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ABSTRACT

Type la supernovae (SNe Ia) enrich galaxies with iron group and some intermediate mass
elements while also serving as standardizable candles for testing cosmological models. Despite
their importance in understanding the evolution of the universe, the progenitors of SNe Ia
remain elusive. Cosmic distance estimation and the chemical evolution of the universe depend
on the exact progenitor mechanism, therefore there is a need to identify their origins.

A myriad of models have been developed over the past several decades to explain their
unique observational features, all involving the thermonuclear disruption of a carbon-oxygen
(C/0O) white dwarf (WD) in a binary system in one of three major regimes. 1) A WD accretes
mass from a companion, approaching the Chandrasekhar-mass, and initiates a thermonuclear
runaway 2) A helium layer formed through accretion ignites and generates a thermonuclear
burning front on the surface that drives a converging shock into the core 3) A merger between
a pair of WDs initiates a carbon detonation as accreted material produces a hot spot on the
surface. The nature of the binary interaction has a large effect on which channel may lead
to the explosion including the composition of the accreted material, the accretion rate, and
the nature of the binary evolution of the system. Each progenitor channel assumes a specific
flame propagation mechanism that imprints itself on the stratification of abundances and
densities within the ejecta. Inferring the stratification of these elements and their density
distribution allows for making testable predictions regarding their origins. The elemental
composition within the ejecta can be determined by modeling spectral observations with
radiative transfer simulations. Supernova radiative transfer is very costly taking at a minimum
tens of minutes to evaluate a simple spectrum. Thus exploring the large parameter space
with tens of dimensions is out of the realm of current and future computational facilities.
Thus, traditionally, such methods have relied on qualitative metrics of model fits and manual
adjustments of elemental compositions. The results have then lacked information on the

uncertainties and parameter degeneracies not unambiguously identifying progenitors.



This thesis presents a novel methodology for rapid probabilistic reconstructions of SNe Ia
through the application of deep-learning accelerated radiative transfer simulations under
parametric ejecta models. This methodology is applied to explore the progenitors of SNe Ia
in three different projects. First, analysis of the elemental composition of the outer ejecta of
the archetypal SN Ia SN 2002bo shows that the parameter space is complex with multiple
parameter degeneracies and multi-modalities but is overall inconsistent with traditional pure-
deflagration models. Second, modeling the outer ejecta of a population of the super-luminous
silicon-deficient 1991T-like thermonuclear supernovae finds that they appear as an extension
or extreme case of the normal SN Ia population with their unique observational signatures
primarily dictated by small deviations in production of intermediate-mass elements with
higher ionization rates. Finally, progenitor channel probabilities are prescribed to the well
observed SN Ta SN 2011fe by sampling a space of high-dimensional hydrodynamical models
corresponding to a variety of SN Ia progenitor channels showing that it is best described by
a core-detonation model of a sub-Chandrasekhar mass WD. These results both elucidate the
progenitors of SNe Ia as well as provide insight regarding the limitations of current models to

solve more detailed questions about their origins.
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1 Introduction

SN Ia have garnered the attention and wonder of astronomers for hundreds of years. Their
earliest observations changed the way astronomers think about the heavens and today they
challenge the way we think about the cosmos. In 1572, Tycho Brahe made some of the first
well-documented observations (Brahel of a SN Ia (though at the time the identity of
this object was unknown), referring to it as de nova stella or “the new star”, challenging the
previous models of the static and eternal nature of stars. Only a few decades later, Brahe’s
student Johannes Kepler documented in high detail another SN Ia in 1604 (Kepler)
and was one of the first to speculate that the transient may be an event related to the life

and death of a star.

Their ability to serve as standardizable candles (Branch & Patchett| [1973; [Pskovskii, [1977;

Phillips, 1993) has made them a powerful tool for measuring cosmic expansion (Branch 1982,
1992a)) which lead to the Nobel prize-winning discovery of Dark Energy (Riess et al., 1998;

Perlmutter et al. |1999). However, analysis in recent decades has revealed a tension between

the results of SN Ia cosmology and those from analysis of the cosmic microwave background

(Planck Collaboration et al., 2020} Riess et al.,|2021)) now sitting at a 5-0 deviation which may

in part be due changes in SN Ia empirical relations dependent upon the assumed progenitor

system (Hoeflich et al., [2017)).

Their violent thermonuclear explosions (Nomoto et al., [1984) create the elements that

make up the world we see around us every day (Branch et al., [1983) such as the iron (Axelrod,

1980) in our blood and some of the silicon (Branch et al., |1985a)) in the computers on which

you are likely reading this thesis. However, due to uncertainty in the ignition physics (Gasques

et al., 2005; Gasques et al., 2007 reproducing the solar abundances of isotopes primarily

produced by SNe Ia has remained challenging (see e.g. Travaglio et al., 2015; Papish & Perets,

2016). A paradoxical mystery, while they have critically advanced our understanding of the

origins of the universe, the origin of SNe Ia to this day remains elusive. Without such a secure



understanding of their origin, the empirical relations by which SN Ia are used to understand

cosmic and chemical evolution may still be challenged.

1.1 Early Observations

Supernovae historically were classified according to their spectra. Type I supernovae were
originally the class of supernovae similar to SN1937C (Popper, |1937)) characterized by the
presence of a wide variety of optical emission features (Minkowski, 1941), while Type II
supernovae showed a continuous spectrum. Comparison of high-quality spectra over a
large temporal range confirmed that Type I supernovae comprised a homogeneous group
(Oke & Searle, [1974). More specifically, Branch & Patchett (1973)) described the primary
distinguishing feature of Type I supernovae as a lack of hydrogen emission in their spectra
and applied the feature of homogeneity of the class to perform estimates for the rate of cosmic
expansion. Later analysis by [Elias et al. (1985 found that the group of Type I supernovae
contained multiple spectroscopically distinct objects classifying those with strong variable
absorption at around 1.2 um as SNe Ia.

For decades a variety of models were developed to try to explain the origin and nature of
these supernovae. Hoyle & Fowler| (1960) proposed an explosion driven by carbon-burning in
a degenerate stellar core as opposed to the catastrophic implosions we now know today to
core-collapse supernovae, suggesting an early theoretical progenitor separation between the
Type I and Type II supernovae. Finzi & Wolf| (1967) suggested that the electron-degenerate
stellar remnants, white dwarfs (WDs), could serve as the origin of SNe Ia through the
process of inverse beta-decay in Mg or Ca. Arnett| (1969) investigated a carbon-detonation
mechanism for a near Chandrasekhar mass (Chandrasekhar, |1931) degenerate stellar core
igniting a thermonuclear runaway burning alpha-elements such as oxygen and silicon up
to a significant amount of *°Ni . |Colgate & McKee| (1969) found the decay chain of the
isotope °Ni , the predominant end product of nucleosynthesis in thermonuclear explosions,

drives the luminosity and structure of the light curves of SNe Ia, and at the time predicted



a required mass of 0.25 Mgof *°Ni . Improved numerical simulations by |[Axelrod| (1980))
including steady-state non-LTE radiative transfer simulations including energy deposition
from the radioactive decay of **Ni and its daughter nuclide, **Co, refined the estimate for
the necessary mass of synthesized *Ni to be above 0.5 M.

Nomoto et al.| (1976]) proposed an alternative to the carbon-detonation scenario: a carbon
deflagration that propagates through the core through convective heat transfer without
growing into a detonation ending in the complete disruption of the star. This was an attempt
to reconcile the deviations from the predictions of the carbon-detonation model such as
over-production of iron-group elements. Nomoto & Sugimoto| (1977) proposed a mechanism
for the rejuvenation of a helium dwarf through mass accretion of hydrogen from a companion
star burning into helium. In this model, a central helium flash grows into a detonation wave
causing the supernova and disrupting the white dwarf completely.

By the 1980s, the field of SNe Ia was growing rapidly with many new proposed models,
observations, and analysis methods aided by technological advances such as CCD cameras
for telescopes and exponentially scaling computing power. The review by Wheeler| (1981al)
attempted to condense the current state of the field as well as offer some commentary on
the state of knowledge on the progenitors of SNe Ia. By now it was clear that SNe Ia must
originate from at least C/O WDs as explosions of helium white dwarfs would generate *Ni at
higher velocities than what had been observed (Mazurek, |1973). Since the spectra of SNe Ia
at maximum light do not show lines of Nickel or Cobalt (Branch, 1980), it was presumed
that these features are blanketed by an enriched helium shell that forms through accretion
from a companion star in a binary system (Nomoto, |1982a)). The accretion rate must also be
low enough that a hydrogen-rich envelope would not form otherwise hydrogen features would
be seen in the spectrum (Nomoto et al., [1979). The double-detonation scenario was also
disfavored as current models at the time showed they would completely burn the helium layer
to °Ni with no helium blanket remaining (see e.g. Woosley et al., [1980). The favored model

was the slow accretion model igniting carbon burning in the center of the WD (Nomotol,



1980)). Still, even these models had issues such as the helium shell being ejected with too low
of a velocity to match spectral observations (Wheeler, [1981b). At this point, there was still no
definitive model that could reproduce all of the features of SNe Ia spectral and photometric
observations, but it was clear that they must originate from accreting C/O WDs in binary

systems.

1.2 The Progenitor Puzzle

Today, the exact progenitor system and explosion mechanism driving SNe Ia remain unknown.
The proposed pathways leading to the thermonuclear explosion of a C/O WD can be broken
down into three major themes, each with its own unique predictions for the abundance
stratification of the ejecta.

The first is a WD that accretes mass from a companion star until reaching the density
and temperature limit for nuclear burning in the core as it approaches Chandrasekhar-mass
(1.38 Mg vs M, being 1.40 M), resulting in either a pure-deflagration (Whelan & Iben)
1973; Nomoto et al., |[1976|) or delayed detonation (Khokhlov, 1991)). In the case of a pure
deflagration, less °°Ni is produced leading to a less energetic explosion with a lower velocity
ejecta and lower luminosity. 3D models show that the turbulent deflagration causes the
elemental abundances to be mixed at all depths into the explosion (Ropke et al.l |2007).
Conversely, in a delayed detonation, the ejecta is pre-expanded by an initial deflagration wave
which transitions into a detonation producing °°Ni masses closer to the observed range of
0.3-0.8 M, with elements near the center being more mixed and elements further out being
more stratified in their abundances. However, for both scenarios, the delay time distributions
for SNe Ia (Ruiter et al., |2009; Mennekens et al., 2010) and missing X-rays in elliptical
galaxies (Gilfanov & Bogdan, 2010) find that single-degenerate progenitor systems are at least
a factor of 10 less common than double-degenerate systems and therefore cannot explain their

observed rates alone. Additionally, the lack of secure identification of surviving companions



in these binary systems challenges the viability of such binary progenitor systems (see e.g.
Ruiz-Lapuente et al., [2004; Kerzendorf et al., 2013; |Shields et al., [2022)).

The second mechanism, the double-detonation model (e.g. Taaml [1980; Woosley & Weaver],
1994; Fink et al., [2010a; [Shen et al., [2018; [Polin et al., 2019; Pakmor et al., [2022), involves
the accretion of hydrogen or helium from a companion star or WD onto the surface of the
primary, forming a helium shell on the surface either directly or through nuclear processes
burning hydrogen. Eventually, a helium flash on the surface of the primary is ignited and
wraps around the WD which in turn compresses the core leading to a central denotation.
Double-detonation explosions tend to show more stratification near the core with excess
heavy nuclear burning products near the surface resulting from the initial helium detonation,
depending on the mass of the initial helium layer. As with the single-degenerate progenitor
systems, there is still a lack of secure identification of a surviving companion, though the
possibility of the detonation of the secondary WD as well as been explored (Pakmor et al.,
2022)).

The last prominent channel is the merger between a pair of WDs (e.g. Nomoto), |[1982b;
Webbinkl, |1984; [ben & Tutukov, [1984). A super-sonic detonation wave rapidly moves
throughout the ejecta without much time for mixing of elements causing a much more
stratified distribution of elements with heavy elements produced at deeper layers and lighter
elements near the surface (see e.g. Pakmor et al) 2012)). However, most merger scenarios
predict the two C/O WDs merge and settle into a merged object that does not explode (van
Kerkwijk et al., |2010; Livio & Riess, 2003} Kashi & Soker, 2011]).

Each of these scenarios is capable of making predictions that reproduce some of the major
features of the photometric and spectral evolution of SNe Ia but all still contain systematic
hurdles. A strong discriminant between each of these scenarios is the flame propagation (a
deflagration vs. a detonation) but has never been studied in detail due to the complexity in

modeling their explosions from observations. To test each of these scenarios, a method for



determination of the abundance stratification of the ejecta from SNe Ia explosions must be

applied.

1.3 Abundance Tomography

Stehle et al.| (2005)) introduced the method of SN Ia abundance tomography for determining
the abundance stratification of the ejecta of SNe Ia. In the early phases, as the ejecta from the
SN Ia expands and cools, the optical depth at a given ejecta velocity decreases. This provides
an effective photosphere below which light emitted from the supernova is approximately a
thermalized black-body and individual line interactions do not contribute significantly to
the spectrum. Since only line information above this photosphere is imprinted onto spectral
observations, early-time spectra will provide information on the density and abundances
present within the ejecta only in the outermost regions, and later-time spectra will include
information deeper into the explosion. Abundance tomography is the reconstruction a full
abundance and density profile of the ejecta at all velocities by sequentially modeling spectral
time series with radiative transfer simulations. Abundance tomography has since become a
standard technique for the determination of the abundance stratification of various supernovae
(e.g. Mazzali et al.. [2007; |Aouad et al., 2022; |Ashall et al., 2016; Sasdelli et al., 2014; [Mazzali
et al., 2014)) which has in turn allowed for the testing of predictions from various progenitor
channels.

Abundance tomography has two major constraints that limit its ability to produce a full
picture of the ejecta composition and securely identify the progenitors of SNe la. The first
constraint is computational. The complexity of the supernova spectra with radiation moving
through homologously expanding gas does not allow for composition inference with simple
tools (such as equivalence width) but requires the complex interplay to be modeled by radiative
transfer simulations. Evaluation of radiative transfer models requires between tens of minutes
to hours to run (see Blondin et al., 2022). The second constraint is dimensional. Modeling

just 10 elements with 100 regions creates a 1000-dimensional parameter space that would



be infeasible to sample even with computationally expedient radiative transfer. This means
that a full parameter exploration of the model from spectra, which would require millions
of sequential evaluations for each spectrum, is computationally infeasible. Instead fits are
performed using qualitative Chi-by-eye estimates through manual adjustments of elemental
composition, density, and luminosity. Therefore, the resulting abundance stratification
contains no quantitative information regarding the uncertainties in these parameters and
may overlook potential parameter degeneracies in this extremely large parameter space. In

this thesis, I present a novel methodology that overcomes these constraints.

1.4 Probabilistic Abundance Tomography

Probabilistic abundance tomography uses an emulator technique (Kerzendorf et al., 2021)
to accelerate a radiative transfer code by a factor of 10%, which I combine with Bayesian
inference (augmented by a better likelihood function |O’Brien et al., [2021)) to finally apply it
to a series of optical spectral observations in my three papers. The following is a collection of
three papers I have written throughout my graduate studies for my Ph.D. in Astrophysics
and Astronomy at Michigan State University and represent a culmination of both the growth
of my own experience in attempting to understand SNe Ia as well as an advancement in
the field’s quest to pin down the underlying mechanisms that initiate and propagate their
explosions. The first paper, O’Brien et al.| (2021)), is a published letter to the Astrophysical
Journal regarding the determination of the progenitor of SN 2002bo through an advanced
state-of-the-art method of abundance tomography as well as improved estimates for the
chemical composition of the outer layer of the supernova’s ejecta. An optical spectrum
taken approximately 10 days post-explosion is analyzed by fitting deep-learning accelerated
radiative transfer simulations through Bayesian inference. This paper concludes that the
deflagration progenitor channel is not an adequate description of the early-time observations
of SN 2002bo due to mismatches between the inferred abundance and density structure and

those predicted by deflagration models. This paper is presented below in Chapter [2|



The second paper, (O’Brien et al. (2024) is a publication in the Astrophysical Journal
that analyses the relationship between the normal SN Ia population commonly used for
cosmic distance estimation and the super-luminous subclass of SNe Ia known as 19917T-like
thermonuclear supernovae. An analytical ejecta model whose structure is constrained by
theoretical progenitor models is applied to a population of normal and 1991T-like SNe Ia to
determine the abundance structure of their ejecta and determine if these two populations
are directly separable. We find that the normal SN Ia population smoothly transitions into
the 1991T-like population without a clear distinct clustering in the space of masses and
compositions of their early-time ejecta. Furthermore, we investigate the underlying properties
of their explosions leading to their observational separation, finding the objects classified
by 1991T-likes appear as normal SNe Ia with either lower production of intermediate-mass
elements or higher ionization states of those intermediate mass elements, indicating the
possibility that the observational differences between the two classes come from a combination
of factors. This paper is presented in Chapter

The final paper is a direct attempt at progenitor identification of the archetypal SN Ia
SN 2011fe and is currently awaiting publication. A large collection of hydrodynamic simula-
tions from different progenitor theories are pitted against one another to determine which
channel best produces observations over the largest possible range of model configurations.
We find that the outer ejecta of SN 2011fe in the early phases look most like a pure core-
detonation progenitor and therefore must be either a special case of a delayed detonation,
double-detonation, or possibly a novel unknown mechanism. Our comparison between the
double detonation and delayed detonation progenitor channel probabilities shows that one
progenitor channel can not be statistically favored over another within the limitations of the
tested spectral time series and within the current limitations of modern radiative transfer and
hydrodynamic modeling. Therefore, this paper also encourages the field to focus on refining
our simulations and understanding of these progenitor channels as well as their implications

upon predictions of observables. This paper is presented in Chapter [4



An appendix is provided at the end which includes the culmination of all appendices
provided throughout these three papers for further reference on implementation details as
well as data access under the formatting guide for Ph.D. dissertations provided by Michigan

State University.



2 Probabilistic Reconstruction of Type Ia Supernova

SN 2002bo

2.1 Abstract

Manual fits to spectral times series of Type Ia supernovae have provided a method of recon-
structing the explosion from a parametric model but due to lack of information about model
uncertainties or parameter degeneracies direct comparison between theory and observation is
difficult. In order to mitigate this important problem we present a new way to probabilistically
reconstruct the outer ejecta of the normal Type Ia supernova SN 2002bo. A single epoch
spectrum, taken 10 days before maximum light, is fit by a 13-parameter model describing the
elemental composition of the ejecta and the explosion physics (density, temperature, velocity,
and explosion epoch). Model evaluation is performed through the application of a novel rapid
spectral synthesis technique in which the radiative transfer code, TARDIS, is accelerated by
a machine-learning framework. Analysis of the posterior distribution reveals a complex and
degenerate parameter space and allows direct comparison to various hydrodynamic models.
Our analysis favors detonation over deflagration scenarios and we find that our technique

offers a novel way to compare simulation to observation.

2.2 Introduction

SNe Ta are a spectral class of supernovae defined by their lack of hydrogen lines and the
presence of silicon lines. SNe Ia are caused by the thermonuclear explosion of carbon-oxygen
white dwarfs in binary systems forming a large amount of °Ni, which drives the behavior of
their light curves (Colgate & McKee| 1969). They contribute significantly to the chemical
evolution of their host galaxies through the dispersion of iron-peak elements formed during

the explosion (Kobayashi et al., 2020, see Figure 39).
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Their ability to act as standardizable candles (Phillips| |1993)) has served as a powerful

tool in constraining cosmological parameters (Branch| [1992b; Riess et al.; [1998)), though there

remains significant variation in their brightness that is unaccounted for (e.g. Blondin et al.|

2012a)). Furthermore, the identification of the ignition mechanism leading to SNe Ia remains

an area of active research (see e.g. Polin et al., 2019).

The community has identified multiple promising pathways to explosions, many of which

originate in a binary system. For example, nuclear burning may be ignited by either the

merger of two CO white dwarfs (e.g. Nomoto, [1982b; |Webbink, |1984} Iben & Tutukov), |1984;

van Kerkwijk et al. 2010; Livio & Riess, 2003; Kashi & Soker} [2011), or accretion from

a companion star forming a near-Chandrasekhar mass CO white dwarf causing a central

ignition (e.g. Whelan & Iben, [1973), or accretion of a helium layer onto a sub-Chandrasekhar

mass white dwarf (e.g. Woosley & Weaver, [1994; |[Fink et al., 2010a; Shen et al., [2018; [Polin|

, leading to a surface helium detonation that propagates inward triggering central
ignition.

Various models have been proposed to describe the processes underlying SNe Ia. In
particular, the speed at which the nuclear burning propagates through the star remains poorly

understood. Reconstructing the explosion from spectral time series (also known as abundance

tomography) is a crucial tool to understand the explosion scenario (see e.g. Mazzali et al.|

2007)). Previous work into abundance tomography (e.g. Stehle et al., 2005; Sauer & Mazzali,

2008) has begun to show us a picture of how SN Ia explosions compare to theoretical models,

but they lack a probabilistic interpretation of their parameters.

SN 2002bo is a “Branch normal” (Branch et al., [1993; Benetti et al., |2004; Branch et al.|

2006]) SN Ia discovered in NGC 3190 that has been modeled extensively in the literature (e.g.

Stehle et al., [2005; |Sauer & Mazzali, |2008; Benetti et al., 2004} [Kerzendorf, [2011). Specifically,

Stehle et al.| (2005)) used a multi-line Monte-Carlo code to manually reconstruct the explosion

mechanism using 13 epochs of spectra. Their inference suggests a Type Ia with moderate

11



amounts of mixing of °°Ni and intermediate-mass elements, as well as a lack of carbon in the
ejecta, indicating a possible explosion asymmetry and orientation effects.

While these results offer a good foray into the investigation of the abundance tomography
of SNe Ia, the lack of uncertainty or error analysis limits our ability to constrain the range of
possible explosion scenarios. Physical sources of uncertainty such a line-blending as well as
potential parameter degeneracies warrant the need for probability distributions.

In this work, we present a method of Bayesian inference of supernova parameters by
applying the radiative transfer code TARDIS (Kerzendorf & Sim, 2014)), accelerated by a
machine-learning framework (Kerzendorf et al., 2021)), to a single spectrum of SN 2002bo
taken 10 days before maximum light (Benetti et al., [2004). We begin with a description of
our model and associated parameters in Section [2.3] The sampling of the parameter space,
including a discussion on prior distributions and resulting posterior distributions, is given
in Section 2.4 A summary of results can be found in Section 2.5l Appendices are included
to provide general background on the techniques used for spectral synthesis acceleration as
well as additional data used in our analysis. In Appendix [A] we outline a machine-learning
framework used to accelerate TARDIS evaluation. Finally, in Appendix [B], links to data
sources and data products are provided in order to assist researchers who wish to replicate

our findings.

2.3 Explosion Model

The optical spectrum of SN 2002bo 10 days before maximum light is modeled with spectral
synthesis produced by the radiative transfer code TARDIS. TARDIS is a modular framework
that allows for the use of various physics modules and has been widely used for modeling
a range of photospheric SNe (e.g. |[Magee et al., [2016} Boyle et al. 2017; [Barna et al., 2017}
Vogl et al., 2020a; |Gillanders et al., [2020; [Williamson et al., [2021). TARDIS approximates
the radiation field in the ejecta with an optically thick inner boundary and an optically

thin homologously expanding ejecta above. There is no energy generation in the simulation
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area and the energy injection is purely set by the temperature, Tiner, and radius, riper, of
this inner boundary. The optically thin ejecta is divided into a series of concentric shells in
velocity space. The velocity of each shell is determined by the inner boundary velocity, vinner,
and increases linearly up to an outer velocity boundary. The radius of the inner boundary,
Tinner, and consequently the radius of the shells, are set by the product of vi,ner with the time
since the explosion, texp.

We employ a power law relationship of the density with the velocity parameterized by
the power law index a, such that pgen o v:}fol. In previous works (Stehle et al., |2005;
Kerzendort, 2011)), the density profile of SN Ia ejecta has been described by a 1-dimensional
parameterized explosion model known as W7 (see e.g. [Nomoto et al, [1984) which can be
approximated as a power law between velocity and density with an exponent of —7 (Branch
et al. [1985b)). In order to account for deviations from the W7 power law profile we have left
the power law index as a free parameter in our study, the prior for which can be found in
Table [

We approximate the elemental composition of the ejecta by assuming a uniform distribution
of abundances above the photosphere (the same abundance values are used in each shell). We
explored a set of abundances commonly used in the literature (e.g. Stehle et al., [2005; |Sauer
& Mazzalil, [2008; Kerzendorf, |2011)), namely carbon, magnesium, silicon, sulfur, calcium,
titanium, and chromium. Iron, cobalt, and nickel abundances were split up into the decay
chain of the isotope *°Ni and stable iron. These elements account for the majority of the mass
in explosion models and are well constrained by the spectra of SNe Ia (Filippenko, |1997)).
The set of abundances (C, Mg, Si, S, Ca, Ti, Cr, Fegaple, and °Ni) and explosion parameters
(Tinner, Vinner; texp, and ) all together compose a 13-dimensional parameter space to model
our spectra.

For the plasma state, we have chosen the nebular ionization approximation implemented

in TARDIS and the dilute-1te excitation approximation. The radiation-matter interaction

!The reference density is pre-computed from the power law index to match that of the W7 model at
10000 km/s

13



is modeled using the macroatom prescription. We have also set the number of packets to be
equal to 400 000. The final spectral calculation uses the formal integral method (Lucyl, [1999a))

rather than straight packet statistics. Configuration of TARDIS can be found in Appendix

2.3.1 Model Evaluation

Spectral synthesis from our model with TARDIS, on average, takes approximately 10 minutes
of CPU time on an Intel® Xeon® E5-2670 v2 CPU. Kerzendorf et al.| (2021) estimates the
time required to explore a 20-parameter toy-model at this rate to be ~420 years. Such a time
constraint on model evaluation imposes a restriction upon our ability to use radiative transfer
codes as a method of exploring the posterior distribution of SN Ia models. In order to subvert
this restriction, we have implemented a technique for speeding up our model evaluation by 8
orders of magnitude based upon the machine-learning framework developed by Kerzendorf
et al. (2021). The estimation of our models through this technique is known as emulation
and the machine-learning framework we used will from here on be referred to as the emulator.
Details of the emulator including architecture, accuracy, and error analysis can be found in
Appendix [A] We find our emulator predicts the synthetic spectra produced by TARDIS given
a set of model parameters within 1% and is therefore an effective and necessary substitute

for model evaluation.

2.4 Parameter Inference

Vectors of candidate input abundances (carbon, magnesium, etc.) and explosion parameters,
0 = {C,Mg, ... texp,,}, are drawn from a prior-distribution described in Section m
Model spectra are then produced by the emulator, where the emulated synthetic spectrum is
predicted using the input parameters 6. We determine the likelihood of a given model through
the application of a likelihood function described in Section[2.4.2, We have developed a non-?

likelihood function that takes into account systematic differences between our theoretical and
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observed spectra. Lastly, in Section [2.4.3] we outline the Monte Carlo sampling technique

used to construct the posterior distribution.

2.4.1 Prior Distribution

We developed a distribution from which to draw our prior samples based on parameters
of SN Ia abundances taken from the Heidelberg Supernova Model Archive (HESMA). We
specifically used the set of abundance profiles provided from various SNe Ia hydrodynamic
simulations (Fink et al.| 2014; [Noebauer et al., [2017; Kromer et al., [2013, 2015; [Sim et al.,
2010; Noebauer et al., 2017; Fink et al., |2018; Marquardt et al., 2015} Fink et al., [2010b;
Kromer et al., 2010; [Sim et al., [2012; |Gronow et al., 2020) to determine the range of input
parameters. We determined the bounds of our prior by taking the 60% quantile of the
distribution of abundances from the HESMA models where the shell velocity was above
10000 km/s in order to be consistent with the expected structure of the outer shells.

Abundances were sampled uniformly in log-space with any remaining abundance fraction
filled in with oxygen such that all abundance fractions summed to unity. Oxygen is often used
as a “filler” element in supernova fitting (e.g. Hachinger et al., 2017) due to the insensitivity
to changes in the spectrum with respect to the oxygen mass fraction (cf. Hachinger, 2011, Sec.
2.2.5.2). The oxygen abundance is therefore only determined implicitly and is not included
as a model parameter.

For all other model parameters, we sampled along a uniform distribution. We used the
values for explosion time, ejecta velocity, photospheric boundary temperature, and density
profile power law exponent from the fit made by [Kerzendorf (2011)) as centroids. We then
reviewed the works of [Stehle et al.| (2005)) and Benetti et al.| (2004) to determine reasonable
ranges of uncertainties on these values which were used to set the edges of the distribution.

The range of values sampled for each parameter can be found in Table [1]
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2.4.2 Likelihood Estimation

While our emulator accurately recreates the behavior of TARDIS under our spectral synthesis
model, observations of real spectra are subject to physical and systematic biases. In order to
compare our model spectra, f (5), to observation, fops, we develop a likelihood function, £( 4)7
that corrects our model spectra and compares the results to our observed spectrum.

A correction function, C'(f()), is applied to our model spectra. C(f(6)) first applies a
redshift correction to set the frame of the model spectrum to the observed frame of SN 2002bo
at z=0.0042 (Benetti et al., [2004). A host extinction correction is then performed using the
model described by [Cardelli et al.| (1989) using Ry = 3.1 (Schlafly & Finkbeiner| 2011)) and
E(B —V) = 0.3 (Benetti et al., [2004). Finally, a continuum removal technique described
by [Tonry & Davis| (1979) and Blondin & Tonry (2007a) is applied to the model spectrum.
The continuum is estimated using a zero-mean 13-point cubic spline fit to the spectrum. We
apply this continuum removal to our model spectra first, then we multiply by the continuum
that would be removed by applying the same technique to the observed spectrum. Finally,
the resulting continuum-removed model spectrum is linearly interpolated to the wavelength
bins of the observed spectrum. Applying the corrections in this way allows us to compare
our simulated spectra directly to the observed spectrum.

We compare our corrected model spectrum to the observed spectrum using a Gaussian

likelihood function,

—

53 | TR oot
A

log ﬁ

[\DI)—\

where A represents the wavelength bin of the observed spectrum of SN 2002bo in the observed
frame. The parameter s? estimates the variance of our posterior distribution over model

spectra which we infer as another parameter (Hogg et al., 2010) with a log-uniform prior.
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2.4.3 Posterior Distribution

The topology of the posterior distribution is unknown a priori, and could contain complicated
degeneracies or multimodalities. Nested sampling (Skilling, [2004; [Buchner| 2021) is a robust
Monte Carlo technique for this setting. We use the MLFriends algorithm (Buchner, 2014,
2017) implemented in the UltraNest package (Buchner, 2021). The posterior distribution was
explored with 400 live points. It converged to the target distribution after 10000 iterations

and required 1000 000 model evaluations.

2.5 Results

Figure || shows the converged parameter distributions from our statistical inference. Silicon
and sulfur abundances contribute the largest fraction by mass of the ejecta which can be
inferred from the spectral features present in SN 2002bo. |Stehle et al.| (2005) used a similar
code to TARDIS to manually fit the spectral time series of SN 2002bo. However, due to
differences in methodologies, direct comparison of elemental abundances is difficult and
must be approximated. Since [Stehle et al| (2005) does not provide uncertainties, we make
the assumption that the uncertainty in their reported elemental abundances within various
layers of the ejecta are comparable to those found in our study. Unfortunately, the full
model inferred by Stehle et al.| (2005)) is not directly available for download so we estimate
abundances in terms of mass fractions from the figures (Stehle et al. 2005, Figure 5).

We compare our findings to their range of abundances reported in the velocity interval
from 10000km/s to 15000 km/s and generally find good agreement within our uncertainty
ranges. We find a significant lack of carbon in the ejecta consistent with their analysis. The
range of abundances determined from their analysis of silicon (0.2 - 0.4), sulfur (0.06-0.1), and
6Ni (0.09 - 0.11) all overlap with our 68% confidence interval in Table |1} Their abundances
of iron (< 107 - 0.04) and calcium (0.01 - 0.05) were slightly outside this region but are

consistent if the level of uncertainty in their analysis is similar to ours. Individual values
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Figure 1: Posterior distribution of the parameter space sampled using nested sampling
(Black). Overlaid are distributions of elemental abundances above 10000 km/s taken from
various HESMA models. Pure deflagration models are shown in green while pure detonation
models are shown in orange. DDT models are not included as they would not be noticeably
distinguishable from pure detonation models at this early epoch. Estimates of the range of
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Parameter Prior Bounds Posterior Percentiles

Minimum Maximum 16% 50% 84%
C 2.3x 107 0.17 9.5x107° 0.0015 0.0085
Mg 8.3 x 1076 0.036 0.00011 0.00049 0.0047
Si 0.029 0.58 0.17 0.21 0.26
S 0.005 0.19 0.074 0.09 0.11
Ca 0.00043 0.039 0.0021 0.0034 0.0084
Ti 44x1077 3.7x107° 27x10°% 47x10% 9.7x10°
Cr 3.8 x107° 0.0022 0.00021 0.00034 0.00062
Festable 0.0011 0.1 0.044 0.052 0.065
56Nj 0.037 0.85 0.078 0.091 0.13
Tinmer (K) 8000 18000 10383 10720 11357
Vinner (km s71) 7000 20000 13100 13508 14291
a, —-10 —6 —6.10 —6.36 —6.63
texp (days) 6 13 6.32 6.64 7.21
logyo s —18 —14 —15.91 —15.81 —15.69

Table 1: The range of parameters sampled from our prior distribution along with their
estimates determined by the posterior distribution. The abundance distributions are based
upon log-uniform sampling but modifications are made in order to assure that the sum of
abundance parameters add to unity. All other values displayed are sampled uniformly. For a
full description of the abundance sampling method see Section [2.4.1] Elemental abundances
are shown in terms of mass fractions. Estimates from the posterior distribution are presented

as the median with the edges of the 68% confidence interval.
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for both titanium and chromium are not available so performing a direct comparison is not
particularly reasonable or reliable.

By far our largest deviation from [Stehle et al. (2005) is our magnesium abundance.
Magnesium has the largest range of uncertainty in our analysis, spanning nearly four orders
of magnitude. Operating under the assumption that the uncertainties in Stehle et al.| (2005])
are comparable to ours, not much information can be gathered from a comparison of values
between the two studies as the magnesium abundance is mostly uninformative.

We constrain feq, = 6.6473 day{] which is slightly below that of Benetti et al.| (2004
texp = 7.9 £ 0.5 days) and [Stehle et al.| (2005, teyp =8.04days). Our estimates for both Tipper
and vjne are consistent with the range of values found by |Stehle et al.| (2005|) for spectra
between nearby epochs. The overall agreement of our results with similar previous attempts
at manual fitting as well as theoretical models for SNe la explosion physics demonstrates
that our model is consistent with the current literature.

There are a few notable mismatches between our posterior spectra and the observed
spectrum (Figure[2). In the S Roman2 doublet our model over-fits the left peak and under-fits
the right peak. This discrepancy is a common occurrence in radiative transfer model fits (see
e.g. Stehle et all 2005 to SN Ia spectra and is due to a poor understanding of the lines lists
and occupation numbers in this region. Since our abundance distribution through the ejecta is
approximated to be uniform, the iron abundance in the outer layers is generally overestimated.
This causes line blanketing as the bluer packets are reflected back inwards resulting in a
higher radiative temperature as well as less flux at the blue end of the spectrum. The higher
temperatures affect the overall ionization state of the plasma causing the Si Roman2 to
Si Roman3 ratio to decrease, weakening the Si Roman2 (5972 A) feature. The poor fit to the
Si Roman2 doublet is also seen in previous studies (see e.g. Benetti et al., [2004]).

We are able to perform a direct comparison of inferred model parameters of a real

SN Ia spectrum to statistical samples of theoretical explosion models. In addition to the

2See Table |1| for description of quantification

20



—— Mean 95% 68%
—— SN2002bo -10 day - == Best Fit

Fr[1071% erg cm™2 s~ 1A-1]

Residual
o
o

4000 4500 5000 5500 6000 6500 7000
Observed Wavelength [A]

Figure 2: Fit to observed SN 2002bo —10 day spectrum (green) using nested sampling
to sample the posterior distribution. The best fit spectrum (orange), represented by the
maximum likelihood sample, shows a decent fit to the spectrum but misses features around
5972 A and 3900 A as well as much of the UV. The mean of the posterior distribution is shown
in black with the 68% and 95% regions in grey and light grey respectively. Posterior spectra
are presented after application of the correction function described in Section The
residual distribution is shown as the fractional error between our posterior and our observed
spectrum.
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posterior distributions of the model parameters inferred for SN 2002bo, Figure [1f shows the
distribution of abundances from two classes of models taken from the HESMA data sets
above 10000 km/s corresponding to pure-deflagrations and pure-detonations. Deflagration
to detonation transition (DDT) models are not included as they would be indistinguishable
from pure-detonation models above the photosphere at these early times. The posterior
distribution best matches with the distribution of abundances sampled from the HESMA
detonation models, while mostly excluding the pure deflagration models. The unfavorability of
pure-deflagration models is strongly apparent for the distribution of carbon, sulfur, and silicon
abundances in Figure [I] Calcium and chromium abundances slightly favor pure-deflagration
hydrodynamic models, though their distribution widths are large and stretch over a few
orders of magnitude indicating that these abundances are not affecting the final shape of
the spectrum significantly. We find that our initial modeling of the —10day spectrum of
SN 2002bo generally favors detonation or DDT models.

Figure[3]demonstrates the complexity of the posterior distribution of elemental abundances.
A small multimodality in the sulfur abundance raises the possibility of manual fits becoming
trapped in local minima. The joint probability distribution of stable iron with both silicon
and 5°Ni is degenerate and multimodal. Such complexities indicate that any single set of
model parameters may only describe one of a distribution of parameters that all appear to
model the observed spectrum to similar accuracy. Despite some of the large variations and
complexity in the posterior distribution of parameters (Figure , the distribution of model
spectra produced by these parameters (Figure [2) is within 3% variation of the mean of the

observed spectrum.

2.6 Conclusion

We present a probabilistic reconstruction of a SN Ta explosion. Our results generally agree
with manual fits (see e.g. Stehle et al., |2005). We estimate the distribution of elemental

abundances required to reproduce the observation of an early-time spectrum of SN 2002bo.
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Figure 3: Posterior probability distribution of the elemental abundances of silicon, sulfur,
stable iron, and ®°Ni. Contours show 68% and 95% confidence intervals of the Gaussian
kernel density estimation (KDE) over the joint distribution of each parameter. Degeneracies
and multimodalities in elemental abundances are apparent.
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Degeneracies and multimodalities in certain parameters showcase the need for a Bayesian
treatment to draw secure physical conclusions since similar spectra may be synthesized over
a wide and complex space of parameters. The posterior distribution is compared to the
distribution of elemental abundances computed from various explosion models in HESMA.
We find that our analysis favors detonation models over pure-deflagration models. Given the
speed and effectiveness of our modeling technique, we have demonstrated a new avenue for

investigating the inner mechanisms driving SN Ia explosions.
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3 1991T-Like Type Ia Supernovae as an Extension of

the Normal Population

3.1 Abstract

Type Ia supernovae remain poorly understood despite decades of investigation. Massive
computationally intensive hydrodynamic simulations have been developed and run to model
an ever-growing number of proposed progenitor channels. Further complicating the matter,
a large number of sub-types of Type la supernovae have been identified in recent decades.
Due to the massive computational load required, inference of the internal structure of
Type la supernovae ejecta directly from observations using simulations has previously been
computationally intractable. However, deep-learning emulators for radiation transport
simulations have alleviated such barriers. We perform abundance tomography on 40 Type la
supernovae from optical spectra using the radiative transfer code TARDIS accelerated by
the probabilistic DALEK deep-learning emulator. We apply a parametric model of potential
outer ejecta structures to comparatively investigate abundance distributions and internal
ionization fractions of intermediate-mass elements between normal and 1991T-like Type Ia
supernovae in the early phases. Our inference shows that the outer ejecta of 1991T-like
Type Ia supernovae are under-abundant in the typical intermediate mass elements that heavily
contribute to the spectral line formation seen in normal Type la supernovae at early times.
Additionally, we find that the intermediate-mass elements present in 1991T-like Type Ia
supernovae are highly ionized compared to those in the normal Type Ia population. Finally,
we conclude that the transition between normal and 1991T-like Type Ia supernovae appears
to be continuous observationally and that the observed differences come out of a combination

of both abundance and ionization fractions in these supernovae populations.
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3.2 Introduction

Type Ia supernovae (SNe Ia), the thermonuclear explosions of Carbon/Oxygen (C/O) white

dwarfs (WD), are critical tools for understanding the evolution of the cosmos. SNe Ia

populate galaxies with iron-group and intermediate-mass elements (Kobayashi et al., 2020,

see Figure 39) critical to the formation of planets and late-generation stars. As cosmic

distance indicators (Phillips, [1993), SNe Ia have proved useful in both determining the size

and age of the universe, as well as for probing the nature of dark energy (Branch| [1992b;

Riess et al.| [1998 Perlmutter et al., 1999). However, despite their success as tools for probing

galactic and cosmological evolution, the mechanism(s) underlying their ignition remain poorly
understood.

An ever-increasing number of progenitor models have been proposed in the literature to
explain SNe Ia, usually involving some sort of mass transfer from a binary companion. For

example, ignition of a C/O WD has been suggested to be the result of mergers with a binary

companion (e.g. Nomoto|, [1982b; Webbink, [1984; [Iben & Tutukov, [1984; van Kerkwijk et al.|

2010; [Livio & Riess, [2003; Kashi & Soker}, [2011)), accretion from a companion star onto a

near Chandrasekhar-mass (Mc,) WD (e.g. [Whelan & Iben| [1973) resulting in a turbulent

deflagration, or accretion onto a sub-Mc, WD resulting in a super-sonic detonation (e.g.

‘Woosley & Weaver], 1994} |[Fink et al.| 2010aj; Shen et al.| 2018; [Polin et al., 2019} |Pakmor
2022)). Despite intensive work and an ever-increasing number of proposed models,

secure progenitor identification from spectral and photometric observations remains elusive.
Further complicating the matter of progenitor identification is the large spectroscopic
diversity of thermonuclear SNe that have been identified over the past few decades. A

large number of objects within the class of SNe Ia with unique spectral and photometric

properties have resulted in a variety of classification schemes (e.g. Branch et all 2006;

Taubenberger, [2017)). These objects range from the subluminous low-velocity Type Iax/02cx-

like thermonuclear supernovae (Foley et al., [2013) to super-luminous shallow-silicon (Branch
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2006) 1991T-like SNe Ia (Filippenko et al.,|1992; Phillips et al., [1992). The variation in

the properties of these objects leads us to consider the possibility of either distinct progenitor
channels for these sub-types or a unified progenitor model that can describe massive variations
in spectral properties.

We begin our investigation into the relationship between SNe Ia sub-types from the bright
end of thermonuclear transients by focusing on the super-luminous 1991T-like SNe Ta. On the

observational side, 1991T-like SNe Ia appear spectroscopically similar to the normal (Branch

et al., 1993; Benetti et al., 2004 Branch et al., 2006) SNe Ia population after their light

curves achieve maximum brightness (Phillips et al.; |1992), however, in their early phases they

are quite distinct. Their early-time spectra contain strong absorption lines of high-velocity

Fe 11/Fe III and lack the characteristic strong Si Il absorption features of normal SNe Ia

(Filippenko et al., 1992; Filippenko| |1997)). Additionally, 1991T-like SNe Ia lie close to the

normal SNe Ia in the space of the luminosity-decline rate relation, potentiality contaminating

SNe Ia samples used for cosmic distance measurements due to Malmquist bias at high redshift

(Sasdelli et al., [2014]). On the theoretical side, Filippenko et al. (1992) originally proposed

that 1991T-like supernovae may either be the results of either a double-detonation initiated
at an intermediate layer in the progenitor WD, or a delayed-detonation model, in order to
explain the large amount of the progenitor WD that is burned into °Ni and the apparent
narrow region of IMEs present with the ejecta. Since then, many hypotheses have been

proposed to explain the deviations in photometric and spectroscopic properties of 1991T-like

SNe Ia from the normal SNe Ia population with mixed success (e.g. Ruiz-Lapuente et al.|

11992; Mazzali et al., [1995; Liu et al., [1997; Marquardt et al., [2015; Seitenzahl et al., 2016). A

definitive connection between the theoretical progenitor channels for 1991T-like SNe Ia and
their observed spectral properties requires constraining the possible theoretical models to the
observations directly.

In this paper, we present ejecta reconstructions from inference and a direct statistical

comparison of the internal ejecta state between populations of 35 normal and five 1991T-like
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SNe Ia. The ejecta models are presented as probability distributions determined through
Bayesian inference performed on single-epoch early-time optical spectra. Our parameterized
ejecta model is based on hydrodynamical simulations of a variety of proposed progenitor
systems from the Heidelberg Supernova Model Archive (HESMA Kromer et al. 2017). We
use a radiative transport scheme based on the open-source radiative transfer code TARDIS
(Kerzendorf & Sim| 2014) accelerated by the probabilistic DALEK deep-learning emulator
(Kerzendort et al., |2022) to generate predictions of synthetic spectra over our space of model
parameters. We compare distributions of ejecta compositions and ionization states between
the normal and 1991T-like SNe Ia populations and identify a relationship between their
internal structure and observed spectral features. These results allow us to better understand
the relationship between normal SNe Ia and 1991T-like SNe Ia.

In Section [3.3], we describe the selection criteria for the observed spectra samples of normal
and 1991T-like SNe Ia that we chose to model. Section describes the parametric ejecta
model implemented to model these spectra as well as details of the radiative transfer simulation
and its acceleration through emulation. Section describes the inference framework for
estimating the posterior distributions of our model parameters, including the form of the
likelihood function and the priors placed on our parameters. Results of our modeling are
presented in Section [3.6| along with a discussion of their physical implications. Finally, our

conclusions and final discussion are summarized in Section B.7

3.3 Data

We select a sample of normal and 1991T-like SNe Ia with spectra between 7 and 14 days before
the B-band maximum in the light curve as these observations are well into the photospheric
phase (see Section when the ejecta are still optically thick. This selection was designed
to model spectral observations taken 8 to 12 days post-explosion given a rise-time of 19.5
days with a 2.5 day rise-time uncertainty. Some studies (e.g. Phillips et al., 2022)) will discern

between the transitional shallow-silicon 1999aa-like SNe Ia and the 1991T-like SNe Ia due
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to the presence of early-time Calcium features and larger Si II absorption features. For the
purposes of this study, we group together 1999aa-like SNe Ia with 1991T-like SNe Ia and
refer to the joint group as 1991T-like SNe Ia.

Our sample of selected SNe Ia is based on the sample investigated by |[Polin et al.| (2021)
as these objects are well studied. We queried WISeREP | (Yaron & Gal-Yam)|, 2012) for each
selected SN, filtering to only objects labeled as either Ia or la-pec with spectra within our
time interval, and found a total of 158 spectra covering 44 objects. For each object found,
we select a single spectrum to model according to two criteria relating to the quality and
coverage of the data. We first attempt to limit our sets of spectra to those with coverage
of more than 90% of the wavelength range from 3400 A to 7600 A which corresponds to the
wavelength range of our model. If no spectra for a single object fully encompass this range,
we keep them for the next step of selection to maximize the number of objects we model.
We then select the spectrum from each object with the highest average signal-to-noise ratio.
If a spectrum does not include the flux error, we assume the signal-to-noise ratio for that
spectrum is below that of all spectra containing a flux error column when making this cut.

We classify the spectra into two categories: 1991T-like SNe Ia and normal SNe Ia based on
spectral template fitting. We use the Supernova Identification tool (SNID Blondin & Tonry,
2007b) to determine the sub-type, and all objects that are found to be 1991T-like objects
are further investigated through a literature search (See footnotes of Table [2)) in order to
properly classify objects whose photospheric phase spectra can commonly be mistaken with
1991T-likes such as 02cx-likes/Type Iax (see e.g. Phillips et al., |2022). The final selection
includes five 1991T-like SNe Ia and 35 normal SNe Ia spectra. The list of objects, with their

phase from maximum light, classification, and references can be found in Table [2]

13Filippenko et al. (1992)
4Matheson et al.| (2008)
15Blondin et al.| (2012b))
16Silverman et al. (2012)
1Guillochon et al.| (2017)
18Yamanaka et al. (2009)
9Branch et al.| (2003)
20Wang et al.| (2009)
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SN Phas Amin (A) Amax (A) MJD Telescope Instrument  Ref.
1991T-likes

-9.00 3100.00 9840.00  48365.00 Lick-3m  UV-Schmidt [13
-9.67 3720.00 7540.50 51963.33 FLWO-1.5m FAST 14]
-9.66 3720.00 7540.50  52797.34 FLWO-1.5m FAST 15]
-9.55 3380.00 9040.00 51426.45 FLWO-1.5m FAST 14]

1999aa, -11.67 3440.00  7220.00 51223.33 FLWO-1.5m FAST 14]

Normal

1998dm -11.49 3300.00 10100.00 51049.51 Lick-3m KAST

2005ki -8.50 3708.77 7151.80 53697.00 LCO-duPont Mod-spec

2005mz -7.67 3490.00 7409.02 53738.13 FLWO-1.5m FAST

2006X -10.00 4134.97 6794.63 53775.00 Nayuta MALLS

2006ax -8.70 3486.00 7407.96 53818.30 FLWO-1.5m FAST

2006¢cp -9.74 3482.00 7403.96 53887.26 FLWO-1.5m FAST

2006gr -7.70 3479.00 7415.66  54005.30 FLWO-1.5m FAST

2000dn -7.91 3720.00 7540.50 51816.29 FLWO-1.5m FAST

20061f -7.60 3477.00 7413.66 54037.40 FLWO-1.5m FAST

2007af -10.00 3182.61 5271.20 54163.00 ESO-NTT EMMI

2007bd -9.32 3476.00 7412.66 54197.18 FLWO-1.5m FAST

2007ci -8.20 3480.00 7416.66  54238.20 FLWO-1.5m FAST

1998dh -8.50 3720.00 7540.50 51021.40 FLWO-1.5m FAST

2007qe -8.80 3476.00 7417.07  54420.11 FLWO-1.5m FAST

1998aq -7.74  3499.50  7140.00 50922.26 FLWO-1.5m FAST

2005cf -8.71 3485.00 7411.37 53524.29 FLWO-1.5m FAST

2006le -7.57 3476.00 7412.66 54040.43 FLWO-1.5m FAST

2004e0 -10.00 3741.26 9092.24  53268.00 LCO-duPont WFCCD

2004at -7.58 3720.00 7540.50 53084.42 FLWO-1.5m FAST

2000fa -11.52 3680.00 7541.00 51881.48 FLWO-1.5m FAST

Table 2: Table of selected SNe with photospheric phase spectra. The phase of the spectrum
represents the time before maximum B-band magnitude that the spectrum was taken.
Classification of the SNe Ia sub-types was performed with SNID for all models and further
classification of those initially labeled as 91T-likes is determined through a literature search

to avoid possible contamination.
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Table [2] (cont’d)

SN Phasd® A\ (A)  Amax (A)  MID Telescope Instrument Ref.
Normal
2001ep -7.51 3720.00 7540.50 < 52192.49 FLWO-1.5m FAST 15
2001gc -8.64 3720.00 7540.50 52235.26 FLWO-1.5m FAST 15]
2002bo -7.66 3720.00 7540.50 52349.34 FLWO-1.5m FAST 15
2002cr -11.31 3720.00  7540.50 52397.29 FLWO-1.5m FAST 15]
2002cs -8.61 3720.00 7540.50 52401.39 FLWO-1.5m FAST 15}
2004ef -8.70 3479.00 7414.19 53255.30 FLWO-1.5m FAST 15]
2002dj -7.83 3720.00 7560.00 52443.17 FLWO-1.5m FAST 15]
2002er -8.00 3500.47 9294.97  52516.00 Ekar AFOSC D3
2002he -8.52 3720.00  7500.00 52577.48 FLWO-1.5m FAST 15]
2003W -11.65 3200.00 8800.00  52668.35 MMT MMT-Blue [15
2003cg -8.00 3700.00 9347.83 52721.00 CA-2.2m CAFOS 1]
2003du -7.76 3720.00 7540.50 52757.24 FLWO-1.5m FAST 15
2008ar -8.71 3476.00 7418.54 54525.39 FLWO-1.5m FAST 15]
2002d1 -7.55 3720.00 7540.50  52444.45 FLWO-1.5m FAST 15
2011fe -11.00 3500.91 9498.69 55803.00 WHT-4.2m ISIS 29}

3.4 Supernova Model

We present a condensed parametric ejecta model designed to fit a wide variety of predicted
SNe Ia spectra corresponding to different progenitor systems. In Section|3.4.1{we introduce the
hydrodynamic models upon which these parameters and their ranges are based. Section |3.4.2
introduces the way that the density structure of the ejecta is parameterized in the regime of
the photospheric outer ejecta. Section describes the method by which we parameterize
the relative abundances according to the masses of individual elements present throughout

the ejecta and how these masses are folded into a general multi-zone model for SNe Ia

ejecta. Sections [3.4.4] and [3.4.5| describe the physical assumptions made when performing

spectral synthesis for comparison between model parameters and observed spectra. Finally,

2IElias-Rosa et al. (2006))

2ZParrent et al. (2012)

23Kotak et al.| (2005)

24Phases are in days from peak B-band magnitude

257Zheng et al.| (2018) reports this object as a normal SNe Ia but our results from SNID classify this as a
1991T-like SNe Ia which we keep based on the high-brightness and low Si II velocity.

26Zheng et al.| (2018)) classifies these as a 1999aa-like SNe Ia
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Section describes the deep-learning framework implemented to perform the acceleration

of our spectral synthesis over our space of model parameters.

3.4.1 Parameterized Ejecta Model

We develop a parametric model of the ejecta of SNe Ia based on the structure of spherically
averaged ejecta profiles taken from HESMA. HESMA contains a database of a wide range of
simulations of a variety of proposed SNe Ia progenitor scenarios (Fink et al., 2014; [Noebauer
et al| 2017 [Kromer et al., 2013, 2015; Sim et al., 2010; Noebauer et al.; 2017} |[Fink et al.,
2018; Marquardt et al., 2015} Fink et al| 2010b; [Kromer et al., 2010} Sim et al., 2012; Gronow
et al., 2020) which provide an approximation to the space of potential ejecta structures that
describe SNe Ia observations at various times. A visualization of a randomly generated ejecta
profile from a set of model parameters drawn from our space is presented in Figure [l The
ejecta model is parameterized by density and abundance profiles, described in the next two

sections.

3.4.2 Density Profile

We adopt a velocity-dependent power-law density profile in homologous expansion to model
the outer ejecta of the supernova (Equation . The outer ejecta of HESMA models can
be well fit by power-law at early times. A power-law index, «, is left as a free parameter
which allows the model to cover the full range of outer-ejecta density profiles present in the
HESMA models (see Section for a description). A fixed reference velocity for our density
profile, vy = 8000 kms™!, is statically set for all models as a reference density, po, is solved
to constrain the density of the model. The constructed density profile extends from vy to an
outer boundary velocity, vouter, S€t such that the density at the outer-boundary velocity is a
fixed p(Vouter,t = to) = 107 gem?® which is the cutoff value of the density profiles present

in the HESMA models at a fixed ¢ty = 2days. The value of vy is an arbitrary choice as a
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reference coordinate from where we define our model, so the value was selected as the lower

bound of the inner boundary velocity prior (Section [3.5.2)) for simplicity.

omn(2) ()

We constrain the values for vouer and py from a given total ejecta mass above vg, My,
and a given «, by integrating Equation [1| at a time ¢ = ¢, by applying the substitution

vty = r from homologous expansion.

— ap, 2
Mot = UT/U v** v du (2)

0
The value for M,,; is determined from the total of the masses of the individual elements

contributing to the ejecta above vy.

3.4.3 Abundance Profile

We model the abundances of the same elements explored by |O’Brien et al. (2021) in our
ejecta model as these elements account for the majority of line formation in the resulting
spectrum as well as trace the general nucleosynthetic products of the supernova (see e.g.
Filippenko), [1997). We parameterize these elements in terms of total masses above vy in
order to better constrain the total ejecta mass as well as simplify the sampling procedure.
Masses for Carbon (Mc), Oxygen (Mo), Magnesium (Myy), Silicon (Mg;), Sulfur (Ms),
Calcium (Mg,), Chromium (Mc,), Titanium (Mr;), stable Iron (Mg,), and initial *°Ni at
to, Msey;, are aggregated into three quantities corresponding to the mass of Iron Group
Elements (IGEs, Migg = Mson; + Mcr + M1i + Mg ), Intermediate Mass Elements (IMEs,
Mg = Mg + Mg + My + Mca), and Unburned Elements (UBEs, Mygg = Mc + Mo), as
well as a total ejecta mass (Myoy = Mige + Miye + Mugg). We place these three categories
of elements into three distinct regions of the ejecta corresponding to a general structure seen

in the HESMA abundance profiles as well as tomography results presented by |[Aouad et al.
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(2022, Figure 18) in which IGEs resulting from complete nuclear burning are placed below
a layer of IMEs resulting from incomplete burning, with UBEs placed in the outer-most
regions (see Figure {4)). The fractional abundance of each region is parameterized by a set
of functions, Aypg(v;ve., w), Arne(v;ve, w), Arjge(v; v, w), where the sum of the profiles at
each velocity adds up to unity. A modified Gaussian is used to represent the distribution
of IMEs which is parameterized by a width, w, and a centroid, v., in velocity space. The
form of this profile was selected to allow for the model to parameterize various amounts of
mixing between regions of the ejecta as well as explore the depth at which the properties of
the ejecta are changing. The model results in a mass-fraction profile that follows a Gaussian
bubble of IMEs over the ejecta velocity and serves as an approximation to the profiles present
in the HESMA dataset.
1(v—u.)?

Anvp(v; v, w) = Agv™  exp {—57} (3)

Where Ay is a normalization constant set to the inverse of the maximum value of Ay p(v =
Umax; Ve, ). The velocity corresponding to the distribution’s maximum value is determined

from v, and w through the relation

~w? (0, + 2) 4 Umax

(4)

C
vmax

The values for v, and w are then determined from the relative masses of each region of

elements by numerically solving the following system of equations

t34 Vouter
Mg = & gpﬂ / v Ang (v)v?do, (5)
UO Vo
t3 4 [Umax
Migg = p0+p/ v [1 = Apg(v)] v*do, (6)
Yo V0
t347-‘- Vouter
Mugg = povgp / v [1 — Ang(v)] v?dv (7)
0 VUmax
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which results in a complete ejecta profile.

3.4.4 Explosion Model

Our analysis of early-phase spectra relies on the photospheric approximation in which the
rapidly increasing optical depth of the ejecta towards the center is approximated as a hard
inner boundary in velocity space, Viner. Thermalized radiation is injected into the ejecta
above from a black-body distribution at a given temperature, T},,.. A parameter representing
the time since the explosion, t.,,, scales the density profile (Equation [1)) as well as sets the

abundances of decay products of *Ni in the final ejecta profile.

3.4.5 Radiative Transfer

We calculate synthetic spectra from our ejecta model using the open-source Monte Carlo
radiative transfer code TARDIS (Kerzendorf & Sim| 2014; Kerzendorf et al., 2021). TARDIS
is a 1D steady-state code that iteratively solves for the excitation and ionization state of the
plasma. TARDIS uses an inner boundary photosphere approximation that injects radiative
packets into a homologously expanding ejecta.

In this work, we use TARDIS version 022.5.9.devb+gf27fa30 together with atomic
data being produced by the TARDIS sub-package CARSUS (Passaro et al.| 2019) version
0.1.dev677+gd623c94. The generated atomic data takes ionization energies from CMFGEN
(Hillier & Lanz, 2001) for O I, O II, S I, S II, Si I, and Si II. Tonization energies for other
species used in this work were taken from NIST (Ralchenko, [2005) with lines and level data
taken from Kurucz GFALL (Kurucz & Bell, [1995).

Ionization populations are solved using the “nebular” approximation (Equation 3 in
Kerzendorf & Siml 2014)) and excitation populations are solved using the “dilute-lte” pre-
scription (Equation 5 in |[Kerzendorf & Sim|2014; Equation 4 in Lucy|[1999b)). The “nebular”
approximation assumes that the expanding envelope is optically thin in all ionization con-

tinua (Mazzali & Lucyl, |1993) which acts as a good approximation for radiative-transfer in
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Figure 4: Visualization of a random realization of an abundance profile produced from our
model in our prior space. Elemental abundances are presented as stacked histograms. The
diagonally hatched regions correspond to the inner iron-group elements, the central unhatched
region corresponds to the abundance of IMEs, and the vertically hatched region corresponds to
the unburned elements in the outer layers of the ejecta. A red dashed vertical line represents
the inner boundary velocity from which thermalized radiative packets are injected into the
ejecta above. The solid black line represents the density of the ejecta through velocity space
and the value of the density if provided by the right-hand axis.
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the photospheric phase. The “dilute-1te” prescription acts as an approximation for NLTE
excitation levels again in the optically thin limit. Line interactions are handled using a
macro-atom model (Lucy, 2002). Models were generated using 40 shells of ejecta and run until
plasma state convergence with 10° packets per Monte Carlo iteration. Further configuration
information for TARDIS including links to a reproducible setup and the atomic data file
created with CARSUS can be found in Appendix [C]

3.4.6 Emulator

Spectral synthesis with TARDIS is too computationally expensive to be used directly for
fitting. For example, a single TARDIS simulation takes approximately 30 CPU minutes,
which would require hundreds of years to effectively sample a posterior distribution which
requires over a million sequential simulation runs.

In recent years emulation of radiative transfer models has served as a powerful tool for
directly probing the properties of a variety of supernovae and other astrophysical objects (see
e.g.[Vogl et al., 2020b; |(O’Brien et al., 2021; Fullard et al.,|[2022). To expedite model evaluation
we employ an emulator for TARDIS which performs spectral synthesis from model input
parameters through an analytic approximation. |O’Brien et al.| (2021) applied a deep-learning
emulator for TARDIS based on Kerzendorf et al.| (2021)) to simulate single-zone ejecta models
for normal SNe Ia which, for the first time, allowed for fully-probabilistic reconstructions
of the outer ejecta of a SN Ia. Kerzendorf et al. (2022)) expanded upon the utility of such
emulators by incorporating a probabilistic deep-learning architecture for emulated SNe Ia
spectral synthesis which includes the added functionality of providing uncertainties in the
emulated spectra.

We combine our ejecta model with a probabilistic emulator architecture based upon
that of Kerzendorf et al,| (2022) to rapidly generate synthetic spectra from our model’s
parameters with improved uncertainty estimates. Our emulator serves as a surrogate for

evaluation of our parametric ejecta model with the TARDIS radiative transfer code and is
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only subject to the constraints of the model from the training samples. We train a deep
ensemble (Lakshminarayanan et al., 2017)) of 12 probabilistic emulators to emulate our spectral
synthesis. Model evaluation is performed by aggregating the resulting spectra from each
emulator with their associated uncertainty. Scripts and data files containing the emulator

and its training data can be found in Appendix [C]

3.5 Model Inference

We perform Bayesian inference in order to find the posterior distribution of model parameters
given our observed spectra. In order to model the posterior distribution we require a method
of likelihood estimation, presented in Section [3.5.1] to effectively compare simulated spectra
to observed spectra in the context of physical and systematic uncertainties and biases. The
constraints we place on the parameters of our model are discussed in Section and the
method of sampling the posterior distribution is discussed in Section [3.5.3] A short discussion
of our method of lowering the emulation uncertainty for regions of parameter space that are

both high in likelihood and under-sampled in our emulator’s training data is presented in

Section B.5.5]

3.5.1 Likelihood Estimation

We apply an extended form of the likelihood function used by |O’Brien et al.| (2021)) to
incorporate emulator uncertainties determined by the probabilistic DALEK emulator by
adding them in quadrature to the other sources of uncertainty. We aim to best reconstruct
the composition of the ejecta, so we remove the continuum when determining the quality
of a fit in order to maximize contributions from line formation. We incorporate a spectral
continuum removal process, C(F)(0)) which normalizes the synthetic spectrum estimate,
F ,\(5) to the continuum of the observed spectrum, F)\. This continuum removal process fits a

3rd order polynomial to the ratio between the observed spectrum and the simulated spectrum

then multiplies the simulated spectrum by the polynomial. Such removal is necessary to
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remove the effects of the continuum, distance, and reddening from the observation to ensure

our fits are driven by the line features. The total form of the log-likelihood is

~ =

log £(0) = —%Z <C(Fi ((;)_ FA) +log (27?0?\(5)) :

where

— Ao -
_ 2

U§(6> Ugbs,)\ + fgCa(F)\(@)) + Uemu,)\( )

where f, represents an inferred fractional uncertainty (Hogg et al., 2010]) over our spectrum
and ogbs,y is the observational uncertainty of the spectrum we are fitting. Observational
uncertainties are taken from the spectra data source if available, otherwise, a constant
uncertainty of 1% of the mean of the spectrum is assumed. ey is the estimate of the
emulator’s uncertainty (Equation 4 in Kerzendorf et al., 2022) in the region corresponding to

the fit.

3.5.2 Prior Bounds

Table |3| lists our prior distributions of model parameters. Multiple constraints are placed on
the prior distribution of model parameters in order to accurately reflect the limits of currently
explored hydrodynamic simulations of progenitor scenarios for SNe Ia. A large variety of
hydrodynamical simulations of various SNe Ia progenitor systems are found in the HESMA
models and offer information about the expected general properties of the ejecta structure
such as the relative typical ratios of nucleosynthetic products present within the ejecta as well
as full density profiles. We generate a prior space for total elemental masses by integrating
models taken from HESMA above vy so that the final masses of each element follow the same
general correlation structure as the sum of all hydrodynamic models, ensuring a reasonable
estimate of the distribution of likely supernovae ejecta profiles. The prior distribution of
elemental masses is drawn from a multivariate Gaussian distribution whose covariance is

set as the covariance of the log of elemental masses taken from the HESMA models with
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a centroid taken as the log of the mean of HESMA masses in linear space as to not bias
the distribution towards models with little or no mass of certain elements. Drawing from
this distribution offers a good balance between tracing the general covariance structure of
the models found in the HESMA while also permitting nearly any parameter combination
to be tested, albeit with a smaller probability. Since these distributions are based upon
the distributions of elemental masses present in the HESMA models, the total mass of the

outer-ejecta is also constrained by this distribution.

Distribution | Model Parameter | Distribution Parameters
Uniform Low High
Tinner (K) 8000 15000
Vinner (km s™ ) 8000 16000

Q) -10 -9

Normal @ 01?'

texp (days) 19.5 + Phas’ | 25

Multivariate

Log-normal Msg; (Mg) 7.84 x 1072 0.93
Mca (M) 1.10 x 1072 1.08

Ms (Mg) 3.94 x 1072 0.89

Mg (M) 1.19 x 1072 1.02

Mnise (M) 1.11 x 1071 1.49

Mcr (M) 3.17x 1073 1.47

Mr; (Mg) 1.48 x 1073 1.87

Mpe (Mg) 2.04 x 1072 1.39

Mo (Mg) 7.12 x 1072 1.34

Mc (M) 2.59 x 1072 0.87

Table 3: The prior distributions from which our model parameters are sampled during
posterior inference. Parameters are sampled over different distributions according to their
range of physical applicability determined from hydrodynamical models in the HESMA data
set.

27Prior distributions for Tinner, Vinner and texp are further constrained by the condition that the luminosity
estimated from the Stephan-Boltzmann law 8 x 10%° ergs™ < 4rogpvd o 2l o < D x 1073 ergs™!
based on the estimated range of SNe Ia luminosities computed from Figure 1 of [Taubenberger| (2017) which
encapsulates the range of both Normal and 1991T-like Type Ia supernovae

28Mean of the normal distribution in linear space.

29Gtandard deviation of the normal distribution

30Prior centroid is dependent on the phase of the spectrum from maximum light reported in Table

31Mean of the prior distribution in linear space. The centroid of the log-normal distribution is the log;, of
this values.

321D standard deviation of the log;, of each mass distribution. It is important to note that there exists a
non-zero covariance between each mass term.
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We set a uniform prior on the distribution of values of «, by fitting linear models to
the HESMA density profiles above vy and taking the minimum and maximum value to
the nearest integer. Velocity and temperature distributions are initially sampled uniformly
over the ranges specified in Table |3 with cuts placed on the luminosity of the supernovae
under homologous expansion with an assumed rise time of 19.5 days (Riess et al., |1999))
according to the Stephan-Boltzmann law as an estimate for the range of realistic maximum
light luminosities. The prior distribution for the time since the explosion, .., is determined
on a spectrum-by-spectrum basis. The distribution is always represented by a Gaussian
distribution centered at a time of 19.5 days plus the phase of the spectrum from maximum
light (see Table [2]) with a standard deviation of 2.5 days to account for rise-time uncertainty
based on the spread of rise-times between normal and 1991T-like SNe Ia (see Figure 6 in

Ganeshalingam et al., [2011)).

3.5.3 Sampling the posterior
3.5.4 UltraNest

The posterior inference was performed with nested sampling (Skilling, 2004; Buchner] 2021))
with the MLFriends Monte Carlo algorithm (Buchner, 2014, 2017). Nested sampling is ideal
for generating posterior samples from complex high-dimensional distributions. We used the
nested sampling package ULTRANES’IE] (Buchner;, 2021)) to sample the posterior distribution
for each observed spectrum. Each spectrum returned between 10000 and 30000 effective

posterior samples which are presented in Figures [6] and

3.5.5 Active Learning

The high dimensionality of the parameter space and unknown apriori parameter constraints
required to effectively model individual spectra observations create difficulty in selecting

an optimal training set for our emulator. We resolve this issue by iteratively selecting new

33https://johannesbuchner.github.io/UltraNest /
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training points that are predicted to best improve emulator accuracy in the regions of the
parameter space that are most likely to model the spectra we are attempting to model.

We apply Active Learning (AL Cohn et al [1996; Beluch et al., 2018) iterations to the
emulator training to improve accuracy in regions of high importance. After an initial draw of
250000 random samples, the emulator is trained to reproduce the results of TARDIS (see
Section . We sample the posterior distribution, using this emulator, of parameters
best matching our observed spectra using a modified AL likelihood function, £ay,(6). This
likelihood function weighs the likelihood of a proposed g by the relative fraction of emulator
uncertainty to total uncertainty, encouraging exploration into regions of the parameter space
where the emulator has less information. The AL likelihood function is computed as

log La1.(0) = log L(0) + % Z log M
A ox(0)

An equal number of posterior samples are selected for each observed spectrum and are
evaluated by TARDIS. Synthetic TARDIS spectra are then appended to the original training
data to provide the emulator with more information around areas that are simultaneously
high in likelihood while also high in emulation uncertainty. Each acquisition process yields
approximately 200 000 additional samples per iteration. Two iterations of active learning
were performed on the data.

In regards to the final emulator’s performance in predicting TARDIS spectra under this
model, we have performed an analysis across a hold-out set, or “test set”, of model-spectra
pairs that were not included in the training or validation set of the emulator. The probabilistic
DALEK emulator applied in this paper has some key differences from the original DALEK
emulator, namely that the probabilistic DALEK emulator produces a distribution of spectra
for a given input parameter vector (represented by a mean and standard deviation) rather
than a single prediction point. In evaluating the performance of the mean of the prediction,

which is the closest comparison we can directly make to the original DALEK emulator, we
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find that the Mean Fractional Error averages approximately 1% which is below the total
aggregate uncertainty used for inference in our likelihood function. We also measured a
z-score over the test set at each wavelength as the difference between the mean prediction and
the true spectrum divided by the predicted standard deviation and evaluated the fraction of
data-points that fall within 1, 2, and 3 standard deviations. We find that at each interval, the
fraction of data corresponds to the 1, 2, and 3-sigma tails of a normal distribution or better,
with 88.5% of predicted means falling within 1 predicted standard deviation of the true

spectrum and 99.7% of predictions falling within 3-standard deviations of the true spectrum.

3.6 Results

The posterior probability distribution of spectra for the five 1991T-like SNe Ia in our samples
along with their maximum likelihood estimate and total uncertainty is presented in Figure
For comparison, a selection of five of the normal SNe Ia from our sampled are shown in
Figure |5 as well. Our fits accurately reproduce major line features that distinguish 1991T-like
SNe [a from the normal SNe Ia population. Specifically, our models generate the high-velocity
Fe III features around 4250 A and 4950 A as well as the Si II feature near 6150 A.

While our emulator may appear more effective at modeling the general SNe Ia population
than the 1991T-like population, most of the deviations from the means of the posteriors are
within 68% uncertainty. This results in apparent inconsistencies with the 1991T-like SNe Ia
in 2 ways. First, in the UV where there is heavy blanketing from IGEs, there is a large
Monte-Carlo uncertainty produced by TARDIS due to the radiation being sampled from a
black-body which sharply drops off in the blue. As can be seen in Figure [5| while the means
of the posterior spectra do not always line up with the observations, there are very large
uncertainties and these uncertainties still encompass the data. Second, on the red end, since
the likelihood is evaluated over the entire spectrum shallow silicon features will contribute
less to the weight of the overall likelihood and, due to Monte-Carlo uncertainty, shallower

silicon features will be closer to the amplitude of the noise. As can be seen in Figure [f our
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Figure 5: Posterior spectra of 1991T-like (left) and normal (right) SNe Ia scaled and offset for
visualization. The mean of the posterior is represented in black with the best fit (maximum
a-posteriori sample) in orange dashed and the shaded orange region representing the total
uncertainty of the best-fit sample at 1-o.
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68% posterior still encompasses the shallow silicon features, but the posterior mean alone

may be misleading.

3.6.1 Ejecta Properties

The peculiar nature of early-time 1991T-like spectra has been well identified, but their origin
remains unclear. 1991T-like spectra show the presence of high-velocity Fe III emission and
lack the strong characteristic Si Il and Ca H&K absorption commonly seen in Branch-normal
SNe Ta (see e.g. [Filippenko, |1997). After maximum light, 1991T-like spectra begin to behave
similarly to normal Type la spectra, with Si I features reappearing in the spectra (see e.g.
Taubenberger, [2017)). There have been two suggested causes behind the lack of singly-ionized
IME absorption at early times. Namely, a lack of total IME production and higher ionization
states of IMEs produced in the ejecta (e.g. Jeffery et al., [1992; |Ruiz-Lapuente et al. [1992;
Sasdelli et al.| 2014)).

We find a variety of parameters that indicate the differences between 1991T-like and
Normal SNe Ia. The distribution of inner boundary temperatures for 1991T-like SNe Ia
are higher than the average inner boundary temperatures for the normal SNe ITas, though
still exists within the range of nearly half of the normal SNe las in our sample (Figure @
indicating that high-ionization states of IMEs, in particular Silicon, are not due to a difference
in temperature of the ejecta alone, but a combination of factors. This leads us then to
investigate two other possible causes for the lack of Si II formation in the photospheric phase:
a decrease in the electron density at the primary location of IME composition or a decrease
in the total mass of IMEs contributing to the line features seen in the ejecta.

The material below the photosphere, parameterized through the inner boundary velocity,
does not contribute to features in the resultant spectra. Therefore, constraints of physical
properties of the ejecta must rely strictly upon material above the inner boundary photosphere.
Since the selected range of phases for these spectral encompass a wide range in photospheric

velocities, such analysis must be viewed in the context of comparison between the bulk-
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Figure 6: Posterior contours of SNe Ia probed in this study. Normal SNe Ia are shown with
blue contours and 1991T-like SNe Ia are shown in orange. The contours cover 68%, 95%,
and 99.5% quantiles. The posterior means for each object are shown as stars. The plots
show the joint distributions between ejecta density at v = vay, inner boundary temperature
Tinner, and integrated UVOIR luminosity from the model spectrum. While 1991T-like SNe Ia
are generally brighter than the Normal SNe Ia population, the increase in brightness does
not seem to be driven by substantially higher photospheric temperatures. The lower ejecta
density in the region of highest intermediate mass element abundance shows that higher
ionization fractions in 1991T-like SNe Ia are influenced by the lower electron density.
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populations of each supernova type as the two populations have similar mean photospheric
velocities over all of the posterior samples. We determine the total mass of each contributing
element above the photosphere by integrating Equations [5], [6] and [7] with their lower bounds
set to the inner boundary velocity, viune:. We compute the mass fraction of each element as
the integrated mass of each element above the photosphere divided by the total mass above
the photosphere. The mass fraction offers a direct probe of the nucleosynthetic products that
are visible in the photospheric phase and which can be directly compared to hydrodynamic
models without a need to convert abundance fractions into total masses.

Figure [7|shows the posterior probability distributions of the IME fractions from 1991T-like
SNe Ia demonstrating a clear deficit compared to that of normal SNe Ia coupled with a small
increase of IGEs as a fraction of the total ejecta. The marginal distribution of the fraction of
unburned elements does not demonstrate a discernible difference between 1991T-likes and
Normal SNe Ia, though the joint distribution between IGEs and unburned elements shows
an interesting correlation in 1991T-likes in which the fraction of unburned elements in the
ejecta is slightly higher for 1991T-like SNe Ia compared to Normal SNe Ia given the same
iron-group element fraction. The consistent lack of IME mass fractions changing with respect
to UBE fractions along with the correlation between UBE and IME fractions in 1991T-like
SNe Ia implies a rapid and consistent drop-off in the rate of production of nucleosynthetic
products with respect to depth into the explosion.

While many 1991T-like SNe Ia show generally lower mass fractions of IMEs compared
to the normal Ia population, there are cases of overlap (see Figures @, where low mass
fractions alone are not enough to explain the observed lack of IME features, such as the Si II
6150 A doublet, in the resulting spectra. Additionally, we note that the 1991T-like SNe Ia
population has generally lower ejecta densities at the location of the peak of the fractional
abundance of IMEs in our model implying a lower electron density and therefore a higher
ionization state. The combination of low IME mass fraction and higher ionization states

leads to a dual effect where the observed properties of 1991T-like SNe Ia in comparison to
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Figure 7: Posterior contours of SNe Ia probed in this study. Normal SNe Ia are shown with
blue contours and 1991T-like SNe Ia are shown in orange. The contours cover 68%, 95%, and
99.5% quantiles. The posterior means for each object are shown as stars. Each plot shows
the marginal distribution of mass fractions of the various ejecta compositions above the inner
boundary velocity by integrating equations [0} [, and [7] It can clearly be seen that 1991T-like
SNe Ia lie on the edge of IME mass fraction distribution describing normal SNe Ia.
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the normal Ia population is not due to a single underlying mechanism, but a combination of
different physical processes which result in similar looking spectra observationally.

We selected the maximum likelihood sample for each spectrum and simulated the ejecta
radiation field using TARDIS. The ionization fraction of Si III to Si II was determined at the
shell containing the velocity v,,q, providing a look into the ionization state of the plasma at the
location with the maximum abundance of intermediate-mass elements. 1991T-like supernovae
were found to have overall higher ionization fractions than the vast majority of normal
SNe Ia, though some overlap was found within the normal SNe Ia population (Figure[§)). The
normal SNe Ia with comparable ionization fractions to 1991T-like SNe Ia all had a higher
mass fraction of IMEs than 1991T-like SNe Ia at the same ionization fraction. Additionally,
1991T-like SNe Ia with lower ionization fractions among the 1991T-like population also had
a lower mass fraction of intermediate-mass elements within their ejecta. The suppressed Si II
absorption features observed in 1991T-like SNe Ia, therefore, is a result of a combination
of low IME fraction and high ionization state, creating a region of space where there is a

turnover in the classification between the spectral types.

3.7 Conclusion

We have performed single-epoch outer ejecta reconstructions for 35 normal SNe Ia and five
1991T-like SNe Ia. Elemental abundance distributions and their ionization fractions in the
early phases of the explosion have provided a picture linking the internal properties of the
outer ejecta to the observational properties of their spectra. Comparison between the ejecta
properties between the two populations provides insight into the relationship between normal
SNe Ta and 1991T-like SNe Ia.

We find 1991T-like SNe Ia both under-produce IMEs relative to the normal SNe Ia
population and these IMEs exist in higher ionization states than the IMEs in the normal
SNe Ta population. The cause of the higher ionization fractions is primarily driven by a lower

overall electron density in the ejecta. The lower overall electron density may be a result of a
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Figure 8: Ratio of Si III to Si II ion density at the shell encompassing v,,,, versus the
fraction of intermediate-mass elements in the ejecta above the inner boundary. Samples are
taken from the maximum likelihood parameters of each SNe Ia in our sample run through
TARDIS to calculate the properties of the radiation field. Normal SNe Ia are shown in blue
and 1991T-like SNe Ia are shown in orange. A clear turnover between normal SNe la and
1991T-like SNe Ia is evident in the regions of low intermediate mass element fraction and
high ionization state of silicon. The combination of the lack of material coupled with high
ionization states creates a boundary between the spectral types.
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relative overabundance of IGEs relative to the abundance of IMEs in the ejecta of 1991T-like
SNe Ia resulting in an ejecta composition dominated by high-neutron number elements, while
normal SNe Ta with depleted IMEs may have the remainder of the ejecta filled with unburned
Carbon and Oxygen.

Neither the low abundance fraction of IMEs nor the high ionization states of IMEs alone
are enough to explain the peculiar properties of 1991T-like SNe Ia; instead, a combination
of the two effects drives their unique spectral signatures at early times. We have found
1991T-like SNe Ia that contain a similar IME fraction to some of the normal SNe Ia in our
sample, but these 1991T-like SNe Ia have a higher overall IME ionization than a normal
SNe Ia at a similar IME mass fraction. Conversely, we have found 1991T-like SNe Ia with
similar IME ionization fractions to the normal SNe Ia but these objects have a lower mass
fraction of IMEs than the normal SNe Ia given their ionization state.

Our findings are consistent with normal SNe Ta and 1991T-like SNe Ia arising from a similar
population or progenitor system. The observational spectral properties that traditionally
separate the two groups result from a sharp change in the amplitude of spectral features
corresponding to IMEs over small changes in both composition and ionization state. This
results in small deviations in ejecta composition leading to a sharp contrast in observed
spectral features. More detailed ejecta models will be required to definitively distinguish or

unify the progenitor channels responsible normal and 1991T-like SNe Ia.
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4 Constraining Type Ia Supernova Progenitors with
Generative Models: Insights from SN 2011fe Spectral

Time Series

4.1 Abstract

The progenitors and explosion mechanisms driving Type la supernovae (SNe la) continue to
remain elusive. A variety of progenitor channels have been proposed and simulated leading
to their own unique observational predictions but none have yet been successful in describing
all properties of observed SNe Ia. We aim to provide a probabilistic ranking of proposed
progenitor channels to describe the SN Ia 2011fe from a set of photospheric phase spectral
observations based on simulated progenitor channels already present in the literature. We
train a conditional variational auto encoder (cVAE) on a set of 1D ejecta profiles produced by
hydrodynamic simulations of SNe Ia explosions taken from the Heidelberg Supernova Model
Archive conditioned on their progenitor channels to create a low-dimensional embedding of
SNe Ia ejecta profiles. This embedding is mapped to synthetic spectral observations through
a deep-learning emulator trained on the radiative transfer code TARDIS. The spectral time
series of SN 2011fe is fit with the combined cVAE-Emulator model conditioned on each
progenitor channel to determine the posterior distribution of model parameters which are
integrated to produce a Bayesian evidence for each progenitor channel. We find that a
pure-detonation explosion of a sub-Chandrasekhar mass carbon-oxygen white dwarf best
describes the early-time spectral time series of SN 2011fe. We compare these results to
previous abundance tomography studies of SN 2011fe and discuss the potential mechanisms

that can lead to such an explosion.
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4.2 Introduction

Despite Type la supernovae (SNe Ia) being critical to our understanding of cosmic expansion

(Branch| 1992b; Phillips, (1993} Riess et al., [1998; Perlmutter et al., [1999) and chemical

evolution of the cosmos (Kobayashi et al., 2020, see Figure 39), the mechanism(s) leading

to their cataclysmic explosions remain elusive. SNe Ia are generally agreed to result from
the thermonuclear runaway of a carbon-oxygen (C/O) white dwarf (WD) in a binary system
due to mass transfer from a binary companion. An ever-growing variety of mechanisms have

been proposed to explain their observational properties such as delayed-detonations of near

Chandrasekhar-mass (Mcy) WD (Khokhlov, 1991), a surface helium detonation compressing

the core of a sub-Mg, WD (e.g. Woosley & Weaver] (1994} [Fink et all 2010a; |[Shen et al.|

2018} [Polin et all [2019; [Pakmor et al [2022), or mergers between a pair of WDs (e.g. [Nomoto,

1982b; [Webbinkl, (1984} [Iben & Tutukov] [1984; van Kerkwijk et al., [2010; [Livio & Riess|, 2003

Kashi & Soker}, 2011)).

Direct determination of the progenitor system for SNe Ia is a computationally difficult
problem. Hydrodynamic simulations produce predictions for nucleosynthetic byproducts,
energy deposition, and ejecta densities which are used to generate synthetic observables such
as spectral time series and light-curves which can be compared to data. Matching the resulting
ejecta profiles of the simulations to synthetic observables directly requires running massive
numbers of hydrodynamic simulations with varying parameters. While full hydrodynamic
simulations provide physically realistic parameterizations, running single models is extremely
costly and time-intensive making them impractical for direct inference.

An alternative approach is to perform inference on the ejecta profile directly as radiative
transfer simulations are less computationally expensive than full hydrodynamics. Studies have

shown that the full diversity of Type Ia spectra can be described by only a few parameters

(see e.g. Saunders et al., 2018 Boone et al., [2021}; Murakami et al., 2023) and typically fitting

SNe Ia ejecta profiles involves application of reasonable approximations to reduce the size of
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the space of potential ejecta profiles (see e.g. (O’Brien et al.| [2021; |[Magee et al.; 2021; O’Brien
et al., 2023).

We extend this approach by using a Conditional Variational Auto Encoder (¢cVAE) to
restrict the space of abundance and density profiles to a low-dimensional latent distribution
from which Monte-Carlo sampling can be performed efficiently. The conditions of the cVAE
correspond to a set of progenitor channels associated with each model. We sample over the
latent distribution conditioned on each progenitor channel along with parameters for a time
and luminosity. This is then used to evaluate the model, by matching the synthetic spectral
time series corresponding to each channel to an observed spectral time series. We do this for
the well-studied SNe Ta SN 2011fe using emulated radiative transfer (Kerzendorf et all 2021}
2022) for model evaluation. By integrating the Bayesian evidence of the posterior distribution
under each channel, we determine a relative ranking of each progenitor system to accurately
model the observed spectral time series and provide the relative probabilities that SN 2011fe
originated from each channel. We decode the posterior distribution of latent parameters for
each model to provide probabilistic posterior distributions of relative elemental mass fractions
under each progenitor channel.

We outline the observational spectral time-series data in Section [4.3] In Section [£.4] we
outline the space of the ejecta model under the cVAE and the progenitor channels being
explored. We discuss the radiative transfer scheme used to evaluate the ejecta models in
Section [4.5] and the details of the conditional radiative transfer emulator. In Section [4.6] we
discuss the sampling and model-selection procedure, present our likelihood function used for
spectral time-series inference, and explain the components of our prior distribution. The
results of our inference are presented in Section [4.7  and are discussed in Section [4.8 Details

of the ¢cVAE including architecture, training procedure, and data formats are presented in

Appendix [E]
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4.3 Spectral Observations

We model a spectral time series of SN 2011fe produced by the SNFactory (Aldering et al.,
2002). The selected spectra were taken between 6 and 10 days before maximum light
corresponding to a time between 8 to 12 days post-explosion based on light curve rise time
estimates from |Pereira et al.| (2013). The spectra have been corrected for galactic extinction
and shifted to the rest frame. Our spectral time series contains 4 spectral epochs interpolated
to a logarithmic wavelength grid from 3300 A to 9700 A with 500 points to re-weight line

contributions over their velocities.

4.4 Supernova Ejecta Model

We develop a model of the supernova ejecta which includes both the density profile and
abundance profile for each element in a manner consistent with expectations derived from
theoretical predictions from studies made using hydrodynamic simulations of the various
progenitor channels. The ejecta profile consists of 100 velocity bins with 10 elements per
bin represented as a 1100 dimensional vector of 10 x 100 elemental masses and 100 velocity
edges. We use a variational auto encoder (Rezende et al., 2014; Kingma & Welling), 2014])
to compress the space of potential ejecta models to a dimension that is feasible to sample.
This variational auto-encoder has the advantage that we may select the distribution of the
compressed space, or latent space, to follow a normal distribution with a mean of zero and a
standard deviation of one. We condition this auto encoder using a label corresponding to
each progenitor system from which the training data originates (Sohn et al., 2015]).

This model is trained on a public sample of SNe Ia ejecta profiles taken from the Heidelberg
Supernovae Model Archive (HESMA |[Kromer et al., 2017). HESMA contains a set of ejecta
models resulting from various studies using hydrodynamic simulations to model different
progenitor systems under different scenarios. These models are spherically averaged isotopic

abundances and densities over 3D models and we restrict the elements to only those that
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contribute to major line features of SNe Ia. We specifically use the abundances of carbon,
oxygen, iron, titanium, chromium, silicon, sulfur, magnesium, calcium, and radioactive *Ni
at tg = 100 seconds post-explosion. The abundance profiles provided by HESMA are in the
form of a table of velocity values, which define the edges of each cell, density values for each
shell, and mass fractions of each element contained within each cell. The cVAE allows us
to randomly draw complete ejecta profiles that are used for evaluation with the radiative
transfer code TARDIS to generate synthetic spectra for inference. The decoder will produce
full 1200-dimensional ejecta models that are physically realistic by randomly sampling in the
latent space which allows us to sample from a significantly smaller distribution and reduces
the requirement for the number of samples by a factor of 102%.

Our training data consists of 104 isotopic abundance and density profiles from 4 progenitor
channels. These models include 12 pure detonation models (DET) from [Sim et al.| (2010);
Marquardt et al.| (2015), 45 pure deflagration models (DEF) from [Fink et al.| (2014)); Kromer
et al.| (2015)); Lach et al.| (2022), 19 delayed detonation models (DDT) from [Seitenzahl et al.
(2013); Ohlmann et al. (2014), and 26 double detonation models (DOUBLEDET) from |Sim
et al.| (2012)); Gronow et al.| (2020, 2021)). Details of the architecture and training procedure

for the cVAE can be found in the appendix.

4.4.1 Double Detonations

Double detonation models are systems in which an accretion-induced surface detonation
propagates towards the center of a sub-M¢y, secondary WD imploding the core and leading to
a supersonic nuclear-burning wavefront. Nucleosynthetic burning products from the original
surface detonation create the presence of heavier elements in the outer regions of the ejecta
leading to reddening (Polin et al., 2021) and may explain the initial bump and red colors
seen in some of the early lightcurves of SNe Ia (Polin et al., 2019; Bulla et al.| 2020} Jiang
et al., 2017 De et al., 2019). For this study, we restrict our definition of double detonation

models to those where there is a thick helium shell (Mg, ~ 0.1My) making a significant
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contribution to the helium burning ash in the outer layers of the explosion. Thin helium shell

models (Mpg. ~ 0.01M) are represented by the pure detonation models discussed next.

4.4.2 Pure Detonations

Many studies have been performed to analyze the effects of thin-helium shell double det-
onations by approximating the explosion as a pure detonation of a sub-M¢g, WD with an
artificial explosion placed at the center. These models allow us to understand the evolution
of the supernova when contributions from surface helium burning ash as insignificant to
the observations. Violent mergers between WDs with a primary mass of around 0.9 Mg
also produce similar explosions to the pure detonation models (Pakmor et al., 2013). For
this study, pure detonation models encompass models in which surface helium burning has
an insignificant contribution to observables and stands to represent either the class of thin

helium shell double detonations or violent mergers.

4.4.3 Pure Deflagrations

Pure deflagration models are an older model for the explosions of near Mg, WDs in binary
systems. This explosion produces less %Ni in their ejecta and consequently lower overall
luminosities in their light curves. These models are often used as a more accurate description
of lower luminosity thermonuclear transients such as Type lax Supernovae. We include them
in our analysis to investigate if there is any potential for these models to be able to accurately
reconstruct an archetypal Type la spectral time series and to help serve as a baseline for the

quality of our method of model comparison.

4.4.4 Deflagration-Detonation Transitions

Deflagration-Detonation Transitions, also known as delayed detonations, offer an avenue for a

near Mcy, SNe Ia to produce the correct amount of *Ni to explain the light curve evolution
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of normal SNe Ta like SN 2011fe. These models represent an intermediate mechanism between

pure detonations and pure deflagrations.

4.5 Radiative Transfer

Evaluation of a set of model parameters to produce a synthetic spectrum is performed
with the Monte-Carlo radiative-transfer code TARDIS (Kerzendorf & Siml 2014; |Kerzendorf
et al., [2021)). We used the nebular approximation (Equation 3 in Kerzendorf & Sim) 2014))
for solving ionization populations which is appropriate in the regime of an optically thin
expanding envelope in all ionization continua (Mazzali & Lucyl, [1993)), which is the case in
the early phases being explored in this work. Excitation populations are solved with the
dilute-1lte prescription (Equation 5 in Kerzendorf & Sim| |2014)) which approximates NLTE
excitation levels in the optically thin limit. Line interactions are handled with the macroatom
model (Lucy, 2002)). Atomic data used with TARDIS in this study is taken from Kurucz
GFALL (Kurucz & Bell, [1995). Full ejecta profiles are provided to TARDIS along with a
time since explosion parameter and a requested luminosity which represents the total emitted

luminosity over the wavelength range provided to TARDIS of 1000 A to 10000 A.

4.5.1 Photospheric Inner Boundary Velocity Estimation

A photospheric inner boundary approximation is used as the opacity of the ejecta rises quickly
with ejecta depth under the regime that we are exploring. The location of this inner-boundary
velocity is solved automatically to avoid including an extra sampling dimension and to limit
the space of synthetic spectra to only those that are physically consistent with the dilution
factor (see Kogure & Leung, 2007, for discussion). As this is similar to approximately half of
the energy of a black body passing through the photosphere, we use an iterative approach to
adjust the inner-boundary velocity of the simulation to a targeted mean optical depth of %
(see e.g. |Dessart et al., [2014) computed using the Rosseland mean optical depth (Rosseland)

1924)). The Rosseland mean optical depth is an appropriate approximation for the optical
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depth in the diffusion limit where the distances in question are smaller than the mean free

path and an optical depth of % corresponds to approximately % /2 exp [—%] of the radiation
passing through the ejecta above the inner boundary.

Since TARDIS in its default mode already iteratively solves for the temperature of the
inner boundary, we only need to provide a requested luminosity to the code to solve for the
location of the inner boundary velocity. This inner boundary is achieved through a damped
convergence using the same damping constants used to solve the dilution factor and radiative
temperatures by recomputing the location of the inner boundary velocity in the ejecta at
each step at which the optical depth would be % in the current iteration through exponential
extrapolation from the previous iterations. Our resulting parameterization then only requires
the ejecta profile from the cVAE decoder (determined by the latent variables), a luminosity

to set the inner boundary velocity and temperature, and a time since explosion to evolve the

density and radioactively decay the ejecta.

4.5.2 Radiative Transfer Emulator

To accelerate the evaluation of TARDIS, we emulate the synthesis of synthetic spectra
produced by a set of model parameters using a labeled version of the PDALEK emulator
(Kerzendorf et all 2022)) using the same architecture as (O’Brien et al. 2023). An ensemble
of 6 emulators is trained and their results are aggregated to produce probabilistic predictions
in the form of a distribution consisting of a mean and standard deviation for the expected
synthetic spectrum to be produced given a set of inputs.

To generate the training data for the spectral emulator, random points from the latent
distribution are drawn and fed through the decoder layer of the cVAE to generate random
abundance profiles for each progenitor system. A corresponding set of time and luminosity
parameters is drawn from a distribution based on the limits of the possible values for the
SN 2011fe spectral time series in our sample. The generated abundance profiles along with

the time and luminosity parameters are input into TARDIS running with our routine for
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inner-boundary optimization to produce synthetic spectra. The training set consists of the 6
latent dimensions of the cVAE along with a time and luminosity parameter as the inputs.
The outputs are the spectra produced by TARDIS through the formal integral method (Lucy),
1999c¢). In total, 65536 training samples are generated for each progenitor channel with a

total of 262 144 training samples across all progenitor labels.

4.6 Abundance Tomography and Model Selection

The ejecta composition and structure are inferred for each potential progenitor system by
conditioning the spectral emulator with the label corresponding to each progenitor channel.
The entire spectral time series is evaluated under a single likelihood function using predictions
from the spectral emulator. We integrate the posterior distribution corresponding to each
progenitor channel to determine the evidence that is used to estimate the relative probabilities

that each progenitor system best models the observed spectral time series.

4.6.1 Prior Distribution

We construct the prior distribution from the distribution of the latent parameters of the
cVAE along with independent distributions for the time and luminosity parameters. The
time since explosion parameter is sampled uniformly between 8 and 12 days as this is the
range of the data we selected as well as the range of the training data provided to the spectral
emulator. The luminosity of each spectral epoch corresponds to the emitted luminosity over
the wavelength range of the TARDIS models. The luminosity prior distribution is based
on the range of bolometric luminosities estimated by |Zhang et al| (2016]) over the time
interval for the observed spectra in the time series. Bolometric corrections are applied to
the luminosity range using templateﬁ from Nugent et al.| (2002) to convert the bolometric
luminosities to the luminosities emitted within the range of requested luminosities by TARDIS

(see Section [4.5). An additional factor of 5% is added above and below this range to account

44https://c3.1bl.gov/nugent /nugent_templates.html
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Model Parameter Distribution
21:6|f| Normal(0, 1)
texp (days) Uniform(8, 12)
L1; (erg/s/A) | Log-Uniform (104222, 10%3-27)
Ofrac Log-Uniform(10~°, 1072)

Table 4: The prior distribution of model parameters for inferring our spectral time-series
observations. This table also represents the distribution from which training samples for the
spectral emulator were drawn.

for observational uncertainty and luminosity excess produced by TARDIS in the red end of
the spectrum due to lack of complete continuum modeling (e.g. [Mazzali et al., 2008]). The

final luminosity distribution is sampled logarithmically from a uniform distribution. The full

parameterization of the prior distribution is shown in Table [4]

4.6.2 Likelihood Function

We apply a Gaussian likelihood of a model given the data. Continuum removal is approximated
by multiplying the synthetic spectrum, fc; » with label ¢ at wavelength A, by a 5%-order
polynomial fit to the ratio between the observed spectrum, f\, and fc; A determined over A.
Let j%c; ,\(9_;) be the continuum-corrected synthetic spectrum in units of luminosity density in
wavelength produced by a subspace, 9:, of the model parameters, é, corresponding to an
observation at a particular observation epoch, ¢, and &, ,\(9:) be the continuum corrected

emulator uncertainty.

The total form of the likelihood function is

(@) — )’
lnﬁc(é):_%z i ; = M

t,A UC;A(Qt

+ In(2r02, (6,))

45The subscript 1:6 represents each of the 6 latent space parameters. All 6 parameters are sampled from
the same distribution independently. The combination of these 6 parameters represents the compressed latent
vector of the full ejecta profile including both composition and density.

46The subscript 1:4 represents each independently sampled spectrum luminosity corresponding to each
spectral observation in the time series.
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where

UC;A(§)2 = 3C;A(§>2 + f_C§A(§>20f21“ac + Ugbs;)\

is the the aggregate of the corrected emulator uncertainty, .. ,\(0:), the intrinsic fractional
uncertainty fc; A(G:)Ufrac, and the observational error oops;. 9:;0 = L, (9;1 = texp + Aty, and
0_;;3:8 = 21.¢ where At; is the total time difference of a spectral observation from the first
observation indexed as t = 1 where At; = 0 corresponding to the first spectrum in the time

series.

4.6.3 Inference

Nested sampling (Skilling} [2004; Buchner}, 2021)) is performed using the ULTRANEST@(BuChner,
2021) package to both sample the posterior distribution as well as compute the evidence
integral which will be used for model selection. Sampling was performed with the “Popu-
lationSliceSampler” to accelerate live-point selection up likelihood contours leveraging the
computational efficiency of vectorized inputs to our full likelihood evaluation running on
the GPU. The prior distribution, p(©) is the same for each progenitor channel condition so
the Bayesian evidence computed for each progenitor system is dominated by the likelihood
function. The Bayesian evidence, Z, is computed as the integration over the posterior

distribution from Bayes’ Theorem (see e.g.|Goodman, 2005)

Z. = / L.(©)p(6)d6,
where L, is the likelihood function conditioned on progenitor channel c.

4.6.4 Model Selection

The best progenitor system is determined by comparing the values of the evidence integrals

for each inference run conditioned on each progenitor channel. Bayes factors are commonly

4Thttps:/ /johannesbuchner.github.io/UltraNest /
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used to relate two models to one another in determining the relative probability of those
models being the best description of the system (see e.g. [Magee et al., 2024). As all 4 models
are sampled from the sample prior distribution, we can compare the relative contributions of
their likelihoods to the posterior distribution. For this study, we present the probabilities
in terms of the total relative probabilities of the 4 progenitor conditions and so the sum of
probabilities over all conditions sums to unity. The probability of a progenitor channel best

describing the model is computed as

where ¢ is the label corresponding to the progenitor system and Z. is the value of the
evidence integral of the posterior distribution corresponding to that progenitor channel. The

denominator is the sum of all 4 tested progenitor channels.

4.7 Results

Our Bayesian evidence estimation for each progenitor condition is presented in Table |5 The
relative probability of one model, a € {c} compared to another b € {c¢} can be computed as
exp [In Z, — In Z,]. Across the 4 progenitor channels we have sampled, our Bayesian evidence
estimates most favor the pure detonation progenitor channel. The double detonation and
delayed detonation progenitor channels are nearly equally favored and the pure deflagration
channel is significantly disfavored. It is important to note that we may only rank these
progenitor channels out of the progenitor channels that we have investigated and can not
directly conclude that SN 2011fe was produced by a specific progenitor channel as there exist
models this analysis has not considered and we do not discount the possibility that a future
proposed models may better explain observations of SNe Ia.

Posterior distributions for the spectral time series for the pure detonation progenitor

channel are shown in Figure [9] Our emulator produces distributions of spectra given by a
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Progenitor (¢) | In Z, Probability (P.)
Delayed Detonation | 60321.90 | 0.0
Pure Deflagration | 59699.81 | 0.0
Pure Detonation | 60602.97 | 1.0
Double Detonation | 60322.85 | 0.0

Table 5: The relative probabilities of each progenitor system based on the value of the
evidence integral of the posterior distribution conditioned on each progenitor channel. The
probabilities are normalized such that they sum to unity. We found that the spectral time
series of SN 2011fe is best described by a pure-detonation model (bold).

mean and standard deviation (see Section so the posterior distribution of spectra is
a distribution of distributions. We therefore represent the posterior distribution of spectra
as the median of posterior means of each spectrum with the shaded region representing the
median of the posterior distribution of spectra at 1 standard deviation.

The resulting posterior distributions of the latent variables from our fits to the spectral
time series of SN 2011fe are transformed back through the decoder layer of the cVAE to
provide physical descriptions of the posterior abundance profiles. Abundances and densities
presented at low velocities less than approximately 10000 km/s are not directly informed by
information in the spectral observations as they lie below the inner boundary velocities used
in our photospheric approximations and no information from this region is imprinted on the
simulated spectral time series. Therefore their distributions are informed by the expected
correlations determined by the cVAE for the inner region abundances based on models whose
outer layer abundances are consistent with the results from our spectral inference and should
not be interpreted as data-informed estimates, but instead results from strong priors on our
models.

The reconstructed abundance tomography from the decoded posterior distribution of latent
variables is shown in Figure [[0] We use point estimates from the decoder layer to produce
the abundance profiles to be emulated for spectral synthesis so, unlike for the spectral time
series posterior, each posterior sample represents a point estimate of the distribution. Our

posterior abundance distributions produce individual samples in both fractional abundance
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2011fe Spectrum Posterior for DET
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Figure 9: Spectral time series from the best fit Pure-Detonation progenitor model for
SN 2011fe. The original optical spectral time series (solid red) is shown on top of the posterior
distribution of spectral time series from the inference represented by a posterior median
(dashed black) and the median of the posterior uncertainty at 1 standard deviation (shaded

gray).
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Abundance Stratification for DET Model
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Figure 10: Abundance distribution of reconstructed ejecta profiles for SN 2011fe under the
DET model. Shaded regions represent the 99.7% quantile of the posterior distribution. The
inner boundary velocity is at approximately 10000km/s and only information above this
velocity contributes to line formation in the spectrum (see Figure E[)

and velocity for each point in the ejecta, so the posterior distribution of abundance profiles
shown has each sample interpolated to a common velocity grid. The shaded regions show
the posterior estimates at the 99.7% quantile and the solid lines represent the median of
each distribution. The equivalent figures for the pure-deflagration, delayed-detonation, and

double-detonation models are shown in Appendix [F] for reference.

4.8 Discussion

The appearance of a pure-detonation may be the result of either a double detonation with

a thin helium shell (Pakmor et al. 2022; [Shen et al. [2021), a slow delayed detonation

with a transition occurring at a higher velocity (Blondin et al., 2012)), or a violent merger

between two degenerate WDs (Pakmor et al|, 2012] 2013)). The Bayesian evidence between

the DDT and DOUBLEDET progenitor channels from our inference are too close to firmly

draw conclusions about which channel from which SN 2011fe may have originated given
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that the estimated uncertainties on In Z are approximately 0.5. Violent merger models were
not included in the c¢VAE so we cannot provide a quantitative ranking for these models to
describe SN 2011fe but such models may still be considered a reasonable progenitor channel
given their similarity to pure-detonation models and previous work (e.g. Bloom et al., 2012;
Ropke et al., [2012; [Nugent et al., [2011) suggesting SN 2011fe may have originated in a
double-degenerate binary system.

We compare the distribution of latent variables from our DET posterior to the positions
in the latent space of the models in the training and validation sets for the cVAE. We find
the closest model in latent space is the 0.88 Mg model from Sim et al. (2010). While this
model is unphysical in that it does not produce the required *Ni mass to be consistent with
the brightness of SN 2011fe, the location in the latent space indicates that our predicted
distribution is more consistent with a pure-detonation of a C/O WD than the O/Ne WD
models from Marquardt et al.| (2015) which serves as a sanity test of our methodology. Since
we cannot make strong statements regarding the density and abundances within the inner
layers of the ejecta we cannot confidently put constraints on the progenitor mass itself.

Our posterior-abundance tomography for the DET model shows many similarities to that
of Mazzali et al.| (2015)) especially in the outer layers of the ejecta. We find a similar range of
peak silicon and sulfur abundances between 10000 and 12000 km/s but with a significantly
elevated calcium abundance in our model. We find that most iron-group elements are much
more concentrated below 10000km/s in our model with a sharper drop-off in the outer
layers more consistent of the high mass thin-shell double-detonation models of |Polin et al.
(2019). We find an earlier drop-off in Oxygen into the inner layers of the explosion compared
to Mazzali et al. (2015]) but later than Polin et al| (2019)) but this may be a result of the
insensitivity of photospheric phase spectra to changes in oxygen abundance (e.g. [Hachinger
et al., 2017).

We find more disagreement with the models of Mazzali et al.| (2015) in the deeper regions

of the ejecta instead favoring the thin-shell double-detonation model compared in |[Polin et al.
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(2021)), though this may be a result of the inability of our model to sample deeper into
the ejecta at early times due to the photospheric inner boundary approximating cutting off
information about the ejecta profile deeper than the placement of the inner boundary velocity
which will require nebular-phase models to fully resolve.

Overall, due to the constraints on the detonation models requiring extreme stratification
of elements in the ejecta, we find a more stratified model though we are still able to
accurately reproduce the spectral time-series of SN 2011fe over the 4-day interval of our
sample. Interestingly, our abundance stratification for the DDT model in Figure is in
most agreement with the results of |Mazzali et al.| (2015)) which used a DDT density profile to
perform their abundance tomography, demonstrating the influence of an assumed progenitor

model on the resulting predicted abundance stratification.

4.9 Conclusions

We have performed a generalized probabilistic abundance tomography of the outer ejecta
of SN 2011fe from 4 photospheric phase optical spectra conditioned on different progenitor
channels. Integrating the posterior distributions of our generative model for each progenitor
condition reveals that the spectral time series of SN 2011fe is most consistent with a pure-
detonation sub-Mg, C/O WD. This progenitor channel may either represent a thin helium
shell double-detonation, a delayed detonation with a late deflagration-detonation transition,
or a violent merger between two C/O WDs. Our Bayesian evidence is not strong enough to
directly favor the double-detonation model over the delayed detonation model or vice versa,
but our abundance stratification for our posterior distribution of pure-detonation models is
most similar to that of the double-detonation model for SN 2011fe explored in [Polin et al.
(2021). Violent merger progenitor channels were not included in our ¢VAE model but their
ejecta stratification is similar to that of the pure-detonation models and may represent a

promising progenitor scenario.
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Extending our study to a larger temporal range of spectra and including more progenitor
systems will be required to further differentiate between these models given that our inference
is insensitive to the compositions and densities of the inner regions of the ejecta due to
our analysis being limited to the photospheric phase. As hydrodynamic simulations of the
evolution of SNe Ia improve in fidelity and become more widely available, we will be able to
improve the priors set on our cVAE model and explore a larger range of physically realistic
ejecta configurations for each progenitor channel as well as a larger variety of progenitor

channels overall.
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5 Conclusions and Future Work

In my papers, I have shown that rapid probabilistic abundance tomography and, with it,
a path toward progenitor identification is possible. Radiative transfer simulations of the
outer ejecta of SNe Ia have been successfully accelerated through the use of deep-learning
models to reduce evaluation time from nearly an hour down to a few milliseconds, allowing
full Bayesian posteriors of ejecta models to be determined from direct spectral observations.

Modeling the outer-ejecta of the prototypical SNe Ia SN 2002bo has not only revealed
the composition of the outer layers of its explosion but shown that the probability space is
degenerate and complex, with multi-modalities and large uninformative ranges in elemen-
tal abundances yielding qualitatively similar spectra. Comparison to expected elemental
compositions in the outer ejecta from theoretical models has shown that SN 2002bo is best
described by a detonation-driven model (see Chaper [2/|O’Brien et al., 2021)), ruling out
the pure-deflagration progenitor channel for this supernova. Further analysis of SN 2011fe
through Bayesian evidence modeling has shown that the pure-deflagration is the weakest
model at describing its explosion, with the sub-M,;, detonation model having the highest
explanatory power. It is clear from these results that pure-deflagrations are an inadequate
description of the normal population of SNe Ia and detonations similar to Sim et al.| (2010])
are a consistent description of normal SNe Ia.

The ability to perform rapid probabilistic modeling of SNe Ia ejecta has now provided the
framework for performing population-level studies on a large number of SN Ia observations.
A multi-zone model applied to two populations of SNe Ia has provided valuable insight
into the differences between normal SNe Ia and the super-luminous 1991T-like SNe Ia (see
Chapter 3||O’Brien et al., |2024). The investigation into the nucleosynthetic products in their
outer ejecta has shown that the 1991T-like SNe Ia appear as an extension of the normal
SNe Ia population, without any clear clustering that would imply a distinct progenitor system.

Analysis of the ionization states of the intermediate mass elements of the ejecta of supernovae
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from both populations has revealed that 1991T-like SNe Ia appear observationally distinct
for a combination of reasons, where a slight decrease in the intermediate mass elements in the
outer ejecta combined with slightly higher ionization states lead to the suppression of Si II
line formation in their early-time spectra, giving them an observationally distinct appearance.
This conclusion demonstrates that the distinct observational signatures of SNe Ia sub-classes
may be misleading as similar ejecta structures may lead to significantly different observational
features.

I have presented a novel framework for directly testing the relative probability of an
observed SN Ia originating from a given progenitor system over another (see Chapter |4)).
For the first time, generative modeling of SNe Ia ejecta has been developed and applied in
a Bayesian manner to a spectral time series of the well-studied SN 2011fe. Not only does
this analysis show that SN 2011fe originates from the detonation of a sub-M., WD, but for
the first time a reliable, physically informed, velocity-dependent probabilistic abundance
stratification of a SN Ia has been reconstructed in a 1000-dimensional space in the same
amount of time it takes to capture a single spectral observation (approximately 10 minutes).

Further modeling will be required to narrow down the exact explosion mechanism and
progenitor system. Additional physics such as full continuum modeling, gamma-ray deposition,
and the inclusion of more progenitor models applied to a temporally extended optical and
infrared spectral time series in conjunction with gamma-ray spectroscopy will further constrain
the progenitors of SNe Ia and drive the direction of research towards the most promising
models. Higher-fidelity hydrodynamical simulations will improve our ability to rule out
progenitor channels by restricting our parameterizations to better reflect realistic physical
scenarios. Improved machine-learning models involving techniques such as active learning,
generative modeling, and recurrent networks will rapidly allow our parameterizations to
converge towards the true distribution of SNe Ia ejecta compositions.

We now live in a transformative era of SNe Ia research. Advances in machine learning

have made high-dimensional inferences, that previously would have taken centuries, able
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to be performed in minutes. High-fidelity hydrodynamic simulations are leveraging the
unprecedented power of modern HPC systems. Modern surveys now discover multiple new
SNe Ia every month, and next-generation space telescopes like JWST are imaging early
universe SNe [a with higher resolution and wavelength coverage than ever before. The nearly
century-long debate regarding the origins of SNe Ia may finally have an answer in the next

few decades.
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APPENDIX A EMULATOR

Emulation is the practice of developing some analytic function that approximates the behavior
of another function. TARDIS can be thought of as a function mapping a vector of supernova
parameters to a vector representing a spectrum. We extend the techniques described in the
Kerzendorf et al.| (2021) paper to make an emulator for the —10 day spectrum of SN 2002bo.
The method proposed by Kerzendorf et al.| (2021]) uses an ensemble of feed-forward neural
networks to emulate the spectrum computation. Our neural network is trained from a set of
pre-computed data points, composed of training spectra over a grid spanning a physically
plausible parameter space for a SN Ia. The goal for the emulator is to be used in our
parameter inference so we ensure that the training set parameter space contains the final
prior fitting space (see Section .

We changed several parts of the procedure when compared to the emulator described by
Kerzendorf et al.| (2021). One key difference is the addition of two parameters: the power
law index «, and the time since explosion tcg,. The bounds on parameters corresponding to
computed spectra were also modified to encompass elemental abundances corresponding to
shells above 8000 km/s in HESMA models. |[Kerzendorf et al.| (2021)) presented an ensemble
of different neural network architectures that could reproduce simulated TARDIS spectra
to a high degree of precision. For this paper, for computational efficiency, we chose only a
single network from the neural networks described by Kerzendorf et al.| (2021). Specifically,
we used a model which propagates the 14 inputs through three subsequent hidden layers of
400 neurons each, reaching 500 outputs. The hidden units used the “softplus” activation
function. We trained our emulator with the “nadam” optimizer on a 91 000 sample training
set and 39000 sample validation set in a 70%/30% training/validation split. Training time
was 20 minutes on an NVIDIA® GeForce® RTX 2080Ti GPU.

The measured accuracy of our emulator using the mean and maximum fractional error

(Figure[A.1)) is similar to that of the initial DALEK emulator. Figure[A.1]shows that our mean
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Figure A.1: Mean and Maximum fractional error for our TARDIS emulator. Test spectra are
compared to emulated spectra generated using the same parameter set. The low level of error
demonstrates that our emulator is effective at modeling the physics of TARDIS. Descriptions
of the mean and maximum fractional error can be found in Kerzendorf et al.| (2021)).

fractional error is almost always below 1% over our validation set. The final fit presented
in Section has a mean fractional error of 10% between the observed spectrum and the
maximum posterior model indicating that any uncertainty from our emulation is less than

systematics for the presented work.
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APPENDIX B EXTERNAL LINKS TO DATA

The TARDIS configuration file, posterior samples with their associated weights, and the
parameter grid and corresponding spectra used in training the emulator are provided through

Zenodo: 10.5281/zenodo.5007378.

The observed spectrum of SN 2002bo used in this paper is hosted by the (Open Supernova
Catalog (Guillochon et al.l 2017).
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APPENDIX C DATA PRODUCTS

TARDIS configuration information, emulator weights and training data, and example scripts
can be found at the following location can be found at the following link: 10.5281/zen-

0do0.7818303
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APPENDIX D OUTER EJECTA INFERENCE FROM SINGLE SPECTRUM

Photospheric phase abundance tomography generally relies upon analysis of a spectral time-
series in order to infer the distribution of abundances at each velocity interval. We show
that information of the composition of the ejecta at all velocities above our photospheric
inner boundary is resolvable from a single-spectrum fit in the early phases. As packets travel
through the ejecta, they interact with material seated at different velocities and radiative
temperatures leading to interactions at different ionization states Doppler shifted by different
velocities. All of these interactions contribute to the observed spectral features at this epoch

and therefore contribute to the likelihood function when inference is performed on an observed

spectrum.
SN1991T Emitted Packet Distribution
C1] 1
CI4 | —
Mg I | 1001
SiTIr o0
Sill | 3,
p S 29 O
‘D Cally I 10 =
C%CrHL ~
Felll ] =
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CoTIl] .
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Nilll M
Ni Il F10°7

10000 12500 15000 17500 20000 22500 25000 27500 30000
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Figure D.1: Power emitted from final line interactions of emitted packets in TARDIS
simulation of ejecta profile constructed from the maximum-likelihood sample for SN 1991T.
The packet interactions that contribute to emission features in the spectrum span a wide
range in velocity-space in the outer-ejecta.
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APPENDIX E CONDITIONAL VARIATIONAL AUTO-ENCODER

Training Data Processing

We first interpolate each abundance profile to a grid of 100 points linearly in velocity space
from the innermost to outermost velocity values of each model. We then convert the mass
fractions of each element to an “effective” mass in each cell. The effective mass of each
element is computed as the total effective mass of the cell multiplied by the mass fraction
of each element in that cell. The effective mass is related to the total mass of each cell by

dividing the total mass by 4mt3 (see Section . The total mass in each cell is computed as

. Tj+1
M = 47r/ p(r)ridr

J

where r = vty and v is the velocity at the edge of each mass bin. We then write the effective
mass as '

i M

eff.k = 47Ttg
and the mass corresponding to each element as m?j =M ejﬁk ,ij where f,ij is the mass fraction
of element ¢ in velocity bin j.

This invertible transformation has a few advantages over the standard configuration.
First, by using effective mass, the constraint that the total mass fraction generated in each
shell must sum to unity is removed. Second, the effective mass combined with the velocities
eliminates the need to provide the density of each cell to the VAE, reducing the size of the
parameter space while still allowing this information to be recovered. Finally, the distribution
of masses in each shell more closely follows that of a log-normal distribution allowing for
simpler parameter scaling for data pre-processing.

From these data, we prepare the following dataset. We use u;, € R'% denote log difference
of the v! for each velocity bin j € {1,...,100}, that is, uj = log(v}) and u = log(vi — v} ").

We use my, € R199%10 with m?j denoting the log mass of element 7 in the velocity bin j. We
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use ¢ € {1,...,4} to denote the abundance profile, for example, ¢, = 1 corresponds to a
detonation model. Our goal is to learn a generative model py(v, m | ¢) from which we can
sample new velocities v and masses m given the abundance model type ¢ that are statistically

similar to the data in our dataset. To do this we use a probabilistic auto-encoder model

(Kingma & Welling|, 2014; Rezende et al., 2014} [Sohn et al., 2015).
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Latent variable model for abundance profile

To learn a conditional joint distribution over w, m, and ¢, we propose the hierarchical

probabilistic model

po(u,m | &) = / Po (| ¢, 2) pa, (m | ¢,2) polz) d (8)

where we use 6 = (0,,0,,) to denote all parameters of the model and we choose the prior
po(z) = N(z;0,1).

To learn this model we consider our data {(uy, my, c¢x)}x to be independent and identically
distributed. We would like to use the maximum-likelihood method §* = argmax, ), log pg(ux, my |
k), however, it is not directly applicable since pg(u, m | ¢) can be analytically intractable.

For this reason we use a variational lower bound on log py(u, m|c) called the evidence lower

bound (ELBO) defined as

log po (ur, mi, | ¢, 21) > I%%X{Eqk(zk)[IOgPQ(ukamk | ey 2i) ] — KL [qe(2) || po(%)}} 9)

via a variational distribution gx(zx). The ELBO is tight for ¢;(zx) = pe(zr | wk, mx, ci),
however, we are often restricted to choose g(z;) from an analytically tractable class of
distribution such as the class of multivariate Normal distributions. The resulting algorithm
is known in the literature as a variational expectation maximization (Neal & Hinton, [1998).
Optimizing the ELBO—solving for gx(zx)—for each data item (ug, my, cx) is computationally
demanding and hence additional approximation techniques have been introduced such as
amortization where we jointly optimize the bounds for all data k by parameterizing g (z) as
qk(zk) = qo(2k | wk, My, ¢x) and optimizing w.r.t. ¢ (Kingma & Welling, 2014). Let us use

p(u, m, c) to denote the empirical distribution of the data. The learning problem for our
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model and dataset is thus formulated as

i EBpusm.c [Eqy (zium.e) [~ log po(u,m | ¢, 2)] + KL[gg(25u,m, ¢) || po(2)] - (10)

To model the conditional distributions we use multivariate Normal distributions with diagonal
covariance matrices and neural network models to define the conditional means and variances,
that is, po, (1 | ¢, 2) = N g (e, 2), 3™ (6, 2)2), pon(m | €, 2) = N(ms 1B(e, 2), o3 (e, 2)2),
and qy(z | u,m, ¢) = N(z; p3™(u,m, ¢), o3~ (u, m, c)?).

Training probabilistic generative models such as VAEs (Kingma & Welling, [2014) can be
a complex task due to issues like suboptimal local minima (Sgnderby et al., |2016|) or posterior
collapse (Bowman et al., [2015; |[Kingma et al., 2016). Additionally, it’s not a given that higher
Evidence Lower Bound (ELBO) values will lead to better prediction performance or more
informative latent spaces (Alemi et al., 2018; |[Higgins et al., [2017). To mitigate the risk of
over-regularization of ¢, towards py, a variety of annealing strategies have been introduced
that gradually “switch on” the KL-divergence term in the ELBO. Particularly, scheduling
schemes that are derived from constrained optimization methods (Rezende & Viola, 2018])

can notably enhance the training process in hierarchical generative models (Klushyn et al.,

2019). For this reason, instead of optimizing we solve the optimization problem

min By | KL g6z w.m, ¢) || pof2)]| (1)
st Epum.e) Bqy (zum.e) [~ log po(u, m | ¢, 2)] < €. (12)

The resulting Lagrangian has a similar form as with an additional Lagrange multiplier A
for the expected log-likelihood. The resulting saddle-point optimization adaptively balances
the relative weight of the two terms via A to alleviate (some) of the above mentioned problems.

We follow the method proposed in (Chen et al.; 2022) to solve the saddle-point optimization.
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Training and evaluation

The dataset sizes for the four abundance profiles is imbalanced between samples from the DDT,
DET, DEF, and DOUBLEDET progenitor channels. For this reason, during the training
process we adjust the sampling frequency from the data corresponding to these profiles to have
an even coverage of each dataset. To solve the saddle-point optimization resulting from we
use a stochastic batch gradient descent-ascent. For the descent we use ADAM (Kingma & Ba,
2014)) gradient-descent steps while for the Lagrange multiplier A\ we use the EMM (Bertsekas|,
2003) quasi-gradient-ascent steps A+ = \(®) exXP{N(Epum,e) Bay (zrum.e)[— 1og po(u, m | 2, ¢)]—
€)}. Intuitively, when the constraints are not satisfied, A, and thus the weight of the relative
weight of the reconstruction term, increases. When the constraints are satisfied the opposite
relative reweighting takes place. We run the optimization until it converges. We select the
optimal hyperparameters based on which model yields the lowest KL loss after satisfying the
constraint. The complete optimization algorithm and the neural network architectures used

in the model are presented in detail in Algorithm [I] and Table [E]

NAME

HYPER-PARAMETERS

INPUT m, v DIMENSION

LABEL ¢ DIMENSION

LATENT DIMENSION

p(z)

ACTIVATION OF p OF pg(z | m,u,c)
ACTIVATION OF o OF py(z | m,u,c)
ACTIVATION OF p OF g4(m,u | z,¢)
ACTIVATION OF ¢ OF gg(m,u | z,c)
gg(m,u | z, c)

po(z | myu,c)

BATCH SIZE

LEARNING RATE

OPTIMIZER

GRADIENT CLIP VAL

WEIGHT DECAY

DROPOUT

1100
4
6
NORMAL DISTRIBUTION
LINEAR
SOFTPLUS
LINEAR
SOFTPLUS
(FC 256 LEAKYRELU) X 2 LAYERS
(FC 256 LEAKYRELU) X 2 LAYERS
FULL TRAINING DATA
0.0008
ADAM
0.5
0.0005
0.1

Table E.1: Model architecture

and hyper-parameters. FC refers to fully connected layer.
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Algorithm 1 Training algorithm.

Hyper'parameter55 Nbatch; greca Tlrec

Constants: AU, , \Iax ¢
Initialize ¢ =10
0

Initialize Arec = Apec
Initialize InitialPhaseRec = True
while training do
Read current data batch my, up, ¢, of size npaten
Sample from variational posterior z, ~ gy (- | My, up, cp)
Compute hArec = Lyec — &rec (batch average)
ilrec — (1 - Oé) ilrec + o hrem (h‘l("gg = hrec)
if hec < 0 and InitialPhaseRec then
InitialPhaseRec = False
end if
if —InitialPhaseRec thenA
Arec ¢ Arec exp{nrec : hrec}
Arec ¢ Cclip(Arec, Alax)
end if
Compute loss L(0, @) < Arec(Lrec — Erec)
Compute L(0, ¢) < L(0, ¢) + KL[qg(25; mp, us, cp) | p(2)] (batch average)
update (0, ¢) using (OpL (60, ¢), 0y L(0, p))
t—t+1
end while
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APPENDIX F SPECTRA AND ABUNDANCE POSTERIOR MODELS FOR
SN 2011FE

Abundance Stratification for DDT Model
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Figure F.1: Posterior distribution of reconstructed ejecta profiles for SN 2011fe under the
DDT model.
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Figure F.2: Spectra from the best fit DDT progenitor model for SN 2011fe.
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Figure F.3: Spectra from the best fit DEF progenitor model for SN 2011fe.
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102 Abundance Stratification for DEF Model
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Figure F.4: Posterior distribution of reconstructed ejecta profiles for SN 2011fe under the
DEF model.
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2011fe Spectrum Posterior for DOUBLEDET
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Figure F.5: Spectra from the best fit DOUBLEDET progenitor model for SN 2011fe.
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Abundance Stratification for DOUBLEDET Model
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Figure F.6: Posterior distribution of reconstructed ejecta profiles for SN 2011fe under the
DOUBLEDET model.
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