 is the latent gene expression representations of cell type 𝐴,30 and 𝛿 is the 

difference between the centroids of the treated and control training groups in the latent space. 

scGen is described as a fixed model98, meaning that 𝛿 is not conditional on the cell type, i.e.  it 

assumes that perturbations in the latent space are consistent across all cell types. While this may 

hold for datasets with conserved responses30, in datasets with more heterogenous tissues I find 

that perturbations in the latent space are not consistent across cell types. Thus, scGen is not 
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effective for chemical perturbation prediction when evaluating responses across highly distinct 

cell types. 

 3.2.2 scGen’s 𝜹 deviates greatly from cell specific differences when outlier cell types are 

present. 

The scGen model assumes that perturbations on the latent space are similar in magnitude and 

direction. To define what I mean by this, I first need to define a cell specific perturbation vector 

𝛿, 𝛿𝑐. I define the difference between the latent centroids of the treated (t = 1) and control (t = 0) 

groups for a particular cell type A as 𝛿𝑐=𝐴 or as: 

𝛿𝑐 =  𝑧�̅�=𝐴,𝑡=1  − 𝑧�̅�=𝐴,𝑡=0 

where 𝑧̅ is the average on the latent space. 

 I calculated 𝛿𝑐 using a model trained on a snRNA-seq dataset of livers from mice gavaged with 

30 𝜇g/kg TCDD sub-chronically (Nault et al)79.  A UMAP projection of the data can be seen in 

Figure 3.2, where I can observe by eye that perturbations on individual cell types differ 

significantly. However, since UMAP only preserves local rather than global distances, I need a 

more formal way of examining the data. 

 

Figure 3.2 UMAP projection of snRNA-seq data from TCDD-perturbed mouse livers. 

UMAP is performed on normalized gene expression of each cell. Individual points represent  
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Figure 3.2 (cont’d) 

UMAP of gene expression for individual liver cells. Cells are colored by cell type and dose 

(𝜇g/kg) of TCDD. 

I evaluate the assumptions of scGen more formally using a combination of dimensionality 

reduction that preserves global distances, and high dimensional metrics. In Figure 3.3A, I use 

PCA to show that 𝛿𝑐 for many of the cell types in the dataset deviate significantly from 𝛿𝑠𝑐𝐺𝑒𝑛. 

𝛿𝑠𝑐𝐺𝑒𝑛 is defined as the difference between the average of treated cell subtracted by the average 

of the control cells on the latent space of the scGen model. Specifically, 𝛿𝑠𝑐𝐺𝑒𝑛 has a higher 

overall magnitude than most other cell types except endothelial cells (Figure 3.3 B). To evaluate 

whether the directions for 𝛿𝑐 are consistent with 𝛿𝑠𝑐𝐺𝑒𝑛 I calculated the cosine distance between 

𝛿𝑠𝑐𝐺𝑒𝑛 and 𝛿𝑐, which showed that 𝛿𝑠𝑐𝐺𝑒𝑛 deviates significantly from all 𝛿𝑐 in terms of direction 

𝛿𝑠𝑐𝐺𝑒𝑛.  
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Figure 3.3 All δc s deviate from δscgen with respect to their direction across most cell types in 

the TCDD mouse liver snRNA-seq dataset. A) A PCA visualization of the calculated δc’s for a 

VAE trained on all cell types. Each arrow represents the calculated  𝛿 for a particular cell type B) 

Bar plots of the magnitude of the δ and other individual δc’s, and δc cosine distance from the δ.  
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Figure 3.3 (cont’d) 

A cosine distance of 0 represents a δc in the same direction as δ, of 1 represents a δc orthogonal 

to δ, and of 2 represent a δc in the opposite direction as δ. 

It is worth noting that outlier cell types could influence the calculation of 𝛿𝑠𝑐𝐺𝑒𝑛 since the latent 

space is highly sensitive to changes in the composition of the training set. Thus, if I were to take 

out endothelial cells and stellate cells from the analysis and retrain the model, it does not 

necessarily fix the issue of outliers influencing the relative magnitude and direction of 𝛿𝑠𝑐𝐺𝑒𝑛. 

Instead, their removal exaggerates other differences in the latent space during the process of 

dimensionality reduction whereby cholangiocytes become a major outlier (Figure 3.4). 

 

Figure 3.4 δc s deviation from δ with respect to their direction across most cell types is 

sensitive to training dataset. A PCA visualization of the calculated δc’s for a VAE trained on all 

cell types excluding endothelial cells and stellate cells. Each arrow represents the 𝛿𝑐 associated 

with a specific cell type. 

I conclude that a fixed model of 𝛿 cannot account for the full scope of heterogeneity that exists 

within many relevant toxicological datasets, and that the averaged 𝛿𝑠𝑐𝐺𝑒𝑛 is an inadequate way to 
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predict perturbations in the varied mouse liver cells. Instead of using a fixed 𝛿𝑠𝑐𝐺𝑒𝑛 I need a new 

𝛿 prediction method that conditions on the transcriptomic state of the control cells. To do this, I 

introduce a regression-based correction to the data in order to more accurately capture 𝛿𝑐. 

3.2.3 scVIDR better predicts cell specific differences on the latent space of mouse liver 

TCDD perturbation than scGen. 

When analyzing the latent space, I observed that the centroid of the control population for a 

particular cell type was predictive of 𝛿𝑐 (𝑅2 ≈ 0.9), which led me to hypothesize that 

information about the perturbations of each cell type on the latent space might be encoded in the 

location of the corresponding centroid. I took a simple approach of using 𝛿𝑐 using the centroids 

of each control population as input data. From this point forward I will refer to this method as 

scVIDR. 

scVIDR improved on scGen in terms of predicting cell type specific changes in gene expression 

(Figure 3.5 A).  scVIDR’s prediction, 𝛿𝑠𝑐𝑉𝐼𝐷𝑅, of 𝛿ℎ𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠−𝑝𝑜𝑟𝑡𝑎𝑙 is closer to the PCA 

projection than scGen’s prediction, 𝛿𝑠𝑐𝐺𝑒𝑛. Additionally, scVIDR better predicts the magnitude 

and direction of 𝛿ℎ𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠−𝑝𝑜𝑟𝑡𝑎𝑙 than scGen. I conclude from these observations on the latent 

space that scVIDR is a more viable way to infer 𝛿𝑐. 
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Figure 3.5 𝛅𝐬𝐜𝐆𝐞𝐧 deviates more from 𝛅𝐇𝐞𝐩𝐚𝐭𝐨𝐜𝐲𝐭𝐞𝐬−𝐩𝐨𝐫𝐭𝐚𝐥 than 𝛅𝐬𝐜𝐕𝐈𝐃𝐑 . A) A PCA 

visualizationof the calculated 𝛿𝑐’s for a VAE trained without portal hepatocytes. “scGen 

Hepatocytes – portal” refers to the prediction by scGen (𝛿𝑠𝑐𝐺𝑒𝑛), and “scVIDR Hepatocytes –  
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Figure 3.5 (cont’d) 

portal” refers to the prediction by scVIDR (𝛿𝑠𝑐𝑉𝐼𝐷𝑅). B) Bar plots of the magnitude of the 𝛿𝑐′𝑠, 

and the cosine distance from the 𝛿𝐻𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠−𝑝𝑜𝑟𝑡𝑎𝑙 for each 𝛿𝑐. A cosine distance of 0 

represents a 𝛿𝑐 in the same direction as 𝛿𝐻𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠−𝑝𝑜𝑟𝑡𝑎𝑙, of 1 represents a 𝛿𝑐 orthogonal to 

𝛿𝐻𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠−𝑝𝑜𝑟𝑡𝑎𝑙 and of 2 represent a 𝛿𝑐 in the opposite direction as 𝛿𝐻𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠−𝑝𝑜𝑟𝑡𝑎𝑙. 

scVIDR is equivalent to scGen when there is only one cell type in the training dataset (Figure 

3.6). This is because regression on the latent space of one cell type returns the 𝛿 of the entire 

dataset. 

 

Figure 3.6 scVIDR is equivalent to scGen when training on a single cell type. A) A UMAP 

projection of latent space of single-cell expression of two cell types from Kang et al99: CD4T and 

B cells. They are colored by cell type, condition and train test split. B) Validation of prediction of 

B-cell perturbation when the VAE is trained solely on CD4-T cells. A regression plot is shown 

for both scVIDR and scGen performance. Each point represents the mean expression of a 

particular gene. Red points represent the top ten differentially expressed genes. Shaded region 

around regression line represents the 95% confidence interval. A PCA plot of the predictions is 

displayed where each point represents an individual cell. Ground truth is in orange and the  
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Figure 3.6 (cont’d) 

control data is colored blue. Predictions by scGen and scVIDR are colored green and red 

respectively. 

 3.2.4 scVIDR predicts single-dose, single-cell perturbation expression better than other 

state-of-the-art algorithms. 

I next evaluated scVIDR by comparing its ability to predict changes in gene expression in the 

mouse liver dataset with other state-of-the-art algorithms. Our training set (Figure 3.7A) 

consisted of all control and TCDD-treated cell types except for TCDD-treated portal hepatocytes 

which were used for model evaluation. I compared the performance of scGen30, scPreGAN98, 

CellOT97, and scVIDR on the top 5000 highly variable genes (HVGs), and the top 100 

differentially expressed genes (DEGs). When predicting the gene expression of portal 

hepatocytes, each method generated a set of virtual portal hepatocytes (Figure 3.7B). I then 

computed the average expression of each gene across all cells and compared the average gene 

expression in predicted cells versus cells derived from snRNA-seq experiments. Across HVGs, 

the scVIDR model yielded an average 𝑅2 of 0.92 (Figure 3.7C). Across DEGs, scVIDR 

produced an average 𝑅2 of 0.81 (Figure 3.7C). Continuing the evaluation across all cell types 

(Figure 3.7D), leaving out one cell type perturbation at a time as described above for portal 

hepatocytes, our model outperformed all other models (with p-value < 0.001, one sided Mann-

Whitney U Test) both when evaluated on HVGs and DEGs. 
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Figure 3.7 Prediction of in vivo single cell gene expression of portal hepatocytes from mice 

treated with 30 𝛍g/kg of TCDD. A) UMAP projection of the latent space representation of 

scVIDR for control and treated single-cell gene expression. In  A) each cell type and dose in  
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Figure 3.7 (cont’d) 

𝜇g/kg combination, and by the train-test split for model training is represented by different 

colors. In the example in the figure, TCDD-treated portal hepatocytes were used as a test set. B) 

PCA plots of predicted portal hepatocytes responses following treatment with 30 μg/kg of TCDD 

using scGen30, scVIDR, scPreGAN98, and CellOT97. C) Regression plots of each model. Each 

point represents the mean expression of a particular gene. Red points represent the top ten 

differentially expressed genes. Shaded region around regression line represents the 95% 

confidence interval.  D) Boxplot of 𝑅2 for prediction across all liver cell types treated with 30 

μg/kg of TCDD.  Calculation of the mean 𝑅2 across all highly variable genes (blue). Calculation 

of the mean 𝑅2 across the top 100 differentially expressed highly variable genes (orange). 

Prediction performance distributions were compared using one sided Mann-Whitney U test. **** 

indicates p-values < 0.001. 

I further evaluated scVIDR on an additional dataset of IFN𝛽-treated PBMC 87. A similar 

benchmark was performed as before (Figure 3.8), however instead of using the top 5000 highly 

variable genes, I used the top 6998 genes to be consistent across models compared. For this 

dataset, 𝑡  =  1 labels PBMCs treated with 100 U/ml IFN-𝛽 , 𝑡  =  0 for untreated PBMCs. The 

left-out cell type being predicted is B cells (Figure 3.7A). Across HVGs, the models yielded 𝑅2 

values of 0.97, 0.92, 0.77 and 0.66 and across DEGs, and 𝑅2 values of 0.96, 0.86, 0.80, and 0.84 

for scVIDR, scGen, scPreGAN, and CellOT respectively (Figure 3.7C). When accuracy was 

assessed for all cell types, scVIDR significantly outperformed all other models (Figure 3.8D). 
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Figure 3.8 Prediction of in vitro response of B cells to IFN𝛃. A) UMAP projection of latent 

space of scVIDR for treated and untreated single-cell expression. UMAP plots are colored by  
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Figure 3.8 (cont’d) 

cell type, training split, and condition, respectively. B) PCA plot of scGen, scVIDR, scPreGAN, 

and CellOT predictions of B-cell expression after IFN𝛽 treatment. C) scGen, scVIDR, 

scPreGAN, and CellOT prediction versus experimental expression data regression plot. Each 

point represents the mean expression for a particular gene. Red points represent the top ten 

differentially expressed genes. Shaded region around regression line represents the 95% 

confidence interval. D) Boxplot of 𝑅2 scores across all tissues in the PBMC treated dataset. 

Prediction of all highly variable genes (blue), and top 100 differentially expressed genes 

(orange). Prediction performance distributions were compared using one sided Mann-Whitney U 

test. **** indicates p-values < 0.001. 

To make sure that scVIDR is predicting unknown physiologies in chemical perturbations, I 

performed an additional experiment on IFN𝛽 treated B-cells by selecting a subset of genes 

unique to IFN𝛽 response of B-cells. To do this I take the set of DEGs unique to B-cells (Figure 

3.9A). I show in Figure 3.9B that scVIDR consistently outperforms other models at predicting 

the gene expression means across all unique DEGs. 
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Figure 3.9 Evaluating scVIDR on differentially expressed genes unique to B-cells. A) A Venn 

diagram of the set of all top 100 differentially expressed genes (DEGs) for each cell type in the 

IFN𝛽 treated PBMC dataset. Overlap between the top 100 differentially expressed gene in B- 
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Figure 3.9 (cont’d) 

cells and the set of all top 100 differentially expressed genes in all other cell types is shown. B) 

Regression plots of predictions of the differentially expressed genes unique to B-cells (red 

portion of panel A). Each point represents the mean expression for a particular gene.  Shaded 

region represents the 95% confidence interval.  

 3.2.5 scVIDR predicts rat phagocyte perturbation by LPS6 better than all other state of 

the art algorithms. 

Next, I extend the idea of predicting chemical perturbations across cell types to cross-species 

predictions. The index 𝑐 in 𝛿𝑐 now refers to the species that the cells came from rather than 

individual cell type. I also attempt to account for species differences in the same way that I try to 

correct for cell type differences using scVIDR.   

I benchmark this potential for scVIDR on a dataset from Hagai et al100, where mononuclear 

phagocytes were harvested from four different mammal species (rat, pig, mouse, and rabbit). 𝑡  =

 1 refers to phagocytes treated with 100 n𝑔/ml IFN-𝛽 , and 𝑡  =  0 for phagocytes treated with 

control, and the left-out species I want to predict are rats (Figure 3.10A).  I see that scVIDR still 

outperforms all other algorithms at predicting perturbation of rat phagocytes (Figure 3.10B, C), 

with a correlation of 𝑅2 = 0.92 for HVGs, and an 𝑅2 = 0.76 for highly variable genes. I observe 

that while the predictions are more accurate for scVIDR, it still has difficulty predicting the 
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DEGs for rats.

 

Figure 3.10 scVIDR predicts the effects of LPS6 on rat cells from mouse, rabbit, and pig 

cells better than other state-of-the-art algorithms. A) UMAP projection of latent space of 

scVIDR for treated and untreated single-cell gene expression. UMAP plots are colored by 

species, training split, and treatment condition, respectively. B) PCA plot of scGen, scVIDR, 

scPreGAN, and CellOT predictions of rat phagocytes after LPS6 treatment. C) scGen, scVIDR, 

scPreGAN, and CellOT prediction versus experimental expression data regression plot. Each 

point represents the mean expression for a particular gene. Red points represent the top ten 

differentially expressed genes. Shaded region around regression line represents the 95% 

confidence interval. 

 3.3 Discussion 

I have demonstrated several cases where scVIDR can predict single-dose chemical perturbations 

in scRNA-seq data. First, I establish that scGen is an inadequate algorithm for prediction of 

highly heterogenous tissues. Then I show how to improve scGen using regression to predict the 
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effect in a more cell-type specific way using an algorithm I developed, scVIDR. I then utilized 

scVIDR to predict chemical perturbations in three different scenarios.  In the first scenario, I 

predict TCDD-induced perturbation in mouse liver cells. In the second where I predict IFN𝛽 

stimulation of PBMCs. In the third scenario, I predict LPS6-induced chemical perturbation of 

phagocytes derived from rats. In every case, scVIDR outperforms all other algorithms. 

A question that arises is why scGen and scVIDR both perform better on the PBMC dataset (Kang 

et al)99 than the rat phagocyte (Hagai et al)100 and mouse liver datasets (Nault et al)79. I 

hypothesize that this is in part due to inter-cell-type overlap in the responses. I quantify this by 

looking at the overlap in the top 100 DEGs across all cells or species in the dataset. I observe 

there is much higher average overlap DEGs between the in the Kang et al dataset than in all other 

datasets (Figure 3.11). This makes intuitive sense given that datasets with similar cell-type 

responses will have more overlap and thus will be easier to predict for the VAE. I show that 

while this is an overall limitation in the VAE paradigm, scVIDR is more robust this limitation 

than scGen (see Sections 3.2.4 and 3.2.5). 
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Figure 3.11 Overlap between differentially expressed genes reflects scVIDR prediction 

performance across datasets. A-C) Heatmaps of Jaccard similarity between top 100 DEGs for 

each pair of cells in each dataset. A) is the IFN-𝛽 treated PBMCs by Kang et al.99 , B) TCDD 

Mouse liver from Nault et al.79  C) is the LPS6 treated phagocytes by Hagai et al.100 D) Boxplot 

of 𝑅2 regression values for top 100 DEGs by scVIDR for each study in chapter 3. 
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However, DEG similarities do not completely explain why within datasets, there are differences 

in predictions between certain cell types.  For example, the endothelial cell group, while having 

the smallest average overlap, has the second highest prediction scores in the Nault et al dataset 

(Figure 3.12A, D). Likewise, in the TCDD dataset, scVIDR performed better on the cell types 

most sensitive to TCDD, e.g., hepatocytes and endothelial cells (Figure 3.12B). When looking at 

cell types less sensitive to TCDD (e.g., cholangiocytes and stellate cells), the model often 

underestimated the expression of differentially expressed genes (Figure 3.12E). This is likely a 

result of a combination of factors including the similarity of the treatment to the control data 

(Figure 3.12B), smaller control cell populations (Figure 3.12C), and the overall low expression 

of highly variable genes (Figure 3.12E).  Thus, I believe the VAE has less information to predict 

differential gene expression for these cell types. Additional control data for more rare 

subpopulations could help alleviate the prediction inaccuracy. 
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Figure 3.12 Impact of differential expression overlap, latent perturbation magnitude, 

control population size on overall model performance. A) Average Jaccard similarity for each  
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Figure 3.12 (cont’d) 

cell type in the Nault et al study79 B) Sinkhorn distance between the latent distributions of the 

control and 30 𝜇g/kg doses of TCDD of each cell type on the latent space. C) Bar plot of the 

control group cell population size for each cell type. D) Bar plot of mean gene 𝑅2 for each 

individual cell type when predicting only the 30 𝜇g/kg dose of TCDD. E) scVIDR prediction 

versus real expression regression plot of cholangiocytes and stellate cell from mice administered 

with a 30 𝜇g/kg dose of TCDD. Each point represents the mean expression of a gene. The top 10 

differentially expressed genes are represented with red points. Shaded region around regression 

line represents the 95% confidence interval. 

Mapping the combinatorial space of chemical perturbation is becoming more and more crucial as 

industrial practices and drug development accelerate the number of chemicals toxicologists need 

to evaluate for safety. Doing so experimentally is prohibitively expensive due to the sheer size of 

the chemical x dose perturbation space. Computational algorithms that can support current 

endeavors to do high throughput testing of chemical perturbations are needed now more than 

ever. I envision a future where technologies such as scVIDR can be applied to large single-cell 

chemical perturbation atlases to reduce the number of experiments needed to evaluate a drug or 

chemical. Not only does this represent a practical endpoint to technologies like scVIDR, but also 

an ethical one, as reduction of animal testing has become a high priority in the field of 

toxicology. Thus, I feel that this work is of immense significance to the fields of pharmacology 

and toxicology. 

3.4 Methods 

3.4.1 A mathematical description of variational autoencoders 

Variational Autoencoders28 aim to estimate the posterior probability function, 𝑝𝜃(𝑧|𝑋) of a latent 

process, 𝑧, given a set of observations, 𝑋. By Bayes theorem I can calculate the posterior 

probability: 

𝑝𝜃(𝑧|𝑋) =
𝑝(𝑋, 𝑧)

𝑝(𝑋)
 

However, calculating the posterior in this way is intractable due to the difficulty in computing the 

marginal distribution: 

𝑝(𝑋) = ∫𝑝(𝑋|𝑧)𝑝(𝑧)𝑑𝑧
𝑧
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Thus, I instead aim to approximate 𝑝𝜃(𝑧|𝑋) by minimizing the Kullback-Leibler (KL) 

divergence between 𝑝𝜃(𝑧|𝑋) and some gaussian distribution, 𝑞𝜙(𝑧|𝑋), whose parameters, 𝜙, are 

calculated by a neural network. This neural network is termed the encoder.  

I can calculate the KL divergence as: 

𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑋)||𝑝𝜃(𝑧|𝑋))   = 𝐸𝑧~𝑞 (𝑙𝑜𝑔
𝑞𝜙(𝑧|𝑋)

𝑝𝜃(𝑧|𝑋)
)   

Substituting 𝑝𝜃(𝑧|𝑋) with Bayes theorem and rearranging the terms: 

𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑋)||𝑝𝜃(𝑧|𝑋))   = log 𝑝𝜃(𝑋) −  𝐸𝑧~𝑞 (log
𝑝𝜃(𝑋,𝑧)

𝑞𝜙(𝑧|𝑋)
)     

The second term in the equation above is also known as the evidence lower bound, or ELBO. 

Since the KL divergence must be a positive value, I can minimize it by maximizing the ELBO. I 

can rewrite the ELBO as: 

𝐸𝑧~𝑞 (log
𝑝(𝑋, 𝑧)

𝑞𝜙(𝑧|𝑋)
) =  𝐸𝑧~𝑞 (log

𝑝𝜃(𝑋|𝑧)𝑝𝜃(𝑥)

𝑞𝜙(𝑧|𝑋)
) = 𝐸𝑧~𝑞(log 𝑝𝜃(𝑋|𝑧)) − 𝐸𝑧~𝑞 (log

𝑞𝜙(𝑧|𝑋)

𝑝𝜃(𝑧)
)  

Since the second term in the equation above is equivalent to the definition of the KL Divergence 

I can rewrite the ELBO as: 

𝐸𝑧~𝑞(log 𝑝𝜃(𝑋|𝑧)) − 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑋)||𝑝𝜃(𝑧)) 

The first term is known as the reconstruction error. This maximizes the likelihood that I will 

generate values from the latent space that match our observations. The second term is the KL 

divergence term, which is predicated by the KL divergence between the distribution estimated by 

the encoder and the prior distribution which is a standard normal multivariate distribution. This 

second term encourages structure in 𝑝(𝑧) as minimizing the difference between  𝑞𝜙(𝑧|𝑋) and, as 

a result, maximizing disentanglement in 𝑝(𝑧).  I can now construct our objective function, 

𝐿(𝜃, 𝜙),  as the following: 

𝐿(𝜃, 𝜙) =  −𝐸𝑧~𝑞(log 𝑝𝜃(𝑋|𝑧)) + 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑋)||𝑝𝜃(𝑧)) 

Unfortunately, naively trying to take the gradient with respect to 𝜙 to minimize this function will 

result in highly variable gradients and thus variable training results. To fix this I instead utilize 

the reparameterization trick, where I sample from the latent space such that 𝑧 is deterministic 

with respect to some noise variable, 𝜖 ~ 𝑁(0, 𝐼), or: 

𝑧𝑖 = 𝜇𝜙 + Σ
𝜙

1
2 ⋅ 𝜖 

Where, 𝜇 is the mean vector and Σ is the covariance matrix of the inferred distribution. 
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3.4.2 Single cell expression datasets and preprocessing for scVIDR. 

Data from Nault et al79 was collected and processed from raw count expression matrices. The 

cell expression vectors are normalized to the median total expression counts for each cell. The 

cell counts are then log transformed with a pseudo-count of 1. Finally, I select the top 5000 most 

highly variable genes to do our analysis on. The preprocessing was carried out using the 

scanpy.pp package using the normalize_total, log1p, and highly_variable functions87.  

The Nault of et al dataset79  comprised of single nuclei RNA-seq of C57BL6 of flash frozen 

mouse livers. Mice in this dataset were administered, sub-chronically, a specified dose of TCDD 

via oral gavage every 4 days for 28 days. In our analysis, all immune cell types were left out, as 

immune cells are known to migrate from the lymph to the liver during TCDD administration79. 

Thus, there is a small size for the immune cell populations in the low-dose datasets versus the 

high-dose. PBMC data from Kang et al99, Study B data from Zheng et al16, and species data from 

Hagai et al100,was accessed as a processed dataset from Lotfollahi et al30. 

When training scGen and scVIDR, batch effects are accounted for with the scvi.data package 

using the setup_anndata function29. Differential abundances of cells in different groups are 

accounted for by random sampling with replacement the same number of cells for each dose and 

random sampling without replacement the same number of cells for each cell type. 

3.4.3 Implementation and Training of Models 

All code in this manuscript is implemented in the Python programming language. The scVIDR 

model is built on the python package, scGen v. 2.0.030 which in turn is buil on the python 

pachakge scVI v. 0.13.029. I extend existing code bases to include linear regression on the latent 

space. 

Hyperparameters for the model and training are the default values selected by scGen v. 2.0.0. 

Table 3.1 outlines the model hyperparameters used in deploying scVIDR and scGen: 
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Hyperparameter Value 

Latent dimension 100 

Number of layers 2 

Layer width 800 

Dropout rate 0.2 

Kullback-Leibler weight 5

∗ 10−5 

Table 3.1 Hyperparameters for scVIDR’s and scGen’s variational autoencoder model. 

Table 3.2 outlines the training hyperparameters when deploying scVIDR and scGen: 

Hyperparameter Value 

Training epochs 100 

Learning rate 0.001 

Learning rate decay 10−6 

Optimizer Adam 

Optimizer epsilon 0.01 

Early stopping  True 

Early stopping patience 25 

Table 3.2 Hyperparameters for scVIDR’s and scGen’s training scheme. 

3.4.4 scVIDR calculation of �̂�𝒄 

If I want to estimate a 𝛿𝑐 for some type of cell type 𝐵 based on 𝑧�̅�=𝐵,𝑝=0 and where  𝑧�̅�=𝐵,𝑝=1 is 

unknown, I can approximate a function based on 𝑧�̅�=𝐵,𝑝=0, or: 

𝛿𝑐= 𝐵  = 𝑓(𝑧�̅�=𝐵,𝑝=0) 
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Where I approximate the above function using all other existing cell types in the dataset as input 

to ordinary least squares regression as implemented by the LinearRegression function in the 

sklearn.linear_model package101.   
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CHAPTER 4  
PREDICTION OF MULTIPLE DOSE CHEMICAL PERTURBATIONS ACROSS CELL 

STATES USING VARIATIONAL AUTO-ENCODERS 

4.1 Introduction 

In this chapter, I will examine the ability of models such as scVIDR to not only predict single 

dose chemical perturbations, but to interpolate response across unknown doses in the latent 

space. Here, as in the previous chapter, I have some unknown cell type 𝐶 whose response to a 

chemical is unknown. However, unlike the previous chapter, I am not only looking at a fixed 

dose of a particular chemical, but rather the spectrum of response that results from treatments at 

different levels of concentration. I refer to the cellular response to a specific concentration of a 

given chemical as the dose-response curve for that particular cell type. I will refer to the 

prediction of the response to multiple doses of a chemical as dose-response prediction. 

More formally, given that I know the dose-response for some cell types 𝐴 and 𝐵, can I predict 

the dose-response of 𝐶? I perform this task by extending the scVIDR model from chapter 3 to 

account for multiple doses. To do this I take the latent 𝛿𝑐 and interpolate on it log-linearly to 

predict doses between the lowest and highest measured in the dataset (Figure 4.1).  

 

Figure 4.1 Schematic of perturbation prediction across multiple doses in scVIDR. Outline of 

scVIDR for prediction of the unknown response to multiple doses for some unknown cell type. 

Log-linear interpolation on 𝛿 is used to predict dose dependent changes in gene expression in the 

latent space. The latent space representations are then projected back into gene expression space 

using the decoder. 
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To my knowledge there is only one other model in the literature that performs this particular 

task, the compositional perturbation autoencoder (CPA)41. CPA creates multiple autoencoders 

that the user can add together in a modular way to remove variation for multiple covariates (e.g., 

dose, time-point, cell type, etc.). As a result, the user can train a model on multiple covariates at 

the same time to create latent representations of each one. However, CPA requires a large amount 

of training data in order to create accurate latent spaces for each covariate. Our model, by 

comparison, requires much less data to make accurate predictions. In addition, CPA is based on a 

regular autoencoder framework, which unlike scVIDR’s VAE, encodes sparse representations of 

the latent space (i.e., the space between data points does not encode much information)102. This 

makes them less amenable to interpolation. VAEs by comparison learn using probability 

distributions, and better describe continuous trajectories in the data28. 

I evaluate the abilities of this model on two datasets. The first dataset is an extension of the 

TCDD mouse liver dataset described before, where instead of a single fixed dose of 30 𝜇g/kg 

TCDD, there are seven additional doses ranging from 10 ng/kg to 10 𝜇g/kg TCDD (Nault et al) 

86. I show that simply by interpolating on 𝛿𝑐 I can predict the unknown dose-responses for a wide 

range of chemicals. The second dataset is the Sciplex dataset (Srivatsan et al)95, which is 

comprised of three cancer cell lines (A549, MCF7, and K562) treated with four doses of 188 

drugs. I show that I can use scVIDR to predict the dose-response of thirty-seven different 

chemicals. 

In addition to the prediction of the response to multiple doses, I would also like to understand 

what genes are important in predicting the response for a particular drug. This would help 

validate the model when performing predictions. To do this I take advantage of the structure of 

the VAE to identify genes with the highest contribution to the dose-response according to 

scVIDR. 

Finally, when calculating the dose-response in single cell data, I encounter heterogeneity in 

individual cell responses to the same dose of a particular chemical, either due to the inherent 

stochasticity in transcription103, the chemical environment of the cell, or the internal state of the 

cell8,9. As a result, I would like a measure of how much a particular cell has responded 

transcriptionally to a chemical. I call the metric I have developed “pseudo-dose”. I show that 

pseudo-dose accurately describes the variation in the response to TCDD exhibited by 

hepatocytes across the liver lobule.  
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4.2 Results 

4.2.1 scVIDR accurately predicts the transcriptomic response for multiple doses across cell 

types. 

In this section I predict the response of liver cells to multiple doses of TCDD. Here, 𝑡 is equal to 

the magnitude of the perturbation, which in my case is equivalent to the dose. Thus, 𝑡 = 0 

represents expression at dose 0 and 𝑡 = 30 represents expression at dose 30, where the dose is in 

units of 𝜇g/kg for the Nault et al dataset86. As with the single-dose case, I train the model on the 

dose-response data for all cell types except one, for which only the 𝑡 = 0 condition is kept. I 

calculate the 𝛿𝑐 (equivalent to 𝛿𝑠𝑐𝑉𝐼𝐷𝑅 in section 3.2.2; see section 3.4.4) which is the estimated 

difference of means between the highest dose and the untreated groups. For scVIDR, 

intermediate doses are then calculated on the latent space by interpolating log-linearly on the �̂�𝑐. 

For scGen30, I log-linearly interpolate on 𝛿𝑠𝑐𝐺𝑒𝑛. Finally, those latent space representations are 

decoded back into gene expression space using the decoder portion of each of the models.  

I analyzed a mouse liver snRNA-seq from the Nault et al dataset86 that included 8 doses (p = 

[0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10, 30]) of TCDD and a control (p = 0) in 𝜇g/kg (Figure 4.2 A).  

scVIDR outperforms scGen in approximating expression across the dose-response of TCDD in 

mouse liver. I used the mean 𝑅2 score across all evaluated genes as my performance metric 

(Figure 4.2B). scVIDR significantly out-performed scGen at predicting HVGs and DEGs for 

doses > 0.3 𝜇g/kg (Mann-Whitney One-Sided U test p < 0.001). scVIDR predicts the important 

TCDD receptor repressor gene, Ahrr, at doses 1, 3, and 10 𝜇g/kg in portal hepatocytes better than 

scGen (Figure 4.2C). When predicting all other cell types (cholangiocytes, endothelial cells, 

stellate cells, central hepatocytes, portal hepatocytes, and portal fibroblasts) scVIDR 

significantly outperformed scGen only at the highest doses of 10 and 30 𝜇g/kg on prediction of 

all HVGs (Figure 4.2D). When predicting on just the DEGs, scVIDR significantly outperformed 

scGen for doses > 0.3 𝜇g/kg (Figure 4.2E).  
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Figure 4.2 Prediction of in vivo singe cell expression of the TCDD dose-response in portal 

hepatocytes from mouse liver tissue. A) UMAP projection for the latent space representation of 

single cell expression across TCDD dose-response. Cells are colored by dose (𝜇g/kg), cell type, 

and training split. Arrows on UMAP represent a 𝛿 calculated on UMAP space, with each  
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Figure 4.2 (cont’d) 

arrowhead representing a specific dose denoted by its color. B) Dose-response prediction for 

Ahrr using scVIDR, and scGen. The differences between the predicted and true distribution of 

Ahrr at each dose are measured via the Sinkhorn distance. C) Bar plots of the 𝑅2 of the gene 

expression means in portal hepatocytes for all highly variable genes and the top 100 

differentially expressed genes. D) Box plot of the distribution of 𝑅2 scores across all cell types in 

liver tissue. 

I used scVIDR to predict the effects of a test set of 37 drugs out of 188 treatments in the sci-Plex 

dose-response data95 at 24 hours for A549 cells (Figure 4.3).  scVIDR was trained on all data (all 

drugs and doses) in K562 and MCF7 cells. The model was also trained on the remaining 151 

drugs in A549 cells not used in validation, as well as the vehicle data for the 37 drugs in the test 

set (Figure 4.3A). The dose-response for the 37 drugs was predicted as above by first calculating 

the 𝛿𝐴549  between the control and highest dose for a particular drug and log linearly 

interpolating along the 𝛿𝐴549 in order to predict the intermediate doses.  I evaluated predictions 

made by scVIDR at the gene, drug, and drug pathway level. For the drug Belinostat, a histone 

deacetylase inhibitor, scVIDR improves on predictions of differentially expressed genes such as 

MALAT1 relative to scGen (Figure 4.3B).  When predicting gene expression of the DEGs in 

Belinostat treated A549 cells, scVIDR also significantly outperformed scGen on all doses 

(Figure 4.3C). On predicting the DEGs of all drugs with the same mode of action as Belinostat 

(Epigenetics), scVIDR similarly outperformed scGen on all doses (Figure 4.3D). Finally, when 

looking across all 37 drugs in the test dataset, I was able to predict the expression of DEGs 

significantly better than scGen on average for the 3 highest doses of 100, 1,000, 10,000 nM 

(Figure 4.3E).  
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Figure 4.3 Prediction of in vitro dose-response of A549 cells to different drug treatments. A) 

UMAP of the latent space of single-cell expression colored by cell type and dose (nM)  
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Figure 4.3 (cont’d) 

respectively. B) Prediction of the dose-response of MALAT1 in response to Belinostat treatment 

of A549 cells. The differences between the predicted and true distribution and of MALAT1 at 

each dose are measured via the Sinkhorn distance. C) Bar plot of prediction performance of the 

dose-response of Belinostat administered to A549 cells on the top 100 differentially expressed 

genes D) Boxplot of prediction performance of the top 100 differentially expressed genes for the 

A549 dose-response in all test dataset epigenetic pathway drugs. E) Boxplot of prediction 

performance of the top 100 differentially expressed for the A549 dose-response in all 37 test 

dataset drugs. 

4.2.2 More sophisticated models of dose-response interpolation do not improve cross cell 

type prediction when compared to log-linear interpolation. 

The dose-response is described by a sigmoid relationship between the concentration of the 

chemical of interest and the measured physiological response. Often when describing this 

relationship, pharmacologists and toxicologists use the Hill equation to model this relationship. 

However, as the Hill model has parameters that are usually unknown to us, I must fit the model 

to a dataset. As a result of the lack of information on parameters (e.g., EC50) for specific drugs 

in specific cell types, how well the model matches the true biology is difficult to validate. The 

same though process can be extended to a threshold model of response, where the sigmoid 

relationship is described by a log-linear response that starts at a specified dose rather than 0.  

More concretely, I can evaluate each of the interpolation functions based on whether they can 

predict intermediate doses more or less accurately across several drugs. I performed the 

following experiment, where I took five random drugs from Srivatsan et al dataset (TGX-221, 

Crizotinib (PF-02341066), Tranylcypromine (2-PCPA) HCl, XAV-939, and Decitabine) and 

predicted their dose-response in A549 cells using three different interpolation methods: Hill, 

threshold, and log-linear (explanation of models in section 4.4.3). I show in figure 4.4 that there 

is no statistical difference between the log-linear and either the threshold or the Hill model of 

interpolation. This suggests that calculation of 𝛿 has a much higher impact on the prediction 

accuracy than how I interpolate on said 𝛿.  
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Figure 4.4 Comparison of dose-response predictions for five drugs in A549 cells. Boxplot of 

the distribution of predictions made for five drugs (TGX-221, Crizotinib (PF-02341066), 

Tranylcypromine (2-PCPA) HCl, XAV-939, and Decitabine) in A549 cells at four different doses 

(nM). Log-linear model predictions of the dose-response are in blue, Hill models of the dose-

response are in orange, and threshold models of the dose-response are in green. 

4.2.3 Regression on the latent space infers the relationship between predicted gene 

expression and �̂�𝒄   

Insight into model decisions can provide information regarding proper model usage and pitfalls. 

It would be useful to identify which genes and pathways are associated with scVIDR’s 

prediction; however, standard VAEs do not have a linear map from the latent space to the gene 

expression and thus are hard to interpret. To interpret scVIDR’s predictions, I approximate the 

function of the decoder with linear regression (see section 4.4.4 for more extensive explanation). 

I take inspiration from the use of principal component analysis (PCA) in scSeq104 and the 

development of the linear decoded variational autoencoders (LDVAE)38. PCA is a linear 

transformation that projects the data onto a lower dimensional (latent) space while retaining as 
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much variance as possible. This transformation is represented by a linear weight matrix, 𝑊𝑝𝑐𝑎, 

with dimensions 𝑚 𝑥 𝑔 where 𝑚 is the number of latent variables, and 𝑔 is the number of genes. 

I can understand each principal component as a linear combination of genes. This allows us to 

assess the relationship between genes and a direction in latent space.  

In a VAE, the mapping from the latent space to the gene space is done by the decoder which, 

unlike the inverse of PCA, is non-linear. In LDVAEs, however, the decoder portion of the VAE is 

a linear regression layer and thus the weight matrix of this layer, 𝑊𝑙𝑑𝑣𝑎𝑒, describes a linear 

relationship between direction in the latent space and gene prediction38.  

However, interpretability comes at the expense of model accuracy. LDVAEs have higher 

reconstruction error than standard VAEs on single cell data38. Similarly, using PCA and vector 

arithmetic to predict scSeq perturbations performed poorly compared to scGen30. As a result, one 

would like to try and interpret the latent space of a standard VAE. I present an approach to 

interpret the VAE’s latent space using sparse regression. 

I take an alternative approach to LDVAEs in which I instead approximate the non-linear function 

of the decoder in a standard VAE using sparse linear regression (Figure 4.5A). Sparse regression 

methods like LIME have been used to interpret complex models105. I specifically use sparse 

linear ridge regression, given that each gene has a non-zero contribution to each latent variable 

and gene weights are distributed parsimoniously. This gives us a linear transformation matrix, 

�̂�𝑣𝑎𝑒, that approximates the function of the decoder. 
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Figure 4.5 Interrogation of VAE using ridge regression in portal hepatocyte prediction. A) 

Schematic of calculating latent dimension weights using ridge regression. B) Bar plot of top 20 

genes with the highest scVIDR genes scores. C) Enrichr analysis of the top 100 genes with 

respect to the scVIDR gene scores.  Bar plot of adjusted p-values from statistically significant 

(adjusted p-value < 0.05) enriched pathways from the WikiPathways 2019 Mouse Database. D) 

PCA projection of single cell expression data colored by log dose and fatty acid oxidation  
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Figure 4.5 (cont’d) 

pathway score. E) Logistic fit of median pathway score for each dose value. MAE - mean 

absolute error. 

I use this weight matrix to interrogate the relationship between predicted gene expression and 𝛿𝑐.  

The span of 𝛿𝑐 is simply a direction in scVIDR’s latent space. The importance of 𝛿𝑐 to each 

gene’s predicted expression is the sum of the latent dimensional components of   𝛿𝑐 multiplied by 

the gene’s corresponding latent dimensional weight from �̂�𝑣𝑎𝑒. In matrix form: 

𝐺𝑒𝑛𝑒 𝑆𝑐𝑜𝑟𝑒𝑠 = 𝛿𝑐
𝑇�̂�𝑣𝑎𝑒 

In practice, I found that normalizing the weight matrix by its L2 norm gives better insights when 

interpreting the model (see section 4.4.4). Gene scores represent how significant changes in 

latent space dimensions will impact the decoded transcriptomic response when I interpolate on 

the span of 𝛿𝑐 on the latent space. Thus, genes with higher scores will be predicted to have 

bigger changes when I increase the dose of my prediction by scVIDR.   

I utilize a trained scVIDR model where portal hepatocytes were left out of training and the 

𝛿𝑐=𝑃𝑜𝑟𝑡𝑎𝑙 𝐻𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠 was approximated (Figure 4.5 B-D). Gene scores for 𝛿𝑐=𝑃𝑜𝑟𝑡𝑎𝑙 𝐻𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠 

were calculated as described above. The genes with the top 20 highest magnitude genes scores 

included well established markers of TCDD-induced hepatotoxicity such as genes from the 

cytochrome P450 family (Figure 4.5B)106. To see whether this relationship extended to pathways 

involved in TCDD-induced genetic response, I performed Enrichr analysis83,92 using the 2019 

WikiPathways database107 on genes with the top 100 gene scores (Figure 4.5C).  Among the top 

enriched terms, I found the hallmarks of hepatic response to TCDD in mice, such as oxidation by 

cytochrome P450108, fatty acid omega oxidation109, and tryptophan metabolism110. To derive the 

relationship between the actual doses and the gene pathways, the genes with the top 100 gene 

scores that were in “Fatty Acid Oxidation” from WikiPathways was used in calculating 

enrichment scores for each cell using Scanpy87. A sigmoid function was fit to the median 

enrichment score in each dose (section 4.4.6). I observed a small mean absolute error in my 

model and thus concluded that there was a sigmoidal dose-response relationship for the gene set 

generated by Enrichr (Figure 4.5 D, E). 
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4.2.4 Pseudo-dose captures zonation in TCDD hepatocyte response.  

In single cell analysis of developmental trajectories, it is useful to order cells with respect to a 

latent time course, termed “pseudo-time”. This is because cells develop at different rates due to 

natural variations among themselves and their environment. This ordering is usually done using 

algorithms such as Slingshot111 and Monocle112. In pharmacology and toxicology, I experience a 

similar problem as cells of the same type have variable sensitivities to the same toxicant. Hence, 

I propose to order cells in terms of a latent dose. I call this ordering of cells a “pseudo-dose”. 
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Figure 4.6 Interrogation of VAE using ridge regression in portal hepatocyte prediction. A) 

Schematic of calculating latent dimension weights using ridge regression. B) Bar plot of top 20 

genes with the highest scVIDR genes scores. C) Enrichr analysis of the top 100 genes with  
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Figure 4.6 (cont’d) 

respect to the scVIDR gene scores.  Bar plot of adjusted p-values from statistically significant 

(adjusted p-value < 0.05) enriched pathways from the WikiPathways 2019 Mouse Database. D) 

PCA projection of single cell expression data colored by log dose and fatty acid oxidation 

pathway score. E) Logistic fit of median pathway score for each dose value. MAE - mean 

absolute error. 

Working off the assumption that 𝛿𝑐 is the axis of perturbation in latent space, I orthogonally 

project the latent representation of each cell to the 𝑠𝑝𝑎𝑛(𝛿𝑐) to obtain a scalar coefficient for 

each cell along 𝛿𝑐 (Figure 4.6 A). I use this scalar coefficient as the pseudo-dose value for each 

cell. 

To test whether these pseudo-dose values capture the latent response across cell types, I 

distinguished between the portal and central regions of the liver lobule. Zonation of the lobule 

not only defines differences in hepatocyte gene expression along the portal to central axis, but 

also their metabolic characteristics53.   Thus, I expect that the two zones will exhibit different 

sensitivities to TCDD. The pseudo-dose correlated well with the actual dose administered to the 

hepatocytes with an 𝑅2 = 0.76  (Figure 4.6C). I also found that pseudo-dose displayed a 

sigmoidal relationship (Section 4.4.6) between the expression of differentially expressed genes 

such as Fmo3 (Figure 4.6D). Finally, I found the pseudo-dose to be statistically higher on 

average in the central hepatocytes versus portal hepatocytes (Figure 4.6E). This is consistent with 

liver biology as central hepatocytes respond more strongly to treatment due to TCDD 

sequestration59, and higher AhR expression levels in the centrilobular zone113. 

4.3 Discussion 

When profiling any chemical, the dose often makes the poison. Development of dose-response 

prediction models is non-trivial and significant as low-dose changes to expression do not 

necessarily predict high dose changes. This is important as the effects seen at therapeutic doses 

for drugs do not necessarily extrapolate to overdose situations. To illustrate this, in figure 4.7 I 

show that changes in the first half of the TCDD dose-response of mouse liver portal-hepatocytes 

(between 0 and 0.3 𝜇g/kg) doesn’t correlate to changes in the second half of the dose-response 

(between 0.3 and 30 𝜇g/kg). This is reflective of the non-linear nature of the chemical responses 

and belies the needs for methods that extrapolate dose-response utilizing other sources of data. I 
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show that scVIDR can handle predicting multiple doses from the chemical dose-responses of 

other cell types. I first modeled the dose response of thirty-eight chemicals across two datasets. I 

then show how I can interpret the dose-response predictions in scVIDR. Finally, I utilize the 

dimensionality reduction capabilities of scVIDR to order cells based on their individual cellular 

response using scVIDR.  

 

 

Figure 4.7 Regression plot of the magnitude of TCDD induced log fold-changes (LFC) of 

genes at low and high doses in mouse portal hepatocytes.  All LFCs represent absolute values. 

Each point represents a gene. Low Mean LFC is the difference between the log(x+1) expression 

at dose 0 and 0.3 𝜇g/kg. High Mean LFC is the difference between the log(x+1) expression at 

dose 0.3 and 30 𝜇g/kg. The shaded region around the regression line represents the 95% 

confidence interval.  
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Examining the limitations of the model with respect to the Nault et al dataset86, I can see that 

many of the same principles discussed in section 3.3 are relevant. Datasets with fewer control 

cells, and the less sensitive the cells, the worse the overall performance at higher doses (Figure 

4.8). The notable exception is with stellate cells, where the highest dose is predicted worse in 

scVIDR than in scGen. The reason why is difficult to pin down completely. I hypothesize that 

this may be a result of the stellate cells starting to undergo an epithelial to mesenchymal 

transition to myofibroblasts85. This may be a result of the current formulation of the model not 

accounting for discrete transitions. In the future, it may be useful to use more sophisticated 

models to predict physiological transitions in cellular state like the epithelial to mesenchymal 

transition.  
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Figure 4.8 Impact of latent perturbation magnitude, and control population size on dose-

response prediction performance. A) Sinkhorn distance between the latent distributions of the  
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Figure 4.8 (cont’d) 

control and 30 𝜇g/kg doses of TCDD of each cell type on the latent space in the Nault et al 

study86. C) Bar plot of the control group cell population size for each cell type. D) Bar plot of 

mean gene 𝑅2 for each individual cell type when predicting all doses of TCDD in 𝜇g/kg.  

In the sci-Plex dataset, prediction of certain drugs with epigenetic mode of actions produced the 

poorest prediction scores (Figure 4.9).  This is because scSeq data provides no information 

regarding epigenetic modifications (e.g., chromatin accessibility, histone marks, and DNA 

binding proteins). Integration with epigenetic scSeq data such as single cell ATAC-seq could help 

to predict such responses with higher accuracy.  
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Figure 4.9 Overall drug pathway performances at the highest administered dose in 

Srivatsan et al. A boxplot of the mean gene 𝑅2 Performance by scVIDR across all drug 

pathways in the test dataset at a dose of 10 𝜇M.  

While scVIDR and its pseudo-dose metric work on standard dose-response scenarios, it is likely 

inappropriate for use with more complex trajectories such as those found in cellular development 

and circadian rhythms114. Such trajectories include branching and cycling which involve 
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complex non-linear dynamics and require more sophisticated models to properly capture their 

topology. One could combine using scVIDR for dimensionality reduction and performing 

trajectory analysis using popular algorithms such as Monocle112, slingshot111, and diffusion 

pseudotime56 to account for such trajectories. 

Taken together, my tool facilitates dose-response predictions for a particular drug in a specific 

cell type using the response of other cell types. Dose-response modeling is important in the realm 

of drug development and toxicity testing as the physiological response of chemical perturbation 

is dose-dependent. I envision the use of scVIDR in optimizing dose-response studies during drug 

discovery and development. scVIDR enables prediction of chemical response in a wide array of 

cell types and doses using only the control and highest doses of previous experiments. As more 

data becomes available on single cell chemical perturbations, generative modeling can yield 

insights into the underlying manifold of gene expression and how different classes of chemicals 

act on that manifold. Discovery of the properties of the manifold will allow for generalizations to 

be made about the physiology of tissues and understudied chemical perturbations. 

4.4 Methods 

4.4.1 Implementation of scVIDR 

Implementation of scVIDR is identical to the implementation describe in sections 3.4.3 and 

3.4.4. 

4.4.2 Single cell expression datasets and preprocessing 

The sci-Plex dataset95 and TCDD dose-response dataset86 were collected and processed 

uniformly from raw count expression matrices. The cell expression vectors are normalized to the 

median total expression counts for each cell. The cell counts are then log transformed with a 

pseudo-count of 1. Finally, I select the top 5000 most highly variable genes to do my analysis on. 

The preprocessing was carried out using the scanpy. pp package using the normalize_total, 

log1p, and highly_variable functions87.  

The TCDD dose-response dataset comprised of single nuclei RNA-seq of C57BL6 of flash 

frozen mouse livers. Mice in this dataset were administered, sub-chronically, at a specified dose 

of TCDD via oral gavage every 4 days for 28 days. In my analysis, all immune cell types were 

left out, as immune cells are known to migrate from the lymph to the liver during TCDD 

administration79. Thus, there is a small size for the immune cell populations in the low-dose 

datasets versus the higher doses. The sci-Plex dataset is obtained from Srivatsan et al95.   
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4.4.3 Interpolating on 𝜹 for dose-response prediction. 

To predict the latent representation for a response at some dose, 𝑑, I interpolate log-linearly on  

𝛿𝑐= 𝐵 such that for each latent cell in my prediction, 𝑧𝑖,𝑐,𝑝=𝑑: 

�̂�𝑖,𝑐,𝑝=𝑑 = 𝑧𝑖,𝑐,𝑝=0 + 𝑝𝛿 

Where 𝑝 is the coefficient, I want to calculate in order to calculate �̂�𝑖,𝑐,𝑝=𝑑. 

 In log linear interpolation: 

𝑝 =  
𝑙𝑜𝑔(𝑑 + 1)

log (m𝑎𝑥(𝑑) + 1))
 

Where max(d) is the highest measured dose in the dataset.  

In the threshold model: 

𝑝 = {

log(𝑑)

log(𝑚𝑎𝑥(𝑑))
𝑑 > 𝑎

0 𝑑 ≤ 𝑎

  

And in the Hill Model: 

𝑝 =
𝐿

1 + 𝑒−𝑘(𝑑−𝑑0)
 

where 𝑎, 𝐿, 𝑘, 𝑑0 are free parameters that I fit to the data.  These free parameters were fit using 

Levenberg-Marquardt algorithm implementation in the curve_fit function in the scipy.optimize 

package. 

4.4.4 Inferring feature level contributions to perturbation prediction 

In PCA, I perform an orthogonal linear transformation on the data, such that my projected data 

preserves as much variance as possible. It is known that the solution to this maximization 

problem is to project the data onto the eigenvectors of the covariance matrix or: 

𝑍𝑚 = 𝑋𝑊𝑚 

Where 𝑋 is the mean-centered scRNA-seq expression matrix, 𝑊𝑚 is the eigenvectors 

corresponding to the 𝑚 highest eigenvalues of the covariance matrix of 𝑋, and 𝑍𝑚 represents the 

𝑚-dimensional projection of the data onto its principal components. I can see from this formula 

that 𝑍𝑚 is calculated as a linear combination of weights and gene expression, and thus there is a 

linear relationship between genes and the principal components. I can exploit this fact and 

calculate a loading for each gene with each corresponding eigenvector by taking the product of 

the eigenvector and the square root of the corresponding eigenvalue or: 

𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑖𝑗 =  𝑊𝑖𝑗 ∗ √𝜆𝑖 
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Where 𝑊𝑖𝑗 is the 𝑗𝑡ℎ value (corresponding to gene j) of the 𝑖𝑡ℎ eigenvector and 𝜆𝑖 is the 

eigenvalue for the 𝑖𝑡ℎ eigenvector. These loadings represent a normalized score of the 

relationship between a gene’s expression and a particular principal component. These loadings 

are also directly proportional to the actual correlation between the gene’s expression and the 

principal component of interest.  

It can be shown that PCA and autoencoders with a single hidden layer (with size less than the 

observations) and a strictly linear map are nearly equivalent115. I can project principal 

components back into expression space using the following function: 

�̂� = 𝑍𝑚𝑊𝑚
𝑇  =  𝑋𝑊𝑚𝑊𝑚

𝑇 

Additionally, I note that PCA is a solution to the minimization of the reconstruction error: 

 ‖𝑋 − �̂�‖
2

2
 

I find similarly that the loss function that I try to optimize in the autoencoder I described above 

is: 

‖𝑋 − 𝑋𝑊1𝑊2
𝑇‖2

2 

Where 𝑊1 is the weights of the hidden layer, and 𝑊2 is the weights of the final layer of the 

autoencoder. In effect, I can see that the autoencoder described above can approximate the 

loadings of a principal component analysis using 𝑊2. 

The reconstruction error for a standard VAE with the assumption that the observations are a 

multivariate Gaussian is: 

1

𝑁
‖𝑋 − 𝐷𝑒𝑐(𝑍)‖2  

Where 𝑁 is the number of samples, 𝐷𝑒𝑐(𝑍) is the function of the decoder neural network, and 𝑍 

is the transformation by the encoder of the observations onto the latent space. In an LDVAE, the 

𝐷𝑒𝑐(𝑍) is replaced with single layer with linear transfer operators such that the reconstruction 

error is the following: 

1

𝑁
‖𝑋 − 𝑍𝑊𝐷𝑒𝑐

𝑇 ‖2  

In which 𝑊𝐷𝑒𝑐 is the linear weights of the decoder. These weights give us an approximation of 

the contributions of individual genes to the dimensions of the latent space. I can interpret  𝑊𝐷𝑒𝑐 

as a loadings matrix by which I can interpret the latent dimensions of the LDVAE. 
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To approximate feature contributions to predicting the perturbation in scVIDR, I train a ridge 

regression model. I then take the decoder portion of my model and sample 100,000 points from 

the latent space and generate their corresponding expression vectors. This will be my training 

dataset for a ridge regression. I then train the ridge regression using the Ridge class from the 

sklearn.linear_model  package. I can describe the loss of my ridge regression as: 

‖𝐷𝑒𝑐(𝑍) − 𝑍𝑊𝑇‖2 + 𝜆‖𝑊‖2 

Where 𝑍 are the sampled points from the latent space, 𝑍𝑊𝑇 are the approximation of the 

predicted gene expression vectors, and 𝑊, is a m x n matrix where m Is the number of genes and 

n is the number of latent dimensions. I divide 𝑊 using the ||𝑊||
2
 to normalize for the effect of 

over expressed genes.  I then calculate the gene scores by taking the dot product of normalized 

𝑊 and 𝛿𝑐, or: 

𝑔𝑒𝑛𝑒 𝑠𝑐𝑜𝑟𝑒𝑠 =
𝑊

||𝑊||
2

 ⋅ 𝛿𝑐 

I use these gene scores to order genes for Enrichr83 pathway analysis with the gseapy package92. 

Scores for each pathway were calculated using score_genes function from scanpy.tl package with 

the genes sets derived from the Enrichr results. 

4.4.5 Calculating the pseudo-dose values. 

I can order each cell, 𝑥𝑖, with respect to the variable response of 𝑥𝑖 to the chemical by taking the 

latent representation, 𝑧𝑖, and orthogonally projecting it onto 𝐿 =  𝑠𝑝𝑎𝑛(𝛿𝑐): 

𝑝𝑟𝑜𝑗𝐿 =
𝛿𝑐 ⋅ 𝑧𝑖

𝛿𝑐 ⋅ 𝛿𝑐
𝛿𝑐  = 𝑝𝛿𝑐 

The scalar multiple of 𝛿, 𝑝, is the pseudo-dose value for 𝑥𝑖. 

4.4.6 Regression of sigmoid function for evaluating dose-response relationships 

To establish whether a standard dose-response relationship existed between the top pathways 

inferred by Enrichr and between the pseudo-dose and gene expression, a logistic function of the 

form: 

𝑓(𝑑) =
𝐿

1 + 𝑒−𝑘(𝑑−𝑑0)
+ 𝑏 

Where d is the dose or pseudo-dose. The parameters of the function above were fit to the output 

variables (median enrichment score and Fmo3 normalized expression) using Levenberg-

Marquardt algorithm implementation in the curve_fit function in the scipy.optimize package. The 



 

103 

 

regression was evaluated using the mean absolute error metric implementation in the 

mean_absolute_error function in the sklearn.metrics package. 
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CHAPTER 5  
CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Generative modeling for toxicological single cell RNA-seq 

scRNA-seq has proliferated across many different disciplines of biology from development116–118 

to pharmacology93,95. In toxicology, single cell technologies have the potential to reveal the 

heterogeneous response previously masked by bulk tissue techniques like RNA-seq17. Even 

within cells of the same type there are exhibited differences in response depending on the 

transcriptional state of the cell8,9. While technologies like scRNA-seq have the potential to 

describe the entire spectrum of chemical response, due to the sheer volume of information and 

high-dimensionality, computational approaches must be deployed to uncover the biological 

complexity of tissue response.  

Broadly, to deal with the high dimensionality of single cell data, bioinformaticists will utilize 

dimensionality reduction algorithms. Dimensionality reduction algorithms like PCA are applied 

routinely to do visualization and preprocessing for downstream analysis36,37,42. Over the last five 

years, VAEs (a deep generative model) have gained popularity as a dimensionality reduction 

algorithm in scRNA-seq analysis. This is due to the model’s remarkable ability to perform data 

integration29,34,48, and its ability to generate unseen scRNA-seq from its latent space30,33.  

In this dissertation I utilize variational autoencoders to perform batch correction for 

administration of TCDD to mice. First, I inferred the zonation of individual hepatocytes based on 

their gene expression. Then classified genes based on whether they are responsive to TCDD, 

exhibit a rhythmic expression profile, and/or exhibit a zonated expression profile. Due to the 

highly ordered nature of gene expression in the liver lobule, in previous studies6,52,76 hepatocyte 

zonation is inferred from gene expression in control conditions. Unfortunately, TCDD 

significantly changes the expression of key zonation genes62. To accurately infer zonation from 

the liver, I performed batch correction in order to remove variance in expression caused by 

TCDD treatment. Using this new batch corrected dataset, I inferred zonation reducing the overall 

impact TCDD has on the inference. With the zonation properly inferred, I categorized hepatocyte 

genes based on their inferred zonation, time-series expression over twenty-four hours, and their 

response to TCDD treatment. With this gene classification, I revealed that most of the canonical 

TCDD response pathways exhibit both rhythmic and zonal properties and that these properties 

are independent of one another. This includes established spatial-temporal pathways in the liver 
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lobule including lipid and bile acid metabolism, and CYP450 metabolism pathways52. 

Additionally, I find that TCDD induced rhythmic changes are more associated with changes to 

the amplitude of the oscillations rather than changes in the phase. This follows with more than a 

third of TCDD affected genes completely losing rhythmicity. Mechanistically, I found that 

TCDD impacted the of the core circadian clock in the alternative Arntl binding partner to Clock, 

Npas2, and genes downstream of CLOCK-ARNTL binding such as Per1/2 and Nr1d2.  Finally, I 

found that genes that had lost zonation were mostly associated with the central region of the 

hepatic lobule.  

The generative properties of the VAE were utilized to predict chemical responses on unseen cell 

types in a model I developed called scVIDR. To do this, I built on the existing scGen framework 

and expanded it to predict across several doses. The main advantage of scVIDR over scGen is 

post-training regression on the latent space, which weights predictions of the response based on 

the cell’s position on the latent space. This regression-based correction significantly improves 

prediction of chemical perturbations across several data sets such TCDD liver response, in-vitro 

cancer-responses to many different drug candidates, and PBMC response to IFN-𝛽. This not only 

worked on unseen cell types, but I also utilized scVIDR to predict phagocyte response to LPS6 

on unseen species. To predict multiple doses, I log-linearly interpolate on the latent space and 

predict the dose-response of TCDD in the liver and thirty-six cancer therapy drugs in A549 cells. 

The main advantage of such modeling is its ability to take existing single-cell chemical response 

datasets and utilize them to predict unseen chemical responses in novel cell types of interest. 

Interpretation of the VAE latent space is difficult. In PCA, the lower dimensional principal 

component space can be interpreted using the weights of the linear functions compressing the 

data. These linear weights are like correlations between gene expression and the principal 

components. VAE’s use non-linear neural networks to do their compression and thus the latent 

space of VAE’s can’t be easily interpreted. To interpret the latent space of the VAE, scVIDR 

approximates the decoder function using linear regression. The weights of the linear regression 

are used like the weights in PCA, which acts as an approximation of the relationship between the 

latent space and the dimensions of the of scRNA-seq measurement space. This allows the users 

to infer how changes in the position of latent space “correlate” to changes in gene expression 

measurements in scRNA-seq. Using this method, scVIDR predicts transcriptomic response of 

mouse hepatocytes to TCDD is most pronounced in canonical response genes like Cyp1a1. 
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Additionally, when performing gene pathway analysis on the most “correlated” genes, I identify 

canonical TCDD response pathways including CYP450 metabolism and fatty acid oxidation. 

Finally, responses to TCDD varies across individual cells, even those within the same cell type. I 

utilize scVIDR to measure such variation in the magnitude of response. To do this, I orthogonally 

project cells onto the 𝛿𝑐, which is the mean difference between the control and treated cells on 

the latent space. The coefficient of the projection is the measure of the magnitude of response or 

the “pseudo-dose”. With this pseudo-dose metric, I am able to demonstrate the difference in 

sensitivity between portal and central hepatocytes to TCDD. 

5.2 Future directions in research the spatial-temporal organization of the liver lobule and 

associated pathologies 

The liver is responsible for metabolism of nutrients and toxicants, production and recycling of 

proteins, and glucose and lipid homeostasis. Many of these tasks are zonated and rhythmic in the 

liver. Changes in the rhythmicity and zonation have been associated with NAFLD and drug 

induced liver injuries (DILI) such as those caused by acetaminophen. In this dissertation, I show 

that scRNA-seq can be used to comprehensively analyze responses of zonal and rhythmic 

processes to chemical perturbation of TCDD. I will first review future directions for studying 

TCDD’s impact on zonation and rhythmicity. Then I will discuss alternative liver pathologies for 

which the methods of chapter 2 can be applied. 

5.2.1 Future directions in studying TCDD’s impact on rhythmicity and zonation and 

applications in other pathologies. 

As described before, sub-chronic administration of TCDD leads to the ablation of 

rhythmicity in the mouse liver66. In acute administration, I see less severe effects on rhythmicity. 

Most effects on rhythmicity are seen in standard TCDD response pathways such as CYP450 

metabolism.  I see changes in the normal expression of the core circadian clock genes, agreeing 

with previous studies66. The most pronounced effect was increased expression of Per2 across 

most of the acute response. Fader et al66 has shown that CLOCK, ARNTL, and AhR colocalize 

on the Per2 promoter, suggesting that TCDD induced AhR disruption of normal CLOCK-

ARNTL binding may be the cause of this change. I also see higher expression Per1 two hours 

post treatment followed by a decrease in expression for most time points after (with the 

exception of time point 18). Previous studies into the regulation of Per1 have implicated 𝛽-

naphthoflavone activated AhR in interrupting the normal binding of CLOCK-ARNTL in 

Hepa1c1c7 cells84. However, parsing how these acute changes in circadian rhythm leads to the 
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sub-chronic abolishment of rhythmicity in most core members of the circadian rhythm will 

require further studies on how different numbers of TCDD exposures change overall circadian 

clock expression and regulation. 

TCDD exposure has also been shown to greatly alter zonation in sub-chronic exposures62. While 

impacts on zonation are predictably subtler within acute exposures, I confirm a bias towards 

pericentral expression seen in those same sub-chronic exposure studies62. Additionally, core 

regulatory pathways of zonation such as Wnt/𝛽-catenin signaling were enriched in gene classes 

impacted by TCDD. How TCDD interrupts expression of these pathways is still unclear. TCDD 

induced changes to hepatocyte expression of Rspo3, which is a rheostat of zonation, may be the 

primary cause62. Additionally, I show that most changes to zonation are localized to the 

pericentral zone corroborating changes seen in pericentral Apc62. This pericentral localization of 

TCDD’s effect on zonation is likely due to the high expression of AhR in the pericentral region52 

as well as activated Cyp1a2 sequestration of TCDD in the pericentral zone of the liver119. What 

is still unknown is how non-parenchymal response to TCDD is implicated in changes in 

zonation. Previous studies suggest that the rhythmic Wnt ligand expression of pericentral non-

parenchymal cells is significant in zonation homeostasis52. Analysis on the potential impact 

TCDD has on this non-parenchymal signaling would potentially elucidate TCDD’s impact on 

pericentral expression of zonation regulators. 

One of the main limitations of the study regards inferring zonation from gene expression. Due to 

the nature of CYP450 expression being centrally enriched in liver lobules, TCDD biases gene 

expression towards more pericentral expression overall62. To get absolute localization of 

expression, spatial transcriptomic methodologies such as Xenium120 or MERFISH121 will be 

needed. Additionally, studies like those in chapter 2 are limited to cell types in the liver for which 

the zonation of expression is well profiled (i.e., hepatocytes6,52 and endothelial cells76,122). Spatial 

experiments could better pinpoint the zonation patterns of genes across many cells in the non-

parenchymal compartment of the liver such as cholangiocytes and immune cells. For example, 

resident macrophages, Kupffer cells, have been found to have an asymmetric distribution across 

the liver lobule, with more localizing in the periportal region123. However, their zonal expression 

profile has not been fully studied. Recent research in Kupffer cells have shown their transcription 

factor activity significantly altered with respect to TCDD exposure124. Additionally, in partial 

hepatectomy rodent models, Kupffer cells were important secretors of Wnt ligands in the 
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midlobular and periportal zones post loss of tissue79,125. This Wnt signaling goes on to propagate 

a loss of zonation very similar to the pericentral bias found in Nault et al62 and in chapter 2.  

TCDD potentially could alter the expression of key Wnt ligand gene in Kupffer cells, much in 

the same way they do in partial hepatectomies125. The role of these and other non-parenchymal 

cells in TCDD liver zonation response, what affected hepatocytes they localize around, and what 

genes they differentially express proximal to liver injury can be better elucidated by spatial 

transcriptomic technologies. Additionally, insight generated by spatial experiments would have 

broader impacts in other zonated liver pathologies such as NAFLD and DILI. 

5.2.2 Future Analysis of Rhythmicity and Zonation in Alternative Pathologies 

Like TCDD administration in mice, many liver pathologies are characterized by perturbations to 

the spatial-temporal organization of the liver. More specifically, NAFLD has been connected to 

both zonal and temporal perturbations in liver metabolism68. Zonally, NAFLD is characterized 

by the accumulation of triglycerides due to increased influx of fatty acids in periportal 

hepatocytes and decreased efflux fatty acids in pericentral hepatocytes68. This results in steatosis 

localizing in pericentral hepatocytes126. Temporally, NAFLD has been observed in jet-lagged 

models of mice127. Additionally, molecular knock-out models of core-circadian genes show 

upticks in NAFLD and mortality127. Dissecting the entire etiology of NAFLD, will need more 

comprehensive descriptions of the perturbations to both zonation and temporal genes. Studies 

similar to those described in chapter 2 of this thesis could be utilized on NAFLD mouse models 

to identify these perturbations and better describe the progression of NAFLD pathologies. 

Drug induced liver injuries (DILI) exhibit distinct zonal properties. In carbon tetrachloride 

(CCL4) models of DILI (which cause peri-central injury), injury leads to regenerative responses 

from adjacent layers of hepatocytes such as those found in the periportal region128. These 

regenerative responses were accompanied by a temporary loss of zonation which was recovered 

six days post DILI129. It is likely this loss of zonation is connected to the activation of 

proliferative phenotypes post DILI128. Identifying which genes lose their zonation in response to 

DILI, and where proliferative genes are being turned on along the zonation axis of the liver 

lobule will lead to stronger understandings of liver regeneration and DILI prevention. 

DILI is also dependent on circadian rhythm.  For example, alanine transferase (ALT) levels were 

higher in mice administered with acetaminophen at ZT14 vs. ZT2130. This is correlated with 

peaks in acetaminophen enzyme expression early in the night. However, these effects are 
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dependent on feeding patterns as fasting induced higher ALT levels when compared to control. 

Despite this, CLOCK-deficient mice had resilient ALT levels regardless of acetaminophen 

administration time. Thus, DILI can be dependent on the circadian clock of the animal130. 

Identifying genes in a drug’s mode of action that are rhythmic would be helpful in determining 

more optimal times in which to administer said drug as to prevent DILIs.  

5.3 Future Directions in Variational Autoencoders and the Prediction of Chemical 

Perturbations 

Illustrated already in this dissertation is scVIDR’s ability to improve on perturbation prediction 

and predict additional doses along the dose-response.  Next steps include using these models to 

infer important dose-response metrics such as potency and maximal efficacy. Additionally, 

relating the trajectory of the pseudo-dose inferred by scVIDR to potential adverse outcome 

pathways or using it to infer new ones would be incredibly useful for toxicologists. Finally, I will 

discuss potential improvements to scVIDR with these end goals in mind. 

5.3.1 Broader Toxicological Impacts of scVIDR 

One of the most prominent features a toxicologist wants to extract is the drug’s potency.  Several 

dose-response metrics measure potency. For example, EC50 is the concentration at which the 

drug elicits fifty percent of its maximal response (assuming a standard dose-response)131. In 

section 4.2.2 a hill-model of interpolation is discussed for prediction but is ultimately discarded 

due to a lack of significant improvement over the more parsimonious log-linear model.  

However, models like this would, in theory, predict the EC50 (𝑑0 parameter from section 4.4.3). 

Validation of these predictions would require an external dataset of EC50s specific to cell types 

and thus was not included in the main text. Ensuring accurate predictions for chemical potency 

with models like scVIDR will rely on improving datasets as well as improving on the current 

model formulation. Current proposals for single cell perturbational atlases132 as well as the 

continuation of initiatives like TOXCAST21133 stand to improve on this issue. 

Ultimately, in addition to parameter discovery, toxicologists would like to use models like 

scVIDR to predict adverse outcome pathways. Adverse outcome pathways (AOPs) are the 

sequence of cellular and molecular events that lead a chemical to elicit a toxic effect134. I can 

relate 𝛿 or the “pseudo-dose” to gene pathways using existing methods such as gene set 

enrichment analysis (GSEA) as described in section 4.2.4. Expanding on the pseudo-dose 

algorithm to account for branching trajectories will better account for distinguishing between 

different sources of toxicity. One major limitation of scVIDR currently is that it can only predict 
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transcriptomic changes associated with a chemical. How well transcriptional changes reflect 

changes in protein levels and protein activity is a matter of intense debate135,136. While within 

sample correlations are rather robust, across samples (i.e., across tissues or conditions) 

correlations are much more modest due to variances in post-transcriptional and translational 

kinetics136. So, while increases or decrease in RNA expression likely imply increases or 

decreases in protein expression, the magnitude of these changes is much less correlated due to 

post-transcriptional, translational, and post-translational mechanisms of protein regulation. This 

protein regulation is also a frequent feature of AOPs137. Thus, understanding the toxic response 

from only the transcriptomic perspective would immediately limit the scope of discovery. Thus, 

integration of other data modalities such as CITE-seq and scATAC-seq is required address this 

limitation.  

5.3.2 Improving scVIDR.  

The main determinant of scVIDR’s prediction accuracy is in calculation of the 𝛿. This is 

especially important when wanting to improve predictions of cell type specific EC50s and AOPs. 

While I show marked improvements in this prediction, potentially the model can be further 

improved with a change to the resolution of the prediction. Here, instead of cell-type specific 𝛿𝑐, 

I calculate a 𝛿𝑖, where 𝑖 is the index of a specific cell. This would allow for a more fine-grained 

prediction of cellular response. The main limitation in this approach would be how to calculate 

individual 𝛿𝑖 as individual cells cannot be followed across the dose-response using scRNA-seq. 

This is because scRNA-seq destroys the cells during sequencing. Alternative technologies such 

as Live-seq138 would be a way to overcome this limitation. However, no commercial platform yet 

exists with this type of technology for wide-spread adoption. Alternatively, a computational 

solution would be to map the control cells to the treatment cells on the latent space. The mapping 

would be used to infer where on the latent treatment distribution a control cell would lie after 

perturbation, thus giving us point pairs to calculate 𝛿𝑖. Having an individualized 𝛿𝑖 would allow 

for more complicated models, such as neural networks, to predict 𝛿𝑖 for unseen cells. For 

example, scANVI46 utilizes a neural network, 𝑞(𝑐𝑖|𝑧𝑖), on the latent space to classify cells into 

their respective cell types. This framework could be adapted to predict 𝛿𝑖 for unseen cells, by 

taking the existing 𝛿𝑖 on the latent space and using them as training for the neural network, 

𝑞(𝛿𝑖|𝑧𝑖). However, this assumes that the shortest path on the latent space is the best 

representation of the underlying biological manifold.  Optimal transport-based methods such as 
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TrajectoryNet139 utilize continuous normalizing flows140 to infer the underlying trajectory of cells 

along some time-series experiment. In theory, one could adapt this to the trajectory of the dose-

response to get more accurate uncertainties in predictions. Future work will be needed to study 

how to improve prediction accuracy for concrete toxicological endpoints and drug safety studies. 

The pseudo-dose metric works for standard dose-response scenarios described in this 

dissertation. However, it struggles when faced with more complex trajectories. These more 

complex trajectories could be observed in relation to chrono-pharmacology66 or chemical 

disruptions to cellular development141. Additionally, toxicological responses can lead to more 

than one type of cell injury. To account for this, one could extend pseudo-dose using methods 

such as TSCAN142 or diffusion pseudo-time56. The only change the user would be to preprocess 

using scVIDR instead of PCA or UMAP.  Additionally, with more complex trajectories, 

toxicologists would like to be able to distinguish between different sources of response (i.e., cell 

death vs. cellular necrosis). Differential trajectory analysis methods like condiments143 or Trade-

seq21 could be used to identify different genes or different sets of genes associated with different 

branches or points in the dose-response. These genes could be used to identify potential 

mechanisms by which the drug will cause response.  

Currently, scVIDR doesn’t integrate other data modalities important to toxic response such as 

chromatin accessibility144 and protein expression145. Already, scVIDR has shown that it 

sometimes performs poorly on drugs with epigenetic modes of action (section 4.3; Figure 4.8). 

Incorporation of other data modalities will be critical not only for future models of chemical 

response prediction, but also in describing AOPs associated with different chemicals. VAE 

models that aim to integrate different types of single cell technologies such as MultiVI present a 

potential path forward. For example, let us assume that I have scRNA-seq, scATAC-seq, and 

CITE-seq datasets with some overlapping cell-types. Using an integrative version of scVIDR, 

multiple single cell technologies would be integrated to a single latent space. Thus, similar 

predictions could be extended to changes in chromatin accessibility with the scATAC-seq, and 

changes in expression of cell surface proteins with CITE-seq. With this integration, scVIDR will 

not only be able to predict transcriptomic events in an adverse outcome pathway, but also 

epigenetic and cell surface protein events. 
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5.4 Closing remarks 

In this dissertation I utilize current and develop new frameworks in generative modeling for 

toxicology. I show VAEs utility to describe responses to chemicals in different scRNA-seq 

datasets. My discussions in rhythmicity and zonation in TCDD response have implications in 

other liver pathologies such as NAFLD and DILI.  Time-series modeling with VAEs could be 

incorporated similarly to help with these types of experiments. While VAEs are incredibly useful 

for scRNA-seq, high data requirements for training (i.e., thousands of cells) mean they require 

thousands of bulk RNA-seq expression datasets be properly trained on existing resources such as 

TOXCAST21133. Despite this, VAEs show great promise in aiding toxicologists in studying 

transcriptomic response. With larger single cell initiatives, I envision models like scVIDR can be 

extended to predict EC50s and adverse outcome pathways. Additionally, VAEs ability to 

integrate different types of single cell data, such as scATAC-seq and CITE-seq, will allow for 

better prediction of chemical response. With the proliferation of single cell technologies, an 

opportunity to understand toxicology at cellular resolution has presented itself. However, high 

dimensionality makes analysis challenging. I have shown that variational autoencoders can be 

used to process such data to make insights, as well as generate novel predictions using existing 

toxicological data. 
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