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ABSTRACT 

Prior investigations into racial bias in fatal police shootings have predominantly 

employed the First-Person Shooter Task (FPST) and the Weapon Identification Task (WIT). 

These paradigms have revealed consistent patterns of bias, including faster correct decisions to 

shoot armed Black targets (as shown in the FPST) and a bias towards misidentifying harmless 

objects as weapons after exposure to Black primes (evidenced in the WIT). While these findings 

are valuable, they overlook the role of visual search in these high-stakes decision-making 

processes. The influence of visual search processes and their associated cognitive mechanisms—

such as those described by Drift Diffusion Modelling (DDM)—remain relatively unexplored. 

This dissertation bridged this gap by examining the impact of race on search efficiency within 

complex visual environments and its reflection in evidence accumulation. Across two studies, I 

found that race did not significantly impact search efficiency or evidence accumulation. Instead, 

a consistent target type effect emerged, indicating that searches for guns were more efficient than 

for other objects, irrespective of racial primes, and this was mirrored in credibly stronger rates of 

evidence accumulation. This work serves as a first step into understanding the dynamics of racial 

biases within decision-making processes in high-stakes situations, emphasizing the examination 

of search behaviors. 
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INTRODUCTION 

In recent years, the issue of racial bias in police shootings has emerged as a pivotal topic 

in national conversations, particularly in the context of social justice and law enforcement 

reform. This issue has been brought into sharp focus by numerous high-profile cases involving 

unarmed Black Americans who were fatally shot by police officers, often under circumstances 

that have raised serious questions about the use of lethal force. These tragic incidents have 

sparked widespread public outcry and underscored the urgent need for a deeper understanding of 

the underlying factors contributing to these outcomes. In response to this pressing societal issue, 

social psychologists have investigated the decision-making processes involved in police 

shootings. 

One paradigm that has been used to study shooting decisions is the First-Person Shooter 

Task (FPST), developed by Correll et al. (2002; see also Figure 1), which was designed to study 

the role of racial bias in simulated police shooting scenarios. The task attempts to mimic the 

high-pressure, instantaneous decision-making situations that law enforcement officers may 

encounter. In this task, participants are first shown a series of images that depict various 

neighborhood scenes without any people. These scenes serve as the backdrop for the task, 

creating the context for the presentation of target individuals. After presenting one to four empty 

scenes, an image of a person is suddenly introduced. This individual is typically a Black or 

White male and is depicted as holding an object. The object could either be harmless (e.g., a 

wallet or cellphone) or threatening (e.g., a gun). 

Participants are tasked with making a rapid 'shoot' or 'don't shoot' decision based on the 

perceived threat posed by the target individual within a constrained time window of 630 to 850 

milliseconds. This time constraint is designed to simulate the urgency often associated with real-



2 

 

life police shooting incidents. The FPST incorporates a payoff matrix that is structured to 

encourage shooting, reflecting the potential real-world consequences of failing to respond to a 

genuine threat. The payoff matrix rewards points for fast and correct decisions and penalizes 

slow or incorrect ones. The FPST provides a controlled environment for studying the cognitive 

and social factors influencing decision-making in potentially life-threatening situations, 

contributing to our understanding of the complex dynamics involved in police shootings (Correll 

et al., 2002). 

 

 

 

A separate but related paradigm is the Weapon Identification Task (WIT; Payne, 2001; 

see Figure 2), which complements the FPST in studying racial bias. The WIT is a sequential 

priming task designed to assess the speed and accuracy of object identification, with the objects 

in question being either "weapons" or "tools." A prime face, either Black or White, is presented 

for 200 milliseconds in a typical WIT trial. This is immediately followed by a target image of 

either a tool or a gun, also displayed for 200 milliseconds, which is then replaced by a visual 

mask. 

Figure 1: An example of a typical FPST trial. 
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Participants must respond by pressing a key corresponding to either "tool" or "gun" 

during the presentation of a visual mask. A distinguishing feature of the WIT, as compared to the 

FPST, is that the prime images are generally headshots, and the target images are displayed 

against a neutral, empty background. This design feature allows for the isolation of the influence 

of racial priming on object identification, free from the potential confounding effects of 

contextual information. The WIT thus provides a valuable tool for investigating the cognitive 

mechanisms underlying racial bias in object identification and how such bias may influence 

decision-making in critical situations (Payne, 2001). 

In both tasks, racial bias is measured based on participants' error rates or response times. 

For instance, in the FPST, racial bias may manifest as participants being more likely to shoot 

unarmed Black suspects than unarmed White suspects or responding "shoot" faster to armed 

Black suspects than armed White suspects (Cesario & Carrillo, 2024; Mekawi & Bresin, 2015). 

Similarly, racial bias is evident in the WIT when participants are faster or more accurate at 

identifying guns following Black faces or tools following White faces, compared to the reverse 

pairings (Rivers, 2017). 

A significant focus of these research lines has been on the misidentification of harmless 

objects. This line of inquiry has been largely driven by real-world incidents where police officers 

Figure 2: A typical WIT trial. 



4 

 

have mistakenly perceived harmless objects (or no objects at all) as weapons, as in the tragic 

case of Amadou Diallo. However, this research tradition, while valuable, may not fully capture 

the complexity of decision-making processes in police encounters. An integral aspect of these 

encounters, often overlooked in research, is the process of not just identifying a target object but 

also locating it. This process, visual search, is a key component of police academy training. 

Officers are taught to scan various potential threat locations, such as hands, waists, backpacks, 

and key locations in the general surroundings. In situations involving multiple officers, roles may 

be divided, with one officer engaging the suspect while others scan the environment for potential 

hazards. 

Despite its importance in real-world policing, the implications of visual search for 

decision-making have not been fully appreciated in the existing literature. For example, the WIT 

is primarily designed to study object identification without search elements. While the FPST 

incorporates some elements of visual search, it does so in such a way that salience or anchoring 

may play an important role. That is, the participants view several empty background scenes 

back-to-back before the rapid presentation of the suspect, which acts as a signal to rapidly guide 

attention. Consideration of how this may shape search efficiency and object identification is 

generally not discussed. Given these gaps in the current understanding, this dissertation proposes 

to investigate the role of visual search in shaping weapon identification. 

Visual Search 

Visual search is a cognitive process that involves identifying and localizing a target 

object within a visual field populated with other objects, often referred to as distractors. This 

process is a fundamental component of many tasks requiring object identification and is typically 

studied in a controlled laboratory setting. These tasks can vary enormously from searches for a 
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friend in a crowd of people, finding your favorite brand of cereal at the supermarket to scanning 

for threats in airport baggage. The standard experimental procedure generally involves 

participants scanning an array of objects for a target object that differs from the distractors by 

one or more features (Wolfe, 2020; Wolfe & Horowitz, 2017). 

The efficiency of visual search, defined as the speed and accuracy with which a target is 

identified among distractors, can be influenced by various factors. These include the degree of 

differences between the target and distractors, such as their size, color, and shape (Duncan & 

Humphreys, 1989). The number of items in the visual field, also known as the set size, can also 

impact search efficiency, with larger set sizes generally leading to longer search times (Treisman 

& Gelade, 1980; Wolfe et al., 2010; Wolfe, 2014). Top-down factors such as the goals and 

expectations of the observer can also play a significant role in visual search efficiency (Wolfe, 

1994, 2020). For example, if an observer is actively looking for a specific object, they may be 

able to identify it more quickly than if they were passively scanning the visual field. When 

actively searching for their keys on a cluttered desk, an individual quickly zeroes in on specific 

cues like shape and shine, facilitating rapid identification. In contrast, a casual glance across the 

same desk, without a specific target in mind, can easily miss the keys among the clutter. 

Researchers commonly examine search slopes to assess visual search efficiency, which 

quantitatively measure how response time increases with the number of items in the search array 

(Treisman & Gelade, 1980). Search slopes reflect the rate at which response time grows as the 

set size, or the number of items in the display, increases. A steeper search slope indicates a larger 

increase in response time per additional item, suggesting a less efficient search process. 

Conversely, a shallower search slope indicates a smaller increase in response time, indicating a 

more efficient search process (Wolfe, 1998). That is, search efficiency exists on a continuum. In 
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highly efficient or highly guided search, the target object "pops out" from the display, meaning 

that it can be quickly and effortlessly detected regardless of the number of distractors present 

(Egeth et al., 1972). This phenomenon is known as a "pop-out" search, where the target object 

captures attention automatically and stands out from the distractors.  

In pop-out searches, the search slope is nearly flat or absent, indicating that response time 

remains constant regardless of the set size. For example, a single red apple among a cluster of 

green apples effortlessly captures attention, showcasing pop-out search through the immediate 

draw of its distinct color. This contrasts with more demanding or less efficient search tasks, 

where the search slope is steeper, indicating a longer response time as the set size increases. As 

an example, imagine performing a search for a green apple among green pears; the task becomes 

slightly more difficult and involves looking through more of the items. Note, however, that while 

the use of set size is commonplace in the literature, differences in search efficiency can be 

reflected in either the search process, the identification process, or some combination of both 

(Kristjánsson, 2015; Wolfe, 2016). 

Guided Search Model 6.0 

Determining what guides visual search is a complex task. Wolfe (2021) offers an updated 

model of visual search, known as Guided Search 6.0 (GS6), which provides a comprehensive 

framework for understanding this process. The GS6 model assumes that although we can see 

various items throughout a scene, our capacity for recognizing more than a handful at a time is 

restricted. To address this limitation, attention is utilized to select items, allowing their features 

to be "bound" together into recognizable objects. 

This attention is not random but "guided," allowing items to be processed in an efficient 

order. According to the GS6 model, this guidance is derived from five sources of pre-attentive 
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information. These include (1) top-down feature guidance, which refers to the influence of the 

observer's goals, expectations, and guiding templates; (2) bottom-up feature guidance, which is 

driven by the salient features of the items in the visual field  (Theeuwes 1992); (3) prior history, 

such as priming effects where previous exposure to an item influences its subsequent 

recognition; (4) reward, which can bias attention towards items associated with positive 

outcomes (Anderson et al., 2011; Lee & Shomstein, 2013); and (5) scene syntax and semantics, 

which refers to the influence of contextual information and the overall meaning of the scene 

(Boettcher et al. 2018; Henderson & Hayes, 2017).  

These sources of guidance are integrated into a spatial "priority map," a dynamic 

attentional landscape that evolves throughout the search process. This map helps determine the 

order in which items are attended to and processed, thereby guiding the visual search process. 

The selected object(s) are compared to target templates in long-term memory. Wolfe (2021) 

proposes that this process unfolds through an 'asynchronous diffuser.' In essence, the 

identification of one item can start before the identification of the previous item has been 

completed. This asynchronous process allows for a more fluid and efficient search. Although 

many aspects of visual search warrant discussion, I will focus on top-down guidance, priming 

effects, and the importance of templates. These elements have the potential to be influenced by 

factors such as race. Understanding how these components function and how racial biases might 

shape them can provide valuable insights into the broader dynamics of visual search processes 

and their implications for tasks like the FPST or WIT and, ultimately, police use of force. 
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Social Information and Search Processes 

Top-down feature guidance is a form of attentional guidance that is influenced by an 

observer's knowledge or expectations about the target's features. Higher cognitive processes 

drive this form of guidance and direct attention toward specific features of a target that align with 

the observer's expectations (Eimer, 2014). For instance, if an observer is searching for a green 

apple among green pears, their knowledge about the shape of an apple would guide their 

attention toward objects with that shape.  

Prior history, including priming effects, significantly impacts attentional guidance, 

drawing from an observer's past experiences. Priming effects can operate in multiple ways, with 

the most well-studied including intertrial and cueing. For intertrial priming, if an observer has 

recently seen a red apple, they are more likely to notice red objects in their visual field in 

subsequent trials (Kruijne & Meeter, 2015). In cueing, priming of emotional facial cues can 

facilitate search processes for unrelated target objects (Becker, 2009), and exposure to specific 

semantic categories prior to the presentation of the visual array can guide attention to 

semantically similar target objects (Robbins & Hout, 2015, 2020).  

An important element to highlight is the role of search templates in this process. Wolfe 

(2021) posits that two forms of templates significantly contribute to visual search: guiding 

templates and target templates. Guiding templates are cognitive representations of features that 

guide attention by highlighting areas in the visual field that match these features (Bravo & Farid, 

2009, 2012; Malcolm & Henderson, 2009; Vickery et al., 2005; Wolfe et al., 2004). These 

templates are flexible and can include multiple features; importantly, there are ongoing debates 

about the number of templates that can be held in working memory (Bahle et al., 2020; Ort & 

Olivers, 2020) with clear costs in speed and accuracy for multiple object searches (Menneer et 
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al., 2012; Stroud et al., 2012). On the other hand, target templates are more specific and represent 

the target the searcher is looking for. They help in identifying targets and rejecting distractors 

during the search. When an item is selected, it is compared to a target representation, 

determining whether it is the target or a distractor. 

To fully assess the impact of race on visual search, it is crucial to consider the role of 

guidance, not just identification. Race information may enhance the effectiveness of the search 

process through the interplay between guiding templates and top-down feature guidance. For 

example, if a participant is tasked with finding a green apple among green pears, working visual 

memory may adopt abstract features or attributes of that green apple to facilitate the search. The 

exact mechanisms of how these representations are developed and utilized are still a subject of 

ongoing research. However, Yu et al. (2023) proposes that it likely adheres to a "good-enough" 

principle. This principle suggests that attentional guidance is often based on the simplest, 

sufficient information that can provide a high-quality estimate of a potential target object's 

location. Importantly, Yu et al. (2023) highlight that this is context-dependent. For example, in 

searching for a green apple among green pears, the feature "green" would not be useful, but 

shape and size might be. In contrast, color would be the useful defining feature if searching for a 

red apple among green apples.  

The contents of this guiding template are influenced by many factors, including the 

priming of social or categorical information (Yu et al., 2023). Robbins and Hout (2020) 

demonstrated the influence of scene priming on visual search tasks. Participants were primed 

with images of scenes contextually related to the target object they were searching for in an 

array. They found that semantic information activated by the scene guided attention to 

semantically similar items in the search array, resulting in faster response times following 
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congruent primes. Research using empty backgrounds and classic search arrays has shown that 

categorical information can influence features in a template. When primed with categorical 

information, guiding templates can facilitate the search for items, including object features that 

are typical of a category (Robbins & Hout, 2015) or that are consistent across exemplars of a 

category (Hout et al., 2017; Yu et al., 2016). Categorical information can also be in the form of 

social identities; for example, Chiao et al. (2006) primed racial identities and had participants 

scan a search array for Black or White faces, finding that guidance was faster after congruent 

priming.   

Despite limited research directly exploring the impact of race on visual search, evidence 

suggests that social and categorical information can influence object search. Given these insights, 

it is sensible to study both object identification and the potential influence of race on search 

efficiency. This exploration can be achieved by examining behavioral data such as response 

times and understanding underlying cognitive processes. 

Drift Diffusion Modeling 

Researchers have turned to computational models such as the Drift Diffusion Model 

(DDM) to investigate how race affects decision-making processes. This model offers a 

comprehensive view of the cognitive processes that drive decision-making and facilitates a 

nuanced analysis of the effects of racial bias. For example, a review by Johnson et al. (2017) 

demonstrated that DDM can provide novel insights into the cognitive processes underlying 

decision tasks like the FPST.  

The DDM is a widely used sequential sampling model in cognitive psychology that 

explains the cognitive processes involved in decision-making tasks (Ratcliff, 1978). It posits that 

decisions are made by accumulating evidence over time until a decision threshold is reached. 
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The DDM has been applied to tasks like the FPST and WIT to gain insights into the role of race 

in decision-making processes (Correll et al., 2015; Harder, 2017, 2020; Johnson et al., 2018; 

Johnson et al., 2021; Pleskac et al., 2018; Todd et al., 2021). 

The DDM consists of four parameters (see Figure 3): Beta (start point), Delta (drift rate), 

Alpha (evidence threshold), and Tau (non-decision time). Beta, the start point, signifies the 

initial bias or predisposition before the process of evidence accumulation begins. In the context 

of the FPST, this could reflect a participant's initial bias towards shooting or not shooting, e.g., 

being "trigger happy." Delta, or the drift rate, represents the rate of evidence accumulation over 

time. It mirrors the strength or quality of the evidence being processed during decision-making 

per unit of time. A steeper drift rate (higher delta) indicates a stronger accumulation of evidence, 

leading to quicker decisions (all else equal). Conversely, a shallow drift rate (lower delta) 

suggests weaker evidence accumulation, resulting in slower decisions. Factors such as the clarity 

of the visual stimuli or prior information can influence this parameter.  

Alpha, the evidence threshold, denotes the amount of information or evidence required to 

make a decision. This parameter is linked to the speed-accuracy trade-off. For example, when 

Figure 3: The drift diffusion model. 
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response time windows are shorter, evidence thresholds tend to be lower, suggesting a faster but 

potentially less accurate decision-making process (Pleskac et al., 2018). Lastly, Tau, the non-

decision time, accounts for the time taken for processes other than decision-making, such as 

motor response time. This parameter helps distinguish the cognitive decision-making process 

from the physical response, thereby providing a more accurate depiction of the cognitive 

processes involved in tasks like the FPST. The different parameters of the DDM - Beta (start 

point), Delta (drift rate), Alpha (evidence threshold), and Tau (non-decision time) - work in 

concert to provide a comprehensive understanding of the decision-making process in tasks like 

the FPST and WIT.  

When applying the DDM to the FPST, significant effects of race on the drift rate or delta 

are observed. Specifically, evidence is stronger to support a 'shoot' decision when the target is 

Black rather than White (Correll et al., 2015; Johnson et al., 2018; Pleskac et al., 2018). This 

suggests that participants gather and process decision-making information more efficiently when 

the target is Black. In contrast, when applying DDM to the WIT, race generally has no observed 

effect on the drift rate. This discrepancy could be attributed to a variety of differences between 

the tasks. However, as this latter WIT finding is based on a single published paper (Todd et al., 

2021) and unpublished data from the Cesario lab, it should be interpreted with caution. 

In the context of shooting decisions, shifts in these parameters would result in distinct response 

time and error rate changes (see Figure 4). For instance, if participants receive dispatch 

information indicating that a suspect at the scene is armed, we might expect the beta parameter to 

increase or start closer to the shoot threshold. This adjustment would likely result in faster 

responses when the bias aligns with the correct response. However, this could come at the cost of 

accuracy if the bias favors an incorrect decision. Additionally, the alpha parameter, or evidence 



13 

 

threshold, can be influenced by the allotted response time windows. In shooting decisions, 

extending the time allowed for a response generally enhances accuracy. A lengthened response 

time window increases boundary separation, leading to longer response times but typically 

higher accuracy, as decisions are made with greater certainty.    

 

Figure 4: "An illustration of how changing diffusion model parameters impacts decisions and 
response time distributions (in blue). We assume that evidence is correctly accumulated toward 
Option A. Top panel: higher relative start point b increases the likelihood and speed of selecting 

Option A by primarily increasing modal response speed. Middle panel: higher threshold a 
increases the likelihood of choosing Option A and decreases the speed of choosing both options 

by shifting the mode and lengthening the tails of responses. Bottom panel: higher drift rate d 
increases the likelihood and speed of selecting Option A by shortening the tails of the responses. 

Nondecision time t is not depicted as it simply shifts both distributions by a fixed amount.”  
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Figure 4 (cont’d):  
Adapted from "Advancing Research on Cognitive Processes in Social and Personality 

Psychology: A Hierarchical Drift Diffusion Model Primer," by D. Johnson, C. Hopwood, J. 
Cesario, & T. Pleskac, 2017, Social Psychological and Personality Science, 8, p. 2. 

https://doi.org/10.1177/1948550617703174. Reprinted with permission. 

The drift rate, can be influenced by the quality or strength of the information presented in 

the stimuli. For example, a suspect holding a rifle, as opposed to a smaller handgun, provides 

stronger information, which could increase the drift rate and lead to overall faster decision-

making. Finally, the non-decision time (tau) impacts response time but does not directly affect 

decision accuracy. An increase in tau uniformly extends the response time across all trials, 

irrespective of the decision difficulty or accuracy. 

Visual Search and the DDM 

Drift rate, representing the strength of evidence accumulation, is a multifaceted parameter 

influenced by numerous factors. Yet pinpointing what specifically drives changes in the drift rate 

can be challenging. Factors such as the clarity of visual stimuli, prior information, or the 

complexity of the task can all impact the rate at which evidence is accumulated. However, these 

are just a few examples, and the drift rate can be influenced by many other factors, some of 

which may not be immediately obvious or easy to measure. One such factor that has been 

somewhat overlooked is the role of object search. The process of searching for a specific object 

or feature within a visual scene could potentially influence the drift rate, as it affects how 

efficiently evidence can be gathered and processed. However, the exact nature of this 

relationship is not yet fully understood.  

One key factor that comes into play is discriminability, which refers to the ability to 

distinguish between different stimuli. In a study conducted by Pleskac et al. (2018), the FPST 

was modified by blurring the object held by the target. This manipulation effectively reduced the 

discriminability of the object, making it harder for participants to identify it. The results showed 
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that this decrease in discriminability led to a slower rate of evidence accumulation, as reflected in 

a lower drift rate. In other words, when the target object was blurred, participants took longer to 

gather and process the necessary evidence to make a decision about the object's identity. This 

study is particularly important as it provides empirical support for interpreting the drift rate 

(delta) as a measure of evidence strength. It demonstrates that changes in the quality of the visual 

stimuli, such as a decrease in discriminability, can directly impact the rate at which evidence is 

accumulated during decision-making tasks. 

In a modification of the FPST, Johnson et al. (2018) sought to simulate real-world 

situations where officers receive dispatch information. They presented participants with race 

and/or weapon information for 2000 ms, operationalizing the dispatch information typically 

received by officers. In a within-subjects manipulation where this information was not provided, 

participants viewed a fixation point for the same duration instead. The findings of Johnson et 

al. (2018) revealed that providing race information reduced the role of racial bias in evidence 

accumulation. Interestingly, providing weapon information had a dual effect: it led to stronger 

drift rates when the weapon information was correct but weaker drift rates when the weapon 

information was incorrect. 

Johnson et al. (2018) hypothesized that these effects could be attributed to differences in 

search strategies. Specifically, they proposed that participants engage in an exploratory search 

when no prior information is given (i.e., "What object is being held?"). However, when 

information is given, participants shift to a confirmatory search (i.e., "Is that person holding a 

gun?"). This can also be conceptualized in terms of the role of templates in facilitating search 

and identification. In general, participants are not given information before each trial, resulting in 

the possibility of broad templates and possible memory searches. However, when participants are 
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informed that the suspect is armed, a template that includes more gun-like features may be used. 

This shift would result in stronger evidence accumulation when the suspect is armed and 

substantially weaker evidence accumulation when the suspect is unarmed. However, due to the 

design of the task, it's challenging to determine whether these effects reflect differences in search 

or identification processes. 

Correll et al. (2015) utilized eye-tracking technology to explore the impact of visual 

processing on racial bias. They examined participants' eye movements during the FPST and 

calculated the visual angle between the fixation point and the target object. A larger visual angle 

suggests a greater deviation between where participants were looking and the target object. The 

findings revealed that participants had larger visual angles for Black targets than White targets, 

irrespective of whether the target was armed or unarmed. That is, participants directed their gaze 

toward areas other than the suspect's hand when the suspect was Black. However, even though 

participants did not fully fixate on the target item when the suspect was Black, Correll et al. 

(2015) observed steeper drift rates for guns with Black targets. They concluded that this reflects 

a stereotype consistency effect, where objects appear more like guns when paired with Black 

targets.  

This could imply that identification was more accurate when stereotypes were congruent, 

but search efficiency might have been compromised by race. However, it is worth noting that the 

drift diffusion model employed in their study was overly restrictive due to the absence of 

hierarchical modeling. Specifically, without the use of hierarchical modeling or Bayesian 

estimation, the model estimates are generated from a very small number of trials, which 

constrain the extent to which parameters are allowed to vary (Johnson et al., 2017). This 

limitation imposed artificial constraints on the model's interpretability. For example, the 
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evidence threshold was not allowed to vary by race. As an alternative account, a lower threshold 

for Black targets may also work to explain the fact that participants made a decision before full 

fixation of the target object. In addition, without manipulating search difficulty, strong 

conclusions about search efficiency cannot be made. While their effort serves as a valuable first 

attempt, the model constraints limit the insights about visual processes that can be drawn from 

this study. 

The potential influence of visual search processes on the drift rate, or evidence 

accumulation, is a common thread in the findings discussed. However, direct evidence for such 

an effect has not been systematically studied. Furthermore, it remains unclear how, or even if, 

race might influence search efficiency. Thus, a comprehensive understanding on the role of 

visual search is essential for deciphering the mechanisms underlying racial bias in decision-

making tasks. 

The Current Research Proposal 

There are significant gaps in our understanding of the factors influencing evidence 

accumulation and decision-making in the decision to shoot. In particular, the influence of object 

search, an important aspect of visual perception and attention, has been largely overlooked in the 

existing literature. By investigating the role of race in guiding search efficiency in complex 

visual environments, this research proposal aimed to fill this gap and provide a more 

comprehensive understanding of racial bias in deadly force decisions. 

Therefore, this research proposal addresses the following research questions: (1) Does 

race influence search efficiency? (2) Do differences in search efficiency result in distinct patterns 

in drift rate? This research proposal explored these questions by introducing object search to 

weapon identification tasks by adding a random search array and manipulating set sizes. A larger 
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set size typically leads to more challenging search tasks, as the target object becomes more 

difficult to locate among an increased number of distractors. By analyzing participants' search 

performance across different set sizes, efficiency in finding the target can be evaluated.  

In Study 1, the response time window was 10 seconds to ensure that participants could 

perform the search task accurately. This choice is made for several reasons: first, creating a 

meaningful time restriction without a baseline is challenging, and second, in studies where set 

size is manipulated, reaction time is the measure of interest. The reaction time of correct 

identifications across set sizes is used to calculate the search efficiency or the search slope. A 

strict deadline without proper consideration may impose artificial limitations on the search slope, 

such as giving the appearance of a flatter or more efficient slope while ignoring incorrect 

responses. However, the long response windows limit error rates and thus precluded the use of 

DDM. Building on the findings of Study 1, Study 2 introduced a response time window informed 

by the distributions observed in the first study. This introduced errors in the task, allowing for the 

application of DDM, which gives further insight into the role of race in search.  
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STUDY 1 

While various methods can be used to investigate the impact of race on search efficiency, 

this study employed a random search array broken into an 8x8 grid with set sizes of 12,16 and 20 

(Hout & Goldinger, 2010, 2012, 2015). Race information in the form of a headshot of a Black or 

White Man and target information in the form of categorical word cues were provided before the 

presentation of the visual search array. These manipulations were chosen for several reasons. 

First, using set sizes to understand search efficiency by analyzing the function of the reaction 

time by set size is a well-established experimental method in the visual search literature 

(Eckstein, 2011; Treisman & Gelade, 1980; Wolfe, 2021). Second, allowing the target object to 

appear in any cell mitigates potential contextual cueing effects (Chun, 2000). For example, if a 

circular array was implemented, participants could adopt a search strategy driven by looking at 

possible object positions before object presentation, diminishing the role of search. In addition, 

similar to Hout and Goldinger (2010, 2012, 2015), the grid was broken into four quadrants where 

3, 4, or 5 items appear (based on the current set size), which is intended to prevent the effects of 

object clustering. In general, if each object's position were allowed to vary completely at random, 

issues with object overlap or tightly clustered items could influence attentional guidance.  

Third, using an empty background in the search array allows for careful manipulation of 

the set size, whereas working with naturalistic scenes requires additional consideration of which 

elements may draw attention (Henderson & Hayes, 2017). Along the same vein, when using 

naturalistic scenes, careful consideration must be given to how the scene syntax and semantic 

meanings guide search (Castelhano & Heaven, 2011; Spotorno et al., 2014). 

 Fourth, although using categorical word cues is a departure from FPST and WIT type 

studies, it serves two critical purposes here. It highlights which items should be searched for in 
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each trial, differentiating the targets from distractors. It also works to control the specificity of 

the categories participants are searching for, which better aligns with the fact that search 

efficiency is enhanced when more precise information about the target object is provided (Hout 

& Goldinger, 2015; Maxfield & Zelinsky, 2012; Schmidt & Zelinsky, 2009; Yang & Zelinsky, 

2009). For example, in the shooter bias literature, the object to be identified is either a gun or any 

of many non-gun objects (tools, phones, soda cans, etc.). The notion of a handgun encompasses a 

more specific category with commonly shared features, whereas the idea of "non-gun objects" is 

more diffuse, encompassing diverse items possessing distinct characteristics.  

Participants performed the visual search task under three conditions: Black prime, White 

prime, or no prime control. The search slopes were compared between the three conditions to 

assess the influence of race primes on search efficiency. Three levels of race presentation (Black 

vs. White vs. No prime) and two levels of target object type (Gun vs. Non-Gun) were 

manipulated within-subjects. In each condition, three levels of set size (12, 16, 20) were 

manipulated in equal proportions. 

Method 

Participants 

Student participants were recruited via Michigan State University's Department of 

Psychology HPR/SONA system to complete an "Attention and Perception" task for a full credit 

towards the fulfillment of required credit hours in their introductory psychology class. Three 

hundred and twenty-nine participants were recruited; however, 6 participants who had over 100 

errors in the task were excluded. In addition, 7 participants were excluded that did not have a 

matching Qualtrics survey due to experimenter error in set up. The remaining sample (N = 316; 
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55 men; 252 women, 9 NA, mean age = 19.75) was primarily White (69%), with marginal 

representation for Asian (14%), Black (7%), and other/multiracial (10%).  

Apparatus 

Participants completed the task in PsychoPy (Version 2023.2.1; Peirce et al., 2019) on a 

24-in. monitor (20.88 by 10.75 in.). Participants were seated approximately 21 in. (or 55cm) 

away from the monitor but could adjust this distance. Note that one monitor was 22 in (9.5 x 

11.5 in.), all stimuli were scaled appropriately. 

Stimuli 

Images of real-world objects, such as handguns and hand-held harmless objects, were 

used as target stimuli. There were 33 items, 17 handguns, and 16 harmless objects. Due to 

experimenter error, an extra handgun was left in the stimuli set. Non-guns were comprised of the 

following categories: wallet, hairbrush, cellphone, hammer, flashlight, game controller, stapler, 

and soda can. Although the harmless objects are made up of multiple categories, participants 

received specific item information before each trial. Distractor objects were images of real-world 

objects that are visually and categorically dissimilar from the target objects, such as fruit, 

bicycles, and barbies (see Table 1 for the full list of distractor objects). Most objects were 

sourced from the Massive Memory Database (Konkle et al., 2010), with the exception of the 

wallet and cellphone photos, which were taken from online searches. In the race priming 

condition, 40 neutral emotion headshot images of Black and White males wearing the same 

clothing were used as prime stimuli, with 20 images featuring Black males and 20 featuring 

White males. These images were obtained from the Chicago Face Database (Ma et al., 2015). 

Each face appeared in each object condition three times and each set size condition four times. 
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(All stimuli, materials, and data can be found at OSF | Examining Racial Bias in Evidence 

Accumulation: Exploring the Impact of Object Search) 

Search Array Organization 

A structured random search array was employed to mimic cluttered environments and 

facilitate object presentation (see Figure 5). The display was organized as an 8x8 grid, which 

divides the screen into four equal 4x4 quadrants. However, the four innermost cells were 

excluded to prevent participants' gaze from falling on items close to the fixation point . Each 

quadrant contained an equal number of objects, depending on the set size (3, 4, or 5 objects per 

quadrant). The grid was designed to maintain a visual angle of 2-2.5° for objects and a minimum 

of 1.5° between adjacent objects and between objects and the screen edges. Visual angles are a 

measure of the apparent size of an object when perceived from a certain distance. In this context, 

visual angles allow for precise control of how objects are rendered on a screen using the object's 

size and the observer's distance.  

These visual angles were chosen as an analog to those found in the literature (e.g., Hout 

& Goldinger, 2015) and ensure a sufficient distance between objects to minimize crowding 

effects. However, compared to the 6x6 grid employed by Hout and Goldinger (2015) on a 21-

inch monitor, the current 8x8 grid is scaled for a 24-inch monitor and maintains the visual angle 

requirements for the objects and their separation.  

To ensure that target positions from the center of the screen are equivalent across 

conditions, a random assignment method was used to distribute the target objects across the grid 

cells. Each trial randomly assigned the target objects to these cells. The randomness of this 

assignment was evaluated and confirmed through a simulation. In this simulation, 360 trials with 

300 iterations were conducted, each representing a participant, with varying conditions of race 

https://osf.io/r5jkg/
https://osf.io/r5jkg/
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presentation (Black, White, and No Prime), target object type (Gun or Non-gun), and set sizes 

(12, 16, 20). The average distances from the center for each condition, averaged across all 

participants, were computed and are presented in Table 2. As indicated by the results, the 

average distance from the center is approximately equal across all conditions and participants, 

suggesting that the random assignment method did not introduce a systematic bias in the 

positioning of the target objects. Appendix A presents a detailed account of the simulation 

process and the Python script used to generate these values. 

 

 

Procedure 

Participants' task was to locate and identify the target object among the distractors. 

Participants were instructed to respond as quickly as possible while remaining accurate. At the 

beginning of each trial, a fixation cross appeared for 500 ms, followed by word cues of the target 

items for 1000 ms, followed by the visual search display, which remained until a response was 

recorded or 10 seconds elapsed. The race stimuli appeared for 500 ms after the word cues in the 

race priming condition. Participants used a keyboard to make decisions, with "Q" representing 

Figure 5: An example of the visual search array. Note that the grid lines and grey boxes will 

not be shown during the task. 
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"gun" and "P" representing "non-gun." Reaction times were measured from display onset to a 

button press. In any given trial, only one target object from either of the two categories appeared  

(See Figure 6 for an example). 

 

Figure 6: An example of a typical trial. Note that in the no prime condition, an additional fixation 

point was used in place of the face. 

The paired word cues always had a gun as one category and a randomly selected non-gun 

as the other. To encourage an active search for the target items, an additional manipulation was 

added to the task. In 36 randomly selected trials, all objects were replaced by a number from 1 to 

the current number of items in the display (See Figure 7). Using a mouse response, participants 

then selected the number that replaced the target object. After eight practice trials, 360 

experimental trials were presented in 3 blocks of 120. There were 240 trials for the race 

condition and 120 trials for the no-race condition. Within each block, there were 40 trials in each 

set size. Within each set size, there were 20 trials for each object type. Across blocks, this 
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resulted in 20 trials per race by object by set size condition. In the race condition blocks, each 

face was paired with two guns and two non-gun items for a total of six trials per block. 

Participants were given one minute of rest or longer between blocks. Block order was 

randomized across participants. Set size, object type, and target location were randomized within 

blocks. 

.  

Figure 7: An example of the manipulation check. Once participants made a decision, the objects 

were replaced with numbers. 

Manipulation check 

Undergraduate research assistants reported during preliminary trial testing that when they 

could not rapidly identify a gun on the screen, they would default to choosing the non-gun 

response. This behavior suggests a search strategy that mirrors a target present versus target 

absent decision-making process, potentially leading to variations in response times compared to 

scenarios where participants actively identify an item before responding. An additional 

manipulation adapted from Hout and Goldinger (2015) was introduced in 36 randomly selected 

trials to address this. In these trials, upon making a decision, all objects on the screen were 

replaced with a number ranging from 1 to the total number of items displayed. After a 2-second 
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interval, this screen was replaced by a lineup of four numbers. Participants were then required to 

select, via mouse response, the number corresponding to the target object. This manipulation, 

evenly distributed across the various conditions, aimed to encourage active item search by the 

participants.  

Results 

Behavioral 

The experimental design involves three independent variables: Race condition (Black 

vs. White vs. No prime), Set size (12 vs. 16 vs. 20), and Object type (Gun vs. Non-Gun). These 

variables were manipulated within participants, with the order of conditions randomly assigned. 

The dependent variable is the Response Time (RT) for each trial, representing the time 

participants take to locate and identify the target object accurately. Incorrect response times and 

response times below 300 ms and above 10000 ms were removed. See Figure 8 for average 

response times and error rates.  

The data were analyzed using a linear mixed effect model to predict the response time to 

the target object as a function of the race condition, set size, object type, and their interactions. In 

additon, a logistic mixed effect model was specified to predict accuracy across conditions. To 

account for non-independence across participants and targets (Judd et al., 2012), I initially 

proposed specifying (1) the participant intercept, race condition slope, set size slope, object type 

slope, and their interactions for participants, (2) the target intercept and set size slope for targets, 

and (3) the prime intercept and object type slope for primes.. However, this initial model proved 

too complex for practical specification. Subsequent testing of each model component revealed 

that a simplified model, which specified only the participant and target intercepts as random 

effects, was most effective. Including slopes generally leads to convergence issues, while 
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random intercepts for primes introduced singularity effects. The race condition, set size, and 

object type were effects coded.  

The analysis was conducted using the lme4 (Bates et al., 2023), lmerTest (Kuznetsova et 

al., 2020), and emmeans (Lenth et al., 2024) packages in R.  

 

Figure 8: Correct response times (top) and proportion errors (bottom) for all conditions. 

Response Time. A multilevel linear regression analysis was conducted to predict 

response time. The model included fixed effects for race condition, set size, object type, and their 

interactions. Random effects included random intercepts for participants and targets. In this 

model, there was a main effect of target type (b = -203.04 ms, 95% CI [-288.14, -117.93]) such 

that participants responded faster to guns (M = 1316 ms, 95% CI [1193, 1439]) than non-guns 

(M = 1316 ms, 95% CI [1193, 1439]), b = -406 ms, 95% CI [-17.694, -8.272]). The expected 
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effect of set size was found with faster responses in set 12 (b = -169.00 ms, 95% CI [-176.49, -

161.51]) and slower responses in set size 20 (b = 173.79 ms, 95% CI [166.28, 181.29]).  

There was an interaction between race and target type (b = -9.22 ms, 95% CI [-16.72, -

1.72]) such that participants responses were slower on White non-gun trials (M = 1733 ms, 95% 

CI [1606,1860]) compared to no prime non-gun trials (M = 1709 ms, 95% CI [1582,1836], b = 

24.19, 95% CI [5.82, 42.55]). In addition, participants responded marginally faster to White gun 

trials (M = 1309 ms, 95% CI [1185,1432]) than to Black gun trials (M = 1326 ms, 95% CI  

[1203,1450], b = -17.88 ms, 95% CI [-36.23, 0.49]).  

An interaction was observed between target type and set sizes 12 (b = 18.85 ms, 95% 

CI[11.36, 26.34]) and 20 (b = -21.24 ms, 95% CI [-28.75, -13.74]), indicating that participants 

responses were faster in gun trials across set sizes compared to non-gun. Table 7 summarizes the 

mean response times and 95% confidence intervals by set size and target type. A linear contrast 

test indicated that participants' searches were more efficient when the target item was a gun (b = 

80.2 ms, 95% CI [54.2, 106.2]). That is, the increase in response times associated with increased 

set sizes was smaller on gun trials (See Figure 9). No significant interactions were found between 

race and set size, and the observed two-way interactions did not extend to a three-way 

interaction. Overall, participants were faster on gun trials than non-gun trials, and the typical race 

by object interactions were not found.  
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Figure 9: Search slopes by Target Type and Set Size. Bars are 95% CI. 

Error Rates. To predict the proportion of correct responses, a multilevel logistic 

regression was estimated with fixed effects for race condition, set size, object type, and their 

interactions. Random effects included random intercepts for participants and targets and random 

slopes for set size for targets. The only effects to emerge were the main effects of set size 12  (b 

= 0.08, 95% CI [0.03, 0.14]) and set size 20  (b =-0.09, 95% CI [-0.16, -0.03]) however the 

differences are small and not particularly informative (12: M = 3.83, 95% CI [3.72, 3.95]; 16: M 

= 3.76, 95% CI [3.64, 3.88]; 20: M = 3.66, 95% CI [3.55, 3.77]) No other effects were found and 

thus the exploratory analysis focused on response times. 

Exploratory Analysis – Block Order. As part of an exploratory analysis, a noticeable 

decrease in response times across blocks was observed, suggesting a possible practice effect. To 

account for this, a multilevel linear regression analysis was conducted to predict response time 

while controlling for the effect of practice. The model included fixed effects for race condition, 
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set size, object type, and their interactions. Additionally, block order was included as a covariate 

but not as part of any interaction terms. Random effects included random intercepts for 

participants' targets. Initial observations indicated an effect of block order, with participants’ 

response times decreasing across blocks (Block 1: M = 1638 ms, 95% CI [1546, 1730]; Block 2: 

M = 1485 ms, 95% CI [1393, 1576]; Block 3: M = 1435 ms, 95% CI [1343, 1527]). Further 

analysis using a polynomial contrast test revealed significant linear and quadratic trends, 

indicating that although participants' responses sped up across blocks (b = -203 ms, 95% CI [-

215.9, -190]), this effect plateaued going from block 2 to block 3 (b = 104 ms, 95% CI [81.2,  

126]). That is, it appears that participants more or less understood the task by the final block. 

Despite these trends, the effects related to race condition, set size, and object type remained 

consistent (See Tables 10-15). 

Exploratory Analysis – Manipulation Check. As an additional exploratory analysis, the 

error rate distributions from the manipulation check were examined by condition and across 

participants (See Figure 10). The findings show that the majority of participants demonstrated a 

high degree of accuracy, with 84 percent having fewer than five errors. To investigate if response 

times differ across participants with higher errors, the manipulation check error rates were mean-

centered and added to the multilevel model predicting response times. This model accounted for 

the original fixed effects and the new interaction between mouse task errors, set size, and target 

type.   

Similar to the inclusion of block order, adding manipulation check error rates to the 

model did not substantially alter the overall findings (See Tables 16-21). However, for each 

additional error, response times increased (b = 5.17 ms, 95% CI [0.75, 9.6]). Additionally, an 

interaction between target type and the manipulation check suggests that participants who 
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performed worse responded faster to non-guns (M = 7.87 ms, 95% CI [3.40, 12.35]) than guns 

(M = 2.48 ms, 95% CI [-2.0, 6.95]; b = -5.40 ms, 95% CI [-6.786, -4.014]). There was no 

interaction between set size and manipulation check errors, nor were these effects qualified by 

the three-way interaction with set size. The longer response times may be attributed to a target 

present search versus target-absent search such that responses are generally longer in this 

scenario (Wolfe, 2021), but given the small amount of data, this may be better attributed to noise 

or inattentiveness. 

 

Figure 10: Count of errors by participant (top) and proportion of errors across conditions 

(bottom). 

 

 



32 

 

 

Process Level 

Given that participants were given a large response time window to encourage accurate 

search, there is not enough error rate data to apply a Drift Diffusion Model. 

Discussion 

The purpose of Study 1 was twofold: first, to investigate if race would affect search 

efficiency, and second, to establish a possible response time window for Study 2. Given that 

there were little to no differences in error rates across different conditions, this discussion will be 

limited to the analyses of response times. The interactions that would have suggested a search 

efficiency effect for race would have been found in either the race by set size interactions or the 

race by set size by target type interaction; however, neither reached significance, indicating that 

in this task, race did not improve or impair the search process meaningfully. Further, these 

interactions did not emerge when controlling for block order or the manipulation check. 

That being said, an effect of search efficiency did emerge such that participants' searches 

for gun objects were more efficient than participants' searches for non-gun items. It is not clear 

what is driving this effect, as it could be the case that participants are attuned to the fact that guns 

are likely the key item in the task, guns are simply easier to distinguish because of some 

combination of features, or it could be the case that the diverse item set for non-gun items 

impaired the search process.  

In addition, it is worth noting that the typical race-by-target type interaction was not 

found. That is, the literature generally supports the idea that gun responses following Black 

primes are faster and non-gun responses following Black primes are slower. However, this study 

found that an interaction emerged, such that participants' responses were slower following White 

and Black primes than those with no primes on the non-gun trial.  
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STUDY 2 

The primary objective of this study was to deepen our understanding of the relationship 

between race and search efficiency. This was achieved by introducing a time window constraint 

to induce errors in the search process, thereby allowing for drift-diffusion modeling. However, 

Study 1 did not find an effect of race on search efficiency; this outcome could have several 

interpretations. It might suggest that, in this specific task context, race is not a useful source of 

information, which could be represented in no credible differences between Black and White 

race primes. Alternatively, counter-stereotypic attitudes could influence the results, leading to 

findings that diverge from the broader literature on racial biases. 

An example of this can be seen in recent work from the Cesario lab on shooter tasks. 

Participants demonstrated no behavioral differences in response times or error rates, yet DDM 

results indicated that this was driven by lower starting points and higher evidence thresholds for 

Black targets. In addition, if the target type search efficiency effect emerges once again, the 

DDM parameters can be used to infer if these search differences are reflected in evidence 

accumulation.  

The response window was set to capture a range of approximately 70% of the original 

response times for non-guns in set size 20 (2000 ms) in Study 1. The time window was still 

relatively long, given that the focus is on search efficiency, and using a constraining time 

window may undermine the connection to Study 1. By reducing the response window in this 

way, I expected to maintain the task's sensitivity to our manipulations of interest while ensuring 

that participants were sufficiently pressured to respond quickly. Three levels of race presentation 

(Black vs. White vs. No prime) and two levels of target object type (Gun vs. Non-gun) were 
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manipulated within subjects. In each condition, three levels of set size (12, 16, 20) were 

manipulated in equal proportions. 

Method 

Participants 

Student participants were recruited via Michigan State University's Department of 

Psychology HPR/SONA system to complete an "Attention and Perception" task for a full credit 

towards the fulfillment of required credit hours in their introductory psychology class. Three 

hundred and twenty-two participants were recruited; however, 9 participants who had over 100 

errors in the task were excluded. In addition, 6 participants were excluded that did not have a 

matching Qualtrics survey due to experimenter error in setup. The remaining sample (N = 308; 

118 men; 188 women, 2 NA, mean age = 19.5) was primarily White (73%), with marginal 

representation for Asian (10%), Black (8%), and other/multiracial (9%).  

Data collection was paused after 19 participants and 52 participants had completed the 

task to ensure that the response time window selected was appropriate. This was done by looking 

at the response times and error rates to determine if the response time window behaved as 

expected. The first 19 participants had a response window of 2300 ms with an error rate of less 

than 5% at the highest set size. This was not suitable for DDM entry, so the response window 

was restricted to 2000 ms. This second session produced an error rate between 5% and 9% from 

set size 12 to 20. These participants were not included in the final sample.   

Apparatus 

Participants completed the task in PsychoPy (Version 2023.2.1; Peirce et al., 2019) on a 

24-in. monitor (20.88 by 10.75 in.). Participants were seated approximately 21 in. (or 55cm) 
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away from the monitor but could adjust this distance. Note that there was one monitor that was 

22 in (9.5 x 11.5 in.), and items were scaled down appropriately.  

Stimuli 

All stimuli were the same as the stimuli used in Study 1. 

Search Array Organization 

The specifications of the search array are the same as those listed in Study 1. 

Procedure 

The procedure is similar to Study 1, with a few exceptions. First, a 2000ms response time 

window was implemented. Second, if participants responded outside of the window, they were 

prompted to "Please respond faster."   

Manipulation check 

Several changes were made to the manipulation check to ensure it only appeared when 

participants made a correct decision within the response time window. Given that participants 

were expected to make more errors, the manipulation check only appeared on correct 

identification trials. Further, performing the manipulation check only if participants were within 

the response time window aimed to reduce noise from guessing after the items disappeared. 

Doing it this way, it was not guaranteed that conditions would be evenly split if some 

participants made more errors for specific combinations of targets and races, but the code was 

designed to cycle through each combination iteratively and display the manipulation check for 

the set of conditions with the lowest count value. It only aimed to record 36 trials, 2 per possible 

condition.    
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Results 

Behavioral 

The design of Study 2 closely mirrors that of Study 1. The experimental design remains 

the same, with three independent variables manipulated within participants: Race Condition 

(Black vs. White vs. No prime), Set Size (12 vs. 16 vs. 20), and Object Type (Gun vs. Non-gun). 

The order of conditions continued to be randomly assigned. There are two dependent variables: 

response time, which represents the time participants take to correctly find and identify the target 

object, and error rates, which quantify the frequency of incorrect identifications or timeouts 

across trials. Responses that fell below 300 ms or above 4000 ms were excluded from both the 

response time and error rate analysis (Ratcliff et al., 2018). Timeouts were not treated as errors, 

but in the response time analysis only correct response times were used. As in Study 1, MLM 

was employed. A linear model was used for response times, and a logistic model was used for 

error rates. See Figure 11 for average response times and error rates.  

Response Time. A multilevel linear regression analysis was conducted to predict 

response time. The model included fixed effects for race condition, set size, object type, and their 

interactions. Random effects included random intercepts for participants, targets, and prime 

faces. In this model, there was a main effect of target type (b = -122.88, 95% CI [-166.34, -

79.42]) such that gun responses (M = 981 ms, 95% CI [919,1043]) were faster than non-gun 

responses (M = 1227 ms, 95% CI [1163, 1291]). The expected effect of set size was found with 

faster responses in set 12 (b = -74.48 ms, 95% CI [-78.02, -70.93]) and slower responses in set 

size 20 (b = 70.71 ms, 95% CI [67.13, 74.28]).  

There was also an interaction between target type and set sizes 12 (b = 5.03 ms, 95% CI 

[1.49, 8.58]) and 20 (b = -6.50 ms, 95% CI [-10.08, -2.92]), indicating that participants’ 
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responses were faster in gun trials across set sizes compared to non-gun. Table 26 summarizes 

the mean response times and 95% confidence intervals by set size and target type. A linear 

contrast test indicated that participants' searches were more efficient when the target item was a 

gun (b = 23.07 ms, 95% CI[10.7, 35.4]). That is, the increase in response times associated with 

increased set sizes was smaller on gun trials (See Figure 12). No significant interactions were 

found between race and set size or race and object, and the observed two-way interactions did 

not extend to a three-way interaction. Overall, the response time findings closely match those of 

Study 1, with faster response times for guns than non-guns. In addition, the constrained response 

time window did lead to faster responses in general. 

     

Figure 11: Correct response times (top) and proportion errors (bottom) for all conditions.  
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Error Rates. To predict the proportion of correct responses, a multilevel logistic 

regression was estimated with fixed effects for race condition, set size, object type, and their 

interactions. Random effects included random intercepts for participants and targets. There was a 

main effect of race for Black (b = 0.05, 95% CI [0.02, 0.08]) such that participants were more 

accurate following Black primes than no primes (b = 0.10, 95% CI [0.05, 0.16]). There was a 

main effect for set size 12 (b = 0.24, 95% CI [0.21, 0.27]) and set size 20 (b = -0.20, 95% CI [-

0.24, -0.17]) such that as set sizes increased, participants accuracy decreased (12: M = 2.90, 95% 

CI [2.79, 3.02]; 16: M = 2.63, 95% CI [2.52, 2.74]; 20: M = 2.46, 95% CI [2.35, 2.57]). 

There was an interaction between prime race and target type (b = -0.03, 95% CI [-0.07, -

1.02e-03]). Participants responses were more accurate on non-gun trials following White (b= 

0.11, 95% CI [0.03, 0.19]) and Black (b= 0.18, 95% CI [0.10, 0.26]) primes compared to the no 

prime condition. 

There was also an interaction between set size and target such that as set size increased , 

participants' accuracy decreased more for guns (12: M = 2.91, 95% CI [2.76, 3.06]; 16: M = 

2.56, 95% CI [2.41, 2.70]; 20: M = 2.31, 95% CI  [2.16, 2.46]; b = -0.32, 95% CI [-0.43, -0.21]) 

than non-guns (12: M = 2.89, 95% CI [2.74, 3.05]; 16: M = 2.71 95% CI [2.55, 2.86]; 20: M = 

2.61, 95% CI [2.46, 2.76]). A three-way interaction qualified these effects (See Figure 13) such 

that as set size increased, participants' accuracy decreased more following White primes than no 

primes in the non-gun condition (b =-0.20, 95% CI [-0.40, -0.002]). However, it’s worth noting 

that although participants' accuracy decreased more following White primes, they also started 

and ended with overall higher accuracy than the no prime condition. Overall, accuracy decreased 

as the set size increased, but the most interesting aspect is that participants made more errors on 
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gun-trials than non-gun trials. This particular effect is unexpected and may be better explained 

by performance in the manipulation check.  

 

Figure 12: Search slopes by target type and set size. Bars are 95% CI.  

 

Figure 13: Predicted accuracy (on the logit scale) for race, target type, and set size. Bars are 95% 

CI. 
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Exploratory analysis – Block Order. Similar to Study 1, a noticeable decrease in 

response times across blocks was observed, suggesting a possible practice effect. To account for 

this, a multilevel linear regression analysis was conducted to predict response time while 

controlling for the effect of practice. The model included fixed effects for race condition, set 

size, object type, and their interactions. Additionally, block order was included as a covariate but 

not as part of any interaction terms. Random effects included random intercepts for participants 

and targets. The corresponding multilevel logistic model predicting accuracy was specified 

similarly. Initial observations indicated an effect of block order, with participants’ response times 

decreasing across blocks (Block 1: M = 1168 ms, 95% CI [1123, 1214]; Block 2: M = 1086 ms, 

95% CI [1041, 1132]; Block 3: M = 1059 ms, 95% CI [1014, 1105]). A polynomial contrast 

analysis revealed linear and quadratic trends such that participants responded faster across blocks 

(b = -109 ms, 95% CI [-115.4, -103.1]). However, this effect was less pronounced in the later 

block (b = 55.3 ms, 95% CI [44.7, 65.9]).  

Not only did participants respond faster, but they also became more accurate across 

blocks (M = 2.58, 95% CI [2.46, 2.69]) to block 2 (M = 2.71, 95% CI [2.60, 2.83]; b = -0.14, 

95% CI [-0.19, -0.08]) but plateaued going to block 3 (M = 2.71, 95% CI [2.59, 2.82]; b = 0.01, 

95% CI [0.06, -0.05]).  

Interestingly, while the original response time model had no effect on race, when block 

order was added an effect of race emerged  (b = 5.08, 95% CI [0.92, 9.24]) such that participants 

responses were slower following White primes (M = 1107 ms, 95% CI [1061, 1152], b = 8.37 

ms, 95% CI [2.22, 14.52]) and Black primes (M = 1108 ms, 95% CI [1063, 1154], b = 9.95 ms, 

95% CI [3.81, 16.09]) compared to no prime (M = 1098 ms, 95% CI [1053, 1144]). An 

interaction with target type qualified this effect such that participants responses to non-guns were 
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slower for White primes (M = 1233 ms, 95% CI [1169, 1297], b = 15.70 ms, 95% CI [7.03, 

24.37]) and Black primes (M = 1231 ms, 95% CI [1168, 1295], b = 13.95 ms, 95% CI [5.29, 

22.60]) compared to no primes (M = 1217 ms, 95% CI [1154, 1281]). All other effects relating 

to race condition, set size, and object type in the error rate and response time model remained 

consistent (Tables 33 -47). 

Exploratory analysis – Manipulation Check. As an additional exploratory analysis, the 

error rate distributions from the manipulation check were examined by condition and across 

participants (See Figure 14). The findings show that the majority of participants demonstrated a 

high degree of accuracy, with 77 percent having fewer than five errors. Thus, to investigate if 

response times and error rates differ across participants with worse performance on the 

manipulation check, the error rates were mean-centered and added to the multilevel models 

predicting response times and accuracy. This model accounted for the original fixed effects and 

the new interaction between mouse task errors, set size, and target type.   

Adjusting for manipulation check errors in the model, much like controlling for block 

order, left most results unchanged but revealed a significant effect of race (b = 5.08 ms, 95% CI 

[0.92, 9.24]) such that participants responded slower following White primes (M = 1107 ms, 

95% CI [1061, 1152], b = 8.37 ms, 95% CI [2.22, 14.52]) and Black primes (M = 1108 ms, 95% 

CI [1063, 1154], b = 9.95 ms, 95% CI [3.81, 16.09]) compared to no prime (M = 1098 ms, 95% 

CI [1053, 1144]). Alone, the effect of manipulation check errors is statistically non-significant (b 

= -1.270 ms, 95% CI [-2.98, 0.44]). However, there was an effect of target type and the 

manipulation check such that as participants performed worse on the manipulation check, they 

responded faster, primarily driven by the gun condition (b = -0.713 ms, 95% CI [-1.391, -0.034]; 

see Table 53). The three-way interaction with set size did not qualify these effects.  
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Figure 14: Count of errors by participant (top) and proportion of errors across conditions 

(bottom). 

When manipulation check errors were mean-centered and added to the error rate model, 

there was a main effect such that overall errors increased for each additional error made in the 

manipulation check (b = -0.013, 95%CI [-0.021, -0.004]). This was qualified by an interaction 

with target type such that as participants performed worse in the manipulation check, more errors 

were made in the gun than non-gun trials (b = -0.030, 95%CI [−0.036,−0.024]). The three-way 

interaction with set size led to convergence issues and was omitted from the model. Together, the 

response time and error rate models suggest that participants with worse performance on the 

manipulation check responded faster, and this was especially noticeable on gun trials. This 

increase in response time may also explain why more errors were made for gun targets; if 
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participants who generally performed worse or didn’t engage in the task as expected to find the 

gun rapidly, then in larger set sizes, the quitting threshold (Wolfe, 2021) might be smaller 

leading to more misses for guns. In addition, although they are correctly choosing non-gun when 

a gun is present, without fixating the target, more errors would be made for non-guns on the 

manipulation check. As in Study 1, there is less data with poor performance, but this seems to 

suggest a pattern of differential search strategies. 

Summary 

The behavioral data show no effect of race on search efficiency in either the two-way or 

three-way interaction.  For race, the drift-diffusion model can highlight how or if race is being 

used in this task. For example, as in previous work in the lab, we have found the stereotypical 

response in the race by object drift rates such that participants accumulate stronger evidence 

when gun is paired with Black than with White, but these effects were masked by participants 

setting wider thresholds for Black targets such that they needed more evidence to make a 

decision. So it could be that some similar phenomenon masks race differences between Black 

and White primes, or perhaps it’s the case that, like the behavioral results, no differences emerge 

between White and Black and instead solely manifest between these two racial categories and the 

no prime condition.  

However, like Study 1, there is a search efficiency effect for guns such that participants' 

responses are more efficient for gun items than non-gun items. However, this search efficiency 

effect did not lead to greater accuracy; in fact, it appears that starting at set size 16, participants 

missed more guns than non-guns. This pattern of results is unexpected. It's possible that this 

pattern was driven by participants with higher manipulation check errors, such that participants 

with more errors responded faster and were less accurate at finding guns because of how they 
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engaged in the search process. Thus, it seems possible that participants sometimes rapidly found 

the gun item they were searching for, and when they did not, they would default to a non-gun 

response. 

 This could potentially explain why error rates increased more for guns at the higher set 

sizes because if participants could not quickly find the gun, an assumption could be made that it 

was not present. It is not clear how these different results will affect the drift diffusion model 

parameters, given that the decreased response times for gun items should lead to stronger drift 

rates or evidence accumulation, but the higher error rate suggests more noise in the evidence 

accumulation process. Or, in other words, a weaker drift rate. Thus, the drift diffusion model can 

disentangle what is happening to drive the target type search efficiency effects and the race 

results.  

Process Level 

A Hierarchical Bayesian Drift Diffusion Model (HDDM) was implemented with the 

guidelines outlined by Pleskac et al. (2018). This version of the model allowed the start point to 

vary according to race prime, the threshold to vary by race prime and set size, and the drift rate 

and non-decision time to vary according to race of the prime, object type, and set size. 

Uninformative priors were used for each parameter to let the data have a maximal influence on 

the posterior estimates. This model was estimated using a Markov Chain Monte Carlo (MCMC) 

simulation in Just Another Gibbs Sampler (JAGS), as suggested by Plummer (2003), in 

conjunction with the Wiener module (Wabersich & Vandekerckhove, 2014). The analysis 

gathered a specified number of samples (10000) with an adaptive phase of (1000) and a burn-in 

period set at (1000). 
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Bayesian methods of inference were employed, which provides a distribution of credible 

values for each parameter. These credible values represent a range of potential values for a 

parameter that is consistent with the observed data. The most credible value, or the mode of the 

posterior distribution (i.e., the value with the highest probability), is reported for each parameter. 

In addition, the Highest Density Interval (HDI) is reported. The HDI, encompassing 95% of the 

posterior distribution, represents the range of credible values. An effect, such as a race by object 

interaction on drift rates, is considered credible when the HDI does not contain zero. If the HDI 

contains zero, this suggests that the null hypothesis is within the range of credible values, 

lowering confidence that there is a difference between conditions. 

Subsequently, given that this is a novel application of the diffusion model, posterior 

predictive checks were performed for each condition, namely, Black/White/No Prime and 

Gun/Non-gun across set sizes. These checks analyzed decision probabilities (Gun/Non-gun) and 

the means and distributions of response latencies. This procedure involves simulating data using 

the model described above, which is then compared to the original data.  

Posterior Predictive Checks revealed systematic discrepancies between observed data and 

predictions across various conditions. Hit rates are overestimated , and false alarms are slightly 

underestimated, though the extent of this misestimation is minimal. When examining response 

times, correct responses to gun stimuli are consistently overestimated, implying the model 

predicts slower decision times than observed, which in turn explains the overestimated accuracy. 

In contrast, correct response times for non-gun stimuli align more closely with model 

predictions, suggesting a more accurate fit. However, both incorrect gun and non-gun responses 

are underestimated by a large margin, suggesting that model-predicted error responses are faster 

than observed. 
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Exploratory analyses revealed that this is likely caused by unaccounted variation in drift 

rate for different target non-gun items. Specifically, some non-gun items were much harder to 

identify and create multimodal distributions of response times that were unaccounted for in the 

current DDM specification. Although gun items were relatively stable, this raises implications 

for the drift rate such that within non-guns, there is a larger degree of variation in evidence 

accumulation, which may reflect an overestimation of the true drift rates for non-gun items. 

Regarding the search efficiency effect between guns and non-guns, the model's ability to capture 

meaningful differences is not conclusive; thus, the results are speculative, and though the various 

gun and non-gun effects are reported, they will be discussed within this context. Model fit, 

diagnostics, and all plots are listed in Appendix D. 

Results. DDM results can be seen in Tables 61 to 69 and Figure 15. Contrary to 

expectations, the hypothesis that Black primes would lead to a higher starting point was not 

supported. Specifically, there were no credible differences between White primes and no primes 

(b = -0.001, d = -0.040 [-0.350, 0.260]) or between White and Black primes (b = 0.008, d = 

0.280 [-0.030, 0.580]). However, there was a near credible effect such that Black primes had a 

lower starting point than no primes (b = -0.010, d = -0.310 [-0.610, 0.010]).  

Analysis of alpha effects revealed that participants threshold separation was wider for both 

White primes versus no primes (b = 0.030, d = 0.170 [0.020, 0.320]) and for Black primes 

versus no primes (b = 0.049, d = 0.260 [0.100, 0.410]). This indicates a preference for speed 

over accuracy, coinciding with the faster response times found for no primes. There were no 

credible differences in boundary separation between White and Black primes (b = -0.016, d = -

0.090 [-0.240, 0.070]). Additionally, boundary separation was found to increase with set size, 

demonstrating credible differences between 12 and 16 items (b = -0.049, d = -0.250 [-0.400, -
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0.100]), 12 and 20 items (b = -0.100, d = -0.540 [-0.680, -0.370]), and 16 and 20 items (b = -

0.055, d = -0.540 [-0.440, -0.140]). These main effects were qualified by an interaction such that 

participants' boundary separation was wider at set size 12 for White primes compared to no 

primes (b = 0.055, d = 0.320 [0.030, 0.560]). A similar effect was observed for Black primes (b 

= 0.082, d = 0.43 [0.15, 0.68]). No other combination of conditions was found to be credibly 

different (see Table 65 for details).  

 

Figure 15: Diffusion model parameters as a function of prime race, set size, and target type for 

Study 2. Shapes represent modal posterior predictions at the condition level; bars are 95% HDI. 
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For drift rates, no credible differences were found between White and no primes (b = 

0.009, d = 0.030 [-0.07, 0.13], White and Black primes (b = -0.018, d = -0.07 [-0.16, 0.04]),  or 

Black and no primes (b = 0.022, d = 0.08 [-0.01, 0.19]). A credible main effect was observed for 

target type, with guns showing stronger drift rates than non-guns (b = 0.114, d = 0.43 [0.33, 

0.52]). As predicted, drift rates became weaker as set size increased, with credible differences 

between 12 and 16 items (b = 0.203, d = 0.77 [0.66, 0.87]), 12 and 20 items (b = 0.337, d = 1.26 

[1.15, 1.39]), and 16 and 20 items (b = 0.136, d = 0.50, [0.40, 0.60]). These main effects were 

not qualified by the anticipated race by object interaction or the race by set size interaction (see 

Table 67 - 69 for details) 

However, a series of credible interactions were observed between target type and set size, 

such that drift rates were stronger for guns compared to non-guns at set sizes 12 (b = 0.259, d = 

0.98, [0.82, 1.13]) and 16 (b = 0.093, d = 0.35, [0.20, 0.50]), but not set size 20 (b = -0.011, d = 

-0.04, [-0.18, 0.10]). A polynomial contrast test revealed a credible linear trend, with drift rates 

for guns decreasing more sharply than for non-guns as set size increased (b = -0.194, d = -0.71 [-

0.74, -0.70]), but this effect diminished at the final set size (b = 0.012, d = 0.04 [0.04, 0.05]). A 

three-way interaction did not qualify these effects.  

Discussion 

The purpose of Study 2 was to gain a better understanding of how race is being used in 

this task, if at all, and to what degree search efficiency can be observed in differences in the drift 

rate. Regarding race, the only credible difference to emerge was that participants collected more 

evidence following White and Black primes than they did when there was no prime. Further, 

there is no conclusive evidence that the null behavioral results between Black and White primes 
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were hiding or masking race-driven differences in evidence accumulation, start point bias, or the 

evidence threshold.   

Next, the behavioral differences in search efficiency for guns over non-guns appear to 

have been seen in the drift rates such that gun items initially had stronger drift rate values, but 

the rate of decrease in evidence accumulation was reflected in the higher error rate for gun 

targets. That is, the model captured a higher rate of decrease in the drift rate of gun items than 

non-gun items, but it is unclear if this pattern of results would have emerged if the true effects of 

drift rate were estimated. It is possible that when the full range of variation is modeled, search 

efficiency effects are limited to specific non-gun conditions such that some drift rates are likely 

much weaker than other non-gun objects.  However, these results are speculative until 

modifications can be made to the drift diffusion model code to allow intercepts to be created for 

target objects, similar to how they are implemented in a random effect context where variation 

due to non-independence is accounted for.   
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GENERAL DISCUSSION 

The current work explored how or if race would affect search efficiency in a visual 

search task. Further, this work aimed to explore if differences in search efficiency would 

manifest in evidence accumulation, highlighting a possible unexplored mechanism to explain 

differences in information processing. Across two studies, race was not found to affect search 

efficiency in either race by set size interaction or the race by set size by target type interaction. In 

addition, the application of drift-diffusion modeling did not reveal a pattern of results indicative 

of the typical racial bias effect. However, a consistent search efficiency effect for target type 

emerged, such that participants' searches for guns were more efficient than those for non-guns in 

both Study 1 and Study 2. In Study 2, this effect was seen as stronger drift rates for gun items; 

however, participants' errors increased, which was then reflected in a large decrease in the 

strength of evidence accumulation. The strength and direction of these effects are still 

speculative, given the model misfit highlighted by the posterior predictive checks performed.   

Search Efficiency and Modeling 

This work was exploratory to test if race would work to guide attention to specific items 

in the search array. An effect of race on search efficiency was not found in either the two-way or 

three-way interactions in response time; this could have been due to several reasons. One may be 

that race is not providing information that is useful or is not meaningfully changing the contents 

of working memory. However, a more nuanced discussion on the specific effects of race will be 

discussed later; here, I will focus on elements of search efficiency. 

The second major question this dissertation aimed to answer was whether differences in 

search efficiency would reflect differences in delta or evidence accumulation. I t was found that 

participants' searches for guns were more efficient than those for non-guns, which was reflected 
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in overall stronger drift rates for gun items and weaker drift rates for non-gun items. Notably and 

contrary to expectations, drift rates decreased far more for guns than non-guns. Note that when 

this work was first proposed, I anticipated that if there were a three-way interaction between 

race, target, and set size, this would be reflected such that as set size increased, the rate of 

decrease for the more efficient searches would be less than the rate of decrease for the less 

efficient search. That is, I expected differences in search efficiency to emerge not in the overall 

strength of the evidence accumulation process but in the steps between each set size. This was 

based on an assumption that equated greater search efficiency with greater accuracy, but that was 

not the behavioral effect produced.  

That is, although the gun searches appear more efficient, this effect was inflated since we 

are only looking at correct response times, and guns in Study 2 generated more errors than non-

guns. Seemingly, gun items were either incredibly fast to spot or were missed in favor of a non-

gun response. This effect seems to be driven by participants who made more errors in the 

manipulation check. If the participants assume that the gun item is consistent in every trial and 

an initial search doesn’t point towards items with gun-like features, then choosing non-gun is an 

adequate solution. This particular strategy would explain why the greatest amount of errors 

occurs for guns at the highest set size, where, theoretically, they would be the hardest to find 

from a brief search. Regardless of the speeded response time, the increase in error rates would 

result from weaker evidence accumulation across set sizes.  

Importantly, however, until the drift diffusion model is refit, we can only speculate on 

whether the observed differences in evidence accumulation remain in the same direction and 

magnitude. If we assume that unaccounted variation in delta for target objects is the main driver 

of misfit, it would be interesting to see what differences emerge among the target object drift 
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rates. The level of specificity of getting a drift rate for either target object or target object 

categories allows us to explore the possibility that stronger or weaker drift rates can be explained 

by differences in features of the items ( i.e., color, shape, size, sharp or rounded features).  

In line with this, some non-gun stimuli seemed harder to find and identify than others, 

driving multimodal response time distributions. This is not necessarily bad, as real-life items can 

be varied and introduce these response time differences. Nevertheless, it does have implications 

for the comparison of search efficiency, such that comparing a static category (gun) where items 

are more similar in nature and receive more similar responses to a dynamic category (non-gun) 

with drastic differences in features and in response times may introduce task-specific effects 

such that search efficiency effects emerge because there is more variation in one group. Or, put 

another way, if a different set of non-gun stimuli were used that varied in ways that stood out 

from the search display, would the same gun search efficiency effect be found. Nailing down 

what possible features of items that impair or enhance the search process for guns could be 

useful in studying and identifying where police training could be improved.   

Individual Differences in Search Process 

First, it was not anticipated that participants would approach the task using different 

search strategies, which is why the manipulation check was used as an attempt to encourage 

participants to engage in an active search for the target items. The different search strategies 

could have been prompted by several design choices that diverged from the original Hout and 

Goldinger (2015) work. For example, participants were always looking for either a gun or some 

specified non-gun object, hinting that guns are the targets of interest. Effectively, then, if the 

instruction set is to “answer as quickly as possible while remaining accurate,” participants 
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benefit from using a search strategy that prioritizes guns over non-guns. This would especially be 

the case when non-gun items are harder to find in the search array.  

Although the manipulation check was added, due to the limited number of trials that it 

appeared in, it is not quite possible to disentangle all possible approaches participants used, but 

here are some possibilities. Participants actively search for the gun and non-gun objects 

simultaneously which might reflect in higher accuracy (Cave et al., 2018; Ort & Olivers, 2020; 

Stroud et al., 2012). Note that the majority of participants in both Studies 1 and 2 had fewer than 

five manipulation check errors.  The second is that participants search for guns and, when not 

present, default to non-gun without fixation of the target item. Now, this may explain the results 

of the manipulation check in Study 2. In Study 2, participants with more manipulation check 

errors were generally faster than participants with lower manipulation check errors, and this is 

especially noticeable among the gun targets.  

When searches are treated as target-present vs. target-absent, target-absent searches are 

characterized by longer search times as the entire array must be scanned (Wolfe 2021) as seen in 

study 1, but if a response time window were to make this untenable, then at higher set sizes we 

might expect more errors or even correct guessing to occur. This might explain a portion of 

participants whose manipulation check errors were driven by non-gun items and less so by gun 

items. A third approach is simply inattentiveness; participants either do not engage with the task, 

do not read the pretrial text cues, or even vary in attention over blocks. This particular approach 

may be characterized by an overall high manipulation check error rate and task error rate 

equivalent across conditions. However, there are participants who have high manipulation check 

error rates and a low overall error rate, which might suggest a strategy that precludes fixation of 

the target items. For example, it is possible for items to be processed in the field of view 
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surrounding the current point of fixation (Wolfe, 2021). To the extent then that participants see 

an item in the periphery, they could respond prior to full fixation. It seems likely that participants 

are approaching the task in varied ways, but the manipulation check fails to meaningfully capture 

or pinpoint exact differences which should be addressed in any future work.  

Race and Priming 

Studies 1 and 2 show a distinct deviation from traditional findings in racial bias research 

using the WIT and FPST. Unlike the expected anti-Black race-by-object interactions typically 

found in this literature (Cesario and Carrillo, 2024), the results revealed no direct differences in 

object identification between White and Black primes. Instead, significant differences were 

observed when comparing conditions with a racial prime (either White or Black) to those without 

any prime. Further analysis using the DDM indicated that these unexpected findings did not 

obscure complex race interactions within the model’s parameters. The only credible difference 

was noted in the evidence threshold at set size 12 between the race conditions and the no prime 

condition, an effect that diminished with increasing set sizes. This pattern suggests that the 

presence of a racial prime, rather than its specific racial identity, influenced object recognition by 

slowing responses.  

There may be several explanations for why the typical race effects did not emerge; first, it 

could be that in the last four years since the death of George Floyd, it's plausible that there has 

been a decrease in anti-Black bias influenced by the broader political and social discourse. Such 

shifts could reflect how participants respond, potentially leaning towards socially desirable 

behaviors (Huddy & Feldman, 2009). Second, the study design may not facilitate the use of race 

as a mental shortcut. Future research should focus on thoroughly examining the mechanisms 

through which priming may alter search processes.  
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First, the design of our study, which involved rapid, consecutive trials, may account for 

the observed tendency of race effects to manifest similarly for both White and Black primes, 

compared to conditions without a prime. The brief intervals between trials might have led to a 

compounded racial priming effect, where the priming did not sufficiently decay before the next 

stimulus was presented. Research on priming decay suggests that longer intervals can reduce 

residual effects (Neely et al., 2010). To explore this further, one modification could involve 

adding intervals within the trial design, similar to those used in the FPST. The FPST approach 

incorporated sequences of empty backgrounds between trials, potentially allowing the initial 

priming effect to diminish. In this visual search task it may be useful to add buffers between 

trials of either empty screens or just a fixation cross that is shown for a longer period of time.  

Alternatively, adopting a between-subjects design could provide another means to 

examine these effects. In such a design, participants would be exposed to only one racial 

category throughout the experiment. This approach would circumvent the need for additional 

time in the task as only one prime is relevant throughout. 

Second, in the current design, the race prime is displayed for 500 milliseconds, which 

may be sufficiently long to allow participants some control over their responses. For example, 

when primed with race participants may decide to be more cautious which is reflected by the 

higher evidence thresholds following the prime. To investigate whether the length of exposure to 

the prime affects the strength of the priming effect or the participants ability to control their 

responses a reduced exposure time, perhaps closer to 200 milliseconds as used in the WIT 

(Payne, 2005). In this way the rapid display of the prime prevents participants from actively 

changing their search strategies. 
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Third, we may think that race information may be used in ambiguous situations (Duncan, 

1976; Sagar & Schofield, 1980), and in this study, participants receive word cues indicating 

which items will appear. These text cues might substantially influence cognitive processes more 

than race cues in low ambiguous situations.  

In line with this, Johnson et al. (2018) research into dispatch information found that 

providing participants with specific information about a target reduced racial biases, evidenced 

by changes in the drift rate. This indicates that when participants have access to more nuanced 

information, their reliance on racial stereotypes diminishes, leading to more accurate decision-

making processes. In terms of visual search, the content of participants' search templates might 

be influenced by greater, more specific information given by the pretrial text cues rather than 

race cues (Yu et al., 2023). One method to test this idea is by designing a follow-up study where 

participants are tasked with identifying items belonging only to a gun category. Then, 

participants are given different levels of pretrial information ranging from race information only, 

text cues, text cues and race information, and specific images of the target items to appear. We 

would expect that as information gets more specific, attentional guidance would increase leading 

to faster and more accurate responses. This would allow for additional insights into when and 

how race information is used. Moreover, this allows for broader insigts into the effectiveness of 

priming in weapon search tasks. 

It is important to consider several factors if the study's focus shifts exclusively to weapon 

trials. Specifically, simplifying the search task to include only gun items then changes the type of 

response made to gun present vs gun absent. To maintain an appropriate level of challenge and 

ensure that the task effectively measures search efficiency, one adjustment could be varying the 

orientation of the weapon in each trial. By having the gun face left or right randomly, the task 
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would then require participants to determine the direction the gun is pointing. This modification 

then ensures that the participants are actively searching for the target item and gives specific 

insights into search efficiency for guns without the obfuscating influence of an additional non-

gun target. 

While there may be additional aspects of the design that warrant further exploration, 

these proposed manipulations collectively enable a more comprehensive investigation into the 

specific conditions under which racial biases might influence search efficiency. Should these 

manipulations fail to reveal racial bias, it would prompt a reevaluation of whether racial biases 

are primarily manifested during identification processes rather than during the search processes 

themselves. This distinction could significantly refine our understanding of the use of race 

information in deadly force decisions. 

Limitations and Future Directions 

A notable limitation of this work is that differences in search efficiency alone do not 

inform us whether these differences emerge from search processes, identification processes, or a 

combination of both (Kristjánsson, 2015; Wolfe, 2016). Thus, a useful path forward would be to 

integrate eye-tracking technology in follow-up studies as it can provide additional information 

above and beyond simple differences in search slopes, such as the point of the first fixation of the 

target item and the point of identification (Godwin et al., 2021). Additionally, eye-tracking 

studies will allow researchers to specifically identify how participants are performing the task, 

such as whether the participant fully fixates the item before the decision is made. 

 Eye-tracking could also be used to explain why response times and, consequently, 

evidence thresholds are larger when there is a race prime versus no prime. For example, 

differences in evidence thresholds are generally found when response times for both correct and 
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incorrect responses shift in one direction (Ratcliff, 1978); if a participant has the time to be more 

accurate, this is reflected in longer response times for both correct and incorrect decisions and a 

lower error rate. One explanation may be that this would reflect in longer decision times once 

participants have fixated the target, but that fails to capture why response time for errors would 

increase. Thus, a likely explanation could be that when primed, participants spend slightly more 

time scanning the search array for the target than when they are not primed. Eye tracking could 

then provide insight into whether this is the case or if a combination of search times and decision 

times plays a role. 

Another limitation is that the design of the tasks may meaningfully shape participants’ 

search strategies. For instance, pretrial text cues consistently highlighted the presence of a gun, 

potentially biasing participants towards prioritizing guns over non-gun items. It is never the case 

that the text cues could be two different non-gun items, alerting participants to the fact that the 

items of central importance are guns and not non-guns. Previous research has indicated that 

instruction sets can significantly influence performance (Katsimpokis et al., 2020), suggesting 

that altering task instructions can impact the amount of evidence collected. Further, task-specific 

instructions (e.g., "gun or no gun" to "shoot or don't shoot" or "threat or non-threat") could 

modify how information is collected and processed. Importantly, domain-specific experts (i.e., 

radiologists, TSA) have been found to perform task-specific searches more efficiently than lay 

people (Papesh et al., 2021). To the extent that the end goal is to understand how police make 

decisions to shoot, future studies should specifically be designed with this in mind. As an 

example, deadly force decisions may not always conform to a gun or non-gun decision but rather 

might be something along threat or non-threat dimension, which can impact search and 

identification times (Blanchette, 2006; though see Wolfe & Horowitz, 2017).  
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In this vein, another design limitation concerns the absence of a payoff matrix or reward 

system to penalize critical errors, such as failing to identify a gun (Correll et al., 2002; Johnson et 

al., 2018). The lack of negative feedback may lead some participants to prefer a target present 

versus a target-absent decision-making process, especially under challenging conditions. Such a 

strategy would explain the observed higher error rates for gun identification at increased set 

sizes. Taking the feedback as an example, failure to identify a gun is a costly mistake that could 

result in injury or death of the officer or other civilians. Importantly, this current work does not 

capture how experiences of threat can shape the search process, which may be an interesting 

avenue for future work.  
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CONCLUSION 

Despite these limitations, the present study highlighted the use of visual science 

manipulations as a way of further teasing apart racial bias in weapon identification. The current 

work did not find racial differences in search efficiency but instead found that searches for guns 

were more efficient than non-guns. This finding underscores the importance of understanding 

which features may impair or enhance search efficiency in such decision-making processes. 

Although it is premature to draw definitive conclusions, there is evidence that search is an 

important element, but significantly more work is needed to understand how and under what 

conditions it can interact with race or other social information. For instance, subsequent studies 

could investigate various search manipulations and modes of presenting racial information to 

investigate whether racial bias is predominantly a function of identification differences or if it  

can manifest during the search process itself. 
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APPENDIX A: METHOD TABLES AND CODE 

Table 1 List of categories used 

Categories 

abacus carfront fish hook motorcycle spoon 
airplane cat flag mp3player stamp 
apple ceilingfan frame muffins stool 

armyguy chair frisbee mushroom suit 
babushkadolls cheese garbagetrash nailpolish suitcase 

babycarriage cheesegrater gift necklace tablesmall 
backpack cherubstatue glove necktie tape 
bagel chessboard goggle orifan telescope 

ball christmasstocking golfball pants tennisracquet 
balloon ornamantball grill patioloungechair tent 

barbiedoll cigarette guitar pen toiletseat 
baseballcards clock handbag pipe tongs 
basket coatrack hanger pitcher toothpaste 

bathsuit coffeemug hat pizza toyhorse 
beanbagchair coin headband pokercard toyrabbit 

bearteddy collar headphone powerstrip train 
bed compass helmet radio tree 
beermug computer_key hourglass razor tricycle 

bell cookie jack-o-lantern recordplayer trophy 
bench cookingpan jacket ring trumpet 

bike cookpot kayak ringbinder trunk 
bill crib key roadsign turtle 
binoculars cupsaucer keyboard rock tv 

bird cushion keychain rollerskates vase 
bongo decorativescreen lamp rosary watch 

bonzai desk lantern rug wig 
boot dog lawnmower saddle windchime 
bottle doll leaves saltpeppershake wineglass 

bowl dollhouse lei sandwich  
bowtie domino licenseplate scale  

breadloaf donut lipstick scrunchie  
broom doorknob lock seashell  
bucket dresser magazinecovers shoe  

Butterfly dumbbell makeupcompact sippycup  
button earings mask snowglobe  

cake easteregg_redo meat socks  
camcorder exercise_equip. microscope sofa  
camera fan microwave speakers  

     

Note: There are 17 images per category. All distractor items derived from Massive Memory 

Database. 
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Table 2 Distance from center from screen 

Object Set Size 
Black (Average 

Distance) 

White (Average 

Distance) 

No Prime 
(Average 

Distance) 

Gun 12 3.20 3.20 3.21 

Gun 16 3.21 3.12 3.23 

Gun 20 3.17 3.25 3.18 

Non-gun 12 3.21 3.20 3.18 

Non-gun 16 3.26 3.22 3.19 

Non-gun 20 3.19 3.23 3.15 

Note: The values are based on the Euclidean distance between the center of a grid item and 
center of the screen. The Euclidean distance here is expressed as a unitless value because it is a 
relative measurement used for comparison rather than an absolute distance in physical units like 

meters or inches. 
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Chat-GPT 4 generated code to test random assignment. (Verified) 
 

import numpy as np 
import random 

 
# Define grid size 
grid_size = 8 

 
# Define center coordinates 

center_x, center_y = 3.5, 3.5 
 
# Create an empty list to store cell coordinates and their distances from the center 

cell_distances = [] 
 

# Iterate over all cells in the grid 
for i in range(grid_size): 
    for j in range(grid_size): 

        # Exclude the 4 center cells 
        if not (3 <= i <= 4 and 3 <= j <= 4): 

            # Calculate Euclidean distance from the center 
            distance = np.sqrt((i - center_x) ** 2 + (j - center_y) ** 2) 
            # Store the cell coordinates and the distance 

            cell_distances.append(((i, j), distance)) 
 

# Define the conditions and set sizes 
race_conditions = ['Black', 'White', 'NoPrime'] 
object_types = ['Gun', 'Non-gun'] 

set_sizes = [12, 16, 20] 
 

# Create a list to store the average distances for each participant 
all_participants_avg_distances = [] 
 

# Repeat the cell assignment and average distance calculation 300 times 
for _ in range(300): 

    # Shuffle the cell_distances list 
    random.shuffle(cell_distances) 
 

    # Split the list into six equal parts, for each combination of race condition and object type 
    parts = [cell_distances[i::6] for i in range(6)] 

 
    # Create a dictionary to store the cells for each condition and their average distances 
    condition_cells = {} 

 
    # Assign the cells to the conditions 

    for i, race_condition in enumerate(race_conditions): 
        for j, object_type in enumerate(object_types): 
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            # Get the cells for this combination of race condition and object type 
            cells = parts[i * len(object_types) + j] 

 
            # Further split the cells into parts for each set size 

            set_size_parts = [cells[i::3] for i in range(3)] 
 
            for k, set_size in enumerate(set_sizes): 

                # Get the cells for this set size 
                set_size_cells = set_size_parts[k] 

 
                # Calculate the average distance of these cells from the center 
                avg_distance = np.mean([dist for _, dist in set_size_cells]) 

 
                # Store the cells and their average distance in the dictionary 

                condition = (race_condition, object_type, set_size) 
                condition_cells[condition] = (set_size_cells, avg_distance) 
 

    # Store the average distances for this participant 
    all_participants_avg_distances.append(condition_cells) 

 
# Create a dictionary to store the total distances for each condition 
total_distances = {condition: 0 for condition in condition_cells.keys()} 

 
# Iterate over all participants 

for participant in all_participants_avg_distances: 
    # Add the average distances of this participant to the total distances 
    for condition, (cells, avg_distance) in participant.items(): 

        total_distances[condition] += avg_distance 
 

# Calculate the average distance for each condition 
avg_distances_all_participants = {condition: total / len(all_participants_avg_distances) for 
condition, total in total_distances.items()} 

 
# Print the average distances for each condition 

for condition, avg_distance in avg_distances_all_participants.items(): 
    print(f"Condition {condition}: Average Distance = {avg_distance}") 
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APPENDIX B: BEHAVIORAL RESULTS TABLES 

Table 3 Multilevel Linear Regression Predicting Response Time from Race, Target Type, and Set 
Size in Study 1 

Fixed Effects b SE df t p 

Intercept 1519.188 46.759 41.585 32.489 <0.000 

Prime RaceW 1.657 3.825 109572.681 0.433 0.665 
Prime RaceB 6.368 3.824 109573.024 1.665 0.096 

Target Type -203.035 43.423 31.008 -4.675 <0.000 
Set Size12 -168.999 3.822 109572.580 -44.217 <0.000 
Set Size20 173.786 3.828 109572.704 45.403 <0.000 

Prime RaceW x Target Type -9.222 3.825 109572.462 -2.411 0.016 
Prime RaceB x Target Type 3.942 3.824 109572.464 1.031 0.303 

Prime RaceW x Set Size12 1.569 5.406 109572.560 0.290 0.772 
Prime RaceB x Set Size12 -2.721 5.405 109572.775 -0.503 0.615 
Prime RaceW x Set Size20 -1.389 5.413 109572.580 -0.257 0.797 

Prime RaceB x Set Size20 4.233 5.412 109572.575 0.782 0.434 
Target Type x Set Size12 18.852 3.822 109572.517 4.932 <0.000 

Target Type x Set Size20 -21.244 3.828 109572.696 -5.550 <0.000 
Prime RaceW x Target Type x Set Size12 2.503 5.406 109572.589 0.463 0.643 
Prime RaceW x Target Type x Set Size20 1.432 5.405 109572.556 0.264 0.791 

Prime RaceB x Target Type x Set Size12 1.962 5.413 109572.512 0.362 0.717 
Prime RaceB x Target Type x Set Size20 -1.145 5.412 109572.614 -0.211 0.833 

 

Random Effects N Variance 
   

Participant 316 95080    

Target 33 61924    

Observations 109936     

Note: Race, target type, and set size were effect coded for analysis. "W" represents White 
primes, and "B" indicates Black primes. 
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Table 4 Contrast Tests of Estimated Marginal Means for Response Time Across Prime Race 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 1521 1429 1613 

Black 1526 1434 1618 
None 1511 1419 1603 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black -4.711 -17.694 8.272 
White - None 9.683 -3.303 22.670 

Black - None 14.394 1.413 27.376 

 
 

Table 5 Contrast Tests of Estimated Marginal Means for Response Time Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 1316 1193 1439 
Nongun 1722 1595 1849 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -406 -17.694 8.272 

 

 
Table 6 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 1350 1258 1442 

16 1514 1422 1606 
20 1693 1601 1785 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 20 -343 -355.770 -329.800 
12 - 16 -164 -177.185 -151.237 

20 - 16 179 165.581 191.567 
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Table 7 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size and 
Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 1166 1042 1290 
16 Gun 1314 1190 1438 
20 Gun 1469 1345 1592 

12 Nongun 1534 1407 1662 
16 Nongun 1715 1588 1842 

20 Nongun 1917 1790 2045 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear Nongun - Gun  32.918 6.971 58.867 
Quadratic Nongun - Gun -127.466 -172.479 -82.454 

 
 

Table 8 Contrast Tests of Estimated Marginal Means for Response Time Across Prime Race and 
Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

White Gun 1309 1185 1432 

Black Gun 1326 1203 1450 
None Gun 1313 1190 1437 

White Nongun 1733 1606 1860 
Black Nongun 1725 1597 1852 
None Nongun 1709 1582 1836 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black Gun -17.875 -36.234 0.484 

White – None Gun -4.819 -23.182 13.543 
Black – None Gun 13.056 -5.305 31.416 
White – Black Nongun 8.453 -9.911 26.816 

White – None Nongun 24.186 5.819 42.553 
Black – None Nongun 15.733 -2.622 34.088 
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Table 9 Multilevel Logistic Regression Predicting Correct Decisions from Race, Target Type, 
and Set Size in Study 1 

Fixed Effects b SE z Pr(>|z) 

Intercept 3.751 46.759 73.446 0.000 
Prime RaceW -0.020 3.825 -0.798 0.425 
Prime RaceB 0.030 3.824 1.196 0.232 

Target Type -0.012 43.423 -0.477 0.633 
Set Size12 0.083 3.822 2.909 0.004 

Set Size20 -0.093 3.828 -2.751 0.006 
Prime RaceW x Target Type 0.026 3.825 1.052 0.293 
Prime RaceB x Target Type -0.019 3.824 -0.755 0.450 

Prime RaceW x Set Size12 0.032 5.406 0.904 0.366 
Prime RaceB x Set Size12 -0.018 5.405 -0.521 0.603 

Prime RaceW x Set Size20 0.006 5.413 0.182 0.856 
Prime RaceB x Set Size20 -0.002 5.412 -0.072 0.943 
Target Type x Set Size12 0.053 3.822 1.867 0.062 

Target Type x Set Size20 -0.053 3.828 -1.587 0.113 
Prime RaceW x Target Type x Set Size12 0.024 5.406 0.672 0.502 

Prime RaceW x Target Type x Set Size20 -0.039 5.405 -1.109 0.267 
Prime RaceB x Target Type x Set Size12 -0.059 5.413 -1.746 0.081 
Prime RaceB x Target Type x Set Size20 0.052 5.412 1.515 0.130 

 

Random Effects N Variance 
  

Participant 316 0.558   

Target 33 0.012   

Target-Set Size12  0.006   

Target-Set Size20  0.018   

Observations 113366  

Note: Race, target type, and set size were effect coded for analysis. "W" represents White 
primes, and "B" indicates Black primes. 
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Table 10 Multilevel Linear Regression Predicting Response Time from Race, Target Type, Set 
Size, and Block Order in Study 1 

Fixed Effects b SE df t p 

Intercept 1519.035 46.762 41.572 32.485 <0.000 
Prime RaceW 0.553 3.808 109570.682 0.145 0.884 
Prime RaceB 5.251 3.806 109571.025 1.380 0.168 

Target Type -203.264 43.428 31.006 -4.681 <0.000 
Set Size12 -169.113 3.804 109570.579 -44.454 <0.000 

Set Size20 173.793 3.810 109570.702 45.617 <0.000 
Block Order1 118.755 3.807 109571.509 31.197 <0.000 
Block Order3 -84.222 3.811 109573.399 -22.099 <0.000 

Prime RaceW x Target Type -9.116 3.807 109570.461 -2.394 0.017 
Prime RaceB x Target Type 3.969 3.806 109570.463 1.043 0.297 

Prime RaceW x Set Size12 1.688 5.381 109570.559 0.314 0.754 
Prime RaceB x Set Size12 -2.762 5.380 109570.772 -0.513 0.608 
Prime RaceW x Set Size20 -1.431 5.388 109570.579 -0.266 0.791 

Prime RaceB x Set Size20 4.353 5.387 109570.574 0.808 0.419 
Target Type x Set Size12 18.615 3.804 109570.517 4.893 <0.000 

Target Type x Set Size20 -21.155 3.810 109570.694 -5.553 <0.000 
Prime RaceW x Target Type x Set Size12 2.616 5.381 109570.588 0.486 0.627 
Prime RaceW x Target Type x Set Size20 1.228 5.380 109570.554 0.228 0.819 

Prime RaceB x Target Type x Set Size12 2.136 5.388 109570.511 0.396 0.692 
Prime RaceB x Target Type x Set Size20 -1.366 5.387 109570.611 -0.254 0.800 

 

Random Effects N Variance 
   

Participant 316 95080    

Target 33 61924    

Observations 109936     

Note: Race, target type, set size, and block order were effect coded for analysis. "W" represents 
White primes, and "B" indicates Black primes. Block order 1 and 3 are the first and last blocks. 
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Table 11 Contrast Tests of Estimated Marginal Means for Response Time Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 1316 1192 1439 

Nongun 1722 1595 1849 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -406.529 -576.762 -236.296 

 
 
Table 12 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 1350 1258 1442 
16 1514 1422 1606 
20 1693 1601 1785 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 20 -342.907 -355.831 -329.982 

12 - 16 -164.434 -177.348 -151.52 
20 - 16 178.473 165.54 191.406 

 

 
Table 13 Contrast Tests of Estimated Marginal Means for Response Time Across Block Order 

  95% Confidence Limit 

Effect Mean Lower Upper 

0 1638 1546 1730 

1 1485 1393 1576 
2 1435 1343 1527 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear -153.288 -166.201 -140.375 
Quadratic 252.667 230.258 275.077 
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Table 14 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size and 
Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 1165 1042 1289 
16 Gun 1314 1190 1437 
20 Gun 1468 1345 1592 

12 Nongun 1535 1407 1662 
16 Nongun 1715 1588 1842 

20 Nongun 1917 1790 2045 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear -153.288 -166.2009 -140.3751 
Quadratic 252.6673 230.2581 275.0766 

 
 

Table 15 Contrast Tests of Estimated Marginal Means for Response Time Across Prime Race 
and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

White Gun 1307 1183 1431 

Black Gun 1325 1201 1449 
None Gun 1315 1191 1439 

White Nongun 1732 1605 1859 
Black Nongun 1724 1596 1851 
None Nongun 1711 1584 1839 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black Gun -17.783 -36.056 0.491 

White – None Gun -7.905 -26.183 10.374 
Black – None Gun 9.878 -8.399 28.154 
White – Black Nongun 8.388 -9.89 26.666 

White – None Nongun 20.621 2.337 38.904 
Black – None Nongun 12.233 -6.039 30.504 
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Table 16 Multilevel Linear Regression Predicting Response Time from Race, Target Type, Set 
Size, and Manipulation Check Errors in Study 1 

Fixed Effects b SE df t p 

Intercept 1518.533 46.709 41.439 32.510 0.000 
Prime RaceW 1.679 3.824 109567.691 0.439 0.661 
Prime RaceB 6.368 3.823 109568.037 1.666 0.096 

Target Type -203.054 43.414 31.006 -4.677 0.000 
Set Size12 -168.935 3.821 109567.581 -44.211 0.000 

Set Size20 173.675 3.827 109567.698 45.384 0.000 
mouseC 5.174 2.257 314.161 2.293 0.023 
Prime RaceW x Target Type -9.222 3.824 109567.467 -2.411 0.016 

Prime RaceB x Target Type 3.932 3.823 109567.471 1.029 0.304 
Prime RaceW x Set Size12 1.608 5.404 109567.567 0.298 0.766 

Prime RaceB x Set Size12 -2.778 5.403 109567.785 -0.514 0.607 
Prime RaceW x Set Size20 -1.422 5.412 109567.581 -0.263 0.793 
Prime RaceB x Set Size20 4.300 5.411 109567.582 0.795 0.427 

Target Type x Set Size12 18.909 3.821 109567.513 4.948 0.000 
Target Type x Set Size20 -21.343 3.827 109567.667 -5.577 0.000 

Target Type x mouseC -2.698 0.353 109571.585 -7.633 0.000 
Set Size12 x mouseC 0.341 0.499 109567.691 0.439 0.494 
Set Size20 x mouseC -0.760 0.501 109568.014 -1.517 0.129 

Prime RaceW x Target Type x Set Size12 2.482 5.404 109567.590 0.459 0.646 
Prime RaceW x Target Type x Set Size20 1.431 5.403 109567.550 0.265 0.791 

Prime RaceB x Target Type x Set Size12 2.013 5.412 109567.513 0.372 0.710 
Prime RaceB x Target Type x Set Size20 -1.156 5.411 109567.606 -0.214 0.831 
Target Type x Set Size12 x mouseC 0.310 0.499 109567.784 0.621 0.535 

Target Type x Set Size20 x mouseC -0.465 0.501 109568.016 -0.929 0.353 
 

Random Effects N Variance 
   

Participant 316 93817    

Target 33 61900    

Observations 109936     

Note: Race, target type, and set size were effect coded for analysis. "W" represents White 
primes, and "B" indicates Black primes. MouseC is the centered manipulation check errors.  
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Table 17 Contrast Tests of Estimated Marginal Means for Response Time Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 1315 1192 1439 

Nongun 1722 1595 1848 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -406.108 -576.289 -235.927 

 
 
Table 18 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 1350 1258 1441 
16 1514 1422 1606 
20 1692 1600 1784 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 16 -164.196 -177.167 -151.225 

12 - 20 -342.61 -355.592 -329.629 
16 - 20 -178.415 -191.405 -165.424 

 

 
Table 19 Contrast Tests of Estimated Marginal Means for Response Time Across Block Order 

  95% Confidence Limit 

Effect Mean Lower Upper 

0 1638 1546 1730 

1 1485 1393 1576 
2 1435 1343 1527 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear -153.288 -166.201 -140.375 
Quadratic 252.667 230.258 275.077 
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Table 20 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size and 
Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 1165 1042 1289 
16 Gun 1313 1189 1437 
20 Gun 1468 1344 1591 

12 Nongun 1534 1407 1661 
16 Nongun 1714 1587 1842 

20 Nongun 1917 1789 2044 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear nongun - gun 80.504 54.54 106.467 
Quadratic nongun - gun 14.607 -30.357 59.572 

 
 

Table 21 Contrast Tests of Estimated Marginal Means for Response Time Across Manipulation 
Check Errors and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

-1SD Gun 1297 1169 1425 

0.00 Gun 1315 1192 1439 
1 SD Gun 1334 1207 1462 

-1SD Nongun 1661 1530 1793 
0.00 Nongun 1722 1595 1848 
1 SD Nongun 1782 1651 1913 

    
  95% Confidence Limit 

Trends Estimate Lower Upper 

Gun 2.48 -2 6.95 

Nongun 7.87 3.4 12.35 
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Table 22 Multilevel Linear Regression Predicting Response Time from Race, Target Type, and 
Set Size in Study 2 

Fixed Effects b SE df t p 

Intercept 1104.302 23.167 36.893 47.667 <0.000 
Prime RaceW 2.309 2.761 6.763 0.837 0.431 
Prime RaceB 3.945 2.760 6.753 1.429 0.197 

Target Type -122.881 22.173 31.004 -5.542 <0.000 
Set Size12 -74.478 1.808 101207.551 -41.183 <0.000 

Set Size20 70.707 1.825 101209.035 38.734 <0.000 
Prime RaceW x Target Type -3.535 1.817 101211.105 -1.945 0.052 
Prime RaceB x Target Type -0.186 1.816 101211.800 -0.103 0.918 

Prime RaceW x Set Size12 3.245 2.558 101208.207 1.269 0.205 
Prime RaceB x Set Size12 -1.374 2.554 101208.649 -0.538 0.591 

Prime RaceW x Set Size20 -1.165 2.582 101209.483 -0.451 0.652 
Prime RaceB x Set Size20 2.159 2.580 101209.996 0.837 0.403 
Target Type x Set Size12 5.034 1.809 101208.869 2.783 0.005 

Target Type x Set Size20 -6.501 1.825 101211.259 -3.561 <0.000 
Prime RaceW x Target Type x Set Size12 -2.896 2.558 101209.801 -1.132 0.258 

Prime RaceW x Target Type x Set Size20 -0.198 2.554 101208.646 -0.078 0.938 
Prime RaceB x Target Type x Set Size12 2.549 2.582 101212.937 0.987 0.323 
Prime RaceB x Target Type x Set Size20 -2.170 2.580 101211.647 -0.841 0.400 

 

Random Effects N Variance 
   

Participant 308 12719.43    

Prime Face 41 31.09    

Target 33 16154.10    

Observations 101597     

Note: Race, target type, and set size were effect coded for analysis. "W" represents White 

primes, and "B" indicates Black primes. 
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Table 23 Contrast Tests of Estimated Marginal Means for Response Time Across Prime Race 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 1107 1061 1152 

Black 1108 1063 1154 
None 1098 1051 1145 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black -1.635 -8.702 5.432 
White - None 8.563 -4.225 21.352 

Black - None 10.199 -2.587 22.984 

 
 

Table 24 Contrast Tests of Estimated Marginal Means for Response Time Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 981 919 1043 
Nongun 1227 1163 1291 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -245.762 -332.676 -158.847 

 

 
Table 25 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 1030 984 1075 

16 1108 1063 1154 
20 1175 1129 1221 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 20 -145.185 -151.352 -139.018 
12 - 16 -78.25 -84.391 -72.108 

20 - 16 66.935 60.736 73.134 
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Table 26 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size And 
Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 912 850 974 
16 Gun 987 925 1049 
20 Gun 1046 984 1108 

12 Nongun 1148 1084 1212 
16 Nongun 1229 1166 1293 

20 Nongun 1304 1241 1368 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear Nongun - Gun  23.070 10.734 35.405 
Quadratic Nongun - Gun 8.819 -12.560 30.198 
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Table 27 Multilevel Logistic Regression Predicting Correct Decisions from Race, Target Type, 
and Set Size in Study 2 

Fixed Effects b SE z Pr(>|z) 

Intercept 2.665 0.056 47.498 <0.000 
Prime RaceW 0.002 0.017 0.097 0.923 
Prime RaceB 0.051 0.017 3.048 0.002 

Target Type -0.072 0.047 -1.547 0.122 
Set Size12 0.239 0.017 13.816 <0.000 

Set Size20 -0.204 0.016 -12.868 <0.000 
Prime RaceW x Target Type -0.010 0.017 -0.591 0.554 
Prime RaceB x Target Type -0.034 0.017 -2.021 0.043 

Prime RaceW x Set Size12 0.012 0.025 0.499 0.618 
Prime RaceB x Set Size12 0.028 0.025 1.111 0.267 

Prime RaceW x Set Size20 -0.010 0.022 -0.429 0.668 
Prime RaceB x Set Size20 -0.015 0.023 -0.646 0.518 
Target Type x Set Size12 0.082 0.017 4.717 <0.000 

Target Type x Set Size20 -0.079 0.016 -4.954 <0.000 
Prime RaceW x Target Type x Set Size12 -0.057 0.025 -2.325 0.020 

Prime RaceW x Target Type x Set Size20 0.016 0.025 0.662 0.508 
Prime RaceB x Target Type x Set Size12 0.006 0.022 0.271 0.787 
Prime RaceB x Target Type x Set Size20 0.004 0.023 0.156 0.876 

 

Random Effects N Variance 
  

Participant 308 0.293   

Target 33 0.067   

Observations 109925  

Note: Race, target type, and set size were effect coded for analysis. "W" represents White 
primes, and "B" indicates Black primes. 
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Table 28 Contrast Tests of Estimated Marginal Means for Accuracy Across Prime Race 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 2.67 2.55 2.78 

Black 2.72 2.6 2.83 
None 2.61 2.5 2.73 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black -0.049 -0.106 0.007 
White - None 0.054 -0.001 0.109 

Black - None 0.103 0.047 0.159 

 
 

Table 29 Contrast Tests of Estimated Marginal Means for Accuracy Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 2.59 2.45 2.73 
Nongun 2.74 2.59 2.88 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -0.144 -0.333 -0.159 

 

 
Table 30 Contrast Tests of Estimated Marginal Means for Accuracy Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 2.9 2.79 3.02 

16 2.63 2.52 2.74 
20 2.46 2.35 2.57 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 20 0.274 0.216 0.333 
12 - 16 0.443 0.387 0.5 

20 - 16 0.169 0.116 0.222 

 
 

 
 
 

 
 

 



87 

 

Table 31 Contrast Tests of Estimated Marginal Means for Accuracy Across Set Size and Target 
Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 2.91 2.76 3.06 
16 Gun 2.56 2.41 2.7 
20 Gun 2.31 2.16 2.46 

12 Nongun 2.89 2.74 3.05 
16 Nongun 2.71 2.55 2.86 

20 Nongun 2.61 2.46 2.76 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear Nongun - Gun  -0.320 -0.434 -0.207 
Quadratic Nongun - Gun 0.018 -0.174 0.211 
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Table 32 Contrast Tests of Estimated Marginal Means for Accuracy Across Prime Race, Set Size, 
and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 12 Gun 2.86 2.69 3.03 
Black 12 Gun 2.98 2.8 3.15 
None 12 Gun 2.91 2.73 3.08 

White 16 Gun 2.6 2.43 2.76 
Black 16 Gun 2.54 2.37 2.7 

None 16 Gun 2.53 2.37 2.7 
White 20 Gun 2.3 2.14 2.46 
Black 20 Gun 2.32 2.16 2.48 

None 20 Gun 2.32 2.16 2.48 
White 12 Nongun 2.98 2.8 3.15 

Black 12 Nongun 2.99 2.81 3.17 
None 12 Nongun 2.72 2.55 2.89 
White 16 Nongun 2.66 2.49 2.83 

Black 16 Nongun 2.8 2.62 2.97 
None 16 Nongun 2.66 2.49 2.83 

White 20 Nongun 2.61 2.44 2.78 
Black 20 Nongun 2.68 2.51 2.85 
None 20 Nongun 2.55 2.38 2.72 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear White-Black Gun 0.096 -0.096 0.288 

Quadratic White-Black Gun -0.244 -0.568 0.08 
Linear White-None Gun 0.027 -0.163 0.217 
Quadratic White-None Gun -0.191 -0.514 0.131 

Linear Black-None Gun -0.069 -0.262 0.124 
Quadratic Black-None Gun 0.052 -0.27 0.374 

Linear White-Black Nongun -0.056 -0.261 0.15 
Quadratic White-Black Nongun 0.182 -0.166 0.529 
Linear White-None Nongun -0.199 -0.397 -0.002 

Quadratic White-None Nongun 0.3 -0.036 0.636 
Linear Black-None Nongun -0.143 -0.342 0.055 

Quadratic Black-None Nongun 0.118 -0.225 0.462 
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Table 33 Multilevel Linear Regression Predicting Response Time from Race, Target Type, Set 
Size, and Block Order in Study 2 

Fixed Effects b SE df t p 

Intercept 1104.548 23.093 36.426 32.485 <0.000 
Prime RaceW 2.262 1.807 101241.062 0.145 0.211 
Prime RaceB 3.846 1.805 101242.134 1.380 0.033 

Target Type -122.827 22.176 31.004 -4.681 <0.000 
Set Size12 -74.603 1.797 101240.555 -44.454 <0.000 

Set Size20 70.691 1.814 101241.038 45.617 <0.000 
Block Order1 63.825 1.810 101245.755 31.197 <0.000 
Block Order3 -45.390 1.806 101244.599 -22.099 <0.000 

Prime RaceW x Target Type -3.555 1.806 101241.110 -2.394 0.049 
Prime RaceB x Target Type -0.219 1.804 101241.144 1.043 0.904 

Prime RaceW x Set Size12 3.318 2.541 101240.667 0.314 0.192 
Prime RaceB x Set Size12 -1.346 2.538 101240.563 -0.513 0.596 
Prime RaceW x Set Size20 -1.252 2.565 101240.813 -0.266 0.625 

Prime RaceB x Set Size20 2.147 2.563 101240.930 0.808 0.402 
Target Type x Set Size12 4.951 1.797 101240.931 4.893 0.006 

Target Type x Set Size20 -6.404 1.814 101241.060 -5.553 <0.000 
Prime RaceW x Target Type x Set Size12 -2.757 2.541 101240.352 0.486 0.278 
Prime RaceW x Target Type x Set Size20 -0.207 2.538 101240.462 0.228 0.935 

Prime RaceB x Target Type x Set Size12 2.616 2.565 101241.123 0.396 0.308 
Prime RaceB x Target Type x Set Size20 -2.197 2.563 101240.627 -0.254 0.391 

 

Random Effects N Variance 
   

Participant 308 12774    

Target 33 16160    

Observations 101597     

Note: Race, target type, set size, and block order were effect coded for analysis. "W" represents 
White primes, and "B" indicates Black primes. Block order 1 and 3 are the first and last blocks. 
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Table 34 Contrast Tests of Estimated Marginal Means for Response Time Across Prime Race 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 1107 1061 1152 

Black 1108 1063 1154 
None 1098 1053 1144 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black -1.583 -7.708 4.542 
White - None 8.37 2.225 14.516 

Black - None 9.954 3.813 16.094 

 
 

Table 35 Contrast Tests of Estimated Marginal Means for Response Time Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 982 920 1044 
Nongun 1227 1164 1291 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -245.654 -332.584 -158.724 

 

 
Table 36 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 1030 984 1075 

16 1108 1063 1154 
20 1175 1129 1221 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 20 -145.294 -151.422 -139.166 
12 - 16 -78.516 -84.618 -72.414 

20 - 16 66.778 60.619 72.938 
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Table 37 Contrast Tests of Estimated Marginal Means for Response Time Across Block Order 

  95% Confidence Limit 

Effect Mean Lower Upper 

0 1168 1123 1214 

1 1086 1041 1132 
2 1059 1014 1105 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear -109.215 -115.354 -103.076 
Quadratic 55.303 44.68 65.927 

 

 
Table 38 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size And 

Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 912 850 974 
16 Gun 987 925 1049 

20 Gun 1046 984 1108 
12 Nongun 1148 1084 1212 
16 Nongun 1230 1166 1294 

20 Nongun 1304 1241 1368 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear Nongun - Gun  22.71 10.455 34.966 
Quadratic Nongun - Gun 8.72 -12.522 29.961 
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Table 39 Contrast Tests of Estimated Marginal Means for Response Time Across Prime Race 
and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

White Gun 980 918 1042 
Black Gun 985 923 1047 
None Gun 979 917 1041 

White Nongun 1233 1169 1297 
Black Nongun 1231 1168 1295 

None Nongun 1217 1154 1281 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black Gun -4.92 -13.607 3.767 
White – None Gun 1.042 -7.652 9.735 
Black – None Gun 5.961 -2.733 14.655 

White – Black Nongun 1.753 -6.884 10.391 
White – None Nongun 15.699 7.026 24.372 

Black – None Nongun 13.946 5.288 22.603 
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Table 40 Multilevel Logistic Regression Predicting Correct Decisions from Race, Target Type, 
Set Size and Block Order in Study 2 

Fixed Effects b SE z Pr(>|z) 

Intercept 2.667 0.056 47.497 <0.000 
Prime RaceW 0.001 0.017 0.042 0.967 
Prime RaceB 0.050 0.017 2.991 0.003 

Target Type -0.072 0.047 -1.545 0.122 
Set Size12 0.239 0.017 13.824 <0.000 

Set Size20 -0.204 0.016 -12.874 <0.000 
Block Order1 -0.089 0.016 -5.549 <0.000 
Block Order3 0.042 0.016 2.532 0.011 

Prime RaceW x Target Type -0.010 0.017 -0.600 0.549 
Prime RaceB x Target Type -0.034 0.017 -2.015 0.044 

Prime RaceW x Set Size12 0.012 0.025 0.489 0.625 
Prime RaceB x Set Size12 0.028 0.025 1.113 0.266 
Prime RaceW x Set Size20 -0.009 0.022 -0.416 0.677 

Prime RaceB x Set Size20 -0.015 0.023 -0.649 0.516 
Target Type x Set Size12 0.081 0.017 4.702 <0.000 

Target Type x Set Size20 -0.078 0.016 -4.946 <0.000 
Prime RaceW x Target Type x Set Size12 -0.057 0.025 -2.323 0.020 
Prime RaceW x Target Type x Set Size20 0.016 0.025 0.645 0.519 

Prime RaceB x Target Type x Set Size12 0.006 0.022 0.289 0.773 
Prime RaceB x Target Type x Set Size20 0.003 0.023 0.151 0.880 

 

Random Effects N Variance 
  

Participant 308 0.282   

Target 33 0.067   

Observations 109925  

Note: Race, target type, set size, and block order were effect coded for analysis. "W" represents 
White primes, and "B" indicates Black primes. Block order 1 and 3 are the first and last blocks. 
 

 
 
 

 
 

 
 
 

 
 

 
 
 



94 

 

Table 41 Contrast Tests of Estimated Marginal Means for Accuracy Across Prime Race 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 2.67 2.55 2.78 

Black 2.72 2.6 2.83 
None 2.62 2.5 2.73 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black -0.049 -0.106 0.007 
White - None 0.051 -0.004 0.107 

Black - None 0.101 0.045 0.157 

 
 

Table 42 Contrast Tests of Estimated Marginal Means for Accuracy Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 2.59 2.45 2.74 
Nongun 2.74 2.59 2.88 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -0.144 0.093 -1.545 

 

 
Table 43 Contrast Tests of Estimated Marginal Means for Accuracy Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 2.91 2.79 3.02 

16 2.63 2.52 2.75 
20 2.46 2.35 2.58 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 20 0.275 0.216 0.333 
12 - 16 0.444 0.387 0.500 

20 - 16 0.169 0.116 0.222 
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Table 44 Contrast Tests of Estimated Marginal Means for Accuracy Across Block Order 

  95% Confidence Limit 

Effect Mean Lower Upper 

0 2.58 2.46 2.69 

1 2.71 2.6 2.83 
2 2.71 2.59 2.82 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear 0.275 0.216 0.333 
Quadratic 0.169 0.116 0.222 

Note:  

 
Table 45 Contrast Tests of Estimated Marginal Means for Accuracy Across Set Size and Target 

Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 2.92 2.76 3.07 
16 Gun 2.56 2.41 2.7 

20 Gun 2.31 2.17 2.46 
12 Nongun 2.9 2.74 3.05 
16 Nongun 2.71 2.55 2.86 

20 Nongun 2.61 2.46 2.76 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear Nongun - Gun  -0.320 -0.434 -0.207 
Quadratic Nongun - Gun 0.018 -0.174 0.211 
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Table 46 Contrast Tests of Estimated Marginal Means for Accuracy Across Prime Race, Set Size, 
and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 12 Gun 2.86 2.69 3.03 
Black 12 Gun 2.98 2.8 3.15 
None 12 Gun 2.91 2.73 3.08 

White 16 Gun 2.6 2.43 2.76 
Black 16 Gun 2.54 2.37 2.7 

None 16 Gun 2.53 2.37 2.7 
White 20 Gun 2.3 2.14 2.46 
Black 20 Gun 2.32 2.16 2.48 

None 20 Gun 2.32 2.16 2.48 
White 12 Nongun 2.98 2.8 3.15 

Black 12 Nongun 2.99 2.81 3.17 
None 12 Nongun 2.72 2.55 2.89 
White 16 Nongun 2.66 2.49 2.83 

Black 16 Nongun 2.8 2.62 2.97 
None 16 Nongun 2.66 2.49 2.83 

White 20 Nongun 2.61 2.44 2.78 
Black 20 Nongun 2.68 2.51 2.85 
None 20 Nongun 2.55 2.38 2.72 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear White-Black Gun 0.096 -0.096 0.288 

Quadratic White-Black Gun -0.244 -0.568 0.08 
Linear White-None Gun 0.027 -0.163 0.217 
Quadratic White-None Gun -0.191 -0.514 0.131 

Linear Black-None Gun -0.069 -0.262 0.124 
Quadratic Black-None Gun 0.052 -0.27 0.374 

Linear White-Black Nongun -0.056 -0.261 0.15 
Quadratic White-Black Nongun 0.182 -0.166 0.529 
Linear White-None Nongun -0.199 -0.397 -0.002 

Quadratic White-None Nongun 0.3 -0.036 0.636 
Linear Black-None Nongun -0.143 -0.342 0.055 

Quadratic Black-None Nongun 0.118 -0.225 0.462 
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Table 47 Multilevel Linear Regression Predicting Response Time from Race, Target Type, Set 
Size, and Manipulation Check Errors in Study 2 

Fixed Effects b SE df t p 

Intercept 1104.375 23.080 36.387 47.849 0.000 
Prime RaceW 2.299 1.817 101238.078 1.265 0.206 
Prime RaceB 3.945 1.816 101239.181 2.173 0.030 

Target Type -122.892 22.171 31.006 -5.543 0.000 
Set Size12 -74.441 1.809 101237.591 -41.159 0.000 

Set Size20 70.673 1.826 101238.068 38.713 0.000 
mouseC -1.270 0.873 306.185 -1.455 0.147 
Prime RaceW x Target Type -3.538 1.817 101238.143 -1.947 0.052 

Prime RaceB x Target Type -0.183 1.816 101238.176 -0.101 0.920 
Prime RaceW x Set Size12 3.254 2.558 101237.703 1.272 0.203 

Prime RaceB x Set Size12 -1.366 2.554 101237.584 -0.535 0.593 
Prime RaceW x Set Size20 -1.171 2.582 101237.850 -0.454 0.650 
Prime RaceB x Set Size20 2.147 2.580 101237.972 0.832 0.405 

Target Type x Set Size12 5.062 1.809 101237.951 2.799 0.005 
Target Type x Set Size20 -6.530 1.826 101238.108 -3.577 0.000 

Target Type x mouseC -0.364 0.173 101244.165 -2.106 0.035 
Set Size12 x mouseC 0.411 0.243 101237.613 1.688 0.091 
Set Size20 x mouseC -0.288 0.246 101237.958 -1.173 0.241 

Prime RaceW x Target Type x Set Size12 -2.900 2.558 101237.368 -1.134 0.257 
Prime RaceW x Target Type x Set Size20 -0.186 2.554 101237.486 -0.073 0.942 

Prime RaceB x Target Type x Set Size12 2.549 2.582 101238.162 0.987 0.323 
Prime RaceB x Target Type x Set Size20 -2.185 2.580 101237.660 -0.847 0.397 
Target Type x Set Size12 x mouseC 0.454 0.243 101238.261 1.868 0.062 

Target Type x Set Size20 x mouseC -0.390 0.246 101238.300 -1.586 0.113 
 

Random Effects N Variance 
   

Participant 308 12673    

Target 33 16151    

Observations 101597     

Note: Race, target type, and set size were effect coded for analysis. "W" represents White 
primes, and "B" indicates Black primes. MouseC is the centered manipulation check errors.  
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Table 48 Contrast Tests of Estimated Marginal Means for Response Time Across Prime Race 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 1107 1061 1152 

Black 1108 1063 1154 
None 1098 1051 1144 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black -1.646 -7.811 4.519 
White - None 8.544 2.370 14.718 

Black - None 10.190 4.021 16.359 

 
 

Table 49 Contrast Tests of Estimated Marginal Means for Response Time Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 981 920 1043 
Nongun 1227 1164 1291 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -245.783 -332.691 -158.876 

 

 
Table 50 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 1030 985 1075 

16 1108 1063 1154 
20 1175 1130 1220 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 20 -78.236 -84.378 -72.094 
12 - 16 -145.171 -151.339 -139.004 

20 - 16 -66.935 -73.134 -60.736 
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Table 51 Contrast Tests of Estimated Marginal Means for Response Time Across Prime Race 
and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

White Gun 980 918 1042 
Black Gun 985 923 1047 
None Gun 979 917 1041 

White Nongun 1233 1169 1297 
Black Nongun 1231 1168 1295 

None Nongun 1217 1153 1281 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black Gun -4.979 -13.722 3.764 
White – None Gun 1.293 -7.449 10.035 
Black – None Gun 6.272 -2.47 15.014 

White – Black Nongun 1.71 -6.984 10.403 
White – None Nongun 15.805 7.083 24.526 

Black – None Nongun 14.095 5.389 22.801 

 
 
 

Table 52 Contrast Tests of Estimated Marginal Means for Response Time Across Set Size And 
Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 912 850 974 

16 Gun 987 925 1049 
20 Gun 1046 984 1108 

12 Nongun 1148 1084 1212 
16 Nongun 1230 1166 1293 
20 Nongun 1304 1241 1368 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear Nongun - Gun  23.086 10.751 35.421 

Quadratic Nongun - Gun 8.836 -12.543 30.215 
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Table 53 Contrast Tests of Estimated Marginal Means for Response Time Across Manipulation 
Check Errors and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

-1SD Gun 994 930 1057 
0.00 Gun 981 920 1043 
1 SD Gun 969 906 1033 

-1SD Nongun 1234 1169 1299 
0.00 Nongun 1227 1164 1291 

1 SD Nongun 1221 1156 1285 
    
  95% Confidence Limit 

Trends Estimate Lower Upper 

Gun -1.62 -3.37 0.126 
Nongun -0.907 -2.65 0.836 
Gun - Nongun -0.713 -1.391 -0.034 
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Table 54 Multilevel Logistic Regression Predicting Correct Decisions from Race, Target Type, 
Set Size, and Manipulation Check Errors in Study 2 

Fixed Effects b SE z Pr(>|z) 

Intercept 2.670 0.056 47.772 0.000 
Prime RaceW 0.002 0.017 0.097 0.922 
Prime RaceB 0.051 0.017 3.037 0.002 

Target Type -0.063 0.047 -1.359 0.174 
Set Size12 0.240 0.017 13.844 0.000 

Set Size20 -0.205 0.016 -12.897 0.000 
mouseC -0.013 0.004 -2.963 0.003 
Prime RaceW x Target Type -0.010 0.017 -0.599 0.549 

Prime RaceB x Target Type -0.034 0.017 -2.022 0.043 
Prime RaceW x Set Size12 0.012 0.025 0.497 0.619 

Prime RaceB x Set Size12 0.028 0.025 1.113 0.266 
Prime RaceW x Set Size20 -0.009 0.022 -0.423 0.672 
Prime RaceB x Set Size20 -0.015 0.023 -0.654 0.513 

Target Type x Set Size12 0.082 0.017 4.733 0.000 
Target Type x Set Size20 -0.079 0.016 -4.980 0.000 

Target Type x mouseC -0.015 0.002 -9.739 0.000 
Prime RaceW x Target Type x Set Size12 -0.057 0.025 -2.330 0.020 
Prime RaceW x Target Type x Set Size20 0.017 0.025 0.666 0.505 

Prime RaceB x Target Type x Set Size12 0.006 0.022 0.269 0.788 
Prime RaceB x Target Type x Set Size20 0.004 0.023 0.161 0.872 

 

Random Effects N Variance 
  

Participant 308 0.282   

Target 33 0.067   

Observations 109925  

Note: Race, target type, and set size were effect coded for analysis. "W" represents White 
primes, and "B" indicates Black primes. MouseC is the centered manipulation check errors.  
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Table 55 Contrast Tests of Estimated Marginal Means for Accuracy Across Prime Race 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 2.67 2.56 2.79 

Black 2.72 2.61 2.84 
None 2.62 2.5 2.73 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

White - Black -0.049 -0.106 0.008 
White - None 0.054 -0.002 0.109 

Black - None 0.103 0.047 0.159 

 
 

Table 56 Contrast Tests of Estimated Marginal Means for Accuracy Across Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

Gun 2.61 2.47 2.75 
Nongun 2.73 2.59 2.88 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Gun - Nongun -0.127 −0.310 0.056 

 

 
Table 57 Contrast Tests of Estimated Marginal Means for Accuracy Across Set Size 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 2.91 2.8 3.03 

16 2.64 2.52 2.75 
20 2.46 2.35 2.58 
    

  95% Confidence Limit 

Contrasts Estimate Lower Upper 

12 - 20 0.274 0.216 0.333 
12 - 16 0.443 0.387 0.500 

20 - 16 0.169 0.116 0.222 
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Table 58 Contrast Tests of Estimated Marginal Means for Accuracy Across Set Size and Target 
Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

12 Gun 2.93 2.78 3.08 
16 Gun 2.57 2.42 2.72 
20 Gun 2.32 2.17 2.47 

12 Nongun 2.89 2.74 3.04 
16 Nongun 2.7 2.55 2.85 

20 Nongun 2.61 2.46 2.76 
    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear Nongun - Gun  -0.320 -0.434 -0.209 
Quadratic Nongun - Gun 0.018 -0.174 0.210 

 
 

Table 59 Contrast Tests of Estimated Marginal Means for Response Time Across Manipulation 
Check Errors and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

-1SD Gun 2.82 2.66 2.97 

0.00 Gun 2.61 2.47 2.75 
1 SD Gun 2.4 2.24 2.55 

-1SD Nongun 2.72 2.56 2.88 
0.00 Nongun 2.73 2.59 2.88 
1 SD Nongun 2.75 2.59 2.91 

    
  95% Confidence Limit 

Trends Estimate Lower Upper 

Gun -0.028 -0.037 -0.019 

Nongun 0.002 -0.007 0.011 
Gun - Nongun -0.030 −0.036 -0.024 
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Table 60 Contrast Tests of Estimated Marginal Means for Accuracy Across Prime Race, Set Size, 
and Target Type 

  95% Confidence Limit 

Effect Mean Lower Upper 

White 12 Gun 2.88 2.71 3.05 
Black 12 Gun 2.99 2.82 3.17 
None 12 Gun 2.92 2.75 3.1 

White 16 Gun 2.97 2.79 3.15 
Black 16 Gun 2.99 2.81 3.17 

None 16 Gun 2.71 2.54 2.89 
White 20 Gun 2.61 2.44 2.78 
Black 20 Gun 2.55 2.39 2.72 

None 20 Gun 2.55 2.38 2.71 
White 12 Nongun 2.66 2.49 2.83 

Black 12 Nongun 2.8 2.62 2.97 
None 12 Nongun 2.65 2.48 2.82 
White 16 Nongun 2.31 2.15 2.47 

Black 16 Nongun 2.33 2.17 2.49 
None 16 Nongun 2.33 2.17 2.49 

White 20 Nongun 2.6 2.43 2.77 
Black 20 Nongun 2.67 2.5 2.85 
None 20 Nongun 2.55 2.38 2.71 

    
  95% Confidence Limit 

Contrasts Estimate Lower Upper 

Linear White-Black Gun 0.097 -0.095 0.289 

Quadratic White-Black Gun -0.245 -0.569 0.080 
Linear White-None Gun 0.028 -0.162 0.218 
Quadratic White-None Gun -0.192 -0.515 0.132 

Linear Black-None Gun -0.069 -0.263 0.125 
Quadratic Black-None Gun 0.053 -0.270 0.376 

Linear White-Black Nongun -0.056 -0.261 0.150 
Quadratic White-Black Nongun 0.184 -0.164 0.531 
Linear White-None Nongun -0.199 -0.397 -0.002 

Quadratic White-None Nongun 0.301 -0.035 0.637 
Linear Black-None Nongun -0.144 -0.343 0.055 

Quadratic Black-None Nongun 0.117 -0.226 0.460 
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APPENDIX C: DDM EFFECTS TABLES 

 
Table 61 Main effects of Alpha  

  95% HDI  

Condition Mode Lower Upper ESS 

White 12 2.076 2.040 2.112 9371.700 

Black 12 2.098 2.063 2.136 9624.300 

None 12 2.021 1.985 2.054 9704.000 

White 16 2.110 2.080 2.147 10003.000 

Black 16 2.121 2.090 2.160 9646.200 

None 16 2.094 2.060 2.128 9599.000 

White 20 2.167 2.132 2.201 9554.500 

Black 20 2.179 2.148 2.217 10003.000 

None 20 2.146 2.111 2.178 10003.000 

Note: Numbers under factor represent the set size. ESS is the estimated sample size, Kruschke 

(2014) recommends an ESS of 10000 for stable HDI estimates.  
 
 

 
Table 62 Main effects of Beta 

  95% HDI  

Condition Mode Lower Upper ESS 

White 0.548 0.541 0.554 8364.600 

Black 0.539 0.533 0.546 8120.500 

None 0.549 0.542 0.555 8425.300 

Note:  ESS is the estimated sample size, Kruschke (2014) recommends an ESS of 10000 for 

stable HDI estimates.  
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Table 63 Main effects of Tau 

  95% HDI  

Condition Mode Lower Upper ESS 

White 12 Gun 0.421 0.410 0.430 8175.700 

Black 12 Gun 0.412 0.402 0.423 10003.000 

None 12 Gun 0.422 0.413 0.433 10003.000 

White 16 Gun 0.426 0.416 0.437 10003.000 

Black 16 Gun 0.418 0.408 0.429 9606.400 

None 16 Gun 0.421 0.411 0.432 9703.600 

White 20 Gun 0.419 0.408 0.430 9314.600 

Black 20 Gun 0.413 0.402 0.424 10003.000 

None 20 Gun 0.425 0.414 0.435 10003.000 

White 12 Nongun 0.416 0.403 0.426 10003.000 

Black 12 Nongun 0.422 0.411 0.433 9498.500 

None 12 Nongun 0.422 0.411 0.433 10003.000 

White 16 Nongun 0.433 0.422 0.444 10003.000 

Black 16 Nongun 0.433 0.421 0.444 9322.000 

None 16 Nongun 0.434 0.422 0.446 9587.200 

White 20 Nongun 0.444 0.432 0.455 9285.200 

Black 20 Nongun 0.438 0.427 0.450 10003.000 

None 20 Nongun 0.444 0.431 0.455 10003.000 

Note: Numbers under condition represent set size. ESS is the estimated sample size, Kruschke 
(2014) recommends an ESS of 10000 for stable HDI estimates.  
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Table 64 Main effects of Delta 

  95% HDI  

Condition Mode Lower Upper ESS 

White 12 Gun 1.630 1.582 1.685 9712.500 

Black 12 Gun 1.679 1.629 1.733 9428.500 

None 12 Gun 1.618 1.564 1.668 9575.100 

White 16 Gun 1.377 1.327 1.424 9609.300 

Black 16 Gun 1.368 1.317 1.414 9690.200 

None 16 Gun 1.336 1.290 1.389 10003.000 

White 20 Gun 1.157 1.115 1.210 10003.000 

Black 20 Gun 1.191 1.145 1.237 9617.500 

None 20 Gun 1.169 1.120 1.214 9631.700 

White 12 Nongun -1.383 -1.434 -1.341 10138.000 

Black 12 Nongun -1.403 -1.447 -1.356 9809.200 

None 12 Nongun -1.373 -1.419 -1.324 10128.900 

White 16 Nongun -1.250 -1.296 -1.206 10003.000 

Black 16 Nongun -1.273 -1.322 -1.232 10094.600 

None 16 Nongun -1.270 -1.313 -1.224 9694.400 

White 20 Nongun -1.187 -1.231 -1.144 9464.200 

Black 20 Nongun -1.179 -1.223 -1.137 10003.000 

None 20 Nongun -1.186 -1.231 -1.143 10003.000 

Note: Numbers under condition represent set size. ESS is the estimated sample size, Kruschke 
(2014) recommends an ESS of 10000 for stable HDI estimates.  
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Table 65 Summary Effects of Alpha  

  95% HDI  95% HDI 

Effect Mode Lower Upper d Lower Upper 

White - Black -0.017 -0.044 0.013 -0.090 -0.237 0.067 

White - None 0.030 0.004 0.060 0.166 0.020 0.318 

Black - None 0.049 0.019 0.075 0.260 0.104 0.406 

12 - 16 -0.049 -0.075 -0.018 -0.252 -0.400 -0.097 

12 - 20 -0.100 -0.126 -0.070 -0.535 -0.679 -0.373 

16 - 20 -0.055 -0.081 -0.026 -0.293 -0.440 -0.144 

WB and setSize 12 -0.019 -0.074 0.027 -0.102 -0.401 0.140 

WB and setSize 16 -0.013 -0.060 0.036 -0.067 -0.317 0.195 

WB and setSize 20 -0.018 -0.062 0.034 -0.095 -0.330 0.186 

WN and setSize 12 0.055 0.007 0.106 0.320 0.029 0.558 

WN and setSize 16 0.018 -0.032 0.064 0.095 -0.165 0.348 

WN and setSize 20 0.017 -0.027 0.069 0.087 -0.145 0.368 

BN and setSize 12 0.082 0.028 0.128 0.434 0.151 0.683 

BN and setSize 16 0.027 -0.019 0.080 0.144 -0.093 0.435 

BN and setSize 20 0.034 -0.013 0.083 0.177 -0.070 0.440 

Note:  Racial Group Comparisons: WB(White – Black), WN (White – None), BN(Black – 

None). 
 

Table 66 Summary Effects of Beta 

  95% HDI  95% HDI 

Effect Mode Lower Upper d Lower Upper 

White - Black 0.008 0.001 0.017 0.284 -0.027 0.576 

White - None -0.001 -0.011 0.075 -0.044 -0.348 0.260 

Black - None -0.010 -0.018 0.000 -0.310 -0.611 0.006 
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Table 67 Summary Effects of Delta Gun-NonGun 

  95% HDI  95% HDI 

Main Effects Mode Lower Upper d Lower Upper 

setSize 12 - 16 0.204 0.177 0.230 0.772 0.659 0.875 

setSize 12 - 20 0.337 0.310 0.363 1.264 1.155 1.386 

setSize 16 - 20 0.136 0.108 0.159 0.500 0.405 0.603 

White - Black -0.018 -0.043 0.011 -0.066 -0.160 0.041 

White - None 0.009 -0.019 0.036 0.033 -0.072 0.133 

Black - None 0.022 -0.004 0.050 0.084 -0.010 0.194 

gun -nongun 0.114 0.088 0.139 0.433 0.330 0.523 

       

Interactions       

WB x Object -0.005 -0.038 0.025 -0.020 -0.145 0.091 

WN x Object 0.010 -0.024 0.039 0.029 -0.090 0.147 

BN x Object 0.014 -0.019 0.044 0.053 -0.069 0.169 

targetType and SetSize 

1216 

0.081 0.056 0.108 0.303 0.208 0.408 

targetType and SetSize 

1220 

0.135 0.108 0.159 0.505 0.405 0.604 

targetType and SetSize 
1620 

0.053 0.027 0.077 0.202 0.105 0.295 

targetType and SetSize 12 0.259 0.218 0.299 0.984 0.816 1.132 

targetType and SetSize 16 0.093 0.057 0.135 0.355 0.203 0.496 

targetType and SetSize 20 -0.011 -0.048 0.028 -0.041 -0.184 0.100 

linear test -0.194 -0.192 -0.188 -0.714 -0.739 -0.701 

quadratic test 0.012 0.011 0.013 0.044 0.037 0.047 

Note:  Racial Group Comparisons: WB(White – Black), WN (White – None), BN(Black – 
None). Combined values of set size indicate an interaction between the two. 
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Table 68 Summary Effects of Delta Gun 

  95% HDI  95% HDI 

Interaction Mode Lower Upper d Lower Upper 

RWB-1216 -0.025 -0.077 0.019 -0.098 -0.289 0.072 

RWB-1220 -0.011 -0.055 0.039 -0.040 -0.204 0.150 

RWB-1620 0.023 -0.027 0.064 0.087 -0.098 0.244 

RWN-1216 -0.007 -0.059 0.038 -0.027 -0.220 0.145 

RWN-1220 0.012 -0.036 0.058 0.044 -0.137 0.220 

RWN-1620 0.019 -0.024 0.066 0.071 -0.089 0.251 

RBN-1216 0.016 -0.029 0.067 0.061 -0.111 0.251 

RBN-1220 0.018 -0.025 0.069 0.070 -0.096 0.260 

RBN-1620 0.001 -0.044 0.048 0.003 -0.176 0.170 

Note: Abbreviations used in the 'Interaction' column: RWB: Race White-Black \ RWN: Race 

White-None \ RBN: Race Black-None. Numbers following the abbreviations represent Set Size 
interactions. 

 

 

 

Table 69 Summary Effects of Delta Gun 

  95% HDI  95% HDI 

Interaction Mode Lower Upper d Lower Upper 

RWB-1216 0.008 -0.040 0.047 0.029 -0.153 0.178 

RWB-1220 -0.013 -0.052 0.034 -0.048 -0.204 0.119 

RWB-1620 -0.016 -0.058 0.026 -0.062 -0.216 0.099 

RWN-1216 0.017 -0.028 0.060 0.062 -0.104 0.231 

RWN-1220 0.007 -0.036 0.050 0.027 -0.133 0.187 

RWN-1620 -0.008 -0.052 0.032 -0.032 -0.190 0.124 

RBN-1216 0.016 -0.032 0.057 0.061 -0.118 0.216 

RBN-1220 0.018 -0.027 0.060 0.070 -0.096 0.233 

RBN-1620 0.009 -0.037 0.048 0.033 -0.139 0.180 

Note: Abbreviations used in the 'Interaction' column: RWB: Race White-Black \ RWN: Race 
White-None \ RBN: Race Black-None. Numbers following the abbreviations represent Set Size 

interactions. 
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APPENDIX D: POSTERIOR PREDICTIVE CHECKS 

To evaluate the fit of the drift-diffusion model specified, I used JAGS to simulate 

decision and response time data based on the posterior condition level distributions derived from 

the DDM. Essentially, the posterior values are used to generate 10,000 sample datasets. This 

leads to a large amount of data, specifically, 360 trials x 308 participants x 10000 sampled 

values. This data was then aggregated at the condition level since study analyses were on 

condition-level estimates. Next, these data were used to summarize the choice probabilities, 

response times, and response time distributions.  

For the choice probabilities, the observed and model-predicted means were plotted for 

each condition and response type. Hit rates are overestimated , and false alarms are slightly 

underestimated, though the extent of this misestimation is minimal. That is the model generated 

data that suggested a higher accuracy than what is found in the observed data. For response 

times, the observed and model-predicted means were plotted for each condition and response 

type. These comparisons indicated that predicted means for correct gun responses were 

overestimated; however, the correct decision times for non-gun were accurate. However, the 

predicted incorrect gun and non-gun response times were faster than the observed data by a large 

margin.  

Finally, to better evaluate what may be causing these response time differences, the 

observed and model-predicted response time distributions were plotted for each condition such 

that the top of the figure indicates correct responses and the bottom of the figure indicates 

incorrect response for the same condition. In analyzing response time distributions for correct 

gun trials, the predicted model slightly underestimates the average response time (central 

tendency) while it tends to overestimate the frequency of longer response times (the right-hand 
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tail of the distribution. In the case of incorrect responses to gun stimuli, the predicted response 

times exhibit a strong right skew, and notably, the observed data shift towards longer response 

times (a rightward shift in central tendency) with increasing set sizes.   

When examining correct identifications of non-gun objects, the model tends to 

overestimate the average response time and underestimate the extremities of the response times. 

For incorrect responses to non-gun stimuli, the shift in observed response times across set sizes is 

less marked than in the gun conditions, but the rightward shift in central tendency is still 

observed. Moreover, the observed response time distributions are broader than the predicted, 

potentially indicating an overestimation of the drift rate.  

The fit issues observed cannot be readily attributed to non-decision time (alpha) or 

threshold (tau) parameters. Typically, discrepancies caused by these parameters would manifest 

as uniform changes in the shape of response time distributions across both correct and incorrect 

decisions. However, the analysis shows that correct decisions generally fit the model predictions 

better than incorrect ones, indicating a different source of error. In addition, it’s not likely that 

the start point (beta) is the cause, given that the starkest differences occur across set sizes in the 

incorrect decision response time distributions. That is, set size cannot be accurately modeled for 

the start point parameter since participants have no prior knowledge about the upcoming trial set 

size. Instead, the differences in model fit might be more closely associated with unaccounted for 

variations in drift rate (delta).  

For example, upon closer inspection of the observed incorrect response time 

distributions, something that stands out is that there are multiple peaks, suggesting that these 

distributions may be multimodal. Something that could account for this effect is practice effects. 

Recall that in Studies 1 and 2, practice effects were found such that participants' responses 
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decreased from block 1 to block 2 but plateaued from block 2 to block 3. As an exploratory 

analysis, I plotted the observed response time distributions for incorrect non-gun trials across 

blocks and set sizes to determine if the distribution was moving in a way that would create these 

multimodal peaks. However, looking at the first and last block, it’s not clear that this was the 

largest contributing factor. Notably, there are instances where the first block has normally 

distributed response times, but at the final block, two strong peaks emerge. This highlights that 

there may be more occurring, and one such moderator is the manipulation check. 

I figured this manipulation check might be related to different search strategies that 

participants engage in (i.e., target present/absent decisions versus slower specific target 

searches). To further extend this work, I looked at the manipulation check and plotted response 

times for people who were highly accurate (fewer than 1 error (36%) and people with varied 

errors (greater than 9 errors (14%]) by blocks 1 and 3. While not exact, most of the response time 

distributions for block 1 are relatively similar, with divergences occurring at the final block. 

Notice that for the low errors group across set sizes and race, a negatively skewed multi-modal 

distribution develops, while for the high errors group, there is less consistency in the change of 

the distribution.  

Neither variable may fully explain the multimodal distributions found in the overall 

response time distribution, given that these peaks are found in both. To address the fact that there 

are still multi-modal distributions, one possibility is that some of the non-gun items are more 

difficult to locate, leading to longer incorrect response times. The plots breaking down the 

response time distributions for correct and incorrect responses at set size 20 for non-gun objects 

reveals that this is the case. The multimodal peaks found in the data can be best explained by 

participants struggling with some of the non-gun items.  The code for the drift-diffusion model 
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needs modification to include intercepts corresponding to different object categories for the drift 

rates. This adjustment is essential for optimizing the model's fit to the data. 

 
 

 
Figure 16: Posterior predictions of hit and false alarm rates for Study 2. X’s represent observed 

condition level choice proportions. Squares represent predicted condition level choice 

proportions. Bars are the 95% HDI.  
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Figure 17: Posterior predictions of response times for Study 2. X’s represent observed condition 
level choice proportions. Squares represent predicted condition level choice proportions. Bars are 

the 95% HDI. 
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Figure 18: Observed (black) and predicted (gray) response time distributions for each response 

type at the condition level in Study 2. The top part of the graph is correct responses, and bottom 

is incorrect.  
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Figure 19: Observed (black) and predicted (gray) response time distributions for each response 
type at the condition level in Study 2. The top part of the graph is correct responses, and bottom 

is incorrect. 
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Figure 20: Response time distributions for block 1 (red) and block 3(blue) for incorrect responses 

in the non-gun conditions. 
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Figure 21: Response time distributions for block 1 (red) and block 3(blue) for incorrect responses 

in the non-gun conditions in both low and high manipulation check error groups. 
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Figure 22: Correct (top) and incorrect (bottom) response time distributions for non-gun objects in 

set size 20. 
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Figure 23: Correct (top) and incorrect (bottom) response time distributions for non-gun objects in 

set size 20. 
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