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ABSTRACT 

The proliferation of Internet-of-Things (IoTs) and Wireless Sensor Networks (WSNs) has led to 

the widespread deployment of devices and sensors across various domains like wearables, smart 

cities, agriculture, and health monitoring. These networks usually comprise of resource-

constrained nodes with ultra-thin energy budget. As a result, it is important to design network 

protocols that can judiciously utilize the available networking resources while minimizing energy 

consumption and maintaining network performance. The standardized protocols often 

underperform under general conditions because of their inability to adapt to changing networking 

conditions, including topological and traffic heterogeneities and various other dynamics. In this 

thesis, we develop a novel paradigm of learning-enabled network protocol synthesis to address 

these shortcomings. 

The key concept here is that each node, equipped with a Reinforcement Learning (RL) engine, 

learns to find situation-specific protocol logic for network performance improvement. The nodes’ 

behavior in different heterogeneous and dynamic network conditions are formulated as a Markov 

Decision Process (MDP), which is then solved using RL and its variants. The paradigm is 

implemented in a decentralized setting, where each node learns its policies independently without 

centralized arbitration. To handle the challenges of limited information visibility in partially 

connected mesh networks in such decentralized settings, different design techniques including 

confidence-informed parameter computation and localized information driven updates, have 

been employed. We specifically focus on developing frameworks for synthesizing access control 

protocols that deal with network performance improvement from multiple perspectives, viz., 

network throughput, access delay, energy efficiency and wireless bandwidth usage.  



A multitude of learning innovations has been adopted to explore the protocol synthesis concept 

in a diverse set of MAC arrangements. First, the framework is developed for random access MAC 

setting, where the learning-driven logic is shown to be able to minimize collisions with a fair 

share of wireless bandwidth in the network. A hysteresis-learning enabled design is exploited for 

handling the trade-off between convergence time and performance in a distributed setting. Next, 

the ability of the learning-driven protocols is explored in TDMA-based MAC arrangement for 

enabling decentralized slot scheduling and transmit-sleep-listen decision making. We 

demonstrate how the proposed approach, using a multi-tier learning module and context-specific 

decision making, enables the nodes to make judicious transmission/sleep decisions on-the-fly to 

reduce energy expenditure while maintaining network performance. The multi-tier learning 

framework, comprising of cooperative Multi-Armed Bandits (MAB) and RL agents, solve a 

multidimensional network performance optimization problem. This system is then improved 

from scalability and adaptability perspective by employing a Contextual Deep Reinforcement 

Learning (CDRL) framework. The energy management framework is then extended for energy-

harvesting networks with spatiotemporal energy profiles. A learning confidence parameter-

guided update rule is developed to make the framework robust to unreliability of RL observables.  

Finally, the thesis investigates protocol robustness against malicious agents, thus demonstrating 

versatility and adaptability of learning-driven protocol synthesis in hostile networking 

environments. 
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Chapter 1: Introduction 

1.1 Motivation 

With the recent developments in Internet-of-Things (IoTs) and Wireless Sensor Networks 

(WSNs), a wide range of devices and sensors have been massively deployed in a variety of 

applications [1]. Such applications include wearables, smart city, smart home, agriculture and 

crop monitoring, health monitoring, etc. (Fig. 1.1) These devices and sensors are usually 

designed with low-cost, low-complex and energy constrained hardware [2] [3]. Popular examples 

of such low end IoT devices include OpenMote, IoT-LAB M3, TelosB motes, Econotag, Zolertia 

Z1, to name a few [3].  

 
Figure 1.1: Wireless Communication in a smart city using low-power IoT devices. 
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In these resource constrained IoT and Wireless Sensor Networks, it is necessary to design 

network protocols that can judiciously utilize the available networking resources as well as 

minimize energy consumption. Multiple standard protocols have been developed at different 

layers for the IoT networking stack. Traditionally, these wireless network protocols are designed 

based on standards, heuristics and past experience of human designers. As for example, most of 

the well-known Medium Access Control (MAC) layer protocols such as ALOHA [4], CSMA 

[5], and their derivatives including Bluetooth [6], Zigbee [7], WiFi [8] are products of such design 

process. The same is true for the used routing layer protocols, such as Epidemic Routing [9], 

A4LP Routing [10], PRoPHET routing [11] etc. The choice of a network protocol is often steered 

by the availability of lower layer transceiver hardware support for carrier sensing, collision 

detection, and communication energy budgets. 

A notable drawback of network design using standardized protocols is that the resulting logic 

often underperforms in application-specific scenarios caused by topology and load heterogeneity, 

and other factors. For example, with ALOHA MAC, the throughput of a network starts falling at 

higher loads due to collisions, thus wasting precious energy resources in an IoT/sensor network. 

The situation is compounded in the presence of various forms of heterogeneities. In a network 

with arbitrary mesh topology, a few nodes may be in more disadvantageous positions as 

compared to others in terms of the collisions experienced. Thus, those nodes receive a less share 

of the available wireless bandwidth. In other words, the network performance is heavily 

dependent on the network operating conditions, such as traffic load, topology etc. Thus, for 

maximizing performance, network parameter tuning, and optimization is required for different 

operating conditions. This problem aggravates in scenarios of dynamic network conditions, such 

as time-varying traffic and/ or topologies, where these standard protocols cannot adapt to the 
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changing network dynamics. The root cause of these limitations is the fact that the network nodes 

are statically programmed with standardized protocol logic that lacks flexibility and abilities to 

learn optimal behavior in specific topology and load scenarios. 

In order to overcome these limitations of the standard protocols, it is shown in this thesis how 

Reinforcement Learning (RL) and its variants can be leveraged for network protocol synthesis. 

The idea is to model the network behavior as a Markov Decision Process (MDP) and solve it 

using RL as a temporal difference solution. The main motivation of using Reinforcement 

Learning for network protocol synthesis is that RL provides opportunities for the nodes to learn 

situation-specific policies on the fly. This allows the nodes to learn policies that can maximize 

network performance for different network operating conditions. Also, owing to the real-time 

adaptability of RL, the nodes can adjust their learnt logic according to the temporal variations of 

network conditions. 

While the RL-driven network protocols solve the shortcomings of the traditional protocols as 

mentioned above, there are certain challenges and concerns that need to be taken care of while 

developing the frameworks for network protocol synthesis. One of these challenges is the 

requirement of additional memory, computation and energy resources in the wireless nodes for 

successful implementation of learning algorithms. In addition, the convergence of these RL-

based protocols need to be fast enough to adjust to dynamic network conditions and also to 

minimize wastage of precious networking resources due to non-optimal solutions. Another 

challenge in designing these protocols is the sharing of information and learnt policies among 

the nodes, especially in sparse networks with limited connectivity and in networks with wireless 

bandwidth constraints. These aspects of learning-based protocol synthesis are considered while 
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developing the framework for this thesis, that can solve the limitations of the existing protocol 

design approach and make it suitable for use in practical and real-world applications. 

1.2 Introduction to Reinforcement Learning 

1.2.1 Markov Decision Process 

A Markov Decision Process (MDP) [12] is a stochastic sequential decision process, in which the 

decision maker or the agent decides the best possible action to take in a certain scenario (denoted 

by state) based on rewards it received for such actions in the past. A distinctive property of an 

MDP is that it follows Markovian property, that is, the transition from one system state to another 

depends only on the current state and the current action. Formally, an MDP can be defined by 

the tuple (𝒮, 𝒜, 𝑇, ℛ), where 𝒮 is the set of all possible system states; 𝒜 is the action space; T is 

the transition matrix specifying the probability of transition from one state to another as a result 

of an action, and finally ℛ is a reward function. At each decision epoch, the agent observes the 

current state in which the system is in. Based on this observation, the agent selects a particular 

action from the action space 𝒜 = {𝐴ଵ, 𝐴ଶ, … , 𝐴ெ}. The selection of a specific action from the 

action space results in a change of the state of the environment where the next state is decided 

based on the transition probability. The system transitions take place among a set of possible 

states 𝒮 = {𝑆ଵ, 𝑆ଶ, … , 𝑆௄}, depending on the action taken. The feedback of the agent’s actions is 

received in terms of a numerical entity called as reward. The solution of the MDP is a set of 

actions that maximizes the long-term expected reward of the system. 

1.2.2 Reinforcement Learning 

Reinforcement Learning (RL) is a class of algorithms that can be used for solving an MDP [12]. 

These algorithms can be broadly classified into model-based and model free approaches. Model-
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based RL algorithms, such as dynamic programming, learn a model of the environment (for 

example prediction of the next state and reward) and find the optimal action based on such 

predictions. The term model-free means that unlike the classical dynamic programming methods, 

these algorithms do not require an exact mathematical model of the system. Instead, the learning 

agent uses samples of state transitions and rewards by interacting with the environment to 

estimate the state-action value functions.  

Q-Learning [13] is a temporal difference method for Reinforcement Learning algorithms. In Q-

Learning, the agent interacts with the environment repeatedly to learn the best possible set of 

actions to maximize the long-term reward. In Q-Learning, the agent maintains a Q table where 

the entries correspond to the Q values for all state-action pairs. The agent prefers the action with 

the highest Q value for a specific state. The generalized Q value update Equation is given by Eqn. 

(1.1). 𝑄(𝑠, 𝑎) represents the Q value for the current state-action pair (𝑠, 𝑎); 𝑟 is the reward 

received; 𝑠′ is the next state the system transitions to because of action 𝑎. The hyperparameters 

𝛼 and 𝛾 represent learning rate and discount factor, respectively. 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ቂ𝑟(𝑠, 𝑎) + 𝛾 × max
∀௔ᇲ∈஺

𝑄(𝑠ᇱ, 𝑎ᇱ) − 𝑄(𝑠, 𝑎)ቃ                    (1.1) 

In Multi-agent Reinforcement Learning [14], as opposed to single agent scenario discussed so 

far, the environment is shared by all the agents involved in learning the optimal policy. As a 

result, the changes in the environment states are dependent on the independent actions taken by 

all the agents. Moreover, the rewards received by an agent depend not only on its own action, 

but also on the actions of all other agents. An agent may be penalized even for a good action 

when other agents’ actions are not optimal. Hence, while learning an optimal policy, the agent 

has to take care of the dependency of the reward and state transition on all other agents’ actions. 
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The two broad approaches for learning in a multi-agent environment are 1) Centralized Learning 

and 2) Distributed Learning. In centralized learning approach [15] [16], a centralized entity learns 

the optimal policies for all the agents in the system. However, this is not a scalable mechanism, 

as the learning agent has to maintain Q-values for all the agents and the Q-table will grow in size 

with an increase in number of agents, making it computationally inefficient as well. More details 

on the drawbacks of using such a centralized approach from the perspective of network protocol 

synthesis are provided in the subsequent chapters. To overcome these limitations, distributed or 

decentralized learning [17] [18] approach makes the nodes learn the optimal policy 

independently. Each agent maintains its own Q table and does not explicitly communicate with 

other agents. Thus, an agent is unaware of the actions taken by the other agents. However, in this 

distributed learning scenario, it becomes more challenging to handle the dependency of rewards 

on others’ actions because of the limited information about the other agents. There are approaches 

and algorithms that are detailed in this thesis to overcome these challenges of learning in a 

distributed setting and limited information visibility. Note that in this thesis, the terms distributed 

learning and decentralized learning are used interchangeably. 

1.2.3 Multi-Armed Bandits (MAB) 

Multi-Armed Bandits (MAB) is a special class of Reinforcement Learning in a non-associative 

setting [12]. It is applicable in situations which do not involve learning in different states of a 

system. In other words, there is no concept of state as in traditional reinforcement learning [12]. 

A much-explored variant of MAB is the ‘k-armed bandit’ problem, where the learning agent 

(bandit) has k possible arms or possible actions to choose from. Each of the k actions has an 

associated stochastic reward, the distribution of which is not known to the learning agent. After 

an arm/action is chosen, the agent gets a sample of that reward following the unknown 
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distribution. In other words, it gets feedback in terms of a numerical reward on how good or bad 

a selected action is. The agent’s goal is to maximize the total accumulated reward over infinite 

time horizon by learning to estimate the reward distribution of the possible actions.  

Formally stated, the value for an action 𝑎 is denoted as: 𝑞∗(𝑎) ← 𝐸[𝑅௧ |𝐴௧ = 𝑎]. At each timestep 

𝑡, the value of each action 𝑎 is estimated iteratively as 𝑄௧  (𝑎). The model is said to converge when 

the estimate  𝑄௧ (𝑎) becomes close to the true value for action 𝑎, that is, 𝑞∗(𝑎). The generalized 

MAB update rule is given by: 

𝑁𝑒𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑂𝑙𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 × [𝑅𝑒𝑤𝑎𝑟𝑑 − 𝑂𝑙𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒]          (1.2) 

For a stationary problem, meaning where the reward distributions for the actions are not time-

varying, the step size decreases per step in order to provide equal weightage to the rewards in 

each step. However, for a nonstationary situation, it is useful to provide more weightage to the 

recent rewards. This is achieved by making the step size constant, that is, 𝛼௡ = 𝛼.  

1.3 Reinforcement Learning-based Network Protocol Synthesis 

The core idea of this thesis is to introduce the concept of leaning-enabled network protocol 

synthesis for resource-constrained wireless networks. The online learning characteristics of RL 

and MAB are leveraged for developing multiple protocol-synthesis frameworks with 

multidimensional performance objectives. With the generalized long-term goal of using RL for 

protocol design at different networking layers, this work primarily focuses on Medium Access 

Control (MAC) layer protocol synthesis. Throughout the thesis, we develop protocols that deal 

with medium access performance improvement from multiple perspectives, viz., network 

throughput, access delay, energy efficiency and wireless bandwidth usage. Towards the later part 

of the thesis, we also investigate the efficiency of these learning-driven protocols in the presence 



8 

of malicious nodes. In this section, we go over the specific access control problems that have 

been dealt with in this thesis.  

 
Figure 1.2: Modeling MAC layer protocol logic as Markov Decision Process (MDP). 

1.3.1 Random Access MAC Protocol Synthesis 

We first introduce the concept of protocol synthesis in Random Access MAC arrangement. The 

best practice for programming random-access MAC logic is to use known standardized protocols, 

including, ALOHA, CSMA, CSMA-CA, and their higher derivatives, such as Bluetooth, Zigbee, 

etc. The specific protocol is chosen for an application based on the lower layer hardware support 

for carrier sensing, collision detection, and the corresponding energy constraints. A notable 

drawback of network design using standardized protocols is that the resulting logic often 

underperforms in application-specific scenarios caused by topology- and load-heterogeneity, and 

other factors. For example, with baseline ALOHA MAC, the throughput of a network starts 

falling at higher loads due to collisions, thus wasting precious energy resources in an IoT 
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network. The situation is compounded in the presence of various forms of heterogeneities. The 

root cause of these limitations is the fact that the network nodes are statically programmed with 

standardized protocol logic that lacks flexibility and abilities to learn optimal behavior in specific 

topology and load scenarios. The proposed learning paradigm sets out to address that. 

The key concept is to model protocol logic as a Multi Agent Markov Decision Process (MAMDP) 

[19] [20], and solve it dynamically using Distributed Reinforcement Learning as a temporal 

difference solution [12] under varying traffic, topology, and other network conditions. An MDP 

solution in this context is a set of transmission actions taken by individual network nodes, each 

of which acts as a separate RL agent (Fig. 1.2). In this setting, the wireless network acts as the 

RL environment. Based on the RL actions taken (such as different transmission strategies), the 

nodes receive feedback (such as success or packet collisions) which can be used as reward for 

updating learning parameters. The idea here is that over time, the nodes would learn policies such 

that maximum network performance can be achieved for different network conditions. The 

proposed framework supports heterogenous traffic load, network topology, and node-specific 

access priorities while striking a desired balance between node and network level performance. 

Learning adjustments to temporal variations of such heterogeneities and access priorities are also 

supported by leveraging the inherent real-time adaptability of Reinforcement Learning. It is 

shown in this thesis that the nodes can learn to self-regulate collisions in order to attain 

theoretically maximum MAC level performance at optimal loading conditions.  For higher load, 

the nodes learn to adjust their transmit probabilities in order to reduce the effective load and 

maintain low levels of collisions, thus maintaining the maximum MAC layer performance. 
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1.3.2 TDMA-based MAC Protocol Synthesis 

The concept of protocol synthesis is then extended to networks with time-slotted capacity. In this 

setting, the learning-driven access protocol is mainly developed for networks that do not have 

time synchronization capabilities. The motivation here is that accurate time synchronization 

among wireless networks nodes can be expensive to realize, especially in low-cost nodes with 

limited processing and communication resources. Moreover, the MAC layer performance in such 

networks can be very sensitive to even slight perturbations in the quality of time synchronization 

[21]. Hence, this learning-enabled framework aims to develop a time asynchronous TDMA 

protocol useful for low-cost transceivers in Wireless Sensor Networks (WSNs) and Internet-of-

Things (IoTs).  

The MAC slot allocation has been modelled as a distributed Multi-Agent Multi-Armed Bandits 

(MAB) problem, where each node acts as a ‘k-armed bandit’ agent, where an arm represents a 

MAC transmission slot that the agent can choose. Each node maintains its own notion of a fixed 

duration transmission frame with k-slots. Since time is not synchronized, the frames for the nodes 

are also not synchronized. Each node can independently select a slot, which is an arm in MAB. 

The learning framework allows the nodes to learn arm selection policies, together that constitutes 

a transmission slot selection protocol, in a distributed manner. After learning convergence, the 

system ensures that there are no overlapped transmissions (i.e., collisions) in the system (Fig. 

1.3). In this thesis, the working of the learning-synthesized protocol is demonstrated for networks 

with both fully connected and partially connected arbitrary mesh topologies. The nodes in a 

partially connected topology learn to reuse bandwidth spatially by choosing fully to partially 

overlapping transmission slots when they are outside their mutual realm of influences.  
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Figure 1.3: Multi-Armed Bandit for TDMA slot allocation. 

1.3.3 Data Flow and Energy Management using RL 

Building on the Multi-Armed Bandit-based slot allocation mechanism mentioned above, we 

extend the study to develop a Reinforcement Learning based framework for flow and energy 

management in energy-constrained wireless networks. Efficient scheduling for turning wireless 

transceivers on and off is an effective energy management mechanism in embedded networks of 

resource-constrained sensors and IoTs. In traditional approaches [22] [23], such schedules are 

typically pre-programmed in nodes based on manual settings and heuristics that are designed 

based on specific target network and traffic scenarios. As a result, such schedules cannot adapt 

well to network and traffic dynamics and time varying heterogeneity. Shortcomings are usually 

manifested in terms of not being able to maintain the desired balance between network 

performance (i.e., throughput and delay) and energy efficiency. In this thesis, a learning 

framework is proposed with the goal of overcoming these shortcomings by making the wireless 

nodes learn appropriate sleep-listen-transmit policies and adapt them in response to changing and 
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heterogeneous network and traffic conditions. This research develops an online reinforcement 

learning framework for sleep-awake scheduling in flow-based wireless networks, with and 

without time synchronization. 

Learning in this framework happens in three distinct tiers. In the first tier, using Multi-Armed 

Bandits (MAB) learning, nodes independently learn to select collision-free transmission slots. 

The second tier uses Reinforcement Learning (RL) in order to learn whether to transmit or to 

sleep in the transmission slot selected in tier-1. This learning happens in a per-flow context in 

which multiple data flows may exist within each network node. The objective of the learning 

agent in this tier is to save energy by judicious sleeping, while keeping end-to-end packet delay 

low. Finally, in tier-3, another Multi-Armed Bandit agent learns whether to sleep or remain 

awake during a slot that was decided to be a non-transmitting slot by the MAB agent in tier-1. 

This agent ensures that the node remains awake only on the slots it is intended to receive packets 

from one of its neighbors, thus minimizing the idling energy expenditure. The objective of the 

coordinated learning by these three agents is to maximize per flow throughput while keeping 

energy expenditure at check via judicious sleep-wake decisions. In order to make the proposed 

system adaptive to heterogeneous traffic and scalable with network topologies, a contextual deep 

Q-learning based approach is developed, where a neural network is used for transmission 

scheduling for a time-varying data rate. In addition to being adaptive to network and traffic 

heterogeneity and dynamics, the proposed learning module is able to handle the trade-offs 

between throughput and energy efficiency based on application-specific requirements. The three-

dimensional performance improvement of the adaptive and scalable framework is pictorially 

depicted in Fig. 1.4.   
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Figure 1.4: Three-dimensional Network Trade-off handling using Contextual Deep 

Reinforcement Learning. 

1.3.4 Cooperative RL for Energy Management in Networks with Energy Harvesting 

Building on the RL-based protocol synthesis for energy and data flow management formulated 

with the assumption of a homogeneous and temporally invariant energy profile, we now broaden 

its scope to encompass networks characterized by a spatiotemporal energy profile. Such 

spatiotemporal energy variation exists in wireless networks with nodes capable of harvesting 

energy. The harvested energy can be from different sources, viz., solar energy, vibration-based 

energy, etc. Such an energy harvesting node has a specific inflow of energy as a function of time 

and location. Traditional sleep scheduling protocols, where nodes are preprogrammed, do not 

allow nodes to react according to the spatiotemporal energy profiles and variabilities. Hence, in 
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this thesis, an online learning-based paradigm is proposed that allows the nodes to learn a joint 

transmit-sleep scheduling policy in order to overcome the above limitations. This is 

accomplished using a cooperative RL module, where two learning agents, deployed per node, 

learn cooperatively, a joint sleep-transmit schedule to achieve the network performance goals. In 

addition, the nodes share learning confidence parameter with their neighbors, that is used for a 

weighted update of learning parameters to account for any bad learning updates of neighboring 

nodes. These two levels of learning cooperation are denoted as inter and intra-node cooperation 

as shown in Fig. 1.5. This cooperative learning makes the framework suitable for multi-hops 

network so that learning errors are not propagated along the data flow. 

 
Figure 1.5: Cooperative Reinforcement Learning for flow-energy management. 
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1.3.5 Thwarting MAC Layer Attacks in Wireless Networks using Multi-Armed Bandits 

We finally investigate the efficacy of the protocol synthesis paradigm in the presence of 

unreliable information because of malicious nodes in a network. To this end, a learning-driven 

approach for decentralized slot allocation is developed for scenarios where malicious nodes try 

to disrupt the TDMA schedule of other nodes. The learning policies are developed with the goal 

of defending against several quasi-random MAC attacks. The primary learning objective is to 

minimize the degradation in network performance caused by the malicious nodes. And this is 

done while minimizing the bandwidth share of the malicious nodes. These objectives are 

achieved using a Multi-Armed Bandit (MAB)-driven architecture that allows the nodes to learn 

transmission schedule on-the-fly and without the need for any central arbitrator. Two different 

scheduling policies are introduced: robust and reactive policies; and the characterization of these 

policies and their use in different application-specific scenarios are presented. An analytical 

model of the system is developed to find the benchmark throughput for different malicious 

policies. It is demonstrated that the proposed framework allows network nodes to learn slot 

scheduling with the computed benchmark throughput. 

1.4 Dissertation Objectives 

The main goal of this dissertation is to develop a multi agent learning framework for protocol 

synthesis in wireless networks. The framework is targeted for resource-constrained networks 

with thin energy budget. The developed approach is tuned for random-access and TDMA-based 

MAC arrangements, and is generalized for different mesh topologies and heterogeneous traffic 

patterns. The performance objective of the learning-synthesized protocols is to improve network 

efficiency from multiple perspectives, viz., throughput, delay, fairness, bandwidth energy usage.  
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Specifically, the working of the developed architecture is demonstrated to achieve the following 

goals.  

1. The first goal is to develop a decentralized Reinforcement Learning framework for 

random access MAC protocol synthesis in low-cost and low-complex networks with simple 

wireless transceivers having limited hardware capabilities. The developed design aims at 

maximizing network throughput, fair sharing of wireless bandwidth among nodes and handling 

network traffic heterogeneity.  

2. The concept of random-access MAC protocol synthesis is extended for partially 

connected networks with limited information visibility. The main aim here is to maximize 

network throughput while considering fair share of bandwidth, in the presence of heterogeneous 

traffic, topology and QoS requirement.  

3. While the above two objectives cater to networks with random access MAC arrangement, 

the third goal of this dissertation is to demonstrate learning-based protocol synthesis for time-

slotted MAC access. The aim here is to develop a Multi-Armed Bandit based architecture for 

slot allocation in resource-constrained wireless networks without network time 

synchronization. A novel Hysteretic MAB and slot-defragmentation-based design is proposed 

for managing trade-off between learning convergence time and bandwidth utilization 

efficiency.  

4. The concept of RL-based MAC protocol synthesis is extended to develop a multi-tier 

learning framework for data flow and energy management in networks with limited energy 

resources, which is the fourth objective of this thesis. The multi-tier system aims at managing 

trade-off between throughput and energy efficiency by making judicious decisions on sleep-

listen-transmit scheduling. The developed protocol synthesis framework is refined to 
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demonstrate its effectiveness in adapting to time-varying flow rate and scalable with network 

size with the use of a Contextual Deep Q-Learning framework. 

5. With the goal of broadening the applicability of the learning-synthesized protocol to 

networks with spatiotemporal energy profile, a learning model is developed for joint transmit-

sleep scheduling in energy-harvesting nodes. The proposed system uses a cooperative RL 

approach, with a localized learning confidence parameter sharing strategy, where two learning 

agents, deployed per node, jointly learn transmit and sleep scheduling strategies to manage 

network energy budgets. 

6. The final objective of the thesis is to analyze the ability of the learning framework to deal 

with unreliable information in networks with coexisting malicious nodes. Specifically, we 

consider the problem of TDMA slot allocation in presence of malicious nodes trying to disrupt 

the schedule of other nodes. The developed MAB-model aims at minimizing the throughput 

reduction caused by the malicious nodes and reducing the effective bandwidth share of the 

malicious nodes themselves.  

1.5 Scope of Dissertation Thesis 

In this thesis, we address all the objectives of the dissertation as listed in the last section, including 

published findings related to these objectives. We have tried to develop a holistic approach for 

learning-enabled protocol synthesis for solving a wide range of access control problems. The 

target mechanisms developed in this thesis are intended primarily for applications in Internet of 

Things (IoT) and Wireless Sensor Networks (WSN) with low-cost wireless transceivers having 

limited hardware capabilities.  A pictorial summary of the investigated issues in this thesis is 

shown in Fig. 1.6. The overall flow of the thesis is structured as follows. 
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Figure 1.6: Pictorial representation of the investigated issues in this thesis. 

Chapter 2 presents a literature review of RL and MAB-based approaches used for performance 

improvement in wireless networks. In this chapter, these existing RL and MAB based approaches 

are introduced and summarized, and it is analyzed which type of MAC allocations problems they 

solve in different network and loading conditions. We also identify the limitations of these 

existing mechanisms and show how the approach proposed in this thesis overcomes these 

limitations. 

In 3, we propose a multi-agent reinforcement learning based medium access framework for 

resource-constrained wireless networks. It is shown that by learning to adjust MAC layer 

transmission probabilities, the protocol is not only able to attain theoretical maximum throughput 

at an optimal load, but unlike classical approaches, it can also retain that maximum throughput 

at higher loading conditions. The findings of this chapter have been reported in [24]. 

Chapter 4 extends the concept of protocol synthesis developed in chapter 3 for partially connected 

networks with limited information availability. A distributed and multi-Agent RL framework is 
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used as the basis for protocol synthesis. Distributed behavior makes the nodes independently 

learn optimal transmission strategies without having to rely on full network level information 

and direct knowledge of the other nodes’ behavior. We have reported the study related to chapter 

4 in [25] [26]. 

Chapter 5 deals with transmission scheduling in time-slotted access arrangement using Multi-

Armed Bandits. MAC slot allocation is formulated as an MAB problem where the nodes act as 

independent learning agents and learn transmission policies that ensure collision free 

transmissions. The findings of chapter 5 have been documented in [27] [28]. 

Chapter 6 proposes distributed defragmented backshift operation for managing the bandwidth 

redundancy-convergence time trade-off in networks without time synchronization capability.  In 

order to reduce the bandwidth overhead while maintaining a desired MAB learning speed, a novel 

slot defragmentation mechanism is introduced. It is shown that using the proposed mechanism, 

performance close to time-synchronous network can be achieved. The results presented in this 

chapter are published in [27] [29]. 

In chapter 7, a learning-based framework for MAC sleep-listen-transmit scheduling in wireless 

networks is proposed. It shows how the framework allows wireless nodes to learn policies that 

can support throughput-sustainable flows while minimizing node energy expenditure and sleep-

induced packet drops and delays. We have presented the findings of this chapter in [30]. 

Chapter 8 addresses the limitations of the RL-based sleep scheduler, viz., scalability with network 

size and adaptability to dynamic load. This is achieved using a Contextual Deep Q-Learning 

(CDQL) and Multi-Armed Bandit-based framework, that makes the system adaptive to dynamic 

and heterogeneous network traffic conditions. The trade-off between energy efficiency and 
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learning convergence behavior is analyzed and it is shown how Deep Q-Learning can manage 

this trade-off. We have documented the study pertaining to this chapter in [31]. 

In chapter 9, we extend the learning-driven sleep scheduling framework for energy harvesting 

network with spatiotemporal energy profile which is achieved through the cooperation of 

multiple learning agents for joint transmit-sleep scheduling in such networks. The findings of 

chapter 9 are presented in [32], [33]. 

Chapter 10 aims at exploring the ability of the learning paradigm for scheduling in the presence 

of malicious nodes trying to disrupt TDMA schedule of other nodes. An MAB-based architecture 

is proposed for thwarting different quasi-random attacks of the malicious nodes. In this chapter, 

the malicious nodes are assumed to work independently without collusions. This study has been 

documented in [34]. 

Chapter 11 builds on the scenario developed in chapter 10 where the assumption of information 

sharing among malicious nodes are relaxed. Here the efficacy of the synthesized logic is 

demonstrated in scenarios where colluding malicious nodes attempt to disrupt slot scheduling 

collectively. 

Finally, the thesis is summarized, and a list of future research directions is compiled in chapter 

12. 
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Chapter 2: Related Work 

Reinforcement Learning (RL) has been used in the literature for designing MAC protocols for 

wireless networks. In general, the main objective of using RL in wireless networks is to improve 

network performance in terms of throughput, energy, and latency. In this chapter, we investigate 

the existing works that explore RL and its variants as solutions to different access control 

problems. 

2.1 Reinforcement Learning for Resource Allocation 

There are works that deal with RL-driven access control mechanisms for random access MAC 

arrangement. In [35], the authors propose a MAC protocol designed specifically for wireless 

sensor networks with an objective of minimizing the energy requirement and maximizing the 

throughput of the network. The system is implemented in slotted time, where each node learns, 

using stateless Q-learning, to find a unique slot to transmit, so that the collisions are reduced. 

Besides assuming a homogeneous network, this work does not show how the system would 

behave for a very high network traffic.  

Maximizing resource allocation, and hence throughput, for secondary users in a network is 

explored using a learning-based MAC protocol in [36]. In this time-slotted system, under the 

assumption of a homogeneous secondary network, Q-learning is used to solve a partially 

observable Markov process (POMDP) to reduce the interference between the primary and 

secondary users. 

In [37] and [38], the authors have developed protocols, where a learning algorithm allows nodes 

to find an efficient radio schedule based on the node packet traffic and the traffic load of its 

neighbors so that performance of the network is improved. They show that the designed protocols 
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perform better, in terms of throughput and delay, compared to the standard MAC protocols, in 

dense, homogeneous networks.  

A multi-agent reinforcement learning-based protocol has been proposed in [39] for optimizing 

resource constraints, such as, energy and bandwidth, in a dense wireless sensor network, where 

the nodes can adapt to the changing network traffic conditions. The nodes learn to self-configure 

in the network by adaptively activating the neighbor nodes, so as to improve the overall network 

performance. 

Two Q learning-based research allocation protocols are proposed in [40], [41] aiming for 

maximizing the throughput in a dense network. The nodes without prior information about the 

network size, can learn to adjust to a dynamic network with increase the number of nodes in the 

network. The nodes with the help of carrier-sensing, learn to transmit/ wait [40] or to increase/ 

decrease the contention window [41] so that collisions are reduced.  

The authors in [42], [43] have proposed MAB-based learning as a tool for slot selection in frame-

based ALOHA. The learning-based protocols are shown to outperform standard MAC protocols, 

viz, slotted ALOHA. 

RL based protocols are designed for an underwater network without the carrier sensing capacity 

of the nodes in [44] and [45]. This protocol provides efficient channel access to the nodes using 

Q learning. Because of the adaptive nature of the protocol, it is suitable for a dynamic 

environment. However, it is designed specifically for large, distributed networks.  

In [46], the authors have proposed a deep reinforcement learning-based MAC protocol to 

maximize network throughput. The protocol was implemented in a slotted system, where the 

nodes learn when to transmit so that the network throughput is maximized. The learning node is 
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deployed in a network with other nodes using TDMA/ALOHA protocols. In this work, the results 

are only shown for a particular case, when the load is higher than optimal.  

An RL-based MAC protocol is proposed in [47], which increases the network throughput by 

reducing the collisions. In a slotted-time system, the nodes learn using stateless Q learning to 

select an action strategy to select a slot efficiently so that collisions are reduced.  

Reinforcement Learning and Multi-Armed Bandits have been used in the literature as 

mechanisms for TDMA slot selection in wireless networks.  The work in [48] use Reinforcement 

Learning to develop a self-learning technique for allocating TDMA MAC slots. This topology-

dependent contention-based mechanism is shown to achieve higher throughput than the existing 

standard MAC protocols. One common assumption used in these papers is the availability of 

time synchronization and nodes’ collision detection abilities.  

In [49], the authors proposed a distributed contention-based scheduling mechanism in wireless 

mesh networks. The work deals with assigning fair bandwidth allocation scheme for multi-radio 

multichannel WMNs. The authors in [50] propose a distributed algorithm for TDMA slot 

allocation in networks using two-hops neighbor information.  

Reinforcement Learning-based joint time-slot and channel allocation in a Time Slotted Channel 

Hopping (TSCH) network is proposed in [51]. The paper also optimizes transmission power 

using RL to reduce energy usage. The design is based on the adaptability requirement of 

Industrial Internet-of-Things networks. A similar learning-based slot allocation scheme is 

developed in [52] for optimizing energy and packet delay in large networks with high traffic 

loading. Another RL-based congestion control scheme for satellite IoT networks is proposed in 
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[53],  where the aim is to allocate channels efficiently in a TSCH network, with the central 

arbitration of a satellite.  

2.2 Reinforcement Learning for Energy Management 

Energy management in wireless networks using Reinforcement Learning has been an area of 

interest for researchers. In this context, this problem has been dealt with mainly from two 

perspectives: (a) radio sleep-awake scheduling ( [54], [55], [56], [57]) and (b) transmission power 

control ( [58], [59], [60]). 

The use of Reinforcement Learning for sleep-awake duty cycle control is explored in [37], [61], 

[49], [62]. These mechanisms address a number of drawbacks in traditional non-RL-based access 

protocols including SMAC [63] and TMAC [64], viz, performance degradation in diverse 

topological conditions and in low network traffic scenarios. However, one notable shortcoming 

of these approaches is that they drop packets due to inappropriate sleeps during intended listen 

periods in certain situations. Furthermore, the functioning and performance of the system 

proposed in [37], [61] heavily depends on algorithmic hyperparameters that are chosen manually 

for different network and traffic conditions. Additionally, the mechanisms along with the one in 

[62] rely on an explicit control channel that the nodes use to exchange learning related 

information. 

The approach in [54] uses RL to learn an optimal transmission duty cycle that minimizes energy 

expenditures while maintaining high throughputs and low access latency. It uses a contention-

based slotted system with carrier-sensing abilities. Although the mechanism is shown to achieve 

better performance than comparable existing works, learning here depends on centralized 

arbitration of certain gateway nodes. Additionally, the assumption of complete availability of 
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instantaneous network state information at each node restricts the mechanism’s practical 

feasibility. The framework presented in [65] uses Multi-Armed Bandits (MAB) to learn an 

optimal back-off period in a contention-based time-slotted underwater network. The objective is 

to simultaneously minimize collisions and energy usage. The main limitation here is that the 

approach works only for multi-point-to-point single hop networks with centralized coordination. 

The authors in [66], [67] use RL to learn and adaptive transmission duty cycles in wireless 

networks where a centralized gateway or a coordinator acts as the learning agent.   

In [61], the authors have developed a MAC protocol named QL-MAC with the aim to preserve 

energy in order to extend the network lifetime. This protocol is claimed to be useful for high-

density communications in wireless sensor networks to meet stringent energy requirements. 

Learning allows the nodes to infer each other’s behaviors so that they can adopt a good 

sleep/active scheduling policy in a wireless sensor network. This limits the number of time slots 

when the radio is turned on. In this work, the authors have addressed the problem of energy 

optimization, without considering the throughput of the network. 

A Reinforcement Learning-driven sleep scheduling mechanism for cooperative computing 

method is developed in the paper [68] for energy efficiency improvement. The paper develops a 

computing node selection algorithm for enhanced battery lifetime. A similar energy management 

scheme using deep RL for sleep scheduling and computation and communication resource 

allocation is proposed in [69]. The developed architecture is shown to be applicable for 5G 

Mobile Edge Computing Networks for Industrial IoT. In [70], the authors propose an RL-enabled 

sleep-scheduling algorithm integrated with compressive data gathering technique for decreasing 

the energy expenditure in WSNs. It uses Q-learning for maintaining a balance between data 

reconstruction and energy expenditure. The authors in [71] propose an RL-based solution that 



26 

helps resource-constrained nodes enhance their performance by saving battery power and 

maintaining the quality of transmitted data. However, these papers do not consider optimizing 

the transmission scheduling decisions, which play a significant role in efficient energy 

management. 

The work in [59] proposes a Reinforcement Learning algorithm for controlling the access time 

and transmit power of the sensor nodes in WSN. The paper demonstrated that the proposed 

mechanism improves the Quality-of-Service, achieves high energy efficiency and transmission 

reliability. Similarly, the mechanisms in [58], [60] use centralized RL for transmission power 

control and relay station selection in order to achieve energy efficiency. The work in [72] 

developed a resource-scheduling mechanism using node-level deep Reinforcement learning in 

order to improve transmission reliability.  

2.3 Research Gaps 

In this section we present an overview of the limitations of the literature reviewed in this chapter. 

Specifically, the following research gaps can be pointed out. 

1. Requirement of complex lower-layer hardware support: Many of the approaches for 

learning-driven access layer protocols rely on complex lower-layer hardware support, such 

as time-slotting, time synchronization, carrier sensing etc. However, such sophistications 

may be absent in many low-cost sensor/IoT nodes. In addition, these complexities often 

result in high energy expenditures. 

2. Assumption of fully reliable learning observables: The current literature on learning-

enabled network performance management assumes that the observed environmental 

feedback are reliable for learning updates. However, in many practical networks, these 
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assumptions are untenable, because of the presence of noise, malicious agents, etc.  

3. Lack of a unified framework for handling multidimensional trade-off of throughput, delay 

and energy efficiency: The present approaches deal with efficient resource utilization for 

improving throughput while reducing access delay and energy expenditure. Nevertheless, 

these performance metrics are interdependent, and cannot be treated separately. There lacks 

a unified architecture that deals with the trade-off handling along these multiple 

dimensions.   

4. Scalability Issues: The current widely accepted learning approaches for wireless network 

protocols depend on a centralized arbitrator in which a learning hub maintains and updates 

network-level information, and learns the optimal transmission policies (i.e., protocol) for 

all network nodes. Apart from the fact that centralized learning puts heavy computation 

burden on the central server, such an approach requires additional energy and bandwidth 

overhead for communicating the policies and learning observables frequently upload 

network information and download transmission policies to and from the centralized 

learning entity. Another issue from implementability perspective is that for networks with 

multiple number of hops, learning errors get accumulated at each hop, raising questions on 

scalability. 

This thesis addresses the above gaps in the literature by accommodating decentralized learning, 

and removal of crucial assumptions of complex hardware capabilities, such as, carrier sensing, 

collision detection, and network time synchronization. The resulting framework is aimed for 

protocol synthesis in networks of low-cost and resource constrained sensor and IoT devices for 

which those assumptions are not expected to be valid. In addition, a multi-tier architecture is 

developed to consider a multi-dimensional trade-off handling between throughput, delay and 
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energy expenditure. With the goal of making the learning framework scalable and adaptive to 

changing networks, a contextual deep learning model is developed. A co-operative learning 

model ensures that learning errors do not accumulate over multiple hops in the network. In order 

to study the effect of unreliable learning observables, a setup is considered where certain 

malicious nodes attempt to degrade the performance of other nodes. Strategies are proposed for 

the non-malicious in order to defend against such attacks. 

2.4 Summary 

In this section, we reviewed the existing works that deal with network performance improvement 

using Reinforcement Learning and its variants. We summarize the specific problems that these 

papers aim at solving and a high-level approach that they follow to solve them. The key 

limitations of these works and the existing literature gaps are then encapsulated. Finally, we 

explain how this thesis fits in this research landscape and how the concepts developed here fills 

in the identified research gaps.  
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Chapter 3: Random Access MAC Protocol Synthesis for Fully 
Connected Topology 

In this chapter, we introduce the concept of network protocol synthesis using Reinforcement 

Learning. Towards the long-term goal of developing a general-purpose learning framework, we 

start with a basic scenario in which wireless nodes run a rudimentary MAC logic without relying 

on carrier sensing and other complex features from the underlying hardware. In other words, the 

developed mechanisms are suitable for very simple transceivers that are found in low-cost 

wireless sensors, Internet of Things (IoTs), and other embedded devices. The access problem is 

formulated as a Markov Decision Process (MDP) and solved using Multi-Agent Reinforcement 

Learning (RL) with every node acting as a distributed learning agent. The solution components 

are developed step by step, starting from a single-node access scenario in which a node agent 

incrementally learns to control MAC layer packet loads for reining in self-collisions. The strategy 

is then scaled up for multi-nodes fully connected scenarios by using more elaborate RL reward 

structures. It is shown that by learning to adjust MAC layer transmission probabilities, the 

protocol is not only able to attain the benchmark throughput, but unlike classical approaches, it 

can also retain that maximum throughput at higher loading conditions. Additionally, the 

mechanism is agnostic to heterogeneous loading while preserving that feature. It is also shown 

that access priorities of the protocol across nodes can be parametrically adjusted. Finally, it is 

also shown that the online learning feature of reinforcement learning is able to make the protocol 

adapt to time-varying loading conditions. 

3.1 Motivation 
 

The current best practice for programming MAC logic in an embedded wireless node is to 

implement known protocols such as ALOHA, Slotted-ALOHA, CSMA, and CSMA-CA (i.e., 



30 

WiFi, BT, etc.) depending on the available lower layer hardware support. The choice of such 

protocols is often driven by the heuristics and past experience of network designers. While such 

methods provide a standard method for network and protocol deployment, they do not necessarily 

maximize the MAC layer performance in a fair manner, especially in the presence of network 

and data heterogeneity. An example is when nodes without carrier sensing abilities run ALOHA 

family of protocols, their performance start degrading due to collisions when the application 

traffic load in the network exceeds an optimal level. Such problems are further compounded in 

the presence of various forms of heterogeneity in terms of traffic load, topology, and node-

specific access priorities. The key reason for such performance gap is that the nodes are statically 

programmed with a protocol logic that is not cognizant of time-varying load situations and such 

heterogeneities. The proposed framework allows wireless nodes to learn how to detect such 

conditions and change transmission strategies in real-time for maximizing the network 

performance, even under node-specific access prioritization.  

The key concept in this work is to model the MAC layer logic as a Markov Decision Process 

(MDP) [73] and solve it dynamically using Reinforcement Learning (RL) as a temporal 

difference solution [12] under varying traffic and network conditions. An MDP solution is the 

correct set of transmission actions taken by the network nodes, which act as the MDP agents. RL 

provides opportunities for the nodes to learn on the fly without the need for any prior training 

data. The developed mechanism allows provisions for heterogenous traffic load, network 

topology, and node-specific priority while striking the right balance between node level and 

network level performance. Learning adjustments to temporal variations of such heterogeneities 

and access priorities are also supported by leveraging the inherent real-time adaptability of 

Reinforcement Learning.   
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Figure 3.1: Network and data upload models for fully connected nodes. 

3.2 Network and Traffic Model  

The network model considered in this chapter is a multi-point to point sparse network. As shown 

in Fig. 3.1, N fully connected sensor nodes send data to a wirelessly connected base station using 

fixed size packets. Performance, which is node- and network-level throughputs, is affected by 

collisions at the base station caused by overlapping transmissions from multiple nodes. The 

primary objective of a learning-based MAC protocol is to learn a transmission strategy that can 

minimize collisions at the base station. It is assumed that nodes do not have carrier sensing 

abilities, and each of them is able to receive transmissions from all other nodes in the network. 

3.3 Modeling Protocol Synthesis as Markov Decision Process 

3.3.1 Markov Decision Process (MDP) 

An MDP is a Markov process [12] in which a system transitions stochastically within a state 

space {𝑆ଵ, 𝑆ଶ, 𝑆ଷ, . . . . . , 𝑆ே} as a result of actions taken by an agent in each state. When the agent 

is in state 𝑆௞ and takes an action 𝑎௞, a set of transition probabilities determine the next system 
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state 𝑆௞ାଵ. A reward, indicating a physical benefit, is associated with each such transition. 

Formally, an MDP can be represented by the tuple (𝒮, 𝒜, 𝑇, ℛ), where 𝒮 is the state space, 𝒜 is 

the set of all possible actions, 𝑇 is the state transition probabilities, and ℛ is the reward function. 

For any system, whose dynamic behavior can be represented by an MDP, there exists an optimal 

set of actions for each state such that the long-term expected reward can be maximized [74]. Such 

optimal action sequence is referred to as a solution to the MDP. 

3.3.2 Reinforcement Learning (RL) 

RL is a class of algorithms for solving an MDP [75] [76] without necessarily requiring an exact 

mathematical model for the system, as needed by the classical dynamic programming methods. 

As shown in Fig. 3.2, an agent interacts with its environment by taking an action, which causes 

a state-change. Each action results in a reward that the agent receives from the environment. Q-

Learning [13], a model-free and value-based reinforcement learning technique, is used in this 

work. Using Q-Learning, by taking each possible action in all the states repeatedly, an agent 

learns to take the best set of actions that represents the optimal MDP solution, which maximizes 

the expected long-term reward. Each agent maintains a Q-table with entries 𝑄(𝑠, 𝑎), which 

represents the Q-value for action 𝑎 when taken in state 𝑠. After an action, the Q-value is updated 

using the Bellman’s equation given by Eqn. (3.1), where 𝑟 is the reward received, 𝛼 is a learning 

rate, 𝛾 is a discount factor, and 𝑠ᇱ is the next state caused by action 𝑎: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ቂ𝑟(𝑠, 𝑎) + 𝛾 × max
∀௔ᇲ∈஺

𝑄(𝑠ᇱ, 𝑎ᇱ) − 𝑄(𝑠, 𝑎)ቃ                   (3.1) 
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Figure 3.2: Reinforcement Learning (RL) for network protocol MDP. 

3.3.3 Modeling Network Protocols as MDP 

We represent the MAC layer protocol logic using an MDP, where the network nodes behave as 

the learning agents. The environment is the network itself within which the nodes/agents interact 

via their actions. The actions in this case are to transmit with various probabilities and to wait, 

which the agents need to learn in a network state-specific manner so that the expected reward, 

which is throughput, can be maximized. A solution to this MDP problem would represent a 

desirable MAC layer protocol.  

State Space: The MDP state space for an agent/node is defined as the network congestion level 

as perceived by the agent. Congestion is coded with two elements, namely, inter-collision 

probability and self-collision probability. An inter-collision takes place when the collided 

packets at a receiver are from two different nodes. A self-collision occurs at a transmitter when 

a node’s application layer generates a packet in the middle of one of its own ongoing 

transmissions. It will be shown later as to how using RL, a node learns to deal with both self-

collisions and inter-collisions, thus maximizing the reward or throughput. 

Inter-collision and self-collision probabilities are defined by Eqns. (3.2) and (3.3) respectively. 

To keep the state space discrete, these probabilities are discretized in multiple distinct ranges.  
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𝑃ௌ஼ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑓 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 

(3.2) 

𝑃ூ஼ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 

(3.3) 

Action Space: As for the agents’ actions, two different formulations are explored, namely, fixed 

actions and incremental actions. With the first one, the actions are defined as the probabilities of 

packet transmissions by an agent/node. For the latter, the actions are defined as the change of the 

current transmission probability. Details about these two action space formulations and their 

performance are presented in Sections 3.5 and 3.6.  

Rewards: In a fully connected network, each RL agent/node keeps track of its own throughput 

and those of all other agents.  Using such information, an agent-i constructs a reward function as 

follows.   

 𝑅௜ = {𝜌×𝑆 + ෍ 𝜇௜ × 𝑠௜

∀௜

+ 𝜎 × (𝑓௜)} (3.4) 

S is the network-wide throughput (expressed in packets/packet duration, or Erlang) computed by 

adding measured throughputs for all nodes including node-i itself; 𝑠௜ is the throughput of node-

𝑖, and 𝑓௜ = − ∑ |𝑠௜ − 𝑠௝|∀௝ஷ௜  represents a fairness factor. A larger 𝑓௜ indicates a fairer system from 

node-i’s perspective. The coefficients 𝜌 and 𝜎 are learning hyper-parameters. The coefficient 𝜌 

provides weightage towards maximizing network-wide throughput, and 𝜎 contributes towards 

making the throughput distribution fairer. The node-specific parameter  𝜇௜ determines a media 

access priority for node-i. In addition to the baseline reward structure in Eqn. 3.4, a learning 

recovery protection is provided by assigning a penalty of 0.8 to all agents if the network-wide 

throughput S ever goes to zero.  
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3.4 Decentralized Multi-agent Reinforcement Learning MAC (DMRL-MAC) 

Using the state and action spaces deigned in Section 3.3, we develop an Multi-agent RL (MRL) 

system in which each network node acts as an independent RL agent. Decentralized agent 

behavior give rise to a medium access control protocol that is termed as DMRL-MAC. We used 

a special flavor of co-operative multi-agent RL, known as Hysteretic Q-learning [14]. 

Hysteretic Q-learning (HQL): HQL is used in a cooperative and decentralized multi-agent 

environment, where each agent is treated as an independent learner. An agent, without the 

knowledge of the actions taken by the other agents in the environment, learns to achieve a 

coherent joint behavior. The agents learn to converge to an optimal policy without the 

requirement of explicit communications. The Q-table update rule in Eqn. (3.1) is modified here 

as:  

𝛿 = 𝑟 + (𝛾) × max
∀௔ᇱ∈஺

𝑄(𝑠ᇱ, 𝑎ᇱ) − 𝑄(𝑠, 𝑎) 

𝑄(𝑠, 𝑎) ← ൜
𝑄(𝑠, 𝑎) + 𝛼 × 𝛿,   𝑖𝑓 𝛿 ≥ 0

𝑄(𝑠, 𝑎) + 𝛽 × 𝛿, 𝑒𝑙𝑠𝑒
  

 

(3.5) 

In a multi-agent environment, the rewards and penalties received by an agent depend not only on 

its own action, but also on the set of actions taken by all other agents. Even if the action taken by 

an agent is optimal, still it may receive a penalty as a result of the bad actions taken by the other 

agents. Therefore, in hysteretic Q-learning, an agent gives less importance to a penalty received 

for an action that was rewarded in the past. This is taken into consideration by the use of two 

different learning rates 𝛼 and  𝛽. This can be seen in the Q-table update rule in Eqn. 3.5, where 

𝛼 and  𝛽 are the increase and decrease rates of the Q values. The learning rate is selected based 

on the sign of the parameter 𝛿. The parameter 𝛿 is positive if the actions taken were beneficial 
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for attaining the desired optimum of the system and vice-versa. In order to assign less importance 

to the penalties, 𝛽 is chosen such that it is always less than 𝛼. However, the decrease rate 𝛽 is set 

to non-zero in order to make sure that the hysteretic agents are not totally blind to penalties. In 

this way, the agents make sure to avoid converging to a sub-optimal equilibrium.  

Hysteretic Q-learning is decentralized in that each agent maintains its own Q table. The size of a 

table in a node is independent of the number of nodes in the network, and it grows linearly with 

the number of its own actions. It is shown in [14] that with the right set of assumptions, the 

convergence behavior of hysteretic Q-learning is close to that of centralized learning. 

In the proposed DMRL-MAC protocol, each node in the network acts as a hysteretic agent, which 

is unaware of the actions taken by the other nodes/agents in the network. The actions are 

evaluated by the rewards assigned using Eqn. (3.4). 

3.5 Single Agent Reinforcement Learning 

Before delving into multi-nodes scenarios, we experiment with the key concepts of RL-based 

MAC behavior with a single node that executes MAC logic for sending data to a base station. 

We have implemented single-node pure ALOHA simulation experiments in which the MAC 

layer transmits a packet whenever it arrives from the application layer. Fig. 3.3 shows single-

node throughput comparison for ALOHA and RL-synthesized DMRL-MAC protocol. The 

maximum ALOHA throughput is around 0.68 Erlangs at an application layer load of 2.4 Erlangs. 

In the absence of inter-collisions with other nodes, throughput loss is solely due to the self-

collisions discussed above. The throughput reduces with load asymptotically (not shown) as 

increasing self-collisions eventually prevent any packets from being successfully transmitted. 
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Figure 3.3: Single node throughput under self-collisions; throughput comparison between 
ALOHA and RL-synthesized MAC Logic. 

 

On the other hand, if Q-Learning [13] is used for medium access following the reward 

formulation in Eqn. 3.4, the agent learns an appropriate action from action space specified in 

Section 3.3. The state space for single node RL-based MAC is obtained by discretizing the self-

collision probability into 6 equal discrete levels. The learning hyperparameters and other relevant 

Q-Learning parameters are summarized in Table 3.1. 

Table 3.1: Baseline experimental parameters 

No. of packets per 
epoch 

1000 

𝛼 0.1 
𝛾 0.95 
∈ 0.5 × 𝑒ି௘௣௢௖௛ ூ஽/ଶ଴଴ 
𝜌 1.0 
𝜎 0 
𝜇ଵ 0 
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Figure 3.4: Convergence plots for RL-based MAC logic: effective load and throughput for 
three different initial loads using fixed action strategy. 

As shown in Fig. 3.3, the RL-based MAC is able to achieve the maximum ALOHA throughput 

by learning to take the appropriate transmission actions from its available action space. However, 

unlike the regular ALOHA logic, the RL-based logic can maintain the maximum throughout even 

after the load exceeds 2.4 Erlangs, which is the optimal load for the ALOHA logic. This is 

achieved by adjusting the transmit probability so that the self-collisions are reduced. For 

ALOHA, if a node is in the middle of a transmission, it transmits the packets irrespective of its 

current transmission status. But with RL, the node can learn not to transmit when it is in the 

middle of an ongoing transmission. As a result, the effective load 𝑔∗ to the MAC layer is lowered 

compared to the original load 𝑔 from the application layer, thus maintaining the maximum 

throughout even when the application layer load is increased. Such learning provides a new 

direction for medium access, which will be explored further for multi-node networks later in this 

chapter. 
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Figure 3.5: Convergence plots for RL-based MAC logic: effective load and throughput for 
three different initial loads using incremental action strategy. 

As mentioned in Section 3.3, the RL-based MAC is implemented using two different action 

strategies by the RL agent: fixed action strategy and incremental action strategy. Figs. 3.4 and 

3.5 show the convergence plots for these two cases respectively. It can be observed that the 
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learning convergence is faster for the fixed action strategy than that of the incremental one. This 

is because the search space for the optimal transmit probability is smaller when fixed actions are 

used as compared to the incremental actions. This is achieved at the expense of accuracy because 

the granularity of the transmit probability for fixed action strategy is less than that of the 

incremental action strategy.  

 
Figure 3.6: Convergence plot for RL-based MAC logic in dynamic load scenario. 

As shown in Fig. 3.6, an important feature of the RL-synthesized MAC protocol is that it can 

adjust to dynamic traffic environments with time varying loads. When the traffic generated in the 

network changes, the protocol can adjust transmit probability accordingly, so that the optimal 

throughput is maintained. This is useful in scenarios in which application layer packet generation 

fluctuates over time. To summarize, the results in this section for a single-node scenario 

demonstrates the ability of a reinforcement learning-based MAC logic to attain the theoretically 

maximum throughput and to maintain that for higher application layer loads by controlling self-

collisions. Moreover, it can adjust to time-varying loading conditions. 
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3.6 Multi-nodes Fully Connected networks 

3.6.1 Performance in a Two-Node Network 

Unlike for the single node implementation in Section 3.5 which uses the classical RL logic, we 

implemented the Decentralized Multi-agent Reinforcement Learning MAC (DMRL-MAC) for 

multi-nodes networks. This implementation is based on Hysteretic Q-learning as described in 

Section 3.4. 

 
Figure 3.7: DMRL-MAC performance in a two-node network with homogeneous load. 

Another key augmentation over the single-node case is that the state space in multi-node scenario 

contains inter-collision probabilities in addition to the probabilities for self-collisions. In other 

words, DMRL-MAC uses a 2-dimensional discrete state space with 6 and 4 equal discrete levels 

of self-collision and inter-collision probabilities respectively. 
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Homogeneous Loading: As shown in Fig. 3.7, for the two-nodes homogeneous loading case, the 

pure ALOHA protocol can achieve a maximum nodal throughput of 𝑠ଵ = 𝑠ଶ = 0.135 Erlangs at 

the optimal loading 𝑔ଵ = 𝑔ଶ = 𝑔ො ≈ 0.4. The figure also shows that the DMRL-MAC logic is 

able to learn to attain that maximum throughput, and then able to sustain it for larger application 

layer loads (i.e., 𝑔). Like in the single-node case, such sustenance is achieved via learning to 

adjust the effective MAC layer load (i.e., 𝑔∗) by prudently discarding packets from the 

application layer. This keeps both self-collisions and inter-collisions at check for higher 

throughputs. 

 
Figure 3.8: Performance of DMRL-MAC in a 2-node network with homogeneous load and a 

total throughput maximization strategy. 
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Figure 3.9: Performance of DMRL-MAC in a two-node network with heterogeneous load 

[𝑠ଵ, 𝑠ଶ  are individual throughputs of nodes 1 and 2 respectively; S is the networkwide 
throughput; 𝑔ଵ, 𝑔ଶ  are load (in Erlangs) of nodes 1 and 2 respectively]. 

We investigated the performance of DMRL-MAC in a 2-node network with the objective of 

maximizing networkwide throughput, which is different from maximizing individual throughput 

in Fig. 3.7. This was achieved by setting 𝜇௜ = 𝜎 = 0 in Eqn. (3.4). As shown in Fig. 3.8, for 

traffic 𝑔ଵ = 𝑔ଶ < 𝑔ො, the individual node throughputs with DMRL-MAC mimic those of pure-

ALOHA. With higher load, however, in the case of DMRL-MAC, one of the node’s throughput 

goes to zero so that the other node is able to utilize the entire available throughput, which is the 

one-node throughput as shown in Fig. 3.8. This way, the network level throughput is maximized 
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at the expense of the throughput of one of the nodes which is chosen randomly by the underlying 

distributed reinforcement learning.  

 

Figure 3.10:  Convergence plots for DMRL-MAC effective load and throughput for three 
different initial heterogeneous loads [𝑠ଵ, 𝑠ଶ  are individual throughputs of node 1 and node 2 

respectively; S is the networkwide throughput; 𝑔ଵ, 𝑔ଶ  are loads (in Erlangs) from the 
application layers of node 1 and node 2 respectively; 𝑔ଵ

∗, 𝑔ଶ
∗ are effective  loads (in Erlangs) 

from the application layers of node 1 and node 2 respectively]. 

Heterogeneous Loading: Results in this section correspond to when the application layer data 

rates from different nodes are different. Fig. 3.9 shows the performance for three scenarios, 

namely, 𝑔ଵ < 𝑔ො, 𝑔ଶ = 𝑔ො, and 𝑔ଵ > 𝑔ො, where 𝑔ො is the effective load from the application layer, 

for which the optimal throughput is obtained for pure ALOHA. For a two-nodes network, the 

value of 𝑔ො is found out to be ≈ 0.4 Erlangs. Node 2’s application layer load 𝑔ଶ is varied from 0 

to 5 erlangs. The behavior of the system can be categorized into three broad cases. Case-I: when 

𝑔ଵ ≤ 𝑔ො 𝑎𝑛𝑑 𝑔ଶ ≤ 𝑔ො, DMRL-MAC mimics the performance of regular ALOHA. Case-II: when 

𝑔ଵ ≤ 𝑔ො, 𝑔ଶ > 𝑔ො or 𝑔ଵ > 𝑔ො, 𝑔ଶ ≤ 𝑔ො, the node with the higher load adjusts accordingly such that 

the optimal ALOHA throughput is maintained. Case III: when 𝑔ଵ > 𝑔ො 𝑎𝑛𝑑  𝑔ଶ > 𝑔ො, wireless 

bandwidth is fairly distributed, and both the nodes transmit such that the effective load boils 

down to 𝑔ො. Thus, unlike the regular ALOHA protocol, the DMRL-MAC can learn to maintain 
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the optimal ALOHA throughput for higher traffic scenarios. It does so via learning to reduce both 

self- and inter-collisions by discarding packets from the application layer.   

The convergence plots for the two-nodes network are shown in Fig. 3.10. It is observed that using 

the DMRL-MAC protocol, the nodes learn to adjust the transmit probability so that the optimal 

throughput is maintained, and bandwidth is fairly distributed even at higher loads with 

heterogeneous loads. 

 
Figure 3.11: Convergence plot for DMRL-MAC for dynamic load. 

As can be seen from Fig. 3.11, DMRL-MAC can learn to adapt as a response to changing network 

load over time. It can achieve and maintain the known optimal throughputs and fairly distribute 

the available bandwidth under heterogeneous loading conditions. 

Prioritized Access: One notable feature of the proposed DMRL-MAC is that node-specific access 

priorities can be achieved by assigning specific values of the coefficients 𝜇௜ in Eqn. (3.4). In Fig. 

3.12, the load-throughput plots are shown for two different values of 𝜇௜: 𝜇ଵ = 𝜇ଶ = 0 𝑎𝑛𝑑 𝜇ଵ =

2.0, 𝜇ଶ = 0.1. For 𝑔ଵ ≤ 𝑔ො 𝑎𝑛𝑑  𝑔ଶ ≤ 𝑔ො, DMRL-MAC mimics the performance of Pure ALOHA 

for any values of 𝜇௜. If  𝜇ଵ = 𝜇ଶ = 0, the system performs as ALOHA, that is, the individual 
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throughput for each node is equal to the ALOHA maximum. With increase in 𝜇ଵ, node 1 gets the 

priority and the individual throughput for node 2 approaches towards zero. This kind of 

prioritized access is useful when data from specific sensors are more critical compared to others, 

especially when the available wireless bandwidth is not sufficient. 

 
Figure 3.12: Load vs throughput plots for different values of 𝜇௜ (priority between the nodes) for 

a two-node network. 

3.6.2 Performance in Larger Networks 

Performance of DMRL-MAC for 3-nodes network is shown in Fig. 3.13. As shown for the 

simulated ALOHA performance, the maximum network wide throughput for a homogeneous 

load distribution occurs when 𝑔ଵ = 𝑔ଶ = 𝑔ଷ =  𝑔ො ≈ 0.25 Erlangs. That throughput is 𝑆 = 0.26, 

and that is with a fair distribution among the nodes. It can be observed that like the 1-node and 

2-nodes scenarios, DMRL-MAC can learn the theoretically feasible maximum throughput and 

maintain that at higher loads by reducing both self- and inter-collisions. 
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Figure 3.13: Performance of DMRL-MAC in a three-node network with homogeneous load. 

For large networks with 2 or higher node-count, the learning hyperparameters in Eqn. (3.4) are 

made empirically dependent on the network size N as follows. We set 𝜎 =
ଵ

ேିଵ
  because with 

larger N, both the number of contributing terms in the expression of 𝑓௜ in Eqn.  (3.4) and the value 

of 𝑓௜ itself go up. This effect is compensated by making 𝜎 (the coefficient of 𝑓௜) inversely 

proportional to the number of one-hop neighbors (which is 𝑁 − 1 for a fully connected network). 

After setting the value of 𝜎, the parameter 𝜌 in Eqn. (3.4) is determined empirically. It is observed 

that for a given 𝜎, a range of values of 𝜌 can be obtained for which the system converges. That 

range decreases with larger N. The relationship was experimentally found as: 𝜌 = 0.33−0.05×𝑁. 

Using this empirical relationship, the reward expression from Eqn. 3.4 can be rewritten as:  

 𝑅௜ = {(0.33 − 0.05 × N)×𝑆 + ෍ 𝜇௜ × 𝑠௜

∀௜

+
𝑓௜

𝑁 − 1
} (3.6) 



48 

 

Figure 3.14: Performance of DMRL-MAC in a three-node network with heterogeneous load 
[𝑠ଵ, 𝑠ଶ, 𝑠ଷ are individual throughputs of node 1, node 2 and node 3 respectively; S is the 

networkwide throughput; 𝑔ଵ, 𝑔ଶ, 𝑔ଷ are load (in Erlangs) from the application layers of node 1, 
node 2 and node 3 respectively]. 
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Performance under heterogeneous loads is analyzed and reported in Fig. 3.14. Three different 

situations are studied, namely, 𝑔ଵ ≤ 𝑔ො, 𝑔ଶ ≤ 𝑔ො, 𝑔ଵ ≤ 𝑔ො, 𝑔ଶ > 𝑔ො 𝑜𝑟  𝑔ଵ > 𝑔ො, 𝑔ଶ ≤ 𝑔ො, and 𝑔ଵ >

𝑔ො, 𝑔ଶ > 𝑔ො. In all these three cases, the throughput variation is studied by varying 𝑔ଷ. It can be 

seen that for 𝑔ଵ ≤ 𝑔ො, 𝑔ଶ ≤ 𝑔ො,  𝑎𝑛𝑑 𝑔ଷ ≤ 𝑔ො, DMRL-MAC mimics the performance of regular 

ALOHA protocol. When the load in any of these nodes goes higher than the optimal value (𝑔ො), 

learning enables the node to adjust transmit probability so that the optimal ALOHA throughput 

is maintained by limiting both types of collisions. 

 
Figure 3.15: Performance of DMRL-MAC for homogeneous load in different network sizes. 

Fig. 3.15 depicts the performance of larger networks with 4, 5, and 6 nodes. It shows that the 

desirable properties of DMRL-MAC in attaining the maximum ALOHA throughput and 

maintaining it at higher loads are still valid for such larger networks.  

However, as shown in Fig. 3.16, the convergence becomes increasingly slower as the networks 

grow in size. The convergence time distributions in fact show that the learning almost stops 

working for networks with 7 or more nodes. This issue of scalability is handled by modifying the 

RL model, which is explained in the next chapter. 
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Figure 3.16: Convergence behavior for different number of nodes (pmf). 

3.7 Protocol Synthesis for Partially Connected Topologies 

The primary goal of this chapter is to report the key concepts of RL based wireless medium 

access and its performance in fully connected networks. Implementation of DMRL-MAC for a 

partially connected network is different from the fully connected case in the following ways. A 

node in this case have no throughput information about other nodes that are 2-hops and beyond 

and have only partial information about the throughput of 1-hop neighbors. A node can monitor 

the number of transmissions from its 1-hop neighbors that are overlapping and non-overlapping 

with its own transmissions. In the absence of any network-wide information, a node running 

DMRL-MAC treats: i) its immediate neighborhood (i.e., 1-hop) as the complete network, and ii) 

the estimated throughput of its 1-hop neighbors computed from monitored non-overlapping 

transmissions as their approximated actual throughputs. 

Thus, the current framework of RL-based MAC protocol synthesis needs to be modified to make 

it generalized for mesh networks. More protocol refinements and experiments will be needed to 
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address learning in the absence of complete throughput information in the neighborhood. A more 

detailed study on this are presented in the next chapters. 

3.8 Summary 

In this chapter, the concept of protocol synthesis using multi-agent Reinforcement Learning is 

introduced. With the goal of making it more generalized and scalable, the framework is 

demonstrated here for fully connected networks with sparse connectivity. The learning-

synthesized random access protocol (DMRL-MAC) allows the nodes to control the transmit 

probability so that the inter-collisions and self-collisions are reduced. As a result, the nodes can 

attain the benchmark ALOHA throughput and sustain it even for a higher traffic in the network. 

An important feature of this protocol is that it can deal with heterogeneity in the network, that 

may arise from three aspects: traffic conditions, performance requirement and topology. DMRL-

MAC also allows the user to assign node specific priorities in the network based on QoS needs. 

Moreover, learning allows the nodes to self-adjust in a dynamic network environment with a 

time-varying traffic. 

The immediate next step here would be to build on the current study and implement the learning-

enabled protocol in a network with arbitrary topology. This is explored in the next chapter, which 

uses the protocol synthesis concept for developing a random-access protocol scalable for any 

topology with any network size and degree.  
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Chapter 4: MAC Protocol Synthesis for Mesh Networks using RL 
with Localized Information Sharing  

In the previous chapter, we introduced the concept of network protocol synthesis using 

Reinforcement Learning. The idea of RL-enabled protocol synthesis was developed for fully 

connected networks with random access MAC arrangements. However, the proposed approach 

lacks generalizability in the sense that it relies on global network information which restricts its 

application for partially connected networks. In addition, the RL-synthesized DMRL protocol in 

chapter 3 suffers from scalability issues. That is, the performance of the MAC protocol degrades 

with increase in network size and degree.  

In order to overcome these limitations and to make the framework generalized, we extend the 

concept of network protocol synthesis for arbitrary mesh networks. Building on the concept 

introduced in the previous chapter, we develop a decentralized learning approach that gives the 

desired performance even for partially connected topologies and that scales with network size 

and degree. The core objective here is still to make the nodes learn policies that can maximize 

network performance in terms of throughput and fairness. However, the RL-based protocol 

synthesis approach proposed in this chapter can work with local network information availability 

in partially connected mesh topologies and also in networks with large size and degree. 

In this chapter, a decentralized, multi-Agent RL framework with localized network information 

is used as the basis for protocol synthesis. Decentralized behavior makes the nodes independently 

learn optimal transmission strategies without having to rely on full network level information 

and direct knowledge of the other nodes’ behavior. The nodes learn to minimize packet collisions 

such that optimal throughput can be attained and maintained for loading conditions that are higher 

than what the known benchmark protocols (such as ALOHA) for IoT devices without complex 
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transceivers, while ensuring a fair share of wireless bandwidth even in heterogeneous traffic and 

topological conditions. 

4.1 Motivation 

Protocol design in wireless networks, as explained in chapter 1, is mostly driven by heuristics 

and past experience of network designers. A notable drawback of this design approach based on 

available standardized protocols is that the resulting logic often underperforms in application-

specific non-standard scenarios caused by topology- and load-heterogeneity, and other factors. 

For example, with baseline ALOHA MAC, the throughput of a network starts falling at higher 

loads due to collisions. The situation is compounded in the presence of heterogeneity. In a 

network with arbitrary mesh topology, some nodes may be in more disadvantageous position as 

compared to others in terms of the collisions they experience. As a result, those nodes receive 

less share of the available wireless bandwidth. The root cause of these limitations is the fact that 

the nodes in the network are statically programmed with standardized protocol logic, and they 

lack the flexibility that can result in abilities to learn optimal behavior in specific scenarios. 

In chapter 3, we introduced the concept of RL-enabled protocol synthesis for random-access 

MAC that can partially address these challenges for transceivers used in low-cost IoT devices 

and wireless sensor nodes. With the long-term objective of making the learning approach 

generalized, we started with an initial scenario of a network with its nodes running the simplest 

MAC logic without relying on complex and energy-expensive lower-level capabilities such as 

carrier sensing.   

The key idea behind Reinforcement Learning (RL) for protocol design [24] is to formulate the 

protocol layer logic in each network node as a Markov Decision Process (MDP) and use RL as a 
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temporal difference method to solve the MDP. The solution of this MDP is a set of transmission 

actions taken by individual nodes, thus resulting in a network protocol. However, in decentralized 

RL, a key requirement is that an agent (i.e., a network node) needs to have as much network-

level information as possible in order to avoid collisions and share wireless bandwidth in a fair 

manner. This becomes a problem in a partially connected network (as observed for the 

mechanism developed in Chapter 3) in which the information availability to a node is usually 

limited only to its immediate neighborhood.  

An obvious solution to this problem is to employ centralized learning in which a learning hub 

maintains and updates network-level information, and learns the optimal transmission policies 

(i.e., protocol) for all network nodes. Apart from the fact that centralized learning is 

computationally expensive, such an approach requires individual nodes to frequently upload 

network information and download transmission policies to and from the centralized learning 

entity. Hence, this is not suitable for use in sensor and IoT nodes with limited networking 

resources and energy budgets. In this chapter, we develop an alternative decentralized approach 

that can work with partial/local network information availability in partially connected networks. 

Each network node acts as a learning agent, and they learn transmission policies using localized 

network information in a completely decentralized manner. The strategy is particularly scalable 

for topologies with partial connectivity where nodes do not have complete network level 

information. The approach is built on the model developed in chapter 3, which assumed full 

network-level information availability for fully connected and sparse networks. In this chapter, 

the decentralized learning mechanism is developed such that the RL agents (i.e., network nodes) 

rely only on the localized network information available in their immediate neighborhoods. It is 

shown that a decentralized learning model is feasible for training MAC layer logic to attain fair 



55 

and near-benchmark performance in the presence of loading and topological heterogeneities. It 

is also shown how the learning paradigm is scalable for large networks that give rise to additional 

levels of heterogeneities. 

 
Figure 4.1: Network and data sharing model for (a) generalized, (b) fully connected and (c) 

partially connected mesh topology. 

4.2 Network and Traffic Model 

The proposed learning framework is developed and validated for general purpose multi-point to 

multi-point networks with arbitrary mesh topologies. In line with our initial objective of applying 

learning for low-complexity IoT/Sensor networks, nodes in that mesh topology are assumed to 

be without carrier sensing abilities. For all the networks in Fig. 4.1, the solid lines represent 

physical node connectivity, and the data flow is represented by the dashed lines. For the linear 

topology in Fig. 4.1 (a), node ′𝑗′ transmits packets for which nodes ′𝑖′ and ′𝑘′ are intended 
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receivers. Similarly, nodes ′𝑖ᇱ and ′𝑘′ send packets destined to node ′𝑗′. The MAC layer traffic 

model is such that application layer packets generated in node ′𝑗′ is broadcasted to all its directly 

connected one-hop neighbor nodes. The traffic generation model in node ′𝑗′ is modelled as a 

Poisson process with mean 𝑔௝ Erlang. It should be noted that in the partially connected topologies 

in Figs. 4.1 (a) and 4.1(c), individual nodes possess only topologically local network state 

information. For fully connected topologies (special case) such as the one in Fig. 4.1 (b), 

however, each network node possesses state information about the entire network. As will be 

shown later, the availability of network information is a strong determinant for the design and 

performance of the proposed learning framework. 

A specific goal of the proposed paradigm is to enable protocol learning in the presence of 

topological heterogeneity in arbitrary mesh topologies such as the one shown in Fig. 4.1 (c). For 

example, node-8 in that topology suffers from more packet collisions as compared to the other 

network nodes, thus naturally leading to a smaller share of allocated bandwidth.  One objective 

of the proposed learning is to implement fairness in that node-8 and other such topologically 

disadvantaged nodes should be able to receive a fair share of available bandwidth in spite of their 

topologically disadvantageous positions.   

The network model incorporates a control information piggybacking mechanism for sharing 

relevant network state information within the two-hop neighborhoods of each individual node. 

Such state information is used by the decentralized RL agents within each node. Note that 

piggybacking over data packets allows information sharing without having to rely on higher layer 

protocols beyond two-hops.  
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4.3 Decentralized MAC Learning with Localized Information  

The key concept is to model MAC layer logic as a Multi-Agent Markov Decision Process 

(MAMDP), and then use Hysteretic Q-Learning as a temporal difference solution method to find 

optimal transmission policies as the target MAC protocol. The resulting protocol synthesized 

using distributed reinforcement learning and localized network information is termed as 

Decentralized MAC Learning with Localized Information (DMLLI). 

4.3.1 Learning using Two-hop Neighborhood Information 

In a shared cooperative learning environment, it is desirable for each agent to have access to as 

much information as possible. However, in the presence of partially connected topologies and 

unreliable links, the available network information is usually limited. A distinctive feature of the 

proposed DMLLI is that the learning of individual agents (i.e., nodes) do not rely on the global 

network information. Instead, the reinforcement learning reward structure is designed such that 

only up to two-hop localized network information is used. Such information from two-hop 

neighborhood is gathered using an in-band control mechanism [77], [78], where the throughput 

information is shared by piggybacking it within the MAC layer Protocol Data Units (PDUs).  

 
Figure 4.2: MAC layer PDU from node 𝑖. 

The rationale behind using up to two-hop information is that transmissions from nodes that are 

up to two hops apart can result in collisions at a receiver node. Therefore, the throughput of a 

node can potentially be affected by all nodes that are within its two-hop neighborhood. Following 

is a description of the network information sharing model used in this paradigm. 
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Consider a scenario where 𝑠௜ is the current throughput of node 𝑖 and 𝑠௜→௝ is the part of throughput 

of node 𝑖  for which the intended receiver is a one-hop neighbor node 𝑗. Node 𝑗 computes 𝑠௜→௝ 

by keeping track of all the non-overlapping transmissions from 𝑖 to 𝑗. Node 𝑗 then periodically 

piggybacks 𝑠௜→௝ information within its outgoing MAC layer PDUs. Node 𝑖 then computes its 

own throughput s௜ = ∑ 𝑠௜→௝∀௜ , where j represents all its 1-hop neighbors. Node 𝑖 then periodically 

piggybacks its own throughput 𝑠௜ and its one-hop neighbors’ throughput 𝑠௝ in its outgoing MAC 

layer PDUs. A typical MAC layer PDU from node-i is shown in Fig. 4.2.  

The procedure above is periodically executed across all the two-hop neighbor nodes. In this way, 

the throughput information of a node is shared within two-hop neighborhoods. This localized 

information will be used to compute the RL reward functions in the learning framework.  

It is to be noted that the concept of localized network information visibility for an agent (i.e., 

node) is different from the traditional Partially Observable Markov Decision Process (POMDP) 

[79], [80]. In POMDPs, the environment states are not completely visible to the agents. On the 

contrary, in this work, an agent has full access to the knowledge of its own state defined by its 

one-hop congestion status, and up to two hop information that affects collisions caused by its 

own transmissions. It is that the agent does not have access to the environment status of other 

agents that are part of the MAMDP process. 

4.3.2 Reinforcement Learning Components 

The RL environment is represented by the wireless network itself, and each node runs an 

independent learning agent. The working model for a 2-node network is depicted by the 

schematic in Fig 4.3. The incoming application layer load for nodes 𝑁ଵ 𝑎𝑛𝑑 𝑁ଶ are 𝑔ଵ 𝑎𝑛𝑑 𝑔ଶ 

(i.e., in Erlang) respectively. The packet arrival is a random process with Poisson distribution 
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with mean 𝑔௜ , 𝑖 = 1,2. Each learning epoch consists of the transmission of 𝑁் packets with 

constant packet size. In each epoch, the learning-based MAC logic learns to set the packet 

transmission probability so as to reduce packet collisions. Such learning happens at an epoch 

level temporal granularity by iterating the transmission probabilities on an epoch-by-epoch basis. 

 
Figure 4.3: Schematic diagram for the working model of a 2-node network. 

Action Space: In this RL framework, the actions taken by the MAC layer agent in a node is the 

transmit probability of a packet arrived from the application layer. To make the action space 

discrete, the transmit probabilities are discretized into a fixed number of possible actions. The 

action space for a node 𝑖 is defined as: 𝐀𝐢 = {𝑎ଵ
௜ , 𝑎ଶ

௜ , … . , 𝑎|𝒜|
௜ }, where 𝑎௞

௜ = Prob [an application 

layer packet for node 𝑖 is transmitted]= 𝑃௧௫
௜ =

௞

|𝒜|
. As a result of choosing such an action, the 

application layer load 𝑔௜ for node 𝑖 is modulated to get the effective load 𝑔௜
∗, such that 𝑔௜

∗൫𝑎௞
௜ ൯ =

௞

|𝒜|
× 𝑔௜. This effective load 𝑔௜

∗ is the actual load with which packets are inserted into the wireless 

channel. 

State Space: Environment state is defined by the local network congestion level as seen by a node 
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(i.e., the agent). The state at a learning epoch 𝑡 is defined as the probability of collisions 

experienced by the node during that epoch. Since the learning is decentralized, each node 

maintains its own notion of state. Like actions, to keep the state space discrete, the states are 

discretized into fixed number of uniform discrete levels in the range [0, 1]. The notion of state of 

a node 𝑖 at an epoch 𝑡 is denoted as 𝑠̂௜(𝑡) ∈ 𝒮መ ௜ = {𝑠̂ଵ
௜ , 𝑠̂ଶ

௜ , … … , 𝑠̂
|𝒮መ ೔|
௜ }, where 𝑆መ௜ is the state space 

for node 𝑖. Each state 𝑠̂௞
௜  represents a level of collision in the network as perceived by node 𝑖. 

The collision level is quantified using probability of packet collisions of a node 𝑖 𝑎𝑠 𝑃௖
௜ , which is 

defined as:  

𝑃஼
௜ =

Number of packet collisions for node 𝑖

Number of transmitted packets by node 𝑖
=

𝑁௖
௜

𝑁௧௫
௜

,  

where Number of transmitted packets for node 𝑖 ൫𝑁௧௫
௜ ൯ 

= Number of application layer packets arrived in the  

epoch - Number of dropped packets by node 𝑖 

= 𝑁்
௜ − 𝑁஽

௜  

Therefore,  𝑃஼
௜ =

ே೎
೔

ே೅
೔ ିேವ

೔  

The states are mapped to collision probabilities as follows. For node 𝑖, at epoch ′𝑡ᇱ, the perceived 

state is 𝑠̂௞
௜ (𝑡), 𝑖𝑓 ൛0.2(𝑘 − 1) < 𝑃஼

௜ (𝑡) ≤ 0.2𝑘ൟ, where 𝑃஼
௜ (𝑡) =

ே೎
೔(௧)

ே೅
೔ (௧)ିேವ

೔ (௧)
. 

On simplifying further, we observe that 𝑁஽
௜ (𝑡) = 𝑃௧௫

௜ (𝑡) × 𝑁்
௜ (𝑡) 

Hence, 𝑃஼
௜ (𝑡) =

ே೎
೔(௧)

ቀଵି௉೟ೣ
೔ (௧)ቁ×ேವ

೔ (௧)
 

Rewards: The reinforcement learning reward function for node 𝑖 is designed based on its 

observables, viz, the information about its own throughput (𝑠௜) and its two-hop neighbors’ 
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throughputs (𝑠௝). Here 𝑗 represents i’s up to two-hop neighbor nodes. The quantities 𝑠௜ and 𝑠௝ are 

expressed in packets per packet duration or Erlangs. Node 𝑖 computes its local two-hop 

neighborhood throughput as 𝑆௜ = 𝑠௜ + ∑ 𝑠௝∀௝ . A temporal gradient-based reward function is used 

as follows. Since the primary objective is to maximize throughput, a high positive reward is 

assigned for a positive gradient of the throughput and vice-versa. The temporal gradient of the 

localized throughput of node 𝑖 is computed as ∆𝑆௜ = 𝑆௜(𝑡) − 𝑆௜(𝑡 − 1). Along with throughput 

maximization, this mechanism also considers node-level throughput distribution fairness, which 

is captured by a fairness coefficient computed as: 

𝑓௜(𝑡) = − ෍ |(1 − 𝜃௜) × 𝑠௜(𝑡) − (1 − 𝜃௞) × 𝑠௞(𝑡)|

∀௞ஷ௜

 (4.1) 

𝑘𝜖 𝑜𝑛𝑒ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑖. 

The quantity 𝜃௜ represents priority coefficient of node 𝑖. A larger value of 𝑓௜ represents a fairer 

system. For completely fair bandwidth distribution, 𝜃௜ = 0, ∀𝑖. A discrete time derivative of 

throughput fairness is computed as ∆𝑓௜ = 𝑓௜(𝑡) − 𝑓௜(𝑡 − 1). Using the throughput and fairness 

gradients, the temporally sensitive reward structure is defined by Eqn. 4.2 as follows.  

𝑅௜(𝑡) = ൜
+50, ∆𝑆௜ − 𝜖௦ > 0, ∆𝑓௜ − 𝜖௙ > 0  

−50,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.2) 

In this equation, the coefficients 𝜖௦ and 𝜖௙ are used so that the agents do not get stuck in a near 

optimal solution. The coefficient 𝜖௦ is kept fixed at 0.005 throughout the experiments, whereas 

the coefficient 𝜖௙ is dependent on the size of the network. In addition to the reward from Eqn. 

(4.2), a learning recovery protection is provided by assigning a penalty (i.e, -100) in case the 

throughput 𝑠௜ goes to zero. 
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4.4 Experiments and Results 

The performance of proposed DMLLI-enabled MAC is evaluated for networks with generalized 

arbitrary mesh topologies. The performance is then compared with that of a known benchmark 

MAC (i.e., pure ALOHA [81], [82]) that does not rely on inter-node time-synchronization and 

hardware-level carrier sensing. The baseline learning hyperparameters for the DMLLI-MAC are 

tabulated in Table 4.1. 

Table 4.1: Baseline experimental parameters 

No. of packets per epoch 1000 
|𝒜| 20 
|𝒮| 5 
𝛼 0.9 
𝛽 0.1 
𝛾 0.95 
∈ 1.0 × 𝑒ି௘௣௢௖௛ ூ஽/ିଶହ଴଴ 

 

Figure 4.4: Maximum deviation (%) and variance of throughput for varying simulation 
duration. 
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The simulation durations for the conducted experiments were chosen based on the following 

statistical analysis. Fig. 4.4 shows the statistical variation of results obtained from different runs 

of experiments on a large (i.e., 25-nodes) partially connected network. Fig. 4.4 shows the 

statistical variation of results obtained from different runs of experiments on a large (i.e., 25-

nodes) partially connected network. It shows the variance and maximum deviation from mean of 

the experimental results over 100 runs for varying simulation duration. Variance of the dataset 

 
Figure 4.5: 95% confidence interval and mean throughput for (a) 3000 τ simulation duration (b) 100 

τ simulation duration. 
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decreases with increase in simulation duration, and it asymptotically tends to zero for about 

3000 𝜏 , where 𝜏 is packet duration. Similar trend is observed for the plot of percentage of 

maximum deviation from mean value and is within 9.27% for a simulation duration of 3000 𝜏. 

Figs. 4.5 (a) and (b) demonstrate the 95% confidence intervals and the corresponding mean 

throughput values for the 25-nodes partially connected network for simulation duration 100 τ and 

3000 τ respectively. As expected, the confidence interval narrows down with increase in the 

simulation duration. Based on the above statistical analysis, 3000 𝜏 was chosen to be the 

simulation experiment duration for all reported results in the chapter. 

 
Figure 4.6: DMLLI performance in a two-node network [𝑔ଵ, 𝑔ଶ  are load from the application 

layers of nodes 1 and 2 respectively; 𝑠௜ , 𝑆 are node-level and networkwide throughput]. 

4.4.1 Throughput Maximization with Fair Bandwidth Distribution 

4.4.1.1  Fully connected Topology 

Two-nodes Network: To understand the workings of the learning mechanism and its impacts on 

network dynamics, we start with a simple 2-node network. For enabling fairness, the priority 
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coefficients 𝜃௜ and 𝜃௞ in Eqn. (4.1) are set to zero. Fig. 4.6 depicts DMLLI’s performance in 

comparison to ALOHA for homogeneous loads from both the network nodes. For ALOHA, 

throughput reaches the maximum for an optimal load, and then it falls. This is because of 

increased packet collisions at higher loads. Observe that with DMLLI, the learning-enabled 

MAC, the nodes learn to transmit packets with the optimal transmit probability such that: a) the 

maximum throughput reaches to the same observed for benchmark ALOHA, and b) packet 

collisions are kept under check so that the throughout does not go below the achieved maximum 

even after the load is increased. In other words, the nodes learn how to achieve the benchmark 

maximum, and unlike the benchmark protocol, it learns how to maintain that maximum even for 

high traffic loads. 

 
Figure 4.7: Convergence plots for actions, fairness coefficients, individual throughput, and 

network throughput. 

The RL system dynamics in terms of actions, individual node throughput (𝑠ଵ𝑎𝑛𝑑 𝑠ଶ), fairness 

coefficients (𝑓ଵ𝑎𝑛𝑑 𝑓ଶ), and networkwide throughput (S) are presented in Fig. 4.7. The 
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convergence plots are shown for the case when the incoming application layer load (𝑔ଵ = 𝑔ଶ =

1.0) is higher than the optimal value (𝑔ଵෞ = 𝑔ଶෞ ≈ 0.4), which represents the individual node-level 

load at which the benchmark ALOHA attains its maximum throughput.  It can be observed from 

Fig. 4.7 that the nodes learn to take actions with action ID = 4 most frequently after convergence. 

This particular action corresponds to the transmit probability of 𝑃௧௫ = 0.4. The actions for both 

the nodes oscillate a bit around the optimal action, because of the stochasticity involved in action 

selection while learning. As a result of these oscillations from action selection as well as the 

stochasticity of packet generation, the throughput is slightly less than the ALOHA throughput 

for scenarios when the incoming application layer traffic load is lower than the optimal value 

(Fig. 4.6). Hence, the maximum throughput is attained at a higher load for DMLLI as compared 

to ALOHA. 

 
Figure 4.8: Performance of DMLLI in a two-node network with heterogeneous load [𝑠ଵ, 𝑠ଶ  are 

individual throughputs of node 1 and node 2 respectively; S is the networkwide throughput; 
𝑔ଵ, 𝑔ଶ  are load (in Erlangs) from the application layers of node 1 and node 2 respectively]. 

Another observation from Fig. 4.7 is that the fairness coefficients for both the nodes approach to 

zero, indicating that the bandwidth distribution becomes fairer as learning progresses. The 
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network throughput (𝑆) is also seen to converge to a value of 0.27 Erlang, which is close to the 

maximum ALOHA-based network throughput of 0.273. 

The learning-based framework in DMLLI protocol also allows the nodes to handle heterogeneous 

traffic as shown in Fig 4.8. Figs. 4.8 (a) shows the performance when node-1’s application layer 

load 𝑔ଵ is less than the optimal load (𝑔ොଵ), and Fig. 4.8 (b) is when 𝑔ଵis greater than 𝑔ොଵ. The key 

observation in both these cases is that in spite of the load heterogeneities, the nodes learn the 

optimal transmit probabilities such that the bandwidth is fairly distributed. The throughput of 

node 1 goes down with an increase in the load in node 2 in case of ALOHA. However, in DMLLI, 

the deviation in throughput among the nodes is significantly reduced. Moreover, like the case 

with homogeneous load distribution, the throughput of both nodes (and hence the network-wide 

throughput) with heterogeneous load is maintained for higher traffic as well. 

 
Figure 4.9: Performance of DMLLI in a dynamic environment. 

The online learning abilities of the underlying RL framework allows the nodes to handle time-

varying traffic in DMLLI as shown in Fig 4.9. Whenever the application layer load changes, the 

nodes learn to adjust to the new network traffic conditions and maintain the optimal throughput. 
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Initially, the application layer load in the network is 𝑔ଵ = 𝑔ଶ = 1.0, and the network throughput 

(S) converges to the optimal value of 0.27. There are changes in the incoming application layer 

load indicated by the dotted vertical lines, where the load changes to 𝑔ଵ = 𝑔ଶ = 0.1  and 𝑔ଵ =

𝑔ଶ = 1.0 respectively. It is observed that the RL framework allows the nodes to maintain the 

optimal throughputs even in these dynamic loading situations. 

 
Figure 4.10: Load-Throughput for 4-node fully connected network; 𝑠௜ , 𝑔௜ are the throughputs 

and loads respectively for node 𝑖, 𝑆 is the network throughput. 

Large Networks: The load-throughput plots for homogeneous load distribution in a 4-node fully 

connected network is shown in Fig. 4.10. As in the 2-node case, the nodes here learn to attain the 

maximum possible (i.e., with ALOHA) throughput and to maintain it for higher loading 

conditions. Moreover, the bandwidth is distributed fairly among all the nodes.  

We have analyzed the performance for larger networks with 12, 16 and 25 nodes in Figs. 4.11 

(a), (b) and (c) respectively. These figures show that the desirable properties of DMLLI in 

attaining the maximum throughput and holding it for higher loads while maintaining fair 

bandwidth distribution continue to be valid for such large networks. The maximum throughput 
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of DMLLI is within a range of [0, 1.0]% of the maximum throughput attained by ALOHA in all 

these networks. The coefficient of variation among the nodes’ throughput is measured to within 

the range of [0.18, 0.23]. This verifies the scalability of the protocol with network size. 

 
Figure 4.11: Performance of DMLLI-MAC in networks with (a) 12 nodes, (b) 16 nodes and (c) 

25 nodes with heterogeneous load distribution [𝑠௜  denotes individual throughputs; S is the 
network-wide throughput; 𝑔  denotes load (in Erlang) from the application layers]. 

It is to be noted here that the threshold coefficient 𝜖௙ defined in the reward function in Eqn. (4.2) 
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is assigned a value of 0 for networks with less than 12 nodes and a value of -0.025 for larger 

networks with more than or equal to 12 nodes. The logic behind using a threshold dependent on 

the network size can be explained using the convergence plots shown in Fig. 4.12. The figure 

shows the convergence of individual node throughput and network-wide throughput for a fully 

connected network with 12 nodes. It can be seen that even after convergence, there are 

oscillations (spikes) for the individual node throughput.  These oscillations are the result of the 

stochasticity in action selection and Poisson distribution-driven packet generation of the system. 

As a result of these sudden impulses in the individual throughput, the fairness coefficients of the 

neighboring nodes go down penalizing these nodes. Thus, the neighboring nodes get penalized 

even for optimal transmission strategies. Hence, a threshold of −0.025 prevents the nodes to 

settle in a non-optimal solution. 

 
Figure 4.12: Convergence plots for individual node throughput and network-wide throughput 

for a 12 node fully connected network. 

4.4.1.2  Partially Connected Topology 

Unlike in the fully connected topologies discussed so far, in partially connected topologies as 

shown in Fig 4.1 (c), network information sharing in restricted up to only 2-hop neighborhoods.  
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3-Nodes Network: We begin our analysis with a simple 3-node network topology as shown in 

Fig. 4.13. The figure compares the performance of DMLLI with benchmark ALOHA for 

homogeneous load distribution. ALOHA throughput attains the maximum (i.e., 𝑠ଵ = 𝑠ଶ = 𝑠ଷ ≈

0.08), when the optimum loads  𝑔ଵෞ = 𝑔ଶෞ = 𝑔ଷෞ ≈ 0.2, and then decreases asymptotically due to 

increased packet collisions. In DMLLI, the nodes learn the optimal transmission strategy so that 

the number of collisions are reduced, and like the fully connected scenarios, the maximum 

throughput is maintained for higher network loading conditions. 

 
Figure 4.13: Load vs Throughput for 3-node linear network; 𝑠௜ , 𝑔௜ are the individual 

throughputs and loads for node 𝑖; 𝑆 is the network throughput. 

DMLLI is also able to support inter-node bandwidth distribution fairness for partially connected 

networks. With benchmark ALOHA, throughput is unevenly distributed in the presence of load 

heterogeneity. However, with DMLLI, the nodes learn in a decentralized manner to adjust their 

individual transmission probabilities such that the variation across individual throughputs is 
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greatly reduced. That is even when the generated traffic loads across the nodes are heterogeneous. 

 
Figure 4.14: Performance of DMLLI in a 3-node linear network with heterogeneous load. 

Such fairness is achieved by learning to maximize the fairness coefficient (𝑓௜) in the reward 

function stated in Eqn. 4.2. This behavior of DMLLI is explained in Fig. 4.14, which shows the 

load-throughput plots in the presence of heterogeneous load. In each of the three plots, the loads 

from node-1 (𝑔ଵ) and node-2 (𝑔ଶ) are kept fixed at different values, and the node-level throughput 

variations are observed for varying load from node-3 (𝑔ଷ). These represent the scenarios: 𝑔ଵ ≤

𝑔ො, 𝑔ଶ ≤ 𝑔ො, 𝑔ଵ ≤ 𝑔ො, 𝑔ଶ > 𝑔ො 𝑜𝑟  𝑔ଵ > 𝑔ො, 𝑔ଶ ≤ 𝑔ො, and 𝑔ଵ > 𝑔ො, 𝑔ଶ > 𝑔ො. The RL agents in the nodes 
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learn to adjust the transmit probabilities such that the available wireless bandwidth is fairly 

distributed. As before, the graph also shows how, unlike ALOHA, the throughout is held for 

higher network loads. 

 
Figure 4.15: Performance of DMLLI in a dynamic environment. 

Fig. 4.15 shows the online learning ability of DMLLI in order to adjust to time-varying loading 

conditions. Initially, the application layer load in the network is 𝑔ଵ = 𝑔ଶ = 𝑔ଷ = 1.0, for which 

the network throughput (S) converges to the optimal value of 0.24. Subsequently, the load 

changes to 𝑔ଵ = 𝑔ଶ = 𝑔ଷ = 0.1  and 𝑔ଵ = 𝑔ଶ = 𝑔ଷ = 0.8 at two different points in time as 

indicated by the dotted vertical lines. It is observed that the RL framework allows the nodes to 

adjust transmission probabilities at those two change-points and maintain the optimal 

throughputs.  This is achieved by the nodes learning to transmit packets with an optimal transmit 

probability according to the incoming application layer traffic. 



74 

 
Figure 4.16: Performance of DMLLI in partially connected networks with 16 nodes [𝑠௜  denotes 
individual throughputs; S is the network-wide throughput; 𝑔  denotes load (in Erlang) from the 

application layers]. 

Large Networks: Experiments were also performed with large partially connected networks with 

16 and 25 nodes arranged in toroidal topologies as shown in Figs. 4.16 and 4.17. Contrary to the 

fully connected case, the information availability for a node is limited only to its two-hop 

neighbors. The throughput results in Figs. 4.16 and 4.17 validate DMMLI’s learning abilities to 

attain the benchmark throughput (i.e., of pure ALOHA), and to maintain it for higher loading 

situations in large networks. The ability to fairly share the network bandwidth is also observed 

in these figures. The coefficient of variation among the nodes’ throughput is within a range of 

[0.23, 0.27] and [0.21, 0.29] for the 16-node and 25-node networks, respectively. 
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Figure 4.17: Performance of DMLLI in partially connected networks with 25 nodes [𝑠௜  denotes 
individual throughputs; S is the network-wide throughput; 𝑔  denotes load (in Erlang) from the 

application layers]. 
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Figure 4.18:  Performance of DMLLI in heterogeneous mesh networks with 12 nodes. 

Heterogeneous Mesh Topologies: Performance of DMLLI is analyzed in networks with arbitrary 

mesh topologies. The major drawback of using the ALOHA family MAC logic in these networks 

is that the throughput is not fairly distributed because of the inherent topological heterogeneities. 

For example, in the 12-nodes mesh topology in Fig. 4.18 (b), node 8 is in a topologically 

disadvantageous position as compared to the rest of the nodes, and hence, its throughput with 
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ALOHA and its derivatives is less than the other nodes. The situation compounds with increase 

loading conditions. The learning mechanism in DMLLI is shown to address such unfairness. 

Figs. 4.18 (a) and (b) compare the performance of DMLLI and pure ALOHA in two 12-node 

arbitrary mesh networks with maximum degrees of 3 and 5 respectively. It is observed that with 

DMLLI, the nodes learn to adjust their individual transmission probabilities such that the 

available wireless bandwidth is fairly distributed across all nodes despite their heterogeneous 

topological positions. Furthermore, unlike with ALOHA, the attained maximum throughputs 

hold for larger application layer loads. 

4.4.2 MAC Learning with Access Priorities 

The learning in DMLLI can incorporate node-specific access priorities by assigning node-

specific priority coefficients 𝜃௜ in the reward function in Eqns. 4.1 and 4.2. By assigning priority, 

a specific node can receive higher share of the available wireless bandwidth. This strategy is 

particularly useful when data from certain sensors/IoTs are more critical than the others and the 

available wireless bandwidth is limited. 

 
Figure 4.19:  Assignment of node-level access priority among nodes. 
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Figure 4.20:  Assignment of node-level access priority to node 8 in arbitrary mesh topology. 

2-Nodes Network: For assigning priority, the value of priority coefficient 𝜃ଶ is kept fixed and 

equal to zero. The value for node 1, 𝜃ଵ, is then varied to assign different access priorities to node 

1. Thus, the fairness coefficients from Eqn. (4.1) for nodes 1 and 2 respectively become: 

𝑓ଵ(𝑡) = −|(1 − 𝜃ଵ) × 𝑠ଵ(𝑡) − 𝑠ଶ(𝑡)| 
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𝑓ଶ(𝑡) = −|𝑠ଶ(𝑡) − (1 − 𝜃ଵ) × 𝑠ଵ(𝑡)|, 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝜃ଵ, 𝜃ଶ ≤ 1. 

The reward function aims at maximizing 𝑓ଵ and 𝑓ଶ, and the maximum possible values are 𝑓ଵ =

𝑓ଶ = 0. After convergence, both the nodes jointly learn to transmit such that the throughput of 

node 2 becomes a fraction of node 1’s throughput. In this way, node 1 gets priority in terms of 

the bandwidth share as compared to node 2. 

Fig. 4.19 (a) shows the load-throughput plot for different values of 𝜃ଵ. It is observed that when 

𝜃ଵ = 𝜃ଶ = 0, as expected, the bandwidth is fairly distributed. With increase of 𝜃ଵ, node 1 gets a 

higher share of the bandwidth. Moreover, the difference in throughput between node 1 and 2 is 

proportional to the difference between the fairness coefficients 𝜃ଵ and 𝜃ଶ. Fig. 4.19 (b) shows 

the variation in network-wide throughput with load for different values of 𝜃ଵ. The network 

throughput increases with increase in 𝜃ଵ. This is because, with the assignment of priority to one 

of the nodes, the other node transmits a smaller number of packets and hence the collisions are 

reduced, thus resulting in an increase in network throughput.  

Arbitrary Mesh Topology: Fig. 4.20 demonstrates the effects of node-level access prioritization 

for a 12-node network running DMLLI-based access learning. Priority is assigned to node 8 

which is in the most disadvantageous topological position due to its highest number of 

bandwidth-competing neighbors. Fig. 4.20 (a) shows the distribution of node-throughputs for 

three cases: first, ALOHA, second, DMLLI with fair bandwidth distribution (𝜃௜ = 0, ∀𝑖), and 

finally, DMLLI with priority assigned to node 8. The key observation here is that by assigning 

priority to node 8 (𝑠଼ = 0.8), node 8 gets higher share of bandwidth as compared to the rest of 

the network. It is to be noted that when assigned priority node 8 siphons bandwidth out from its 

directly connected nodes which is evident from Fig. 4.20 (b). This also demonstrates that 

assigning priority to a node affects only its local neighborhood, and not beyond. It should also 
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be observed that on assigning access priority to node 8, the variation of network-wide and node 

throughputs remains the same as in the case with fair bandwidth distribution. This is because, 

node 8, on assigning priority, try transmitting with higher transmit probability. But, owing to its 

topological position, it suffers more packet collisions with its neighboring nodes. As a result, the 

 
Figure 4.21:  Assignment of node-level access priority to node 1 in arbitrary mesh topology. 
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network throughput does not increase on assigning priority in this case. This behavior is shown 

in Fig. 4.20 (c). 

The next experiments are with assigning access priority to node 1, which unlike node 8, is in a 

relatively topologically advantageous position due to lesser number of neighbors. The results are 

shown in Fig 4.21. The distributions of nodes with throughput for three different scenarios: 

ALOHA, DMLLI with fair bandwidth distribution, and DMLLI with prioritized access to node 

1 are shown in Fig. 4.21 (a). Node 1 gets a higher share of network bandwidth with access-

priority. The fact that assigning priority to a node only affects its local neighborhood is valid here 

as well and can be observed from Fig. 4.21 (b). The increase in throughput for node 1 is at the 

expense of throughput loss of its directly connected neighbors. Furthermore, in this scenario, 

network-wide throughput also increases with assignment of priority to node 1. This is because, 

unlike in the previous case, the prioritized node here has fewer 1-hop bandwidth competitors. As 

a result, the increase in node-1’s throughput does not increase collisions so much that the overall 

network throughput goes down. In fact, the throughput increases. 

Table 4.2: 
ୗీ౉ైై౅ష౉ఽ

ୗఽైోౄఽ
 ratio for different packet error probability  

Packet Error Probability 0 0.01 0.05 0.1 

𝑆஽ெ௅௅ூିெ஺஼

𝑆஺௅ைு஺
 

(12-nodes partially connected network) 1.8319 1.9183 1.8595 1.8214 

𝑆஽ெ௅௅ூିெ஺஼

𝑆஺௅ைு஺
 

(3-nodes fully connected network) 4.1217 4.7205 4.5243 4.8499 
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4.4.3 Effect of Channel Unreliability 

Experiments in this subsection demonstrate the effects of channel unreliability on MAC protocol 

learning performance. Figs 4.22 (a) and (b) show the throughput variation for varying packet 

error probabilities in a 3-nodes fully connected network and 12-nodes partially connected 

network (Figs 4.21). The following observation can be made. In Fig. 4.22, as expected, for both 

ALOHA and DMLLI-MAC, their throughputs go down because of packet loss on unreliable 

channels.  However, it can be observed from Table 4.2. that the throughput ratio (
ௌವಾಽಽ಺షಾಲ

ௌಲಽೀಹಲ
), 

after learning convergence, remains in the same ballpark value for different values of packet error 

probabilities. This indicates that the impacts of channel errors on DMLLI-MAC are no worse 

than those on the baseline ALOHA protocol. 

 
Figure 4.22:  Effect of channel unreliability on DMLLI-MAC and ALOHA throughput on (a) 

3-nodes fully connected network, (b) 12-nodes partially connected network. 

4.5 Summary 

To summarize, this chapter proposes a scalable, decentralized Reinforcement Learning (RL) 

framework for MAC layer wireless network protocol synthesis, in the absence of localized 

network information visibility. The mechanism is targeted for low-complexity wireless 



83 

transceivers in that it does not rely on complex lower-level hardware support, such as, carrier 

sensing and time-synchronization. The salient features of the mechanism are as follows. First, it 

is capable of achieving the maximum network-wide throughput that can be obtained by the 

known benchmark ALOHA family of protocols. Second, unlike ALOHA, the maximum 

throughput can be sustained for high network loading scenarios. Third, the synthesized MAC 

protocol ensures a fair node-level wireless bandwidth distribution in the presence of loading and 

topological heterogeneities. Fourth, by adjusting a set of priority coefficients in the 

Reinforcement Learning reward function, access priorities can be assigned to specific network 

nodes. Finally, the learning is shown to make the nodes adjust their transmission strategies in 

order to adapt with time-varying traffic conditions. Detailed simulation experiments were 

performed to demonstrate the functional and performance validity of the proposed paradigm in a 

wide variety of network types, loading, and operating conditions.  

Now that we have established the concept of protocol synthesis for random access MAC, a 

natural extension of this work would be to broaden the applicability of the learning paradigm for 

wider MAC applications, such as, networks with time-slotting capability. Building on the idea 

and insight developed in this chapter, we present a learning framework designed for networks 

with TDMA-based MAC arrangements in the next chapter. 
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Chapter 5: TDMA Slot Allocation using Multi-Armed Bandits 

Till this point in this thesis, we have explored the concept of reinforcement learning (RL)-enabled 

network protocol synthesis, particularly focusing on random access MAC arrangements. Moving 

forward, the next step in this research involves extending this protocol synthesis approach to 

networks with time slotting capacity. Specifically, we delve deeper into developing and 

implementing RL-driven protocols in networks with TDMA-based access schemes. We will 

investigate how RL and its variants can be leveraged for performance improvement in such 

networks. 

With the high-level objective of demonstrating the concept of protocol synthesis for TDMA 

MAC arrangements, in this chapter, we specifically focus on the problem of slot allocation.  A 

decentralized learning framework for MAC slot allocation is developed for resource-constrained 

networks using Multi-Armed Bandits (MAB), a variant of RL. In this chapter, we particularly 

deal with networks that do not possess time-synchronization ability. As will be demonstrated 

later in this chapter, MAC slot allocation in the absence of time synchronization is a challenging 

problem, and it is a notable feature of the proposed learning mechanism. The non-reliance on 

network time synchronization makes the proposed learning mechanism feasible for low cost and 

low complexity transceivers for wireless sensor networks and IoT devices. MAC slot allocation 

is formulated as an MAB problem where the nodes act as independent learning agents and learn 

transmission policies that ensure collision free transmissions.  

5.1 Motivation 

Accurate time synchronization in wireless networks can be expensive to realize especially in low-

cost nodes with limited processing and communication resources. Moreover, the MAC layer 
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performance in such networks can be very sensitive to even slight perturbations in the quality of 

time synchronization [21]. Hence, this work aims to develop a learning-based time asynchronous 

TDMA framework useful for low-cost transceivers in Wireless Sensor Networks (WSNs) and 

Internet-of-Things (IoTs).  

We propose a decentralized MAB learning framework for MAC slot allocation. As already 

explained earlier, the advantage of using distributed learning is that all the network nodes, which 

are learning agents, learn independently without explicitly sharing the learning policies with each 

other. This is specifically useful in partially connected network topologies, where the nodes have 

limited network information visibility. This also makes the framework scalable with network size 

since the learning is done independently in each node, and its performance depends on network 

degree rather than the network size. Note that centralized learning, in which a centralized agent, 

with access to complete network level information, can learn optimal node behavior (i.e., a 

protocol) and downloads it to the individual nodes, typically requires additional network 

resources in terms of a separate channel to share the learned policies to the nodes. In addition, it 

usually puts a heavy burden on the central server in terms of computation perspective [24], [25]. 

There are several papers [48, 42, 38] that use Multi-armed Bandits and Reinforcement Learning 

for wireless MAC slot allocation. These works in general rely on network time synchronization. 

The approaches in [83] [84] propose centralized slot allocation without time synchronization. 

Such centralized approaches are often not suitable in wireless networks because of the drawbacks 

mentioned earlier. In this work, it is shown that wireless MAC slot allocation is feasible even in 

the absence of time synchronization and centralized controllers. This can be achieved using 

distributed Multi-armed Bandit strategy while trading certain amount of wireless bandwidth for 

fast allocation convergence.  
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One major challenge of using learning in time-asynchronous scenario is slow convergence rate 

as compared to that in a time-synchronized network. Moreover, the convergence time increases 

with the use of distributed learning due to the inherent limitations of timely information visibility 

as compared to centralized learning. Hence, in order to accelerate the convergence behavior, a 

novel concept of hysteretic MAB, that uses two learning rates, has been explored. It is shown 

when compared to the native MAB approaches, Hysteretic MAB reduces the convergence time 

up to 63% for time asynchronous network and up to 56% for networks with time synchronization. 

The MAC slot allocation has been modelled as a Multi-Agent Multi-Armed Bandits (MAMAB) 

problem, where each node acts as a ‘k-armed bandit’ agent. An arm represents a MAC 

transmission slot that the agent can choose. Each node maintains its own notion of a fixed 

duration transmission frame with k-slots. Since time is not synchronized, the frames for the nodes 

are also not synchronized. Each node can independently select a slot, which is an arm in MAB. 

The learning framework allows the nodes to learn arm selection policies, together that constitutes 

a transmission slot selection protocol, in a distributed manner. After learning convergence, the 

system ensures that there are no overlapped transmissions (i.e., collisions) in the system. It is 

shown that the learning mechanism gives the desired performance for networks with both fully 

connected and partially connected arbitrary mesh topologies. The nodes in a partially connected 

topology learn to reuse bandwidth spatially by choosing fully to partially overlapping 

transmission slots when they are outside their mutual realm of influences.  

5.2 Network and Traffic Model 

The proposed mechanism is developed for generalized multi-point to multi-point networks with 

arbitrary mesh topologies (i.e., fully connected and partially connected) and network traffic 

patterns. From a learning standpoint, the main difference between the two connectivity modes is 
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the amount of slot allocation information availability at each node. While for the fully connected 

scenario, each network node possesses the current MAC slot information for all other nodes in 

the network; for the partially connected case, a node knows slot allocation information only 

within its local neighborhood. Figs. 5.1 (a) and (b) shows two examples of fully and partially 

connected networks. 

 
Figure 5.1: (a) Fully connected and (b) Partially connected network topologies. 

Two different packet generation models, namely, Constant Bit Rate (CBR) and Poisson 

Distributed random have been used. The MAC layer traffic load model is created such that a 

packet generated in a node is broadcasted to all its one-hop neighbors.  

The network nodes are assumed to be not time synchronized. This is a crucial feature since MAC 

slot allocation in the absence of time synchronization is a challenging problem, and it is a notable 

feature of the proposed learning mechanism in this work. The network model includes the 

availability of piggybacking for sending control information using a small part of the data 

packets. Such control information is used for sharing feedback on packet transmissions that end 

up in packet collisions. Such piggybacking-based information sharing allows the framework to 

be not dependent on the abilities of direct collision detection, which is especially meaningful for 

the low-complexity wireless transceivers in IoT/Sensor nodes. 
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5.3 Asynchronous TDMA MAC Operation 

Asynchronous Frames and Mini-slots: Similar to regular TDMA, the target mechanism would 

work with fixed size frame abstraction. Frames, however, in this model are not synchronized 

across the network nodes. The notion of frame is local to each node. A node decides the time of 

start of its own frame, and the frame end time is decided based on the fixed frame duration, 

denoted by  𝑇௙௥௔௠௘. The node does not know about the start times of the other network nodes’ 

frames. Within a frame, a node can schedule a packet transmission only in certain discrete time 

instances away from its frame start time. The intervals between those time instances are referred 

to as mini-slots, the duration of which is an integer submultiple of the packet duration, and is 

equal at all nodes. The relationship between mini-slot duration (𝑇௠௜௡௜) and packet duration (𝜏) 

can be expressed as: 

 

 
Figure 5.2: Frame and mini-slot structure in a 3-nodes fully connected network. 

𝜏 = 𝑛ெ × 𝑇௠௜௡௜ , where 𝑛ெ ∈ 𝐼 (5.1) 
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To be noted that since frames across nodes are not necessarily synchronized, the mini-slot time 

boundaries across the nodes are not necessarily aligned. As a special case, when the frames are 

synchronized and the mini-slot size equals the packet duration, it becomes a standard TDMA 

system. 

This arrangement of mini-slot based asynchronous TDMA is shown for a 3-nodes fully connected 

network in Fig. 5.2. Note that frames of node 2 and node 3 lag from node 1’s frame by 𝛿ଶ and 𝛿ଷ 

durations. In this specific example, the frame size equals 7 mini-slots and a mini-slot duration is 

half of packet duration (i.e., 𝑛ெ = 2). A node can select any of these 7 mini-slots within its own 

frame as the starting point of its packet transmission. The figure depicts a situation where nodes 

1, 2 and 3 select mini-slots 1, 5 and 2 in their own respective frames for packet transmissions. 

The nodes periodically transmit in those mini-slots in subsequent frames. Observe that the 

packets from nodes 1 and 3 get collided because of their time-overlapped transmissions 

(indicated by red), whereas packets from node 2 are successfully transmitted. The objective of 

this paper is to develop a distributed learning-based mechanism (presented in Section 5.4), where 

the nodes can learn to select collision-free transmission mini-slots with fast learning 

convergence.  

Bandwidth Redundancy: Any learning for mini-slot selection would require nodes to perform 

certain amount of iterative search for a collision free transmission mini-slot within its own frame. 

Since the targeted learning is distributed in that each node performs its own independent search, 

short term collisions and scheduling deadlocks can occur. This can be mitigated by making the 

frames longer than the absolutely minimum required length, leading to certain amount of 

bandwidth redundancy. This redundancy can be expressed by a factor K:  
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𝐾 =
𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 (𝑖𝑛 𝑚𝑖𝑛𝑖 − 𝑠𝑙𝑜𝑡𝑠)

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 (𝑖𝑛 𝑚𝑖𝑛𝑖 − 𝑠𝑙𝑜𝑡𝑠)
                                    

(5.2) 

 

 
Figure 5.3: (a) N-nodes fully connected topology, (b) Slot allotment with time synchronization, 
(c) With frame of reference of Node 1, slots occupied by packets from other nodes without time 
synchronization when maximum frame lag is less than the slot duration (d) and (e) With frame 

of reference of Node 1, slots occupied by packets from other nodes without time 
synchronization when maximum frame lag is more than the slot duration. 

The minimum frame size in the denominator of Eqn (5.2) represents the absolute minimum frame 

size that is possible in the presence of time synchronization. The requirement of a larger frame 

size in the absence of time synchronization can be demonstrated in terms of an N-node fully 

connected network as shown in Fig. 5.3 (a). The minimum frame size (i.e., expressed in number 

of mini-slots) required for a time synchronized network is 𝑁 × 𝑛ெ, where 𝑛ெ is the number of 

mini-slots per packet duration (from Eqn. 5.1). The frame structure in a time synchronized 

network is shown in Fig. 5.3 (b) (With 𝑛ெ=2). A time asynchronous scenario is shown in Fig. 

5.3 (c). The positions of mini-slots of all nodes with respect to node 1’s frame are shown in Fig. 
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5.3 (c). The frame of node 𝑖 lags from that of node 1 by (𝑖 − 1) × 𝛿 durations. There are two 

distinct scenarios as follows.  

Case I: Maximum frame lag with respect to node 1 is less than mini-slot size (i.e., (𝑁 − 1)𝛿 <

𝑇௠௜௡௜). In this case, the mini-slot scheduled for packet transmission for node 𝑁 starts at (𝑁 −

1) × 𝑛ெ × 𝑇௠௜௡௜ + (𝑁 − 1)𝛿 and ends at 𝑁 × 𝑛ெ × 𝑇௠௜௡௜ + (𝑁 − 1)𝛿. Since (𝑁 − 1)𝛿 <

𝑇௠௜௡௜. Hence the minimum frame size that will ensure a collision free transmission is 𝑁 × 𝑛ெ +

1 mini-slots. 

Case II: Maximum frame lag with respect to node 1 is more than the mini-slot size. Let the frame 

lag of the 𝑘௧௛ node with respect to node 1 exceeds the mini-slot size (i.e., (𝑘 − 1)𝛿 > 𝑇௠௜௡௜). In 

this case, there is a free mini-slot worth of duration where no node is transmitting (i.e., in Fig. 

5.3 (d)). Hence, each node 𝑗, ∀𝑗 ≥ 𝑘, can transmit in one mini-slot prior to its current mini-slot 

(i.e., in Fig. 5.3 (e)). Hence, even in this case, mini-slot scheduled for packet transmission for 

node 𝑁 starts at (𝑁 − 1) × 𝑛ெ × 𝑇௠௜௡௜ + (𝑁 − 1)𝛿 and ends at 𝑁 × 𝑛ெ × 𝑇௠௜௡௜ + (𝑁 − 1)𝛿. 

Therefore, the minimum frame size needed for a collision free transmission is 𝑁 × 𝑛ெ + 1 mini-

slots. 

Thus, for a fully connected N-nodes time-asynchronous network, the minimum frame size 

required for collision-free transmission is 𝑁 × 𝑛ெ + 1 mini-slots, which is one mini-slot more 

than that in a time-synchronous scenario. For a partially connected network, the frame size 

depends on the maximum network degree, rather than the network size. As explained in the 

following section, this minimum frame size and the adopted frame size, indicated by the 

redundancy factor 𝐾 in Eqn. 5.2, play a crucial role in the proposed learning mechanism and its 

convergence behavior. 
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5.4 Slot Allocation using Decentralized MAB  

This section details the proposed Multi-Armed Bandit (MAB) based distributed learning 

mechanism for transmission scheduling within the MAC framework described in Section 5.3.  

5.4.1 Introduction to MAB 

Multi-Armed Bandits (MAB) is a special class of Reinforcement Learning in a non-associative 

setting [85] [86] [76]. It is applicable in situations which do not involve learning in different 

states of a system. In other words, there is no concept of state as in generalized reinforcement 

learning [12]. A much-explored variant of MAB is the ‘k-armed bandit’ problem, where the 

learning agent (bandit) has 𝑘 possible arms or possible actions to choose from. Each of the k 

actions has an associated stochastic reward the distribution of which is not known to the learning 

agent. After an arm/action is chosen, the agent gets a sample of that reward following the 

unknown distribution. In other words, it gets feedback in terms of a numerical reward on how 

good or bad a selected action is. The agent’s goal is to maximize the total accumulated reward 

over an infinite time horizon by learning to estimate the reward distribution of the possible 

actions.  

Formally stated, the value for an action 𝑎 is denoted as:  𝑞∗(𝑎) ← 𝐸[𝑅௧ |𝐴௧ = 𝑎]. At each 

timestep 𝑡, the value of each action 𝑎 is estimated iteratively as 𝑄௧ (𝑎). The model is said to 

converge when the estimate 𝑄௧(𝑎) becomes close to the true value for action 𝑎, that is, 𝑞∗(𝑎). A 

simple approach to estimate the action value at instant 𝑡 is to find the average of all the rewards 

received till instant 𝑡: 

𝑄௧(𝑎) =
𝑆𝑢𝑚 𝑜𝑓 𝑅𝑒𝑤𝑎𝑟𝑑𝑠 𝑤ℎ𝑒𝑛 𝑎 𝑤𝑎𝑠 𝑡𝑎𝑘𝑒𝑛 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑤𝑎𝑠 𝑡𝑎𝑘𝑒𝑛 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑡
 

(5.3) 
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As the denominator goes to infinity, by the law of large numbers,  𝑄௧(𝑎) converges to 𝑞∗(𝑎). 

Thus, the estimate of action 𝑎 at time instant 𝑡 is given by: 

𝑄௧ =
𝑅ଵ + 𝑅ଶ + ⋯ + 𝑅௧ିଵ

𝑡 − 1
 

⇒ 𝑄௧ାଵ =
1

𝑡
෍ 𝑅௜

௧

௜ୀଵ

 

⇒ 𝑄௧ାଵ = 𝑄௧ +
1

𝑡
[𝑅௧ − 𝑄௧] 

This leads to the update rule of the algorithm: 

𝑁𝑒𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑂𝑙𝑑 𝑒𝑠𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 × [𝑅𝑒𝑤𝑎𝑟𝑑 − 𝑂𝑙𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒]          (5.4) 

For a stationary problem, meaning if the reward distributions for the actions are not time-varying, 

the step size decreases per step. This provides equal weightage to the rewards in each step. 

However, for a nonstationary situation, it is useful to provide more weightage to the recent 

rewards. This is achieved by making the step size constant, that is, 𝛼௡ = 𝛼. 

 
Figure 5.4: TDMA scheduling as a Multi-Armed Bandits Problem. 

5.4.2 Formulating TDMA MAC scheduling as MAB  

Transmission scheduling problem in this context boils down for each node to be able to choose 

a mini-slot at which the node can transmit in all subsequent frames without colliding with the 
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transmissions from the other network nodes. Such collision-free mini-slots should be selected 

locally at each node in a fully distributed manner, and that is without any centralized allocation 

entities and network time synchronization. The selection policy is modeled as a Multi-Armed 

Bandit problem. As shown in Fig. 5.4, each node acts as an ‘F-armed bandit’, where 𝐹 is the 

frame size in number of mini-slots. Thus, the action of the bandit is to select a mini-slot, 

representing an arm, from an action pool of F mini-slots, which is preset based on network 

size/degree as explained in Section 5.3.  

 
Figure 5.5: MAC layer PDU from node 𝑖. 

The environment here is the wireless network with which the nodes/agents interact through their 

actions of choosing transmission mini-slots (i.e., the bandit arms). The reward associated with an 

action is formulated such that a node or an agent receives a penalty if it selects a mini-slot that 

overlaps with transmissions from other nodes, leading to collisions. Conversely, an action is 

rewarded for a collision-free transmission. The reward function for node 𝑖 in decision epoch 𝑡 is 

formulated as: 

𝑅௜(𝑡) = ቄ
+1, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠  
−1, 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

 (5.5) 

As presented in Section 5.2, each node exchanges control information with its one-hop neighbors 

using an in-band piggybacking mechanism. Fig. 5.5 shows a MAC layer PDU from node 𝑖, 

destined to its one-hop neighbor 𝑗. Thus, the PDU of node 𝑖 carries the information regarding the 

status of transmission (success/collision) from all its one-hop neighbors in the previous frame. In 
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this way, node 𝑗 will know about its own transmission status from 𝑖. However, if packet from 

node 𝑖 to 𝑗 gets collided, node 𝑗 may not know about its previous transmission, that may delay 

convergence. It is shown in the results in Section 5.5 how piggybacking relevant control 

information over MAC layer PDUs makes the proposed mechanism work in the absence of 

collision detection. From the transmission status information (success/collision) in the 

piggybacked packet, a node can compute the reward value from Eqn (5.5). 

Using the actions and the reward function mentioned above, each learning agent (i.e., a node) 

learns a transmission policy to avoid collision in a distributed manner. A special concept of 

distributed Multi-Armed Bandits (MAB), called Hysteretic MAB, has been used as the learning 

framework for faster convergence. The update rule for Hysteretic Learning has been proposed 

for Reinforcement Learning context in [14] which has been leveraged here for applying it in 

Multi-Armed Bandit problem as a novel concept. 

5.4.3 Hysteretic MAB 

The concept of Hysteretic Q-Learning proposed in [14] is adapted here for MAB in order to apply 

it in a non-associative setting. With Hysteretic MAB, each node or bandit acts as an independent 

learning agent towards the goal of distributed learning of collision-free transmission mini-slots. 

In such a distributed and multi-agent setting, the reward received for an action in a decision epoch 

depends not only on the arm chosen by the agent itself, but also on the arms (i.e., transmission 

mini-slots) chosen by other nodes/agents. In other words, even if the agent chooses an arm that 

is rewarding, it may still get penalized if the arms chosen by the other agents turn out to be 

unfavorable. Hence, the idea used in Hysteretic MAB is to ‘reward more and penalize less’ for 

the agents’ actions/arm selections. This is achieved by using two different learning rates in the 

MAB update rule (Eqn. 5.4). The value update equation for a Hysteretic MAB agent are:  
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𝛿௧ = 𝑟௧ − 𝑄௧(𝑎) 

𝑄௧(𝑎) ← ൜
𝑄௧(𝑎) + 𝛼 × 𝛿௧,   𝑖𝑓 𝛿 ≥ 0

𝑄௧(𝑎) + 𝛽 × 𝛿௧, 𝑒𝑙𝑠𝑒
  

                                          

(5.6) 

The quantities 𝑄௧(𝑎) 𝑎𝑛𝑑 𝑟௧ are the values and reward for the 𝑎௧௛ arm chosen in epoch 𝑡. There 

are two learning rates 𝛼 and 𝛽, and the parameter 𝛿 controls which learning rate should be used 

in a particular epoch. Positive and negative values 𝛿 lead to the use of 𝛼 and 𝛽 as the learning 

rates respectively. The parameter 𝛿 is positive when the actions taken were beneficial for 

attaining the desired optimum of the system, and vice-versa. Hence, 𝛽 is chosen such that it is 

always less than 𝛼 in order to assign less importance to the penalties.  

 
Figure 5.6: Cumulative average reward for two agents using Hysteretic and regular MAB. 

The benefit of using two-learning rates in Hysteretic MAB can be observed from Fig. 5.6 which 

plots the cumulative average reward received by the agents in a two-node network setting. The 

action space and reward function used are the same as discussed earlier. It can be observed that 
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although the average rewards received using both hysteretic and non-hysteretic MAB converge 

to the maximum possible reward (i.e., +1), convergence is sooner for the hysteretic MAB as 

opposed to the non-hysteretic case. The reason behind this is that an agent’s actions are severely 

penalized even for bad actions taken by the other agent in non-hysteretic update rule. Hysteretic 

MAB prevents the action value from going down because of penalties and thus accelerates the 

convergence speed. 

5.5 Experiments and Results 

The performance of the Hysteretic MAB-based protocol is evaluated for both fully connected 

and partially connected arbitrary mesh networks. The learning behavior of Hysteretic MAB is 

compared with the regular (non-Hysteretic) MAB. The results are also shown for how Hysteretic 

MAB performs in a time-synchronized network. The baseline experimental parameters, viz, 

rewarding learning rate, penalizing learning rate and packet duration per mini-slot, represented 

by 𝛼, 𝛽 𝑎𝑛𝑑 𝑀, take values of 0.99, 0.1 and 1 respectively. 

 
Figure 5.7: Convergence behavior of MAB in a three-node fully connected network. 
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5.5.1 Learning with Collision Detection Enabled 

To understand the operations and to gain insights to the MAB-based learning paradigm, we first 

experiment with network nodes with collision detection ability. The learning-based framework 

is then validated in more practical scenarios without collision detection. Instead, a control 

information exchange mechanism is used via MAC layer PDU piggybacking. 

1) Fully Connected Scenario:  

The convergence of the proposed learning framework for a 3-nodes fully connected network with 

constant data rate 𝜆 = 1 packet/frame and frame scaling factor  𝐾 =
ସ

ଷ
 is shown in Fig. 5.7. Packet 

transmission by the nodes with node 1’s frame as the frame of reference is plotted in the figure, 

where frames of nodes 2 and 3 lag the frame of node 1 by 0.4 𝜏 and 0.75 𝜏 respectively, where 𝜏 

represents packet duration. It is observed that there are overlapped packet transmissions among 

 
Figure 5.8: Average convergence of Hysteretic learning-based protocol for 3, 6 and 9 nodes 

fully connected networks. 
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the nodes initially. However, over time, all the nodes learn to pick transmission times in a 

distributed manner so that no overlapped transmissions take place, and hence collisions are 

avoided. Note that the learning here happens without network time synchronization. 

In Fig. 5.8, average learning convergence time for different values of 𝐾 are plotted for fully 

connected networks with 3, 6 and 9 nodes respectively. As discussed in Section 5.3, the frame 

scaling factor 𝐾 represents the redundant bandwidth required in this mechanism when the 

network is not time synchronized. It can be observed that the convergence time decreases with 

increase in the value of 𝐾 for all three networks. It is because, with increase in 𝐾, the number of 

feasible solutions of the MAB problem increases and hence the probability of finding a collision-

free transmission strategy increases. Another observation is that for a fully connected network, 

 
Figure 5.9: Convergence speed comparison of Hysteretic MAB with regular MAB for 3, 6 

and 9 nodes fully connected networks.  
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convergence time increases with the network size. With increase in network size, the number of 

mini-slots per frame, and hence the number of actions available to each MAB agent (𝑁௔) 

increases. The search space for the entire system, represented by 𝑁௔ × 𝑁, where 𝑁 is the network 

size, increases non-linearly with the number of nodes. Thus, for a fixed number of feasible 

solutions, the probability of finding a solution by the nodes decreases with the increase in network 

size, and hence convergence time increases. However, it will be shown in the next section that 

for fully connected networks, convergence time is more dependent on network degree rather than 

the network size.  

 
Figure 5.10:  (a) Partially connected topology with degree 4, (b) Average convergence of the 

learning-based protocol for 16, 25 and 50 nodes partially connected networks, (c) Convergence 
speed comparison of Hysteretic MAB with regular MAB for partially connected networks. 

For all three networks involving Fig. 5.8, convergence is faster for learning using Hysteretic 

MAB as compared to the non-Hysteretic learning. The percentage decrease in convergence 

duration using Hysteretic MAB for 𝐾 = 1.33 and 𝐾 = 1.67 is plotted in Fig. 5.9. It is observed 

that convergence speeds up by 13% − 44% when Hysteretic MAB is used. This is achieved by 

giving less importance to penalties than rewards in Hysteretic MAB as explained in Section 5.4.3. 
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2) Partially Connected Topology: 

 Fig. 5.10 (a) shows the average convergence time, plotted for different network sizes, all with 

nodal degree of 4. The value of 𝐾 = 1.25 and 1.75, and 𝜆௜ = 1 pkt/frame , ∀𝑖. The plots in Fig. 

5.10 (b) demonstrate that the convergence time does not blow up with increase in network size 

as long as the nodal degree is kept constant, which makes learning scalable with network size. 

Another observation from Fig. 5.10 (b) is that faster convergence using Hysteretic MAB as 

compared to that of traditional MAB (non-Hysteretic) also holds for partially connected network 

topologies. The percentage reduction in convergence time using Hysteretic MAB in the networks 

in Fig. 5.10 (c). Convergence time decreases by 32 − 63% in these topologies when Hysteretic 

MAB is used, as compared to traditional MAB. The reason behind this performance improvement 

is that the distributed learning agents are not severely penalized by the bad action selection by 

other agents, due to the use of two learning rates in Hysteretic MAB. 

 
Figure 5.11: (a) 12-nodes arbitrary mesh network (b) Spatial reuse of channel in a partially 

connected network. 
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The MAB learning mechanism also allows the nodes to learn transmission schedules such that 

there is spatial reuse by the nodes that are more than one-hop distance away from one another. 

The learnt spatial reuse by the nodes in a 12-nodes arbitrary mesh network (Fig. 5.11 (a)) is 

demonstrated in Fig. 5.11 (b). The figure shows post-convergence packet transmission schedules. 

All the frames in Fig. 5.11 (b) are with reference to the frame of node 1. It can be observed that 

the nodes 2, 4, 7 and 11 learn overlapped transmissions allowed by their more than one hop 

topological separations. Similarly, other nodes that are more than one-hop distance apart (for 

e.g., 1, 3 and 10) learn overlapped transmissions exploiting spatial reuse. Spatial reuse is a key 

feature in slotted MAC scenarios for keeping the frame size small, thus keeping it scalable with 

network size. 

5.5.2 In-band Information Exchange in the Absence of Collision Detection 

In more practical network scenarios with nodes not capable of wireless collision detection, an in-

band information exchange mechanism is used for exchanging overlapping transmission 

information.  The technique of data packet piggybacking as explained in Section 5.4 is leveraged 

for such information exchange.  

 
Figure 5.12: (a) Arbitrary mesh network with maximum degree 5, (b) Average convergence of 
Hysteretic MAB based protocol with piggybacking and collision detection ability, (c) Q-table 

updates when piggybacking mechanism is used. 
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Fig. 5.12 (b) presents the average convergence time using piggybacked information as compared 

to that in the presence of collision detection in (𝜆௜ = 1 pkt per frame). Experiments are performed 

in an arbitrary mesh network shown in Fig. 5.12 (a). It is observed that for lower value of 𝐾 (i.e, 

1.33), the convergence time with piggybacking is higher as compared to convergence with 

collision detection. The reason for this behavior can be explained by the Q-table updates shown 

in Fig 5.12 (c). There are instances where there is no update in the Q-table as shown by the red 

circles in the figure. This is because when a packet destined to a node 𝑖 from one of its one-hop 

neighbor gets collided, then node 𝑖 does not get to know about its transmission status 

(success/collision) in its previous learning epoch, which was piggybacked in the collided packet. 

This delays the convergence for lower value of 𝐾. However, for larger 𝐾 values, i.e., larger 

frames, the collisions in the network are less because of larger available bandwidth and hence 

the convergence speed of learning using piggybacking is close to that in the presence of collision 

detection ability.  

 
Figure 5.13: Convergence speed comparison of Hysteretic MAB with regular MAB for mesh 

networks. 
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As shown for the results in Section 5.5.1, expediting learning convergence using Hysteretic MAB 

also holds with piggybacking-based information sharing. It is shown in Fig. 5.13 that the 

percentage reductions in convergence time using Hysteretic MAB are between  46% 𝑡𝑜 54% 

when the values of frame scaling factor K is chosen to be 1.33, 1.67 and 2.  

 
Figure 5.14: (a) Convergence time variation with network load, (b) Q-table updates for node 20 

with 𝜆௜ = 0.1 pkt/frame,∀𝑖 ≠ 20, 𝜆ଶ଴ = 1.0 pkt/frame, (c) Q-table updates for node 20 with 
𝜆௜ = 0.33 pkt/frame,∀𝑖 ≠ 20, 𝜆ଶ଴ = 1.0 pkt/frame, (d) Performance comparison of Hysteretic 

MAB with regular MAB for varying traffic. 

Fig. 5.14 (a) depicts the impacts of network load on learning convergence for a network with the 

mesh topology shown in Fig. 5.12 (a). It can be observed that for both the values of frame scaling 

factor 𝐾 = 1.67 and 𝐾 = 2, the convergence time decreases with increase in the network traffic. 

This can be explained using the Q-table update plot for node 20 as shown in Fig. 5.14 (b). This 
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is shown for a scenario where the packet generation load in node 20 is 𝜆ଶ଴ = 1 pkt/frame, and at 

all other nodes 𝜆௜ = 0.1 pkt/frame,∀𝑖 ≠ 20. The figure shows that the Q-values for node 20 

converges to 1.0 within just 20 learning epochs, but there are many intermittent downward spikes 

after that. These spikes are the result of node-20’s transmissions colliding with those from other 

nodes. It is evident that node 20 is unable to learn a fully collision free transmission time because 

the piggybacked information is not readily available since not enough packets are being 

transmitted by those nodes. With increase in network traffic (i.e., 𝜆௜ = 0.33 pkt/frame,∀𝑖 ≠ 20), 

the occurrence of these downwards spikes drastically reduces, and as a result, as depicted in Fig. 

5.14 (c), learning convergence is expedited. 

 
Figure 5.15: Average convergence of the proposed learning framework for Poisson distributed 

traffic (𝜆௜ = 1.0 𝑝𝑘𝑡 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒). 

To be noted that the Hysteretic MAB can expedite learning convergence compared to the regular 

MAB even under low network traffic. The percentage reduction of convergence time in different 
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traffic conditions for K=2 is shown in Fig. 5.14 (b). A reduction in convergence time by 

31%-33% is achieved by introducing the Hysteretic features to the traditional MAB. 

All the results presented so far are for constant packet rate traffic.  Fig. 5.15 depicts the benefits 

of Hysteretic MAB over classical MAB when the network traffic is Poisson distributed. The 

figure shows that the benefits of Hysteretic MAB, as described in Section 5.4.3, holds for Poisson 

distributed traffic as well. 

5.5.3 Performance in Time Synchronous Networks 

Finally, the learning algorithm is implemented in networks with time synchronization in order to 

understand the effectiveness of Hysteretic MAB under time synchronization. Fig. 5.16 (a) shows 

the performance for fully connected networks with 3, 6 and 8 nodes. Fig. 5.16 (b) shows the 

performance for the arbitrary mesh network in Fig. 5.12 (a). For both, the value of the frame 

scaling factor K is set to 1. For both cases, it can be seen that Hysteretic learning outperforms the 

regular MAB by speeding up convergence up to 9% − 56%. 

 
Figure 5.16:  Performance comparison of Hysteretic MAB with regular MAB for time-

synchronized networks (a) Fully connected, (b) 20-nodes Arbitrary mesh network (Fig. 5.12 
(a)). 
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5.6 Summary 

In this chapter, we have demonstrated the protocol synthesis concept for networks with TDMA-

based MAC arrangements. A decentralized MAB-based learning framework for performing 

collision-free MAC scheduling in the absence of time synchronization is proposed. Transmission 

slot allocation policy in wireless MAC has been modeled as a distributed Multi-Armed Bandits 

Problem, where the nodes behaving as the learning agents, learn transmission policies 

independently such that there is no collision post convergence. A novel mechanism for 

distributed Multi-Armed Bandits, termed Hysteretic MAB, has been introduced and leveraged to 

accelerate learning convergence. Performance of the proposed mechanism is validated by 

simulations on both fully connected and heterogeneous arbitrarily connected mesh networks. The 

nodes learn to spatially reuse wireless bandwidth in partially connected topologies, and the 

developed system is scalable with network size and topological diversities. Although the learning 

framework is mainly designed for low-complexity networks without time synchronization 

capability, it is shown that the Hysteretic MAB-based approach outperforms the regular MAB-

based slot allocation even in time-synchronous TDMA systems.  

It follows from the discussion in this chapter that to assign collision-free transmission mini-slots 

in networks without time synchronization capability, the minimum frame length should be at 

least one mini-slot more than the absolute minimum frame size. In other words, the frame-scaling 

factor (𝐾)  should be greater than 1. This leads to a certain amount of bandwidth redundancy 

because of the extra mini-slot in the frame without any packet transmission. Higher the value of 

𝐾, higher is the bandwidth redundancy in time-asynchronous network. Moreover, it follows from 

the discussion in this chapter that there is a tradeoff between learning convergence time and 

bandwidth redundancy. This calls for the requirement of a mechanism that can (a) reduce the 



108 

bandwidth redundancy required by the framework for networks without time synchronization, 

(b) handle the trade-off between learning convergence speed and bandwidth redundancy. In the 

next chapter, we build on this MAB-based slot allocation scheme to develop a framework that 

can improve bandwidth usage efficiency and manage convergence speed and bandwidth 

redundancy trade-off. 
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Chapter 6: Adaptive Slot Defragmentation for Bandwidth 

Efficiency 

6.1 Motivation 

It transpired generally from the discussion in chapter 5 that a large frame scaling factor 𝐾 leads 

to faster convergence across all scenarios. However, it comes with a price of additional 

bandwidth overhead. In this chapter, a decentralized slot defragmentation mechanism is 

introduced to reduce such capacity overhead. The goal of this defragmented backshift mechanism 

is to reduce the wastage of bandwidth because of large frame scaling factor 𝐾 used to speed up 

convergence. This step is performed by all the nodes independently after they have found a 

suitable mini-slot for transmission post MAB convergence (Fig. 6.1). 

 
Figure 6.1: High-level working model of the proposed scheduling framework with efficient 

bandwidth usage. 
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6.2 Decentralized Defragmented Slot Backshift (DDSB)  

This concept is implemented by discretizing each mini-slot (refer to chapter 5) within a frame 

into ‘𝑠’ number of micro-slots. After MAB convergence, each node shifts its packet transmission 

by one micro-slot back in time till it experiences a collision. Once a node experiences a collision 

it undoes its previous action to find its new transmission micro-slot. In this way, the nodes make 

an estimate of the unused space in the frame and try to reduce it in a decentralized manner. This 

mechanism of defragmentation is explained using Fig. 6.2 for a 3-nodes fully connected network. 

The figure shows how the frame structure (with reference to node 1) evolves over 5 iterations of 

defragmentation mechanism for 𝐾 = 1.33 and 𝑠 = 7. In this figure, node 1 does not shift its 

transmission since it is transmitting at the beginning of the frame. Nodes 2 and 3 backshift their 

transmissions by one micro-slot per iteration. In iteration 2, nodes 1 and 2 experience a collision 

and hence node 2 undoes its previous action by shifting by one-micro-slot forward in iteration 3. 

But node 1 does nothing in iteration 3, since it experienced a collision without any micro-slot  

 
Figure 6.2: Defragmented backshift operation in a 3-nodes fully connected network. 
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  1: Initialize: 𝜇௦௛௜௙௧೔
= 0, 𝑐௜ = 0     // 𝜇௦௛௜௙௧೔

: Number of micro-slot that node 𝑖 has shifted; 𝑐௜:

Status of the micro-slot search (1, 𝑖𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑒𝑙𝑠𝑒, 0) 
2: If (! Tx in the beginning of frame), do: 
3:        Shift to previous micro-slot 
4:        𝜇௦௛௜௙௧೔

+ + 
5:        Check Collision 
6:        If (Collision ==TRUE):                                            
7:              Check action in the previous frame 𝑎(𝑡−1) 
8:              If (𝜇௜  (𝑡) > 𝜇௜(𝑡 − 1)): 
9:                        Shift to next micro-slot 
10:                        Check Collision 
11:                        If (Collision ==TRUE): 
12:                                 Shift to previous micro-slot 
13:                        End If 
14:               Else If (𝜇௜(𝑡) < 𝜇௜  (𝑡 − 1)): 
15:                         Shift to next micro-slot 
16:               End If 
17:               Set 𝑐௜ = 1 
18:               Piggyback 𝑐௜ , 𝜇௦௛௜௙௧೔  
19:               Check the value of 𝑐௝,         ∀𝑗 ∈ 𝑜𝑛𝑒 − ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 
20:               If (𝑐௝ == 1 (∀𝑗∈𝑜𝑛𝑒−ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)) 
21:                    Find new frame size: 

22:                    𝐹௦௛௥௨ (𝑡) = max ቄ𝜇௦௛௜௙௧೔
(𝑡), 𝜇௦௛௜௙௧ೕ

(𝑡)ቅ ,       𝑗 ∈ 𝑜𝑛𝑒 − ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖 

23:                    If (𝐹௦௛௥௨௡௞ (𝑡) == 𝐹௦௛௥௨  (𝑡 − 1)): 
24:                           𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 ←   𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 − 𝐹௦௛௥௨௡௞ 
25:                        𝜇௜  (𝑡) =  𝜇௜ (𝑡 − 1) − 𝐹௦௛௥௨௡  
26:                        Ignore all collisions 
27:                     Else: 
28:                         Continue 
29:                     End If 
30:        Else: 
31:                  Do Nothing 
32:                  Set 𝑐௜ = 1 
33:                  Piggyback 𝑐௜ , 𝜇௦௛௜௙௧೔  
34:                  Check the value of 𝑐௝,          ∀𝑗∈𝑜𝑛𝑒−ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  
35:                  If 𝑐௝ == 1 (∀𝑗∈𝑜𝑛𝑒−ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) 
36:                        Find new frame size: 

37:                        𝐹௦௛௥௨௡௞(𝑡) = max ቄ𝜇௦௛௜௙௧೔
(𝑡), 𝜇௦௛௜௙௧ೕ

(𝑡)ቅ,   𝑗 ∈ 𝑜𝑛𝑒 − ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖 

38:                           𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 ←   𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 − 𝐹௦௛௥௨௡௞ 
39:                        𝜇௜  (𝑡) =  𝜇௜ (𝑡 − 1) − 𝐹௦௛௥௨௡  
40:                   End If 
41:        End If 

Algorithm 6. 1. Slot Defragmentation  
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frame size from the 𝜇௦௛௜௙௧ values from its shift in its previous frame. Similarly, packets from 

nodes 2 and 3 collide in iteration 4 because of backshift operation of node 3. Node 3 shifts 

forward its transmission by one micro-slot and it knows that it has found its suitable micro-slot 

for transmission. In this example, the new frame size as shown in the figure reduces by 21% as 

a result of slot defragmentation mechanism. To be noted that the bandwidth redundancy left after 

slot defragmentation is because of the time lag existing among the nodes as a result of the absence 

of network time synchronization. 

Once a node finds a stable micro-slot, it piggybacks control information to all its one-hop 

neighbors indicating that it is stable. In addition, each node also piggybacks the information 

indicating the number of micro-slots it has shifted (𝜇௦௛௜௙ ) to find its stable position. Thus, a node 

knows that its one-hop neighbors have found the stable micro-slots and it computes the new  

𝐹௦௛௥௨௡௞ = max൛𝜇௦௛௜௙௧(𝑖), 𝜇௦௛௜௙௧(𝑗)ൟ, 

 𝑗 ∈ one − hop neighbors of 𝑖 

𝑁𝑒𝑤 𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 = 𝑂𝑙𝑑 𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 − 𝐹௦௛௥௨௡  

(6.1) 

The pseudo code logic for slot defragmentation executed by each node 𝑖 is given in Algorithm 

6.1. 

6.3 Experiments and Results 

Experiments are performed for both fully connected and partially connected networks to validate 

the concept. Fig. 6.3 (a) demonstrates the effect of slot defragmentation mechanism on 9 nodes 

fully connected network with 𝐾 = 1.67. The number on each packet in the figure indicates the 

transmitter of the packet. The figure shows the transmission schedules of the nodes in three 
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stages. First is the transmission schedule after MAB convergence. This is the time when 

defragmentation operation begins. It is observed that there are significant amount of time gap 

among the packet transmissions in a frame because of high value of 𝐾. The second plot in the 

figure is an intermediate stage when the nodes individually have found a stable micro-slot by 

defragmentation mechanism. The last plot shows the final stage when the nodes have computed 

the new frame size using Eqn. 6.1 and have started transmitting according to the new frame size. 

The bandwidth redundancy as a result of this operation reduces from 67.7% to 3.3% and this is 

 
Figure 6.3: Slot Defragmentation in (a) 9-nodes fully connected (b) 12-nodes partially connected 

network. 
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achieved over 25 iterations, where each iteration corresponds to a frame duration. To be noted 

that the bandwidth redundancy of 3.3% at the end of defragmentation is because of the existing 

temporal lag between the frames because of time asynchronization and can be reduced by 

increasing the discretization of micro-slots. But increase in micro-slot granularity would reflect 

in increasing defragmentation convergence time. This excess bandwidth goes to zero in a time 

synchronous network, post defragmentation. 

Similar observation can be visualized on experimentation of this framework in a partially 

connected topology. The reduction in bandwidth in a 12-nodes partially connected topology for 

𝐾 = 2 is shown in Fig. 6.3 (b). The excess bandwidth after defragmentation reduced from 100% 

to 7.11% in that topology.  

 
Figure 6.4: Bandwidth utilization efficiency by the proposed framework. 

To understand the efficiency of the proposed framework, the performance of the allocation 
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mechanism in terms of bandwidth utilization efficiency has been compared with the ideal 

scenario in the presence of time synchronization. Bandwidth utilization has been compared as 

𝑈 =
஽

்
× 100%, where 𝐷 is the actual duration within a frame of duration 𝑇 that is used for packet 

transmission. This has been plotted for three fully connected networks of size 3, 6 and 9 nodes 

(with bandwidth redundancy factor 𝐾=1.67) in Fig. 6.4 for three different scenarios: time 

synchronous TDMA (benchmark), time asynchronous slot allocation by MAB and proposed 

framework (MAB and defragmentation) without time synchronization. It can be seen that the 

proposed mechanism achieves bandwidth utilization efficiency in the range of 97-99% that is 

close to the time synchronous TDMA. The figure also shows the significance of the 

defragmentation technique post-MAB convergence that improves the bandwidth utilization 

efficiency by 37-39%.  

 
Figure 6.5: Convergence time variation with 𝐾 for fully connected networks. 
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Fig. 6.5 depicts the additive time for stage-1 MAB convergence and stage-2 defragmentation 

convergence. Larger 𝐾 values speed up MAB convergence while slowing down the 

defragmentation process. The latter is because with a larger frame length, the number of iterations 

that a node has to backshift its transmission micro-slot to find a suitable micro-slot increases. 

Thus, the search space to find the suitable transmission micro-slot increases with 𝐾. As can be 

seen in Fig. 6.5, the total convergence duration (MAB and slot defragmentation) initially goes 

down with increase in K, reaches a minimum, and then goes up again. This is because for small 

𝐾, MAB convergence time is significantly higher than defragmentation convergence and hence 

the total convergence is largely affected by the MAB learning convergence. However, for larger 

𝐾 values, defragmentation convergence time overpowers MAB convergence time, and thus, total 

convergence time increases with 𝐾. These results indicate that an optimum value of 𝐾 exists that 

gives the minimum total convergence time of the proposed learning framework. 

6.4 Summary 

This chapter proposes a decentralized slot defragmentation approach for handling the trade-off 

between bandwidth efficiency and convergence time of learning for TDMA slot allocation in the 

absence of time synchronization. This framework aims to solve the limitations of the Multi-

Armed Bandits slot selection policies detailed in chapter 5 in terms of the bandwidth usage 

inefficiency in resource constrained networks. The developed slot defragmentation operation, in 

conjunction with MAB-enabled slot scheduling, improves bandwidth utilization while 

guaranteeing collision free transmissions in the absence of network time synchronization. This 

decentralized mechanism also manages the convergence-bandwidth redundancy trade-off by 

algorithmic reduction of excess bandwidth required for faster MAB convergence. 

The discussion till this point in this thesis is centered around reducing collisions (in random 
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access schemes) and collision-free slot allocation (in TDMA-based access schemes), so that 

network throughput and bandwidth usage can be maximized. While doing so, other access 

performance parameters, such as, energy efficiency, packet delay are ignored. However, for 

resource constrained networks, judicious energy management is important, along with 

maximizing other network performance parameters. In the next chapter, a learning-based 

framework is developed as an extension of the MAB-based slot allocation logic in order to 

improve energy efficiency and network throughput while minimizing access delay and packet 

losses. 
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Chapter 7: Protocol Synthesis for Flow and Energy Management 

using multi-tier Learning  

Thus far in this thesis, we have been interested in developing learning-driven MAC protocols 

mainly focusing on improving network throughput. While doing so, we have not considered the 

energy constraints of the sensor nodes. However, resource-constrained sensor networks typically 

operate with limited energy reserves. Efficient energy management in such networks is crucial 

for enhancing network lifetime, without compromising on performance. Building on the Multi-

Armed Bandit-based slot allocation mechanism developed in chapter 5, we extend the study to 

develop a multi-tier learning framework for flow and energy management in resource-

constrained wireless networks.  

This chapter presents a learning-enabled framework for MAC sleep-listen-transmit scheduling in 

wireless networks. The developed paradigm is shown to work in the absence of network time-

synchronization and other complex hardware features, such as carrier-sensing, thus making it 

suitable for low-cost transceivers for IoT and wireless sensor nodes. The framework allows 

wireless nodes to learn policies that can support throughput-sustainable flows while minimizing 

node energy expenditure and sleep-induced packet drops and delays. Each node independently 

learns a scheduling policy without explicit communication with other network nodes. The trade-

off between packet drops and energy efficiency is analyzed, and an application-specific solution 

is proposed for handling the trade-off.  

7.1 Motivation 

Efficient scheduling for turning wireless transceivers on and off is an effective energy 

management mechanism in embedded networks of resource-constrained sensors and IoTs. In 
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traditional approaches [22, 23], such schedules are typically pre-programmed in nodes based on 

manual settings and heuristics that are designed based on specific target network and traffic 

scenarios. As a result, such schedules cannot adapt well to network and traffic dynamics and time 

varying heterogeneity. Shortcomings are usually manifested in terms of not being able to 

maintain the desired balance between network performance (i.e., throughput and delay) and 

energy efficiency. The proposed framework in this chapter overcomes these by learning 

appropriate sleep-listen-transmit policies and by adapting them in the presence of heterogeneous 

network and traffic conditions.  

Learning in this framework happens in three distinct stages. In the first stage [27], using Multi-

Armed Bandits (MAB) learning, nodes independently learn to select collision-free transmission 

slots. This learning module is equivalent to the one developed in chapter 5. The second stage 

uses Reinforcement Learning (RL) in order to learn whether to transmit or to sleep in the 

transmission slot selected in stage-I. This learning happens in a per-flow context in which 

multiple data flows may exist within each network node. The objective of the learning agent in 

this tier is to save energy by judicious sleeping, while keeping end-to-end packet delay low. 

Finally, in stage-III, another Multi-Armed Bandit agent learns whether to sleep or remain awake 

during a slot that was decided to be a non-transmitting slot by the MAB agent in stage-I. This 

agent ensures that the node remains awake only on the slots it is intended to receive packets from 

one of its neighbors, thus minimizing the idling energy expenditure. The objective of the 

coordinated learning by these three agents is to maximize per flow throughput while keeping 

energy expenditure minimum via judicious sleep-wake decisions. In addition to being adaptive 

to network and traffic heterogeneity, this decentralized learning architecture is able to handle the 

trade-offs between throughput and energy efficiency based on any application-specific 
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requirements.  

7.2 Network and Traffic Model 

The network model used in this work is a generalized network with arbitrary configurations of 

end-to-end flows in mesh topologies. Fig. 7.1 shows an example of the network model where 

there exists two flows originating from source nodes 𝑆ଵ and 𝑆ଶ and destinations 𝐷ଵ and 𝐷ଶ 

respectively. It is assumed that after the flows are set up at the routing layer, each node is aware 

of all the flow that passes through it, including the originating ones. 

 
Figure 7.1: Network and Traffic Model. 

The packet generation process at a flow source node follows a Poisson distribution with mean 𝜆, 

repressing the flow rate.   The maximum flow rate is kept equal to 
1 packet per flow

Flowmax
, where Flowmax 

represents the maximum number of flows passings thorough a node. The core MAC arrangement 

of the framework is TDMA, which exclusively works with fixed packet size [87] . Each node 

maintains an M/D/1/∞ buffer/queue for each flow, where the Poisson distributed queue arrival 

rate is the flow rate, and the queue service rate is determined by the actuated per-flow 

transmission policy. 
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Access in a node is slotted but are not necessarily synchronized across different nodes. The 

proposed learning mechanism is shown to work both in the presence and absence of network 

time synchronization. This is a crucial feature since MAC slot allocation and sleep scheduling in 

the absence of time synchronization is in general a challenging problem.  Each node maintains a 

hierarchy of learning agents that first learns to find collision-free transmission slots, and then 

determines transmit/sleep/listen policies so as to strike a balance between per-flow throughput 

and nodal energy efficiency. 

 
Figure 7.2: Different Stages of the learning modules from an individual node’s perspective. 

7.3 Flow-Specific Wireless Access and Sleep-Awake Scheduling using Reinforcement 

Learning 

The holistic goal of the proposed framework is to make the wireless nodes learn a 

transmit/listen/sleep policy that can support flow-specific throughputs while minimizing node-
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level energy consumption. This is achieved by a 3-stage learning framework, which is shown 

from an individual node’s perspective is shown in Fig. 7.2. In stage-I, per-node Multi-Armed 

Bandits based learning is used to make the nodes independently learn to select a collision-free 

transmission slot. In stage-II, per-flow Reinforcement Learning is used for deciding whether to 

transmit or sleep in the parent node’s transmission slot that was learnt in stage-I. Finally, a per-

node Multi-Armed Bandit agent learns an efficient sleep-listen schedule on the transmission slots 

of its 1-hop neighbors in order to minimize the energy wastage due to idle-awake slots. And it is 

done while ensuring minimum number of missed packet receptions due to oversleeping. The 

functional details of each of these learning modules are presented below. 

7.3.1 TDMA Slot Self-selection Using Node-specific Multi-Armed Bandit  

MAC slot allocation in this context refers to each node being able to self-select a collision-free 

slot within a network-wide agreed upon frame structure. Such slots are selected by each node 

using a local and independent learning process without the need for any centralized arbitration. 

The selection policy is modeled as a Multi-Armed Bandit (MAB) problem, where each node acts 

as an ‘F-armed bandit,’ where 𝐹 is the frame size in number of slots (refer to chapter 5). The 

action of the bandit is to select a slot, representing an arm, from an action pool of F slots. A slot 

is of one packet duration, and it is globally preset based on the network degree. The MAB 

environment here is the wireless network with which the nodes/agents interact through their 

actions of selecting transmission slots (i.e., the bandit arms). The reward associated with an action 

is formulated such that a node/agent receives a reward or penalty depending on if the selected 

slot is collision-free or not. The reward function for node 𝑖 in decision epoch 𝑡 is formulated as: 

𝑅௜(𝑡) = ൜
+1,  success  
-1,  collision

 (7.1) 
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Using the actions and this reward function, the MAB learning agent (i.e., the first stage of 

learning in Fig. 7.2) in each node learns to self-select a collision-free slot using the MAB update 

Eqn. (7.2), where 𝑉௧(𝑎) denotes the value of the arm 𝑎; 𝛼௧, 𝑟௧ are the learning rate and the reward 

received at instant 𝑡. 

𝑉௧ାଵ(𝑎) = 𝑉௧(𝑎) + 𝛼௧ × [𝑟௧ − 𝑉௧(𝑎)]     (7.2) 

Note that during this stage of learning, the sleep-awake schedulers (Stage II and Stage III) are 

inactive. In other words, the node is always on. Whenever there is a packet in the queue, it 

transmits. Similarly, the node is always on to receive packets from its one-hop neighbors. 

7.3.2 Transmission Decisions using Flow-specific RL based Learning 

Once a node selects a collision-free transmission slot using MAB, its next course of action is to 

decide whether it should transmit or sleep in that slot in each frame. The goal here for a node is 

to find an efficient transmit/sleep schedule for each of its flows such that the data rates for the 

flows are supported while maximizing transceiver sleeping for energy conservation. Such 

behavior is learnt by deploying a Reinforcement Learning (RL) agent (i.e., stage-II learning in 

Fig. 7.2) for each flow. 

In this framework, there is an RL agent associated with each flow through a node and the 

environment is the wireless network itself with which the agent interacts via actions. The 

modeling of state-action space and the reward function for the RL-agent in this work is explained 

below.  

RL-based Sleep-Transmission Scheduling: A learning decision epoch for each flow-specific RL 

agent is set to m frame durations, which is a hyper-parameter to be explored. Each frame 

comprises of 𝐹 slots, which is globally preset based on network degree. Each agent’s action is a 

vector of length 𝑚 in which each element represents either a Transmit or a Sleep as action.  Thus, 
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the action space 𝒜 is of size 2௠. The environment state space for an agent is determined by the 

congestion level as perceived by the agent. The state is coded by the change in the length of the 

queue dedicated for the flow over the decision epoch of 𝑚 frames. Formally stated, the state is 

𝛥𝑄𝑙(𝑡) = 𝑄𝑙(𝑡) − 𝑄𝑙(𝑡 − 1), which is the change in the length of the queue for the 𝑖௧௛ flow in 

the 𝑡௧௛ epoch.  In order to keep the state space discrete, the changes in queue length are quantized 

into 𝑙 uniform discrete intervals, where 𝑙  is a hyperparameter to be explored empirically. The 

state space for the RL agent of flow 𝑖 is of size 𝑙 and can be denoted as 𝑆መ௜ = {𝑠̂ଵ
௜ , 𝑠̂ଶ

௜ , … … , 𝑠̂௟
௜}.  

 
Figure 7.3: State transition for a flow as a result of its agent’s action. 

An example of state transition for an RL agent associated with a specific flow as a result of its 

actions is shown in Fig.  7.3. Depending on the action taken by the RL agent, its state may change 

in terms of the changed length of the flow-queue corresponding to the agent. For simplicity in 

the figure, we have considered 𝑚 = 1, and it is assumed that 𝑝 packets arrive in a decision epoch 

of 𝑚 frames. Thus, there are two possible actions: {Sleep (S) and Transmit (T)}. Based on the 

action selected by the agent and the number of packets received, the queue length changes, and 

this results in a state transition which is governed by the change in queue length (Δ𝑄𝑙).  

The action taken by an agent 𝑖 is evaluated based on a numerical reward received after each 
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decision epoch, which is computed from the reward function shown in Eqn. (7.3). 

𝑅௜(𝑡) = −𝜌 × 𝛥𝑄𝑙௜
∗(𝑡) × 𝑆(𝑡) (7.3) 

Here the term  𝛥𝑄𝑙௜
∗(𝑡) denotes the sample average of change in queue lengths for the action 𝑎௧ 

at the 𝑡௧௛ epoch. The negative sign indicates that a positive gradient in the queue length is to be 

penalized and vice versa. This is because, an increasing queue length for the queue related to the 

flow 𝑖 means that the agent associated with 𝑖 has decided to sleep on the transmission slot of its 

parent node more than the required duration, leading to an unstable queue and subsequent packet 

delay. 

For a non-positive gradient of queue length (i.e., throughput of the flow is sustained by needed 

transmissions), the RL-agent associated with the flow should try to minimize the awake time of 

the parent node of the flow for saving energy. On the other hand, for an increasing queue length, 

the flow-agent should try to increase the awake time. This is captured by the term 𝑆(𝑡), which 

defines the number of slots in which the node sleeps in the 𝑡௧௛ epoch. A higher number of 

sleeping slots is beneficial for energy saving and hence multiplying 𝑆(𝑡) in the reward reinforces 

the agent to sleep more for a negative value of Δ𝑄𝑙௜
∗(𝑡) in order to save energy. A scaling factor 

𝜌 = 𝜌௠௜௡ × 𝑒௧/ఘೝ is multiplied with the reward function which gives more importance to the 

recent samples of reward as compared to the older ones.   

Using the RL model discussed above, each flow-agent learns a transmit/sleep policy that can 

support the data rate of the flow while minimizing the energy consumption. In other words, the 

agent associated with the flow 𝑖 learns a suitable service rate of the queue for flow 𝑖 in order to 

achieve the above-mentioned objectives. Learning is accomplished using a tabular Q-Learning 

[13, 88]. An agent (associated with each flow) interacts with the environment (the wireless 
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network) repeatedly to learn the best possible set of actions (transmit/sleep decisions) to 

maximize the long-term expected reward. For all state-action pairs, the agent maintains Q values 

which are updated using Eqn. (7.4). Here, 𝑄(𝑠, 𝑎) represents the Q value for the current state-

action pair (𝑠, 𝑎); 𝑟 is the reward received and the hyperparameters 𝛼 and 𝛾 represent learning 

rate and discount factor, respectively. 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ቂ𝑟(𝑠, 𝑎) + 𝛾 × max
∀௔ᇲ∈஺

𝑄(𝑠, 𝑎ᇱ) − 𝑄(𝑠, 𝑎)ቃ                            (7.4) 

To be noted that since reward captures the state in terms of Δ𝑄𝑙 (meaning, the value of the state 

is already captured in the reward), so in the update equation, the maximum of the Q-values of the 

current state ( max
∀௔ᇲ∈஺

𝑄(𝑠, 𝑎ᇱ)) is considered. This means, whatever the next state is, if the current 

state is suitable for the system, the q-table for that state is updated with a low discounted reward. 

Still, the immediate reward is based on the action taken in that state. This is done to speed up the 

learning convergence, as found empirically. 

The Q-values are initialized to zero to make sure that equal importance is given to all the actions. 

Initial random action selection is implemented by ϵ- greedy action selection policy. As the Q-

values are adaptively updated, the agent prefers the action with the highest Q value for a specific 

state with the goal of maximizing long-term reward.  

After learning convergence, the actions of a flow-agent may remain oscillatory because of non-

uniqueness of the possible solutions. But this is not desirable for the sleep/listen scheduling of 

the downstream node in the flow, as it will not be able to learn from the aperiodic packet arrival 

intervals in the presence of such oscillations. In order to overcome this, the agent picks the action 

with one of the highest Q-values (i.e., in the presence of multiple highests) and sticks to it for the 

lifetime of the flow. This is achieved by computing the moving variance (𝑀𝑉(𝜇ᇱ, 𝑤)) of the 
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estimated service rate (over 𝑚 frames) of the queue over a sliding window of 𝑤 epochs. If 

𝑀𝑉(𝜇ᇱ, 𝑤) < 𝜖ఓ, the action  𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥∀௔ {𝑄(𝑠, 𝑎)} is chosen for post-convergence epochs. 

The details on hyperparameters 𝜌௠௜௡ , 𝜌௥ , 𝑤, 𝜖ఓ are given in Section 7.4.  

Inter-flow Transmission Conflict Coordination: Each flow-level learning agent in stage-II 

operates independently in order to learn whether to sleep or transmit in its parent node’s 

transmission slot that was selected using MAB learning in Stage-I. Since there can be multiple 

flows through a node, multiple such agents may learn to transmit in that slot, thus leading to 

inter-flow transmission conflicts. Such conflicts can be handled using a node-wise transmit/sleep 

decision maker (shown in Fig. 7.2) that assigns the transmission slot to one of those conflicting 

flows either in a round robin manner or randomly (uniformly). Selecting flows using a uniform 

distribution, in the long run produces similar long-term performance like round robin policy. 

Moreover, the rewards for RL are computed over a decision epoch long enough (controlled by 

parameter 𝑚) to handle any short-term variability arising from random flow-coordination. 

7.3.3 Node-specific Multi-Arm Bandits for sleep-awake learning in non-transmission 

slots 

A node-specific MAB learning agent decides whether to sleep or to listen on the node’s non-

transmission slots. The objective is to stay awake during an appropriate subset of those slots in 

order to ensure reception of neighbor nodes’ transmitted packets that are intended for the node. 

And to save energy during the remaining subset of those slots when no packets are transmitted 

for the node. This is the stage-III learning as shown in Fig. 7.2. The MAB agent in this stage has 

two possible arms or actions, namely, Sleep (𝑆) and Listen (𝐿), in each learning epoch which is 

set to one slot. In other words, on each non-transmission slot in a frame, the node-specific agent 
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decides whether to sleep or listen. This action is evaluated using a numerical reward which is 

computed from the reward function for agent 𝑖 at epoch 𝑡 given in Eqn. (7.5).  

𝑅௜,௦(𝑡) = ൞

+1,    𝑓𝑜𝑟 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝑡
0,                             𝑓𝑜𝑟 𝑎𝑤𝑎𝑘𝑖𝑛𝑔 𝑢𝑝 𝑖𝑑𝑙𝑒 𝑎𝑡 𝑡

ூ೟(௦)

ௐ೟(௦)
,                                   𝑓𝑜𝑟 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 𝑎𝑡 𝑡

                                     (7.5) 

 

Here 𝐼௧(𝑠) represents the number of instances the node remained awake without receiving any 

packet in slot 𝑠, till the 𝑡௧௛ epoch from the start of learning. 𝑊௧(𝑠) is the total number of instances 

the node remained awake in slot 𝑠, till the 𝑡௧௛ epoch from the start. Thus, the quantity 
ூ೟(௦)

ௐ೟(௦)
 

represents the average duration of idle listening in slot 𝑠, that is the duration for which the node 

remained awake although there was no packet for which the node 𝑖 was the intended receiver.  

The physical intuition of the reward in Eqn. (7.5) can be understood as follows. The action of a 

node remaining awake in a slot 𝑠 in an epoch 𝑡 (i.e., 𝑎௧ = 𝐿) is rewarded if there is a successful 

packet reception in that epoch. That is, the node 𝑖 remained awake in a slot 𝑠, and there was a 

packet transmission from a one-hop neighbor of 𝑖 for which 𝑖 is the intended receiver. The node-

level agent 𝑖 receives no reward for remaining awake in a slot 𝑠, if there is no packet intended to 

it in that slot. This is because it leads to unnecessary energy consumption due to remaining awake 

without receiving any packet. Moreover, the action of sleeping on a slot s (i.e., 𝑎௧ = 𝑆) is 

rewarded based on the estimate of the average idle-listening period (
ூ೟(௦)

ௐ೟(௦)
) in that slot. In other 

words, higher the value of 
ூ೟(௦)

ௐ೟(௦)
, higher is the probability that the node was awake in a slot 𝑠 

without receiving any packet. Hence, higher is the benefit of sleeping in that slot.  

The working of the MAB learning model can be explained analytically as follows. From the 
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definition of the value of an arm in Multi-Armed Bandits [12], we can obtain the value of the 

arm ‘Listen (L)’ for slot 𝑠 as follows. 

𝑉௦(𝑡|𝑎 = 𝐿) = 𝑉௦(𝑡 − 1|𝑎 = 𝐿) + 𝛼௧ × [𝑅௜,௦(𝑡 − 1|𝑎 = 𝐿) − 𝑉௦(𝑡 − 1|𝑎 = 𝐿)] 

This is equivalent to  

𝑉௦(𝑡|𝑎 = 𝐿) = 𝛼௧ × [𝑅௜,௦(𝑡|𝑎 = 𝐿) + 𝑅௜,௦(𝑡 − 1|𝑎 = 𝐿) + 𝑅௜,௦(𝑡 − 2|𝑎 = 𝐿)

+ ⋯ . +𝑅௜,௦(0|𝑎 = 𝐿)] 

Now choosing an adaptive learning rate 𝛼௧ =
ଵ

ௐ(௦)
, we obtain: 

𝑉௦(𝑡|𝑎 = 𝐿) =
1

𝑊(𝑠)
× [𝑅௜,௦(𝑡|𝑎 = 𝐿) + 𝑅௜,௦(𝑡 − 1|𝑎 = 𝐿) + 𝑅௜,௦(𝑡 − 2|𝑎 = 𝐿)

+ ⋯ . +𝑅௜,௦(0|𝑎 = 𝐿)] 

From the reward definition in Eqn. (7.5), 𝑅௜,௦(𝑡|𝑎 = 𝐿) can take values 1 or 0, depending on 

whether it received a packet or not. This means, as 𝑡 → ∞:  

෍ 𝑅௜,௦(𝑘|𝑎 = 𝐿)

௧

௞ୀ଴

→ 𝑊(𝑠) × 𝜆௦ 

⇒ 𝑉௦(𝑡 → ∞|𝑎 = 𝐿) → 𝜆௦ 

where 𝜆௦ denotes the rate of the flow associated with slot 𝑠. Similarly, the value of the arm 

‘Sleep (S)’ converges to 

𝑉௦(𝑡 → ∞|𝑎 = 𝑆) → (1 − 𝜆௦) 

Now, at time instant 𝑡, an arm 𝑎 is chosen for slot 𝑠 with probability 

𝑃௦(𝑎௧ = 𝑎) =

⎩
⎪
⎨

⎪
⎧𝑉௦(𝑡|𝑎௧ = 𝑎) ቆ1 +

1 − 𝑉௦(𝑡|𝑎௧ = 𝑎)

𝑉௦(𝑡|𝑎௧ = 𝑎)
𝛿௣ቇ , 𝑎 = 𝐿

𝑉௦(𝑡|𝑎௧ = 𝑎) ቆ1 −
1 − 𝑉௦(𝑡|𝑎௧ = 𝑎)

𝑉௦(𝑡|𝑎௧ = 𝑎)
𝛿௣ቇ , 𝑎 = 𝑆

                                        (7.6) 

Here 𝛿௣ (0 ≤ 𝛿௣ ≤ 1) is a tunable priority coefficient, an increase in which prioritizes reduced 
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missed packet reception over increasing energy efficiency. At 𝛿௣ = 1, the missed reception rate 

is reduced to zero. In this way, a node learns an efficient sleep-listen scheduling policy with an 

aim of striking a right balance between missed packet receptions and energy savings based on 

application-specific requirements.  

Using the learning frameworks detailed above, each node learns a transmission/sleep/listen 

policy that provides a data-rate sustainable flow support for all the flows through it, minimizes 

sleep-induced missed packet receptions, and maximizes energy savings. This learnt behavior 

gives rise to the proposed Energy-Efficient Sleep Scheduling-MAC (ESS-MAC). To be noted 

that in Stages-I and III, the actions are not dependent on the state of the environment. For Stage 

I, the actions are evaluated based on whether the transmission was successful. For Stage III, the 

actions are evaluated based on whether the node was awake in correct reception slots. However, 

in stage II, the transmission decisions are situation dependent, which justifies the use of 

Reinforcement Learning in that stage. In other words, for a high queue length, it should transmit 

more even if the goal is to minimize energy consumption. Whereas it is the reverse for a lower 

value of queue length. 

7.4 Experiments and Results 

Experiments are performed to analyze the performance of the proposed ESS-MAC protocol using 

a MAC layer simulator with embedded learning components. The simulation kernel performs 

event scheduling in terms of packet generation, transmissions, and receptions. To implement the 

proposed ESS-MAC protocol, the Reinforcement Learning and Multi-Armed Bandits update 

equations are embedded on top of the MAC layer functions. The baseline experimental 



131 

parameters are tabulated in Table 7.1. The post- convergence performance of the learning-based 

MAC protocol is evaluated based on the following performance metrics. 

Missed Reception Rate (𝑃௠௜௦௦): This is defined as the average number of packets missed by the 

receiver in a frame because of oversleeping, which is computed as: 𝑃௠௜௦௦ =
|ோೣ∩ௌ|

|ோೣ|
, where 𝑅௫ is  

the set of slots in a frame where it is supposed to receive packet and S is the set of slots in a frame 

where the node actually sleeps. It captures the intersection of those two, and it needs to be 

minimized. 

Listening Energy Efficiency (𝜂௅): This takes into account the number of correct sleeps in a frame 

that leads to energy saving and also the bad sleeps that leads to missed packet receptions. This is 

computed as 𝜂௅ =
|ோೣതതതത∩ௌ|ି|ୗି(ோതೣ∩ௌ)|

|ோೣതതതത|
 and needs to be maximized. In this equation, the expression 

|𝑅௫
തതതത ∩ 𝑆| and |𝑆 − (𝑅௫

തതതത ∩ 𝑆)| capture the number of good and bad sleeps (i.e., oversleeping) in a 

frame respectively. 

Table 7.1: Baseline Experimental Parameters 

Parameter Value 
m 10 

𝜌௠௜௡ 0.3 
𝜌௥ 1000 
𝛼 0.3 
𝛾 0.9 
𝑤 100 

𝜖ఓ   0.01 
𝑙 9 

Throughput (𝑠௜): Throughput of a node 𝑖 is computed as the average number of packets in a frame 

successfully received by the intended receiver. This is computed as 𝑠௜ = 𝜆௜ × (1 − 𝑃௠௜௦௦). Here 

𝜆௜ is the packet generation rate of node 𝑖’s application layer. 
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In addition, performance is evaluated in terms of Idle Listen Probability and Off-Probability that 

denote the average number of slots a node remains idle and transceiver off in a frame 

respectively. Performance of the flow controlling agent is evaluated on the basis of end-to-end 

delay in a flow and also the transmission energy efficiency (𝜂௧௫) computed by the average queue 

utilization ratio (𝜂௧௫ =
λ

Average μ
). For a given rate 𝜆, energy efficiency is high for a low service 

rate 𝜇, as the node has to remain awake for low duration. However, the service rate should be 

always higher than the flow rate 𝜆, otherwise the queue length will not be stable and hence delay 

will go up. 

 
Figure 7.4: Convergence behavior of (a) Flow-controlling RL agent, (b) Sleep-Listen 

Scheduling MAB agent. 

7.4.1 Performance Analysis on a Single Flow Network 

In order to test feasibility and gain insights of the proposed mechanism, performance of the 

developed framework is first studied in a simple scenario of only a single flow in a 2-node 

network. Node-1 is a source in which packets are generated using Poisson-distribution with mean 

rate 𝜆 = 0.5. Packet transmissions are done based on a learnt transmit/sleep policy (i.e., access 

protocol) as described in Section 0. Node-2 is the receiver that learns a sleep-listen policy (i.e., 
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as proposed in Section 7.3.3) in order to maximize energy efficiency while minimizing packet 

drops due to oversleeping. Fig. 7.4 shows the convergence behavior of both the learning agents, 

viz, the flow-specific transmit-sleep scheduling RL-based learning agent in stage-II and the 

sleep-listen scheduling MAB-based agent in stage-III (Fig. 7.2).  

Fig. 7.4 (a) plots the convergence behavior in terms of average 𝜇 and average queue length for 

the flow. It can be observed that after learning converges, average 𝜇 settles down at 0.6. This is 

because, the epoch size 𝑚 = 10 frames which means the possible values of 𝜇 have a step size of 

0.1. Since the packet arrival rate 𝜆 = 0.5 and for a stable queue 𝜇 > 𝜆 is a requirement, the 

minimum feasible value for the queue service rate 𝜇 should be 0.6. To be noted that although 

𝜇 > 0.6 would allow the queue to be stable it would lead to unnecessary awake duration, thus 

affecting energy efficiency. Similarly, Fig. 7.4 (b) shows the convergence behavior of the sleep-

scheduling agent in terms of sleep-induced missed reception rate (𝑃௠௜௦௦) and energy efficiency 

(𝜂௅).  This is for the packet miss reduction parameter 𝛿௣ = 1 and it is observed that as learning 

 
Figure 7.5: Performance analysis of ESS-MAC in a single flow scenario. 
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progresses, missed reception rate keeps on reducing and efficiency increases. Missed reception 

rate due to bad sleeps goes to zero after learning convergence. It is to be noted that stage-III 

learning depends on stage II learning and as can be seen from Fig. 7.4, stage III learning 

convergence time is higher than Stage-II learning. In other words, if a bad action is taken in the 

initial learning epochs of stage II, this leads to poor action selection by the MAB agent in stage 

III. This makes the learning in stage III dependent on stage II. 

The effects of throughput priority coefficient 𝛿௣ and flow rate 𝜆 on performance are demonstrated 

in Fig. 7.5. The following observations can be made. First, for lower values of flow rate 𝜆, 

efficiency (𝜂௅) goes down with increase in 𝛿௣, whereas, for higher 𝜆, efficiency increases with 

increase in 𝛿௣ (Fig. 7.5 (a)). This can be explained using Fig. 7.5 (b), that shows that the node 

‘off probability’ (𝑃ை௙௙) decreases with increase in packet drop reduction priority factor (𝛿௣) and 

the node learns to remain Off with high probability for lower flow rate, so that it can save energy 

when the packet arrival is sparse. Hence, when the flow rate is low, low 𝛿௣ yields higher 

efficiency. Another observation from Fig. 7.5 (c) is that the idle awake probability (𝑃௜ௗ௟௘) is 

inversely related to efficiency. Meaning, 𝑃௜ௗ௟௘ increases with increase in 𝛿௣ for lower 𝜆, whereas, 

for higher 𝜆, 𝑃௜ௗ௟௘ decreases with increase in 𝛿௣. This is because of the fact that it is beneficial to 

sleep more if the flow rate is low and lower 𝛿௣ leads to lower idle-awake and vice-versa. Fig. 7.5 

(d), (e) show the variation of throughput and missed reception rates (𝑃௠௜௦௦)  with flow rate 𝜆 and 

priority coefficient 𝛿௣. The first observation from these figures is that average missed reception 

probability resulting from bad sleep decisions goes down with increase in 𝛿௣, because the node 

remains on with high probability for higher 𝛿௣. To be noted that for any flow rate, 𝑃௠௜௦௦ goes to 

zero for 𝛿௣ = 1. As a consequence, throughput increases with increase in 𝛿௣ and reaches the 
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maximum possible value of 𝜆 for 𝛿௣ = 1. Another observation is that sleep-induced missed 

receptions increase with 𝜆 and then decrease for 𝛿௣ ≠ 1. This behavior can be explained 

mathematically as follows. 

𝑃௠௜௦௦ = 𝑃௢௙௙ × 𝜆 

= (1 − 𝑃௢௡) × 𝜆 

= (1 − 𝑉(𝑎௧ = 𝐿) × ቆ1 +
1 − 𝑉(𝑎௧ = 𝐿)

𝑉(𝑎௧ = 𝐿)
𝛿௣ቇ) × 𝜆 

After convergence, 𝑉(𝑎௧ = 𝐿) → 𝜆. This leads to:  

𝑃௠௜௦௦ = (1 − 𝜆 × ൬1 +
1 − 𝜆 

𝜆 
𝛿௣൰) × 𝜆 

(7.7) 

Throughput, 𝑠 = 𝜆 × (1 − 𝑃௠௜௦௦) 

= 𝜆 × (1 − (1 − 𝜆 × ൬1 +
1 − 𝜆 

𝜆 
𝛿௣൰) × 𝜆) 

 

This analytical model is validated using simulations from the plot shown in Fig. 7.6 (a). The 

behavior of the plot can be understood by looking at 𝑃௠௜௦௦ as a product of two terms: off 

 
Figure 7.6: Comparison of analytical model for sleep-induced packet drops and throughput with 

simulations. 
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probability and flow rate. With increase in flow rate, the MAB agent learns to remain off with 

lower probability, and hence 𝑃௢௙௙ goes down. That explains the inflection point in the graph of 

𝑃௠௜௦௦ vs. 𝜆 in Fig. 7.5 (e). For the same reason, throughput also follows a non-linear relationship 

with 𝜆 (Fig. 7.6 (b)).  

 
Figure 7.7: Effect of increase in flow length on packet drop rate and efficiency. 

The effect of increasing the number of intermediate nodes in the flow is presented in Fig. 7.7 (a) 

for three different values of 𝛿௣ (0.6, 0.9, 1.0). It is observed that with the increase in number of 

intermediate nodes in the flow, a greater number of nodes contribute to the packet losses due to 

missed receptions, and hence the overall missed reception rate increases. However, missed 

reception rate remains constant at zero for 𝛿௣ = 1. Another observation is that for lower values 

of 𝛿௣, the flow rate is disrupted because of missed receptions and hence the missed reception 

probability of a downstream node is lower than that of an upstream node. This effect is captured 

by the non-linear behavior of the network missed reception probability in the figure.   

The efficiency plot shown in Fig. 7.7 (b) suggests that efficiency remains in the range of 80-90% 

for different number of intermediate nodes. The increase in missed receptions and decrease in 

efficiency with an increase in flow length holds for different flow rates and 𝛿௣ = 0.9. This can 

be seen from Fig. 7.7 (c) and 7.7 (d).  
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Figure 7.8: Effect of 𝛿௣ on Packet delay and Transmission Energy Efficiency. 

To understand the effect of 𝛿௣, packet miss reduction parameter, on the performance of the flow-

controlling agent (Tier-II), end-to-end delay and transmission energy efficiency are plotted for 

𝛿௣ = 0.5, 0.6, 0.8 in Fig. 7.8. The figure demonstrates that both end-to-end delay and 

transmission energy efficiency (𝜂௧௫) increase with increase in 𝛿௣. This is because Delay ∝
1

μ-λ
 and 

𝜂௧௫ =
ఒ

ఓ
. With increase in 𝛿௣, missed reception rate goes down, which in turn increases 𝜆, causing 

delay and 𝜂௧௫  to go up. Note that the transmission energy efficiency (𝜂௧௫) in this figure is 

different from the reception energy efficiency (𝜂௅)  in Figs. 7.5 and 7.7. The quantity 𝜂௧௫ denotes 

the energy efficiency of the Stage-II learning, whereas 𝜂௅ denotes the energy efficiency of the 

Stage-III learning. 

To summarize, 𝛿௣ is a tunable parameter which controls the trade-off between missed packet 

reception rate, efficiency, and delay, and it should be chosen based on the application 

requirements. For an application that cannot afford packet loss, the value of 𝛿௣ should be kept at 

its highest value 1. On the other extreme of applications with stringent energy budget and relaxed 
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delay requirements, 𝛿௣ should be kept close to zero. 

 
Figure 7.9: (a): Mesh network, (b): Missed Reception rate and efficiency of ESS-MAC on mesh 

topology, (c) Normalized throughput of ESS-MAC on mesh topology. 

7.4.2 Performance Analysis on Arbitrary Mesh Network 

To show the overall working of the learning-based ESS-MAC protocol, experiments are 

performed in the 9-nodes arbitrary mesh network with 3 flows with heterogeneous flow rates of 

𝜆ଵ = 0.1, 𝜆ଶ = 0.4 and 𝜆ଷ = 0.3 packets per frame (Fig. 7.9 (a)). The missed reception rate 

(𝑃௠௜௦௦) and energy efficiency (𝜂) for different values of 𝛿௣ are shown in Fig. 7.9 (b). The energy 

efficiency here represents the overall efficiency capturing both transmission and listening, which 

is computed as 𝜂 =
ఎಽ×| ത் |ାఎ೟ೣ×|்|

|்|ା| ത்|
, where 𝑇, 𝑇ത represent the sets of slots in a frame where the 

node transmits and does not transmit respectively. In other words, 𝜂 captures the energy 

efficiency of the entire framework. Similar to the findings for single flow scenario in Section 

7.4.1, reduction in sleep-induced packet losses and increase in efficiency with increase in the 

value of packet miss reduction parameter (𝛿௣) still hold for the mesh topology. In addition, 

missed packet reception goes to zero for 𝛿௣ = 1 with an energy efficiency of around 80%. Fig. 

7.9 (c) shows the network throughput variation with different values of 𝛿௣. It shows that with 

increase in 𝛿௣, throughput increases. This is because, with increase in 𝛿௣, packet misses resulting 

from oversleeping reduces, and hance throughput increases.  
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Figure 7.10: Performance Comparison of ESS-MAC with QL-MAC. 

7.4.3 Performance Comparison with QL-MAC 

The performance of the proposed framework is compared against the existing state-of-the-art 

RL-based sleep scheduling protocol QL-MAC [89]. The working concept and major limitations 

of the same have been summarized in chapter 2 (Section 2.2). Fig. 7.10 shows the comparison of 

the proposed ESS-MAC protocol with the existing QL-MAC protocol for the 7-nodes mesh 

topology. The parameter λ in QL-MAC controls the trade-off between packet delivery rate and 

energy consumption. In this work, performance of ESS-MAC is compared with QL-MAC for 
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three different values of λ (low, medium and high). The values of λ are selected based on what 

is suggested by the authors in the paper [89]. It is observed that ESS-MAC can achieve higher 

packet delivery ratio (PDR) for lower values of node awake probability. This indicates that ESS-

MAC is more reliable than QL-MAC for the similar energy efficiency. Moreover, ESS- MAC 

allows 100% PDR for a minimal compromise on energy efficiency for 𝛿௣ = 1, whereas QL-

MAC is not able to achieve a 100% PDR. This makes ESS-MAC useful in applications that 

cannot afford any packet loss. 

7.4.4 Learning Adaptability to Dynamic Network Traffic 

Experiments were performed to analyze the adaptability with dynamic network traffic. Fig. 7.11 

(a) shows the performance of the protocol for a time-varying flow rate in a linear network, where 

the initial data rate is  0.33 ppf. Data rate for the flow was changed at the time instances shown 

by dotted lines in the figure. It was observed that the learning agent is able to adjust its learnt 

policy according to the time-varying flow rate, so as to minimize the energy consumption while 

maintaining a stable queue. However, it is observed that learning convergence after the flow rate 

changes are generally slow. This is because when the scheduling policy is learnt for a particular 

flow rate, it assigns penalties for actions not favoring that flow rate. Hence, after learning 

convergence, the Q table is biased towards that specific flow rate. However, the penalized action 

may be suitable for a different flow rate. This makes the learning convergence to be slow in 

scenarios of dynamic network traffic. To be noted that learning recovery time is dependent on 

the original (𝜆௢௟ௗ) and final flow data rate (𝜆௡௘௪) as can be observed from Fig. 7.11 (b). If the 

change in load is such that 𝜆௢௟ௗ and 𝜆௡௘௪ has the same optimal solution, then the convergence is 

faster, since the learnt Q-table is already biased to the optimal solution. With increase in the 

change in load, recovery convergence time increases. This problem of high learning recovery 
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time to dynamic traffic can be handled by incorporating the estimated flow data rate in the RL 

state definition and by using a Deep Neural Network to estimate the Q-function, which is 

presented in next chapter. 

 
Figure 7.11: (a): Learning adaptability to dynamic network traffic at node 2, (b) Learning 

recovery time variation with dynamic load. 

7.5 ESS-MAC for Networks without Time Synchronization 

Accurate time synchronization over wireless can be expensive, especially with low-cost 

hardware and limited processing and communication resources. Moreover, the MAC layer 

performance in such networks can be very sensitive to even slight perturbations in the quality of 

time synchronization [21]. Adaptations of the proposed learning-based MAC framework for 

networks without time synchronization are presented in this section. Asynchronous TDMA MAC 

operation has already been explained in chapter 5. 

7.5.1 Mini-slot Allocation in Asynchronous TDMA 

Transmission scheduling problem in this context boils down to each node to be able to choose a 

mini-slot at which the node can transmit in all subsequent frames without colliding with the 

transmissions from the other nodes. Such collision-free mini-slots is selected locally at each node 
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independently, and that is without any centralized allocation entities and network time 

synchronization. The selection policy is modeled as a Multi-Armed Bandit (MAB) problem, as 

formulated in chapter 5. 

7.5.2 Learning Transmit-Listen-Sleep Policy 

Once a node finds its non-overlapping transmission mini-slots using the MAB model formulated 

above, the next aim is to find an efficient transmit/sleep schedule for providing a load-sustainable 

support for all the flows through it. The Reinforcement Learning model used here is the same as 

what was used for the networks with time synchronization capability as explained in Section 7.3. 

There is a learning agent per flow (Stage-II learning agent in Fig. 7.2) and the action is to decide 

on whether the node should transmit or sleep in the allocated mini-slots for the node. The state 

space and the reward function are the same as in the time-synchronized scenario and follow Eqn. 

7.3. Using this RL model, a node finds its transmit/sleep duty cycle so as to spend energy 

judiciously while keeping end-to-end packet delay at an acceptable level. 

The next task for a node is to decide whether to listen or sleep in the non-transmission mini-slots 

decided in tier-I. The nodes learn a sleep-listen policy using the MAB-based model of the 

learning agent in Stage-III (Fig. 7.2) as discussed in Section 7.3. The only difference is that the 

decision epoch here is at the mini-slot level as opposed to the slot level in the time-synchronous 

case. Since time is not synchronized, a node should be awake in multiple mini-slots to 

successfully receive a packet sent from its neighbor. This is because, a packet occupies multiple 

mini-slots (depending on the value of 𝑛ெ (Eqn. 5.1)) and the receiver has to remain awake on all 

these mini-slots to successfully receive the packet. This behavior is illustrated in Fig. 7.12, where 

node 𝑖 is transmitting packets to node 𝑗. Since time is not synchronized, the frame of node 𝑗 lags 

that of node 𝑖 by an amount Δ௜. In this figure, node 𝑖 transmits packets at the second mini-slot in 



143 

its frame, and since 𝑛ெ = 2, the packet occupies the second and the third mini-slots of the frame 

of node 𝑖. From node 𝑗′s perspective, for successful reception of that packet, it should be on for 

that duration. Meaning, it should be awake for mini-slots 1, 2 and 3 in its frame. This means that 

the listening node has to remain awake for 1 mini-slot worth of duration more than the actual 

packet duration for this time-asynchronous case.  

 
Figure 7.12: (a) Sleep-listen scheduling in time-asynchronous networks (b) Δ௜ = 0 (c) Δ௜ =

𝑇௠௜௡௜. 

Considering the two extreme cases, Δ௜ = 0 and Δ௜ = 𝑇௠௜௡௜,  as shown in Fig. 7.12 (b) and (c) 

respectively, the receiver node 𝑗 does not need to be awake for extra duration than the packet 

duration for successful reception. This is because these two cases correspond to the time 

synchronization case at the mini-slot level of temporal granularity. This concept can be extended 

for any value of 𝑛ெ. Thus, for a node to successfully receive a packet destined to itself, it has to 

remain awake for a duration 𝐷, where 𝜏 ≤ 𝐷 ≤ 𝜏 + 𝑇௠௜௡௜ (𝜏, 𝑇௠௜௡௜ are the packet duration and 

mini-slot duration respectively).  
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Using the above Multi-Armed Bandit model, experiments are performed for networks in the 

absence of time synchronization. Performance in terms of energy efficiency (𝜂௅), throughput, 

and sleep-induced missed reception probability are shown in Figs. 7.13 (a), (b) and (c) 

respectively. These performance metrics are computed using the same way as in the time-

synchronous case (See Section 7.4). The following observations can be made. First, for lower 

values of flow rate 𝜆, efficiency (𝜂௅) goes down with the increase in 𝛿௣, whereas, for higher 𝜆, 

efficiency increases with increase in 𝛿௣. This means that, it is beneficial to sleep more when the 

flow rate is low. Hence, a smaller value of 𝛿௣ increases efficiency for lower 𝜆 values. The 

converse is true for higher flow rates.  

 
Figure 7.13: Performance evaluation of ESS-MAC Protocol on networks in the absence of time 

synchronization. 
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Second, throughput increases with increase in 𝛿௣ values and reaches the maximum value of 𝜆 for 

𝛿௣ = 1. This also shows that sleep-induced packet reception losses is zero for 𝛿௣ = 1. Third, for 

the same operating conditions, efficiency and throughput are low, and the packet miss rates are 

high for this time-asynchronous case as compared to the time-synchronized networks. This is 

because, for the time-asynchronous case, the node has to be awake in multiple mini-slots for 

successful reception of a packet, unlike in the time-synchronous case. For lower 𝛿௣, when a node 

decides to sleep in a mini-slot, there is a probability that it will miss a packet whose transmission 

started in the prior mini-slot. This is not the case in a time-synchronized network, where sleeping 

in a slot only affects the missed reception in that slot. This explains the high missed receptions 

and low throughput in time-asynchronous case. Also, the sleep-induced packet losses, and hence 

throughput, follows a non- linear relationship with 𝛿௣ for networks in the absence of time 

synchronization. This non-linear behavior can be explained from the analytical model as follows.  

 
Figure 7.14: Comparison of analytical and simulation model for (a) missed reception rate and 

(b) throughput. 

𝑃௠௜௦௦
௔௦௬௡௖

= Probability that the node is off in at least one mini-slot 

 where it is supposed to receive packets 



146 

= ቊ
൫1 − 𝑃௢௡

௡ಾାଵ
൯ × 𝜆, 𝑖𝑓 𝑛ெ ≥ 1

(1 − 𝑃௢௡) × 𝜆, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

=

⎩
⎪⎪
⎨

⎪⎪
⎧

ቌ1 − ൭𝑉(𝑎௡ = 𝐿) × ቆ1 +
1 − 𝑉(𝑎௡ = 𝐿)

𝑉(𝑎௡ = 𝐿)
𝛿௣ቇ൱

௡ಾାଵ

ቍ × 𝜆, 𝑖𝑓 𝑛ெ ≥ 1

ቌ1 − ൭𝑉(𝑎௡ = 𝐿) × ቆ1 +
1 − 𝑉(𝑎௡ = 𝐿)

𝑉(𝑎௡ = 𝐿)
𝛿௣ቇ൱ቍ × 𝜆     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

After convergence, 𝑉(𝑎௡ = 𝐿) → 𝜆. 

This gives:  

𝑃௠௜௦௦
௔௦௬௡௖

=

⎩
⎪⎪
⎨

⎪⎪
⎧

ቌ1 − ൭𝜆 × ൬1 +
1 − 𝜆 

𝜆 
𝛿௣൰൱

௡ಾାଵ

ቍ × 𝜆, 𝑖𝑓 𝑛ெ ≥ 1

ቌ1 − ൭𝜆 × ൬1 +
1 − 𝜆 

𝜆 
𝛿௣൰൱ቍ × 𝜆     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(7.8) 

The power term (𝑛ெ + 1) in the equation gives rise to the non-linear behavior in missed reception 

probability.  Similarly, the throughput can be obtained as: 

Throughput, 𝑠௔௦௬௡௖ = 𝜆 × (1 − 𝑃௠௜௦௦
௔௦௬௡௖

)    (7.9) 

 

The missed reception probability expression derived in Eqn. (7.8) and the throughput in Eqn. 

(7.9) have been validated using simulation and is shown in Fig. 7.14. To be noted that for 𝑛ெ <

1, the missed reception probability equals the missed reception probability (Eqn. 7.7) in the time-

synchronous networks. But choosing the mini-slot scaling index 𝑛ெ < 1 is not practical, as it 

makes the mini-slot duration more than the packet duration, that will lead to poor bandwidth 

utilization. However, even for 𝑛ெ ≥ 1, there exists a trade-off between the sleep-induced packet 

losses and bandwidth redundancy that comes from the learning in tier-I. This bandwidth 

redundancy comes from the requirement of one additional mini-slot for networks in the absence 
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of time synchronization. This trade-off is depicted in Fig. 7.15 for 𝛿௣ = 0.8 and 𝜆 = 0.4, where 

missed reception probability goes down and bandwidth redundancy goes up with increase in 𝑛ெ 

values. Hence, based on the application-specific requirements and networking resource 

constraints in terms of bandwidth and throughput, an appropriate value of 𝑛ெ can be chosen. 

 
Figure 7.15: Trade-off between missed detection rate and bandwidth redundancy. 

To summarize, it is shown that ESS-MAC can be used for sleep scheduling in networks without 

time synchronization. However, the throughput and energy efficiency of ESS-MAC in the 

absence of time synchronization is lower than that in a time-synchronized network. This 

performance difference decreases with increase in 𝛿௣. Also, there exists a trade-off between 

throughput and bandwidth redundancy in networks without time synchronization. By suitable 

choice of 𝑛௠, this trade-off can be managed based on application-specific requirements. 

7.6 Summary 

A learning-based framework is proposed in this chapter for efficient sleep-transmit-listen 

scheduling in wireless networks. It is shown how the proposed mechanism allows wireless nodes 
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to learn policies that can support throughput-sustainable flows while minimizing sleep-induced 

packet loss, packet delay, and idle awake duration. The trade-off between energy efficiency and 

missed packet reception is studied, and it is shown how the trade-off can be tuned based on 

application-specific requirements. An analytical model for the MAB-based scheduling is 

developed and validated against results from extensive simulation experiments. Finally, by 

means of experimentation with mesh networks, the framework is generalized for arbitrary 

topologies. Notably, the proposed framework is shown to work in the absence of network time 

synchronization, carrier-sensing, and other complex lower-layer hardware support, thus, making 

it suitable for low-cost transceivers for wireless IoT and sensor networks.  

Note that although the online learning abilities of RL make the system adaptive to time-varying 

traffic scenarios, it is observed that learning recovery time to adapt to time-varying traffic is slow. 

It restricts the usage of the protocol only to slow-varying flow rate. Moreover, because of using 

tabular RL algorithms, the proposed framework has scalability issues with network size, degree, 

and the RL state and action spaces. In the next chapter, we propose a Contextual Deep 

Reinforcement Learning framework for network flow and energy management with an aim to 

address the limitations mentioned above. 
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Chapter 8: Energy Management using Contextual Learning  

The learning-enabled architecture for network flow and energy management developed in 

chapter 7 has the limitations of slow adaptation to dynamic traffic conditions. In addition, the 

synthesized protocol exhibits scalability challenges concerning network size and degree. In this 

chapter, we present a learning framework for data flow and energy management in wireless 

networks with an aim to solve these limitations. The overall goal of the developed mechanism is 

to make the wireless nodes learn an efficient and data-rate adaptive transmit-sleep-listen 

schedule. The learnt schedule can provide throughput-sustainable support for the active flows in 

a network, while minimizing the energy expenditure and sleep-induced packet drops. This is 

achieved using Contextual Deep Q-Learning (CDQL), that makes the system adaptive to 

dynamic and heterogeneous network traffic conditions. 

8.1 Motivation 

As mentioned above, a major limitation of the ESS-MAC proposed in chapter 7 and RL based 

sleep-awake scheduling in general [37] [89] [30], is that these mechanisms lack scalability with 

network size, degree, and the RL state and action spaces. These adversely affect the performance 

of the RL-synthesized schedules. Additionally, their slow adaptations to changing network 

conditions may pose practical implementation issues. The problem of scalability can be handled 

using deep Reinforcement Learning [90], which uses an Artificial Neural Network model as a 

function approximation entity for learning appropriate RL actions. The problem of adaptability 

to changing network conditions can be further addressed using a contextual learning model. The 

latter uses 3-dimensional context-state-action space as opposed to the 2-dimensional state-action 

space used in traditional RL models, thus offering context-sensitive learning options.  
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In this chapter, a multi-dimensional function approximation model using Contextual Deep Q-

Learning (CDQL) is developed to address the scalability and adaptability issues discussed earlier. 

As in the framework proposed in chapter 7, learning here takes place in three distinct tiers. Tier-

I learning is executed using a per-node Multi-Armed Bandit (MAB) model which is responsible 

for ensuring collision free TDMA transmission scheduling. Based on the active flows and their 

data rates in the node, the next course of action is to decide whether to transmit or sleep in its 

allocated slot. This is accomplished by a per-flow Contextual Deep Reinforcement Learning 

(CDRL) model in tier-II learning. The primary objective of this tier is to learn a suitable on-off 

transceiver duty cycle so that the energy expenditure can be minimized while keeping the end-

to-end delay under check. Finally, for the non-transmission slots, sleep-or- listen decisions are 

learnt by a per-node tier-III learning agent. The goal of this stage is to learn an efficient sleep-

listen schedule for receiving packets sent by the node’s one-hop neighbors. The objective is to 

reduce the listening energy expenditures while reducing the missed packet receptions due to 

inappropriate sleep decisions. The system level goal of this 3-tier coordinated learning 

framework is still to maximize throughput, while keeping the energy expenditure and end-to-end 

delay under check. In addition to learning adaptively with changing network traffic conditions, 

this CDRL-based mechanism allows controlling and fine tuning the balance between throughput 

and energy efficiency in an application-specific manner. 

8.2 Contextual Deep Q- Learning Model for Sustainable Flow and Efficient Sleep-

Awake Scheduling 

The goal of the developed learning-based framework is to make the wireless nodes learn a traffic-

adaptive transmit/ sleep/ listen schedule that can support sustainable data flows, while 

minimizing energy consumption. This goal is accomplished through a three-stage reinforcement 
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learning architecture implemented in each node, as depicted in Figure 8.1. The stage-I of the 

developed framework has a per-node Multi-Armed Bandit (MAB) agent that makes the node 

independently learn to find a collision-free TDMA transmission slot. The next task is to decide 

whether or not to transmit in that slot, which is controlled by a flow-level Reinforcement 

Learning agent in stage-II. The idea is to determine a transmit-sleep schedule so that the energy 

consumption is minimized, while maintaining a stable packet queue. Finally, the sleep-listen 

decisions on the transmission slots of the one-hop neighbor nodes are accomplished by a node-

level MAB agent in stage-III. This agent makes the nodes learn an energy-efficient sleep schedule 

by keeping the throughput at an application-specific acceptable level. As the learning models in 

stages I and III are consistent with those discussed in Chapter 7, we will not delve into these 

 
Figure 8.1: Different Stages of the learning modules from an individual node’s perspective. 
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details here and will proceed directly to stage-III of the proposed architecture that uses a scalable 

contextual deep learning framework for making it adaptive to data flow rate.  

Transmission Decisions using Flow-specific Contextual RL: Each node is equipped with a flow-

specific RL agent to learn an efficient transmit-sleep schedule (stage II in Fig. 8.1). Each learning 

decision epoch is of 𝑇 frames, which is a hyperparameter to be empirically explored. The epoch 

duration 𝑇 should be large enough to capture a statistically meaningful RL state and reward 

information. However, a large 𝑇 will also mean slow convergence. The parameter 𝑇 has to be 

chosen emperically. In an epoch, the action of the agent is defined as the probability of packet 

transmission in a frame. The probabilities are discretized in 𝑚 distinct values in the range [0, 1], 

where 𝑚 is a hyperparameter. It will also be shown in Section 8.3 that the action space granularity 

𝑚 plays a significant role in the RL performance both in terms of energy efficiency and 

convergence speed.  

The RL state space for a flow is defined by the congestion as perceived by an agent. The 

congestion state is coded as the change in length of the queue dedicated to the flow over the 

decision epoch of 𝑇 frames. The following are the three possible states for the agent associated 

with a flow 𝑖 at epoch 𝑡:  

𝑆௜(𝑡) = ቐ

𝑠௜
ଵ, 𝑖𝑓 Δ𝑄𝑙௜(𝑡) > 0

𝑠௜
ଶ, 𝑖𝑓 Δ𝑄𝑙௜(𝑡) = 0

𝑠௜
ଷ, 𝑖𝑓 Δ𝑄𝑙௜(𝑡) < 0

 

(8.1) 

Here 𝛥𝑄𝑙(𝑡) = 𝑄𝑙(𝑡) − 𝑄𝑙(𝑡 − 1) is the change in the length of the queue for the 𝑖௧௛ flow in the 

𝑡௧௛ epoch. A positive temporal gradient of queue length Δ𝑄𝑙 indicates a high congestion in the 

network and vice versa. 
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In order to make the learning adaptive to time-varying flow rates, another dimension called 

“context” is added to the Q-table. In this scenario, the context is encoded by the agent-estimated 

flow rate 𝜆መ. The flow rate is estimated by an agent from its queue length and queue service rate 

derived from the RL action in that epoch. Formally, the estimated data rate perceived by the agent 

associated with flow 𝑖 can be computed as: 𝜆መ௜(𝑡) = 𝜇௜(𝑡) +
௱ொ௟೔(௧)

௦
. Now, from this estimated 

flow rate 𝜆መ(𝑡), the context at epoch 𝑡 can be determined as 

𝐶௜(𝑡) =
𝜆ప
෡ (𝑡) + 𝐶௜(𝑡 − 1)

2
 

(8.2) 

It is to be noted that the time-varying flow rate is captured by the context definition of the 

framework, by giving more importance to the estimated data rate at time 𝑡 as compared to that at 

𝑡 − 1. This can be explained by expanding Eqn (8.2) as follows. 

𝐶௜(𝑡) =
𝜆ప
෡ (𝑡) + 𝐶௜(𝑡 − 1)

2
 

⇒ 𝐶௜(𝑡) = 0.5 × (𝜆ప
෡ (𝑡) + 0.5 × (𝜆ప

෡ (𝑡 − 1) + 𝐶௜(𝑡 − 2)) 

⇒ 𝐶௜(𝑡) = 0.5 × 𝜆ప
෡ (𝑡) + 0.5ଶ × 𝜆ప

෡ (𝑡 − 1) + 0.5ଷ × 𝜆ప
෡ (𝑡 − 2) + 0.5ସ × 𝜆ప

෡ (𝑡 − 3) + ⋯ 

Thus, the framework is made adaptive to dynamic flow rates by giving more importance to the 

recent rate compared to the old estimated rates. Also, from Eqn. (8.2), it can be observed that, 

while computing the contexts, some importance is given to the old flow-rates as well, so that the 

variance resulting from random nature of the flow rate is taken care of.  
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Figure 8.2: Contextual Reinforcement learning. 

To be noted that the agents’ actions here are decided based on both the context and state the 

environment is in. But unlike the states that change as a result of the agents’ actions, these actions 

do not affect the change in context of the environment. In other words, unlike state transitions, 

the transition of contexts is oblivious to the agents’ actions and is totally controlled by the 

environment (Fig. 8.2). These contexts are independent of each other, which means that the 

reward for an action chosen for a particular context follows an Independent and Identical 

Distribution (IID). If a tabular method such as Q-learning is used to solve such a Markov 

Decision Process (MDP) with 2-dimensional state-context space, it gives rise to Contextual Q-

Learning (CQL), where the Q-table has a dimension of 𝒮 × 𝒞 × 𝒜, where 𝒮, 𝒞, 𝒜 represent the 

size of state space, context space and action space respectively. The Q-value is updated using 

Eqn. (8.3), where 𝑟 is the reward received, 𝛼 is a learning rate, 𝛾 is a discount factor, and 𝑠ᇱ is 

the next state, caused by action a.  

𝑄(𝑠, 𝑐, 𝑎) ← 𝑄(𝑠, 𝑐, 𝑎) + 𝛼 ቂ𝑟(𝑠, 𝑐, 𝑎) + 𝛾 × max
∀௔ᇲ∈஺

𝑄(𝑠ᇱ, 𝑐, 𝑎ᇱ) − 𝑄(𝑠, 𝑐, 𝑎)ቃ                   (8.3) 
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Figure 8.3: Contextual Deep Q-learning framework for Stage-II learning. 

As can be seen from the definition of context in Eqn. (8.3) context can take continuous real values 

depending on a flow’s data rate. This causes scalability problems if tabular RL mechanisms, like 

Q-learning, are used. The scalability issue will manifest as slow learning convergence for a large 

context space size. In the extreme case, for a continuous context variable, which is the case here, 

the three-dimensional Q-table would theoretically have infinite entries, which would make such 

tabular methods fail in such scenarios.  
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This problem is taken care of by using a deep Neural Network for estimating the Q-values for 

given <state, context> tuple. This is what is used in deep Q-learning [6] where a Neural Network 

is used to approximate the Q-function. In this case, the ANN model has two input neurons that 

take state, defined by change in queue length (Eqn. 8.1) and context, defined by estimated flow 

rate (Eqn. 8.2) as inputs. The output layer of the NN model has 𝑚 Neurons, where 𝑚 is the 

dimensionality of the action space 𝒜. As discussed above, each of those 𝑚 actions represents a 

probability of transmission in an epoch. The 𝑚 output neurons provide the estimated Q-value of 

the 𝑚 actions for the current queue status (state) and estimated flow rate (context) the NN 

received as input. A high-level system diagram of the Contextual Deep Q-learning framework 

for a flow 𝑖 associated with an intermediate node 𝑀 in a wireless network is shown in Fig. 8.3. 

As shown in the figure, the flow-specific learning agent 𝑖 uses a Neural Network model to 

estimate the Q-values for the set of all the possible actions (transmit probability) for the 

corresponding <𝑆௜(𝑡), 𝐶௜(𝑡)> tuple, where 𝑆௜(𝑡), 𝐶௜(𝑡) are defined by Eqns. 8.1 and 8.2 

respectively. The agent then decides the best transmission strategy for the corresponding status 

of queue and flow-data rate based on the estimated Q-values and a learning policy (𝜖-greedy 

policy). 

Training of the deep learning model is similar to traditional DQL framework [90]. The only 

difference here is that the experience tuples stored in the replay buffer has the additional context 

information defined by estimated flow rate. Thus, as learning progresses, the experience tuples 

for the CDQL agent for flow 𝑖 defined by <𝑆௜(𝑡), 𝑎௜(𝑡), 𝑆௜
ᇱ(𝑡), 𝐶௜(𝑡), 𝑅௜(𝑡)> are stored in the 

replay buffer. The DNN model for the CDQL agent for that flow is trained using mini-batches 

of these tuples. These mini-batches are sampled from the replay buffer randomly following a 

uniform distribution. The CDQL model update for flow 𝑖 at epoch 𝑡 uses the following Mean 
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Square Error (MSE) loss function to update the parameters (𝜃௧) of the model: 

𝐿௜,௧൫𝜃௜,௧൯ = 

𝔼(ௌ೔,௔೔,ௌ೔
ᇲ,஼೔,ோ೔)[ቀ𝑅௜ + 𝛾 × max

∀௔ᇲ∈஺
𝑄൫𝑆௜

ᇱ, 𝐶௜ , 𝑎௜
ᇱ; 𝜃௜,௧

ି ൯ − 𝑄൫𝑆௜ , 𝐶௜ , 𝑎௜ , 𝜃௜,௧൯ቁ
ଶ

]   

 

(8.4) 

After learning converges, that is, once the deep Q network is trained, the learnt model can 

estimate the Q-values for any unseen state and context of the environment. In other words, the 

learnt model can find a suitable transmission policy for any flow rate and queue status.  

In addition to handling the Q-table scalability issues caused due to continuous context space, 

Contextual Deep Q-Learning (CDQL) also plays an important role in managing the trade-off 

between network energy efficiency and learning convergence time. It also makes the MAC 

protocol scalable with network degree, as will be shown in Section 8.3. The details of the Neural 

Network architecture and other related hyperparameters is provided in Section 8.3.  

Using the ANN-based function approximator and the learning policy, the CDQL agent takes an 

action for a given state/context. The action taken by the CDQL agent 𝑖 is evaluated based on a 

numerical reward received after each decision epoch, which is computed from the reward 

function shown in Eqn. (8.5).  

𝑅௜(𝑡) = ቊ
+1, 𝑖𝑓 𝜆ప

෡ (𝑡) < 𝑃௧௫(𝑡) < 𝜆ప
෡ (𝑡) +

ଵ

௠
+ 𝛿

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (8.5) 

Here 𝜆ప
෡ (𝑡) and 𝑃௧௫(𝑡) represent the estimated flow rate and packet transmission probability in 

decision epoch 𝑡. The service rate 𝜇 is the expected value of the packet transmission probability 

𝑃௧௫:  𝜇 = 𝔼[𝑃௧௫]. The idea is to make the nodes learn a queue service rate 𝜇(𝑡), so that the queue 

length does not blow up and hence the end-to-end delay is maintained, while managing the energy 
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consumption. To summarize, the agent associated with the flow 𝑖 learns a suitable service rate of 

the queue for flow 𝑖 for achieving the above objectives.  

Inter-flow Transmission Conflict Coordination: Each flow-level CDQL agent in stage-II operates 

independently in order to learn whether to sleep or transmit in its parent node’s transmission slot 

that was selected using MAB learning in Stage-I. Since there can be multiple flows through a 

node, multiple such agents may learn to transmit in that slot, thus leading to inter-flow 

transmission conflicts. Such conflicts are handled using a node-wise transmit/sleep decision 

maker (shown in Fig. 8.1) that randomly assigns the transmission slot to one of those conflicting 

flows. 

Table 8.1: Neural Network Model Details 

Parameter Value 
Hidden Layer 4 

Hidden Layer Depth 10× 20× 30 ×20 
Loss MSE 

Optimizer Adam 
Hidden Layer Activation Rectified Linear Unit 

 

8.3 Experiments and Results 

8.3.1 Experimentation Details 

The experiments are performed to analyze the performance of the proposed CDE-MAC protocol 

using a MAC layer simulator with embedded learning components. The simulation kernel 

performs event scheduling in terms of packet generation, transmissions, and receptions. The 

developed CDQL-based MAC logic is implemented by embedding Deep Reinforcement 

Learning and Multi-Armed Bandits update equations within the MAC layer logic. 
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As mentioned in Section 8.2, the Neural Network used for CDQL implementation has two input 

neurons with state and context as inputs to the model and an output layer with 𝑚 neurons, 

outputting the Q-values for 𝑚 possible actions for the corresponding <state, context> tuple. The 

details on the Neural Network architecture is tabulated in Table 8.1.  

The baseline parameters for experimentation (learning rate 𝛼, exploration 𝜖, discount factor 𝛾, 

action space dimensionality 𝑚, epoch duration 𝑇) are denoted in Table 8.2. 

Table 8.2: Baseline Experimental Parameters 

Parameter Value 
m 10 

𝛼 (CDQL) 0.01 
𝜖 (Stage-II) 𝑒ି௧/ଵ଴଴଴଴ 
𝜖 (Stage-III) 0.01 + 0.99 × 𝑒ି௧/ଷ଴଴଴ 

𝛾 0.9 
𝑤 100 
𝛿 0.05 
T 100 

𝜖 (ESS-MAC, Stage-II) 𝑒ି௧/ଶହ଴଴ 
𝛼 (ESS-MAC) 0.1 

  

Performance of the flow controlling agent is evaluated based on the transmission energy 

efficiency (𝜂௧௫) computed by the average queue utilization ratio (𝜂௧௫ =
λ

Average μ
). In addition, the 

same metrics employed to evaluate ESS-MAC in Chapter 7 are also utilized to assess CDE-MAC. 

For a given data rate 𝜆, energy efficiency is high for a low service rate 𝜇, as the node has to 

remain awake for low duration. However, the service rate should be always higher than the flow 

rate λ, otherwise the queues will not be stable causing the packet delay to blow up. 
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8.3.2 Results and Analysis 

Using the framework detailed in Section 8.3.1 and the experimental parameters mentioned in 

Section 8.2, experiments were conducted on a mesh network shown in Fig. 8.4. The performance 

of the proposed CDQL-based CDE MAC logic is compared to that of the RL-based ESS-MAC 

protocol defined in chapter 7 for time-varying traffic conditions. Initial data rate for each flow in 

the network are 𝜆ଵ = 0.25, 𝜆ଶ = 0.05, 𝜆ଷ = 0.15 ppf. The change in the data rate 𝜆 over time for 

the 3 flows are shown in the figure. The following observations can be made from this set of 

experiments. First, in CDE-MAC, the nodes can adapt their transmission schedule 

instantaneously to the changing flow rate. On the other hand, in ESS-MAC, the nodes take longer 

Figure 8.4: Performance comparison of CDE-MAC with ESS-MAC in dynamic traffic. 
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duration to adapt their transmission policies to the dynamic traffic conditions. This is because, in 

CDE-MAC, the pre-trained CDQL model can predict the action according to the estimated Q-

function based on the current <context, state> computed from estimated data rate and queue 

length. However, for the RL-based ESS-MAC logic, the Q-table is not parameterized by flow-

rate, and hence for any change in 𝜆, the learning agent has to learn the Q-table from the scratch, 

thus resulting in high recovery time. This restricts the usage of ESS-MAC in applications with 

bursty traffic scenarios.  

 
Figure 8.5: Efficiency of CDE-MAC vs ESS-MAC for a time-varying flow rate for topology in 

Fig. 8.4. 

The second observation is that the transmission energy efficiency (𝜂்௫) is higher for CDE-MAC 

as compared to ESS-MAC (Fig. 8.5). This is because of the ability of the ANN model to do Q-

function approximation for any unseen state-context tuple in CDQL-based CDE MAC protocol. 

In other words, for any flow-rate 𝜆, the context and state are computed by the agent and the 

actions are taken such that the service rate (𝜇) is higher but close to the estimated flow rate (𝜆መ). 
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This makes the node to learn a suitable sleep-transmit schedule that can save energy without 

blowing up the queue length. However, for ESS-MAC, because of the discrete nature of the Q-

table, any unseen 𝜆መ is mapped to a discrete state from the queue length dynamics, and only the 

higher notch of 𝜇 is learnt depending on the action space granularity 𝑚. As a result, although it 

learns to keep the queue length in check, but it remains awake for more than required, thus 

wasting precious energy resources. 

 
Figure 8.6: (a) Missed packet probability, throughput and (b) Energy efficiency for different 

values of 𝛿௣ for mesh topology in (c). 

Performance of the proposed CDE-MAC logic is tested for different values of listening priority 

coefficient (𝛿௣) for the mesh network with 4 active flows shown in Fig. 8.6. The data rate of the 
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flows in the topology follows Poisson distribution with mean values of 0.22, 0.17, 0.08, and 0.13 

packets per frame duration respectively. The key observations from the figure are as follows. 

First, with increase in 𝛿௣, the missed reception probability (𝑃௠௜௦௦) resulting from bad sleep 

decisions goes down, and hence throughput increases (Fig. 8.6 (a)). This is because the node 

remains on with high probability for higher 𝛿௣. With increase in 𝛿௣, the node behaves in a more 

conservative manner in order to minimize missed packet reception resulting from oversleeping. 

To be noted that for 𝛿௣ = 1, 𝑃௠௜௦௦ ≈ 0 and throughput ≈ 100%. This is useful, especially in 

applications that cannot afford packet losses. However, reduction in 𝑃௠௜௦௦ for high value of 

listening priority coefficient (𝛿௣) comes with the price of reduced listening energy efficiency 

(𝜂௅) (Fig. 8.6 (b)). This is because, for higher 𝛿௣, the node learns to remain awake for more 

duration and hence consumes more energy. This reduces the energy efficiency. Another 

observation from the plot is that the transmission energy efficiency (𝜂்௫) is higher for CDQL-

based CDE-MAC protocol as compared to RL-based ESS-MAC. This is because of the same 

reason explained above for Fig. 8.5, that is the ability of CDE-MAC to approximate the Q-

function for any flow-rate. Since 𝜂௅ and 𝜂்௫ both are higher for CDE-MAC, the average energy 

efficiency (𝜂) is also higher for CDE-MAC as compared to ESS-MAC.  

Note that 𝜂்௫ goes down with 𝛿௣ for both CDE-MAC and ESS-MAC (Fig. 8.6 (b)). The reason 

behind this behavior is that the effective data-rate (𝜆) goes down with increase in 𝛿௣ because of 

packet misses due to oversleeping. As a result, 𝜂்௫ =
ఒ

ఓ
=

ఒ

ఒା௖ᇱ
 decreases with increase in 𝜆. Also, 

the average end-to-end delay values in this experiment are 24.23, 7.10 and 16.98 for 𝛿௣ =

0.6, 0.8, 1.0 respectively. This means that the end-to-end delays for the flows are contained and 

do not blow up. This is made sure by the Stage-II CDQL learning agent by making the agents 
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learn a transmission schedule such that 𝜇 > 𝜆 is maintained. 

 
Figure 8.7: Learning convergence time comparison for CDQL and CRL. 

An important characteristic of the proposed framework is that use of deep network makes the 

CDQL-based MAC protocol scalable with number of flows through a node as well as with action 

space granularity 𝑚. To demonstrate the scalability achieved as a result of using DQL, we 

compare the training convergence time for CDQL and CRL (Contextual Reinforcement 

Learning) with increase in the number of flows through a node. As shown in Fig. 8.7, unlike in 

CRL, training convergence time in CDQL scales well with an increase in the number of flows 

and is much lower (95-97%) than CRL. To be noted that for consistency with ESS-MAC, in CRL 

update equations, the maximum Q-value of the current state is considered as is used in [30] for 

fast convergence. 

Another observation is that although increase in 𝑚 increases the convergence time and energy 

efficiency for both CRL and CDQL, the increase in convergence time for a unit gain in energy 

efficiency (𝜂்௫) is higher using CRL compared to CDQL (Fig. 8.8). This is because for a specific 

value of action space granularity 𝑚, convergence is faster for CDQL as compared to CRL. In 
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addition, CDQL has the ability to do function approximation and hence allows higher maximum 

energy efficiency for sufficiently fine grain action space. 

 
Figure 8.8: Convergence time- Efficiency trade-off for CDQL and CRL. 

8.4 Summary 

This chapter presents a novel Contextual Deep Q-Learning (CDQL) and MAB-based framework 

for data flow and energy management in wireless networks. It is shown how the proposed 

mechanism allows wireless nodes to learn policies for sleep-listen-transmit scheduling. The 

learnt policy can support throughput-sustainable flows while minimizing sleep-induced packet 

loss and idle awake duration. The use of contextual learning makes the developed protocol 

adaptive to time-varying and heterogeneous network data flow rate. Moreover, it is shown how 

deep Q-learning manages the trade-off between energy efficiency and learning convergence time 

and makes the protocol scalable to network degree.  

An underlying assumption of the energy-management approaches outlined in chapter 7 and 8 is 

the presence of homogeneous energy profile across all wireless nodes. An intriguing progression 
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of this work would involve crafting learning mechanisms for networks with spatio-temporal 

energy profiles, commonly found in energy harvesting networks. In the next chapter, we broaden 

the framework established in this chapter to cater to such resource-constrained networks, where 

the energy availability is influenced by both temporal dynamics and geographical attributes. 
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Chapter 9: Protocol Synthesis for Energy Harvesting Networks 

using Cooperative Reinforcement Learning 

The frameworks proposed in chapters 7 and 8 are centered around developing RL-driven 

solutions for judicious management of energy in resource-constrained networks. These strategies 

primarily target scenarios involving battery-powered networks characterized by a static and 

homogeneous energy distribution. In the subsequent phase of this study, we aim to make the 

protocol synthesis concept more generalized to accommodate networks with spatiotemporal 

energy profile. To achieve this goal, this chapter introduces a multi-agent RL-enabled 

architecture designed to strike a balance between performance and energy expenditure in energy-

harvesting networks. 

9.1 Motivation 

Efficiency of transmit-sleep scheduling is important in energy-constrained wireless networks 

from the following two perspectives. First, to reduce network service disruptions due to energy 

shortage and second, to maintain reliable network performance in terms of throughput and delay. 

Traditionally, such schedules in the wireless nodes are often pre-programmed [63], and as such 

they often fail to deliver desired performance in a situation-specific manner. For example, sleep 

scheduling policies are often oblivious to network traffic patterns and heterogeneities, which can 

lead to wastage of precious networking resources, including energy. In addition, for networks 

with energy harvesting capabilities [91] [92], where the energy availability may change both 

temporally and geographically, these traditional scheduling methods do not naturally allow nodes 

to react according to the spatiotemporal energy profiles and variabilities. Shortcomings are often 

manifested in the form of not being able to maintain the desired balance between network 
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performance and network lifetime. In this chapter, a learning-enabled paradigm is proposed that 

allows the nodes to learn a joint transmit-sleep scheduling policy in order to overcome the above 

limitations. 

There are existing reported works  [55] [59] [70] [93] [94]  [95] that deal with sleep scheduling 

and energy management in networks with energy constraints. The authors in [93] use a game-

theoretic approach to find sleep-scheduling policy for solar powered sensor networks. In addition 

to the fact that these policies are static with respect to network traffic and topologies, they also 

do not consider transmission scheduling decisions. As will be shown later in this chapter, 

transmission scheduling plays an important role in maintaining network performance in energy-

harvested networks. There are RL-based approaches [59] [56] adopted for sleep scheduling in 

energy harvested networks. Besides the above limitations arising from not considering policies 

for transmission strategies, these often rely on a centralized arbitrator for learning scheduling 

policies. Centralized learning, apart from being computationally inefficient and creating burden 

on a central server, comes with an additional bandwidth and energy costs for downloading learnt 

scheduling policies from the server to network nodes. Moreover, performance of the learnt 

policies heavily depend on the reliability of information collected from the sensor/IoT nodes over 

a possibly error-prone channel. Another limitation of the learning-driven scheduling approaches 

[58] [72] is that these are not suitable for networks with multiple hops. This is because of the fact 

that learning for multi-hops networks is challenging, since learning errors in a node can be carried 

over to all the downstream nodes in the topology it is part of. 

In this chapter, a decentralized and cooperative Reinforcement Learning [96] [97] approach for 

joint sleep-transmission scheduling is presented to overcome the issues mentioned above. The 

scheduling problem is first modeled as a Markov Decision Process (MDP) and solved using 
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Reinforcement Learning as a temporal difference solution. The objective is to efficiently manage 

the ultra-thin energy budget of energy-harvesting sensor/IoT nodes, while maintaining acceptable 

network performance. This is realized by cooperative learning behavior achieved by two RL 

agents deployed per node. Each of these agents jointly learn scheduling policies for the node in 

order to achieve the above-mentioned objective. This learning architecture is supported by the 

online sharing of a learning confidence parameter by each node. Sharing of this confidence 

parameter assists decentralized learning of the scheduling policy for the downstream nodes in the 

network topology. In this way, each IoT/sensor node learns a transmit-sleep scheduling policy 

independently in a decentralized manner. This cooperative learning architecture is suitable for 

learning in networks with multiple hops between source and destination, where learning 

performance for a node is heavily dependent on the scheduling policies learnt by other nodes in 

the topology, which makes the proposed system scalable with network size. 

 
Figure 9.1: Example multi-point-to-point multi-hop network topology. 
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9.2 System Model 

9.2.1 Network and Traffic Model 

To maintain generality, we consider a multi-point-to-point and multi-hop network model. Fig. 

9.1 shows a simplified star topology network in which the wireless sensor nodes/IoT devices 

send data to a base station using multi-hop routes. At the MAC layer, it is assumed that the 

network time is synchronized, slotted, and the MAC frames are of fixed size, which is 

dimensioned a priori based in the degree of the network topology. It is noteworthy that for 

networks without time synchronization ability, the concept developed in chapters 5 and 7 can be 

leveraged.  

Application layer packet generation at the source nodes follow Poisson distribution with packet 

generation rate 𝜆 packet per frame (ppf). Each node maintains an M/G/1/K buffer/queue, where 

the Poisson distributed queue arrival rate is governed by 𝜆, and the queue service rate is 

determined by the transmission-sleep policy actuated by the proposed learning mechanisms as 

presented in Section 9.3. 

9.2.2 Energy Harvesting and Model 

The wireless sensor/IoT nodes rely on energy harvesting for powering their communication 

subsystem. While the framework would scale for any source of energy harvesting, in this chapter, 

we have considered a solar energy harvesting model to demonstrate the efficacy of the proposed 

mechanisms. A 2-state Markov Model is used for simulating solar energy harvesting [93] [91]. 

The states of the Markov model are (1) low radiation state, in which sunlight is blocked by clouds 

and hence, radiation is not enough to charge the node batteries, and (2) high radiation state, in 

which there is direct sunlight and is sufficient to charge the battery. This is represented by the 
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transition probability matrix R, where state 1, 2 represent high and low radiation states 

respectively:  

R = ൤
𝑅ଵ,ଵ 𝑅ଵ,ଶ

𝑅ଶ,ଵ 𝑅ଶ,ଶ
൨                           (9.1) 

Assuming that the cloud size is exponentially distributed with mean ‘𝐶’ m and the wind speed 

is  𝑤௦ m/s, the elements of matrix R can be obtained using the analytical model in [2]: 

𝑅ଵ,ଶ ≈ ቀ
ଵ

ఓೞ
ቁ 𝑡 × e

ቀ
భ

ഋೞ
ቁ௧

, 

𝑅ଶ,ଵ ≈ ቀ
ଵ

ఓ೎
ቁ 𝑡 × e

ቀ
భ

ഋ೎
ቁ௧

, 

𝑅ଵ,ଵ = 1 − 𝑅ଵ,ଶ and 𝑅ଶ,ଶ = 1 − 𝑅ଶ,ଵ 

Here, 𝜇௖ =
஼

௪ೞ
, 𝜇௦ =

஼×(ଵି௉೎)

௪ೞ(௉೎)
 are the average time for which the radiation is low and high 

respectively; 𝑃௖ is the probability of solar radiation in low state and 𝑡 is the length of a time frame. 

Each node has a battery capacity of 𝐵 units, where a packet transmission consumes one unit of 

battery. Thus, the battery status at time 𝑡 is given by 𝑏 ∈ {0,1,2, … , 𝐵}, where the battery is 

charged in high radiation state with probability 𝑃௖௛௔௥௚ . When 𝑏 = 0, battery is completely 

depleted and needs recharging. If 𝑏 = 𝐵, the battery is fully charged and, the recharging circuitry 

is turned off. 

The energy consumption model in [98] is considered for the radio hardware energy dissipation. 

In this model, power consumed while transmitting and receiving a packet are given by Eqns. 

(9.2) and (9.3) as follows: 

𝑃் = (1 + 𝛼்) × 𝑃௧௫ + 𝑃௖௧                                            (9.2) 

𝑃ோ = 𝑃௖௧                                                           (9.3) 

Here, 𝑃௧௫ represents the transmission power of the transmitter with amplifier inefficiency factor 
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𝛼், and 𝑃௖௧ is the circuitry power consumption, which is a constant depending on a specific 

transmitter. 

9.3 Cooperative Reinforcement Learning for Joint Transmit-Sleep Sleep Scheduling 

The primary objective of the proposed learning architecture is to make the wireless nodes learn 

a suitable transmit-sleep schedule for efficient energy management. And that is while 

maintaining the network performance in terms of throughput and delay. This is achieved using a 

cooperative and decentralized Reinforcement Learning technique.  

Fig. 9.2 shows a high-level working model of the RL-based architecture for a node ‘𝑛’ in an 

energy-harvesting wireless network. There are two RL-agents deployed in each node: a 

 

Figure 9.2: Proposed Cooperative Multi-Agent Reinforcement Learning Framework for Joint 
Transmission-Sleep Scheduling. 
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Transmission Scheduling Agent and a Sleep Scheduling Agent. For both, the RL environment is 

the network itself. Both the agents share the same reward function which is computed from the 

RL-related observable variables including harvested energy and network performance 

parameters. The state definition for those agents, however, are different and independent. As 

indicated by the dotted arrows, the state for the transmission scheduling agent is perceived 

directly from the network observables, whereas the state for the sleep scheduling agent is 

dependent on the RL-policies of the transmission scheduler. Using these independent notions of 

states, these two agents cooperatively learn the node’s transmit and sleep schedules.  

An important feature of the proposed learning architecture is the sharing of an online learning 

confidence parameter with the one-hop neighbors of each node. In the figure, this is depicted by 

the Learning confidence Parameter (LCP) sharing, indicated by the red arrows. This parameter, 

which is piggybacked in the MAC PDU, is used to prevent unreliable learning parameter update 

by the RL agents. Another parameter piggybacked in the PDU is the Hop Index (𝐻𝐼), which is 

defined as the number of hops a node is away from the source of a passing flow. The figure shows 

examples of two incoming and outgoing MAC PDUs for node 𝑛. One received from its one-hop 

neighbor ‘𝑛 − 1’, and the other destined for node ‘𝑛 + 1’. These two characteristics of the 

proposed framework, namely, 1) cooperatively learning the joint transmit and sleep schedules by 

the two RL agents, and 2) inter-node sharing of the confidence parameter to assist learning by 

the RL agents, give rise to cooperative learning behavior of the proposed approach.  

Using this framework, each node learns an energy-conserving schedule independently. And that 

is without a centralized arbitrator. The detailed working of the two RL agents and their 

cooperative nature are explained below. 
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9.3.1 Transmission Scheduling Agent 

The function of this agent is to learn a suitable transmission schedule for its host node. Finding 

a suitable transmission schedule can be tricky in that a conservative transmission periodicity can 

lead to excessive queue/buffer growth even though it will be favorable for better energy 

conservation. Having an aggressive schedule, on the other hand, can lead to low packet delay and 

drops (i.e., smaller queues) at the expense of excessive energy consumption, which may lead to 

a shutdown of the node due to exhausted energy that was harvested. Therefore, the objective is 

to develop a transmission schedule that can balance those two effects and be adaptive with the 

spatiotemporal-temporal characteristics of energy harvesting.  

The MDP action space (𝒜்) for this agent is defined by the probability of transmitting a packet 

(𝑃௧௫) in the queue. To keep the action space discrete, this probability is quantized into |𝒜்| 

discrete values in the range [0, 1], where |𝒜்| denotes the cardinality of the action space. These 

actions are selected using 𝜖-greedy policy in an RL decision epoch which is set to a duration of 

ℎ frames.  

The state space (𝒮்) as perceived by the agent is represented by the energy influx to the node 

resulting from harvesting. The RL state at a decision epoch is given by the energy harvested at 

that epoch. Similar to the packet transmission probability, the harvested energy is also discretized 

into |𝒮்| distinct ranges. Formally, the state as perceived by an agent for node 𝑛 at an epoch 𝑡 is 

defined as 𝑠௡,்௫(𝑡) = 𝑔(
ଵ

௛
∑ 𝐸௜௡,௡(𝑘))௧

௞ୀ௧ି௛ . Here 𝐸௜௡,௡(𝑘) is the energy harvested in frame 𝑘 by 

node 𝑛 and 𝑔(𝑥) is the function for quantization as defined by: 

𝑔(𝑥) = ൜
𝓈் ,   𝑖𝑓 − 0.5 ≤ 𝓈் − 0.5 ≤ 10𝑥 < 𝓈் + 0.5 ≤ 8.5
9,                                                                 𝑖𝑓 𝑥 ≥  0.85

                          (9.4) 
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Here 𝓈் ∈ 𝐼 and 𝓈் ≥ 0. Tabular Q-learning is used for solving the MDP, owing to the limited 

computation, storage, and processing capacity of the resource-constrained IoT/sensor nodes.  

The reward for the agent in node 𝑛 at an epoch 𝑡 in this setting is given by Eqn. 9.5. 

ℛ(௡)(𝑡) = ቐ
𝓇௉

(௡)
ቂ1 − 𝛿௉೗೚ೞೞ

ೃೣ (௧),଴ቃ + 𝓇ொ
(௡)(𝑡) × 𝛿௉೗೚ೞೞ

ೃೣ (௧),଴, 𝑖𝑓 𝑛 ∈ Ψᇱ

𝓇ொ
(௡)(𝑡),                                                                 𝑖𝑓 𝑛 ∈ Ψ

                  (9.5) 

Here, 𝑃௟௢௦௦
௥௫ (𝑡) denote the number of missed packet reception at epoch 𝑡; 𝛿௜,௝  is the Kronecker 

delta function; Ψ is the set of source nodes in the network; and 𝓇௉
(௡)

, 𝓇ொ
(௡) are the reward function 

associated with reducing missed packet receptions and maintaining a sustainable MAC packet 

queue respectively, as defined in Eqns (9.6) and (9.7) respectively. 

𝓇௉
(௡)

(𝑡) =
ଵ

௉ೝೣ
೗೚ೞೞ(௧)

                                                        (9.6) 

𝓇ொ
(௡)

(𝑡) =

⎩
⎪
⎨

⎪
⎧

ଵ

୼ொ௟(௧)
+ ቀ1 −

ଵ

୼ொ௟(௧)
ቁ 𝓊(Δ𝑄𝑙(𝑡) + Γ) +

ଵି୼ொ௟(௧)

ଶ୼ொ௟(௧)
𝛿୼ொ௟(௧),ି୻,

𝑖𝑓 𝑛 ∈ Ψᇱ

𝑠𝑔𝑛(Δ𝑄𝑙(𝑡) + Γ) − 𝛿୼ொ௟(௧),ି୻,                                                 

𝑖𝑓 𝑛 ∈ Ψ

                (9.7) 

In Eqns (9.6) and (9.7), 𝓊(. ) and 𝑠𝑔𝑛(. ) represent unit step and signum functions respectively. 

Δ𝑄𝑙(𝑡) = 𝑄𝑙(𝑡) − 𝑄𝑙(𝑡 − 1) is the temporal gradient of the MAC packet queue length which 

needs to be negative for a stable queue. Γ > 0 is a hyperparameter to ensure that learning does 

not get stuck in a local optimal point. The selection of these hyperparameters is detailed in 

Section 9.4. 

The physical interpretation of the reward function can be explained as follows. As can be seen 

from Eqn. (9.5), there are two primary components of reward. First, the reward associated with 

successful packet reception 𝓇௉
(௡) is an inverse function of missed packet reception rate (Eqn 9.6). 

It means that for the high value of the missed packet reception rate, the agent receives a low value 
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of reward. Similarly, in order to reduce the queuing delay, a negative temporal gradient of queue 

length is rewarded. This is captured by the reward component 𝓇ொ
(௡)

(𝑡) and is responsible for 

maintaining a stable queue. Note that, for a source node that is generating packets and has nothing 

to do with packet reception, the RL agent’s only task is to reduce the packet delay and hence its 

reward only consists of the component 𝓇ொ
(௡)

(𝑡) (Eqns. (9.5, 9.6)). 

Using the RL framework detailed above, the transmission scheduling agent learns to find a packet 

transmission schedule to reduce the missed packet receptions because of energy shortage and 

also to reduce the packet delay. However, to be noted that the transmission strategy learnt by this 

agent is contingent upon the transceiver on/off policy of the node. To exemplify, if the packet 

transmission probability of a node is 𝑃௧௫ and the node off probability is 𝑃௢௙௙, then the effective 

transmission rate of the node is given by 𝑃௧௫ × (1 − 𝑃௢௙௙). In other words, a node’s effective 

transmission probability is given by: 

𝑃௧௫
௘௙௙

= 𝑃[a node transmits in a frame| the node is on in that frame]. 

Thus, the node’s sleep decisions indirectly affect the learning behavior of the transmission 

scheduling. In addition, efficient sleep decisions also have a role to play in reducing the packet 

missed receptions. This calls for the requirement of a sleep scheduling agent that can cooperate 

with the transmission scheduling agent to achieve the predefined goals. 

9.3.2 Sleep Scheduling Agent 

The role of this agent is to find a transceiver ‘On/Off’ schedule for the energy harvesting node it 

is part of. The goal of the agent is to find a schedule so that the limited energy budget of the node 

can be efficiently managed while maintaining reliable communication by reducing packet loss 

and packet delay. Sleeping for the right duration is important, because sleeping more may lead 
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to unintended packet missed receptions, while sleeping less can lead to high energy expenditure. 

Thus, using the RL-framework, this agent learns a sleep schedule in order to achieve the goal 

mentioned above.  

The action space (𝒜ௌ) of the sleep scheduling agent is given by the probability of keeping the 

radio transceiver 𝑜𝑛 (𝑃௢௡) in an RL decision epoch of ℎ frames. This probability is discretized 

into |𝒜ௌ| discrete values in the range [0, 1], where |𝒜ௌ| denotes the cardinality of the action 

space of the sleep scheduling agent. The actions are selected using 𝜖-greedy policy to maximize 

the expected long-term expected reward using Q-learning. 

The state space (𝒮ௌ)  for this agent is defined by the probability of packet transmission (𝑃௧௫) by 

the node in a learning epoch. The probability 𝑃௧௫ and hence the state of the sleep scheduling agent 

is directly controlled by the learning policy of the transmission scheduling agent. The logic 

behind using 𝑃௧௫ as the state for this agent is that the packet transmission probability and the 

transceiver ‘on’ probability jointly determine the energy expenditure and throughput of the node. 

As a result, for a given transmission strategy decided by the transmission scheduler, this agent 

has to act accordingly to find a suitable transceiver 𝑜𝑛 probability (𝑃௢௡). Formally, the state 

perceived by the sleep scheduling agent for node 𝑛 at a decision epoch 𝑡 is given by Eqn 9.8 

(𝓈ௌ ∈ 𝐼 and 𝓈ௌ ≥ 0).  

𝑠௡,ௌ௟(𝑡) = 𝑓൫𝑃்௫,௡(𝑡)൯ = 𝓈௦ 𝑖𝑓 𝓈௦ ≤  10 × 𝑃்௫(𝑡) ≤ 𝓈௦ + 1                        (9.8) 

Here, 𝑃்௫,௡(𝑡) is the probability of transmission by node 𝑛 at epoch 𝑡. The actions taken by the 

sleep scheduling agent are evaluated using the same reward function given in Eqn. 9.5. The same 

reward is used for both the agents since they share the common objective of reducing missed 
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packet receptions and delays. These two agents, thus, cooperate with each other to jointly learn 

a policy that can achieve the above objective.  

9.3.3 Learning Confidence Parameter Sharing 

For achieving a cooperative learning behavior, each node piggybacks a Learning Confidence 

Parameter (LCP) in the MAC layer PDU. This inter-node parameter sharing mechanism is 

demonstrated by the red arrows in Fig. 9.2. The figure also shows the incoming MAC-PDU 

(received from node ‘𝑛 − 1’) and outgoing MAC-PDU (destined for node ‘𝑛 + 1’) for the node 

𝑛. This Learning Confidence Parameter represents the confidence level in the action selection 

policy for that node and is computed as given in Eqn. 9.9.  

𝐿𝐶𝑃(𝑡) = min (𝜁 × ൬ቀ1 − Δ௪
௉೚೙(𝑡)ቁ − 𝜂൰

఍

, 1)                              (9.9) 

 
Figure 9.3: Computation of LCP from gradient of transceiver on probability. 

Here, Δ௪
௉೚೙(𝑡) = 𝑃௢௡(𝑡) − 𝑃௢௡(𝑡 − 𝑤) is the temporal gradient of transceiver on probability (𝑃௢௡) 

over a window of 𝑤 epochs. The learning confidence is low for a high value of this gradient Δ௪
௉೚೙ 

(more oscillatory actions) and vice-versa. A non-linear function is used to map Δ௪
௉೚೙ to Learning 
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Confidence Parameter, so that for the range of values of Δ௪
௉೚೙ for which the confidence in learning 

is low increases. This can be seen in Fig. 9.3, where LCP is plotted against Δ௪
௉೚೙for 𝑤 = 1000, 

𝜁 = 20 and 𝜂 = 0.13. 

The significance of using LCP is that during the initial exploratory stage of learning, there may 

be bad action selection by a node. This leads to high missed packet receptions and thus affects 

the data rate of the flow it is part of. Hence, for the RL agents associated with the downstream 

nodes in the flow, it will lead to poor learning performance if their Q-values are updated when 

bad actions are chosen by for the upstream nodes’ agents. As for example, in the network shown 

in Fig. 9.2, bad learning policies for node ‘𝑛 − 1’ would affect learning performance of node ‘𝑛’ 

and ‘𝑛 + 1’, if nodes ‘𝑛’ and ‘𝑛 + 1’ are not aware of confidence on the learning policies for 

node ‘𝑛 − 1’. Sharing the LCP helps avoid such scenarios. This is because, while updating the 

Q-table, the temporal difference error is discounted by LCP for all nodes except the source. For 

the source node, the table update is done using the regular Bellman equation, since its learning is 

not dependent on the ‘learning confidence’ of any other node in the network. The Q-value update 

equation is given by Eqn (9.10). 

𝑄௡(𝑠௡, 𝑎௡) ←

⎩
⎪
⎨

⎪
⎧𝑄௡(𝑠௡, 𝑎௡) + 𝐿𝐶𝑃 × 𝛼 ቂℛ(௡) + 𝛾 max

∀௔ᇲ
𝑄 (𝑠௡

ᇱ , 𝑎௡
ᇱ ) − 𝑄(𝑠௡, 𝑎௡)ቃ ,

                                                                              𝑖𝑓 𝑛 ∈ Ψ′

𝑄௡(𝑠௡, 𝑎௡) + 𝛼 ቂℛ(௡) + 𝛾 max
∀௔ᇲ

𝑄௡ (𝑠௡
ᇱ , 𝑎௡

ᇱ ) − 𝑄௡(𝑠௡, 𝑎௡)ቃ ,

                                                                         𝑖𝑓 𝑛 ∈ Ψ

           (9.10) 

Here 𝑠௡, 𝑠௡′, 𝑎௡, ℛ(௡) denote the current state, next state, action, and reward respectively for node 

𝑛. Note that the same update rule is used by both the Transmission Scheduling Agent and Sleep 

Scheduling agent. In addition to LCP, each node 𝑛 also piggybacks the Hop Index (𝐻𝐼௡), defined 

as the number of hops the node is away from the source (Fig. 9.2). This information is used in 
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determining the exponential decay rate in the 𝜖-greedy exploratory behavior policy. Formally, 

the value of 𝜖 for a node 𝑛 while following 𝜖-greedy exploratory action selection is given by: 

𝜖௡(𝑡) = min (𝜖௠௔௫𝑒
ି

೟షಹ಺೙×ഓ

ച೏೐೎ , 1)                                      (9.11) 

In this equation, 𝜏, 𝜖ௗ௘௖ are learning delay and exponential decay rate respectively. The empirical 

selection of these hyperparameters is given in Section 9.4. 

9.3.4 Cooperation among Learning Agents 

As discussed in Section 9.3.1, 9.3.2 and 9.3.3, there are two RL agents deployed in each energy-

harvesting sensor node that jointly learn the transmit-sleep schedules for that node. Moreover, 

each node shares a learning confidence parameter (𝐿𝐶𝑃) with its one-hop neighbors in order to 

assist them with an informed-update of their own Q-tables. There are two levels of hierarchy in 

the Reinforcement Learning cooperation: intra-node cooperation and inter-node cooperation. The 

intra-node cooperation is between the two learning agents that jointly learn the transmit and sleep 

scheduling policies. The cooperation here is achieved by sharing the reward model and state 

information among the transmit and sleep scheduling learning agent towards the common 

objectives of minimizing packet loss and access delay. As has been discussed in Section 9.3.1 

and 9.3.2, the state of the sleep-scheduling RL agent is controlled by the policies learnt by the 

transmission scheduling agent. The second level of cooperation is across the nodes. In this inter-

node cooperation, two neighboring nodes cooperate by sharing learning control information, 

which is then used to update their respective Q-values. This ensures that the learning parameters 

are not updated for observables that are not reliable. The Q-table update is performed in each 

node in a decentralized manner, thus making the framework scalable with network size and 

degree.  
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It is to be noted that this decentralized setting is different from Federated Learning (FL) [99] 

approaches. In FL, the learning updates are performed locally at each device independently. The 

parameters or loss gradients are then periodically shared with a centralized arbitrator which then 

computes global model parameters using federated averaging. The updated global parameters are 

then shared back to the client devices. On the contrary, in the decentralized learning approach 

used here, the learning agents do not share model parameters with each other, and the table 

updates are done at each agent independently without relying on any central arbitrator.  

Using the decentralized and cooperative multi-agent RL model detailed above, each IoT/sensor 

node learns a joint transmit-sleep policy in a situation-specific manner so as to manage available 

harvested energy efficiently to maintain a reliable communication in the resource-constrained 

network. 

9.4 Experimentation 

Experiments were performed to analyze the performance of the proposed scheduling protocol 

using a MAC layer simulator with embedded learning components. The baseline experimental 

parameters are tabulated in Table 9.1. The post-convergence performance of the learning-based 

MAC protocol is evaluated on the following metrics. 

Missed Packet Reception Rate (𝑃௠௜௦௦) represents the rate of packet misses due to oversleeping 

and shortage of energy. Queue drop rate (𝑄ௗ௥௢௣) indicates the rate of packet drops resulting from 

filled up MAC packet queue. Packet loss rate (𝑃௟௢௦௦) captures the combined packet losses 

resulting from both missed reception and full queue. Queueing delay is computed from queue 

length using Little’s Law [100]. Packet Delivery Ratio (PDR) is the percentage of packets 

successfully received by the destination out of the total number of packets sent from the source. 
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The performance of the scheduling policy learnt using the proposed RL-framework is compared 

with the following scheduling approaches.  

Naïve Scheduling Policy: This is the baseline policy where a node is ‘On’ in a frame with 

probability 𝑃௢௡ and it transmits with probability 𝑃௧௫. These probabilities are manually preset to 

fixed values and experiments are performed with different combinations of these probabilities to 

understand the variation of the performance variables (𝑃௠௜௦௦ and packet delay) as response to 

these sleep-transmit decisions. We then analyze where the learning-based solutions lie in the 

space of those performance variables. 

Table 9.1: Baseline Experimental Parameters 

Parameter Value 

𝑃஼  0.2 

𝑤௦ 33.33 m/s 

𝐶 50 m 

𝛼 0.99 

𝛾 0.1 

ℎ 200 

𝐵 150 

𝑃௖௛௔௥௚௘ 0.9 

𝑄𝑙௠௔௫ 1000 

|𝒜்| = |𝒜ௌ| 10 

𝜏ଵ 100 

𝜏ଶ 1 

𝜈 0.90 

𝛿 0.001 

𝛼் 2.4 

𝑃௧௫ 0.353 𝑚𝑊 

𝑃௖௧ 50𝜇𝑊 
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Battery State-based policy: This is an existing scheduling approach proposed in [93]. Here the 

node sleep decisions are based on the amount of available battery power in the sensor node. The 

node goes from active to sleep mode if the normalized battery capacity is below a preset threshold 

𝑏௟௢௪ and wakes up again when the battery state is above the threshold 𝑏௛௜௚௛. Mathematically, the 

transition probabilities from active to sleep states and vice-versa are formulated by Eqn. (9.12): 

𝑃௔→௦ = ቐ
1,    𝑖𝑓

௕

஻
≤ 𝑏௟௢௪ 

0,    𝑖𝑓
௕

஻
> 𝑏௟௢௪

and 𝑃௦→௔ = ቐ
1,    𝑖𝑓

௕

஻
≥ 𝑏௛௜௚௛ 

0,    𝑖𝑓
௕

஻
< 𝑏௛௜௚௛

                         (9.12) 

Queue length-based policy: This scheduling strategy decides sleep schedules based on the MAC 

queue length. The node sleeps with high probability if the queue length is higher than a 

predefined threshold 𝑄𝑙௧௛ and vice versa. 

𝑃௔→௦ = ൜
𝛿ଵ, 𝑖𝑓𝑄𝑙 ≤ 𝑄𝑙௧௛ 
𝛿ଶ, 𝑖𝑓𝑄𝑙 > 𝑄𝑙௧௛

𝑎𝑛𝑑 𝑃௦→௔ = ൜
𝛿ଷ, 𝑖𝑓𝑄𝑙 ≤ 𝑄𝑙௧௛ 
𝛿ସ, 𝑖𝑓𝑄𝑙 ≤ 𝑄𝑙௧௛

                        (9.13) 

Solar radiation-based policy: This scheduling logic makes the node to go to sleep with 

probability 𝜙௦ and to wake up with probability 1 and 𝜙௪, when the solar radiation state (𝑟) is low 

and high respectively. Formally, this can be expressed as 

𝑃௔→௦ = ൜
𝜙௦, 𝑖𝑓 𝑟 = 0 
0, 𝑖𝑓 𝑟 > 0

𝑎𝑛𝑑 𝑃௦→௔ = ൜
𝜙௪, 𝑖𝑓 𝑟 = 0 

1, 𝑖𝑓 𝑟 > 0
                        (9.14) 

Hybrid policy: The hybrid scheduling policy takes both queue length and battery power into 

consideration for making scheduling decisions. This hybrid policy is given by Eqn. (9.15): 

𝑃௔→௦ = ቐ
1, 𝑖𝑓

௕

஻
≤ 𝑏௟௢௪ 𝑜𝑟 𝑄𝑙 = 0 

0,                    𝑖𝑓 
௕

஻
> 𝑏௟௢௪

, 𝑃௦→௔ = ቐ
1, 𝑖𝑓

௕

஻
≥ 𝑏௛௜௚௛ 

0, 𝑖𝑓
௕

஻
< 𝑏௛௜௚௛

                 (9.15) 

Note that the existing scheduling strategies mentioned above: Battery State-based, Queue length-

based, Solar radiation-based and hybrid policies are proposed in [93]. The  hyperparameters 

used for these policies are chosen based on what is suggested by the authors in [93]: 𝑏௟௢௪ =
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0.04. 𝑏௛௜௚௛ = 0.2, 𝑄𝑙௧௛ = 3, 𝛿ଵ = 0.8, 𝛿ଶ = 0.2, 𝛿ଷ = 0.3, 𝛿ସ = 0.7, 𝜙௦ = 0.56, 𝜙௪ = 0.44. 

9.5 Results and Analysis 

With the aim of understanding the working of the proposed framework, we first experiment with 

a simple linear topology and then with more complex topologies. For the liner topology case, a 

source node transmits packets at a rate of 𝜆 = 0.4 packet per frame (ppf). In this scenario, 

intermediate node 𝐼 is the energy harvesting node (Fig. 9.4 (a)). First, to get an insight into the 

baseline performance, we experiment with the naïve scheduling policy, where the node is kept 

‘On’ in a frame with probability 𝑃௢௡ and it transmits with probability 𝑃௧௫. The surface plot in Fig. 

9.4 (b) shows the variation of packet loss rate 𝑃௟௢௦௦ for different values of 𝑃௢௡ and 𝑃௧௫. It is 

observed that with an increase in ‘node on’ probability 𝑃௢௡, there is a decrease in 𝑃௟௢௦௦. This is 

because, higher the value of 𝑃௢௡, more likely the node is to remain 𝑂𝑛 in a frame and hence there 

is less probability of missed packet reception. Another point to note in the plot is that, for low 

 

Figure 9.4: Average packet loss with naïve policy and proposed RL-based policy. 
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values of 𝑃௧௫, the gradient of decrease in 𝑃௟௢௦௦ with 𝑃௢௡ decreases. This is because, for low 

probability of packet transmission, queues build up and get full, resulting in packet drops. As a 

result, for high probability of the node being 𝑂𝑛, even if the missed packet reception is low, still 

there is high 𝑃௟௢௦௦ because of packet drops resulting from full MAC packet queues. Fig. 9.5 

demonstrates the variation of queuing delay with the scheduling probabilities 𝑃௧௫ and 𝑃௢௡. As 

seen from the figure, the queuing delay decreases with increase in 𝑃௧௫. This is because, with an 

increase in 𝑃௧௫ , missed packet receptions increase and there are less packets received. Also, the 

queue service rate increases with an increase in 𝑃௧௫. This causes the queue length, and hence 

queuing delay, to decrease with 𝑃௧௫. Note that there is a range of values of 𝑃௧௫ for which the 

gradient in decrease in packet delay is very high. This range represents the scenario when the 

queue service rate 𝜇 gets close to the effective flow data rate 𝜆௘௙௙. In other words, when 𝜇 <

𝜆௘௙௙, the queue is stable and packet delay is low; and when 𝜇 > 𝜆௘௙௙, it leads to unstable queue 

and packet delay is very high. However, the effects of 𝑃௢௡ on queuing delay is not significant. 

 

Figure 9.5: Average packet delay with naïve policy and proposed RL-based policy. 
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This is because, the expected queue length (𝔼ൣ𝑁ொ൧) as defined by Eqn. 9.16 does not get affected 

by 𝑃௢௡, since the flow rate and service rate both are affected by 𝑃௢௡ by the same amount. 

𝔼ൣ𝑁ொ൧ ∝
ఘమ

ଵିఘ
, where 𝜌 =

௣೚೙×ఒ

௣೚೙×ఓ
=

ఒ

ఓ
                                     (9.16) 

Thus, the desired scheduling policy should be such that the packet drops resulting from missed 

receptions and queue drops should be reduced while still maintaining a stable queue. To be noted 

that the variation of 𝑃௟௢௦௦ with 𝑝௧௫ and 𝑝௢௡ is dependent on the energy harvesting parameters and 

network traffic, and hence the static policies cannot find the right balance among all the above-

mentioned performance metrics.  

The performance achieved by the RL-based scheduling approach is shown by the red points on 

the surface plot in Fig. 9.4 and 9.5. It can be observed that the proposed RL-based mechanism 

finds sleep and transmission schedules that give lower packet loss rate and packet delay than the 

static naïve scheduling policy. Note that the schedules learnt by the cooperative RL approach 

have lower value of 𝑃௟௢௦௦ for the same 𝑃௧௫, 𝑃௢௡ values used in the naïve scheduling approach. 

This is because the RL approach allows the nodes to learn dynamic sleep-transmit scheduling. In 

other words, the learnt scheduling probabilities oscillate epoch by epoch. To exemplify, a 

transmit probability of 0.6 can indicate refraining from transmission deterministically for four 

 

Figure 9.6: RL convergence behavior with respect to (a) Packet loss rate and delay and (b) 
sleep and transmit probabilities. 
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consecutive epochs (800 frames), thus recharging its battery, and then transmitting for next six 

epochs (1200 frames), thus, utilizing its recharged battery. It was observed that such dynamic 

policies learnt by the RL agents helped the node to obtain a packet loss (𝑃௟௢௦௦) rate less than the 

static naïve policies for the same < 𝑃௧௫, 𝑃௢௡ > tuple.  

The learning convergence behavior of the proposed architecture in terms of packet loss rate and 

packet delay is shown in Fig. 9.6 (a) and (b). It is observed that initially, at the start of the learning, 

𝑃௟௢௦௦ and packet delay is high; but over time, the nodes learn to find transmission and sleep 

scheduling policies, so that both packet loss rate and packet delay go down. Another observation 

is that on an average, the learning convergence time remains in the vicinity of 10ସ frame 

durations. For a typical MAC frame duration of 3-4 𝑚𝑠 [101], the RL convergence can happen 

within 30-40 𝑠𝑒𝑐. This makes the approach highly practical in that it can cope with network 

 

Figure 9.7:  Performance comparison of proposed RL-based protocol with existing approaches for 
a linear topology with multiple hops. 
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condition changes with a time constants that are order of 10s to 100s of minutes. For many static 

(i.e., non-mobile) sensor networks, the time constants for network topology and traffic condition 

changes can be even larger, often up to hours or days. 

The performance of the proposed learning-driven scheduling   logic for topologies with multiple 

hops between the source and destination is shown in Fig. 9.7. Comparison is done with the 

existing sleep-scheduling protocols: Battery State-based, Queue length-based, Solar radiation-

based and hybrid policies.  Experiments are performed for three different data rates: 𝜆 =

0.18, 0.25 and 0.40 ppf. It is observed that with increase in the number of hops between source 

and destination node, the packet delivery ratio (PDR) falls more drastically for the other 

scheduling logics as compared to that of the proposed RL-based scheduling approach. The reason 

behind this behavior is that the proposed scheduling mechanism allows the nodes to 

cooperatively learn the transmit and sleep scheduling strategy by sharing the online Learning 

Confidence Parameter (LCP) within the localized neighborhood. This piggybacked information 

is used by the learning agents to avoid bad updates of Q-table (as explained in Section 9.3) and 

helps in maintaining performance for networks where the source and destination nodes are 

separated by many numbers of hops. As seen from the figure, with the increase in flow data rate, 

the benefit of the proposed framework in terms of PDR becomes more significant. This is 

  

Figure 9.8: Performance comparison of proposed RL-based protocol with existing approaches 
for different solar radiation conditions in a heterogeneous topology with 8 flows. 
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because, for high data rate, there is a high packet loss rate due to energy shortage when the 

existing scheduling approaches are used. But, using the proposed learning-based scheme, the 

transmit and sleep scheduling agents learn cooperatively to find a joint transmit-sleep schedule 

to reduce the packet losses and hence to achieve a high packet delivery ratio. 

To test the generalizability of the proposed framework, we experimented with heterogeneous 

networks consisting of multiple flows with different flow lengths and different Poisson data-rates 

in each flow (Fig. 9.8 (a) and 9.9 (a)). Two networks (with 8 and 4 flows) are considered with 

multi-point to point traffic, where the flow rates are shown in the figures. The plots in Fig. 9.8 

and 9.9 compare the performance of the proposed RL-based scheduling policy with the other 

baseline approaches mentioned above. It is observed that for different values of cloud obstruction 

probability (𝑃஼), the packet delivery ratio is high and end-to-end packet delay is less for the 

proposed RL-based scheduling logic. With increase in cloud obstruction probability, packet 

drops due to energy shortage increases for the Battery State-based, Queue length-based, Solar 

radiation-based, and hybrid sleep scheduling policies. However, the learning-driven transmit-

sleep scheduling strategy makes the nodes learn to manage the energy budget so that the packet 

delivery ratio remains high and packet delay remains low. This makes it suitable for energy-

constrained wireless sensor and IoT networks to efficiently utilize resources to maintain 

sustainable communication. 

  

Figure 9.9: Performance comparison of proposed RL-based protocol with existing approaches 
for different solar radiation conditions in a heterogeneous topology with 4 flows. 
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9.6 Summary 

In this chapter, a cooperative Reinforcement Learning architecture is developed for energy 

management in energy-harvesting wireless sensor networks. This decentralized framework 

allows the nodes to learn a joint transmit-sleep scheduling policy in order to efficiently utilize 

the lean energy budget of the sensor nodes. And it is done while maintaining reliable 

communication in terms of low packet loss rate and packet delay. A cooperative two-agents RL 

model is developed. Using that model, the nodes learn a situation-specific transmit-sleep 

schedule. An online learning confidence parameter sharing module allows the nodes to learn 

scheduling policies by ignoring unreliable RL observations. This makes the system scalable for 

long flows with many hops between the source and destination. With simulation studies, the 

developed RL-based scheduling policy is shown to outperform existing MAC sleep schedulers, 

especially for networks with multiple hops between source and destination. The framework is 

experimented with scenarios of heterogeneous topologies, traffic scenarios and energy harvesting 

conditions. The simulation results demonstrate that the proposed learning-driven scheduling 

approach achieves a packet delivery ratio that is ≈ 60%  higher than the existing mechanisms 

for a network with 10-hops between source and destination. Moreover, for adverse energy 

harvesting conditions, the developed framework is shown to achieve ≈ 10% increase in packet 

delivery ratio and two-orders of magnitude lower end-to-end delay than the existing scheduling 

mechanisms.  

The learning mechanisms developed so far operate under the assumption of full cooperation 

among the RL agents. That is, it is assumed that all nodes aim to learn policies that can boost 

performance of the entire network. However, real-world scenarios may involve malicious nodes 

attempting to disrupt the performance of other nodes (learning agents). The subsequent chapters 
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in this thesis consider the presence of such malicious nodes in the network and performance of 

the learning-synthesized protocols under such circumstances is investigated. 
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Chapter 10: Slot Allocation using Multi-Armed Bandits in the 

Presence of Malicious Nodes  

The frameworks developed till this point in the thesis rely on the foundational assumption that 

all the learning agents cooperate with one another to learn policies that enhance the overall 

performance of the system. However, implementation of these approaches in real world 

environments introduces a new layer of complexity, as there may exist malicious nodes intending 

to degrade the performance of rest of the network. In this chapter, we delve into the implications 

of these malicious nodes on network performance. Our focus shifts towards examining the 

behavior and performance of learning-synthesized protocols when faced with such adversarial 

circumstances. 

10.1 Motivation 

Malicious nodes attempting to disrupt TDMA slot arrangements can lead to reduced MAC-layer 

throughput, delay, and other performance. Situations can be aggravated in a distributed TDMA-

based approach, in which there is no central arbitrator to allocate slots, and as such, the detection 

of malicious nodes in the network is difficult. This chapter proposes a learning based TDMA slot 

allocation scheme that enables participating wireless nodes, in a decentralized manner, to learn 

how to detect such adverse conditions caused by allocation attacks and change transmission 

strategies in real-time for minimizing the effects of such attacks.  

We consider an attack model in which multiple malicious nodes attempt to access wireless 

TDMA slots, with the goal of disrupting slot allocation of TDMA policy-complying non-

malicious nodes. The malicious nodes follow various quasi-random slot allocation policies in 

order to achieve the above objective towards reducing throughput experienced by the non-
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malicious nodes. Note that this attack model does not assume collusions among the malicious 

nodes. As a defense mechanism to such attacks, a Multi-Armed Bandit (MAB) learning-driven 

approach is proposed as the slot-allocation policy for the non-malicious nodes. The objectives of 

these nodes are to: (i) minimize throughput reduction caused by the malicious nodes, (ii) reduce 

the effective throughput experienced by the malicious nodes themselves. It is assumed that the 

non-malicious nodes are not aware of the specific attack policies used by the malicious nodes. 

They only react to the network level effects of malicious activities.  

One key characteristic of the proposed framework is that the slot allocation schemes by the nodes 

are decentralized in nature. In other words, each wireless node independently selects TDMA slots 

without explicit information sharing with its peers. This decentralized setup makes slot-allocation 

more challenging in the presence of malicious nodes. This is because the inference made by a 

non-malicious node about the current and past channel access status is deliberately corrupted by 

the malicious nodes’ non-complying, and thus harmful access behavior. In order to accomplish 

successful slot allocation in the presence of such unreliable information, two MAB-based 

schemes are proposed for non-malicious nodes’ slot allocation policies: reactive policy and 

robust policy. While the goal of the reactive policy is to maximize the non-malicious nodes’ own 

throughput, the robust policy aims at restricting the malicious nodes’ share of wireless 

bandwidth. The performance of these policies and their trade-offs are analyzed for different 

networking scenarios and application-specific requirements. 

The learning-driven slot allocation scheme achieves several benefits as compared with the 

existing scheduling mechanisms [51] [53] [58] [27] [102] [103] [104] [105] [106]. First, as 

mentioned earlier, the traditional TDMA slot scheduling approaches are pre-programmed, and 

as a result, these are inefficient in handling heterogeneities and dynamics of the network traffic 
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and topological conditions. Second, most of the existing protocols do not consider the presence 

of malicious nodes in the network. As pointed out earlier, decentralized learning in the presence 

of malicious nodes is challenging, which is dealt with in this work. Moreover, these existing 

allocation logics mostly cannot adapt to dynamic and stochastic slot allocation behavior of the 

malicious nodes. This leads to low network throughput in addition to wastage of precious energy 

resources as a result of inefficient slot allocation policies.  

10.2 Network and Traffic Model  

In order to maintain generality, multi-point to multi-point networks with mesh topologies are 

considered. In a network of 𝑁 nodes, 𝐾 number of nodes are assumed to be malicious, where 

𝐾 < 𝑁. Fig. 10.1 shows a representative partially connected mesh topology with 13 nodes, out 

of which 2 are malicious.  At the MAC layer, it is assumed that the network time is synchronized. 

Time is slotted and the MAC frames are of fixed size, which is dimensioned a priori based on 

the average degree of the network graph. 

  

 
Figure 10.1: A representative network topology with 2 malicious nodes. 
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Two different traffic models are used for application layer packet generation at the source nodes: 

(i) Constant Bit Rate (CBR), and (ii) Poisson distributed.  For both, the mean packet generation 

rate is denoted by 𝜆 packet per MAC frame (ppf).   

As an attack policy, the malicious nodes select transmission slots in a frame using various quasi-

random slot allocation policies as detailed in Section 10.4. The goal of the malicious nodes is to 

select TDMA slots so as to minimize the throughput as experienced by the non-malicious nodes. 

The non-malicious nodes use a Multi-Armed Bandit Learning-based approach for selecting MAC 

slots so as to minimize the damage caused by the malicious nodes. The details of the learning 

approach for slot-selection are furnished in Section 10.6.   

10.3 Slot Allocation Policies of Non-Malicious Nodes  

In the absence of malicious nodes, the TDMA slot allocation problem boils down to each node 

independently finding a non-overlapping slot. This is achieved using a Multi-Armed Bandit 

(MAB) Learning-based framework, where each wireless node acts as an 𝐹-Armed Bandit agent. 

Here 𝐹 is the frame size in number of slots, which is preset based on the network size/degree. 

The MAB-enabled slot allocation in the absence of malicious nodes is detailed in chapter 5. 

Where the MABs arm or action is defined by the selection of a transmission slot (out of 𝐹 slots) 

in the MAC frame. After transmitting a packet in the selected slot, the bandit or the node receives 

feedback from the environment whether the transmission was a success or collision. Based on 

this feedback, the bandit computes a numerical reward for evaluating the taken action.   

In this setting, the reward is modeled such that for a collision-free transmission, the agent receives 

a reward of +1. A reward of 0 is received if the selected slot overlaps with transmission from 

other nodes. Formally, the reward function 𝑅௜(𝑡) for node 𝑖 at a learning epoch 𝑡 can be denoted 
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as:  

𝑅௜(𝑡) = ቄ
1, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

0, 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
                                                  (10.1) 

The goal of the agent is to find arm/action that maximizes its expected long-term reward. 

10.4 Threat Models and Performance Objectives  

The threat model used in this work assumes the presence of 𝐾 number of malicious nodes in an 

𝑁-node network, where 𝐾 < 𝑁. It is assumed that these nodes are unaware of the MAC slot 

scheduling strategies followed by the non-malicious nodes. In this chapter, we assume that 

malicious nodes work independently without collusions. That is, each malicious node selects 

TDMA slots independently and without any information sharing with each other. The primary 

goal of the malicious nodes is to reduce throughput of the non-malicious nodes by disrupting 

their slot allocation. This is done while trying to maximize their own throughput.   

 

Figure 10.2: An example scenario of slot allocation policy of malicious nodes. 

In order to achieve the above objective, each of the malicious nodes randomly selects a slot in 

the frame of 𝐹 slots. Although different distributions can be followed by the malicious nodes for 

selecting slots, here we consider uniform 𝒰(1, 𝐹) and truncated normal distribution [107] [108] 

for validating the concept. The idea behind using a uniform distribution is that uniform 

distribution 𝒰(𝑎, 𝑏) has the maximum entropy among all continuous distributions supported in 

the interval [𝑎, 𝑏]. Using a high entropy distribution by the malicious nodes makes it challenging 
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for the non-malicious nodes to find a collision-free slot allocation policy. This can be explained 

using a scenario of three-nodes network as shown in Fig. 10.2, where node 2 is malicious. It 

selects a slot in the MAC frame following a uniform distribution 𝒰(1,3). This means that the 

probability of selecting each slot 𝑠 (1 ≤ 𝑠 ≤ 3) by the malicious node is equal to 1/3. Now, from 

the non-malicious nodes’ perspective, selection of each slot in the frame has equal probability of 

collision. Now, when a non-malicious node selects one of those slots and experiences a collision, 

it will change its slot in the next frame in order to avoid the collision. It will also update its MAB 

learning parameters, assuming that the collision is the result of some other non-malicious node 

using that slot for transmission. However, even in the next frame, it will have the same probability 

of collision, because of the uniform distributed scheduling policy of malicious node. In addition, 

whenever a non-malicious node encounters a collision, it cannot figure out whether the collision 

is because of an overlapping transmission from other non-malicious nodes or from the malicious 

ones. 

The stochasticity of the slot allocation mechanism by the malicious nodes can be varied in order 

to intensify the disruption of the non-malicious nodes’ slot scheduling. This is accomplished by 

adding an additional degree of freedom in malicious nodes’ lot selection policy, known as ‘hop 

duration’. The hop duration defines the number of frames a malicious node waits before changing 

its currently selected slot. This change in slot is done again following a uniform random 

distribution 𝒰(1, 𝐹). As an example, hop duration 1 indicates that the malicious node would 

select a random slot in every frame for transmitting its packet. Similarly, hop duration of ‘ℎ’ 

indicates that after a slot ‘𝑠’ is selected for transmission, it will continue its transmission in that 

slot ‘𝑠’ for ℎ frames before randomly selecting another slot ‘𝑠̂’. This makes it challenging for the 

non-malicious nodes to estimate or learn the slot allocation mechanism of the malicious nodes. 
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This is because, for a large hop duration, the non-malicious nodes would assume that the 

malicious nodes slot allocation does not change over time. When the malicious nodes change 

their transmission slots after hop duration of ℎ frames, it would not only lead to collisions in the 

system, but also disrupt the knowledge of non-malicious nodes regarding the slot allocation of 

other nodes. This is because, when the malicious nodes change transmission slot after ℎ frames, 

the resulting collisions will change the estimated MAB reward value for that slot.  In the absence 

of an efficient learning mechanism, the non-malicious nodes would have to start over again to 

find a collision-free slot schedule. 

 
Figure 10.3: Malicious nodes changing distribution to attack targeted nodes. 

This chapter also considers the scenario when the malicious nodes select slots randomly 

following a truncated normal distribution 𝜓(𝜇̅, 𝜎ത, 𝑎, 𝑏), where 𝜇̅, 𝜎ത,  are the truncated normal 

mean and standard deviation; and 𝑎, 𝑏 (0 < 𝑎, 𝑏 ≤ 𝐹) are the truncation bounds. In the absence 

of any defense mechanisms by the non-malicious nodes, using such a bell-shaped distribution 
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allows the malicious nodes to lower throughput of certain targeted nodes more than others. This 

is because, when the malicious nodes select slots in a frame using a normal distribution, it can 

modulate the likelihood of collisions for each slot in the frame by tuning 𝜇̅ and 𝜎ത. This is 

demonstrated in an example scenario shown in Fig. 10.3, where, by varying the mean values of 

the distribution, the malicious node can change its target from node 3 to node 5. 

In the presence of this threat model, the non-malicious nodes have two primary objectives: (i) to 

minimize the disruption in network performance (in terms of throughput) caused by the malicious 

nodes and (ii) to reduce the bandwidth share of malicious nodes so as to prevent them from 

sending any malicious data. The non-malicious nodes achieve the above objectives by using a 

Multi-Armed Bandit-driven learning framework as detailed in Section 10.6. 

10.5 Benchmark Throughput in the Presence of Malicious Nodes 

In this section, we derive the benchmark throughput that can be achieved in the presence of the 

threat model stated above. Let us consider a wireless network, where 𝒩 is the set of non-

malicious nodes and ℳ is the set of malicious nodes. Without loss of generality, let us consider 

a multi-point-to-point network, where all the nodes send fixed-size packets to a base-station. Let 

us define the frame size as 𝐹 slots, where 𝐹 = |𝒩| + |ℳ|. Let ℱ denotes the set of all slots in 

the frame.  

As discussed earlier, the malicious nodes use uniform or truncated normal distribution to select 

slots in the frame. Now, the best slot allocation policy for the non-malicious nodes is to co-

operate among themselves to avoid collisions. In spite of such collaboration, the non-malicious 

nodes cannot avoid the collisions that are caused by the malicious nodes’ transmissions.  

In this situation, the probability that a packet transmitted by a non-malicious node gets collided 
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is given by the conditional probability: 

𝑃௖௢௟௟,𝒩 = 𝑃[𝑁𝑜𝑑𝑒 𝑚 ∈ ℳ 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′| 𝑁𝑜𝑑𝑒 𝑛 ∈ 𝒩 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑎 𝑠𝑙𝑜𝑡 ′𝑠′] 

= 𝑃[𝑚ଵ(𝑠) ∪ 𝑚ଶ(𝑠) ∪ … … ∪ 𝑚|ℳ|(𝑠)] 

= 𝑃[ራ 𝑚௜(𝑠)

௜∈ℳ

] (10.2) 

Here, 𝑚௜(𝑠) denotes the event that malicious node 𝑚௜ ∈ ℳ selects slot 𝑠. Therefore, the 

throughput of the non-malicious nodes is given by: 

𝑆𝒩 = 1 − 𝑃௖௢௟௟,𝒩 

= 1 − 𝑃[ራ 𝑚௜(𝑠)

௜∈ℳ

] (10.3) 

First, we will derive the benchmark throughput for the case when the malicious nodes follow 

uniform distribution for slot allocation. In this case, the above Eqn. (10.3) can be expanded as: 

𝑆𝒩,௎ = 1 − ෍ ቆ
|ℳ|

2𝑖 − 1
ቇ ×

1

𝐹(ଶ௜ିଵ)

඄
|ℳ|

ଶ
ඈ

௜ୀଵ

+ ෍ ൬
|ℳ|

2𝑖
൰ ×

1

𝐹(ଶ௜)

ඌ
|ℳ|

ଶ
ඐ

௜ୀଵ

 (10.4) 

Now, the probability that a packet transmitted by a malicious node 𝑚௞ gets collided is given by 

the conditional probability 𝑃௖௢௟௟,ℳ: 

𝑃௖௢௟௟,ℳ = 𝑃[{𝑁𝑜𝑑𝑒 𝑛 ∈ 𝒩 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′ ∪ 𝑁𝑜𝑑𝑒 𝑚ᇱ

∈ {ℳ − 𝑚௞} 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′}| 𝑁𝑜𝑑𝑒 𝑚௞ ∈ ℳ 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑎 𝑠𝑙𝑜𝑡 ′𝑠′] 

= 𝑃[𝑁𝑜𝑑𝑒 𝑛 ∈ 𝒩 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′] + 𝑃[𝑁𝑜𝑑𝑒 𝑚ᇱ ∈ {ℳ − 𝑚௞} 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′] − 𝑃[{𝑁𝑜𝑑𝑒 𝑛

∈ 𝒩 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′} ∩ {𝑁𝑜𝑑𝑒 𝑚ᇱ ∈ {ℳ − 𝑚௞} 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′}] 

=
|𝒩|

𝐹
+  𝑃 ቎ ራ 𝑚௜(𝑠)

௜∈{ℳି௠ೖ}

቏ −
|𝒩|

𝐹
×  𝑃 ቎ ራ 𝑚௜(𝑠)

௜∈{ℳି௠ೖ}

቏ (10.5) 
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The throughput of the malicious nodes is given by: 

𝑆ℳ,௎ = 1 − 𝑃௖௢௟௟,ℳ 

= 1 − ቌ
|𝒩|

𝐹
+  𝑃 ቎ ራ 𝑚௜(𝑠)

௜∈{ℳି௠ೖ}

቏ −
|𝒩|

𝐹
×  𝑃 ቎ ራ 𝑚௜(𝑠)

௜∈{ℳି௠ೖ}

቏ቍ (10.6) 
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(10.7) 

The network throughput in this case is given by: 

𝑆 =
|ℳ|

|ℳ| + |𝒩|
𝑆ℳ,௎ +

|𝒩|

|ℳ| + |𝒩|
𝑆𝒩,௎ 

Now, instead of transmitting in every frame, if a malicious node 𝑚௜ transmits packets at the rate 

of 𝜆௜ packets per frame (ppf), then the throughput of non-malicious and malicious nodes can be 

derived from Eqns. (10.3) and (10.6) respectively as follows: 

𝑆𝒩,௎ = 1 − 𝑃[ራ 𝑚௜(𝑠; 𝜆௜)

௜∈ℳ

] (10.8) 

𝑆ℳ,௎ = 1 − ቌ
|𝒩|

𝐹
+  𝑃 ቎ ራ 𝑚௜(𝑠; 𝜆௜)

௜∈{ℳି௠ೖ}

቏ −
|𝒩|

𝐹
×  𝑃 ቎ ራ 𝑚௜(𝑠; 𝜆௜)

௜∈{ℳି௠ೖ}

቏ቍ (10.9) 

Here, 𝑚௜(𝑠; 𝜆௜) denotes the event that malicious node 𝑚௜ ∈ ℳ transmits packet in slot 𝑠 with 

a rate of 𝜆௜ ppf. When all the malicious nodes transmit with the same transmission rate (that is, 

𝜆௜ = 𝜆, ∀𝑖 ∈ ℳ), then Eqn. (10.8) and (10.9) simplifies to: 
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𝑆𝒩,௎ = 1 − ෍ ቆ
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𝑆ℳ,௎ = 1 − ቌ
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(10.11) 

Next, let us consider the scenario when a malicious node follows a truncated normal distribution 

𝜓௠௔௟(𝜇̅, 𝜎ത, 𝑎, 𝑏; 𝑥) for slot allocation (0 < 𝑎, 𝑏 ≤ 𝐹). From the perspective of the non-malicious 

nodes, the ideal scenario is when they learn to avoid transmission in the slots where the likelihood 

of malicious transmission is the highest. The benchmark throughput for the non-malicious nodes, 

in this case, then becomes: 

𝑆𝒩,ே = 1 − 𝑃௖௢௟௟,𝒩 

𝑃௖௢௟௟,𝒩 is the probability of collision experienced by the non-malicious nodes given by: 

𝑃௖௢௟௟,𝒩 =
1

𝐹 − 1
ℒ(𝜓௠௔௟) 

 
(10.12) 

𝑆𝒩,ே = 1 −
1

𝐹 − 1
ℒ(𝜓௠௔௟) (10.13) 

Here, ℒ(. ) is a function for computing the likelihood of malicious node selecting a slot other than 

slot 𝑠∗, where 𝑠∗is defined as: 
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𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥∀௫∈ℱ(𝜓௠௔௟(𝜇̅, 𝜎ത, 𝑎, 𝑏; 𝑥)) 

Then the function ℒ(𝜓௠௔௟) can be expressed as: 

ℒ(𝜓௠௔௟) = ෍ න 𝜓௠௔௟(𝜇̅, 𝜎ത, 𝑎, 𝑏; 𝑥)𝑑𝑥
௞ି଴.ହ

௫ୀ௞ିଵ.ହ

 

௞∈ℱି௦∗

 (10.14) 

The malicious throughput in this case becomes: 

𝑆ℳ,ே = 𝑚𝑎𝑥∀௫∈ℱ(𝜓௠௔௟(𝜇̅, 𝜎ത, 𝑎, 𝑏; 𝑥)) (10.15) 

In the presence of multiple malicious nodes with the slot selection probability distribution 𝜓௠௔௟
(௜) , 

the benchmark throughput values can be computed simply by considering the joint distribution 

followed by the malicious nodes, 𝜓௠௔௟(𝛍ഥ, 𝛔ഥ, 𝐚, 𝐛; 𝐱) in Eqns. 10.13-10.15. The above equations 

define the benchmark throughput for the non-malicious nodes, and the corresponding 

throughputs for the malicious nodes for the given threat model. Now, the objective of the 

learning-driven MAC protocol is to make the non-malicious nodes learn slot scheduling policies 

in a decentralized manner such that the above benchmark throughput can be achieved. 

10.6 Slot Allocation in the Presence of Malicious Nodes 

Transmission scheduling for a non-malicious node, in this context, is to find a slot in the MAC 

frame such that its throughput can be maximized. It should be noted that in this scenario, in which 

the malicious nodes use random distribution to allocate slots, it is not possible to obtain a 

completely collision-free system. The primary objective of the learning mechanism here is to 

make the nodes learn schedules that give throughput close to the benchmark throughput derived 

in Section 10.5.  

As explained earlier in section 10.3, each node acts as a Multi-Armed Bandit agent that interacts 

with the wireless network (learning environment) via its arms/actions. For each arm selected, the 

agent receives feedback in terms of a numerical reward. The goal of each bandit is to find 
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arm/action that maximizes its expected long-term reward. 

Two different action selection policies are used to accomplish the learning objectives in the 

presence of malicious nodes: (a) Reactive Policies, and (b) Robust Policies. The details of these 

policies are given below. 

Reactive Policies: The idea of reactive slot-scheduling policies is to make the non-malicious 

nodes change their slot allocation based on network dynamism caused due to quasi-random slot-

scheduling followed by the malicious nodes. The goal of these policies is to make the non-

malicious nodes maintain high throughput in scenarios in which the malicious nodes change their 

allocated slot after a hop duration of ℎ frames.  

Two different action selection policies are used as reactive policies: 𝜖-greedy and Upper 

Confidence Bound (UCB) [12]. The action selection logic for each of these policies for a node 

𝑛, at a learning decision epoch 𝑡, can be formulated as follows: 

𝐴ఢି୥୰ୣୣୢ୷
(௡) (𝑡) = ቊ

randomly select a transmission slot 𝑠 with probability 𝜖

𝑎𝑟𝑔𝑚𝑎𝑥∀௦∈ℱ  𝑉௧
(௡)(𝑠), with probability (1 − 𝜖)

       (10.16) 

𝐴௎஼஻
(௡)

(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥∀௦∈ℱ(𝑉௧
(௡)

(𝑠) + 𝑐ට
୪୬ (௧)

ே೟(௦)
)                                  (10.17) 

In Eqns. (10.16) and (10.17), 𝑉௧
(௡)(𝑠) is the value of the arm 𝑠 (selecting slot 𝑠) at epoch 𝑡 for 

node 𝑛; 𝑁௧(𝑠) defines the number of times slot 𝑠 has been selected for transmission till epoch 𝑡; 

ℱ is the set of all the slots in the MAC frame; and 𝑐, 𝜖 are learning hyperparameters for 

controlling the exploration-exploitation trade-off. The value update equation for both these 

policies is given by: 

𝑉௧
(௡)

(𝑠) = 𝑉௧
(௡)

(𝑠) + 𝛼(𝑟௡(𝑡) − 𝑉௧
(௡)

(𝑠))                                    (10.18) 

Here, 𝛼 is the learning rate and 𝑟௡(𝑡) is the reward received by bandit 𝑛 at epoch 𝑡. 
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Note that for the 𝜖-greedy policy, the agent constantly explores with probability 𝜖, so that the 

algorithm does not get stuck to a sub-optimal action. Similar behavior is achieved using the 

coefficient 𝑐 in the UCB action selection policy (Eqn. 10.17). Using this exploratory behavior, 

these policies help the agent to update its value function to account for any dynamism in the 

environment, which is the wireless network.   

The ability of these policies to react to network dynamics makes these applicable in situations 

where the malicious nodes follow a quasi-random slot allocation policy by not changing the slot 

in every frame. That is, when the malicious nodes wait for a hop duration of ℎ frames to 

stochastically change its transmission slot. In such scenarios, these reactive policies make the 

non-malicious nodes adapt their slot scheduling policies, when the malicious nodes switch to a 

different slot after a hop duration of ℎ frames.  

It will be shown later in Section 10.7 that these reactive policies are useful when the objective is 

to maximize the throughput of the non-malicious nodes without caring for the malicious nodes’ 

throughput. However, in addition to maximizing non-malicious nodes’ throughput when the 

application requires restricting the throughput of the malicious nodes, then these policies cannot 

provide the desired performance. 

Robust Policies: In order to address the limitations of the reactive policies mentioned above, we 

have developed a robust slot-scheduling approach. The idea behind this is to make the learning 

policies of non-malicious nodes less reactive to the hop duration in slot selection by malicious 

nodes. This would prevent the malicious nodes from getting more wireless bandwidth by using 

a large hop duration while switching slots in the frame. 

For implementing robust slot allocation approach, Thompson Sampling [109] [110] is used as 
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MAB action selection policy. Thompson Sampling is a Bayesian approach to deal with the 

exploration-exploitation dilemma in MAB action selection. In this approach, a prior probabilistic 

reward distribution is associated with each arm of a bandit. Here, we use 𝛽- distribution as the 

prior. As learning progresses, the bandit sees more and more samples of the reward for the arm 

selected, and thus, update the distribution associated with the arm. The parameters ቀ𝛼௦
(௡)

, 𝛽௦
(௡)

ቁ 

of node 𝑛’s 𝛽- distribution associated with arm (slot) ‘𝑠’ are updated at epoch 𝑡 using the 

following equation: 

(𝛼௦
(௡)

, 𝛽௦
(௡)

) = ൝
(𝛼௦

(௡)
, 𝛽௦

(௡)
),  𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ≠ 𝑠

ቀ𝛼௦
(௡)

, 𝛽௦
(௡)

ቁ + (𝑟௡(𝑡),1 − 𝑟௡(𝑡)), 𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑠
               (10.19) 

After each learning epoch, samples are picked following each arm’s 𝛽- distribution and the arm 

with the highest sample value is selected. As learning progresses, these distributions converge to 

the true reward distributions of the bandit arms. This makes sure that the arm with the highest 

expected reward value is selected. Note that as compared with the 𝜖-greedy and UCB action 

selection policies, Thompson Sampling has slow convergence in general, since the entire 

distribution parameters are updated during learning. However, the likelihood of selecting optimal 

action is high. 

Using the learning framework detailed above, each non-malicious node learns to find a TDMA 

slot schedule such that the throughput reduction caused by the malicious nodes’ non-cooperative 

strategies is minimized and the bandwidth share of malicious nodes is reduced. This is done by 

each node in a completely decentralized manner and without explicit share of learning policies 

among them.  
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Figure 10.4: Convergence behavior of MAB-driven slot allocation. 

10.7 Experiments and Results 

To implement the proposed protocol, the MAB model is embedded on top of the MAC layer 

functions. The baseline learning related parameters in the experiments are 𝜖 = 𝑒ି௧/ହ଴ , 𝑐 =

0.15, 𝛼 = 0.01.  To demonstrate the working of the proposed framework, we first experimented 

with a multi-point-to-point network with 50 wireless nodes (i.e., 𝑁 = 50) sending data to a base 

station (Fig. 10.4). Initially we consider the scenario with one malicious node in the network (i.e., 

|ℳ| = 1) that follows uniform distribution to choose slot with hop duration ℎ = 1. The learning 

 

Figure 10.5: (a) Truncated Normal distribution policy for malicious nodes’ slot allocation (b) non-
malicious nodes’ learnt slot selection policy as a response to malicious nodes’ policy. 
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convergence behavior of the non-malicious nodes is shown in Fig. 10.4. It can be observed that 

at the initial stage of learning, the average throughput of the malicious nodes is low. This is 

because of the collisions experienced due to overlapping transmissions by other nodes. Note that 

both malicious and non-malicious nodes are responsible for these collisions. However, as 

learning progresses, each of the non-malicious nodes independently learns to find a transmission 

schedule that does not overlap with each other. The average throughput after learning 

convergence equals the theoretical benchmark derived in Eqn. (10.4) and is shown by the black 

horizontal line in the figure. This observation remains valid for all the three different MAB action 

selection policies. It is to be noted that because of the non-compliant slot schedule followed by 

the malicious nodes, there are still collisions that remains after the learning convergence, which 

restricts the throughput from reaching to hundred percent.  

 
Figure 10.6:  Learning convergence behavior of non-malicious nodes for truncated Normal 

distribution policy followed by malicious nodes. 

Next, we consider the case when the malicious node follows truncated Normal distribution 

𝜓(𝜇̅, 𝜎ത, 𝑎, 𝑏), with 𝜇̅ = 20, 𝜎ത = 4, 𝑎 = 0, 𝑏 = 40. The slot section probability for the malicious 

nodes is represented by the distribution shown in Fig. 10.5 (a). Now, when the non-malicious 
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nodes use MAB-driven slot allocation policy, the non-malicious nodes learn to avoid those slots 

that have highest transmission probabilities by the malicious nodes. This can be observed from 

Fig. 10.5 (b), which depicts the slot selection probability distribution of non-malicious nodes. It 

is observed that there is a dip in the probability of slot selection around the mean (𝜇̅ = 20) of 

truncated Normal distribution followed by the malicious nodes. In this way, the non-malicious 

nodes learn to minimize the collisions resulting from the malicious nodes’ slot selection policies. 

Note that this is learnt without any prior knowledge of the malicious nodes’ slot selection 

policies. The learning convergence behavior in this case is shown in Fig. 10.6. The takeaway 

from the figure is that the non-malicious nodes learn policies to reach the theoretically derived 

benchmark throughput. 

Fig. 10.7 shows the effect of standard deviation of the distribution used by malicious nodes on 

network performance. It is observed that the throughput achieved by non-malicious nodes is 

hardly sensitive to the standard deviation of malicious nodes’ policies. However, from malicious 

nodes’ perspective, throughput reduces with increase in standard deviation, as it increases the 

probability of collision with other network nodes, because of heavy tail in the distribution of 

 
Figure 10.7: Effect of standard deviation of malicious slot allocation on throughput. 
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malicious nodes’ slot selection. 

Simulations were subsequently performed to understand the scalability of the proposed 

architecture with increased network size. The change in average throughput for both malicious 

and non-malicious nodes with increase in network size is shown in Fig. 10.8. The following 

observations can be made. First, the learning-driven slot allocation scheme is able to find a 

schedule that gives a throughput that is equal to the theoretically computed benchmarks (Eqn. 

(10.4) and Eqn. (10.7)). As seen from the figure, this observation holds for different number of 

malicious and non-malicious nodes. Second, for a given network size, the increase in malicious 

nodes reduces the throughput of the non-malicious nodes. This is because of the increase in 

collisions resulting from non-complying malicious behavior. The effects of addition of malicious 

 
Figure 10.8: Effects of network size on performance. 
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nodes decreases with increase in network size.  

 
Figure 10.9: Effect of transmission rate (𝜆) of malicious nodes on performance. 

Fig. 10.9 shows the variation of throughput due to change in the packet transmission rate 𝜆 by 

the malicious nodes. It is observed that with an increase in the rate of malicious nodes packet 

transmissions, the throughput of the non-malicious nodes goes down. This is due to the increase 

in the probability of collisions with an increase in the packet transmission rate by the malicious 

nodes. However, the throughput variation of the malicious nodes with increase in the packet 

transmission rate is very low. This is because, even when the packet transmission rate is low, all 

the slots are selected with equal probability, and whenever a packet is transmitted, the chance of 

collision is close to the case with high transmission rate. Note that the ability of the learning 

framework to make the non-malicious nodes learn slot scheduling that can give performance 

equal to theoretical benchmark holds for different values of packet transmission rate.  
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While all the three MAB action selection policies are able to obtain the corresponding benchmark 

throughputs, it is observed in Fig. 10.10 that the convergence is slow for the robust policy as 

compared to the reactive ones. The reason is that the robust policies use Thompson Sampling as 

the action selection mechanism. In Thompson Sampling, learning is relatively slow since the 

entire distribution parameters need to be updated during learning. Also, among the reactive 

policies, 𝜖-greedy converges faster compared to UCB. Since all the slots in the frame has an 

equal probability of being the optimal MAB arm, exploring with equal probability is suitable in 

this case. This provides faster convergence for the 𝜖-greedy-based reactive slot scheduling policy. 

To summarize, for this scenario with the malicious node changing slot every frame (ℎ = 1), the 

reactive policy (𝜖-greedy) performs better in terms of fast learning convergence.  

 
Figure 10.10: Convergence speed of different action selection policies. 
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Figure 10.11: Performance of different policies with different hop durations adopted by the 

malicious nodes. 

The plots shown in Fig. 10.11 demonstrate the throughput variation caused due to different hop 

durations followed by two malicious nodes in a 10-nodes network. When the non-malicious 

nodes run reactive policies, with such an increase in hop duration, the share of throughput that 

the malicious nodes can siphon out increases. At the same time, the throughputs of the non-

malicious nodes also go up. This is because, when the hop duration is large, non-malicious nodes, 

using reactive policies, have enough time to update their Q-tables as per the malicious nodes’ 

latest transmission slot. As a consequence, the collisions suffered by non-malicious nodes go 

down. As an extreme case, when the hop duration is sufficiently large (ℎ ≫ 𝑐, where 𝑐 is the 

convergence duration), the non-malicious nodes find collision-free slots and throughput 𝑆𝒩 → 1. 

Note that since the overall collisions in the network are reduced, this appears to be beneficial for 

both malicious and non-malicious nodes. However, the robust scheduling policy prevents the 

malicious nodes from receiving a higher share of bandwidth by using a large hop duration for 
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slot scheduling. This is because the action selection policy in Thompson Sampling is 

probabilistic, and parameters of the 𝛽-distribution in Thompson Sampling is based on the past 

globally observed samples. This makes the scheduling policy robust to the scheduling dynamics 

followed by the malicious nodes. This makes the robust policies suitable for scenarios where the 

goal is to reduce the bandwidth share of the malicious nodes. 

Finally, as shown in Fig. 10.12, the proposed architecture is tested in a mesh network with two 

malicious nodes (Fig. 10.1). The packet generation follows a Poisson distribution with the mean 

rate of 𝜆 packet per frame. The key observation here is that in a decentralized manner, the non-

malicious nodes are able to find a schedule that gives a throughput equal to the theoretical 

benchmark. Another observation here is that the packet collision rate increases with an increase 

in the Poisson packet generation rate. This is because of an increase in the probability of selection 

of the same slot by the malicious and non-malicious nodes. 

10.8 Summary  

In this chapter, we analyze the concept of learning-enabled protocol synthesis in the presence of 

MAC layer attacks in wireless networks. Specifically, we consider an attack model in which 

multiple malicious nodes attempt to access wireless TDMA slots, with the goal of disrupting slot 

 
Figure 10.12:  Performance of the framework for a mesh network shown in Fig. 10.1 
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allocation of TDMA policy-complying non-malicious nodes. An online learning mechanism for 

the non-malicious nodes is proposed with a two-dimensional goal: first, minimizing the 

throughput reduction caused by the malicious nodes and second, reducing the effective 

throughput experienced by the malicious nodes themselves. Two different learning policies, 

robust and reactive policies are proposed for the slot scheduling problem for different 

application-specific requirements. The reactive policies aim at maximizing the throughput of the 

non-malicious nodes without caring for the malicious nodes’ throughput. On the other hand, the 

objective of the robust policies is to keep the throughput share of the malicious nodes at check. 

An analytical model is developed to find the benchmark network throughput in the presence of 

malicious nodes. It is shown that the proposed learning-based technique allows the nodes to learn 

policies to achieve that benchmark throughput. The proposed framework is validated for various 

slot-allocation policies adopted by the malicious nodes, and for different network topologies and 

traffic conditions. Building on the insights developed in this chapter, we consider a more 

adversarial threat model in the next chapter, where the malicious nodes collude to amplify the 

throughput reduction of the non-malicious nodes. The next chapter will focus on evaluating the 

performance of the MAB-enabled slot scheduling approach under such challenging conditions 

posed by the adversaries. 
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Chapter 11: Slot Allocation in the Presence of Colluding Malicious 

Nodes  

11.1 Motivation 

In the previous chapter, it was assumed that the malicious nodes independently select TDMA 

slots without any communication among them. In this chapter, we relax that assumption to allow 

the malicious nodes to collude and share information to increase the damage to the non-malicious 

nodes. The overall goal of the malicious nodes is to avoid collisions among themselves, and to 

increase collisions with the non-malicious nodes. This would result in reduction of throughput of 

the non-malicious nodes. 

The high-level motivation behind the research in this chapter is still the same as the previous one. 

That is, to demonstrate the efficacy of the learning-driven slot allocation strategy in the presence 

of malicious nodes. Specifically, the framework addresses the disruptive impact of malicious 

nodes on TDMA slot arrangements, which can significantly reduce MAC-layer throughput and 

increase delay in wireless networks. The learning mechanism is developed for a generalized 

scenario of decentralized TDMA-based systems, lacking a central server, where detecting and 

mitigating such attacks become challenging. The proposed framework aims to enable wireless 

nodes to autonomously identify and respond to malicious slot allocation attacks in real-time. This 

is achieved by minimizing the throughput reduction caused by malicious nodes and improving 

network performance under dynamic and stochastic slot allocation scenarios. 

A few works have been developed for investigating security issues and handling malicious 

behavior in wireless access control [111] [112] [113] [114]. The papers [115] [116] [117] [118] 

use machine learning algorithms to detect the presence of malicious nodes and other cyber 



217 

attacks. The work in [112] propose a centralized TDMA scheme for minimizing wireless 

bandwidth share in vehicular networks. This cannot be directly applied to many applications due 

to inherent limitations arising from the centralized TDMA approach. The work in [113] propose 

mechanisms to deal with spectrum sensing data falsification attacks in cognitive radio networks. 

This does not consider non-compliance of malicious nodes in MAC slot allocation. The works in 

[114], [111] aim at detecting attacks for resource allocation using machine learning. These papers 

do not aim at approaches to handle those attacks after successful detection. In addition, the 

mechanisms in papers [102] [103] [104] [105] rely on centralized or pre-programmed slot 

allocation for TDMA slot allocation. 

In this research, a Multi-Armed Bandit-driven slot allocation scheme is developed which can 

detect and adjust to situations when malicious nodes attempt to destroy the TDMA-complying 

 
Figure 11.1: Collusion among malicious nodes. 
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slot allocation. This is accomplished on-the-fly and without the requirement of any central 

controller, thus making it suitable for use in distributed TDMA settings. This property also makes 

the learning-driven system scalable for large networks and mesh topologies. 

11.2 Threat Models and Performance Objectives 

The threat model assumes the presence of 𝐾 number of malicious nodes in an 𝑁-node network, 

where 𝐾 < 𝑁. It is assumed that these nodes are unaware of the MAC slot scheduling strategies 

followed by the non-malicious nodes.  

The malicious nodes that are directly connected form a private subnetwork among themselves. 

One of the nodes in each subnetwork selects the slots for all other malicious nodes in that 

subnetwork using a uniform random distribution. This is demonstrated in Fig. 11.1, where 

malicious nodes 3, 4 and 5 collude to form a private subnetwork. Similarly, nodes 14, 15, 17 and 

18 form another subnetwork. To avoid collisions within a private subnetwork, the transmission 

slots for the nodes in it are chosen to be individually unique. This, however, increases the 

likelihood of collisions with the non-malicious nodes, which are desirable from the standpoint of 

the malicious nodes. This can be explained further using an example of a simple three-nodes 

network (Fig. 11.2), in which nodes 2 and 3 are malicious. Let us consider a scenario when node 

1 (non-malicious) selects slot 1 in the frame. When malicious nodes do not collude, then the 

probability of nodes 2 and 3 selecting slot 1 is given by: 

𝑃ଶ(𝑠 = 1) + 𝑃ଷ(𝑠 = 1) − 𝑃ଶ(𝑠 = 1) × 𝑃ଷ(𝑠 = 1) 

=
1

3
+

1

3
−

1

9
=

5

9
 

On the other hand, when malicious nodes 2 and 3 collude so that they do not select the same slot 

in any frame, the probability of nodes 2 and 3 selecting slot 1 becomes: 
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𝑃ଶ
௖௢௟௟(𝑠 = 1) + 𝑃ଷ

௖௢௟௟(𝑠 = 1) =
2

3
 

Thus, the collision probability of the packets from node 1 increases. As a result, the average 

throughput of non-malicious nodes goes down, while that of the malicious nodes increases. The 

derivation of the benchmark throughput for this scenario is furnished in Section 11.3.  

 
Figure 11.2: An example of the effect of collusion in a three-nodes network. 

One important aspect here is the mechanism for sharing information between the colluding 

malicious nodes. As mentioned earlier, within each private subnetwork, one node acts as a cluster 

head and does slot allocation for the other nodes in that subnetwork. In Fig. 11.1, nodes 5 and 

14, denoted as cluster heads, select slots for all malicious nodes in their respective subnetworks. 

We consider two different approaches for sharing information about the allocated slots among 

the malicious nodes in a subnetwork. First, we consider the availability of a separate 

communication channel. The second approach is by piggybacking the slot allocation information 

in the MAC layer PDU. Note that when the malicious nodes collude using piggybacking, the 

information sharing becomes stochastic due to the MAC packet collisions. In such scenarios, all 

the malicious nodes would select slots stochastically following a uniform distribution 𝒰(1, 𝐹), 

like the case of no-collusion as explained in chapter 10. 
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11.3 Benchmark Throughput in the Presence of Malicious Nodes 

In this section, we derive the benchmark throughput for the scenario where the malicious nodes 

collude in order to avoid collisions among themselves. For deriving the equations, we consider a 

multi point-to-point wireless network comprising a set of non-malicious nodes 𝒩 and set of 

malicious nodes ℳ (same setup as the one used for deriving the benchmarks for non-collusion 

case in chapter 10). Frame size is 𝐹 slots, where 𝐹 = |𝒩| + |ℳ|.  First, let us consider the case 

where the malicious nodes use a separate channel for collusion.  In this case, the probability that 

a packet transmitted by a non-malicious node gets collided is given by: 

𝑃௖௢௟௟,𝒩
௖௢௟௟௨௦௜௢௡_௦௖ = 𝑃[𝑁𝑜𝑑𝑒 𝑚 ∈ ℳ 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′| 𝑁𝑜𝑑𝑒 𝑛 ∈ 𝒩 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑎 𝑠𝑙𝑜𝑡 ′𝑠′] 

= 𝑃[𝑚ଵ(𝑠) ∪ 𝑚ଶ(𝑠) ∪ … … ∪ 𝑚|ℳ|(𝑠)] 

= ෍ 𝑃[𝑚௜(𝑠)]

|ℳ|

௜ୀଵ

   (∵ 𝑃ൣ𝑚௜(𝑠) ∩ 𝑚௝(𝑠)൧ = 0, ∀𝑖 ≠ 𝑗) (11.1) 

Similarly, the probability of collision of packets transmitted by the malicious nodes is given by: 

𝑃௖௢௟௟,ℳ
௖௢௟௟௨௦௜௢௡_௦௖ = 𝑃[{𝑁𝑜𝑑𝑒 𝑛 ∈ 𝒩 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′| 𝑁𝑜𝑑𝑒 𝑚௞ ∈ ℳ 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑎 𝑠𝑙𝑜𝑡 ′𝑠′] 

= ෍ 𝑃[𝑚௜(𝑠)]

|𝒩|

௜ୀଵ

    (11.2) 

Therefore, the throughputs for the non-malicious and malicious nodes can be obtained from Eqn. 

11.1 and 11.2 as follows: 

𝑆𝒩
௖௢௟௟௨௦௜௢௡_௦௖ = 1 − 𝑃௖௢௟௟,𝒩

௖௢௟௟௨௦௜௢௡ೞ೎ = 1 − ෍ 𝑃[𝑚௜(𝑠)]

|ℳ|

௜ୀଵ

 

= 1 −
|ℳ|

𝐹
 (11.3) 
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𝑆ℳ
௖௢௟௟௨௦௜௢௡_௦௖ = 1 − 𝑃௖௢௟௟,ℳ

௖௢௟௟௨௦௜௢௡ೞ೎ = 1 − ෍ 𝑃[𝑚௜(𝑠)]

|𝒩|

௜ୀଵ

 

= 1 −
|𝒩|

𝐹
 (11.4) 

Next, let us consider the scenario, where the malicious nodes piggyback the slot allocation 

information in MAC layer PDU. In this case, the malicious nodes will not be able to 

deterministically share slot allocation information, owing to MAC packet collisions experienced 

by malicious nodes. Then the probability of collision of packets transmitted by the malicious 

nodes is given by: 

𝑃௖௢௟௟,ℳ
௖௢௟௟௨௦௜௢௡_௣௕

= 𝑃[{𝑁𝑜𝑑𝑒 𝑛 ∈ 𝒩 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′ ∪ 𝑁𝑜𝑑𝑒 𝑚ᇱ

∈ {ℳ − 𝑚௞} 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑠𝑙𝑜𝑡 ′𝑠′}| 𝑁𝑜𝑑𝑒 𝑚௞ ∈ ℳ 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑎 𝑠𝑙𝑜𝑡 ′𝑠′] 

=
|𝒩|

𝐹
+ 𝑃௖௢௟௟,ℳ

௖௢௟௟௨௦௜௢௡_௣௕
× 𝑃 ቎ ራ 𝑚௜(𝑠)

௜∈{ℳି௠ೖ}

቏ −
|𝒩|

𝐹
× 𝑃௖௢௟௟,ℳ

௖௢௟௟௨௦௜௢௡_௣௕
×  𝑃 ቎ ራ 𝑚௜(𝑠)

௜∈{ℳି௠ೖ}

቏ 

⇒ 𝑃௖௢௟௟,ℳ
௖௢௟௟௨௦௜௢௡_௣௕

=

|𝒩|
𝐹

(1 − 𝑃ൣ⋃ 𝑚௜(𝑠)௜∈{ℳି௠ೖ} ൧ +
|𝒩|

𝐹
×  𝑃ൣ⋃ 𝑚௜(𝑠)௜∈{ℳି௠ೖ} ൧)

 (11.5) 

The malicious nodes’ throughput then becomes: 

𝑆ℳ
௖௢௟௟௨௦௜௢௡_௣௕

= 1 −

|𝒩|
𝐹

(1 − 𝑃ൣ⋃ 𝑚௜(𝑠)௜∈{ℳି௠ೖ} ൧ +
|𝒩|

𝐹
×  𝑃ൣ⋃ 𝑚௜(𝑠)௜∈{ℳି௠ೖ} ൧)

 (11.6) 

Similarly, the throughput of the non-malicious nodes becomes: 

𝑆𝒩
௖௢௟௟௨௦௜௢௡_௣௕

= 1 − 𝑃[𝑚ଵ(𝑠) ∪ 𝑚ଶ(𝑠) ∪ … … ∪ 𝑚|ℳ|(𝑠)] 
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= 1 −
|ℳ|

𝐹
− 𝑃௖௢௟௟,ℳ

௖௢௟௟௨௦௜௢௡_௣௕
× ෍ ቆ

|ℳ|

2𝑖 − 1
ቇ ×

1

𝐹(ଶ௜ିଵ)

඄
|ℳ|

ଶ
ඈ

௜ୀଵ

+ 𝑃௖௢௟௟,ℳ
௖௢௟௟௨௦௜௢௡_௣௕

× ෍ ൬
|ℳ|

2𝑖
൰ ×

1

𝐹(ଶ௜)

ඌ
|ℳ|

ଶ
ඐ

௜ୀଵ

 

(11.7) 

The above equations define the benchmark throughput for the non-malicious nodes, and the 

corresponding throughputs for the malicious nodes for the given threat model. Now, the objective 

of the learning-driven MAC protocol is to make the non-malicious nodes learn slot scheduling 

policies in a decentralized manner such that the above benchmark throughput can be achieved. 

11.4 Slot Allocation in the Presence of Malicious Nodes 

The non-malicious nodes use Multi-Armed Bandit for slot scheduling in this scenario. The 

learning framework is the same as the one developed in chapter 10. Each node is equipped with 

an MAB agent whose action is to select a slot for transmission such that the long term expected 

reward is maximized. The reward is defined such that a positive reward is assigned for a 

successful slot selection (that is no collision) and a zero reward when the packet transmitted in a 

selected slot gets collided. All the different kinds of action selection policies (that is reactive and 

robust) defined in previous chapter apply in this setting as well. However, while experimentation, 

we use Thompson Sampling for demonstrating the performance of the learning mechanism in 

this setting. 

11.5 Experiments and Results 

In this section, we present the results for the scenario when the malicious nodes collude to reduce 

collisions among themselves. As detailed earlier, the objectives of the malicious nodes are to 

reduce throughput of the non-malicious nodes and to increase their own throughput. Two cases 
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are considered for sharing information among the colluding malicious nodes: (i) availability of a 

separate communication channel; (ii) by piggybacking the information in the MAC layer PDU. 

First, we demonstrate this for a 10-nodes fully connected topology. Fig. 11.3 compares the 

throughput of both malicious and non-malicious nodes for three cases: (i) no-collusion (ii) 

collusion using a separate channel (collusion-sc) and (iii) collusion using piggybacking 

(collusion-pb). The following observations can be made. First, throughput reduction for non-

malicious nodes is high when the malicious nodes collude. At the same time, average throughput 

of malicious nodes increases. Second, the effect of collusion reduces when malicious nodes use 

piggybacking as compared to the scenario when a separate channel is available for malicious 

nodes’ information sharing. This is because of malicious nodes’ packet loss due to collision when 

they piggyback information on MAC PDU. Third, throughput reduction of non-malicious nodes 

and throughput increase of malicious nodes, with increase in the number of malicious nodes, is 

consistent irrespective of the case when the malicious nodes collude or not. However, the effect 

of the number of malicious nodes on non-malicious throughput increases when there is collusion 

 
Figure 11.3: Effect of collusion on (a) non-malicious and (b) malicious nodes’ throughput. 
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among the malicious nodes. Moreover, the figure also demonstrates the ability of MAB-driven 

slot allocation scheme to make the non-malicious nodes achieve the theoretically-derived 

benchmark throughput for all the above-mentioned scenarios. 

The effect of collusion on the network performance is studied for mesh networks with sparse 

connectivity. As shown in Fig. 11.4, there are 5 malicious nodes forming two-separate private 

sub-networks, with node ID 4 and 12 acting as the respective Cluster Head. The following 

observations hold for the mesh networks as well. First, malicious nodes throughput increases, 

and non-malicious nodes throughput reduces in the presence of collusion. Second, the effect of 

malicious nodes on the rest of the network decreases when they collude using piggybacking as 

compared to using a separate channel. 

 
Figure 11.4: Effect of collusion in partially connected mesh networks. 

11.6 Summary 

In this chapter, we consider a scenario where the malicious nodes collude and share information 

so as to increase the throughput reduction of the rest of the network. The malicious nodes form 

private sub-networks among themselves to collude. Two information sharing models are 

considered for the malicious nodes: (i) availability of a separate channel and (ii) piggybacking 
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control information in MAC PDU. Performance of the MAB-driven slot allocation strategy is 

then evaluated in such adversarial scenarios. The theoretical benchmark throughputs are 

computed for different malicious nodes’ slot allocation strategies and it is shown that the non-

malicious nodes are able to achieve these benchmarks by learning suitable slot scheduling 

strategy.  
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Chapter 12: Conclusions and Future Works 

In this thesis, we have formulated and developed the concept of network protocol synthesis using 

multi-agent Reinforcement Learning. The core idea of this paradigm is that each node, equipped 

with an RL engine, learns to find situation-specific protocol logic for network performance 

improvements. The developed framework is specifically targeted to resource-constrained 

networks with thin energy budget and limited underlying hardware support. We particularly 

focus on developing architectures for synthesizing access control protocols that deal with 

network performance improvement from multiple perspectives, viz., network throughput, access 

delay, energy efficiency, and wireless bandwidth usage.    

The learning architectures aimed at finding policies for specific access control scenarios, 

throughout the thesis, are developed with a decentralized implementation. Each wireless node 

learns its own access layer logic independently and without the arbitration of a central server. 

This is done to reduce the energy expenditure and bandwidth overhead required for control 

information sharing to and from the server. This decentralized orchestration is achieved by a 

cooperative behavior followed by the learning agents while training. Towards the later part of 

the thesis, we analyze the performance of the synthesized protocols in adversities, when there are 

malicious nodes in the network, acting non-cooperatively, with an attempt to degrade the network 

performance. 

The concept of learning-enabled network protocol synthesis has been explored for a diverse set 

of MAC arrangements. First, the idea is demonstrated in random access MAC settings, where the 

learning-driven logic is shown to be able to minimize collisions with a fair share of wireless 

bandwidth in the network. Next, the concept of RL-based protocol synthesis is used for TDMA-
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based MAC arrangement for slot scheduling and transmit-sleep-listen decision making. It is 

shown in the thesis how learning can make the nodes take transmission/sleep decisions in a 

judicious manner in order to save energy while maintaining network performance. This is 

achieved using a multi-tier learning framework that manages the trade-off between energy 

expenditure, throughput, and delay. A contextual learning model is developed in order to make 

the system adaptive to network traffic dynamics and scalable with network size. The energy 

management framework is then extended for applications with energy-harvesting networks that 

have a spatiotemporal energy variation. Finally, performance of the learning driven protocols is 

studied under the influence of unreliable information caused by the presence of adversarial agents 

in the network. 

12.1 Key Findings and Design Guidelines 

The following are the key takeaway points that can be learnt from the results presented in this 

thesis.  

1. In the absence of time-slotting, time synchronization, carrier sensing, the RL-enabled 

protocol can achieve the benchmark ALOHA throughput and sustain it for higher network traffic. 

The performance of the synthesized protocol depends on the granularity of the RL state-action 

space, which needs to be adjusted according to the application specific requirements. It is 

noteworthy that learning convergence time needs to be traded with network performance for 

these scenarios. Depending on the application requisites, the throughput can be distributed fairly, 

or node-level access priority can be assigned by tuning the RL reward function.  

2. For time-slotted networks, in the absence of time synchronization, MAB can be used for 

TDMA slot scheduling in a decentralized approach for heterogeneous and mesh networks. While 

the MAB-driven protocol allows slot scheduling such that there is no packet collision, it comes 
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with a bandwidth redundancy because of absence of time synchronization. This bandwidth 

redundancy can be kept to a minimum by using a slot defragmentation mechanism after learning 

convergence. It was observed that there exists a trade-off between learning convergence time and 

bandwidth redundancy. Thus, a design guideline based on this study would be to first use MAB 

for slot scheduling with a much larger frame size and then use slot defragmentation to reduce the 

bandwidth overhead. 

3. A multi-tier, hierarchical learning module driven by RL and MAB can be used for 

efficient energy management in networks. While performing a thorough characterization of the 

system, an inverse relationship between energy efficiency and network throughput was observed. 

From the perspective of network design and management, a user-tunable learning parameter 

(packet miss reduction parameter) was incorporated into the framework. By suitable application-

specific tuning of the parameter, adjustment can be made to find a right balance in the throughput-

energy consumption space. 

4. The multi-tier energy management architecture can be made adaptive to network traffic 

and scalable with network size by following a context-specific learning and using a function 

approximator such as a Neural Network. Nonetheless, training a deep NN model is 

computationally complex considering the processing capability of sensor nodes. Computing 

elaborate back propagation and gradient descent can also consume a significant amount of 

energy, which cannot be afforded in resource-constrained sensor/ IoT nodes. This needs to be 

handled by offline training of the deep NN models pre-deployment. The learnt synaptic weights 

are required to be stored in the sensor nodes for estimating the appropriate actions for a given 

context/state. 
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Figure 12.1: Dependency of Action Space size on network performance. 

5. The action space cardinality |𝒜|, has to be chosen judiciously based on the application 

requirement and the computation capability of the sensor nodes. A granular action space 

increases the energy efficiency of the transmit-sleep scheduling agent, although at the expense 

of heavy computation load and convergence speed. For the CDQL framework, the dependency 

of action space size (controlled by parameter 𝑚) on energy efficiency (𝜂்௫ෞ ) is shown in Fig. 12.1. 

The figure depicts an asymptotic increase of efficiency with increase in the value of 𝑚. The 

extreme case is when the action space becomes continuous (i.e., 𝑚 → ∞). In that situation, the 

problem needs to be solved using Policy-Gradient-based algorithms, which can be a future 

extension of this research. Note that the existing policy gradient algorithms in general show 

convergence limitations created by the restricted policy spaces defined by a multi-layer neural 

network, as proved theoretically in [119]. 

6. Energy management in an energy-harvesting network can be accomplished by learning 

geo-temporal specific, joint transmit-sleep scheduling logic. While developing the learning 
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paradigm for topologies with long flow, special consideration must be given to learning errors 

that can propagate along the flow. An approach to deal with such situations has been proposed 

in the thesis by allowing the nodes to share learning confidence with each other. 

7. Decentralized TDMA slot allocation in the presence of malicious nodes can be achieved 

using Multi-Armed Bandits. Although collisions cannot be got rid of in such scenario, given the 

stochastic and non-compliance behavior of the adversaries, the collisions can be kept to a 

minimum. Based on the system-level defense requirements of minimizing the non-malicious 

throughput reduction or malicious bandwidth share, reactive or robust slot allocation schemes 

can be adopted. 

12.2 Future Research Directions 

This thesis has laid the foundation for conceptual development and numerical demonstrations of 

the paradigm of network protocol synthesis using multi-agent Reinforcement Learning and its 

variants. There are several areas that can be branched from this key concept as future research 

directions. Some of these research directions worth exploring are enumerated in this section. 

12.2.1 Cross-Layer Learning for Energy Management  

The protocol synthesis architectures for network energy management as proposed in chapters 7-

9 is based on transceiver sleep-awake decision making, which is a MAC layer approach. In that 

scenario, it is assumed that the flows are fixed, meaning that the packet routes do not change over 

time. Now, there may be scenarios where the intermediate nodes in a flow do not have sufficient 

energy for transmission. In that case, the service is disrupted till the intermediate nodes are 

recharged with sufficient energy. However, there may exist an alternate route for the flow where 

the nodes have sufficient energy to ensure sustainability of the flow (Fig. 12.1). 
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Figure 12.2: Cross-layer learning for Flow-Energy Management in energy-harvesting networks. 

The idea here is to design a learning-based approach that can change the route based on the 

energy profiles of the nodes so as to minimize the duration of service disruption. This is 

demonstrated in Fig. 12.1, where node ‘𝑌’ has shortage of energy, that may lead to service 

disruption for both the existing flows through it. Now, there is an alternate route (𝑆ଵ → 𝐴 → 𝐵 →

𝐶 → 𝐷ଵ) for sending packets from source 𝑆ଵ to destination 𝐷ଵ. Although that is a longer route in 

terms of number of hop counts, but choosing that route will reduce the energy consumption at 

node ‘𝑌’, since it has to only forward packets for flow 2. This is beneficial for the sustainability 

of both the flows. This can be achieved by launching an RL engine at the routing layer of each 

node to decide, based on its own and its one-hop neighbor’s energy profile, on the best possible 
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next hop to forward the packet in order to adaptively reduce the service disruption because of 

energy shortage. 

Now, we have two different approaches for flow-energy management in a network with 

spatiotemporal energy profile: MAC layer scheduler (chapters 7-9) and routing layer flow 

manager. The high-level goal is to integrate to integrate these RL engines to design a cross-layer 

learning framework that can minimize the duration of service disruption because of energy 

shortage, while keeping delay and sleep-induced packet drops at an acceptable minimum. These 

agents cooperate with each other to achieve the desired objectives, viz., to minimize the duration 

of flow service disruption as well as the sleep-induced packet drops and end-to-end delay. The 

agent at routing layer decides the best route based on the energy profiles of the nodes and the one 

at the MAC layer decides the best sleep-awake scheduling policy for that specific route. An actor-

critic architecture could also be used here, where the policies learnt by the actor in the MAC layer 

would be evaluated and supported by the critic logically located in the routing layer. The 

expectation is that this cross-layer design would be able to handle the trade-off more efficiently 

than the MAC layer design proposed in this thesis. 

12.2.2 Integration of multiple learning agents for design-complexity reduction 

The multi-tier learning frameworks for sleep-transmission scheduling in chapters 7 and 8 rely on 

the policies learnt by multiple learning agents. First, there is an MAB-based slot allocating agent 

per node for collision-free transmission in tier-I. Second, an RL-based transmit/sleep scheduling 

agent per flow in tier-II manages the trade-off between packet delay and energy consumption. 

There is an MAB-based listen/sleep scheduling agent per node for managing the trade-off 

between sleep-induced packet drops and energy consumption in tier-III. Thus, for a network with 

𝑁 nodes and 𝑁ி flows through each node, we would have 2 × 𝑁 MAB agents and 𝑁ி × 𝑁 RL 
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agents. The design complexity in this implementation is high. Moreover, in this multi-tier setup, 

the learning policies of one agent is dependent on the learning behavior of others. So, inaccurate 

learning policies learnt by an agent affect the policies of others.  

 The future research idea here is to integrate functionalities of multiple learning agents into one 

so that the design complexity is reduced. A single model can be trained for achieving slot-

allocation, transmit-sleep scheduling simultaneously, so as to improve network performance 

while reducing energy expenditure. In addition, a detailed complexity analysis of the access 

protocol synthesis frameworks developed in this thesis needs to be studied in terms of space 

complexity, computational cost and convergence time. The goal here would be to build a system 

that can achieve the same performance as is achieved by the developed architectures but with a 

less complex design and low computation cost. 

There are certain challenges that need to be addressed in order to incorporate all the 

functionalities into a single learning agent. First, learning in the multi-tier framework is 

sequential in nature. That is, learning policies by the transmit/sleep scheduling is dependent on 

the slot scheduling agent. The question that needs to be addressed is how to accomplish such 

sequential/hierarchical behavior using a single learning agent. The second challenge is the 

handling of large state-action space created by integrating the learning modules. The 

functionalities of policy gradient approaches could be leveraged to address this. The computation 

load of these algorithms need to be evaluated from the perspective of resource-constrained nodes. 

12.2.3 Protocol Synthesis in the Absence of Hardware Constraints 

The protocol synthesis architectures developed in this thesis are mainly focused on resource-

constrained networks with a thin energy budget. The random-access logics developed in chapters 

3 and 4 are centered around low-complexity networks with limited underlying hardware support. 
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In such a constrained environment, the benchmark throughput performance is restricted to that 

achieved by ALOHA class of protocols. It would be interesting to explore the protocol synthesis 

framework for more advanced networked systems in the absence of such hardware limitations. 

A research direction along this line would be to leverage the ability of the protocol synthesis 

approach for finding situation-specific optimal networking solutions for WiFi [8] class of 

protocols. Enhancing WiFi throughput in the presence of large number of users has been of 

interest to researchers [120] [121] [122]. The learning-driven solution frameworks developed in 

this thesis and the corresponding findings can be extended for finding access control protocols 

in such scenarios. Moreover, managing WiFi throughput in a heterogeneous networking 

condition [123] [124] can be developed building on the techniques proposed in chapters 3 and 4 

for assigning fairness and node-level access priorities in random access MAC arrangements.  

While extending the protocol synthesis architecture to encompass networks without hardware 

constraints, it would also be useful to consider dynamic and error-prone channel conditions. In 

such situations, the learning observables would be affected by channel noise. The objective of 

the learning mechanism would be to find policies for improving network performance in such 

complex channel characteristics. A solution approach for this problem would be to develop a 

channel model, including the noise characterization, based on the RL observables. This can then 

be embedded into the state space for making the policies robust to channel errors and 

uncertainties. 

12.2.4 Evaluating the Protocol Synthesis Framework under Advanced MAC Attacks 

In chapters 10 and 11, we analyzed performance of the learning-driven slot allocation approach 

in the presence of adversaries trying to disrupt the network performance. Nevertheless, in 

practical networks, the MAC attacks can be much more complicated. One such scenario can be 
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extended from what is presented in chapter 11, where the malicious nodes form private sub 

networks to collude with the goal of reducing the throughput of the network. In a more advanced 

threat model, the malicious nodes can rely on the routing layer to share information among each 

other irrespective of their connections. Finding the benchmark network throughput and 

developing learning policies for such scenarios are worth exploring.   

In addition, evaluation of performance of the energy management solutions presented in chapters 

7-9 in the presence unreliable RL observations because of non-cooperative agents is a future 

direction of research. The situation would become more adverse here, because of the multi-tier 

learning architecture used. Malicious behavior in one of these tiers would affect the learning 

behavior at all the tiers.  

The goal here would be to develop solutions that can handle such attacks and find policies so that 

performance degradation caused by malicious nodes is reduced. The concept of game-theoretic 

approaches for solving non cooperative games could be leveraged to find policies in the presence 

of such advanced attack models. Nash conditions for these scenarios can be formulated to derive 

theoretical benchmarks, where no agent can improve its performance by changing its strategy 

alone, assuming other nodes’ strategies remain unchanged. 

12.2.5 Leveraging Generative Learning Models for Protocol Synthesis 

Recent developments of the deep learning architectures, such as, Generative Adversarial 

Networks (GANs) [125], Transformers [126], Variational Autoencoders (VAEs) [127], or 

language models like OpenAI’s GPT (Generative Pre-trained Transformer) [128] have inspired 

researchers to explore the benefits of Generative AI in multiple applications. Transformer model, 

which is core to many of these learning frameworks, can capture long range dependencies of an 

input sequence, because of its self-attention mechanism. This makes these frameworks well-
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suited for tasks that require understanding context across different parts of the input sequence. 

This property of these learning models can be leveraged for developing policies and protocols 

for wireless networks. Network conditions, such as congestion status, energy budget, throughput, 

channel conditions etc., can serve as the context for these models which can learn suitable and 

context-specific policies for maximizing network performance. In addition, pre-trained 

transformer models, such as GPT, can be fine-tuned on specific tasks with relatively small 

amounts of task-specific data. This transfer learning approach enables quick adaptation of these 

models to new tasks. This property of these models can be exploited for learning network 

protocols that can adapt to time-varying network conditions. However, one key research question 

here would be to find out how to make these large and complex models suitable for wireless 

nodes with limited processing capacity, energy budget and memory constraints. Developing a 

generative AI-driven framework for network protocol synthesis considering the above 

constraints can be a future direction of this thesis. To understand how these approaches would 

compare with the findings of this thesis would be worth exploring. 
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