SHOCK FORMATION IN THE BIG BANG By Shih-Fang Yeh A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Mathematicsโ€”Doctor of Philosophy 2024 ABSTRACT This thesis aims to construct Big Bang models and to investigate their properties. Under the warped product spacetime ansatz, we classify all the physical Big Bang models that are spatially homogeneous and analyze their asymptotes. Furthermore, we prove that the Big Bang models with a positive blowup time ๐‘Ÿโˆ— > 0 are dynamically unstable under non-homogeneous perturbations in Chapter 3. In addition, we also prove the stability of specially relativistic fluids on a fixed Big Bang spacetime in Chapter 4. This work implies that Euler equations are not sufficient to generate shocks. One needs the feedback from fluids to metrics, together forming Einstein-Euler equations, to generate shocks. Finally, we prove the global existence of the membrane equation on R1,2 ร— T1 for sufficiently small, compactly supported initial data in Chapter 5. This is a work independent of the previous ones. We use the standard vector field method to show that the energy remains small throughout the time, estabilishing the global existence for the equation. Copyright by SHIH-FANG YEH 2024 ACKNOWLEDGEMENTS I would like to thank my advisor to give me this problem and appropriate reference. Thank Tim Yang for our casual conversation in November 2022, motivating me to have Chapter 4 although he is probably not aware. Thank Shun-Ya Changโ€™s birthday power to let me come up with the crucial idea on April 24, 2023 and have Chapter 3. Thank Professor Thomas Parker to help me revise many documents. Thank me in the past to work hard enough, to do well in both academia and industry. iv TABLE OF CONTENTS CHAPTER 1 CONSTRUCT BIG BANG MODELS . . . . . . . . . . . . . . . . . . . 1.1 Classical Big Bang models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Warped product Big Bang models 1 1 7 CHAPTER 2 TECHNIQUES FOR SHOCKS . . . . . . . . . . . . . . . . . . . . . . 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 . 2.1 Newtonian fluids 2.2 Relativisitic fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . 2.3 Total variation: Johnโ€™s technique . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Piontwise blowup: Riccati equation . . . . . . . . . . . . . . . . . . . . . . . 25 . . CHAPTER 3 INSTABILITY OF THE BIG BANG . . . . . . . . . . . . . . . . . . . 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Main Equations . . 3.3 Strategy . . 33 . . 3.4 Control of total variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Riccati equation for derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 53 . 73 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initial data . . . . . . . . . . . . . . CHAPTER 4 STABILITY OF RELATIVISTIC FLUIDS ON FIXED BIG BANG SPACETIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 The model problem and its homogeneous solutions 4.2 Dynamical Stability of homogeneous ๐œƒ โ‰  0 solutions . 80 . 80 . . . . . . . . . . . . . . 82 CHAPTER 5 5.1 Geometry and Energy . 5.2 Sobolev inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Estimate for derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Energy Comparability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Global Existence STABILITY OF MEMBRANE EQUATIONS . . . . . . . . . . . . . . 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 . 100 . 102 . 112 . 116 . . CHAPTER 6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 v CHAPTER 1 CONSTRUCT BIG BANG MODELS 1.1 Classical Big Bang models After Einstein proposed his General Relativity theory, people started to use the Einstein field equations to model the evolution of our universe. In cosmology, it is assumed that there exists a family of fundamental observers with timelike geodesics (timelines) which span a four-dimensional spacetime ๐‘‰ with a Lorentzian metric ๐‘” satisfying the Einstein field equations ๐‘…๐‘–๐‘ โˆ’ 1 2 ๐‘†๐‘” + ฮ›๐‘” = ๐‘‡ . (1.1) These fundamental observers have timelines orthogonal to space sections. In other words, the spacetime ๐‘‰ = R ร— ๐‘€ and the metric ๐‘” decomposes to ๐‘” = โˆ’๐‘‘๐‘ก2 + (3)๐‘”. Here ๐‘€ is a Riemannian manifold with the metric (3)๐‘” modeling our universe at a fixed time. In the cosmology scale, it is reasonable to assume the homogeneity and isotropy on ๐‘€. Although there are also homogeneous non-isotropic models, such as Bianchi cosmologies, we only focus on the homogeneous isotropic models in this section. Intuitively, isotropy means that at each point in ๐‘€, every direction looks the same for the observer. Homogeneity means that for every two points in ๐‘€, there is an isometry of ๐‘€ that takes one point to the other. This section basically follows [4]. 1.1.1 Riemannian manifolds with constant curvature Mathematically, We interpret isotropy and homogeneity as follows. Recall that the definition of the sectional curvature of a Riemannian manifold ๐‘€ is ๐พ (๐‘ƒ) = ๐‘…(๐‘‹, ๐‘Œ , ๐‘‹, ๐‘Œ ) ๐‘”(๐‘‹, ๐‘‹)๐‘”(๐‘Œ , ๐‘Œ ) โˆ’ ๐‘”(๐‘‹, ๐‘Œ )2 where ๐‘‹, ๐‘Œ are two tangent vectors spanning the two sub-plane ๐‘ƒ. This quantity characterizes the geometry for each "direction" ๐‘ƒ. For a fixed point in ๐‘€, isotropy means that the sectional curvature ๐พ (๐‘ƒ) is independent of the choice of ๐‘ƒ. On the other hand, homogeneity means that the sectional 1 curvature ๐พ is furthermore independent of the choice of the point in ๐‘€. In other words, ๐พ is constant throughout the whole manifold ๐‘€. Indeed, Schรปr proved that isotropy and the Bianchi identity imply the constancy of ๐พ on a Riemannian manifold whose dimension is greater than 2. It is well-known in geometry that a Riemannian manifold with constant curvature ๐พ is locally isometric to a sphere of radius 1โˆš space with pseudo-radius 1โˆš |๐พ | ๐พ (when ๐พ > 0), the Euclidean space (when ๐พ = 0), or a hyperbolic (when ๐พ < 0). In our context, the Riemannaian manifold ๐‘€ is 3-dimensional with the metric (3)๐‘” of the form (3)๐‘” = 1 |๐พ | ๐›พ๐œ– where or more conveniently, ๐›พ๐œ– = ๐‘‘๐‘Ÿ 2 1 โˆ’ ๐œ–๐‘Ÿ 2 + ๐‘Ÿ 2(๐‘‘๐œƒ2 + sin2(๐œƒ)๐‘‘๐œ™2), ๐œ– = ๐‘ ๐‘”๐‘›(๐พ), ๐›พ+ = ๐‘‘๐›ผ2 + sin2(๐›ผ) (๐‘‘๐œƒ2 + sin2(๐œƒ)๐‘‘๐œ™2), ๐œ– = 1 ๐›พ0 = ๐‘‘๐‘Ÿ 2 + ๐‘Ÿ 2(๐‘‘๐œƒ2 + sin2(๐œƒ)๐‘‘๐œ™2), ๐œ– = 0 ๐›พโˆ’ = ๐‘‘๐œ’2 + sinh2( ๐œ’) (๐‘‘๐œƒ2 + sin2(๐œƒ)๐‘‘๐œ™2), ๐œ– = โˆ’1. Note that in our context, the curvature ๐พ is constant over ๐‘€ but potentially depends on the time ๐‘ก. Therefore, the analysis shows that, under the assumptions homogeneity and isotropy of the universe ๐‘€, the metric has the following form ๐‘” = โˆ’๐‘‘๐‘ก2 + ๐‘…(๐‘ก)2๐›พ๐œ– , where ๐‘… is a function of ๐‘ก and ๐œ– = 1, 0, or โˆ’1. From now on, we will assume our universe is ๐‘€ = S3, R3, or H3 supporting ๐›พ+, ๐›พ0, ๐›พโˆ’ respectively. These spacetimes are called Robertson- Walker spacetimes. 2 1.1.2 Friedman equations Consider the Einstein field equations for a Robertson-Walker spacetime with the perfect fluid as the source energy momentum tensor ๐‘‡ = ( ๐‘ + ๐œŒ)๐œ‰ โŠ— ๐œ‰ + ๐‘๐‘”, where ๐‘ is the fluid pressure, ๐œŒ is the fluid density, and ๐œ‰ is the fluid velocity. Under the isotropy and homogeneity conditions, we may assume ๐‘ = ๐‘(๐‘ก), ๐œŒ = ๐œŒ(๐‘ก), and ๐œ‰ = ๐œ•๐‘ก. Inserting this energy momentum tensor back to (1.1), one finds that the Einstein field equations are reduced to: ๐‘ = โˆ’ ๐œŒ = โˆ’ 2 (cid:165)๐‘… ๐‘… ๐œ– ๐‘…2 3( (cid:164)๐‘…2 + ๐œ–) ๐‘…2 โˆ’ (cid:164)๐‘…2 ๐‘…2 + ฮ› โˆ’ ฮ›. These equations are called the Friedmann equations. They describe the evolution of the radius of our universe. 1.1.3 Big Bang Assuming ฮ› = 0, the Friedmann equations can be rearranged to the following form. (cid:164)๐‘…2 ๐‘…2 (cid:165)๐‘… ๐‘… = 1 3 ๐œŒ โˆ’ ๐œ– ๐‘…2 = โˆ’ (cid:16) 1 2 ๐‘ + (cid:17) . ๐œŒ 1 3 Assuming 3๐‘ + ๐œŒ > 0 and assuming the current universe is expanding, General Relativity suggests that (cid:165)๐‘… < 0, so (cid:164)๐‘… is decreasing. This is surprising: denoting the current time by ๐‘ก0, then less than ๐‘…(๐‘ก0) ๐ป (๐‘ก0) time units ago, we have ๐‘…(0) = 0 (see Figure 1.1). This is one motivation for the Big (cid:164)๐‘…(๐‘ก0) Bang conjecture. Note that ๐ป, the Hubble constant, is a function of time. We provide more details (cid:66) 1 for the evolution of the universe in the next section. 1.1.4 Friedmann-Lemaรฎtre models Assume ฮ› = 0. The above Friedmann equations imply (cid:164)๐œŒ = โˆ’ 3 (cid:164)๐‘… ๐‘… ( ๐‘ + ๐œŒ). 3 Figure 1.1 Big Bang conjecture for classical models. Now we impose the equation of state ๐‘ = ๐›พ๐œŒ where 0 โ‰ค โˆš๐›พ < 1 denotes the sound speed. The models with the equation of state ๐‘ = ๐›พ๐œŒ and ฮ› = 0 are usually called Friedmann-Lemaitห†re models. Cosmologists believe that the early universe is dominated by radiation with ๐‘ = 1 3 ๐œŒ, while the later universe is described by dust with ๐‘ = 0. Using this equation of state, one derives the relation between ๐œŒ and ๐‘…: ๐œŒ ยท ๐‘…3(1+๐›พ) = ๐‘€ where ๐‘€ > 0 is a constant. This suggests different asymptotes of ๐œŒ as ๐‘… โ†’ 0 for the dust and radiation cases. โ€ข For the dust case, ๐›พ = 0, so ๐œŒ โˆผ 1 ๐‘…3 . โ€ข For the radiation case, ๐›พ = 1 3, so ๐œŒ โˆผ 1 ๐‘…4 . 4 For the early universe, ๐‘… is close to 0. The above asymptotes imply that the density of radiation is greater than the density of dust. This explains why cosmologists believe that the radiation is a good model for the early universe. With this observation, one can simplify the Friedmann equation to (cid:164)๐‘…2 = ๐‘€ 3 ๐‘…2โˆ’3(1+๐›พ) โˆ’ ๐œ– . The evolution of the radius of our universe depends on the choice of ๐œ–. โ€ข Hyperbolic case, ๐œ– = โˆ’1. ๐‘… will increase forever for this case. โ€ข Euclidean case, ๐œ– = 0. ๐‘… keeps increasing with a slower rate compared with the previous case. โ€ข Elliptic case, ๐œ– = 1. ๐‘… increases initially and decreases later because (cid:165)๐‘… < 0 if ๐œŒ > 0. 1.1.5 Einstein static universe Historically, it was originally believed that ๐œ– = 1 and ๐‘…(๐‘ก) = ๐‘…0 is independent of ๐‘ก for a Robertson-Walker cosmological model. In other words, the metric reads The Friedman equations reduce to ๐‘” = โˆ’๐‘‘๐‘ก2 + (๐‘…0)2๐›พ+. ๐‘ = โˆ’ 1 (๐‘…0)2 + ฮ› ๐œŒ = 3 (๐‘…0)2 โˆ’ ฮ›. Since the pressure cannot be negative, Einstein introduced the cosmological constant ฮ› > 0 to save this. After a few years, Einstein accepted those cosmological models with ๐‘… changing with time and abandoned the introduction of the cosmological constant ฮ›. The red-shift phenomenon can be explained if the universe is expanding. Later however, cosmologists reintroduced the cosmological term in a time-dependent form due to the observation that the universeโ€™s expansion is accelerating. 5 1.1.6 De Sitter and anti de Sitter spacetimes Consider the vacuum Einstein field equations ๐‘…๐‘–๐‘ โˆ’ 1 2 ๐‘†๐‘” + ฮ›๐‘” = 0 with a cosmological constant ฮ›. Using a Robertson-Walker spacetime model, one derives a system of evolution equations for the radius ๐‘…: (cid:165)๐‘… โˆ’ ฮ› 3 ๐‘… = 0 (cid:164)๐‘…2 โˆ’ ฮ› 3 ๐‘…2 = โˆ’๐œ– . We have three cases based on the sign of ๐œ–. โ€ข ๐œ– = 0. In this case, ฮ› > 0 for non-trivial solutions. The first equation gives ๐‘… = ๐ด๐‘’๐‘˜๐‘ก + ๐ต๐‘’โˆ’๐‘˜๐‘ก โˆš๏ธƒ ฮ› 3 . From the second equation, ๐ด๐ต = 0. Therefore, the spacetime metric is of where ๐‘˜ = the form โˆ’๐‘‘๐‘ก2 + ๐‘’๐‘˜ โ€ฒ๐‘ก (๐‘‘๐‘ฅ2 + ๐‘‘๐‘ฆ2 + ๐‘‘๐‘ง2) with ๐‘˜โ€ฒ = ยฑ๐‘˜. The spatial metric is Euclidean up to a time-dependent factor. โ€ข ๐œ– = 1. In this case, ฮ› > 0 for non-trivial solutions. When ๐‘… is time symmetric, the spacetime metric reduces to ๐‘”de Sitter = โˆ’๐‘‘๐‘ก2 + cosh2(๐‘˜๐‘ก) ๐‘˜ 2 (cid:16) ๐‘‘๐›ผ2 + sin2(๐›ผ) (๐‘‘๐œƒ2 + sin2(๐œƒ)๐‘‘๐œ™2) (cid:17) , the de Sitter spacetime where ๐‘˜ = โˆš๏ธƒ ฮ› 3 . The spatial metric is ๐‘†3 up to a cosh2 (๐‘˜๐‘ก) ๐‘˜ 2 time- dependent factor. The de Sitter spacetime is conformal to the slice โˆ’๐œ‹ < ๐‘กโ€ฒ < ๐œ‹ of the Einstein static universe via the change of variable ๐‘กโ€ฒ = 2 tanโˆ’1(๐‘’๐‘˜๐‘ก). 6 โ€ข ๐œ– = โˆ’1. In this case, ฮ› may be positive, negative, or zero. When ฮ› = โˆ’3 and ๐‘… is time-symmetric, the spacetime metric becomes โˆ’๐‘‘๐‘ก2 + cos2(๐‘ก) (cid:16) ๐‘‘๐œ’2 + sinh2( ๐œ’) (๐‘‘๐œƒ2 + sin2(๐œƒ)๐‘‘๐œ™2) (cid:17) . The standard anti de Sitter spacetime is an extension of the above spacetime โˆ’ cosh2( ๐œ’)๐‘‘๐‘ก2 + ๐‘‘๐œ’2 + sinh2( ๐œ’) (๐‘‘๐œƒ2 + sin2(๐œƒ)๐‘‘๐œ™2) with 0 โ‰ค ๐œ’ < โˆž. The anti de Sitter spacetime is conformal to the Einstein cylinder 0 โ‰ค ๐›ผ < ๐œ‹ 2 via the change of variable ๐›ผ = 2 tanโˆ’1(๐‘’ ๐œ’) โˆ’ ๐œ‹ 2 . 1.2 Warped product Big Bang models It is difficult to deal with the Einstein field equations (1.1) directly. In order to simplify the equations, one usually put the spherical symmetry assumption on the spacetime metric: หœ๐‘” = ๐‘” + ๐‘Ÿ 2 (cid:0)๐‘‘๐œƒ2 + sin2(๐œƒ)๐‘‘๐œ™2(cid:1) where ๐‘” is a metric on a (1+1)-Lorentzian manifold ๐‘„, ๐‘Ÿ is a function on ๐‘„, and ๐œƒ, ๐œ™ are coordinates on the two sphere S2. Christodoulou and Dafermos are able to make progress using this ansatz ([5], [9]). Based on this, An and Wong proposed warped product spacetimes in [2] as the following definition. The reason why we put the warped function ๐‘Ÿ as the time function is because we want to use this spacetime to model the Big Bang. Recall that in classical models, the radius ๐‘… is an increasing function of time from the Big Bang to the current time. In section 1.2.2, we see that this is a generalization of the Friedmann-Lemaรฎtre-Robertson-Walker spacetime. Definition 1.2.1. A warped product spacetime is a spacetime ๐‘„ ร—๐‘Ÿ ๐น with the metric หœ๐‘” = ๐‘” + ๐‘Ÿ 2โ„Ž, where (๐‘„, ๐‘”) is a simply-connected, 2-dimensional Lorentzian manifold, and (๐น, โ„Ž) is an ๐‘›- dimensional Riemannian manifold. Here ๐‘Ÿ : ๐‘„ โ†’ (0, โˆž) is a positive function on ๐‘„. We further assume that ๐‘Ÿ serves as a time function for the spacetime satisfying โŸจ๐‘‘๐‘Ÿ, ๐‘‘๐‘ŸโŸฉ๐‘” < 0. 7 Since ๐‘„ is simply-connected and ๐‘‘๐‘Ÿ is timelike, by setting ๐‘  = ๐‘๐‘œ๐‘›๐‘ ๐‘ก along the integral curves for โˆ‡๐‘Ÿ, one can assume ๐‘” = โˆ’๐›ผ๐‘‘๐‘Ÿ 2 + ๐›ฝ๐‘‘๐‘ 2 where ๐›ผ = ๐›ผ(๐‘Ÿ, ๐‘ ), ๐›ฝ = ๐›ฝ(๐‘Ÿ, ๐‘ ) are functions on ๐‘„. Note that we have the freedom to choose where to set ๐‘  = 0, but this point does not matter throughout our analysis. This means that our spacetime metric is หœ๐‘” = โˆ’๐›ผ๐‘‘๐‘Ÿ 2 + ๐›ฝ๐‘‘๐‘ 2 + ๐‘Ÿ 2โ„Ž. 1.2.1 Homogeneous solutions If we put the homogeneity assumption on warped product spacetimes, the Einstein-Euler equations reduce to ๐œ•๐‘Ÿ (cid:16) ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ + ๐‘† [โ„Ž] ๐‘›(๐‘› โˆ’ 1) ๐‘Ÿ ๐‘›โˆ’1 โˆ’ 2ฮ› ๐‘›(๐‘› + 1) ๐‘Ÿ ๐‘›+1(cid:17) = โˆ’ 2๐›พ๐œŒ0 ๐‘› ยท 1 ๐‘Ÿ ๐‘›๐›พ ๐›ฝ 1+๐›พ 2 ๐œ•๐‘Ÿ (๐›ผ๐›ฝ) 1+๐›พ 2 = (1 + ๐›พ)2๐œŒ0 ๐‘› ยท ๐‘Ÿ 1โˆ’๐‘›(1+๐›พ) ยท ๐›ผ 3+๐›พ 2 . (1.2) (1.3) with ๐œŒ ยท ๐‘Ÿ ๐‘›(1+๐›พ) ยท ๐›ฝ 1+๐›พ 2 = ๐œŒ0, ๐‘† [โ„Ž] is the scalar curvature of โ„Ž, and ๐‘› is the dimension of the fiber โ„Ž (refer to [2]). We are assuming the unknowns ๐›ผ and ๐›ฝ are positive functions of ๐‘Ÿ defined on (๐‘Ÿโˆ—, ๐‘Ÿ0] where 0 โ‰ค ๐‘Ÿโˆ— < ๐‘Ÿ0, 0 < ๐›ผ(๐‘Ÿ0) < โˆž, 0 < ๐›ฝ(๐‘Ÿ0) < โˆž, and ๐‘Ÿโˆ— is the first singularity; that is, ๐‘Ÿโˆ— = inf{๐‘Ÿ โ‰ฅ 0| There exist solutions ๐›ผ, ๐›ฝ which are continuous over (๐‘Ÿ, ๐‘Ÿ0] and differentiable over (๐‘Ÿ, ๐‘Ÿ0)}. ๐‘Ÿโˆ— is well defined by the Peano Existence Theorem. We also assume 0 < ๐›พ < 1 ๐œŒ0 > 0 ๐‘› โ‰ฅ 2. In a future paper, we will establish the mathematical definition for Big Bang singularites and classify all physically meaningful cosmological models with explicit asymptotes toward the Big Bang time. 8 In particular, the Big Bang time may be zero (๐‘Ÿโˆ— = 0) or nonzero (๐‘Ÿโˆ— > 0). We investigate the nonhomogeneous instability of the Big Bang for ๐‘Ÿโˆ— > 0 in Chapter 3. This is also the main topic this thesis intends to focus on. 1.2.2 Recovering the FLRW spacetime - ๐‘Ÿโˆ— = 0 In a future paper, we do the asymptote analysis for ๐‘Ÿโˆ— = 0 case. In this section, we only emphasize that a special case for ๐‘Ÿโˆ— = 0 recovers the Friedmann-Lemaรฎtre-Robertson-Walker spacetime. Recall that our warped product spacetime has the metric หœ๐‘” = โˆ’๐›ผ๐‘‘๐‘Ÿ 2 + ๐›ฝ๐‘‘๐‘ 2 + ๐‘Ÿ 2โ„Ž. โˆš Setting ๐›ผ๐‘‘๐‘Ÿ = ๐‘‘๐‘ก, ๐›ฝ = ๐ถ2๐‘Ÿ 2, โ„Ž = ๐ถ2(๐‘‘๐‘ฆ2 + ๐‘‘๐‘ง2), ๐‘… = ๐ถ๐‘Ÿ, we recover the Friedmann-Lemaรฎtre- Robertson-Walker spacetime for ฮ› = 0, ๐œ– = 0: หœ๐‘” = โˆ’๐‘‘๐‘ก2 + ๐‘…2(๐‘‘๐‘ 2 + ๐‘‘๐‘ฆ2 + ๐‘‘๐‘ง2). Notice that when ๐›ผ = 27๐ถ2 4๐‘€ ยท (1 + ๐›พ)2 ยท ๐‘Ÿ 1+3๐›พ, ๐›ฝ = ๐ถ2๐‘Ÿ 2, ๐œŒ = ๐‘€ ๐ถ3(1+๐›พ)๐‘Ÿ 3(1+๐›พ) , where ๐ถ1+3๐›พ = 9 4 (1 + ๐›พ)2, ๐‘€ = ๐œŒ ยท ๐‘…3(1+๐›พ), ๐‘… = ๐ถ๐‘Ÿ, one can verify that ๐›ผ, ๐›ฝ, ๐œŒ defined above satisfy the equations (1.2), (1.3) , the reduced Einstein field equations for homogeneous solutions. In other words, the warped product spacetimes can be regarded as an extension of the classical cosmological models. 1.2.3 Classification of singularities - ๐‘Ÿโˆ— > 0 case Our goal is to classify all the possibilities when ๐‘Ÿโˆ— > 0 (Proposition 1.2.1). We begin with an observation. Lemma 1.2.1. Suppose there exists a pair of solution (๐›ผ, ๐›ฝ) to the equations (1.2) and (1.3) having a singularity at ๐‘Ÿ = ๐‘Ÿโˆ— > 0. Then ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— = โˆž. 9 Remark. Actually in this case, we would have (๐›ผ(๐‘Ÿ) ๐›ฝ(๐‘Ÿ)) = 0, lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— as we will see later. Proof. Firstly, we claim that ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) lim sup ๐‘Ÿโ†’๐‘Ÿ + โˆ— = lim inf ๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) . This is because (1.2) implies that the quantity in the parenthesis on the left hand side ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ + ๐‘† [โ„Ž] ๐‘›(๐‘› โˆ’ 1) ๐‘Ÿ ๐‘›โˆ’1 โˆ’ 2ฮ› ๐‘›(๐‘› + 1) ๐‘Ÿ ๐‘›+1 is monotonic, and hence it has a limit (may be infinity) when ๐‘Ÿ โ†’ ๐‘Ÿ + โˆ— . Since both ๐‘† [โ„Ž] ๐‘›(๐‘›โˆ’1) ๐‘Ÿ ๐‘›โˆ’1 and ๐‘Ÿ ๐‘›+1 have a finite limit as ๐‘Ÿ โ†’ ๐‘Ÿ + โˆ— , the above claim follows. Here we use the assumption 2ฮ› ๐‘›(๐‘›+1) ๐‘› โ‰ฅ 2. Secondly, we show that ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— โ‰  0. Suppose it is zero. Since we can rewrite (1.2) as ๐œ•๐‘Ÿ (cid:17) (cid:16) ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ = โˆ’ 2๐›พ๐œŒ0 ๐‘›๐‘Ÿ ๐‘›๐›พ ๐›ฝ 1+๐›พ 2 ๐‘† [โ„Ž] ๐‘› โˆ’ ๐‘Ÿ ๐‘›โˆ’2 + 2ฮ› ๐‘› ๐‘Ÿ ๐‘› = โˆ’ 2๐›พ๐œŒ0 ๐‘›๐‘Ÿ ๐‘›๐›พ๐œŽ ยท (cid:0) ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ (cid:1) 1+๐›พ 2 ยท ๐‘Ÿ (๐‘›โˆ’1)ยท 1+๐›พ 2 โˆ’ ๐‘† [โ„Ž] ๐‘› ๐‘Ÿ ๐‘›โˆ’2 + 2ฮ› ๐‘› ๐‘Ÿ ๐‘› (1.4) 2 , and ๐œŽ cannot go to infinity as ๐‘Ÿ โ†’ ๐‘Ÿ + where ๐œŽ = (cid:0)๐›ผ๐›ฝ(cid:1) 1+๐›พ find that the first term on the right hand side of (1.4) will go to negative infinity as ๐‘Ÿ โ†’ ๐‘Ÿ + both ๐œŽ and ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ have a limit). This is impossible if we require โˆ— by (1.3) (because ๐œŽ(๐‘Ÿ0) is finite), we โˆ— (because ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— = 0 and ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) > 0 for ๐‘Ÿโˆ— < ๐‘Ÿ โ‰ค ๐‘Ÿ0, a contradiction. 10 Lastly, we show that it is impossible to have 0 < lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) < โˆž. This will require the following lemma. Lemma 1.2.2. Suppose the solution (๐›ผ, ๐›ฝ) has a singularity at ๐‘Ÿ = ๐‘Ÿโˆ— > 0. It is impossible that lim๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐œŽ(๐‘Ÿ) = 0 but 0 < lim๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐›ผ(๐‘Ÿ) < โˆž, where ๐œŽ = (๐›ผ๐›ฝ) 1+๐›พ 2 as in the proof of Lemma 1.2.1. We would postpone the proof of Lemma 1.2.2 . โ–ก This lemma implies that ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) will stay away from 0 when ๐‘Ÿ is close to ๐‘Ÿโˆ— > 0. It gives a hint to do the following change of variable ๐œ = ๐›ผ ๐‘Ÿ ๐‘›โˆ’1 ๐œŽ = (๐›ผ๐›ฝ) 1+๐›พ 2 . The two equations (1.2) and (1.3) become ๐œ•๐‘Ÿ ๐œ = โˆ’๐œ2 (cid:16) โˆ’ 2๐›พ๐œŒ0 ๐‘› ยท ๐‘Ÿ 1 2 ๐‘›โˆ’ 1 2 โˆ’ ๐›พ 2 ๐‘›โˆ’ ๐›พ 2 ยท ๐œ 1+๐›พ 2 ๐œŽ ๐‘† [โ„Ž] ๐‘› โˆ’ ๐‘Ÿ ๐‘›โˆ’2 + ๐‘Ÿ ๐‘›(cid:17) 2ฮ› ๐‘› 2๐›พ๐œŒ0 ๐‘› = ยท ๐‘Ÿ 1 2 ๐‘›โˆ’ 1 2 โˆ’ ๐›พ 2 ๐‘›โˆ’ ๐›พ 2 ยท ๐œ 5+๐›พ 2 ๐œŽ ๐‘† [โ„Ž] ๐‘› + ๐‘Ÿ ๐‘›โˆ’2 ยท ๐œ2 โˆ’ 2ฮ› ๐‘› ๐‘Ÿ ๐‘› ยท ๐œ2 ๐œ•๐‘Ÿ ๐œŽ = (1 + ๐›พ)2๐œŒ0 ๐‘› ยท ๐‘Ÿ 1 2 ๐‘›โˆ’ 1 2 โˆ’ ๐›พ 2 ๐‘›โˆ’ ๐›พ 2 ยท ๐œ 3+๐›พ 2 , (1.5) (1.6) which imply ๐œ•๐‘Ÿ (๐œ๐‘Ž๐œŽ) = (cid:0)๐‘Ž ยท 2๐›พ + (1 + ๐›พ)2(cid:1) ยท ๐‘Ÿ 1 2 ๐‘›โˆ’ 1 2 โˆ’ ๐›พ 2 ๐‘›โˆ’ ๐œŒ0 ๐‘› ๐›พ 2 ยท ๐œ 3+๐›พ 2 +๐‘Ž + ๐‘Ž (cid:16) ๐‘† [โ„Ž] ๐‘› ๐‘Ÿ ๐‘›โˆ’2 โˆ’ ๐‘Ÿ ๐‘›(cid:17) 2ฮ› ๐‘› ยท ๐œ๐‘Ž+1๐œŽ for any real number ๐‘Ž โˆˆ R. In order to eliminate the first term on the right hand side, we calculate (cid:16) ๐œ ๐œ•๐‘Ÿ (1+๐›พ)2 2๐›พ ๐œŽ (cid:17) = (1 + ๐›พ)2 2๐›พ (cid:16) ๐‘† [โ„Ž] ๐‘› ๐‘Ÿ ๐‘›โˆ’2 โˆ’ ๐‘Ÿ ๐‘›(cid:17) ๐œ ยท 2ฮ› ๐‘› (cid:16) ๐œ (1+๐›พ)2 2๐›พ ๐œŽ (cid:17) 11 = (1 + ๐›พ)2 2๐›พ ๐บ (๐‘Ÿ)๐œ ยท (cid:16) ๐œ (1+๐›พ)2 2๐›พ ๐œŽ (cid:17) , where we denote (cid:0) ๐‘† [โ„Ž] ๐‘› ๐‘Ÿ ๐‘›โˆ’2 โˆ’ 2ฮ› ๐‘› ๐‘Ÿ ๐‘›(cid:1) by ๐บ (๐‘Ÿ). This implies Lemma 1.2.3. Suppose there exists a pair of solution (๐›ผ, ๐›ฝ) to the equations (1.2) and (1.3) having a singularity at ๐‘Ÿ = ๐‘Ÿโˆ— > 0 and ๐œ, ๐œŽ are defined as above. If ๐œ satisfies ๐œ(๐‘Ÿ) โ‰ค ๐‘€, ๐‘Ÿโˆ— < ๐‘Ÿ โ‰ค ๐‘Ÿ0 for some constant ๐‘€ < โˆž, then the following limit ๐œ (1+๐›พ)2 2๐›พ ๐œŽ < โˆž 0 < lim ๐‘Ÿโ†’๐‘Ÿ + 1 exists. Note that this lemma proves Lemma 1.2.2 and the remark after Lemma 1.2.1. The above lemma suggests doing the following change of variable (cid:16) ๐œ (1+๐›พ)2 2๐›พ ๐œŽ (cid:17) ๐œ‚ = and then we have the new system of equations ๐œ•๐‘Ÿ ๐œŽ = (1 + ๐›พ)2๐œŒ0 ๐‘› ยท ๐‘Ÿ ๐‘ ยท (cid:16) ๐œ (1+๐›พ)2 2๐›พ ๐œŽ (cid:17) ๐›พ (3+๐›พ) (1+๐›พ)2 ยท ๐œŽ ๐›พ (3+๐›พ) (1+๐›พ)2 = (1 + ๐›พ)2๐œŒ0 ๐‘› ยท ๐‘Ÿ ๐‘ ยท ๐œ‚ ๐›พ (3+๐›พ) (1+๐›พ)2 ยท ๐œŽ ๐›พ (3+๐›พ) (1+๐›พ)2 ๐œ•๐‘Ÿ๐œ‚ = (1 + ๐›พ)2 2๐›พ ๐บ (๐‘Ÿ) ยท (cid:16) ๐œ (1+๐›พ)2 2๐›พ ๐œŽ (cid:17) 2๐›พ (1+๐›พ)2 ยท ๐œŽ 2๐›พ (1+๐›พ)2 ยท (cid:16) ๐œ (1+๐›พ)2 2๐›พ ๐œŽ (cid:17) = (1 + ๐›พ)2 2๐›พ ๐บ (๐‘Ÿ) ยท ๐œ‚ 2๐›พ (1+๐›พ)2 +1 ยท ๐œŽ 2๐›พ (1+๐›พ)2 , (1.7) (1.8) where ๐‘ = 1 2 ๐‘› โˆ’ 1 2 โˆ’ ๐›พ 2 ๐‘› โˆ’ ๐›พ 2 . If we try to separate ๐œŽ and ๐œ‚, we find ๐œ•๐‘Ÿ (cid:0)๐œŽ 1โˆ’๐›พ (1+๐›พ)2 (cid:1) = 1 โˆ’ ๐›พ (1 + ๐›พ)2 (1 + ๐›พ)2๐œŒ0 ๐‘› ยท ยท ๐‘Ÿ ๐‘ ยท ๐œ‚ ๐›พ (3+๐›พ) (1+๐›พ)2 12 = 1 โˆ’ ๐›พ (1 + ๐›พ)2 (1 + ๐›พ)2๐œŒ0 ๐‘› ยท ยท ๐‘Ÿ ๐‘ ยท (cid:0)๐œ‚โˆ’ 2๐›พ (1+๐›พ)2 (cid:1) โˆ’ 3+๐›พ 2 ๐œ•๐‘Ÿ (cid:0)๐œ‚โˆ’ 2๐›พ (1+๐›พ)2 (cid:1) = โˆ’ = โˆ’ 2๐›พ (1 + ๐›พ)2 2๐›พ (1 + ๐›พ)2 ยท ยท (1 + ๐›พ)2 2๐›พ (1 + ๐›พ)2 2๐›พ ๐บ (๐‘Ÿ) ยท ๐œŽ 2๐›พ (1+๐›พ)2 ๐บ (๐‘Ÿ) ยท (cid:0)๐œŽ 1โˆ’๐›พ (1+๐›พ)2 (cid:1) 2๐›พ 1โˆ’๐›พ . This means if we do another change of variable 1โˆ’๐›พ (1+๐›พ)2 ๐‘ข = ๐œŽ ๐‘ฃ = ๐œ‚โˆ’ 2๐›พ (1+๐›พ)2 , the two evolution equations become ๐œ•๐‘Ÿ๐‘ข = (1 โˆ’ ๐›พ) ๐œŒ0 ๐‘› ยท ๐‘Ÿ ๐‘ ยท ๐‘ฃโˆ’ 3+๐›พ 2 ๐œ•๐‘Ÿ ๐‘ฃ = โˆ’๐บ (๐‘Ÿ) ยท ๐‘ข 2๐›พ 1โˆ’๐›พ . Since the initial data of ๐‘ข is going to be zero in our application and it is the only difficulty to extend the differential equation over ๐‘Ÿ = ๐‘Ÿโˆ—, we could consider the following better evolution equations instead. ๐œ•๐‘Ÿ๐‘ข = (1 โˆ’ ๐›พ) ๐œŒ0 ๐‘› ยท |๐‘Ÿ |๐‘ ยท ๐‘ฃโˆ’ 3+๐›พ 2 ๐œ•๐‘Ÿ ๐‘ฃ = โˆ’๐บ (๐‘Ÿ) ยท |๐‘ข| 2๐›พ 1โˆ’๐›พ . (1.9) (1.10) This does not change what (๐‘ข, ๐‘ฃ) is because ๐‘ข(๐‘Ÿโˆ—) = 0 and the right hand side of (1.9) is positive. By the Peano existence theorem, for ๐œ– small enough, there exists a solution (๐‘ข, ๐‘ฃ) solving (1.9) and (1.10) on [๐‘Ÿโˆ— โˆ’ ๐œ–, ๐‘Ÿโˆ— + ๐œ–], with initial data ๐‘ข(๐‘Ÿโˆ—) = 0, ๐‘ฃ(๐‘Ÿโˆ—) > 0, where we are assuming ๐‘Ÿ1 > 0. 13 Lemma 1.2.4. Let ๐‘Ÿโˆ— > 0, ๐ด > 0, and ๐‘ฃโˆ— > 0 be given. There exists an ๐œ– = ๐œ– (๐‘Ÿโˆ—, ๐ด, ๐‘ฃโˆ—) > ๐‘Ÿโˆ— so that there exists a solution (๐‘ข(๐‘Ÿ), ๐‘ฃ(๐‘Ÿ)) to the system of equations (1.9) and (1.10) with the initial data and the bounds ๐‘ข(๐‘Ÿโˆ—) = 0 ๐‘ฃ(๐‘Ÿโˆ—) = ๐‘ฃโˆ— 0 < ๐‘ข(๐‘Ÿ) โ‰ค ๐ด 1 2 ๐‘ฃโˆ— โ‰ค ๐‘ฃ(๐‘Ÿ) โ‰ค 2๐‘ฃโˆ— for ๐‘Ÿโˆ— โˆ’ ๐œ– โ‰ค ๐‘Ÿ โ‰ค ๐‘Ÿโˆ— + ๐œ–. Notice that with these initial data, lim๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐›ผ(๐‘Ÿ) = 0, so that corresponds to a singularity of ๐›ผ. Proposition 1.2.1. Let ๐‘Ÿโˆ— > 0. We have the following. 1. If there exists a solution (๐›ผ, ๐›ฝ) to the equations (1.2) and (1.3), having a singularity at ๐‘Ÿ = ๐‘Ÿโˆ— > 0, then ๐‘Ÿ ๐‘›โˆ’1 ๐›ผ(๐‘Ÿ) = โˆž (๐›ผ(๐‘Ÿ) ยท ๐›ฝ(๐‘Ÿ)) = 0. lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— 2. Conversely, given any ๐ด > 0 and ๐‘ฃโˆ— > 0, there exists an ๐‘Ÿ0 = ๐‘Ÿ0(๐‘Ÿโˆ—, ๐ด, ๐‘ฃโˆ—) > ๐‘Ÿโˆ— so that there exists a solution (๐›ผ, ๐›ฝ) (on (๐‘Ÿโˆ—, ๐‘Ÿ0]) to the system of equations (1.2) and (1.3) with (cid:0)๐›ผ(๐‘Ÿ) ๐›ฝ(๐‘Ÿ)(cid:1) 1โˆ’๐›พ 2(1+๐›พ) = 0 ๐‘Ÿ ๐‘›โˆ’1 ยท 1 ๐›ผ ยท (cid:0)๐›ผ๐›ฝ(cid:1) ๐›พ 1+๐›พ = ๐‘ฃโˆ—, lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— which implies lim๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐›ผ(๐‘Ÿ) = 0, and with the bounds 2(1+๐›พ) โ‰ค ๐ด 0 โ‰ค (cid:0)๐›ผ(๐‘Ÿ) ๐›ฝ(๐‘Ÿ)(cid:1) 1โˆ’๐›พ 1 2 ๐‘ฃโˆ— โ‰ค ๐‘Ÿ ๐‘›โˆ’1 ยท 1 ๐›ผ ยท (cid:0)๐›ผ๐›ฝ(cid:1) ๐›พ 1+๐›พ โ‰ค 2๐‘ฃโˆ—. 14 Remark. The relation between (๐‘ข, ๐‘ฃ) and the original unknowns (๐›ผ, ๐›ฝ) is 2(1+๐›พ) ๐‘ข = (cid:0)๐›ผ๐›ฝ(cid:1) 1โˆ’๐›พ 1 ๐›ผ ๐‘ฃ = ๐‘Ÿ ๐‘›โˆ’1 ยท ยท (cid:0)๐›ผ๐›ฝ(cid:1) ๐›พ 1+๐›พ , or ๐›ผ = ๐‘ข 2๐›พ 1โˆ’๐›พ ยท 1 ๐‘ฃ ยท ๐‘Ÿ ๐‘›โˆ’1 ๐›ฝ = ๐‘ข 2 1โˆ’๐›พ ยท ๐‘ฃ ยท 1 ๐‘Ÿ ๐‘›โˆ’1 . Since lim๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐‘ข = 0 and 0 < lim๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐‘ฃ < โˆž, we have ๐›ผ โ‰ˆ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) 2๐›พ 1โˆ’๐›พ ๐›ฝ โ‰ˆ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) 2 1โˆ’๐›พ , where the implicit constant depends on 0 < ๐›พ < 1, ๐œŒ0, ๐‘›, ๐บ (๐‘Ÿโˆ—), and ๐‘Ÿโˆ— > 0. 15 CHAPTER 2 TECHNIQUES FOR SHOCKS This chapter aims to introduce the dynamics of compressible fluids (Section 2.1 and 2.2) and the techniques to deal with shocks (Section 2.3 and 2.4). 2.1 Newtonian fluids This section aims to derive the conservation laws for classical Newtonian fluids. We will basically follow Chapter 1 of Toroโ€™s book [26]. We use ๐œŒ : R ร— R3 โ†’ R as the fluid mass density, ๐‘ฃ : R ร— R3 โ†’ R3 as the fluid velocity, ๐‘ : R ร— R3 โ†’ R as the fluid pressure, ๐‘’ as the specific internal energy, ๐‘  as the specific entropy. Let ๐‘ˆ (๐‘ก) โŠ‚ R3 (called control volume in the Physics context) be a family of open, bounded, connected regions, bounded by the smooth boundary ๐œ•๐‘ˆ (๐‘ก) moving with the fluid. For any quantity ฮจ(๐‘ก) = โˆซ ๐‘ˆ (๐‘ก) ๐œ“(๐‘ก, ๐‘ฅ)๐‘‘๐‘ฅ with ๐œ“ : R ร— R3 โ†’ R, we have the material derivative is ๐‘‘ฮจ ๐‘‘๐‘ก = โˆซ ๐‘ˆ (๐‘ก) ๐œ•๐‘ก๐œ“(๐‘ก, ๐‘ฅ)๐‘‘๐‘ฅ + โˆซ ๐œ•๐‘ˆ (๐‘ก) ๐œ“(๐‘ก, ๐‘ฅ) (๐‘ฃ ยท ๐‘›)๐‘‘๐‘† where ๐‘ฃ : R ร— R3 โ†’ R3 is the fluid velocity, the velocity of the boundary ๐œ•๐‘ˆ, and ๐‘› is the outward normal vector on ๐œ•๐‘ˆ. Intuitively, the second surface integral says that if the boundary tends to expand (๐‘ฃ ยท ๐‘› > 0), ๐œ“ should contribute to ฮจ at the points ๐œ•๐‘ˆ is expanding. Applying Divergence theorem to this surface integral, we derive ๐‘‘ฮจ ๐‘‘๐‘ก = โˆซ ๐‘ˆ (๐‘ก) ๐œ•๐‘ก๐œ“(๐‘ก, ๐‘ฅ)๐‘‘๐‘ฅ + โˆซ ๐‘ˆ (๐‘ก) ๐‘‘๐‘–๐‘ฃ(๐œ“๐‘ฃ)๐‘‘๐‘ฅ. One can take ๐œ“(๐‘ก, ๐‘ฅ) to be the density ๐œŒ, the momentum ๐œŒ๐‘ฃ, or the energy ๐ธ to derive the following conservation laws: (๐œ•๐‘ก ๐œŒ) + ๐‘‘๐‘–๐‘ฃ(๐œŒ๐‘ฃ) = 0 ๐œ•๐‘ก (๐œŒ๐‘ฃ๐‘–) + ๐‘‘๐‘–๐‘ฃ(๐œŒ๐‘ฃ๐‘–๐‘ฃ) + (๐œ•๐‘– ๐‘) = 0, 1 โ‰ค ๐‘– โ‰ค 3 (2.1) (2.2) 16 (๐œ•๐‘ก ๐ธ) + ๐‘‘๐‘–๐‘ฃ(๐ธ๐‘ฃ) + ๐‘‘๐‘–๐‘ฃ( ๐‘๐‘ฃ) = 0 (2.3) where ๐‘ is the pressure coming from the stress tensor, ๐ธ = 1 2 ๐œŒ|๐‘ฃ|2 + ๐œŒ๐‘’, and ๐‘’ is the specific internal energy. The first equation (2.2) comes from the conservation of mass. For (2.2), we are assuming that the stress tensor is diagonal and a multiple of the identity matrix ๐ผ โˆˆ ๐‘€3ร—3(R). Therefore, the source term for the rate of change of the momentum, coming from the stress tensor acting on the boundary ๐œ•๐‘ˆ, is โˆซ โˆ’ ๐œ•๐‘ˆ ( ๐‘๐ผ)๐‘›๐‘‘๐‘† = โˆ’ โˆซ ๐‘ˆ (โˆ‡๐‘)๐‘‘๐‘ฅ, which appears as the last term (๐œ•๐‘– ๐‘) in (2.2). In (2.3), we are assuming the stress tensor is ๐‘๐ผ again and moreover there is no net heat flowing across the boundary. The stress energy will provide the source term for the rate of change of energy: โˆซ โˆ’ ๐œ•๐‘ˆ ( ๐‘๐ผ)๐‘› ยท ๐‘ฃ๐‘‘๐‘† = โˆ’ โˆซ ๐‘ˆ ๐‘‘๐‘–๐‘ฃ( ๐‘๐‘ฃ)๐‘‘๐‘ฅ. The term ( ๐‘๐ผ)๐‘› ยท ๐‘ฃ comes from the fact that power = force ยท velocity. This explains the last term ๐‘‘๐‘–๐‘ฃ( ๐‘๐‘ฃ) in (2.3). These three conservation laws combined with equation of state give the following observation: Observation 1. In the isentropic case, the conservation law of energy (2.3) is redundant. Proof. To simplify the notation, we assume the fluid is in R rather than R3, but the result still holds in R3. The first two conservation laws now become (๐œ•๐‘ก ๐œŒ) + ๐œ•๐‘ฅ (๐œŒ๐‘ฃ) = 0 ๐œ•๐‘ก (๐œŒ๐‘ฃ) + ๐œ•๐‘ฅ (๐œŒ๐‘ฃ2) + (๐œ•๐‘ฅ ๐‘) = 0. Using the Leibniz rule, we can convert them to the following equations (๐œ•๐‘ก ๐œŒ) + ๐œ•๐‘ฅ (๐œŒ๐‘ฃ) = 0 (๐œ•๐‘ก๐‘ฃ) + ๐‘ฃ(๐œ•๐‘ฅ๐‘ฃ) + 1 ๐œŒ (๐œ•๐‘ฅ ๐‘) = 0. 17 (2.4) (2.5) On the other hand, the isentropic condition means ๐‘‘๐‘  = 0 along the fluid line (the ๐œ•๐‘ก + ๐‘ฃ๐œ•๐‘ฅ direction), where ๐‘  denotes the specific entropy. This implies that 0 = ๐‘‡ ๐‘‘๐‘  = ๐‘‘๐‘’ + ๐‘๐‘‘ (cid:17) (cid:16) 1 ๐œŒ = ๐‘‘๐‘’ โˆ’ 1 ๐œŒ2 ๐‘๐‘‘๐œŒ (2.6) from the first law of Thermodynamics. Here ๐‘’ denotes the specific internal energy, ๐‘ is the pressure, and 1 ๐œŒ is the specific volume. In order to show that the energy conservation law is redundant, we calculate (๐œ•๐‘ก ๐ธ) + ๐œ•๐‘ฅ (๐ธ๐‘ฃ) + ๐œ•๐‘ฅ ( ๐‘๐‘ฃ) = ๐œ•๐‘ก ๐œŒ๐‘ฃ2 + ๐œŒ๐‘’ (cid:17) + ๐œ•๐‘ฅ (cid:16) 1 2 (cid:16) 1 2 ๐œŒ๐‘ฃ3 + ๐œŒ๐‘ฃ๐‘’ (cid:17) + ๐œ•๐‘ฅ ( ๐‘๐‘ฃ) = ๐œŒ๐œ•๐‘ก ๐‘ฃ2(cid:17) (cid:16) 1 2 + ๐œŒ(๐œ•๐‘ก๐‘’) + ๐œŒ๐‘ฃ๐œ•๐‘ฅ ๐‘ฃ2(cid:17) (cid:16) 1 2 + ๐œŒ๐‘ฃ(๐œ•๐‘ฅ๐‘’) + ๐œ•๐‘ฅ ( ๐‘๐‘ฃ) = ๐œŒ๐‘ฃ(๐œ•๐‘ก + ๐‘ฃ๐œ•๐‘ฅ)๐‘ฃ + ๐œŒ(๐œ•๐‘ก + ๐‘ฃ๐œ•๐‘ฅ)๐‘’ + ๐œ•๐‘ฅ ( ๐‘๐‘ฃ) = ๐œŒ๐‘ฃ (cid:16) โˆ’ (๐œ•๐‘ฅ ๐‘) (cid:17) + 1 ๐œŒ ๐‘ ๐œŒ (๐œ•๐‘ก + ๐‘ฃ๐œ•๐‘ฅ) ๐œŒ + ๐œ•๐‘ฅ ( ๐‘๐‘ฃ) = ๐‘ ๐œŒ (๐œ•๐‘ก + ๐‘ฃ๐œ•๐‘ฅ) ๐œŒ + ๐‘(๐œ•๐‘ฅ๐‘ฃ) = 0, where we make use of the definition of ๐ธ, (2.4), (2.5), and (2.6). โ–ก Indeed, the isentropic condition and the energy conservation law are equivalent by the same computation. A natural question arises: What if the entropy is no longer constant in time? Historically ([8]), when Riemann considered one dimensional fluids, he discovered that even starting from smooth initial data, shocks can appear in finite time. Before the formation of shocks, the solution is smooth, and therefore the energy conservation law is equivalent to the adiabatic condition Riemann was considering. However, after the shock formation, the two are no longer equivalent to each other. Thus, if one wants to continue the solution after the shock formation, one must choose between energy equations and the adiabatic condition. Riemann made the wrong choice before the 18 concept of entropy was introduced. After Clausius introduced the concept of entropy, it is clear that one should let the entropy increase across the shock boundary while maintaining the energy conservation law. The correct jump condition across the shock boundary is the Rankineโ€“Hugoniot conditions. Example 2.1.1. (RH condition) This example follows Section 3.4 in Evansโ€™ book [10]. Consider the partial differential equation ๐œ•๐‘ก๐‘ข + ๐œ•๐‘ฅ (๐น (๐‘ข)) = 0 in [0, โˆž) ร— R. (2.7) Let ๐ถ be a regular curve cutting through [0, โˆž) ร— R described by ๐ถ = {(๐‘ก, ๐‘ฅ(๐‘ก)) | ๐‘ก โ‰ฅ 0}. Set the left part of [0, โˆž) ร— R to be ฮฉ๐‘™ and the right part to be ฮฉ๐‘Ÿ. In other words, [0, โˆž) ร— R = ฮฉ๐‘™ โˆช ๐ถ โˆช ฮฉ๐‘Ÿ . The formulation for weak solutions to (2.7) is as follows. Given a test function ๐‘ฃ โˆˆ ๐ถ1 ๐‘ ( [0, โˆž) ร— R), we should have โˆ’ โˆซ โˆž โˆซ (cid:16) 0 R ๐‘ข(๐œ•๐‘ก๐‘ฃ) + ๐น (๐‘ข) (๐œ•๐‘ฅ๐‘ฃ) (cid:17) ๐‘‘๐‘ฅ๐‘‘๐‘ก โˆ’ โˆซ R ๐‘”๐‘ฃ๐‘‘๐‘ฅ = 0, (2.8) where ๐‘”(๐‘ฅ) = ๐‘ข(0, ๐‘ฅ) for all ๐‘ฅ โˆˆ R. Chossing the test function ๐‘ฃ to be compactly supported in ฮฉ๐‘™ and ฮฉ๐‘Ÿ respectively, we conclude that and ๐œ•๐‘ก๐‘ข + ๐œ•๐‘ฅ (๐น (๐‘ข)) = 0 in ฮฉ๐‘™ ๐œ•๐‘ก๐‘ข + ๐œ•๐‘ฅ (๐น (๐‘ข)) = 0 in ฮฉ๐‘Ÿ . Chossing the test function ๐‘ฃ that does not vanish on ๐ถ, (2.8) gives โˆฌ (cid:16) โˆ’ ฮฉ๐‘™ ๐‘ข(๐œ•๐‘ก๐‘ฃ) + ๐น (๐‘ข)(๐œ•๐‘ฅ๐‘ฃ) (cid:17) ๐‘‘๐‘ฅ๐‘‘๐‘ก โˆ’ โˆฌ (cid:16) ฮฉ๐‘Ÿ ๐‘ข(๐œ•๐‘ก๐‘ฃ) + ๐น (๐‘ข) (๐œ•๐‘ฅ๐‘ฃ) (cid:17) ๐‘‘๐‘ฅ๐‘‘๐‘ก โˆ’ โˆซ R ๐‘”๐‘ฃ๐‘‘๐‘ฅ = 0. 19 Using the divergence theorem, we have โˆซ โˆ’ ๐ถ (๐‘ข๐‘™๐‘ฃ (cid:174)๐‘›๐‘ก + ๐น (๐‘ข๐‘™)๐‘ฃ (cid:174)๐‘›๐‘ฅ)๐‘‘๐‘  + โˆซ ๐ถ (๐‘ข๐‘Ÿ ๐‘ฃ (cid:174)๐‘›๐‘ก + ๐น (๐‘ข๐‘Ÿ)๐‘ฃ (cid:174)๐‘›๐‘ฅ)๐‘‘๐‘  = 0, where (cid:174)๐‘› is the normal vector on ๐ถ pointing from ฮฉ๐‘™ to ฮฉ๐‘Ÿ, ๐‘‘๐‘  = โˆš๏ธ(๐‘‘๐‘ก)2 + (๐‘‘๐‘ฅ)2, ๐‘ข๐‘™ denotes the limit of ๐‘ข from the left of ๐ถ, and ๐‘ข๐‘Ÿ denotes the limit of ๐‘ข from the right of ๐ถ. This implies that the velocity of ๐ถ is parallel to (1, (cid:164)๐‘ฅ(๐‘ก)) (๐‘ข๐‘™ โˆ’ ๐‘ข๐‘Ÿ, ๐น (๐‘ข๐‘™) โˆ’ ๐น (๐‘ข๐‘Ÿ)). In other words, the velocity of ๐ถ is the jump of ๐น (๐‘ข) divided by the jump of ๐‘ข: (cid:164)๐‘ฅ(๐‘ก) = ๐น (๐‘ข๐‘™) โˆ’ ๐น (๐‘ข๐‘Ÿ) ๐‘ข๐‘™ โˆ’ ๐‘ข๐‘Ÿ . This is called Rankine-Hugoniot condition. 2.2 Relativisitic fluids Our goal in this section is to explain the connection between relativsitc fluids and Newtonian fluids. This section basically follows Chapter 4 of [21]. We use R1,3 as the Minkowski spacetime, ๐œŒ : R1,3 โ†’ R as the fluid proper mass density, ๐œ‰ as the fluid velocity, a (4, 0)-tensor on the Minkowski spacetime R1,3 with โŸจ๐œ‰, ๐œ‰โŸฉ๐œ‚ = โˆ’๐‘2, ๐‘ : R1,3 โ†’ R as the fluid pressure, ๐œ– as the internal energy density (different from the specific internal energy ๐‘’ = ๐œ– ๐œŒ from the previous section), ๐‘  as the specific entropy, ๐‘ as the light speed, ๐œ‡ = ๐œŒ๐‘2 + ๐œ– as the energy density. The energy momentum tensor for a perfect fluid in this section is ๐‘‡ = ๐œ‡ + ๐‘ ๐‘2 ๐œ‰ โŠ— ๐œ‰ + ๐‘๐œ‚, where ๐œ‚ = โˆ’๐‘‘ (๐‘ฅ0)2 + ๐‘‘ (๐‘ฅ1)2 + ๐‘‘ (๐‘ฅ2)2 + ๐‘‘ (๐‘ฅ3)2 with ๐‘ฅ0 = ๐‘๐‘ก. We write ๐œ‰ = ๐œ‰ ๐‘Ž๐œ•๐‘Ž as ๐œ‰ ๐‘Ž = โˆš๏ธƒ 1 1 โˆ’ |๐‘ฃ|2 ๐‘2 (๐‘, ๐‘ฃ) 20 (2.9) where ๐‘ฃ = (๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3). The idea is that when |๐‘ฃ| โ‰ช ๐‘, the relativistic conservation law for fluids should reduce to Newtonian conservation law. The results in this section for the Minkowski spacetime can be generalized to a general curved spacetime. The conservation laws for relativistic fluids are ๐‘‘๐‘–๐‘ฃ(๐œŒ๐œ‰) (cid:66) โˆ‡๐‘Ž (๐œŒ๐œ‰ ๐‘Ž) = 0 ๐‘‘๐‘–๐‘ฃ(๐‘‡) (cid:66) โˆ‡๐‘Ž๐‘‡ ๐‘Ž๐‘ = 0. (2.10) (2.11) Using (2.9), one can show that the first conservation law (2.10) reduces to (2.1) when |๐‘ฃ| โ‰ช ๐‘. The second conservation law actually implies (2.2) and (2.3) as we show below. Expanding (2.11) gives 1 (โˆ‡๐œ‰ ๐œ‡)๐œ‰ + ๐‘2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) ๐œ‡ + ๐‘ (โˆ‡๐‘Ž๐œ‰ ๐‘Ž)๐œ‰ ๐‘2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) + ๐œ‡ + ๐‘ ๐‘2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) โˆ‡๐œ‰ ๐œ‰ + ฮ  ยท โˆ‡๐‘ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:124) (cid:123)(cid:122) ๐œ‰โŠฅ direction (cid:125) (cid:123)(cid:122) ๐œ‰ direction where ฮ  = 1 ๐‘2 (๐œ‰ โŠ— ๐œ‰) + ๐œ‚ is the orthogonal projection to the spatial hyperplane. The first two terms are in the ๐œ‰ direction, and the latter two terms are orthogonal to the ๐œ‰ direction. Therefore, we arrive at The first equation (2.12) gives (โˆ‡๐œ‰ ๐œ‡) + (๐œ‡ + ๐‘) (โˆ‡๐‘Ž๐œ‰ ๐‘Ž) = 0 ๐œ‡ + ๐‘ ๐‘2 โˆ‡๐œ‰ ๐œ‰ + ฮ  ยท โˆ‡๐‘ = 0. โˆ‡๐œ‰๐œ– โˆ’ ๐œ– + ๐‘ ๐œŒ โˆ‡๐œ‰ ๐œŒ = 0, (2.12) (2.13) (2.14) where we use ๐œ‡ = ๐œŒ๐‘2 + ๐œ– and โˆ‡๐‘Ž๐œ‰ ๐‘Ž = โˆ’ 1 ๐œŒ โˆ‡๐œ‰ ๐œŒ from (2.10). This equation (2.14) is precisely the isentropic condition along the fluid velocity ๐œ‰: one can rewrite (2.14) as โˆ‡๐œ‰ (cid:17) (cid:16) ๐œ– ๐œŒ + ๐‘โˆ‡๐œ‰ (cid:17) (cid:16) 1 ๐œŒ = 0, which implies โˆ‡๐œ‰ ๐‘  = 0 by the first law of Thermodynamics, identifying ๐œ– ๐œŒ as the specific internal energy and 1 ๐œŒ as the specific volume. The second equation (2.13) can be reduced to (2.3) using ๐œ‡ = ๐œŒ๐‘2 + ๐œ– and |๐‘ฃ| โ‰ช ๐‘. 21 2.3 Total variation: Johnโ€™s technique This section aims to prove Proposition 2.3.1. This is a more transparent version of Johnโ€™s technique (refer to [15]). In Johnโ€™s original paper, he incorporated a lot of ingredients to the bootstrap mechanism. The equation considered there does not have source terms. We will describe the crucial technique for shock formation in a simpler setting, and our equation involves a source term. 2.3.1 Main equation The main equation (analogous to (2.1), (2.2), (2.3)) for this section is ๐œ•๐‘ก๐‘ข + ๐œ•๐‘ฅ ( ๐ด(๐‘ข)) = หœ๐น (๐‘ข) where ๐‘ข : R ร— R โ†’ R2 is the unknown, and ๐ด : R2 โ†’ R2 and หœ๐น : R2 โ†’ R2 are functions with ๐‘ข as the input. We assume the equation satisfies the following assumption. Assumption 1. The main equation can be reduced to the evolution equations for Riemann invari- ants: (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ)๐‘ฃ1 = ๐น1 (๐œ•๐‘ก + ๐œ†2๐œ•๐‘ฅ)๐‘ฃ2 = ๐น2, where ๐‘† ๐‘๐‘Ž๐‘›R{๐‘ข1, ๐‘ข2} = ๐‘† ๐‘๐‘Ž๐‘›R{๐‘ฃ1, ๐‘ฃ2}, and ๐œ†1 โ‰  ๐œ†2, ๐น1, ๐น2 are scalar functions of ๐‘ฃ1 and ๐‘ฃ2. When ๐น1 = 0 = ๐น2, ๐‘ฃ1 and ๐‘ฃ2 are the classical Riemann invariants. Remark. We provide a special case where the above assumption is satisfied. When the derivative ๐‘‘๐ด can be decomposed to ๐‘‘๐ด = ๐‘ƒ๐ท๐‘ƒโˆ’1 with ๐ท a diagonal matrix, and ๐‘ƒโˆ’1 satisfying that (๐‘ƒโˆ’1)11 = (๐‘ƒโˆ’1)21 are functions of ๐‘ข1, and (๐‘ƒโˆ’1)12, (๐‘ƒโˆ’1)22 are constants, one can show that the assumption holds. Since ๐œ†1 โ‰  ๐œ†2, we can use the characteristics to foliate the spacetime R ร— R, assuming the solutions ๐‘ฃ1, ๐‘ฃ2 exist in a certain spacetime region, and therefore the functions ๐œ†1, ๐œ†2 of ๐‘ฃ1, ๐‘ฃ2 can 22 be regarded as functions of (๐‘ก, ๐‘ฅ). Regarding {0} ร— R as the initial slice, we define the coordinates for characteristics as follows. {(๐‘ก, ๐‘‹๐‘– (๐‘ก; ๐‘ง)) | ๐‘ก > 0} is the characteristic curve for (๐œ•๐‘ก + ๐œ†๐‘–๐œ•๐‘ฅ) passing through the point (0, ๐‘ง), where ๐‘– = 1, 2 and ๐‘ง โˆˆ R. In other words, ๐‘‹๐‘– is ๐‘ฅ-coordinate of the characteristic curve, and we are using ๐‘ก as the parameter of the curve emanating from (0, ๐‘ง). The crucial property is as follows. Using the characteristic viewpoints, we actually have a linear control (not quadratic!) on the total variation of the Riemann invariants ๐‘ฃ1, ๐‘ฃ2. More specifically, on the one hand, the evolution equations for Riemann invariants implies (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ)(๐œ•๐‘ฅ๐‘ฃ1) = (๐œ•๐‘ฅ ๐น1) โˆ’ (๐œ•๐‘ฅ๐œ†1) (๐œ•๐‘ฅ๐‘ฃ1). On the other hand, the definition of ๐‘‹1 gives an evolution equation for ๐œ• ๐‘‹1 ๐œ•๐‘ง (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ) (cid:17) (cid:16) ๐œ• ๐‘‹1 ๐œ•๐‘ง = ๐‘‘ ๐‘‘๐‘ก (cid:16) ๐œ• ๐‘‹1 ๐œ•๐‘ง (cid:17) = ๐œ• ๐œ•๐‘ง (cid:16) ๐‘‘๐‘‹1 ๐‘‘๐‘ก (cid:17) = ๐œ• ๐œ•๐‘ง ๐œ†1 = (๐œ•๐‘ฅ๐œ†1) (cid:16) ๐œ• ๐‘‹1 ๐œ•๐‘ง (cid:17) , where ๐‘‘ ๐‘‘๐‘ก = (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ) denotes the directional derivative along the characteristic. Combining these two, we see that we have an evolution for the integrand of the total variation. (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ) (cid:16) (๐œ•๐‘ฅ๐‘ฃ1) ยท (cid:17) ๐œ• ๐‘‹1 ๐œ•๐‘ง = (๐œ•๐‘ฅ ๐น1) ยท ๐œ• ๐‘‹1 ๐œ•๐‘ง . It is important that the (๐œ•๐‘ฅ๐œ†1) terms cancel. The term โˆ’(๐œ•๐‘ฅ๐œ†1) (๐œ•๐‘ฅ๐‘ฃ1) is expected to be the source for shock formation since it gives a term like โˆ’(๐ท๐‘ฃ1 ๐œ†1) (๐œ•๐‘ฅ๐‘ฃ1)2 and the equation becomes a Riccati equation with finite blowup time if the sign is correct. What John found is that, despite this blowup tendancy, one can still get a control on the total variation, as we explain in the following important calculation. For ๐‘ก > 0, โˆซ (ฮ“๐‘ก ) |๐œ•๐‘ฅ๐‘ฃ1|๐‘‘๐‘ฅ = = โˆซ ๐‘ง๐‘… ๐‘ง๐ฟ๐ฟ (ฮ“๐‘ก ) โˆซ ๐‘ง๐‘… ๐‘ง๐ฟ (ฮ“0) (cid:12) (cid:12) (cid:12) ๐œ•๐‘ฅ๐‘ฃ1 ยท ๐œ• ๐‘‹1 ๐œ•๐‘ง (cid:12) (cid:12) (cid:12) ๐‘‘๐‘ง |๐œ•๐‘ฅ๐‘ฃ1|๐‘‘๐‘ง + โˆซ ๐‘ก โˆซ ๐‘ง๐‘… 0 ๐‘ง๐ฟ๐ฟ (ฮฉ๐‘ก ) (cid:12) (cid:12) (cid:12) (๐œ•๐‘ฅ ๐น1) ยท ๐œ• ๐‘‹1 ๐œ•๐‘ง (cid:12) (cid:12) (cid:12) ๐‘‘๐‘ง๐‘‘๐‘ก 23 โˆซ ๐‘ง๐‘… โ‰ค ๐‘ง๐ฟ (ฮ“0) |๐œ•๐‘ฅ๐‘ฃ1|๐‘‘๐‘ง + โˆฌ (ฮฉ๐‘ก ) |๐ท๐‘ฃ1 ๐น1||๐œ•๐‘ฅ๐‘ฃ1| + |๐ท๐‘ฃ2 ๐น1||๐œ•๐‘ฅ๐‘ฃ2|๐‘‘๐‘ฅ๐‘‘๐‘ก. (2.15) This means that, if we have control on the initial total variation of ๐‘ฃ1, ๐‘ฃ2, and if |๐ท๐‘ฃ1 are pointwise uniformly bounded, we will have a closed feedback for the total variation of ๐‘ฃ1 and ๐น1|, |๐ท๐‘ฃ2 ๐น1| ๐‘ฃ2, and then we can do the Gronwallโ€™s inequality and run the bootstrap mechanism accordingly. Figure 2.1 The strategy to control the total variation. Figure 2.2 The picture for ฮ“๐‘ก, ฮฉ๐‘ก. Here we are using the notations (assuming ๐œ†1 < ๐œ†2) ๐‘ง๐ฟ < ๐‘ง๐‘… 24 ฮ“๐‘ก = {(๐‘ก, ๐‘ฅ) | ๐‘‹2(๐‘ก; ๐‘ง๐ฟ) โ‰ค ๐‘ฅ โ‰ค ๐‘‹1(๐‘ก; ๐‘ง๐‘…)} ฮฉ๐‘ก = {(๐œ, ๐‘ฅ) | 0 โ‰ค ๐œ โ‰ค ๐‘ก, ๐‘‹2(๐œ; ๐‘ง๐ฟ) โ‰ค ๐‘ฅ โ‰ค ๐‘‹1(๐œ; ๐‘ง๐‘…)}. We are also assuming the solutions exhibit homogeneous behavior outside the wave propagation cone so that we only have to focus on the region ฮฉ๐‘ก. Assumption 2. The solution (๐‘ฃ1, ๐‘ฃ2), or equivalently (๐‘ข1, ๐‘ข2), satisfies (๐œ•๐‘ฅ๐‘ฃ1) = 0 = (๐œ•๐‘ฅ๐‘ฃ2) on (R+ ร— R) โˆ’ ฮฉโˆž. Proposition 2.3.1. Assumption 1 and 2 imply the control of total variation (2.15). Remark. If our equation allows homogeneous solutions, then Assumption 2 holds if the initial perturbation is 0 outside a compact subset ฮ“0, according to the finite speed of propagation property. 2.4 Piontwise blowup: Riccati equation This section aims to establish Proposition 2.4.1. Continuing from the Assumption 1, we see a Riccati type structure for the evolution of ๐œ•๐‘ ๐‘ฃ1: (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ)(๐œ•๐‘ฅ๐‘ฃ1) + (๐œ•๐‘ฅ๐œ†1)(๐œ•๐‘ฅ๐‘ฃ1) = (๐œ•๐‘ฅ ๐น1) (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ)(๐œ•๐‘ฅ๐‘ฃ1) + (๐ท๐‘ฃ1 ๐œ†1)(๐œ•๐‘ฅ๐‘ฃ1)2 + (๐ท๐‘ฃ2 ๐œ†1) (๐œ•๐‘ฅ๐‘ฃ1) (๐œ•๐‘ฅ๐‘ฃ2) = (๐ท๐‘ฃ1 ๐น1) (๐œ•๐‘ฅ๐‘ฃ1) + (๐ท๐‘ฃ2 ๐น1) (๐œ•๐‘ฅ๐‘ฃ2). Using the integral factor method for ordinary differential equations, we derive (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ)(๐‘’ ๐‘“ ยท ๐œ•๐‘ฅ๐‘ฃ1) = โˆ’๐‘’โˆ’ ๐‘“ (๐ท๐‘ฃ1 ๐œ†1) (๐‘’ ๐‘“ ยท ๐œ•๐‘ฅ๐‘ฃ1)2 + ๐‘’ ๐‘“ (๐ท๐‘ฃ2 ๐น1) (๐œ•๐‘ฅ๐‘ฃ2), (2.16) where โˆซ ๐‘ก ๐‘“ = 0 (๐‘‹1) (๐ท๐‘ฃ2 ๐œ†1) (๐œ•๐‘ฅ๐‘ฃ2) โˆ’ (๐ท๐‘ฃ1 ๐น1)๐‘‘๐‘ก is the integral over the curve (๐‘ก, ๐‘‹1(๐‘ก; ๐‘ง)) and thus depends on the initial position ๐‘ง โˆˆ R. Regarding the weighted derivative as a new variable ๐‘ฆ = ๐‘’ ๐‘“ ยท ๐œ•๐‘ฅ๐‘ฃ1, one can see that there is a chance for ๐‘ฆ to 25 blow up at finite time if the sign of โˆ’(๐ท๐‘ฃ1 ๐œ†1) is correct, based on the finite blowup time property for a Riccati equation. This induces the following assumption. Assumption 3. Fix ๐‘ง โˆˆ R and let ๐‘‹1 denote the characteristic for (๐œ•๐‘ก + ๐œ†1๐œ•๐‘ฅ) issuing from (๐‘ก, ๐‘ฅ) = (0, ๐‘ง). We assume there exist constants ๐‘, ๐ถ, ๐œ–, which may depend on ๐‘ง, so that along ๐‘‹1, โ€ข (๐ท๐‘ฃ1 ๐œ†1) โ‰ฅ ๐‘ > 0 โ€ข ๐‘ โ‰ค ๐‘’ ๐‘“ โ‰ค ๐ถ โ€ข |๐œ•๐‘ ๐‘ฃ2| โ‰ค ๐œ– โ€ข |๐ท๐‘ฃ2 ๐น1| โ‰ค ๐ถ. Remark. In Chapter 3, the lower bounds for (๐ท๐‘ฃ1 ๐œ†1) and ๐‘’โˆ’ ๐‘“ (the coefficient for (๐‘’ ๐‘“ ยท ๐œ•๐‘ฅ๐‘ฃ1)2) are stronger. We also have to worry about whether the shock happens before the Big Bang blowup time there. Remark. We only require |๐œ•๐‘ ๐‘ฃ2| โ‰ค ๐œ– along ๐‘‹1, not necessarily globally in space. Therefore, if Assumption 3 holds, the weighted derivative ๐‘’ ๐‘“ ยท ๐œ•๐‘ฅ๐‘ฃ1, with sufficiently large initial data ๐œ•๐‘ฅ๐‘ฃ1(0, ๐‘ง), follows a Riccati equation (2.16) similar to ๐‘‘๐‘ฆ ๐‘‘๐‘ก โ‰ฅ ๐‘ฆ2, which blows up at finite time. Since ๐‘’ ๐‘“ has a positive lower bound, ๐œ•๐‘ ๐‘ฃ1 also goes to infinity and thus concludes the shock formation. Proposition 2.4.1. Assumption 1, 2, 3 imply the shock formation within finite time. 26 CHAPTER 3 INSTABILITY OF THE BIG BANG 3.1 Introduction Starting with the homogeneous solutions to Einstein-Euler equations derived from Chapter 1, we prove the instability of the ๐‘Ÿโˆ— > 0 Big Bang models under non-homogeneous, compactly supported perturbations. For notations, see 3.3.4. Theorem 3.1.1. Fix a background homogeneous fluid over (๐‘Ÿโˆ—, ๐‘Ÿ0] having the Big Bang sin- gularity at ๐‘Ÿ = ๐‘Ÿโˆ— > 0. The asymptote of ( หš๐œŒ หš๐›ผ) will determine ๐‘Ÿ๐‘š๐‘–๐‘‘ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0). We re- gard ๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0 as parameters (defined in Section 3.3.4). Fix ๐‘Ÿ๐‘๐‘ข๐‘ก โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘) which is not a parameter. There exist ๐ฟ๐ต = ๐ฟ๐ต(๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ), ๐œ–๐‘Ž,0 = ๐œ–๐‘Ž,0(๐ฟ๐ต, ๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ), ๐œ–0 = ๐œ–0(๐ฟ๐ต, ๐œ–๐‘Ž,0, ๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) so that for every compactly supported data, specified on {๐‘Ÿ = ๐‘Ÿ0}, satisfying โ€ข ๐ธ (๐‘Ÿ0) = โˆซ ฮ“๐‘Ÿ 0 |๐œ•๐‘ ๐‘ฃ1| + |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  < ๐œ–0 (small total variation) โ€ข โˆซ ฮ“๐‘Ÿ 0 |๐œ•๐‘  ln ๐›ผ| + |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  < ๐œ–๐‘Ž,0 (small metric total variation) โ€ข |๐œ•๐‘ ๐‘ฃ2(๐‘Ÿ0, ๐‘ )| < ๐œ–๐‘Ž,0 for ๐‘  โˆˆ [โˆ’1, 0] (small opponent) โ€ข ๐œ•๐‘ ๐‘ฃ1(๐‘Ÿ0, โˆ’ 1 2) โ‰ฅ ๐ฟ๐ต, ๐œ•๐‘ ๐‘ฃ1 goes to infinity along the (๐œ†1) characteristic before ๐‘Ÿ = ๐‘Ÿ๐‘๐‘ข๐‘ก (meaning somewhere in [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]). Moreover lim ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’๐‘Ÿ + โˆ— ๐ฟ๐ต(๐‘Ÿ๐‘๐‘ข๐‘ก) = 0. We construct a sequence of initial data that satisfies the above constraint in Section 3.6. Section 3.3.4 includes all the notations. During the time ๐‘Ÿ๐‘๐‘ข๐‘ก โ‰ค ๐‘Ÿ โ‰ค ๐‘Ÿ0, it is guaranteed that the total variations ๐ธ (๐‘Ÿ), โˆซ ฮ“๐‘Ÿ |๐œ•๐‘  ln ๐›ผ| + |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  remain small. Note that this control is valid only up to ๐‘Ÿ๐‘๐‘ข๐‘ก. 27 Proof. The proof is in Section 3.5.3. โ–ก Remark. The theorem says that, for a family of background solutions that satisfy certain condition involving ๐ถ2, we can find a sequence of initial data that goes to background in ๐‘Š 1,โˆž so that shock forms before ๐‘Ÿ = ๐‘Ÿโˆ—. In other words, this family of background solutions (modelling the Big Bang) are unstable. Remark. We can of course arrange things so that ๐œ–0 = ๐œ–๐‘Ž,0. The reason we introduce another notation ๐œ–๐‘Ž,0 (where ๐‘Ž for auxiliary) is to keep track of their contribution throughout the bootstrap framework. Figure 3.1 The picture for the big bang model considered in this work. 3.2 Main Equations 3.2.1 Geometry As in [2], we consider warped product spacetimes defined as follows. Definition 3.2.1. A warped product spacetime is a spacetime ๐‘„ ร—๐‘Ÿ ๐น with the metric หœ๐‘” = ๐‘” + ๐‘Ÿ 2โ„Ž, 28 where ๐‘„ is a simply-connected, 2-dimensional Lorentzian manifold with the metric ๐‘” and ๐น is an ๐‘›-dimensional Riemannian manifold with the metric โ„Ž. Here ๐‘Ÿ : ๐‘„ โ†’ (0, โˆž) is a positive function on ๐‘„. We further assume that ๐‘Ÿ serves as the time function for the spacetime satisfying โŸจ๐‘‘๐‘Ÿ, ๐‘‘๐‘ŸโŸฉ๐‘” < 0. Notice that in this paper, we assume all the dynamics for the warped product spacetime are exhibited in ๐‘„, and we regard ๐น as a fixed fiber. Since ๐‘„ is assumed to be simply-connected, we are able to assume the metric ๐‘” has the following form ๐‘” = โˆ’๐›ผ๐‘‘๐‘Ÿ 2 + ๐›ฝ๐‘‘๐‘ 2, where ๐›ผ, ๐›ฝ are positive functions on ๐‘„. The reason is as follows. By the simply-connectedness, we can construct the integral curves along โˆ‡๐‘Ÿ. We define another function ๐‘  on ๐‘„ by setting these integral curves to be ๐‘  = ๐‘๐‘œ๐‘›๐‘ ๐‘ก. Thus, ๐œ•๐‘Ÿ is timelike since โŸจโˆ‡๐‘Ÿ, โˆ‡๐‘ŸโŸฉ๐‘” = โŸจ๐‘‘๐‘Ÿ, ๐‘‘๐‘ŸโŸฉ๐‘” < 0. ๐œ•๐‘  is spacelike since ๐‘„ is Lorentzian. ๐œ•๐‘Ÿ is orthogonal to ๐œ•๐‘  since โˆ‡๐‘Ÿ is orthogonal to ๐‘Ÿ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก slice. 3.2.2 Einstein-Euler equations We consider the Einstein-Euler equations in this paper: ๐‘…๐‘–๐‘[ หœ๐‘”] = ๐‘‡ โˆ’ 1 ๐‘› ๐‘ก๐‘Ÿ (๐‘‡) หœ๐‘” + 2 ๐‘› ฮ› หœ๐‘”, where ๐‘‡ = ( ๐‘ + ๐œŒ)๐œ‰ โŠ— ๐œ‰ + ๐‘ หœ๐‘” is the energy momentum tensor for a perfect fluid. Here ๐‘, ๐œŒ, ๐œ‰ represent the pressure, density, and fluid velocity of the fluid respectively. We further impose the equation of state ๐‘ = ๐›พ๐œŒ for ultrarelativistic fluids. Here 0 < โˆš๐›พ < 1 is the sound speed. Since the fluid veloctiy has unit length โŸจ๐œ‰, ๐œ‰โŸฉ = โˆ’1, we use ๐œƒ to parametrize ๐œ‰ = ๐œ‰๐‘Ÿ ๐œ•๐‘Ÿ + ๐œ‰ ๐‘ ๐œ•๐‘ : โˆš ๐›ผ๐œ‰๐‘Ÿ = โˆš๏ธ 1 + ๐œƒ2 โˆš๏ธ๐›ฝ๐œ‰ ๐‘  = ๐œƒ, 29 where ๐œƒ โˆˆ R is a scalar indicating how much the fluid velocity deviates from the time direction ๐œ•๐‘Ÿ. In summary, we have four unknowns in this paper: two metric components ๐›ผ, ๐›ฝ and two fluid variables ๐œƒ, ๐œŒ. 3.2.3 Reduced Einstein Field Equations After expanding the definition of Ricci curvature, we get the following reduced Einstein field equations (cid:16)โˆš๏ธ๐›ฝ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 1+๐›พ ยท ๐œ•๐‘Ÿ 1 + ๐œƒ2(cid:17) โˆš๏ธ + ๐œ•๐‘  (cid:16)โˆš ๐›ผ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 1+๐›พ ยท ๐œƒ (cid:17) = 0 (cid:16)โˆš๏ธ๐›ฝ ยท ๐œŒ ๐œ•๐‘Ÿ ๐›พ 1+๐›พ ยท ๐œƒ (cid:17) + ๐œ•๐‘  (cid:16)โˆš ๐›ผ ยท ๐œŒ ๐›พ 1+๐›พ โˆš๏ธ 1 + ๐œƒ2(cid:17) = 0 (๐œ•๐‘Ÿ ln ๐›ผ) = (cid:16) 2(1 + ๐›พ)๐œƒ2 + 2๐›พ (cid:17) (๐œ•๐‘Ÿ ln ๐›ฝ) = (cid:16) 2(1 + ๐›พ)๐œƒ2 + 2 (cid:17) ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) + ๐‘› โˆ’ 1 ๐‘Ÿ โˆ’ ๐›ผ (cid:16) 2ฮ› ๐‘› ๐‘Ÿ โˆ’ (cid:17) ๐‘† [โ„Ž] ๐‘›๐‘Ÿ (๐œŒ๐›ผ) โˆ’ ๐‘› โˆ’ 1 ๐‘Ÿ + ๐›ผ (cid:16) 2ฮ› ๐‘› ๐‘Ÿ โˆ’ (cid:17) ๐‘† [โ„Ž] ๐‘›๐‘Ÿ ยท ๐‘Ÿ ๐‘› with the constraint (๐œ•๐‘  ln ๐›ผ) = โˆ’2(1 + ๐›พ) ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) ยท โˆš โˆš ๐›ฝ ๐›ผ ยท ๐œƒโˆš๏ธ 1 + ๐œƒ2. The main unknowns are ๐œƒ, ๐œŒ, ๐›ผ, ๐›ฝ (and become ๐‘ฃ1, ๐‘ฃ2, ๐›ผ, ๐›ฝ later). The first two equations form a hyperbolic system and describe the evolution of the fluid variables ๐œƒ and ๐œŒ. The third and the fourth equations describe the evolution of the metric components ๐›ผ and ๐›ฝ. The last constraint equation is a condition for initial data and is compatible with the third equation. Once the initial data satisfies the constraint, the constraint holds forever. Lemma 3.2.1. The Einstein field equations are equivalent to the reduced Einstein field equations for smooth solutions. Proof. Assume the solution (๐œƒ, ๐œŒ, ๐›ผ, ๐›ฝ) satisfies the Einstein field equations. We have 1. Conservation of energy momentum tensor, โˆ‡๐‘Ž๐‘‡๐‘Ž๐‘ = 0. 2. Einstein equation restricted on ๐‘„, ๐‘…๐‘–๐‘ [๐‘”] โˆ’ ๐‘› ๐‘Ÿ โˆ‡2๐‘Ÿ = ๐‘‡๐‘„ โˆ’ 1 ๐‘› (๐‘ก๐‘Ÿ หœ๐‘”๐‘‡) + 2 ๐‘› ฮ›๐‘”. 30 3. Einstein equation restricted on ๐น, ๐‘…๐‘–๐‘[โ„Ž] โˆ’ (cid:16) ๐‘Ÿฮ”๐‘”๐‘Ÿ + (๐‘› โˆ’ 1)โŸจ๐‘‘๐‘Ÿ, ๐‘‘๐‘ŸโŸฉ๐‘” (cid:17) โ„Ž = ๐‘‡๐น โˆ’ 1 ๐‘› (๐‘ก๐‘Ÿ หœ๐‘”๐‘‡) (๐‘Ÿ 2โ„Ž) + ๐‘› ฮ›(๐‘Ÿ 2โ„Ž). 2 Here ๐‘‡๐‘„, ๐‘‡๐น denote the restriction of the energy momentum tensor ๐‘‡ on the base ๐‘„ and the fiber ๐น, respectively. Expanding the conservation law gives the first two reduced Einstein field equations. Applying ๐‘ก๐‘Ÿ๐‘” to the restrction on ๐‘„ (simplified by using (2) on the ๐œ•๐‘  โŠ— ๐œ•๐‘  direction) and expanding the restriction on ๐น give the third and the fourth reduced Einstein field equations. Applying the striction on ๐‘„ to the ๐œ•๐‘Ÿ โŠ— ๐œ•๐‘  direction gives the constraint equation for ln ๐›ผ. Conversely, assume the solution (๐œƒ, ๐œŒ, ๐›ผ, ๐›ฝ) satisfies the reduced Einstein field equations. De- note the tensor ๐‘…๐‘–๐‘[ หœ๐‘”] โˆ’ ๐‘‡ + 1 ๐‘› ฮ› หœ๐‘” by ๐ธ๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘–๐‘›. From the above argument, we know that the third and the fourth reduced Einstein equations imply (๐ธ๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘–๐‘›)๐น = 0, where (๐ธ๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘–๐‘›)๐น is ๐‘› ๐‘ก๐‘Ÿ (๐‘‡) หœ๐‘” โˆ’ 2 the Einstein tensor restricted on ๐น. To prove (๐ธ๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘–๐‘›)๐‘„ = 0, we observe that โ€ข The constraint reduced Einstein equation implies (๐ธ๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘–๐‘›)๐‘„ (๐œ•๐‘Ÿ, ๐œ•๐‘ ) = 0. โ€ข The term (๐ธ๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘–๐‘›)๐‘„ (๐œ•๐‘Ÿ, ๐œ•๐‘Ÿ) involves (๐œ•2 ๐‘  ๐›ผ) and (๐œ•2 ๐‘Ÿ ๐›ฝ). Therefore, we can start from the reduced Einstein equations for (๐œ•๐‘  ln ๐›ผ) and (๐œ•๐‘Ÿ ln ๐›ฝ), take one more derivative, and algebraically prove that (๐ธ๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘–๐‘›)๐‘„ (๐œ•๐‘Ÿ, ๐œ•๐‘Ÿ) = 0 holds. During the process, we also need the first two reduced Einstein equations. โ€ข The way to prove (๐ธ๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘–๐‘›)๐‘„ (๐œ•๐‘ , ๐œ•๐‘ ) = 0 is similar. Indeed, since both the reduced Einstein equations (with a compatible constraint equation) and the Einstein equations are locally well-posed, they should be equivalent if one implies the other under enough regularity conditions. โ–ก 3.2.4 Riemann invariants If we perform a matrix diagonalization on the hyperbolic system, the first two equations in the reduced Einstein field equations, we are able to get the following evolution equations for Riemann invariants ๐‘ฃ1 and ๐‘ฃ2 (refer to [15]). Notice that they are two evolution equations for two quantities 31 ๐‘ฃ1 and ๐‘ฃ2 along two different directions (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘  and ๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘  directions). (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ ) 1 + ๐œƒ2 + ๐œƒ(cid:1) + โˆš๐›พ ln (cid:0)โˆš๏ธ (cid:16) 1 2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) ln ๐œŒ + ln ๐›ผ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 2(1 + ๐›พ) 1 + ๐œƒ2 + ๐œƒ(cid:1) โˆ’ โˆš๐›พ ln (cid:0)โˆš๏ธ (cid:16) 1 2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) ln ๐œŒ โˆ’ ln ๐›ผ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 2(1 + ๐›พ) 1 2(1 + ๐›พ) (cid:123)(cid:122) ๐‘ฃ1 1 2(1 + ๐›พ) (cid:123)(cid:122) ๐‘ฃ2 (cid:17) = ๐น1 (cid:17) = ๐น2. (cid:125) (cid:125) Here the eigenvalues, or the speeds of propagation, are โˆš โˆš ๐›ผ ๐›ฝ ยท ๐œ†1 = and the source terms are โˆš (1 โˆ’ ๐›พ)๐œƒ 1 + ๐œƒ2 + 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ , ๐œ†2 = โˆš โˆš ๐›ผ ๐›ฝ ยท โˆš (1 โˆ’ ๐›พ)๐œƒ 1 + ๐œƒ2 โˆ’ 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ , (cid:17) (cid:17) ๐น1 = (cid:16) โˆ’ 1 2 + ๐›พ 1 + ๐›พ (cid:17) ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) (cid:16) โˆ’ + ๐‘› โˆ’ 1 ๐‘Ÿ + ๐›ผ (cid:0) 2 ๐‘› ฮ›๐‘Ÿ โˆ’ ๐‘† [โ„Ž] ๐‘›๐‘Ÿ (cid:16) (cid:1)(cid:17) ยท โˆ’ โˆš โˆš๐›พ (1 โˆ’ ๐›พ)๐œƒ 4 1 + ๐œƒ2 + โˆš๐›พ (cid:0)1 + (1 โˆ’ ๐›พ)๐œƒ2(cid:1) โˆ’ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 2(1 + ๐›พ) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) 2(1+๐›พ) ยฑ 1 โˆš๐›พ 4 (cid:123)(cid:122) bounded betweenโˆ’ 1 (cid:124) + ๐‘› 2๐‘Ÿ ยท โˆš 1 + ๐œƒ2 (cid:0)โˆš๐›พ๐œƒ โˆ’ โˆš 1 + ๐œƒ2(cid:1) 1 + (1 โˆ’ ๐›พ)๐œƒ2 ๐น2 = (cid:16) 1 2 โˆ’ ๐›พ 1 + ๐›พ (cid:17) ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) (cid:16) โˆ’ + ๐‘› โˆ’ 1 ๐‘Ÿ + ๐›ผ (cid:0) 2 ๐‘› ฮ›๐‘Ÿ โˆ’ ๐‘† [โ„Ž] ๐‘›๐‘Ÿ (cid:16) (cid:1)(cid:17) ยท โˆ’ โˆš โˆš๐›พ (1 โˆ’ ๐›พ)๐œƒ 1 + ๐œƒ2 โˆ’ โˆš๐›พ (cid:0)1 + (1 โˆ’ ๐›พ)๐œƒ2(cid:1) + 4 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) (cid:123)(cid:122) bounded between 1 2(1 + ๐›พ) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) 2(1+๐›พ) ยฑ 1 โˆš๐›พ 1 4 + ๐‘› 2๐‘Ÿ ยท โˆš 1 + ๐œƒ2 (cid:0)โˆš๐›พ๐œƒ + โˆš 1 + ๐œƒ2(cid:1) 1 + (1 โˆ’ ๐›พ)๐œƒ2 . For convenience, we record these Riemann invariants as a definition. Definition 3.2.2. We use ๐‘ฃ1 = 2 1 โˆš๐›พ ln (cid:0)โˆš๏ธ 1 + ๐œƒ2 + ๐œƒ(cid:1) + 1 2(1 + ๐›พ) ln ๐œŒ + 1 2(1 + ๐›พ) ln ๐›ผ 32 ๐‘ฃ2 = 1 โˆš๐›พ ln (cid:0)โˆš๏ธ 2 1 + ๐œƒ2 + ๐œƒ(cid:1) โˆ’ 1 2(1 + ๐›พ) ln ๐œŒ โˆ’ 1 2(1 + ๐›พ) ln ๐›ผ to denote the Riemann invariants. They encode the information about the fluid variables ๐œƒ and ๐œŒ. The ln ๐›ผ term is only for convenience and does not play a big role. Notice that for homogeneous fluids, ๐œƒ = 0, which implies ๐œ†1 = โˆš๐›พ. The metric components ๐›ผ, ๐›ฝ for the homogeneous fluids have the asymptotes (refer to Section 1.2) โˆš๐›พ and ๐œ†2 = โˆ’ ๐›ผ ๐›ฝ ยท ๐›ผ ๐›ฝ ยท โˆš โˆš โˆš โˆš ๐›ผ โ‰ˆ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) 2๐›พ 1โˆ’๐›พ , ๐›ฝ โ‰ˆ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) 2 1โˆ’๐›พ as ๐‘Ÿ โ†’ ๐‘Ÿ + โˆ— . Therefore, since 0 < ๐›พ < 1, the speeds ๐œ†1, ๐œ†2 go to infinity when ๐‘Ÿ approaches ๐‘Ÿโˆ— (Figure 3.2). Figure 3.2 The speeds of propagation go to infinity close to ๐‘Ÿโˆ— for homogeneous fluids. 3.3 Strategy The fluid density ๐œŒ and the metric components ๐›ผ, ๐›ฝ for the background homogeneous fluid exhibit singular behavior as ๐‘Ÿ โ†’ ๐‘Ÿ + โˆ— : ๐›ผ โ‰ˆ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) 2๐›พ 1โˆ’๐›พ , ๐›ฝ โ‰ˆ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) 2 1โˆ’๐›พ , ๐œŒ โ‰ˆ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—)โˆ’ 1+๐›พ 1โˆ’๐›พ . Thus, after initial nonhomogeneous perturbation, we may expect these variables exhibit a similar, if not worse, singular behavior. The main difficulty is how to control quantities when the time ๐‘Ÿ is 33 close to ๐‘Ÿโˆ—. The solution is that we avoid this issue by setting an ๐‘Ÿ๐‘๐‘ข๐‘ก with ๐‘Ÿโˆ— < ๐‘Ÿ๐‘๐‘ข๐‘ก < ๐‘Ÿ0. The main philosophy is that, the equations may have unbounded coefficients in the time interval (๐‘Ÿโˆ—, ๐‘Ÿ0], but for each fix ๐‘Ÿ๐‘๐‘ข๐‘ก โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0), the equations are expected to have large but bounded coefficients in [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]. Our hope is to argue that the solution exists in ๐‘Š 1,1 during the time [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0] but the derivative blows up pointwise before ๐‘Ÿ๐‘๐‘ข๐‘ก (meaning at some time in [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]) for sufficiently large initial spatial derivative โ‰ฅ ๐ฟ๐ต, where ๐ฟ๐ต is a lower bound depending on ๐‘Ÿ๐‘๐‘ข๐‘ก. We next claim that lim ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’๐‘Ÿโˆ— ๐ฟ๐ต(๐‘Ÿ๐‘๐‘ข๐‘ก) = 0 to establish the instability and conclude our main theorem. Note that this ๐‘Ÿ๐‘๐‘ข๐‘ก trick only makes sense when we aim to prove the instability: it is enough to construct a sequence of initial data that form shocks in (๐‘Ÿโˆ—, ๐‘Ÿ0], where we label the sequence by ๐‘Ÿ๐‘๐‘ข๐‘ก, and the above ๐ฟ๐ต โ†’ 0 fact implies the instability for small initial non-homogeneous perturbation. It turns out the above hope is true, and we actually use the total variation to claim the solu- tion exists in ๐‘Š 1,1 during [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]. Heuristically, we are trying to argue that โˆฅ๐œ•๐‘ ๐‘ฃ1โˆฅ ๐ฟ1 ({๐‘Ÿ=๐‘Ÿ}) + โˆฅ๐œ•๐‘ ๐‘ฃ2โˆฅ ๐ฟ1 ({๐‘Ÿ=๐‘Ÿ}) remains small during [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0], while ๐œ•๐‘ ๐‘ฃ1 goes to infinity pointwise somewhere in [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]. It is a basic fact in analysis that a function can go to infinity at one point while remaining small ๐ฟ1 norm, and it is the main idea in Johnโ€™s work [15]. Our proof thus consists of two parts: total variation (for ๐‘ฃ1, ๐‘ฃ2) control and pointwise derivative (๐œ•๐‘ ๐‘ฃ1, ๐œ•๐‘ ๐‘ฃ2) control. We describe the strategy for each part separately. Recall that our unknowns are ๐‘ฃ1, ๐‘ฃ2 (Riemann invariants, involving fluid variables) and ๐›ผ, ๐›ฝ (metric components). 3.3.1 Total variation Our total variation is defined as ๐ธ (๐‘Ÿ) = โˆซ ฮ“๐‘Ÿ (cid:0)|๐œ•๐‘ ๐‘ฃ1| + |๐œ•๐‘ ๐‘ฃ2|(cid:1) ๐‘‘๐‘  34 for ๐‘Ÿโˆ— < ๐‘Ÿ โ‰ค ๐‘Ÿ0 (Figure 3.7). The idea is to use the trick in Johnโ€™s work [15] to argue that, if the initial total variation is small, it remains small up to ๐‘Ÿ = ๐‘Ÿ๐‘๐‘ข๐‘ก. The idea of Johnโ€™s trick is to consider the evolution of the integrand of the total variation (Figure 3.3). It turns out that we can use Gronwallโ€™s inequality to argue that, if the initial perturbation has small total variation less than ๐œ–0, it remains small in [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]. Note that ๐œ–0 depends on ๐‘Ÿ๐‘๐‘ข๐‘ก. Figure 3.3 Johnโ€™s trick to control the total variation. 3.3.2 Pointwise ๐œ•๐‘ ๐‘ฃ behavior In order to get the control on the pointwise behavior of ๐œ•๐‘ ๐‘ฃ1, a natural way is to take a spatial derivative on (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )๐‘ฃ1 = ๐น1. This yields (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) (๐œ•๐‘ ๐‘ฃ1) + (๐œ•๐‘ ๐œ†1) (๐œ•๐‘ ๐‘ฃ1) = (๐œ•๐‘ ๐น1). Note that ๐œ†1 = ๐œ†1(๐œƒ, ๐›ผ, ๐›ฝ) = ๐œ†1(๐‘ฃ1, ๐‘ฃ2, ๐›ผ, ๐›ฝ) and ๐น1 = ๐น1(๐œƒ, ๐œŒ, ๐›ผ) = ๐น1(๐‘ฃ1, ๐‘ฃ2, ๐›ผ). It is worth noting that the source terms ๐น1 and ๐น2 do not depend on ๐›ฝ. One can expect that (๐œ•๐‘ ๐œ†1) will generate (๐œ•๐‘ ๐‘ฃ1), (๐œ•๐‘ ๐‘ฃ2), (๐œ•๐‘ ๐›ผ), and (๐œ•๐‘  ๐›ฝ). Thus, this can be regarded as a complicated Riccati equation since it involves (๐œ•๐‘ ๐‘ฃ1)2 term (refer to Lemma 3.5.1). This Riccati structure is the main mechanism to generate shocks in Johnโ€™s work [15], but his equations differ from our system by the following features: his Riccati equation does not have linear terms, and his coefficents are all bounded. Fortunately, our goal is also different from his. John proved the shock formation for all 35 ๐ถ2-small data, while our goal is to prove shock formation for some sequence of initial data that converges to 0 in ๐‘Š 1,1. Going back to our evolution for (๐œ•๐‘ ๐‘ฃ1), there are several difficulties from (๐œ•๐‘ ๐œ†1) (and also from (๐œ•๐‘ ๐น1)): โ€ข how to deal with linear (๐œ•๐‘ ๐‘ฃ1) term, โ€ข how to deal with linear (๐œ•๐‘ ๐‘ฃ2) term, and โ€ข how to deal with (๐œ•๐‘  ๐›ฝ) term. Our solution for the first issue is to use the integral factor method as in the ordinary differential equation context (refer to Lemma 3.5.1). The way to deal with (๐œ•๐‘ ๐‘ฃ2) term is to use a bootstrap argument to claim it remains small in a certain region (refer to Lemma 3.5.9). The way to resolve the (๐œ•๐‘  ๐›ฝ) issue is our main contribution (refer to Lemma 3.5.2), and we describe our method as follows. Recall that ๐›ผ, ๐›ฝ are our metric components. The reason why we only identify the issue for (๐œ•๐‘  ๐›ฝ) but not for (๐œ•๐‘ ๐›ผ) is because the feature of Einstein field equations under symmetry assumption naturally lacks an equation (constraint equation in our context) for one metric component. One can see this in our reduced Einstein field equations, where we have an equation for (๐œ•๐‘  ln ๐›ผ) but not for (๐œ•๐‘  ln ๐›ฝ). This is a difficulty in our argument since we only have control for quantities without derivative, so if there is no equation for (๐œ•๐‘  ln ๐›ฝ), there will be no control on (๐œ•๐‘  ln ๐›ฝ). Our innovative way is to use the divergence structure of the hyperbolic system to control โˆซ (๐œ†1) ๐œ†1(๐œ•๐‘  ln ๐›ฝ)๐‘‘๐‘Ÿ. Note that this is the term that (๐œ•๐‘  ln ๐›ฝ) appears in the integral factor (refer to Lemma 3.5.1). Recall that our first equation in the reduced Einstein field equations is (cid:16) โˆš ๐›ผ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:123)(cid:122) ๐ต 1+๐›พ ยท ๐œƒ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:124) (cid:17) = 0. ๐œ•๐‘Ÿ (cid:16) โˆš๏ธ๐›ฝ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 1+๐›พ ยท (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:123)(cid:122) (cid:124) ๐ด โˆš๏ธ 1 + ๐œƒ2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:17) + ๐œ•๐‘  36 If we denote the first parenthesis to be ๐ด and the second parenthesis to be ๐ต, we have the following calculation. [ln ๐ด โˆ’ ln ๐ด(๐‘Ÿ0)] (๐œ†1) = โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) (๐œ•๐‘Ÿ ๐ด) + ๐œ†1(๐œ•๐‘  ๐ด) ๐ด ๐‘‘๐‘Ÿ = โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) โˆ’(๐œ•๐‘ ๐ต) + ๐œ†1(๐œ•๐‘  ๐ด) ๐ด ๐‘‘๐‘Ÿ, where [ยท] (๐œ†1) and โˆซ ๐‘Ÿ from (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ). Note that (๐œ•๐‘  ๐ด) involves the term we aim to estimate since ๐ด includes ๐‘‘๐‘Ÿ denote the corresponding computation along the characteristic generated โˆš ๐›ฝ, while ๐‘Ÿ0 (๐œ†1) (๐œ•๐‘ ๐ต) does not include ๐›ฝ. It turns out the integral on the above right hand side can be simplified to โˆซ ๐œ†1(๐œ•๐‘  ln ๐›ฝ) plus the integral of a function of (๐œ•๐‘  ln ๐›ผ) and (๐œ•๐‘ ๐‘ฃ2) (but no (๐œ•๐‘ ๐‘ฃ1)). We have (๐œ†1) an equation for (๐œ•๐‘  ln ๐›ผ), and we can actually integrate the (๐œ•๐‘ ๐‘ฃ2) term. As a remark, one can alternatively apply Johnโ€™s trick to control โˆซ |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘Ÿ although we did not choose this way. We (๐œ†1) can also estimate [ln ๐ด โˆ’ ln ๐ด(๐‘Ÿ0)] (๐œ†1) using the total variation and ๐œ•๐‘Ÿ integral curves. For more details, refer to Lemma 3.5.2. After estimating the integral factor and other error terms, we have a precise behavior (up to a constant) of the integral factor. More specifically, we know how the integral factor depends on ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘๐‘ข๐‘ก) (refer to Proposition 3.5.1). We thus aruge that lim๐‘Ÿ๐‘๐‘ข๐‘ก โ†’๐‘Ÿ + โˆ— ๐ฟ๐ต(๐‘Ÿ๐‘๐‘ข๐‘ก) = 0 and prove our main theorem in Section 3.5.3. 3.3.3 Method of characteristics Our proof is based on the method of characteristics. We define the notation for characteristics and relevant regions in this section. Let ๐‘‹1(๐‘Ÿ; ๐‘ง) be the function so that ๐‘  = ๐‘‹1(๐‘Ÿ; ๐‘ง) is the characteristic tangent to (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) and starting from the point (๐‘Ÿ, ๐‘ ) = (๐‘Ÿ0, ๐‘ง). Similarly ๐‘‹2(๐‘Ÿ; ๐‘ง) is the function so that ๐‘  = ๐‘‹2(๐‘Ÿ; ๐‘ง) is the characteristic tangent to (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ ) and starting from the point (๐‘Ÿ, ๐‘ ) = (๐‘Ÿ0, ๐‘ง). Therefore, for example, the integral notation โˆซ ๐‘Ÿ ๐‘“ ๐‘‘๐‘Ÿ in the previous section means โˆซ ๐‘Ÿ ๐‘Ÿ0 ๐‘“ (๐‘Ÿ, ๐‘‹1(๐‘Ÿ; ๐‘ง))๐‘‘๐‘Ÿ. We ๐‘Ÿ0 (๐œ†1) may denote the characteristic ๐‘  = ๐‘‹1(๐‘Ÿ; ๐‘ง) itself by ๐‘‹1 or (๐œ†1) interchangeably. Since we will estimate quantities along different characteristics, for a given point ๐‘ƒ in the spacetime ๐‘„, we define ๐‘ƒ1 to be the point on the initial slice that is connected to ๐‘ƒ by the characteristic ๐‘‹1. Similarly we define ๐‘ƒ2 to be the point on the initial slice that is connected to ๐‘ƒ 37 by the characteristic ๐‘‹2 (see Figure 3.4). We also define ๐‘ƒ0 to be the point on the initial slice that is connected to ๐‘ƒ by the vertical straight line tangent to ๐œ•๐‘Ÿ (see Figure 3.5). In addition to the curves capturing the evolution of the unknowns, we define another notation for total variation control. Given a point ๐‘ƒ in the spacetime ๐‘„, we define หš๐‘ƒ to be the point on the same time slice as ๐‘ƒ but lying in the background homogeneous fluid (HF) region (see Figure 3.6). For any quantity ๐‘ž, we denote ๐‘ž( หš๐‘ƒ) by หš๐‘ž. Figure 3.4 Characteristics along (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ), (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ ). Figure 3.5 The grey vertical line is the integral curve for ๐œ•๐‘Ÿ. 38 Figure 3.6 The green horizontal line denotes a constant time slice. 3.3.4 Notation We give the definition and physical meaning of all the variables we will use in this paper. โ€ข (๐‘Ÿ, ๐‘ ) = (๐‘ก๐‘–๐‘š๐‘’, ๐‘ ๐‘๐‘Ž๐‘๐‘’) are independent variables. โ—ฆ ๐‘Ÿ0 is the initial time for the perturbation. โ—ฆ ๐‘Ÿโˆ— > 0 is the blowup time for background homogeneous metric. See Figure 3.1. โ—ฆ ๐‘Ÿ๐‘š๐‘–๐‘‘ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0) is to capture the asymptote for ( หš๐œŒ หš๐›ผ). See Figure 3.10. โ—ฆ ๐‘Ÿ๐‘๐‘ข๐‘ก โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘) is the auxiliary time introduced in this paper. โ€ข (๐œƒ, ๐œŒ, ๐›ผ, ๐›ฝ) are the main unknowns, which are functions of ๐‘Ÿ and ๐‘ . โ—ฆ (๐œƒ, ๐œŒ) are fluid variables, where ๐œƒ is the angle between ๐œ‰ and ๐œ•๐‘Ÿ (measuring how ๐œ‰ deviates from ๐œ•๐‘Ÿ), and ๐œŒ > 0 is the density of the fluid. โ—ฆ (๐›ผ, ๐›ฝ) are metric components, where ๐›ผ > 0 and ๐›ฝ > 0. โ—ฆ On the background homogeneous fluid, these unknowns satisfy หš๐›ผ(๐‘Ÿ) = 0, lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— หš๐›ฝ(๐‘Ÿ) = 0 lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— 39 (cid:17) (cid:16) หš๐›ผ หš๐›ฝ lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— = โˆž หš๐œƒ = 0 over (๐‘Ÿโˆ—, ๐‘Ÿ0] หš๐œŒ(๐‘Ÿ) = โˆž. lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— โ€ข 0 < โˆš๐›พ < 1 is a parameter representing the sound speed. โ€ข ๐œ‰ is the fluid velocity satisfying โŸจ๐œ‰, ๐œ‰โŸฉ๐‘” = โˆ’1. โ€ข ๐‘” = โˆ’๐›ผ๐‘‘๐‘Ÿ 2 + ๐›ฝ๐‘‘๐‘ 2 is the metric for the 2-dimensional Lorentzian manifold ๐‘„. โ€ข parameters = parameters(background profile, ๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0, ๐›พ, ๐‘›, ฮ›, ๐‘† [โ„Ž]) where background pro- file includes ๐‘Ÿโˆ—, ๐œ‡โˆ—, ๐œโˆ—, which are determined by a Big Bang background solution. โ€ข We can also regard (๐‘ฃ1, ๐‘ฃ2, ๐›ผ, ๐›ฝ) as our main unknowns, where ๐‘ฃ1 = ๐‘ฃ2 = 2 2 1 โˆš๐›พ ln | โˆš๏ธ 1 + ๐œƒ2 + ๐œƒ| + 1 2(1 + ๐›พ) ln(๐œŒ๐›ผ), 1 โˆš๐›พ ln | โˆš๏ธ 1 + ๐œƒ2 + ๐œƒ| โˆ’ 1 2(1 + ๐›พ) ln(๐œŒ๐›ผ) are Riemann invariatnts. โ€ข For ๐œ†1, ๐œ†2, ๐น1, ๐น2, refer to Section 3.2.4. โ€ข ๐‘  = ๐‘‹1(๐‘Ÿ; ๐‘ง) denotes the characteristic starting from (๐‘Ÿ, ๐‘ ) = (๐‘Ÿ0, ๐‘ง) along the ๐œ†1 direction. Similarly, ๐‘  = ๐‘‹2(๐‘Ÿ; ๐‘ฆ) denotes the characteristic starting from (๐‘Ÿ, ๐‘ ) = (๐‘Ÿ0, ๐‘ฆ) along the ๐œ†2 direction. See Figure 3.4 and Figure 3.9. โ€ข ๐œ–, ๐œ–๐‘Ž control the size of total variation over [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]. โ€ข ๐œ–0, ๐œ–๐‘Ž,0 control the size of total variation on the initial slice. โ€ข ๐‘€ generally means a constant that depends on ๐‘Ÿ๐‘๐‘ข๐‘ก. Usually ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). โ€ข ๐ถ generally means a constant that does not depend on ๐‘Ÿ๐‘๐‘ข๐‘ก. Usually ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). 40 โ€ข ๐ธ (๐‘Ÿ) denotes the total variation on the {๐‘Ÿ = ๐‘Ÿ} time slice and is defined by ๐ธ (๐‘Ÿ) = โˆซ {๐‘Ÿ=๐‘Ÿ } |๐œ•๐‘ ๐‘ฃ1| + |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘ . โ€ข For a ๐‘ƒ in the spacetime, define ๐‘ƒ1, ๐‘ƒ2 in Figure 3.4, ๐‘ƒ0 in Figure 3.5, หš๐‘ƒ in Figure 3.6. โ€ข หš๐‘ž denotes ๐‘ž( หš๐‘ƒ). โ€ข ฮ“๐‘Ÿ and ฮฉ๐‘Ÿ are defined in Figure 3.7. ๐‘ง๐ฟ, ๐‘ง๐ฟ๐ฟ, ๐‘ง๐‘…, ๐‘ง๐‘…๐‘… are defined in Figure 3.8. ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง ๐‘€ is defined in Lemma 3.5.9. โ€ข ๐›ฟ1, ๐›ฟ2 depend on parameters, including ๐‘Ÿโˆ— and ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐›ฟ1 (cid:66) 1 1 + ๐›พ ๐›ฟ2 (cid:66) 1 1 + ๐›พ โˆ’ โˆ’ (1.1) (1 โˆ’ ๐›พ) 2(1 + ๐›พ) (1 โˆ’ ๐›พ) (2.2) (1 + ๐›พ) ยท ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— > 0, > 0 serving as exponents of the (cid:0) 1 ๐‘Ÿโˆ’๐‘Ÿโˆ— (cid:1) term in the integral factor. See Proposition 3.5.1. 3.4 Control of total variations Proposition 3.4.1. Fix ๐‘Ÿ๐‘๐‘ข๐‘ก โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0] and fix 0 < ๐œ– < 1. There exists an ๐œ–0 = ๐œ–0(๐‘Ÿ๐‘๐‘ข๐‘ก, ๐œ–, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) so that the total variation always satisfies ๐ธ (๐‘Ÿ) = โˆซ ฮ“๐‘Ÿ |๐œ•๐‘ ๐‘ฃ1| + |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  โ‰ค ๐œ– for ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0] as long as the initial data satisfies the Initial Data Assumption 1. Moreover, โˆš |๐œƒ| โ‰ค 2 ๐›พ๐œ– | ln(๐œŒ๐›ผ) โˆ’ ln( หš๐œŒ หš๐›ผ)| โ‰ค (1 + ๐›พ)๐œ– sup | ln ๐›ผ โˆ’ ln หš๐›ผ| + sup | ln ๐›ฝ โˆ’ ln หš๐›ฝ| โ‰ค ๐œ– . In particular, |๐œƒ|, ๐œŒ, | ln ๐›ผ|, and | ln ๐›ฝ| stay finite over the region [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]. 41 We postpone the proof to the end of Section 4. The reason we choose ๐ธ to denote the total variation is that we are going to bound ๐ฟโˆž-norm of several quantities by this total variation ๐ธ and run a bootstrap argument. This is similar to the role of energy in the wave equation context where we try to build ๐ฟโˆž-๐ฟ2 estimates. In the following lemma, we explain how we bound the ๐ฟโˆž-norm of our unknowns. Lemma 3.4.1. We estimate ๐œƒ, โˆš 1 + ๐œƒ2, ln(๐œŒ๐›ผ) โˆ’ ln( หš๐œŒ หš๐›ผ), and ln(๐›ผ) โˆ’ ln( หš๐›ผ) by the total variation ๐ธ (๐‘Ÿ). For ln(๐›ฝ) โˆ’ ln( หš๐›ฝ), we use sup ๐ธ where sup denotes supฮฉ๐‘Ÿ and ฮฉ๐‘Ÿ is defined in the Figure 3.7. We use หš๐‘ž to dentoe ๐‘ž( หš๐‘ƒ). Figure 3.7 The picture for ฮ“๐‘Ÿ and ฮฉ๐‘Ÿ. Proof. For ๐œƒ, we have (since ๐œƒ ( หš๐‘ƒ) = 0) |๐œƒ| = |๐œƒ (๐‘ƒ) โˆ’ ๐œƒ ( หš๐‘ƒ)| โ‰ค โ‰ค โˆซ |๐œ•๐‘ ๐œƒ|๐‘‘๐‘  ฮ“๐‘Ÿ โˆซ โˆš ฮ“๐‘Ÿ ๐›พโˆš๏ธ 1 + ๐œƒ2 (cid:0)|๐œ•๐‘ ๐‘ฃ1| + |๐œ•๐‘ ๐‘ฃ2|(cid:1) ๐‘‘๐‘  42 โˆš โ‰ค ๐›พ ยท sup โˆš๏ธ 1 + ๐œƒ2 โˆซ ฮ“๐‘Ÿ (cid:0)|๐œ•๐‘ ๐‘ฃ1| + |๐œ•๐‘ ๐‘ฃ2|(cid:1) ๐‘‘๐‘  โˆš โ‰ค ๐›พ ยท sup โˆš๏ธ 1 + ๐œƒ2 ยท ๐ธ (๐‘Ÿ) where ฮ“๐‘Ÿ denotes {๐‘Ÿ = ๐‘Ÿ} slice inside of the sound cone as in Figure 3.7 and sup denotes supฮฉ๐‘Ÿ . Here ๐‘Ÿ is the time coordinate of ๐‘ƒ. Note that โˆš๏ธ 1 + ๐œƒ2 โ‰ค 1 + sup |๐œƒ| โ‰ค 1 + sup โˆš ๐›พ ยท sup โˆš๏ธ 1 + ๐œƒ2 ยท ๐ธ. For ln(๐œŒ๐›ผ) โˆ’ ln( หš๐œŒ หš๐›ผ), we have | ln(๐œŒ๐›ผ) โˆ’ ln( หš๐œŒ หš๐›ผ)| = | ln(๐œŒ๐›ผ) (๐‘ƒ) โˆ’ ln(๐œŒ๐›ผ) ( หš๐‘ƒ)| โˆซ โ‰ค ฮ“๐‘Ÿ |๐œ•๐‘  ln(๐œŒ๐›ผ)|๐‘‘๐‘  โ‰ค (1 + ๐›พ) โˆซ ฮ“๐‘Ÿ (cid:0)|๐œ•๐‘ ๐‘ฃ1| + |๐œ•๐‘ ๐‘ฃ2|(cid:1) ๐‘‘๐‘  โ‰ค (1 + ๐›พ)๐ธ (๐‘Ÿ). For ln ๐›ผ โˆ’ ln หš๐›ผ, we have | ln ๐›ผ โˆ’ ln หš๐›ผ| = | ln ๐›ผ(๐‘ƒ) โˆ’ ln ๐›ผ( หš๐‘ƒ)| โ‰ค = โ‰ค โˆซ ฮ“๐‘Ÿ โˆซ ฮ“๐‘Ÿ |๐œ•๐‘  ln ๐›ผ|๐‘‘๐‘  2(1 + ๐›พ) ๐‘› ยท ๐‘Ÿ (๐œŒ๐›ผ) ยท โˆš โˆš ๐›ฝ ๐›ผ ยท |๐œƒ| โˆš๏ธ 1 + ๐œƒ2๐‘‘๐‘  2(1 + ๐›พ) ๐‘› ยท ๐‘Ÿ sup(๐œŒ๐›ผ) ยท sup โˆš โˆš ๐›ฝ ๐›ผ ยท sup |๐œƒ| sup โˆš๏ธ 1 + ๐œƒ2 ยท ๐‘Š (๐‘Ÿ) # โ‰ค 2(1 + ๐›พ) ๐‘› ยท ๐‘Ÿ ยท ( หš๐œŒ หš๐›ผ) ยท ยท ๐‘’(1+๐›พ)๐ธ ยท ๐‘’ln โˆš โˆš ๐›ฝโˆ’ln โˆš โˆš หš๐›ผโˆ’ln หš๐›ฝ ยท ๐‘’ln ๐›ผ ยท sup |๐œƒ| sup โˆš๏ธ 1 + ๐œƒ2 ยท ๐‘Š (๐‘Ÿ) โ‰ค ๐ถ๐›ผ ยท ๐‘’(1+๐›พ)๐ธ ยท ๐‘’ln โˆš ๐›ฝโˆ’ln หš๐›ฝ ยท ๐‘’ln โˆš โˆš หš๐›ผโˆ’ln ๐›ผ ยท sup |๐œƒ| sup โˆš๏ธ 1 + ๐œƒ2 ยท ๐‘Š (๐‘Ÿ) โˆš๏ธƒ หš๐›ฝ โˆš หš๐›ผ โˆš where ๐‘Š (๐‘Ÿ) = โˆซ ฮ“๐‘Ÿ # โ‰ค, and for 1๐‘‘๐‘  denotes the width for {๐‘Ÿ = ๐‘Ÿ }, we use the above ln(๐œŒ๐›ผ) โˆ’ ln( หš๐œŒ หš๐›ผ) estimate ๐ถ๐›ผ = ๐ถ๐›ผ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). 43 Notice that the sup |๐œƒ| on the right hand side is the key to make sure the right hand side is small. For ln ๐›ฝ โˆ’ ln หš๐›ฝ, we have | ln ๐›ฝ โˆ’ ln หš๐›ฝ| = | ln ๐›ฝ(๐‘ƒ) โˆ’ ln ๐›ฝ( หš๐‘ƒ)| |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  + โˆฌ ฮฉ๐‘Ÿ |๐œ•๐‘Ÿ ๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘Ÿ๐‘‘๐‘  |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  โ‰ค โ‰ค โ‰ค โˆซ ฮ“๐‘Ÿ โˆซ ฮ“๐‘Ÿ 0 โˆซ ฮ“๐‘Ÿ 0 โˆฌ + 4(1 + ๐›พ) ๐‘› ยท |๐œƒ||๐œ•๐‘ ๐œƒ| ยท ๐‘Ÿ (๐œŒ๐›ผ) + (cid:16) 2(1 + ๐›พ) ๐‘› ยท ๐œƒ2 + (cid:17) 2 ๐‘› ยท ๐‘Ÿ |๐œ•๐‘  (๐œŒ๐›ผ)| ฮฉ๐‘Ÿ + ๐›ผ(๐œ•๐‘  ln ๐›ผ) (cid:16) 2 ๐‘› ฮ›๐‘Ÿ โˆ’ (cid:17) ๐‘† [โ„Ž] ๐‘›๐‘Ÿ ๐‘‘๐‘Ÿ๐‘‘๐‘  โˆซ # โ‰ค ฮ“๐‘Ÿ 0 |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  + 4(1 + ๐›พ) ๐‘› ยท (sup |๐œƒ|) ยท (๐‘Ÿ0 โˆ’ ๐‘Ÿ) ยท (cid:16) ยท sup ๐‘Ÿ ( หš๐œŒ หš๐›ผ) ยท ๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ)(cid:17) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) (cid:123)(cid:122) ๐‘Ÿ (๐œŒ๐›ผ) โˆš๏ธ ๐›พ sup (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) โˆš (cid:124) 1 + ๐œƒ2 ยท sup ๐ธ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:123)(cid:122) (cid:125) โˆซ |๐œ•๐‘ ๐œƒ|๐‘‘๐‘  + (cid:16) 2(1 + ๐›พ) ๐‘› ยท (cid:0) sup ๐œƒ(cid:1) 2 + (cid:17) 2 ๐‘› ยท ๐‘Ÿ0(๐‘Ÿ0 โˆ’ ๐‘Ÿ) (1 + ๐›พ) sup(๐œŒ๐›ผ) ยท sup ๐ธ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:124) (cid:123)(cid:122) โˆซ |๐œ•๐‘  (๐œŒ๐›ผ)|๐‘‘๐‘  + sup ๐›ผ ยท ยท ๐‘Ÿ0 sup(๐œŒ๐›ผ) ยท sup (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 2(1 + ๐›พ) ๐‘› (cid:124) (cid:123)(cid:122) (๐œ•๐‘  ln ๐›ผ) โˆš 1 + ๐œƒ2 ยท sup |๐œƒ| sup โˆš (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) ๐›ฝ ๐›ผ โˆš๏ธ (cid:125) ยท sup (cid:16) 2 ๐‘› ฮ›๐‘Ÿ โˆ’ (cid:17) ๐‘† [โ„Ž] ๐‘›๐‘Ÿ ยท (๐‘Ÿ0 โˆ’ ๐‘Ÿ) sup ๐‘Š โˆซ โ‰ค (initial slice) |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  + ๐‘€๐›ฝ ยท sup |๐œƒ| sup โˆš๏ธ 1 + ๐œƒ2 ยท sup ๐ธ ยท ๐‘’sup | ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ)| 44 + ๐‘€๐›ฝ (cid:16) 1 + (sup |๐œƒ|)2(cid:17) ยท ๐‘’sup | ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ)| ยท sup ๐ธ + ๐ถ๐›ฝ ยท ๐‘’sup | ln ๐›ผโˆ’ln หš๐›ผ| ยท ๐‘’sup | ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ)| ยท ๐‘’sup | ln โˆš โˆš ๐›ฝโˆ’ln หš๐›ฝ| ยท ๐‘’sup | ln โˆš หš๐›ผโˆ’ln โˆš ๐›ผ| ยท sup |๐œƒ| sup โˆš๏ธ 1 + ๐œƒ2 ยท sup ๐‘Š where for # โ‰ค we rewrite ๐œ•๐‘  (๐œŒ๐›ผ) as (๐œŒ๐›ผ)(๐œ•๐‘  ln(๐œŒ๐›ผ)) and apply the above estimate to argue โˆซ ฮ“๐‘Ÿโ€ฒ sup ๐‘Ÿ โ‰ค๐‘Ÿ โ€ฒโ‰ค๐‘Ÿ0 |๐œ•๐‘  (ln(๐œŒ๐›ผ))|๐‘‘๐‘  โ‰ค (1 + ๐›พ) sup ๐ธ. In addition, we use sup ๐‘Š to denote sup๐‘Ÿ โ‰ค๐‘Ÿ โ€ฒโ‰ค๐‘Ÿ0 ๐‘Š (๐‘Ÿโ€ฒ). In the last inequality, we have that ๐‘€๐›ฝ = ๐‘€๐›ฝ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) goes to infinity at the rate 1 ๐‘Ÿ๐‘๐‘ข๐‘ก โˆ’๐‘Ÿโˆ— as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿโˆ— and ๐ถ๐›ฝ = ๐ถ๐›ฝ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). We also decompose sup(๐œŒ๐›ผ) to sup( หš๐œŒ หš๐›ผ) ยท ๐‘’sup | ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ)| and absorb sup( หš๐œŒ หš๐›ผ) to ๐‘€๐›ฝ or ๐ถ๐›ฝ constants. โ–ก Lemma 3.4.2. We derive a more explicit form of ๐‘Š (๐‘Ÿ). In particular, sup ๐‘Š = sup ๐‘Š (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) goes to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿโˆ—. Proof. Let ๐‘ง๐ฟ = inf{๐‘ง โˆˆ R | initial perturbation(๐‘Ÿ0, ๐‘ง) โ‰  0} ๐‘ง๐‘… = sup{๐‘ง โˆˆ R | initial perturbation(๐‘Ÿ0, ๐‘ง) โ‰  0}. We have ๐‘Š = ๐‘‹2(๐‘Ÿ; ๐‘ง๐‘…) โˆ’ ๐‘‹1(๐‘Ÿ; ๐‘ง๐ฟ) 45 = = โˆซ ๐‘Ÿ ๐‘Ÿ0 โˆซ ๐‘Ÿ ๐‘Ÿ0 ๐œ†2(๐‘Ÿ, ๐‘‹2(๐‘Ÿ; ๐‘ง๐‘…))๐‘‘๐‘Ÿ โˆ’ ๐œ†1(๐‘Ÿ, ๐‘‹1(๐‘Ÿ; ๐‘ง๐ฟ))๐‘‘๐‘Ÿ โˆš หš๐›ผ โˆš๏ธƒ หš๐›ฝ โˆš ยท (cid:0) โˆ’ ๐›พ(cid:1) ๐‘‘๐‘Ÿ โˆ’ โˆซ ๐‘Ÿ ๐‘Ÿ0 ยท (cid:0)โˆš ๐›พ(cid:1) ๐‘‘๐‘Ÿ โˆซ ๐‘Ÿ ๐‘Ÿ0 โˆš หš๐›ผ โˆš๏ธƒ หš๐›ฝ โˆš ๐›พ = 2 โˆซ ๐‘Ÿ0 ๐‘Ÿ โˆš หš๐›ผ โˆš๏ธƒ หš๐›ฝ ๐‘‘๐‘Ÿ. Therefore, goes to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿโˆ—. sup ๐‘Š = sup ๐‘Š (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) โ–ก We introduce the backbone of our total variation control: Johnโ€™s trick [15]. This trick is to use the evolution of the integrand of total variation and the Gronwallโ€™s inequality to get a control on the total variation. The main philosophy is that, although the evolution of (๐œ•๐‘ ๐‘ฃ2) is a Riccati equation which does not give a good control, the evolution of (๐œ•๐‘ ๐‘ฃ2) ยท ๐œ• ๐‘‹2 ๐œ•๐‘ง (the integrand of the total variation) gives a linear equation and allows one to apply the Gronwallโ€™s inequality. Lemma 3.4.3. (Johnโ€™s trick) We have โˆซ |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  โ‰ค โˆซ ฮ“๐‘Ÿ ฮ“๐‘Ÿ 0 |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  + โˆฌ ฮฉ๐‘Ÿ |๐ท๐‘ฃ1 ๐น2||๐œ•๐‘ ๐‘ฃ1| + |๐ท๐‘ฃ2 ๐น2||๐œ•๐‘ ๐‘ฃ2| + |๐ท๐›ผ๐น2||๐œ•๐‘ ๐›ผ|๐‘‘๐‘Ÿ๐‘‘๐‘ . Proof. Based on the evolution equations for ๐œ•๐‘ ๐‘ฃ1 and ๐œ•๐‘ ๐‘ฃ2 (using ๐œ•๐‘ ๐‘ฃ2 as an example): (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ )๐‘ฃ2 = ๐น2 (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ ) (๐œ•๐‘ ๐‘ฃ2) = (๐œ•๐‘ ๐น2) โˆ’ (๐œ•๐‘ ๐œ†2) (๐œ•๐‘ ๐‘ฃ2) and the evolution for the Jacobian ๐œ• ๐œ•๐‘Ÿ (cid:16) ๐œ• ๐‘‹2 ๐œ•๐‘ง (cid:17) = ๐œ• ๐œ•๐‘ง (cid:16) ๐œ• ๐‘‹2 ๐œ•๐‘Ÿ (cid:17) = ๐œ• ๐œ•๐‘ง (๐œ†2) = (๐œ•๐‘ ๐œ†2) (cid:17) (cid:16) ๐œ• ๐‘‹2 ๐œ•๐‘ง 46 we find that the evolution equation for the integrand is (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ ) (cid:16) ๐œ•๐‘ ๐‘ฃ2 ยท (cid:17) ๐œ• ๐‘‹2 ๐œ•๐‘ง = (๐œ•๐‘ ๐น2) ยท ๐œ• ๐‘‹2 ๐œ•๐‘ง . Note that the (๐œ•๐‘ ๐œ†2) terms cancel, which indicates that there is no quadratic feedback if we consider the integrand of the total variation (๐œ•๐‘ ๐‘ฃ2)ยท ๐œ• ๐‘‹2 ๐œ•๐‘ง . This is one of the key observations in Johnโ€™s paper and also one of the essential steps in this paper. Define ๐‘ง๐ฟ = inf{๐‘ง โˆˆ R | initial perturbation(๐‘Ÿ0, ๐‘ง) โ‰  0} and ๐‘ง๐‘… = sup{๐‘ง โˆˆ R | initial perturbation(๐‘Ÿ0, ๐‘ง) โ‰  0} as before. For each ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0], define ๐‘ง๐ฟ๐ฟ โˆˆ R on the initial slice so that ๐‘‹1(๐‘Ÿ, ๐‘ง๐ฟ) = ๐‘‹2(๐‘Ÿ, ๐‘ง๐ฟ๐ฟ) and similarly ๐‘ง๐‘…๐‘… โˆˆ R on the initial slice so that ๐‘‹2(๐‘Ÿ, ๐‘ง๐‘…) = ๐‘‹1(๐‘Ÿ, ๐‘ง๐‘…๐‘…) (see Figure 3.8). We have (recall Figure 3.7) ๐œ• ๐‘‹2 ๐œ•๐‘ง |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  = ๐œ• ๐‘‹2 ๐œ•๐‘ง |๐œ•๐‘ ๐‘ฃ2| ยท ๐œ•๐‘ ๐‘ฃ2 ยท โˆซ ๐‘๐‘… โˆซ ๐‘๐‘… ๐‘‘๐‘ง = ๐‘‘๐‘ง โˆซ (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ฮ“๐‘Ÿ ๐‘๐ฟ๐ฟ (ฮ“๐‘Ÿ ) ๐‘๐ฟ๐ฟ (ฮ“๐‘Ÿ ) โ‰ค = โ‰ค โˆซ ๐‘๐‘… ๐‘๐ฟ๐ฟ (ฮ“๐‘Ÿ 0 ) โˆซ ๐‘๐‘… ๐‘๐ฟ (ฮ“๐‘Ÿ 0 ) โˆซ ๐‘๐‘… ๐‘๐ฟ (ฮ“๐‘Ÿ 0 ) (cid:12) (cid:12) (cid:12) ๐œ•๐‘ ๐‘ฃ2 ยท ๐œ• ๐‘‹2 ๐œ•๐‘ง (cid:12) (cid:12) (cid:12) ๐‘‘๐‘ง + โˆซ ๐‘๐‘… โˆซ ๐‘Ÿ0 ๐‘๐ฟ๐ฟ ๐‘Ÿ (ฮฉ๐‘Ÿ ) (cid:12) (cid:12) (cid:12) ๐œ•๐‘ ๐น2 ยท ๐œ• ๐‘‹2 ๐œ•๐‘ง (cid:12) (cid:12) (cid:12) ๐‘‘๐‘Ÿ๐‘‘๐‘ง |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  + |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  + โˆฌ โˆฌ (ฮฉ๐‘Ÿ ) (ฮฉ๐‘Ÿ ) |๐œ•๐‘ ๐น2|๐‘‘๐‘Ÿ๐‘‘๐‘  |๐ท๐‘ฃ1 ๐น2||๐œ•๐‘ ๐‘ฃ1| + |๐ท๐‘ฃ2 ๐น2||๐œ•๐‘ ๐‘ฃ2| + |๐ท๐›ผ๐น2||๐œ•๐‘ ๐›ผ|๐‘‘๐‘Ÿ๐‘‘๐‘ . Notice that โˆซ ๐‘๐‘… ๐‘๐ฟ๐ฟ (ฮ“๐‘Ÿ 0 ) |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  = โˆซ ๐‘๐‘… ๐‘๐ฟ (ฮ“๐‘Ÿ 0 ) |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  since ๐œ•๐‘ ๐‘ฃ2 = 0 outside the interval [๐‘ง๐ฟ, ๐‘ง๐‘…] on the initial slice. Thus, although the definition of ๐‘ง๐ฟ๐ฟ depends on ๐‘Ÿ, the term involving ๐‘ง๐ฟ๐ฟ can be reduced to the one with ๐‘ง๐ฟ, and thus the result does not depend on ๐‘Ÿ. The only dependence on ๐‘Ÿ is through the spacetime integral over ฮฉ๐‘Ÿ. โ–ก Proof of Proposition 3.4.1. We use a bootstrap argument. Bootstrap Assumption. ๐ธ โ‰ค ๐œ– over [๐‘Ÿ, ๐‘Ÿ0] 47 Figure 3.8 Definitions of ๐‘ง๐ฟ, ๐‘ง๐ฟ๐ฟ, ๐‘ง๐‘…, ๐‘ง๐‘…๐‘…. โˆš๏ธ 1 + ๐œƒ2 โ‰ค 2 sup sup | ln ๐›ผ โˆ’ ln หš๐›ผ| + sup | ln ๐›ฝ โˆ’ ln หš๐›ฝ| โ‰ค ๐œ–๐‘Ž ๐œ– โ‰ค ๐œ–๐‘Ž with ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0], 0 < ๐œ– < 1, sup = supฮฉ๐‘Ÿ . The ๐‘Ž in ๐œ–๐‘Ž refers to auxiliary. The last assumption implies that we are trying to use the smallness of ๐ธ to improve the estimate for sup | ln ๐›ผ โˆ’ ln หš๐›ผ| and sup | ln ๐›ฝ โˆ’ ln หš๐›ฝ|. Step 1. Gronwallโ€™s inequality Looking at the inequality from Lemma 3.4.3 โˆซ |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  โ‰ค โˆซ ฮ“๐‘Ÿ ฮ“๐‘Ÿ 0 |๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘  + โˆฌ ฮฉ๐‘Ÿ |๐ท๐‘ฃ1 ๐น2||๐œ•๐‘ ๐‘ฃ1| + |๐ท๐‘ฃ2 ๐น2||๐œ•๐‘ ๐‘ฃ2| + |๐ท๐›ผ๐น2||๐œ•๐‘ ๐›ผ|๐‘‘๐‘Ÿ๐‘‘๐‘ , we aim to estimate the right hand side in terms of ๐ธ and apply the Gronwallโ€™s inequality. For ๐ท๐‘ฃ1 ๐น2, we have ๐ท๐‘ฃ1 ๐น2 = (cid:16) 1 2 โˆ’ ๐›พ 1 + ๐›พ (cid:17) ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) ยท (1 + ๐›พ) (cid:16) โˆ’ + ๐‘› โˆ’ 1 ๐‘Ÿ + ๐›ผ (cid:0) 2 ๐‘› ฮ›๐‘Ÿ โˆ’ (cid:1)(cid:17) ๐‘† [โ„Ž] ๐‘Ÿ (cid:32) ยท ๐ท๐œƒ โˆ’ 48 โˆš โˆš๐›พ (1 โˆ’ ๐›พ)๐œƒ โˆš๐›พ (cid:0)1 + (1 โˆ’ ๐›พ)๐œƒ2(cid:1) 4 1 + ๐œƒ2 โˆ’ (cid:33) โˆš ยท ๐›พโˆš๏ธ 1 + ๐œƒ2 + ๐‘› 2๐‘Ÿ ยท ๐ท๐œƒ (cid:32) โˆš 1 + ๐œƒ2 (cid:0)โˆš๐›พ๐œƒ + โˆš 1 + ๐œƒ2(cid:1) (cid:33) 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš ยท ๐›พโˆš๏ธ 1 + ๐œƒ2. Therefore, โˆฌ ฮฉ๐‘Ÿ |๐ท๐‘ฃ1 ๐น2||๐œ•๐‘ ๐‘ฃ1|๐‘‘๐‘Ÿ ๐‘‘๐‘  โ‰ค (cid:16) ๐‘€ ยท ๐‘’sup | ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ)| + ๐ถ ยท ๐‘’sup | ln ๐›ผโˆ’ln หš๐›ผ| + ๐ถ (cid:17) โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐ธ (๐‘Ÿ)๐‘‘๐‘Ÿ (cid:16) โ‰ค ๐‘€ ยท ๐‘’(1+๐›พ) sup ๐ธ + ๐ถ ยท ๐‘’๐‘ฅ ๐‘ (cid:16) ๐ถ๐›ผ ยท ๐‘’(1+๐›พ) sup ๐ธ ยท ๐‘’ 1 2 ๐œ–๐‘Ž ยท ๐‘’ 1 2 ๐œ–๐‘Ž ยท (cid:0) โˆš (cid:124) ๐›พ ยท 2 ยท sup ๐ธ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:123)(cid:122) (cid:125) sup |๐œƒ| (cid:1) โˆซ ๐‘Ÿ0 ๐ธ (๐‘Ÿ)๐‘‘๐‘Ÿ ๐‘Ÿ (cid:17) โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐ธ (๐‘Ÿ)๐‘‘๐‘Ÿ ยท 2 ยท sup ๐‘Š (cid:17) + ๐ถ (cid:17) ยท (cid:16) โ‰ค ๐‘€ ยท ๐‘’(1+๐›พ)๐œ– + ๐‘€ + ๐ถ โ‰ค ๐‘€1 โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐ธ (๐‘Ÿ)๐‘‘๐‘Ÿ. In the first โ‰ค we decompose (๐œŒ๐›ผ) to ( หš๐œŒ หš๐›ผ) ยท ๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) and absorb ( หš๐œŒ หš๐›ผ) to ๐‘€. In the second โ‰ค we apply Lemma 3.4.1 and use the bootstrap assumption to estimate โˆš 1 + ๐œƒ2 by 2. Here we have ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ), ๐‘€1 = ๐‘€1(๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) blow up when ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + โˆ— and ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) remains bounded since 0 < ๐›พ < 1. Similarly, โˆฌ ฮฉ๐‘Ÿ |๐ท๐‘ฃ2 ๐น2||๐œ•๐‘ ๐‘ฃ2|๐‘‘๐‘Ÿ๐‘‘๐‘  โ‰ค ๐‘€1 โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐ธ (๐‘Ÿ)๐‘‘๐‘Ÿ For |๐ท๐›ผ๐น2||๐œ•๐‘ ๐›ผ|, we have โˆฌ ฮฉ๐‘Ÿ |๐ท๐›ผ๐น2||๐œ•๐‘ ๐›ผ|๐‘‘๐‘Ÿ ๐‘‘๐‘  (cid:12) (cid:12) (cid:12) โ‰ค โˆฌ 2 ๐‘› ฮ›๐‘Ÿ โˆ’ (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) โ‰ค ๐ถ ยท ๐‘’sup | ln ๐›ผโˆ’ln หš๐›ผ| (cid:16) 2(1 + ๐›พ) ๐‘† [โ„Ž] ๐‘›๐‘Ÿ (blue region) ๐‘› โˆš โˆ’ (1 โˆ’ ๐›พ)๐œƒ 4 1 + ๐œƒ2 โˆ’ โˆš๐›พ (cid:0)1 + (1 โˆ’ ๐›พ)๐œƒ2(cid:1) + โˆš๐›พ ยท ๐›ผ|๐œ•๐‘  ln ๐›ผ|๐‘‘๐‘Ÿ๐‘‘๐‘  (cid:12) (cid:12) 1 (cid:12) (cid:12) 2(1 + ๐›พ) (cid:12) โˆš โˆš ๐›ฝโˆ’ln ยท ๐‘Ÿ ยท ๐‘’sup | ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ)| ยท ๐‘’sup | ln หš๐›ฝ| ยท ๐‘’sup | ln โˆš หš๐›ผโˆ’ln โˆš ๐›ผ| 49 ยท sup 1 + ๐œƒ2(cid:17) โˆš๏ธ ยท โˆฌ |๐œƒ|๐‘‘๐‘Ÿ ๐‘‘๐‘  ฮฉ๐‘Ÿ โ‰ค ๐ถ ยท ๐‘’๐‘ฅ ๐‘ (cid:16) ๐‘’2๐œ–๐‘Ž ยท ๐‘’(1+๐›พ)๐œ– ยท sup ๐‘Š โˆซ ๐‘Ÿ0 (cid:17) ยท ๐‘Ÿ ๐ธ (๐‘Ÿ)๐‘‘๐‘Ÿ โ‰ค ๐‘€2 ยท โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐ธ (๐‘Ÿ)๐‘‘๐‘Ÿ. In the second โ‰ค, we use the constraint equation from our reduced Einstein field equations. Notice โˆš หš๐›ผ can be absorbed to the constant ๐ถ due to their asymptotes. In the third โ‰ค, โˆš that the terms ( หš๐œŒ หš๐›ผ) ยท หš๐›ฝ we incorporate the bootstrap assumption and replace |๐œƒ| by ๐ธ (๐‘Ÿ) up to a constant. Here goes to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿโˆ—, and ๐‘€2 = ๐‘€2(๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) remains bounded. Together, we have ๐ธ (๐‘Ÿ) โ‰ค ๐ธ (๐‘Ÿ0) + 2๐‘€1 โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐ธ ๐‘‘๐‘Ÿ + 2๐‘€2 โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐ธ ๐‘‘๐‘Ÿ. By Gronwallโ€™s inequality, we have ๐ธ โ‰ค ๐ธ (๐‘Ÿ0) ยท ๐‘’(2๐‘€1+2๐‘€2)(๐‘Ÿ0โˆ’๐‘Ÿ) โ‰ค ๐ธ (๐‘Ÿ0) ยท ๐‘’(2๐‘€1+2๐‘€2)(๐‘Ÿ0โˆ’๐‘Ÿโˆ—). Step 2. Improved estimate In order to close the bootstrap argument, we have to show that our bootstrap assumptions are improved. For the total variation ๐ธ, we can choose the initial data (where ๐‘€3, ๐‘€4 are determined below) ๐ธ (๐‘Ÿ0) โ‰ค ๐œ– 20๐‘’(2๐‘€1+2๐‘€2)(๐‘Ÿ0โˆ’๐‘Ÿโˆ—) ยท min (cid:110) 1 1 + 10๐‘€3 , 1 1 + 10๐‘€4 (cid:111) , which implies the improved estimate ๐ธ โ‰ค ๐œ– 20 ยท min (cid:110) 1 1 + 10๐‘€3 , 1 1 + 10๐‘€4 (cid:111) โ‰ค ๐œ– 20 . 50 Since 0 < ๐œ– < 1 and 0 < ๐›พ < 1, we have โˆš๏ธ 1 + ๐œƒ2 โ‰ค 1 + |๐œƒ| sup โˆš โˆš โ‰ค 1 + โ‰ค 1 + ๐›พ ยท sup โˆš๏ธ 1 + ๐œƒ2 ยท ๐ธ ๐›พ ยท 2 ยท ๐œ– 20 โ‰ค 1 + ๐œ– 10 โ‰ค . 3 2 Finally, for sup | ln ๐›ผ โˆ’ ln หš๐›ผ| and sup | ln ๐›ฝ โˆ’ ln หš๐›ฝ|, we have | ln ๐›ผ โˆ’ ln หš๐›ผ| โ‰ค ๐ถ๐›ผ ยท ๐‘’(1+๐›พ)๐ธ ยท ๐‘’ 1 2 ๐œ–๐‘Ž ยท ๐‘’ 1 2 ๐œ–๐‘Ž ยท (cid:0) sup |๐œƒ| ยท sup โˆš๏ธ 1 + ๐œƒ2(cid:1) ยท sup ๐‘Š โ‰ค ๐ถ๐›ผ ยท ๐‘’(1+๐›พ) ยท ๐‘’ ยท (cid:0)โˆš ๐›พ ยท 4 ยท sup ๐ธ (cid:1) ยท sup ๐‘Š โ‰ค ๐‘€3 ยท sup ๐ธ โ‰ค ๐œ– 200 โ‰ค ๐œ–๐‘Ž 200 with ๐‘€3 = ๐‘€3(๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) going to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + โˆ— , and | ln ๐›ฝ โˆ’ ln หš๐›ฝ| โ‰ค โˆซ ฮ“๐‘Ÿ 0 |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  + ๐‘€๐›ฝ ยท (cid:16) โˆš โˆš๏ธ ๐›พ sup (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) 1 + ๐œƒ2 sup ๐ธ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:123)(cid:122) sup |๐œƒ| (cid:17) ยท sup โˆš๏ธ 1 + ๐œƒ2 ยท sup ๐ธ ยท ๐‘’(1+๐›พ)๐œ– + ๐‘€๐›ฝ (cid:16) 1 + sup |๐œƒ|2(cid:17) ยท ๐‘’(1+๐›พ)๐œ– ยท sup ๐ธ + ๐ถ๐›ฝ ยท ๐‘’(1+๐›พ)๐œ– ยท ๐‘’2๐œ–๐‘Ž ยท (cid:16) โˆš โˆš๏ธ ๐›พ ยท sup (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) 1 + ๐œƒ2 ยท sup ๐ธ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:123)(cid:122) (cid:125) sup |๐œƒ| (cid:17) ยท sup โˆš๏ธ 1 + ๐œƒ2 ยท sup ๐‘Š โˆซ โ‰ค ฮ“๐‘Ÿ 0 |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  + ๐‘€4 ยท sup ๐ธ 51 โ‰ค โ‰ค โ‰ค โˆซ ฮ“๐‘Ÿ 0 โˆซ ฮ“๐‘Ÿ 0 ๐œ–๐‘Ž 200 |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  + |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  + ๐œ– 200 ๐œ–๐‘Ž 200 + ๐œ–๐‘Ž 200 = ๐œ–๐‘Ž 100 provided that the initial perturbation โˆซ ฮ“๐‘Ÿ 0 |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  is sufficiently small. Here ๐‘€4 = ๐‘€4(๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) goes to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + โˆ— . Initial data Assumption 1. ๐ธ (๐‘Ÿ0) โ‰ค โˆซ (initial slice) |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  โ‰ค ๐œ– 20๐‘’(2๐‘€1+2๐‘€2)(๐‘Ÿ0โˆ’๐‘Ÿโˆ—) ๐œ–๐‘Ž 200 ยท min (cid:110) 1 1 + 10๐‘€3 , 1 1 + 10๐‘€4 (cid:111) where ๐‘€1 comes from |๐ท๐‘ฃ1 from | ln ๐›ผ โˆ’ ln หš๐›ผ| in Step 2, and ๐‘€4 comes from | ln ๐›ฝ โˆ’ ln หš๐›ฝ| in Step 2. ๐น2||๐œ•๐‘ ๐‘ฃ1| in Step 1, ๐‘€2 comes from |๐ท๐›ผ๐น2||๐œ•๐‘ ๐›ผ| in Step 1, ๐‘€3 comes โ–ก Remark. From the computation, we see that ๐‘€3 = 4๐ถ๐›ผ ยท ๐‘’2+๐›พ ยท โˆš (cid:16) ๐›พ (cid:17) ๐‘Š sup [๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘Ÿ0] ๐‘€4 = 4๐‘€๐›ฝ ยท โˆš ๐›พ ยท ๐‘’(1+๐›พ) + ๐‘€๐›ฝ (cid:16) 1 + 4๐›พ (cid:17) ยท ๐‘’1+๐›พ + 4๐ถ๐›ฝ ยท โˆš ๐›พ๐‘’3+๐›พ ยท (cid:16) (cid:17) . ๐‘Š sup [๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘Ÿ0] Note that sup[๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘Ÿ0] ๐‘Š will go to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + ๐‘€3, ๐‘€4 depend on ๐‘Ÿ๐‘๐‘ข๐‘ก. โˆ— ; this is the reason why we emphasize that 52 3.5 Riccati equation for derivatives In this section, we derive the pointwise behavior of the derivative (๐œ•๐‘ ๐‘ฃ1) when the total variation is small. This is reduced to deriving the pointwise behavior of the integral factor ๐‘’ ๐‘“ as this involves the integral of derivatives along (๐œ†1) characteristic and is hard to control. The main difficulty is to control the integral of (๐œ•๐‘  ๐›ฝ) term. We begin with performing the integral factor method as in the ordinary differential equation context to absorb the linear terms of (๐œ•๐‘ ๐‘ฃ1). The result is a Riccati equation for (๐œ•๐‘ ๐‘ฃ1). Lemma 3.5.1. For ๐œ•๐‘ ๐‘ฃ1, the derivative of the first Riemann invariant, we have (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )(๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1) = โˆ’(๐‘’โˆ’ ๐‘“ )(๐ท๐‘ฃ1 ๐œ†1) (๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1)2 + ๐‘’ ๐‘“ (๐ท๐‘ฃ2 ๐น1) (๐œ•๐‘ ๐‘ฃ2) + ๐‘’ ๐‘“ (๐ท๐›ผ๐น1) (๐œ•๐‘ ๐›ผ) where โˆ’ ๐‘“ = โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) with ๐‘‘๐‘Ÿ < 0. (โˆ’๐ท๐‘ฃ2 ๐œ†1)(๐œ•๐‘ ๐‘ฃ2) โˆ’ (๐ท๐›ผ๐œ†1) (๐œ•๐‘ ๐›ผ) โˆ’ (๐ท ๐›ฝ๐œ†1) (๐œ•๐‘  ๐›ฝ) + (๐ท๐‘ฃ1 ๐น1)๐‘‘๐‘Ÿ Proof. Starting from the evolution equation for the first Riemann invariant (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )๐‘ฃ1 = ๐น1, we take spatial derivative on both sides and get (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )(๐œ•๐‘ ๐‘ฃ1) = โˆ’(๐œ•๐‘ ๐œ†1)(๐œ•๐‘ ๐‘ฃ1) + (๐œ•๐‘ ๐น1) (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )(๐œ•๐‘ ๐‘ฃ1) = โˆ’(๐ท๐‘ฃ1 ๐œ†1)(๐œ•๐‘ ๐‘ฃ1)2 (cid:16) + โˆ’ (๐ท๐‘ฃ2 ๐œ†1) (๐œ•๐‘ ๐‘ฃ2) โˆ’ (๐ท๐›ผ๐œ†1) (๐œ•๐‘ ๐›ผ) โˆ’ (๐ท ๐›ฝ๐œ†1) (๐œ•๐‘  ๐›ฝ) + (๐ท๐‘ฃ1 ๐น1) (cid:17) (๐œ•๐‘ ๐‘ฃ1) + (๐ท๐‘ฃ2 ๐น1)(๐œ•๐‘ ๐‘ฃ2) + (๐ท๐›ผ๐น1) (๐œ•๐‘ ๐›ผ) (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )(๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1) = โˆ’(๐‘’โˆ’ ๐‘“ )(๐ท๐‘ฃ1 ๐œ†1) (๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1)2 + ๐‘’ ๐‘“ (๐ท๐‘ฃ2 ๐น1) (๐œ•๐‘ ๐‘ฃ2) + ๐‘’ ๐‘“ (๐ท๐›ผ๐น1) (๐œ•๐‘ ๐›ผ). โ–ก 53 Note that the quadratic term (๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1)2 is the main driving force to generate a shock. We are hoping that the coefficient ๐ท๐‘ฃ1 ๐œ†1 > 0 (refer to Lemma 3.5.7) and ๐‘’โˆ’ ๐‘“ is nondegenerate (refer to Proposition 3.5.1) provided that the total ๐œ†1 has a fixed sign and ๐‘’โˆ’ ๐‘“ is nondegenerate. It turns out ๐ท๐‘ฃ1 variation is small. Regarding all the other terms as error terms, we prove our main theorem in Section 3.5.3. Definition 3.5.1. Our error term has different definitions in different contexts. For the terms inside of the integral factor ๐‘’โˆ’ ๐‘“ or ๐‘’ ๐‘“ , an error term is defined to be a constant term independent of ๐‘Ÿ๐‘๐‘ข๐‘ก. For example, ๐ถ, ๐‘€๐œ– can be regarded as error terms. Although ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) goes to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + โˆ— , ๐œ– can depend on ๐‘Ÿ๐‘๐‘ข๐‘ก, so ๐‘€๐œ– can be independent of ๐‘Ÿ๐‘๐‘ข๐‘ก. In the Riccati equation context, an error term is defined to be a small term that goes to 0 when ๐œ– โ†’ 0. For example, ๐‘€๐œ– can be regarded as an error term. Notice that ๐œ– can depend on ๐‘Ÿ๐‘๐‘ข๐‘ก. Recall that ๐œ– is the notation for the upper bound of total variation. It turns out that in the integral factor โˆ’ ๐‘“ , only (๐ท ๐›ฝ๐œ†1) (๐œ•๐‘  ๐›ฝ) and (๐ท๐‘ฃ1 ๐น1) contribute non-error terms coming from the background homogeneous fluid. 3.5.1 Pointwise behavior of the integral factor โˆ’ ๐‘“ In this section, we try to analyze each term in the integral factor โˆ’ ๐‘“ . We begin with the most difficult term. Lemma 3.5.2. We separate the background influence (with ๐‘Ÿ๐‘๐‘ข๐‘ก) and error terms (without ๐‘Ÿ๐‘๐‘ข๐‘ก) for the term โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) โˆ’ (๐ท ๐›ฝ๐œ†1) (๐œ•๐‘  ๐›ฝ)๐‘‘๐‘Ÿ 54 in the integral factor โˆ’ ๐‘“ . It turns out the background influence is โˆ’ 1 โˆ’ ๐›พ 1 + ๐›พ ยท 1 ๐‘› โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ + 1 1 + ๐›พ ln( หš๐œŒ หš๐›ผ) โˆ’ 1 1 + ๐›พ ln( หš๐œŒ(๐‘Ÿ0) หš๐›ผ(๐‘Ÿ0)) Proof. From the divergence structure of the first equation in the reduced Einstein field equations ๐œ•๐‘Ÿ (cid:16) โˆš๏ธ๐›ฝ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 1+๐›พ ยท (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:123)(cid:122) (cid:124) ๐ด โˆš๏ธ 1 + ๐œƒ2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:17) + ๐œ•๐‘  (cid:16) โˆš ๐›ผ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:123)(cid:122) ๐ต 1+๐›พ ยท ๐œƒ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:124) (cid:17) = 0 and letting the first parenthesis be ๐ด, the second parenthesis be ๐ต, we have [ln( ๐ด)โˆ’ ln( ๐ด(๐‘Ÿ0))] = = = โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) (cid:12) (cid:12) (cid:12)๐œ†1 (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) ๐ด ๐ด ๐‘‘๐‘Ÿ โˆ’(๐œ•๐‘ ๐ต) + ๐œ†1(๐œ•๐‘  ๐ด) ๐ด ๐‘‘๐‘Ÿ (cid:16) 1 2 โˆš โˆš + (๐œ•๐‘ ๐œƒ) ยท ๐›ผ ๐›ฝ ยท โˆš (cid:17) 1 1 + ๐œƒ2 โˆ’ (๐œ•๐‘  ln ๐›ผ) ยท โˆš โˆš ๐›ผ ๐›ฝ ยท โˆš ๐œƒ 1 + ๐œƒ2 + 1 1 + ๐›พ (๐œ•๐‘  ln ๐œŒ) ยท โˆš โˆš ๐›ผ ๐›ฝ ยท ๐œƒ โˆš 1 + ๐œƒ2 + ๐œ†1 ยท (cid:16) 1 2 (๐œ•๐‘  ln ๐›ฝ) + 1 1 + ๐›พ (๐œ•๐‘  ln ๐œŒ) + (๐œ•๐‘  ln โˆš๏ธ 1 + ๐œƒ2) (cid:17) ๐‘‘๐‘Ÿ = โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) 1 2 ยท ๐œ†1(๐œ•๐‘  ln ๐›ฝ) โˆ’ (cid:16) โˆ’ + 1 1 + ๐›พ ยท โˆš โˆš ๐›ผ ๐›ฝ ยท 1 2 ๐œƒ ยท (๐œ•๐‘  ln ๐›ผ) ยท โˆš โˆš ๐›ผ ๐›ฝ ยท โˆš ๐œƒ 1 + ๐œƒ2 โˆš 1 + ๐œƒ2 + 1 1 + ๐›พ (cid:17) (cid:16) ยท ๐œ†1 (1 + ๐›พ) (๐œ•๐‘ ๐‘ฃ1 โˆ’ ๐œ•๐‘ ๐‘ฃ2) โˆ’ (๐œ•๐‘  ln ๐›ผ) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:123)(cid:122) (cid:124) (๐œ•๐‘  ln ๐œŒ) (cid:17) (cid:16) โˆ’ + โˆš โˆš ๐›ผ ๐›ฝ โˆš ยท ๐›พ + ๐œ†1 ยท โˆš๐›พ๐œƒ โˆš 1 + ๐œƒ2 (cid:17) (๐œ•๐‘ ๐‘ฃ1 + ๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘Ÿ โˆซ ๐‘Ÿ = 1 2 ยท ๐œ†1(๐œ•๐‘  ln ๐›ฝ) ๐‘Ÿ0 (๐œ†1) โˆš โˆš + ๐›ผ ๐›ฝ ยท 1 1 + (1 โˆ’ ๐›พ)๐œƒ2 (cid:16) (cid:0) โˆ’ ยท 1 2 + ๐›พ 1 + ๐›พ (cid:1) ยท โˆš ๐œƒ 1 + ๐œƒ2 55 โˆ’ 1 โˆ’ ๐›พ 2 ยท โˆš ๐œƒ3 1 + ๐œƒ2 โˆ’ โˆš (cid:17) ๐›พ ยท (๐œ•๐‘  ln ๐›ผ) โˆš โˆš ๐›ผ ๐›ฝ โˆ’ โˆš ยท 2 ๐›พ ยท 1 โˆ’ 1 + (1 โˆ’ ๐›พ)๐œƒ2 ยท (๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘Ÿ. 1 1 + ๐›พ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 Notice that the first term 1 In order to derive the background influence, we have a closer look at [ln( ๐ด) โˆ’ ln( ๐ด(๐‘Ÿ0))] 2 ยท ๐œ†1(๐œ•๐‘  ln ๐›ฝ) in the integrand is precisely the โˆ’(๐ท ๐›ฝ๐œ†1) (๐œ•๐‘  ๐›ฝ) term in โˆ’ ๐‘“ . . First (cid:12) (cid:12) (cid:12)๐œ†1 we expand the definition of ln( ๐ด). ln( ๐ด) = ln (cid:16) โˆš ๐›ฝ ๐›ผ 1 1+๐›พ ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) 1 1+๐›พ ยท โˆš๏ธ 1 + ๐œƒ2(cid:17) . โ€ข Since the evolution equation we have for โˆš ๐›ฝ is only along ๐œ•๐‘Ÿ direction, we estimate ln (cid:17) (cid:16) โˆš ๐›ฝ 1 1+๐›พ ๐›ผ along this direction: (cid:16) (cid:104) ln (cid:17) โˆš ๐›ฝ ๐›ผ 1 1+๐›พ (cid:16) (cid:16) โˆ’ ln = ln (cid:17)(cid:105)(cid:12) (cid:12) (cid:12)๐œ†1 1 1+๐›พ โˆš๏ธ๐›ฝ(๐‘Ÿ0) ๐›ผ(๐‘Ÿ0) โˆš ๐›ฝ ๐›ผ 1 1+๐›พ (cid:17) (๐‘ƒ) โˆ’ ln (cid:17) (cid:16) โˆš ๐›ฝ ๐›ผ 1 1+๐›พ (๐‘ƒ0) + ln (cid:17) (cid:16) โˆš ๐›ฝ ๐›ผ 1 1+๐›พ (๐‘ƒ0) โˆ’ ln (cid:16) โˆš ๐›ฝ ๐›ผ 1 1+๐›พ (cid:17) (๐‘ƒ1) = โˆซ ๐‘Ÿ ๐‘Ÿ0 ๐œ•๐‘Ÿ ln (cid:16) โˆš ๐›ฝ ๐›ผ 1 1+๐›พ (cid:17) ๐‘‘๐‘Ÿ + (cid:16) ln โˆš๏ธ๐›ฝ(๐‘ƒ0) โˆ’ ln โˆš๏ธ๐›ฝ(๐‘ƒ1) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:124) (cid:123)(cid:122) โˆš ๐›ฝ 2 initial perturbation for ln (cid:17) (cid:16) + ln(๐›ผ 1 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) 1+๐›พ ) (๐‘ƒ1) โˆ’ ln(๐›ผ 1 (cid:123)(cid:122) 1+๐›พ ) (๐‘ƒ0) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:17) . 2 initial perturbation for ln(๐›ผ Note that 1 1+๐›พ ) ๐œ•๐‘Ÿ ln (cid:16) โˆš ๐›ฝ ๐›ผ 1 1+๐›พ (cid:17) = (cid:16) 1 โˆ’ ๐›พ 1 + ๐›พ โˆ’ (1 โˆ’ ๐›พ) ยท ๐œƒ2(cid:17) ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) โˆ’ (cid:16) 1 2 + (cid:17) ยท 1 1 + ๐›พ ๐‘› โˆ’ 1 ๐‘Ÿ + + (cid:16) 1 2 (cid:16) 1 โˆ’ ๐›พ 1 + ๐›พ = (cid:17) ยท ๐›ผ (cid:16) 2ฮ› ๐‘› 1 1 + ๐›พ โˆ’ (1 โˆ’ ๐›พ) ยท ๐œƒ2(cid:17) (cid:17) ๐‘† [โ„Ž] ๐‘›๐‘Ÿ ( หš๐œŒ หš๐›ผ) ยท ๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) ๐‘Ÿ โˆ’ ๐‘Ÿ ๐‘› ยท โˆ’ (cid:16) 1 2 + (cid:17) ยท 1 1 + ๐›พ ๐‘› โˆ’ 1 ๐‘Ÿ + (cid:16) 1 2 + (cid:17) 1 1 + ๐›พ ยท ๐›ผ (cid:16) 2ฮ› ๐‘› ๐‘Ÿ โˆ’ ๐‘† [โ„Ž] ๐‘›๐‘Ÿ (cid:17) . 56 Therefore, the contribution from the background to ln 1 โˆ’ ๐›พ 1 + ๐›พ ยท 1 ๐‘› โˆซ ๐‘Ÿ ๐‘Ÿ0 ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ = โˆ’ 1 โˆ’ ๐›พ 1 + ๐›พ ยท The remaining terms are bounded by (cid:16) โˆš ๐›ฝ 1 1+๐›พ (cid:17) is ๐›ผ 1 ๐‘› โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ. (3.1) โˆซ ๐‘Ÿ0 ๐‘Ÿ 1 โˆ’ ๐›พ 1 + ๐›พ ๐‘Ÿ ๐‘› ยท ( หš๐œŒ หš๐›ผ) ยท (cid:12) (cid:12)๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) โˆ’ 1(cid:12) (cid:12) + (1 โˆ’ ๐›พ) ยท ๐œƒ2 ยท ๐‘Ÿ ๐‘› ( หš๐œŒ หš๐›ผ) ยท ๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) + 2 ยท ๐‘› โˆ’ 1 ๐‘Ÿ + 2 ยท หš๐›ผ ยท ๐‘’ln ๐›ผโˆ’ln หš๐›ผ (cid:16) 2ฮ› ๐‘› ๐‘Ÿ โˆ’ (cid:17) ๐‘† [โ„Ž] ๐‘›๐‘Ÿ โ‰ค ๐‘€๐œ– + ๐‘€๐œ– 2 + ๐ถ + ๐ถ, where we use Proposition 3.4.1 to estimate |๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) โˆ’ 1| โ‰ค ๐‘’| ln(๐œŒ๐›ผ) โˆ’ ln( หš๐œŒ หš๐›ผ)| and ln ๐›ผ โˆ’ ln หš๐›ผ, and we use the fact that หš๐›ผ is bounded over the entire time interval [๐‘Ÿโˆ—, ๐‘Ÿ0] (recall that lim๐‘Ÿโ†’๐‘Ÿโˆ— หš๐›ผ = 0). Here goes to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + โˆ— and ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) remains bounded (recall that ๐‘Ÿโˆ— > 0). Since ๐œ– is allowed to depend on ๐‘Ÿ๐‘๐‘ข๐‘ก, these terms can be regarded as error terms. โ€ข Next, we consider the ln (cid:16) (๐œŒ๐›ผ) 1 1+๐›พ (cid:17) term. Since we have control on the total variation of ๐‘ฃ1 and ๐‘ฃ2, we write this term as 1 1 + ๐›พ ln(๐œŒ๐›ผ) = 1 1 + ๐›พ ln( หš๐œŒ หš๐›ผ) + โˆซ ฮ“๐‘Ÿ (๐œ•๐‘ ๐‘ฃ1 โˆ’ ๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘ . Therefore, we have (cid:104) 1 1 + ๐›พ ln(๐œŒ๐›ผ) โˆ’ 1 1 + ๐›พ ln(๐œŒ(๐‘Ÿ0)๐›ผ(๐‘Ÿ0)) (cid:105)(cid:12) (cid:12) (cid:12)๐œ†1 = 1 1 + ๐›พ ln( หš๐œŒ หš๐›ผ) โˆ’ โˆซ 1 1 + ๐›พ ln( หš๐œŒ(๐‘Ÿ0) หš๐›ผ(๐‘Ÿ0)) โˆซ + (๐œ•๐‘ ๐‘ฃ1 โˆ’ ๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘  โˆ’ (๐œ•๐‘ ๐‘ฃ1 โˆ’ ๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘ . (3.2) ฮ“๐‘Ÿ ฮ“๐‘Ÿ 57 Notice that the last two integrals are bounded by 2๐œ– (since ๐ธ โ‰ค ๐œ– by Proposition 3.4.1) and hence can be taken as error terms. โ€ข We consider the ln(๐‘Ÿ ๐‘› โˆš 1 + ๐œƒ2) term. Since we know that โˆš 1 + ๐œƒ2 โ‰ค 2 (by Proposition 3.4.1), we have where (cid:104)(cid:12) (cid:12) ln (cid:0)๐‘Ÿ ๐‘›โˆš๏ธ (cid:12) 1 + ๐œƒ2(cid:1) โˆ’ ln (cid:0)๐‘Ÿ ๐‘› 0 โˆš๏ธƒ 1 + ๐œƒ2 0 (cid:105) (cid:1)(cid:12) (cid:12) (cid:12) ๐œ†1 โ‰ค 2๐‘›| ln ๐‘Ÿ | + 2๐‘›| ln ๐‘Ÿ0| โ‰ค ๐ถ ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). We still have to control the two error terms on the right hand side of the equation for [ln ๐ด โˆ’ ln ๐ด(๐‘Ÿ0)] (cid:12) (cid:12) (cid:12)(๐œ†1) . โ€ข The first error term is โˆซ ๐‘Ÿ0 ๐‘Ÿ โˆš โˆš ๐›ผ ๐›ฝ (cid:12) (cid:12) (cid:12) ยท 1 1 + (1 โˆ’ ๐›พ)๐œƒ2 (cid:16)(cid:0) โˆ’ ยท 1 2 + ๐›พ 1 + ๐›พ ยท โˆš ๐œƒ 1 + ๐œƒ2 โˆ’ 1 โˆ’ ๐›พ 2 ยท โˆš ๐œƒ3 1 + ๐œƒ2 โˆ’ 1 1 + ๐›พ โˆš (cid:17) ๐›พ ยท (๐œ•๐‘  ln ๐›ผ) (cid:12) (cid:12) (cid:12) ๐‘‘๐‘Ÿ โ‰ค ๐‘€๐œ– where ๐œ– comes from the ๐œƒ in (๐œ•๐‘  ln ๐›ผ) equation (refer to reduced Einstein field equations) and ๐‘€ comes from โˆš โˆš ๐›ผ ๐›ฝ . Here ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) goes to infinity when ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + โˆ— . โ€ข The second error term is โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) โˆš โˆš ๐›ผ ๐›ฝ โˆ’ โˆš ยท 2 ๐›พ ยท 1 โˆ’ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 1 + (1 โˆ’ ๐›พ)๐œƒ2 ยท (๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘Ÿ. One can apply Johnโ€™s trick to this term, but here we choose to use a more precise method to control this term. Since the integrand is similar to the evolution equation of ๐œƒ along ๐œ†1 58 direction, we argue that a major part of this is actually integrable along ๐œ†1 direction. From the evolution of Riemann invariants (refer to Section 3.2.4), we have (cid:17) = (๐œ†1 โˆ’ ๐œ†2) (๐œ•๐‘ ๐‘ฃ2) + (๐น1 + ๐น2) (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) (cid:16) 1 โˆš๐›พ ln (cid:0)โˆš๏ธ 1 + ๐œƒ2 + ๐œƒ(cid:1) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:124) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:123)(cid:122) (๐‘ฃ1+๐‘ฃ2) โˆš๐›พ 2 1 + (1 โˆ’ ๐›พ)๐œƒ2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:123)(cid:122) (๐œ†1โˆ’๐œ†2) โˆš ๐›ผ ยท โˆš ๐›ฝ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) ยท(๐œ•๐‘ ๐‘ฃ2) = (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) (cid:16) 1 โˆš๐›พ ln (cid:0)โˆš๏ธ 1 + ๐œƒ2 + ๐œƒ(cid:1)(cid:17) โˆ’ (๐น1 + ๐น2) โˆš โˆš ๐›ผ ๐›ฝ โˆ’ โˆš ๐›พ ยท ยท 2 1 โˆ’ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 1 + (1 โˆ’ ๐›พ)๐œƒ2 ยท (๐œ•๐‘ ๐‘ฃ2) = โˆ’ (cid:16) 1 โˆ’ (cid:16) + 1 โˆ’ (cid:17) ยท โˆš๐›พ 1 โˆš 1 + ๐œƒ2 (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )๐œƒ (cid:17) (๐น1 + ๐น2) โˆš๐›พ๐œƒ โˆš 1 + ๐œƒ2 โˆš๐›พ๐œƒ โˆš 1 + ๐œƒ2 (cid:16) = (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) 1 โˆš๐›พ ln (cid:0)โˆš๏ธ 1 + ๐œƒ2 + ๐œƒ(cid:1) + (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 2 ln(1 + ๐œƒ2) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:17) (cid:125) โˆ’ (cid:124) (cid:123)(cid:122) ๐‘„(๐œƒ) (cid:16) + 1 โˆ’ โˆš๐›พ๐œƒ โˆš 1 + ๐œƒ2 (cid:17) (๐น1 + ๐น2) Integrating both sides along ๐œ†1 direction, we have (cid:12) (cid:12) (cid:12) โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) โˆš โˆš ๐›ผ ๐›ฝ โˆ’ โˆš ๐›พ ยท ยท 2 1 โˆ’ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 1 + (1 โˆ’ ๐›พ)๐œƒ2 ยท (๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘Ÿ (cid:12) (cid:12) (cid:12) โ‰ค |๐‘„(๐œƒ (๐‘ƒ))| + |๐‘„(๐œƒ (๐‘ƒ1))| โˆซ ๐‘Ÿ0 + ๐‘Ÿ (๐œ†1) |๐น1 + ๐น2|๐‘‘๐‘Ÿ โ‰ค ๐ถ. Note that |๐œƒ| remains small so the ๐‘„ terms have no problem. There is no (๐œŒ๐›ผ) term in ๐น1 + ๐น2 so this term is also bounded. Here ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). 59 Lemma 3.5.3. We separate the background influence and error terms for โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) (๐ท๐‘ฃ1 ๐น1)๐‘‘๐‘Ÿ in the integral factor โˆ’ ๐‘“ . It turns out the background influence is (cid:16) 1 + ๐›พ 2 (cid:17) ยท โˆ’ ๐›พ 1 ๐‘› โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ. Proof. By the definition of ๐น1, we have ๐ท๐‘ฃ1 ๐น1 = (๐ท (๐œŒ๐›ผ) ๐น1)(๐ท๐‘ฃ1 (๐œŒ๐›ผ)) + (๐ท๐œƒ ๐น1) (๐ท๐‘ฃ1 ๐œƒ) ยท (cid:16) (cid:17) + = โˆ’ ๐‘Ÿ ๐‘› ๐›พ 1 + ๐›พ 1 2 1 + ๐›พ 2 Therefore, the contribution of the background to the โˆซ ๐‘Ÿ โˆซ ๐‘Ÿ0 + ๐›พ ๐‘Ÿ ๐‘› โˆ’ = (cid:17) (cid:16) ยท (๐œŒ๐›ผ) ยท (1 + ๐›พ) + (๐ท๐œƒ ๐น1) ยท โˆš ๐›พโˆš๏ธ 1 + ๐œƒ2 ( หš๐œŒ หš๐›ผ) ยท ๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) + (๐ท๐œƒ ๐น1) ยท โˆš ๐›พโˆš๏ธ 1 + ๐œƒ2. (๐ท๐‘ฃ1 ๐น1)๐‘‘๐‘Ÿ term is ๐‘Ÿ0 (๐œ†1) (cid:16) 1 + ๐›พ 2 (cid:17) โˆ’ ๐›พ ยท 1 ๐‘› ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ. โ–ก (3.3) Notice that the error terms are โˆซ ๐‘Ÿ0 ๐‘Ÿ (cid:16) 1 + ๐›พ 2 (cid:17) ยท โˆ’ ๐›พ ๐‘Ÿ ๐‘› ( หš๐œŒ หš๐›ผ) ยท (cid:12) (cid:12) (cid:12) ๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) โˆ’ 1 + |๐ท๐œƒ ๐น1| ยท โˆš ๐›พโˆš๏ธ 1 + ๐œƒ2๐‘‘๐‘Ÿ (cid:12) (cid:12) (cid:12) โ‰ค ๐‘€๐œ– + ๐ถ, where we use Proposition 3.4.1 to control |๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) โˆ’ 1| โ‰ค ๐‘’| ln(๐œŒ๐›ผ) โˆ’ ln( หš๐œŒ หš๐›ผ)| and use the fact โˆš that |๐ท๐œƒ ๐น1| ยท 1 + ๐œƒ2 is bounded by a fraction of ๐œƒ, of which the numerator and the denominator having the same degree. Here goes to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + โˆ— and ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). 60 โ–ก Lemma 3.5.4. We prove that the term โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†1) โˆ’ (๐ท๐‘ฃ2 ๐œ†1) (๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘Ÿ in the integral factor โˆ’ ๐‘“ can be regarded as an error term. Proof. Recall that we have the evolution for Riemann invariants (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )๐‘ฃ1 = ๐น1 (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ )๐‘ฃ2 = ๐น2. Adding these two equations, we get (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )(๐‘ฃ1 + ๐‘ฃ2) = (๐น1 + ๐น2) + (๐œ†1 โˆ’ ๐œ†2) (๐œ•๐‘ ๐‘ฃ2) (๐œ†1 โˆ’ ๐œ†2)(๐œ•๐‘ ๐‘ฃ2) = (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) (๐‘ฃ1 + ๐‘ฃ2) โˆ’ (๐น1 + ๐น2) โˆš๐›พ 1 + (1 โˆ’ ๐›พ)๐œƒ2 ยท (๐œ•๐‘ ๐‘ฃ2) = (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) โˆš๐›พ ln (cid:0)โˆš๏ธ 1 + ๐œƒ2 + ๐œƒ(cid:1)(cid:17) (cid:16) 1 2 โˆš โˆš ๐›ผ ๐›ฝ ยท โˆ’ (๐น1 + ๐น2). On the other hand, from the definition of ๐œ†1 (refer to Section 3.2.4), โˆ’(๐ท๐‘ฃ2 ๐œ†1)(๐œ•๐‘ ๐‘ฃ2) = โˆ’(๐ท๐œƒ๐œ†1) ยท โˆš ๐›พโˆš๏ธ 1 + ๐œƒ2(๐œ•๐‘ ๐‘ฃ2) โˆš ยท ๐›พโˆš๏ธ 1 + ๐œƒ2(๐œ•๐‘ ๐‘ฃ2) = โˆ’ โˆš โˆš (cid:124) ยท โˆš ๐›ผ ๐›ฝ 1 + ๐œƒ2 (cid:0) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 โˆ’ ๐›พ โˆš โˆš๐›พ๐œƒ(cid:1) 2 1 + ๐œƒ2 + (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) โˆš โˆš ๐›ผ ๐›ฝ ยท (cid:0) = โˆ’ โˆš (cid:123)(cid:122) ๐ท ๐œƒ ๐œ†1 โˆš๐›พ(1 โˆ’ ๐›พ) 1 + ๐œƒ2 + โˆš๐›พ๐œƒ(cid:1) 2 ยท (๐œ•๐‘ ๐‘ฃ2). Putting these two equations together, we find that โˆ’(๐ท๐‘ฃ2 ๐œ†1)(๐œ•๐‘ ๐‘ฃ2) = โˆ’ 1 โˆ’ ๐›พ 2 ยท + 1 โˆ’ ๐›พ 2 ยท โˆš โˆš 1 + ๐œƒ2 โˆ’ 1 + ๐œƒ2 + โˆš โˆš 1 + ๐œƒ2 โˆ’ 1 + ๐œƒ2 + โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ ยท (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) (cid:16) 1 โˆš๐›พ ln (cid:0)โˆš๏ธ 1 + ๐œƒ2 + ๐œƒ(cid:1)(cid:17) (๐น1 + ๐น2) 61 = โˆ’ 1 โˆ’ ๐›พ โˆš๐›พ 2 ยท + 1 โˆ’ ๐›พ 2 ยท โˆš โˆš 1 + ๐œƒ2 โˆ’ 1 + ๐œƒ2 + โˆš โˆš 1 + ๐œƒ2 โˆ’ 1 + ๐œƒ2 + โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ ยท (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )๐œƒ ยท โˆš 1 1 + ๐œƒ2 (๐น1 + ๐น2) = โˆ’ 1 โˆ’ ๐›พ โˆš๐›พ 2 ยท (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) (cid:110) โˆ’ 1 โˆ’ 1 + โˆš๐›พ โˆš๐›พ ln (cid:0)1 โˆ’ โˆš ๐œƒ (cid:1) 1 + ๐œƒ2 + 1 ๐œƒ (cid:1) โˆš 1 + ๐œƒ2 + 1 ๐œƒ โˆš๐›พ 1 + โˆš๐›พ ln (cid:0)1 + 1 โˆ’ โˆš๐›พ 1 โˆ’ ๐›พ ln (cid:0)(cid:0) โˆš 2 + โˆ’ โˆš โˆš 1 + ๐œƒ2 + 1 โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ 1 + ๐œƒ2 โˆ’ 1 + ๐œƒ2 + + 1 โˆ’ ๐›พ 2 ยท (๐น1 + ๐น2) โˆš (cid:1) 2 + 2 ๐›พ (cid:0) โˆš ๐œƒ (cid:1) + 1(cid:1)(cid:111) 1 + ๐œƒ2 + 1 = โˆ’ 1 โˆ’ ๐›พ โˆš๐›พ 2 ยท (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )๐‘„(๐œƒ) + 1 โˆ’ ๐›พ 2 ยท โˆš โˆš 1 + ๐œƒ2 โˆ’ 1 + ๐œƒ2 + โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ (๐น1 + ๐น2). where ๐‘„ denotes the function inside of the big parenthesis. Since ๐‘„(0) = 0 and |๐œƒ| remains small, we conclude that (cid:12) (cid:12) (cid:12) โˆซ (๐œ†1) โˆ’(๐ท๐‘ฃ2 ๐œ†1)(๐œ•๐‘ ๐‘ฃ2)๐‘‘๐‘Ÿ (cid:12) (cid:12) (cid:12) โ‰ค (cid:12) (cid:12) (cid:12) 1 โˆ’ ๐›พ โˆš๐›พ 2 ยท ๐‘„(๐œƒ (๐‘ƒ)) (cid:12) (cid:12) (cid:12) + (cid:12) (cid:12) (cid:12) 1 โˆ’ ๐›พ โˆš๐›พ 2 โˆš ยท sup โˆš ยท ๐‘„(๐œƒ (๐‘ƒ1)) (cid:12) (cid:12) (cid:12) 1 + ๐œƒ2 โˆ’ 1 + ๐œƒ2 + โˆš๐›พ๐œƒ โˆš๐›พ๐œƒ (๐น1 + ๐น2) + (๐‘Ÿ0 โˆ’ ๐‘Ÿโˆ—) ยท 1 โˆ’ ๐›พ 2 โ‰ค ๐ถ where we use the fact that |๐น1 + ๐น2| remains bounded since there is no (๐œŒ๐›ผ) term. Here ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). โ–ก Lemma 3.5.5. We show that the โˆ’(๐ท๐›ผ๐œ†1) (๐œ•๐‘ ๐›ผ) term in the integral factor โˆ’ ๐‘“ can be regarded as an erorr term (without ๐‘Ÿ๐‘๐‘ข๐‘ก). 62 Proof. Notice that โˆ’(๐ท๐›ผ๐œ†1)(๐œ•๐‘ ๐›ผ) = โˆ’ โˆš โˆš ๐›ผ ๐›ฝ ยท 1 2 ยท โˆš (1 โˆ’ ๐›พ)๐œƒ 1 + ๐œƒ2 + 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ ยท (๐œ•๐‘  ln ๐›ผ) โˆš โˆš ๐›ผ ๐›ฝ ยท 1 2 ยท (1 + ๐›พ) ๐‘› (1 + ๐›พ) ๐‘› = = = โˆš (1 โˆ’ ๐›พ)๐œƒ 1 + ๐œƒ2 + 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš โˆš๐›พ ยท ยท ๐‘Ÿ (๐œŒ๐›ผ) ยท (1 โˆ’ ๐›พ)๐œƒ 1 + ๐œƒ2 + 1 + (1 โˆ’ ๐›พ)๐œƒ2 2(1 + ๐›พ) ๐‘› โˆš๐›พ ยท ๐œƒโˆš๏ธ 1 + ๐œƒ2 ยท ๐‘Ÿ (๐œŒ๐›ผ) ยท โˆš โˆš ๐›ฝ ๐›ผ ยท ๐œƒโˆš๏ธ 1 + ๐œƒ2 ยท ๐‘Ÿ ( หš๐œŒ หš๐›ผ) ยท ๐‘’ln(๐œŒ๐›ผ)โˆ’ln( หš๐œŒ หš๐›ผ) ยท โˆš (1 โˆ’ ๐›พ)๐œƒ 1 + ๐œƒ2 + 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ ยท ๐œƒโˆš๏ธ 1 + ๐œƒ2. Therefore, we have (cid:12) (cid:12) (cid:12) โˆซ ๐‘Ÿ ๐‘Ÿ0 โˆ’(๐ท๐›ผ๐œ†1)(๐œ•๐‘ ๐›ผ)๐‘‘๐‘Ÿ (cid:12) (cid:12) (cid:12) โ‰ค โˆซ ๐‘Ÿ0 ๐‘Ÿ (cid:12) (cid:12)๐ท๐›ผ๐œ†1 (cid:12) (cid:12) (cid:12)๐œ•๐‘ ๐›ผ(cid:12) (cid:12) (cid:12)๐‘‘๐‘Ÿ โ‰ค ๐‘€๐œ–, where ๐‘€ comes from ( หš๐œŒ หš๐›ผ) and ๐œ– comes from |๐œƒ|. Here ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) goes to infinity as ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’ ๐‘Ÿ + โˆ— . For later convenience, we compute the asymptote for the background ( หš๐œŒ หš๐›ผ). Lemma 3.5.6. (Asymptote for ( หš๐œŒ หš๐›ผ).) There are constants ๐‘Ÿ๐‘š๐‘–๐‘‘ = ๐‘Ÿ๐‘š๐‘–๐‘‘ (๐‘Ÿโˆ—, ๐›พ, ฮ›, ๐‘† [โ„Ž]) > ๐‘Ÿโˆ—, ๐ถ๐‘š๐‘–๐‘‘ = ๐ถ๐‘š๐‘–๐‘‘ (๐‘Ÿ0, ๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿโˆ—, ๐›พ, ฮ›, ๐‘† [โ„Ž]) โ–ก so that where ( หš๐œŒ หš๐›ผ)๐ฟ โ‰ค ( หš๐œŒ หš๐›ผ) โ‰ค ( หš๐œŒ หš๐›ผ)๐‘…, ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0] ( หš๐œŒ หš๐›ผ)๐ฟ = ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ ๐‘› (1โˆ’๐›พ)(๐‘Ÿโˆ’๐‘Ÿโˆ—) ยท 1 (1.1)๐‘Ÿโˆ— , ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] 1 ๐ถ๐‘š๐‘–๐‘‘ , ๐‘Ÿ โˆˆ (๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] 63 ( หš๐œŒ หš๐›ผ)๐‘… = ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ ๐‘› (1โˆ’๐›พ)(๐‘Ÿโˆ’๐‘Ÿโˆ—) ยท (1.1) ๐‘Ÿโˆ— , ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] ๐ถ๐‘š๐‘–๐‘‘, ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] < (1.1), ๐‘Ÿ๐‘š๐‘–๐‘‘ โˆ’ ๐‘Ÿโˆ— < 1 and ๐‘Ÿ0 > ๐‘Ÿ๐‘š๐‘–๐‘‘. with ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— Remark. Note that ๐‘Ÿ๐‘š๐‘–๐‘‘ does not depend on ๐‘Ÿ0 nor ๐‘Ÿ๐‘๐‘ข๐‘ก. Proof. We have ๐œ‡ = ๐œ‡โˆ— + ๐‘‚ ((๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) 1+๐›พ 1โˆ’๐›พ ) ๐œ = 1 โˆ’ ๐›พ ๐‘› 1+๐›พ 2๐›พ โˆ— ๐œ‡ (๐‘›+1) (1โˆ’๐›พ) 2 โˆ— ยท ๐‘Ÿ โˆ’1 (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) + ๐‘‚ ((๐‘Ÿ โˆ’ ๐‘Ÿโˆ—)2). Here the notation is หš๐œŒ = 1+๐›พ 2๐›พ ๐œ‡ ๐‘Ÿ (๐‘›+1) (1+๐›พ) 2 1+๐›พ 1โˆ’๐›พ ยท ๐œ หš๐›ผ = ๐‘Ÿ ๐‘›โˆ’1 ยท ๐œ 2๐›พ 1โˆ’๐›พ . Therefore, we have ( หš๐œŒ หš๐›ผ) = ๐œ‡ 1+๐›พ 2๐›พ ๐œ ยท ๐‘Ÿ ๐‘›โˆ’1โˆ’ (๐‘›+1) (1+๐›พ) 2 = 1+๐›พ 2๐›พ ยท ๐‘Ÿ ๐‘›โˆ’1โˆ’ (๐‘›+1) (1+๐›พ) 2 ๐œ‡ 1โˆ’๐›พ ๐‘› ๐œ‡ 1+๐›พ 2๐›พ โˆ— ยท ๐‘Ÿ (๐‘›+1) (1โˆ’๐›พ) 2 โˆ— โˆ’1 (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) + ๐‘‚ ((๐‘Ÿ โˆ’ ๐‘Ÿโˆ—)2) = 1 ๐‘Ÿ โˆ’ ๐‘Ÿโˆ— ยท ๐‘› 1 โˆ’ ๐›พ ยท ๐œ‡ 1+๐›พ 2๐›พ ยท ๐‘Ÿ ๐‘›โˆ’1โˆ’ (๐‘›+1) (1+๐›พ) โˆ’1 (๐‘›+1) (1โˆ’๐›พ) 2 2 1+๐›พ 2๐›พ โˆ— ๐œ‡ ยท ๐‘Ÿ โˆ— + ๐‘‚ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) Since lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— there is a time ๐œ‡ 1+๐›พ 2๐›พ ยท ๐‘Ÿ ๐‘›โˆ’1โˆ’ (๐‘›+1) (1+๐›พ) โˆ’1 (๐‘›+1) (1โˆ’๐›พ) 2 2 1+๐›พ 2๐›พ โˆ— ๐œ‡ ยท ๐‘Ÿ โˆ— + ๐‘‚ (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) = 1+๐›พ 2๐›พ โˆ— ๐œ‡ ยท ๐‘Ÿ ๐‘›โˆ’1โˆ’ (๐‘›+1) (1+๐›พ) 2 โˆ— 1+๐›พ 2๐›พ โˆ— ๐œ‡ ยท ๐‘Ÿ (๐‘›+1) (1โˆ’๐›พ) 2 โˆ— โˆ’1 . = , 1 ๐‘Ÿโˆ— ๐‘Ÿ๐‘š๐‘–๐‘‘ = ๐‘Ÿ๐‘š๐‘–๐‘‘ (๐‘Ÿโˆ—, ๐›พ, ฮ›, ๐‘† [โ„Ž]) > ๐‘Ÿโˆ— 64 so that ๐‘› (1 โˆ’ ๐›พ)(๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) ยท 1 (1.1)๐‘Ÿโˆ— โ‰ค ( หš๐œŒ หš๐›ผ) โ‰ค ๐‘› (1 โˆ’ ๐›พ) (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) ยท (1.1) ๐‘Ÿโˆ— for ๐‘Ÿโˆ— < ๐‘Ÿ โ‰ค ๐‘Ÿ๐‘š๐‘–๐‘‘ and [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0], there exists ๐ถ๐‘š๐‘–๐‘‘ = ๐ถ๐‘š๐‘–๐‘‘ (๐‘Ÿ0, ๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿโˆ—, ๐›พ, ฮ›, ๐‘† [โ„Ž]) so that ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— < (1.1). If ๐‘Ÿ0 > ๐‘Ÿ๐‘š๐‘–๐‘‘, then since ( หš๐œŒ หš๐›ผ) does not have a singularity over 1 ๐ถ๐‘š๐‘–๐‘‘ โ‰ค ( หš๐œŒ หš๐›ผ) โ‰ค ๐ถ๐‘š๐‘–๐‘‘ for ๐‘Ÿ๐‘š๐‘–๐‘‘ โ‰ค ๐‘Ÿ โ‰ค ๐‘Ÿ0. Proposition 3.5.1. (Net influence on โˆ’ ๐‘“ from the background.) There exists a constnat ๐ถ3 = ๐ถ3( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) ๐‘’โˆ’ ๐‘“ โ‰ฅ (cid:16) 1 ๐‘Ÿ โˆ’ ๐‘Ÿโˆ— (cid:17) ๐›ฟ1 ยท ๐‘’โˆ’ ๐‘“ โ‰ฅ , , 1 ๐ถ3 1 ๐ถ3 ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ๐‘š๐‘–๐‘‘] ๐‘Ÿ โˆˆ (๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] ๐‘’ ๐‘“ โ‰ค ๐ถ3, ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]. so that In addition, ๐‘’ ๐‘“ (๐‘Ÿ0) = 1 from the definition of โˆ’ ๐‘“ (refer to Lemma 3.5.1). โ–ก (3.4) (3.5) (3.6) Proof. Putting (3.1), (3.2), (3.3) together, we see that the net influence from the background solution is โˆ’ 1 โˆ’ ๐›พ 1 + ๐›พ ยท 1 ๐‘› = โˆ’ (1 โˆ’ ๐›พ)2 2(1 + ๐›พ) โˆซ ๐‘Ÿ0 ๐‘Ÿ ยท 1 ๐‘› ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ + 1 1 + ๐›พ (cid:0) ln( หš๐œŒ หš๐›ผ) โˆ’ ln( หš๐œŒ(๐‘Ÿ0) หš๐›ผ(๐‘Ÿ0)) + (cid:16) 1 + ๐›พ 2 (cid:17) ยท โˆ’ ๐›พ 1 ๐‘› โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ + 1 1 + ๐›พ (cid:0) ln( หš๐œŒ หš๐›ผ) โˆ’ ln( หš๐œŒ(๐‘Ÿ0) หš๐›ผ(๐‘Ÿ0))(cid:1). 65 From Lemma 3.5.6, we have ( หš๐œŒ หš๐›ผ)๐ฟ โ‰ค ( หš๐œŒ หš๐›ผ) โ‰ค ( หš๐œŒ หš๐›ผ)๐‘…. Therefore, we get the estimate for the background influence to โˆ’ ๐‘“ โˆ’ (1 โˆ’ ๐›พ)2 2(1 + ๐›พ) ยท 1 ๐‘› โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘…๐‘‘๐‘Ÿ + 1 1 + ๐›พ (cid:0) ln( หš๐œŒ หš๐›ผ)๐ฟ โˆ’ ln( หš๐œŒ(๐‘Ÿ0) หš๐›ผ(๐‘Ÿ0))๐‘…(cid:1) โ‰ค (background influence to โˆ’ ๐‘“ ) โ‰ค โˆ’ (1 โˆ’ ๐›พ)2 2(1 + ๐›พ) ยท 1 ๐‘› โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐ฟ ๐‘‘๐‘Ÿ + 1 1 + ๐›พ (cid:0) ln( หš๐œŒ หš๐›ผ)๐‘… โˆ’ ln( หš๐œŒ(๐‘Ÿ0) หš๐›ผ(๐‘Ÿ0))๐ฟ(cid:1). Here we discuss two cases. For ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘], โˆ’ (1.1)(1 โˆ’ ๐›พ) 2(1 + ๐›พ)๐‘Ÿโˆ— + (cid:16) 1 1 + ๐›พ (cid:16) ln ๐‘Ÿ โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘‘๐‘Ÿ โˆ’ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿ โˆ’ ๐‘Ÿโˆ— ๐‘› (1.1)๐‘Ÿโˆ—(1 โˆ’ ๐›พ) (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) (1 โˆ’ ๐›พ)2 2๐‘›(1 + ๐›พ) โˆซ ๐‘Ÿ0 ๐‘Ÿ๐‘š๐‘–๐‘‘ (๐‘Ÿ0๐ถ๐‘š๐‘–๐‘‘)๐‘‘๐‘Ÿ (cid:17) โˆ’ ln (cid:0)๐ถ๐‘š๐‘–๐‘‘(cid:1)(cid:17) โ‰ค (background influence to โˆ’ ๐‘“ ) โ‰ค โˆ’ (1 โˆ’ ๐›พ) (2.2)๐‘Ÿโˆ—(1 + ๐›พ) โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿ ๐‘Ÿโˆ— ๐‘Ÿ โˆ’ ๐‘Ÿโˆ— ๐‘‘๐‘Ÿ โˆ’ (1 โˆ’ ๐›พ)2 2๐‘›(1 + ๐›พ) โˆซ ๐‘Ÿ0 ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— ๐ถ๐‘š๐‘–๐‘‘ ๐‘‘๐‘Ÿ + (cid:16) 1 1 + ๐›พ ln (cid:16) (1.1)๐‘› ๐‘Ÿโˆ—(1 โˆ’ ๐›พ) (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—) (cid:17) โˆ’ ln (cid:17)(cid:17) , (cid:16) 1 ๐ถ๐‘š๐‘–๐‘‘ where we use the definition of ( หš๐œŒ หš๐›ผ)๐ฟ and ( หš๐œŒ หš๐›ผ)๐‘… in Lemma 3.5.6 and estimate ๐‘Ÿ in the integrand. Applying exp to them, we have (cid:16) 1 ๐‘Ÿ โˆ’ ๐‘Ÿโˆ— 1+๐›พ โˆ’ (1.1) (1โˆ’๐›พ) (cid:17) 1 2(1+๐›พ) ยท ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— ยท 1 ๐ถ for ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘]. We know that โ‰ค (background influence to ๐‘’โˆ’ ๐‘“ ) โ‰ค 1+๐›พ โˆ’ (1โˆ’๐›พ) (cid:17) 1 (2.2) (1+๐›พ) ยท ๐ถ (cid:16) 1 ๐‘Ÿ โˆ’ ๐‘Ÿโˆ— ๐›ฟ1 (cid:66) 1 1 + ๐›พ ๐›ฟ2 (cid:66) 1 1 + ๐›พ โˆ’ โˆ’ (1.1) (1 โˆ’ ๐›พ) 2(1 + ๐›พ) (1 โˆ’ ๐›พ) (2.2) (1 + ๐›พ) ยท ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— > 0 > 0 since ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— < (1.1) by Lemma 3.5.6. Here ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). 66 By Lemma 3.5.2, Lemma 3.5.3, Lemma 3.5.4, Lemma 3.5.5, we have (cid:17) ๐›ฟ1 (cid:16) 1 ๐‘Ÿ โˆ’ ๐‘Ÿโˆ— ยท 1 ๐ถ3 โ‰ค ๐‘’โˆ’ ๐‘“ โ‰ค (cid:17) ๐›ฟ2 (cid:16) 1 ๐‘Ÿ โˆ’ ๐‘Ÿโˆ— ยท ๐ถ3, ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ๐‘š๐‘–๐‘‘] for some We can rearrange ๐ถ3 so that ๐ถ3 = ๐ถ3( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). ๐‘’ ๐‘“ โ‰ค ๐ถ3, ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] since ๐ถ3 can depend on ๐‘Ÿ๐‘š๐‘–๐‘‘. For ๐‘Ÿ โˆˆ (๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0], we have โˆ’๐ถ โ‰ค (background influence to โˆ’ ๐‘“ ) โ‰ค ๐ถ and therefore after possibly making ๐ถ3 larger. 1 ๐ถ3 โ‰ค ๐‘’โˆ’ ๐‘“ โ‰ค ๐ถ3 3.5.2 Pointwise behavior of the other terms Lemma 3.5.7. We compute the (๐ท๐‘ฃ1 ๐œ†1) term. Proof. (๐ท๐‘ฃ1 ๐œ†1) = (๐ท๐œƒ๐œ†1)(๐ท๐‘ฃ1 ๐œƒ) = โˆš โˆš ๐›ผ ๐›ฝ ยท โˆš 1 + ๐œƒ2 (cid:0) 1 โˆ’ ๐›พ โˆš 1 + ๐œƒ2 + โˆš๐›พ๐œƒ(cid:1) 2 โˆš ยท ๐›พโˆš๏ธ 1 + ๐œƒ2 โ‰ฅ ๐ถ (cid:16) โˆš หš๐›ผ โˆš๏ธƒ หš๐›ฝ (cid:17) ๐ฟ since |๐œƒ|, | ln ๐›ผ โˆ’ ln หš๐›ผ|, | ln ๐›ฝ โˆ’ ln หš๐›ฝ| remain small. Furthermore, since โˆš หš๐›ผโˆš หš๐›ฝ โ‰ˆ 1 ๐‘Ÿโˆ’๐‘Ÿโˆ— , we have (cid:16) โˆš หš๐›ผ โˆš๏ธƒ หš๐›ฝ (cid:17) = ๐ฟ ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ ๐ถ ๐‘Ÿโˆ’๐‘Ÿโˆ— , ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] ๐ถ, ๐‘Ÿ โˆˆ (๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0]. 67 โ–ก โ–ก Lemma 3.5.8. We show that (๐ท๐›ผ๐น1)(๐œ•๐‘ ๐›ผ) can be regarded as an error term, meaning its upper bound contains ๐œ–. Notice that here we are regarding ๐น1 as ๐น1(๐‘ฃ1, ๐‘ฃ2, ๐›ผ). Proof. Notice that ๐›ผ(๐ท๐›ผ๐น1) = ๐›ผ (cid:0) 2 ๐‘› ฮ›๐‘Ÿ โˆ’ ๐‘† [โ„Ž] ๐‘›๐‘Ÿ (cid:1) ยท (cid:16) โˆ’ (cid:124) โˆš โˆš๐›พ (1 โˆ’ ๐›พ)๐œƒ 4 1 + ๐œƒ2 + โˆš๐›พ (cid:0)1 + (1 โˆ’ ๐›พ)๐œƒ2(cid:1) โˆ’ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:17) 1 2(1 + ๐›พ) (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) 2(1+๐›พ) ยฑ 1 โˆš๐›พ 4 (cid:123)(cid:122) bounded betweenโˆ’ 1 (๐œ•๐‘  ln ๐›ผ) = โˆ’2(1 + ๐›พ) ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) ยท โˆš โˆš ๐›ฝ ๐›ผ ยท ๐œƒโˆš๏ธ 1 + ๐œƒ2. Therefore, thanks to the ๐œƒ inside of (๐œ•๐‘  ln ๐›ผ), we conclude that |(๐ท๐›ผ๐น1) (๐œ•๐‘ ๐›ผ)| โ‰ค ๐ถ๐œ– where ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). โ–ก Lemma 3.5.9. We show that |๐œ•๐‘ ๐‘ฃ2| is pointwise small over ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง ๐‘€ , as long as the initial data sup๐‘ โˆˆ[๐‘ง๐ฟ,๐‘ง ๐‘€ ] |๐œ•๐‘ ๐‘ฃ2(๐‘Ÿ0, ๐‘ )| and ๐œ– (total variation upper bound) are sufficienly small. Here we apply Johnโ€™s trick again. ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ is defined to be ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง ๐‘€ = {(๐‘Ÿ, ๐‘‹1(๐‘Ÿ; ๐‘ง)) | ๐‘Ÿ๐‘๐‘ข๐‘ก โ‰ค ๐‘Ÿ โ‰ค ๐‘Ÿ0, ๐‘ง๐ฟ โ‰ค ๐‘ง โ‰ค ๐‘ง๐‘€ }. See Figure 3.12. Proof. Step 1. The evolution equation for (๐œ•๐‘ ๐‘ฃ2) is (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ )(๐œ•๐‘ ๐‘ฃ2) = โˆ’(๐œ•๐‘ ๐œ†2) (๐œ•๐‘ ๐‘ฃ2) + (๐œ•๐‘ ๐น2) = โˆ’(๐ท๐‘ฃ2 ๐œ†2) (๐œ•๐‘ ๐‘ฃ2)2 + (cid:16) โˆ’ (๐ท๐‘ฃ1 ๐œ†2) (๐œ•๐‘ ๐‘ฃ1) โˆ’ (๐ท๐›ผ๐œ†2) (๐œ•๐‘ ๐›ผ) โˆ’ (๐ท ๐›ฝ๐œ†2) (๐œ•๐‘  ๐›ฝ) + (๐ท๐‘ฃ2 ๐น2) (cid:17) (๐œ•๐‘ ๐‘ฃ2) 68 + (๐ท๐‘ฃ1 ๐น2) (๐œ•๐‘ ๐‘ฃ1) + (๐ท๐›ผ๐น2) (๐œ•๐‘ ๐›ผ). Using the integral factor method, we get (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ )(๐‘’ ๐‘“2 ยท ๐œ•๐‘ ๐‘ฃ2) = ๐‘’ ๐‘“2 ยท (๐ท๐‘ฃ1 ๐น2) (๐œ•๐‘ ๐‘ฃ1) + ๐‘’ ๐‘“2 ยท (๐ท๐›ผ๐น2) (๐œ•๐‘ ๐›ผ), where โˆ’ ๐‘“2 = โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†2) โˆ’ (๐ท๐‘ฃ2 ๐œ†2)(๐œ•๐‘ ๐‘ฃ2) โˆ’ (๐ท๐‘ฃ1 ๐œ†2) (๐œ•๐‘ ๐‘ฃ1) โˆ’ (๐ท๐›ผ๐œ†2) (๐œ•๐‘ ๐›ผ) โˆ’ (๐ท ๐›ฝ๐œ†2) (๐œ•๐‘  ๐›ฝ) + (๐ท๐‘ฃ2 ๐น2)๐‘‘๐‘Ÿ. Note that here we incoporate the quadratic term (๐œ•๐‘ ๐‘ฃ2)2 into the integral factor. By the fundamental theorem of Calculus along (๐œ†2), ๐‘’ ๐‘“2 ยท (๐œ•๐‘ ๐‘ฃ2)(๐‘ƒ) โˆ’ (๐œ•๐‘ ๐‘ฃ2)(๐‘ƒ2) = โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†2) ๐‘’ ๐‘“2 ยท (๐ท๐‘ฃ1 ๐น2) (๐œ•๐‘ ๐‘ฃ1) + ๐‘’ ๐‘“2 ยท (๐ท๐›ผ๐น2) (๐œ•๐‘ ๐›ผ)๐‘‘๐‘Ÿ. Step 2. (Johnโ€™s trick) Fix ๐‘ง โˆˆ [๐‘ง๐ฟ๐ฟ, ๐‘ง๐‘€). Let ๐‘ฆ = ๐‘ฆ(๐‘Ÿ) โˆˆ [๐‘ง๐ฟ, ๐‘ง๐‘€] be the function so that ๐‘‹2(๐‘Ÿ; ๐‘ง) = ๐‘‹1(๐‘Ÿ; ๐‘ฆ(๐‘Ÿ)) where ๐‘Ÿ โ‰ค ๐‘Ÿ0 satisfies ๐‘‹2(๐‘Ÿ, ๐‘ง) โ‰ค ๐‘‹1(๐‘Ÿ, ๐‘ง๐‘€) so that (๐‘Ÿ, ๐‘‹2(๐‘Ÿ; ๐‘ง)) โˆˆ ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง ๐‘€ (see Figure 3.12). Taking derivative with respect to ๐‘Ÿ on both sides, we get ๐œ†2 = ๐œ†1 + ๐œ• ๐‘‹1 ๐œ•๐‘ง ๐‘‘๐‘ฆ ๐‘‘๐‘Ÿ ยท ๐‘‘๐‘Ÿ ๐‘‘๐‘ฆ = 1 ๐œ†2 โˆ’ ๐œ†1 ๐œ• ๐‘‹1 ๐œ•๐‘ง ยท โˆš โˆš ๐›ฝ ๐›ผ = โˆ’ ยท 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ 2 ๐œ• ๐‘‹1 ๐œ•๐‘ง . ยท This calculation aims to use (๐‘Ÿ, ๐‘ฆ) coordinate to foliate the spacetime region ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง ๐‘€ , as one can see the ๐‘‘๐‘Ÿ๐‘‘๐‘ฆ in the following computation (see Figure 3.9). Fix ๐‘ƒ โˆˆ ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง ๐‘€ and let ๐‘ƒ2 = (๐‘Ÿ0, ๐‘ง). We have โˆซ ๐‘Ÿ0 ๐‘Ÿ (๐‘‹2 (ยท;๐‘ง)) ๐‘’ ๐‘“2 ยท |๐ท๐‘ฃ1 ๐น2||๐œ•๐‘ ๐‘ฃ1|๐‘‘๐‘Ÿ โˆซ ๐‘ง๐ฟ โ‰ค ๐‘ง ๐‘€ (๐‘‹2 (ยท;๐‘ง)) ๐‘’ ๐‘“2 ยท |๐ท๐‘ฃ1 ๐น2||๐œ•๐‘ ๐‘ฃ1| ยท ๐‘‘๐‘Ÿ ๐‘‘๐‘ฆ ๐‘‘๐‘ฆ 69 = โˆซ ๐‘ง ๐‘€ ๐‘ง๐ฟ (๐‘‹2 (ยท;๐‘ง)) ๐‘’ ๐‘“2 ยท |๐ท๐‘ฃ1 ๐น2||๐œ•๐‘ ๐‘ฃ1| ยท โˆš โˆš ๐›ฝ ๐›ผ ยท 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ 2 ๐œ• ๐‘‹1 ๐œ•๐‘ง ยท ๐‘‘๐‘ฆ โ‰ค sup ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ โˆซ ๐‘ง ๐‘€ ๐‘ง๐ฟ (๐‘‹2 (ยท;๐‘ง)) โ‰ค sup (cid:16) ๐‘’ ๐‘“2 ยท (cid:16) ๐‘’ ๐‘“2 ยท โˆš โˆš ๐›ฝ ๐›ผ |๐ท๐‘ฃ1 ๐น2| ยท 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ 2 (cid:17) |๐œ•๐‘ ๐‘ฃ1| ยท ๐œ• ๐‘‹1 ๐œ•๐‘ง ๐‘‘๐‘ฆ โˆš โˆš ๐›ฝ ๐›ผ |๐ท๐‘ฃ1 ๐น2| ยท 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ 2 (cid:17) ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ (cid:16)โˆซ ๐‘ง ๐‘€ ๐‘ง๐ฟ (ฮ“๐‘Ÿ 0 ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ (cid:16)โˆซ ๐‘ง ๐‘€ ๐‘ง๐ฟ (ฮ“๐‘Ÿ 0 |๐œ•๐‘ ๐‘ฃ1|๐‘‘๐‘  + ) โˆฌ ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ |๐œ•๐‘ ๐น1| ยท ๐œ• ๐‘‹1 ๐œ•๐‘ง (cid:17) ๐‘‘๐‘Ÿ๐‘‘๐‘ฆ = sup (cid:16) ๐‘’ ๐‘“2 ยท โˆš โˆš ๐›ฝ ๐›ผ |๐ท๐‘ฃ1 ๐น2| ยท 1 + (1 โˆ’ ๐›พ)๐œƒ2 โˆš๐›พ 2 (cid:17) |๐œ•๐‘ ๐‘ฃ1|๐‘‘๐‘  + ) โˆฌ ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ |๐œ•๐‘ ๐น1|๐‘‘๐‘Ÿ๐‘‘๐‘  (cid:17) . Notice that we can make the initial data โˆซ ๐‘ง๐‘… ๐‘ง๐ฟ (ฮ“๐‘Ÿ 0 |๐œ•๐‘ ๐‘ฃ1|๐‘‘๐‘  small, and make ) Figure 3.9 Johnโ€™s trick to foliate the spacetime by (๐‘Ÿ, ๐‘ฆ). โˆฌ ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ |๐œ•๐‘ ๐น1|๐‘‘๐‘Ÿ ๐‘‘๐‘  โ‰ค โˆฌ ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ |๐ท๐‘ฃ1 ๐น1||๐œ•๐‘ ๐‘ฃ1| + |๐ท๐‘ฃ2 ๐น1||๐œ•๐‘ ๐‘ฃ2| + |๐ท๐›ผ๐น1||๐œ•๐‘ ๐›ผ|๐‘‘๐‘Ÿ๐‘‘๐‘  70 be bounded by ๐‘€๐œ– where ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). Thus we conclude that โˆซ ๐‘Ÿ0 ๐‘Ÿ (๐‘‹2 (ยท;๐‘ง)) ๐‘’ ๐‘“2 ยท |๐ท๐‘ฃ1 ๐น2||๐œ•๐‘ ๐‘ฃ1|๐‘‘๐‘Ÿ โ‰ค sup ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ (๐‘’ ๐‘“2) ยท ๐‘€๐œ– . Step 3. Note that โˆซ ๐‘Ÿ0 ๐‘Ÿ (๐œ†2) ๐‘’ ๐‘“2 ยท |๐ท๐›ผ๐น2||๐œ•๐‘ ๐›ผ|๐‘‘๐‘Ÿ โ‰ค sup (cid:16) ๐‘’ ๐‘“2 ยท ๐›ผ|๐ท๐›ผ๐น2||๐œ•๐‘  ln ๐›ผ| (cid:17) ยท (๐‘Ÿ0 โˆ’ ๐‘Ÿ) โ‰ค sup(๐‘’ ๐‘“2) ยท ๐ถ๐œ– where ๐ถ = ๐ถ ( ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) where ๐œ– comes from the |๐œƒ| inside of (๐œ•๐‘  ln ๐›ผ). Step 4. Bootstrap Assumption. with 0 < ๐œ–๐‘Ž < 1. With this assumption, we have |๐œ•๐‘ ๐‘ฃ2| โ‰ค ๐œ–๐‘Ž | ๐‘“2| โ‰ค ๐‘€๐œ–๐‘Ž + ๐‘€๐œ– + ๐‘€๐œ– + ๐‘€ + ๐‘€ โ‰ค 5๐‘€ where ๐‘€ = ๐‘€ (๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ). From the integral equation for ๐‘’ ๐‘“2 ยท (๐œ•๐‘ ๐‘ฃ2), we have ๐‘’ ๐‘“2 ยท |๐œ•๐‘ ๐‘ฃ2| โ‰ค |(๐œ•๐‘ ๐‘ฃ2)(๐‘ƒ2)| + โˆซ ๐‘Ÿ ๐‘Ÿ0 (๐œ†2) ๐‘’ ๐‘“2 ยท (๐ท๐‘ฃ1 ๐น2)|๐œ•๐‘ ๐‘ฃ1|๐‘‘๐‘Ÿ + โˆซ ๐‘Ÿ0 ๐‘Ÿ (๐œ†2) ๐‘’ ๐‘“2 ยท |๐ท๐›ผ๐น2||๐œ•๐‘ ๐›ผ|๐‘‘๐‘Ÿ โ‰ค |(๐œ•๐‘ ๐‘ฃ2)(๐‘ƒ2)| + ๐‘’5๐‘€ ยท ๐‘€๐œ– + ๐‘’5๐‘€ ยท ๐ถ๐œ–, or |๐œ•๐‘ ๐‘ฃ2(๐‘ƒ)| โ‰ค ๐‘’5๐‘€ |(๐œ•๐‘ ๐‘ฃ2) (๐‘ƒ2)| + ๐‘’10๐‘€ ยท ๐‘€๐œ– + ๐‘’10๐‘€ ยท ๐ถ๐œ– . Thus, if we choose the ๐œ– (total variation upper bound) small enough compared with ๐œ–๐‘Ž and choose the initial data sup๐‘ โˆˆ[๐‘ง๐ฟ,๐‘ง๐‘€ ] |(๐œ•๐‘ ๐‘ฃ2)(๐‘Ÿ0, ๐‘ )| small enough, both depending on ๐‘Ÿ๐‘๐‘ข๐‘ก, we can make ๐‘’5๐‘€ |(๐œ•๐‘ ๐‘ฃ2)(๐‘ƒ2)| + ๐‘’10๐‘€ ยท ๐‘€๐œ– + ๐‘’10๐‘€ ยท ๐ถ๐œ– โ‰ค ๐œ–๐‘Ž. 1 2 71 Therefore, we are able to improve the estimate for |๐œ•๐‘ ๐‘ฃ2| and therefore close the bootstrap argument. โ–ก 3.5.3 Proof of the Main Theorem Proof of Theorem 3.1.1. Going back to the Riccati equation derived in Lemma 3.5.1 (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )(๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1) = โˆ’(๐‘’โˆ’ ๐‘“ )(๐ท๐‘ฃ1 ๐œ†1) (๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1)2 + ๐‘’ ๐‘“ (๐ท๐‘ฃ2 ๐น1) (๐œ•๐‘ ๐‘ฃ2) + ๐‘’ ๐‘“ (๐ท๐›ผ๐น1) (๐œ•๐‘ ๐›ผ), we have that, based on Proposition 3.5.1, Lemma 3.5.7, Lemma 3.5.8, and Lemma 3.5.9, โˆ’ (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ )(๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1) โ‰ฅ ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ 1 ๐ถ3 (๐‘Ÿโˆ’๐‘Ÿโˆ—) ๐›ฟ 1 ยท 1 ๐ถ (๐‘Ÿโˆ’๐‘Ÿโˆ—) ยท (๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1)2 โˆ’ ๐‘’ ๐‘“ (๐‘€๐œ–๐‘Ž) โˆ’ ๐‘’ ๐‘“ (๐ถ๐œ–), ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ๐‘š๐‘–๐‘‘] 1 ๐ถ3 ๐ถ ยท (๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1)2 โˆ’ ๐‘’ ๐‘“ (๐‘€๐œ–๐‘Ž) โˆ’ ๐‘’ ๐‘“ (๐ถ๐œ–), ยท 1 ๐‘Ÿ โˆˆ (๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0]. We apply the change of variables โ€ข ๐‘ฆ = (๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1) and โ€ข ๐‘ก = ๐‘Ÿ0 โˆ’ ๐‘Ÿ, โˆ’(๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) = ๐‘‘ ๐‘‘๐‘ก , and let ๐‘Ž(๐‘ก) = 1 ๐ถ3 (๐‘Ÿโˆ’๐‘Ÿโˆ—) ๐›ฟ 1 ยท 1 ๐ถ (๐‘Ÿโˆ’๐‘Ÿโˆ—) (cid:66) ๐‘0 (๐‘Ÿโˆ’๐‘Ÿโˆ—)1+ ๐›ฟ 1 , ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] 1 ๐ถ3 ๐ถ (cid:66) ๐‘0, ยท 1 ๐‘Ÿ โˆˆ (๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] ๏ฃฑ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด๏ฃฒ ๏ฃด๏ฃด๏ฃด๏ฃด๏ฃด ๏ฃณ for 0 โ‰ค ๐‘ก โ‰ค ๐‘Ÿ0 โˆ’ ๐‘Ÿ๐‘๐‘ข๐‘ก (see Figure 3.10). The above inequality simplifies to ๐‘‘๐‘ฆ ๐‘‘๐‘ก โ‰ฅ ๐‘Ž(๐‘ก) ยท ๐‘ฆ2 โˆ’ ๐‘’ ๐‘“ (๐‘€๐œ–๐‘Ž) โˆ’ ๐‘’ ๐‘“ (๐ถ๐œ–). Rearranging ๐œ–๐‘Ž, ๐œ– to be even smaller so that ๐‘’ ๐‘“ (๐‘€๐œ–๐‘Ž) + ๐‘’ ๐‘“ (๐ถ๐œ–) โ‰ค ๐ถ3(๐‘€๐œ–๐‘Ž) + ๐ถ3(๐ถ๐œ–) โ‰ค ๐‘Ž(๐‘ก)๐‘ฆ2, 1 2 we have ๐‘‘๐‘ฆ ๐‘‘๐‘ก โ‰ฅ 1 2 ยท ๐‘Ž(๐‘ก) ยท ๐‘ฆ2. 72 Notice that the condition ๐ถ3๐‘€๐œ–๐‘Ž + ๐ถ3๐ถ๐œ– โ‰ค ยท ๐‘Ž(๐‘ก) ยท ๐‘ฆ2 1 2 always holds since both ๐‘Ž(๐‘ก) and ๐‘ฆ are increasing as ๐‘ก increases (since ๐‘Ÿ๐‘š๐‘–๐‘‘ โˆ’ ๐‘Ÿโˆ— < 1). Thus we have โˆซ ๐‘Ÿ0โˆ’๐‘Ÿ โˆซ ๐‘ฆ ๐‘ฆ0 1 ๐‘ฆ2 ๐‘‘๐‘ฆ โ‰ฅ 1 ๐‘ฆ0 โˆ’ 1 ๐‘ฆ โ‰ฅ 0 ๐‘0 2๐›ฟ1 ยท ๐‘Ž(๐‘ก)๐‘‘๐‘ก โ‰ฅ 1 2 โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿ ๐‘0 2(๐‘Ÿ โˆ’ ๐‘Ÿโˆ—)1+๐›ฟ1 ๐‘‘๐‘Ÿ (cid:16) ยท 1 (๐‘Ÿ โˆ’ ๐‘Ÿโˆ—)๐›ฟ1 โˆ’ 1 (๐‘Ÿ๐‘š๐‘–๐‘‘ โˆ’ ๐‘Ÿโˆ—)๐›ฟ1 (cid:17) . The above right hand side serving as a lower bound is a bit awkward since it is negative when ๐‘Ÿ โˆˆ (๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0]. One should however focus on ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ๐‘š๐‘–๐‘‘]. Therefore, if the initial data satisfies 1 ๐‘ฆ0 โ‰ค ๐‘0 4๐›ฟ1 (cid:16) ยท 1 (๐‘Ÿ๐‘๐‘ข๐‘ก โˆ’ ๐‘Ÿโˆ—)๐›ฟ1 โˆ’ 1 (๐‘Ÿ๐‘š๐‘–๐‘‘ โˆ’ ๐‘Ÿโˆ—)๐›ฟ1 (cid:17) , ๐‘ฆ must go to infinity at some ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘Ÿ0]. In other words, our lower bound ๐ฟ๐ต(๐‘Ÿ๐‘๐‘ข๐‘ก, ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ ) for ๐‘ฆ0 to generate a shock can be 1 ๐ฟ๐ต = ๐‘0 4๐›ฟ1 (cid:16) ยท 1 (๐‘Ÿ๐‘๐‘ข๐‘ก โˆ’ ๐‘Ÿโˆ—)๐›ฟ1 โˆ’ 1 (๐‘Ÿ๐‘š๐‘–๐‘‘ โˆ’ ๐‘Ÿโˆ—)๐›ฟ1 (cid:17) . Note that lim ๐‘Ÿ๐‘๐‘ข๐‘ก โ†’๐‘Ÿโˆ— ๐ฟ๐ต = 0. Since ๐‘’ ๐‘“ (cid:12) (cid:12)๐‘Ÿ=๐‘Ÿ0 = 1, ๐ฟ๐ต is a lower bound for both ๐‘ฆ0 = (๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1)(cid:12) (cid:12)๐‘Ÿ=๐‘Ÿ0 and (๐œ•๐‘ ๐‘ฃ1)(cid:12) (cid:12)๐‘Ÿ=๐‘Ÿ0 . โ–ก 3.6 Initial data 3.6.1 Summary table for initial data In this section, we use the following tables to summarize all the initial data assumption from previous chapters. 73 Figure 3.10 Lower bound ๐‘Ž(๐‘ก). Where Target Requirement Proposition 3.4.1 ๐ธ โ‰ค ๐œ– ๐ธ |๐‘Ÿ0 โ‰ค Assumption 1 ๐œ– 1+2๐‘€ 2 ) (๐‘Ÿ 20๐‘’ (2๐‘€ โˆซ (initial slice) 1 1+10๐‘€3 0 โˆ’๐‘Ÿโˆ— ) ยท min (cid:8) |๐œ•๐‘  ln ๐›ฝ|๐‘‘๐‘  โ‰ค ๐œ–๐‘Ž 200 , 1 1+10๐‘€4 (cid:9) 0 < ๐œ– โ‰ค ๐œ–๐‘Ž < 1 Where Main term Error term Lemma 3.5.2 Lemma 3.5.3 โˆ’ 1โˆ’๐›พ 1+๐›พ ยท 1 ๐‘› โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ ๐‘€๐œ– + ๐‘€๐œ– 2 + 2๐ถ โˆš ln ๐›ฝ(๐‘ƒ0) โˆ’ ln โˆš ๐›ฝ(๐‘ƒ1) ln(๐›ผ 1 1+๐›พ ) (๐‘ƒ1) โˆ’ ln(๐›ผ 1 1+๐›พ ) (๐‘ƒ0) 1 1+๐›พ ln( หš๐œŒ หš๐›ผ) โˆ’ 1 1+๐›พ ln( หš๐œŒ หš๐›ผ) (๐‘Ÿ0) 2๐œ– (cid:0) 1+๐›พ 2 โˆ’ ๐›พ(cid:1) ยท 1 ๐‘› โˆซ ๐‘Ÿ0 ๐‘Ÿ ๐‘Ÿ ( หš๐œŒ หš๐›ผ)๐‘‘๐‘Ÿ ๐‘€๐œ– + ๐ถ 74 Where Target Requirement Lemma 3.5.9 |๐œ•๐‘ ๐‘ฃ2| |๐œ•๐‘ ๐‘ฃ2| โ‰ค ๐‘’5๐‘€ |(๐œ•๐‘ ๐‘ฃ2) (๐‘ƒ2)| + ๐‘’10๐‘€ ยท ๐‘€๐œ– + ๐‘’10๐‘€ ยท ๐ถ๐œ– โ‰ค 1 2 ๐œ–๐‘Ž Section 3.5.3 ๐ถ0๐‘€๐œ–๐‘Ž + ๐ถ0๐ถ๐œ– โ‰ค ๐‘0 (๐‘Ÿ0โˆ’๐‘Ÿโˆ—)1+ ๐›ฟ ยท (๐‘ฆ0)2 Note that the smallness of ๐ธ (๐‘Ÿ0), the total variation of ๐‘ฃ1, ๐‘ฃ2, will automatically imply the smallness of โˆฅ(๐œ•๐‘  ln ๐›ผ(๐‘Ÿ0)) โˆฅ ๐ฟ1 by the ๐œƒ in the constraint equation for (๐œ•๐‘  ln ๐›ผ) (refer to the reduced Einstein field equations) and the fact that the width ๐‘Š (๐‘Ÿ0) = ๐‘ง๐‘… โˆ’ ๐‘ง๐ฟ of the initial perturbation is finite. Therefore, as long as the ๐ธ (๐‘Ÿ0) is small enough, the term | ln(๐›ผ 1 1+๐›พ ) (๐‘ƒ1) โˆ’ ln(๐›ผ 1 1+๐›พ ) (๐‘ƒ0)| will be small. Therefore, in the later section, we try to pose the following conditions on the initial slice for ๐‘  โˆˆ [๐‘ง๐ฟ, ๐‘ง๐‘…]: โ€ข ๐‘ฃ1(๐‘Ÿ0), ๐‘ฃ2(๐‘Ÿ0) are perturbed but have a small total variation (small ๐ธ (๐‘Ÿ0)). โ€ข ๐œ•๐‘ ๐‘ฃ1(๐‘Ÿ0, ๐‘ ) has a large positive value for some ๐‘  โˆˆ (๐‘ง๐ฟ, ๐‘ง๐‘€). โ€ข ๐œ•๐‘ ๐‘ฃ2(๐‘Ÿ0, ๐‘ ) is small for all ๐‘  โˆˆ [๐‘ง๐ฟ, ๐‘ง๐‘€]. โ€ข (๐œ•๐‘ ๐›ผ(๐‘Ÿ0)) is perturbed based on the constraint equation. In other words, โˆฅ (๐œ•๐‘  ln ๐›ผ(๐‘Ÿ0))โˆฅ ๐ฟ1 will be small since ๐ธ (๐‘Ÿ0) is small. โ€ข We do not perturb ๐›ฝ for simplicity. In other words, ๐›ฝ(๐‘Ÿ0, ๐‘ ) = หš๐›ฝ(๐‘Ÿ0, ๐‘ ) for all ๐‘  โˆˆ [๐‘ง๐ฟ, ๐‘ง๐‘€]. 3.6.2 Construction of initial data In this section, we try to construct a sequence of initial data that satisfies the above conditions and works for shock formation. Firstly, we rewrite the constraint equation for (๐œ•๐‘  ln ๐›ผ) in terms of Riemann invariants ๐‘ฃ1, ๐‘ฃ2. The original constraint is (๐œ•๐‘  ln ๐›ผ) = โˆ’2(1 + ๐›พ) ยท ๐‘Ÿ ๐‘› (๐œŒ๐›ผ) ยท โˆš โˆš ๐›ฝ ๐›ผ ยท ๐œƒโˆš๏ธ 1 + ๐œƒ2. 75 Based on the definition of ๐‘ฃ1, ๐‘ฃ2, we have that ๐œƒ = โˆš๏ธ 1 + ๐œƒ2 = 1 2 1 2 (cid:16) โˆš๐›พ(๐‘ฃ1+๐‘ฃ2) โˆ’ ๐‘’โˆ’ ๐‘’ โˆš๐›พ(๐‘ฃ1+๐‘ฃ2)(cid:17) (cid:16) โˆš๐›พ(๐‘ฃ1+๐‘ฃ2) + ๐‘’โˆ’ ๐‘’ โˆš๐›พ(๐‘ฃ1+๐‘ฃ2)(cid:17) (๐œŒ๐›ผ) = ๐‘’(1+๐›พ)(๐‘ฃ1โˆ’๐‘ฃ2). Therefore, after replacement, we have (๐œ•๐‘  ln ๐›ผ) = โˆ’ 2(1 + ๐›พ) ยท or equivalently, โˆš (cid:0)๐œ•๐‘  ๐›ผ(cid:1) = โˆ’ (1 + ๐›พ) ยท ๐‘Ÿ ๐‘› ๐‘Ÿ ๐‘› ยท ๐‘’(1+๐›พ)(๐‘ฃ1โˆ’๐‘ฃ2) ยท โˆš โˆš ๐›ฝ ๐›ผ ยท 1 2 (cid:16) โˆš๐›พ(๐‘ฃ1+๐‘ฃ2) โˆ’ ๐‘’โˆ’ ๐‘’ โˆš๐›พ(๐‘ฃ1+๐‘ฃ2)(cid:17) (cid:16) โˆš๐›พ(๐‘ฃ1+๐‘ฃ2) + ๐‘’โˆ’ ๐‘’ โˆš๐›พ(๐‘ฃ1+๐‘ฃ2)(cid:17) , ยท 1 2 ยท ๐‘’(1+๐›พ)(๐‘ฃ1โˆ’๐‘ฃ2) ยท โˆš๏ธ๐›ฝ ยท (cid:16) ๐‘’ 1 4 โˆš๐›พ(๐‘ฃ1+๐‘ฃ2) โˆ’ ๐‘’โˆ’ โˆš๐›พ(๐‘ฃ1+๐‘ฃ2)(cid:17) (cid:16) โˆš๐›พ(๐‘ฃ1+๐‘ฃ2) + ๐‘’โˆ’ ๐‘’ ยท โˆš๐›พ(๐‘ฃ1+๐‘ฃ2)(cid:17) . This means that, if we impose the restriction of the perturbation of initial data that โ€ข ๐‘ฃ1(๐‘Ÿ0) + ๐‘ฃ2(๐‘Ÿ0) is an odd function โ€ข ๐‘ฃ1(๐‘Ÿ0) โˆ’ ๐‘ฃ2(๐‘Ÿ0) is an even function โ€ข ๐›ฝ is an even function with respect to ๐‘ , we will get the right hand side of the above equation become an odd function and therefore it satisfies that โˆซ ๐‘ง๐‘… ๐‘ง๐ฟ โˆš (๐œ•๐‘  ๐›ผ)๐‘‘๐‘  = 0, which means we are allowed to solve for ๐›ผ along the initial slice. In conclusion, our steps for choosing the initial data are as follows. โ€ข Fix ๐‘Ÿ๐‘๐‘ข๐‘ก โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0). 76 โ€ข Fix ๐‘ฆ0 โ‰ฅ ๐ฟ๐ต that depends on ๐‘Ÿ๐‘๐‘ข๐‘ก. โ€ข Choose sufficiently small ๐œ–, ๐œ–๐‘Ž that may depend on ๐‘Ÿ๐‘๐‘ข๐‘ก and ๐‘ฆ0 so that they satisfy all the requirements in the above tables. Then derive ๐œ–0, ๐œ–๐‘Ž,0. โ€ข Construct the initial data for ๐‘ฃ1, ๐‘ฃ2, ๐›ฝ accordingly. For simplicity, we let ๐›ฝ(๐‘Ÿ0) = หš๐›ฝ(๐‘Ÿ0). โ€ข Construct the initial data for ๐›ผ based on the above constraint equation. As an example about how to construct the initial data for ๐‘ฃ1, ๐‘ฃ2 verifying the above restriction, we let ๐‘ง๐ฟ = โˆ’1, ๐‘ง๐‘€ = 0, ๐‘ง๐‘… = 1, take a compactly supported smooth function ๐‘ƒ : [โˆ’1, 0] โ†’ R of ๐‘  (where ๐‘ƒ for Profile) so that = ๐ฟ๐ต โ‰ค ๐ฟ๐ต, โˆซ ๐‘ง๐‘… ๐‘ง๐ฟ (cid:12) (cid:12) (cid:12) ๐‘‘ ๐‘‘๐‘  ๐‘ƒ (cid:12) (cid:12) (cid:12) ๐‘‘๐‘  โ‰ค ๐œ–0, โˆฅ๐‘ƒโˆฅ ๐ฟโˆž โ‰ค ๐œ–0, 2 (cid:12) (cid:12) (cid:12)๐‘ =โˆ’ 1 (cid:13) (cid:13) (cid:13) (cid:13)๐ฟโˆž ๐‘ƒ ๐‘‘ ๐‘‘๐‘  ๐‘ƒ (cid:13) (cid:13) (cid:13) (cid:13) ๐‘‘ ๐‘‘๐‘  (cid:12) (cid:12) (cid:12) (cid:110) ๐‘‘ ๐‘‘๐‘  ๐‘ƒ โ‰  0 (cid:111)(cid:12) (cid:12) (cid:12) โ‰ค ๐œ–0 ๐ฟ๐ต and construct functions ๐œ’(๐‘œ๐‘‘๐‘‘), ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›) of ๐‘  so that ๐œ’(๐‘œ๐‘‘๐‘‘) (๐‘ ) = ๐‘ƒ(๐‘ ) โˆ€๐‘  โˆˆ [โˆ’1, 0], ๐œ’(๐‘œ๐‘‘๐‘‘) (โˆ’๐‘ ) = โˆ’๐œ’(๐‘œ๐‘‘๐‘‘) (๐‘ ) โˆ€๐‘  โˆˆ [โˆ’1, 1] ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›) (๐‘ ) = ๐‘ƒ(๐‘ ) โˆ€๐‘  โˆˆ [โˆ’1, 0], ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›) (โˆ’๐‘ ) = ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›) (๐‘ ) โˆ€๐‘  โˆˆ [โˆ’1, 1]. The construction implies that, on the initial slice, ๐œ’(๐‘œ๐‘‘๐‘‘) and ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›) have a large positive derivative at ๐‘  = โˆ’ 1 2 while maintaining small total variations throughout the slice (see Figure 3.11). Next, let (cid:16) ๐œ’(๐‘œ๐‘‘๐‘‘) + ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›)(cid:17) (cid:16) ๐œ’(๐‘œ๐‘‘๐‘‘) โˆ’ ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›)(cid:17) ๐‘ฃ1 = หš๐‘ฃ1 + ๐‘ฃ2 = หš๐‘ฃ2 + 1 2 1 2 ๐›ฝ = หš๐›ฝ. Notice that the definition of ๐‘ฃ1 and ๐‘ฃ2 implies that ๐œ•๐‘ ๐‘ฃ1 implies that (cid:12) (cid:12)(๐‘Ÿ,๐‘ )=(๐‘Ÿ0,โˆ’ 1 2 ) = ๐‘‘ ๐‘‘๐‘  ๐‘ƒ (cid:0) โˆ’ 1 2 (cid:1) โ‰ฅ ๐ฟ๐ต, which ๐‘ฆ0 = ๐‘’ ๐‘“ ยท ๐œ•๐‘ ๐‘ฃ1 (cid:12) (cid:12) (cid:12)(๐‘Ÿ,๐‘ )=(๐‘Ÿ0,โˆ’ 1 2 ) โ‰ฅ ๐ฟ๐ต. 77 In addition, for ๐œ•๐‘ ๐‘ฃ2, we have ๐œ•๐‘ ๐‘ฃ2(๐‘Ÿ0, ๐‘ ) = 0 โˆ€๐‘  โˆˆ [โˆ’1, 0], which verifies the requirement for boostrap to guarantee the smallness of |๐œ•๐‘ ๐‘ฃ2| on the left of the initial slice (refer to Lemma 3.5.9). By finite speed of propagation property, we know that |๐œ•๐‘ ๐‘ฃ2| remains pointwise small on the left of the interesting region, but we do not know what happens to |๐œ•๐‘ ๐‘ฃ2| on the right part (see Figure 3.12). Finally, observing that on the initial slice ๐‘ฃ1+๐‘ฃ2 = ๐œ’(๐‘œ๐‘‘๐‘‘) is an odd function compactly supported in ๐‘  โˆˆ [โˆ’1, 1] and ๐‘ฃ1 โˆ’ ๐‘ฃ2 = ( หš๐‘ฃ1 โˆ’ หš๐‘ฃ2) + ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›) is an even function which is equal to ( หš๐‘ฃ1 โˆ’ หš๐‘ฃ2) at ๐‘  = โˆ’1, 1, we see that it verifies the restriction of the initial perturbation stated above. Figure 3.11 Construction of ๐œ’(๐‘œ๐‘‘๐‘‘) and ๐œ’(๐‘’๐‘ฃ๐‘’๐‘›). 78 Figure 3.12 We apply Lemma 3.5.9 on the blue region ฮฉ๐‘Ÿ๐‘๐‘ข๐‘ก ,๐‘ง๐‘€ . 79 CHAPTER 4 STABILITY OF RELATIVISTIC FLUIDS ON FIXED BIG BANG SPACETIMES This chapter aims to prove the stability of specially relativistic fluids on a fixed Big Bang spacetime, the metric of which derived from Section 1.2. In other words, we consider only Euler equations instead of Einstein-Euler equations. 4.1 The model problem and its homogeneous solutions Our model problem is the relativistic Euler equations on a fixed warped product manifold ๐ตร—๐‘Ÿ ๐น, where ๐ต is a 1+1 Lorentzian manifold endowed with the metric ๐‘” = โˆ’๐›ผ๐‘‘๐‘Ÿ 2 + ๐›ฝ๐‘‘๐‘ 2 and ๐น is an ๐‘›-dimensional Riemannian manifold representing the symmetry and regarded as a fiber. The fluid variables (๐œƒ, ๐œŒ) describing the underlying fluid are the primary variables of interest. In this paper, we analyze the following main equations (cid:16)โˆš๏ธ๐›ฝ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 1+๐›พ โˆš๏ธ 1 + ๐œƒ2(cid:17) ๐œ•๐‘Ÿ (cid:16)โˆš ๐›ผ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 1+๐›พ ๐œƒ (cid:17) + ๐œ•๐‘  = 0 (cid:16)โˆš๏ธ๐›ฝ ยท ๐œŒ (cid:17) ๐›พ 1+๐›พ ๐œƒ ๐œ•๐‘Ÿ + ๐œ•๐‘  (cid:16)โˆš ๐›ผ ยท ๐œŒ ๐›พ 1+๐›พ โˆš๏ธ 1 + ๐œƒ2(cid:17) = 0. (4.1) (4.2) We proceed to establish the equivalence of Euler equations and our main equations. In the work by Wong and An [2], they computed the curvature of the warped product spacetime ๐ต ร—๐‘Ÿ ๐น and derived the Euler equations (cid:16) ๐‘Ÿ ๐‘› ๐œŒ 1 1+๐›พ ๐œ‰ (cid:17) ๐‘‘๐‘–๐‘ฃ๐‘” = 0 (cid:16) ๐›พ 1+๐›พ ๐œ‰โ™ญ(cid:17) ๐œŒ ๐‘‘ = 0 in the fluid context, with the ultra-relativistic assumption ๐‘ = ๐›พ๐œŒ as the equation of state. Here 0 < โˆš๐›พ < 1 is a parameter representing sound speed, ๐‘ is the fluid pressure, ๐œŒ > 0 is the fluid density, and ๐œ‰ is a unit timelike vector field defined on ๐ต representing the fluid velocity and therefore 80 satisfies the normalization condition โˆ’๐›ผ(๐œ‰๐‘Ÿ)2 + ๐›ฝ(๐œ‰ ๐‘ )2 = โˆ’1. Since the metric components ๐›ผ, ๐›ฝ are fixed, we parametrize ๐œ‰ by the scalar unknown ๐œƒ โˆˆ R satisfying โˆš ๐›ผ๐œ‰๐‘Ÿ = โˆš๏ธ 1 + ๐œƒ2, โˆš๏ธ๐›ฝ๐œ‰ ๐‘  = ๐œƒ. We regard (๐œƒ, ๐œŒ) as fluid variables and they are the main unknown functions of (๐‘Ÿ, ๐‘ ) in this paper. Expanding the definition of divergence ๐‘‘๐‘–๐‘ฃ๐‘” and exterior derivative ๐‘‘, we have an equivalent system as our main equations. Remark. It is interesting noting that, the fixed fiber ๐น does not play any role in our main equations. Its scalar curvature ๐‘† [โ„Ž] however is involved in Einstein-Euler equations as considered in Chapter 3. In a future work, we are able to classify all physical, spatially homogeneous solutions with a big bang singularity that solve the above Euler equations. It turns out in the fluid (0 < ๐›พ < 1) and positive blowup time (๐‘Ÿโˆ— > 0) case, we have the following asymptotic behavior for the metric components Assumption 4. We assume that the metric components ๐›ผ, ๐›ฝ satisfy ๐›ผ(๐‘Ÿ), ๐›ฝ(๐‘Ÿ) > 0 โˆ€๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0] ๐›ผ(๐‘Ÿ) = 0, ๐›ฝ(๐‘Ÿ) = 0 lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— ๐œ•๐‘Ÿ ln ๐›ฝ(๐‘Ÿ) = โˆž, lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— lim ๐‘Ÿโ†’๐‘Ÿ + โˆ— where ๐‘Ÿโˆ— > 0 is the big bang blowup time. Geometrically, we are assuming ๐œ•๐‘  is a Killing vector field and the geometry has a certain asymptotic behavior when approcahing the big bang. In order to better understand the Euler equations, we impose the spatial homogenity on the unknowns (๐œƒ, ๐œŒ) and analyze the equations. Assuming both ๐œƒ and ๐œŒ are independent of ๐‘ , the equations reduce to a coupled system of ordinary differential equations and read, after integraing with respect to ๐‘Ÿ, โˆš๏ธ๐›ฝ ยท ๐‘Ÿ ๐‘› ๐œŒ 1 1+๐›พ โˆš๏ธ 1 + ๐œƒ2 = ๐ถ1 81 โˆš๏ธ๐›ฝ ยท ๐œŒ ๐›พ 1+๐›พ ๐œƒ = ๐ถ2. If ๐œƒ is nonzero initially (๐œƒ (๐‘Ÿ0) โ‰  0), we have ๐ถ2 โ‰  0 and thus โˆš๏ธ 1 + ๐œƒ2 = ๐œƒ = ๐ถ1โˆš ๐›ฝ ๐ถ2โˆš ๐›ฝ ยท 1 ๐‘Ÿ ๐‘› ยท ๐œŒโˆ’ 1 1+๐›พ ยท ๐œŒโˆ’ ๐›พ 1+๐›พ . Solving the inequality โˆš 1 + ๐œƒ2 โ‰ฅ ๐œƒ, we have ๐ถ1 ๐ถ2 ยท 1 ๐‘Ÿ ๐‘› โ‰ฅ ๐œŒ 1โˆ’๐›พ 1+๐›พ and thus conclude that ๐œŒ remains bounded above for ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ0] since ๐‘Ÿโˆ— > 0 and 0 < ๐›พ < 1. This further implies that ๐œƒ blows up at least in a rate 1โˆš ๐›ฝ . This rate plays an essential role in the remaining paper. Remark. These homogeneous solutions with ๐œƒ โ‰  0 have no general relativisitc counterpart. In [28], it was observed that the spatially homogeneous Einstein-Euler system forces ๐œ‰ to be parallel to ๐œ•๐‘Ÿ (or ๐œƒ = 0). This extra rigidity is a feature of Einsteinโ€™s equations when large number of symmetries are present, and is what enables the full classification performed in a future paper. 4.2 Dynamical Stability of homogeneous ๐œƒ โ‰  0 solutions In this section, we will establish the stability of homogeneous ๐œƒ โ‰  0 solutions with large enough ๐œƒ (๐‘Ÿ0). Specifically, given any metric components ๐›ผ, ๐›ฝ satisfying the Assumption 4 and given any ๐‘Ÿ0 > ๐‘Ÿโˆ—, there exists a lower bound (depending on ๐›ผ, ๐›ฝ, ๐‘Ÿ0) for ๐œƒ (๐‘Ÿ0) so that the homogeneous solutions with ๐œƒ (๐‘Ÿ0) greater than the lower bound are stable. In particular, shocks do not form before the big bang. 4.2.1 Evolution equations We begin by transforming our main equations (4.1) and (4.2) to evolution equations. Our equations form a hyperbolic system on the (1 + 1)-dimensional Lorentzian manifold ๐ต; therefore, the method of characteristics is applicable. As indicated in [15], one derives the following equations 82 after performing a standard diagonalization process (cid:0)๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ (cid:1) (cid:16) 1 ln (cid:0)โˆš๏ธ 2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:124) 1 + ๐œƒ2 + ๐œƒ(cid:1) + (cid:17) 1 โˆš๐›พ ln ๐‘“ 2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:123)(cid:122) ๐‘ฃ1 โˆš = ๐œƒ (cid:110) (cid:16) ๐›ผ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 1 4 1 + (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 + ๐œƒ2 โˆš โˆ’ ยท โˆ’ (cid:17) (๐‘’0 ln ๐›ฝ) โˆ’ โˆš๐›พ 4 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) ๐‘›โˆš๐›พ 2 (๐‘’0 ln ๐‘Ÿ) (cid:111) (4.3) (cid:0)๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ (cid:1) (cid:16) 1 2 (cid:124) 1 + ๐œƒ2 + ๐œƒ(cid:1) โˆ’ ln (cid:0)โˆš๏ธ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 โˆš๐›พ ln ๐‘“ 2 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:125) (cid:123)(cid:122) ๐‘ฃ2 (cid:17) โˆš = (cid:110) (cid:16) ๐›ผ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 1 4 1 โˆ’ (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) 1 + ๐œƒ2 โˆš โˆ’ ๐œƒ ยท + (cid:17) (๐‘’0 ln ๐›ฝ) + โˆš๐›พ 4 (cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) ๐‘›โˆš๐›พ 2 (๐‘’0 ln ๐‘Ÿ) (cid:111) . (4.4) (cid:125) (cid:125) (cid:124) (cid:124) (cid:123)(cid:122) ๐น1 (cid:123)(cid:122) ๐น2 โˆš โˆš๐›พ โˆš 1+๐œƒ2โˆ’ ๐›พ Here ๐‘“ = ๐œŒ ๐›ฝ ยท โˆ’ to denote an orthonormal frame on ๐ต. This system of equations describe the evolution of the two 1+๐œƒ2+๐œƒ โˆš๐›พ๐œƒ . We use ๐‘’0 = 1โˆš ๐œ•๐‘Ÿ and ๐‘’1 = 1โˆš ๐›ฝ โˆš๐›พ๐œƒ , ๐œ†2 = 1+๐›พ , ๐œ†1 = 1+๐œƒ2+๐œƒ ๐›ผ ๐›ฝ ยท ๐œ•๐‘  ๐›ผ ๐›ผ โˆš โˆš โˆš โˆš๐›พ โˆš 1+๐œƒ2+ โˆš โˆš Riemann invariants ๐‘ฃ1, ๐‘ฃ2 in two different directions (๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ), (๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ ). Since the coefficients in ๐ฟ1, ๐ฟ2 involve the unknown ๐œƒ, one may ask whether this system satisfies the analogous genuinely nonlinear condition defined in [15]. The answer is no. Indeed, as ๐œƒ โ†’ โˆž, the derivative of the eigenvalues vanishes hence breaking the genuinely nonlinear requirement. 4.2.2 Strategy Our strategy divides the time interval (๐‘Ÿโˆ—, ๐‘Ÿ0] into two subintervals (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘], [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] and per- forms two different tasks in each interval. ๐‘Ÿ๐‘š๐‘–๐‘‘ is a parameter depending on the metric components ๐›ผ, ๐›ฝ that will be chosen later but is expected to be close to ๐‘Ÿโˆ—. In the first subinterval (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘], we argue that the largeness of ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) enables a bootstrap argument and thus stabilizes the equation and prevents shock formation. In the second subinterval [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0], we apply the standard Cauchy stability to find the appropriate lower bound for ๐œƒ (๐‘Ÿ0) to ensure the largeness of ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘). In order to execute our strategy, we have to estimate two quantities: the spatial derivative of Riemann invariants (as indicated in [15]), and ๐œƒ (related to the heuristic above about how to break 83 the genuinely nonlinear condition). For convenience, we denote the spatial derivative of Riemann (cid:17) โˆš โˆš (cid:17) 1 + ๐œƒ2 + ๐œƒ(cid:1) + 1 โˆš๐›พ ln ๐‘“ 2 and ๐‘ = ๐‘’1 (cid:16) 1 2 ln (cid:0) 1 + ๐œƒ2 + ๐œƒ(cid:1) โˆ’ 1 2 โˆš๐›พ ln ๐‘“ . invariants by ๐‘Ž = ๐‘’1 (cid:16) 1 2 ln (cid:0) 4.2.3 Evolution equation for spatial derivatives ๐‘Ž and ๐‘ We start by taking a spatial derivative ๐‘’1 on both Riemann invariant equations and get the evolution equations for the spatial derivatives ๐‘Ž and ๐‘ โˆ’๐œ•๐‘Ÿ (cid:12) (cid:12)๐‘‹1 ๐‘Ž = 1 โˆ’ ๐›พ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 + )2 โˆš ยท ๐›ผ ยท 1 1 + ๐œƒ2 (๐‘Ž + ๐‘)๐‘Ž + 1 4 ยท 1 โˆ’ ๐›พ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 + ยท 1 1 + ๐œƒ2 (cid:1) 2 (๐‘Ž + ๐‘) (๐œ•๐‘Ÿ ln ๐›ฝ) โˆ’ ๐‘›๐›พ 2 ยท ยท 1 1 + ๐œƒ2 (cid:1) 2 1 โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 + (๐‘Ž + ๐‘) (๐œ•๐‘Ÿ ln ๐‘Ÿ) + 1 2 ยท ๐‘Ž(๐œ•๐‘Ÿ ln ๐›ฝ) โˆ’๐œ•๐‘Ÿ (cid:12) (cid:12)๐‘‹2 ๐‘ = 1 โˆ’ ๐›พ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 โˆ’ )2 โˆš ยท ๐›ผ ยท 1 1 + ๐œƒ2 (๐‘Ž + ๐‘)๐‘ + 1 4 ยท 1 โˆ’ ๐›พ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 โˆ’ ยท 1 1 + ๐œƒ2 (cid:1) 2 (๐‘Ž + ๐‘) (๐œ•๐‘Ÿ ln ๐›ฝ) โˆ’ ๐‘›๐›พ 2 ยท ยท 1 1 + ๐œƒ2 (cid:1) 2 1 โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 โˆ’ (๐‘Ž + ๐‘) (๐œ•๐‘Ÿ ln ๐‘Ÿ) + 1 2 ยท ๐‘(๐œ•๐‘Ÿ ln ๐›ฝ) where โˆ’๐œ•๐‘Ÿ (cid:12) (cid:12)๐‘‹1 = โˆ’(๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘ ) is the first characteristic direction and โˆ’๐œ•๐‘Ÿ (cid:12) (cid:12)๐‘‹2 = โˆ’(๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘ ) is the second characteristic direction. Observe that these two equations are coupled mainly through the term 1 coefficients 1+๐œƒ2 (๐‘Ž + ๐‘). If we assume the uniform bound for 1+๐œƒ2 (|๐‘Ž| + |๐‘|) and use the fact that the โˆš๐›พ(cid:1) 2 , we can regard these two evolutions as linear ordinary differential equations along two characteristics and derive (cid:1) 2 are both in the range from โˆš๐›พ(cid:1) 2 to (cid:1) 2 and 1 โˆš๐›พ ๐œƒ โˆš 1 โˆš๐›พ ๐œƒ โˆš (cid:0)1โˆ’ (cid:0)1โˆ’ (cid:0)1+ (cid:0)1+ 1+๐œƒ2 1+๐œƒ2 1 1 1 an upper bound for them separately. This is the idea we will apply in the first subinterval (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘]. A crucial ingredient of this idea is that we have to ensure the largeness of ๐œƒ to make 1 1+๐œƒ2 decay fast enough and close the bootstrap argument. 4.2.4 Evolution equation for ๐œƒ Based on the previous paragraph, we have to investigate how ๐œƒ evolves in order to close the bootstrap argument. After adding equation (3), (4), (5), we get โˆ’๐œ•๐‘Ÿ (cid:16) ln (cid:12) (cid:12) (cid:12)๐‘‹1 โˆš ๐œƒ 1 + ๐œƒ2 (cid:17) ๐›พ = 1 โˆ’ ๐›พ 2 ยท (๐œ•๐‘Ÿ ln ๐›ฝ) โˆ’ ๐‘›๐›พ ยท (๐œ•๐‘Ÿ ln ๐‘Ÿ) โˆ’ 2 โˆš ๐›พ ยท โˆš 1 + ๐œƒ2 ๐œƒ ยท 1 1 + ๐œƒ2 โˆš ๐›ผ. ยท ๐‘ 84 Notice that here we recover the homogeneous non-physical solution asymptote if ๐‘ = 0: ๐œƒ โ‰ˆ 1 โˆš ๐›ฝ as ๐‘Ÿ โ†’ ๐‘Ÿ + โˆ— since ๐‘Ÿ is assumed to be bounded and away from 0 (because ๐‘Ÿโˆ— > 0). Therefore, if we can argue that the last term on the right hand side (the term involving โˆš 1+๐œƒ2 ๐œƒ โˆš ยท ๐›ผ) can be regarded as an error term, we can ensure that the behavior of ๐œƒ is similar to 1โˆš ๐›ฝ at least when being close to the blowup time. 4.2.5 Bootstrap argument for (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] In this section, we present our bootstrap assumption and try to incorporate this assumption into the evolution equations we previously have derived. Our bootstrap assumption is (cid:16) 1 1 + ๐œƒ2 (cid:17) |๐‘Ž| + |๐‘| โ‰ค ๐‘€. (4.5) We begin with deriving a uniform bound for the spatial derivatives of Riemann invariants |๐‘Ž| and |๐‘|. Lemma 4.2.1. (Estimate for |๐‘Ž| and |๐‘|) Assume the bootstrap assumption 4.5 holds with the constant ๐‘€. Then we have |๐‘Ž|+|๐‘| โ‰ค ๐‘’ 1โˆ’๐›พ โˆš๐›พ)2 ยท๐‘€ โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— (1โˆ’ โˆš ๐›ผ๐‘‘๐‘Ÿ โˆš๏ธ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) โˆš ๐›ฝ ยท (cid:16) ยท sup ๐‘Ÿ=๐‘Ÿ๐‘š๐‘–๐‘‘ |๐‘Ž| + sup ๐‘Ÿ=๐‘Ÿ๐‘š๐‘–๐‘‘ |๐‘| + 1 2 ยท 1 โˆ’ ๐›พ (cid:0)1 โˆ’ โˆš๐›พ(cid:1) 2 ยท ๐‘€ ln (cid:16) ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) ๐›ฝ (cid:17) + ๐‘›๐›พ ยท 1 โˆš๐›พ(cid:1) 2 (cid:0)1 โˆ’ ยท ๐‘€ ln (cid:17)(cid:17) (cid:16) ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿ for any ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘], where ๐‘Ÿ๐‘š๐‘–๐‘‘ is a parameter that will be chosen in the next Lemma. Proof. As mentioned in Section 3.3, we try to incorporate the bootstrap assumption 4.5 to the evolution equations for ๐‘Ž and ๐‘ and try to integrate the equations along the characteristics. Since the computation for ๐‘Ž and ๐‘ are mostly the same, we only perform the calculation for ๐‘Ž here. From the evolution equation of ๐‘Ž, we have (cid:12) (cid:12) (cid:12) โˆ’ ๐œ•๐‘Ÿ (cid:12) (cid:12)๐‘‹1 ๐‘Ž (cid:12) (cid:12) (cid:12) โ‰ค 1 โˆ’ ๐›พ (cid:0)1 โˆ’ โˆš๐›พ(cid:1) 2 1 โˆ’ ๐›พ (cid:0)1 โˆ’ โˆš๐›พ(cid:1) 2 ยท ๐‘€ (๐œ•๐‘Ÿ ln ๐›ฝ) โˆš ยท ๐›ผ ยท ๐‘€ |๐‘Ž| + 1 4 ยท 85 + ๐‘›๐›พ 2 ยท 1 โˆš๐›พ(cid:1) 2 (cid:0)1 โˆ’ ยท ๐‘€ (๐œ•๐‘Ÿ ln ๐‘Ÿ) + 1 2 ยท |๐‘Ž|(๐œ•๐‘Ÿ ln ๐›ฝ). We integrate the inequality along ๐‘‹1 direction, where ๐‘‹1 is the characteristic generated by the vector field ๐œ•๐‘Ÿ + ๐œ†1๐œ•๐‘  |๐‘Ž| โ‰ค sup ๐‘Ÿ=๐‘Ÿ๐‘š๐‘–๐‘‘ |๐‘Ž| + 1 4 ยท 1 โˆ’ ๐›พ (cid:0)1 โˆ’ โˆš๐›พ(cid:1) 2 ยท ๐‘€ ln (cid:17) (cid:16) ๐›ฝ0 ๐›ฝ + ๐‘›๐›พ 2 ยท 1 โˆš๐›พ(cid:1) 2 (cid:0)1 โˆ’ ยท ๐‘€ ln (cid:17) (cid:16) ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿ + โˆซ ๐‘ก (cid:16) 1 โˆ’ ๐›พ 0 (cid:0)1 โˆ’ โˆš๐›พ(cid:1) 2 โˆš ยท ๐›ผ ยท ๐‘€ + (cid:17) (๐œ•๐‘Ÿ ln ๐›ฝ) 1 2 |๐‘Ž(๐‘Ÿ๐‘š๐‘–๐‘‘ โˆ’ ๐‘ก, ๐‘‹1(๐‘ก))|๐‘‘๐‘ก. where ๐‘ก = ๐‘Ÿ๐‘š๐‘–๐‘‘ โˆ’ ๐‘Ÿ. By Gronwallโ€™s inequality, we have the following estimate for |๐‘Ž| 1โˆ’๐›พ โˆš๐›พ)2 ยท๐‘€ โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— (1โˆ’ |๐‘Ž| โ‰ค ๐‘’ โˆš ๐›ผ๐‘‘๐‘Ÿ โˆš๏ธ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) โˆš ๐›ฝ ยท ยท (cid:16) sup ๐‘Ÿ=๐‘Ÿ๐‘š๐‘–๐‘‘ |๐‘Ž| + 1 4 ยท 1 โˆ’ ๐›พ (cid:0)1 โˆ’ โˆš๐›พ(cid:1) 2 ยท ๐‘€ ln (cid:16) ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) ๐›ฝ (cid:17) + ๐‘›๐›พ 2 ยท 1 โˆš๐›พ(cid:1) 2 (cid:0)1 โˆ’ ยท ๐‘€ ln (cid:16) ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿ (cid:17)(cid:17) . A similar process along the other characteristic ๐‘‹2 generated by the vector field ๐œ•๐‘Ÿ + ๐œ†2๐œ•๐‘  gives the analogous estimate for ๐‘ and therefore the result. โ–ก Lemma 4.2.2. (Estimate for ๐œƒ.) Assume the bootstrap assumption 4.5 holds with ๐‘€. There exists ๐‘Ÿ๐‘š๐‘–๐‘‘ > ๐‘Ÿโˆ— so that ๐œƒ is increasing over (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] (meaning โˆ’๐œ•๐‘Ÿ (cid:12) (cid:12)๐‘‹1 ๐œƒ > 0) and satisfies ๐œƒ1โˆ’๐›พ โ‰ฅ ๐›พ โˆš 2 ยท ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) 1 + ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘)2 โˆš๏ธ ๐›พ ยท (cid:17) 1โˆ’๐›พ 2 (cid:16) ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) ๐›ฝ ยท (cid:16) ๐‘Ÿโˆ— ๐‘Ÿ๐‘š๐‘–๐‘‘ (cid:17) ๐‘›๐›พ โˆš๐›พ๐‘…๐‘€ โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— โˆš ๐›ผ๐‘‘๐‘Ÿ . ยท ๐‘’โˆ’2 as long as ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) โ‰ฅ 1. Here ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) ๐›ฝ ranges in [1, โˆž) and ๐‘… = (cid:16) sup๐œƒโˆˆ[1,โˆž) โˆš 1+๐œƒ2 ๐œƒ (cid:17) . Proof. Similarly to the previous lemma, we replace those terms in Section 3.4 involving 1 1+๐œƒ2 ยท ๐‘ by ๐‘€ based on the bootstrap assumption 4.5 โˆ’๐œ•๐‘Ÿ (cid:16) ln (cid:12) (cid:12) (cid:12)๐‘‹1 โˆš ๐œƒ 1 + ๐œƒ2 (cid:17) ๐›พ โ‰ฅ 1 โˆ’ ๐›พ 2 ยท (๐œ•๐‘Ÿ ln ๐›ฝ) โˆ’ ๐‘›๐›พ ยท (๐œ•๐‘Ÿ ln ๐‘Ÿ) โˆ’ 2 โˆš (cid:16) ๐›พ ยท sup ๐œƒโˆˆ[1,โˆž) โˆš (cid:17) 1 + ๐œƒ2 ๐œƒ โˆš ๐›ผ ยท ๐‘€ provided that ๐œƒ is always greater than 1. In order to preserve this ๐œƒ โ‰ฅ 1 condition, we are restricted to a region that is close to ๐‘Ÿโˆ—. Notice that since ๐›ผ, ๐›ฝ satisfy the Assumption 4 (meaning 86 lim๐‘Ÿโ†’๐‘Ÿ + โˆ— (๐œ•๐‘Ÿ ln ๐›ฝ) = โˆž, โˆš ๐›ผ is bounded) and ๐‘Ÿโˆ— > 0 (meaning (๐œ•๐‘Ÿ ln ๐‘Ÿ) is bounded), there exists an ๐‘Ÿ๐‘š๐‘–๐‘‘ so that restricted to the time interval (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘], ๐œƒ keeps increasing, assuming ๐œƒ begins with a ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) ๐›ฝ value greater than 1. In addition, we will make sure that ๐‘Ÿ๐‘š๐‘–๐‘‘ is close enough to ๐‘Ÿโˆ— so that ranges in [1, โˆž). This range will be used in the subsequent proposition. Returning to the inequality, we have โˆ’๐œ•๐‘Ÿ (cid:16) ln (cid:12) (cid:12) (cid:12)๐‘‹1 ๐œƒ โˆš 1 + ๐œƒ2 (cid:17) ๐›พ โ‰ฅ 1 โˆ’ ๐›พ 2 ยท (๐œ•๐‘Ÿ ln ๐›ฝ) โˆ’ ๐‘›๐›พ ยท (๐œ•๐‘Ÿ ln ๐‘Ÿ) โˆ’ 2 โˆš ๐›พ ยท ๐‘… ยท ๐‘€ โˆš ๐›ผ. Integrating this inequality along ๐‘‹1, we arrive at ๐œƒ โˆš 1 + ๐œƒ2 ๐›พ โ‰ฅ ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) 1 + ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘)2 โˆš๏ธ ๐›พ ยท (cid:17) 1โˆ’๐›พ 2 (cid:16) ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) ๐›ฝ (cid:17) ๐‘›๐›พ ยท (cid:16) ๐‘Ÿโˆ— ๐‘Ÿ๐‘š๐‘–๐‘‘ โˆš๐›พ๐‘…๐‘€ โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— ยท ๐‘’โˆ’2 โˆš ๐›ผ๐‘‘๐‘Ÿ . In order to isolate the desired quantity ๐œƒ, we make use of the fact that ๐œƒ โ‰ฅ 1 and get a lower bound for ๐œƒ: ๐œƒ1โˆ’๐›พ โ‰ฅ ๐›พ โˆš 2 ยท ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) 1 + ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘)2 โˆš๏ธ ๐›พ ยท (cid:17) 1โˆ’๐›พ 2 (cid:16) ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) ๐›ฝ ยท (cid:16) ๐‘Ÿโˆ— ๐‘Ÿ๐‘š๐‘–๐‘‘ (cid:17) ๐‘›๐›พ โˆš๐›พ๐‘…๐‘€ โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— โˆš ๐›ผ๐‘‘๐‘Ÿ . ยท ๐‘’โˆ’2 โ–ก With all the ingredients in this section, we now present the crucial argument in this paper. Proposition 4.2.1. Fix a pair of metric components (๐›ผ, ๐›ฝ) satisfying Assumption 4 with positive blowup time ๐‘Ÿโˆ— > 0, and fix any bootstrap constant ๐‘€ > 0. Then there exist ๐‘Ÿ๐‘š๐‘–๐‘‘ = ๐‘Ÿ๐‘š๐‘–๐‘‘ (๐‘€, ๐›พ) > ๐‘Ÿโˆ—, ๐‘š๐‘–๐‘‘ = ๐œƒ ๐ฟ๐ต ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ (๐‘€, ๐›พ, ๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘) โ‰ฅ 1 (where ๐ฟ๐ต is for Lower Bound) so that as long as the initial data of the solution to the main equations (4.1), (4.2) satisfy โ€ข inf๐‘Ÿ=๐‘Ÿ๐‘š๐‘–๐‘‘ ๐œƒ โ‰ฅ ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ โ€ข sup๐‘Ÿ=๐‘Ÿ๐‘š๐‘–๐‘‘ |๐‘Ž| + sup๐‘Ÿ=๐‘Ÿ๐‘š๐‘–๐‘‘ |๐‘| โ‰ค ๐‘€ we have that always holds. In particular, when ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘], since ๐œƒ remains finite, shock will not form. (cid:16) 1 1 + ๐œƒ2 |๐‘Ž| + |๐‘| (cid:17) โ‰ค ๐‘€ 87 Proof. Assume the bootstrap condition (4.5) holds with constant ๐‘€. By Lemma 4.2.1 and Lemma 4.2.2, we have (cid:16) 1 1 + ๐œƒ2 |๐‘Ž| + |๐‘| (cid:17) โ‰ค ๐‘’ (cid:16) 1โˆ’๐›พ โˆš๐›พ)2 ยท๐‘€ โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— (1โˆ’ โˆš ๐›ผ๐‘‘๐‘ก โˆš ๐‘ฅยท ยท sup๐‘Ÿ=๐‘Ÿ๐‘š๐‘–๐‘‘ (|๐‘Ž| + |๐‘|) + 1 2 ยท ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ 1+(๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘)2 1โˆ’๐›พ ยท (cid:0) 1 + 2 โˆš ๐›พ 1โˆ’๐›พ โˆš๐›พ)2 ยท ๐‘€ ln(๐‘ฅ) + ๐‘›๐›พ ยท (cid:1) 2๐‘›๐›พ 1โˆ’๐›พ ยท ๐‘ฅ ยท (cid:0) ๐‘Ÿโˆ— 1โˆ’๐›พ ยท ๐‘’โˆ’4 ๐‘Ÿ๐‘š๐‘–๐‘‘ (1โˆ’ ๐›พ (cid:1) 2 1 โˆš๐›พ)2 ยท ๐‘€ ln (cid:0) ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿ (1โˆ’ โˆš๐›พ๐‘…๐‘€ โˆซ ๐‘Ÿ๐‘š๐‘–๐‘‘ ๐‘Ÿโˆ— โˆš ๐›ผ๐‘‘๐‘Ÿ (cid:1)(cid:17) . where ๐‘ฅ = ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘) ๐›ฝ ranges in [1, โˆž) from Lemma 4.2.2. Since โˆš ๐‘ฅ + โˆš ๐‘ฅ ln(๐‘ฅ) ๐‘ฅ is a bounded function for ๐‘ฅ โˆˆ [1, โˆž), we know that when ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ is large enough, the term โˆš ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ 1+(๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘)2 ๐›พ in the denominator is large, so the right hand side of the above inequality will be strictly less than ๐‘€, which closes the bootstrap argument. The only remaining unproven thing is that ๐œƒ < โˆž for ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘]. This can be done using the evolution equation for ๐œƒ from Section 3.4 โˆ’๐œ•๐‘Ÿ ln (cid:16) โˆš ๐œƒ 1 + ๐œƒ2 (cid:17) ๐›พ = 1 โˆ’ ๐›พ 2 ยท (๐œ•๐‘Ÿ ln ๐›ฝ) โˆ’ ๐‘›๐›พ ยท (๐œ•๐‘Ÿ ln ๐‘Ÿ) โˆ’ 2 โˆš โˆš 1 + ๐œƒ2 ๐œƒ ๐›พ ยท ยท 1 1 + ๐œƒ2 โˆš ๐›ผ. ยท ๐‘ Since the bootstrap assumption 4.5 holds, we have an upper bound (cid:16) โˆ’๐œ•๐‘Ÿ ln โˆš ๐œƒ 1 + ๐œƒ2 (cid:17) ๐›พ โ‰ค 1 โˆ’ ๐›พ 2 ยท (๐œ•๐‘Ÿ ln ๐›ฝ) โˆ’ ๐‘›๐›พ ยท (๐œ•๐‘Ÿ ln ๐‘Ÿ) + 2 โˆš ๐›พ๐‘…๐‘€ โˆš ๐›ผ with ๐‘… defined in Lemma 4.2.2. Since the right hand side is finite (but not bounded) for ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘], ๐œƒ remains finite, and therefore |๐‘Ž| + |๐‘| โ‰ค ๐‘€ (1 + ๐œƒ2) implies the boundedness of the spatial derivatives. โ–ก 4.2.6 Bootstrap argument for [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] In this section, we apply the standard Cauchy stability for hyperbolic system in the time interval [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0]. Specifically, we have 88 Proposition 4.2.2. Given any ๐‘Ÿ0 > ๐‘Ÿ๐‘š๐‘–๐‘‘ > ๐‘Ÿโˆ—, any ๐œƒ ๐ฟ๐ต (๐œƒโ„Ž๐‘œ๐‘š๐‘œ, ๐œŒโ„Ž๐‘œ๐‘š๐‘œ) satisfying the Euler equations (4.1), (4.2), with ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ๐‘š๐‘–๐‘‘) > ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ โ‰ฅ 1, any homogeneous background solution ๐‘š๐‘–๐‘‘, and any width ๐‘Š0 > 0 of initial perturbation defined by ๐‘Š0 = |{๐œƒ (๐‘Ÿ0) โ‰  ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ0)}|, there exists ๐œ–0 > 0 so that as long as โˆฅ๐‘Ž(๐‘Ÿ0) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ0)โˆฅ ๐ฟโˆž < ๐œ–0, we have โˆฅ๐‘Ž(๐‘Ÿ๐‘š๐‘–๐‘‘) โˆฅ ๐ฟโˆž, โˆฅ๐‘(๐‘Ÿ๐‘š๐‘–๐‘‘)โˆฅ ๐ฟโˆž are finite and ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) > ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘. Proof. We will use a bootstrap argument here. Our bootstrap assumption is โˆฅ๐‘Ž(๐‘Ÿ) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ) โˆฅ ๐ฟโˆž < ๐œ– โˆฅ๐œƒ (๐‘Ÿ) โˆฅ ๐ฟโˆž โ‰ค โˆฅ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ) โˆฅ ๐ฟโˆž + 1 for ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] and for some 0 < ๐œ– < 1 that will be chosen later. Using the evolution equations for ๐‘Ž, ๐‘ derived in Section 3.3, we have (cid:12) (cid:12) (cid:12) โˆ’ ๐œ•๐‘Ÿ (cid:12) (cid:12)๐‘‹1 ๐‘Ž (cid:12) (cid:12) (cid:12) โ‰ค 1 โˆ’ ๐›พ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 + )2 โˆš ยท ๐›ผ ยท 1 1 + ๐œƒ2 ยท (2๐œ–) ยท |๐‘Ž| + 1 4 ยท 1 โˆ’ ๐›พ โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 + ยท 1 1 + ๐œƒ2 (cid:1) 2 (|๐‘Ž| + |๐‘|)(๐œ•๐‘Ÿ ln ๐›ฝ) + ๐‘›๐›พ 2 ยท ยท 1 1 + ๐œƒ2 (cid:1) 2 1 โˆš๐›พ๐œƒ โˆš 1+๐œƒ2 (cid:0)1 + (|๐‘Ž| + |๐‘|)(๐œ•๐‘Ÿ ln ๐‘Ÿ) + 1 2 ยท |๐‘Ž|(๐œ•๐‘Ÿ ln ๐›ฝ) โ‰ค ๐ถ1 ยท (2๐œ–) ยท โˆฅ๐‘Ž(๐‘Ÿ)โˆฅ ๐ฟโˆž + ๐ถ1 ยท (โˆฅ๐‘Ž(๐‘Ÿ) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ)โˆฅ ๐ฟโˆž) where ๐ถ1 = ๐ถ1(sup๐‘Ÿโˆˆ[๐‘Ÿ๐‘š๐‘–๐‘‘,๐‘Ÿ0] equality along ๐‘‹1, we have โˆš ๐›ผ, sup๐‘Ÿโˆˆ[๐‘Ÿ๐‘š๐‘–๐‘‘,๐‘Ÿ0] (๐œ•๐‘Ÿ ln ๐›ฝ), sup๐‘Ÿโˆˆ[๐‘Ÿ๐‘š๐‘–๐‘‘,๐‘Ÿ0] (๐œ•๐‘Ÿ ln ๐‘Ÿ)). Integrating this in- โˆฅ๐‘Ž(๐‘Ÿ) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ) โˆฅ ๐ฟโˆž (cid:17) ๐‘‘๐‘Ÿ, |๐‘Ž| โ‰ค โˆฅ๐‘Ž(๐‘Ÿ0)โˆฅ ๐ฟโˆž + 3๐ถ1 โˆซ ๐‘Ÿ0 (cid:16) ๐‘Ÿ 89 and therefore โˆฅ๐‘Ž(๐‘Ÿ)โˆฅ ๐ฟโˆž โ‰ค โˆฅ๐‘Ž(๐‘Ÿ0)โˆฅ ๐ฟโˆž + 3๐ถ1 โˆซ ๐‘Ÿ0 (cid:16) ๐‘Ÿ โˆฅ๐‘Ž(๐‘Ÿ) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ) โˆฅ ๐ฟโˆž (cid:17) ๐‘‘๐‘Ÿ. We can derive the analogous inequality for ๐‘, which together with the above inequality leads to (cid:16) โˆฅ๐‘Ž(๐‘Ÿ) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ) โˆฅ ๐ฟโˆž (cid:17) (cid:16) โ‰ค โˆฅ๐‘Ž(๐‘Ÿ0) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ0) โˆฅ ๐ฟโˆž (cid:17) + 6๐ถ1 โˆซ ๐‘Ÿ0 (cid:16) ๐‘Ÿ โˆฅ๐‘Ž(๐‘Ÿ)โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ)โˆฅ ๐ฟโˆž (cid:17) ๐‘‘๐‘Ÿ. According to the Gronwallโ€™s inequality, we arrive at an ๐ฟโˆž control of the derivatives (cid:16) โˆฅ๐‘Ž(๐‘Ÿ) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ)โˆฅ ๐ฟโˆž (cid:17) (cid:16) โ‰ค โˆฅ๐‘Ž(๐‘Ÿ0) โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ0) โˆฅ ๐ฟโˆž (cid:17) ๐‘’6๐ถ1 (๐‘Ÿ0โˆ’๐‘Ÿ๐‘š๐‘–๐‘‘) โ‰ค ๐œ–0 ยท ๐‘’6๐ถ1 (๐‘Ÿ0โˆ’๐‘Ÿ๐‘š๐‘–๐‘‘). This means that if we choose the upper bound ๐œ–0 of the initial perturbation to be sufficiently small depending on ๐œ– and ๐ถ1, we can ensure (โˆฅ๐‘Ž(๐‘Ÿ)โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ)โˆฅ ๐ฟโˆž) < 1 2 ๐œ–, an improved estimate for ๐‘Ž and ๐‘. For ๐œƒ, we have |๐œƒ (๐‘Ÿ) โˆ’ ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ)| โ‰ค โˆซ {๐‘Ÿ=๐‘Ÿ} |๐œ•๐‘ ๐œƒ|๐‘‘๐‘  โˆซ โˆš๏ธ {๐‘Ÿ=๐‘Ÿ} โˆซ {๐‘Ÿ=๐‘Ÿ} 1 + ๐œƒ2(cid:12) (cid:12)(๐œ•๐‘ ๐‘ฃ1) + (๐œ•๐‘ ๐‘ฃ2)(cid:12) (cid:12)๐‘‘๐‘  โˆš๏ธ 1 + ๐œƒ2 (cid:0)|๐œ•๐‘ ๐‘ฃ1| + |๐œ•๐‘ ๐‘ฃ2|(cid:1) ๐‘‘๐‘  โˆš๏ธƒ 1 + (cid:0)๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ) + 1(cid:1) 2 ยท โˆš๏ธ๐›ฝ(๐‘Ÿ) โˆซ {๐‘Ÿ=๐‘Ÿ} (|๐‘Ž| + |๐‘|)๐‘‘๐‘  โˆš๏ธƒ 1 + (cid:0)๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ) + 1(cid:1) 2 ยท โˆš๏ธ๐›ฝ(๐‘Ÿ)๐œ– ยท ๐‘Š (๐‘Ÿ) = โ‰ค โ‰ค โ‰ค where ๐‘Š (๐‘Ÿ) is the width of {๐‘Ž โ‰  0} โˆช {๐‘ โ‰  0} and is uniformly bounded during ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] by finite speed of propagation (due to the uniform bounds of eigenvalues |๐œ†1|, |๐œ†2| โ‰ค โˆš โˆš ๐›ผ ๐›ฝ ). We proceed to ensure the largeness of ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘). If we choose ๐œ– so that ๐œ– = min (cid:110) 1, 1 2 ยท 1 sup๐‘Ÿโˆˆ[๐‘Ÿ๐‘š๐‘–๐‘‘,๐‘Ÿ0] โˆš๏ธƒ 1 + (cid:0)๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ) + 1(cid:1) 2 ยท โˆš๏ธ๐›ฝ(๐‘Ÿ) ยท ๐‘Š (๐‘Ÿ) (cid:111) , 90 we can improve the estimate for ๐œƒ and thus close the bootstrap argument. In order to ensure the largeness of ๐œƒ, we do the same computation |๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) โˆ’ ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ๐‘š๐‘–๐‘‘)| โ‰ค โˆš๏ธƒ 1 + (cid:0)๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ๐‘š๐‘–๐‘‘) + 1(cid:1) 2 ยท โˆš๏ธ๐›ฝ(๐‘Ÿ๐‘š๐‘–๐‘‘)๐œ– ยท ๐‘Š (๐‘Ÿ๐‘š๐‘–๐‘‘) but this time we choose ๐œ– to be even smaller so that |๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) โˆ’ ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ๐‘š๐‘–๐‘‘)| โ‰ค (cid:0)๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ๐‘š๐‘–๐‘‘) โˆ’ ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ (cid:1), 1 2 whic implies that ๐œƒ (๐‘Ÿ๐‘š๐‘–๐‘‘) > ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘. โ–ก Lemma 4.2.3. The solution (๐œƒ, ๐œŒ) satisfying the conditions both in Proposition 4.2.1 and Propo- sition 4.2.2 exists in ๐‘Š 1,โˆž. Proof. By the finite speed of propagation, we have | ln ๐œŒ(๐‘Ÿ) โˆ’ ln ๐œŒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ)| โ‰ค โ‰ค โˆซ {๐‘Ÿ=๐‘Ÿ} 1 + ๐›พ โˆš๐›พ 1 + ๐›พ โˆš๐›พ (cid:16) ยท โˆš๏ธ๐›ฝ |๐œ•๐‘  (๐‘ฃ1 โˆ’ ๐‘ฃ2)|๐‘‘๐‘  โˆฅ๐‘Žโˆฅ ๐ฟโˆž + โˆฅ๐‘โˆฅ ๐ฟโˆž (cid:17) ยท ๐‘Š (๐‘Ÿ), which is finite (but not bounded) in both ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] and ๐‘Ÿ โˆˆ [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0] cases. ๐œƒ, |๐‘Ž|, |๐‘| are also bounded as shown in the previous propositions in both cases. โ–ก 4.2.7 Main Theorem Our main theorem in this paper is Theorem 4.2.1. Fix a pair of metric components (๐›ผ, ๐›ฝ) satisfying Assumption 4 with positive blowup time ๐‘Ÿโˆ— > 0 and ๐‘Ÿ0 > ๐‘Ÿโˆ—, and fix any constant ๐‘€ > 0. Then there exists ๐œƒ ๐ฟ๐ต 0 homogeneous solutions with ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ0) > ๐œƒ ๐ฟ๐ต 0 are stable. More specifically, there exists ๐œ–0 > 0 so so that the that as long as โˆฅ๐‘Ž(๐‘Ÿ0)โˆฅ ๐ฟโˆž + โˆฅ๐‘(๐‘Ÿ0)โˆฅ ๐ฟโˆž < ๐œ–0, shock will not form and the solution exists in ๐‘Š 1,โˆž before the blowup time ๐‘Ÿ = ๐‘Ÿโˆ—. 91 Proof. By Proposition 4.2.1, there exist ๐‘Ÿ๐‘š๐‘–๐‘‘ and ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ so that the homogeneous solutions with ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ๐‘š๐‘–๐‘‘) > ๐œƒ ๐ฟ๐ต ๐‘š๐‘–๐‘‘ are stable. Since the homogeneous solutions satisfy a system of ordinary differential equations, there exists a corresponding ๐œƒ ๐ฟ๐ต 0 ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ0) > ๐œƒ ๐ฟ๐ต 0 sition 4.2.1 (for (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘]), they are stable. The ๐‘Š 1,โˆž claim is from Lemma 4.2.3. ๐‘š๐‘–๐‘‘, and by Proposition 4.2.2 (for [๐‘Ÿ๐‘š๐‘–๐‘‘, ๐‘Ÿ0]) and Propo- โ–ก so that the homogeneous solutions with implies ๐œƒโ„Ž๐‘œ๐‘š๐‘œ (๐‘Ÿ๐‘š๐‘–๐‘‘) > ๐œƒ ๐ฟ๐ต Remark. This theorem states that the homogeneous ๐œƒ โ‰  0 solutions are dynamically stable as long as the angle ๐œƒ between the fluid velocity and time direction โˆ’๐œ•๐‘Ÿ is sufficiently large. Intuitively, as long as the homogeneous fluid drives away from time direction far enough, the blowup rate of ๐œƒ beats the mechanism for shock formation, thus preventing the occurrence of shock. Notice that the largeness of ๐œƒ is essential in our proof when we improve the bootstrap estimate in ๐‘Ÿ โˆˆ (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] region. We introduced the parameter ๐‘Ÿ๐‘š๐‘–๐‘‘ to ensure the monotonicity of the fluid variable ๐œƒ and the metric component ๐›ฝ in the (๐‘Ÿโˆ—, ๐‘Ÿ๐‘š๐‘–๐‘‘] region, relying on the asymptotic behavior described in Assumption 4. 92 CHAPTER 5 STABILITY OF MEMBRANE EQUATIONS This chapter aims to prove the global existence of membrane equations for sufficiently small initial data. This is a separate work from previous chapters. Membrane equation is a historically interesting problem. In Euclidean space, it describes a membrane minimizing the area with a given boundary, while in Lorentzian spacetime, it represents the world sheet of an extended object without external force (see [12]). This paper aims to prove the global existence of the Lorentzian-type membrane equation (cid:32) ๐œ•๐‘– (cid:33) ๐‘š๐‘– ๐‘— ๐œ•๐‘— ๐‘ข 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข โˆš๏ธ = 0 (5.1) for sufficiently small initial data, where (๐‘ฅ0, ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = (๐‘ก, ๐‘ฅ1, ๐‘ฅ2, ๐œƒ) represents the coordinate for R1,2 ร— T1 and ๐‘š๐‘– ๐‘— is the component of the Minkowski metric (including T1 as a periodic space variable) ๐‘š = โˆ’๐‘‘๐‘ก2 + ๐‘‘ (๐‘ฅ1)2 + ๐‘‘ (๐‘ฅ2)2 + ๐‘‘๐œƒ2. Previously in Lindbladโ€™s work [20], he proved the global existence for small initial data on clas- sical Minkowski spacetime R1,๐‘›, where he used the vector field method, proposed by Klainerman [18], to achieve the global existence of membrane equation with space dimension greater than 1 for compactly supported initial data. We record the main ideas in his proof and address the difference between his strategy and ours. The vector field method is to use the appropriately chosen weighted vector fields to gain the decay of derivatives. The general strategy of this method is 1. applying prior inequalities involving a) the energy of weighted vector fields (acting on the unknown ๐‘ข), b) the pointwise bound of the derivatives of ๐‘ข, and c) the nonhomogeneous term from the differential equation being considered, and 93 2. running the bootstrap argument to argue the boundedness of the energy, and thus the bound- edness of the derivatives of ๐‘ข. According to the well-known criterion for the global existence of quasilinear wave equation, it is sufficient to have the boundedness of |๐œ•๐‘ข| + |๐œ•2๐‘ข| to ensure the global existence (where ๐œ• may be ๐œ•๐‘ก, ๐œ•1, ๐œ•2, or ๐œ•๐œƒ in our case). To close the bootstrap argument, one has to bound the nonhomogeneous term by energy with an appropriate decay so that the integrand becomes integrable. In Lindbladโ€™s argument, he uses three different inequalities: two energy estimates and one ๐ฟโˆž-๐ฟ1 estimate. He also makes use of the null structure of the Lorentzian membrane equation to close the bootstrap argument. In order to apply the estimates mentioned above, Lindblad commutes the membrane equation with ฮ›๐ผ and derive an equation for โ–กฮ›๐ผ๐‘ข, in which the right hand side consists of terms falling into three catogories: terms that are multilinear in ๐‘ข, of divergence form, and of null form. Here ฮ›๐ผ may be the composition of ๐œ•๐‘ก, ๐œ•๐‘ฅ1, ..., ๐œ•๐‘ฅ๐‘› ๐‘† = ๐‘ก๐œ•๐‘ก + ๐‘› โˆ‘๏ธ ๐‘–=1 ๐‘ฅ๐‘–๐œ•๐‘– ๐ฟ๐‘– = ๐‘ก๐œ•๐‘– + ๐‘ฅ๐‘–๐œ•๐‘ก, 1 โ‰ค ๐‘– โ‰ค ๐‘› ฮฉ๐‘– ๐‘— = ๐‘ฅ๐‘–๐œ•๐‘— โˆ’ ๐‘ฅ ๐‘— ๐œ•๐‘–, 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘›. Among these vector fields, the dilation field ๐‘† is an obstacle for generalizing the strategy to our case R1,2 ร— T1 since there is no naturally analogous dilation field on T1. In order to resolve this issue, we observe where Lindblad uses this dilation field. The ๐ฟโˆž-๐ฟ1 estimate |๐‘ค(๐‘ก, ๐‘ฅ)| โ‰ค๐ถ (1 + ๐‘ก + |๐‘ฅ|)โˆ’(๐‘›โˆ’1)/2 โˆซ ๐‘ก โˆ‘๏ธ |๐ผ |โ‰ค๐‘›โˆ’1 0 (cid:169) (cid:173) (cid:171) (cid:13) (cid:13) (cid:13)ฮ›๐ผ ๐น (๐‘ , .)/(1 + ๐‘  + |.|) (๐‘›โˆ’1)/2(cid:13) (cid:13) (cid:13)๐ฟ1 , ๐‘‘๐‘  + ๐ถ ( ๐‘“ , ๐‘”)๐œ–(cid:170) (cid:174) (cid:172) requires the dilation field to work. Another place involving ๐‘† is when he takes advantage of the 94 null structure of the membrane equation, the estimate |๐‘„(๐œ™, ๐œ“)| โ‰ค ๐ถ (1 + ๐‘ก + |๐‘ฅ|)โˆ’1(|๐œ•๐œ™||ฮ›๐œ“| + |ฮ›๐œ™||๐œ•๐œ“|) also requires the dilation field to be one of the vector fields ฮ›. Based on these two observations, we can not directly apply the same argument to R1,2 ร— T1 case. Instead, we only use ๐œ•๐‘ก, ๐œ•๐œƒ, ๐ฟ๐‘– = ๐‘ก๐œ•๐‘– + ๐‘ฅ๐‘–๐œ•๐‘ก, 1 โ‰ค ๐‘– โ‰ค 2 to form a Lie algebra and apply the vector field method. Notice that ฮฉ๐‘– ๐‘— can be expressed in terms of ๐ฟ๐‘– when ๐‘ก โ‰  0. In addition, we foliate the spacetime region lying inside the future light cone (๐‘ก > |๐‘ฅ|) with the hyperbolic curves (๐‘ก2 โˆ’ |๐‘ฅ|2 = const). This was introduced by LeFloch and Ma in [19] where they established the global well-posedness of nonlinear wave equations and Klein-Gordon equations on R1+3. This foliation helps us capture the decay along the ๐‘ก โˆ’ ๐‘ฅ = const direction and enables us to close the bootstrap argument. Another related work is Ifrim and Stingoโ€™s paper (see [14]). In their work, they proved the global existence for a coupled Klein-Gordon equation on R1,2 with small data. In their paper, they dyadically decomposed the spacetime region (cid:8)(๐‘ก, ๐‘ฅ)(cid:12) (cid:12)|๐‘ก โˆ’ |๐‘ฅ|| โ‰ฒ ๐‘ก + |๐‘ฅ|, ๐‘ก > 0(cid:9) and used the constant- time-slice energy to bound the weighted spacetime energy. The relation between their equation and our membrane equation is that, by expanding our solution in Fourier series with respect to ๐œƒ: ๐‘ข = (cid:205)โˆž ๐‘›=โˆ’โˆž ๐‘ข๐‘›๐‘’๐‘–๐‘›๐œƒ and plugging this into our main equation (5.1) (see Lemma 5.1.2) (cid:0)1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข(cid:1)๐‘š๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ๐‘ข = ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘–๐œ•๐‘— ๐‘ข, we would arrive at โ–ก๐‘ก,๐‘ฅ๐‘ข๐‘› โˆ’ ๐‘›2๐‘ข๐‘› + (cid:32) โˆ‘๏ธ ๐‘›1+๐‘›2+๐‘›3=๐‘› โˆ’ ๐œ•๐‘ก๐‘ข๐‘›1 ๐œ•๐‘ก๐‘ข๐‘›2 + 2 โˆ‘๏ธ ๐‘—=1 ๐œ•๐‘— ๐‘ข๐‘›1 ๐œ•๐‘— ๐‘ข๐‘›2 โˆ’ (๐‘›1๐‘›2)๐‘ข๐‘›1 ๐‘ข๐‘›2 (cid:33) ร— (โ–ก๐‘ก,๐‘ฅ๐‘ข๐‘›3 โˆ’ (๐‘›3)2๐‘ข๐‘›3) (cid:32) โˆ‘๏ธ = ๐‘›1+๐‘›2+๐‘›3=๐‘› ๐œ•๐‘ก๐‘ข๐‘›1 ๐œ•๐‘ก๐‘ข๐‘›2 ๐‘ก ๐‘ข๐‘›3 โˆ’ 2 ๐œ•2 2 โˆ‘๏ธ ๐‘—=1 ๐œ•๐‘ก๐‘ข๐‘›1 ๐œ•๐‘— ๐‘ข๐‘›2 ๐œ•๐‘ก ๐œ•๐‘— ๐‘ข๐‘›3 + 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐œ•๐‘–๐‘ข๐‘›1 ๐œ•๐‘— ๐‘ข๐‘›2 ๐œ•๐‘–๐œ•๐‘— ๐‘ข๐‘›3 95 + 2๐œ•๐‘ก๐‘ข๐‘›1 (๐‘›2)๐‘ข๐‘›2 (๐‘›3)๐œ•๐‘ก๐‘ข๐‘›3 โˆ’ 2 + (๐‘›1๐‘›2๐‘›2 3)๐‘ข๐‘›1 ๐‘ข๐‘›2 ๐‘ข๐‘›3 (cid:33) 2 โˆ‘๏ธ ๐‘—=1 ๐œ•๐‘— ๐‘ข(๐‘›2)๐‘ข๐‘›2 (๐‘›3)๐œ•๐‘–๐‘ข๐‘›3 This can be regarded as a strongly coupled system of Klein-Gordan and wave equations on R1,2. In this paper, we are going to show the global existence of (5.1), which is recorded in Theorem 5.5.2. In section 2, we begin with the setup for the geometry of the spacetime and computation of geometric quantities that are involved with the energy. In section 3, we prove the global Sobolev inequality, which plays an essential role in this paper to derive the desired decay. This proof is parallel to the proof in [28]. Section 4 works for all the derivative estimates we need later, using the global Sobolev inequality and the exploit of the null structure in the Lorentzian membrane equation. We treat ๐œ•2 ๐‘ก ๐‘ข specially because our energy only involves ๐œ•๐‘ก๐‘ข but no ๐œ•2 ๐‘ก ๐‘ข. Section 5 establishes the comparability of the two versions of energy introduced in Section 2. Section 6 shows the energy estimate using the divergence theorem and the bootstrap mechanism. 5.1 Geometry and Energy We will use the coordinate (๐‘ก, ๐‘ฅ1, ๐‘ฅ2, ๐œƒ) to represent the points in our spacetime throughout this paper. In order to adapt the hyperboloidal foliation method, we parametrize the spacetime region lying inside the future null cone, (cid:8)(๐‘ก, ๐‘ฅ1, ๐‘ฅ2, ๐œƒ)(cid:12) (cid:12)|๐‘ฅ| < ๐‘ก(cid:9), with (๐œ, ๐œŒ, ๐œ™, ๐œƒ): ๐‘ก = ๐œ cosh(๐œŒ) ๐‘ฅ1 = ๐œ sinh(๐œŒ) cos ๐œ™ ๐‘ฅ2 = ๐œ sinh(๐œŒ) sin ๐œ™, where ๐œ โˆˆ [2, โˆž), ๐œŒ โˆˆ [0, โˆž), ๐œ™ โˆˆ [0, 2๐œ‹), ๐œƒ โˆˆ [0, 2๐œ‹). The following Lorentz boost vector fields would be used in this paper. ๐ฟ1 (cid:66) ๐‘ก๐œ•1 + ๐‘ฅ1๐œ•๐‘ก = (cos ๐œ™)๐œ•๐œŒ โˆ’ (coth ๐œŒ sin ๐œ™)๐œ•๐œ™ ๐ฟ2 (cid:66) ๐‘ก๐œ•2 + ๐‘ฅ2๐œ•๐‘ก = (sin ๐œ™)๐œ•๐œŒ + (coth ๐œŒ cos ๐œ™)๐œ•๐œ™. 96 Notice that the latter expression only works for ๐œŒ > 0, but ๐ฟ1, ๐ฟ2 are well-defined even when ๐œŒ = 0. We introduce a basic computation for the inverse matrix. Lemma 5.1.1. Let ๐‘”๐‘– ๐‘— = ๐‘š๐‘– ๐‘— + ๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข, then ๐‘”๐‘– ๐‘— = ๐‘š๐‘– ๐‘— โˆ’ 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (cid:16) ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข (cid:17) . Proof. Let ๐‘€, ๐บ be the matrix representations of ๐‘š๐‘– ๐‘— , ๐‘”๐‘– ๐‘— respectively, and let ๐‘ฃ be the column vector representing ๐œ•๐‘–๐‘ข. Then we have ๐บ = ๐‘€ + ๐‘ฃ๐‘ฃ๐‘‡ and, by the Sherman-Morrison formula, ๐บโˆ’1 = ๐‘€ โˆ’ ๐‘€๐‘ฃ๐‘ฃ๐‘‡ ๐‘€ 1 + ๐‘ฃ๐‘‡ ๐‘€๐‘ฃ , which gives ๐‘”๐‘– ๐‘— . โ–ก This metric ๐‘” plays a role since our main equation can be rewritten using ๐‘” with a much simpler structure than (5.1). Lemma 5.1.2. The equation (5.1) is equivalent to โ–ก๐‘”๐‘ข = 0, where ๐‘”๐‘– ๐‘— = ๐‘š๐‘– ๐‘— + ๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข. Proof. From the definition of โ–ก๐‘”, we have โ–ก๐‘”๐‘ข = ๐‘”๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ๐‘ข โˆ’ ๐‘”๐‘– ๐‘— ฮ“๐‘˜ ๐‘– ๐‘— ๐œ•๐‘˜๐‘ข. To calculate the second term on the right hand side, we calculate ฮ“๐‘˜ ๐‘– ๐‘— first. ฮ“๐‘˜ ๐‘– ๐‘— = = 1 2 1 2 ๐‘”๐‘˜๐‘™ (๐œ•๐‘–๐‘”๐‘™ ๐‘— + ๐œ•๐‘— ๐‘”๐‘–๐‘™ โˆ’ ๐œ•๐‘™๐‘”๐‘– ๐‘— ) ๐‘”๐‘˜๐‘™ (๐œ•๐‘– (๐œ•๐‘™๐‘ข๐œ•๐‘— ๐‘ข) + ๐œ•๐‘— (๐œ•๐‘–๐‘ข๐œ•๐‘™๐‘ข) โˆ’ ๐œ•๐‘™ (๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข)) = ๐‘”๐‘˜๐‘™ ๐œ•๐‘™๐‘ข(๐œ•๐‘–๐œ•๐‘— ๐‘ข), which implies โ–ก๐‘”๐‘ข = ๐‘”๐‘– ๐‘— (๐œ•๐‘–๐œ•๐‘— ๐‘ข) (1 โˆ’ ๐‘”๐‘˜๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข). 97 Observe that ๐‘”๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ๐‘ข = (cid:18) ๐‘š๐‘– ๐‘— โˆ’ ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข (cid:17) (cid:19) ๐œ•๐‘–๐œ•๐‘— ๐‘ข (cid:16) 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข = ๐‘š๐‘– ๐‘— (๐œ•๐‘–๐œ•๐‘— ๐‘ข) โˆ’ ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข(๐œ•๐‘–๐œ•๐‘— ๐‘ข) is equivalent to (5.1) and ๐‘”๐‘– ๐‘— ๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข = ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข โˆ’ 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™ ๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข) 1 1 + ๐œŽ ๐œŽ2 = ๐œŽ โˆ’ = ๐œŽ 1 + ๐œŽ is never 1, where ๐œŽ = ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข. โ–ก Remark. Lemma 5.1.2 implies that ๐‘ข could be regarded as a wave map. See [27] for more details. Using the Minkowski metric ๐‘š๐‘– ๐‘— and the dynamic metric ๐‘”๐‘– ๐‘— , we can define the corresponding tensors and currents where ๐‘„๐‘– ๐‘— [๐‘ข; ๐‘š] = ๐‘š๐‘–๐‘˜ ๐œ•๐‘˜๐‘ข๐œ•๐‘— ๐‘ข โˆ’ ๐‘„๐‘– ๐‘— [๐‘ข; ๐‘”] = ๐‘”๐‘–๐‘˜ ๐œ•๐‘˜๐‘ข๐œ•๐‘— ๐‘ข โˆ’ ๐œŽ[๐‘ข; ๐‘š]๐›ฟ๐‘– ๐‘— 1 2 1 ๐œŽ[๐‘ข; ๐‘”]๐›ฟ๐‘– ๐‘— , 2 (๐‘‹) ๐ฝ [๐‘ข; ๐‘š] = ๐‘„๐‘– ๐‘— [๐‘ข; ๐‘š] ๐‘‹ ๐‘— ๐œ•๐‘– (๐‘‹) ๐ฝ [๐‘ข; ๐‘”] = ๐‘„๐‘– ๐‘— [๐‘ข; ๐‘”] ๐‘‹ ๐‘— ๐œ•๐‘–, ๐œŽ[๐‘ข; ๐‘š] = ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข ๐œŽ[๐‘ข; ๐‘”] = ๐‘”๐‘– ๐‘— ๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข. 98 To apply the divergence theorem, we note that the divergence of the current (๐‘‹) ๐ฝ is given by ๐‘‘๐‘–๐‘ฃ๐‘” (cid:16)(๐‘‹) ๐ฝ (cid:17) = โ–ก๐‘”๐‘ข(โˆ‡ ๐‘— ๐‘ข) ๐‘‹ ๐‘— + โˆ‡๐‘–๐‘ขโˆ‡ ๐‘— ๐‘ขโˆ‡๐‘– ๐‘‹ ๐‘— โˆ’ โˆ‡๐‘˜๐‘ขโˆ‡๐‘˜๐‘ขโˆ‡๐‘– ๐‘‹๐‘–. 1 2 (5.2) If we plug ๐œ•๐‘ก into ๐‘‹, the above expression simplifies to ๐‘‘๐‘–๐‘ฃ๐‘” (cid:16)(๐œ•๐‘ก ) ๐ฝ (cid:17) = โ–ก๐‘”๐‘ข(โˆ‡๐‘ก๐‘ข) + (โˆ‡๐‘–๐‘ขโˆ‡ ๐‘— ๐‘ข)ฮ“ ๐‘— ๐‘–๐‘ก โˆ’ (โˆ‡๐‘˜๐‘ขโˆ‡๐‘˜๐‘ข)ฮ“๐‘– ๐‘–๐‘ก . 1 2 Since are going to apply the divergence theorem on {(๐‘ก, ๐‘ฅ1, ๐‘ฅ2, ๐œƒ)|๐œ0 โ‰ค ๐œ โ‰ค ๐œ1}, which is bounded by ฮฃ๐œ = {(๐‘ก, ๐‘ฅ1, ๐‘ฅ2, ๐œƒ)|โˆš๏ธ๐‘ก2 โˆ’ |๐‘ฅ|2 = ๐œ} with ๐œ equals ๐œ0 and ๐œ1 respectively, we define our energy to be E๐œ [๐‘ข; ๐‘š]2 = 2 โˆซ โŸจ(๐œ•๐‘ก ) ๐ฝ [๐‘ข; ๐‘š], ๐œ•๐œโŸฉ๐‘š๐‘‘๐‘†๐‘š E๐œ [๐‘ข; ๐‘”]2 = 2 โˆซ ฮฃ๐œ โŸจ(๐œ•๐‘ก ) ๐ฝ [๐‘ข; ๐‘”], (cid:174)๐‘›โŸฉ๐‘”๐‘‘๐‘†๐‘” E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] = E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘”] = ฮฃ๐œ โˆ‘๏ธ E๐œ [๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘ข; ๐‘š] |๐›พ1|+|๐›พ2|โ‰ค๐‘  โˆ‘๏ธ E๐œ [๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘ข; ๐‘”] |๐›พ1|+|๐›พ2|โ‰ค๐‘  where (cid:174)๐‘› is the future-directed normal vector of ฮ“๐œ with respect to ๐‘”. In section 5, we are going to establish the comparability of the energies with respect to ๐‘š and with respect to ๐‘”. In other words, we will be able to ensure the smallness of derivative of ๐‘ข and thus smallness of ๐‘”๐‘– ๐‘— โˆ’ ๐‘š๐‘– ๐‘— . Observe that we can complete the square for the integrand in E๐œ [๐‘ข; ๐‘š]: โŸจ(๐œ•๐‘ก ) ๐ฝ [๐‘ข; ๐‘š], ๐œ•๐œโŸฉ ๐‘— (๐œ•๐‘ก) ๐‘— ๐œ•๐‘–, cosh(๐œŒ)๐œ•๐‘ก + sinh(๐œŒ) cos ๐œ™๐œ•๐‘ฅ1 + sinh(๐œŒ) sin ๐œ™๐œ•๐‘ฅ2โŸฉ = โŸจ๐‘„๐‘– (cid:18) = โˆ’โˆ‡๐‘ก๐‘ขโˆ‡๐‘ก๐‘ข + (cid:19) ๐œŽ 1 2 cosh(๐œŒ) + (โˆ‡1๐‘ขโˆ‡๐‘ก๐‘ข) sinh(๐œŒ) cos ๐œ™ + (โˆ‡2๐‘ขโˆ‡๐‘ก๐‘ข) sinh(๐œŒ) sin ๐œ™ 99 = (cid:16) 1 2 (โˆ‡๐‘ก๐‘ข)2 + (โˆ‡1๐‘ข)2 + (โˆ‡2๐‘ข)2 + (โˆ‡๐œƒ๐‘ข)2) (cid:17) cosh(๐œŒ) + (โˆ‡1๐‘ขโˆ‡๐‘ก๐‘ข) sinh(๐œŒ) cos ๐œ™ + (โˆ‡2๐‘ขโˆ‡๐‘ก๐‘ข) sinh(๐œŒ) sin ๐œ™ (cid:32) โˆš๏ธ cosh(๐œŒ)โˆ‡1๐‘ข + sinh(๐œŒ) โˆš๏ธcosh(๐œŒ) (cid:33) 2 cos ๐œ™โˆ‡๐‘ก๐‘ข + (cid:32) โˆš๏ธ 1 2 cosh(๐œŒ)โˆ‡2๐‘ข + sinh(๐œŒ) โˆš๏ธcosh(๐œŒ) (cid:33) 2 sin ๐œ™โˆ‡๐‘ก๐‘ข 1 2 1 cosh(๐œŒ) 1 ๐œ2 cosh(๐œŒ) (โˆ‡๐‘ก๐‘ข)2 + |๐ฟ1๐‘ข|2 + 1 2 1 2 cosh(๐œŒ) (โˆ‡๐œƒ๐‘ข)2 1 ๐œ2 cosh(๐œŒ) |๐ฟ2๐‘ข|2 + 1 2 1 cosh(๐œŒ) |๐œ•๐‘ก๐‘ข|2 + 1 2 cosh(๐œŒ)|๐œ•๐œƒ๐‘ข|2, = = 1 2 + 1 2 where the โˆ‡ above denotes the connection with respect to the Minkowski metric ๐‘š๐‘– ๐‘— . 5.2 Sobolev inequality The following theorem is mostly following the analogous one in [28]. Theorem 5.2.1. (๐ฟโˆž-๐ฟ2 estimate.) Let ๐‘™ โˆˆ R. Then | ๐‘“ (๐œ, ๐œŒ, ๐œ™, ๐œƒ)|2 โ‰ฒ ๐œโˆ’2(cosh ๐œŒ)โˆ’1โˆ’๐‘™ โˆ‘๏ธ โˆซ |๐›พ1|+|๐›พ2|โ‰ค2 ฮฃ๐œ (cosh ๐œŒ)๐‘™ |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘“ |2๐‘‘๐‘ฃ๐‘œ๐‘™ หœฮฃ๐œ Proof. We discuss two cases separately. Case 1: ๐œŒ < 5 3. In this case, we are going to apply the standard Sobolev inequality with the metric โ„Ž1 (on ฮฃ๐œ), where โ„Ž1 = ๐‘‘๐œŒ2 + sinh(๐œŒ)2๐‘‘๐œ™2 + ๐‘‘๐œƒ2 ๐‘‘๐œŒ2 + sinh(๐œŒ)2๐‘‘๐œ™2(cid:17) โ„Ž๐œ = ๐œ2 (cid:16) + ๐‘‘๐œƒ2. By the Sobolev inequality, we have โˆซ | ๐‘“ (๐œ, ๐œŒ, ๐œ™, ๐œƒ)|2 โ‰ฒ โˆ‘๏ธ |๐›พ|โ‰ค2 โ‰ฒ โˆ‘๏ธ ฮฃ๐œโˆฉ{๐œŒ<2} โˆซ |โˆ‡๐›พ ๐‘“ |2 โ„Ž1 ๐‘‘๐‘ฃ๐‘œ๐‘™โ„Ž1 |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘“ |2๐‘‘๐‘ฃ๐‘œ๐‘™โ„Ž1 |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘“ |2๐‘‘๐‘ฃ๐‘œ๐‘™โ„Ž๐œ |๐›พ1|+|๐›พ2|โ‰ค2 = ๐œโˆ’2 โˆ‘๏ธ ฮฃ๐œโˆฉ{๐œŒ<2} โˆซ ฮฃ๐œโˆฉ{๐œŒ<2} |๐›พ1|+|๐›พ2|โ‰ค2 โ‰ˆ ๐œโˆ’2 cosh(๐œŒ)โˆ’1โˆ’๐‘™ โˆ‘๏ธ โˆซ ฮฃ๐œโˆฉ{๐œŒ<2} cosh(๐œŒ)๐‘™ |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘“ |2๐‘‘๐‘ฃ๐‘œ๐‘™โ„Ž๐œ , |๐›พ1|+|๐›พ2|โ‰ค2 100 where the reasons are as follows. The second โ‰ฒ is because |โˆ‡ ๐‘“ |2 โ„Ž1 = (๐œ•๐œŒ ๐‘“ )2 + 1 sinh(๐œŒ)2 (๐œ•๐œ™ ๐‘“ )2 + (๐œ•๐œƒ ๐‘“ )2 โ‰ค |๐ฟ1 ๐‘“ |2 + |๐ฟ2 ๐‘“ |2 + |๐œ•๐œƒ ๐‘“ |2 and |โˆ‡โˆ‡ ๐‘“ |2 โ„Ž1 = (โ„Ž1)๐‘–๐‘˜ (โ„Ž1) ๐‘—๐‘™โˆ‡โˆ‡ ๐‘“ (๐œ•๐‘–, ๐œ•๐‘— )โˆ‡โˆ‡ ๐‘“ (๐œ•๐‘˜ , ๐œ•๐‘™) โ‰ฒ โˆ‘๏ธ ๐‘“ |2. |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ The โ‰ˆ is because we are focusing on a compact region (of (๐œŒ, ๐œ™, ๐œƒ)). |๐›พ1|+|๐›พ2|โ‰ค2 Case 2: ๐œŒ > 4 3. In this case, we are going to use the metric โ„Ž0 instead, where โ„Ž0 = ๐‘‘๐œŒ2 + ๐‘‘๐œ™2 + ๐‘‘๐œƒ2. By the Sobolev inequality, | ๐‘“ (๐œ, ๐œŒ, ๐œ™, ๐œƒ) cosh(๐œŒ)๐‘™/2 sinh(๐œŒ)1/2|2 โˆ‡๐›พ (cid:16) โ‰ฒ โˆ‘๏ธ |๐›พ|โ‰ค2 โˆ‘๏ธ ฮฃ๐œโˆฉ{๐œŒ>1} โˆซ โˆซ (cid:12) (cid:12) (cid:12) ๐‘“ cosh(๐œŒ)๐‘™/2 sinh(๐œŒ)1/2(cid:17)(cid:12) (cid:12) (cid:12) 2 โ„Ž0 ๐‘‘๐‘ฃ๐‘œ๐‘™โ„Ž0 cosh(๐œŒ)๐‘™ |โˆ‡๐›พ ๐‘“ |2 โ„Ž0 ๐‘‘๐‘ฃ๐‘œ๐‘™โ„Ž1 โ‰ˆ |๐›พ|โ‰ค2 โ‰ฒ โˆ‘๏ธ ฮฃ๐œโˆฉ{๐œŒ>1} โˆซ |๐›พ1|+|๐›พ2|โ‰ค2 = ๐œโˆ’2 โˆ‘๏ธ ฮฃ๐œโˆฉ{๐œŒ>1} โˆซ |๐›พ1|+|๐›พ2|โ‰ค2 ฮฃ๐œโˆฉ{๐œŒ>1} cosh(๐œŒ)๐‘™ (cid:12) (cid:12)๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘“ (cid:12) (cid:12) ๐‘‘๐‘ฃ๐‘œ๐‘™โ„Ž1 cosh(๐œŒ)๐‘™ (cid:12) (cid:12)๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘“ (cid:12) (cid:12) 2 ๐‘‘๐‘ฃ๐‘œ๐‘™โ„Ž๐œ , where the reasons are as follows. The โ‰ˆ is because we exclude an open neighborhood of ๐œŒ = 0, and thus sinh(๐œŒ) and cosh(๐œŒ) are comparable. The second โ‰ฒ is because |โˆ‡ ๐‘“ |2 โ„Ž0 = (๐œ•๐œŒ ๐‘“ )2 + (๐œ•๐œ™ ๐‘“ )2 + (๐œ•๐œƒ ๐‘“ )2 โ‰ค |๐ฟ1 ๐‘“ |2 + |๐ฟ2 ๐‘“ |2 + |๐œ•๐œƒ ๐‘“ |2 101 and |โˆ‡โˆ‡ ๐‘“ |2 โ„Ž0 = (โ„Ž0)๐‘–๐‘˜ (โ„Ž0) ๐‘—๐‘™ (๐œ•๐‘–๐œ•๐‘— ๐‘“ ) (๐œ•๐‘˜ ๐œ•๐‘™ ๐‘“ ) |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐‘“ |2. โˆ‘๏ธ โ‰ค |๐›พ1|+|๐›พ2|โ‰ค2 โ–ก 5.3 Estimate for derivatives Lemma 5.3.1. We calculate the following three terms in this lemma. ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข = ๐ด โˆ’ 1 1 cosh(๐œŒ)2 ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ๐‘ข = โˆ’ ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘–๐œ•๐‘— ๐‘ข. ๐œ•๐‘ก ๐œ•๐‘ก๐‘ข + ๐ต Proof. Using the identity ๐œ•๐‘– = 1 ๐‘ก ๐ฟ๐‘– โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก for ๐‘– = 1, 2, we have ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข = โˆ’(๐œ•๐‘ก๐‘ข)2 + (cid:18) 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘–๐‘ข โˆ’ (cid:19) 2 ๐œ•๐‘ก๐‘ข ๐‘ฅ๐‘– ๐‘ก + (๐œ•๐œƒ๐‘ข)2 = โˆ’ 1 cosh(๐œŒ)2 (๐œ•๐‘ก๐‘ข)2 + 2 โˆ‘๏ธ ๐‘–=1 1 ๐‘ก2 |๐ฟ๐‘–๐‘ข|2 โˆ’ 2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 (๐ฟ๐‘–๐‘ข๐œ•๐‘ก๐‘ข) + (๐œ•๐œƒ๐‘ข)2 (cid:66) ๐ด โˆ’ 1, ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ๐‘ข = โˆ’๐œ•๐‘ก ๐œ•๐‘ก๐‘ข + = โˆ’๐œ•๐‘ก ๐œ•๐‘ก๐‘ข + โˆ’ 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 2 โˆ‘๏ธ ๐‘–=1 ๐‘ฅ๐‘– ๐‘ก2 (cid:18) 1 ๐‘ก ๐ฟ๐‘– โˆ’ ๐‘ฅ๐‘– ๐‘ก (cid:19) (cid:18) 1 ๐‘ก ๐œ•๐‘ก ๐ฟ๐‘–๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ๐‘– ๐‘ก + ๐œ•๐œƒ ๐œ•๐œƒ๐‘ข (cid:16) 1 ๐‘ก2 ๐ฟ๐‘– ๐ฟ๐‘–๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก ๐ฟ๐‘–๐œ•๐‘ก๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก ๐œ•๐‘ก ๐ฟ๐‘–๐‘ข + ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก ๐œ•๐‘ก๐‘ข 1 ๐‘ก2 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก ๐ฟ๐‘–๐‘ข โˆ’ ๐ฟ๐‘–๐œ•๐‘ก๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ๐‘– ๐‘ก2 1 ๐‘ก (cid:17) ๐œ•๐‘ก๐‘ข + ๐œ•๐œƒ ๐œ•๐œƒ๐‘ข ๐œ•๐‘ก ๐ฟ๐‘–๐‘ข โˆ’ (cid:17) ๐œ•๐‘ก๐‘ข 1 ๐‘ก ๐ฟ๐‘–๐‘ข โˆ’ 1 ๐‘ก (1 โˆ’ ๐‘ฅ๐‘–๐‘ฅ๐‘– ๐‘ก2 )๐œ•๐‘ก๐‘ข + = โˆ’ 1 cosh(๐œŒ)2 ๐œ•๐‘ก ๐œ•๐‘ก๐‘ข + 2 โˆ‘๏ธ ๐‘–=1 (cid:16) 1 ๐‘ก2 ๐ฟ๐‘– ๐ฟ๐‘–๐‘ข โˆ’ + ๐œ•๐œƒ ๐œ•๐œƒ๐‘ข (cid:66) โˆ’ 1 cosh(๐œŒ)2 ๐œ•๐‘ก ๐œ•๐‘ก๐‘ข + ๐ต 102 and ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘–๐œ•๐‘— ๐‘ข = ๐œ•๐‘ก๐‘ข๐œ•๐‘ก๐‘ข(๐œ•๐‘ก ๐œ•๐‘ก๐‘ข) โˆ’ 2 ๐œ•๐‘ก๐‘ข (cid:18) 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘–๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ข (cid:19) (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐œ•๐‘ก๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก ๐œ•๐‘ก๐‘ข ๐‘ฅ๐‘– ๐‘ก + (cid:18) 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐ฟ๐‘–๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ข (cid:19) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ข โˆ’ ๐‘ฅ ๐‘— ๐‘ก ๐œ•๐‘ก๐‘ข (cid:19) (cid:18)(cid:18) 1 ๐‘ก ๐ฟ๐‘– โˆ’ ๐‘ฅ๐‘– ๐‘ก (cid:19) (cid:18) 1 ๐‘ก ๐œ•๐‘ก ๐ฟ ๐‘— ๐‘ข โˆ’ (cid:19)(cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ ๐‘— ๐‘ก โˆ’ 2๐œ•๐‘ก๐‘ข๐œ•๐œƒ๐‘ข๐œ•๐‘ก ๐œ•๐œƒ๐‘ข + 2 (cid:18) 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘–๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ๐‘– ๐‘ก ๐œ•๐œƒ๐‘ข (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐œ•๐œƒ๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก ๐œ•๐œƒ๐‘ข ๐‘ฅ๐‘– ๐‘ก + ๐œ•๐œƒ๐‘ข๐œ•๐œƒ๐‘ข๐œ•๐œƒ ๐œ•๐œƒ๐‘ข (cid:32) = 1 cosh(๐œŒ)4 ๐œ•๐‘ก๐‘ข๐œ•๐‘ก๐‘ข + 2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐œ•๐‘ก๐‘ข๐ฟ๐‘–๐‘ข + 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก2 ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข โˆ’ 2 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก (๐‘ฅ ๐‘— )2 ๐‘ก2 (cid:33) ๐ฟ๐‘–๐‘ข๐œ•๐‘ก๐‘ข (๐œ•๐‘ก ๐œ•๐‘ก๐‘ข) 2 โˆ‘๏ธ โˆ’ 2 + ๐‘–=1 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 (cid:32) 1 ๐‘ก2 ๐œ•๐‘ก๐‘ข๐ฟ๐‘–๐‘ข(๐ฟ๐‘–๐œ•๐‘ก๐‘ข) + 2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐œ•๐‘ก๐‘ข๐œ•๐‘ก๐‘ข(๐ฟ๐‘–๐œ•๐‘ก๐‘ข) (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ข (cid:19) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ ๐‘— ๐‘ก (๐ฟ๐‘– ๐ฟ ๐‘— ๐‘ข) โˆ’ ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก (๐ฟ๐‘–๐œ•๐‘ก๐‘ข) โˆ’ ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก (๐œ•๐‘ก ๐ฟ ๐‘— ๐‘ข) 1 ๐‘ก2 ๐‘ฅ๐‘– ๐‘ก2 1 ๐‘ก โˆ’ ๐ฟ ๐‘— ๐‘ข โˆ’ 1 ๐‘ก (๐›ฟ๐‘– ๐‘— โˆ’ ๐‘ฅ๐‘–๐‘ฅ ๐‘— ๐‘ก2 )๐œ•๐‘ก๐‘ข + ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก2 ๐ฟ ๐‘— ๐‘ข โˆ’ (cid:33) ๐œ•๐‘ก๐‘ข ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก2 โˆ’ 2๐œ•๐‘ก๐‘ข๐œ•๐œƒ๐‘ข(๐œ•๐‘ก ๐œ•๐œƒ๐‘ข) + 2 2 โˆ‘๏ธ ๐‘–=1 1 ๐‘ก2 ๐ฟ๐‘–๐‘ข๐œ•๐œƒ๐‘ข(๐ฟ๐‘–๐œ•๐œƒ๐‘ข) โˆ’ 2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘–๐‘ข๐œ•๐œƒ๐‘ข(๐œ•๐‘ก ๐œ•๐œƒ๐‘ข) โˆ’ 2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 1 cosh(๐œŒ)4 (cid:66) (cid:169) (cid:173) (cid:171) + ๐ถ, ๐œ•๐‘ก๐‘ข๐œ•๐œƒ๐‘ข(๐ฟ๐‘–๐œ•๐œƒ๐‘ข) + 2|๐‘ฅ|2 ๐‘ก2 ๐œ•๐‘ก๐‘ข๐œ•๐œƒ๐‘ข(๐œ•๐‘ก ๐œ•๐œƒ๐‘ข) + ๐œ•๐œƒ๐‘ข๐œ•๐œƒ๐‘ข(๐œ•๐œƒ ๐œ•๐œƒ๐‘ข) |๐œ•๐‘ก๐‘ข|2 + 2 cosh(๐œŒ)2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐œ•๐‘ก๐‘ข๐ฟ๐‘–๐‘ข + 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก2 (๐œ•2 ๐‘ก ๐‘ข) ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข(cid:170) (cid:174) (cid:172) 103 where ๐ด = ๐ด(๐‘ก, ๐‘ฅ, ๐œ•๐‘ก๐‘ข, ๐ฟ๐‘ข, ๐œ•๐œƒ๐‘ข) ๐ต = ๐ต(๐‘ก, ๐‘ฅ, ๐œ•๐‘ก๐‘ข, ๐ฟ๐‘ข, ๐ฟ๐ฟ๐‘ข, ๐ฟ๐œ•๐‘ก๐‘ข) ๐ถ = ๐ถ (๐‘ก, ๐‘ฅ, ๐œ•๐‘ก๐‘ข, ๐ฟ๐‘ข, ๐ฟ๐ฟ๐‘ข, ๐ฟ๐œ•๐‘ก๐‘ข, ๐ฟ๐œ•๐œƒ๐‘ข, ๐œ•๐‘ก ๐œ•๐œƒ๐‘ข, ๐œ•๐œƒ ๐œ•๐œƒ๐‘ข). โ–ก Remark. By the notation above, we could simplify the equation ๐‘”๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ๐‘ข = 0, or ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ๐‘ข = 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘–๐œ•๐‘— ๐‘ข), to the following identity (cid:18) โˆ’ ๐ด 1 cosh(๐œŒ)2 (cid:19) ๐‘ก ๐‘ข + ๐ต ๐œ•2 1 cosh(๐œŒ)4 |๐œ•๐‘ก๐‘ข|2 + 2 cosh(๐œŒ)2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐œ•๐‘ก๐‘ข๐ฟ๐‘–๐‘ข + 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก2 = (๐œ•2 ๐‘ก ๐‘ข) (cid:169) (cid:173) (cid:171) + ๐ถ. ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข(cid:170) (cid:174) (cid:172) The point is that, since our energy does not involve second derivative with respect to time, we need the main equation to help control ๐œ•2 ๐‘ก ๐‘ข. Therefore, we solve for ๐œ•2 ๐‘ก ๐‘ข: ๐‘ก ๐‘ข = cosh(๐œŒ)2 ๐œ•2 1 + (cid:205)2 ๐‘–=1 ๐ด๐ต โˆ’ ๐ถ 1 ๐‘ก2 |๐ฟ๐‘–๐‘ข|2 + |๐œ•๐œƒ๐‘ข|2 + cosh(๐œŒ)2 (cid:205)2 ๐‘–, ๐‘—=1 1 ๐‘ก2 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข . (5.3) We begin with estimating pointwise upper bound for derivative with at most one ๐œ•๐‘ก. Lemma 5.3.2. We have |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐œ•๐‘ก๐‘ข| โ‰ฒ 1 ๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐ฟ๐‘–๐‘ข| โ‰ฒ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] 1 ๐œ cosh(๐œŒ) E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐œ•๐œƒ๐‘ข| โ‰ฒ for |๐›พ1| + |๐›พ2| + 3 โ‰ค ๐‘  + 1 and ๐‘– = 1, 2. 104 Proof. Using the global Sobolev inequality Theorem 5.2.1, we have |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐œ•๐‘ก๐‘ข|2 โ‰ฒ 1 ๐œ2 โˆ‘๏ธ โˆซ |๐›พโ€ฒ 1 |+|๐›พโ€ฒ 2 |โ‰ค2 ฮฃ๐œ 1 cosh(๐œŒ) |๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ ๐œƒ ๐ฟ๐›พ1 ๐œ•๐›พ2 2 ๐œƒ ๐œ•๐‘ก๐‘ข|2๐‘‘๐‘ฃ๐‘œ๐‘™ (cid:32) โˆซ โˆ‘๏ธ |๐›พโ€ฒ 1 |+|๐›พโ€ฒ 2 |โ‰ค๐‘  ฮฃ๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2, โ‰ฒ 1 ๐œ2 โ‰ค 1 ๐œ2 1 cosh(๐œŒ) |๐œ•๐‘ก ๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ 2 ๐œƒ ๐‘ข|2 + 2 โˆ‘๏ธ ๐‘–=1 1 cosh(๐œŒ) (cid:33) |๐œ•๐‘– ๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ 2 ๐œƒ ๐‘ข|2 where we use [๐ฟ๐‘–, ๐œ•๐‘ก] = โˆ’๐œ•๐‘–, [๐ฟ๐‘–, ๐œ•๐‘— ] = โˆ’๐›ฟ๐‘– ๐‘— ๐œ•๐‘ก and ๐œ•๐‘– = 1 ๐‘ก ๐ฟ๐‘– โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก, |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐ฟ๐‘–๐‘ข|2 โ‰ฒ 1 ๐œ2 2 โˆ‘๏ธ โ‰ค โˆ‘๏ธ โˆซ |๐›พโ€ฒ 1 |+|๐›พโ€ฒ 2 |โ‰ค2 ฮฃ๐œ โˆ‘๏ธ โˆซ ๐‘—=1 |๐›พโ€ฒ 1 |+|๐›พโ€ฒ 2 |โ‰ค๐‘  ฮฃ๐œ โ‰ฒ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2, 1 cosh(๐œŒ) |๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ ๐œƒ ๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐ฟ๐‘–๐‘ข|2๐‘‘๐‘ฃ๐‘œ๐‘™ 2 1 ๐œ2 cosh(๐œŒ) |๐ฟ ๐‘— ๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ 2 ๐œƒ ๐‘ข|2๐‘‘๐‘ฃ๐‘œ๐‘™ and |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐œ•๐œƒ๐‘ข|2 โ‰ฒ 1 ๐œ2 cosh(๐œŒ)2 = โ‰ค 1 ๐œ2 cosh(๐œŒ)2 1 ๐œ2 cosh(๐œŒ)2 โˆ‘๏ธ โˆซ |๐›พโ€ฒ 1 |+|๐›พโ€ฒ 2 โˆ‘๏ธ ฮฃ๐œ |โ‰ค2 โˆซ |๐›พโ€ฒ 1 |+|๐›พโ€ฒ 2 |โ‰ค๐‘  ฮฃ๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2. cosh(๐œŒ)|๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ ๐œƒ ๐ฟ๐›พ1 ๐œ•๐›พ2 2 ๐œƒ ๐œ•๐œƒ๐‘ข|2๐‘‘๐‘ฃ๐‘œ๐‘™ cosh(๐œŒ)|๐œ•๐œƒ ๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ 2 ๐œƒ ๐‘ข|2๐‘‘๐‘ฃ๐‘œ๐‘™ โ–ก Now we proceed to estimating the pointwise upper bound for second derivative with respect to time. This requires the following bootstrap assumption, which we will assume from now on. Bootstrap Assumption. Our bootstrap assumption is E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] โ‰ค ๐œ– (5.4) for ๐œ โˆˆ [๐œ1, ๐œ2], where 2 โ‰ค ๐œ1 < ๐œ2 are arbitrary, and 0 < ๐œ– โ‰ค 1 and ๐‘  will be chosen later. 105 Lemma 5.3.3. If โ–ก๐‘”๐‘ข = 0 and ๐‘ข satisfies the bootstrap assumption 5.4, then |๐ฟ๐›พ1 ๐œ•๐‘ก ๐ฟ๐›พ2 ๐œ•๐‘ก ๐ฟ๐›พ3 ๐œ•๐›พ4 ๐œƒ ๐‘ข| โ‰ฒ cosh(๐œŒ) ๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] for |๐›พ| + 4 โ‰ค ๐‘  + 1 and ๐œ– sufficiently small, where |๐›พ| = |๐›พ1| + |๐›พ2| + |๐›พ3| + |๐›พ4|. Proof. From Remark 2, we have a pointwise estimate for ๐œ•2 ๐‘ก ๐‘ข: |๐œ•2 ๐‘ก ๐‘ข| = cosh(๐œŒ)2 1 + (cid:205)2 ๐‘–=1 | ๐ด๐ต โˆ’ ๐ถ | 1 ๐‘ก2 |๐ฟ๐‘–๐‘ข|2 + |๐œ•๐œƒ๐‘ข|2 + cosh(๐œŒ)2 (cid:205)2 ๐‘–, ๐‘—=1 1 ๐‘ก2 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข โ‰ฒ cosh(๐œŒ)2 | ๐ด๐ต โˆ’ ๐ถ | ๐œ– 2 1 โˆ’ 4 ๐œ2 โ‰ฒ cosh(๐œŒ)2| ๐ด๐ต โˆ’ ๐ถ | when ๐œ– is sufficiently small, where the first โ‰ฒ is because of the bootstrap assumption 5.4. Using Lemma 5.3.2, we find that ๐ด๐ต โˆ’ ๐ถ โ‰ฒ 1 ๐œ cosh(๐œŒ) E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š], which gives the result when |๐›พ| = 0. To deal with the case |๐›พ| > 0, we observe that |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐œ•2 ๐‘ก ๐‘ข| โ‰ฒ cosh(๐œŒ)2 โˆ‘๏ธ |๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ 2 ๐œƒ ( ๐ด๐ต โˆ’ ๐ถ)| (cid:32) |๐›พโ€ฒ |+|๐›พโ€ฒโ€ฒ |โ‰ค|๐›พ| 1 ๐ฟ๐›พโ€ฒโ€ฒ 1 ๐œ•๐›พโ€ฒโ€ฒ ๐œƒ 2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ๐‘ก2 |๐ฟ๐‘–๐‘ข|2 + |๐œ•๐œƒ๐‘ข|2 + cosh(๐œŒ)2 (cid:205)2 Since |๐›พ| + 4 โ‰ค ๐‘  + 1 and ๐ด๐ต โˆ’ ๐ถ involves at most the second order derivatives, we get the pointwise 1 + (cid:205)2 ๐‘–=1 ๐‘ฅ ๐‘— ๐‘ก ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก2 1 (cid:33)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) . estimates |๐ฟ๐›พโ€ฒ 1 ๐œ•๐›พโ€ฒ 2 ๐œƒ ( ๐ด๐ต โˆ’ ๐ถ)| โ‰ฒ ๐ฟ๐›พโ€ฒโ€ฒ 1 ๐œ•๐›พโ€ฒโ€ฒ ๐œƒ 2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:32) 1 + (cid:205)2 ๐‘–=1 1 ๐œ cosh(๐œŒ) E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š], 1 1 ๐‘ก2 |๐ฟ๐‘–๐‘ข|2 + |๐œ•๐œƒ๐‘ข|2 + cosh(๐œŒ)2 (cid:205)2 ๐‘–, ๐‘—=1 (cid:33)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1 ๐‘ก2 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข โ‰ฒ 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] when |๐›พโ€ฒโ€ฒ| > 0. This implies that |๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ ๐œ•2 ๐‘ก ๐‘ข| โ‰ฒ cosh(๐œŒ) ๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]. 106 To do induction on |๐›พ|, we observe that ๐ฟ๐›พ1 ๐œ•๐‘ก ๐ฟ๐›พ2 ๐œ•๐‘ก ๐ฟ๐›พ3 ๐œ•๐›พ4 ๐œƒ ๐‘ข = ๐ฟ๐›พ1 ๐ฟ๐›พ2 ๐ฟ๐›พ3 ๐œ•๐›พ4 ๐œƒ ๐œ•2 ๐‘ก ๐‘ข + ๐ฟ๐›พ1 ๐œ•๐‘ก ๐ฟ๐›พ2 [๐œ•๐‘ก, ๐ฟ๐›พ3]๐œ•๐›พ4 ๐œƒ ๐‘ข + ๐ฟ๐›พ1 [๐œ•๐‘ก, ๐ฟ๐›พ2 ๐ฟ๐›พ3]๐œ•๐›พ4 ๐œƒ ๐œ•๐‘ก๐‘ข. Since [๐œ•๐‘ก, ๐ฟ๐›พ3] and [๐œ•๐‘ก, ๐ฟ๐›พ2 ๐ฟ๐›พ3] are linear combinations of ๐œ•๐‘ก and ๐œ•๐‘– = 1 ๐‘ก ๐ฟ๐‘– โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก, and they decrease the order of the derivatives, the result follows by induction hypothesis with the aid of Lemma 5.3.2. โ–ก Remark. The operator ๐ฟ๐‘– preserves the decays 1 ๐‘ก and ๐‘ฅ๐‘– ๐‘ก , which means that and ๐ฟ๐‘– (cid:19) ๐‘“ (cid:18) 1 ๐‘ก โ‰ค 1 ๐‘ก (|๐ฟ๐‘– ๐‘“ | + | ๐‘“ |) ๐ฟ๐‘– (cid:19) ๐‘“ (cid:18) ๐‘ฅ ๐‘— ๐‘ก โ‰ฒ |๐ฟ๐‘– ๐‘“ | + | ๐‘“ |. It also preserves cosh(๐œŒ)2 by the following way: ๐ฟ๐‘– (cid:16) cosh(๐œŒ)2(cid:17) โ‰ฒ cosh(๐œŒ)2. Proposition 5.3.1. Let ๐‘  โ‰ฅ 5. If โ–ก๐‘”๐‘ข = 0 and ๐‘ข satisfies the bootstrap assumption 5.4, then โˆซ ฮฃ๐œ | (cid:0)[โ–ก๐‘”, ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ]๐‘ข(cid:1) (cid:0)๐œ•๐‘ก ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข(cid:1) |๐‘‘๐‘ฃ๐‘œ๐‘™ โ‰ฒ 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]4 for any |๐›ผ| = |๐›ผ1| + |๐›ผ2| โ‰ค ๐‘ , where the implicit constant depends only on ๐‘ . Proof. We decompose the bracket first. [๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ , โ–ก๐‘”]๐‘ข = [๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ , ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ]๐‘ข + [๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ , (๐‘”๐‘– ๐‘— โˆ’ ๐‘š๐‘– ๐‘— )๐œ•๐‘–๐œ•๐‘— ]๐‘ข. The first term on the right hand side vanishes since [๐ฟ ๐‘˜ , ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐œ•๐‘— ] = [๐‘ก๐œ•๐‘˜ + ๐‘ฅ ๐‘˜ ๐œ•๐‘ก, โˆ’๐œ•2 ๐‘ก + ๐œ•2 1 + ๐œ•2 2 + ๐œ•2 ๐œƒ ] = 0. The second term on the right hand side is ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ (cid:18) โˆ’1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘–๐œ•๐‘— ๐‘ข (cid:19) 107 (cid:18) โˆ’ โˆ’1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (cid:19) ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘–๐œ•๐‘— (๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข) The first term is of the form (cid:18) ๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ โˆ’1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (cid:19) ๐ฟ๐›พ3 ๐œ•๐›พ4 ๐œƒ (๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘–๐œ•๐‘— ๐‘ข). By Lemma 5.3.1, the last part becomes (cid:32) (cid:16) ๐ฟ๐›พ3 ๐œ•๐›พ4 ๐œƒ 1 cosh(๐œŒ)4 |๐œ•๐‘ก๐‘ข|2 + 2 cosh(๐œŒ)2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐œ•๐‘ก๐‘ข๐ฟ๐‘–๐‘ข + 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก2 ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข (cid:17) (cid:33) (๐œ•2 ๐‘ก ๐‘ข) + ๐ถ . If the ๐œ•2 ๐‘ก ๐‘ข absorbs the highest order of derivatives, the integral (neglecting the ๐ถ term for the moment) would be bounded by โˆซ ฮฃ๐œ 1 ๐œ2 cosh(๐œŒ)2 ๐œ [๐‘ข; ๐‘š]2 (cid:12) E โ‰ค๐‘  (cid:12) (cid:12) โˆš๏ธ„โˆซ โ‰ค 1 ๐œ2 โ‰ฒ 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2 ฮฃ๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]4, ๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐‘ก ๐‘ข ๐œƒ ๐œ•2 (cid:12) (cid:12) (cid:12) |๐œ•๐‘ก ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข|๐‘‘๐‘† 1 cosh(๐œŒ)3 |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐œ•2 ๐‘ก ๐‘ข|2๐‘‘๐‘† โˆš๏ธ„โˆซ ฮฃ๐œ 1 cosh(๐œŒ) |๐œ•๐‘ก ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข|2๐‘‘๐‘† where we use (5.3) to replace ๐œ•2 ๐‘ก ๐‘ข and Lemma 5.3.2 at the last step. If the ๐œ•2 ๐‘ก ๐‘ข does not involve the highest order of derivatives, the integral (again, neglecting the ๐ถ term), according to Lemma 5.3.3, is bounded by (cid:32) โˆซ ฮฃ๐œ 1 ๐œ cosh(๐œŒ)2 |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐œ•๐‘ก๐‘ข| + |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐ฟ๐‘–๐‘ข| (cid:33) cosh(๐œŒ) ๐œ ๐œ [๐‘ข; ๐‘š]2|๐œ•๐‘ก ๐ฟ๐›ผ1 ๐œ•๐›ผ2 E โ‰ค๐‘  ๐œƒ ๐‘ข|๐‘‘๐‘† 2 โˆ‘๏ธ ๐‘–=1 1 ๐œ = 1 ๐œ2 โ‰ค 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2 โˆซ ฮฃ๐œ (cid:118)(cid:117)(cid:116)โˆซ (cid:32) 1 cosh(๐œŒ) |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐œ•๐‘ก๐‘ข| + |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐ฟ๐‘–๐‘ข| (cid:33) |๐œ•๐‘ก ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข|๐‘‘๐‘† 2 โˆ‘๏ธ ๐‘–=1 1 ๐œ (cid:32) 3 cosh(๐œŒ) |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐œ•๐‘ก๐‘ข|2 + |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐ฟ๐‘–๐‘ข|2 (cid:33) ๐‘‘๐‘† 2 โˆ‘๏ธ ๐‘–=1 1 ๐œ2 ฮฃ๐œ โˆš๏ธ„โˆซ ร— ฮฃ๐œ 1 cosh(๐œŒ) โ‰ฒ 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]4. |๐œ•๐‘ก ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข|2๐‘‘๐‘† 108 Considering the ๐ถ term, the integral is bounded by โˆซ ฮฃ๐œ 1 ๐œ2 cosh(๐œŒ) (cid:32) E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2 |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐œ•๐‘ก๐‘ข| + 2 โˆ‘๏ธ ๐‘–=1 1 ๐œ |๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐ฟ๐‘–๐‘ข| (cid:33) |๐œ•๐‘ก ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข|๐‘‘๐‘† โˆซ + ฮฃ๐œ 1 ๐œ2 ๐œ [๐‘ข; ๐‘š]2 (cid:16)โˆš๏ธ E โ‰ค๐‘  cosh(๐œŒ)|๐ฟ๐›พโ€ฒ 3 ๐œ•๐›พโ€ฒ 4 ๐œƒ ๐œ•๐œƒ๐‘ข| (cid:32) (cid:17) 1 โˆš๏ธcosh(๐œŒ) |๐œ•๐‘ก ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข| (cid:33) ๐‘‘๐‘† โ‰ฒ 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]4, where we use the Hรถlder inequality again as above. โ–ก Remark. In the above proof, the term (cid:32) ๐ฟ๐›พ1 ๐œ•๐›พ2 ๐œƒ (cid:33) โˆ’1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข is bounded by a constant depending only on ๐‘  when ๐œ– is sufficiently small. Proposition 5.3.2. Let ๐‘  โ‰ฅ 5. If โ–ก๐‘”๐‘ข = 0 and ๐‘ข satisfies the bootstrap assumption 5.4, then and โˆซ ฮฃ๐œ โˆซ ฮฃ๐œ |โˆ‡๐‘–๐‘ฃโˆ‡ ๐‘— ๐‘ฃฮ“ ๐‘— ๐‘–๐‘ก |๐‘‘๐‘ฃ๐‘œ๐‘™ โ‰ฒ 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]4 |โˆ‡๐‘˜ ๐‘ฃโˆ‡๐‘˜ ๐‘ฃฮ“๐‘– ๐‘–๐‘ก |๐‘‘๐‘ฃ๐‘œ๐‘™ โ‰ฒ 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]4, where ๐‘ฃ = ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข, 0 โ‰ค |๐›ผ| โ‰ค ๐‘ , and โˆ‡ is the connection with respect to ๐‘”. Proof. โˆ‡๐‘–๐‘ฃโˆ‡ ๐‘— ๐‘ฃฮ“ ๐‘— ๐‘–๐‘ก = ๐‘”๐‘–๐‘˜ ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘— ๐‘ฃ ๐‘” ๐‘—๐‘™ (๐œ•๐‘–๐‘”๐‘™๐‘ก + ๐œ•๐‘ก๐‘”๐‘–๐‘™ โˆ’ ๐œ•๐‘™๐‘”๐‘–๐‘ก) (cid:19) (cid:18) 1 2 = 1 2 ๐‘”๐‘–๐‘˜ ๐‘” ๐‘—๐‘™ ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘— ๐‘ฃ (cid:0)๐œ•๐‘– (๐œ•๐‘™๐‘ข๐œ•๐‘ก๐‘ข) + ๐œ•๐‘ก (๐œ•๐‘–๐‘ข๐œ•๐‘™๐‘ข) โˆ’ ๐œ•๐‘™ (๐œ•๐‘–๐‘ข๐œ•๐‘ก๐‘ข)(cid:1) = ๐‘”๐‘–๐‘˜ ๐‘” ๐‘—๐‘™ ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘— ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘™๐‘ข Using Lemma 5.1.1, we could decompose the above expression into four terms: ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘— ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘™๐‘ข 109 (cid:18) โˆ’ ๐‘š๐‘–๐‘˜ 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (cid:18) โˆ’ 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข ๐‘š๐‘– ๐‘๐‘š๐‘˜๐‘ž๐œ•๐‘๐‘ข๐œ•๐‘ž๐‘ข (cid:19) ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘— ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘™๐‘ข ๐‘š ๐‘—๐‘Ÿ ๐‘š๐‘™๐‘ ๐œ•๐‘Ÿ๐‘ข๐œ•๐‘ ๐‘ข (cid:19) ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘— ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘™๐‘ข (cid:18) 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข ๐‘š๐‘– ๐‘๐‘š๐‘˜๐‘ž๐œ•๐‘๐‘ข๐œ•๐‘ž๐‘ข (cid:19) (cid:18) 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข ๐‘š ๐‘—๐‘Ÿ ๐‘š๐‘™๐‘ ๐œ•๐‘Ÿ๐‘ข๐œ•๐‘ ๐‘ข (cid:19) ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘— ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘™๐‘ข. The last three terms have the desired estimate from the following naive estimates: |๐œ•๐‘ข| โ‰ฒ 1 ๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š], where ๐œ•๐‘ข denotes ๐œ•๐‘ก๐‘ข, ๐œ•1๐‘ข, ๐œ•2๐‘ข, or ๐œ•๐œƒ๐‘ข. For the first term, we have the following expansion: ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘™๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘— ๐‘ข = (๐œ•๐‘ก๐‘ฃ)2(๐œ•2 ๐‘ก ๐‘ข)๐œ•๐‘ก๐‘ข โˆ’ ๐œ•๐‘ก๐‘ฃ (cid:18) 1 ๐‘ก 2 โˆ‘๏ธ ๐‘—=1 ๐ฟ ๐‘— ๐‘ฃ โˆ’ (cid:19) ๐œ•๐‘ก๐‘ฃ ๐‘ฅ ๐‘— ๐‘ก (๐œ•2 ๐‘ก ๐‘ข) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ ๐‘— ๐‘ก โˆ’ + 2 โˆ‘๏ธ ๐‘–=1 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐‘ฃ โˆ’ (cid:19) ๐œ•๐‘ก๐‘ฃ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ฃ (cid:18) 1 ๐‘ก ๐ฟ๐‘– (๐œ•๐‘ก๐‘ข) โˆ’ (cid:19) ๐‘ก ๐‘ข ๐œ•2 ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ข (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐‘ฃ โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ฃ (cid:19) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ฃ โˆ’ ๐‘ฅ ๐‘— ๐‘ก ๐œ•๐‘ก๐‘ฃ (cid:19) (cid:18) 1 ๐‘ก ๐ฟ๐‘– (๐œ•๐‘ก๐‘ข) โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐‘ก ๐‘ข ๐œ•2 (cid:19) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ ๐‘— ๐‘ก โˆ’ ๐œ•๐‘ก๐‘ฃ๐œ•๐œƒ๐‘ฃ(๐œ•2 ๐‘ก ๐‘ข)๐œ•๐œƒ๐‘ข โˆ’ ๐œ•๐œƒ๐‘ฃ๐œ•๐‘ก๐‘ฃ(๐œ•๐œƒ ๐œ•๐‘ก๐‘ข)๐œ•๐‘ก๐‘ข + + 2 โˆ‘๏ธ ๐‘–=1 2 โˆ‘๏ธ ๐‘—=1 (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐‘ฃ โˆ’ (cid:19) ๐œ•๐‘ก๐‘ฃ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐œƒ๐‘ฃ (cid:18) 1 ๐‘ก ๐ฟ๐‘– (๐œ•๐‘ก๐‘ข) โˆ’ (cid:19) ๐œ•2 ๐‘ก ๐‘ข ๐‘ฅ๐‘– ๐‘ก ๐œ•๐œƒ๐‘ข ๐œ•๐œƒ๐‘ฃ (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ฃ โˆ’ (cid:19) ๐œ•๐‘ก๐‘ฃ ๐‘ฅ ๐‘— ๐‘ก (๐œ•๐œƒ ๐œ•๐‘ก๐‘ข) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ ๐‘— ๐‘ก + ๐œ•๐œƒ๐‘ฃ๐œ•๐œƒ๐‘ฃ(๐œ•๐œƒ ๐œ•๐‘ก๐‘ข)๐œ•๐œƒ๐‘ข = (๐œ•2 ๐‘ก ๐‘ข) (cid:32) 1 cosh(๐œŒ)4 (๐œ•๐‘ก๐‘ฃ)2๐œ•๐‘ก๐‘ข + + + ๐‘—=1 2 โˆ‘๏ธ ๐‘–=1 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 2 โˆ‘๏ธ (cid:18) โˆ’ 1 ๐‘ก2 ๐œ•๐‘ก๐‘ฃ๐ฟ ๐‘— ๐‘ฃ๐ฟ ๐‘— ๐‘ข + ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก 1 cosh(๐œŒ)2 ๐œ•๐‘ก๐‘ฃ๐ฟ ๐‘— ๐‘ฃ๐œ•๐‘ก๐‘ข + ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก 1 cosh(๐œŒ)2 (cid:19) (๐œ•๐‘ก๐‘ฃ)2๐ฟ ๐‘— ๐‘ข ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 1 cosh(๐œŒ)2 ๐ฟ๐‘–๐‘ฃ๐œ•๐‘ก๐‘ฃ๐œ•๐‘ก๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก2 ๐ฟ๐‘–๐‘ฃ๐œ•๐‘ก๐‘ฃ๐ฟ ๐‘— ๐‘ข + 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก3 ๐ฟ๐‘–๐‘ฃ๐ฟ ๐‘— ๐‘ฃ๐ฟ ๐‘— ๐‘ข + 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ ๐‘— ๐‘ก 1 ๐‘ก2 ๐ฟ๐‘–๐‘ฃ๐ฟ ๐‘— ๐‘ฃ๐œ•๐‘ก๐‘ข ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ฃ๐ฟ ๐‘— ๐‘ฃ๐ฟ ๐‘— ๐‘ข 110 โˆ’ ๐œ•๐‘ก๐‘ฃ๐œ•๐œƒ๐‘ฃ๐œ•๐œƒ๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘–๐‘ฃ๐œ•๐œƒ๐‘ฃ๐œ•๐œƒ๐‘ข + 1 ๐‘ก2 ๐ฟ๐‘–๐‘ฃ๐œ•๐‘ก๐‘ฃ(๐ฟ๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘ก๐‘ข + ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 (cid:33) ๐œ•๐‘ก๐‘ฃ๐œ•๐œƒ๐‘ฃ๐œ•๐œƒ๐‘ข ๐‘ฅ๐‘– ๐‘ก ๐‘ฅ๐‘– ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 (๐œ•๐‘ก๐‘ฃ)2(๐ฟ๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘ก๐‘ข (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐‘ฃ โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ฃ (cid:19) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ฃ โˆ’ ๐‘ฅ ๐‘— ๐‘ก ๐œ•๐‘ก๐‘ฃ (cid:19) (cid:18) 1 ๐‘ก (๐ฟ๐‘–๐œ•๐‘ก๐‘ข) (cid:19) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ ๐‘— ๐‘ก โˆ’ + 2 โˆ‘๏ธ ๐‘–=1 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 โˆ’ ๐œ•๐œƒ๐‘ฃ๐œ•๐‘ก๐‘ฃ(๐œ•๐œƒ ๐œ•๐‘ก๐‘ข)๐œ•๐‘ก๐‘ข + (cid:18) 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘–๐‘ฃ โˆ’ (cid:19) ๐œ•๐‘ก๐‘ฃ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐œƒ๐‘ฃ (cid:18) 1 ๐‘ก ๐ฟ๐‘– (๐œ•๐‘ก๐‘ข) (cid:19) ๐œ•๐œƒ๐‘ข + 2 โˆ‘๏ธ ๐‘—=1 ๐œ•๐œƒ๐‘ฃ (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ฃ โˆ’ (cid:19) ๐œ•๐‘ก๐‘ฃ ๐‘ฅ ๐‘— ๐‘ก (๐œ•๐œƒ ๐œ•๐‘ก๐‘ข) (cid:18) 1 ๐‘ก ๐ฟ ๐‘— ๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ ๐‘— ๐‘ก + ๐œ•๐œƒ๐‘ฃ๐œ•๐œƒ๐‘ฃ(๐œ•๐œƒ ๐œ•๐‘ก๐‘ข)๐œ•๐œƒ๐‘ข, where we combine the terms in the parenthesis after ๐œ•2 ๐‘ก ๐‘ข due to its extraordinary decay. Using Lemma 5.3.2, Lemma 5.3.3, and the Hรถlder inequality, we have proved the first inequality. Similarly, โˆ‡๐‘˜ ๐‘ฃโˆ‡๐‘˜ ๐‘ฃฮ“๐‘– ๐‘–๐‘ก = ๐‘”๐‘˜๐‘™ ๐œ•๐‘™๐‘ฃ๐œ•๐‘˜ ๐‘ฃ ๐‘”๐‘– ๐‘— (๐œ•๐‘–๐‘” ๐‘—๐‘ก + ๐œ•๐‘ก๐‘”๐‘– ๐‘— โˆ’ ๐œ•๐‘— ๐‘”๐‘–๐‘ก) (cid:19) (cid:18) 1 2 = 1 2 ๐‘”๐‘– ๐‘— ๐‘”๐‘˜๐‘™ ๐œ•๐‘™๐‘ฃ๐œ•๐‘˜ ๐‘ฃ (cid:0)๐œ•๐‘– (๐œ•๐‘— ๐‘ข๐œ•๐‘ก๐‘ข) + ๐œ•๐‘ก (๐œ•๐‘–๐‘ข๐œ•๐‘— ๐‘ข) โˆ’ ๐œ•๐‘— (๐œ•๐‘–๐‘ข๐œ•๐‘ก๐‘ข)(cid:1) = ๐‘”๐‘– ๐‘— ๐‘”๐‘˜๐‘™ ๐œ•๐‘™๐‘ฃ๐œ•๐‘˜ ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘— ๐‘ข. It could be decomposed into the following terms: ๐‘š๐‘– ๐‘— ๐‘š๐‘˜๐‘™ ๐œ•๐‘™๐‘ฃ๐œ•๐‘˜ ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘— ๐‘ข (cid:18) โˆ’ ๐‘š๐‘– ๐‘— 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (cid:18) โˆ’ 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข ๐‘š๐‘– ๐‘๐‘š ๐‘— ๐‘ž๐œ•๐‘๐‘ข๐œ•๐‘ž๐‘ข (cid:19) ๐‘š๐‘˜๐‘™ ๐œ•๐‘™๐‘ฃ๐œ•๐‘˜ ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘— ๐‘ข ๐‘š๐‘˜๐‘Ÿ ๐‘š๐‘™๐‘ ๐œ•๐‘Ÿ๐‘ข๐œ•๐‘ ๐‘ข (cid:19) ๐œ•๐‘™๐‘ฃ๐œ•๐‘˜ ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘— ๐‘ข (cid:18) 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข ๐‘š๐‘– ๐‘๐‘š ๐‘— ๐‘ž๐œ•๐‘๐‘ข๐œ•๐‘ž๐‘ข (cid:19) (cid:18) 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข ๐‘š๐‘˜๐‘Ÿ ๐‘š๐‘™๐‘ ๐œ•๐‘Ÿ๐‘ข๐œ•๐‘ ๐‘ข (cid:19) ๐œ•๐‘™๐‘ฃ๐œ•๐‘˜ ๐‘ฃ(๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘— ๐‘ข. As above, the last three terms have the desired decay. To deal with the first term, observe that ๐‘š๐‘˜๐‘™ ๐œ•๐‘˜ ๐‘ฃ๐œ•๐‘™๐‘ฃ = โˆ’(๐œ•๐‘ก๐‘ฃ)2 + (cid:18) 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘–๐‘ฃ โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐œ•๐‘ก๐‘ฃ (cid:19) (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐‘ฃ โˆ’ (cid:19) ๐œ•๐‘ก๐‘ฃ ๐‘ฅ๐‘– ๐‘ก + (๐œ•๐œƒ๐‘ฃ)2 111 = โˆ’ 1 cosh(๐œŒ)2 (๐œ•๐‘ก๐‘ฃ)2 + 1 ๐‘ก2 (|๐ฟ1๐‘ฃ|2 + |๐ฟ2๐‘ฃ|2) โˆ’ 2 ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘–๐‘ฃ๐œ•๐‘ก๐‘ฃ + (๐œ•๐œƒ๐‘ฃ)2 and ๐‘š๐‘– ๐‘— (๐œ•๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘— ๐‘ข = โˆ’(๐œ•2 ๐‘ก ๐‘ข)๐œ•๐‘ก๐‘ข + (cid:18) 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 ๐ฟ๐‘– (๐œ•๐‘ก๐‘ข) โˆ’ ๐‘ฅ๐‘– ๐‘ก ๐‘ก ๐‘ข ๐œ•2 (cid:19) (cid:18) 1 ๐‘ก ๐ฟ๐‘–๐‘ข โˆ’ (cid:19) ๐œ•๐‘ก๐‘ข ๐‘ฅ๐‘– ๐‘ก + (๐œ•๐œƒ ๐œ•๐‘ก๐‘ข)๐œ•๐œƒ๐‘ข = โˆ’ 1 cosh(๐œŒ)2 (๐œ•2 ๐‘ก ๐‘ข)๐œ•๐‘ก๐‘ข + 2 โˆ‘๏ธ ๐‘–=1 1 ๐‘ก2 (๐ฟ๐‘–๐œ•๐‘ก๐‘ข)๐ฟ๐‘–๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 (๐ฟ๐‘–๐œ•๐‘ก๐‘ข)๐œ•๐‘ก๐‘ข โˆ’ ๐‘ฅ๐‘– ๐‘ก 1 ๐‘ก 2 โˆ‘๏ธ ๐‘–=1 (๐œ•2 ๐‘ก ๐‘ข)๐ฟ๐‘–๐‘ข + (๐œ•๐œƒ ๐œ•๐‘ก๐‘ข)๐œ•๐œƒ๐‘ข. Using Lemma 5.3.2, Lemma 5.3.3, and the Hรถlder inequality, we obtain the desired decay. โ–ก 5.4 Energy Comparability In this section, we aim to show the comparability of the two types of energy. The main reference is [1]. Proposition 5.4.1. If ๐‘ข satisfies the bootstrap assumption 5.4, then E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] and E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘”] are comparable for 2 โ‰ค ๐œ1 โ‰ค ๐œ โ‰ค ๐œ2. From now on, we would always assume the bootstrap assumption 5.4. In order to prove this result, we need some geometric computations. In this section, we denote the matrix associated to the metric ๐‘”๐‘– ๐‘— by ๐บ, the matrix associated to the metric ๐‘š๐‘– ๐‘— by ๐‘€, and the vector [๐‘ฃ0๐œ•๐‘ก+๐‘ฃ1๐œ•1+๐‘ฃ2๐œ•2+๐‘ฃ3๐œ•๐œƒ] by ๐‘ฃ0 ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๐‘ฃ3 ๏ฃฏ ๏ฃฐ We begin by deriving the explicit expression for normal vectors on ฮฃ๐œ with respect to ๐‘š and ๐‘”. ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป ๐‘ฃ2 ๐‘ฃ1 . Lemma 5.4.1. For each surface ฮฃ๐œ, the normal vectors with respect to ๐‘š and ๐‘” are [ (cid:174)๐‘›๐‘š] = ๐‘€ โˆ’1๐‘ค 112 [ (cid:174)๐‘›๐‘”] = โˆš 1 โˆ’๐‘ค๐‘‡ ๐บโˆ’1๐‘ค ๐บโˆ’1๐‘ค, ๐‘ค = โˆ’ cosh(๐œŒ) sinh(๐œŒ) cos ๐œ™ sinh(๐œŒ) sin ๐œ™ 0 ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ . ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป where Remark. ๐‘ค๐‘‡ ๐‘€ โˆ’1๐‘ค = โˆ’1. Proof. From and [๐œ•๐œ™] = ๐œ sinh(๐œŒ) ๐œ cosh(๐œŒ) cos ๐œ™ ๐œ cosh(๐œŒ) sin ๐œ™ [๐œ•๐œŒ] = ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ 0 0 ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ , โˆ’๐œ sinh(๐œŒ) sin ๐œ™ ๐œ sinh(๐œŒ) cos ๐œ™ 0 ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป we could check that [๐œ•๐œŒ]๐‘‡ ๐บ [ (cid:174)๐‘›๐‘”] = 0 and [๐œ•๐œ™]๐‘‡ ๐บ [ (cid:174)๐‘›๐‘”] = 0. Furthermore, [ (cid:174)๐‘›๐‘”]๐‘‡ ๐บ [ (cid:174)๐‘›๐‘”] = โˆ’1 implies that [ (cid:174)๐‘›๐‘”] is the desired (past-pointing) normal vector. โ–ก Note that the bootstrap assumption 5.4 ensures the negativity of ๐‘ค๐‘‡ ๐บโˆ’1๐‘ค. Intuitively, when the ๐œ– in the bootstrap assumption 5.4 is sufficiently small, ๐‘ค๐‘‡ ๐บโˆ’1๐‘ค will be close to ๐‘ค๐‘‡ ๐‘€ โˆ’1๐‘ค = โˆ’1, as proved in the following lemma. From the definition of (๐‘‹) ๐ฝ, we have (cid:104)(๐œ•๐‘ก ) ๐ฝ [๐‘ฃ; ๐‘”] (cid:105) = ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ โˆ‡๐‘ก๐‘ฃโˆ‡๐‘ก๐‘ฃ โˆ’ 1 2 (โˆ‡๐‘˜ ๐‘ฃโˆ‡๐‘˜ ๐‘ฃ) โˆ‡1๐‘ฃโˆ‡๐‘ก๐‘ฃ โˆ‡2๐‘ฃโˆ‡๐‘ก๐‘ฃ โˆ‡๐œƒ๐‘ฃโˆ‡๐‘ก๐‘ฃ 113 . ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป With the aid of Lemma 5.4.1, we are able to compute the product: โŸจ(๐œ•๐‘ก ) ๐ฝ [๐‘ฃ; ๐‘”], (cid:174)๐‘›๐‘”โŸฉ๐‘” = (cid:104)(๐œ•๐‘ก ) ๐ฝ [๐‘ฃ; ๐‘”] (cid:105)๐‘‡ ๐บ (cid:18) โˆš 1 โˆ’๐‘ค๐‘‡ ๐บโˆ’1๐‘ค (cid:19) ๐บโˆ’1๐‘ค = โˆš 1 โˆ’๐‘ค๐‘‡ ๐บโˆ’1๐‘ค (cid:32) 1 2 (โˆ‡๐‘ก๐‘ฃโˆ‡๐‘ก๐‘ฃ โˆ’ โˆ‡1๐‘ฃโˆ‡1๐‘ฃ โˆ’ โˆ‡2๐‘ฃโˆ‡2๐‘ฃ โˆ’ โˆ‡๐œƒ๐‘ฃโˆ‡๐œƒ๐‘ฃ) (โˆ’ cosh(๐œŒ)) + (โˆ‡1๐‘ฃโˆ‡๐‘ก๐‘ฃ) (sinh(๐œŒ) cos ๐œ™) + (โˆ‡2๐‘ฃโˆ‡๐‘ก๐‘ฃ) (sinh(๐œŒ) sin ๐œ™) , (cid:33) where the connection โˆ‡ is with respect to ๐‘”. Lemma 5.4.2. Let ๐‘ฃ = ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข, where |๐›ผ| โ‰ค ๐‘ . Then and โŸจ(๐œ•๐‘ก ) ๐ฝ [๐‘ฃ; ๐‘”], (cid:174)๐‘›๐‘”โŸฉ๐‘” โŸจ(๐œ•๐‘ก ) ๐ฝ [๐‘ฃ; ๐‘š], (cid:174)๐‘›๐‘šโŸฉ๐‘š are comparable provided that the ๐œ– in the bootstrap assumption 5.4 is sufficiently small. Proof. We are going to show that 1. ๐‘ค๐‘‡ ๐บโˆ’1๐‘ค and ๐‘ค๐‘‡ ๐‘€ โˆ’1๐‘ค are comparable. 2. The two versions, with respect to ๐‘” and ๐‘š, of (โˆ‡๐‘ก๐‘ฃโˆ‡๐‘ก๐‘ฃ โˆ’ โˆ‡1๐‘ฃโˆ‡1๐‘ฃ โˆ’ โˆ‡2๐‘ฃโˆ‡2๐‘ฃ โˆ’ โˆ‡๐œƒ๐‘ฃโˆ‡๐œƒ๐‘ฃ) (โˆ’ cosh(๐œŒ)) 1 2 + (โˆ‡1๐‘ฃโˆ‡๐‘ก๐‘ฃ) (sinh(๐œŒ) cos ๐œ™) + (โˆ‡2๐‘ฃโˆ‡๐‘ก๐‘ฃ) (sinh(๐œŒ) sin ๐œ™) are comparable. For the first claim, observe that (cid:12)๐‘ค๐‘‡ ๐บโˆ’1๐‘ค โˆ’ ๐‘ค๐‘‡ ๐‘€ โˆ’1๐‘ค(cid:12) (cid:12) (cid:12) = ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ (๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข)๐‘ค๐‘–๐‘ค ๐‘— (cid:12) (cid:12) (cid:12) (cid:12) 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2(cosh(๐œŒ)2) (cid:12) (cid:12) โˆ’ (cid:12) (cid:12) โ‰ฒ 1 ๐œ2 โ‰ค E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2. 114 Using the fact that ๐‘ค๐‘‡ ๐‘€ โˆ’1๐‘ค = โˆ’1, we establish the first claim. For the second claim, by using Lemma 5.1.1, it is sufficient to show that the following terms (approximately the difference of the two versions) are relatively small compared to the ๐‘š version: (cid:16) 1 2 (๐‘š๐‘ก๐‘˜ ๐‘š ๐‘๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘๐‘ฃ๐œ•๐‘ก๐‘ฃ โˆ’ ๐‘š1๐‘˜ ๐‘š ๐‘๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘๐‘ฃ๐œ•1๐‘ฃ โˆ’ ๐‘š2๐‘˜ ๐‘š ๐‘๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘๐‘ฃ๐œ•2๐‘ฃ) ร— (โˆ’ cosh(๐œŒ)) (cid:17) + (๐‘š1๐‘˜ ๐‘š ๐‘๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘๐‘ฃ๐œ•๐‘ก๐‘ฃ)(sinh(๐œŒ) cos ๐œ™) + (๐‘š2๐‘˜ ๐‘š ๐‘๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘๐‘ฃ๐œ•๐‘ก๐‘ฃ)(sinh(๐œŒ) sin ๐œ™), which is bounded by cosh(๐œŒ) ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]2(|๐œ•๐‘ก๐‘ฃ|2 + |๐œ•1๐‘ฃ|2 + |๐œ•2๐‘ฃ|2 + |๐œ•๐œƒ๐‘ฃ|2) up to a constant. On the other hand, the ๐‘š version is 1 2 (โˆ’|๐œ•๐‘ก๐‘ฃ|2 โˆ’ |๐œ•1๐‘ฃ|2 โˆ’ |๐œ•2๐‘ฃ|2 โˆ’ |๐œ•๐œƒ๐‘ฃ|2) (โˆ’ cosh(๐œŒ)) + (๐œ•1๐‘ฃ๐œ•๐‘ก๐‘ฃ)(sinh(๐œŒ) cos ๐œ™) + (๐œ•2๐‘ฃ๐œ•๐‘ก๐‘ฃ) (sinh(๐œŒ) sin ๐œ™) โ‰ฅ โ‰ฅ 1 2 1 4 โˆ’ 1 2 1 cosh(๐œŒ) cosh(๐œŒ)(|๐œ•๐‘ก๐‘ฃ|2 + |๐œ•1๐‘ฃ|2 + |๐œ•2๐‘ฃ|2 + |๐œ•๐œƒ๐‘ฃ|2) sinh(๐œŒ) (cid:16) |๐œ•๐‘ก๐‘ฃ|2(cos2 ๐œ™) + |๐œ•1๐‘ฃ|2 + |๐œ•๐‘ก๐‘ฃ|2(sin2 ๐œ™) + |๐œ•2๐‘ฃ|2(cid:17) (|๐œ•๐‘ก๐‘ฃ|2 + |๐œ•1๐‘ฃ|2 + |๐œ•2๐‘ฃ|2 + |๐œ•๐œƒ๐‘ฃ|2). Therefore, as long as E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] is small enough, the second claim holds. โ–ก Remark. In the above proof, we use a rough estimate |๐œ•๐‘ข| โ‰ฒ 1 ๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š], where ๐œ• may be ๐œ•๐‘ก, ๐œ•1, ๐œ•2, or ๐œ•๐œƒ. This is a rough version of Lemma 5.3.2. Lemma 5.4.3. The two versions of volume form, ๐‘‘๐‘ฃ๐‘œ๐‘™(ฮฃ๐œ;๐‘”) 115 and ๐‘‘๐‘ฃ๐‘œ๐‘™(ฮฃ๐œ;๐‘š), are comparable provided that the ๐œ– in the bootstrap assumption 5.4 is sufficiently small. Proof. We will denote the column vector ๐œ•๐‘ก๐‘ข ๐œ•1๐‘ข ๐œ•2๐‘ข ๐œ•๐œƒ๐‘ข ๏ฃฎ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ ๏ฃน ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป by ๐‘ฃ, as in the proof of Lemma 5.1.1. Observe that and det ๐บ = det ((๐ผ + ๐‘ฃ๐‘ฃ๐‘‡ ๐‘€) ๐‘€) = (1 + ๐‘ฃ๐‘‡ ๐‘€๐‘ฃ) det(๐‘€) |๐‘ฃ๐‘‡ ๐‘€๐‘ฃ| = |๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข| โ‰ฒ 1 ๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š], we have the desired result provided that E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] is sufficiently small. Proof of Proposition 5.1. It follows from Lemma 5.4.2 and Lemma 5.4.3. โ–ก โ–ก 5.5 Global Existence We now prove the energy estimate that is essential to our paper. We argue that the integrand in the divergence theorem can be estimated by an integrable function of ๐œ over [2, โˆž), and thus prove the claim. Theorem 5.5.1. We have the energy inequality max ๐œ1โ‰ค๐œโ‰ค๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘”] โ‰ฒ (cid:18) E โ‰ค๐‘  ๐œ1 [๐‘ข; ๐‘”] + max ๐œ1โ‰ค๐œโ‰ค๐œ2 (cid:19) E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘”]3 for any ๐œ2 โ‰ฅ ๐œ1 โ‰ฅ 2. 116 Proof. Let ๐‘ฃ = ๐ฟ๐›ผ1 ๐œ•๐›ผ2 ๐œƒ ๐‘ข with |๐›ผ| โ‰ค ๐‘ . We have 1 2 [๐‘ฃ; ๐‘”]2 โˆ’ E๐œโ€ฒ 2 โˆซ 1 2 E๐œ1 [๐‘ฃ; ๐‘”]2 โŸจ(๐œ•๐‘ก ) ๐ฝ, (cid:174)๐‘›๐‘”โŸฉ๐‘”๐‘‘๐‘†๐‘” โˆ’ โˆซ ฮฃ๐œ 1 โŸจ(๐œ•๐‘ก ) ๐ฝ, (cid:174)๐‘›๐‘”โŸฉ๐‘”๐‘‘๐‘†๐‘” = = โ‰ฒ โ‰ฒ ฮฃ๐œโ€ฒ 2 โˆซ ๐œโ€ฒ 2 โˆซ ๐œ1 โˆซ ๐œโ€ฒ 2 ฮฃ๐œ โˆซ ๐œ1 โˆซ ๐œโ€ฒ 2 ๐œ1 ฮฃ๐œ 1 ๐œ2 ๐‘‘๐‘–๐‘ฃ๐‘” ( (๐œ•๐‘ก ) ๐ฝ) 1 โˆš๏ธโˆ’โŸจโˆ‡๐œ, โˆ‡๐œโŸฉ๐‘” ๐‘‘๐‘†๐‘”๐‘‘๐œ (cid:12) (cid:12) (cid:12) (cid:12) โ–ก๐‘”๐‘ฃ(โˆ‡๐‘ก๐‘ฃ) + (โˆ‡๐‘–๐‘ฃโˆ‡ ๐‘— ๐‘ฃ)ฮ“ ๐‘— ๐‘–๐‘ก โˆ’ (โˆ‡๐‘˜ ๐‘ฃโˆ‡๐‘˜ ๐‘ฃ)ฮ“๐‘– ๐‘–๐‘ก 1 2 (cid:12) (cid:12) (cid:12) (cid:12) ๐‘‘๐‘†๐‘”๐‘‘๐œ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]4๐‘‘๐œ โ‰ค 1 2 โ‰ฒ 1 2 max ๐œ1โ‰ค๐œโ‰ค๐œ2 max ๐œ1โ‰ค๐œโ‰ค๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]4 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘”]4 for every ๐œ1 โ‰ค ๐œโ€ฒ 2 โ‰ค ๐œ2. The first โ‰ฒ follows from the fact that โŸจโˆ‡๐œ, โˆ‡๐œโŸฉ๐‘” = ๐‘”๐‘– ๐‘— ๐œ•๐‘–๐œ๐œ•๐‘— ๐œ = ๐‘š๐‘– ๐‘— ๐œ•๐‘–๐œ๐œ•๐‘— ๐œ โˆ’ (cid:18) 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (cid:19) ๐‘š๐‘–๐‘˜ ๐‘š ๐‘—๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข๐œ•๐‘–๐œ๐œ•๐‘— ๐œ = โˆ’1 โˆ’ (cid:18) 1 1 + ๐‘š๐‘Ž๐‘๐œ•๐‘Ž๐‘ข๐œ•๐‘๐‘ข (cid:19) (cid:32) (cid:18) (๐œ•๐‘ก๐‘ข)2 cosh(๐œŒ) โˆ’ (cid:19) 2 sinh(๐œŒ)2 cosh(๐œŒ) + 2 โˆ‘๏ธ ๐‘—=1 (๐œ•๐‘ก๐‘ข) (๐ฟ ๐‘— ๐‘ข) (cid:18) 2๐‘ฅ ๐‘— ๐œ2 (cid:19) |๐‘ฅ|2 ๐‘ก2 2๐‘ฅ ๐‘— ๐œ2 + โˆ’ 2 โˆ‘๏ธ ๐‘–, ๐‘—=1 ๐‘ฅ๐‘– ๐œ ๐‘ฅ ๐‘— ๐œ 1 ๐‘ก2 (cid:33) ๐ฟ๐‘–๐‘ข๐ฟ ๐‘— ๐‘ข โ‰ˆ โˆ’1 provided that ๐œ– is small enough, the second โ‰ฒ follows from Proposition 4.1 and Proposition 4.2, and the last โ‰ฒ follows from Proposition 5.1. This implies that max ๐œ1โ‰ค๐œโ‰ค๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘”]2 โ‰ฒ (cid:18) E โ‰ค๐‘  ๐œ1 [๐‘ข; ๐‘”]2 + max ๐œ1โ‰ค๐œโ‰ค๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘”]4 (cid:19) , which gives the desired result. โ–ก It is clear that in the above proof, the implicit constants for โ‰ฒ do not depend on ๐œ2 thanks to the ๐œ2 . Therefore, we have the following corollary. There exists a constant ๐ถ2 > 0 so integrability of 1 117 that the energy inequality E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] โ‰ค ๐ถ๐‘  (cid:18) max 2โ‰ค๐œโ‰ค๐œ2 E โ‰ค๐‘  2 [๐‘ข; ๐‘š] + max 2โ‰ค๐œโ‰ค๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š]3 (cid:19) holds for every ๐œ2 โ‰ฅ 2. Theorem 5.5.2. There exists an ๐œ–0 > 0 so that the equation (5.1) (cid:32) ๐œ•๐‘– (cid:33) ๐‘š๐‘– ๐‘— ๐œ•๐‘— ๐‘ข 1 + ๐‘š๐‘˜๐‘™ ๐œ•๐‘˜๐‘ข๐œ•๐‘™๐‘ข โˆš๏ธ = 0 has a global solution in R1,2 ร— T1 provided that E โ‰ค๐‘  2 [๐‘ข; ๐‘š] โ‰ค ๐œ–0. Proof. It is sufficient to show that there exists an ๐œ–0 so that E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] โ‰ค 2๐ถ๐‘ ๐œ–0 for ๐œ โ‰ฅ 2 since if this is true, Lemma 5.3.2 and Lemma 5.3.3 imply that |๐œ•๐œ•๐‘ข| + |๐œ•๐‘ข| โ‰ฒ E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] โ‰ค 2๐ถ๐‘ ๐œ–0, where ๐œ• may be ๐œ•๐‘ก, ๐œ•1, ๐œ•2 or ๐œ•๐œƒ, and therefore the solution can be continued according to the standard local well-posedness results. To show the boundedness of E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š], it is sufficient to show that implies E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] โ‰ค 4๐ถ๐‘ ๐œ–0 max 2โ‰ค๐œโ‰ค๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] โ‰ค 2๐ถ๐‘ ๐œ–0. max 2โ‰ค๐œโ‰ค๐œ2 If the ๐œ–0 is chosen to be small enough so that ๐œ– = 4๐ถ๐‘ ๐œ–0 satisfies the small requirement in all the previous lemmas and propositions, we have (by Corollary 5.5) max ๐œ1โ‰ค๐œโ‰ค๐œ2 E โ‰ค๐‘  ๐œ [๐‘ข; ๐‘š] โ‰ค ๐ถ๐‘  (๐œ–0 + (4๐ถ๐‘ ๐œ–0)3) โ‰ค ๐ถ๐‘  (๐œ–0 + ๐œ–0) provided that Therefore we close the boostrap argument. ๐œ– 2 0 โ‰ค 1 43๐ถ3 ๐‘  . 118 โ–ก CHAPTER 6 CONCLUSIONS I will summarize my progress and compare our results with others in this chapter. My work is restricted to warped product spacetimes. state ๐‘ = ๐›พ๐œŒ where In Section 1.2, we consider the homogeneous Einstein-Fluid equations with the equation of โˆš๐›พ is the sound speed within 3 ranges : ๐›พ = 0 (dust case), 0 < ๐›พ < 1 (fluid case), and ๐›พ = 1 (stiff-fluid case). In each case, we classify all the physical solutions that have a Big Bang singularity and derive the asymptotes of the unknowns close to the singularity ๐‘Ÿ = ๐‘Ÿโˆ—. In the fluid case, ๐‘Ÿโˆ— may be positive (๐‘Ÿโˆ— > 0) or zero (๐‘Ÿโˆ— = 0, such as the Friedmann-Lemaรฎtre-Robertson-Walker spacetime). In Chapter 3, we investigate the stability of those ๐‘Ÿโˆ— > 0 homogeneous solutions under nonho- mogeneous, compactly supported perturbations on the initial slice {๐‘Ÿ = ๐‘Ÿ0}. We proved that there exists a sequence of initial perturbations that goes to 0 in ๐‘Š 1,โˆž so that each perturbation generates a shock before the Big Bang ๐‘Ÿ = ๐‘Ÿโˆ—. In other words, these ๐‘Ÿโˆ— > 0 homogeneous solutions are unstable. In Chapter 4, we consider Eulerโ€™s equations in a special relativity setting. That is, we do not consider the full Einstein-Fluid equations; instead, we only focus on half of the system, dropping the feedback from fluid variables to the metric. We assume the metric is a fixed function of time, and consider the dynamic evolution of fluid variables. Surprisingly, these ๐‘Ÿโˆ— > 0 models are stable under this special relativity setting. This means that the mechanism for generating shocks not only relies on the structure of the fluid equations (specially relativistic fluids), but also involves the evolution of metric components (Einstein-Fluid equations). In Chapter 5, we investigate the stability of the membrane equation, an equation for the vanishing mean curvature. We consider the space R1,2 ร— T1 involving a compact factor T1 and apply the standard vector field method with the modification for T1. It turns out the extra compact factor does not hurt the integrability of the coefficients and thus the energy remains small throughout the time, estabilishing the global existence. 119 Regarding the stability of the Big Bang, in [24], Rodnianski and Speck proved the stability of Friedmann-Lemaรฎtre-Robertson-Walker spacetimes with certain topology, governed by Einstein- scalar field equations. In [11], Fournodavlos, Rodnianski, and Speck proved the stability of Kasner solutions, governed by Einstein-vaccum or Einstein-scalar field equations. In both papers, they do not consider Einstein-Fluie equations. For the shock formation trend, Riemann introduced the concept of Riemann invariants in [23]. He considered an isentropic fluid with the plane symmetry and used the Riemann invariants to prove that shocks can form from smooth initial data. In [15], John proposed a more general condition, genuinely nonlinear condition, as a sufficient condition for shocks to form for a one-dimensional hyperbolic system without source terms. He used the total variations of the unknowns to control the solution and used the Riccati structure to prove the existence of shocks, which is introduced in our Chapter 2. The first clear picture about specailly relativistic fluids was established in [6] by Christodoulou. He provided sharp sufficient conditions to generate shocks for 3-dimensional relativistic fluids and geometric information of the boundary of maximally extended classical solutions. In [22], Rendall and Stahl proved the existence of shocks for a large class of solutions governed by Einstein-Fluid equations under plane symmetry. 120 BIBLIOGRAPHY [1] Leonardo Abbrescia, Willie Wai-Yeung Wong, Global nearly-plane-symmetric solutions to the membrane equation, Submitted (2019), arXiv:1903.03553v2 [2] Xinliang An, Willie Wai Yeung Wong, Warped product space-times, Classical and Quantum Gravity, Volume 35, Number 2 (2018). [3] Simon Brendle, Hypersurfaces in Minkowski Space with vanishing mean curvature, Comm. Pure Appl. Math. 55 (2002), no. 10, 1249โ€“1279. MR1912097 [4] Yvonne Choquet-Bruhat, General relativity and Einsteinโ€™s equations, Oxford University Press (2009). [5] Demetrios CHristodoulou, The problem of a self-gravitating scalar field, Commun. Math. Phys. 105, 337โ€“361 (1986). [6] Demetrios Christodoulou, The formation of shocks in 3-Dimensional fluids, EMS Monographs in Mathematics (2007). [7] Demetrios Christodoulou, Andre Lisibach, Shock development in spherical symmetry, Annals of PDE 2 (2015), 1โ€“246. [8] Demetrios Christodoulou, Andre Lisibach, The Euler equations of compressible fluid flow, American Mathematical Society Vol. 44, No. 4 (2007), 581โ€“602. [9] Mihalis Dafermos, Spherically symmetric spacetimes with a trapped surface, Classical Quant. Grav. 22.11 (2005), 2221โ€“2232. [10] Lawrence C. Evans, Partial differential equations, 2nd edition, American Mathematical So- ciety, Vol. 19 (2010). [11] Grigorios Fournodavlos, Igor Rodnianski, Jared Speck, Stable Big Bang formation for Ein- steinโ€™s equations: The complete sub-critical regime, Journal of the American Mathematical Society 36 (2023), 827โ€“916. [12] Jens Hoppe, Relativistic membranes, J. Phys. A 46 (2013), no. 2. MR3005897 [13] Lars Hรถrmander, Lectures on Nonlinear Hyperbolic Differential Equations, Springer Verlag (1997). [14] Mihaela Ifrim, Annalaura Stingo, Almost global well-posedness for quasilinear strongly cou- pled wave-Klein-Gordon systems in two space dimensions, Submitted (2019). [15] Fritz John, Formation of singularities in one-dimensional nonlinear wave propagation, Com- munications on pure and applied mathematics (1974), Volume 27, 377โ€”405. [16] Fritz John, Blow-up for quasi-linear wave equations in three space dimensions, Communica- tions on pure and applied mathematics (1981), Volume 34, 29โ€“51. 121 [17] Tosio Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Archive for Rational Mechanics and Analysis (1975), Volume 58, 181โ€“205. [18] Klainerman Sergiu, The null condition and global existence to nonlinear wave equations, Lectures in Appl. Math., 23, Amer. Math. Soc. 293โ€“326(1986). MR0837683 [19] Philippe G. LeFloch, Yue Ma The hyperboloidal foliation method, [20] Hans Lindblad, A remark on Global existence for small initial data of the minimal surface equation in Minkowskian space time. Proc. Amer. Math. Soc. 132(2004), no. 4, 1095-1102. MR2045426 (2005a:35203) [21] Eric Poisson, Clifford M. Will Gravity, Cambridge University Press (2014). [22] Alan D. Rendall, Fredrik Stahl Shock waves in plane symmetric spacetimes, Comm. Partial Differential Equations 33, no. 10-โ€“12 (2008). [23] Bernhard Riemann The propagation of planar air waves of finite amplitude, Abhandlungen der Gesellschaft der Wissenschaften zu Gรถttingen, Mathematischphysikalische Klasse 8, 43 (1858-59). [24] Igor Rodnianski, Jared Speck Stable Big Bang formation in near-FLRW solutions to the Einstein-scalar field and Einstein-stiff fluid systems, Selecta Math. (N.S.) 24 (2018), no. 5, 4293โ€”4459. [25] Christopher D. Sogge, Lectures on Non-Linear Wave Equations, International Press of Boston, Incorporated; 2nd Revised edition (2013). [26] Eleuterio F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer Berlin, Heidelberg XXIV 724 (2010). [27] Willie Wai-Yeung Wong, Singularities of axially symmetric time-like minimal submanifolds in Minkowski space, Sumitted (2016), arXiv:1607.06846. [28] Willie Wai-Yeung Wong, Small data global existence and decay for two dimensional wave maps, Sumitted (2017), arXiv:1712.07684. 122