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ABSTRACT
The mechanistic empirical pavement design guide (MEPDG) is a state-of-the-art design
approach that incorporates material properties, traffic, and climate to estimate the incremental
damage using mechanical responses of the pavement. The cumulative damage is used to predict
the field distress using empirical transfer functions. The Pavement-ME transfer functions have
been nationally calibrated using long-term pavement performance (LTPP) pavement sections and
other experimental test section data such as MnRoad. These nationally calibrated models may
not represent the construction practices, materials, and climatic conditions of a particular
state/region. Studies have calibrated the Pavement-ME transfer functions using the least squares
method. Least squares is a widely used simplistic method based on the normal independent and
identically distributed (NIID) assumption. Literature shows that these assumptions may not apply
to non-normal distributions. This study introduces a new methodology for calibrating the
bottom-up cracking, total rutting, and international roughness index (IRI) models in new flexible
pavements and the transverse cracking and IRl models in new rigid pavements using Maximum
Likelihood Estimation (MLE). The approach in this study includes MLE using synthetic and
observed data, and the results are compared with those of the least squares approach. The MLE
and least squares methods were also combined with resampling techniques to improve the
robustness of calibration coefficients. The data are analyzed from the Michigan Department of
Transportation's (MDOT) Pavement Management System (PMS) database to obtain the
pavement sections and observed performance data for calibration.

Despite several calibration efforts, limited research is available on the impact of
calibration on pavement design. The calibrated models using the least squares method were then
used for pavement design to estimate the calibration effects and compare them with AASHTO93
designs. Based on the newly calibrated coefficients, 44 new flexible and 44 rigid sections were
designed. This study also identifies the controlling distresses for pavement design.

It is often not viable to calibrate all coefficients at the same time. Therefore, it is crucial
to identify the most sensitive transfer function coefficients. Moreover, the sensitivity also
indicates the impact of each coefficient on the performance prediction. Typically, the sensitivity
is obtained using a normalized sensitivity index (NSI). This study estimated the sensitivity of the

Pavement-ME transfer function coefficients using scaled sensitivity coefficients (SSCs).



The results show that MLE outperformed the least squares method for non-normally distributed
data, such as transverse cracking and bottom-up cracking models for synthetic and observed
data. Using the calibrated models for pavement design showed that, on average, the surface
thicknesses using locally calibrated coefficients were thinner by 0.22 and 0.44 inches for flexible
and rigid pavements, respectively. Critical design distresses for flexible pavements include
bottom-up and thermal cracking. On the other hand, transverse cracking and IRI control the
designs for rigid sections. The sensitivity of Pavement-ME model coefficients showed that SSCs
provide a more reliable sensitivity on a range of independent variables rather than a point
estimate, unlike NSI. Overall, this study helps improve the calibration process for local

conditions.
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CHAPTER 1 - INTRODUCTION

1.1 BACKGROUND

The AASHTOWare Pavement Mechanistic-Empirical Design (Pavement-ME) is the latest
American Association of State Highway and Transportation Officials (AASHTQO) pavement
design software edition. It is based on the AASHTO's Mechanistic-Empirical Pavement Design
Guide (MEPDG). Pavement-ME is a significant shift from the empirical design process
developed and supported by the AASHTO Interim Guide for Design of Pavement Structures
(AASHTO 1972) through the AASHTO Guide for Design of Pavement Structures and its 1998
Supplement (AASHTO 1998) (1). While these earlier AASHTO design guides are based on
empirically derived performance equations developed using data from the AASHO road test
conducted in the 1950s, these have been widely popular for pavement design. About 48 agencies
reported using the AASHTO empirical design guides after their refinements provided by
AASHTO in 1986 and 1993 (1). Despite the refinements in the material input parameters and the
design reliability, the previous design guides' empirical nature limits their performance for the
following reasons (2).

e The application of the AASHO Road test is limited by its specific geographic location,
which does not account for the climatic effects of a different location on pavement
performance.

e Truck traffic volume has increased significantly since the 1960s, and truck configurations
have also changed.

e All test sections were built using a single hot mix asphalt (HMA) mixture for flexible
pavements and one Portland cement concrete (PCC) mixture for rigid pavements over
one subgrade soil type.

Recognizing these limitations, the Joint Task Force on Pavements (JTFP) initiated an effort
in 1996 to develop the MEPDG using mechanistic pavement design principles. The new
mechanistic-empirical (M-E) design procedure offers multiple benefits, taking advantage of
improvements in material characterization, axle load spectra, and climate models to predict the

pavement's performance.



Version 0.7, the research version of the MEPDG software, was first released in July 2004. It was
revised several times under different projects funded by the National Cooperative Highway
Research Program (NCHRP). The software's revisions included the release of version 0.8 in
November 2005, version 0.9 in July 2006, version 1.0 in April 2007, and version 1.1 in
September 2009. An MEPDG Manual of Practice was published in 2008, aiming to assist
highway agencies in implementing the M-E design method with version 1.0. It was adopted as an
interim AASHTO pavement design procedure a year earlier in 2007 (3). Another version of the
M-E design was released in April 2011 called Design, Analysis, and Rehabilitation for Windows
(DARWIin). DARWin-ME software was later named AASHTOWare Pavement ME™ once
AASHTO underwent rebranding in 2013. Currently, the latest version of Pavement-ME software
is version 2.6.2, and the online version is version 3.0. In addition, a Backcalculation Tool (BcT)
and Calibration Assistance Tool (CAT) have been developed for use with the Pavement-ME

software.
1.2 PROBLEM STATEMENT

The MEPDG was developed under the NCHRP project 1-37A (4) to overcome the limitations of
the AASHTO 1993 method (5). It is an advanced pavement design tool for new and rehabilitated
pavements. MEPDG incorporates material properties, traffic, and climate to estimate the
incremental damage using mechanical responses of the pavement. The cumulative damage is
empirically used to predict the field distress using transfer functions. The transfer functions used
in the Pavement-ME have been globally calibrated using the Long-term Pavement Performance
(LTPP) pavement sections (6). Although the globally calibrated models provide fair performance
predictions for the entire US road network, these may not represent the construction practices,
materials, and climatic conditions of a particular state/region. Therefore, nationally calibrated
models may underpredict or overpredict the pavement performance in specific states or regions.
Recalibration of these models has been recommended for local conditions in the local calibration
guide (7). The design distresses in the Pavement-ME include transverse cracking (percentage of
slabs cracked), transverse joint faulting (inches), and international roughness index (IR in
inches/mile) for rigid pavements. For flexible pavements, the design distress includes bottom-up
cracking (percentage), top-down cracking (percentage), rutting (inches), thermal (transverse)

cracking (feet/mile), reflective cracking (feet/mile), and IRI (inches/mile).



Several studies have been performed in Michigan in the recent past to characterize climate,
traffic, and material properties, as well as to calibrate the performance models to address the
local conditions, materials, and construction practices in the Pavement-ME procedure (8-10).
While all the material properties and calibration of performance models were addressed to
improve the Pavement-ME local applicability and accuracy, there were still some data gaps,
specifically for material characterization and pavement construction. Examples of past data gaps
include clustered traffic data, HMA mix, and binder properties. Gaps in data need to be estimated
(corresponds to Level 3 for Pavement-ME input levels), which may not be accurate for the
location; therefore, having the actual values for new projects will likely improve Pavement-ME
calibration accuracy. Also, a limited number of rigid pavement sections were available for
previous Michigan calibration efforts; therefore, adding more data from new sections would
improve the performance model prediction.

Most calibration studies have used the least squares approach to calibrate the Pavement-
ME transfer functions. Least squares is a widely used simplistic method based on the normal
independent and identically distributed (N11D) assumption. The NIID assumption states that
observations in a sample are independent, i.e., the occurrence of one does not influence another.
Additionally, these observations should have identical probability distributions, i.e., drawn from
the same underlying population distribution. Furthermore, the assumption implies that the
observed data and error term follow a normal distribution. Literature shows that the least squares
method assumptions may not apply to the non-normal distributions. This limits the robustness of
the least squares method for transverse cracking in rigid pavements and bottom-up cracking in
flexible pavements, which are usually non-normally distributed.

The ultimate goal of Pavement-ME calibration is improving pavement designs for local
conditions. Despite several calibration efforts, limited research is available on the effect of
calibration on pavement design. Estimating the change in design thicknesses and identifying
critical distresses using the calibrated models is vital. By understanding which distress types are
most relevant to a region, agencies can develop mitigation and maintenance strategies leading to
longer pavement service lives.

State Highway Agencies (SHAS) often struggle to identify the most critical data
collection needs since the Pavement-ME requires several design inputs. Several studies have

conducted sensitivity analyses to determine the most sensitive inputs to the distress prediction



models for new and rehabilitated pavements to address this issue. However, limited research is
available to assess the impact of each calibration coefficient on the predicted pavement distress
and performance. These studies quantified the sensitivity of coefficients using a sensitivity index
and a typical range of design inputs. The sensitivity metric adopted to accomplish the sensitivity
analyses is called the normalized sensitivity index (NSI), defined as the percentage change of
predicted distress relative to its global prediction caused by a given percentage change in the
coefficient. While NSI can rank the coefficients based on their level of sensitivity, it does not
provide information about any potential correlation between them or how accurately these can be
estimated. Moreover, since the calculation of NSI requires distress data, its magnitude can
change if the data source is changed; hence, the sensitivity ranking of the coefficients may vary,

as reported by Dong et al. (11).
1.3 RESEARCH OBJECTIVES

The recalibration of the Pavement-ME models is crucial for any SHA implementing M-E design.
This includes identifying the suitable Pavement-ME inputs, potential projects, and performance
data. It is also essential to verify the feasibility of the calibrated models for pavement design. The
main objectives of this study are to (a) calibrate the Pavement-ME models using improved inputs
(traffic, HMA and climate) and additional data (potential projects and performance data) for new
flexible and rigid pavements, (b) assess the impact of calibrated models on design thicknesses
and to identify critical design distresses, (¢) apply maximum likelihood estimation (MLE) to
calibrate and validate the Pavement-ME models and compare the results with the least squares
method, (d) determine the sensitivity of Pavement-ME calibration coefficients over a continuous
scale of independent variables using scaled sensitivity coefficients (SSCs) and compare it with
the traditional NSI approach.

These objectives were accomplished using the pavements and the corresponding

performance data from the MDOT Pavement Management System (PMS) database.
1.4 DISSERTATION OUTLINE

This dissertation contains six chapters. Chapter 1 outlines the background of the Pavement-ME,
the problem statement, and the research objectives. Chapter 2 documents the literature review

from previous calibration studies, Pavement-ME transfer functions, and calibration approaches.
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Chapter 3 discusses the input and performance data used for calibration efforts. This includes
data collection efforts, a summary of the performance, and input data for the selected pavement
sections for model calibrations. Chapter 4 details the local calibration methods and procedures
used in this study. This chapter also includes the methodology used for calculating the SSCs.
Chapter 5 presents the local calibration results for the various performance prediction models,
including calibration results from the least squares and MLE methods. This chapter also consists
of the results from assessing the impact of calibration on pavement design and the SSC plots.
Chapter 6 summarizes this study's conclusions, recommendations, and future scope. Each

chapter has a summary at the end, which outlines the overall highlights of the chapter.



CHAPTER 2 - LITERATURE REVIEW

The Pavement-ME provides highway agencies with a practical tool for designing new and
rehabilitated pavements. The analyses in M-E principles use primary pavement responses
(stresses, strains, and deflections) and incremental damage over time to predict surface distress
through transfer functions. The reliability of performance prediction models depends on the
accuracy of the transfer functions, which is achieved through calibration and subsequent
validation with observed pavement condition data. A satisfactory correlation between measured
and predicted performance indicators increases the viability, acceptance, and usage of the
MEPDG procedures for pavement analysis and design procedures. Calibration is a mathematical
procedure to reduce the difference between predicted and measured distress values. Validation
refers to a process that evaluates the performance of mathematical models on an independent
dataset (i.e., data not used for model development). This chapter outlines the literature review of
calibration approaches, the methodology used in different studies, and the concept of reliability
for Pavement-ME predictions.

2.1 IMPLEMENTATION OF PAVEMENT-ME

The AASHTO93 empirical pavement design method has been popular and used by highway
agencies for several decades (5). Highway agencies are still using it as their current pavement
design procedure. The shift from an empirical to a more M-E design method occurred in 2008
after the publication of the MEPDG practice manual and the release of Pavement-ME software
(3). The adoption of the Pavement-ME design was further enhanced by publishing the local
calibration guide to implement nationally calibrated models for local conditions (7). In recent
years, other supplemental tools like the Calibration Assistance Tool (CAT) and Backcalculation
Tool (BcT) have helped agencies implement the Pavement-ME design. The adoption of
Pavement-ME design started soon after its release, with fifteen state highway agencies (SHA)
implementing it within the first few years (1). The implementation significantly increased
between 2010 and 2020 and became stagnant due to several challenges. These challenges include
the unavailability of input data, pavement sections for calibration, and sufficient good-quality
performance data. Some agencies have returned to using their original design practice (usually
AASHTO-93) or M-E design in parallel with their original method. As of 2021, nine state



agencies are using Pavement-ME as their primary design method for flexible pavements, and
thirteen are using it for rigid pavements. Further, nine state agencies use Pavement-ME with
other design methods for flexible pavements, whereas eight use it for rigid pavements (12).
Figure 2-1 shows the implementation status of the Pavement-ME design for flexible and rigid

pavements.
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Figure 2-1 Pavement-ME implementation status (12)
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2.2 LOCAL CALIBRATION EFFORTS

Calibration of Pavement-ME models is an optimization problem. Several researchers have
calibrated these models using different optimization methods. This section summarizes the
calibration methods and efforts in different states.

2.2.1 Least Squares Method

The least squares method is a mathematical technique used to minimize the sum of squared
differences between observed and predicted values. Calibration of the Pavement-ME transfer
functions is established by minimizing the bias and standard error between the measured and
predicted distress. Researchers have used several simplistic and robust approaches leveraging the
least squares method for calibration. Hall et al. (2011) used the Microsoft Excel solver function
to calibrate the alligator cracking model for flexible pavements in Arkansas (13). Tarefder and
Rodriguez-Ruiz (2013) calibrated the rutting, alligator cracking, and longitudinal cracking
models for flexible pavements in New Mexico. The process involved changing the calibration
coefficients and rerunning Pavement-ME in an iterative process to obtain minimum mean
residual error (MRE) and the sum of squared errors (SSE) (14). These calibration efforts have
become more robust with the development of computational and statistical techniques. Dong et
al. (2020) calibrated the joint faulting model for rigid pavements in Ontario. This study used
three different optimization techniques: (1) one at a time using trial and error; (2) Microsoft
Excel solver function; (3) Levenberg-Marquardt Algorithm (LMA). Results showed that
calibration using approaches (2) and (3) significantly improved the bias and standard error of
estimate (SEE) (11). Haider et al. (2020) calibrated the transverse cracking and IRl models for
rigid pavements in Michigan. This study used resampling methods like bootstrapping and
repeated split sampling for calibration and validation. The results showed that resampling
methods provide a more robust calibration than traditional methods, along with confidence
intervals of the SEE, bias, and transfer function coefficients (9). Tabesh and Sakhaeifar (2021)
calibrated rutting, IRI, top-down, and bottom-up cracking models in Oklahoma using a narrow-
down iterative approach in Microsoft Excel solver (15). This study showed significant
improvement in the Pavement-ME predictions and flexible pavement designs. All these studies
have used the least squares to calibrate these transfer functions using the NIID assumption.

Although least squares is a popular and simplistic approach, the assumptions may not be valid,
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especially for non-normally distributed data. Tables 2-1 and 2-2 summarize the calibration

efforts from different states.

Table 2-1 Summary of calibration efforts for flexible pavements

States Number of SeCt.'an. Pavement-ME models Version Year

New Rehabilitation
Arkansas (16) 38 - BU, TD, RUT, TC, V1.1 2014
Colorado (17) 46 49 BU, RUT, TC, IRI V1.0 2013
Minnesota (18) 39 BU, RUT, TC V1.0 2009
Montana (19) 102 RUT, TC V0.9 2007
New Mexico (14) 19 5 BU, TD, RUT, IRI V1.0 2013
Ohio (20) 13 - RUT, IRI V1.0 2009
Oregon (21) - 38 RUT, BU, TD, TC V2.0.19 2019
South Carolina (22) 14 - RUT, BU, TD V2.2 2016
Utah (23) 21 9 RUT V1.0 2009
Washington (24) 8 - BU, TD, RUT V1.0 2009
Arizona (25) 58 42 BU, TD, RUT, IRI, REF DARWIin- ME 2014
lowa (26) 35 - BU, TD, RUT, IRI V1.1 2014
Kansas (27) 28 - TD, RUT, IRI - 2015
Michigan (28) 163 121 BU, TD, RUT, TC, IRI, REF V2.6 2023
North Carolina (29) 46 - BU, RUT DARWIin- ME 2011
Texas (30) 18 - RUT - 2009
Wyoming (31) 86 - BU, RUT V2.2 2015
Missouri (32) 6 11 BU, TD, RUT, TC, IRI, REF V255 2020
Georgia (33) 27 20 BU, RUT, TC - 2014
Louisiana (34) 71 33 BU, RUT, REF V2.0 2016
Virginia (35) 53 59 BU, RUT, IRI V2.2.6 2022
Tennessee (36) - 76 BU, TD, RUT, IRI V2.1 2016
Oklahoma (15) 65 - BU, TD, RUT, TC, IRI V2.3 2021

Note: BU = Bottom-up cracking; TD = Top-down cracking; TC = Thermal cracking; RUT = Total rutting; REF = Reflective
cracking; IRI = International roughness index

Table 2-2 Summary of calibration efforts for rigid pavements

States Number of sectl_o ns_ Pavement-ME models | Version Year
New Rehabilitation
Colorado (17) 25 7 TC, JF, IRI V1.0 2013
Minnesota (18) 65 TC V1.0 2009
Ohio (20) 14 - IRI V1.0 2009
South Carolina (22) 6 - TC V22 2016
Arizona (25) 48 - TC, JF, IRI - 2014
Kansas (27) 32 - JF, IRI V1.3 2015
Michigan (28) 46 11 TC, JF, IRI V2.6 2023
Wyoming (31) 26 - JF V2.2 2015
Missouri (32) 33 9 TC, JF, IRI V2.5.5 2020
Georgia (33) 9 2 TC, JF - 2014
Louisiana (34) 43 - TC, JF V2.0 2016
Idaho (37) 40 - TC, JF, IRI V25.3 2019
Virginia (35) 17 - JF, IRI V1.3 2022

Note: TC = Transverse cracking; JF = Joint faulting; IRl = International roughness index




2.2.2 Maximum Likelihood Estimation (MLE) Method

MLE has been used by several researchers in different fields; limited research is available on the
use of MLE to calibrate the Pavement-ME transfer functions. Chen et al. (2021) presented a local
calibration model for predicting punchout distress in continuously reinforced concrete pavement
(CRCP). This study utilized a Weibull distribution to estimate the number of equivalent single
axle loads (ESALS) leading to punchout, employing MLE and a Newton method. The model was
validated using data from the LTPP database, demonstrating its efficacy in describing punchout
behavior and facilitating predictions for CRCP reliability and rehabilitation planning (38). Haider
et al. (2023) showed the robustness of MLE for non-normally distributed data using the MDOT
PMS database. The bias for the transverse cracking model in rigid pavements and the bottom-up
cracking model in flexible pavements was significantly improved (28).

MLE stands out as an advantageous and robust method for parameter estimation as it is
based on a well-defined likelihood function rooted in the underlying probability distribution of
the data. MLE is computationally efficient, leveraging standard probability distributions, making
it usable for multi-dimensional and complex models. MLE excels in estimating parameters for
probabilistic models, and it is especially useful in machine learning (39). Unlike the least squares
method, MLE shows resilience to outliers as the probability of outliers is very low and offers a
potential advantage in the bias-variance tradeoff. The bias-variance tradeoff is used in statistical
modeling and machine learning to balance between capturing the underlying pattern in the data
(low bias) and resisting sensitivity to fluctuations and noise (high variance). Models with high
bias oversimplify data, leading to underfitting, while those with high variance overfit and fail to
generalize the model for new data (40). The bias-variance tradeoff highlights the importance of
finding the optimal model complexity and employing regularization or ensemble methods to
strike the right balance. Understanding this tradeoff is crucial for effective model selection and
evaluation, emphasizing the need for ample high-quality training data to minimize bias and
variance in overall error.

Jose (2023) showed the application of MLE in modeling commaodity prices and pricing
financial derivatives. This study highlighted estimating model parameters using various methods,
with a preference for maximum likelihood when the parametric specification is highly trusted.
The comparison in the study evaluates different techniques for obtaining maximum likelihood

estimates in the context of Ornstein-Uhlenbeck mean-reverting models based on observations
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collected at arbitrary points in time (41). Pan and Fang (2002) discussed MLEs for parameters in
growth curve models, emphasizing their differences from generalized least squares estimates
(GLSE). The special case of Rao's simple covariance structure (SCS), where MLEs coincide
with GLSEs, facilitating analytical and tractable statistical inferences in growth curve models, is
explored. It also delves into the restricted maximum likelihood (REML) estimate under the
assumption of the SCS, offering insights into statistical techniques for analyzing growth curve
models (42). Myung (2003) illustrated using MLE, stressing its fundamental role in statistical
inference. Moreover, this study emphasized using MLE and its superiority in nonlinear modeling
with non-normal data (39). Bauke (2007) showed the limitations of using the least squares
method for estimating power-law distribution exponents due to incompatible assumptions with
empirical data. It shows the advantages of maximum likelihood estimators, deemed reliable for
power-law distributions, with asymptotic efficiency (43). Zhang and Callan (2001) addressed the
information filtering systems based on statistical retrieval models, focusing on optimizing
dissemination thresholds for document delivery. This study introduced a novel algorithm
grounded in the maximum likelihood principle to adjust thresholds by explicitly compensating
for bias in relevant information obtained during filtering. Experiments using Text Retrieval
Conference (TREC)-8 and TREC-9 filtering track data illustrate the algorithm's effectiveness in
jointly estimating parameters and improving system performance. The TREC is an annual series
of workshops evaluating information retrieval systems (44). Rayner and MacGillivray (2002)
showed the use of numerical maximum likelihood estimation for distributions defined only by
quantile functions, focusing on the g-and-k and generalized g-and-h distributions. Despite
increased computing power, this aspect of MLE has received limited attention. This study
presents and investigates numerical MLE procedures, conducts simulation studies, and
emphasizes the need for resampling to obtain reliable estimates for quantile-defined distributions
through maximum likelihood (45). Lio and Liu (2020) performed the regression analysis by
defining a likelihood function using uncertain measures to represent parameter likelihoods. This
study employs MLE for uncertain regression models, simultaneously calculating the uncertainty
distribution of the disturbance term. Numerical examples demonstrate the proposed method,
emphasizing its applicability to cases with imprecise observations. Future research directions
include applying uncertain maximum likelihood to parameter estimation in uncertain differential

equations, time series analysis, and hypothesis testing (46).
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2.3 PAVEMENT-ME PERFORMANCE MODELS

The following section presents the formulation of transfer functions for flexible pavement

models and the local calibration coefficients for different states.
2.3.1 Performance Models for Flexible Pavements
2.3.1.1. Fatigue cracking (bottom-up)

Bottom-up cracking is a load-related distress caused by the repeated axle load. These cracks
initiate at the bottom of the asphalt concrete (AC) layer and propagate to the surface. The total
cumulative damage DI can be estimated by summing the cumulative damage that is computed

using Miner's law (47), as shown in Equation (2-1).

n
DI = ¥(ADD)jmipr = Z( ) (2-1)
jmllpT

Nf—HMA
where,
n = Number of actual axle load applications within a specific time period
j = Axle load-interval
m = Axle type (single, tandem, tridem, quad)
| = Truck type classified in the MEPDG
p = Month
T = Median temperature for five temperature quintiles used in MEPDG
Nr.Hma = Allowable number of axle load applications, which can be computed using Equation (2-
2).

Ni—tma = C X ky X Cy X Bry (g,) ¥2Pr2(Epypy0)~*3Frs (2-2)
where,
et = Tensile strain at critical AC locations
Exma = Dynamic modulus (E*) of the Hot mix asphalt (HMA), psi
k1, k2, k3 = Laboratory regression coefficients, and S, S, fs = local or field calibration
constants

C = Adjustment factor (laboratory to the field) as shown in Equation (2-3) and Equation (2-4).

C=10" (2-3)
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Vbe
Vo + Ve

M= 4.84( - 0.69) (2-4)

where,
Ve = Effective binder content by volume, percent
Va = In-situ air voids in the HMA mixture (%)

Ch = Thickness correction factor for bottom-up cracking as shown in Equation (2-5).

1

CH =
0.003602 (2-5)
0.000398 + 1 + ¢(11.02-3.49H14)

where,
Huma = AC layer thickness
Once the cumulative damage is calculated, the bottom-up fatigue cracking (%) can be estimated

using the transfer function given in Equation (2-6).

1 Cy
FCB()tt()m - (5) (1 + €C1CI+C26510g (DIBottom '100)) (2-6)

where,
FCaottom = Bottom-up fatigue cracking (in the percentage of area)
Dlgottom = Cumulative damage at the bottom of the AC layer
C1, Co, C4 = Transfer function coefficients where C2 is a function of thickness for HMA
thickness between 5 and 12 inches
C1* and Cy* can be determined using Equation (2-7) and Equation (2-8).
C;=-2C; (2-7)
C; = —2.40874 — 39.748(1 + Hpyp, 1)~ 28¢ (2-8)

Table 2-3 summarizes the local calibration coefficients for bottom-up cracking model among

several states.
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Table 2-3 Local calibration coefficients for bottom-up cracking

States C: C Cs Standard deviation
L. 32.913
Michigan 0.67 0.56 6000 0.01 + 1 T 213972-09576x10g ()
(C2<57=1.367, C2>127=2.067,
Missouri 0.31 C2(5”<hac>12")=0.867+0.1* | 6000 -
hac
. 10
Georgia 2.2 2.2 6000 1+ 1 T 575 65x10g070000D)
Louisiana 0.892 0.892 6000 -
Virginia 0.319 0.319 - -
Tennessee 1.023 0.045 6000 -
Oklahoma (East 326 i 6000 i
Region)
Oklahoma (West 412 i 6000 i
Region)
Oklahoma
(East region) 3.26 ) 6000 i
Oklahoma
(West region) 412 i 6000 i
229
Alabama l 45 6000 11 + 1 + e—0.1214—2.056S><log(D+0.0001)
North Carolina 0.2437 0.24377 6000 -
Wyoming 0.4951 1.469 6000 -
Arkansas 0.688 0.294 6000 -
15
Colorado 0.07 2.35 6000 0.01+ T+ 0166732465610 (D)
New Mexico 0.625 0.25 6000 -
Oregon 0.560 0.225 6000 -
South Carolina 0.47 0.47 6000 -
Washington 1.071 1 6000 -
(C2<57=2.1585,
(C2>12"=3.9666, 13
Pavement-ME v2.6 | 1.31 C2(5”<hac>12")=(0.867+0.25 6000 113 + T 575715510 (B70000T)
83*hac)*1

2.3.1.2. Fatigue cracking (top-down)

Top-down or longitudinal cracking is a load-related distress due to repeated axle load. It appears
in the form of cracks parallel to the wheel path and starts at the surface of the AC layer.

Old model: The damage calculation for top-down cracking is the same as bottom-up cracking for
the old model except for the thickness correction factor and the transfer function, as shown in
Equation (2-9) and Equation (2-10).

1
12.00 (2-9)

1 + ¢(15.676-2.8186Hpa )

CH=

0.01 +
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FCrop = 10.56< _C3 ) (2-10)
1 + eC1—C2Log(DItop )

where,

FCrop = Top-down fatigue cracking (in ft/mile)

Dltop = Cumulative damage at the top of the AC layer

C1, Co, C3 = Transfer function coefficients

New model: The new top-down cracking model is based on fracture mechanics concepts (48). It

is expressed in percentage rather than ft./mile. The model involves crack initiation and

propagation [based on Paris' law (49)]. Crack initiation is defined as a crack length of 7.5 mm

(0.3 inches). Equation (2-11) shows the time to crack initiation formulated using regression over

longitudinal and alligator cracking data from the LTPP database.

o= K1
0™ 1 4 eKi2x100x(ag/2A0)+K13 X HT+K14 XLT+K 5 X10g10 AADTT

(2-11)

where,

to = Time to crack initiation, days

Ht = Annual number of days above 32°C

Lt = Annual number of days below 0°C

AADTT = Annual average daily truck traffic (initial year)

ao/2Ao = Energy parameter

Kui, Ki2, Kis, Kua, Kis= Calibration coefficients for time to crack initiation

The top-down cracking is expressed in percentage using the transfer function, as shown in
Equation (2-12).

Ge ) (2-12)

L(t) = LMAXe‘(m
where,
L(t) = Top-down cracking expressed as total lane area (%)
Lmax = Maximum area of top-down cracking (%) — a value of 58% is assumed
t = Analysis month in days

p = Scale parameter for the top-down cracking curve as shown in Equation (2-13).

p = a; + a, X Month (2-13)

S = Shape parameter for the top-down cracking curve as shown in Equation (2-14).
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£ = 0.7319 x (log;, Month )~1:2801 (2-14)

where,

a1 and a2 are functions of the climatic zone (wet freeze, wet non-freeze, dry freeze, dry non-
freeze)

Table 2-4 summarizes the local calibration coefficients of the top-down cracking model. These

coefficients have been obtained for the old top-down cracking model.

Table 2-4 Local calibration coefficients for top-down cracking

States Cy C, Cs Standard deviation
_ 3000
Michigan 2.97 12 1000 | 300 + 1 1 275651080 p0re0mt0.0001)
Tennessee 6.44 0.27 204.54
Oklahoma (East Region) 6.6 4.6 723 -
Oklahoma (West Region) 6.1 4.23 723 -
lowa 0.82 1.18 1000 -
Kansas 45 - 36000 -
Arkansas 3.016 0.216 1000 -
New Mexico 3 0.3 1000 -
Oregon 1.453 0.097 1000 -
South Carolina 0.2 0.1 3.97 -
Washington 6.42 3.596 1000 -
Pavement-ME v2.3 7 35 1000 -

2.3.1.3. Transverse (thermal) cracking model

Thermal cracking is associated with the contraction of the HMA material due to surface
temperature fluctuations. The temperature variations affect the volume changes of the material.
Consequently, stress develops due to the continual contraction of the materials and the restrained
conditions, which causes thermal cracks. Typically, thermal cracking in flexible pavements
occurs due to the temperature drop experienced by the pavement in cold conditions. A thermal
crack will initiate when the tensile stresses in the HMA layers become equal to or greater than
the material's tensile strength. The initial cracks propagate through the HMA layer with more
thermal cycles. The amount of crack propagation induced by a given thermal cooling cycle is
predicted using the Paris law of crack propagation. Experimental results indicate that reasonable
estimates of A and n can be obtained from the indirect tensile creep-compliance and tensile
strength of the HMA per Equations (2-15 and 2-16).
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AC = A(AK)™ (2-15)

where,

AC = Change in the crack depth due to a cooling cycle

AK = Change in the stress intensity factor due to a cooling cycle

A, n = Fracture parameters for the HMA mixture

A= ktﬁt10[4.389—2.52Log(EHMAomn)] (2-16)

where,

n = 08 [1 + l]

m

ke = Regression coefficient determined through field calibration

Euma = HMA indirect tensile modulus, psi

Om = Mixture tensile strength, psi

m = The m-value derived from the indirect tensile creep compliance curve measured

in the laboratory
B = Local or mixture calibration factor

The stress intensity factor, K, has been incorporated in the Pavement-ME through a simplified
equation developed from theoretical finite element studies using the model shown in Equation
(2-17).

K = 04;,(0.45 + 1.99(C,)°>%) (2-17)
where,
oip = Far-field stress from pavement response model at a depth of crack tip, psi
Co = Current crack length, feet

Equation (2-18) shows the transfer function for transverse cracking in the Pavement-ME.

1
TC = B1N(2) [U_d Log <H§2A)] (2-18)
where,
TC = Observed amount of thermal cracking, ft/500ft
Pu = Regression coefficient determined through global calibration (400)
N[z] = Standard normal distribution evaluated at [z]
od = Standard deviation of the log of the depth of cracks in the pavement (0.769), in.
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Cqd

Crack depth, in.
Thickness of HMA layers, in.

Table 2-5 summarizes the modified local calibration coefficients for the various states.

Huma

Table 2-5 Local calibration coefficients for the thermal cracking model

States Level 1 Level 2 Level 3 Standard deviation
Michigan 0.75 i 4 Level 1 K: 0.4258*THERMAL +210.08
Level 3 K: 0.7737*THERMAL +622.92
Missouri 0.61 - - -
Oklahoma 3x107x
(East Region) | MAAT*%3°_ 54 i ) )
Olz{/a;/f:;na 3x107x i i i

. MAAT*01_ 23
Region)

Level 1 K: 0.1468*THERMAL +65.027
Arizona 15 0.5 15 Level 2 K: 0.2841*THERMAL +55.462
Level 3 K: 0.3972*THERMAL +20.422

Colorado 7.5 - - Level 1 K: 0.1468*THERMAL +65.027
Minnesota - - 1.85 -
Montana - - 0.25 -
Level 1 K: 0.14*THERMAL +168
Pavement- 3x107 x 3x107 x 3x107 x
ME V2.6 MAAT0319 MAATA%19 | MAATA0319 Level 2 K: 0.14*THERMAL +168

Level 3 K: 0.14*THERMAL +168

2.3.1.4. Rutting model

Due to axle loads, rutting is the total accumulated plastic strain in different pavement layers (AC,
base/sub-base, and subgrade). It is calculated by summing up the plastic strains at the mid-depth
of individual layers accumulated for each time increment. Equation (2-19) shows the permanent
plastic strain for the AC layer.

Apmay = Epmayhuma = ﬁlrkzer(HMA)10k1TTk2Tﬁ2TN arBar (2-19)
where,
ApHma) = Permanent plastic deformation in the AC layer
eptima) = Accumulated permanent or plastic axial strain in the AC layer/sublayer
er(ima) = Resilient or elastic strain calculated by the structural response model at the mid-depth of
each AC sublayer
hma) = Thickness of the AC layer/sublayer
N = Number of axle load repetitions

T =Pavement temperature
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. = Depth confinement factor
Kir, Kor, kar = Global field calibration parameters
Pur, Por, Par, = Local or mixture field calibration constants
The permanent plastic strain can be expressed for the unbound layers, as shown in Equation (2-
20).

&\ —(2)°
Ap(soil) = Bs1ks1Evhson (_0) e (n) (2-20)

where,

Apsoity = Permanent plastic deformation for the unbound layer/sublayer

€0 = Intercept determined from laboratory repeated load permanent deformation tests

n = Number of axle load applications

er = Resilient strain imposed in laboratory tests to obtain material properties &, £, and p
ev = Average vertical resilient or elastic strain in the layer/sublayer and calculated by the
structural response model

hsoit = Unbound layer thickness

ks = Global calibration coefficients (different for granular and fine-grained material)
Ps1 = Local calibration constant for rutting in the unbound layers (base or subgrade)

The total rutting is calculated based on Equation (2-21) below:

Rut DepthTotal =Apyma + ABase/subbase + Asubgrade (2-21)

Table 2-6 presents the local calibration coefficients for different states.
2.3.1.5. IRI model (flexible pavements)

IRI is a measure of ride quality provided by a pavement surface and affects vehicle operation
cost, safety, and driver comfort. The IRI model is based on findings from multiple studies
showing that IRI at any age is a function of the initial construction ride quality and the
development of different distresses over time that impact ride quality. IRI can be formulated
using the initial IRl and distresses (fatigue cracking, transverse cracking, and rutting), as shown
in Equation (2-22).
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Table 2-6 Local calibration coefficients for the rutting model

States Par Por Bar Bab Bsq Standard deviation
HMA: 0.1126*RUTO2%2
Michigan 0045 | 13 | 07 | 0.0985 | 0.0367 BASE: 0.1145*RUTO07
SG: 3.6118*RUT:0%5!
Missouri 0899 | - ~ | 10798 | 09779 -
Georgia - - - 05 0.3 HMA: 0.20*RUT®%+0.001
Louisiana 0.80 - 0.85 - 0.40 -
Virginia 0.664 | - ~ | 0451 | o151 :
Tennessee 0111 | - - | 019 | 0722 .
(Plain area)
Tennessee (Mountain 0177 i i 1.034 0.159 i
area)
Oklahoma (Bast | 79 | 053 | 148 | 015 | 1.29 -
Region)
Oklahoma (West | o1 | 074 | 1.03 | 023 | 103 .
Region)

HMA: 0.0999*RUT"4 + 0.001
Arizona 0.69 1 1 0.14 0.37 BASE:0.05*RUT%115 + 0.001
SG: 0.05*RU%%5 + 0.001

lowa - 1.15 - 0.001 0.001 -
Kansas 0.9 - - - 0.3251 -
North Carolina 0.947 | 0.862 | 1.354 | 0.53767 1.5 -
Texas 2.39 - 0.856 - 0.5 -
Wyoming - - - 0.4 0.4 -
Arkansas 1.20 1 0.8 1 0.5 -
Colorado 1.34 1 1 0.4 0.84
Montana 1.07 - - 0.01 0.437 -
New Mexico 1.1 1.1 0.8 0.8 1.1 -
Ohio 0.51 - - 0.32 0.33 -
Oregon 1.48 1.0 0.9 0 0 -
South Carolina 0.240 1 1 2.979 0.393 -
Utah 0.560 1 1 0.604 0.400 -
Washington 1.05 | 1.109 1.1 - 0

HMA: 0.24*RUT?8026+0.001
Pavement-ME v2.6 0.4 0.52 1.36 1 1 BASE: 0.1477*RUT%6711+0.001
SG: 0.1235*RUT®5012+0.001

IRI = IRI, + C1(RD) + C2(FCry ) + C3(TC) + C4(SF) (2-22)
where,
IRI, = Initial IRI at construction
FCrotal = Percent area of fatigue cracking (bottom-up), fatigue cracking (top-down), and
reflection cracking in the wheel path
TC = Length of transverse cracking (including the reflection of transverse cracks in existing AC
pavements)
RD = Average rut depth; C1, C2, C3, C4 = Calibration coefficients
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SF = site factor, which can be expressed as shown in Equation (2-23) to Equation (2-25).

SF = (Frost + Swell ) x Agel?®

Frost = Ln [(Rain + 1) X (FI + 1) X P,]
Swell = Ln [(Rain + 1) X (PI + 1) X Pyp]

where,
SF = Site factor
Age = Pavement age (years)

FI = Freezing index

Pl = Subgrade soil plasticity index

Rain = Mean annual rainfall

P4 = Percent subgrade material passing No. 4 sieve

P20o = Percent subgrade material passing No. 200 sieve.

(2-23)
(2-24)
(2-25)

Table 2-7 presents the calibrated IRI coefficients in different states. Table 2-8 summarizes the

distress thresholds for flexible pavements used in various states.

Table 2-7 Local calibration coefficients for the IRl model

States C1 C2 C3 C4
Michigan 50.3720 0.4102 0.0066 0.0068
Missouri 58.9 0.3 0.0072 0.0129
Virginia - - - 0.0392

Oklahoma (East Region) 5.23 0.127 0.013 0.0128
Oklahoma (West Region) 6.46 0.187 0.0098 0.023
Arizona 1.2281 0.1175 0.008 0.0280

Kansas 95 0.04 0.001 -

Colorado 35 0.3 0.02 0.019
New Mexico - - - 0.015
Ohio 17.6 1.37 0.01 0.066
Pavement-ME v2.6 40 0.4 0.008 0.015
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Table 2-8 Summary of design thresholds for flexible pavements

States Bottom-up Top-down Total Thermal IRI
cracking (%) | cracking (ft/mile) rutting cracking

Michigan 20 - 0.5 1000 172
Missouri 10 - 0.50 1000 172
Louisiana 15 - 0.4 500 160
Virginia 10 - 0.4 500 160
Tennessee 10 2000 0.4 500 160
Oklahoma 20 - 0.4 630 169
Arizona 20 - 0.4 630 169
Kansas 20 - 0.4 630 169
Colorado 10 2000 0.4 1500 160

2.3.2 Performance Models for Rigid Pavements
2.3.2.1. Transverse cracking model

Transverse slab cracking in the Pavement-ME is calculated as the percentage of slabs cracked,
including all severity levels. The mechanism involves independently predicting the bottom-up
and top-down cracking and utilizing a probabilistic relationship to combine both, eliminating the
possibility of both co-occurring. The fatigue damage for both bottom-up and top-down is defined
using Miner's law as given in Equation (2-26):

N, jklLmn,o

DIp =Y. (2-26)

Nijk1mm,o
where,
DI = Total fatigue damage (bottom-up or top-down)
Nijk1mno = Actual load applications applied at age i, month j, axle type k, load level |, the
equivalent temperature difference between top and bottom PCC surfaces m, traffic offset path n,
and hourly truck traffic fraction o
Nijx1.mno= Allowable number of load applications applied at age i, month j, axle type k, load
level |, the equivalent temperature difference between top and bottom PCC surfaces m, traffic
offset path n, and hourly truck traffic fraction o
The allowable number of load applications is a function of PCC strength and applied stress and is
calculated based on Equation (2-27):

Ca
108 (N j i mmo) = C1 <£> (2-27)

0i,jklmn,o

where,
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MRi = Modulus of rupture of the PCC slab at the age i

aijkl.mn = Applied stress at the age i, month j, axle type k, load level |, the equivalent temperature
difference between top and bottom PCC surface m, traffic offset path n, and hourly truck traffic
fraction o

C1, C2 = Fatigue life calibration coefficients

The fraction of slabs cracked is predicted using Equation (2-28) for both bottom-up and top-

down cracking:

CRK (2-28)

T 1+ G0INS
where,

CRK = Predicted fraction of bottom-up or top-down cracking
Once the bottom-up and top-down cracking is estimated, the percentage of slabs cracked is
calculated using Equation (2-29).

TCRACK = (CRKgotomup + CRKTop-down — CRKBottom-up * CRKrop-down ) - 100 (2-29)
where,

TCRACK = Total transverse cracking (percentage of slabs cracked with all severities)
CRKGgottom-up = Predicted fraction of bottom-up transverse cracking

CRKrop-down = Predicted fraction of top-down transverse cracking

Table 2-9 summarizes the transverse cracking model local calibration coefficients in different

states.

Table 2-9 Local calibration coefficients for the rigid transverse cracking model

States C1 Cc2 C4 C5 Standard deviation
Michigan - - 0.23 -1.80 1.34*CRK?65%3
Louisiana 2.75 - 1.16 -1.73 -

Idaho 2.366 1.22 | 052 -2.17 -

Arizona - - 0.19 -2.067 -

Minnesota - - 0.9 -2.64 -

South Carolina 1.25 1.22 - - -
Pavement-ME v2.6 2 1.22 | 052 -2.17 | 3.5522*CRK?®%3*15+0.75

2.3.2.2. Joint faulting model

The transverse joint faulting is calculated monthly in the Pavement-ME using the material

properties, climatic conditions, present faulting level, pavement design properties, and axle loads
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applied. Total faulting is the sum of faulting increments from previous months and is predicted
using Equations (2-30) to (2-33) below.

m
Fault,, = Z AFault; (2-30)
i=1
A Fault; = C34 X (FAULTMAX;_; — Fault;_;)? x DE; (2-31)
m
FAULTMAX; = FAULTMAX, + C; X Z DE; x log (1 + Cs x 5.05R0P)Cs (2-32)
j=1
P,oo X WetDays \1°
FAULTMAX X = Cyp X Seuriing X [log (1 + C5 x 5.0PR%P) x log ( 200 > y )] (2-33)
S

where,

Faultn = Mean joint faulting at the end of month m

AFaulti = Incremental change (monthly) in mean transverse joint faulting during the month i
FAULTMAXi = Maximum mean transverse joint faulting for the month i

FAULTMAXo = Initial maximum mean transverse joint faulting

EROD = Erodibility factor for base/subbase

DE; = Differential deformation energy of subgrade deformation accumulated during the month i
dcurling = Maximum mean monthly slab corner upward PCC deflection due to temperature curling
and moisture warping., Ps = Overburden pressure on the subgrade, P2oo = Percent subgrade soil
material passing No. 200 sieve

WetDays = Average annual number of wet days (greater than 0.1 in rainfall)
C1,2,3,4,5,6,7,12,34 = Calibration coefficients

C12 and Cazs4 are defined by Equation (2-34) and Equation (2-35):

C12 = C]_ + CZ X FRO'ZS (2'34)
C34 = C3 + C4 X FRO'ZS (2'35)
FR = Base freezing index defined as the percentage of time (in hours) the top base temperature

is below freezing (32 °F) temperature to the total number of hours in design life

Damage in a doweled joint for the current month is estimated using Equation (2-36).

(2-36)

N
n.
— ]
ADOWDAM,,, = Z Co X F {557
J:
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where,

ADOWDAM;ot = Cumulative dowel damage for the current month

nj = Number of axle load applications for the current increment and load group j for the current
month

N = Number of load categories

fc* = Estimated PCC compressive stress

d = Dowel diameter

Cg = Calibration constant

Fj = Effective dowel shear force induced by axle loading of load category j

The faulting model local calibration results for several states are summarized in Table 2-10.

Table 2-10 Local calibration coefficients for the faulting model

States C1 C2 C3 C4 C5 C6 C7 C8 Standard deviation
Wyoming | 0.5104 | 0.00838 | 0.00147 | 0.08345 | 5999 | 0.504 | 5.9293 | - | 0.0831*FAULT*%?+0.00521
Georgia | 0595 | 1.636 | 0.00217 | 0.00444 | - 0.47 73 ~ | 0.07162*FAULT3%+0.00806
Louisiana | 1.5276 ; 0.00262 ; - 0.55 - - ;
Idaho 0516 ; - ; - - - ;
Arizona | 0.0355 | 0.1147 | 0.00436 | 1.1E-07 | 20000 | 2.0389 | 0.1890 | 400 |  0.037*FAULT®®%2+0,001
Kansas ; ; 0.00164 ; ; 015 | 001 | - ;
Michigan | 0.4 } - } - - - - 0.0442*FAULT026%
Wyoming | 0.5104 | 0.00838 | 0.00147 | 0.08345 | 5999 | 0.504 | 5.9293 | - | 0.0831*FAULT*?+0.00521
P&"g\‘/‘;r‘g 0595 | 1.636 | 0.00217 | 0.00444 | 250 | 0.47 73 | 400 | 0.07162*FAULTO2+0.00806

2.3.2.3. IRI model (rigid pavements)

IRI in the Pavement-ME is a linear relationship between the IRI at construction and change in
other distresses (transverse cracking, joint faulting, and joint spalling) over time. As a linear

relationship of these factors, IRI can be expressed by Equation (2-37).

IRl = IRI; + C1 X CRK + C2 X SPALL + C3 X TFAULT + C4 X SF (2-37)
where,
IRI = Predicted IRI
IRl = Initial IR at the time of construction
CRK = Percent slabs with transverse cracking (all severities).
SPALL = Percentage of joints with spalling (medium and high severities).
TFAULT = Total joint faulting cumulated per mi
Cy, Co, Cs, C4 = Calibration coefficients

SF = Site factor, which can be calculated as shown in Equation (2-38)

25



SF = AGE(1 + 0.5556 x FI)(1 + Pyq) X 107¢ (2-38)
where,
AGE = Pavement age
FI = Freezing index, °F-days.
P200 = Percent subgrade material passing No. 200 sieve.
The joint faulting and transverse cracking for IRI calculation are obtained using previously
described models. The joint spalling is calculated as shown in Equation (2-39)

SPALL = [ AGE ” 100
" lAGE + 0.01] 11 + 1.005(—12 x AGE + SCF)

(2-39)

where,

SPALL = percentage joints spalled (medium- and high-severities)

AGE = pavement age since construction

SCF = scaling factor based on site-, design-, and climate-related variables, which is estimated as
given in Equation (2-40)

SCF = —1400 + 350 X ACPCC X (0.5 + PREFORM) + 3.4f/%* — 0.2( FTcycles xAGE)
+43hpce — 536W Cpec

(2-40)
where,

ACPCC = PCC air content

AGE = Time since construction

PREFORM =1 if preformed sealant is present; O if not

f' = PCC compressive strength

FTcycles = Average annual number of freeze-thaw cycles

hpcc = PCC slab thickness; WCpcc = PCC water/cement ratio

The flexible pavement IRI local calibration coefficients for various states are summarized in

Table 2-11. Table 2-12 shows threshold values used for different distresses in various states.
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Table 2-11 Local calibration coefficients for rigid IRl model

States C1 C2 C3 C4
Michigan 1.198 3.570 1.4929 25.24
Georgia 1.05 0.5417 1.85 33.8
Idaho 0.845 0.4417 1.4929 28.24
Virginia 9.55 172.55 - -
Arizona 0.60 3.48 1.22 45.20
lowa 0.04 0.04 0.07 1.17
Kansas - - 9.38 70
Ohio 0.820 3.7 1.711 5.703
Pavement-ME v2.6 0.8203 0.4417 1.4929 25.24

Table 2-12 Summary of design thresholds for rigid pavements

States Transverse cracking (%) Joint faulting (in) IRI (in/mile)
Michigan 15 0.125 172
Missouri - - 172
Louisiana 10 0.15 160

Idaho 10 0.15 169
Virginia 10 0.15 160
Arizona 10 0.15 169

Kansas 10 0.15 169
Colorado 10 0.15 160

Minnesota 15 0.12 -

2.4 LOCAL CALIBRATION PROCESS

As mentioned, the Pavement-ME uses performance prediction models that are nationally
calibrated based on pavement material properties, structure, climate, truck loading conditions,
and data from the LTPP program (50). However, these models may not accurately predict
pavement performance if the input properties and data used for calibration do not reflect the
state's unique conditions. Therefore, it is recommended that each SHA evaluates how well the
nationally calibrated models predict field performance. If the predictions are unsatisfactory, local
calibration of the Pavement-ME models is recommended to improve the pavement performance
predictions that reflect the state's specific field conditions and design practices. The local
calibration process confirms that the prediction models can accurately predict pavement distress
and smoothness and determines the standard error associated with the prediction equations. This
section summarizes the local calibration process per the local calibration guide, 2010 (7) and
MEPDG, 2015 (51).
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Step 1: Selection of input levels

The hierarchical input level must be selected before local calibration. This depends on the
availability of inputs in the local database and the agency's laboratory and field-testing
capabilities. The selection of input levels is a critical step as it impacts the standard error of
prediction.

Step 2: Develop an experimental plan and sampling strategy

The agency needs to develop a statistically sound and practical experimental plan and sampling
template for this step. The sampling strategy should consider the local construction, design, and
rehabilitation practices. The design matrix should include a wide range of traffic, materials, and
climatic inputs.

Step 3: Assess the adequate sample size for each distress

A reasonable number of sections should be selected for calibration. The minimum sample size

for any distress can be estimated using Equation (2-41).

. (M)Z (2-41)

€t
where,
Z,» = z-value from a standard normal distribution
n = Minimum number of pavement sections
o = Performance threshold
et = Tolerable bias = Z,» x SEE
SEE = Standard error of the estimate
Step 4: Selection of pavement sections
This step involves selecting the pavement sections to populate the experimental matrix
developed in Step 2. Selection should include local construction practices, sections with and
without overlay, pavements with non-conventional materials, and replicates. To incorporate any
time-dependent effects, a minimum of three measured distress data should be available over ten
years. In case of section inadequacy, LTPP sections can be added to enhance the database.
Step 5: Get Pavement-ME inputs and measured distress data
The Pavement-ME inputs and the measured distress data must be extracted from the local agency
database based on the hierarchical input level determined in Step 1. The performance data must

be converted to the Pavement-ME compatible units if the agency measurements are different.
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The average maximum distress from the selected sections should exceed 50% of the threshold
design criteria to incorporate considerable distress in the calibration process. Any outliers in the
performance data should be reviewed, considering the maintenance activities or changes in
agency policies. Further field investigation can be conducted to resolve any discrepancies.

Step 6: Conduct field and forensic investigation

This step aims to collect any missing data and investigate any discrepancies in the input data
available in the local database. The testing protocol to be followed should be in accordance with
the agency's practices. At the end of this step, the agency should ensure that a reasonable number
of samples remain in the experimental matrix.

Step 7: Validation of global model coefficients to local conditions

For this step, the global coefficients are used to predict each performance measure for all
sections included in the experimental matrix. A reliability of 50% should be used for this step.
The predicted values are compared with the measured ones to calculate the bias and SEE. A plot
of predicted versus measured values is created for each distress to visualize the accuracy of
predictions to a line of equality (LOE). For a good fit, the points should lie along the LOE. The
measured distress Ymeasured aNd predicted distress Xpredicted Can be modeled as a linear model as

shown in Equation (2-42) where m is the slope, and by is the intercept.

YMeasured = bo +mX XPredicted (2'42)

Three hypothesis tests are conducted to evaluate the reasonableness of the global model. If any
of these hypotheses fail, the models are recalibrated for local conditions:
e There is no systematic bias between the measured and predicted distress [Equation (2-
43)]. This can be tested using a paired t-test.

HO:Z(YMeasured - xPredicted) =0 (2'43)

e The slope parameter m is 1, and the intercept parameter b, is zero [Equations (2-44) and
(2-45)].
Hy:m = 1.0 (2-44)
Hy:by =0 (2-45)
Step 8: Eliminate the local bias for Pavement-ME models
This step should eliminate the local bias by systematically changing the model coefficients. The

approach should be based on the overall bias, SEE between the predicted and measured values,

29



and the causes associated with them. The calibration coefficients should be incorporated into the
calibration process if they depend on material property, site factor, or design features. Table 2-13

summarizes the calibration coefficients affecting the bias and standard error.

Table 2-13 Calibration coefficients eliminating standard error and bias (1)

Pavement Type Distress Eliminate Bias | Reduce Standard Error
Total rut depth kir) Birs Bs1 k2r, K3y, Bar, Bar
Fatigue bottom-up cracking ky,C, ko, ks, Cy
Flexible Fatigue top-down cracking ky,C, ko, ks, Cq
Thermal cracking Br3, K3 Brs. kg3
IRI Cy C2,C5,Cy
Faulting Cy Cy
Rigid Transverse cracking Cy,Cy C,,Cs
IRI - JPCP Ja A

Step 9: Estimate the standard error of the estimate
After the bias has been eliminated, the SEE is computed between the measured and predicted
distress. This SEE must be compared with the global SEE. Table 2-14 shows the recommended

value for SEE and bias for different models.

Table 2-14 Recommended values for tolerable bias and SEE (28)

Pavement Type Distress/performance parameter Bias SEE
Fatigue cracking (% total lane area) 15 5

Rutting (inches) 0.075 0.2

Flexible Thermal cracking (ft/mile) Thermal 200 650

Reflection cracking

IRI (inch/mile) 20 65

Transverse cracking (% slabs cracked) 4 15

Rigid Faulting (inch) 0.02 0.07

IRI (inch/mile) 20 65

If the SEE is lower than recommended, the calibration coefficients can be accepted and used for
design. The hypothesis tests given in step 7 must be validated before accepting the coefficients.
If the SEE exceeds the global value, the agency can still accept the coefficients or move to step
10 to eliminate the standard error.

Step 10: Eliminate standard error of estimate (SEE)

If the standard error of the estimate calculated in step 9 is higher than the recommended global
value, it should be eliminated in the local calibration process. The standard error should be

estimated for each category of the experimental matrix to identify the effects of any input
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parameter on the overall standard error. The coefficients resulting in the minimum standard error
can be used for design purposes.

Step 11: Assessment of the calibration process

After the above ten steps have been performed to establish the local calibration coefficients, they
should be examined for reasonableness within each category of the experimental matrix and at

different reliability levels.
2.5 CONCEPT OF RELIABILITY

The Pavement-ME estimates the performance of a pavement using mechanistic models and
transfer functions. Although these estimates are rational for pavement design purposes, the actual
field measurements may show variability. This variability may come from the uncertainties in
estimating the future traffic, material, and construction variability, measurement error,
uncertainties due to the use of level 2 and 3 inputs, and errors associated with the model
predictions. To incorporate all these variabilities, Pavement-ME uses a reliability-based design.
Reliability for any prediction can be defined as the probability of getting a prediction lower than

the threshold prediction over the design life, as shown in Equation (2-46).
Reliability = P[distress at the end of design life < Critical distress] (2-46)

If 100 sections have been designed at 90% reliability, on average, ten of them may fail before the
end of design life. Design reliability levels may vary by distress type and IRI or may remain
constant for each. It is recommended that the same reliability be used for all performance
indicators (51). Except for IRI, reliability for all other models is estimated using a relationship
between the standard deviation of measured distress as the dependent variable and mean
predicted distress as the independent variable. The basic assumption implies that the error in
predicting the distress is normally distributed on the upper side of the prediction (not on the
lower side or near zero values). Figure 2-2 shows an example of IRI prediction at 50% reliability
(mean prediction), prediction at any desired reliability R, and are associated with the probability
of failure. For 90 percent design reliability, the dashed curve at reliability R should not cross the
IRI at the threshold criteria throughout the design analysis period. Failing to do so may lead to a
failure at the required reliability and indicates that a design modification (such as a pavement

thickness increase) should be applied.
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Figure 2-2 Design Reliability Concept for Smoothness (IRI)

2.6 IMPACT OF CALIBRATION ON PAVEMENT DESIGN

Several studies have been conducted to calibrate Pavement-ME transfer functions. Despite
several calibration efforts, limited research is available on the effect of calibration on pavement
design. Wu et al. (2014) calibrated the Pavement-ME models in Louisiana using Pavement-ME
V1.3 (52). A total of 19 JPCP projects selected for this study had two base types: PCC over
HMA and PCC over the unbound base. These 19 JPCP projects were designed using the
Pavement-ME to estimate the effect on design thicknesses. The results showed that the
Pavement-ME designs generated thinner PCC thicknesses (about 2 cm or 7%) compared to the
AASHTO93 method (5). Tran et al. (2017) showed the effect of calibration on pavement design
using the Missouri Department of Transportation (MoDOT) and Colorado Department of
Transportation (CDOT) calibration results. One section, each for flexible and rigid pavement,
was selected from existing MoDOT and CDOT projects. On average, the design thickness from
local calibration was lower than that from the global model for both flexible and rigid sections
(53). Mu et al. (2018) reviewed the effect of calibration on new JPCP design for seven states:
Arizona, Colorado, lowa, Louisiana, Missouri, Ohio, and Washington. The design thicknesses
using global and local model coefficients were similar, such that five out of seven states had a
difference of 13 mm or less. The Pavement-ME designs were thinner than AASHTO93 designs
for high-traffic volume roads (by 50-70mm), whereas the thicknesses were similar for low-traffic

volume roads. In rigid pavements, transverse cracking was the controlling distress for most cases
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except for low-volume roads in Montana, where IRl was the critical distress (54). Singh et al.
(2024) used the calibrated models in Michigan for pavement design to estimate the impact of
calibration and for comparison with AASHTO93 designs. A total of 44 new flexible and rigid
sections were designed. A comparison between AASHTO93 and Pavement-ME designs showed
a reduction in HMA and PCC slab thicknesses for the latter approach. On average, the surface
thicknesses using locally calibrated coefficients were thinner by 0.22 and 0.44 inches for flexible
and rigid pavements, respectively. Critical design distresses for flexible pavements were bottom-
up and thermal cracking. On the other hand, transverse cracking and IR1 controlled the designs

for rigid sections (55).
2.7 SENSITIVITY OF PAVEMENT-ME COEFFICIENTS

SHAs often struggle to identify the most critical data collection needs since the Pavement-ME
requires several design inputs. Several studies have conducted sensitivity analyses to determine
the most sensitive inputs to the distress prediction models for new and rehabilitated pavements to
address this issue (56-62). However, limited research is available to determine the impact of each
calibration coefficient on the predicted pavement distress and performance. Kim et al. (2014)
conducted a sensitivity analysis for all the Pavement-ME models, determining the sensitivity by
changing coefficients one at a time (26). This study performed the analyses using two in-service
pavements representing typical lowa's HMA and JPCP sections. Each calibration coefficient
varied from its global value by 20% to 50%. For JPCP, the study concluded that the fatigue
model-related calibration coefficients (C1 and C) in the transverse cracking model are the most
sensitive parameters. For the JPCP IRl model, coefficients C; (related to transverse cracking)
and Cs (related to site factor) are sensitive. Coefficient Cs is the most sensitive for the faulting
model. For flexible pavements, 5. and S are the most sensitive coefficients in fatigue cracking,
whereas C: and C; are the most sensitive for IRI predictions. Dong et al. conducted a sensitivity
analysis on calibration coefficients for the joint faulting model for JPCP sections in Ontario (12).
The study also showed that Ce is the most sensitive coefficient, followed by C1 and C,. Both
these studies quantified the sensitivity of coefficients using a sensitivity index (NSI) and a
typical range of design inputs.

Parameter estimation is needed whenever a model is fitted to data to explain a

phenomenon and is usually considered the same as curve-fitting or optimization. However, both
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are distinctly different. While the optimization only focuses on minimizing the sum-of-squares or
any other error criterion considering the parameters unimportant, parameter estimation also
considers the parameters' errors (63). According to Beck and Arnold, parameter estimation is "a
discipline that provides tools for the efficient use of data in the estimation of constants that
appear in mathematical models and for aiding in modeling phenomena” (64).

Microsoft Excel's Solver® routine is used to estimate the parameters of a linear or
nonlinear model but without computing the parameter errors, thus making it acceptable only for
curve-fitting (63). However, according to Geeraerd et al., Solver® can accomplish parameter
estimation if the sensitivity matrix is formulated and matrix multiplication is employed to
compute the parameter errors (65). As per Dolan, the sensitivity matrix or Jacobian (J) is a
matrix of the first derivatives of the model for each parameter and has the dimensions of n-by-p,
where n and p are the numbers of data points and parameters, respectively (66). Thus, it is
essential to know if any or all the parameters in a model are accurate and estimable, i.e., if they
are statistically significant, they do not contain zero in the parameter confidence interval (Cl).
Hence, reporting the CI of any estimated parameter is equally important as the parameter errors.

Parameter identifiability depends on the scaled sensitivity coefficients (SSCs) and the
minimization of the objective function (63). The SSCs can help determine whether a parameter is
estimable and inform about its accuracy in terms of relative error. Several studies have used
SSCs in various applications (other than pavements) to estimate the sensitivity of a parameter on
a continuous scale of the independent variable (63, 66, 67).

The SSCs for the parameters are desired to be significant (the maximum value of SSC should be
at least 10% of the largest value of the dependent variable) compared to the model n and
uncorrelated with each other (63). The larger the SSC is for a parameter, the greater it will affect
the model and the easier it will be to estimate. Moreover, the parameter with the largest SSC will
also be the most accurate. However, suppose any of the SSCs are correlated, i.e., the ratio of
SSCs of any two parameters is a constant (one is a linear function of the other); those parameters
cannot be estimated together (only one can be calculated at a time) as the model n will respond
to either of them identically. SSCs help assess a parameter's sensitivity on a continuous scale of
the independent variable, highlight collinearity between coefficients, if any, and inform about the
accuracy of the parameters, thus enhancing confidence in the parameter estimates. More

importantly, determining SSC is a forward problem and does not require data, unlike NSI, which

34



requires the Pavement-ME design inputs (material, traffic, and climate). Overall, using SSC
enhances confidence in the parameter estimates, leading to more reliable and informed decision-

making in the analysis without data.
2.8 CHAPTER SUMMARY

This chapter summarized the calibration approaches, efforts, and transfer function coefficients
from different states. Most states used the least squares method to calibrate the Pavement-ME
coefficients. Least squares is a simplistic and popular approach based on the NIID assumption.
These assumptions may not hold good for non-normally distributed data. Studies in different
engineering fields have highlighted the advantages and applicability of the MLE method. This
chapter also outlines the transfer functions for different flexible and rigid pavement models. A
step-by-step approach for local calibration is described per the local calibration guide.
Pavement-ME uses a reliability-based design. The concept of reliability and its application in
Pavement-ME design is explained. Several states have calibrated the Pavement-ME models to
implement M-E design for local conditions. Despite several calibration efforts, the impact of
calibration on pavement design has not been extensively evaluated. This chapter includes a
literature review of studies that assessed the effect of calibration on pavement design. This
consists of determining the design thicknesses and critical distress for pavement design. This
chapter also includes a review of the sensitivity analysis of transfer function coefficients using
the traditional NSI approach and describes the applicability of the SSC approach for sensitivity
calculation. SSC has been widely used in different fields for parameter estimation and sensitivity

calculations.
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CHAPTER 3 - DATA FOR CALIBRATION

3.1 INTRODUCTION

This chapter discusses the inputs and performance data used for the local calibration process.

A crucial step in local calibration involves choosing enough pavement sections that accurately
represent the prevailing conditions in the area. The next step is to gather the necessary data for
each of the selected pavement sections, including information on the pavement performance,
maintenance history, and various Pavement-ME inputs (material, traffic, and climate) that
directly influence performance predictions. The predictions are then compared to the actual
performance of the constructed pavement sections. A pavement section refers to a specific
stretch of road corresponding to a construction project, which may include up to two sections
(such as different directions on a divided highway) with similar data inputs but varying measured
pavement performance, traffic, and initial IRI. The accuracy of the predicted pavement
performance in the Pavement-ME software depends on the information used to describe the in-
service pavement. Thus, several inputs are essential for analyzing a particular pavement in the
design software, particularly those with significant impacts on the expected performance. This
chapter outlines the process for selecting pavement sections for local calibration and the steps in
obtaining the required information for each pavement section.

First, the measured distresses from the MDOT PMS database were converted to
Pavement-ME compatible units. Then, the time-series trends of all distress types were evaluated
to identify potential projects for calibration. Also, these trends were explained, considering any
significant maintenance activities over time. The information about maintenance activities over
time will help to model a section in the Pavement-ME, i.e., whether an existing project should be
considered a reconstruct or rehabilitated overlay project. The Pavement-ME inputs for these
sections were also reviewed to obtain more updated or higher input levels. It's worth noting that a
"project” refers to a specific job number in the construction records, while a "section™ refers to
multiple directions in a divided highway within a project. Hence, the number of sections is
always greater than or equal to the number of projects. The project selection process, Pavement-

ME inputs, and performance data have been summarized in this chapter.
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3.2 MDOT PMS DATA

MDOT's Pavement Management System (PMS) and other available construction data sources
were reviewed to identify the available input levels, units of measured performance data, and
best possible estimates. The PMS and other sources were assessed to extract the following data:

a. Performance data were evaluated for their measurement process and units and converted
to the Pavement-ME compatible units (wherever required). Necessary assumptions were
made for these conversions.

b. The construction records, plans, job-mix formula (JMF), and other sources were used to
identify the pavement cross-sections and material properties during construction. Any
unavailable data was acquired from MDOT, or MDOT provided test results for the best
possible estimates.

c. Traffic data were collected from the construction records and MDOT Transportation Data
Management System (TDMS). Level 2 data were used for traffic data based on road type,
number of lanes, and vehicle class 9 traffic percentage.

d. For Asphalt concrete (AC) mix and binder properties, DYNAMOD software was used,
which is based on laboratory tests for Michigan mixes. The most common construction
materials in Michigan were used for base, subbase, and subgrade properties.

e. For climatic data, the updated NARR files for Michigan have been used (68).

3.2.1 Pavement Condition Measures Compatibilities

MDOT provided the PMS data from 1992 to 2019 (sensor data from 1998 to 2019). Biannually,
MDOT obtains performance data on their pavement network by utilizing distress and laser-based
measurements (sensors) for a 0.1-mile section. The information gathered on pavement distress in
MDOT's PMS is categorized by distinct principle distress (PD) codes, where each PD code
corresponds to a specific distress type (69). This pavement performance data was extracted for
the selected projects and converted to Pavement-ME compatible units (where needed). In
addition, MDOT personnel explained the distress calls made for the 2012 — 2017 data were only
at the sampled locations (about 29.41% of any 0.1-mile segment of each control section).
Therefore, it was suggested that a 0.2941 division factor be considered for those years of

measured PMS data.
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3.2.1.1. Selected distresses

The MDOT PMS and sensor database were carefully analyzed, and relevant data were extracted
to obtain the required distress information. The current distress manual of MDOT PMS was used
to determine all the principle distress (PD) codes corresponding to the predicted distresses in the
Pavement-ME. The earlier versions of the PMS manual were also reviewed to ensure accurate
data was extracted for all the years. The necessary steps for PMS data extraction include:

1. Identify the PDs that correspond to the Pavement-ME predicted distresses

2. Extract PDs and sensor data for each project

3. Convert (if necessary) MDOT PDs to the units compatible with the Pavement-ME

4. Summarize time-series data for each project and each distress type
Tables 3-1 and 3-2 summarize the identified and extracted pavement distresses and conditions
for flexible and rigid pavements. This section also presents a detailed discussion of the

conversion process for both flexible and rigid pavements.

Table 3-1 Flexible pavement distress measurement by MDOT

. . MDOT principle . Pavement-ME | Conversion
Flexible pavement distress distresses (PDs) MDOT units units needed?
IRI Directly measured in/mile in/mile No
Top-down cracking 204, 2055’07124’ 725, miles % area Yes
. 234, 235, 220, 221, . 0
Bottom-up cracking 730, 731, 501 miles % area Yes
101, 103, 104, 114, No. of
Thermal cracking 701, 703, 704, 110, ' ft/mile Yes
501 occurrences
Rutting Directly measured in in No
Reflective cracking No specific PD None % area N/A
Note: Bold numbers represent older PDs that are not currently in use; PD code 501 = No distress
Table 3-2 Rigid pavement distress measurement by MDOT
nglq pavement MDQT principle MDOT units Pavemgnt-ME Conversion
distresses distresses units needed?
IRI Directly measured in/mile in/mile No
Faulting Directly measured in in Yes
Transverse 112, 113, 501 No. of % slabs cracked Yes
cracking occurrences

Note: PD code 501 = No distress
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3.2.1.2. Pavement distress unit conversion for HMA designs

It should be noted that the Pavement-ME predicted distresses for the local calibration were only
considered. The corresponding MDOT PDs were determined and compared with distress types
predicted by the Pavement-ME to verify if any conversions were necessary. MDOT measures
pavement distresses related to HMA pavements are listed in Table 3-1. PD code 501 corresponds
to no distress condition and has been used in all distresses except rutting and IRI. The conversion
process (if necessary) for all distress types is as follows:

IRI: The IRl measurements in the MDOT sensor database are compatible with those in the
Pavement-ME. Therefore, no conversion or adjustments were needed, and data could be used
directly.

Top-down cracking: Top-down cracking is load-related longitudinal cracking in the wheel path.
The PDs 204, 205, 724, and 725 were assumed to correspond to the top-down cracking in the
MDOT PMS database because those may not have developed an interconnected pattern that
indicates alligator cracking. Those cracks may show an early stage of fatigue cracking, which
could also be bottom-up. Since estimating such cracking based on the PMS data is difficult, these
cracks were converted to % area crack and then categorized into bottom-up or top-down cracking
based on the thicknesses. The PDs are recorded in miles and need conversion to % area. Data
from the wheel paths were summed into one value and divided by the total project length, as
shown in Equation (3-1). The lane width was assumed to be 12 ft. The typical wheel path width
of 3 feet was assumed as recommended by the LTPP distress identification manual (70).

% AC _ Length of cracking (miles) x width of wheelpaths (feet) « 100 (3-1)
0 Abtop—down = Length of section (miles) x Lane width (feet)

Literature shows that the AC thickness determines whether the crack initiates from the bottom or
the top. Therefore, top-down cracking can be a primary distress based on AC layer thickness.
The calculated top-down cracking using Equation (3-1) is assigned as either bottom-up or top-
down based on the total AC layer thickness. If the thickness exceeds a certain threshold, the
cracking is considered top-down cracking; otherwise, it is categorized as bottom-up cracking.
These thicknesses were obtained by a mechanistic approach using Mechanistic Empirical
Asphalt Pavement Analysis (MEAPA) software. MEAPA was run for different surface types

using typical MDOT design inputs, and damage was calculated for the first 12 months for a
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single axle load of 9000 Ib. Threshold thicknesses were determined where the tensile strain at the
top of the AC layer is higher than at the bottom. Table 3-3 presents the minimum threshold

thicknesses for top-down cracking for each fix type.

Table 3-3 Minimum thicknesses for top-down cracking

Fix type Threshold thickness (in)
HMA overlay on rubblized concrete 6
HMA overlay on crushed and shaped HMA 4
New or reconstruct 5

Bottom-up cracking: Bottom-up cracking is alligator cracking in the wheel path. The PDs 234,
235, 220, 221, 730, and 731 match this requirement in the MDOT PMS database. The PDs have
units of miles; however, to make those compatible with the Pavement-ME alligator cracking
units, conversion to the percent of the total area is needed. This can be achieved by using the
following Equation (3-2):

Length of cracking (miles) X width of wheelpaths (feet)

%Acbottom—up = x 100 (3-2)

Length of section (miles) X Lane width (feet)

The widths of each wheel path and lane were assumed to be 3 feet and 12 feet, respectively. The
LTPP distress identification manual recommends a typical wheel path width of 3 feet (70).
Thermal cracking: Thermal cracking corresponds to transverse cracking in flexible pavements.
The transverse cracking is recorded as the number of occurrences, but the Pavement-ME predicts
thermal cracking in feet/mile. To convert transverse cracking into feet/mile, the number of
occurrences was multiplied by 3 feet for PDs 114 and 701 because these PDs are defined as
"tears" (short cracks) that are less than half the lane width. For all other PDs, the number of
occurrences was multiplied by the lane width (12 ft). All transverse crack lengths were summed

and divided by the project length to get feet/mile, as shown in Equation (3-3).

__ X No. of Occurrences xLane Width (ft)
- Section Length (miles)

TC

(3-3)

Thermal cracking predictions in the Pavement-ME are restricted to a maximum value of 2112
ft/mile due to a minimum crack spacing limit of 30 feet. This means Pavement-ME predictions at
50% reliability cannot exceed 2112 ft/mile. Due to this limitation and ARA recommendations, a
2112 ft/mile cutoff was decided where any measured data for a section above 2112 ft/mile was
not used for calibration.
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Rutting: This is the total amount of surface rutting all the pavement layers and unbound sub-
layers contribute. The average rutting (left & right wheel paths) was determined for the entire
project length. No conversion was necessary. It is assumed that the measured rutting corresponds
to the total surface rutting predicted by the Pavement-ME.

3.2.1.3. Pavement distress unit conversion for rigid designs

For rigid sections, transverse cracking requires unit conversion. For all other distresses, MDOT
records them in the Pavement-ME compatible units. Table 3-2 summarizes the distresses related
to rigid sections, and the conversion process is discussed below:

IRI: The IRI in the MDOT sensor database does not need any conversion; the values were used
directly.

Faulting: In the Pavement-ME, faulting is predicted as average per joint. MDOT's sensor data
records the number of faults (FaultNum), average faulting (avgFault), and the maximum faulting
(FaultMax) for every 0.1-mile segment. The faulting values had some inconsistencies. For the
years between 2000 and 2011, faulting values are maximum fault callouts only (not average
values). For 2012 and after, both average and maximum fault values are available. A correlation
was developed between the maximum and average faulting values using data from 2013 to 2017
to resolve this issue. These correlations were used to estimate the average faulting from 2000 to
2011. Table 3-4 shows the regression equations between average and maximum faulting using
the data from 2013 to 2017. These equations are based on the number of faults. It is important to
note that ideally, the number of faults cannot be greater than the number of joints, but the
number of faults in the database has records where they are more than the number of joints.
These pseudo-fault values might come from cracking, spalling, bridge segments, etc. Therefore,
the maximum number of fault counts was restricted to 36, and the average faulting to 0.4 inches
to address this issue. Accordingly, any 0.1-mile section above these restricted faulting values was

omitted from the calibration data.
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Table 3-4 Correlation equations based on the number of faults

FaultNum Equation R-squared
From To (y is avgFault, x is FaultMax) (2013-2017data)
0 1 y=X 1
2 4 y =0.3438x + 0.03 0.7189
5 40 y =0.2132x + 0.0377 0.6074
41 ALL y = 0.0936x + 0.0777 0.2476

The average joint faulting is calculated based on the number of faulting in a 0.1-mile section. It
is assumed that if the number of faults is less or equal to the number of joints, faulting occurs at
the joints only. In that case, the faulting unit conversion equation is as shown in Equation (3-4).
If, for any 0.1-mile section, the number of faults is greater than the number of joints, that section

is removed (cut) from the calibration data, as previously mentioned.

Fault = FAULnum xFAULi (3_4)

Njoints

where,

FAULnum = Number of faults in a 0.1 mile
FAULI =(FAULT_(Avg_Right) + FAULT_(Avg_Left))/2 = Average faulting in a 0.1 mile
(inches)

Njoints is the number of joints in 0.1-mile (528 ft) segments, i.e., Njqins=528/Joint Spacing.
Transverse cracking: The transverse cracking distress is predicted as the percentage of slabs
cracked in the Pavement-ME. However, MDOT measures transverse cracking as the number of
transverse cracks. PDs 112 and 113 correspond to transverse cracking. The estimated transverse

cracking must be converted to the percent slabs cracked using Equation (3-5).

% Slabs Cracked = DLLEEREE x 100 (3-5)

(Section Length (miles)x52 80ft)
Joint Spacing (ft)

3.2.2 Condition Database for Local Calibration

Customized databases were created to efficiently analyze the condition of selected Pavement
Distresses (PDs), which included distress and sensor data for multiple years. These databases
were compiled using Microsoft Access and allowed for easy extraction of relevant data for
projects of any length. The PMS condition data from 1992 to 2019 and sensor data from 1998 to

2019 were included in these databases. MATLAB codes were used to extract performance data
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for a section of the given length. For divided highways, which can have an increasing and
decreasing direction to indicate north/south or east/west bounds, both directions were included in
the time-series data and considered separate sections. In contrast, distress data was collected in
one direction for undivided highways.

3.3 PROJECT SELECTION CRITERIA

For local calibration, selecting in-service pavement sections that represent local pavement
design, currently used materials, construction practices, and performance is essential. A set of
project selection criteria was established to identify and choose these representative pavement
sections. This approach ensured that the selected pavement sections met the required standards
and could accurately represent Michigan's pavement network. The process for identifying and
selecting pavement sections consists of the following steps:
1. Determine the minimum number of pavement sections required for calibration based on
the statistical requirements.
2. Identify all available in-service pavement projects.
3. Extract all pavement distresses (pavement condition data) from the customized database
for all identified projects in Step 2.
4. Evaluate the measured performance for all the identified projects.
5. Identify projects with adequate data, age, trend, and the Pavement-ME inputs available to

develop a refined list.

3.3.1 Identify the Minimum Number of Required Pavement Sections

The MEPDG local calibration guide provides a method to evaluate the minimum number of
required sections for each distress type. The minimum number of sections was calculated using
Equation (3-6), and the results are summarized in Table 3-5 for each condition measure. The
total number of projects available in Table 3-5 are combined projects from the previous
calibration study (10) and newly selected projects from the current calibration effort.
ZC{/Z X o 2
n=("£=2) (3-6)
et

where;
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Z, = Thez-value from a standard normal distribution
n = Minimum number of pavement sections

o = Performance threshold

et = Tolerable bias Z ./ x SEE

SEE = Standard error of the estimate

Table 3-5 Minimum number of sections for local calibration

Nat_ionally N (required Numl?er of nu;%t:rl of
Performance Model calibrated Zyo Threshold | number of sections :
SEE sections) used projects
available
Flexible Pavements
Fatigue, bottom-up (%) 5.01 20% 16 78
Fatigue, top-down (ft/mile 2000
o) _ ( >3 or 20% 2 s 163
e Tecking : 164 1000 : 133
Rutting (in) 0.107 0.5 22 200
IRI (in/mile) 18.9 172 83 178
Rigid Pavements
Transverse cracking (%) 4.52 15 11 48
Joint faulting (in) 0.033 1.64 0.125 14 79 46
IRI (in/mile) 22 172 61 48

Note: Fatigue top-down has been updated in the recent Pavement-ME V2.6. It is expressed in ft/mile for the old model and in %

for the updated model.

N= minimum number of samples required for a 90% confidence level
1. No SEE, threshold, or N was reported for thermal cracking in the literature

3.3.1 Initial Projects Selection

The common pavement types in Michigan include:

1. HMA reconstruct

2.  HMA over crush & shaped existing HMA

3. HMA over rubblized PCC

4. JPCP reconstruct
It is important to note that HMA over crushed and shaped existing HMA and HMA over
rubblized existing PCC projects were analyzed as new reconstructed pavement. Sections were
selected for the local calibration based on performance trends and to accommodate a wide range

of different inputs, including layer thicknesses, traffic, region, etc.
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MDOT provided a comprehensive database consisting of all the projects constructed in
Michigan. Initially, all existing projects used in previous calibration efforts were reviewed, and
additional performance data were extracted where possible. Additional projects were identified
that can be potential candidates for the current local calibration effort. The PMS data extraction
was completed for all required distress types in a compatible format with the Pavement-ME
software. The time series for each pavement section's performance measures was observed to
finalize the preliminary list of new potential candidate projects. To ensure a robust and
appropriate set of data, the criteria used to identify additional performance data and the selection
of new potential pavement projects include:

e The pavement section must have at least three measured data points over time. There are
some exceptions to this criterion. Bottom-up cracking has relatively fewer data points;
some sections with even two points have been included, considering further data points
will be collected in the future. The same process was followed for transverse cracking in
rigid sections. As previously explained, joint faulting and thermal cracking have been cut
at specific values, so these data points are omitted from the calibration database.

e At least one of the distresses should have an increasing trend. Any section with
decreasing and no or flat trends over time was excluded from the list.

e The previous maintenance history was observed for all pavement sections to explain any
decrease or flat trend in the time series plot. If there were any major rehabilitation or
reconstruction activities, the measured data from the year traffic opened initially to the
very last year until the major repair took place are considered.

e The last recorded point should have a Distress Index (DI) of at least 5 for a section. DI is
calculated by taking a weighted average of different distress types. DI was observed and
limited to ensure sufficient distress for calibration and to capture adequate pavement
performance trends.

Figures 3-1 and 3-2 illustrate examples of distress progressions for a selected and omitted
flexible pavement section. The top-down cracking for the initial project selection was evaluated
in feet/mile and later converted to a percentage. Similarly, Figures 3-3 and 3-4 present examples
of the selected and omitted rigid pavement sections. The vertical dashed red line is the last
reported construction, whereas the dotted blue line in the DI plot indicates reported maintenance
activities. For example, Figure 3-1 shows the vertical dotted blue line in the DI plot that shows a
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cold mill and resurface (CM&R) treatment was applied in 2012. In the same figure, the effect of
this rehabilitation event can be noticed with a drop in measured distress in individual distress
plots. Therefore, in this case, pavement section performance can be considered from 2001 to
2011. It should be noted that generally, minor maintenance [e.g., crack treatment (CT) or joint
sealing (JS)] does not affect the time series trend since these minor maintenances represent non-
structural fixes. Note that time series plots for rutting show a consistent drop in the 2012-2013
collection years, regardless of whether any maintenance is reported. This is likely due to changes
in the data collection process or vendor differences.

Based on the criteria mentioned above, a total of 256 flexible sections and 88 rigid
sections were initially selected. The performance of the chosen pavement sections was compared
with all sections available in the MDOT database (2081 flexible sections and 442 rigid sections)
to verify if the chosen sections represent the overall pavements in Michigan. Sections with at
least three available data points are considered. Each section was categorized as good, fair, or
poor performing based on the performance trend lines modified to reflect Michigan conditions
(10). These trend lines are available only for bottom-up cracking, total rutting, and IRI for
flexible sections, as well as transverse cracking and IRI for rigid sections. The performance
categories depend on the measured performance trend relative to the reference lines. If the
measured performance is below the good performance line, it is categorized as a good
performing section, between the good and poor line, as fair, and above the poor performance
line, as the poor performing section. The performance category was decided based on a previous
calibration study (10). When the performance trend passes through more than one category zone,
the zone with the maximum points is considered the performance category for that section. Also,
the low-performance category is selected in case of an equal number of points for two different
categories. Figures 3-5 and 3-6 show example sections for good, fair, and poor categories for IRI

performance for flexible and rigid sections, respectively.
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Figure 3-1 Example of selected flexible section
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Figure 3-2 Example of an omitted flexible section
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Figure 3-3 Example of a selected rigid section
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Figure 3-4 Example of an omitted rigid section
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A similar method was followed for categorizing sections based on all other distresses. Figures 3-
7 and 3-8 show the distribution of good, fair, and poor sections for rigid and flexible sections
based on different distress criteria. Figures 3-7 and 3-8 show that the selected sections
satisfactorily represent MDOT all sections for both flexible and rigid pavements.
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Figure 3-5 Categorization of flexible sections based on performance trends

The initially selected projects were further refined based on performance, availability of inputs,
and initial IRI. The performance data for these initially selected sections is the average for the
entire section length. This data is calculated by averaging the performance for every 0.1-mile
segment in the project length. Data for every 0.1 mile has been reviewed to estimate performance
data extent and reasonableness. Figures 3-9 to 3-13 show performance data for every 0.1-mile

segment with years for all flexible sections.
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Figure 3-9 Bottom-up cracking at every 0.1-mile segment for flexible sections
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Figure 3-13 IRI at every 0.1-mile segment for flexible sections
Figures 3-14 to 3-16 show the raw performance data for all rigid sections. As previously noted,
2112 ft/mile and 0.4 inches cutoff values were adopted for thermal cracking and joint faulting,
respectively. These values were selected based on the raw (0.1-mile segment) data, limitations of
the Pavement-ME models, and consensus with MDOT. Moreover, sections with Superpave
mixes are only used to calibrate the thermal cracking model to have consistent Level 1 input in
the Pavement-ME.

100 - - s 5 " ; + + + ¢ + o

3
T
|

Transverse cracking (%)
8 2
T T
| |

4 %

2000 2001

2002

2003 2004

2005 2006 2007

2008 2009 2010 201
Years

2012 2013 2014 2015 2016 2017 2018 2018

Figure 3-14 Transverse cracking at every 0.1-mile segment for rigid sections
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Figure 3-16 IRI at every 0.1-mile segment for rigid sections

3.4 SELECTED SECTION PERFORMANCE DATA SUMMARY

The measured performance data was extracted for each project, and the necessary conversions

were made to ensure compatibility with the Pavement-ME predicted performance, as discussed

in Section 3.2. The level of distress was assessed in all pavement sections identified for local
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calibration. The calibration process entails comparing each chosen project's predicted and
measured performance. To have a robust local calibration, the levels of distress must fall within a
reasonable range (i.e., above and below threshold limits for each type of distress). Therefore, the
distress levels for all projects were compiled and analyzed to determine their respective ranges.
This section summarizes the observed performance for the selected flexible and rigid pavement
sections. Efforts were undertaken to gather sufficient information to achieve a precise and
dependable local calibration of the performance models. Due to changes in construction practices
and/or data availability, most sections are less than 20 years old, so it is expected that most
sections do not have poor performance or exceed performance thresholds. Furthermore, these
represent the average values of the Pavement-ME prediction using 50% reliability. When
designing, a higher reliability factor is applied to account for project variability (including
climate, traffic, material, and construction), increasing the resulting distress values. Therefore,
while designs will correlate with the calibration sections, it should not be anticipated that
pavement designs will exactly match the sections used in calibration because of the increased

reliability factor.

3.4.1 Flexible Performance Data

The magnitude and age distribution for the HMA reconstruct sections (also includes crush and
shape and HMA over rubblized PCC) are shown in Figures 3-17 to 3-21. The following
observations were made:

e Bottom-up cracking: Bottom-up cracking magnitudes are usually low for most sections,

with only a seven crossing the threshold of 20% with a maximum of almost 40%. The
maximum age ranges from 4 to 20 years. Most sections fall in the good category, as
shown in Figure 3-8.

e Longitudinal/top-down cracking: Top-down cracking is observed more frequently than

bottom-up cracking. More sections have observed top-down cracking compared to
bottom-up cracking. The age at maximum distress ranged from 5 to 20 years.

e Thermal cracking: Higher thermal cracking values are observed, ranging up to 4000
ft/mile. The design threshold used by MDOT is 1000 ft/mile. The age at which the

maximum thermal cracking is observed ranges from 5 to 19 years. Sections with

performance grade (PG) binders have been used for thermal cracking calibration.
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Rutting: Selected sections do not exhibit significant rutting. All sections were below the
threshold of 0.5 inches. The age distribution ranged from 3 to 19 years. Two-thirds of the
sections are in the fair performance category, as shown in Figure 3-8.

IRI: The IRI time series is usually flat, with no sections exceeding the 172 in/mile
threshold. The maximum observed IRI is 168.5 in/mile. The age at maximum IRI ranged
from 5 to 20 years. It is worth noting that a cutoff value of the initial IRI less than or
equal to 77 in/mile is selected to calibrate the IRI model. 74% of sections are in good,
followed by 25% of sections in fair category. Only 1% of sections showed poor

performance.

3.4.2 Rigid Performance Data

The magnitude and age distribution for the JPCP rehabilitation projects are shown in Figures 3-

22 to 3-24. The following observations can be made from the figures:

Transverse cracking: A maximum transverse cracking value of 85% is observed, with

five sections crossing the distress threshold of 15% slabs cracked. The age distribution
ranges from 4 to 20 years. About 72% of these sections fall under the fair performance
category, as shown in Figure 3-7.

Transverse joint faulting: Ten sections exceed the joint faulting threshold of 0.125 inches,

with a maximum value of 0.17 inches. The age distribution ranges from 8 to 20 years.
These observed values for joint faulting have been cut off at 0.4 inches, where a 0.1-mile
segment is above 0.4 inches.

IRI: A maximum IRI of 167 in/mile was observed. The age at maximum IRI ranges from
5 to 20 years. It is worth noting that a cutoff value for the initial IRI less than or equal to
82 in/mile is used to calibrate the IRl model. All sections fall under good and fair

categories, with none exhibiting poor performance, as shown in Figure 3-7.
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Figure 3-19 Selected flexible sections— Transverse (thermal) cracking
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Figure 3-22 Selected rigid sections — Transverse cracking
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3.5 INPUT DATA EXTENT

Accurate pavement cross-sectional, traffic, climate, and material input data are essential for
adequately characterizing as-constructed pavements since the information directly affects
performance prediction accuracy in the Pavement-ME software. Due to the large number of
inputs required to characterize a pavement in the Pavement-ME, input data collection can be
time-consuming. Moreover, many critical input parameters have three input levels within the
Pavement-ME hierarchical structure. The process of collecting as-constructed input data,
including the source of the data, how to address missing data, and the selection of input values, is
discussed in this section. The best available input level was used for the selected pavement

sections.
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3.5.1 Pavement Cross-Section

The pavement cross-sectional information is necessary to characterize the layer thicknesses of
the various layers. The cross-sectional information is obtained from the construction records.
Typically, in the case of HMA pavements, the drawings provided the asphalt application rate of
the HMA layers (dividing the application rate by 110), which was used to determine the HMA
lift thicknesses in inches. For the sections used in the previous calibration effort (10), the
Pavement-ME inputs data sheet was used to extract design inputs. MDOT provided the drawings
(construction plans) for the newly selected sections. The thickness, mix type, traffic, and
unbound layer information were included in these drawings. A summary of the design

thicknesses for flexible and rigid selected pavement projects is shown in Tables 3-6 and 3-7.

Table 3-6 Average flexible pavement thicknesses

HMA
HMA top leveling HMA base Base Subbase
. course . )
Pavement types course thickness course . thickness thickness
) . thickness . .
(in.) thickness . (in.) (in.)
. (in.)
(in.)
Crush and Shape 1.6 1.9 2.0 7.5 20.5
Freeway 1.6 2.1 4.5 7.1 16.8
Non-freeway 15 2.1 3.2 6.6 16.4
Rubblized 1.6 2.0 3.0 3.8 11.1
Statewide Average 1.6 2.0 3.1 5.7 15.0

Table 3-7 Average rigid pavement thicknesses

Pavement type Average PCC Average base Average subbase
yp thickness (in.) thickness (in.) thickness (in.)
JPCP 114 6.9 121

3.5.2 Traffic Inputs

The traffic data is a critical input to the Pavement-ME. Level 2 traffic data was used for all
sections. MDOT provided a spreadsheet with traffic distribution tables, which was used to
extract Pavement-ME inputs for traffic. These tables include:

e Vehicle class distribution

e Hourly distribution (only for rigid sections)

e Monthly adjustment factor

e Number of axles per truck

e Single axle load spectra
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e Tandem axle load spectra
e Tridem axle load spectra
e Quad axle load spectra
The inputs (with input categories) required to obtain these tables are summarized in Table 3-8.

Table 3-8 Traffic input categories

Inputs Categories
e Lessthan 45
Percentage of vehicle class 9 e 45t070
e Above 70
. e Rural
Region type e Urban
e National
COHS type e Regional
e Statewide
o 2
Number of lanes e 3
o 4+

The number of lanes was identified from the plans. Wherever the number of lanes was
unavailable, they were visually estimated utilizing Google Maps coordinates. The COHS
(Corridors of Highest Significance) type was estimated using each project's PR number and
beginning and ending milepost. The percentage of class 9 vehicles was estimated for each

section using the MDOT Transportation Data Management System (TDMS) website from the

following URL.: https://mdot.public.ms2soft.com/tcds/tsearch.asp?loc=mdot. For sections where
the traffic data was unavailable at the exact location, nearby locations in the same section were
used. The range and average two-way AADTT values for all flexible and rigid sections are

summarized in Table 3-9.

Table 3-9 Ranges of AADTT for all reconstruct projects

Road Type Min AADTT | Max AADTT | Average AADTT
Crush and Shape 60 1986 669
Rubblized 173 3707 1502
HMA Reconstruct (Freeway) 313 6745 2076
HMA Reconstruct (Non-freeway) 63 1600 431
JPCP Reconstruct 150 18297 7141
Statewide Average 134 6502 2381
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3.5.3 As-constructed Material Inputs

The as-constructed material inputs were obtained from the construction records, JMFs, and other

test records. Ideally, these inputs are to be recorded at the time of construction. These inputs

range between project-specific and statewide average values. This section details the material

properties of each pavement structural layer.

3.5.3.1. HMA layer inputs

All inputs were collected at the highest hierarchy level; however, the needed data were

unavailable for all pavement sections. In that case, the data was collected using other

correlations/sources. Data collection for each HMA layer input is as follows:

Dynamic modulus (E*): E* was obtained from the DYNAMOD software developed in a
previous study (71). E* for the Superpave mixes was directly obtained from the database.
For older mixes (marshal mixes), the volumetric, binder, and gradation information was
used to predict the E* using DYNAMOD's Artificial Neural Networks (ANNSs). E* was
obtained at Level 1.

Binder (G*): G* was also obtained from the DYNAMOD database using the region and
binder information. G* was obtained at Level 1.

Creep compliance (D(t)): D(t) was obtained from the DYNAMOD database. D(t) was
obtained at Level 1 for Performance grade (PG) sections and Level 3 for other sections.
Indirect tensile strength (IDT): IDT was obtained from the DYNAMOD database at
Level 2 for Performance grade (PG) sections and Level 3 for other sections.

AC layer thickness: These were obtained from construction records. Usually, the
application rate in lbs/yards? is available, which can be utilized to obtain the layer
thickness, as previously mentioned.

Air voids and binder content: As constructed air voids and binder content were obtained
from construction records. Table 3-10 summarizes the average as-constructed air voids
for different pavement types. Historical test records were utilized for unavailable data to
obtain an average value based on mix type, as shown in Table 3-12.

Aggregate gradation: Gradation was obtained from JMFs. Tables 3-11 summarize the

average gradation for the top, leveling, and base layers, respectively, for different
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pavement types. Historical test records were utilized for unavailable data to obtain an

average value based on mix type, as shown in Table 3-12.

It is important to note that Level 1 G* and Level 2 IDT data were used to calibrate the thermal

cracking model.

Table 3-10 As-constructed percent air voids for HMA layers

HMA layer Road Type Average as-constructed air voids
Crush and Shape 6.1
Top course Rubblized 6.8
HMA Reconstruct Freeway 6.6
HMA Reconstruct Non-freeway 6.8
Crush and Shape 6.2
Leveling course Rubblized 6.4
HMA Reconstruct Freeway 6.7
HMA Reconstruct Non-freeway 6.7
Crush and Shape 5.8
Base Course Rubblized 5.8
HMA Reconstruct Freeway 6.4
HMA Reconstruct Non-freeway 6.8

Table 3-11 HMA layer average aggregate gradation

Effective AC Percent passing sieve size

HMA Layer Road type binder content 3/4 3/8 #4 | #200
Crush and Shape 115 100.0 | 89.7 | 684 | 5.2
Top course Rubblized 11.9 994 | 898 | 67.3 | 5.9
HMA Reconstruct (Freeway) 11.2 100.0 | 924 | 674 5.2
HMA Reconstruct (Non-freeway) 111 100.0 | 946 | 714 5.3
Crush and Shape 10.6 100.0 | 818 | 61.1 5.0
Leveling Rubblized 11.2 100.0 | 87.0 | 678 | 5.2
course HMA Reconstruct (Freeway) 10.1 99.8 | 813 | 633 | 438
HMA Reconstruct (Non-freeway) 10.2 1000 | 826 | 734 | 438
Crush and Shape 10.8 99.6 | 77.9 | 60.3 4.6
Rubblized 10.6 99.3 | 789 | 59.9 | 48
Base course HMA Reconstruct (Freeway) 9.4 958 | 729 | 516 | 4.9
HMA Reconstruct (Non-freeway) 9.6 98.9 | 76.6 | 575 4.9
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Table 3-12 MDOT recommended values volumetrics and gradation

Miix type Air voids E;Ei%t;\r/e % Pas_sing % Pasging % Pagsing #| % Passjng

(%) content (%) 3/4" Sieve 3/8" Sieve 4Sieve #200 Sieve
3E1 5.8 10.8 99.85 80.44 62.94 4.40
4E1 6.1 11.5 100.00 87.24 70.43 5.11
5E1 6 12.6 100.00 97.14 78.23 5.63
2E3 4.8 9.7 92.65 68.70 53.95 4.40
3E3 5.8 10.8 99.63 77.88 60.33 4.56
4E3 6.1 11.5 100.00 86.91 68.66 4.92
5E3 6 12.6 100.00 97.86 79.81 5.49
2E10 4.8 9.7 94.55 73.50 59.70 4.50
3E10 5.8 10.8 99.78 80.27 62.78 4.84
4E10 6.1 11.5 100.00 87.65 70.06 5.26
5E10 6 12.6 100.00 98.30 81.27 5.67
2E30 4.8 9.7 99.00 71.80 60.60 4.20
3E30 5.8 10.8 99.95 79.20 59.82 4.40
4E30 6.1 11.5 100.00 88.63 66.90 4.33
5E30 6 12.6 100.00 99.00 81.24 5.68

3.5.3.2. PCC material inputs

The Pavement-ME transverse cracking prediction model is very sensitive to concrete strength
(compressive or flexural). The PCC material-related inputs were obtained from material testing
results. If these results were unavailable, typical MDOT values were used.

PCC strength:

MDOT collected the concrete core compressive strength (f'c) test data. These tests represent the
concrete compressive strength close to the construction time for the selected pavement sections.
These test values were used directly for each corresponding project. If compressive strength is
unavailable, an average value of 5239 psi was used. This is an average value obtained from the
sections with available values. The transverse cracking model in the Pavement-ME directly uses
the modulus of rupture (MOR) to estimate the damage. The MOR values were calculated based
on the ACI correlation between MOR and f'c (used in the Pavement-ME), as shown by Equation
(3-7). Figure 3-25 shows the f'c and estimated MOR distributions. It should be noted that these
cores' specific testing age was unavailable; however, all cores were tested after or at least 28

days. The Pavement-ME internally calculates the relationship between f'c and MOR.

MOR = 9.5 X +/f, (3-7)
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Figure 3-25 Distribution of concrete strength properties
Coefficient of thermal expansion:
The CTE input values were obtained from the MDOT recommended values (72). A value of 4.4
in/in/°Fx10® was used for Bay, Grand, North, Southwest, and Superior regions, whereas 5.0

in/in/°Fx10® was used for Metro and University regions.
3.5.3.3. Aggregate base/subbase and subgrade input values

The aggregate base/subbase and subgrade input values were obtained from the following
sources:

e Backcalculation of unbound granular layer moduli (73)

e Pavement subgrade MR design values for Michigan's seasonal changes (74)
The resilient modulus (MR) values for the base and subbase material were selected based on the
results from previous MDOT studies (73, 74). The typical backcalculated values for base and
subbase MR is 33,000 psi and 20,000 psi, respectively. It is worth noting that crushed and shaped
and rubblized sections have been modeled as new flexible pavements. The existing layer has
been modeled as a dense aggregate base with an MR of 125,000 psi for crush and shape and
70,000 for rubblized sections. These values were assumed to be the same for all projects since in-
situ MR values were unavailable. For base/subbase layers, the software default to "Modify input
values by temperature/moisture” was selected. The subgrade material type and resilient modulus
were selected based on the Subgrade MR study (73, 74). The study outlined the location of

specific soil types and their MR values across the entire State. Annual representative values for
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subgrade MR were used in Pavement-ME. The recommended design MR value corresponding to

the soil type is shown in Table 3-13.

Table 3-13 Average roadbed soil MR values

Roadbed Type Average MR
USCS AASHTO detominen | catmutatec | Recommended design MR
. . value (psi)
(psi) (psi)

SM A-2-4, A-4 17,028 24,764 5,200
SP1 A-l-a, A-3 28,942 27,739 7,000
SP2 A-1-b, A-3 25,685 25,113 6,500
SP-SM A-1-b,A-2-4, A-3 21,147 20,400 7,000
SC-SM A-2-4, A-4 23,258 20,314 5,000
SC A-2-6, A-6,A-7-6 18,756 21,647 4,400
CL A-4, A-6, A-7-6 37,225 15,176 4,400
ML A-4 24,578 15,976 4,400
SC/CL/ML | A-2-6, A-4, A-6, A-7-6 26,853 17,600 4,400

3.5.4 Climatic Inputs

The Enhanced Integrated Climatic Model (EICM) in Pavement-ME requires hourly climatic
data. This data includes air temperature, precipitation, relative humidity, percent sunshine, and
wind speed. A statistical comparison between Modern-Era Retrospective Analysis for Research
and Applications (MERRA) and North American Regional Reanalysis (NARR) data was
performed to identify the most suitable climatic data for calibration. Both MERRA and NARR
data files used include climatic information for different periods. For that purpose, a common
temporal overlap of 13 years was identified for which continuous hourly data is available for all
climatic files from September 2000 to September 2013. The MERRA stations falling in the lake
region were removed from the database. Moreover, the four closest MERRA stations were
identified for each NARR station, and the weighted average (proportional to the distance) for all
four stations based on their distances was used for comparison. A total of 29 NARR stations and
the four closest corresponding MERRA stations to each have been compared. Table 3-14 shows
the SEE, bias, and correlation coefficient (R) between MERRA and NARR for hourly, daily, and
monthly data (75). MDOT has been using default Pavement-ME climate data and ground-based
climate automated surface observation systems (ASOS) data. This data was reviewed for
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errors/anomalies and was improved in MDOT's previous study (68). The following observations

were made based on the comparison and previous study (68, 75):

MERRA and NARR climatic data are comparable for air temperature followed by
humidity and wind speed. Percent sunshine showed a low correlation, and precipitation
data is significantly different (i.e., a very low correlation) among all climatic inputs.

The predicted pavement performance using MERRA-2 and NARR climatic data showed
good agreement except for thermal cracking in flexible pavement and transverse cracking
in rigid pavements. These differences are expected mainly because of sunshine data.
MERRA has anomalies in humidity data. Several humidity values were erroneously
higher than 100.

MERRA appeared to be incorrectly estimating precipitation. Specifically, the number of
wet days was extremely high, such that the data review showed wet event days in the data
on actual dry days. The ground-based stations are more closely aligned with actual wet
event days. Furthermore, it was unclear why the percent sunshine was significantly
different.

Table 3-14 Descriptive statistics for MERRA and NARR data comparison

L Descriptive Hourly Daily Monthly
Climatic input statistics SEE Bias R SEE Bias R SEE Bias R
Mean 12.784 4.437 0.764 9.582 4.437 0.705 7.387 4.437 0.538
Humidity Std. Dev. 0.726 2.230 0.035 1.014 2.230 0.055 1.283 2.230 0.145
Ccov 5.68% 50.27% 4.60% | 10.58% 50.27% 7.86% | 17.37% 50.27% 26.96%
Mean 0.049 0.002 0.062 0.009 0.002 0.610 0.002 0.002 0.678
Precipitation Std. Dev. 0.005 0.000 0.022 0.001 0.000 0.045 0.000 0.000 0.059
cov 10.85% 15.22% 34.59% | 7.90% 15.22% 7.33% | 11.21% 15.22% 8.73%
Mean 44.614 -1.457 0.411 29.317 -1.457 0.570 11.847 -1.457 0.821
Sunshine Std. Dev. 3.908 6.809 0.071 2,777 6.809 0.079 1.788 6.809 0.033
cov 8.76% -467.39% | 17.27% | 9.47% -467.39% | 13.84% | 15.09% | -467.39% 4.04%
Mean 3.924 -0.771 0.982 2.710 -0.771 0.992 1.837 -0.771 0.997
Temperature Std. Dev. 0.548 0.766 0.006 0.436 0.766 0.003 0.428 0.766 0.002
Ccov 13.98% -99.43% 0.58% | 16.08% -99.43% 0.31% | 23.32% -99.43% 0.20%
Mean 3.318 -0.165 0.752 2.031 -0.165 0.863 1.470 -0.165 0.848
Wind speed Std. Dev. 0.946 1.700 0.100 1.097 1.700 0.105 1.145 1.700 0.145
Ccov 28.52% | -1029.25% | 13.25% | 54.00% | -1029.25% | 12.16% | 77.92% | -1029.25% | 17.10%

Note: SSE = J@; Bias = w

In the previous study, additional weather stations were added to improve the climate coverage

using ASOS and the Michigan Road Weather Information System (RWIS) as potential data

sources (68). Moreover, additional years of climatic data were added from February 2006 to

December 2014 to enhance the data. Since the predicted performance did not show significant

differences and the NARR data was improved for Michigan climate, the improved MDOT
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NARR climatic files were used for climatic inputs for both flexible and rigid pavements. The

files were downloaded as *.hcd files, which can be read directly in Pavement-ME. The closest

weather station to each selected project was used.

Table 3-15 Michigan climate station information

HCD filename City/Location Climate identifier Latitude | Longitude
4847 Adrian Adrian Lenawee County Arpt 41.868 -84.079
94849 Alpena Alpena Co Rgnl Airport 45.072 -83.581
94889 Ann Arbor Ann Arbor Municipal Arpt 42.224 -83.74
14815 Battle Creek W K Kellogg Airport 42.308 -85.251
94871 Benton Harbor Sw Michigan Regional Arpt 42.129 -86.422
14822 Detroit Detroit City Airport 42.409 -83.01
94847 Detroit Detroit Metro Wayne Co Apt 42.215 -83.349
14853 Detroit Willow Run Airport 42.237 -83.526
14826 Flint Bishop International Arpt 42.967 -83.749
4854 Gaylord Otsego County Airport 45.013 -84.701
94860 Grand Rapids Gerald R Ford Intl Airport 42.882 -85.523
14858 Hancock Houghton County Memo Arpt 47.169 -88.506
4839 Holland Tulip City Airport 42.746 -86.097
94814 Houghton Lake Roscommon County Airport 44.368 -84.691
94893 Iron Mountain/Kingsford Ford Airport 45.818 -88.114
14833 Jackson Jakson Co-Rynolds Fld Arpt 42.26 -84.459
94815 Kalamazoo Klmazo/Btl Creek Intl Arpt 42.235 -85.552
14836 Lansing Capital City Airport 42.78 -84.579
14840 Muskegon Muskegon County Airport 43.171 -86.237
14841 Pellston Pton Rgl Ap Of Emmet Co Ap 45,571 -84.796
94817 Pontiac Oakland Co. Intnl Airport 42.665 -83.418
14845 Saginaw Mbs International Airport 43.533 -84.08
14847 Sault Ste Marie Su Ste Mre Muni/Sasn FI Ap 46.467 -84.367
14850 Traverse City Cherry Capital Airport 44.741 -85.583
AMN Alma Gratiot Community Airport 43.322 -84.688
BAX Bad Axe Huron County Memorial Airport 43.78 -82.985

CFS Caro Tuscola Area Airport 43.459 -83.445
ERY Newberry Luce County Airport 46.311 -85.4572
ESC Escanaba Delta County Airport 45.723 -87.094
FKS Frankfort Frankfort Dow Memorial Field Airport 44.625 -86.201
IRS Sturgis Kirsch Municipal Airport 41.813 -85.439
1SQ Manistique Schoolcraft County Airport 45.975 -86.172
IWD Ironwood Gogebic Iron County Airport 46.527 -90.131
LDM Ludington Mason County Airport 43.962 -86.408
MOP Mount Pleasant Mount Pleasant Municipal Airport 43.622 -84.737
0sC Oscoda Oscoda Wurtsmith Airport 44.452 -83.394
PHN Port Huron Saint Clair County Intnl Airport 42911 -82.529
RQB Big Rapids Roben Hood Airport 43.723 -85.504
SAW Gwinn Sawyer International Airport 46.354 -87.39

These files were directly used for rigid sections (since they are default files in the Pavement-

ME), and custom stations were formed using these files for flexible sections. Table 3-15

summarizes the climatic files used for calibration.
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3.5.5 Estimation of Initial IRI

Initial IR1 is an essential input for IRI prediction and pavement design. Initial IR1 is the IRI value

right after the construction. It indicates construction and ride quality right after construction.

Initial IR is also an essential part of QC/QA testing. Moreover, higher initial IRI values may

lead to a reduction in pavement service life. The IRl model in the Pavement-ME is linear in

form, but the measured IRI data may not always be linear. The change in measured IRI with time

can be linearly increasing or non-linearly increasing, which may follow an irregular or flat trend.

Also, the initial IRI (if available) can be greater or smaller than the first measured IRI data points

because of the measurement date. Figure 3-26 shows some examples of measured IRI trends for

flexible and rigid sections.

180 180
160 - - 160
140 1 140
1204 - 120

100

IRI {in/mile)
IRI (in/mile)

80
60 . 1 60
40+ . 1 40
20+ 1 20

0

0 5 10 15 20 0 5 10 15 20
Age(Years) Age(Years)

(@) Flexible sections (b) Rigid sections

Figure 3-26 Examples of measured IRI trends

A single backcasting approach may not be applicable for all sections due to the difference in

measured IRI trends for each section. Considering the data limitations and challenges, a

systematic approach is used to estimate the initial IRI. Five different methods used include:

1.

2
3.
4

Selecting the IRI at zeroth year (if available).

Linear backcasting IRI based on the measured data for the first ten years.

Linear backcasting IRI based on the measured data for all available years.

Reducing the first measured IRI (after construction) by 5 inches per mile/year up to the
zeroth year.

Reducing the first measured IRI (after construction) by 5 inches per mile/year if greater
than 100; 4 inches per mile/year if between 70 and 100; 3 inches per mile/year if less than

70 up to a zeroth year.
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It is important to note that the MDOT specification limit of 70 in/mile and 75 in/mile for flexible
and rigid pavements are considered. After the initial IRl was obtained using the five methods
mentioned above, the final initial IRl was selected based on the following criteria:
1. Use the initial IRI (if available) if it is less than or equal to the specification limit.
2. If the initial IRI (if available) is greater than the specification limit, use the backcasted IRI
from other methods, whichever is closest to and lower than the specification limit.
3. If all five methods provide an initial IRI greater than the specification limit, choose the
approach with an initial IRI greater than and closest to the specification limit.
4. Subsequently, review data progression to see if the estimated initial IRI fits all available
measured data points.
Figure 3-27 shows example sections with backcasted initial IRI using different methods. Section
1 has a non-linearly increasing trend, section 2 has an irregular trend, and sections 3 and 4 have
linear trends with varying slopes. Different backcasting methods provide significantly different
initial IR1 values. For example, section 2 has a maximum difference of more than 20 inches/mile
among the initial IR1 values calculated using various methods. Similar differences can be seen in
other sections. Moreover, method 3 for section 2 provides an unrealistic initial IRI value, higher
than the first measured data point, due to the nature of the irregular trend. These plots show a
need for different backcasting methods for various IRI trends. Figure 3-28 shows a flowchart for
selecting the initial IR1 using the mentioned approach. For certain flexible sections, the final
selected initial IRI was very low (less than 30 in/mile). In that case, an initial IRI value of 30
in/mile is assigned. Moreover, the final selected initial IRI was very high for several flexible and

rigid sections.
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Figure 3-27 Illustration showing backcasting of initial IRI

Table 3-16 Recommended thresholds based on initial IRI for flexible sections

IRI less than or equal to No of sections Mean initial IRI (in/mile)
85 380 56.1
82 371 55.4
80 362 54.8
78 356 54.4
75 349 53.9
70 331 52.9
67 295 51.0
65 274 49.7

Table 3-17 Recommended thresholds based on initial IRI for rigid sections

IRI less than or equal to No. of sections Mean initial IRI (in/mile)
85 74 73.7
82 65 71.6
80 52 69
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Table 3-18 Summary of initial IRI thresholds
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Figure 3-28 Flowchart for selection of initial IRI

Therefore, some thresholds were selected to keep reasonable initial IRI values. Any section with

an initial IRI value higher than the threshold was eliminated from the IRI calibration. Tables 3-

16 and 3-17 show different threshold values for flexible and rigid sections. It is important to note

that the sections in Tables 3-16 and 3-17 consist of both new and overlay sections, but only new

74




sections have been used in this study. Based on the number of sections available and the average
IRI for each cap, different threshold limits were selected for flexible and rigid pavements, as
shown in Table 3-18. Figure 3-29 shows the distribution of initial IRI for the selected flexible
and rigid sections. The distribution of the initial IRI is acceptable for an optimum IRI model

calibration.
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(a) Flexible sections (b) Rigid sections
Figure 3-29 Distribution of initial IRI

It is essential to verify the accuracy of the proposed methodology. Five sections from flexible
and one from rigid are taken for this purpose. These sections have the initial IRI data available at
zero (construction) year. Only one rigid section has initial IRl data available at zero year.
Methods 2 to 5 are implemented using measured IR data from age 1 to 20 (excluding zero-year
data). The comparison between the recommended initial IRI based on the proposed methodology
and the recorded initial IRI shows a good correlation with an error of less than 8% for all

sections. Table 3-19 shows the summary of the validation results.

Table 3-19 Summary of validation results

Pavement Initial IRl backcasting (in/mile) Recqmmended R(_egorded Error
type Method | Method | Method | Method In_|t|aI_IRI mmal IRI (%)
2 3 3 4 (in/mile) (in/mile)

40.6 40.6 32.9 36.9 40.6 41.2 14

57.7 57.7 52.7 56.7 57.7 55.5 4.0

Flexible 42.6 42.6 40.5 445 44.5 45.7 2.6
35.8 34.2 28.9 32.9 35.8 38.9 8.0

55.5 50.9 48.4 52.4 55.5 58.4 5.0

Rigid 70.7 66.6 52.0 56.0 70.7 72.4 2.3
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3.6 CHAPTER SUMMARY

This chapter outlines the data used for local calibration, emphasizing the importance of selecting
representative pavement sections and gathering pertinent data for accurate performance
predictions. It details the methodology of converting the MDOT PMS data to Pavement-ME
compatible units, evaluating distress trends, and considering maintenance history. Key distresses
were identified, and databases were created for efficient data extraction. Project selection criteria
prioritize sections with adequate data and performance trends. The selected sections were also
verified against all MDOT sections to validate if these sections are representative of overall
MDOT performance. Sections were categorized as good, fair, or poor based on measured trends
relative to reference lines. The results showed that the selected sections represent MDOT
pavement sections well. A total of 256 flexible and 88 rigid sections were selected. The number
of projects for each performance type and pavement type has also been summarized. This
chapter also details each input, source, and possible estimates in case of unavailable data. These
inputs include the HMA and PCC material inputs, traffic, climate, and estimation of initial IRI.
Table 3-20 summarizes the inputs and corresponding levels for traffic, climate, and material
characterization data used for the local calibration.
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Table 3-20 Summary of input levels and data source

Pavement- | Data source
Input ME input level Input source
level
Vehicle class distribution 1 2
Hourly distribution 1 2
Monthly adjustment 1 2
factor MDOT specified traffic per cluster data
. Number of axles per truck 1 2
Traffic . :
Single, tandem, tridem,
and quad axle load 1 2
distribution
AADTT 1 1 From design drawings
Vehicle class 9 percentage 1 1 MDOT TDMS website
HMA thickness 1 1 Pro;ect_-spemflc_ HMA thicknesses based
Cross- on c_ie5|gn drg\{vmgs .
section PCC thickness 1 1 Pro(;ject_-spzuflc_ PCC thicknesses based
layers on design drawings
(new and Base thickness 1 1 PrOJect_ specmc_ base thicknesses based
L on design drawings
existing) - — -
. Project-specific subbase thicknesses
Subbase thickness 1 1 . .
based on design drawings
Mix 1 Mix of 2 MDOT HMA mixture characterization
properties and 3 study (DYNAMOD database)
m|-i|>I:{c|lfre Project-specific mixture gradation data
HMA 1 lor3 obtained from data collection or average
aggregate :
. statewide values
gradation
Binder 1 3 MDOT HMA mixture characterization
properties study (DYNAMOD database)
Layer Strength (f', 3 Lor3 Project specific testing values or average
materials PCC MOR) statewide value
CTE 1 2 MDOT recommended values
Base/ MR 3 3 Recommendations from MDOT
subbase unbound material study
MR 3 3 Sml-specmg MR values per MDOT
Subgrade : _ subgrgde soil study
Soil Mix of all 3 Location-based soil type per MDOT
properties levels subgrade soil study
Climate 1 1 Closest available climate station
Note:

Data source Level 1 is project-specific data
Data source Level 2 inputs are based on regional averages in Michigan
Data source Level 3 inputs are based on statewide averages in Michigan
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CHAPTER 4 - METHODOLOGY

4.1 INTRODUCTION

Local calibration of the Pavement-ME models aims to optimize the model coefficients by
minimizing bias and standard error, which is achieved by matching the predicted and measured
distress. Bias in the predictions signifies if there is a systematic over or under-prediction,
whereas standard error shows the scatter and variability. Figure 4-1 shows a representation of
bias and standard error. This chapter highlights each model's calibration methods and
approaches, the reliability calculation, and the sensitivity analysis of Pavement-ME model

coefficients.

(a) High bias, high standard error (b) Low bias, high standard error

(c) High bias, low standard error (d) Low bias, low standard error

Figure 4-1 Schematic representation of bias and standard error (10)
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The details for inputs, performance data, and project selection have already been discussed in
Chapter 3. Once the data is extracted, it can be used to run the Pavement-ME files (.dgpx files)
and generate outputs (structural responses). The process for local calibration is summarized
below:

(@) Run the Pavement-ME (using global model coefficients) and extract critical responses and
predicted distresses.

(b) Compare the predicted distress with measured distress.

(c) Based on the results from Step 2, test the accuracy of the global models and the need for
local calibration.

(d) If predictions using global models are satisfactory, local calibration is not required, and
global models can be accepted. Local calibration is needed if the global model has
significant bias and standard error.

(e) Check your calibration results by validating them on an independent set of sections not
used for calibration.

(f) Estimate the reliability equations based on the calibrated model predictions and measured
distress.

Before locally calibrating the Pavement-ME models, it is vital to determine the need for
calibration. This includes testing the accuracy of the global model predictions at a reliability of
50%, which is the mean prediction. Once the predictions from the global model are obtained,
they are compared with measured values to calculate bias and standard error. A plot of predicted
versus measured values is created for each distress to visualize the accuracy of predictions to a
line of equality (LOE). Testing the global model also includes hypothesis testing. For a good fit,
the points should lie along the LOE. The measured distress Ymeasured and predicted distress
Xpredicted Can be modeled as a linear model as shown in Equation (4-1), where m is the slope, and

bo is the intercept.

YMeasured = bo +m X XPredicted (4'1)

Three hypothesis tests are conducted to evaluate the reasonableness of the global model. If any
of these hypotheses fail, the models are recalibrated for local conditions:
e There is no systematic bias between the measured and predicted distress [Equation (4-2)].

This can be tested using a paired t-test.
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Ho: ¥ (¥Measured — XPredicted ) = 0 (4-2)
e The slope parameter m is 1 (Equation (4-3)).
Hy:m = 1.0 (4-3)
e The intercept parameter b, is zero (Equation (4-4)).

H,:b, =0 (4-4)

4.2 CALIBRATION APPROACHES

The empirical Pavement-ME transfer functions can be of two types: (a) model that directly
calculates the magnitude of surface distress, and (b) model that calculates the cumulative damage
index rather than actual distress magnitude.
Approach 1: For specific models (e.g., fatigue cracking, rutting, transverse cracking, and IRI),
damage is directly obtained from Pavement-ME outputs. The transfer functions predict distress
from the damage and have been calibrated using the MATLAB program outside the Pavement-
ME. Different resampling techniques and MLE have been used to calibrate these functions.
Genetic Algorithm (GA) has been used to optimize transfer function coefficients using
MATLAB program for this approach. These MATLAB codes are available from the author upon
request. GA is an evolutionary optimization technique that can converge towards a global
minimum solution even with local minima. GA involves the following operations:
¢ Initialization: GA generates solutions by randomly selecting a subset inside the allowed
search space called the population.
e Selection: The generated solutions are selected based on the value of the objective function.
e Generation of offspring: New solutions are created using the selected solutions or
populations (offspring) based on two main processes: mutation and crossover.
e Termination: This process continues till the termination criteria for the given population or
the number of generations is reached.
Approach 2: The Calibration Assistance Tool (CAT) calibrated the models (e.g., thermal
cracking and joint faulting) where the damage is not obtained from the Pavement-ME outputs.
These models predict distress by calculating cumulative damage over time. One can't use the

resampling techniques or the MLE method for this approach.
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Based on the model, two different calibration approaches have been followed (as shown in Table
4-1):

Table 4-1 Model transfer functions and calibration approaches (28)

Pavement | Performance prediction | Approach Model transfer functions
type model 0 M
Fatigue cracking — v 1 6000
FCottom = |\ 5 - >
bottom up 60/ \1 + eC1Ci+C2C5L0g(DIgotrom-100)
= Kiq
Fatigue cracking — top v 0 ™ 1 J ¢Ki2x100x(ao/2A0) +K 3 X HT+K 4 XLT+K5xX10g 10 AADTT
down < ¢ )Czﬁ
Flexible L(t) = Lyaxe ‘t~Csto
paVement HMA v v Ap(HMA) = gp(HMA)hHMA = ﬁlrkzgr(HMA)10k1rnk2rﬂZer3rﬂ3r
Rutting e o8
Base/subgl’ade v Ap(soil) = lekslgvhsoil (g—o> e_(ﬁ)
T
Thermal cracking v A = 10k:B:(4389-2.52L0g (Enmacmm))
IRI v IRl = IRI, + C{(RD) + C2(FCrytq)) + C3(TC) + C4(SF)
100
RK, =
_ CREpu/ro =177 C,(DIx)%
Transverse CraCkmg v TCRACK = (CRKBottom—up + CRKTop—down - CRKBottom—up
- CRKrop—-aown) - 100%
m
Fault,, = Z AFault;
Rigid i=1 ,
pavement AFault; = C34 X (FAULTMAng(i_1 — Fault;_1)* X DE;
Transverse joint faulting v FAULTMAX; = FAULTMAX, + C; X Z DE; x Log(1 + Cs X 5.05R0P)Ce
j=1
Ce
FAULTMAXy = Cj3 X Scyriing X [Log(l + Cg x 5.05R9D) x Log(w)]
C12 = Cl + Cz X FRO'ZS
C34 = C3 + C4 X FRO'ZS
IRI v IRI = IRI, + C1(CRK) + Co(SPALL) + C3(TFAULT) + C4(SF)

*Bold font indicates calibration coefficients

4.3 CALIBRATION METHODS

This study used different methods (least squares and MLE) to demonstrate and compare
calibration differences for normally and non-normally distributed data. For example, the
measured transverse cracking in rigid pavements is typically non-normally distributed, with most
data points near zero, whereas IRI is close to a normal distribution. Both methods have their
advantages and limitations. It is important to note that thermal cracking, top-down cracking in
flexible pavements, and joint faulting in rigid pavements were not calibrated using the MLE

method.
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The measured data is limited to the MDOT PMS database. Apart from the measured data, this
study also used synthetic data as it provides the freedom to generate any distribution with
random errors. This methodology also validates a more generic use of MLE on a dataset outside
the measured data. Before calibration using measured data, synthetic data was created to show
the applicability of the MLE approach. For this purpose, Dlgottom Was generated using an
exponential distribution with A = 0.3 to generate synthetic bottom-up cracking data in flexible
pavements. Dlgottom Was used to calculate bottom-up cracking for 355 points, the same number of
points as the measured data. A value of C1=0.254, C,=0.730 (for total AC thickness (T) <5
in.), and C, = (0.867+0.2583* T)*0.238 (for 5 in. <= T <= 12 in.) were used for calculation of
bottom-up cracking. The assumption of an exponential distribution and the value of A is based on
the measured bottom-up cracking data. The generated synthetic data is close to the measured
data but follows a smooth exponential distribution curve. Two different datasets were created,
one without variability (no change introduced in the generated data) and one with a uniformly
distributed random variability applied on each data point between -50 % and 50%. A similar
methodology created synthetic data for transverse cracking in rigid pavements. Initially, an
exponentially distributed DI was generated using A = 0.1. The generated DI was then used to
calculate transverse cracking. About 237 points were generated for the synthetic data, the same
as for measured transverse cracking data.

The selection of a suitable method and distribution is based on several parameters.
Negative log-likelihood (NLL) was calculated for the MLE and least squares methods, the
formulation for which is presented in the proceeding sections. Besides the NLL values, four
other statistical parameters were used as selection criteria for the most suitable model. These are
the Standard Error of Estimate (SEE), bias, Akaike Information Criterion (AIC), and Bayesian
Information Criterion (BIC). AIC is a statistical measure used for model selection that balances
the goodness of fit with the complexity of the model, as shown in Equation (4-5). BIC is a
similar criterion that penalizes model complexity more strongly, often leading to more efficient

model selection, as shown in Equation (4-6).
AIC =25 —2LL (4-5)
BIC = In (n)S — 2LL (4-6)

where,
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n = Number of data points
S = Number of parameters of distribution (for example S = 1 for exponential distribution)

LL = Log-likelihood value

4.3.1 Calibration Using the Least Squares Method

The least squares method is a popular technique used in various statistics, mathematics, and
engineering fields to fit mathematical models to data. Its primary aim is to minimize the sum of
the squares of the residuals between observed and predicted values. It follows the NIID
assumption, which may not apply to non-normally distributed data. This method was employed
to estimate the parameters of the Pavement-ME transfer functions. The fundamental idea behind
the least squares method is to find the line (or curve) that best fits a set of data points by
minimizing the sum of the squared differences between the observed data points and the
corresponding values predicted by the model. The bias and SEE values were minimized using

the least squares method, as shown in Equations (4-7) and (4-8)

SEE = ’Z(y——yA)Z (4-7)
n—1

Bias = Z(y -9) (4-8)

where,
y = Measured data
¥y = Predicted data

n = Number of data points

4.3.2 Calibration Using the Maximum Likelihood Estimation (MLE) Method

MLE is a powerful statistical technique for parameter estimation in various fields, including
biology, physics, economics, and engineering. MLE was used to calibrate the bottom-up
cracking, total rutting, and IR1 models in flexible pavement and transverse cracking and IRI
models in rigid pavements. MLE seeks to estimate the parameters of a probability distribution
that best describes the observed data based on the likelihood function. The likelihood function
measures the probability of the observed data following a known distribution. MLE finds the set

of distribution parameters that maximize the likelihood function. Consider a dataset X = (x1, x2,
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..., Xn) that is generated by a probability distribution with parameters 6. The likelihood function
L(8]X) is the joint probability density function of the observed data, given the distribution
parameters as shown in Equation (4-9).

L(6|X) = P(X|0) = P(x1,x2, ..., xn|0) (4-9)

Here, P denotes the probability density function, and the likelihood function measures the
probability of observing the data X given the distribution parameters 6. The goal of MLE is to
find the set of distribution parameters 6 that maximizes the likelihood function between dataset
X and the assumed distribution. In practice, it is often easier to work with the log-likelihood
function so that the product of likelihood values becomes a summation; one can do this by taking
the natural logarithm of the likelihood function. The log-likelihood function is given by Equation
(4-10).

1(8]X) = log L(8]X) = log P(X|6) = log 1_[ P(xi|0) = Z log P(xi|0) (4-10)

where;
I1 = Product operator
2 = Summation operator
Taking the logarithm of the likelihood function also simplifies the computation of the derivative
required for optimization. One can solve the optimization problem by finding the values of 6 that
maximize the log-likelihood function. This can be done using numerical optimization algorithms,
such as gradient descent, Newton's, or quasi-Newton methods. These algorithms require the
derivative of the log-likelihood function for the distribution parameters. Numerical optimization
algorithms iteratively update the values of the distribution parameters to find the maximum of
the log-likelihood function. The optimization process continues until the algorithm converges to
a maximum of the log-likelihood function. The MLE obtained from the optimization process
represents the most likely estimates of the distribution parameters that can explain the observed
data. The calibration process for MLE involves the following steps:
Step 1: Assume the initial values of the transfer function coefficients to calculate the predicted
cracking.
Step 2: Fit a known distribution (for example, exponential, gamma, etc.) to the predicted
cracking and estimate the distribution parameters.
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Step 3: Calculate the NLL between the known distribution parameters in Step 2 and the
measured values.
Step 4: Repeat Steps 1 to 3 to minimize the NLL value.
Step 5: Coefficients with minimum NLL are the desired coefficients.
Four distributions were used for this analysis: gamma, log-normal, exponential, and negative
binomial. The Probability Density Function (pdf)/ Probability Mass Function (pmf) of these
distributions is shown in Equation (4-11) to (4-14), respectively.
e Gamma distribution
x@—1o—x/B (4-11)
flx) = BT (a)

e Log-normal distribution

o~ (0 (@-0)m)?/(207)) (4-12)

= >0;moc>0
f() = )ovom x m,c
e Exponential distribution
(4-13)
f(x) = e ™
e Negative binomial distribution
(4-14)

- _(x—1 VT 4 —
PX=xI|rp)= (r _ 1)pr(l p*Tx=rr+1,.,
The formulation of the maximum likelihood function for exponential distribution is shown
below. A similar approach was used for other distributions. Equation (4-15) shows the pdf for
exponential distribution. Comparing it with Equation (4-13), here 4 = % which is the rate
parameter, and X is the observed value. The likelihood function for a set of independent and

identically distributed observations from the exponential distribution is obtained by taking the

product of the individual probability density functions shown in Equations (4-16) and (4-17).

f(x ) = %e(%x); x>0 (4-15)
N
LY = LB, 3y wen) = | | FG0 ) (4-16)
i=1
L(B,x) = ﬁ 1) (4-17)
i=1 ﬁ

85



It is common to work with the log-likelihood function instead of the likelihood function to
simplify the calculation. The log-likelihood function is obtained by taking the natural logarithm
of the likelihood function, as shown in Equation (4-18).

N

L(B,x) =log < %e<%1)> (4-18)

i=1
Simplifying Equation (4-18) using properties of the log is shown in Equations (4-19) to (4-21).
Equation (4-21) shows the negative log-likelihood of exponential distribution used for

calibration.
L(B,x) = log <ﬁ l % ) i (10g (1) + log (e(_Txl)>) (4-19)
1 B i B
1 J —X;
L(B,x) = Nlog (E) + ; ( ,[)’l) (4-20)
1 N
L(8,x) = ~Nlog (8) + E; - (4-21)
To estimate the value of g at the maxima of log-likelihood, Equation (4-21) can be
differentiated. Equations (4-22) to (4-24) show the estimation of S at the maxima of log-
likelihood.
aL a 1%
p = B <—Nlog B + E; — xl-) =0 (4-22)
L N 1w
TRl Ay DI N
5= % . (4-24)

Figure 4-2 shows the flow chart of the methodology used and the final selection of the optimum

method and distribution.
4.4 RESAMPLING TECHNIQUES

Various sampling techniques were used to calibrate Pavement-ME transfer functions. The least
squares and MLE methods were combined with these techniques to improve the robustness of
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the estimated parameters. All these techniques have been used for models calibrated using
Approach 1. For models calibrated using Approach 2, no sampling or traditional split sampling
has been used in the CAT tool.

1. No sampling: This technique considers the entire dataset (all available measured data points
and corresponding damage) and was used for both Approaches 1 and 2.

2. Traditional split sampling: The dataset is randomly divided into two parts—70% of the data
for the calibration set and the rest 30% for the validation set. The optimization is performed
only on the calibration set, and the obtained coefficients are applied to an independent
validation set. This method was used for both Approaches 1 and 2.

3. Repeated split sampling: This technique is like traditional split sampling but with 1000
resamples, where a different data set was picked up each time for calibration (70%) and
validation (30%). This method was used only for Approach 1.

4. Bootstrapping: Bootstrap resampling is used to draw 1000 bootstrap samples from the
original dataset with replacement. Each bootstrap resamples the original data with the same
sample size but may contain some duplicate observations. This method estimates a sampling
distribution and confidence intervals for a population parameter, even when the underlying

population distribution is unknown.
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Figure 4-2 Flowchart of calibration methodology

r

Traditional no-sampling or split sampling technique provides a convenient approach to selecting
pavement sections from the calibration database. Though these techniques are easy to implement
and can be used for any Pavement-ME model, they might impose some limitations. Resampling
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techniques have several advantages over traditional approaches. Since these are non-parametric

techniques, the model parameters can be estimated without making assumptions about the data

distribution. The distribution of the model coefficients and error parameters can be estimated

instead of the point estimate. This can give a better estimation of parameters within desired

confidence intervals. Since a new sample is created every time, the outliers or sections

controlling the calibration process can be identified. Though these resampling techniques have

several advantages over traditional approaches, there are also certain limitations. Bootstrapping

cannot be used for small datasets or when the independence assumption is unmet. Resampling

techniques also require higher computing power and time and can be used only for those

performance models where the damage and other inputs are available from Pavement-ME. Table

4-2 summarizes the advantages and limitations of all calibration techniques.

Table 4-2 Summary of calibration techniques

Provides validation

Technique Advantages Limitations
No sampling e Computationally efficient Provides point estimates
e Applicable even for small It may not be suitable for non-
sample size normally distributed data
Split sampling | ¢ Computationally efficient Provides point estimates

It may not be suitable for non-
normally distributed data

Repeated split
sampling

Provides confidence intervals
Provides validation

Identifies outliers

Distribution assumption is not
required

Computationally time-consuming
It cannot be used for smaller
sample size

It may not be suitable for non-
normally distributed data

Bootstrapping

Provides confidence intervals
Identifies outliers

Distribution assumption is not
required

Computationally time-consuming
It cannot be used for smaller
sample size

It may not be suitable for non-
normally distributed data

4.5 FLEXIBLE PAVEMENT MODEL COEFFICIENTS

The design distress in the Pavement-ME includes bottom-up cracking, top-down cracking,

rutting, thermal (transverse) cracking, reflective cracking, and IRI. The calibration of each model

and the specific coefficients calibrated has been discussed in this section.
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4.5.1 Fatigue Cracking Model (Bottom-up)

The fatigue cracking (bottom-up) model was calibrated by optimizing the C; and C> coefficients
(see Table 4-1). In Pavement-ME v2.6, coefficient C; is a single value, whereas coefficient C»
has three different values depending on the total HMA thickness. Table 4-3 shows the global

values for C1 and Ca.

Table 4-3 Global values for bottom-up cracking model coefficients

Calibration coefficient Global values
Ci 1.31
Ha < 5in.: 2.1585
C 5in. <= Hac <=12in.: (0.867 + 0.2583 X Hyc) X1
Hac> 12 in.: 3.9666

Hac : Total HMA thickness in inches

Notably, no sections were selected for the bottom-up calibration with a total HMA thickness of
more than 12 inches. The coefficient C, was calibrated separately for the thickness ranges less
than 5 inches and 5 to 12 inches, respectively. For a thickness range of 5 to 12 inches, only the
multiplying factor 1 (marked in bold here: (0.867 + 0.2583 x Hac) X1) was calibrated, while other
values (0.867 and 0.2583) were kept at global values. A single value was used for a thickness range of
more than 12 inches. The Hac was kept at 12 inches, and the multiplying factor 1 was kept at the calibrated
value obtained for the 5 to 12-inch thickness range. The crack initiation time is affected by Cy,
whereas the slope of the bottom-up cracking curve is affected by C,. Consequently, the
calibration was performed using two approaches: (a) combined measured bottom-up and top-
down cracking and (b) bottom-up cracking only. MLE was used for approach (a), whereas least

squares was used for both methods.

4.5.2 Fatigue Cracking Model (Top-down)

The top-down cracking model has been modified in the Pavement-ME v2.6. The model consists
of a crack initiation function that calculates the time to crack initiation and a crack propagation
function that calculates the percent lane area cracked. This makes it a total of eight coefficients
combined from both functions. Since the actual crack initiation time was not known, it was not
possible to calibrate the crack initiation model separately. So, a single function was used by
substituting the crack initiation function with the crack propagation function. Initially, an attempt

was made to change all eight coefficients simultaneously. This approach had some challenges:
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e The model has some mathematical limitations. High values for C3 cause mathematical
errors when using it in Pavement-ME.
¢ No current literature exists for the top-down cracking model calibration. Therefore,
estimating the range for each coefficient to be used in optimization was difficult.
e The model has many coefficients with coefficient values ranging from 0.011 to 64271618.
This makes the optimization challenging to converge.
As mentioned above, four coefficients from the crack initiation function (kL2, kL3, kL4, kKL5)
and two coefficients from the crack propagation function (C1, C2) have been calibrated based on
the model's understanding and limitations.

4.5.3 Rutting Model

Due to axle loads, rutting is the total accumulated plastic strain in different pavement layers
(HMA, base/sub-base, and subgrade). It is calculated by summing up the plastic strains at the
mid-depth of individual layers accumulated for each time increment. In the Pavement-ME,
rutting is predicted separately for the layers (HMA, base, and subgrade). The total rutting is the
sum of rutting from all layers. The AC rutting model has three coefficients (Bir, Sor, far). S iris a
direct multiplier and was calibrated using optimization outside the Pavement-ME. In this model,
Perand far are power to the pavement temperature and the number of axle load repetitions.
Calibration of S2rand S3r cannot be done outside of the Pavement-ME and requires running the
Pavement-ME multiple times or optimizing these in the CAT tool. Initially, S2r and Sar values
were used from the previous calibration effort, and S1r was calibrated (10). This calibration
approach provided reasonable results; therefore, f2r and Sar from the previous calibration were
accepted, and only f1r was calibrated.

The unbound layers (base and subgrade) rutting model have one calibration coefficient
each (fs1). Since fs1 is a direct multiplier, it can be calibrated using optimization outside the
Pavement-ME without running the software or CAT tool. Since both base and subgrade have the
same model and calibration coefficient, the base calibration coefficient is referred to as fs1, and
the subgrade coefficient is referred to as fsg1. The rutting model in the Pavement-ME was
calibrated using the following two methods:

o Method 1: Individual layer rutting calibrations — The measured rutting from individual
layers was matched against the Pavement-ME predictions (f1r, fs1, and fsg1 Were
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calibrated separately) for this approach. The total measured rutting was multiplied by the
percent contribution from each layer to obtain measured rutting for the individual layer.
Figure 4-3 shows the percentage contribution estimated using transverse pavement
profile analysis. The width and depth of the measured rut channel were used to determine
the seat of rutting and rutting in individual layers. AC layer rutting contributes more than
70% to all pavement types [based on transverse profile analysis (10)]. Pavement-ME has
separate standard error equations for rutting in the individual layers. This method
evaluated the standard error equations for rutting in each layer.

o Method 2: Total surface rutting calibration — The total measured rutting was calibrated
against the sum of individual predicted rutting (i.e., B1r, Bst, and fsq1 Were calibrated

simultaneously).
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Figure 4-3 Transverse profile analysis for total rutting (10)
4.5.4 Thermal Cracking Model

The thermal cracking model in the Pavement-ME has three different levels for the calibration
coefficient. These levels are based on the level of HMA input. Level 1 G* and Level 2 IDT have
been used to calibrate the thermal cracking model. This corresponds to Level 1 thermal cracking
calibration coefficients. Both G* and IDT values were obtained from the DYNAMOD software
database. In the DYNAMOD database, G* and IDT values are available only for sections with
Performance grade (PG) binder type. Therefore, sections with PG binder type (Superpave mixes)
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have been used to calibrate the thermal cracking model. In the Pavement-ME v2.6, the
calibration coefficient k; is originally a function of the mean annual air temperature (MAAT),
whereas, in v2.3, it was a single representative value. Two different approaches were used for
calibration:

(@) Using the CAT tool, an initial attempt was made to calibrate k: (using the original equation
as a function of MATT).

(b) A second attempt was made to calibrate k: by running the Pavement-ME multiple times
with different k;: values of 0.25, 0.65, 0.75, 0.85, 0.95, and 1.35. This time, single values for
ki were used, which were not a function of MAAT.

ki as a function of MAAT resulted in contradictory results when comparing Michigan
temperature extremes, where thermal cracking at cold temperatures was either reduced or equal
to thermal cracking at warm temperatures. Moreover, ARA recommends using a single k¢ value
if this is more suitable for the agency and its local conditions. Based on these results, the k;: value
based on the second approach was recommended. It is important to note that for this calibration,

the average thermal cracking for a section was cut at 2112 ft/mile.

4.5.5 IRI Model for Flexible Pavements

IRI is a linear function of initial IRI, rut depth, total fatigue cracking, transverse cracking, and
site factor. The initial IRl was obtained from linear backcasting based on the time series trend for
each section, as described in Chapter 3. The fatigue cracking, rutting, and transverse cracking
models were calibrated before calibrating the IRl model. Since all inputs to the IRI model could
be obtained, it was calibrated outside Pavement-ME. IRI has a closed-form solution and does not
require a standard error equation in the Pavement-ME. The standard error for IRI is calculated

using the standard error of its components.
4.6 RIGID PAVEMENT MODEL COEFFICIENTS

The design distresses in the Pavement-ME include transverse cracking (percentage of slabs
cracked), transverse joint faulting (inches), and international roughness index (IRI) for rigid

pavements. The calibration methodology for each model is discussed in this section.

93



4.6.1 Transverse Cracking Model

The coefficients C4 and Cs (shown in Table 4-1) were optimized to calibrate the transverse
cracking model. These coefficients were calibrated outside the Pavement-ME and without the
CAT tool. C4 affects the crack initiation time, and Cs affects the slope of the transverse cracking

curve.

4.6.2 Transverse Joint Faulting Model

The joint faulting model in the Pavement-ME consists of eight coefficients. Joint faulting could
not be predicted using the available inputs outside the Pavement-ME; therefore, it was calibrated
using the CAT tool. CAT tool has a limitation on the run time and the total combinations of
coefficients that can be calibrated simultaneously. Therefore, it was essential to identify the most
sensitive coefficients. Several research studies (11, 26) show that out of the eight calibration
coefficients for the faulting model, Cs is the most sensitive. C; is the next sensitive coefficient,
followed by C,. Using this sequence of sensitivity of the different coefficients, C1 and Ce¢ were
calibrated together. The calibrated coefficients from C; and Cs were kept fixed, and C, was
calibrated. In this sequence, the three most sensitive coefficients were calibrated. As previously
noted and explained in Chapter 3, the joint faulting (for every 0.1-mile segment) was cut at 0.4

inches for calibration.

4.6.3 IR1 Model for Rigid Pavements

IRI in rigid pavements is a linear function of initial IRI, transverse cracking, joint spalling,
faulting, and site factor. The initial IR was obtained from linear backcalculation based on the
time series trend for each section. The transverse cracking and joint faulting models were
calibrated before calibrating the IRl model. Since all inputs to the IR model could be obtained, it
was calibrated outside Pavement-ME without rerunning it or using the CAT tool. IRI has a
closed-form solution and does not require a standard error equation in Pavement-ME. The

standard error for IRI is calculated using the standard error of its components.
4.7 CALCULATION OF DESIGN RELIABILITY

Pavement-ME uses a reliability-based design, as explained in Chapter 2. Reliability is added to
the mean prediction to incorporate input or performance data variability. It is expressed as a
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function of the predicted performance and derived using the predicted and measured
performance data. A step-by-step approach to estimating the reliability of transverse cracking for
rigid pavements is shown below as an example. A similar approach was used for the reliability of
all other models except IRI in the Pavement-ME.

Step 1: All predicted and measured data points are grouped by creating bins on the predicted

cracking. The number of data points in each group should be equivalent to reduce bias in the

results.

Step 2: The average and standard deviation of measured and predicted cracking are computed for

each group. The grouping is performed after finalizing the calibration coefficients (global or

local) to obtain the predicted performance. Table 4-4 shows the number of data points, bin

ranges, and descriptive statistics.

Table 4-4 Reliability analysis for transverse cracking in rigid pavements (example)

Cracking No. of Average Ave_rage Standard dev. of Standard dev. of
range (%) dgta Measu_red Predlc_t ed Measured Cracking Predicted Cracking
points Cracking Cracking
0-0.5 46 0.84 0.54 0.86 0.29
0.5-2 31 141 1.35 151 0.25
2-5 44 3.53 3.13 3.76 0.72
5-10 29 1.45 12.18 8.93 1.58
10-50 12 15.06 26.52 14.96 1.22

Step 3: A relationship is determined between the standard deviation of the measured cracking on

the y-axis and the average predicted cracking on the x-axis. Figure 4-4 shows the fit model to the

grouped data in steps 1 and 2. Equation (4-25) shows the relationship between the standard

deviation of the measured cracking and the average predicted cracking (when using the no-

sampling technique).

Se(CRK) = 1.3627(CRK)°7473
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Figure 4-4 Fitting curve for the reliability of transverse cracking in rigid pavements (example)

Step 4: The reliability is calculated under the assumption that the error in prediction is
approximately mormally distributed towards the upper side of the mean distress. The predicted
cracking can be adjusted to the desired reliability level using Equation (4-26)

Cr=Cso+Se X Zy), (4-26)
where,
C= Predicted cracking at reliability r (%)
Cso = Predicted cracking at 50% reliability
Se = Standard deviation of cracking, which can be estimated using Equation (4-25)
Z4/ = Standardized normal deviate (mean = 0; standard deviation = 1) at reliability r
Step 5: For the final step, the reasonableness of the model should be verified based on the actual
measured data before using the reliability equation for design.

The reliability model for IRI is different from that of other models. Since it is a closed-
form solution and the variances of different components of IRI are known, the reliability model
for IRI is based on the variance analysis of its components. The basic assumption implies that the
error in predicting IRI is roughly normally distributed. The total error includes input,
repeatability, pure, and model errors. Overall, the IRI prediction error can be estimated by
Equations (4-27) and (4-28).

IRIye = IRIpeas — IRIpreq (4-27)
Var(IRI,e) = Var(IRlyeas) + Var(IRIpreq) — 2R X VVar(IRIyeas) X Var(IRIpreq) (4-28)
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where,

Var(IRIpe) = Variance in prediction error for IRI (estimated from calibration results)
Var(IRImeas) = Variance in measured IRI (estimated from field measurement)

Var(IRlpreq) = Variance in predicted IRI

R = Correlation coefficient between predicted and actual IRI

The variance in predicted IRI is the sum of the variance in inputs (cracking, spalling, faulting,

and initial IR1) and the variance in model + pure error, as shown in Equation (4-29).
Var(IRIpreq) = Var(IRIjypyrs) + Var(model + pure error) (4-29)
The variance in inputs for the IRl model is shown in Equation (4-30).
Var(IRljnpyts) = Varjgy + C12 X Varcgg + C2% X Vargp,y + €3% X Varg,, (4-30)

where,

Var(IRlinputs)= Variance in IRI due to measurement errors for each distresses and initial IRI
(estimated from field measurements)

Varrii = Variance in initial IRI

Varcrk = Variance in transverse cracking

Varspan = Variance in joint spalling

Varraut = Variance in joint faulting

C1, C2, C3 = IRI model coefficients

Using Equations (4-28) to (4-30), Var(model + pure error) can be determined and used to
predict the standard deviation in IRI at any predicted value. The global standard error equations
for each model are summarized in Table 4-5.
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Table 4-5 Global calibration reliability equations for each distress and smoothness model

Pavement Pavement performance .
- Standard error equation
Type prediction model
. . 13
Fatigue cracking (bottom-up) Se(bottom-up) = 1.13+ 1 4 @757 15:5xL0g(FCaguon +0.0001)
Fatigue cracking (top-down) Se(top—down) = 0.3657 X FCy,, + 3.6563
0.8026
Floxible S, = 0-24(A,,, ) +0.001
pavements Rutting S, sae) = 0-1477(A,, )" +0.001
0.5012
S5y = 0.1235(A, ) +0.001
Transverse cracking s, =014 XTC + 168
IRI Estimated internally by the software
Transverse cracking Se(crk) = 3-5522(CRK)*3*13 4+ 0.75
Rigid Faulting Se(Fault) = 0.07162(Fault)?3%8 + 0.00806
pavements IRI Initial IRl Se = 5.4
Estimated internally by the software

4.8 IMPACT OF CALIBRATION ON PAVEMENT DESIGN

Calibration aims to improve the Pavement-ME predictions and its usability for local conditions.
The calibrated model will impact the local design practices. Additional flexible and rigid
pavements (not part of the calibration) were designed to evaluate the impact of the locally
calibrated models. The designs were based on calibrated model coefficients and standard error
equations obtained using the least squares method. Forty-four (44) new flexible and 44 new rigid
sections (JPCP) were designed in the Pavement-ME using the new calibrated models and the
coefficients from the previous calibration effort (10). It is important to note that MDOT found
the global coefficients more suitable than the local ones for actual designs. Therefore, the global
coefficients were used for comparison in the case of rigid sections. Other design properties
(base/subbase, subgrade, and climatic properties) were kept the same for flexible and rigid
sections except for the traffic levels. These sections were also designed using the AASHTO93
design method. MDOT uses widened lane (lane width = 14 feet) sections for rigid pavements.
The widened lane sections were designed as standard width (12 feet) by reducing the thicknesses
by up to 1 inch from the final thickness. The lane width was kept at the standard width of 12 feet
for flexible sections. Figure 4-5 shows the distribution of layer thicknesses (HMA and PCC),
ESALSs, and average annual MR for subgrade soil. The ESALSs for flexible sections range from 1

to 41 million, whereas for rigid sections range from 1 to 64 million. The average annual MR for
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subgrade soil ranges from 3.7 to 6.5 ksi for flexible and rigid sections. Table 4-6 shows the
number of sections in different categories.

All these flexible and rigid sections were designed in the Pavement-ME V2.6 at 95%
design reliability and MDOT recommended thresholds. Table 4-7 shows the MDOT
recommended threshold values for all distress types. Since the bottom-up cracking model was
calibrated by combining the measured bottom-up and top-down cracking, the top-down cracking
prediction was not used for design purposes. Moreover, MDOT does not have a formal design
threshold for the new top-down cracking model.

The design thicknesses were estimated to evaluate the differences between the newly
calibrated model, previous calibrated model, and the AASHTO93 designs. Moreover, the critical

design thicknesses were also identified separately for flexible and rigid pavements.
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Table 4-6 Selected sections for pavement design in different categories

Category Description # of sections
SP 6
CL 18
AASHTO soil classification SSI\C/I g
SC-SM 4
SP-SM 5
Bay 4
Grand 8
Metro 8
MDOT region North 4
Superior 3
Southwest 8
University 9
Classification NoFr:i‘?\é\gv/ay ig
Lane width (applicable to rigid sections only) \S/\t/;i?jr;ig 8;' 23 ;;

Table 4-7 MDOT recommended design thresholds for Pavement-ME distress

Pavement type Distress type Threshold
Flexible pavements Bottom-up cracking 20%
Top-down cracking NA
Total rutting 0.5 inches
Thermal cracking 1000 ft/mile
IRI 172 in/mile
Rigid sections Transverse cracking 15%
Joint faulting 0.125 inches
IRI 172 in/mile

4.9 SENSITIVITY ANALYSIS OF PAVEMENT-ME COEFFICIENTS

The sensitivity of the Pavement-ME transfer function coefficients is crucial in estimating the
impact of each coefficient on the overall performance predictions. It is often not viable to
calibrate all coefficients; therefore, only the sensitive ones can be estimated if the sensitivity of
each coefficient is known. The sensitivity of the Pavement-ME transfer function coefficients was
obtained using SSCs and NSI values for both flexible and rigid pavements. Moreover, they were
compared to the NSI values from the literature (26). Four transfer functions were used for
flexible pavements: bottom-up cracking, top-down cracking, total rutting, and IRI, whereas two

transfer functions were used for rigid pavements: transverse cracking and IRI.
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4.9.1 Sensitivity Using Normalized Sensitivity Index (NSI)

NSI has been typically used for this purpose and is defined as the percentage change of predicted
distress relative to its global prediction caused by a given percentage change in the coefficient.
The NSI was calculated using Equation (4-31).

AY:: X,
_ ¢DbL _ JU 2kl
NSI = Sijk = kii

(4-31)

where;

NSI = Normalized sensitivity index,

l-% = Sensitivity index for input k, distress j, and at point i with respect to a given global

prediction

AY;; = Change in distress j around point i (¥} ;41 — Y1)

Xyi = Value of input X, at point i

AXy; = Change in input X; around point i (Xy ;41 — Xk i—1)

Y; = Global prediction for distress j

The NSI values were also calculated to compare them with the results from SSCs. These
calculations are based on the NCHRP 1-47 study (60) as shown in Equation (4-31). Ten
sections, each from flexible and rigid pavements, were selected for NSI calculations. These
sections exist in the MDOT PMS database, designed using the AASHTO93 design method.
These sections are also part of the selected sections for calibration. It is essential to mention that
for NSI calculation, each section was modeled in the Pavement-ME with the necessary design
inputs (material, traffic, and climate). These inputs were obtained from construction records, job
mix formulas, and other sources. Obtaining the design input is tedious and requires multiple data
sources, unlike the calculation of SSCs, which does not require any data. The selected sections
have a wide range of thicknesses and traffic. Tables 4-8 and 4-9 show the Pavement-ME inputs
for flexible and rigid sections, respectively. Each section was initially run at the global values of
transfer function coefficients at 50% reliability. Afterward, each coefficient (one at a time) was
varied by -50%, -20%, 20%, and 50%, respectively, from the global values. The change in
performance prediction was evaluated for differences in transfer function coefficients to

calculate the NSI values.
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Table 4-8 Design inputs for flexible sections used in NSI calculations

Section no. HMA 'ghickness Base thickness Subbasg thickness AADTT 2-way
(in.) (in.) (in.)
1 8 6 18 2034
2 6.5 6 18 685
3 10.8 6 18 4315
4 4.3 6 12 201
5 55 6 15 859
6 55 6 18 959
7 14 16 8 6745
8 10.9 6 8 2065
9 8 4 18 354
10 6.5 6 18 313

Table 4-9 Design inputs for rigid sections used in NSI calculations

Section no PCC thickness Base thickness _Subbase_ _ Dowel_ AADTT 2-
' (in.) (in.) thickness (in.) | diameter (in.) way
1 11 4 14 15 7387
2 9.9 3.9 10 1.25 4825
3 12.2 3.9 10 1.5 12030
4 10.8 4 12 1.25 500
5 9.5 4 12 1.25 2758
6 10.8 6 12 15 10.8
7 12.5 16 0 1.5 12.5
8 11.7 4 10 15 11.7
9 11.3 3.9 12 15 11.3
10 11 4 10 15 11

While NSI can rank the coefficients based on their level of sensitivity, it does not provide

information about any potential correlation between them or how accurately these can be

estimated. Moreover, since NSI calculation requires distress data, its magnitude can change if the

data source is changed; hence, the sensitivity ranking of the coefficients may vary (11).

4.9.2 Sensitivity Using Scaled Sensitivity Coefficient (SSC)

Unlike NSI calculation, SSCs do not require input data. SSCs were calculated for a continuous

range of independent variables, and the results were visualized as SSC plots. The i sensitivity
coefficient of a model, n(x,B), where x is an independent variable, and P represents the parameter
vector, is given by X; = 0 /0 Bi and indicates the magnitude of change of the response resulting
from a small perturbation in the parameter Bi (64). An initial parameter value is required if the

model is nonlinear in that parameter, i.e., 0 1/0 Bi = f(Bi), and requires an iterative solution using
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any nonlinear regression algorithm (64). The parameter's SSC is the product of its sensitivity

coefficient and the parameter itself, as shown in Equation (4-32).
X = pial @-32)
9B
where;

X; = Scaled sensitivity coefficient of the parameter i,

B; = Estimate of the ith parameter,

:—; = itn sensitivity coefficient of the model w.r.t g;.

Assume that a model n(x,B) has two parameters, 8; and 8,. The sensitivity coefficients (X;) and
SSC (X;) for both parameters are estimated using the following equations [Equations (4-33) to
(4-36)]. Suppose the parameters (B) have been estimated using any nonlinear regression
algorithm, and the sensitivity coefficient matrix J is obtained. In that case, the SSC for either
parameter can be approximated using Equations (4-37) and (4-38).

on N 77((1-001 * 31), ﬂz) - U(ﬁL [))2)

=58 " 0.001 * B, (439
,_ o 01 (1001 By) By) —n(By, B2) ]

4= ﬁla_ﬁl - 0.001 (4-34)

X, = 6_77 - 77(,81' (1.001 * Bz), ) - 77(:31, ﬁz) (4_35)

27 0B, 0.001 * S,

;L on N U(.Bl' (1.001 * ﬁz),) - 77(,81, ﬁz) )

X2 = ﬁza_ﬁz - 0.001 (4-36)

X1 =By *J(,1) (4-37)

X5 = By x](:,2) (4-38)

The SSC for a particular coefficient (say (i) is calculated by differentiating the function w.r.t. Bi
and multiplying it by Bi [as shown in Equation (4-32)]. Other coefficients except i are held
constant. A similar approach is used to calculate SSCs for all other coefficients. The
mathematical model (transfer function) can often be complicated, especially when differentiating
the function. In that case, the SSCs can be approximated numerically to avoid errors in the
analytical derivation. An example of the estimation of SSCs using the transverse cracking model

[shown in Equation (4-39)] for rigid pavements.
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1
CRK = W (4'39)

where,

CRK = Predicted fraction of bottom-up or top-down cracking

DI = Total fatigue damage (bottom-up or top-down)

C4, Cs = Transfer function coefficients

Denoting transverse cracking as a function of DI, Cs, and Cs [CRK(DI, Ca, Cs)], the sensitivity

coefficient for C4 (X, ) can be approximated as shown in Equation (4-40).

OCRK _ CRK(DIg,Cy + 8,Cs) — CRK(DIg, Cy, Cs)

ac,  Ae ™ 5% C, (4-40)
Here & is a small quantity (a value of 0.001 was used). The SSC for C4 (X'¢,) can be
approximated as shown in Equation (4-41).
OCRK  CRK(DIp,C4+6,Cs) — CRK(DIg, Cy, Cs)
Ca ac, =Xe, mx 5 XEq
(4-41)

_ CRK(DIp,Cy4 + 8,Cs) — CRK (DI, Cy, Cs)
- s

The coefficient C4 was changed by ¢ to get the first term of the numerator. The second term of
the numerator is the transverse cracking at global values. Both these terms were evaluated at a

continuous range of DI from 0 to 1. This provides a continuous set of X'¢, for each value of DIp.
SSCs for Cs (X¢,) was calculated as shown in Equation (4-42). SSCs for each coefficient were

plotted with DI in the same plot. A similar process was used for all other transfer functions.

o OCRK _ CRK (DI, Cy, Cs + 8) — CRK(DIg, Cy, Cs)
> acs T 5 X €5

(4-42)
_ CRK(DIp, 4, Cs + 8) — CRK(DIg, Cy, Cs)
- 5

The SSCs were calculated and plotted using MATLAB codes using one coefficient at a time and
considering other coefficients as constant. A wide range of independent variables have been used

since calculating SSCs is a forward problem without data.
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4.10 CHAPTER SUMMARY

This chapter detailed the calibration approach used for each Pavement-ME prediction model.
Transfer functions have been calibrated based on whether they calculate the distresses directly or
based on cumulative damage. It also discusses the different resampling techniques and
optimization methods. No sampling, bootstrapping, traditional split sampling, and repeated split
sampling techniques have been used for calibration. For calibration validation, traditional and
repeated split sampling were used. The calibration methods include the least squares and MLE.
The process used for the MLE methodology is also outlined in this chapter. Reliability analysis is
detailed, illustrating steps for estimating reliability equations for distress prediction, considering
the transverse cracking as an example. Additionally, this chapter discusses the approach to assess
the impact of calibration on pavement design based on thicknesses and critical distresses.
Sensitivity analysis was conducted using Normalized Sensitivity Index (NSI) and Scaled
Sensitivity Coefficients (SSCs), providing insights into the impact of model coefficients on
performance predictions. These analyses facilitate the identification of sensitive coefficients

crucial for accurate predictions and design decisions.
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CHAPTER 5 - RESULTS AND DISCUSSION

The calibration process adjusts the Pavement-ME model parameters to match observed data
better to ensure that the model outputs are reliable and valuable for pavement design. The
Pavement-ME models’ calibration process can be challenging because of their complexity and
the large number of parameters involved. However, technological advancements and data
collection methods have made the calibration process more efficient and effective. This chapter
documents the results for calibration of each model, pavement design, and sensitivity of the
Pavement-ME coefficients. Table 5-1 summarizes the calibration method used for each

Pavement-ME model.

Table 5-1 Summary of calibration method for each Pavement-ME model

Calibration method
Pavement type Pavement-ME model MLE Least squares
Bottom-up cracking: Option a v
Bottom-up cracking: Option b v v
Top-down cracking v
Flexible pavement Rutting (Method 1) v
Rutting (Method 2) v v
Thermal cracking v
IRI v v
Transverse cracking v v
Rigid pavement Joint faulting v
IRI v v

5.1 LOCAL CALIBRATION RESULTS FOR FLEXIBLE PAVEMENTS

This section presents the results for the local calibration of the bottom-up cracking, total rutting,
and IRI models. Bottom-up cracking was calibrated using synthetic and observed data. It is
important to note that bottom-up cracking using Option a, rutting using Method 1, top-down and
thermal cracking models using observed data were calibrated using the least squares method
only, as shown in Table 5-1. The calibration results for these models are shown in Table 5-2.
These results correspond to the bootstrap resampling technique. The details of these model

calibrations are shown in the Appendix.
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Table 5-2 Summary of flexible pavement models calibrated using only the least squares method

Pavement-ME Local coefficient Global model | Local model
model SEE | Bias | SEE | Bias
Boftomup | &0 o
. 2 =0. ac n
cracking Co = (0.867 + 0.2583 * hac) * 0.2204 (5 in <= hac <=12in) | ©-30 | -4.91 | 8.73 | 0.00
(Option a) C, = 0.8742 (hac >12 in)
K,, = 64271618
K., = 0.90
Ton-d K.z = 0.09
op-down K., = 0.101 -
cracking K. = 3260 6.37 236 | 559 | 1.60
¢, =0.30
C, = 1.155
G =1
Biy = 0.148
. HMA Bzr = 0.7 0.256 | 0.201 | 0.080 | -0.013
Rutting By = 1.3
(Method 1) Base Bs1 = 0301 0.042 | 0.038 | 0.009 | -0.001
Subgrade Bsgr = 0.070 0.118 | 0.109 | 0.006 | -0.000
Thermal =1 _ ;o 1225 | -812 | 851 | 20
cracking

5.1.1 Calibration Using Synthetic Data

As mentioned in Chapter 4, exponentially distributed synthetic data was generated for bottom-up

cracking with and without variability. Figure 5-1 shows the generated data distribution and

different fitted probability distributions. The normal distribution legend in Figure 5-1

corresponds to the least squares method, while other distributions are used for the MLE method.

The distribution is skewed for Figures 5-1(a) and 5-1(b) so that more data points are less than

5%, showing that the data is not normally distributed.
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Both sets of generated data were calibrated using MLE and least squares methods, as well as the
four mentioned sampling techniques. Table 5-3 summarizes both data sets’ no-sampling and
bootstrapping calibration results. As previously described, resampling techniques provide
confidence intervals for the population parameter. Bootstrapping calibration results in Table 5-3
are the mean values. MLE provides better statistical parameters (SEE, bias, NLL, AIC, and BIC
values) for all distributions, except for SEE values in the case of exponential distribution. The
SEE values show the variability between predicted and measured data. The higher the SEE
value, the more the dispersion along the line of equality. Pavement-ME uses a reliability-based
design. Higher values of SEE imply higher reliability imposed over mean Pavement-ME
predictions. Gamma distribution provides the best parameter estimates for the MLE method,
followed by negative binomial distribution. It is worth mentioning that the parameter estimates
(C1and Cy) using MLE are much closer to the assumed initial values than the estimates from the
least squares method. Tables 5-4 and 5-5 summarize the results from split sampling and repeated
split sampling techniques. Table 5-5 shows the mean values using the repeated split sampling
method. Similar results are obtained, where MLE provides better statistical parameters than the
least squares method. The gamma and negative binomial distribution for these validation results
also offer optimum results with the SEE and bias values significantly lower than the least squares
method. It is worth mentioning that the results from resampling techniques provide better

parameter estimates, as can be seen in Tables 5-3 and 5-5.

Table 5-3 Summary of calibration results for synthetic data in flexible pavements

Calibration o With no variability With 50% variability
hod Distribution _ _
met SEE Bias | NLL | AIC | BIC | SEE Bias | NLL | AIC | BIC
Normal 2.967 | 0.000 | 1190 | 2385 | 2393 | 7.305 | 0.000 | 1259 | 2522 | 2529
Exponential | 0.049 | 0.000 | 1040 | 2082 | 2086 | 5.690 | 0.000 | 1026 | 2055 | 2059
No sampling Gamma 0.000 | 0.000 | 1032 | 2068 | 2076 | 2.584 | 0.000 | 1020 | 2045 | 2052
Lognormal | 0.015 | -0.007 | 1038 | 2079 | 2087 | 2.593 | 0.033 | 1028 | 2060 | 2068
Negative 0.002 | -0.001 | 944 | 1891 | 1899 | 2.561 | 0.045 | 941 | 1886 | 1894
binomial

Normal 3.265 0.111 | 1235 | 2473 | 2481 | 4.282 0.143 | 1269 | 2542 | 2550
Exponential 3.975 0.000 | 1015 | 2032 | 2036 | 4.986 0.000 | 1010 | 2022 | 2026
Gamma 0.000 0.000 | 1008 | 2020 | 2028 | 2.553 0.000 | 1006 | 2016 | 2024
Log normal 0.013 | -0.007 | 1032 | 2068 | 2076 | 2.552 | -0.148 | 1020 | 2044 | 2051

Negative 0.001 | 0000 | 591 | 1186 | 1194 | 2.542 | -0.001 | 683 | 1369 | 1377
binomial

Bootstrapping

109



Table 5-4 Summary of validation results using synthetic data in flexible pavements (Split

sampling)
Data set Distribution With no variability With 50% variability
SEE Bias NLL | AIC | BIC SEE Bias NLL | AIC BIC
Normal 0.231 | 0.000 798 | 1601 | 1608 | 6.962 0.000 | 870 | 1743 | 1750

Exponential 1.707 | 0.000 718 | 1437 | 1441 | 2.838 0.000 710 | 1421 | 1425

Calibration set Gamma 0.001 | -0.001 | 712 1427 | 1434 2.554 0.000 705 1413 | 1420

Log normal 0.020 | -0.010 | 712 | 1428 | 1435 | 2.569 0.037 707 | 1419 | 1426

Negative 0.042 | 0.018 | 652 | 1309 | 1316 | 2.515 | 0.040 | 652 | 1309 | 1316
binomial

Normal 0.280 | -0.041 | 352 708 713 8.453 1.057 390 784 790

Exponential 2.028 | -0.308 | 321 645 648 3.258 | -0.175 | 316 634 637

Validation set Gamma 0.001 | -0.001 | 319 643 648 2.690 0.145 315 633 639

Log normal 0.024 | -0.013 | 319 643 648 2.703 0.196 315 633 639

Negative
binomial 0.050 | 0.025 | 291 586 591 2.689 | 0.129 | 289 581 587

Figure 5-2 compares both data sets’ calibration results using MLE and least squares. Figures 5-
2a and 5-2b show the propagation of bottom-up cracking with damage. The MLE predictions are
closer to the synthetic measured data than the least squares predictions. This trend is more
evident in Figure 5-2b, with 50% variability. Figures 5-2c, 5-2d, 5-2e, and 5-2f show the
distribution of residuals (predicted — measured). Error distribution using MLE is less scattered
and closer to zero. Moreover, it is closer to a normal distribution than the least squares method.

Table 5-5 Summary of validation results using synthetic data in flexible pavements (Repeated
split sampling)

Data set Distribution With no variability With 50% variability
SEE Bias NLL | AIC BIC SEE Bias NLL | AIC BIC
Normal 4436 | 0.203 917 | 1838 | 1845 | 5.146 0.253 958 | 1920 | 1927

Exponential 3.825 | 0.000 722 | 1445 | 1449 | 4.851 0.000 720 | 1441 | 1445

Calibration set Gamma 0.000 | 0.000 | 719 | 1443 | 1450 | 2.522 | 0.000 | 719 | 1441 | 1448

Log normal 0.023 | -0.011 | 719 | 1442 | 1449 | 2515 | -0.059 | 716 | 1436 | 1443

Negative | 4601 | 0.000 | 473 | 950 | 957 | 2508 | 0.006 | 501 | 1005 | 1012
binomial

Normal 4.427 | 0.196 390 784 790 5.147 0.236 408 819 824

Exponential | 3.856 | 0.028 308 617 620 4.904 0.011 306 614 617

Validation set Gamma 0.000 | 0.000 306 615 620 2.559 0.009 305 614 619

Log normal 0.023 | -0.011 | 306 616 621 2544 | -0.060 | 305 613 618

Negative 0.001 | 0.000 | 201 | 406 | 411 | 25547 | 0.007 | 213 | 431 | 436
binomial

5.1.2 Calibration Using Observed Data

Based on the above process for synthetic data, the bottom-up cracking, total rutting, and IRI
models were calibrated using MLE and least squares methods using observed data from field

measurements. This observed data is obtained from MDOT's PMS database. Figure 5-3 shows
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the distribution of observed data for different distresses and fitted distributions. Bottom-up
cracking is the most skewed and non-normally distributed. Total rutting and IRI distributions are
slightly skewed but closer to a normal distribution. As previously shown, resampling techniques
provide better parameter estimates; therefore, bootstrapping and repeated split sampling results
are presented.

Bottom-up cracking — Option b:

Table 5-6 summarizes bootstrapping and repeated split sampling results for bottom-up model
calibration. MLE outperforms the least squares method with lower NLL, AIC, and BIC values
for all distributions. The gamma distribution provides the best estimates for the MLE approach.
Figure 5-4 shows the calibration results for bottom-up cracking using observed data using the
bootstrapping technique for MLE (gamma distribution) and least squares methods. The predicted
vs. measured plots show less MLE scatter than the least squares method.
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The distribution of residuals for MLE is also closer to zero. In Figures 5-4e and 5-4f, the red
dashed line indicates the mean, the blue solid line shows the median, the red dashed line shows
the 2.5" and 97.5" percentiles and the solid black line shows the cumulative distribution.
Interestingly, the model parameters are normally distributed in the case of MLE, with the bias
value consistently closer to zero.

Total rutting:

Table 5-7 shows the calibration results for the total rutting model. MLE shows better NLL, AIC,
and BIC values for all MLE distributions compared to the least squares method. Gamma and
negative binomial distributions provide the most feasible results using MLE. It also illustrates a
bias-variance tradeoff where the SEE for gamma distribution is slightly higher than the least

squares method but has a lower bias value. Figure 5-5 shows the calibration results using
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observed data for MLE (using gamma distribution) and the least squares methods. The predicted
vs. measured plots show slightly less scatter for the MLE method. The residuals for MLE and

least squares methods are comparable.

Table 5-6 Summary of calibration and validation results for observed data (Bottom-up cracking:

Option b)
Cz Cz
Calibration method Distribution SEE Bias C1 (T<5 (T=5to 12 NLL AIC BIC
in.) in.)
Global 6.678 | -3.769 | 1.310 2.159 1.000 3.4E+08 | 6.8E+08 | 6.8E+08

Normal 6.114 | 0.052 | 0.221 | 0.716 0.234 1390 2784 2792
Exponential 6.286 | 0.000 | 0.196 | 0.766 0.250 825 1652 1656
Bootstrapping Gamma 6.650 | 0.000 | 0.094 | 1.000 0.326 745 1495 1502
Log normal 6.509 | -0.160 | 0.112 | 0.974 0.318 759 1523 1530

Negative
binomial 5.517 | 0.424 | 0.467 0.133 0.043 870 1744 1752
Normal 6.183 | 0.021 | 0.210 | 0.745 0.243 975 1954 1961
. Exponential 6.239 | 0.000 | 0.206 | 0.733 0.239 579 1161 1164

Repeated split > 7 > > 1 1

sampling Gamma 6.69 0.000 | 0.095 | 0.99 0.326 525 053 060
(Calibration set) L'czlge;aciz\r:eal 6.503 | -0.163 | 0.113 | 0.973 0.318 532 1068 1075
binomial 5.555 | 0.443 | 0.469 0.127 0.042 602 1208 1215
Normal 6.224 | 0.043 | 0.210 | 0.745 0.243 420 844 849
Reneated solit Exponential 6.281 | 0.025 | 0.206 | 0.733 0.239 248 497 500
spampling Gamma 6.792 | 0.064 | 0.095 | 0.997 0.326 248 500 505
(Validation set) L'c\Jlg notrmal 6.597 | -0.134 | 0.113 | 0.973 0.318 228 461 466
€Qallve 1 5593 | 0.439 | 0.469 | 0.127 0.042 257 519 524

binomial

IRI:

Table 5-8 shows the calibration results for the IRI model. The results from the MLE and least
squares methods are comparable. The negative binomial distribution provides the best estimates
among all distributions for the MLE method. Figure 5-6 shows the calibration results for MLE
(negative binomial distribution) and the least squares methods. The predicted vs. measured plot
shows slightly less scatter for MLE. The residual distribution between the MLE and least squares
methods is comparable. In the case of IRI, the bias is consistently close to zero for the least

squares method, showing that it is efficient for a robust calibration.

114



50 50

c‘i 40 | i\=/40 r
g S30}
= o
P 7
£ £
Z =
2 820
- =
51 7]
151 S
3 3
£ g
M l £~ 10]

- ‘ - - 0

10 20 30 40 50 0 10 20 30 40 50
Measured bottom-up cracking (%) Measured bottom-up cracking (%)

(a) Predicted vs. measured cracking (least (b) Predicted vs. measured cracking (MLE)

squares)
4 4
g 210 Ppal . , S . . .
_ [ESomimose]
7 7
6 L [
5 5
> >
e o L
g 3]
24 £, 4
2 3
3 T3
2 2
1 1
0 . " " L 0 .
-50 -40 -30 -20 -10 0 10 20 30 40 50 -50 -40 -30 -20 -10 0 10 20 30 40 50
Residuals (Predicted - measured %) Residuals (Predicted - measured %)

(c) Distribution of residuals (least squares) (d) Distribution of residuals (MLE)

200 2000+ 100 200 100 1000 100
: ) > : o 3 5 |
g : E g 1 st z 1;:0 -g 800, 80
’é_mo ‘ g 2,100 1 P § H o 5 El &
g i | 2 g : 2 g g g 400/ 40
= H & = HU i a = & = 200 20
ol o ““llllm_o B g o o
4 5 1 0 1 4 5 [} 7 8 02 -015 01 -005 0
(b) Bias (a) SEE (b) Bias

.
S
S

=]
=

400, v U - 100 400 H - - . 100 400, H - 100
3 R 2 200 : Pofs0 E = 200/ : 50 S

' . (11

LA e
02 04 0. 0 0.05 0.1 015 Og

Frequency

™

8

S
Percentage
Frequency
Percentage
Frequency

Percentage
Frequency
o
5
o s
g\
="

AT,

oo
£
=)

8 09 1 1.1 19

(¢c)Cl (d)C2(<5") (d) C2(<5")
~ 100
08 825 03 035 04
(e)C2 (5"-12") (e)C2 (5"-12")
(e) Distribution of parameters (least squares) (f) Distribution of parameters (MLE)

Figure 5-4 Calibration results for bottom-up cracking (Option b) using observed data

115

Percentage

Percentage



Table 5-7 Summary of calibration results for observed data (Total rutting)

Calibration method Distribution SEE Bias Pir Bs1 Psg1 NLL | AIC BIC
Global 0.393 | 0.349 | 0.400 | 1.000 | 1.000 | 3784 | 7572 | 7582
Normal 0.084 | -0.008 | 0.144 | 0.839 | 0.523 | 2238 | 4481 | 4490
Exponential 0.084 | 0.000 | 0.173 | 0.859 | 0.493 | 2146 | 4293 | 4298
Bootstrapping Gamma 0.096 | 0.000 | 0.129 | 0.163 | 0.396 | 2013 | 4031 | 4041
Log normal 0.093 | -0.012 | 0.102 | 0.158 | 0.490 | 2195 | 4394 | 4403
Negative 0.079 | 0.003 | 0.062 | 0.879 | 0.559 | 2230 | 4464 | 4474

binomial
Normal 0.078 | 0.000 | 0.028 | 1.185 | 0.634 | 1948 | 3901 | 3909
Reneated solit Exponential 0.085 | 0.000 | 0.071 | 0.835 | 0.490 | 1503 | 3007 | 3012
Spamp”ng Gamma 0.096 | 0.000 | 0.124 | 0.160 | 0.432 | 1412 | 2827 | 2836
(Calibration set) nglg notrmal 0.085 | 0.000 | 0.071 | 0.835 | 0.490 | 1503 | 3007 | 3012
egative 0079 | 0.003 | 0.063 | 0.869 | 0.558 | 1562 | 3127 | 3136

binomial
Normal 0.080 | -0.015 | 0.028 | 1.185 | 0.634 | 840 | 1683 | 1691
. Exponential 0.085 | 0.000 | 0.071 | 0.835 | 0.490 | 643 | 1289 | 1292

Repeated split

sampling Gamma 0.095 | 0.000 | 0.124 | 0.160 | 0.432 | 607 | 1219 | 1226
(Validation set) Llc\)lg not(mal 0.085 | 0.000 | 0.071 | 0.835 | 0.490 | 643 | 1289 | 1292
€gative 0.080 | 0.003 | 0.063 | 0.869 | 0.558 | 797 | 1597 | 1604

binomial

Table 5-8 Summary of calibration results for observed data (IRI - Flexible)

C?T']';La;:j"” Distribution | SEE | Bias C: C | G Ca NLL | AIC | BIC
Global | 22.210 | 14.306 | 40.000 | 0.400 | 0.008 | 0.015 | 7368 | 14740 | 14751
Normal | 16.246 | -0.630 | 41.486 | 0.433 | 0.006 | 0.0042 | 16996 | 33997 | 34007
Exponential | 16.406 | 0.008 | 43.033 | 0.485 | 0.007 | 0.0042 | 7773 | 15547 | 15553
Bootstrapping | Gamma | 18.943 | 1.273 | 40.022 | 0.312 | 0.020 | 0.0001 | 6631 | 13267 | 13277
Log normal | 18.573 | 0.593 | 40.026 | 0.195 | 0.019 | 0.00005 | 6590 | 13183 | 13194
E'I‘;%ara'l‘;? 15.606 | -0.516 | 41.727 | 0.259 | 0.005 | 0.00617 | 7745 | 15493 | 15504
Normal | 15.866 | 0.167 | 48.841 | 0.327 | 0.006 | 0.005 | 4948 | 9900 | 9910
Repeated | Exponential | 16.419 | 0.000 | 43.485 | 0.516 | 0.006 | 0.0041 | 5444 | 10891 | 10896
splitsampling | Gamma | 18.951 | 1.280 | 40.038 | 0.324 | 0.019 | 0.000 | 4646 | 9297 | 9306
(Calibration | Log normal | 18.546 | 0.599 | 40.017 | 0.202 | 0.019 | 0.00002 | 4615 | 9235 | 9245
set) E'I‘;%ara'l‘;? 15.671 | -0.512 | 41.714 | 0.261 | 0.005 | 0.00615 | 5425 | 10853 | 10863
Normal | 15.935 | 0.157 | 48.841 | 0.327 | 0.006 | 0.0051 | 2118 | 4241 | 4249
Repeated | Exponential | 16.433 | -0.006 | 43.485 | 0.516 | 0.006 | 0.0041 | 2329 | 4660 | 4664
splitsampling | Gamma | 19.034 | 1.288 | 40.038 | 0.324 | 0.010 | 0.000 | 1988 | 3980 | 3989
(Validation | Log normal | 18.623 | 0.586 | 40.017 | 0.202 | 0.019 | 0.00002 | 1975 | 3953 | 3962
set) bN.‘E%anﬂ'éT 15.684 | -0.502 | 41.714 | 0.261 | 0.005 | 0.00615 | 2009 | 4023 | 4031
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5.2 LOCAL CALIBRATION RESULTS FOR RIGID PAVEMENTS

This section presents the results for the local calibration of the transverse cracking and IRI
models. It is important to note that the joint faulting model was calibrated using the least squares
method only, as shown in Table 5-1. Table 5-9 shows the calibration results for the joint faulting

model, the details of which are shown in the Appendix.

Table 5-9 Summary of rigid pavement models calibrated using only the least squares method

Pavement-ME Local coefficient Global model Local model
model SEE Bias SEE Bias
;=08
C, = 1.3889
C; = 0.00217
Joint faulting | &+ = D004 0.06 0.01 0.03 0.00
. =
Ce=0.2
C, =723
Cg = 400

5.2.1 Calibration Using Synthetic Data

Transverse cracking data was exponentially generated to study the effectiveness of using MLE
with different conditions and distributions. Figure 5-7 shows the generated data with different

fitted distributions. The normal distribution legend in Figure 5-7 corresponds to the least squares

method.
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Calibration was performed using the least squares method and MLE for all four mentioned
calibration and validation approaches: no sampling, bootstrapping, split sampling, and repeated
split sampling. Table 5-10 summarizes calibration results using no sampling and bootstrapping
methods. The mean values for the parameters are shown for the bootstrapping results in Table 5-
10. The least squares method is denoted as Normal in Table 5-10. All distributions using MLE
perform better than the least squares method in terms of NLL, AIC, and BIC. Except for
exponential distribution, other distributions perform better regarding SEE values. Exponential
and gamma distributions have lower bias than the least squares method. The gamma distribution
is the most suitable distribution for this synthetic data. Compared to the least squares method, it
provides better results for all parameters (SEE, bias, NLL, AIC, and BIC values).

A similar trend can be observed in the validation results. Tables 5-11 and 5-12
summarize the validation results using split sampling and repeated split sampling, respectively.
The mean values for the parameters are shown for repeated split sampling results in Table 5-12.
Gamma distribution provides better results than least squares regarding SEE, bias, NLL, AIC,
and BIC values. This is more evident in resampling approaches. It is also a helpful illustration of
the bias-variance tradeoff.

Table 5-10 Summary of calibration results for synthetic data in rigid pavements

Calibration Distribution With no variability With 50% variability

method SEE Bias | NLL | AIC | BIC | SEE Bias | NLL | AIC | BIC

Normal 3.586 | -0.492 | 1040 | 2084 | 2092 | 6.996 | -0.099 | 1081 | 2166 | 2173

Exponential | 0.705 | 0.000 | 1007 | 2016 | 2019 | 7.267 | 0.000 | 995 | 1992 | 1996

No sampling |__Gamma | 0.001 [ 0.000 | 980 | 1965 | 1972 | 6.461 | 0.000 | 989 | 1982 | 1989
Log normal | 0.040 | -0.023 | 1021 | 2046 | 2054 | 6.467 | -0.369 | 1024 | 2053 | 2060

Negative 601 | 0.001 | 922 | 1847 | 1855 | 6.491 | -0.051 | 920 | 1844 | 1851
binomial

Normal 2.315 | -0.234 | 1016 | 2036 | 2043 | 7.159 | -0.407 | 1075 | 2154 | 2161

Exponential | 4.628 | 0.000 | 993 | 1988 | 1992 | 8.515 | 0.000 | 995 | 1991 | 1995

Gamma 0.001 | 0.000 | 979 | 1962 | 1969 | 6.422 | 0.000 | 988 | 1980 | 1987

BOOIStrapPING " normal | 0.036 | -0.020 | 1019 | 2042 | 2049 | 6.454 | -0.377 | 1023 | 2049 | 2056

Negative | 117 | .0.004 | 563 | 1131 | 1138 | 6.465 | -0.107 | 725 | 1454 | 1462
binomial
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Table 5-11 Summary of validation results using synthetic data in rigid pavements (Split

sampling)
Data set Distribution Wlth no variability W'Ith 50% variability

SEE | Bias | NLL | AIC | BIC | SEE | Bias | NLL | AIC | BIC
Normal | 0.000 | 0.000 | 703 | 1409 | 1416 | 6.314 | -0.103 | 726 | 1455 | 1461
o Exponential | 1.328 | 0.000 | 690 | 1381 | 1384 | 6.435 | 0.000 | 687 | 1376 | 1379
Calibration Gamma | 0.001 | 0.000 | 682 | 1367 | 1374 | 6.334 | 0.000 | 682 | 1368 | 1375
set Log normal | 0.051 | -0.028 | 709 | 1422 | 1428 | 6.317 | -0.250 | 706 | 1417 | 1423
Eﬁ%%“:gf 0.000 | 0.000 | 638 | 1280 | 1286 | 6.319 | 0.067 | 636 | 1276 | 1282
Normal | 0.000 | 0.000 | 303 | 610 | 614 | 7.065 | -1.324 | 330 | 663 | 668
Exponential | 1.429 | -0.188 | 304 | 609 | 611 | 7.690 | -1.394 | 308 | 617 | 619
Validation Gamma | 0.001 | -0.001 | 298 | 600 | 605 | 6.855 | -1.151 | 307 | 617 | 622
set Log normal | 0.057 | -0.034 | 312 | 627 | 632 | 7.037 | -1.460 | 318 | 640 | 644
Negative | o 50y | 0000 | 284 | 572 | 576 | 7.125 | -1.174 | 284 | 572 | 577

binomial

Table 5-12 Summary of validation results using synthetic data in rigid pavements (Repeated split

sampling)
Data set Distribution Wlth no variability Wl-th 50% variability

SEE | Bias | NLL | AIC | BIC | SEE | Bias | NLL | AIC | BIC
Normal | 2.809 | -0.287 | 726 | 1457 | 1463 | 7.139 | 0.005 | 743 | 1490 | 1496
| Exponential | 4.996 | 0.000 | 697 | 1397 | 1400 | 7.989 | 0.000 | 702 | 1407 | 1410
Calibration [ Gamma | 0.000 | 0.000 | 711 | 1426 | 1432 | 6.199 | 0.000 | 694 | 1391 | 1398
set Log normal | 0.052 | -0.029 | 711 | 1427 | 1433 | 5.891 | -0.535 | 722 | 1448 | 1454
Eli%arﬂl‘g 0.034 | -0.016 | 465 | 934 | 940 | 6.410 | 0.035 | 512 | 1028 | 1035
Normal | 2.828 | -0.288 | 310 | 624 | 629 | 7.187 | -0.036 | 318 | 640 | 645
Exponential | 5.052 | -0.006 | 298 | 598 | 600 | 8.071 | -0.017 | 301 | 603 | 606
Validation | Gamma | 0.000 | 0.000 | 304 | 611 | 616 | 6.265 | -0.016 | 296 | 597 | 601
set Log normal | 0.052 | -0.030 | 304 | 611 | 616 | 6.020 | -0.522 | 308 | 620 | 625
Negative | o035 | .0.016 | 199 | 402 | 407 | 6528 | 0.016 | 219 | 443 | 448

binomial

The gamma distribution is most suitable for MLE and performs better than least squares

estimates. Figure 5-8 shows the calibration results using the least squares method and MLE using

a gamma distribution. The MLE predictions are closer to the measured data points (synthetic

data), whereas the distribution of residuals shows a low scatter. The mean residual value is the
model bias, whereas the spread of residuals represents the SEE. The mean SEE and bias values

for the gamma distribution are 0.001 and 0.000, whereas, for the least squares method, they are

2.315 and -0.234, respectively, using bootstrap resampling on synthetic data with no variability.

The mean bias value for the gamma distribution remains 0.000, whereas for the least squares, it
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is -0.407, using the bootstrap resampling on synthetic data with 50% variability. This shows the

robustness of the MLE method for data with different variabilities.

5.2.2 Calibration Using Observed Data

MLE and least squares methods were used to calibrate transverse cracking and IRI transfer
functions using observed data obtained from MDOT's PMS data. Sections used for transverse
cracking and IR1 may differ, as the measured performance trends differ for both. Figure 5-9
shows the observed data distribution with different fitted distributions. Figure 5-9 shows that the
transverse cracking data is skewed and non-normally distributed. IRI, on the other hand, is closer
to a normal distribution.

Transverse cracking:

Table 5-13 summarizes the calibration and validation results for transverse cracking. Results for
only the resampling approaches (bootstrapping and repeated split sampling) have been shown for
brevity. The mean values for the parameters are shown in Table 5-13. MLE using gamma
distribution provides the most feasible results with lower parameters (SEE, bias, NLL, AIC, and
BIC) than the least squares. A similar trend is observed in the validation results using repeated
split sampling (Table 5-13), where the MLE results show better validation parameters than the
least squares method. Figure 5-10 shows the calibration results (for bootstrapping) for the least
squares method and MLE using a gamma distribution. The predicted vs. measured transverse
cracking shows a lower scatter for MLE. The mean bias value for the least squares is -0.410,
whereas, for MLE, it is 0.000, using bootstrap results. The SEE values between the least squares
and MLE are comparable. Also, the bias distribution for MLE is close to zero, illustrating the
robustness of the MLE method. The lower and upper 95" percent confidence limits for the least
squares are -0.932 and -0.025, whereas for the MLE, they are -0.001 to 0.001. This shows that
MLE consistently has no bias for all 12000 bootstrap samples. Figure 5-10 (e) and (f) show the
distribution of each bootstrap sample's SEE, bias, and transfer function coefficients. Bootstrap is
used for 1000 resamples with replacement. A different set of parameters are obtained for each
sample. These plots provide a distribution of parameters, and the mean value can be used as a

more reliable estimate.
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Figure 5-8 Calibration results for transverse cracking using synthetic data
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Figure 5-9 Distribution of observed data for rigid pavements

Table 5-13 Summary of calibration and validation results for observed data (Transverse

cracking)
Calibration method Distribution SEE Bias Cs Cs NLL | AIC BIC
Global 5994 | -2.390 | 0.52 -2.17 | 26051 | 52105 | 52112
Normal 4.022 | -0.410 | 0.476 | -0.962 854 1713 | 1720
Bootstrapping Exponential 4218 | 0.000 | 1071 | -0.708 484 970 973
Gamma 3.984 | 0.000 | 0.668 | -0.76 439 882 890
Log normal 4.363 | -0.578 | 1.406 | -0.654 389 783 790
Negative binomial | 4.812 | -0.166 | 4.563 | -0.369 467 938 945
Normal 4.074 | -0.411 | 0.467 | -0.963 598 1200 | 1207
Repeated split sampling Exponential 4225 | 0.000 | 1.091 | -0.682 340 682 686
(Calibration sef) Gamma 4.038 | 0.000 | 0.650 | -0.761 309 622 628
Log normal 4359 | -0.577 | 1406 | -0.652 272 548 555
Negative binomial | 4.883 | -0.184 | 4.704 | -0.363 327 658 665
Normal 4129 | -0.404 | 0.467 | -0.963 270 543 548
Repeated split sampling Exponential 4252 | 0.018 | 1.091 | -0.682 146 294 297
(Validation set) Gamma 4124 | 0.023 | 0.650 | -0.761 132 268 273
Log normal 4374 | -0.567 | 1.406 | -0.652 118 240 245
Negative binomial | 4.900 | -0.223 | 4.704 | -0.363 142 287 292

IRI:

Table 5-14 summarizes the calibration results for IRI using the least squares and MLE methods.
Table 5-14 shows the mean values for the parameters obtained using bootstrap resampling. MLE
using negative binomial shows the most feasible results among all distributions. Interestingly, the
least squares method shows satisfactory calibration and validation results, especially with lower
SEE and bias values than MLE results.
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Figure 5-10 Calibration results for transverse cracking using observed data
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Table 5-14 Summary of calibration results for observed data (IRI - Rigid)

C?T']':tLa;:jO” Distribution | SEE | Bias | Ci | C, | Cs c. |NLL| AIC | BIC
Global 19.721 | 11.696 | 0.820 | 0.442 | 1.493 | 25.24 | 2094 | 4191 | 4199
Normal 10.208 | 0.000 | 0.02 | 2.194 | 1.612 | 24.138 | 2464 | 4932 | 4941
Exponential | 17.503 | 0.000 | 1.389 | 3.953 | 0.915 | 8.208 | 2554 | 5110 | 5114

Bootstrapping Gamma 17.304 | 0.001 | 1.515 | 2.518 | 1.171 | 7.044 | 1974 | 3953 | 3961
Log normal | 17.772 | 0.042 | 1.604 | 2.546 | 1.114 | 7.301 | 1966 | 3936 | 3945
Negative | 14150 | 0312 | 0,001 | 2.229 | 1.471 | 27.041 | 1714 | 3432 | 3441
binomial

Normal 10.570 | 0.000 | 0.225 | 2.136 | 1.510 | 23.741 | 1412 | 2829 | 2837

Exponential 18.108 | 0.000 | 1.478 | 3.832 | 0.893 | 7.769 | 1792 | 3587 | 3590

Repeated split Gamma 17.261 | 0.000 | 1.503 | 2.462 | 1.201 | 6.789 | 1386 | 2776 | 2784

sampling Log normal | 17.695 | 0.038 | 1.576 | 2.391 | 1.176 | 6.757 | 1381 | 2766 | 2773

(Calibration set)

Negative | 16507 | .0.316 | 0.001 | 2.227 | 1.476 | 26.834 | 1204 | 2412 | 2420
binomial

Normal 10.654 | -0.008 | 0.225 | 2.136 | 1.510 | 23.741 | 600 | 1205 | 1211

Exponential | 18.208 | 0.006 | 1.478 | 3.832 | 0.893 | 7.769 | 762 | 1526 | 1529

Repeated split Gamma | 17.542 | 0.098 | 1503 | 2.462 | 1.201 | 6.789 | 590 | 1185 | 1191

sampling Log normal | 17.825 | 0.080 | 1.576 | 2.391 | 1.176 | 6.757 | 589 | 1181 | 1187

(Validation set)

Negative | 4 394 | _0.320 | 0.001 | 2.227 | 1.476 | 26.834 | 515 | 1033 | 1039
binomial

Figure 5-11 shows the calibration results for IRI (using bootstrapping) for the least squares and
MLE using a negative binomial distribution. The SEE and bias values for the least squares are
10.208 and 0.000, whereas, for the MLE using negative binomial, they are 10.150 and -0.312,
using bootstrap resampling. The predicted vs. measured IRI and distribution of residuals are
similar for both methods. Figures 5-11 (e) and (f) show the SEE, bias, and IRI transfer function
coefficients distribution for 1000 bootstrap resamples. The least squares method shows lower
bias, which can be observed from the distribution of parameters in Figure 5-11. A similar trend is
observed in the validation results (Table 5-14), where the least squares method shows better

parameter estimates in terms of SEE and bias than the MLE method.
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Figure 5-11 Calibration results for rigid IRI using observed data
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5.3 IMPACT OF CALIBRATION ON PAVEMENT DESIGN

Forty-four pavement sections, each for flexible and rigid sections, were designed to assess the
impact of calibration on pavement design. It is important to note that the locally calibrated
coefficients and standard error equations used for these designs were obtained using the least
squares method. The standard error equations are summarized in Chapter 6. Table 5-15 shows
the average design thickness for the 44 flexible and rigid sections. These are the final thicknesses
based on the following criteria:

e The minimum thickness should be 6.5" for flexible, 9" for JPCP freeway, and 8" for
JPCP non-freeway sections.

e A maximum difference of £ 1 inch from the AASHTO93 minimum thickness limits.

e JPCP widened slab sections were designed as standard width (12 feet), and design
thicknesses were reduced by a maximum of 1 inch depending on whether the previous
conditions were met. This practice is followed because the slab width is a sensitive
parameter in the Pavement-ME, giving impractical (very thin) designs.

e The design trials were stopped when a pavement reached a maximum thickness of 16".
Few designs fail at even 16", but further increasing the thickness leads to impractical
designs. This occurs because a particular design may have inputs (material, traffic,
climate) that are not well represented in the global (or local) dataset. Therefore, the
Pavement-ME has difficulty providing a practical design outcome. These designs may
require changes in the Pavement-ME inputs, and simply changing the thickness cannot
achieve a passing design. Furthermore, MDOT is limited by design changes
(construction, materials, budget, and design procedures). Therefore, changing the inputs

may not be practical.

Table 5-15 Summary of final pavement design thicknesses

. Design thickness (in)
Pavement type Design method Average Standard deviation CoV
AASHTO93 9.17 2.20 24%
Flexible Pavement-ME previous model 8.86 1.78 20%
Pavement-ME new calibrated model 8.95 2.27 25%
AASHTO93 10.07 1.67 17%
Rigid Pavement-ME global model 9.83 1.63 17%
Pavement-ME new calibrated model 9.63 1.44 15%
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The average design thickness using the newly calibrated models is closer to the AASHTO93
design than the previous model calibration, with an average thickness reduction of 0.22 inches
for flexible sections. The average PCC thickness using the new calibrated model is 0.44 inches
lower than the AASHTO93 design thickness. Interestingly, for designs using the global model,
five sections reached the design thickness of 16 inches, and another five sections reached the
design thickness of 6 inches. However, for the design using the locally calibrated model, only
one section has a design thickness of 16 inches. Figure 5-12 shows the new calibrated model vs.
AASHTO93 design thicknesses. Overall, the average design thickness using the locally
calibrated models is slightly lower than the AASHTO93 design thickness for both flexible and

rigid sections.
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Figure 5-12 New calibrated model vs. AASHTO93 final design thickness
The Pavement-ME designs are based on several distresses, but it is crucial to identify the
controlling distress. Figure 5-13 shows the contribution of different controlling distresses. The
values shown in Figure 5-13 are the percentage of sections (out of 44) having that critical
distress. It should be noted that some sections may have more than one controlling distress.
Bottom-up and thermal cracking are the controlling distresses for flexible pavements, whereas
transverse cracking and IRI are for rigid pavements. Figure 5-14 compares reliability for critical
distress in flexible and rigid pavements. The standard deviation for the previously calibrated
model is higher than the newly calibrated model for both bottom-up cracking and thermal
cracking in flexible pavements. Also, the standard deviation for the newly calibrated model is
higher than the global model for transverse cracking in rigid pavements.
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Figure 5-14 Comparison of reliability for critical distresses
A higher standard deviation in predicted performance is expected to produce a thicker design,
but the design results (Table 5-15) show that models with higher standard deviation have lower
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design thicknesses. Therefore, these trends indicate that the difference in design thicknesses can

be attributed to the calibration coefficients rather than the reliability of these models.
5.4 SENSITIVITY ANALYSIS OF PAVEMENT-ME MODEL COEFFICIENTS

The sensitivity of Pavement-ME model coefficients was estimated using the NSI and SSC
methods, as explained in Chapter 4. For NSI calculation, each section was initially run at the
global values of transfer function coefficients at 50% reliability. Afterward, each coefficient (one
at a time) was varied by -50%, -20%, 20%, and 50%, respectively, from the global values. The
change in performance prediction was evaluated for differences in transfer function coefficients
to calculate the NSI values. Table 5-16 shows the NSI values for each section in this study and
the NSI values from Kim et al. (2014) (26). The NSI values vary significantly among different
sections and from Kim et al. (2014). These differences are attributed to the material and climate,
ultimately affecting the predicted performance. For example, coefficient Cs4in the IRl model for
rigid pavements ranges from 0.06 to 0.23. These values correspond to the coefficient categorized
as non-sensitive and sensitive, respectively (60). Similarly, Cz in bottom-up cracking ranges from
-1.3 t0 -369.5, corresponding to very sensitive and hypersensitive categories. It is important to
note that the magnitude of bottom-up cracking in flexible pavements and transverse cracking in
rigid pavements was extremely low (close to zero). This has resulted in very high NSI values for
C1in bottom-up cracking and Cs in transverse cracking. These values are also significantly
different from the ones in Kim et al. (2014). This is mainly because of the difference in
magnitude of bottom-up and transverse cracking between the two studies.

The SSCs were calculated and plotted using MATLAB codes using one coefficient at a
time and considering other coefficients as constant. A wide range of independent variables have
been used since calculating SSCs is a forward problem without data. Figures 5-15 and 5-16 show
the SSCs for flexible and rigid pavements. Transfer functions with multiple independent

variables have all independent variables shown in the same plot on the x-axis.
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Table 5-16 Summary of NSI values for transfer function coefficients

Performance Section no. Average é?;;
model 1 2 3 4 5 6 7 8 9 10 NSI (26)
BOttOIT-Up C; -61.3 -66.0 -58.5 -88.4 -71 -72.2 -57.1 -58.4 -61.8 -867 -146.2 -11.3
cracking
(flexible) | Cz | 29 | 528 | 408 | -1414 | 13 | -170 | 369 | -151 | 949 | -354 | 5075 | -2.29
Top-down C, -0.59 -0.63 -0.59 0.00 -0.6 -0.67 -0.59 -0.59 -0.72 -0.78 -0.58 NA
cracking C, -2.42 -2.80 -2.37 0.00 -2.7 -3.39 -2.36 -2.42 -4.11 -5.01 -2.76 NA
(flexible) Cs -0.03 -0.18 -0.01 0.00 -0.1 -0.64 0.00 -0.02 0.00 0.00 -0.10 NA
Total Bir 0.23 0.21 0.18 0.13 0.15 0.13 0.19 0.19 0.17 0.18 0.18 1
rutting Bs1 0.24 0.27 0.20 0.28 0.23 0.29 0.17 0.13 0.26 0.29 0.24 1
(flexible) Bsg1 0.53 0.52 0.62 0.60 0.62 0.58 0.64 0.68 0.57 0.53 0.59 1
C, 0.09 0.11 0.07 0.08 0.11 0.09 0.01 0.11 0.06 0.07 0.08 0.15
IRI C, 0.02 0.03 0.02 0.00 0.02 0.02 0.02 0.03 0.01 0.01 0.02 0.00
(Flexible) Cs 0.13 0.13 0.13 0.13 0.06 0.00 0.00 0.00 0.00 0.00 0.06 0.00
C,4 0.26 0.30 0.22 0.21 0.30 0.25 0.32 0.30 0.25 0.28 0.27 0.31
Transl\(/_efse C. | 238 | 238 | 238 | 238 | -238 | -238 | -238 | -238 | 237 | 238 | -238 | -0.08
cracking
(rigid) Cs -4E4 -1E5 -1E5 -1E6 -1E6 -8E3 -2E3 -3E3 -1E2 -4E4 -2E5 0.20
C, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43
IRI (rigid) C, 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.02
g Cs 0.06 0.37 0.34 0.08 0.38 0.25 0.40 0.47 0.48 0.18 0.30 0.07
Cq 0.15 0.09 0.11 0.23 0.12 0.13 0.07 0.10 0.06 0.13 0.12 0.48

Figures 5-15 and 5-16 show the following observations:

e Bottom-up cracking (flexible): C1 is more sensitive than C, and C1and C; are not
correlated. Moreover, both C; and C» are large enough to be confidently estimated.
Coefficients with negative SSCs indicate that an increase in the coefficient will decrease
predicted performance. Therefore, an increase in Cy or C> will reduce bottom-up cracking.

e Top-down cracking (flexible): The sensitivity of coefficients changes with the
independent variables, which are t (analysis time in days) and to (time to crack initiation).
Overall, Czis the most sensitive coefficient, followed by C». Ci is the least sensitive
coefficient. Crand Czare correlated, which signifies that only one of them can be
estimated with confidence. All coefficients are estimable based on the magnitude of
SSCs, and an increase in any of the coefficients will reduce the predicted top-down
cracking.

e Total rutting (flexible): Total rutting is a linear model between the individual layer
rutting. Subgrade rutting coefficient (854,) is the most sensitive, followed by the AC
rutting coefficient (5;,-). The base rutting coefficient ( S5,) is the least sensitive. SSCs for
all coefficients are large enough to be estimable and positive.

¢ IRI (flexible): IRI is a linear relationship between IRI at the time of construction (initial
IRI) and other distress (cracking, rutting, etc.). The site factor coefficient is the most

sensitive, followed by the total rutting coefficient. The thermal cracking coefficient is the
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SSCs for Bottom-up Cracking(%)

next sensitive coefficient, while the fatigue cracking coefficient is the least sensitive. All

coefficients have positive values for SSCs.

Transverse cracking (rigid): Cs is more sensitive than Cs, and the change in sensitivity

with damage can be clearly observed. Csand Cs are not correlated, and the SSCs for both

coefficients are large enough to be estimated with confidence.

IRI (rigid): The transverse cracking coefficient is the most sensitive, and the joint spalling

coefficient is the least sensitive. Moreover, the magnitude of SSCs for joint spalling is

very low, indicating that the coefficient cannot be estimated with high confidence.
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Figure 5-15 SSCs for flexible pavements
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Figure 5-16 SSCs for rigid pavements
SSCs are highly suitable for showing sensitivity for any range of independent variables. For
example, the SSC plot for IRI in Figure 5-16 shows that C: is the most sensitive coefficient,
whereas the NSI values are calculated to show that it is the least sensitive input. This is because
of the low values of transverse cracking used to calculate the NSI values. Figure 5-17 shows the
SSC plot for IRI in rigid pavements using low values for transverse cracking. It can be observed

that at this range of transverse cracking, Cy is the least sensitive coefficient.
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Figure 5-17 SSCs for IRI on small values of transverse cracking

The SSC plot is used to visualize the error in parameter estimation. Moreover, the larger the SSC
magnitude, the more confidence in parameter estimation. Calibrating the transverse cracking

model in rigid pavements is an example of verification. From Figure 5-16a, Cs should have less

134



estimation error than Ca. Error in estimation for any parameter refers to the relative error, i.e., the
ratio of standard error and the parameter value. C4and Cs are not correlated, and the SSCs for
both coefficients are large enough to be estimated with confidence. The relative error should be
less than 60%; otherwise, the confidence interval of the parameter likely includes zero. In other
words, the parameter is not estimable or not statistically different than zero.

The selected rigid pavements were used to calibrate the transverse cracking model and
validate the applicability of SSCs. The measured performance data is obtained from the PMS
records, and the Pavement-ME inputs are obtained from construction records, material testing
results, and the Job Mix Formula (JMF). Figure 5-18 shows the predicted vs. measured
transverse cracking for global and locally calibrated model coefficients. Table 5-17 summarizes
the standard error of estimate (SEE), bias, and relative error. The local calibration significantly
improved the model predictions. Moreover, the relative error for Cs is less than that for C4 with
both values less than 60%. The relative error values verify the results from the SSC plot, and

therefore, both coefficients can be estimated with confidence.

100 T T T T 100

80 BO

60

60

40 - 40

Predicted transverse cracking (% slabs cracked)

Predicied transverse cracking (% slabs cracked)

(o]
20 0p O
o ©
00 wo® ©

0 e O . . . . . . .

S0 0

0 20 40 60 80 100 o 20 40 60 B0 100
Measured transverse cracking (% slabs cracked) Measured transverse cracking (% slabs cracked)
(@) Global model (b) Local model

Figure 5-18 Predicted vs. measured transverse cracking in rigid pavements

Table 5-17 Summary of transverse cracking model calibration

. Global model Local model Relative standard
Coefficient . _
Value SEE Bias Value SEE Bias error
0
Cs 0.52 5.99 239 0.426 3.95 040 20.73%
Cs -2.17 -0.953 6.14%
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5.5 CHAPTER SUMMARY

This chapter summarizes the calibration results for the flexible and rigid Pavement-ME models.
Using synthetic and observed data, local calibration was performed using the least squares and
MLE methods. Synthetic data was generated using an exponential distribution for bottom-up
cracking in flexible pavements and transverse cracking in rigid pavements. MLE results
outperformed the least squares method for both sets of synthetic data. Calibration results using
observed data showed that MLE provides better parameter estimates for non-normally
distributed data. For normally distributed data, MLE and least squares results were comparable.
Forty-four sections each for new flexible and rigid pavements were designed using least squares
calibration results to assess the impact of calibration on the pavement design. On average, the
surface thicknesses using locally calibrated coefficients were thinner than the AASHTO93
design by 0.22 and 0.44 inches for flexible and rigid pavements, respectively. Critical design
distresses for flexible pavements include bottom-up and thermal cracking. On the other hand,
transverse cracking and IRI control the designs for rigid sections. NSI and SSC methods were
used to evaluate the sensitivity of the Pavement-ME transfer function coefficients. Ten sections
each, from flexible and rigid pavements, were used to calculate the NSI values and compared
with the literature. Results show that SSCs provide a more reliable sensitivity on a range of
independent variables rather than a point estimate, unlike NSI. NSI values showed variability

among different sections, depending on the magnitude of predicted performance.
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CHAPTER 6 - CONCLUSIONS, RECOMMENDATIONS AND FUTURE
SCOPE

6.1 KEY FINDINGS

This study introduces a novel calibration approach for the Pavement-ME transfer functions using
MLE and compares it with the least squares method. The calibration was performed using
synthetic and observed field data. The impact of calibration on pavement design was also
assessed. Moreover, the sensitivity of the Pavement-ME model coefficients was also evaluated
using the traditional NSI and the SSC approach. The following conclusions can be drawn based
on the results.

e The synthetic and observed data distribution for bottom-up cracking in flexible pavements
shows skewness, with most data points below 5%. Fitting different distributions over data
shows that bottom-up cracking is non-normally distributed. The distribution of observed
data for total rutting and IRI shows slight skewness. Moreover, the distribution is close to
normal, especially for IRI.

e Calibration results from synthetic data indicate that MLE outperforms the least squares
method based on statistical parameters and computational efficiency for flexible pavements.
The gamma distribution is the most optimum distribution for MLE, consistently showing
SEE and bias values close to zero for the synthetic bottom-up cracking data. The SEE value
reduced for MLE results from 3.3 to 0.0 for bootstrapping and 4.4 to 0.0 for repeated split
sampling (validation) compared to the least squares results for the dataset with no
variability. The dominance of MLE calibration is more evident for datasets with 50%
variability, especially in the case of validation.

e For the observed data, the gamma distribution is most suitable for bottom-up cracking and
total rutting models, whereas the negative binomial is for the IRl model. The predicted vs.
measured plots show less scatter for MLE results than the least squares results for all
models. The applicability of MLE is more evident for the bottom-up cracking model. The
residual distribution is normally distributed and closer to zero. Moreover, the distribution of
parameters is close to a normal distribution, and the bias value is consistently zero, showing
the robustness of the calibration results. Calibration of the total rutting model using MLE

showed a slight improvement compared to the least squares method, whereas IRI calibration
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results for MLE and least squares methods were comparable. This indicates that MLE is
more effective for non-normally distributed data.

The use of MLE on synthetic data for rigid pavements also showed better computational
efficiency and applicability to bias-variance tradeoffs compared to the least squares method.
The gamma distribution is most suitable for the generated synthetic data for transverse
cracking. The mean bias (using bootstrapping) for MLE using gamma distribution is zero
for data without and with 50% variability. The SEE values for the least squares method and
MLE using gamma distribution are comparable with slightly lower values for MLE. A
similar trend is observed in validation results.

In rigid pavements, the gamma distribution is most suitable for transverse cracking using
observed data. The mean bias is consistently near zero using the MLE method for transverse
cracking. Calibration using MLE significantly reduces the model bias while keeping the
SEE comparable (slightly lower) than the least squares method. Calibration results for IRI
using the least squares method and MLE are similar, with the least squares method being
somewhat better regarding model bias. The negative binomial is the most suitable
distribution for the MLE method.

The MLE method is proven most effective for skewed and non-normally distributed data,
such as bottom-up cracking in flexible pavements and transverse cracking in rigid
pavements. In contrast, the least squares method suits data close to a normal distribution,
such as IRI. Prior knowledge of distribution is required for the use of MLE.

Calibration significantly improved performance predictions for both least squares and MLE
methods. Resampling methods provide better calibration results with lower SEE and bias
and can improve the overall robustness of the MLE approach.

The average design thicknesses using new calibration coefficients were close to
AASHTQO93 design thicknesses with a reduction of 0.22 and 0.44 inches in flexible and
rigid pavements, respectively. The design thickness using new calibration coefficients was
less than the AASHTO93 design thickness for 21 sections and equal for 12 of 44 flexible
sections. Similarly, the design thickness using new calibration coefficients was less than the
AASHTO93 design thickness for 17 and equal for 23 of 44 rigid sections.

Thermal cracking is the most critical distress for flexible sections, with 61.4%, followed by

bottom-up cracking, with a 36.4% contribution. The contribution of total rutting was 2.3%.
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None of the sections had top-down cracking or IRI as their critical distress. In rigid sections,
IRI controlled distress with 77.3%, followed by transverse cracking with a 29.5%
contribution. Joint faulting had the most negligible contribution of 6.8%. Comparison
between the standard deviation of different models indicates that the differences in design
thicknesses come from the calibration coefficients rather than the reliability for both flexible
and rigid sections.

The sensitivity analysis showed that NSI values differed for each section in both flexible
and rigid pavements. These sections have been designed using different Pavement-ME
inputs, resulting in a wide range of performance predictions and, ultimately, a range of NSI
values. The bottom-up cracking predictions in flexible and transverse cracking predictions
in rigid sections were extremely low (close to zero). This resulted in very high NSI values,
which are unreliable. The coefficient C, for IRI in rigid sections is also zero because of the
low magnitude of transverse cracking. NSI values are variable and depend on the magnitude
of predicted distresses. Moreover, the Pavement-ME inputs (material, traffic, and climatic)
are required for NSI calculations.

SSCs provide a convenient visual representation of the sensitivity of different transfer
function coefficients over a continuous range of independent variables, unlike NSI, which is
a point estimate. SSCs for transverse cracking and IRI for rigid sections show that the
sensitivity changes at different ranges of the independent variable. It also indicates any
correlations between different coefficients and confidence in estimation. Calculation of
SSCs is a forward problem and does not require any input data. Therefore, a user only needs
a mathematical model (the transfer functions) and can calculate SSCs on any range of
independent variables.

NSI and SSCs provide a measure of sensitivity, but it is convenient to rank transfer function
coefficients for straightforward interpretation. Table 6-1 shows the ranking of transfer
function coefficients based on different methods. The order using SSCs is based on the
overall sensitivity in the entire range of independent variables. As previously shown, this
sensitivity might change for a limited range of independent variables. Coefficients with the
same NSI values have been ranked the same. For example, all rutting coefficients in Kim et
al. (2014) (26) study have been ranked 1 as they all have the same NSI values. Some models

(e.g., bottom-up cracking and transverse cracking) have similar rankings using different
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methods, whereas others (e.g., IRI for rigid pavements) have significant differences. These

differences make it challenging to estimate the most sensitive coefficients truly. Therefore,

SSCs can help obtain a continuous range of sensitivity rather than a point estimate.

Table 6-1 Rank of transfer function coefficients based on different methods

Pavement type Per:‘;)cr)rg;nce Coefficient NSI SSCs (P2<(;rln4<)at(gg)

Bottom-up C: 1 1 1

cracking C 2 2 2

Ci 2 3 NA

T [, 1 z A

g Cs 3 1 NA

. Byr 3 2 1

Flexible Total rutting ey 2 3 1

ﬁsgl 1 1 1

Ca 3 2 2

C 4 4 3

IRI Cs 2 3 3

Cs 1 1 1

Transverse Cs 2 2 2

cracking Cs 1 1 1

.. Ci 4 1 2
Rigid

! - C, 3 4 4

Cs 1 3 3

Cs 2 2 1

6.2 RECOMMENDED CALIBRATION COEFFICIENTS

Tables 6-2 and 6-3 summarize the recommended calibration coefficients and reliability equations

for flexible and rigid pavements. These results were obtained using the least squares method and

validated with extensive pavement designs. The detailed results of pavement designs are shown

in Chapter 5.
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Table 6-2 Flexible pavement recommended calibration coefficients and standard error equations

Performance prediction
model

Local coefficient

Standard error

Bottom-up cracking
(Option a)

C, = 0.2320
C, = 0.6998 (hac <5 in)
C, = (0.867 4 0.2583 * hac) * 0.2204 (5
in <= hac <=12 in)

C, = 0.8742 (hac >12 in)

14.2349
1 + exp (0.2958 — 0.1441log(Crack))

Seguy = 0.2262 +

Bottom-up cracking
(Option b)

C, = 0.2540

C, = 0.7303 (hac <5 in)
C, = (0.867 4 0.2583 * hac) * 0.2692 (5
in <= hac <=12 in)

C, = 1.0678 (hac >12 in)

25.4391

Setpu) = 44396 + 4 43110 — 2.2778 log(Crack))

Top-down cracking

K,, = 64271618
K,, = 0.90

K5 = 0.09

Ky, = 0.101

K5 = 3.260

¢, =030

C, = 1.155

Se(rpy = 0.6417 X TOP + 0.5014

HMA

Secumay = 0.1481(RUT 04175

Rutting

By = 0.301
Base/subgrade Bogr = 0.070

Se(base) = 0.0411(RUT)ys,) 03656
0.5456
Se(subgrade) = 0'0728(RUTsubgrade)

Thermal cracking

K =0.85

Se(rcy = 0.1223(TC) + 400.9

IRI C, = 42.874,C, = 0.102
C, = 0.0081,C, = 0.003

Internally determined by the software

Table 6-3 Rigid pavement recommended calibration coefficients and standard error equations

Performance prediction model

Local coefficient

Standard error

. C, =0415 _ 0.5074
Transverse cracking C. = —0965 Se(CRK) = 2.9004(CRK)
Cl = 0.6
C, = 1.611
C; = 0.00217
_ S = 0.0919(Fauit)***
e - C, = 0.00444 e(Fault)

Transverse joint faulting C. = 250
Ce=02
C7 = 7.3
Cg = 400
C, = 0.0942

IRI g; : Sg;é Internally determined by the software

C, = 23.7529

6.3 PRACTICAL IMPLICATIONS

This study provides a framework for the local calibration of performance models. Highway

agencies can leverage the results for better design and adaptation of the Pavement-ME for local

conditions. The critical implications include:
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The recorded performance data may have irregularities due to measurement errors and
limitations in distress identification. Moreover, the recorded performance data may require
conversion to the Pavement-ME units, which involves several assumptions. It may cause
anomalies in the measured performance data and may not be practical to use directly for
calibration. Therefore, analyzing the raw performance data and filtering it (if required) is
recommended for practicality.

It is worth mentioning that the calibration process and pavement design were simultaneously
executed. For every set of calibration coefficients, pavements were designed, and the
calibration was improved based on the results. Pavement design is one of the most crucial
calibration process steps and is often not considered in practice. It is recommended that the
calibration results should not be based only on statistical parameters (SEE, bias, etc.) but
also on practical engineering judgments.

Identifying critical design distress types is crucial. By understanding which distress types
are most relevant to their region, agencies can develop mitigation and maintenance
strategies leading to longer pavement service lives. For example, thermal cracking is critical
in Michigan for flexible pavements. MDOT can mitigate the occurrence of cracking by
using modified and improved binders.

It is recommended that local calibrations be performed every six years when more time
series data points (e.g., three data points in Michigan) are available for the already selected

and new pavement sections.

SSCs can help agencies improve their local calibration process. The advantages and

interpretation of the SSC plots are described in Chapters 4 and 5. The following approach is

recommended to leverage these SSC plots before starting the local calibration process:

Run Pavement-ME to identify the magnitude of independent variables for each model. For
example, one should know the range of damage values for transverse cracking in rigid
pavements.

Obtain the sensitivity of each calibration coefficient from the SSC plots for the respective
range of independent variables.

Ensure that the SSCs for each coefficient are large enough (the maximum value of SSC
should be at least 10% of the largest value of the dependent variable). For example, the

maximum SSC values for C4 and Cs are 25% and 38%, respectively, in transverse cracking
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in rigid pavements. These SSC values exceeded 10% of the maximum predicted transverse
cracking. Moreover, the SSCs should not be correlated (SSCs for different coefficients
should not show similar trends).

If the SSCs are not large enough, one can not estimate those coefficients with sufficient
confidence, i.e., they may be insignificant. On the other hand, if coefficients are correlated,
both coefficients cannot be simultaneously estimated. For example, coefficients C1 and Czin
top-down cracking for flexible pavements show a correlation; therefore, only one should be
calibrated. Calibration of Czis recommended since the magnitude of SSC for C: s higher.
Ensure that the relative error is lower for the more sensitive coefficients and is not more
than 60% for any coefficient.

The SSCs can highlight the most significant coefficients for a range of independent
variables. That can help in diverting more attention to those coefficients during local
calibration. For example, in the rigid IRl model, C is the least sensitive for lower transverse

cracking (less than 1%), and Cy is the most sensitive for higher transverse cracking.

6.4 REVIEW OF CAT TOOL

This study used The CAT tool to calibrate the thermal cracking model in flexible and joint

faulting models in rigid pavements. CAT provides a convenient alternative for those models

where rerunning Pavement-ME is required. The advantages and limitations of the CAT tool are

summarized below:
Advantages of CAT

CAT provides good visualization of the input data and experimental matrix of the *.dgpx
files. It helps quickly glance at the overall data and identify any outliers or biases.

It has default validation of the optimized coefficients, which helps to verify the model on an
independent set of sections.

It provides sufficient descriptive statistics for calibration results and a linear model showing
the effect of different Pavement-ME inputs on the overall calibration.

It helps visualize the change in error and bias for each iteration, making it easier to identify
local minima in the given range.

It assists in evaluating the impact of the number of bins on the reliability model.
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Limitations of CAT

Pavement-ME (.dgpx) files, once uploaded, cannot be deleted. Also, trials for optimizing
calibration coefficients are run; they cannot be deleted or paused. This makes the
nomenclature of the .dgpx files challenging, and trials should be run meticulously.

The limit to the total number of combinations of calibration coefficients is 100. Hence, all
calibration coefficients cannot be changed simultaneously for several increments.

Since the number of increments is fixed to 100, the coefficients must be changed
systematically by reducing the range provided. Also, not more than three coefficients can
be involved in one trial run for a reasonable range and number of increments. It makes the
optimization process cumbersome, and some prior experience is required to recalibrate with
optimum time and effort.

The computation time is comparatively large. For example, for 100 pavement sections,
changing a total of two calibration coefficients with five increments each makes it a total of
100x5x5 = 2500 Pavement-ME runs, which takes a computation time of around 29 hours.
Therefore, considerable computational time is required, especially when the number of
sections is large.

The same sections cannot be used for different projects using different measured data.

Changing the measured data changes it in all existing (already run) projects.

6.5 FUTURE SCOPE OF THIS STUDY

The scope of this study is limited to new flexible and rigid pavements. Moreover, bottom-up

cracking, total rutting, IRl models for flexible pavements, and transverse cracking and IRI

models for rigid pavements were calibrated using the four distributions mentioned: exponential,

gamma, log-normal, and negative binomial. Using an exponential distribution, the MLE

methodology was validated using synthetic data for bottom-up cracking in flexible and

transverse cracking in rigid pavements. The following can be explored as part of future studies:

The MLE approach can be extended to calibrate other Pavement-ME models and models for
rehabilitated pavements. Different probability distributions can be explored as part of future

research.
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This methodology can be validated using synthetic data for different Pavement-ME transfer
functions. Moreover, synthetic data can be generated using different distributions and
variability.

Further studies can be conducted to estimate the impact of varying calibration approaches
on pavement design.

Top-down cracking model calibration improved the SEE and bias but did not provide
realistic results, i.e., high SEE. Furthermore, the top-down cracking predictions didn't vary
for different sections, producing the same predictions. The Pavement-ME limits the thermal
cracking prediction to 2112 ft/mile, but the measured data showed several records of
thermal cracking above 2112 ft/mile. Also, the thermal cracking coefficient in the current
version is changed and is a function of MAAT. This made the calibration of the thermal
cracking model challenging. Due to the model's limitations, although the SEE and bias were
improved after local calibration, the thermal cracking model still showed high variability.
The top-down and thermal cracking models in flexible pavements should be improved,
especially considering thermal cracking is critical.

The SSCs can be used for sensitivity analysis in other Pavement-ME models, apart from the

transfer functions.
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APPENDIX
This chapter summarizes the results of the Pavement-ME models calibrated using the least
squares method only. These models include bottom-up cracking (Option a), top-down cracking,

thermal cracking, and rutting (Method 1) models for flexible pavements and joint faulting
models for rigid pavements.

BOTTOM-UP CRACKING MODEL (OPTION A)

No Sampling

In no sampling, the entire dataset was used for calibration. The error between the predicted and
measured fatigue cracking was minimized. Figure A-1 shows the predicted versus measured
bottom-up for the global and locally calibrated models. The global model underpredicts bottom-
up cracking. Table A-1 shows the local calibration results. The SEE is reduced from 8.28 to 8.08,
whereas the bias is reduced from -4.90 to 0.17. Figure A-2 shows the fatigue damage curve and
the measured and locally predicted bottom-up cracking with time. These measured and predicted

cracking values are for the same sections and at the same ages. Figure A-2 shows that local
predictions are close to the measured values.
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Figure A-1 Predicted vs. measured bottom-up cracking (No sampling)
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Table A-1 Local calibration summary for bottom-up cracking (No sampling)

Parameter Global model Local model
SEE (% total lane area) 8.28 8.08
Bias (% total lane area) -4.90 0.17
C1 1.31 0.22
C2(hac<5in.) 2.1585 0.66
C2(51in. <= ha <=121in.) (0.867+0.2583* hy)*1 (0.867+0.2583* hy)*0.22

Split Sampling

Split sampling was used with a random split of 70% sections for the calibration set and the rest
30% for the validation set. Figure A-3 shows the predicted vs. measured bottom-up cracking for
the calibration and validation sets. The validation set shows a similar trend as the calibration set.

Table A-2 summarizes the local calibration results. Though SEE is higher than the global model,

bias is significantly improved from -4.54 to 0.7018 in the validation set. Overall, the validation

results are satisfactory.

Table A-2 Local calibration summary for bottom-up cracking (split sampling)

Parameter Global model Local model Validation
SEE (% total lane area) 7.76 7.11 11.2955
Bias (% total lane area) -4.54 -0.47 0.7018
Ci 131 0.19 0.19
Ca(he<51in.) 2.1585 0.78 0.78
C2(51in. <= hg <=121in.) (0.867+0.2583*hac)*1 (0.867+0.2583*hac)*0.26 (0.867+0.2583*hac)*0.26
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Figure A-3 Local calibration results for bottom-up cracking (split sampling)

Repeated Split Sampling

Like split sampling, repeated split sampling was used with a random split of 70% sections for the
calibration set and the remaining 30% for the validation set. This process was repeated 1000
times, where a new random set of calibration and validation sets was picked each time. Repeated
split sampling is used to estimate the distribution of different parameters instead of optimizing
for a point estimate. Confidence intervals (CI) for each parameter can also be obtained. Tables
A-3 to A-5 show the summary for the global model, calibration, and validation sets. It is
important to note that coefficient Cz is a function of total HMA thickness (hac). For estimating the
confidence intervals and distribution of Co, it was converted to a single value for all HMA
thicknesses. Figures A-4 and A-5 present the distribution of model parameters for calibration and
validation sets. In Figures A-4 and A-5, the solid blue line shows the median, the dashed red line
shows the mean, the solid black line shows the cumulative distribution and the dashed red lines
on both sides show the 2.5" and 97.5" percentiles. The mean SEE is reduced from 8.29 to 7.90
for the calibration and 7.93 for the validation set. Similarly, bias was improved from -4.91 to -
0.02 for the calibration and 0.03 for the validation set.

Table A-3 Global model summary (Repeated split sampling)

p Global model Global model Global model | Global model upper
arameter .
mean median lower ClI Cl
SEE (% total lane area) 8.29 8.29 7.63 8.84
Bias (% total lane area) -4.91 -4.91 -5.35 -4.47
C. 1.31 1.31 - -
Ca(hyc<51in.) 2.1585 2.1585 - -
Co(5in. <=hy <=12 (0.867+0.2583* (0.867+0.2583* - -
in.) hac)*1 hac)*1
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Table A-4 Calibration set summary (Repeated split sampling)

Parameter Local model mean Local model median Local model Local model
lower ClI upper CI
SEE (% total lane area) 7.90 7.73 6.49 9.93
Bias (% total lane area) -0.02 0.00 -0.51 0.42
Cy 0.26 0.25 0.13 0.42
Co(hac<5in.) 0.60 0.60
S PP (0.867+0.2583* hy)* | (0.867+0.2583* hyo)* 0.29 0.89
C2 (5 n. <= hac <—12 |n) 019 019
Table A-5 Validation set summary (Repeated split sampling)
Parameter Local model mean Local model median Local model | - Local model
lower CI upper ClI
SEE (% total lane area) 7.93 7.68 6.01 10.88
Bias (% total lane area) 0.03 0.02 -2.04 2.27
Ci 0.26 0.25 0.13 0.42
Ca(hac<5iin.) 0.60 0.60
* * * *
Co (5 in. <= hee <=12 in.) (0.867+06215983 hac) (0.867+00.215983 hac) 0.29 0.89
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Bootstrapping

Bootstrapping was used as a resampling technique to calibrate the bottom-up cracking model.

One thousand bootstrap samples were created, randomly sampling with replacement. Unlike

repeated split sampling, in bootstrap, the samples were not split; instead, the entire dataset was

used. Bootstrapping also generated CI and distribution of model parameters. Tables A-6 and A-7

summarize the model parameters for global and local models, respectively. SEE is slightly

increased, whereas bias is significantly improved after local calibration. Figure A-6 shows the

distribution of parameters for the 1000 bootstrap samples.

Table A-6 Bootstrapping global model summary

Parameter Global model mean Global model median Gllobal model | Global model
ower CI upper CI
SEE (% total lane area) 8.30 8.30 7.38 9.20
Bias (% total lane area) -4.91 -4.91 -5.53 -4.33
C: 1.31 1.31 - -
Ca(hac<5in.) 2.1585 2.1585 - -
Co(5in. <=hs <=121in.) | (0.867+0.2583*ha)*1 | (0.867+0.2583* ha)*1 - -
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Table A-7 Bootstrapping local calibration results summary

Parameter Local model mean Local model median L?Cal model Local model
ower ClI upper ClI
SEE (% total lane area) 8.73 8.30 6.21 12.83
Bias (% total lane area) 0.00 -0.03 -0.80 0.68
C: 0.23 0.20 0.01 0.54
Cz(hac<5in.) 0.70 0.73
Co (5 in. <= hye <=12 in.) (0.867+06225283* hac)* (0.867+06225§3* hac)* 0.04 1.29
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Figure A-6 Local calibration results for bottom-up cracking (bootstrapping)

Summary

All calibration approaches have significantly improved the bottom-up cracking model. Table A-8

shows the summary of all sampling techniques. It should be noted that these calibrations were

performed with specific limits on the calibration coefficients taken from the literature, as

mentioned in Chapter 2. These limits ensure that we get reasonable and practical calibration

results.

Table A-8 Summary of results for all sampling techniques (Option a)

Sampling technigue SEE Bias C: C2 (hac <5in.) C2 (5in.<=hac<=12in.)
No sampling 8.08 0.17 | 0.22 0.66 (0.867+0.2583* ha)*0.21
Split sampling 711 | -047 | 0.19 0.78 (0.867+0.2583* ha)*0.26
Repeated split sampling | 7.90 | -0.02 | 0.26 0.60 (0.867+0.2583* ha)*0.20
Bootstrapping 8.73 | 0.00 | 0.23 0.70 (0.867+0.2583* hae)*0.22
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TO

P-DOWN CRACKING MODEL

The following section shows the calibration of the top-down cracking model. The model contains

crack initiation and crack propagation models. Since the actual crack initiation time is not

known, it was not possible to calibrate the crack initiation model separately. So, a single function

was used by substituting the crack initiation function with the crack propagation function.

Initially, an attempt was made to change all eight coefficients simultaneously. This approach had

some challenges:

The top-down cracking model was calibrated in Microsoft Excel by combining engineering

The model has some mathematical limitations. High values for C3 give mathematical errors

in the Pavement-ME output.

There is no current literature available for the top-down cracking model. Therefore,

estimating the range for each coefficient to be used in optimization was difficult.

The model has numerous coefficients with coefficient values ranging from 0.011 to

64271618. This makes the optimization challenging to converge.

judgment and the solver function. Four coefficients from the crack initiation function (kL2, kL3,

kL4, kKL5) and two from the crack propagation function (C1, C2) have been calibrated. No

sampling method was used for this calibration.
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Figure A-7 Predicted vs. measured top-down cracking (No sampling)
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Figure A-7 shows the predicted vs. measured top-down cracking, and Figure A-8 shows the
predicted and measured top-down cracking with time. The predicted and measured top-down
cracking does not follow similar trends. Most top-down cracking predictions are limited to a
specific time series curve. Table A-9 summarizes model parameters. The SEE and bias are
improved. The reliability of the top-down cracking model is estimated by developing a
relationship between the standard deviation of the measured cracking, and the mean predicted

cracking. Table A-10 outlines the standard error equations for the global and calibrated model.
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Figure A-8 Measured and predicted top-down-cracking (time series)

Table A-9 Calibration results for top-down cracking

Parameters Global model Local model
SEE 6.37 5.59
Bias -2.36 1.60
KLz 0.2855 0.90
KLz 0.011 0.09
Kua 0.01488 0.101
Kis 3.266 3.260

C1 2.5219 0.30
C 0.8069 1.155

Table A-10 Reliability equation for top-down cracking

Pavement-ME model Global model equation Local model equation

Top-down cracking Se(rop—down) = 0.3657 X TOP + 3.6563 | S(rop-down) = 0.6417 X TOP + 0.5014
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THERMAL CRACKING MODEL

The thermal cracking model was calibrated for Level 1 inputs in the Pavement-ME. The model
calibration only considered sections with Performance Grade (PG) binder type. The thermal
cracking model was calibrated as a single K-value by running Pavement-ME multiple times.
Although calibration coefficient K is a function of mean annual air temperature (MAAT), it was
calibrated as a single value similar to the previous version of Pavement-ME (version 2.3). For
this purpose, the Pavement-ME was run at different K values (0.25,0.65,0.75,0.85, 0.95 and
1.35). SEE and bias were determined for each value of K. Table A-11 summarizes the SEE and
bias for the global model and different K values. Based on the SEE and bias, a value of 0.85 is
recommended. Recalibration improved the SEE and bias, but thermal cracking predictions still
show high variability. Figure A-9 shows the predicted vs. measured thermal cracking for the
global and local models at K=0.85. As previously explained in Chapter 3, measured thermal
cracking values have been capped at 2112 feet/mile. This means any measured value of more

than 2112 feet/mile for sections has been removed from the calibration data.
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Figure A-9 Predicted vs. measured thermal cracking (at K=0.85)

2500 3000

Table A-11 Thermal cracking calibration results

Parameter SEE Bias
Global model 1225 -812
K=0.25 650 272
K =0.65 760 172
K=0.75 813 106
K =0.85 851 20
K=0.95 893 -71
K=1.35 1077 -471
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The standard error equations were developed using the standard deviation of the measured
cracking and mean predicted cracking, as explained in Chapter 4. Table A-12 summarizes the

standard error equations for the global and locally calibrated models.

Table A-12 Reliability summary for thermal cracking

Pavement-ME model Global model equation Local model equation

Thermal cracking s, = 0.14(TC) + 168 s, = 0.1223(TC) + 400.9

RUTTING MODEL (METHOD 1)

No Sampling

Pavement-ME predictions for individual layer rutting were matched against measured rutting
determined by using the transverse profile analysis results, as discussed in Chapter 4. Figures A-
10 to A-12 show the predicted vs. measured rutting for AC, base, and subgrade layers,
respectively. The Pavement-ME under-predicts AC rutting and over-predicts base and subgrade
rutting. Table A-13 shows the SEE and bias, whereas Table A-14 shows the calibrated

coefficients. Both SEE and bias significantly improved for all layers.
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Figure A-10 Predicted vs. measured AC rutting (No sampling)
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Table A-13 Rutting models SEE and bias

Layer _Global model _ _ Local model _
SEE (in.) Bias (in.) SEE (in.) Bias (in.)
HMA rut 0.2579 0.2015 0.0812 -0.0138
Base rut 0.0426 0.0380 0.0099 -0.0011
Subgrade 0.1184 0.1095 0.0062 -0.0009

Table A-14 Rutting model calibration coefficients

Calibration coefficient Global model Local model
HMA rutting (brl) 0.4 0.1466
Base rutting (bsl) 1.0000 0.3003
Subgrade rutting (bsgl) 1.0000 0.0691
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Split Sampling

Split sampling was performed on 70% of the sections for the calibration set and 30% for the

validation set. Figures A-13 to A-15 show the predicted vs. measured for calibration and

validation set for different layers. All layers show reasonable validation results.
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Table A-15 shows the SEE, bias, and model parameters for the global model, and Table A-16

shows the same for the calibration-validation set. Both SEE and bias significantly improved for

0.08 0.1

all layers.

Table A-15 Rutting global model results
Layer SEE Bias Coefficient
HMA rut 0.2454 0.1759 0.4
Base rut 0.0872 -0.0138 1.0000
Subgrade 0.1153 0.1071 1.0000

Table A-16 Rutting local model results
Laver Calibration set Validation set

Y SEE Bias Coefficient SEE Bias Coefficient

HMA rut 0.0962 -0.0165 0.0705 0.1008 -0.0117 0.0705
Base rut 0.0102 -0.0012 0.2955 0.0092 -0.0018 0.2955
Subgrade 0.0061 -0.0008 0.0705 0.0064 -0.0007 0.0705

Repeated Split Sampling

Repeated split sampling was performed for 1000 split samples with new calibration and
validation sets. Figures A-16 to A-18 show the distribution of model parameters for calibration
and validation set for different layers. Tables A-17 to A-19 show the SEE, bias, model

parameters, CI for the global model, and the calibration and validation sets, respectively. The

rutting model significantly improved after local calibration.
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Figure A-18 Distribution of calibration parameters - Subgrade rutting (Repeated split sampling)

Table A-17 Global model results (repeated split sampling)

Layer Average SEE LosvilrECI SEE Upper CI | Average bias (in.) | Bias Lower CI | Bias Upper CI
HMA 0.2387 0.2097 0.2540 0.1743 0.1617 0.1853
Base 0.0426 0.0409 0.0440 0.0380 0.0367 0.0394
Subgrade 0.1185 0.1150 0.1216 0.1095 0.1064 0.1126
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Table A-18 Local model calibration results (repeated split sampling)

Statistics HMA rutting | Base rutting | Subgrade rutting
Average SEE 0.0966 0.0099 0.0062
SEE Lower CI 0.0856 0.0094 0.0059
SEE Upper CI 0.1021 0.0103 0.0064
Average bias (in.) -0.0162 -0.0011 -0.0009
Bias Lower CI -0.0169 -0.0013 -0.0009
Bias Upper ClI -0.0135 -0.0009 -0.0008
Average calibration coefficient 0.1757 0.3003 0.0693
Calibration coefficient Lower CI 0.1689 0.2897 0.0663
Calibration coefficient Upper ClI 0.1852 0.3115 0.0723

Table A-19 Local model validation results (repeated split sampling)

Statistics HMA rutting | Base rutting | Subgrade rutting
Average SEE 0.0971 0.0100 0.0062
SEE Lower ClI 0.0725 0.0084 0.0053
SEE Upper CI 0.1358 0.0119 0.0071
Average bias (in.) -0.0153 -0.0011 -0.0009
Bias Lower CI -0.0434 -0.0041 -0.0027
Bias Upper CI 0.0174 0.0017 0.0009
Average calibration coefficient 0.1757 0.3003 0.0693
Calibration coefficient Lower CI 0.1689 0.2897 0.0663
Calibration coefficient Upper ClI 0.1852 0.3115 0.0723

Bootstrapping

Bootstrapping was performed with 1000 bootstrap samples with replacement. Figures A-19 to A-

21 show the distribution of model parameters for AC, base, and subgrade rutting. Tables A-20

and A-21 summarize the calibration results for the global and local models. Model parameter

distribution and CI provide a more reliable estimate of model coefficients. Moreover, SEE and

bias significantly improved for all layers.
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Figure A-19 Distribution of calibration parameters - AC rutting (Bootstrapping)
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Figure A-20 Distribution of calibration parameters - Base rutting (Bootstrapping)
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Figure A-21 Distribution of calibration parameters-Subgrade rutting (Bootstrapping)

Table A-20 Global rutting model summary (Bootstrapping)

Layer type Average SEE Losvilrz cl UpSpErECI Average bias (in.) LOE\/I:rS cl Up%learSCI
HMA 0.2565 0.2174 0.3047 0.2010 0.1796 0.2238
Base 0.0425 0.0396 0.0456 0.0380 0.0355 0.0408
Subgrade 0.1183 0.1117 0.1251 0.1094 0.1032 0.1159
Table A-21 Local rutting model summary (Bootstrapping)

Statistics HMA rutting Base rutting Subgrade rutting
Average SEE 0.0805 0.0099 0.0061
SEE Lower CI 0.0677 0.0091 0.0057
SEE Upper CI 0.0953 0.0108 0.0066
Average bias (in.) -0.0131 -0.0011 -0.0009
Bias Lower CI -0.0145 -0.0015 -0.0010
Bias Upper CI -0.0087 -0.0007 -0.0007
Average calibration coefficient 0.1476 0.3009 0.0696
Calibration coefficient Lower CI 0.1363 0.2803 0.0639
Calibration coefficient Upper CI 0.1616 0.3228 0.0760

Summary

Results for Method 1 are summarized in Table A-22. All calibration approaches have improved

the SEE and bias. Bootstrap shows the lowest SEE and bias for all layers.
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Table A-22 Rutting model calibration results summary

Sampling Technique Pavement layer rutting SEE Bias Calibration coefficient
HMA 0.0812 -0.0138 0.1466
No sampling Base 0.0099 -0.0011 0.3003
Subgrade 0.0062 -0.0009 0.0691
HMA 0.0962 -0.0165 0.0705
Split sampling Base 0.0102 -0.0012 0.2955
Subgrade 0.0061 -0.0008 0.0705
HMA 0.0971 -0.0153 0.1757
Repeated split sampling | Base 0.0099 -0.0011 0.3003
Subgrade 0.0062 -0.0009 0.0693
HMA 0.080 -0.013 0.148
Bootstrapping Base 0.010 -0.001 0.301
Subgrade 0.006 -0.001 0.070
JOINT FAULTING MODEL

The calibration of the faulting model was performed using the CAT tool. No sampling technique

was used for the calibration. In the first step, the most sensitive coefficients, C, and Cs, were

simultaneously calibrated. In the next step, C: and Cs were kept at the calibrated value, and C»

was calibrated. All other coefficients (Cs, C4, Cs, C7, and Cg) were kept at the global values. It

should be noted that the measured faulting was cut to 0.4 inches, as mentioned in Chapter 3.

Figure A-22 shows the predicted vs. measured joint faulting for the global and local models.

Figure A-23 shows the measured and predicted joint faulting with time. In Figure A-23, the

predicted faulting is in the same range as measured faulting except for high values for measured

faulting.
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Figure A-22 Calibration results for joint faulting
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Figure A-23 Measured and predicted joint faulting (time series)
Table A-23 summarizes local calibration and the corresponding model parameters. SEE and bias

are significantly improved.

Table A-23 Summary of faulting model calibration

Parameter Global model Local model
SEE 0.06 0.03
Bias 0.01 0.00

C1 0.595 0.8
C 1.636 1.3889
Cs 0.00217 0.00217
Cs 0.00444 0.00444
Cs 250 250
Cs 0.47 0.2
Cs 7.3 7.3
Cs 400 400

The standard error equations were estimated, establishing a relationship between the standard
deviation of the measured faulting and mean predicted faulting, as explained in Chapter 4. Table

A-24 summarizes standard error equations for the faulting model.

Table A-24 Faulting model reliability

Pavement-ME model Global model equation Local model equation
Joint faulting Se(rauiry = 0.07162(Fault)®3%® + 0.00806 Se(Fautty = 0.0902(Fault)®2038
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