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ABSTRACT 

This thesis investigates the effects of agricultural soil amendments on the soil microbial 

community and associated soil nutrients to gain an understanding for the potential 

implementation of the amendments as practice to promote overall soil health. Study one explored 

soil fumigation (metam sodium, 1,3-dichloropropenene, and combination) amendments and the 

potential to recurve impacts fumigation has on the microbial community through cover crop 

planting (faba bean and winter pea mixture, mustard, radish, and wheat). Results from this study 

showed that metam sodium+1,3-dichloropropene application resulted in the most shifts in 

community abundance, with Planctomycetota, Acidobacteriota, and Verrucomicrobiota 

significantly decreasing (2.39%, 7.48%, and 1.01% to 1.95%, 5.42%, and 0.70%, respectfully). 

Regarding the eukaryotic population, the dominant phyla Ascomycota and Basidiomycota 

showed significant decreases with combination fumigation treatment, decreasing from 11.41% to 

6.93% and 0.77% to 0.36%, respectfully. None of the cover crops resulted in changes in the 

microbial community following fumigation for either prokaryotic or eukaryotic populations. 

Study two researched anaerobic digestate as an organic fertilizer alternative and the effect 

application has on the soil microbial community. Results showed shifts in both prokaryotic and 

eukaryotic taxa. Proteobacteria and Firmicutes abundance increased from 18.0% to 19.1% and 

4.95% to5.81%, respectfully, and Chloroflexi decreased from 6.72% to 5.82%. For the 

eukaryotic population, the abundance of Basidiomycota increased significantly with the 

application of digestate from 2.4% to 3.9%. The nutrient levels remained stable throughout the 

duration of the study, apart from total hydrogen which significantly decreased with digestate 

application from 1.10±0.50 wt% to 0.59±0.22 wt%. 
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CHAPTER 1: A REVIEW OF SOIL MICROBIAL COMMUNITIES AND THE IMPACT OF 

SUSTAINABLE AGRICULTURAL PRACTICES ON SOIL HEALTH 

1.1 Introduction 

The treatment and management of agricultural land has been a topic of interest for many years. 

However, more recently, there has been a greater push for the implementation of more 

sustainable agricultural practices and the creation of a circular economy (Slepetiene et al., 2022; 

Stockmann et al., 2015). Such practices include the use of feedstock anaerobic digestate as a 

replacement fertilizer for crops and cover crop planting to promote biological soil health 

parameters. Both practices have shown several benefits in the maintenance and improvement of 

agricultural soil including carbon sequestration, reduced nutrient leaching, and increased soil 

microbial biomass. 

When applying treatments to agricultural land, it is always important to consider the 

implications to soil health. Soil health is critical to the sustainability and functionality of 

agriculture and the environment (Arias et al., 2005). It considers the soil’s “biological, chemical, 

and physical features” that work in unison to maintain a functional and thriving ecosystem 

(Abbott & Murphy, 2003). In recent years, microbial communities within soil have become a 

greater area of interest, acknowledging the role that the biological environment in soil plays in 

the interconnection of the chemical and physical makeup. The diversity of the microbial 

communities is so vast, studies have had a hard time quantifying the numbers of different living 

organisms in soil. This is due impart because each microbial community is very specific to plant 

type, soil type, global location, and climate, to name a few. It has been reported that billions of 

microorganisms live in a handful of soil (I. M. Young et al., 2008). Microbial communities’ 

control nutrient cycles within the soil and in turn are an important influence on soil efficiency 
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and climate change (Balser et al., 2010; Buckley & Schmidt, 2001; Miransari, 2013; Torsvik et 

al., 1990). Historically, agriculture has namely focused on soil fertility rather than soil health. 

Soil fertility refers to the “soil chemical fertility and its ability to meet the nutritional needs of 

plants”, ignoring the biological factors, ultimately giving a poor overall understanding of the 

fertility and health of the soil (Abbott & Murphy, 2003). 

Not only does soil health impact the success of agriculture, but it also holds a critical position 

within the global carbon cycle (Doran & Zeiss, 2000). Soil serves as the largest terrestrial carbon 

reservoir, accounting for the storage of an estimated 2 to 3 times of that stored in the atmosphere 

(Arias et al., 2005; Scharlemann et al., 2014; Stockmann et al., 2013; Witzgall et al., 2021). 

Within current research, there is a lack of knowledge of the amount and spatial distribution of 

carbon in soil. However, this knowledge is critical to the understanding of the global carbon 

cycle, carbon management, and climate policy (Scharlemann et al., 2014). 

Carbon is stored within soil reservoirs in the form of soil organic carbon (SOC) (Lange et al., 

2015; Scharlemann et al., 2014). SOC consists of the “carbon derived from decaying vegetation, 

fungal, and bacterial growth, and microbial activities of living organisms” (Scharlemann et al., 

2014). Carbon storage in terrestrial pools is critical to offsetting the increasing amounts of 

atmospheric carbon dioxide (Lange et al., 2015). Small changes in SOC can have a significant 

impact the carbon emissions and therefore contribute to climate change due to the sheer amount 

of carbon stored in the soil (Arias et al., 2005; Stockmann et al., 2013). Microbial communities 

highlight the connection between the breakdown of plant-derived carbon into SOC (Witzgall et 

al., 2021). In a grassland biodiversity experiment (The Jena Experiment), it was shown that 

higher microbial activity in soil was directly related to an increase in SOC storage (Lange et al., 
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2015). This study focused on the application of anaerobic digestate as a soil carbon management 

method and reviewed its impacts on soil health, microbial community, and land sustainability.  

Soil health and fertility is a critical factor in global and environmental health. It also plays an 

important role within food growth and availability. Ensuring the health of the soil promotes an 

environment that can help mediate atmospheric carbon as well as promote healthy crops. 

Anaerobic digestate is widely recognized as an effective fertilizing alternative that helps to return 

carbon to the soil. However, there exists a knowledge gap in the understanding of anaerobic 

digestates’ impact on microbial communities that exist within the soil to which it is applied. This 

study wishes to address this knowledge gap by identifying and analyzing the microbial 

communities that exist within soil that is treated with anaerobic digestate as well as create a 

general overview of the total soil health by quantifying nutrient and carbon contents. 

1.2 Soil Health 

1.2.1 Soil Organic Matter 

Soil organic matter (SOM) is made up of three different parts, including the “living organisms, 

fresh residues, and well-decomposed residues” (Arias et al., 2005; Magdoff & Van Es, 2009). 

15% of the organic matter is made up of the living organisms, including microbials, fungi, plant 

materials, insects, and animals (Magdoff & Van Es, 2009). Others refer to SOM as only the 

nonliving aspects of organic matter found in soil, depending on the study (Trumbore, 1997). 

SOM helps determine soil structure and nutrient storage for plant uptake, ultimately impacting 

plant growth and success (Magdoff & Van Es, 2009; Trumbore, 1997). The residues making up 

SOM include roots, root exudates, and plant matter such as leaves. These contain carbon dioxide 

that is fixed by plants. When the microbials and fungi feed on the residues as an energy source, 

decomposing the organic matter. When this occurs, carbon dioxide is released from the soil 
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through the process of oxidation, much the same as animals respirating (Lehmann & Kleber, 

2015; Magdoff & Van Es, 2009; Trumbore, 1997). SOM contains the most terrestrial carbon, 

making it an important carbon pool and a major contributor to carbon cycling (Lehmann & 

Kleber, 2015; Magdoff & Van Es, 2009). Depletion of SOM leads to the release of carbon 

dioxide into the atmosphere from the soil. This can happen through erosion, deforestation, non-

sustainable agricultural practices, and a general decline in the soil health from lack of organic 

matter input (Magdoff & Van Es, 2009). 

Soil organic matter has a positive effect on almost all soil properties, allowing it to establish 

the basis of a healthy soil (Magdoff & Van Es, 2009). For the large influence SOM has on the 

productivity and health of soil, it only makes up 1-6% of agricultural topsoil (Arias et al., 2005; 

Magdoff & Van Es, 2009). However, this small percentage has critical effects on the physical 

structure and biological aspect of the soil. When organic matter enters the soil, it promotes 

microbial diversity, which, in turn, results in an increase of available nutrients and aggregation, 

both promoting the growth of healthy plants (Magdoff & Van Es, 2009). With intensive 

agricultural practices, SOM can be depleted, resulting in a loss of nutrients and microbial 

diversity within the soil, impacting the fertility and health of the soil (Arias et al., 2005). 

1.2.2 Soil Organic Carbon 

Soil organic carbon (SOC) is the largest terrestrial carbon pool, housed within soil organic matter 

(SOM). SOC serves many critical roles within the functioning of the environment. It is crucial to 

soil health, soil microbial diversity, plant health, crop production, global food security, and the 

water and carbon cycles (Doran & Zeiss, 2000; Stockmann et al., 2015). In recent years, more 

attention has been brought to the measurement of global SOC, as concerns for climate change 

have increased (Stockmann et al., 2015). With change in land use and the climate, soil releases 
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more carbon dioxide into the atmosphere as degradation of SOM occurs (Doran & Zeiss, 2000; 

Stockmann et al., 2015). It is important to promote the use of land management practices to 

prevent increasing land use intensity, soil health degradation, and the release of carbon dioxide 

into the atmosphere (Grandy & Robertson, 2007). Because SOM can serve as both a source and 

sink for carbon, it is a new challenge to attempt to find and change agricultural practices to both 

conserve and absorb carbon stocks (Guo & Gifford, 2002). 

Soil organic carbon makes up about 58% of soil organic matter (Stockmann et al., 2013). 

Carbon enters the soil through organic matter in the SOM. Decomposition of the SOM releases 

organic carbon compounds into the soil that is then used by microorganisms as an energy source. 

SOC contains three types of carbon pools, including active, slow, and passive pools (Xu et al., 

2016). Decomposition of SOC serves an important role in the carbon cycle by breaking down 

organic carbon compounds into usable inorganic forms (Xu et al., 2016). There are several 

conditions that contribute to the regulation of SOC degradation. These include climate, water 

content, soil structure and properties, and carbon nitrogen ratio (C:N) (Xu et al., 2016). As 

temperature decreases, SOC stocks increase. It has been found that colder, humid climates have 

the highest amount of SOC in the soil (Stockmann et al., 2013). In a study by Xu et al., 2016 it 

was found that the decomposition rates for the active and slow pool types were most impacted by 

chemical and physical conditions of the soil. These decomposition rates were shown to be the 

lowest with high clay content, water content, and C:N ratio. 

1.2.2.1  Total Organic Carbon Measurement 

The total carbon in soil is comprised of both organic and inorganic carbon. To quantify the 

amount of organic carbon present in soil, or TOC, the organic matter in the soil needs to be 

destructed. This can be done chemically or by combustion very high temperatures (Schumacher, 
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2002). The combustion method is known as the catalytic combustion oxidation method. With 

this method, the soil sample is heated to 720°C or higher. By doing so the carbon in the sample is 

oxidized and converted to carbon dioxide (Avramidis et al., 2015). It is the carbon dioxide that is 

measured for carbon quantification. This, however, measures both inorganic and organic carbon, 

or total carbon (TC). To find TOC, the inorganic carbon (IC) is measured separately (Avramidis 

et al., 2015). Inorganic carbon in soil is found as carbon derived from carbonates. IC can be 

measured by adding a small amount of hydrochloric acid. Acidifying the sample converts 

carbonates to carbon dioxide that is then volatized and measured. TOC is then found by taking 

the difference of TC and IC (Avramidis et al., 2015; Schumacher, 2002). 

1.2.3 Soil Nutrients 

For the successful production of agricultural crops, 16 to 18 elemental nutrients are required for 

successful plant growth, including carbon (C), hydrogen (H), nitrogen (N), phosphorus (P), 

potassium (K), magnesium (Mg), iron (Fe), sulfur (S), and calcium (Ca) (Magdoff & Van Es, 

2009; Miransari, 2013; Roy et al., 2006). When any one of these nutrients are lacking, the plant 

cannot complete a successful life cycle, including reproductive success (Roy et al., 2006). Within 

this list of nutrients, most exist as mineral nutrients while oxygen (O) and carbon (C) are 

acquired from carbon dioxide and hydrogen (H) is acquired from water (Roy et al., 2006). These 

nutrients can be broken down into micro- and macronutrients. Those that are needed in large 

amount are referred to as macronutrients and those required in smaller amounts are 

micronutrients. Macronutrients include potassium (K), nitrogen (N), phosphorous (P), carbon, 

hydrogen, oxygen, magnesium, and sulfur (Magdoff & Van Es, 2009; Stockdale et al., 2003). 
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1.2.4 Soil Microbial Community 

Microbial populations in the soil play a critical role in the maintenance of elemental nutrients 

within the soil by “increasing the bioavailability of soil-borne nutrients” for uptake and use by 

plants (Jacoby et al., 2017). Elemental nutrients are absorbed by plants only in their mineral form 

(Roy et al., 2006). Soil microbes help to release the nutrients which are bound in organic 

molecules. Therefore, most nutrients are very minimally bioavailable for plants to use when 

found in naturally occurring soil ecosystems. By employing metabolic processes, microbes and 

fungi can mineralize and depolymerize the organic forms of nutrients found in soil. Plants are 

then able to uptake and use these nutrients via root systems (Jacoby et al., 2017). Because of this 

relationship, it has been shown that soil microbial communities have a direct impact on plant 

growth (Jacoby et al., 2017). 

C:N ratio refers to the ratio of the amount of carbon to nitrogen contained in organic matter 

(Magdoff & Van Es, 2009). This ratio has shown to influence the composition of soil microbial 

communities and is sometimes used as a measurement for such as it varies for plants based on 

factors such as growth stage (Magdoff & Van Es, 2009; Wan et al., 2015). The C:N ratio is used 

to help determine the percentage of nitrogen in the SOM (Magdoff & Van Es, 2009). A high 

ratio means low nitrogen and a low ratio means there is a high percentage of nitrogen. For SOM, 

the ratio usually falls between 10:1 to 12:1 (Magdoff & Van Es, 2009).  

Nitrogen and potassium are the most prevalent mineral nutrients found in plants, making up 

80% of the total mineral nutrients (Roy et al., 2006). 19% of mineral nutrients found in plants 

consists of phosphorus, sulfur, calcium, and magnesium. Nitrogen is the most prevalent mineral 

and is absorbed by the roots of a plant in the ionic forms of nitrate or ammonium (Magdoff & 

Van Es, 2009; Roy et al., 2006). Nitrogen within a plant plays a key role in the plant’s 
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development and growth. Deficiency in this nutrient is marked in reduced growth rates and a 

“spindly appearance” (Roy et al., 2006). It is also an important nutrient to monitor due to its 

climate implications. Nitrogen is frequently applied as a fertilizer because soil is often lacking 

the amounts needed for healthy crop production (Magdoff & Van Es, 2009). Excessive 

fertilization can lead to the release of nitrogen from the soil in runoff and leaching. When not 

contained in SOM, nitrogen can be converted into nitrous oxide, damaging ozone levels 

(Magdoff & Van Es, 2009). Microbial communities in soil help to regulate nitrogen levels and 

make the nutrient available for use. By promoting soil health, microbial communities should 

theoretically be able to maintain health nitrogen levels from organic matter with less release from 

the soil. 

1.2.5 Rhizosphere 

Much of the positive interaction between plants, soil microbes, and nutrients occurs in the 

rhizosphere. The rhizosphere is a term to describe the region of soil with of increased 

interactions between soil microbes and plant roots, influenced by root secretions (Berendsen et 

al., 2012; Bonkowski, 2004; Raaijmakers et al., 2009). These interactions control the availability 

of nutrients found in the rhizosphere (Marschner & Rengel, 2003). This is critical to the 

processing and signaling of all nutrients a plant uptakes and stimulates mass microbial activity 

(Bonkowski, 2004). Root exudates contain large amounts of substrates that are easily degradable, 

most notably, accessible carbon sources (Bonkowski, 2004; Marschner & Rengel, 2003). The 

carbon in exudates serve as a main food source for microbes. This attracts a diverse, dense 

microbial population to this soil region, specifically created by the plant itself (Marschner & 

Rengel, 2003; Raaijmakers et al., 2009). These microbial communities are highly diverse, and 

much larger genomically than the plant. For this reason, the microbial communities found within 
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the rhizosphere are often referred to as a “second genome” for the plant (Berendsen et al., 2012). 

The microbiome found in the rhizosphere can vary from plant species and genotype, as well as 

location when compared to bulk soil (Berendsen et al., 2012; Qu et al., 2020). There are two 

aspects of the rhizospheres’ microbial population that promote plant health. One being the 

influence on nutrient availability to plants, and two being the promotion of disease resistance, 

creating a form of “feedback regulation” (Qu et al., 2020). 

Within the rhizosphere, both harmful and beneficial microorganisms are attracted and exist 

(Berendsen et al., 2012; Raaijmakers et al., 2009). Because of this, there is a constant battle 

between the beneficial and pathogenic (Berendsen et al., 2012). These interactions have a direct 

effect on the pathogenic effects of the pathogen and the outcome of the infection (Raaijmakers et 

al., 2009). Beneficial microorganisms are able to suppress disease in plants by out-competing 

pathogens for nutrients through microbial activity, as well as producing antibiotic compounds, 

known as ‘general disease suppression’(Berendsen et al., 2012). Therefore, the microbial 

community within the rhizosphere has a direct influence on the growth and survival of the plant. 

1.2.6 Soil pH 

Soil pH has shown a correlation with microbial diversity in soil (Zhalnina et al., 2015). It 

impacts soils chemically, physically, and biologically (Aciego Pietri & Brookes, 2008). For most 

crops, a pH ranging from 6 to 7 is best (Magdoff & Van Es, 2009). In soils that are too acidic or 

too basic, nutrients are not as available, making unideal growth conditions (Magdoff & Van Es, 

2009). In a study by Aciego Pietri & Brookes, 2008, correlations found between total and 

organic carbon, total nitrogen, and pH shows the suggestion of pH impacting the input of SOC. 

The challenge that comes with the analysis of soil pH is the variation across different soil types, 

land-use, location, and climate. Although several studies have found that there is a direct 
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relationship between soil microbial communities and pH, there are conflicting results from others 

(Kemmitt et al., 2006; Zhalnina et al., 2015). This could be due in part to the variance in soil. 

Even in soils with a natural gradient of pH there has been difficulty in attributing changes in soil 

microbial activity and community structure to pH (Kemmitt et al., 2006). 

1.2.7 Physical Structure of Soil 

The physical structure of soil is important in consideration to the overall soil health. Soil 

structure plays an important role in the functioning of the soil as an environmental mediator, 

supporting plants and complex microbial communities. It also is a crucial player in carbon 

sequestration, or carbon storage (Bronick & Lal, 2005). Soil structure can be defined as the 

arrangement of soil particles, their size and shape, and the presence and location of pores 

(Bronick & Lal, 2005; Lal, 1991). This arrangement is known as aggregation. Aggregate is a 

“combination of mineral particles with organic and inorganic substances” (Bronick & Lal, 2005). 

The process of aggregation is impacted by many different factors, including microbial activity, 

SOC concentration, land management practices, and plant influences. The formation of 

aggregates occurs in several stages. One theory, known as the hierarchy theory, suggests that 

microaggregates are joined with macroaggregates (Bronick & Lal, 2005). Studies have found 

that good soil structure is favorable for the support of microbial communities and storage of SOC 

(Bronick & Lal, 2005; Cui & Holden, 2015). Increased aggregation is related to an increase in 

SOC concentration in soil (Bronick & Lal, 2005). SOC also impacts microbial activity, resulting 

in microbes having a significant effect on the soil structure through carbon processes that aid in 

the structure formation (Cui & Holden, 2015). The encouragement of more sustainable farming 

practices results in better soil structure, health, and crop production.  
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1.3 Agricultural Land Management Practices 

1.3.1 Soil Fumigation 

Soil fumigation was first used in France in 1869 with the application of carbon disulfide to 

control grape pathogens (Chellemi, 2014; Lembright, 1990). This agricultural treatment is used 

for pest control and is applied to the soil by injection prior to planting. The liquid chemical, 

when injected, rapidly volatilizes to form a gas that is able to fill air spaces within the soil and 

effectively kill fungi, bacteria, nematodes, insects, etc. (Chellemi, 2014; Wilson, 1968). Since the 

discovery of soil fumigants, numerous compounds have been developed and phased out. For 

many years, methyl bromide (MeBr) was one of the leading soil fumigants until its phase out in 

2005 due to its link to stratospheric ozone damage (Chellemi, 2014; Klose & Ajwa, 2004). This 

fumigant was a reliable and effective tool for crop protection against pathogens, and after its 

elimination, researchers worked to find comparable alternatives that would not impact the 

environment to the extent of methyl bromide (Klose & Ajwa, 2004). Metam sodium (MS) has 

now become one of the leading fumigants (classified as a nematicide), within the United States, 

especially within potato production (Cox, 2006). When MS is applied to the soil, it quickly 

hydrolyzes to form methyl isocyanate (MITC), which is the active pesticidal agent, targeting 

amino acids within cell walls (Ajwa et al., 2010; Cox, 2006). It is also common practice to 

combine metam sodium with another nematicide known as 1,3-dichloropropene (1,3-D) 

(classified as a fungicide) to complement and enhance the pesticidal properties of each 

compound (Ajwa et al., 2010). 

Soil fumigation is most often employed in high value crops with repeated planting in the 

same location (Chellemi, 2014; Radewald et al., 1987). Fumigation provides a simple, one-time 

solution to pest management, allowing the user to forego repeated pesticide application (due to 
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fumigants high toxicity) while treating a range of pathogens without specific fungicide, 

bactericide, nematicide and herbicide application (due to fumigants broad-spectrum treatment) 

(Chellemi, 2014). By utilizing fumigants, growers can eliminate crop rotation due to the effective 

pest control, making the practice financially beneficial. However, the toxicity of the fumigants is 

documented to be detrimental to beneficial soil microorganisms in addition to pathogens, due to 

the chemical’s broad-spectrum nature. As the soil microbial community is essential to the 

functioning of a healthily soil, repeated application of fumigants can reduce the overall health of 

the soil (X. Li et al., 2022; Sederholm et al., 2018). This is where a knowledge gap lies. While 

soil fumigation remains essential to high-value crop production, depletion of the soil health 

overtime will result in poor crop yield. To sustain this practice, trends in fumigation research 

need to address how non-target, beneficial microorganisms can be returned to the soil without 

impacting the fumigants effects on pathogens (Chellemi, 2014).This study looks at the role cover 

crops can play when trying to fill this knowledge gap. 

1.3.2 Cover Crop Planting 

Cover crops are used for a variety of reasons and purposes in agricultural soil management and 

grown most often between cash crop plantings (Dabney et al., 2001; Kaspar & Singer, 2011; 

Nevins et al., 2018). Some of these purposes include crop yield stability, erosion and nutrient 

leaching reduction, pest suppression, including weeds, and carbon sequestration (Dabney et al., 

2001; Schmidt et al., 2018). Three classifications of cover crops exist, including “catch crops”, 

“green manures”, and “living mulch”, with each of these groups having a specialized purpose. 

Catch crops prevent nutrient leaching during fallow periods, green manures are N-fixing to 

provide nitrogen to soils, and living mulch provides erosion protection, nutrient cycling, and 

weed suppression (Kaspar & Singer, 2011). Previous studies have shown that cover crop 
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planting significantly impacts the soil microbial community and structure, many seeing increases 

in the overall abundance of microbes (Chavarría et al., 2016; Muhammad et al., 2021; Schmidt et 

al., 2018). Increasingly, cover crops are being explored as sustainable means for promoting, 

maintaining, or recovering soil health (Collins et al., 2006; Nevins et al., 2018). Because of the 

crops’ ability to increase soil microbial community abundance, cover crops may be a viable 

option to recurve the impacts fumigation has on the beneficial microbial community. Cover 

crops have shown to increase microbial populations antagonistic to pathogenic organisms, so 

their application has the potential to not reverse the fumigants’ effects on the pathogenic 

community (Collins et al., 2006). 

1.3.3 Sustainable Agricultural Land Management 

In recent years, growing attention has been given to soil health as a crucial factor in food 

security, climate change, water quality, and energy security (Stockmann et al., 2015). With this, 

the way soil health and fertility are viewed has changed, stemming a push to implement more 

sustainable agricultural and land management practices that promote more than just the chemical 

fertility of soil. One major facet of this sustainability effort is on returning carbon to soil pools 

for storage to help mitigate that released into the atmosphere. Some practices that aid in that 

respect include the reduction of tillage and the application of organic matter as crop covers to 

increase residue input (Grandy & Robertson, 2007). Anaerobic digestate can be considered a 

renewable, organic crop cover that has benefits for overall soil health. 

1.3.3.1 Anaerobic Digestate Application 

Anaerobic digestate has been identified as a means to return carbon to the soil for storage in an 

effort to reduce climate change due to greenhouse gases (Chen et al., 2008; Slepetiene et al., 

2022). It is a waste treatment process that can be utilized to process agricultural and industrial 
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waste, resulting in a practice that both minimizes pollution and produces renewable energy 

(Chen et al., 2008; Lee et al., 2021). Agricultural and industrial waste sources work well for 

anaerobic digestion because of their high number of biodegradable materials in them (Chen et 

al., 2008). Anaerobic digestion is a fermentation process that utilizes microorganisms to break 

down organic matter into biogases and digestate in an anaerobic environment (Bajpai, 2017). 

The biogases produced mostly consist of methane and carbon dioxide and are utilized as a 

renewable energy source (Bajpai, 2017; Chen et al., 2008; Lee et al., 2021). This process is also 

considered “one of the most efficient waste… treatment technologies,” and carrying benefits 

such as its low energy requirement (Chen et al., 2008).  

The process of anaerobic digestion can be divided into four different groups, including 

hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Bajpai, 2017; Broughton, 2009). 

Within the hydrolysis step, organic polymers, including starches, proteins, and fats, are 

depolymerized into more basic molecules (sugar, amino acids, glycerol, fatty acids) fermentative 

microbes aided by enzymes (Bajpai, 2017; Broughton, 2009). Acidogenesis is responsible for 

converting organic molecules into organic acids by acid-forming bacteria. Acetogenic bacteria 

then produce acetic acid and hydrogen from the previous organic acids (Broughton, 2009). 

Finally, methanogenic bacteria produce methane, a component of the produced biogas (Bajpai, 

2017; Broughton, 2009; Chen et al., 2008). The entire process is carried out and dictated by the 

presence of bacteria that work symbiotically to keep advancing the process, with the products of 

one bacteria type being substrates for another type (Bajpai, 2017). A major factor in the 

efficiency of anaerobic digestion is particle size. The smaller the particle, the more surface area 

there is for increased enzymatic activity (Broughton, 2009). 
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Fertilization is the most practiced way of increasing soil fertility for agricultural land (Tian et 

al., 2017). Inorganic fertilizers contribute to greenhouse gas emissions as well as water pollution 

from agricultural runoff. Because of this and its increasing cost, there is a need to turn away from 

inorganic fertilizers and replace them with effective organic alternatives (Walsh et al., 2012). 

Anaerobic digestate serves as an organic fertilizer that has been shown to increase or maintain 

crop yields when compared to inorganic fertilizers (Lee et al., 2021; Walsh et al., 2012). It can be 

broken down into liquid and dry solids for land application. Anaerobic digestate is ideal for 

fertilization due to its high nutrient content. Anaerobic digestion is known to preserve critical 

soil nutrients, specifically nitrogen, phosphorous, and potassium (Barłóg et al., 2020; Lee et al., 

2021). In comparison to untreated livestock waste as a fertilizer, there are significant differences 

in the nutrients and carbon content provided to soil (Barłóg et al., 2020). Anaerobic digestate 

“contains a more balanced nutrient profile,” so the soil doesn’t have a need for supplemental 

nutrient application from inorganic fertilizers (Lee et al., 2021). Overall, there is a lack of 

knowledge and reliable data concerning crop nutrition due to high variability in environmental 

study conditions (Lee et al., 2021). Crops with digestate applied showed a greater nitrogen 

uptake efficiency (Möller & Müller, 2012). This is directly related to an increased ammonia 

content during digestion. Ammonia is a readily available nitrogen source for plants, and 

therefore, digestate has a high content of plant-available nitrogen (Möller & Müller, 2012; Walsh 

et al., 2012). 

Regarding the impact of anaerobic digestate on the microbial and biological community of 

the soil, there is a large knowledge gap. It is known that inorganic fertilizers can result in 

decreases in soil microbial diversity and respiration (Sabir et al., 2021). More knowledge needs 

to be found to address the effect of organic fertilizers on the overall health of the soil by 
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addressing changes in soil biodiversity (Karimi et al., 2022). Finding concurrent data for this 

topic is difficult due to the wide range of variability in digestate types, the original soil microbial 

diversity, and other soil parameters such as pH and nutrient content (Karimi et al., 2022). In a 

study of the current literature available regarding digestate’s impact on soil biodiversity, it was 

found that digestates had a neutral effect on soil biological quality in half of the 222 studies 

addressed. Of those 222 studies, 7% of the studies showed a negative impact on soil biological 

diversity and 17% showed that digestate was “less beneficial than other organic fertilizers” 

(Karimi et al., 2022). Going forward, more studies need to be conducted in the field setting over 

multiple years to analyze the short- and long-term effects of digestate on soil microbial diversity. 

With this knowledge, a more conclusive and expansive statement can be made about the 

relationship between anaerobic digestate and soil health. 

1.4 Microbial Community Analysis Methods 

1.4.1 DNA Extraction Methodology 

To measure the diversity and activity of soil microbial communities, DNA extraction is used to 

quantify and analyze the amount of microbial DNA present (Arias et al., 2005; Yeates et al., 

1998). The method of extraction of genetic material, specifically found within soils, is highly 

established and widely used, although there are several different methods that can be utilized 

(Yeates et al., 1998). In a study performed by Yeates et al., 1998, four different methods of DNA 

extraction were identified and analyzed for the best method. It was found that the bead-beating 

method, described in the study, is the most effective at lysis of organisms, and therefore is 

identified as the method of choice (Yeates et al., 1998). Lysis of cell walls is a major factor in the 

success and efficiency of DNA extraction as well as the quality of the DNA extracted. When the 

cell wall is lysed, the genetic material is released and can be accessed by the extraction buffer. 
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Bead-beating results in higher rates of cell wall lysis, with a lyse efficiency of >90%, and 

therefore a greater amount of genetic material is released and accessible (De Boer et al., 2010; 

Robe et al., 2003; Yeates et al., 1998). Bead-beating utilizes mechanical disruptions to enhance 

extraction (Fujimoto et al., 2004). Beads are added to the tube containing the sample for 

extraction. The tube is then shaken using a Vortexer to cause collisions between the bead and the 

sample (Burden et al., 2014; De Lipthay et al., 2004; Fujimoto et al., 2004; Yeates et al., 1998). 

These collisions cause the lysis of cell walls. This is then followed by DNA purification to 

isolate the genetic material from soil matter. Chemical lysis is also widely used as a method of 

extraction of DNA from soil alone or in conjunction with physical methods (i.e., bead-beating) 

(Robe et al., 2003). The most used chemical lysis agent is a detergent known as sodium dodecyl 

sulfate (SDS). A detergent is often used with heat treatments and chelating agents (Robe et al., 

2003). Between bead-beating and chemical methods, bead-beating shows higher genetic material 

extraction. 

1.4.1.1  16S rRNA Sequencing for Prokaryotic Communities 

16s rRNA is used widely for the identification of bacterial species and continues to be the most 

commonly used genetic marker for taxonomic analysis (Janda & Abbott, 2007). A number of 

factors surrounding the 16s rRNA gene boost its popularity of use including universal presence 

in most bacteria, non-changing gene function (highly conserved), and large size, making it ideal 

for sequencing purposes (Abellan-Schneyder et al., 2021; Janda & Abbott, 2007; Patel, 2001). 

Studies have found that 16s rRNA sequencing is able to make genus identification most often, 

special identification in approximately 80% of cases, and may result in no identification for as 

low as 1% of the isolates, making it a reliable and accurate form of taxonomic identification 

(Janda & Abbott, 2007; Mignard & Flandrois, 2006). 
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1.4.1.2  ITS rRNA Sequencing for Fungal Community   

ITS rRNA sequencing is used in PCR amplification for fungal genetic material. ITS stands for 

internal transcribed spacers (Walker et al., 2022). The genes in prokaryotes as well as fungi, 

specifically the 16s, 23s, and 5s rRNA, are separated by spaces that can vary in size and 

sequence between species and genus (Couto et al., 2001). The differences in the spacer regions 

allows for the identification of different species. This type of sequencing has the ability to 

provide taxonomic information as well as high-resolution amongst fungal communities (O’Brien 

et al., 2005). The ITS is located between the large and small subunits of the ribosomal RNA 

gene. It provides a quickly evolving metric for the identification of variation in species as it is the 

fastest changing genetic region in most organisms (Walker et al., 2022). 

1.5 Conclusion 

Current trends in environmental change and agricultural land management practices are pushing 

sustainable agriculture to the forefront. By promoting and maintaining soil health, with an 

emphasis on the biological components, agricultural practices in turn can prevent nutrient 

leaching, erosion, and soil depletion. Cover crop planting and the application of the digestate 

byproduct as a fertilizer have shown positive results relating to crop yield and nutrient 

availability for plants. These practices also hold potential is recurving previous field treatments 

in fumigation and fertilization. The current knowledge gap exists when it comes to the impact on 

soil microbial communities, and the interactions these practices may have. Microbial 

communities within the soil play a key role in many soil processes that maintain soil health and 

fertility as well as environmental health. There have been emerging studies addressing this gap, 

however, few results are conclusive due to the large variability associated with digestate, 

diversity of microbial communities, and physical and chemical soil factors. 
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The objective of this research is to conduct a long-term field analysis of the soil microbial 

communities, nutrients, and properties with the application of fumigation, cover crops, and 

anaerobic digestate and document the resulting shifts in communities due to field treatment. 
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CHAPTER 2: EFFECT OF FUMIGATION, COVER CROPS AND POTATO PLANTING ON 

SHIFTS IN MICROBIAL COMMUNITIES 

2.1 Summary 

Fumigation as a broad-spectrum pesticide can affect both pathogenic and non-target 

microorganisms in the soil. As microbial communities are critical within the soil ecosystem, 

depletion of or changes in these communities can result in negative implications for soil health. 

Because cover crops are used to enhance soil health physically, chemically, and biologically, 

they might recover the soil health of the fumigated soil. However, little information is available 

on interactive effect of these practices on soil health especially regarding the soil microbiome. 

The objective of this study was to investigate microbial community shifts as affected by 

fumigation and cover crops in different stages of potato field management practices. A year-long 

field test was conducted in Adkins sandy loam of Eastern Oregon following a split-plot design 

with fumigation as main plots and cover crops as subplots. Fumigation treatments included non-

fumigated control, metam sodium, 1,3-dichloropropenene, and metam sodium+1,3-

dichloropropenene. Soil samples were collected around the termination of cover crops and after 

potato harvesting for soil microbial analysis. 16S and ITS rRNA- gene sequencing analyses were 

employed to understand the prokaryote and eukaryote populations, respectively. Microbial 

community analysis indicated no significant interaction between the treatment conditions, with 

cover crops resulting in no significant shifts in the soil microbial community. Combination 

fumigation treatments resulted in the largest community shifts for both prokaryotic and 

eukaryotic communities; however, these changes were not recovered from cover crop planting. 
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2.2 Introduction 

Potatoes (Solanum tuberosum L.) are one of the leading cash crops in the United States, 

specifically the Pacific Northwest (PNW) region, with 61% of the U.S. potato production in 

2021 coming from the PNW (Hills et al., 2020; United States Department of Agriculture, NASS, 

2022). Soil-borne diseases (Fusarium dry rot, verticillium wilt, pythium root rot) are major 

limiting factors in the production of high-yielding, quality potato crops. Thus, soil fumigation 

has been a widely employed method of soil-borne pest control worldwide, especially within the 

PNW, targeting a diverse range of organisms, including nematodes, weeds, pathogenic fungi, 

and insects (Huang et al., 2019; Lembright, 1990). Historically, methyl bromide (MeBr) was a 

heavily utilized fumigant. However, due to its negative impact on the stratospheric ozone layer, 

MeBr has been phased out (J. Li et al., 2017). The discontinuation of MeBr prompted the 

adoption of new or existing chemical soil fumigants. Within the United States, metam sodium 

(MS) has emerged as the predominant soil fumigant in agriculture, finding widespread use, 

particularly in potato crops which account for half of its application (Cox, 2006; Sederholm et 

al., 2018). As a broad-spectrum preplant pesticide, metam sodium effectively controls a range of 

agricultural pests, including weeds, nematodes, pathogenic fungi, and arthropods (Carlock & 

Dotson, 2010; J. Li et al., 2017). MS works by hydrolyzing into methyl isocyanate (MITC), a 

highly toxic and volatile gas, in the presence of water (Ajwa et al., 2010; Sederholm et al., 2018). 

MITC serves as the pesticidal agent in metam sodium by inactivating specific portions of amino 

acids (Cox, 2006). Conversion of MS into MITC in soil happens very rapidly, with a conversion 

efficiency ranging from 87% to 95%; however, this can be impacted by soil characteristics, 

specifically soil moisture (Zheng et al., 2006). Because MITC possesses a high vapor pressure in 

relation to MS, it is easily volatilized and dispersed in the gaseous phase, resulting in 
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atmospheric emissions. Even with the high conversion efficiency, the 10-60% of MITC applied 

to soil can be lost (van den Berg, 1993; Zheng et al., 2006), resulting in repeated applications and 

soil exposure creating long-term effects on soil health (Sederholm et al., 2018). Although MS is 

converted into MITC efficiently, the efficacy of the fumigant is often enhanced with the 

subsequent use of 1,3-dichloropropene (1,3-D, also known as cis-Telone) (Ajwa et al., 2010). 

1,3-D is a nematicide which possesses both fungicidal and insecticidal properties as well, making 

it a registered fumigant in several countries (Liu et al., 2015). Like MS, 1,3-D undergoes a 

degradation process within the soil aided by soil bioactivity. Volatilization of 1,3-D is estimated 

to result in the loss of 20-50% of applied fumigant to the atmosphere, again resulting in repeated 

applications (Dungan et al., 2001). 

In recent years, there has been a growing emphasis on the importance of overall soil 

health in crop production and global sustainability (Hills et al., 2020). Soil is a significant source 

of biodiversity for the planet, and in turn, provides numerous services including nutrient cycling, 

water purification, and carbon storage (Maron et al., 2011). A major indicator of soil health is the 

microbial structure and diversity of the soil. These microorganisms function within the soil to 

help maintain the ideal chemical, physical, and biological characteristics that make up soil 

ecosystems (Abbott & Murphy, 2003; Crecchio et al., 2004; C. Li et al., 2014). However, soil 

microbial communities are complex ecosystems, and they can be easily influenced by soil 

properties, such as nutrient availability, pH, and salinity levels (C. Li et al., 2014). This is also 

true for agricultural management practices, resulting in positive and negative impacts for soil 

health (Seneviratne, 2009). Previous studies have shown that fumigating soil, namely with MS 

and 1,3-D, can result in increasing and decreasing shifts in the diversity and functional structure 

of soil microbial communities, thus disrupting the symbiotic nature of the ecosystem by 
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impacting nutrient cycling and other functional roles held by microbes (Fang et al., 2020; X. Li 

et al., 2022; Liu et al., 2015; Sederholm et al., 2018). These shifts in microbial diversity have 

direct impacts on soil health and resulting plant health and crop production. 

Cover crops have been used for years to maintain soil structure by reducing erosion of 

bare fields during the non-growing season (Muhammad et al., 2021; Poeplau & Don, 2015). 

They have been increasingly utilized to promote increases in soil organic matter (SOM), 

decrease nutrient leaching, and reduce pest infection (Daryanto et al., 2018; Muhammad et al., 

2021; Poeplau & Don, 2015). Choice of cover crop is important to the crop’s successful growth; 

however, this choice is region-dependent due to differing weather conditions. The weather in 

Eastern Oregon is semi-arid and can be characterized by dry summers and cold, overcast winters. 

Therefore, it is crucial to choose a cover crop that will be able to withstand harsh winter 

conditions. The cover crops chosen for this study were identified due to their root structures, 

microbial community influence, biomass production, and their ability to survive/thrive in the 

testing region. Mustard and radish fall under the Brassicaceae family. This family of plants can 

suppress weeds and pathogens due to the isocyanate present in its seeds. This process works 

similar to that of MS fumigation, allowing Brassicaceae to suppress weeds for longer periods of 

time (Hollister et al., 2013). Radish was also chosen for its rooting ability, as well as protection 

from erosion and soil compaction (Gruver et al., 2014). A combination of peas and faba beans is 

favorable due to its ability to rapidly decompose biomass, form symbiotic relationships with 

nitrogen fixing microbes lessening the need for N fertilization, and its efficient water usage 

(Mottin et al., 2021; Tribouillois et al., 2015). Winter cereals, such as winter wheat, are excellent 

and common choices for over-winter crops. Winter wheat is effective at reducing soil erosion, 

absorbing soil nutrients, suppressing weeds due to its rapid growth, and improving topsoil. All 
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these functions are enhanced through its fine, yet high-surface area, root system (Clark, 2007; 

Snapp et al., 2005). In addition, winter wheat is a hearty plant that is able to withstand Oregon 

winters (Clark, 2007). 

It was hypothesized that planting cover crops following fumigation will lead to a 

measurable increase in beneficial bacteria and fungi in the soil, compared to soils without cover 

crops, resulting in a diverse microbial population to enhance potato yield and quality. This study 

addresses two main goals: 1) to examine if the use of cover crops can be a viable alternative to 

winter fallow, which is generally implemented after fumigation of the soil; and 2) to assess the 

impacts of cover crop inclusion after fumigation on potato yield and quality. 

2.3 Materials and Methods 

2.3.1 Field Experimental Design 

A year-long field test was conducted in the Hermiston Agricultural Research and Extension 

Center (45.81726940164113, -119.2846659758225), Oregon State University (OSU-HAREC) in 

Hermiston, Oregon from October 2021 through September 2022. Within this region, the soil can 

be classified as Adkins Series. This taxonomy is defined by deep, well-drained soils which can 

be described as very fine sandy loam (Official Series Description - ADKINS Series, n.d.). 

The experimental design utilized a randomized complete block with a split-plot arrangement 

with three replications, assigning fumigation as the main plot (3.35 m wide by 30.48 m long) and 

cover crops as subplots (3.35 m wide by 6.10 m long), with a 1.52 m buffer zone between each 

plot to avoid fumigant crossover. The main plot included no fumigation as control, fumigation 

with MS, fumigation with 1,3-D (Telone), and the co-fumigation with MS plus 1,3-D. These 

fumigation treatments were applied on October 1, 2021, using shank injection, with MS being 
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injected at a depth of 15 cm and 1,3-D injected at a depth of 46 cm. The co-fumigated plots were 

first treated with MS, followed by 1,3-D 12 hours later.  

In mid-October 2021, once the residual fumigants had dissipated completely, the main 

plots were divided into five subplots. The five cover crop treatments employed were as follows: 

a control group with no cover crop, a mixture of faba bean and winter pea, mustard, radish, and 

wheat, with winter pea, faba bean, mustard, radish, and wheat being seeded at rates of 50, 60, 12, 

10, and 120 lb./acre, respectively. The cover crops were terminated in early April 2022 via 

mechanical tilling and incorporated back into the soil at a depth of 20 cm.  

In late April 2022, the fields were prepped for potato planting using Russet Burbank. Several 

fertilizers, including nitrogen, phosphorus, potassium, magnesium, boron, and zinc were applied 

to the fields prior to planting in accordance with the grower’s standards. A controlled-release 

fertilizer (ESN) was specifically utilized for the nitrogen application. The potato harvest 

occurred in mid-September 2022, during which parameters including yield, size, specific gravity, 

and disease incidence were recorded. 

2.3.2 Soil Sampling 

A two-point sampling method was used, where two soil cores were collected per plot at depths of 

0-30 cm, with sampling taking place immediately after cover crop termination and after potato 

harvesting. According to Oregon State University- Soil Health Lab suggested soil storage and 

preparation procedures, the samples were passed through a 1 mm sieve to remove debris and 

stored at -20 °C until microbial community analysis could occur. 
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2.3.3 DNA Extraction 

Total genetic DNA was extracted using the DNeasy® PowerSoil® Pro kit (Qiagen, Hilden, 

Germany). DNA concentration was then measured using the NanoDrop™ Lite 

Spectrophotometer (Thermo Fisher Scientific Inc., USA). 

2.3.4 PCR Amplification for Illumina Sequencing 

Sequencing of the 16s rRNA and ITS rRNA genes for bacterial and fungal identification  were 

conducted using the universal primers Pro341F (5′-CCTACGGGNBGCASCAG-3′)- Pro805R 

(5′-GACTACNVGGGTATCTAATCC-3′) (Di Nicolantonio et al., 2023) and ITS1F (5′- 

CTTGGTCATTTAGGAAGTAA-3′)- ITS2R (5′- GCTGCGTTCTTCATCATGATGC -3′) 

(Cheng et al., 2021). PCR processes were carried out for both primer sets using the method as 

follows: initial denaturation at 95 °C for 2 min, 30 denaturation cycles at 95 °C for 20 s, primer 

annealing at 52 °C for 30 s, elongation at 72 °C for 1 min, and extension of new strands at 72 °C 

for 10 min. Amplified samples were verified using 2% agarose gel electrophoresis. 

2.3.5 Sequence Processing 

Samples were sequenced at Michigan State University Genomics Core using a MiSeq sequencer 

(Illumina, Inc., San Diego, CA, USA). The Illumina Fastq files from the high-throughput 

sequencing were analyzed using Qiime2 (a microbiome bioinformatics platform) to generate 

taxonomic/phylogenetic data for statistical analysis and comparison of the soil microbial 

community shift. 

2.3.6 Community Data Analysis 

Alpha diversity was examined using Qiime2 and RStudio, including richness (Shannon-Weiner 

Species Diversity Index) and evenness (Pielou’s evenness) for both bacterial and fungal 

communities. Changes in these indices were analyzed using two-way analysis of variance 
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(ANOVA) to determine the relationship between fumigation and cover crops and the treatment 

interactions. Differences in the indices between fumigation, cover crop, and potato planting were 

tested using post-hoc Tukey’s Honest Significant Difference (HSD) tests. Qiime2 was used to 

perform principal coordinate analysis (PCoA) to examine beta diversity, based on weighted 

UniFrac distances. Significant differences in beta diversity were analyzed using permutational 

multivariate analysis of variance (PERMANOVA, permutations = 9999) in Qiime2. Community 

composition was analyzed in RStudio (version 2023.09.1). Two-way ANOVA and Tukey’s 

Honest Significant Difference (HSD) tests were used to analyze the shifts in microbial 

community abundance due to treatment with a significance value of P £ 0.05. 

2.4 Results 

2.4.1 Bacterial Alpha and Beta Diversity 

Total community shifts were analyzed using alpha and beta diversity indices. Alpha diversity 

utilized Shannon-Weiner index to quantify the community richness (number) and Pielou’s 

Evenness to measure community evenness (distribution) (Table A 1). Beta diversity used 

principal coordinate analysis (PCoA) and analysis of similarity (ANOSIM) to measure the 

similarity or dissimilarity of two communities. No significant difference (P > 0.05) was 

identified using two-way ANOVA to analyze changes in Shannon’s index related to fumigation 

(Figure 1A, Table A 2). Pielou’s evenness did show significant differences (P < 0.05) from the 

no fumigation control, with a decrease in the mean index values for the MS+1,3-D treatment 

(Figure 1D, Table A 2). Cover crop type had no significant effect on community richness and 

evenness, according to Shannon-Weiner and Pielou’s Evenness (Figure 1B/E, Table A 3), 

possibly due to the limited growth of biomass as cover crops were planted in late October. Potato 

planting did indicate significant differences (P < 0.05) in both alpha diversity indices with 
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pairwise comparison between samples taken prior to potato planting and those samples taken 

after potatoes were harvested, with the mean index values decreasing for both community 

diversity and evenness (Figure 1C/F, Table A 4). Beta diversity was modeled using principal 

coordinate analysis (PCoA), generated using the weighted UniFrac distances. This analysis 

indicated no clear shifts in community composition, with no dominant group formation due to 

fumigation or cover crop type observed (Figure 2A). When using this same analysis to compare 

samples according to sampling time (before potato planting and after potato harvest), a 

significant shift in the community was observed (PERMANOVA, P < 0.05), with two distinct 

groupings formed in the PCoA plot, indicating that community composition is most dependent 

on potato planting (Figure 2B).  

 
Figure 1: Alpha diversity indices for the prokaryotic population based on Shannon-Weiner 
diversity (A,B,C) and Pielou’s evenness (D,E,F) for fumigation treatment, cover crop type, and 
sampling time. 
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Figure 2: Beta diversity analysis using principal coordinate analysis (PCoA) based on weighted 
UniFrac distances for the prokaryotic microbial community for fumigation treatment and cover 
crop (A) and sampling time (B). 

2.4.2 Bacterial taxonomic composition 

Two-way analysis of variance (ANOVA) indicated no significant interaction (P > 0.05) between 

fumigation and cover crop application in terms of abundance data (Table A 5, Table A 6) for the 

identified dominant bacterial phyla and genera. Shifts in the microbial community composition 

(based on 16s rRNA amplicon sequencing) between fumigation treatments were analyzed using a 

two-way ANOVA with a 5% significance level (Figure 3A, Table A 7, Table A 8). Application 

of MS resulted in significant decreases (P < 0.05) in abundance for Acidobacteriota when 

compared to no fumigation control, decreasing in abundance from 7.48% to 6.14%. None of the 

dominant phyla saw a significant shift (P < 0.05) in abundance with the application of only 1,3-

D. The application of the combined fumigation treatments resulted in significant decreases (P < 

0.05) for Planctomycetota, Acidobacteriota, and Verrucomicrobiota abundances. The dominant 

phyla saw no significant difference (P > 0.05) due to cover crop type when compared to the no 

cover control. 

Fumigated samples showed no significant shifts in abundance (P > 0.05) for the dominant 

genera Sphingomonas, Bacillus, Gaiellales unclassified and uncultured, Gemmatimonadaceae 
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unclassified and uncultured, Nocardioides, and Micrococcaceae unclassified when compared to 

the no fumigation control (Figure 3B). Micromonosporaceae unclassified indicated a significant 

increase (P < 0.05) from the no fumigant control when compared with MS+1,3-D fumigation 

from 1.9% to 2.7% (Table A 8). Similarly, the genus Actinobacteria unclassified showed a 

significant increase (P < 0.05) from 4.1% to 5.7% when comparing the non-fumigated control to 

those samples treated with MS+1,3-D. The dominant genera saw no significant difference (P > 

0.05) due to cover crop type when compared to the no cover control. 

 
Figure 3: Relative frequencies of the dominant prokaryotic A) phyla (all phyla accounting for 
>5% of abundance) and B) genera (all genera accounting for >2% of abundance) according to 
fumigation and cover crop type based on 16s rRNA amplicon sequencing. Genera outside of the 
baseline percentages were grouped under “Other”. 

2.4.3 Eukaryotic Alpha and Beta Diversity 

The same alpha and beta diversity analysis performed for the prokaryotic population was utilized 

for the eukaryotic population (Table A 1). Pairwise comparisons (Tukey’s HSD) were used to 

identify significant differences in Shannon-Weiner diversity index and Pielou’s evenness 

between no fumigation control and fumigation treatments, no cover control and cover crop types, 

and sampling time (before versus after potato planting) (Table A 2, Table A 3, Table A 4). The 
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eukaryotic community richness and evenness saw a significant shift (P < 0.05) in the form of an 

overall decrease for samples treated with MS+1,3-D (Figure 4A/D). No other significant shifts 

were identified for Shannon-Weiner index or Pielou’s evenness for fumigation treatments, cover 

crop types, or sampling time (Figure 4). The PCoA based on weighted UniFrac distances, 

indicates no significant shifts in community composition due to either fumigation treatment or 

cover crop type (Figure 5A). Following the same trend seen with the prokaryotic population, the 

eukaryotic population did experience a shift in community composition due to potato planting, 

with distinct grouping shown on the PCoA plot for samples taken before potatoes were planted 

and those taken after potato harvest (PERMANOVA, P < 0.05) (Figure 5B). 

 
Figure 4: Alpha diversity indices for the eukaryotic population based on Shannon-Weiner 
diversity (A, B, C) and Pielou’s evenness (D, E, F) for fumigation treatment, cover crop type, 
and sampling time. 
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Figure 5: Beta diversity analysis using principal coordinate analysis (PCoA) based on weighted 
UniFrac distances for the eukaryotic microbial community for fumigation treatment and cover 
crop (A) and sampling time (B). 

2.4.4 Eukaryotic taxonomic composition 

ITS rRNA amplicon sequencing utilizing the United database identified four prominent phyla 

classifications, including Eukaryota Incertae sedis (uncertainty taxonomic group), Ascomycota, 

Basidiomycota, and Fungi unassigned (Figure 6A, Table A 5, Table A 6). The abundance of 

Basidiomycota decreased significantly with the application of MS from 0.8% to 0.4% when 

compared to the no fumigation control (Table A 7). No significant differences (P > 0.05) were 

observed for any of the phyla with the application of 1,3-D. However, the combined fumigation 

(MS+1,3-D) resulted in significant decreases for Ascomycota and Basidiomycota. Eukaryota 

Incertae sedis was by far the most abundant from 87.8% to 92.7%. Eukaryota Incertae sedis is a 

taxonomic term used to refer to organisms with an uncertain taxonomic position, therefore, with 

this classification making up a mean abundance across all conditions of 89.2%, the vast majority 

of the eukaryotic community composition has uncertain lineage (del Campo et al., 2014). 

The dominant eukaryotic genera were identified as Eukaryota Incertae sedis, Alternaria, 

Fusarium, Plectosphaerella, Inocybe, Tetracladium, Russula, Amphinema, Pseudotomentella, 

and Cortinarius (Figure 6B, Table A 8). Inocybe abundance saw significant decreases in 
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population from the no fumigation control when compared to both MS treatment and the 

combination treatment, with percentage values decreasing from 0.6% to 0.4% and 0.3% for each 

treatment, respectfully. The most abundant fungal genus, Alternaria, followed a similar trend, 

decreasing from 6.8% to 4.3% abundance with MS application and 6.8% to 2.7% with MS+1,3-

D. Once again Eukaryota Incertae sedis, accounted for much of the eukaryotic population, with 

an average abundance of 78.7%, however no significant differences were observed for 

fumigation treatments. Results did not indicate any significant shifts in the eukaryotic 

community due to cover crop type when compared to the no cover control. 

 
Figure 6: Relative frequencies of the dominant eukaryotic A) phyla and B) genera (top 10 most 
abundant) according to fumigation and cover crop type based on ITS rRNA amplicon 
sequencing. Genera outside of the 10 most abundant “Other”. 

2.4.5 Potato Planting Impacts on Soil Community Composition 

As shown with beta diversity analysis using weighted UniFrac distances, the composition of the 

soil microbial community (Table A 9) significantly shifted due to potato planting. No significant 

interaction between potato planting and fumigation or cover crop was observed. Pairwise 

comparison between soil samples collected prior to potato planting and those collected after 
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potato harvest resulted in significant shifts in the Chloroflexi and Acidobacteriota phyla 

abundances (Figure 7A). A significant decrease was observed for the Proteobacteria, 

Myxococcota, Verrucomicrobiota, Cyanobacteria, and Bacteroidota populations. All other 

dominant prokaryotic phyla saw no significant change in abundance due to potato planting. 

Regarding the eukaryotic population, the most dominant phylum, Eukaryota Incertae sedis, did 

not see any significant shift due to potato planting (Figure 7B). However, increases were 

observed in Ascomycota abundance and decreases in Basidiomycota abundance. 

 
Figure 7: Relative frequencies of the dominant A) prokaryotic phyla and B) eukaryotic phyla 
according to sampling time (before planting potatoes v. after harvest) based on 16s and ITS 
rRNA amplicon sequencing. 

2.5 Discussion 

This study examined the effects of fumigation and subsequent cover crop planting on soil 

microbial community shifts and potato crop yield through the analysis of abundance and 

diversity over a one-year period. Composition and diversity of soil microbial communities was 

analyzed based on observed number of amplicon sequencing variants (ASVs). 
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2.5.1 Fumigation Effects on Community 

It has been documented in many different studies that soil fumigation impacts the soil microbial 

community. Conversely within this study, soil fumigation did not result in an overall shift in the 

microbial community structure for the prokaryotic or eukaryotic microorganisms, as shown by 

the PCoA analyses. However, at the phylum and genus levels, shifts in the abundance of the 

most dominant groups were observed for fumigation treatments. Significant shifts resulted from 

the application of MS or the combination of MS+1,3-D. These results were supported by the 

alpha diversity indices that showed a lower trend for both diversity and evenness for MS and 

MS+1,3-D treatments. This study agreed with previous studies that observed the least impact on 

soil communities with the application of 1,3-D alone (Ibekwe et al., 2001; Liu et al., 2015). As 

with most other studies, the dominant prokaryotic phyla identified included Actinobacteriota, 

Acidobacteriota, Chloroflexi, Firmicutes, Bacteroidota, and Proteobacteria (Fang et al., 2020; J. 

Li et al., 2017; Liu et al., 2015; Sederholm et al., 2018). 

Actinobacteria was the most abundant prokaryotic phyla throughout the duration of the 

study, with steady maintenance of its abundance levels despite treatment methods, remaining 

largely unaffected. Nocardioides, one of the main genera identified within the Actinobacteria 

phylum, again, did not see any significant shifts due to treatment. Actinobacteria are common 

soil microbes and are documented to be plentiful and resistant organisms, which may account for 

the lack of changes in observed abundance (Hazarika & Thakur, 2020; Sederholm et al., 2018). 

The results are in agreement with those found in previous studies regarding microbial changes 

due to MS application, where Actinobacteria remained unaffected by the fumigant application 

(Sederholm et al., 2018). 
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The phylum Acidobacteriota experienced the largest decrease in abundance with the 

application of MS (26% decrease) and MS+1,3-D (18.6% decrease), demonstrating a 

susceptibility to fumigation treatment. These results were consistent with those observed in other 

studies for treatment with MS, which also saw a steady decrease in Acidobacteriota over time 

(Sederholm et al., 2018). Acidobacteriota is again a common phylum of soil microorganism and 

is thought to be primarily made up of oligotrophic aerobic heterotrophs (Crits-Christoph et al., 

2022). 

Bacillus, the most abundant genus identified within the Firmicutes phylum making up 

about 3.68% of the sequenced community, did not see any significant shifts due to fumigation 

application; however, the Firmicutes phylum did experience a decrease with both MS and 

MS+1,3-D application. This decrease is not consistent with previous studies’ results that saw a 

consistent increase in Firmicutes throughout the duration of the study (Sederholm et al., 2018). 

Firmicutes in general are resistant bacteria with low GC contents and rigid cell walls (Sederholm 

et al., 2018). Bacillus can be classified as an endospore-forming, plant growth-promoting 

rhizobacteria (PGPR) (Gurikar et al., 2022). Despite this, the decreasing trend with MS 

application may be attributed to an increase in Proteobacteria, which can serve in an 

antagonistic role towards Firmicutes (Lee et al., 2021). There was no significant increase (P < 

0.05) in Proteobacteria noted, however a 5.8% increase was observed for samples treated with 

MS and a 3.11% increase for those treated with MS+1,3-D. 

The bacterial phylum, Verrucomicrobiota, experienced significant decreases with 

MS+1,3-D application which disagrees with previous findings (Fang et al., 2020). This phylum 

and its species are often thought to be of low abundance in soil and can be classified as 

oligotrophic. A decrease in this phylum is interesting because of its oligotrophic properties; 
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however, due to its lower abundance, it may have been outcompeted by more abundant 

oligotrophic taxa (Bergmann et al., 2011; Fang et al., 2020). 

Within the eukaryotic community, only four phyla classifications were identified: 

Eukaryota Incertae sedis, Ascomycota, Basidiomycota, and Fungi unassigned. Because 89.2% of 

the sequenced ASVs were classified as Eukaryota Incertae sedis, much of the community 

identified is of unknown taxonomy. Of the identified phyla, Basidiomycota decreased 

significantly with both MS and MS+1,3-D application (X. Li et al., 2022). Inocybe was identified 

as a dominant genus within the Basidiomycota phylum which followed the same decreasing 

trend. This genus can be classified as a mycorrhizal symbiont of plants and aids in the uptake and 

utilization of nutrients, establishing themselves as a beneficial soil microorganism, possibly 

decreasing because of the elimination of weeds and other field vegetation following fumigation 

(W. Li et al., 2021). Ascomycota only saw significant decreases with the combined fumigation 

treatment. Ascomycota is a major phylum within the fungal domain, containing one of the most 

important crop pathogens, Fusarium spp. Species of Fusarium are responsible for Fusarium dry 

rot in potatoes, one reason why fumigation is utilized. No significant changes in this genus were 

observed with fumigation treatments, which may be attributed to the pathogen’s ability to live in 

the soil as chlamydospores for years (R. Li et al., 2016). Additionally, this resistance to change 

could be due to an increase in fumigant-resistant strains with intensive fumigation (R. Li et al., 

2016). None of the eukaryotic community responded significantly to 1,3-D fumigation alone. 

2.5.2 Cover Crop Effects on Community 

Cover crop planting resulted in few changes in the microbial community. The only prokaryotic 

phyla to show notable shifts in abundance were Gemmatimonadota and Patescibacteria, 

although not statistically significant. Gemmatinoadota saw decreases in samples planted with 
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radish cover crops. This bacterial phylum is a commonly occurring microorganism in terrestrial 

environments where it can be classified as a generalist. Studies have found that this phylum has 

positive correlations to vegetation restoration, rainfall reductions, and neutral pH (Mujakić et al., 

2022), which is opposing to the results found from this study, with population decreasing with 

vegetation increase. Patescibacteria saw increases with both radish and wheat cover crop 

planting. No prokaryotic genera were impacted by cover crop planting. Additionally, none of the 

eukaryotic phyla or genera showed significant shifts in abundance due to cover crop planting. 

Overall, radish cover crops resulted in the largest community shift which may be due to the 

plants robust rooting ability, despite it producing the least dry root biomass (Gruver et al., 2014; 

Kim, 2023). Past studies have supported findings that cover crop planting shifts the microbial 

population; however, the results from this study did not reflect these changes (Leite et al., 2021). 

This may be due in part to shifts due to fumigation, although no significant interaction was 

identified between these treatments in relation to microbial abundance, despite a trend of higher 

mean microbial biomass in no fumigation for all the cover crop types except mustard (data not 

shown). Additionally, cover crops were planted in late October and the 2021-2022 winter 

growing season proved to be a drying environment, causing limited growth of cover crops, 

possibly resulting in the lack of community restoration observed following fumigation. 

2.5.3 Pathogen Control 

The targeted pathogens within this study included Fusarium dry rot (Fusarium spp.), 

Verticillium wilt (Verticillium dahlia), and Pythium root rot (Pythium spp.). Fusarium 

oxysporum was identified as the fourth most dominant fungal species under all fumigation 

treatments, including the absence of any fumigation treatment, with F. oxysporum accounting for 

2.8%, 3.5%, 3.8%, and 2.7% of the eukaryotic population treated with no fumigation, MS, 1,3-D, 
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and MS+1,3-D, respectfully. With all fumigation treatments and cover crop types, including 

controls from both variables, F. oxysporum abundance did not significantly differ; however, 

small increases in the population did occur with MS and 1,3-D treatment. Within the Ascomyota 

phylum, a second pathogen was identified as Alternaria tenuissima, which experienced 

population declines with MS and MS+1,3-D fumigation, wheat cover crop planting, and potato 

planting. This species is the cause of Alternaria rot and economic losses in the potato industry 

(Leng et al., 2022). This decreasing trend highlights the ability of fumigation to eliminate 

pathogenic species. Verticillium dahlia and Pythium spp. did not return any hits in the sequenced 

genomes, indicating that the fumigation was effective against these pathogens or that they were 

not detectable in the soil prior to fumigation. 

2.6 Conclusion 

In this study, the effects of fumigation, cover crops, potato planting, and their interactions were 

evaluated. None of these treatments showed significant interactions when analyzing microbial 

abundance levels. Fumigation was the only treatment to show significant shifts in the community 

individually at the phylum and genus levels; however, the overall composition of the community 

did not show a prominent shift due to fumigation type. MS and MS+1,3-D caused the most 

significant shifts, with the combination treatment decreasing alpha diversity indices. Treatment 

with 1,3-D alone caused virtually no shifts in the community when compared to the non-

fumigated control. Similarly, cover crop planting did not result in a significant shift in 

composition, and only resulted in notable shifts for two dominant bacterial phyla. Radish cover 

crops seemed to have the largest impact on the community, although limited in its reach. Potato 

planting resulted in the only significant overall community composition shift; however, the most 

common prokaryotic and eukaryotic phyla within soil still maintained their dominance. It 
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suggested a recovery of the community found in non-fumigated controls, with phyla that 

decreased from fumigation increasing and vice versa. 

To draw definitive conclusions on the effect of cover crops on the soil microbial 

community and their ability to recurve effects of fumigation treatments, further years of study 

need to be conducted as well as sampling before any treatment is applied, after fumigation only, 

after cover crop planting, and after potato harvest. 
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CHAPTER 3: SOIL CHEMICAL PROPERTIES AND MICROBIAL COMMUNITY 

COMPOSITION IN A YEAR-ROUND CORN PRODUCTION FIELD TREATED WITH 

ANAEROBIC DIGESTATE 

3.1 Summary 

Anaerobic digestate is ideal for fertilization due to its high nutrient content and its ability to 

preserve critical soil nutrients, specifically nitrogen, phosphorous, and potassium. A year-long 

field test was conducted in Central Michigan from November 2022 through October 2023 to 

investigate the soil microbial community shifts as affected by anaerobic digestate application in a 

corn field. Nine replicate samples were collected monthly during the non-growing season 

(September–April) and biweekly during the growing season (May–August). Each sample 

underwent analysis for microbial community composition, nutrient levels (P, K, Ca, Mg, Na, Al, 

S, Zn, Mn, Fe, Cu, B), elemental levels (CHN analysis), pH, and electrical conductivity (EC). 

Both prokaryotic and eukaryotic communities responded to digestate application with shifts in 

community composition. The most dominant prokaryotic community was Actinobacteriota, 

making up an average of 43% of the population across factors; however, the phylum did not see 

any significant changes due to digestate application. Phyla affected include Proteobacteria and 

Firmicutes, which increase in abundance from 18.0% to 19.1% and 4.95% to5.81%, respectfully, 

and Chloroflexi, which significantly decreased from 6.72% to 5.82% with digestate application. 

The eukaryotic population saw the abundance of Basidiomycota increase significantly with the 

application of digestate from 2.4% to 3.9% and Eukaryota Incertae sedis abundance decrease 

from 70.2% to 65.5%. The eukaryotic phylum Ascomycota was found to have a strong 

correlation to soil nitrogen levels; however, neither microbe nor nutrient shifts in the study due to 

digestate.  
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3.2 Introduction 

The promotion of alternative energy production methods and sustainable agriculture practices is 

a rising topic of interest (Lamolinara et al., 2022). As the world population continues to grow, so 

does the demand on food production, the environment, and agriculture (Sapp et al., 2015). 

Efforts to reduce fossil fuel emissions have been and continue to be a challenge when addressing 

the environment and its sustainability, and a possible solution lies in the form of biogas 

production. A major facet of the United States economy is animal production. Annually, $143.4 

billion dollars is generated from cattle and dairy products (U.S. Department of Agriculture, 

Economic Research Service, 2024). With that comes the production of an excess of manure. This 

manure has the potential to serve as a feedstock for bioenergy production.  

Biogas production via anaerobic digestion is a major player in sustainability efforts in 

agriculture practice, as it efficiently reduces greenhouse gas (GHG) emissions and serves as an 

effective waste management practice (Lamolinara et al., 2022; Möller & Müller, 2012). 

Anaerobic digestion is a natural process by which fermentation is utilized to breakdown organic 

matter, producing carbon dioxide, methane, and a digestate slurry as outputs (Bajpai, 2017). The 

anaerobic digestate (AD) by-product is a nutrient rich slurry that is made up of 90-95% of the 

feedstock originally fed into the digester (Lamolinara et al., 2022; Möller & Müller, 2012). This 

high nutrient content makes digestate an ideal organic fertilizer, as it can efficiently return 

essential nutrients back to the soil and provide plant-available nutrients (Lamolinara et al., 2022). 

Fertilization is one of the most practiced and simplest ways of increasing the soil fertility in 

agricultural lands, while also being an accessible and easy method for the mitigation of 

environmental impacts of agricultural practices and the promotion of the economic possibility of 

biogas production (Iacovidou et al., 2013; Lamolinara et al., 2022). Chemical fertilization is a 
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major contributor to GHG emissions and water pollution via groundwater leaching. Many 

agricultural practices focus on the physical and chemical makeup of the soil, neglecting the 

biological activity that takes place within the environment as well. Thus, agricultural practices, 

such as the application of inorganic fertilizers, have been shown to have negative influences on 

the soil microbial community and associated soil microbial biomass (Kibblewhite et al., 2008; 

Sapp et al., 2015). Digestate, when applied to the field, has shown to result in higher organic 

carbon (C) and nitrogen (N) (ammonium), which in-turn is beneficial to the stimulation of soil 

organic matter (SOM) and the overall biological health of the soil (García-Sánchez et al., 2015). 

Benefits of digestate application to soil also includes the promotion of nutrient cycling, carbon 

sequestration, and the maintenance of soil structure (Doyeni et al., 2021). By prioritizing the 

biological, chemical, and physical properties of the soil, digestate application has shown 

comparable crop yields to inorganic alternatives, while being a more sustainable and economic 

approach (Alburquerque et al., 2012; García-Sánchez et al., 2015). 

This study addresses the year-round impact liquid digestate application has on the 

biological, chemical, and physical properties of the soil, and how these properties shift with 

influences from time of year, treatment, and soil properties. We hypothesize that digestate 

application will stimulate an increase in essential soil nutrients (carbon (C), nitrogen (N), 

phosphorous (P), and potassium (K)), as well as a positive increase in soil microbial community 

diversity, as quantified by diversity metrics.  

3.3 Materials and Methods 

3.3.1 Field Experiment Design 

A year-long field test was conducted in a 7.3-acre field located on Michigan State University 

farmland in East Lansing, Michigan from November 2022 through October 2023. Prior to this 
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study, the field was treated with liquid digestate for eight years and was slated to be sowed with 

corn in the growing season. The sampling site was divided into nine sampling points (replicates) 

each located 20 m apart with a depth of 10 m from the adjacent road, covering a total of 0.62 

acres of the field (field map shown in Figure 8). Liquid digestate was applied to the field in mid-

April 2023 at a rate of 8400 gal/acre and mechanically tilled following application. Following 

digestate application, corn was planted in mid-May. Fertilizer was applied to the field (35 

gal/acre; 28% Urea Ammonium Nitrate (UAN)) in late June 2023, and corn was harvested in late 

September. A table of sampling dates and field operations can be found in Table B 1. It is 

important to note that due to normal field operations, the field sampling points were remapped 

prior to April, May, July, and October sampling events, due to tilling, planting, corn growth, and 

harvest. However, sampling points were kept as close as possible, utilizing surveying and GPS 

equipment. 

 
Figure 8: Sampling area with labeled sampling points (left); the testing site on MSU farmland 
(W30-2 in yellow circle) (right). 
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3.3.2 Soil Sampling 

Each sampling event consisted of nine soil samples taken monthly during the non-growing 

season (September-May) and biweekly during the growing season (June-August), starting 

November 2022. A sampling probe was used, with the depth of the samples being 12 in. Samples 

were passed through a US standard 5 mesh (4,000 �m) sieve and stored at -20°C between 

analyses. 

3.3.3 Soil Property Data 

The pH and electrical conductivity (EC) were measured using a standard pH and EC probe 

(Thermo Scientific™ Orion Star™ A212 pH and Conductivity Benchtop Meter, Pittsburgh, PA). 

Laboratory pH measurement protocol specifies a slurry containing a 1:2 ratio of soil to deionized 

water (10 g soil, 20 mL water) be mixed and allowed to equilibrate with atmospheric carbon 

dioxide for 30 minutes prior to measurements. Prior to each measurement event, the pH and EC 

probes were calibrated using standard pH solutions of 4, 7, and 10 and EC solutions of Orion 100 

μS, 1413 μS and/or 12.9 mS standards. pH was additionally measured by Dairy One (Ithaca, NY) 

during nutrient analysis, and these values were ultimately used in the report. 

3.3.4 Soil Nutrients 

Elemental levels in the soil were analyzed for total carbon (TC), total hydrogen (TH), total 

nitrogen (TN), and total sulfur (TS). This analysis for TC and TH was performed by combustion 

using automatic analyzers. For each sampling round, 3 rotating samples were selected for 

analysis. Approximately 1g of soil from each of the selected samples was sent for CHS analysis 

at Atlantic Microlabs (Norcross, GA). TN was measured using TNM-L unit (Shimadzu 

Corporation, Kyoto, Japan). To prepare the samples for measurement, a 1:2 slurry of soil to 
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deionized water (10 g soil, 20 mL water) was mixed, allowed to equilibrate for 30 minutes, and 

then homogenized via centrifugation until all soil particles are separated from the mixture. 

Soil nutrient levels were analyzed using the Morgan method of soil nutrient extraction. For each 

sample, approximately 100 g of dry soil was weighed and sent out for analysis at Dairy One 

(Ithaca, NY). These analyses returned results describing phosphorous (P), potassium (K), 

calcium (Ca), magnesium (Mg), sodium (Na), aluminum (Al), sulfur (S), zinc (Zn), manganese 

(Mn), iron (Fe), copper (Cu), and boron (B) contents within the soil samples. A soil condition 

test was also performed with Dairy One for sufficiency levels of available nutrients (SLAN), 

which helps determine soil fertility levels with values below 76 indicating low biological 

activity, 76-200 moderate activity, and 201-350 high activity. 

3.3.5 DNA Extraction 

DNA was extracted using the Qiagen DNeasy PowerSoil Pro Kit (Qiagen, Germany) and the 

provided protocol. Extractions were suspended in 100 µL of 10 mM Tris-HCl (pH 8.5) and 

concentration and purity of the DNA solution was measured using a NanoDrop™ Lite 

Spectrophotometer (Thermo Fisher Scientific Inc., USA) to verify the quality of the extraction 

for downstream purposes. Extractions were then stored in -80°C between analyses. 

3.3.6 PCR Amplification for Illumina Sequencing 

The DNA extractions for all collected sample batches were amplified using standard polymerase 

chain reaction (PCR) via a thermocycler. Sequencing of the 16s rRNA and ITS genes for 

bacterial and fungal identification in were conducted using the universal primers Pro341F (5′-

CCTACGGGNBGCASCAG-3′)- Pro805R (5′-GACTACNVGGGTATCTAATCC-3′) and 

ITS1F (5′-CTTGGTCATTTAGGAAGTAA-3′)- ITS2R (5′- GCTGCGTTCTTCATCATGATGC 

-3′). PCR processes were carried out for both primer sets using the method as follows: initial 



 47 

denaturation at 95 °C for 2 min, 30 denaturation cycles at 95 °C for 20 s, primer annealing at 52 

°C for 30 s, elongation at 72 °C for 1 min, and extension of new strands at 72 °C for 10 min. 

Agarose gel electrophoresis (2.0% (w/v) agarose concentration and 1× TAE run buffer) was 

conducted to verify quality and size and to ensure the amplified samples were uncontaminated. 

Amplified samples were then diluted 7x with 30 µL of 10 mM Tris-HCl and sent for high-

throughput sequencing. 

3.3.7 Sequence Processing 

Samples underwent high-throughput sequencing (Illumina MiSeq flow cell) were sequenced at 

Michigan State University Genomics Core. The Illumina Fastq files from the high-throughput 

sequencing were then analyzed using QIIME2 (a microbiome bioinformatics platform) to 

generate taxonomic/phylogenetic data for statistical analysis and comparison of the soil 

microbial community shift. 

3.3.8 Statistical Analysis 

Microbial analysis was performed in RStudio (Version 2023.09.1+494) using R libraries 

Qiime2R, Vegan, ggplot2, tidyverse, and DescTools. Alpha diversity was examined for richness 

(Shannon-Weiner Species Diversity Index) and evenness (Pielou’s evenness) for both bacterial 

and fungal communities. Changes in these indices were analyzed using two-sample Wilcoxon 

Signed Rank test and Kruskal-Wallis test with Conover’s pair-wise rank comparison post-hoc 

tests at a 5% significance level. Community composition based on taxonomic/phylogenetic data 

was graphed based on relative abundance and shifts in community were analyzed using the same 

non-parametric tests at a 5% significance level. 

Soil property and nutrient data analysis was performed in RStudio using R libraries vegan, 

ggplot2, pastecs, and DescTools. Again, changes in soil properties/nutrients were analyzed using 
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two-sample Wilcoxon Signed Rank test and Kruskal-Wallis test with Conover’s pair-wise rank 

comparison post-hoc tests at a 5% significance level. Redundancy analysis (RDA) was 

conducted to correlate changes in soil properties/nutrients to shifts in specific taxa abundance. 

3.4 Results 

3.4.1 Bacterial Alpha and Beta Diversity 

Alpha diversity indices for the prokaryotic population showed significant variation for several 

factors. Pairwise comparison using two-sample Wilcoxon Signed Rank test showed a significant 

difference for richness (Shannon’s index) (Figure 9A/B) and evenness (Pielou’s evenness) 

(Figure 10A/B) indices, with no anaerobic digestate application (AD) and no crop having higher 

indices means (Table B 2, Table B 4). Shifts in diversity indices due to sampling date (time of 

year) were analyzed using the Kruskal-Wallis test and Conover’s pair-wise rank comparison 

post-hoc test if an overall model significance was identified. Soil richness had a decrease in late 

summer, with late July and both August sampling events being significantly lower than 

December, February, March, April, and June samplings (Figure 9C). Community evenness was 

highest during the winter months, decreasing after AD application, and then gradually increasing 

towards late summer. December showed significantly higher richness when compared to May, 

late June, and late August samplings (Figure 10C). Weighted UniFrac distances (beta diversity 

metric) showed no significant group formation, and therefore, no significant shift in overall 

community diversity at the prokaryotic level (Figure B 1A). 



 49 

 
Figure 9: Alpha diversity indices for the prokaryotic population based on Shannon-Weiner 
richness (A, B, C) for digestate treatment, planting, and sampling time. The significance codes: 0 
‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
 

 
Figure 10: Alpha diversity indices for the prokaryotic population based on Pielou’s Evenness (A, 
B, C) for digestate treatment, planting, and sampling time. The significance codes: 0 ‘***’0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
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3.4.2 Bacterial taxonomic composition 

16s rRNA sequencing identified 10 dominant phyla, including Actinobacteriota, Proteobacteria, 

Acidobacteriota, Chloroflexi, Firmicutes, Verrucomicrobiota, Myxococcota, Gemmatimonadota, 

Planctomycetota, and Bacteroidota (Figure 11). Many of these phyla are the same as those 

identified in Chapter 2. Pairwise comparison between phyla abundances with treatment (No AD, 

AD) and crop status (None, Corn) were analyzed using Wilcoxon Signed Rank test to identify 

any significant shifts in population. Treatment with AD resulted in more significant shifts in 

population abundance than crop planting, with Proteobacteria (P = 0.0295) and Firmicutes (P = 

0.0087) abundance increasing from 18.0% to 19.1% and 4.95% to5.81%, respectfully (Table B 4, 

Table B 5). Chloroflexi (P = 0.0018) significantly decreased from 6.72% to 5.82% with AD 

application. Crop sowing and growth resulted in significant decreases for Acidobacteriota (P = 

0.0427), Myxococcota (P = 0.0161), and Planctomycetota (P = 0.0176). No increases were 

observed in response to corn planting and growth. Several of the dominant phyla saw significant 

shifts in abundance throughout the year. Actinobacteriota was at peak abundance in May, 

making up 49.1% of the bacterial population with this number decreasing through the rest of the 

year to 39.6% in October. Chloroflexi was most abundant during December at 8.98% of the 

population with significant decreases when compared to this number in April, early June, early 

July, September, and October. Another phylum that showed the most abundance during the 

colder months was Myxococcota. This phylum was the most abundant in October at 3.02% of the 

population and the least abundant in May at 1.76% of the population. Planctomycetota was most 

abundant in November at 1.84%, dropping to values between 1.30% and 1.6% of the population 

during the growing season. Bacteroidota increased significantly from a low of 0.49% in 

December to a peak of 1.66% in late July. 
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Several genera saw significant decreases in abundance with AD application, including 

Vicinamibacterales uncultured, Chloroflexi-KD4-96, Solirubrobacterales bacterium 67-14, 

Vicinamibacteraceae, and Xanthobacteraceae unassigned (Figure 12, Table B 6). Nocardioides 

and Bacillus both increased in abundance with AD application, with Nocardioides peaking in 

abundance in May after AD application and Bacillus in late July after UAN fertilizer application. 

Regarding planting, Vicinamibacterales uncultured, KD4-96, and Xanthobacteraceae unassigned 

followed the same decreasing trend seen with AD application, with peak abundance during the 

non-growing season and significantly differing from growing-season abundance. 

Vicinamibacterales uncultured specifically saw its highest abundance in December at 3.41%, 

decreasing significantly when compared to April, June, and early July samplings. Actinobacteria 

unassigned and Nocardioides increased with corn planting, again with abundance peaks in May 

for both genera. 

 
Figure 11: Relative frequencies of the dominant prokaryotic phyla according to A.) treatment 
(No AD, AD) and B.) crop (None, Corn) based on 16s rRNA amplicon sequencing. Phyla outside 
of the ten most abundant were grouped under “Others”. 
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Figure 12: Relative frequencies of the dominant prokaryotic genera according to A.) treatment 
(No AD, AD) and B.) crop (None, Corn) based on 16s rRNA amplicon sequencing. Genera 
outside of the ten most abundant were grouped under “Others”. 

3.4.3 Eukaryotic Alpha and Beta Diversity 

Analysis of the alpha diversity indices for the eukaryotic population revealed a stable community 

in terms of richness (Shannon’s Index) and evenness (Pielou’s) (Table B 2). Two-sample 

Wilcoxon Signed Rank test was used to identify significant differences in Shannon-Weiner 

diversity index and Pielou’s evenness between treatment application (No AD, AD) and crop 

planting (None, Corn) (Table B 3). The Kruskal-Wallis test was used to identify and model 

significance for shifts due to sampling time, and Conover’s pair-wise rank comparison post-hoc 

test was employed if an overall model significance was identified. No significant differences (P 

> 0.05) were identified for the eukaryotic richness and evenness with both AD application and 

corn growth (Figure 13A/B, Figure 14A/B).  Community richness did see several significant 

deviations from the mean, with April, late July, and late August samplings (Figure 13C). Results 

from Conover’s post-hoc indicated that April sampling significantly differed from March, late 

July, late August, and September samplings. Evenness analysis across sampling times revealed 
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no significant differences throughout the year (Figure 14C). Weighted UniFrac distances (beta 

diversity metric) showed no significant group formation, and therefore, no significant shift in 

overall community diversity at the eukaryotic level (Figure B 1B). 

 
Figure 13: Alpha diversity indices for the eukaryotic population based on Shannon-Weiner 
richness (A, B, C) for digestate treatment, planting, and sampling time. The significance codes: 0 
‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
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Figure 14: Alpha diversity indices for the eukaryotic population based on Pielou’s Evenness (A, 
B, C) for digestate treatment, planting, and sampling time. The significance codes: 0 ‘***’0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 

3.4.4 Eukaryotic taxonomic composition 

ITS rRNA amplicon sequencing utilizing the United database revealed nearly identical dominant 

phyla as those identified in Chapter 2, including Eukaryota Incertae sedis (uncertainty 

taxonomic group), Ascomycota, Basidiomycota, Fungi unassigned, and Fungi Incertae sedis 

(uncertainty taxonomic group) (Figure 15A/B, Table B 4). The abundance of Basidiomycota and 

the population of unclassified eukaryotes increased significantly with the application of AD from 

2.4% to 3.9% (Basidiomycota) and 13.1% to 18.6% (Unassigned) when compared to the no AD 

control (Table B 5). Eukaryota Incertae sedis was, again, the most abundant, showing a 

significant decrease with AD application from 70.2% to 65.5%. All other phyla saw no 

significant change due to AD application. Corn planting the same trend, with Basidiomycota and 

Unassigned increasing from 2.7% to 3.9% and 15.1% to 18.2%, respectively, and Eukaryota 

Incertae sedis decreasing from 69.1% to 65.2%. All other phyla remained unaffected by crop 
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planting. The only phyla to display shifts due to time of year (sampling time) was 

Basidiomycota, increasing significantly during May and early June to 8.4% and 4.0% when 

compared to November sampling, where the phyla made up 1.8% of the population. 

The dominant eukaryotic genera were identified as Eukaryota Incertae sedis, Fusarium, 

Inocybe, Plectosphaerella, Fungi unassigned, Alternaria, Amphinema, Russula, Clavulina, and 

Cortinarius (Figure 16A/B). Inocybe and Alternaria abundance saw significant increases in 

population with AD application, with percentage values decreasing from 2.2% to 3.7% and 

0.02% to 0.19%, respectfully (Table B 6). A decrease in abundance was also observed for 

Plectosphaerella, decreasing from 2.2% to 1.1%. Once again, the same trend was observed with 

crop planting, resulting in significant increases for Inocybe and Cortinarius, and a decrease in 

Eukaryota Incertae sedis. Sampling time resulted in an increase in Inocybe abundance when 

comparing November and May, while a decrease was observed for Plectosphaerella between 

November and April. No other genera saw significant shifts from AD, corn planting, or sampling 

time. 
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Figure 15: Relative frequencies of the dominant eukaryotic phyla according to treatment (No 
AD, AD) and crop (None, Corn) based on 16s rRNA amplicon sequencing. Phyla outside of the 
ten most abundant were grouped under “Others”. 
 

 
Figure 16: Relative frequencies of the dominant eukaryotic genera according to treatment (No 
AD, AD) and crop (None, Corn) based on ITS rRNA amplicon sequencing. Genera outside of the 
ten most abundant were grouped under “Others”. 
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3.4.5 Soil Properties 

All data analysis for soil properties data was performed using RStudio. Data was compared to 

identify any significant changes in levels due to treatment application, crop planting, or time of 

year (Table B 7, Table B 8). Within the study, the AD-treated and non-AD-treated soils remained 

consistent in pH levels, with no significant difference (Wilcoxon, P = 0.87) being identified 

throughout the duration of the field testing (Figure 17A). The same trend was observed for pH 

with crop planting and sampling time (time of year), with mean pH staying at a value of 

approximately 6.7 (Figure 17B/C). EC was not influenced by treatment type (P = 0. 10); 

however, EC levels did see fluctuations with crop planting (P < 0.001), with a mean EC 

measurement of 114.65 µS with no crop and 191.4 µS with crops. (Figure 18A/B) Time of year 

also influenced EC (P < 0.001), with most observed differences occurring when comparing 

summer months to February and March (Figure 18C). Sufficiency levels of available nutrients 

(SLAN) did not significantly fluctuate due to any of the treatment factors (Figure 19). 
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Figure 17: Shifts in pH levels of soil based on A.) AD treatment, B.) crop planting, and C.) time 
of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
 

 
Figure 18: Shifts in electrical conductivity (EC) levels of soil based on A.) AD treatment, B.) 
crop planting, and C.) time of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘’ 1. 
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Figure 19: Shifts in SLAN levels of soil based on A.) AD treatment, B.) crop planting, and C.) 
time of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 

3.4.6 Soil Nutrients 

Changes in soil nutrient levels were analyzed using pairwise comparison for treatment, crop, and 

sampling time effects. From these results, it was found that the amount of total carbon (TC) in 

the soil was not impacted by the treatment type as no significant changes (P = 0.72) were 

identified between No-AD and AD treated samples (Figure 20A, Table B 9). This was true of TC 

for crop planting and sampling time effects as well, with the measured levels remaining 

relatively constant throughout the duration of the study, with a mean value of 1.23±0.34 wt% 

(Figure 20B/C, Table B 10). Both total hydrogen (TH) and total sulfur (TS) experienced shifts 

with treatment, crops, and sampling time. TH decreased with AD application and crop planting, 

with the overall mean shifting from 1.10±0.50 wt% to 0.59±0.22 wt% and 0.60±0.21 wt%, 

respectively (Figure 21A/B, Table B 9,Table B 10). The overall model for the analysis of 

changes due to time of year showed significance for TH; however, further pairwise comparisons 
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did not indicate any significant changes between months (Figure 21C). TS followed an opposite 

trend to that of TH, resulting in increases after AD application and crop planting from 5.48±1.17 

ppm to 6.93±1.36 ppm and 5.94±1.23 ppm to 7.07±1.38 ppm (Figure 22A/B, Table B 9, Table B 

10). Regarding sampling times, TS differed significantly from March to May, late June, and 

early July samplings, where it increased from a mean of 5.30 ppm to 7.47-8.06 ppm (Figure 22). 

After early July sampling, the TS levels steadily decreased for the remainder of the study. Total 

nitrogen (TN) experienced no significant shifts due to AD application; however, a significant 

increase in TN was observed with corn growth from a mean of 7.83±4.85 mg-N/L to 12.65±4.84 

mg-N/L (Figure 23A/B, Table B 9, Table B 10). TN followed an increasing trend during the 

growing months, with higher levels being measured in May (17.13±3.13 mg-N/L) following AD 

application and late July (14.27±1.23) after fertilization with UAN. After August sampling, TN 

levels in the soil began to decrease (Figure 23C). 

 
Figure 20: Shifts in total carbon (TC) levels in soil based on A.) AD treatment, B.) crop planting, 
and C.) time of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
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Figure 21: Shifts in total hydrogen (TH) levels in soil based on A.) AD treatment, B.) crop 
planting, and C.) time of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 
1. 
 

 
Figure 22: Shifts in total sulfur (TS) levels in soil based on A.) AD treatment, B.) crop planting, 
and C.) time of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
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Figure 23: Shifts in total nitrogen (TN) levels in soil based on A.) AD treatment, B.) crop 
planting, and C.) time of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 
1. 

The minerals analyzed for shifts in levels due to field treatment and sampling time were 

phosphorous (P) (Figure 24) and potassium (K) (Figure 25). Both minerals showed no significant 

changes due to AD application, crop planting, or sampling time, with mean values remaining 

around 2.27±1.02 ppm and 84.25± 22.09 ppm, respectfully (Table B 9, Table B 10). 
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Figure 24: Shifts in phosphorous (P) levels in soil based on A.) AD treatment, B.) crop planting, 
and C.) time of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 
 

 
Figure 25: Shifts potassium (K) levels in soil based on A.) AD treatment, B.) crop planting, and 
C.) time of year. The significance codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. 

RDA was performed to determine the relationships between the dominant prokaryotic 

and eukaryotic phyla and the environmental conditions (soil properties and nutrients). RDA for 

the prokaryotic community found the first two axes explain 19.98% and 7.87% of the total 
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variation in prokaryotic data. Significance testing (ANOVA) found that TN and K were 

significant terms in the model; however, no strong relationship between those parameters and 

dominant phyla could be determined (Figure 26). The first two axes of RDA explain 16.09% and 

9.87% of the total variation in the eukaryotic data (Figure 27). Significance testing (ANOVA) 

revealed no model significance, and therefore no significant parameters contributing to the 

bacterial community-environment relationship. However, the magnitude of the contributions can 

be analyzed and related to the dominant phyla. Ascomycota shows a strong positive correlation to 

TN, while other phyla show little correlation to any environmental parameter.  

 
Figure 26: Redundancy Analysis (RDA) ordinate plot for the relationships between prokaryotic 
phyla and soil properties. Black arrows indicate the direction and magnitude of environmental 
parameters. 
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Figure 27: Redundancy Analysis (RDA) ordinate plots for the relationships between eukaryotic 
phyla and soil properties. Black arrows indicate the direction and magnitude of environmental 
parameters. 

At the genus level, RDA analysis uncovered further relationships between dominant 

prokaryotic and eukaryotic genera and environmental parameters. Parameters considered 

included pH, electrical conductivity, temperature, carbon, hydrogen, nitrogen, sulfur, potassium, 

and phosphorous. RDA for the prokaryotic community found the first two axes explain 20.06% 

and 11.35% of the total variation in prokaryotic data. Significance testing (ANOVA) did not find 

the model to be significant; however, positive correlations were found for Vicinamibacterales 

uncultured and P, Chloroflexi-KD4-96 and TC, and Nocardioides with TN and air temperature 

(Figure 28). For the eukaryotic community, the first two axes explain 24.60% and 14.00% of the 

variation in the data. The model was found to be significant, with K being a significant term in 

the model. K was positively correlated with Plectosphaerella, with TC having a negative 

correlation (Figure 29). TH was positively correlated to Fusarium, which had a negative 

relationship with EC, temperature, S, and P. 
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Figure 28: Redundancy Analysis (RDA) ordinate plots for the relationships between prokaryotic 
genera and soil properties. Black arrows indicate the direction and magnitude of environmental 
parameters. 
 

 
Figure 29: Redundancy Analysis (RDA) ordinate plots for the relationships between eukaryotic 
genera and soil properties. Black arrows indicate the direction and magnitude of environmental 
parameters. 
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3.5 Discussion 

3.5.1 Effects of Anaerobic Digestate and Planting Alpha and Beta Diversity 

Shifts in community evenness and diversity varied between prokaryotic and eukaryotic 

communities. Both evenness and richness significantly decreased for the prokaryotic community 

with AD application and crop planting. The significant shifts in alpha diversity indices in April 

and late July were consistent with the application of AD and UAN fertilizer, and therefore an 

influx of specific species that may outcompete others or the influx of nutrients allowed fast-

growing bacteria to quickly colonize and outcompete the other bacteria in the area, ultimately 

lowering the diversity observed. The eukaryotic community, however, did not see these changes 

and remained stable in evenness and richness throughout the year-long study. It is important to 

understand that these indices only consider the sheer number of species and overall species 

diversity. They do not consider the specific species within the group, and so only mark a generic 

shift in the population density of the community. Just because these indices did or did not 

significantly differ between treatment, crop, and time of year does not indicate that there were no 

changes within the soil microbial community. At the species level, the number of species 

identified may not significantly differ, but the species that make up that number could shift, as 

evident by the relative abundances calculated for the most prominent phyla. Beta diversity had 

no significant formation of sampling groups when compared between treatments, indicating that 

the application of AD did not result in a change in the ecosystem diversity.  

3.5.2 Effects of Anaerobic Digestate on Microbial Community Composition 

The application of anaerobic digestate to the soil did result in changes in microbial community 

composition for both prokaryotic and eukaryotic populations. As with the results found in 

Chapter 2, the most dominant phylum in in the prokaryotic community throughout the duration 
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of the study was Actinobacteriota, making up ~43% of the prokaryotic population. 

Actinobacteria is a diverse bacterial phylum that proliferates in a wide range of habitats, 

including the rhizosphere and soil (Ul-Hassan & Wellington, 2009). A majority of the 

Actinobacteriota phylum consists of saprophytic species, able to decompose plant and animal 

organic matter, so increases in this phylum could be expected with the application of AD. 

However, within this study no significant change in the phylum was documented. Previous 

studies have found results that both support and conflict with these findings. One study 

documented shifts in Actinobacteria phylum after AD application to soil, while another found  

Actinobacteria to be unaffected (Pathan et al., 2021; Ren et al., 2020). Several Actinobacteria 

genera were identified as dominant within the soil community, including Gaiellales unassigned, 

Actinobacteria unassigned, Gaiellales uncultured, Solirubrobacterales bacterium 67-14, 

Nocardioides. Of these genera, Solirubrobacterales bacterium 67-14 and Nocardioides 

significantly decreased and increased, respectively, with AD application. Shifts in genera but not 

the overall phyla suggests that changes in abundance occurred at lower-taxonomic levels. 

Proteobacteria followed an increasing trend in abundance with the application of AD, 

making up ~18-19% of the community composition. Similar studies that observed the impact of 

manure fertilization on microbial communities found the same increasing trend with application 

(W. Li et al., 2020). This same study was able to correlate increases in Proteobacteria to carbon 

metabolism, and, with the influx of organic matter into the environment with AD application, 

these bacteria were able to proliferate with the available carbon input. The Xanthobacteraceae 

family was the most abundant of the Proteobacteria identified, which interestingly declined in 

abundance with AD application. This decline is unpredicted, as Xanthobacteraceae is a versatile 

family of aerobic chemoheterotrophs and facultative chemolithoautotrophy, as well as nitrogen 
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fixation, so should theoretically be able to adjust to environmental changes relatively quickly (A. 

Oren, 2014). 

Chloroflexi is a common resident of the soil microbial community, making up about 

6.1% of the prokaryotic community in this study. This phylum experienced the largest shift with 

AD application when compared to the dominant phyla, experiencing a 13.3% decrease in 

population. Its most dominant genus was identified as Chloroflexi-KD4-96, which remained 

unaffected by digestate application, indicating other, less dominant taxonomies shifted. The large 

decrease in phylum population does not align with previous studies; however, the lack of change 

in the dominant genera does (Ren et al., 2020). This study found that Chloroflexi was largely 

unaffected by AD application. The genus Chloroflexi-KD4-96 is commonly found in soil; 

however its exact role is still unknown (Kujala et al., 2018). 

Firmicutes significantly increased with digestate application, making up 5.81% of the 

population. This phylum is considered oligotrophic, and thus is fast growing and able to adjust 

quickly to nutrient influxes. This is consistent with results from previous studies that observed 

increases in the abundance of Firmicutes with AD application (Ren et al., 2020). The dominant 

genus identified within this phylum was Bacillus which followed the same trend with an increase 

in abundance after AD application. This change could also be related to UAN fertilization, as the 

abundance of the genus peaked in late July following application. This is also consistent with 

results from (Ren et al., 2020). 

The eukaryotic community was largely unidentified, so conclusions as to how the 

community was impacted by treatment, crop, and sampling time are limited. The eukaryotic 

population had a large increase in the abundance of the Basidiomycota phylum with AD 

application. As elaborated on in Chapter 2, this phylum makes up approximately one third of all 
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fungi, and contains five of the dominant eukaryotic genera identified in this study, including 

Inocybe, Amphinema, Russula, Clavulina, and Cortinarius (Taylor et al., 2015b). Inocybe and 

Cortinarius were the only genera to experience changes in abundance due to field treatment. 

Both genera are classified as mycorrhizal fungi, meaning they form symbiotic associations with 

host plants. Basidiomycota taxa are often referred to as wood-decaying fungi, serving in 

breaking-down the lignin in plant cell walls (Bentil, 2021). Observed increases in this phylum 

and associated genera could be related to the influx of organic matter via AD application as well 

as root establishment by corn (Li et al., 2021). Additionally, studies into the dominant fungal 

species found within digesters found populations of Basidiomycota (D. Young et al., 2018). 

Taking this into consideration, the significant increase in Basidiomycota fungi after the 

application of AD could be attributed to a population found within the digestate. Ascomycota is 

the most diverse fungal phylum, with the most abundant genus in this study being Fusarium 

(Taylor et al., 2015a). Fusarium is a pathogenic fungus that poses a major concern for food and 

feed globally (Thrane, 2014). It is the most commonly reported disease infecting corn, where it 

can result in severe stalk rot and wilting (L. Oren et al., 2003). Although no significant shifts in 

population abundance was observed for this phylum, its persistence is important to note due to its 

pathogenic background. It was also found from RDA, that Ascomycota has a strong correlation to 

nitrogen levels, which is substantiated by its role in nitrogen cycling (Nelson et al., 2015). 

3.5.3 Effects of Corn Growth on Microbial Community Composition 

Actinobacteria followed the same trend with crop planting and growth as seen with digestate 

application; there was no change in the phylum population abundance. However, again similarly 

to the AD treatment scenario, Actinobacteria unassigned and Nocardioides significantly 

increased with corn planting. Past studies have established positive correlations between plant 



 71 

growth and Actinobacteria abundance, with this phylum being described as plant growth 

promoting and disease suppressing (Sapp et al., 2015).  

Acidobacteriota is an extremely abundant and common phylum in soil environments, 

primarily classified by heterotrophic metabolism with a large role in carbon cycling (Sapp et al., 

2015). Within this study, a significant decrease in the phylum was observed with corn growth. 

This may be attributed to the mid-July UAN fertilization event. A previous study found that 

application of liquid UAN resulted in decreases in abundance for Acidobacteriota (Ren et al., 

2020). This is explained by the copiotrophic hypothesis. With nitrogen influx, the copiotrophic 

groups (fast growth rates) are able to quickly adjust to the nutrient-rich environment, while the 

oligotrophic groups (slow growth rate, i.e. Acidobacteriota) are unable to adjust to the change as 

quickly, and as a result, decline (Ren et al., 2020). 

Myxococcota significantly decreased with crop planting, showing its lowest abundance in 

May immediately following planting. Myxococcota is a very unique prokaryotic phylum due to 

its predation capabilities and fruiting body formation (L. Li et al., 2023). The decline in 

population with crop planting is interesting for a predatorial phylum, as this capability should 

theoretically make the bacterial resistant. However, this type of bacteria is known to have pack-

like predatory behavior, so an adverse event that causes a sharp decline may be hard for the 

phylum to recover with less opportunity for socialization (L. Li et al., 2023). No previous studies 

were able to be found documenting shifts due to planting and crop growth associated with 

Myxococcota. 

Planctomycetota experienced a significant decrease in response to crop planting and 

growth. This phylum is often associated with a diverse set of role in the nitrogen cycle, so a 
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decrease in the population during the growing season is interesting with the influx of nitrogen 

from fertilization (Vourlitis et al., 2024). 

Eukaryotic community shifts following planting and crop growth followed the same trend 

in community shifts seen with AD application. 

3.5.4 Effects of Anaerobic Digestate and Planting on Soil Properties 

The soil pH and SLAN levels were not impacted by AD application, corn growth, or time of 

year. The pH levels remained within the optimum range (6.0-7.0) for corn growth and nutrient 

availability (Assessing Nutrient Availability for Corn, 2021). SLAN values were acceptable, with 

mean values depending on treatment and growth staying around 100-117. This indicates that the 

soil falls into the “moderate activity” range (76-200) for soil biological activity related to the 

levels of available nutrients in soil. Electrical conductivity did see significant increases with both 

AD application and corn growth. Studies have shown positive correlations with this parameter 

between crop yield, soil water content, and soil texture (Johnson et al., 2005; Stadler et al., 

2015). Other studies show varying results on changes in soil property levels when treated with 

digestate, with one study seeing significant differences in EC levels (Gómez-Brandón et al., 

2016). 

3.5.5 Effects of Anaerobic Digestate and Planting on Soil Nutrient Levels 

The amount of total carbon was not impacted by the treatment type as no significant changes (P 

= 0.72) were identified between No-AD and AD treated samples. Total nitrogen (TN), again saw 

no significant change (P= 0.79) after AD application, suggesting that AD application will not 

contribute to over-nitrification of the ecosystem; however, it did see higher levels in months 

directly after AD application and UAN fertilizer application. Total hydrogen (TH) indicated a 

significant shift (P= 0.002) in levels, seeing a decrease after AD was applied. This could be 
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caused by an increase in microbes that utilize H2 as an electron donor in respiration, including 

Acetogens and Methanogens, resulting in a decrease in hydrogen faster than it can be replaced 

(Piché-Choquette & Constant, 2019). Overall, these results indicate that the application of 

digestate had little significant impact on the associated soil properties. This could be due to soil 

stabilization over time, as the study field had been treated with digestate each growing season for 

8 years prior. One study found that digestate application resulted in few significant differences in 

soil nutrient levels, with changes in the microbial community occurring at a faster rate than 

nutrient levels (Odlare et al., 2008). This could be attributed to shifts in clade diversity while 

guild diversity remains intact. Further analysis into the metabolisms of the dominant species 

could reveal more thoroughly the reasoning for the lack of soil property shifts. 

3.6 Conclusion 

In this study, the effects of anaerobic digestate application and corn planting in a year-round field 

test were evaluated through microbial analysis and soil property and nutrient measurements. The 

application of digestate did result in shifts in both prokaryotic and eukaryotic populations; 

however, the overall community richness and evenness only shifted for the prokaryotic 

community. These results were very similar to those observed with corn planting and growth. 

The treatment effects on communities and nutrient levels were most prominent immediately 

following AD application and UAN fertilizer application, most likely due to organic matter and 

nutrient influxes. Nutrient levels within the soil remained stable throughout the study with 

exception to TH and TS levels. Soil microbial communities can be very well-established and 

resilient, meaning that short-term changes in soil treatment may not result in significant changes 

within the soil, so the continuation of this research will be beneficial in establishing a long-term 

trend in microbial community composition and structure. Establishing a true control within the 
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field design may also be beneficial to monitor the isolated effect of year-round microbial cycles 

related to weather and life-cycle behaviors. 
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

Soil is a fundamental aspect in ensuring global access to food, economic growth, and 

environmental sustainability. By implementing sustainable and nourishing agricultural practices, 

soil and its associated micro-environment can be preserved for continued use. Understanding and 

complementing beneficial soil dynamics biologically, chemically, and physically is essential in 

this preservation. This thesis aimed to address the knowledge gaps that exist in the understanding 

of the relationship between soil microbial communities and more sustainable agricultural 

practices. 

This research demonstrates that fumigation and fertilization, both AD and chemical 

fertilizers, effect the soil microbial community by triggering significant shifts for the bacterial 

and fungal communities. Cover crop planting to recurve fumigation effects did not show 

anticipated results, with very few significant shifts in the community observed for all cover crop 

types. Within these results, it is important to note that pathogenic taxa, including Fusarium, 

Verticillium, and Pythium, did not see significant changes with any of the treatments. This has 

both positive and negative implications, as with the fumigation treatments, it is hoped that 

pathogens will be eliminated or severely reduced in their abundance. However, no significant 

change in pathogen abundance with AD application is positive, as it indicates that application 

does not have the potential of stimulating pathogen growth. Soil property and nutrient analysis 

showed very few changes of note. However, small fluctuations were observed with TN levels 

peaking directly following AD application and UAN fertilizer application.  

Overall, the results of this work demonstrate a proof of concept for continued research into 

these areas. Soil is an extremely resilient ecosystem, so establishing long-term research is 
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essential in understanding and uncovering the dynamics of the soil and responses to 

environmental change and stressors. 

4.2 Future Work 

Work into cover crops and their ability to recurve fumigation effects as well as community 

changes due to digestate application should be continued to establish the long-term trends in 

microbial shifts. With any field study there are many uncontrolled variables due to 

environmental variance. Because of this, field tests benefit from long-term studies. The longer a 

study is performed, the higher the quality of data collected. This is especially true when looking 

at the cover crop aspect of Chapter 2. During the 2021-2022 winter growing-season, 

environmental conditions were not ideal for optimized cover crop growth, impacting the rooting 

of the plants and therefore the change, or lack thereof, in community composition and structure. 

By continuing this research for multiple years, an overall trend can be established, especially as 

it pertains to the environmental factors, and one can more confidently draw conclusions about 

the potential of cover crops as a sustainable means of soil health recovery. Future work should 

also explore further the metabolic classification of the microbial community and how the 

dominant metabolic pathways shift with treatment and time. By understanding the metabolisms 

involved and how they relate to soil health and crop growth and yield, one can optimize soil 

conditions to promote the establishment of certain microbes for the benefit of the soil and 

economic profitability of the field. 
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APPENDIX A: CHAPTER 2 SUPPLEMENTARY DATA 

Table A 1: Diversity metrics of microbial communities based on fumigation, cover crop, and 
potato treatment* 

Treatment Sequencing Sample 
ID Shannon a Pielou's b 

Fumigation 

16S rRNA 

No Fum 9.002 0.879 
MS 8.914 0.876 
1,3-D 9.065 0.880 
MS+1,3-D 8.916 0.874 

ITS rRNA 

No Fum 5.990 0.706 
MS 5.738 0.691 
1,3-D 5.901 0.696 
MS+1,3-D 5.140 0.629 

Cover Crop 

16S rRNA 

No Cover 9.008 0.877 
Mustard 8.949 0.877 
Pea 8.978 0.878 
Radish 8.953 0.876 
Wheat 8.978 0.878 

ITS rRNA 

No Cover 5.652 0.677 
Mustard 5.613 0.669 
Pea 5.714 0.685 
Radish 5.613 0.675 
Wheat 5.863 0.697 

Potato 
16S rRNA 

Before Potato 9.121 0.880 
After Potato 8.865 0.875 

ITS rRNA 
Before Potato 5.898 0.696 
After Potato 5.539 0.669 

a. Shannon’s index (richness of the microbial community).  
b. Pielou's evenness (evenness of the microbial community)  
*. Data in this table are the average of four replicates.  
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Table A 2: P-values for the comparison of the alpha diversity index for microbial communities 
between fumigation treatments* 

Microbial 
Alpha 

diversity 
index 

Model 
Significance 

NoFum vs 
MS 

NoFum vs 
1,3-D 

NoFum vs 
MS+1,3-D 

Bacteria 
Shannon . 0.6018 0.5556 0.81 
Pielou’s ** 0.1365 0.9897 0.0182 

Eukaryote 
Shannon ** 0.708 0.98 0.0029 
Pielou’s ** 0.926 0.9749 0.0103 

Comparison Methods ANOVA a Pairwise Comparison (Tukey's HSD) 
*. Data in this table was calculated by R 
software. 

   

a. The significance. codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.  

 

Table A 3: P-values for the comparison of the alpha diversity index for microbial communities 
between cover crop treatments* 

Microbial 
Alpha 

diversity 
index 

Model 
Significance 

NoCover vs 
Mustard 

NoCover vs 
Pea 

NoCover vs 
Radish 

NoCover vs 
Wheat 

Bacteria 
Shannon  0.9402 0.9949 0.9568 0.9388 
Pielou’s  0.9999 0.9898 0.9881 0.9873 

Eukaryote 
Shannon   0.9999 0.9993 1.0000 0.933 
Pielou’s  0.9987 0.9985 1.0000 0.9496 

Comparison Methods ANOVA a Pairwise Comparison (Tukey's HSD) 
*. Data in this table was calculated by R 
software. 

    

a. The significance. codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.   

 

Table A 4: P-values for the comparison of the alpha diversity index for microbial communities 
between sampling time (before/after potato planting)* 

Microbial 
Alpha 

diversity 
index 

ANOVA a 
(P value) 

Bacteria 
Shannon 3.5e-07 *** 
Pielou’s 0.00094 *** 

Eukaryote 
Shannon 0.039 * 
Pielou’s 0.14 

*. Data in this table was calculated by R software. 
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Table A 5: The abundance of the microbial community at the phylum level for fumigant treated 
soil* 

Gene 
Sequencing Microbial Phylum 

Fumigation (Relative abundance %) 
NoFum MS 1,3-D MS+1,3-D 

16 S rRNA Bacteria 

Actinobacteriota 39.03 41.96 39.95 45.31 
Chloroflexi 5.93 6.10 6.35 6.64 
Acidobacteriota 7.48 6.14 6.80 5.42 
Gemmatimonadot
a 

6.24 7.31 6.54 7.93 

Unassigned 2.14 2.11 2.28 2.48 
Proteobacteria 22.55 21.13 21.44 18.74 
Planctomycetota 2.39 2.28 2.41 1.95 
Myxococcota 3.06 2.57 2.75 2.35 
Bacteroidota 1.32 1.26 1.54 1.12 
Firmicutes 6.31 5.99 6.60 5.56 
Patescibacteria 0.93 0.97 0.83 0.72 
Verrucomicrobiot
a 

1.01 0.81 0.98 0.70 

Cyanobacteria 0.41 0.38 0.47 0.31 
Others 1.20 0.98 1.06 0.77 

Total 100.0 100.0 100.0 100.0 

ITS rRNA Eukaryote 

Eukaryota 
Incertae sedis 

87.83 88.90 87.29 92.71 

Ascomycota 11.41 10.65 11.86 6.93 
Basidiomycota 0.77 0.44 0.84 0.36 
Unassigned 0.00 0.01 0.00 0.00 
Total 100.0 100.0 100.0 100.0 

*. Data in this table are the average of four replicates.    
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Table A 6: The abundance of the microbial community at the phylum level for cover crop treated 
soil* 

Gene 
Sequencing Microbial Phylum 

Cover Crop (Relative abundance %) 
No Cover Mustard Pea Radish Wheat 

16 S rRNA Bacteria 

Actinobacteriota 41.8 42.3 42.5 41.1 40.4 
Chloroflexi 6.49 6.13 6.58 6.03 6.06 
Acidobacteriota 6.60 6.26 6.39 6.13 6.86 
Gemmatimonadota 7.00 7.53 7.19 6.75 6.65 
Unassigned 2.25 2.28 2.31 2.17 2.27 
Proteobacteria 20.7 20.4 20.3 21.7 21.7 
Planctomycetota 2.22 2.32 2.28 2.18 2.28 
Myxococcota 2.61 2.74 2.65 2.67 2.75 
Bacteroidota 1.27 1.35 1.08 1.39 1.48 
Firmicutes 6.00 5.74 5.63 6.76 6.35 
Patescibacteria 0.88 0.79 0.88 0.85 0.90 
Verrucomicrobiota 0.85 0.89 0.83 0.92 0.90 
Cyanobacteria 0.38 0.36 0.41 0.42 0.39 
Others 1.04 0.94 1.03 0.98 1.03 

Total 100.0 100.0 100.0 100.0 100.0 

ITS rRNA Eukaryote 

Eukaryota Incertae sedis 90.02 90.03 89.77 86.36 89.86 
Ascomycota 9.36 9.26 9.78 13.15 9.37 
Basidiomycota 0.61 0.71 0.45 0.48 0.77 
Unassigned 0.00 0.00 0.00 0.01 0.00 

Total 100.0 100.0 100.0 100.0 100.0 
*. Data in this table are the average of four replicates.     
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Table A 7: P values for the comparison of the dominant phyla abundances for microbial 
communities between fumigation treatments* 

Microbial Phylum Model 
Significance 

NoFum vs 
MS 

NoFum vs 
1,3-D 

NoFum vs 
MS+1,3-D 

Bacteria 

Actinobacteriota  0.7773 0.7116 0.1000 
Chloroflexi  0.9993 0.3446 0.3057 
Acidobacteriota *** 0.0387 0.9391 0.0024 
Gemmatimonadota  0.6541 0.8717 0.0847 
Unassigned * 0.9479 0.4436 0.2122 
Proteobacteria . 0.8161 0.9982 0.1027 
Planctomycetota ** 0.7518 0.7673 0.0304 
Myxococcota  0.3079 0.9450 0.0904 
Bacteroidota  0.9993 0.3917 0.8920 
Firmicutes  0.9589 0.7407 0.5771 
Patescibacteria  0.9497 0.9536 0.2560 
Verrucomicrobiota ** 0.1474 0.9994 0.0107 
Cyanobacteria  0.9795 0.6690 0.5835 
Others *** 0.2083 1.0000 0.0012 

Eukaryotes 

Eukaryota Incertae 
sedis *** 0.2600 0.4927 0.5155 

Ascomycota ** 0.5585 0.9048 0.0159 
Basidiomycota *** 0.0175 0.2632 0.0071 
Unassigned  0.8153 0.9826 0.9680 

Comparison 
Methods 

 ANOVAa Tukey's HSD 

*. Data in this table was calculated by R software. 
a. The significance. codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.   
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Table A 8: P values for the comparison of the dominant genera abundances for microbial 
communities between fumigation treatments* 

Microbial Phylum Model 
Significance 

NoFum vs 
MS 

NoFum vs 
1,3-D 

NoFum vs 
MS+1,3-D 

Bacteria 

Other  0.9588 0.8900 0.9309 
c_Actinobacteria_unclassified * 0.6680 0.5188 0.0056 
Nocardioides  0.9986 0.7247 0.9940 
Bacillus . 0.9963 0.6094 0.5621 
o_Gaiellales_unclassified  0.9850 0.9524 0.9999 
Gaiellales_uncultured  0.9949 0.9998 0.9969 
f_Gemmatimonadaceae_unclassified  0.3295 0.6165 0.1459 
Sphingomonas  0.9751 0.9883 0.8337 
Gemmatimonadaceae_uncultured . 0.9873 0.9231 0.0818 
f_Micromonosporaceae_unclassified * 0.2182 0.9678 0.0610 
f_Micrococcaceae_unclassified  0.7695 0.9863 0.9988 
Unassigned * 0.9479 0.4436 0.2122 

Eukaryotes 

Eukaryota_gen_Incertae_sedis ** 0.2600 0.4927 0.5155 
Unassigned  0.9993 0.9537 0.6658 
Alternaria *** 0.0042 0.7509 0.0000 
Fusarium  0.9526 0.6596 1.0000 
Plectosphaerella  0.3290 0.4379 0.9869 
Inocybe *** 0.0186 0.1935 0.0076 
Tetracladium  1.0000 0.9969 0.3806 
Russula  1.0000 0.2384 1.0000 
Amphinema  0.5002 0.5680 0.4508 
Pseudotomentella  0.4301 0.9422 0.4301 
Cortinarius  0.6560 0.2556 0.3773 
Other  0.2801 0.9964 1.0000 

Compariso
n Methods  ANOVAa Tukey's HSD 

*. Data in this table was calculated by R software.     
a. The significance. codes: 0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.   
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Table A 9: The abundance of the microbial community at the phylum level for soil before and 
after potato planting* 

Gene 
Sequencing Microbial Phylum 

Potato (Relative 
abundance %) 

No Potato Potato 

16 S rRNA Bacteria 

Actinobacteriota 41.87 41.33 
Chloroflexi 6.11 6.36 
Acidobacteriota 5.73 7.01 
Gemmatimonadota 6.06 7.72 
Unassigned 2.25 2.26 
Proteobacteria 22.0 20.2 
Planctomycetota 2.10 2.38 
Myxococcota 3.22 2.28 
Bacteroidota 1.86 0.90 
Firmicutes 5.46 6.61 
Patescibacteria 0.82 0.89 
Verrucomicrobiota 1.04 0.76 
Cyanobacteria 0.45 0.35 
Others 1.02 0.99 
Total 100.0 100.0 

ITS rRNA Eukaryote 

Eukaryota Incertae 
sedis 90.85 87.93 

Ascomycota 8.42 11.56 
Basidiomycota 0.73 0.51 
Unassigned 0.01 0.00 
Total 100.0 100.0 

*. Data in this table are the average of four replicates.  
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APPENDIX B: CHAPTER 3 SUPPLEMENTARY DATA 

Table B 1: Field sampling and treatment schedule 

Batch Samples Treatment Crop Date Field 
Management 

1 
B1-1, B1-2, B1-3, 
B1-4, B1-5, B1-6, 
B1-7, B1-8, B1-9 

No AD None 11/1/22  

2 
B2-1, B2-2, B2-3, 
B2-4, B2-5, B2-6, 
B2-7, B2-8, B2-9 

No AD None 12/2/22  

3 
B3-1, B3-2, B3-3, 
B3-4, B3-5, B3-6, 
B3-7, B3-8, B3-9 

No AD None 1/12/23  

4 
B4-1, B4-2, B4-3, 
B4-4, B4-5, B4-6, 
B4-7, B4-8, B4-9 

No AD None 2/20/23  

5 
B5-1, B5-2, B5-3, 
B5-4, B5-5, B5-6, 
B5-7, B5-8, B5-9 

No AD None 3/21/23  

6 
B6-1, B6-2, B6-3, 
B6-4, B6-5, B6-6, 
B6-7, B6-8, B6-9 

AD None 4/19/23 AD applied; 
4/11/23 

7 
B7-1, B7-2, B7-3, 
B7-4, B7-5, B7-6, 
B7-7, B7-8, B7-9 

AD Corn 5/15/23 
Corn 

planted; 
5/15/23 

8 
B8-1, B8-2, B8-3, 
B8-4, B8-5, B8-6, 
B8-7, B8-8, B8-9 

AD Corn 6/6/23  

9 
B9-1, B9-2, B9-3, 
B9-4, B9-5, B9-6, 
B9-7, B9-8, B9-9 

AD Corn 6/20/23 
Chemical 
fertilizer; 
6/28/23 

10 

B10-1, B10-2, 
B10-3, B10-4, 
B10-5, B10-6, 
B10-7, B10-8, 
B10-9 

AD Corn 7/7/23  

11 

B11-1, B11-2, 
B11-3, B11-4, 
B11-5, B11-6, 
B11-7, B11-8, 
B11-9 

AD Corn 7/24/23  

12 

B12-1, B12-2, 
B12-3, B12-4, 
B12-5, B12-6, 
B12-7, B12-8, 
B12-9 

AD Corn 8/8/23  
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Table B1 (cont’d) 

13 

B13-1, B13-2, 
B13-3, B13-4, 
B13-5, B13-6, 
B13-7, B13-8, 
B13-9 

AD Corn 8/22/23  

14 

B14-1, B14-2, B14-
3, B14-4, B14-5, 
B14-6, B14-7, B14-
8, B14-9 

AD Corn 9/6/23 
Corn 

harvested; 
9/26/23 

15 

B15-1, B15-2, B15-
3, B15-4, B15-4, 
B15-6, B15-7, B15-
8, B15-9 

AD None 10/18/23   
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Table B 2: Diversity metrics of microbial communities based on digestate application and crop 
planting* 

Treatment Sequencing 
Sample 

Shannon a Pielou's b 
ID 

Anaerobic 
Digestate 

16S rRNA 
No AD 9.820 0.902 

AD 9.540 0.891 

ITS rRNA 
No AD 5.933 0.669 

AD 5.916 0.663 

Crop 
16S rRNA 

No Crop 9.771 0.901 
Corn 9.513 0.890 

ITS rRNA 
No Crop 5.809 0.658 

Corn 6.020 0.671 
*. Data in this table was calculated by R software. 
a. Shannon’s index (richness of the microbial community). 
b. Pielou's evenness (evenness of the microbial community) 

 

Table B 3: Comparison of the alpha diversity index for microbial communities between sampling 
time* 

Microbial Alpha 
diversity index 

No AD vs. 
AD 

No Crop vs. 
Corn 

Bacteria 
Shannon >0.001 >0.001 
Pielou’s >0.001 >0.001 

Eukaryote 
Shannon 0.6558 0.06429 
Pielou’s 0.9907 0.2908 

Comparison Method Wilcoxon Signed Rank Test 
*. Data in this table was calculated by R 
software.  
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Figure B 1: Beta diversity analysis using principal coordinate analysis (PCoA) based on 
weighted UniFrac distances for the prokaryotic (A) and eukaryotic (B) microbial communities 
for digestate treatment. 
 

Table B 4: The abundance of the microbial community at the phylum level for digestate treated 
soil and crop planting 

Gene 
Sequencing  Microbial Phylum 

Fumigation (Relative abundance %) 
No AD AD No Crop Corn 

16 S rRNA Bacteria 

Actinobacteriota 42.65 42.89 41.87 43.63 
Proteobacteria 18.04 19.06 18.71 18.73 
Acidobacteriota 10.77 10.00 10.74 9.83 
Chloroflexi 6.72 5.82 6.38 5.90 
Firmicutes 4.95 5.81 5.30 5.72 
Bacteria_unclassified 3.67 3.45 3.61 3.45 
Verrucomicrobiota 3.22 3.05 3.24 2.99 
Myxococcota 2.59 2.44 2.61 2.38 
Gemmatimonadota 2.25 2.17 2.20 2.19 
Planctomycetota 1.55 1.47 1.57 1.44 
Bacteroidota 1.06 1.29 1.17 1.24 
Others 2.53 2.53 2.58 2.48 
Unassigned 0.01 0.02 0.02 0.02 
Total 100.0 100.0 100.0 100.0 

ITS rRNA Eukaryote 

Eukaryota Incertae sedis 70.23 65.46 69.12 65.24 
Unassigned 13.12 18.58 15.09 18.22 
Ascomycota 13.92 11.84 12.72 12.38 

Basidiomycota 2.37 3.88 2.74 3.93 

Fungi_unassigned 0.36 0.25 0.34 0.24 
Fungi Incertae sedis 0.00 0.00 0.00 0.00 

Total 100.0 100.0 100.0 100.0 
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Table B 5: P values for the comparison of the dominant phyla abundances for microbial 
communities between digestate treatment and crop planting* 

Microbial Phylum No AD vs 
AD 

No Crop vs 
Corn 

Bacteria 

Actinobacteriota 0.9907 0.1332 
Proteobacteria 0.0295 0.9701 
Acidobacteriota 0.0560 0.0427 
Chloroflexi 0.0018 0.1821 
Firmicutes 0.0087 0.2001 
Bacteria_unclassified 0.0757 0.1601 
Verrucomicrobiota 0.1796 0.1413 
Myxococcota 0.1347 0.0161 
Gemmatimonadota 0.9164 0.9595 
Planctomycetota 0.2330 0.0176 
Bacteroidota 0.1130 0.6640 
Others 0.8064 0.4494 
Unassigned 0.2308 0.2333 

Eukaryotes 

Eukaryota Incertae sedis 0.0229 0.0069 
Unassigned 0.0081 0.0053 
Ascomycota 0.1371 0.9525 
Basidiomycota >0.001 0.0017 
Fungi_unassigned 0.7456 0.8375 
Fungi Incertae sedis 0.2207 0.1044 

Comparison Method Wilcoxon Signed Rank Test 

*. Data in this table was calculated by R software.   
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Table B 6: P values for the comparison of the dominant genera abundances for microbial 
communities between digestate treatment and crop planting * 

Microbial Phylum No AD vs 
AD 

No Crop vs 
Corn 

Bacteria 

o__Gaiellales_unassigned 0.3640 0.1190 
Actinobacteria_unassigned 0.1904 0.0292 
Gaiellales__uncultured 0.8794 0.3532 
Bacteria_unassigned >0.001 >0.001 
Vicinamibacterales_uncultured >0.001 0.0352 
KD4-96 0.0757 0.1601 
67-14 0.0065 0.5769 
Nocardioides >0.001 >0.001 
Bacillus 0.0038 0.0788 
Vicinamibacteraceae 0.0476 0.1413 
f__Xanthobacteraceae_unassigned 0.0402 0.0479 
Other 0.3375 0.3671 
Unassigned 0.2308 0.2333 

Eukaryotes 

Eukaryota Incertae sedis 0.0229 0.0069 
Unassigned 0.0082 0.0053 
Fusarium 0.2442 0.9420 
Inocybe >0.001 0.0013 
Plectosphaerella 0.0021 0.3813 
Fungi_unassigned 0.7456 0.8375 
Alternaria >0.001 >0.001 
Amphinema 0.9051 0.6508 
Russula 0.1104 0.6100 
Clavulina 0.4903 0.8143 
Cortinarius 0.1613 0.0025 
Others 0.4377 0.0736 

Comparison Method Wilcoxon Signed Rank Test 

*. Data in this table was calculated by R software.   
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Table B 7: Soil properties for non-AD treated vs. AD treated soil 

Variable No AD 
Mean (±SD) Range AD 

Mean (±SD) Range 

pHa 6.68±0.50 5.50-7.50 6.65±0.58 5.38-7.39 
Electrical 
Conductivity 
(µS/cm) b 

124.42±69.24 41.30-340.20 145.16±78.24 51.09-498.30 

SLANa 116.91±52.04 12.00-242.00 103.81±39.24 12.00-205.00 

a: Value obtained from Daity One Inc.   
b: Value obtained using Thermo Scientific™ Orion Star™ A212 Conductivity Benchtop 
Meter 

 

Table B 8:Soil properties for no crop samples vs. crop samples 

Variable No Crop 
Mean (±SD) Range Corn 

Mean (±SD) Range 

pHa 6.68±0.52 5.50-7.50 6.64±0.59 5.38-7.39 
Electrical 
Conductivity 
(µS/cm) b 

114.64±61.45 41.30-340.20 158.90±81.25 51.09-498.30 

SLANa 106.94±51.89 12.00-242.00 109.26±36.42 35.00-205.00 

a: Value obtained from Daity One Inc.   
b: Value obtained using Thermo Scientific™ Orion Star™ A212 Conductivity Benchtop 
Meter 

 

Table B 9: Soil nutrient composition for non-AD treated vs. AD treated 

Variable 
No AD 
Mean 
(±SD) 

Range 
AD 

Mean 
(±SD) 

Range 

Phosphorous (ppm)a 2.51±1.53 0.90-6.50 2.23±0.89 1.00-6.40 

Potassium (ppm)a 81.62±21.31 39.90-
125.10 88.69±22.18 51.20-143.30 

Carbon (wt%)b 1.26±0.38 0.49-2.05 1.21±0.32 0.73-2.05 
Hydrogen (wt%)b 1.10±0.50 0.36-1.90 0.59±0.22 0.27-1.11 
Nitrogen (mg-N/L)c 8.27±5.02 4.07-23.30 11.47±5.30 1.60-21.82 
Sulfur (ppm)a 5.48±1.17 3.40-7.70 6.93±1.36 3.90-10.50 

a: Value obtained from Dairy One Inc.   
b: Value obtained from Atlantic Microlabs (Norcross, GA)  
c: Value obtained from TNM-L unit (Shimadzu Corporation, Kyoto, Japan) 
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Table B 10:Soil nutrient composition for no crop samples vs. crop samples 

Variable 
No Crop 

Mean 
(±SD) 

Range 
Corn 
Mean 
(±SD) 

Range 

Phosphorous (ppm)a 2.41±1.35 0.90-6.50 2.20±0.80 1.00-5.30 

Potassium (ppm)a 83.03±22.42 39.90-
138.70 89.75±21.74 53.00-143.30 

Carbon (wt%)b 1.26±0.42 0.49-2.05 1.21±0.28 0.76-1.59 
Hydrogen (wt%)b 1.01±0.52 0.27-1.90 0.60±0.21 0.29-1.11 
Nitrogen (mg-N/L)c 7.83±4.85 1.60-23.30 12.65±4.84 3.57-21.82 
Sulfur (ppm)a 5.94±1.23 3.40-8.90 7.07±1.38 3.90-10.50 

a: Value obtained from Dairy One Inc.   
b: Value obtained from Atlantic Microlabs (Norcross, GA)  
c: Value obtained from TNM-L unit (Shimadzu Corporation, Kyoto, Japan) 
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APPENDIX C: RSTUDIO CODE FOR MODELING AND ANALYSIS 

Calculation of Alpha Diversity Metrics 
*Analysis repeated for both 16s and ITS rRNA data 
 
# Load packages 
library(tidyverse) 
library(qiime2R) 
library(ggplot2) 
library(RColorBrewer) 
library(DescTools) 
 
# Read in metadata 
metadata<-read_csv(" file_name", 
                   col_types = cols(.default = col_character())) 
 
# Read in diversity metric vectors from Qiime2 
shannon<-read_qza("shannon_vector.qza") 
pielou<-read_qza("evenness_vector.qza") 
 
# Move the sample names to a new column that matches metadata to all of them to be merged 
shannon<-shannon$data %>% rownames_to_column("sample_ID")  
pielou<-pielou$data %>% rownames_to_column("sample_ID") 
 
# Merge dataframes 
metadata<- 
  metadata %>%  
  left_join(shannon) 
metadata<- 
  metadata %>%  
  left_join(pielou) 
head(metadata) 
 
# Print descriptive statistics for metrics based on factors 
by(metadata, metadata$Factor, stat.desc) 
 
# Check normality assumption 
shapiro.test(metadata$shannon_entropy) 
shapiro.test(metadata$pielou_evenness) 
 
# Pairwise comparison between factor conditions for diversity indices 
wilcox.test(diversity_metric~Factor, data=metadata) 
 
kruskal.test(diversity_metric~Factor, data=metadata) 
ConoverTest(diversity_metric~Factor, method="bonferroni", data = metadata) 
 
 
## Boxplots for Alpha Diversity ------------------------------------------------------------------------------------- 
 
# Shannon Entropy 
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# New data frame for Shannon entropy 
dat_S <- metadata[, c("Factor", "Factor", "Factor", "Factor", "shannon_entropy")] 
dat_S 
 
# Reorder data for plotting 
sample_order <- c("Order in which samples were collected 
") 
treat_order <- c("Order you wish to see factors appear on plot") 
 
dat_S <- dat_S %>% 
  mutate(Sample_Order_Factor = factor(Sample_Order_Factor, levels=sample_order)) 
dat_S <- dat_S %>% 
  mutate(Treatment_Factor= factor(Treatment_Factor, levels=treat_order)) 
 
 
# Shannon Boxplot 
p1<-ggboxplot(dat_S, x = "Factor", y = "shannon_entropy", color="Factor", 
              legend = "none", palette=brewer.pal(n = 8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="Shannon's 
Index")+ 
  geom_hline(yintercept = mean(dat_S$shannon_entropy), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = "Factor_Control",hide.ns = 
TRUE, label.y=11.25,family="Times New Roman") 
p1 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
# Pielou’s Evenness 
# New data frame for Pielou’s Evenness 
dat_P <- metadata[, c("Factor", "Factor", "Factor", "Factor", "pielou_evenness")] 
 
# Reorder data for plotting 
sample_order <- c("Order in which samples were collected 
") 
treat_order <- c("Order you wish to see factors appear on plot") 
 
dat_P <- dat_P %>% 
  mutate(Sample_Order_Factor = factor(Sample_Order_Factor, levels=sample_order)) 
dat_P <- dat_P %>% 
  mutate(Treatment_Factor= factor(Treatment_Factor, levels=treat_order)) 
 
## Pielou’s Boxplot 
P1<-ggboxplot(dat_P, x = "Factor", y = "pielou_evenness", color = "Factor",  
              legend = "none", palette=brewer.pal(n = 8, name = 'Dark2')) + 
  theme( 
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        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="Pielou's 
Evenness")+ 
  geom_hline(yintercept = mean(dat_P$pielou_evenness), linetype = 2 
  stat_compare_means(label = "p.signif", method = "t.test",ref.group = "Factor_Control",hide.ns=TRUE, 
label.y=0.93,family="Times New Roman") 
p1 
 
 
Plotting of Beta Diversity Distance Matrix 
*Analysis repeated for both 16s and ITS rRNA data 
 
# Load packages 
library(tidyverse) 
library(qiime2R) 
library(ggplot2) 
library(RColorBrewer) 
library(DescTools) 
 
# Read in metadata 
metadata<-read_csv("metadata.csv") 
 
# Read in distance matrix from Qiime2 
wunifrac<-read_qza("weighted_unifrac_pcoa_results.qza") 
 
# Plot PCoA 
p1<- wunifrac$data$Vectors %>% 
  dplyr::select(SampleID, PC1, PC2) %>% 
  left_join(metadata) %>% 
  ggplot(aes(x=PC1, y=PC2, color=`Factor1`, shape=`Factor2`)) + 
  geom_point(alpha=0.8) + 
  theme_q2r() + 
  scale_shape_manual(values=c(16,18,8,17,0), name="Factor2") + #see  
  scale_color_brewer(palette = "Set1")+ 
  xlab(paste("PC1",round(100*uwunifrac$data$ProportionExplained[1],2),"%")) + 
  ylab(paste("PC2",round(100*uwunifrac$data$ProportionExplained[2],2),"%")) 
p1 
 
 
Microbial Abundance Plotting and Analysis 
*Analysis repeated for both 16s and ITS rRNA data 
 
# Load packages 
library(paletteer) 
library(ggplot2) 
library(tidyverse) 
library(egg) 
library(RColorBrewer) 
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library(DescTools) 
 
## Phylum Level 
# Read in abundance data 
abundance_table <- read_csv("OTU_Abundance _Table_Phylum.csv", 
                col_types = cols(otu_id = col_character(), 
                                 .default = col_number())) 
 
# Pivot table 
dat <- abundance_table %>% 
  pivot_longer(-otu_id, names_to = "sample_ID", values_to = "count") 
 
# Read in OTU key 
OTU_Taxonomy <- read_csv("OTU_Taxonomy_Table.csv", 
                col_types = cols(.default = "character")) 
 
# Merge abundance and OTU key 
dat <- dat %>% 
  left_join(OTU_Taxonomy, by = "otu_id") 
dat 
 
# Read in metadata 
metadata <- read_csv("metadata.csv", 
                 col_types = cols(.default = col_character())) 
 
# Merge metadata, abundance, and OTU key 
dat <- dat %>% 
  left_join(Meta, by = "sample_ID") 
dat 
 
# Reorder data for plotting 
phyla_order <- c("dominant_phyla_names") 
sample_order <- c("Order in which samples were collected") 
treat_order <- c("Order you wish to see factors appear on plot") 
 
dat <- dat %>% 
  mutate(Phylum = factor(Phylum, levels = phyla_order)) 
dat <- dat  %>% 
  mutate(Sample_Order_Factor = factor(Sample_Order_Factor, levels=sample_order)) 
dat <- dat %>% 
  mutate(Treatment_Factor= factor(Treatment_Factor, levels=treat_order)) 
 
# Plot abundance barchart 
# Create color palette to fit number of phyla 
getPalette = colorRampPalette(brewer.pal(12, "Set3"))(14) 
 
# Plot 
p1<-dat %>% 
  ggplot(aes(x = Factor2, y = count)) + 
  facet_grid(~ Factor1, scales = "free_x", space = "free_x") + 
  geom_bar(aes(fill = Phylum), stat = "identity", position = "fill", width = 0.7) + 
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  scale_fill_manual(values = getPalette)+ 
  scale_y_continuous(name = "Relative Frequency (%)", labels = scales::percent) + 
  theme(axis.text.x = element_text(family="Times New Roman",angle = 90, size = 8), 
        axis.text.y = element_text(family="Times New Roman",color = "black"), 
        axis.title.x=element_blank(), 
        strip.text = element_text(family="Times New Roman",face = "bold"), 
        strip.background = element_blank(),text=element_text(family="Times New Roman", size=12)) 
p1 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Genus Level 
# Read in abundance data 
abundance_table <- read_csv("OTU_Abundance _Table_Genus.csv", 
                col_types = cols(otu_id = col_character(), 
                                 .default = col_number())) 
 
# Pivot table 
dat <- abundance_table %>% 
  pivot_longer(-otu_id, names_to = "sample_ID", values_to = "count") 
 
# Read in OTU key 
OTU_Taxonomy <- read_csv("OTU_Taxonomy_Table_Genus.csv", 
                col_types = cols(.default = "character")) 
 
# Merge abundance and OTU key 
dat <- dat %>% 
  left_join(OTU_Taxonomy, by = "otu_id") 
dat 
 
# Read in metadata 
metadata <- read_csv("metadata.csv", 
                 col_types = cols(.default = col_character())) 
 
# Merge metadata, abundance, and OTU key 
dat <- dat %>% 
  left_join(Meta, by = "sample_ID") 
dat 
 
# Reorder data for plotting 
genus_order <- c("dominant_genera_names") 
sample_order <- c("Order in which samples were collected") 
treat_order <- c("Order you wish to see factors appear on plot") 
 
dat <- dat %>% 
  mutate(Genus = factor(Genus, levels = genus_order)) 
dat <- dat  %>% 
  mutate(Sample_Order_Factor = factor(Sample_Order_Factor, levels=sample_order)) 
dat <- dat %>% 
  mutate(Treatment_Factor= factor(Treatment_Factor, levels=treat_order)) 
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# Plot abundance barchart 
# Create color palette to fit number of genera 
getPalette = colorRampPalette(brewer.pal(12, "Set3"))(14) 
 
# Plot 
p1<-dat %>% 
  ggplot(aes(x = Factor2, y = count)) + 
  facet_grid(~ Factor1, scales = "free_x", space = "free_x") + 
  geom_bar(aes(fill = Genus), stat = "identity", position = "fill", width = 0.7) + 
  scale_fill_manual(values = getPalette)+ 
  scale_y_continuous(name = "Relative Frequency (%)", labels = scales::percent) + 
  theme(axis.text.x = element_text(family="Times New Roman",angle = 90, size = 8), 
        axis.text.y = element_text(family="Times New Roman",color = "black"), 
        axis.title.x=element_blank(), 
        strip.text = element_text(family="Times New Roman",face = "bold"), 
        strip.background = element_blank(),text=element_text(family="Times New Roman", size=12)) 
p1 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Statistical Shifts for Phyla and Genera 
# Read in relative abundance data 
RelAb <- read_csv("RelAbundance_Phylum.csv", 
                col_types = cols(otu_id = col_character(), 
                                 .default = col_number())) 
 
# Pivot table 
dat <- RelAb %>% 
  pivot_longer(-otu_id, names_to = "sample_ID", values_to = "count") 
dat 
 
# Read in OTU key 
OTU_Taxonomy <- read_csv("OTU_Taxonomy_Table_Phylum.csv", 
                col_types = cols(.default = "character")) 
 
# Merge relative abundance and OTU key 
dat <- dat %>% 
  left_join(OTU_Taxonomy, by = "otu_id") 
dat 
 
# Read in metadata 
metadata <- read_csv("metadata.csv", 
                 col_types = cols(.default = col_character())) 
 
# Merge metadata, abundance, and OTU key 
dat <- dat %>% 
  left_join(Meta, by = "sample_ID") 
dat 
 
----------------------------------------------------------------------------------------------------------------------------- 
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# Filter data by dominant phylum 
Phylum1<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum2<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum3<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum4<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum5<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum6<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum7<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum8<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum9<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum10<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum11<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
Phylum12<- dat %>% 
  filter(Phylum=='Phylum_Name') 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
# Test assumptions 
#Normality 
shapiro.test(Phylum1$count) 
shapiro.test(Phylum2$count) 
shapiro.test(Phylum3$count) 
shapiro.test(Phylum4$count) 
shapiro.test(Phylum5$count) 
shapiro.test(Phylum6$count) 
shapiro.test(Phylum7$count) 
shapiro.test(Phylum8$count) 
shapiro.test(Phylum9$count) 
shapiro.test(Phylum10$count) 
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shapiro.test(Phylum11$count) 
shapiro.test(Phylum12$count) 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
# If assumptions are satisfied, parametric test method 
t.Phylum1<-t.test(count ~ Factor1, data = Phylum1, var.equal=FALSE) 
t.Phylum1 
 
t.Phylum2<-t.test(count ~ Factor1, data = Phylum2, var.equal=FALSE) 
t.Phylum2 
 
t.Phylum3<-t.test(count ~ Factor1, data = Phylum3, var.equal=FALSE) 
t.Phylum3 
 
t.Phylum4<-t.test(count ~ Factor1, data = Phylum4, var.equal=FALSE) 
t.Phylum4 
 
t.Phylum5<-t.test(count ~ Factor1, data = Phylum5, var.equal=FALSE) 
t.Phylum5 
 
t.Phylum6<-t.test(count ~ Factor1, data = Phylum6, var.equal=FALSE) 
t.Phylum6 
 
t.Phylum7<-t.test(count ~ Factor1, data = Phylum7, var.equal=FALSE) 
t.Phylum7 
 
t.Phylum8<-t.test(count ~ Factor1, data = Phylum8, var.equal=FALSE) 
t.Phylum8 
 
t.Phylum9<-t.test(count ~ Factor1, data = Phylum9, var.equal=FALSE) 
t.Phylum9 
 
t.Phylum10<-t.test(count ~ Factor1, data = Phylum10, var.equal=FALSE) 
t.Phylum10 
 
t.Phylum11<-t.test(count ~ Factor1, data = Phylum11, var.equal=FALSE) 
t.Phylum11 
 
t.Phylum12<-t.test(count ~ Factor1, data = Phylum12, var.equal=FALSE) 
t.Phylum12 
 
# If factor has more than 2 levels use ANOVA for parametric 
aov.Phylum<-aov(count~Factor1*Factor2, data = Phylum) 
summary(aov.Phylum) #sig difference for fumigation 
 
# If ANOVA found to be significant for one or more factors 
hsd_test <- TukeyHSD(aov.Phylum,which="Factor1") 
hsd_test 
 
----------------------------------------------------------------------------------------------------------------------------- 
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# If assumptions not satisfied, non-parametric test method 
# Wilcoxon Signed Rank test for 2 level 
wilcox.Phylum1<-wilcox.test(count ~ Factor1, data = Phylum1) 
wilcox.Phylum1 
 
wilcox.Phylum2<-wilcox.test(count ~ Factor1, data = Phylum2) 
wilcox.Phylum2 
 
wilcox.Phylum3<-wilcox.test(count ~ Factor1, data = Phylum3) 
wilcox.Phylum3 
 
wilcox.Phylum4<-wilcox.test(count ~ Factor1, data = Phylum4) 
wilcox.Phylum4 
 
wilcox.Phylum5<-wilcox.test(count ~ Factor1, data = Phylum5) 
wilcox.Phylum5 
 
wilcox.Phylum6<-wilcox.test(count ~ Factor1, data = Phylum6) 
wilcox.Phylum6 
 
wilcox.Phylum7<-wilcox.test(count ~ Factor1, data = Phylum7) 
wilcox.Phylum7 
 
wilcox.Phylum8<-wilcox.test(count ~ Factor1, data = Phylum8) 
wilcox.Phylum8 
 
wilcox.Phylum9<-wilcox.test(count ~ Factor1, data = Phylum9) 
wilcox.Phylum9 
 
wilcox.Phylum10<-wilcox.test(count ~ Factor1, data = Phylum10) 
wilcox.Phylum10 
 
wilcox.Phylum11<-wilcox.test(count ~ Factor1, data = Phylum11) 
wilcox.Phylum11 
 
wilcox.Phylum12<-wilcox.test(count ~ Factor1, data = Phylum12) 
wilcox.Phylum12 
 
# If factor has more than 2 levels use Kruskal for non-parametric 
kruskal.Phylum<-kruskal.test(count~Factor2, data = Phylum) 
kruskal.Phylum  
 
# If Kruskal test found to be significant 
ConoverTest(count~Factor2, method="bonferroni", data = Phylum) 
 
 
Soil Properties Descriptive Statistics and Analysis 

 
# Load packages 
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library(pastecs) 
library(DescTools) 
library(ggplot2) 
 
## Soil Properties Data 
## Read in meta data containing soil properties 
metadata<-read_csv("Soil_Properties_Metadata.csv") 
 
# Compute descriptive statistics by factor 
by(metadata, metadata$Factor1, stat.desc) 
by(metadata, metadata$Factor2, stat.desc) 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Test assumptions 
# Normality 
shapiro.test(metadata$pH) #not normal 
shapiro.test(metadata$EC) #not normal 
shapiro.test(metadata$SLAN) # normal 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Statistical Shifts for Soil Properties 
# If non-normal, Wilcoxon test; If normal, t-test with unequal variance 
wilcox.test(pH~Factor, data=metadata) 
wilcox.test(EC~Factor, data=metadata) 
t.test(SLAN~Factor, data=metadata,var.eqaul=FALSE) 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Plotting Soil Properties 
# Reorder data for plotting 
sample_order <- c("Order in which samples were collected") 
treat_order <- c("Order you wish to see factors appear on plot") 
 
metadata <- metadata %>% 
  mutate(Sample_Order_Factor = factor(Sample_Order_Factor, levels=sample_order)) 
metadata <- metadata %>% 
  mutate(Treatment_Factor = factor(Treatment_Factor, levels=treat_order)) 
 
# Boxplots for Soil Properties 
p1<-ggboxplot(metadata, x = "Factor", y = "pH", color = "Factor", legend = "none", 
palette=brewer.pal(n= 8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="pH")+ 
  geom_hline(yintercept = mean(metadata$pH), linetype = 2)+ 
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  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p1 
 
p2<-ggboxplot(metadata, x = "Factor", y = "EC", color = "Factor", legend = "none", 
palette=brewer.pal(n= 8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y=" Electrical 
Conductivity (EC)")+ 
  geom_hline(yintercept = mean(metadata$EC), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p2 
 
p3<-ggboxplot(metadata, x = "Factor", y = "SLAN", color = "Factor", legend = "none", 
palette=brewer.pal(n = 8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y=" Sufficiency 
Levels of Available Nutrients (SLAN)")+ 
  geom_hline(yintercept = mean(metadata$SLAN), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p3 
Soil Nutrient Descriptive Statistics and Analysis 
 
# Load packages 
library(pastecs) 
library(DescTools) 
librar(ggplot2) 
 
#Read in metadata for nutrient data 
metadata<-read.csv("Soil_Nurtient_Metadata.csv") 
 
# Compute descriptive statistics by factor 
by(metadata, metadata$Factor1, stat.desc) 
by(metadata, metadata$Factor2, stat.desc) 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Test assumptions 
# Normality 
shapiro.test(metadata$TC) #normal 
shapiro.test(metadata$TH) #not normal 
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shapiro.test(metadata$TN) # normal 
shapiro.test(metadata$TS) # normal 
shapiro.test(metadata$P) #not normal 
shapiro.test(metadata$K) #not normal 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Statistical Shifts for Soil Nutrients 
# If non-normal, Wilcoxon test; If normal, t-test with unequal variance 
t.test(TC~Factor, data=metadata, var.equal=FALSE) 
wilcox.test(TH~Factor, data=metadata) 
t.test(TN~Factor, data=metadata, var.equal=FALSE)  
t.test(TS~Factor, data=metadata, var.equal=FALSE)  
wilcox.test(P~Factor, data=metadata) 
wilcox.test(K~Factor, data=metadata) 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Plotting Soil Nutrients 
# Reorder data for plotting 
sample_order <- c("Order in which samples were collected") 
treat_order <- c("Order you wish to see factors appear on plot") 
 
metadata <- metadata %>% 
  mutate(Sample_Order_Factor = factor(Sample_Order_Factor, levels=sample_order)) 
metadata <- metadata %>% 
  mutate(Treatment_Factor = factor(Treatment_Factor, levels=treat_order)) 
 
# Boxplots 
p1<-ggboxplot(metadata, x = "Factor", y = "TC", color = "Factor", legend = "none", 
palette=brewer.pal(n= 8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="Total Carbon 
(TC) (wt%)")+ 
  geom_hline(yintercept = mean(metadata$TC), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p1 
 
p2<-ggboxplot(metadata, x = "Factor", y = "TH", color = "Factor", legend = "none", 
palette=brewer.pal(n= 8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
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        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="Total 
Hydrogen (TH) (wt%)")+ 
  geom_hline(yintercept = mean(metadata $TH), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p2 
 
p3<-ggboxplot(metadata, x = "Factor", y = "TN", color = "Factor", legend = "none", 
palette=brewer.pal(n= 8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="Total 
Nitrogen (TN) (mg-N/L)")+ 
  geom_hline(yintercept = mean(metadata $TN), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p3 
 
p4<-ggboxplot(metadata, x = "Factor", y = "TS", color = "Factor", legend = "none", 
palette=brewer.pal(n= 8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="Total Sulfur 
(TS) (ppm)")+ 
  geom_hline(yintercept = mean(metadata $TS), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p4 
 
p5<-ggboxplot(metadata, x = "Factor", y = "P", color = "Factor", legend = "none", palette=brewer.pal(n = 
8, name = 'Dark2')) + 
  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="Phosphorous 
(P) (ppm)")+ 
  geom_hline(yintercept = mean(metadata$P), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p5 
 
p6<-ggboxplot(metadata, x = "Factor", y = "K", color = "Factor", legend = "none", palette=brewer.pal(n= 
8, name = 'Dark2')) + 
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  theme( 
        axis.text.x=element_text(family="Times New Roman",face="bold",color="black",size=10,vjust = 
0.5), 
        axis.text.y=element_text(family="Times New Roman",face="bold",color="black",size=10), 
        axis.title.x=element_blank(), 
        axis.title.y=element_text(family="Times New Roman",face="bold",size=10))+labs(y="Potassium 
(K) (ppm)")+ 
  geom_hline(yintercept = mean(metadata$K), linetype = 2)+ 
  stat_compare_means(label = "p.signif", method = "wilcox.test",ref.group = 
"Factor_Control",hide.ns=TRUE, family="Times New Roman") 
p6 
 
RDA Analysis 
*Analysis repeated for both 16s and ITS rRNA data 
 
## Load packages 
library(vegan) 
library(ggplot2) 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
## Data prep 
# Read in abundance data and with metadata and soil property/nutrient data 
df<-read.csv("RDA_metadata.csv",header=TRUE) 
# Ensure there are no N/A values in data frame 
df<-na.omit(df) 
 
# Convert abundance data to relative abundance 
spec.h<-decostand(df[c(2:5)],method="hellinger") 
 
# Standardize soil property/nutrient data 
t.env<-decostand(df[,c(10:17)], method="standardize") 
env.stand<- t.env 
 
----------------------------------------------------------------------------------------------------------------------------- 
 
# Conduct RDA 
spec.rda <- rda(spec.h ~ ., env.stand) 
summary(spec.rda) 
perc <- round(100*(summary(spec.rda)$cont$importance[2, 1:2]), 2) 
 
# Plot RDA 
model <- ordiplot(spec.rda, type = "none", scaling=2, cex=10, main = "Eukaryote Phyla RDA", xlab = 
paste0("RDA1 (", perc[1], "%)"), , ylab = paste0("RDA1 (", perc[2], "%)"), cex.lab=1.25) 
points(spec.rda, col="darkgrey", cex=1) 
points(spec.rda, dis="sp", col="blue") 
text(spec.rda, dis="sp", col="blue") 
text(spec.rda, dis="bp",col="black") 
 
# Verify parameters are significant in model 
spec.rda1 <- step(spec.rda, scope=formula(spec.rda), test="perm") 
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summary(spec.rda1) 
 
vif.cca(spec.rda1) 
 
# Run signficicance testing for parameters 
anova(spec.rda, perm.max=1000) #model significance 
anova(spec.rda, by="axis", perm.max=1000) #axes significance 
anova(spec.rda, by="terms", perm.max=1000) # term significance 
anova(spec.rda, by="margin", perm.max=1000) #term order significance 
 


