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ABSTRACT 

The mechanistic empirical pavement design guide (MEPDG) is a state-of-the-art design 

approach that incorporates material properties, traffic, and climate to estimate the incremental 

damage using mechanical responses of the pavement. The cumulative damage is used to predict 

the field distress using empirical transfer functions. The Pavement-ME transfer functions have 

been nationally calibrated using long-term pavement performance (LTPP) pavement sections and 

other experimental test section data such as MnRoad. These nationally calibrated models may 

not represent the construction practices, materials, and climatic conditions of a particular 

state/region. Studies have calibrated the Pavement-ME transfer functions using the least squares 

method. Least squares is a widely used simplistic method based on the normal independent and 

identically distributed (NIID) assumption. Literature shows that these assumptions may not apply 

to non-normal distributions. This study introduces a new methodology for calibrating the 

bottom-up cracking, total rutting, and international roughness index (IRI) models in new flexible 

pavements and the transverse cracking and IRI models in new rigid pavements using Maximum 

Likelihood Estimation (MLE). The approach in this study includes MLE using synthetic and 

observed data, and the results are compared with those of the least squares approach. The MLE 

and least squares methods were also combined with resampling techniques to improve the 

robustness of calibration coefficients. The data are analyzed from the Michigan Department of 

Transportation's (MDOT) Pavement Management System (PMS) database to obtain the 

pavement sections and observed performance data for calibration.  

 Despite several calibration efforts, limited research is available on the impact of 

calibration on pavement design. The calibrated models using the least squares method were then 

used for pavement design to estimate the calibration effects and compare them with AASHTO93 

designs. Based on the newly calibrated coefficients, 44 new flexible and 44 rigid sections were 

designed. This study also identifies the controlling distresses for pavement design.  

It is often not viable to calibrate all coefficients at the same time. Therefore, it is crucial 

to identify the most sensitive transfer function coefficients. Moreover, the sensitivity also 

indicates the impact of each coefficient on the performance prediction. Typically, the sensitivity 

is obtained using a normalized sensitivity index (NSI). This study estimated the sensitivity of the 

Pavement-ME transfer function coefficients using scaled sensitivity coefficients (SSCs).  



 

 

The results show that MLE outperformed the least squares method for non-normally distributed 

data, such as transverse cracking and bottom-up cracking models for synthetic and observed 

data. Using the calibrated models for pavement design showed that, on average, the surface 

thicknesses using locally calibrated coefficients were thinner by 0.22 and 0.44 inches for flexible 

and rigid pavements, respectively. Critical design distresses for flexible pavements include 

bottom-up and thermal cracking. On the other hand, transverse cracking and IRI control the 

designs for rigid sections. The sensitivity of Pavement-ME model coefficients showed that SSCs 

provide a more reliable sensitivity on a range of independent variables rather than a point 

estimate, unlike NSI. Overall, this study helps improve the calibration process for local 

conditions.  
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CHAPTER 1 - INTRODUCTION 

1.1 BACKGROUND 

The AASHTOWare Pavement Mechanistic-Empirical Design (Pavement-ME) is the latest 

American Association of State Highway and Transportation Officials (AASHTO) pavement 

design software edition. It is based on the AASHTO's Mechanistic-Empirical Pavement Design 

Guide (MEPDG). Pavement-ME is a significant shift from the empirical design process 

developed and supported by the AASHTO Interim Guide for Design of Pavement Structures 

(AASHTO 1972) through the AASHTO Guide for Design of Pavement Structures and its 1998 

Supplement (AASHTO 1998) (1). While these earlier AASHTO design guides are based on 

empirically derived performance equations developed using data from the AASHO road test 

conducted in the 1950s, these have been widely popular for pavement design. About 48 agencies 

reported using the AASHTO empirical design guides after their refinements provided by 

AASHTO in 1986 and 1993 (1). Despite the refinements in the material input parameters and the 

design reliability, the previous design guides' empirical nature limits their performance for the 

following reasons (2). 

• The application of the AASHO Road test is limited by its specific geographic location, 

which does not account for the climatic effects of a different location on pavement 

performance. 

• Truck traffic volume has increased significantly since the 1960s, and truck configurations 

have also changed. 

• All test sections were built using a single hot mix asphalt (HMA) mixture for flexible 

pavements and one Portland cement concrete (PCC) mixture for rigid pavements over 

one subgrade soil type.  

Recognizing these limitations, the Joint Task Force on Pavements (JTFP) initiated an effort 

in 1996 to develop the MEPDG using mechanistic pavement design principles. The new 

mechanistic-empirical (M-E) design procedure offers multiple benefits, taking advantage of 

improvements in material characterization, axle load spectra, and climate models to predict the 

pavement's performance. 
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Version 0.7, the research version of the MEPDG software, was first released in July 2004. It was 

revised several times under different projects funded by the National Cooperative Highway 

Research Program (NCHRP). The software's revisions included the release of version 0.8 in 

November 2005, version 0.9 in July 2006, version 1.0 in April 2007, and version 1.1 in 

September 2009. An MEPDG Manual of Practice was published in 2008, aiming to assist 

highway agencies in implementing the M-E design method with version 1.0. It was adopted as an 

interim AASHTO pavement design procedure a year earlier in 2007 (3). Another version of the 

M-E design was released in April 2011 called Design, Analysis, and Rehabilitation for Windows 

(DARWin). DARWin-ME software was later named AASHTOWare Pavement METM once 

AASHTO underwent rebranding in 2013. Currently, the latest version of Pavement-ME software 

is version 2.6.2, and the online version is version 3.0. In addition, a Backcalculation Tool (BcT) 

and Calibration Assistance Tool (CAT) have been developed for use with the Pavement-ME 

software. 

1.2 PROBLEM STATEMENT 

The MEPDG was developed under the NCHRP project 1-37A  (4) to overcome the limitations of 

the AASHTO 1993 method (5). It is an advanced pavement design tool for new and rehabilitated 

pavements. MEPDG incorporates material properties, traffic, and climate to estimate the 

incremental damage using mechanical responses of the pavement. The cumulative damage is 

empirically used to predict the field distress using transfer functions. The transfer functions used 

in the Pavement-ME have been globally calibrated using the Long-term Pavement Performance 

(LTPP) pavement sections (6). Although the globally calibrated models provide fair performance 

predictions for the entire US road network, these may not represent the construction practices, 

materials, and climatic conditions of a particular state/region. Therefore, nationally calibrated 

models may underpredict or overpredict the pavement performance in specific states or regions. 

Recalibration of these models has been recommended for local conditions in the local calibration 

guide (7). The design distresses in the Pavement-ME include transverse cracking (percentage of 

slabs cracked), transverse joint faulting (inches), and international roughness index (IRI in 

inches/mile) for rigid pavements. For flexible pavements, the design distress includes bottom-up 

cracking (percentage), top-down cracking (percentage), rutting (inches), thermal (transverse) 

cracking (feet/mile), reflective cracking (feet/mile), and IRI (inches/mile).  
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Several studies have been performed in Michigan in the recent past to characterize climate, 

traffic, and material properties, as well as to calibrate the performance models to address the 

local conditions, materials, and construction practices in the Pavement-ME procedure  (8-10). 

While all the material properties and calibration of performance models were addressed to 

improve the Pavement-ME local applicability and accuracy, there were still some data gaps, 

specifically for material characterization and pavement construction. Examples of past data gaps 

include clustered traffic data, HMA mix, and binder properties. Gaps in data need to be estimated 

(corresponds to Level 3 for Pavement-ME input levels), which may not be accurate for the 

location; therefore, having the actual values for new projects will likely improve Pavement-ME 

calibration accuracy. Also, a limited number of rigid pavement sections were available for 

previous Michigan calibration efforts; therefore, adding more data from new sections would 

improve the performance model prediction. 

Most calibration studies have used the least squares approach to calibrate the Pavement-

ME transfer functions. Least squares is a widely used simplistic method based on the normal 

independent and identically distributed (NIID) assumption. The NIID assumption states that 

observations in a sample are independent, i.e., the occurrence of one does not influence another. 

Additionally, these observations should have identical probability distributions, i.e., drawn from 

the same underlying population distribution. Furthermore, the assumption implies that the 

observed data and error term follow a normal distribution. Literature shows that the least squares 

method assumptions may not apply to the non-normal distributions. This limits the robustness of 

the least squares method for transverse cracking in rigid pavements and bottom-up cracking in 

flexible pavements, which are usually non-normally distributed. 

The ultimate goal of Pavement-ME calibration is improving pavement designs for local 

conditions. Despite several calibration efforts, limited research is available on the effect of 

calibration on pavement design. Estimating the change in design thicknesses and identifying 

critical distresses using the calibrated models is vital. By understanding which distress types are 

most relevant to a region, agencies can develop mitigation and maintenance strategies leading to 

longer pavement service lives. 

State Highway Agencies (SHAs) often struggle to identify the most critical data 

collection needs since the Pavement-ME requires several design inputs. Several studies have 

conducted sensitivity analyses to determine the most sensitive inputs to the distress prediction 
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models for new and rehabilitated pavements to address this issue. However, limited research is 

available to assess the impact of each calibration coefficient on the predicted pavement distress 

and performance. These studies quantified the sensitivity of coefficients using a sensitivity index 

and a typical range of design inputs. The sensitivity metric adopted to accomplish the sensitivity 

analyses is called the normalized sensitivity index (NSI), defined as the percentage change of 

predicted distress relative to its global prediction caused by a given percentage change in the 

coefficient. While NSI can rank the coefficients based on their level of sensitivity, it does not 

provide information about any potential correlation between them or how accurately these can be 

estimated. Moreover, since the calculation of NSI requires distress data, its magnitude can 

change if the data source is changed; hence, the sensitivity ranking of the coefficients may vary, 

as reported by Dong et al. (11).  

1.3 RESEARCH OBJECTIVES 

The recalibration of the Pavement-ME models is crucial for any SHA implementing M-E design. 

This includes identifying the suitable Pavement-ME inputs, potential projects, and performance 

data. It is also essential to verify the feasibility of the calibrated models for pavement design. The 

main objectives of this study are to (a) calibrate the Pavement-ME models using improved inputs 

(traffic, HMA and climate) and additional data (potential projects and performance data) for new 

flexible and rigid pavements, (b) assess the impact of calibrated models on design thicknesses 

and to identify critical design distresses, (c) apply maximum likelihood estimation (MLE) to 

calibrate and validate the Pavement-ME models and compare the results with the least squares 

method, (d) determine the sensitivity of Pavement-ME calibration coefficients over a continuous 

scale of independent variables using scaled sensitivity coefficients (SSCs) and compare it with 

the traditional NSI approach. 

 These objectives were accomplished using the pavements and the corresponding 

performance data from the MDOT Pavement Management System (PMS) database.  

1.4 DISSERTATION OUTLINE 

This dissertation contains six chapters. Chapter 1 outlines the background of the Pavement-ME, 

the problem statement, and the research objectives. Chapter 2 documents the literature review 

from previous calibration studies, Pavement-ME transfer functions, and calibration approaches. 
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Chapter 3 discusses the input and performance data used for calibration efforts. This includes 

data collection efforts, a summary of the performance, and input data for the selected pavement 

sections for model calibrations. Chapter 4 details the local calibration methods and procedures 

used in this study. This chapter also includes the methodology used for calculating the SSCs. 

Chapter 5 presents the local calibration results for the various performance prediction models, 

including calibration results from the least squares and MLE methods. This chapter also consists 

of the results from assessing the impact of calibration on pavement design and the SSC plots. 

Chapter 6 summarizes this study's conclusions, recommendations, and future scope. Each 

chapter has a summary at the end, which outlines the overall highlights of the chapter.   
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CHAPTER 2 - LITERATURE REVIEW 

The Pavement-ME provides highway agencies with a practical tool for designing new and 

rehabilitated pavements. The analyses in M-E principles use primary pavement responses 

(stresses, strains, and deflections) and incremental damage over time to predict surface distress 

through transfer functions. The reliability of performance prediction models depends on the 

accuracy of the transfer functions, which is achieved through calibration and subsequent 

validation with observed pavement condition data. A satisfactory correlation between measured 

and predicted performance indicators increases the viability, acceptance, and usage of the 

MEPDG procedures for pavement analysis and design procedures. Calibration is a mathematical 

procedure to reduce the difference between predicted and measured distress values. Validation 

refers to a process that evaluates the performance of mathematical models on an independent 

dataset (i.e., data not used for model development). This chapter outlines the literature review of 

calibration approaches, the methodology used in different studies, and the concept of reliability 

for Pavement-ME predictions.  

2.1 IMPLEMENTATION OF PAVEMENT-ME 

The AASHTO93 empirical pavement design method has been popular and used by highway 

agencies for several decades (5). Highway agencies are still using it as their current pavement 

design procedure. The shift from an empirical to a more M-E design method occurred in 2008 

after the publication of the MEPDG practice manual and the release of Pavement-ME software 

(3). The adoption of the Pavement-ME design was further enhanced by publishing the local 

calibration guide to implement nationally calibrated models for local conditions (7). In recent 

years, other supplemental tools like the Calibration Assistance Tool (CAT) and Backcalculation 

Tool (BcT) have helped agencies implement the Pavement-ME design. The adoption of 

Pavement-ME design started soon after its release, with fifteen state highway agencies (SHA) 

implementing it within the first few years (1). The implementation significantly increased 

between 2010 and 2020 and became stagnant due to several challenges. These challenges include 

the unavailability of input data, pavement sections for calibration, and sufficient good-quality 

performance data. Some agencies have returned to using their original design practice (usually 

AASHTO-93) or M-E design in parallel with their original method. As of 2021, nine state 
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agencies are using Pavement-ME as their primary design method for flexible pavements, and 

thirteen are using it for rigid pavements. Further, nine state agencies use Pavement-ME with 

other design methods for flexible pavements, whereas eight use it for rigid pavements (12). 

Figure 2-1 shows the implementation status of the Pavement-ME design for flexible and rigid 

pavements. 

 
(a) Flexible pavements 

 
(b) Rigid pavements 

Figure 2-1 Pavement-ME implementation status (12) 
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2.2 LOCAL CALIBRATION EFFORTS 

Calibration of Pavement-ME models is an optimization problem. Several researchers have 

calibrated these models using different optimization methods. This section summarizes the 

calibration methods and efforts in different states.  

2.2.1 Least Squares Method 

The least squares method is a mathematical technique used to minimize the sum of squared 

differences between observed and predicted values. Calibration of the Pavement-ME transfer 

functions is established by minimizing the bias and standard error between the measured and 

predicted distress. Researchers have used several simplistic and robust approaches leveraging the 

least squares method for calibration. Hall et al. (2011) used the Microsoft Excel solver function 

to calibrate the alligator cracking model for flexible pavements in Arkansas (13). Tarefder and 

Rodriguez-Ruiz (2013) calibrated the rutting, alligator cracking, and longitudinal cracking 

models for flexible pavements in New Mexico. The process involved changing the calibration 

coefficients and rerunning Pavement-ME in an iterative process to obtain minimum mean 

residual error (MRE) and the sum of squared errors (SSE) (14). These calibration efforts have 

become more robust with the development of computational and statistical techniques. Dong et 

al. (2020) calibrated the joint faulting model for rigid pavements in Ontario. This study used 

three different optimization techniques: (1) one at a time using trial and error; (2) Microsoft 

Excel solver function; (3) Levenberg-Marquardt Algorithm (LMA). Results showed that 

calibration using approaches (2) and (3) significantly improved the bias and standard error of 

estimate (SEE) (11). Haider et al. (2020) calibrated the transverse cracking and IRI models for 

rigid pavements in Michigan. This study used resampling methods like bootstrapping and 

repeated split sampling for calibration and validation. The results showed that resampling 

methods provide a more robust calibration than traditional methods, along with confidence 

intervals of the SEE, bias, and transfer function coefficients (9). Tabesh and Sakhaeifar (2021) 

calibrated rutting, IRI, top-down, and bottom-up cracking models in Oklahoma using a narrow-

down iterative approach in Microsoft Excel solver (15). This study showed significant 

improvement in the Pavement-ME predictions and flexible pavement designs. All these studies 

have used the least squares to calibrate these transfer functions using the NIID assumption. 

Although least squares is a popular and simplistic approach, the assumptions may not be valid, 
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especially for non-normally distributed data. Tables 2-1 and 2-2 summarize the calibration 

efforts from different states.  

Table 2-1 Summary of calibration efforts for flexible pavements 

States 
Number of sections 

Pavement-ME models Version Year 
New Rehabilitation 

Arkansas (16) 38 - BU, TD, RUT, TC, V1.1 2014 

Colorado (17) 46 49 BU, RUT, TC, IRI V1.0 2013 

Minnesota (18) 39 BU, RUT, TC V1.0 2009 

Montana (19) 102 RUT, TC V0.9 2007 

New Mexico (14) 19 5 BU, TD, RUT, IRI V1.0 2013 

Ohio (20) 13 - RUT, IRI V1.0 2009 

Oregon (21) - 38 RUT, BU, TD, TC V2.0.19 2019 

South Carolina (22) 14 - RUT, BU, TD V 2.2 2016 

Utah (23) 21 9 RUT V 1.0 2009 

Washington (24) 8 - BU, TD, RUT V 1.0 2009 

Arizona (25) 58 42 BU, TD, RUT, IRI, REF DARWin- ME 2014 

Iowa (26) 35 - BU, TD, RUT, IRI V1.1 2014 

Kansas (27) 28 - TD, RUT, IRI - 2015 

Michigan (28) 163 121 BU, TD, RUT, TC, IRI, REF V2.6 2023 

North Carolina (29) 46 - BU, RUT DARWin- ME 2011 

Texas (30) 18 - RUT - 2009 

Wyoming (31) 86 - BU, RUT V2.2 2015 

Missouri (32) 6 11 BU, TD, RUT, TC, IRI, REF V2.5.5 2020 

Georgia (33) 27 20 BU, RUT, TC - 2014 

Louisiana (34) 71 33 BU, RUT, REF V2.0 2016 

Virginia (35) 53 59 BU, RUT, IRI V2.2.6 2022 

Tennessee (36) - 76 BU, TD, RUT, IRI V2.1 2016 

Oklahoma (15) 65 - BU, TD, RUT, TC, IRI V2.3 2021 
Note: BU = Bottom-up cracking; TD = Top-down cracking; TC = Thermal cracking; RUT = Total rutting; REF = Reflective 

cracking; IRI = International roughness index 

Table 2-2 Summary of calibration efforts for rigid pavements 

States 
Number of sections 

Pavement-ME models Version Year 
New Rehabilitation 

Colorado (17) 25 7 TC, JF, IRI V1.0 2013 

Minnesota (18) 65 TC V1.0 2009 

Ohio (20) 14 - IRI V1.0 2009 

South Carolina (22) 6 - TC V 2.2 2016 

Arizona (25) 48 - TC, JF, IRI - 2014 

Kansas (27) 32 - JF, IRI V1.3 2015 

Michigan (28) 46 11 TC, JF, IRI V2.6 2023 

Wyoming (31) 26 - JF V2.2 2015 

Missouri (32) 33 9 TC, JF, IRI V2.5.5 2020 

Georgia (33) 9 2 TC, JF - 2014 

Louisiana (34) 43 - TC, JF V2.0 2016 

Idaho (37) 40 - TC, JF, IRI V2.5.3 2019 

Virginia (35) 17 - JF, IRI V1.3 2022 

Note: TC = Transverse cracking; JF = Joint faulting; IRI = International roughness index 
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2.2.2 Maximum Likelihood Estimation (MLE) Method 

MLE has been used by several researchers in different fields; limited research is available on the 

use of MLE to calibrate the Pavement-ME transfer functions. Chen et al. (2021) presented a local 

calibration model for predicting punchout distress in continuously reinforced concrete pavement 

(CRCP). This study utilized a Weibull distribution to estimate the number of equivalent single 

axle loads (ESALs) leading to punchout, employing MLE and a Newton method. The model was 

validated using data from the LTPP database, demonstrating its efficacy in describing punchout 

behavior and facilitating predictions for CRCP reliability and rehabilitation planning (38). Haider 

et al. (2023) showed the robustness of MLE for non-normally distributed data using the MDOT 

PMS database. The bias for the transverse cracking model in rigid pavements and the bottom-up 

cracking model in flexible pavements was significantly improved (28).  

MLE stands out as an advantageous and robust method for parameter estimation as it is 

based on a well-defined likelihood function rooted in the underlying probability distribution of 

the data. MLE is computationally efficient, leveraging standard probability distributions, making 

it usable for multi-dimensional and complex models. MLE excels in estimating parameters for 

probabilistic models, and it is especially useful in machine learning (39). Unlike the least squares 

method, MLE shows resilience to outliers as the probability of outliers is very low and offers a 

potential advantage in the bias-variance tradeoff. The bias-variance tradeoff is used in statistical 

modeling and machine learning to balance between capturing the underlying pattern in the data 

(low bias) and resisting sensitivity to fluctuations and noise (high variance). Models with high 

bias oversimplify data, leading to underfitting, while those with high variance overfit and fail to 

generalize the model for new data (40). The bias-variance tradeoff highlights the importance of 

finding the optimal model complexity and employing regularization or ensemble methods to 

strike the right balance. Understanding this tradeoff is crucial for effective model selection and 

evaluation, emphasizing the need for ample high-quality training data to minimize bias and 

variance in overall error. 

Jose (2023) showed the application of MLE in modeling commodity prices and pricing 

financial derivatives. This study highlighted estimating model parameters using various methods, 

with a preference for maximum likelihood when the parametric specification is highly trusted. 

The comparison in the study evaluates different techniques for obtaining maximum likelihood 

estimates in the context of Ornstein-Uhlenbeck mean-reverting models based on observations 
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collected at arbitrary points in time (41). Pan and Fang (2002) discussed MLEs for parameters in 

growth curve models, emphasizing their differences from generalized least squares estimates 

(GLSE). The special case of Rao's simple covariance structure (SCS), where MLEs coincide 

with GLSEs, facilitating analytical and tractable statistical inferences in growth curve models, is 

explored. It also delves into the restricted maximum likelihood (REML) estimate under the 

assumption of the SCS, offering insights into statistical techniques for analyzing growth curve 

models (42). Myung (2003) illustrated using MLE, stressing its fundamental role in statistical 

inference. Moreover, this study emphasized using MLE and its superiority in nonlinear modeling 

with non-normal data (39). Bauke (2007) showed the limitations of using the least squares 

method for estimating power-law distribution exponents due to incompatible assumptions with 

empirical data. It shows the advantages of maximum likelihood estimators, deemed reliable for 

power-law distributions, with asymptotic efficiency (43). Zhang and Callan (2001) addressed the 

information filtering systems based on statistical retrieval models, focusing on optimizing 

dissemination thresholds for document delivery. This study introduced a novel algorithm 

grounded in the maximum likelihood principle to adjust thresholds by explicitly compensating 

for bias in relevant information obtained during filtering. Experiments using Text Retrieval 

Conference (TREC)-8 and TREC-9 filtering track data illustrate the algorithm's effectiveness in 

jointly estimating parameters and improving system performance. The TREC is an annual series 

of workshops evaluating information retrieval systems (44). Rayner and MacGillivray (2002) 

showed the use of numerical maximum likelihood estimation for distributions defined only by 

quantile functions, focusing on the g-and-k and generalized g-and-h distributions. Despite 

increased computing power, this aspect of MLE has received limited attention. This study 

presents and investigates numerical MLE procedures, conducts simulation studies, and 

emphasizes the need for resampling to obtain reliable estimates for quantile-defined distributions 

through maximum likelihood (45). Lio and Liu (2020) performed the regression analysis by 

defining a likelihood function using uncertain measures to represent parameter likelihoods. This 

study employs MLE for uncertain regression models, simultaneously calculating the uncertainty 

distribution of the disturbance term. Numerical examples demonstrate the proposed method, 

emphasizing its applicability to cases with imprecise observations. Future research directions 

include applying uncertain maximum likelihood to parameter estimation in uncertain differential 

equations, time series analysis, and hypothesis testing (46). 
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2.3 PAVEMENT-ME PERFORMANCE MODELS 

The following section presents the formulation of transfer functions for flexible pavement 

models and the local calibration coefficients for different states.   

2.3.1 Performance Models for Flexible Pavements 

2.3.1.1. Fatigue cracking (bottom-up) 

Bottom-up cracking is a load-related distress caused by the repeated axle load. These cracks 

initiate at the bottom of the asphalt concrete (AC) layer and propagate to the surface. The total 

cumulative damage DI can be estimated by summing the cumulative damage that is computed 

using Miner's law (47), as shown in Equation (2-1). 

𝐷𝐼 = ∑(Δ𝐷𝐼)𝑗,𝑚,𝑙,𝑝,𝑇 = ∑(
𝑛

𝑁𝑓−𝐻𝑀𝐴
)
𝑗,𝑚,𝑙,𝑝,𝑇

 (2-1) 

where, 

n = Number of actual axle load applications within a specific time period 

j = Axle load-interval 

m = Axle type (single, tandem, tridem, quad) 

l = Truck type classified in the MEPDG 

p = Month 

T = Median temperature for five temperature quintiles used in MEPDG 

Nf-HMA = Allowable number of axle load applications, which can be computed using Equation (2-

2). 

𝑁𝑓−𝐻𝑀𝐴 = 𝐶 × 𝑘1 × 𝐶𝐻 × 𝛽𝑓1(𝜀𝑡)
−𝑘2𝛽𝑓2(𝐸𝐻𝑀𝐴)

−𝑘3𝛽𝑓3 (2-2) 

where, 

εt = Tensile strain at critical AC locations 

EHMA = Dynamic modulus (E*) of the Hot mix asphalt (HMA), psi 

k1, k2, k3 = Laboratory regression coefficients, and βf1, βf2, βf3 = local or field calibration 

constants 

C = Adjustment factor (laboratory to the field) as shown in Equation (2-3) and Equation (2-4). 

𝐶 = 10𝑀 (2-3) 
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𝑀 = 4.84(
𝑉𝑏𝑒

𝑉𝑎 + 𝑉𝑏𝑒
− 0.69) (2-4) 

where, 

Vbe = Effective binder content by volume, percent 

Va = In-situ air voids in the HMA mixture (%) 

CH = Thickness correction factor for bottom-up cracking as shown in Equation (2-5). 

𝐶𝐻 =
1

0.000398 +
0.003602

1 + 𝑒(11.02−3.49𝐻𝐻𝑀𝐴)

 (2-5) 

where, 

HHMA = AC layer thickness 

Once the cumulative damage is calculated, the bottom-up fatigue cracking (%) can be estimated 

using the transfer function given in Equation (2-6). 

𝐹𝐶Bottom = (
1

60
) (

𝐶4

1 + 𝑒𝐶1𝐶1
∗+𝐶2𝐶2

∗log⁡(𝐷𝐼Bottom ⋅100)
) (2-6) 

where, 

FCBottom = Bottom-up fatigue cracking (in the percentage of area) 

DIBottom = Cumulative damage at the bottom of the AC layer 

C1, C2, C4 = Transfer function coefficients where C2 is a function of thickness for HMA 

thickness between 5 and 12 inches 

C1* and C2* can be determined using Equation (2-7) and Equation (2-8). 

𝐶1
∗ = −2𝐶2

∗ (2-7) 

𝐶2
∗ = −2.40874 − 39.748(1 + 𝐻𝐻𝑀𝐴)

−2.856 (2-8) 

Table 2-3 summarizes the local calibration coefficients for bottom-up cracking model among 

several states. 
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Table 2-3 Local calibration coefficients for bottom-up cracking 

States C1 C2 C4 Standard deviation 

Michigan 0.67 0.56 6000 0.01 +
32.913

1 + 𝑒1.3972−0.9576×log⁡(𝐷)
 

Missouri 0.31 

C2<5”=1.367, C2>12”=2.067, 

C2(5”<hac>12”)=0.867+0.1*

hac 

6000 - 

Georgia 2.2 2.2 6000 1 +
10

1 + 𝑒7.5−6.5×log(𝐷+0.0001)
 

Louisiana 0.892 0.892 6000 - 

Virginia 0.319 0.319 - - 

Tennessee 1.023 0.045 6000 - 

Oklahoma (East 

Region) 
3.26 - 6000 - 

Oklahoma (West 

Region) 
4.12 - 6000 - 

Oklahoma 

(East region) 
3.26 - 6000 - 

Oklahoma 

(West region) 
4.12 - 6000 - 

Alabama 1 4.5 6000 1.1 +
22.9

1 + 𝑒−0.1214−2.0565×log(𝐷+0.0001)
 

North Carolina 0.2437 0.24377 6000 - 

Wyoming 0.4951 1.469 6000 - 

Arkansas 0.688 0.294 6000 - 

Colorado 0.07 2.35 6000 0.01 +
15

1 + 𝑒−1.6673−2.4656×log⁡(𝐷)
 

New Mexico 0.625 0.25 6000 - 

Oregon 0.560 0.225 6000 - 

South Carolina 0.47 0.47 6000 - 

Washington 1.071 1 6000 - 

Pavement-ME v2.6 1.31 

C2<5”=2.1585, 

C2>12”=3.9666, 

C2(5”<hac>12”)=(0.867+0.25

83*hac)*1 

6000 1.13 +
13

1 + 𝑒7.57−15.5×log⁡(𝐷+0.0001)
 

2.3.1.2. Fatigue cracking (top-down) 

Top-down or longitudinal cracking is a load-related distress due to repeated axle load. It appears 

in the form of cracks parallel to the wheel path and starts at the surface of the AC layer.  

Old model: The damage calculation for top-down cracking is the same as bottom-up cracking for 

the old model except for the thickness correction factor and the transfer function, as shown in 

Equation (2-9) and Equation (2-10). 

𝐶𝐻 =
1

0.01 +
12.00

1 + 𝑒(15.676−2.8186𝐻HMA )

 
(2-9) 
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𝐹𝐶Top = 10.56(
𝐶3

1 + 𝑒𝐶1−𝐶2𝐿𝑜𝑔(𝐷𝐼Top )
) (2-10) 

where, 

FCTop = Top-down fatigue cracking (in ft/mile) 

DITop = Cumulative damage at the top of the AC layer 

C1, C2, C3 = Transfer function coefficients  

New model: The new top-down cracking model is based on fracture mechanics concepts (48). It 

is expressed in percentage rather than ft./mile. The model involves crack initiation and 

propagation [based on Paris' law (49)]. Crack initiation is defined as a crack length of 7.5 mm 

(0.3 inches). Equation (2-11) shows the time to crack initiation formulated using regression over 

longitudinal and alligator cracking data from the LTPP database. 

𝑡0 =
K𝐿1

1 + 𝑒K𝐿2×100×(a0/2A0)+K𝐿3×HT+K𝐿4×𝐿𝑇+𝐾𝐿5×log10⁡ AADTT
 (2-11) 

where, 

t0 = Time to crack initiation, days 

HT = Annual number of days above 32oC 

LT = Annual number of days below 0oC 

AADTT = Annual average daily truck traffic (initial year) 

a0/2A0 = Energy parameter 

KL1, KL2, KL3, KL4, KL5= Calibration coefficients for time to crack initiation 

The top-down cracking is expressed in percentage using the transfer function, as shown in 

Equation (2-12). 

𝐿(𝑡) = 𝐿𝑀𝐴𝑋𝑒
−(

𝐶1𝜌
𝑡−𝐶3𝑡0

)
𝐶2𝛽

 (2-12) 

where, 

L(t) = Top-down cracking expressed as total lane area (%)  

LMAX = Maximum area of top-down cracking (%) – a value of 58% is assumed 

t = Analysis month in days 

ρ = Scale parameter for the top-down cracking curve as shown in Equation (2-13). 

𝜌 = 𝛼1 + 𝛼2 ×  Month (2-13) 

β = Shape parameter for the top-down cracking curve as shown in Equation (2-14). 
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𝛽 = 0.7319 × (log10  Month )−1.2801 (2-14) 

where, 

α1⁡and α2 are functions of the climatic zone (wet freeze, wet non-freeze, dry freeze, dry non-

freeze) 

Table 2-4 summarizes the local calibration coefficients of the top-down cracking model. These 

coefficients have been obtained for the old top-down cracking model. 

Table 2-4 Local calibration coefficients for top-down cracking 

States C1 C2 C3 Standard deviation 

Michigan 2.97 1.2 1000 300 +
3000

1 + 𝑒7.5−6.5×log(𝐷𝑏𝑜𝑡𝑡𝑜𝑚+0.0001)
 

Tennessee 6.44 0.27 204.54  

Oklahoma (East Region) 6.6 4.6 723 - 

Oklahoma (West Region) 6.1 4.23 723 - 

Iowa 0.82 1.18 1000 - 

Kansas 4.5 - 36000 - 

Arkansas 3.016 0.216 1000 - 

New Mexico 3 0.3 1000 - 

Oregon 1.453 0.097 1000 - 

South Carolina 0.2 0.1 3.97 - 

Washington 6.42 3.596 1000 - 

Pavement-ME v2.3 7 3.5 1000 - 

2.3.1.3. Transverse (thermal) cracking model 

Thermal cracking is associated with the contraction of the HMA material due to surface 

temperature fluctuations. The temperature variations affect the volume changes of the material. 

Consequently, stress develops due to the continual contraction of the materials and the restrained 

conditions, which causes thermal cracks. Typically, thermal cracking in flexible pavements 

occurs due to the temperature drop experienced by the pavement in cold conditions. A thermal 

crack will initiate when the tensile stresses in the HMA layers become equal to or greater than 

the material's tensile strength. The initial cracks propagate through the HMA layer with more 

thermal cycles. The amount of crack propagation induced by a given thermal cooling cycle is 

predicted using the Paris law of crack propagation. Experimental results indicate that reasonable 

estimates of A and n can be obtained from the indirect tensile creep-compliance and tensile 

strength of the HMA per Equations (2-15 and 2-16).  
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𝛥𝐶 = 𝐴(𝛥𝐾)𝑛 (2-15) 

where, 

C = Change in the crack depth due to a cooling cycle 

K = Change in the stress intensity factor due to a cooling cycle 

A, n = Fracture parameters for the HMA mixture 

 

𝐴 = 𝑘𝑡𝛽𝑡10
[4.389−2.52𝐿𝑜𝑔(𝐸𝐻𝑀𝐴𝜎𝑚𝜂)] (2-16) 

where, 

 
 

= 0.8 [1 +
1

𝑚
] 

kt  = Regression coefficient determined through field calibration 

EHMA  = HMA indirect tensile modulus, psi 

m  = Mixture tensile strength, psi 

m  = The m-value derived from the indirect tensile creep compliance curve measured 

in the laboratory 

βt  = Local or mixture calibration factor 

The stress intensity factor, K, has been incorporated in the Pavement-ME through a simplified 

equation developed from theoretical finite element studies using the model shown in Equation 

(2-17). 

𝐾 = 𝜎𝑡𝑖𝑝(0.45 + 1.99(𝐶𝑜)
0.56) (2-17) 

where, 

tip = Far-field stress from pavement response model at a depth of crack tip, psi 

Co = Current crack length, feet 

Equation (2-18) shows the transfer function for transverse cracking in the Pavement-ME. 

𝑇𝐶 = 𝛽𝑡1𝑁(𝑧) [
1

𝜎𝑑
𝐿𝑜𝑔 (

𝐶𝑑
𝐻𝐻𝑀𝐴

)] (2-18) 

where, 

TC = Observed amount of thermal cracking, ft/500ft 

βt1 = Regression coefficient determined through global calibration (400) 

N[z] = Standard normal distribution evaluated at [z] 

σd = Standard deviation of the log of the depth of cracks in the pavement (0.769), in. 
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Cd = Crack depth, in. 

HHMA = Thickness of HMA layers, in. 

Table 2-5 summarizes the modified local calibration coefficients for the various states. 

Table 2-5 Local calibration coefficients for the thermal cracking model 

States Level 1 Level 2 Level 3 Standard deviation 

Michigan 0.75 - 4 
Level 1 K: 0.4258*THERMAL +210.08 

Level 3 K: 0.7737*THERMAL +622.92 

Missouri 0.61 - - - 

Oklahoma 

(East Region) 
3 x 10-7 × 

MAAT4.0319 – 54 
- - - 

Oklahoma 

(West 

Region) 

3 x 10-7 × 

MAAT4.0319 – 23 
- - - 

Arizona 1.5 0.5 1.5 

Level 1 K: 0.1468*THERMAL +65.027 

Level 2 K: 0.2841*THERMAL +55.462 

Level 3 K: 0.3972*THERMAL +20.422 

Colorado 7.5 - - Level 1 K: 0.1468*THERMAL +65.027 

Minnesota - - 1.85 - 

Montana - - 0.25 - 

Pavement-

ME v2.6 
3 x 10-7  × 

MAAT4.0319 
3 x 10-7  × 

MAAT4.0319 
3 x 10-7  × 

MAAT4.0319 

Level 1 K: 0.14*THERMAL +168 

Level 2 K: 0.14*THERMAL +168 

Level 3 K: 0.14*THERMAL +168 

2.3.1.4. Rutting model 

Due to axle loads, rutting is the total accumulated plastic strain in different pavement layers (AC, 

base/sub-base, and subgrade). It is calculated by summing up the plastic strains at the mid-depth 

of individual layers accumulated for each time increment. Equation (2-19) shows the permanent 

plastic strain for the AC layer. 

Δ𝑝(𝐻𝑀𝐴) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 = 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10
𝑘1𝑟𝑇𝑘2𝑟𝛽2𝑟𝑁𝑘3𝑟𝛽3𝑟 (2-19) 

where,  

Δp(HMA) = Permanent plastic deformation in the AC layer 

εp(HMA) = Accumulated permanent or plastic axial strain in the AC layer/sublayer 

εr(HMA) = Resilient or elastic strain calculated by the structural response model at the mid-depth of 

each AC sublayer 

h(HMA) = Thickness of the AC layer/sublayer 

N = Number of axle load repetitions 

T =Pavement temperature 
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kz = Depth confinement factor  

k1r, k2r, k3r = Global field calibration parameters 

β1r, β2r, β3r, = Local or mixture field calibration constants 

The permanent plastic strain can be expressed for the unbound layers, as shown in Equation (2-

20). 

Δ𝑝(𝑠𝑜𝑖𝑙) = 𝛽𝑠1𝑘𝑠1𝜀𝑣ℎ𝑠𝑜𝑖𝑙 (
𝜀𝑜
𝜀𝑟
) 𝑒−(

𝜌
𝑛
)
𝛽

 (2-20) 

where, 

Δp(Soil) = Permanent plastic deformation for the unbound layer/sublayer 

εo = Intercept determined from laboratory repeated load permanent deformation tests 

n = Number of axle load applications 

εr = Resilient strain imposed in laboratory tests to obtain material properties εo, β, and ρ 

εv = Average vertical resilient or elastic strain in the layer/sublayer and calculated by the 

structural response model 

hsoil = Unbound layer thickness 

ks1 = Global calibration coefficients (different for granular and fine-grained material) 

βs1 = Local calibration constant for rutting in the unbound layers (base or subgrade) 

The total rutting is calculated based on Equation (2-21) below: 

Rut Depth
Total

 =𝛥𝐻𝑀𝐴 + 𝛥𝐵𝑎𝑠𝑒/𝑠𝑢𝑏𝑏𝑎𝑠𝑒 + 𝛥𝑆𝑢𝑏𝑔𝑟𝑎𝑑𝑒 (2-21) 

Table 2-6 presents the local calibration coefficients for different states. 

2.3.1.5. IRI model (flexible pavements) 

IRI is a measure of ride quality provided by a pavement surface and affects vehicle operation 

cost, safety, and driver comfort. The IRI model is based on findings from multiple studies 

showing that IRI at any age is a function of the initial construction ride quality and the 

development of different distresses over time that impact ride quality. IRI can be formulated 

using the initial IRI and distresses (fatigue cracking, transverse cracking, and rutting), as shown 

in Equation (2-22). 
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Table 2-6 Local calibration coefficients for the rutting model 

States β1r β2r β3r βgb βsg Standard deviation 

Michigan 0.945 1.3 0.7 0.0985 0.0367 

HMA: 0.1126*RUT0.2352 

BASE: 0.1145*RUT0.3907 

SG: 3.6118*RUT1.0951 

Missouri 0.899 - - 1.0798 0.9779 - 

Georgia - - - 0.5 0.3 HMA: 0.20*RUT0.55+0.001 

Louisiana 0.80 - 0.85 - 0.40 - 

Virginia 0.664 - - 0.151 0.151 - 

Tennessee  

(Plain area) 
0.111 - - 0.196 0.722 - 

Tennessee (Mountain 

area) 
0.177 - - 1.034 0.159 - 

Oklahoma (East 

Region) 
0.79 0.53 1.48 0.15 1.29 - 

Oklahoma (West 

Region) 
0.21 0.74 1.03 0.23 1.03 - 

Arizona 0.69 1 1 0.14 0.37 

HMA: 0.0999*RUT0.174 + 0.001 

BASE:0.05*RUT0.115 + 0.001 

SG: 0.05*RU0.085 + 0.001 

Iowa - 1.15 - 0.001 0.001 - 

Kansas 0.9 - - - 0.3251 - 

North Carolina 0.947 0.862 1.354 0.53767 1.5 - 

Texas 2.39 - 0.856 - 0.5 - 

Wyoming - - - 0.4 0.4 - 

Arkansas 1.20 1 0.8 1 0.5 - 

Colorado 1.34 1 1 0.4 0.84  

Montana 1.07 - - 0.01 0.437 - 

New Mexico 1.1 1.1 0.8 0.8 1.1 - 

Ohio 0.51 - - 0.32 0.33 - 

Oregon 1.48 1.0 0.9 0 0 - 

South Carolina 0.240 1 1 2.979 0.393 - 

Utah 0.560 1 1 0.604 0.400 - 

Washington 1.05 1.109 1.1 - 0 - 

Pavement-ME v2.6 0.4 0.52 1.36 1 1 

HMA: 0.24*RUT0.8026+0.001 

BASE: 0.1477*RUT0.6711+0.001 

SG: 0.1235*RUT0.5012+0.001 

 

𝐼𝑅𝐼 = 𝐼𝑅𝐼𝑜 + 𝐶1(𝑅𝐷) + 𝐶2(𝐹𝐶Total ) + 𝐶3(𝑇𝐶) + 𝐶4(𝑆𝐹) (2-22) 

where, 

IRIo = Initial IRI at construction  

FCTotal = Percent area of fatigue cracking (bottom-up), fatigue cracking (top-down), and 

reflection cracking in the wheel path  

TC = Length of transverse cracking (including the reflection of transverse cracks in existing AC 

pavements) 

RD = Average rut depth; C1, C2, C3, C4 = Calibration coefficients 
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SF = site factor, which can be expressed as shown in Equation (2-23) to Equation (2-25). 

𝑆𝐹 = ( Frost +  Swell ) × 𝐴𝑔𝑒1.5 (2-23) 

Frost = Ln⁡[( Rain + 1) × (𝐹𝐼 + 1) × 𝑃4] (2-24) 

Swell = Ln⁡[( Rain + 1) × (𝑃𝐼 + 1) × 𝑃200] (2-25) 

where, 

SF = Site factor 

Age = Pavement age (years) 

FI = Freezing index 

PI = Subgrade soil plasticity index 

Rain = Mean annual rainfall  

P4 = Percent subgrade material passing No. 4 sieve 

P200 = Percent subgrade material passing No. 200 sieve. 

Table 2-7 presents the calibrated IRI coefficients in different states. Table 2-8 summarizes the 

distress thresholds for flexible pavements used in various states. 

Table 2-7 Local calibration coefficients for the IRI model 

States C1 C2 C3 C4 

Michigan 50.3720 0.4102 0.0066 0.0068 

Missouri 58.9 0.3 0.0072 0.0129 

Virginia - - - 0.0392 

Oklahoma (East Region) 5.23 0.127 0.013 0.0128 

Oklahoma (West Region) 6.46 0.187 0.0098 0.023 

Arizona 1.2281 0.1175 0.008 0.0280 

Kansas 95 0.04 0.001 - 

Colorado 35 0.3 0.02 0.019 

New Mexico - - - 0.015 

Ohio 17.6 1.37 0.01 0.066 

Pavement-ME v2.6 40 0.4 0.008 0.015 
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Table 2-8 Summary of design thresholds for flexible pavements 

States 
Bottom-up 

cracking (%) 

Top-down 

cracking (ft/mile) 

Total 

rutting 

Thermal 

cracking 
IRI 

Michigan 20 - 0.5 1000 172 

Missouri 10 - 0.50 1000 172 

Louisiana 15 - 0.4 500 160 

Virginia 10 - 0.4 500 160 

Tennessee 10 2000 0.4 500 160 

Oklahoma 20 - 0.4 630 169 

Arizona 20 - 0.4 630 169 

Kansas 20 - 0.4 630 169 

Colorado 10 2000 0.4 1500 160 

2.3.2 Performance Models for Rigid Pavements 

2.3.2.1. Transverse cracking model  

Transverse slab cracking in the Pavement-ME is calculated as the percentage of slabs cracked, 

including all severity levels. The mechanism involves independently predicting the bottom-up 

and top-down cracking and utilizing a probabilistic relationship to combine both, eliminating the 

possibility of both co-occurring. The fatigue damage for both bottom-up and top-down is defined 

using Miner's law as given in Equation (2-26): 

𝐷𝐼𝐹 = ∑
𝑛𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜

𝑁𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜
 (2-26) 

where,  

DIF = Total fatigue damage (bottom-up or top-down) 

ni,j,k,l,m,n,o = Actual load applications applied at age i, month j, axle type k, load level l, the 

equivalent temperature difference between top and bottom PCC surfaces m, traffic offset path n, 

and hourly truck traffic fraction o 

Ni,j,k,l,m,n,o = Allowable number of load applications applied at age i, month j, axle type k, load 

level l, the equivalent temperature difference between top and bottom PCC surfaces m, traffic 

offset path n, and hourly truck traffic fraction o 

The allowable number of load applications is a function of PCC strength and applied stress and is 

calculated based on Equation (2-27): 

log⁡(𝑁𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜) = 𝐶1 ⋅ (
𝑀𝑅𝑖

𝜎𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜
)

𝐶2

 (2-27) 

where, 



 

23 

 

MRi = Modulus of rupture of the PCC slab at the age i 

σi,j,k,l,m,n = Applied stress at the age i, month j, axle type k, load level l, the equivalent temperature 

difference between top and bottom PCC surface m, traffic offset path n, and hourly truck traffic 

fraction o 

C1, C2 = Fatigue life calibration coefficients 

The fraction of slabs cracked is predicted using Equation (2-28) for both bottom-up and top-

down cracking: 

𝐶𝑅𝐾 =
1

1 + 𝐶4(𝐷𝐼𝐹)
𝐶5

 (2-28) 

where,  

CRK = Predicted fraction of bottom-up or top-down cracking 

Once the bottom-up and top-down cracking is estimated, the percentage of slabs cracked is 

calculated using Equation (2-29). 

𝑇𝐶𝑅𝐴𝐶𝐾 = (𝐶𝑅𝐾Bottom-up + 𝐶𝑅𝐾Top-down − 𝐶𝑅𝐾Bottom-up ⋅ 𝐶𝑅𝐾Top-down ) ⋅ 100 (2-29) 

where,  

TCRACK = Total transverse cracking (percentage of slabs cracked with all severities) 

CRKBottom-up = Predicted fraction of bottom-up transverse cracking 

CRKTop-down = Predicted fraction of top-down transverse cracking 

Table 2-9 summarizes the transverse cracking model local calibration coefficients in different 

states. 

Table 2-9 Local calibration coefficients for the rigid transverse cracking model 

States C1 C2 C4 C5 Standard deviation 

Michigan - - 0.23 -1.80 1.34*CRK0.6593 

Louisiana 2.75 - 1.16 -1.73 - 

Idaho 2.366 1.22 0.52 -2.17 - 

Arizona - - 0.19 -2.067 - 

Minnesota - - 0.9 -2.64 - 

South Carolina 1.25 1.22 - - - 

Pavement-ME v2.6 2 1.22 0.52 -2.17 3.5522*CRK0.3415+0.75 

2.3.2.2. Joint faulting model 

The transverse joint faulting is calculated monthly in the Pavement-ME using the material 

properties, climatic conditions, present faulting level, pavement design properties, and axle loads 
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applied. Total faulting is the sum of faulting increments from previous months and is predicted 

using Equations (2-30) to (2-33) below. 

 Fault𝑚 =∑ 

𝑚

𝑖=1

ΔFault𝑖 (2-30) 

𝛥 Fault𝑖 = 𝐶34 × ( FAULTMAX𝑖−1 −  Fault𝑖−1)
2 ×  DE𝑖 (2-31) 

𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋𝑖 = 𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 + 𝐶7 ×∑  

𝑚

𝑗=1

𝐷𝐸𝑗 × log⁡(1 + 𝐶5 × 5.0𝐸𝑅𝑂𝐷)𝐶6 (2-32) 

FAULTMAX X0 = C12 × δcurling × [log⁡(1 + C5 × 5.0EROD) × log⁡ (
P200 ×  WetDays 

Ps
)]

C6

 (2-33) 

where,  

Faultm = Mean joint faulting at the end of month m 

ΔFaulti = Incremental change (monthly) in mean transverse joint faulting during the month i 

FAULTMAXi = Maximum mean transverse joint faulting for the month i 

FAULTMAX0 = Initial maximum mean transverse joint faulting 

EROD = Erodibility factor for base/subbase 

DEi = Differential deformation energy of subgrade deformation accumulated during the month i  

δcurling = Maximum mean monthly slab corner upward PCC deflection due to temperature curling 

and moisture warping., PS = Overburden pressure on the subgrade, P200 = Percent subgrade soil 

material passing No. 200 sieve 

WetDays = Average annual number of wet days (greater than 0.1 in rainfall) 

C1,2,3,4,5,6,7,12,34 = Calibration coefficients 

C12 and C34 are defined by Equation (2-34) and Equation (2-35): 

C12 = C1 + C2 × 𝐹𝑅0.25 (2-34) 

C34 = C3 + C4 × 𝐹𝑅0.25 (2-35) 

FR = Base freezing index defined as the percentage of time (in hours) the top base temperature 

is below freezing (32 °F) temperature to the total number of hours in design life 

Damage in a doweled joint for the current month is estimated using Equation (2-36). 

Δ𝐷𝑂𝑊𝐷𝐴𝑀𝑡𝑜𝑡 =∑ 

𝑁

𝑗=1

𝐶8 × 𝐹𝑗
𝑛𝑗

106𝑑𝑓𝑐
∗ (2-36) 
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where,  

ΔDOWDAMtot = Cumulative dowel damage for the current month 

nj = Number of axle load applications for the current increment and load group j for the current 

month 

N = Number of load categories 

fc* = Estimated PCC compressive stress  

d = Dowel diameter 

C8 = Calibration constant 

Fj = Effective dowel shear force induced by axle loading of load category j 

The faulting model local calibration results for several states are summarized in Table 2-10. 

Table 2-10 Local calibration coefficients for the faulting model 

States C1 C2 C3 C4 C5 C6 C7 C8 Standard deviation 

Wyoming 0.5104 0.00838 0.00147 0.08345 5999 0.504 5.9293 - 0.0831*FAULT0.3426+0.00521 

Georgia 0.595 1.636 0.00217 0.00444 - 0.47 7.3 - 0.07162*FAULT0.368+0.00806 

Louisiana 1.5276 - 0.00262 - - 0.55 - - - 

Idaho 0.516 - - - -  - - - 

Arizona 0.0355 0.1147 0.00436 1.1E-07 20000 2.0389 0.1890 400 0.037*FAULT0.6532+0.001 

Kansas - - 0.00164 - - 0.15 0.01 - - 

Michigan 0.4 - - - - - - - 0.0442*FAULT0.2698 

Wyoming 0.5104 0.00838 0.00147 0.08345 5999 0.504 5.9293 - 0.0831*FAULT0.3426+0.00521 

Pavement-

ME v2.6 
0.595 1.636 0.00217 0.00444 250 0.47 7.3 400 0.07162*FAULT0.368+0.00806 

2.3.2.3. IRI model (rigid pavements) 

IRI in the Pavement-ME is a linear relationship between the IRI at construction and change in 

other distresses (transverse cracking, joint faulting, and joint spalling) over time. As a linear 

relationship of these factors, IRI can be expressed by Equation (2-37).  

𝐼𝑅𝐼 = 𝐼𝑅𝐼𝐼 + 𝐶1 × 𝐶𝑅𝐾 + 𝐶2 × 𝑆𝑃𝐴𝐿𝐿 + 𝐶3 × 𝑇𝐹𝐴𝑈𝐿𝑇 + 𝐶4 × 𝑆𝐹 (2-37) 

where,  

IRI = Predicted IRI 

IRII = Initial IRI at the time of construction 

CRK = Percent slabs with transverse cracking (all severities). 

SPALL = Percentage of joints with spalling (medium and high severities). 

TFAULT = Total joint faulting cumulated per mi 

C1, C2, C3, C4 = Calibration coefficients 

SF = Site factor, which can be calculated as shown in Equation (2-38) 
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𝑆𝐹 = 𝐴𝐺𝐸(1 + 0.5556 × 𝐹𝐼)(1 + 𝑃200) × 10−6 (2-38) 

where,  

AGE = Pavement age  

FI = Freezing index, °F-days. 

P200 = Percent subgrade material passing No. 200 sieve. 

The joint faulting and transverse cracking for IRI calculation are obtained using previously 

described models. The joint spalling is calculated as shown in Equation (2-39) 

𝑆𝑃𝐴𝐿𝐿 = [
𝐴𝐺𝐸

𝐴𝐺𝐸 + 0.01
] [

100

1 + 1.005(−12 × 𝐴𝐺𝐸 + 𝑆𝐶𝐹)
] (2-39) 

where,  

SPALL = percentage joints spalled (medium- and high-severities)  

AGE = pavement age since construction  

SCF = scaling factor based on site-, design-, and climate-related variables, which is estimated as 

given in Equation (2-40) 

𝑆𝐶𝐹 = −1400 + 350 × 𝐴𝐶𝑃𝐶𝐶 × (0.5 + 𝑃𝑅𝐸𝐹𝑂𝑅𝑀) + 3.4𝑓𝑐
′0.4 − 0.2( FTcycles ×𝐴𝐺𝐸)

+43ℎ𝑃𝐶𝐶 − 536𝑊𝐶𝑃𝐶𝐶
 (2-40) 

where, 

ACPCC = PCC air content  

AGE = Time since construction  

PREFORM = 1 if preformed sealant is present; 0 if not  

f'c = PCC compressive strength 

FTcycles = Average annual number of freeze-thaw cycles  

hPCC = PCC slab thickness; WCPCC = PCC water/cement ratio 

The flexible pavement IRI local calibration coefficients for various states are summarized in 

Table 2-11. Table 2-12 shows threshold values used for different distresses in various states.  
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Table 2-11 Local calibration coefficients for rigid IRI model 

States C1 C2 C3 C4 

Michigan 1.198 3.570 1.4929 25.24 

Georgia 1.05 0.5417 1.85 33.8 

Idaho 0.845 0.4417 1.4929 28.24 

Virginia 9.55 172.55 - - 

Arizona 0.60 3.48 1.22 45.20 

Iowa 0.04 0.04 0.07 1.17 

Kansas - - 9.38 70 

Ohio 0.820 3.7 1.711 5.703 

Pavement-ME v2.6 0.8203 0.4417 1.4929 25.24 

Table 2-12 Summary of design thresholds for rigid pavements 

States Transverse cracking (%) Joint faulting (in) IRI (in/mile) 

Michigan 15 0.125 172 

Missouri - - 172 

Louisiana 10 0.15 160 

Idaho 10 0.15 169 

Virginia 10 0.15 160 

Arizona 10 0.15 169 

Kansas 10 0.15 169 

Colorado 10 0.15 160 

Minnesota 15 0.12 - 

2.4 LOCAL CALIBRATION PROCESS 

As mentioned, the Pavement-ME uses performance prediction models that are nationally 

calibrated based on pavement material properties, structure, climate, truck loading conditions, 

and data from the LTPP program (50). However, these models may not accurately predict 

pavement performance if the input properties and data used for calibration do not reflect the 

state's unique conditions. Therefore, it is recommended that each SHA evaluates how well the 

nationally calibrated models predict field performance. If the predictions are unsatisfactory, local 

calibration of the Pavement-ME models is recommended to improve the pavement performance 

predictions that reflect the state's specific field conditions and design practices. The local 

calibration process confirms that the prediction models can accurately predict pavement distress 

and smoothness and determines the standard error associated with the prediction equations. This 

section summarizes the local calibration process per the local calibration guide, 2010 (7) and 

MEPDG, 2015 (51).  
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Step 1: Selection of input levels 

The hierarchical input level must be selected before local calibration. This depends on the 

availability of inputs in the local database and the agency's laboratory and field-testing 

capabilities. The selection of input levels is a critical step as it impacts the standard error of 

prediction.  

Step 2: Develop an experimental plan and sampling strategy 

The agency needs to develop a statistically sound and practical experimental plan and sampling 

template for this step. The sampling strategy should consider the local construction, design, and 

rehabilitation practices.  The design matrix should include a wide range of traffic, materials, and 

climatic inputs.  

Step 3: Assess the adequate sample size for each distress 

A reasonable number of sections should be selected for calibration. The minimum sample size 

for any distress can be estimated using Equation (2-41). 

𝑛 = (
𝑍𝛼/2 × 𝜎

𝑒𝑡
)
2

 (2-41) 

where, 

Zα/2 = z-value from a standard normal distribution 

n = Minimum number of pavement sections 

σ = Performance threshold 

et = Tolerable bias = Zα/2 × SEE 

SEE = Standard error of the estimate 

Step 4: Selection of pavement sections 

This step involves selecting the pavement sections to populate the experimental matrix 

developed in Step 2. Selection should include local construction practices, sections with and 

without overlay, pavements with non-conventional materials, and replicates. To incorporate any 

time-dependent effects, a minimum of three measured distress data should be available over ten 

years. In case of section inadequacy, LTPP sections can be added to enhance the database. 

Step 5: Get Pavement-ME inputs and measured distress data  

The Pavement-ME inputs and the measured distress data must be extracted from the local agency 

database based on the hierarchical input level determined in Step 1. The performance data must 

be converted to the Pavement-ME compatible units if the agency measurements are different. 
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The average maximum distress from the selected sections should exceed 50% of the threshold 

design criteria to incorporate considerable distress in the calibration process. Any outliers in the 

performance data should be reviewed, considering the maintenance activities or changes in 

agency policies. Further field investigation can be conducted to resolve any discrepancies.  

Step 6: Conduct field and forensic investigation 

This step aims to collect any missing data and investigate any discrepancies in the input data 

available in the local database. The testing protocol to be followed should be in accordance with 

the agency's practices. At the end of this step, the agency should ensure that a reasonable number 

of samples remain in the experimental matrix. 

Step 7: Validation of global model coefficients to local conditions 

For this step, the global coefficients are used to predict each performance measure for all 

sections included in the experimental matrix. A reliability of 50% should be used for this step. 

The predicted values are compared with the measured ones to calculate the bias and SEE. A plot 

of predicted versus measured values is created for each distress to visualize the accuracy of 

predictions to a line of equality (LOE). For a good fit, the points should lie along the LOE. The 

measured distress yMeasured and predicted distress xPredicted can be modeled as a linear model as 

shown in Equation (2-42) where m is the slope, and bo is the intercept.  

𝑦Measured = 𝑏𝑜 +𝑚 × 𝑥Predicted  (2-42) 

Three hypothesis tests are conducted to evaluate the reasonableness of the global model. If any 

of these hypotheses fail, the models are recalibrated for local conditions: 

• There is no systematic bias between the measured and predicted distress [Equation (2-

43)]. This can be tested using a paired t-test. 

𝐻0: ∑(𝑦Measured − 𝑥Predicted ) = 0 (2-43) 

• The slope parameter m is 1, and the intercept parameter bo is zero [Equations (2-44) and 

(2-45)].  

𝐻0:𝑚 = 1.0 (2-44) 

𝐻𝑜: 𝑏𝑜 = 0 (2-45) 

Step 8: Eliminate the local bias for Pavement-ME models 

This step should eliminate the local bias by systematically changing the model coefficients. The 

approach should be based on the overall bias, SEE between the predicted and measured values, 
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and the causes associated with them. The calibration coefficients should be incorporated into the 

calibration process if they depend on material property, site factor, or design features. Table 2-13 

summarizes the calibration coefficients affecting the bias and standard error. 

Table 2-13 Calibration coefficients eliminating standard error and bias (1) 

Pavement Type Distress Eliminate Bias Reduce Standard Error 

Flexible 

Total rut depth 𝑘1𝑟, 𝛽1𝑟, 𝛽𝑠1 𝑘2𝑟, 𝑘3𝑟, 𝛽2𝑟, 𝛽3𝑟 

Fatigue bottom-up cracking 𝑘1, 𝐶2 𝑘2, 𝑘3, 𝐶1 

Fatigue top-down cracking 𝑘1, 𝐶2 𝑘2, 𝑘3, 𝐶1 

Thermal cracking 𝛽𝑓3, 𝑘𝑓3 𝛽𝑓3, 𝑘𝑓3 

IRI 𝐶4 𝐶2, 𝐶3, 𝐶4 

Rigid 

Faulting 𝐶1 𝐶1 

Transverse cracking 𝐶1, 𝐶4 𝐶2, 𝐶5 

IRI - JPCP 𝐽4 𝐽1 

Step 9: Estimate the standard error of the estimate 

After the bias has been eliminated, the SEE is computed between the measured and predicted 

distress. This SEE must be compared with the global SEE. Table 2-14 shows the recommended 

value for SEE and bias for different models. 

Table 2-14 Recommended values for tolerable bias and SEE (28)  

Pavement Type Distress/performance parameter Bias SEE 

Flexible 

Fatigue cracking (% total lane area) 1.5 5 

Rutting (inches) 0.075 0.2 

Thermal cracking (ft/mile) Thermal 

Reflection cracking 

200 650 

IRI (inch/mile) 20 65 

Rigid 

Transverse cracking (% slabs cracked) 4 15 

Faulting (inch) 0.02 0.07 

IRI (inch/mile) 20 65 

 

If the SEE is lower than recommended, the calibration coefficients can be accepted and used for 

design. The hypothesis tests given in step 7 must be validated before accepting the coefficients. 

If the SEE exceeds the global value, the agency can still accept the coefficients or move to step 

10 to eliminate the standard error. 

Step 10: Eliminate standard error of estimate (SEE) 

If the standard error of the estimate calculated in step 9 is higher than the recommended global 

value, it should be eliminated in the local calibration process. The standard error should be 

estimated for each category of the experimental matrix to identify the effects of any input 
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parameter on the overall standard error. The coefficients resulting in the minimum standard error 

can be used for design purposes. 

Step 11: Assessment of the calibration process 

After the above ten steps have been performed to establish the local calibration coefficients, they 

should be examined for reasonableness within each category of the experimental matrix and at 

different reliability levels.   

2.5 CONCEPT OF RELIABILITY 

The Pavement-ME estimates the performance of a pavement using mechanistic models and 

transfer functions. Although these estimates are rational for pavement design purposes, the actual 

field measurements may show variability. This variability may come from the uncertainties in 

estimating the future traffic, material, and construction variability, measurement error, 

uncertainties due to the use of level 2 and 3 inputs, and errors associated with the model 

predictions. To incorporate all these variabilities, Pavement-ME uses a reliability-based design. 

Reliability for any prediction can be defined as the probability of getting a prediction lower than 

the threshold prediction over the design life, as shown in Equation (2-46). 

Reliability = P[distress⁡at⁡the⁡end⁡of⁡design⁡life < Critical⁡distress] (2-46) 

If 100 sections have been designed at 90% reliability, on average, ten of them may fail before the 

end of design life. Design reliability levels may vary by distress type and IRI or may remain 

constant for each. It is recommended that the same reliability be used for all performance 

indicators (51). Except for IRI, reliability for all other models is estimated using a relationship 

between the standard deviation of measured distress as the dependent variable and mean 

predicted distress as the independent variable. The basic assumption implies that the error in 

predicting the distress is normally distributed on the upper side of the prediction (not on the 

lower side or near zero values). Figure 2-2 shows an example of IRI prediction at 50% reliability 

(mean prediction), prediction at any desired reliability R, and are associated with the probability 

of failure. For 90 percent design reliability, the dashed curve at reliability R should not cross the 

IRI at the threshold criteria throughout the design analysis period. Failing to do so may lead to a 

failure at the required reliability and indicates that a design modification (such as a pavement 

thickness increase) should be applied.    
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Figure 2-2 Design Reliability Concept for Smoothness (IRI)  

2.6 IMPACT OF CALIBRATION ON PAVEMENT DESIGN 

Several studies have been conducted to calibrate Pavement-ME transfer functions. Despite 

several calibration efforts, limited research is available on the effect of calibration on pavement 

design. Wu et al. (2014) calibrated the Pavement-ME models in Louisiana using Pavement-ME 

V1.3 (52). A total of 19 JPCP projects selected for this study had two base types: PCC over 

HMA and PCC over the unbound base. These 19 JPCP projects were designed using the 

Pavement-ME to estimate the effect on design thicknesses. The results showed that the 

Pavement-ME designs generated thinner PCC thicknesses (about 2 cm or 7%) compared to the 

AASHTO93 method (5). Tran et al. (2017) showed the effect of calibration on pavement design 

using the Missouri Department of Transportation (MoDOT) and Colorado Department of 

Transportation (CDOT) calibration results. One section, each for flexible and rigid pavement, 

was selected from existing MoDOT and CDOT projects. On average, the design thickness from 

local calibration was lower than that from the global model for both flexible and rigid sections 

(53). Mu et al. (2018) reviewed the effect of calibration on new JPCP design for seven states: 

Arizona, Colorado, Iowa, Louisiana, Missouri, Ohio, and Washington. The design thicknesses 

using global and local model coefficients were similar, such that five out of seven states had a 

difference of 13 mm or less. The Pavement-ME designs were thinner than AASHTO93 designs 

for high-traffic volume roads (by 50-70mm), whereas the thicknesses were similar for low-traffic 

volume roads. In rigid pavements, transverse cracking was the controlling distress for most cases 

probability of 

failure ()

reliability

R = (1-)

IRIavg

IRIfailure

IRI0
mean prediction

R = 50 percent

prediction at 

reliability R

probability of 

failure ()

reliability

R = (1-)

IRIavg

IRIfailure

IRI0
mean prediction

R = 50 percent

prediction at 

reliability R



 

33 

 

except for low-volume roads in Montana, where IRI was the critical distress (54). Singh et al. 

(2024) used the calibrated models in Michigan for pavement design to estimate the impact of 

calibration and for comparison with AASHTO93 designs. A total of 44 new flexible and rigid 

sections were designed. A comparison between AASHTO93 and Pavement-ME designs showed 

a reduction in HMA and PCC slab thicknesses for the latter approach. On average, the surface 

thicknesses using locally calibrated coefficients were thinner by 0.22 and 0.44 inches for flexible 

and rigid pavements, respectively. Critical design distresses for flexible pavements were bottom-

up and thermal cracking. On the other hand, transverse cracking and IRI controlled the designs 

for rigid sections (55). 

2.7 SENSITIVITY OF PAVEMENT-ME COEFFICIENTS 

SHAs often struggle to identify the most critical data collection needs since the Pavement-ME 

requires several design inputs. Several studies have conducted sensitivity analyses to determine 

the most sensitive inputs to the distress prediction models for new and rehabilitated pavements to 

address this issue (56-62). However, limited research is available to determine the impact of each 

calibration coefficient on the predicted pavement distress and performance. Kim et al. (2014) 

conducted a sensitivity analysis for all the Pavement-ME models, determining the sensitivity by 

changing coefficients one at a time (26). This study performed the analyses using two in-service 

pavements representing typical Iowa's HMA and JPCP sections. Each calibration coefficient 

varied from its global value by 20% to 50%. For JPCP, the study concluded that the fatigue 

model-related calibration coefficients (C1 and C2) in the transverse cracking model are the most 

sensitive parameters. For the JPCP IRI model, coefficients C1 (related to transverse cracking) 

and C4 (related to site factor) are sensitive. Coefficient C6 is the most sensitive for the faulting 

model. For flexible pavements, β2 and β3 are the most sensitive coefficients in fatigue cracking, 

whereas C1 and C2 are the most sensitive for IRI predictions. Dong et al. conducted a sensitivity 

analysis on calibration coefficients for the joint faulting model for JPCP sections in Ontario (12). 

The study also showed that C6 is the most sensitive coefficient, followed by C1 and C2. Both 

these studies quantified the sensitivity of coefficients using a sensitivity index (NSI) and a 

typical range of design inputs.  

Parameter estimation is needed whenever a model is fitted to data to explain a 

phenomenon and is usually considered the same as curve-fitting or optimization. However, both 
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are distinctly different. While the optimization only focuses on minimizing the sum-of-squares or 

any other error criterion considering the parameters unimportant, parameter estimation also 

considers the parameters' errors (63). According to Beck and Arnold, parameter estimation is "a 

discipline that provides tools for the efficient use of data in the estimation of constants that 

appear in mathematical models and for aiding in modeling phenomena" (64).  

Microsoft Excel's Solver® routine is used to estimate the parameters of a linear or 

nonlinear model but without computing the parameter errors, thus making it acceptable only for 

curve-fitting (63). However, according to Geeraerd et al., Solver® can accomplish parameter 

estimation if the sensitivity matrix is formulated and matrix multiplication is employed to 

compute the parameter errors (65). As per Dolan, the sensitivity matrix or Jacobian (J) is a 

matrix of the first derivatives of the model for each parameter and has the dimensions of n-by-p, 

where n and p are the numbers of data points and parameters, respectively (66). Thus, it is 

essential to know if any or all the parameters in a model are accurate and estimable, i.e., if they 

are statistically significant, they do not contain zero in the parameter confidence interval (CI). 

Hence, reporting the CI of any estimated parameter is equally important as the parameter errors. 

Parameter identifiability depends on the scaled sensitivity coefficients (SSCs) and the 

minimization of the objective function (63). The SSCs can help determine whether a parameter is 

estimable and inform about its accuracy in terms of relative error. Several studies have used 

SSCs in various applications (other than pavements) to estimate the sensitivity of a parameter on 

a continuous scale of the independent variable (63, 66, 67). 

The SSCs for the parameters are desired to be significant (the maximum value of SSC should be 

at least 10% of the largest value of the dependent variable) compared to the model η and 

uncorrelated with each other (63). The larger the SSC is for a parameter, the greater it will affect 

the model and the easier it will be to estimate. Moreover, the parameter with the largest SSC will 

also be the most accurate. However, suppose any of the SSCs are correlated, i.e., the ratio of 

SSCs of any two parameters is a constant (one is a linear function of the other); those parameters 

cannot be estimated together (only one can be calculated at a time) as the model η will respond 

to either of them identically. SSCs help assess a parameter's sensitivity on a continuous scale of 

the independent variable, highlight collinearity between coefficients, if any, and inform about the 

accuracy of the parameters, thus enhancing confidence in the parameter estimates. More 

importantly, determining SSC is a forward problem and does not require data, unlike NSI, which 
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requires the Pavement-ME design inputs (material, traffic, and climate). Overall, using SSC 

enhances confidence in the parameter estimates, leading to more reliable and informed decision-

making in the analysis without data. 

2.8 CHAPTER SUMMARY 

This chapter summarized the calibration approaches, efforts, and transfer function coefficients 

from different states. Most states used the least squares method to calibrate the Pavement-ME 

coefficients. Least squares is a simplistic and popular approach based on the NIID assumption. 

These assumptions may not hold good for non-normally distributed data. Studies in different 

engineering fields have highlighted the advantages and applicability of the MLE method. This 

chapter also outlines the transfer functions for different flexible and rigid pavement models. A 

step-by-step approach for local calibration is described per the local calibration guide.  

Pavement-ME uses a reliability-based design. The concept of reliability and its application in 

Pavement-ME design is explained. Several states have calibrated the Pavement-ME models to 

implement M-E design for local conditions. Despite several calibration efforts, the impact of 

calibration on pavement design has not been extensively evaluated. This chapter includes a 

literature review of studies that assessed the effect of calibration on pavement design. This 

consists of determining the design thicknesses and critical distress for pavement design. This 

chapter also includes a review of the sensitivity analysis of transfer function coefficients using 

the traditional NSI approach and describes the applicability of the SSC approach for sensitivity 

calculation. SSC has been widely used in different fields for parameter estimation and sensitivity 

calculations.   
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CHAPTER 3 - DATA FOR CALIBRATION 

3.1 INTRODUCTION 

This chapter discusses the inputs and performance data used for the local calibration process.  

A crucial step in local calibration involves choosing enough pavement sections that accurately 

represent the prevailing conditions in the area. The next step is to gather the necessary data for 

each of the selected pavement sections, including information on the pavement performance, 

maintenance history, and various Pavement-ME inputs (material, traffic, and climate) that 

directly influence performance predictions. The predictions are then compared to the actual 

performance of the constructed pavement sections. A pavement section refers to a specific 

stretch of road corresponding to a construction project, which may include up to two sections 

(such as different directions on a divided highway) with similar data inputs but varying measured 

pavement performance, traffic, and initial IRI. The accuracy of the predicted pavement 

performance in the Pavement-ME software depends on the information used to describe the in-

service pavement. Thus, several inputs are essential for analyzing a particular pavement in the 

design software, particularly those with significant impacts on the expected performance. This 

chapter outlines the process for selecting pavement sections for local calibration and the steps in 

obtaining the required information for each pavement section. 

First, the measured distresses from the MDOT PMS database were converted to 

Pavement-ME compatible units. Then, the time-series trends of all distress types were evaluated 

to identify potential projects for calibration. Also, these trends were explained, considering any 

significant maintenance activities over time. The information about maintenance activities over 

time will help to model a section in the Pavement-ME, i.e., whether an existing project should be 

considered a reconstruct or rehabilitated overlay project. The Pavement-ME inputs for these 

sections were also reviewed to obtain more updated or higher input levels. It's worth noting that a 

"project" refers to a specific job number in the construction records, while a "section" refers to 

multiple directions in a divided highway within a project. Hence, the number of sections is 

always greater than or equal to the number of projects. The project selection process, Pavement-

ME inputs, and performance data have been summarized in this chapter. 
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3.2 MDOT PMS DATA 

MDOT's Pavement Management System (PMS) and other available construction data sources 

were reviewed to identify the available input levels, units of measured performance data, and 

best possible estimates. The PMS and other sources were assessed to extract the following data:  

a. Performance data were evaluated for their measurement process and units and converted 

to the Pavement-ME compatible units (wherever required). Necessary assumptions were 

made for these conversions. 

b. The construction records, plans, job-mix formula (JMF), and other sources were used to 

identify the pavement cross-sections and material properties during construction. Any 

unavailable data was acquired from MDOT, or MDOT provided test results for the best 

possible estimates.  

c. Traffic data were collected from the construction records and MDOT Transportation Data 

Management System (TDMS). Level 2 data were used for traffic data based on road type, 

number of lanes, and vehicle class 9 traffic percentage. 

d. For Asphalt concrete (AC) mix and binder properties, DYNAMOD software was used, 

which is based on laboratory tests for Michigan mixes. The most common construction 

materials in Michigan were used for base, subbase, and subgrade properties. 

e. For climatic data, the updated NARR files for Michigan have been used (68).   

3.2.1 Pavement Condition Measures Compatibilities 

MDOT provided the PMS data from 1992 to 2019 (sensor data from 1998 to 2019). Biannually, 

MDOT obtains performance data on their pavement network by utilizing distress and laser-based 

measurements (sensors) for a 0.1-mile section. The information gathered on pavement distress in 

MDOT's PMS is categorized by distinct principle distress (PD) codes, where each PD code 

corresponds to a specific distress type (69). This pavement performance data was extracted for 

the selected projects and converted to Pavement-ME compatible units (where needed). In 

addition, MDOT personnel explained the distress calls made for the 2012 – 2017 data were only 

at the sampled locations (about 29.41% of any 0.1-mile segment of each control section). 

Therefore, it was suggested that a 0.2941 division factor be considered for those years of 

measured PMS data.  
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3.2.1.1. Selected distresses 

The MDOT PMS and sensor database were carefully analyzed, and relevant data were extracted 

to obtain the required distress information. The current distress manual of MDOT PMS was used 

to determine all the principle distress (PD) codes corresponding to the predicted distresses in the 

Pavement-ME. The earlier versions of the PMS manual were also reviewed to ensure accurate 

data was extracted for all the years. The necessary steps for PMS data extraction include: 

1. Identify the PDs that correspond to the Pavement-ME predicted distresses 

2. Extract PDs and sensor data for each project 

3. Convert (if necessary) MDOT PDs to the units compatible with the Pavement-ME 

4. Summarize time-series data for each project and each distress type 

Tables 3-1 and 3-2 summarize the identified and extracted pavement distresses and conditions 

for flexible and rigid pavements. This section also presents a detailed discussion of the 

conversion process for both flexible and rigid pavements. 

Table 3-1 Flexible pavement distress measurement by MDOT  

Flexible pavement distress 
MDOT principle 

distresses (PDs) 
MDOT units 

Pavement-ME 

units 

Conversion 

needed? 

IRI Directly measured in/mile in/mile No 

Top-down cracking 
204, 205, 724, 725, 

501 
miles % area Yes 

Bottom-up cracking 
234, 235, 220, 221, 

730, 731, 501 
miles % area Yes 

Thermal cracking 

101, 103, 104, 114, 

701, 703, 704, 110, 

501 

No. of 

occurrences 
ft/mile Yes 

Rutting Directly measured in in No 

Reflective cracking No specific PD None % area N/A 
Note: Bold numbers represent older PDs that are not currently in use; PD code 501 = No distress 

Table 3-2 Rigid pavement distress measurement by MDOT  

Rigid pavement 

distresses 

MDOT principle 

distresses 
MDOT units 

Pavement-ME  

units 

Conversion 

needed? 

IRI Directly measured in/mile in/mile No 

Faulting Directly measured in in Yes 

Transverse 

cracking 
112, 113, 501 

No. of 

occurrences 
% slabs cracked Yes 

Note: PD code 501 = No distress 
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3.2.1.2. Pavement distress unit conversion for HMA designs 

It should be noted that the Pavement-ME predicted distresses for the local calibration were only 

considered. The corresponding MDOT PDs were determined and compared with distress types 

predicted by the Pavement-ME to verify if any conversions were necessary. MDOT measures 

pavement distresses related to HMA pavements are listed in Table 3-1. PD code 501 corresponds 

to no distress condition and has been used in all distresses except rutting and IRI. The conversion 

process (if necessary) for all distress types is as follows: 

IRI: The IRI measurements in the MDOT sensor database are compatible with those in the 

Pavement-ME. Therefore, no conversion or adjustments were needed, and data could be used 

directly. 

Top-down cracking: Top-down cracking is load-related longitudinal cracking in the wheel path. 

The PDs 204, 205, 724, and 725 were assumed to correspond to the top-down cracking in the 

MDOT PMS database because those may not have developed an interconnected pattern that 

indicates alligator cracking. Those cracks may show an early stage of fatigue cracking, which 

could also be bottom-up. Since estimating such cracking based on the PMS data is difficult, these 

cracks were converted to % area crack and then categorized into bottom-up or top-down cracking 

based on the thicknesses. The PDs are recorded in miles and need conversion to % area. Data 

from the wheel paths were summed into one value and divided by the total project length, as 

shown in Equation (3-1). The lane width was assumed to be 12 ft. The typical wheel path width 

of 3 feet was assumed as recommended by the LTPP distress identification manual (70). 

%⁡𝐴𝐶𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 =⁡
Length⁡of⁡cracking⁡(miles) × width⁡of⁡wheelpaths⁡(feet)

Length⁡of⁡section⁡(miles) × Lane⁡width⁡(feet)
⁡× 100 (3-1) 

Literature shows that the AC thickness determines whether the crack initiates from the bottom or 

the top. Therefore, top-down cracking can be a primary distress based on AC layer thickness. 

The calculated top-down cracking using Equation (3-1) is assigned as either bottom-up or top-

down based on the total AC layer thickness. If the thickness exceeds a certain threshold, the 

cracking is considered top-down cracking; otherwise, it is categorized as bottom-up cracking. 

These thicknesses were obtained by a mechanistic approach using Mechanistic Empirical 

Asphalt Pavement Analysis (MEAPA) software. MEAPA was run for different surface types 

using typical MDOT design inputs, and damage was calculated for the first 12 months for a 
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single axle load of 9000 lb. Threshold thicknesses were determined where the tensile strain at the 

top of the AC layer is higher than at the bottom. Table 3-3 presents the minimum threshold 

thicknesses for top-down cracking for each fix type. 

Table 3-3 Minimum thicknesses for top-down cracking 

Fix type Threshold thickness (in) 

HMA overlay on rubblized concrete 6 

HMA overlay on crushed and shaped HMA 4 

New or reconstruct 5 

 

Bottom-up cracking: Bottom-up cracking is alligator cracking in the wheel path. The PDs 234, 

235, 220, 221, 730, and 731 match this requirement in the MDOT PMS database. The PDs have 

units of miles; however, to make those compatible with the Pavement-ME alligator cracking 

units, conversion to the percent of the total area is needed. This can be achieved by using the 

following Equation (3-2): 

 %𝐴𝐶𝑏𝑜𝑡𝑡𝑜𝑚−𝑢𝑝 =
Length of cracking (miles) × width of wheelpaths (feet)

Length of section (miles) × Lane width (feet)
× 100 (3-2) 

The widths of each wheel path and lane were assumed to be 3 feet and 12 feet, respectively. The 

LTPP distress identification manual recommends a typical wheel path width of 3 feet (70).    

Thermal cracking: Thermal cracking corresponds to transverse cracking in flexible pavements. 

The transverse cracking is recorded as the number of occurrences, but the Pavement-ME predicts 

thermal cracking in feet/mile. To convert transverse cracking into feet/mile, the number of 

occurrences was multiplied by 3 feet for PDs 114 and 701 because these PDs are defined as 

"tears" (short cracks) that are less than half the lane width. For all other PDs, the number of 

occurrences was multiplied by the lane width (12 ft). All transverse crack lengths were summed 

and divided by the project length to get feet/mile, as shown in Equation (3-3).     

 𝑇𝐶 =
∑No.⁡⁡of⁡Occurrences⁡×Lane⁡Width⁡(ft⁡)

Section⁡Length⁡⁡(miles⁡)
  (3-3) 

Thermal cracking predictions in the Pavement-ME are restricted to a maximum value of 2112 

ft/mile due to a minimum crack spacing limit of 30 feet. This means Pavement-ME predictions at 

50% reliability cannot exceed 2112 ft/mile. Due to this limitation and ARA recommendations, a 

2112 ft/mile cutoff was decided where any measured data for a section above 2112 ft/mile was 

not used for calibration. 
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Rutting: This is the total amount of surface rutting all the pavement layers and unbound sub-

layers contribute. The average rutting (left & right wheel paths) was determined for the entire 

project length. No conversion was necessary. It is assumed that the measured rutting corresponds 

to the total surface rutting predicted by the Pavement-ME. 

3.2.1.3. Pavement distress unit conversion for rigid designs 

For rigid sections, transverse cracking requires unit conversion. For all other distresses, MDOT 

records them in the Pavement-ME compatible units. Table 3-2 summarizes the distresses related 

to rigid sections, and the conversion process is discussed below: 

IRI: The IRI in the MDOT sensor database does not need any conversion; the values were used 

directly. 

Faulting: In the Pavement-ME, faulting is predicted as average per joint. MDOT's sensor data 

records the number of faults (FaultNum), average faulting (avgFault), and the maximum faulting 

(FaultMax) for every 0.1-mile segment. The faulting values had some inconsistencies. For the 

years between 2000 and 2011, faulting values are maximum fault callouts only (not average 

values). For 2012 and after, both average and maximum fault values are available. A correlation 

was developed between the maximum and average faulting values using data from 2013 to 2017 

to resolve this issue. These correlations were used to estimate the average faulting from 2000 to 

2011. Table 3-4 shows the regression equations between average and maximum faulting using 

the data from 2013 to 2017. These equations are based on the number of faults. It is important to 

note that ideally, the number of faults cannot be greater than the number of joints, but the 

number of faults in the database has records where they are more than the number of joints. 

These pseudo-fault values might come from cracking, spalling, bridge segments, etc. Therefore, 

the maximum number of fault counts was restricted to 36, and the average faulting to 0.4 inches 

to address this issue. Accordingly, any 0.1-mile section above these restricted faulting values was 

omitted from the calibration data.  
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Table 3-4 Correlation equations based on the number of faults 

FaultNum Equation 

(y is avgFault, x is FaultMax) 

R-squared 

(2013-2017data) From To 

0 1 y=x 1 

2 4 y = 0.3438x + 0.03 0.7189 

5 40 y = 0.2132x + 0.0377 0.6074 

41 ALL y = 0.0936x + 0.0777 0.2476 

 

The average joint faulting is calculated based on the number of faulting in a 0.1-mile section. It 

is assumed that if the number of faults is less or equal to the number of joints, faulting occurs at 

the joints only. In that case, the faulting unit conversion equation is as shown in Equation (3-4). 

If, for any 0.1-mile section, the number of faults is greater than the number of joints, that section 

is removed (cut) from the calibration data, as previously mentioned.  

                                             𝐹𝑎𝑢𝑙𝑡 =
FAULnum⁡×FAULi

Njoints
                                               (3-4) 

where, 

FAULnum = Number of faults in a 0.1 mile 

FAULi =(FAULT_(Avg_Right⁡) ⁡⁡+ ⁡FAULT_(Avg_Left⁡))/2  = Average faulting in a 0.1 mile 

(inches) 

 Njoints is the number of joints in 0.1-mile (528 ft) segments, i.e., Njoints=528/Joint Spacing. 

Transverse cracking: The transverse cracking distress is predicted as the percentage of slabs 

cracked in the Pavement-ME. However, MDOT measures transverse cracking as the number of 

transverse cracks. PDs 112 and 113 correspond to transverse cracking. The estimated transverse 

cracking must be converted to the percent slabs cracked using Equation (3-5).  

 % Slabs Cracked =⁡
∑𝑃𝐷112,113

(
Section Length (miles)×5280𝑓𝑡

Joint Spacing (ft)
)
⁡× 100 (3-5) 

3.2.2 Condition Database for Local Calibration  

Customized databases were created to efficiently analyze the condition of selected Pavement 

Distresses (PDs), which included distress and sensor data for multiple years. These databases 

were compiled using Microsoft Access and allowed for easy extraction of relevant data for 

projects of any length. The PMS condition data from 1992 to 2019 and sensor data from 1998 to 

2019 were included in these databases. MATLAB codes were used to extract performance data 
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for a section of the given length. For divided highways, which can have an increasing and 

decreasing direction to indicate north/south or east/west bounds, both directions were included in 

the time-series data and considered separate sections. In contrast, distress data was collected in 

one direction for undivided highways. 

3.3 PROJECT SELECTION CRITERIA 

For local calibration, selecting in-service pavement sections that represent local pavement 

design, currently used materials, construction practices, and performance is essential. A set of 

project selection criteria was established to identify and choose these representative pavement 

sections. This approach ensured that the selected pavement sections met the required standards 

and could accurately represent Michigan's pavement network. The process for identifying and 

selecting pavement sections consists of the following steps: 

1. Determine the minimum number of pavement sections required for calibration based on 

the statistical requirements. 

2. Identify all available in-service pavement projects. 

3. Extract all pavement distresses (pavement condition data) from the customized database 

for all identified projects in Step 2. 

4. Evaluate the measured performance for all the identified projects. 

5. Identify projects with adequate data, age, trend, and the Pavement-ME inputs available to 

develop a refined list. 

3.3.1 Identify the Minimum Number of Required Pavement Sections 

The MEPDG local calibration guide provides a method to evaluate the minimum number of 

required sections for each distress type. The minimum number of sections was calculated using 

Equation (3-6), and the results are summarized in Table 3-5 for each condition measure. The 

total number of projects available in Table 3-5 are combined projects from the previous 

calibration study (10) and newly selected projects from the current calibration effort.  

𝑛 = (
𝑍𝛼/2 × 𝜎

𝑒𝑡
)
2

 (3-6) 

where; 
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/ 2
Z


 = The z-value from a standard normal distribution 

n = Minimum number of pavement sections 

 = Performance threshold 

et = Tolerable bias 2Z SEE   

SEE  = Standard error of the estimate 

Table 3-5 Minimum number of sections for local calibration 

Performance Model 

Nationally 

calibrated 

SEE 

Z90 Threshold 

N (required 

number of 

sections) 

Number of 

sections 

used 

Total 

number of 

projects 

available  

Flexible Pavements 

Fatigue, bottom-up (%) 5.01 

1.64 

20% 16 78 

163 

 

Fatigue, top-down (ft/mile 

or %) 
583 

2000 

or 20% 
12 133 

Thermal cracking 

(ft/mile)1  
- 1000 - 133 

Rutting (in) 0.107 0.5 22 200 

IRI (in/mile) 18.9 172 83 178 

Rigid Pavements 

Transverse cracking (%) 4.52 

1.64 

15 11 48 
46 

 
Joint faulting (in) 0.033 0.125 14 79 

IRI (in/mile) 22 172 61 48 
Note: Fatigue top-down has been updated in the recent Pavement-ME V2.6. It is expressed in ft/mile for the old model and in % 

for the updated model. 

N= minimum number of samples required for a 90% confidence level 

1. No SEE, threshold, or N was reported for thermal cracking in the literature 

3.3.1 Initial Projects Selection 

The common pavement types in Michigan include: 

1. HMA reconstruct 

2. HMA over crush & shaped existing HMA 

3. HMA over rubblized PCC 

4. JPCP reconstruct 

It is important to note that HMA over crushed and shaped existing HMA and HMA over 

rubblized existing PCC projects were analyzed as new reconstructed pavement. Sections were 

selected for the local calibration based on performance trends and to accommodate a wide range 

of different inputs, including layer thicknesses, traffic, region, etc.  
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MDOT provided a comprehensive database consisting of all the projects constructed in 

Michigan. Initially, all existing projects used in previous calibration efforts were reviewed, and 

additional performance data were extracted where possible. Additional projects were identified 

that can be potential candidates for the current local calibration effort. The PMS data extraction 

was completed for all required distress types in a compatible format with the Pavement-ME 

software. The time series for each pavement section's performance measures was observed to 

finalize the preliminary list of new potential candidate projects. To ensure a robust and 

appropriate set of data, the criteria used to identify additional performance data and the selection 

of new potential pavement projects include: 

• The pavement section must have at least three measured data points over time. There are 

some exceptions to this criterion. Bottom-up cracking has relatively fewer data points; 

some sections with even two points have been included, considering further data points 

will be collected in the future. The same process was followed for transverse cracking in 

rigid sections. As previously explained, joint faulting and thermal cracking have been cut 

at specific values, so these data points are omitted from the calibration database. 

• At least one of the distresses should have an increasing trend. Any section with 

decreasing and no or flat trends over time was excluded from the list. 

• The previous maintenance history was observed for all pavement sections to explain any 

decrease or flat trend in the time series plot. If there were any major rehabilitation or 

reconstruction activities, the measured data from the year traffic opened initially to the 

very last year until the major repair took place are considered. 

• The last recorded point should have a Distress Index (DI) of at least 5 for a section. DI is 

calculated by taking a weighted average of different distress types. DI was observed and 

limited to ensure sufficient distress for calibration and to capture adequate pavement 

performance trends.  

Figures 3-1 and 3-2 illustrate examples of distress progressions for a selected and omitted 

flexible pavement section. The top-down cracking for the initial project selection was evaluated 

in feet/mile and later converted to a percentage. Similarly, Figures 3-3 and 3-4 present examples 

of the selected and omitted rigid pavement sections. The vertical dashed red line is the last 

reported construction, whereas the dotted blue line in the DI plot indicates reported maintenance 

activities. For example, Figure 3-1 shows the vertical dotted blue line in the DI plot that shows a 
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cold mill and resurface (CM&R) treatment was applied in 2012. In the same figure, the effect of 

this rehabilitation event can be noticed with a drop in measured distress in individual distress 

plots. Therefore, in this case, pavement section performance can be considered from 2001 to 

2011. It should be noted that generally, minor maintenance [e.g., crack treatment (CT) or joint 

sealing (JS)] does not affect the time series trend since these minor maintenances represent non-

structural fixes. Note that time series plots for rutting show a consistent drop in the 2012-2013 

collection years, regardless of whether any maintenance is reported. This is likely due to changes 

in the data collection process or vendor differences. 

Based on the criteria mentioned above, a total of 256 flexible sections and 88 rigid 

sections were initially selected. The performance of the chosen pavement sections was compared 

with all sections available in the MDOT database (2081 flexible sections and 442 rigid sections) 

to verify if the chosen sections represent the overall pavements in Michigan. Sections with at 

least three available data points are considered. Each section was categorized as good, fair, or 

poor performing based on the performance trend lines modified to reflect Michigan conditions 

(10). These trend lines are available only for bottom-up cracking, total rutting, and IRI for 

flexible sections, as well as transverse cracking and IRI for rigid sections. The performance 

categories depend on the measured performance trend relative to the reference lines. If the 

measured performance is below the good performance line, it is categorized as a good 

performing section, between the good and poor line, as fair, and above the poor performance 

line, as the poor performing section. The performance category was decided based on a previous 

calibration study (10). When the performance trend passes through more than one category zone, 

the zone with the maximum points is considered the performance category for that section. Also, 

the low-performance category is selected in case of an equal number of points for two different 

categories. Figures 3-5 and 3-6 show example sections for good, fair, and poor categories for IRI 

performance for flexible and rigid sections, respectively.  
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Figure 3-1 Example of selected flexible section 

 

Figure 3-2 Example of an omitted flexible section  
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Figure 3-3 Example of a selected rigid section  

  

Figure 3-4 Example of an omitted rigid section 

 



 

49 

 

A similar method was followed for categorizing sections based on all other distresses. Figures 3-

7 and 3-8 show the distribution of good, fair, and poor sections for rigid and flexible sections 

based on different distress criteria. Figures 3-7 and 3-8 show that the selected sections 

satisfactorily represent MDOT all sections for both flexible and rigid pavements. 

 
(a) Good section 

 
(b) Fair section 

 
(c) Poor section 

Figure 3-5 Categorization of flexible sections based on performance trends  

The initially selected projects were further refined based on performance, availability of inputs, 

and initial IRI. The performance data for these initially selected sections is the average for the 

entire section length. This data is calculated by averaging the performance for every 0.1-mile 

segment in the project length. Data for every 0.1 mile has been reviewed to estimate performance 

data extent and reasonableness. Figures 3-9 to 3-13 show performance data for every 0.1-mile 

segment with years for all flexible sections.  
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(a) Good section 

 
(b) Fair section 

 
(c) Poor section 

Figure 3-6 Categorization of rigid sections based on performance trends 
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(a) Transverse cracking (selected sections) 

 

(b) Transverse cracking (MDOT all sections) 

 

(c) IRI (selected sections) 

 

(d) IRI (MDOT all sections) 

Figure 3-7 Comparison of selected rigid sections with all MDOT sections 
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(a) Bottom-up cracking (selected sections) 

 

(b) Bottom-up cracking (All MDOT sections) 

 

(c) Total rutting (selected sections) 

 

(d) Total rutting (All MDOT sections) 

 

(e) IRI (selected sections) 

 

(f) IRI (All MDOT sections) 

Figure 3-8 Comparison of selected flexible sections with all MDOT sections 
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Figure 3-9 Bottom-up cracking at every 0.1-mile segment for flexible sections 

 

 

Figure 3-10 Top-down cracking at every 0.1-mile segment for flexible sections 
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Figure 3-11 Thermal cracking at every 0.1-mile segment for flexible sections 

 

 

Figure 3-12 Rutting at every 0.1-mile segment for flexible sections 
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Figure 3-13 IRI at every 0.1-mile segment for flexible sections 

Figures 3-14 to 3-16 show the raw performance data for all rigid sections. As previously noted, 

2112 ft/mile and 0.4 inches cutoff values were adopted for thermal cracking and joint faulting, 

respectively. These values were selected based on the raw (0.1-mile segment) data, limitations of 

the Pavement-ME models, and consensus with MDOT. Moreover, sections with Superpave 

mixes are only used to calibrate the thermal cracking model to have consistent Level 1 input in 

the Pavement-ME. 

 

Figure 3-14 Transverse cracking at every 0.1-mile segment for rigid sections 
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Figure 3-15 Joint faulting at every 0.1-mile segment for rigid sections 

 

 

Figure 3-16 IRI at every 0.1-mile segment for rigid sections 

3.4 SELECTED SECTION PERFORMANCE DATA SUMMARY 

The measured performance data was extracted for each project, and the necessary conversions 

were made to ensure compatibility with the Pavement-ME predicted performance, as discussed 

in Section 3.2. The level of distress was assessed in all pavement sections identified for local 
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calibration. The calibration process entails comparing each chosen project's predicted and 

measured performance. To have a robust local calibration, the levels of distress must fall within a 

reasonable range (i.e., above and below threshold limits for each type of distress). Therefore, the 

distress levels for all projects were compiled and analyzed to determine their respective ranges. 

This section summarizes the observed performance for the selected flexible and rigid pavement 

sections. Efforts were undertaken to gather sufficient information to achieve a precise and 

dependable local calibration of the performance models. Due to changes in construction practices 

and/or data availability, most sections are less than 20 years old, so it is expected that most 

sections do not have poor performance or exceed performance thresholds. Furthermore, these 

represent the average values of the Pavement-ME prediction using 50% reliability. When 

designing, a higher reliability factor is applied to account for project variability (including 

climate, traffic, material, and construction), increasing the resulting distress values. Therefore, 

while designs will correlate with the calibration sections, it should not be anticipated that 

pavement designs will exactly match the sections used in calibration because of the increased 

reliability factor. 

3.4.1 Flexible Performance Data 

The magnitude and age distribution for the HMA reconstruct sections (also includes crush and 

shape and HMA over rubblized PCC) are shown in Figures 3-17 to 3-21. The following 

observations were made: 

• Bottom-up cracking: Bottom-up cracking magnitudes are usually low for most sections, 

with only a seven crossing the threshold of 20% with a maximum of almost 40%. The 

maximum age ranges from 4 to 20 years. Most sections fall in the good category, as 

shown in Figure 3-8. 

• Longitudinal/top-down cracking: Top-down cracking is observed more frequently than 

bottom-up cracking. More sections have observed top-down cracking compared to 

bottom-up cracking. The age at maximum distress ranged from 5 to 20 years.  

• Thermal cracking: Higher thermal cracking values are observed, ranging up to 4000 

ft/mile. The design threshold used by MDOT is 1000 ft/mile. The age at which the 

maximum thermal cracking is observed ranges from 5 to 19 years. Sections with 

performance grade (PG) binders have been used for thermal cracking calibration. 
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• Rutting: Selected sections do not exhibit significant rutting. All sections were below the 

threshold of 0.5 inches. The age distribution ranged from 3 to 19 years. Two-thirds of the 

sections are in the fair performance category, as shown in Figure 3-8. 

• IRI: The IRI time series is usually flat, with no sections exceeding the 172 in/mile 

threshold. The maximum observed IRI is 168.5 in/mile. The age at maximum IRI ranged 

from 5 to 20 years. It is worth noting that a cutoff value of the initial IRI less than or 

equal to 77 in/mile is selected to calibrate the IRI model. 74% of sections are in good, 

followed by 25% of sections in fair category. Only 1% of sections showed poor 

performance.  

3.4.2 Rigid Performance Data  

The magnitude and age distribution for the JPCP rehabilitation projects are shown in Figures 3-

22 to 3-24. The following observations can be made from the figures: 

• Transverse cracking: A maximum transverse cracking value of 85% is observed, with 

five sections crossing the distress threshold of 15% slabs cracked. The age distribution 

ranges from 4 to 20 years. About 72% of these sections fall under the fair performance 

category, as shown in Figure 3-7.  

• Transverse joint faulting: Ten sections exceed the joint faulting threshold of 0.125 inches, 

with a maximum value of 0.17 inches. The age distribution ranges from 8 to 20 years. 

These observed values for joint faulting have been cut off at 0.4 inches, where a 0.1-mile 

segment is above 0.4 inches. 

• IRI: A maximum IRI of 167 in/mile was observed. The age at maximum IRI ranges from 

5 to 20 years. It is worth noting that a cutoff value for the initial IRI less than or equal to 

82 in/mile is used to calibrate the IRI model. All sections fall under good and fair 

categories, with none exhibiting poor performance, as shown in Figure 3-7. 
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(a) Time series 

 
(b) Age distribution 

Figure 3-17 Selected flexible sections — Bottom-up cracking 

 

(a) Time series 

 

(b) Age distribution 

Figure 3-18 Selected flexible sections — Top-down cracking 

 

(a) Time series 

 

 (b) Age distribution 

Figure 3-19 Selected flexible sections— Transverse (thermal) cracking 
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(a) Time series 

 
 (b) Age distribution 

Figure 3-20 Selected flexible sections — Total rutting 

 

(a) Time series 

 

 (b) Age distribution 

 Figure 3-21 Selected flexible sections — IRI 

 

(a) Time series 

 

(b) Age distribution 

Figure 3-22 Selected rigid sections — Transverse cracking 
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(a) Time series 

 
(b) Age distribution 

Figure 3-23 Selected rigid sections — Joint faulting 

 

(a) Time series 

 

(b) Age distribution 

Figure 3-24 Selected rigid sections — IRI 

3.5 INPUT DATA EXTENT 

Accurate pavement cross-sectional, traffic, climate, and material input data are essential for 

adequately characterizing as-constructed pavements since the information directly affects 

performance prediction accuracy in the Pavement-ME software. Due to the large number of 

inputs required to characterize a pavement in the Pavement-ME, input data collection can be 

time-consuming. Moreover, many critical input parameters have three input levels within the 

Pavement-ME hierarchical structure. The process of collecting as-constructed input data, 

including the source of the data, how to address missing data, and the selection of input values, is 

discussed in this section. The best available input level was used for the selected pavement 

sections. 
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3.5.1 Pavement Cross-Section 

The pavement cross-sectional information is necessary to characterize the layer thicknesses of 

the various layers. The cross-sectional information is obtained from the construction records. 

Typically, in the case of HMA pavements, the drawings provided the asphalt application rate of 

the HMA layers (dividing the application rate by 110), which was used to determine the HMA 

lift thicknesses in inches. For the sections used in the previous calibration effort (10), the 

Pavement-ME inputs data sheet was used to extract design inputs. MDOT provided the drawings 

(construction plans) for the newly selected sections. The thickness, mix type, traffic, and 

unbound layer information were included in these drawings. A summary of the design 

thicknesses for flexible and rigid selected pavement projects is shown in Tables 3-6 and 3-7. 

Table 3-6 Average flexible pavement thicknesses  

Pavement types 

HMA top 

course thickness 

(in.) 

HMA 

leveling 

course 

thickness 

(in.) 

HMA base 

course 

thickness 

(in.) 

Base 

thickness 

(in.) 

Subbase 

thickness 

(in.) 

Crush and Shape 1.6 1.9 2.0 7.5 20.5 

Freeway 1.6 2.1 4.5 7.1 16.8 

Non-freeway 1.5 2.1 3.2 6.6 16.4 

Rubblized 1.6 2.0 3.0 3.8 11.1 

Statewide Average 1.6 2.0 3.1 5.7 15.0 

Table 3-7 Average rigid pavement thicknesses 

Pavement type 
Average PCC 

thickness (in.) 

Average base 

thickness (in.) 

Average subbase 

thickness (in.) 

JPCP 11.4 6.9 12.1 

3.5.2 Traffic Inputs 

The traffic data is a critical input to the Pavement-ME. Level 2 traffic data was used for all 

sections. MDOT provided a spreadsheet with traffic distribution tables, which was used to 

extract Pavement-ME inputs for traffic. These tables include: 

• Vehicle class distribution 

• Hourly distribution (only for rigid sections) 

• Monthly adjustment factor 

• Number of axles per truck 

• Single axle load spectra 
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• Tandem axle load spectra 

• Tridem axle load spectra 

• Quad axle load spectra 

The inputs (with input categories) required to obtain these tables are summarized in Table 3-8. 

Table 3-8 Traffic input categories  

Inputs Categories 

Percentage of vehicle class 9  

• Less than 45 

• 45 to 70 

• Above 70 

Region type 
• Rural 

• Urban 

COHS type 

• National  

• Regional 

• Statewide 

Number of lanes 

• 2 

• 3 

• 4+ 

The number of lanes was identified from the plans. Wherever the number of lanes was 

unavailable, they were visually estimated utilizing Google Maps coordinates. The COHS 

(Corridors of Highest Significance) type was estimated using each project's PR number and 

beginning and ending milepost. The percentage of class 9 vehicles was estimated for each 

section using the MDOT Transportation Data Management System (TDMS) website from the 

following URL: https://mdot.public.ms2soft.com/tcds/tsearch.asp?loc=mdot. For sections where 

the traffic data was unavailable at the exact location, nearby locations in the same section were 

used. The range and average two-way AADTT values for all flexible and rigid sections are 

summarized in Table 3-9. 

Table 3-9 Ranges of AADTT for all reconstruct projects 

Road Type Min AADTT Max AADTT Average AADTT 

Crush and Shape 60 1986 669 

Rubblized 173 3707 1502 

HMA Reconstruct (Freeway) 313 6745 2076 

HMA Reconstruct (Non-freeway) 63 1600 431 

JPCP Reconstruct 150 18297 7141 

Statewide Average 134 6502 2381 

https://mdot.public.ms2soft.com/tcds/tsearch.asp?loc=mdot
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3.5.3 As-constructed Material Inputs 

The as-constructed material inputs were obtained from the construction records, JMFs, and other 

test records. Ideally, these inputs are to be recorded at the time of construction. These inputs 

range between project-specific and statewide average values. This section details the material 

properties of each pavement structural layer. 

3.5.3.1. HMA layer inputs 

All inputs were collected at the highest hierarchy level; however, the needed data were 

unavailable for all pavement sections. In that case, the data was collected using other 

correlations/sources. Data collection for each HMA layer input is as follows: 

• Dynamic modulus (E*): E* was obtained from the DYNAMOD software developed in a 

previous study (71). E* for the Superpave mixes was directly obtained from the database. 

For older mixes (marshal mixes), the volumetric, binder, and gradation information was 

used to predict the E* using DYNAMOD's Artificial Neural Networks (ANNs). E* was 

obtained at Level 1. 

• Binder (G*): G* was also obtained from the DYNAMOD database using the region and 

binder information. G* was obtained at Level 1. 

• Creep compliance (D(t)): D(t) was obtained from the DYNAMOD database. D(t) was 

obtained at Level 1 for Performance grade (PG) sections and Level 3 for other sections. 

• Indirect tensile strength (IDT): IDT was obtained from the DYNAMOD database at 

Level 2 for Performance grade (PG) sections and Level 3 for other sections. 

• AC layer thickness: These were obtained from construction records. Usually, the 

application rate in lbs/yards2 is available, which can be utilized to obtain the layer 

thickness, as previously mentioned. 

• Air voids and binder content: As constructed air voids and binder content were obtained 

from construction records. Table 3-10 summarizes the average as-constructed air voids 

for different pavement types. Historical test records were utilized for unavailable data to 

obtain an average value based on mix type, as shown in Table 3-12. 

• Aggregate gradation: Gradation was obtained from JMFs. Tables 3-11 summarize the 

average gradation for the top, leveling, and base layers, respectively, for different 
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pavement types. Historical test records were utilized for unavailable data to obtain an 

average value based on mix type, as shown in Table 3-12. 

It is important to note that Level 1 G* and Level 2 IDT data were used to calibrate the thermal 

cracking model.  

Table 3-10 As-constructed percent air voids for HMA layers 

HMA layer Road Type Average as-constructed air voids 

Top course 

Crush and Shape 6.1 

Rubblized 6.8 

HMA Reconstruct Freeway 6.6 

HMA Reconstruct Non-freeway 6.8 

Leveling course 

Crush and Shape 6.2 

Rubblized 6.4 

HMA Reconstruct Freeway 6.7 

HMA Reconstruct Non-freeway 6.7 

Base course 

Crush and Shape 5.8 

Rubblized 5.8 

HMA Reconstruct Freeway 6.4 

HMA Reconstruct Non-freeway 6.8 

Table 3-11 HMA layer average aggregate gradation 

HMA Layer Road type 
Effective AC 

binder content 

Percent passing sieve size 

3/4 3/8 #4 #200 

Top course 

Crush and Shape 11.5 100.0 89.7 68.4 5.2 

Rubblized 11.9 99.4 89.8 67.3 5.9 

HMA Reconstruct (Freeway) 11.2 100.0 92.4 67.4 5.2 

HMA Reconstruct (Non-freeway) 11.1 100.0 94.6 71.4 5.3 

Leveling 

course 

Crush and Shape 10.6 100.0 81.8 61.1 5.0 

Rubblized 11.2 100.0 87.0 67.8 5.2 

HMA Reconstruct (Freeway) 10.1 99.8 81.3 63.3 4.8 

HMA Reconstruct (Non-freeway) 10.2 100.0 82.6 73.4 4.8 

Base course 

Crush and Shape 10.8 99.6 77.9 60.3 4.6 

Rubblized 10.6 99.3 78.9 59.9 4.8 

HMA Reconstruct (Freeway) 9.4 95.8 72.9 51.6 4.9 

HMA Reconstruct (Non-freeway) 9.6 98.9 76.6 57.5 4.9 
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Table 3-12 MDOT recommended values volumetrics and gradation 

Mix type 
Air voids 

(%) 

Effective 

binder 

content (%) 

% Passing 

3/4" Sieve 

% Passing 

3/8" Sieve 

% Passing # 

4Sieve 

% Passing 

#200 Sieve 

3E1 5.8 10.8 99.85 80.44 62.94 4.40 

4E1 6.1 11.5 100.00 87.24 70.43 5.11 

5E1 6 12.6 100.00 97.14 78.23 5.63 

2E3 4.8 9.7 92.65 68.70 53.95 4.40 

3E3 5.8 10.8 99.63 77.88 60.33 4.56 

4E3 6.1 11.5 100.00 86.91 68.66 4.92 

5E3 6 12.6 100.00 97.86 79.81 5.49 

2E10 4.8 9.7 94.55 73.50 59.70 4.50 

3E10 5.8 10.8 99.78 80.27 62.78 4.84 

4E10 6.1 11.5 100.00 87.65 70.06 5.26 

5E10 6 12.6 100.00 98.30 81.27 5.67 

2E30 4.8 9.7 99.00 71.80 60.60 4.20 

3E30 5.8 10.8 99.95 79.20 59.82 4.40 

4E30 6.1 11.5 100.00 88.63 66.90 4.33 

5E30 6 12.6 100.00 99.00 81.24 5.68 

3.5.3.2. PCC material inputs 

The Pavement-ME transverse cracking prediction model is very sensitive to concrete strength 

(compressive or flexural). The PCC material-related inputs were obtained from material testing 

results. If these results were unavailable, typical MDOT values were used.   

PCC strength: 

MDOT collected the concrete core compressive strength (f'c) test data. These tests represent the 

concrete compressive strength close to the construction time for the selected pavement sections. 

These test values were used directly for each corresponding project. If compressive strength is 

unavailable, an average value of 5239 psi was used. This is an average value obtained from the 

sections with available values. The transverse cracking model in the Pavement-ME directly uses 

the modulus of rupture (MOR) to estimate the damage. The MOR values were calculated based 

on the ACI correlation between MOR and f'c (used in the Pavement-ME), as shown by Equation 

(3-7). Figure 3-25 shows the f'c and estimated MOR distributions. It should be noted that these 

cores' specific testing age was unavailable; however, all cores were tested after or at least 28 

days. The Pavement-ME internally calculates the relationship between f'c and MOR.   

 𝑀𝑂𝑅 = 9.5 × √𝑓𝑐
′  (3-7) 
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(a) Compressive strength (f'c) 

 
(b) Modulus of rupture (MOR) 

Figure 3-25 Distribution of concrete strength properties 

Coefficient of thermal expansion: 

The CTE input values were obtained from the MDOT recommended values (72). A value of 4.4 

in/in/°F×10-6 was used for Bay, Grand, North, Southwest, and Superior regions, whereas 5.0 

in/in/°F×10-6 was used for Metro and University regions. 

3.5.3.3. Aggregate base/subbase and subgrade input values 

The aggregate base/subbase and subgrade input values were obtained from the following 

sources: 

• Backcalculation of unbound granular layer moduli (73) 

• Pavement subgrade MR design values for Michigan's seasonal changes (74) 

The resilient modulus (MR) values for the base and subbase material were selected based on the 

results from previous MDOT studies (73, 74). The typical backcalculated values for base and 

subbase MR is 33,000 psi and 20,000 psi, respectively. It is worth noting that crushed and shaped 

and rubblized sections have been modeled as new flexible pavements. The existing layer has 

been modeled as a dense aggregate base with an MR of 125,000 psi for crush and shape and 

70,000 for rubblized sections. These values were assumed to be the same for all projects since in-

situ MR values were unavailable. For base/subbase layers, the software default to "Modify input 

values by temperature/moisture" was selected. The subgrade material type and resilient modulus 

were selected based on the Subgrade MR study (73, 74). The study outlined the location of 

specific soil types and their MR values across the entire State. Annual representative values for 
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subgrade MR were used in Pavement-ME. The recommended design MR value corresponding to 

the soil type is shown in Table 3-13.  

Table 3-13 Average roadbed soil MR values 

Roadbed Type Average MR 

USCS AASHTO 

Laboratory-

determined 

(psi) 

Back-

calculated 

(psi) 

Recommended design MR 

value (psi) 

SM A-2-4, A-4 17,028 24,764 5,200 

SP1 A-1-a, A-3 28,942 27,739 7,000 

SP2 A-1-b, A-3 25,685 25,113 6,500 

SP-SM A-1-b,A-2-4, A-3 21,147 20,400 7,000 

SC-SM A-2-4, A-4 23,258 20,314 5,000 

SC A-2-6, A-6,A-7-6 18,756 21,647 4,400 

CL A-4, A-6, A-7-6 37,225 15,176 4,400 

ML A-4 24,578 15,976 4,400 

SC/CL/ML A-2-6, A-4, A-6, A-7-6 26,853 17,600 4,400 

3.5.4 Climatic Inputs 

The Enhanced Integrated Climatic Model (EICM) in Pavement-ME requires hourly climatic 

data. This data includes air temperature, precipitation, relative humidity, percent sunshine, and 

wind speed. A statistical comparison between Modern-Era Retrospective Analysis for Research 

and Applications (MERRA) and North American Regional Reanalysis (NARR) data was 

performed to identify the most suitable climatic data for calibration. Both MERRA and NARR 

data files used include climatic information for different periods. For that purpose, a common 

temporal overlap of 13 years was identified for which continuous hourly data is available for all 

climatic files from September 2000 to September 2013. The MERRA stations falling in the lake 

region were removed from the database. Moreover, the four closest MERRA stations were 

identified for each NARR station, and the weighted average (proportional to the distance) for all 

four stations based on their distances was used for comparison. A total of 29 NARR stations and 

the four closest corresponding MERRA stations to each have been compared. Table 3-14 shows 

the SEE, bias, and correlation coefficient (R) between MERRA and NARR for hourly, daily, and 

monthly data (75). MDOT has been using default Pavement-ME climate data and ground-based 

climate automated surface observation systems (ASOS) data. This data was reviewed for 
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errors/anomalies and was improved in MDOT's previous study (68). The following observations 

were made based on the comparison and previous study (68, 75): 

• MERRA and NARR climatic data are comparable for air temperature followed by 

humidity and wind speed. Percent sunshine showed a low correlation, and precipitation 

data is significantly different (i.e., a very low correlation) among all climatic inputs.  

• The predicted pavement performance using MERRA-2 and NARR climatic data showed 

good agreement except for thermal cracking in flexible pavement and transverse cracking 

in rigid pavements. These differences are expected mainly because of sunshine data. 

• MERRA has anomalies in humidity data. Several humidity values were erroneously 

higher than 100. 

• MERRA appeared to be incorrectly estimating precipitation. Specifically, the number of 

wet days was extremely high, such that the data review showed wet event days in the data 

on actual dry days. The ground-based stations are more closely aligned with actual wet 

event days. Furthermore, it was unclear why the percent sunshine was significantly 

different. 

Table 3-14 Descriptive statistics for MERRA and NARR data comparison 

Climatic input 
Descriptive 

statistics 

Hourly Daily Monthly 

SEE Bias R SEE Bias R SEE Bias R 

Humidity 

Mean 12.784 4.437 0.764 9.582 4.437 0.705 7.387 4.437 0.538 

Std. Dev. 0.726 2.230 0.035 1.014 2.230 0.055 1.283 2.230 0.145 

COV 5.68% 50.27% 4.60% 10.58% 50.27% 7.86% 17.37% 50.27% 26.96% 

Precipitation 

Mean 0.049 0.002 0.062 0.009 0.002 0.610 0.002 0.002 0.678 

Std. Dev. 0.005 0.000 0.022 0.001 0.000 0.045 0.000 0.000 0.059 

COV 10.85% 15.22% 34.59% 7.90% 15.22% 7.33% 11.21% 15.22% 8.73% 

Sunshine 

Mean 44.614 -1.457 0.411 29.317 -1.457 0.570 11.847 -1.457 0.821 

Std. Dev. 3.908 6.809 0.071 2.777 6.809 0.079 1.788 6.809 0.033 

COV 8.76% -467.39% 17.27% 9.47% -467.39% 13.84% 15.09% -467.39% 4.04% 

Temperature 

Mean 3.924 -0.771 0.982 2.710 -0.771 0.992 1.837 -0.771 0.997 

Std. Dev. 0.548 0.766 0.006 0.436 0.766 0.003 0.428 0.766 0.002 

COV 13.98% -99.43% 0.58% 16.08% -99.43% 0.31% 23.32% -99.43% 0.20% 

Wind speed 

Mean 3.318 -0.165 0.752 2.031 -0.165 0.863 1.470 -0.165 0.848 

Std. Dev. 0.946 1.700 0.100 1.097 1.700 0.105 1.145 1.700 0.145 

COV 28.52% -1029.25% 13.25% 54.00% -1029.25% 12.16% 77.92% -1029.25% 17.10% 

Note: 𝑆𝑆𝐸 = √
∑(𝑀𝐸𝑅𝑅𝐴−𝑁𝐴𝑅𝑅)2

𝑛−2
; 𝐵𝑖𝑎𝑠 =

∑(𝑀𝐸𝑅𝑅𝐴−𝑁𝐴𝑅𝑅)

𝑛
 

In the previous study, additional weather stations were added to improve the climate coverage 

using ASOS and the Michigan Road Weather Information System (RWIS) as potential data 

sources (68). Moreover, additional years of climatic data were added from February 2006 to 

December 2014 to enhance the data. Since the predicted performance did not show significant 

differences and the NARR data was improved for Michigan climate, the improved MDOT 
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NARR climatic files were used for climatic inputs for both flexible and rigid pavements. The 

files were downloaded as *.hcd files, which can be read directly in Pavement-ME. The closest 

weather station to each selected project was used. 

Table 3-15 Michigan climate station information 

HCD filename City/Location Climate identifier Latitude Longitude 

4847 Adrian Adrian Lenawee County Arpt 41.868 -84.079 

94849 Alpena Alpena Co Rgnl Airport 45.072 -83.581 

94889 Ann Arbor Ann Arbor Municipal Arpt 42.224 -83.74 

14815 Battle Creek W K Kellogg Airport 42.308 -85.251 

94871 Benton Harbor Sw Michigan Regional Arpt 42.129 -86.422 

14822 Detroit Detroit City Airport 42.409 -83.01 

94847 Detroit Detroit Metro Wayne Co Apt 42.215 -83.349 

14853 Detroit Willow Run Airport 42.237 -83.526 

14826 Flint Bishop International Arpt 42.967 -83.749 

4854 Gaylord Otsego County Airport 45.013 -84.701 

94860 Grand Rapids Gerald R Ford Intl Airport 42.882 -85.523 

14858 Hancock Houghton County Memo Arpt 47.169 -88.506 

4839 Holland Tulip City Airport 42.746 -86.097 

94814 Houghton Lake Roscommon County Airport 44.368 -84.691 

94893 Iron Mountain/Kingsford Ford Airport 45.818 -88.114 

14833 Jackson Jakson Co-Rynolds Fld Arpt 42.26 -84.459 

94815 Kalamazoo Klmazo/Btl Creek Intl Arpt 42.235 -85.552 

14836 Lansing Capital City Airport 42.78 -84.579 

14840 Muskegon Muskegon County Airport 43.171 -86.237 

14841 Pellston Pton Rgl Ap Of Emmet Co Ap 45.571 -84.796 

94817 Pontiac Oakland Co. Intnl Airport 42.665 -83.418 

14845 Saginaw Mbs International Airport 43.533 -84.08 

14847 Sault Ste Marie Su Ste Mre Muni/Sasn Fl Ap 46.467 -84.367 

14850 Traverse City Cherry Capital Airport 44.741 -85.583 

AMN Alma Gratiot Community Airport 43.322 -84.688 

BAX Bad Axe Huron County Memorial Airport 43.78 -82.985 

CFS Caro Tuscola Area Airport 43.459 -83.445 

ERY Newberry Luce County Airport 46.311 -85.4572 

ESC Escanaba Delta County Airport 45.723 -87.094 

FKS Frankfort Frankfort Dow Memorial Field Airport 44.625 -86.201 

IRS Sturgis Kirsch Municipal Airport 41.813 -85.439 

ISQ Manistique Schoolcraft County Airport 45.975 -86.172 

IWD Ironwood Gogebic Iron County Airport 46.527 -90.131 

LDM Ludington Mason County Airport 43.962 -86.408 

MOP Mount Pleasant Mount Pleasant Municipal Airport 43.622 -84.737 

OSC Oscoda Oscoda Wurtsmith Airport 44.452 -83.394 

PHN Port Huron Saint Clair County Intnl Airport 42.911 -82.529 

RQB Big Rapids Roben Hood Airport 43.723 -85.504 

SAW Gwinn Sawyer International Airport 46.354 -87.39 

 

These files were directly used for rigid sections (since they are default files in the Pavement-

ME), and custom stations were formed using these files for flexible sections. Table 3-15 

summarizes the climatic files used for calibration. 
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3.5.5 Estimation of Initial IRI 

Initial IRI is an essential input for IRI prediction and pavement design. Initial IRI is the IRI value 

right after the construction. It indicates construction and ride quality right after construction. 

Initial IRI is also an essential part of QC/QA testing. Moreover, higher initial IRI values may 

lead to a reduction in pavement service life. The IRI model in the Pavement-ME is linear in 

form, but the measured IRI data may not always be linear. The change in measured IRI with time 

can be linearly increasing or non-linearly increasing, which may follow an irregular or flat trend. 

Also, the initial IRI (if available) can be greater or smaller than the first measured IRI data points 

because of the measurement date. Figure 3-26 shows some examples of measured IRI trends for 

flexible and rigid sections. 

 
(a) Flexible sections 

 
(b) Rigid sections 

Figure 3-26 Examples of measured IRI trends 

A single backcasting approach may not be applicable for all sections due to the difference in 

measured IRI trends for each section. Considering the data limitations and challenges, a 

systematic approach is used to estimate the initial IRI. Five different methods used include: 

1. Selecting the IRI at zeroth year (if available). 

2. Linear backcasting IRI based on the measured data for the first ten years. 

3. Linear backcasting IRI based on the measured data for all available years. 

4. Reducing the first measured IRI (after construction) by 5 inches per mile/year up to the 

zeroth year. 

5. Reducing the first measured IRI (after construction) by 5 inches per mile/year if greater 

than 100; 4 inches per mile/year if between 70 and 100; 3 inches per mile/year if less than 

70 up to a zeroth year. 



 

72 

 

It is important to note that the MDOT specification limit of 70 in/mile and 75 in/mile for flexible 

and rigid pavements are considered. After the initial IRI was obtained using the five methods 

mentioned above, the final initial IRI was selected based on the following criteria: 

1. Use the initial IRI (if available) if it is less than or equal to the specification limit.  

2. If the initial IRI (if available) is greater than the specification limit, use the backcasted IRI 

from other methods, whichever is closest to and lower than the specification limit. 

3. If all five methods provide an initial IRI greater than the specification limit, choose the 

approach with an initial IRI greater than and closest to the specification limit.  

4. Subsequently, review data progression to see if the estimated initial IRI fits all available 

measured data points. 

Figure 3-27 shows example sections with backcasted initial IRI using different methods. Section 

1 has a non-linearly increasing trend, section 2 has an irregular trend, and sections 3 and 4 have 

linear trends with varying slopes. Different backcasting methods provide significantly different 

initial IRI values. For example, section 2 has a maximum difference of more than 20 inches/mile 

among the initial IRI values calculated using various methods. Similar differences can be seen in 

other sections. Moreover, method 3 for section 2 provides an unrealistic initial IRI value, higher 

than the first measured data point, due to the nature of the irregular trend. These plots show a 

need for different backcasting methods for various IRI trends. Figure 3-28 shows a flowchart for 

selecting the initial IRI using the mentioned approach. For certain flexible sections, the final 

selected initial IRI was very low (less than 30 in/mile). In that case, an initial IRI value of 30 

in/mile is assigned. Moreover, the final selected initial IRI was very high for several flexible and 

rigid sections.   
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(a) Section 1 

 
(b) Section 2 

 
(c) Section 3 

 
(d) Section 4 

Figure 3-27 Illustration showing backcasting of initial IRI 

Table 3-16 Recommended thresholds based on initial IRI for flexible sections 
IRI less than or equal to No of sections Mean initial IRI (in/mile) 

85 380 56.1 

82 371 55.4 

80 362 54.8 

78 356 54.4 

75 349 53.9 

70 331 52.9 

67 295 51.0 

65 274 49.7 

Table 3-17 Recommended thresholds based on initial IRI for rigid sections 

IRI less than or equal to No. of sections Mean initial IRI (in/mile) 

85 74 73.7 

82 65 71.6 

80 52 69 
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Table 3-18 Summary of initial IRI thresholds 

Pavement type Fix type Initial IRI threshold (in/mile) 

Flexible 
New 77 

Overlay 82 

Rigid 
New 82 

Overlay 82 

 

 

Figure 3-28 Flowchart for selection of initial IRI 

Therefore, some thresholds were selected to keep reasonable initial IRI values. Any section with 

an initial IRI value higher than the threshold was eliminated from the IRI calibration. Tables 3-

16 and 3-17 show different threshold values for flexible and rigid sections. It is important to note 

that the sections in Tables 3-16 and 3-17 consist of both new and overlay sections, but only new 
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sections have been used in this study. Based on the number of sections available and the average 

IRI for each cap, different threshold limits were selected for flexible and rigid pavements, as 

shown in Table 3-18. Figure 3-29 shows the distribution of initial IRI for the selected flexible 

and rigid sections. The distribution of the initial IRI is acceptable for an optimum IRI model 

calibration.  

 

(a) Flexible sections 

 

(b) Rigid sections 

Figure 3-29 Distribution of initial IRI 
It is essential to verify the accuracy of the proposed methodology. Five sections from flexible 

and one from rigid are taken for this purpose. These sections have the initial IRI data available at 

zero (construction) year. Only one rigid section has initial IRI data available at zero year. 

Methods 2 to 5 are implemented using measured IRI data from age 1 to 20 (excluding zero-year 

data). The comparison between the recommended initial IRI based on the proposed methodology 

and the recorded initial IRI shows a good correlation with an error of less than 8% for all 

sections. Table 3-19 shows the summary of the validation results. 

Table 3-19 Summary of validation results 

Pavement 

type 

Initial IRI backcasting (in/mile) Recommended 

Initial IRI 

(in/mile) 

Recorded 

initial IRI 

(in/mile) 

Error 

(%) 
Method 

2 

Method 

3 

Method 

3 

Method 

4 

Flexible 

40.6 40.6 32.9 36.9 40.6 41.2 1.4 

57.7 57.7 52.7 56.7 57.7 55.5 4.0 

42.6 42.6 40.5 44.5 44.5 45.7 2.6 

35.8 34.2 28.9 32.9 35.8 38.9 8.0 

55.5 50.9 48.4 52.4 55.5 58.4 5.0 

Rigid 70.7 66.6 52.0 56.0 70.7 72.4 2.3 
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3.6 CHAPTER SUMMARY 

This chapter outlines the data used for local calibration, emphasizing the importance of selecting 

representative pavement sections and gathering pertinent data for accurate performance 

predictions. It details the methodology of converting the MDOT PMS data to Pavement-ME 

compatible units, evaluating distress trends, and considering maintenance history. Key distresses 

were identified, and databases were created for efficient data extraction. Project selection criteria 

prioritize sections with adequate data and performance trends. The selected sections were also 

verified against all MDOT sections to validate if these sections are representative of overall 

MDOT performance. Sections were categorized as good, fair, or poor based on measured trends 

relative to reference lines. The results showed that the selected sections represent MDOT 

pavement sections well. A total of 256 flexible and 88 rigid sections were selected. The number 

of projects for each performance type and pavement type has also been summarized. This 

chapter also details each input, source, and possible estimates in case of unavailable data. These 

inputs include the HMA and PCC material inputs, traffic, climate, and estimation of initial IRI. 

Table 3-20 summarizes the inputs and corresponding levels for traffic, climate, and material 

characterization data used for the local calibration. 
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Table 3-20 Summary of input levels and data source 

Input 

Pavement-

ME input 

level 

Data source 

level Input source 

Traffic 

Vehicle class distribution 1 2 

MDOT specified traffic per cluster data 

Hourly distribution 1 2 

Monthly adjustment 

factor 
1 2 

Number of axles per truck 1 2 

Single, tandem, tridem, 

and quad axle load 

distribution 

1 2 

AADTT 1 1 From design drawings  

Vehicle class 9 percentage 1 1 MDOT TDMS website 

Cross-

section 

layers 

(new and 

existing) 

HMA thickness 1 1 
Project-specific HMA thicknesses based 

on design drawings 

PCC thickness 1 1 
Project-specific PCC thicknesses based 

on design drawings 

Base thickness 1 1 
Project specific base thicknesses based 

on design drawings 

Subbase thickness 1 1 
Project-specific subbase thicknesses 

based on design drawings 

Layer 

materials 

HMA 

Mix 

properties 
1 

Mix of 2 

and 3 

MDOT HMA mixture characterization 

study (DYNAMOD database) 

HMA 

mixture 

aggregate 

gradation 

1 1 or 3 

Project-specific mixture gradation data 

obtained from data collection or average 

statewide values 

Binder 

properties 
1 3 

MDOT HMA mixture characterization 

study (DYNAMOD database) 

PCC 

Strength (f'c, 

MOR) 
3 1 or 3 

Project specific testing values or average 

statewide value 

CTE 1 2 MDOT recommended values 

Base/ 

subbase 
MR 3 3 

Recommendations from MDOT 

unbound material study 

Subgrade 

MR 3 3 
Soil-specific MR values per MDOT 

subgrade soil study 

Soil 

properties 

Mix of all 

levels 
3 

Location-based soil type per MDOT 

subgrade soil study 

Climate  1 1 Closest available climate station 

Note:  

Data source Level 1 is project-specific data 

Data source Level 2 inputs are based on regional averages in Michigan 

Data source Level 3 inputs are based on statewide averages in Michigan 
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CHAPTER 4 - METHODOLOGY 

4.1 INTRODUCTION 

Local calibration of the Pavement-ME models aims to optimize the model coefficients by 

minimizing bias and standard error, which is achieved by matching the predicted and measured 

distress. Bias in the predictions signifies if there is a systematic over or under-prediction, 

whereas standard error shows the scatter and variability. Figure 4-1 shows a representation of 

bias and standard error. This chapter highlights each model's calibration methods and 

approaches, the reliability calculation, and the sensitivity analysis of Pavement-ME model 

coefficients. 

 

(a) High bias, high standard error 

 

(b) Low bias, high standard error 

 

(c) High bias, low standard error 

 

(d) Low bias, low standard error 

Figure 4-1 Schematic representation of bias and standard error (10) 
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The details for inputs, performance data, and project selection have already been discussed in 

Chapter 3. Once the data is extracted, it can be used to run the Pavement-ME files (.dgpx files) 

and generate outputs (structural responses). The process for local calibration is summarized 

below: 

(a) Run the Pavement-ME (using global model coefficients) and extract critical responses and 

predicted distresses. 

(b) Compare the predicted distress with measured distress.  

(c) Based on the results from Step 2, test the accuracy of the global models and the need for 

local calibration. 

(d) If predictions using global models are satisfactory, local calibration is not required, and 

global models can be accepted. Local calibration is needed if the global model has 

significant bias and standard error.  

(e) Check your calibration results by validating them on an independent set of sections not 

used for calibration. 

(f) Estimate the reliability equations based on the calibrated model predictions and measured 

distress.  

Before locally calibrating the Pavement-ME models, it is vital to determine the need for 

calibration. This includes testing the accuracy of the global model predictions at a reliability of 

50%, which is the mean prediction. Once the predictions from the global model are obtained, 

they are compared with measured values to calculate bias and standard error. A plot of predicted 

versus measured values is created for each distress to visualize the accuracy of predictions to a 

line of equality (LOE). Testing the global model also includes hypothesis testing. For a good fit, 

the points should lie along the LOE. The measured distress yMeasured and predicted distress 

xPredicted can be modeled as a linear model as shown in Equation (4-1), where m is the slope, and 

bo is the intercept.  

𝑦Measured = 𝑏𝑜 +𝑚 × 𝑥Predicted  (4-1) 

Three hypothesis tests are conducted to evaluate the reasonableness of the global model. If any 

of these hypotheses fail, the models are recalibrated for local conditions: 

• There is no systematic bias between the measured and predicted distress [Equation (4-2)]. 

This can be tested using a paired t-test. 
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𝐻0: ∑(𝑦Measured − 𝑥Predicted ) = 0 (4-2) 

• The slope parameter m is 1 (Equation (4-3)).  

𝐻0:𝑚 = 1.0 (4-3) 

• The intercept parameter bo is zero (Equation (4-4)).  

𝐻𝑜: 𝑏𝑜 = 0 (4-4) 

4.2 CALIBRATION APPROACHES 

The empirical Pavement-ME transfer functions can be of two types: (a) model that directly 

calculates the magnitude of surface distress, and (b) model that calculates the cumulative damage 

index rather than actual distress magnitude.  

Approach 1: For specific models (e.g., fatigue cracking, rutting, transverse cracking, and IRI), 

damage is directly obtained from Pavement-ME outputs. The transfer functions predict distress 

from the damage and have been calibrated using the MATLAB program outside the Pavement-

ME. Different resampling techniques and MLE have been used to calibrate these functions. 

Genetic Algorithm (GA) has been used to optimize transfer function coefficients using 

MATLAB program for this approach. These MATLAB codes are available from the author upon 

request. GA is an evolutionary optimization technique that can converge towards a global 

minimum solution even with local minima. GA involves the following operations: 

• Initialization: GA generates solutions by randomly selecting a subset inside the allowed 

search space called the population.  

• Selection: The generated solutions are selected based on the value of the objective function. 

• Generation of offspring: New solutions are created using the selected solutions or 

populations (offspring) based on two main processes: mutation and crossover. 

• Termination: This process continues till the termination criteria for the given population or 

the number of generations is reached. 

Approach 2: The Calibration Assistance Tool (CAT) calibrated the models (e.g., thermal 

cracking and joint faulting) where the damage is not obtained from the Pavement-ME outputs. 

These models predict distress by calculating cumulative damage over time. One can't use the 

resampling techniques or the MLE method for this approach.  
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Based on the model, two different calibration approaches have been followed (as shown in Table 

4-1): 

Table 4-1 Model transfer functions and calibration approaches (28) 

Pavement 

type 

Performance prediction 

model 

Approach 
Model transfer functions 

I  II  

Flexible 

pavement 

Fatigue cracking – 

bottom up 
  𝐹𝐶𝐵𝑜𝑡𝑡𝑜𝑚 = (

1

60
) (

6000

1 + 𝑒𝑪𝟏𝐶1
∗+𝑪𝟐𝐶2

∗𝐿𝑜𝑔(𝐷𝐼𝐵𝑜𝑡𝑡𝑜𝑚·100)
) 

Fatigue cracking – top 

down 
  

𝑡0 =
𝐾𝐿1

1 + 𝑒𝑲𝑳𝟐×100×(𝑎0/2𝐴0)+𝑲𝑳𝟑×𝐻𝑇+𝑲𝑳𝟒×𝐿𝑇+𝑲𝑳𝟓×𝑙𝑜𝑔10⁡ 𝐴𝐴𝐷𝑇𝑇
 

𝐿(𝑡) = 𝐿𝑀𝐴𝑋𝑒
−(

𝑪𝟏𝜌
𝑡−𝐶3𝑡0

)
𝑪𝟐𝛽

 

Rutting 

HMA   𝛥𝑝(𝐻𝑀𝐴) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 = 𝜷𝟏𝒓𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10
𝑘1𝑟𝑛𝑘2𝑟𝜷𝟐𝒓𝑇𝑘3𝑟𝜷𝟑𝒓 

Base/subgrade   𝛥𝑝(𝑠𝑜𝑖𝑙) = 𝜷𝒔𝟏𝑘𝑠1𝜀𝑣ℎ𝑠𝑜𝑖𝑙 (
𝜀𝑜
𝜀𝑟
) 𝑒

−(
𝜌
𝑛
)
𝛽

 

Thermal cracking   𝐴 = 10𝒌𝒕𝛽𝑡(4.389−2.52𝐿𝑜𝑔(𝐸𝐻𝑀𝐴𝜎𝑚𝜂)) 

IRI   𝐼𝑅𝐼 = 𝐼𝑅𝐼𝑜 + 𝑪𝟏(𝑅𝐷) + 𝑪𝟐(𝐹𝐶𝑇𝑜𝑡𝑎𝑙) + 𝑪𝟑(𝑇𝐶) + 𝑪𝟒(𝑆𝐹) 

Rigid 

pavement 

Transverse cracking   

𝐶𝑅𝐾𝐵𝑈/𝑇𝐷 =
100

1 +  𝑪𝟒(𝐷𝐼𝐹)
𝑪𝟓

 

𝑇𝐶𝑅𝐴𝐶𝐾 = (𝐶𝑅𝐾𝐵𝑜𝑡𝑡𝑜𝑚−𝑢𝑝 + 𝐶𝑅𝐾𝑇𝑜𝑝−𝑑𝑜𝑤𝑛 − 𝐶𝑅𝐾𝐵𝑜𝑡𝑡𝑜𝑚−𝑢𝑝

⋅ 𝐶𝑅𝐾𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) ⋅ 100% 

Transverse joint faulting   

𝐹𝑎𝑢𝑙𝑡𝑚 =∑𝛥𝐹𝑎𝑢𝑙𝑡𝑖

𝑚

𝑖=1

 

𝛥𝐹𝑎𝑢𝑙𝑡𝑖 = 𝐶34 × (𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋𝑖−1 − 𝐹𝑎𝑢𝑙𝑡𝑖−1)
2 × 𝐷𝐸𝑖 

𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋𝑖 = 𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 + C7 ×∑𝐷𝐸𝑗

𝑚

𝑗=1

× 𝐿𝑜𝑔(1 + C5 × 5. 0𝐸𝑅𝑂𝐷)𝑪𝟔 

𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 = C12 × 𝛿curling × [𝐿𝑜𝑔(1 + 𝐶5 × 5.0𝐸𝑅𝑂𝐷) × 𝐿𝑜𝑔(
𝑃200 ×𝑊𝑒𝑡𝐷𝑎𝑦𝑠

𝑝𝑠
)]
𝑪𝟔

 

C12 = C1 +  C2 × 𝐹𝑅0.25 

C34 = C3 +  C4 × 𝐹𝑅0.25 

IRI   𝐼𝑅𝐼 = 𝐼𝑅𝐼𝑜 + 𝑪𝟏(𝐶𝑅𝐾) + 𝑪𝟐(𝑆𝑃𝐴𝐿𝐿) + 𝐶3(𝑇𝐹𝐴𝑈𝐿𝑇) + 𝑪𝟒(𝑆𝐹) 

*Bold font indicates calibration coefficients 

4.3 CALIBRATION METHODS 

This study used different methods (least squares and MLE) to demonstrate and compare 

calibration differences for normally and non-normally distributed data. For example, the 

measured transverse cracking in rigid pavements is typically non-normally distributed, with most 

data points near zero, whereas IRI is close to a normal distribution. Both methods have their 

advantages and limitations. It is important to note that thermal cracking, top-down cracking in 

flexible pavements, and joint faulting in rigid pavements were not calibrated using the MLE 

method.  
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The measured data is limited to the MDOT PMS database. Apart from the measured data, this 

study also used synthetic data as it provides the freedom to generate any distribution with 

random errors. This methodology also validates a more generic use of MLE on a dataset outside 

the measured data. Before calibration using measured data, synthetic data was created to show 

the applicability of the MLE approach. For this purpose, DIBottom was generated using an 

exponential distribution with 𝜆 = 0.3 to generate synthetic bottom-up cracking data in flexible 

pavements. DIBottom was used to calculate bottom-up cracking for 355 points, the same number of 

points as the measured data. A value of C1 = 0.254, C2 = 0.730 (for total AC thickness (T) < 5 

in.), and C2 = (0.867+0.2583* T)*0.238 (for 5 in. <= T <= 12 in.) were used for calculation of 

bottom-up cracking. The assumption of an exponential distribution and the value of 𝜆 is based on 

the measured bottom-up cracking data. The generated synthetic data is close to the measured 

data but follows a smooth exponential distribution curve. Two different datasets were created, 

one without variability (no change introduced in the generated data) and one with a uniformly 

distributed random variability applied on each data point between -50 % and 50%. A similar 

methodology created synthetic data for transverse cracking in rigid pavements. Initially, an 

exponentially distributed 𝐷𝐼𝐹 was generated using 𝜆 = 0.1. The generated 𝐷𝐼𝐹 was then used to 

calculate transverse cracking. About 237 points were generated for the synthetic data, the same 

as for measured transverse cracking data. 

The selection of a suitable method and distribution is based on several parameters. 

Negative log-likelihood (NLL) was calculated for the MLE and least squares methods, the 

formulation for which is presented in the proceeding sections. Besides the NLL values, four 

other statistical parameters were used as selection criteria for the most suitable model. These are 

the Standard Error of Estimate (SEE), bias, Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC). AIC is a statistical measure used for model selection that balances 

the goodness of fit with the complexity of the model, as shown in Equation (4-5). BIC is a 

similar criterion that penalizes model complexity more strongly, often leading to more efficient 

model selection, as shown in Equation (4-6). 

𝐴𝐼𝐶 = 2𝑆 − 2𝐿𝐿 (4-5) 

𝐵𝐼𝐶 = 𝑙𝑛⁡(𝑛)𝑆 − 2𝐿𝐿 (4-6) 

where, 
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n = Number of data points 

𝑆 = Number of parameters of distribution (for example 𝑆 = 1 for exponential distribution) 

𝐿𝐿 = Log-likelihood value 

4.3.1 Calibration Using the Least Squares Method 

The least squares method is a popular technique used in various statistics, mathematics, and 

engineering fields to fit mathematical models to data. Its primary aim is to minimize the sum of 

the squares of the residuals between observed and predicted values. It follows the NIID 

assumption, which may not apply to non-normally distributed data. This method was employed 

to estimate the parameters of the Pavement-ME transfer functions. The fundamental idea behind 

the least squares method is to find the line (or curve) that best fits a set of data points by 

minimizing the sum of the squared differences between the observed data points and the 

corresponding values predicted by the model. The bias and SEE values were minimized using 

the least squares method, as shown in Equations (4-7) and (4-8) 

𝑆𝐸𝐸 = √
∑(𝑦 − 𝑦̂)2

𝑛 − 1
 

(4-7) 

𝐵𝑖𝑎𝑠 =∑(𝑦 − 𝑦̂) (4-8) 

where, 

𝑦 = Measured data 

𝑦̂ = Predicted data 

n = Number of data points 

4.3.2 Calibration Using the Maximum Likelihood Estimation (MLE) Method 

MLE is a powerful statistical technique for parameter estimation in various fields, including 

biology, physics, economics, and engineering. MLE was used to calibrate the bottom-up 

cracking, total rutting, and IRI models in flexible pavement and transverse cracking and IRI 

models in rigid pavements. MLE seeks to estimate the parameters of a probability distribution 

that best describes the observed data based on the likelihood function. The likelihood function 

measures the probability of the observed data following a known distribution. MLE finds the set 

of distribution parameters that maximize the likelihood function. Consider a dataset X = (x1, x2, 
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..., xn) that is generated by a probability distribution with parameters θ. The likelihood function 

L(θ|X) is the joint probability density function of the obser ed data, gi en the distribution 

parameters as shown in Equation (4-9). 

L(θ|X) = P(X|θ) = P(x1, x2,… . , xn|θ) (4-9) 

Here, P denotes the probability density function, and the likelihood function measures the 

probability of observing the data X given the distribution parameters 𝜃. The goal of MLE is to 

find the set of distribution parameters 𝜃 that maximizes the likelihood function between dataset 

X and the assumed distribution. In practice, it is often easier to work with the log-likelihood 

function so that the product of likelihood values becomes a summation; one can do this by taking 

the natural logarithm of the likelihood function. The log-likelihood function is given by Equation 

(4-10). 

𝑙(θ|X) = log L(θ|X) = log P(X|θ) = log∏P(𝑥𝑖|θ) =∑logP(𝑥𝑖|θ) (4-10) 

where;  

П = Product operator 

Σ = Summation operator 

Taking the logarithm of the likelihood function also simplifies the computation of the derivative 

required for optimization. One can solve the optimization problem by finding the values of 𝜃 that 

maximize the log-likelihood function. This can be done using numerical optimization algorithms, 

such as gradient descent, Newton's, or quasi-Newton methods. These algorithms require the 

derivative of the log-likelihood function for the distribution parameters. Numerical optimization 

algorithms iteratively update the values of the distribution parameters to find the maximum of 

the log-likelihood function. The optimization process continues until the algorithm converges to 

a maximum of the log-likelihood function. The MLE obtained from the optimization process 

represents the most likely estimates of the distribution parameters that can explain the observed 

data. The calibration process for MLE involves the following steps: 

Step 1: Assume the initial values of the transfer function coefficients to calculate the predicted 

cracking. 

Step 2: Fit a known distribution (for example, exponential, gamma, etc.) to the predicted 

cracking and estimate the distribution parameters.  
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Step 3: Calculate the NLL between the known distribution parameters in Step 2 and the 

measured values.  

Step 4: Repeat Steps 1 to 3 to minimize the NLL value.  

Step 5: Coefficients with minimum NLL are the desired coefficients. 

Four distributions were used for this analysis: gamma, log-normal, exponential, and negative 

binomial. The Probability Density Function (pdf)/ Probability Mass Function (pmf) of these 

distributions is shown in Equation (4-11) to (4-14), respectively.  

• Gamma distribution 

𝑓(𝑥) =
𝑥𝛼−1𝑒−𝑥/𝛽

𝛽𝛼Γ(𝛼)
 

(4-11) 

• Log-normal distribution 

𝑓(𝑥) =
𝑒
−((ln⁡((𝑥−𝜃)(𝑚))2/(2𝜎2))

(𝑥 − 𝜃)𝜎√2𝜋
𝑥 > 𝜃;𝑚, 𝜎 > 0 

(4-12) 

• Exponential distribution 

𝑓(x) = 𝜆e−𝜆x 
(4-13) 

• Negative binomial distribution 

𝑃(𝑋 = 𝑥 ∣ 𝑟, 𝑝) = (
𝑥 − 1
𝑟 − 1

)𝑝𝑟(1 − 𝑝)𝑥−𝑟, 𝑥 = 𝑟, 𝑟 + 1,…, 
(4-14) 

The formulation of the maximum likelihood function for exponential distribution is shown 

below. A similar approach was used for other distributions. Equation (4-15) shows the pdf for 

exponential distribution. Comparing it with Equation (4-13), here 𝜆 =
1

𝛽
, which is the rate 

parameter, and x is the observed value. The likelihood function for a set of independent and 

identically distributed observations from the exponential distribution is obtained by taking the 

product of the individual probability density functions shown in Equations (4-16) and (4-17).  

𝑓(𝐱, 𝛽) =
1

𝛽
𝑒
(
−𝐱
𝛽
)
; 𝐱 > 0 (4-15) 

𝐿(𝛽, 𝐱) = 𝐿(𝛽, 𝑥1, … , 𝑥𝑁) =∏  

𝑁

𝑖=1

𝑓(𝑥𝑖 , 𝛽) 
(4-16) 

𝐿(𝛽, 𝐱) =∏ 

𝑁

𝑖=1

1

𝛽
𝑒
(
−𝑥𝑖
𝛽

)
 (4-17) 
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It is common to work with the log-likelihood function instead of the likelihood function to 

simplify the calculation. The log-likelihood function is obtained by taking the natural logarithm 

of the likelihood function, as shown in Equation (4-18).  

ℒ(𝛽, 𝐱) = log⁡ (∏ 

𝑁

𝑖=1

1

𝛽
𝑒
(
−𝑥𝑖
𝛽

)
) (4-18) 

Simplifying Equation (4-18) using properties of the log is shown in Equations (4-19) to (4-21). 

Equation (4-21) shows the negative log-likelihood of exponential distribution used for 

calibration.  

ℒ(𝛽, 𝐱) = log⁡ (∏ 

𝑁

𝑖=1

1

𝛽
𝑒
(
−𝑥𝑖
𝛽

)
) =∑  

𝑁

𝑖=1

(log⁡ (
1

𝛽
) + log⁡ (𝑒

(
−𝑥𝑖
𝛽

)
)) (4-19) 

ℒ(𝛽, 𝐱) = 𝑁log⁡ (
1

𝛽
) +∑  

𝑁

𝑖=1

(
−𝑥𝑖
𝛽
) (4-20) 

ℒ(𝛽, 𝐱) = −𝑁log⁡(𝛽) +
1

𝛽
∑  

𝑁

𝑖=1

− 𝑥𝑖 
(4-21) 

To estimate the value of 𝛽 at the maxima of log-likelihood, Equation (4-21) can be 

differentiated. Equations (4-22) to (4-24) show the estimation of 𝛽 at the maxima of log-

likelihood. 

∂ℒ

∂𝛽
=

∂

∂𝛽
(−𝑁log⁡(𝛽) +

1

𝛽
∑  

𝑁

𝑖=1

− 𝑥𝑖) = 0 (4-22) 

∂ℒ

∂𝛽
= −

𝑁

𝛽
+

1

𝛽2
∑ 

𝑁

𝑖=1

𝑥𝑖 = 0 (4-23) 

𝛽 =
∑  𝑁
𝑖=1 𝑥𝑖
𝑁

= 𝐱
¯
 

(4-24) 

Figure 4-2 shows the flow chart of the methodology used and the final selection of the optimum 

method and distribution. 

4.4 RESAMPLING TECHNIQUES 

Various sampling techniques were used to calibrate Pavement-ME transfer functions. The least 

squares and MLE methods were combined with these techniques to improve the robustness of 
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the estimated parameters. All these techniques have been used for models calibrated using 

Approach 1. For models calibrated using Approach 2, no sampling or traditional split sampling 

has been used in the CAT tool.  

1. No sampling: This technique considers the entire dataset (all available measured data points 

and corresponding damage) and was used for both Approaches 1 and 2.  

2. Traditional split sampling: The dataset is randomly divided into two parts—70% of the data 

for the calibration set and the rest 30% for the validation set. The optimization is performed 

only on the calibration set, and the obtained coefficients are applied to an independent 

validation set. This method was used for both Approaches 1 and 2. 

3. Repeated split sampling: This technique is like traditional split sampling but with 1000 

resamples, where a different data set was picked up each time for calibration (70%) and 

validation (30%). This method was used only for Approach 1. 

4. Bootstrapping: Bootstrap resampling is used to draw 1000 bootstrap samples from the 

original dataset with replacement. Each bootstrap resamples the original data with the same 

sample size but may contain some duplicate observations. This method estimates a sampling 

distribution and confidence intervals for a population parameter, even when the underlying 

population distribution is unknown.  
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Figure 4-2 Flowchart of calibration methodology 

Traditional no-sampling or split sampling technique provides a convenient approach to selecting 

pavement sections from the calibration database. Though these techniques are easy to implement 

and can be used for any Pavement-ME model, they might impose some limitations. Resampling 
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techniques have several advantages over traditional approaches. Since these are non-parametric 

techniques, the model parameters can be estimated without making assumptions about the data 

distribution. The distribution of the model coefficients and error parameters can be estimated 

instead of the point estimate. This can give a better estimation of parameters within desired 

confidence intervals. Since a new sample is created every time, the outliers or sections 

controlling the calibration process can be identified. Though these resampling techniques have 

several advantages over traditional approaches, there are also certain limitations. Bootstrapping 

cannot be used for small datasets or when the independence assumption is unmet. Resampling 

techniques also require higher computing power and time and can be used only for those 

performance models where the damage and other inputs are available from Pavement-ME. Table 

4-2 summarizes the advantages and limitations of all calibration techniques. 

Table 4-2 Summary of calibration techniques 

Technique Advantages Limitations 

No sampling • Computationally efficient 

• Applicable even for small 

sample size 

• Provides point estimates 

• It may not be suitable for non-

normally distributed data 

Split sampling • Computationally efficient 

• Provides validation 

• Provides point estimates 

• It may not be suitable for non-

normally distributed data 

Repeated split 

sampling 

• Provides confidence intervals 

• Provides validation 

• Identifies outliers 

• Distribution assumption is not 

required 

• Computationally time-consuming 

• It cannot be used for smaller 

sample size 

• It may not be suitable for non-

normally distributed data 

Bootstrapping • Provides confidence intervals 

• Identifies outliers 

• Distribution assumption is not 

required 

• Computationally time-consuming 

• It cannot be used for smaller 

sample size 

• It may not be suitable for non-

normally distributed data 

4.5 FLEXIBLE PAVEMENT MODEL COEFFICIENTS 

The design distress in the Pavement-ME includes bottom-up cracking, top-down cracking, 

rutting, thermal (transverse) cracking, reflective cracking, and IRI. The calibration of each model 

and the specific coefficients calibrated has been discussed in this section. 
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4.5.1 Fatigue Cracking Model (Bottom-up) 

The fatigue cracking (bottom-up) model was calibrated by optimizing the C1 and C2 coefficients 

(see Table 4-1). In Pavement-ME v2.6, coefficient C1 is a single value, whereas coefficient C2 

has three different values depending on the total HMA thickness. Table 4-3 shows the global 

values for C1 and C2.  

Table 4-3 Global values for bottom-up cracking model coefficients 

Calibration coefficient Global values 
C1 1.31 

C2 

Hac < 5 in. : 2.1585 

5 in. <= Hac <=12 in.: (0.867 + 0.2583 × Hac) ×1 

Hac > 12 in.: 3.9666 
Hac : Total HMA thickness in inches 

Notably, no sections were selected for the bottom-up calibration with a total HMA thickness of 

more than 12 inches. The coefficient C2 was calibrated separately for the thickness ranges less 

than 5 inches and 5 to 12 inches, respectively. For a thickness range of 5 to 12 inches, only the 

multiplying factor 1 (marked in bold here: (0.867 + 0.2583 × Hac) ×1) was calibrated, while other 

values (0.867 and 0.2583) were kept at global values. A single value was used for a thickness range of 

more than 12 inches. The Hac was kept at 12 inches, and the multiplying factor 1 was kept at the calibrated 

value obtained for the 5 to 12-inch thickness range. The crack initiation time is affected by C1, 

whereas the slope of the bottom-up cracking curve is affected by C2. Consequently, the 

calibration was performed using two approaches: (a) combined measured bottom-up and top-

down cracking and (b) bottom-up cracking only. MLE was used for approach (a), whereas least 

squares was used for both methods. 

4.5.2 Fatigue Cracking Model (Top-down) 

The top-down cracking model has been modified in the Pavement-ME v2.6. The model consists 

of a crack initiation function that calculates the time to crack initiation and a crack propagation 

function that calculates the percent lane area cracked. This makes it a total of eight coefficients 

combined from both functions. Since the actual crack initiation time was not known, it was not 

possible to calibrate the crack initiation model separately. So, a single function was used by 

substituting the crack initiation function with the crack propagation function. Initially, an attempt 

was made to change all eight coefficients simultaneously. This approach had some challenges: 
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• The model has some mathematical limitations. High values for C3 cause mathematical 

errors when using it in Pavement-ME.  

• No current literature exists for the top-down cracking model calibration. Therefore, 

estimating the range for each coefficient to be used in optimization was difficult. 

• The model has many coefficients with coefficient values ranging from 0.011 to 64271618. 

This makes the optimization challenging to converge. 

As mentioned above, four coefficients from the crack initiation function (kL2, kL3, kL4, kL5) 

and two coefficients from the crack propagation function (C1, C2) have been calibrated based on 

the model's understanding and limitations. 

4.5.3 Rutting Model 

Due to axle loads, rutting is the total accumulated plastic strain in different pavement layers 

(HMA, base/sub-base, and subgrade). It is calculated by summing up the plastic strains at the 

mid-depth of individual layers accumulated for each time increment. In the Pavement-ME, 

rutting is predicted separately for the layers (HMA, base, and subgrade). The total rutting is the 

sum of rutting from all layers. The AC rutting model has three coefficients (β1r, β2r, β3r). β 1r is a 

direct multiplier and was calibrated using optimization outside the Pavement-ME. In this model, 

β2r and β3r are power to the pavement temperature and the number of axle load repetitions. 

Calibration of β2r and β3r cannot be done outside of the Pavement-ME and requires running the 

Pavement-ME multiple times or optimizing these in the CAT tool. Initially, β2r and β3r values 

were used from the previous calibration effort, and β1r was calibrated (10). This calibration 

approach provided reasonable results; therefore, β2r and β3r from the previous calibration were 

accepted, and only β1r was calibrated.  

The unbound layers (base and subgrade) rutting model have one calibration coefficient 

each (βs1). Since βs1 is a direct multiplier, it can be calibrated using optimization outside the 

Pavement-ME without running the software or CAT tool. Since both base and subgrade have the 

same model and calibration coefficient, the base calibration coefficient is referred to as βs1, and 

the subgrade coefficient is referred to as βsg1. The rutting model in the Pavement-ME was 

calibrated using the following two methods: 

• Method 1: Individual layer rutting calibrations — The measured rutting from individual 

layers was matched against the Pavement-ME predictions (β1r, βs1, and βsg1 were 
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calibrated separately) for this approach. The total measured rutting was multiplied by the 

percent contribution from each layer to obtain measured rutting for the individual layer. 

Figure 4-3 shows the percentage contribution estimated using transverse pavement 

profile analysis. The width and depth of the measured rut channel were used to determine 

the seat of rutting and rutting in individual layers. AC layer rutting contributes more than 

70% to all pavement types [based on transverse profile analysis (10)]. Pavement-ME has 

separate standard error equations for rutting in the individual layers. This method 

evaluated the standard error equations for rutting in each layer.  

• Method 2: Total surface rutting calibration — The total measured rutting was calibrated 

against the sum of individual predicted rutting (i.e., β1r, βs1, and βsg1 were calibrated 

simultaneously).  

 
               (a) Overall 

 
       (b) HMA reconstruct freeway sections 

 
    (c) HMA reconstruct non-freeway sections 

 
    (d) HMA over rubblized PCC 

Figure 4-3 Transverse profile analysis for total rutting (10) 

4.5.4 Thermal Cracking Model 

The thermal cracking model in the Pavement-ME has three different levels for the calibration 

coefficient. These levels are based on the level of HMA input. Level 1 G* and Level 2 IDT have 

been used to calibrate the thermal cracking model. This corresponds to Level 1 thermal cracking 

calibration coefficients. Both G* and IDT values were obtained from the DYNAMOD software 

database. In the DYNAMOD database, G* and IDT values are available only for sections with 

Performance grade (PG) binder type. Therefore, sections with PG binder type (Superpave mixes) 
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have been used to calibrate the thermal cracking model. In the Pavement-ME v2.6, the 

calibration coefficient kt is originally a function of the mean annual air temperature (MAAT), 

whereas, in v2.3, it was a single representative value. Two different approaches were used for 

calibration: 

(a) Using the CAT tool, an initial attempt was made to calibrate kt (using the original equation 

as a function of MATT).  

(b) A second attempt was made to calibrate kt by running the Pavement-ME multiple times 

with different kt values of 0.25, 0.65, 0.75, 0.85, 0.95, and 1.35. This time, single values for 

kt were used, which were not a function of MAAT.  

kt as a function of MAAT resulted in contradictory results when comparing Michigan 

temperature extremes, where thermal cracking at cold temperatures was either reduced or equal 

to thermal cracking at warm temperatures. Moreover, ARA recommends using a single kt value 

if this is more suitable for the agency and its local conditions. Based on these results, the kt value 

based on the second approach was recommended. It is important to note that for this calibration, 

the average thermal cracking for a section was cut at 2112 ft/mile.  

4.5.5 IRI Model for Flexible Pavements 

IRI is a linear function of initial IRI, rut depth, total fatigue cracking, transverse cracking, and 

site factor. The initial IRI was obtained from linear backcasting based on the time series trend for 

each section, as described in Chapter 3. The fatigue cracking, rutting, and transverse cracking 

models were calibrated before calibrating the IRI model. Since all inputs to the IRI model could 

be obtained, it was calibrated outside Pavement-ME. IRI has a closed-form solution and does not 

require a standard error equation in the Pavement-ME. The standard error for IRI is calculated 

using the standard error of its components. 

4.6 RIGID PAVEMENT MODEL COEFFICIENTS 

The design distresses in the Pavement-ME include transverse cracking (percentage of slabs 

cracked), transverse joint faulting (inches), and international roughness index (IRI) for rigid 

pavements. The calibration methodology for each model is discussed in this section. 
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4.6.1 Transverse Cracking Model 

The coefficients C4 and C5 (shown in Table 4-1) were optimized to calibrate the transverse 

cracking model. These coefficients were calibrated outside the Pavement-ME and without the 

CAT tool. C4 affects the crack initiation time, and C5 affects the slope of the transverse cracking 

curve.  

4.6.2 Transverse Joint Faulting Model 

The joint faulting model in the Pavement-ME consists of eight coefficients. Joint faulting could 

not be predicted using the available inputs outside the Pavement-ME; therefore, it was calibrated 

using the CAT tool. CAT tool has a limitation on the run time and the total combinations of 

coefficients that can be calibrated simultaneously. Therefore, it was essential to identify the most 

sensitive coefficients. Several research studies (11, 26) show that out of the eight calibration 

coefficients for the faulting model, C6 is the most sensitive. C1 is the next sensitive coefficient, 

followed by C2. Using this sequence of sensitivity of the different coefficients, C1 and C6 were 

calibrated together. The calibrated coefficients from C1 and C6 were kept fixed, and C2 was 

calibrated. In this sequence, the three most sensitive coefficients were calibrated. As previously 

noted and explained in Chapter 3, the joint faulting (for every 0.1-mile segment) was cut at 0.4 

inches for calibration. 

4.6.3 IRI Model for Rigid Pavements 

IRI in rigid pavements is a linear function of initial IRI, transverse cracking, joint spalling, 

faulting, and site factor. The initial IRI was obtained from linear backcalculation based on the 

time series trend for each section. The transverse cracking and joint faulting models were 

calibrated before calibrating the IRI model. Since all inputs to the IRI model could be obtained, it 

was calibrated outside Pavement-ME without rerunning it or using the CAT tool. IRI has a 

closed-form solution and does not require a standard error equation in Pavement-ME. The 

standard error for IRI is calculated using the standard error of its components. 

4.7 CALCULATION OF DESIGN RELIABILITY 

Pavement-ME uses a reliability-based design, as explained in Chapter 2. Reliability is added to 

the mean prediction to incorporate input or performance data variability. It is expressed as a 
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function of the predicted performance and derived using the predicted and measured 

performance data. A step-by-step approach to estimating the reliability of transverse cracking for 

rigid pavements is shown below as an example. A similar approach was used for the reliability of 

all other models except IRI in the Pavement-ME. 

Step 1: All predicted and measured data points are grouped by creating bins on the predicted 

cracking. The number of data points in each group should be equivalent to reduce bias in the 

results. 

Step 2: The average and standard deviation of measured and predicted cracking are computed for 

each group. The grouping is performed after finalizing the calibration coefficients (global or 

local) to obtain the predicted performance. Table 4-4 shows the number of data points, bin 

ranges, and descriptive statistics. 

Table 4-4 Reliability analysis for transverse cracking in rigid pavements (example) 

Cracking 

range (%) 

No. of 

data 

points 

Average 

Measured 

Cracking 

Average 

Predicted 

Cracking 

Standard dev. of 

Measured Cracking 

Standard dev. of 

Predicted Cracking 

0-0.5 46 0.84 0.54 0.86 0.29 

0.5-2 31 1.41 1.35 1.51 0.25 

2-5 44 3.53 3.13 3.76 0.72 

5-10 29 1.45 12.18 8.93 1.58 

10-50 12 15.06 26.52 14.96 1.22 

Step 3: A relationship is determined between the standard deviation of the measured cracking on 

the y-axis and the average predicted cracking on the x-axis. Figure 4-4 shows the fit model to the 

grouped data in steps 1 and 2. Equation (4-25) shows the relationship between the standard 

deviation of the measured cracking and the average predicted cracking (when using the no-

sampling technique). 

𝑠𝑒(𝐶𝑅𝐾) = 1.3627(𝐶𝑅𝐾)0.7473 (4-25) 
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Figure 4-4 Fitting curve for the reliability of transverse cracking in rigid pavements (example) 

Step 4: The reliability is calculated under the assumption that the error in prediction is 

approximately mormally distributed towards the upper side of the mean distress. The predicted 

cracking can be adjusted to the desired reliability level using Equation (4-26) 

𝐶𝑟 = C50 + 𝑆𝑒 × 𝑍𝑎/2 (4-26) 

where, 

Cr= Predicted cracking at reliability r (%) 

C50 = Predicted cracking at 50% reliability 

Se = Standard deviation of cracking, which can be estimated using Equation (4-25) 

𝑍𝑎/2⁡= Standardized normal deviate (mean = 0; standard deviation = 1) at reliability r 

Step 5: For the final step, the reasonableness of the model should be verified based on the actual 

measured data before using the reliability equation for design. 

The reliability model for IRI is different from that of other models. Since it is a closed-

form solution and the variances of different components of IRI are known, the reliability model 

for IRI is based on the variance analysis of its components. The basic assumption implies that the 

error in predicting IRI is roughly normally distributed. The total error includes input, 

repeatability, pure, and model errors. Overall, the IRI prediction error can be estimated by 

Equations (4-27) and (4-28). 

IRIpe = IRImeas − IRIpred (4-27) 

Var(IRIpe) = Var(IRImeas) + Var(IRIpred) − 2R × √Var(IRImeas) × Var(IRIpred) (4-28) 
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where, 

Var(IRIpe) = Variance in prediction error for IRI (estimated from calibration results) 

Var(IRImeas) = Variance in measured IRI (estimated from field measurement) 

Var(IRIpred) = Variance in predicted IRI  

R = Correlation coefficient between predicted and actual IRI 

The variance in predicted IRI is the sum of the variance in inputs (cracking, spalling, faulting, 

and initial IRI) and the variance in model + pure error, as shown in Equation (4-29). 

Var(IRIpred) = Var(IRIINPUTS) + Var(model + pure⁡error) (4-29) 

The variance in inputs for the IRI model is shown in Equation (4-30). 

Var(IRIINPUTS) = VarIRIi + C12 × VarCRK + C22 × VarSpall + C32 × VarFault  (4-30) 

where, 

Var(IRIINPUTS)= Variance in IRI due to measurement errors for each distresses and initial IRI 

(estimated from field measurements)  

VarIRIi = Variance in initial IRI 

VarCRK = Variance in transverse cracking 

VarSpall = Variance in joint spalling  

VarFault = Variance in joint faulting  

C1, C2, C3 = IRI model coefficients 

Using Equations (4-28) to (4-30), 𝑉𝑎𝑟(𝑚𝑜𝑑𝑒𝑙 + 𝑝𝑢𝑟𝑒⁡𝑒𝑟𝑟𝑜𝑟) can be determined and used to 

predict the standard deviation in IRI at any predicted value. The global standard error equations 

for each model are summarized in Table 4-5. 
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Table 4-5 Global calibration reliability equations for each distress and smoothness model 

Pavement 

Type 

Pavement performance 

prediction model 
Standard error equation 

Flexible 

pavements 

Fatigue cracking (bottom-up) 
( )7 57 15 5 0 0001

13
1 13

1 Bottom
e( bottom up ) . . Log FC .

s .
e

− −  +
= +

+
 

Fatigue cracking (top-down) 𝑠𝑒(𝑡𝑜𝑝−𝑑𝑜𝑤𝑛) = 0.3657 × 𝐹𝐶𝑡𝑜𝑝 + 3.6563 

Rutting 

( )
0 8026

0 24 0 001
.

e( HMA ) HMA
s . .=  +  

( )
0 6711

0 1477 0 001
.

e( Base ) Base
s . .=  +  

( )
0 5012

0 1235 0 001
.

e( SG ) SG
s . .=  +  

Transverse cracking 𝑠𝑒 = 0.14 × 𝑇𝐶 + 168 

IRI Estimated internally by the software 

Rigid 

pavements 

Transverse cracking 𝑠𝑒(𝐶𝑅𝐾) = 3.5522(𝐶𝑅𝐾)0.3415 + 0.75 

Faulting 𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.07162(𝐹𝑎𝑢𝑙𝑡)0.368 + 0.00806 

IRI 
Initial IRI Se = 5.4 

Estimated internally by the software 

4.8 IMPACT OF CALIBRATION ON PAVEMENT DESIGN 

Calibration aims to improve the Pavement-ME predictions and its usability for local conditions. 

The calibrated model will impact the local design practices. Additional flexible and rigid 

pavements (not part of the calibration) were designed to evaluate the impact of the locally 

calibrated models. The designs were based on calibrated model coefficients and standard error 

equations obtained using the least squares method. Forty-four (44) new flexible and 44 new rigid 

sections (JPCP) were designed in the Pavement-ME using the new calibrated models and the 

coefficients from the previous calibration effort (10). It is important to note that MDOT found 

the global coefficients more suitable than the local ones for actual designs. Therefore, the global 

coefficients were used for comparison in the case of rigid sections. Other design properties 

(base/subbase, subgrade, and climatic properties) were kept the same for flexible and rigid 

sections except for the traffic levels. These sections were also designed using the AASHTO93 

design method. MDOT uses widened lane (lane width = 14 feet) sections for rigid pavements. 

The widened lane sections were designed as standard width (12 feet) by reducing the thicknesses 

by up to 1 inch from the final thickness. The lane width was kept at the standard width of 12 feet 

for flexible sections. Figure 4-5 shows the distribution of layer thicknesses (HMA and PCC), 

ESALs, and average annual MR for subgrade soil. The ESALs for flexible sections range from 1 

to 41 million, whereas for rigid sections range from 1 to 64 million. The average annual MR for 
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subgrade soil ranges from 3.7 to 6.5 ksi for flexible and rigid sections. Table 4-6 shows the 

number of sections in different categories. 

All these flexible and rigid sections were designed in the Pavement-ME V2.6 at 95% 

design reliability and MDOT recommended thresholds. Table 4-7 shows the MDOT 

recommended threshold values for all distress types. Since the bottom-up cracking model was 

calibrated by combining the measured bottom-up and top-down cracking, the top-down cracking 

prediction was not used for design purposes. Moreover, MDOT does not have a formal design 

threshold for the new top-down cracking model.  

The design thicknesses were estimated to evaluate the differences between the newly 

calibrated model, previous calibrated model, and the AASHTO93 designs. Moreover, the critical 

design thicknesses were also identified separately for flexible and rigid pavements.  
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(a) ESALs (flexible sections) 

 
(b) ESALs (rigid sections) 

 
(c) AASHTO93 HMA thickness (flexible 

sections) 

 
(d) AASHTO93 PCC thickness (rigid 

sections) 

 
(e) Subgrade MR (for both flexible and rigid sections) 

Figure 4-5 Distribution of design inputs for the selected sections 
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Table 4-6 Selected sections for pavement design in different categories 

Category Description # of sections 

AASHTO soil classification 

SP 6 

CL 18 

SC 8 

SM 3 

SC-SM 4 

SP-SM 5 

MDOT region 

Bay 4 

Grand 8 

Metro 8 

North 4 

Superior 3 

Southwest 8 

University 9 

Classification 
Freeway 28 

Non-freeway 16 

Lane width (applicable to rigid sections only) 
Widened (14 ft) 17 

Standard (12 ft) 27 

Table 4-7 MDOT recommended design thresholds for Pavement-ME distress 

Pavement type Distress type Threshold 

Flexible pavements Bottom-up cracking 20% 

Top-down cracking NA 

Total rutting 0.5 inches 

Thermal cracking 1000 ft/mile 

IRI 172 in/mile 

Rigid sections Transverse cracking 15% 

Joint faulting 0.125 inches 

IRI 172 in/mile 

4.9 SENSITIVITY ANALYSIS OF PAVEMENT-ME COEFFICIENTS 

The sensitivity of the Pavement-ME transfer function coefficients is crucial in estimating the 

impact of each coefficient on the overall performance predictions. It is often not viable to 

calibrate all coefficients; therefore, only the sensitive ones can be estimated if the sensitivity of 

each coefficient is known. The sensitivity of the Pavement-ME transfer function coefficients was 

obtained using SSCs and NSI values for both flexible and rigid pavements. Moreover, they were 

compared to the NSI values from the literature (26). Four transfer functions were used for 

flexible pavements: bottom-up cracking, top-down cracking, total rutting, and IRI, whereas two 

transfer functions were used for rigid pavements: transverse cracking and IRI.  
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4.9.1 Sensitivity Using Normalized Sensitivity Index (NSI) 

NSI has been typically used for this purpose and is defined as the percentage change of predicted 

distress relative to its global prediction caused by a given percentage change in the coefficient. 

The NSI was calculated using Equation (4-31). 

𝑁𝑆𝐼 = 𝑆𝑖𝑗𝑘
𝐷𝐿 =⁡

𝛥𝑌𝑗𝑖

𝛥𝑋𝑘𝑖

𝑋𝑘𝑖
𝑌𝑗

       (4-31) 

where; 

𝑁𝑆𝐼 = Normalized sensitivity index, 

𝑆𝑖𝑗𝑘
𝐷𝐿  = Sensitivity index for input k, distress j, and at point i with respect to a given global 

prediction 

𝛥𝑌𝑗𝑖 = Change in distress j around point i (𝑌𝑗,𝑖+1 − 𝑌𝑗,𝑖−1) 

𝑋𝑘𝑖 = Value of input 𝑋𝑘⁡at point i 

𝛥𝑋𝑘𝑖 = Change in input 𝑋𝑘⁡around point i (𝑋𝑘,𝑖+1 − 𝑋𝑘,𝑖−1) 

𝑌𝑗 = Global prediction for distress j  

The NSI values were also calculated to compare them with the results from SSCs. These 

calculations are based on the NCHRP 1-47 study (60)  as shown in Equation (4-31). Ten 

sections, each from flexible and rigid pavements, were selected for NSI calculations. These 

sections exist in the MDOT PMS database, designed using the AASHTO93 design method. 

These sections are also part of the selected sections for calibration. It is essential to mention that 

for NSI calculation, each section was modeled in the Pavement-ME with the necessary design 

inputs (material, traffic, and climate). These inputs were obtained from construction records, job 

mix formulas, and other sources. Obtaining the design input is tedious and requires multiple data 

sources, unlike the calculation of SSCs, which does not require any data. The selected sections 

have a wide range of thicknesses and traffic. Tables 4-8 and 4-9 show the Pavement-ME inputs 

for flexible and rigid sections, respectively. Each section was initially run at the global values of 

transfer function coefficients at 50% reliability. Afterward, each coefficient (one at a time) was 

varied by -50%, -20%, 20%, and 50%, respectively, from the global values. The change in 

performance prediction was evaluated for differences in transfer function coefficients to 

calculate the NSI values. 
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Table 4-8 Design inputs for flexible sections used in NSI calculations 

Section no. 
HMA thickness 

(in.) 

Base thickness 

(in.) 

Subbase thickness 

(in.) 
AADTT 2-way 

1 8 6 18 2034 

2 6.5 6 18 685 

3 10.8 6 18 4315 

4 4.3 6 12 201 

5 5.5 6 15 859 

6 5.5 6 18 959 

7 14 16 8 6745 

8 10.9 6 8 2065 

9 8 4 18 354 

10 6.5 6 18 313 

Table 4-9 Design inputs for rigid sections used in NSI calculations 

Section no. 
PCC thickness 

(in.) 

Base thickness 

(in.) 

Subbase 

thickness (in.) 

Dowel 

diameter (in.) 

AADTT 2-

way 

1 11 4 14 1.5 7387 

2 9.9 3.9 10 1.25 4825 

3 12.2 3.9 10 1.5 12030 

4 10.8 4 12 1.25 500 

5 9.5 4 12 1.25 2758 

6 10.8 6 12 1.5 10.8 

7 12.5 16 0 1.5 12.5 

8 11.7 4 10 1.5 11.7 

9 11.3 3.9 12 1.5 11.3 

10 11 4 10 1.5 11 

While NSI can rank the coefficients based on their level of sensitivity, it does not provide 

information about any potential correlation between them or how accurately these can be 

estimated. Moreover, since NSI calculation requires distress data, its magnitude can change if the 

data source is changed; hence, the sensitivity ranking of the coefficients may vary (11).  

4.9.2 Sensitivity Using Scaled Sensitivity Coefficient (SSC) 

Unlike NSI calculation, SSCs do not require input data. SSCs were calculated for a continuous 

range of independent variables, and the results were visualized as SSC plots. The ith sensitivity 

coefficient of a model, η(x,β), where x is an independent  ariable, and β represents the parameter 

vector, is given by 𝑋𝑖 = ∂ η/∂ βi and indicates the magnitude of change of the response resulting 

from a small perturbation in the parameter βi (64). An initial parameter value is required if the 

model is nonlinear in that parameter, i.e., ∂ η/∂ βi = f(βi), and requires an iterative solution using 
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any nonlinear regression algorithm (64). The parameter's SSC is the product of its sensitivity 

coefficient and the parameter itself, as shown in Equation (4-32). 

𝑋𝑖
′ = 𝛽𝑖

𝜕𝜂

𝜕𝛽𝑖
 (4-32) 

where; 

𝑋𝑖
′ = Scaled sensitivity coefficient of the parameter i, 

𝛽𝑖 = Estimate of the ith parameter, 

𝜕𝜂

𝜕𝛽𝑖
 = ith sensitivity coefficient of the model w.r.t 𝛽𝑖. 

Assume that a model η(x,β) has two parameters, 𝛽1 and 𝛽2. The sensitivity coefficients (𝑋𝑖) and 

SSC (𝑋𝑖
′) for both parameters are estimated using the following equations [Equations (4-33) to 

(4-36)]. Suppose the parameters (β) ha e been estimated using any nonlinear regression 

algorithm, and the sensitivity coefficient matrix J is obtained. In that case, the SSC for either 

parameter can be approximated using Equations (4-37) and (4-38). 

𝑋1 =
𝜕𝜂

𝜕𝛽1
≈
𝜂((1.001 ∗ 𝛽1),⁡𝛽2) − 𝜂(𝛽1,⁡𝛽2)

0.001 ∗ 𝛽1
 (4-33) 

𝑋1
′ = 𝛽1

𝜕𝜂

𝜕𝛽1
≈
𝜂((1.001 ∗ 𝛽1),⁡𝛽2) − 𝜂(𝛽1,⁡𝛽2)

0.001
 (4-34) 

𝑋2 =
𝜕𝜂

𝜕𝛽2
≈
𝜂(𝛽1, (1.001 ∗ 𝛽2),⁡) − 𝜂(𝛽1,⁡𝛽2)

0.001 ∗ 𝛽2
 (4-35) 

𝑋2
′ = 𝛽2

𝜕𝜂

𝜕𝛽2
≈
𝜂(𝛽1, (1.001 ∗ 𝛽2),⁡) − 𝜂(𝛽1,⁡𝛽2)

0.001
 (4-36) 

𝑋1
′ ≈ 𝛽1 ∗ 𝐽(: ,1) (4-37) 

𝑋2
′ ≈ 𝛽2 ∗ 𝐽(: ,2) (4-38) 

The SSC for a particular coefficient (say βi) is calculated by differentiating the function w.r.t. βi 

and multiplying it by βi [as shown in Equation (4-32)]. Other coefficients except βi are held 

constant. A similar approach is used to calculate SSCs for all other coefficients. The 

mathematical model (transfer function) can often be complicated, especially when differentiating 

the function. In that case, the SSCs can be approximated numerically to avoid errors in the 

analytical derivation. An example of the estimation of SSCs using the transverse cracking model 

[shown in Equation (4-39)] for rigid pavements.  
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𝐶𝑅𝐾 =
1

1 + 𝐶4(𝐷𝐼𝐹)
𝐶5

 (4-39) 

where,  

CRK = Predicted fraction of bottom-up or top-down cracking 

𝐷𝐼𝐹 = Total fatigue damage (bottom-up or top-down) 

C4, C5 = Transfer function coefficients 

Denoting transverse cracking as a function of 𝐷𝐼𝐹, C4, and C5 [CRK(𝐷𝐼𝐹, C4, C5)], the sensitivity 

coefficient for C4 (𝑋𝐶4) can be approximated as shown in Equation (4-40).  

∂𝐶𝑅𝐾

∂𝐶4
= 𝑋𝐶4 ≈

𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4 + 𝛿, 𝐶5) − 𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4, 𝐶5)

𝛿 × 𝐶4
 (4-40) 

Here 𝛿 is a small quantity (a value of 0.001 was used). The SSC for C4 (𝑋′𝐶4) can be 

approximated as shown in Equation (4-41). 

𝐶4
∂𝐶𝑅𝐾

∂𝐶4
= 𝑋′𝐶4 ≈ 𝐶4

𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4 + 𝛿, 𝐶5) − 𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4, 𝐶5)

𝛿 × 𝐶4
 

=
𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4 + 𝛿, 𝐶5) − 𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4, 𝐶5)

𝛿
 

(4-41) 

The coefficient C4 was changed by δ to get the first term of the numerator. The second term of 

the numerator is the transverse cracking at global values. Both these terms were evaluated at a 

continuous range of 𝐷𝐼𝐹⁡from 0 to 1. This provides a continuous set of 𝑋′𝐶4for each value of 𝐷𝐼𝐹. 

SSCs for C5 (𝑋𝐶5) was calculated as shown in Equation (4-42). SSCs for each coefficient were 

plotted with 𝐷𝐼𝐹⁡in the same plot. A similar process was used for all other transfer functions.  

𝐶5
∂𝐶𝑅𝐾

∂𝐶5
= 𝑋′𝐶5 ≈ 𝐶5

𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4, 𝐶5 + 𝛿) − 𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4, 𝐶5)

𝛿 × 𝐶5
 

=
𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4, 𝐶5 + 𝛿) − 𝐶𝑅𝐾(𝐷𝐼𝐹 , 𝐶4, 𝐶5)

𝛿
 

(4-42) 

The SSCs were calculated and plotted using MATLAB codes using one coefficient at a time and 

considering other coefficients as constant. A wide range of independent variables have been used 

since calculating SSCs is a forward problem without data. 
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4.10 CHAPTER SUMMARY 

This chapter detailed the calibration approach used for each Pavement-ME prediction model. 

Transfer functions have been calibrated based on whether they calculate the distresses directly or 

based on cumulative damage. It also discusses the different resampling techniques and 

optimization methods. No sampling, bootstrapping, traditional split sampling, and repeated split 

sampling techniques have been used for calibration. For calibration validation, traditional and 

repeated split sampling were used. The calibration methods include the least squares and MLE. 

The process used for the MLE methodology is also outlined in this chapter. Reliability analysis is 

detailed, illustrating steps for estimating reliability equations for distress prediction, considering 

the transverse cracking as an example. Additionally, this chapter discusses the approach to assess 

the impact of calibration on pavement design based on thicknesses and critical distresses. 

Sensitivity analysis was conducted using Normalized Sensitivity Index (NSI) and Scaled 

Sensitivity Coefficients (SSCs), providing insights into the impact of model coefficients on 

performance predictions. These analyses facilitate the identification of sensitive coefficients 

crucial for accurate predictions and design decisions.   
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CHAPTER 5 - RESULTS AND DISCUSSION 

The calibration process adjusts the Pavement-ME model parameters to match observed data 

better to ensure that the model outputs are reliable and valuable for pavement design. The 

Pavement-ME models' calibration process can be challenging because of their complexity and 

the large number of parameters involved. However, technological advancements and data 

collection methods have made the calibration process more efficient and effective. This chapter 

documents the results for calibration of each model, pavement design, and sensitivity of the 

Pavement-ME coefficients. Table 5-1 summarizes the calibration method used for each 

Pavement-ME model. 

Table 5-1 Summary of calibration method for each Pavement-ME model 

Pavement type Pavement-ME model 
Calibration method 

MLE Least squares 

Flexible pavement 

Bottom-up cracking: Option a  ✓ 

Bottom-up cracking: Option b ✓ ✓ 

Top-down cracking  ✓ 

Rutting (Method 1)  ✓ 

Rutting (Method 2) ✓ ✓ 

Thermal cracking  ✓ 

IRI ✓ ✓ 

Rigid pavement 

Transverse cracking ✓ ✓ 

Joint faulting  ✓ 

IRI ✓ ✓ 

5.1 LOCAL CALIBRATION RESULTS FOR FLEXIBLE PAVEMENTS 

This section presents the results for the local calibration of the bottom-up cracking, total rutting, 

and IRI models. Bottom-up cracking was calibrated using synthetic and observed data. It is 

important to note that bottom-up cracking using Option a, rutting using Method 1, top-down and 

thermal cracking models using observed data were calibrated using the least squares method 

only, as shown in Table 5-1. The calibration results for these models are shown in Table 5-2. 

These results correspond to the bootstrap resampling technique. The details of these model 

calibrations are shown in the Appendix. 
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Table 5-2 Summary of flexible pavement models calibrated using only the least squares method 

Pavement-ME 

model 
Local coefficient 

Global model Local model 

SEE Bias SEE Bias 

Bottom-up 

cracking 

(Option a) 

𝐶1 = 0.2320 
𝐶2 = 0.6998⁡(hac <5 in) 

𝐶2 = (0.867 + 0.2583 ∗ ℎ𝑎𝑐) ∗ 0.2204 (5 in <= hac <=12 in) 

𝐶2 = 0.8742⁡(hac >12 in) 

8.30 -4.91 8.73 0.00 

Top-down 

cracking 

K𝐿1 = 64271618 
K𝐿2 = 0.90 
K𝐿3 = 0.09 
K𝐿4 = 0.101 
K𝐿5 = 3.260 

𝐶1 = 0.30 
𝐶2 = 1.155 

𝐶3 = 1 

6.37 -2.36 5.59 1.60 

Rutting 

(Method 1) 

HMA 
𝛽1𝑟 = 0.148 

𝛽2𝑟 = 0.7 

𝛽3𝑟 = 1.3 
0.256 0.201 0.080 -0.013 

Base 𝛽𝑠1 = 0.301 0.042 0.038 0.009 -0.001 

Subgrade 𝛽𝑠𝑔1 = 0.070 0.118 0.109 0.006 -0.000 

Thermal 

cracking 
𝐾 = 0.85 1225 -812 851 20 

5.1.1 Calibration Using Synthetic Data 

As mentioned in Chapter 4, exponentially distributed synthetic data was generated for bottom-up 

cracking with and without variability. Figure 5-1 shows the generated data distribution and 

different fitted probability distributions. The normal distribution legend in Figure 5-1 

corresponds to the least squares method, while other distributions are used for the MLE method. 

The distribution is skewed for Figures 5-1(a) and 5-1(b) so that more data points are less than 

5%, showing that the data is not normally distributed.  

 
(a) No variability 

 
(b) With 50% variability 

Figure 5-1 Distribution of synthetic data (bottom-up cracking in flexible pavements) 
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Both sets of generated data were calibrated using MLE and least squares methods, as well as the 

four mentioned sampling techniques. Table 5-3 summarizes both data sets’ no-sampling and 

bootstrapping calibration results. As previously described, resampling techniques provide 

confidence intervals for the population parameter. Bootstrapping calibration results in Table 5-3 

are the mean values. MLE provides better statistical parameters (SEE, bias, NLL, AIC, and BIC 

values) for all distributions, except for SEE values in the case of exponential distribution. The 

SEE values show the variability between predicted and measured data. The higher the SEE 

value, the more the dispersion along the line of equality. Pavement-ME uses a reliability-based 

design. Higher values of SEE imply higher reliability imposed over mean Pavement-ME 

predictions. Gamma distribution provides the best parameter estimates for the MLE method, 

followed by negative binomial distribution. It is worth mentioning that the parameter estimates 

(C1 and C2) using MLE are much closer to the assumed initial values than the estimates from the 

least squares method. Tables 5-4 and 5-5 summarize the results from split sampling and repeated 

split sampling techniques. Table 5-5 shows the mean values using the repeated split sampling 

method. Similar results are obtained, where MLE provides better statistical parameters than the 

least squares method. The gamma and negative binomial distribution for these validation results 

also offer optimum results with the SEE and bias values significantly lower than the least squares 

method. It is worth mentioning that the results from resampling techniques provide better 

parameter estimates, as can be seen in Tables 5-3 and 5-5. 

Table 5-3 Summary of calibration results for synthetic data in flexible pavements 

Calibration 

method 
Distribution 

With no variability With 50% variability 

SEE Bias NLL AIC BIC SEE Bias NLL AIC BIC 

No sampling 

Normal 2.967 0.000 1190 2385 2393 7.305 0.000 1259 2522 2529 

Exponential 0.049 0.000 1040 2082 2086 5.690 0.000 1026 2055 2059 

Gamma 0.000 0.000 1032 2068 2076 2.584 0.000 1020 2045 2052 

Log normal 0.015 -0.007 1038 2079 2087 2.593 0.033 1028 2060 2068 

Negative 

binomial 
0.002 -0.001 944 1891 1899 2.561 0.045 941 1886 1894 

Bootstrapping 

Normal 3.265 0.111 1235 2473 2481 4.282 0.143 1269 2542 2550 

Exponential 3.975 0.000 1015 2032 2036 4.986 0.000 1010 2022 2026 

Gamma 0.000 0.000 1008 2020 2028 2.553 0.000 1006 2016 2024 

Log normal 0.013 -0.007 1032 2068 2076 2.552 -0.148 1020 2044 2051 

Negative 

binomial 
0.001 0.000 591 1186 1194 2.542 -0.001 683 1369 1377 
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Table 5-4 Summary of validation results using synthetic data in flexible pavements (Split 

sampling) 

Data set Distribution 
With no variability With 50% variability 

SEE Bias NLL AIC BIC SEE Bias NLL AIC BIC 

Calibration set 

Normal 0.231 0.000 798 1601 1608 6.962 0.000 870 1743 1750 

Exponential 1.707 0.000 718 1437 1441 2.838 0.000 710 1421 1425 

Gamma 0.001 -0.001 712 1427 1434 2.554 0.000 705 1413 1420 

Log normal 0.020 -0.010 712 1428 1435 2.569 0.037 707 1419 1426 

Negative 

binomial 
0.042 0.018 652 1309 1316 2.515 0.040 652 1309 1316 

Validation set 

Normal 0.280 -0.041 352 708 713 8.453 1.057 390 784 790 

Exponential 2.028 -0.308 321 645 648 3.258 -0.175 316 634 637 

Gamma 0.001 -0.001 319 643 648 2.690 0.145 315 633 639 

Log normal 0.024 -0.013 319 643 648 2.703 0.196 315 633 639 

Negative 

binomial 
0.050 0.025 291 586 591 2.689 0.129 289 581 587 

Figure 5-2 compares both data sets’ calibration results using MLE and least squares. Figures 5-

2a and 5-2b show the propagation of bottom-up cracking with damage. The MLE predictions are 

closer to the synthetic measured data than the least squares predictions. This trend is more 

evident in Figure 5-2b, with 50% variability. Figures 5-2c, 5-2d, 5-2e, and 5-2f show the 

distribution of residuals (predicted – measured). Error distribution using MLE is less scattered 

and closer to zero. Moreover, it is closer to a normal distribution than the least squares method.  

Table 5-5 Summary of validation results using synthetic data in flexible pavements (Repeated 

split sampling) 

Data set Distribution 
With no variability With 50% variability 

SEE Bias NLL AIC BIC SEE Bias NLL AIC BIC 

Calibration set 

Normal 4.436 0.203 917 1838 1845 5.146 0.253 958 1920 1927 

Exponential 3.825 0.000 722 1445 1449 4.851 0.000 720 1441 1445 

Gamma 0.000 0.000 719 1443 1450 2.522 0.000 719 1441 1448 

Log normal 0.023 -0.011 719 1442 1449 2.515 -0.059 716 1436 1443 

Negative 

binomial 
0.001 0.000 473 950 957 2.508 0.006 501 1005 1012 

Validation set 

Normal 4.427 0.196 390 784 790 5.147 0.236 408 819 824 

Exponential 3.856 0.028 308 617 620 4.904 0.011 306 614 617 

Gamma 0.000 0.000 306 615 620 2.559 0.009 305 614 619 

Log normal 0.023 -0.011 306 616 621 2.544 -0.060 305 613 618 

Negative 

binomial 
0.001 0.000 201 406 411 2.547 0.007 213 431 436 

5.1.2 Calibration Using Observed Data 

Based on the above process for synthetic data, the bottom-up cracking, total rutting, and IRI 

models were calibrated using MLE and least squares methods using observed data from field 

measurements. This observed data is obtained from MDOT's PMS database. Figure 5-3 shows 
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the distribution of observed data for different distresses and fitted distributions. Bottom-up 

cracking is the most skewed and non-normally distributed. Total rutting and IRI distributions are 

slightly skewed but closer to a normal distribution. As previously shown, resampling techniques 

provide better parameter estimates; therefore, bootstrapping and repeated split sampling results 

are presented. 

Bottom-up cracking – Option b: 

Table 5-6 summarizes bootstrapping and repeated split sampling results for bottom-up model 

calibration. MLE outperforms the least squares method with lower NLL, AIC, and BIC values 

for all distributions. The gamma distribution provides the best estimates for the MLE approach. 

Figure 5-4 shows the calibration results for bottom-up cracking using observed data using the 

bootstrapping technique for MLE (gamma distribution) and least squares methods. The predicted 

vs. measured plots show less MLE scatter than the least squares method.  
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(a) Bottom-up cracking vs damage (with no 

variability) 

 
(b) Bottom-up cracking vs damage (with 50% 

variability) 

 
(c) Distribution of residuals (least squares 

method with no variability) 

 
(d) Distribution of residuals (MLE method 

with no variability) 

 
(e) Distribution of residuals (least squares 

method with 50% variability) 

 
(f) Distribution of residuals (MLE method 

with 50% variability) 

Figure 5-2 Calibration results for bottom-up cracking using synthetic data 
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(a) Bottom-up cracking 

 
(b) Total rutting 

 
(c) IRI 

Figure 5-3 Distribution of observed data for flexible pavements 

The distribution of residuals for MLE is also closer to zero. In Figures 5-4e and 5-4f, the red 

dashed line indicates the mean, the blue solid line shows the median, the red dashed line shows 

the 2.5th and 97.5th percentiles and the solid black line shows the cumulative distribution. 

Interestingly, the model parameters are normally distributed in the case of MLE, with the bias 

value consistently closer to zero.  

Total rutting: 

Table 5-7 shows the calibration results for the total rutting model. MLE shows better NLL, AIC, 

and BIC values for all MLE distributions compared to the least squares method. Gamma and 

negative binomial distributions provide the most feasible results using MLE. It also illustrates a 

bias-variance tradeoff where the SEE for gamma distribution is slightly higher than the least 

squares method but has a lower bias value. Figure 5-5 shows the calibration results using 
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observed data for MLE (using gamma distribution) and the least squares methods. The predicted 

vs. measured plots show slightly less scatter for the MLE method. The residuals for MLE and 

least squares methods are comparable. 

Table 5-6 Summary of calibration and validation results for observed data (Bottom-up cracking: 

Option b) 

Calibration method Distribution SEE Bias C1 

C2 

(T<5 

in.) 

C2 

(T=5 to 12 

in.) 

NLL AIC BIC 

Bootstrapping 

Global 6.678 -3.769 1.310 2.159 1.000 3.4E+08 6.8E+08 6.8E+08 

Normal 6.114 0.052 0.221 0.716 0.234 1390 2784 2792 

Exponential 6.286 0.000 0.196 0.766 0.250 825 1652 1656 

Gamma 6.650 0.000 0.094 1.000 0.326 745 1495 1502 

Log normal 6.509 -0.160 0.112 0.974 0.318 759 1523 1530 

Negative 

binomial 
5.517 0.424 0.467 0.133 0.043 870 1744 1752 

Repeated split 

sampling 

(Calibration set) 

Normal 6.183 0.021 0.210 0.745 0.243 975 1954 1961 

Exponential 6.239 0.000 0.206 0.733 0.239 579 1161 1164 

Gamma 6.692 0.000 0.095 0.997 0.326 525 1053 1060 

Log normal 6.503 -0.163 0.113 0.973 0.318 532 1068 1075 

Negative 

binomial 
5.555 0.443 0.469 0.127 0.042 602 1208 1215 

Repeated split 

sampling 

(Validation set) 

Normal 6.224 0.043 0.210 0.745 0.243 420 844 849 

Exponential 6.281 0.025 0.206 0.733 0.239 248 497 500 

Gamma 6.792 0.064 0.095 0.997 0.326 248 500 505 

Log normal 6.597 -0.134 0.113 0.973 0.318 228 461 466 

Negative 

binomial 
5.598 0.439 0.469 0.127 0.042 257 519 524 

 

IRI:  

Table 5-8 shows the calibration results for the IRI model. The results from the MLE and least 

squares methods are comparable. The negative binomial distribution provides the best estimates 

among all distributions for the MLE method. Figure 5-6 shows the calibration results for MLE 

(negative binomial distribution) and the least squares methods. The predicted vs. measured plot 

shows slightly less scatter for MLE. The residual distribution between the MLE and least squares 

methods is comparable. In the case of IRI, the bias is consistently close to zero for the least 

squares method, showing that it is efficient for a robust calibration.  
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(a) Predicted vs. measured cracking (least 

squares) 

 

(b) Predicted vs. measured cracking (MLE) 

 

(c) Distribution of residuals (least squares) 

 

(d) Distribution of residuals (MLE) 

 

(e) Distribution of parameters (least squares) 

 

(f) Distribution of parameters (MLE) 

Figure 5-4 Calibration results for bottom-up cracking (Option b) using observed data 
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Table 5-7 Summary of calibration results for observed data (Total rutting) 

Calibration method Distribution SEE Bias β1r βs1 βsg1 NLL AIC BIC 

Bootstrapping 

Global 0.393 0.349 0.400 1.000 1.000 3784 7572 7582 

Normal 0.084 -0.008 0.144 0.839 0.523 2238 4481 4490 

Exponential 0.084 0.000 0.173 0.859 0.493 2146 4293 4298 

Gamma 0.096 0.000 0.129 0.163 0.396 2013 4031 4041 

Log normal 0.093 -0.012 0.102 0.158 0.490 2195 4394 4403 

Negative 

binomial 
0.079 0.003 0.062 0.879 0.559 2230 4464 4474 

Repeated split 

sampling 

(Calibration set) 

Normal 0.078 0.000 0.028 1.185 0.634 1948 3901 3909 

Exponential 0.085 0.000 0.071 0.835 0.490 1503 3007 3012 

Gamma 0.096 0.000 0.124 0.160 0.432 1412 2827 2836 

Log normal 0.085 0.000 0.071 0.835 0.490 1503 3007 3012 

Negative 

binomial 
0.079 0.003 0.063 0.869 0.558 1562 3127 3136 

Repeated split 

sampling 

(Validation set) 

Normal 0.080 -0.015 0.028 1.185 0.634 840 1683 1691 

Exponential 0.085 0.000 0.071 0.835 0.490 643 1289 1292 

Gamma 0.095 0.000 0.124 0.160 0.432 607 1219 1226 

Log normal 0.085 0.000 0.071 0.835 0.490 643 1289 1292 

Negative 

binomial 
0.080 0.003 0.063 0.869 0.558 797 1597 1604 

Table 5-8 Summary of calibration results for observed data (IRI - Flexible) 

Calibration 

method 
Distribution SEE Bias C1 C2 C3 C4 NLL AIC BIC 

Bootstrapping 

Global 22.210 14.306 40.000 0.400 0.008 0.015 7368 14740 14751 

Normal 16.246 -0.630 41.486 0.433 0.006 0.0042 16996 33997 34007 

Exponential 16.406 0.008 43.033 0.485 0.007 0.0042 7773 15547 15553 

Gamma 18.943 1.273 40.022 0.312 0.020 0.0001 6631 13267 13277 

Log normal 18.573 0.593 40.026 0.195 0.019 0.00005 6590 13183 13194 

Negative 

binomial 
15.606 -0.516 41.727 0.259 0.005 0.00617 7745 15493 15504 

Repeated 

split sampling 

(Calibration 

set) 

Normal 15.866 0.167 48.841 0.327 0.006 0.005 4948 9900 9910 

Exponential 16.419 0.000 43.485 0.516 0.006 0.0041 5444 10891 10896 

Gamma 18.951 1.280 40.038 0.324 0.019 0.000 4646 9297 9306 

Log normal 18.546 0.599 40.017 0.202 0.019 0.00002 4615 9235 9245 

Negative 

binomial 
15.671 -0.512 41.714 0.261 0.005 0.00615 5425 10853 10863 

Repeated 

split sampling 

(Validation 

set) 

Normal 15.935 0.157 48.841 0.327 0.006 0.0051 2118 4241 4249 

Exponential 16.433 -0.006 43.485 0.516 0.006 0.0041 2329 4660 4664 

Gamma 19.034 1.288 40.038 0.324 0.019 0.000 1988 3980 3989 

Log normal 18.623 0.586 40.017 0.202 0.019 0.00002 1975 3953 3962 

Negative 

binomial 
15.684 -0.502 41.714 0.261 0.005 0.00615 2009 4023 4031 
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(a) Predicted vs. measured rutting (least 

squares) 

 
(b) Predicted vs. measured rutting (MLE) 

 
(c) Distribution of residuals (least squares) 

 
(d) Distribution of residuals (MLE) 

 
(e) Distribution of parameters (least squares) 

 
(f) Distribution of parameters (MLE) 

Figure 5-5 Calibration results for total rutting using observed data 
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(a) Predicted vs. measured IRI (least 

squares) 

 
(b) Predicted vs. measured IRI (MLE) 

 
(c) Distribution of residuals (least squares) 

 
(d) Distribution of residuals (MLE) 

 
(e) Distribution of parameters (least squares) 

 
(f) Distribution of parameters (MLE) 

Figure 5-6 Calibration results for flexible IRI using observed data 
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5.2 LOCAL CALIBRATION RESULTS FOR RIGID PAVEMENTS 

This section presents the results for the local calibration of the transverse cracking and IRI 

models. It is important to note that the joint faulting model was calibrated using the least squares 

method only, as shown in Table 5-1. Table 5-9 shows the calibration results for the joint faulting 

model, the details of which are shown in the Appendix. 

Table 5-9 Summary of rigid pavement models calibrated using only the least squares method 

Pavement-ME 

model 
Local coefficient 

Global model Local model 

SEE Bias SEE Bias 

Joint faulting 

𝐶1 = 0.8 
𝐶2 = 1.3889 
𝐶3 = 0.00217 
𝐶4 = 0.00444 
𝐶5 = 250 
𝐶6 = 0.2 
𝐶7 = 7.3 
𝐶8 = 400 

0.06 0.01 0.03 0.00 

5.2.1 Calibration Using Synthetic Data 

Transverse cracking data was exponentially generated to study the effectiveness of using MLE 

with different conditions and distributions. Figure 5-7 shows the generated data with different 

fitted distributions. The normal distribution legend in Figure 5-7 corresponds to the least squares 

method.  

 
(a) No variability 

 
(b) With 50% variability 

Figure 5-7 Distribution of synthetic data (transverse cracking in rigid pavements) 
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Calibration was performed using the least squares method and MLE for all four mentioned 

calibration and validation approaches: no sampling, bootstrapping, split sampling, and repeated 

split sampling. Table 5-10 summarizes calibration results using no sampling and bootstrapping 

methods. The mean values for the parameters are shown for the bootstrapping results in Table 5-

10. The least squares method is denoted as Normal in Table 5-10. All distributions using MLE 

perform better than the least squares method in terms of NLL, AIC, and BIC. Except for 

exponential distribution, other distributions perform better regarding SEE values. Exponential 

and gamma distributions have lower bias than the least squares method. The gamma distribution 

is the most suitable distribution for this synthetic data. Compared to the least squares method, it 

provides better results for all parameters (SEE, bias, NLL, AIC, and BIC values).  

A similar trend can be observed in the validation results. Tables 5-11 and 5-12 

summarize the validation results using split sampling and repeated split sampling, respectively. 

The mean values for the parameters are shown for repeated split sampling results in Table 5-12. 

Gamma distribution provides better results than least squares regarding SEE, bias, NLL, AIC, 

and BIC values. This is more evident in resampling approaches. It is also a helpful illustration of 

the bias-variance tradeoff. 

Table 5-10 Summary of calibration results for synthetic data in rigid pavements 

Calibration 

method 
Distribution 

With no variability With 50% variability 

SEE Bias NLL AIC BIC SEE Bias NLL AIC BIC 

No sampling 

Normal 3.586 -0.492 1040 2084 2092 6.996 -0.099 1081 2166 2173 

Exponential 0.705 0.000 1007 2016 2019 7.267 0.000 995 1992 1996 

Gamma 0.001 0.000 980 1965 1972 6.461 0.000 989 1982 1989 

Log normal 0.040 -0.023 1021 2046 2054 6.467 -0.369 1024 2053 2060 

Negative 

binomial 
0.001 0.001 922 1847 1855 6.491 -0.051 920 1844 1851 

Bootstrapping 

Normal 2.315 -0.234 1016 2036 2043 7.159 -0.407 1075 2154 2161 

Exponential 4.628 0.000 993 1988 1992 8.515 0.000 995 1991 1995 

Gamma 0.001 0.000 979 1962 1969 6.422 0.000 988 1980 1987 

Log normal 0.036 -0.020 1019 2042 2049 6.454 -0.377 1023 2049 2056 

Negative 

binomial 
0.017 -0.004 563 1131 1138 6.465 -0.107 725 1454 1462 
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Table 5-11 Summary of validation results using synthetic data in rigid pavements (Split 

sampling) 

Data set Distribution 
With no variability With 50% variability 

SEE Bias NLL AIC BIC SEE Bias NLL AIC BIC 

Calibration 

set 

Normal 0.000 0.000 703 1409 1416 6.314 -0.103 726 1455 1461 

Exponential 1.328 0.000 690 1381 1384 6.435 0.000 687 1376 1379 

Gamma 0.001 0.000 682 1367 1374 6.334 0.000 682 1368 1375 

Log normal 0.051 -0.028 709 1422 1428 6.317 -0.250 706 1417 1423 

Negative 

binomial 
0.000 0.000 638 1280 1286 6.319 0.067 636 1276 1282 

Validation 

set 

Normal 0.000 0.000 303 610 614 7.065 -1.324 330 663 668 

Exponential 1.429 -0.188 304 609 611 7.690 -1.394 308 617 619 

Gamma 0.001 -0.001 298 600 605 6.855 -1.151 307 617 622 

Log normal 0.057 -0.034 312 627 632 7.037 -1.460 318 640 644 

Negative 

binomial 
0.000 0.000 284 572 576 7.125 -1.174 284 572 577 

Table 5-12 Summary of validation results using synthetic data in rigid pavements (Repeated split 

sampling) 

Data set Distribution 
With no variability With 50% variability 

SEE Bias NLL AIC BIC SEE Bias NLL AIC BIC 

Calibration 

set 

Normal 2.809 -0.287 726 1457 1463 7.139 0.005 743 1490 1496 

Exponential 4.996 0.000 697 1397 1400 7.989 0.000 702 1407 1410 

Gamma 0.000 0.000 711 1426 1432 6.199 0.000 694 1391 1398 

Log normal 0.052 -0.029 711 1427 1433 5.891 -0.535 722 1448 1454 

Negative 

binomial 
0.034 -0.016 465 934 940 6.410 0.035 512 1028 1035 

Validation 

set 

Normal 2.828 -0.288 310 624 629 7.187 -0.036 318 640 645 

Exponential 5.052 -0.006 298 598 600 8.071 -0.017 301 603 606 

Gamma 0.000 0.000 304 611 616 6.265 -0.016 296 597 601 

Log normal 0.052 -0.030 304 611 616 6.020 -0.522 308 620 625 

Negative 

binomial 
0.035 -0.016 199 402 407 6.528 0.016 219 443 448 

 

The gamma distribution is most suitable for MLE and performs better than least squares 

estimates. Figure 5-8 shows the calibration results using the least squares method and MLE using 

a gamma distribution. The MLE predictions are closer to the measured data points (synthetic 

data), whereas the distribution of residuals shows a low scatter. The mean residual value is the 

model bias, whereas the spread of residuals represents the SEE. The mean SEE and bias values 

for the gamma distribution are 0.001 and 0.000, whereas, for the least squares method, they are 

2.315 and -0.234, respectively, using bootstrap resampling on synthetic data with no variability. 

The mean bias value for the gamma distribution remains 0.000, whereas for the least squares, it 
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is -0.407, using the bootstrap resampling on synthetic data with 50% variability. This shows the 

robustness of the MLE method for data with different variabilities.  

5.2.2 Calibration Using Observed Data 

MLE and least squares methods were used to calibrate transverse cracking and IRI transfer 

functions using observed data obtained from MDOT's PMS data. Sections used for transverse 

cracking and IRI may differ, as the measured performance trends differ for both. Figure 5-9 

shows the observed data distribution with different fitted distributions. Figure 5-9 shows that the 

transverse cracking data is skewed and non-normally distributed. IRI, on the other hand, is closer 

to a normal distribution. 

Transverse cracking: 

Table 5-13 summarizes the calibration and validation results for transverse cracking. Results for 

only the resampling approaches (bootstrapping and repeated split sampling) have been shown for 

brevity. The mean values for the parameters are shown in Table 5-13. MLE using gamma 

distribution provides the most feasible results with lower parameters (SEE, bias, NLL, AIC, and 

BIC) than the least squares. A similar trend is observed in the validation results using repeated 

split sampling (Table 5-13), where the MLE results show better validation parameters than the 

least squares method. Figure 5-10 shows the calibration results (for bootstrapping) for the least 

squares method and MLE using a gamma distribution. The predicted vs. measured transverse 

cracking shows a lower scatter for MLE. The mean bias value for the least squares is -0.410, 

whereas, for MLE, it is 0.000, using bootstrap results. The SEE values between the least squares 

and MLE are comparable. Also, the bias distribution for MLE is close to zero, illustrating the 

robustness of the MLE method. The lower and upper 95th percent confidence limits for the least 

squares are -0.932 and -0.025, whereas for the MLE, they are -0.001 to 0.001. This shows that 

MLE consistently has no bias for all 1000 bootstrap samples. Figure 5-10 (e) and (f) show the 

distribution of each bootstrap sample's SEE, bias, and transfer function coefficients. Bootstrap is 

used for 1000 resamples with replacement. A different set of parameters are obtained for each 

sample. These plots provide a distribution of parameters, and the mean value can be used as a 

more reliable estimate.  
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(a) Transverse cracking vs damage (with no 

variability) 

 
(b) Transverse cracking vs damage (with 

50% variability) 

 
(c) Distribution of residuals (least squares 

method with no variability) 

 
(d) Distribution of residuals (MLE method 

with no variability) 

 
(e) Distribution of residuals (least squares 

method with 50% variability) 

 
(f) Distribution of residuals (MLE method 

with 50% variability) 

Figure 5-8 Calibration results for transverse cracking using synthetic data 
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(a) Transverse cracking 

 
(b) IRI 

Figure 5-9 Distribution of observed data for rigid pavements 

Table 5-13 Summary of calibration and validation results for observed data (Transverse 

cracking) 

Calibration method Distribution SEE Bias C4 C5 NLL AIC BIC 

Bootstrapping 

Global 5.994 -2.390 0.52 -2.17 26051 52105 52112 

Normal 4.022 -0.410 0.476 -0.962 854 1713 1720 

Exponential 4.218 0.000 1.071 -0.708 484 970 973 

Gamma 3.984 0.000 0.668 -0.76 439 882 890 

Log normal 4.363 -0.578 1.406 -0.654 389 783 790 

Negative binomial 4.812 -0.166 4.563 -0.369 467 938 945 

Repeated split sampling 

(Calibration set) 

Normal 4.074 -0.411 0.467 -0.963 598 1200 1207 

Exponential 4.225 0.000 1.091 -0.682 340 682 686 

Gamma 4.038 0.000 0.650 -0.761 309 622 628 

Log normal 4.359 -0.577 1.406 -0.652 272 548 555 

Negative binomial 4.883 -0.184 4.704 -0.363 327 658 665 

Repeated split sampling 

(Validation set) 

Normal 4.129 -0.404 0.467 -0.963 270 543 548 

Exponential 4.252 0.018 1.091 -0.682 146 294 297 

Gamma 4.124 0.023 0.650 -0.761 132 268 273 

Log normal 4.374 -0.567 1.406 -0.652 118 240 245 

Negative binomial 4.900 -0.223 4.704 -0.363 142 287 292 

 

IRI: 

Table 5-14 summarizes the calibration results for IRI using the least squares and MLE methods. 

Table 5-14 shows the mean values for the parameters obtained using bootstrap resampling. MLE 

using negative binomial shows the most feasible results among all distributions. Interestingly, the 

least squares method shows satisfactory calibration and validation results, especially with lower 

SEE and bias values than MLE results.  
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(a) Predicted vs. measured cracking (least 

squares) 

 
(b) Predicted vs. measured cracking (MLE) 

 
(c) Distribution of residuals (least squares) 

 
(d) Distribution of residuals (MLE) 

 
(e) Distribution of parameters (least squares) 

 
(f) Distribution of parameters (MLE) 

Figure 5-10 Calibration results for transverse cracking using observed data 
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Table 5-14 Summary of calibration results for observed data (IRI - Rigid) 

Calibration 

method 
Distribution SEE Bias C1 C2 C3 C4 NLL AIC BIC 

Bootstrapping 

Global 19.721 11.696 0.820 0.442 1.493 25.24 2094 4191 4199 

Normal 10.208 0.000 0.02 2.194 1.612 24.138 2464 4932 4941 

Exponential 17.503 0.000 1.389 3.953 0.915 8.208 2554 5110 5114 

Gamma 17.304 0.001 1.515 2.518 1.171 7.044 1974 3953 3961 

Log normal 17.772 0.042 1.604 2.546 1.114 7.301 1966 3936 3945 

Negative 

binomial 
10.150 -0.312 0.001 2.229 1.471 27.041 1714 3432 3441 

Repeated split 

sampling 

(Calibration set) 

Normal 10.570 0.000 0.225 2.136 1.510 23.741 1412 2829 2837 

Exponential 18.108 0.000 1.478 3.832 0.893 7.769 1792 3587 3590 

Gamma 17.261 0.000 1.503 2.462 1.201 6.789 1386 2776 2784 

Log normal 17.695 0.038 1.576 2.391 1.176 6.757 1381 2766 2773 

Negative 

binomial 
10.207 -0.316 0.001 2.227 1.476 26.834 1204 2412 2420 

Repeated split 

sampling 

(Validation set) 

Normal 10.654 -0.008 0.225 2.136 1.510 23.741 600 1205 1211 

Exponential 18.208 0.006 1.478 3.832 0.893 7.769 762 1526 1529 

Gamma 17.542 0.098 1.503 2.462 1.201 6.789 590 1185 1191 

Log normal 17.825 0.080 1.576 2.391 1.176 6.757 589 1181 1187 

Negative 

binomial 
10.394 -0.320 0.001 2.227 1.476 26.834 515 1033 1039 

Figure 5-11 shows the calibration results for IRI (using bootstrapping) for the least squares and 

MLE using a negative binomial distribution. The SEE and bias values for the least squares are 

10.208 and 0.000, whereas, for the MLE using negative binomial, they are 10.150 and -0.312, 

using bootstrap resampling. The predicted vs. measured IRI and distribution of residuals are 

similar for both methods. Figures 5-11 (e) and (f) show the SEE, bias, and IRI transfer function 

coefficients distribution for 1000 bootstrap resamples. The least squares method shows lower 

bias, which can be observed from the distribution of parameters in Figure 5-11. A similar trend is 

observed in the validation results (Table 5-14), where the least squares method shows better 

parameter estimates in terms of SEE and bias than the MLE method. 
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(a) Predicted vs. measured IRI (least 

squares) 

 
(b) Predicted vs. measured IRI (MLE) 

 
(c) Distribution of residuals (least squares) 

 
(d) Distribution of residuals (MLE) 

 
(e) Distribution of parameters (least squares) 

 
(f) Distribution of parameters (MLE) 

Figure 5-11 Calibration results for rigid IRI using observed data 
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5.3 IMPACT OF CALIBRATION ON PAVEMENT DESIGN 

Forty-four pavement sections, each for flexible and rigid sections, were designed to assess the 

impact of calibration on pavement design. It is important to note that the locally calibrated 

coefficients and standard error equations used for these designs were obtained using the least 

squares method. The standard error equations are summarized in Chapter 6. Table 5-15 shows 

the average design thickness for the 44 flexible and rigid sections. These are the final thicknesses 

based on the following criteria: 

• The minimum thickness should be 6.5" for flexible, 9" for JPCP freeway, and 8" for 

JPCP non-freeway sections. 

• A maximum difference of ± 1 inch from the AASHTO93 minimum thickness limits. 

• JPCP widened slab sections were designed as standard width (12 feet), and design 

thicknesses were reduced by a maximum of 1 inch depending on whether the previous 

conditions were met. This practice is followed because the slab width is a sensitive 

parameter in the Pavement-ME, giving impractical (very thin) designs. 

• The design trials were stopped when a pavement reached a maximum thickness of 16". 

Few designs fail at even 16", but further increasing the thickness leads to impractical 

designs. This occurs because a particular design may have inputs (material, traffic, 

climate) that are not well represented in the global (or local) dataset. Therefore, the 

Pavement-ME has difficulty providing a practical design outcome. These designs may 

require changes in the Pavement-ME inputs, and simply changing the thickness cannot 

achieve a passing design. Furthermore, MDOT is limited by design changes 

(construction, materials, budget, and design procedures). Therefore, changing the inputs 

may not be practical.   

Table 5-15 Summary of final pavement design thicknesses 

Pavement type Design method 
Design thickness (in) 

Average Standard deviation CoV 

Flexible 

AASHTO93 9.17 2.20 24% 

Pavement-ME previous model 8.86 1.78 20% 

Pavement-ME new calibrated model 8.95 2.27 25% 

Rigid 

AASHTO93 10.07 1.67 17% 

Pavement-ME global model 9.83 1.63 17% 

Pavement-ME new calibrated model 9.63 1.44 15% 
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The average design thickness using the newly calibrated models is closer to the AASHTO93 

design than the previous model calibration, with an average thickness reduction of 0.22 inches 

for flexible sections. The average PCC thickness using the new calibrated model is 0.44 inches 

lower than the AASHTO93 design thickness. Interestingly, for designs using the global model, 

five sections reached the design thickness of 16 inches, and another five sections reached the 

design thickness of 6 inches. However, for the design using the locally calibrated model, only 

one section has a design thickness of 16 inches. Figure 5-12 shows the new calibrated model vs. 

AASHTO93 design thicknesses. Overall, the average design thickness using the locally 

calibrated models is slightly lower than the AASHTO93 design thickness for both flexible and 

rigid sections.  

 
(a) Flexible pavement design 

 
(b) Rigid pavement design 

Figure 5-12 New calibrated model vs. AASHTO93 final design thickness 

The Pavement-ME designs are based on several distresses, but it is crucial to identify the 

controlling distress. Figure 5-13 shows the contribution of different controlling distresses. The 

values shown in Figure 5-13 are the percentage of sections (out of 44) having that critical 

distress. It should be noted that some sections may have more than one controlling distress. 

Bottom-up and thermal cracking are the controlling distresses for flexible pavements, whereas 

transverse cracking and IRI are for rigid pavements. Figure 5-14 compares reliability for critical 

distress in flexible and rigid pavements. The standard deviation for the previously calibrated 

model is higher than the newly calibrated model for both bottom-up cracking and thermal 

cracking in flexible pavements. Also, the standard deviation for the newly calibrated model is 

higher than the global model for transverse cracking in rigid pavements.  
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(a) Flexible sections 

 
(b) Rigid sections 

Figure 5-13 Critical distresses for pavement design 

 
(a) Bottom-up cracking (Flexible) 

 
(b) Thermal cracking (Flexible) 

 

 
(c) Transverse cracking (Rigid) 

Figure 5-14 Comparison of reliability for critical distresses 

A higher standard deviation in predicted performance is expected to produce a thicker design, 

but the design results (Table 5-15) show that models with higher standard deviation have lower 
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design thicknesses. Therefore, these trends indicate that the difference in design thicknesses can 

be attributed to the calibration coefficients rather than the reliability of these models. 

5.4 SENSITIVITY ANALYSIS OF PAVEMENT-ME MODEL COEFFICIENTS 

The sensitivity of Pavement-ME model coefficients was estimated using the NSI and SSC 

methods, as explained in Chapter 4. For NSI calculation, each section was initially run at the 

global values of transfer function coefficients at 50% reliability. Afterward, each coefficient (one 

at a time) was varied by -50%, -20%, 20%, and 50%, respectively, from the global values. The 

change in performance prediction was evaluated for differences in transfer function coefficients 

to calculate the NSI values. Table 5-16 shows the NSI values for each section in this study and 

the NSI values from Kim et al. (2014) (26). The NSI values vary significantly among different 

sections and from Kim et al. (2014). These differences are attributed to the material and climate, 

ultimately affecting the predicted performance. For example, coefficient C4 in the IRI model for 

rigid pavements ranges from 0.06 to 0.23. These values correspond to the coefficient categorized 

as non-sensitive and sensitive, respectively (60). Similarly, C2 in bottom-up cracking ranges from 

-1.3 to -369.5, corresponding to very sensitive and hypersensitive categories. It is important to 

note that the magnitude of bottom-up cracking in flexible pavements and transverse cracking in 

rigid pavements was extremely low (close to zero). This has resulted in very high NSI values for 

C1 in bottom-up cracking and C5 in transverse cracking. These values are also significantly 

different from the ones in Kim et al. (2014). This is mainly because of the difference in 

magnitude of bottom-up and transverse cracking between the two studies.  

The SSCs were calculated and plotted using MATLAB codes using one coefficient at a 

time and considering other coefficients as constant. A wide range of independent variables have 

been used since calculating SSCs is a forward problem without data. Figures 5-15 and 5-16 show 

the SSCs for flexible and rigid pavements. Transfer functions with multiple independent 

variables have all independent variables shown in the same plot on the x-axis. 
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Table 5-16 Summary of NSI values for transfer function coefficients 

Performance 

model 

Section no. Average 

NSI 

Kim 
et al. 

(26) 1 2 3 4 5 6 7 8 9 10 

Bottom-up 

cracking 
(flexible) 

C1 -61.3 -66.0 -58.5 -88.4 -71 -72.2 -57.1 -58.4 -61.8 -867 -146.2 -11.3 

C2 -2.9 -5.28 -40.8 -14.14 -1.3 -17.9 -369 -15.1 -94.9 -35.4 -59.75 -2.29 

Top-down 

cracking 

(flexible) 

C1 -0.59 -0.63 -0.59 0.00 -0.6 -0.67 -0.59 -0.59 -0.72 -0.78 -0.58 NA 

C2 -2.42 -2.80 -2.37 0.00 -2.7 -3.39 -2.36 -2.42 -4.11 -5.01 -2.76 NA 

C3 -0.03 -0.18 -0.01 0.00 -0.1 -0.64 0.00 -0.02 0.00 0.00 -0.10 NA 

Total 

rutting 
(flexible) 

𝛽1𝑟 0.23 0.21 0.18 0.13 0.15 0.13 0.19 0.19 0.17 0.18 0.18 1 

𝛽𝑠1 0.24 0.27 0.20 0.28 0.23 0.29 0.17 0.13 0.26 0.29 0.24 1 

𝛽𝑠𝑔1 0.53 0.52 0.62 0.60 0.62 0.58 0.64 0.68 0.57 0.53 0.59 1 

IRI 

(Flexible) 

C1 0.09 0.11 0.07 0.08 0.11 0.09 0.01 0.11 0.06 0.07 0.08 0.15 

C2 0.02 0.03 0.02 0.00 0.02 0.02 0.02 0.03 0.01 0.01 0.02 0.00 

C3 0.13 0.13 0.13 0.13 0.06 0.00 0.00 0.00 0.00 0.00 0.06 0.00 

C4 0.26 0.30 0.22 0.21 0.30 0.25 0.32 0.30 0.25 0.28 0.27 0.31 

Transverse 
cracking 

(rigid) 

C4 -2.38 -2.38 -2.38 -2.38 -2.38 -2.38 -2.38 -2.38 -2.37 -2.38 -2.38 -0.08 

C5 -4E4 -1E5 -1E5 -1E6 -1E6 -8E3 -2E3 -3E3 -1E2 -4E4 -2E5 0.20 

IRI (rigid) 

C1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 

C2 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.02 

C3 0.06 0.37 0.34 0.08 0.38 0.25 0.40 0.47 0.48 0.18 0.30 0.07 

C4 0.15 0.09 0.11 0.23 0.12 0.13 0.07 0.10 0.06 0.13 0.12 0.48 

Figures 5-15 and 5-16 show the following observations: 

• Bottom-up cracking (flexible): C1 is more sensitive than C2, and C1 and C2 are not 

correlated. Moreover, both C1 and C2 are large enough to be confidently estimated. 

Coefficients with negative SSCs indicate that an increase in the coefficient will decrease 

predicted performance. Therefore, an increase in C1 or C2 will reduce bottom-up cracking. 

• Top-down cracking (flexible): The sensitivity of coefficients changes with the 

independent variables, which are t (analysis time in days) and t0 (time to crack initiation). 

Overall, C3 is the most sensitive coefficient, followed by C2. C1 is the least sensitive 

coefficient. C1 and C2 are correlated, which signifies that only one of them can be 

estimated with confidence. All coefficients are estimable based on the magnitude of 

SSCs, and an increase in any of the coefficients will reduce the predicted top-down 

cracking. 

• Total rutting (flexible): Total rutting is a linear model between the individual layer 

rutting. Subgrade rutting coefficient (𝛽𝑠𝑔1) is the most sensitive, followed by the AC 

rutting coefficient (𝛽1𝑟). The base rutting coefficient ( 𝛽𝑠1) is the least sensitive. SSCs for 

all coefficients are large enough to be estimable and positive. 

• IRI (flexible): IRI is a linear relationship between IRI at the time of construction (initial 

IRI) and other distress (cracking, rutting, etc.). The site factor coefficient is the most 

sensitive, followed by the total rutting coefficient. The thermal cracking coefficient is the 
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next sensitive coefficient, while the fatigue cracking coefficient is the least sensitive. All 

coefficients have positive values for SSCs. 

• Transverse cracking (rigid): C5 is more sensitive than C4, and the change in sensitivity 

with damage can be clearly observed. C4 and C5 are not correlated, and the SSCs for both 

coefficients are large enough to be estimated with confidence.  

• IRI (rigid): The transverse cracking coefficient is the most sensitive, and the joint spalling 

coefficient is the least sensitive. Moreover, the magnitude of SSCs for joint spalling is 

very low, indicating that the coefficient cannot be estimated with high confidence. 

 
(a) Bottom-up cracking 

 
(b) Top-down cracking 

 
(c) Total rutting 

 
(d) IRI 

Figure 5-15 SSCs for flexible pavements 
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(a) Transverse cracking 

 
(b) IRI 

Figure 5-16 SSCs for rigid pavements 

SSCs are highly suitable for showing sensitivity for any range of independent variables. For 

example, the SSC plot for IRI in Figure 5-16 shows that C1 is the most sensitive coefficient, 

whereas the NSI values are calculated to show that it is the least sensitive input. This is because 

of the low values of transverse cracking used to calculate the NSI values. Figure 5-17 shows the 

SSC plot for IRI in rigid pavements using low values for transverse cracking. It can be observed 

that at this range of transverse cracking, C1 is the least sensitive coefficient.  

 

Figure 5-17 SSCs for IRI on small values of transverse cracking 

The SSC plot is used to visualize the error in parameter estimation. Moreover, the larger the SSC 

magnitude, the more confidence in parameter estimation. Calibrating the transverse cracking 

model in rigid pavements is an example of verification. From Figure 5-16a, C5 should have less 
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estimation error than C4. Error in estimation for any parameter refers to the relative error, i.e., the 

ratio of standard error and the parameter value. C4 and C5 are not correlated, and the SSCs for 

both coefficients are large enough to be estimated with confidence. The relative error should be 

less than 60%; otherwise, the confidence interval of the parameter likely includes zero. In other 

words, the parameter is not estimable or not statistically different than zero.  

The selected rigid pavements were used to calibrate the transverse cracking model and 

validate the applicability of SSCs. The measured performance data is obtained from the PMS 

records, and the Pavement-ME inputs are obtained from construction records, material testing 

results, and the Job Mix Formula (JMF). Figure 5-18 shows the predicted vs. measured 

transverse cracking for global and locally calibrated model coefficients. Table 5-17 summarizes 

the standard error of estimate (SEE), bias, and relative error. The local calibration significantly 

improved the model predictions. Moreover, the relative error for C5 is less than that for C4, with 

both values less than 60%. The relative error values verify the results from the SSC plot, and 

therefore, both coefficients can be estimated with confidence.  

 
(a) Global model 

 
(b) Local model 

Figure 5-18 Predicted vs. measured transverse cracking in rigid pavements 

Table 5-17 Summary of transverse cracking model calibration 

Coefficient 
Global model Local model Relative standard 

error Value SEE Bias Value SEE Bias 

C4 0.52 
5.99 -2.39 

0.426 
3.95 -0.40 

20.73% 

C5 -2.17 -0.953 6.14% 
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5.5 CHAPTER SUMMARY 

This chapter summarizes the calibration results for the flexible and rigid Pavement-ME models. 

Using synthetic and observed data, local calibration was performed using the least squares and 

MLE methods. Synthetic data was generated using an exponential distribution for bottom-up 

cracking in flexible pavements and transverse cracking in rigid pavements. MLE results 

outperformed the least squares method for both sets of synthetic data. Calibration results using 

observed data showed that MLE provides better parameter estimates for non-normally 

distributed data. For normally distributed data, MLE and least squares results were comparable. 

Forty-four sections each for new flexible and rigid pavements were designed using least squares 

calibration results to assess the impact of calibration on the pavement design. On average, the 

surface thicknesses using locally calibrated coefficients were thinner than the AASHTO93 

design by 0.22 and 0.44 inches for flexible and rigid pavements, respectively. Critical design 

distresses for flexible pavements include bottom-up and thermal cracking. On the other hand, 

transverse cracking and IRI control the designs for rigid sections. NSI and SSC methods were 

used to evaluate the sensitivity of the Pavement-ME transfer function coefficients. Ten sections 

each, from flexible and rigid pavements, were used to calculate the NSI values and compared 

with the literature. Results show that SSCs provide a more reliable sensitivity on a range of 

independent variables rather than a point estimate, unlike NSI. NSI values showed variability 

among different sections, depending on the magnitude of predicted performance.  
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CHAPTER 6 - CONCLUSIONS, RECOMMENDATIONS AND FUTURE 

SCOPE 

6.1 KEY FINDINGS 

This study introduces a novel calibration approach for the Pavement-ME transfer functions using 

MLE and compares it with the least squares method. The calibration was performed using 

synthetic and observed field data. The impact of calibration on pavement design was also 

assessed. Moreover, the sensitivity of the Pavement-ME model coefficients was also evaluated 

using the traditional NSI and the SSC approach. The following conclusions can be drawn based 

on the results. 

• The synthetic and observed data distribution for bottom-up cracking in flexible pavements 

shows skewness, with most data points below 5%. Fitting different distributions over data 

shows that bottom-up cracking is non-normally distributed. The distribution of observed 

data for total rutting and IRI shows slight skewness. Moreover, the distribution is close to 

normal, especially for IRI.   

• Calibration results from synthetic data indicate that MLE outperforms the least squares 

method based on statistical parameters and computational efficiency for flexible pavements. 

The gamma distribution is the most optimum distribution for MLE, consistently showing 

SEE and bias values close to zero for the synthetic bottom-up cracking data. The SEE value 

reduced for MLE results from 3.3 to 0.0 for bootstrapping and 4.4 to 0.0 for repeated split 

sampling (validation) compared to the least squares results for the dataset with no 

variability. The dominance of MLE calibration is more evident for datasets with 50% 

variability, especially in the case of validation.  

• For the observed data, the gamma distribution is most suitable for bottom-up cracking and 

total rutting models, whereas the negative binomial is for the IRI model. The predicted vs. 

measured plots show less scatter for MLE results than the least squares results for all 

models. The applicability of MLE is more evident for the bottom-up cracking model. The 

residual distribution is normally distributed and closer to zero. Moreover, the distribution of 

parameters is close to a normal distribution, and the bias value is consistently zero, showing 

the robustness of the calibration results. Calibration of the total rutting model using MLE 

showed a slight improvement compared to the least squares method, whereas IRI calibration 
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results for MLE and least squares methods were comparable. This indicates that MLE is 

more effective for non-normally distributed data. 

• The use of MLE on synthetic data for rigid pavements also showed better computational 

efficiency and applicability to bias-variance tradeoffs compared to the least squares method. 

The gamma distribution is most suitable for the generated synthetic data for transverse 

cracking. The mean bias (using bootstrapping) for MLE using gamma distribution is zero 

for data without and with 50% variability. The SEE values for the least squares method and 

MLE using gamma distribution are comparable with slightly lower values for MLE. A 

similar trend is observed in validation results. 

• In rigid pavements, the gamma distribution is most suitable for transverse cracking using 

observed data. The mean bias is consistently near zero using the MLE method for transverse 

cracking. Calibration using MLE significantly reduces the model bias while keeping the 

SEE comparable (slightly lower) than the least squares method. Calibration results for IRI 

using the least squares method and MLE are similar, with the least squares method being 

somewhat better regarding model bias. The negative binomial is the most suitable 

distribution for the MLE method.   

• The MLE method is proven most effective for skewed and non-normally distributed data, 

such as bottom-up cracking in flexible pavements and transverse cracking in rigid 

pavements. In contrast, the least squares method suits data close to a normal distribution, 

such as IRI. Prior knowledge of distribution is required for the use of MLE.  

• Calibration significantly improved performance predictions for both least squares and MLE 

methods. Resampling methods provide better calibration results with lower SEE and bias 

and can improve the overall robustness of the MLE approach. 

• The average design thicknesses using new calibration coefficients were close to 

AASHTO93 design thicknesses with a reduction of 0.22 and 0.44 inches in flexible and 

rigid pavements, respectively. The design thickness using new calibration coefficients was 

less than the AASHTO93 design thickness for 21 sections and equal for 12 of 44 flexible 

sections. Similarly, the design thickness using new calibration coefficients was less than the 

AASHTO93 design thickness for 17 and equal for 23 of 44 rigid sections. 

• Thermal cracking is the most critical distress for flexible sections, with 61.4%, followed by 

bottom-up cracking, with a 36.4% contribution. The contribution of total rutting was 2.3%. 
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None of the sections had top-down cracking or IRI as their critical distress. In rigid sections, 

IRI controlled distress with 77.3%, followed by transverse cracking with a 29.5% 

contribution. Joint faulting had the most negligible contribution of 6.8%. Comparison 

between the standard deviation of different models indicates that the differences in design 

thicknesses come from the calibration coefficients rather than the reliability for both flexible 

and rigid sections. 

• The sensitivity analysis showed that NSI values differed for each section in both flexible 

and rigid pavements. These sections have been designed using different Pavement-ME 

inputs, resulting in a wide range of performance predictions and, ultimately, a range of NSI 

values. The bottom-up cracking predictions in flexible and transverse cracking predictions 

in rigid sections were extremely low (close to zero). This resulted in very high NSI values, 

which are unreliable. The coefficient C1 for IRI in rigid sections is also zero because of the 

low magnitude of transverse cracking. NSI values are variable and depend on the magnitude 

of predicted distresses. Moreover, the Pavement-ME inputs (material, traffic, and climatic) 

are required for NSI calculations. 

• SSCs provide a convenient visual representation of the sensitivity of different transfer 

function coefficients over a continuous range of independent variables, unlike NSI, which is 

a point estimate. SSCs for transverse cracking and IRI for rigid sections show that the 

sensitivity changes at different ranges of the independent variable. It also indicates any 

correlations between different coefficients and confidence in estimation. Calculation of 

SSCs is a forward problem and does not require any input data. Therefore, a user only needs 

a mathematical model (the transfer functions) and can calculate SSCs on any range of 

independent variables.  

• NSI and SSCs provide a measure of sensitivity, but it is convenient to rank transfer function 

coefficients for straightforward interpretation. Table 6-1 shows the ranking of transfer 

function coefficients based on different methods. The order using SSCs is based on the 

overall sensitivity in the entire range of independent variables. As previously shown, this 

sensitivity might change for a limited range of independent variables. Coefficients with the 

same NSI values have been ranked the same. For example, all rutting coefficients in Kim et 

al. (2014) (26) study have been ranked 1 as they all have the same NSI values. Some models 

(e.g., bottom-up cracking and transverse cracking) have similar rankings using different 
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methods, whereas others (e.g., IRI for rigid pavements) have significant differences. These 

differences make it challenging to estimate the most sensitive coefficients truly. Therefore, 

SSCs can help obtain a continuous range of sensitivity rather than a point estimate. 

Table 6-1 Rank of transfer function coefficients based on different methods 

Pavement type 
Performance 

model 
Coefficient NSI SSCs 

Kim et al. 

(2014) (26) 

Flexible 

Bottom-up 

cracking 

C1 1 1 1 

C2 2 2 2 

Top-down 

cracking 

C1 2 3 NA 

C2 1 2 NA 

C3 3 1 NA 

Total rutting 

𝛽1𝑟 3 2 1 

𝛽𝑠1 2 3 1 

𝛽𝑠𝑔1 1 1 1 

IRI 

C1 3 2 2 

C2 4 4 3 

C3 2 3 3 

C4 1 1 1 

Rigid 

Transverse 

cracking 

C4 2 2 2 

C5 1 1 1 

IRI 

C1 4 1 2 

C2 3 4 4 

C3 1 3 3 

C4 2 2 1 

6.2 RECOMMENDED CALIBRATION COEFFICIENTS 

Tables 6-2 and 6-3 summarize the recommended calibration coefficients and reliability equations 

for flexible and rigid pavements. These results were obtained using the least squares method and 

validated with extensive pavement designs. The detailed results of pavement designs are shown 

in Chapter 5. 
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Table 6-2 Flexible pavement recommended calibration coefficients and standard error equations 

Performance prediction 

model 
Local coefficient Standard error 

Bottom-up cracking 

(Option a) 

𝐶1 = 0.2320 
𝐶2 = 0.6998⁡(hac <5 in) 

𝐶2 = (0.867 + 0.2583 ∗ ℎ𝑎𝑐) ∗ 0.2204 (5 

in <= hac <=12 in) 

𝐶2 = 0.8742⁡(hac >12 in) 

𝑠𝑒(𝐵𝑈) = 0.2262 +
14.2349

1 + exp⁡(0.2958 − 0.1441 log(𝐶𝑟𝑎𝑐𝑘))
 

Bottom-up cracking 

(Option b) 

𝐶1 = 0.2540 
𝐶2 = 0.7303⁡(hac <5 in) 

𝐶2 = (0.867 + 0.2583 ∗ ℎ𝑎𝑐) ∗ 0.2692 (5 

in <= hac <=12 in) 

𝐶2 = 1.0678⁡(hac >12 in) 

𝑠𝑒(𝐵𝑈) = 4.4396 +
25.4391

1 + exp⁡(4.3119 − 2.2778 log(𝐶𝑟𝑎𝑐𝑘))
 

Top-down cracking 

K𝐿1 = 64271618 
K𝐿2 = 0.90 
K𝐿3 = 0.09 
K𝐿4 = 0.101 
K𝐿5 = 3.260 

𝐶1 = 0.30 
𝐶2 = 1.155 

𝐶3 = 1 

𝑠𝑒(𝑇𝐷) = 0.6417 × 𝑇𝑂𝑃 + 0.5014 

Rutting 

HMA 
𝛽1𝑟 = 0.148 

𝛽2𝑟 = 0.7 

𝛽3𝑟 = 1.3 

 

𝑠𝑒(𝐻𝑀𝐴) = 0.1481(𝑅𝑈𝑇𝐻𝑀𝐴)
0.4175

 

Base/subgrade 
𝛽𝑠1 = 0.301 

𝛽𝑠𝑔1 = 0.070 

𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.0411(𝑅𝑈𝑇𝑏𝑎𝑠𝑒)
0.3656 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0. 0728(𝑅𝑈𝑇𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.5456

 

Thermal cracking 𝐾 = 0.85 𝑠𝑒(𝑇𝐶) = 0.1223(𝑇𝐶) + 400.9 

IRI 
𝐶1 = 42.874, 𝐶2 = 0.102 
𝐶3 = 0.0081, 𝐶4 = 0.003 

Internally determined by the software 

Table 6-3 Rigid pavement recommended calibration coefficients and standard error equations 

Performance prediction model Local coefficient Standard error 

Transverse cracking 
𝐶4 = 0.415 
𝐶5 = −0.965 

𝑠𝑒(𝐶𝑅𝐾) = 2.9004(𝐶𝑅𝐾)0.5074 

Transverse joint faulting 

𝐶1 = 0.6 
𝐶2 = 1.611 
𝐶3 = 0.00217 
𝐶4 = 0.00444 
𝐶5 = 250 
𝐶6 = 0.2 
𝐶7 = 7.3 
𝐶8 = 400 

𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.0919(𝐹𝑎𝑢𝑙𝑡)0.2249 

 

IRI 

𝐶1 = 0.0942 
𝐶2 = 1.5471 
𝐶3 = 1.7970 
𝐶4 = 23.7529 

Internally determined by the software 

6.3 PRACTICAL IMPLICATIONS 

This study provides a framework for the local calibration of performance models. Highway 

agencies can leverage the results for better design and adaptation of the Pavement-ME for local 

conditions. The critical implications include: 
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• The recorded performance data may have irregularities due to measurement errors and 

limitations in distress identification. Moreover, the recorded performance data may require 

conversion to the Pavement-ME units, which involves several assumptions. It may cause 

anomalies in the measured performance data and may not be practical to use directly for 

calibration. Therefore, analyzing the raw performance data and filtering it (if required) is 

recommended for practicality.  

• It is worth mentioning that the calibration process and pavement design were simultaneously 

executed. For every set of calibration coefficients, pavements were designed, and the 

calibration was improved based on the results. Pavement design is one of the most crucial 

calibration process steps and is often not considered in practice. It is recommended that the 

calibration results should not be based only on statistical parameters (SEE, bias, etc.) but 

also on practical engineering judgments.  

• Identifying critical design distress types is crucial. By understanding which distress types 

are most relevant to their region, agencies can develop mitigation and maintenance 

strategies leading to longer pavement service lives. For example, thermal cracking is critical 

in Michigan for flexible pavements. MDOT can mitigate the occurrence of cracking by 

using modified and improved binders.    

• It is recommended that local calibrations be performed every six years when more time 

series data points (e.g., three data points in Michigan) are available for the already selected 

and new pavement sections.  

SSCs can help agencies improve their local calibration process. The advantages and 

interpretation of the SSC plots are described in Chapters 4 and 5. The following approach is 

recommended to leverage these SSC plots before starting the local calibration process: 

• Run Pavement-ME to identify the magnitude of independent variables for each model. For 

example, one should know the range of damage values for transverse cracking in rigid 

pavements. 

• Obtain the sensitivity of each calibration coefficient from the SSC plots for the respective 

range of independent variables. 

• Ensure that the SSCs for each coefficient are large enough (the maximum value of SSC 

should be at least 10% of the largest value of the dependent variable). For example, the 

maximum SSC values for C4 and C5 are 25% and 38%, respectively, in transverse cracking 
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in rigid pavements. These SSC values exceeded 10% of the maximum predicted transverse 

cracking. Moreover, the SSCs should not be correlated (SSCs for different coefficients 

should not show similar trends). 

• If the SSCs are not large enough, one can not estimate those coefficients with sufficient 

confidence, i.e., they may be insignificant. On the other hand, if coefficients are correlated, 

both coefficients cannot be simultaneously estimated. For example, coefficients C1 and C2 in 

top-down cracking for flexible pavements show a correlation; therefore, only one should be 

calibrated. Calibration of C2 is recommended since the magnitude of SSC for C2 is higher. 

• Ensure that the relative error is lower for the more sensitive coefficients and is not more 

than 60% for any coefficient. 

• The SSCs can highlight the most significant coefficients for a range of independent 

variables. That can help in diverting more attention to those coefficients during local 

calibration. For example, in the rigid IRI model, C1 is the least sensitive for lower transverse 

cracking (less than 1%), and C1 is the most sensitive for higher transverse cracking.  

6.4 REVIEW OF CAT TOOL 

This study used The CAT tool to calibrate the thermal cracking model in flexible and joint 

faulting models in rigid pavements. CAT provides a convenient alternative for those models 

where rerunning Pavement-ME is required. The advantages and limitations of the CAT tool are 

summarized below: 

Advantages of CAT 

• CAT provides good visualization of the input data and experimental matrix of the *.dgpx 

files. It helps quickly glance at the overall data and identify any outliers or biases.  

• It has default validation of the optimized coefficients, which helps to verify the model on an 

independent set of sections. 

• It provides sufficient descriptive statistics for calibration results and a linear model showing 

the effect of different Pavement-ME inputs on the overall calibration.  

• It helps visualize the change in error and bias for each iteration, making it easier to identify 

local minima in the given range. 

• It assists in evaluating the impact of the number of bins on the reliability model.  
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Limitations of CAT 

• Pavement-ME (.dgpx) files, once uploaded, cannot be deleted. Also, trials for optimizing 

calibration coefficients are run; they cannot be deleted or paused. This makes the 

nomenclature of the .dgpx files challenging, and trials should be run meticulously. 

• The limit to the total number of combinations of calibration coefficients is 100. Hence, all 

calibration coefficients cannot be changed simultaneously for several increments. 

• Since the number of increments is fixed to 100, the coefficients must be changed 

systematically by reducing the range provided. Also, not more than three coefficients can 

be involved in one trial run for a reasonable range and number of increments. It makes the 

optimization process cumbersome, and some prior experience is required to recalibrate with 

optimum time and effort. 

• The computation time is comparatively large. For example, for 100 pavement sections, 

changing a total of two calibration coefficients with five increments each makes it a total of 

10055 = 2500 Pavement-ME runs, which takes a computation time of around 29 hours. 

Therefore, considerable computational time is required, especially when the number of 

sections is large. 

• The same sections cannot be used for different projects using different measured data. 

Changing the measured data changes it in all existing (already run) projects. 

6.5 FUTURE SCOPE OF THIS STUDY 

The scope of this study is limited to new flexible and rigid pavements. Moreover, bottom-up 

cracking, total rutting, IRI models for flexible pavements, and transverse cracking and IRI 

models for rigid pavements were calibrated using the four distributions mentioned: exponential, 

gamma, log-normal, and negative binomial. Using an exponential distribution, the MLE 

methodology was validated using synthetic data for bottom-up cracking in flexible and 

transverse cracking in rigid pavements. The following can be explored as part of future studies: 

• The MLE approach can be extended to calibrate other Pavement-ME models and models for 

rehabilitated pavements. Different probability distributions can be explored as part of future 

research.  
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• This methodology can be validated using synthetic data for different Pavement-ME transfer 

functions. Moreover, synthetic data can be generated using different distributions and 

variability.  

• Further studies can be conducted to estimate the impact of varying calibration approaches 

on pavement design.  

• Top-down cracking model calibration improved the SEE and bias but did not provide 

realistic results, i.e., high SEE. Furthermore, the top-down cracking predictions didn't vary 

for different sections, producing the same predictions. The Pavement-ME limits the thermal 

cracking prediction to 2112 ft/mile, but the measured data showed several records of 

thermal cracking above 2112 ft/mile. Also, the thermal cracking coefficient in the current 

version is changed and is a function of MAAT. This made the calibration of the thermal 

cracking model challenging. Due to the model's limitations, although the SEE and bias were 

improved after local calibration, the thermal cracking model still showed high variability. 

The top-down and thermal cracking models in flexible pavements should be improved, 

especially considering thermal cracking is critical.  

• The SSCs can be used for sensitivity analysis in other Pavement-ME models, apart from the 

transfer functions.   
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APPENDIX 

This chapter summarizes the results of the Pavement-ME models calibrated using the least 

squares method only. These models include bottom-up cracking (Option a), top-down cracking, 

thermal cracking, and rutting (Method 1) models for flexible pavements and joint faulting 

models for rigid pavements.  

BOTTOM-UP CRACKING MODEL (OPTION A) 

No Sampling 

In no sampling, the entire dataset was used for calibration. The error between the predicted and 

measured fatigue cracking was minimized. Figure A-1 shows the predicted versus measured 

bottom-up for the global and locally calibrated models. The global model underpredicts bottom-

up cracking. Table A-1 shows the local calibration results. The SEE is reduced from 8.28 to 8.08, 

whereas the bias is reduced from -4.90 to 0.17. Figure A-2 shows the fatigue damage curve and 

the measured and locally predicted bottom-up cracking with time. These measured and predicted 

cracking values are for the same sections and at the same ages. Figure A-2 shows that local 

predictions are close to the measured values. 

 
(a) Global model 

 
(b) Local model 

Figure A-1 Predicted vs. measured bottom-up cracking (No sampling) 
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(a) Fatigue damage 

 
      (b) Measured and predicted time series 

Figure A-2 Local calibration results for bottom-up cracking (No sampling) 

Table A-1 Local calibration summary for bottom-up cracking (No sampling) 

Parameter Global model Local model 

SEE (% total lane area) 8.28 8.08 

Bias (% total lane area) -4.90 0.17 

C1 1.31 0.22 

C2 (hac < 5 in.) 2.1585 0.66 

C2 (5 in. <= hac <=12 in.) (0.867+0.2583* hac)*1 (0.867+0.2583* hac)*0.22 

Split Sampling 

Split sampling was used with a random split of 70% sections for the calibration set and the rest 

30% for the validation set. Figure A-3 shows the predicted vs. measured bottom-up cracking for 

the calibration and validation sets. The validation set shows a similar trend as the calibration set. 

Table A-2 summarizes the local calibration results. Though SEE is higher than the global model, 

bias is significantly improved from -4.54 to 0.7018 in the validation set. Overall, the validation 

results are satisfactory.  

Table A-2 Local calibration summary for bottom-up cracking (split sampling) 

Parameter Global model Local model Validation 

SEE (% total lane area) 7.76 7.11 11.2955 

Bias (% total lane area) -4.54 -0.47 0.7018 

C1 1.31 0.19 0.19 

C2 (hac < 5 in.) 2.1585 0.78 0.78 

C2 (5 in. <= hac <=12 in.) (0.867+0.2583*hac)*1 (0.867+0.2583*hac)*0.26 (0.867+0.2583*hac)*0.26 
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(a) Calibration set 

 
(b) Validation set 

Figure A-3 Local calibration results for bottom-up cracking (split sampling) 

Repeated Split Sampling 

Like split sampling, repeated split sampling was used with a random split of 70% sections for the 

calibration set and the remaining 30% for the validation set. This process was repeated 1000 

times, where a new random set of calibration and validation sets was picked each time. Repeated 

split sampling is used to estimate the distribution of different parameters instead of optimizing 

for a point estimate. Confidence intervals (CI) for each parameter can also be obtained. Tables 

A-3 to A-5 show the summary for the global model, calibration, and validation sets. It is 

important to note that coefficient C2 is a function of total HMA thickness (hac). For estimating the 

confidence intervals and distribution of C2, it was converted to a single value for all HMA 

thicknesses. Figures A-4 and A-5 present the distribution of model parameters for calibration and 

validation sets. In Figures A-4 and A-5, the solid blue line shows the median, the dashed red line 

shows the mean, the solid black line shows the cumulative distribution and the dashed red lines 

on both sides show the 2.5th and 97.5th percentiles. The mean SEE is reduced from 8.29 to 7.90 

for the calibration and 7.93 for the validation set. Similarly, bias was improved from -4.91 to -

0.02 for the calibration and 0.03 for the validation set.  

Table A-3 Global model summary (Repeated split sampling) 

Parameter 
Global model 

mean 

Global model 

median 

Global model 

lower CI 

Global model upper 

CI 

SEE (% total lane area) 8.29 8.29 7.63 8.84 

Bias (% total lane area) -4.91 -4.91 -5.35 -4.47 

C1 1.31 1.31 - - 

C2 (hac < 5 in.) 2.1585 2.1585 - - 

C2 (5 in. <= hac <=12 

in.) 

(0.867+0.2583* 

hac)*1 

(0.867+0.2583* 

hac)*1 

- - 
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Table A-4 Calibration set summary (Repeated split sampling) 

Parameter Local model mean Local model median 
Local model 

lower CI 

Local model 

upper CI 

SEE (% total lane area) 7.90 7.73 6.49 9.93 

Bias (% total lane area) -0.02 0.00 -0.51 0.42 

C1 0.26 0.25 0.13 0.42 

C2 (hac < 5 in.) 0.60 0.60 

0.29 0.89 
C2 (5 in. <= hac <=12 in.) 

(0.867+0.2583* hac)* 

0.19 

(0.867+0.2583* hac)* 

0.19 

Table A-5 Validation set summary (Repeated split sampling) 

Parameter Local model mean Local model median 
Local model 

lower CI 

Local model 

upper CI 

SEE (% total lane area) 7.93 7.68 6.01 10.88 

Bias (% total lane area) 0.03 0.02 -2.04 2.27 

C1 0.26 0.25 0.13 0.42 

C2 (hac < 5 in.) 0.60 0.60 

0.29 0.89 
C2 (5 in. <= hac <=12 in.) 

(0.867+0.2583* hac)* 

0.19 

(0.867+0.2583* hac)* 

0.19 

 

Figure A-4 Local calibration results for bottom-up cracking – calibration dataset (repeated split 

sampling) 
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Figure A-5 Local calibration results for bottom-up cracking – validation dataset (repeated split 

sampling) 

Bootstrapping 

Bootstrapping was used as a resampling technique to calibrate the bottom-up cracking model. 

One thousand bootstrap samples were created, randomly sampling with replacement. Unlike 

repeated split sampling, in bootstrap, the samples were not split; instead, the entire dataset was 

used. Bootstrapping also generated CI and distribution of model parameters. Tables A-6 and A-7 

summarize the model parameters for global and local models, respectively. SEE is slightly 

increased, whereas bias is significantly improved after local calibration. Figure A-6 shows the 

distribution of parameters for the 1000 bootstrap samples. 

Table A-6 Bootstrapping global model summary 

Parameter Global model mean Global model median 
Global model 

lower CI 

Global model 

upper CI 

SEE (% total lane area) 8.30 8.30 7.38 9.20 

Bias (% total lane area) -4.91 -4.91 -5.53 -4.33 

C1 1.31 1.31 - - 

C2 (hac < 5 in.) 2.1585 2.1585 - - 

C2 (5 in. <= hac <=12 in.) (0.867+0.2583*hac)*1 (0.867+0.2583* hac)*1 - - 
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Table A-7 Bootstrapping local calibration results summary 

Parameter Local model mean Local model median 
Local model 

lower CI 

Local model 

upper CI 

SEE (% total lane area) 8.73 8.30 6.21 12.83 

Bias (% total lane area) 0.00 -0.03 -0.80 0.68 

C1 0.23 0.20 0.01 0.54 

C2 (hac < 5 in.) 0.70 0.73 

0.04 1.29 
C2 (5 in. <= hac <=12 in.) 

(0.867+0.2583* hac)* 

0.22 

(0.867+0.2583* hac)* 

0.23 

 

Figure A-6 Local calibration results for bottom-up cracking (bootstrapping) 

Summary 

All calibration approaches have significantly improved the bottom-up cracking model. Table A-8 

shows the summary of all sampling techniques. It should be noted that these calibrations were 

performed with specific limits on the calibration coefficients taken from the literature, as 

mentioned in Chapter 2. These limits ensure that we get reasonable and practical calibration 

results.  

Table A-8 Summary of results for all sampling techniques (Option a) 

Sampling technique SEE Bias C1 C2 (hac < 5 in.) C2 (5 in. <= hac <=12 in.) 

No sampling 8.08 0.17 0.22 0.66 (0.867+0.2583* hac)*0.21 

Split sampling 7.11 -0.47 0.19 0.78 (0.867+0.2583* hac)*0.26 

Repeated split sampling 7.90 -0.02 0.26 0.60 (0.867+0.2583* hac)*0.20 

Bootstrapping 8.73 0.00 0.23 0.70 (0.867+0.2583* hac)*0.22 
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TOP-DOWN CRACKING MODEL 

The following section shows the calibration of the top-down cracking model. The model contains 

crack initiation and crack propagation models. Since the actual crack initiation time is not 

known, it was not possible to calibrate the crack initiation model separately. So, a single function 

was used by substituting the crack initiation function with the crack propagation function. 

Initially, an attempt was made to change all eight coefficients simultaneously. This approach had 

some challenges: 

• The model has some mathematical limitations. High values for C3 give mathematical errors 

in the Pavement-ME output.  

• There is no current literature available for the top-down cracking model. Therefore, 

estimating the range for each coefficient to be used in optimization was difficult. 

• The model has numerous coefficients with coefficient values ranging from 0.011 to 

64271618. This makes the optimization challenging to converge. 

The top-down cracking model was calibrated in Microsoft Excel by combining engineering 

judgment and the solver function. Four coefficients from the crack initiation function (kL2, kL3, 

kL4, kL5) and two from the crack propagation function (C1, C2) have been calibrated. No 

sampling method was used for this calibration.  

 

(a) Global model 

 

(b) Local model 

Figure A-7 Predicted vs. measured top-down cracking (No sampling) 
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Figure A-7 shows the predicted vs. measured top-down cracking, and Figure A-8 shows the 

predicted and measured top-down cracking with time. The predicted and measured top-down 

cracking does not follow similar trends. Most top-down cracking predictions are limited to a 

specific time series curve. Table A-9 summarizes model parameters. The SEE and bias are 

improved. The reliability of the top-down cracking model is estimated by developing a 

relationship between the standard deviation of the measured cracking, and the mean predicted 

cracking. Table A-10 outlines the standard error equations for the global and calibrated model.  

 

Figure A-8 Measured and predicted top-down-cracking (time series) 

Table A-9 Calibration results for top-down cracking 

Parameters Global model Local model 

SEE 6.37 5.59 

Bias -2.36 1.60 

KL2 0.2855 0.90 

KL3 0.011 0.09 

KL4 0.01488 0.101 

KL5 3.266 3.260 

C1 2.5219 0.30 

C2 0.8069 1.155 

Table A-10 Reliability equation for top-down cracking 

Pavement-ME model Global model equation Local model equation 

Top-down cracking 𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) = ⁡0.3657 × 𝑇𝑂𝑃 + 3.6563 𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) = ⁡0.6417 × 𝑇𝑂𝑃 + 0.5014 

 



 

159 

 

THERMAL CRACKING MODEL 

The thermal cracking model was calibrated for Level 1 inputs in the Pavement-ME. The model 

calibration only considered sections with Performance Grade (PG) binder type. The thermal 

cracking model was calibrated as a single K-value by running Pavement-ME multiple times. 

Although calibration coefficient K is a function of mean annual air temperature (MAAT), it was 

calibrated as a single value similar to the previous version of Pavement-ME (version 2.3). For 

this purpose, the Pavement-ME was run at different K values (0.25,0.65,0.75,0.85, 0.95 and 

1.35). SEE and bias were determined for each value of K. Table A-11 summarizes the SEE and 

bias for the global model and different K values. Based on the SEE and bias, a value of 0.85 is 

recommended. Recalibration improved the SEE and bias, but thermal cracking predictions still 

show high variability. Figure A-9 shows the predicted vs. measured thermal cracking for the 

global and local models at K=0.85. As previously explained in Chapter 3, measured thermal 

cracking values have been capped at 2112 feet/mile. This means any measured value of more 

than 2112 feet/mile for sections has been removed from the calibration data. 

 
(a) Global model 

 
(b) Local model 

Figure A-9 Predicted vs. measured thermal cracking (at K=0.85) 

Table A-11 Thermal cracking calibration results 

Parameter SEE Bias 

Global model 1225 -812 

K = 0.25 650 272 

K = 0.65 760 172 

K = 0.75 813 106 

K = 0.85 851 20 

K = 0.95 893 -71 

K = 1.35 1077 -471 
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The standard error equations were developed using the standard deviation of the measured 

cracking and mean predicted cracking, as explained in Chapter 4. Table A-12 summarizes the 

standard error equations for the global and locally calibrated models.  

Table A-12 Reliability summary for thermal cracking 

Pavement-ME model Global model equation Local model equation 

Thermal cracking 𝑠𝑒 = 0.14(𝑇𝐶) + 168 𝑠𝑒 = 0.1223(𝑇𝐶) + 400.9 

RUTTING MODEL (METHOD 1) 

No Sampling 

Pavement-ME predictions for individual layer rutting were matched against measured rutting 

determined by using the transverse profile analysis results, as discussed in Chapter 4. Figures A-

10 to A-12 show the predicted vs. measured rutting for AC, base, and subgrade layers, 

respectively. The Pavement-ME under-predicts AC rutting and over-predicts base and subgrade 

rutting. Table A-13 shows the SEE and bias, whereas Table A-14 shows the calibrated 

coefficients. Both SEE and bias significantly improved for all layers. 

 
(a) Global model 

 
(b) Local model 

Figure A-10 Predicted vs. measured AC rutting (No sampling) 
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(a) Global model 

 
(b) Local model 

Figure A-11 Predicted vs. measured base rutting (No sampling) 

 
(a) Global model 

 
(b) Local model 

Figure A-12 Predicted vs. measured subgrade rutting (No sampling) 

Table A-13 Rutting models SEE and bias 

Layer 
Global model Local model 

SEE (in.) Bias (in.) SEE (in.) Bias (in.) 

HMA rut 0.2579 0.2015 0.0812 -0.0138 

Base rut 0.0426 0.0380 0.0099 -0.0011 

Subgrade 0.1184 0.1095 0.0062 -0.0009 

Table A-14 Rutting model calibration coefficients 

Calibration coefficient Global model Local model 

HMA rutting (br1) 0.4 0.1466 

Base rutting (bs1) 1.0000 0.3003 

Subgrade rutting (bsg1) 1.0000 0.0691 
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Split Sampling 

Split sampling was performed on 70% of the sections for the calibration set and 30% for the 

validation set. Figures A-13 to A-15 show the predicted vs. measured for calibration and 

validation set for different layers. All layers show reasonable validation results.  

 

 
(a) Calibration set 

 
(b) Validation set 

Figure A-13 Predicted vs. measured AC rutting (Split sampling) 

 
(a) Calibration set 

 
(b) Validation set 

Figure A-14 Predicted vs. measured Base rutting (Split sampling) 
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(a) Calibration set 

 
(b) Validation set 

Figure A-15 Predicted vs. measured Subgrade rutting (Split sampling) 

Table A-15 shows the SEE, bias, and model parameters for the global model, and Table A-16 

shows the same for the calibration-validation set. Both SEE and bias significantly improved for 

all layers. 

Table A-15 Rutting global model results 

Layer SEE Bias Coefficient 

HMA rut 0.2454 0.1759 0.4 

Base rut 0.0872 -0.0138 1.0000 

Subgrade 0.1153 0.1071 1.0000 

Table A-16 Rutting local model results 

Layer 
Calibration set Validation set 

SEE Bias Coefficient SEE Bias Coefficient 

HMA rut 0.0962 -0.0165 0.0705 0.1008 -0.0117 0.0705 

Base rut 0.0102 -0.0012 0.2955 0.0092 -0.0018 0.2955 

Subgrade 0.0061 -0.0008 0.0705 0.0064 -0.0007 0.0705 

Repeated Split Sampling 

Repeated split sampling was performed for 1000 split samples with new calibration and 

validation sets. Figures A-16 to A-18 show the distribution of model parameters for calibration 

and validation set for different layers. Tables A-17 to A-19 show the SEE, bias, model 

parameters, CI for the global model, and the calibration and validation sets, respectively. The 

rutting model significantly improved after local calibration.  
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(a) Calibration set 

 
(b) Validation set 

Figure A-16 Distribution of calibration parameters - AC rutting (Repeated split sampling) 
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(a) Calibration set 

 
(b) Validation set 

Figure A-17 Distribution of calibration parameters - Base rutting (Repeated split sampling) 
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(a) Calibration set 

 
(b) Validation set 

Figure A-18 Distribution of calibration parameters - Subgrade rutting (Repeated split sampling) 

Table A-17 Global model results (repeated split sampling) 

Layer Average SEE 
SEE  

Lower CI 
SEE Upper CI Average bias (in.) Bias Lower CI Bias Upper CI 

HMA 0.2387 0.2097 0.2540 0.1743 0.1617 0.1853 

Base 0.0426 0.0409 0.0440 0.0380 0.0367 0.0394 

Subgrade  0.1185 0.1150 0.1216 0.1095 0.1064 0.1126 
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Table A-18 Local model calibration results (repeated split sampling) 

Statistics HMA rutting Base rutting Subgrade rutting 

Average SEE 0.0966 0.0099 0.0062 

SEE Lower CI 0.0856 0.0094 0.0059 

SEE Upper CI 0.1021 0.0103 0.0064 

Average bias (in.) -0.0162 -0.0011 -0.0009 

Bias Lower CI -0.0169 -0.0013 -0.0009 

Bias Upper CI -0.0135 -0.0009 -0.0008 

Average calibration coefficient 0.1757 0.3003 0.0693 

Calibration coefficient Lower CI 0.1689 0.2897 0.0663 

Calibration coefficient Upper CI 0.1852 0.3115 0.0723 

Table A-19 Local model validation results (repeated split sampling) 

Statistics HMA rutting Base rutting Subgrade rutting 

Average SEE 0.0971 0.0100 0.0062 

SEE Lower CI 0.0725 0.0084 0.0053 

SEE Upper CI 0.1358 0.0119 0.0071 

Average bias (in.) -0.0153 -0.0011 -0.0009 

Bias Lower CI -0.0434 -0.0041 -0.0027 

Bias Upper CI 0.0174 0.0017 0.0009 

Average calibration coefficient 0.1757 0.3003 0.0693 

Calibration coefficient Lower CI 0.1689 0.2897 0.0663 

Calibration coefficient Upper CI 0.1852 0.3115 0.0723 

Bootstrapping 

Bootstrapping was performed with 1000 bootstrap samples with replacement. Figures A-19 to A-

21 show the distribution of model parameters for AC, base, and subgrade rutting. Tables A-20 

and A-21 summarize the calibration results for the global and local models. Model parameter 

distribution and CI provide a more reliable estimate of model coefficients. Moreover, SEE and 

bias significantly improved for all layers.  
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Figure A-19 Distribution of calibration parameters - AC rutting (Bootstrapping) 

 

Figure A-20 Distribution of calibration parameters - Base rutting (Bootstrapping) 
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Figure A-21 Distribution of calibration parameters-Subgrade rutting (Bootstrapping) 

Table A-20 Global rutting model summary (Bootstrapping) 

Layer type Average SEE 
SEE  

Lower CI 

SEE  

Upper CI 
Average bias (in.) 

Bias  

Lower CI 

Bias  

Upper CI 

HMA 0.2565 0.2174 0.3047 0.2010 0.1796 0.2238 

Base 0.0425 0.0396 0.0456 0.0380 0.0355 0.0408 

Subgrade  0.1183 0.1117 0.1251 0.1094 0.1032 0.1159 

Table A-21 Local rutting model summary (Bootstrapping) 

Statistics HMA rutting Base rutting Subgrade rutting 

Average SEE 0.0805 0.0099 0.0061 

SEE Lower CI 0.0677 0.0091 0.0057 

SEE Upper CI 0.0953 0.0108 0.0066 

Average bias (in.) -0.0131 -0.0011 -0.0009 

Bias Lower CI -0.0145 -0.0015 -0.0010 

Bias Upper CI -0.0087 -0.0007 -0.0007 

Average calibration coefficient 0.1476 0.3009 0.0696 

Calibration coefficient Lower CI 0.1363 0.2803 0.0639 

Calibration coefficient Upper CI 0.1616 0.3228 0.0760 

Summary 

Results for Method 1 are summarized in Table A-22. All calibration approaches have improved 

the SEE and bias. Bootstrap shows the lowest SEE and bias for all layers.  
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Table A-22 Rutting model calibration results summary 

Sampling Technique Pavement layer rutting SEE Bias Calibration coefficient 

No sampling 

HMA 0.0812 -0.0138 0.1466 

Base 0.0099 -0.0011 0.3003 

Subgrade  0.0062 -0.0009 0.0691 

Split sampling 

HMA  0.0962 -0.0165 0.0705 

Base  0.0102 -0.0012 0.2955 

Subgrade  0.0061 -0.0008 0.0705 

Repeated split sampling 

HMA  0.0971 -0.0153 0.1757 

Base  0.0099 -0.0011 0.3003 

Subgrade  0.0062 -0.0009 0.0693 

Bootstrapping 

HMA  0.080 -0.013 0.148 

Base  0.010 -0.001 0.301 

Subgrade  0.006 -0.001 0.070 

JOINT FAULTING MODEL 

The calibration of the faulting model was performed using the CAT tool. No sampling technique 

was used for the calibration. In the first step, the most sensitive coefficients, C1 and C6, were 

simultaneously calibrated. In the next step, C1 and C6 were kept at the calibrated value, and C2 

was calibrated. All other coefficients (C3, C4, C5, C7, and C8) were kept at the global values. It 

should be noted that the measured faulting was cut to 0.4 inches, as mentioned in Chapter 3. 

Figure A-22 shows the predicted vs. measured joint faulting for the global and local models. 

Figure A-23 shows the measured and predicted joint faulting with time. In Figure A-23, the 

predicted faulting is in the same range as measured faulting except for high values for measured 

faulting.  

 
(a) Global model 

 
(b) Local model 

Figure A-22 Calibration results for joint faulting 
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Figure A-23 Measured and predicted joint faulting (time series) 

Table A-23 summarizes local calibration and the corresponding model parameters. SEE and bias 

are significantly improved. 

Table A-23 Summary of faulting model calibration 

Parameter Global model Local model 

SEE 0.06 0.03 

Bias 0.01 0.00 

C1 0.595 0.8 

C2 1.636 1.3889 

C3 0.00217 0.00217 

C4 0.00444 0.00444 

C5 250 250 

C6 0.47 0.2 

C7 7.3 7.3 

C8 400 400 

 

The standard error equations were estimated, establishing a relationship between the standard 

deviation of the measured faulting and mean predicted faulting, as explained in Chapter 4. Table 

A-24 summarizes standard error equations for the faulting model.  

Table A-24 Faulting model reliability 

Pavement-ME model Global model equation Local model equation 

Joint faulting 𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.07162(𝐹𝑎𝑢𝑙𝑡)0.368 + 0.00806 𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.0902(𝐹𝑎𝑢𝑙𝑡)0.2038 

 

 

 


